From 94207aad4f251487f9daa49d89d0057d3497bce1 Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Wed, 31 Aug 2022 11:29:19 -0400 Subject: [PATCH] minor bug fixes and increased test coverage --- CHANGELOG.md | 5 +- TODO.md | 1 + dist/human.esm-nobundle.js | 18 +- dist/human.esm-nobundle.js.map | 6 +- dist/human.esm.js | 5082 ++++------- dist/human.esm.js.map | 6 +- dist/human.js | 1741 ++-- dist/human.node-gpu.js | 18 +- dist/human.node-wasm.js | 18 +- dist/human.node.js | 18 +- dist/tfjs.esm.js | 15140 ++++++++++++++----------------- package.json | 8 +- src/face/attention.ts | 13 +- src/face/facemesh.ts | 2 +- src/human.ts | 7 +- src/image/image.ts | 7 + src/models.ts | 2 +- src/object/centernet.ts | 1 + test/browser.html | 4 +- test/browser.js | 146 +- test/browser.log | 477 +- test/build.log | 78 +- test/test.log | 1999 ++-- typedoc/assets/style.css | 1 + typedoc/classes/Human.html | 36 +- 25 files changed, 11054 insertions(+), 13780 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 525191a9..0cc1a2c2 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -11,9 +11,8 @@ ### **HEAD -> main** 2022/08/30 mandic00@live.com - -### **origin/main** 2022/08/28 mandic00@live.com - +- add model load exception handling +- add softwarekernels config option - expand type safety - full eslint rule rewrite diff --git a/TODO.md b/TODO.md index cbbe08cb..4310d414 100644 --- a/TODO.md +++ b/TODO.md @@ -60,6 +60,7 @@ Enable via `about:config` -> `gfx.offscreencanvas.enabled` Example: `console.log(human.env.tensorflow)` - Treat models that cannot be found & loaded as non-critical error Instead of creating runtime exception, `human` will now report that model could not be loaded +- Improve `human.reset()` method to reset all config values to defaults - Host models in Models can be directly used without downloading to local storage Example: `modelPath: 'https://vladmandic.github.io/human-models/models/facemesh.json'` diff --git a/dist/human.esm-nobundle.js b/dist/human.esm-nobundle.js index db90c82d..f9fb5360 100644 --- a/dist/human.esm-nobundle.js +++ b/dist/human.esm-nobundle.js @@ -4,7 +4,7 @@ author: ' */ -var Q2=Object.defineProperty;var Co=Object.getOwnPropertyDescriptor;var Io=Object.getOwnPropertyNames;var jo=Object.prototype.hasOwnProperty;var Oo=(e,t,o)=>t in e?Q2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var q0=(e,t)=>{for(var o in t)Q2(e,o,{get:t[o],enumerable:!0})},W1=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Io(t))!jo.call(e,r)&&r!==o&&Q2(e,r,{get:()=>t[r],enumerable:!(n=Co(t,r))||n.enumerable});return e},Z=(e,t,o)=>(W1(e,t,"default"),o&&W1(o,t,"default"));var w=(e,t,o)=>(Oo(e,typeof t!="symbol"?t+"":t,o),o),F1=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var Ve=(e,t,o)=>(F1(e,t,"read from private field"),o?o.call(e):t.get(e)),Ze=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},Xe=(e,t,o,n)=>(F1(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);function b(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function G1(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var v=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function _2(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")_2(e[r],t[r],r,n);else{let s=e&&typeof e[r]!="undefined";s||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let a=e&&typeof e[r]==typeof t[r];s&&!a&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&b("invalid configuration",n),n}function U(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let s=o[r],a=n[r];Array.isArray(s)&&Array.isArray(a)?o[r]=s.concat(...a):t(s)&&t(a)?o[r]=U(s,a):o[r]=a}),o),{})}var Ae={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var A={};q0(A,{GraphModel:()=>$2,Tensor:()=>be,version:()=>qe});Z(A,e7);Z(A,t7);import*as e7 from"@tensorflow/tfjs/dist/index.js";import*as t7 from"@tensorflow/tfjs-backend-webgl/dist/index.js";import{Tensor as be}from"@tensorflow/tfjs/dist/index.js";import{GraphModel as $2}from"@tensorflow/tfjs-converter/dist/index";var No="3.20.0",Lo="3.20.0",Wo="3.20.0",Fo="3.20.0",Go="3.20.0",Bo="3.20.0",Ho="3.20.0",qe={tfjs:No,"tfjs-core":Lo,"tfjs-data":Wo,"tfjs-layers":Fo,"tfjs-converter":Go,"tfjs-backend-webgl":Bo,"tfjs-backend-wasm":Ho};var B1=` +var Q2=Object.defineProperty;var Io=Object.getOwnPropertyDescriptor;var jo=Object.getOwnPropertyNames;var No=Object.prototype.hasOwnProperty;var Oo=(e,t,o)=>t in e?Q2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var q0=(e,t)=>{for(var o in t)Q2(e,o,{get:t[o],enumerable:!0})},F1=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of jo(t))!No.call(e,r)&&r!==o&&Q2(e,r,{get:()=>t[r],enumerable:!(n=Io(t,r))||n.enumerable});return e},Z=(e,t,o)=>(F1(e,t,"default"),o&&F1(o,t,"default"));var w=(e,t,o)=>(Oo(e,typeof t!="symbol"?t+"":t,o),o),G1=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var Ve=(e,t,o)=>(G1(e,t,"read from private field"),o?o.call(e):t.get(e)),Ze=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},Xe=(e,t,o,n)=>(G1(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);function g(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function B1(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var R=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function _2(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")_2(e[r],t[r],r,n);else{let s=e&&typeof e[r]!="undefined";s||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let a=e&&typeof e[r]==typeof t[r];s&&!a&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&g("invalid configuration",n),n}function U(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let s=o[r],a=n[r];Array.isArray(s)&&Array.isArray(a)?o[r]=s.concat(...a):t(s)&&t(a)?o[r]=U(s,a):o[r]=a}),o),{})}var Ae={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var A={};q0(A,{GraphModel:()=>$2,Tensor:()=>be,version:()=>qe});Z(A,t7);Z(A,o7);import*as t7 from"@tensorflow/tfjs/dist/index.js";import*as o7 from"@tensorflow/tfjs-backend-webgl/dist/index.js";import{Tensor as be}from"@tensorflow/tfjs/dist/index.js";import{GraphModel as $2}from"@tensorflow/tfjs-converter/dist/index";var Lo="3.20.0",Wo="3.20.0",Fo="3.20.0",Go="3.20.0",Bo="3.20.0",Ho="3.20.0",Do="3.20.0",qe={tfjs:Lo,"tfjs-core":Wo,"tfjs-data":Fo,"tfjs-layers":Go,"tfjs-converter":Bo,"tfjs-backend-webgl":Ho,"tfjs-backend-wasm":Do};var H1=` precision highp float; attribute vec2 pos; attribute vec2 uv; @@ -14,7 +14,7 @@ var Q2=Object.defineProperty;var Co=Object.getOwnPropertyDescriptor;var Io=Objec vUv = uv; gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.); } -`;var H1=` +`;var D1=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -26,7 +26,7 @@ var Q2=Object.defineProperty;var Co=Object.getOwnPropertyDescriptor;var Io=Objec gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14]; gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19]; } -`,D1=` +`,V1=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -38,7 +38,7 @@ var Q2=Object.defineProperty;var Co=Object.getOwnPropertyDescriptor;var Io=Objec gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14]; gl_FragColor.a = c.a; } -`,V1=` +`,Z1=` precision highp float; varying vec2 vUv; uniform vec2 size; @@ -51,7 +51,7 @@ var Q2=Object.defineProperty;var Co=Object.getOwnPropertyDescriptor;var Io=Objec vec2 coord = pixelate(vUv, size); gl_FragColor += texture2D(texture, coord); } -`,Z1=` +`,X1=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -74,7 +74,7 @@ var Q2=Object.defineProperty;var Co=Object.getOwnPropertyDescriptor;var Io=Objec gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794; gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265; } -`,X1=` +`,q1=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -96,7 +96,7 @@ var Q2=Object.defineProperty;var Co=Object.getOwnPropertyDescriptor;var Io=Objec c31 * m[6] + c32 * m[7] + c33 * m[8]; gl_FragColor.a = c22.a; } -`;var e5=(e,t,o)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,s)=>(o[s]=0,r))},t5=class{constructor(t,o,n){w(this,"uniform",{});w(this,"attribute",{});w(this,"gl");w(this,"id");w(this,"compile",(t,o)=>{let n=this.gl.createShader(o);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(b(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(b("filter: could not create shader"),null)});this.gl=t;let r=this.compile(o,this.gl.VERTEX_SHADER),s=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!s)){if(!this.id){b("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,s),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){b(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),e5(o,"attribute",this.attribute);for(let a in this.attribute)this.attribute[a]=this.gl.getAttribLocation(this.id,a);e5(o,"uniform",this.uniform),e5(n,"uniform",this.uniform);for(let a in this.uniform)this.uniform[a]=this.gl.getUniformLocation(this.id,a)}}};function q1(){let e=0,t=null,o=!1,n=-1,r=[null,null],s=[],a=null,i=null,c=s0(100,100),x={},d={INTERMEDIATE:1},l=c.getContext("webgl");if(!l){b("filter: cannot get webgl context");return}this.gl=l;function f(P,m){if(!(P===c.width&&m===c.height)){if(c.width=P,c.height=m,!a){let u=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);a=l.createBuffer(),l.bindBuffer(l.ARRAY_BUFFER,a),l.bufferData(l.ARRAY_BUFFER,u,l.STATIC_DRAW),l.pixelStorei(l.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}l.viewport(0,0,c.width,c.height),r=[null,null]}}function y(P,m){let u=l.createFramebuffer();l.bindFramebuffer(l.FRAMEBUFFER,u);let z=l.createRenderbuffer();l.bindRenderbuffer(l.RENDERBUFFER,z);let k=l.createTexture();return l.bindTexture(l.TEXTURE_2D,k),l.texImage2D(l.TEXTURE_2D,0,l.RGBA,P,m,0,l.RGBA,l.UNSIGNED_BYTE,null),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_MAG_FILTER,l.LINEAR),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_MIN_FILTER,l.LINEAR),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_WRAP_S,l.CLAMP_TO_EDGE),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_WRAP_T,l.CLAMP_TO_EDGE),l.framebufferTexture2D(l.FRAMEBUFFER,l.COLOR_ATTACHMENT0,l.TEXTURE_2D,k,0),l.bindTexture(l.TEXTURE_2D,null),l.bindFramebuffer(l.FRAMEBUFFER,null),{fbo:u,texture:k}}function p(P){return r[P]=r[P]||y(c.width,c.height),r[P]}function g(P=0){if(!i)return;let m=null,u=null,z=!1;e===0?m=t:m=p(n).texture||null,e++,o&&!(P&d.INTERMEDIATE)?(u=null,z=e%2===0):(n=(n+1)%2,u=p(n).fbo||null),l.bindTexture(l.TEXTURE_2D,m),l.bindFramebuffer(l.FRAMEBUFFER,u),l.uniform1f(i.uniform.flipY,z?-1:1),l.drawArrays(l.TRIANGLES,0,6)}function M(P){if(x[P])return i=x[P],l.useProgram((i?i.id:null)||null),i;if(i=new t5(l,B1,P),!i)return b("filter: could not get webgl program"),null;let m=Float32Array.BYTES_PER_ELEMENT,u=4*m;return l.enableVertexAttribArray(i.attribute.pos),l.vertexAttribPointer(i.attribute.pos,2,l.FLOAT,!1,u,0*m),l.enableVertexAttribArray(i.attribute.uv),l.vertexAttribPointer(i.attribute.uv,2,l.FLOAT,!1,u,2*m),x[P]=i,i}let R={colorMatrix:P=>{let m=new Float32Array(P);m[4]/=255,m[9]/=255,m[14]/=255,m[19]/=255;let u=m[18]===1&&m[3]===0&&m[8]===0&&m[13]===0&&m[15]===0&&m[16]===0&&m[17]===0&&m[19]===0?D1:H1,z=M(u);!z||(l.uniform1fv(z.uniform.m,m),g())},brightness:P=>{let m=(P||0)+1;R.colorMatrix([m,0,0,0,0,0,m,0,0,0,0,0,m,0,0,0,0,0,1,0])},saturation:P=>{let m=(P||0)*2/3+1,u=(m-1)*-.5;R.colorMatrix([m,u,u,0,0,u,m,u,0,0,u,u,m,0,0,0,0,0,1,0])},desaturate:()=>{R.saturation(-1)},contrast:P=>{let m=(P||0)+1,u=-128*(m-1);R.colorMatrix([m,0,0,0,u,0,m,0,0,u,0,0,m,0,u,0,0,0,1,0])},negative:()=>{R.contrast(-2)},hue:P=>{P=(P||0)/180*Math.PI;let m=Math.cos(P),u=Math.sin(P),z=.213,k=.715,h=.072;R.colorMatrix([z+m*(1-z)+u*-z,k+m*-k+u*-k,h+m*-h+u*(1-h),0,0,z+m*-z+u*.143,k+m*(1-k)+u*.14,h+m*-h+u*-.283,0,0,z+m*-z+u*-(1-z),k+m*-k+u*k,h+m*(1-h)+u*h,0,0,0,0,0,1,0])},desaturateLuminance:()=>{R.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{R.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{R.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{R.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{R.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{R.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{R.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{R.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:P=>{let m=new Float32Array(P),u=1/c.width,z=1/c.height,k=M(X1);!k||(l.uniform1fv(k.uniform.m,m),l.uniform2f(k.uniform.px,u,z),g())},detectEdges:()=>{R.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{R.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{R.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:P=>{let m=P||1;R.convolution.call(this,[0,-1*m,0,-1*m,1+4*m,-1*m,0,-1*m,0])},emboss:P=>{let m=P||1;R.convolution.call(this,[-2*m,-1*m,0,-1*m,1,1*m,0,1*m,2*m])},blur:P=>{let m=P/7/c.width,u=P/7/c.height,z=M(Z1);!z||(l.uniform2f(z.uniform.px,0,u),g(d.INTERMEDIATE),l.uniform2f(z.uniform.px,m,0),g())},pixelate:P=>{let m=P/c.width,u=P/c.height,z=M(V1);!z||(l.uniform2f(z.uniform.size,m,u),g())}};this.add=function(P){let m=Array.prototype.slice.call(arguments,1),u=R[P];s.push({func:u,args:m})},this.reset=function(){s=[]},this.get=function(){return s},this.apply=function(P){f(P.width,P.height),e=0,t||(t=l.createTexture()),l.bindTexture(l.TEXTURE_2D,t),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_WRAP_S,l.CLAMP_TO_EDGE),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_WRAP_T,l.CLAMP_TO_EDGE),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_MIN_FILTER,l.NEAREST),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_MAG_FILTER,l.NEAREST),l.texImage2D(l.TEXTURE_2D,0,l.RGBA,l.RGBA,l.UNSIGNED_BYTE,P);for(let m=0;my.data())),a=.99*Math.max(s[0][0],s[1][0],s[2][0]),i=[A.sub(o[0],n[0]),A.sub(o[1],n[1]),A.sub(o[2],n[2])],c=[A.sub(r[0],n[0]),A.sub(r[1],n[1]),A.sub(r[2],n[2])],x=[A.div(a,c[0]),A.div(a,c[1]),A.div(a,c[2])],d=[A.mul(i[0],x[0]),A.mul(i[1],x[1]),A.mul(i[2],x[2])],l=A.stack([d[0],d[1],d[2]],2),f=A.reshape(l,[1,t.shape[0],t.shape[1],3]);return A.dispose([...o,...n,...r,...i,...c,...x,...d,l,t]),f}var i2=3840,e0=null,t0=null,ge=null,V,F0={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function s0(e,t){let o;if(T.browser)if(T.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");o=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");o=document.createElement("canvas"),o.width=e,o.height=t}else typeof T.Canvas!="undefined"?o=new T.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(o=new globalThis.Canvas(e,t));return o}function l2(e,t){let o=t||s0(e.width,e.height);return o.getContext("2d").drawImage(e,0,0),o}async function Me(e,t,o=!0){var f,y;if(!e)return t.debug&&b("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof be)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof T.Canvas!="undefined"&&e instanceof T.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof be){let p=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)p=A.expandDims(e,0);else if(e.shape[2]===4){let g=A.slice3d(e,[0,0,0],[-1,-1,3]);p=A.expandDims(g,0),A.dispose(g)}}else e.shape.length===4&&(e.shape[3]===3?p=A.clone(e):e.shape[3]===4&&(p=A.slice4d(e,[0,0,0,0],[-1,-1,-1,3])));if(p==null||p.shape.length!==4||p.shape[0]!==1||p.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(p.dtype==="int32"){let g=A.cast(p,"float32");A.dispose(p),p=g}return{tensor:p,canvas:t.filter.return?t0:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&b("input stream is not ready"),{tensor:null,canvas:e0};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&b("cannot determine input dimensions"),{tensor:null,canvas:e0};let s=n,a=r;if(s>i2&&(s=i2,a=Math.trunc(s*r/n)),a>i2&&(a=i2,s=Math.trunc(a*n/r)),(((f=t.filter)==null?void 0:f.width)||0)>0?s=t.filter.width:(((y=t.filter)==null?void 0:y.height)||0)>0&&(s=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?a=t.filter.height:(t.filter.width||0)>0&&(a=r*((t.filter.width||0)/n)),!s||!a)throw new Error("input error: cannot determine dimension");(!e0||e0.width!==s||e0.height!==a)&&(e0=s0(s,a));let i=e0.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(n,0),i.scale(-1,1),i.drawImage(e,0,0,n,r,0,0,e0.width,e0.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,n,r,0,0,e0.width,e0.height),(!t0||e0.width!==t0.width||e0.height!==t0.height)&&(t0=s0(e0.width,e0.height)),t.filter.enabled&&T.webgl.supported?(V||(V=T.browser?new q1:null),T.filter=!!V,V!=null&&V.add?(V.reset(),t.filter.brightness!==0&&V.add("brightness",t.filter.brightness),t.filter.contrast!==0&&V.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&V.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&V.add("blur",t.filter.blur),t.filter.saturation!==0&&V.add("saturation",t.filter.saturation),t.filter.hue!==0&&V.add("hue",t.filter.hue),t.filter.negative&&V.add("negative"),t.filter.sepia&&V.add("sepia"),t.filter.vintage&&V.add("brownie"),t.filter.sepia&&V.add("sepia"),t.filter.kodachrome&&V.add("kodachrome"),t.filter.technicolor&&V.add("technicolor"),t.filter.polaroid&&V.add("polaroid"),t.filter.pixelate!==0&&V.add("pixelate",t.filter.pixelate),V.get()>0?t0=V.apply(e0):t0=V.draw(e0)):(t.debug&&b("input process error: cannot initialize filters"),T.webgl.supported=!1,t.filter.enabled=!1,l2(e0,t0))):(l2(e0,t0),V&&(V=null),T.filter=!!V),!o)return{tensor:null,canvas:t0};if(!t0)throw new Error("canvas error: cannot create output");let c,x=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(T.browser&&A.browser)c=A.browser?A.browser.fromPixels(e):null;else{x=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);c=A.tensor(p,[e.height,e.width,x],"int32")}else if((!ge||t0.width!==ge.width||t0.height!==ge.height)&&(ge=s0(t0.width,t0.height)),A.browser&&T.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?c=A.browser.fromPixels(t0):(ge=l2(t0),c=A.browser.fromPixels(ge));else{let M=l2(t0).getContext("2d").getImageData(0,0,s,a);x=M.data.length/s/a;let R=new Uint8Array(M.data.buffer);c=A.tensor(R,[s,a,x])}if(x===4){let p=A.slice3d(c,[0,0,0],[-1,-1,3]);A.dispose(c),c=p}if(!c)throw new Error("input error: cannot create tensor");let d=A.cast(c,"float32"),l=t.filter.equalization?await a2(d):A.expandDims(d,0);return A.dispose([c,d]),{tensor:l,canvas:t.filter.return?t0:null}}async function U1(e,t){let o=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return o;if(!F0.inputTensor)F0.inputTensor=A.clone(t);else if(F0.inputTensor.shape[1]!==t.shape[1]||F0.inputTensor.shape[2]!==t.shape[2])A.dispose(F0.inputTensor),F0.inputTensor=A.clone(t);else{let n={};n.diff=A.sub(t,F0.inputTensor),n.squared=A.mul(n.diff,n.diff),n.sum=A.sum(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;A.dispose([F0.inputTensor,n.diff,n.squared,n.sum]),F0.inputTensor=A.clone(t),o=s<=(e.cacheSensitivity||0)}return o}async function Y1(e,t,o){let n={};if(!t||!o||t.shape.length!==4||t.shape.length!==o.shape.length)return e.debug||b("invalid input tensor or tensor shapes do not match:",t.shape,o.shape),0;if(t.shape[0]!==1||o.shape[0]!==1||t.shape[3]!==3||o.shape[3]!==3)return e.debug||b("input tensors must be of shape [1, height, width, 3]:",t.shape,o.shape),0;n.input1=A.clone(t),n.input2=t.shape[1]!==o.shape[1]||t.shape[2]!==o.shape[2]?A.image.resizeBilinear(o,[t.shape[1],t.shape[2]]):A.clone(o),n.diff=A.sub(n.input1,n.input2),n.squared=A.mul(n.diff,n.diff),n.sum=A.sum(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return A.dispose([n.input1,n.input2,n.diff,n.squared,n.sum]),s}var o5=class{constructor(){w(this,"browser");w(this,"node");w(this,"worker");w(this,"platform","");w(this,"agent","");w(this,"backends",[]);w(this,"initial");w(this,"filter");w(this,"tfjs");w(this,"offscreen");w(this,"perfadd",!1);w(this,"tensorflow",{version:void 0,gpu:void 0});w(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});w(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});w(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});w(this,"cpu",{model:void 0,flags:[]});w(this,"kernels",[]);w(this,"Canvas");w(this,"Image");w(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:qe["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let o=t[0].match(/\(([^()]+)\)/g);this.platform=o!=null&&o[0]?o[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(A.engine().registryFactory),this.tensorflow={version:A.backend().binding?A.backend().binding.TF_Version:void 0,gpu:A.backend().binding?A.backend().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&A.getBackend()==="wasm"&&(this.wasm.simd=A.env().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=A.env().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=s0(100,100),o=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof o!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(A.getBackend()==="webgl"||A.getBackend()==="humangl")){let n=A.backend().gpgpu!=="undefined"?await A.backend().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=n?n.name:void 0}}catch(n){this.webgpu.supported=!1}try{this.kernels=A.getKernelsForBackend(A.getBackend()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},T=new o5;var n5={};q0(n5,{age:()=>rn,"anti-spoofing":()=>Ln,antispoof:()=>Xo,blazeface:()=>qo,"blazeface-back":()=>An,"blazeface-front":()=>sn,"blazepose-detect":()=>Nn,"blazepose-detector2d":()=>an,"blazepose-detector3d":()=>ln,"blazepose-full":()=>cn,"blazepose-heavy":()=>xn,"blazepose-lite":()=>yn,default:()=>Kn,efficientpose:()=>dn,"efficientpose-i-lite":()=>Wn,"efficientpose-ii-lite":()=>Fn,"efficientpose-iv":()=>Gn,emotion:()=>Uo,faceboxes:()=>fn,facemesh:()=>Yo,"facemesh-attention":()=>pn,"facemesh-attention-alt":()=>mn,"facemesh-detection-full":()=>un,"facemesh-detection-short":()=>hn,"facemesh-orig":()=>bn,faceres:()=>Ko,"faceres-deep":()=>gn,gear:()=>Mn,gender:()=>vn,"gender-ssrnet-imdb":()=>Rn,handdetect:()=>Pn,"handlandmark-full":()=>Jo,"handlandmark-lite":()=>Tn,"handlandmark-sparse":()=>wn,handskeleton:()=>kn,handtrack:()=>Qo,"insightface-efficientnet-b0":()=>Bn,"insightface-ghostnet-strides1":()=>Hn,"insightface-ghostnet-strides2":()=>Dn,"insightface-mobilenet-emore":()=>Vn,"insightface-mobilenet-swish":()=>Zn,iris:()=>_o,liveness:()=>$o,"mb3-centernet":()=>en,meet:()=>En,mobileface:()=>zn,mobilefacenet:()=>Sn,models:()=>tn,"movenet-lightning":()=>on,"movenet-multipose":()=>Cn,"movenet-thunder":()=>In,nanodet:()=>jn,"nanodet-e":()=>Xn,"nanodet-g":()=>qn,"nanodet-m":()=>Un,"nanodet-t":()=>Yn,posenet:()=>On,selfie:()=>nn});var Xo=853098,qo=538928,Uo=820516,Yo=1477958,Ko=6978814,Jo=5431368,Qo=2964837,_o=2599092,$o=592976,en=4030290,tn=0,on=4650216,nn=212886,rn=161240,An=538928,sn=402048,an=7499400,ln=5928856,cn=6338290,xn=27501554,yn=2725490,dn=5651240,fn=2013002,mn=2387598,pn=2382414,un=1026192,hn=201268,bn=2955780,gn=13957620,Mn=1498916,Rn=161236,vn=201808,Pn=3515612,Tn=2023432,wn=5286322,kn=5502280,En=372228,zn=2183192,Sn=5171976,Cn=9448838,In=12477112,jn=7574558,On=5032780,Nn=5928804,Ln=853098,Wn=2269064,Fn=5651240,Gn=25643252,Bn=13013224,Hn=8093408,Dn=8049584,Vn=6938536,Zn=12168584,Xn=12319156,qn=7574558,Un=1887474,Yn=5294216,Kn={antispoof:Xo,blazeface:qo,emotion:Uo,facemesh:Yo,faceres:Ko,"handlandmark-full":Jo,handtrack:Qo,iris:_o,liveness:$o,"mb3-centernet":en,models:tn,"movenet-lightning":on,selfie:nn,age:rn,"blazeface-back":An,"blazeface-front":sn,"blazepose-detector2d":an,"blazepose-detector3d":ln,"blazepose-full":cn,"blazepose-heavy":xn,"blazepose-lite":yn,efficientpose:dn,faceboxes:fn,"facemesh-attention-alt":mn,"facemesh-attention":pn,"facemesh-detection-full":un,"facemesh-detection-short":hn,"facemesh-orig":bn,"faceres-deep":gn,gear:Mn,"gender-ssrnet-imdb":Rn,gender:vn,handdetect:Pn,"handlandmark-lite":Tn,"handlandmark-sparse":wn,handskeleton:kn,meet:En,mobileface:zn,mobilefacenet:Sn,"movenet-multipose":Cn,"movenet-thunder":In,nanodet:jn,posenet:On,"blazepose-detect":Nn,"anti-spoofing":Ln,"efficientpose-i-lite":Wn,"efficientpose-ii-lite":Fn,"efficientpose-iv":Gn,"insightface-efficientnet-b0":Bn,"insightface-ghostnet-strides1":Hn,"insightface-ghostnet-strides2":Dn,"insightface-mobilenet-emore":Vn,"insightface-mobilenet-swish":Zn,"nanodet-e":Xn,"nanodet-g":qn,"nanodet-m":Un,"nanodet-t":Yn};var J5={};q0(J5,{Models:()=>n2,getModelStats:()=>u1,load:()=>h1,reset:()=>j2,validate:()=>q2,validateModel:()=>Ie});var P0,r5=[],Jn=["white","black","asian","indian","other"],Qn=[15,23,28,35.5,45.5,55.5,65],K1=0,J1=0,A5=Number.MAX_SAFE_INTEGER;async function Q1(e){var t;return T.initial&&(P0=null),P0?e.debug&&b("cached model:",P0.modelUrl):P0=await L((t=e.face.gear)==null?void 0:t.modelPath),P0}async function s5(e,t,o,n){var a,i;if(!P0)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=A5<(((a=t.face.gear)==null?void 0:a.skipFrames)||0),s=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>v()-J1;return t.skipAllowed&&s&&r&&K1===n&&r5[o]?(A5++,r5[o]):(A5=0,new Promise(async c=>{var R,P;if(!(P0!=null&&P0.inputs[0].shape))return;let x={},d=[[0,.1,.9,.9]];x.resize=A.image.cropAndResize(e,d,[0],[P0.inputs[0].shape[2],P0.inputs[0].shape[1]]);let l={age:0,gender:"unknown",genderScore:0,race:[]};(R=t.face.gear)!=null&&R.enabled&&([x.age,x.gender,x.race]=P0.execute(x.resize,["age_output","gender_output","race_output"]));let f=await x.gender.data();l.gender=f[0]>f[1]?"male":"female",l.genderScore=Math.round(100*(f[0]>f[1]?f[0]:f[1]))/100;let y=await x.race.data();for(let m=0;m(((P=t.face.gear)==null?void 0:P.minConfidence)||.2)&&l.race.push({score:Math.round(100*y[m])/100,race:Jn[m]});l.race.sort((m,u)=>u.score-m.score);let g=Array.from(await x.age.data()).map((m,u)=>[Qn[u],m]).sort((m,u)=>u[1]-m[1]),M=g[0][0];for(let m=1;mA.dispose(x[m])),r5[o]=l,K1=n,J1=v(),c(l)}))}var F={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function $1(){F.tf255=A.scalar(255,"float32"),F.tf1=A.scalar(1,"float32"),F.tf2=A.scalar(2,"float32"),F.tf05=A.scalar(.5,"float32"),F.tf127=A.scalar(127.5,"float32"),F.rgb=A.tensor1d([.2989,.587,.114],"float32")}var d0,c2=[],et=0,tt=0,a5=Number.MAX_SAFE_INTEGER;async function ot(e){return T.initial&&(d0=null),d0?e.debug&&b("cached model:",d0.modelUrl):d0=await L(e.face.ssrnet.modelPathAge),d0}async function i5(e,t,o,n){var a,i,c,x;if(!d0)return{age:0};let r=a5<(((a=t.face.ssrnet)==null?void 0:a.skipFrames)||0),s=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>v()-tt;return t.skipAllowed&&r&&s&&et===n&&((c=c2[o])==null?void 0:c.age)&&((x=c2[o])==null?void 0:x.age)>0?(a5++,c2[o]):(a5=0,new Promise(async d=>{var y;if(!(d0!=null&&d0.inputs)||!d0.inputs[0]||!d0.inputs[0].shape)return;let l={};l.resize=A.image.resizeBilinear(e,[d0.inputs[0].shape[2],d0.inputs[0].shape[1]],!1),l.enhance=A.mul(l.resize,F.tf255);let f={age:0};if((y=t.face.ssrnet)!=null&&y.enabled&&(l.age=d0.execute(l.enhance)),l.age){let p=await l.age.data();f.age=Math.trunc(10*p[0])/10}Object.keys(l).forEach(p=>A.dispose(l[p])),c2[o]=f,et=n,tt=v(),d(f)}))}var T0,x2=[],rt=0,At=0,l5=Number.MAX_SAFE_INTEGER,c5=[.2989,.587,.114];async function st(e){var t;return T.initial&&(T0=null),T0?e.debug&&b("cached model:",T0.modelUrl):T0=await L((t=e.face.ssrnet)==null?void 0:t.modelPathGender),T0}async function x5(e,t,o,n){var a,i,c,x;if(!T0)return{gender:"unknown",genderScore:0};let r=l5<(((a=t.face.ssrnet)==null?void 0:a.skipFrames)||0),s=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>v()-At;return t.skipAllowed&&r&&s&&rt===n&&((c=x2[o])==null?void 0:c.gender)&&((x=x2[o])==null?void 0:x.genderScore)>0?(l5++,x2[o]):(l5=0,new Promise(async d=>{var p;if(!(T0!=null&&T0.inputs[0].shape))return;let l={};l.resize=A.image.resizeBilinear(e,[T0.inputs[0].shape[2],T0.inputs[0].shape[1]],!1),l.enhance=A.tidy(()=>{let[g,M,R]=A.split(l.resize,3,3),P=A.mul(g,c5[0]),m=A.mul(M,c5[1]),u=A.mul(R,c5[2]),z=A.addN([P,m,u]);return A.mul(A.sub(z,F.tf05),2)});let f={gender:"unknown",genderScore:0};(p=t.face.ssrnet)!=null&&p.enabled&&(l.gender=T0.execute(l.enhance));let y=await l.gender.data();f.gender=y[0]>y[1]?"female":"male",f.genderScore=y[0]>y[1]?Math.trunc(100*y[0])/100:Math.trunc(100*y[1])/100,Object.keys(l).forEach(g=>A.dispose(l[g])),x2[o]=f,rt=n,At=v(),d(f)}))}var _,y2=[],y5=Number.MAX_SAFE_INTEGER,it=0,lt=0;async function ct(e){var t;return T.initial&&(_=null),_?e.debug&&b("cached model:",_.modelUrl):_=await L((t=e.face.antispoof)==null?void 0:t.modelPath),_}async function d5(e,t,o,n){var a,i;if(!_||!(_!=null&&_.executor))return 0;let r=(((a=t.face.antispoof)==null?void 0:a.skipTime)||0)>v()-lt,s=y5<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&s&&it===n&&y2[o]?(y5++,y2[o]):(y5=0,new Promise(async c=>{let x=A.image.resizeBilinear(e,[_!=null&&_.inputs[0].shape?_.inputs[0].shape[2]:0,_!=null&&_.inputs[0].shape?_.inputs[0].shape[1]:0],!1),d=_==null?void 0:_.execute(x),l=(await d.data())[0];y2[o]=Math.round(100*l)/100,it=n,lt=v(),A.dispose([x,d]),c(y2[o])}))}var w0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},f5={count:468,mouth:13,symmetryLine:[13,w0.midwayBetweenEyes[0]]},se={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},m5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],Ye=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ae=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var $n=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],er=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],tr=[33,133,362,263,1,78,308],M7=$n.map(e=>Ye[e]),R7=er.map(e=>Ye[e]),v7=tr.map(e=>Ye[e]);function U0(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var or=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],nr=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],rr=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Ar=[[474,475],[475,476],[476,477],[477,474]],sr=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],ar=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],ir=[[469,470],[470,471],[471,472],[472,469]],lr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],P7={lips:U0(or),leftEye:U0(nr),leftEyebrow:U0(rr),leftIris:U0(Ar),rightEye:U0(sr),rightEyebrow:U0(ar),rightIris:U0(ir),faceOval:U0(lr)};var Re=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],d2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],f2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],m2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],ft=(e,t)=>{let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:o,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},u5=(e,t,o)=>{let n=t.shape[1],r=t.shape[2],s=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],a=A.image.cropAndResize(t,[s],[0],o),i=A.div(a,F.tf255);return A.dispose(a),i},p2=(e,t)=>{let o=d2(e),n=Re(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[o[0]-r[0],o[1]-r[1]],endPoint:[o[0]+r[0],o[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},u2=e=>{let t=d2(e),o=Re(e),n=Math.max(...o)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},mt=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...o)],endPoint:[Math.max(...t),Math.max(...o)],landmarks:e}},h5=[[1,0,0],[0,1,0],[0,0,1]],cr=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),xr=(e,t)=>cr(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var yt=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],ie=(e,t)=>{let o=0;for(let n=0;n{let o=[];for(let n=0;n{let o=[],n=e.length;for(let r=0;r{let o=Math.cos(e),n=Math.sin(e),r=[[o,-n,0],[n,o,0],[0,0,1]],s=yt(t[0],t[1]),a=dt(s,r),i=yt(-t[0],-t[1]);return dt(a,i)},dr=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],o=[e[0][2],e[1][2]],n=[-ie(t[0],o),-ie(t[1],o)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},fr=(e,t)=>[ie(e,t[0]),ie(e,t[1])];function ut(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},o=[];for(let n=0;n[s[0]/r*(y[0]-r/2),s[1]/r*(y[1]-r/2),y[2]||0]),i=o&&o!==0&&Math.abs(o)>.2,c=i?pt(o,[0,0]):h5,x=i?a.map(y=>[...fr(y,c),y[2]]):a,d=i?dr(n):h5,l=d2(t),f=[ie(l,d[0]),ie(l,d[1])];return x.map(y=>[Math.trunc(y[0]+f[0]),Math.trunc(y[1]+f[1]),Math.trunc(y[2]||0)])}function bt(e,t,o,n){let r=t.landmarks.length>=f5.count?f5.symmetryLine:se.symmetryLine,s=0,a=h5,i;if(e&&T.kernels.includes("rotatewithoffset"))if(s=xr(t.landmarks[r[0]],t.landmarks[r[1]]),s&&s!==0&&Math.abs(s)>.2){let x=d2(t),d=[x[0]/o.shape[2],x[1]/o.shape[1]],l=A.image.rotateWithOffset(o,s,0,d);a=pt(-s,x),i=u5(t,l,[n,n]),A.dispose(l)}else i=u5(t,o,[n,n]);else i=u5(t,o,[n,n]);return[s,a,i]}var mr=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...o)+(Math.max(...o)-Math.min(...o))/2]},gt=(e,t)=>{let o=mr(e),n=Re(t);return{startPoint:[o[0]-n[0]/2,o[1]-n[1]/2],endPoint:[o[0]+n[0]/2,o[1]+n[1]/2]}};var Mt=6,pr=1.4,S0,Rt=null,Y0=0,Ke=null,ve=()=>Y0;async function vt(e){var t;return T.initial&&(S0=null),S0?e.debug&&b("cached model:",S0.modelUrl):S0=await L((t=e.face.detector)==null?void 0:t.modelPath),Y0=S0.executor&&S0.inputs[0].shape?S0.inputs[0].shape[2]:256,Ke=A.scalar(Y0,"int32"),Rt=A.tensor2d(ut(Y0)),S0}function ur(e){let t={};t.boxStarts=A.slice(e,[0,1],[-1,2]),t.centers=A.add(t.boxStarts,Rt),t.boxSizes=A.slice(e,[0,3],[-1,2]),t.boxSizesNormalized=A.div(t.boxSizes,Ke),t.centersNormalized=A.div(t.centers,Ke),t.halfBoxSize=A.div(t.boxSizesNormalized,F.tf2),t.starts=A.sub(t.centersNormalized,t.halfBoxSize),t.ends=A.add(t.centersNormalized,t.halfBoxSize),t.startNormalized=A.mul(t.starts,Ke),t.endNormalized=A.mul(t.ends,Ke);let o=A.concat2d([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>A.dispose(t[n])),o}async function Pt(e,t){var i,c,x,d;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let o={};o.resized=A.image.resizeBilinear(e,[Y0,Y0]),o.div=A.div(o.resized,F.tf127),o.normalized=A.sub(o.div,F.tf05);let n=S0==null?void 0:S0.execute(o.normalized);if(Array.isArray(n)&&n.length>2){let l=n.sort((f,y)=>f.size-y.size);o.concat384=A.concat([l[0],l[2]],2),o.concat512=A.concat([l[1],l[3]],2),o.concat=A.concat([o.concat512,o.concat384],1),o.batch=A.squeeze(o.concat,0)}else Array.isArray(n)?o.batch=A.squeeze(n[0]):o.batch=A.squeeze(n);A.dispose(n),o.boxes=ur(o.batch),o.logits=A.slice(o.batch,[0,0],[-1,1]),o.sigmoid=A.sigmoid(o.logits),o.scores=A.squeeze(o.sigmoid),o.nms=await A.image.nonMaxSuppressionAsync(o.boxes,o.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((c=t.face.detector)==null?void 0:c.iouThreshold)||0,((x=t.face.detector)==null?void 0:x.minConfidence)||0);let r=await o.nms.array(),s=[],a=await o.scores.data();for(let l=0;l(((d=t.face.detector)==null?void 0:d.minConfidence)||0)){let y={};y.bbox=A.slice(o.boxes,[r[l],0],[1,-1]),y.slice=A.slice(o.batch,[r[l],Mt-1],[1,-1]),y.squeeze=A.squeeze(y.slice),y.landmarks=A.reshape(y.squeeze,[Mt,-1]);let p=await y.bbox.data(),g={startPoint:[p[0],p[1]],endPoint:[p[2],p[3]],landmarks:await y.landmarks.array(),confidence:f},M=ft(g,[(e.shape[2]||0)/Y0,(e.shape[1]||0)/Y0]),R=p2(M,t.face.scale||pr),P=u2(R);s.push(P),Object.keys(y).forEach(m=>A.dispose(y[m]))}}return Object.keys(o).forEach(l=>A.dispose(o[l])),s}var h2={};q0(h2,{connected:()=>M5,kpt:()=>g5});var g5=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],M5={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var wt=224,hr,br=5,b2=[8,16,32,32,32];function kt(){let e=[],t=0;for(;to.x)),y:A.tensor1d(e.map(o=>o.y))}}function G0(e,t=[1,1]){let o=[e.map(i=>i[0]),e.map(i=>i[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],s=[n[0],n[1],r[0]-n[0],r[1]-n[1]],a=[s[0]/t[0],s[1]/t[1],s[2]/t[0],s[3]/t[1]];return{box:s,boxRaw:a}}function Et(e,t=[1,1]){let o=[e.map(x=>x[0]),e.map(x=>x[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],s=[(n[0]+r[0])/2,(n[1]+r[1])/2],a=Math.max(s[0]-n[0],s[1]-n[1],-s[0]+r[0],-s[1]+r[1]),i=[Math.trunc(s[0]-a),Math.trunc(s[1]-a),Math.trunc(2*a),Math.trunc(2*a)],c=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:c}}function g2(e,t){let o=[e[2]*t,e[3]*t];return[e[0]-(o[0]-e[2])/2,e[1]-(o[1]-e[3])/2,o[0],o[1]]}var Ct={initial:!0},r0={detector:null,landmarks:null},Pe={detector:[224,224],landmarks:[256,256]},R5=Number.MAX_SAFE_INTEGER,Mr={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},R2=null,Je,K0=[[0,0],[0,0],[0,0],[0,0]],zt=0,St=e=>1-1/(1+Math.exp(e));async function It(e){var t;if(Ct.initial&&(r0.detector=null),!r0.detector&&e.body.detector&&e.body.detector.modelPath){r0.detector=await L(e.body.detector.modelPath);let o=(t=r0.detector)!=null&&t.executor?Object.values(r0.detector.modelSignature.inputs):void 0;Pe.detector[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Pe.detector[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}else e.debug&&r0.detector&&b("cached model:",r0.detector.modelUrl);return kt(),r0.detector}async function jt(e){var t;if(Ct.initial&&(r0.landmarks=null),r0.landmarks)e.debug&&b("cached model:",r0.landmarks.modelUrl);else{r0.landmarks=await L(e.body.modelPath);let o=(t=r0.landmarks)!=null&&t.executor?Object.values(r0.landmarks.modelSignature.inputs):void 0;Pe.landmarks[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Pe.landmarks[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return r0.landmarks}function Rr(e,t){var r,s;let o={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((s=e==null?void 0:e.shape)!=null&&s[2]))return e;let n;if(Je&&(o.cropped=A.image.cropAndResize(e,[Je],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let a=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],i=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];K0=[[0,0],a,i,[0,0]],o.pad=A.pad(o.cropped||e,K0),o.resize=A.image.resizeBilinear(o.pad,[t,t]),n=A.div(o.resize,F.tf255)}else e.shape[1]!==t?(o.resize=A.image.resizeBilinear(o.cropped||e,[t,t]),n=A.div(o.resize,F.tf255)):n=A.div(o.cropped||e,F.tf255);return Object.keys(o).forEach(a=>A.dispose(o[a])),n}function vr(e,t){for(let o of e)o.position=[Math.trunc(o.position[0]*(t[0]+K0[2][0]+K0[2][1])/t[0]-K0[2][0]),Math.trunc(o.position[1]*(t[1]+K0[1][0]+K0[1][1])/t[1]-K0[1][0]),o.position[2]],o.positionRaw=[o.position[0]/t[0],o.position[1]/t[1],2*o.position[2]/(t[0]+t[1])];if(Je)for(let o of e)o.positionRaw=[o.positionRaw[0]+Je[1],o.positionRaw[1]+Je[0],o.positionRaw[2]],o.position=[Math.trunc(o.positionRaw[0]*t[0]),Math.trunc(o.positionRaw[1]*t[1]),o.positionRaw[2]];return e}function Pr(e){let t=e.find(i=>i.part==="leftPalm"),o=e.find(i=>i.part==="leftWrist"),n=e.find(i=>i.part==="leftIndex");t.position[2]=((o.position[2]||0)+(n.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),s=e.find(i=>i.part==="rightWrist"),a=e.find(i=>i.part==="rightIndex");r.position[2]=((s.position[2]||0)+(a.position[2]||0))/2}async function Tr(e,t,o){var p,g;if(!((p=r0.landmarks)!=null&&p.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(g=r0.landmarks)==null?void 0:g.execute(e,Mr.landmarks);let r=(await n.poseflag.data())[0],s=await n.ld.data(),a=await n.world.data();Object.keys(n).forEach(M=>A.dispose(n[M]));let i=[],c=5;for(let M=0;MM.position),l=G0(d,[o[0],o[1]]),f={};for(let[M,R]of Object.entries(M5)){let P=[];for(let m=0;mk.part===R[m]),z=x.find(k=>k.part===R[m+1]);u&&z&&P.push([u.position,z.position])}f[M]=P}return{id:0,score:Math.trunc(100*r)/100,box:l.box,boxRaw:l.boxRaw,keypoints:x,annotations:f}}async function v5(e,t){let o=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>v()-zt,r=R5<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&R2!==null)R5++;else{let s={};s.landmarks=Rr(e,256),R2=await Tr(s.landmarks,t,o),Object.keys(s).forEach(a=>A.dispose(s[a])),zt=v(),R5=0}return R2?[R2]:[]}var Te=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var y0,le=0,P5=[],Nt=0,T5=Number.MAX_SAFE_INTEGER;async function Lt(e){if(T.initial&&(y0=null),y0)e.debug&&b("cached model:",y0.modelUrl);else{y0=await L(e.object.modelPath);let t=y0!=null&&y0.executor?Object.values(y0.modelSignature.inputs):void 0;le=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return y0}async function wr(e,t,o){if(!e)return[];let n={},r=[],s=await e.array();n.squeeze=A.squeeze(e);let a=A.split(n.squeeze,6,1);n.stack=A.stack([a[1],a[0],a[3],a[2]],1),n.boxes=A.squeeze(n.stack),n.scores=A.squeeze(a[4]),n.classes=A.squeeze(a[5]),A.dispose([e,...a]),n.nms=await A.image.nonMaxSuppressionAsync(n.boxes,n.scores,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence||0);let i=await n.nms.data(),c=0;for(let x of Array.from(i)){let d=Math.trunc(100*s[0][x][4])/100,l=s[0][x][5],f=Te[l].label,[y,p]=[s[0][x][0]/le,s[0][x][1]/le],g=[y,p,s[0][x][2]/le-y,s[0][x][3]/le-p],M=[Math.trunc(g[0]*t[0]),Math.trunc(g[1]*t[1]),Math.trunc(g[2]*t[0]),Math.trunc(g[3]*t[1])];r.push({id:c++,score:d,class:l,label:f,box:M,boxRaw:g})}return Object.keys(n).forEach(x=>A.dispose(n[x])),r}async function w5(e,t){if(!(y0!=null&&y0.executor))return[];let o=(t.object.skipTime||0)>v()-Nt,n=T5<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&P5.length>0?(T5++,P5):(T5=0,new Promise(async r=>{let s=[e.shape[2]||0,e.shape[1]||0],a=A.image.resizeBilinear(e,[le,le]),i=t.object.enabled?y0==null?void 0:y0.execute(a,["tower_0/detections"]):null;Nt=v(),A.dispose(a);let c=await wr(i,s,t);P5=c,r(c)}))}var v2={};q0(v2,{connected:()=>E5,kpt:()=>k5});var k5=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],E5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var $,Ft=0,a0={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},z5=Number.MAX_SAFE_INTEGER;async function Gt(e){return T.initial&&($=null),$?e.debug&&b("cached model:",$.modelUrl):$=await L(e.body.modelPath),$}async function kr(e,t){let[o,n]=e.shape,r=A.reshape(e,[n*o]),s=A.max(r,0),a=(await s.data())[0];if(a>t){let i=A.argMax(r,0),c=A.mod(i,o),x=(await c.data())[0],d=A.div(i,o),l=(await d.data())[0];return A.dispose([r,s,i,c,d]),[x,l,a]}return A.dispose([r,s]),[0,0,a]}async function S5(e,t){if(!($!=null&&$.executor))return[];let o=(t.body.skipTime||0)>v()-Ft,n=z5<(t.body.skipFrames||0);return t.skipAllowed&&o&&n&&Object.keys(a0.keypoints).length>0?(z5++,[a0]):(z5=0,new Promise(async r=>{let s=A.tidy(()=>{if(!($!=null&&$.inputs[0].shape))return null;let l=A.image.resizeBilinear(e,[$.inputs[0].shape[2],$.inputs[0].shape[1]],!1),f=A.mul(l,F.tf2);return A.sub(f,F.tf1)}),a;if(t.body.enabled&&(a=$==null?void 0:$.execute(s)),Ft=v(),A.dispose(s),a){a0.keypoints.length=0;let l=A.squeeze(a);A.dispose(a);let f=A.unstack(l,2);A.dispose(l);for(let y=0;y(t.body.minConfidence||0)&&a0.keypoints.push({score:Math.round(100*M)/100,part:k5[y],positionRaw:[p/$.inputs[0].shape[2],g/$.inputs[0].shape[1]],position:[Math.round(e.shape[2]*p/$.inputs[0].shape[2]),Math.round(e.shape[1]*g/$.inputs[0].shape[1])]})}f.forEach(y=>A.dispose(y))}a0.score=a0.keypoints.reduce((l,f)=>f.score>l?f.score:l,0);let i=a0.keypoints.map(l=>l.position[0]),c=a0.keypoints.map(l=>l.position[1]);a0.box=[Math.min(...i),Math.min(...c),Math.max(...i)-Math.min(...i),Math.max(...c)-Math.min(...c)];let x=a0.keypoints.map(l=>l.positionRaw[0]),d=a0.keypoints.map(l=>l.positionRaw[1]);a0.boxRaw=[Math.min(...x),Math.min(...d),Math.max(...x)-Math.min(...x),Math.max(...d)-Math.min(...d)];for(let[l,f]of Object.entries(E5)){let y=[];for(let p=0;pR.part===f[p]),M=a0.keypoints.find(R=>R.part===f[p+1]);g&&M&&g.score>(t.body.minConfidence||0)&&M.score>(t.body.minConfidence||0)&&y.push([g.position,M.position])}a0.annotations[l]=y}r([a0])}))}var Er=["angry","disgust","fear","happy","sad","surprise","neutral"],b0,P2=[],Ht=0,Dt=0,C5=Number.MAX_SAFE_INTEGER;async function Vt(e){var t;return T.initial&&(b0=null),b0?e.debug&&b("cached model:",b0.modelUrl):b0=await L((t=e.face.emotion)==null?void 0:t.modelPath),b0}async function I5(e,t,o,n){var a,i;if(!b0)return[];let r=C5<(((a=t.face.emotion)==null?void 0:a.skipFrames)||0),s=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>v()-Dt;return t.skipAllowed&&s&&r&&Ht===n&&P2[o]&&P2[o].length>0?(C5++,P2[o]):(C5=0,new Promise(async c=>{var d;let x=[];if((d=t.face.emotion)!=null&&d.enabled){let l={},f=b0!=null&&b0.inputs[0].shape?b0.inputs[0].shape[2]:0;l.resize=A.image.resizeBilinear(e,[f,f],!1),l.channels=A.mul(l.resize,F.rgb),l.grayscale=A.sum(l.channels,3,!0),l.grayscaleSub=A.sub(l.grayscale,F.tf05),l.grayscaleMul=A.mul(l.grayscaleSub,F.tf2),l.emotion=b0==null?void 0:b0.execute(l.grayscaleMul),Dt=v();let y=await l.emotion.data();for(let p=0;p(t.face.emotion.minConfidence||0)&&x.push({score:Math.min(.99,Math.trunc(100*y[p])/100),emotion:Er[p]});x.sort((p,g)=>g.score-p.score),Object.keys(l).forEach(p=>A.dispose(l[p]))}P2[o]=x,Ht=n,c(x)}))}var f0,j5=[],Xt=0,qt=0,Ut=Number.MAX_SAFE_INTEGER;async function Yt(e){var t;return T.initial&&(f0=null),f0?e.debug&&b("cached model:",f0.modelUrl):f0=await L((t=e.face.mobilefacenet)==null?void 0:t.modelPath),f0}async function O5(e,t,o,n){var a,i;if(!(f0!=null&&f0.executor))return[];let r=Ut<(((a=t.face.mobilefacenet)==null?void 0:a.skipFrames)||0),s=(((i=t.face.mobilefacenet)==null?void 0:i.skipTime)||0)>v()-qt;return t.skipAllowed&&s&&r&&Xt===n&&j5[o]?(Ut++,j5[o]):new Promise(async c=>{var d;let x=[];if(((d=t.face.mobilefacenet)==null?void 0:d.enabled)&&(f0==null?void 0:f0.inputs[0].shape)){let l={};l.crop=A.image.resizeBilinear(e,[f0.inputs[0].shape[2],f0.inputs[0].shape[1]],!1),l.data=f0.execute(l.crop);let f=await l.data.data();x=Array.from(f),Object.keys(l).forEach(y=>A.dispose(l[y]))}j5[o]=x,Xt=n,qt=v(),c(x)})}var m0,N5=[],Jt=0,Qt=0,_t=Number.MAX_SAFE_INTEGER;async function $t(e){return T.initial&&(m0=null),m0?e.debug&&b("cached model:",m0.modelUrl):m0=await L(e.face.insightface.modelPath),m0}async function L5(e,t,o,n){var a,i;if(!(m0!=null&&m0.executor))return[];let r=_t<(((a=t.face.insightface)==null?void 0:a.skipFrames)||0),s=(((i=t.face.insightface)==null?void 0:i.skipTime)||0)>v()-Qt;return t.skipAllowed&&s&&r&&Jt===n&&N5[o]?(_t++,N5[o]):new Promise(async c=>{var d;let x=[];if(((d=t.face.insightface)==null?void 0:d.enabled)&&(m0==null?void 0:m0.inputs[0].shape)){let l={};l.crop=A.image.resizeBilinear(e,[m0.inputs[0].shape[2],m0.inputs[0].shape[1]],!1),l.data=m0.execute(l.crop);let f=await l.data.data();x=Array.from(f),Object.keys(l).forEach(y=>A.dispose(l[y]))}N5[o]=x,Jt=n,Qt=v(),c(x)})}var p0,J0=0,zr=2.3,W5=w0.leftEyeLower0,F5=w0.rightEyeLower0,we={leftBounds:[W5[0],W5[W5.length-1]],rightBounds:[F5[0],F5[F5.length-1]]},ke={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function r3(e){var t,o;return T.initial&&(p0=null),p0?e.debug&&b("cached model:",p0.modelUrl):p0=await L((t=e.face.iris)==null?void 0:t.modelPath),J0=(p0==null?void 0:p0.executor)&&((o=p0.inputs)==null?void 0:o[0].shape)?p0.inputs[0].shape[2]:0,J0===-1&&(J0=64),p0}function T2(e,t,o,n){for(let r=0;r{let t=e[we.leftBounds[0]][2],o=e[we.rightBounds[0]][2];return t-o},t3=(e,t,o,n,r,s=!1)=>{let a=u2(p2(mt([e[o],e[n]]),zr)),i=Re(a),c=A.image.cropAndResize(t,[[a.startPoint[1]/r,a.startPoint[0]/r,a.endPoint[1]/r,a.endPoint[0]/r]],[0],[J0,J0]);if(s&&T.kernels.includes("flipleftright")){let x=A.image.flipLeftRight(c);A.dispose(c),c=x}return{box:a,boxSize:i,crop:c}},o3=(e,t,o,n=!1)=>{let r=[];for(let s=0;s{let n=e[w0[`${o}EyeUpper0`][ke.upperCenter]][2],r=e[w0[`${o}EyeLower0`][ke.lowerCenter]][2],s=(n+r)/2;return t.map((a,i)=>{let c=s;return i===2?c=n:i===4&&(c=r),[a[0],a[1],c]})};async function A3(e,t,o){if(!(p0!=null&&p0.executor))return e;let{box:n,boxSize:r,crop:s}=t3(e,t,we.leftBounds[0],we.leftBounds[1],o,!0),{box:a,boxSize:i,crop:c}=t3(e,t,we.rightBounds[0],we.rightBounds[1],o,!0),x=A.concat([s,c]);A.dispose(s),A.dispose(c);let d=p0.execute(x);A.dispose(x);let l=await d.data();A.dispose(d);let f=l.slice(0,ke.numCoordinates*3),{rawCoords:y,iris:p}=o3(f,n,r,!0),g=l.slice(ke.numCoordinates*3),{rawCoords:M,iris:R}=o3(g,a,i,!1),P=Sr(e);Math.abs(P)<30?(T2(e,y,"left",null),T2(e,M,"right",null)):P<1?T2(e,y,"left",["EyeUpper0","EyeLower0"]):T2(e,M,"right",["EyeUpper0","EyeLower0"]);let m=n3(e,p,"left"),u=n3(e,R,"right");return e.concat(m).concat(u)}var Cr=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Ir=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],jr=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Or=[[474,475],[475,476],[476,477],[477,474]],Nr=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Lr=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Wr=[[469,470],[470,471],[471,472],[472,469]],Fr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Q0(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var Gr={lips:Q0(Cr),leftEye:Q0(Ir),leftEyebrow:Q0(jr),leftIris:Q0(Or),rightEye:Q0(Nr),rightEyebrow:Q0(Lr),rightIris:Q0(Wr),faceOval:Q0(Fr)},Br=Object.entries(Gr).map(([e,t])=>t.map(o=>[o,e])).flat(),o4=new Map(Br),Qe=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],ce=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],xe=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function i3(e,t){let o={lips:await t.filter(s=>s.size===160)[0].data(),irisL:await t.filter(s=>s.size===10)[0].data(),eyeL:await t.filter(s=>s.size===142)[0].data(),irisR:await t.filter(s=>s.size===10)[1].data(),eyeR:await t.filter(s=>s.size===142)[1].data()},n=ce.reduce((s,a)=>s+=e[a][2],0)/ce.length;for(let s=0;ss+=e[a][2],0)/xe.length;for(let s=0;sv()-N0.timestamp,n=N0.skipped<(((x=t.face.detector)==null?void 0:x.skipFrames)||0);!t.skipAllowed||!o||!n||N0.boxes.length===0?(N0.boxes=await Pt(e,t),N0.timestamp=v(),N0.skipped=0):N0.skipped++;let r=[],s=[],a=0,i=_e;for(let P=0;Pj.shape[j.shape.length-1]===1).data();if(k.faceScore=Math.round(100*B[0])/100,k.faceScore<(((p=t.face.detector)==null?void 0:p.minConfidence)||1)){if(m.confidence=k.faceScore,t.face.mesh.keepInvalid){k.box=f2(m,e),k.boxRaw=m2(m,e),k.score=k.boxScore,k.mesh=m.landmarks.map(j=>[(m.startPoint[0]+m.endPoint[0])/2+(m.endPoint[0]+m.startPoint[0])*j[0]/ve(),(m.startPoint[1]+m.endPoint[1])/2+(m.endPoint[1]+m.startPoint[1])*j[1]/ve()]),k.meshRaw=k.mesh.map(j=>[j[0]/(e.shape[2]||1),j[1]/(e.shape[1]||1),(j[2]||0)/i]);for(let j of Object.keys(se))k.annotations[j]=[k.mesh[se[j]]]}}else{let j=h.find(I=>I.shape[I.shape.length-1]===1404),N=A.reshape(j,[-1,3]),G=await N.array();A.dispose(N),(g=t.face.attention)!=null&&g.enabled?G=await i3(G,h):(M=t.face.iris)!=null&&M.enabled&&(G=await A3(G,k.tensor,_e)),k.mesh=ht(G,m,u,z,_e),k.meshRaw=k.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/i]);for(let I of Object.keys(w0))k.annotations[I]=w0[I].map(n0=>k.mesh[n0]);k.score=k.faceScore;let O={...gt(k.mesh,m),confidence:m.confidence,landmarks:m.landmarks};k.box=f2(O,e),k.boxRaw=m2(O,e),s.push(O)}A.dispose(h)}else{k.box=f2(m,e),k.boxRaw=m2(m,e),k.score=k.boxScore,k.mesh=m.landmarks.map(h=>[(m.startPoint[0]+m.endPoint[0])/2+(m.endPoint[0]+m.startPoint[0])*h[0]/ve(),(m.startPoint[1]+m.endPoint[1])/2+(m.endPoint[1]+m.startPoint[1])*h[1]/ve()]),k.meshRaw=k.mesh.map(h=>[h[0]/(e.shape[2]||0),h[1]/(e.shape[1]||0),(h[2]||0)/i]);for(let h of Object.keys(se))k.annotations[h]=[k.mesh[se[h]]]}k.score>(((R=t.face.detector)==null?void 0:R.minConfidence)||1)?r.push(k):A.dispose(k.tensor)}return N0.boxes=s,r}async function c3(e){var t,o,n,r,s,a;return T.initial&&(X=null),((t=e.face.attention)==null?void 0:t.enabled)&&(X==null?void 0:X.signature)&&Object.keys(((o=X==null?void 0:X.signature)==null?void 0:o.outputs)||{}).length<6&&(X=null),X?e.debug&&b("cached model:",X.modelUrl):(n=e.face.attention)!=null&&n.enabled?X=await L(e.face.attention.modelPath):X=await L((r=e.face.mesh)==null?void 0:r.modelPath),_e=X.executor&&((s=X==null?void 0:X.inputs)==null?void 0:s[0].shape)?(a=X==null?void 0:X.inputs)==null?void 0:a[0].shape[2]:256,X}var x3=ae,y3=Ye;var i0,w2=[],d3=0,f3=0,B5=Number.MAX_SAFE_INTEGER;async function m3(e){var t;return T.initial&&(i0=null),i0?e.debug&&b("cached model:",i0.modelUrl):i0=await L((t=e.face.description)==null?void 0:t.modelPath),i0}function H5(e){let t=e.image||e.tensor||e;if(!(i0!=null&&i0.inputs[0].shape))return t;let o=A.image.resizeBilinear(t,[i0.inputs[0].shape[2],i0.inputs[0].shape[1]],!1),n=A.mul(o,F.tf255);return A.dispose(o),n}async function D5(e,t,o,n){var a,i,c,x;if(!(i0!=null&&i0.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=B5<(((a=t.face.description)==null?void 0:a.skipFrames)||0),s=(((i=t.face.description)==null?void 0:i.skipTime)||0)>v()-d3;return t.skipAllowed&&r&&s&&f3===n&&((c=w2[o])==null?void 0:c.age)&&((x=w2[o])==null?void 0:x.age)>0?(B5++,w2[o]):(B5=0,new Promise(async d=>{var f;let l={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((f=t.face.description)!=null&&f.enabled){let y=H5(e),p=i0==null?void 0:i0.execute(y);d3=v(),A.dispose(y);let M=await p.find(W=>W.shape[1]===1).data(),R=Math.trunc(200*Math.abs(M[0]-.5))/100;R>(t.face.description.minConfidence||0)&&(l.gender=M[0]<=.5?"female":"male",l.genderScore=Math.min(.99,R));let P=A.argMax(p.find(W=>W.shape[1]===100),1),m=(await P.data())[0];A.dispose(P);let z=await p.find(W=>W.shape[1]===100).data();l.age=Math.round(z[m-1]>z[m+1]?10*m-100*z[m-1]:10*m+100*z[m+1])/10;let k=p.find(W=>W.shape[1]===1024),h=k?await k.data():[];l.descriptor=Array.from(h),p.forEach(W=>A.dispose(W))}w2[o]=l,f3=n,d(l)}))}function k2(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function $e(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function h3(e,t,o){let n=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return A.image.cropAndResize(t,s,[0],o)}function b3(e,t){let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:o,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function E2(e,t=1.5){let o=$e(e),n=k2(e),r=[t*n[0]/2,t*n[1]/2],s=[o[0]-r[0],o[1]-r[1]],a=[o[0]+r[0],o[1]+r[1]];return{startPoint:s,endPoint:a,palmLandmarks:e.palmLandmarks}}function z2(e){let t=$e(e),o=k2(e),r=Math.max(...o)/2,s=[t[0]-r,t[1]-r],a=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:a,palmLandmarks:e.palmLandmarks}}function Dr(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function g3(e,t){let o=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Dr(o)}var p3=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function _0(e,t){let o=0;for(let n=0;n[a.x,a.y]),this.anchorsTensor=A.tensor2d(this.anchors),this.inputSize=((s=(r=(n=(o=this==null?void 0:this.model)==null?void 0:o.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:s[2])||0,this.inputSizeTensor=A.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=A.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let o={};o.boxOffsets=A.slice(t,[0,0],[-1,2]),o.boxSizes=A.slice(t,[0,2],[-1,2]),o.div=A.div(o.boxOffsets,this.inputSizeTensor),o.boxCenterPoints=A.add(o.div,this.anchorsTensor),o.halfBoxSizes=A.div(o.boxSizes,this.doubleInputSizeTensor),o.sub=A.sub(o.boxCenterPoints,o.halfBoxSizes),o.startPoints=A.mul(o.sub,this.inputSizeTensor),o.add=A.add(o.boxCenterPoints,o.halfBoxSizes),o.endPoints=A.mul(o.add,this.inputSizeTensor);let n=A.concat2d([o.startPoints,o.endPoints],1);return Object.keys(o).forEach(r=>A.dispose(o[r])),n}normalizeLandmarks(t,o){let n={};n.reshape=A.reshape(t,[-1,7,2]),n.div=A.div(n.reshape,this.inputSizeTensor),n.landmarks=A.add(n.div,this.anchors[o]?this.anchors[o]:0);let r=A.mul(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(s=>A.dispose(n[s])),r}async predict(t,o){var i;let n={};n.resize=A.image.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=A.div(n.resize,F.tf127),n.image=A.sub(n.div,F.tf1),n.batched=this.model.execute(n.image),n.predictions=A.squeeze(n.batched),n.slice=A.slice(n.predictions,[0,0],[-1,1]),n.sigmoid=A.sigmoid(n.slice),n.scores=A.squeeze(n.sigmoid);let r=await n.scores.data();n.boxes=A.slice(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await A.image.nonMaxSuppressionAsync(n.norm,n.scores,3*(((i=o.hand)==null?void 0:i.maxDetected)||1),o.hand.iouThreshold,o.hand.minConfidence);let s=await n.nms.array(),a=[];for(let c of s){let x={};x.box=A.slice(n.norm,[c,0],[1,-1]),x.slice=A.slice(n.predictions,[c,5],[1,14]),x.norm=this.normalizeLandmarks(x.slice,c),x.palmLandmarks=A.reshape(x.norm,[-1,2]);let d=await x.box.data(),l=d.slice(0,2),f=d.slice(2,4),y=await x.palmLandmarks.array(),p={startPoint:l,endPoint:f,palmLandmarks:y,confidence:r[c]},g=b3(p,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);a.push(g),Object.keys(x).forEach(M=>A.dispose(x[M]))}return Object.keys(n).forEach(c=>A.dispose(n[c])),a}};var qr=5,P3=1.65,T3=[0,5,9,13,17,1,2],Ur=0,Yr=2,w3=0,C2=class{constructor(t,o){w(this,"handDetector");w(this,"handPoseModel");w(this,"inputSize");w(this,"storedBoxes");w(this,"skipped");w(this,"detectedHands");var n,r,s;this.handDetector=t,this.handPoseModel=o,this.inputSize=((s=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:s[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let o=t.map(a=>a[0]),n=t.map(a=>a[1]),r=[Math.min(...o),Math.min(...n)],s=[Math.max(...o),Math.max(...n)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,o){let n=t.map(s=>X5([...s,1],o)),r=this.calculateLandmarksBoundingBox(n);return E2(z2(r),qr)}getBoxForHandLandmarks(t){let o=this.calculateLandmarksBoundingBox(t),n=E2(z2(o),P3);n.palmLandmarks=[];for(let r=0;r[a[0]*(y[0]-this.inputSize/2),a[1]*(y[1]-this.inputSize/2),a[2]*y[2]]),c=Z5(n,[0,0]),x=i.map(y=>[...X5(y,c),y[2]]),d=M3(r),l=[...$e(o),1],f=[_0(l,d[0]),_0(l,d[1])];return x.map(y=>[Math.trunc(y[0]+f[0]),Math.trunc(y[1]+f[1]),Math.trunc(y[2])])}async estimateHands(t,o){let n=!1,r,s=(o.hand.skipTime||0)>v()-w3,a=this.skipped<(o.hand.skipFrames||0);o.skipAllowed&&s&&a&&(r=await this.handDetector.predict(t,o),this.skipped=0),o.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==o.hand.maxDetected||!o.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let i=[];for(let c=0;c=o.hand.minConfidence/4){let z=A.reshape(m,[-1,3]),k=await z.array();A.dispose(m),A.dispose(z);let h=this.transformRawCoords(k,g,d,p),W=this.getBoxForHandLandmarks(h);this.storedBoxes[c]={...W,confidence:u};let B={landmarks:h,confidence:u,boxConfidence:x.confidence,fingerConfidence:u,box:{topLeft:W.startPoint,bottomRight:W.endPoint}};i.push(B)}else this.storedBoxes[c]=null;A.dispose(m)}else{let d=E2(z2(x),P3),l={confidence:x.confidence,boxConfidence:x.confidence,fingerConfidence:0,box:{topLeft:d.startPoint,bottomRight:d.endPoint},landmarks:[]};i.push(l)}}return this.storedBoxes=this.storedBoxes.filter(c=>c!==null),this.detectedHands=i.length,i.length>o.hand.maxDetected&&(i.length=o.hand.maxDetected),i}};var l0={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>l0.nameMapping[e],getPoints:e=>l0.pointsMapping[e]},ee={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ee.nameMapping[e]},q={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>q.nameMapping[e]},$0=class{constructor(t){w(this,"name");w(this,"curls");w(this,"directions");w(this,"weights");w(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,o,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([o,n])}direction(t,o,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([o,n])}weight(t,o){this.weights[t]=o;let n=this.weights.reduce((r,s)=>r+s,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,o){let n=0;for(let r in t){let s=t[r],a=this.curls[r];if(typeof a=="undefined"){n+=this.weightsRelative[r];continue}for(let[i,c]of a)if(s===i){n+=c*this.weightsRelative[r];break}}for(let r in o){let s=o[r],a=this.directions[r];if(typeof a=="undefined"){n+=this.weightsRelative[r];continue}for(let[i,c]of a)if(s===i){n+=c*this.weightsRelative[r];break}}return n/10}};var{thumb:C0,index:B0,middle:H0,ring:ye,pinky:de}=l0,{none:I0,half:Jr,full:j0}=ee,{verticalUp:Ee,verticalDown:u4,horizontalLeft:q5,horizontalRight:Qr,diagonalUpRight:_r,diagonalUpLeft:ze,diagonalDownRight:h4,diagonalDownLeft:b4}=q,te=new $0("thumbs up");te.curl(C0,I0,1);te.direction(C0,Ee,1);te.direction(C0,ze,.25);te.direction(C0,_r,.25);for(let e of[l0.index,l0.middle,l0.ring,l0.pinky])te.curl(e,j0,1),te.direction(e,q5,1),te.direction(e,Qr,1);var J=new $0("victory");J.curl(C0,Jr,.5);J.curl(C0,I0,.5);J.direction(C0,Ee,1);J.direction(C0,ze,1);J.curl(B0,I0,1);J.direction(B0,Ee,.75);J.direction(B0,ze,1);J.curl(H0,I0,1);J.direction(H0,Ee,1);J.direction(H0,ze,.75);J.curl(ye,j0,1);J.direction(ye,Ee,.2);J.direction(ye,ze,1);J.direction(ye,q5,.2);J.curl(de,j0,1);J.direction(de,Ee,.2);J.direction(de,ze,1);J.direction(de,q5,.2);J.weight(B0,2);J.weight(H0,2);var oe=new $0("point");oe.curl(C0,j0,1);oe.curl(B0,I0,.5);oe.curl(H0,j0,.5);oe.curl(ye,j0,.5);oe.curl(de,j0,.5);oe.weight(B0,2);oe.weight(H0,2);var ne=new $0("middle finger");ne.curl(C0,I0,1);ne.curl(B0,j0,.5);ne.curl(H0,j0,.5);ne.curl(ye,j0,.5);ne.curl(de,j0,.5);ne.weight(B0,2);ne.weight(H0,2);var Se=new $0("open palm");Se.curl(C0,I0,.75);Se.curl(B0,I0,.75);Se.curl(H0,I0,.75);Se.curl(ye,I0,.75);Se.curl(de,I0,.75);var k3=[te,J,oe,ne,Se];var $r=.7,fe={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function E3(e,t,o,n){let r=(t-n)/(e-o),s=Math.atan(r)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function S3(e,t){if(!e||!t)return[0,0];let o=E3(e[0],e[1],t[0],t[1]);if(e.length===2)return o;let n=E3(e[1],e[2],t[1],t[2]);return[o,n]}function z3(e,t=1){let o=0,n=0,r=0;return e>=75&&e<=105?o=1*t:e>=25&&e<=155?n=1*t:r=1*t,[o,n,r]}function eA(e,t,o){let n=e[0]-t[0],r=e[0]-o[0],s=t[0]-o[0],a=e[1]-t[1],i=e[1]-o[1],c=t[1]-o[1],x=e[2]-t[2],d=e[2]-o[2],l=t[2]-o[2],f=Math.sqrt(n*n+a*a+x*x),y=Math.sqrt(r*r+i*i+d*d),p=Math.sqrt(s*s+c*c+l*l),g=(p*p+f*f-y*y)/(2*p*f);g>1?g=1:g<-1&&(g=-1);let M=Math.acos(g);M=57.2958*M%180;let R;return M>fe.NO_CURL_START_LIMIT?R=ee.none:M>fe.HALF_CURL_START_LIMIT?R=ee.half:R=ee.full,R}function C3(e,t,o,n){let r;return n===Math.abs(e)?e>0?r=q.horizontalLeft:r=q.horizontalRight:n===Math.abs(t)?t>0?r=q.horizontalLeft:r=q.horizontalRight:o>0?r=q.horizontalLeft:r=q.horizontalRight,r}function I3(e,t,o,n){let r;return n===Math.abs(e)?e<0?r=q.verticalDown:r=q.verticalUp:n===Math.abs(t)?t<0?r=q.verticalDown:r=q.verticalUp:o<0?r=q.verticalDown:r=q.verticalUp,r}function tA(e,t,o,n,r,s,a,i){let c,x=I3(e,t,o,n),d=C3(r,s,a,i);return x===q.verticalUp?d===q.horizontalLeft?c=q.diagonalUpLeft:c=q.diagonalUpRight:d===q.horizontalLeft?c=q.diagonalDownLeft:c=q.diagonalDownRight,c}function oA(e,t,o,n){let r=e[0]-t[0],s=e[0]-o[0],a=t[0]-o[0],i=e[1]-t[1],c=e[1]-o[1],x=t[1]-o[1],d=Math.max(Math.abs(r),Math.abs(s),Math.abs(a)),l=Math.max(Math.abs(i),Math.abs(c),Math.abs(x)),f=0,y=0,p=0,g=l/(d+1e-5);g>1.5?f+=fe.DISTANCE_VOTE_POWER:g>.66?y+=fe.DISTANCE_VOTE_POWER:p+=fe.DISTANCE_VOTE_POWER;let M=Math.sqrt(r*r+i*i),R=Math.sqrt(s*s+c*c),P=Math.sqrt(a*a+x*x),m=Math.max(M,R,P),u=e[0],z=e[1],k=o[0],h=o[1];m===M?(k=o[0],h=o[1]):m===P&&(u=t[0],z=t[1]);let j=S3([u,z],[k,h]),N=z3(j,fe.TOTAL_ANGLE_VOTE_POWER);f+=N[0],y+=N[1],p+=N[2];for(let O of n){let I=z3(O,fe.SINGLE_ANGLE_VOTE_POWER);f+=I[0],y+=I[1],p+=I[2]}let G;return f===Math.max(f,y,p)?G=I3(c,i,x,l):p===Math.max(y,p)?G=C3(s,r,a,d):G=tA(c,i,x,l,s,r,a,d),G}function j3(e){let t=[],o=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let s of l0.all){let a=l0.getPoints(s),i=[],c=[];for(let x of a){let d=e[x[0]],l=e[x[1]],f=S3(d,l),y=f[0],p=f[1];i.push(y),c.push(p)}t.push(i),o.push(c)}for(let s of l0.all){let a=s===l0.thumb?1:0,i=l0.getPoints(s),c=e[i[a][0]],x=e[i[a+1][1]],d=e[i[3][1]],l=eA(c,x,d),f=oA(c,x,d,t[s].slice(a));n[s]=l,r[s]=f}return{curls:n,directions:r}}function I2(e){if(!e||e.length===0)return null;let t=j3(e),o={};for(let n of l0.all)o[l0.getName(n)]={curl:ee.getName(t.curls[n]),direction:q.getName(t.directions[n])};return o}function O3(e){let t=[];if(!e||e.length===0)return t;let o=j3(e);for(let n of k3){let r=n.matchAgainst(o.curls,o.directions);r>=$r&&t.push({name:n.name,confidence:r})}return t}var N3={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},me,pe,L3;async function Y5(e,t){let o=await L3.estimateHands(e,t);if(!o)return[];let n=[];for(let r=0;ro[r].landmarks[l]);let a=o[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],c=[0,0,0,0];if(a&&a.length>0){for(let d of a)d[0]i[2]&&(i[2]=d[0]),d[1]>i[3]&&(i[3]=d[1]);i[2]-=i[0],i[3]-=i[1],c=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=o[r].box?[Math.trunc(Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.max(0,o[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,o[r].box.bottomRight[0])-Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,o[r].box.bottomRight[1])-Math.max(0,o[r].box.topLeft[1]))]:[0,0,0,0],c=[o[r].box.topLeft[0]/(e.shape[2]||0),o[r].box.topLeft[1]/(e.shape[1]||0),(o[r].box.bottomRight[0]-o[r].box.topLeft[0])/(e.shape[2]||0),(o[r].box.bottomRight[1]-o[r].box.topLeft[1])/(e.shape[1]||0)];let x=I2(a);n.push({id:r,score:Math.round(100*o[r].confidence)/100,boxScore:Math.round(100*o[r].boxConfidence)/100,fingerScore:Math.round(100*o[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:c,keypoints:a,annotations:s,landmarks:x})}return n}async function K5(e){var o,n;T.initial&&(me=null,pe=null),!me||!pe?[me,pe]=await Promise.all([e.hand.enabled?L((o=e.hand.detector)==null?void 0:o.modelPath):null,e.hand.landmarks?L((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&b("cached model:",me.modelUrl),e.debug&&b("cached model:",pe.modelUrl));let t=me?new S2(me):void 0;return t&&pe&&(L3=new C2(t,pe)),[me,pe]}var D={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function nA(){let e=D.gl;!e||(D.extensions=e.getSupportedExtensions())}function F3(e){var t;if(e.config.backend==="humangl"&&(D.name in A.engine().registry&&!((t=D==null?void 0:D.gl)!=null&&t.getParameter(D.gl.VERSION))&&(b("error: humangl backend invalid context"),j2(e)),!A.findBackend(D.name))){try{D.canvas=s0(100,100)}catch(n){b("error: cannot create canvas:",n);return}try{if(D.gl=D.canvas.getContext("webgl2",D.webGLattr),!D.gl){b("error: cannot get WebGL context");return}if(!D.gl.getParameter(D.gl.VERSION).includes("2.0")){b("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}D.canvas&&(D.canvas.addEventListener("webglcontextlost",r=>{throw b("error: humangl:",r.type),b("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),D.canvas.addEventListener("webglcontextrestored",r=>{b("error: humangl context restored:",r)}),D.canvas.addEventListener("webglcontextcreationerror",r=>{b("error: humangl context create:",r)}))}catch(n){b("error: cannot get WebGL context:",n);return}try{A.setWebGLContext(2,D.gl)}catch(n){b("error: cannot set WebGL context:",n);return}try{let n=new A.GPGPUContext(D.gl);A.registerBackend(D.name,()=>new A.MathBackendWebGL(n),D.priority)}catch(n){b("error: cannot register WebGL backend:",n);return}try{A.getKernelsForBackend("webgl").forEach(r=>{let s={...r,backendName:D.name};A.registerKernel(s)})}catch(n){b("error: cannot update WebGL backend registration:",n);return}let o=A.backend().getGPGPUContext?A.backend().getGPGPUContext().gl:null;if(o)b(`humangl webgl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`);else{b("error: no current gl context:",o,D.gl);return}try{A.env().flagRegistry.WEBGL_VERSION&&A.env().set("WEBGL_VERSION",2)}catch(n){b("error: cannot set WebGL backend flags:",n);return}nA(),b("backend registered:",D.name)}}function rA(e){if(!T.kernels.includes("mod")){let t={kernelName:"Mod",backendName:A.getBackend(),kernelFunc:o=>A.tidy(()=>A.sub(o.inputs.a,A.mul(A.div(o.inputs.a,o.inputs.b),o.inputs.b)))};e.debug&&b("registered kernel:","Mod"),A.registerKernel(t),T.kernels.push("mod")}if(!T.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:A.getBackend(),kernelFunc:o=>A.tidy(()=>A.add(A.mul(A.floorDiv(o.inputs.a/o.inputs.b),o.inputs.b),A.mod(o.inputs.a,o.inputs.b)))};e.debug&&b("registered kernel:","FloorMod"),A.registerKernel(t),T.kernels.push("floormod")}if(!T.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:A.getBackend(),kernelFunc:o=>A.tidy(()=>{let n=A.getBackend();A.setBackend("cpu");let r=A.image.rotateWithOffset(o.inputs.image,o.attrs.radians,o.attrs.fillValue,o.attrs.center);return A.setBackend(n),r})};e.debug&&b("registered kernel:","RotateWithOffset"),A.registerKernel(t),T.kernels.push("rotatewithoffset")}}async function O2(e,t=!1){if(e.state="backend",t||T.initial||e.config.backend&&e.config.backend.length>0&&A.getBackend()!==e.config.backend){let o=v();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&b("running inside web worker"),T.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&b("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),T.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&b(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),T.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")b("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&b("enumerated webgpu adapter:",r),!r)b("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let s="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;b("webgpu adapter info:",s)}}e.config.backend==="humangl"&&F3(e);let n=Object.keys(A.engine().registryFactory);if(e.config.debug&&b("available backends:",n),n.includes(e.config.backend)||(b(`error: backend ${e.config.backend} not found in registry`),e.config.backend=T.node?"tensorflow":"webgl",e.config.debug&&b(`override: setting backend ${e.config.backend}`)),e.config.debug&&b("setting backend:",e.config.backend),e.config.backend==="wasm"){if(A.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&A.env().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&b("wasm path:",e.config.wasmPath),typeof A.setWasmPaths!="undefined")A.setWasmPaths(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,s=!1;try{r=await A.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),s=await A.env().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&b(`wasm execution: ${s?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!s&&b("warning: wasm simd support is not enabled")}catch(a){b("wasm detection failed")}}try{await A.setBackend(e.config.backend),await A.ready(),$1()}catch(r){return b("error: cannot set backend:",e.config.backend,r),!1}}if(A.getBackend()==="humangl"&&(A.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&A.env().set("CHECK_COMPUTATION_FOR_ERRORS",!1),A.env().flagRegistry.WEBGL_CPU_FORWARD&&A.env().set("WEBGL_CPU_FORWARD",!0),A.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&A.env().set("WEBGL_USE_SHAPES_UNIFORMS",!0),A.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&A.env().set("CPU_HANDOFF_SIZE_THRESHOLD",256),A.env().flagRegistry.WEBGL_EXP_CONV&&A.env().set("WEBGL_EXP_CONV",!0),A.env().flagRegistry.USE_SETTIMEOUTCUSTOM&&A.env().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(b("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),A.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),A.backend().getGPGPUContext)){let n=await A.backend().getGPGPUContext().gl;e.config.debug&&b(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}A.getBackend(),A.enableProdMode(),await A.ready(),e.performance.initBackend=Math.trunc(v()-o),e.config.backend=A.getBackend(),await T.updateBackend(),rA(e.config)}return!0}function N2(e,t){for(let o of e){let n={kernelName:o,backendName:t.backend,kernelFunc:()=>{t.debug&&b("kernelFunc",o,t.backend)}};A.registerKernel(n)}T.kernels=A.getKernelsForBackend(A.getBackend()).map(o=>o.kernelName.toLowerCase())}var K=[null,null],sA=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],re=[[0,0],[0,0]],aA=["hand","fist","pinch","point","face","tip","pinchtip"],B3=4,H3=1.6,iA=512,lA=1.4,L2=Number.MAX_SAFE_INTEGER,Q5=0,D0=[0,0],Y={boxes:[],hands:[]},D3={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function V3(e){var t;if(T.initial&&(K[0]=null),K[0])e.debug&&b("cached model:",K[0].modelUrl);else{N2(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),K[0]=await L((t=e.hand.detector)==null?void 0:t.modelPath);let o=K[0].executor?Object.values(K[0].modelSignature.inputs):void 0;re[0][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,re[0][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return K[0]}async function Z3(e){var t;if(T.initial&&(K[1]=null),K[1])e.debug&&b("cached model:",K[1].modelUrl);else{K[1]=await L((t=e.hand.skeleton)==null?void 0:t.modelPath);let o=K[1].executor?Object.values(K[1].modelSignature.inputs):void 0;re[1][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,re[1][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return K[1]}async function cA(e,t){let o=[];if(!e||!K[0])return o;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),s=Math.min(Math.round((e.shape[1]||0)/8)*8,iA),a=Math.round(s*r/8)*8;n.resize=A.image.resizeBilinear(e,[s,a]),n.cast=A.cast(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await K[0].executeAsync(n.cast,sA),n.boxes=A.squeeze(n.rawBoxes,[0,2]),n.scores=A.squeeze(n.rawScores,[0]);let i=A.unstack(n.scores,1);A.dispose(i[B3]),i.splice(B3,1),n.filtered=A.stack(i,1),A.dispose(i),n.max=A.max(n.filtered,1),n.argmax=A.argMax(n.filtered,1);let c=0;n.nms=await A.image.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let x=await n.nms.data(),d=await n.max.data(),l=await n.argmax.data();for(let f of Array.from(x)){let y=A.slice(n.boxes,f,1),p=await y.data();A.dispose(y);let g=[p[1],p[0],p[3]-p[1],p[2]-p[0]],M=g2(g,lA),R=[Math.trunc(g[0]*D0[0]),Math.trunc(g[1]*D0[1]),Math.trunc(g[2]*D0[0]),Math.trunc(g[3]*D0[1])],P=d[f],m=aA[l[f]],u={id:c++,score:P,box:R,boxRaw:M,label:m};o.push(u)}return Object.keys(n).forEach(f=>A.dispose(n[f])),o.sort((f,y)=>y.score-f.score),o.length>(t.hand.maxDetected||1)&&(o.length=t.hand.maxDetected||1),o}async function _5(e,t,o){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&K[1]&&o.hand.landmarks&&t.score>(o.hand.minConfidence||0)){let r={},s=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=A.image.cropAndResize(e,[s],[0],[re[1][0],re[1][1]],"bilinear"),r.div=A.div(r.crop,F.tf255),[r.score,r.keypoints]=K[1].execute(r.div,["Identity_1","Identity"]);let a=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(i>=(o.hand.minConfidence||0)){n.fingerScore=i,r.reshaped=A.reshape(r.keypoints,[-1,3]);let d=(await r.reshaped.array()).map(l=>[l[0]/re[1][1],l[1]/re[1][0],l[2]||0]).map(l=>[l[0]*t.boxRaw[2],l[1]*t.boxRaw[3],l[2]||0]);n.keypoints=d.map(l=>[D0[0]*(l[0]+t.boxRaw[0]),D0[1]*(l[1]+t.boxRaw[1]),l[2]||0]),n.landmarks=I2(n.keypoints);for(let l of Object.keys(D3))n.annotations[l]=D3[l].map(f=>n.landmarks&&n.keypoints[f]?n.keypoints[f]:null)}Object.keys(r).forEach(c=>A.dispose(r[c]))}return n}async function $5(e,t){var r,s;if(!((r=K[0])!=null&&r.executor)||!((s=K[1])!=null&&s.executor)||!K[0].inputs[0].shape||!K[1].inputs[0].shape)return[];D0=[e.shape[2]||0,e.shape[1]||0],L2++;let o=(t.hand.skipTime||0)>v()-Q5,n=L2<(t.hand.skipFrames||0);return t.skipAllowed&&o&&n?Y.hands:new Promise(async a=>{let i=3*(t.hand.skipTime||0)>v()-Q5,c=L2<3*(t.hand.skipFrames||0);t.skipAllowed&&Y.hands.length===t.hand.maxDetected?Y.hands=await Promise.all(Y.boxes.map(d=>_5(e,d,t))):t.skipAllowed&&i&&c&&Y.hands.length>0?Y.hands=await Promise.all(Y.boxes.map(d=>_5(e,d,t))):(Y.boxes=await cA(e,t),Q5=v(),Y.hands=await Promise.all(Y.boxes.map(d=>_5(e,d,t))),L2=0);let x=[...Y.boxes];if(Y.boxes.length=0,t.cacheSensitivity>0)for(let d=0;d.05&&l.box[3]/(e.shape[1]||1)>.05&&Y.hands[d].fingerScore&&Y.hands[d].fingerScore>(t.hand.minConfidence||0)){let f=g2(l.box,H3),y=g2(l.boxRaw,H3);Y.boxes.push({...x[d],box:f,boxRaw:y})}}for(let d=0;dv()-U3,s=e1<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&s&&q3===n&&W2[o]?(e1++,W2[o]):(e1=0,new Promise(async c=>{let x=A.image.resizeBilinear(e,[o0!=null&&o0.inputs[0].shape?o0.inputs[0].shape[2]:0,o0!=null&&o0.inputs[0].shape?o0.inputs[0].shape[1]:0],!1),d=o0==null?void 0:o0.execute(x),l=(await d.data())[0];W2[o]=Math.round(100*l)/100,q3=n,U3=v(),A.dispose([x,d]),c(W2[o])}))}var e2={};q0(e2,{connected:()=>G2,horizontal:()=>o1,kpt:()=>F2,relative:()=>r1,vertical:()=>n1});var F2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],o1=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],n1=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],r1=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],G2={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var J3=.005,u0={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function A1(e){for(let t of o1){let o=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[0]r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[1]x&&x.part===t[0]),r=e.keypoints.findIndex(x=>x&&x.part===t[1]),s=e.keypoints.findIndex(x=>x&&x.part===o[0]),a=e.keypoints.findIndex(x=>x&&x.part===o[1]);if(!e.keypoints[s]||!e.keypoints[a])continue;let i=e.keypoints[n]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[n].position[0])]:[0,0],c=e.keypoints[r]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||c[0]>c[1]){let x=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=x}}}function Q3(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],o.pad=A.pad(e,u0.padding),o.resize=A.image.resizeBilinear(o.pad,[t,t]);let n=A.cast(o.resize,"int32");return Object.keys(o).forEach(a=>A.dispose(o[a])),n}function $3(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+u0.padding[2][0]+u0.padding[2][1])/t[0]-u0.padding[2][0],n.position[1]*(t[1]+u0.padding[1][0]+u0.padding[1][1])/t[1]-u0.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let o=G0(e.keypoints.map(n=>n.position),t);return e.box=o.box,e.boxRaw=o.boxRaw,e}var Q,B2=0,s1=Number.MAX_SAFE_INTEGER,ue={boxes:[],bodies:[],last:0};async function eo(e){var t;return T.initial&&(Q=null),Q?e.debug&&b("cached model:",Q.modelUrl):(N2(["size"],e),Q=await L(e.body.modelPath)),B2=(Q==null?void 0:Q.executor)&&((t=Q==null?void 0:Q.inputs)==null?void 0:t[0].shape)?Q.inputs[0].shape[2]:0,B2<64&&(B2=256),Q}function yA(e,t,o){let n=e[0][0],r=[],s=0;for(let d=0;dt.body.minConfidence){let l=[n[d][1],n[d][0]];r.push({score:Math.round(100*s)/100,part:F2[d],positionRaw:l,position:[Math.round((o.shape[2]||0)*l[0]),Math.round((o.shape[1]||0)*l[1])]})}s=r.reduce((d,l)=>l.score>d?l.score:d,0);let a=[],i=G0(r.map(d=>d.position),[o.shape[2],o.shape[1]]),c={};for(let[d,l]of Object.entries(G2)){let f=[];for(let y=0;yM.part===l[y]),g=r.find(M=>M.part===l[y+1]);p&&g&&p.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&f.push([p.position,g.position])}c[d]=f}let x={id:0,score:s,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:c};return A1(x),a.push(x),a}function dA(e,t,o){let n=[];for(let r=0;rt.body.minConfidence){let i=[];for(let l=0;l<17;l++){let f=s[3*l+2];if(f>t.body.minConfidence){let y=[s[3*l+1],s[3*l+0]];i.push({part:F2[l],score:Math.round(100*f)/100,positionRaw:y,position:[Math.round((o.shape[2]||0)*y[0]),Math.round((o.shape[1]||0)*y[1])]})}}let c=G0(i.map(l=>l.position),[o.shape[2],o.shape[1]]),x={};for(let[l,f]of Object.entries(G2)){let y=[];for(let p=0;pR.part===f[p]),M=i.find(R=>R.part===f[p+1]);g&&M&&g.score>(t.body.minConfidence||0)&&M.score>(t.body.minConfidence||0)&&y.push([g.position,M.position])}x[l]=y}let d={id:r,score:a,box:c.box,boxRaw:c.boxRaw,keypoints:[...i],annotations:x};A1(d),n.push(d)}}return n.sort((r,s)=>s.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function a1(e,t){var r;if(!(Q!=null&&Q.executor)||!((r=Q==null?void 0:Q.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(ue.boxes.length=0),s1++;let o=(t.body.skipTime||0)>v()-ue.last,n=s1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n?ue.bodies:new Promise(async s=>{let a={};s1=0,a.input=_3(e,B2),a.res=Q==null?void 0:Q.execute(a.input),ue.last=v();let i=await a.res.array();ue.bodies=a.res.shape[2]===17?yA(i,t,e):dA(i,t,e);for(let c of ue.bodies)$3(c,[e.shape[2]||1,e.shape[1]||1]),Q3(c.keypoints);Object.keys(a).forEach(c=>A.dispose(a[c])),s(ue.bodies)})}var k0,H2=[],oo=0,i1=Number.MAX_SAFE_INTEGER,V2=0,D2=2.5;async function no(e){if(!k0||T.initial){k0=await L(e.object.modelPath);let t=k0!=null&&k0.executor?Object.values(k0.modelSignature.inputs):void 0;V2=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&b("cached model:",k0.modelUrl);return k0}async function fA(e,t,o){let n=0,r=[],s=V2;for(let x of[1,2,4]){let d=x*13,l=A.squeeze(e.find(R=>R.shape[1]===d**2&&(R.shape[2]||0)===Te.length)),f=await l.array(),y=A.squeeze(e.find(R=>R.shape[1]===d**2&&(R.shape[2]||0)(o.object.minConfidence||0)&&P!==61){let u=(.5+Math.trunc(R%d))/d,z=(.5+Math.trunc(R/d))/d,k=M[R].map(I=>I*(d/x/s)),[h,W]=[u-D2/x*k[0],z-D2/x*k[1]],[B,j]=[u+D2/x*k[2]-h,z+D2/x*k[3]-W],N=[h,W,B,j];N=N.map(I=>Math.max(0,Math.min(I,1)));let G=[N[0]*t[0],N[1]*t[1],N[2]*t[0],N[3]*t[1]],O={id:n++,score:Math.round(100*m)/100,class:P+1,label:Te[P].label,box:G.map(I=>Math.trunc(I)),boxRaw:N};r.push(O)}}A.dispose([l,y,p,g])}let a=r.map(x=>[x.boxRaw[1],x.boxRaw[0],x.boxRaw[3],x.boxRaw[2]]),i=r.map(x=>x.score),c=[];if(a&&a.length>0){let x=await A.image.nonMaxSuppressionAsync(a,i,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence);c=await x.data(),A.dispose(x)}return r=r.filter((x,d)=>c.includes(d)).sort((x,d)=>d.score-x.score),r}async function l1(e,t){if(!(k0!=null&&k0.executor))return[];let o=(t.object.skipTime||0)>v()-oo,n=i1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&H2.length>0?(i1++,H2):(i1=0,!T.kernels.includes("mod")||!T.kernels.includes("sparsetodense")?H2:new Promise(async r=>{let s=[e.shape[2]||0,e.shape[1]||0],a=A.image.resizeBilinear(e,[V2,V2],!1),i=A.div(a,F.tf255),c=A.transpose(i,[0,3,1,2]),x;t.object.enabled&&(x=k0.execute(c)),oo=v();let d=await fA(x,s,t);H2=d,A.dispose([a,i,c,...x]),r(d)}))}var o2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],mA=o2.length,t2=o2.reduce((e,t,o)=>(e[t]=o,e),{}),pA=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],q4=pA.map(([e,t])=>[t2[e],t2[t]]),Ao=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function so(e){let t=e.reduce(({maxX:o,maxY:n,minX:r,minY:s},{position:{x:a,y:i}})=>({maxX:Math.max(o,a),maxY:Math.max(n,i),minX:Math.min(r,a),minY:Math.min(s,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function ao(e,[t,o],[n,r]){let s=t/n,a=o/r,i=(x,d)=>({id:d,score:x.score,boxRaw:[x.box[0]/r,x.box[1]/n,x.box[2]/r,x.box[3]/n],box:[Math.trunc(x.box[0]*a),Math.trunc(x.box[1]*s),Math.trunc(x.box[2]*a),Math.trunc(x.box[3]*s)],keypoints:x.keypoints.map(({score:l,part:f,position:y})=>({score:l,part:f,position:[Math.trunc(y.x*a),Math.trunc(y.y*s)],positionRaw:[y.x/n,y.y/n]})),annotations:{}});return e.map((x,d)=>i(x,d))}var Z2=class{constructor(t,o){w(this,"priorityQueue");w(this,"numberOfElements");w(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=o}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let o=2*t;if(oo?o:e}function io(e,t,o,n){let r=o-e,s=n-t;return r*r+s*s}function d1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var h0,hA=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],X2=1,Ce=16,bA=50**2;function lo(e,t,o,n,r,s,a=2){let i=R=>({y:s.get(R.y,R.x,e),x:s.get(R.y,R.x,s.shape[2]/2+e)}),c=(R,P,m)=>({y:y1(Math.round(R.y/Ce),0,P-1),x:y1(Math.round(R.x/Ce),0,m-1)}),[x,d]=n.shape,l=c(t.position,x,d),f=i(l),p=d1(t.position,f);for(let R=0;R[t2[f],t2[y]]),a=s.map(([,f])=>f),i=s.map(([f])=>f),c=t.shape[2],x=a.length,d=new Array(c),l=x1(e.part,Ce,o);d[e.part.id]={score:e.score,part:o2[e.part.id],position:l};for(let f=x-1;f>=0;--f){let y=a[f],p=i[f];d[y]&&!d[p]&&(d[p]=lo(f,d[y],p,t,o,r))}for(let f=0;ft){i=!1;break}if(!i)break}return i}function RA(e,t){let[o,n,r]=t.shape,s=new Z2(o*n*r,({score:a})=>a);for(let a=0;a{var a;let s=(a=r[n])==null?void 0:a.position;return s?io(o,t,s.y,s.x)<=bA:!1})}function vA(e,t){return t.reduce((n,{position:r,score:s},a)=>(co(e,r,a)||(n+=s),n),0)/t.length}function PA(e,t,o,n,r,s){let a=[],i=RA(s,t);for(;a.lengthy.score>s);let l=vA(a,d),f=so(d);l>s&&a.push({keypoints:d,box:f,score:Math.round(100*l)/100})}return a}async function f1(e,t){if(!(h0!=null&&h0.executor))return[];let o=A.tidy(()=>{if(!h0.inputs[0].shape)return[];let a=A.image.resizeBilinear(e,[h0.inputs[0].shape[2],h0.inputs[0].shape[1]]),i=A.sub(A.div(A.cast(a,"float32"),127.5),1),x=h0.execute(i,hA).map(d=>A.squeeze(d,[0]));return x[1]=A.sigmoid(x[1]),x}),n=await Promise.all(o.map(a=>a.buffer()));for(let a of o)A.dispose(a);let r=PA(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return h0.inputs[0].shape?ao(r,[e.shape[1],e.shape[2]],[h0.inputs[0].shape[2],h0.inputs[0].shape[1]]):[]}async function xo(e){return!h0||T.initial?h0=await L(e.body.modelPath):e.debug&&b("cached model:",h0.modelUrl),h0}var L0,m1=!1;async function p1(e){return!L0||T.initial?L0=await L(e.segmentation.modelPath):e.debug&&b("cached model:",L0.modelUrl),L0}async function fo(e,t,o){var g,M;if(m1)return{data:[],canvas:null,alpha:null};m1=!0,L0||await p1(o);let n=await Me(e,o),r=((g=n.tensor)==null?void 0:g.shape[2])||0,s=((M=n.tensor)==null?void 0:M.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let a={};a.resize=A.image.resizeBilinear(n.tensor,[L0.inputs[0].shape?L0.inputs[0].shape[1]:0,L0.inputs[0].shape?L0.inputs[0].shape[2]:0],!1),A.dispose(n.tensor),a.norm=A.div(a.resize,F.tf255),a.res=L0.execute(a.norm),a.squeeze=A.squeeze(a.res,0),a.squeeze.shape[2]===2?(a.softmax=A.softmax(a.squeeze),[a.bg,a.fg]=A.unstack(a.softmax,2),a.expand=A.expandDims(a.fg,2),a.pad=A.expandDims(a.expand,0),a.crop=A.image.cropAndResize(a.pad,[[0,0,.5,.5]],[0],[r,s]),a.data=A.squeeze(a.crop,0)):a.data=A.image.resizeBilinear(a.squeeze,[s,r]);let i=Array.from(await a.data.data());if(T.node&&!T.Canvas&&typeof ImageData=="undefined")return o.debug&&b("canvas support missing"),Object.keys(a).forEach(R=>A.dispose(a[R])),{data:i,canvas:null,alpha:null};let c=s0(r,s);A.browser&&await A.browser.toPixels(a.data,c);let x=c.getContext("2d");o.segmentation.blur&&o.segmentation.blur>0&&(x.filter=`blur(${o.segmentation.blur}px)`);let d=x.getImageData(0,0,r,s),l=s0(r,s),f=l.getContext("2d");n.canvas&&f.drawImage(n.canvas,0,0),f.globalCompositeOperation="darken",o.segmentation.blur&&o.segmentation.blur>0&&(f.filter=`blur(${o.segmentation.blur}px)`),f.drawImage(c,0,0),f.globalCompositeOperation="source-over",f.filter="none";let y=f.getImageData(0,0,r,s);for(let R=0;RA.dispose(a[R])),m1=!1,{data:i,canvas:l,alpha:c}}var n2=class{constructor(){w(this,"ssrnetage",null);w(this,"gear",null);w(this,"blazeposedetect",null);w(this,"blazepose",null);w(this,"centernet",null);w(this,"efficientpose",null);w(this,"mobilefacenet",null);w(this,"insightface",null);w(this,"emotion",null);w(this,"facedetect",null);w(this,"faceiris",null);w(this,"facemesh",null);w(this,"faceres",null);w(this,"ssrnetgender",null);w(this,"handpose",null);w(this,"handskeleton",null);w(this,"handtrack",null);w(this,"liveness",null);w(this,"movenet",null);w(this,"nanodet",null);w(this,"posenet",null);w(this,"segmentation",null);w(this,"antispoof",null)}},u1=e=>{let t=0,o=0,n=0;for(let s of Object.values(O0))t+=s.sizeFromManifest,o+=s.sizeLoadedWeights,n+=s.sizeDesired;let r=n>0?o/n:0;return{numLoadedModels:Object.values(O0).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:o,totalSizeLoading:n,totalSizeEnabled:void 0,modelStats:Object.values(O0)}};function j2(e){for(let t of Object.keys(e.models))e.models[t]=null}async function h1(e){var t,o,n,r,s,a,i,c,x,d,l,f,y,p,g,M,R,P,m,u,z,k,h,W,B,j;T.initial&&j2(e),e.config.hand.enabled&&(!e.models.handpose&&((o=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:o.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await K5(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await K5(e.config))),e.config.body.enabled&&!e.models.blazepose&&((s=e.config.body.modelPath)==null?void 0:s.includes("blazepose"))&&(e.models.blazepose=jt(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=It(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((a=e.config.body.modelPath)==null?void 0:a.includes("efficientpose"))&&(e.models.efficientpose=Gt(e.config)),e.config.body.enabled&&!e.models.movenet&&((i=e.config.body.modelPath)==null?void 0:i.includes("movenet"))&&(e.models.movenet=eo(e.config)),e.config.body.enabled&&!e.models.posenet&&((c=e.config.body.modelPath)==null?void 0:c.includes("posenet"))&&(e.models.posenet=xo(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=vt(e.config)),e.config.face.enabled&&((x=e.config.face.antispoof)==null?void 0:x.enabled)&&!e.models.antispoof&&(e.models.antispoof=ct(e.config)),e.config.face.enabled&&((d=e.config.face.liveness)==null?void 0:d.enabled)&&!e.models.liveness&&(e.models.liveness=Y3(e.config)),e.config.face.enabled&&((l=e.config.face.description)==null?void 0:l.enabled)&&!e.models.faceres&&(e.models.faceres=m3(e.config)),e.config.face.enabled&&((f=e.config.face.emotion)==null?void 0:f.enabled)&&!e.models.emotion&&(e.models.emotion=Vt(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!((p=e.config.face.attention)!=null&&p.enabled)&&!e.models.faceiris&&(e.models.faceiris=r3(e.config)),e.config.face.enabled&&((g=e.config.face.mesh)==null?void 0:g.enabled)&&!e.models.facemesh&&(e.models.facemesh=c3(e.config)),e.config.face.enabled&&((M=e.config.face.gear)==null?void 0:M.enabled)&&!e.models.gear&&(e.models.gear=Q1(e.config)),e.config.face.enabled&&((R=e.config.face.ssrnet)==null?void 0:R.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=ot(e.config)),e.config.face.enabled&&((P=e.config.face.ssrnet)==null?void 0:P.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=st(e.config)),e.config.face.enabled&&((m=e.config.face.mobilefacenet)==null?void 0:m.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=Yt(e.config)),e.config.face.enabled&&((u=e.config.face.insightface)==null?void 0:u.enabled)&&!e.models.insightface&&(e.models.insightface=$t(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((k=(z=e.config.hand.detector)==null?void 0:z.modelPath)==null?void 0:k.includes("handtrack"))&&(e.models.handtrack=V3(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((W=(h=e.config.hand.detector)==null?void 0:h.modelPath)==null?void 0:W.includes("handtrack"))&&(e.models.handskeleton=Z3(e.config)),e.config.object.enabled&&!e.models.centernet&&((B=e.config.object.modelPath)==null?void 0:B.includes("centernet"))&&(e.models.centernet=Lt(e.config)),e.config.object.enabled&&!e.models.nanodet&&((j=e.config.object.modelPath)==null?void 0:j.includes("nanodet"))&&(e.models.nanodet=no(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=p1(e.config));for await(let N of Object.keys(e.models))e.models[N]&&typeof e.models[N]!="undefined"&&(e.models[N]=await e.models[N])}var g0;function Ie(e,t,o){var x;if(e&&(g0=e),!t||(g0||b("instance not registred"),!g0.config.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],s=[],a=[],i=t.modelUrl,c=t.executor;if((x=c==null?void 0:c.graph)!=null&&x.nodes)for(let d of Object.values(c.graph.nodes)){let l=d.op.toLowerCase();s.includes(l)||s.push(l)}else!c&&g0.config.debug&&b("model not loaded",o);for(let d of s)!n.includes(d)&&!r.includes(d)&&!g0.env.kernels.includes(d)&&!g0.env.kernels.includes(d.replace("_",""))&&!g0.env.kernels.includes(d.replace("native",""))&&!g0.env.kernels.includes(d.replace("v2",""))&&a.push(d);return g0.config.debug&&a.length>0&&b("model validation failed:",o,a),a.length>0?{name:o,missing:a,ops:s,url:i}:null}function q2(e){g0=e;let t=[];for(let o of Object.keys(g0.models)){let n=g0.models[o];if(!n)continue;let r=Ie(g0,n,o);r&&t.push(r)}return t}var c0={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},O0={};async function TA(e,t){return c0.debug&&b("load model fetch:",e,t),fetch(e,t)}function po(e){c0.cacheModels=e.cacheModels,c0.verbose=e.debug,c0.modelBasePath=e.modelBasePath}async function L(e){var x,d,l;let t=G1(c0.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let o=t.includes("/")?t.split("/"):t.split("\\"),n=o[o.length-1].replace(".json",""),r="indexeddb://"+n;O0[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:n5[n],inCache:!1},c0.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let s={};try{s=c0.cacheSupported&&c0.cacheModels?await A.io.listModels():{}}catch(f){c0.cacheSupported=!1}O0[n].inCache=c0.cacheSupported&&c0.cacheModels&&Object.keys(s).includes(r);let a=typeof fetch=="undefined"?{}:{fetchFunc:(f,y)=>TA(f,y)},i=new $2(O0[n].inCache?r:t,a),c=!1;try{i.findIOHandler(),c0.debug&&b("model load handler:",i.handler);let f=await i.handler.load();O0[n].sizeFromManifest=((x=f==null?void 0:f.weightData)==null?void 0:x.byteLength)||0,i.loadSync(f),O0[n].sizeLoadedWeights=((l=(d=i.artifacts)==null?void 0:d.weightData)==null?void 0:l.byteLength)||0,c0.verbose&&b("load model:",i.modelUrl,{bytes:O0[n].sizeLoadedWeights},c0),c=!0}catch(f){b("error loading model:",t,f)}if(c&&c0.cacheModels&&c0.cacheSupported&&!O0[n].inCache)try{let f=await i.save(r);b("model saved:",r,f)}catch(f){b("error saving model:",t,f)}return Ie(null,i,`${e||""}`),i}var b1="2.9.4";var ho={};q0(ho,{all:()=>T1,body:()=>Oe,canvas:()=>P1,face:()=>je,gesture:()=>We,hand:()=>Ne,object:()=>Le,options:()=>A0,person:()=>v1});var M0=e=>{if(!e)b("draw error: invalid canvas");else if(!e.getContext)b("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)b("draw error: cannot get canvas context");else return t}return null},he=e=>Math.round(e*180/Math.PI),V0=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let o=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${o[0]}, ${o[1]}, ${o[2]}, ${t.alpha})`};function Z0(e,t,o,n,r){e.fillStyle=V0(n,r),e.beginPath(),e.arc(t,o,r.pointSize,0,2*Math.PI),e.fill()}function W0(e,t,o,n,r,s){if(e.beginPath(),e.lineWidth=s.lineWidth,s.useCurves){let a=(t+t+n)/2,i=(o+o+r)/2;e.ellipse(a,i,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+s.roundRect,o),e.lineTo(t+n-s.roundRect,o),e.quadraticCurveTo(t+n,o,t+n,o+s.roundRect),e.lineTo(t+n,o+r-s.roundRect),e.quadraticCurveTo(t+n,o+r,t+n-s.roundRect,o+r),e.lineTo(t+s.roundRect,o+r),e.quadraticCurveTo(t,o+r,t,o+r-s.roundRect),e.lineTo(t,o+s.roundRect),e.quadraticCurveTo(t,o,t+s.roundRect,o),e.closePath();e.stroke()}function g1(e,t,o){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=V0(n[2]||0,o),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),o.fillPolygons&&(e.closePath(),e.fill())}}function uo(e,t,o){if(!(t.length<2)){if(e.lineWidth=o.lineWidth,!o.useCurves||t.length<=2){g1(e,t,o);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n0){let s=e.emotion.map(a=>`${Math.trunc(100*a.score)}% ${a.emotion}`);s.length>3&&(s.length=3),r.push(s.join(" "))}((o=e.rotation)==null?void 0:o.angle)&&((n=e.rotation)==null?void 0:n.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${he(e.rotation.angle.roll)}\xB0 yaw:${he(e.rotation.angle.yaw)}\xB0 pitch:${he(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${he(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=H.color;for(let s=r.length-1;s>=0;s--){let a=Math.max(e.box[0],0),i=s*H.lineHeight+e.box[1];H.shadowColor&&H.shadowColor!==""&&(t.fillStyle=H.shadowColor,t.fillText(r[s],a+5,i+16)),t.fillStyle=H.labelColor,t.fillText(r[s],a+4,i+15)}}}function zA(e,t){var o,n,r,s;if(((o=e.annotations)==null?void 0:o.leftEyeIris)&&((n=e.annotations)==null?void 0:n.leftEyeIris[0])){t.strokeStyle=H.useDepth?"rgba(255, 200, 255, 0.3)":H.color,t.beginPath();let a=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,i=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],a,i,0,0,2*Math.PI),t.stroke(),H.fillPolygons&&(t.fillStyle=H.useDepth?"rgba(255, 255, 200, 0.3)":H.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((s=e.annotations)==null?void 0:s.rightEyeIris[0])){t.strokeStyle=H.useDepth?"rgba(255, 200, 255, 0.3)":H.color,t.beginPath();let a=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,i=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],a,i,0,0,2*Math.PI),t.stroke(),H.fillPolygons&&(t.fillStyle=H.useDepth?"rgba(255, 255, 200, 0.3)":H.color,t.fill())}}function SA(e,t){var o;if(H.drawGaze&&((o=e.rotation)==null?void 0:o.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*he(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*he(e.rotation.angle.pitch)/90,s=new Path2D(` +`;var e5=(e,t,o)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,s)=>(o[s]=0,r))},t5=class{constructor(t,o,n){w(this,"uniform",{});w(this,"attribute",{});w(this,"gl");w(this,"id");w(this,"compile",(t,o)=>{let n=this.gl.createShader(o);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(g(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(g("filter: could not create shader"),null)});this.gl=t;let r=this.compile(o,this.gl.VERTEX_SHADER),s=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!s)){if(!this.id){g("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,s),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){g(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),e5(o,"attribute",this.attribute);for(let a in this.attribute)this.attribute[a]=this.gl.getAttribLocation(this.id,a);e5(o,"uniform",this.uniform),e5(n,"uniform",this.uniform);for(let a in this.uniform)this.uniform[a]=this.gl.getUniformLocation(this.id,a)}}};function U1(){let e=0,t=null,o=!1,n=-1,r=[null,null],s=[],a=null,i=null,c=s0(100,100),x={},d={INTERMEDIATE:1},l=c.getContext("webgl");if(!l){g("filter: cannot get webgl context");return}this.gl=l;function f(P,p){if(!(P===c.width&&p===c.height)){if(c.width=P,c.height=p,!a){let h=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);a=l.createBuffer(),l.bindBuffer(l.ARRAY_BUFFER,a),l.bufferData(l.ARRAY_BUFFER,h,l.STATIC_DRAW),l.pixelStorei(l.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}l.viewport(0,0,c.width,c.height),r=[null,null]}}function y(P,p){let h=l.createFramebuffer();l.bindFramebuffer(l.FRAMEBUFFER,h);let z=l.createRenderbuffer();l.bindRenderbuffer(l.RENDERBUFFER,z);let k=l.createTexture();return l.bindTexture(l.TEXTURE_2D,k),l.texImage2D(l.TEXTURE_2D,0,l.RGBA,P,p,0,l.RGBA,l.UNSIGNED_BYTE,null),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_MAG_FILTER,l.LINEAR),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_MIN_FILTER,l.LINEAR),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_WRAP_S,l.CLAMP_TO_EDGE),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_WRAP_T,l.CLAMP_TO_EDGE),l.framebufferTexture2D(l.FRAMEBUFFER,l.COLOR_ATTACHMENT0,l.TEXTURE_2D,k,0),l.bindTexture(l.TEXTURE_2D,null),l.bindFramebuffer(l.FRAMEBUFFER,null),{fbo:h,texture:k}}function m(P){return r[P]=r[P]||y(c.width,c.height),r[P]}function u(P=0){if(!i)return;let p=null,h=null,z=!1;e===0?p=t:p=m(n).texture||null,e++,o&&!(P&d.INTERMEDIATE)?(h=null,z=e%2===0):(n=(n+1)%2,h=m(n).fbo||null),l.bindTexture(l.TEXTURE_2D,p),l.bindFramebuffer(l.FRAMEBUFFER,h),l.uniform1f(i.uniform.flipY,z?-1:1),l.drawArrays(l.TRIANGLES,0,6)}function M(P){if(x[P])return i=x[P],l.useProgram((i?i.id:null)||null),i;if(i=new t5(l,H1,P),!i)return g("filter: could not get webgl program"),null;let p=Float32Array.BYTES_PER_ELEMENT,h=4*p;return l.enableVertexAttribArray(i.attribute.pos),l.vertexAttribPointer(i.attribute.pos,2,l.FLOAT,!1,h,0*p),l.enableVertexAttribArray(i.attribute.uv),l.vertexAttribPointer(i.attribute.uv,2,l.FLOAT,!1,h,2*p),x[P]=i,i}let v={colorMatrix:P=>{let p=new Float32Array(P);p[4]/=255,p[9]/=255,p[14]/=255,p[19]/=255;let h=p[18]===1&&p[3]===0&&p[8]===0&&p[13]===0&&p[15]===0&&p[16]===0&&p[17]===0&&p[19]===0?V1:D1,z=M(h);!z||(l.uniform1fv(z.uniform.m,p),u())},brightness:P=>{let p=(P||0)+1;v.colorMatrix([p,0,0,0,0,0,p,0,0,0,0,0,p,0,0,0,0,0,1,0])},saturation:P=>{let p=(P||0)*2/3+1,h=(p-1)*-.5;v.colorMatrix([p,h,h,0,0,h,p,h,0,0,h,h,p,0,0,0,0,0,1,0])},desaturate:()=>{v.saturation(-1)},contrast:P=>{let p=(P||0)+1,h=-128*(p-1);v.colorMatrix([p,0,0,0,h,0,p,0,0,h,0,0,p,0,h,0,0,0,1,0])},negative:()=>{v.contrast(-2)},hue:P=>{P=(P||0)/180*Math.PI;let p=Math.cos(P),h=Math.sin(P),z=.213,k=.715,b=.072;v.colorMatrix([z+p*(1-z)+h*-z,k+p*-k+h*-k,b+p*-b+h*(1-b),0,0,z+p*-z+h*.143,k+p*(1-k)+h*.14,b+p*-b+h*-.283,0,0,z+p*-z+h*-(1-z),k+p*-k+h*k,b+p*(1-b)+h*b,0,0,0,0,0,1,0])},desaturateLuminance:()=>{v.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{v.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{v.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{v.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{v.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{v.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{v.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{v.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:P=>{let p=new Float32Array(P),h=1/c.width,z=1/c.height,k=M(q1);!k||(l.uniform1fv(k.uniform.m,p),l.uniform2f(k.uniform.px,h,z),u())},detectEdges:()=>{v.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{v.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{v.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:P=>{let p=P||1;v.convolution.call(this,[0,-1*p,0,-1*p,1+4*p,-1*p,0,-1*p,0])},emboss:P=>{let p=P||1;v.convolution.call(this,[-2*p,-1*p,0,-1*p,1,1*p,0,1*p,2*p])},blur:P=>{let p=P/7/c.width,h=P/7/c.height,z=M(X1);!z||(l.uniform2f(z.uniform.px,0,h),u(d.INTERMEDIATE),l.uniform2f(z.uniform.px,p,0),u())},pixelate:P=>{let p=P/c.width,h=P/c.height,z=M(Z1);!z||(l.uniform2f(z.uniform.size,p,h),u())}};this.add=function(P){let p=Array.prototype.slice.call(arguments,1),h=v[P];s.push({func:h,args:p})},this.reset=function(){s=[]},this.get=function(){return s},this.apply=function(P){f(P.width,P.height),e=0,t||(t=l.createTexture()),l.bindTexture(l.TEXTURE_2D,t),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_WRAP_S,l.CLAMP_TO_EDGE),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_WRAP_T,l.CLAMP_TO_EDGE),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_MIN_FILTER,l.NEAREST),l.texParameteri(l.TEXTURE_2D,l.TEXTURE_MAG_FILTER,l.NEAREST),l.texImage2D(l.TEXTURE_2D,0,l.RGBA,l.RGBA,l.UNSIGNED_BYTE,P);for(let p=0;py.data())),a=.99*Math.max(s[0][0],s[1][0],s[2][0]),i=[A.sub(o[0],n[0]),A.sub(o[1],n[1]),A.sub(o[2],n[2])],c=[A.sub(r[0],n[0]),A.sub(r[1],n[1]),A.sub(r[2],n[2])],x=[A.div(a,c[0]),A.div(a,c[1]),A.div(a,c[2])],d=[A.mul(i[0],x[0]),A.mul(i[1],x[1]),A.mul(i[2],x[2])],l=A.stack([d[0],d[1],d[2]],2),f=A.reshape(l,[1,t.shape[0],t.shape[1],3]);return A.dispose([...o,...n,...r,...i,...c,...x,...d,l,t]),f}var i2=3840,e0=null,t0=null,ge=null,V,b0={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function o5(){b0.inputSum=0,b0.cacheDiff=1,b0.sumMethod=0,b0.inputTensor=void 0}function s0(e,t){let o;if(T.browser)if(T.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");o=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");o=document.createElement("canvas"),o.width=e,o.height=t}else typeof T.Canvas!="undefined"?o=new T.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(o=new globalThis.Canvas(e,t));return o}function l2(e,t){let o=t||s0(e.width,e.height);return o.getContext("2d").drawImage(e,0,0),o}async function Me(e,t,o=!0){var f,y;if(!e)return t.debug&&g("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof be)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof T.Canvas!="undefined"&&e instanceof T.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof be){let m=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)m=A.expandDims(e,0);else if(e.shape[2]===4){let u=A.slice3d(e,[0,0,0],[-1,-1,3]);m=A.expandDims(u,0),A.dispose(u)}}else e.shape.length===4&&(e.shape[3]===3?m=A.clone(e):e.shape[3]===4&&(m=A.slice4d(e,[0,0,0,0],[-1,-1,-1,3])));if(m==null||m.shape.length!==4||m.shape[0]!==1||m.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(m.dtype==="int32"){let u=A.cast(m,"float32");A.dispose(m),m=u}return{tensor:m,canvas:t.filter.return?t0:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&g("input stream is not ready"),{tensor:null,canvas:e0};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&g("cannot determine input dimensions"),{tensor:null,canvas:e0};let s=n,a=r;if(s>i2&&(s=i2,a=Math.trunc(s*r/n)),a>i2&&(a=i2,s=Math.trunc(a*n/r)),(((f=t.filter)==null?void 0:f.width)||0)>0?s=t.filter.width:(((y=t.filter)==null?void 0:y.height)||0)>0&&(s=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?a=t.filter.height:(t.filter.width||0)>0&&(a=r*((t.filter.width||0)/n)),!s||!a)throw new Error("input error: cannot determine dimension");(!e0||e0.width!==s||e0.height!==a)&&(e0=s0(s,a));let i=e0.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(n,0),i.scale(-1,1),i.drawImage(e,0,0,n,r,0,0,e0.width,e0.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,n,r,0,0,e0.width,e0.height),(!t0||e0.width!==t0.width||e0.height!==t0.height)&&(t0=s0(e0.width,e0.height)),t.filter.enabled&&T.webgl.supported?(V||(V=T.browser?new U1:null),T.filter=!!V,V!=null&&V.add?(V.reset(),t.filter.brightness!==0&&V.add("brightness",t.filter.brightness),t.filter.contrast!==0&&V.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&V.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&V.add("blur",t.filter.blur),t.filter.saturation!==0&&V.add("saturation",t.filter.saturation),t.filter.hue!==0&&V.add("hue",t.filter.hue),t.filter.negative&&V.add("negative"),t.filter.sepia&&V.add("sepia"),t.filter.vintage&&V.add("brownie"),t.filter.sepia&&V.add("sepia"),t.filter.kodachrome&&V.add("kodachrome"),t.filter.technicolor&&V.add("technicolor"),t.filter.polaroid&&V.add("polaroid"),t.filter.pixelate!==0&&V.add("pixelate",t.filter.pixelate),V.get()>0?t0=V.apply(e0):t0=V.draw(e0)):(t.debug&&g("input process error: cannot initialize filters"),T.webgl.supported=!1,t.filter.enabled=!1,l2(e0,t0))):(l2(e0,t0),V&&(V=null),T.filter=!!V),!o)return{tensor:null,canvas:t0};if(!t0)throw new Error("canvas error: cannot create output");let c,x=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(T.browser&&A.browser)c=A.browser?A.browser.fromPixels(e):null;else{x=e.data.length/e.height/e.width;let m=new Uint8Array(e.data.buffer);c=A.tensor(m,[e.height,e.width,x],"int32")}else if((!ge||t0.width!==ge.width||t0.height!==ge.height)&&(ge=s0(t0.width,t0.height)),A.browser&&T.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?c=A.browser.fromPixels(t0):(ge=l2(t0),c=A.browser.fromPixels(ge));else{let M=l2(t0).getContext("2d").getImageData(0,0,s,a);x=M.data.length/s/a;let v=new Uint8Array(M.data.buffer);c=A.tensor(v,[s,a,x])}if(x===4){let m=A.slice3d(c,[0,0,0],[-1,-1,3]);A.dispose(c),c=m}if(!c)throw new Error("input error: cannot create tensor");let d=A.cast(c,"float32"),l=t.filter.equalization?await a2(d):A.expandDims(d,0);return A.dispose([c,d]),{tensor:l,canvas:t.filter.return?t0:null}}async function Y1(e,t){let o=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return o;if(!b0.inputTensor)b0.inputTensor=A.clone(t);else if(b0.inputTensor.shape[1]!==t.shape[1]||b0.inputTensor.shape[2]!==t.shape[2])A.dispose(b0.inputTensor),b0.inputTensor=A.clone(t);else{let n={};n.diff=A.sub(t,b0.inputTensor),n.squared=A.mul(n.diff,n.diff),n.sum=A.sum(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;A.dispose([b0.inputTensor,n.diff,n.squared,n.sum]),b0.inputTensor=A.clone(t),o=s<=(e.cacheSensitivity||0)}return o}async function K1(e,t,o){let n={};if(!t||!o||t.shape.length!==4||t.shape.length!==o.shape.length)return e.debug||g("invalid input tensor or tensor shapes do not match:",t.shape,o.shape),0;if(t.shape[0]!==1||o.shape[0]!==1||t.shape[3]!==3||o.shape[3]!==3)return e.debug||g("input tensors must be of shape [1, height, width, 3]:",t.shape,o.shape),0;n.input1=A.clone(t),n.input2=t.shape[1]!==o.shape[1]||t.shape[2]!==o.shape[2]?A.image.resizeBilinear(o,[t.shape[1],t.shape[2]]):A.clone(o),n.diff=A.sub(n.input1,n.input2),n.squared=A.mul(n.diff,n.diff),n.sum=A.sum(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return A.dispose([n.input1,n.input2,n.diff,n.squared,n.sum]),s}var n5=class{constructor(){w(this,"browser");w(this,"node");w(this,"worker");w(this,"platform","");w(this,"agent","");w(this,"backends",[]);w(this,"initial");w(this,"filter");w(this,"tfjs");w(this,"offscreen");w(this,"perfadd",!1);w(this,"tensorflow",{version:void 0,gpu:void 0});w(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});w(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});w(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});w(this,"cpu",{model:void 0,flags:[]});w(this,"kernels",[]);w(this,"Canvas");w(this,"Image");w(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:qe["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let o=t[0].match(/\(([^()]+)\)/g);this.platform=o!=null&&o[0]?o[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(A.engine().registryFactory),this.tensorflow={version:A.backend().binding?A.backend().binding.TF_Version:void 0,gpu:A.backend().binding?A.backend().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&A.getBackend()==="wasm"&&(this.wasm.simd=A.env().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=A.env().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=s0(100,100),o=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof o!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(A.getBackend()==="webgl"||A.getBackend()==="humangl")){let n=A.backend().gpgpu!=="undefined"?await A.backend().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=n?n.name:void 0}}catch(n){this.webgpu.supported=!1}try{this.kernels=A.getKernelsForBackend(A.getBackend()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},T=new n5;var r5={};q0(r5,{age:()=>An,"anti-spoofing":()=>Wn,antispoof:()=>qo,blazeface:()=>Uo,"blazeface-back":()=>sn,"blazeface-front":()=>an,"blazepose-detect":()=>Ln,"blazepose-detector2d":()=>ln,"blazepose-detector3d":()=>cn,"blazepose-full":()=>xn,"blazepose-heavy":()=>yn,"blazepose-lite":()=>dn,default:()=>Jn,efficientpose:()=>fn,"efficientpose-i-lite":()=>Fn,"efficientpose-ii-lite":()=>Gn,"efficientpose-iv":()=>Bn,emotion:()=>Yo,faceboxes:()=>mn,facemesh:()=>Ko,"facemesh-attention":()=>un,"facemesh-attention-alt":()=>pn,"facemesh-detection-full":()=>hn,"facemesh-detection-short":()=>bn,"facemesh-orig":()=>gn,faceres:()=>Jo,"faceres-deep":()=>Mn,gear:()=>vn,gender:()=>Pn,"gender-ssrnet-imdb":()=>Rn,handdetect:()=>Tn,"handlandmark-full":()=>Qo,"handlandmark-lite":()=>wn,"handlandmark-sparse":()=>kn,handskeleton:()=>En,handtrack:()=>_o,"insightface-efficientnet-b0":()=>Hn,"insightface-ghostnet-strides1":()=>Dn,"insightface-ghostnet-strides2":()=>Vn,"insightface-mobilenet-emore":()=>Zn,"insightface-mobilenet-swish":()=>Xn,iris:()=>$o,liveness:()=>en,"mb3-centernet":()=>tn,meet:()=>zn,mobileface:()=>Sn,mobilefacenet:()=>Cn,models:()=>on,"movenet-lightning":()=>nn,"movenet-multipose":()=>In,"movenet-thunder":()=>jn,nanodet:()=>Nn,"nanodet-e":()=>qn,"nanodet-g":()=>Un,"nanodet-m":()=>Yn,"nanodet-t":()=>Kn,posenet:()=>On,selfie:()=>rn});var qo=853098,Uo=538928,Yo=820516,Ko=1477958,Jo=6978814,Qo=5431368,_o=2964837,$o=2599092,en=592976,tn=4030290,on=0,nn=4650216,rn=212886,An=161240,sn=538928,an=402048,ln=7499400,cn=5928856,xn=6338290,yn=27501554,dn=2725490,fn=5651240,mn=2013002,pn=2387598,un=2382414,hn=1026192,bn=201268,gn=2955780,Mn=13957620,vn=1498916,Rn=161236,Pn=201808,Tn=3515612,wn=2023432,kn=5286322,En=5502280,zn=372228,Sn=2183192,Cn=5171976,In=9448838,jn=12477112,Nn=7574558,On=5032780,Ln=5928804,Wn=853098,Fn=2269064,Gn=5651240,Bn=25643252,Hn=13013224,Dn=8093408,Vn=8049584,Zn=6938536,Xn=12168584,qn=12319156,Un=7574558,Yn=1887474,Kn=5294216,Jn={antispoof:qo,blazeface:Uo,emotion:Yo,facemesh:Ko,faceres:Jo,"handlandmark-full":Qo,handtrack:_o,iris:$o,liveness:en,"mb3-centernet":tn,models:on,"movenet-lightning":nn,selfie:rn,age:An,"blazeface-back":sn,"blazeface-front":an,"blazepose-detector2d":ln,"blazepose-detector3d":cn,"blazepose-full":xn,"blazepose-heavy":yn,"blazepose-lite":dn,efficientpose:fn,faceboxes:mn,"facemesh-attention-alt":pn,"facemesh-attention":un,"facemesh-detection-full":hn,"facemesh-detection-short":bn,"facemesh-orig":gn,"faceres-deep":Mn,gear:vn,"gender-ssrnet-imdb":Rn,gender:Pn,handdetect:Tn,"handlandmark-lite":wn,"handlandmark-sparse":kn,handskeleton:En,meet:zn,mobileface:Sn,mobilefacenet:Cn,"movenet-multipose":In,"movenet-thunder":jn,nanodet:Nn,posenet:On,"blazepose-detect":Ln,"anti-spoofing":Wn,"efficientpose-i-lite":Fn,"efficientpose-ii-lite":Gn,"efficientpose-iv":Bn,"insightface-efficientnet-b0":Hn,"insightface-ghostnet-strides1":Dn,"insightface-ghostnet-strides2":Vn,"insightface-mobilenet-emore":Zn,"insightface-mobilenet-swish":Xn,"nanodet-e":qn,"nanodet-g":Un,"nanodet-m":Yn,"nanodet-t":Kn};var Q5={};q0(Q5,{Models:()=>n2,getModelStats:()=>h1,load:()=>b1,reset:()=>j2,validate:()=>q2,validateModel:()=>Ie});var T0,A5=[],Qn=["white","black","asian","indian","other"],_n=[15,23,28,35.5,45.5,55.5,65],J1=0,Q1=0,s5=Number.MAX_SAFE_INTEGER;async function _1(e){var t;return T.initial&&(T0=null),T0?e.debug&&g("cached model:",T0.modelUrl):T0=await L((t=e.face.gear)==null?void 0:t.modelPath),T0}async function a5(e,t,o,n){var a,i;if(!T0)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=s5<(((a=t.face.gear)==null?void 0:a.skipFrames)||0),s=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>R()-Q1;return t.skipAllowed&&s&&r&&J1===n&&A5[o]?(s5++,A5[o]):(s5=0,new Promise(async c=>{var v,P;if(!(T0!=null&&T0.inputs[0].shape))return;let x={},d=[[0,.1,.9,.9]];x.resize=A.image.cropAndResize(e,d,[0],[T0.inputs[0].shape[2],T0.inputs[0].shape[1]]);let l={age:0,gender:"unknown",genderScore:0,race:[]};(v=t.face.gear)!=null&&v.enabled&&([x.age,x.gender,x.race]=T0.execute(x.resize,["age_output","gender_output","race_output"]));let f=await x.gender.data();l.gender=f[0]>f[1]?"male":"female",l.genderScore=Math.round(100*(f[0]>f[1]?f[0]:f[1]))/100;let y=await x.race.data();for(let p=0;p(((P=t.face.gear)==null?void 0:P.minConfidence)||.2)&&l.race.push({score:Math.round(100*y[p])/100,race:Qn[p]});l.race.sort((p,h)=>h.score-p.score);let u=Array.from(await x.age.data()).map((p,h)=>[_n[h],p]).sort((p,h)=>h[1]-p[1]),M=u[0][0];for(let p=1;pA.dispose(x[p])),A5[o]=l,J1=n,Q1=R(),c(l)}))}var F={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function et(){F.tf255=A.scalar(255,"float32"),F.tf1=A.scalar(1,"float32"),F.tf2=A.scalar(2,"float32"),F.tf05=A.scalar(.5,"float32"),F.tf127=A.scalar(127.5,"float32"),F.rgb=A.tensor1d([.2989,.587,.114],"float32")}var d0,c2=[],tt=0,ot=0,i5=Number.MAX_SAFE_INTEGER;async function nt(e){return T.initial&&(d0=null),d0?e.debug&&g("cached model:",d0.modelUrl):d0=await L(e.face.ssrnet.modelPathAge),d0}async function l5(e,t,o,n){var a,i,c,x;if(!d0)return{age:0};let r=i5<(((a=t.face.ssrnet)==null?void 0:a.skipFrames)||0),s=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>R()-ot;return t.skipAllowed&&r&&s&&tt===n&&((c=c2[o])==null?void 0:c.age)&&((x=c2[o])==null?void 0:x.age)>0?(i5++,c2[o]):(i5=0,new Promise(async d=>{var y;if(!(d0!=null&&d0.inputs)||!d0.inputs[0]||!d0.inputs[0].shape)return;let l={};l.resize=A.image.resizeBilinear(e,[d0.inputs[0].shape[2],d0.inputs[0].shape[1]],!1),l.enhance=A.mul(l.resize,F.tf255);let f={age:0};if((y=t.face.ssrnet)!=null&&y.enabled&&(l.age=d0.execute(l.enhance)),l.age){let m=await l.age.data();f.age=Math.trunc(10*m[0])/10}Object.keys(l).forEach(m=>A.dispose(l[m])),c2[o]=f,tt=n,ot=R(),d(f)}))}var w0,x2=[],At=0,st=0,c5=Number.MAX_SAFE_INTEGER,x5=[.2989,.587,.114];async function at(e){var t;return T.initial&&(w0=null),w0?e.debug&&g("cached model:",w0.modelUrl):w0=await L((t=e.face.ssrnet)==null?void 0:t.modelPathGender),w0}async function y5(e,t,o,n){var a,i,c,x;if(!w0)return{gender:"unknown",genderScore:0};let r=c5<(((a=t.face.ssrnet)==null?void 0:a.skipFrames)||0),s=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>R()-st;return t.skipAllowed&&r&&s&&At===n&&((c=x2[o])==null?void 0:c.gender)&&((x=x2[o])==null?void 0:x.genderScore)>0?(c5++,x2[o]):(c5=0,new Promise(async d=>{var m;if(!(w0!=null&&w0.inputs[0].shape))return;let l={};l.resize=A.image.resizeBilinear(e,[w0.inputs[0].shape[2],w0.inputs[0].shape[1]],!1),l.enhance=A.tidy(()=>{let[u,M,v]=A.split(l.resize,3,3),P=A.mul(u,x5[0]),p=A.mul(M,x5[1]),h=A.mul(v,x5[2]),z=A.addN([P,p,h]);return A.mul(A.sub(z,F.tf05),2)});let f={gender:"unknown",genderScore:0};(m=t.face.ssrnet)!=null&&m.enabled&&(l.gender=w0.execute(l.enhance));let y=await l.gender.data();f.gender=y[0]>y[1]?"female":"male",f.genderScore=y[0]>y[1]?Math.trunc(100*y[0])/100:Math.trunc(100*y[1])/100,Object.keys(l).forEach(u=>A.dispose(l[u])),x2[o]=f,At=n,st=R(),d(f)}))}var _,y2=[],d5=Number.MAX_SAFE_INTEGER,lt=0,ct=0;async function xt(e){var t;return T.initial&&(_=null),_?e.debug&&g("cached model:",_.modelUrl):_=await L((t=e.face.antispoof)==null?void 0:t.modelPath),_}async function f5(e,t,o,n){var a,i;if(!_||!(_!=null&&_.executor))return 0;let r=(((a=t.face.antispoof)==null?void 0:a.skipTime)||0)>R()-ct,s=d5<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&s&<===n&&y2[o]?(d5++,y2[o]):(d5=0,new Promise(async c=>{let x=A.image.resizeBilinear(e,[_!=null&&_.inputs[0].shape?_.inputs[0].shape[2]:0,_!=null&&_.inputs[0].shape?_.inputs[0].shape[1]:0],!1),d=_==null?void 0:_.execute(x),l=(await d.data())[0];y2[o]=Math.round(100*l)/100,lt=n,ct=R(),A.dispose([x,d]),c(y2[o])}))}var k0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},m5={count:468,mouth:13,symmetryLine:[13,k0.midwayBetweenEyes[0]]},se={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},p5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],Ye=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ae=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var er=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],tr=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],or=[33,133,362,263,1,78,308],v7=er.map(e=>Ye[e]),R7=tr.map(e=>Ye[e]),P7=or.map(e=>Ye[e]);function U0(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var nr=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],rr=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Ar=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],sr=[[474,475],[475,476],[476,477],[477,474]],ar=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],ir=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],lr=[[469,470],[470,471],[471,472],[472,469]],cr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],T7={lips:U0(nr),leftEye:U0(rr),leftEyebrow:U0(Ar),leftIris:U0(sr),rightEye:U0(ar),rightEyebrow:U0(ir),rightIris:U0(lr),faceOval:U0(cr)};var ve=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],d2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],f2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],m2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],mt=(e,t)=>{let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:o,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},h5=(e,t,o)=>{let n=t.shape[1],r=t.shape[2],s=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],a=A.image.cropAndResize(t,[s],[0],o),i=A.div(a,F.tf255);return A.dispose(a),i},p2=(e,t)=>{let o=d2(e),n=ve(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[o[0]-r[0],o[1]-r[1]],endPoint:[o[0]+r[0],o[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},u2=e=>{let t=d2(e),o=ve(e),n=Math.max(...o)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},pt=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...o)],endPoint:[Math.max(...t),Math.max(...o)],landmarks:e}},b5=[[1,0,0],[0,1,0],[0,0,1]],xr=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),yr=(e,t)=>xr(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var dt=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],ie=(e,t)=>{let o=0;for(let n=0;n{let o=[];for(let n=0;n{let o=[],n=e.length;for(let r=0;r{let o=Math.cos(e),n=Math.sin(e),r=[[o,-n,0],[n,o,0],[0,0,1]],s=dt(t[0],t[1]),a=ft(s,r),i=dt(-t[0],-t[1]);return ft(a,i)},fr=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],o=[e[0][2],e[1][2]],n=[-ie(t[0],o),-ie(t[1],o)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},mr=(e,t)=>[ie(e,t[0]),ie(e,t[1])];function ht(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},o=[];for(let n=0;n[s[0]/r*(y[0]-r/2),s[1]/r*(y[1]-r/2),y[2]||0]),i=o&&o!==0&&Math.abs(o)>.2,c=i?ut(o,[0,0]):b5,x=i?a.map(y=>[...mr(y,c),y[2]]):a,d=i?fr(n):b5,l=d2(t),f=[ie(l,d[0]),ie(l,d[1])];return x.map(y=>[Math.trunc(y[0]+f[0]),Math.trunc(y[1]+f[1]),Math.trunc(y[2]||0)])}function gt(e,t,o,n){let r=t.landmarks.length>=m5.count?m5.symmetryLine:se.symmetryLine,s=0,a=b5,i;if(e&&T.kernels.includes("rotatewithoffset"))if(s=yr(t.landmarks[r[0]],t.landmarks[r[1]]),s&&s!==0&&Math.abs(s)>.2){let x=d2(t),d=[x[0]/o.shape[2],x[1]/o.shape[1]],l=A.image.rotateWithOffset(o,s,0,d);a=ut(-s,x),i=h5(t,l,[n,n]),A.dispose(l)}else i=h5(t,o,[n,n]);else i=h5(t,o,[n,n]);return[s,a,i]}var pr=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...o)+(Math.max(...o)-Math.min(...o))/2]},Mt=(e,t)=>{let o=pr(e),n=ve(t);return{startPoint:[o[0]-n[0]/2,o[1]-n[1]/2],endPoint:[o[0]+n[0]/2,o[1]+n[1]/2]}};var vt=6,ur=1.4,C0,Rt=null,Y0=0,Ke=null,Re=()=>Y0;async function Pt(e){var t;return T.initial&&(C0=null),C0?e.debug&&g("cached model:",C0.modelUrl):C0=await L((t=e.face.detector)==null?void 0:t.modelPath),Y0=C0.executor&&C0.inputs[0].shape?C0.inputs[0].shape[2]:256,Ke=A.scalar(Y0,"int32"),Rt=A.tensor2d(ht(Y0)),C0}function hr(e){let t={};t.boxStarts=A.slice(e,[0,1],[-1,2]),t.centers=A.add(t.boxStarts,Rt),t.boxSizes=A.slice(e,[0,3],[-1,2]),t.boxSizesNormalized=A.div(t.boxSizes,Ke),t.centersNormalized=A.div(t.centers,Ke),t.halfBoxSize=A.div(t.boxSizesNormalized,F.tf2),t.starts=A.sub(t.centersNormalized,t.halfBoxSize),t.ends=A.add(t.centersNormalized,t.halfBoxSize),t.startNormalized=A.mul(t.starts,Ke),t.endNormalized=A.mul(t.ends,Ke);let o=A.concat2d([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>A.dispose(t[n])),o}async function Tt(e,t){var i,c,x,d;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let o={};o.resized=A.image.resizeBilinear(e,[Y0,Y0]),o.div=A.div(o.resized,F.tf127),o.normalized=A.sub(o.div,F.tf05);let n=C0==null?void 0:C0.execute(o.normalized);if(Array.isArray(n)&&n.length>2){let l=n.sort((f,y)=>f.size-y.size);o.concat384=A.concat([l[0],l[2]],2),o.concat512=A.concat([l[1],l[3]],2),o.concat=A.concat([o.concat512,o.concat384],1),o.batch=A.squeeze(o.concat,0)}else Array.isArray(n)?o.batch=A.squeeze(n[0]):o.batch=A.squeeze(n);A.dispose(n),o.boxes=hr(o.batch),o.logits=A.slice(o.batch,[0,0],[-1,1]),o.sigmoid=A.sigmoid(o.logits),o.scores=A.squeeze(o.sigmoid),o.nms=await A.image.nonMaxSuppressionAsync(o.boxes,o.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((c=t.face.detector)==null?void 0:c.iouThreshold)||0,((x=t.face.detector)==null?void 0:x.minConfidence)||0);let r=await o.nms.array(),s=[],a=await o.scores.data();for(let l=0;l(((d=t.face.detector)==null?void 0:d.minConfidence)||0)){let y={};y.bbox=A.slice(o.boxes,[r[l],0],[1,-1]),y.slice=A.slice(o.batch,[r[l],vt-1],[1,-1]),y.squeeze=A.squeeze(y.slice),y.landmarks=A.reshape(y.squeeze,[vt,-1]);let m=await y.bbox.data(),u={startPoint:[m[0],m[1]],endPoint:[m[2],m[3]],landmarks:await y.landmarks.array(),confidence:f},M=mt(u,[(e.shape[2]||0)/Y0,(e.shape[1]||0)/Y0]),v=p2(M,t.face.scale||ur),P=u2(v);s.push(P),Object.keys(y).forEach(p=>A.dispose(y[p]))}}return Object.keys(o).forEach(l=>A.dispose(o[l])),s}var h2={};q0(h2,{connected:()=>v5,kpt:()=>M5});var M5=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],v5={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var kt=224,br,gr=5,b2=[8,16,32,32,32];function Et(){let e=[],t=0;for(;to.x)),y:A.tensor1d(e.map(o=>o.y))}}function G0(e,t=[1,1]){let o=[e.map(i=>i[0]),e.map(i=>i[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],s=[n[0],n[1],r[0]-n[0],r[1]-n[1]],a=[s[0]/t[0],s[1]/t[1],s[2]/t[0],s[3]/t[1]];return{box:s,boxRaw:a}}function zt(e,t=[1,1]){let o=[e.map(x=>x[0]),e.map(x=>x[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],s=[(n[0]+r[0])/2,(n[1]+r[1])/2],a=Math.max(s[0]-n[0],s[1]-n[1],-s[0]+r[0],-s[1]+r[1]),i=[Math.trunc(s[0]-a),Math.trunc(s[1]-a),Math.trunc(2*a),Math.trunc(2*a)],c=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:c}}function g2(e,t){let o=[e[2]*t,e[3]*t];return[e[0]-(o[0]-e[2])/2,e[1]-(o[1]-e[3])/2,o[0],o[1]]}var It={initial:!0},r0={detector:null,landmarks:null},Pe={detector:[224,224],landmarks:[256,256]},R5=Number.MAX_SAFE_INTEGER,vr={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},v2=null,Je,K0=[[0,0],[0,0],[0,0],[0,0]],St=0,Ct=e=>1-1/(1+Math.exp(e));async function jt(e){var t;if(It.initial&&(r0.detector=null),!r0.detector&&e.body.detector&&e.body.detector.modelPath){r0.detector=await L(e.body.detector.modelPath);let o=(t=r0.detector)!=null&&t.executor?Object.values(r0.detector.modelSignature.inputs):void 0;Pe.detector[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Pe.detector[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}else e.debug&&r0.detector&&g("cached model:",r0.detector.modelUrl);return Et(),r0.detector}async function Nt(e){var t;if(It.initial&&(r0.landmarks=null),r0.landmarks)e.debug&&g("cached model:",r0.landmarks.modelUrl);else{r0.landmarks=await L(e.body.modelPath);let o=(t=r0.landmarks)!=null&&t.executor?Object.values(r0.landmarks.modelSignature.inputs):void 0;Pe.landmarks[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Pe.landmarks[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return r0.landmarks}function Rr(e,t){var r,s;let o={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((s=e==null?void 0:e.shape)!=null&&s[2]))return e;let n;if(Je&&(o.cropped=A.image.cropAndResize(e,[Je],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let a=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],i=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];K0=[[0,0],a,i,[0,0]],o.pad=A.pad(o.cropped||e,K0),o.resize=A.image.resizeBilinear(o.pad,[t,t]),n=A.div(o.resize,F.tf255)}else e.shape[1]!==t?(o.resize=A.image.resizeBilinear(o.cropped||e,[t,t]),n=A.div(o.resize,F.tf255)):n=A.div(o.cropped||e,F.tf255);return Object.keys(o).forEach(a=>A.dispose(o[a])),n}function Pr(e,t){for(let o of e)o.position=[Math.trunc(o.position[0]*(t[0]+K0[2][0]+K0[2][1])/t[0]-K0[2][0]),Math.trunc(o.position[1]*(t[1]+K0[1][0]+K0[1][1])/t[1]-K0[1][0]),o.position[2]],o.positionRaw=[o.position[0]/t[0],o.position[1]/t[1],2*o.position[2]/(t[0]+t[1])];if(Je)for(let o of e)o.positionRaw=[o.positionRaw[0]+Je[1],o.positionRaw[1]+Je[0],o.positionRaw[2]],o.position=[Math.trunc(o.positionRaw[0]*t[0]),Math.trunc(o.positionRaw[1]*t[1]),o.positionRaw[2]];return e}function Tr(e){let t=e.find(i=>i.part==="leftPalm"),o=e.find(i=>i.part==="leftWrist"),n=e.find(i=>i.part==="leftIndex");t.position[2]=((o.position[2]||0)+(n.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),s=e.find(i=>i.part==="rightWrist"),a=e.find(i=>i.part==="rightIndex");r.position[2]=((s.position[2]||0)+(a.position[2]||0))/2}async function wr(e,t,o){var m,u;if(!((m=r0.landmarks)!=null&&m.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(u=r0.landmarks)==null?void 0:u.execute(e,vr.landmarks);let r=(await n.poseflag.data())[0],s=await n.ld.data(),a=await n.world.data();Object.keys(n).forEach(M=>A.dispose(n[M]));let i=[],c=5;for(let M=0;MM.position),l=G0(d,[o[0],o[1]]),f={};for(let[M,v]of Object.entries(v5)){let P=[];for(let p=0;pk.part===v[p]),z=x.find(k=>k.part===v[p+1]);h&&z&&P.push([h.position,z.position])}f[M]=P}return{id:0,score:Math.trunc(100*r)/100,box:l.box,boxRaw:l.boxRaw,keypoints:x,annotations:f}}async function P5(e,t){let o=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>R()-St,r=R5<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&v2!==null)R5++;else{let s={};s.landmarks=Rr(e,256),v2=await wr(s.landmarks,t,o),Object.keys(s).forEach(a=>A.dispose(s[a])),St=R(),R5=0}return v2?[v2]:[]}var Te=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var y0,le=0,T5=[],Lt=0,w5=Number.MAX_SAFE_INTEGER;async function Wt(e){if(T.initial&&(y0=null),y0)e.debug&&g("cached model:",y0.modelUrl);else{y0=await L(e.object.modelPath);let t=y0!=null&&y0.executor?Object.values(y0.modelSignature.inputs):void 0;le=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return y0}async function kr(e,t,o){if(!e)return[];let n={},r=[],s=await e.array();n.squeeze=A.squeeze(e);let a=A.split(n.squeeze,6,1);n.stack=A.stack([a[1],a[0],a[3],a[2]],1),n.boxes=A.squeeze(n.stack),n.scores=A.squeeze(a[4]),n.classes=A.squeeze(a[5]),A.dispose([e,...a]),n.nms=await A.image.nonMaxSuppressionAsync(n.boxes,n.scores,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence||0);let i=await n.nms.data(),c=0;for(let x of Array.from(i)){let d=Math.trunc(100*s[0][x][4])/100,l=s[0][x][5];if(Number.isNaN(l))continue;let f=Te[l].label,[y,m]=[s[0][x][0]/le,s[0][x][1]/le],u=[y,m,s[0][x][2]/le-y,s[0][x][3]/le-m],M=[Math.trunc(u[0]*t[0]),Math.trunc(u[1]*t[1]),Math.trunc(u[2]*t[0]),Math.trunc(u[3]*t[1])];r.push({id:c++,score:d,class:l,label:f,box:M,boxRaw:u})}return Object.keys(n).forEach(x=>A.dispose(n[x])),r}async function k5(e,t){if(!(y0!=null&&y0.executor))return[];let o=(t.object.skipTime||0)>R()-Lt,n=w5<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&T5.length>0?(w5++,T5):(w5=0,new Promise(async r=>{let s=[e.shape[2]||0,e.shape[1]||0],a=A.image.resizeBilinear(e,[le,le]),i=t.object.enabled?y0==null?void 0:y0.execute(a,["tower_0/detections"]):null;Lt=R(),A.dispose(a);let c=await kr(i,s,t);T5=c,r(c)}))}var R2={};q0(R2,{connected:()=>z5,kpt:()=>E5});var E5=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],z5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var $,Gt=0,a0={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},S5=Number.MAX_SAFE_INTEGER;async function Bt(e){return T.initial&&($=null),$?e.debug&&g("cached model:",$.modelUrl):$=await L(e.body.modelPath),$}async function Er(e,t){let[o,n]=e.shape,r=A.reshape(e,[n*o]),s=A.max(r,0),a=(await s.data())[0];if(a>t){let i=A.argMax(r,0),c=A.mod(i,o),x=(await c.data())[0],d=A.div(i,o),l=(await d.data())[0];return A.dispose([r,s,i,c,d]),[x,l,a]}return A.dispose([r,s]),[0,0,a]}async function C5(e,t){if(!($!=null&&$.executor))return[];let o=(t.body.skipTime||0)>R()-Gt,n=S5<(t.body.skipFrames||0);return t.skipAllowed&&o&&n&&Object.keys(a0.keypoints).length>0?(S5++,[a0]):(S5=0,new Promise(async r=>{let s=A.tidy(()=>{if(!($!=null&&$.inputs[0].shape))return null;let l=A.image.resizeBilinear(e,[$.inputs[0].shape[2],$.inputs[0].shape[1]],!1),f=A.mul(l,F.tf2);return A.sub(f,F.tf1)}),a;if(t.body.enabled&&(a=$==null?void 0:$.execute(s)),Gt=R(),A.dispose(s),a){a0.keypoints.length=0;let l=A.squeeze(a);A.dispose(a);let f=A.unstack(l,2);A.dispose(l);for(let y=0;y(t.body.minConfidence||0)&&a0.keypoints.push({score:Math.round(100*M)/100,part:E5[y],positionRaw:[m/$.inputs[0].shape[2],u/$.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/$.inputs[0].shape[2]),Math.round(e.shape[1]*u/$.inputs[0].shape[1])]})}f.forEach(y=>A.dispose(y))}a0.score=a0.keypoints.reduce((l,f)=>f.score>l?f.score:l,0);let i=a0.keypoints.map(l=>l.position[0]),c=a0.keypoints.map(l=>l.position[1]);a0.box=[Math.min(...i),Math.min(...c),Math.max(...i)-Math.min(...i),Math.max(...c)-Math.min(...c)];let x=a0.keypoints.map(l=>l.positionRaw[0]),d=a0.keypoints.map(l=>l.positionRaw[1]);a0.boxRaw=[Math.min(...x),Math.min(...d),Math.max(...x)-Math.min(...x),Math.max(...d)-Math.min(...d)];for(let[l,f]of Object.entries(z5)){let y=[];for(let m=0;mv.part===f[m]),M=a0.keypoints.find(v=>v.part===f[m+1]);u&&M&&u.score>(t.body.minConfidence||0)&&M.score>(t.body.minConfidence||0)&&y.push([u.position,M.position])}a0.annotations[l]=y}r([a0])}))}var zr=["angry","disgust","fear","happy","sad","surprise","neutral"],g0,P2=[],Dt=0,Vt=0,I5=Number.MAX_SAFE_INTEGER;async function Zt(e){var t;return T.initial&&(g0=null),g0?e.debug&&g("cached model:",g0.modelUrl):g0=await L((t=e.face.emotion)==null?void 0:t.modelPath),g0}async function j5(e,t,o,n){var a,i;if(!g0)return[];let r=I5<(((a=t.face.emotion)==null?void 0:a.skipFrames)||0),s=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>R()-Vt;return t.skipAllowed&&s&&r&&Dt===n&&P2[o]&&P2[o].length>0?(I5++,P2[o]):(I5=0,new Promise(async c=>{var d;let x=[];if((d=t.face.emotion)!=null&&d.enabled){let l={},f=g0!=null&&g0.inputs[0].shape?g0.inputs[0].shape[2]:0;l.resize=A.image.resizeBilinear(e,[f,f],!1),l.channels=A.mul(l.resize,F.rgb),l.grayscale=A.sum(l.channels,3,!0),l.grayscaleSub=A.sub(l.grayscale,F.tf05),l.grayscaleMul=A.mul(l.grayscaleSub,F.tf2),l.emotion=g0==null?void 0:g0.execute(l.grayscaleMul),Vt=R();let y=await l.emotion.data();for(let m=0;m(t.face.emotion.minConfidence||0)&&x.push({score:Math.min(.99,Math.trunc(100*y[m])/100),emotion:zr[m]});x.sort((m,u)=>u.score-m.score),Object.keys(l).forEach(m=>A.dispose(l[m]))}P2[o]=x,Dt=n,c(x)}))}var f0,N5=[],qt=0,Ut=0,Yt=Number.MAX_SAFE_INTEGER;async function Kt(e){var t;return T.initial&&(f0=null),f0?e.debug&&g("cached model:",f0.modelUrl):f0=await L((t=e.face.mobilefacenet)==null?void 0:t.modelPath),f0}async function O5(e,t,o,n){var a,i;if(!(f0!=null&&f0.executor))return[];let r=Yt<(((a=t.face.mobilefacenet)==null?void 0:a.skipFrames)||0),s=(((i=t.face.mobilefacenet)==null?void 0:i.skipTime)||0)>R()-Ut;return t.skipAllowed&&s&&r&&qt===n&&N5[o]?(Yt++,N5[o]):new Promise(async c=>{var d;let x=[];if(((d=t.face.mobilefacenet)==null?void 0:d.enabled)&&(f0==null?void 0:f0.inputs[0].shape)){let l={};l.crop=A.image.resizeBilinear(e,[f0.inputs[0].shape[2],f0.inputs[0].shape[1]],!1),l.data=f0.execute(l.crop);let f=await l.data.data();x=Array.from(f),Object.keys(l).forEach(y=>A.dispose(l[y]))}N5[o]=x,qt=n,Ut=R(),c(x)})}var m0,L5=[],Qt=0,_t=0,$t=Number.MAX_SAFE_INTEGER;async function e3(e){return T.initial&&(m0=null),m0?e.debug&&g("cached model:",m0.modelUrl):m0=await L(e.face.insightface.modelPath),m0}async function W5(e,t,o,n){var a,i;if(!(m0!=null&&m0.executor))return[];let r=$t<(((a=t.face.insightface)==null?void 0:a.skipFrames)||0),s=(((i=t.face.insightface)==null?void 0:i.skipTime)||0)>R()-_t;return t.skipAllowed&&s&&r&&Qt===n&&L5[o]?($t++,L5[o]):new Promise(async c=>{var d;let x=[];if(((d=t.face.insightface)==null?void 0:d.enabled)&&(m0==null?void 0:m0.inputs[0].shape)){let l={};l.crop=A.image.resizeBilinear(e,[m0.inputs[0].shape[2],m0.inputs[0].shape[1]],!1),l.data=m0.execute(l.crop);let f=await l.data.data();x=Array.from(f),Object.keys(l).forEach(y=>A.dispose(l[y]))}L5[o]=x,Qt=n,_t=R(),c(x)})}var p0,J0=0,Sr=2.3,F5=k0.leftEyeLower0,G5=k0.rightEyeLower0,we={leftBounds:[F5[0],F5[F5.length-1]],rightBounds:[G5[0],G5[G5.length-1]]},ke={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function A3(e){var t,o;return T.initial&&(p0=null),p0?e.debug&&g("cached model:",p0.modelUrl):p0=await L((t=e.face.iris)==null?void 0:t.modelPath),J0=(p0==null?void 0:p0.executor)&&((o=p0.inputs)==null?void 0:o[0].shape)?p0.inputs[0].shape[2]:0,J0===-1&&(J0=64),p0}function T2(e,t,o,n){for(let r=0;r{let t=e[we.leftBounds[0]][2],o=e[we.rightBounds[0]][2];return t-o},o3=(e,t,o,n,r,s=!1)=>{let a=u2(p2(pt([e[o],e[n]]),Sr)),i=ve(a),c=A.image.cropAndResize(t,[[a.startPoint[1]/r,a.startPoint[0]/r,a.endPoint[1]/r,a.endPoint[0]/r]],[0],[J0,J0]);if(s&&T.kernels.includes("flipleftright")){let x=A.image.flipLeftRight(c);A.dispose(c),c=x}return{box:a,boxSize:i,crop:c}},n3=(e,t,o,n=!1)=>{let r=[];for(let s=0;s{let n=e[k0[`${o}EyeUpper0`][ke.upperCenter]][2],r=e[k0[`${o}EyeLower0`][ke.lowerCenter]][2],s=(n+r)/2;return t.map((a,i)=>{let c=s;return i===2?c=n:i===4&&(c=r),[a[0],a[1],c]})};async function s3(e,t,o){if(!(p0!=null&&p0.executor))return e;let{box:n,boxSize:r,crop:s}=o3(e,t,we.leftBounds[0],we.leftBounds[1],o,!0),{box:a,boxSize:i,crop:c}=o3(e,t,we.rightBounds[0],we.rightBounds[1],o,!0),x=A.concat([s,c]);A.dispose(s),A.dispose(c);let d=p0.execute(x);A.dispose(x);let l=await d.data();A.dispose(d);let f=l.slice(0,ke.numCoordinates*3),{rawCoords:y,iris:m}=n3(f,n,r,!0),u=l.slice(ke.numCoordinates*3),{rawCoords:M,iris:v}=n3(u,a,i,!1),P=Cr(e);Math.abs(P)<30?(T2(e,y,"left",null),T2(e,M,"right",null)):P<1?T2(e,y,"left",["EyeUpper0","EyeLower0"]):T2(e,M,"right",["EyeUpper0","EyeLower0"]);let p=r3(e,m,"left"),h=r3(e,v,"right");return e.concat(p).concat(h)}var Ir=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],jr=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Nr=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Or=[[474,475],[475,476],[476,477],[477,474]],Lr=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Wr=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Fr=[[469,470],[470,471],[471,472],[472,469]],Gr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Q0(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var Br={lips:Q0(Ir),leftEye:Q0(jr),leftEyebrow:Q0(Nr),leftIris:Q0(Or),rightEye:Q0(Lr),rightEyebrow:Q0(Wr),rightIris:Q0(Fr),faceOval:Q0(Gr)},Hr=Object.entries(Br).map(([e,t])=>t.map(o=>[o,e])).flat(),n4=new Map(Hr),Qe=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],ce=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],xe=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function l3(e,t){var s,a,i,c,x,d,l,f,y,m;let o={lips:await((a=(s=t.filter(u=>u.size===160))==null?void 0:s[0])==null?void 0:a.data()),irisL:await((c=(i=t.filter(u=>u.size===10))==null?void 0:i[0])==null?void 0:c.data()),eyeL:await((d=(x=t.filter(u=>u.size===142))==null?void 0:x[0])==null?void 0:d.data()),irisR:await((f=(l=t.filter(u=>u.size===10))==null?void 0:l[1])==null?void 0:f.data()),eyeR:await((m=(y=t.filter(u=>u.size===142))==null?void 0:y[1])==null?void 0:m.data())};for(let u of Object.values(o))if(!u)return e;let n=ce.reduce((u,M)=>u+=e[M][2],0)/ce.length;for(let u=0;uu+=e[M][2],0)/xe.length;for(let u=0;uR()-L0.timestamp,n=L0.skipped<(((x=t.face.detector)==null?void 0:x.skipFrames)||0);!t.skipAllowed||!o||!n||L0.boxes.length===0?(L0.boxes=await Tt(e,t),L0.timestamp=R(),L0.skipped=0):L0.skipped++;let r=[],s=[],a=0,i=_e;for(let P=0;Pj.shape[j.shape.length-1]===1).data();if(k.faceScore=Math.round(100*B[0])/100,k.faceScore<(((m=t.face.detector)==null?void 0:m.minConfidence)||1)){if(p.confidence=k.faceScore,t.face.mesh.keepInvalid){k.box=f2(p,e),k.boxRaw=m2(p,e),k.score=k.boxScore,k.mesh=p.landmarks.map(j=>[(p.startPoint[0]+p.endPoint[0])/2+(p.endPoint[0]+p.startPoint[0])*j[0]/Re(),(p.startPoint[1]+p.endPoint[1])/2+(p.endPoint[1]+p.startPoint[1])*j[1]/Re()]),k.meshRaw=k.mesh.map(j=>[j[0]/(e.shape[2]||1),j[1]/(e.shape[1]||1),(j[2]||0)/i]);for(let j of Object.keys(se))k.annotations[j]=[k.mesh[se[j]]]}}else{let j=b.find(I=>I.shape[I.shape.length-1]===1404),O=A.reshape(j,[-1,3]),G=await O.array();A.dispose(O),(u=t.face.attention)!=null&&u.enabled?G=await l3(G,b):(M=t.face.iris)!=null&&M.enabled&&(G=await s3(G,k.tensor,_e)),k.mesh=bt(G,p,h,z,_e),k.meshRaw=k.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/i]);for(let I of Object.keys(k0))k.annotations[I]=k0[I].map(n0=>k.mesh[n0]);k.score=k.faceScore;let N={...Mt(k.mesh,p),confidence:p.confidence,landmarks:p.landmarks};k.box=f2(N,e),k.boxRaw=m2(N,e),s.push(N)}A.dispose(b)}else{k.box=f2(p,e),k.boxRaw=m2(p,e),k.score=k.boxScore,k.mesh=p.landmarks.map(b=>[(p.startPoint[0]+p.endPoint[0])/2+(p.endPoint[0]+p.startPoint[0])*b[0]/Re(),(p.startPoint[1]+p.endPoint[1])/2+(p.endPoint[1]+p.startPoint[1])*b[1]/Re()]),k.meshRaw=k.mesh.map(b=>[b[0]/(e.shape[2]||0),b[1]/(e.shape[1]||0),(b[2]||0)/i]);for(let b of Object.keys(se))k.annotations[b]=[k.mesh[se[b]]]}k.score>(((v=t.face.detector)==null?void 0:v.minConfidence)||1)?r.push(k):A.dispose(k.tensor)}return L0.boxes=s,r}async function x3(e){var t,o,n,r,s,a;return T.initial&&(X=null),((t=e.face.attention)==null?void 0:t.enabled)&&(X==null?void 0:X.signature)&&Object.keys(((o=X==null?void 0:X.signature)==null?void 0:o.outputs)||{}).length<6&&(X=null),X?e.debug&&g("cached model:",X.modelUrl):(n=e.face.attention)!=null&&n.enabled?X=await L(e.face.attention.modelPath):X=await L((r=e.face.mesh)==null?void 0:r.modelPath),_e=X.executor&&((s=X==null?void 0:X.inputs)==null?void 0:s[0].shape)?(a=X==null?void 0:X.inputs)==null?void 0:a[0].shape[2]:256,X}var y3=ae,d3=Ye;var i0,w2=[],f3=0,m3=0,H5=Number.MAX_SAFE_INTEGER;async function p3(e){var t;return T.initial&&(i0=null),i0?e.debug&&g("cached model:",i0.modelUrl):i0=await L((t=e.face.description)==null?void 0:t.modelPath),i0}function D5(e){let t=e.image||e.tensor||e;if(!(i0!=null&&i0.inputs[0].shape))return t;let o=A.image.resizeBilinear(t,[i0.inputs[0].shape[2],i0.inputs[0].shape[1]],!1),n=A.mul(o,F.tf255);return A.dispose(o),n}async function V5(e,t,o,n){var a,i,c,x;if(!(i0!=null&&i0.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=H5<(((a=t.face.description)==null?void 0:a.skipFrames)||0),s=(((i=t.face.description)==null?void 0:i.skipTime)||0)>R()-f3;return t.skipAllowed&&r&&s&&m3===n&&((c=w2[o])==null?void 0:c.age)&&((x=w2[o])==null?void 0:x.age)>0?(H5++,w2[o]):(H5=0,new Promise(async d=>{var f;let l={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((f=t.face.description)!=null&&f.enabled){let y=D5(e),m=i0==null?void 0:i0.execute(y);f3=R(),A.dispose(y);let M=await m.find(W=>W.shape[1]===1).data(),v=Math.trunc(200*Math.abs(M[0]-.5))/100;v>(t.face.description.minConfidence||0)&&(l.gender=M[0]<=.5?"female":"male",l.genderScore=Math.min(.99,v));let P=A.argMax(m.find(W=>W.shape[1]===100),1),p=(await P.data())[0];A.dispose(P);let z=await m.find(W=>W.shape[1]===100).data();l.age=Math.round(z[p-1]>z[p+1]?10*p-100*z[p-1]:10*p+100*z[p+1])/10;let k=m.find(W=>W.shape[1]===1024),b=k?await k.data():[];l.descriptor=Array.from(b),m.forEach(W=>A.dispose(W))}w2[o]=l,m3=n,d(l)}))}function k2(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function $e(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function b3(e,t,o){let n=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return A.image.cropAndResize(t,s,[0],o)}function g3(e,t){let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:o,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function E2(e,t=1.5){let o=$e(e),n=k2(e),r=[t*n[0]/2,t*n[1]/2],s=[o[0]-r[0],o[1]-r[1]],a=[o[0]+r[0],o[1]+r[1]];return{startPoint:s,endPoint:a,palmLandmarks:e.palmLandmarks}}function z2(e){let t=$e(e),o=k2(e),r=Math.max(...o)/2,s=[t[0]-r,t[1]-r],a=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:a,palmLandmarks:e.palmLandmarks}}function Vr(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function M3(e,t){let o=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Vr(o)}var u3=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function _0(e,t){let o=0;for(let n=0;n[a.x,a.y]),this.anchorsTensor=A.tensor2d(this.anchors),this.inputSize=((s=(r=(n=(o=this==null?void 0:this.model)==null?void 0:o.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:s[2])||0,this.inputSizeTensor=A.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=A.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let o={};o.boxOffsets=A.slice(t,[0,0],[-1,2]),o.boxSizes=A.slice(t,[0,2],[-1,2]),o.div=A.div(o.boxOffsets,this.inputSizeTensor),o.boxCenterPoints=A.add(o.div,this.anchorsTensor),o.halfBoxSizes=A.div(o.boxSizes,this.doubleInputSizeTensor),o.sub=A.sub(o.boxCenterPoints,o.halfBoxSizes),o.startPoints=A.mul(o.sub,this.inputSizeTensor),o.add=A.add(o.boxCenterPoints,o.halfBoxSizes),o.endPoints=A.mul(o.add,this.inputSizeTensor);let n=A.concat2d([o.startPoints,o.endPoints],1);return Object.keys(o).forEach(r=>A.dispose(o[r])),n}normalizeLandmarks(t,o){let n={};n.reshape=A.reshape(t,[-1,7,2]),n.div=A.div(n.reshape,this.inputSizeTensor),n.landmarks=A.add(n.div,this.anchors[o]?this.anchors[o]:0);let r=A.mul(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(s=>A.dispose(n[s])),r}async predict(t,o){var i;let n={};n.resize=A.image.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=A.div(n.resize,F.tf127),n.image=A.sub(n.div,F.tf1),n.batched=this.model.execute(n.image),n.predictions=A.squeeze(n.batched),n.slice=A.slice(n.predictions,[0,0],[-1,1]),n.sigmoid=A.sigmoid(n.slice),n.scores=A.squeeze(n.sigmoid);let r=await n.scores.data();n.boxes=A.slice(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await A.image.nonMaxSuppressionAsync(n.norm,n.scores,3*(((i=o.hand)==null?void 0:i.maxDetected)||1),o.hand.iouThreshold,o.hand.minConfidence);let s=await n.nms.array(),a=[];for(let c of s){let x={};x.box=A.slice(n.norm,[c,0],[1,-1]),x.slice=A.slice(n.predictions,[c,5],[1,14]),x.norm=this.normalizeLandmarks(x.slice,c),x.palmLandmarks=A.reshape(x.norm,[-1,2]);let d=await x.box.data(),l=d.slice(0,2),f=d.slice(2,4),y=await x.palmLandmarks.array(),m={startPoint:l,endPoint:f,palmLandmarks:y,confidence:r[c]},u=g3(m,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);a.push(u),Object.keys(x).forEach(M=>A.dispose(x[M]))}return Object.keys(n).forEach(c=>A.dispose(n[c])),a}};var Ur=5,T3=1.65,w3=[0,5,9,13,17,1,2],Yr=0,Kr=2,k3=0,C2=class{constructor(t,o){w(this,"handDetector");w(this,"handPoseModel");w(this,"inputSize");w(this,"storedBoxes");w(this,"skipped");w(this,"detectedHands");var n,r,s;this.handDetector=t,this.handPoseModel=o,this.inputSize=((s=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:s[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let o=t.map(a=>a[0]),n=t.map(a=>a[1]),r=[Math.min(...o),Math.min(...n)],s=[Math.max(...o),Math.max(...n)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,o){let n=t.map(s=>q5([...s,1],o)),r=this.calculateLandmarksBoundingBox(n);return E2(z2(r),Ur)}getBoxForHandLandmarks(t){let o=this.calculateLandmarksBoundingBox(t),n=E2(z2(o),T3);n.palmLandmarks=[];for(let r=0;r[a[0]*(y[0]-this.inputSize/2),a[1]*(y[1]-this.inputSize/2),a[2]*y[2]]),c=X5(n,[0,0]),x=i.map(y=>[...q5(y,c),y[2]]),d=v3(r),l=[...$e(o),1],f=[_0(l,d[0]),_0(l,d[1])];return x.map(y=>[Math.trunc(y[0]+f[0]),Math.trunc(y[1]+f[1]),Math.trunc(y[2])])}async estimateHands(t,o){let n=!1,r,s=(o.hand.skipTime||0)>R()-k3,a=this.skipped<(o.hand.skipFrames||0);o.skipAllowed&&s&&a&&(r=await this.handDetector.predict(t,o),this.skipped=0),o.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==o.hand.maxDetected||!o.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let i=[];for(let c=0;c=o.hand.minConfidence/4){let z=A.reshape(p,[-1,3]),k=await z.array();A.dispose(p),A.dispose(z);let b=this.transformRawCoords(k,u,d,m),W=this.getBoxForHandLandmarks(b);this.storedBoxes[c]={...W,confidence:h};let B={landmarks:b,confidence:h,boxConfidence:x.confidence,fingerConfidence:h,box:{topLeft:W.startPoint,bottomRight:W.endPoint}};i.push(B)}else this.storedBoxes[c]=null;A.dispose(p)}else{let d=E2(z2(x),T3),l={confidence:x.confidence,boxConfidence:x.confidence,fingerConfidence:0,box:{topLeft:d.startPoint,bottomRight:d.endPoint},landmarks:[]};i.push(l)}}return this.storedBoxes=this.storedBoxes.filter(c=>c!==null),this.detectedHands=i.length,i.length>o.hand.maxDetected&&(i.length=o.hand.maxDetected),i}};var l0={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>l0.nameMapping[e],getPoints:e=>l0.pointsMapping[e]},ee={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ee.nameMapping[e]},q={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>q.nameMapping[e]},$0=class{constructor(t){w(this,"name");w(this,"curls");w(this,"directions");w(this,"weights");w(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,o,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([o,n])}direction(t,o,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([o,n])}weight(t,o){this.weights[t]=o;let n=this.weights.reduce((r,s)=>r+s,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,o){let n=0;for(let r in t){let s=t[r],a=this.curls[r];if(typeof a=="undefined"){n+=this.weightsRelative[r];continue}for(let[i,c]of a)if(s===i){n+=c*this.weightsRelative[r];break}}for(let r in o){let s=o[r],a=this.directions[r];if(typeof a=="undefined"){n+=this.weightsRelative[r];continue}for(let[i,c]of a)if(s===i){n+=c*this.weightsRelative[r];break}}return n/10}};var{thumb:I0,index:B0,middle:H0,ring:ye,pinky:de}=l0,{none:j0,half:Qr,full:N0}=ee,{verticalUp:Ee,verticalDown:h4,horizontalLeft:U5,horizontalRight:_r,diagonalUpRight:$r,diagonalUpLeft:ze,diagonalDownRight:b4,diagonalDownLeft:g4}=q,te=new $0("thumbs up");te.curl(I0,j0,1);te.direction(I0,Ee,1);te.direction(I0,ze,.25);te.direction(I0,$r,.25);for(let e of[l0.index,l0.middle,l0.ring,l0.pinky])te.curl(e,N0,1),te.direction(e,U5,1),te.direction(e,_r,1);var J=new $0("victory");J.curl(I0,Qr,.5);J.curl(I0,j0,.5);J.direction(I0,Ee,1);J.direction(I0,ze,1);J.curl(B0,j0,1);J.direction(B0,Ee,.75);J.direction(B0,ze,1);J.curl(H0,j0,1);J.direction(H0,Ee,1);J.direction(H0,ze,.75);J.curl(ye,N0,1);J.direction(ye,Ee,.2);J.direction(ye,ze,1);J.direction(ye,U5,.2);J.curl(de,N0,1);J.direction(de,Ee,.2);J.direction(de,ze,1);J.direction(de,U5,.2);J.weight(B0,2);J.weight(H0,2);var oe=new $0("point");oe.curl(I0,N0,1);oe.curl(B0,j0,.5);oe.curl(H0,N0,.5);oe.curl(ye,N0,.5);oe.curl(de,N0,.5);oe.weight(B0,2);oe.weight(H0,2);var ne=new $0("middle finger");ne.curl(I0,j0,1);ne.curl(B0,N0,.5);ne.curl(H0,N0,.5);ne.curl(ye,N0,.5);ne.curl(de,N0,.5);ne.weight(B0,2);ne.weight(H0,2);var Se=new $0("open palm");Se.curl(I0,j0,.75);Se.curl(B0,j0,.75);Se.curl(H0,j0,.75);Se.curl(ye,j0,.75);Se.curl(de,j0,.75);var E3=[te,J,oe,ne,Se];var eA=.7,fe={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function z3(e,t,o,n){let r=(t-n)/(e-o),s=Math.atan(r)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function C3(e,t){if(!e||!t)return[0,0];let o=z3(e[0],e[1],t[0],t[1]);if(e.length===2)return o;let n=z3(e[1],e[2],t[1],t[2]);return[o,n]}function S3(e,t=1){let o=0,n=0,r=0;return e>=75&&e<=105?o=1*t:e>=25&&e<=155?n=1*t:r=1*t,[o,n,r]}function tA(e,t,o){let n=e[0]-t[0],r=e[0]-o[0],s=t[0]-o[0],a=e[1]-t[1],i=e[1]-o[1],c=t[1]-o[1],x=e[2]-t[2],d=e[2]-o[2],l=t[2]-o[2],f=Math.sqrt(n*n+a*a+x*x),y=Math.sqrt(r*r+i*i+d*d),m=Math.sqrt(s*s+c*c+l*l),u=(m*m+f*f-y*y)/(2*m*f);u>1?u=1:u<-1&&(u=-1);let M=Math.acos(u);M=57.2958*M%180;let v;return M>fe.NO_CURL_START_LIMIT?v=ee.none:M>fe.HALF_CURL_START_LIMIT?v=ee.half:v=ee.full,v}function I3(e,t,o,n){let r;return n===Math.abs(e)?e>0?r=q.horizontalLeft:r=q.horizontalRight:n===Math.abs(t)?t>0?r=q.horizontalLeft:r=q.horizontalRight:o>0?r=q.horizontalLeft:r=q.horizontalRight,r}function j3(e,t,o,n){let r;return n===Math.abs(e)?e<0?r=q.verticalDown:r=q.verticalUp:n===Math.abs(t)?t<0?r=q.verticalDown:r=q.verticalUp:o<0?r=q.verticalDown:r=q.verticalUp,r}function oA(e,t,o,n,r,s,a,i){let c,x=j3(e,t,o,n),d=I3(r,s,a,i);return x===q.verticalUp?d===q.horizontalLeft?c=q.diagonalUpLeft:c=q.diagonalUpRight:d===q.horizontalLeft?c=q.diagonalDownLeft:c=q.diagonalDownRight,c}function nA(e,t,o,n){let r=e[0]-t[0],s=e[0]-o[0],a=t[0]-o[0],i=e[1]-t[1],c=e[1]-o[1],x=t[1]-o[1],d=Math.max(Math.abs(r),Math.abs(s),Math.abs(a)),l=Math.max(Math.abs(i),Math.abs(c),Math.abs(x)),f=0,y=0,m=0,u=l/(d+1e-5);u>1.5?f+=fe.DISTANCE_VOTE_POWER:u>.66?y+=fe.DISTANCE_VOTE_POWER:m+=fe.DISTANCE_VOTE_POWER;let M=Math.sqrt(r*r+i*i),v=Math.sqrt(s*s+c*c),P=Math.sqrt(a*a+x*x),p=Math.max(M,v,P),h=e[0],z=e[1],k=o[0],b=o[1];p===M?(k=o[0],b=o[1]):p===P&&(h=t[0],z=t[1]);let j=C3([h,z],[k,b]),O=S3(j,fe.TOTAL_ANGLE_VOTE_POWER);f+=O[0],y+=O[1],m+=O[2];for(let N of n){let I=S3(N,fe.SINGLE_ANGLE_VOTE_POWER);f+=I[0],y+=I[1],m+=I[2]}let G;return f===Math.max(f,y,m)?G=j3(c,i,x,l):m===Math.max(y,m)?G=I3(s,r,a,d):G=oA(c,i,x,l,s,r,a,d),G}function N3(e){let t=[],o=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let s of l0.all){let a=l0.getPoints(s),i=[],c=[];for(let x of a){let d=e[x[0]],l=e[x[1]],f=C3(d,l),y=f[0],m=f[1];i.push(y),c.push(m)}t.push(i),o.push(c)}for(let s of l0.all){let a=s===l0.thumb?1:0,i=l0.getPoints(s),c=e[i[a][0]],x=e[i[a+1][1]],d=e[i[3][1]],l=tA(c,x,d),f=nA(c,x,d,t[s].slice(a));n[s]=l,r[s]=f}return{curls:n,directions:r}}function I2(e){if(!e||e.length===0)return null;let t=N3(e),o={};for(let n of l0.all)o[l0.getName(n)]={curl:ee.getName(t.curls[n]),direction:q.getName(t.directions[n])};return o}function O3(e){let t=[];if(!e||e.length===0)return t;let o=N3(e);for(let n of E3){let r=n.matchAgainst(o.curls,o.directions);r>=eA&&t.push({name:n.name,confidence:r})}return t}var L3={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},me,pe,W3;async function K5(e,t){let o=await W3.estimateHands(e,t);if(!o)return[];let n=[];for(let r=0;ro[r].landmarks[l]);let a=o[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],c=[0,0,0,0];if(a&&a.length>0){for(let d of a)d[0]i[2]&&(i[2]=d[0]),d[1]>i[3]&&(i[3]=d[1]);i[2]-=i[0],i[3]-=i[1],c=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=o[r].box?[Math.trunc(Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.max(0,o[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,o[r].box.bottomRight[0])-Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,o[r].box.bottomRight[1])-Math.max(0,o[r].box.topLeft[1]))]:[0,0,0,0],c=[o[r].box.topLeft[0]/(e.shape[2]||0),o[r].box.topLeft[1]/(e.shape[1]||0),(o[r].box.bottomRight[0]-o[r].box.topLeft[0])/(e.shape[2]||0),(o[r].box.bottomRight[1]-o[r].box.topLeft[1])/(e.shape[1]||0)];let x=I2(a);n.push({id:r,score:Math.round(100*o[r].confidence)/100,boxScore:Math.round(100*o[r].boxConfidence)/100,fingerScore:Math.round(100*o[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:c,keypoints:a,annotations:s,landmarks:x})}return n}async function J5(e){var o,n;T.initial&&(me=null,pe=null),!me||!pe?[me,pe]=await Promise.all([e.hand.enabled?L((o=e.hand.detector)==null?void 0:o.modelPath):null,e.hand.landmarks?L((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&g("cached model:",me.modelUrl),e.debug&&g("cached model:",pe.modelUrl));let t=me?new S2(me):void 0;return t&&pe&&(W3=new C2(t,pe)),[me,pe]}var D={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function rA(){let e=D.gl;!e||(D.extensions=e.getSupportedExtensions())}function G3(e){var t;if(e.config.backend==="humangl"&&(D.name in A.engine().registry&&!((t=D==null?void 0:D.gl)!=null&&t.getParameter(D.gl.VERSION))&&(g("error: humangl backend invalid context"),j2(e)),!A.findBackend(D.name))){try{D.canvas=s0(100,100)}catch(n){g("error: cannot create canvas:",n);return}try{if(D.gl=D.canvas.getContext("webgl2",D.webGLattr),!D.gl){g("error: cannot get WebGL context");return}if(!D.gl.getParameter(D.gl.VERSION).includes("2.0")){g("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}D.canvas&&(D.canvas.addEventListener("webglcontextlost",r=>{throw g("error: humangl:",r.type),g("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),D.canvas.addEventListener("webglcontextrestored",r=>{g("error: humangl context restored:",r)}),D.canvas.addEventListener("webglcontextcreationerror",r=>{g("error: humangl context create:",r)}))}catch(n){g("error: cannot get WebGL context:",n);return}try{A.setWebGLContext(2,D.gl)}catch(n){g("error: cannot set WebGL context:",n);return}try{let n=new A.GPGPUContext(D.gl);A.registerBackend(D.name,()=>new A.MathBackendWebGL(n),D.priority)}catch(n){g("error: cannot register WebGL backend:",n);return}try{A.getKernelsForBackend("webgl").forEach(r=>{let s={...r,backendName:D.name};A.registerKernel(s)})}catch(n){g("error: cannot update WebGL backend registration:",n);return}let o=A.backend().getGPGPUContext?A.backend().getGPGPUContext().gl:null;if(o)g(`humangl webgl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`);else{g("error: no current gl context:",o,D.gl);return}try{A.env().flagRegistry.WEBGL_VERSION&&A.env().set("WEBGL_VERSION",2)}catch(n){g("error: cannot set WebGL backend flags:",n);return}rA(),g("backend registered:",D.name)}}function AA(e){if(!T.kernels.includes("mod")){let t={kernelName:"Mod",backendName:A.getBackend(),kernelFunc:o=>A.tidy(()=>A.sub(o.inputs.a,A.mul(A.div(o.inputs.a,o.inputs.b),o.inputs.b)))};e.debug&&g("registered kernel:","Mod"),A.registerKernel(t),T.kernels.push("mod")}if(!T.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:A.getBackend(),kernelFunc:o=>A.tidy(()=>A.add(A.mul(A.floorDiv(o.inputs.a/o.inputs.b),o.inputs.b),A.mod(o.inputs.a,o.inputs.b)))};e.debug&&g("registered kernel:","FloorMod"),A.registerKernel(t),T.kernels.push("floormod")}if(!T.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:A.getBackend(),kernelFunc:o=>A.tidy(()=>{let n=A.getBackend();A.setBackend("cpu");let r=A.image.rotateWithOffset(o.inputs.image,o.attrs.radians,o.attrs.fillValue,o.attrs.center);return A.setBackend(n),r})};e.debug&&g("registered kernel:","RotateWithOffset"),A.registerKernel(t),T.kernels.push("rotatewithoffset")}}async function N2(e,t=!1){if(e.state="backend",t||T.initial||e.config.backend&&e.config.backend.length>0&&A.getBackend()!==e.config.backend){let o=R();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&g("running inside web worker"),T.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&g("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),T.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&g(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),T.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")g("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&g("enumerated webgpu adapter:",r),!r)g("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let s="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;g("webgpu adapter info:",s)}}e.config.backend==="humangl"&&G3(e);let n=Object.keys(A.engine().registryFactory);if(e.config.debug&&g("available backends:",n),n.includes(e.config.backend)||(g(`error: backend ${e.config.backend} not found in registry`),e.config.backend=T.node?"tensorflow":"webgl",e.config.debug&&g(`override: setting backend ${e.config.backend}`)),e.config.debug&&g("setting backend:",e.config.backend),e.config.backend==="wasm"){if(A.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&A.env().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&g("wasm path:",e.config.wasmPath),typeof A.setWasmPaths!="undefined")A.setWasmPaths(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,s=!1;try{r=await A.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),s=await A.env().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&g(`wasm execution: ${s?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!s&&g("warning: wasm simd support is not enabled")}catch(a){g("wasm detection failed")}}try{await A.setBackend(e.config.backend),await A.ready(),et()}catch(r){return g("error: cannot set backend:",e.config.backend,r),!1}}if(A.getBackend()==="humangl"&&(A.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&A.env().set("CHECK_COMPUTATION_FOR_ERRORS",!1),A.env().flagRegistry.WEBGL_CPU_FORWARD&&A.env().set("WEBGL_CPU_FORWARD",!0),A.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&A.env().set("WEBGL_USE_SHAPES_UNIFORMS",!0),A.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&A.env().set("CPU_HANDOFF_SIZE_THRESHOLD",256),A.env().flagRegistry.WEBGL_EXP_CONV&&A.env().set("WEBGL_EXP_CONV",!0),A.env().flagRegistry.USE_SETTIMEOUTCUSTOM&&A.env().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(g("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),A.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),A.backend().getGPGPUContext)){let n=await A.backend().getGPGPUContext().gl;e.config.debug&&g(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}A.getBackend(),A.enableProdMode(),await A.ready(),e.performance.initBackend=Math.trunc(R()-o),e.config.backend=A.getBackend(),await T.updateBackend(),AA(e.config)}return!0}function O2(e,t){for(let o of e){let n={kernelName:o,backendName:t.backend,kernelFunc:()=>{t.debug&&g("kernelFunc",o,t.backend)}};A.registerKernel(n)}T.kernels=A.getKernelsForBackend(A.getBackend()).map(o=>o.kernelName.toLowerCase())}var K=[null,null],aA=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],re=[[0,0],[0,0]],iA=["hand","fist","pinch","point","face","tip","pinchtip"],H3=4,D3=1.6,lA=512,cA=1.4,L2=Number.MAX_SAFE_INTEGER,_5=0,D0=[0,0],Y={boxes:[],hands:[]},V3={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function Z3(e){var t;if(T.initial&&(K[0]=null),K[0])e.debug&&g("cached model:",K[0].modelUrl);else{O2(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),K[0]=await L((t=e.hand.detector)==null?void 0:t.modelPath);let o=K[0].executor?Object.values(K[0].modelSignature.inputs):void 0;re[0][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,re[0][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return K[0]}async function X3(e){var t;if(T.initial&&(K[1]=null),K[1])e.debug&&g("cached model:",K[1].modelUrl);else{K[1]=await L((t=e.hand.skeleton)==null?void 0:t.modelPath);let o=K[1].executor?Object.values(K[1].modelSignature.inputs):void 0;re[1][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,re[1][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return K[1]}async function xA(e,t){let o=[];if(!e||!K[0])return o;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),s=Math.min(Math.round((e.shape[1]||0)/8)*8,lA),a=Math.round(s*r/8)*8;n.resize=A.image.resizeBilinear(e,[s,a]),n.cast=A.cast(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await K[0].executeAsync(n.cast,aA),n.boxes=A.squeeze(n.rawBoxes,[0,2]),n.scores=A.squeeze(n.rawScores,[0]);let i=A.unstack(n.scores,1);A.dispose(i[H3]),i.splice(H3,1),n.filtered=A.stack(i,1),A.dispose(i),n.max=A.max(n.filtered,1),n.argmax=A.argMax(n.filtered,1);let c=0;n.nms=await A.image.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let x=await n.nms.data(),d=await n.max.data(),l=await n.argmax.data();for(let f of Array.from(x)){let y=A.slice(n.boxes,f,1),m=await y.data();A.dispose(y);let u=[m[1],m[0],m[3]-m[1],m[2]-m[0]],M=g2(u,cA),v=[Math.trunc(u[0]*D0[0]),Math.trunc(u[1]*D0[1]),Math.trunc(u[2]*D0[0]),Math.trunc(u[3]*D0[1])],P=d[f],p=iA[l[f]],h={id:c++,score:P,box:v,boxRaw:M,label:p};o.push(h)}return Object.keys(n).forEach(f=>A.dispose(n[f])),o.sort((f,y)=>y.score-f.score),o.length>(t.hand.maxDetected||1)&&(o.length=t.hand.maxDetected||1),o}async function $5(e,t,o){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&K[1]&&o.hand.landmarks&&t.score>(o.hand.minConfidence||0)){let r={},s=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=A.image.cropAndResize(e,[s],[0],[re[1][0],re[1][1]],"bilinear"),r.div=A.div(r.crop,F.tf255),[r.score,r.keypoints]=K[1].execute(r.div,["Identity_1","Identity"]);let a=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(i>=(o.hand.minConfidence||0)){n.fingerScore=i,r.reshaped=A.reshape(r.keypoints,[-1,3]);let d=(await r.reshaped.array()).map(l=>[l[0]/re[1][1],l[1]/re[1][0],l[2]||0]).map(l=>[l[0]*t.boxRaw[2],l[1]*t.boxRaw[3],l[2]||0]);n.keypoints=d.map(l=>[D0[0]*(l[0]+t.boxRaw[0]),D0[1]*(l[1]+t.boxRaw[1]),l[2]||0]),n.landmarks=I2(n.keypoints);for(let l of Object.keys(V3))n.annotations[l]=V3[l].map(f=>n.landmarks&&n.keypoints[f]?n.keypoints[f]:null)}Object.keys(r).forEach(c=>A.dispose(r[c]))}return n}async function e1(e,t){var r,s;if(!((r=K[0])!=null&&r.executor)||!((s=K[1])!=null&&s.executor)||!K[0].inputs[0].shape||!K[1].inputs[0].shape)return[];D0=[e.shape[2]||0,e.shape[1]||0],L2++;let o=(t.hand.skipTime||0)>R()-_5,n=L2<(t.hand.skipFrames||0);return t.skipAllowed&&o&&n?Y.hands:new Promise(async a=>{let i=3*(t.hand.skipTime||0)>R()-_5,c=L2<3*(t.hand.skipFrames||0);t.skipAllowed&&Y.hands.length===t.hand.maxDetected?Y.hands=await Promise.all(Y.boxes.map(d=>$5(e,d,t))):t.skipAllowed&&i&&c&&Y.hands.length>0?Y.hands=await Promise.all(Y.boxes.map(d=>$5(e,d,t))):(Y.boxes=await xA(e,t),_5=R(),Y.hands=await Promise.all(Y.boxes.map(d=>$5(e,d,t))),L2=0);let x=[...Y.boxes];if(Y.boxes.length=0,t.cacheSensitivity>0)for(let d=0;d.05&&l.box[3]/(e.shape[1]||1)>.05&&Y.hands[d].fingerScore&&Y.hands[d].fingerScore>(t.hand.minConfidence||0)){let f=g2(l.box,D3),y=g2(l.boxRaw,D3);Y.boxes.push({...x[d],box:f,boxRaw:y})}}for(let d=0;dR()-Y3,s=t1<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&s&&U3===n&&W2[o]?(t1++,W2[o]):(t1=0,new Promise(async c=>{let x=A.image.resizeBilinear(e,[o0!=null&&o0.inputs[0].shape?o0.inputs[0].shape[2]:0,o0!=null&&o0.inputs[0].shape?o0.inputs[0].shape[1]:0],!1),d=o0==null?void 0:o0.execute(x),l=(await d.data())[0];W2[o]=Math.round(100*l)/100,U3=n,Y3=R(),A.dispose([x,d]),c(W2[o])}))}var e2={};q0(e2,{connected:()=>G2,horizontal:()=>n1,kpt:()=>F2,relative:()=>A1,vertical:()=>r1});var F2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],n1=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],r1=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],A1=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],G2={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Q3=.005,u0={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function s1(e){for(let t of n1){let o=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[0]r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[1]x&&x.part===t[0]),r=e.keypoints.findIndex(x=>x&&x.part===t[1]),s=e.keypoints.findIndex(x=>x&&x.part===o[0]),a=e.keypoints.findIndex(x=>x&&x.part===o[1]);if(!e.keypoints[s]||!e.keypoints[a])continue;let i=e.keypoints[n]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[n].position[0])]:[0,0],c=e.keypoints[r]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||c[0]>c[1]){let x=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=x}}}function _3(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],o.pad=A.pad(e,u0.padding),o.resize=A.image.resizeBilinear(o.pad,[t,t]);let n=A.cast(o.resize,"int32");return Object.keys(o).forEach(a=>A.dispose(o[a])),n}function eo(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+u0.padding[2][0]+u0.padding[2][1])/t[0]-u0.padding[2][0],n.position[1]*(t[1]+u0.padding[1][0]+u0.padding[1][1])/t[1]-u0.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let o=G0(e.keypoints.map(n=>n.position),t);return e.box=o.box,e.boxRaw=o.boxRaw,e}var Q,B2=0,a1=Number.MAX_SAFE_INTEGER,ue={boxes:[],bodies:[],last:0};async function to(e){var t;return T.initial&&(Q=null),Q?e.debug&&g("cached model:",Q.modelUrl):(O2(["size"],e),Q=await L(e.body.modelPath)),B2=(Q==null?void 0:Q.executor)&&((t=Q==null?void 0:Q.inputs)==null?void 0:t[0].shape)?Q.inputs[0].shape[2]:0,B2<64&&(B2=256),Q}function dA(e,t,o){let n=e[0][0],r=[],s=0;for(let d=0;dt.body.minConfidence){let l=[n[d][1],n[d][0]];r.push({score:Math.round(100*s)/100,part:F2[d],positionRaw:l,position:[Math.round((o.shape[2]||0)*l[0]),Math.round((o.shape[1]||0)*l[1])]})}s=r.reduce((d,l)=>l.score>d?l.score:d,0);let a=[],i=G0(r.map(d=>d.position),[o.shape[2],o.shape[1]]),c={};for(let[d,l]of Object.entries(G2)){let f=[];for(let y=0;yM.part===l[y]),u=r.find(M=>M.part===l[y+1]);m&&u&&m.score>(t.body.minConfidence||0)&&u.score>(t.body.minConfidence||0)&&f.push([m.position,u.position])}c[d]=f}let x={id:0,score:s,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:c};return s1(x),a.push(x),a}function fA(e,t,o){let n=[];for(let r=0;rt.body.minConfidence){let i=[];for(let l=0;l<17;l++){let f=s[3*l+2];if(f>t.body.minConfidence){let y=[s[3*l+1],s[3*l+0]];i.push({part:F2[l],score:Math.round(100*f)/100,positionRaw:y,position:[Math.round((o.shape[2]||0)*y[0]),Math.round((o.shape[1]||0)*y[1])]})}}let c=G0(i.map(l=>l.position),[o.shape[2],o.shape[1]]),x={};for(let[l,f]of Object.entries(G2)){let y=[];for(let m=0;mv.part===f[m]),M=i.find(v=>v.part===f[m+1]);u&&M&&u.score>(t.body.minConfidence||0)&&M.score>(t.body.minConfidence||0)&&y.push([u.position,M.position])}x[l]=y}let d={id:r,score:a,box:c.box,boxRaw:c.boxRaw,keypoints:[...i],annotations:x};s1(d),n.push(d)}}return n.sort((r,s)=>s.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function i1(e,t){var r;if(!(Q!=null&&Q.executor)||!((r=Q==null?void 0:Q.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(ue.boxes.length=0),a1++;let o=(t.body.skipTime||0)>R()-ue.last,n=a1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n?ue.bodies:new Promise(async s=>{let a={};a1=0,a.input=$3(e,B2),a.res=Q==null?void 0:Q.execute(a.input),ue.last=R();let i=await a.res.array();ue.bodies=a.res.shape[2]===17?dA(i,t,e):fA(i,t,e);for(let c of ue.bodies)eo(c,[e.shape[2]||1,e.shape[1]||1]),_3(c.keypoints);Object.keys(a).forEach(c=>A.dispose(a[c])),s(ue.bodies)})}var E0,H2=[],no=0,l1=Number.MAX_SAFE_INTEGER,V2=0,D2=2.5;async function ro(e){if(!E0||T.initial){E0=await L(e.object.modelPath);let t=E0!=null&&E0.executor?Object.values(E0.modelSignature.inputs):void 0;V2=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&g("cached model:",E0.modelUrl);return E0}async function mA(e,t,o){let n=0,r=[],s=V2;for(let x of[1,2,4]){let d=x*13,l=A.squeeze(e.find(v=>v.shape[1]===d**2&&(v.shape[2]||0)===Te.length)),f=await l.array(),y=A.squeeze(e.find(v=>v.shape[1]===d**2&&(v.shape[2]||0)(o.object.minConfidence||0)&&P!==61){let h=(.5+Math.trunc(v%d))/d,z=(.5+Math.trunc(v/d))/d,k=M[v].map(I=>I*(d/x/s)),[b,W]=[h-D2/x*k[0],z-D2/x*k[1]],[B,j]=[h+D2/x*k[2]-b,z+D2/x*k[3]-W],O=[b,W,B,j];O=O.map(I=>Math.max(0,Math.min(I,1)));let G=[O[0]*t[0],O[1]*t[1],O[2]*t[0],O[3]*t[1]],N={id:n++,score:Math.round(100*p)/100,class:P+1,label:Te[P].label,box:G.map(I=>Math.trunc(I)),boxRaw:O};r.push(N)}}A.dispose([l,y,m,u])}let a=r.map(x=>[x.boxRaw[1],x.boxRaw[0],x.boxRaw[3],x.boxRaw[2]]),i=r.map(x=>x.score),c=[];if(a&&a.length>0){let x=await A.image.nonMaxSuppressionAsync(a,i,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence);c=await x.data(),A.dispose(x)}return r=r.filter((x,d)=>c.includes(d)).sort((x,d)=>d.score-x.score),r}async function c1(e,t){if(!(E0!=null&&E0.executor))return[];let o=(t.object.skipTime||0)>R()-no,n=l1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&H2.length>0?(l1++,H2):(l1=0,!T.kernels.includes("mod")||!T.kernels.includes("sparsetodense")?H2:new Promise(async r=>{let s=[e.shape[2]||0,e.shape[1]||0],a=A.image.resizeBilinear(e,[V2,V2],!1),i=A.div(a,F.tf255),c=A.transpose(i,[0,3,1,2]),x;t.object.enabled&&(x=E0.execute(c)),no=R();let d=await mA(x,s,t);H2=d,A.dispose([a,i,c,...x]),r(d)}))}var o2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],pA=o2.length,t2=o2.reduce((e,t,o)=>(e[t]=o,e),{}),uA=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],U4=uA.map(([e,t])=>[t2[e],t2[t]]),so=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function ao(e){let t=e.reduce(({maxX:o,maxY:n,minX:r,minY:s},{position:{x:a,y:i}})=>({maxX:Math.max(o,a),maxY:Math.max(n,i),minX:Math.min(r,a),minY:Math.min(s,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function io(e,[t,o],[n,r]){let s=t/n,a=o/r,i=(x,d)=>({id:d,score:x.score,boxRaw:[x.box[0]/r,x.box[1]/n,x.box[2]/r,x.box[3]/n],box:[Math.trunc(x.box[0]*a),Math.trunc(x.box[1]*s),Math.trunc(x.box[2]*a),Math.trunc(x.box[3]*s)],keypoints:x.keypoints.map(({score:l,part:f,position:y})=>({score:l,part:f,position:[Math.trunc(y.x*a),Math.trunc(y.y*s)],positionRaw:[y.x/n,y.y/n]})),annotations:{}});return e.map((x,d)=>i(x,d))}var Z2=class{constructor(t,o){w(this,"priorityQueue");w(this,"numberOfElements");w(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=o}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let o=2*t;if(oo?o:e}function lo(e,t,o,n){let r=o-e,s=n-t;return r*r+s*s}function f1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var h0,bA=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],X2=1,Ce=16,gA=50**2;function co(e,t,o,n,r,s,a=2){let i=v=>({y:s.get(v.y,v.x,e),x:s.get(v.y,v.x,s.shape[2]/2+e)}),c=(v,P,p)=>({y:d1(Math.round(v.y/Ce),0,P-1),x:d1(Math.round(v.x/Ce),0,p-1)}),[x,d]=n.shape,l=c(t.position,x,d),f=i(l),m=f1(t.position,f);for(let v=0;v[t2[f],t2[y]]),a=s.map(([,f])=>f),i=s.map(([f])=>f),c=t.shape[2],x=a.length,d=new Array(c),l=y1(e.part,Ce,o);d[e.part.id]={score:e.score,part:o2[e.part.id],position:l};for(let f=x-1;f>=0;--f){let y=a[f],m=i[f];d[y]&&!d[m]&&(d[m]=co(f,d[y],m,t,o,r))}for(let f=0;ft){i=!1;break}if(!i)break}return i}function RA(e,t){let[o,n,r]=t.shape,s=new Z2(o*n*r,({score:a})=>a);for(let a=0;a{var a;let s=(a=r[n])==null?void 0:a.position;return s?lo(o,t,s.y,s.x)<=gA:!1})}function PA(e,t){return t.reduce((n,{position:r,score:s},a)=>(xo(e,r,a)||(n+=s),n),0)/t.length}function TA(e,t,o,n,r,s){let a=[],i=RA(s,t);for(;a.lengthy.score>s);let l=PA(a,d),f=ao(d);l>s&&a.push({keypoints:d,box:f,score:Math.round(100*l)/100})}return a}async function m1(e,t){if(!(h0!=null&&h0.executor))return[];let o=A.tidy(()=>{if(!h0.inputs[0].shape)return[];let a=A.image.resizeBilinear(e,[h0.inputs[0].shape[2],h0.inputs[0].shape[1]]),i=A.sub(A.div(A.cast(a,"float32"),127.5),1),x=h0.execute(i,bA).map(d=>A.squeeze(d,[0]));return x[1]=A.sigmoid(x[1]),x}),n=await Promise.all(o.map(a=>a.buffer()));for(let a of o)A.dispose(a);let r=TA(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return h0.inputs[0].shape?io(r,[e.shape[1],e.shape[2]],[h0.inputs[0].shape[2],h0.inputs[0].shape[1]]):[]}async function yo(e){return!h0||T.initial?h0=await L(e.body.modelPath):e.debug&&g("cached model:",h0.modelUrl),h0}var W0,p1=!1;async function u1(e){return!W0||T.initial?W0=await L(e.segmentation.modelPath):e.debug&&g("cached model:",W0.modelUrl),W0}async function mo(e,t,o){var u,M;if(p1)return{data:[],canvas:null,alpha:null};p1=!0,W0||await u1(o);let n=await Me(e,o),r=((u=n.tensor)==null?void 0:u.shape[2])||0,s=((M=n.tensor)==null?void 0:M.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let a={};a.resize=A.image.resizeBilinear(n.tensor,[W0.inputs[0].shape?W0.inputs[0].shape[1]:0,W0.inputs[0].shape?W0.inputs[0].shape[2]:0],!1),A.dispose(n.tensor),a.norm=A.div(a.resize,F.tf255),a.res=W0.execute(a.norm),a.squeeze=A.squeeze(a.res,0),a.squeeze.shape[2]===2?(a.softmax=A.softmax(a.squeeze),[a.bg,a.fg]=A.unstack(a.softmax,2),a.expand=A.expandDims(a.fg,2),a.pad=A.expandDims(a.expand,0),a.crop=A.image.cropAndResize(a.pad,[[0,0,.5,.5]],[0],[r,s]),a.data=A.squeeze(a.crop,0)):a.data=A.image.resizeBilinear(a.squeeze,[s,r]);let i=Array.from(await a.data.data());if(T.node&&!T.Canvas&&typeof ImageData=="undefined")return o.debug&&g("canvas support missing"),Object.keys(a).forEach(v=>A.dispose(a[v])),{data:i,canvas:null,alpha:null};let c=s0(r,s);A.browser&&await A.browser.toPixels(a.data,c);let x=c.getContext("2d");o.segmentation.blur&&o.segmentation.blur>0&&(x.filter=`blur(${o.segmentation.blur}px)`);let d=x.getImageData(0,0,r,s),l=s0(r,s),f=l.getContext("2d");n.canvas&&f.drawImage(n.canvas,0,0),f.globalCompositeOperation="darken",o.segmentation.blur&&o.segmentation.blur>0&&(f.filter=`blur(${o.segmentation.blur}px)`),f.drawImage(c,0,0),f.globalCompositeOperation="source-over",f.filter="none";let y=f.getImageData(0,0,r,s);for(let v=0;vA.dispose(a[v])),p1=!1,{data:i,canvas:l,alpha:c}}var n2=class{constructor(){w(this,"ssrnetage",null);w(this,"gear",null);w(this,"blazeposedetect",null);w(this,"blazepose",null);w(this,"centernet",null);w(this,"efficientpose",null);w(this,"mobilefacenet",null);w(this,"insightface",null);w(this,"emotion",null);w(this,"facedetect",null);w(this,"faceiris",null);w(this,"facemesh",null);w(this,"faceres",null);w(this,"ssrnetgender",null);w(this,"handpose",null);w(this,"handskeleton",null);w(this,"handtrack",null);w(this,"liveness",null);w(this,"movenet",null);w(this,"nanodet",null);w(this,"posenet",null);w(this,"segmentation",null);w(this,"antispoof",null)}},h1=e=>{let t=0,o=0,n=0;for(let s of Object.values(O0))t+=s.sizeFromManifest,o+=s.sizeLoadedWeights,n+=s.sizeDesired;let r=n>0?o/n:0;return{numLoadedModels:Object.values(O0).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:o,totalSizeLoading:n,totalSizeEnabled:void 0,modelStats:Object.values(O0)}};function j2(e){for(let t of Object.keys(e.models))e.models[t]=null}async function b1(e){var t,o,n,r,s,a,i,c,x,d,l,f,y,m,u,M,v,P,p,h,z,k,b,W,B,j;T.initial&&j2(e),e.config.hand.enabled&&(!e.models.handpose&&((o=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:o.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await J5(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await J5(e.config))),e.config.body.enabled&&!e.models.blazepose&&((s=e.config.body.modelPath)==null?void 0:s.includes("blazepose"))&&(e.models.blazepose=Nt(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=jt(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((a=e.config.body.modelPath)==null?void 0:a.includes("efficientpose"))&&(e.models.efficientpose=Bt(e.config)),e.config.body.enabled&&!e.models.movenet&&((i=e.config.body.modelPath)==null?void 0:i.includes("movenet"))&&(e.models.movenet=to(e.config)),e.config.body.enabled&&!e.models.posenet&&((c=e.config.body.modelPath)==null?void 0:c.includes("posenet"))&&(e.models.posenet=yo(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=Pt(e.config)),e.config.face.enabled&&((x=e.config.face.antispoof)==null?void 0:x.enabled)&&!e.models.antispoof&&(e.models.antispoof=xt(e.config)),e.config.face.enabled&&((d=e.config.face.liveness)==null?void 0:d.enabled)&&!e.models.liveness&&(e.models.liveness=K3(e.config)),e.config.face.enabled&&((l=e.config.face.description)==null?void 0:l.enabled)&&!e.models.faceres&&(e.models.faceres=p3(e.config)),e.config.face.enabled&&((f=e.config.face.emotion)==null?void 0:f.enabled)&&!e.models.emotion&&(e.models.emotion=Zt(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!((m=e.config.face.attention)!=null&&m.enabled)&&!e.models.faceiris&&(e.models.faceiris=A3(e.config)),e.config.face.enabled&&((u=e.config.face.mesh)==null?void 0:u.enabled)&&!e.models.facemesh&&(e.models.facemesh=x3(e.config)),e.config.face.enabled&&((M=e.config.face.gear)==null?void 0:M.enabled)&&!e.models.gear&&(e.models.gear=_1(e.config)),e.config.face.enabled&&((v=e.config.face.ssrnet)==null?void 0:v.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=nt(e.config)),e.config.face.enabled&&((P=e.config.face.ssrnet)==null?void 0:P.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=at(e.config)),e.config.face.enabled&&((p=e.config.face.mobilefacenet)==null?void 0:p.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=Kt(e.config)),e.config.face.enabled&&((h=e.config.face.insightface)==null?void 0:h.enabled)&&!e.models.insightface&&(e.models.insightface=e3(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((k=(z=e.config.hand.detector)==null?void 0:z.modelPath)==null?void 0:k.includes("handtrack"))&&(e.models.handtrack=Z3(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((W=(b=e.config.hand.detector)==null?void 0:b.modelPath)==null?void 0:W.includes("handtrack"))&&(e.models.handskeleton=X3(e.config)),e.config.object.enabled&&!e.models.centernet&&((B=e.config.object.modelPath)==null?void 0:B.includes("centernet"))&&(e.models.centernet=Wt(e.config)),e.config.object.enabled&&!e.models.nanodet&&((j=e.config.object.modelPath)==null?void 0:j.includes("nanodet"))&&(e.models.nanodet=ro(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=u1(e.config));for await(let O of Object.keys(e.models))e.models[O]&&typeof e.models[O]!="undefined"&&(e.models[O]=await e.models[O])}var M0;function Ie(e,t,o){var x;if(e&&(M0=e),!t||(M0||g("instance not registred"),!M0.config.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],s=[],a=[],i=t.modelUrl,c=t.executor;if((x=c==null?void 0:c.graph)!=null&&x.nodes)for(let d of Object.values(c.graph.nodes)){let l=d.op.toLowerCase();s.includes(l)||s.push(l)}else!c&&M0.config.debug&&g("model not loaded",o);for(let d of s)!n.includes(d)&&!r.includes(d)&&!M0.env.kernels.includes(d)&&!M0.env.kernels.includes(d.replace("_",""))&&!M0.env.kernels.includes(d.replace("native",""))&&!M0.env.kernels.includes(d.replace("v2",""))&&a.push(d);return M0.config.debug&&a.length>0&&g("model validation failed:",o,a),a.length>0?{name:o,missing:a,ops:s,url:i}:null}function q2(e){M0=e;let t=[];for(let o of Object.keys(M0.models)){let n=M0.models[o];if(!n)continue;let r=Ie(M0,n,o);r&&t.push(r)}return t}var c0={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},O0={};async function wA(e,t){return c0.debug&&g("load model fetch:",e,t),fetch(e,t)}function uo(e){c0.cacheModels=e.cacheModels,c0.verbose=e.debug,c0.modelBasePath=e.modelBasePath}async function L(e){var x,d,l;let t=B1(c0.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let o=t.includes("/")?t.split("/"):t.split("\\"),n=o[o.length-1].replace(".json",""),r="indexeddb://"+n;O0[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:r5[n],inCache:!1},c0.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let s={};try{s=c0.cacheSupported&&c0.cacheModels?await A.io.listModels():{}}catch(f){c0.cacheSupported=!1}O0[n].inCache=c0.cacheSupported&&c0.cacheModels&&Object.keys(s).includes(r);let a=typeof fetch=="undefined"?{}:{fetchFunc:(f,y)=>wA(f,y)},i=new $2(O0[n].inCache?r:t,a),c=!1;try{i.findIOHandler(),c0.debug&&g("model load handler:",i.handler);let f=await i.handler.load();O0[n].sizeFromManifest=((x=f==null?void 0:f.weightData)==null?void 0:x.byteLength)||0,i.loadSync(f),O0[n].sizeLoadedWeights=((l=(d=i.artifacts)==null?void 0:d.weightData)==null?void 0:l.byteLength)||0,c0.verbose&&g("load model:",i.modelUrl,{bytes:O0[n].sizeLoadedWeights},c0),c=!0}catch(f){g("error loading model:",t,f)}if(c&&c0.cacheModels&&c0.cacheSupported&&!O0[n].inCache)try{let f=await i.save(r);g("model saved:",r,f)}catch(f){g("error saving model:",t,f)}return Ie(null,i,`${e||""}`),i}var g1="2.9.4";var bo={};q0(bo,{all:()=>w1,body:()=>Ne,canvas:()=>T1,face:()=>je,gesture:()=>We,hand:()=>Oe,object:()=>Le,options:()=>A0,person:()=>P1});var v0=e=>{if(!e)g("draw error: invalid canvas");else if(!e.getContext)g("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)g("draw error: cannot get canvas context");else return t}return null},he=e=>Math.round(e*180/Math.PI),V0=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let o=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${o[0]}, ${o[1]}, ${o[2]}, ${t.alpha})`};function Z0(e,t,o,n,r){e.fillStyle=V0(n,r),e.beginPath(),e.arc(t,o,r.pointSize,0,2*Math.PI),e.fill()}function F0(e,t,o,n,r,s){if(e.beginPath(),e.lineWidth=s.lineWidth,s.useCurves){let a=(t+t+n)/2,i=(o+o+r)/2;e.ellipse(a,i,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+s.roundRect,o),e.lineTo(t+n-s.roundRect,o),e.quadraticCurveTo(t+n,o,t+n,o+s.roundRect),e.lineTo(t+n,o+r-s.roundRect),e.quadraticCurveTo(t+n,o+r,t+n-s.roundRect,o+r),e.lineTo(t+s.roundRect,o+r),e.quadraticCurveTo(t,o+r,t,o+r-s.roundRect),e.lineTo(t,o+s.roundRect),e.quadraticCurveTo(t,o,t+s.roundRect,o),e.closePath();e.stroke()}function M1(e,t,o){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=V0(n[2]||0,o),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),o.fillPolygons&&(e.closePath(),e.fill())}}function ho(e,t,o){if(!(t.length<2)){if(e.lineWidth=o.lineWidth,!o.useCurves||t.length<=2){M1(e,t,o);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n0){let s=e.emotion.map(a=>`${Math.trunc(100*a.score)}% ${a.emotion}`);s.length>3&&(s.length=3),r.push(s.join(" "))}((o=e.rotation)==null?void 0:o.angle)&&((n=e.rotation)==null?void 0:n.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${he(e.rotation.angle.roll)}\xB0 yaw:${he(e.rotation.angle.yaw)}\xB0 pitch:${he(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${he(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=H.color;for(let s=r.length-1;s>=0;s--){let a=Math.max(e.box[0],0),i=s*H.lineHeight+e.box[1];H.shadowColor&&H.shadowColor!==""&&(t.fillStyle=H.shadowColor,t.fillText(r[s],a+5,i+16)),t.fillStyle=H.labelColor,t.fillText(r[s],a+4,i+15)}}}function SA(e,t){var o,n,r,s;if(((o=e.annotations)==null?void 0:o.leftEyeIris)&&((n=e.annotations)==null?void 0:n.leftEyeIris[0])){t.strokeStyle=H.useDepth?"rgba(255, 200, 255, 0.3)":H.color,t.beginPath();let a=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,i=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],a,i,0,0,2*Math.PI),t.stroke(),H.fillPolygons&&(t.fillStyle=H.useDepth?"rgba(255, 255, 200, 0.3)":H.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((s=e.annotations)==null?void 0:s.rightEyeIris[0])){t.strokeStyle=H.useDepth?"rgba(255, 200, 255, 0.3)":H.color,t.beginPath();let a=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,i=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],a,i,0,0,2*Math.PI),t.stroke(),H.fillPolygons&&(t.fillStyle=H.useDepth?"rgba(255, 255, 200, 0.3)":H.color,t.fill())}}function CA(e,t){var o;if(H.drawGaze&&((o=e.rotation)==null?void 0:o.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*he(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*he(e.rotation.angle.pitch)/90,s=new Path2D(` M ${e.box[0]+e.box[2]/2} ${e.box[1]} C ${n} ${e.box[1]}, @@ -108,7 +108,7 @@ var Q2=Object.defineProperty;var Co=Object.getOwnPropertyDescriptor;var Io=Objec ${e.box[0]} ${r}, ${e.box[0]+e.box[2]} ${r}, ${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2} - `);t.stroke(a),t.stroke(s)}}function CA(e,t){var o;if(H.drawGaze&&((o=e.rotation)==null?void 0:o.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];M1(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];M1(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function IA(e,t){if(H.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let o=0;oe.mesh[r]);g1(t,n,H)}zA(e,t)}}function jA(e,t){if(H.drawPoints&&e.mesh.length>=468)for(let o=0;o0&&(jA(r,n),IA(r,n),SA(r,n),CA(r,n))}}function Oe(e,t,o){let n=U(A0,o);if(!t||!e)return;let r=M0(e);if(!!r){r.lineJoin="round";for(let s=0;s0)for(let a of s.keypoints)r.fillStyle=V0(a[2],n),Z0(r,a[0],a[1],0,n);if(n.drawLabels&&s.annotations){let a=(i,c)=>{if(!i||i.length===0||!i[0])return;let x=i[i.length-1][2]||-256;r.fillStyle=V0(x,n),r.fillText(c,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=n.font,a(s.annotations.index,"index"),a(s.annotations.middle,"middle"),a(s.annotations.ring,"ring"),a(s.annotations.pinky,"pinky"),a(s.annotations.thumb,"thumb"),a(s.annotations.palm,"palm")}if(n.drawPolygons&&s.annotations){let a=i=>{if(!(!i||i.length===0||!i[0]))for(let c=0;c0?c-1:0][0],i[c>0?c-1:0][1]),r.lineTo(i[c][0],i[c][1]),r.stroke()}};r.lineWidth=n.lineWidth,a(s.annotations.index),a(s.annotations.middle),a(s.annotations.ring),a(s.annotations.pinky),a(s.annotations.thumb)}}}}function Le(e,t,o){let n=U(A0,o);if(!t||!e)return;let r=M0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let s of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,W0(r,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels){let a=`${s.label} ${Math.round(100*s.score)}%`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(a,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),r.fillStyle=n.labelColor,r.fillText(a,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])}r.stroke()}}}function We(e,t,o){let n=U(A0,o);if(!(!t||!e)&&n.drawGestures){let r=M0(e);if(!r)return;r.font=n.font,r.fillStyle=n.color;let s=1;for(let a=0;a1&&c[1].length>0){let x=i[1]>0?`#${i[1]}`:"",d=`${i[0]} ${x}: ${c[1]}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(d,8,2+s*n.lineHeight)),r.fillStyle=n.labelColor,r.fillText(d,6,0+s*n.lineHeight),s+=1}}}}var R1=0;function v1(e,t,o){let n=U(A0,o);if(!t||!e)return;let r=M0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let s=0;st!=o[r].y>t&&e<(o[r].x-o[s].x)*(t-o[s].y)/(o[r].y-o[s].y)+o[s].x&&(n=!n);return n}async function bo(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,o=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let a of w0.silhouette)r.push({x:(e.mesh[a][0]-e.box[0])/e.box[2],y:(e.mesh[a][1]-e.box[1])/e.box[3]});Fe&&Fe>0&&(r=r.map(a=>({x:a.x>.5?a.x+Fe:a.x-Fe,y:a.y>.5?a.y+Fe:a.y-Fe})));for(let a=0;a{let t=(l,f)=>Math.atan2(l[1]-f[1],l[0]-f[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let o=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),s=r?e.mesh[473]:e.mesh[468],a=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],c=[(a[0]-s[0])/i[0]-o[0],n*(s[1]-a[1])/i[1]-o[1]],x=Math.sqrt(c[0]*c[0]+c[1]*c[1]);return x=Math.min(x,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],c)+Math.PI/2)%Math.PI,strength:x}},go=(e,t)=>{let o=g=>{let M=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=M,g[1]/=M,g[2]/=M,g},n=(g,M)=>{let R=g[0]-M[0],P=g[1]-M[1],m=g[2]-M[2];return[R,P,m]},r=(g,M)=>{let R=g[1]*M[2]-g[2]*M[1],P=g[2]*M[0]-g[0]*M[2],m=g[0]*M[1]-g[1]*M[0];return[R,P,m]},s=g=>{let[M,R,P,m,u,z,k,h,W]=g,B,j,N;return m<1?m>-1?(N=Math.asin(m),j=Math.atan2(-k,M),B=Math.atan2(-z,u)):(N=-Math.PI/2,j=-Math.atan2(h,W),B=0):(N=Math.PI/2,j=Math.atan2(h,W),B=0),Number.isNaN(B)&&(B=0),Number.isNaN(j)&&(j=0),Number.isNaN(N)&&(N=0),{pitch:2*-B,yaw:2*-j,roll:2*-N}},a=e.meshRaw;if(!a||a.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[a[10],a[152],a[234],a[454]].map(g=>[g[0]*t[0]/i,g[1]*t[1]/i,g[2]]),x=o(n(c[1],c[0])),d=o(n(c[3],c[2])),l=o(r(d,x));d=r(x,l);let f=[d[0],d[1],d[2],x[0],x[1],x[2],l[0],l[1],l[2]],y=s(f),p=a.length===478?WA(e):{bearing:0,strength:0};return{angle:y,matrix:f,gaze:p}};var k1=async(e,t)=>{var p,g,M,R,P,m,u,z,k,h,W,B,j,N,G,O,I,n0,x0,E0,z0,R0,X0,Be,He,De,C1,I1,j1;let o=v(),n,r,s,a,i,c,x,d,l,f=[];e.state="run:face";let y=await l3(t,e.config);if(e.performance.face=T.perfadd?(e.performance.face||0)+Math.trunc(v()-o):Math.trunc(v()-o),!t.shape||t.shape.length!==4)return[];if(!y)return[];for(let S=0;S200?go(y[S],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?a=(g=e.config.face.emotion)!=null&&g.enabled?I5(y[S].tensor||A.tensor([]),e.config,S,y.length):[]:(e.state="run:emotion",o=v(),a=(M=e.config.face.emotion)!=null&&M.enabled?await I5(y[S].tensor||A.tensor([]),e.config,S,y.length):[],e.performance.emotion=T.perfadd?(e.performance.emotion||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?x=(R=e.config.face.antispoof)!=null&&R.enabled?d5(y[S].tensor||A.tensor([]),e.config,S,y.length):0:(e.state="run:antispoof",o=v(),x=(P=e.config.face.antispoof)!=null&&P.enabled?await d5(y[S].tensor||A.tensor([]),e.config,S,y.length):0,e.performance.antispoof=T.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?d=(m=e.config.face.liveness)!=null&&m.enabled?t1(y[S].tensor||A.tensor([]),e.config,S,y.length):0:(e.state="run:liveness",o=v(),d=(u=e.config.face.liveness)!=null&&u.enabled?await t1(y[S].tensor||A.tensor([]),e.config,S,y.length):0,e.performance.liveness=T.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(z=e.config.face.gear)!=null&&z.enabled?s5(y[S].tensor||A.tensor([]),e.config,S,y.length):null:(e.state="run:gear",o=v(),r=(k=e.config.face.gear)!=null&&k.enabled?await s5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,e.performance.gear=Math.trunc(v()-o)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(h=e.config.face.ssrnet)!=null&&h.enabled?i5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,s=(W=e.config.face.ssrnet)!=null&&W.enabled?x5(y[S].tensor||A.tensor([]),e.config,S,y.length):null):(e.state="run:ssrnet",o=v(),n=(B=e.config.face.ssrnet)!=null&&B.enabled?await i5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,s=(j=e.config.face.ssrnet)!=null&&j.enabled?await x5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,e.performance.ssrnet=Math.trunc(v()-o)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=(N=e.config.face.mobilefacenet)!=null&&N.enabled?O5(y[S].tensor||A.tensor([]),e.config,S,y.length):null:(e.state="run:mobilefacenet",o=v(),i=(G=e.config.face.mobilefacenet)!=null&&G.enabled?await O5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?c=(O=e.config.face.insightface)!=null&&O.enabled?L5(y[S].tensor||A.tensor([]),e.config,S,y.length):null:(e.state="run:mobilefacenet",o=v(),c=(I=e.config.face.insightface)!=null&&I.enabled?await L5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?l=D5(y[S].tensor||A.tensor([]),e.config,S,y.length):(e.state="run:description",o=v(),l=await D5(y[S].tensor||A.tensor([]),e.config,S,y.length),e.performance.description=T.perfadd?(e.performance.description||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Description:"),e.config.async&&([n,s,a,i,c,l,r,x,d]=await Promise.all([n,s,a,i,c,l,r,x,d])),e.analyze("Finish Face:"),((n0=e.config.face.ssrnet)==null?void 0:n0.enabled)&&n&&s&&(l={...l,age:n.age,gender:s.gender,genderScore:s.genderScore}),((x0=e.config.face.gear)==null?void 0:x0.enabled)&&r&&(l={...l,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((E0=e.config.face.mobilefacenet)==null?void 0:E0.enabled)&&i&&(l.descriptor=i),((z0=e.config.face.insightface)==null?void 0:z0.enabled)&&c&&(l.descriptor=c),(R0=e.config.face.iris)!=null&&R0.enabled;let J2=((He=(Be=(X0=y[S])==null?void 0:X0.annotations)==null?void 0:Be.leftEyeIris)==null?void 0:He[0])&&((I1=(C1=(De=y[S])==null?void 0:De.annotations)==null?void 0:C1.rightEyeIris)==null?void 0:I1[0])&&y[S].annotations.leftEyeIris.length>0&&y[S].annotations.rightEyeIris.length>0&&y[S].annotations.leftEyeIris[0]!==null&&y[S].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(y[S].annotations.leftEyeIris[3][0]-y[S].annotations.leftEyeIris[1][0]),Math.abs(y[S].annotations.rightEyeIris[4][1]-y[S].annotations.rightEyeIris[2][1]))/t.shape[2]:0,N1=(j1=e.config.face.detector)!=null&&j1.return?A.squeeze(y[S].tensor):null;A.dispose(y[S].tensor),y[S].tensor&&delete y[S].tensor;let v0={...y[S],id:S};l.age&&(v0.age=l.age),l.gender&&(v0.gender=l.gender),l.genderScore&&(v0.genderScore=l.genderScore),l.descriptor&&(v0.embedding=l.descriptor),l.race&&(v0.race=l.race),a&&(v0.emotion=a),x&&(v0.real=x),d&&(v0.live=d),J2&&J2!==0&&(v0.iris=Math.trunc(500/J2/11.7)/100),O1&&(v0.rotation=O1),N1&&(v0.tensor=N1),f.push(v0),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),f};var Mo=e=>{if(!e)return[];let t=[];for(let o=0;oc.part==="leftWrist"),r=e[o].keypoints.find(c=>c.part==="rightWrist"),s=e[o].keypoints.find(c=>c.part==="nose");s&&n&&r&&n.position[1]c.part==="leftShoulder"),i=e[o].keypoints.find(c=>c.part==="rightShoulder");a&&i&&Math.abs(a.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:o,gesture:`leaning ${a.position[1]>i.position[1]?"left":"right"}`})}return t},Ro=e=>{if(!e)return[];let t=[];for(let o=0;o450){let n=(e[o].mesh[33][2]||0)-(e[o].mesh[263][2]||0),r=e[o].mesh[33][0]-e[o].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:o,gesture:"facing center"}):t.push({face:o,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[o].mesh[374][1]-e[o].mesh[386][1])/Math.abs(e[o].mesh[443][1]-e[o].mesh[450][1])<.2&&t.push({face:o,gesture:"blink left eye"}),Math.abs(e[o].mesh[145][1]-e[o].mesh[159][1])/Math.abs(e[o].mesh[223][1]-e[o].mesh[230][1])<.2&&t.push({face:o,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[o].mesh[13][1]-e[o].mesh[14][1])/Math.abs(e[o].mesh[10][1]-e[o].mesh[152][1]));i>10&&t.push({face:o,gesture:`mouth ${Math.trunc(i)}% open`});let c=e[o].mesh[152][2]||0;Math.abs(c)>10&&t.push({face:o,gesture:`head ${c<0?"up":"down"}`})}return t},vo=e=>{var o,n,r,s;if(!e)return[];let t=[];for(let a=0;a.06||M>.06)&&(y=!1),g>M?g>.05&&t.push({iris:a,gesture:"looking right"}):M>.05&&t.push({iris:a,gesture:"looking left"});let R=Math.abs(e[a].mesh[145][1]-e[a].annotations.rightEyeIris[0][1])/e[a].box[3],P=Math.abs(e[a].mesh[374][1]-e[a].annotations.leftEyeIris[0][1])/e[a].box[3];(P<.01||R<.01||P>.022||R>.022)&&(y=!1),(P<.01||R<.01)&&t.push({iris:a,gesture:"looking down"}),(P>.022||R>.022)&&t.push({iris:a,gesture:"looking up"}),y&&t.push({iris:a,gesture:"looking center"})}return t},Po=e=>{if(!e)return[];let t=[];for(let o=0;o0){let r=n.reduce((a,i)=>(a.position[2]||0)<(i.position[2]||0)?a:i);t.push({hand:o,gesture:`${r.name} forward`});let s=n.reduce((a,i)=>a.position[1]((r-1)*E.body[h].box[I]+O)/r),B=e.body[h].boxRaw.map((O,I)=>((r-1)*E.body[h].boxRaw[I]+O)/r),j=e.body[h].keypoints.map((O,I)=>{var n0,x0,E0,z0,R0,X0,Be,He,De;return{score:O.score,part:O.part,position:[E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[0]||0)+(O.position[0]||0))/r:O.position[0],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[1]||0)+(O.position[1]||0))/r:O.position[1],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[2]||0)+(O.position[2]||0))/r:O.position[2]],positionRaw:[E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[0]||0)+(O.positionRaw[0]||0))/r:O.positionRaw[0],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[1]||0)+(O.positionRaw[1]||0))/r:O.positionRaw[1],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[2]||0)+(O.positionRaw[2]||0))/r:O.positionRaw[2]],distance:[E.body[h].keypoints[I]?((r-1)*(((n0=E.body[h].keypoints[I].distance)==null?void 0:n0[0])||0)+(((x0=O.distance)==null?void 0:x0[0])||0))/r:(E0=O.distance)==null?void 0:E0[0],E.body[h].keypoints[I]?((r-1)*(((z0=E.body[h].keypoints[I].distance)==null?void 0:z0[1])||0)+(((R0=O.distance)==null?void 0:R0[1])||0))/r:(X0=O.distance)==null?void 0:X0[1],E.body[h].keypoints[I]?((r-1)*(((Be=E.body[h].keypoints[I].distance)==null?void 0:Be[2])||0)+(((He=O.distance)==null?void 0:He[2])||0))/r:(De=O.distance)==null?void 0:De[2]]}}),N={},G={connected:{}};(a=t.body.modelPath)!=null&&a.includes("efficientpose")?G=v2:(i=t.body.modelPath)!=null&&i.includes("blazepose")?G=h2:(c=t.body.modelPath)!=null&&c.includes("movenet")&&(G=e2);for(let[O,I]of Object.entries(G.connected)){let n0=[];for(let x0=0;x0R0.part===I[x0]),z0=j.find(R0=>R0.part===I[x0+1]);E0&&z0&&n0.push([E0.position,z0.position])}N[O]=n0}E.body[h]={...e.body[h],box:W,boxRaw:B,keypoints:j,annotations:N}}if(!E.hand||e.hand.length!==E.hand.length)E.hand=JSON.parse(JSON.stringify(e.hand));else for(let h=0;h((r-1)*E.hand[h].box[O]+G)/r),B=e.hand[h].boxRaw.map((G,O)=>((r-1)*E.hand[h].boxRaw[O]+G)/r);E.hand[h].keypoints.length!==e.hand[h].keypoints.length&&(E.hand[h].keypoints=e.hand[h].keypoints);let j=e.hand[h].keypoints&&e.hand[h].keypoints.length>0?e.hand[h].keypoints.map((G,O)=>G.map((I,n0)=>((r-1)*(E.hand[h].keypoints[O][n0]||1)+(I||0))/r)):[],N={};if(Object.keys(E.hand[h].annotations).length!==Object.keys(e.hand[h].annotations).length)E.hand[h].annotations=e.hand[h].annotations,N=E.hand[h].annotations;else if(e.hand[h].annotations)for(let G of Object.keys(e.hand[h].annotations))N[G]=(l=(d=(x=e.hand[h])==null?void 0:x.annotations)==null?void 0:d[G])!=null&&l[0]?e.hand[h].annotations[G].map((O,I)=>O.map((n0,x0)=>((r-1)*E.hand[h].annotations[G][I][x0]+n0)/r)):null;E.hand[h]={...e.hand[h],box:W,boxRaw:B,keypoints:j,annotations:N}}if(!E.face||e.face.length!==E.face.length)E.face=JSON.parse(JSON.stringify(e.face));else for(let h=0;h((r-1)*E.face[h].box[N]+j)/r),B=e.face[h].boxRaw.map((j,N)=>((r-1)*E.face[h].boxRaw[N]+j)/r);if(e.face[h].rotation){let j={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};j.matrix=(f=e.face[h].rotation)==null?void 0:f.matrix,j.angle={roll:((r-1)*(((y=E.face[h].rotation)==null?void 0:y.angle.roll)||0)+(((p=e.face[h].rotation)==null?void 0:p.angle.roll)||0))/r,yaw:((r-1)*(((g=E.face[h].rotation)==null?void 0:g.angle.yaw)||0)+(((M=e.face[h].rotation)==null?void 0:M.angle.yaw)||0))/r,pitch:((r-1)*(((R=E.face[h].rotation)==null?void 0:R.angle.pitch)||0)+(((P=e.face[h].rotation)==null?void 0:P.angle.pitch)||0))/r},j.gaze={bearing:((r-1)*(((m=E.face[h].rotation)==null?void 0:m.gaze.bearing)||0)+(((u=e.face[h].rotation)==null?void 0:u.gaze.bearing)||0))/r,strength:((r-1)*(((z=E.face[h].rotation)==null?void 0:z.gaze.strength)||0)+(((k=e.face[h].rotation)==null?void 0:k.gaze.strength)||0))/r},E.face[h]={...e.face[h],rotation:j,box:W,boxRaw:B}}E.face[h]={...e.face[h],box:W,boxRaw:B}}if(!E.object||e.object.length!==E.object.length)E.object=JSON.parse(JSON.stringify(e.object));else for(let h=0;h((r-1)*E.object[h].box[N]+j)/r),B=e.object[h].boxRaw.map((j,N)=>((r-1)*E.object[h].boxRaw[N]+j)/r);E.object[h]={...e.object[h],box:W,boxRaw:B}}if(e.persons){let h=e.persons;if(!E.persons||h.length!==E.persons.length)E.persons=JSON.parse(JSON.stringify(h));else for(let W=0;W((r-1)*E.persons[W].box[j]+B)/r)}e.gesture&&(E.gesture=e.gesture);let s=v();return E1=T.perfadd?E1+Math.round(s-o):Math.round(s-o),e.performance&&(E.performance={...e.performance,interpolate:E1}),E}var ko={};q0(ko,{distance:()=>r2,match:()=>S1,similarity:()=>z1});function r2(e,t,o={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),s=(1-r/100-o)/(n-o);return Math.max(Math.min(s,1),0)};function z1(e,t,o={order:2,multiplier:25,min:.2,max:.8}){let n=r2(e,t,o);return wo(n,o.order||2,o.min||0,o.max||1)}function S1(e,t,o={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let a=0;au.box[0]&&y.box[0]u.box[1]&&y.box[1]+y.box[3]p.body.box[0]&&u.box[0]+u.box[2]p.body.box[1]&&u.box[1]+u.box[3]p.body.box[0]&&u.box[1]+u.box[3]>p.body.box[1]&&u.box[1]+u.box[3]{u&&u.length===4&&(g.push(u[0],u[0]+u[2]),M.push(u[1],u[1]+u[3]))};R(p.face.box),R((d=p.body)==null?void 0:d.box),R((l=p.hands.left)==null?void 0:l.box),R((f=p.hands.right)==null?void 0:f.box);let P=Math.min(...g),m=Math.min(...M);p.box=[P,m,Math.max(...g)-P,Math.max(...M)-m],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(p.boxRaw=[p.box[0]/r[2],p.box[1]/r[1],p.box[2]/r[2],p.box[3]/r[1]]),a.push(p)}return a}var U2=` + `);t.stroke(a),t.stroke(s)}}function IA(e,t){var o;if(H.drawGaze&&((o=e.rotation)==null?void 0:o.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];v1(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];v1(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function jA(e,t){if(H.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let o=0;oe.mesh[r]);M1(t,n,H)}SA(e,t)}}function NA(e,t){if(H.drawPoints&&e.mesh.length>=468)for(let o=0;o0&&(NA(r,n),jA(r,n),CA(r,n),IA(r,n))}}function Ne(e,t,o){let n=U(A0,o);if(!t||!e)return;let r=v0(e);if(!!r){r.lineJoin="round";for(let s=0;s0)for(let a of s.keypoints)r.fillStyle=V0(a[2],n),Z0(r,a[0],a[1],0,n);if(n.drawLabels&&s.annotations){let a=(i,c)=>{if(!i||i.length===0||!i[0])return;let x=i[i.length-1][2]||-256;r.fillStyle=V0(x,n),r.fillText(c,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=n.font,a(s.annotations.index,"index"),a(s.annotations.middle,"middle"),a(s.annotations.ring,"ring"),a(s.annotations.pinky,"pinky"),a(s.annotations.thumb,"thumb"),a(s.annotations.palm,"palm")}if(n.drawPolygons&&s.annotations){let a=i=>{if(!(!i||i.length===0||!i[0]))for(let c=0;c0?c-1:0][0],i[c>0?c-1:0][1]),r.lineTo(i[c][0],i[c][1]),r.stroke()}};r.lineWidth=n.lineWidth,a(s.annotations.index),a(s.annotations.middle),a(s.annotations.ring),a(s.annotations.pinky),a(s.annotations.thumb)}}}}function Le(e,t,o){let n=U(A0,o);if(!t||!e)return;let r=v0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let s of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,F0(r,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels){let a=`${s.label} ${Math.round(100*s.score)}%`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(a,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),r.fillStyle=n.labelColor,r.fillText(a,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])}r.stroke()}}}function We(e,t,o){let n=U(A0,o);if(!(!t||!e)&&n.drawGestures){let r=v0(e);if(!r)return;r.font=n.font,r.fillStyle=n.color;let s=1;for(let a=0;a1&&c[1].length>0){let x=i[1]>0?`#${i[1]}`:"",d=`${i[0]} ${x}: ${c[1]}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(d,8,2+s*n.lineHeight)),r.fillStyle=n.labelColor,r.fillText(d,6,0+s*n.lineHeight),s+=1}}}}var R1=0;function P1(e,t,o){let n=U(A0,o);if(!t||!e)return;let r=v0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let s=0;st!=o[r].y>t&&e<(o[r].x-o[s].x)*(t-o[s].y)/(o[r].y-o[s].y)+o[s].x&&(n=!n);return n}async function go(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,o=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let a of k0.silhouette)r.push({x:(e.mesh[a][0]-e.box[0])/e.box[2],y:(e.mesh[a][1]-e.box[1])/e.box[3]});Fe&&Fe>0&&(r=r.map(a=>({x:a.x>.5?a.x+Fe:a.x-Fe,y:a.y>.5?a.y+Fe:a.y-Fe})));for(let a=0;a{let t=(l,f)=>Math.atan2(l[1]-f[1],l[0]-f[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let o=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),s=r?e.mesh[473]:e.mesh[468],a=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],c=[(a[0]-s[0])/i[0]-o[0],n*(s[1]-a[1])/i[1]-o[1]],x=Math.sqrt(c[0]*c[0]+c[1]*c[1]);return x=Math.min(x,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],c)+Math.PI/2)%Math.PI,strength:x}},Mo=(e,t)=>{let o=u=>{let M=Math.sqrt(u[0]*u[0]+u[1]*u[1]+u[2]*u[2]);return u[0]/=M,u[1]/=M,u[2]/=M,u},n=(u,M)=>{let v=u[0]-M[0],P=u[1]-M[1],p=u[2]-M[2];return[v,P,p]},r=(u,M)=>{let v=u[1]*M[2]-u[2]*M[1],P=u[2]*M[0]-u[0]*M[2],p=u[0]*M[1]-u[1]*M[0];return[v,P,p]},s=u=>{let[M,v,P,p,h,z,k,b,W]=u,B,j,O;return p<1?p>-1?(O=Math.asin(p),j=Math.atan2(-k,M),B=Math.atan2(-z,h)):(O=-Math.PI/2,j=-Math.atan2(b,W),B=0):(O=Math.PI/2,j=Math.atan2(b,W),B=0),Number.isNaN(B)&&(B=0),Number.isNaN(j)&&(j=0),Number.isNaN(O)&&(O=0),{pitch:2*-B,yaw:2*-j,roll:2*-O}},a=e.meshRaw;if(!a||a.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[a[10],a[152],a[234],a[454]].map(u=>[u[0]*t[0]/i,u[1]*t[1]/i,u[2]]),x=o(n(c[1],c[0])),d=o(n(c[3],c[2])),l=o(r(d,x));d=r(x,l);let f=[d[0],d[1],d[2],x[0],x[1],x[2],l[0],l[1],l[2]],y=s(f),m=a.length===478?FA(e):{bearing:0,strength:0};return{angle:y,matrix:f,gaze:m}};var E1=async(e,t)=>{var m,u,M,v,P,p,h,z,k,b,W,B,j,O,G,N,I,n0,x0,z0,S0,R0,X0,Be,He,De,I1,j1,N1;let o=R(),n,r,s,a,i,c,x,d,l,f=[];e.state="run:face";let y=await c3(t,e.config);if(e.performance.face=T.perfadd?(e.performance.face||0)+Math.trunc(R()-o):Math.trunc(R()-o),!t.shape||t.shape.length!==4)return[];if(!y)return[];for(let S=0;S200?Mo(y[S],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?a=(u=e.config.face.emotion)!=null&&u.enabled?j5(y[S].tensor||A.tensor([]),e.config,S,y.length):[]:(e.state="run:emotion",o=R(),a=(M=e.config.face.emotion)!=null&&M.enabled?await j5(y[S].tensor||A.tensor([]),e.config,S,y.length):[],e.performance.emotion=T.perfadd?(e.performance.emotion||0)+Math.trunc(R()-o):Math.trunc(R()-o)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?x=(v=e.config.face.antispoof)!=null&&v.enabled?f5(y[S].tensor||A.tensor([]),e.config,S,y.length):0:(e.state="run:antispoof",o=R(),x=(P=e.config.face.antispoof)!=null&&P.enabled?await f5(y[S].tensor||A.tensor([]),e.config,S,y.length):0,e.performance.antispoof=T.perfadd?(e.performance.antispoof||0)+Math.trunc(R()-o):Math.trunc(R()-o)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?d=(p=e.config.face.liveness)!=null&&p.enabled?o1(y[S].tensor||A.tensor([]),e.config,S,y.length):0:(e.state="run:liveness",o=R(),d=(h=e.config.face.liveness)!=null&&h.enabled?await o1(y[S].tensor||A.tensor([]),e.config,S,y.length):0,e.performance.liveness=T.perfadd?(e.performance.antispoof||0)+Math.trunc(R()-o):Math.trunc(R()-o)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(z=e.config.face.gear)!=null&&z.enabled?a5(y[S].tensor||A.tensor([]),e.config,S,y.length):null:(e.state="run:gear",o=R(),r=(k=e.config.face.gear)!=null&&k.enabled?await a5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,e.performance.gear=Math.trunc(R()-o)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(b=e.config.face.ssrnet)!=null&&b.enabled?l5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,s=(W=e.config.face.ssrnet)!=null&&W.enabled?y5(y[S].tensor||A.tensor([]),e.config,S,y.length):null):(e.state="run:ssrnet",o=R(),n=(B=e.config.face.ssrnet)!=null&&B.enabled?await l5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,s=(j=e.config.face.ssrnet)!=null&&j.enabled?await y5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,e.performance.ssrnet=Math.trunc(R()-o)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=(O=e.config.face.mobilefacenet)!=null&&O.enabled?O5(y[S].tensor||A.tensor([]),e.config,S,y.length):null:(e.state="run:mobilefacenet",o=R(),i=(G=e.config.face.mobilefacenet)!=null&&G.enabled?await O5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,e.performance.mobilefacenet=Math.trunc(R()-o)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?c=(N=e.config.face.insightface)!=null&&N.enabled?W5(y[S].tensor||A.tensor([]),e.config,S,y.length):null:(e.state="run:mobilefacenet",o=R(),c=(I=e.config.face.insightface)!=null&&I.enabled?await W5(y[S].tensor||A.tensor([]),e.config,S,y.length):null,e.performance.mobilefacenet=Math.trunc(R()-o)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?l=V5(y[S].tensor||A.tensor([]),e.config,S,y.length):(e.state="run:description",o=R(),l=await V5(y[S].tensor||A.tensor([]),e.config,S,y.length),e.performance.description=T.perfadd?(e.performance.description||0)+Math.trunc(R()-o):Math.trunc(R()-o)),e.analyze("End Description:"),e.config.async&&([n,s,a,i,c,l,r,x,d]=await Promise.all([n,s,a,i,c,l,r,x,d])),e.analyze("Finish Face:"),((n0=e.config.face.ssrnet)==null?void 0:n0.enabled)&&n&&s&&(l={...l,age:n.age,gender:s.gender,genderScore:s.genderScore}),((x0=e.config.face.gear)==null?void 0:x0.enabled)&&r&&(l={...l,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((z0=e.config.face.mobilefacenet)==null?void 0:z0.enabled)&&i&&(l.descriptor=i),((S0=e.config.face.insightface)==null?void 0:S0.enabled)&&c&&(l.descriptor=c),(R0=e.config.face.iris)!=null&&R0.enabled;let J2=((He=(Be=(X0=y[S])==null?void 0:X0.annotations)==null?void 0:Be.leftEyeIris)==null?void 0:He[0])&&((j1=(I1=(De=y[S])==null?void 0:De.annotations)==null?void 0:I1.rightEyeIris)==null?void 0:j1[0])&&y[S].annotations.leftEyeIris.length>0&&y[S].annotations.rightEyeIris.length>0&&y[S].annotations.leftEyeIris[0]!==null&&y[S].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(y[S].annotations.leftEyeIris[3][0]-y[S].annotations.leftEyeIris[1][0]),Math.abs(y[S].annotations.rightEyeIris[4][1]-y[S].annotations.rightEyeIris[2][1]))/t.shape[2]:0,L1=(N1=e.config.face.detector)!=null&&N1.return?A.squeeze(y[S].tensor):null;A.dispose(y[S].tensor),y[S].tensor&&delete y[S].tensor;let P0={...y[S],id:S};l.age&&(P0.age=l.age),l.gender&&(P0.gender=l.gender),l.genderScore&&(P0.genderScore=l.genderScore),l.descriptor&&(P0.embedding=l.descriptor),l.race&&(P0.race=l.race),a&&(P0.emotion=a),x&&(P0.real=x),d&&(P0.live=d),J2&&J2!==0&&(P0.iris=Math.trunc(500/J2/11.7)/100),O1&&(P0.rotation=O1),L1&&(P0.tensor=L1),f.push(P0),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),f};var vo=e=>{if(!e)return[];let t=[];for(let o=0;oc.part==="leftWrist"),r=e[o].keypoints.find(c=>c.part==="rightWrist"),s=e[o].keypoints.find(c=>c.part==="nose");s&&n&&r&&n.position[1]c.part==="leftShoulder"),i=e[o].keypoints.find(c=>c.part==="rightShoulder");a&&i&&Math.abs(a.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:o,gesture:`leaning ${a.position[1]>i.position[1]?"left":"right"}`})}return t},Ro=e=>{if(!e)return[];let t=[];for(let o=0;o450){let n=(e[o].mesh[33][2]||0)-(e[o].mesh[263][2]||0),r=e[o].mesh[33][0]-e[o].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:o,gesture:"facing center"}):t.push({face:o,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[o].mesh[374][1]-e[o].mesh[386][1])/Math.abs(e[o].mesh[443][1]-e[o].mesh[450][1])<.2&&t.push({face:o,gesture:"blink left eye"}),Math.abs(e[o].mesh[145][1]-e[o].mesh[159][1])/Math.abs(e[o].mesh[223][1]-e[o].mesh[230][1])<.2&&t.push({face:o,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[o].mesh[13][1]-e[o].mesh[14][1])/Math.abs(e[o].mesh[10][1]-e[o].mesh[152][1]));i>10&&t.push({face:o,gesture:`mouth ${Math.trunc(i)}% open`});let c=e[o].mesh[152][2]||0;Math.abs(c)>10&&t.push({face:o,gesture:`head ${c<0?"up":"down"}`})}return t},Po=e=>{var o,n,r,s;if(!e)return[];let t=[];for(let a=0;a.06||M>.06)&&(y=!1),u>M?u>.05&&t.push({iris:a,gesture:"looking right"}):M>.05&&t.push({iris:a,gesture:"looking left"});let v=Math.abs(e[a].mesh[145][1]-e[a].annotations.rightEyeIris[0][1])/e[a].box[3],P=Math.abs(e[a].mesh[374][1]-e[a].annotations.leftEyeIris[0][1])/e[a].box[3];(P<.01||v<.01||P>.022||v>.022)&&(y=!1),(P<.01||v<.01)&&t.push({iris:a,gesture:"looking down"}),(P>.022||v>.022)&&t.push({iris:a,gesture:"looking up"}),y&&t.push({iris:a,gesture:"looking center"})}return t},To=e=>{if(!e)return[];let t=[];for(let o=0;o0){let r=n.reduce((a,i)=>(a.position[2]||0)<(i.position[2]||0)?a:i);t.push({hand:o,gesture:`${r.name} forward`});let s=n.reduce((a,i)=>a.position[1]((r-1)*E.body[b].box[I]+N)/r),B=e.body[b].boxRaw.map((N,I)=>((r-1)*E.body[b].boxRaw[I]+N)/r),j=e.body[b].keypoints.map((N,I)=>{var n0,x0,z0,S0,R0,X0,Be,He,De;return{score:N.score,part:N.part,position:[E.body[b].keypoints[I]?((r-1)*(E.body[b].keypoints[I].position[0]||0)+(N.position[0]||0))/r:N.position[0],E.body[b].keypoints[I]?((r-1)*(E.body[b].keypoints[I].position[1]||0)+(N.position[1]||0))/r:N.position[1],E.body[b].keypoints[I]?((r-1)*(E.body[b].keypoints[I].position[2]||0)+(N.position[2]||0))/r:N.position[2]],positionRaw:[E.body[b].keypoints[I]?((r-1)*(E.body[b].keypoints[I].positionRaw[0]||0)+(N.positionRaw[0]||0))/r:N.positionRaw[0],E.body[b].keypoints[I]?((r-1)*(E.body[b].keypoints[I].positionRaw[1]||0)+(N.positionRaw[1]||0))/r:N.positionRaw[1],E.body[b].keypoints[I]?((r-1)*(E.body[b].keypoints[I].positionRaw[2]||0)+(N.positionRaw[2]||0))/r:N.positionRaw[2]],distance:[E.body[b].keypoints[I]?((r-1)*(((n0=E.body[b].keypoints[I].distance)==null?void 0:n0[0])||0)+(((x0=N.distance)==null?void 0:x0[0])||0))/r:(z0=N.distance)==null?void 0:z0[0],E.body[b].keypoints[I]?((r-1)*(((S0=E.body[b].keypoints[I].distance)==null?void 0:S0[1])||0)+(((R0=N.distance)==null?void 0:R0[1])||0))/r:(X0=N.distance)==null?void 0:X0[1],E.body[b].keypoints[I]?((r-1)*(((Be=E.body[b].keypoints[I].distance)==null?void 0:Be[2])||0)+(((He=N.distance)==null?void 0:He[2])||0))/r:(De=N.distance)==null?void 0:De[2]]}}),O={},G={connected:{}};(a=t.body.modelPath)!=null&&a.includes("efficientpose")?G=R2:(i=t.body.modelPath)!=null&&i.includes("blazepose")?G=h2:(c=t.body.modelPath)!=null&&c.includes("movenet")&&(G=e2);for(let[N,I]of Object.entries(G.connected)){let n0=[];for(let x0=0;x0R0.part===I[x0]),S0=j.find(R0=>R0.part===I[x0+1]);z0&&S0&&n0.push([z0.position,S0.position])}O[N]=n0}E.body[b]={...e.body[b],box:W,boxRaw:B,keypoints:j,annotations:O}}if(!E.hand||e.hand.length!==E.hand.length)E.hand=JSON.parse(JSON.stringify(e.hand));else for(let b=0;b((r-1)*E.hand[b].box[N]+G)/r),B=e.hand[b].boxRaw.map((G,N)=>((r-1)*E.hand[b].boxRaw[N]+G)/r);E.hand[b].keypoints.length!==e.hand[b].keypoints.length&&(E.hand[b].keypoints=e.hand[b].keypoints);let j=e.hand[b].keypoints&&e.hand[b].keypoints.length>0?e.hand[b].keypoints.map((G,N)=>G.map((I,n0)=>((r-1)*(E.hand[b].keypoints[N][n0]||1)+(I||0))/r)):[],O={};if(Object.keys(E.hand[b].annotations).length!==Object.keys(e.hand[b].annotations).length)E.hand[b].annotations=e.hand[b].annotations,O=E.hand[b].annotations;else if(e.hand[b].annotations)for(let G of Object.keys(e.hand[b].annotations))O[G]=(l=(d=(x=e.hand[b])==null?void 0:x.annotations)==null?void 0:d[G])!=null&&l[0]?e.hand[b].annotations[G].map((N,I)=>N.map((n0,x0)=>((r-1)*E.hand[b].annotations[G][I][x0]+n0)/r)):null;E.hand[b]={...e.hand[b],box:W,boxRaw:B,keypoints:j,annotations:O}}if(!E.face||e.face.length!==E.face.length)E.face=JSON.parse(JSON.stringify(e.face));else for(let b=0;b((r-1)*E.face[b].box[O]+j)/r),B=e.face[b].boxRaw.map((j,O)=>((r-1)*E.face[b].boxRaw[O]+j)/r);if(e.face[b].rotation){let j={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};j.matrix=(f=e.face[b].rotation)==null?void 0:f.matrix,j.angle={roll:((r-1)*(((y=E.face[b].rotation)==null?void 0:y.angle.roll)||0)+(((m=e.face[b].rotation)==null?void 0:m.angle.roll)||0))/r,yaw:((r-1)*(((u=E.face[b].rotation)==null?void 0:u.angle.yaw)||0)+(((M=e.face[b].rotation)==null?void 0:M.angle.yaw)||0))/r,pitch:((r-1)*(((v=E.face[b].rotation)==null?void 0:v.angle.pitch)||0)+(((P=e.face[b].rotation)==null?void 0:P.angle.pitch)||0))/r},j.gaze={bearing:((r-1)*(((p=E.face[b].rotation)==null?void 0:p.gaze.bearing)||0)+(((h=e.face[b].rotation)==null?void 0:h.gaze.bearing)||0))/r,strength:((r-1)*(((z=E.face[b].rotation)==null?void 0:z.gaze.strength)||0)+(((k=e.face[b].rotation)==null?void 0:k.gaze.strength)||0))/r},E.face[b]={...e.face[b],rotation:j,box:W,boxRaw:B}}E.face[b]={...e.face[b],box:W,boxRaw:B}}if(!E.object||e.object.length!==E.object.length)E.object=JSON.parse(JSON.stringify(e.object));else for(let b=0;b((r-1)*E.object[b].box[O]+j)/r),B=e.object[b].boxRaw.map((j,O)=>((r-1)*E.object[b].boxRaw[O]+j)/r);E.object[b]={...e.object[b],box:W,boxRaw:B}}if(e.persons){let b=e.persons;if(!E.persons||b.length!==E.persons.length)E.persons=JSON.parse(JSON.stringify(b));else for(let W=0;W((r-1)*E.persons[W].box[j]+B)/r)}e.gesture&&(E.gesture=e.gesture);let s=R();return z1=T.perfadd?z1+Math.round(s-o):Math.round(s-o),e.performance&&(E.performance={...e.performance,interpolate:z1}),E}var Eo={};q0(Eo,{distance:()=>r2,match:()=>C1,similarity:()=>S1});function r2(e,t,o={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),s=(1-r/100-o)/(n-o);return Math.max(Math.min(s,1),0)};function S1(e,t,o={order:2,multiplier:25,min:.2,max:.8}){let n=r2(e,t,o);return ko(n,o.order||2,o.min||0,o.max||1)}function C1(e,t,o={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let a=0;ah.box[0]&&y.box[0]h.box[1]&&y.box[1]+y.box[3]m.body.box[0]&&h.box[0]+h.box[2]m.body.box[1]&&h.box[1]+h.box[3]m.body.box[0]&&h.box[1]+h.box[3]>m.body.box[1]&&h.box[1]+h.box[3]{h&&h.length===4&&(u.push(h[0],h[0]+h[2]),M.push(h[1],h[1]+h[3]))};v(m.face.box),v((d=m.body)==null?void 0:d.box),v((l=m.hands.left)==null?void 0:l.box),v((f=m.hands.right)==null?void 0:f.box);let P=Math.min(...u),p=Math.min(...M);m.box=[P,p,Math.max(...u)-P,Math.max(...M)-p],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(m.boxRaw=[m.box[0]/r[2],m.box[1]/r[1],m.box[2]/r[2],m.box[3]/r[1]]),a.push(m)}return a}var U2=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -827,5 +827,5 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;async function VA(e){let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(a=>a.blob()),o,n;switch(e.config.warmup){case"face":o=await t(U2);break;case"body":case"full":o=await t(Y2);break;default:o=null}if(o){let r=await createImageBitmap(o);n=await e.detect(r,e.config),r.close()}return n}async function ZA(e){return new Promise(t=>{let o;switch(e.config.warmup){case"face":o="data:image/jpeg;base64,"+U2;break;case"full":case"body":o="data:image/jpeg;base64,"+Y2;break;default:o=""}let n;if(typeof Image!="undefined")n=new Image;else if(T.Image)n=new T.Image;else return;n.onload=async()=>{let r=s0(n.naturalWidth,n.naturalHeight);if(!r)b("Warmup: Canvas not found"),t(void 0);else{let s=r.getContext("2d");s&&s.drawImage(n,0,0);let a=await e.image(r),i=a.tensor?await e.detect(a.tensor,e.config):void 0;t(i)}},o?n.src=o:t(void 0)})}async function XA(e){let t=r=>Buffer.from(r,"base64"),o;e.config.warmup==="face"?o=t(U2):o=t(Y2);let n;if("node"in A&&A.getBackend()==="tensorflow"){let r=A.node.decodeJpeg(o),s=A.expandDims(r,0);e.tf.dispose(r),n=await e.detect(s,e.config),e.tf.dispose(s)}else e.config.debug&&b("Warmup tfjs-node not loaded");return n}async function qA(e){let t;return typeof createImageBitmap=="function"?t=await VA(e):typeof Image!="undefined"||T.Canvas!==void 0?t=await ZA(e):t=await XA(e),t}async function UA(e){var i,c,x,d;if(!A.env().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=A.getBackend(),o=A.backend();if(t!=="webgl"&&t!=="humangl"||!(o!=null&&o.checkCompileCompletion))return;A.env().set("ENGINE_COMPILE_ONLY",!0);let n=A.engine().state.numTensors,r=[];for(let[l,f]of Object.entries(e).filter(([y,p])=>y!==null&&p!==null)){let y=(c=(i=f.inputs)==null?void 0:i[0])!=null&&c.shape?[...f.inputs[0].shape]:[1,64,64,3],p=(d=(x=f.inputs)==null?void 0:x[0])!=null&&d.dtype?f.inputs[0].dtype:"float32";for(let M=0;MA.dispose(R)):A.dispose(M)}catch(M){b("compile fail model:",l)}A.dispose(g)}let s=await o.checkCompileCompletionAsync();o.getUniformLocations(),b("compile pass models:",r),b("compile pass kernels:",s.length),A.env().set("ENGINE_COMPILE_ONLY",!1);let a=A.engine().state.numTensors;a-n>0&&b("tensor leak:",a-n)}async function zo(e,t){let o=v();return e.state="warmup",t&&(e.config=U(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:v(),persons:[],error:null}:new Promise(async n=>{await UA(e.models);let r=await qA(e),s=v();e.config.debug&&b("warmup",e.config.warmup,Math.round(s-o),"ms"),e.emit("warmup"),n(r)})}var Ge,A2,s2,K2,So=class{constructor(t){w(this,"version");w(this,"config");w(this,"result");w(this,"state");w(this,"process");w(this,"tf");w(this,"env");w(this,"draw");w(this,"models");w(this,"events");w(this,"faceTriangulation");w(this,"faceUVMap");w(this,"performance");Ze(this,Ge,void 0);Ze(this,A2,void 0);Ze(this,s2,void 0);w(this,"gl");w(this,"analyze",(...t)=>{if(!Ve(this,A2))return;let o=this.tf.engine().state.numTensors,n=Ve(this,Ge);Xe(this,Ge,o);let r=o-n;r!==0&&b(...t,r)});Ze(this,K2,t=>{if(!Ve(this,s2))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof be))return"input must be a tensor";try{this.tf.getBackend()}catch(o){return"backend not loaded"}return null});w(this,"similarity",z1);w(this,"distance",r2);w(this,"match",S1);w(this,"emit",t=>{var o;(o=this.events)!=null&&o.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=T;let o=(qe.tfjs||A.version_core).replace(/-(.*)/,"");Ae.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${o}/dist/`,Ae.modelBasePath=T.browser?"../models/":"file://models/",Ae.backend=T.browser?"humangl":"tensorflow",this.version=b1,Object.defineProperty(this,"version",{value:b1}),this.config=JSON.parse(JSON.stringify(Ae)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=U(this.config,t)),po(this.config),this.tf=A,this.state="idle",Xe(this,Ge,0),Xe(this,A2,!1),Xe(this,s2,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new n2,this.draw={options:A0,canvas:(n,r)=>P1(n,r),face:(n,r,s)=>je(n,r,s),body:(n,r,s)=>Oe(n,r,s),hand:(n,r,s)=>Ne(n,r,s),gesture:(n,r,s)=>We(n,r,s),object:(n,r,s)=>Le(n,r,s),person:(n,r,s)=>v1(n,r,s),all:(n,r,s)=>T1(n,r,s)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=x3,this.faceUVMap=y3,this.gl=D,Ie(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Ae)),this.config.backend=t}validate(t){return _2(Ae,t||this.config)}check(){return q2(this)}now(){return v()}image(t,o=!0){return Me(t,this.config,o)}async segmentation(t,o){return fo(t,o,this.config)}enhance(t){return H5(t)}compare(t,o){return Y1(this.config,t,o)}async init(){await O2(this,!0),await this.tf.ready()}async load(t){this.state="load";let o=v(),n=Object.values(this.models).filter(a=>a).length;t&&(this.config=U(this.config,t)),this.env.initial&&(this.config.debug&&b(`version: ${this.version}`),this.config.debug&&b(`tfjs version: ${this.tf.version["tfjs-core"]}`),await O2(this)||b("error: backend check failed"),await A.ready(),this.env.browser&&(this.config.debug&&b("configuration:",this.config),this.config.debug&&b("environment:",this.env),this.config.debug&&b("tf flags:",this.tf.ENV.flags))),await h1(this),this.env.initial&&this.config.debug&&b("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(a=>a).length!==n&&(q2(this),this.emit("load"));let s=Math.trunc(v()-o);s>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+s:s)}next(t=this.result){return To(t,this.config)}getModelStats(){return u1(this)}async warmup(t){let o=v(),n=await zo(this,t),r=v();return this.performance.warmup=Math.trunc(r-o),n}async profile(t,o){let n=await this.tf.profile(()=>this.detect(t,o)),r={},s=0;for(let i of n.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs,s+=i.kernelTimeMs;let a=[];Object.entries(r).forEach(i=>a.push({kernel:i[0],time:i[1],perc:0}));for(let i of a)i.perc=Math.round(1e3*i.time/s)/1e3,i.time=Math.round(1e3*i.time)/1e3;return a.sort((i,c)=>c.time-i.time),a.length=20,a}async detect(t,o){return this.state="detect",new Promise(async n=>{var M,R,P,m,u,z,k,h,W,B,j,N,G,O,I,n0,x0,E0,z0,R0,X0;this.state="config";let r;this.config=U(this.config,o),this.state="check";let s=Ve(this,K2).call(this,t);s&&(b(s,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:s}));let a=v();await O2(this),await this.load(),r=v(),this.state="image";let i=await Me(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&b("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=v(),this.config.skipAllowed=await U1(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Check Changed:");let c=[],x=[],d=[],l=[];this.state="detect:face",this.config.async?(c=this.config.face.enabled?k1(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=v(),c=this.config.face.enabled?await k1(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(c=await c),this.analyze("Start Body:"),this.state="detect:body";let f=this.config.body.maxDetected===-1?U(this.config,{body:{maxDetected:this.config.face.enabled?1*c.length:1}}):this.config;this.config.async?((M=this.config.body.modelPath)!=null&&M.includes("posenet")?x=this.config.body.enabled?f1(i.tensor,f):[]:(R=this.config.body.modelPath)!=null&&R.includes("blazepose")?x=this.config.body.enabled?v5(i.tensor,f):[]:(P=this.config.body.modelPath)!=null&&P.includes("efficientpose")?x=this.config.body.enabled?S5(i.tensor,f):[]:(m=this.config.body.modelPath)!=null&&m.includes("movenet")&&(x=this.config.body.enabled?a1(i.tensor,f):[]),this.performance.body&&delete this.performance.body):(r=v(),(u=this.config.body.modelPath)!=null&&u.includes("posenet")?x=this.config.body.enabled?await f1(i.tensor,f):[]:(z=this.config.body.modelPath)!=null&&z.includes("blazepose")?x=this.config.body.enabled?await v5(i.tensor,f):[]:(k=this.config.body.modelPath)!=null&&k.includes("efficientpose")?x=this.config.body.enabled?await S5(i.tensor,f):[]:(h=this.config.body.modelPath)!=null&&h.includes("movenet")&&(x=this.config.body.enabled?await a1(i.tensor,f):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let y=this.config.hand.maxDetected===-1?U(this.config,{hand:{maxDetected:this.config.face.enabled?2*c.length:1}}):this.config;this.config.async?((B=(W=this.config.hand.detector)==null?void 0:W.modelPath)!=null&&B.includes("handdetect")?d=this.config.hand.enabled?Y5(i.tensor,y):[]:(N=(j=this.config.hand.detector)==null?void 0:j.modelPath)!=null&&N.includes("handtrack")&&(d=this.config.hand.enabled?$5(i.tensor,y):[]),this.performance.hand&&delete this.performance.hand):(r=v(),(O=(G=this.config.hand.detector)==null?void 0:G.modelPath)!=null&&O.includes("handdetect")?d=this.config.hand.enabled?await Y5(i.tensor,y):[]:(n0=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&n0.includes("handtrack")&&(d=this.config.hand.enabled?await $5(i.tensor,y):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((x0=this.config.object.modelPath)!=null&&x0.includes("nanodet")?l=this.config.object.enabled?l1(i.tensor,this.config):[]:(E0=this.config.object.modelPath)!=null&&E0.includes("centernet")&&(l=this.config.object.enabled?w5(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=v(),(z0=this.config.object.modelPath)!=null&&z0.includes("nanodet")?l=this.config.object.enabled?await l1(i.tensor,this.config):[]:(R0=this.config.object.modelPath)!=null&&R0.includes("centernet")&&(l=this.config.object.enabled?await w5(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([c,x,d,l]=await Promise.all([c,x,d,l])),this.state="detect:gesture";let p=[];this.config.gesture.enabled&&(r=v(),p=[...Ro(c),...Mo(x),...Po(d),...vo(c)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(v()-a):Math.trunc(v()-a);let g=((X0=this.process.tensor)==null?void 0:X0.shape)||[];this.result={face:c,body:x,hand:d,gesture:p,object:l,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return Eo(c,x,d,p,g)}},A.dispose(i.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};Ge=new WeakMap,A2=new WeakMap,s2=new WeakMap,K2=new WeakMap;export{So as Human,So as default,Ae as defaults,ho as draw,T as env,ko as match,J5 as models}; +2Q==`;async function ZA(e){let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(a=>a.blob()),o,n;switch(e.config.warmup){case"face":o=await t(U2);break;case"body":case"full":o=await t(Y2);break;default:o=null}if(o){let r=await createImageBitmap(o);n=await e.detect(r,e.config),r.close()}return n}async function XA(e){return new Promise(t=>{let o;switch(e.config.warmup){case"face":o="data:image/jpeg;base64,"+U2;break;case"full":case"body":o="data:image/jpeg;base64,"+Y2;break;default:o=""}let n;if(typeof Image!="undefined")n=new Image;else if(T.Image)n=new T.Image;else return;n.onload=async()=>{let r=s0(n.naturalWidth,n.naturalHeight);if(!r)g("Warmup: Canvas not found"),t(void 0);else{let s=r.getContext("2d");s&&s.drawImage(n,0,0);let a=await e.image(r),i=a.tensor?await e.detect(a.tensor,e.config):void 0;t(i)}},o?n.src=o:t(void 0)})}async function qA(e){let t=r=>Buffer.from(r,"base64"),o;e.config.warmup==="face"?o=t(U2):o=t(Y2);let n;if("node"in A&&A.getBackend()==="tensorflow"){let r=A.node.decodeJpeg(o),s=A.expandDims(r,0);e.tf.dispose(r),n=await e.detect(s,e.config),e.tf.dispose(s)}else e.config.debug&&g("Warmup tfjs-node not loaded");return n}async function UA(e){let t;return typeof createImageBitmap=="function"?t=await ZA(e):typeof Image!="undefined"||T.Canvas!==void 0?t=await XA(e):t=await qA(e),t}async function YA(e){var i,c,x,d;if(!A.env().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=A.getBackend(),o=A.backend();if(t!=="webgl"&&t!=="humangl"||!(o!=null&&o.checkCompileCompletion))return;A.env().set("ENGINE_COMPILE_ONLY",!0);let n=A.engine().state.numTensors,r=[];for(let[l,f]of Object.entries(e).filter(([y,m])=>y!==null&&m!==null)){let y=(c=(i=f.inputs)==null?void 0:i[0])!=null&&c.shape?[...f.inputs[0].shape]:[1,64,64,3],m=(d=(x=f.inputs)==null?void 0:x[0])!=null&&d.dtype?f.inputs[0].dtype:"float32";for(let M=0;MA.dispose(v)):A.dispose(M)}catch(M){g("compile fail model:",l)}A.dispose(u)}let s=await o.checkCompileCompletionAsync();o.getUniformLocations(),g("compile pass models:",r),g("compile pass kernels:",s.length),A.env().set("ENGINE_COMPILE_ONLY",!1);let a=A.engine().state.numTensors;a-n>0&&g("tensor leak:",a-n)}async function So(e,t){let o=R();return e.state="warmup",t&&(e.config=U(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:R(),persons:[],error:null}:new Promise(async n=>{await YA(e.models);let r=await UA(e),s=R();e.config.debug&&g("warmup",e.config.warmup,Math.round(s-o),"ms"),e.emit("warmup"),n(r)})}var Ge,A2,s2,K2,Co=class{constructor(t){w(this,"version");w(this,"config");w(this,"result");w(this,"state");w(this,"process");w(this,"tf");w(this,"env");w(this,"draw");w(this,"models");w(this,"events");w(this,"faceTriangulation");w(this,"faceUVMap");w(this,"performance");Ze(this,Ge,void 0);Ze(this,A2,void 0);Ze(this,s2,void 0);w(this,"gl");w(this,"analyze",(...t)=>{if(!Ve(this,A2))return;let o=this.tf.engine().state.numTensors,n=Ve(this,Ge);Xe(this,Ge,o);let r=o-n;r!==0&&g(...t,r)});Ze(this,K2,t=>{if(!Ve(this,s2))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof be))return"input must be a tensor";try{this.tf.getBackend()}catch(o){return"backend not loaded"}return null});w(this,"similarity",S1);w(this,"distance",r2);w(this,"match",C1);w(this,"emit",t=>{var o;(o=this.events)!=null&&o.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=T;let o=(qe.tfjs||A.version_core).replace(/-(.*)/,"");Ae.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${o}/dist/`,Ae.modelBasePath=T.browser?"../models/":"file://models/",Ae.backend=T.browser?"humangl":"tensorflow",this.version=g1,Object.defineProperty(this,"version",{value:g1}),this.config=JSON.parse(JSON.stringify(Ae)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=U(this.config,t)),uo(this.config),this.tf=A,this.state="idle",Xe(this,Ge,0),Xe(this,A2,!1),Xe(this,s2,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new n2,this.draw={options:A0,canvas:(n,r)=>T1(n,r),face:(n,r,s)=>je(n,r,s),body:(n,r,s)=>Ne(n,r,s),hand:(n,r,s)=>Oe(n,r,s),gesture:(n,r,s)=>We(n,r,s),object:(n,r,s)=>Le(n,r,s),person:(n,r,s)=>P1(n,r,s),all:(n,r,s)=>w1(n,r,s)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=y3,this.faceUVMap=d3,this.gl=D,Ie(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Ae)),this.config.backend=t,o5(),T.initial=!0}validate(t){let o=_2(Ae,t||this.config);return o.length===0&&(this.config=U(this.config,t)),o}check(){return q2(this)}now(){return R()}image(t,o=!0){return Me(t,this.config,o)}async segmentation(t,o){return mo(t,o,this.config)}enhance(t){return D5(t)}compare(t,o){return K1(this.config,t,o)}async init(){await N2(this,!0),await this.tf.ready(),o5()}async load(t){this.state="load";let o=R(),n=Object.values(this.models).filter(a=>a).length;t&&(this.config=U(this.config,t)),this.env.initial&&(this.config.debug&&g(`version: ${this.version}`),this.config.debug&&g(`tfjs version: ${this.tf.version["tfjs-core"]}`),await N2(this)||g("error: backend check failed"),await A.ready(),this.env.browser&&(this.config.debug&&g("configuration:",this.config),this.config.debug&&g("environment:",this.env),this.config.debug&&g("tf flags:",this.tf.ENV.flags))),await b1(this),this.env.initial&&this.config.debug&&g("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(a=>a).length!==n&&(q2(this),this.emit("load"));let s=Math.trunc(R()-o);s>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+s:s)}next(t=this.result){return wo(t,this.config)}getModelStats(){return h1(this)}async warmup(t){let o=R(),n=await So(this,t),r=R();return this.performance.warmup=Math.trunc(r-o),n}async profile(t,o){let n=await this.tf.profile(()=>this.detect(t,o)),r={},s=0;for(let i of n.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs,s+=i.kernelTimeMs;let a=[];Object.entries(r).forEach(i=>a.push({kernel:i[0],time:i[1],perc:0}));for(let i of a)i.perc=Math.round(1e3*i.time/s)/1e3,i.time=Math.round(1e3*i.time)/1e3;return a.sort((i,c)=>c.time-i.time),a.length=20,a}async detect(t,o){return this.state="detect",new Promise(async n=>{var M,v,P,p,h,z,k,b,W,B,j,O,G,N,I,n0,x0,z0,S0,R0,X0;this.state="config";let r;this.config=U(this.config,o),this.state="check";let s=Ve(this,K2).call(this,t);s&&(g(s,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:R(),persons:[],error:s}));let a=R();await N2(this),await this.load(),r=R(),this.state="image";let i=await Me(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(R()-r):Math.trunc(R()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&g("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:R(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=R(),this.config.skipAllowed=await Y1(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(R()-r):Math.trunc(R()-r),this.analyze("Check Changed:");let c=[],x=[],d=[],l=[];this.state="detect:face",this.config.async?(c=this.config.face.enabled?E1(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=R(),c=this.config.face.enabled?await E1(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(R()-r):Math.trunc(R()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(c=await c),this.analyze("Start Body:"),this.state="detect:body";let f=this.config.body.maxDetected===-1?U(this.config,{body:{maxDetected:this.config.face.enabled?1*c.length:1}}):this.config;this.config.async?((M=this.config.body.modelPath)!=null&&M.includes("posenet")?x=this.config.body.enabled?m1(i.tensor,f):[]:(v=this.config.body.modelPath)!=null&&v.includes("blazepose")?x=this.config.body.enabled?P5(i.tensor,f):[]:(P=this.config.body.modelPath)!=null&&P.includes("efficientpose")?x=this.config.body.enabled?C5(i.tensor,f):[]:(p=this.config.body.modelPath)!=null&&p.includes("movenet")&&(x=this.config.body.enabled?i1(i.tensor,f):[]),this.performance.body&&delete this.performance.body):(r=R(),(h=this.config.body.modelPath)!=null&&h.includes("posenet")?x=this.config.body.enabled?await m1(i.tensor,f):[]:(z=this.config.body.modelPath)!=null&&z.includes("blazepose")?x=this.config.body.enabled?await P5(i.tensor,f):[]:(k=this.config.body.modelPath)!=null&&k.includes("efficientpose")?x=this.config.body.enabled?await C5(i.tensor,f):[]:(b=this.config.body.modelPath)!=null&&b.includes("movenet")&&(x=this.config.body.enabled?await i1(i.tensor,f):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(R()-r):Math.trunc(R()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let y=this.config.hand.maxDetected===-1?U(this.config,{hand:{maxDetected:this.config.face.enabled?2*c.length:1}}):this.config;this.config.async?((B=(W=this.config.hand.detector)==null?void 0:W.modelPath)!=null&&B.includes("handdetect")?d=this.config.hand.enabled?K5(i.tensor,y):[]:(O=(j=this.config.hand.detector)==null?void 0:j.modelPath)!=null&&O.includes("handtrack")&&(d=this.config.hand.enabled?e1(i.tensor,y):[]),this.performance.hand&&delete this.performance.hand):(r=R(),(N=(G=this.config.hand.detector)==null?void 0:G.modelPath)!=null&&N.includes("handdetect")?d=this.config.hand.enabled?await K5(i.tensor,y):[]:(n0=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&n0.includes("handtrack")&&(d=this.config.hand.enabled?await e1(i.tensor,y):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(R()-r):Math.trunc(R()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((x0=this.config.object.modelPath)!=null&&x0.includes("nanodet")?l=this.config.object.enabled?c1(i.tensor,this.config):[]:(z0=this.config.object.modelPath)!=null&&z0.includes("centernet")&&(l=this.config.object.enabled?k5(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=R(),(S0=this.config.object.modelPath)!=null&&S0.includes("nanodet")?l=this.config.object.enabled?await c1(i.tensor,this.config):[]:(R0=this.config.object.modelPath)!=null&&R0.includes("centernet")&&(l=this.config.object.enabled?await k5(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(R()-r):Math.trunc(R()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([c,x,d,l]=await Promise.all([c,x,d,l])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(r=R(),m=[...Ro(c),...vo(x),...To(d),...Po(c)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(R()-r):Math.trunc(R()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(R()-a):Math.trunc(R()-a);let u=((X0=this.process.tensor)==null?void 0:X0.shape)||[];this.result={face:c,body:x,hand:d,gesture:m,object:l,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return zo(c,x,d,m,u)}},A.dispose(i.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};Ge=new WeakMap,A2=new WeakMap,s2=new WeakMap,K2=new WeakMap;export{Co as Human,Co as default,Ae as defaults,bo as draw,T as env,Eo as match,Q5 as models}; //# sourceMappingURL=human.esm-nobundle.js.map diff --git a/dist/human.esm-nobundle.js.map b/dist/human.esm-nobundle.js.map index cfad2409..b9118c33 100644 --- a/dist/human.esm-nobundle.js.map +++ b/dist/human.esm-nobundle.js.map @@ -1,7 +1,7 @@ { "version": 3, "sources": ["../src/util/util.ts", "../src/config.ts", "tfjs.esm.js", "../src/image/imagefxshaders.ts", "../src/image/imagefx.ts", "../src/image/enhance.ts", "../src/image/image.ts", "../src/util/env.ts", "../src/models.ts", "../src/gear/gear.ts", "../src/tfjs/constants.ts", "../src/gear/ssrnet-age.ts", "../src/gear/ssrnet-gender.ts", "../src/face/antispoof.ts", "../src/face/facemeshcoords.ts", "../src/face/facemeshutil.ts", "../src/face/blazeface.ts", "../src/body/blazeposecoords.ts", "../src/body/blazeposedetector.ts", "../src/util/box.ts", "../src/body/blazepose.ts", "../src/object/labels.ts", "../src/object/centernet.ts", "../src/body/efficientposecoords.ts", "../src/body/efficientpose.ts", "../src/gear/emotion.ts", "../src/face/mobilefacenet.ts", "../src/face/insightface.ts", "../src/face/iris.ts", "../src/face/constants.ts", "../src/face/attention.ts", "../src/face/facemesh.ts", "../src/face/faceres.ts", "../src/hand/handposeutil.ts", "../src/hand/handposeanchors.ts", "../src/hand/handposedetector.ts", "../src/hand/handposepipeline.ts", "../src/hand/fingerdef.ts", "../src/hand/fingergesture.ts", "../src/hand/fingerpose.ts", "../src/hand/handpose.ts", "../src/tfjs/humangl.ts", "../src/tfjs/backend.ts", "../src/hand/handtrack.ts", "../src/face/liveness.ts", "../src/body/movenetcoords.ts", "../src/body/movenetfix.ts", "../src/body/movenet.ts", "../src/object/nanodet.ts", "../src/body/posenetutils.ts", "../src/body/posenet.ts", "../src/segmentation/segmentation.ts", "../src/tfjs/load.ts", "../src/draw/draw.ts", "../src/draw/primitives.ts", "../src/draw/options.ts", "../src/draw/face.ts", "../src/draw/body.ts", "../src/draw/hand.ts", "../src/draw/object.ts", "../src/draw/gesture.ts", "../src/face/mask.ts", "../src/face/angles.ts", "../src/face/face.ts", "../src/gesture/gesture.ts", "../src/util/interpolate.ts", "../src/face/match.ts", "../src/util/persons.ts", "../src/sample.ts", "../src/warmup.ts", "../src/human.ts"], - "sourcesContent": ["import type { Config } from '../exports';\n\n/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n if (msg) console.log(ts, 'Human:', ...msg); // eslint-disable-line no-console\n}\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`modelpath error: expecting json file: ${path}`);\n return path;\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: checks current config validity\nexport function validate(defaults: Partial, config: Partial, parent = 'config', msgs: { reason: string, where: string, expected?: string }[] = []) {\n for (const key of Object.keys(config)) {\n if (typeof config[key] === 'object') {\n validate(defaults[key], config[key], key, msgs);\n } else {\n const defined = defaults && (typeof defaults[key] !== 'undefined');\n if (!defined) msgs.push({ reason: 'unknown property', where: `${parent}.${key} = ${config[key]}` });\n const same = defaults && typeof defaults[key] === typeof config[key];\n if (defined && !same) msgs.push({ reason: 'property type mismatch', where: `${parent}.${key} = ${config[key]}`, expected: typeof defaults[key] });\n }\n // ok = ok && defined && same;\n }\n if (config.debug && parent === 'config' && msgs.length > 0) log('invalid configuration', msgs);\n return msgs;\n}\n\n// helper function: perform deep merge of multiple objects so it allows full inheritance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: number[]) => data.reduce((acc: number[], val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n\n// helper function: async wait\nexport async function wait(time: number) {\n const waiting = new Promise((resolve) => { setTimeout(() => resolve(true), time); });\n await waiting;\n}\n", "/* eslint-disable no-multi-spaces */\n\n/** Generic config type inherited by all module types */\nexport interface GenericConfig {\n /** is module enabled? */\n enabled: boolean,\n /** path to model json file (relative to `modelBasePath` */\n modelPath: string,\n /** how many max frames to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipFrames: number,\n /** how many max milliseconds to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipTime: number,\n}\n\n/** Detector part of face configuration */\nexport interface FaceDetectorConfig extends GenericConfig {\n /** is face rotation correction performed after detecting face?\n * used to correctly analyze faces under high angles\n */\n rotation: boolean,\n /** maximum number of detected faces */\n maxDetected: number,\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected faces before one is discarded */\n iouThreshold: number,\n /** should child models perform on masked image of a face */\n mask: boolean,\n /** should face detection return processed and cropped face tensor that can with an external model for addtional processing?\n * if enabled it must be manually deallocated to avoid memory leak */\n return: boolean,\n}\n\n/** Mesh part of face configuration */\nexport interface FaceMeshConfig extends GenericConfig {\n /** Keep detected faces that cannot be verified using facemesh */\n keepInvalid: boolean\n}\n\n/** Iris part of face configuration */\nexport interface FaceIrisConfig extends GenericConfig {}\n\n/** Attention part of face configuration */\nexport interface FaceAttentionConfig extends GenericConfig {}\n\n/** Description or face embedding part of face configuration\n * - also used by age and gender detection\n */\nexport interface FaceDescriptionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Emotion part of face configuration */\nexport interface FaceEmotionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Anti-spoofing part of face configuration */\nexport interface FaceAntiSpoofConfig extends GenericConfig {}\n\n/** Liveness part of face configuration */\nexport interface FaceLivenessConfig extends GenericConfig {}\n\n/** Gear part of face configuration */\nexport interface FaceGearConfig extends GenericConfig {\n /** minimum confidence for a detected race before results are discarded */\n minConfidence: number,\n}\n\n/** Configures all face-specific options: face detection, mesh analysis, age, gender, emotion detection and face description */\nexport interface FaceConfig extends GenericConfig {\n detector: Partial,\n mesh: Partial,\n attention: Partial,\n iris: Partial,\n description: Partial,\n emotion: Partial,\n antispoof: Partial,\n liveness: Partial,\n gear: Partial,\n}\n\n/** Configures all body detection specific options */\nexport interface BodyConfig extends GenericConfig {\n /** maximum number of detected bodies */\n maxDetected: number,\n /** minimum confidence for a detected body before results are discarded */\n minConfidence: number,\n /* experimental\n /** experimental: detector used for body model before actual analysis\n detector?: {\n /** experimental: enable body detector before body landmarks\n enabled: boolean,\n /** experimental: path to optional body detector model json file\n modelPath: string,\n /** experimental: minimum confidence for a detected body before results are discarded\n minConfidence: number,\n /** experimental: minimum overlap between two detected bodies before one is discarded\n iouThreshold: number\n },\n */\n}\n\n/** Configures all hand detection specific options */\nexport interface HandConfig extends GenericConfig {\n /** should hand rotation correction be performed after hand detection? */\n rotation: boolean,\n /** minimum confidence for a detected hand before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected hands before one is discarded */\n iouThreshold: number,\n /** maximum number of detected hands */\n maxDetected: number,\n /** should hand landmarks be detected or just return detected hand box */\n landmarks: boolean,\n detector: {\n /** path to hand detector model json */\n modelPath?: string,\n },\n skeleton: {\n /** path to hand skeleton model json */\n modelPath?: string,\n },\n}\n\n/** Configures all object detection specific options */\nexport interface ObjectConfig extends GenericConfig {\n /** minimum confidence for a detected objects before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected objects before one is discarded */\n iouThreshold: number,\n /** maximum number of detected objects */\n maxDetected: number,\n}\n\n/** Configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n*/\nexport interface SegmentationConfig extends GenericConfig {\n /** blur segmentation output by pixels for more realistic image */\n blur: number,\n}\n\n/** Run input through image filters before inference\n * - available only in Browser environments\n * - image filters run with near-zero latency as they are executed on the GPU using WebGL\n*/\nexport interface FilterConfig {\n /** are image filters enabled? */\n enabled: boolean,\n /** perform image histogram equalization\n * - equalization is performed on input as a whole and detected face before its passed for further analysis\n */\n equalization: boolean,\n /** resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** return processed canvas imagedata in result */\n return: boolean,\n /** flip input as mirror image */\n flip: boolean,\n /** range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** image negative */\n negative: boolean,\n /** image sepia colors */\n sepia: boolean,\n /** image vintage colors */\n vintage: boolean,\n /** image kodachrome colors */\n kodachrome: boolean,\n /** image technicolor colors */\n technicolor: boolean,\n /** image polaroid camera effect */\n polaroid: boolean,\n /** range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n}\n\n/** Controlls gesture detection */\nexport interface GestureConfig {\n /** is gesture detection enabled? */\n enabled: boolean,\n}\n/** Possible TensorFlow backends */\nexport type BackendType = ['cpu', 'wasm', 'webgl', 'humangl', 'tensorflow', 'webgpu'];\n\n/** Possible values for `human.warmup` */\nexport type WarmupType = ['' | 'none' | 'face' | 'full' | 'body'];\n\n/**\n * Configuration interface definition for **Human** library\n * Contains all configurable parameters\n * Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\nexport interface Config {\n /** Backend used for TFJS operations\n * valid build-in backends are:\n * - Browser: `cpu`, `wasm`, `webgl`, `humangl`, `webgpu`\n * - NodeJS: `cpu`, `wasm`, `tensorflow`\n * default: `humangl` for browser and `tensorflow` for nodejs\n */\n backend: '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm`\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPath: string,\n\n /** Force WASM loader to use platform fetch\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPlatformFetch: boolean,\n\n /** Print debug statements to console\n *\n * default: `true`\n */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially\n *\n * default: `true`\n */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - used by `webgl`, `humangl` and `webgpu` backends\n *\n * default: `full`\n */\n warmup: '' | 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n *\n * default: `../models/` for browsers and `file://models/` for nodejs\n */\n modelBasePath: string,\n\n /** Cache models in IndexDB on first sucessfull load\n * default: true if indexdb is available (browsers), false if its not (nodejs)\n */\n cacheModels: boolean,\n\n /** Validate kernel ops used in model during model load\n * default: true\n * any errors will be printed on console but will be treated as non-fatal\n */\n validateModels: boolean,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n *\n * default: 0.7\n */\n cacheSensitivity: number;\n\n /** Software Kernels\n * Registers software kernel ops running on CPU when accelerated version of kernel is not found in the current backend\n */\n softwareKernels: boolean,\n\n /** Perform immediate garbage collection on deallocated tensors instead of caching them */\n deallocate: boolean;\n\n /** Internal Variable */\n skipAllowed: boolean;\n\n /** Filter config {@link FilterConfig} */\n filter: Partial,\n\n /** Gesture config {@link GestureConfig} */\n gesture: Partial;\n\n /** Face config {@link FaceConfig} */\n face: Partial,\n\n /** Body config {@link BodyConfig} */\n body: Partial,\n\n /** Hand config {@link HandConfig} */\n hand: Partial,\n\n /** Object config {@link ObjectConfig} */\n object: Partial,\n\n /** Segmentation config {@link SegmentationConfig} */\n segmentation: Partial,\n}\n\n/** - [See all default Config values...](https://github.com/vladmandic/human/blob/main/src/config.ts#L262) */\nconst config: Config = {\n backend: '',\n modelBasePath: '',\n cacheModels: true,\n validateModels: true,\n wasmPath: '',\n wasmPlatformFetch: false,\n debug: false,\n async: true,\n warmup: 'full',\n cacheSensitivity: 0.70,\n skipAllowed: false,\n deallocate: false,\n softwareKernels: false,\n filter: {\n enabled: true,\n equalization: false,\n width: 0,\n height: 0,\n flip: false,\n return: true,\n brightness: 0,\n contrast: 0,\n sharpness: 0,\n blur: 0,\n saturation: 0,\n hue: 0,\n negative: false,\n sepia: false,\n vintage: false,\n kodachrome: false,\n technicolor: false,\n polaroid: false,\n pixelate: 0,\n },\n gesture: {\n enabled: true,\n },\n face: {\n enabled: true,\n detector: {\n modelPath: 'blazeface.json',\n rotation: true,\n maxDetected: 1,\n skipFrames: 99,\n skipTime: 2500,\n minConfidence: 0.2,\n iouThreshold: 0.1,\n mask: false,\n return: false,\n },\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json',\n keepInvalid: false,\n },\n attention: {\n enabled: false,\n modelPath: 'facemesh-attention.json',\n },\n iris: {\n enabled: true,\n modelPath: 'iris.json',\n },\n emotion: {\n enabled: true,\n minConfidence: 0.1,\n skipFrames: 99,\n skipTime: 1500,\n modelPath: 'emotion.json',\n },\n description: {\n enabled: true,\n modelPath: 'faceres.json',\n skipFrames: 99,\n skipTime: 3000,\n minConfidence: 0.1,\n },\n antispoof: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'antispoof.json',\n },\n liveness: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'liveness.json',\n },\n },\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json',\n maxDetected: -1,\n minConfidence: 0.3,\n skipFrames: 1,\n skipTime: 200,\n },\n hand: {\n enabled: true,\n rotation: true,\n skipFrames: 99,\n skipTime: 1000,\n minConfidence: 0.50,\n iouThreshold: 0.2,\n maxDetected: -1,\n landmarks: true,\n detector: {\n modelPath: 'handtrack.json',\n },\n skeleton: {\n modelPath: 'handlandmark-full.json',\n },\n },\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json',\n minConfidence: 0.2,\n iouThreshold: 0.4,\n maxDetected: 10,\n skipFrames: 99,\n skipTime: 2000,\n },\n segmentation: {\n enabled: false,\n modelPath: 'selfie.json',\n blur: 8,\n },\n};\n\nexport { config as defaults };\n", "/*\n Human\n homepage: \n author: '\n*/\n\nexport*from\"@tensorflow/tfjs/dist/index.js\";export*from\"@tensorflow/tfjs-backend-webgl/dist/index.js\";var r=\"3.20.0\",e=\"3.20.0\",o=\"3.20.0\",a=\"3.20.0\",t=\"3.20.0\",s=\"3.20.0\",f=\"3.20.0\",v={tfjs:r,\"tfjs-core\":e,\"tfjs-data\":o,\"tfjs-layers\":a,\"tfjs-converter\":t,\"tfjs-backend-webgl\":s,\"tfjs-backend-wasm\":f};import{Tensor as d}from\"@tensorflow/tfjs/dist/index.js\";import{GraphModel as b}from\"@tensorflow/tfjs-converter/dist/index\";export{b as GraphModel,d as Tensor,v as version};\n", "export const vertexIdentity = `\n precision highp float;\n attribute vec2 pos;\n attribute vec2 uv;\n varying vec2 vUv;\n uniform float flipY;\n void main(void) {\n vUv = uv;\n gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);\n }\n`;\n\nexport const fragmentIdentity = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n void main(void) {\n gl_FragColor = texture2D(texture, vUv);\n }\n`;\n\nexport const colorMatrixWithAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];\n gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];\n }\n`;\n\nexport const colorMatrixWithoutAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];\n gl_FragColor.a = c.a;\n }\n`;\n\nexport const pixelate = `\n precision highp float;\n varying vec2 vUv;\n uniform vec2 size;\n uniform sampler2D texture;\n vec2 pixelate(vec2 coord, vec2 size) {\n return floor( coord / size ) * size;\n }\n void main(void) {\n gl_FragColor = vec4(0.0);\n vec2 coord = pixelate(vUv, size);\n gl_FragColor += texture2D(texture, coord);\n }\n`;\n\nexport const blur = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n void main(void) {\n gl_FragColor = vec4(0.0);\n gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;\n gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv )*0.159576912161;\n gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;\n }\n`;\n\nexport const convolution = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n uniform float m[9];\n void main(void) {\n vec4 c11 = texture2D(texture, vUv - px); // top left\n vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center\n vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right\n vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left\n vec4 c22 = texture2D(texture, vUv); // mid center\n vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right\n vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left\n vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center\n vec4 c33 = texture2D(texture, vUv + px ); // bottom right\n gl_FragColor = \n c11 * m[0] + c12 * m[1] + c22 * m[2] +\n c21 * m[3] + c22 * m[4] + c23 * m[5] +\n c31 * m[6] + c32 * m[7] + c33 * m[8];\n gl_FragColor.a = c22.a;\n }\n`;\n", "/**\n * Image Filters in WebGL algoritm implementation\n * Based on: [WebGLImageFilter](https://github.com/phoboslab/WebGLImageFilter)\n */\n\n/* eslint-disable func-names */\n\nimport * as shaders from './imagefxshaders';\nimport { canvas } from './image';\nimport { log } from '../util/util';\n\nconst collect = (source, prefix: string, collection) => {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n};\n\nclass GLProgram {\n uniform = {};\n attribute = {};\n gl: WebGLRenderingContext;\n id: WebGLProgram;\n\n constructor(gl, vertexSource, fragmentSource) {\n this.gl = gl;\n const vertexShader = this.compile(vertexSource, this.gl.VERTEX_SHADER);\n const fragmentShader = this.compile(fragmentSource, this.gl.FRAGMENT_SHADER);\n this.id = this.gl.createProgram() as WebGLProgram;\n if (!vertexShader || !fragmentShader) return;\n if (!this.id) {\n log('filter: could not create webgl program');\n return;\n }\n this.gl.attachShader(this.id, vertexShader);\n this.gl.attachShader(this.id, fragmentShader);\n this.gl.linkProgram(this.id);\n if (!this.gl.getProgramParameter(this.id, this.gl.LINK_STATUS)) {\n log(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id) || 'unknown'}`);\n return;\n }\n this.gl.useProgram(this.id);\n collect(vertexSource, 'attribute', this.attribute); // Collect attributes\n for (const a in this.attribute) this.attribute[a] = this.gl.getAttribLocation(this.id, a);\n collect(vertexSource, 'uniform', this.uniform); // Collect uniforms\n collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = this.gl.getUniformLocation(this.id, u);\n }\n\n compile = (source, type): WebGLShader | null => {\n const shader = this.gl.createShader(type);\n if (!shader) {\n log('filter: could not create shader');\n return null;\n }\n this.gl.shaderSource(shader, source);\n this.gl.compileShader(shader);\n if (!this.gl.getShaderParameter(shader, this.gl.COMPILE_STATUS)) {\n log(`filter: gl compile failed: ${this.gl.getShaderInfoLog(shader) || 'unknown'}`);\n return null;\n }\n return shader;\n };\n}\n\n// function that is instantiated as class so it has private this members\n/**\n * @class GLImageFilter\n * @property {function} reset reset current filter chain\n * @property {function} add add specified filter to filter chain\n * @property {function} apply execute filter chain and draw result\n * @property {function} draw just draw input to result\n */\n\nexport function GLImageFilter() {\n let drawCount = 0;\n let sourceTexture: WebGLTexture | null = null;\n let lastInChain = false;\n let currentFramebufferIndex = -1;\n let tempFramebuffers: [null, null] | [{ fbo: WebGLFramebuffer | null, texture: WebGLTexture | null }] = [null, null];\n let filterChain: Record[] = [];\n let vertexBuffer: WebGLBuffer | null = null;\n let currentProgram: GLProgram | null = null;\n const fxcanvas = canvas(100, 100);\n const shaderProgramCache = { }; // key is the shader program source, value is the compiled program\n const DRAW = { INTERMEDIATE: 1 };\n const gl = fxcanvas.getContext('webgl') as WebGLRenderingContext;\n if (!gl) {\n log('filter: cannot get webgl context');\n return;\n }\n // @ts-ignore used for sanity checks outside of imagefx\n this.gl = gl;\n\n function resize(width, height) {\n if (width === fxcanvas.width && height === fxcanvas.height) return; // Same width/height? Nothing to do here\n fxcanvas.width = width;\n fxcanvas.height = height;\n if (!vertexBuffer) { // Create the context if we don't have it yet\n const vertices = new Float32Array([-1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0]); // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n vertexBuffer = gl.createBuffer();\n gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, fxcanvas.width, fxcanvas.height);\n tempFramebuffers = [null, null]; // Delete old temp framebuffers\n }\n\n function createFramebufferTexture(width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n }\n\n function getTempFramebuffer(index): { fbo: WebGLFramebuffer | null, texture: WebGLTexture | null } {\n tempFramebuffers[index] = tempFramebuffers[index] || createFramebufferTexture(fxcanvas.width, fxcanvas.height);\n return tempFramebuffers[index] as { fbo: WebGLFramebuffer, texture: WebGLTexture };\n }\n\n function draw(flags = 0) {\n if (!currentProgram) return;\n let source: WebGLTexture | null = null;\n let target: WebGLFramebuffer | null = null;\n let flipY = false;\n if (drawCount === 0) source = sourceTexture; // First draw call - use the source texture\n else source = getTempFramebuffer(currentFramebufferIndex).texture || null; // All following draw calls use the temp buffer last drawn to\n drawCount++;\n if (lastInChain && !(flags & DRAW.INTERMEDIATE)) { // Last filter in our chain - draw directly to the WebGL Canvas. We may also have to flip the image vertically now\n target = null;\n flipY = drawCount % 2 === 0;\n } else {\n currentFramebufferIndex = (currentFramebufferIndex + 1) % 2;\n target = getTempFramebuffer(currentFramebufferIndex).fbo || null; // Intermediate draw call - get a temp buffer to draw to\n }\n gl.bindTexture(gl.TEXTURE_2D, source); // Bind the source and target and draw the two triangles\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(currentProgram.uniform['flipY'], (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n }\n\n function compileShader(fragmentSource): GLProgram | null {\n if (shaderProgramCache[fragmentSource]) {\n currentProgram = shaderProgramCache[fragmentSource];\n gl.useProgram((currentProgram ? currentProgram.id : null) || null);\n return currentProgram;\n }\n currentProgram = new GLProgram(gl, shaders.vertexIdentity, fragmentSource);\n if (!currentProgram) {\n log('filter: could not get webgl program');\n return null;\n }\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(currentProgram.attribute['pos']);\n gl.vertexAttribPointer(currentProgram.attribute['pos'], 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(currentProgram.attribute['uv']);\n gl.vertexAttribPointer(currentProgram.attribute['uv'], 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n shaderProgramCache[fragmentSource] = currentProgram;\n return currentProgram;\n }\n\n const filter = {\n colorMatrix: (matrix: number[]) => { // general color matrix filter\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0) // Can we ignore the alpha value? Makes things a bit faster.\n ? shaders.colorMatrixWithoutAlpha\n : shaders.colorMatrixWithAlpha;\n const program = compileShader(shader);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n draw();\n },\n\n brightness: (brightness: number) => {\n const b = (brightness || 0) + 1;\n filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n saturation: (amount: number) => {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturate: () => {\n filter.saturation(-1);\n },\n\n contrast: (amount: number) => {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n negative: () => {\n filter.contrast(-2);\n },\n\n hue: (rotation: number) => {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturateLuminance: () => {\n filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n sepia: () => {\n filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n brownie: () => {\n filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n vintagePinhole: () => {\n filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n kodachrome: () => {\n filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n technicolor: () => {\n filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n polaroid: () => {\n filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n shiftToBGR: () => {\n filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n convolution: (matrix: number[]) => { // general convolution Filter\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / fxcanvas.width;\n const pixelSizeY = 1 / fxcanvas.height;\n const program = compileShader(shaders.convolution);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n gl.uniform2f(program.uniform['px'], pixelSizeX, pixelSizeY);\n draw();\n },\n\n detectEdges: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n },\n\n sobelX: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n },\n\n sobelY: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n },\n\n sharpen: (amount) => {\n const a = amount || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n },\n\n emboss: (size: number) => {\n const s = size || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n },\n\n blur: (size: number) => {\n const blurSizeX = (size / 7) / fxcanvas.width;\n const blurSizeY = (size / 7) / fxcanvas.height;\n const program = compileShader(shaders.blur);\n if (!program) return;\n // Vertical\n gl.uniform2f(program.uniform['px'], 0, blurSizeY);\n draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform['px'], blurSizeX, 0);\n draw();\n },\n\n pixelate: (size: number) => {\n const blurSizeX = (size) / fxcanvas.width;\n const blurSizeY = (size) / fxcanvas.height;\n const program = compileShader(shaders.pixelate);\n if (!program) return;\n gl.uniform2f(program.uniform['size'], blurSizeX, blurSizeY);\n draw();\n },\n };\n\n // @ts-ignore this\n this.add = function (name) {\n const args = Array.prototype.slice.call(arguments, 1); // eslint-disable-line prefer-rest-params\n const func = filter[name];\n filterChain.push({ func, args });\n };\n\n // @ts-ignore this\n this.reset = function () {\n filterChain = [];\n };\n\n // @ts-ignore this\n this.get = function () {\n return filterChain;\n };\n\n // @ts-ignore this\n this.apply = function (image) {\n resize(image.width, image.height);\n drawCount = 0;\n if (!sourceTexture) sourceTexture = gl.createTexture(); // Create the texture for the input image if we haven't yet\n gl.bindTexture(gl.TEXTURE_2D, sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n for (let i = 0; i < filterChain.length; i++) {\n lastInChain = (i === filterChain.length - 1);\n const f = filterChain[i];\n // @ts-ignore function assigment\n f.func.apply(this, f.args || []);\n }\n return fxcanvas;\n };\n\n // @ts-ignore this\n this.draw = function (image) {\n this.add('brightness', 0);\n return this.apply(image);\n };\n}\n", "/**\n * Image enhancements\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../exports';\n\nexport async function histogramEqualization(inputImage: Tensor): Promise {\n // const maxValue = 254; // using 255 results in values slightly larger than 1 due to math rounding errors\n const squeeze = inputImage.shape.length === 4 ? tf.squeeze(inputImage) : inputImage;\n const channels = tf.split(squeeze, 3, 2);\n const min: Tensor[] = [tf.min(channels[0]), tf.min(channels[1]), tf.min(channels[2])];\n const max: Tensor[] = [tf.max(channels[0]), tf.max(channels[1]), tf.max(channels[2])];\n const absMax = await Promise.all(max.map((channel) => channel.data()));\n const maxValue = 0.99 * Math.max(absMax[0][0], absMax[1][0], absMax[2][0]);\n const sub = [tf.sub(channels[0], min[0]), tf.sub(channels[1], min[1]), tf.sub(channels[2], min[2])];\n const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])];\n const fact = [tf.div(maxValue, range[0]), tf.div(maxValue, range[1]), tf.div(maxValue, range[2])];\n const enh = [tf.mul(sub[0], fact[0]), tf.mul(sub[1], fact[1]), tf.mul(sub[2], fact[2])];\n const rgb = tf.stack([enh[0], enh[1], enh[2]], 2);\n const reshape = tf.reshape(rgb, [1, squeeze.shape[0], squeeze.shape[1], 3]);\n tf.dispose([...channels, ...min, ...max, ...sub, ...range, ...fact, ...enh, rgb, squeeze]);\n return reshape as Tensor; // output shape is [1, height, width, 3]\n}\n", "/**\n * Image Processing algorithm implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport type { Input, AnyCanvas, Tensor, Config } from '../exports';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport * as enhance from './enhance';\n\nconst maxSize = 3840;\n// internal temp canvases\nlet inCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet outCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet tmpCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\n// @ts-ignore // imagefx is js module that should be converted to a class\nlet fx: fxImage.GLImageFilter | null; // instance of imagefx\n\nconst last: { inputSum: number, cacheDiff: number, sumMethod: number, inputTensor: undefined | Tensor } = {\n inputSum: 0,\n cacheDiff: 1,\n sumMethod: 0,\n inputTensor: undefined,\n};\n\nexport function canvas(width: number, height: number): AnyCanvas {\n let c: AnyCanvas;\n if (env.browser) { // browser defines canvas object\n if (env.worker) { // if runing in web worker use OffscreenCanvas\n if (typeof OffscreenCanvas === 'undefined') throw new Error('canvas error: attempted to run in web worker but OffscreenCanvas is not supported');\n c = new OffscreenCanvas(width, height);\n } else { // otherwise use DOM canvas\n if (typeof document === 'undefined') throw new Error('canvas error: attempted to run in browser but DOM is not defined');\n c = document.createElement('canvas');\n c.width = width;\n c.height = height;\n }\n } else { // if not running in browser, there is no \"default\" canvas object, so we need monkey patch or fail\n // @ts-ignore // env.canvas is an external monkey-patch\n if (typeof env.Canvas !== 'undefined') c = new env.Canvas(width, height);\n else if (typeof globalThis.Canvas !== 'undefined') c = new globalThis.Canvas(width, height);\n // else throw new Error('canvas error: attempted to use canvas in nodejs without canvas support installed');\n }\n // @ts-ignore its either defined or we already threw an error\n return c;\n}\n\n// helper function to copy canvas from input to output\nexport function copy(input: AnyCanvas, output?: AnyCanvas) {\n const outputCanvas = output || canvas(input.width, input.height);\n const ctx = outputCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctx.drawImage(input, 0, 0);\n return outputCanvas;\n}\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport async function process(input: Input, config: Config, getTensor: boolean = true): Promise<{ tensor: Tensor | null, canvas: AnyCanvas | null }> {\n if (!input) {\n // throw new Error('input is missing');\n if (config.debug) log('input error: input is missing');\n return { tensor: null, canvas: null }; // video may become temporarily unavailable due to onresize\n }\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof env.Canvas !== 'undefined' && input instanceof env.Canvas)\n && !(typeof globalThis.Canvas !== 'undefined' && input instanceof globalThis.Canvas)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('input error: type is not recognized');\n }\n if (input instanceof tf.Tensor) { // if input is tensor use as-is without filters but correct shape as needed\n let tensor: Tensor | null = null;\n if ((input as Tensor)['isDisposedInternal']) throw new Error('input error: attempted to use tensor but it is disposed');\n if (!(input as Tensor).shape) throw new Error('input error: attempted to use tensor without a shape');\n if ((input as Tensor).shape.length === 3) { // [height, width, 3 || 4]\n if ((input as Tensor).shape[2] === 3) { // [height, width, 3] so add batch\n tensor = tf.expandDims(input, 0);\n } else if ((input as Tensor).shape[2] === 4) { // [height, width, 4] so strip alpha and add batch\n const rgb = tf.slice3d(input, [0, 0, 0], [-1, -1, 3]);\n tensor = tf.expandDims(rgb, 0);\n tf.dispose(rgb);\n }\n } else if ((input as Tensor).shape.length === 4) { // [1, width, height, 3 || 4]\n if ((input as Tensor).shape[3] === 3) { // [1, width, height, 3] just clone\n tensor = tf.clone(input);\n } else if ((input as Tensor).shape[3] === 4) { // [1, width, height, 4] so strip alpha\n tensor = tf.slice4d(input, [0, 0, 0, 0], [-1, -1, -1, 3]);\n }\n }\n // at the end shape must be [1, height, width, 3]\n if (tensor == null || tensor.shape.length !== 4 || tensor.shape[0] !== 1 || tensor.shape[3] !== 3) throw new Error(`input error: attempted to use tensor with unrecognized shape: ${((input as Tensor).shape).toString()}`);\n if ((tensor).dtype === 'int32') {\n const cast = tf.cast(tensor, 'float32');\n tf.dispose(tensor);\n tensor = cast;\n }\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n }\n // check if resizing will be needed\n if (typeof input['readyState'] !== 'undefined' && (input as HTMLMediaElement).readyState <= 2) {\n if (config.debug) log('input stream is not ready');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n const originalWidth: number = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight: number = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) {\n if (config.debug) log('cannot determine input dimensions');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n let targetWidth: number = originalWidth;\n let targetHeight: number = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = Math.trunc(targetWidth * originalHeight / originalWidth);\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = Math.trunc(targetHeight * originalWidth / originalHeight);\n }\n\n // create our canvas and resize it if needed\n if ((config.filter?.width || 0) > 0) targetWidth = config.filter.width as number;\n else if ((config.filter?.height || 0) > 0) targetWidth = originalWidth * ((config.filter.height || 0) / originalHeight);\n if ((config.filter.height || 0) > 0) targetHeight = config.filter.height as number;\n else if ((config.filter.width || 0) > 0) targetHeight = originalHeight * ((config.filter.width || 0) / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('input error: cannot determine dimension');\n if (!inCanvas || (inCanvas.width !== targetWidth) || (inCanvas.height !== targetHeight)) inCanvas = canvas(targetWidth, targetHeight);\n\n // draw input to our canvas\n const inCtx = inCanvas.getContext('2d') as CanvasRenderingContext2D;\n if ((typeof ImageData !== 'undefined') && (input instanceof ImageData)) {\n inCtx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof inCtx.translate !== 'undefined') {\n inCtx.translate(originalWidth, 0);\n inCtx.scale(-1, 1);\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas.width, inCanvas.height);\n inCtx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas.width, inCanvas.height);\n }\n }\n\n if (!outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas.height !== outCanvas.height)) outCanvas = canvas(inCanvas.width, inCanvas.height); // init output canvas\n\n // imagefx transforms using gl from input canvas to output canvas\n if (config.filter.enabled && env.webgl.supported) {\n if (!fx) fx = env.browser ? new fxImage.GLImageFilter() : null; // && (typeof document !== 'undefined')\n env.filter = !!fx;\n if (!fx?.add) {\n if (config.debug) log('input process error: cannot initialize filters');\n env.webgl.supported = false;\n config.filter.enabled = false;\n copy(inCanvas, outCanvas); // filter failed to initialize\n // return { tensor: null, canvas: inCanvas };\n } else {\n fx.reset();\n if (config.filter.brightness !== 0) fx.add('brightness', config.filter.brightness);\n if (config.filter.contrast !== 0) fx.add('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.add('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.add('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.add('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.add('hue', config.filter.hue);\n if (config.filter.negative) fx.add('negative');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.vintage) fx.add('brownie');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.kodachrome) fx.add('kodachrome');\n if (config.filter.technicolor) fx.add('technicolor');\n if (config.filter.polaroid) fx.add('polaroid');\n if (config.filter.pixelate !== 0) fx.add('pixelate', config.filter.pixelate);\n if (fx.get() > 0) outCanvas = fx.apply(inCanvas);\n else outCanvas = fx.draw(inCanvas);\n }\n } else {\n copy(inCanvas, outCanvas); // if no filters applied, output canvas is input canvas\n if (fx) fx = null;\n env.filter = !!fx;\n }\n\n if (!getTensor) return { tensor: null, canvas: outCanvas }; // just canvas was requested\n if (!outCanvas) throw new Error('canvas error: cannot create output');\n\n // create tensor from image unless input was a tensor already\n let pixels;\n let depth = 3;\n if ((typeof ImageData !== 'undefined' && input instanceof ImageData) || ((input as ImageData).data && (input as ImageData).width && (input as ImageData).height)) { // if input is imagedata, just use it\n if (env.browser && tf.browser) {\n pixels = tf.browser ? tf.browser.fromPixels(input) : null;\n } else {\n depth = (input as ImageData).data.length / (input as ImageData).height / (input as ImageData).width;\n // const arr = Uint8Array.from(input['data']);\n const arr = new Uint8Array((input as ImageData).data.buffer);\n pixels = tf.tensor(arr, [(input as ImageData).height, (input as ImageData).width, depth], 'int32');\n }\n } else {\n if (!tmpCanvas || (outCanvas.width !== tmpCanvas.width) || (outCanvas.height !== tmpCanvas.height)) tmpCanvas = canvas(outCanvas.width, outCanvas.height); // init output canvas\n if (tf.browser && env.browser) {\n if (config.backend === 'webgl' || config.backend === 'humangl' || config.backend === 'webgpu') {\n pixels = tf.browser.fromPixels(outCanvas); // safe to reuse since both backend and context are gl based\n } else {\n tmpCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n pixels = tf.browser.fromPixels(tmpCanvas);\n }\n } else {\n const tempCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n const tempCtx = tempCanvas.getContext('2d') as CanvasRenderingContext2D;\n const tempData = tempCtx.getImageData(0, 0, targetWidth, targetHeight);\n depth = tempData.data.length / targetWidth / targetHeight;\n const arr = new Uint8Array(tempData.data.buffer);\n pixels = tf.tensor(arr, [targetWidth, targetHeight, depth]);\n }\n }\n if (depth === 4) { // rgba to rgb\n const rgb = tf.slice3d(pixels, [0, 0, 0], [-1, -1, 3]); // strip alpha channel\n tf.dispose(pixels);\n pixels = rgb;\n }\n if (!pixels) throw new Error('input error: cannot create tensor');\n const casted: Tensor = tf.cast(pixels, 'float32');\n const tensor: Tensor = config.filter.equalization ? await enhance.histogramEqualization(casted) : tf.expandDims(casted, 0);\n tf.dispose([pixels, casted]);\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n}\n\n/*\nconst checksum = async (input: Tensor): Promise => { // use tf sum or js based sum loop depending on which is faster\n const resizeFact = 48;\n const reduced: Tensor = tf.image.resizeBilinear(input, [Math.trunc((input.shape[1] || 1) / resizeFact), Math.trunc((input.shape[2] || 1) / resizeFact)]);\n const tfSum = async (): Promise => {\n const sumT = tf.sum(reduced);\n const sum0 = await sumT.data();\n tf.dispose(sumT);\n return sum0[0];\n };\n const jsSum = async (): Promise => {\n const reducedData = await reduced.data(); // raw image rgb array\n let sum0 = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum0 += reducedData[3 * i + 2]; // look only at green value of each pixel\n return sum0;\n };\n if (last.sumMethod === 0) {\n const t0 = now();\n await jsSum();\n const t1 = now();\n await tfSum();\n const t2 = now();\n last.sumMethod = t1 - t0 < t2 - t1 ? 1 : 2;\n }\n const res = last.sumMethod === 1 ? await jsSum() : await tfSum();\n tf.dispose(reduced);\n return res;\n};\n*/\n\nexport async function skip(config: Partial, input: Tensor) {\n let skipFrame = false;\n if (config.cacheSensitivity === 0 || !input.shape || input.shape.length !== 4 || input.shape[1] > 2048 || input.shape[2] > 2048) return skipFrame; // cache disabled or input is invalid or too large for cache analysis\n\n /*\n const checkSum = await checksum(input);\n const diff = 100 * (Math.max(checkSum, last.inputSum) / Math.min(checkSum, last.inputSum) - 1);\n last.inputSum = checkSum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n let skipFrame = diff < Math.max(config.cacheSensitivity, last.cacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n last.cacheDiff = diff > 10 * config.cacheSensitivity ? 0 : diff;\n skipFrame = skipFrame && (last.cacheDiff > 0); // if no cached diff value then force no skip\n */\n\n if (!last.inputTensor) {\n last.inputTensor = tf.clone(input);\n } else if (last.inputTensor.shape[1] !== input.shape[1] || last.inputTensor.shape[2] !== input.shape[2]) { // input resolution changed\n tf.dispose(last.inputTensor);\n last.inputTensor = tf.clone(input);\n } else {\n const t: Record = {};\n t.diff = tf.sub(input, last.inputTensor);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input.shape[1] || 1) / (input.shape[2] || 1) / 255 / 3; // squared difference relative to input resolution and averaged per channel\n tf.dispose([last.inputTensor, t.diff, t.squared, t.sum]);\n last.inputTensor = tf.clone(input);\n skipFrame = diffRelative <= (config.cacheSensitivity || 0);\n }\n return skipFrame;\n}\n\nexport async function compare(config: Partial, input1: Tensor, input2: Tensor): Promise {\n const t: Record = {};\n if (!input1 || !input2 || input1.shape.length !== 4 || input1.shape.length !== input2.shape.length) {\n if (!config.debug) log('invalid input tensor or tensor shapes do not match:', input1.shape, input2.shape);\n return 0;\n }\n if (input1.shape[0] !== 1 || input2.shape[0] !== 1 || input1.shape[3] !== 3 || input2.shape[3] !== 3) {\n if (!config.debug) log('input tensors must be of shape [1, height, width, 3]:', input1.shape, input2.shape);\n return 0;\n }\n t.input1 = tf.clone(input1);\n t.input2 = (input1.shape[1] !== input2.shape[1] || input1.shape[2] !== input2.shape[2]) ? tf.image.resizeBilinear(input2, [input1.shape[1], input1.shape[2]]) : tf.clone(input2);\n t.diff = tf.sub(t.input1, t.input2);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input1.shape[1] || 1) / (input1.shape[2] || 1) / 255 / 3;\n tf.dispose([t.input1, t.input2, t.diff, t.squared, t.sum]);\n return diffRelative;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\n\n/** Env class that holds detected capabilities */\nexport class Env {\n /** Running in Browser */\n browser: boolean;\n /** Running in NodeJS */\n node: boolean;\n /** Running in WebWorker thread */\n worker: boolean;\n /** Detected platform */\n platform: string = '';\n /** Detected agent */\n agent: string = '';\n /** List of supported backends */\n backends: string[] = [];\n /** Has any work been performed so far */\n initial: boolean;\n /** Are image filters supported? */\n filter: boolean | undefined;\n /** TFJS instance details */\n tfjs: {\n version: undefined | string,\n };\n /** Is offscreenCanvas supported? */\n offscreen: undefined | boolean;\n /** Are performance counter instant values or additive */\n perfadd: boolean = false;\n /** If using tfjs-node get version of underlying tensorflow shared library and if gpu acceleration is enabled */\n tensorflow: {\n version: undefined | string,\n gpu: undefined | boolean,\n } = {\n version: undefined,\n gpu: undefined,\n };\n /** WASM detected capabilities */\n wasm: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n simd: undefined | boolean,\n multithread: undefined | boolean,\n } = {\n supported: undefined,\n backend: undefined,\n simd: undefined,\n multithread: undefined,\n };\n /** WebGL detected capabilities */\n webgl: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n version: undefined | string,\n renderer: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n version: undefined,\n renderer: undefined,\n };\n /** WebGPU detected capabilities */\n webgpu: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n adapter: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n adapter: undefined,\n };\n /** CPU info */\n cpu: {\n model: undefined | string,\n flags: string[],\n } = {\n model: undefined,\n flags: [],\n };\n /** List of supported kernels for current backend */\n kernels: string[] = [];\n /** MonkeyPatch for Canvas */\n Canvas: undefined;\n /** MonkeyPatch for Image */\n Image: undefined;\n /** MonkeyPatch for ImageData */\n ImageData: undefined;\n\n constructor() {\n this.browser = typeof navigator !== 'undefined';\n this.node = (typeof process !== 'undefined') && (typeof process.versions !== 'undefined') && (typeof process.versions.node !== 'undefined');\n this.tfjs = { version: tf.version['tfjs-core'] };\n this.offscreen = typeof OffscreenCanvas !== 'undefined';\n this.initial = true;\n\n // @ts-ignore WorkerGlobalScope evaluated in browser only\n this.worker = this.browser && this.offscreen ? (typeof WorkerGlobalScope !== 'undefined') : undefined;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw?.[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n this.platform = (platformMatch?.[0]) ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n this.agent = navigator.userAgent.replace(raw[0], '');\n if (this.platform[1]) this.agent = this.agent.replace(raw[1], '');\n this.agent = this.agent.replace(/ /g, ' ');\n // chrome offscreencanvas gpu memory leak\n /*\n const isChrome = env.agent.match(/Chrome\\/.[0-9]/g);\n const verChrome = isChrome && isChrome[0] ? isChrome[0].split('/')[1] : 0;\n if (verChrome > 92 && verChrome < 96) {\n log('disabling offscreenCanvas due to browser error:', isChrome ? isChrome[0] : 'unknown');\n this.offscreen = false;\n }\n */\n }\n } else if (typeof process !== 'undefined') {\n this.platform = `${process.platform} ${process.arch}`;\n this.agent = `NodeJS ${process.version}`;\n }\n }\n\n /** update backend information */\n async updateBackend() {\n // analyze backends\n this.backends = Object.keys(tf.engine().registryFactory);\n this.tensorflow = {\n version: (tf.backend().binding ? tf.backend().binding.TF_Version : undefined),\n gpu: (tf.backend().binding ? tf.backend().binding.isUsingGpuDevice() : undefined),\n };\n this.wasm.supported = typeof WebAssembly !== 'undefined';\n this.wasm.backend = this.backends.includes('wasm');\n if (this.wasm.supported && this.wasm.backend && tf.getBackend() === 'wasm') {\n this.wasm.simd = tf.env().get('WASM_HAS_SIMD_SUPPORT');\n this.wasm.multithread = tf.env().get('WASM_HAS_MULTITHREAD_SUPPORT');\n }\n const c = image.canvas(100, 100);\n const ctx = c ? c.getContext('webgl2') : undefined; // causes too many gl contexts\n // const ctx = typeof tf.backend().getGPGPUContext !== undefined ? tf.backend().getGPGPUContext : null;\n this.webgl.supported = typeof ctx !== 'undefined';\n this.webgl.backend = this.backends.includes('webgl');\n if (this.webgl.supported && this.webgl.backend && (tf.getBackend() === 'webgl' || tf.getBackend() === 'humangl')) {\n const gl = tf.backend().gpgpu !== 'undefined' ? await tf.backend().getGPGPUContext().gl : null;\n if (gl) {\n this.webgl.version = gl.getParameter(gl.VERSION);\n this.webgl.renderer = gl.getParameter(gl.RENDERER);\n }\n }\n this.webgpu.supported = this.browser && typeof navigator.gpu !== 'undefined';\n this.webgpu.backend = this.backends.includes('webgpu');\n try {\n if (this.webgpu.supported) {\n const adapter = await navigator.gpu.requestAdapter();\n this.webgpu.adapter = adapter ? adapter.name : undefined;\n }\n } catch {\n this.webgpu.supported = false;\n }\n try {\n this.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => (kernel.kernelName as string).toLowerCase());\n } catch { /**/ }\n }\n\n /** update cpu information */\n updateCPU() {\n const cpu = { model: '', flags: [] };\n if (this.node && this.platform.startsWith('linux')) {\n /*\n const fs = require('fs');\n try {\n const data = fs.readFileSync('/proc/cpuinfo').toString();\n for (const line of data.split('\\n')) {\n if (line.startsWith('model name')) cpu.model = line.match(/:(.*)/g)[0].replace(':', '').trim();\n if (line.startsWith('flags')) cpu.flags = line.match(/:(.*)/g)[0].replace(':', '').trim().split(' ').sort();\n }\n } catch { }\n */\n }\n if (!this.cpu) Object.defineProperty(this, 'cpu', { value: cpu });\n else this.cpu = cpu;\n }\n}\n\nexport const env = new Env();\n", "/**\n * Loader and Validator for all models used by Human\n */\n\nimport { env } from './util/env';\nimport { log } from './util/util';\nimport * as gear from './gear/gear';\nimport * as ssrnetAge from './gear/ssrnet-age';\nimport * as ssrnetGender from './gear/ssrnet-gender';\nimport * as antispoof from './face/antispoof';\nimport * as blazeface from './face/blazeface';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as efficientpose from './body/efficientpose';\nimport * as emotion from './gear/emotion';\nimport * as mobilefacenet from './face/mobilefacenet';\nimport * as insightface from './face/insightface';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as iris from './face/iris';\nimport * as liveness from './face/liveness';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport { modelStats, ModelInfo } from './tfjs/load';\nimport type { GraphModel } from './tfjs/types';\nimport type { Human } from './human';\n\n/** Instances of all possible TFJS Graph Models used by Human\n * - loaded as needed based on configuration\n * - initialized explictly with `human.load()` method\n * - initialized implicity on first call to `human.detect()`\n * - each model can be `null` if not loaded, instance of `GraphModel` if loaded or `Promise` if loading\n */\nexport class Models {\n ssrnetage: null | GraphModel | Promise = null;\n gear: null | GraphModel | Promise = null;\n blazeposedetect: null | GraphModel | Promise = null;\n blazepose: null | GraphModel | Promise = null;\n centernet: null | GraphModel | Promise = null;\n efficientpose: null | GraphModel | Promise = null;\n mobilefacenet: null | GraphModel | Promise = null;\n insightface: null | GraphModel | Promise = null;\n emotion: null | GraphModel | Promise = null;\n facedetect: null | GraphModel | Promise = null;\n faceiris: null | GraphModel | Promise = null;\n facemesh: null | GraphModel | Promise = null;\n faceres: null | GraphModel | Promise = null;\n ssrnetgender: null | GraphModel | Promise = null;\n handpose: null | GraphModel | Promise = null;\n handskeleton: null | GraphModel | Promise = null;\n handtrack: null | GraphModel | Promise = null;\n liveness: null | GraphModel | Promise = null;\n movenet: null | GraphModel | Promise = null;\n nanodet: null | GraphModel | Promise = null;\n posenet: null | GraphModel | Promise = null;\n segmentation: null | GraphModel | Promise = null;\n antispoof: null | GraphModel | Promise = null;\n}\n\nexport interface ModelStats {\n numLoadedModels: number,\n numEnabledModels: undefined,\n numDefinedModels: number,\n percentageLoaded: number,\n totalSizeFromManifest: number,\n totalSizeWeights: number,\n totalSizeLoading: number,\n totalSizeEnabled: undefined,\n modelStats: ModelInfo[],\n}\n\nexport const getModelStats = (instance: Human): ModelStats => {\n let totalSizeFromManifest = 0;\n let totalSizeWeights = 0;\n let totalSizeLoading = 0;\n for (const m of Object.values(modelStats)) {\n totalSizeFromManifest += m.sizeFromManifest;\n totalSizeWeights += m.sizeLoadedWeights;\n totalSizeLoading += m.sizeDesired;\n }\n const percentageLoaded = totalSizeLoading > 0 ? totalSizeWeights / totalSizeLoading : 0;\n return {\n numLoadedModels: Object.values(modelStats).length,\n numEnabledModels: undefined,\n numDefinedModels: Object.keys(instance.models).length,\n percentageLoaded,\n totalSizeFromManifest,\n totalSizeWeights,\n totalSizeLoading,\n totalSizeEnabled: undefined,\n modelStats: Object.values(modelStats),\n };\n};\n\nexport function reset(instance: Human): void {\n // if (instance.config.debug) log('resetting loaded models');\n for (const model of Object.keys(instance.models)) instance.models[model as keyof Models] = null;\n}\n\n/** Load method preloads all instance.configured models on-demand */\nexport async function load(instance: Human): Promise {\n if (env.initial) reset(instance);\n if (instance.config.hand.enabled) { // handpose model is a combo that must be loaded as a whole\n if (!instance.models.handpose && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n if (!instance.models.handskeleton && instance.config.hand.landmarks && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n }\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body.modelPath?.includes('blazepose')) instance.models.blazepose = blazepose.loadPose(instance.config);\n if (instance.config.body.enabled && !instance.models.blazeposedetect && instance.config.body['detector'] && instance.config.body['detector'].modelPath) instance.models.blazeposedetect = blazepose.loadDetect(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body.modelPath?.includes('efficientpose')) instance.models.efficientpose = efficientpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body.modelPath?.includes('movenet')) instance.models.movenet = movenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body.modelPath?.includes('posenet')) instance.models.posenet = posenet.load(instance.config);\n if (instance.config.face.enabled && !instance.models.facedetect) instance.models.facedetect = blazeface.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.antispoof?.enabled && !instance.models.antispoof) instance.models.antispoof = antispoof.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.liveness?.enabled && !instance.models.liveness) instance.models.liveness = liveness.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description?.enabled && !instance.models.faceres) instance.models.faceres = faceres.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion?.enabled && !instance.models.emotion) instance.models.emotion = emotion.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.iris?.enabled && !instance.config.face.attention?.enabled && !instance.models.faceiris) instance.models.faceiris = iris.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.mesh?.enabled && !instance.models.facemesh) instance.models.facemesh = facemesh.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['gear']?.enabled && !instance.models.gear) instance.models.gear = gear.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetage) instance.models.ssrnetage = ssrnetAge.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetgender) instance.models.ssrnetgender = ssrnetGender.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['mobilefacenet']?.enabled && !instance.models.mobilefacenet) instance.models.mobilefacenet = mobilefacenet.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['insightface']?.enabled && !instance.models.insightface) instance.models.insightface = insightface.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handtrack && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handtrack = handtrack.loadDetect(instance.config);\n if (instance.config.hand.enabled && instance.config.hand.landmarks && !instance.models.handskeleton && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handskeleton = handtrack.loadSkeleton(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object.modelPath?.includes('centernet')) instance.models.centernet = centernet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object.modelPath?.includes('nanodet')) instance.models.nanodet = nanodet.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = segmentation.load(instance.config);\n\n // models are loaded in parallel asynchronously so lets wait until they are actually loaded\n for await (const model of Object.keys(instance.models)) {\n if (instance.models[model as keyof Models] && typeof instance.models[model as keyof Models] !== 'undefined') {\n instance.models[model as keyof Models] = await instance.models[model as keyof Models];\n }\n }\n}\n\nlet instance: Human;\nexport interface KernelOps { name: string, url: string, missing: string[], ops: string[] }\n\nexport function validateModel(newInstance: Human | null, model: GraphModel | null, name: string): KernelOps | null {\n if (newInstance) instance = newInstance;\n if (!model) return null;\n if (!instance) log('instance not registred');\n if (!instance.config.validateModels) return null;\n const simpleOps = ['const', 'placeholder', 'noop', 'pad', 'squeeze', 'add', 'sub', 'mul', 'div'];\n const ignoreOps = ['biasadd', 'fusedbatchnormv3', 'matmul'];\n const ops: string[] = [];\n const missing: string[] = [];\n interface Op { name: string, category: string, op: string }\n const url = model['modelUrl'] as string;\n const executor = model['executor'];\n if (executor?.graph?.nodes) {\n for (const kernel of Object.values(executor.graph.nodes)) {\n const op = (kernel as Op).op.toLowerCase();\n if (!ops.includes(op)) ops.push(op);\n }\n } else {\n if (!executor && instance.config.debug) {\n log('model not loaded', name);\n }\n }\n for (const op of ops) {\n if (!simpleOps.includes(op) // exclude simple ops\n && !ignoreOps.includes(op) // exclude specific ops\n && !instance.env.kernels.includes(op) // check actual kernel ops\n && !instance.env.kernels.includes(op.replace('_', '')) // check variation without _\n && !instance.env.kernels.includes(op.replace('native', '')) // check standard variation\n && !instance.env.kernels.includes(op.replace('v2', ''))) { // check non-versioned variation\n missing.push(op);\n }\n }\n if (instance.config.debug && missing.length > 0) log('model validation failed:', name, missing);\n return missing.length > 0 ? { name, missing, ops, url } : null;\n}\n\nexport function validate(newInstance: Human): { name: string, missing: string[] }[] {\n instance = newInstance;\n const missing: KernelOps[] = [];\n for (const defined of Object.keys(instance.models)) {\n const model: GraphModel | null = instance.models[defined as keyof Models] as GraphModel | null;\n if (!model) continue;\n const res = validateModel(instance, model, defined);\n if (res) missing.push(res);\n }\n return missing;\n}\n", "/**\n * GEAR [gender/emotion/age/race] model implementation\n *\n * Based on: [**GEAR Predictor**](https://github.com/Udolf15/GEAR-Predictor)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Gender, Race } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nexport interface GearType { age: number, gender: Gender, genderScore: number, race: { score: number, race: Race }[] }\nlet model: GraphModel | null;\nconst last: GearType[] = [];\nconst raceNames = ['white', 'black', 'asian', 'indian', 'other'];\nconst ageWeights = [15, 23, 28, 35.5, 45.5, 55.5, 65];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.gear?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n const skipFrame = skipped < (config.face.gear?.skipFrames || 0);\n const skipTime = (config.face.gear?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n // t.resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape[2], model?.inputs[0].shape[1]], false);\n const box = [[0.0, 0.10, 0.90, 0.90]]; // empyrical values for top, left, bottom, right\n t.resize = tf.image.cropAndResize(image, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const obj: GearType = { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n if (config.face.gear?.enabled) [t.age, t.gender, t.race] = model.execute(t.resize, ['age_output', 'gender_output', 'race_output']) as Tensor[];\n const gender = await t.gender.data();\n obj.gender = gender[0] > gender[1] ? 'male' : 'female';\n obj.genderScore = Math.round(100 * (gender[0] > gender[1] ? gender[0] : gender[1])) / 100;\n const race = await t.race.data();\n for (let i = 0; i < race.length; i++) {\n if (race[i] > (config.face.gear?.minConfidence || 0.2)) obj.race.push({ score: Math.round(100 * race[i]) / 100, race: raceNames[i] as Race });\n }\n obj.race.sort((a, b) => b.score - a.score);\n // {0: 'Below20', 1: '21-25', 2: '26-30', 3: '31-40',4: '41-50', 5: '51-60', 6: 'Above60'}\n const ageDistribution = Array.from(await t.age.data());\n const ageSorted = ageDistribution.map((a, i) => [ageWeights[i], a]).sort((a, b) => b[1] - a[1]);\n let age = ageSorted[0][0]; // pick best starting point\n for (let i = 1; i < ageSorted.length; i++) age += ageSorted[i][1] * (ageSorted[i][0] - age); // adjust with each other choice by weight\n obj.age = Math.round(10 * age) / 10;\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from './types';\n\nexport const constants: Record = {\n tf255: 255,\n tf1: 1,\n tf2: 2,\n tf05: 0.5,\n tf127: 127.5,\n rgb: [0.2989, 0.5870, 0.1140],\n};\n\nexport function init() {\n constants.tf255 = tf.scalar(255, 'float32');\n constants.tf1 = tf.scalar(1, 'float32');\n constants.tf2 = tf.scalar(2, 'float32');\n constants.tf05 = tf.scalar(0.5, 'float32');\n constants.tf127 = tf.scalar(127.5, 'float32');\n constants.rgb = tf.tensor1d([0.2989, 0.5870, 0.1140], 'float32'); // factors for red/green/blue colors when converting to grayscale\n}\n", "/**\n * Age model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\n\nlet model: GraphModel | null;\nconst last: { age: number }[] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet'].modelPathAge);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ age: number }> {\n if (!model) return { age: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs || !model.inputs[0] || !model.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.mul(t.resize, constants.tf255);\n const obj = { age: 0 };\n if (config.face['ssrnet']?.enabled) t.age = model.execute(t.enhance) as Tensor;\n if (t.age) {\n const data = await t.age.data();\n obj.age = Math.trunc(10 * data[0]) / 10;\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Gender model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Gender } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: { gender: Gender, genderScore: number }[] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet']?.modelPathGender);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count): Promise<{ gender: Gender, genderScore: number }> {\n if (!model) return { gender: 'unknown', genderScore: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.gender && (last[idx]?.genderScore > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.tidy(() => {\n const [red, green, blue] = tf.split(t.resize, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const normalize = tf.mul(tf.sub(grayscale, constants.tf05), 2); // range grayscale:-1..1\n return normalize;\n });\n const obj: { gender: Gender, genderScore: number } = { gender: 'unknown', genderScore: 0 };\n if (config.face['ssrnet']?.enabled) t.gender = model.execute(t.enhance) as Tensor;\n const data = await t.gender.data();\n obj.gender = data[0] > data[1] ? 'female' : 'male'; // returns two values 0..1, bigger one is prediction\n obj.genderScore = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: number[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.antispoof?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model || !model?.['executor']) return 0;\n const skipTime = (config.face.antispoof?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.antispoof?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nexport const meshAnnotations: Record = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n // lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291], // 11\n // lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291], // 10\n // lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308], // 11\n // lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308], // 11\n lipsUpperOuter: [185, 40, 39, 37, 0, 267, 269, 270, 409],\n lipsLowerOuter: [61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [191, 80, 81, 82, 13, 312, 311, 310, 415],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n lipsLowerSemiOuter: [76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306],\n lipsUpperSemiOuter: [184, 74, 73, 72, 11, 302, 303, 304, 408],\n lipsLowerSemiInner: [62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292],\n lipsUpperSemiInner: [183, 42, 41, 38, 12, 268, 271, 272, 407],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173], // 7\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133], // 9\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190], // 7\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243], // 9\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189], // 7\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244], // 9\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245], // 9\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193], // 8\n rightEyebrowLower: [35, 124, 46, 53, 52, 65], // 6\n rightEyeIris: [473, 474, 475, 476, 477], // 5\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const meshLandmarks: Record = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, meshAnnotations.midwayBetweenEyes[0]],\n};\n\nexport const blazeFaceLandmarks: Record = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nexport const irisIndices: { key: string, indices: number[] }[] = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] }, // 7 x 3d\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] }, // 7 x 3d\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] }, // 7 x 3d\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] }, // 7 x 3d\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] }, // 9 x 3d\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] }, // 9 x 3d\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] }, // 9 x 3d\n { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] }, // 8 x 3d\n { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] }, // 6 x 3d\n];\n\nexport const UV468: [number, number][] = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468: number[] = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68: number[] = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33: number[] = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7: number[] = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68: number[] = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33: number[] = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7: number[] = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n\n// https://github.com/tensorflow/tfjs-models/blob/master/face-landmarks-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = [number, number][];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const pairsLips: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nexport const pairsLeftEye: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nexport const pairsLeftEyebrow: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nexport const pairsLeftIris: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nexport const pairsRightEye: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nexport const pairsRightEyebrow: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nexport const pairsRightIris: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nexport const pairsFaceContour: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389],\n [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397],\n [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172],\n [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162],\n [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const contourKeypoints = {\n lips: connectionsToIndices(pairsLips),\n leftEye: connectionsToIndices(pairsLeftEye),\n leftEyebrow: connectionsToIndices(pairsLeftEyebrow),\n leftIris: connectionsToIndices(pairsLeftIris),\n rightEye: connectionsToIndices(pairsRightEye),\n rightEyebrow: connectionsToIndices(pairsRightEyebrow),\n rightIris: connectionsToIndices(pairsRightIris),\n faceOval: connectionsToIndices(pairsFaceContour),\n};\n\nexport const pairsFaceMesh: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11],\n [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72],\n [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175],\n [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73],\n [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74],\n [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40],\n [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76],\n [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56],\n [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21],\n [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144],\n [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91],\n [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85],\n [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193],\n [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247],\n [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117],\n [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98],\n [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209],\n [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47],\n [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67],\n [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230],\n [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46],\n [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46],\n [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236],\n [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154],\n [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57],\n [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28],\n [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113],\n [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62],\n [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64],\n [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41],\n [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170],\n [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122],\n [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89],\n [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63],\n [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14],\n [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100],\n [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88],\n [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215],\n [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43],\n [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81],\n [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229],\n [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107],\n [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129],\n [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117],\n [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3],\n [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220],\n [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71],\n [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188],\n [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164],\n [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38],\n [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206],\n [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165],\n [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214],\n [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171],\n [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84],\n [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201],\n [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57],\n [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214],\n [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44],\n [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64],\n [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2],\n [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24],\n [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26],\n [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189],\n [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29],\n [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247],\n [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147],\n [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187],\n [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114],\n [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217],\n [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110],\n [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356],\n [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357],\n [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333],\n [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9],\n [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418],\n [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450],\n [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313],\n [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335],\n [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423],\n [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307],\n [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421],\n [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426],\n [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322],\n [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456],\n [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417],\n [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355],\n [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382],\n [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443],\n [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431],\n [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446],\n [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458],\n [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372],\n [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274],\n [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269],\n [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266],\n [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265],\n [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424],\n [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366],\n [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423],\n [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432],\n [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394],\n [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352],\n [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295],\n [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323],\n [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358],\n [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374],\n [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6],\n [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344],\n [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195],\n [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283],\n [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282],\n [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338],\n [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292],\n [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442],\n [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441],\n [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300],\n [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263],\n [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436],\n [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370],\n [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293],\n [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330],\n [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440],\n [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459],\n [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354],\n [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315],\n [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366],\n [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291],\n [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264],\n [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352],\n [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433],\n [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462],\n [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255],\n [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252],\n [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441],\n [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257],\n [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459],\n [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290],\n [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341],\n [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357],\n [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420],\n [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372],\n [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133],\n [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33],\n [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263],\n [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466],\n [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72],\n [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73],\n [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152],\n [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74],\n [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184],\n [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185],\n [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77],\n [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190],\n [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54],\n [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145],\n [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181],\n [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16],\n [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245],\n [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30],\n [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111],\n [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240],\n [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198],\n [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114],\n [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109],\n [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231],\n [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124],\n [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70],\n [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3],\n [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26],\n [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43],\n [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56],\n [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124],\n [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96],\n [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235],\n [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42],\n [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140],\n [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193],\n [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179],\n [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68],\n [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15],\n [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120],\n [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89],\n [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138],\n [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57],\n [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41],\n [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118],\n [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66],\n [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142],\n [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118],\n [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196],\n [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156],\n [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122],\n [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164],\n [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12],\n [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31],\n [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98],\n [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237],\n [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179],\n [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181],\n [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184],\n [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186],\n [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218],\n [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45],\n [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235],\n [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97],\n [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230],\n [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232],\n [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222],\n [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224],\n [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213],\n [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192],\n [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188],\n [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174],\n [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25],\n [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264],\n [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350],\n [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299],\n [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151],\n [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424],\n [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449],\n [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18],\n [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434],\n [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301],\n [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280],\n [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335],\n [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396],\n [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413],\n [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168],\n [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417],\n [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381],\n [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365],\n [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395],\n [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335],\n [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250],\n [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292],\n [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354],\n [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426],\n [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371],\n [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290],\n [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422],\n [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422],\n [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358],\n [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331],\n [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395],\n [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296],\n [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285],\n [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329],\n [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331],\n [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8],\n [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351],\n [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397],\n [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248],\n [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175],\n [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295],\n [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356],\n [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308],\n [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265],\n [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285],\n [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457],\n [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394],\n [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410],\n [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268],\n [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298],\n [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420],\n [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344],\n [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274],\n [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316],\n [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323],\n [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306],\n [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372],\n [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366],\n [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435],\n [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328],\n [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359],\n [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253],\n [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286],\n [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258],\n [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309],\n [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305],\n [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453],\n [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343],\n [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360],\n [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265],\n [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './facemeshcoords';\nimport { constants } from '../tfjs/constants';\nimport type { Box, Point } from '../result';\nimport { env } from '../util/env';\n\nexport const createBox = (startEndTensor) => ({ startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]), endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]) });\n\nexport const disposeBox = (t) => tf.dispose([t.startPoint, t.endPoint]);\n\nexport const getBoxSize = (box): [number, number] => [Math.abs(box.endPoint[0] - box.startPoint[0]), Math.abs(box.endPoint[1] - box.startPoint[1])];\n\nexport const getBoxCenter = (box): [number, number, number] => [box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2, box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2, 1];\n\nexport const clampBox = (box, input): Box => (box ? [\n Math.trunc(Math.max(0, box.startPoint[0])),\n Math.trunc(Math.max(0, box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), box.endPoint[0]) - Math.max(0, box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), box.endPoint[1]) - Math.max(0, box.startPoint[1])),\n] : [0, 0, 0, 0]);\n\nexport const getRawBox = (box, input): Box => (box ? [\n box.startPoint[0] / (input.shape[2] || 0),\n box.startPoint[1] / (input.shape[1] || 0),\n (box.endPoint[0] - box.startPoint[0]) / (input.shape[2] || 0),\n (box.endPoint[1] - box.startPoint[1]) / (input.shape[1] || 0),\n] : [0, 0, 0, 0]);\n\nexport const scaleBoxCoordinates = (box, factor) => {\n const startPoint: Point = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint: Point = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const cutAndResize = (box, image, cropSize) => {\n const h = image.shape[1];\n const w = image.shape[2];\n const cutBox = [box.startPoint[1] / h, box.startPoint[0] / w, box.endPoint[1] / h, box.endPoint[0] / w];\n const crop = tf.image.cropAndResize(image, [cutBox], [0], cropSize);\n const norm = tf.div(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n};\n\nexport const enlargeBox = (box, factor) => {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize: [number, number] = [factor * size[0] / 2, factor * size[1] / 2];\n return { startPoint: [center[0] - halfSize[0], center[1] - halfSize[1]] as Point, endPoint: [center[0] + halfSize[0], center[1] + halfSize[1]] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const squarifyBox = (box) => {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize = Math.max(...size) / 2;\n return { startPoint: [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)] as Point, endPoint: [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const calculateLandmarksBoundingBox = (landmarks) => {\n const x = landmarks.map((d) => d[0]);\n const y = landmarks.map((d) => d[1]);\n return { startPoint: [Math.min(...x), Math.min(...y)] as Point, endPoint: [Math.max(...x), Math.max(...y)] as Point, landmarks };\n};\n\nexport const fixedRotationMatrix = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n\nexport const normalizeRadians = (angle: number) => angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n\nexport const computeRotation = (point1, point2) => normalizeRadians(Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]));\n\nexport const radToDegrees = (rad) => rad * 180 / Math.PI;\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport const dot = (v1: number[], v2: number[]) => {\n let product = 0;\n for (let i = 0; i < v1.length; i++) product += v1[i] * v2[i];\n return product;\n};\n\nexport const getColumnFrom2DArr = (arr, columnIndex) => {\n const column: number[] = [];\n for (let i = 0; i < arr.length; i++) column.push(arr[i][columnIndex]);\n return column;\n};\n\nexport const multiplyTransformMatrices = (mat1, mat2) => {\n const product: number[][] = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n return product;\n};\n\nexport const buildRotationMatrix = (rotation, center) => {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n};\n\nexport const invertTransformMatrix = (matrix) => {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [-dot(rotationComponent[0], translationComponent), -dot(rotationComponent[1], translationComponent)];\n return [rotationComponent[0].concat(invertedTranslation[0]), rotationComponent[1].concat(invertedTranslation[1]), [0, 0, 1]];\n};\n\nexport const rotatePoint = (homogeneousCoordinate, rotationMatrix) => [dot(homogeneousCoordinate, rotationMatrix[0]), dot(homogeneousCoordinate, rotationMatrix[1])];\n\nexport const xyDistanceBetweenPoints = (a, b) => Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n\nexport function generateAnchors(inputSize: number) {\n const spec = inputSize === 192\n ? { strides: [4], anchors: [1] } // facemesh-detector\n : { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] }; // blazeface\n const anchors: [number, number][] = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) anchors.push([anchorX, anchorY]);\n }\n }\n }\n return anchors;\n}\n\nexport function transformRawCoords(coordsRaw, box, angle, rotationMatrix, inputSize) {\n const boxSize = getBoxSize(box);\n const coordsScaled = coordsRaw.map((coord) => ([ // scaled around zero-point\n (boxSize[0] / inputSize) * (coord[0] - (inputSize / 2)),\n (boxSize[1] / inputSize) * (coord[1] - (inputSize / 2)),\n (coord[2] || 0),\n ]));\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n const coordsRotationMatrix = largeAngle ? buildRotationMatrix(angle, [0, 0]) : fixedRotationMatrix;\n const coordsRotated = largeAngle ? coordsScaled.map((coord) => ([...rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = largeAngle ? invertTransformMatrix(rotationMatrix) : fixedRotationMatrix;\n const boxCenter = getBoxCenter(box);\n const offsets = [dot(boxCenter, inverseRotationMatrix[0]), dot(boxCenter, inverseRotationMatrix[1])];\n return coordsRotated.map((coord) => ([\n Math.trunc(coord[0] + offsets[0]),\n Math.trunc(coord[1] + offsets[1]),\n Math.trunc(coord[2] || 0),\n ]));\n}\n\nexport function correctFaceRotation(rotate, box, input, inputSize) {\n const symmetryLine = (box.landmarks.length >= coords.meshLandmarks.count)\n ? coords.meshLandmarks.symmetryLine\n : coords.blazeFaceLandmarks.symmetryLine;\n let angle = 0; // default\n let rotationMatrix = fixedRotationMatrix; // default\n let face; // default\n\n if (rotate && env.kernels.includes('rotatewithoffset')) {\n angle = computeRotation(box.landmarks[symmetryLine[0]], box.landmarks[symmetryLine[1]]);\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n if (largeAngle) { // perform rotation only if angle is sufficiently high\n const center: Point = getBoxCenter(box);\n const centerRaw: Point = [center[0] / input.shape[2], center[1] / input.shape[1]];\n const rotated = tf.image.rotateWithOffset(input, angle, 0, centerRaw);\n rotationMatrix = buildRotationMatrix(-angle, center);\n face = cutAndResize(box, rotated, [inputSize, inputSize]);\n tf.dispose(rotated);\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n return [angle, rotationMatrix, face];\n}\n\nexport const findFaceCenter = (mesh) => {\n const x = mesh.map((m) => m[0]);\n const y = mesh.map((m) => m[1]);\n // weighted center\n /*\n const sum = (arr: number[]) => arr.reduce((prev, curr) => prev + curr, 0);\n return [sum(x) / mesh.length, sum(y) / mesh.length];\n */\n // absolute center\n return [Math.min(...x) + (Math.max(...x) - Math.min(...x)) / 2, Math.min(...y) + (Math.max(...y) - Math.min(...y)) / 2];\n};\n\nexport const calculateFaceBox = (mesh, previousBox) => {\n const center = findFaceCenter(mesh);\n const boxSize = getBoxSize(previousBox);\n const calculatedBox = {\n startPoint: [center[0] - boxSize[0] / 2, center[1] - boxSize[1] / 2] as Point,\n endPoint: [center[0] + boxSize[0] / 2, center[1] + boxSize[1] / 2] as Point,\n };\n return calculatedBox;\n};\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './facemeshutil';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport type { Point } from '../result';\n\nconst keypointsCount = 6;\nconst faceBoxScaleFactor = 1.4;\nlet model: GraphModel | null;\nlet anchors: Tensor | null = null;\nlet inputSize = 0;\nlet inputSizeT: Tensor | null = null;\n\ninterface DetectBox { startPoint: Point, endPoint: Point, landmarks: Point[], confidence: number }\n\nexport const size = () => inputSize;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.detector?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model['executor'] && model.inputs[0].shape) ? model.inputs[0].shape[2] : 256;\n inputSizeT = tf.scalar(inputSize, 'int32') as Tensor;\n anchors = tf.tensor2d(util.generateAnchors(inputSize)) as Tensor;\n return model;\n}\n\nfunction decodeBoxes(boxOutputs: Tensor) {\n const t: Record = {};\n t.boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n t.centers = tf.add(t.boxStarts, anchors);\n t.boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n t.boxSizesNormalized = tf.div(t.boxSizes, inputSizeT);\n t.centersNormalized = tf.div(t.centers, inputSizeT);\n t.halfBoxSize = tf.div(t.boxSizesNormalized, constants.tf2);\n t.starts = tf.sub(t.centersNormalized, t.halfBoxSize);\n t.ends = tf.add(t.centersNormalized, t.halfBoxSize);\n t.startNormalized = tf.mul(t.starts, inputSizeT);\n t.endNormalized = tf.mul(t.ends, inputSizeT);\n const boxes = tf.concat2d([t.startNormalized, t.endNormalized], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n\nexport async function getBoxes(inputImage: Tensor, config: Config) {\n // sanity check on input\n if ((!inputImage) || (inputImage['isDisposedInternal']) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return [];\n const t: Record = {};\n t.resized = tf.image.resizeBilinear(inputImage, [inputSize, inputSize]);\n t.div = tf.div(t.resized, constants.tf127);\n t.normalized = tf.sub(t.div, constants.tf05);\n const res = model?.execute(t.normalized) as Tensor[];\n if (Array.isArray(res) && res.length > 2) { // pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n t.concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n t.concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n t.concat = tf.concat([t.concat512, t.concat384], 1);\n t.batch = tf.squeeze(t.concat, 0);\n } else if (Array.isArray(res)) { // new facemesh-detection tfhub model\n t.batch = tf.squeeze(res[0]);\n } else { // original blazeface tfhub model\n t.batch = tf.squeeze(res);\n }\n tf.dispose(res);\n t.boxes = decodeBoxes(t.batch);\n t.logits = tf.slice(t.batch, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.logits);\n t.scores = tf.squeeze(t.sigmoid);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0));\n const nms = await t.nms.array() as number[];\n const boxes: DetectBox[] = [];\n const scores = await t.scores.data();\n for (let i = 0; i < nms.length; i++) {\n const confidence = scores[nms[i]];\n if (confidence > (config.face.detector?.minConfidence || 0)) {\n const b: Record = {};\n b.bbox = tf.slice(t.boxes, [nms[i], 0], [1, -1]);\n b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]);\n b.squeeze = tf.squeeze(b.slice);\n b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]);\n const points = await b.bbox.data();\n const rawBox = {\n startPoint: [points[0], points[1]] as Point,\n endPoint: [points[2], points[3]] as Point,\n landmarks: (await b.landmarks.array()) as Point[],\n confidence,\n };\n const scaledBox = util.scaleBoxCoordinates(rawBox, [(inputImage.shape[2] || 0) / inputSize, (inputImage.shape[1] || 0) / inputSize]);\n const enlargedBox = util.enlargeBox(scaledBox, config.face['scale'] || faceBoxScaleFactor);\n const squaredBox = util.squarifyBox(enlargedBox);\n boxes.push(squaredBox);\n Object.keys(b).forEach((tensor) => tf.dispose(b[tensor]));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n", "/* eslint-disable no-multi-spaces */\n\nexport const kpt: string[] = [\n 'nose', // 0\n 'leftEyeInside', // 1\n 'leftEye', // 2\n 'leftEyeOutside', // 3\n 'rightEyeInside', // 4\n 'rightEye', // 5\n 'rightEyeOutside', // 6\n 'leftEar', // 7\n 'rightEar', // 8\n 'leftMouth', // 9\n 'rightMouth', // 10\n 'leftShoulder', // 11\n 'rightShoulder', // 12\n 'leftElbow', // 13\n 'rightElbow', // 14\n 'leftWrist', // 15\n 'rightWrist', // 16\n 'leftPinky', // 17\n 'rightPinky', // 18\n 'leftIndex', // 19\n 'rightIndex', // 20\n 'leftThumb', // 21\n 'rightThumb', // 22\n 'leftHip', // 23\n 'rightHip', // 24\n 'leftKnee', // 25\n 'rightKnee', // 26\n 'leftAnkle', // 27\n 'rightAnkle', // 28\n 'leftHeel', // 29\n 'rightHeel', // 30\n 'leftFoot', // 31\n 'rightFoot', // 32\n 'bodyCenter', // 33\n 'bodyTop', // 34\n 'leftPalm', // 35 // z-coord not ok\n 'leftHand', // 36 // similar to wrist but z-coord not ok\n 'rightPalm', // 37 // z-coord not ok\n 'rightHand', // 38 // similar to wrist but z-coord not ok\n];\n\nexport const connected: Record = {\n shoulders: ['leftShoulder', 'rightShoulder'],\n hips: ['rightHip', 'leftHip'],\n mouth: ['leftMouth', 'rightMouth'],\n leftLegUpper: ['leftHip', 'leftKnee'],\n leftLegLower: ['leftKnee', 'leftAnkle'],\n leftFoot: ['leftAnkle', 'leftHeel', 'leftFoot'],\n leftTorso: ['leftShoulder', 'leftHip'],\n leftArmUpper: ['leftShoulder', 'leftElbow'],\n leftArmLower: ['leftElbow', 'leftWrist'],\n leftHand: ['leftWrist', 'leftPalm'],\n leftHandPinky: ['leftPalm', 'leftPinky'],\n leftHandIndex: ['leftPalm', 'leftIndex'],\n leftHandThumb: ['leftPalm', 'leftThumb'],\n leftEyeOutline: ['leftEyeInside', 'leftEyeOutside'],\n rightLegUpper: ['rightHip', 'rightKnee'],\n rightLegLower: ['rightKnee', 'rightAnkle'],\n rightFoot: ['rightAnkle', 'rightHeel', 'rightFoot'],\n rightTorso: ['rightShoulder', 'rightHip'],\n rightArmUpper: ['rightShoulder', 'rightElbow'],\n rightArmLower: ['rightElbow', 'rightWrist'],\n rightHand: ['rightWrist', 'rightPalm'],\n rightHandPinky: ['rightPalm', 'rightPinky'],\n rightHandIndex: ['rightPalm', 'rightIndex'],\n rightHandThumb: ['rightPalm', 'rightThumb'],\n rightEyeOutline: ['rightEyeInside', 'rightEyeOutside'],\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\nimport type { Box } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nconst inputSize = 224;\nlet anchorTensor: { x, y };\nconst numLayers = 5;\nconst strides = [8, 16, 32, 32, 32];\n\nexport function createAnchors() {\n const anchors: { x: number, y: number }[] = [];\n let layerId = 0;\n while (layerId < numLayers) {\n let anchorCount = 0;\n let lastSameStrideLayer = layerId;\n while (lastSameStrideLayer < strides.length && strides[lastSameStrideLayer] === strides[layerId]) {\n anchorCount += 2;\n lastSameStrideLayer++;\n }\n const stride = strides[layerId];\n const featureMapHeight = Math.ceil(inputSize / stride);\n const featureMapWidth = Math.ceil(inputSize / stride);\n for (let y = 0; y < featureMapHeight; ++y) {\n for (let x = 0; x < featureMapWidth; ++x) {\n for (let anchorId = 0; anchorId < anchorCount; ++anchorId) {\n anchors.push({ x: (x + 0.5) / featureMapWidth, y: (y + 0.5) / featureMapHeight });\n }\n }\n }\n layerId = lastSameStrideLayer;\n }\n anchorTensor = { x: tf.tensor1d(anchors.map((a) => a.x)), y: tf.tensor1d(anchors.map((a) => a.y)) };\n}\n\nconst cropFactor = [5.0, 5.0];\nfunction decodeBoxes(boxesTensor, anchor): Tensor {\n return tf.tidy(() => {\n const split = tf.split(boxesTensor, 12, 1); // first 4 are box data [x,y,w,h] and 4 are keypoints data [x,y] for total of 12\n let xCenter = tf.squeeze(split[0]);\n let yCenter = tf.squeeze(split[1]);\n let width = tf.squeeze(split[2]);\n let height = tf.squeeze(split[3]);\n xCenter = tf.add(tf.div(xCenter, inputSize), anchor.x);\n yCenter = tf.add(tf.div(yCenter, inputSize), anchor.y);\n width = tf.mul(tf.div(width, inputSize), cropFactor[0]);\n height = tf.mul(tf.div(height, inputSize), cropFactor[1]);\n const xMin = tf.sub(xCenter, tf.div(width, 2));\n const yMin = tf.sub(yCenter, tf.div(height, 2));\n const boxes = tf.stack([xMin, yMin, width, height], 1);\n return boxes;\n });\n}\n\nexport async function decode(boxesTensor: Tensor, logitsTensor: Tensor, config: Config, outputSize: [number, number]): Promise {\n const t: Record = {};\n t.boxes = decodeBoxes(boxesTensor, anchorTensor);\n t.scores = tf.sigmoid(logitsTensor);\n t.argmax = tf.argMax(t.scores);\n const i = (await t.argmax.data())[0];\n const scores = await t.scores.data();\n const detected: { box: Box, boxRaw: Box, score: number }[] = [];\n const minScore = config.body?.['detector']?.minConfidence || 0;\n if (scores[i] >= minScore) {\n const boxes = await t.boxes.array();\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[1] * outputSize[1], boxRaw[2] * outputSize[0], boxRaw[3] * outputSize[1]];\n // console.log(box);\n detected.push({ box, boxRaw, score: scores[i] });\n }\n /*\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, 1, config.body.detector?.minConfidence || 0.1, config.body.detector?.iouThreshold || 0.1);\n const boxes = t.boxes.arraySync();\n const scores = t.scores.dataSync();\n const nms = t.nms.dataSync();\n const detected: Array = [];\n for (const i of Array.from(nms)) {\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[0] * outputSize[1], boxRaw[3] * outputSize[0], boxRaw[2] * outputSize[1]];\n detected.push({ box, boxRaw, score: scores[i] });\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return detected;\n}\n", "import type { Point, Box } from '../result';\n\nexport function calc(keypoints: Point[], outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const box: Box = [min[0], min[1], max[0] - min[0], max[1] - min[1]];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function square(keypoints: Point[], outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const center = [(min[0] + max[0]) / 2, (min[1] + max[1]) / 2]; // find center x and y coord of all fingers\n const dist = Math.max(center[0] - min[0], center[1] - min[1], -center[0] + max[0], -center[1] + max[1]); // largest distance from center in any direction\n const box: Box = [Math.trunc(center[0] - dist), Math.trunc(center[1] - dist), Math.trunc(2 * dist), Math.trunc(2 * dist)];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function scale(box: Box, scaleFact: number) {\n const dist = [box[2] * scaleFact, box[3] * scaleFact];\n const newBox: Box = [\n box[0] - (dist[0] - box[2]) / 2,\n box[1] - (dist[1] - box[3]) / 2,\n dist[0],\n dist[1],\n ];\n return newBox;\n}\n\nexport function crop(box: Box) { // [y1, x1, y2, x2] clamped to 0..1\n const yxBox: Box = [Math.max(0, box[1]), Math.max(0, box[0]), Math.min(1, box[3] + box[1]), Math.min(1, box[2] + box[0])];\n return yxBox;\n}\n", "/**\n * BlazePose model implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { log, now } from '../util/util';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, Box, Point, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport * as coords from './blazeposecoords';\nimport * as detect from './blazeposedetector';\nimport * as box from '../util/box';\n\nconst env = { initial: true };\n// const models: [GraphModel | null, GraphModel | null] = [null, null];\nconst models: { detector: GraphModel | null, landmarks: GraphModel | null } = { detector: null, landmarks: null };\nconst inputSize: { detector: [number, number], landmarks: [number, number] } = { detector: [224, 224], landmarks: [256, 256] };\nlet skipped = Number.MAX_SAFE_INTEGER;\nconst outputNodes: { detector: string[], landmarks: string[] } = {\n landmarks: ['ld_3d', 'activation_segmentation', 'activation_heatmap', 'world_3d', 'output_poseflag'],\n detector: [],\n};\n\nlet cache: BodyResult | null = null;\nlet cropBox: Box | undefined;\nlet padding: [number, number][] = [[0, 0], [0, 0], [0, 0], [0, 0]];\nlet lastTime = 0;\n\nconst sigmoid = (x) => (1 - (1 / (1 + Math.exp(x))));\n\nexport async function loadDetect(config: Config): Promise {\n if (env.initial) models.detector = null;\n if (!models.detector && config.body['detector'] && config.body['detector'].modelPath || '') {\n models.detector = await loadModel(config.body['detector'].modelPath);\n const inputs = models.detector?.['executor'] ? Object.values(models.detector.modelSignature['inputs']) : undefined;\n inputSize.detector[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.detector[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug && models.detector) log('cached model:', models.detector['modelUrl']);\n detect.createAnchors();\n return models.detector as GraphModel;\n}\n\nexport async function loadPose(config: Config): Promise {\n if (env.initial) models.landmarks = null;\n if (!models.landmarks) {\n models.landmarks = await loadModel(config.body.modelPath);\n const inputs = models.landmarks?.['executor'] ? Object.values(models.landmarks.modelSignature['inputs']) : undefined;\n inputSize.landmarks[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.landmarks[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models.landmarks['modelUrl']);\n return models.landmarks;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models.detector) await loadDetect(config);\n if (!models.landmarks) await loadPose(config);\n return [models.detector, models.landmarks];\n}\n\nfunction prepareImage(input: Tensor, size: number): Tensor {\n const t: Record = {};\n if (!input?.shape?.[1] || !input?.shape?.[2]) return input;\n let final: Tensor;\n if (cropBox) {\n t.cropped = tf.image.cropAndResize(input, [cropBox], [0], [input.shape[1], input.shape[2]]); // if we have cached box use it to crop input\n }\n if (input.shape[1] !== input.shape[2]) { // only pad if width different than height\n const height: [number, number] = [\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n ];\n const width: [number, number] = [\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n ];\n padding = [\n [0, 0], // dont touch batch\n height, // height before&after\n width, // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(t.cropped || input, padding); // use cropped box if it exists\n t.resize = tf.image.resizeBilinear(t.pad, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else if (input.shape[1] !== size) { // if input needs resizing\n t.resize = tf.image.resizeBilinear(t.cropped || input, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else { // if input is already in a correct resolution just normalize it\n final = tf.div(t.cropped || input, constants.tf255);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nfunction rescaleKeypoints(keypoints: BodyKeypoint[], outputSize: [number, number]): BodyKeypoint[] {\n for (const kpt of keypoints) { // first rescale due to padding\n kpt.position = [\n Math.trunc(kpt.position[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0] - padding[2][0]),\n Math.trunc(kpt.position[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1] - padding[1][0]),\n kpt.position[2] as number,\n ];\n kpt.positionRaw = [kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1], 2 * (kpt.position[2] as number) / (outputSize[0] + outputSize[1])];\n }\n if (cropBox) { // second rescale due to cropping\n for (const kpt of keypoints) {\n kpt.positionRaw = [\n kpt.positionRaw[0] + cropBox[1], // correct offset due to crop\n kpt.positionRaw[1] + cropBox[0], // correct offset due to crop\n kpt.positionRaw[2] as number,\n ];\n kpt.position = [\n Math.trunc(kpt.positionRaw[0] * outputSize[0]),\n Math.trunc(kpt.positionRaw[1] * outputSize[1]),\n kpt.positionRaw[2] as number,\n ];\n }\n }\n return keypoints;\n}\n\nfunction fixKeypoints(keypoints: BodyKeypoint[]) {\n // palm z-coord is incorrect around near-zero so we approximate it\n const leftPalm = keypoints.find((k) => k.part === 'leftPalm') as BodyKeypoint;\n const leftWrist = keypoints.find((k) => k.part === 'leftWrist') as BodyKeypoint;\n const leftIndex = keypoints.find((k) => k.part === 'leftIndex') as BodyKeypoint;\n leftPalm.position[2] = ((leftWrist.position[2] || 0) + (leftIndex.position[2] || 0)) / 2;\n const rightPalm = keypoints.find((k) => k.part === 'rightPalm') as BodyKeypoint;\n const rightWrist = keypoints.find((k) => k.part === 'rightWrist') as BodyKeypoint;\n const rightIndex = keypoints.find((k) => k.part === 'rightIndex') as BodyKeypoint;\n rightPalm.position[2] = ((rightWrist.position[2] || 0) + (rightIndex.position[2] || 0)) / 2;\n}\n\nasync function detectLandmarks(input: Tensor, config: Config, outputSize: [number, number]): Promise {\n /**\n * t.ld: 39 keypoints [x,y,z,score,presence] normalized to input size\n * t.segmentation:\n * t.heatmap:\n * t.world: 39 keypoints [x,y,z] normalized to -1..1\n * t.poseflag: body score\n */\n if (!models.landmarks?.['executor']) return null;\n const t: Record = {};\n [t.ld/* 1,195(39*5) */, t.segmentation/* 1,256,256,1 */, t.heatmap/* 1,64,64,39 */, t.world/* 1,117(39*3) */, t.poseflag/* 1,1 */] = models.landmarks?.execute(input, outputNodes.landmarks) as Tensor[]; // run model\n const poseScore = (await t.poseflag.data())[0];\n const points = await t.ld.data();\n const distances = await t.world.data();\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); // dont need tensors after this\n const keypointsRelative: BodyKeypoint[] = [];\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n const score = sigmoid(points[depth * i + 3]);\n const presence = sigmoid(points[depth * i + 4]);\n const adjScore = Math.trunc(100 * score * presence * poseScore) / 100;\n const positionRaw: Point = [points[depth * i + 0] / inputSize.landmarks[0], points[depth * i + 1] / inputSize.landmarks[1], points[depth * i + 2] + 0];\n const position: Point = [Math.trunc(outputSize[0] * positionRaw[0]), Math.trunc(outputSize[1] * positionRaw[1]), positionRaw[2] as number];\n const distance: Point = [distances[depth * i + 0], distances[depth * i + 1], distances[depth * i + 2] + 0];\n keypointsRelative.push({ part: coords.kpt[i] as BodyLandmark, positionRaw, position, distance, score: adjScore });\n }\n if (poseScore < (config.body.minConfidence || 0)) return null;\n fixKeypoints(keypointsRelative);\n const keypoints: BodyKeypoint[] = rescaleKeypoints(keypointsRelative, outputSize); // keypoints were relative to input image which is padded\n const kpts = keypoints.map((k) => k.position);\n const boxes = box.calc(kpts, [outputSize[0], outputSize[1]]); // now find boxes based on rescaled keypoints\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body = { id: 0, score: Math.trunc(100 * poseScore) / 100, box: boxes.box, boxRaw: boxes.boxRaw, keypoints, annotations };\n return body;\n}\n\n/*\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nfunction rescaleBoxes(boxes: Array, outputSize: [number, number]): Array {\n for (const b of boxes) {\n b.box = [\n Math.trunc(b.box[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n Math.trunc(b.box[2] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[3] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n ];\n b.boxRaw = [b.box[0] / outputSize[0], b.box[1] / outputSize[1], b.box[2] / outputSize[0], b.box[3] / outputSize[1]];\n }\n return boxes;\n}\n\nasync function detectBoxes(input: Tensor, config: Config, outputSize: [number, number]) {\n const t: Record = {};\n t.res = models.detector?.execute(input, ['Identity']) as Tensor; //\n t.logitsRaw = tf.slice(t.res, [0, 0, 0], [1, -1, 1]);\n t.boxesRaw = tf.slice(t.res, [0, 0, 1], [1, -1, -1]);\n t.logits = tf.squeeze(t.logitsRaw);\n t.boxes = tf.squeeze(t.boxesRaw);\n const boxes = await detect.decode(t.boxes, t.logits, config, outputSize);\n rescaleBoxes(boxes, outputSize);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n*/\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const outputSize: [number, number] = [input.shape[2] || 0, input.shape[1] || 0];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && cache !== null) {\n skipped++;\n } else {\n const t: Record = {};\n /*\n if (config.body['detector'] && config.body['detector']['enabled']) {\n t.detector = await prepareImage(input, 224);\n const boxes = await detectBoxes(t.detector, config, outputSize);\n }\n */\n t.landmarks = prepareImage(input, 256); // padded and resized\n cache = await detectLandmarks(t.landmarks, config, outputSize);\n /*\n cropBox = [0, 0, 1, 1]; // reset crop coordinates\n if (cache?.boxRaw && config.skipAllowed) {\n const cx = (2.0 * cache.boxRaw[0] + cache.boxRaw[2]) / 2;\n const cy = (2.0 * cache.boxRaw[1] + cache.boxRaw[3]) / 2;\n let size = cache.boxRaw[2] > cache.boxRaw[3] ? cache.boxRaw[2] : cache.boxRaw[3];\n size = (size * 1.0) / 2; // enlarge and half it\n if (cx > 0.1 && cx < 0.9 && cy > 0.1 && cy < 0.9 && size > 0.1) { // only update if box is sane\n const y = 0; // cy - size;\n const x = cx - size;\n cropBox = [y, x, y + 1, x + 1]; // [y0,x0,y1,x1] used for cropping but width/height are not yet implemented so we only reposition image to center of body\n }\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n lastTime = now();\n skipped = 0;\n }\n return cache ? [cache] : [];\n}\n", "/**\n * CoCo Labels used by object detection implementations\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * CenterNet object detection model implementation\n *\n * Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n // fakeOps(['floormod'], config);\n model = await loadModel(config.object.modelPath);\n const inputs = model?.['executor'] ? Object.values(model.modelSignature['inputs']) : undefined;\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor | null, outputShape: [number, number], config: Config) {\n if (!res) return [];\n const t: Record = {};\n const results: ObjectResult[] = [];\n const detections = await res.array() as number[][][];\n t.squeeze = tf.squeeze(res);\n const arr = tf.split(t.squeeze, 6, 1) as Tensor[]; // x1, y1, x2, y2, score, class\n t.stack = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n t.boxes = tf.squeeze(t.stack);\n t.scores = tf.squeeze(arr[4]);\n t.classes = tf.squeeze(arr[5]);\n tf.dispose([res, ...arr]);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, config.object.maxDetected, config.object.iouThreshold, (config.object.minConfidence || 0));\n const nms = await t.nms.data();\n let i = 0;\n for (const id of Array.from(nms)) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n const label = labels[classVal].label as ObjectType;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw: Box = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ];\n const box: Box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2] || 0, input.shape[1] || 0] as [number, number];\n const resize = tf.image.resizeBilinear(input, [inputSize, inputSize]);\n const objectT = config.object.enabled ? model?.execute(resize, ['tower_0/detections']) as Tensor : null;\n lastTime = now();\n tf.dispose(resize);\n\n const obj = await process(objectT, outputSize, config);\n last = obj;\n\n resolve(obj);\n });\n}\n", "export const kpt: string[] = [\n 'head',\n 'neck',\n 'rightShoulder',\n 'rightElbow',\n 'rightWrist',\n 'chest',\n 'leftShoulder',\n 'leftElbow',\n 'leftWrist',\n 'bodyCenter',\n 'rightHip',\n 'rightKnee',\n 'rightAnkle',\n 'leftHip',\n 'leftKnee',\n 'leftAnkle',\n];\n\nexport const connected: Record = {\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "/**\n * EfficientPose model implementation\n *\n * Based on: [**EfficientPose**](https://github.com/daniegr/EfficientPose)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as coords from './efficientposecoords';\nimport { constants } from '../tfjs/constants';\nimport type { BodyResult, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet lastTime = 0;\nconst cache: BodyResult = { id: 0, keypoints: [], box: [0, 0, 0, 0], boxRaw: [0, 0, 0, 0], score: 0, annotations: {} as Record };\n\n// const keypoints: Array = [];\n// let box: Box = [0, 0, 0, 0];\n// let boxRaw: Box = [0, 0, 0, 0];\n// let score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nasync function max2d(inputs, minScore): Promise<[number, number, number]> {\n const [width, height] = inputs.shape;\n const reshaped = tf.reshape(inputs, [height * width]); // combine all data\n const max = tf.max(reshaped, 0);\n const newScore: number = (await max.data())[0]; // get highest score\n if (newScore > minScore) { // skip coordinate calculation is score is too low\n const coordinates = tf.argMax(reshaped, 0);\n const mod = tf.mod(coordinates, width);\n const x = (await mod.data())[0];\n const div = tf.div(coordinates, width);\n const y: number = (await div.data())[0];\n tf.dispose([reshaped, max, coordinates, mod, div]);\n return [x, y, newScore];\n }\n tf.dispose([reshaped, max]);\n return [0, 0, newScore];\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && Object.keys(cache.keypoints).length > 0) {\n skipped++;\n return [cache];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model?.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, constants.tf2);\n const norm = tf.sub(enhance, constants.tf1);\n return norm;\n });\n let resT;\n if (config.body.enabled) resT = model?.execute(tensor);\n lastTime = now();\n tf.dispose(tensor);\n\n if (resT) {\n cache.keypoints.length = 0;\n const squeeze = tf.squeeze(resT);\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = tf.unstack(squeeze, 2);\n tf.dispose(squeeze);\n\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = await max2d(stack[id], config.body.minConfidence);\n if (partScore > (config.body.minConfidence || 0)) {\n cache.keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n cache.score = cache.keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = cache.keypoints.map((a) => a.position[0]);\n const y = cache.keypoints.map((a) => a.position[1]);\n cache.box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = cache.keypoints.map((a) => a.positionRaw[0]);\n const yRaw = cache.keypoints.map((a) => a.positionRaw[1]);\n cache.boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = cache.keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = cache.keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n cache.annotations[name] = pt;\n }\n resolve([cache]);\n });\n}\n", "/**\n * Emotion model implementation\n *\n * [**Oarriaga**](https://github.com/oarriaga/face_classification)\n */\n\nimport type { Emotion } from '../result';\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model: GraphModel | null;\nconst last: { score: number, emotion: Emotion }[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.emotion?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ score: number, emotion: Emotion }[]> {\n if (!model) return [];\n const skipFrame = skipped < (config.face.emotion?.skipFrames || 0);\n const skipTime = (config.face.emotion?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj: { score: number, emotion: Emotion }[] = [];\n if (config.face.emotion?.enabled) {\n const t: Record = {};\n const inputSize = model?.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n t.resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n // const box = [[0.15, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const resize = tf.image.cropAndResize(image, box, [0], [inputSize, inputSize]);\n // [t.red, t.green, t.blue] = tf.split(t.resize, 3, 3);\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n // t.redNorm = tf.mul(t.red, rgb[0]);\n // t.greenNorm = tf.mul(t.green, rgb[1]);\n // t.blueNorm = tf.mul(t.blue, rgb[2]);\n // t.grayscale = tf.addN([t.redNorm, t.greenNorm, t.blueNorm]);\n t.channels = tf.mul(t.resize, constants.rgb);\n t.grayscale = tf.sum(t.channels, 3, true);\n t.grayscaleSub = tf.sub(t.grayscale, constants.tf05);\n t.grayscaleMul = tf.mul(t.grayscaleSub, constants.tf2);\n t.emotion = model?.execute(t.grayscaleMul) as Tensor; // result is already in range 0..1, no need for additional activation\n lastTime = now();\n const data = await t.emotion.data();\n for (let i = 0; i < data.length; i++) {\n if (data[i] > (config.face.emotion.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] as Emotion });\n }\n obj.sort((a, b) => b.score - a.score);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * MobileFaceNet model implementation\n *\n * Based on: [**BecauseofAI MobileFace**](https://github.com/becauseofAI/MobileFace)\n *\n * Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: number[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['mobilefacenet']?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n/*\n// convert to black&white to avoid colorization impact\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\nconst [red, green, blue] = tf.split(crop, 3, 3);\nconst redNorm = tf.mul(red, rgb[0]);\nconst greenNorm = tf.mul(green, rgb[1]);\nconst blueNorm = tf.mul(blue, rgb[2]);\nconst grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\nconst merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n\n// optional increase image contrast\n// or do it per-channel so mean is done on each channel\n// or do it based on histogram\nconst mean = merge.mean();\nconst factor = 5;\nconst contrast = merge.sub(mean).mul(factor).add(mean);\n*/\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model?.['executor']) return [];\n const skipFrame = skipped < (config.face['mobilefacenet']?.skipFrames || 0);\n const skipTime = (config.face['mobilefacenet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: number[] = [];\n if (config.face['mobilefacenet']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model.execute(t.crop) as Tensor;\n /*\n // optional normalize outputs with l2 normalization\n const scaled = tf.tidy(() => {\n const l2 = res.norm('euclidean');\n const scale = res.div(l2);\n return scale;\n });\n\n // optional reduce feature vector complexity\n const reshape = tf.reshape(res, [128, 2]); // split 256 vectors into 128 x 2\n const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n */\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "/**\n * InsightFace model implementation\n *\n * Based on: [**DeepInsight InsightFace**](https://github.com/deepinsight/insightface)\n *\n * Alternative face embedding detection\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: number[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['insightface'].modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model?.['executor']) return [];\n const skipFrame = skipped < (config.face['insightface']?.skipFrames || 0);\n const skipTime = (config.face['insightface']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: number[] = [];\n if (config.face['insightface']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model.execute(t.crop) as Tensor;\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "import * as coords from './facemeshcoords';\nimport * as util from './facemeshutil';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { Point } from '../result';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\n\nconst irisEnlarge = 2.3;\n\nconst leftOutline = coords.meshAnnotations.leftEyeLower0;\nconst rightOutline = coords.meshAnnotations.rightEyeLower0;\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.iris?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model?.['executor'] && model.inputs?.[0].shape) ? model.inputs[0].shape[2] : 0;\n if (inputSize === -1) inputSize = 64;\n return model;\n}\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates and update the z coordinate to be an average of the original and the new.\nexport function replaceIrisCoords(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.irisIndices.length; i++) {\n const { key, indices } = coords.irisIndices[i];\n const originalIndices = coords.meshAnnotations[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0],\n newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n\nexport const getLeftToRightEyeDepthDifference = (rawCoords) => {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n};\n\n// Returns a box describing a cropped region around the eye fit for passing to the iris model.\nexport const getEyeBox = (rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, meshSize, flip = false) => {\n const box = util.squarifyBox(util.enlargeBox(util.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), irisEnlarge));\n const boxSize = util.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / meshSize,\n box.startPoint[0] / meshSize, box.endPoint[1] / meshSize,\n box.endPoint[0] / meshSize,\n ]], [0], [inputSize, inputSize]);\n if (flip && env.kernels.includes('flipleftright')) {\n const flipped = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n tf.dispose(crop);\n crop = flipped;\n }\n return { box, boxSize, crop };\n};\n\n// Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\nexport const getEyeCoords = (eyeData, eyeBox, eyeBoxSize, flip = false) => {\n const eyeRawCoords: Point[] = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / inputSize)) : (x / inputSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / inputSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n};\n\n// The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\nexport const getAdjustedIrisCoords = (rawCoords, irisCoords, direction) => {\n const upperCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n};\n\nexport async function augmentIris(rawCoords, face, meshSize) {\n if (!model?.['executor']) return rawCoords;\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], meshSize, true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1], meshSize, true);\n const combined = tf.concat([leftEyeCrop, rightEyeCrop]);\n tf.dispose(leftEyeCrop);\n tf.dispose(rightEyeCrop);\n const eyePredictions = model.execute(combined) as Tensor;\n tf.dispose(combined);\n const eyePredictionsData = await eyePredictions.data();\n tf.dispose(eyePredictions);\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize, false);\n const leftToRightEyeDepthDifference = getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', null);\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged so we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n const newCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n return newCoords;\n}\n", "// @tensorflow/tfjs-models/face-landmark-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = [number, number][];\n\nconst LIPS_CONNECTIONS: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nconst LEFT_EYE_CONNECTIONS: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nconst LEFT_EYEBROW_CONNECTIONS: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nconst LEFT_IRIS_CONNECTIONS: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nconst RIGHT_EYE_CONNECTIONS: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nconst RIGHT_EYEBROW_CONNECTIONS: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nconst RIGHT_IRIS_CONNECTIONS: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nconst FACE_OVAL_CONNECTIONS: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389], [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397], [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172], [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162], [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const MEDIAPIPE_FACE_MESH_CONNECTED_KEYPOINTS_PAIRS: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11], [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72], [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175], [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73], [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74], [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40], [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76], [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56], [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21], [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144], [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91], [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85], [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193], [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247], [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117], [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98], [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209], [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47], [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67], [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230], [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46], [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46], [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236], [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154], [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57], [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28], [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113], [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62], [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64], [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41], [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170], [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122], [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89], [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63], [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14], [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100], [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88], [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215], [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43], [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81], [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229], [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107], [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129], [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117], [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3], [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220], [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71], [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188], [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164], [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38], [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206], [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165], [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214], [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171], [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84], [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201], [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57], [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214], [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44], [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64], [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2], [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24], [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26], [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189], [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29], [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247], [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147], [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187], [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114], [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217], [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110], [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356], [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357], [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333], [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9], [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418], [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450], [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313], [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335], [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423], [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307], [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421], [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426], [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322], [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456], [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417], [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355], [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382], [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443], [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431], [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446], [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458], [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372], [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274], [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269], [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266], [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265], [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424], [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366], [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423], [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432], [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394], [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352], [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295], [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323], [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358], [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374], [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6], [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344], [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195], [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283], [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282], [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338], [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292], [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442], [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441], [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300], [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263], [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436], [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370], [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293], [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330], [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440], [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459], [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354], [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315], [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366], [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291], [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264], [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352], [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433], [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462], [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255], [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252], [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441], [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257], [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459], [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290], [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341], [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357], [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420], [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372], [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133], [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33], [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263], [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466], [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72], [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73], [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152], [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74], [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184], [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185], [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77], [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190], [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54], [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145], [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181], [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16], [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245], [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30], [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111], [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240], [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198], [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114], [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109], [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231], [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124], [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70], [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3], [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26], [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43], [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56], [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124], [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96], [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235], [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42], [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140], [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193], [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179], [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68], [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15], [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120], [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89], [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138], [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57], [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41], [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118], [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66], [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142], [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118], [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196], [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156], [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122], [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164], [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12], [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31], [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98], [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237], [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179], [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181], [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184], [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186], [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218], [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45], [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235], [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97], [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230], [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232], [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222], [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224], [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213], [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192], [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188], [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174], [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25], [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264], [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350], [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299], [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151], [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424], [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449], [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18], [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434], [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301], [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280], [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335], [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396], [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413], [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168], [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417], [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381], [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365], [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395], [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335], [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250], [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292], [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354], [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426], [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371], [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290], [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422], [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422], [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358], [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331], [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395], [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296], [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285], [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329], [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331], [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8], [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351], [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397], [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248], [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175], [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295], [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356], [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308], [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265], [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285], [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457], [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394], [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410], [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268], [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298], [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420], [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344], [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274], [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316], [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323], [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306], [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372], [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366], [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435], [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328], [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359], [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253], [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286], [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258], [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309], [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305], [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453], [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343], [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360], [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265], [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR = {\n lips: connectionsToIndices(LIPS_CONNECTIONS),\n leftEye: connectionsToIndices(LEFT_EYE_CONNECTIONS),\n leftEyebrow: connectionsToIndices(LEFT_EYEBROW_CONNECTIONS),\n leftIris: connectionsToIndices(LEFT_IRIS_CONNECTIONS),\n rightEye: connectionsToIndices(RIGHT_EYE_CONNECTIONS),\n rightEyebrow: connectionsToIndices(RIGHT_EYEBROW_CONNECTIONS),\n rightIris: connectionsToIndices(RIGHT_IRIS_CONNECTIONS),\n faceOval: connectionsToIndices(FACE_OVAL_CONNECTIONS),\n};\n\nconst indexLabelPairs: [number, string][] = Object.entries(MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR)\n .map(([label, indices]) => indices.map((index) => [index, label] as [number, string]))\n .flat();\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS = new Map(indexLabelPairs);\n\ntype AssignAverage = number[];\nexport interface LandmarksRefinementConfig {\n indexesMapping: number[]; // Maps indexes of the given set of landmarks to indexes of the resulting set of landmarks. Should be non empty and contain the same amount of indexes as landmarks in the corresponding input\n zRefinement: 'none'|'copy'|AssignAverage; // Z refinement instructions.\n}\n\nexport const LANDMARKS_REFINEMENT_LIPS_CONFIG = [\n 61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291, // Lower outer.\n 185, 40, 39, 37, 0, 267, 269, 270, 409, // Upper outer(excluding corners).\n 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, // Lower inner.\n 191, 80, 81, 82, 13, 312, 311, 310, 415, // Upper inner(excluding corners).\n 76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306, // Lower semi - outer.\n 184, 74, 73, 72, 11, 302, 303, 304, 408, // Upper semi - outer(excluding corners).\n 62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292, // Lower semi - inner.\n 183, 42, 41, 38, 12, 268, 271, 272, 407, // Upper semi - inner(excluding corners).\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG = [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // upper contour (excluding corners).\n 130, 25, 110, 24, 23, 22, 26, 112, 243, // Halo x2 lower contour.\n 247, 30, 29, 27, 28, 56, 190, // Halo x2 upper contour (excluding corners).\n 226, 31, 228, 229, 230, 231, 232, 233, 244, // Halo x3 lower contour.\n 113, 225, 224, 223, 222, 221, 189, // Halo x3 upper contour (excluding corners).\n 35, 124, 46, 53, 52, 65, // Halo x4 upper contour (no lower because of mesh structure) or eyebrow inner contour.\n 143, 111, 117, 118, 119, 120, 121, 128, 245, // Halo x5 lower contour.\n 156, 70, 63, 105, 66, 107, 55, 193, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG = [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n 359, 255, 339, 254, 253, 252, 256, 341, 463, // Halo x2 lower contour.\n 467, 260, 259, 257, 258, 286, 414, // Halo x2 upper contour (excluding corners).\n 446, 261, 448, 449, 450, 451, 452, 453, 464, // Halo x3 lower contour.\n 342, 445, 444, 443, 442, 441, 413, // Halo x3 upper contour (excluding corners).\n 265, 353, 276, 283, 282, 295, // Halo x4 upper contour (no lower because of mesh structure) or/ eyebrow inner contour.\n 372, 340, 346, 347, 348, 349, 350, 357, 465, // Halo x5 lower contour.\n 383, 300, 293, 334, 296, 336, 285, 417, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_IRIS_CONFIG = [\n 468, // Center.\n 469, // Iris right edge.\n 470, // Iris top edge.\n 471, // Iris left edge.\n 472, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // Upper contour (excluding corners).\n];\n*/\n\nexport const LANDMARKS_REFINEMENT_RIGHT_IRIS_CONFIG = [\n 473, // Center.\n 474, // Iris right edge.\n 475, // Iris top edge.\n 476, // Iris left edge.\n 477, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n];\n*/\n", "import * as constants from './constants';\nimport type { Tensor } from '../tfjs/types';\n\nexport async function augment(rawCoords, results: Tensor[]) {\n const t: Record = { // all attention models produce 2d results so it needs to be later augmented with correct z-coords\n // mesh: results[0], // already have it in rawCoords // output_mesh_identity\n // flag: results[1], // already processed in parent // conv_faceflag\n lips: await results.filter((r) => r.size === 160)[0].data() as Float32Array, // 80 x 2d = 160 // output_lips\n irisL: await results.filter((r) => r.size === 10)[0].data() as Float32Array, // 5 x 2d = 10 // output_right_iris\n eyeL: await results.filter((r) => r.size === 142)[0].data() as Float32Array, // 71 x 2d = 142 // output_right_eye\n irisR: await results.filter((r) => r.size === 10)[1].data() as Float32Array, // 5 x 2d = 10 // output_left_iris\n eyeR: await results.filter((r) => r.size === 142)[1].data() as Float32Array, // 71 x 2d = 142// output_left_eye\n };\n\n // augment iris: adds additional 5 keypoints per eye\n const irisLDepth = constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisL.length / 2; i++) rawCoords.push([t.irisL[2 * i + 0], t.irisL[2 * i + 1], irisLDepth]);\n const irisRDepth = constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisR.length / 2; i++) rawCoords.push([t.irisR[2 * i + 0], t.irisR[2 * i + 1], irisRDepth]);\n\n // augment eyes: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.eyeL.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]] = [t.eyeL[2 * i + 0], t.eyeL[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]][2]];\n for (let i = 0; i < t.eyeR.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]] = [t.eyeR[2 * i + 0], t.eyeR[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]][2]];\n\n // augment lips: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.lips.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]] = [t.lips[2 * i + 0], t.lips[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]][2]];\n\n return rawCoords;\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n *\n * Based on:\n * - [**MediaPipe BlazeFace**](https://drive.google.com/file/d/1f39lSzU5Oq-j_OXgS67KfN5wNsoeAZ4V/view)\n * - Facial Spacial Geometry: [**MediaPipe FaceMesh**](https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view)\n * - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view)\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as util from './facemeshutil';\nimport * as coords from './facemeshcoords';\nimport * as iris from './iris';\nimport * as attention from './attention';\nimport { histogramEqualization } from '../image/enhance';\nimport { env } from '../util/env';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { FaceResult, FaceLandmark, Point } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectBox { startPoint: Point, endPoint: Point, landmarks: Point[], confidence: number }\n\nconst cache = {\n boxes: [] as DetectBox[],\n skipped: Number.MAX_SAFE_INTEGER,\n timestamp: 0,\n};\n\nlet model: GraphModel | null = null;\nlet inputSize = 0;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n // reset cached boxes\n const skipTime = (config.face.detector?.skipTime || 0) > (now() - cache.timestamp);\n const skipFrame = cache.skipped < (config.face.detector?.skipFrames || 0);\n if (!config.skipAllowed || !skipTime || !skipFrame || cache.boxes.length === 0) {\n cache.boxes = await blazeface.getBoxes(input, config); // get results from blazeface detector\n cache.timestamp = now();\n cache.skipped = 0;\n } else {\n cache.skipped++;\n }\n const faces: FaceResult[] = [];\n const newCache: DetectBox[] = [];\n let id = 0;\n const size = inputSize;\n for (let i = 0; i < cache.boxes.length; i++) {\n const box = cache.boxes[i];\n let angle = 0;\n let rotationMatrix;\n const face: FaceResult = { // init face result\n id: id++,\n mesh: [],\n meshRaw: [],\n box: [0, 0, 0, 0],\n boxRaw: [0, 0, 0, 0],\n score: 0,\n boxScore: 0,\n faceScore: 0,\n // contoursRaw: [],\n // contours: [],\n annotations: {} as Record,\n };\n\n // optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop\n [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size());\n if (config.filter.equalization) {\n const equilized = face.tensor ? await histogramEqualization(face.tensor) : undefined;\n tf.dispose(face.tensor);\n if (equilized) face.tensor = equilized;\n }\n face.boxScore = Math.round(100 * box.confidence) / 100;\n if (!config.face.mesh?.enabled) { // mesh not enabled, return resuts from detector only\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n } else if (!model) { // mesh enabled, but not loaded\n if (config.debug) log('face mesh detection requested, but model is not loaded');\n } else { // mesh enabled\n if (config.face.attention?.enabled && !env.kernels.includes('atan2')) {\n tf.dispose(face.tensor);\n return faces;\n }\n const results = model.execute(face.tensor as Tensor) as Tensor[];\n const confidenceT = results.find((t) => t.shape[t.shape.length - 1] === 1) as Tensor;\n const faceConfidence = await confidenceT.data();\n face.faceScore = Math.round(100 * faceConfidence[0]) / 100;\n\n if (face.faceScore < (config.face.detector?.minConfidence || 1)) { // low confidence in detected mesh\n box.confidence = face.faceScore; // reset confidence of cached box\n if (config.face.mesh.keepInvalid) {\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 1), pt[1] / (input.shape[1] || 1), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n }\n } else {\n const meshT = results.find((t) => t.shape[t.shape.length - 1] === 1404) as Tensor;\n const coordsReshaped = tf.reshape(meshT, [-1, 3]);\n let rawCoords = await coordsReshaped.array();\n tf.dispose(coordsReshaped);\n if (config.face.attention?.enabled) {\n rawCoords = await attention.augment(rawCoords, results); // augment iris results using attention model results\n } else if (config.face.iris?.enabled) {\n rawCoords = await iris.augmentIris(rawCoords, face.tensor, inputSize); // run iris model and augment results\n }\n face.mesh = util.transformRawCoords(rawCoords, box, angle, rotationMatrix, inputSize); // get processed mesh\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.meshAnnotations)) face.annotations[key] = coords.meshAnnotations[key].map((index) => face.mesh[index]); // add annotations\n face.score = face.faceScore;\n const calculatedBox = { ...util.calculateFaceBox(face.mesh, box), confidence: box.confidence, landmarks: box.landmarks };\n face.box = util.clampBox(calculatedBox, input);\n face.boxRaw = util.getRawBox(calculatedBox, input);\n /*\n const contoursT = results.find((t) => t.shape[t.shape.length - 1] === 266) as Tensor;\n const contoursData = contoursT && await contoursT.data(); // 133 x 2d points\n face.contoursRaw = [];\n for (let j = 0; j < contoursData.length / 2; j++) face.contoursRaw.push([contoursData[2 * j + 0] / inputSize, contoursData[2 * j + 1] / inputSize]);\n face.contours = face.contoursRaw.map((c) => [Math.trunc((input.shape[2] || 1) * c[0]), Math.trunc((input.shape[1] || 1) * c[1])]);\n */\n newCache.push(calculatedBox);\n }\n tf.dispose(results);\n }\n if (face.score > (config.face.detector?.minConfidence || 1)) faces.push(face);\n else tf.dispose(face.tensor);\n }\n cache.boxes = newCache; // reset cache\n return faces;\n}\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (config.face.attention?.enabled && model?.['signature']) {\n if (Object.keys(model?.['signature']?.outputs || {}).length < 6) model = null;\n }\n if (!model) {\n if (config.face.attention?.enabled) model = await loadModel(config.face.attention.modelPath);\n else model = await loadModel(config.face.mesh?.modelPath);\n } else if (config.debug) {\n log('cached model:', model['modelUrl']);\n }\n inputSize = (model['executor'] && model?.inputs?.[0].shape) ? model?.inputs?.[0].shape[2] : 256;\n return model;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * FaceRes model implementation\n *\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n *\n * Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport type { Gender, Race } from '../result';\n\nexport interface FaceRes { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] }\n\nlet model: GraphModel | null;\nconst last: {\n age: number,\n gender: Gender,\n genderScore: number,\n descriptor: number[],\n}[] = [];\n\nlet lastTime = 0;\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.description?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport function enhance(input): Tensor {\n const tensor = (input.image || input.tensor || input) as Tensor; // input received from detector is already normalized to 0..1, input is also assumed to be straightened\n if (!model?.inputs[0].shape) return tensor; // model has no shape so no point continuing\n const crop: Tensor = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const norm: Tensor = tf.mul(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n /*\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n */\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model?.['executor']) return { age: 0, gender: 'unknown', genderScore: 0, descriptor: [] };\n const skipFrame = skipped < (config.face.description?.skipFrames || 0);\n const skipTime = (config.face.description?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj = {\n age: 0 as number,\n gender: 'unknown' as Gender,\n genderScore: 0 as number,\n descriptor: [] as number[],\n };\n\n if (config.face.description?.enabled) {\n const enhanced = enhance(image);\n const resT = model?.execute(enhanced) as Tensor[];\n lastTime = now();\n tf.dispose(enhanced);\n const genderT = resT.find((t) => t.shape[1] === 1) as Tensor;\n const gender = await genderT.data();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > (config.face.description.minConfidence || 0)) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);\n const age: number = (await argmax.data())[0];\n tf.dispose(argmax);\n const ageT = resT.find((t) => t.shape[1] === 100) as Tensor;\n const all = await ageT.data();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n const descriptor = desc ? await desc.data() : [] as number[];\n obj.descriptor = Array.from(descriptor);\n resT.forEach((t) => tf.dispose(t));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Point } from '../result';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]] as Point;\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]] as Point;\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]] as Point;\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize] as Point;\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]] as Point;\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: number[] = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: number[][] = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "/**\n * HandPose model implementation constants\n * See `handpose.ts` for entry point\n */\n\nexport const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport * as anchors from './handposeanchors';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Point } from '../result';\nimport type { Config } from '../config';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model: GraphModel) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = this?.model?.inputs?.[0]?.shape?.[2] || 0;\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n const t: Record = {};\n t.boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n t.boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n t.div = tf.div(t.boxOffsets, this.inputSizeTensor);\n t.boxCenterPoints = tf.add(t.div, this.anchorsTensor);\n t.halfBoxSizes = tf.div(t.boxSizes, this.doubleInputSizeTensor);\n t.sub = tf.sub(t.boxCenterPoints, t.halfBoxSizes);\n t.startPoints = tf.mul(t.sub, this.inputSizeTensor);\n t.add = tf.add(t.boxCenterPoints, t.halfBoxSizes);\n t.endPoints = tf.mul(t.add, this.inputSizeTensor);\n const res = tf.concat2d([t.startPoints, t.endPoints], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res as Tensor;\n }\n\n normalizeLandmarks(rawPalmLandmarks, index: number) {\n const t: Record = {};\n t.reshape = tf.reshape(rawPalmLandmarks, [-1, 7, 2]);\n t.div = tf.div(t.reshape, this.inputSizeTensor);\n t.landmarks = tf.add(t.div, this.anchors[index] ? this.anchors[index] : 0);\n const res = tf.mul(t.landmarks, this.inputSizeTensor);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res as Tensor;\n }\n\n async predict(input: Tensor, config: Config): Promise<{ startPoint: Point; endPoint: Point, palmLandmarks: Point[]; confidence: number }[]> {\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(input, [this.inputSize, this.inputSize]);\n t.div = tf.div(t.resize, constants.tf127);\n t.image = tf.sub(t.div, constants.tf1);\n t.batched = this.model.execute(t.image) as Tensor;\n t.predictions = tf.squeeze(t.batched);\n t.slice = tf.slice(t.predictions, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.slice);\n t.scores = tf.squeeze(t.sigmoid);\n const scores = await t.scores.data();\n t.boxes = tf.slice(t.predictions, [0, 1], [-1, 4]);\n t.norm = this.normalizeBoxes(t.boxes);\n // box detection is flaky so we look for 3x boxes than we need results\n t.nms = await tf.image.nonMaxSuppressionAsync(t.norm, t.scores, 3 * (config.hand?.maxDetected || 1), config.hand.iouThreshold, config.hand.minConfidence);\n const nms = await t.nms.array() as number[];\n const hands: { startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number }[] = [];\n for (const index of nms) {\n const p: Record = {};\n p.box = tf.slice(t.norm, [index, 0], [1, -1]);\n p.slice = tf.slice(t.predictions, [index, 5], [1, 14]);\n p.norm = this.normalizeLandmarks(p.slice, index);\n p.palmLandmarks = tf.reshape(p.norm, [-1, 2]);\n const box = await p.box.data();\n const startPoint = box.slice(0, 2) as unknown as Point;\n const endPoint = box.slice(2, 4) as unknown as Point;\n const palmLandmarks = await p.palmLandmarks.array();\n const hand = { startPoint, endPoint, palmLandmarks, confidence: scores[index] };\n const scaled = util.scaleBoxCoordinates(hand, [(input.shape[2] || 1) / this.inputSize, (input.shape[1] || 0) / this.inputSize]);\n hands.push(scaled);\n Object.keys(p).forEach((tensor) => tf.dispose(p[tensor]));\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return hands;\n }\n}\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport type * as detector from './handposedetector';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { now } from '../util/util';\nimport type { Point } from '../result';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\nlet lastTime = 0;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: ({ startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number } | null)[];\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n this.inputSize = this.handPoseModel?.inputs?.[0].shape?.[2] || 0;\n this.storedBoxes = [];\n this.skipped = Number.MAX_SAFE_INTEGER;\n this.detectedHands = 0;\n }\n\n calculateLandmarksBoundingBox(landmarks) { // eslint-disable-line class-methods-use-this\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return util.enlargeBox(util.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = util.enlargeBox(util.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = util.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...util.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames\n let boxes;\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = this.skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n boxes = await this.handDetector.predict(image, config);\n this.skipped = 0;\n }\n if (config.skipAllowed) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: { landmarks: Point[], confidence: number, boxConfidence: number, fingerConfidence: number, box: { topLeft: Point, bottomRight: Point } }[] = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = util.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && env.kernels.includes('rotatewithoffset') ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = util.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = tf.div(croppedInput, constants.tf255);\n tf.dispose(croppedInput);\n tf.dispose(rotatedImage);\n const [confidenceT, keypoints] = this.handPoseModel.execute(handImage) as Tensor[];\n lastTime = now();\n tf.dispose(handImage);\n const confidence = (await confidenceT.data())[0];\n tf.dispose(confidenceT);\n if (confidence >= config.hand.minConfidence / 4) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = await keypointsReshaped.array();\n tf.dispose(keypoints);\n tf.dispose(keypointsReshaped);\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n tf.dispose(keypoints);\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = util.enlargeBox(util.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: 0,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n landmarks: [],\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n if (hands.length > config.hand.maxDetected) hands.length = config.hand.maxDetected;\n return hands;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nexport const Finger = {\n thumb: 0,\n index: 1,\n middle: 2,\n ring: 3,\n pinky: 4,\n all: [0, 1, 2, 3, 4], // just for convenience\n nameMapping: { 0: 'thumb', 1: 'index', 2: 'middle', 3: 'ring', 4: 'pinky' },\n // Describes mapping of joints based on the 21 points returned by handpose.\n // [0] Palm\n // [1-4] Thumb\n // [5-8] Index\n // [9-12] Middle\n // [13-16] Ring\n // [17-20] Pinky\n pointsMapping: {\n 0: [[0, 1], [1, 2], [2, 3], [3, 4]],\n 1: [[0, 5], [5, 6], [6, 7], [7, 8]],\n 2: [[0, 9], [9, 10], [10, 11], [11, 12]],\n 3: [[0, 13], [13, 14], [14, 15], [15, 16]],\n 4: [[0, 17], [17, 18], [18, 19], [19, 20]],\n },\n getName: (value) => Finger.nameMapping[value],\n getPoints: (value) => Finger.pointsMapping[value],\n};\n\nexport const FingerCurl = {\n none: 0,\n half: 1,\n full: 2,\n nameMapping: { 0: 'none', 1: 'half', 2: 'full' },\n getName: (value) => FingerCurl.nameMapping[value],\n};\n\nexport const FingerDirection = {\n verticalUp: 0,\n verticalDown: 1,\n horizontalLeft: 2,\n horizontalRight: 3,\n diagonalUpRight: 4,\n diagonalUpLeft: 5,\n diagonalDownRight: 6,\n diagonalDownLeft: 7,\n nameMapping: { 0: 'verticalUp', 1: 'verticalDown', 2: 'horizontalLeft', 3: 'horizontalRight', 4: 'diagonalUpRight', 5: 'diagonalUpLeft', 6: 'diagonalDownRight', 7: 'diagonalDownLeft' },\n getName: (value) => FingerDirection.nameMapping[value],\n};\n\nexport class FingerGesture {\n name;\n curls;\n directions;\n weights;\n weightsRelative;\n\n constructor(name) {\n // name (should be unique)\n this.name = name;\n this.curls = {};\n this.directions = {};\n this.weights = [1.0, 1.0, 1.0, 1.0, 1.0];\n this.weightsRelative = [1.0, 1.0, 1.0, 1.0, 1.0];\n }\n\n curl(finger, curl, confidence) {\n if (typeof this.curls[finger] === 'undefined') this.curls[finger] = [];\n this.curls[finger].push([curl, confidence]);\n }\n\n direction(finger, position, confidence) {\n if (!this.directions[finger]) this.directions[finger] = [];\n this.directions[finger].push([position, confidence]);\n }\n\n weight(finger, weight) {\n this.weights[finger] = weight;\n // recalculate relative weights\n const total = this.weights.reduce((a, b) => a + b, 0);\n this.weightsRelative = this.weights.map((el) => el * 5 / total);\n }\n\n matchAgainst(detectedCurls, detectedDirections) {\n let confidence = 0.0;\n // look at the detected curl of each finger and compare with\n // the expected curl of this finger inside current gesture\n for (const fingerIdx in detectedCurls) {\n const detectedCurl = detectedCurls[fingerIdx];\n const expectedCurls = this.curls[fingerIdx];\n if (typeof expectedCurls === 'undefined') {\n // no curl description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible curl of this specific finger\n for (const [expectedCurl, score] of expectedCurls) {\n if (detectedCurl === expectedCurl) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n // same for detected direction of each finger\n for (const fingerIdx in detectedDirections) {\n const detectedDirection = detectedDirections[fingerIdx];\n const expectedDirections = this.directions[fingerIdx];\n if (typeof expectedDirections === 'undefined') {\n // no direction description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible direction of this specific finger\n for (const [expectedDirection, score] of expectedDirections) {\n if (detectedDirection === expectedDirection) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n return confidence / 10;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nimport { Finger, FingerCurl, FingerDirection, FingerGesture } from './fingerdef';\n\nexport const { thumb, index, middle, ring, pinky } = Finger;\nexport const { none, half, full } = FingerCurl;\nexport const { verticalUp, verticalDown, horizontalLeft, horizontalRight, diagonalUpRight, diagonalUpLeft, diagonalDownRight, diagonalDownLeft } = FingerDirection;\n\n// describe thumbs up gesture \uD83D\uDC4D\nconst ThumbsUp = new FingerGesture('thumbs up');\nThumbsUp.curl(thumb, none, 1.0);\nThumbsUp.direction(thumb, verticalUp, 1.0);\nThumbsUp.direction(thumb, diagonalUpLeft, 0.25);\nThumbsUp.direction(thumb, diagonalUpRight, 0.25);\nfor (const finger of [Finger.index, Finger.middle, Finger.ring, Finger.pinky]) {\n ThumbsUp.curl(finger, full, 1.0);\n ThumbsUp.direction(finger, horizontalLeft, 1.0);\n ThumbsUp.direction(finger, horizontalRight, 1.0);\n}\n\n// describe Victory gesture \u270C\uFE0F\nconst Victory = new FingerGesture('victory');\nVictory.curl(thumb, half, 0.5);\nVictory.curl(thumb, none, 0.5);\nVictory.direction(thumb, verticalUp, 1.0);\nVictory.direction(thumb, diagonalUpLeft, 1.0);\nVictory.curl(index, none, 1.0);\nVictory.direction(index, verticalUp, 0.75);\nVictory.direction(index, diagonalUpLeft, 1.0);\nVictory.curl(middle, none, 1.0);\nVictory.direction(middle, verticalUp, 1.0);\nVictory.direction(middle, diagonalUpLeft, 0.75);\nVictory.curl(ring, full, 1.0);\nVictory.direction(ring, verticalUp, 0.2);\nVictory.direction(ring, diagonalUpLeft, 1.0);\nVictory.direction(ring, horizontalLeft, 0.2);\nVictory.curl(pinky, full, 1.0);\nVictory.direction(pinky, verticalUp, 0.2);\nVictory.direction(pinky, diagonalUpLeft, 1.0);\nVictory.direction(pinky, horizontalLeft, 0.2);\nVictory.weight(index, 2);\nVictory.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst Point = new FingerGesture('point');\nPoint.curl(thumb, full, 1.0);\nPoint.curl(index, none, 0.5);\nPoint.curl(middle, full, 0.5);\nPoint.curl(ring, full, 0.5);\nPoint.curl(pinky, full, 0.5);\nPoint.weight(index, 2);\nPoint.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst MiddleFinger = new FingerGesture('middle finger');\nMiddleFinger.curl(thumb, none, 1.0);\nMiddleFinger.curl(index, full, 0.5);\nMiddleFinger.curl(middle, full, 0.5);\nMiddleFinger.curl(ring, full, 0.5);\nMiddleFinger.curl(pinky, full, 0.5);\nMiddleFinger.weight(index, 2);\nMiddleFinger.weight(middle, 2);\n\n// describe Open Palm gesture \u270C\uFE0F\nconst OpenPalm = new FingerGesture('open palm');\nOpenPalm.curl(thumb, none, 0.75);\nOpenPalm.curl(index, none, 0.75);\nOpenPalm.curl(middle, none, 0.75);\nOpenPalm.curl(ring, none, 0.75);\nOpenPalm.curl(pinky, none, 0.75);\n\nexport default [ThumbsUp, Victory, Point, MiddleFinger, OpenPalm];\n", "/**\n * FingerPose algorithm implementation constants\n *\n * Based on: [**FingerPose***](https://github.com/andypotato/fingerpose)\n */\n\n/* eslint-disable camelcase */\n\nimport { Finger, FingerCurl, FingerDirection } from './fingerdef';\nimport Gestures from '../hand/fingergesture';\n\nconst minConfidence = 0.7;\nconst options = {\n // curl estimation\n HALF_CURL_START_LIMIT: 60.0,\n NO_CURL_START_LIMIT: 130.0,\n // direction estimation\n DISTANCE_VOTE_POWER: 1.1,\n SINGLE_ANGLE_VOTE_POWER: 0.9,\n TOTAL_ANGLE_VOTE_POWER: 1.6,\n};\n\nfunction calculateSlope(point1x, point1y, point2x, point2y) {\n const value = (point1y - point2y) / (point1x - point2x);\n let slope = Math.atan(value) * 180 / Math.PI;\n if (slope <= 0) slope = -slope;\n else if (slope > 0) slope = 180 - slope;\n return slope;\n}\n\n// point1, point2 are 2d or 3d point arrays (xy[z])\n// returns either a single scalar (2d) or array of two slopes (3d)\nfunction getSlopes(point1, point2) {\n if (!point1 || !point2) return [0, 0];\n const slopeXY = calculateSlope(point1[0], point1[1], point2[0], point2[1]);\n if (point1.length === 2) return slopeXY;\n const slopeYZ = calculateSlope(point1[1], point1[2], point2[1], point2[2]);\n return [slopeXY, slopeYZ];\n}\n\nfunction angleOrientationAt(angle, weightageAt = 1.0) {\n let isVertical = 0;\n let isDiagonal = 0;\n let isHorizontal = 0;\n if (angle >= 75.0 && angle <= 105.0) isVertical = 1 * weightageAt;\n else if (angle >= 25.0 && angle <= 155.0) isDiagonal = 1 * weightageAt;\n else isHorizontal = 1 * weightageAt;\n return [isVertical, isDiagonal, isHorizontal];\n}\n\nfunction estimateFingerCurl(startPoint, midPoint, endPoint) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const start_mid_z_dist = startPoint[2] - midPoint[2];\n const start_end_z_dist = startPoint[2] - endPoint[2];\n const mid_end_z_dist = midPoint[2] - endPoint[2];\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist + start_mid_z_dist * start_mid_z_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist + start_end_z_dist * start_end_z_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist + mid_end_z_dist * mid_end_z_dist);\n let cos_in = (mid_end_dist * mid_end_dist + start_mid_dist * start_mid_dist - start_end_dist * start_end_dist) / (2 * mid_end_dist * start_mid_dist);\n if (cos_in > 1.0) cos_in = 1.0;\n else if (cos_in < -1.0) cos_in = -1.0;\n let angleOfCurve = Math.acos(cos_in);\n angleOfCurve = (57.2958 * angleOfCurve) % 180;\n let fingerCurl;\n if (angleOfCurve > options.NO_CURL_START_LIMIT) fingerCurl = FingerCurl.none;\n else if (angleOfCurve > options.HALF_CURL_START_LIMIT) fingerCurl = FingerCurl.half;\n else fingerCurl = FingerCurl.full;\n return fingerCurl;\n}\n\nfunction estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n if (max_dist_x === Math.abs(start_end_x_dist)) {\n if (start_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else if (max_dist_x === Math.abs(start_mid_x_dist)) {\n if (start_mid_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else {\n if (mid_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n }\n return estimatedDirection;\n}\n\nfunction estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y) {\n let estimatedDirection;\n if (max_dist_y === Math.abs(start_end_y_dist)) {\n if (start_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else if (max_dist_y === Math.abs(start_mid_y_dist)) {\n if (start_mid_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else {\n if (mid_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n }\n return estimatedDirection;\n}\n\nfunction estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n const reqd_vertical_direction = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n const reqd_horizontal_direction = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n if (reqd_vertical_direction === FingerDirection.verticalUp) {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalUpLeft;\n else estimatedDirection = FingerDirection.diagonalUpRight;\n } else {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalDownLeft;\n else estimatedDirection = FingerDirection.diagonalDownRight;\n }\n return estimatedDirection;\n}\n\nfunction calculateFingerDirection(startPoint, midPoint, endPoint, fingerSlopes) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const max_dist_x = Math.max(Math.abs(start_mid_x_dist), Math.abs(start_end_x_dist), Math.abs(mid_end_x_dist));\n const max_dist_y = Math.max(Math.abs(start_mid_y_dist), Math.abs(start_end_y_dist), Math.abs(mid_end_y_dist));\n let voteVertical = 0.0;\n let voteDiagonal = 0.0;\n let voteHorizontal = 0.0;\n const start_end_x_y_dist_ratio = max_dist_y / (max_dist_x + 0.00001);\n if (start_end_x_y_dist_ratio > 1.5) voteVertical += options.DISTANCE_VOTE_POWER;\n else if (start_end_x_y_dist_ratio > 0.66) voteDiagonal += options.DISTANCE_VOTE_POWER;\n else voteHorizontal += options.DISTANCE_VOTE_POWER;\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist);\n const max_dist = Math.max(start_mid_dist, start_end_dist, mid_end_dist);\n let calc_start_point_x = startPoint[0];\n let calc_start_point_y = startPoint[1];\n let calc_end_point_x = endPoint[0];\n let calc_end_point_y = endPoint[1];\n if (max_dist === start_mid_dist) {\n calc_end_point_x = endPoint[0];\n calc_end_point_y = endPoint[1];\n } else if (max_dist === mid_end_dist) {\n calc_start_point_x = midPoint[0];\n calc_start_point_y = midPoint[1];\n }\n const calcStartPoint = [calc_start_point_x, calc_start_point_y];\n const calcEndPoint = [calc_end_point_x, calc_end_point_y];\n const totalAngle = getSlopes(calcStartPoint, calcEndPoint);\n const votes = angleOrientationAt(totalAngle, options.TOTAL_ANGLE_VOTE_POWER);\n voteVertical += votes[0];\n voteDiagonal += votes[1];\n voteHorizontal += votes[2];\n for (const fingerSlope of fingerSlopes) {\n const fingerVotes = angleOrientationAt(fingerSlope, options.SINGLE_ANGLE_VOTE_POWER);\n voteVertical += fingerVotes[0];\n voteDiagonal += fingerVotes[1];\n voteHorizontal += fingerVotes[2];\n }\n // in case of tie, highest preference goes to Vertical,\n // followed by horizontal and then diagonal\n let estimatedDirection;\n if (voteVertical === Math.max(voteVertical, voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n } else if (voteHorizontal === Math.max(voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n } else {\n estimatedDirection = estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n }\n return estimatedDirection;\n}\n\nfunction estimate(landmarks) {\n // step 1: calculate slopes\n const slopesXY: number[][] = [];\n const slopesYZ: number[][] = [];\n const fingerCurls: number[] = [];\n const fingerDirections: number[] = [];\n if (!landmarks) return { curls: fingerCurls, directions: fingerDirections };\n\n // step 1: calculate slopes\n for (const finger of Finger.all) {\n const points = Finger.getPoints(finger);\n const slopeAtXY: number[] = [];\n const slopeAtYZ: number[] = [];\n for (const point of points) {\n const point1 = landmarks[point[0]];\n const point2 = landmarks[point[1]];\n // calculate single slope\n const slopes = getSlopes(point1, point2);\n const slopeXY = slopes[0];\n const slopeYZ = slopes[1];\n slopeAtXY.push(slopeXY);\n slopeAtYZ.push(slopeYZ);\n }\n slopesXY.push(slopeAtXY);\n slopesYZ.push(slopeAtYZ);\n }\n\n // step 2: calculate orientations\n for (const finger of Finger.all) {\n // start finger predictions from palm - except for thumb\n const pointIndexAt = (finger === Finger.thumb) ? 1 : 0;\n const fingerPointsAt = Finger.getPoints(finger);\n const startPoint = landmarks[fingerPointsAt[pointIndexAt][0]];\n const midPoint = landmarks[fingerPointsAt[pointIndexAt + 1][1]];\n const endPoint = landmarks[fingerPointsAt[3][1]];\n // check if finger is curled\n const fingerCurled = estimateFingerCurl(startPoint, midPoint, endPoint);\n const fingerPosition = calculateFingerDirection(startPoint, midPoint, endPoint, slopesXY[finger].slice(pointIndexAt));\n fingerCurls[finger] = fingerCurled;\n fingerDirections[finger] = fingerPosition;\n }\n return { curls: fingerCurls, directions: fingerDirections };\n}\n\nexport function analyze(keypoints) { // get estimations of curl / direction for each finger\n if (!keypoints || keypoints.length === 0) return null;\n const estimatorRes = estimate(keypoints);\n const landmarks = {};\n for (const fingerIdx of Finger.all) {\n landmarks[Finger.getName(fingerIdx)] = {\n curl: FingerCurl.getName(estimatorRes.curls[fingerIdx]),\n direction: FingerDirection.getName(estimatorRes.directions[fingerIdx]),\n };\n }\n return landmarks;\n}\n\nexport function match(keypoints) { // compare gesture description to each known gesture\n const poses: { name: string, confidence: number }[] = [];\n if (!keypoints || keypoints.length === 0) return poses;\n const estimatorRes = estimate(keypoints);\n for (const gesture of Gestures) {\n const confidence = gesture.matchAgainst(estimatorRes.curls, estimatorRes.directions);\n if (confidence >= minConfidence) poses.push({ name: gesture.name, confidence });\n }\n return poses;\n}\n", "/**\n * HandPose model implementation\n *\n * Based on: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n */\n\nimport { log } from '../util/util';\nimport * as handdetector from './handposedetector';\nimport * as handpipeline from './handposepipeline';\nimport * as fingerPose from './fingerpose';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, Box, Point } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palm: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: HandResult[] = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n const keypoints = predictions[i].landmarks as unknown as Point[];\n let box: Box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: Box = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n const landmarks = fingerPose.analyze(keypoints);\n hands.push({\n id: i,\n score: Math.round(100 * predictions[i].confidence) / 100,\n boxScore: Math.round(100 * predictions[i].boxConfidence) / 100,\n fingerScore: Math.round(100 * predictions[i].fingerConfidence) / 100,\n label: 'hand',\n box,\n boxRaw,\n keypoints,\n annotations: annotations as HandResult['annotations'],\n landmarks: landmarks as HandResult['landmarks'],\n });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (env.initial) {\n handDetectorModel = null;\n handPoseModel = null;\n }\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? loadModel(config.hand.detector?.modelPath) : null,\n config.hand.landmarks ? loadModel(config.hand.skeleton?.modelPath) : null,\n ]);\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = handDetectorModel ? new handdetector.HandDetector(handDetectorModel) : undefined;\n if (handDetector && handPoseModel) handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "/** TFJS custom backend registration */\n\nimport type { Human } from '../human';\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport * as models from '../models';\nimport type { AnyCanvas } from '../exports';\n// import { env } from '../env';\n\nexport const config = {\n name: 'humangl',\n priority: 999,\n canvas: null as null | AnyCanvas,\n gl: null as null | WebGL2RenderingContext,\n extensions: [] as string[] | null,\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions();\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport function register(instance: Human): void {\n // force backend reload if gl context is not valid\n if (instance.config.backend !== 'humangl') return;\n if ((config.name in tf.engine().registry) && !config?.gl?.getParameter(config.gl.VERSION)) {\n log('error: humangl backend invalid context');\n models.reset(instance);\n /*\n log('resetting humangl backend');\n await tf.removeBackend(config.name);\n await register(instance); // re-register\n */\n }\n if (!tf.findBackend(config.name)) {\n try {\n config.canvas = image.canvas(100, 100);\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr);\n if (!config.gl) {\n log('error: cannot get WebGL context');\n return;\n }\n const glv2 = config.gl.getParameter(config.gl.VERSION).includes('2.0');\n if (!glv2) {\n log('override: using fallback webgl backend as webgl 2.0 is not detected');\n instance.config.backend = 'webgl';\n return;\n }\n if (config.canvas) {\n config.canvas.addEventListener('webglcontextlost', (e) => {\n log('error: humangl:', e.type);\n log('possible browser memory leak using webgl or conflict with multiple backend registrations');\n instance.emit('error');\n throw new Error('backend error: webgl context lost');\n // log('resetting humangl backend');\n // env.initial = true;\n // models.reset(instance);\n // await tf.removeBackend(config.name);\n // await register(instance); // re-register\n });\n config.canvas.addEventListener('webglcontextrestored', (e) => {\n log('error: humangl context restored:', e);\n });\n config.canvas.addEventListener('webglcontextcreationerror', (e) => {\n log('error: humangl context create:', e);\n });\n }\n } catch (err) {\n log('error: cannot get WebGL context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n const current = tf.backend().getGPGPUContext ? tf.backend().getGPGPUContext().gl : null;\n if (current) {\n log(`humangl webgl version:${current.getParameter(current.VERSION) as string} renderer:${current.getParameter(current.RENDERER) as string}`);\n } else {\n log('error: no current gl context:', current, config.gl);\n return;\n }\n try {\n if (tf.env().flagRegistry.WEBGL_VERSION) tf.env().set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "/** TFJS backend initialization and customization */\n\nimport type { Human, Config } from '../human';\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as humangl from './humangl';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as constants from './constants';\n\nfunction registerCustomOps(config: Config) {\n if (!env.kernels.includes('mod')) {\n const kernelMod = {\n kernelName: 'Mod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.sub(op.inputs.a, tf.mul(tf.div(op.inputs.a, op.inputs.b), op.inputs.b))),\n };\n if (config.debug) log('registered kernel:', 'Mod');\n tf.registerKernel(kernelMod);\n env.kernels.push('mod');\n }\n if (!env.kernels.includes('floormod')) {\n const kernelFloorMod = {\n kernelName: 'FloorMod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.add(tf.mul(tf.floorDiv(op.inputs.a / op.inputs.b), op.inputs.b), tf.mod(op.inputs.a, op.inputs.b))),\n };\n if (config.debug) log('registered kernel:', 'FloorMod');\n tf.registerKernel(kernelFloorMod);\n env.kernels.push('floormod');\n }\n /*\n if (!env.kernels.includes('atan2') && config.softwareKernels) {\n const kernelAtan2 = {\n kernelName: 'Atan2',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => {\n const backend = tf.getBackend();\n tf.setBackend('cpu');\n const t = tf.atan2(op.inputs.a, op.inputs.b);\n tf.setBackend(backend);\n return t;\n }),\n };\n if (config.debug) log('registered kernel:', 'atan2');\n log('registered kernel:', 'atan2');\n tf.registerKernel(kernelAtan2);\n env.kernels.push('atan2');\n }\n */\n if (!env.kernels.includes('rotatewithoffset') && config.softwareKernels) {\n const kernelRotateWithOffset = {\n kernelName: 'RotateWithOffset',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => {\n const backend = tf.getBackend();\n tf.setBackend('cpu');\n const t = tf.image.rotateWithOffset(op.inputs.image, op.attrs.radians, op.attrs.fillValue, op.attrs.center);\n tf.setBackend(backend);\n return t;\n }),\n };\n if (config.debug) log('registered kernel:', 'RotateWithOffset');\n tf.registerKernel(kernelRotateWithOffset);\n env.kernels.push('rotatewithoffset');\n }\n}\n\nexport async function check(instance: Human, force = false) {\n instance.state = 'backend';\n if (force || env.initial || (instance.config.backend && (instance.config.backend.length > 0) && (tf.getBackend() !== instance.config.backend))) {\n const timeStamp = now();\n\n if (instance.config.backend && instance.config.backend.length > 0) {\n // detect web worker\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && instance.config.debug) {\n if (instance.config.debug) log('running inside web worker');\n }\n\n // force browser vs node backend\n if (env.browser && instance.config.backend === 'tensorflow') {\n if (instance.config.debug) log('override: backend set to tensorflow while running in browser');\n instance.config.backend = 'humangl';\n }\n if (env.node && (instance.config.backend === 'webgl' || instance.config.backend === 'humangl')) {\n if (instance.config.debug) log(`override: backend set to ${instance.config.backend} while running in nodejs`);\n instance.config.backend = 'tensorflow';\n }\n\n // handle webgpu\n if (env.browser && instance.config.backend === 'webgpu') {\n if (typeof navigator === 'undefined' || typeof navigator.gpu === 'undefined') {\n log('override: backend set to webgpu but browser does not support webgpu');\n instance.config.backend = 'humangl';\n } else {\n const adapter = await navigator.gpu.requestAdapter();\n if (instance.config.debug) log('enumerated webgpu adapter:', adapter);\n if (!adapter) {\n log('override: backend set to webgpu but browser reports no available gpu');\n instance.config.backend = 'humangl';\n } else {\n // @ts-ignore requestAdapterInfo is not in tslib\n const adapterInfo = 'requestAdapterInfo' in adapter ? await (adapter as GPUAdapter).requestAdapterInfo() : undefined;\n // if (adapter.features) adapter.features.forEach((feature) => log('webgpu features:', feature));\n log('webgpu adapter info:', adapterInfo);\n }\n }\n }\n\n // check available backends\n if (instance.config.backend === 'humangl') humangl.register(instance);\n const available = Object.keys(tf.engine().registryFactory as Record);\n if (instance.config.debug) log('available backends:', available);\n\n if (!available.includes(instance.config.backend)) {\n log(`error: backend ${instance.config.backend} not found in registry`);\n instance.config.backend = env.node ? 'tensorflow' : 'webgl';\n if (instance.config.debug) log(`override: setting backend ${instance.config.backend}`);\n }\n\n if (instance.config.debug) log('setting backend:', instance.config.backend);\n\n // customize wasm\n if (instance.config.backend === 'wasm') {\n if (tf.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY) tf.env().set('CANVAS2D_WILL_READ_FREQUENTLY', true);\n if (instance.config.debug) log('wasm path:', instance.config.wasmPath);\n if (typeof tf.setWasmPaths !== 'undefined') tf.setWasmPaths(instance.config.wasmPath, instance.config.wasmPlatformFetch);\n else throw new Error('backend error: attempting to use wasm backend but wasm path is not set');\n let mt = false;\n let simd = false;\n try {\n mt = await tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n simd = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n if (instance.config.debug) log(`wasm execution: ${simd ? 'simd' : 'no simd'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (instance.config.debug && !simd) log('warning: wasm simd support is not enabled');\n } catch {\n log('wasm detection failed');\n }\n }\n\n try {\n await tf.setBackend(instance.config.backend);\n await tf.ready();\n constants.init();\n } catch (err) {\n log('error: cannot set backend:', instance.config.backend, err);\n return false;\n }\n }\n\n // customize humangl\n if (tf.getBackend() === 'humangl') {\n if (tf.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS) tf.env().set('CHECK_COMPUTATION_FOR_ERRORS', false);\n if (tf.env().flagRegistry.WEBGL_CPU_FORWARD) tf.env().set('WEBGL_CPU_FORWARD', true);\n if (tf.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS) tf.env().set('WEBGL_USE_SHAPES_UNIFORMS', true);\n if (tf.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD) tf.env().set('CPU_HANDOFF_SIZE_THRESHOLD', 256);\n if (tf.env().flagRegistry.WEBGL_EXP_CONV) tf.env().set('WEBGL_EXP_CONV', true); // \n if (tf.env().flagRegistry.USE_SETTIMEOUTCUSTOM) tf.env().set('USE_SETTIMEOUTCUSTOM', true); // \n // if (tf.env().flagRegistry['WEBGL_PACK_DEPTHWISECONV']) tf.env().set('WEBGL_PACK_DEPTHWISECONV', false);\n // if (if (tf.env().flagRegistry['WEBGL_FORCE_F16_TEXTURES']) && !instance.config.object.enabled) tf.env().set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof instance.config.deallocate !== 'undefined' && instance.config.deallocate) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n tf.env().set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n if (tf.backend().getGPGPUContext) {\n const gl = await tf.backend().getGPGPUContext().gl;\n if (instance.config.debug) log(`gl version:${gl.getParameter(gl.VERSION) as string} renderer:${gl.getParameter(gl.RENDERER) as string}`);\n }\n }\n\n // customize webgpu\n if (tf.getBackend() === 'webgpu') {\n // if (tf.env().flagRegistry['WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD']) tf.env().set('WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD', 512);\n // if (tf.env().flagRegistry['WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE']) tf.env().set('WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE', 0);\n // if (tf.env().flagRegistry['WEBGPU_CPU_FORWARD']) tf.env().set('WEBGPU_CPU_FORWARD', true);\n }\n\n // wait for ready\n tf.enableProdMode();\n await tf.ready();\n\n instance.performance.initBackend = Math.trunc(now() - timeStamp);\n instance.config.backend = tf.getBackend();\n\n await env.updateBackend(); // update env on backend init\n registerCustomOps(instance.config);\n // await env.updateBackend(); // update env on backend init\n }\n return true;\n}\n\n// register fake missing tfjs ops\nexport function fakeOps(kernelNames: string[], config) {\n // if (config.debug) log('registerKernel:', kernelNames);\n for (const kernelName of kernelNames) {\n const kernelConfig = {\n kernelName,\n backendName: config.backend,\n kernelFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // setupFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // disposeFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n };\n tf.registerKernel(kernelConfig);\n }\n env.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => (kernel.kernelName as string).toLowerCase()); // re-scan registered ops\n}\n", "/**\n * HandTrack model implementation\n *\n * Based on:\n * - Hand Detection & Skeleton: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n * - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, HandType, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as fingerPose from './fingerpose';\nimport { fakeOps } from '../tfjs/backend';\nimport { constants } from '../tfjs/constants';\n\nconst models: [GraphModel | null, GraphModel | null] = [null, null];\nconst modelOutputNodes = ['StatefulPartitionedCall/Postprocessor/Slice', 'StatefulPartitionedCall/Postprocessor/ExpandDims_1'];\n\nconst inputSize = [[0, 0], [0, 0]];\n\nconst classes = ['hand', 'fist', 'pinch', 'point', 'face', 'tip', 'pinchtip'];\nconst faceIndex = 4;\n\nconst boxExpandFact = 1.6;\nconst maxDetectorResolution = 512;\nconst detectorExpandFact = 1.4;\n\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastTime = 0;\nlet outputSize: [number, number] = [0, 0];\n\ninterface HandDetectResult {\n id: number,\n score: number,\n box: Box,\n boxRaw: Box,\n label: HandType,\n}\n\nconst cache: {\n boxes: HandDetectResult[],\n hands: HandResult[];\n} = {\n boxes: [],\n hands: [],\n};\n\nconst fingerMap = {\n /*\n thumb: [0, 1, 2, 3, 4],\n index: [0, 5, 6, 7, 8],\n middle: [0, 9, 10, 11, 12],\n ring: [0, 13, 14, 15, 16],\n pinky: [0, 17, 18, 19, 20],\n palm: [0],\n */\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n base: [0],\n palm: [0, 17, 13, 9, 5, 1, 0],\n};\n\nexport async function loadDetect(config: Config): Promise {\n // HandTrack Model: Original: TFJS Port: \n if (env.initial) models[0] = null;\n if (!models[0]) {\n // handtrack model has some kernel ops defined in model but those are never referenced and non-existent in tfjs\n // ideally need to prune the model itself\n fakeOps(['tensorlistreserve', 'enter', 'tensorlistfromtensor', 'merge', 'loopcond', 'switch', 'exit', 'tensorliststack', 'nextiteration', 'tensorlistsetitem', 'tensorlistgetitem', 'reciprocal', 'shape', 'split', 'where'], config);\n models[0] = await loadModel(config.hand.detector?.modelPath);\n const inputs = models[0]['executor'] ? Object.values(models[0].modelSignature['inputs']) : undefined;\n inputSize[0][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[0][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[0]['modelUrl']);\n return models[0];\n}\n\nexport async function loadSkeleton(config: Config): Promise {\n if (env.initial) models[1] = null;\n if (!models[1]) {\n models[1] = await loadModel(config.hand.skeleton?.modelPath);\n const inputs = models[1]['executor'] ? Object.values(models[1].modelSignature['inputs']) : undefined;\n inputSize[1][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[1][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[1]['modelUrl']);\n return models[1];\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models[0]) await loadDetect(config);\n if (!models[1]) await loadSkeleton(config);\n return models;\n}\n\nasync function detectHands(input: Tensor, config: Config): Promise {\n const hands: HandDetectResult[] = [];\n if (!input || !models[0]) return hands;\n const t: Record = {};\n const ratio = (input.shape[2] || 1) / (input.shape[1] || 1);\n const height = Math.min(Math.round((input.shape[1] || 0) / 8) * 8, maxDetectorResolution); // use dynamic input size but cap at 512\n const width = Math.round(height * ratio / 8) * 8;\n t.resize = tf.image.resizeBilinear(input, [height, width]); // todo: resize with padding\n t.cast = tf.cast(t.resize, 'int32');\n [t.rawScores, t.rawBoxes] = await models[0].executeAsync(t.cast, modelOutputNodes) as Tensor[];\n t.boxes = tf.squeeze(t.rawBoxes, [0, 2]);\n t.scores = tf.squeeze(t.rawScores, [0]);\n const classScores: Tensor[] = tf.unstack(t.scores, 1); // unstack scores based on classes\n tf.dispose(classScores[faceIndex]);\n classScores.splice(faceIndex, 1); // remove faces\n t.filtered = tf.stack(classScores, 1); // restack\n tf.dispose(classScores);\n // t.filtered = t.scores;\n t.max = tf.max(t.filtered, 1); // max overall score\n t.argmax = tf.argMax(t.filtered, 1); // class index of max overall score\n let id = 0;\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, (config.hand.maxDetected || 0) + 1, config.hand.iouThreshold || 0, config.hand.minConfidence || 1);\n const nms = await t.nms.data();\n const scores = await t.max.data();\n const classNum = await t.argmax.data();\n for (const nmsIndex of Array.from(nms)) { // generates results for each class\n const boxSlice = tf.slice(t.boxes, nmsIndex, 1);\n const boxYX = await boxSlice.data();\n tf.dispose(boxSlice);\n const boxData: Box = [boxYX[1], boxYX[0], boxYX[3] - boxYX[1], boxYX[2] - boxYX[0]]; // yx box reshaped to standard box\n const boxRaw: Box = box.scale(boxData, detectorExpandFact);\n const boxFull: Box = [Math.trunc(boxData[0] * outputSize[0]), Math.trunc(boxData[1] * outputSize[1]), Math.trunc(boxData[2] * outputSize[0]), Math.trunc(boxData[3] * outputSize[1])];\n const score = scores[nmsIndex];\n const label = classes[classNum[nmsIndex]] as HandType;\n const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, label };\n hands.push(hand);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n hands.sort((a, b) => b.score - a.score);\n if (hands.length > (config.hand.maxDetected || 1)) hands.length = (config.hand.maxDetected || 1);\n return hands;\n}\n\nasync function detectFingers(input: Tensor, h: HandDetectResult, config: Config): Promise {\n const hand: HandResult = { // initial values inherited from hand detect\n id: h.id,\n score: Math.round(100 * h.score) / 100,\n boxScore: Math.round(100 * h.score) / 100,\n fingerScore: 0,\n box: h.box,\n boxRaw: h.boxRaw,\n label: h.label,\n keypoints: [],\n landmarks: {} as HandResult['landmarks'],\n annotations: {} as HandResult['annotations'],\n };\n if (input && models[1] && config.hand.landmarks && h.score > (config.hand.minConfidence || 0)) {\n const t: Record = {};\n const boxCrop = [h.boxRaw[1], h.boxRaw[0], h.boxRaw[3] + h.boxRaw[1], h.boxRaw[2] + h.boxRaw[0]] as Box;\n t.crop = tf.image.cropAndResize(input, [boxCrop], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');\n t.div = tf.div(t.crop, constants.tf255);\n [t.score, t.keypoints] = models[1].execute(t.div, ['Identity_1', 'Identity']) as Tensor[];\n const rawScore = (await t.score.data())[0];\n const score = (100 - Math.trunc(100 / (1 + Math.exp(rawScore)))) / 100; // reverse sigmoid value\n if (score >= (config.hand.minConfidence || 0)) {\n hand.fingerScore = score;\n t.reshaped = tf.reshape(t.keypoints, [-1, 3]);\n const coordsData: Point[] = await t.reshaped.array() as Point[];\n const coordsRaw: Point[] = coordsData.map((kpt) => [kpt[0] / inputSize[1][1], kpt[1] / inputSize[1][0], (kpt[2] || 0)]);\n const coordsNorm: Point[] = coordsRaw.map((kpt) => [kpt[0] * h.boxRaw[2], kpt[1] * h.boxRaw[3], (kpt[2] || 0)]);\n hand.keypoints = (coordsNorm).map((kpt) => [outputSize[0] * (kpt[0] + h.boxRaw[0]), outputSize[1] * (kpt[1] + h.boxRaw[1]), (kpt[2] || 0)]);\n hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger gestures\n for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations\n hand.annotations[key] = fingerMap[key].map((index: number) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n return hand;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!models[0]?.['executor'] || !models[1]?.['executor'] || !models[0].inputs[0].shape || !models[1].inputs[0].shape) return []; // something is wrong with the model\n outputSize = [input.shape[2] || 0, input.shape[1] || 0];\n skipped++; // increment skip frames\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.hands; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const skipTimeExtended = 3 * (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrameExtended = skipped < 3 * (config.hand.skipFrames || 0);\n if (config.skipAllowed && cache.hands.length === config.hand.maxDetected) { // we have all detected hands so we're definitely skipping\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else if (config.skipAllowed && skipTimeExtended && skipFrameExtended && cache.hands.length > 0) { // we have some cached results: maybe not enough but anyhow continue for bit longer\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else { // finally rerun detector\n cache.boxes = await detectHands(input, config);\n lastTime = now();\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n skipped = 0;\n }\n\n const oldCache = [...cache.boxes];\n cache.boxes.length = 0; // reset cache\n if (config.cacheSensitivity > 0) {\n for (let i = 0; i < cache.hands.length; i++) {\n const boxKpt = box.square(cache.hands[i].keypoints, outputSize);\n if (boxKpt.box[2] / (input.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config.hand.minConfidence || 0)) {\n const boxScale = box.scale(boxKpt.box, boxExpandFact);\n const boxScaleRaw = box.scale(boxKpt.boxRaw, boxExpandFact);\n // const boxCrop = box.crop(boxScaleRaw);\n cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw });\n }\n }\n }\n for (let i = 0; i < cache.hands.length; i++) { // replace detected boxes with calculated boxes in final output\n const bbox = box.calc(cache.hands[i].keypoints, outputSize);\n cache.hands[i].box = bbox.box;\n cache.hands[i].boxRaw = bbox.boxRaw;\n }\n resolve(cache.hands);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: number[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.liveness?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model?.['executor']) return 0;\n const skipTime = (config.face.liveness?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.liveness?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "export const kpt: string[] = [ // used to create part labels\n 'nose',\n 'leftEye',\n 'rightEye',\n 'leftEar',\n 'rightEar',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n];\n\nexport const horizontal: string[][] = [ // used to fix left vs right\n ['leftEye', 'rightEye'],\n ['leftEar', 'rightEar'],\n ['leftShoulder', 'rightShoulder'],\n ['leftElbow', 'rightElbow'],\n ['leftWrist', 'rightWrist'],\n ['leftHip', 'rightHip'],\n ['leftKnee', 'rightKnee'],\n ['leftAnkle', 'rightAnkle'],\n];\n\nexport const vertical: string[][] = [ // used to remove unlikely keypoint positions\n ['leftKnee', 'leftShoulder'],\n ['rightKnee', 'rightShoulder'],\n ['leftAnkle', 'leftKnee'],\n ['rightAnkle', 'rightKnee'],\n];\n\nexport const relative: string[][][] = [ // used to match relative body parts\n [['leftHip', 'rightHip'], ['leftShoulder', 'rightShoulder']],\n [['leftElbow', 'rightElbow'], ['leftShoulder', 'rightShoulder']],\n];\n\nexport const connected: Record = { // used to create body outline in annotations\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "import type { BodyKeypoint, BodyResult } from '../result';\nimport * as box from '../util/box';\nimport * as coords from './movenetcoords';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\n\nconst maxJitter = 0.005; // default allowed jitter is within 0.5%\n\nconst cache: {\n keypoints: BodyKeypoint[],\n padding: [number, number][];\n} = {\n keypoints: [],\n padding: [[0, 0], [0, 0], [0, 0], [0, 0]],\n};\n\nexport function bodyParts(body: BodyResult) { // model sometimes mixes up left vs right keypoints so we fix them\n for (const pair of coords.horizontal) { // fix body parts left vs right\n const left = body.keypoints.findIndex((kp) => kp.part === pair[0]);\n const right = body.keypoints.findIndex((kp) => kp.part === pair[1]);\n if (body.keypoints[left] && body.keypoints[right]) {\n if (body.keypoints[left].position[0] < body.keypoints[right].position[0]) {\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n }\n for (const pair of coords.vertical) { // remove body parts with improbable vertical position\n const lower = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const higher = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n if (body.keypoints[lower] && body.keypoints[higher]) {\n if (body.keypoints[lower].position[1] < body.keypoints[higher].position[1]) {\n body.keypoints.splice(lower, 1);\n }\n }\n }\n for (const [pair, compare] of coords.relative) { // rearrange body parts according to their relative position\n const left = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const right = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n const leftTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[0]));\n const rightTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[1]));\n if (!body.keypoints[leftTo] || !body.keypoints[rightTo]) continue; // only if we have both compare points\n const distanceLeft = body.keypoints[left] ? [\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[left].position[0]),\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[left].position[0]),\n ] : [0, 0];\n const distanceRight = body.keypoints[right] ? [\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[right].position[0]),\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[right].position[0]),\n ] : [0, 0];\n if (distanceLeft[0] > distanceLeft[1] || distanceRight[0] > distanceRight[1]) { // should flip keypoints\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n}\n\nexport function jitter(keypoints: BodyKeypoint[]): BodyKeypoint[] {\n for (let i = 0; i < keypoints.length; i++) {\n if (keypoints[i] && cache.keypoints[i]) {\n const diff = [Math.abs(keypoints[i].positionRaw[0] - cache.keypoints[i].positionRaw[0]), Math.abs(keypoints[i].positionRaw[1] - cache.keypoints[i].positionRaw[1])];\n if (diff[0] < maxJitter && diff[1] < maxJitter) {\n keypoints[i] = cache.keypoints[i]; // below jitter so replace keypoint\n } else {\n cache.keypoints[i] = keypoints[i]; // above jitter so update cache\n }\n } else {\n cache.keypoints[i] = keypoints[i]; // cache for keypoint doesnt exist so create it here\n }\n }\n return keypoints;\n}\n\nexport function padInput(input: Tensor, inputSize: number): Tensor {\n const t: Record = {};\n if (!input?.shape?.[1] || !input?.shape?.[2]) return input;\n cache.padding = [\n [0, 0], // dont touch batch\n [input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0, input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0], // height before&after\n [input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0, input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0], // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(input, cache.padding);\n t.resize = tf.image.resizeBilinear(t.pad, [inputSize, inputSize]);\n const final = tf.cast(t.resize, 'int32');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nexport function rescaleBody(body: BodyResult, outputSize: [number, number]): BodyResult {\n body.keypoints = body.keypoints.filter((kpt) => kpt?.position); // filter invalid keypoints\n for (const kpt of body.keypoints) {\n kpt.position = [\n kpt.position[0] * (outputSize[0] + cache.padding[2][0] + cache.padding[2][1]) / outputSize[0] - cache.padding[2][0],\n kpt.position[1] * (outputSize[1] + cache.padding[1][0] + cache.padding[1][1]) / outputSize[1] - cache.padding[1][0],\n ];\n kpt.positionRaw = [\n kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1],\n ];\n }\n const rescaledBoxes = box.calc(body.keypoints.map((pt) => pt.position), outputSize);\n body.box = rescaledBoxes.box;\n body.boxRaw = rescaledBoxes.boxRaw;\n return body;\n}\n", "/**\n * MoveNet model implementation\n *\n * Based on: [**MoveNet**](https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './movenetcoords';\nimport * as fix from './movenetfix';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, BodyAnnotation, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { fakeOps } from '../tfjs/backend';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n// const boxExpandFact = 1.5; // increase to 150%\n\nconst cache: {\n boxes: Box[], // unused\n bodies: BodyResult[];\n last: number,\n} = {\n boxes: [],\n bodies: [],\n last: 0,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n fakeOps(['size'], config);\n model = await loadModel(config.body.modelPath);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model?.['executor'] && model?.inputs?.[0].shape) ? model.inputs[0].shape[2] : 0;\n if (inputSize < 64) inputSize = 256;\n return model;\n}\n\nfunction parseSinglePose(res, config, image) {\n const kpt = res[0][0];\n const keypoints: BodyKeypoint[] = [];\n let score = 0;\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[id][1], kpt[id][0]];\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw,\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * positionRaw[0]),\n Math.round((image.shape[1] || 0) * positionRaw[1]),\n ],\n });\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const bodies: BodyResult[] = [];\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n const annotations: Record = {};\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id: 0, score, box: newBox.box, boxRaw: newBox.boxRaw, keypoints, annotations };\n fix.bodyParts(body);\n bodies.push(body);\n return bodies;\n}\n\nfunction parseMultiPose(res, config, image) {\n const bodies: BodyResult[] = [];\n for (let id = 0; id < res[0].length; id++) {\n const kpt = res[0][id];\n const totalScore = Math.round(100 * kpt[51 + 4]) / 100;\n if (totalScore > config.body.minConfidence) {\n const keypoints: BodyKeypoint[] = [];\n for (let i = 0; i < 17; i++) {\n const score = kpt[3 * i + 2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[3 * i + 1], kpt[3 * i + 0]];\n keypoints.push({\n part: coords.kpt[i] as BodyLandmark,\n score: Math.round(100 * score) / 100,\n positionRaw,\n position: [Math.round((image.shape[2] || 0) * positionRaw[0]), Math.round((image.shape[1] || 0) * positionRaw[1])],\n });\n }\n }\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n // movenet-multipose has built-in box details\n // const boxRaw: Box = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];\n // const box: Box = [Math.trunc(boxRaw[0] * (image.shape[2] || 0)), Math.trunc(boxRaw[1] * (image.shape[1] || 0)), Math.trunc(boxRaw[2] * (image.shape[2] || 0)), Math.trunc(boxRaw[3] * (image.shape[1] || 0))];\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id, score: totalScore, box: newBox.box, boxRaw: newBox.boxRaw, keypoints: [...keypoints], annotations };\n fix.bodyParts(body);\n bodies.push(body);\n }\n }\n bodies.sort((a, b) => b.score - a.score);\n if (bodies.length > config.body.maxDetected) bodies.length = config.body.maxDetected;\n return bodies;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor'] || !model?.inputs?.[0].shape) return []; // something is wrong with the model\n if (!config.skipAllowed) cache.boxes.length = 0; // allowed to use cache or not\n skipped++; // increment skip frames\n const skipTime = (config.body.skipTime || 0) > (now() - cache.last);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.bodies; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const t: Record = {};\n skipped = 0;\n // run detection on squared input and cached boxes\n /*\n cache.bodies = []; // reset bodies result\n if (cache.boxes.length >= (config.body.maxDetected || 0)) { // if we have enough cached boxes run detection using cache\n for (let i = 0; i < cache.boxes.length; i++) { // run detection based on cached boxes\n t.crop = tf.image.cropAndResize(input, [cache.boxes[i]], [0], [inputSize, inputSize], 'bilinear');\n t.cast = tf.cast(t.crop, 'int32');\n // t.input = prepareImage(input);\n t.res = model?.execute(t.cast) as Tensor;\n const res = await t.res.array();\n const newBodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, cache.boxes[i]) : await parseMultiPose(res, config, input, cache.boxes[i]);\n cache.bodies = cache.bodies.concat(newBodies);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n }\n if (cache.bodies.length !== config.body.maxDetected) { // did not find enough bodies based on cached boxes so run detection on full frame\n t.input = prepareImage(input);\n t.res = model?.execute(t.input) as Tensor;\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, [0, 0, 1, 1]) : await parseMultiPose(res, config, input, [0, 0, 1, 1]);\n for (const body of cache.bodies) rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n cache.boxes.length = 0; // reset cache\n for (let i = 0; i < cache.bodies.length; i++) {\n if (cache.bodies[i].keypoints.length > (coords.kpt.length / 2)) { // only update cache if we detected at least half keypoints\n const scaledBox = box.scale(cache.bodies[i].boxRaw, boxExpandFact);\n const cropBox = box.crop(scaledBox);\n cache.boxes.push(cropBox);\n }\n }\n */\n\n // run detection on squared input and no cached boxes\n t.input = fix.padInput(input, inputSize);\n t.res = model?.execute(t.input) as Tensor;\n cache.last = now();\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17)\n ? parseSinglePose(res, config, input)\n : parseMultiPose(res, config, input);\n for (const body of cache.bodies) {\n fix.rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n fix.jitter(body.keypoints);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n\n resolve(cache.bodies);\n });\n}\n", "/**\n * NanoDet object detection model implementation\n *\n * Based on: [**MB3-CenterNet**](https://github.com/610265158/mobilenetv3_centernet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet inputSize = 0;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) {\n model = await loadModel(config.object.modelPath);\n const inputs = model?.['executor'] ? Object.values(model.modelSignature['inputs']) : undefined;\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 416;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor[], outputShape: [number, number], config: Config) {\n let id = 0;\n let results: ObjectResult[] = [];\n const size = inputSize;\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) === labels.length)));\n const scores = await scoresT.array(); // optionally use exponential scores or just as-is\n const featuresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) < labels.length)));\n const boxesMaxT = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdxT = boxesMaxT.argMax(2); // what we need is indexes of features with highest scores, not values itself\n const boxIdx = await boxIdxT.array(); // what we need is indexes of features with highest scores, not values itself\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > (config.object.minConfidence || 0) && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a: number) => a * (baseSize / strideSize / (size))); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw: Box = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))) as Box; // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label as ObjectType,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)) as Box,\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n tf.dispose([scoresT, featuresT, boxesMaxT, boxIdxT]);\n }\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: number[] = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = await nms.data();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n if (!env.kernels.includes('mod') || !env.kernels.includes('sparsetodense')) return last;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2] || 0, image.shape[1] || 0];\n const resizeT = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n const normT = tf.div(resizeT, constants.tf255);\n const transposeT = tf.transpose(normT, [0, 3, 1, 2]);\n\n let objectT;\n if (config.object.enabled) objectT = model.execute(transposeT);\n lastTime = now();\n\n const obj = await process(objectT as Tensor[], outputSize as [number, number], config);\n last = obj;\n tf.dispose([resizeT, normT, transposeT, ...objectT]);\n resolve(obj);\n });\n}\n", "/**\n * PoseNet body detection model implementation constants\n * See `posenet.ts` for entry point\n */\n\nimport type { Point, BodyResult, BodyAnnotation, BodyLandmark } from '../result';\n\nexport const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n\nexport function eitherPointDoesntMeetConfidence(a: number, b: number, minConfidence: number) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence: number) {\n return connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): BodyResult[] {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i): BodyResult => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score: score as number,\n part: part as BodyLandmark,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)] as Point,\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight] as Point,\n })),\n annotations: {} as Record,\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: unknown[]; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint: number, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + count),\n };\n}\n\nexport function getImageCoords(part, outputStride: number, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a: { x: number, y: number }, b: { x: number, y: number }) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "/**\n * PoseNet body detection model implementation\n *\n * Based on: [**PoseNet**](https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyResult, BodyLandmark, Box } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as utils from './posenetutils';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId: number, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: utils.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = utils.poseChain.map(([parentJoinName, childJoinName]) => ([utils.partIds[parentJoinName], utils.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: utils.partNames[root.part.id] as BodyLandmark,\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score: number, heatmapY: number, heatmapX: number, scores) {\n const [height, width]: [number, number] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: { keypoints, box: Box, score: number }[] = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n /** posenet is mostly obsolete\n * caching is not implemented\n */\n if (!model?.['executor']) return [];\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = tf.sub(tf.div(tf.cast(resized, 'float32'), 127.5), 1.0);\n const results: Tensor[] = model.execute(normalized, poseNetOutputs) as Tensor[];\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = tf.sigmoid(results3d[1]); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor: Tensor) => tensor.buffer()));\n for (const t of res) tf.dispose(t);\n\n const decoded = decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = utils.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "/**\n * Image segmentation for body detection model\n *\n * Based on:\n * - [**MediaPipe Meet**](https://drive.google.com/file/d/1lnP1bRi9CSqQQXUHa13159vLELYDgDu0/preview)\n * - [**MediaPipe Selfie**](https://drive.google.com/file/d/1dCfozqknMa068vVsO2j_1FgZkW_e3VWv/preview)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as image from '../image/image';\nimport { constants } from '../tfjs/constants';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport type { Input, AnyCanvas } from '../exports';\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.segmentation.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config)\n: Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n if (busy) return { data: [], canvas: null, alpha: null };\n busy = true;\n if (!model) await load(config);\n const inputImage = await image.process(input, config);\n const width = inputImage.tensor?.shape[2] || 0;\n const height = inputImage.tensor?.shape[1] || 0;\n if (!inputImage.tensor) return { data: [], canvas: null, alpha: null };\n const t: Record = {};\n\n t.resize = tf.image.resizeBilinear(inputImage.tensor, [model.inputs[0].shape ? model.inputs[0].shape[1] : 0, model.inputs[0].shape ? model.inputs[0].shape[2] : 0], false);\n tf.dispose(inputImage.tensor);\n t.norm = tf.div(t.resize, constants.tf255);\n t.res = model.execute(t.norm) as Tensor;\n\n t.squeeze = tf.squeeze(t.res, 0); // meet.shape:[1,256,256,1], selfie.shape:[1,144,256,2]\n if (t.squeeze.shape[2] === 2) {\n t.softmax = tf.softmax(t.squeeze); // model meet has two channels for fg and bg\n [t.bg, t.fg] = tf.unstack(t.softmax, 2);\n t.expand = tf.expandDims(t.fg, 2);\n t.pad = tf.expandDims(t.expand, 0);\n t.crop = tf.image.cropAndResize(t.pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n t.data = tf.squeeze(t.crop, 0);\n } else {\n t.data = tf.image.resizeBilinear(t.squeeze, [height, width]); // model selfie has a single channel that we can use directly\n }\n const data = Array.from(await t.data.data());\n\n if (env.node && !env.Canvas && (typeof ImageData === 'undefined')) {\n if (config.debug) log('canvas support missing');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return { data, canvas: null, alpha: null }; // running in nodejs so return alpha array as-is\n }\n\n const alphaCanvas = image.canvas(width, height);\n if (tf.browser) await tf.browser.toPixels(t.data, alphaCanvas);\n const alphaCtx = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (config.segmentation.blur && config.segmentation.blur > 0) alphaCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n const alphaData = alphaCtx.getImageData(0, 0, width, height);\n\n const compositeCanvas = image.canvas(width, height);\n const compositeCtx = compositeCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (inputImage.canvas) compositeCtx.drawImage(inputImage.canvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'darken'; // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n if (config.segmentation.blur && config.segmentation.blur > 0) compositeCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n compositeCtx.drawImage(alphaCanvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'source-over'; // reset composite operation\n compositeCtx.filter = 'none'; // reset css filter\n const compositeData = compositeCtx.getImageData(0, 0, width, height);\n for (let i = 0; i < width * height; i++) compositeData.data[4 * i + 3] = alphaData.data[4 * i + 0]; // copy original alpha value to new composite canvas\n compositeCtx.putImageData(compositeData, 0, 0);\n\n let mergedCanvas: AnyCanvas | null = null;\n if (background && compositeCanvas) { // draw background with segmentation as overlay if background is present\n mergedCanvas = image.canvas(width, height);\n const bgImage = await image.process(background, config);\n tf.dispose(bgImage.tensor);\n const ctxMerge = mergedCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxMerge.drawImage(bgImage.canvas as HTMLCanvasElement, 0, 0, mergedCanvas.width, mergedCanvas.height);\n ctxMerge.drawImage(compositeCanvas, 0, 0);\n }\n\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n busy = false;\n // return { data, canvas: mergedCanvas || compositeCanvas, alpha: alphaCanvas };\n return { data, canvas: compositeCanvas, alpha: alphaCanvas };\n}\n", "import { log, join } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { GraphModel } from './types';\nimport type { Config } from '../config';\nimport * as modelsDefs from '../../models/models.json';\nimport { validateModel } from '../models';\n\nconst options = {\n cacheModels: true,\n cacheSupported: true,\n verbose: true,\n debug: false,\n modelBasePath: '',\n};\n\nexport interface ModelInfo {\n name: string,\n inCache: boolean,\n sizeDesired: number,\n sizeFromManifest: number,\n sizeLoadedWeights: number,\n}\n\nexport const modelStats: Record = {};\n\nasync function httpHandler(url: string, init?: RequestInit): Promise {\n if (options.debug) log('load model fetch:', url, init);\n return fetch(url, init);\n}\n\nexport function setModelLoadOptions(config: Config) {\n options.cacheModels = config.cacheModels;\n options.verbose = config.debug;\n options.modelBasePath = config.modelBasePath;\n}\n\nexport async function loadModel(modelPath: string | undefined): Promise {\n let modelUrl = join(options.modelBasePath, modelPath || '');\n if (!modelUrl.toLowerCase().endsWith('.json')) modelUrl += '.json';\n const modelPathSegments = modelUrl.includes('/') ? modelUrl.split('/') : modelUrl.split('\\\\');\n const shortModelName = modelPathSegments[modelPathSegments.length - 1].replace('.json', '');\n const cachedModelName = 'indexeddb://' + shortModelName; // generate short model name for cache\n modelStats[shortModelName] = {\n name: shortModelName,\n sizeFromManifest: 0,\n sizeLoadedWeights: 0,\n sizeDesired: modelsDefs[shortModelName],\n inCache: false,\n };\n options.cacheSupported = (typeof window !== 'undefined') && (typeof window.localStorage !== 'undefined') && (typeof window.indexedDB !== 'undefined'); // check if running in browser and if indexedb is available\n let cachedModels = {};\n try {\n cachedModels = (options.cacheSupported && options.cacheModels) ? await tf.io.listModels() : {}; // list all models already in cache // this fails for webview although localStorage is defined\n } catch {\n options.cacheSupported = false;\n }\n modelStats[shortModelName].inCache = (options.cacheSupported && options.cacheModels) && Object.keys(cachedModels).includes(cachedModelName); // is model found in cache\n const tfLoadOptions = typeof fetch === 'undefined' ? {} : { fetchFunc: (url: string, init?: RequestInit) => httpHandler(url, init) };\n const model: GraphModel = new tf.GraphModel(modelStats[shortModelName].inCache ? cachedModelName : modelUrl, tfLoadOptions) as unknown as GraphModel; // create model prototype and decide if load from cache or from original modelurl\n let loaded = false;\n try {\n // @ts-ignore private function\n model.findIOHandler(); // decide how to actually load a model\n if (options.debug) log('model load handler:', model['handler']);\n // @ts-ignore private property\n const artifacts = await model.handler.load(); // load manifest\n modelStats[shortModelName].sizeFromManifest = artifacts?.weightData?.byteLength || 0;\n model.loadSync(artifacts); // load weights\n // @ts-ignore private property\n modelStats[shortModelName].sizeLoadedWeights = model.artifacts?.weightData?.byteLength || 0;\n if (options.verbose) log('load model:', model['modelUrl'], { bytes: modelStats[shortModelName].sizeLoadedWeights }, options);\n loaded = true;\n } catch (err) {\n log('error loading model:', modelUrl, err);\n }\n if (loaded && options.cacheModels && options.cacheSupported && !modelStats[shortModelName].inCache) { // save model to cache\n try {\n const saveResult = await model.save(cachedModelName);\n log('model saved:', cachedModelName, saveResult);\n } catch (err) {\n log('error saving model:', modelUrl, err);\n }\n }\n validateModel(null, model, `${modelPath || ''}`);\n return model;\n}\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { mergeDeep, now } from '../util/util';\nimport { env } from '../util/env';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport { face } from './face';\nimport { body } from './body';\nimport { hand } from './hand';\nimport { object } from './object';\nimport { gesture } from './gesture';\nimport type { Result, PersonResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet drawTime = 0;\n\nexport { options } from './options';\nexport { face } from './face';\nexport { body } from './body';\nexport { hand } from './hand';\nexport { object } from './object';\nexport { gesture } from './gesture';\n\n/** draw combined person results instead of individual detection result objects */\nexport function person(inCanvas: AnyCanvas, result: PersonResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\n/** draw processed canvas */\nexport function canvas(input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) {\n if (!input || !output) return;\n const ctx = getCanvasContext(output);\n if (!ctx) return;\n ctx.drawImage(input, 0, 0);\n}\n\n/** meta-function that performs draw for: canvas, face, body, hand */\nexport async function all(inCanvas: AnyCanvas, result: Result, drawOptions?: Partial) {\n if (!result?.performance || !inCanvas) return null;\n const timeStamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n const promise = Promise.all([\n face(inCanvas, result.face, localOptions),\n body(inCanvas, result.body, localOptions),\n hand(inCanvas, result.hand, localOptions),\n object(inCanvas, result.object, localOptions),\n gesture(inCanvas, result.gesture, localOptions), // gestures do not have buffering\n // person(inCanvas, result.persons, localOptions); // already included above\n ]);\n drawTime = env.perfadd ? drawTime + Math.round(now() - timeStamp) : Math.round(now() - timeStamp);\n result.performance.draw = drawTime;\n return promise;\n}\n", "import { log } from '../util/util';\nimport type { AnyCanvas } from '../exports';\nimport type { Point } from '../result';\nimport type { DrawOptions } from './options';\n\nexport const getCanvasContext = (input: AnyCanvas) => {\n if (!input) log('draw error: invalid canvas');\n else if (!input.getContext) log('draw error: canvas context not defined');\n else {\n const ctx = input.getContext('2d');\n if (!ctx) log('draw error: cannot get canvas context');\n else return ctx;\n }\n return null;\n};\n\nexport const rad2deg = (theta: number) => Math.round((theta * 180) / Math.PI);\n\nexport const colorDepth = (z: number | undefined, opt: DrawOptions): string => { // performance optimization needed\n if (!opt.useDepth || typeof z === 'undefined') return opt.color;\n const rgb = Uint8ClampedArray.from([127 + (2 * z), 127 - (2 * z), 255]);\n return `rgba(${rgb[0]}, ${rgb[1]}, ${rgb[2]}, ${opt.alpha})`;\n};\n\nexport function point(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, z: number | undefined, localOptions: DrawOptions) {\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nexport function rect(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, width: number, height: number, localOptions: DrawOptions) {\n ctx.beginPath();\n ctx.lineWidth = localOptions.lineWidth;\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nexport function lines(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = colorDepth(pt[2] || 0, localOptions);\n ctx.lineTo(Math.trunc(pt[0]), Math.trunc(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function curves(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.lineWidth = localOptions.lineWidth;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function arrow(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, from: Point, to: Point, radius = 5) {\n let angle;\n let x;\n let y;\n ctx.beginPath();\n ctx.moveTo(from[0], from[1]);\n ctx.lineTo(to[0], to[1]);\n angle = Math.atan2(to[1] - from[1], to[0] - from[0]);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.moveTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n ctx.closePath();\n ctx.stroke();\n ctx.fill();\n}\n", "/** Draw Options\n * - Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n */\nexport interface DrawOptions {\n /** draw line color */\n color: string,\n /** alpha value used for lines */\n alpha: number,\n /** label color */\n labelColor: string,\n /** label shadow color */\n shadowColor: string,\n /** label font */\n font: string,\n /** line spacing between labels */\n lineHeight: number,\n /** line width for drawn lines */\n lineWidth: number,\n /** size of drawn points */\n pointSize: number,\n /** draw rounded boxes by n pixels */\n roundRect: number,\n /** should points be drawn? */\n drawPoints: boolean,\n /** should labels be drawn? */\n drawLabels: boolean,\n /** should face attention keypoints be highlighted */\n drawAttention: boolean;\n /** should detected gestures be drawn? */\n drawGestures: boolean,\n /** should draw boxes around detection results? */\n drawBoxes: boolean,\n /** should draw polygons from detection points? */\n drawPolygons: boolean,\n /** should draw gaze arrows? */\n drawGaze: boolean,\n /** should fill polygons? */\n fillPolygons: boolean,\n /** use z-coordinate when available */\n useDepth: boolean,\n /** should lines be curved? */\n useCurves: boolean,\n}\n\n/** currently set draw options {@link DrawOptions} */\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)' as string, // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)' as string, // 'lightblue' with dark alpha channel\n shadowColor: 'black' as string,\n alpha: 0.5 as number,\n font: 'small-caps 16px \"Segoe UI\"' as string,\n lineHeight: 18 as number,\n lineWidth: 4 as number,\n pointSize: 2 as number,\n roundRect: 8 as number,\n drawPoints: false as boolean,\n drawLabels: true as boolean,\n drawBoxes: true as boolean,\n drawAttention: true as boolean,\n drawGestures: true as boolean,\n drawPolygons: true as boolean,\n drawGaze: true as boolean,\n fillPolygons: false as boolean,\n useDepth: true as boolean,\n useCurves: false as boolean,\n};\n", "import { TRI468 as triangulation } from '../face/facemeshcoords';\nimport { mergeDeep } from '../util/util';\nimport { getCanvasContext, rad2deg, rect, point, lines, arrow } from './primitives';\nimport { options } from './options';\nimport * as facemeshConstants from '../face/constants';\nimport type { FaceResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet opt: DrawOptions;\n\nfunction drawLabels(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawLabels) {\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.real) labels.push(`real: ${Math.trunc(100 * f.real)}%`);\n if (f.live) labels.push(`live: ${Math.trunc(100 * f.live)}%`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation?.angle && f.rotation?.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = opt.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * opt.lineHeight + f.box[1];\n if (opt.shadowColor && opt.shadowColor !== '') {\n ctx.fillStyle = opt.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = opt.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n }\n}\n\nfunction drawIrisElipse(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n // iris: array[center, left, top, right, bottom]\n if (f.annotations?.leftEyeIris && f.annotations?.leftEyeIris[0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.leftEyeIris[3][0] - f.annotations.leftEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.leftEyeIris[4][1] - f.annotations.leftEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n if (f.annotations?.rightEyeIris && f.annotations?.rightEyeIris[0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.rightEyeIris[3][0] - f.annotations.rightEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.rightEyeIris[4][1] - f.annotations.rightEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n}\n\nfunction drawGazeSpheres(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.angle && typeof Path2D !== 'undefined') {\n ctx.strokeStyle = 'pink';\n const valX = (f.box[0] + f.box[2] / 2) - (f.box[3] * rad2deg(f.rotation.angle.yaw) / 90);\n const valY = (f.box[1] + f.box[3] / 2) + (f.box[2] * rad2deg(f.rotation.angle.pitch) / 90);\n const pathV = new Path2D(`\n M ${f.box[0] + f.box[2] / 2} ${f.box[1]}\n C\n ${valX} ${f.box[1]},\n ${valX} ${f.box[1] + f.box[3]},\n ${f.box[0] + f.box[2] / 2} ${f.box[1] + f.box[3]}\n `);\n const pathH = new Path2D(`\n M ${f.box[0]} ${f.box[1] + f.box[3] / 2}\n C \n ${f.box[0]} ${valY},\n ${f.box[0] + f.box[2]} ${valY},\n ${f.box[0] + f.box[2]} ${f.box[1] + f.box[3] / 2}\n `);\n ctx.stroke(pathH);\n ctx.stroke(pathV);\n }\n}\n\nfunction drawGazeArrows(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.gaze.strength && f.rotation.gaze.bearing && f.annotations.leftEyeIris && f.annotations.rightEyeIris && f.annotations.leftEyeIris[0] && f.annotations.rightEyeIris[0]) {\n ctx.strokeStyle = 'pink';\n ctx.fillStyle = 'pink';\n const leftGaze = [\n f.annotations.leftEyeIris[0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations.leftEyeIris[0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1]], [leftGaze[0], leftGaze[1]], 4);\n const rightGaze = [\n f.annotations.rightEyeIris[0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations.rightEyeIris[0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1]], [rightGaze[0], rightGaze[1]], 4);\n }\n}\n\nfunction drawFacePolygons(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPolygons && f.mesh.length >= 468) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [triangulation[i * 3 + 0], triangulation[i * 3 + 1], triangulation[i * 3 + 2]].map((index) => f.mesh[index]);\n lines(ctx, points, opt);\n }\n drawIrisElipse(f, ctx);\n }\n /*\n if (opt.drawPolygons && f.contours.length > 1) {\n ctx.lineWidth = 5;\n lines(ctx, f.contours, opt);\n }\n ctx.lineWidth = 1;\n */\n}\n\nfunction drawFacePoints(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPoints && f.mesh.length >= 468) {\n for (let i = 0; i < f.mesh.length; i++) {\n point(ctx, f.mesh[i][0], f.mesh[i][1], f.mesh[i][2], opt);\n if (opt.drawAttention) {\n if (facemeshConstants.LANDMARKS_REFINEMENT_LIPS_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) + 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n }\n }\n }\n}\n\nfunction drawFaceBoxes(f: FaceResult, ctx) {\n if (opt.drawBoxes) {\n rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], opt);\n }\n}\n\n/** draw detected faces */\nexport function face(inCanvas: AnyCanvas, result: FaceResult[], drawOptions?: Partial) {\n opt = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = opt.font;\n ctx.strokeStyle = opt.color;\n ctx.fillStyle = opt.color;\n for (const f of result) {\n drawFaceBoxes(f, ctx);\n drawLabels(f, ctx);\n if (f.mesh && f.mesh.length > 0) {\n drawFacePoints(f, ctx);\n drawFacePolygons(f, ctx);\n drawGazeSpheres(f, ctx);\n drawGazeArrows(f, ctx);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, curves, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { BodyResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected bodies */\nexport function body(inCanvas: AnyCanvas, result: BodyResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box.length === 4) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints && result[i].keypoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n if (!result[i].keypoints[pt].score || (result[i].keypoints[pt].score === 0)) continue;\n ctx.fillStyle = colorDepth(result[i].keypoints[pt].position[2], localOptions);\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels && result[i].keypoints) {\n ctx.font = localOptions.font;\n for (const pt of result[i].keypoints) {\n if (!pt.score || (pt.score === 0)) continue;\n ctx.fillStyle = colorDepth(pt.position[2], localOptions);\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints && result[i].annotations) {\n for (const part of Object.values(result[i].annotations)) {\n for (const connected of part) curves(ctx, connected, localOptions);\n }\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { HandResult } from '../result';\nimport type { AnyCanvas, DrawOptions, Point } from '../exports';\n\n/** draw detected hands */\nexport function hand(inCanvas: AnyCanvas, result: HandResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = colorDepth(pt[2], localOptions);\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels && h.annotations) {\n const addHandLabel = (part: Point[], title: string) => {\n if (!part || part.length === 0 || !part[0]) return;\n const z = part[part.length - 1][2] || -256;\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations.index, 'index');\n addHandLabel(h.annotations.middle, 'middle');\n addHandLabel(h.annotations.ring, 'ring');\n addHandLabel(h.annotations.pinky, 'pinky');\n addHandLabel(h.annotations.thumb, 'thumb');\n addHandLabel(h.annotations.palm, 'palm');\n }\n if (localOptions.drawPolygons && h.annotations) {\n const addHandLine = (part: Point[]) => {\n if (!part || part.length === 0 || !part[0]) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n const z = part[i][2] || 0;\n ctx.strokeStyle = colorDepth(i * z, localOptions);\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations.index);\n addHandLine(h.annotations.middle);\n addHandLine(h.annotations.ring);\n addHandLine(h.annotations.pinky);\n addHandLine(h.annotations.thumb);\n // addPart(h.annotations.palm);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport type { ObjectResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected objects */\nexport function object(inCanvas: AnyCanvas, result: ObjectResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext } from './primitives';\nimport { options } from './options';\nimport type { GestureResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected gestures */\nexport function gesture(inCanvas: AnyCanvas, result: GestureResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (localOptions.drawGestures) {\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n }\n}\n", "import type { Tensor } from '../tfjs/types';\nimport type { FaceResult } from '../result';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { meshAnnotations } from './facemeshcoords';\n\nconst expandFact = 0.1;\nconst alpha = 0.5;\n\n// point inclusion in polygon based on https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html\nfunction insidePoly(x: number, y: number, polygon: { x: number, y: number }[]): boolean {\n let inside = false;\n let j = polygon.length - 1;\n for (let i = 0; i < polygon.length; j = i++) {\n if (((polygon[i].y > y) !== (polygon[j].y > y)) && (x < (polygon[j].x - polygon[i].x) * (y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x)) inside = !inside;\n }\n return inside;\n}\n\nexport async function mask(face: FaceResult): Promise {\n if (!face.tensor) return face.tensor;\n if (!face.mesh || face.mesh.length < 100) return face.tensor;\n const width = face.tensor.shape[2] || 0;\n const height = face.tensor.shape[1] || 0;\n const buffer = await face.tensor.buffer();\n let silhouette: { x: number, y: number }[] = [];\n for (const pt of meshAnnotations.silhouette) silhouette.push({ x: (face.mesh[pt][0] - face.box[0]) / face.box[2], y: (face.mesh[pt][1] - face.box[1]) / face.box[3] }); // add all silhouette points scaled to local box\n if (expandFact && expandFact > 0) silhouette = silhouette.map((pt) => ({ x: pt.x > 0.5 ? pt.x + expandFact : pt.x - expandFact, y: pt.y > 0.5 ? pt.y + expandFact : pt.y - expandFact })); // expand silhouette\n for (let x = 0; x < width; x++) {\n for (let y = 0; y < height; y++) {\n const inside = insidePoly(x / width, y / width, silhouette);\n if (!inside) {\n buffer.set(alpha * buffer.get(0, y, x, 0), 0, y, x, 0);\n buffer.set(alpha * buffer.get(0, y, x, 1), 0, y, x, 1);\n buffer.set(alpha * buffer.get(0, y, x, 2), 0, y, x, 2);\n }\n }\n }\n const output = buffer.toTensor();\n tf.dispose(buffer);\n return output;\n}\n", "import type { Point, FaceResult } from '../result';\n\ntype Vector = [number, number, number];\n\nconst calculateGaze = (face: FaceResult): { bearing: number, strength: number } => {\n const radians = (pt1: Point, pt2: Point) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations.rightEyeIris || !face.annotations.leftEyeIris) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = (face.mesh[33][2] || 0) > (face.mesh[263][2] || 0); // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n const eyeDiff: Point = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] * eyeDiff[0]) + (eyeDiff[1] * eyeDiff[1])); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n return { bearing, strength };\n};\n\nexport const calculateFaceAngle = (face: FaceResult, imageSize: [number, number]): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v: Vector): Vector => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a: Vector, b: Vector): Vector => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a: Vector, b: Vector): Vector => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r: number[]): { pitch: number, yaw: number, roll: number } => {\n const [r00, _r01, _r02, r10, r11, r12, r20, r21, r22] = r; // eslint-disable-line @typescript-eslint/no-unused-vars\n let thetaX: number;\n let thetaY: number;\n let thetaZ: number;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n if (Number.isNaN(thetaX)) thetaX = 0;\n if (Number.isNaN(thetaY)) thetaY = 0;\n if (Number.isNaN(thetaZ)) thetaZ = 0;\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n\n /*\n const meshToEulerAngle = (mesh) => { // simple Euler angle calculation based existing 3D mesh\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n return { // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face // pitch is face move up/down\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye // yaw is face turn left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye // roll is face lean left/right\n };\n };\n */\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts: Point[] = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [pt[0] * imageSize[0] / size, pt[1] * imageSize[1] / size, pt[2]] as Point); // make the xyz coordinates proportional, independent of the image/box size\n\n const yAxis = normalize(subVectors(pts[1] as Vector, pts[0] as Vector));\n let xAxis = normalize(subVectors(pts[3] as Vector, pts[2] as Vector));\n const zAxis = normalize(crossVectors(xAxis, yAxis));\n // adjust xAxis to make sure that all axes are perpendicular to each other\n xAxis = crossVectors(yAxis, zAxis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n xAxis[0], xAxis[1], xAxis[2],\n yAxis[0], yAxis[1], yAxis[2],\n zAxis[0], zAxis[1], zAxis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n", "/**\n * Face algorithm implementation\n * Uses FaceMesh, Emotion and FaceRes models to create a unified pipeline\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as facemesh from './facemesh';\nimport * as emotion from '../gear/emotion';\nimport * as faceres from './faceres';\nimport * as mask from './mask';\nimport * as antispoof from './antispoof';\nimport * as liveness from './liveness';\nimport * as gear from '../gear/gear';\nimport * as ssrnetAge from '../gear/ssrnet-age';\nimport * as ssrnetGender from '../gear/ssrnet-gender';\nimport * as mobilefacenet from './mobilefacenet';\nimport * as insightface from './insightface';\nimport type { FaceResult, Emotion, Gender, Race } from '../result';\nimport type { Tensor } from '../tfjs/types';\nimport type { Human } from '../human';\nimport { calculateFaceAngle } from './angles';\n\ninterface DescRes { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] }\n\nexport const detectFace = async (instance: Human /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n let timeStamp: number = now();\n let ageRes: { age: number } | Promise<{ age: number }> | null;\n let gearRes: gear.GearType | Promise | null;\n let genderRes: { gender: string, genderScore: number } | Promise<{ gender: string, genderScore: number }> | null;\n let emotionRes: { score: number, emotion: Emotion }[] | Promise<{ score: number, emotion: Emotion }[]>;\n let mobilefacenetRes: number[] | Promise | null;\n let insightfaceRes: number[] | Promise | null;\n let antispoofRes: number | Promise | null;\n let livenessRes: number | Promise | null;\n let descRes: DescRes | Promise | null;\n\n const faceRes: FaceResult[] = [];\n instance.state = 'run:face';\n\n const faces = await facemesh.predict(input, instance.config);\n instance.performance.face = env.perfadd ? (instance.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n instance.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefied\n if (!faces[i].tensor || faces[i].tensor.isDisposedInternal) {\n log('Face object is disposed:', faces[i].tensor);\n continue;\n }\n\n // optional face mask\n if (instance.config.face.detector?.mask) {\n const masked = await mask.mask(faces[i]);\n tf.dispose(faces[i].tensor);\n if (masked) faces[i].tensor = masked;\n }\n\n // calculate face angles\n const rotation = faces[i].mesh && (faces[i].mesh.length > 200) ? calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]) : null;\n\n // run emotion, inherits face from blazeface\n instance.analyze('Start Emotion:');\n if (instance.config.async) {\n emotionRes = instance.config.face.emotion?.enabled ? emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n } else {\n instance.state = 'run:emotion';\n timeStamp = now();\n emotionRes = instance.config.face.emotion?.enabled ? await emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n instance.performance.emotion = env.perfadd ? (instance.performance.emotion || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Emotion:');\n\n // run antispoof, inherits face from blazeface\n instance.analyze('Start AntiSpoof:');\n if (instance.config.async) {\n antispoofRes = instance.config.face.antispoof?.enabled ? antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:antispoof';\n timeStamp = now();\n antispoofRes = instance.config.face.antispoof?.enabled ? await antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.antispoof = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End AntiSpoof:');\n\n // run liveness, inherits face from blazeface\n instance.analyze('Start Liveness:');\n if (instance.config.async) {\n livenessRes = instance.config.face.liveness?.enabled ? liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:liveness';\n timeStamp = now();\n livenessRes = instance.config.face.liveness?.enabled ? await liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.liveness = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Liveness:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start GEAR:');\n if (instance.config.async) {\n gearRes = instance.config.face.gear?.enabled ? gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:gear';\n timeStamp = now();\n gearRes = instance.config.face.gear?.enabled ? await gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.gear = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End GEAR:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start SSRNet:');\n if (instance.config.async) {\n ageRes = instance.config.face['ssrnet']?.enabled ? ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:ssrnet';\n timeStamp = now();\n ageRes = instance.config.face['ssrnet']?.enabled ? await ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? await ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.ssrnet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End SSRNet:');\n\n // run mobilefacenet alternative, inherits face from blazeface\n instance.analyze('Start MobileFaceNet:');\n if (instance.config.async) {\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? await mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End MobileFaceNet:');\n\n // run insightface alternative, inherits face from blazeface\n instance.analyze('Start InsightFace:');\n if (instance.config.async) {\n insightfaceRes = instance.config.face['insightface']?.enabled ? insightface.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n insightfaceRes = instance.config.face['insightface']?.enabled ? await insightface.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End InsightFace:');\n\n // run faceres, inherits face from blazeface\n instance.analyze('Start Description:');\n if (instance.config.async) {\n descRes = faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length);\n } else {\n instance.state = 'run:description';\n timeStamp = now();\n descRes = await faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length);\n instance.performance.description = env.perfadd ? (instance.performance.description || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Description:');\n\n // if async wait for results\n if (instance.config.async) {\n [ageRes, genderRes, emotionRes, mobilefacenetRes, insightfaceRes, descRes, gearRes, antispoofRes, livenessRes] = await Promise.all([ageRes, genderRes, emotionRes, mobilefacenetRes, insightfaceRes, descRes, gearRes, antispoofRes, livenessRes]);\n }\n instance.analyze('Finish Face:');\n\n if (instance.config.face['ssrnet']?.enabled && ageRes && genderRes) { // override age/gender if ssrnet model is used\n descRes = {\n ...(descRes as DescRes),\n age: (ageRes as { age: number}).age,\n gender: (genderRes as { gender: Gender, genderScore: number }).gender,\n genderScore: (genderRes as { gender: Gender, genderScore: number }).genderScore,\n };\n }\n if (instance.config.face.gear?.enabled && gearRes) { // override age/gender/race if gear model is used\n descRes = {\n ...(descRes as DescRes),\n age: (gearRes as gear.GearType).age,\n gender: (gearRes as gear.GearType).gender,\n genderScore: (gearRes as gear.GearType).genderScore,\n race: (gearRes as gear.GearType).race,\n };\n }\n if (instance.config.face['mobilefacenet']?.enabled && mobilefacenetRes) { // override descriptor if mobilefacenet model is used\n (descRes as DescRes).descriptor = mobilefacenetRes as number[];\n }\n\n if (instance.config.face['insightface']?.enabled && insightfaceRes) { // override descriptor if insightface model is used\n (descRes as DescRes).descriptor = insightfaceRes as number[];\n }\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!instance.config.face.iris?.enabled) {\n // if (faces[i]?.annotations?.leftEyeIris) delete faces[i].annotations.leftEyeIris;\n // if (faces[i]?.annotations?.rightEyeIris) delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i]?.annotations?.leftEyeIris?.[0] && faces[i]?.annotations?.rightEyeIris?.[0]\n && (faces[i].annotations.leftEyeIris.length > 0) && (faces[i].annotations.rightEyeIris.length > 0)\n && (faces[i].annotations.leftEyeIris[0] !== null) && (faces[i].annotations.rightEyeIris[0] !== null))\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0; // note: average human iris size is 11.7mm\n\n // optionally return tensor\n const tensor = instance.config.face.detector?.return ? tf.squeeze(faces[i].tensor) : null;\n // dispose original face tensor\n tf.dispose(faces[i].tensor);\n // delete temp face image\n if (faces[i].tensor) delete faces[i].tensor;\n // combine results\n const res: FaceResult = {\n ...faces[i],\n id: i,\n };\n if ((descRes as DescRes).age) res.age = (descRes as DescRes).age;\n if ((descRes as DescRes).gender) res.gender = (descRes as DescRes).gender;\n if ((descRes as DescRes).genderScore) res.genderScore = (descRes as DescRes).genderScore;\n if ((descRes as DescRes).descriptor) res.embedding = (descRes as DescRes).descriptor;\n if ((descRes as DescRes).race) res.race = (descRes as DescRes).race as { score: number, race: Race }[];\n if (emotionRes) res.emotion = emotionRes as { score: number, emotion: Emotion }[];\n if (antispoofRes) res.real = antispoofRes as number;\n if (livenessRes) res.live = livenessRes as number;\n if (irisSize && irisSize !== 0) res.iris = Math.trunc(500 / irisSize / 11.7) / 100;\n if (rotation) res.rotation = rotation;\n if (tensor) res.tensor = tensor;\n faceRes.push(res);\n instance.analyze('End Face');\n }\n instance.analyze('End FaceMesh:');\n if (instance.config.async) {\n if (instance.performance.face) delete instance.performance.face;\n if (instance.performance.age) delete instance.performance.age;\n if (instance.performance.gender) delete instance.performance.gender;\n if (instance.performance.emotion) delete instance.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection algorithm\n */\n\nimport type { GestureResult, BodyResult, FaceResult, HandResult, Point } from '../result';\nimport * as fingerPose from '../hand/fingerpose';\n\n/** face gesture type */\nexport type FaceGesture =\n `facing ${'left' | 'center' | 'right'}`\n | `blink ${'left' | 'right'} eye`\n | `mouth ${number}% open`\n | `head ${'up' | 'down'}`;\n\n/** iris gesture type */\nexport type IrisGesture =\n 'facing center'\n | `looking ${'left' | 'right' | 'up' | 'down'}`\n | 'looking center';\n\n/** body gesture type */\nexport type BodyGesture =\n `leaning ${'left' | 'right'}`\n | `raise ${'left' | 'right'} hand`\n | 'i give up';\n\n/** hand gesture type */\nexport type HandGesture =\n `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} forward`\n | `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} up`\n | 'victory'\n | 'thumbs up';\n\nexport const body = (res: BodyResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { body: number, gesture: BodyGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position[1] < nose.position[1]) && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder && Math.abs(leftShoulder.positionRaw[1] - rightShoulder.positionRaw[1]) > 0.1) {\n gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position[1] > rightShoulder.position[1]) ? 'left' : 'right'}` });\n }\n }\n return gestures;\n};\n\nexport const face = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { face: number, gesture: FaceGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 450) {\n const zDiff = (res[i].mesh[33][2] || 0) - (res[i].mesh[263][2] || 0);\n const xDiff = res[i].mesh[33][0] - res[i].mesh[263][0];\n if (Math.abs(zDiff / xDiff) <= 0.15) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${zDiff < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2] || 0;\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { iris: number, gesture: IrisGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations?.leftEyeIris?.[0] || !res[i].annotations?.rightEyeIris?.[0]) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > rightIrisCenterX) { // check eye with bigger offset\n if (leftIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking right' });\n } else {\n if (rightIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking left' });\n }\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res: HandResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { hand: number, gesture: HandGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: { name: string, position: Point }[] = [];\n if (res[i].annotations) {\n for (const [finger, pos] of Object.entries(res[i].annotations)) {\n if (finger !== 'palmBase' && Array.isArray(pos) && pos[0]) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => ((best.position[2] || 0) < (a.position[2] || 0) ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward` as HandGesture });\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${highest.name} up` as HandGesture });\n }\n if (res[i].keypoints) {\n const poses = fingerPose.match(res[i].keypoints);\n for (const pose of poses) gestures.push({ hand: i, gesture: pose.name as HandGesture });\n }\n }\n return gestures;\n};\n", "/**\n * Results interpolation for smoothening of video detection results inbetween detected frames\n */\n\nimport type { Result, FaceResult, BodyResult, HandResult, ObjectResult, PersonResult, Box, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { Config } from '../config';\n\nimport * as moveNetCoords from '../body/movenetcoords';\nimport * as blazePoseCoords from '../body/blazeposecoords';\nimport * as efficientPoseCoords from '../body/efficientposecoords';\nimport { now } from './util';\nimport { env } from './env';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\nlet interpolateTime = 0;\n\nexport function calc(newResult: Result, config: Config): Result {\n const t0 = now();\n if (!newResult) return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed + 1) : 1;\n\n if (newResult.canvas) bufferedResult.canvas = newResult.canvas;\n if (newResult.error) bufferedResult.error = newResult.error;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body)) as BodyResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + newBoxCoord) / bufferedFactor) as Box;\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + newBoxCoord) / bufferedFactor) as Box;\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((newKpt, j) => ({\n score: newKpt.score,\n part: newKpt.part,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[0] || 0) + (newKpt.position[0] || 0)) / bufferedFactor : newKpt.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[1] || 0) + (newKpt.position[1] || 0)) / bufferedFactor : newKpt.position[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[2] || 0) + (newKpt.position[2] || 0)) / bufferedFactor : newKpt.position[2],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[0] || 0) + (newKpt.positionRaw[0] || 0)) / bufferedFactor : newKpt.positionRaw[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[1] || 0) + (newKpt.positionRaw[1] || 0)) / bufferedFactor : newKpt.positionRaw[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[2] || 0) + (newKpt.positionRaw[2] || 0)) / bufferedFactor : newKpt.positionRaw[2],\n ],\n distance: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[0] || 0) + (newKpt.distance?.[0] || 0)) / bufferedFactor : newKpt.distance?.[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[1] || 0) + (newKpt.distance?.[1] || 0)) / bufferedFactor : newKpt.distance?.[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[2] || 0) + (newKpt.distance?.[2] || 0)) / bufferedFactor : newKpt.distance?.[2],\n ],\n }))) as { score: number, part: BodyLandmark, position: [number, number, number?], positionRaw: [number, number, number?] }[];\n\n const annotations: Record = {} as Record; // recreate annotations\n let coords = { connected: {} };\n if (config.body.modelPath?.includes('efficientpose')) coords = efficientPoseCoords;\n else if (config.body.modelPath?.includes('blazepose')) coords = blazePoseCoords;\n else if (config.body.modelPath?.includes('movenet')) coords = moveNetCoords;\n for (const [name, indexes] of Object.entries(coords.connected as Record)) {\n const pt: Point[][] = [];\n for (let j = 0; j < indexes.length - 1; j++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[j]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[j + 1]);\n // if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints, annotations }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand)); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (bufferedResult.hand[i].keypoints.length !== newResult.hand[i].keypoints.length) bufferedResult.hand[i].keypoints = newResult.hand[i].keypoints; // reset keypoints as previous frame did not have them\n const keypoints = newResult.hand[i].keypoints && newResult.hand[i].keypoints.length > 0 ? newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * (bufferedResult.hand[i].keypoints[j][k] || 1) + (coord || 0)) / bufferedFactor)) as Point)\n : [];\n let annotations = {};\n if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length) {\n bufferedResult.hand[i].annotations = newResult.hand[i].annotations; // reset annotations as previous frame did not have them\n annotations = bufferedResult.hand[i].annotations;\n } else if (newResult.hand[i].annotations) {\n for (const key of Object.keys(newResult.hand[i].annotations)) { // update annotations\n annotations[key] = newResult.hand[i]?.annotations?.[key]?.[0]\n ? newResult.hand[i].annotations[key]\n .map((val, j: number) => val\n .map((coord: number, k: number) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor))\n : null;\n }\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations: annotations as HandResult['annotations'] }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face)) as FaceResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (newResult.face[i].rotation) {\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.roll || 0) + (newResult.face[i].rotation?.angle.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.yaw || 0) + (newResult.face[i].rotation?.angle.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.pitch || 0) + (newResult.face[i].rotation?.angle.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze.bearing || 0) + (newResult.face[i].rotation?.gaze.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze.strength || 0) + (newResult.face[i].rotation?.gaze.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n bufferedResult.face[i] = { ...newResult.face[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object)) as ObjectResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons)) as PersonResult[];\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as Box;\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture;\n\n // append interpolation performance data\n const t1 = now();\n interpolateTime = env.perfadd ? interpolateTime + Math.round(t1 - t0) : Math.round(t1 - t0);\n if (newResult.performance) bufferedResult.performance = { ...newResult.performance, interpolate: interpolateTime };\n\n return bufferedResult;\n}\n", "/** Face descriptor type as number array */\nexport type Descriptor = number[]\nexport type MatchOptions = { order?: number, threshold?: number, multiplier?: number, min?: number, max?: number } | undefined;\n\n/** Calculates distance between two descriptors\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n */\nexport function distance(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25 }) {\n // general minkowski distance, euclidean distance is limited case where order is 2\n if (!descriptor1 || !descriptor1) return Number.MAX_SAFE_INTEGER;\n let sum = 0;\n for (let i = 0; i < descriptor1.length; i++) {\n const diff = (!options.order || options.order === 2) ? (descriptor1[i] - descriptor2[i]) : (Math.abs(descriptor1[i] - descriptor2[i]));\n sum += (!options.order || options.order === 2) ? (diff * diff) : (diff ** options.order);\n }\n return (options.multiplier || 20) * sum;\n}\n\n// invert distance to similarity, normalize to given range and clamp\nconst normalizeDistance = (dist, order, min, max) => {\n if (dist === 0) return 1; // short circuit for identical inputs\n const root = order === 2 ? Math.sqrt(dist) : dist ** (1 / order); // take root of distance\n const norm = (1 - (root / 100) - min) / (max - min); // normalize to range\n const clamp = Math.max(Math.min(norm, 1), 0); // clamp to 0..1\n return clamp;\n};\n\n/** Calculates normalized similarity between two face descriptors based on their `distance`\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n * - min - normalize similarity result to a given range\n * - max - normalzie similarity resutl to a given range\n * default is 0.2...0.8\n * Returns similarity between two face descriptors normalized to 0..1 range where 0 is no similarity and 1 is perfect similarity\n */\nexport function similarity(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25, min: 0.2, max: 0.8 }) {\n const dist = distance(descriptor1, descriptor2, options);\n return normalizeDistance(dist, options.order || 2, options.min || 0, options.max || 1);\n}\n\n/** Matches given descriptor to a closest entry in array of descriptors\n * @param descriptor - face descriptor\n * @param descriptors - array of face descriptors to commpare given descriptor to\n * @param options - see `similarity` method for options description\n * Returns\n * - `index` index array index where best match was found or -1 if no matches\n * - `distance` calculated `distance` of given descriptor to the best match\n * - `similarity` calculated normalized `similarity` of given descriptor to the best match\n*/\nexport function match(descriptor: Descriptor, descriptors: Descriptor[], options: MatchOptions = { order: 2, multiplier: 25, threshold: 0, min: 0.2, max: 0.8 }) {\n if (!Array.isArray(descriptor) || !Array.isArray(descriptors) || descriptor.length < 64 || descriptors.length === 0) { // validate input\n return { index: -1, distance: Number.POSITIVE_INFINITY, similarity: 0 };\n }\n let lowestDistance = Number.MAX_SAFE_INTEGER;\n let index = -1;\n for (let i = 0; i < descriptors.length; i++) {\n const res = descriptors[i].length === descriptor.length ? distance(descriptor, descriptors[i], options) : Number.MAX_SAFE_INTEGER;\n if (res < lowestDistance) {\n lowestDistance = res;\n index = i;\n }\n if (lowestDistance < (options.threshold || 0)) break;\n }\n const normalizedSimilarity = normalizeDistance(lowestDistance, options.order || 2, options.min || 0, options.max || 1);\n return { index, distance: lowestDistance, similarity: normalizedSimilarity };\n}\n", "/**\n * Analyze detection Results and sort&combine them into per-person view\n */\n\nimport type { FaceResult, BodyResult, HandResult, GestureResult, PersonResult, Box } from '../result';\n\nexport function join(faces: FaceResult[], bodies: BodyResult[], hands: HandResult[], gestures: GestureResult[], shape: number[] | undefined): PersonResult[] {\n let id = 0;\n const persons: PersonResult[] = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: PersonResult = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands.left?.id) person.gestures.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands.right?.id) person.gestures.push(gesture);\n }\n\n // create new overarching box from all boxes belonging to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box: Box | undefined) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face.box);\n extractXY(person.body?.box);\n extractXY(person.hands.left?.box);\n extractXY(person.hands.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape?.[1] && shape?.[2]) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Warmup algorithm that uses embedded images to exercise loaded models for faster future inference\n */\n\nimport { log, now, mergeDeep } from './util/util';\nimport * as sample from './sample';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as image from './image/image';\nimport { env } from './util/env';\nimport type { Config } from './config';\nimport type { Result } from './result';\nimport type { Human, Models } from './human';\nimport type { Tensor } from './exports';\n\nasync function warmupBitmap(instance: Human): Promise {\n const b64toBlob = (base64: string, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob: Blob | null;\n let res: Result | undefined;\n switch (instance.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'body':\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await instance.detect(bitmap, instance.config);\n bitmap.close();\n }\n return res;\n}\n\nasync function warmupCanvas(instance: Human): Promise {\n return new Promise((resolve) => {\n let src: string;\n // let size = 0;\n switch (instance.config.warmup) {\n case 'face':\n // size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n // size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = '';\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n let img: HTMLImageElement;\n if (typeof Image !== 'undefined') img = new Image();\n // @ts-ignore env.image is an external monkey-patch\n else if (env.Image) img = new env.Image();\n else return;\n img.onload = async () => {\n const canvas = image.canvas(img.naturalWidth, img.naturalHeight);\n if (!canvas) {\n log('Warmup: Canvas not found');\n resolve(undefined);\n } else {\n const ctx = canvas.getContext('2d');\n if (ctx) ctx.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const tensor = await instance.image(canvas);\n const res = tensor.tensor ? await instance.detect(tensor.tensor, instance.config) : undefined;\n resolve(res);\n }\n };\n if (src) img.src = src;\n else resolve(undefined);\n });\n}\n\nasync function warmupNode(instance: Human): Promise {\n const atob = (str: string) => Buffer.from(str, 'base64');\n let img;\n if (instance.config.warmup === 'face') img = atob(sample.face);\n else img = atob(sample.body);\n let res: Result;\n if (('node' in tf) && (tf.getBackend() === 'tensorflow')) {\n const data: Tensor = tf['node'].decodeJpeg(img); // eslint-disable-line import/namespace\n const expanded: Tensor = tf.expandDims(data, 0);\n instance.tf.dispose(data);\n // log('Input:', expanded);\n res = await instance.detect(expanded, instance.config);\n instance.tf.dispose(expanded);\n } else {\n if (instance.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await instance.detect(input, instance.config);\n */\n }\n // @ts-ignore\n return res;\n}\n\nasync function runInference(instance: Human) {\n let res: Result | undefined;\n if (typeof createImageBitmap === 'function') res = await warmupBitmap(instance);\n else if (typeof Image !== 'undefined' || env.Canvas !== undefined) res = await warmupCanvas(instance);\n else res = await warmupNode(instance);\n return res;\n}\n\n/** Runs pre-compile on all loaded models */\nexport async function runCompile(allModels: Models) {\n if (!tf.env().flagRegistry.ENGINE_COMPILE_ONLY) return; // tfjs does not support compile-only inference\n const backendType = tf.getBackend();\n const webGLBackend = tf.backend();\n if ((backendType !== 'webgl' && backendType !== 'humangl') || !webGLBackend?.checkCompileCompletion) {\n // log('compile pass: skip');\n return;\n }\n tf.env().set('ENGINE_COMPILE_ONLY', true);\n const numTensorsStart = tf.engine().state.numTensors;\n const compiledModels: string[] = [];\n for (const [modelName, model] of Object.entries(allModels).filter(([key, val]) => (key !== null && val !== null))) {\n const shape = (model.inputs?.[0]?.shape) ? [...model.inputs[0].shape] : [1, 64, 64, 3];\n const dtype: string = (model.inputs?.[0]?.dtype) ? model.inputs[0].dtype : 'float32';\n for (let dim = 0; dim < shape.length; dim++) {\n if (shape[dim] === -1) shape[dim] = dim === 0 ? 1 : 64; // override batch number and any dynamic dimensions\n }\n const tensor = tf.zeros(shape, dtype);\n try {\n const res = model.execute(tensor);\n compiledModels.push(modelName);\n if (Array.isArray(res)) res.forEach((t) => tf.dispose(t));\n else tf.dispose(res);\n } catch {\n log('compile fail model:', modelName);\n }\n tf.dispose(tensor);\n }\n const kernels = await webGLBackend.checkCompileCompletionAsync();\n webGLBackend.getUniformLocations();\n log('compile pass models:', compiledModels);\n log('compile pass kernels:', kernels.length);\n tf.env().set('ENGINE_COMPILE_ONLY', false);\n const numTensorsEnd = tf.engine().state.numTensors;\n if ((numTensorsEnd - numTensorsStart) > 0) log('tensor leak:', numTensorsEnd - numTensorsStart);\n}\n\n/** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used in browser environments for `webgl` and `humangl` backends\n * @param userConfig?: Config\n*/\nexport async function warmup(instance: Human, userConfig?: Partial): Promise {\n const t0 = now();\n instance.state = 'warmup';\n if (userConfig) instance.config = mergeDeep(instance.config, userConfig) as Config;\n if (!instance.config.warmup || instance.config.warmup.length === 0 || instance.config.warmup === 'none') {\n return { face: [], body: [], hand: [], gesture: [], object: [], performance: instance.performance, timestamp: now(), persons: [], error: null };\n }\n return new Promise(async (resolve) => {\n await runCompile(instance.models);\n const res = await runInference(instance);\n const t1 = now();\n if (instance.config.debug) log('warmup', instance.config.warmup, Math.round(t1 - t0), 'ms');\n instance.emit('warmup');\n resolve(res);\n });\n}\n", "/**\n * Human main module\n * @default Human Library\n * @summary \n * @author \n * @copyright \n * @license MIT\n */\n\n// module imports\nimport { log, now, mergeDeep, validate } from './util/util';\nimport { defaults } from './config';\nimport { env, Env } from './util/env';\nimport { setModelLoadOptions } from './tfjs/load';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as app from '../package.json';\nimport * as backend from './tfjs/backend';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as draw from './draw/draw';\nimport * as efficientpose from './body/efficientpose';\nimport * as face from './face/face';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as gesture from './gesture/gesture';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as humangl from './tfjs/humangl';\nimport * as image from './image/image';\nimport * as interpolate from './util/interpolate';\nimport * as match from './face/match';\nimport * as models from './models';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as persons from './util/persons';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as warmups from './warmup';\n// type definitions\nimport type { Input, Tensor, DrawOptions, Config, Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult, AnyCanvas, ModelStats } from './exports';\n// type exports\nexport * from './exports';\n\n/** **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig - {@link Config}\n * @returns instance of {@link Human}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n\n /** Current configuration\n * - Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\n config: Config;\n\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n\n /** currenty processed image tensor and canvas */\n process: { tensor: Tensor | null, canvas: AnyCanvas | null };\n\n /** Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n * [TFJS API](https://js.tensorflow.org/api/latest/)\n */\n tf;\n\n /** Object containing environment information used for diagnostics */\n env: Env;\n\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - canvas: draws input to canvas\n * - options: are global settings for all draw operations, can be overriden for each draw method {@link DrawOptions}\n * - face, body, hand, gesture, object, person: draws detected results as overlays on canvas\n */\n draw: { canvas: typeof draw.canvas, face: typeof draw.face, body: typeof draw.body, hand: typeof draw.hand, gesture: typeof draw.gesture, object: typeof draw.object, person: typeof draw.person, all: typeof draw.all, options: DrawOptions };\n\n /** Currently loaded models\n * @internal\n * {@link Models}\n */\n models: models.Models;\n\n /** Container for events dispatched by Human\n * Possible events:\n * - `create`: triggered when Human object is instantiated\n * - `load`: triggered when models are loaded (explicitly or on-demand)\n * - `image`: triggered when input image is processed\n * - `result`: triggered when detection is complete\n * - `warmup`: triggered when warmup is complete\n * - `error`: triggered on some errors\n */\n events: EventTarget | undefined;\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: number[];\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: [number, number][];\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n /** WebGL debug info */\n gl: Record;\n // definition end\n\n /** Constructor for **Human** library that is futher used for all operations\n * @param userConfig - user configuration object {@link Config}\n */\n constructor(userConfig?: Partial) {\n this.env = env;\n /*\n defaults.wasmPath = tf.version['tfjs-core'].includes('-') // custom build or official build\n ? 'https://vladmandic.github.io/tfjs/dist/'\n : `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tf.version_core}/dist/`;\n */\n const tfVersion = (tf.version.tfjs || tf.version_core).replace(/-(.*)/, '');\n defaults.wasmPath = `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tfVersion}/dist/`;\n defaults.modelBasePath = env.browser ? '../models/' : 'file://models/';\n defaults.backend = env.browser ? 'humangl' : 'tensorflow';\n this.version = app.version; // expose version property on instance of class\n Object.defineProperty(this, 'version', { value: app.version }); // expose version property directly on class itself\n this.config = JSON.parse(JSON.stringify(defaults));\n Object.seal(this.config);\n this.config.cacheModels = typeof indexedDB !== 'undefined';\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n setModelLoadOptions(this.config);\n this.tf = tf;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.performance = {};\n this.events = (typeof EventTarget !== 'undefined') ? new EventTarget() : undefined;\n // object that contains all initialized models\n this.models = new models.Models();\n // reexport draw methods\n this.draw = {\n options: draw.options,\n canvas: (input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) => draw.canvas(input, output),\n face: (output: AnyCanvas, result: FaceResult[], options?: Partial) => draw.face(output, result, options),\n body: (output: AnyCanvas, result: BodyResult[], options?: Partial) => draw.body(output, result, options),\n hand: (output: AnyCanvas, result: HandResult[], options?: Partial) => draw.hand(output, result, options),\n gesture: (output: AnyCanvas, result: GestureResult[], options?: Partial) => draw.gesture(output, result, options),\n object: (output: AnyCanvas, result: ObjectResult[], options?: Partial) => draw.object(output, result, options),\n person: (output: AnyCanvas, result: PersonResult[], options?: Partial) => draw.person(output, result, options),\n all: (output: AnyCanvas, result: Result, options?: Partial) => draw.all(output, result, options),\n };\n this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [], error: null };\n // export access to image processing\n this.process = { tensor: null, canvas: null };\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // set gl info\n this.gl = humangl.config;\n // init model validation\n models.validateModel(this, null, '');\n // include platform info\n this.emit('create');\n }\n\n /** internal function to measure tensor leaks */\n analyze = (...msg: string[]) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n };\n\n /** internal function for quick sanity check on inputs @hidden */\n #sanity = (input: Input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.env.node && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n };\n\n /** Reset configuration to default values */\n reset(): void {\n const currentBackend = this.config.backend; // save backend;\n this.config = JSON.parse(JSON.stringify(defaults));\n this.config.backend = currentBackend;\n }\n\n /** Validate current configuration schema */\n validate(userConfig?: Partial) {\n return validate(defaults, userConfig || this.config);\n }\n\n /** Check model for invalid kernel ops for current backend */\n check() {\n return models.validate(this);\n }\n\n /** Exports face matching methods {@link match#similarity} */\n public similarity = match.similarity;\n /** Exports face matching methods {@link match#distance} */\n public distance = match.distance;\n /** Exports face matching methods {@link match#match} */\n public match = match.match;\n\n /** Utility wrapper for performance.now() */\n now(): number { // eslint-disable-line class-methods-use-this\n return now();\n }\n\n /** Process input as return canvas and tensor\n *\n * @param input - any input {@link Input}\n * @param getTensor - should image processing also return tensor or just canvas\n * Returns object with `tensor` and `canvas`\n */\n image(input: Input, getTensor: boolean = true) {\n return image.process(input, this.config, getTensor);\n }\n\n /** Segmentation method takes any input and returns processed canvas with body segmentation\n * - Segmentation is not triggered as part of detect process\n * @param input - {@link Input}\n * @param background - {@link Input}\n * - Optional parameter background is used to fill the background with specific input\n * Returns:\n * - `data` as raw data array with per-pixel segmentation values\n * - `canvas` as canvas which is input image filtered with segementation data and optionally merged with background image. canvas alpha values are set to segmentation values for easy merging\n * - `alpha` as grayscale canvas that represents segmentation alpha values\n */\n async segmentation(input: Input, background?: Input): Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n *\n * @param input - Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n enhance(input: Tensor): Tensor | null { // eslint-disable-line class-methods-use-this\n return faceres.enhance(input);\n }\n\n /** Compare two input tensors for pixel simmilarity\n * - use `human.image` to process any valid input and get a tensor that can be used for compare\n * - when passing manually generated tensors:\n * - both input tensors must be in format [1, height, width, 3]\n * - if resolution of tensors does not match, second tensor will be resized to match resolution of the first tensor\n * - return value is pixel similarity score normalized by input resolution and rgb channels\n */\n compare(firstImageTensor: Tensor, secondImageTensor: Tensor): Promise {\n return image.compare(this.config, firstImageTensor, secondImageTensor);\n }\n\n /** Explicit backend initialization\n * - Normally done implicitly during initial load phase\n * - Call to explictly register and initialize TFJS backend without any other operations\n * - Use when changing backend during runtime\n */\n async init(): Promise {\n await backend.check(this, true);\n await this.tf.ready();\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n *\n * @param userConfig - {@link Config}\n */\n async load(userConfig?: Partial): Promise {\n this.state = 'load';\n const timeStamp = now();\n const count = Object.values(this.models).filter((model) => model).length;\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.env.initial) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version['tfjs-core'] as string}`);\n if (!await backend.check(this)) log('error: backend check failed');\n await tf.ready();\n if (this.env.browser) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('environment:', this.env);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n\n await models.load(this); // actually loads models\n if (this.env.initial && this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors'); // print memory stats on first run\n this.env.initial = false;\n\n const loaded = Object.values(this.models).filter((model) => model).length;\n if (loaded !== count) { // number of loaded models changed\n models.validate(this); // validate kernel ops used by model against current backend\n this.emit('load');\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.loadModels || 0)) this.performance.loadModels = this.env.perfadd ? (this.performance.loadModels || 0) + current : current;\n }\n\n /** emit event */\n emit = (event: string) => {\n if (this.events?.dispatchEvent) this.events.dispatchEvent(new Event(event));\n };\n\n /** Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result - {@link Result} optional use specific result set to run interpolation on\n * @returns result - {@link Result}\n */\n next(result: Result = this.result): Result {\n return interpolate.calc(result, this.config);\n }\n\n /** get model loading/loaded stats */\n getModelStats(): ModelStats { return models.getModelStats(this); }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async warmup(userConfig?: Partial) {\n const t0 = now();\n const res = await warmups.warmup(this, userConfig);\n const t1 = now();\n this.performance.warmup = Math.trunc(t1 - t0);\n return res;\n }\n\n /** Run detect with tensorflow profiling\n * - result object will contain total exeuction time information for top-20 kernels\n * - actual detection object can be accessed via `human.result`\n */\n async profile(input: Input, userConfig?: Partial): Promise<{ kernel: string, time: number, perc: number }[]> {\n const profile = await this.tf.profile(() => this.detect(input, userConfig));\n const kernels: Record = {};\n let total = 0;\n for (const kernel of profile.kernels) { // sum kernel time values per kernel\n if (kernels[kernel.name]) kernels[kernel.name] += kernel.kernelTimeMs;\n else kernels[kernel.name] = kernel.kernelTimeMs;\n total += kernel.kernelTimeMs;\n }\n const kernelArr: { kernel: string, time: number, perc: number }[] = [];\n Object.entries(kernels).forEach((key) => kernelArr.push({ kernel: key[0], time: key[1] as unknown as number, perc: 0 })); // convert to array\n for (const kernel of kernelArr) {\n kernel.perc = Math.round(1000 * kernel.time / total) / 1000;\n kernel.time = Math.round(1000 * kernel.time) / 1000;\n }\n kernelArr.sort((a, b) => b.time - a.time); // sort\n kernelArr.length = 20; // crop\n return kernelArr;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input - {@link Input}\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async detect(input: Input, userConfig?: Partial): Promise {\n // detection happens inside a promise\n this.state = 'detect';\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error });\n }\n\n const timeStart = now();\n\n // configure backend if needed\n await backend.check(this);\n\n // load models if enabled\n await this.load();\n\n timeStamp = now();\n this.state = 'image';\n const img = await image.process(input, this.config) as { canvas: AnyCanvas, tensor: Tensor };\n this.process = img;\n this.performance.inputProcess = this.env.perfadd ? (this.performance.inputProcess || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n if (!img.tensor) {\n if (this.config.debug) log('could not convert input to tensor');\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error: 'could not convert input to tensor' });\n return;\n }\n this.emit('image');\n\n timeStamp = now();\n this.config.skipAllowed = await image.skip(this.config, img.tensor);\n if (!this.performance.totalFrames) this.performance.totalFrames = 0;\n if (!this.performance.cachedFrames) this.performance.cachedFrames = 0;\n (this.performance.totalFrames)++;\n if (this.config.skipAllowed) this.performance.cachedFrames++;\n this.performance.cacheCheck = this.env.perfadd ? (this.performance.cacheCheck || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes: FaceResult[] | Promise | never[] = [];\n let bodyRes: BodyResult[] | Promise | never[] = [];\n let handRes: HandResult[] | Promise | never[] = [];\n let objectRes: ObjectResult[] | Promise | never[] = [];\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n this.state = 'detect:face';\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, img.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, img.tensor) : [];\n this.performance.face = this.env.perfadd ? (this.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n\n if (this.config.async && (this.config.body.maxDetected === -1 || this.config.hand.maxDetected === -1)) faceRes = await faceRes; // need face result for auto-detect number of hands or bodies\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n this.state = 'detect:body';\n const bodyConfig = this.config.body.maxDetected === -1 ? mergeDeep(this.config, { body: { maxDetected: this.config.face.enabled ? 1 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of bodies\n if (this.config.async) {\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(img.tensor, bodyConfig) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n timeStamp = now();\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(img.tensor, bodyConfig) : [];\n this.performance.body = this.env.perfadd ? (this.performance.body || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n this.state = 'detect:hand';\n const handConfig = this.config.hand.maxDetected === -1 ? mergeDeep(this.config, { hand: { maxDetected: this.config.face.enabled ? 2 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of hands\n if (this.config.async) {\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? handtrack.predict(img.tensor, handConfig) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n timeStamp = now();\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? await handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? await handtrack.predict(img.tensor, handConfig) : [];\n this.performance.hand = this.env.perfadd ? (this.performance.hand || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Hand:');\n\n // run object detection\n this.analyze('Start Object:');\n this.state = 'detect:object';\n if (this.config.async) {\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(img.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n timeStamp = now();\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(img.tensor, this.config) : [];\n this.performance.object = this.env.perfadd ? (this.performance.object || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Object:');\n\n // if async wait for results\n this.state = 'detect:await';\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n this.state = 'detect:gesture';\n let gestureRes: GestureResult[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes as FaceResult[]), ...gesture.body(bodyRes as BodyResult[]), ...gesture.hand(handRes as HandResult[]), ...gesture.iris(faceRes as FaceResult[])];\n if (!this.config.async) this.performance.gesture = this.env.perfadd ? (this.performance.gesture || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = this.env.perfadd ? (this.performance.total || 0) + Math.trunc(now() - timeStart) : Math.trunc(now() - timeStart);\n const shape = this.process.tensor?.shape || [];\n this.result = {\n face: faceRes as FaceResult[],\n body: bodyRes as BodyResult[],\n hand: handRes as HandResult[],\n gesture: gestureRes,\n object: objectRes as ObjectResult[],\n performance: this.performance,\n canvas: this.process.canvas,\n timestamp: Date.now(),\n error: null,\n get persons() { return persons.join(faceRes as FaceResult[], bodyRes as BodyResult[], handRes as HandResult[], gestureRes, shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(img.tensor);\n\n // log('Result:', result);\n this.emit('detect');\n this.state = 'idle';\n resolve(this.result);\n });\n }\n}\n\n/** Class Human as default export */\n/* eslint no-restricted-exports: [\"off\", { \"restrictedNamedExports\": [\"default\"] }] */\nexport { Human as default, match, draw, models };\n"], - "mappings": ";;;;;;m5BAOO,SAASA,KAAOC,EAAW,CAChC,IAAMC,EAAK,IAAI,KACTC,EAAK,GAAGD,EAAG,SAAS,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,KAAKA,EAAG,WAAW,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,KAAKA,EAAG,WAAW,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,KAAKA,EAAG,gBAAgB,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,IACpMD,GAAK,QAAQ,IAAIE,EAAI,SAAU,GAAGF,CAAG,CAC3C,CAGO,SAASG,GAAKC,EAAgBC,EAAsB,CACzD,IAAMC,EAAYF,EAAO,SAAS,GAAG,EAAI,GAAK,IAExCG,EADWF,EAAK,WAAW,GAAG,GAAKA,EAAK,WAAW,GAAG,GAAKA,EAAK,WAAW,OAAO,GAAKA,EAAK,WAAW,QAAQ,GAAKA,EAAK,WAAW,OAAO,EACzH,GAAGA,IAAS,GAAGD,IAASE,IAAYD,IAC5D,GAAI,CAACE,EAAK,kBAAkB,EAAE,SAAS,OAAO,EAAG,MAAM,IAAI,MAAM,yCAAyCA,GAAM,EAChH,OAAOA,CACT,CAGO,IAAMC,EAAM,IACb,OAAO,aAAgB,YAAoB,YAAY,IAAI,EACxD,UAAU,OAAO,QAAQ,OAAO,OAAO,CAAC,EAAI,IAAO,KAAM,SAAS,CAAC,EAIrE,SAASC,GAASC,EAA2BC,EAAyBC,EAAS,SAAUC,EAA+D,CAAC,EAAG,CACjK,QAAWC,KAAO,OAAO,KAAKH,CAAM,EAClC,GAAI,OAAOA,EAAOG,IAAS,SACzBL,GAASC,EAASI,GAAMH,EAAOG,GAAMA,EAAKD,CAAI,MACzC,CACL,IAAME,EAAUL,GAAa,OAAOA,EAASI,IAAS,YACjDC,GAASF,EAAK,KAAK,CAAE,OAAQ,mBAAoB,MAAO,GAAGD,KAAUE,OAASH,EAAOG,IAAO,CAAC,EAClG,IAAME,EAAON,GAAY,OAAOA,EAASI,IAAS,OAAOH,EAAOG,GAC5DC,GAAW,CAACC,GAAMH,EAAK,KAAK,CAAE,OAAQ,yBAA0B,MAAO,GAAGD,KAAUE,OAASH,EAAOG,KAAQ,SAAU,OAAOJ,EAASI,EAAK,CAAC,CAClJ,CAGF,OAAIH,EAAO,OAASC,IAAW,UAAYC,EAAK,OAAS,GAAGd,EAAI,wBAAyBc,CAAI,EACtFA,CACT,CAGO,SAASI,KAAaC,EAAS,CACpC,IAAMC,EAAYC,GAAQA,GAAO,OAAOA,GAAQ,SAChD,OAAOF,EAAQ,OAAO,CAACG,EAAMD,KAC3B,OAAO,KAAKA,GAAO,CAAC,CAAC,EAAE,QAASN,GAAQ,CACtC,IAAMQ,EAAOD,EAAKP,GACZS,EAAOH,EAAIN,GACb,MAAM,QAAQQ,CAAI,GAAK,MAAM,QAAQC,CAAI,EAAGF,EAAKP,GAAOQ,EAAK,OAAO,GAAGC,CAAI,EACtEJ,EAASG,CAAI,GAAKH,EAASI,CAAI,EAAGF,EAAKP,GAAOG,EAAUK,EAAMC,CAAI,EACtEF,EAAKP,GAAOS,CACnB,CAAC,EACMF,GACN,CAAC,CAAC,CACP,CCwQA,IAAMG,GAAiB,CACrB,QAAS,GACT,cAAe,GACf,YAAa,GACb,eAAgB,GAChB,SAAU,GACV,kBAAmB,GACnB,MAAO,GACP,MAAO,GACP,OAAQ,OACR,iBAAkB,GAClB,YAAa,GACb,WAAY,GACZ,gBAAiB,GACjB,OAAQ,CACN,QAAS,GACT,aAAc,GACd,MAAO,EACP,OAAQ,EACR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,CACZ,EACA,QAAS,CACP,QAAS,EACX,EACA,KAAM,CACJ,QAAS,GACT,SAAU,CACR,UAAW,iBACX,SAAU,GACV,YAAa,EACb,WAAY,GACZ,SAAU,KACV,cAAe,GACf,aAAc,GACd,KAAM,GACN,OAAQ,EACV,EACA,KAAM,CACJ,QAAS,GACT,UAAW,gBACX,YAAa,EACf,EACA,UAAW,CACT,QAAS,GACT,UAAW,yBACb,EACA,KAAM,CACJ,QAAS,GACT,UAAW,WACb,EACA,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GACZ,SAAU,KACV,UAAW,cACb,EACA,YAAa,CACX,QAAS,GACT,UAAW,eACX,WAAY,GACZ,SAAU,IACV,cAAe,EACjB,EACA,UAAW,CACT,QAAS,GACT,WAAY,GACZ,SAAU,IACV,UAAW,gBACb,EACA,SAAU,CACR,QAAS,GACT,WAAY,GACZ,SAAU,IACV,UAAW,eACb,CACF,EACA,KAAM,CACJ,QAAS,GACT,UAAW,yBACX,YAAa,GACb,cAAe,GACf,WAAY,EACZ,SAAU,GACZ,EACA,KAAM,CACJ,QAAS,GACT,SAAU,GACV,WAAY,GACZ,SAAU,IACV,cAAe,GACf,aAAc,GACd,YAAa,GACb,UAAW,GACX,SAAU,CACR,UAAW,gBACb,EACA,SAAU,CACR,UAAW,wBACb,CACF,EACA,OAAQ,CACN,QAAS,GACT,UAAW,qBACX,cAAe,GACf,aAAc,GACd,YAAa,GACb,WAAY,GACZ,SAAU,GACZ,EACA,aAAc,CACZ,QAAS,GACT,UAAW,cACX,KAAM,CACR,CACF,ECncA,IAAAC,EAAA,GAAAC,GAAAD,EAAA,gBAAAE,GAAA,WAAAC,GAAA,YAAAC,KAMAC,EAAAL,EAAAM,IAA4CD,EAAAL,EAAAM,IAA5C,UAAAA,OAAW,iCAAiC,UAAAA,OAAW,+CAAuP,OAAO,UAAUH,OAAM,iCAAiC,OAAO,cAAcD,OAAM,wCAA3R,IAAIK,GAAE,SAASC,GAAE,SAASC,GAAE,SAASC,GAAE,SAASC,GAAE,SAASC,GAAE,SAASC,GAAE,SAAST,GAAE,CAAC,KAAKG,GAAE,YAAYC,GAAE,YAAYC,GAAE,cAAcC,GAAE,iBAAiBC,GAAE,qBAAqBC,GAAE,oBAAoBC,EAAC,ECNrS,IAAMC,GAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;EAqBvB,IAAMC,GAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAcvBC,GAA0B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAc1BC,GAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAeXC,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAyBPC,GAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;EC9E3B,IAAMC,GAAU,CAACC,EAAQC,EAAgBC,IAAe,CACtD,IAAMC,EAAI,IAAI,OAAO,MAAQF,EAAS,eAAgB,IAAI,EAC1DD,EAAO,QAAQG,EAAG,CAACC,EAAOC,KACxBH,EAAWG,GAAQ,EACZD,EACR,CACH,EAEME,GAAN,KAAgB,CAMd,YAAYC,EAAIC,EAAcC,EAAgB,CAL9CC,EAAA,eAAU,CAAC,GACXA,EAAA,iBAAY,CAAC,GACbA,EAAA,WACAA,EAAA,WA2BAA,EAAA,eAAU,CAACV,EAAQW,IAA6B,CAC9C,IAAMC,EAAS,KAAK,GAAG,aAAaD,CAAI,EACxC,OAAKC,GAIL,KAAK,GAAG,aAAaA,EAAQZ,CAAM,EACnC,KAAK,GAAG,cAAcY,CAAM,EACvB,KAAK,GAAG,mBAAmBA,EAAQ,KAAK,GAAG,cAAc,EAIvDA,GAHLC,EAAI,8BAA8B,KAAK,GAAG,iBAAiBD,CAAM,GAAK,WAAW,EAC1E,QAPPC,EAAI,iCAAiC,EAC9B,KASX,GArCE,KAAK,GAAKN,EACV,IAAMO,EAAe,KAAK,QAAQN,EAAc,KAAK,GAAG,aAAa,EAC/DO,EAAiB,KAAK,QAAQN,EAAgB,KAAK,GAAG,eAAe,EAE3E,GADA,KAAK,GAAK,KAAK,GAAG,cAAc,EAC5B,GAACK,GAAgB,CAACC,GACtB,IAAI,CAAC,KAAK,GAAI,CACZF,EAAI,wCAAwC,EAC5C,MACF,CAIA,GAHA,KAAK,GAAG,aAAa,KAAK,GAAIC,CAAY,EAC1C,KAAK,GAAG,aAAa,KAAK,GAAIC,CAAc,EAC5C,KAAK,GAAG,YAAY,KAAK,EAAE,EACvB,CAAC,KAAK,GAAG,oBAAoB,KAAK,GAAI,KAAK,GAAG,WAAW,EAAG,CAC9DF,EAAI,2BAA2B,KAAK,GAAG,kBAAkB,KAAK,EAAE,GAAK,WAAW,EAChF,MACF,CACA,KAAK,GAAG,WAAW,KAAK,EAAE,EAC1Bd,GAAQS,EAAc,YAAa,KAAK,SAAS,EACjD,QAAW,KAAK,KAAK,UAAW,KAAK,UAAU,GAAK,KAAK,GAAG,kBAAkB,KAAK,GAAI,CAAC,EACxFT,GAAQS,EAAc,UAAW,KAAK,OAAO,EAC7CT,GAAQU,EAAgB,UAAW,KAAK,OAAO,EAC/C,QAAWO,KAAK,KAAK,QAAS,KAAK,QAAQA,GAAK,KAAK,GAAG,mBAAmB,KAAK,GAAIA,CAAC,EACvF,CAgBF,EAWO,SAASC,IAAgB,CAC9B,IAAIC,EAAY,EACZC,EAAqC,KACrCC,EAAc,GACdC,EAA0B,GAC1BC,EAAoG,CAAC,KAAM,IAAI,EAC/GC,EAAyC,CAAC,EAC1CC,EAAmC,KACnCC,EAAmC,KACjCC,EAAWC,GAAO,IAAK,GAAG,EAC1BC,EAAqB,CAAE,EACvBC,EAAO,CAAE,aAAc,CAAE,EACzBtB,EAAKmB,EAAS,WAAW,OAAO,EACtC,GAAI,CAACnB,EAAI,CACPM,EAAI,kCAAkC,EACtC,MACF,CAEA,KAAK,GAAKN,EAEV,SAASuB,EAAOC,EAAOC,EAAQ,CAC7B,GAAI,EAAAD,IAAUL,EAAS,OAASM,IAAWN,EAAS,QAGpD,IAFAA,EAAS,MAAQK,EACjBL,EAAS,OAASM,EACd,CAACR,EAAc,CACjB,IAAMS,EAAW,IAAI,aAAa,CAAC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,CAAC,EAChHT,EAAejB,EAAG,aAAa,EAC/BA,EAAG,WAAWA,EAAG,aAAciB,CAAY,EAC3CjB,EAAG,WAAWA,EAAG,aAAc0B,EAAU1B,EAAG,WAAW,EACvDA,EAAG,YAAYA,EAAG,+BAAgC,EAAI,CACxD,CACAA,EAAG,SAAS,EAAG,EAAGmB,EAAS,MAAOA,EAAS,MAAM,EACjDJ,EAAmB,CAAC,KAAM,IAAI,EAChC,CAEA,SAASY,EAAyBH,EAAOC,EAAQ,CAC/C,IAAMG,EAAM5B,EAAG,kBAAkB,EACjCA,EAAG,gBAAgBA,EAAG,YAAa4B,CAAG,EACtC,IAAMC,EAAe7B,EAAG,mBAAmB,EAC3CA,EAAG,iBAAiBA,EAAG,aAAc6B,CAAY,EACjD,IAAMC,EAAU9B,EAAG,cAAc,EACjC,OAAAA,EAAG,YAAYA,EAAG,WAAY8B,CAAO,EACrC9B,EAAG,WAAWA,EAAG,WAAY,EAAGA,EAAG,KAAMwB,EAAOC,EAAQ,EAAGzB,EAAG,KAAMA,EAAG,cAAe,IAAI,EAC1FA,EAAG,cAAcA,EAAG,WAAYA,EAAG,mBAAoBA,EAAG,MAAM,EAChEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,mBAAoBA,EAAG,MAAM,EAChEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,eAAgBA,EAAG,aAAa,EACnEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,eAAgBA,EAAG,aAAa,EACnEA,EAAG,qBAAqBA,EAAG,YAAaA,EAAG,kBAAmBA,EAAG,WAAY8B,EAAS,CAAC,EACvF9B,EAAG,YAAYA,EAAG,WAAY,IAAI,EAClCA,EAAG,gBAAgBA,EAAG,YAAa,IAAI,EAChC,CAAE,IAAA4B,EAAK,QAAAE,CAAQ,CACxB,CAEA,SAASC,EAAmBC,EAAuE,CACjG,OAAAjB,EAAiBiB,GAASjB,EAAiBiB,IAAUL,EAAyBR,EAAS,MAAOA,EAAS,MAAM,EACtGJ,EAAiBiB,EAC1B,CAEA,SAASC,EAAKC,EAAQ,EAAG,CACvB,GAAI,CAAChB,EAAgB,OACrB,IAAIzB,EAA8B,KAC9B0C,EAAkC,KAClCC,EAAQ,GACRzB,IAAc,EAAGlB,EAASmB,EACzBnB,EAASsC,EAAmBjB,CAAuB,EAAE,SAAW,KACrEH,IACIE,GAAe,EAAEqB,EAAQZ,EAAK,eAChCa,EAAS,KACTC,EAAQzB,EAAY,IAAM,IAE1BG,GAA2BA,EAA0B,GAAK,EAC1DqB,EAASJ,EAAmBjB,CAAuB,EAAE,KAAO,MAE9Dd,EAAG,YAAYA,EAAG,WAAYP,CAAM,EACpCO,EAAG,gBAAgBA,EAAG,YAAamC,CAAM,EACzCnC,EAAG,UAAUkB,EAAe,QAAQ,MAAWkB,EAAQ,GAAK,CAAE,EAC9DpC,EAAG,WAAWA,EAAG,UAAW,EAAG,CAAC,CAClC,CAEA,SAASqC,EAAcnC,EAAkC,CACvD,GAAImB,EAAmBnB,GACrB,OAAAgB,EAAiBG,EAAmBnB,GACpCF,EAAG,YAAYkB,EAAiBA,EAAe,GAAK,OAAS,IAAI,EAC1DA,EAGT,GADAA,EAAiB,IAAInB,GAAUC,EAAYsC,GAAgBpC,CAAc,EACrE,CAACgB,EACH,OAAAZ,EAAI,qCAAqC,EAClC,KAET,IAAMiC,EAAY,aAAa,kBACzBC,EAAW,EAAID,EACrB,OAAAvC,EAAG,wBAAwBkB,EAAe,UAAU,GAAM,EAC1DlB,EAAG,oBAAoBkB,EAAe,UAAU,IAAQ,EAAGlB,EAAG,MAAO,GAAOwC,EAAU,EAAID,CAAS,EACnGvC,EAAG,wBAAwBkB,EAAe,UAAU,EAAK,EACzDlB,EAAG,oBAAoBkB,EAAe,UAAU,GAAO,EAAGlB,EAAG,MAAO,GAAOwC,EAAU,EAAID,CAAS,EAClGlB,EAAmBnB,GAAkBgB,EAC9BA,CACT,CAEA,IAAMuB,EAAS,CACb,YAAcC,GAAqB,CACjC,IAAM,EAAI,IAAI,aAAaA,CAAM,EACjC,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IACT,IAAMrC,EAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EACrHsC,GACAC,GACNC,EAAUR,EAAchC,CAAM,EAChC,CAACwC,IACL7C,EAAG,WAAW6C,EAAQ,QAAQ,EAAM,CAAC,EACrCZ,EAAK,EACP,EAEA,WAAaa,GAAuB,CAClC,IAAMC,GAAKD,GAAc,GAAK,EAC9BL,EAAO,YAAY,CACjBM,EAAG,EAAG,EAAG,EAAG,EACZ,EAAGA,EAAG,EAAG,EAAG,EACZ,EAAG,EAAGA,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAaC,GAAmB,CAC9B,IAAMC,GAAKD,GAAU,GAAK,EAAI,EAAI,EAC5BE,GAAMD,EAAI,GAAK,IACrBR,EAAO,YAAY,CACjBQ,EAAGC,EAAGA,EAAG,EAAG,EACZA,EAAGD,EAAGC,EAAG,EAAG,EACZA,EAAGA,EAAGD,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,IAAM,CAChBR,EAAO,WAAW,EAAE,CACtB,EAEA,SAAWO,GAAmB,CAC5B,IAAMG,GAAKH,GAAU,GAAK,EACpBI,EAAI,MAAQD,EAAI,GACtBV,EAAO,YAAY,CACjBU,EAAG,EAAG,EAAG,EAAGC,EACZ,EAAGD,EAAG,EAAG,EAAGC,EACZ,EAAG,EAAGD,EAAG,EAAGC,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,SAAU,IAAM,CACdX,EAAO,SAAS,EAAE,CACpB,EAEA,IAAMY,GAAqB,CACzBA,GAAYA,GAAY,GAAK,IAAM,KAAK,GACxC,IAAMC,EAAM,KAAK,IAAID,CAAQ,EACvBE,EAAM,KAAK,IAAIF,CAAQ,EACvBG,EAAO,KACPC,EAAO,KACPC,EAAO,KACbjB,EAAO,YAAY,CACjBe,EAAOF,GAAO,EAAIE,GAAQD,EAAO,CAACC,EAAOC,EAAOH,EAAO,CAACG,EAAQF,EAAO,CAACE,EAAOC,EAAOJ,EAAO,CAACI,EAAQH,GAAO,EAAIG,GAAO,EAAG,EAC3HF,EAAOF,EAAO,CAACE,EAAQD,EAAO,KAAQE,EAAOH,GAAO,EAAIG,GAAQF,EAAO,IAAQG,EAAOJ,EAAO,CAACI,EAAQH,EAAO,MAAS,EAAG,EACzHC,EAAOF,EAAO,CAACE,EAAQD,EAAO,EAAE,EAAIC,GAAQC,EAAOH,EAAO,CAACG,EAAQF,EAAOE,EAAOC,EAAOJ,GAAO,EAAII,GAAQH,EAAOG,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,oBAAqB,IAAM,CACzBjB,EAAO,YAAY,CACjB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,MAAO,IAAM,CACXA,EAAO,YAAY,CACjB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,QAAS,IAAM,CACbA,EAAO,YAAY,CACjB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,eAAgB,IAAM,CACpBA,EAAO,YAAY,CACjB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,IAAM,CAChBA,EAAO,YAAY,CACjB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,YAAa,IAAM,CACjBA,EAAO,YAAY,CACjB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,SAAU,IAAM,CACdA,EAAO,YAAY,CACjB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,IAAM,CAChBA,EAAO,YAAY,CACjB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,YAAcC,GAAqB,CACjC,IAAM,EAAI,IAAI,aAAaA,CAAM,EAC3BiB,EAAa,EAAIxC,EAAS,MAC1ByC,EAAa,EAAIzC,EAAS,OAC1B0B,EAAUR,EAAsBwB,EAAW,EAC7C,CAAChB,IACL7C,EAAG,WAAW6C,EAAQ,QAAQ,EAAM,CAAC,EACrC7C,EAAG,UAAU6C,EAAQ,QAAQ,GAAOc,EAAYC,CAAU,EAC1D3B,EAAK,EACP,EAEA,YAAa,IAAM,CAEjBQ,EAAO,YAAY,KAAK,KAAM,CAC5B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,CACR,CAAC,CACH,EAEA,OAAQ,IAAM,CAEZA,EAAO,YAAY,KAAK,KAAM,CAC5B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,CACT,CAAC,CACH,EAEA,OAAQ,IAAM,CAEZA,EAAO,YAAY,KAAK,KAAM,CAC5B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,CACR,CAAC,CACH,EAEA,QAAUO,GAAW,CACnB,IAAMc,EAAId,GAAU,EAEpBP,EAAO,YAAY,KAAK,KAAM,CAC5B,EAAG,GAAKqB,EAAG,EACX,GAAKA,EAAG,EAAI,EAAIA,EAAG,GAAKA,EACxB,EAAG,GAAKA,EAAG,CACb,CAAC,CACH,EAEA,OAASC,GAAiB,CACxB,IAAMC,EAAID,GAAQ,EAElBtB,EAAO,YAAY,KAAK,KAAM,CAC5B,GAAKuB,EAAG,GAAKA,EAAG,EAChB,GAAKA,EAAG,EAAG,EAAIA,EACf,EAAG,EAAIA,EAAG,EAAIA,CAChB,CAAC,CACH,EAEA,KAAOD,GAAiB,CACtB,IAAME,EAAaF,EAAO,EAAK5C,EAAS,MAClC+C,EAAaH,EAAO,EAAK5C,EAAS,OAClC0B,EAAUR,EAAsB8B,EAAI,EACtC,CAACtB,IAEL7C,EAAG,UAAU6C,EAAQ,QAAQ,GAAO,EAAGqB,CAAS,EAChDjC,EAAKX,EAAK,YAAY,EAEtBtB,EAAG,UAAU6C,EAAQ,QAAQ,GAAOoB,EAAW,CAAC,EAChDhC,EAAK,EACP,EAEA,SAAW8B,GAAiB,CAC1B,IAAME,EAAaF,EAAQ5C,EAAS,MAC9B+C,EAAaH,EAAQ5C,EAAS,OAC9B0B,EAAUR,EAAsB+B,EAAQ,EAC1C,CAACvB,IACL7C,EAAG,UAAU6C,EAAQ,QAAQ,KAASoB,EAAWC,CAAS,EAC1DjC,EAAK,EACP,CACF,EAGA,KAAK,IAAM,SAAUnC,EAAM,CACzB,IAAMuE,EAAO,MAAM,UAAU,MAAM,KAAK,UAAW,CAAC,EAC9CC,EAAO7B,EAAO3C,GACpBkB,EAAY,KAAK,CAAE,KAAAsD,EAAM,KAAAD,CAAK,CAAC,CACjC,EAGA,KAAK,MAAQ,UAAY,CACvBrD,EAAc,CAAC,CACjB,EAGA,KAAK,IAAM,UAAY,CACrB,OAAOA,CACT,EAGA,KAAK,MAAQ,SAAUuD,EAAO,CAC5BhD,EAAOgD,EAAM,MAAOA,EAAM,MAAM,EAChC5D,EAAY,EACPC,IAAeA,EAAgBZ,EAAG,cAAc,GACrDA,EAAG,YAAYA,EAAG,WAAYY,CAAa,EAC3CZ,EAAG,cAAcA,EAAG,WAAYA,EAAG,eAAgBA,EAAG,aAAa,EACnEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,eAAgBA,EAAG,aAAa,EACnEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,mBAAoBA,EAAG,OAAO,EACjEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,mBAAoBA,EAAG,OAAO,EACjEA,EAAG,WAAWA,EAAG,WAAY,EAAGA,EAAG,KAAMA,EAAG,KAAMA,EAAG,cAAeuE,CAAK,EACzE,QAASC,EAAI,EAAGA,EAAIxD,EAAY,OAAQwD,IAAK,CAC3C3D,EAAe2D,IAAMxD,EAAY,OAAS,EAC1C,IAAMyD,EAAIzD,EAAYwD,GAEtBC,EAAE,KAAK,MAAM,KAAMA,EAAE,MAAQ,CAAC,CAAC,CACjC,CACA,OAAOtD,CACT,EAGA,KAAK,KAAO,SAAUoD,EAAO,CAC3B,YAAK,IAAI,aAAc,CAAC,EACjB,KAAK,MAAMA,CAAK,CACzB,CACF,CClbA,eAAsBG,GAAsBC,EAAqC,CAE/E,IAAMC,EAAUD,EAAW,MAAM,SAAW,EAAO,UAAQA,CAAU,EAAIA,EACnEE,EAAc,QAAMD,EAAS,EAAG,CAAC,EACjCE,EAAgB,CAAI,MAAID,EAAS,EAAE,EAAM,MAAIA,EAAS,EAAE,EAAM,MAAIA,EAAS,EAAE,CAAC,EAC9EE,EAAgB,CAAI,MAAIF,EAAS,EAAE,EAAM,MAAIA,EAAS,EAAE,EAAM,MAAIA,EAAS,EAAE,CAAC,EAC9EG,EAAS,MAAM,QAAQ,IAAID,EAAI,IAAKE,GAAYA,EAAQ,KAAK,CAAC,CAAC,EAC/DC,EAAW,IAAO,KAAK,IAAIF,EAAO,GAAG,GAAIA,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EACnEG,EAAM,CAAI,MAAIN,EAAS,GAAIC,EAAI,EAAE,EAAM,MAAID,EAAS,GAAIC,EAAI,EAAE,EAAM,MAAID,EAAS,GAAIC,EAAI,EAAE,CAAC,EAC5FM,EAAQ,CAAI,MAAIL,EAAI,GAAID,EAAI,EAAE,EAAM,MAAIC,EAAI,GAAID,EAAI,EAAE,EAAM,MAAIC,EAAI,GAAID,EAAI,EAAE,CAAC,EAC/EO,EAAO,CAAI,MAAIH,EAAUE,EAAM,EAAE,EAAM,MAAIF,EAAUE,EAAM,EAAE,EAAM,MAAIF,EAAUE,EAAM,EAAE,CAAC,EAC1FE,EAAM,CAAI,MAAIH,EAAI,GAAIE,EAAK,EAAE,EAAM,MAAIF,EAAI,GAAIE,EAAK,EAAE,EAAM,MAAIF,EAAI,GAAIE,EAAK,EAAE,CAAC,EAChFE,EAAS,QAAM,CAACD,EAAI,GAAIA,EAAI,GAAIA,EAAI,EAAE,EAAG,CAAC,EAC1CE,EAAa,UAAQD,EAAK,CAAC,EAAGX,EAAQ,MAAM,GAAIA,EAAQ,MAAM,GAAI,CAAC,CAAC,EAC1E,OAAG,UAAQ,CAAC,GAAGC,EAAU,GAAGC,EAAK,GAAGC,EAAK,GAAGI,EAAK,GAAGC,EAAO,GAAGC,EAAM,GAAGC,EAAKC,EAAKX,CAAO,CAAC,EAClFY,CACT,CCZA,IAAMC,GAAU,KAEZC,GAA6B,KAC7BC,GAA8B,KAC9BC,GAA8B,KAE9BC,EAEEC,GAAoG,CACxG,SAAU,EACV,UAAW,EACX,UAAW,EACX,YAAa,MACf,EAEO,SAASC,GAAOC,EAAeC,EAA2B,CAC/D,IAAIC,EACJ,GAAIC,EAAI,QACN,GAAIA,EAAI,OAAQ,CACd,GAAI,OAAO,iBAAoB,YAAa,MAAM,IAAI,MAAM,mFAAmF,EAC/ID,EAAI,IAAI,gBAAgBF,EAAOC,CAAM,CACvC,KAAO,CACL,GAAI,OAAO,UAAa,YAAa,MAAM,IAAI,MAAM,kEAAkE,EACvHC,EAAI,SAAS,cAAc,QAAQ,EACnCA,EAAE,MAAQF,EACVE,EAAE,OAASD,CACb,MAGI,OAAOE,EAAI,QAAW,YAAaD,EAAI,IAAIC,EAAI,OAAOH,EAAOC,CAAM,EAC9D,OAAO,WAAW,QAAW,cAAaC,EAAI,IAAI,WAAW,OAAOF,EAAOC,CAAM,GAI5F,OAAOC,CACT,CAGO,SAASE,GAAKC,EAAkBC,EAAoB,CACzD,IAAMC,EAAeD,GAAUP,GAAOM,EAAM,MAAOA,EAAM,MAAM,EAE/D,OADYE,EAAa,WAAW,IAAI,EACpC,UAAUF,EAAO,EAAG,CAAC,EAClBE,CACT,CAKA,eAAsBC,GAAQH,EAAcI,EAAgBC,EAAqB,GAAoE,CA3DrJ,IAAAC,EAAAC,EA4DE,GAAI,CAACP,EAEH,OAAII,EAAO,OAAOI,EAAI,+BAA+B,EAC9C,CAAE,OAAQ,KAAM,OAAQ,IAAK,EAGtC,GACE,EAAER,aAAoBS,KACnB,EAAE,OAAO,OAAU,aAAeT,aAAiB,QACnD,EAAE,OAAOF,EAAI,QAAW,aAAeE,aAAiBF,EAAI,SAC5D,EAAE,OAAO,WAAW,QAAW,aAAeE,aAAiB,WAAW,SAC1E,EAAE,OAAO,WAAc,aAAeA,aAAiB,YACvD,EAAE,OAAO,aAAgB,aAAeA,aAAiB,cACzD,EAAE,OAAO,kBAAqB,aAAeA,aAAiB,mBAC9D,EAAE,OAAO,kBAAqB,aAAeA,aAAiB,mBAC9D,EAAE,OAAO,kBAAqB,aAAeA,aAAiB,mBAC9D,EAAE,OAAO,mBAAsB,aAAeA,aAAiB,oBAC/D,EAAE,OAAO,iBAAoB,aAAeA,aAAiB,iBAEhE,MAAM,IAAI,MAAM,qCAAqC,EAEvD,GAAIA,aAAoBS,GAAQ,CAC9B,IAAIC,EAAwB,KAC5B,GAAKV,EAAiB,mBAAuB,MAAM,IAAI,MAAM,yDAAyD,EACtH,GAAI,CAAEA,EAAiB,MAAO,MAAM,IAAI,MAAM,sDAAsD,EACpG,GAAKA,EAAiB,MAAM,SAAW,GACrC,GAAKA,EAAiB,MAAM,KAAO,EACjCU,EAAY,aAAWV,EAAO,CAAC,UACrBA,EAAiB,MAAM,KAAO,EAAG,CAC3C,IAAMW,EAAS,UAAQX,EAAO,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,CAAC,CAAC,EACpDU,EAAY,aAAWC,EAAK,CAAC,EAC1B,UAAQA,CAAG,CAChB,OACUX,EAAiB,MAAM,SAAW,IACvCA,EAAiB,MAAM,KAAO,EACjCU,EAAY,QAAMV,CAAK,EACbA,EAAiB,MAAM,KAAO,IACxCU,EAAY,UAAQV,EAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,GAAI,CAAC,CAAC,IAI5D,GAAIU,GAAU,MAAQA,EAAO,MAAM,SAAW,GAAKA,EAAO,MAAM,KAAO,GAAKA,EAAO,MAAM,KAAO,EAAG,MAAM,IAAI,MAAM,iEAAmEV,EAAiB,MAAO,SAAS,GAAG,EAC1N,GAAKU,EAAQ,QAAU,QAAS,CAC9B,IAAME,EAAU,OAAKF,EAAQ,SAAS,EACnC,UAAQA,CAAM,EACjBA,EAASE,CACX,CACA,MAAO,CAAE,OAAAF,EAAQ,OAASN,EAAO,OAAO,OAASd,GAAY,IAAM,CACrE,CAEA,GAAI,OAAOU,EAAM,YAAkB,aAAgBA,EAA2B,YAAc,EAC1F,OAAII,EAAO,OAAOI,EAAI,2BAA2B,EAC1C,CAAE,OAAQ,KAAM,OAAQnB,EAAS,EAE1C,IAAMwB,EAAwBb,EAAM,cAAmBA,EAAM,YAAiBA,EAAM,OAAaA,EAAM,OAAaA,EAAM,MAAS,GAAK,EAClIc,EAAyBd,EAAM,eAAoBA,EAAM,aAAkBA,EAAM,QAAcA,EAAM,OAAaA,EAAM,MAAS,GAAK,EAC5I,GAAI,CAACa,GAAiB,CAACC,EACrB,OAAIV,EAAO,OAAOI,EAAI,mCAAmC,EAClD,CAAE,OAAQ,KAAM,OAAQnB,EAAS,EAE1C,IAAI0B,EAAsBF,EACtBG,EAAuBF,EAe3B,GAdIC,EAAc3B,KAChB2B,EAAc3B,GACd4B,EAAe,KAAK,MAAMD,EAAcD,EAAiBD,CAAa,GAEpEG,EAAe5B,KACjB4B,EAAe5B,GACf2B,EAAc,KAAK,MAAMC,EAAeH,EAAgBC,CAAc,MAInER,EAAAF,EAAO,SAAP,YAAAE,EAAe,QAAS,GAAK,EAAGS,EAAcX,EAAO,OAAO,SACvDG,EAAAH,EAAO,SAAP,YAAAG,EAAe,SAAU,GAAK,IAAGQ,EAAcF,IAAkBT,EAAO,OAAO,QAAU,GAAKU,KACnGV,EAAO,OAAO,QAAU,GAAK,EAAGY,EAAeZ,EAAO,OAAO,QACxDA,EAAO,OAAO,OAAS,GAAK,IAAGY,EAAeF,IAAmBV,EAAO,OAAO,OAAS,GAAKS,IACnG,CAACE,GAAe,CAACC,EAAc,MAAM,IAAI,MAAM,yCAAyC,GACxF,CAAC3B,IAAaA,GAAS,QAAU0B,GAAiB1B,GAAS,SAAW2B,KAAe3B,GAAWK,GAAOqB,EAAaC,CAAY,GAGpI,IAAMC,EAAQ5B,GAAS,WAAW,IAAI,EAmDtC,GAlDK,OAAO,WAAc,aAAiBW,aAAiB,UAC1DiB,EAAM,aAAajB,EAAO,EAAG,CAAC,EAE1BI,EAAO,OAAO,MAAQ,OAAOa,EAAM,WAAc,aACnDA,EAAM,UAAUJ,EAAe,CAAC,EAChCI,EAAM,MAAM,GAAI,CAAC,EACjBA,EAAM,UAAUjB,EAAoB,EAAG,EAAGa,EAAeC,EAAgB,EAAG,EAAGzB,GAAS,MAAOA,GAAS,MAAM,EAC9G4B,EAAM,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,GAEnCA,EAAM,UAAUjB,EAAoB,EAAG,EAAGa,EAAeC,EAAgB,EAAG,EAAGzB,GAAS,MAAOA,GAAS,MAAM,GAI9G,CAACC,IAAcD,GAAS,QAAUC,GAAU,OAAWD,GAAS,SAAWC,GAAU,UAASA,GAAYI,GAAOL,GAAS,MAAOA,GAAS,MAAM,GAGhJe,EAAO,OAAO,SAAWN,EAAI,MAAM,WAChCN,IAAIA,EAAKM,EAAI,QAAU,IAAYoB,GAAkB,MAC1DpB,EAAI,OAAS,CAAC,CAACN,EACVA,GAAA,MAAAA,EAAI,KAOPA,EAAG,MAAM,EACLY,EAAO,OAAO,aAAe,GAAGZ,EAAG,IAAI,aAAcY,EAAO,OAAO,UAAU,EAC7EA,EAAO,OAAO,WAAa,GAAGZ,EAAG,IAAI,WAAYY,EAAO,OAAO,QAAQ,EACvEA,EAAO,OAAO,YAAc,GAAGZ,EAAG,IAAI,UAAWY,EAAO,OAAO,SAAS,EACxEA,EAAO,OAAO,OAAS,GAAGZ,EAAG,IAAI,OAAQY,EAAO,OAAO,IAAI,EAC3DA,EAAO,OAAO,aAAe,GAAGZ,EAAG,IAAI,aAAcY,EAAO,OAAO,UAAU,EAC7EA,EAAO,OAAO,MAAQ,GAAGZ,EAAG,IAAI,MAAOY,EAAO,OAAO,GAAG,EACxDA,EAAO,OAAO,UAAUZ,EAAG,IAAI,UAAU,EACzCY,EAAO,OAAO,OAAOZ,EAAG,IAAI,OAAO,EACnCY,EAAO,OAAO,SAASZ,EAAG,IAAI,SAAS,EACvCY,EAAO,OAAO,OAAOZ,EAAG,IAAI,OAAO,EACnCY,EAAO,OAAO,YAAYZ,EAAG,IAAI,YAAY,EAC7CY,EAAO,OAAO,aAAaZ,EAAG,IAAI,aAAa,EAC/CY,EAAO,OAAO,UAAUZ,EAAG,IAAI,UAAU,EACzCY,EAAO,OAAO,WAAa,GAAGZ,EAAG,IAAI,WAAYY,EAAO,OAAO,QAAQ,EACvEZ,EAAG,IAAI,EAAI,EAAGF,GAAYE,EAAG,MAAMH,EAAQ,EAC1CC,GAAYE,EAAG,KAAKH,EAAQ,IAtB7Be,EAAO,OAAOI,EAAI,gDAAgD,EACtEV,EAAI,MAAM,UAAY,GACtBM,EAAO,OAAO,QAAU,GACxBL,GAAKV,GAAUC,EAAS,KAsB1BS,GAAKV,GAAUC,EAAS,EACpBE,IAAIA,EAAK,MACbM,EAAI,OAAS,CAAC,CAACN,GAGb,CAACa,EAAW,MAAO,CAAE,OAAQ,KAAM,OAAQf,EAAU,EACzD,GAAI,CAACA,GAAW,MAAM,IAAI,MAAM,oCAAoC,EAGpE,IAAI6B,EACAC,EAAQ,EACZ,GAAK,OAAO,WAAc,aAAepB,aAAiB,WAAgBA,EAAoB,MAASA,EAAoB,OAAUA,EAAoB,OACvJ,GAAIF,EAAI,SAAc,UACpBqB,EAAY,UAAa,UAAQ,WAAWnB,CAAK,EAAI,SAChD,CACLoB,EAASpB,EAAoB,KAAK,OAAUA,EAAoB,OAAUA,EAAoB,MAE9F,IAAMqB,EAAM,IAAI,WAAYrB,EAAoB,KAAK,MAAM,EAC3DmB,EAAY,SAAOE,EAAK,CAAErB,EAAoB,OAASA,EAAoB,MAAOoB,CAAK,EAAG,OAAO,CACnG,UAEI,CAAC7B,IAAcD,GAAU,QAAUC,GAAU,OAAWD,GAAU,SAAWC,GAAU,UAASA,GAAYG,GAAOJ,GAAU,MAAOA,GAAU,MAAM,GACjJ,WAAWQ,EAAI,QAChBM,EAAO,UAAY,SAAWA,EAAO,UAAY,WAAaA,EAAO,UAAY,SACnFe,EAAY,UAAQ,WAAW7B,EAAS,GAExCC,GAAYQ,GAAKT,EAAS,EAC1B6B,EAAY,UAAQ,WAAW5B,EAAS,OAErC,CAGL,IAAM+B,EAFavB,GAAKT,EAAS,EACN,WAAW,IAAI,EACjB,aAAa,EAAG,EAAGyB,EAAaC,CAAY,EACrEI,EAAQE,EAAS,KAAK,OAASP,EAAcC,EAC7C,IAAMK,EAAM,IAAI,WAAWC,EAAS,KAAK,MAAM,EAC/CH,EAAY,SAAOE,EAAK,CAACN,EAAaC,EAAcI,CAAK,CAAC,CAC5D,CAEF,GAAIA,IAAU,EAAG,CACf,IAAMT,EAAS,UAAQQ,EAAQ,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,CAAC,CAAC,EAClD,UAAQA,CAAM,EACjBA,EAASR,CACX,CACA,GAAI,CAACQ,EAAQ,MAAM,IAAI,MAAM,mCAAmC,EAChE,IAAMI,EAAoB,OAAKJ,EAAQ,SAAS,EAC1CT,EAAiBN,EAAO,OAAO,aAAe,MAAcoB,GAAsBD,CAAM,EAAO,aAAWA,EAAQ,CAAC,EACzH,OAAG,UAAQ,CAACJ,EAAQI,CAAM,CAAC,EACpB,CAAE,OAAAb,EAAQ,OAASN,EAAO,OAAO,OAASd,GAAY,IAAM,CACrE,CAgCA,eAAsBmC,GAAKrB,EAAyBJ,EAAe,CACjE,IAAI0B,EAAY,GAChB,GAAItB,EAAO,mBAAqB,GAAK,CAACJ,EAAM,OAASA,EAAM,MAAM,SAAW,GAAKA,EAAM,MAAM,GAAK,MAAQA,EAAM,MAAM,GAAK,KAAM,OAAO0B,EAcxI,GAAI,CAACjC,GAAK,YACRA,GAAK,YAAiB,QAAMO,CAAK,UACxBP,GAAK,YAAY,MAAM,KAAOO,EAAM,MAAM,IAAMP,GAAK,YAAY,MAAM,KAAOO,EAAM,MAAM,GAChG,UAAQP,GAAK,WAAW,EAC3BA,GAAK,YAAiB,QAAMO,CAAK,MAC5B,CACL,IAAM2B,EAA4B,CAAC,EACnCA,EAAE,KAAU,MAAI3B,EAAOP,GAAK,WAAW,EACvCkC,EAAE,QAAa,MAAIA,EAAE,KAAMA,EAAE,IAAI,EACjCA,EAAE,IAAS,MAAIA,EAAE,OAAO,EAExB,IAAMC,GADU,MAAMD,EAAE,IAAI,KAAK,GACJ,IAAM3B,EAAM,MAAM,IAAM,IAAMA,EAAM,MAAM,IAAM,GAAK,IAAM,EACrF,UAAQ,CAACP,GAAK,YAAakC,EAAE,KAAMA,EAAE,QAASA,EAAE,GAAG,CAAC,EACvDlC,GAAK,YAAiB,QAAMO,CAAK,EACjC0B,EAAYE,IAAiBxB,EAAO,kBAAoB,EAC1D,CACA,OAAOsB,CACT,CAEA,eAAsBG,GAAQzB,EAAyB0B,EAAgBC,EAAiC,CACtG,IAAMJ,EAA4B,CAAC,EACnC,GAAI,CAACG,GAAU,CAACC,GAAUD,EAAO,MAAM,SAAW,GAAKA,EAAO,MAAM,SAAWC,EAAO,MAAM,OAC1F,OAAK3B,EAAO,OAAOI,EAAI,sDAAuDsB,EAAO,MAAOC,EAAO,KAAK,EACjG,EAET,GAAID,EAAO,MAAM,KAAO,GAAKC,EAAO,MAAM,KAAO,GAAKD,EAAO,MAAM,KAAO,GAAKC,EAAO,MAAM,KAAO,EACjG,OAAK3B,EAAO,OAAOI,EAAI,wDAAyDsB,EAAO,MAAOC,EAAO,KAAK,EACnG,EAETJ,EAAE,OAAY,QAAMG,CAAM,EAC1BH,EAAE,OAAUG,EAAO,MAAM,KAAOC,EAAO,MAAM,IAAMD,EAAO,MAAM,KAAOC,EAAO,MAAM,GAAS,QAAM,eAAeA,EAAQ,CAACD,EAAO,MAAM,GAAIA,EAAO,MAAM,EAAE,CAAC,EAAO,QAAMC,CAAM,EAC/KJ,EAAE,KAAU,MAAIA,EAAE,OAAQA,EAAE,MAAM,EAClCA,EAAE,QAAa,MAAIA,EAAE,KAAMA,EAAE,IAAI,EACjCA,EAAE,IAAS,MAAIA,EAAE,OAAO,EAExB,IAAMC,GADU,MAAMD,EAAE,IAAI,KAAK,GACJ,IAAMG,EAAO,MAAM,IAAM,IAAMA,EAAO,MAAM,IAAM,GAAK,IAAM,EAC1F,OAAG,UAAQ,CAACH,EAAE,OAAQA,EAAE,OAAQA,EAAE,KAAMA,EAAE,QAASA,EAAE,GAAG,CAAC,EAClDC,CACT,CC5TO,IAAMI,GAAN,KAAU,CAoFf,aAAc,CAlFdC,EAAA,gBAEAA,EAAA,aAEAA,EAAA,eAEAA,EAAA,gBAAmB,IAEnBA,EAAA,aAAgB,IAEhBA,EAAA,gBAAqB,CAAC,GAEtBA,EAAA,gBAEAA,EAAA,eAEAA,EAAA,aAIAA,EAAA,kBAEAA,EAAA,eAAmB,IAEnBA,EAAA,kBAGI,CACA,QAAS,OACT,IAAK,MACP,GAEFA,EAAA,YAKI,CACA,UAAW,OACX,QAAS,OACT,KAAM,OACN,YAAa,MACf,GAEFA,EAAA,aAKI,CACA,UAAW,OACX,QAAS,OACT,QAAS,OACT,SAAU,MACZ,GAEFA,EAAA,cAII,CACA,UAAW,OACX,QAAS,OACT,QAAS,MACX,GAEFA,EAAA,WAGI,CACA,MAAO,OACP,MAAO,CAAC,CACV,GAEFA,EAAA,eAAoB,CAAC,GAErBA,EAAA,eAEAA,EAAA,cAEAA,EAAA,kBAWE,GARA,KAAK,QAAU,OAAO,WAAc,YACpC,KAAK,KAAQ,OAAO,SAAY,aAAiB,OAAO,QAAQ,UAAa,aAAiB,OAAO,QAAQ,SAAS,MAAS,YAC/H,KAAK,KAAO,CAAE,QAAYC,GAAQ,YAAa,EAC/C,KAAK,UAAY,OAAO,iBAAoB,YAC5C,KAAK,QAAU,GAGf,KAAK,OAAS,KAAK,SAAW,KAAK,UAAa,OAAO,mBAAsB,YAAe,OACxF,OAAO,WAAc,YAAa,CACpC,IAAMC,EAAM,UAAU,UAAU,MAAM,eAAe,EACrD,GAAIA,GAAA,MAAAA,EAAM,GAAI,CACZ,IAAMC,EAAgBD,EAAI,GAAG,MAAM,eAAe,EAClD,KAAK,SAAYC,GAAA,MAAAA,EAAgB,GAAMA,EAAc,GAAG,QAAQ,SAAU,EAAE,EAAI,GAChF,KAAK,MAAQ,UAAU,UAAU,QAAQD,EAAI,GAAI,EAAE,EAC/C,KAAK,SAAS,KAAI,KAAK,MAAQ,KAAK,MAAM,QAAQA,EAAI,GAAI,EAAE,GAChE,KAAK,MAAQ,KAAK,MAAM,QAAQ,MAAO,GAAG,CAU5C,CACF,MAAW,OAAO,SAAY,cAC5B,KAAK,SAAW,GAAG,QAAQ,YAAY,QAAQ,OAC/C,KAAK,MAAQ,UAAU,QAAQ,UAEnC,CAGA,MAAM,eAAgB,CAEpB,KAAK,SAAW,OAAO,KAAQ,SAAO,EAAE,eAAe,EACvD,KAAK,WAAa,CAChB,QAAa,UAAQ,EAAE,QAAa,UAAQ,EAAE,QAAQ,WAAa,OACnE,IAAS,UAAQ,EAAE,QAAa,UAAQ,EAAE,QAAQ,iBAAiB,EAAI,MACzE,EACA,KAAK,KAAK,UAAY,OAAO,aAAgB,YAC7C,KAAK,KAAK,QAAU,KAAK,SAAS,SAAS,MAAM,EAC7C,KAAK,KAAK,WAAa,KAAK,KAAK,SAAc,aAAW,IAAM,SAClE,KAAK,KAAK,KAAU,MAAI,EAAE,IAAI,uBAAuB,EACrD,KAAK,KAAK,YAAiB,MAAI,EAAE,IAAI,8BAA8B,GAErE,IAAME,EAAUC,GAAO,IAAK,GAAG,EACzBC,EAAMF,EAAIA,EAAE,WAAW,QAAQ,EAAI,OAIzC,GAFA,KAAK,MAAM,UAAY,OAAOE,GAAQ,YACtC,KAAK,MAAM,QAAU,KAAK,SAAS,SAAS,OAAO,EAC/C,KAAK,MAAM,WAAa,KAAK,MAAM,UAAe,aAAW,IAAM,SAAc,aAAW,IAAM,WAAY,CAChH,IAAMC,EAAQ,UAAQ,EAAE,QAAU,YAAc,MAAS,UAAQ,EAAE,gBAAgB,EAAE,GAAK,KACtFA,IACF,KAAK,MAAM,QAAUA,EAAG,aAAaA,EAAG,OAAO,EAC/C,KAAK,MAAM,SAAWA,EAAG,aAAaA,EAAG,QAAQ,EAErD,CACA,KAAK,OAAO,UAAY,KAAK,SAAW,OAAO,UAAU,KAAQ,YACjE,KAAK,OAAO,QAAU,KAAK,SAAS,SAAS,QAAQ,EACrD,GAAI,CACF,GAAI,KAAK,OAAO,UAAW,CACzB,IAAMC,EAAU,MAAM,UAAU,IAAI,eAAe,EACnD,KAAK,OAAO,QAAUA,EAAUA,EAAQ,KAAO,MACjD,CACF,OAAQC,EAAN,CACA,KAAK,OAAO,UAAY,EAC1B,CACA,GAAI,CACF,KAAK,QAAa,uBAAwB,aAAW,CAAC,EAAE,IAAKC,GAAYA,EAAO,WAAsB,YAAY,CAAC,CACrH,OAAQD,EAAN,CAAa,CACjB,CAGA,WAAY,CACV,IAAME,EAAM,CAAE,MAAO,GAAI,MAAO,CAAC,CAAE,EAC/B,KAAK,MAAQ,KAAK,SAAS,WAAW,OAAO,EAY5C,KAAK,IACL,KAAK,IAAMA,EADD,OAAO,eAAe,KAAM,MAAO,CAAE,MAAOA,CAAI,CAAC,CAElE,CACF,EAEaC,EAAM,IAAIb,u/FCtLvB,IAAAc,GAAA,GAAAC,GAAAD,GAAA,YAAAE,GAAA,kBAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,aAAAC,GAAA,kBAAAC,KCeA,IAAIC,GACEC,GAAmB,CAAC,EACpBC,GAAY,CAAC,QAAS,QAAS,QAAS,SAAU,OAAO,EACzDC,GAAa,CAAC,GAAI,GAAI,GAAI,KAAM,KAAM,KAAM,EAAE,EAChDC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAgB,CAvB3C,IAAAC,EAwBE,OAAIC,EAAI,UAASV,GAAQ,MACpBA,GACIQ,EAAO,OAAOG,EAAI,gBAAiBX,GAAM,QAAW,EADjDA,GAAQ,MAAMY,GAAUH,EAAAD,EAAO,KAAK,OAAZ,YAAAC,EAAkB,SAAS,EAExDT,EACT,CAEA,eAAsBa,GAAQC,EAAeN,EAAgBO,EAAaC,EAAkC,CA9B5G,IAAAP,EAAAQ,EA+BE,GAAI,CAACjB,GAAO,MAAO,CAAE,IAAK,EAAG,OAAQ,UAAW,YAAa,EAAG,KAAM,CAAC,CAAE,EACzE,IAAMkB,EAAYZ,MAAWG,EAAAD,EAAO,KAAK,OAAZ,YAAAC,EAAkB,aAAc,GACvDU,KAAYF,EAAAT,EAAO,KAAK,OAAZ,YAAAS,EAAkB,WAAY,GAAMG,EAAI,EAAIf,GAC9D,OAAIG,EAAO,aAAeW,GAAYD,GAAcd,KAAcY,GAAUf,GAAKc,IAC/ET,KACOL,GAAKc,KAEdT,GAAU,EACH,IAAI,QAAQ,MAAOe,GAAY,CAvCxC,IAAAZ,EAAAQ,EAwCI,GAAI,EAACjB,IAAA,MAAAA,GAAO,OAAO,GAAG,OAAO,OAC7B,IAAMsB,EAA4B,CAAC,EAE7BC,EAAM,CAAC,CAAC,EAAK,GAAM,GAAM,EAAI,CAAC,EACpCD,EAAE,OAAY,QAAM,cAAcR,EAAOS,EAAK,CAAC,CAAC,EAAG,CAACvB,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,CAAC,EACvG,IAAMwB,EAAgB,CAAE,IAAK,EAAG,OAAQ,UAAW,YAAa,EAAG,KAAM,CAAC,CAAE,GACxEf,EAAAD,EAAO,KAAK,OAAZ,MAAAC,EAAkB,UAAS,CAACa,EAAE,IAAKA,EAAE,OAAQA,EAAE,IAAI,EAAItB,GAAM,QAAQsB,EAAE,OAAQ,CAAC,aAAc,gBAAiB,aAAa,CAAC,GACjI,IAAMG,EAAS,MAAMH,EAAE,OAAO,KAAK,EACnCE,EAAI,OAASC,EAAO,GAAKA,EAAO,GAAK,OAAS,SAC9CD,EAAI,YAAc,KAAK,MAAM,KAAOC,EAAO,GAAKA,EAAO,GAAKA,EAAO,GAAKA,EAAO,GAAG,EAAI,IACtF,IAAMC,EAAO,MAAMJ,EAAE,KAAK,KAAK,EAC/B,QAASK,EAAI,EAAGA,EAAID,EAAK,OAAQC,IAC3BD,EAAKC,MAAMV,EAAAT,EAAO,KAAK,OAAZ,YAAAS,EAAkB,gBAAiB,KAAMO,EAAI,KAAK,KAAK,CAAE,MAAO,KAAK,MAAM,IAAME,EAAKC,EAAE,EAAI,IAAK,KAAMzB,GAAUyB,EAAW,CAAC,EAE9IH,EAAI,KAAK,KAAK,CAACI,EAAGC,IAAMA,EAAE,MAAQD,EAAE,KAAK,EAGzC,IAAME,EADkB,MAAM,KAAK,MAAMR,EAAE,IAAI,KAAK,CAAC,EACnB,IAAI,CAACM,EAAGD,IAAM,CAACxB,GAAWwB,GAAIC,CAAC,CAAC,EAAE,KAAK,CAACA,EAAGC,IAAMA,EAAE,GAAKD,EAAE,EAAE,EAC1FG,EAAMD,EAAU,GAAG,GACvB,QAASH,EAAI,EAAGA,EAAIG,EAAU,OAAQH,IAAKI,GAAOD,EAAUH,GAAG,IAAMG,EAAUH,GAAG,GAAKI,GACvFP,EAAI,IAAM,KAAK,MAAM,GAAKO,CAAG,EAAI,GACjC,OAAO,KAAKT,CAAC,EAAE,QAASU,GAAc,UAAQV,EAAEU,EAAO,CAAC,EACxD/B,GAAKc,GAAOS,EACZpB,GAAYY,EACZX,GAAWe,EAAI,EACfC,EAAQG,CAAG,CACb,CAAC,EACH,CChEO,IAAMS,EAAwD,CACnE,MAAO,IACP,IAAK,EACL,IAAK,EACL,KAAM,GACN,MAAO,MACP,IAAK,CAAC,MAAQ,KAAQ,IAAM,CAC9B,EAEO,SAASC,IAAO,CACrBD,EAAU,MAAW,SAAO,IAAK,SAAS,EAC1CA,EAAU,IAAS,SAAO,EAAG,SAAS,EACtCA,EAAU,IAAS,SAAO,EAAG,SAAS,EACtCA,EAAU,KAAU,SAAO,GAAK,SAAS,EACzCA,EAAU,MAAW,SAAO,MAAO,SAAS,EAC5CA,EAAU,IAAS,WAAS,CAAC,MAAQ,KAAQ,IAAM,EAAG,SAAS,CACjE,CCLA,IAAIE,GACEC,GAA0B,CAAC,EAC7BC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAgB,CACzC,OAAIC,EAAI,UAASP,GAAQ,MACpBA,GACIM,EAAO,OAAOE,EAAI,gBAAiBR,GAAM,QAAW,EADjDA,GAAQ,MAAMS,EAAUH,EAAO,KAAK,OAAU,YAAY,EAE/DN,EACT,CAEA,eAAsBU,GAAQC,EAAeL,EAAgBM,EAAaC,EAAyC,CA3BnH,IAAAC,EAAAC,EAAAC,EAAAC,EA4BE,GAAI,CAACjB,GAAO,MAAO,CAAE,IAAK,CAAE,EAC5B,IAAMkB,EAAYd,MAAWU,EAAAR,EAAO,KAAK,SAAZ,YAAAQ,EAAuB,aAAc,GAC5DK,KAAYJ,EAAAT,EAAO,KAAK,SAAZ,YAAAS,EAAuB,WAAY,GAAMK,EAAI,EAAIjB,GACnE,OAAIG,EAAO,aAAeY,GAAaC,GAAajB,KAAcW,KAAUG,EAAAf,GAAKW,KAAL,YAAAI,EAAW,QAAQC,EAAAhB,GAAKW,KAAL,YAAAK,EAAW,KAAM,GAC9Gb,KACOH,GAAKW,KAEdR,GAAU,EACH,IAAI,QAAQ,MAAOiB,GAAY,CApCxC,IAAAP,EAqCI,GAAI,EAACd,IAAA,MAAAA,GAAO,SAAU,CAACA,GAAM,OAAO,IAAM,CAACA,GAAM,OAAO,GAAG,MAAO,OAClE,IAAMsB,EAA4B,CAAC,EACnCA,EAAE,OAAY,QAAM,eAAeX,EAAO,CAACX,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EACrGsB,EAAE,QAAa,MAAIA,EAAE,OAAQC,EAAU,KAAK,EAC5C,IAAMC,EAAM,CAAE,IAAK,CAAE,EAErB,IADIV,EAAAR,EAAO,KAAK,SAAZ,MAAAQ,EAAuB,UAASQ,EAAE,IAAMtB,GAAM,QAAQsB,EAAE,OAAO,GAC/DA,EAAE,IAAK,CACT,IAAMG,EAAO,MAAMH,EAAE,IAAI,KAAK,EAC9BE,EAAI,IAAM,KAAK,MAAM,GAAKC,EAAK,EAAE,EAAI,EACvC,CACA,OAAO,KAAKH,CAAC,EAAE,QAASI,GAAc,UAAQJ,EAAEI,EAAO,CAAC,EACxDzB,GAAKW,GAAOY,EACZtB,GAAYW,EACZV,GAAWiB,EAAI,EACfC,EAAQG,CAAG,CACb,CAAC,EACH,CCtCA,IAAIG,GACEC,GAAkD,CAAC,EACrDC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAGfC,GAAM,CAAC,MAAQ,KAAQ,IAAM,EAEnC,eAAsBC,GAAKC,EAAgB,CAxB3C,IAAAC,EAyBE,OAAIC,EAAI,UAAST,GAAQ,MACpBA,GACIO,EAAO,OAAOG,EAAI,gBAAiBV,GAAM,QAAW,EADjDA,GAAQ,MAAMW,GAAUH,EAAAD,EAAO,KAAK,SAAZ,YAAAC,EAAuB,eAAe,EAEnER,EACT,CAEA,eAAsBY,GAAQC,EAAeN,EAAgBO,EAAKC,EAAyD,CA/B3H,IAAAP,EAAAQ,EAAAC,EAAAC,EAgCE,GAAI,CAAClB,GAAO,MAAO,CAAE,OAAQ,UAAW,YAAa,CAAE,EACvD,IAAMmB,EAAYf,MAAWI,EAAAD,EAAO,KAAK,SAAZ,YAAAC,EAAuB,aAAc,GAC5DY,KAAYJ,EAAAT,EAAO,KAAK,SAAZ,YAAAS,EAAuB,WAAY,GAAMK,EAAI,EAAIlB,GACnE,OAAII,EAAO,aAAeY,GAAaC,GAAalB,KAAca,KAAUE,EAAAhB,GAAKa,KAAL,YAAAG,EAAW,WAAWC,EAAAjB,GAAKa,KAAL,YAAAI,EAAW,aAAc,GACzHd,KACOH,GAAKa,KAEdV,GAAU,EACH,IAAI,QAAQ,MAAOkB,GAAY,CAxCxC,IAAAd,EAyCI,GAAI,EAACR,IAAA,MAAAA,GAAO,OAAO,GAAG,OAAO,OAC7B,IAAMuB,EAA4B,CAAC,EACnCA,EAAE,OAAY,QAAM,eAAeV,EAAO,CAACb,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EACrGuB,EAAE,QAAa,OAAK,IAAM,CACxB,GAAM,CAACC,EAAKC,EAAOC,CAAI,EAAO,QAAMH,EAAE,OAAQ,EAAG,CAAC,EAC5CI,EAAa,MAAIH,EAAKnB,GAAI,EAAE,EAC5BuB,EAAe,MAAIH,EAAOpB,GAAI,EAAE,EAChCwB,EAAc,MAAIH,EAAMrB,GAAI,EAAE,EAC9ByB,EAAe,OAAK,CAACH,EAASC,EAAWC,CAAQ,CAAC,EAExD,OADqB,MAAO,MAAIC,EAAWC,EAAU,IAAI,EAAG,CAAC,CAE/D,CAAC,EACD,IAAMC,EAA+C,CAAE,OAAQ,UAAW,YAAa,CAAE,GACrFxB,EAAAD,EAAO,KAAK,SAAZ,MAAAC,EAAuB,UAASe,EAAE,OAASvB,GAAM,QAAQuB,EAAE,OAAO,GACtE,IAAMU,EAAO,MAAMV,EAAE,OAAO,KAAK,EACjCS,EAAI,OAASC,EAAK,GAAKA,EAAK,GAAK,SAAW,OAC5CD,EAAI,YAAcC,EAAK,GAAKA,EAAK,GAAM,KAAK,MAAM,IAAMA,EAAK,EAAE,EAAI,IAAQ,KAAK,MAAM,IAAMA,EAAK,EAAE,EAAI,IACvG,OAAO,KAAKV,CAAC,EAAE,QAASW,GAAc,UAAQX,EAAEW,EAAO,CAAC,EACxDjC,GAAKa,GAAOkB,EACZ9B,GAAYa,EACZZ,GAAWkB,EAAI,EACfC,EAAQU,CAAG,CACb,CAAC,EACH,CCrDA,IAAIG,EACEC,GAAmB,CAAC,EACtBC,GAAU,OAAO,iBACjBC,GAAY,EACZC,GAAW,EAEf,eAAsBC,GAAKC,EAAqC,CAjBhE,IAAAC,EAkBE,OAAIC,EAAI,UAASR,EAAQ,MACpBA,EACIM,EAAO,OAAOG,EAAI,gBAAiBT,EAAM,QAAW,EADjDA,EAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,YAAZ,YAAAC,EAAuB,SAAS,EAE7DP,CACT,CAEA,eAAsBW,GAAQC,EAAeN,EAAgBO,EAAaC,EAAgC,CAxB1G,IAAAP,EAAAQ,EAyBE,GAAI,CAACf,GAAS,EAACA,GAAA,MAAAA,EAAQ,UAAa,MAAO,GAC3C,IAAMgB,KAAYT,EAAAD,EAAO,KAAK,YAAZ,YAAAC,EAAuB,WAAY,GAAMU,EAAI,EAAIb,GAC7Dc,EAAYhB,MAAWa,EAAAT,EAAO,KAAK,YAAZ,YAAAS,EAAuB,aAAc,GAClE,OAAIT,EAAO,aAAeU,GAAYE,GAAcf,KAAcW,GAAUb,GAAOY,IACjFX,KACOD,GAAOY,KAEhBX,GAAU,EACH,IAAI,QAAQ,MAAOiB,GAAY,CACpC,IAAMC,EAAY,QAAM,eAAeR,EAAO,CAACZ,GAAA,MAAAA,EAAO,OAAO,GAAG,MAAQA,EAAM,OAAO,GAAG,MAAM,GAAK,EAAGA,GAAA,MAAAA,EAAO,OAAO,GAAG,MAAQA,EAAM,OAAO,GAAG,MAAM,GAAK,CAAC,EAAG,EAAK,EAC7JqB,EAAMrB,GAAA,YAAAA,EAAO,QAAQoB,GACrBE,GAAO,MAAMD,EAAI,KAAK,GAAG,GAC/BpB,GAAOY,GAAO,KAAK,MAAM,IAAMS,CAAG,EAAI,IACtCnB,GAAYW,EACZV,GAAWa,EAAI,EACZ,UAAQ,CAACG,EAAQC,CAAG,CAAC,EACxBF,EAAQlB,GAAOY,EAAI,CACrB,CAAC,EACH,CCtCO,IAAMU,GAA4C,CACvD,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GACpD,EAKA,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,GAAG,EACvD,eAAgB,CAAC,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EAClE,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAG,EACxD,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EACjE,mBAAoB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EACrE,mBAAoB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAG,EAC5D,mBAAoB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EACrE,mBAAoB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAG,EAC5D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAClD,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACzD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAG,EAC7C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAG,EACvD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAClD,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC5D,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAG,EACtD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAE,EAC3C,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,GAAG,EACtC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACjD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACjD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACjD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACzD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC/C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,GAAG,EACrC,kBAAmB,CAAC,GAAG,EACvB,QAAS,CAAC,CAAC,EACX,WAAY,CAAC,CAAC,EACd,gBAAiB,CAAC,EAAE,EACpB,eAAgB,CAAC,GAAG,EACpB,WAAY,CAAC,GAAG,EAChB,UAAW,CAAC,GAAG,CACjB,EAEaC,GAAmD,CAC9D,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAID,GAAgB,kBAAkB,EAAE,CACzD,EAEaE,GAAwD,CACnE,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,CAAC,CACrB,EAEaC,GAAoD,CAC/D,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EACzD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAC1D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAC1D,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,CAAE,EACzD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAClE,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAClE,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAClE,CAAE,IAAK,eAAgB,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EACjE,CAAE,IAAK,eAAgB,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,CAC3D,EAEaC,GAA4B,CACvC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,eAAgB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,eAAgB,EAClC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,cAAgB,gBAAiB,EAClC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,CACvC,EAEaC,GAAmB,CAC9B,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAwB1I,IAAMC,GAAkB,CACjB,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAC7C,EAEaC,GAAkB,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAG,EAEvKC,GAAiB,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,GAAG,EAE/CC,GAAOH,GAAM,IAAKI,GAAMC,GAAMD,EAAE,EAEhCE,GAAOL,GAAM,IAAKG,GAAMC,GAAMD,EAAE,EAEhCG,GAAML,GAAK,IAAKE,GAAMC,GAAMD,EAAE,EAO3C,SAASI,GAAqBC,EAAwB,CACpD,IAAMC,EAAUD,EAAY,IAAKE,GAAeA,EAAW,EAAE,EAC7D,OAAAD,EAAQ,KAAKD,EAAYA,EAAY,OAAS,GAAG,EAAE,EAC5CC,CACT,CAEO,IAAME,GAAuB,CAClC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAC3N,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAC7N,EAEaC,GAA0B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEzNC,GAA8B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE7HC,GAA2B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE1EC,GAA2B,CAAC,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEpNC,GAA+B,CAAC,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,CAAC,EAEjHC,GAA4B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE3EC,GAA8B,CACzC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACpE,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACrE,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACrE,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACrE,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACjE,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,CAChE,EAEaC,GAAmB,CAC9B,KAAMZ,GAAqBI,EAAS,EACpC,QAASJ,GAAqBK,EAAY,EAC1C,YAAaL,GAAqBM,EAAgB,EAClD,SAAUN,GAAqBO,EAAa,EAC5C,SAAUP,GAAqBQ,EAAa,EAC5C,aAAcR,GAAqBS,EAAiB,EACpD,UAAWT,GAAqBU,EAAc,EAC9C,SAAUV,GAAqBW,EAAgB,CACjD,ECrsBO,IAAME,GAAcC,GAA0B,CAAC,KAAK,IAAIA,EAAI,SAAS,GAAKA,EAAI,WAAW,EAAE,EAAG,KAAK,IAAIA,EAAI,SAAS,GAAKA,EAAI,WAAW,EAAE,CAAC,EAErIC,GAAgBD,GAAkC,CAACA,EAAI,WAAW,IAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAM,EAAGA,EAAI,WAAW,IAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAM,EAAG,CAAC,EAElLE,GAAW,CAACF,EAAKG,IAAgBH,EAAM,CAClD,KAAK,MAAM,KAAK,IAAI,EAAGA,EAAI,WAAW,EAAE,CAAC,EACzC,KAAK,MAAM,KAAK,IAAI,EAAGA,EAAI,WAAW,EAAE,CAAC,EACzC,KAAK,MAAM,KAAK,IAAKG,EAAM,MAAM,IAAM,EAAIH,EAAI,SAAS,EAAE,EAAI,KAAK,IAAI,EAAGA,EAAI,WAAW,EAAE,CAAC,EAC5F,KAAK,MAAM,KAAK,IAAKG,EAAM,MAAM,IAAM,EAAIH,EAAI,SAAS,EAAE,EAAI,KAAK,IAAI,EAAGA,EAAI,WAAW,EAAE,CAAC,CAC9F,EAAI,CAAC,EAAG,EAAG,EAAG,CAAC,EAEFI,GAAY,CAACJ,EAAKG,IAAgBH,EAAM,CACnDA,EAAI,WAAW,IAAMG,EAAM,MAAM,IAAM,GACvCH,EAAI,WAAW,IAAMG,EAAM,MAAM,IAAM,IACtCH,EAAI,SAAS,GAAKA,EAAI,WAAW,KAAOG,EAAM,MAAM,IAAM,IAC1DH,EAAI,SAAS,GAAKA,EAAI,WAAW,KAAOG,EAAM,MAAM,IAAM,EAC7D,EAAI,CAAC,EAAG,EAAG,EAAG,CAAC,EAEFE,GAAsB,CAACL,EAAKM,IAAW,CAClD,IAAMC,EAAoB,CAACP,EAAI,WAAW,GAAKM,EAAO,GAAIN,EAAI,WAAW,GAAKM,EAAO,EAAE,EACjFE,EAAkB,CAACR,EAAI,SAAS,GAAKM,EAAO,GAAIN,EAAI,SAAS,GAAKM,EAAO,EAAE,EACjF,MAAO,CAAE,WAAAC,EAAY,SAAAC,EAAU,UAAWR,EAAI,UAAW,WAAYA,EAAI,UAAW,CACtF,EAEaS,GAAe,CAACT,EAAKU,EAAOC,IAAa,CACpD,IAAMC,EAAIF,EAAM,MAAM,GAChBG,EAAIH,EAAM,MAAM,GAChBI,EAAS,CAACd,EAAI,WAAW,GAAKY,EAAGZ,EAAI,WAAW,GAAKa,EAAGb,EAAI,SAAS,GAAKY,EAAGZ,EAAI,SAAS,GAAKa,CAAC,EAChGE,EAAU,QAAM,cAAcL,EAAO,CAACI,CAAM,EAAG,CAAC,CAAC,EAAGH,CAAQ,EAC5DK,EAAU,MAAID,EAAME,EAAU,KAAK,EACzC,OAAG,UAAQF,CAAI,EACRC,CACT,EAEaE,GAAa,CAAClB,EAAKM,IAAW,CACzC,IAAMa,EAASlB,GAAaD,CAAG,EACzBoB,EAAOrB,GAAWC,CAAG,EACrBqB,EAA6B,CAACf,EAASc,EAAK,GAAK,EAAGd,EAASc,EAAK,GAAK,CAAC,EAC9E,MAAO,CAAE,WAAY,CAACD,EAAO,GAAKE,EAAS,GAAIF,EAAO,GAAKE,EAAS,EAAE,EAAY,SAAU,CAACF,EAAO,GAAKE,EAAS,GAAIF,EAAO,GAAKE,EAAS,EAAE,EAAY,UAAWrB,EAAI,UAAW,WAAYA,EAAI,UAAW,CAChN,EAEasB,GAAetB,GAAQ,CAClC,IAAMuB,EAAUtB,GAAaD,CAAG,EAC1BoB,EAAOrB,GAAWC,CAAG,EACrBqB,EAAW,KAAK,IAAI,GAAGD,CAAI,EAAI,EACrC,MAAO,CAAE,WAAY,CAAC,KAAK,MAAMG,EAAQ,GAAKF,CAAQ,EAAG,KAAK,MAAME,EAAQ,GAAKF,CAAQ,CAAC,EAAY,SAAU,CAAC,KAAK,MAAME,EAAQ,GAAKF,CAAQ,EAAG,KAAK,MAAME,EAAQ,GAAKF,CAAQ,CAAC,EAAY,UAAWrB,EAAI,UAAW,WAAYA,EAAI,UAAW,CACxP,EAEawB,GAAiCC,GAAc,CAC1D,IAAMC,EAAID,EAAU,IAAKE,GAAMA,EAAE,EAAE,EAC7BC,EAAIH,EAAU,IAAKE,GAAMA,EAAE,EAAE,EACnC,MAAO,CAAE,WAAY,CAAC,KAAK,IAAI,GAAGD,CAAC,EAAG,KAAK,IAAI,GAAGE,CAAC,CAAC,EAAY,SAAU,CAAC,KAAK,IAAI,GAAGF,CAAC,EAAG,KAAK,IAAI,GAAGE,CAAC,CAAC,EAAY,UAAAH,CAAU,CACjI,EAEaI,GAAsB,CAAC,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAEtDC,GAAoBC,GAAkBA,EAAQ,EAAI,KAAK,GAAK,KAAK,OAAOA,EAAQ,KAAK,KAAO,EAAI,KAAK,GAAG,EAExGC,GAAkB,CAACC,EAAQC,IAAWJ,GAAiB,KAAK,GAAK,EAAI,KAAK,MAAM,EAAEI,EAAO,GAAKD,EAAO,IAAKC,EAAO,GAAKD,EAAO,EAAE,CAAC,EAItI,IAAME,GAAyB,CAACC,EAAGC,IAAM,CAAC,CAAC,EAAG,EAAGD,CAAC,EAAG,CAAC,EAAG,EAAGC,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAEnEC,GAAM,CAACC,EAAcC,IAAiB,CACjD,IAAIC,EAAU,EACd,QAASC,EAAI,EAAGA,EAAIH,EAAG,OAAQG,IAAKD,GAAWF,EAAGG,GAAKF,EAAGE,GAC1D,OAAOD,CACT,EAEaE,GAAqB,CAACC,EAAKC,IAAgB,CACtD,IAAMC,EAAmB,CAAC,EAC1B,QAASJ,EAAI,EAAGA,EAAIE,EAAI,OAAQF,IAAKI,EAAO,KAAKF,EAAIF,GAAGG,EAAY,EACpE,OAAOC,CACT,EAEaC,GAA4B,CAACC,EAAMC,IAAS,CACvD,IAAMR,EAAsB,CAAC,EACvBS,EAAOF,EAAK,OAClB,QAASG,EAAM,EAAGA,EAAMD,EAAMC,IAAO,CACnCV,EAAQ,KAAK,CAAC,CAAC,EACf,QAASW,EAAM,EAAGA,EAAMF,EAAME,IAAOX,EAAQU,GAAK,KAAKb,GAAIU,EAAKG,GAAMR,GAAmBM,EAAMG,CAAG,CAAC,CAAC,CACtG,CACA,OAAOX,CACT,EAEaY,GAAsB,CAACC,EAAUC,IAAW,CACvD,IAAMC,EAAO,KAAK,IAAIF,CAAQ,EACxBG,EAAO,KAAK,IAAIH,CAAQ,EACxBI,EAAiB,CAAC,CAACF,EAAM,CAACC,EAAM,CAAC,EAAG,CAACA,EAAMD,EAAM,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAC9DG,EAAoBxB,GAAuBoB,EAAO,GAAIA,EAAO,EAAE,EAC/DK,EAA2Bb,GAA0BY,EAAmBD,CAAc,EACtFG,EAA4B1B,GAAuB,CAACoB,EAAO,GAAI,CAACA,EAAO,EAAE,EAC/E,OAAOR,GAA0Ba,EAA0BC,CAAyB,CACtF,EAEaC,GAAyBC,GAAW,CAC/C,IAAMC,EAAoB,CAAC,CAACD,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EAAG,CAACA,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,CAAC,EAC/EE,EAAuB,CAACF,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EAClDG,EAAsB,CAAC,CAAC5B,GAAI0B,EAAkB,GAAIC,CAAoB,EAAG,CAAC3B,GAAI0B,EAAkB,GAAIC,CAAoB,CAAC,EAC/H,MAAO,CAACD,EAAkB,GAAG,OAAOE,EAAoB,EAAE,EAAGF,EAAkB,GAAG,OAAOE,EAAoB,EAAE,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,CAC7H,EAEaC,GAAc,CAACC,EAAuBV,IAAmB,CAACpB,GAAI8B,EAAuBV,EAAe,EAAE,EAAGpB,GAAI8B,EAAuBV,EAAe,EAAE,CAAC,EAI5J,SAASW,GAAgBC,EAAmB,CACjD,IAAMC,EAAOD,IAAc,IACvB,CAAE,QAAS,CAAC,CAAC,EAAG,QAAS,CAAC,CAAC,CAAE,EAC7B,CAAE,QAAS,CAACA,EAAY,GAAIA,EAAY,CAAC,EAAG,QAAS,CAAC,EAAG,CAAC,CAAE,EAC1DE,EAA8B,CAAC,EACrC,QAASC,EAAI,EAAGA,EAAIF,EAAK,QAAQ,OAAQE,IAAK,CAC5C,IAAMC,EAASH,EAAK,QAAQE,GACtBE,EAAW,KAAK,OAAOL,EAAYI,EAAS,GAAKA,CAAM,EACvDE,EAAW,KAAK,OAAON,EAAYI,EAAS,GAAKA,CAAM,EACvDG,EAAaN,EAAK,QAAQE,GAChC,QAASK,EAAQ,EAAGA,EAAQH,EAAUG,IAAS,CAC7C,IAAMC,EAAUL,GAAUI,EAAQ,IAClC,QAASE,EAAQ,EAAGA,EAAQJ,EAAUI,IAAS,CAC7C,IAAMC,EAAUP,GAAUM,EAAQ,IAClC,QAASE,EAAI,EAAGA,EAAIL,EAAYK,IAAKV,EAAQ,KAAK,CAACS,EAASF,CAAO,CAAC,CACtE,CACF,CACF,CACA,OAAOP,CACT,CAEO,SAASW,GAAmBC,EAAWC,EAAKC,EAAOC,EAAgBjB,EAAW,CACnF,IAAMkB,EAAUC,GAAWJ,CAAG,EACxBK,EAAeN,EAAU,IAAKO,GAAW,CAC5CH,EAAQ,GAAKlB,GAAcqB,EAAM,GAAMrB,EAAY,GACnDkB,EAAQ,GAAKlB,GAAcqB,EAAM,GAAMrB,EAAY,GACnDqB,EAAM,IAAM,CACf,CAAE,EACIC,EAAaN,GAAUA,IAAU,GAAO,KAAK,IAAIA,CAAK,EAAI,GAC1DO,EAAuBD,EAAaE,GAAoBR,EAAO,CAAC,EAAG,CAAC,CAAC,EAAIS,GACzEC,EAAgBJ,EAAaF,EAAa,IAAKC,GAAW,CAAC,GAAGM,GAAYN,EAAOE,CAAoB,EAAGF,EAAM,EAAE,CAAE,EAAID,EACtHQ,EAAwBN,EAAaO,GAAsBZ,CAAc,EAAIQ,GAC7EK,EAAYC,GAAahB,CAAG,EAC5BiB,EAAU,CAACC,GAAIH,EAAWF,EAAsB,EAAE,EAAGK,GAAIH,EAAWF,EAAsB,EAAE,CAAC,EACnG,OAAOF,EAAc,IAAKL,GAAW,CACnC,KAAK,MAAMA,EAAM,GAAKW,EAAQ,EAAE,EAChC,KAAK,MAAMX,EAAM,GAAKW,EAAQ,EAAE,EAChC,KAAK,MAAMX,EAAM,IAAM,CAAC,CAC1B,CAAE,CACJ,CAEO,SAASa,GAAoBC,EAAQpB,EAAKqB,EAAOpC,EAAW,CACjE,IAAMqC,EAAgBtB,EAAI,UAAU,QAAiBuB,GAAc,MACxDA,GAAc,aACdC,GAAmB,aAC1BvB,EAAQ,EACRC,EAAiBQ,GACjBe,EAEJ,GAAIL,GAAUM,EAAI,QAAQ,SAAS,kBAAkB,EAGnD,GAFAzB,EAAQ0B,GAAgB3B,EAAI,UAAUsB,EAAa,IAAKtB,EAAI,UAAUsB,EAAa,GAAG,EACnErB,GAAUA,IAAU,GAAO,KAAK,IAAIA,CAAK,EAAI,GAChD,CACd,IAAM2B,EAAgBZ,GAAahB,CAAG,EAChC6B,EAAmB,CAACD,EAAO,GAAKP,EAAM,MAAM,GAAIO,EAAO,GAAKP,EAAM,MAAM,EAAE,EAC1ES,EAAa,QAAM,iBAAiBT,EAAOpB,EAAO,EAAG4B,CAAS,EACpE3B,EAAiBO,GAAoB,CAACR,EAAO2B,CAAM,EACnDH,EAAOM,GAAa/B,EAAK8B,EAAS,CAAC7C,EAAWA,CAAS,CAAC,EACrD,UAAQ6C,CAAO,CACpB,MACEL,EAAOM,GAAa/B,EAAKqB,EAAO,CAACpC,EAAWA,CAAS,CAAC,OAGxDwC,EAAOM,GAAa/B,EAAKqB,EAAO,CAACpC,EAAWA,CAAS,CAAC,EAExD,MAAO,CAACgB,EAAOC,EAAgBuB,CAAI,CACrC,CAEO,IAAMO,GAAkBC,GAAS,CACtC,IAAMC,EAAID,EAAK,IAAKE,GAAMA,EAAE,EAAE,EACxBC,EAAIH,EAAK,IAAKE,GAAMA,EAAE,EAAE,EAO9B,MAAO,CAAC,KAAK,IAAI,GAAGD,CAAC,GAAK,KAAK,IAAI,GAAGA,CAAC,EAAI,KAAK,IAAI,GAAGA,CAAC,GAAK,EAAG,KAAK,IAAI,GAAGE,CAAC,GAAK,KAAK,IAAI,GAAGA,CAAC,EAAI,KAAK,IAAI,GAAGA,CAAC,GAAK,CAAC,CACxH,EAEaC,GAAmB,CAACJ,EAAMK,IAAgB,CACrD,IAAMV,EAASI,GAAeC,CAAI,EAC5B9B,EAAUC,GAAWkC,CAAW,EAKtC,MAJsB,CACpB,WAAY,CAACV,EAAO,GAAKzB,EAAQ,GAAK,EAAGyB,EAAO,GAAKzB,EAAQ,GAAK,CAAC,EACnE,SAAU,CAACyB,EAAO,GAAKzB,EAAQ,GAAK,EAAGyB,EAAO,GAAKzB,EAAQ,GAAK,CAAC,CACnE,CAEF,ECnMA,IAAMoC,GAAiB,EACjBC,GAAqB,IACvBC,GACAC,GAAyB,KACzBC,GAAY,EACZC,GAA4B,KAInBC,GAAO,IAAMF,GAE1B,eAAsBG,GAAKC,EAAqC,CA1BhE,IAAAC,EA2BE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,SAAS,EAEnEL,GAAaF,GAAM,UAAeA,GAAM,OAAO,GAAG,MAASA,GAAM,OAAO,GAAG,MAAM,GAAK,IACtFG,GAAgB,SAAOD,GAAW,OAAO,EACzCD,GAAa,WAAcU,GAAgBT,EAAS,CAAC,EAC9CF,EACT,CAEA,SAASY,GAAYC,EAAoB,CACvC,IAAM,EAA4B,CAAC,EACnC,EAAE,UAAe,QAAMA,EAAY,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAClD,EAAE,QAAa,MAAI,EAAE,UAAWZ,EAAO,EACvC,EAAE,SAAc,QAAMY,EAAY,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EACjD,EAAE,mBAAwB,MAAI,EAAE,SAAUV,EAAU,EACpD,EAAE,kBAAuB,MAAI,EAAE,QAASA,EAAU,EAClD,EAAE,YAAiB,MAAI,EAAE,mBAAoBW,EAAU,GAAG,EAC1D,EAAE,OAAY,MAAI,EAAE,kBAAmB,EAAE,WAAW,EACpD,EAAE,KAAU,MAAI,EAAE,kBAAmB,EAAE,WAAW,EAClD,EAAE,gBAAqB,MAAI,EAAE,OAAQX,EAAU,EAC/C,EAAE,cAAmB,MAAI,EAAE,KAAMA,EAAU,EAC3C,IAAMY,EAAW,WAAS,CAAC,EAAE,gBAAiB,EAAE,aAAa,EAAG,CAAC,EACjE,cAAO,KAAK,CAAC,EAAE,QAASC,GAAc,UAAQ,EAAEA,EAAO,CAAC,EACjDD,CACT,CAEA,eAAsBE,GAASC,EAAoBZ,EAAgB,CArDnE,IAAAC,EAAAY,EAAAC,EAAAC,EAuDE,GAAK,CAACH,GAAgBA,EAAW,oBAA2BA,EAAW,MAAM,SAAW,GAAOA,EAAW,MAAM,GAAK,GAAOA,EAAW,MAAM,GAAK,EAAI,MAAO,CAAC,EAC9J,IAAMI,EAA4B,CAAC,EACnCA,EAAE,QAAa,QAAM,eAAeJ,EAAY,CAAChB,GAAWA,EAAS,CAAC,EACtEoB,EAAE,IAAS,MAAIA,EAAE,QAASR,EAAU,KAAK,EACzCQ,EAAE,WAAgB,MAAIA,EAAE,IAAKR,EAAU,IAAI,EAC3C,IAAMS,EAAMvB,IAAA,YAAAA,GAAO,QAAQsB,EAAE,YAC7B,GAAI,MAAM,QAAQC,CAAG,GAAKA,EAAI,OAAS,EAAG,CACxC,IAAMC,EAASD,EAAI,KAAK,CAACE,EAAGC,IAAMD,EAAE,KAAOC,EAAE,IAAI,EACjDJ,EAAE,UAAe,SAAO,CAACE,EAAO,GAAIA,EAAO,EAAE,EAAG,CAAC,EACjDF,EAAE,UAAe,SAAO,CAACE,EAAO,GAAIA,EAAO,EAAE,EAAG,CAAC,EACjDF,EAAE,OAAY,SAAO,CAACA,EAAE,UAAWA,EAAE,SAAS,EAAG,CAAC,EAClDA,EAAE,MAAW,UAAQA,EAAE,OAAQ,CAAC,CAClC,MAAW,MAAM,QAAQC,CAAG,EAC1BD,EAAE,MAAW,UAAQC,EAAI,EAAE,EAE3BD,EAAE,MAAW,UAAQC,CAAG,EAEvB,UAAQA,CAAG,EACdD,EAAE,MAAQV,GAAYU,EAAE,KAAK,EAC7BA,EAAE,OAAY,QAAMA,EAAE,MAAO,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC5CA,EAAE,QAAa,UAAQA,EAAE,MAAM,EAC/BA,EAAE,OAAY,UAAQA,EAAE,OAAO,EAC/BA,EAAE,IAAM,MAAS,QAAM,uBAAuBA,EAAE,MAAOA,EAAE,SAASf,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,cAAe,IAAKY,EAAAb,EAAO,KAAK,WAAZ,YAAAa,EAAsB,eAAgB,IAAKC,EAAAd,EAAO,KAAK,WAAZ,YAAAc,EAAsB,gBAAiB,CAAE,EAChM,IAAMO,EAAM,MAAML,EAAE,IAAI,MAAM,EACxBP,EAAqB,CAAC,EACtBa,EAAS,MAAMN,EAAE,OAAO,KAAK,EACnC,QAASO,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAAK,CACnC,IAAMC,EAAaF,EAAOD,EAAIE,IAC9B,GAAIC,KAAcT,EAAAf,EAAO,KAAK,WAAZ,YAAAe,EAAsB,gBAAiB,GAAI,CAC3D,IAAMK,EAA4B,CAAC,EACnCA,EAAE,KAAU,QAAMJ,EAAE,MAAO,CAACK,EAAIE,GAAI,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EAC/CH,EAAE,MAAW,QAAMJ,EAAE,MAAO,CAACK,EAAIE,GAAI/B,GAAiB,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EACjE4B,EAAE,QAAa,UAAQA,EAAE,KAAK,EAC9BA,EAAE,UAAe,UAAQA,EAAE,QAAS,CAAC5B,GAAgB,EAAE,CAAC,EACxD,IAAMiC,EAAS,MAAML,EAAE,KAAK,KAAK,EAC3BM,EAAS,CACb,WAAY,CAACD,EAAO,GAAIA,EAAO,EAAE,EACjC,SAAU,CAACA,EAAO,GAAIA,EAAO,EAAE,EAC/B,UAAY,MAAML,EAAE,UAAU,MAAM,EACpC,WAAAI,CACF,EACMG,EAAiBC,GAAoBF,EAAQ,EAAEd,EAAW,MAAM,IAAM,GAAKhB,IAAYgB,EAAW,MAAM,IAAM,GAAKhB,EAAS,CAAC,EAC7HiC,EAAmBC,GAAWH,EAAW3B,EAAO,KAAK,OAAYP,EAAkB,EACnFsC,EAAkBC,GAAYH,CAAW,EAC/CpB,EAAM,KAAKsB,CAAU,EACrB,OAAO,KAAKX,CAAC,EAAE,QAASV,GAAc,UAAQU,EAAEV,EAAO,CAAC,CAC1D,CACF,CACA,cAAO,KAAKM,CAAC,EAAE,QAASN,GAAc,UAAQM,EAAEN,EAAO,CAAC,EACjDD,CACT,CCzGA,IAAAwB,GAAA,GAAAC,GAAAD,GAAA,eAAAE,GAAA,QAAAC,KAEO,IAAMA,GAAgB,CAC3B,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,YACA,aACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,aACA,UACA,WACA,WACA,YACA,WACF,EAEaD,GAAsC,CACjD,UAAW,CAAC,eAAgB,eAAe,EAC3C,KAAM,CAAC,WAAY,SAAS,EAC5B,MAAO,CAAC,YAAa,YAAY,EACjC,aAAc,CAAC,UAAW,UAAU,EACpC,aAAc,CAAC,WAAY,WAAW,EACtC,SAAU,CAAC,YAAa,WAAY,UAAU,EAC9C,UAAW,CAAC,eAAgB,SAAS,EACrC,aAAc,CAAC,eAAgB,WAAW,EAC1C,aAAc,CAAC,YAAa,WAAW,EACvC,SAAU,CAAC,YAAa,UAAU,EAClC,cAAe,CAAC,WAAY,WAAW,EACvC,cAAe,CAAC,WAAY,WAAW,EACvC,cAAe,CAAC,WAAY,WAAW,EACvC,eAAgB,CAAC,gBAAiB,gBAAgB,EAClD,cAAe,CAAC,WAAY,WAAW,EACvC,cAAe,CAAC,YAAa,YAAY,EACzC,UAAW,CAAC,aAAc,YAAa,WAAW,EAClD,WAAY,CAAC,gBAAiB,UAAU,EACxC,cAAe,CAAC,gBAAiB,YAAY,EAC7C,cAAe,CAAC,aAAc,YAAY,EAC1C,UAAW,CAAC,aAAc,WAAW,EACrC,eAAgB,CAAC,YAAa,YAAY,EAC1C,eAAgB,CAAC,YAAa,YAAY,EAC1C,eAAgB,CAAC,YAAa,YAAY,EAC1C,gBAAiB,CAAC,iBAAkB,iBAAiB,CACvD,EC/DA,IAAME,GAAY,IACdC,GACEC,GAAY,EACZC,GAAU,CAAC,EAAG,GAAI,GAAI,GAAI,EAAE,EAE3B,SAASC,IAAgB,CAC9B,IAAMC,EAAsC,CAAC,EACzCC,EAAU,EACd,KAAOA,EAAUJ,IAAW,CAC1B,IAAIK,EAAc,EACdC,EAAsBF,EAC1B,KAAOE,EAAsBL,GAAQ,QAAUA,GAAQK,KAAyBL,GAAQG,IACtFC,GAAe,EACfC,IAEF,IAAMC,EAASN,GAAQG,GACjBI,EAAmB,KAAK,KAAKV,GAAYS,CAAM,EAC/CE,EAAkB,KAAK,KAAKX,GAAYS,CAAM,EACpD,QAASG,EAAI,EAAGA,EAAIF,EAAkB,EAAEE,EACtC,QAASC,EAAI,EAAGA,EAAIF,EAAiB,EAAEE,EACrC,QAASC,EAAW,EAAGA,EAAWP,EAAa,EAAEO,EAC/CT,EAAQ,KAAK,CAAE,GAAIQ,EAAI,IAAOF,EAAiB,GAAIC,EAAI,IAAOF,CAAiB,CAAC,EAItFJ,EAAUE,CACZ,CACAP,GAAe,CAAE,EAAM,WAASI,EAAQ,IAAKU,GAAMA,EAAE,CAAC,CAAC,EAAG,EAAM,WAASV,EAAQ,IAAKU,GAAMA,EAAE,CAAC,CAAC,CAAE,CACpG,CCjCO,SAASC,GAAKC,EAAoBC,EAA+B,CAAC,EAAG,CAAC,EAAG,CAC9E,IAAMC,EAAS,CAACF,EAAU,IAAKG,GAAOA,EAAG,EAAE,EAAGH,EAAU,IAAKG,GAAOA,EAAG,EAAE,CAAC,EACpEC,EAAM,CAAC,KAAK,IAAI,GAAGF,EAAO,EAAE,EAAG,KAAK,IAAI,GAAGA,EAAO,EAAE,CAAC,EACrDG,EAAM,CAAC,KAAK,IAAI,GAAGH,EAAO,EAAE,EAAG,KAAK,IAAI,GAAGA,EAAO,EAAE,CAAC,EACrDI,EAAW,CAACF,EAAI,GAAIA,EAAI,GAAIC,EAAI,GAAKD,EAAI,GAAIC,EAAI,GAAKD,EAAI,EAAE,EAC5DG,EAAc,CAACD,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,EAAE,EACnH,MAAO,CAAE,IAAAK,EAAK,OAAAC,CAAO,CACvB,CAEO,SAASC,GAAOR,EAAoBC,EAA+B,CAAC,EAAG,CAAC,EAAG,CAChF,IAAMC,EAAS,CAACF,EAAU,IAAKG,GAAOA,EAAG,EAAE,EAAGH,EAAU,IAAKG,GAAOA,EAAG,EAAE,CAAC,EACpEC,EAAM,CAAC,KAAK,IAAI,GAAGF,EAAO,EAAE,EAAG,KAAK,IAAI,GAAGA,EAAO,EAAE,CAAC,EACrDG,EAAM,CAAC,KAAK,IAAI,GAAGH,EAAO,EAAE,EAAG,KAAK,IAAI,GAAGA,EAAO,EAAE,CAAC,EACrDO,EAAS,EAAEL,EAAI,GAAKC,EAAI,IAAM,GAAID,EAAI,GAAKC,EAAI,IAAM,CAAC,EACtDK,EAAO,KAAK,IAAID,EAAO,GAAKL,EAAI,GAAIK,EAAO,GAAKL,EAAI,GAAI,CAACK,EAAO,GAAKJ,EAAI,GAAI,CAACI,EAAO,GAAKJ,EAAI,EAAE,EAChGC,EAAW,CAAC,KAAK,MAAMG,EAAO,GAAKC,CAAI,EAAG,KAAK,MAAMD,EAAO,GAAKC,CAAI,EAAG,KAAK,MAAM,EAAIA,CAAI,EAAG,KAAK,MAAM,EAAIA,CAAI,CAAC,EAClHH,EAAc,CAACD,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,EAAE,EACnH,MAAO,CAAE,IAAAK,EAAK,OAAAC,CAAO,CACvB,CAEO,SAASI,GAAML,EAAUM,EAAmB,CACjD,IAAMF,EAAO,CAACJ,EAAI,GAAKM,EAAWN,EAAI,GAAKM,CAAS,EAOpD,MANoB,CAClBN,EAAI,IAAMI,EAAK,GAAKJ,EAAI,IAAM,EAC9BA,EAAI,IAAMI,EAAK,GAAKJ,EAAI,IAAM,EAC9BI,EAAK,GACLA,EAAK,EACP,CAEF,CChBA,IAAMG,GAAM,CAAE,QAAS,EAAK,EAEtBC,GAAwE,CAAE,SAAU,KAAM,UAAW,IAAK,EAC1GC,GAAyE,CAAE,SAAU,CAAC,IAAK,GAAG,EAAG,UAAW,CAAC,IAAK,GAAG,CAAE,EACzHC,GAAU,OAAO,iBACfC,GAA2D,CAC/D,UAAW,CAAC,QAAS,0BAA2B,qBAAsB,WAAY,iBAAiB,EACnG,SAAU,CAAC,CACb,EAEIC,GAA2B,KAC3BC,GACAC,GAA8B,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAC7DC,GAAW,EAETC,GAAWC,GAAO,EAAK,GAAK,EAAI,KAAK,IAAIA,CAAC,GAEhD,eAAsBC,GAAWC,EAAqC,CAhCtE,IAAAC,EAkCE,GADIb,GAAI,UAASC,GAAO,SAAW,MAC/B,CAACA,GAAO,UAAYW,EAAO,KAAK,UAAeA,EAAO,KAAK,SAAY,UAAiB,CAC1FX,GAAO,SAAW,MAAMa,EAAUF,EAAO,KAAK,SAAY,SAAS,EACnE,IAAMG,GAASF,EAAAZ,GAAO,WAAP,MAAAY,EAAkB,SAAc,OAAO,OAAOZ,GAAO,SAAS,eAAe,MAAS,EAAI,OACzGC,GAAU,SAAS,GAAK,MAAM,QAAQa,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EAC9Fb,GAAU,SAAS,GAAK,MAAM,QAAQa,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CAChG,MAAWH,EAAO,OAASX,GAAO,UAAUe,EAAI,gBAAiBf,GAAO,SAAS,QAAW,EAC5F,OAAOgB,GAAc,EACdhB,GAAO,QAChB,CAEA,eAAsBiB,GAASN,EAAqC,CA5CpE,IAAAC,EA8CE,GADIb,GAAI,UAASC,GAAO,UAAY,MAC/BA,GAAO,UAKDW,EAAO,OAAOI,EAAI,gBAAiBf,GAAO,UAAU,QAAW,MALnD,CACrBA,GAAO,UAAY,MAAMa,EAAUF,EAAO,KAAK,SAAS,EACxD,IAAMG,GAASF,EAAAZ,GAAO,YAAP,MAAAY,EAAmB,SAAc,OAAO,OAAOZ,GAAO,UAAU,eAAe,MAAS,EAAI,OAC3GC,GAAU,UAAU,GAAK,MAAM,QAAQa,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EAC/Fb,GAAU,UAAU,GAAK,MAAM,QAAQa,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CACjG,CACA,OAAOd,GAAO,SAChB,CAQA,SAASkB,GAAaC,EAAeC,EAAsB,CA7D3D,IAAAC,EAAAC,EA8DE,IAAMC,EAA4B,CAAC,EACnC,GAAI,GAACF,EAAAF,GAAA,YAAAA,EAAO,QAAP,MAAAE,EAAe,KAAM,GAACC,EAAAH,GAAA,YAAAA,EAAO,QAAP,MAAAG,EAAe,IAAI,OAAOH,EACrD,IAAIK,EAIJ,GAHIC,KACFF,EAAE,QAAa,QAAM,cAAcJ,EAAO,CAACM,EAAO,EAAG,CAAC,CAAC,EAAG,CAACN,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,CAAC,GAExFA,EAAM,MAAM,KAAOA,EAAM,MAAM,GAAI,CACrC,IAAMO,EAA2B,CAC/BP,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,EACtFA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,CACxF,EACMQ,EAA0B,CAC9BR,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,EACtFA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,CACxF,EACAS,GAAU,CACR,CAAC,EAAG,CAAC,EACLF,EACAC,EACA,CAAC,EAAG,CAAC,CACP,EACAJ,EAAE,IAAS,MAAIA,EAAE,SAAWJ,EAAOS,EAAO,EAC1CL,EAAE,OAAY,QAAM,eAAeA,EAAE,IAAK,CAACH,EAAMA,CAAI,CAAC,EACtDI,EAAW,MAAID,EAAE,OAAQM,EAAU,KAAK,CAC1C,MAAWV,EAAM,MAAM,KAAOC,GAC5BG,EAAE,OAAY,QAAM,eAAeA,EAAE,SAAWJ,EAAO,CAACC,EAAMA,CAAI,CAAC,EACnEI,EAAW,MAAID,EAAE,OAAQM,EAAU,KAAK,GAExCL,EAAW,MAAID,EAAE,SAAWJ,EAAOU,EAAU,KAAK,EAEpD,cAAO,KAAKN,CAAC,EAAE,QAASO,GAAc,UAAQP,EAAEO,EAAO,CAAC,EACjDN,CACT,CAEA,SAASO,GAAiBC,EAA2BC,EAA8C,CACjG,QAAWC,KAAOF,EAChBE,EAAI,SAAW,CACb,KAAK,MAAMA,EAAI,SAAS,IAAMD,EAAW,GAAKL,GAAQ,GAAG,GAAKA,GAAQ,GAAG,IAAMK,EAAW,GAAKL,GAAQ,GAAG,EAAE,EAC5G,KAAK,MAAMM,EAAI,SAAS,IAAMD,EAAW,GAAKL,GAAQ,GAAG,GAAKA,GAAQ,GAAG,IAAMK,EAAW,GAAKL,GAAQ,GAAG,EAAE,EAC5GM,EAAI,SAAS,EACf,EACAA,EAAI,YAAc,CAACA,EAAI,SAAS,GAAKD,EAAW,GAAIC,EAAI,SAAS,GAAKD,EAAW,GAAI,EAAKC,EAAI,SAAS,IAAiBD,EAAW,GAAKA,EAAW,GAAG,EAExJ,GAAIR,GACF,QAAWS,KAAOF,EAChBE,EAAI,YAAc,CAChBA,EAAI,YAAY,GAAKT,GAAQ,GAC7BS,EAAI,YAAY,GAAKT,GAAQ,GAC7BS,EAAI,YAAY,EAClB,EACAA,EAAI,SAAW,CACb,KAAK,MAAMA,EAAI,YAAY,GAAKD,EAAW,EAAE,EAC7C,KAAK,MAAMC,EAAI,YAAY,GAAKD,EAAW,EAAE,EAC7CC,EAAI,YAAY,EAClB,EAGJ,OAAOF,CACT,CAEA,SAASG,GAAaH,EAA2B,CAE/C,IAAMI,EAAWJ,EAAU,KAAMK,GAAMA,EAAE,OAAS,UAAU,EACtDC,EAAYN,EAAU,KAAMK,GAAMA,EAAE,OAAS,WAAW,EACxDE,EAAYP,EAAU,KAAMK,GAAMA,EAAE,OAAS,WAAW,EAC9DD,EAAS,SAAS,KAAOE,EAAU,SAAS,IAAM,IAAMC,EAAU,SAAS,IAAM,IAAM,EACvF,IAAMC,EAAYR,EAAU,KAAMK,GAAMA,EAAE,OAAS,WAAW,EACxDI,EAAaT,EAAU,KAAMK,GAAMA,EAAE,OAAS,YAAY,EAC1DK,EAAaV,EAAU,KAAMK,GAAMA,EAAE,OAAS,YAAY,EAChEG,EAAU,SAAS,KAAOC,EAAW,SAAS,IAAM,IAAMC,EAAW,SAAS,IAAM,IAAM,CAC5F,CAEA,eAAeC,GAAgBxB,EAAeyB,EAAgBX,EAA0D,CAtIxH,IAAAZ,EAAAC,EA8IE,GAAI,GAACD,EAAAwB,GAAO,YAAP,MAAAxB,EAAmB,UAAa,OAAO,KAC5C,IAAME,EAA4B,CAAC,EACnC,CAACA,EAAE,GAAqBA,EAAE,aAA+BA,EAAE,QAAyBA,EAAE,MAAwBA,EAAE,QAAiB,GAAID,EAAAuB,GAAO,YAAP,YAAAvB,EAAkB,QAAQH,EAAO2B,GAAY,WAClL,IAAMC,GAAa,MAAMxB,EAAE,SAAS,KAAK,GAAG,GACtCyB,EAAS,MAAMzB,EAAE,GAAG,KAAK,EACzB0B,EAAY,MAAM1B,EAAE,MAAM,KAAK,EACrC,OAAO,KAAKA,CAAC,EAAE,QAASO,GAAc,UAAQP,EAAEO,EAAO,CAAC,EACxD,IAAMoB,EAAoC,CAAC,EACrCC,EAAQ,EACd,QAASC,EAAI,EAAGA,EAAIJ,EAAO,OAASG,EAAOC,IAAK,CAC9C,IAAMC,EAAQC,GAAQN,EAAOG,EAAQC,EAAI,EAAE,EACrCG,EAAWD,GAAQN,EAAOG,EAAQC,EAAI,EAAE,EACxCI,EAAW,KAAK,MAAM,IAAMH,EAAQE,EAAWR,CAAS,EAAI,IAC5DU,EAAqB,CAACT,EAAOG,EAAQC,EAAI,GAAKM,GAAU,UAAU,GAAIV,EAAOG,EAAQC,EAAI,GAAKM,GAAU,UAAU,GAAIV,EAAOG,EAAQC,EAAI,GAAK,CAAC,EAC/IO,EAAkB,CAAC,KAAK,MAAM1B,EAAW,GAAKwB,EAAY,EAAE,EAAG,KAAK,MAAMxB,EAAW,GAAKwB,EAAY,EAAE,EAAGA,EAAY,EAAY,EACnIG,EAAkB,CAACX,EAAUE,EAAQC,EAAI,GAAIH,EAAUE,EAAQC,EAAI,GAAIH,EAAUE,EAAQC,EAAI,GAAK,CAAC,EACzGF,EAAkB,KAAK,CAAE,KAAahB,GAAIkB,GAAoB,YAAAK,EAAa,SAAAE,EAAU,SAAAC,EAAU,MAAOJ,CAAS,CAAC,CAClH,CACA,GAAIT,GAAaH,EAAO,KAAK,eAAiB,GAAI,OAAO,KACzDT,GAAae,CAAiB,EAC9B,IAAMlB,EAA4BD,GAAiBmB,EAAmBjB,CAAU,EAC1E4B,EAAO7B,EAAU,IAAKK,GAAMA,EAAE,QAAQ,EACtCyB,EAAYC,GAAKF,EAAM,CAAC5B,EAAW,GAAIA,EAAW,EAAE,CAAC,EACrD+B,EAAiD,CAAC,EACxD,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAeC,EAAS,EAAG,CAC9D,IAAMC,EAAgB,CAAC,EACvB,QAAShB,EAAI,EAAGA,EAAIc,EAAQ,OAAS,EAAGd,IAAK,CAC3C,IAAMiB,EAAMrC,EAAU,KAAME,GAAQA,EAAI,OAASgC,EAAQd,EAAE,EACrDkB,EAAMtC,EAAU,KAAME,GAAQA,EAAI,OAASgC,EAAQd,EAAI,EAAE,EAC3DiB,GAAOC,GAAKF,EAAG,KAAK,CAACC,EAAI,SAAUC,EAAI,QAAQ,CAAC,CACtD,CACAN,EAAYC,GAAQG,CACtB,CAEA,MADa,CAAE,GAAI,EAAG,MAAO,KAAK,MAAM,IAAMrB,CAAS,EAAI,IAAK,IAAKe,EAAM,IAAK,OAAQA,EAAM,OAAQ,UAAA9B,EAAW,YAAAgC,CAAY,CAE/H,CAgCA,eAAsBO,GAAQpD,EAAeyB,EAAuC,CAClF,IAAMX,EAA+B,CAACd,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,EACxEqD,GAAY5B,EAAO,KAAK,UAAY,GAAM6B,EAAI,EAAIC,GAClDC,EAAYC,IAAWhC,EAAO,KAAK,YAAc,GACvD,GAAIA,EAAO,aAAe4B,GAAYG,GAAaE,KAAU,KAC3DD,SACK,CACL,IAAMrD,EAA4B,CAAC,EAOnCA,EAAE,UAAYL,GAAaC,EAAO,GAAG,EACrC0D,GAAQ,MAAMlC,GAAgBpB,EAAE,UAAWqB,EAAQX,CAAU,EAe7D,OAAO,KAAKV,CAAC,EAAE,QAASO,GAAc,UAAQP,EAAEO,EAAO,CAAC,EACxD4C,GAAWD,EAAI,EACfG,GAAU,CACZ,CACA,OAAOC,GAAQ,CAACA,EAAK,EAAI,CAAC,CAC5B,CCjPO,IAAMC,GAAS,CACpB,CAAE,MAAO,EAAG,MAAO,QAAS,EAC5B,CAAE,MAAO,EAAG,MAAO,SAAU,EAC7B,CAAE,MAAO,EAAG,MAAO,KAAM,EACzB,CAAE,MAAO,EAAG,MAAO,YAAa,EAChC,CAAE,MAAO,EAAG,MAAO,UAAW,EAC9B,CAAE,MAAO,EAAG,MAAO,KAAM,EACzB,CAAE,MAAO,EAAG,MAAO,OAAQ,EAC3B,CAAE,MAAO,EAAG,MAAO,OAAQ,EAC3B,CAAE,MAAO,EAAG,MAAO,MAAO,EAC1B,CAAE,MAAO,GAAI,MAAO,eAAgB,EACpC,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,eAAgB,EACpC,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,aAAc,EAClC,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,gBAAiB,EACrC,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,eAAgB,EACpC,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,IAAK,EACzB,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,YAAa,CACnC,ECrEA,IAAIC,GACAC,GAAY,EACZC,GAAuB,CAAC,EACxBC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAE9D,GADIC,EAAI,UAASP,GAAQ,MACpBA,GAKMM,EAAO,OAAOE,EAAI,gBAAiBR,GAAM,QAAW,MALnD,CAEVA,GAAQ,MAAMS,EAAUH,EAAO,OAAO,SAAS,EAC/C,IAAMI,EAASV,IAAA,MAAAA,GAAQ,SAAc,OAAO,OAAOA,GAAM,eAAe,MAAS,EAAI,OACrFC,GAAY,MAAM,QAAQS,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CACpF,CACA,OAAOV,EACT,CAEA,eAAeW,GAAQC,EAAoBC,EAA+BP,EAAgB,CACxF,GAAI,CAACM,EAAK,MAAO,CAAC,EAClB,IAAME,EAA4B,CAAC,EAC7BC,EAA0B,CAAC,EAC3BC,EAAa,MAAMJ,EAAI,MAAM,EACnCE,EAAE,QAAa,UAAQF,CAAG,EAC1B,IAAMK,EAAS,QAAMH,EAAE,QAAS,EAAG,CAAC,EACpCA,EAAE,MAAW,QAAM,CAACG,EAAI,GAAIA,EAAI,GAAIA,EAAI,GAAIA,EAAI,EAAE,EAAG,CAAC,EACtDH,EAAE,MAAW,UAAQA,EAAE,KAAK,EAC5BA,EAAE,OAAY,UAAQG,EAAI,EAAE,EAC5BH,EAAE,QAAa,UAAQG,EAAI,EAAE,EAC1B,UAAQ,CAACL,EAAK,GAAGK,CAAG,CAAC,EACxBH,EAAE,IAAM,MAAS,QAAM,uBAAuBA,EAAE,MAAOA,EAAE,OAAQR,EAAO,OAAO,YAAaA,EAAO,OAAO,aAAeA,EAAO,OAAO,eAAiB,CAAE,EAC1J,IAAMY,EAAM,MAAMJ,EAAE,IAAI,KAAK,EACzBK,EAAI,EACR,QAAWC,KAAM,MAAM,KAAKF,CAAG,EAAG,CAChC,IAAMG,EAAQ,KAAK,MAAM,IAAML,EAAW,GAAGI,GAAI,EAAE,EAAI,IACjDE,EAAWN,EAAW,GAAGI,GAAI,GAC7BG,EAAQC,GAAOF,GAAU,MACzB,CAACG,EAAGC,CAAC,EAAI,CACbV,EAAW,GAAGI,GAAI,GAAKnB,GACvBe,EAAW,GAAGI,GAAI,GAAKnB,EACzB,EACM0B,EAAc,CAClBF,EACAC,EACAV,EAAW,GAAGI,GAAI,GAAKnB,GAAYwB,EACnCT,EAAW,GAAGI,GAAI,GAAKnB,GAAYyB,CACrC,EACME,EAAW,CACf,KAAK,MAAMD,EAAO,GAAKd,EAAY,EAAE,EACrC,KAAK,MAAMc,EAAO,GAAKd,EAAY,EAAE,EACrC,KAAK,MAAMc,EAAO,GAAKd,EAAY,EAAE,EACrC,KAAK,MAAMc,EAAO,GAAKd,EAAY,EAAE,CACvC,EACAE,EAAQ,KAAK,CAAE,GAAII,IAAK,MAAAE,EAAO,MAAOC,EAAU,MAAAC,EAAO,IAAAK,EAAK,OAAAD,CAAO,CAAC,CACtE,CACA,cAAO,KAAKb,CAAC,EAAE,QAASe,GAAc,UAAQf,EAAEe,EAAO,CAAC,EACjDd,CACT,CAEA,eAAsBe,GAAQC,EAAezB,EAAyC,CACpF,GAAI,EAACN,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMgC,GAAY1B,EAAO,OAAO,UAAY,GAAM2B,EAAI,EAAI9B,GACpD+B,EAAY9B,IAAWE,EAAO,OAAO,YAAc,GACzD,OAAIA,EAAO,aAAe0B,GAAYE,GAAchC,GAAK,OAAS,GAChEE,KACOF,KAETE,GAAU,EACH,IAAI,QAAQ,MAAO+B,GAAY,CACpC,IAAMC,EAAa,CAACL,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,EACtDM,EAAY,QAAM,eAAeN,EAAO,CAAC9B,GAAWA,EAAS,CAAC,EAC9DqC,EAAUhC,EAAO,OAAO,QAAUN,IAAA,YAAAA,GAAO,QAAQqC,EAAQ,CAAC,oBAAoB,GAAe,KACnGlC,GAAW8B,EAAI,EACZ,UAAQI,CAAM,EAEjB,IAAME,EAAM,MAAM5B,GAAQ2B,EAASF,EAAY9B,CAAM,EACrDJ,GAAOqC,EAEPJ,EAAQI,CAAG,CACb,CAAC,EACH,CC9FA,IAAAC,GAAA,GAAAC,GAAAD,GAAA,eAAAE,GAAA,QAAAC,KAAO,IAAMA,GAAgB,CAC3B,OACA,OACA,gBACA,aACA,aACA,QACA,eACA,YACA,YACA,aACA,WACA,YACA,aACA,UACA,WACA,WACF,EAEaD,GAAsC,CACjD,QAAS,CAAC,UAAW,WAAY,WAAW,EAC5C,SAAU,CAAC,WAAY,YAAa,YAAY,EAChD,MAAO,CAAC,eAAgB,gBAAiB,WAAY,UAAW,cAAc,EAC9E,QAAS,CAAC,eAAgB,YAAa,WAAW,EAClD,SAAU,CAAC,gBAAiB,aAAc,YAAY,EACtD,KAAM,CAAC,CACT,ECVA,IAAIE,EACAC,GAAW,EACTC,GAAoB,CAAE,GAAI,EAAG,UAAW,CAAC,EAAG,IAAK,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,OAAQ,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,MAAO,EAAG,YAAa,CAAC,CAAuC,EAMtJC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAC9D,OAAIC,EAAI,UAASN,EAAQ,MACpBA,EACIK,EAAO,OAAOE,EAAI,gBAAiBP,EAAM,QAAW,EADjDA,EAAQ,MAAMQ,EAAUH,EAAO,KAAK,SAAS,EAElDL,CACT,CAGA,eAAeS,GAAMC,EAAQC,EAA6C,CACxE,GAAM,CAACC,EAAOC,CAAM,EAAIH,EAAO,MACzBI,EAAc,UAAQJ,EAAQ,CAACG,EAASD,CAAK,CAAC,EAC9CG,EAAS,MAAID,EAAU,CAAC,EACxBE,GAAoB,MAAMD,EAAI,KAAK,GAAG,GAC5C,GAAIC,EAAWL,EAAU,CACvB,IAAMM,EAAiB,SAAOH,EAAU,CAAC,EACnCI,EAAS,MAAID,EAAaL,CAAK,EAC/B,GAAK,MAAMM,EAAI,KAAK,GAAG,GACvBC,EAAS,MAAIF,EAAaL,CAAK,EAC/BQ,GAAa,MAAMD,EAAI,KAAK,GAAG,GACrC,OAAG,UAAQ,CAACL,EAAUC,EAAKE,EAAaC,EAAKC,CAAG,CAAC,EAC1C,CAAC,EAAGC,EAAGJ,CAAQ,CACxB,CACA,OAAG,UAAQ,CAACF,EAAUC,CAAG,CAAC,EACnB,CAAC,EAAG,EAAGC,CAAQ,CACxB,CAEA,eAAsBK,GAAQC,EAAejB,EAAuC,CAClF,GAAI,EAACL,GAAA,MAAAA,EAAQ,UAAa,MAAO,CAAC,EAClC,IAAMuB,GAAYlB,EAAO,KAAK,UAAY,GAAMmB,EAAI,EAAIvB,GAClDwB,EAAYtB,IAAWE,EAAO,KAAK,YAAc,GACvD,OAAIA,EAAO,aAAekB,GAAYE,GAAa,OAAO,KAAKvB,GAAM,SAAS,EAAE,OAAS,GACvFC,KACO,CAACD,EAAK,IAEfC,GAAU,EACH,IAAI,QAAQ,MAAOuB,GAAY,CACpC,IAAMC,EAAY,OAAK,IAAM,CAC3B,GAAI,EAAC3B,GAAA,MAAAA,EAAO,OAAO,GAAG,OAAO,OAAO,KACpC,IAAM4B,EAAY,QAAM,eAAeN,EAAO,CAACtB,EAAM,OAAO,GAAG,MAAM,GAAIA,EAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EACnG6B,EAAa,MAAID,EAAQE,EAAU,GAAG,EAE5C,OADgB,MAAID,EAASC,EAAU,GAAG,CAE5C,CAAC,EACGC,EAKJ,GAJI1B,EAAO,KAAK,UAAS0B,EAAO/B,GAAA,YAAAA,EAAO,QAAQ2B,IAC/C1B,GAAWuB,EAAI,EACZ,UAAQG,CAAM,EAEbI,EAAM,CACR7B,GAAM,UAAU,OAAS,EACzB,IAAM8B,EAAa,UAAQD,CAAI,EAC5B,UAAQA,CAAI,EAEf,IAAME,EAAW,UAAQD,EAAS,CAAC,EAChC,UAAQA,CAAO,EAGlB,QAASE,EAAK,EAAGA,EAAKD,EAAM,OAAQC,IAAM,CAExC,GAAM,CAACC,EAAGf,EAAGgB,CAAS,EAAI,MAAM3B,GAAMwB,EAAMC,GAAK7B,EAAO,KAAK,aAAa,EACtE+B,GAAa/B,EAAO,KAAK,eAAiB,IAC5CH,GAAM,UAAU,KAAK,CACnB,MAAO,KAAK,MAAM,IAAMkC,CAAS,EAAI,IACrC,KAAaC,GAAIH,GACjB,YAAa,CAEXC,EAAInC,EAAM,OAAO,GAAG,MAAM,GAAIoB,EAAIpB,EAAM,OAAO,GAAG,MAAM,EAC1D,EACA,SAAU,CAER,KAAK,MAAMsB,EAAM,MAAM,GAAKa,EAAInC,EAAM,OAAO,GAAG,MAAM,EAAE,EAAG,KAAK,MAAMsB,EAAM,MAAM,GAAKF,EAAIpB,EAAM,OAAO,GAAG,MAAM,EAAE,CACrH,CACF,CAAC,CAEL,CACAiC,EAAM,QAASK,GAAS,UAAQA,CAAC,CAAC,CACpC,CACApC,GAAM,MAAQA,GAAM,UAAU,OAAO,CAACqC,EAAMC,IAAUA,EAAK,MAAQD,EAAOC,EAAK,MAAQD,EAAO,CAAC,EAC/F,IAAMJ,EAAIjC,GAAM,UAAU,IAAKuC,GAAMA,EAAE,SAAS,EAAE,EAC5CrB,EAAIlB,GAAM,UAAU,IAAKuC,GAAMA,EAAE,SAAS,EAAE,EAClDvC,GAAM,IAAM,CACV,KAAK,IAAI,GAAGiC,CAAC,EACb,KAAK,IAAI,GAAGf,CAAC,EACb,KAAK,IAAI,GAAGe,CAAC,EAAI,KAAK,IAAI,GAAGA,CAAC,EAC9B,KAAK,IAAI,GAAGf,CAAC,EAAI,KAAK,IAAI,GAAGA,CAAC,CAChC,EACA,IAAMsB,EAAOxC,GAAM,UAAU,IAAKuC,GAAMA,EAAE,YAAY,EAAE,EAClDE,EAAOzC,GAAM,UAAU,IAAKuC,GAAMA,EAAE,YAAY,EAAE,EACxDvC,GAAM,OAAS,CACb,KAAK,IAAI,GAAGwC,CAAI,EAChB,KAAK,IAAI,GAAGC,CAAI,EAChB,KAAK,IAAI,GAAGD,CAAI,EAAI,KAAK,IAAI,GAAGA,CAAI,EACpC,KAAK,IAAI,GAAGC,CAAI,EAAI,KAAK,IAAI,GAAGA,CAAI,CACtC,EACA,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAeC,EAAS,EAAG,CAC9D,IAAMC,EAAgB,CAAC,EACvB,QAASC,EAAI,EAAGA,EAAIH,EAAQ,OAAS,EAAGG,IAAK,CAC3C,IAAMC,EAAM/C,GAAM,UAAU,KAAMmC,GAAQA,EAAI,OAASQ,EAAQG,EAAE,EAC3DE,EAAMhD,GAAM,UAAU,KAAMmC,GAAQA,EAAI,OAASQ,EAAQG,EAAI,EAAE,EACjEC,GAAOC,GAAOD,EAAI,OAAS5C,EAAO,KAAK,eAAiB,IAAM6C,EAAI,OAAS7C,EAAO,KAAK,eAAiB,IAAI0C,EAAG,KAAK,CAACE,EAAI,SAAUC,EAAI,QAAQ,CAAC,CACtJ,CACAhD,GAAM,YAAY0C,GAAQG,CAC5B,CACArB,EAAQ,CAACxB,EAAK,CAAC,CACjB,CAAC,EACH,CCpHA,IAAMiD,GAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,SAAS,EAClFC,GACEC,GAAgD,CAAC,EACnDC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAtBhE,IAAAC,EAuBE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,UAAZ,YAAAC,EAAqB,SAAS,EAE3DP,EACT,CAEA,eAAsBW,GAAQC,EAAeN,EAAgBO,EAAaC,EAA+D,CA7BzI,IAAAP,EAAAQ,EA8BE,GAAI,CAACf,GAAO,MAAO,CAAC,EACpB,IAAMgB,EAAYZ,MAAWG,EAAAD,EAAO,KAAK,UAAZ,YAAAC,EAAqB,aAAc,GAC1DU,KAAYF,EAAAT,EAAO,KAAK,UAAZ,YAAAS,EAAqB,WAAY,GAAMG,EAAI,EAAIf,GACjE,OAAIG,EAAO,aAAeW,GAAYD,GAAcd,KAAcY,GAAUb,GAAKY,IAASZ,GAAKY,GAAK,OAAS,GAC3GT,KACOH,GAAKY,KAEdT,GAAU,EACH,IAAI,QAAQ,MAAOe,GAAY,CAtCxC,IAAAZ,EAuCI,IAAMa,EAA6C,CAAC,EACpD,IAAIb,EAAAD,EAAO,KAAK,UAAZ,MAAAC,EAAqB,QAAS,CAChC,IAAMc,EAA4B,CAAC,EAC7BC,EAAYtB,IAAA,MAAAA,GAAO,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,EACtEqB,EAAE,OAAY,QAAM,eAAeT,EAAO,CAACU,EAAWA,CAAS,EAAG,EAAK,EASvED,EAAE,SAAc,MAAIA,EAAE,OAAQE,EAAU,GAAG,EAC3CF,EAAE,UAAe,MAAIA,EAAE,SAAU,EAAG,EAAI,EACxCA,EAAE,aAAkB,MAAIA,EAAE,UAAWE,EAAU,IAAI,EACnDF,EAAE,aAAkB,MAAIA,EAAE,aAAcE,EAAU,GAAG,EACrDF,EAAE,QAAUrB,IAAA,YAAAA,GAAO,QAAQqB,EAAE,cAC7BlB,GAAWe,EAAI,EACf,IAAMM,EAAO,MAAMH,EAAE,QAAQ,KAAK,EAClC,QAASI,EAAI,EAAGA,EAAID,EAAK,OAAQC,IAC3BD,EAAKC,IAAMnB,EAAO,KAAK,QAAQ,eAAiB,IAAIc,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAMI,EAAKC,EAAE,EAAI,GAAG,EAAG,QAAS1B,GAAY0B,EAAc,CAAC,EAEjKL,EAAI,KAAK,CAACM,EAAGC,IAAMA,EAAE,MAAQD,EAAE,KAAK,EACpC,OAAO,KAAKL,CAAC,EAAE,QAASO,GAAc,UAAQP,EAAEO,EAAO,CAAC,CAC1D,CACA3B,GAAKY,GAAOO,EACZlB,GAAYY,EACZK,EAAQC,CAAG,CACb,CAAC,EACH,CCtDA,IAAIS,GACEC,GAAmB,CAAC,EACtBC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CArBhE,IAAAC,EAsBE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,gBAAZ,YAAAC,EAA8B,SAAS,EAEpEP,EACT,CAoBA,eAAsBW,GAAQC,EAAeN,EAAgBO,EAAKC,EAA0B,CA9C5F,IAAAP,EAAAQ,EA+CE,GAAI,EAACf,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMgB,EAAYZ,MAAWG,EAAAD,EAAO,KAAK,gBAAZ,YAAAC,EAA8B,aAAc,GACnEU,KAAYF,EAAAT,EAAO,KAAK,gBAAZ,YAAAS,EAA8B,WAAY,GAAMG,EAAI,EAAIf,GAC1E,OAAIG,EAAO,aAAeW,GAAYD,GAAcd,KAAcY,GAAUb,GAAKY,IAC/ET,KACOH,GAAKY,IAEP,IAAI,QAAQ,MAAOM,GAAY,CAtDxC,IAAAZ,EAuDI,IAAIa,EAAiB,CAAC,EACtB,KAAIb,EAAAD,EAAO,KAAK,gBAAZ,YAAAC,EAA8B,WAAWP,IAAA,YAAAA,GAAO,OAAO,GAAG,OAAO,CACnE,IAAMqB,EAA4B,CAAC,EACnCA,EAAE,KAAU,QAAM,eAAeT,EAAO,CAACZ,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EAInGqB,EAAE,KAAOrB,GAAM,QAAQqB,EAAE,IAAI,EAa7B,IAAMC,EAAS,MAAMD,EAAE,KAAK,KAAK,EACjCD,EAAO,MAAM,KAAKE,CAAM,EACxB,OAAO,KAAKD,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,CAC1D,CACAtB,GAAKY,GAAOO,EACZlB,GAAYY,EACZX,GAAWe,EAAI,EACfC,EAAQC,CAAI,CACd,CAAC,CACH,CCrEA,IAAII,GACEC,GAAmB,CAAC,EACtBC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAC9D,OAAIC,EAAI,UAASP,GAAQ,MACpBA,GACIM,EAAO,OAAOE,EAAI,gBAAiBR,GAAM,QAAW,EADjDA,GAAQ,MAAMS,EAAUH,EAAO,KAAK,YAAe,SAAS,EAEjEN,EACT,CAEA,eAAsBU,GAAQC,EAAeL,EAAgBM,EAAKC,EAA0B,CA5B5F,IAAAC,EAAAC,EA6BE,GAAI,EAACf,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMgB,EAAYZ,MAAWU,EAAAR,EAAO,KAAK,cAAZ,YAAAQ,EAA4B,aAAc,GACjEG,KAAYF,EAAAT,EAAO,KAAK,cAAZ,YAAAS,EAA4B,WAAY,GAAMG,EAAI,EAAIf,GACxE,OAAIG,EAAO,aAAeW,GAAYD,GAAcd,KAAcW,GAAUZ,GAAKW,IAC/ER,KACOH,GAAKW,IAEP,IAAI,QAAQ,MAAOO,GAAY,CApCxC,IAAAL,EAqCI,IAAIM,EAAiB,CAAC,EACtB,KAAIN,EAAAR,EAAO,KAAK,cAAZ,YAAAQ,EAA4B,WAAWd,IAAA,YAAAA,GAAO,OAAO,GAAG,OAAO,CACjE,IAAMqB,EAA4B,CAAC,EACnCA,EAAE,KAAU,QAAM,eAAeV,EAAO,CAACX,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EAInGqB,EAAE,KAAOrB,GAAM,QAAQqB,EAAE,IAAI,EAC7B,IAAMC,EAAS,MAAMD,EAAE,KAAK,KAAK,EACjCD,EAAO,MAAM,KAAKE,CAAM,EACxB,OAAO,KAAKD,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,CAC1D,CACAtB,GAAKW,GAAOQ,EACZlB,GAAYW,EACZV,GAAWe,EAAI,EACfC,EAAQC,CAAI,CACd,CAAC,CACH,CC5CA,IAAII,GACAC,GAAY,EAEVC,GAAc,IAEdC,GAAqBC,GAAgB,cACrCC,GAAsBD,GAAgB,eAEtCE,GAAe,CACnB,WAAY,CAACH,GAAY,GAAIA,GAAYA,GAAY,OAAS,EAAE,EAChE,YAAa,CAACE,GAAa,GAAIA,GAAaA,GAAa,OAAS,EAAE,CACtE,EAEME,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,EAClB,EAEA,eAAsBC,GAAKC,EAAqC,CA9BhE,IAAAC,EAAAC,EA+BE,OAAIC,EAAI,UAASZ,GAAQ,MACpBA,GACIS,EAAO,OAAOI,EAAI,gBAAiBb,GAAM,QAAW,EADjDA,GAAQ,MAAMc,GAAUJ,EAAAD,EAAO,KAAK,OAAZ,YAAAC,EAAkB,SAAS,EAE/DT,IAAaD,IAAA,YAAAA,GAAQ,aAAeW,EAAAX,GAAM,SAAN,YAAAW,EAAe,GAAG,OAASX,GAAM,OAAO,GAAG,MAAM,GAAK,EACtFC,KAAc,KAAIA,GAAY,IAC3BD,EACT,CAGO,SAASe,GAAkBC,EAAWC,EAAWC,EAAQC,EAAM,CACpE,QAASC,EAAI,EAAGA,EAAWC,GAAY,OAAQD,IAAK,CAClD,GAAM,CAAE,IAAAE,EAAK,QAAAC,CAAQ,EAAWF,GAAYD,GACtCI,EAAyBpB,GAAgB,GAAGc,IAASI,KAC3D,GAAI,CAACH,GAAQA,EAAK,SAASG,CAAG,EAC5B,QAASG,EAAI,EAAGA,EAAIF,EAAQ,OAAQE,IAAK,CACvC,IAAMC,EAAQH,EAAQE,GACtBT,EAAUQ,EAAgBC,IAAM,CAC9BR,EAAUS,GAAO,GACjBT,EAAUS,GAAO,IAChBT,EAAUS,GAAO,GAAKV,EAAUQ,EAAgBC,IAAI,IAAM,CAC7D,CACF,CAEJ,CACF,CAEO,IAAME,GAAoCX,GAAc,CAC7D,IAAMY,EAAWZ,EAAUV,GAAa,WAAW,IAAI,GACjDuB,EAAYb,EAAUV,GAAa,YAAY,IAAI,GACzD,OAAOsB,EAAWC,CACpB,EAGaC,GAAY,CAACd,EAAWe,EAAMC,EAAqBC,EAAqBC,EAAUC,EAAO,KAAU,CAC9G,IAAMC,EAAWC,GAAiBC,GAAgBC,GAA8B,CAACvB,EAAUgB,GAAsBhB,EAAUiB,EAAoB,CAAC,EAAG/B,EAAW,CAAC,EACzJsC,EAAeC,GAAWL,CAAG,EAC/BM,EAAU,QAAM,cAAcX,EAAM,CAAC,CACvCK,EAAI,WAAW,GAAKF,EACpBE,EAAI,WAAW,GAAKF,EAAUE,EAAI,SAAS,GAAKF,EAChDE,EAAI,SAAS,GAAKF,CACpB,CAAC,EAAG,CAAC,CAAC,EAAG,CAACjC,GAAWA,EAAS,CAAC,EAC/B,GAAIkC,GAAQvB,EAAI,QAAQ,SAAS,eAAe,EAAG,CACjD,IAAM+B,EAAa,QAAM,cAAcD,CAAI,EACxC,UAAQA,CAAI,EACfA,EAAOC,CACT,CACA,MAAO,CAAE,IAAAP,EAAK,QAAAI,EAAS,KAAAE,CAAK,CAC9B,EAGaE,GAAe,CAACC,EAASC,EAAQC,EAAYZ,EAAO,KAAU,CACzE,IAAMa,EAAwB,CAAC,EAC/B,QAAS5B,EAAI,EAAGA,EAAIb,GAAc,eAAgBa,IAAK,CACrD,IAAM6B,EAAIJ,EAAQzB,EAAI,GAChB8B,EAAIL,EAAQzB,EAAI,EAAI,GACpB+B,EAAIN,EAAQzB,EAAI,EAAI,GAC1B4B,EAAa,KAAK,EACfb,EAAQ,EAAKc,EAAIhD,GAAegD,EAAIhD,IAAc8C,EAAW,GAAKD,EAAO,WAAW,GACpFI,EAAIjD,GAAa8C,EAAW,GAAKD,EAAO,WAAW,GAAIK,CAC1D,CAAC,CACH,CACA,MAAO,CAAE,UAAWH,EAAc,KAAMA,EAAa,MAAMzC,GAAc,KAAK,CAAE,CAClF,EAGa6C,GAAwB,CAACpC,EAAWqC,EAAYC,IAAc,CACzE,IAAMC,EAAevC,EAAiBZ,GAAgB,GAAGkD,cAAsB/C,GAAc,cAAc,GACrGiD,EAAexC,EAAiBZ,GAAgB,GAAGkD,cAAsB/C,GAAc,cAAc,GACrGkD,GAAYF,EAAeC,GAAgB,EAEjD,OAAOH,EAAW,IAAI,CAACK,EAAO,IAAM,CAClC,IAAIP,EAAIM,EACR,OAAI,IAAM,EACRN,EAAII,EACK,IAAM,IACfJ,EAAIK,GAEC,CAACE,EAAM,GAAIA,EAAM,GAAIP,CAAC,CAC/B,CAAC,CACH,EAEA,eAAsBQ,GAAY3C,EAAWe,EAAMG,EAAU,CAC3D,GAAI,EAAClC,IAAA,MAAAA,GAAQ,UAAa,OAAOgB,EACjC,GAAM,CAAE,IAAK4C,EAAY,QAASC,EAAgB,KAAMC,CAAY,EAAIhC,GAAUd,EAAWe,EAAMzB,GAAa,WAAW,GAAIA,GAAa,WAAW,GAAI4B,EAAU,EAAI,EACnK,CAAE,IAAK6B,EAAa,QAASC,EAAiB,KAAMC,CAAa,EAAInC,GAAUd,EAAWe,EAAMzB,GAAa,YAAY,GAAIA,GAAa,YAAY,GAAI4B,EAAU,EAAI,EACxKgC,EAAc,SAAO,CAACJ,EAAaG,CAAY,CAAC,EACnD,UAAQH,CAAW,EACnB,UAAQG,CAAY,EACvB,IAAME,EAAiBnE,GAAM,QAAQkE,CAAQ,EAC1C,UAAQA,CAAQ,EACnB,IAAME,EAAqB,MAAMD,EAAe,KAAK,EAClD,UAAQA,CAAc,EACzB,IAAME,EAAcD,EAAmB,MAAM,EAAG7D,GAAc,eAAiB,CAAC,EAC1E,CAAE,UAAW+D,EAAkB,KAAMC,CAAkB,EAAI3B,GAAayB,EAAaT,EAAYC,EAAgB,EAAI,EACrHW,EAAeJ,EAAmB,MAAM7D,GAAc,eAAiB,CAAC,EACxE,CAAE,UAAWkE,EAAmB,KAAMC,CAAmB,EAAI9B,GAAa4B,EAAcT,EAAaC,EAAiB,EAAK,EAC3HW,EAAgChD,GAAiCX,CAAS,EAC5E,KAAK,IAAI2D,CAA6B,EAAI,IAC5C5D,GAAkBC,EAAWsD,EAAkB,OAAQ,IAAI,EAC3DvD,GAAkBC,EAAWyD,EAAmB,QAAS,IAAI,GAEpDE,EAAgC,EACzC5D,GAAkBC,EAAWsD,EAAkB,OAAQ,CAAC,YAAa,WAAW,CAAC,EAEjFvD,GAAkBC,EAAWyD,EAAmB,QAAS,CAAC,YAAa,WAAW,CAAC,EAErF,IAAMG,EAAyBxB,GAAsBpC,EAAWuD,EAAmB,MAAM,EACnFM,EAA0BzB,GAAsBpC,EAAW0D,EAAoB,OAAO,EAE5F,OADkB1D,EAAU,OAAO4D,CAAsB,EAAE,OAAOC,CAAuB,CAE3F,CCxIA,IAAMC,GAA8B,CAClC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAC3N,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAC7N,EAEMC,GAAkC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEjOC,GAAsC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAErIC,GAAmC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAElFC,GAAmC,CAAC,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE5NC,GAAuC,CAAC,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,CAAC,EAEzHC,GAAoC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEnFC,GAAmC,CACvC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACpN,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,CAC5M,EAmJA,SAASC,GAAqBC,EAAwB,CACpD,IAAMC,EAAUD,EAAY,IAAKE,GAAeA,EAAW,EAAE,EAC7D,OAAAD,EAAQ,KAAKD,EAAYA,EAAY,OAAS,GAAG,EAAE,EAC5CC,CACT,CAEO,IAAME,GAA2C,CACtD,KAAMJ,GAAqBK,EAAgB,EAC3C,QAASL,GAAqBM,EAAoB,EAClD,YAAaN,GAAqBO,EAAwB,EAC1D,SAAUP,GAAqBQ,EAAqB,EACpD,SAAUR,GAAqBS,EAAqB,EACpD,aAAcT,GAAqBU,EAAyB,EAC5D,UAAWV,GAAqBW,EAAsB,EACtD,SAAUX,GAAqBY,EAAqB,CACtD,EAEMC,GAAsC,OAAO,QAAQT,EAAwC,EAChG,IAAI,CAAC,CAACU,EAAOZ,CAAO,IAAMA,EAAQ,IAAKa,GAAU,CAACA,EAAOD,CAAK,CAAqB,CAAC,EACpF,KAAK,EAEKE,GAAgC,IAAI,IAAIH,EAAe,EAQvDI,GAAmC,CAC9C,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC9C,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IACnC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC7C,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACpC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC7C,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACpC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC7C,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACtC,EAEaC,GAAuC,CAClD,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACrC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IACnC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IACzB,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,GAAI,IAAK,GAAI,GAAI,GAAI,GACrB,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GACjC,EAEaC,GAAwC,CACnD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,IAAK,IAAK,IAAK,IAAK,IACzB,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrC,ECvOA,eAAsBC,GAAQC,EAAWC,EAAmB,CAC1D,IAAMC,EAAkC,CAGtC,KAAM,MAAMD,EAAQ,OAAQE,GAAMA,EAAE,OAAS,GAAG,EAAE,GAAG,KAAK,EAC1D,MAAO,MAAMF,EAAQ,OAAQE,GAAMA,EAAE,OAAS,EAAE,EAAE,GAAG,KAAK,EAC1D,KAAM,MAAMF,EAAQ,OAAQE,GAAMA,EAAE,OAAS,GAAG,EAAE,GAAG,KAAK,EAC1D,MAAO,MAAMF,EAAQ,OAAQE,GAAMA,EAAE,OAAS,EAAE,EAAE,GAAG,KAAK,EAC1D,KAAM,MAAMF,EAAQ,OAAQE,GAAMA,EAAE,OAAS,GAAG,EAAE,GAAG,KAAK,CAC5D,EAGMC,EAAuBC,GAAqC,OAAO,CAACC,EAAMC,IAASD,GAAQN,EAAUO,GAAM,GAAI,CAAC,EAAcF,GAAqC,OACzK,QAASG,EAAI,EAAGA,EAAIN,EAAE,MAAM,OAAS,EAAGM,IAAKR,EAAU,KAAK,CAACE,EAAE,MAAM,EAAIM,EAAI,GAAIN,EAAE,MAAM,EAAIM,EAAI,GAAIJ,CAAU,CAAC,EAChH,IAAMK,EAAuBC,GAAsC,OAAO,CAACJ,EAAMC,IAASD,GAAQN,EAAUO,GAAM,GAAI,CAAC,EAAcG,GAAsC,OAC3K,QAASF,EAAI,EAAGA,EAAIN,EAAE,MAAM,OAAS,EAAGM,IAAKR,EAAU,KAAK,CAACE,EAAE,MAAM,EAAIM,EAAI,GAAIN,EAAE,MAAM,EAAIM,EAAI,GAAIC,CAAU,CAAC,EAGhH,QAASD,EAAI,EAAGA,EAAIN,EAAE,KAAK,OAAS,EAAGM,IAAKR,EAAoBK,GAAqCG,IAAM,CAACN,EAAE,KAAK,EAAIM,EAAI,GAAIN,EAAE,KAAK,EAAIM,EAAI,GAAIR,EAAoBK,GAAqCG,IAAI,EAAE,EACjN,QAASA,EAAI,EAAGA,EAAIN,EAAE,KAAK,OAAS,EAAGM,IAAKR,EAAoBU,GAAsCF,IAAM,CAACN,EAAE,KAAK,EAAIM,EAAI,GAAIN,EAAE,KAAK,EAAIM,EAAI,GAAIR,EAAoBU,GAAsCF,IAAI,EAAE,EAGnN,QAASA,EAAI,EAAGA,EAAIN,EAAE,KAAK,OAAS,EAAGM,IAAKR,EAAoBW,GAAiCH,IAAM,CAACN,EAAE,KAAK,EAAIM,EAAI,GAAIN,EAAE,KAAK,EAAIM,EAAI,GAAIR,EAAoBW,GAAiCH,IAAI,EAAE,EAEzM,OAAOR,CACT,CCHA,IAAMY,GAAQ,CACZ,MAAO,CAAC,EACR,QAAS,OAAO,iBAChB,UAAW,CACb,EAEIC,EAA2B,KAC3BC,GAAY,EAEhB,eAAsBC,GAAQC,EAAeC,EAAuC,CAlCpF,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAmCE,GAAI,EAACd,GAAA,MAAAA,EAAQ,UAAa,MAAO,CAAC,EAElC,IAAMe,KAAYV,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,WAAY,GAAMW,EAAI,EAAIjB,GAAM,UAClEkB,EAAYlB,GAAM,WAAWO,EAAAF,EAAO,KAAK,WAAZ,YAAAE,EAAsB,aAAc,GACnE,CAACF,EAAO,aAAe,CAACW,GAAY,CAACE,GAAalB,GAAM,MAAM,SAAW,GAC3EA,GAAM,MAAQ,MAAgBmB,GAASf,EAAOC,CAAM,EACpDL,GAAM,UAAYiB,EAAI,EACtBjB,GAAM,QAAU,GAEhBA,GAAM,UAER,IAAMoB,EAAsB,CAAC,EACvBC,EAAwB,CAAC,EAC3BC,EAAK,EACHC,EAAOrB,GACb,QAASsB,EAAI,EAAGA,EAAIxB,GAAM,MAAM,OAAQwB,IAAK,CAC3C,IAAMC,EAAMzB,GAAM,MAAMwB,GACpBE,EAAQ,EACRC,EACEC,EAAmB,CACvB,GAAIN,IACJ,KAAM,CAAC,EACP,QAAS,CAAC,EACV,IAAK,CAAC,EAAG,EAAG,EAAG,CAAC,EAChB,OAAQ,CAAC,EAAG,EAAG,EAAG,CAAC,EACnB,MAAO,EACP,SAAU,EACV,UAAW,EAGX,YAAa,CAAC,CAChB,EAIA,GADA,CAACI,EAAOC,EAAgBC,EAAK,MAAM,EAASC,IAAoBrB,EAAAH,EAAO,KAAK,WAAZ,YAAAG,EAAsB,SAAUiB,EAAKrB,GAAOK,EAAAJ,EAAO,KAAK,OAAZ,MAAAI,EAAkB,QAAUP,GAAsBqB,GAAK,CAAC,EAChKlB,EAAO,OAAO,aAAc,CAC9B,IAAMyB,EAAYF,EAAK,OAAS,MAAMG,GAAsBH,EAAK,MAAM,EAAI,OACxE,UAAQA,EAAK,MAAM,EAClBE,IAAWF,EAAK,OAASE,EAC/B,CAEA,GADAF,EAAK,SAAW,KAAK,MAAM,IAAMH,EAAI,UAAU,EAAI,KAC9Cf,EAAAL,EAAO,KAAK,OAAZ,MAAAK,EAAkB,QAYhB,GAAI,CAACT,EACNI,EAAO,OAAO2B,EAAI,wDAAwD,MACzE,CACL,KAAIrB,EAAAN,EAAO,KAAK,YAAZ,YAAAM,EAAuB,UAAW,CAACsB,EAAI,QAAQ,SAAS,OAAO,EACjE,OAAG,UAAQL,EAAK,MAAM,EACfR,EAET,IAAMc,EAAUjC,EAAM,QAAQ2B,EAAK,MAAgB,EAE7CO,EAAiB,MADHD,EAAQ,KAAME,GAAMA,EAAE,MAAMA,EAAE,MAAM,OAAS,KAAO,CAAC,EAChC,KAAK,EAG9C,GAFAR,EAAK,UAAY,KAAK,MAAM,IAAMO,EAAe,EAAE,EAAI,IAEnDP,EAAK,aAAahB,EAAAP,EAAO,KAAK,WAAZ,YAAAO,EAAsB,gBAAiB,IAE3D,GADAa,EAAI,WAAaG,EAAK,UAClBvB,EAAO,KAAK,KAAK,YAAa,CAChCuB,EAAK,IAAWS,GAASZ,EAAKrB,CAAK,EACnCwB,EAAK,OAAcU,GAAUb,EAAKrB,CAAK,EACvCwB,EAAK,MAAQA,EAAK,SAClBA,EAAK,KAAOH,EAAI,UAAU,IAAKc,GAAO,EAClCd,EAAI,WAAW,GAAKA,EAAI,SAAS,IAAO,GAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAMc,EAAG,GAAehB,GAAK,GAC5GE,EAAI,WAAW,GAAKA,EAAI,SAAS,IAAO,GAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAMc,EAAG,GAAehB,GAAK,CAChH,CAAC,EACDK,EAAK,QAAUA,EAAK,KAAK,IAAKW,GAAO,CAACA,EAAG,IAAMnC,EAAM,MAAM,IAAM,GAAImC,EAAG,IAAMnC,EAAM,MAAM,IAAM,IAAKmC,EAAG,IAAM,GAAKhB,CAAI,CAAC,EACxH,QAAWiB,KAAO,OAAO,KAAYC,EAAkB,EACrDb,EAAK,YAAYY,GAAO,CAACZ,EAAK,KAAYa,GAAmBD,GAAe,CAEhF,MACK,CACL,IAAME,EAAQR,EAAQ,KAAME,GAAMA,EAAE,MAAMA,EAAE,MAAM,OAAS,KAAO,IAAI,EAChEO,EAAoB,UAAQD,EAAO,CAAC,GAAI,CAAC,CAAC,EAC5CE,EAAY,MAAMD,EAAe,MAAM,EACxC,UAAQA,CAAc,GACrB9B,EAAAR,EAAO,KAAK,YAAZ,MAAAQ,EAAuB,QACzB+B,EAAY,MAAgBC,GAAQD,EAAWV,CAAO,GAC7CpB,EAAAT,EAAO,KAAK,OAAZ,MAAAS,EAAkB,UAC3B8B,EAAY,MAAWE,GAAYF,EAAWhB,EAAK,OAAQ1B,EAAS,GAEtE0B,EAAK,KAAYmB,GAAmBH,EAAWnB,EAAKC,EAAOC,EAAgBzB,EAAS,EACpF0B,EAAK,QAAUA,EAAK,KAAK,IAAKW,GAAO,CAACA,EAAG,IAAMnC,EAAM,MAAM,IAAM,GAAImC,EAAG,IAAMnC,EAAM,MAAM,IAAM,IAAKmC,EAAG,IAAM,GAAKhB,CAAI,CAAC,EACxH,QAAWiB,KAAO,OAAO,KAAYQ,EAAe,EAAGpB,EAAK,YAAYY,GAAcQ,GAAgBR,GAAK,IAAKS,IAAUrB,EAAK,KAAKqB,GAAM,EAC1IrB,EAAK,MAAQA,EAAK,UAClB,IAAMsB,EAAgB,CAAE,GAAQC,GAAiBvB,EAAK,KAAMH,CAAG,EAAG,WAAYA,EAAI,WAAY,UAAWA,EAAI,SAAU,EACvHG,EAAK,IAAWS,GAASa,EAAe9C,CAAK,EAC7CwB,EAAK,OAAcU,GAAUY,EAAe9C,CAAK,EAQjDiB,EAAS,KAAK6B,CAAa,CAC7B,CACG,UAAQhB,CAAO,CACpB,KAlEgC,CAC9BN,EAAK,IAAWS,GAASZ,EAAKrB,CAAK,EACnCwB,EAAK,OAAcU,GAAUb,EAAKrB,CAAK,EACvCwB,EAAK,MAAQA,EAAK,SAClBA,EAAK,KAAOH,EAAI,UAAU,IAAKc,GAAO,EAClCd,EAAI,WAAW,GAAKA,EAAI,SAAS,IAAO,GAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAMc,EAAG,GAAehB,GAAK,GAC5GE,EAAI,WAAW,GAAKA,EAAI,SAAS,IAAO,GAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAMc,EAAG,GAAehB,GAAK,CAChH,CAAC,EACDK,EAAK,QAAUA,EAAK,KAAK,IAAKW,GAAO,CAACA,EAAG,IAAMnC,EAAM,MAAM,IAAM,GAAImC,EAAG,IAAMnC,EAAM,MAAM,IAAM,IAAKmC,EAAG,IAAM,GAAKhB,CAAI,CAAC,EACxH,QAAWiB,KAAO,OAAO,KAAYC,EAAkB,EACrDb,EAAK,YAAYY,GAAO,CAACZ,EAAK,KAAYa,GAAmBD,GAAe,CAEhF,CAuDIZ,EAAK,SAASb,EAAAV,EAAO,KAAK,WAAZ,YAAAU,EAAsB,gBAAiB,GAAIK,EAAM,KAAKQ,CAAI,EACpE,UAAQA,EAAK,MAAM,CAC7B,CACA,OAAA5B,GAAM,MAAQqB,EACPD,CACT,CAEA,eAAsBgC,GAAK/C,EAAqC,CAtJhE,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAuJE,OAAIsB,EAAI,UAAShC,EAAQ,QACrBK,EAAAD,EAAO,KAAK,YAAZ,YAAAC,EAAuB,WAAWL,GAAA,YAAAA,EAAQ,YACxC,OAAO,OAAKM,EAAAN,GAAA,YAAAA,EAAQ,YAAR,YAAAM,EAAsB,UAAW,CAAC,CAAC,EAAE,OAAS,IAAGN,EAAQ,MAEtEA,EAGMI,EAAO,OAChB2B,EAAI,gBAAiB/B,EAAM,QAAW,GAHlCO,EAAAH,EAAO,KAAK,YAAZ,MAAAG,EAAuB,QAASP,EAAQ,MAAMoD,EAAUhD,EAAO,KAAK,UAAU,SAAS,EACtFJ,EAAQ,MAAMoD,GAAU5C,EAAAJ,EAAO,KAAK,OAAZ,YAAAI,EAAkB,SAAS,EAI1DP,GAAaD,EAAM,YAAeS,EAAAT,GAAA,YAAAA,EAAO,SAAP,YAAAS,EAAgB,GAAG,QAASC,EAAAV,GAAA,YAAAA,EAAO,SAAP,YAAAU,EAAgB,GAAG,MAAM,GAAK,IACrFV,CACT,CAEO,IAAMqD,GAAuBC,GACvBC,GAAeC,GClJ5B,IAAIC,GACEC,GAKA,CAAC,EAEHC,GAAW,EACXC,GAAY,EACZC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAhChE,IAAAC,EAiCE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,cAAZ,YAAAC,EAAyB,SAAS,EAE/DP,EACT,CAEO,SAASW,GAAQC,EAAe,CACrC,IAAMC,EAAUD,EAAM,OAASA,EAAM,QAAUA,EAC/C,GAAI,EAACZ,IAAA,MAAAA,GAAO,OAAO,GAAG,OAAO,OAAOa,EACpC,IAAMC,EAAkB,QAAM,eAAeD,EAAQ,CAACb,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EAC1Ge,EAAkB,MAAID,EAAME,EAAU,KAAK,EACjD,OAAG,UAAQF,CAAI,EACRC,CAkBT,CAEA,eAAsBE,GAAQC,EAAeZ,EAAgBa,EAAaC,EAAiC,CAjE3G,IAAAb,EAAAc,EAAAC,EAAAC,EAkEE,GAAI,EAACvB,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAE,IAAK,EAAG,OAAQ,UAAW,YAAa,EAAG,WAAY,CAAC,CAAE,EAC7F,IAAMwB,EAAYpB,MAAWG,EAAAD,EAAO,KAAK,cAAZ,YAAAC,EAAyB,aAAc,GAC9DkB,KAAYJ,EAAAf,EAAO,KAAK,cAAZ,YAAAe,EAAyB,WAAY,GAAMK,EAAI,EAAIxB,GACrE,OAAII,EAAO,aAAekB,GAAaC,GAAatB,KAAciB,KAAUE,EAAArB,GAAKkB,KAAL,YAAAG,EAAW,QAAQC,EAAAtB,GAAKkB,KAAL,YAAAI,EAAW,KAAM,GAC9GnB,KACOH,GAAKkB,KAEdf,GAAU,EACH,IAAI,QAAQ,MAAOuB,GAAY,CA1ExC,IAAApB,EA2EI,IAAMqB,EAAM,CACV,IAAK,EACL,OAAQ,UACR,YAAa,EACb,WAAY,CAAC,CACf,EAEA,IAAIrB,EAAAD,EAAO,KAAK,cAAZ,MAAAC,EAAyB,QAAS,CACpC,IAAMsB,EAAWlB,GAAQO,CAAK,EACxBY,EAAO9B,IAAA,YAAAA,GAAO,QAAQ6B,GAC5B3B,GAAWwB,EAAI,EACZ,UAAQG,CAAQ,EAEnB,IAAME,EAAS,MADCD,EAAK,KAAME,GAAMA,EAAE,MAAM,KAAO,CAAC,EACpB,KAAK,EAC5BC,EAAa,KAAK,MAAM,IAAM,KAAK,IAAKF,EAAO,GAAK,EAAI,CAAC,EAAI,IAC/DE,GAAc3B,EAAO,KAAK,YAAY,eAAiB,KACzDsB,EAAI,OAASG,EAAO,IAAM,GAAM,SAAW,OAC3CH,EAAI,YAAc,KAAK,IAAI,IAAMK,CAAU,GAE7C,IAAMC,EAAY,SAAOJ,EAAK,KAAME,GAAMA,EAAE,MAAM,KAAO,GAAG,EAAG,CAAC,EAC1DG,GAAe,MAAMD,EAAO,KAAK,GAAG,GACvC,UAAQA,CAAM,EAEjB,IAAME,EAAM,MADCN,EAAK,KAAME,GAAMA,EAAE,MAAM,KAAO,GAAG,EACzB,KAAK,EAC5BJ,EAAI,IAAM,KAAK,MAAMQ,EAAID,EAAM,GAAKC,EAAID,EAAM,GAAK,GAAKA,EAAM,IAAMC,EAAID,EAAM,GAAK,GAAKA,EAAM,IAAMC,EAAID,EAAM,EAAE,EAAI,GAEpH,IAAME,EAAOP,EAAK,KAAME,GAAMA,EAAE,MAAM,KAAO,IAAI,EAG3CM,EAAaD,EAAO,MAAMA,EAAK,KAAK,EAAI,CAAC,EAC/CT,EAAI,WAAa,MAAM,KAAKU,CAAU,EACtCR,EAAK,QAASE,GAAS,UAAQA,CAAC,CAAC,CACnC,CACA/B,GAAKkB,GAAOS,EACZzB,GAAYiB,EACZO,EAAQC,CAAG,CACb,CAAC,EACH,CC7GO,SAASW,GAAWC,EAAK,CAC9B,MAAO,CACL,KAAK,IAAIA,EAAI,SAAS,GAAKA,EAAI,WAAW,EAAE,EAC5C,KAAK,IAAIA,EAAI,SAAS,GAAKA,EAAI,WAAW,EAAE,CAC9C,CACF,CAEO,SAASC,GAAaD,EAAK,CAChC,MAAO,CACLA,EAAI,WAAW,IAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAM,EAC5DA,EAAI,WAAW,IAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAM,CAC9D,CACF,CAEO,SAASE,GAAyBF,EAAKG,EAAOC,EAAU,CAC7D,IAAMC,EAAIF,EAAM,MAAM,GAChBG,EAAIH,EAAM,MAAM,GAChBI,EAAQ,CAAC,CACbP,EAAI,WAAW,GAAKK,EACpBL,EAAI,WAAW,GAAKM,EACpBN,EAAI,SAAS,GAAKK,EAClBL,EAAI,SAAS,GAAKM,CACpB,CAAC,EACD,OAAU,QAAM,cAAcH,EAAOI,EAAO,CAAC,CAAC,EAAGH,CAAQ,CAC3D,CAEO,SAASI,GAAoBR,EAAKS,EAAQ,CAC/C,IAAMC,EAAa,CAACV,EAAI,WAAW,GAAKS,EAAO,GAAIT,EAAI,WAAW,GAAKS,EAAO,EAAE,EAC1EE,EAAW,CAACX,EAAI,SAAS,GAAKS,EAAO,GAAIT,EAAI,SAAS,GAAKS,EAAO,EAAE,EACpEG,EAAgBZ,EAAI,cAAc,IAAKa,GACvB,CAACA,EAAM,GAAKJ,EAAO,GAAII,EAAM,GAAKJ,EAAO,EAAE,CAEhE,EACD,MAAO,CAAE,WAAAC,EAAY,SAAAC,EAAU,cAAAC,EAAe,WAAYZ,EAAI,UAAW,CAC3E,CAEO,SAASc,GAAWd,EAAKS,EAAS,IAAK,CAC5C,IAAMM,EAASd,GAAaD,CAAG,EACzBgB,EAAOjB,GAAWC,CAAG,EACrBiB,EAAc,CAACR,EAASO,EAAK,GAAK,EAAGP,EAASO,EAAK,GAAK,CAAC,EACzDN,EAAa,CAACK,EAAO,GAAKE,EAAY,GAAIF,EAAO,GAAKE,EAAY,EAAE,EACpEN,EAAW,CAACI,EAAO,GAAKE,EAAY,GAAIF,EAAO,GAAKE,EAAY,EAAE,EACxE,MAAO,CAAE,WAAAP,EAAY,SAAAC,EAAU,cAAeX,EAAI,aAAc,CAClE,CAEO,SAASkB,GAAYlB,EAAK,CAC/B,IAAMmB,EAAUlB,GAAaD,CAAG,EAC1BgB,EAAOjB,GAAWC,CAAG,EAErBoB,EADU,KAAK,IAAI,GAAGJ,CAAI,EACL,EACrBN,EAAa,CAACS,EAAQ,GAAKC,EAAUD,EAAQ,GAAKC,CAAQ,EAC1DT,EAAW,CAACQ,EAAQ,GAAKC,EAAUD,EAAQ,GAAKC,CAAQ,EAC9D,MAAO,CAAE,WAAAV,EAAY,SAAAC,EAAU,cAAeX,EAAI,aAAc,CAClE,CAaO,SAASqB,GAAiBC,EAAO,CACtC,OAAOA,EAAQ,EAAI,KAAK,GAAK,KAAK,OAAOA,EAAQ,KAAK,KAAO,EAAI,KAAK,GAAG,CAC3E,CAEO,SAASC,GAAgBC,EAAQC,EAAQ,CAC9C,IAAMC,EAAU,KAAK,GAAK,EAAI,KAAK,MAAM,EAAED,EAAO,GAAKD,EAAO,IAAKC,EAAO,GAAKD,EAAO,EAAE,EACxF,OAAOH,GAAiBK,CAAO,CACjC,CAEO,IAAMC,GAAyB,CAACC,EAAGC,IAAM,CAAC,CAAC,EAAG,EAAGD,CAAC,EAAG,CAAC,EAAG,EAAGC,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAEzE,SAASC,GAAIC,EAAIC,EAAI,CAC1B,IAAIC,EAAU,EACd,QAASC,EAAI,EAAGA,EAAIH,EAAG,OAAQG,IAC7BD,GAAWF,EAAGG,GAAKF,EAAGE,GAExB,OAAOD,CACT,CAEO,SAASE,GAAmBC,EAAKC,EAAa,CACnD,IAAMC,EAAmB,CAAC,EAC1B,QAASJ,EAAI,EAAGA,EAAIE,EAAI,OAAQF,IAC9BI,EAAO,KAAKF,EAAIF,GAAGG,EAAY,EAEjC,OAAOC,CACT,CAEO,SAASC,GAA0BC,EAAMC,EAAM,CACpD,IAAMR,EAAsB,CAAC,EACvBS,EAAOF,EAAK,OAClB,QAASG,EAAM,EAAGA,EAAMD,EAAMC,IAAO,CACnCV,EAAQ,KAAK,CAAC,CAAC,EACf,QAASW,EAAM,EAAGA,EAAMF,EAAME,IAC5BX,EAAQU,GAAK,KAAKb,GAAIU,EAAKG,GAAMR,GAAmBM,EAAMG,CAAG,CAAC,CAAC,CAEnE,CACA,OAAOX,CACT,CAEO,SAASY,GAAoBC,EAAUC,EAAQ,CACpD,IAAMC,EAAO,KAAK,IAAIF,CAAQ,EACxBG,EAAO,KAAK,IAAIH,CAAQ,EACxBI,EAAiB,CAAC,CAACF,EAAM,CAACC,EAAM,CAAC,EAAG,CAACA,EAAMD,EAAM,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAC9DG,EAAoBxB,GAAuBoB,EAAO,GAAIA,EAAO,EAAE,EAC/DK,EAA2Bb,GAA0BY,EAAmBD,CAAc,EACtFG,EAA4B1B,GAAuB,CAACoB,EAAO,GAAI,CAACA,EAAO,EAAE,EAC/E,OAAOR,GAA0Ba,EAA0BC,CAAyB,CACtF,CAEO,SAASC,GAAsBC,EAAQ,CAC5C,IAAMC,EAAoB,CAAC,CAACD,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EAAG,CAACA,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,CAAC,EAC/EE,EAAuB,CAACF,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EAClDG,EAAsB,CAC1B,CAAC5B,GAAI0B,EAAkB,GAAIC,CAAoB,EAC/C,CAAC3B,GAAI0B,EAAkB,GAAIC,CAAoB,CACjD,EACA,MAAO,CACLD,EAAkB,GAAG,OAAOE,EAAoB,EAAE,EAClDF,EAAkB,GAAG,OAAOE,EAAoB,EAAE,EAClD,CAAC,EAAG,EAAG,CAAC,CACV,CACF,CAEO,SAASC,GAAYC,EAAuBV,EAAgB,CACjE,MAAO,CACLpB,GAAI8B,EAAuBV,EAAe,EAAE,EAC5CpB,GAAI8B,EAAuBV,EAAe,EAAE,CAC9C,CACF,CCpIO,IAAMW,GAAU,CACrB,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,CACzB,ECz3FO,IAAMC,GAAN,KAAmB,CAQxB,YAAYC,EAAmB,CAP/BC,EAAA,cACAA,EAAA,gBACAA,EAAA,sBACAA,EAAA,kBACAA,EAAA,wBACAA,EAAA,8BAnBF,IAAAC,EAAAC,EAAAC,EAAAC,EAsBI,KAAK,MAAQL,EACb,KAAK,QAAkBM,GAAQ,IAAKC,GAAW,CAACA,EAAO,EAAGA,EAAO,CAAC,CAAC,EACnE,KAAK,cAAmB,WAAS,KAAK,OAAO,EAC7C,KAAK,YAAYF,GAAAD,GAAAD,GAAAD,EAAA,uBAAM,QAAN,YAAAA,EAAa,SAAb,YAAAC,EAAsB,KAAtB,YAAAC,EAA0B,QAA1B,YAAAC,EAAkC,KAAM,EACzD,KAAK,gBAAqB,WAAS,CAAC,KAAK,UAAW,KAAK,SAAS,CAAC,EACnE,KAAK,sBAA2B,WAAS,CAAC,KAAK,UAAY,EAAG,KAAK,UAAY,CAAC,CAAC,CACnF,CAEA,eAAeG,EAAO,CACpB,IAAMC,EAA4B,CAAC,EACnCA,EAAE,WAAgB,QAAMD,EAAO,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC9CC,EAAE,SAAc,QAAMD,EAAO,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC5CC,EAAE,IAAS,MAAIA,EAAE,WAAY,KAAK,eAAe,EACjDA,EAAE,gBAAqB,MAAIA,EAAE,IAAK,KAAK,aAAa,EACpDA,EAAE,aAAkB,MAAIA,EAAE,SAAU,KAAK,qBAAqB,EAC9DA,EAAE,IAAS,MAAIA,EAAE,gBAAiBA,EAAE,YAAY,EAChDA,EAAE,YAAiB,MAAIA,EAAE,IAAK,KAAK,eAAe,EAClDA,EAAE,IAAS,MAAIA,EAAE,gBAAiBA,EAAE,YAAY,EAChDA,EAAE,UAAe,MAAIA,EAAE,IAAK,KAAK,eAAe,EAChD,IAAMC,EAAS,WAAS,CAACD,EAAE,YAAaA,EAAE,SAAS,EAAG,CAAC,EACvD,cAAO,KAAKA,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,EACjDD,CACT,CAEA,mBAAmBE,EAAkBC,EAAe,CAClD,IAAMJ,EAA4B,CAAC,EACnCA,EAAE,QAAa,UAAQG,EAAkB,CAAC,GAAI,EAAG,CAAC,CAAC,EACnDH,EAAE,IAAS,MAAIA,EAAE,QAAS,KAAK,eAAe,EAC9CA,EAAE,UAAe,MAAIA,EAAE,IAAK,KAAK,QAAQI,GAAS,KAAK,QAAQA,GAAS,CAAC,EACzE,IAAMH,EAAS,MAAID,EAAE,UAAW,KAAK,eAAe,EACpD,cAAO,KAAKA,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,EACjDD,CACT,CAEA,MAAM,QAAQI,EAAeC,EAA+G,CAxD9I,IAAAb,EAyDI,IAAMO,EAA4B,CAAC,EACnCA,EAAE,OAAY,QAAM,eAAeK,EAAO,CAAC,KAAK,UAAW,KAAK,SAAS,CAAC,EAC1EL,EAAE,IAAS,MAAIA,EAAE,OAAQO,EAAU,KAAK,EACxCP,EAAE,MAAW,MAAIA,EAAE,IAAKO,EAAU,GAAG,EACrCP,EAAE,QAAU,KAAK,MAAM,QAAQA,EAAE,KAAK,EACtCA,EAAE,YAAiB,UAAQA,EAAE,OAAO,EACpCA,EAAE,MAAW,QAAMA,EAAE,YAAa,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EACjDA,EAAE,QAAa,UAAQA,EAAE,KAAK,EAC9BA,EAAE,OAAY,UAAQA,EAAE,OAAO,EAC/B,IAAMQ,EAAS,MAAMR,EAAE,OAAO,KAAK,EACnCA,EAAE,MAAW,QAAMA,EAAE,YAAa,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EACjDA,EAAE,KAAO,KAAK,eAAeA,EAAE,KAAK,EAEpCA,EAAE,IAAM,MAAS,QAAM,uBAAuBA,EAAE,KAAMA,EAAE,OAAQ,KAAKP,EAAAa,EAAO,OAAP,YAAAb,EAAa,cAAe,GAAIa,EAAO,KAAK,aAAcA,EAAO,KAAK,aAAa,EACxJ,IAAMG,EAAM,MAAMT,EAAE,IAAI,MAAM,EACxBU,EAA8F,CAAC,EACrG,QAAWN,KAASK,EAAK,CACvB,IAAME,EAA4B,CAAC,EACnCA,EAAE,IAAS,QAAMX,EAAE,KAAM,CAACI,EAAO,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EAC5CO,EAAE,MAAW,QAAMX,EAAE,YAAa,CAACI,EAAO,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EACrDO,EAAE,KAAO,KAAK,mBAAmBA,EAAE,MAAOP,CAAK,EAC/CO,EAAE,cAAmB,UAAQA,EAAE,KAAM,CAAC,GAAI,CAAC,CAAC,EAC5C,IAAMC,EAAM,MAAMD,EAAE,IAAI,KAAK,EACvBE,EAAaD,EAAI,MAAM,EAAG,CAAC,EAC3BE,EAAWF,EAAI,MAAM,EAAG,CAAC,EACzBG,EAAgB,MAAMJ,EAAE,cAAc,MAAM,EAC5CK,EAAO,CAAE,WAAAH,EAAY,SAAAC,EAAU,cAAAC,EAAe,WAAYP,EAAOJ,EAAO,EACxEa,EAAcC,GAAoBF,EAAM,EAAEX,EAAM,MAAM,IAAM,GAAK,KAAK,WAAYA,EAAM,MAAM,IAAM,GAAK,KAAK,SAAS,CAAC,EAC9HK,EAAM,KAAKO,CAAM,EACjB,OAAO,KAAKN,CAAC,EAAE,QAAST,GAAc,UAAQS,EAAET,EAAO,CAAC,CAC1D,CACA,cAAO,KAAKF,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,EACjDQ,CACT,CACF,EC7EA,IAAMS,GAAuB,EACvBC,GAAuB,KACvBC,GAAkB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,CAAC,EACxCC,GAAwB,EACxBC,GAAgC,EAClCC,GAAW,EAEFC,GAAN,KAAmB,CAQxB,YAAYC,EAAcC,EAAe,CAPzCC,EAAA,qBACAA,EAAA,sBACAA,EAAA,kBACAA,EAAA,oBACAA,EAAA,gBACAA,EAAA,sBA3BF,IAAAC,EAAAC,EAAAC,EA8BI,KAAK,aAAeL,EACpB,KAAK,cAAgBC,EACrB,KAAK,YAAYI,GAAAD,GAAAD,EAAA,KAAK,gBAAL,YAAAA,EAAoB,SAApB,YAAAC,EAA6B,GAAG,QAAhC,YAAAC,EAAwC,KAAM,EAC/D,KAAK,YAAc,CAAC,EACpB,KAAK,QAAU,OAAO,iBACtB,KAAK,cAAgB,CACvB,CAEA,8BAA8BC,EAAW,CACvC,IAAMC,EAAKD,EAAU,IAAKE,GAAMA,EAAE,EAAE,EAC9BC,EAAKH,EAAU,IAAKE,GAAMA,EAAE,EAAE,EAC9BE,EAAa,CAAC,KAAK,IAAI,GAAGH,CAAE,EAAG,KAAK,IAAI,GAAGE,CAAE,CAAC,EAC9CE,EAAW,CAAC,KAAK,IAAI,GAAGJ,CAAE,EAAG,KAAK,IAAI,GAAGE,CAAE,CAAC,EAClD,MAAO,CAAE,WAAAC,EAAY,SAAAC,CAAS,CAChC,CAEA,uBAAuBC,EAAeC,EAAgB,CACpD,IAAMC,EAAuBF,EAAc,IAAKG,GAAeC,GAAY,CAAC,GAAGD,EAAO,CAAC,EAAGF,CAAc,CAAC,EACnGI,EAAgB,KAAK,8BAA8BH,CAAoB,EAC7E,OAAYI,GAAgBC,GAAYF,CAAa,EAAGxB,EAAoB,CAC9E,CAEA,uBAAuBa,EAAW,CAChC,IAAMc,EAAc,KAAK,8BAA8Bd,CAAS,EAC1De,EAAqBH,GAAgBC,GAAYC,CAAW,EAAG1B,EAAoB,EACzF2B,EAAc,cAAgB,CAAC,EAC/B,QAASC,EAAI,EAAGA,EAAI3B,GAAgB,OAAQ2B,IAC1CD,EAAc,cAAc,KAAKf,EAAUX,GAAgB2B,IAAI,MAAM,EAAG,CAAC,CAAC,EAE5E,OAAOD,CACT,CAEA,mBAAmBE,EAAWC,EAAMC,EAAOZ,EAAgB,CACzD,IAAMa,EAAeC,GAAWH,CAAI,EAC9BI,EAAc,CAACF,EAAQ,GAAK,KAAK,UAAWA,EAAQ,GAAK,KAAK,WAAYA,EAAQ,GAAKA,EAAQ,IAAM,KAAK,UAAY,CAAC,EACvHG,EAAeN,EAAU,IAAKR,GAAU,CAC5Ca,EAAY,IAAMb,EAAM,GAAK,KAAK,UAAY,GAC9Ca,EAAY,IAAMb,EAAM,GAAK,KAAK,UAAY,GAC9Ca,EAAY,GAAKb,EAAM,EACzB,CAAC,EACKe,EAA4BC,GAAoBN,EAAO,CAAC,EAAG,CAAC,CAAC,EAC7DO,EAAgBH,EAAa,IAAKd,GAE/B,CAAC,GADaC,GAAYD,EAAOe,CAAoB,EACxCf,EAAM,EAAE,CAC7B,EACKkB,EAA6BC,GAAsBrB,CAAc,EACjEsB,EAAY,CAAC,GAAQC,GAAaZ,CAAI,EAAG,CAAC,EAC1Ca,EAAoB,CACnBC,GAAIH,EAAWF,EAAsB,EAAE,EACvCK,GAAIH,EAAWF,EAAsB,EAAE,CAC9C,EACA,OAAOD,EAAc,IAAKjB,GAAU,CAClC,KAAK,MAAMA,EAAM,GAAKsB,EAAkB,EAAE,EAC1C,KAAK,MAAMtB,EAAM,GAAKsB,EAAkB,EAAE,EAC1C,KAAK,MAAMtB,EAAM,EAAE,CACrB,CAAC,CACH,CAEA,MAAM,cAAcwB,EAAOC,EAAQ,CACjC,IAAIC,EAAc,GAGdC,EACEC,GAAYH,EAAO,KAAK,UAAY,GAAMI,EAAI,EAAI9C,GAClD+C,EAAY,KAAK,SAAWL,EAAO,KAAK,YAAc,GACxDA,EAAO,aAAeG,GAAYE,IACpCH,EAAQ,MAAM,KAAK,aAAa,QAAQH,EAAOC,CAAM,EACrD,KAAK,QAAU,GAEbA,EAAO,aAAa,KAAK,UAGzBE,GAAUA,EAAM,OAAS,IAAQA,EAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkBF,EAAO,KAAK,aAAgB,CAACA,EAAO,KAAK,aAC5I,KAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAGE,CAAK,EAExB,KAAK,YAAY,OAAS,IAAGD,EAAc,KAEjD,IAAMK,EAAoJ,CAAC,EAG3J,QAASxB,EAAI,EAAGA,EAAI,KAAK,YAAY,OAAQA,IAAK,CAChD,IAAMyB,EAAa,KAAK,YAAYzB,GACpC,GAAI,EAACyB,EACL,GAAIP,EAAO,KAAK,UAAW,CACzB,IAAMf,EAAQe,EAAO,KAAK,SAAgBQ,GAAgBD,EAAW,cAAcnD,IAAwBmD,EAAW,cAAclD,GAA8B,EAAI,EAChKoD,EAAkBb,GAAaW,CAAU,EACzCG,EAAuB,CAACD,EAAW,GAAKV,EAAM,MAAM,GAAIU,EAAW,GAAKV,EAAM,MAAM,EAAE,EACtFY,EAAeX,EAAO,KAAK,UAAYY,EAAI,QAAQ,SAAS,kBAAkB,EAAO,QAAM,iBAAiBb,EAAOd,EAAO,EAAGyB,CAAoB,EAAIX,EAAM,MAAM,EACjK1B,EAAsBkB,GAAoB,CAACN,EAAOwB,CAAU,EAC5DI,EAASZ,EAAc,KAAK,uBAAuBM,EAAW,cAAelC,CAAc,EAAIkC,EAC/FO,EAAoBC,GAAyBF,EAAQF,EAAc,CAAC,KAAK,UAAW,KAAK,SAAS,CAAC,EACnGK,EAAe,MAAIF,EAAcG,EAAU,KAAK,EACnD,UAAQH,CAAY,EACpB,UAAQH,CAAY,EACvB,GAAM,CAACO,EAAaC,CAAS,EAAI,KAAK,cAAc,QAAQH,CAAS,EACrE1D,GAAW8C,EAAI,EACZ,UAAQY,CAAS,EACpB,IAAMI,GAAc,MAAMF,EAAY,KAAK,GAAG,GAE9C,GADG,UAAQA,CAAW,EAClBE,GAAcpB,EAAO,KAAK,cAAgB,EAAG,CAC/C,IAAMqB,EAAuB,UAAQF,EAAW,CAAC,GAAI,CAAC,CAAC,EACjDpC,EAAY,MAAMsC,EAAkB,MAAM,EAC7C,UAAQF,CAAS,EACjB,UAAQE,CAAiB,EAC5B,IAAMC,EAAS,KAAK,mBAAmBvC,EAAW8B,EAAQ5B,EAAOZ,CAAc,EACzEkD,EAAkB,KAAK,uBAAuBD,CAAM,EAC1D,KAAK,YAAYxC,GAAK,CAAE,GAAGyC,EAAiB,WAAAH,CAAW,EACvD,IAAMI,EAAS,CACb,UAAWF,EACX,WAAAF,EACA,cAAeb,EAAW,WAC1B,iBAAkBa,EAClB,IAAK,CAAE,QAASG,EAAgB,WAAY,YAAaA,EAAgB,QAAS,CACpF,EACAjB,EAAM,KAAKkB,CAAM,CACnB,MACE,KAAK,YAAY1C,GAAK,KAErB,UAAQqC,CAAS,CACtB,KAAO,CAEL,IAAMM,EAAgB/C,GAAgBC,GAAY4B,CAAU,EAAGrD,EAAoB,EAC7EsE,EAAS,CACb,WAAYjB,EAAW,WACvB,cAAeA,EAAW,WAC1B,iBAAkB,EAClB,IAAK,CAAE,QAASkB,EAAS,WAAY,YAAaA,EAAS,QAAS,EACpE,UAAW,CAAC,CACd,EACAnB,EAAM,KAAKkB,CAAM,CACnB,CACF,CACA,YAAK,YAAc,KAAK,YAAY,OAAQE,GAAMA,IAAM,IAAI,EAC5D,KAAK,cAAgBpB,EAAM,OACvBA,EAAM,OAASN,EAAO,KAAK,cAAaM,EAAM,OAASN,EAAO,KAAK,aAChEM,CACT,CACF,ECnKO,IAAMqB,GAAS,CACpB,MAAO,EACP,MAAO,EACP,OAAQ,EACR,KAAM,EACN,MAAO,EACP,IAAK,CAAC,EAAG,EAAG,EAAG,EAAG,CAAC,EACnB,YAAa,CAAE,EAAG,QAAS,EAAG,QAAS,EAAG,SAAU,EAAG,OAAQ,EAAG,OAAQ,EAQ1E,cAAe,CACb,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAClC,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAClC,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,CAAC,EACvC,EAAG,CAAC,CAAC,EAAG,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,CAAC,EACzC,EAAG,CAAC,CAAC,EAAG,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,CAAC,CAC3C,EACA,QAAUC,GAAUD,GAAO,YAAYC,GACvC,UAAYA,GAAUD,GAAO,cAAcC,EAC7C,EAEaC,GAAa,CACxB,KAAM,EACN,KAAM,EACN,KAAM,EACN,YAAa,CAAE,EAAG,OAAQ,EAAG,OAAQ,EAAG,MAAO,EAC/C,QAAUD,GAAUC,GAAW,YAAYD,EAC7C,EAEaE,EAAkB,CAC7B,WAAY,EACZ,aAAc,EACd,eAAgB,EAChB,gBAAiB,EACjB,gBAAiB,EACjB,eAAgB,EAChB,kBAAmB,EACnB,iBAAkB,EAClB,YAAa,CAAE,EAAG,aAAc,EAAG,eAAgB,EAAG,iBAAkB,EAAG,kBAAmB,EAAG,kBAAmB,EAAG,iBAAkB,EAAG,oBAAqB,EAAG,kBAAmB,EACvL,QAAUF,GAAUE,EAAgB,YAAYF,EAClD,EAEaG,GAAN,KAAoB,CAOzB,YAAYC,EAAM,CANlBC,EAAA,aACAA,EAAA,cACAA,EAAA,mBACAA,EAAA,gBACAA,EAAA,wBAIE,KAAK,KAAOD,EACZ,KAAK,MAAQ,CAAC,EACd,KAAK,WAAa,CAAC,EACnB,KAAK,QAAU,CAAC,EAAK,EAAK,EAAK,EAAK,CAAG,EACvC,KAAK,gBAAkB,CAAC,EAAK,EAAK,EAAK,EAAK,CAAG,CACjD,CAEA,KAAKE,EAAQC,EAAMC,EAAY,CACzB,OAAO,KAAK,MAAMF,IAAY,cAAa,KAAK,MAAMA,GAAU,CAAC,GACrE,KAAK,MAAMA,GAAQ,KAAK,CAACC,EAAMC,CAAU,CAAC,CAC5C,CAEA,UAAUF,EAAQG,EAAUD,EAAY,CACjC,KAAK,WAAWF,KAAS,KAAK,WAAWA,GAAU,CAAC,GACzD,KAAK,WAAWA,GAAQ,KAAK,CAACG,EAAUD,CAAU,CAAC,CACrD,CAEA,OAAOF,EAAQI,EAAQ,CACrB,KAAK,QAAQJ,GAAUI,EAEvB,IAAMC,EAAQ,KAAK,QAAQ,OAAO,CAACC,EAAGC,IAAMD,EAAIC,EAAG,CAAC,EACpD,KAAK,gBAAkB,KAAK,QAAQ,IAAKC,GAAOA,EAAK,EAAIH,CAAK,CAChE,CAEA,aAAaI,EAAeC,EAAoB,CAC9C,IAAIR,EAAa,EAGjB,QAAWS,KAAaF,EAAe,CACrC,IAAMG,EAAeH,EAAcE,GAC7BE,EAAgB,KAAK,MAAMF,GACjC,GAAI,OAAOE,GAAkB,YAAa,CAGxCX,GAAc,KAAK,gBAAgBS,GACnC,QACF,CAEA,OAAW,CAACG,EAAcC,CAAK,IAAKF,EAClC,GAAID,IAAiBE,EAAc,CACjCZ,GAAca,EAAQ,KAAK,gBAAgBJ,GAC3C,KACF,CAEJ,CAEA,QAAWA,KAAaD,EAAoB,CAC1C,IAAMM,EAAoBN,EAAmBC,GACvCM,EAAqB,KAAK,WAAWN,GAC3C,GAAI,OAAOM,GAAuB,YAAa,CAG7Cf,GAAc,KAAK,gBAAgBS,GACnC,QACF,CAEA,OAAW,CAACO,EAAmBH,CAAK,IAAKE,EACvC,GAAID,IAAsBE,EAAmB,CAC3ChB,GAAca,EAAQ,KAAK,gBAAgBJ,GAC3C,KACF,CAEJ,CACA,OAAOT,EAAa,EACtB,CACF,ECvHO,GAAM,CAAE,MAAAiB,GAAO,MAAAC,GAAO,OAAAC,GAAQ,KAAAC,GAAM,MAAAC,EAAM,EAAIC,GACxC,CAAE,KAAAC,GAAM,KAAAC,GAAM,KAAAC,EAAK,EAAIC,GACvB,CAAE,WAAAC,GAAY,aAAAC,GAAc,eAAAC,GAAgB,gBAAAC,GAAiB,gBAAAC,GAAiB,eAAAC,GAAgB,kBAAAC,GAAmB,iBAAAC,EAAiB,EAAIC,EAG7IC,GAAW,IAAIC,GAAc,WAAW,EAC9CD,GAAS,KAAKnB,GAAOM,GAAM,CAAG,EAC9Ba,GAAS,UAAUnB,GAAOU,GAAY,CAAG,EACzCS,GAAS,UAAUnB,GAAOe,GAAgB,GAAI,EAC9CI,GAAS,UAAUnB,GAAOc,GAAiB,GAAI,EAC/C,QAAWO,IAAU,CAAChB,GAAO,MAAOA,GAAO,OAAQA,GAAO,KAAMA,GAAO,KAAK,EAC1Ec,GAAS,KAAKE,EAAQb,GAAM,CAAG,EAC/BW,GAAS,UAAUE,EAAQT,GAAgB,CAAG,EAC9CO,GAAS,UAAUE,EAAQR,GAAiB,CAAG,EAIjD,IAAMS,EAAU,IAAIF,GAAc,SAAS,EAC3CE,EAAQ,KAAKtB,GAAOO,GAAM,EAAG,EAC7Be,EAAQ,KAAKtB,GAAOM,GAAM,EAAG,EAC7BgB,EAAQ,UAAUtB,GAAOU,GAAY,CAAG,EACxCY,EAAQ,UAAUtB,GAAOe,GAAgB,CAAG,EAC5CO,EAAQ,KAAKrB,GAAOK,GAAM,CAAG,EAC7BgB,EAAQ,UAAUrB,GAAOS,GAAY,GAAI,EACzCY,EAAQ,UAAUrB,GAAOc,GAAgB,CAAG,EAC5CO,EAAQ,KAAKpB,GAAQI,GAAM,CAAG,EAC9BgB,EAAQ,UAAUpB,GAAQQ,GAAY,CAAG,EACzCY,EAAQ,UAAUpB,GAAQa,GAAgB,GAAI,EAC9CO,EAAQ,KAAKnB,GAAMK,GAAM,CAAG,EAC5Bc,EAAQ,UAAUnB,GAAMO,GAAY,EAAG,EACvCY,EAAQ,UAAUnB,GAAMY,GAAgB,CAAG,EAC3CO,EAAQ,UAAUnB,GAAMS,GAAgB,EAAG,EAC3CU,EAAQ,KAAKlB,GAAOI,GAAM,CAAG,EAC7Bc,EAAQ,UAAUlB,GAAOM,GAAY,EAAG,EACxCY,EAAQ,UAAUlB,GAAOW,GAAgB,CAAG,EAC5CO,EAAQ,UAAUlB,GAAOQ,GAAgB,EAAG,EAC5CU,EAAQ,OAAOrB,GAAO,CAAC,EACvBqB,EAAQ,OAAOpB,GAAQ,CAAC,EAGxB,IAAMqB,GAAQ,IAAIH,GAAc,OAAO,EACvCG,GAAM,KAAKvB,GAAOQ,GAAM,CAAG,EAC3Be,GAAM,KAAKtB,GAAOK,GAAM,EAAG,EAC3BiB,GAAM,KAAKrB,GAAQM,GAAM,EAAG,EAC5Be,GAAM,KAAKpB,GAAMK,GAAM,EAAG,EAC1Be,GAAM,KAAKnB,GAAOI,GAAM,EAAG,EAC3Be,GAAM,OAAOtB,GAAO,CAAC,EACrBsB,GAAM,OAAOrB,GAAQ,CAAC,EAGtB,IAAMsB,GAAe,IAAIJ,GAAc,eAAe,EACtDI,GAAa,KAAKxB,GAAOM,GAAM,CAAG,EAClCkB,GAAa,KAAKvB,GAAOO,GAAM,EAAG,EAClCgB,GAAa,KAAKtB,GAAQM,GAAM,EAAG,EACnCgB,GAAa,KAAKrB,GAAMK,GAAM,EAAG,EACjCgB,GAAa,KAAKpB,GAAOI,GAAM,EAAG,EAClCgB,GAAa,OAAOvB,GAAO,CAAC,EAC5BuB,GAAa,OAAOtB,GAAQ,CAAC,EAG7B,IAAMuB,GAAW,IAAIL,GAAc,WAAW,EAC9CK,GAAS,KAAKzB,GAAOM,GAAM,GAAI,EAC/BmB,GAAS,KAAKxB,GAAOK,GAAM,GAAI,EAC/BmB,GAAS,KAAKvB,GAAQI,GAAM,GAAI,EAChCmB,GAAS,KAAKtB,GAAMG,GAAM,GAAI,EAC9BmB,GAAS,KAAKrB,GAAOE,GAAM,GAAI,EAE/B,IAAOoB,GAAQ,CAACP,GAAUG,EAASC,GAAOC,GAAcC,EAAQ,EC/DhE,IAAME,GAAgB,GAChBC,GAAU,CAEd,sBAAuB,GACvB,oBAAqB,IAErB,oBAAqB,IACrB,wBAAyB,GACzB,uBAAwB,GAC1B,EAEA,SAASC,GAAeC,EAASC,EAASC,EAASC,EAAS,CAC1D,IAAMC,GAASH,EAAUE,IAAYH,EAAUE,GAC3CG,EAAQ,KAAK,KAAKD,CAAK,EAAI,IAAM,KAAK,GAC1C,OAAIC,GAAS,EAAGA,EAAQ,CAACA,EAChBA,EAAQ,IAAGA,EAAQ,IAAMA,GAC3BA,CACT,CAIA,SAASC,GAAUC,EAAQC,EAAQ,CACjC,GAAI,CAACD,GAAU,CAACC,EAAQ,MAAO,CAAC,EAAG,CAAC,EACpC,IAAMC,EAAUV,GAAeQ,EAAO,GAAIA,EAAO,GAAIC,EAAO,GAAIA,EAAO,EAAE,EACzE,GAAID,EAAO,SAAW,EAAG,OAAOE,EAChC,IAAMC,EAAUX,GAAeQ,EAAO,GAAIA,EAAO,GAAIC,EAAO,GAAIA,EAAO,EAAE,EACzE,MAAO,CAACC,EAASC,CAAO,CAC1B,CAEA,SAASC,GAAmBC,EAAOC,EAAc,EAAK,CACpD,IAAIC,EAAa,EACbC,EAAa,EACbC,EAAe,EACnB,OAAIJ,GAAS,IAAQA,GAAS,IAAOE,EAAa,EAAID,EAC7CD,GAAS,IAAQA,GAAS,IAAOG,EAAa,EAAIF,EACtDG,EAAe,EAAIH,EACjB,CAACC,EAAYC,EAAYC,CAAY,CAC9C,CAEA,SAASC,GAAmBC,EAAYC,EAAUC,EAAU,CAC1D,IAAMC,EAAmBH,EAAW,GAAKC,EAAS,GAC5CG,EAAmBJ,EAAW,GAAKE,EAAS,GAC5CG,EAAiBJ,EAAS,GAAKC,EAAS,GACxCI,EAAmBN,EAAW,GAAKC,EAAS,GAC5CM,EAAmBP,EAAW,GAAKE,EAAS,GAC5CM,EAAiBP,EAAS,GAAKC,EAAS,GACxCO,EAAmBT,EAAW,GAAKC,EAAS,GAC5CS,EAAmBV,EAAW,GAAKE,EAAS,GAC5CS,EAAiBV,EAAS,GAAKC,EAAS,GACxCU,EAAiB,KAAK,KAAKT,EAAmBA,EAAmBG,EAAmBA,EAAmBG,EAAmBA,CAAgB,EAC1II,EAAiB,KAAK,KAAKT,EAAmBA,EAAmBG,EAAmBA,EAAmBG,EAAmBA,CAAgB,EAC1II,EAAe,KAAK,KAAKT,EAAiBA,EAAiBG,EAAiBA,EAAiBG,EAAiBA,CAAc,EAC9HI,GAAUD,EAAeA,EAAeF,EAAiBA,EAAiBC,EAAiBA,IAAmB,EAAIC,EAAeF,GACjIG,EAAS,EAAKA,EAAS,EAClBA,EAAS,KAAMA,EAAS,IACjC,IAAIC,EAAe,KAAK,KAAKD,CAAM,EACnCC,EAAgB,QAAUA,EAAgB,IAC1C,IAAIC,EACJ,OAAID,EAAepC,GAAQ,oBAAqBqC,EAAaC,GAAW,KAC/DF,EAAepC,GAAQ,sBAAuBqC,EAAaC,GAAW,KAC1ED,EAAaC,GAAW,KACtBD,CACT,CAEA,SAASE,GAA4Bf,EAAkBD,EAAkBE,EAAgBe,EAAY,CACnG,IAAIC,EACJ,OAAID,IAAe,KAAK,IAAIhB,CAAgB,EACtCA,EAAmB,EAAGiB,EAAqBC,EAAgB,eAC1DD,EAAqBC,EAAgB,gBACjCF,IAAe,KAAK,IAAIjB,CAAgB,EAC7CA,EAAmB,EAAGkB,EAAqBC,EAAgB,eAC1DD,EAAqBC,EAAgB,gBAEtCjB,EAAiB,EAAGgB,EAAqBC,EAAgB,eACxDD,EAAqBC,EAAgB,gBAErCD,CACT,CAEA,SAASE,GAA0BhB,EAAkBD,EAAkBE,EAAgBgB,EAAY,CACjG,IAAIH,EACJ,OAAIG,IAAe,KAAK,IAAIjB,CAAgB,EACtCA,EAAmB,EAAGc,EAAqBC,EAAgB,aAC1DD,EAAqBC,EAAgB,WACjCE,IAAe,KAAK,IAAIlB,CAAgB,EAC7CA,EAAmB,EAAGe,EAAqBC,EAAgB,aAC1DD,EAAqBC,EAAgB,WAEtCd,EAAiB,EAAGa,EAAqBC,EAAgB,aACxDD,EAAqBC,EAAgB,WAErCD,CACT,CAEA,SAASI,GAA0BlB,EAAkBD,EAAkBE,EAAgBgB,EAAYpB,EAAkBD,EAAkBE,EAAgBe,EAAY,CACjK,IAAIC,EACEK,EAA0BH,GAA0BhB,EAAkBD,EAAkBE,EAAgBgB,CAAU,EAClHG,EAA4BR,GAA4Bf,EAAkBD,EAAkBE,EAAgBe,CAAU,EAC5H,OAAIM,IAA4BJ,EAAgB,WAC1CK,IAA8BL,EAAgB,eAAgBD,EAAqBC,EAAgB,eAClGD,EAAqBC,EAAgB,gBAEtCK,IAA8BL,EAAgB,eAAgBD,EAAqBC,EAAgB,iBAClGD,EAAqBC,EAAgB,kBAErCD,CACT,CAEA,SAASO,GAAyB5B,EAAYC,EAAUC,EAAU2B,EAAc,CAC9E,IAAM1B,EAAmBH,EAAW,GAAKC,EAAS,GAC5CG,EAAmBJ,EAAW,GAAKE,EAAS,GAC5CG,EAAiBJ,EAAS,GAAKC,EAAS,GACxCI,EAAmBN,EAAW,GAAKC,EAAS,GAC5CM,EAAmBP,EAAW,GAAKE,EAAS,GAC5CM,EAAiBP,EAAS,GAAKC,EAAS,GACxCkB,EAAa,KAAK,IAAI,KAAK,IAAIjB,CAAgB,EAAG,KAAK,IAAIC,CAAgB,EAAG,KAAK,IAAIC,CAAc,CAAC,EACtGmB,EAAa,KAAK,IAAI,KAAK,IAAIlB,CAAgB,EAAG,KAAK,IAAIC,CAAgB,EAAG,KAAK,IAAIC,CAAc,CAAC,EACxGsB,EAAe,EACfC,EAAe,EACfC,EAAiB,EACfC,EAA2BT,GAAcJ,EAAa,MACxDa,EAA2B,IAAKH,GAAgBlD,GAAQ,oBACnDqD,EAA2B,IAAMF,GAAgBnD,GAAQ,oBAC7DoD,GAAkBpD,GAAQ,oBAC/B,IAAMgC,EAAiB,KAAK,KAAKT,EAAmBA,EAAmBG,EAAmBA,CAAgB,EACpGO,EAAiB,KAAK,KAAKT,EAAmBA,EAAmBG,EAAmBA,CAAgB,EACpGO,EAAe,KAAK,KAAKT,EAAiBA,EAAiBG,EAAiBA,CAAc,EAC1F0B,EAAW,KAAK,IAAItB,EAAgBC,EAAgBC,CAAY,EAClEqB,EAAqBnC,EAAW,GAChCoC,EAAqBpC,EAAW,GAChCqC,EAAmBnC,EAAS,GAC5BoC,EAAmBpC,EAAS,GAC5BgC,IAAatB,GACfyB,EAAmBnC,EAAS,GAC5BoC,EAAmBpC,EAAS,IACnBgC,IAAapB,IACtBqB,EAAqBlC,EAAS,GAC9BmC,EAAqBnC,EAAS,IAIhC,IAAMsC,EAAanD,GAFI,CAAC+C,EAAoBC,CAAkB,EACzC,CAACC,EAAkBC,CAAgB,CACC,EACnDE,EAAQ/C,GAAmB8C,EAAY3D,GAAQ,sBAAsB,EAC3EkD,GAAgBU,EAAM,GACtBT,GAAgBS,EAAM,GACtBR,GAAkBQ,EAAM,GACxB,QAAWC,KAAeZ,EAAc,CACtC,IAAMa,EAAcjD,GAAmBgD,EAAa7D,GAAQ,uBAAuB,EACnFkD,GAAgBY,EAAY,GAC5BX,GAAgBW,EAAY,GAC5BV,GAAkBU,EAAY,EAChC,CAGA,IAAIrB,EACJ,OAAIS,IAAiB,KAAK,IAAIA,EAAcC,EAAcC,CAAc,EACtEX,EAAqBE,GAA0BhB,EAAkBD,EAAkBE,EAAgBgB,CAAU,EACpGQ,IAAmB,KAAK,IAAID,EAAcC,CAAc,EACjEX,EAAqBF,GAA4Bf,EAAkBD,EAAkBE,EAAgBe,CAAU,EAE/GC,EAAqBI,GAA0BlB,EAAkBD,EAAkBE,EAAgBgB,EAAYpB,EAAkBD,EAAkBE,EAAgBe,CAAU,EAExKC,CACT,CAEA,SAASsB,GAASC,EAAW,CAE3B,IAAMC,EAAuB,CAAC,EACxBC,EAAuB,CAAC,EACxBC,EAAwB,CAAC,EACzBC,EAA6B,CAAC,EACpC,GAAI,CAACJ,EAAW,MAAO,CAAE,MAAOG,EAAa,WAAYC,CAAiB,EAG1E,QAAWC,KAAUC,GAAO,IAAK,CAC/B,IAAMC,EAASD,GAAO,UAAUD,CAAM,EAChCG,EAAsB,CAAC,EACvBC,EAAsB,CAAC,EAC7B,QAAWC,KAASH,EAAQ,CAC1B,IAAM9D,EAASuD,EAAUU,EAAM,IACzBhE,EAASsD,EAAUU,EAAM,IAEzBC,EAASnE,GAAUC,EAAQC,CAAM,EACjCC,EAAUgE,EAAO,GACjB/D,EAAU+D,EAAO,GACvBH,EAAU,KAAK7D,CAAO,EACtB8D,EAAU,KAAK7D,CAAO,CACxB,CACAqD,EAAS,KAAKO,CAAS,EACvBN,EAAS,KAAKO,CAAS,CACzB,CAGA,QAAWJ,KAAUC,GAAO,IAAK,CAE/B,IAAMM,EAAgBP,IAAWC,GAAO,MAAS,EAAI,EAC/CO,EAAiBP,GAAO,UAAUD,CAAM,EACxCjD,EAAa4C,EAAUa,EAAeD,GAAc,IACpDvD,EAAW2C,EAAUa,EAAeD,EAAe,GAAG,IACtDtD,EAAW0C,EAAUa,EAAe,GAAG,IAEvCC,EAAe3D,GAAmBC,EAAYC,EAAUC,CAAQ,EAChEyD,EAAiB/B,GAAyB5B,EAAYC,EAAUC,EAAU2C,EAASI,GAAQ,MAAMO,CAAY,CAAC,EACpHT,EAAYE,GAAUS,EACtBV,EAAiBC,GAAUU,CAC7B,CACA,MAAO,CAAE,MAAOZ,EAAa,WAAYC,CAAiB,CAC5D,CAEO,SAASY,GAAQC,EAAW,CACjC,GAAI,CAACA,GAAaA,EAAU,SAAW,EAAG,OAAO,KACjD,IAAMC,EAAenB,GAASkB,CAAS,EACjCjB,EAAY,CAAC,EACnB,QAAWmB,KAAab,GAAO,IAC7BN,EAAUM,GAAO,QAAQa,CAAS,GAAK,CACrC,KAAM7C,GAAW,QAAQ4C,EAAa,MAAMC,EAAU,EACtD,UAAWzC,EAAgB,QAAQwC,EAAa,WAAWC,EAAU,CACvE,EAEF,OAAOnB,CACT,CAEO,SAASoB,GAAMH,EAAW,CAC/B,IAAMI,EAAgD,CAAC,EACvD,GAAI,CAACJ,GAAaA,EAAU,SAAW,EAAG,OAAOI,EACjD,IAAMH,EAAenB,GAASkB,CAAS,EACvC,QAAWK,KAAWC,GAAU,CAC9B,IAAMC,EAAaF,EAAQ,aAAaJ,EAAa,MAAOA,EAAa,UAAU,EAC/EM,GAAczF,IAAesF,EAAM,KAAK,CAAE,KAAMC,EAAQ,KAAM,WAAAE,CAAW,CAAC,CAChF,CACA,OAAOH,CACT,CClOA,IAAMI,GAAkB,CACtB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,OAAQ,CAAC,EAAG,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,GAAI,GAAI,GAAI,EAAE,EACrB,MAAO,CAAC,GAAI,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,CAAC,CACV,EAEIC,GACAC,GACAC,GAEJ,eAAsBC,GAAQC,EAAeC,EAAuC,CAClF,IAAMC,EAAc,MAAMJ,GAAa,cAAcE,EAAOC,CAAM,EAClE,GAAI,CAACC,EAAa,MAAO,CAAC,EAC1B,IAAMC,EAAsB,CAAC,EAC7B,QAASC,EAAI,EAAGA,EAAIF,EAAY,OAAQE,IAAK,CAC3C,IAAMC,EAAc,CAAC,EACrB,GAAIH,EAAYE,GAAG,UACjB,QAAWE,KAAO,OAAO,KAAKX,EAAe,EAC3CU,EAAYC,GAAOX,GAAgBW,GAAK,IAAKC,GAAUL,EAAYE,GAAG,UAAUG,EAAM,EAG1F,IAAMC,EAAYN,EAAYE,GAAG,UAC7BK,EAAW,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,CAAC,EAClEC,EAAc,CAAC,EAAG,EAAG,EAAG,CAAC,EAC7B,GAAIF,GAAaA,EAAU,OAAS,EAAG,CACrC,QAAWG,KAAMH,EACXG,EAAG,GAAKF,EAAI,KAAIA,EAAI,GAAKE,EAAG,IAC5BA,EAAG,GAAKF,EAAI,KAAIA,EAAI,GAAKE,EAAG,IAC5BA,EAAG,GAAKF,EAAI,KAAIA,EAAI,GAAKE,EAAG,IAC5BA,EAAG,GAAKF,EAAI,KAAIA,EAAI,GAAKE,EAAG,IAElCF,EAAI,IAAMA,EAAI,GACdA,EAAI,IAAMA,EAAI,GACdC,EAAS,CAACD,EAAI,IAAMT,EAAM,MAAM,IAAM,GAAIS,EAAI,IAAMT,EAAM,MAAM,IAAM,GAAIS,EAAI,IAAMT,EAAM,MAAM,IAAM,GAAIS,EAAI,IAAMT,EAAM,MAAM,IAAM,EAAE,CAC1I,MACES,EAAMP,EAAYE,GAAG,IAAM,CACzB,KAAK,MAAM,KAAK,IAAI,EAAGF,EAAYE,GAAG,IAAI,QAAQ,EAAE,CAAC,EACrD,KAAK,MAAM,KAAK,IAAI,EAAGF,EAAYE,GAAG,IAAI,QAAQ,EAAE,CAAC,EACrD,KAAK,MAAM,KAAK,IAAKJ,EAAM,MAAM,IAAM,EAAIE,EAAYE,GAAG,IAAI,YAAY,EAAE,EAAI,KAAK,IAAI,EAAGF,EAAYE,GAAG,IAAI,QAAQ,EAAE,CAAC,EAC1H,KAAK,MAAM,KAAK,IAAKJ,EAAM,MAAM,IAAM,EAAIE,EAAYE,GAAG,IAAI,YAAY,EAAE,EAAI,KAAK,IAAI,EAAGF,EAAYE,GAAG,IAAI,QAAQ,EAAE,CAAC,CAC5H,EAAI,CAAC,EAAG,EAAG,EAAG,CAAC,EACfM,EAAS,CACNR,EAAYE,GAAG,IAAI,QAAQ,IAAOJ,EAAM,MAAM,IAAM,GACpDE,EAAYE,GAAG,IAAI,QAAQ,IAAOJ,EAAM,MAAM,IAAM,IACpDE,EAAYE,GAAG,IAAI,YAAY,GAAKF,EAAYE,GAAG,IAAI,QAAQ,KAAOJ,EAAM,MAAM,IAAM,IACxFE,EAAYE,GAAG,IAAI,YAAY,GAAKF,EAAYE,GAAG,IAAI,QAAQ,KAAOJ,EAAM,MAAM,IAAM,EAC3F,EAEF,IAAMY,EAAuBC,GAAQL,CAAS,EAC9CL,EAAM,KAAK,CACT,GAAIC,EACJ,MAAO,KAAK,MAAM,IAAMF,EAAYE,GAAG,UAAU,EAAI,IACrD,SAAU,KAAK,MAAM,IAAMF,EAAYE,GAAG,aAAa,EAAI,IAC3D,YAAa,KAAK,MAAM,IAAMF,EAAYE,GAAG,gBAAgB,EAAI,IACjE,MAAO,OACP,IAAAK,EACA,OAAAC,EACA,UAAAF,EACA,YAAaH,EACb,UAAWO,CACb,CAAC,CACH,CACA,OAAOT,CACT,CAEA,eAAsBW,GAAKb,EAAiE,CApF5F,IAAAc,EAAAC,EAqFMC,EAAI,UACNrB,GAAoB,KACpBC,GAAgB,MAEd,CAACD,IAAqB,CAACC,GACzB,CAACD,GAAmBC,EAAa,EAAI,MAAM,QAAQ,IAAI,CACrDI,EAAO,KAAK,QAAUiB,GAAUH,EAAAd,EAAO,KAAK,WAAZ,YAAAc,EAAsB,SAAS,EAAI,KACnEd,EAAO,KAAK,UAAYiB,GAAUF,EAAAf,EAAO,KAAK,WAAZ,YAAAe,EAAsB,SAAS,EAAI,IACvE,CAAC,GAEGf,EAAO,OAAOkB,EAAI,gBAAiBvB,GAAkB,QAAW,EAChEK,EAAO,OAAOkB,EAAI,gBAAiBtB,GAAc,QAAW,GAElE,IAAMuB,EAAexB,GAAoB,IAAiByB,GAAazB,EAAiB,EAAI,OAC5F,OAAIwB,GAAgBvB,KAAeC,GAAe,IAAiBwB,GAAaF,EAAcvB,EAAa,GACpG,CAACD,GAAmBC,EAAa,CAC1C,CC3FO,IAAM0B,EAAS,CACpB,KAAM,UACN,SAAU,IACV,OAAQ,KACR,GAAI,KACJ,WAAY,CAAC,EACb,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,EAClB,CACF,EAEA,SAASC,IAAmB,CAK1B,IAAMC,EAAKF,EAAO,GACd,CAACE,IACLF,EAAO,WAAaE,EAAG,uBAAuB,EAEhD,CAOO,SAASC,GAASC,EAAuB,CA5ChD,IAAAC,EA8CE,GAAID,EAAS,OAAO,UAAY,YAC3BJ,EAAO,QAAW,SAAO,EAAE,UAAa,GAACK,EAAAL,GAAA,YAAAA,EAAQ,KAAR,MAAAK,EAAY,aAAaL,EAAO,GAAG,YAC/EM,EAAI,wCAAwC,EACrCC,GAAMH,CAAQ,GAOnB,CAAI,cAAYJ,EAAO,IAAI,GAAG,CAChC,GAAI,CACFA,EAAO,OAAeQ,GAAO,IAAK,GAAG,CACvC,OAASC,EAAP,CACAH,EAAI,+BAAgCG,CAAG,EACvC,MACF,CACA,GAAI,CAEF,GADAT,EAAO,GAAKA,EAAO,OAAO,WAAW,SAAUA,EAAO,SAAS,EAC3D,CAACA,EAAO,GAAI,CACdM,EAAI,iCAAiC,EACrC,MACF,CAEA,GAAI,CADSN,EAAO,GAAG,aAAaA,EAAO,GAAG,OAAO,EAAE,SAAS,KAAK,EAC1D,CACTM,EAAI,qEAAqE,EACzEF,EAAS,OAAO,QAAU,QAC1B,MACF,CACIJ,EAAO,SACTA,EAAO,OAAO,iBAAiB,mBAAqBU,GAAM,CACxD,MAAAJ,EAAI,kBAAmBI,EAAE,IAAI,EAC7BJ,EAAI,0FAA0F,EAC9FF,EAAS,KAAK,OAAO,EACf,IAAI,MAAM,mCAAmC,CAMrD,CAAC,EACDJ,EAAO,OAAO,iBAAiB,uBAAyBU,GAAM,CAC5DJ,EAAI,mCAAoCI,CAAC,CAC3C,CAAC,EACDV,EAAO,OAAO,iBAAiB,4BAA8BU,GAAM,CACjEJ,EAAI,iCAAkCI,CAAC,CACzC,CAAC,EAEL,OAASD,EAAP,CACAH,EAAI,mCAAoCG,CAAG,EAC3C,MACF,CACA,GAAI,CACC,kBAAgB,EAAGT,EAAO,EAAE,CACjC,OAASS,EAAP,CACAH,EAAI,mCAAoCG,CAAG,EAC3C,MACF,CACA,GAAI,CACF,IAAME,EAAM,IAAO,eAAaX,EAAO,EAAE,EACtC,kBAAgBA,EAAO,KAAM,IAAM,IAAO,mBAAiBW,CAAG,EAAGX,EAAO,QAAQ,CACrF,OAASS,EAAP,CACAH,EAAI,wCAAyCG,CAAG,EAChD,MACF,CACA,GAAI,CACiB,uBAAqB,OAAO,EACvC,QAASG,GAAiB,CAChC,IAAMC,EAAkB,CAAE,GAAGD,EAAc,YAAaZ,EAAO,IAAK,EACjE,iBAAea,CAAe,CACnC,CAAC,CACH,OAASJ,EAAP,CACAH,EAAI,mDAAoDG,CAAG,EAC3D,MACF,CACA,IAAMK,EAAa,UAAQ,EAAE,gBAAqB,UAAQ,EAAE,gBAAgB,EAAE,GAAK,KACnF,GAAIA,EACFR,EAAI,yBAAyBQ,EAAQ,aAAaA,EAAQ,OAAO,cAAwBA,EAAQ,aAAaA,EAAQ,QAAQ,GAAa,MACtI,CACLR,EAAI,gCAAiCQ,EAASd,EAAO,EAAE,EACvD,MACF,CACA,GAAI,CACK,MAAI,EAAE,aAAa,eAAkB,MAAI,EAAE,IAAI,gBAAiB,CAAC,CAC1E,OAASS,EAAP,CACAH,EAAI,yCAA0CG,CAAG,EACjD,MACF,CACAR,GAAW,EACXK,EAAI,sBAAuBN,EAAO,IAAI,CACxC,CACF,CChIA,SAASe,GAAkBC,EAAgB,CACzC,GAAI,CAACC,EAAI,QAAQ,SAAS,KAAK,EAAG,CAChC,IAAMC,EAAY,CAChB,WAAY,MACZ,YAAgB,aAAW,EAC3B,WAAaC,GAAU,OAAK,IAAS,MAAIA,EAAG,OAAO,EAAM,MAAO,MAAIA,EAAG,OAAO,EAAGA,EAAG,OAAO,CAAC,EAAGA,EAAG,OAAO,CAAC,CAAC,CAAC,CAC9G,EACIH,EAAO,OAAOI,EAAI,qBAAsB,KAAK,EAC9C,iBAAeF,CAAS,EAC3BD,EAAI,QAAQ,KAAK,KAAK,CACxB,CACA,GAAI,CAACA,EAAI,QAAQ,SAAS,UAAU,EAAG,CACrC,IAAMI,EAAiB,CACrB,WAAY,WACZ,YAAgB,aAAW,EAC3B,WAAaF,GAAU,OAAK,IAAS,MAAO,MAAO,WAASA,EAAG,OAAO,EAAIA,EAAG,OAAO,CAAC,EAAGA,EAAG,OAAO,CAAC,EAAM,MAAIA,EAAG,OAAO,EAAGA,EAAG,OAAO,CAAC,CAAC,CAAC,CACzI,EACIH,EAAO,OAAOI,EAAI,qBAAsB,UAAU,EACnD,iBAAeC,CAAc,EAChCJ,EAAI,QAAQ,KAAK,UAAU,CAC7B,CAoBA,GAAI,CAACA,EAAI,QAAQ,SAAS,kBAAkB,GAAKD,EAAO,gBAAiB,CACvE,IAAMM,EAAyB,CAC7B,WAAY,mBACZ,YAAgB,aAAW,EAC3B,WAAaH,GAAU,OAAK,IAAM,CAChC,IAAMI,EAAa,aAAW,EAC3B,aAAW,KAAK,EACnB,IAAMC,EAAO,QAAM,iBAAiBL,EAAG,OAAO,MAAOA,EAAG,MAAM,QAASA,EAAG,MAAM,UAAWA,EAAG,MAAM,MAAM,EAC1G,OAAG,aAAWI,CAAO,EACdC,CACT,CAAC,CACH,EACIR,EAAO,OAAOI,EAAI,qBAAsB,kBAAkB,EAC3D,iBAAeE,CAAsB,EACxCL,EAAI,QAAQ,KAAK,kBAAkB,CACrC,CACF,CAEA,eAAsBQ,GAAMC,EAAiBC,EAAQ,GAAO,CAE1D,GADAD,EAAS,MAAQ,UACbC,GAASV,EAAI,SAAYS,EAAS,OAAO,SAAYA,EAAS,OAAO,QAAQ,OAAS,GAAU,aAAW,IAAMA,EAAS,OAAO,QAAW,CAC9I,IAAME,EAAYC,EAAI,EAEtB,GAAIH,EAAS,OAAO,SAAWA,EAAS,OAAO,QAAQ,OAAS,EAAG,CAkBjE,GAfI,OAAO,QAAW,aAAe,OAAO,mBAAsB,aAAeA,EAAS,OAAO,OAC3FA,EAAS,OAAO,OAAON,EAAI,2BAA2B,EAIxDH,EAAI,SAAWS,EAAS,OAAO,UAAY,eACzCA,EAAS,OAAO,OAAON,EAAI,8DAA8D,EAC7FM,EAAS,OAAO,QAAU,WAExBT,EAAI,OAASS,EAAS,OAAO,UAAY,SAAWA,EAAS,OAAO,UAAY,aAC9EA,EAAS,OAAO,OAAON,EAAI,4BAA4BM,EAAS,OAAO,iCAAiC,EAC5GA,EAAS,OAAO,QAAU,cAIxBT,EAAI,SAAWS,EAAS,OAAO,UAAY,SAC7C,GAAI,OAAO,WAAc,aAAe,OAAO,UAAU,KAAQ,YAC/DN,EAAI,qEAAqE,EACzEM,EAAS,OAAO,QAAU,cACrB,CACL,IAAMI,EAAU,MAAM,UAAU,IAAI,eAAe,EAEnD,GADIJ,EAAS,OAAO,OAAON,EAAI,6BAA8BU,CAAO,EAChE,CAACA,EACHV,EAAI,sEAAsE,EAC1EM,EAAS,OAAO,QAAU,cACrB,CAEL,IAAMK,EAAc,uBAAwBD,EAAU,MAAOA,EAAuB,mBAAmB,EAAI,OAE3GV,EAAI,uBAAwBW,CAAW,CACzC,CACF,CAIEL,EAAS,OAAO,UAAY,WAAmBM,GAASN,CAAQ,EACpE,IAAMO,EAAY,OAAO,KAAQ,SAAO,EAAE,eAA0C,EAYpF,GAXIP,EAAS,OAAO,OAAON,EAAI,sBAAuBa,CAAS,EAE1DA,EAAU,SAASP,EAAS,OAAO,OAAO,IAC7CN,EAAI,kBAAkBM,EAAS,OAAO,+BAA+B,EACrEA,EAAS,OAAO,QAAUT,EAAI,KAAO,aAAe,QAChDS,EAAS,OAAO,OAAON,EAAI,6BAA6BM,EAAS,OAAO,SAAS,GAGnFA,EAAS,OAAO,OAAON,EAAI,mBAAoBM,EAAS,OAAO,OAAO,EAGtEA,EAAS,OAAO,UAAY,OAAQ,CAGtC,GAFO,MAAI,EAAE,aAAa,+BAAkC,MAAI,EAAE,IAAI,gCAAiC,EAAI,EACvGA,EAAS,OAAO,OAAON,EAAI,aAAcM,EAAS,OAAO,QAAQ,EACjE,OAAU,gBAAiB,YAAgB,eAAaA,EAAS,OAAO,SAAUA,EAAS,OAAO,iBAAiB,MAClH,OAAM,IAAI,MAAM,wEAAwE,EAC7F,IAAIQ,EAAK,GACLC,EAAO,GACX,GAAI,CACFD,EAAK,MAAS,MAAI,EAAE,SAAS,8BAA8B,EAC3DC,EAAO,MAAS,MAAI,EAAE,SAAS,uBAAuB,EAClDT,EAAS,OAAO,OAAON,EAAI,mBAAmBe,EAAO,OAAS,aAAaD,EAAK,gBAAkB,kBAAkB,EACpHR,EAAS,OAAO,OAAS,CAACS,GAAMf,EAAI,2CAA2C,CACrF,OAAQgB,EAAN,CACAhB,EAAI,uBAAuB,CAC7B,CACF,CAEA,GAAI,CACF,MAAS,aAAWM,EAAS,OAAO,OAAO,EAC3C,MAAS,QAAM,EACLW,GAAK,CACjB,OAASC,EAAP,CACA,OAAAlB,EAAI,6BAA8BM,EAAS,OAAO,QAASY,CAAG,EACvD,EACT,CACF,CAGA,GAAO,aAAW,IAAM,YACf,MAAI,EAAE,aAAa,8BAAiC,MAAI,EAAE,IAAI,+BAAgC,EAAK,EACnG,MAAI,EAAE,aAAa,mBAAsB,MAAI,EAAE,IAAI,oBAAqB,EAAI,EAC5E,MAAI,EAAE,aAAa,2BAA8B,MAAI,EAAE,IAAI,4BAA6B,EAAI,EAC5F,MAAI,EAAE,aAAa,4BAA+B,MAAI,EAAE,IAAI,6BAA8B,GAAG,EAC7F,MAAI,EAAE,aAAa,gBAAmB,MAAI,EAAE,IAAI,iBAAkB,EAAI,EACtE,MAAI,EAAE,aAAa,sBAAyB,MAAI,EAAE,IAAI,uBAAwB,EAAI,EAGrF,OAAOZ,EAAS,OAAO,YAAe,aAAeA,EAAS,OAAO,aACvEN,EAAI,kDAAmD,EAAI,EACxD,MAAI,EAAE,IAAI,iCAAkC,CAAC,GAE3C,UAAQ,EAAE,iBAAiB,CAChC,IAAMmB,EAAK,MAAS,UAAQ,EAAE,gBAAgB,EAAE,GAC5Cb,EAAS,OAAO,OAAON,EAAI,cAAcmB,EAAG,aAAaA,EAAG,OAAO,cAAwBA,EAAG,aAAaA,EAAG,QAAQ,GAAa,CACzI,CAIK,aAAW,EAOf,iBAAe,EAClB,MAAS,QAAM,EAEfb,EAAS,YAAY,YAAc,KAAK,MAAMG,EAAI,EAAID,CAAS,EAC/DF,EAAS,OAAO,QAAa,aAAW,EAExC,MAAMT,EAAI,cAAc,EACxBF,GAAkBW,EAAS,MAAM,CAEnC,CACA,MAAO,EACT,CAGO,SAASc,GAAQC,EAAuBzB,EAAQ,CAErD,QAAW0B,KAAcD,EAAa,CACpC,IAAME,EAAe,CACnB,WAAAD,EACA,YAAa1B,EAAO,QACpB,WAAY,IAAM,CAAMA,EAAO,OAAOI,EAAI,aAAcsB,EAAY1B,EAAO,OAAO,CAAG,CAGvF,EACG,iBAAe2B,CAAY,CAChC,CACA1B,EAAI,QAAa,uBAAwB,aAAW,CAAC,EAAE,IAAK2B,GAAYA,EAAO,WAAsB,YAAY,CAAC,CACpH,CCzLA,IAAMC,EAAiD,CAAC,KAAM,IAAI,EAC5DC,GAAmB,CAAC,8CAA+C,oDAAoD,EAEvHC,GAAY,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAE3BC,GAAU,CAAC,OAAQ,OAAQ,QAAS,QAAS,OAAQ,MAAO,UAAU,EACtEC,GAAY,EAEZC,GAAgB,IAChBC,GAAwB,IACxBC,GAAqB,IAEvBC,GAAU,OAAO,iBACjBC,GAAW,EACXC,GAA+B,CAAC,EAAG,CAAC,EAUlCC,EAGF,CACF,MAAO,CAAC,EACR,MAAO,CAAC,CACV,EAEMC,GAAY,CAShB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,OAAQ,CAAC,EAAG,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,GAAI,GAAI,GAAI,EAAE,EACrB,MAAO,CAAC,GAAI,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,CAAC,EACR,KAAM,CAAC,EAAG,GAAI,GAAI,EAAG,EAAG,EAAG,CAAC,CAC9B,EAEA,eAAsBC,GAAWC,EAAqC,CAtEtE,IAAAC,EAyEE,GADIC,EAAI,UAAShB,EAAO,GAAK,MACxBA,EAAO,GAQDc,EAAO,OAAOG,EAAI,gBAAiBjB,EAAO,GAAG,QAAW,MARnD,CAGdkB,GAAQ,CAAC,oBAAqB,QAAS,uBAAwB,QAAS,WAAY,SAAU,OAAQ,kBAAmB,gBAAiB,oBAAqB,oBAAqB,aAAc,QAAS,QAAS,OAAO,EAAGJ,CAAM,EACpOd,EAAO,GAAK,MAAMmB,GAAUJ,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,SAAS,EAC3D,IAAMK,EAASpB,EAAO,GAAG,SAAc,OAAO,OAAOA,EAAO,GAAG,eAAe,MAAS,EAAI,OAC3FE,GAAU,GAAG,GAAK,MAAM,QAAQkB,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EACxFlB,GAAU,GAAG,GAAK,MAAM,QAAQkB,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CAC1F,CACA,OAAOpB,EAAO,EAChB,CAEA,eAAsBqB,GAAaP,EAAqC,CArFxE,IAAAC,EAuFE,GADIC,EAAI,UAAShB,EAAO,GAAK,MACxBA,EAAO,GAKDc,EAAO,OAAOG,EAAI,gBAAiBjB,EAAO,GAAG,QAAW,MALnD,CACdA,EAAO,GAAK,MAAMmB,GAAUJ,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,SAAS,EAC3D,IAAMK,EAASpB,EAAO,GAAG,SAAc,OAAO,OAAOA,EAAO,GAAG,eAAe,MAAS,EAAI,OAC3FE,GAAU,GAAG,GAAK,MAAM,QAAQkB,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EACxFlB,GAAU,GAAG,GAAK,MAAM,QAAQkB,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CAC1F,CACA,OAAOpB,EAAO,EAChB,CAQA,eAAesB,GAAYC,EAAeC,EAA6C,CACrF,IAAMC,EAA4B,CAAC,EACnC,GAAI,CAACF,GAAS,CAACG,EAAO,GAAI,OAAOD,EACjC,IAAME,EAA4B,CAAC,EAC7BC,GAASL,EAAM,MAAM,IAAM,IAAMA,EAAM,MAAM,IAAM,GACnDM,EAAS,KAAK,IAAI,KAAK,OAAON,EAAM,MAAM,IAAM,GAAK,CAAC,EAAI,EAAGO,EAAqB,EAClFC,EAAQ,KAAK,MAAMF,EAASD,EAAQ,CAAC,EAAI,EAC/CD,EAAE,OAAY,QAAM,eAAeJ,EAAO,CAACM,EAAQE,CAAK,CAAC,EACzDJ,EAAE,KAAU,OAAKA,EAAE,OAAQ,OAAO,EAClC,CAACA,EAAE,UAAWA,EAAE,QAAQ,EAAI,MAAMD,EAAO,GAAG,aAAaC,EAAE,KAAMK,EAAgB,EACjFL,EAAE,MAAW,UAAQA,EAAE,SAAU,CAAC,EAAG,CAAC,CAAC,EACvCA,EAAE,OAAY,UAAQA,EAAE,UAAW,CAAC,CAAC,CAAC,EACtC,IAAMM,EAA2B,UAAQN,EAAE,OAAQ,CAAC,EACjD,UAAQM,EAAYC,GAAU,EACjCD,EAAY,OAAOC,GAAW,CAAC,EAC/BP,EAAE,SAAc,QAAMM,EAAa,CAAC,EACjC,UAAQA,CAAW,EAEtBN,EAAE,IAAS,MAAIA,EAAE,SAAU,CAAC,EAC5BA,EAAE,OAAY,SAAOA,EAAE,SAAU,CAAC,EAClC,IAAIQ,EAAK,EACTR,EAAE,IAAM,MAAS,QAAM,uBAAuBA,EAAE,MAAOA,EAAE,KAAMH,EAAO,KAAK,aAAe,GAAK,EAAGA,EAAO,KAAK,cAAgB,EAAGA,EAAO,KAAK,eAAiB,CAAC,EAC/J,IAAMY,EAAM,MAAMT,EAAE,IAAI,KAAK,EACvBU,EAAS,MAAMV,EAAE,IAAI,KAAK,EAC1BW,EAAW,MAAMX,EAAE,OAAO,KAAK,EACrC,QAAWY,KAAY,MAAM,KAAKH,CAAG,EAAG,CACtC,IAAMI,EAAc,QAAMb,EAAE,MAAOY,EAAU,CAAC,EACxCE,EAAQ,MAAMD,EAAS,KAAK,EAC/B,UAAQA,CAAQ,EACnB,IAAME,EAAe,CAACD,EAAM,GAAIA,EAAM,GAAIA,EAAM,GAAKA,EAAM,GAAIA,EAAM,GAAKA,EAAM,EAAE,EAC5EE,EAAkBC,GAAMF,EAASG,EAAkB,EACnDC,EAAe,CAAC,KAAK,MAAMJ,EAAQ,GAAKK,GAAW,EAAE,EAAG,KAAK,MAAML,EAAQ,GAAKK,GAAW,EAAE,EAAG,KAAK,MAAML,EAAQ,GAAKK,GAAW,EAAE,EAAG,KAAK,MAAML,EAAQ,GAAKK,GAAW,EAAE,CAAC,EAC9KC,EAAQX,EAAOE,GACfU,EAAQC,GAAQZ,EAASC,IACzBY,EAAyB,CAAE,GAAIhB,IAAM,MAAAa,EAAO,IAAKF,EAAS,OAAAH,EAAQ,MAAAM,CAAM,EAC9ExB,EAAM,KAAK0B,CAAI,CACjB,CACA,cAAO,KAAKxB,CAAC,EAAE,QAASyB,GAAc,UAAQzB,EAAEyB,EAAO,CAAC,EACxD3B,EAAM,KAAK,CAAC4B,EAAGC,IAAMA,EAAE,MAAQD,EAAE,KAAK,EAClC5B,EAAM,QAAUD,EAAO,KAAK,aAAe,KAAIC,EAAM,OAAUD,EAAO,KAAK,aAAe,GACvFC,CACT,CAEA,eAAe8B,GAAchC,EAAeiC,EAAqBhC,EAAqC,CACpG,IAAM2B,EAAmB,CACvB,GAAIK,EAAE,GACN,MAAO,KAAK,MAAM,IAAMA,EAAE,KAAK,EAAI,IACnC,SAAU,KAAK,MAAM,IAAMA,EAAE,KAAK,EAAI,IACtC,YAAa,EACb,IAAKA,EAAE,IACP,OAAQA,EAAE,OACV,MAAOA,EAAE,MACT,UAAW,CAAC,EACZ,UAAW,CAAC,EACZ,YAAa,CAAC,CAChB,EACA,GAAIjC,GAASG,EAAO,IAAMF,EAAO,KAAK,WAAagC,EAAE,OAAShC,EAAO,KAAK,eAAiB,GAAI,CAC7F,IAAMG,EAA4B,CAAC,EAC7B8B,EAAU,CAACD,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAKA,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAKA,EAAE,OAAO,EAAE,EAC/F7B,EAAE,KAAU,QAAM,cAAcJ,EAAO,CAACkC,CAAO,EAAG,CAAC,CAAC,EAAG,CAACC,GAAU,GAAG,GAAIA,GAAU,GAAG,EAAE,EAAG,UAAU,EACrG/B,EAAE,IAAS,MAAIA,EAAE,KAAMgC,EAAU,KAAK,EACtC,CAAChC,EAAE,MAAOA,EAAE,SAAS,EAAID,EAAO,GAAG,QAAQC,EAAE,IAAK,CAAC,aAAc,UAAU,CAAC,EAC5E,IAAMiC,GAAY,MAAMjC,EAAE,MAAM,KAAK,GAAG,GAClCqB,GAAS,IAAM,KAAK,MAAM,KAAO,EAAI,KAAK,IAAIY,CAAQ,EAAE,GAAK,IACnE,GAAIZ,IAAUxB,EAAO,KAAK,eAAiB,GAAI,CAC7C2B,EAAK,YAAcH,EACnBrB,EAAE,SAAc,UAAQA,EAAE,UAAW,CAAC,GAAI,CAAC,CAAC,EAG5C,IAAMkC,GAFsB,MAAMlC,EAAE,SAAS,MAAM,GACb,IAAKmC,GAAQ,CAACA,EAAI,GAAKJ,GAAU,GAAG,GAAII,EAAI,GAAKJ,GAAU,GAAG,GAAKI,EAAI,IAAM,CAAE,CAAC,EAChF,IAAKA,GAAQ,CAACA,EAAI,GAAKN,EAAE,OAAO,GAAIM,EAAI,GAAKN,EAAE,OAAO,GAAKM,EAAI,IAAM,CAAE,CAAC,EAC9GX,EAAK,UAAaU,EAAY,IAAKC,GAAQ,CAACf,GAAW,IAAMe,EAAI,GAAKN,EAAE,OAAO,IAAKT,GAAW,IAAMe,EAAI,GAAKN,EAAE,OAAO,IAAMM,EAAI,IAAM,CAAE,CAAC,EAC1IX,EAAK,UAAuBY,GAAQZ,EAAK,SAAS,EAClD,QAAWa,KAAO,OAAO,KAAKC,EAAS,EACrCd,EAAK,YAAYa,GAAOC,GAAUD,GAAK,IAAKE,GAAmBf,EAAK,WAAaA,EAAK,UAAUe,GAASf,EAAK,UAAUe,GAAS,IAAK,CAE1I,CACA,OAAO,KAAKvC,CAAC,EAAE,QAASyB,GAAc,UAAQzB,EAAEyB,EAAO,CAAC,CAC1D,CACA,OAAOD,CACT,CAEA,eAAsBgB,GAAQ5C,EAAeC,EAAuC,CAvLpF,IAAA4C,EAAAC,EAwLE,GAAI,GAACD,EAAA1C,EAAO,KAAP,MAAA0C,EAAY,WAAe,GAACC,EAAA3C,EAAO,KAAP,MAAA2C,EAAY,WAAe,CAAC3C,EAAO,GAAG,OAAO,GAAG,OAAS,CAACA,EAAO,GAAG,OAAO,GAAG,MAAO,MAAO,CAAC,EAC9HqB,GAAa,CAACxB,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,EACtD+C,KACA,IAAMC,GAAY/C,EAAO,KAAK,UAAY,GAAMgD,EAAI,EAAIC,GAClDC,EAAYJ,IAAW9C,EAAO,KAAK,YAAc,GACvD,OAAIA,EAAO,aAAe+C,GAAYG,EAC7BC,EAAM,MAER,IAAI,QAAQ,MAAOC,GAAY,CACpC,IAAMC,EAAmB,GAAKrD,EAAO,KAAK,UAAY,GAAMgD,EAAI,EAAIC,GAC9DK,EAAoBR,GAAU,GAAK9C,EAAO,KAAK,YAAc,GAC/DA,EAAO,aAAemD,EAAM,MAAM,SAAWnD,EAAO,KAAK,YAC3DmD,EAAM,MAAQ,MAAM,QAAQ,IAAIA,EAAM,MAAM,IAAKI,GAAYxB,GAAchC,EAAOwD,EAASvD,CAAM,CAAC,CAAC,EAC1FA,EAAO,aAAeqD,GAAoBC,GAAqBH,EAAM,MAAM,OAAS,EAC7FA,EAAM,MAAQ,MAAM,QAAQ,IAAIA,EAAM,MAAM,IAAKI,GAAYxB,GAAchC,EAAOwD,EAASvD,CAAM,CAAC,CAAC,GAEnGmD,EAAM,MAAQ,MAAMrD,GAAYC,EAAOC,CAAM,EAC7CiD,GAAWD,EAAI,EACfG,EAAM,MAAQ,MAAM,QAAQ,IAAIA,EAAM,MAAM,IAAKI,GAAYxB,GAAchC,EAAOwD,EAASvD,CAAM,CAAC,CAAC,EACnG8C,GAAU,GAGZ,IAAMU,EAAW,CAAC,GAAGL,EAAM,KAAK,EAEhC,GADAA,EAAM,MAAM,OAAS,EACjBnD,EAAO,iBAAmB,EAC5B,QAASyD,EAAI,EAAGA,EAAIN,EAAM,MAAM,OAAQM,IAAK,CAC3C,IAAMC,EAAaC,GAAOR,EAAM,MAAMM,GAAG,UAAWlC,EAAU,EAC9D,GAAImC,EAAO,IAAI,IAAM3D,EAAM,MAAM,IAAM,GAAK,KAAQ2D,EAAO,IAAI,IAAM3D,EAAM,MAAM,IAAM,GAAK,KAAQoD,EAAM,MAAMM,GAAG,aAAeN,EAAM,MAAMM,GAAG,aAAezD,EAAO,KAAK,eAAiB,GAAI,CAC/L,IAAM4D,EAAexC,GAAMsC,EAAO,IAAKG,EAAa,EAC9CC,EAAkB1C,GAAMsC,EAAO,OAAQG,EAAa,EAE1DV,EAAM,MAAM,KAAK,CAAE,GAAGK,EAASC,GAAI,IAAKG,EAAU,OAAQE,CAAY,CAAC,CACzE,CACF,CAEF,QAASL,EAAI,EAAGA,EAAIN,EAAM,MAAM,OAAQM,IAAK,CAC3C,IAAMM,EAAWC,GAAKb,EAAM,MAAMM,GAAG,UAAWlC,EAAU,EAC1D4B,EAAM,MAAMM,GAAG,IAAMM,EAAK,IAC1BZ,EAAM,MAAMM,GAAG,OAASM,EAAK,MAC/B,CACAX,EAAQD,EAAM,KAAK,CACrB,CAAC,CACH,CCvNA,IAAIc,GACEC,GAAmB,CAAC,EACtBC,GAAU,OAAO,iBACjBC,GAAY,EACZC,GAAW,EAEf,eAAsBC,GAAKC,EAAqC,CAjBhE,IAAAC,EAkBE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,SAAS,EAE5DP,EACT,CAEA,eAAsBW,GAAQC,EAAeN,EAAgBO,EAAaC,EAAgC,CAxB1G,IAAAP,EAAAQ,EAyBE,GAAI,EAACf,IAAA,MAAAA,GAAQ,UAAa,MAAO,GACjC,IAAMgB,KAAYT,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,WAAY,GAAMU,EAAI,EAAIb,GAC5Dc,EAAYhB,MAAWa,EAAAT,EAAO,KAAK,WAAZ,YAAAS,EAAsB,aAAc,GACjE,OAAIT,EAAO,aAAeU,GAAYE,GAAcf,KAAcW,GAAUb,GAAOY,IACjFX,KACOD,GAAOY,KAEhBX,GAAU,EACH,IAAI,QAAQ,MAAOiB,GAAY,CACpC,IAAMC,EAAY,QAAM,eAAeR,EAAO,CAACZ,IAAA,MAAAA,GAAO,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,EAAGA,IAAA,MAAAA,GAAO,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,CAAC,EAAG,EAAK,EAC7JqB,EAAMrB,IAAA,YAAAA,GAAO,QAAQoB,GACrBE,GAAO,MAAMD,EAAI,KAAK,GAAG,GAC/BpB,GAAOY,GAAO,KAAK,MAAM,IAAMS,CAAG,EAAI,IACtCnB,GAAYW,EACZV,GAAWa,EAAI,EACZ,UAAQ,CAACG,EAAQC,CAAG,CAAC,EACxBF,EAAQlB,GAAOY,EAAI,CACrB,CAAC,EACH,CC3CA,IAAAU,GAAA,GAAAC,GAAAD,GAAA,eAAAE,GAAA,eAAAC,GAAA,QAAAC,GAAA,aAAAC,GAAA,aAAAC,KAAO,IAAMF,GAAgB,CAC3B,OACA,UACA,WACA,UACA,WACA,eACA,gBACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,YACF,EAEaD,GAAyB,CACpC,CAAC,UAAW,UAAU,EACtB,CAAC,UAAW,UAAU,EACtB,CAAC,eAAgB,eAAe,EAChC,CAAC,YAAa,YAAY,EAC1B,CAAC,YAAa,YAAY,EAC1B,CAAC,UAAW,UAAU,EACtB,CAAC,WAAY,WAAW,EACxB,CAAC,YAAa,YAAY,CAC5B,EAEaG,GAAuB,CAClC,CAAC,WAAY,cAAc,EAC3B,CAAC,YAAa,eAAe,EAC7B,CAAC,YAAa,UAAU,EACxB,CAAC,aAAc,WAAW,CAC5B,EAEaD,GAAyB,CACpC,CAAC,CAAC,UAAW,UAAU,EAAG,CAAC,eAAgB,eAAe,CAAC,EAC3D,CAAC,CAAC,YAAa,YAAY,EAAG,CAAC,eAAgB,eAAe,CAAC,CACjE,EAEaH,GAAsC,CACjD,QAAS,CAAC,UAAW,WAAY,WAAW,EAC5C,SAAU,CAAC,WAAY,YAAa,YAAY,EAChD,MAAO,CAAC,eAAgB,gBAAiB,WAAY,UAAW,cAAc,EAC9E,QAAS,CAAC,eAAgB,YAAa,WAAW,EAClD,SAAU,CAAC,gBAAiB,aAAc,YAAY,EACtD,KAAM,CAAC,CACT,EC5CA,IAAMK,GAAY,KAEZC,GAGF,CACF,UAAW,CAAC,EACZ,QAAS,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,CAC1C,EAEO,SAASC,GAAUC,EAAkB,CAC1C,QAAWC,KAAeC,GAAY,CACpC,IAAMC,EAAOH,EAAK,UAAU,UAAWI,GAAOA,EAAG,OAASH,EAAK,EAAE,EAC3DI,EAAQL,EAAK,UAAU,UAAWI,GAAOA,EAAG,OAASH,EAAK,EAAE,EAClE,GAAID,EAAK,UAAUG,IAASH,EAAK,UAAUK,IACrCL,EAAK,UAAUG,GAAM,SAAS,GAAKH,EAAK,UAAUK,GAAO,SAAS,GAAI,CACxE,IAAMC,EAAMN,EAAK,UAAUG,GAC3BH,EAAK,UAAUG,GAAQH,EAAK,UAAUK,GACtCL,EAAK,UAAUK,GAASC,CAC1B,CAEJ,CACA,QAAWL,KAAeM,GAAU,CAClC,IAAMC,EAAQR,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASH,EAAK,EAAG,EACpEQ,EAAST,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASH,EAAK,EAAG,EACvED,EAAK,UAAUQ,IAAUR,EAAK,UAAUS,IACtCT,EAAK,UAAUQ,GAAO,SAAS,GAAKR,EAAK,UAAUS,GAAQ,SAAS,IACtET,EAAK,UAAU,OAAOQ,EAAO,CAAC,CAGpC,CACA,OAAW,CAACP,EAAMS,CAAO,IAAYC,GAAU,CAC7C,IAAMR,EAAOH,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASH,EAAK,EAAG,EACnEI,EAAQL,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASH,EAAK,EAAG,EACpEW,EAASZ,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASM,EAAQ,EAAG,EACxEG,EAAUb,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASM,EAAQ,EAAG,EAC/E,GAAI,CAACV,EAAK,UAAUY,IAAW,CAACZ,EAAK,UAAUa,GAAU,SACzD,IAAMC,EAAed,EAAK,UAAUG,GAAQ,CAC1C,KAAK,IAAIH,EAAK,UAAUY,GAAQ,SAAS,GAAKZ,EAAK,UAAUG,GAAM,SAAS,EAAE,EAC9E,KAAK,IAAIH,EAAK,UAAUa,GAAS,SAAS,GAAKb,EAAK,UAAUG,GAAM,SAAS,EAAE,CACjF,EAAI,CAAC,EAAG,CAAC,EACHY,EAAgBf,EAAK,UAAUK,GAAS,CAC5C,KAAK,IAAIL,EAAK,UAAUa,GAAS,SAAS,GAAKb,EAAK,UAAUK,GAAO,SAAS,EAAE,EAChF,KAAK,IAAIL,EAAK,UAAUY,GAAQ,SAAS,GAAKZ,EAAK,UAAUK,GAAO,SAAS,EAAE,CACjF,EAAI,CAAC,EAAG,CAAC,EACT,GAAIS,EAAa,GAAKA,EAAa,IAAMC,EAAc,GAAKA,EAAc,GAAI,CAC5E,IAAMT,EAAMN,EAAK,UAAUG,GAC3BH,EAAK,UAAUG,GAAQH,EAAK,UAAUK,GACtCL,EAAK,UAAUK,GAASC,CAC1B,CACF,CACF,CAEO,SAASU,GAAOC,EAA2C,CAChE,QAASC,EAAI,EAAGA,EAAID,EAAU,OAAQC,IACpC,GAAID,EAAUC,IAAMpB,GAAM,UAAUoB,GAAI,CACtC,IAAMC,EAAO,CAAC,KAAK,IAAIF,EAAUC,GAAG,YAAY,GAAKpB,GAAM,UAAUoB,GAAG,YAAY,EAAE,EAAG,KAAK,IAAID,EAAUC,GAAG,YAAY,GAAKpB,GAAM,UAAUoB,GAAG,YAAY,EAAE,CAAC,EAC9JC,EAAK,GAAKtB,IAAasB,EAAK,GAAKtB,GACnCoB,EAAUC,GAAKpB,GAAM,UAAUoB,GAE/BpB,GAAM,UAAUoB,GAAKD,EAAUC,EAEnC,MACEpB,GAAM,UAAUoB,GAAKD,EAAUC,GAGnC,OAAOD,CACT,CAEO,SAASG,GAASC,EAAeC,EAA2B,CA3EnE,IAAAC,EAAAC,EA4EE,IAAMC,EAA4B,CAAC,EACnC,GAAI,GAACF,EAAAF,GAAA,YAAAA,EAAO,QAAP,MAAAE,EAAe,KAAM,GAACC,EAAAH,GAAA,YAAAA,EAAO,QAAP,MAAAG,EAAe,IAAI,OAAOH,EACrDvB,GAAM,QAAU,CACd,CAAC,EAAG,CAAC,EACL,CAACuB,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,EAAGA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,CAAC,EACjL,CAACA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,EAAGA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,CAAC,EACjL,CAAC,EAAG,CAAC,CACP,EACAI,EAAE,IAAS,MAAIJ,EAAOvB,GAAM,OAAO,EACnC2B,EAAE,OAAY,QAAM,eAAeA,EAAE,IAAK,CAACH,EAAWA,CAAS,CAAC,EAChE,IAAMI,EAAW,OAAKD,EAAE,OAAQ,OAAO,EACvC,cAAO,KAAKA,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,EACjDD,CACT,CAEO,SAASE,GAAY5B,EAAkB6B,EAA0C,CACtF7B,EAAK,UAAYA,EAAK,UAAU,OAAQ8B,GAAQA,GAAA,YAAAA,EAAK,QAAQ,EAC7D,QAAWA,KAAO9B,EAAK,UACrB8B,EAAI,SAAW,CACbA,EAAI,SAAS,IAAMD,EAAW,GAAK/B,GAAM,QAAQ,GAAG,GAAKA,GAAM,QAAQ,GAAG,IAAM+B,EAAW,GAAK/B,GAAM,QAAQ,GAAG,GACjHgC,EAAI,SAAS,IAAMD,EAAW,GAAK/B,GAAM,QAAQ,GAAG,GAAKA,GAAM,QAAQ,GAAG,IAAM+B,EAAW,GAAK/B,GAAM,QAAQ,GAAG,EACnH,EACAgC,EAAI,YAAc,CAChBA,EAAI,SAAS,GAAKD,EAAW,GAAIC,EAAI,SAAS,GAAKD,EAAW,EAChE,EAEF,IAAME,EAAoBC,GAAKhC,EAAK,UAAU,IAAKiC,GAAOA,EAAG,QAAQ,EAAGJ,CAAU,EAClF,OAAA7B,EAAK,IAAM+B,EAAc,IACzB/B,EAAK,OAAS+B,EAAc,OACrB/B,CACT,CCxFA,IAAIkC,EACAC,GAAY,EACZC,GAAU,OAAO,iBAGfC,GAIF,CACF,MAAO,CAAC,EACR,OAAQ,CAAC,EACT,KAAM,CACR,EAEA,eAAsBC,GAAKC,EAAqC,CAjChE,IAAAC,EAkCE,OAAIC,EAAI,UAASP,EAAQ,MACpBA,EAGMK,EAAO,OAAOG,EAAI,gBAAiBR,EAAM,QAAW,GAF7DS,GAAQ,CAAC,MAAM,EAAGJ,CAAM,EACxBL,EAAQ,MAAMU,EAAUL,EAAO,KAAK,SAAS,GAE/CJ,IAAaD,GAAA,YAAAA,EAAQ,aAAeM,EAAAN,GAAA,YAAAA,EAAO,SAAP,YAAAM,EAAgB,GAAG,OAASN,EAAM,OAAO,GAAG,MAAM,GAAK,EACvFC,GAAY,KAAIA,GAAY,KACzBD,CACT,CAEA,SAASW,GAAgBC,EAAKP,EAAQQ,EAAO,CAC3C,IAAMC,EAAMF,EAAI,GAAG,GACbG,EAA4B,CAAC,EAC/BC,EAAQ,EACZ,QAASC,EAAK,EAAGA,EAAKH,EAAI,OAAQG,IAEhC,GADAD,EAAQF,EAAIG,GAAI,GACZD,EAAQX,EAAO,KAAK,cAAe,CACrC,IAAMa,EAAqB,CAACJ,EAAIG,GAAI,GAAIH,EAAIG,GAAI,EAAE,EAClDF,EAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAMC,CAAK,EAAI,IACjC,KAAaF,GAAIG,GACjB,YAAAC,EACA,SAAU,CACR,KAAK,OAAOL,EAAM,MAAM,IAAM,GAAKK,EAAY,EAAE,EACjD,KAAK,OAAOL,EAAM,MAAM,IAAM,GAAKK,EAAY,EAAE,CACnD,CACF,CAAC,CACH,CAEFF,EAAQD,EAAU,OAAO,CAACI,EAAMC,IAAUA,EAAK,MAAQD,EAAOC,EAAK,MAAQD,EAAO,CAAC,EACnF,IAAME,EAAuB,CAAC,EACxBC,EAAaC,GAAKR,EAAU,IAAKS,GAAOA,EAAG,QAAQ,EAAG,CAACX,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,CAAC,EACtFY,EAAyC,CAAC,EAChD,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAeC,EAAS,EAAG,CAC9D,IAAMJ,EAAgB,CAAC,EACvB,QAASK,EAAI,EAAGA,EAAIF,EAAQ,OAAS,EAAGE,IAAK,CAC3C,IAAMC,EAAMf,EAAU,KAAMgB,GAAOA,EAAG,OAASJ,EAAQE,EAAE,EACnDG,EAAMjB,EAAU,KAAMgB,GAAOA,EAAG,OAASJ,EAAQE,EAAI,EAAE,EACzDC,GAAOE,GAAOF,EAAI,OAASzB,EAAO,KAAK,eAAiB,IAAM2B,EAAI,OAAS3B,EAAO,KAAK,eAAiB,IAAImB,EAAG,KAAK,CAACM,EAAI,SAAUE,EAAI,QAAQ,CAAC,CACtJ,CACAP,EAAYC,GAAQF,CACtB,CACA,IAAMS,EAAmB,CAAE,GAAI,EAAG,MAAAjB,EAAO,IAAKM,EAAO,IAAK,OAAQA,EAAO,OAAQ,UAAAP,EAAW,YAAAU,CAAY,EACxG,OAAIS,GAAUD,CAAI,EAClBZ,EAAO,KAAKY,CAAI,EACTZ,CACT,CAEA,SAASc,GAAevB,EAAKP,EAAQQ,EAAO,CAC1C,IAAMQ,EAAuB,CAAC,EAC9B,QAASJ,EAAK,EAAGA,EAAKL,EAAI,GAAG,OAAQK,IAAM,CACzC,IAAMH,EAAMF,EAAI,GAAGK,GACbmB,EAAa,KAAK,MAAM,IAAMtB,EAAI,GAAK,EAAE,EAAI,IACnD,GAAIsB,EAAa/B,EAAO,KAAK,cAAe,CAC1C,IAAMU,EAA4B,CAAC,EACnC,QAASc,EAAI,EAAGA,EAAI,GAAIA,IAAK,CAC3B,IAAMb,EAAQF,EAAI,EAAIe,EAAI,GAC1B,GAAIb,EAAQX,EAAO,KAAK,cAAe,CACrC,IAAMa,EAAqB,CAACJ,EAAI,EAAIe,EAAI,GAAIf,EAAI,EAAIe,EAAI,EAAE,EAC1Dd,EAAU,KAAK,CACb,KAAaD,GAAIe,GACjB,MAAO,KAAK,MAAM,IAAMb,CAAK,EAAI,IACjC,YAAAE,EACA,SAAU,CAAC,KAAK,OAAOL,EAAM,MAAM,IAAM,GAAKK,EAAY,EAAE,EAAG,KAAK,OAAOL,EAAM,MAAM,IAAM,GAAKK,EAAY,EAAE,CAAC,CACnH,CAAC,CACH,CACF,CACA,IAAMI,EAAaC,GAAKR,EAAU,IAAKS,GAAOA,EAAG,QAAQ,EAAG,CAACX,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,CAAC,EAItFY,EAAiD,CAAC,EACxD,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAeC,EAAS,EAAG,CAC9D,IAAMJ,EAAgB,CAAC,EACvB,QAASK,EAAI,EAAGA,EAAIF,EAAQ,OAAS,EAAGE,IAAK,CAC3C,IAAMC,EAAMf,EAAU,KAAMgB,GAAOA,EAAG,OAASJ,EAAQE,EAAE,EACnDG,EAAMjB,EAAU,KAAMgB,GAAOA,EAAG,OAASJ,EAAQE,EAAI,EAAE,EACzDC,GAAOE,GAAOF,EAAI,OAASzB,EAAO,KAAK,eAAiB,IAAM2B,EAAI,OAAS3B,EAAO,KAAK,eAAiB,IAAImB,EAAG,KAAK,CAACM,EAAI,SAAUE,EAAI,QAAQ,CAAC,CACtJ,CACAP,EAAYC,GAAQF,CACtB,CACA,IAAMS,EAAmB,CAAE,GAAAhB,EAAI,MAAOmB,EAAY,IAAKd,EAAO,IAAK,OAAQA,EAAO,OAAQ,UAAW,CAAC,GAAGP,CAAS,EAAG,YAAAU,CAAY,EAC7HS,GAAUD,CAAI,EAClBZ,EAAO,KAAKY,CAAI,CAClB,CACF,CACA,OAAAZ,EAAO,KAAK,CAACgB,EAAGC,IAAMA,EAAE,MAAQD,EAAE,KAAK,EACnChB,EAAO,OAAShB,EAAO,KAAK,cAAagB,EAAO,OAAShB,EAAO,KAAK,aAClEgB,CACT,CAEA,eAAsBkB,GAAQC,EAAenC,EAAuC,CA7HpF,IAAAC,EA8HE,GAAI,EAACN,GAAA,MAAAA,EAAQ,WAAe,GAACM,EAAAN,GAAA,YAAAA,EAAO,SAAP,MAAAM,EAAgB,GAAG,OAAO,MAAO,CAAC,EAC1DD,EAAO,cAAaF,GAAM,MAAM,OAAS,GAC9CD,KACA,IAAMuC,GAAYpC,EAAO,KAAK,UAAY,GAAMqC,EAAI,EAAIvC,GAAM,KACxDwC,EAAYzC,IAAWG,EAAO,KAAK,YAAc,GACvD,OAAIA,EAAO,aAAeoC,GAAYE,EAC7BxC,GAAM,OAER,IAAI,QAAQ,MAAOyC,GAAY,CACpC,IAAMC,EAA4B,CAAC,EACnC3C,GAAU,EAmCV2C,EAAE,MAAYC,GAASN,EAAOvC,EAAS,EACvC4C,EAAE,IAAM7C,GAAA,YAAAA,EAAO,QAAQ6C,EAAE,OACzB1C,GAAM,KAAOuC,EAAI,EACjB,IAAM9B,EAAM,MAAMiC,EAAE,IAAI,MAAM,EAC9B1C,GAAM,OAAU0C,EAAE,IAAI,MAAM,KAAO,GAC/BlC,GAAgBC,EAAKP,EAAQmC,CAAK,EAClCL,GAAevB,EAAKP,EAAQmC,CAAK,EACrC,QAAWP,KAAQ9B,GAAM,OACnB4C,GAAYd,EAAM,CAACO,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,CAAC,EAC5DQ,GAAOf,EAAK,SAAS,EAE3B,OAAO,KAAKY,CAAC,EAAE,QAASI,GAAc,UAAQJ,EAAEI,EAAO,CAAC,EAExDL,EAAQzC,GAAM,MAAM,CACtB,CAAC,CACH,CC1KA,IAAI+C,GACAC,GAAuB,CAAC,EACxBC,GAAW,EACXC,GAAU,OAAO,iBACjBC,GAAY,EAEVC,GAAW,IAEjB,eAAsBC,GAAKC,EAAqC,CAC9D,GAAI,CAACP,IAASQ,EAAI,QAAS,CACzBR,GAAQ,MAAMS,EAAUF,EAAO,OAAO,SAAS,EAC/C,IAAMG,EAASV,IAAA,MAAAA,GAAQ,SAAc,OAAO,OAAOA,GAAM,eAAe,MAAS,EAAI,OACrFI,GAAY,MAAM,QAAQM,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,GACpF,MAAWH,EAAO,OAAOI,EAAI,gBAAiBX,GAAM,QAAW,EAC/D,OAAOA,EACT,CAEA,eAAeY,GAAQC,EAAeC,EAA+BP,EAAgB,CACnF,IAAIQ,EAAK,EACLC,EAA0B,CAAC,EACzBC,EAAOb,GACb,QAAWc,IAAc,CAAC,EAAG,EAAG,CAAC,EAAG,CAElC,IAAMC,EAAWD,EAAa,GAExBE,EAAa,UAAQP,EAAI,KAAMQ,GAAeA,EAAE,MAAM,KAAQF,GAAY,IAAOE,EAAE,MAAM,IAAM,KAAOC,GAAO,MAAO,CAAC,EACrHC,EAAS,MAAMH,EAAQ,MAAM,EAC7BI,EAAe,UAAQX,EAAI,KAAMQ,GAAeA,EAAE,MAAM,KAAQF,GAAY,IAAOE,EAAE,MAAM,IAAM,GAAKC,GAAO,MAAO,CAAC,EACrHG,EAAYD,EAAU,QAAQ,CAAC,GAAI,EAAGA,EAAU,MAAM,GAAK,CAAC,CAAC,EAC7DE,EAAUD,EAAU,OAAO,CAAC,EAC5BE,EAAS,MAAMD,EAAQ,MAAM,EACnC,QAASE,EAAI,EAAGA,EAAIR,EAAQ,MAAM,GAAIQ,IACpC,QAASC,EAAI,EAAGA,EAAIT,EAAQ,MAAM,GAAIS,IAAK,CACzC,IAAMC,EAAQP,EAAOK,GAAGC,GACxB,GAAIC,GAASvB,EAAO,OAAO,eAAiB,IAAMsB,IAAM,GAAI,CAC1D,IAAME,GAAM,GAAM,KAAK,MAAMH,EAAIT,CAAQ,GAAKA,EACxCa,GAAM,GAAM,KAAK,MAAMJ,EAAIT,CAAQ,GAAKA,EACxCc,EAAYN,EAAOC,GAAG,IAAKP,GAAcA,GAAKF,EAAWD,EAAcD,EAAM,EAC7E,CAACiB,EAAGC,CAAC,EAAI,CACbJ,EAAM1B,GAAWa,EAAae,EAAU,GACxCD,EAAM3B,GAAWa,EAAae,EAAU,EAC1C,EACM,CAACG,EAAGC,CAAC,EAAI,CACbN,EAAM1B,GAAWa,EAAae,EAAU,GAAMC,EAC9CF,EAAM3B,GAAWa,EAAae,EAAU,GAAME,CAChD,EACIG,EAAc,CAACJ,EAAGC,EAAGC,EAAGC,CAAC,EAC7BC,EAASA,EAAO,IAAKjB,GAAM,KAAK,IAAI,EAAG,KAAK,IAAIA,EAAG,CAAC,CAAC,CAAC,EACtD,IAAMkB,EAAM,CACVD,EAAO,GAAKxB,EAAY,GACxBwB,EAAO,GAAKxB,EAAY,GACxBwB,EAAO,GAAKxB,EAAY,GACxBwB,EAAO,GAAKxB,EAAY,EAC1B,EACM0B,EAAS,CACb,GAAIzB,IAEJ,MAAO,KAAK,MAAM,IAAMe,CAAK,EAAI,IACjC,MAAOD,EAAI,EACX,MAAOP,GAAOO,GAAG,MAGjB,IAAKU,EAAI,IAAKlB,GAAM,KAAK,MAAMA,CAAC,CAAC,EACjC,OAAAiB,CACF,EACAtB,EAAQ,KAAKwB,CAAM,CACrB,CACF,CAEC,UAAQ,CAACpB,EAASI,EAAWC,EAAWC,CAAO,CAAC,CACrD,CAIA,IAAMe,EAAWzB,EAAQ,IAAKK,GAAM,CAACA,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAIA,EAAE,OAAO,EAAE,CAAC,EAClFqB,EAAY1B,EAAQ,IAAKK,GAAMA,EAAE,KAAK,EACxCsB,EAAmB,CAAC,EACxB,GAAIF,GAAYA,EAAS,OAAS,EAAG,CACnC,IAAMG,EAAM,MAAS,QAAM,uBAAuBH,EAAUC,EAAWnC,EAAO,OAAO,YAAaA,EAAO,OAAO,aAAcA,EAAO,OAAO,aAAa,EACzJoC,EAAS,MAAMC,EAAI,KAAK,EACrB,UAAQA,CAAG,CAChB,CAGA,OAAA5B,EAAUA,EACP,OAAO,CAAC6B,EAAMC,IAAQH,EAAO,SAASG,CAAG,CAAC,EAC1C,KAAK,CAACzB,EAAG0B,IAAOA,EAAE,MAAQ1B,EAAE,KAAM,EAE9BL,CACT,CAEA,eAAsBgC,GAAQC,EAAe1C,EAAyC,CACpF,GAAI,EAACP,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMkD,GAAY3C,EAAO,OAAO,UAAY,GAAM4C,EAAI,EAAIjD,GACpDkD,EAAYjD,IAAWI,EAAO,OAAO,YAAc,GACzD,OAAIA,EAAO,aAAe2C,GAAYE,GAAcnD,GAAK,OAAS,GAChEE,KACOF,KAETE,GAAU,EACN,CAACK,EAAI,QAAQ,SAAS,KAAK,GAAK,CAACA,EAAI,QAAQ,SAAS,eAAe,EAAUP,GAC5E,IAAI,QAAQ,MAAOoD,GAAY,CACpC,IAAMC,EAAa,CAACL,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,EACtDM,EAAa,QAAM,eAAeN,EAAO,CAAC7C,GAAWA,EAAS,EAAG,EAAK,EACtEoD,EAAW,MAAID,EAASE,EAAU,KAAK,EACvCC,EAAgB,YAAUF,EAAO,CAAC,EAAG,EAAG,EAAG,CAAC,CAAC,EAE/CG,EACApD,EAAO,OAAO,UAASoD,EAAU3D,GAAM,QAAQ0D,CAAU,GAC7DxD,GAAWiD,EAAI,EAEf,IAAMS,EAAM,MAAMhD,GAAQ+C,EAAqBL,EAAgC/C,CAAM,EACrFN,GAAO2D,EACJ,UAAQ,CAACL,EAASC,EAAOE,EAAY,GAAGC,CAAO,CAAC,EACnDN,EAAQO,CAAG,CACb,CAAC,EACH,CC7HO,IAAMC,GAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,YAC/D,EAEaC,GAAQD,GAAU,OAElBE,GAAUF,GAAU,OAAO,CAACG,EAAQC,EAAWC,KAC1DF,EAAOC,GAAaC,EACbF,GACN,CAAC,CAAC,EAECG,GAAqB,CACzB,CAAC,UAAW,cAAc,EAAG,CAAC,YAAa,cAAc,EACzD,CAAC,YAAa,WAAW,EAAG,CAAC,UAAW,UAAU,EAClD,CAAC,WAAY,WAAW,EAAG,CAAC,WAAY,eAAe,EACvD,CAAC,aAAc,eAAe,EAAG,CAAC,aAAc,YAAY,EAC5D,CAAC,WAAY,WAAW,EAAG,CAAC,YAAa,YAAY,EACrD,CAAC,eAAgB,eAAe,EAAG,CAAC,UAAW,UAAU,CAC3D,EACaC,GAAuBD,GAAmB,IAAI,CAAC,CAACE,EAAYC,CAAU,IAAO,CAACP,GAAQM,GAAaN,GAAQO,EAAW,CAAE,EAExHC,GAAY,CACvB,CAAC,OAAQ,SAAS,EAAG,CAAC,UAAW,SAAS,EAAG,CAAC,OAAQ,UAAU,EAChE,CAAC,WAAY,UAAU,EAAG,CAAC,OAAQ,cAAc,EACjD,CAAC,eAAgB,WAAW,EAAG,CAAC,YAAa,WAAW,EACxD,CAAC,eAAgB,SAAS,EAAG,CAAC,UAAW,UAAU,EACnD,CAAC,WAAY,WAAW,EAAG,CAAC,OAAQ,eAAe,EACnD,CAAC,gBAAiB,YAAY,EAAG,CAAC,aAAc,YAAY,EAC5D,CAAC,gBAAiB,UAAU,EAAG,CAAC,WAAY,WAAW,EACvD,CAAC,YAAa,YAAY,CAC5B,EAgBO,SAASC,GAAeC,EAA6C,CAC1E,IAAMC,EAAQD,EAAU,OAAO,CAAC,CAAE,KAAAE,EAAM,KAAAC,EAAM,KAAAC,EAAM,KAAAC,CAAK,EAAG,CAAE,SAAU,CAAE,EAAAC,EAAG,EAAAC,CAAE,CAAE,KAAO,CACtF,KAAM,KAAK,IAAIL,EAAMI,CAAC,EACtB,KAAM,KAAK,IAAIH,EAAMI,CAAC,EACtB,KAAM,KAAK,IAAIH,EAAME,CAAC,EACtB,KAAM,KAAK,IAAID,EAAME,CAAC,CACxB,GAAI,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,iBACf,CAAC,EACD,MAAO,CAACN,EAAM,KAAMA,EAAM,KAAMA,EAAM,KAAOA,EAAM,KAAMA,EAAM,KAAOA,EAAM,IAAI,CAClF,CAEO,SAASO,GAAWC,EAAO,CAACC,EAAQC,CAAK,EAAG,CAACC,EAAuBC,CAAoB,EAAiB,CAC9G,IAAMC,EAASJ,EAASE,EAClBG,EAASJ,EAAQE,EACjBG,EAAY,CAACC,EAAMC,KAAmB,CAC1C,GAAIA,EACJ,MAAOD,EAAK,MACZ,OAAQ,CAACA,EAAK,IAAI,GAAKJ,EAAsBI,EAAK,IAAI,GAAKL,EAAuBK,EAAK,IAAI,GAAKJ,EAAsBI,EAAK,IAAI,GAAKL,CAAqB,EACzJ,IAAK,CAAC,KAAK,MAAMK,EAAK,IAAI,GAAKF,CAAM,EAAG,KAAK,MAAME,EAAK,IAAI,GAAKH,CAAM,EAAG,KAAK,MAAMG,EAAK,IAAI,GAAKF,CAAM,EAAG,KAAK,MAAME,EAAK,IAAI,GAAKH,CAAM,CAAC,EAC5I,UAAWG,EAAK,UAAU,IAAI,CAAC,CAAE,MAAAE,EAAO,KAAAC,EAAM,SAAAC,CAAS,KAAO,CAC5D,MAAOF,EACP,KAAMC,EACN,SAAU,CAAC,KAAK,MAAMC,EAAS,EAAIN,CAAM,EAAG,KAAK,MAAMM,EAAS,EAAIP,CAAM,CAAC,EAC3E,YAAa,CAACO,EAAS,EAAIT,EAAuBS,EAAS,EAAIT,CAAqB,CACtF,EAAE,EACF,YAAa,CAAC,CAChB,GAEA,OADoBH,EAAM,IAAI,CAACQ,EAAMC,IAAMF,EAAUC,EAAMC,CAAC,CAAC,CAE/D,CAGO,IAAMI,GAAN,KAAc,CAKnB,YAAYC,EAASC,EAAiB,CAJtCC,EAAA,sBACAA,EAAA,yBACAA,EAAA,wBAGE,KAAK,cAAgB,IAAI,MAAMF,CAAO,EACtC,KAAK,iBAAmB,GACxB,KAAK,gBAAkBC,CACzB,CAEA,QAAQlB,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoBA,EAC9C,KAAK,KAAK,KAAK,gBAAgB,CACjC,CAEA,SAAU,CACR,IAAMoB,EAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,kBAAkB,EACxC,KAAK,KAAK,CAAC,EACX,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzCA,CACT,CAEA,OAAQ,CAAE,OAAO,KAAK,mBAAqB,EAAI,CAE/C,MAAO,CAAE,OAAO,KAAK,iBAAmB,CAAG,CAE3C,KAAM,CAAE,OAAO,KAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,CAAC,CAAG,CAEvE,KAAM,CAAE,OAAO,KAAK,cAAc,EAAI,CAEtC,KAAKC,EAAG,CACN,KAAOA,EAAI,GAAK,KAAK,KAAK,KAAK,MAAMA,EAAI,CAAC,EAAGA,CAAC,GAC5C,KAAK,SAASA,EAAG,KAAK,MAAMA,EAAI,CAAC,CAAC,EAClCA,EAAI,KAAK,MAAMA,EAAI,CAAC,CAExB,CAEA,KAAKA,EAAG,CACN,KAAO,EAAIA,GAAK,KAAK,kBAAkB,CACrC,IAAIC,EAAI,EAAID,EAEZ,GADIC,EAAI,KAAK,kBAAoB,KAAK,KAAKA,EAAGA,EAAI,CAAC,GAAGA,IAClD,CAAC,KAAK,KAAKD,EAAGC,CAAC,EAAG,MACtB,KAAK,SAASD,EAAGC,CAAC,EAClBD,EAAIC,CACN,CACF,CAEA,WAAWV,EAAG,CAEZ,OAAO,KAAK,gBAAgB,KAAK,cAAcA,EAAE,CACnD,CAEA,KAAKA,EAAGU,EAAG,CACT,OAAO,KAAK,WAAWV,CAAC,EAAI,KAAK,WAAWU,CAAC,CAC/C,CAEA,SAASV,EAAGU,EAAG,CACb,IAAMC,EAAI,KAAK,cAAcX,GAC7B,KAAK,cAAcA,GAAK,KAAK,cAAcU,GAC3C,KAAK,cAAcA,GAAKC,CAC1B,CACF,EAEO,SAASC,GAAevB,EAAGD,EAAGyB,EAAkBC,EAAS,CAC9D,MAAO,CACL,EAAGA,EAAQ,IAAIzB,EAAGD,EAAGyB,CAAQ,EAC7B,EAAGC,EAAQ,IAAIzB,EAAGD,EAAGyB,EAAWE,EAAK,CACvC,CACF,CAEO,SAASC,GAAed,EAAMe,EAAsBH,EAAS,CAClE,GAAM,CAAE,SAAAI,EAAU,SAAAC,EAAU,GAAIN,CAAS,EAAIX,EACvC,CAAE,EAAAb,EAAG,EAAAD,CAAE,EAAIwB,GAAeM,EAAUC,EAAUN,EAAUC,CAAO,EACrE,MAAO,CACL,EAAGZ,EAAK,SAAWe,EAAe7B,EAClC,EAAGc,EAAK,SAAWe,EAAe5B,CACpC,CACF,CAUO,SAAS+B,GAAMC,EAAGC,EAAKC,EAAK,CACjC,OAAIF,EAAIC,EAAYA,EAChBD,EAAIE,EAAYA,EACbF,CACT,CAEO,SAASG,GAAgBC,EAAIC,EAAIC,EAAIC,EAAI,CAC9C,IAAMC,EAAKF,EAAKF,EACVK,EAAKF,EAAKF,EAChB,OAAOG,EAAKA,EAAKC,EAAKA,CACxB,CAEO,SAASC,GAAWV,EAA6BW,EAA6B,CACnF,MAAO,CAAE,EAAGX,EAAE,EAAIW,EAAE,EAAG,EAAGX,EAAE,EAAIW,EAAE,CAAE,CACtC,CCnLA,IAAIC,GACEC,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,wCAA6D,EAC/OC,GAAqB,EACrBC,GAAe,GACfC,GAAmB,IAAM,EAE/B,SAASC,GAASC,EAAgBC,EAAgBC,EAAUC,EAAQC,EAASC,EAAeC,EAAmB,EAAG,CAChH,IAAMC,EAAmBC,IAAW,CAClC,EAAGH,EAAc,IAAIG,EAAM,EAAGA,EAAM,EAAGR,CAAM,EAC7C,EAAGK,EAAc,IAAIG,EAAM,EAAGA,EAAM,EAAIH,EAAc,MAAM,GAAK,EAAKL,CAAM,CAC9E,GACMS,EAA2B,CAACD,EAAOE,EAAQC,KAAW,CAC1D,EAASC,GAAM,KAAK,MAAMJ,EAAM,EAAIX,EAAY,EAAG,EAAGa,EAAS,CAAC,EAChE,EAASE,GAAM,KAAK,MAAMJ,EAAM,EAAIX,EAAY,EAAG,EAAGc,EAAQ,CAAC,CACjE,GAEM,CAACD,EAAQC,CAAK,EAAIR,EAAO,MAEzBU,EAAwBJ,EAAyBR,EAAe,SAAUS,EAAQC,CAAK,EACvFG,EAAeP,EAAgBM,CAAqB,EAEtDE,EADyBC,GAAWf,EAAe,SAAUa,CAAY,EAE7E,QAASG,EAAI,EAAGA,EAAIX,EAAkBW,IAAK,CACzC,IAAMC,EAAwBT,EAAyBM,EAAgBL,EAAQC,CAAK,EAC9EQ,EAAoBC,GAAeF,EAAsB,EAAGA,EAAsB,EAAGhB,EAAUE,CAAO,EAC5GW,EAAuBC,GACrB,CAAE,EAAGE,EAAsB,EAAIrB,GAAc,EAAGqB,EAAsB,EAAIrB,EAAa,EACvF,CAAE,EAAGsB,EAAY,EAAG,EAAGA,EAAY,CAAE,CACvC,CACF,CACA,IAAME,EAAwBZ,EAAyBM,EAAgBL,EAAQC,CAAK,EAC9EW,EAAQnB,EAAO,IAAIkB,EAAsB,EAAGA,EAAsB,EAAGnB,CAAQ,EACnF,MAAO,CAAE,SAAUa,EAAgB,KAAYQ,GAAUrB,GAAW,MAAAoB,CAAM,CAC5E,CAEO,SAASE,GAAWC,EAAMtB,EAAQC,EAASsB,EAAkBC,EAAkB,CACpF,IAAMC,EAAeC,GAAU,IAAI,CAAC,CAACC,EAAgBC,CAAa,IAAO,CAAOC,GAAQF,GAAuBE,GAAQD,EAAc,CAAE,EACjIE,EAAWL,EAAO,IAAI,CAAC,CAAC,CAAEM,CAAY,IAAMA,CAAY,EACxDC,EAAWP,EAAO,IAAI,CAAC,CAACQ,CAAa,IAAMA,CAAa,EACxDC,EAAWlC,EAAO,MAAM,GACxBmC,EAAWL,EAAS,OACpBM,EAAY,IAAI,MAAMF,CAAQ,EAE9BG,EAAkBC,GAAehB,EAAK,KAAM5B,GAAcO,CAAO,EACvEmC,EAAUd,EAAK,KAAK,IAAM,CACxB,MAAOA,EAAK,MACZ,KAAYF,GAAUE,EAAK,KAAK,IAChC,SAAUe,CACZ,EAEA,QAASE,EAAOJ,EAAW,EAAGI,GAAQ,EAAG,EAAEA,EAAM,CAC/C,IAAMC,EAAWV,EAASS,GACpBxC,EAAWiC,EAASO,GACtBH,EAAUI,IAAa,CAACJ,EAAUrC,KACpCqC,EAAUrC,GAAYH,GAAS2C,EAAMH,EAAUI,GAAWzC,EAAUC,EAAQC,EAASuB,CAAgB,EAEzG,CAEA,QAASe,EAAO,EAAGA,EAAOJ,EAAU,EAAEI,EAAM,CAC1C,IAAMC,EAAWR,EAASO,GACpBxC,EAAW+B,EAASS,GACtBH,EAAUI,IAAa,CAACJ,EAAUrC,KACpCqC,EAAUrC,GAAYH,GAAS2C,EAAMH,EAAUI,GAAWzC,EAAUC,EAAQC,EAASsB,CAAgB,EAEzG,CACA,OAAOa,CACT,CAEA,SAASK,GAA4BC,EAAYvB,EAAewB,EAAkBC,EAAkB5C,EAAQ,CAC1G,GAAM,CAACO,EAAQC,CAAK,EAAsBR,EAAO,MAC7C6C,EAAe,GACbC,EAAS,KAAK,IAAIH,EAAWlD,GAAoB,CAAC,EAClDsD,EAAO,KAAK,IAAIJ,EAAWlD,GAAqB,EAAGc,CAAM,EAC/D,QAASyC,EAAWF,EAAQE,EAAWD,EAAM,EAAEC,EAAU,CACvD,IAAMC,EAAS,KAAK,IAAIL,EAAWnD,GAAoB,CAAC,EAClDyD,EAAO,KAAK,IAAIN,EAAWnD,GAAqB,EAAGe,CAAK,EAC9D,QAAS2C,EAAWF,EAAQE,EAAWD,EAAM,EAAEC,EAC7C,GAAInD,EAAO,IAAIgD,EAAUG,EAAUT,CAAU,EAAIvB,EAAO,CACtD0B,EAAe,GACf,KACF,CAEF,GAAI,CAACA,EAAc,KACrB,CACA,OAAOA,CACT,CAEO,SAASO,GAAwBC,EAAerD,EAAQ,CAC7D,GAAM,CAACO,EAAQC,EAAO8C,CAAY,EAAItD,EAAO,MACvCuD,EAAQ,IAAUC,GAAQjD,EAASC,EAAQ8C,EAAc,CAAC,CAAE,MAAAnC,CAAM,IAAMA,CAAK,EACnF,QAASwB,EAAW,EAAGA,EAAWpC,EAAQ,EAAEoC,EAC1C,QAASC,EAAW,EAAGA,EAAWpC,EAAO,EAAEoC,EACzC,QAASF,EAAa,EAAGA,EAAaY,EAAc,EAAEZ,EAAY,CAChE,IAAMvB,EAAQnB,EAAO,IAAI2C,EAAUC,EAAUF,CAAU,EAEnDvB,EAAQkC,GAERZ,GAA4BC,EAAYvB,EAAOwB,EAAUC,EAAU5C,CAAM,GAAGuD,EAAM,QAAQ,CAAE,MAAApC,EAAO,KAAM,CAAE,SAAAwB,EAAU,SAAAC,EAAU,GAAIF,CAAW,CAAE,CAAC,CACvJ,CAGJ,OAAOa,CACT,CAEA,SAASE,GAAaC,EAAO,CAAE,EAAAC,EAAG,EAAAC,CAAE,EAAGlB,EAAY,CACjD,OAAOgB,EAAM,KAAK,CAAC,CAAE,UAAAtB,CAAU,IAAM,CAxHvC,IAAAyB,EAyHI,IAAMC,GAAwBD,EAAAzB,EAAUM,KAAV,YAAAmB,EAAuB,SACrD,OAAKC,EACQC,GAAgBH,EAAGD,EAAGG,EAAsB,EAAGA,EAAsB,CAAC,GAAKnE,GADrD,EAErC,CAAC,CACH,CAEA,SAASqE,GAAiBC,EAAe7B,EAAW,CAKlD,OAJoCA,EAAU,OAAO,CAAC8B,EAAQ,CAAE,SAAAC,EAAU,MAAAhD,CAAM,EAAGuB,KAC5Ee,GAAaQ,EAAeE,EAAUzB,CAAU,IAAGwB,GAAU/C,GAC3D+C,GACN,CAAG,EAC+B9B,EAAU,MACjD,CAEO,SAASgC,GAAOnE,EAASD,EAAQuB,EAAkBC,EAAkB6C,EAAahB,EAAe,CACtG,IAAMK,EAAkD,CAAC,EACnDH,EAAQH,GAAwBC,EAAerD,CAAM,EAE3D,KAAO0D,EAAM,OAASW,GAAe,CAACd,EAAM,MAAM,GAAG,CAEnD,IAAMjC,EAAOiC,EAAM,QAAQ,EAGrBe,EAAwBhC,GAAehB,EAAK,KAAM5B,GAAcO,CAAO,EAE7E,GAAIwD,GAAaC,EAAOY,EAAiBhD,EAAK,KAAK,EAAE,EAAG,SAExD,IAAIc,EAAYf,GAAWC,EAAMtB,EAAQC,EAASsB,EAAkBC,CAAgB,EACpFY,EAAYA,EAAU,OAAQmC,GAAMA,EAAE,MAAQlB,CAAa,EAC3D,IAAMlC,EAAQ6C,GAAiBN,EAAOtB,CAAS,EACzCoC,EAAYC,GAAerC,CAAS,EACtCjB,EAAQkC,GAAeK,EAAM,KAAK,CAAE,UAAAtB,EAAW,IAAAoC,EAAK,MAAO,KAAK,MAAM,IAAMrD,CAAK,EAAI,GAAI,CAAC,CAChG,CACA,OAAOuC,CACT,CAEA,eAAsBgB,GAAQC,EAAeC,EAAuC,CAIlF,GAAI,EAACrF,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMsF,EAAS,OAAK,IAAM,CACxB,GAAI,CAACtF,GAAM,OAAO,GAAG,MAAO,MAAO,CAAC,EACpC,IAAMuF,EAAa,QAAM,eAAeH,EAAO,CAACpF,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,CAAC,EAC7FwF,EAAgB,MAAO,MAAO,OAAKD,EAAS,SAAS,EAAG,KAAK,EAAG,CAAG,EAEnEE,EADoBzF,GAAM,QAAQwF,EAAYvF,EAAc,EACxC,IAAKoE,GAAS,UAAQA,EAAG,CAAC,CAAC,CAAC,CAAC,EACvD,OAAAoB,EAAU,GAAQ,UAAQA,EAAU,EAAE,EAC/BA,CACT,CAAC,EAEKC,EAAU,MAAM,QAAQ,IAAIJ,EAAI,IAAKK,GAAmBA,EAAO,OAAO,CAAC,CAAC,EAC9E,QAAWC,KAAKN,EAAQ,UAAQM,CAAC,EAEjC,IAAMC,EAAUhB,GAAOa,EAAQ,GAAIA,EAAQ,GAAIA,EAAQ,GAAIA,EAAQ,GAAIL,EAAO,KAAK,YAAaA,EAAO,KAAK,aAAa,EACzH,OAAKrF,GAAM,OAAO,GAAG,MACA8F,GAAWD,EAAS,CAACT,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,EAAG,CAACpF,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,CAAC,EAD5F,CAAC,CAGtC,CAEA,eAAsB+F,GAAKV,EAAqC,CAC9D,MAAI,CAACrF,IAASgG,EAAI,QAAShG,GAAQ,MAAMiG,EAAUZ,EAAO,KAAK,SAAS,EAC/DA,EAAO,OAAOa,EAAI,gBAAiBlG,GAAM,QAAW,EACtDA,EACT,CCvKA,IAAImG,GACAC,GAAO,GAEX,eAAsBC,GAAKC,EAAqC,CAC9D,MAAI,CAACH,IAASI,EAAI,QAASJ,GAAQ,MAAMK,EAAUF,EAAO,aAAa,SAAS,EACvEA,EAAO,OAAOG,EAAI,gBAAiBN,GAAM,QAAW,EACtDA,EACT,CAEA,eAAsBO,GAAQC,EAAcC,EAA+BN,EACe,CA5B1F,IAAAO,EAAAC,EA6BE,GAAIV,GAAM,MAAO,CAAE,KAAM,CAAC,EAAG,OAAQ,KAAM,MAAO,IAAK,EACvDA,GAAO,GACFD,IAAO,MAAME,GAAKC,CAAM,EAC7B,IAAMS,EAAa,MAAYL,GAAQC,EAAOL,CAAM,EAC9CU,IAAQH,EAAAE,EAAW,SAAX,YAAAF,EAAmB,MAAM,KAAM,EACvCI,IAASH,EAAAC,EAAW,SAAX,YAAAD,EAAmB,MAAM,KAAM,EAC9C,GAAI,CAACC,EAAW,OAAQ,MAAO,CAAE,KAAM,CAAC,EAAG,OAAQ,KAAM,MAAO,IAAK,EACrE,IAAMG,EAA4B,CAAC,EAEnCA,EAAE,OAAY,QAAM,eAAeH,EAAW,OAAQ,CAACZ,GAAM,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,EAAGA,GAAM,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,CAAC,EAAG,EAAK,EACtK,UAAQY,EAAW,MAAM,EAC5BG,EAAE,KAAU,MAAIA,EAAE,OAAQC,EAAU,KAAK,EACzCD,EAAE,IAAMf,GAAM,QAAQe,EAAE,IAAI,EAE5BA,EAAE,QAAa,UAAQA,EAAE,IAAK,CAAC,EAC3BA,EAAE,QAAQ,MAAM,KAAO,GACzBA,EAAE,QAAa,UAAQA,EAAE,OAAO,EAChC,CAACA,EAAE,GAAIA,EAAE,EAAE,EAAO,UAAQA,EAAE,QAAS,CAAC,EACtCA,EAAE,OAAY,aAAWA,EAAE,GAAI,CAAC,EAChCA,EAAE,IAAS,aAAWA,EAAE,OAAQ,CAAC,EACjCA,EAAE,KAAU,QAAM,cAAcA,EAAE,IAAK,CAAC,CAAC,EAAG,EAAG,GAAK,EAAG,CAAC,EAAG,CAAC,CAAC,EAAG,CAACF,EAAOC,CAAM,CAAC,EAI/EC,EAAE,KAAU,UAAQA,EAAE,KAAM,CAAC,GAE7BA,EAAE,KAAU,QAAM,eAAeA,EAAE,QAAS,CAACD,EAAQD,CAAK,CAAC,EAE7D,IAAMI,EAAO,MAAM,KAAK,MAAMF,EAAE,KAAK,KAAK,CAAC,EAE3C,GAAIX,EAAI,MAAQ,CAACA,EAAI,QAAW,OAAO,WAAc,YACnD,OAAID,EAAO,OAAOG,EAAI,wBAAwB,EAC9C,OAAO,KAAKS,CAAC,EAAE,QAASG,GAAc,UAAQH,EAAEG,EAAO,CAAC,EACjD,CAAE,KAAAD,EAAM,OAAQ,KAAM,MAAO,IAAK,EAG3C,IAAME,EAAoBC,GAAOP,EAAOC,CAAM,EACvC,WAAS,MAAS,UAAQ,SAASC,EAAE,KAAMI,CAAW,EAC7D,IAAME,EAAWF,EAAY,WAAW,IAAI,EACxChB,EAAO,aAAa,MAAQA,EAAO,aAAa,KAAO,IAAGkB,EAAS,OAAS,QAAQlB,EAAO,aAAa,WAC5G,IAAMmB,EAAYD,EAAS,aAAa,EAAG,EAAGR,EAAOC,CAAM,EAErDS,EAAwBH,GAAOP,EAAOC,CAAM,EAC5CU,EAAeD,EAAgB,WAAW,IAAI,EAChDX,EAAW,QAAQY,EAAa,UAAUZ,EAAW,OAAQ,EAAG,CAAC,EACrEY,EAAa,yBAA2B,SACpCrB,EAAO,aAAa,MAAQA,EAAO,aAAa,KAAO,IAAGqB,EAAa,OAAS,QAAQrB,EAAO,aAAa,WAChHqB,EAAa,UAAUL,EAAa,EAAG,CAAC,EACxCK,EAAa,yBAA2B,cACxCA,EAAa,OAAS,OACtB,IAAMC,EAAgBD,EAAa,aAAa,EAAG,EAAGX,EAAOC,CAAM,EACnE,QAASY,EAAI,EAAGA,EAAIb,EAAQC,EAAQY,IAAKD,EAAc,KAAK,EAAIC,EAAI,GAAKJ,EAAU,KAAK,EAAII,EAAI,GAChGF,EAAa,aAAaC,EAAe,EAAG,CAAC,EAE7C,IAAIE,EAAiC,KACrC,GAAIlB,GAAcc,EAAiB,CACjCI,EAAqBP,GAAOP,EAAOC,CAAM,EACzC,IAAMc,EAAU,MAAYrB,GAAQE,EAAYN,CAAM,EACnD,UAAQyB,EAAQ,MAAM,EACzB,IAAMC,EAAWF,EAAa,WAAW,IAAI,EAC7CE,EAAS,UAAUD,EAAQ,OAA6B,EAAG,EAAGD,EAAa,MAAOA,EAAa,MAAM,EACrGE,EAAS,UAAUN,EAAiB,EAAG,CAAC,CAC1C,CAEA,cAAO,KAAKR,CAAC,EAAE,QAASG,GAAc,UAAQH,EAAEG,EAAO,CAAC,EACxDjB,GAAO,GAEA,CAAE,KAAAgB,EAAM,OAAQM,EAAiB,MAAOJ,CAAY,CAC7D,C3C5DO,IAAMW,GAAN,KAAa,CAAb,cACLC,EAAA,iBAAqD,MACrDA,EAAA,YAAgD,MAChDA,EAAA,uBAA2D,MAC3DA,EAAA,iBAAqD,MACrDA,EAAA,iBAAqD,MACrDA,EAAA,qBAAyD,MACzDA,EAAA,qBAAyD,MACzDA,EAAA,mBAAuD,MACvDA,EAAA,eAAmD,MACnDA,EAAA,kBAAsD,MACtDA,EAAA,gBAAoD,MACpDA,EAAA,gBAAoD,MACpDA,EAAA,eAAmD,MACnDA,EAAA,oBAAwD,MACxDA,EAAA,gBAAoD,MACpDA,EAAA,oBAAwD,MACxDA,EAAA,iBAAqD,MACrDA,EAAA,gBAAoD,MACpDA,EAAA,eAAmD,MACnDA,EAAA,eAAmD,MACnDA,EAAA,eAAmD,MACnDA,EAAA,oBAAwD,MACxDA,EAAA,iBAAqD,MACvD,EAcaC,GAAiBC,GAAgC,CAC5D,IAAIC,EAAwB,EACxBC,EAAmB,EACnBC,EAAmB,EACvB,QAAWC,KAAK,OAAO,OAAOC,EAAU,EACtCJ,GAAyBG,EAAE,iBAC3BF,GAAoBE,EAAE,kBACtBD,GAAoBC,EAAE,YAExB,IAAME,EAAmBH,EAAmB,EAAID,EAAmBC,EAAmB,EACtF,MAAO,CACL,gBAAiB,OAAO,OAAOE,EAAU,EAAE,OAC3C,iBAAkB,OAClB,iBAAkB,OAAO,KAAKL,EAAS,MAAM,EAAE,OAC/C,iBAAAM,EACA,sBAAAL,EACA,iBAAAC,EACA,iBAAAC,EACA,iBAAkB,OAClB,WAAY,OAAO,OAAOE,EAAU,CACtC,CACF,EAEO,SAASE,GAAMP,EAAuB,CAE3C,QAAWQ,KAAS,OAAO,KAAKR,EAAS,MAAM,EAAGA,EAAS,OAAOQ,GAAyB,IAC7F,CAGA,eAAsBC,GAAKT,EAAgC,CAxG3D,IAAAU,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAyGMC,EAAI,SAAS7B,GAAMP,CAAQ,EAC3BA,EAAS,OAAO,KAAK,UACnB,CAACA,EAAS,OAAO,YAAYW,GAAAD,EAAAV,EAAS,OAAO,KAAK,WAArB,YAAAU,EAA+B,YAA/B,YAAAC,EAA0C,SAAS,iBAClF,CAACX,EAAS,OAAO,SAAUA,EAAS,OAAO,YAAY,EAAI,MAAeS,GAAKT,EAAS,MAAM,GAE5F,CAACA,EAAS,OAAO,cAAgBA,EAAS,OAAO,KAAK,aAAaa,GAAAD,EAAAZ,EAAS,OAAO,KAAK,WAArB,YAAAY,EAA+B,YAA/B,YAAAC,EAA0C,SAAS,iBACxH,CAACb,EAAS,OAAO,SAAUA,EAAS,OAAO,YAAY,EAAI,MAAeS,GAAKT,EAAS,MAAM,IAG9FA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,aAAac,EAAAd,EAAS,OAAO,KAAK,YAArB,YAAAc,EAAgC,SAAS,gBAAcd,EAAS,OAAO,UAAsBqC,GAASrC,EAAS,MAAM,GACnLA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,iBAAmBA,EAAS,OAAO,KAAK,UAAeA,EAAS,OAAO,KAAK,SAAY,YAAWA,EAAS,OAAO,gBAA4BsC,GAAWtC,EAAS,MAAM,GAC1NA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,iBAAiBe,EAAAf,EAAS,OAAO,KAAK,YAArB,YAAAe,EAAgC,SAAS,oBAAkBf,EAAS,OAAO,cAA8BS,GAAKT,EAAS,MAAM,GAC/LA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,WAAWgB,EAAAhB,EAAS,OAAO,KAAK,YAArB,YAAAgB,EAAgC,SAAS,cAAYhB,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GACvKA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,WAAWiB,EAAAjB,EAAS,OAAO,KAAK,YAArB,YAAAiB,EAAgC,SAAS,cAAYjB,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GACvKA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,aAAYA,EAAS,OAAO,WAAuBS,GAAKT,EAAS,MAAM,GACxHA,EAAS,OAAO,KAAK,WAAWkB,EAAAlB,EAAS,OAAO,KAAK,YAArB,YAAAkB,EAAgC,UAAW,CAAClB,EAAS,OAAO,YAAWA,EAAS,OAAO,UAAsBS,GAAKT,EAAS,MAAM,GACjKA,EAAS,OAAO,KAAK,WAAWmB,EAAAnB,EAAS,OAAO,KAAK,WAArB,YAAAmB,EAA+B,UAAW,CAACnB,EAAS,OAAO,WAAUA,EAAS,OAAO,SAAoBS,GAAKT,EAAS,MAAM,GAC7JA,EAAS,OAAO,KAAK,WAAWoB,EAAApB,EAAS,OAAO,KAAK,cAArB,YAAAoB,EAAkC,UAAW,CAACpB,EAAS,OAAO,UAASA,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GAC7JA,EAAS,OAAO,KAAK,WAAWqB,EAAArB,EAAS,OAAO,KAAK,UAArB,YAAAqB,EAA8B,UAAW,CAACrB,EAAS,OAAO,UAASA,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GACzJA,EAAS,OAAO,KAAK,WAAWsB,EAAAtB,EAAS,OAAO,KAAK,OAArB,YAAAsB,EAA2B,UAAW,GAACC,EAAAvB,EAAS,OAAO,KAAK,YAArB,MAAAuB,EAAgC,UAAW,CAACvB,EAAS,OAAO,WAAUA,EAAS,OAAO,SAAgBS,GAAKT,EAAS,MAAM,GACjMA,EAAS,OAAO,KAAK,WAAWwB,EAAAxB,EAAS,OAAO,KAAK,OAArB,YAAAwB,EAA2B,UAAW,CAACxB,EAAS,OAAO,WAAUA,EAAS,OAAO,SAAoBS,GAAKT,EAAS,MAAM,GACzJA,EAAS,OAAO,KAAK,WAAWyB,EAAAzB,EAAS,OAAO,KAAK,OAArB,YAAAyB,EAA8B,UAAW,CAACzB,EAAS,OAAO,OAAMA,EAAS,OAAO,KAAYS,GAAKT,EAAS,MAAM,GAChJA,EAAS,OAAO,KAAK,WAAW0B,EAAA1B,EAAS,OAAO,KAAK,SAArB,YAAA0B,EAAgC,UAAW,CAAC1B,EAAS,OAAO,YAAWA,EAAS,OAAO,UAAsBS,GAAKT,EAAS,MAAM,GACjKA,EAAS,OAAO,KAAK,WAAW2B,EAAA3B,EAAS,OAAO,KAAK,SAArB,YAAA2B,EAAgC,UAAW,CAAC3B,EAAS,OAAO,eAAcA,EAAS,OAAO,aAA4BS,GAAKT,EAAS,MAAM,GAC1KA,EAAS,OAAO,KAAK,WAAW4B,EAAA5B,EAAS,OAAO,KAAK,gBAArB,YAAA4B,EAAuC,UAAW,CAAC5B,EAAS,OAAO,gBAAeA,EAAS,OAAO,cAA8BS,GAAKT,EAAS,MAAM,GACpLA,EAAS,OAAO,KAAK,WAAW6B,EAAA7B,EAAS,OAAO,KAAK,cAArB,YAAA6B,EAAqC,UAAW,CAAC7B,EAAS,OAAO,cAAaA,EAAS,OAAO,YAA0BS,GAAKT,EAAS,MAAM,GAC5KA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,aAAa+B,GAAAD,EAAA9B,EAAS,OAAO,KAAK,WAArB,YAAA8B,EAA+B,YAA/B,YAAAC,EAA0C,SAAS,gBAAc/B,EAAS,OAAO,UAAsBsC,GAAWtC,EAAS,MAAM,GAC/LA,EAAS,OAAO,KAAK,SAAWA,EAAS,OAAO,KAAK,WAAa,CAACA,EAAS,OAAO,gBAAgBiC,GAAAD,EAAAhC,EAAS,OAAO,KAAK,WAArB,YAAAgC,EAA+B,YAA/B,YAAAC,EAA0C,SAAS,gBAAcjC,EAAS,OAAO,aAAyBuC,GAAavC,EAAS,MAAM,GACzOA,EAAS,OAAO,OAAO,SAAW,CAACA,EAAS,OAAO,aAAakC,EAAAlC,EAAS,OAAO,OAAO,YAAvB,YAAAkC,EAAkC,SAAS,gBAAclC,EAAS,OAAO,UAAsBS,GAAKT,EAAS,MAAM,GACnLA,EAAS,OAAO,OAAO,SAAW,CAACA,EAAS,OAAO,WAAWmC,EAAAnC,EAAS,OAAO,OAAO,YAAvB,YAAAmC,EAAkC,SAAS,cAAYnC,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GAC3KA,EAAS,OAAO,aAAa,SAAW,CAACA,EAAS,OAAO,eAAcA,EAAS,OAAO,aAA4BS,GAAKT,EAAS,MAAM,GAG3I,cAAiBQ,KAAS,OAAO,KAAKR,EAAS,MAAM,EAC/CA,EAAS,OAAOQ,IAA0B,OAAOR,EAAS,OAAOQ,IAA2B,cAC9FR,EAAS,OAAOQ,GAAyB,MAAMR,EAAS,OAAOQ,GAGrE,CAEA,IAAIR,GAGG,SAASwC,GAAcC,EAA2BjC,EAA0BkC,EAAgC,CApJnH,IAAAhC,EAwJE,GAHI+B,IAAazC,GAAWyC,GACxB,CAACjC,IACAR,IAAU2C,EAAI,wBAAwB,EACvC,CAAC3C,GAAS,OAAO,gBAAgB,OAAO,KAC5C,IAAM4C,EAAY,CAAC,QAAS,cAAe,OAAQ,MAAO,UAAW,MAAO,MAAO,MAAO,KAAK,EACzFC,EAAY,CAAC,UAAW,mBAAoB,QAAQ,EACpDC,EAAgB,CAAC,EACjBC,EAAoB,CAAC,EAErBC,EAAMxC,EAAM,SACZyC,EAAWzC,EAAM,SACvB,IAAIE,EAAAuC,GAAA,YAAAA,EAAU,QAAV,MAAAvC,EAAiB,MACnB,QAAWwC,KAAU,OAAO,OAAOD,EAAS,MAAM,KAAK,EAAG,CACxD,IAAME,EAAMD,EAAc,GAAG,YAAY,EACpCJ,EAAI,SAASK,CAAE,GAAGL,EAAI,KAAKK,CAAE,CACpC,KAEI,CAACF,GAAYjD,GAAS,OAAO,OAC/B2C,EAAI,mBAAoBD,CAAI,EAGhC,QAAWS,KAAML,EACX,CAACF,EAAU,SAASO,CAAE,GACrB,CAACN,EAAU,SAASM,CAAE,GACtB,CAACnD,GAAS,IAAI,QAAQ,SAASmD,CAAE,GACjC,CAACnD,GAAS,IAAI,QAAQ,SAASmD,EAAG,QAAQ,IAAK,EAAE,CAAC,GAClD,CAACnD,GAAS,IAAI,QAAQ,SAASmD,EAAG,QAAQ,SAAU,EAAE,CAAC,GACvD,CAACnD,GAAS,IAAI,QAAQ,SAASmD,EAAG,QAAQ,KAAM,EAAE,CAAC,GACtDJ,EAAQ,KAAKI,CAAE,EAGnB,OAAInD,GAAS,OAAO,OAAS+C,EAAQ,OAAS,GAAGJ,EAAI,2BAA4BD,EAAMK,CAAO,EACvFA,EAAQ,OAAS,EAAI,CAAE,KAAAL,EAAM,QAAAK,EAAS,IAAAD,EAAK,IAAAE,CAAI,EAAI,IAC5D,CAEO,SAASI,GAASX,EAA2D,CAClFzC,GAAWyC,EACX,IAAMM,EAAuB,CAAC,EAC9B,QAAWM,KAAW,OAAO,KAAKrD,GAAS,MAAM,EAAG,CAClD,IAAMQ,EAA2BR,GAAS,OAAOqD,GACjD,GAAI,CAAC7C,EAAO,SACZ,IAAM8C,EAAMd,GAAcxC,GAAUQ,EAAO6C,CAAO,EAC9CC,GAAKP,EAAQ,KAAKO,CAAG,CAC3B,CACA,OAAOP,CACT,C4C3LA,IAAMQ,GAAU,CACd,YAAa,GACb,eAAgB,GAChB,QAAS,GACT,MAAO,GACP,cAAe,EACjB,EAUaC,GAAwC,CAAC,EAEtD,eAAeC,GAAYC,EAAaC,EAA8C,CACpF,OAAIJ,GAAQ,OAAOK,EAAI,oBAAqBF,EAAKC,CAAI,EAC9C,MAAMD,EAAKC,CAAI,CACxB,CAEO,SAASE,GAAoBC,EAAgB,CAClDP,GAAQ,YAAcO,EAAO,YAC7BP,GAAQ,QAAUO,EAAO,MACzBP,GAAQ,cAAgBO,EAAO,aACjC,CAEA,eAAsBC,EAAUC,EAAoD,CApCpF,IAAAC,EAAAC,EAAAC,EAqCE,IAAIC,EAAWC,GAAKd,GAAQ,cAAeS,GAAa,EAAE,EACrDI,EAAS,YAAY,EAAE,SAAS,OAAO,IAAGA,GAAY,SAC3D,IAAME,EAAoBF,EAAS,SAAS,GAAG,EAAIA,EAAS,MAAM,GAAG,EAAIA,EAAS,MAAM,IAAI,EACtFG,EAAiBD,EAAkBA,EAAkB,OAAS,GAAG,QAAQ,QAAS,EAAE,EACpFE,EAAkB,eAAiBD,EACzCf,GAAWe,GAAkB,CAC3B,KAAMA,EACN,iBAAkB,EAClB,kBAAmB,EACnB,YAAaE,GAAWF,GACxB,QAAS,EACX,EACAhB,GAAQ,eAAkB,OAAO,QAAW,aAAiB,OAAO,OAAO,cAAiB,aAAiB,OAAO,OAAO,WAAc,YACzI,IAAImB,EAAe,CAAC,EACpB,GAAI,CACFA,EAAgBnB,GAAQ,gBAAkBA,GAAQ,YAAe,MAAS,KAAG,WAAW,EAAI,CAAC,CAC/F,OAAQoB,EAAN,CACApB,GAAQ,eAAiB,EAC3B,CACAC,GAAWe,GAAgB,QAAWhB,GAAQ,gBAAkBA,GAAQ,aAAgB,OAAO,KAAKmB,CAAY,EAAE,SAASF,CAAe,EAC1I,IAAMI,EAAgB,OAAO,OAAU,YAAc,CAAC,EAAI,CAAE,UAAW,CAAClB,EAAaC,IAAuBF,GAAYC,EAAKC,CAAI,CAAE,EAC7HkB,EAAoB,IAAOC,GAAWtB,GAAWe,GAAgB,QAAUC,EAAkBJ,EAAUQ,CAAa,EACtHG,EAAS,GACb,GAAI,CAEFF,EAAM,cAAc,EAChBtB,GAAQ,OAAOK,EAAI,sBAAuBiB,EAAM,OAAU,EAE9D,IAAMG,EAAY,MAAMH,EAAM,QAAQ,KAAK,EAC3CrB,GAAWe,GAAgB,mBAAmBN,EAAAe,GAAA,YAAAA,EAAW,aAAX,YAAAf,EAAuB,aAAc,EACnFY,EAAM,SAASG,CAAS,EAExBxB,GAAWe,GAAgB,oBAAoBJ,GAAAD,EAAAW,EAAM,YAAN,YAAAX,EAAiB,aAAjB,YAAAC,EAA6B,aAAc,EACtFZ,GAAQ,SAASK,EAAI,cAAeiB,EAAM,SAAa,CAAE,MAAOrB,GAAWe,GAAgB,iBAAkB,EAAGhB,EAAO,EAC3HwB,EAAS,EACX,OAASE,EAAP,CACArB,EAAI,uBAAwBQ,EAAUa,CAAG,CAC3C,CACA,GAAIF,GAAUxB,GAAQ,aAAeA,GAAQ,gBAAkB,CAACC,GAAWe,GAAgB,QACzF,GAAI,CACF,IAAMW,EAAa,MAAML,EAAM,KAAKL,CAAe,EACnDZ,EAAI,eAAgBY,EAAiBU,CAAU,CACjD,OAASD,EAAP,CACArB,EAAI,sBAAuBQ,EAAUa,CAAG,CAC1C,CAEF,OAAAE,GAAc,KAAMN,EAAO,GAAGb,GAAa,IAAI,EACxCa,CACT,gBCrFA,IAAAO,GAAA,GAAAC,GAAAD,GAAA,SAAAE,GAAA,SAAAC,GAAA,WAAAC,GAAA,SAAAC,GAAA,YAAAC,GAAA,SAAAC,GAAA,WAAAC,GAAA,YAAAC,GAAA,WAAAC,KCKO,IAAMC,GAAoBC,GAAqB,CACpD,GAAI,CAACA,EAAOC,EAAI,4BAA4B,UACnC,CAACD,EAAM,WAAYC,EAAI,wCAAwC,MACnE,CACH,IAAMC,EAAMF,EAAM,WAAW,IAAI,EACjC,GAAI,CAACE,EAAKD,EAAI,uCAAuC,MAChD,QAAOC,CACd,CACA,OAAO,IACT,EAEaC,GAAWC,GAAkB,KAAK,MAAOA,EAAQ,IAAO,KAAK,EAAE,EAE/DC,GAAa,CAACC,EAAuBC,IAA6B,CAC7E,GAAI,CAACA,EAAI,UAAY,OAAOD,GAAM,YAAa,OAAOC,EAAI,MAC1D,IAAMC,EAAM,kBAAkB,KAAK,CAAC,IAAO,EAAIF,EAAI,IAAO,EAAIA,EAAI,GAAG,CAAC,EACtE,MAAO,QAAQE,EAAI,OAAOA,EAAI,OAAOA,EAAI,OAAOD,EAAI,QACtD,EAEO,SAASE,GAAMP,EAAmEQ,EAAWC,EAAWL,EAAuBM,EAA2B,CAC/JV,EAAI,UAAYG,GAAWC,EAAGM,CAAY,EAC1CV,EAAI,UAAU,EACdA,EAAI,IAAIQ,EAAGC,EAAGC,EAAa,UAAW,EAAG,EAAI,KAAK,EAAE,EACpDV,EAAI,KAAK,CACX,CAEO,SAASW,GAAKX,EAAmEQ,EAAWC,EAAWG,EAAeC,EAAgBH,EAA2B,CAGtK,GAFAV,EAAI,UAAU,EACdA,EAAI,UAAYU,EAAa,UACzBA,EAAa,UAAW,CAC1B,IAAMI,GAAMN,EAAIA,EAAII,GAAS,EACvBG,GAAMN,EAAIA,EAAII,GAAU,EAC9Bb,EAAI,QAAQc,EAAIC,EAAIH,EAAQ,EAAGC,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,EAAE,CAC9D,MACEb,EAAI,OAAOQ,EAAIE,EAAa,UAAWD,CAAC,EACxCT,EAAI,OAAOQ,EAAII,EAAQF,EAAa,UAAWD,CAAC,EAChDT,EAAI,iBAAiBQ,EAAII,EAAOH,EAAGD,EAAII,EAAOH,EAAIC,EAAa,SAAS,EACxEV,EAAI,OAAOQ,EAAII,EAAOH,EAAII,EAASH,EAAa,SAAS,EACzDV,EAAI,iBAAiBQ,EAAII,EAAOH,EAAII,EAAQL,EAAII,EAAQF,EAAa,UAAWD,EAAII,CAAM,EAC1Fb,EAAI,OAAOQ,EAAIE,EAAa,UAAWD,EAAII,CAAM,EACjDb,EAAI,iBAAiBQ,EAAGC,EAAII,EAAQL,EAAGC,EAAII,EAASH,EAAa,SAAS,EAC1EV,EAAI,OAAOQ,EAAGC,EAAIC,EAAa,SAAS,EACxCV,EAAI,iBAAiBQ,EAAGC,EAAGD,EAAIE,EAAa,UAAWD,CAAC,EACxDT,EAAI,UAAU,EAEhBA,EAAI,OAAO,CACb,CAEO,SAASgB,GAAMhB,EAAmEiB,EAAiBP,EAA2B,CACnI,GAAI,EAAAO,EAAO,OAAS,GACpB,CAAAjB,EAAI,UAAU,EACdA,EAAI,OAAOiB,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EACrC,QAAWC,KAAMD,EACfjB,EAAI,YAAcG,GAAWe,EAAG,IAAM,EAAGR,CAAY,EACrDV,EAAI,OAAO,KAAK,MAAMkB,EAAG,EAAE,EAAG,KAAK,MAAMA,EAAG,EAAE,CAAC,EAEjDlB,EAAI,OAAO,EACPU,EAAa,eACfV,EAAI,UAAU,EACdA,EAAI,KAAK,GAEb,CAEO,SAASmB,GAAOnB,EAAmEiB,EAAiBP,EAA2B,CACpI,GAAI,EAAAO,EAAO,OAAS,GAEpB,IADAjB,EAAI,UAAYU,EAAa,UACzB,CAACA,EAAa,WAAaO,EAAO,QAAU,EAAG,CACjDD,GAAMhB,EAAKiB,EAAQP,CAAY,EAC/B,MACF,CACAV,EAAI,OAAOiB,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EACrC,QAASG,EAAI,EAAGA,EAAIH,EAAO,OAAS,EAAGG,IAAK,CAC1C,IAAMC,GAAMJ,EAAOG,GAAG,GAAKH,EAAOG,EAAI,GAAG,IAAM,EACzCE,GAAML,EAAOG,GAAG,GAAKH,EAAOG,EAAI,GAAG,IAAM,EAC/CpB,EAAI,iBAAiBiB,EAAOG,GAAG,GAAIH,EAAOG,GAAG,GAAIC,EAAIC,CAAE,CACzD,CACAtB,EAAI,iBAAiBiB,EAAOA,EAAO,OAAS,GAAG,GAAIA,EAAOA,EAAO,OAAS,GAAG,GAAIA,EAAOA,EAAO,OAAS,GAAG,GAAIA,EAAOA,EAAO,OAAS,GAAG,EAAE,EAC3IjB,EAAI,OAAO,EACPU,EAAa,eACfV,EAAI,UAAU,EACdA,EAAI,KAAK,GAEb,CAEO,SAASuB,GAAMvB,EAAmEwB,EAAaC,EAAWC,EAAS,EAAG,CAC3H,IAAIC,EACAnB,EACAC,EACJT,EAAI,UAAU,EACdA,EAAI,OAAOwB,EAAK,GAAIA,EAAK,EAAE,EAC3BxB,EAAI,OAAOyB,EAAG,GAAIA,EAAG,EAAE,EACvBE,EAAQ,KAAK,MAAMF,EAAG,GAAKD,EAAK,GAAIC,EAAG,GAAKD,EAAK,EAAE,EACnDhB,EAAIkB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClChB,EAAIiB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClCzB,EAAI,OAAOQ,EAAGC,CAAC,EACfkB,GAAU,EAAM,GAAQ,EAAI,KAAK,IACjCnB,EAAIkB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClChB,EAAIiB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClCzB,EAAI,OAAOQ,EAAGC,CAAC,EACfkB,GAAU,EAAM,GAAQ,EAAI,KAAK,IACjCnB,EAAIkB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClChB,EAAIiB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClCzB,EAAI,OAAOQ,EAAGC,CAAC,EACfT,EAAI,UAAU,EACdA,EAAI,OAAO,EACXA,EAAI,KAAK,CACX,CClEO,IAAM4B,GAAuB,CAClC,MAAO,2BACP,WAAY,yBACZ,YAAa,QACb,MAAO,GACP,KAAM,6BACN,WAAY,GACZ,UAAW,EACX,UAAW,EACX,UAAW,EACX,WAAY,GACZ,WAAY,GACZ,UAAW,GACX,cAAe,GACf,aAAc,GACd,aAAc,GACd,SAAU,GACV,aAAc,GACd,SAAU,GACV,UAAW,EACb,ECzDA,IAAIC,EAEJ,SAASC,GAAWC,EAAeC,EAAmE,CAVtG,IAAAC,EAAAC,EAWE,GAAIL,EAAI,WAAY,CAElB,IAAMM,EAAkB,CAAC,EAOzB,GANAA,EAAO,KAAK,SAAS,KAAK,MAAM,IAAMJ,EAAE,KAAK,IAAI,EAC7CA,EAAE,aAAaI,EAAO,KAAK,GAAGJ,EAAE,QAAU,MAAM,KAAK,MAAM,IAAMA,EAAE,WAAW,IAAI,EAClFA,EAAE,KAAKI,EAAO,KAAK,QAAQJ,EAAE,KAAO,IAAI,EACxCA,EAAE,MAAMI,EAAO,KAAK,aAAaJ,EAAE,MAAM,EACzCA,EAAE,MAAMI,EAAO,KAAK,SAAS,KAAK,MAAM,IAAMJ,EAAE,IAAI,IAAI,EACxDA,EAAE,MAAMI,EAAO,KAAK,SAAS,KAAK,MAAM,IAAMJ,EAAE,IAAI,IAAI,EACxDA,EAAE,SAAWA,EAAE,QAAQ,OAAS,EAAG,CACrC,IAAMK,EAAUL,EAAE,QAAQ,IAAK,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,KAAK,MAAM,EAAE,SAAS,EAC7EK,EAAQ,OAAS,IAAGA,EAAQ,OAAS,GACzCD,EAAO,KAAKC,EAAQ,KAAK,GAAG,CAAC,CAC/B,GACIH,EAAAF,EAAE,WAAF,YAAAE,EAAY,UAASC,EAAAH,EAAE,WAAF,YAAAG,EAAY,QAC/BH,EAAE,SAAS,MAAM,MAAMI,EAAO,KAAK,SAASE,GAAQN,EAAE,SAAS,MAAM,IAAI,aAAUM,GAAQN,EAAE,SAAS,MAAM,GAAG,eAAYM,GAAQN,EAAE,SAAS,MAAM,KAAK,OAAI,EAC7JA,EAAE,SAAS,KAAK,SAASI,EAAO,KAAK,SAASE,GAAQN,EAAE,SAAS,KAAK,OAAO,OAAI,GAEnFI,EAAO,SAAW,GAAGA,EAAO,KAAK,MAAM,EAC3CH,EAAI,UAAYH,EAAI,MACpB,QAASS,EAAIH,EAAO,OAAS,EAAGG,GAAK,EAAGA,IAAK,CAC3C,IAAMC,EAAI,KAAK,IAAIR,EAAE,IAAI,GAAI,CAAC,EACxBS,EAAIF,EAAIT,EAAI,WAAaE,EAAE,IAAI,GACjCF,EAAI,aAAeA,EAAI,cAAgB,KACzCG,EAAI,UAAYH,EAAI,YACpBG,EAAI,SAASG,EAAOG,GAAIC,EAAI,EAAGC,EAAI,EAAE,GAEvCR,EAAI,UAAYH,EAAI,WACpBG,EAAI,SAASG,EAAOG,GAAIC,EAAI,EAAGC,EAAI,EAAE,CACvC,CACF,CACF,CAEA,SAASC,GAAeV,EAAeC,EAAmE,CA5C1G,IAAAC,EAAAC,EAAAQ,EAAAC,EA8CE,KAAIV,EAAAF,EAAE,cAAF,YAAAE,EAAe,gBAAeC,EAAAH,EAAE,cAAF,YAAAG,EAAe,YAAY,IAAI,CAC/DF,EAAI,YAAcH,EAAI,SAAW,2BAA6BA,EAAI,MAClEG,EAAI,UAAU,EACd,IAAMY,EAAQ,KAAK,IAAIb,EAAE,YAAY,YAAY,GAAG,GAAKA,EAAE,YAAY,YAAY,GAAG,EAAE,EAAI,EACtFc,EAAQ,KAAK,IAAId,EAAE,YAAY,YAAY,GAAG,GAAKA,EAAE,YAAY,YAAY,GAAG,EAAE,EAAI,EAC5FC,EAAI,QAAQD,EAAE,YAAY,YAAY,GAAG,GAAIA,EAAE,YAAY,YAAY,GAAG,GAAIa,EAAOC,EAAO,EAAG,EAAG,EAAI,KAAK,EAAE,EAC7Gb,EAAI,OAAO,EACPH,EAAI,eACNG,EAAI,UAAYH,EAAI,SAAW,2BAA6BA,EAAI,MAChEG,EAAI,KAAK,EAEb,CACA,KAAIU,EAAAX,EAAE,cAAF,YAAAW,EAAe,iBAAgBC,EAAAZ,EAAE,cAAF,YAAAY,EAAe,aAAa,IAAI,CACjEX,EAAI,YAAcH,EAAI,SAAW,2BAA6BA,EAAI,MAClEG,EAAI,UAAU,EACd,IAAMY,EAAQ,KAAK,IAAIb,EAAE,YAAY,aAAa,GAAG,GAAKA,EAAE,YAAY,aAAa,GAAG,EAAE,EAAI,EACxFc,EAAQ,KAAK,IAAId,EAAE,YAAY,aAAa,GAAG,GAAKA,EAAE,YAAY,aAAa,GAAG,EAAE,EAAI,EAC9FC,EAAI,QAAQD,EAAE,YAAY,aAAa,GAAG,GAAIA,EAAE,YAAY,aAAa,GAAG,GAAIa,EAAOC,EAAO,EAAG,EAAG,EAAI,KAAK,EAAE,EAC/Gb,EAAI,OAAO,EACPH,EAAI,eACNG,EAAI,UAAYH,EAAI,SAAW,2BAA6BA,EAAI,MAChEG,EAAI,KAAK,EAEb,CACF,CAEA,SAASc,GAAgBf,EAAeC,EAAmE,CAxE3G,IAAAC,EAyEE,GAAIJ,EAAI,YAAYI,EAAAF,EAAE,WAAF,YAAAE,EAAY,QAAS,OAAO,QAAW,YAAa,CACtED,EAAI,YAAc,OAClB,IAAMe,EAAQhB,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK,EAAMA,EAAE,IAAI,GAAKM,GAAQN,EAAE,SAAS,MAAM,GAAG,EAAI,GAC/EiB,EAAQjB,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK,EAAMA,EAAE,IAAI,GAAKM,GAAQN,EAAE,SAAS,MAAM,KAAK,EAAI,GACjFkB,EAAQ,IAAI,OAAO;AAAA,UACnBlB,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK,KAAKA,EAAE,IAAI;AAAA;AAAA,UAEjCgB,KAAQhB,EAAE,IAAI;AAAA,UACdgB,KAAQhB,EAAE,IAAI,GAAKA,EAAE,IAAI;AAAA,UACzBA,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK,KAAKA,EAAE,IAAI,GAAKA,EAAE,IAAI;AAAA,KACjD,EACKmB,EAAQ,IAAI,OAAO;AAAA,UACnBnB,EAAE,IAAI,MAAMA,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK;AAAA;AAAA,UAElCA,EAAE,IAAI,MAAMiB;AAAA,UACZjB,EAAE,IAAI,GAAKA,EAAE,IAAI,MAAMiB;AAAA,UACvBjB,EAAE,IAAI,GAAKA,EAAE,IAAI,MAAMA,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK;AAAA,KAClD,EACDC,EAAI,OAAOkB,CAAK,EAChBlB,EAAI,OAAOiB,CAAK,CAClB,CACF,CAEA,SAASE,GAAepB,EAAeC,EAAmE,CAhG1G,IAAAC,EAiGE,GAAIJ,EAAI,YAAYI,EAAAF,EAAE,WAAF,YAAAE,EAAY,KAAK,WAAYF,EAAE,SAAS,KAAK,SAAWA,EAAE,YAAY,aAAeA,EAAE,YAAY,cAAgBA,EAAE,YAAY,YAAY,IAAMA,EAAE,YAAY,aAAa,GAAI,CACpMC,EAAI,YAAc,OAClBA,EAAI,UAAY,OAChB,IAAMoB,EAAW,CACfrB,EAAE,YAAY,YAAY,GAAG,GAAM,KAAK,IAAIA,EAAE,SAAS,KAAK,OAAO,EAAIA,EAAE,SAAS,KAAK,SAAWA,EAAE,IAAI,GACxGA,EAAE,YAAY,YAAY,GAAG,GAAM,KAAK,IAAIA,EAAE,SAAS,KAAK,OAAO,EAAIA,EAAE,SAAS,KAAK,SAAWA,EAAE,IAAI,EAC1G,EACAsB,GAAMrB,EAAK,CAACD,EAAE,YAAY,YAAY,GAAG,GAAIA,EAAE,YAAY,YAAY,GAAG,EAAE,EAAG,CAACqB,EAAS,GAAIA,EAAS,EAAE,EAAG,CAAC,EAC5G,IAAME,EAAY,CAChBvB,EAAE,YAAY,aAAa,GAAG,GAAM,KAAK,IAAIA,EAAE,SAAS,KAAK,OAAO,EAAIA,EAAE,SAAS,KAAK,SAAWA,EAAE,IAAI,GACzGA,EAAE,YAAY,aAAa,GAAG,GAAM,KAAK,IAAIA,EAAE,SAAS,KAAK,OAAO,EAAIA,EAAE,SAAS,KAAK,SAAWA,EAAE,IAAI,EAC3G,EACAsB,GAAMrB,EAAK,CAACD,EAAE,YAAY,aAAa,GAAG,GAAIA,EAAE,YAAY,aAAa,GAAG,EAAE,EAAG,CAACuB,EAAU,GAAIA,EAAU,EAAE,EAAG,CAAC,CAClH,CACF,CAEA,SAASC,GAAiBxB,EAAeC,EAAmE,CAC1G,GAAIH,EAAI,cAAgBE,EAAE,KAAK,QAAU,IAAK,CAC5CC,EAAI,UAAY,EAChB,QAASM,EAAI,EAAGA,EAAIkB,GAAc,OAAS,EAAGlB,IAAK,CACjD,IAAMmB,EAAS,CAACD,GAAclB,EAAI,EAAI,GAAIkB,GAAclB,EAAI,EAAI,GAAIkB,GAAclB,EAAI,EAAI,EAAE,EAAE,IAAKoB,GAAU3B,EAAE,KAAK2B,EAAM,EAC1HC,GAAM3B,EAAKyB,EAAQ5B,CAAG,CACxB,CACAY,GAAeV,EAAGC,CAAG,CACvB,CAQF,CAEA,SAAS4B,GAAe7B,EAAeC,EAAmE,CACxG,GAAIH,EAAI,YAAcE,EAAE,KAAK,QAAU,IACrC,QAASO,EAAI,EAAGA,EAAIP,EAAE,KAAK,OAAQO,IACjCuB,GAAM7B,EAAKD,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAIT,CAAG,EACpDA,EAAI,gBACgBiC,GAAiC,SAASxB,CAAC,GAAGuB,GAAM7B,EAAKD,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAKP,EAAE,KAAKO,GAAG,GAAgB,IAAKT,CAAG,EACxHkC,GAAqC,SAASzB,CAAC,GAAGuB,GAAM7B,EAAKD,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAKP,EAAE,KAAKO,GAAG,GAAgB,IAAKT,CAAG,EAC5HmC,GAAsC,SAAS1B,CAAC,GAAGuB,GAAM7B,EAAKD,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAKP,EAAE,KAAKO,GAAG,GAAgB,IAAKT,CAAG,EAI3J,CAEA,SAASoC,GAAclC,EAAeC,EAAK,CACrCH,EAAI,WACNqC,GAAKlC,EAAKD,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIF,CAAG,CAEzD,CAGO,SAASsC,GAAKC,EAAqBC,EAAsBC,EAAoC,CAElG,GADAzC,EAAM0C,EAAUC,GAASF,CAAW,EAChC,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMpC,EAAMyC,GAAiBL,CAAQ,EACrC,GAAI,EAACpC,EACL,CAAAA,EAAI,KAAOH,EAAI,KACfG,EAAI,YAAcH,EAAI,MACtBG,EAAI,UAAYH,EAAI,MACpB,QAAWE,KAAKsC,EACdJ,GAAclC,EAAGC,CAAG,EACpBF,GAAWC,EAAGC,CAAG,EACbD,EAAE,MAAQA,EAAE,KAAK,OAAS,IAC5B6B,GAAe7B,EAAGC,CAAG,EACrBuB,GAAiBxB,EAAGC,CAAG,EACvBc,GAAgBf,EAAGC,CAAG,EACtBmB,GAAepB,EAAGC,CAAG,GAG3B,CClKO,SAAS0C,GAAKC,EAAqBC,EAAsBC,EAAoC,CAClG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMM,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,EAACM,EACL,CAAAA,EAAI,SAAW,QACf,QAASE,EAAI,EAAGA,EAAIP,EAAO,OAAQO,IAAK,CAgBtC,GAfAF,EAAI,YAAcH,EAAa,MAC/BG,EAAI,UAAYH,EAAa,MAC7BG,EAAI,UAAYH,EAAa,UAC7BG,EAAI,KAAOH,EAAa,KACpBA,EAAa,WAAaF,EAAOO,GAAG,KAAOP,EAAOO,GAAG,IAAI,SAAW,IACtEC,GAAKH,EAAKL,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIL,CAAY,EAC1FA,EAAa,aACXA,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAAS,QAAQ,IAAML,EAAOO,GAAG,SAAUP,EAAOO,GAAG,IAAI,GAAK,EAAG,EAAIP,EAAOO,GAAG,IAAI,GAAKL,EAAa,WAAYF,EAAOO,GAAG,IAAI,EAAE,GAEvIF,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAAS,QAAQ,IAAML,EAAOO,GAAG,SAAUP,EAAOO,GAAG,IAAI,GAAK,EAAG,EAAIP,EAAOO,GAAG,IAAI,GAAKL,EAAa,WAAYF,EAAOO,GAAG,IAAI,EAAE,IAGrIL,EAAa,YAAcF,EAAOO,GAAG,UACvC,QAASE,EAAK,EAAGA,EAAKT,EAAOO,GAAG,UAAU,OAAQE,IAC5C,CAACT,EAAOO,GAAG,UAAUE,GAAI,OAAUT,EAAOO,GAAG,UAAUE,GAAI,QAAU,IACzEJ,EAAI,UAAYK,GAAWV,EAAOO,GAAG,UAAUE,GAAI,SAAS,GAAIP,CAAY,EAC5ES,GAAMN,EAAKL,EAAOO,GAAG,UAAUE,GAAI,SAAS,GAAIT,EAAOO,GAAG,UAAUE,GAAI,SAAS,GAAI,EAAGP,CAAY,GAGxG,GAAIA,EAAa,YAAcF,EAAOO,GAAG,UAAW,CAClDF,EAAI,KAAOH,EAAa,KACxB,QAAWO,KAAMT,EAAOO,GAAG,UACrB,CAACE,EAAG,OAAUA,EAAG,QAAU,IAC/BJ,EAAI,UAAYK,GAAWD,EAAG,SAAS,GAAIP,CAAY,EACvDG,EAAI,SAAS,GAAGI,EAAG,QAAQ,KAAK,MAAM,IAAMA,EAAG,KAAK,KAAMA,EAAG,SAAS,GAAK,EAAGA,EAAG,SAAS,GAAK,CAAC,EAEpG,CACA,GAAIP,EAAa,cAAgBF,EAAOO,GAAG,WAAaP,EAAOO,GAAG,YAChE,QAAWK,KAAQ,OAAO,OAAOZ,EAAOO,GAAG,WAAW,EACpD,QAAWM,KAAaD,EAAME,GAAOT,EAAKQ,EAAWX,CAAY,CAGvE,EACF,CC3CO,SAASa,GAAKC,EAAqBC,EAAsBC,EAAoC,CAClG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMM,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,EAACM,EACL,CAAAA,EAAI,SAAW,QACfA,EAAI,KAAOH,EAAa,KACxB,QAAWK,KAAKP,EAAQ,CAetB,GAdIE,EAAa,YACfG,EAAI,YAAcH,EAAa,MAC/BG,EAAI,UAAYH,EAAa,MAC7BM,GAAKH,EAAKE,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIL,CAAY,EAC1DA,EAAa,aACXA,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAAS,QAAQ,KAAK,MAAM,IAAME,EAAE,KAAK,KAAMA,EAAE,IAAI,GAAK,EAAG,EAAIA,EAAE,IAAI,GAAKL,EAAa,WAAYK,EAAE,IAAI,EAAE,GAEnHF,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAAS,QAAQ,KAAK,MAAM,IAAME,EAAE,KAAK,KAAMA,EAAE,IAAI,GAAK,EAAG,EAAIA,EAAE,IAAI,GAAKL,EAAa,WAAYK,EAAE,IAAI,EAAE,GAEnHF,EAAI,OAAO,GAETH,EAAa,YACXK,EAAE,WAAaA,EAAE,UAAU,OAAS,EACtC,QAAWE,KAAMF,EAAE,UACjBF,EAAI,UAAYK,GAAWD,EAAG,GAAIP,CAAY,EAC9CS,GAAMN,EAAKI,EAAG,GAAIA,EAAG,GAAI,EAAGP,CAAY,EAI9C,GAAIA,EAAa,YAAcK,EAAE,YAAa,CAC5C,IAAMK,EAAe,CAACC,EAAeC,IAAkB,CACrD,GAAI,CAACD,GAAQA,EAAK,SAAW,GAAK,CAACA,EAAK,GAAI,OAC5C,IAAME,EAAIF,EAAKA,EAAK,OAAS,GAAG,IAAM,KACtCR,EAAI,UAAYK,GAAWK,EAAGb,CAAY,EAC1CG,EAAI,SAASS,EAAOD,EAAKA,EAAK,OAAS,GAAG,GAAK,EAAGA,EAAKA,EAAK,OAAS,GAAG,GAAK,CAAC,CAChF,EACAR,EAAI,KAAOH,EAAa,KACxBU,EAAaL,EAAE,YAAY,MAAO,OAAO,EACzCK,EAAaL,EAAE,YAAY,OAAQ,QAAQ,EAC3CK,EAAaL,EAAE,YAAY,KAAM,MAAM,EACvCK,EAAaL,EAAE,YAAY,MAAO,OAAO,EACzCK,EAAaL,EAAE,YAAY,MAAO,OAAO,EACzCK,EAAaL,EAAE,YAAY,KAAM,MAAM,CACzC,CACA,GAAIL,EAAa,cAAgBK,EAAE,YAAa,CAC9C,IAAMS,EAAeH,GAAkB,CACrC,GAAI,GAACA,GAAQA,EAAK,SAAW,GAAK,CAACA,EAAK,IACxC,QAASI,EAAI,EAAGA,EAAIJ,EAAK,OAAQI,IAAK,CACpCZ,EAAI,UAAU,EACd,IAAMU,EAAIF,EAAKI,GAAG,IAAM,EACxBZ,EAAI,YAAcK,GAAWO,EAAIF,EAAGb,CAAY,EAChDG,EAAI,OAAOQ,EAAKI,EAAI,EAAIA,EAAI,EAAI,GAAG,GAAIJ,EAAKI,EAAI,EAAIA,EAAI,EAAI,GAAG,EAAE,EACjEZ,EAAI,OAAOQ,EAAKI,GAAG,GAAIJ,EAAKI,GAAG,EAAE,EACjCZ,EAAI,OAAO,CACb,CACF,EACAA,EAAI,UAAYH,EAAa,UAC7Bc,EAAYT,EAAE,YAAY,KAAK,EAC/BS,EAAYT,EAAE,YAAY,MAAM,EAChCS,EAAYT,EAAE,YAAY,IAAI,EAC9BS,EAAYT,EAAE,YAAY,KAAK,EAC/BS,EAAYT,EAAE,YAAY,KAAK,CAEjC,CACF,EACF,CClEO,SAASW,GAAOC,EAAqBC,EAAwBC,EAAoC,CACtG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMM,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,EAACM,EACL,CAAAA,EAAI,SAAW,QACfA,EAAI,KAAOH,EAAa,KACxB,QAAWK,KAAKP,EACd,GAAIE,EAAa,UAAW,CAI1B,GAHAG,EAAI,YAAcH,EAAa,MAC/BG,EAAI,UAAYH,EAAa,MAC7BM,GAAKH,EAAKE,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIL,CAAY,EAC1DA,EAAa,WAAY,CAC3B,IAAMO,EAAQ,GAAGF,EAAE,SAAS,KAAK,MAAM,IAAMA,EAAE,KAAK,KAChDL,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAASI,EAAOF,EAAE,IAAI,GAAK,EAAG,EAAIA,EAAE,IAAI,GAAKL,EAAa,WAAYK,EAAE,IAAI,EAAE,GAEpFF,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAASI,EAAOF,EAAE,IAAI,GAAK,EAAG,EAAIA,EAAE,IAAI,GAAKL,EAAa,WAAYK,EAAE,IAAI,EAAE,CACpF,CACAF,EAAI,OAAO,CACb,EAEJ,CCxBO,SAASK,GAAQC,EAAqBC,EAAyBC,EAAoC,CACxG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,GAACD,GAAU,CAACD,IACZG,EAAa,aAAc,CAC7B,IAAMG,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,CAACM,EAAK,OACVA,EAAI,KAAOH,EAAa,KACxBG,EAAI,UAAYH,EAAa,MAC7B,IAAIK,EAAI,EACR,QAASC,EAAI,EAAGA,EAAIR,EAAO,OAAQQ,IAAK,CACtC,IAAIC,EAAmB,CAAC,EACpBC,EAAkB,CAAC,EAEvB,GADA,CAACD,EAAOC,CAAI,EAAI,OAAO,QAAQV,EAAOQ,EAAE,EACnCE,EAAK,OAAS,GAAQA,EAAK,GAAc,OAAS,EAAI,CACzD,IAAMC,EAAMF,EAAM,GAAe,EAAI,IAAIA,EAAM,KAAO,GAChDG,EAAQ,GAAGH,EAAM,MAAME,MAAQD,EAAK,KACtCR,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAASO,EAAO,EAAG,EAAKL,EAAIL,EAAa,UAAW,GAE1DG,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAASO,EAAO,EAAG,EAAKL,EAAIL,EAAa,UAAW,EACxDK,GAAK,CACP,CACF,CACF,CACF,CPjBA,IAAIM,GAAW,EAUR,SAASC,GAAOC,EAAqBC,EAAwBC,EAAoC,CACtG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMM,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,EAACM,EACL,CAAAA,EAAI,SAAW,QACfA,EAAI,KAAOH,EAAa,KAExB,QAASK,EAAI,EAAGA,EAAIP,EAAO,OAAQO,IACjC,GAAIL,EAAa,UAAW,CAI1B,GAHAG,EAAI,YAAcH,EAAa,MAC/BG,EAAI,UAAYH,EAAa,MAC7BM,GAAKH,EAAKL,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIL,CAAY,EAC1FA,EAAa,WAAY,CAC3B,IAAMO,EAAQ,WAAWF,IACrBL,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAASI,EAAOT,EAAOO,GAAG,IAAI,GAAK,EAAG,EAAIP,EAAOO,GAAG,IAAI,GAAKL,EAAa,WAAYF,EAAOO,GAAG,IAAI,EAAE,GAE5GF,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAASI,EAAOT,EAAOO,GAAG,IAAI,GAAK,EAAG,EAAIP,EAAOO,GAAG,IAAI,GAAKL,EAAa,WAAYF,EAAOO,GAAG,IAAI,EAAE,CAC5G,CACAF,EAAI,OAAO,CACb,EAEJ,CAGO,SAASK,GAAOC,EAAwDC,EAAmB,CAChG,GAAI,CAACD,GAAS,CAACC,EAAQ,OACvB,IAAMP,EAAMC,GAAiBM,CAAM,EAC/B,CAACP,GACLA,EAAI,UAAUM,EAAO,EAAG,CAAC,CAC3B,CAGA,eAAsBE,GAAId,EAAqBC,EAAgBC,EAAoC,CACjG,GAAI,EAACD,GAAA,MAAAA,EAAQ,cAAe,CAACD,EAAU,OAAO,KAC9C,IAAMe,EAAYC,EAAI,EAChBb,EAAeC,EAAUC,GAASH,CAAW,EAC7Ce,EAAU,QAAQ,IAAI,CAC1BC,GAAKlB,EAAUC,EAAO,KAAME,CAAY,EACxCgB,GAAKnB,EAAUC,EAAO,KAAME,CAAY,EACxCiB,GAAKpB,EAAUC,EAAO,KAAME,CAAY,EACxCkB,GAAOrB,EAAUC,EAAO,OAAQE,CAAY,EAC5CmB,GAAQtB,EAAUC,EAAO,QAASE,CAAY,CAEhD,CAAC,EACD,OAAAL,GAAWyB,EAAI,QAAUzB,GAAW,KAAK,MAAMkB,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,EAChGd,EAAO,YAAY,KAAOH,GACnBmB,CACT,CQxEA,IAAMO,GAAa,GACbC,GAAQ,GAGd,SAASC,GAAWC,EAAWC,EAAWC,EAA8C,CACtF,IAAIC,EAAS,GACTC,EAAIF,EAAQ,OAAS,EACzB,QAASG,EAAI,EAAGA,EAAIH,EAAQ,OAAQE,EAAIC,IAChCH,EAAQG,GAAG,EAAIJ,GAAQC,EAAQE,GAAG,EAAIH,GAAQD,GAAKE,EAAQE,GAAG,EAAIF,EAAQG,GAAG,IAAMJ,EAAIC,EAAQG,GAAG,IAAMH,EAAQE,GAAG,EAAIF,EAAQG,GAAG,GAAKH,EAAQG,GAAG,IAAIF,EAAS,CAACA,GAExK,OAAOA,CACT,CAEA,eAAsBG,GAAKC,EAA+C,CAExE,GADI,CAACA,EAAK,QACN,CAACA,EAAK,MAAQA,EAAK,KAAK,OAAS,IAAK,OAAOA,EAAK,OACtD,IAAMC,EAAQD,EAAK,OAAO,MAAM,IAAM,EAChCE,EAASF,EAAK,OAAO,MAAM,IAAM,EACjCG,EAAS,MAAMH,EAAK,OAAO,OAAO,EACpCI,EAAyC,CAAC,EAC9C,QAAWC,KAAMC,GAAgB,WAAYF,EAAW,KAAK,CAAE,GAAIJ,EAAK,KAAKK,GAAI,GAAKL,EAAK,IAAI,IAAMA,EAAK,IAAI,GAAI,GAAIA,EAAK,KAAKK,GAAI,GAAKL,EAAK,IAAI,IAAMA,EAAK,IAAI,EAAG,CAAC,EACjKV,IAAcA,GAAa,IAAGc,EAAaA,EAAW,IAAKC,IAAQ,CAAE,EAAGA,EAAG,EAAI,GAAMA,EAAG,EAAIf,GAAae,EAAG,EAAIf,GAAY,EAAGe,EAAG,EAAI,GAAMA,EAAG,EAAIf,GAAae,EAAG,EAAIf,EAAW,EAAE,GACxL,QAASG,EAAI,EAAGA,EAAIQ,EAAOR,IACzB,QAASC,EAAI,EAAGA,EAAIQ,EAAQR,IACXF,GAAWC,EAAIQ,EAAOP,EAAIO,EAAOG,CAAU,IAExDD,EAAO,IAAIZ,GAAQY,EAAO,IAAI,EAAGT,EAAGD,EAAG,CAAC,EAAG,EAAGC,EAAGD,EAAG,CAAC,EACrDU,EAAO,IAAIZ,GAAQY,EAAO,IAAI,EAAGT,EAAGD,EAAG,CAAC,EAAG,EAAGC,EAAGD,EAAG,CAAC,EACrDU,EAAO,IAAIZ,GAAQY,EAAO,IAAI,EAAGT,EAAGD,EAAG,CAAC,EAAG,EAAGC,EAAGD,EAAG,CAAC,GAI3D,IAAMc,EAASJ,EAAO,SAAS,EAC/B,OAAG,UAAQA,CAAM,EACVI,CACT,CCpCA,IAAMC,GAAiBC,GAA4D,CACjF,IAAMC,EAAU,CAACC,EAAYC,IAAe,KAAK,MAAMD,EAAI,GAAKC,EAAI,GAAID,EAAI,GAAKC,EAAI,EAAE,EACvF,GAAI,CAACH,EAAK,YAAY,cAAgB,CAACA,EAAK,YAAY,YAAa,MAAO,CAAE,QAAS,EAAG,SAAU,CAAE,EAEtG,IAAMI,EAAa,CAAC,EAAG,GAAI,EACrBC,EAAW,EAEXC,GAAQN,EAAK,KAAK,IAAI,IAAM,IAAMA,EAAK,KAAK,KAAK,IAAM,GACvDO,EAAaD,EAAON,EAAK,KAAK,KAAOA,EAAK,KAAK,KAC/CQ,EAAYF,EACd,EAAEN,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,IAAI,IAAM,GAAIA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,IAAI,IAAM,CAAC,EACvF,EAAEA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,KAAK,IAAM,GAAIA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,KAAK,IAAM,CAAC,EACvFS,EAAUH,EACZ,CAACN,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,IAAI,GAAIA,EAAK,KAAK,IAAI,GAAKA,EAAK,KAAK,IAAI,EAAE,EAC1E,CAACA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,KAAK,GAAIA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,KAAK,EAAE,EAC3EU,EAAiB,EACpBF,EAAU,GAAKD,EAAW,IAAME,EAAQ,GAAKL,EAAW,GACzDC,GAAYE,EAAW,GAAKC,EAAU,IAAMC,EAAQ,GAAKL,EAAW,EACtE,EACIO,EAAW,KAAK,KAAMD,EAAQ,GAAKA,EAAQ,GAAOA,EAAQ,GAAKA,EAAQ,EAAG,EAC9E,OAAAC,EAAW,KAAK,IAAIA,EAAUX,EAAK,OAAO,GAAK,EAAGA,EAAK,OAAO,GAAK,CAAC,EAE7D,CAAE,SADQC,EAAQ,CAAC,EAAG,CAAC,EAAGS,CAAO,EAAK,KAAK,GAAK,GAAM,KAAK,GAChD,SAAAC,CAAS,CAC7B,EAEaC,GAAqB,CAACZ,EAAkBa,IAIhD,CAEH,IAAMC,EAAaC,GAAsB,CACvC,IAAMC,EAAS,KAAK,KAAKD,EAAE,GAAKA,EAAE,GAAKA,EAAE,GAAKA,EAAE,GAAKA,EAAE,GAAKA,EAAE,EAAE,EAChE,OAAAA,EAAE,IAAMC,EACRD,EAAE,IAAMC,EACRD,EAAE,IAAMC,EACDD,CACT,EACME,EAAa,CAACC,EAAWC,IAAsB,CACnD,IAAMC,EAAIF,EAAE,GAAKC,EAAE,GACbE,EAAIH,EAAE,GAAKC,EAAE,GACbG,EAAIJ,EAAE,GAAKC,EAAE,GACnB,MAAO,CAACC,EAAGC,EAAGC,CAAC,CACjB,EACMC,EAAe,CAACL,EAAWC,IAAsB,CACrD,IAAMC,EAAIF,EAAE,GAAKC,EAAE,GAAKD,EAAE,GAAKC,EAAE,GAC3BE,EAAIH,EAAE,GAAKC,EAAE,GAAKD,EAAE,GAAKC,EAAE,GAC3BG,EAAIJ,EAAE,GAAKC,EAAE,GAAKD,EAAE,GAAKC,EAAE,GACjC,MAAO,CAACC,EAAGC,EAAGC,CAAC,CACjB,EAEME,EAA8BC,GAA8D,CAChG,GAAM,CAACC,EAAKC,EAAMC,EAAMC,EAAKC,EAAKC,EAAKC,EAAKC,EAAKC,CAAG,EAAIT,EACpDU,EACAC,EACAC,EACJ,OAAIR,EAAM,EACJA,EAAM,IACRQ,EAAS,KAAK,KAAKR,CAAG,EACtBO,EAAS,KAAK,MAAM,CAACJ,EAAKN,CAAG,EAC7BS,EAAS,KAAK,MAAM,CAACJ,EAAKD,CAAG,IAE7BO,EAAS,CAAC,KAAK,GAAK,EACpBD,EAAS,CAAC,KAAK,MAAMH,EAAKC,CAAG,EAC7BC,EAAS,IAGXE,EAAS,KAAK,GAAK,EACnBD,EAAS,KAAK,MAAMH,EAAKC,CAAG,EAC5BC,EAAS,GAEP,OAAO,MAAMA,CAAM,IAAGA,EAAS,GAC/B,OAAO,MAAMC,CAAM,IAAGA,EAAS,GAC/B,OAAO,MAAMC,CAAM,IAAGA,EAAS,GAC5B,CAAE,MAAO,EAAI,CAACF,EAAQ,IAAK,EAAI,CAACC,EAAQ,KAAM,EAAI,CAACC,CAAO,CACnE,EAcMC,EAAOtC,EAAK,QAClB,GAAI,CAACsC,GAAQA,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,CAAE,EAAG,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,EAAG,KAAM,CAAE,QAAS,EAAG,SAAU,CAAE,CAAE,EAEtJ,IAAMC,EAAO,KAAK,IAAIvC,EAAK,OAAO,GAAKa,EAAU,GAAIb,EAAK,OAAO,GAAKa,EAAU,EAAE,EAAI,IAEhF2B,EAAe,CAACF,EAAK,IAAKA,EAAK,KAAMA,EAAK,KAAMA,EAAK,IAAI,EAAE,IAAKG,GAAO,CAACA,EAAG,GAAK5B,EAAU,GAAK0B,EAAME,EAAG,GAAK5B,EAAU,GAAK0B,EAAME,EAAG,EAAE,CAAU,EAEjJC,EAAQ5B,EAAUG,EAAWuB,EAAI,GAAcA,EAAI,EAAY,CAAC,EAClEG,EAAQ7B,EAAUG,EAAWuB,EAAI,GAAcA,EAAI,EAAY,CAAC,EAC9DI,EAAQ9B,EAAUS,EAAaoB,EAAOD,CAAK,CAAC,EAElDC,EAAQpB,EAAamB,EAAOE,CAAK,EAIjC,IAAMC,EAAmF,CACvFF,EAAM,GAAIA,EAAM,GAAIA,EAAM,GAC1BD,EAAM,GAAIA,EAAM,GAAIA,EAAM,GAC1BE,EAAM,GAAIA,EAAM,GAAIA,EAAM,EAC5B,EACME,EAAQtB,EAA2BqB,CAAM,EAIzCE,EAAOT,EAAK,SAAW,IAAMvC,GAAcC,CAAI,EAAI,CAAE,QAAS,EAAG,SAAU,CAAE,EAEnF,MAAO,CAAE,MAAA8C,EAAO,OAAAD,EAAQ,KAAAE,CAAK,CAC/B,EC9FO,IAAMC,GAAa,MAAOC,EAAyCC,IAAyC,CA1BnH,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GA4BE,IAAIC,EAAoBC,EAAI,EACxBC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EAEEC,EAAwB,CAAC,EAC/B1C,EAAS,MAAQ,WAEjB,IAAM2C,EAAQ,MAAeC,GAAQ3C,EAAOD,EAAS,MAAM,EAE3D,GADAA,EAAS,YAAY,KAAO6C,EAAI,SAAW7C,EAAS,YAAY,MAAQ,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,EACrI,CAAC9B,EAAM,OAASA,EAAM,MAAM,SAAW,EAAG,MAAO,CAAC,EACtD,GAAI,CAAC0C,EAAO,MAAO,CAAC,EAEpB,QAASG,EAAI,EAAGA,EAAIH,EAAM,OAAQG,IAAK,CAKrC,GAJA9C,EAAS,QAAQ,UAAU,EAIvB,CAAC2C,EAAMG,GAAG,QAAUH,EAAMG,GAAG,OAAO,mBAAoB,CAC1DC,EAAI,2BAA4BJ,EAAMG,GAAG,MAAM,EAC/C,QACF,CAGA,IAAI5C,EAAAF,EAAS,OAAO,KAAK,WAArB,MAAAE,EAA+B,KAAM,CACvC,IAAM8C,GAAS,MAAWC,GAAKN,EAAMG,EAAE,EACpC,UAAQH,EAAMG,GAAG,MAAM,EACtBE,KAAQL,EAAMG,GAAG,OAASE,GAChC,CAGA,IAAME,GAAWP,EAAMG,GAAG,MAASH,EAAMG,GAAG,KAAK,OAAS,IAAOK,GAAmBR,EAAMG,GAAI,CAAC7C,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,CAAC,EAAI,KAGlID,EAAS,QAAQ,gBAAgB,EAC7BA,EAAS,OAAO,MAClBoC,GAAajC,EAAAH,EAAS,OAAO,KAAK,UAArB,MAAAG,EAA8B,QAAkByC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,CAAC,GAE5I3C,EAAS,MAAQ,cACjB+B,EAAYC,EAAI,EAChBI,GAAahC,EAAAJ,EAAS,OAAO,KAAK,UAArB,MAAAI,EAA8B,QAAU,MAAcwC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,CAAC,EAClJ3C,EAAS,YAAY,QAAU6C,EAAI,SAAW7C,EAAS,YAAY,SAAW,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,GAEjJ/B,EAAS,QAAQ,cAAc,EAG/BA,EAAS,QAAQ,kBAAkB,EAC/BA,EAAS,OAAO,MAClBuC,GAAelC,EAAAL,EAAS,OAAO,KAAK,YAArB,MAAAK,EAAgC,QAAoBuC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,GAEjJ3C,EAAS,MAAQ,gBACjB+B,EAAYC,EAAI,EAChBO,GAAejC,EAAAN,EAAS,OAAO,KAAK,YAArB,MAAAM,EAAgC,QAAU,MAAgBsC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,EACvJ3C,EAAS,YAAY,UAAY6C,EAAI,SAAW7C,EAAS,YAAY,WAAa,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,GAErJ/B,EAAS,QAAQ,gBAAgB,EAGjCA,EAAS,QAAQ,iBAAiB,EAC9BA,EAAS,OAAO,MAClBwC,GAAcjC,EAAAP,EAAS,OAAO,KAAK,WAArB,MAAAO,EAA+B,QAAmBqC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,GAE9I3C,EAAS,MAAQ,eACjB+B,EAAYC,EAAI,EAChBQ,GAAchC,EAAAR,EAAS,OAAO,KAAK,WAArB,MAAAQ,EAA+B,QAAU,MAAeoC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,EACpJ3C,EAAS,YAAY,SAAW6C,EAAI,SAAW7C,EAAS,YAAY,WAAa,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,GAEpJ/B,EAAS,QAAQ,eAAe,EAGhCA,EAAS,QAAQ,aAAa,EAC1BA,EAAS,OAAO,MAClBkC,GAAUzB,EAAAT,EAAS,OAAO,KAAK,OAArB,MAAAS,EAA2B,QAAemC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,MAElI3C,EAAS,MAAQ,WACjB+B,EAAYC,EAAI,EAChBE,GAAUxB,EAAAV,EAAS,OAAO,KAAK,OAArB,MAAAU,EAA2B,QAAU,MAAWkC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KACxI3C,EAAS,YAAY,KAAO,KAAK,MAAMgC,EAAI,EAAID,CAAS,GAE1D/B,EAAS,QAAQ,WAAW,EAG5BA,EAAS,QAAQ,eAAe,EAC5BA,EAAS,OAAO,OAClBiC,GAAStB,EAAAX,EAAS,OAAO,KAAK,SAArB,MAAAW,EAAgC,QAAoBiC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KAC3IR,GAAYvB,EAAAZ,EAAS,OAAO,KAAK,SAArB,MAAAY,EAAgC,QAAuBgC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,OAEjJ3C,EAAS,MAAQ,aACjB+B,EAAYC,EAAI,EAChBC,GAASpB,EAAAb,EAAS,OAAO,KAAK,SAArB,MAAAa,EAAgC,QAAU,MAAgB+B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KACjJR,GAAYrB,EAAAd,EAAS,OAAO,KAAK,SAArB,MAAAc,EAAgC,QAAU,MAAmB8B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KACvJ3C,EAAS,YAAY,OAAS,KAAK,MAAMgC,EAAI,EAAID,CAAS,GAE5D/B,EAAS,QAAQ,aAAa,EAG9BA,EAAS,QAAQ,sBAAsB,EACnCA,EAAS,OAAO,MAClBqC,GAAmBtB,EAAAf,EAAS,OAAO,KAAK,gBAArB,MAAAe,EAAuC,QAAwB6B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,MAEhK3C,EAAS,MAAQ,oBACjB+B,EAAYC,EAAI,EAChBK,GAAmBrB,EAAAhB,EAAS,OAAO,KAAK,gBAArB,MAAAgB,EAAuC,QAAU,MAAoB4B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KACtK3C,EAAS,YAAY,cAAgB,KAAK,MAAMgC,EAAI,EAAID,CAAS,GAEnE/B,EAAS,QAAQ,oBAAoB,EAGrCA,EAAS,QAAQ,oBAAoB,EACjCA,EAAS,OAAO,MAClBsC,GAAiBrB,EAAAjB,EAAS,OAAO,KAAK,cAArB,MAAAiB,EAAqC,QAAsB2B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,MAE1J3C,EAAS,MAAQ,oBACjB+B,EAAYC,EAAI,EAChBM,GAAiBpB,EAAAlB,EAAS,OAAO,KAAK,cAArB,MAAAkB,EAAqC,QAAU,MAAkB0B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KAChK3C,EAAS,YAAY,cAAgB,KAAK,MAAMgC,EAAI,EAAID,CAAS,GAEnE/B,EAAS,QAAQ,kBAAkB,EAGnCA,EAAS,QAAQ,oBAAoB,EACjCA,EAAS,OAAO,MAClByC,EAAkBG,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,GAE5F3C,EAAS,MAAQ,kBACjB+B,EAAYC,EAAI,EAChBS,EAAU,MAAcG,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAClG3C,EAAS,YAAY,YAAc6C,EAAI,SAAW7C,EAAS,YAAY,aAAe,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,GAEzJ/B,EAAS,QAAQ,kBAAkB,EAG/BA,EAAS,OAAO,QAClB,CAACiC,EAAQE,EAAWC,EAAYC,EAAkBC,EAAgBG,EAASP,EAASK,EAAcC,CAAW,EAAI,MAAM,QAAQ,IAAI,CAACP,EAAQE,EAAWC,EAAYC,EAAkBC,EAAgBG,EAASP,EAASK,EAAcC,CAAW,CAAC,GAEnPxC,EAAS,QAAQ,cAAc,IAE3BmB,GAAAnB,EAAS,OAAO,KAAK,SAArB,YAAAmB,GAAgC,UAAWc,GAAUE,IACvDM,EAAU,CACR,GAAIA,EACJ,IAAMR,EAA0B,IAChC,OAASE,EAAsD,OAC/D,YAAcA,EAAsD,WACtE,KAEEf,GAAApB,EAAS,OAAO,KAAK,OAArB,YAAAoB,GAA2B,UAAWc,IACxCO,EAAU,CACR,GAAIA,EACJ,IAAMP,EAA0B,IAChC,OAASA,EAA0B,OACnC,YAAcA,EAA0B,YACxC,KAAOA,EAA0B,IACnC,KAEEb,GAAArB,EAAS,OAAO,KAAK,gBAArB,YAAAqB,GAAuC,UAAWgB,IACnDI,EAAoB,WAAaJ,KAGhCf,GAAAtB,EAAS,OAAO,KAAK,cAArB,YAAAsB,GAAqC,UAAWgB,IACjDG,EAAoB,WAAaH,IAK/Bf,GAAAvB,EAAS,OAAO,KAAK,OAArB,MAAAuB,GAA2B,QAIhC,IAAM6B,KAAY1B,IAAAD,IAAAD,GAAAmB,EAAMG,KAAN,YAAAtB,GAAU,cAAV,YAAAC,GAAuB,cAAvB,YAAAC,GAAqC,OAAMG,IAAAD,IAAAD,GAAAgB,EAAMG,KAAN,YAAAnB,GAAU,cAAV,YAAAC,GAAuB,eAAvB,YAAAC,GAAsC,KAC7Fc,EAAMG,GAAG,YAAY,YAAY,OAAS,GAAOH,EAAMG,GAAG,YAAY,aAAa,OAAS,GAC5FH,EAAMG,GAAG,YAAY,YAAY,KAAO,MAAUH,EAAMG,GAAG,YAAY,aAAa,KAAO,KAC7F,KAAK,IAAI,KAAK,IAAIH,EAAMG,GAAG,YAAY,YAAY,GAAG,GAAKH,EAAMG,GAAG,YAAY,YAAY,GAAG,EAAE,EAAG,KAAK,IAAIH,EAAMG,GAAG,YAAY,aAAa,GAAG,GAAKH,EAAMG,GAAG,YAAY,aAAa,GAAG,EAAE,CAAC,EAAI7C,EAAM,MAAM,GAC/M,EAGEoD,IAASvB,GAAA9B,EAAS,OAAO,KAAK,WAArB,MAAA8B,GAA+B,OAAY,UAAQa,EAAMG,GAAG,MAAM,EAAI,KAElF,UAAQH,EAAMG,GAAG,MAAM,EAEtBH,EAAMG,GAAG,QAAQ,OAAOH,EAAMG,GAAG,OAErC,IAAMQ,GAAkB,CACtB,GAAGX,EAAMG,GACT,GAAIA,CACN,EACKL,EAAoB,MAAKa,GAAI,IAAOb,EAAoB,KACxDA,EAAoB,SAAQa,GAAI,OAAUb,EAAoB,QAC9DA,EAAoB,cAAaa,GAAI,YAAeb,EAAoB,aACxEA,EAAoB,aAAYa,GAAI,UAAab,EAAoB,YACrEA,EAAoB,OAAMa,GAAI,KAAQb,EAAoB,MAC3DL,IAAYkB,GAAI,QAAUlB,GAC1BG,IAAce,GAAI,KAAOf,GACzBC,IAAac,GAAI,KAAOd,GACxBY,IAAYA,KAAa,IAAGE,GAAI,KAAO,KAAK,MAAM,IAAMF,GAAW,IAAI,EAAI,KAC3EF,KAAUI,GAAI,SAAWJ,IACzBG,KAAQC,GAAI,OAASD,IACzBX,EAAQ,KAAKY,EAAG,EAChBtD,EAAS,QAAQ,UAAU,CAC7B,CACA,OAAAA,EAAS,QAAQ,eAAe,EAC5BA,EAAS,OAAO,QACdA,EAAS,YAAY,MAAM,OAAOA,EAAS,YAAY,KACvDA,EAAS,YAAY,KAAK,OAAOA,EAAS,YAAY,IACtDA,EAAS,YAAY,QAAQ,OAAOA,EAAS,YAAY,OACzDA,EAAS,YAAY,SAAS,OAAOA,EAAS,YAAY,SAEzD0C,CACT,EChNO,IAAMa,GAAQC,GAAuC,CAC1D,GAAI,CAACA,EAAK,MAAO,CAAC,EAClB,IAAMC,EAAqD,CAAC,EAC5D,QAASC,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAAK,CAEnC,IAAMC,EAAYH,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,WAAY,EACjEC,EAAaL,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,YAAa,EACnEE,EAAON,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,MAAO,EACzDE,GAAQH,GAAaE,GAAeF,EAAU,SAAS,GAAKG,EAAK,SAAS,IAAQD,EAAW,SAAS,GAAKC,EAAK,SAAS,GAAKL,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,WAAY,CAAC,EACxKI,GAAQH,GAAcA,EAAU,SAAS,GAAKG,EAAK,SAAS,GAAKL,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,iBAAkB,CAAC,EACtHI,GAAQD,GAAeA,EAAW,SAAS,GAAKC,EAAK,SAAS,IAAKL,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,kBAAmB,CAAC,EAGlI,IAAMK,EAAeP,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,cAAe,EACvEI,EAAgBR,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,eAAgB,EAC3EG,GAAgBC,GAAiB,KAAK,IAAID,EAAa,YAAY,GAAKC,EAAc,YAAY,EAAE,EAAI,IAC1GP,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,WAAYK,EAAa,SAAS,GAAKC,EAAc,SAAS,GAAM,OAAS,SAAU,CAAC,CAE9H,CACA,OAAOP,CACT,EAEaQ,GAAQT,GAAuC,CAC1D,GAAI,CAACA,EAAK,MAAO,CAAC,EAClB,IAAMC,EAAqD,CAAC,EAC5D,QAASC,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAC9B,GAAIF,EAAIE,GAAG,MAAQF,EAAIE,GAAG,KAAK,OAAS,IAAK,CAC3C,IAAMQ,GAASV,EAAIE,GAAG,KAAK,IAAI,IAAM,IAAMF,EAAIE,GAAG,KAAK,KAAK,IAAM,GAC5DS,EAAQX,EAAIE,GAAG,KAAK,IAAI,GAAKF,EAAIE,GAAG,KAAK,KAAK,GAChD,KAAK,IAAIQ,EAAQC,CAAK,GAAK,IAAMV,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,eAAgB,CAAC,EACnFD,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,UAAUQ,EAAQ,EAAI,OAAS,SAAU,CAAC,EAChE,KAAK,IAAIV,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,EAAI,KAAK,IAAIF,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,EAC1G,IAAKD,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,gBAAiB,CAAC,EACtD,KAAK,IAAIF,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,EAAI,KAAK,IAAIF,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,EAC1G,IAAKD,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,iBAAkB,CAAC,EAC1E,IAAMU,EAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAIZ,EAAIE,GAAG,KAAK,IAAI,GAAKF,EAAIE,GAAG,KAAK,IAAI,EAAE,EAAI,KAAK,IAAIF,EAAIE,GAAG,KAAK,IAAI,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,CAAC,EACxIU,EAAY,IAAIX,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,SAAS,KAAK,MAAMU,CAAS,SAAU,CAAC,EAC9F,IAAMC,EAAYb,EAAIE,GAAG,KAAK,KAAK,IAAM,EACrC,KAAK,IAAIW,CAAS,EAAI,IAAIZ,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,QAAQW,EAAY,EAAI,KAAO,QAAS,CAAC,CAC3G,CAEF,OAAOZ,CACT,EAEaa,GAAQd,GAAuC,CA7E5D,IAAAe,EAAAC,EAAAC,EAAAC,EA8EE,GAAI,CAAClB,EAAK,MAAO,CAAC,EAClB,IAAMC,EAAqD,CAAC,EAC5D,QAASC,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAAK,CACnC,GAAI,GAACc,GAAAD,EAAAf,EAAIE,GAAG,cAAP,YAAAa,EAAoB,cAApB,MAAAC,EAAkC,KAAM,GAACE,GAAAD,EAAAjB,EAAIE,GAAG,cAAP,YAAAe,EAAoB,eAApB,MAAAC,EAAmC,IAAI,SACrF,IAAMC,EAAYnB,EAAIE,GAAG,YAAY,YAAY,GAAG,GAAKF,EAAIE,GAAG,YAAY,YAAY,GAAG,GACrFkB,EAAYpB,EAAIE,GAAG,YAAY,YAAY,GAAG,GAAKF,EAAIE,GAAG,YAAY,YAAY,GAAG,GACrFmB,EAAW,KAAK,IAAIF,EAAYC,CAAS,EAEzCE,EAAatB,EAAIE,GAAG,YAAY,aAAa,GAAG,GAAKF,EAAIE,GAAG,YAAY,aAAa,GAAG,GACxFqB,EAAavB,EAAIE,GAAG,YAAY,aAAa,GAAG,GAAKF,EAAIE,GAAG,YAAY,aAAa,GAAG,GACxFsB,EAAY,KAAK,IAAIF,EAAaC,CAAU,EAE9CE,EAAS,GACM,KAAK,IAAIJ,EAAWG,CAAS,EAAI,KAAK,IAAIH,EAAUG,CAAS,EAC/D,MACfC,EAAS,GACTxB,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,eAAgB,CAAC,GAGrD,IAAMwB,EAAkB,KAAK,IAAI1B,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,YAAY,YAAY,GAAG,EAAE,EAAIF,EAAIE,GAAG,IAAI,GACpGyB,EAAmB,KAAK,IAAI3B,EAAIE,GAAG,KAAK,IAAI,GAAKF,EAAIE,GAAG,YAAY,aAAa,GAAG,EAAE,EAAIF,EAAIE,GAAG,IAAI,IACvGwB,EAAkB,KAAQC,EAAmB,OAAMF,EAAS,IAC5DC,EAAkBC,EAChBD,EAAkB,KAAMzB,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,eAAgB,CAAC,EAE3EyB,EAAmB,KAAM1B,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,cAAe,CAAC,EAGjF,IAAM0B,EAAmB,KAAK,IAAI5B,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,YAAY,aAAa,GAAG,EAAE,EAAIF,EAAIE,GAAG,IAAI,GACtG2B,EAAkB,KAAK,IAAI7B,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,YAAY,YAAY,GAAG,EAAE,EAAIF,EAAIE,GAAG,IAAI,IACtG2B,EAAkB,KAAQD,EAAmB,KAAQC,EAAkB,MAASD,EAAmB,QAAOH,EAAS,KACnHI,EAAkB,KAAQD,EAAmB,MAAM3B,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,cAAe,CAAC,GACrG2B,EAAkB,MAASD,EAAmB,OAAO3B,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,YAAa,CAAC,EAGrGuB,GAAQxB,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,gBAAiB,CAAC,CAClE,CACA,OAAOD,CACT,EAEa6B,GAAQ9B,GAAuC,CAC1D,GAAI,CAACA,EAAK,MAAO,CAAC,EAClB,IAAMC,EAAqD,CAAC,EAC5D,QAASC,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAAK,CACnC,IAAM6B,EAA+C,CAAC,EACtD,GAAI/B,EAAIE,GAAG,YACT,OAAW,CAAC8B,EAAQC,CAAG,IAAK,OAAO,QAAQjC,EAAIE,GAAG,WAAW,EACvD8B,IAAW,YAAc,MAAM,QAAQC,CAAG,GAAKA,EAAI,IAAIF,EAAQ,KAAK,CAAE,KAAMC,EAAO,YAAY,EAAG,SAAUC,EAAI,EAAG,CAAC,EAG5H,GAAIF,GAAWA,EAAQ,OAAS,EAAG,CACjC,IAAMG,EAAUH,EAAQ,OAAO,CAACI,EAAM/B,KAAQ+B,EAAK,SAAS,IAAM,IAAM/B,EAAE,SAAS,IAAM,GAAK+B,EAAO/B,CAAE,EACvGH,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,GAAGgC,EAAQ,cAA8B,CAAC,EAC5E,IAAME,EAAUL,EAAQ,OAAO,CAACI,EAAM/B,IAAO+B,EAAK,SAAS,GAAK/B,EAAE,SAAS,GAAK+B,EAAO/B,CAAE,EACzFH,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,GAAGkC,EAAQ,SAAyB,CAAC,CACzE,CACA,GAAIpC,EAAIE,GAAG,UAAW,CACpB,IAAMmC,EAAmBC,GAAMtC,EAAIE,GAAG,SAAS,EAC/C,QAAWqC,KAAQF,EAAOpC,EAAS,KAAK,CAAE,KAAMC,EAAG,QAASqC,EAAK,IAAoB,CAAC,CACxF,CACF,CACA,OAAOtC,CACT,EC/HA,IAAMuC,EAAyB,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,QAAS,CAAC,EAAG,YAAa,CAAC,EAAG,UAAW,EAAG,MAAO,IAAK,EAC5IC,GAAkB,EAEf,SAASC,GAAKC,EAAmBC,EAAwB,CAhBhE,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAiBE,IAAMC,EAAKC,EAAI,EACf,GAAI,CAACpB,EAAW,MAAO,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,QAAS,CAAC,EAAG,YAAa,CAAC,EAAG,UAAW,EAAG,MAAO,IAAK,EAKxI,IAAMqB,EAAU,KAAK,IAAI,EAAIrB,EAAU,UAQjCsB,EAAiBD,EAAU,IAAO,EAAI,KAAK,IAAIA,EAAU,CAAC,EAAI,EAMpE,GAJIrB,EAAU,SAAQH,EAAe,OAASG,EAAU,QACpDA,EAAU,QAAOH,EAAe,MAAQG,EAAU,OAGlD,CAACH,EAAe,MAASG,EAAU,KAAK,SAAWH,EAAe,KAAK,OACzEA,EAAe,KAAO,KAAK,MAAM,KAAK,UAAUG,EAAU,IAAI,CAAC,MAE/D,SAASuB,EAAI,EAAGA,EAAIvB,EAAU,KAAK,OAAQuB,IAAK,CAC9C,IAAMC,EAAMxB,EAAU,KAAKuB,GAAG,IAC3B,IAAI,CAACE,EAAaC,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,IAAIG,GAAKD,GAAeH,CAAc,EAC1GK,EAAS3B,EAAU,KAAKuB,GAAG,OAC9B,IAAI,CAACE,EAAaC,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,OAAOG,GAAKD,GAAeH,CAAc,EAC7GM,EAAa5B,EAAU,KAAKuB,GAAG,UAClC,IAAI,CAACM,EAAQH,IAAG,CA9CzB,IAAAxB,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GA8C6B,OACnB,MAAOmB,EAAO,MACd,KAAMA,EAAO,KACb,SAAU,CACRhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,SAAS,IAAM,IAAMG,EAAO,SAAS,IAAM,IAAMP,EAAiBO,EAAO,SAAS,GACrLhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,SAAS,IAAM,IAAMG,EAAO,SAAS,IAAM,IAAMP,EAAiBO,EAAO,SAAS,GACrLhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,SAAS,IAAM,IAAMG,EAAO,SAAS,IAAM,IAAMP,EAAiBO,EAAO,SAAS,EACvL,EACA,YAAa,CACXhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,YAAY,IAAM,IAAMG,EAAO,YAAY,IAAM,IAAMP,EAAiBO,EAAO,YAAY,GAC9LhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,YAAY,IAAM,IAAMG,EAAO,YAAY,IAAM,IAAMP,EAAiBO,EAAO,YAAY,GAC9LhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,YAAY,IAAM,IAAMG,EAAO,YAAY,IAAM,IAAMP,EAAiBO,EAAO,YAAY,EAChM,EACA,SAAU,CACRhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,MAAMpB,GAAAL,EAAe,KAAK0B,GAAG,UAAUG,GAAG,WAApC,YAAAxB,GAA+C,KAAM,MAAMC,GAAA0B,EAAO,WAAP,YAAA1B,GAAkB,KAAM,IAAMmB,GAAiBlB,GAAAyB,EAAO,WAAP,YAAAzB,GAAkB,GAC3LP,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,MAAMjB,GAAAR,EAAe,KAAK0B,GAAG,UAAUG,GAAG,WAApC,YAAArB,GAA+C,KAAM,MAAMC,GAAAuB,EAAO,WAAP,YAAAvB,GAAkB,KAAM,IAAMgB,GAAiBf,GAAAsB,EAAO,WAAP,YAAAtB,GAAkB,GAC3LV,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,MAAMd,GAAAX,EAAe,KAAK0B,GAAG,UAAUG,GAAG,WAApC,YAAAlB,GAA+C,KAAM,MAAMC,GAAAoB,EAAO,WAAP,YAAApB,GAAkB,KAAM,IAAMa,GAAiBZ,GAAAmB,EAAO,WAAP,YAAAnB,GAAkB,EAC7L,CACF,EAAE,EAEEoB,EAAiD,CAAC,EACpDC,EAAS,CAAE,UAAW,CAAC,CAAE,GACzB7B,EAAAD,EAAO,KAAK,YAAZ,MAAAC,EAAuB,SAAS,iBAAkB6B,EAASC,IACtD7B,EAAAF,EAAO,KAAK,YAAZ,MAAAE,EAAuB,SAAS,aAAc4B,EAASE,IACvD7B,EAAAH,EAAO,KAAK,YAAZ,MAAAG,EAAuB,SAAS,aAAY2B,EAASG,IAC9D,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAQL,EAAO,SAAqC,EAAG,CAC1F,IAAMM,GAAgB,CAAC,EACvB,QAASX,GAAI,EAAGA,GAAIU,EAAQ,OAAS,EAAGV,KAAK,CAC3C,IAAMY,GAAMV,EAAU,KAAMW,IAAOA,GAAG,OAASH,EAAQV,GAAE,EACnDc,GAAMZ,EAAU,KAAMW,IAAOA,GAAG,OAASH,EAAQV,GAAI,EAAE,EAEzDY,IAAOE,IAAKH,GAAG,KAAK,CAACC,GAAI,SAAUE,GAAI,QAAQ,CAAC,CACtD,CACAV,EAAYK,GAAQE,EACtB,CACAxC,EAAe,KAAK0B,GAAK,CAAE,GAAGvB,EAAU,KAAKuB,GAAI,IAAAC,EAAK,OAAAG,EAAQ,UAAAC,EAAW,YAAAE,CAAY,CACvF,CAIF,GAAI,CAACjC,EAAe,MAASG,EAAU,KAAK,SAAWH,EAAe,KAAK,OACzEA,EAAe,KAAO,KAAK,MAAM,KAAK,UAAUG,EAAU,IAAI,CAAC,MAE/D,SAASuB,EAAI,EAAGA,EAAIvB,EAAU,KAAK,OAAQuB,IAAK,CAC9C,IAAMC,EAAOxB,EAAU,KAAKuB,GAAG,IAC5B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,IAAIG,GAAKe,GAAKnB,CAAc,EACtFK,EAAU3B,EAAU,KAAKuB,GAAG,OAC/B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,OAAOG,GAAKe,GAAKnB,CAAc,EAC3FzB,EAAe,KAAK0B,GAAG,UAAU,SAAWvB,EAAU,KAAKuB,GAAG,UAAU,SAAQ1B,EAAe,KAAK0B,GAAG,UAAYvB,EAAU,KAAKuB,GAAG,WACzI,IAAMK,EAAY5B,EAAU,KAAKuB,GAAG,WAAavB,EAAU,KAAKuB,GAAG,UAAU,OAAS,EAAIvB,EAAU,KAAKuB,GAAG,UACzG,IAAI,CAACmB,EAAUhB,IAAMgB,EACnB,IAAI,CAACC,EAAOC,OAAStB,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAGkB,KAAM,IAAMD,GAAS,IAAMrB,CAAe,CAAU,EACrI,CAAC,EACDQ,EAAc,CAAC,EACnB,GAAI,OAAO,KAAKjC,EAAe,KAAK0B,GAAG,WAAW,EAAE,SAAW,OAAO,KAAKvB,EAAU,KAAKuB,GAAG,WAAW,EAAE,OACxG1B,EAAe,KAAK0B,GAAG,YAAcvB,EAAU,KAAKuB,GAAG,YACvDO,EAAcjC,EAAe,KAAK0B,GAAG,oBAC5BvB,EAAU,KAAKuB,GAAG,YAC3B,QAAWsB,KAAO,OAAO,KAAK7C,EAAU,KAAKuB,GAAG,WAAW,EACzDO,EAAYe,IAAOtC,GAAAD,GAAAD,EAAAL,EAAU,KAAKuB,KAAf,YAAAlB,EAAmB,cAAnB,YAAAC,EAAiCuC,KAAjC,MAAAtC,EAAwC,GACvDP,EAAU,KAAKuB,GAAG,YAAYsB,GAC7B,IAAI,CAACC,EAAKpB,IAAcoB,EACtB,IAAI,CAACH,GAAeC,OAAgBtB,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,YAAYsB,GAAKnB,GAAGkB,IAAKD,IAASrB,CAAc,CAAC,EACrI,KAGRzB,EAAe,KAAK0B,GAAK,CAAE,GAAGvB,EAAU,KAAKuB,GAAI,IAAAC,EAAK,OAAAG,EAAQ,UAAAC,EAAW,YAAaE,CAAyC,CACjI,CAIF,GAAI,CAACjC,EAAe,MAASG,EAAU,KAAK,SAAWH,EAAe,KAAK,OACzEA,EAAe,KAAO,KAAK,MAAM,KAAK,UAAUG,EAAU,IAAI,CAAC,MAE/D,SAASuB,EAAI,EAAGA,EAAIvB,EAAU,KAAK,OAAQuB,IAAK,CAC9C,IAAMC,EAAOxB,EAAU,KAAKuB,GAAG,IAC5B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,IAAIG,GAAKe,GAAKnB,CAAc,EACtFK,EAAU3B,EAAU,KAAKuB,GAAG,OAC/B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,OAAOG,GAAKe,GAAKnB,CAAc,EAC/F,GAAItB,EAAU,KAAKuB,GAAG,SAAU,CAC9B,IAAMwB,EAIF,CAAE,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,EAAG,MAAO,CAAE,KAAM,EAAG,IAAK,EAAG,MAAO,CAAE,EAAG,KAAM,CAAE,QAAS,EAAG,SAAU,CAAE,CAAE,EACnHA,EAAS,QAASvC,EAAAR,EAAU,KAAKuB,GAAG,WAAlB,YAAAf,EAA4B,OAC9CuC,EAAS,MAAQ,CACf,OAAQzB,EAAiB,MAAMb,EAAAZ,EAAe,KAAK0B,GAAG,WAAvB,YAAAd,EAAiC,MAAM,OAAQ,MAAMC,EAAAV,EAAU,KAAKuB,GAAG,WAAlB,YAAAb,EAA4B,MAAM,OAAQ,IAAMY,EACpI,MAAOA,EAAiB,MAAMX,EAAAd,EAAe,KAAK0B,GAAG,WAAvB,YAAAZ,EAAiC,MAAM,MAAO,MAAMC,EAAAZ,EAAU,KAAKuB,GAAG,WAAlB,YAAAX,EAA4B,MAAM,MAAO,IAAMU,EACjI,QAASA,EAAiB,MAAMT,EAAAhB,EAAe,KAAK0B,GAAG,WAAvB,YAAAV,EAAiC,MAAM,QAAS,MAAMC,EAAAd,EAAU,KAAKuB,GAAG,WAAlB,YAAAT,EAA4B,MAAM,QAAS,IAAMQ,CACzI,EACAyB,EAAS,KAAO,CAEd,UAAWzB,EAAiB,MAAMP,EAAAlB,EAAe,KAAK0B,GAAG,WAAvB,YAAAR,EAAiC,KAAK,UAAW,MAAMC,EAAAhB,EAAU,KAAKuB,GAAG,WAAlB,YAAAP,EAA4B,KAAK,UAAW,IAAMM,EAC3I,WAAYA,EAAiB,MAAML,EAAApB,EAAe,KAAK0B,GAAG,WAAvB,YAAAN,EAAiC,KAAK,WAAY,MAAMC,EAAAlB,EAAU,KAAKuB,GAAG,WAAlB,YAAAL,EAA4B,KAAK,WAAY,IAAMI,CAChJ,EACAzB,EAAe,KAAK0B,GAAK,CAAE,GAAGvB,EAAU,KAAKuB,GAAI,SAAAwB,EAAU,IAAAvB,EAAK,OAAAG,CAAO,CACzE,CACA9B,EAAe,KAAK0B,GAAK,CAAE,GAAGvB,EAAU,KAAKuB,GAAI,IAAAC,EAAK,OAAAG,CAAO,CAC/D,CAIF,GAAI,CAAC9B,EAAe,QAAWG,EAAU,OAAO,SAAWH,EAAe,OAAO,OAC/EA,EAAe,OAAS,KAAK,MAAM,KAAK,UAAUG,EAAU,MAAM,CAAC,MAEnE,SAASuB,EAAI,EAAGA,EAAIvB,EAAU,OAAO,OAAQuB,IAAK,CAChD,IAAMC,EAAOxB,EAAU,OAAOuB,GAAG,IAC9B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,OAAO0B,GAAG,IAAIG,GAAKe,GAAKnB,CAAc,EACxFK,EAAU3B,EAAU,OAAOuB,GAAG,OACjC,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,OAAO0B,GAAG,OAAOG,GAAKe,GAAKnB,CAAc,EACjGzB,EAAe,OAAO0B,GAAK,CAAE,GAAGvB,EAAU,OAAOuB,GAAI,IAAAC,EAAK,OAAAG,CAAO,CACnE,CAIF,GAAI3B,EAAU,QAAS,CACrB,IAAMgD,EAAahD,EAAU,QAC7B,GAAI,CAACH,EAAe,SAAYmD,EAAW,SAAWnD,EAAe,QAAQ,OAC3EA,EAAe,QAAU,KAAK,MAAM,KAAK,UAAUmD,CAAU,CAAC,MAE9D,SAASzB,EAAI,EAAGA,EAAIyB,EAAW,OAAQzB,IACrC1B,EAAe,QAAQ0B,GAAG,IAAOyB,EAAWzB,GAAG,IAC5C,IAAI,CAACC,EAAK,MAAQF,EAAiB,GAAKzB,EAAe,QAAQ0B,GAAG,IAAI,GAAKC,GAAOF,CAAc,CAGzG,CAGItB,EAAU,UAASH,EAAe,QAAUG,EAAU,SAG1D,IAAMiD,EAAK7B,EAAI,EACf,OAAAtB,GAAkBoD,EAAI,QAAUpD,GAAkB,KAAK,MAAMmD,EAAK9B,CAAE,EAAI,KAAK,MAAM8B,EAAK9B,CAAE,EACtFnB,EAAU,cAAaH,EAAe,YAAc,CAAE,GAAGG,EAAU,YAAa,YAAaF,EAAgB,GAE1GD,CACT,CCvLA,IAAAsD,GAAA,GAAAC,GAAAD,GAAA,cAAAE,GAAA,UAAAC,GAAA,eAAAC,KAWO,SAASF,GAASG,EAAyBC,EAAyBC,EAAwB,CAAE,MAAO,EAAG,WAAY,EAAG,EAAG,CAE/H,GAAI,CAACF,GAAe,CAACA,EAAa,OAAO,OAAO,iBAChD,IAAIG,EAAM,EACV,QAASC,EAAI,EAAGA,EAAIJ,EAAY,OAAQI,IAAK,CAC3C,IAAMC,EAAQ,CAACH,EAAQ,OAASA,EAAQ,QAAU,EAAMF,EAAYI,GAAKH,EAAYG,GAAO,KAAK,IAAIJ,EAAYI,GAAKH,EAAYG,EAAE,EACpID,GAAQ,CAACD,EAAQ,OAASA,EAAQ,QAAU,EAAMG,EAAOA,EAASA,GAAQH,EAAQ,KACpF,CACA,OAAQA,EAAQ,YAAc,IAAMC,CACtC,CAGA,IAAMG,GAAoB,CAACC,EAAMC,EAAOC,EAAKC,IAAQ,CACnD,GAAIH,IAAS,EAAG,MAAO,GACvB,IAAMI,EAAOH,IAAU,EAAI,KAAK,KAAKD,CAAI,EAAIA,IAAS,EAAIC,GACpDI,GAAQ,EAAKD,EAAO,IAAOF,IAAQC,EAAMD,GAE/C,OADc,KAAK,IAAI,KAAK,IAAIG,EAAM,CAAC,EAAG,CAAC,CAE7C,EAaO,SAASb,GAAWC,EAAyBC,EAAyBC,EAAwB,CAAE,MAAO,EAAG,WAAY,GAAI,IAAK,GAAK,IAAK,EAAI,EAAG,CACrJ,IAAMK,EAAOV,GAASG,EAAaC,EAAaC,CAAO,EACvD,OAAOI,GAAkBC,EAAML,EAAQ,OAAS,EAAGA,EAAQ,KAAO,EAAGA,EAAQ,KAAO,CAAC,CACvF,CAWO,SAASJ,GAAMe,EAAwBC,EAA2BZ,EAAwB,CAAE,MAAO,EAAG,WAAY,GAAI,UAAW,EAAG,IAAK,GAAK,IAAK,EAAI,EAAG,CAC/J,GAAI,CAAC,MAAM,QAAQW,CAAU,GAAK,CAAC,MAAM,QAAQC,CAAW,GAAKD,EAAW,OAAS,IAAMC,EAAY,SAAW,EAChH,MAAO,CAAE,MAAO,GAAI,SAAU,OAAO,kBAAmB,WAAY,CAAE,EAExE,IAAIC,EAAiB,OAAO,iBACxBC,EAAQ,GACZ,QAASZ,EAAI,EAAGA,EAAIU,EAAY,OAAQV,IAAK,CAC3C,IAAMa,EAAMH,EAAYV,GAAG,SAAWS,EAAW,OAAShB,GAASgB,EAAYC,EAAYV,GAAIF,CAAO,EAAI,OAAO,iBAKjH,GAJIe,EAAMF,IACRA,EAAiBE,EACjBD,EAAQZ,GAENW,GAAkBb,EAAQ,WAAa,GAAI,KACjD,CACA,IAAMgB,EAAuBZ,GAAkBS,EAAgBb,EAAQ,OAAS,EAAGA,EAAQ,KAAO,EAAGA,EAAQ,KAAO,CAAC,EACrH,MAAO,CAAE,MAAAc,EAAO,SAAUD,EAAgB,WAAYG,CAAqB,CAC7E,CClEO,SAASC,GAAKC,EAAqBC,EAAsBC,EAAqBC,EAA2BC,EAA6C,CAN7J,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAOE,IAAIC,EAAK,EACHC,EAA0B,CAAC,EACjC,QAAWC,KAAQb,EAAO,CACxB,IAAMc,EAAuB,CAAE,GAAIH,IAAM,KAAAE,EAAM,KAAM,KAAM,MAAO,CAAE,KAAM,KAAM,MAAO,IAAK,EAAG,SAAU,CAAC,EAAG,IAAK,CAAC,EAAG,EAAG,EAAG,CAAC,CAAE,EAC/H,QAAWE,KAAQd,EACbY,EAAK,IAAI,GAAKE,EAAK,IAAI,IACtBF,EAAK,IAAI,GAAKE,EAAK,IAAI,GAAKA,EAAK,IAAI,IACrCF,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKE,EAAK,IAAI,IACrCF,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKE,EAAK,IAAI,GAAKA,EAAK,IAAI,KACtDD,EAAO,KAAOC,GAGlB,GAAID,EAAO,KACT,QAAWE,KAAQd,EACbc,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,IAC3CE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,GAAKA,EAAO,KAAK,IAAI,IACjEE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,IAC5CE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,GAAKA,EAAO,KAAK,IAAI,IAChEA,EAAO,QAAOA,EAAO,MAAM,KAAOE,GAEpCA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,GAAKA,EAAO,KAAK,IAAI,IAClDE,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,IAC9BE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,IAC5CE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,GAAKA,EAAO,KAAK,IAAI,IAChEA,EAAO,QAAOA,EAAO,MAAM,MAAQE,GAI7C,QAAWC,KAAWd,GAChBc,EAAQ,OAAY,QAAaA,EAAQ,OAAYJ,EAAK,IACrDI,EAAQ,OAAY,QAAaA,EAAQ,OAAYJ,EAAK,IAC1DI,EAAQ,OAAY,QAAaA,EAAQ,SAAYZ,EAAAS,EAAO,OAAP,YAAAT,EAAa,KAClEY,EAAQ,OAAY,QAAaA,EAAQ,SAAYX,EAAAQ,EAAO,MAAM,OAAb,YAAAR,EAAmB,KACxEW,EAAQ,OAAY,QAAaA,EAAQ,SAAYV,EAAAO,EAAO,MAAM,QAAb,YAAAP,EAAoB,MAAIO,EAAO,SAAS,KAAKG,CAAO,EAIpH,IAAMC,EAAc,CAAC,EACfC,EAAc,CAAC,EACfC,EAAaC,GAAyB,CACtCA,GAAOA,EAAI,SAAW,IACxBH,EAAE,KAAKG,EAAI,GAAIA,EAAI,GAAKA,EAAI,EAAE,EAC9BF,EAAE,KAAKE,EAAI,GAAIA,EAAI,GAAKA,EAAI,EAAE,EAElC,EACAD,EAAUN,EAAO,KAAK,GAAG,EACzBM,GAAUZ,EAAAM,EAAO,OAAP,YAAAN,EAAa,GAAG,EAC1BY,GAAUX,EAAAK,EAAO,MAAM,OAAb,YAAAL,EAAmB,GAAG,EAChCW,GAAUV,EAAAI,EAAO,MAAM,QAAb,YAAAJ,EAAoB,GAAG,EACjC,IAAMY,EAAO,KAAK,IAAI,GAAGJ,CAAC,EACpBK,EAAO,KAAK,IAAI,GAAGJ,CAAC,EAC1BL,EAAO,IAAM,CAACQ,EAAMC,EAAM,KAAK,IAAI,GAAGL,CAAC,EAAII,EAAM,KAAK,IAAI,GAAGH,CAAC,EAAII,CAAI,GAGlEnB,GAAA,YAAAA,EAAQ,MAAMA,GAAA,YAAAA,EAAQ,MAAIU,EAAO,OAAS,CAACA,EAAO,IAAI,GAAKV,EAAM,GAAIU,EAAO,IAAI,GAAKV,EAAM,GAAIU,EAAO,IAAI,GAAKV,EAAM,GAAIU,EAAO,IAAI,GAAKV,EAAM,EAAE,GAErJQ,EAAQ,KAAKE,CAAM,CACrB,CACA,OAAOF,CACT,CC7DO,IAAMY,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JPC,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;MCjJpB,eAAeC,GAAaC,EAA8C,CACxE,IAAMC,EAAY,CAACC,EAAgBC,EAAO,6BAA+B,MAAM,QAAQA,YAAeD,GAAQ,EAAE,KAAME,GAAQA,EAAI,KAAK,CAAC,EACpIC,EACAD,EACJ,OAAQJ,EAAS,OAAO,YACjB,OAAQK,EAAO,MAAMJ,EAAiBK,EAAI,EAAG,UAC7C,WACA,OAAQD,EAAO,MAAMJ,EAAiBM,EAAI,EAAG,cACzCF,EAAO,KAElB,GAAIA,EAAM,CACR,IAAMG,EAAS,MAAM,kBAAkBH,CAAI,EAC3CD,EAAM,MAAMJ,EAAS,OAAOQ,EAAQR,EAAS,MAAM,EACnDQ,EAAO,MAAM,CACf,CACA,OAAOJ,CACT,CAEA,eAAeK,GAAaT,EAA8C,CACxE,OAAO,IAAI,QAASU,GAAY,CAC9B,IAAIC,EAEJ,OAAQX,EAAS,OAAO,YACjB,OAEHW,EAAM,0BAAmCL,GACzC,UACG,WACA,OAEHK,EAAM,0BAAmCJ,GACzC,cAEAI,EAAM,GAGV,IAAIC,EACJ,GAAI,OAAO,OAAU,YAAaA,EAAM,IAAI,cAEnCC,EAAI,MAAOD,EAAM,IAAIC,EAAI,UAC7B,QACLD,EAAI,OAAS,SAAY,CACvB,IAAME,EAAeA,GAAOF,EAAI,aAAcA,EAAI,aAAa,EAC/D,GAAI,CAACE,EACHC,EAAI,0BAA0B,EAC9BL,EAAQ,MAAS,MACZ,CACL,IAAMM,EAAMF,EAAO,WAAW,IAAI,EAC9BE,GAAKA,EAAI,UAAUJ,EAAK,EAAG,CAAC,EAEhC,IAAMK,EAAS,MAAMjB,EAAS,MAAMc,CAAM,EACpCV,EAAMa,EAAO,OAAS,MAAMjB,EAAS,OAAOiB,EAAO,OAAQjB,EAAS,MAAM,EAAI,OACpFU,EAAQN,CAAG,CACb,CACF,EACIO,EAAKC,EAAI,IAAMD,EACdD,EAAQ,MAAS,CACxB,CAAC,CACH,CAEA,eAAeQ,GAAWlB,EAA8C,CACtE,IAAMmB,EAAQC,GAAgB,OAAO,KAAKA,EAAK,QAAQ,EACnDR,EACAZ,EAAS,OAAO,SAAW,OAAQY,EAAMO,EAAYb,EAAI,EACxDM,EAAMO,EAAYZ,EAAI,EAC3B,IAAIH,EACJ,GAAK,SAAUiB,GAAW,aAAW,IAAM,aAAe,CACxD,IAAMC,EAAkB,OAAQ,WAAWV,CAAG,EACxCW,EAAsB,aAAWD,EAAM,CAAC,EAC9CtB,EAAS,GAAG,QAAQsB,CAAI,EAExBlB,EAAM,MAAMJ,EAAS,OAAOuB,EAAUvB,EAAS,MAAM,EACrDA,EAAS,GAAG,QAAQuB,CAAQ,CAC9B,MACMvB,EAAS,OAAO,OAAOe,EAAI,6BAA6B,EAU9D,OAAOX,CACT,CAEA,eAAeoB,GAAaxB,EAAiB,CAC3C,IAAII,EACJ,OAAI,OAAO,mBAAsB,WAAYA,EAAM,MAAML,GAAaC,CAAQ,EACrE,OAAO,OAAU,aAAea,EAAI,SAAW,OAAWT,EAAM,MAAMK,GAAaT,CAAQ,EAC/FI,EAAM,MAAMc,GAAWlB,CAAQ,EAC7BI,CACT,CAGA,eAAsBqB,GAAWC,EAAmB,CA9GpD,IAAAC,EAAAC,EAAAC,EAAAC,EA+GE,GAAI,CAAI,MAAI,EAAE,aAAa,oBAAqB,OAChD,IAAMC,EAAiB,aAAW,EAC5BC,EAAkB,UAAQ,EAChC,GAAKD,IAAgB,SAAWA,IAAgB,WAAc,EAACC,GAAA,MAAAA,EAAc,wBAE3E,OAEC,MAAI,EAAE,IAAI,sBAAuB,EAAI,EACxC,IAAMC,EAAqB,SAAO,EAAE,MAAM,WACpCC,EAA2B,CAAC,EAClC,OAAW,CAACC,EAAWC,CAAK,IAAK,OAAO,QAAQV,CAAS,EAAE,OAAO,CAAC,CAACW,EAAKC,CAAG,IAAOD,IAAQ,MAAQC,IAAQ,IAAK,EAAG,CACjH,IAAMC,GAASX,GAAAD,EAAAS,EAAM,SAAN,YAAAT,EAAe,KAAf,MAAAC,EAAmB,MAAS,CAAC,GAAGQ,EAAM,OAAO,GAAG,KAAK,EAAI,CAAC,EAAG,GAAI,GAAI,CAAC,EAC/EI,GAAiBV,GAAAD,EAAAO,EAAM,SAAN,YAAAP,EAAe,KAAf,MAAAC,EAAmB,MAASM,EAAM,OAAO,GAAG,MAAQ,UAC3E,QAASK,EAAM,EAAGA,EAAMF,EAAM,OAAQE,IAChCF,EAAME,KAAS,KAAIF,EAAME,GAAOA,IAAQ,EAAI,EAAI,IAEtD,IAAMxB,EAAY,QAAMsB,EAAOC,CAAK,EACpC,GAAI,CACF,IAAMpC,EAAMgC,EAAM,QAAQnB,CAAM,EAChCiB,EAAe,KAAKC,CAAS,EACzB,MAAM,QAAQ/B,CAAG,EAAGA,EAAI,QAASsC,GAAS,UAAQA,CAAC,CAAC,EAChD,UAAQtC,CAAG,CACrB,OAAQuC,EAAN,CACA5B,EAAI,sBAAuBoB,CAAS,CACtC,CACG,UAAQlB,CAAM,CACnB,CACA,IAAM2B,EAAU,MAAMZ,EAAa,4BAA4B,EAC/DA,EAAa,oBAAoB,EACjCjB,EAAI,uBAAwBmB,CAAc,EAC1CnB,EAAI,wBAAyB6B,EAAQ,MAAM,EACxC,MAAI,EAAE,IAAI,sBAAuB,EAAK,EACzC,IAAMC,EAAmB,SAAO,EAAE,MAAM,WACnCA,EAAgBZ,EAAmB,GAAGlB,EAAI,eAAgB8B,EAAgBZ,CAAe,CAChG,CAOA,eAAsBa,GAAO9C,EAAiB+C,EAA2D,CACvG,IAAMC,EAAKC,EAAI,EAGf,OAFAjD,EAAS,MAAQ,SACb+C,IAAY/C,EAAS,OAASkD,EAAUlD,EAAS,OAAQ+C,CAAU,GACnE,CAAC/C,EAAS,OAAO,QAAUA,EAAS,OAAO,OAAO,SAAW,GAAKA,EAAS,OAAO,SAAW,OACxF,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAaA,EAAS,YAAa,UAAWiD,EAAI,EAAG,QAAS,CAAC,EAAG,MAAO,IAAK,EAEzI,IAAI,QAAQ,MAAOvC,GAAY,CACpC,MAAMe,GAAWzB,EAAS,MAAM,EAChC,IAAMI,EAAM,MAAMoB,GAAaxB,CAAQ,EACjCmD,EAAKF,EAAI,EACXjD,EAAS,OAAO,OAAOe,EAAI,SAAUf,EAAS,OAAO,OAAQ,KAAK,MAAMmD,EAAKH,CAAE,EAAG,IAAI,EAC1FhD,EAAS,KAAK,QAAQ,EACtBU,EAAQN,CAAG,CACb,CAAC,CACH,CCvKA,IAAAgD,GAAAC,GAAAC,GAAAC,GAsDaC,GAAN,KAAY,CAuEjB,YAAYC,EAA8B,CArE1CC,EAAA,gBAKAA,EAAA,eAKAA,EAAA,eAMAA,EAAA,cAGAA,EAAA,gBAMAA,EAAA,WAGAA,EAAA,YAOAA,EAAA,aAMAA,EAAA,eAWAA,EAAA,eAEAA,EAAA,0BAEAA,EAAA,kBAEAA,EAAA,oBACAC,GAAA,KAAAP,GAAA,QACAO,GAAA,KAAAN,GAAA,QACAM,GAAA,KAAAL,GAAA,QAEAI,EAAA,WA4DAA,EAAA,eAAU,IAAIE,IAAkB,CAC9B,GAAI,CAACC,GAAA,KAAKR,IAAqB,OAC/B,IAAMS,EAAiB,KAAK,GAAG,OAAO,EAAE,MAAM,WACxCC,EAAkBF,GAAA,KAAKT,IAC7BY,GAAA,KAAKZ,GAAcU,GACnB,IAAMG,EAASH,EAAiBC,EAC5BE,IAAW,GAAGC,EAAI,GAAGN,EAAKK,CAAM,CACtC,GAGAN,GAAA,KAAAJ,GAAWY,GAAgC,CACzC,GAAI,CAACN,GAAA,KAAKP,IAAc,OAAO,KAC/B,GAAI,CAACa,EAAO,MAAO,uBACnB,GAAI,KAAK,IAAI,MAAQ,EAAEA,aAAoBC,IAAS,MAAO,yBAC3D,GAAI,CACF,KAAK,GAAG,WAAW,CACrB,OAAQC,EAAN,CACA,MAAO,oBACT,CACA,OAAO,IACT,GAoBAX,EAAA,KAAO,aAAmBY,IAE1BZ,EAAA,KAAO,WAAiBa,IAExBb,EAAA,KAAO,QAAcc,IAmGrBd,EAAA,YAAQe,GAAkB,CAlU5B,IAAAC,GAmUQA,EAAA,KAAK,SAAL,MAAAA,EAAa,eAAe,KAAK,OAAO,cAAc,IAAI,MAAMD,CAAK,CAAC,CAC5E,GAtME,KAAK,IAAME,EAMX,IAAMC,GAAgBC,GAAQ,MAAW,gBAAc,QAAQ,QAAS,EAAE,EAC1EC,GAAS,SAAW,8DAA8DF,UAClFE,GAAS,cAAgBH,EAAI,QAAU,aAAe,iBACtDG,GAAS,QAAUH,EAAI,QAAU,UAAY,aAC7C,KAAK,QAAcI,GACnB,OAAO,eAAe,KAAM,UAAW,CAAE,MAAWA,EAAQ,CAAC,EAC7D,KAAK,OAAS,KAAK,MAAM,KAAK,UAAUD,EAAQ,CAAC,EACjD,OAAO,KAAK,KAAK,MAAM,EACvB,KAAK,OAAO,YAAc,OAAO,WAAc,YAC3CrB,IAAY,KAAK,OAASuB,EAAU,KAAK,OAAQvB,CAAU,GAC/DwB,GAAoB,KAAK,MAAM,EAC/B,KAAK,GAAKC,EACV,KAAK,MAAQ,OACblB,GAAA,KAAKZ,GAAc,GACnBY,GAAA,KAAKX,GAAsB,IAC3BW,GAAA,KAAKV,GAAe,IACpB,KAAK,YAAc,CAAC,EACpB,KAAK,OAAU,OAAO,aAAgB,YAAe,IAAI,YAAgB,OAEzE,KAAK,OAAS,IAAW6B,GAEzB,KAAK,KAAO,CACV,QAAcC,GACd,OAAQ,CAACjB,EAAwDkB,IAA2BC,GAAOnB,EAAOkB,CAAM,EAChH,KAAM,CAACA,EAAmBE,EAAsBH,IAAwCI,GAAKH,EAAQE,EAAQH,CAAO,EACpH,KAAM,CAACC,EAAmBE,EAAsBH,IAAwCK,GAAKJ,EAAQE,EAAQH,CAAO,EACpH,KAAM,CAACC,EAAmBE,EAAsBH,IAAwCM,GAAKL,EAAQE,EAAQH,CAAO,EACpH,QAAS,CAACC,EAAmBE,EAAyBH,IAAwCO,GAAQN,EAAQE,EAAQH,CAAO,EAC7H,OAAQ,CAACC,EAAmBE,EAAwBH,IAAwCQ,GAAOP,EAAQE,EAAQH,CAAO,EAC1H,OAAQ,CAACC,EAAmBE,EAAwBH,IAAwCS,GAAOR,EAAQE,EAAQH,CAAO,EAC1H,IAAK,CAACC,EAAmBE,EAAgBH,IAAwCU,GAAIT,EAAQE,EAAQH,CAAO,CAC9G,EACA,KAAK,OAAS,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,CAAC,EAAG,UAAW,EAAG,QAAS,CAAC,EAAG,MAAO,IAAK,EAE/H,KAAK,QAAU,CAAE,OAAQ,KAAM,OAAQ,IAAK,EAE5C,KAAK,kBAA6BW,GAClC,KAAK,UAAqBC,GAE1B,KAAK,GAAalB,EAEXmB,GAAc,KAAM,KAAM,EAAE,EAEnC,KAAK,KAAK,QAAQ,CACpB,CA0BA,OAAc,CACZ,IAAMC,EAAiB,KAAK,OAAO,QACnC,KAAK,OAAS,KAAK,MAAM,KAAK,UAAUpB,EAAQ,CAAC,EACjD,KAAK,OAAO,QAAUoB,CACxB,CAGA,SAASzC,EAA8B,CACrC,OAAO0C,GAASrB,GAAUrB,GAAc,KAAK,MAAM,CACrD,CAGA,OAAQ,CACN,OAAc0C,GAAS,IAAI,CAC7B,CAUA,KAAc,CACZ,OAAOC,EAAI,CACb,CAQA,MAAMjC,EAAckC,EAAqB,GAAM,CAC7C,OAAaC,GAAQnC,EAAO,KAAK,OAAQkC,CAAS,CACpD,CAYA,MAAM,aAAalC,EAAcoC,EAA6G,CAC5I,OAAoBD,GAAQnC,EAAOoC,EAAY,KAAK,MAAM,CAC5D,CAOA,QAAQpC,EAA8B,CACpC,OAAeqC,GAAQrC,CAAK,CAC9B,CASA,QAAQsC,EAA0BC,EAA4C,CAC5E,OAAaC,GAAQ,KAAK,OAAQF,EAAkBC,CAAiB,CACvE,CAOA,MAAM,MAAsB,CAC1B,MAAcE,GAAM,KAAM,EAAI,EAC9B,MAAM,KAAK,GAAG,MAAM,CACtB,CAOA,MAAM,KAAKnD,EAA6C,CACtD,KAAK,MAAQ,OACb,IAAMoD,EAAYT,EAAI,EAChBU,EAAQ,OAAO,OAAO,KAAK,MAAM,EAAE,OAAQC,GAAUA,CAAK,EAAE,OAC9DtD,IAAY,KAAK,OAASuB,EAAU,KAAK,OAAQvB,CAAU,GAE3D,KAAK,IAAI,UACP,KAAK,OAAO,OAAOS,EAAI,YAAY,KAAK,SAAS,EACjD,KAAK,OAAO,OAAOA,EAAI,iBAAiB,KAAK,GAAG,QAAQ,cAAwB,EAC/E,MAAc0C,GAAM,IAAI,GAAG1C,EAAI,6BAA6B,EACjE,MAAS,QAAM,EACX,KAAK,IAAI,UACP,KAAK,OAAO,OAAOA,EAAI,iBAAkB,KAAK,MAAM,EACpD,KAAK,OAAO,OAAOA,EAAI,eAAgB,KAAK,GAAG,EAC/C,KAAK,OAAO,OAAOA,EAAI,YAAa,KAAK,GAAG,IAAI,KAAK,IAI7D,MAAa8C,GAAK,IAAI,EAClB,KAAK,IAAI,SAAW,KAAK,OAAO,OAAO9C,EAAI,mBAAoB,KAAK,GAAG,OAAO,EAAE,MAAM,SAAU,QAAS,KAAK,GAAG,OAAO,EAAE,MAAM,WAAY,SAAS,EACzJ,KAAK,IAAI,QAAU,GAEJ,OAAO,OAAO,KAAK,MAAM,EAAE,OAAQ6C,GAAUA,CAAK,EAAE,SACpDD,IACNX,GAAS,IAAI,EACpB,KAAK,KAAK,MAAM,GAGlB,IAAMc,EAAU,KAAK,MAAMb,EAAI,EAAIS,CAAS,EACxCI,GAAW,KAAK,YAAY,YAAc,KAAI,KAAK,YAAY,WAAa,KAAK,IAAI,SAAW,KAAK,YAAY,YAAc,GAAKA,EAAUA,EACpJ,CAaA,KAAK1B,EAAiB,KAAK,OAAgB,CACzC,OAAmB2B,GAAK3B,EAAQ,KAAK,MAAM,CAC7C,CAGA,eAA4B,CAAE,OAAc4B,GAAc,IAAI,CAAG,CAQjE,MAAM,OAAO1D,EAA8B,CACzC,IAAM2D,EAAKhB,EAAI,EACTiB,EAAM,MAAcC,GAAO,KAAM7D,CAAU,EAC3C8D,EAAKnB,EAAI,EACf,YAAK,YAAY,OAAS,KAAK,MAAMmB,EAAKH,CAAE,EACrCC,CACT,CAMA,MAAM,QAAQlD,EAAcV,EAAyF,CACnH,IAAM+D,EAAU,MAAM,KAAK,GAAG,QAAQ,IAAM,KAAK,OAAOrD,EAAOV,CAAU,CAAC,EACpEgE,EAAkC,CAAC,EACrCC,EAAQ,EACZ,QAAWC,KAAUH,EAAQ,QACvBC,EAAQE,EAAO,MAAOF,EAAQE,EAAO,OAASA,EAAO,aACpDF,EAAQE,EAAO,MAAQA,EAAO,aACnCD,GAASC,EAAO,aAElB,IAAMC,EAA8D,CAAC,EACrE,OAAO,QAAQH,CAAO,EAAE,QAASI,GAAQD,EAAU,KAAK,CAAE,OAAQC,EAAI,GAAI,KAAMA,EAAI,GAAyB,KAAM,CAAE,CAAC,CAAC,EACvH,QAAWF,KAAUC,EACnBD,EAAO,KAAO,KAAK,MAAM,IAAOA,EAAO,KAAOD,CAAK,EAAI,IACvDC,EAAO,KAAO,KAAK,MAAM,IAAOA,EAAO,IAAI,EAAI,IAEjD,OAAAC,EAAU,KAAK,CAACE,EAAGC,IAAMA,EAAE,KAAOD,EAAE,IAAI,EACxCF,EAAU,OAAS,GACZA,CACT,CAYA,MAAM,OAAOzD,EAAcV,EAA+C,CAExE,YAAK,MAAQ,SACN,IAAI,QAAQ,MAAOuE,GAAY,CAtY1C,IAAAtD,EAAAuD,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAuYM,KAAK,MAAQ,SACb,IAAIvC,EAGJ,KAAK,OAAS7B,EAAU,KAAK,OAAQvB,CAAU,EAG/C,KAAK,MAAQ,QACb,IAAM4F,EAAQxF,GAAA,KAAKN,IAAL,UAAaY,GACvBkF,IACFnF,EAAImF,EAAOlF,CAAK,EAChB,KAAK,KAAK,OAAO,EACjB6D,EAAQ,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,KAAK,YAAa,UAAW5B,EAAI,EAAG,QAAS,CAAC,EAAG,MAAAiD,CAAM,CAAC,GAGxI,IAAMC,EAAYlD,EAAI,EAGtB,MAAcQ,GAAM,IAAI,EAGxB,MAAM,KAAK,KAAK,EAEhBC,EAAYT,EAAI,EAChB,KAAK,MAAQ,QACb,IAAMmD,EAAM,MAAYjD,GAAQnC,EAAO,KAAK,MAAM,EAKlD,GAJA,KAAK,QAAUoF,EACf,KAAK,YAAY,aAAe,KAAK,IAAI,SAAW,KAAK,YAAY,cAAgB,GAAK,KAAK,MAAMnD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,EACtJ,KAAK,QAAQ,YAAY,EAErB,CAAC0C,EAAI,OAAQ,CACX,KAAK,OAAO,OAAOrF,EAAI,mCAAmC,EAC9D,KAAK,KAAK,OAAO,EACjB8D,EAAQ,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,KAAK,YAAa,UAAW5B,EAAI,EAAG,QAAS,CAAC,EAAG,MAAO,mCAAoC,CAAC,EAC3K,MACF,CACA,KAAK,KAAK,OAAO,EAEjBS,EAAYT,EAAI,EAChB,KAAK,OAAO,YAAc,MAAYoD,GAAK,KAAK,OAAQD,EAAI,MAAM,EAC7D,KAAK,YAAY,cAAa,KAAK,YAAY,YAAc,GAC7D,KAAK,YAAY,eAAc,KAAK,YAAY,aAAe,GACnE,KAAK,YAAY,cACd,KAAK,OAAO,aAAa,KAAK,YAAY,eAC9C,KAAK,YAAY,WAAa,KAAK,IAAI,SAAW,KAAK,YAAY,YAAc,GAAK,KAAK,MAAMnD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,EAClJ,KAAK,QAAQ,gBAAgB,EAI7B,IAAI4C,EAA0D,CAAC,EAC3DC,EAA0D,CAAC,EAC3DC,EAA0D,CAAC,EAC3DC,EAAgE,CAAC,EAGrE,KAAK,MAAQ,cACT,KAAK,OAAO,OACdH,EAAU,KAAK,OAAO,KAAK,QAAeI,GAAW,KAAMN,EAAI,MAAM,EAAI,CAAC,EACtE,KAAK,YAAY,MAAM,OAAO,KAAK,YAAY,OAEnD1C,EAAYT,EAAI,EAChBqD,EAAU,KAAK,OAAO,KAAK,QAAU,MAAWI,GAAW,KAAMN,EAAI,MAAM,EAAI,CAAC,EAChF,KAAK,YAAY,KAAO,KAAK,IAAI,SAAW,KAAK,YAAY,MAAQ,GAAK,KAAK,MAAMnD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAGpI,KAAK,OAAO,QAAU,KAAK,OAAO,KAAK,cAAgB,IAAM,KAAK,OAAO,KAAK,cAAgB,MAAK4C,EAAU,MAAMA,GAGvH,KAAK,QAAQ,aAAa,EAC1B,KAAK,MAAQ,cACb,IAAMK,EAAa,KAAK,OAAO,KAAK,cAAgB,GAAK9E,EAAU,KAAK,OAAQ,CAAE,KAAM,CAAE,YAAa,KAAK,OAAO,KAAK,QAAU,EAAKyE,EAAyB,OAAS,CAAE,CAAE,CAAC,EAAI,KAAK,OACnL,KAAK,OAAO,QACV/E,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,WAAYgF,EAAU,KAAK,OAAO,KAAK,QAAkBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAC5H7B,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,aAAcyB,EAAU,KAAK,OAAO,KAAK,QAAoBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GACrI5B,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,iBAAkBwB,EAAU,KAAK,OAAO,KAAK,QAAwBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAC7I3B,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,aAAYuB,EAAU,KAAK,OAAO,KAAK,QAAkBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GACtI,KAAK,YAAY,MAAM,OAAO,KAAK,YAAY,OAEnDjD,EAAYT,EAAI,GACZgC,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,WAAYsB,EAAU,KAAK,OAAO,KAAK,QAAU,MAAcK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAClIzB,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,aAAcqB,EAAU,KAAK,OAAO,KAAK,QAAU,MAAgBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAC3IxB,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,iBAAkBoB,EAAU,KAAK,OAAO,KAAK,QAAU,MAAoBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GACnJvB,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,aAAYmB,EAAU,KAAK,OAAO,KAAK,QAAU,MAAcK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAChJ,KAAK,YAAY,KAAO,KAAK,IAAI,SAAW,KAAK,YAAY,MAAQ,GAAK,KAAK,MAAM1D,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAExI,KAAK,QAAQ,WAAW,EAGxB,KAAK,QAAQ,aAAa,EAC1B,KAAK,MAAQ,cACb,IAAMmD,EAAa,KAAK,OAAO,KAAK,cAAgB,GAAKhF,EAAU,KAAK,OAAQ,CAAE,KAAM,CAAE,YAAa,KAAK,OAAO,KAAK,QAAU,EAAKyE,EAAyB,OAAS,CAAE,CAAE,CAAC,EAAI,KAAK,OACnL,KAAK,OAAO,QACVhB,GAAAD,EAAA,KAAK,OAAO,KAAK,WAAjB,YAAAA,EAA2B,YAA3B,MAAAC,EAAsC,SAAS,cAAekB,EAAU,KAAK,OAAO,KAAK,QAAmBI,GAAQR,EAAI,OAAQS,CAAU,EAAI,CAAC,GAC1IrB,GAAAD,EAAA,KAAK,OAAO,KAAK,WAAjB,YAAAA,EAA2B,YAA3B,MAAAC,EAAsC,SAAS,eAAcgB,EAAU,KAAK,OAAO,KAAK,QAAoBI,GAAQR,EAAI,OAAQS,CAAU,EAAI,CAAC,GACpJ,KAAK,YAAY,MAAM,OAAO,KAAK,YAAY,OAEnDnD,EAAYT,EAAI,GACZyC,GAAAD,EAAA,KAAK,OAAO,KAAK,WAAjB,YAAAA,EAA2B,YAA3B,MAAAC,EAAsC,SAAS,cAAec,EAAU,KAAK,OAAO,KAAK,QAAU,MAAeI,GAAQR,EAAI,OAAQS,CAAU,EAAI,CAAC,GAChJjB,IAAAD,EAAA,KAAK,OAAO,KAAK,WAAjB,YAAAA,EAA2B,YAA3B,MAAAC,GAAsC,SAAS,eAAcY,EAAU,KAAK,OAAO,KAAK,QAAU,MAAgBI,GAAQR,EAAI,OAAQS,CAAU,EAAI,CAAC,GAC9J,KAAK,YAAY,KAAO,KAAK,IAAI,SAAW,KAAK,YAAY,MAAQ,GAAK,KAAK,MAAM5D,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAExI,KAAK,QAAQ,WAAW,EAGxB,KAAK,QAAQ,eAAe,EAC5B,KAAK,MAAQ,gBACT,KAAK,OAAO,QACVmC,GAAA,KAAK,OAAO,OAAO,YAAnB,MAAAA,GAA8B,SAAS,WAAYY,EAAY,KAAK,OAAO,OAAO,QAAkBG,GAAQR,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GACnIN,GAAA,KAAK,OAAO,OAAO,YAAnB,MAAAA,GAA8B,SAAS,eAAcW,EAAY,KAAK,OAAO,OAAO,QAAoBG,GAAQR,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GACjJ,KAAK,YAAY,QAAQ,OAAO,KAAK,YAAY,SAErD1C,EAAYT,EAAI,GACZ8C,GAAA,KAAK,OAAO,OAAO,YAAnB,MAAAA,GAA8B,SAAS,WAAYU,EAAY,KAAK,OAAO,OAAO,QAAU,MAAcG,GAAQR,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GACzIJ,GAAA,KAAK,OAAO,OAAO,YAAnB,MAAAA,GAA8B,SAAS,eAAcS,EAAY,KAAK,OAAO,OAAO,QAAU,MAAgBG,GAAQR,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GAC3J,KAAK,YAAY,OAAS,KAAK,IAAI,SAAW,KAAK,YAAY,QAAU,GAAK,KAAK,MAAMnD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAE5I,KAAK,QAAQ,aAAa,EAG1B,KAAK,MAAQ,eACT,KAAK,OAAO,QAAO,CAAC4C,EAASC,EAASC,EAASC,CAAS,EAAI,MAAM,QAAQ,IAAI,CAACH,EAASC,EAASC,EAASC,CAAS,CAAC,GAGxH,KAAK,MAAQ,iBACb,IAAIK,EAA8B,CAAC,EAC/B,KAAK,OAAO,QAAQ,UACtBpD,EAAYT,EAAI,EAChB6D,EAAa,CAAC,GAAWzE,GAAKiE,CAAuB,EAAG,GAAWhE,GAAKiE,CAAuB,EAAG,GAAWhE,GAAKiE,CAAuB,EAAG,GAAWO,GAAKT,CAAuB,CAAC,EAC/K,KAAK,OAAO,MACR,KAAK,YAAY,SAAS,OAAO,KAAK,YAAY,QADnC,KAAK,YAAY,QAAU,KAAK,IAAI,SAAW,KAAK,YAAY,SAAW,GAAK,KAAK,MAAMrD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAItK,KAAK,YAAY,MAAQ,KAAK,IAAI,SAAW,KAAK,YAAY,OAAS,GAAK,KAAK,MAAMT,EAAI,EAAIkD,CAAS,EAAI,KAAK,MAAMlD,EAAI,EAAIkD,CAAS,EACxI,IAAMa,IAAQf,GAAA,KAAK,QAAQ,SAAb,YAAAA,GAAqB,QAAS,CAAC,EAC7C,KAAK,OAAS,CACZ,KAAMK,EACN,KAAMC,EACN,KAAMC,EACN,QAASM,EACT,OAAQL,EACR,YAAa,KAAK,YAClB,OAAQ,KAAK,QAAQ,OACrB,UAAW,KAAK,IAAI,EACpB,MAAO,KACP,IAAI,SAAU,CAAE,OAAeQ,GAAKX,EAAyBC,EAAyBC,EAAyBM,EAAYE,CAAK,CAAG,CACrI,EAGG,UAAQZ,EAAI,MAAM,EAGrB,KAAK,KAAK,QAAQ,EAClB,KAAK,MAAQ,OACbvB,EAAQ,KAAK,MAAM,CACrB,CAAC,CACH,CACF,EAhbE5E,GAAA,YACAC,GAAA,YACAC,GAAA,YAwEAC,GAAA", - "names": ["log", "msg", "dt", "ts", "join", "folder", "file", "separator", "path", "now", "validate", "defaults", "config", "parent", "msgs", "key", "defined", "same", "mergeDeep", "objects", "isObject", "obj", "prev", "pVal", "oVal", "config", "tfjs_esm_exports", "__export", "b", "d", "v", "__reExport", "dist_star", "r", "e", "o", "a", "t", "s", "f", "vertexIdentity", "colorMatrixWithAlpha", "colorMatrixWithoutAlpha", "pixelate", "blur", "convolution", "collect", "source", "prefix", "collection", "r", "match", "name", "GLProgram", "gl", "vertexSource", "fragmentSource", "__publicField", "type", "shader", "log", "vertexShader", "fragmentShader", "u", "GLImageFilter", "drawCount", "sourceTexture", "lastInChain", "currentFramebufferIndex", "tempFramebuffers", "filterChain", "vertexBuffer", "currentProgram", "fxcanvas", "canvas", "shaderProgramCache", "DRAW", "resize", "width", "height", "vertices", "createFramebufferTexture", "fbo", "renderbuffer", "texture", "getTempFramebuffer", "index", "draw", "flags", "target", "flipY", "compileShader", "vertexIdentity", "floatSize", "vertSize", "filter", "matrix", "colorMatrixWithoutAlpha", "colorMatrixWithAlpha", "program", "brightness", "b", "amount", "x", "y", "v", "o", "rotation", "cos", "sin", "lumR", "lumG", "lumB", "pixelSizeX", "pixelSizeY", "convolution", "a", "size", "s", "blurSizeX", "blurSizeY", "blur", "pixelate", "args", "func", "image", "i", "f", "histogramEqualization", "inputImage", "squeeze", "channels", "min", "max", "absMax", "channel", "maxValue", "sub", "range", "fact", "enh", "rgb", "reshape", "maxSize", "inCanvas", "outCanvas", "tmpCanvas", "fx", "last", "canvas", "width", "height", "c", "env", "copy", "input", "output", "outputCanvas", "process", "config", "getTensor", "_a", "_b", "log", "d", "tensor", "rgb", "cast", "originalWidth", "originalHeight", "targetWidth", "targetHeight", "inCtx", "GLImageFilter", "pixels", "depth", "arr", "tempData", "casted", "histogramEqualization", "skip", "skipFrame", "t", "diffRelative", "compare", "input1", "input2", "Env", "__publicField", "v", "raw", "platformMatch", "c", "canvas", "ctx", "gl", "adapter", "e", "kernel", "cpu", "env", "models_exports", "__export", "Models", "getModelStats", "load", "reset", "validate", "validateModel", "model", "last", "raceNames", "ageWeights", "lastCount", "lastTime", "skipped", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "skipFrame", "skipTime", "now", "resolve", "t", "box", "obj", "gender", "race", "i", "a", "b", "ageSorted", "age", "tensor", "constants", "init", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "log", "loadModel", "predict", "image", "idx", "count", "_a", "_b", "_c", "_d", "skipFrame", "skipTime", "now", "resolve", "t", "constants", "obj", "data", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "rgb", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "_c", "_d", "skipFrame", "skipTime", "now", "resolve", "t", "red", "green", "blue", "redNorm", "greenNorm", "blueNorm", "grayscale", "constants", "obj", "data", "tensor", "model", "cached", "skipped", "lastCount", "lastTime", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "skipTime", "now", "skipFrame", "resolve", "resize", "res", "num", "meshAnnotations", "meshLandmarks", "blazeFaceLandmarks", "irisIndices", "UV468", "TRI468", "VTX68", "VTX33", "VTX7", "UV68", "x", "UV468", "UV33", "UV7", "connectionsToIndices", "connections", "indices", "connection", "pairsLips", "pairsLeftEye", "pairsLeftEyebrow", "pairsLeftIris", "pairsRightEye", "pairsRightEyebrow", "pairsRightIris", "pairsFaceContour", "contourKeypoints", "getBoxSize", "box", "getBoxCenter", "clampBox", "input", "getRawBox", "scaleBoxCoordinates", "factor", "startPoint", "endPoint", "cutAndResize", "image", "cropSize", "h", "w", "cutBox", "crop", "norm", "constants", "enlargeBox", "center", "size", "halfSize", "squarifyBox", "centers", "calculateLandmarksBoundingBox", "landmarks", "x", "d", "y", "fixedRotationMatrix", "normalizeRadians", "angle", "computeRotation", "point1", "point2", "buildTranslationMatrix", "x", "y", "dot", "v1", "v2", "product", "i", "getColumnFrom2DArr", "arr", "columnIndex", "column", "multiplyTransformMatrices", "mat1", "mat2", "size", "row", "col", "buildRotationMatrix", "rotation", "center", "cosA", "sinA", "rotationMatrix", "translationMatrix", "translationTimesRotation", "negativeTranslationMatrix", "invertTransformMatrix", "matrix", "rotationComponent", "translationComponent", "invertedTranslation", "rotatePoint", "homogeneousCoordinate", "generateAnchors", "inputSize", "spec", "anchors", "i", "stride", "gridRows", "gridCols", "anchorsNum", "gridY", "anchorY", "gridX", "anchorX", "n", "transformRawCoords", "coordsRaw", "box", "angle", "rotationMatrix", "boxSize", "getBoxSize", "coordsScaled", "coord", "largeAngle", "coordsRotationMatrix", "buildRotationMatrix", "fixedRotationMatrix", "coordsRotated", "rotatePoint", "inverseRotationMatrix", "invertTransformMatrix", "boxCenter", "getBoxCenter", "offsets", "dot", "correctFaceRotation", "rotate", "input", "symmetryLine", "meshLandmarks", "blazeFaceLandmarks", "face", "env", "computeRotation", "center", "centerRaw", "rotated", "cutAndResize", "findFaceCenter", "mesh", "x", "m", "y", "calculateFaceBox", "previousBox", "keypointsCount", "faceBoxScaleFactor", "model", "anchors", "inputSize", "inputSizeT", "size", "load", "config", "_a", "env", "log", "loadModel", "generateAnchors", "decodeBoxes", "boxOutputs", "constants", "boxes", "tensor", "getBoxes", "inputImage", "_b", "_c", "_d", "t", "res", "sorted", "a", "b", "nms", "scores", "i", "confidence", "points", "rawBox", "scaledBox", "scaleBoxCoordinates", "enlargedBox", "enlargeBox", "squaredBox", "squarifyBox", "blazeposecoords_exports", "__export", "connected", "kpt", "inputSize", "anchorTensor", "numLayers", "strides", "createAnchors", "anchors", "layerId", "anchorCount", "lastSameStrideLayer", "stride", "featureMapHeight", "featureMapWidth", "y", "x", "anchorId", "a", "calc", "keypoints", "outputSize", "coords", "pt", "min", "max", "box", "boxRaw", "square", "center", "dist", "scale", "scaleFact", "env", "models", "inputSize", "skipped", "outputNodes", "cache", "cropBox", "padding", "lastTime", "sigmoid", "x", "loadDetect", "config", "_a", "loadModel", "inputs", "log", "createAnchors", "loadPose", "prepareImage", "input", "size", "_a", "_b", "t", "final", "cropBox", "height", "width", "padding", "constants", "tensor", "rescaleKeypoints", "keypoints", "outputSize", "kpt", "fixKeypoints", "leftPalm", "k", "leftWrist", "leftIndex", "rightPalm", "rightWrist", "rightIndex", "detectLandmarks", "config", "models", "outputNodes", "poseScore", "points", "distances", "keypointsRelative", "depth", "i", "score", "sigmoid", "presence", "adjScore", "positionRaw", "inputSize", "position", "distance", "kpts", "boxes", "calc", "annotations", "name", "indexes", "connected", "pt", "pt0", "pt1", "predict", "skipTime", "now", "lastTime", "skipFrame", "skipped", "cache", "labels", "model", "inputSize", "last", "lastTime", "skipped", "load", "config", "env", "log", "loadModel", "inputs", "process", "res", "outputShape", "t", "results", "detections", "arr", "nms", "i", "id", "score", "classVal", "label", "labels", "x", "y", "boxRaw", "box", "tensor", "predict", "input", "skipTime", "now", "skipFrame", "resolve", "outputSize", "resize", "objectT", "obj", "efficientposecoords_exports", "__export", "connected", "kpt", "model", "lastTime", "cache", "skipped", "load", "config", "env", "log", "loadModel", "max2d", "inputs", "minScore", "width", "height", "reshaped", "max", "newScore", "coordinates", "mod", "div", "y", "predict", "image", "skipTime", "now", "skipFrame", "resolve", "tensor", "resize", "enhance", "constants", "resT", "squeeze", "stack", "id", "x", "partScore", "kpt", "s", "prev", "curr", "a", "xRaw", "yRaw", "name", "indexes", "connected", "pt", "i", "pt0", "pt1", "annotations", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "skipFrame", "skipTime", "now", "resolve", "obj", "t", "inputSize", "constants", "data", "i", "a", "b", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "_a", "env", "log", "loadModel", "predict", "input", "idx", "count", "_b", "skipFrame", "skipTime", "now", "resolve", "data", "t", "output", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "log", "loadModel", "predict", "input", "idx", "count", "_a", "_b", "skipFrame", "skipTime", "now", "resolve", "data", "t", "output", "tensor", "model", "inputSize", "irisEnlarge", "leftOutline", "meshAnnotations", "rightOutline", "eyeLandmarks", "irisLandmarks", "load", "config", "_a", "_b", "env", "log", "loadModel", "replaceIrisCoords", "rawCoords", "newCoords", "prefix", "keys", "i", "irisIndices", "key", "indices", "originalIndices", "j", "index", "getLeftToRightEyeDepthDifference", "leftEyeZ", "rightEyeZ", "getEyeBox", "face", "eyeInnerCornerIndex", "eyeOuterCornerIndex", "meshSize", "flip", "box", "squarifyBox", "enlargeBox", "calculateLandmarksBoundingBox", "boxSize", "getBoxSize", "crop", "flipped", "getEyeCoords", "eyeData", "eyeBox", "eyeBoxSize", "eyeRawCoords", "x", "y", "z", "getAdjustedIrisCoords", "irisCoords", "direction", "upperCenterZ", "lowerCenterZ", "averageZ", "coord", "augmentIris", "leftEyeBox", "leftEyeBoxSize", "leftEyeCrop", "rightEyeBox", "rightEyeBoxSize", "rightEyeCrop", "combined", "eyePredictions", "eyePredictionsData", "leftEyeData", "leftEyeRawCoords", "leftIrisRawCoords", "rightEyeData", "rightEyeRawCoords", "rightIrisRawCoords", "leftToRightEyeDepthDifference", "adjustedLeftIrisCoords", "adjustedRightIrisCoords", "LIPS_CONNECTIONS", "LEFT_EYE_CONNECTIONS", "LEFT_EYEBROW_CONNECTIONS", "LEFT_IRIS_CONNECTIONS", "RIGHT_EYE_CONNECTIONS", "RIGHT_EYEBROW_CONNECTIONS", "RIGHT_IRIS_CONNECTIONS", "FACE_OVAL_CONNECTIONS", "connectionsToIndices", "connections", "indices", "connection", "MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR", "LIPS_CONNECTIONS", "LEFT_EYE_CONNECTIONS", "LEFT_EYEBROW_CONNECTIONS", "LEFT_IRIS_CONNECTIONS", "RIGHT_EYE_CONNECTIONS", "RIGHT_EYEBROW_CONNECTIONS", "RIGHT_IRIS_CONNECTIONS", "FACE_OVAL_CONNECTIONS", "indexLabelPairs", "label", "index", "MEDIAPIPE_FACE_MESH_KEYPOINTS", "LANDMARKS_REFINEMENT_LIPS_CONFIG", "LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG", "LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG", "augment", "rawCoords", "results", "t", "r", "irisLDepth", "LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG", "prev", "curr", "i", "irisRDepth", "LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG", "LANDMARKS_REFINEMENT_LIPS_CONFIG", "cache", "model", "inputSize", "predict", "input", "config", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "skipTime", "now", "skipFrame", "getBoxes", "faces", "newCache", "id", "size", "i", "box", "angle", "rotationMatrix", "face", "correctFaceRotation", "equilized", "histogramEqualization", "log", "env", "results", "faceConfidence", "t", "clampBox", "getRawBox", "pt", "key", "blazeFaceLandmarks", "meshT", "coordsReshaped", "rawCoords", "augment", "augmentIris", "transformRawCoords", "meshAnnotations", "index", "calculatedBox", "calculateFaceBox", "load", "loadModel", "triangulation", "TRI468", "uvmap", "UV468", "model", "last", "lastTime", "lastCount", "skipped", "load", "config", "_a", "env", "log", "loadModel", "enhance", "input", "tensor", "crop", "norm", "constants", "predict", "image", "idx", "count", "_b", "_c", "_d", "skipFrame", "skipTime", "now", "resolve", "obj", "enhanced", "resT", "gender", "t", "confidence", "argmax", "age", "all", "desc", "descriptor", "getBoxSize", "box", "getBoxCenter", "cutBoxFromImageAndResize", "image", "cropSize", "h", "w", "boxes", "scaleBoxCoordinates", "factor", "startPoint", "endPoint", "palmLandmarks", "coord", "enlargeBox", "center", "size", "newHalfSize", "squarifyBox", "centers", "halfSize", "normalizeRadians", "angle", "computeRotation", "point1", "point2", "radians", "buildTranslationMatrix", "x", "y", "dot", "v1", "v2", "product", "i", "getColumnFrom2DArr", "arr", "columnIndex", "column", "multiplyTransformMatrices", "mat1", "mat2", "size", "row", "col", "buildRotationMatrix", "rotation", "center", "cosA", "sinA", "rotationMatrix", "translationMatrix", "translationTimesRotation", "negativeTranslationMatrix", "invertTransformMatrix", "matrix", "rotationComponent", "translationComponent", "invertedTranslation", "rotatePoint", "homogeneousCoordinate", "anchors", "HandDetector", "model", "__publicField", "_a", "_b", "_c", "_d", "anchors", "anchor", "boxes", "t", "res", "tensor", "rawPalmLandmarks", "index", "input", "config", "constants", "scores", "nms", "hands", "p", "box", "startPoint", "endPoint", "palmLandmarks", "hand", "scaled", "scaleBoxCoordinates", "palmBoxEnlargeFactor", "handBoxEnlargeFactor", "palmLandmarkIds", "palmLandmarksPalmBase", "palmLandmarksMiddleFingerBase", "lastTime", "HandPipeline", "handDetector", "handPoseModel", "__publicField", "_a", "_b", "_c", "landmarks", "xs", "d", "ys", "startPoint", "endPoint", "palmLandmarks", "rotationMatrix", "rotatedPalmLandmarks", "coord", "rotatePoint", "boxAroundPalm", "enlargeBox", "squarifyBox", "boundingBox", "boxAroundHand", "i", "rawCoords", "box2", "angle", "boxSize", "getBoxSize", "scaleFactor", "coordsScaled", "coordsRotationMatrix", "buildRotationMatrix", "coordsRotated", "inverseRotationMatrix", "invertTransformMatrix", "boxCenter", "getBoxCenter", "originalBoxCenter", "dot", "image", "config", "useFreshBox", "boxes", "skipTime", "now", "skipFrame", "hands", "currentBox", "computeRotation", "palmCenter", "palmCenterNormalized", "rotatedImage", "env", "newBox", "croppedInput", "cutBoxFromImageAndResize", "handImage", "constants", "confidenceT", "keypoints", "confidence", "keypointsReshaped", "coords", "nextBoundingBox", "result", "enlarged", "a", "Finger", "value", "FingerCurl", "FingerDirection", "FingerGesture", "name", "__publicField", "finger", "curl", "confidence", "position", "weight", "total", "a", "b", "el", "detectedCurls", "detectedDirections", "fingerIdx", "detectedCurl", "expectedCurls", "expectedCurl", "score", "detectedDirection", "expectedDirections", "expectedDirection", "thumb", "index", "middle", "ring", "pinky", "Finger", "none", "half", "full", "FingerCurl", "verticalUp", "verticalDown", "horizontalLeft", "horizontalRight", "diagonalUpRight", "diagonalUpLeft", "diagonalDownRight", "diagonalDownLeft", "FingerDirection", "ThumbsUp", "FingerGesture", "finger", "Victory", "Point", "MiddleFinger", "OpenPalm", "fingergesture_default", "minConfidence", "options", "calculateSlope", "point1x", "point1y", "point2x", "point2y", "value", "slope", "getSlopes", "point1", "point2", "slopeXY", "slopeYZ", "angleOrientationAt", "angle", "weightageAt", "isVertical", "isDiagonal", "isHorizontal", "estimateFingerCurl", "startPoint", "midPoint", "endPoint", "start_mid_x_dist", "start_end_x_dist", "mid_end_x_dist", "start_mid_y_dist", "start_end_y_dist", "mid_end_y_dist", "start_mid_z_dist", "start_end_z_dist", "mid_end_z_dist", "start_mid_dist", "start_end_dist", "mid_end_dist", "cos_in", "angleOfCurve", "fingerCurl", "FingerCurl", "estimateHorizontalDirection", "max_dist_x", "estimatedDirection", "FingerDirection", "estimateVerticalDirection", "max_dist_y", "estimateDiagonalDirection", "reqd_vertical_direction", "reqd_horizontal_direction", "calculateFingerDirection", "fingerSlopes", "voteVertical", "voteDiagonal", "voteHorizontal", "start_end_x_y_dist_ratio", "max_dist", "calc_start_point_x", "calc_start_point_y", "calc_end_point_x", "calc_end_point_y", "totalAngle", "votes", "fingerSlope", "fingerVotes", "estimate", "landmarks", "slopesXY", "slopesYZ", "fingerCurls", "fingerDirections", "finger", "Finger", "points", "slopeAtXY", "slopeAtYZ", "point", "slopes", "pointIndexAt", "fingerPointsAt", "fingerCurled", "fingerPosition", "analyze", "keypoints", "estimatorRes", "fingerIdx", "match", "poses", "gesture", "fingergesture_default", "confidence", "meshAnnotations", "handDetectorModel", "handPoseModel", "handPipeline", "predict", "input", "config", "predictions", "hands", "i", "annotations", "key", "index", "keypoints", "box", "boxRaw", "pt", "landmarks", "analyze", "load", "_a", "_b", "env", "loadModel", "log", "handDetector", "HandDetector", "HandPipeline", "config", "extensions", "gl", "register", "instance", "_a", "log", "reset", "canvas", "err", "e", "ctx", "kernelConfig", "newKernelConfig", "current", "registerCustomOps", "config", "env", "kernelMod", "op", "log", "kernelFloorMod", "kernelRotateWithOffset", "backend", "t", "check", "instance", "force", "timeStamp", "now", "adapter", "adapterInfo", "register", "available", "mt", "simd", "e", "init", "err", "gl", "fakeOps", "kernelNames", "kernelName", "kernelConfig", "kernel", "models", "modelOutputNodes", "inputSize", "classes", "faceIndex", "boxExpandFact", "maxDetectorResolution", "detectorExpandFact", "skipped", "lastTime", "outputSize", "cache", "fingerMap", "loadDetect", "config", "_a", "env", "log", "fakeOps", "loadModel", "inputs", "loadSkeleton", "detectHands", "input", "config", "hands", "models", "t", "ratio", "height", "maxDetectorResolution", "width", "modelOutputNodes", "classScores", "faceIndex", "id", "nms", "scores", "classNum", "nmsIndex", "boxSlice", "boxYX", "boxData", "boxRaw", "scale", "detectorExpandFact", "boxFull", "outputSize", "score", "label", "classes", "hand", "tensor", "a", "b", "detectFingers", "h", "boxCrop", "inputSize", "constants", "rawScore", "coordsNorm", "kpt", "analyze", "key", "fingerMap", "index", "predict", "_a", "_b", "skipped", "skipTime", "now", "lastTime", "skipFrame", "cache", "resolve", "skipTimeExtended", "skipFrameExtended", "handBox", "oldCache", "i", "boxKpt", "square", "boxScale", "boxExpandFact", "boxScaleRaw", "bbox", "calc", "model", "cached", "skipped", "lastCount", "lastTime", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "skipTime", "now", "skipFrame", "resolve", "resize", "res", "num", "movenetcoords_exports", "__export", "connected", "horizontal", "kpt", "relative", "vertical", "maxJitter", "cache", "bodyParts", "body", "pair", "horizontal", "left", "kp", "right", "tmp", "vertical", "lower", "higher", "compare", "relative", "leftTo", "rightTo", "distanceLeft", "distanceRight", "jitter", "keypoints", "i", "diff", "padInput", "input", "inputSize", "_a", "_b", "t", "final", "tensor", "rescaleBody", "outputSize", "kpt", "rescaledBoxes", "calc", "pt", "model", "inputSize", "skipped", "cache", "load", "config", "_a", "env", "log", "fakeOps", "loadModel", "parseSinglePose", "res", "image", "kpt", "keypoints", "score", "id", "positionRaw", "prev", "curr", "bodies", "newBox", "calc", "pt", "annotations", "name", "indexes", "connected", "i", "pt0", "kp", "pt1", "body", "bodyParts", "parseMultiPose", "totalScore", "a", "b", "predict", "input", "skipTime", "now", "skipFrame", "resolve", "t", "padInput", "rescaleBody", "jitter", "tensor", "model", "last", "lastTime", "skipped", "inputSize", "scaleBox", "load", "config", "env", "loadModel", "inputs", "log", "process", "res", "outputShape", "id", "results", "size", "strideSize", "baseSize", "scoresT", "a", "labels", "scores", "featuresT", "boxesMaxT", "boxIdxT", "boxIdx", "i", "j", "score", "cx", "cy", "boxOffset", "x", "y", "w", "h", "boxRaw", "box", "result", "nmsBoxes", "nmsScores", "nmsIdx", "nms", "_val", "idx", "b", "predict", "image", "skipTime", "now", "skipFrame", "resolve", "outputSize", "resizeT", "normT", "constants", "transposeT", "objectT", "obj", "partNames", "count", "partIds", "result", "jointName", "i", "connectedPartNames", "connectedPartIndices", "jointNameA", "jointNameB", "poseChain", "getBoundingBox", "keypoints", "coord", "maxX", "maxY", "minX", "minY", "x", "y", "scalePoses", "poses", "height", "width", "inputResolutionHeight", "inputResolutionWidth", "scaleY", "scaleX", "scalePose", "pose", "i", "score", "part", "position", "MaxHeap", "maxSize", "getElementValue", "__publicField", "max", "k", "j", "t", "getOffsetPoint", "keypoint", "offsets", "count", "getImageCoords", "outputStride", "heatmapY", "heatmapX", "clamp", "a", "min", "max", "squaredDistance", "y1", "x1", "y2", "x2", "dy", "dx", "addVectors", "b", "model", "poseNetOutputs", "localMaximumRadius", "outputStride", "squaredNmsRadius", "traverse", "edgeId", "sourceKeypoint", "targetId", "scores", "offsets", "displacements", "offsetRefineStep", "getDisplacement", "point", "getStridedIndexNearPoint", "height", "width", "clamp", "sourceKeypointIndices", "displacement", "targetKeypoint", "addVectors", "i", "targetKeypointIndices", "offsetPoint", "getOffsetPoint", "targetKeyPointIndices", "score", "partNames", "decodePose", "root", "displacementsFwd", "displacementsBwd", "tuples", "poseChain", "parentJoinName", "childJoinName", "partIds", "edgesFwd", "childJointId", "edgesBwd", "parentJointId", "numParts", "numEdges", "keypoints", "rootPoint", "getImageCoords", "edge", "sourceId", "scoreIsMaximumInLocalWindow", "keypointId", "heatmapY", "heatmapX", "localMaximum", "yStart", "yEnd", "yCurrent", "xStart", "xEnd", "xCurrent", "buildPartWithScoreQueue", "minConfidence", "numKeypoints", "queue", "MaxHeap", "withinRadius", "poses", "x", "y", "_a", "correspondingKeypoint", "squaredDistance", "getInstanceScore", "existingPoses", "result", "position", "decode", "maxDetected", "rootImageCoords", "a", "box", "getBoundingBox", "predict", "input", "config", "res", "resized", "normalized", "results3d", "buffers", "tensor", "t", "decoded", "scalePoses", "load", "env", "loadModel", "log", "model", "busy", "load", "config", "env", "loadModel", "log", "process", "input", "background", "_a", "_b", "inputImage", "width", "height", "t", "constants", "data", "tensor", "alphaCanvas", "canvas", "alphaCtx", "alphaData", "compositeCanvas", "compositeCtx", "compositeData", "i", "mergedCanvas", "bgImage", "ctxMerge", "Models", "__publicField", "getModelStats", "instance", "totalSizeFromManifest", "totalSizeWeights", "totalSizeLoading", "m", "modelStats", "percentageLoaded", "reset", "model", "load", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "_k", "_l", "_m", "_n", "_o", "_p", "_q", "_r", "_s", "_t", "_u", "_v", "_w", "_x", "_y", "_z", "env", "loadPose", "loadDetect", "loadSkeleton", "validateModel", "newInstance", "name", "log", "simpleOps", "ignoreOps", "ops", "missing", "url", "executor", "kernel", "op", "validate", "defined", "res", "options", "modelStats", "httpHandler", "url", "init", "log", "setModelLoadOptions", "config", "loadModel", "modelPath", "_a", "_b", "_c", "modelUrl", "join", "modelPathSegments", "shortModelName", "cachedModelName", "models_exports", "cachedModels", "e", "tfLoadOptions", "model", "b", "loaded", "artifacts", "err", "saveResult", "validateModel", "draw_exports", "__export", "all", "body", "canvas", "face", "gesture", "hand", "object", "options", "person", "getCanvasContext", "input", "log", "ctx", "rad2deg", "theta", "colorDepth", "z", "opt", "rgb", "point", "x", "y", "localOptions", "rect", "width", "height", "cx", "cy", "lines", "points", "pt", "curves", "i", "xc", "yc", "arrow", "from", "to", "radius", "angle", "options", "opt", "drawLabels", "f", "ctx", "_a", "_b", "labels", "emotion", "rad2deg", "i", "x", "y", "drawIrisElipse", "_c", "_d", "sizeX", "sizeY", "drawGazeSpheres", "valX", "valY", "pathV", "pathH", "drawGazeArrows", "leftGaze", "arrow", "rightGaze", "drawFacePolygons", "TRI468", "points", "index", "lines", "drawFacePoints", "point", "LANDMARKS_REFINEMENT_LIPS_CONFIG", "LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG", "LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG", "drawFaceBoxes", "rect", "face", "inCanvas", "result", "drawOptions", "mergeDeep", "options", "getCanvasContext", "body", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "i", "rect", "pt", "colorDepth", "point", "part", "connected", "curves", "hand", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "h", "rect", "pt", "colorDepth", "point", "addHandLabel", "part", "title", "z", "addHandLine", "i", "object", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "h", "rect", "label", "gesture", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "i", "j", "where", "what", "who", "label", "drawTime", "person", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "i", "rect", "label", "canvas", "input", "output", "all", "timeStamp", "now", "promise", "face", "body", "hand", "object", "gesture", "env", "expandFact", "alpha", "insidePoly", "x", "y", "polygon", "inside", "j", "i", "mask", "face", "width", "height", "buffer", "silhouette", "pt", "meshAnnotations", "output", "calculateGaze", "face", "radians", "pt1", "pt2", "offsetIris", "eyeRatio", "left", "irisCenter", "eyeCenter", "eyeSize", "eyeDiff", "strength", "calculateFaceAngle", "imageSize", "normalize", "v", "length", "subVectors", "a", "b", "x", "y", "z", "crossVectors", "rotationMatrixToEulerAngle", "r", "r00", "_r01", "_r02", "r10", "r11", "r12", "r20", "r21", "r22", "thetaX", "thetaY", "thetaZ", "mesh", "size", "pts", "pt", "yAxis", "xAxis", "zAxis", "matrix", "angle", "gaze", "detectFace", "instance", "input", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "_k", "_l", "_m", "_n", "_o", "_p", "_q", "_r", "_s", "_t", "_u", "_v", "_w", "_x", "_y", "_z", "_A", "_B", "_C", "timeStamp", "now", "ageRes", "gearRes", "genderRes", "emotionRes", "mobilefacenetRes", "insightfaceRes", "antispoofRes", "livenessRes", "descRes", "faceRes", "faces", "predict", "env", "i", "log", "masked", "mask", "rotation", "calculateFaceAngle", "irisSize", "tensor", "res", "body", "res", "gestures", "i", "leftWrist", "a", "rightWrist", "nose", "leftShoulder", "rightShoulder", "face", "zDiff", "xDiff", "mouthOpen", "chinDepth", "iris", "_a", "_b", "_c", "_d", "sizeXLeft", "sizeYLeft", "areaLeft", "sizeXRight", "sizeYRight", "areaRight", "center", "leftIrisCenterX", "rightIrisCenterX", "rightIrisCenterY", "leftIrisCenterY", "hand", "fingers", "finger", "pos", "closest", "best", "highest", "poses", "match", "pose", "bufferedResult", "interpolateTime", "calc", "newResult", "config", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "_k", "_l", "_m", "_n", "_o", "_p", "_q", "t0", "now", "elapsed", "bufferedFactor", "i", "box", "newBoxCoord", "j", "boxRaw", "keypoints", "newKpt", "annotations", "coords", "efficientposecoords_exports", "blazeposecoords_exports", "movenetcoords_exports", "name", "indexes", "pt", "pt0", "kp", "pt1", "b", "landmark", "coord", "k", "key", "val", "rotation", "newPersons", "t1", "env", "match_exports", "__export", "distance", "match", "similarity", "descriptor1", "descriptor2", "options", "sum", "i", "diff", "normalizeDistance", "dist", "order", "min", "max", "root", "norm", "descriptor", "descriptors", "lowestDistance", "index", "res", "normalizedSimilarity", "join", "faces", "bodies", "hands", "gestures", "shape", "_a", "_b", "_c", "_d", "_e", "_f", "id", "persons", "face", "person", "body", "hand", "gesture", "x", "y", "extractXY", "box", "minX", "minY", "face", "body", "warmupBitmap", "instance", "b64toBlob", "base64", "type", "res", "blob", "face", "body", "bitmap", "warmupCanvas", "resolve", "src", "img", "env", "canvas", "log", "ctx", "tensor", "warmupNode", "atob", "str", "tfjs_esm_exports", "data", "expanded", "runInference", "runCompile", "allModels", "_a", "_b", "_c", "_d", "backendType", "webGLBackend", "numTensorsStart", "compiledModels", "modelName", "model", "key", "val", "shape", "dtype", "dim", "t", "e", "kernels", "numTensorsEnd", "warmup", "userConfig", "t0", "now", "mergeDeep", "t1", "_numTensors", "_analyzeMemoryLeaks", "_checkSanity", "_sanity", "Human", "userConfig", "__publicField", "__privateAdd", "msg", "__privateGet", "currentTensors", "previousTensors", "__privateSet", "leaked", "log", "input", "d", "e", "similarity", "distance", "match", "event", "_a", "env", "tfVersion", "v", "config", "version", "mergeDeep", "setModelLoadOptions", "tfjs_esm_exports", "Models", "options", "output", "canvas", "result", "face", "body", "hand", "gesture", "object", "person", "all", "triangulation", "uvmap", "validateModel", "currentBackend", "validate", "now", "getTensor", "process", "background", "enhance", "firstImageTensor", "secondImageTensor", "compare", "check", "timeStamp", "count", "model", "load", "current", "calc", "getModelStats", "t0", "res", "warmup", "t1", "profile", "kernels", "total", "kernel", "kernelArr", "key", "a", "b", "resolve", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "_k", "_l", "_m", "_n", "_o", "_p", "_q", "_r", "_s", "_t", "_u", "error", "timeStart", "img", "skip", "faceRes", "bodyRes", "handRes", "objectRes", "detectFace", "bodyConfig", "predict", "handConfig", "gestureRes", "iris", "shape", "join"] + "sourcesContent": ["import type { Config } from '../exports';\n\n/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n if (msg) console.log(ts, 'Human:', ...msg); // eslint-disable-line no-console\n}\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`modelpath error: expecting json file: ${path}`);\n return path;\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: checks current config validity\nexport function validate(defaults: Partial, config: Partial, parent = 'config', msgs: { reason: string, where: string, expected?: string }[] = []) {\n for (const key of Object.keys(config)) {\n if (typeof config[key] === 'object') {\n validate(defaults[key], config[key], key, msgs);\n } else {\n const defined = defaults && (typeof defaults[key] !== 'undefined');\n if (!defined) msgs.push({ reason: 'unknown property', where: `${parent}.${key} = ${config[key]}` });\n const same = defaults && typeof defaults[key] === typeof config[key];\n if (defined && !same) msgs.push({ reason: 'property type mismatch', where: `${parent}.${key} = ${config[key]}`, expected: typeof defaults[key] });\n }\n // ok = ok && defined && same;\n }\n if (config.debug && parent === 'config' && msgs.length > 0) log('invalid configuration', msgs);\n return msgs;\n}\n\n// helper function: perform deep merge of multiple objects so it allows full inheritance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: number[]) => data.reduce((acc: number[], val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n\n// helper function: async wait\nexport async function wait(time: number) {\n const waiting = new Promise((resolve) => { setTimeout(() => resolve(true), time); });\n await waiting;\n}\n", "/* eslint-disable no-multi-spaces */\n\n/** Generic config type inherited by all module types */\nexport interface GenericConfig {\n /** is module enabled? */\n enabled: boolean,\n /** path to model json file (relative to `modelBasePath` */\n modelPath: string,\n /** how many max frames to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipFrames: number,\n /** how many max milliseconds to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipTime: number,\n}\n\n/** Detector part of face configuration */\nexport interface FaceDetectorConfig extends GenericConfig {\n /** is face rotation correction performed after detecting face?\n * used to correctly analyze faces under high angles\n */\n rotation: boolean,\n /** maximum number of detected faces */\n maxDetected: number,\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected faces before one is discarded */\n iouThreshold: number,\n /** should child models perform on masked image of a face */\n mask: boolean,\n /** should face detection return processed and cropped face tensor that can with an external model for addtional processing?\n * if enabled it must be manually deallocated to avoid memory leak */\n return: boolean,\n}\n\n/** Mesh part of face configuration */\nexport interface FaceMeshConfig extends GenericConfig {\n /** Keep detected faces that cannot be verified using facemesh */\n keepInvalid: boolean\n}\n\n/** Iris part of face configuration */\nexport interface FaceIrisConfig extends GenericConfig {}\n\n/** Attention part of face configuration */\nexport interface FaceAttentionConfig extends GenericConfig {}\n\n/** Description or face embedding part of face configuration\n * - also used by age and gender detection\n */\nexport interface FaceDescriptionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Emotion part of face configuration */\nexport interface FaceEmotionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Anti-spoofing part of face configuration */\nexport interface FaceAntiSpoofConfig extends GenericConfig {}\n\n/** Liveness part of face configuration */\nexport interface FaceLivenessConfig extends GenericConfig {}\n\n/** Gear part of face configuration */\nexport interface FaceGearConfig extends GenericConfig {\n /** minimum confidence for a detected race before results are discarded */\n minConfidence: number,\n}\n\n/** Configures all face-specific options: face detection, mesh analysis, age, gender, emotion detection and face description */\nexport interface FaceConfig extends GenericConfig {\n detector: Partial,\n mesh: Partial,\n attention: Partial,\n iris: Partial,\n description: Partial,\n emotion: Partial,\n antispoof: Partial,\n liveness: Partial,\n gear: Partial,\n}\n\n/** Configures all body detection specific options */\nexport interface BodyConfig extends GenericConfig {\n /** maximum number of detected bodies */\n maxDetected: number,\n /** minimum confidence for a detected body before results are discarded */\n minConfidence: number,\n /* experimental\n /** experimental: detector used for body model before actual analysis\n detector?: {\n /** experimental: enable body detector before body landmarks\n enabled: boolean,\n /** experimental: path to optional body detector model json file\n modelPath: string,\n /** experimental: minimum confidence for a detected body before results are discarded\n minConfidence: number,\n /** experimental: minimum overlap between two detected bodies before one is discarded\n iouThreshold: number\n },\n */\n}\n\n/** Configures all hand detection specific options */\nexport interface HandConfig extends GenericConfig {\n /** should hand rotation correction be performed after hand detection? */\n rotation: boolean,\n /** minimum confidence for a detected hand before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected hands before one is discarded */\n iouThreshold: number,\n /** maximum number of detected hands */\n maxDetected: number,\n /** should hand landmarks be detected or just return detected hand box */\n landmarks: boolean,\n detector: {\n /** path to hand detector model json */\n modelPath?: string,\n },\n skeleton: {\n /** path to hand skeleton model json */\n modelPath?: string,\n },\n}\n\n/** Configures all object detection specific options */\nexport interface ObjectConfig extends GenericConfig {\n /** minimum confidence for a detected objects before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected objects before one is discarded */\n iouThreshold: number,\n /** maximum number of detected objects */\n maxDetected: number,\n}\n\n/** Configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n*/\nexport interface SegmentationConfig extends GenericConfig {\n /** blur segmentation output by pixels for more realistic image */\n blur: number,\n}\n\n/** Run input through image filters before inference\n * - available only in Browser environments\n * - image filters run with near-zero latency as they are executed on the GPU using WebGL\n*/\nexport interface FilterConfig {\n /** are image filters enabled? */\n enabled: boolean,\n /** perform image histogram equalization\n * - equalization is performed on input as a whole and detected face before its passed for further analysis\n */\n equalization: boolean,\n /** resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** return processed canvas imagedata in result */\n return: boolean,\n /** flip input as mirror image */\n flip: boolean,\n /** range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** image negative */\n negative: boolean,\n /** image sepia colors */\n sepia: boolean,\n /** image vintage colors */\n vintage: boolean,\n /** image kodachrome colors */\n kodachrome: boolean,\n /** image technicolor colors */\n technicolor: boolean,\n /** image polaroid camera effect */\n polaroid: boolean,\n /** range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n}\n\n/** Controlls gesture detection */\nexport interface GestureConfig {\n /** is gesture detection enabled? */\n enabled: boolean,\n}\n/** Possible TensorFlow backends */\nexport type BackendType = ['cpu', 'wasm', 'webgl', 'humangl', 'tensorflow', 'webgpu'];\n\n/** Possible values for `human.warmup` */\nexport type WarmupType = ['' | 'none' | 'face' | 'full' | 'body'];\n\n/**\n * Configuration interface definition for **Human** library\n * Contains all configurable parameters\n * Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\nexport interface Config {\n /** Backend used for TFJS operations\n * valid build-in backends are:\n * - Browser: `cpu`, `wasm`, `webgl`, `humangl`, `webgpu`\n * - NodeJS: `cpu`, `wasm`, `tensorflow`\n * default: `humangl` for browser and `tensorflow` for nodejs\n */\n backend: '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm`\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPath: string,\n\n /** Force WASM loader to use platform fetch\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPlatformFetch: boolean,\n\n /** Print debug statements to console\n *\n * default: `true`\n */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially\n *\n * default: `true`\n */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - used by `webgl`, `humangl` and `webgpu` backends\n *\n * default: `full`\n */\n warmup: '' | 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n *\n * default: `../models/` for browsers and `file://models/` for nodejs\n */\n modelBasePath: string,\n\n /** Cache models in IndexDB on first sucessfull load\n * default: true if indexdb is available (browsers), false if its not (nodejs)\n */\n cacheModels: boolean,\n\n /** Validate kernel ops used in model during model load\n * default: true\n * any errors will be printed on console but will be treated as non-fatal\n */\n validateModels: boolean,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n *\n * default: 0.7\n */\n cacheSensitivity: number;\n\n /** Software Kernels\n * Registers software kernel ops running on CPU when accelerated version of kernel is not found in the current backend\n */\n softwareKernels: boolean,\n\n /** Perform immediate garbage collection on deallocated tensors instead of caching them */\n deallocate: boolean;\n\n /** Internal Variable */\n skipAllowed: boolean;\n\n /** Filter config {@link FilterConfig} */\n filter: Partial,\n\n /** Gesture config {@link GestureConfig} */\n gesture: Partial;\n\n /** Face config {@link FaceConfig} */\n face: Partial,\n\n /** Body config {@link BodyConfig} */\n body: Partial,\n\n /** Hand config {@link HandConfig} */\n hand: Partial,\n\n /** Object config {@link ObjectConfig} */\n object: Partial,\n\n /** Segmentation config {@link SegmentationConfig} */\n segmentation: Partial,\n}\n\n/** - [See all default Config values...](https://github.com/vladmandic/human/blob/main/src/config.ts#L262) */\nconst config: Config = {\n backend: '',\n modelBasePath: '',\n cacheModels: true,\n validateModels: true,\n wasmPath: '',\n wasmPlatformFetch: false,\n debug: false,\n async: true,\n warmup: 'full',\n cacheSensitivity: 0.70,\n skipAllowed: false,\n deallocate: false,\n softwareKernels: false,\n filter: {\n enabled: true,\n equalization: false,\n width: 0,\n height: 0,\n flip: false,\n return: true,\n brightness: 0,\n contrast: 0,\n sharpness: 0,\n blur: 0,\n saturation: 0,\n hue: 0,\n negative: false,\n sepia: false,\n vintage: false,\n kodachrome: false,\n technicolor: false,\n polaroid: false,\n pixelate: 0,\n },\n gesture: {\n enabled: true,\n },\n face: {\n enabled: true,\n detector: {\n modelPath: 'blazeface.json',\n rotation: true,\n maxDetected: 1,\n skipFrames: 99,\n skipTime: 2500,\n minConfidence: 0.2,\n iouThreshold: 0.1,\n mask: false,\n return: false,\n },\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json',\n keepInvalid: false,\n },\n attention: {\n enabled: false,\n modelPath: 'facemesh-attention.json',\n },\n iris: {\n enabled: true,\n modelPath: 'iris.json',\n },\n emotion: {\n enabled: true,\n minConfidence: 0.1,\n skipFrames: 99,\n skipTime: 1500,\n modelPath: 'emotion.json',\n },\n description: {\n enabled: true,\n modelPath: 'faceres.json',\n skipFrames: 99,\n skipTime: 3000,\n minConfidence: 0.1,\n },\n antispoof: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'antispoof.json',\n },\n liveness: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'liveness.json',\n },\n },\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json',\n maxDetected: -1,\n minConfidence: 0.3,\n skipFrames: 1,\n skipTime: 200,\n },\n hand: {\n enabled: true,\n rotation: true,\n skipFrames: 99,\n skipTime: 1000,\n minConfidence: 0.50,\n iouThreshold: 0.2,\n maxDetected: -1,\n landmarks: true,\n detector: {\n modelPath: 'handtrack.json',\n },\n skeleton: {\n modelPath: 'handlandmark-full.json',\n },\n },\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json',\n minConfidence: 0.2,\n iouThreshold: 0.4,\n maxDetected: 10,\n skipFrames: 99,\n skipTime: 2000,\n },\n segmentation: {\n enabled: false,\n modelPath: 'selfie.json',\n blur: 8,\n },\n};\n\nexport { config as defaults };\n", "/*\n Human\n homepage: \n author: '\n*/\n\nexport*from\"@tensorflow/tfjs/dist/index.js\";export*from\"@tensorflow/tfjs-backend-webgl/dist/index.js\";var r=\"3.20.0\",e=\"3.20.0\",o=\"3.20.0\",a=\"3.20.0\",t=\"3.20.0\",s=\"3.20.0\",f=\"3.20.0\",v={tfjs:r,\"tfjs-core\":e,\"tfjs-data\":o,\"tfjs-layers\":a,\"tfjs-converter\":t,\"tfjs-backend-webgl\":s,\"tfjs-backend-wasm\":f};import{Tensor as d}from\"@tensorflow/tfjs/dist/index.js\";import{GraphModel as b}from\"@tensorflow/tfjs-converter/dist/index\";export{b as GraphModel,d as Tensor,v as version};\n", "export const vertexIdentity = `\n precision highp float;\n attribute vec2 pos;\n attribute vec2 uv;\n varying vec2 vUv;\n uniform float flipY;\n void main(void) {\n vUv = uv;\n gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);\n }\n`;\n\nexport const fragmentIdentity = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n void main(void) {\n gl_FragColor = texture2D(texture, vUv);\n }\n`;\n\nexport const colorMatrixWithAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];\n gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];\n }\n`;\n\nexport const colorMatrixWithoutAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];\n gl_FragColor.a = c.a;\n }\n`;\n\nexport const pixelate = `\n precision highp float;\n varying vec2 vUv;\n uniform vec2 size;\n uniform sampler2D texture;\n vec2 pixelate(vec2 coord, vec2 size) {\n return floor( coord / size ) * size;\n }\n void main(void) {\n gl_FragColor = vec4(0.0);\n vec2 coord = pixelate(vUv, size);\n gl_FragColor += texture2D(texture, coord);\n }\n`;\n\nexport const blur = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n void main(void) {\n gl_FragColor = vec4(0.0);\n gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;\n gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv )*0.159576912161;\n gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;\n }\n`;\n\nexport const convolution = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n uniform float m[9];\n void main(void) {\n vec4 c11 = texture2D(texture, vUv - px); // top left\n vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center\n vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right\n vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left\n vec4 c22 = texture2D(texture, vUv); // mid center\n vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right\n vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left\n vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center\n vec4 c33 = texture2D(texture, vUv + px ); // bottom right\n gl_FragColor = \n c11 * m[0] + c12 * m[1] + c22 * m[2] +\n c21 * m[3] + c22 * m[4] + c23 * m[5] +\n c31 * m[6] + c32 * m[7] + c33 * m[8];\n gl_FragColor.a = c22.a;\n }\n`;\n", "/**\n * Image Filters in WebGL algoritm implementation\n * Based on: [WebGLImageFilter](https://github.com/phoboslab/WebGLImageFilter)\n */\n\n/* eslint-disable func-names */\n\nimport * as shaders from './imagefxshaders';\nimport { canvas } from './image';\nimport { log } from '../util/util';\n\nconst collect = (source, prefix: string, collection) => {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n};\n\nclass GLProgram {\n uniform = {};\n attribute = {};\n gl: WebGLRenderingContext;\n id: WebGLProgram;\n\n constructor(gl, vertexSource, fragmentSource) {\n this.gl = gl;\n const vertexShader = this.compile(vertexSource, this.gl.VERTEX_SHADER);\n const fragmentShader = this.compile(fragmentSource, this.gl.FRAGMENT_SHADER);\n this.id = this.gl.createProgram() as WebGLProgram;\n if (!vertexShader || !fragmentShader) return;\n if (!this.id) {\n log('filter: could not create webgl program');\n return;\n }\n this.gl.attachShader(this.id, vertexShader);\n this.gl.attachShader(this.id, fragmentShader);\n this.gl.linkProgram(this.id);\n if (!this.gl.getProgramParameter(this.id, this.gl.LINK_STATUS)) {\n log(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id) || 'unknown'}`);\n return;\n }\n this.gl.useProgram(this.id);\n collect(vertexSource, 'attribute', this.attribute); // Collect attributes\n for (const a in this.attribute) this.attribute[a] = this.gl.getAttribLocation(this.id, a);\n collect(vertexSource, 'uniform', this.uniform); // Collect uniforms\n collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = this.gl.getUniformLocation(this.id, u);\n }\n\n compile = (source, type): WebGLShader | null => {\n const shader = this.gl.createShader(type);\n if (!shader) {\n log('filter: could not create shader');\n return null;\n }\n this.gl.shaderSource(shader, source);\n this.gl.compileShader(shader);\n if (!this.gl.getShaderParameter(shader, this.gl.COMPILE_STATUS)) {\n log(`filter: gl compile failed: ${this.gl.getShaderInfoLog(shader) || 'unknown'}`);\n return null;\n }\n return shader;\n };\n}\n\n// function that is instantiated as class so it has private this members\n/**\n * @class GLImageFilter\n * @property {function} reset reset current filter chain\n * @property {function} add add specified filter to filter chain\n * @property {function} apply execute filter chain and draw result\n * @property {function} draw just draw input to result\n */\n\nexport function GLImageFilter() {\n let drawCount = 0;\n let sourceTexture: WebGLTexture | null = null;\n let lastInChain = false;\n let currentFramebufferIndex = -1;\n let tempFramebuffers: [null, null] | [{ fbo: WebGLFramebuffer | null, texture: WebGLTexture | null }] = [null, null];\n let filterChain: Record[] = [];\n let vertexBuffer: WebGLBuffer | null = null;\n let currentProgram: GLProgram | null = null;\n const fxcanvas = canvas(100, 100);\n const shaderProgramCache = { }; // key is the shader program source, value is the compiled program\n const DRAW = { INTERMEDIATE: 1 };\n const gl = fxcanvas.getContext('webgl') as WebGLRenderingContext;\n if (!gl) {\n log('filter: cannot get webgl context');\n return;\n }\n // @ts-ignore used for sanity checks outside of imagefx\n this.gl = gl;\n\n function resize(width, height) {\n if (width === fxcanvas.width && height === fxcanvas.height) return; // Same width/height? Nothing to do here\n fxcanvas.width = width;\n fxcanvas.height = height;\n if (!vertexBuffer) { // Create the context if we don't have it yet\n const vertices = new Float32Array([-1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0]); // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n vertexBuffer = gl.createBuffer();\n gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, fxcanvas.width, fxcanvas.height);\n tempFramebuffers = [null, null]; // Delete old temp framebuffers\n }\n\n function createFramebufferTexture(width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n }\n\n function getTempFramebuffer(index): { fbo: WebGLFramebuffer | null, texture: WebGLTexture | null } {\n tempFramebuffers[index] = tempFramebuffers[index] || createFramebufferTexture(fxcanvas.width, fxcanvas.height);\n return tempFramebuffers[index] as { fbo: WebGLFramebuffer, texture: WebGLTexture };\n }\n\n function draw(flags = 0) {\n if (!currentProgram) return;\n let source: WebGLTexture | null = null;\n let target: WebGLFramebuffer | null = null;\n let flipY = false;\n if (drawCount === 0) source = sourceTexture; // First draw call - use the source texture\n else source = getTempFramebuffer(currentFramebufferIndex).texture || null; // All following draw calls use the temp buffer last drawn to\n drawCount++;\n if (lastInChain && !(flags & DRAW.INTERMEDIATE)) { // Last filter in our chain - draw directly to the WebGL Canvas. We may also have to flip the image vertically now\n target = null;\n flipY = drawCount % 2 === 0;\n } else {\n currentFramebufferIndex = (currentFramebufferIndex + 1) % 2;\n target = getTempFramebuffer(currentFramebufferIndex).fbo || null; // Intermediate draw call - get a temp buffer to draw to\n }\n gl.bindTexture(gl.TEXTURE_2D, source); // Bind the source and target and draw the two triangles\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(currentProgram.uniform['flipY'], (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n }\n\n function compileShader(fragmentSource): GLProgram | null {\n if (shaderProgramCache[fragmentSource]) {\n currentProgram = shaderProgramCache[fragmentSource];\n gl.useProgram((currentProgram ? currentProgram.id : null) || null);\n return currentProgram;\n }\n currentProgram = new GLProgram(gl, shaders.vertexIdentity, fragmentSource);\n if (!currentProgram) {\n log('filter: could not get webgl program');\n return null;\n }\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(currentProgram.attribute['pos']);\n gl.vertexAttribPointer(currentProgram.attribute['pos'], 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(currentProgram.attribute['uv']);\n gl.vertexAttribPointer(currentProgram.attribute['uv'], 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n shaderProgramCache[fragmentSource] = currentProgram;\n return currentProgram;\n }\n\n const filter = {\n colorMatrix: (matrix: number[]) => { // general color matrix filter\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0) // Can we ignore the alpha value? Makes things a bit faster.\n ? shaders.colorMatrixWithoutAlpha\n : shaders.colorMatrixWithAlpha;\n const program = compileShader(shader);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n draw();\n },\n\n brightness: (brightness: number) => {\n const b = (brightness || 0) + 1;\n filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n saturation: (amount: number) => {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturate: () => {\n filter.saturation(-1);\n },\n\n contrast: (amount: number) => {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n negative: () => {\n filter.contrast(-2);\n },\n\n hue: (rotation: number) => {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturateLuminance: () => {\n filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n sepia: () => {\n filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n brownie: () => {\n filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n vintagePinhole: () => {\n filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n kodachrome: () => {\n filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n technicolor: () => {\n filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n polaroid: () => {\n filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n shiftToBGR: () => {\n filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n convolution: (matrix: number[]) => { // general convolution Filter\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / fxcanvas.width;\n const pixelSizeY = 1 / fxcanvas.height;\n const program = compileShader(shaders.convolution);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n gl.uniform2f(program.uniform['px'], pixelSizeX, pixelSizeY);\n draw();\n },\n\n detectEdges: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n },\n\n sobelX: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n },\n\n sobelY: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n },\n\n sharpen: (amount) => {\n const a = amount || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n },\n\n emboss: (size: number) => {\n const s = size || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n },\n\n blur: (size: number) => {\n const blurSizeX = (size / 7) / fxcanvas.width;\n const blurSizeY = (size / 7) / fxcanvas.height;\n const program = compileShader(shaders.blur);\n if (!program) return;\n // Vertical\n gl.uniform2f(program.uniform['px'], 0, blurSizeY);\n draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform['px'], blurSizeX, 0);\n draw();\n },\n\n pixelate: (size: number) => {\n const blurSizeX = (size) / fxcanvas.width;\n const blurSizeY = (size) / fxcanvas.height;\n const program = compileShader(shaders.pixelate);\n if (!program) return;\n gl.uniform2f(program.uniform['size'], blurSizeX, blurSizeY);\n draw();\n },\n };\n\n // @ts-ignore this\n this.add = function (name) {\n const args = Array.prototype.slice.call(arguments, 1); // eslint-disable-line prefer-rest-params\n const func = filter[name];\n filterChain.push({ func, args });\n };\n\n // @ts-ignore this\n this.reset = function () {\n filterChain = [];\n };\n\n // @ts-ignore this\n this.get = function () {\n return filterChain;\n };\n\n // @ts-ignore this\n this.apply = function (image) {\n resize(image.width, image.height);\n drawCount = 0;\n if (!sourceTexture) sourceTexture = gl.createTexture(); // Create the texture for the input image if we haven't yet\n gl.bindTexture(gl.TEXTURE_2D, sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n for (let i = 0; i < filterChain.length; i++) {\n lastInChain = (i === filterChain.length - 1);\n const f = filterChain[i];\n // @ts-ignore function assigment\n f.func.apply(this, f.args || []);\n }\n return fxcanvas;\n };\n\n // @ts-ignore this\n this.draw = function (image) {\n this.add('brightness', 0);\n return this.apply(image);\n };\n}\n", "/**\n * Image enhancements\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../exports';\n\nexport async function histogramEqualization(inputImage: Tensor): Promise {\n // const maxValue = 254; // using 255 results in values slightly larger than 1 due to math rounding errors\n const squeeze = inputImage.shape.length === 4 ? tf.squeeze(inputImage) : inputImage;\n const channels = tf.split(squeeze, 3, 2);\n const min: Tensor[] = [tf.min(channels[0]), tf.min(channels[1]), tf.min(channels[2])];\n const max: Tensor[] = [tf.max(channels[0]), tf.max(channels[1]), tf.max(channels[2])];\n const absMax = await Promise.all(max.map((channel) => channel.data()));\n const maxValue = 0.99 * Math.max(absMax[0][0], absMax[1][0], absMax[2][0]);\n const sub = [tf.sub(channels[0], min[0]), tf.sub(channels[1], min[1]), tf.sub(channels[2], min[2])];\n const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])];\n const fact = [tf.div(maxValue, range[0]), tf.div(maxValue, range[1]), tf.div(maxValue, range[2])];\n const enh = [tf.mul(sub[0], fact[0]), tf.mul(sub[1], fact[1]), tf.mul(sub[2], fact[2])];\n const rgb = tf.stack([enh[0], enh[1], enh[2]], 2);\n const reshape = tf.reshape(rgb, [1, squeeze.shape[0], squeeze.shape[1], 3]);\n tf.dispose([...channels, ...min, ...max, ...sub, ...range, ...fact, ...enh, rgb, squeeze]);\n return reshape as Tensor; // output shape is [1, height, width, 3]\n}\n", "/**\n * Image Processing algorithm implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport type { Input, AnyCanvas, Tensor, Config } from '../exports';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport * as enhance from './enhance';\n\nconst maxSize = 3840;\n// internal temp canvases\nlet inCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet outCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet tmpCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\n// @ts-ignore // imagefx is js module that should be converted to a class\nlet fx: fxImage.GLImageFilter | null; // instance of imagefx\n\nconst last: { inputSum: number, cacheDiff: number, sumMethod: number, inputTensor: undefined | Tensor } = {\n inputSum: 0,\n cacheDiff: 1,\n sumMethod: 0,\n inputTensor: undefined,\n};\n\nexport function reset() {\n last.inputSum = 0;\n last.cacheDiff = 1;\n last.sumMethod = 0;\n last.inputTensor = undefined;\n}\n\nexport function canvas(width: number, height: number): AnyCanvas {\n let c: AnyCanvas;\n if (env.browser) { // browser defines canvas object\n if (env.worker) { // if runing in web worker use OffscreenCanvas\n if (typeof OffscreenCanvas === 'undefined') throw new Error('canvas error: attempted to run in web worker but OffscreenCanvas is not supported');\n c = new OffscreenCanvas(width, height);\n } else { // otherwise use DOM canvas\n if (typeof document === 'undefined') throw new Error('canvas error: attempted to run in browser but DOM is not defined');\n c = document.createElement('canvas');\n c.width = width;\n c.height = height;\n }\n } else { // if not running in browser, there is no \"default\" canvas object, so we need monkey patch or fail\n // @ts-ignore // env.canvas is an external monkey-patch\n if (typeof env.Canvas !== 'undefined') c = new env.Canvas(width, height);\n else if (typeof globalThis.Canvas !== 'undefined') c = new globalThis.Canvas(width, height);\n // else throw new Error('canvas error: attempted to use canvas in nodejs without canvas support installed');\n }\n // @ts-ignore its either defined or we already threw an error\n return c;\n}\n\n// helper function to copy canvas from input to output\nexport function copy(input: AnyCanvas, output?: AnyCanvas) {\n const outputCanvas = output || canvas(input.width, input.height);\n const ctx = outputCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctx.drawImage(input, 0, 0);\n return outputCanvas;\n}\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport async function process(input: Input, config: Config, getTensor: boolean = true): Promise<{ tensor: Tensor | null, canvas: AnyCanvas | null }> {\n if (!input) {\n // throw new Error('input is missing');\n if (config.debug) log('input error: input is missing');\n return { tensor: null, canvas: null }; // video may become temporarily unavailable due to onresize\n }\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof env.Canvas !== 'undefined' && input instanceof env.Canvas)\n && !(typeof globalThis.Canvas !== 'undefined' && input instanceof globalThis.Canvas)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('input error: type is not recognized');\n }\n if (input instanceof tf.Tensor) { // if input is tensor use as-is without filters but correct shape as needed\n let tensor: Tensor | null = null;\n if ((input as Tensor)['isDisposedInternal']) throw new Error('input error: attempted to use tensor but it is disposed');\n if (!(input as Tensor).shape) throw new Error('input error: attempted to use tensor without a shape');\n if ((input as Tensor).shape.length === 3) { // [height, width, 3 || 4]\n if ((input as Tensor).shape[2] === 3) { // [height, width, 3] so add batch\n tensor = tf.expandDims(input, 0);\n } else if ((input as Tensor).shape[2] === 4) { // [height, width, 4] so strip alpha and add batch\n const rgb = tf.slice3d(input, [0, 0, 0], [-1, -1, 3]);\n tensor = tf.expandDims(rgb, 0);\n tf.dispose(rgb);\n }\n } else if ((input as Tensor).shape.length === 4) { // [1, width, height, 3 || 4]\n if ((input as Tensor).shape[3] === 3) { // [1, width, height, 3] just clone\n tensor = tf.clone(input);\n } else if ((input as Tensor).shape[3] === 4) { // [1, width, height, 4] so strip alpha\n tensor = tf.slice4d(input, [0, 0, 0, 0], [-1, -1, -1, 3]);\n }\n }\n // at the end shape must be [1, height, width, 3]\n if (tensor == null || tensor.shape.length !== 4 || tensor.shape[0] !== 1 || tensor.shape[3] !== 3) throw new Error(`input error: attempted to use tensor with unrecognized shape: ${((input as Tensor).shape).toString()}`);\n if ((tensor).dtype === 'int32') {\n const cast = tf.cast(tensor, 'float32');\n tf.dispose(tensor);\n tensor = cast;\n }\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n }\n // check if resizing will be needed\n if (typeof input['readyState'] !== 'undefined' && (input as HTMLMediaElement).readyState <= 2) {\n if (config.debug) log('input stream is not ready');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n const originalWidth: number = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight: number = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) {\n if (config.debug) log('cannot determine input dimensions');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n let targetWidth: number = originalWidth;\n let targetHeight: number = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = Math.trunc(targetWidth * originalHeight / originalWidth);\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = Math.trunc(targetHeight * originalWidth / originalHeight);\n }\n\n // create our canvas and resize it if needed\n if ((config.filter?.width || 0) > 0) targetWidth = config.filter.width as number;\n else if ((config.filter?.height || 0) > 0) targetWidth = originalWidth * ((config.filter.height || 0) / originalHeight);\n if ((config.filter.height || 0) > 0) targetHeight = config.filter.height as number;\n else if ((config.filter.width || 0) > 0) targetHeight = originalHeight * ((config.filter.width || 0) / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('input error: cannot determine dimension');\n if (!inCanvas || (inCanvas.width !== targetWidth) || (inCanvas.height !== targetHeight)) inCanvas = canvas(targetWidth, targetHeight);\n\n // draw input to our canvas\n const inCtx = inCanvas.getContext('2d') as CanvasRenderingContext2D;\n if ((typeof ImageData !== 'undefined') && (input instanceof ImageData)) {\n inCtx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof inCtx.translate !== 'undefined') {\n inCtx.translate(originalWidth, 0);\n inCtx.scale(-1, 1);\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas.width, inCanvas.height);\n inCtx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas.width, inCanvas.height);\n }\n }\n\n if (!outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas.height !== outCanvas.height)) outCanvas = canvas(inCanvas.width, inCanvas.height); // init output canvas\n\n // imagefx transforms using gl from input canvas to output canvas\n if (config.filter.enabled && env.webgl.supported) {\n if (!fx) fx = env.browser ? new fxImage.GLImageFilter() : null; // && (typeof document !== 'undefined')\n env.filter = !!fx;\n if (!fx?.add) {\n if (config.debug) log('input process error: cannot initialize filters');\n env.webgl.supported = false;\n config.filter.enabled = false;\n copy(inCanvas, outCanvas); // filter failed to initialize\n // return { tensor: null, canvas: inCanvas };\n } else {\n fx.reset();\n if (config.filter.brightness !== 0) fx.add('brightness', config.filter.brightness);\n if (config.filter.contrast !== 0) fx.add('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.add('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.add('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.add('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.add('hue', config.filter.hue);\n if (config.filter.negative) fx.add('negative');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.vintage) fx.add('brownie');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.kodachrome) fx.add('kodachrome');\n if (config.filter.technicolor) fx.add('technicolor');\n if (config.filter.polaroid) fx.add('polaroid');\n if (config.filter.pixelate !== 0) fx.add('pixelate', config.filter.pixelate);\n if (fx.get() > 0) outCanvas = fx.apply(inCanvas);\n else outCanvas = fx.draw(inCanvas);\n }\n } else {\n copy(inCanvas, outCanvas); // if no filters applied, output canvas is input canvas\n if (fx) fx = null;\n env.filter = !!fx;\n }\n\n if (!getTensor) return { tensor: null, canvas: outCanvas }; // just canvas was requested\n if (!outCanvas) throw new Error('canvas error: cannot create output');\n\n // create tensor from image unless input was a tensor already\n let pixels;\n let depth = 3;\n if ((typeof ImageData !== 'undefined' && input instanceof ImageData) || ((input as ImageData).data && (input as ImageData).width && (input as ImageData).height)) { // if input is imagedata, just use it\n if (env.browser && tf.browser) {\n pixels = tf.browser ? tf.browser.fromPixels(input) : null;\n } else {\n depth = (input as ImageData).data.length / (input as ImageData).height / (input as ImageData).width;\n // const arr = Uint8Array.from(input['data']);\n const arr = new Uint8Array((input as ImageData).data.buffer);\n pixels = tf.tensor(arr, [(input as ImageData).height, (input as ImageData).width, depth], 'int32');\n }\n } else {\n if (!tmpCanvas || (outCanvas.width !== tmpCanvas.width) || (outCanvas.height !== tmpCanvas.height)) tmpCanvas = canvas(outCanvas.width, outCanvas.height); // init output canvas\n if (tf.browser && env.browser) {\n if (config.backend === 'webgl' || config.backend === 'humangl' || config.backend === 'webgpu') {\n pixels = tf.browser.fromPixels(outCanvas); // safe to reuse since both backend and context are gl based\n } else {\n tmpCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n pixels = tf.browser.fromPixels(tmpCanvas);\n }\n } else {\n const tempCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n const tempCtx = tempCanvas.getContext('2d') as CanvasRenderingContext2D;\n const tempData = tempCtx.getImageData(0, 0, targetWidth, targetHeight);\n depth = tempData.data.length / targetWidth / targetHeight;\n const arr = new Uint8Array(tempData.data.buffer);\n pixels = tf.tensor(arr, [targetWidth, targetHeight, depth]);\n }\n }\n if (depth === 4) { // rgba to rgb\n const rgb = tf.slice3d(pixels, [0, 0, 0], [-1, -1, 3]); // strip alpha channel\n tf.dispose(pixels);\n pixels = rgb;\n }\n if (!pixels) throw new Error('input error: cannot create tensor');\n const casted: Tensor = tf.cast(pixels, 'float32');\n const tensor: Tensor = config.filter.equalization ? await enhance.histogramEqualization(casted) : tf.expandDims(casted, 0);\n tf.dispose([pixels, casted]);\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n}\n\n/*\nconst checksum = async (input: Tensor): Promise => { // use tf sum or js based sum loop depending on which is faster\n const resizeFact = 48;\n const reduced: Tensor = tf.image.resizeBilinear(input, [Math.trunc((input.shape[1] || 1) / resizeFact), Math.trunc((input.shape[2] || 1) / resizeFact)]);\n const tfSum = async (): Promise => {\n const sumT = tf.sum(reduced);\n const sum0 = await sumT.data();\n tf.dispose(sumT);\n return sum0[0];\n };\n const jsSum = async (): Promise => {\n const reducedData = await reduced.data(); // raw image rgb array\n let sum0 = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum0 += reducedData[3 * i + 2]; // look only at green value of each pixel\n return sum0;\n };\n if (last.sumMethod === 0) {\n const t0 = now();\n await jsSum();\n const t1 = now();\n await tfSum();\n const t2 = now();\n last.sumMethod = t1 - t0 < t2 - t1 ? 1 : 2;\n }\n const res = last.sumMethod === 1 ? await jsSum() : await tfSum();\n tf.dispose(reduced);\n return res;\n};\n*/\n\nexport async function skip(config: Partial, input: Tensor) {\n let skipFrame = false;\n if (config.cacheSensitivity === 0 || !input.shape || input.shape.length !== 4 || input.shape[1] > 2048 || input.shape[2] > 2048) return skipFrame; // cache disabled or input is invalid or too large for cache analysis\n\n /*\n const checkSum = await checksum(input);\n const diff = 100 * (Math.max(checkSum, last.inputSum) / Math.min(checkSum, last.inputSum) - 1);\n last.inputSum = checkSum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n let skipFrame = diff < Math.max(config.cacheSensitivity, last.cacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n last.cacheDiff = diff > 10 * config.cacheSensitivity ? 0 : diff;\n skipFrame = skipFrame && (last.cacheDiff > 0); // if no cached diff value then force no skip\n */\n\n if (!last.inputTensor) {\n last.inputTensor = tf.clone(input);\n } else if (last.inputTensor.shape[1] !== input.shape[1] || last.inputTensor.shape[2] !== input.shape[2]) { // input resolution changed\n tf.dispose(last.inputTensor);\n last.inputTensor = tf.clone(input);\n } else {\n const t: Record = {};\n t.diff = tf.sub(input, last.inputTensor);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input.shape[1] || 1) / (input.shape[2] || 1) / 255 / 3; // squared difference relative to input resolution and averaged per channel\n tf.dispose([last.inputTensor, t.diff, t.squared, t.sum]);\n last.inputTensor = tf.clone(input);\n skipFrame = diffRelative <= (config.cacheSensitivity || 0);\n }\n return skipFrame;\n}\n\nexport async function compare(config: Partial, input1: Tensor, input2: Tensor): Promise {\n const t: Record = {};\n if (!input1 || !input2 || input1.shape.length !== 4 || input1.shape.length !== input2.shape.length) {\n if (!config.debug) log('invalid input tensor or tensor shapes do not match:', input1.shape, input2.shape);\n return 0;\n }\n if (input1.shape[0] !== 1 || input2.shape[0] !== 1 || input1.shape[3] !== 3 || input2.shape[3] !== 3) {\n if (!config.debug) log('input tensors must be of shape [1, height, width, 3]:', input1.shape, input2.shape);\n return 0;\n }\n t.input1 = tf.clone(input1);\n t.input2 = (input1.shape[1] !== input2.shape[1] || input1.shape[2] !== input2.shape[2]) ? tf.image.resizeBilinear(input2, [input1.shape[1], input1.shape[2]]) : tf.clone(input2);\n t.diff = tf.sub(t.input1, t.input2);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input1.shape[1] || 1) / (input1.shape[2] || 1) / 255 / 3;\n tf.dispose([t.input1, t.input2, t.diff, t.squared, t.sum]);\n return diffRelative;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\n\n/** Env class that holds detected capabilities */\nexport class Env {\n /** Running in Browser */\n browser: boolean;\n /** Running in NodeJS */\n node: boolean;\n /** Running in WebWorker thread */\n worker: boolean;\n /** Detected platform */\n platform: string = '';\n /** Detected agent */\n agent: string = '';\n /** List of supported backends */\n backends: string[] = [];\n /** Has any work been performed so far */\n initial: boolean;\n /** Are image filters supported? */\n filter: boolean | undefined;\n /** TFJS instance details */\n tfjs: {\n version: undefined | string,\n };\n /** Is offscreenCanvas supported? */\n offscreen: undefined | boolean;\n /** Are performance counter instant values or additive */\n perfadd: boolean = false;\n /** If using tfjs-node get version of underlying tensorflow shared library and if gpu acceleration is enabled */\n tensorflow: {\n version: undefined | string,\n gpu: undefined | boolean,\n } = {\n version: undefined,\n gpu: undefined,\n };\n /** WASM detected capabilities */\n wasm: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n simd: undefined | boolean,\n multithread: undefined | boolean,\n } = {\n supported: undefined,\n backend: undefined,\n simd: undefined,\n multithread: undefined,\n };\n /** WebGL detected capabilities */\n webgl: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n version: undefined | string,\n renderer: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n version: undefined,\n renderer: undefined,\n };\n /** WebGPU detected capabilities */\n webgpu: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n adapter: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n adapter: undefined,\n };\n /** CPU info */\n cpu: {\n model: undefined | string,\n flags: string[],\n } = {\n model: undefined,\n flags: [],\n };\n /** List of supported kernels for current backend */\n kernels: string[] = [];\n /** MonkeyPatch for Canvas */\n Canvas: undefined;\n /** MonkeyPatch for Image */\n Image: undefined;\n /** MonkeyPatch for ImageData */\n ImageData: undefined;\n\n constructor() {\n this.browser = typeof navigator !== 'undefined';\n this.node = (typeof process !== 'undefined') && (typeof process.versions !== 'undefined') && (typeof process.versions.node !== 'undefined');\n this.tfjs = { version: tf.version['tfjs-core'] };\n this.offscreen = typeof OffscreenCanvas !== 'undefined';\n this.initial = true;\n\n // @ts-ignore WorkerGlobalScope evaluated in browser only\n this.worker = this.browser && this.offscreen ? (typeof WorkerGlobalScope !== 'undefined') : undefined;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw?.[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n this.platform = (platformMatch?.[0]) ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n this.agent = navigator.userAgent.replace(raw[0], '');\n if (this.platform[1]) this.agent = this.agent.replace(raw[1], '');\n this.agent = this.agent.replace(/ /g, ' ');\n // chrome offscreencanvas gpu memory leak\n /*\n const isChrome = env.agent.match(/Chrome\\/.[0-9]/g);\n const verChrome = isChrome && isChrome[0] ? isChrome[0].split('/')[1] : 0;\n if (verChrome > 92 && verChrome < 96) {\n log('disabling offscreenCanvas due to browser error:', isChrome ? isChrome[0] : 'unknown');\n this.offscreen = false;\n }\n */\n }\n } else if (typeof process !== 'undefined') {\n this.platform = `${process.platform} ${process.arch}`;\n this.agent = `NodeJS ${process.version}`;\n }\n }\n\n /** update backend information */\n async updateBackend() {\n // analyze backends\n this.backends = Object.keys(tf.engine().registryFactory);\n this.tensorflow = {\n version: (tf.backend().binding ? tf.backend().binding.TF_Version : undefined),\n gpu: (tf.backend().binding ? tf.backend().binding.isUsingGpuDevice() : undefined),\n };\n this.wasm.supported = typeof WebAssembly !== 'undefined';\n this.wasm.backend = this.backends.includes('wasm');\n if (this.wasm.supported && this.wasm.backend && tf.getBackend() === 'wasm') {\n this.wasm.simd = tf.env().get('WASM_HAS_SIMD_SUPPORT');\n this.wasm.multithread = tf.env().get('WASM_HAS_MULTITHREAD_SUPPORT');\n }\n const c = image.canvas(100, 100);\n const ctx = c ? c.getContext('webgl2') : undefined; // causes too many gl contexts\n // const ctx = typeof tf.backend().getGPGPUContext !== undefined ? tf.backend().getGPGPUContext : null;\n this.webgl.supported = typeof ctx !== 'undefined';\n this.webgl.backend = this.backends.includes('webgl');\n if (this.webgl.supported && this.webgl.backend && (tf.getBackend() === 'webgl' || tf.getBackend() === 'humangl')) {\n const gl = tf.backend().gpgpu !== 'undefined' ? await tf.backend().getGPGPUContext().gl : null;\n if (gl) {\n this.webgl.version = gl.getParameter(gl.VERSION);\n this.webgl.renderer = gl.getParameter(gl.RENDERER);\n }\n }\n this.webgpu.supported = this.browser && typeof navigator.gpu !== 'undefined';\n this.webgpu.backend = this.backends.includes('webgpu');\n try {\n if (this.webgpu.supported) {\n const adapter = await navigator.gpu.requestAdapter();\n this.webgpu.adapter = adapter ? adapter.name : undefined;\n }\n } catch {\n this.webgpu.supported = false;\n }\n try {\n this.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => (kernel.kernelName as string).toLowerCase());\n } catch { /**/ }\n }\n\n /** update cpu information */\n updateCPU() {\n const cpu = { model: '', flags: [] };\n if (this.node && this.platform.startsWith('linux')) {\n /*\n const fs = require('fs');\n try {\n const data = fs.readFileSync('/proc/cpuinfo').toString();\n for (const line of data.split('\\n')) {\n if (line.startsWith('model name')) cpu.model = line.match(/:(.*)/g)[0].replace(':', '').trim();\n if (line.startsWith('flags')) cpu.flags = line.match(/:(.*)/g)[0].replace(':', '').trim().split(' ').sort();\n }\n } catch { }\n */\n }\n if (!this.cpu) Object.defineProperty(this, 'cpu', { value: cpu });\n else this.cpu = cpu;\n }\n}\n\nexport const env = new Env();\n", "/**\n * Loader and Validator for all models used by Human\n */\n\nimport { env } from './util/env';\nimport { log } from './util/util';\nimport * as gear from './gear/gear';\nimport * as ssrnetAge from './gear/ssrnet-age';\nimport * as ssrnetGender from './gear/ssrnet-gender';\nimport * as antispoof from './face/antispoof';\nimport * as blazeface from './face/blazeface';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as efficientpose from './body/efficientpose';\nimport * as emotion from './gear/emotion';\nimport * as mobilefacenet from './face/mobilefacenet';\nimport * as insightface from './face/insightface';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as iris from './face/iris';\nimport * as liveness from './face/liveness';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport { modelStats, ModelInfo } from './tfjs/load';\nimport type { GraphModel } from './tfjs/types';\nimport type { Human } from './human';\n\n/** Instances of all possible TFJS Graph Models used by Human\n * - loaded as needed based on configuration\n * - initialized explictly with `human.load()` method\n * - initialized implicity on first call to `human.detect()`\n * - each model can be `null` if not loaded, instance of `GraphModel` if loaded or `Promise` if loading\n */\nexport class Models {\n ssrnetage: null | GraphModel | Promise = null;\n gear: null | GraphModel | Promise = null;\n blazeposedetect: null | GraphModel | Promise = null;\n blazepose: null | GraphModel | Promise = null;\n centernet: null | GraphModel | Promise = null;\n efficientpose: null | GraphModel | Promise = null;\n mobilefacenet: null | GraphModel | Promise = null;\n insightface: null | GraphModel | Promise = null;\n emotion: null | GraphModel | Promise = null;\n facedetect: null | GraphModel | Promise = null;\n faceiris: null | GraphModel | Promise = null;\n facemesh: null | GraphModel | Promise = null;\n faceres: null | GraphModel | Promise = null;\n ssrnetgender: null | GraphModel | Promise = null;\n handpose: null | GraphModel | Promise = null;\n handskeleton: null | GraphModel | Promise = null;\n handtrack: null | GraphModel | Promise = null;\n liveness: null | GraphModel | Promise = null;\n movenet: null | GraphModel | Promise = null;\n nanodet: null | GraphModel | Promise = null;\n posenet: null | GraphModel | Promise = null;\n segmentation: null | GraphModel | Promise = null;\n antispoof: null | GraphModel | Promise = null;\n}\n\nexport interface ModelStats {\n numLoadedModels: number,\n numEnabledModels: undefined,\n numDefinedModels: number,\n percentageLoaded: number,\n totalSizeFromManifest: number,\n totalSizeWeights: number,\n totalSizeLoading: number,\n totalSizeEnabled: undefined,\n modelStats: ModelInfo[],\n}\n\nexport const getModelStats = (instance: Human): ModelStats => {\n let totalSizeFromManifest = 0;\n let totalSizeWeights = 0;\n let totalSizeLoading = 0;\n for (const m of Object.values(modelStats)) {\n totalSizeFromManifest += m.sizeFromManifest;\n totalSizeWeights += m.sizeLoadedWeights;\n totalSizeLoading += m.sizeDesired;\n }\n const percentageLoaded = totalSizeLoading > 0 ? totalSizeWeights / totalSizeLoading : 0;\n return {\n numLoadedModels: Object.values(modelStats).length,\n numEnabledModels: undefined,\n numDefinedModels: Object.keys(instance.models).length,\n percentageLoaded,\n totalSizeFromManifest,\n totalSizeWeights,\n totalSizeLoading,\n totalSizeEnabled: undefined,\n modelStats: Object.values(modelStats),\n };\n};\n\nexport function reset(instance: Human): void {\n // if (instance.config.debug) log('resetting loaded models');\n for (const model of Object.keys(instance.models)) instance.models[model as keyof Models] = null;\n}\n\n/** Load method preloads all instance.configured models on-demand */\nexport async function load(instance: Human): Promise {\n if (env.initial) reset(instance);\n if (instance.config.hand.enabled) { // handpose model is a combo that must be loaded as a whole\n if (!instance.models.handpose && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n if (!instance.models.handskeleton && instance.config.hand.landmarks && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n }\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body.modelPath?.includes('blazepose')) instance.models.blazepose = blazepose.loadPose(instance.config);\n if (instance.config.body.enabled && !instance.models.blazeposedetect && instance.config.body['detector'] && instance.config.body['detector'].modelPath) instance.models.blazeposedetect = blazepose.loadDetect(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body.modelPath?.includes('efficientpose')) instance.models.efficientpose = efficientpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body.modelPath?.includes('movenet')) instance.models.movenet = movenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body.modelPath?.includes('posenet')) instance.models.posenet = posenet.load(instance.config);\n if (instance.config.face.enabled && !instance.models.facedetect) instance.models.facedetect = blazeface.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.antispoof?.enabled && !instance.models.antispoof) instance.models.antispoof = antispoof.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.liveness?.enabled && !instance.models.liveness) instance.models.liveness = liveness.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description?.enabled && !instance.models.faceres) instance.models.faceres = faceres.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion?.enabled && !instance.models.emotion) instance.models.emotion = emotion.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.iris?.enabled && !instance.config.face.attention?.enabled && !instance.models.faceiris) instance.models.faceiris = iris.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.mesh?.enabled && (!instance.models.facemesh)) instance.models.facemesh = facemesh.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['gear']?.enabled && !instance.models.gear) instance.models.gear = gear.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetage) instance.models.ssrnetage = ssrnetAge.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetgender) instance.models.ssrnetgender = ssrnetGender.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['mobilefacenet']?.enabled && !instance.models.mobilefacenet) instance.models.mobilefacenet = mobilefacenet.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['insightface']?.enabled && !instance.models.insightface) instance.models.insightface = insightface.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handtrack && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handtrack = handtrack.loadDetect(instance.config);\n if (instance.config.hand.enabled && instance.config.hand.landmarks && !instance.models.handskeleton && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handskeleton = handtrack.loadSkeleton(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object.modelPath?.includes('centernet')) instance.models.centernet = centernet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object.modelPath?.includes('nanodet')) instance.models.nanodet = nanodet.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = segmentation.load(instance.config);\n\n // models are loaded in parallel asynchronously so lets wait until they are actually loaded\n for await (const model of Object.keys(instance.models)) {\n if (instance.models[model as keyof Models] && typeof instance.models[model as keyof Models] !== 'undefined') {\n instance.models[model as keyof Models] = await instance.models[model as keyof Models];\n }\n }\n}\n\nlet instance: Human;\nexport interface KernelOps { name: string, url: string, missing: string[], ops: string[] }\n\nexport function validateModel(newInstance: Human | null, model: GraphModel | null, name: string): KernelOps | null {\n if (newInstance) instance = newInstance;\n if (!model) return null;\n if (!instance) log('instance not registred');\n if (!instance.config.validateModels) return null;\n const simpleOps = ['const', 'placeholder', 'noop', 'pad', 'squeeze', 'add', 'sub', 'mul', 'div'];\n const ignoreOps = ['biasadd', 'fusedbatchnormv3', 'matmul'];\n const ops: string[] = [];\n const missing: string[] = [];\n interface Op { name: string, category: string, op: string }\n const url = model['modelUrl'] as string;\n const executor = model['executor'];\n if (executor?.graph?.nodes) {\n for (const kernel of Object.values(executor.graph.nodes)) {\n const op = (kernel as Op).op.toLowerCase();\n if (!ops.includes(op)) ops.push(op);\n }\n } else {\n if (!executor && instance.config.debug) {\n log('model not loaded', name);\n }\n }\n for (const op of ops) {\n if (!simpleOps.includes(op) // exclude simple ops\n && !ignoreOps.includes(op) // exclude specific ops\n && !instance.env.kernels.includes(op) // check actual kernel ops\n && !instance.env.kernels.includes(op.replace('_', '')) // check variation without _\n && !instance.env.kernels.includes(op.replace('native', '')) // check standard variation\n && !instance.env.kernels.includes(op.replace('v2', ''))) { // check non-versioned variation\n missing.push(op);\n }\n }\n if (instance.config.debug && missing.length > 0) log('model validation failed:', name, missing);\n return missing.length > 0 ? { name, missing, ops, url } : null;\n}\n\nexport function validate(newInstance: Human): { name: string, missing: string[] }[] {\n instance = newInstance;\n const missing: KernelOps[] = [];\n for (const defined of Object.keys(instance.models)) {\n const model: GraphModel | null = instance.models[defined as keyof Models] as GraphModel | null;\n if (!model) continue;\n const res = validateModel(instance, model, defined);\n if (res) missing.push(res);\n }\n return missing;\n}\n", "/**\n * GEAR [gender/emotion/age/race] model implementation\n *\n * Based on: [**GEAR Predictor**](https://github.com/Udolf15/GEAR-Predictor)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Gender, Race } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nexport interface GearType { age: number, gender: Gender, genderScore: number, race: { score: number, race: Race }[] }\nlet model: GraphModel | null;\nconst last: GearType[] = [];\nconst raceNames = ['white', 'black', 'asian', 'indian', 'other'];\nconst ageWeights = [15, 23, 28, 35.5, 45.5, 55.5, 65];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.gear?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n const skipFrame = skipped < (config.face.gear?.skipFrames || 0);\n const skipTime = (config.face.gear?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n // t.resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape[2], model?.inputs[0].shape[1]], false);\n const box = [[0.0, 0.10, 0.90, 0.90]]; // empyrical values for top, left, bottom, right\n t.resize = tf.image.cropAndResize(image, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const obj: GearType = { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n if (config.face.gear?.enabled) [t.age, t.gender, t.race] = model.execute(t.resize, ['age_output', 'gender_output', 'race_output']) as Tensor[];\n const gender = await t.gender.data();\n obj.gender = gender[0] > gender[1] ? 'male' : 'female';\n obj.genderScore = Math.round(100 * (gender[0] > gender[1] ? gender[0] : gender[1])) / 100;\n const race = await t.race.data();\n for (let i = 0; i < race.length; i++) {\n if (race[i] > (config.face.gear?.minConfidence || 0.2)) obj.race.push({ score: Math.round(100 * race[i]) / 100, race: raceNames[i] as Race });\n }\n obj.race.sort((a, b) => b.score - a.score);\n // {0: 'Below20', 1: '21-25', 2: '26-30', 3: '31-40',4: '41-50', 5: '51-60', 6: 'Above60'}\n const ageDistribution = Array.from(await t.age.data());\n const ageSorted = ageDistribution.map((a, i) => [ageWeights[i], a]).sort((a, b) => b[1] - a[1]);\n let age = ageSorted[0][0]; // pick best starting point\n for (let i = 1; i < ageSorted.length; i++) age += ageSorted[i][1] * (ageSorted[i][0] - age); // adjust with each other choice by weight\n obj.age = Math.round(10 * age) / 10;\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from './types';\n\nexport const constants: Record = {\n tf255: 255,\n tf1: 1,\n tf2: 2,\n tf05: 0.5,\n tf127: 127.5,\n rgb: [0.2989, 0.5870, 0.1140],\n};\n\nexport function init() {\n constants.tf255 = tf.scalar(255, 'float32');\n constants.tf1 = tf.scalar(1, 'float32');\n constants.tf2 = tf.scalar(2, 'float32');\n constants.tf05 = tf.scalar(0.5, 'float32');\n constants.tf127 = tf.scalar(127.5, 'float32');\n constants.rgb = tf.tensor1d([0.2989, 0.5870, 0.1140], 'float32'); // factors for red/green/blue colors when converting to grayscale\n}\n", "/**\n * Age model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\n\nlet model: GraphModel | null;\nconst last: { age: number }[] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet'].modelPathAge);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ age: number }> {\n if (!model) return { age: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs || !model.inputs[0] || !model.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.mul(t.resize, constants.tf255);\n const obj = { age: 0 };\n if (config.face['ssrnet']?.enabled) t.age = model.execute(t.enhance) as Tensor;\n if (t.age) {\n const data = await t.age.data();\n obj.age = Math.trunc(10 * data[0]) / 10;\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Gender model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Gender } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: { gender: Gender, genderScore: number }[] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet']?.modelPathGender);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count): Promise<{ gender: Gender, genderScore: number }> {\n if (!model) return { gender: 'unknown', genderScore: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.gender && (last[idx]?.genderScore > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.tidy(() => {\n const [red, green, blue] = tf.split(t.resize, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const normalize = tf.mul(tf.sub(grayscale, constants.tf05), 2); // range grayscale:-1..1\n return normalize;\n });\n const obj: { gender: Gender, genderScore: number } = { gender: 'unknown', genderScore: 0 };\n if (config.face['ssrnet']?.enabled) t.gender = model.execute(t.enhance) as Tensor;\n const data = await t.gender.data();\n obj.gender = data[0] > data[1] ? 'female' : 'male'; // returns two values 0..1, bigger one is prediction\n obj.genderScore = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: number[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.antispoof?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model || !model?.['executor']) return 0;\n const skipTime = (config.face.antispoof?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.antispoof?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nexport const meshAnnotations: Record = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n // lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291], // 11\n // lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291], // 10\n // lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308], // 11\n // lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308], // 11\n lipsUpperOuter: [185, 40, 39, 37, 0, 267, 269, 270, 409],\n lipsLowerOuter: [61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [191, 80, 81, 82, 13, 312, 311, 310, 415],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n lipsLowerSemiOuter: [76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306],\n lipsUpperSemiOuter: [184, 74, 73, 72, 11, 302, 303, 304, 408],\n lipsLowerSemiInner: [62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292],\n lipsUpperSemiInner: [183, 42, 41, 38, 12, 268, 271, 272, 407],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173], // 7\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133], // 9\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190], // 7\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243], // 9\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189], // 7\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244], // 9\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245], // 9\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193], // 8\n rightEyebrowLower: [35, 124, 46, 53, 52, 65], // 6\n rightEyeIris: [473, 474, 475, 476, 477], // 5\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const meshLandmarks: Record = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, meshAnnotations.midwayBetweenEyes[0]],\n};\n\nexport const blazeFaceLandmarks: Record = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nexport const irisIndices: { key: string, indices: number[] }[] = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] }, // 7 x 3d\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] }, // 7 x 3d\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] }, // 7 x 3d\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] }, // 7 x 3d\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] }, // 9 x 3d\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] }, // 9 x 3d\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] }, // 9 x 3d\n { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] }, // 8 x 3d\n { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] }, // 6 x 3d\n];\n\nexport const UV468: [number, number][] = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468: number[] = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68: number[] = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33: number[] = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7: number[] = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68: number[] = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33: number[] = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7: number[] = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n\n// https://github.com/tensorflow/tfjs-models/blob/master/face-landmarks-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = [number, number][];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const pairsLips: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nexport const pairsLeftEye: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nexport const pairsLeftEyebrow: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nexport const pairsLeftIris: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nexport const pairsRightEye: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nexport const pairsRightEyebrow: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nexport const pairsRightIris: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nexport const pairsFaceContour: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389],\n [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397],\n [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172],\n [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162],\n [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const contourKeypoints = {\n lips: connectionsToIndices(pairsLips),\n leftEye: connectionsToIndices(pairsLeftEye),\n leftEyebrow: connectionsToIndices(pairsLeftEyebrow),\n leftIris: connectionsToIndices(pairsLeftIris),\n rightEye: connectionsToIndices(pairsRightEye),\n rightEyebrow: connectionsToIndices(pairsRightEyebrow),\n rightIris: connectionsToIndices(pairsRightIris),\n faceOval: connectionsToIndices(pairsFaceContour),\n};\n\nexport const pairsFaceMesh: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11],\n [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72],\n [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175],\n [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73],\n [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74],\n [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40],\n [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76],\n [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56],\n [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21],\n [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144],\n [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91],\n [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85],\n [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193],\n [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247],\n [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117],\n [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98],\n [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209],\n [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47],\n [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67],\n [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230],\n [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46],\n [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46],\n [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236],\n [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154],\n [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57],\n [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28],\n [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113],\n [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62],\n [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64],\n [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41],\n [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170],\n [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122],\n [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89],\n [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63],\n [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14],\n [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100],\n [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88],\n [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215],\n [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43],\n [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81],\n [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229],\n [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107],\n [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129],\n [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117],\n [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3],\n [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220],\n [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71],\n [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188],\n [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164],\n [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38],\n [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206],\n [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165],\n [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214],\n [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171],\n [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84],\n [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201],\n [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57],\n [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214],\n [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44],\n [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64],\n [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2],\n [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24],\n [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26],\n [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189],\n [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29],\n [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247],\n [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147],\n [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187],\n [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114],\n [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217],\n [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110],\n [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356],\n [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357],\n [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333],\n [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9],\n [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418],\n [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450],\n [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313],\n [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335],\n [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423],\n [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307],\n [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421],\n [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426],\n [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322],\n [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456],\n [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417],\n [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355],\n [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382],\n [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443],\n [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431],\n [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446],\n [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458],\n [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372],\n [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274],\n [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269],\n [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266],\n [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265],\n [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424],\n [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366],\n [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423],\n [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432],\n [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394],\n [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352],\n [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295],\n [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323],\n [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358],\n [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374],\n [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6],\n [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344],\n [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195],\n [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283],\n [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282],\n [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338],\n [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292],\n [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442],\n [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441],\n [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300],\n [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263],\n [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436],\n [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370],\n [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293],\n [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330],\n [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440],\n [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459],\n [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354],\n [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315],\n [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366],\n [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291],\n [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264],\n [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352],\n [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433],\n [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462],\n [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255],\n [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252],\n [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441],\n [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257],\n [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459],\n [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290],\n [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341],\n [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357],\n [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420],\n [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372],\n [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133],\n [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33],\n [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263],\n [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466],\n [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72],\n [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73],\n [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152],\n [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74],\n [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184],\n [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185],\n [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77],\n [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190],\n [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54],\n [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145],\n [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181],\n [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16],\n [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245],\n [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30],\n [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111],\n [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240],\n [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198],\n [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114],\n [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109],\n [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231],\n [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124],\n [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70],\n [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3],\n [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26],\n [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43],\n [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56],\n [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124],\n [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96],\n [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235],\n [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42],\n [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140],\n [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193],\n [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179],\n [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68],\n [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15],\n [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120],\n [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89],\n [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138],\n [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57],\n [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41],\n [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118],\n [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66],\n [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142],\n [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118],\n [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196],\n [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156],\n [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122],\n [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164],\n [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12],\n [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31],\n [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98],\n [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237],\n [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179],\n [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181],\n [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184],\n [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186],\n [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218],\n [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45],\n [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235],\n [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97],\n [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230],\n [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232],\n [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222],\n [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224],\n [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213],\n [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192],\n [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188],\n [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174],\n [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25],\n [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264],\n [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350],\n [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299],\n [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151],\n [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424],\n [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449],\n [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18],\n [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434],\n [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301],\n [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280],\n [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335],\n [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396],\n [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413],\n [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168],\n [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417],\n [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381],\n [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365],\n [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395],\n [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335],\n [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250],\n [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292],\n [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354],\n [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426],\n [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371],\n [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290],\n [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422],\n [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422],\n [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358],\n [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331],\n [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395],\n [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296],\n [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285],\n [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329],\n [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331],\n [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8],\n [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351],\n [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397],\n [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248],\n [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175],\n [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295],\n [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356],\n [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308],\n [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265],\n [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285],\n [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457],\n [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394],\n [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410],\n [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268],\n [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298],\n [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420],\n [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344],\n [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274],\n [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316],\n [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323],\n [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306],\n [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372],\n [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366],\n [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435],\n [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328],\n [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359],\n [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253],\n [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286],\n [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258],\n [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309],\n [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305],\n [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453],\n [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343],\n [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360],\n [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265],\n [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './facemeshcoords';\nimport { constants } from '../tfjs/constants';\nimport type { Box, Point } from '../result';\nimport { env } from '../util/env';\n\nexport const createBox = (startEndTensor) => ({ startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]), endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]) });\n\nexport const disposeBox = (t) => tf.dispose([t.startPoint, t.endPoint]);\n\nexport const getBoxSize = (box): [number, number] => [Math.abs(box.endPoint[0] - box.startPoint[0]), Math.abs(box.endPoint[1] - box.startPoint[1])];\n\nexport const getBoxCenter = (box): [number, number, number] => [box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2, box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2, 1];\n\nexport const clampBox = (box, input): Box => (box ? [\n Math.trunc(Math.max(0, box.startPoint[0])),\n Math.trunc(Math.max(0, box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), box.endPoint[0]) - Math.max(0, box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), box.endPoint[1]) - Math.max(0, box.startPoint[1])),\n] : [0, 0, 0, 0]);\n\nexport const getRawBox = (box, input): Box => (box ? [\n box.startPoint[0] / (input.shape[2] || 0),\n box.startPoint[1] / (input.shape[1] || 0),\n (box.endPoint[0] - box.startPoint[0]) / (input.shape[2] || 0),\n (box.endPoint[1] - box.startPoint[1]) / (input.shape[1] || 0),\n] : [0, 0, 0, 0]);\n\nexport const scaleBoxCoordinates = (box, factor) => {\n const startPoint: Point = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint: Point = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const cutAndResize = (box, image, cropSize) => {\n const h = image.shape[1];\n const w = image.shape[2];\n const cutBox = [box.startPoint[1] / h, box.startPoint[0] / w, box.endPoint[1] / h, box.endPoint[0] / w];\n const crop = tf.image.cropAndResize(image, [cutBox], [0], cropSize);\n const norm = tf.div(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n};\n\nexport const enlargeBox = (box, factor) => {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize: [number, number] = [factor * size[0] / 2, factor * size[1] / 2];\n return { startPoint: [center[0] - halfSize[0], center[1] - halfSize[1]] as Point, endPoint: [center[0] + halfSize[0], center[1] + halfSize[1]] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const squarifyBox = (box) => {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize = Math.max(...size) / 2;\n return { startPoint: [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)] as Point, endPoint: [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const calculateLandmarksBoundingBox = (landmarks) => {\n const x = landmarks.map((d) => d[0]);\n const y = landmarks.map((d) => d[1]);\n return { startPoint: [Math.min(...x), Math.min(...y)] as Point, endPoint: [Math.max(...x), Math.max(...y)] as Point, landmarks };\n};\n\nexport const fixedRotationMatrix = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n\nexport const normalizeRadians = (angle: number) => angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n\nexport const computeRotation = (point1, point2) => normalizeRadians(Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]));\n\nexport const radToDegrees = (rad) => rad * 180 / Math.PI;\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport const dot = (v1: number[], v2: number[]) => {\n let product = 0;\n for (let i = 0; i < v1.length; i++) product += v1[i] * v2[i];\n return product;\n};\n\nexport const getColumnFrom2DArr = (arr, columnIndex) => {\n const column: number[] = [];\n for (let i = 0; i < arr.length; i++) column.push(arr[i][columnIndex]);\n return column;\n};\n\nexport const multiplyTransformMatrices = (mat1, mat2) => {\n const product: number[][] = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n return product;\n};\n\nexport const buildRotationMatrix = (rotation, center) => {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n};\n\nexport const invertTransformMatrix = (matrix) => {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [-dot(rotationComponent[0], translationComponent), -dot(rotationComponent[1], translationComponent)];\n return [rotationComponent[0].concat(invertedTranslation[0]), rotationComponent[1].concat(invertedTranslation[1]), [0, 0, 1]];\n};\n\nexport const rotatePoint = (homogeneousCoordinate, rotationMatrix) => [dot(homogeneousCoordinate, rotationMatrix[0]), dot(homogeneousCoordinate, rotationMatrix[1])];\n\nexport const xyDistanceBetweenPoints = (a, b) => Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n\nexport function generateAnchors(inputSize: number) {\n const spec = inputSize === 192\n ? { strides: [4], anchors: [1] } // facemesh-detector\n : { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] }; // blazeface\n const anchors: [number, number][] = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) anchors.push([anchorX, anchorY]);\n }\n }\n }\n return anchors;\n}\n\nexport function transformRawCoords(coordsRaw, box, angle, rotationMatrix, inputSize) {\n const boxSize = getBoxSize(box);\n const coordsScaled = coordsRaw.map((coord) => ([ // scaled around zero-point\n (boxSize[0] / inputSize) * (coord[0] - (inputSize / 2)),\n (boxSize[1] / inputSize) * (coord[1] - (inputSize / 2)),\n (coord[2] || 0),\n ]));\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n const coordsRotationMatrix = largeAngle ? buildRotationMatrix(angle, [0, 0]) : fixedRotationMatrix;\n const coordsRotated = largeAngle ? coordsScaled.map((coord) => ([...rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = largeAngle ? invertTransformMatrix(rotationMatrix) : fixedRotationMatrix;\n const boxCenter = getBoxCenter(box);\n const offsets = [dot(boxCenter, inverseRotationMatrix[0]), dot(boxCenter, inverseRotationMatrix[1])];\n return coordsRotated.map((coord) => ([\n Math.trunc(coord[0] + offsets[0]),\n Math.trunc(coord[1] + offsets[1]),\n Math.trunc(coord[2] || 0),\n ]));\n}\n\nexport function correctFaceRotation(rotate, box, input, inputSize) {\n const symmetryLine = (box.landmarks.length >= coords.meshLandmarks.count)\n ? coords.meshLandmarks.symmetryLine\n : coords.blazeFaceLandmarks.symmetryLine;\n let angle = 0; // default\n let rotationMatrix = fixedRotationMatrix; // default\n let face; // default\n\n if (rotate && env.kernels.includes('rotatewithoffset')) {\n angle = computeRotation(box.landmarks[symmetryLine[0]], box.landmarks[symmetryLine[1]]);\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n if (largeAngle) { // perform rotation only if angle is sufficiently high\n const center: Point = getBoxCenter(box);\n const centerRaw: Point = [center[0] / input.shape[2], center[1] / input.shape[1]];\n const rotated = tf.image.rotateWithOffset(input, angle, 0, centerRaw);\n rotationMatrix = buildRotationMatrix(-angle, center);\n face = cutAndResize(box, rotated, [inputSize, inputSize]);\n tf.dispose(rotated);\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n return [angle, rotationMatrix, face];\n}\n\nexport const findFaceCenter = (mesh) => {\n const x = mesh.map((m) => m[0]);\n const y = mesh.map((m) => m[1]);\n // weighted center\n /*\n const sum = (arr: number[]) => arr.reduce((prev, curr) => prev + curr, 0);\n return [sum(x) / mesh.length, sum(y) / mesh.length];\n */\n // absolute center\n return [Math.min(...x) + (Math.max(...x) - Math.min(...x)) / 2, Math.min(...y) + (Math.max(...y) - Math.min(...y)) / 2];\n};\n\nexport const calculateFaceBox = (mesh, previousBox) => {\n const center = findFaceCenter(mesh);\n const boxSize = getBoxSize(previousBox);\n const calculatedBox = {\n startPoint: [center[0] - boxSize[0] / 2, center[1] - boxSize[1] / 2] as Point,\n endPoint: [center[0] + boxSize[0] / 2, center[1] + boxSize[1] / 2] as Point,\n };\n return calculatedBox;\n};\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './facemeshutil';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport type { Point } from '../result';\n\nconst keypointsCount = 6;\nconst faceBoxScaleFactor = 1.4;\nlet model: GraphModel | null;\nlet anchors: Tensor | null = null;\nlet inputSize = 0;\nlet inputSizeT: Tensor | null = null;\n\ninterface DetectBox { startPoint: Point, endPoint: Point, landmarks: Point[], confidence: number }\n\nexport const size = () => inputSize;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.detector?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model['executor'] && model.inputs[0].shape) ? model.inputs[0].shape[2] : 256;\n inputSizeT = tf.scalar(inputSize, 'int32') as Tensor;\n anchors = tf.tensor2d(util.generateAnchors(inputSize)) as Tensor;\n return model;\n}\n\nfunction decodeBoxes(boxOutputs: Tensor) {\n const t: Record = {};\n t.boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n t.centers = tf.add(t.boxStarts, anchors);\n t.boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n t.boxSizesNormalized = tf.div(t.boxSizes, inputSizeT);\n t.centersNormalized = tf.div(t.centers, inputSizeT);\n t.halfBoxSize = tf.div(t.boxSizesNormalized, constants.tf2);\n t.starts = tf.sub(t.centersNormalized, t.halfBoxSize);\n t.ends = tf.add(t.centersNormalized, t.halfBoxSize);\n t.startNormalized = tf.mul(t.starts, inputSizeT);\n t.endNormalized = tf.mul(t.ends, inputSizeT);\n const boxes = tf.concat2d([t.startNormalized, t.endNormalized], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n\nexport async function getBoxes(inputImage: Tensor, config: Config) {\n // sanity check on input\n if ((!inputImage) || (inputImage['isDisposedInternal']) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return [];\n const t: Record = {};\n t.resized = tf.image.resizeBilinear(inputImage, [inputSize, inputSize]);\n t.div = tf.div(t.resized, constants.tf127);\n t.normalized = tf.sub(t.div, constants.tf05);\n const res = model?.execute(t.normalized) as Tensor[];\n if (Array.isArray(res) && res.length > 2) { // pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n t.concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n t.concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n t.concat = tf.concat([t.concat512, t.concat384], 1);\n t.batch = tf.squeeze(t.concat, 0);\n } else if (Array.isArray(res)) { // new facemesh-detection tfhub model\n t.batch = tf.squeeze(res[0]);\n } else { // original blazeface tfhub model\n t.batch = tf.squeeze(res);\n }\n tf.dispose(res);\n t.boxes = decodeBoxes(t.batch);\n t.logits = tf.slice(t.batch, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.logits);\n t.scores = tf.squeeze(t.sigmoid);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0));\n const nms = await t.nms.array() as number[];\n const boxes: DetectBox[] = [];\n const scores = await t.scores.data();\n for (let i = 0; i < nms.length; i++) {\n const confidence = scores[nms[i]];\n if (confidence > (config.face.detector?.minConfidence || 0)) {\n const b: Record = {};\n b.bbox = tf.slice(t.boxes, [nms[i], 0], [1, -1]);\n b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]);\n b.squeeze = tf.squeeze(b.slice);\n b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]);\n const points = await b.bbox.data();\n const rawBox = {\n startPoint: [points[0], points[1]] as Point,\n endPoint: [points[2], points[3]] as Point,\n landmarks: (await b.landmarks.array()) as Point[],\n confidence,\n };\n const scaledBox = util.scaleBoxCoordinates(rawBox, [(inputImage.shape[2] || 0) / inputSize, (inputImage.shape[1] || 0) / inputSize]);\n const enlargedBox = util.enlargeBox(scaledBox, config.face['scale'] || faceBoxScaleFactor);\n const squaredBox = util.squarifyBox(enlargedBox);\n boxes.push(squaredBox);\n Object.keys(b).forEach((tensor) => tf.dispose(b[tensor]));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n", "/* eslint-disable no-multi-spaces */\n\nexport const kpt: string[] = [\n 'nose', // 0\n 'leftEyeInside', // 1\n 'leftEye', // 2\n 'leftEyeOutside', // 3\n 'rightEyeInside', // 4\n 'rightEye', // 5\n 'rightEyeOutside', // 6\n 'leftEar', // 7\n 'rightEar', // 8\n 'leftMouth', // 9\n 'rightMouth', // 10\n 'leftShoulder', // 11\n 'rightShoulder', // 12\n 'leftElbow', // 13\n 'rightElbow', // 14\n 'leftWrist', // 15\n 'rightWrist', // 16\n 'leftPinky', // 17\n 'rightPinky', // 18\n 'leftIndex', // 19\n 'rightIndex', // 20\n 'leftThumb', // 21\n 'rightThumb', // 22\n 'leftHip', // 23\n 'rightHip', // 24\n 'leftKnee', // 25\n 'rightKnee', // 26\n 'leftAnkle', // 27\n 'rightAnkle', // 28\n 'leftHeel', // 29\n 'rightHeel', // 30\n 'leftFoot', // 31\n 'rightFoot', // 32\n 'bodyCenter', // 33\n 'bodyTop', // 34\n 'leftPalm', // 35 // z-coord not ok\n 'leftHand', // 36 // similar to wrist but z-coord not ok\n 'rightPalm', // 37 // z-coord not ok\n 'rightHand', // 38 // similar to wrist but z-coord not ok\n];\n\nexport const connected: Record = {\n shoulders: ['leftShoulder', 'rightShoulder'],\n hips: ['rightHip', 'leftHip'],\n mouth: ['leftMouth', 'rightMouth'],\n leftLegUpper: ['leftHip', 'leftKnee'],\n leftLegLower: ['leftKnee', 'leftAnkle'],\n leftFoot: ['leftAnkle', 'leftHeel', 'leftFoot'],\n leftTorso: ['leftShoulder', 'leftHip'],\n leftArmUpper: ['leftShoulder', 'leftElbow'],\n leftArmLower: ['leftElbow', 'leftWrist'],\n leftHand: ['leftWrist', 'leftPalm'],\n leftHandPinky: ['leftPalm', 'leftPinky'],\n leftHandIndex: ['leftPalm', 'leftIndex'],\n leftHandThumb: ['leftPalm', 'leftThumb'],\n leftEyeOutline: ['leftEyeInside', 'leftEyeOutside'],\n rightLegUpper: ['rightHip', 'rightKnee'],\n rightLegLower: ['rightKnee', 'rightAnkle'],\n rightFoot: ['rightAnkle', 'rightHeel', 'rightFoot'],\n rightTorso: ['rightShoulder', 'rightHip'],\n rightArmUpper: ['rightShoulder', 'rightElbow'],\n rightArmLower: ['rightElbow', 'rightWrist'],\n rightHand: ['rightWrist', 'rightPalm'],\n rightHandPinky: ['rightPalm', 'rightPinky'],\n rightHandIndex: ['rightPalm', 'rightIndex'],\n rightHandThumb: ['rightPalm', 'rightThumb'],\n rightEyeOutline: ['rightEyeInside', 'rightEyeOutside'],\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\nimport type { Box } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nconst inputSize = 224;\nlet anchorTensor: { x, y };\nconst numLayers = 5;\nconst strides = [8, 16, 32, 32, 32];\n\nexport function createAnchors() {\n const anchors: { x: number, y: number }[] = [];\n let layerId = 0;\n while (layerId < numLayers) {\n let anchorCount = 0;\n let lastSameStrideLayer = layerId;\n while (lastSameStrideLayer < strides.length && strides[lastSameStrideLayer] === strides[layerId]) {\n anchorCount += 2;\n lastSameStrideLayer++;\n }\n const stride = strides[layerId];\n const featureMapHeight = Math.ceil(inputSize / stride);\n const featureMapWidth = Math.ceil(inputSize / stride);\n for (let y = 0; y < featureMapHeight; ++y) {\n for (let x = 0; x < featureMapWidth; ++x) {\n for (let anchorId = 0; anchorId < anchorCount; ++anchorId) {\n anchors.push({ x: (x + 0.5) / featureMapWidth, y: (y + 0.5) / featureMapHeight });\n }\n }\n }\n layerId = lastSameStrideLayer;\n }\n anchorTensor = { x: tf.tensor1d(anchors.map((a) => a.x)), y: tf.tensor1d(anchors.map((a) => a.y)) };\n}\n\nconst cropFactor = [5.0, 5.0];\nfunction decodeBoxes(boxesTensor, anchor): Tensor {\n return tf.tidy(() => {\n const split = tf.split(boxesTensor, 12, 1); // first 4 are box data [x,y,w,h] and 4 are keypoints data [x,y] for total of 12\n let xCenter = tf.squeeze(split[0]);\n let yCenter = tf.squeeze(split[1]);\n let width = tf.squeeze(split[2]);\n let height = tf.squeeze(split[3]);\n xCenter = tf.add(tf.div(xCenter, inputSize), anchor.x);\n yCenter = tf.add(tf.div(yCenter, inputSize), anchor.y);\n width = tf.mul(tf.div(width, inputSize), cropFactor[0]);\n height = tf.mul(tf.div(height, inputSize), cropFactor[1]);\n const xMin = tf.sub(xCenter, tf.div(width, 2));\n const yMin = tf.sub(yCenter, tf.div(height, 2));\n const boxes = tf.stack([xMin, yMin, width, height], 1);\n return boxes;\n });\n}\n\nexport async function decode(boxesTensor: Tensor, logitsTensor: Tensor, config: Config, outputSize: [number, number]): Promise {\n const t: Record = {};\n t.boxes = decodeBoxes(boxesTensor, anchorTensor);\n t.scores = tf.sigmoid(logitsTensor);\n t.argmax = tf.argMax(t.scores);\n const i = (await t.argmax.data())[0];\n const scores = await t.scores.data();\n const detected: { box: Box, boxRaw: Box, score: number }[] = [];\n const minScore = config.body?.['detector']?.minConfidence || 0;\n if (scores[i] >= minScore) {\n const boxes = await t.boxes.array();\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[1] * outputSize[1], boxRaw[2] * outputSize[0], boxRaw[3] * outputSize[1]];\n // console.log(box);\n detected.push({ box, boxRaw, score: scores[i] });\n }\n /*\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, 1, config.body.detector?.minConfidence || 0.1, config.body.detector?.iouThreshold || 0.1);\n const boxes = t.boxes.arraySync();\n const scores = t.scores.dataSync();\n const nms = t.nms.dataSync();\n const detected: Array = [];\n for (const i of Array.from(nms)) {\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[0] * outputSize[1], boxRaw[3] * outputSize[0], boxRaw[2] * outputSize[1]];\n detected.push({ box, boxRaw, score: scores[i] });\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return detected;\n}\n", "import type { Point, Box } from '../result';\n\nexport function calc(keypoints: Point[], outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const box: Box = [min[0], min[1], max[0] - min[0], max[1] - min[1]];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function square(keypoints: Point[], outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const center = [(min[0] + max[0]) / 2, (min[1] + max[1]) / 2]; // find center x and y coord of all fingers\n const dist = Math.max(center[0] - min[0], center[1] - min[1], -center[0] + max[0], -center[1] + max[1]); // largest distance from center in any direction\n const box: Box = [Math.trunc(center[0] - dist), Math.trunc(center[1] - dist), Math.trunc(2 * dist), Math.trunc(2 * dist)];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function scale(box: Box, scaleFact: number) {\n const dist = [box[2] * scaleFact, box[3] * scaleFact];\n const newBox: Box = [\n box[0] - (dist[0] - box[2]) / 2,\n box[1] - (dist[1] - box[3]) / 2,\n dist[0],\n dist[1],\n ];\n return newBox;\n}\n\nexport function crop(box: Box) { // [y1, x1, y2, x2] clamped to 0..1\n const yxBox: Box = [Math.max(0, box[1]), Math.max(0, box[0]), Math.min(1, box[3] + box[1]), Math.min(1, box[2] + box[0])];\n return yxBox;\n}\n", "/**\n * BlazePose model implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { log, now } from '../util/util';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, Box, Point, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport * as coords from './blazeposecoords';\nimport * as detect from './blazeposedetector';\nimport * as box from '../util/box';\n\nconst env = { initial: true };\n// const models: [GraphModel | null, GraphModel | null] = [null, null];\nconst models: { detector: GraphModel | null, landmarks: GraphModel | null } = { detector: null, landmarks: null };\nconst inputSize: { detector: [number, number], landmarks: [number, number] } = { detector: [224, 224], landmarks: [256, 256] };\nlet skipped = Number.MAX_SAFE_INTEGER;\nconst outputNodes: { detector: string[], landmarks: string[] } = {\n landmarks: ['ld_3d', 'activation_segmentation', 'activation_heatmap', 'world_3d', 'output_poseflag'],\n detector: [],\n};\n\nlet cache: BodyResult | null = null;\nlet cropBox: Box | undefined;\nlet padding: [number, number][] = [[0, 0], [0, 0], [0, 0], [0, 0]];\nlet lastTime = 0;\n\nconst sigmoid = (x) => (1 - (1 / (1 + Math.exp(x))));\n\nexport async function loadDetect(config: Config): Promise {\n if (env.initial) models.detector = null;\n if (!models.detector && config.body['detector'] && config.body['detector'].modelPath || '') {\n models.detector = await loadModel(config.body['detector'].modelPath);\n const inputs = models.detector?.['executor'] ? Object.values(models.detector.modelSignature['inputs']) : undefined;\n inputSize.detector[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.detector[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug && models.detector) log('cached model:', models.detector['modelUrl']);\n detect.createAnchors();\n return models.detector as GraphModel;\n}\n\nexport async function loadPose(config: Config): Promise {\n if (env.initial) models.landmarks = null;\n if (!models.landmarks) {\n models.landmarks = await loadModel(config.body.modelPath);\n const inputs = models.landmarks?.['executor'] ? Object.values(models.landmarks.modelSignature['inputs']) : undefined;\n inputSize.landmarks[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.landmarks[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models.landmarks['modelUrl']);\n return models.landmarks;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models.detector) await loadDetect(config);\n if (!models.landmarks) await loadPose(config);\n return [models.detector, models.landmarks];\n}\n\nfunction prepareImage(input: Tensor, size: number): Tensor {\n const t: Record = {};\n if (!input?.shape?.[1] || !input?.shape?.[2]) return input;\n let final: Tensor;\n if (cropBox) {\n t.cropped = tf.image.cropAndResize(input, [cropBox], [0], [input.shape[1], input.shape[2]]); // if we have cached box use it to crop input\n }\n if (input.shape[1] !== input.shape[2]) { // only pad if width different than height\n const height: [number, number] = [\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n ];\n const width: [number, number] = [\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n ];\n padding = [\n [0, 0], // dont touch batch\n height, // height before&after\n width, // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(t.cropped || input, padding); // use cropped box if it exists\n t.resize = tf.image.resizeBilinear(t.pad, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else if (input.shape[1] !== size) { // if input needs resizing\n t.resize = tf.image.resizeBilinear(t.cropped || input, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else { // if input is already in a correct resolution just normalize it\n final = tf.div(t.cropped || input, constants.tf255);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nfunction rescaleKeypoints(keypoints: BodyKeypoint[], outputSize: [number, number]): BodyKeypoint[] {\n for (const kpt of keypoints) { // first rescale due to padding\n kpt.position = [\n Math.trunc(kpt.position[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0] - padding[2][0]),\n Math.trunc(kpt.position[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1] - padding[1][0]),\n kpt.position[2] as number,\n ];\n kpt.positionRaw = [kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1], 2 * (kpt.position[2] as number) / (outputSize[0] + outputSize[1])];\n }\n if (cropBox) { // second rescale due to cropping\n for (const kpt of keypoints) {\n kpt.positionRaw = [\n kpt.positionRaw[0] + cropBox[1], // correct offset due to crop\n kpt.positionRaw[1] + cropBox[0], // correct offset due to crop\n kpt.positionRaw[2] as number,\n ];\n kpt.position = [\n Math.trunc(kpt.positionRaw[0] * outputSize[0]),\n Math.trunc(kpt.positionRaw[1] * outputSize[1]),\n kpt.positionRaw[2] as number,\n ];\n }\n }\n return keypoints;\n}\n\nfunction fixKeypoints(keypoints: BodyKeypoint[]) {\n // palm z-coord is incorrect around near-zero so we approximate it\n const leftPalm = keypoints.find((k) => k.part === 'leftPalm') as BodyKeypoint;\n const leftWrist = keypoints.find((k) => k.part === 'leftWrist') as BodyKeypoint;\n const leftIndex = keypoints.find((k) => k.part === 'leftIndex') as BodyKeypoint;\n leftPalm.position[2] = ((leftWrist.position[2] || 0) + (leftIndex.position[2] || 0)) / 2;\n const rightPalm = keypoints.find((k) => k.part === 'rightPalm') as BodyKeypoint;\n const rightWrist = keypoints.find((k) => k.part === 'rightWrist') as BodyKeypoint;\n const rightIndex = keypoints.find((k) => k.part === 'rightIndex') as BodyKeypoint;\n rightPalm.position[2] = ((rightWrist.position[2] || 0) + (rightIndex.position[2] || 0)) / 2;\n}\n\nasync function detectLandmarks(input: Tensor, config: Config, outputSize: [number, number]): Promise {\n /**\n * t.ld: 39 keypoints [x,y,z,score,presence] normalized to input size\n * t.segmentation:\n * t.heatmap:\n * t.world: 39 keypoints [x,y,z] normalized to -1..1\n * t.poseflag: body score\n */\n if (!models.landmarks?.['executor']) return null;\n const t: Record = {};\n [t.ld/* 1,195(39*5) */, t.segmentation/* 1,256,256,1 */, t.heatmap/* 1,64,64,39 */, t.world/* 1,117(39*3) */, t.poseflag/* 1,1 */] = models.landmarks?.execute(input, outputNodes.landmarks) as Tensor[]; // run model\n const poseScore = (await t.poseflag.data())[0];\n const points = await t.ld.data();\n const distances = await t.world.data();\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); // dont need tensors after this\n const keypointsRelative: BodyKeypoint[] = [];\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n const score = sigmoid(points[depth * i + 3]);\n const presence = sigmoid(points[depth * i + 4]);\n const adjScore = Math.trunc(100 * score * presence * poseScore) / 100;\n const positionRaw: Point = [points[depth * i + 0] / inputSize.landmarks[0], points[depth * i + 1] / inputSize.landmarks[1], points[depth * i + 2] + 0];\n const position: Point = [Math.trunc(outputSize[0] * positionRaw[0]), Math.trunc(outputSize[1] * positionRaw[1]), positionRaw[2] as number];\n const distance: Point = [distances[depth * i + 0], distances[depth * i + 1], distances[depth * i + 2] + 0];\n keypointsRelative.push({ part: coords.kpt[i] as BodyLandmark, positionRaw, position, distance, score: adjScore });\n }\n if (poseScore < (config.body.minConfidence || 0)) return null;\n fixKeypoints(keypointsRelative);\n const keypoints: BodyKeypoint[] = rescaleKeypoints(keypointsRelative, outputSize); // keypoints were relative to input image which is padded\n const kpts = keypoints.map((k) => k.position);\n const boxes = box.calc(kpts, [outputSize[0], outputSize[1]]); // now find boxes based on rescaled keypoints\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body = { id: 0, score: Math.trunc(100 * poseScore) / 100, box: boxes.box, boxRaw: boxes.boxRaw, keypoints, annotations };\n return body;\n}\n\n/*\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nfunction rescaleBoxes(boxes: Array, outputSize: [number, number]): Array {\n for (const b of boxes) {\n b.box = [\n Math.trunc(b.box[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n Math.trunc(b.box[2] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[3] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n ];\n b.boxRaw = [b.box[0] / outputSize[0], b.box[1] / outputSize[1], b.box[2] / outputSize[0], b.box[3] / outputSize[1]];\n }\n return boxes;\n}\n\nasync function detectBoxes(input: Tensor, config: Config, outputSize: [number, number]) {\n const t: Record = {};\n t.res = models.detector?.execute(input, ['Identity']) as Tensor; //\n t.logitsRaw = tf.slice(t.res, [0, 0, 0], [1, -1, 1]);\n t.boxesRaw = tf.slice(t.res, [0, 0, 1], [1, -1, -1]);\n t.logits = tf.squeeze(t.logitsRaw);\n t.boxes = tf.squeeze(t.boxesRaw);\n const boxes = await detect.decode(t.boxes, t.logits, config, outputSize);\n rescaleBoxes(boxes, outputSize);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n*/\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const outputSize: [number, number] = [input.shape[2] || 0, input.shape[1] || 0];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && cache !== null) {\n skipped++;\n } else {\n const t: Record = {};\n /*\n if (config.body['detector'] && config.body['detector']['enabled']) {\n t.detector = await prepareImage(input, 224);\n const boxes = await detectBoxes(t.detector, config, outputSize);\n }\n */\n t.landmarks = prepareImage(input, 256); // padded and resized\n cache = await detectLandmarks(t.landmarks, config, outputSize);\n /*\n cropBox = [0, 0, 1, 1]; // reset crop coordinates\n if (cache?.boxRaw && config.skipAllowed) {\n const cx = (2.0 * cache.boxRaw[0] + cache.boxRaw[2]) / 2;\n const cy = (2.0 * cache.boxRaw[1] + cache.boxRaw[3]) / 2;\n let size = cache.boxRaw[2] > cache.boxRaw[3] ? cache.boxRaw[2] : cache.boxRaw[3];\n size = (size * 1.0) / 2; // enlarge and half it\n if (cx > 0.1 && cx < 0.9 && cy > 0.1 && cy < 0.9 && size > 0.1) { // only update if box is sane\n const y = 0; // cy - size;\n const x = cx - size;\n cropBox = [y, x, y + 1, x + 1]; // [y0,x0,y1,x1] used for cropping but width/height are not yet implemented so we only reposition image to center of body\n }\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n lastTime = now();\n skipped = 0;\n }\n return cache ? [cache] : [];\n}\n", "/**\n * CoCo Labels used by object detection implementations\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * CenterNet object detection model implementation\n *\n * Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n // fakeOps(['floormod'], config);\n model = await loadModel(config.object.modelPath);\n const inputs = model?.['executor'] ? Object.values(model.modelSignature['inputs']) : undefined;\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor | null, outputShape: [number, number], config: Config) {\n if (!res) return [];\n const t: Record = {};\n const results: ObjectResult[] = [];\n const detections = await res.array() as number[][][];\n t.squeeze = tf.squeeze(res);\n const arr = tf.split(t.squeeze, 6, 1) as Tensor[]; // x1, y1, x2, y2, score, class\n t.stack = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n t.boxes = tf.squeeze(t.stack);\n t.scores = tf.squeeze(arr[4]);\n t.classes = tf.squeeze(arr[5]);\n tf.dispose([res, ...arr]);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, config.object.maxDetected, config.object.iouThreshold, (config.object.minConfidence || 0));\n const nms = await t.nms.data();\n let i = 0;\n for (const id of Array.from(nms)) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n if (Number.isNaN(classVal)) continue;\n const label = labels[classVal].label as ObjectType;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw: Box = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ];\n const box: Box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2] || 0, input.shape[1] || 0] as [number, number];\n const resize = tf.image.resizeBilinear(input, [inputSize, inputSize]);\n const objectT = config.object.enabled ? model?.execute(resize, ['tower_0/detections']) as Tensor : null;\n lastTime = now();\n tf.dispose(resize);\n\n const obj = await process(objectT, outputSize, config);\n last = obj;\n\n resolve(obj);\n });\n}\n", "export const kpt: string[] = [\n 'head',\n 'neck',\n 'rightShoulder',\n 'rightElbow',\n 'rightWrist',\n 'chest',\n 'leftShoulder',\n 'leftElbow',\n 'leftWrist',\n 'bodyCenter',\n 'rightHip',\n 'rightKnee',\n 'rightAnkle',\n 'leftHip',\n 'leftKnee',\n 'leftAnkle',\n];\n\nexport const connected: Record = {\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "/**\n * EfficientPose model implementation\n *\n * Based on: [**EfficientPose**](https://github.com/daniegr/EfficientPose)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as coords from './efficientposecoords';\nimport { constants } from '../tfjs/constants';\nimport type { BodyResult, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet lastTime = 0;\nconst cache: BodyResult = { id: 0, keypoints: [], box: [0, 0, 0, 0], boxRaw: [0, 0, 0, 0], score: 0, annotations: {} as Record };\n\n// const keypoints: Array = [];\n// let box: Box = [0, 0, 0, 0];\n// let boxRaw: Box = [0, 0, 0, 0];\n// let score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nasync function max2d(inputs, minScore): Promise<[number, number, number]> {\n const [width, height] = inputs.shape;\n const reshaped = tf.reshape(inputs, [height * width]); // combine all data\n const max = tf.max(reshaped, 0);\n const newScore: number = (await max.data())[0]; // get highest score\n if (newScore > minScore) { // skip coordinate calculation is score is too low\n const coordinates = tf.argMax(reshaped, 0);\n const mod = tf.mod(coordinates, width);\n const x = (await mod.data())[0];\n const div = tf.div(coordinates, width);\n const y: number = (await div.data())[0];\n tf.dispose([reshaped, max, coordinates, mod, div]);\n return [x, y, newScore];\n }\n tf.dispose([reshaped, max]);\n return [0, 0, newScore];\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && Object.keys(cache.keypoints).length > 0) {\n skipped++;\n return [cache];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model?.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, constants.tf2);\n const norm = tf.sub(enhance, constants.tf1);\n return norm;\n });\n let resT;\n if (config.body.enabled) resT = model?.execute(tensor);\n lastTime = now();\n tf.dispose(tensor);\n\n if (resT) {\n cache.keypoints.length = 0;\n const squeeze = tf.squeeze(resT);\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = tf.unstack(squeeze, 2);\n tf.dispose(squeeze);\n\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = await max2d(stack[id], config.body.minConfidence);\n if (partScore > (config.body.minConfidence || 0)) {\n cache.keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n cache.score = cache.keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = cache.keypoints.map((a) => a.position[0]);\n const y = cache.keypoints.map((a) => a.position[1]);\n cache.box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = cache.keypoints.map((a) => a.positionRaw[0]);\n const yRaw = cache.keypoints.map((a) => a.positionRaw[1]);\n cache.boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = cache.keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = cache.keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n cache.annotations[name] = pt;\n }\n resolve([cache]);\n });\n}\n", "/**\n * Emotion model implementation\n *\n * [**Oarriaga**](https://github.com/oarriaga/face_classification)\n */\n\nimport type { Emotion } from '../result';\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model: GraphModel | null;\nconst last: { score: number, emotion: Emotion }[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.emotion?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ score: number, emotion: Emotion }[]> {\n if (!model) return [];\n const skipFrame = skipped < (config.face.emotion?.skipFrames || 0);\n const skipTime = (config.face.emotion?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj: { score: number, emotion: Emotion }[] = [];\n if (config.face.emotion?.enabled) {\n const t: Record = {};\n const inputSize = model?.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n t.resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n // const box = [[0.15, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const resize = tf.image.cropAndResize(image, box, [0], [inputSize, inputSize]);\n // [t.red, t.green, t.blue] = tf.split(t.resize, 3, 3);\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n // t.redNorm = tf.mul(t.red, rgb[0]);\n // t.greenNorm = tf.mul(t.green, rgb[1]);\n // t.blueNorm = tf.mul(t.blue, rgb[2]);\n // t.grayscale = tf.addN([t.redNorm, t.greenNorm, t.blueNorm]);\n t.channels = tf.mul(t.resize, constants.rgb);\n t.grayscale = tf.sum(t.channels, 3, true);\n t.grayscaleSub = tf.sub(t.grayscale, constants.tf05);\n t.grayscaleMul = tf.mul(t.grayscaleSub, constants.tf2);\n t.emotion = model?.execute(t.grayscaleMul) as Tensor; // result is already in range 0..1, no need for additional activation\n lastTime = now();\n const data = await t.emotion.data();\n for (let i = 0; i < data.length; i++) {\n if (data[i] > (config.face.emotion.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] as Emotion });\n }\n obj.sort((a, b) => b.score - a.score);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * MobileFaceNet model implementation\n *\n * Based on: [**BecauseofAI MobileFace**](https://github.com/becauseofAI/MobileFace)\n *\n * Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: number[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['mobilefacenet']?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n/*\n// convert to black&white to avoid colorization impact\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\nconst [red, green, blue] = tf.split(crop, 3, 3);\nconst redNorm = tf.mul(red, rgb[0]);\nconst greenNorm = tf.mul(green, rgb[1]);\nconst blueNorm = tf.mul(blue, rgb[2]);\nconst grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\nconst merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n\n// optional increase image contrast\n// or do it per-channel so mean is done on each channel\n// or do it based on histogram\nconst mean = merge.mean();\nconst factor = 5;\nconst contrast = merge.sub(mean).mul(factor).add(mean);\n*/\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model?.['executor']) return [];\n const skipFrame = skipped < (config.face['mobilefacenet']?.skipFrames || 0);\n const skipTime = (config.face['mobilefacenet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: number[] = [];\n if (config.face['mobilefacenet']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model.execute(t.crop) as Tensor;\n /*\n // optional normalize outputs with l2 normalization\n const scaled = tf.tidy(() => {\n const l2 = res.norm('euclidean');\n const scale = res.div(l2);\n return scale;\n });\n\n // optional reduce feature vector complexity\n const reshape = tf.reshape(res, [128, 2]); // split 256 vectors into 128 x 2\n const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n */\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "/**\n * InsightFace model implementation\n *\n * Based on: [**DeepInsight InsightFace**](https://github.com/deepinsight/insightface)\n *\n * Alternative face embedding detection\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: number[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['insightface'].modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model?.['executor']) return [];\n const skipFrame = skipped < (config.face['insightface']?.skipFrames || 0);\n const skipTime = (config.face['insightface']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: number[] = [];\n if (config.face['insightface']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model.execute(t.crop) as Tensor;\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "import * as coords from './facemeshcoords';\nimport * as util from './facemeshutil';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { Point } from '../result';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\n\nconst irisEnlarge = 2.3;\n\nconst leftOutline = coords.meshAnnotations.leftEyeLower0;\nconst rightOutline = coords.meshAnnotations.rightEyeLower0;\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.iris?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model?.['executor'] && model.inputs?.[0].shape) ? model.inputs[0].shape[2] : 0;\n if (inputSize === -1) inputSize = 64;\n return model;\n}\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates and update the z coordinate to be an average of the original and the new.\nexport function replaceIrisCoords(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.irisIndices.length; i++) {\n const { key, indices } = coords.irisIndices[i];\n const originalIndices = coords.meshAnnotations[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0],\n newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n\nexport const getLeftToRightEyeDepthDifference = (rawCoords) => {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n};\n\n// Returns a box describing a cropped region around the eye fit for passing to the iris model.\nexport const getEyeBox = (rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, meshSize, flip = false) => {\n const box = util.squarifyBox(util.enlargeBox(util.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), irisEnlarge));\n const boxSize = util.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / meshSize,\n box.startPoint[0] / meshSize, box.endPoint[1] / meshSize,\n box.endPoint[0] / meshSize,\n ]], [0], [inputSize, inputSize]);\n if (flip && env.kernels.includes('flipleftright')) {\n const flipped = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n tf.dispose(crop);\n crop = flipped;\n }\n return { box, boxSize, crop };\n};\n\n// Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\nexport const getEyeCoords = (eyeData, eyeBox, eyeBoxSize, flip = false) => {\n const eyeRawCoords: Point[] = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / inputSize)) : (x / inputSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / inputSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n};\n\n// The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\nexport const getAdjustedIrisCoords = (rawCoords, irisCoords, direction) => {\n const upperCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n};\n\nexport async function augmentIris(rawCoords, face, meshSize) {\n if (!model?.['executor']) return rawCoords;\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], meshSize, true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1], meshSize, true);\n const combined = tf.concat([leftEyeCrop, rightEyeCrop]);\n tf.dispose(leftEyeCrop);\n tf.dispose(rightEyeCrop);\n const eyePredictions = model.execute(combined) as Tensor;\n tf.dispose(combined);\n const eyePredictionsData = await eyePredictions.data();\n tf.dispose(eyePredictions);\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize, false);\n const leftToRightEyeDepthDifference = getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', null);\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged so we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n const newCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n return newCoords;\n}\n", "// @tensorflow/tfjs-models/face-landmark-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = [number, number][];\n\nconst LIPS_CONNECTIONS: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nconst LEFT_EYE_CONNECTIONS: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nconst LEFT_EYEBROW_CONNECTIONS: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nconst LEFT_IRIS_CONNECTIONS: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nconst RIGHT_EYE_CONNECTIONS: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nconst RIGHT_EYEBROW_CONNECTIONS: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nconst RIGHT_IRIS_CONNECTIONS: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nconst FACE_OVAL_CONNECTIONS: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389], [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397], [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172], [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162], [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const MEDIAPIPE_FACE_MESH_CONNECTED_KEYPOINTS_PAIRS: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11], [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72], [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175], [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73], [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74], [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40], [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76], [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56], [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21], [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144], [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91], [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85], [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193], [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247], [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117], [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98], [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209], [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47], [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67], [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230], [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46], [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46], [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236], [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154], [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57], [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28], [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113], [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62], [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64], [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41], [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170], [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122], [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89], [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63], [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14], [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100], [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88], [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215], [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43], [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81], [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229], [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107], [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129], [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117], [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3], [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220], [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71], [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188], [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164], [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38], [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206], [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165], [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214], [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171], [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84], [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201], [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57], [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214], [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44], [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64], [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2], [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24], [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26], [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189], [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29], [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247], [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147], [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187], [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114], [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217], [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110], [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356], [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357], [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333], [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9], [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418], [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450], [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313], [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335], [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423], [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307], [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421], [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426], [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322], [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456], [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417], [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355], [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382], [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443], [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431], [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446], [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458], [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372], [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274], [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269], [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266], [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265], [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424], [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366], [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423], [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432], [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394], [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352], [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295], [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323], [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358], [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374], [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6], [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344], [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195], [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283], [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282], [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338], [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292], [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442], [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441], [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300], [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263], [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436], [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370], [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293], [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330], [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440], [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459], [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354], [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315], [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366], [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291], [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264], [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352], [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433], [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462], [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255], [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252], [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441], [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257], [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459], [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290], [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341], [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357], [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420], [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372], [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133], [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33], [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263], [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466], [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72], [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73], [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152], [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74], [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184], [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185], [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77], [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190], [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54], [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145], [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181], [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16], [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245], [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30], [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111], [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240], [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198], [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114], [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109], [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231], [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124], [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70], [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3], [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26], [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43], [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56], [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124], [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96], [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235], [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42], [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140], [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193], [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179], [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68], [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15], [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120], [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89], [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138], [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57], [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41], [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118], [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66], [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142], [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118], [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196], [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156], [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122], [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164], [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12], [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31], [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98], [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237], [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179], [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181], [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184], [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186], [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218], [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45], [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235], [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97], [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230], [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232], [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222], [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224], [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213], [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192], [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188], [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174], [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25], [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264], [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350], [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299], [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151], [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424], [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449], [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18], [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434], [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301], [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280], [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335], [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396], [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413], [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168], [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417], [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381], [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365], [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395], [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335], [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250], [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292], [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354], [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426], [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371], [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290], [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422], [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422], [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358], [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331], [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395], [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296], [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285], [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329], [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331], [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8], [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351], [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397], [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248], [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175], [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295], [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356], [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308], [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265], [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285], [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457], [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394], [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410], [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268], [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298], [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420], [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344], [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274], [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316], [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323], [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306], [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372], [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366], [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435], [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328], [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359], [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253], [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286], [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258], [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309], [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305], [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453], [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343], [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360], [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265], [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR = {\n lips: connectionsToIndices(LIPS_CONNECTIONS),\n leftEye: connectionsToIndices(LEFT_EYE_CONNECTIONS),\n leftEyebrow: connectionsToIndices(LEFT_EYEBROW_CONNECTIONS),\n leftIris: connectionsToIndices(LEFT_IRIS_CONNECTIONS),\n rightEye: connectionsToIndices(RIGHT_EYE_CONNECTIONS),\n rightEyebrow: connectionsToIndices(RIGHT_EYEBROW_CONNECTIONS),\n rightIris: connectionsToIndices(RIGHT_IRIS_CONNECTIONS),\n faceOval: connectionsToIndices(FACE_OVAL_CONNECTIONS),\n};\n\nconst indexLabelPairs: [number, string][] = Object.entries(MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR)\n .map(([label, indices]) => indices.map((index) => [index, label] as [number, string]))\n .flat();\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS = new Map(indexLabelPairs);\n\ntype AssignAverage = number[];\nexport interface LandmarksRefinementConfig {\n indexesMapping: number[]; // Maps indexes of the given set of landmarks to indexes of the resulting set of landmarks. Should be non empty and contain the same amount of indexes as landmarks in the corresponding input\n zRefinement: 'none'|'copy'|AssignAverage; // Z refinement instructions.\n}\n\nexport const LANDMARKS_REFINEMENT_LIPS_CONFIG = [\n 61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291, // Lower outer.\n 185, 40, 39, 37, 0, 267, 269, 270, 409, // Upper outer(excluding corners).\n 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, // Lower inner.\n 191, 80, 81, 82, 13, 312, 311, 310, 415, // Upper inner(excluding corners).\n 76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306, // Lower semi - outer.\n 184, 74, 73, 72, 11, 302, 303, 304, 408, // Upper semi - outer(excluding corners).\n 62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292, // Lower semi - inner.\n 183, 42, 41, 38, 12, 268, 271, 272, 407, // Upper semi - inner(excluding corners).\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG = [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // upper contour (excluding corners).\n 130, 25, 110, 24, 23, 22, 26, 112, 243, // Halo x2 lower contour.\n 247, 30, 29, 27, 28, 56, 190, // Halo x2 upper contour (excluding corners).\n 226, 31, 228, 229, 230, 231, 232, 233, 244, // Halo x3 lower contour.\n 113, 225, 224, 223, 222, 221, 189, // Halo x3 upper contour (excluding corners).\n 35, 124, 46, 53, 52, 65, // Halo x4 upper contour (no lower because of mesh structure) or eyebrow inner contour.\n 143, 111, 117, 118, 119, 120, 121, 128, 245, // Halo x5 lower contour.\n 156, 70, 63, 105, 66, 107, 55, 193, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG = [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n 359, 255, 339, 254, 253, 252, 256, 341, 463, // Halo x2 lower contour.\n 467, 260, 259, 257, 258, 286, 414, // Halo x2 upper contour (excluding corners).\n 446, 261, 448, 449, 450, 451, 452, 453, 464, // Halo x3 lower contour.\n 342, 445, 444, 443, 442, 441, 413, // Halo x3 upper contour (excluding corners).\n 265, 353, 276, 283, 282, 295, // Halo x4 upper contour (no lower because of mesh structure) or/ eyebrow inner contour.\n 372, 340, 346, 347, 348, 349, 350, 357, 465, // Halo x5 lower contour.\n 383, 300, 293, 334, 296, 336, 285, 417, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_IRIS_CONFIG = [\n 468, // Center.\n 469, // Iris right edge.\n 470, // Iris top edge.\n 471, // Iris left edge.\n 472, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // Upper contour (excluding corners).\n];\n*/\n\nexport const LANDMARKS_REFINEMENT_RIGHT_IRIS_CONFIG = [\n 473, // Center.\n 474, // Iris right edge.\n 475, // Iris top edge.\n 476, // Iris left edge.\n 477, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n];\n*/\n", "import * as constants from './constants';\nimport type { Tensor } from '../tfjs/types';\n\nexport async function augment(rawCoords, results: Tensor[]) {\n const t: Record = { // all attention models produce 2d results so it needs to be later augmented with correct z-coords\n // mesh: results[0], // already have it in rawCoords // output_mesh_identity\n // flag: results[1], // already processed in parent // conv_faceflag\n lips: await results.filter((r) => r.size === 160)?.[0]?.data() as Float32Array, // 80 x 2d = 160 // output_lips\n irisL: await results.filter((r) => r.size === 10)?.[0]?.data() as Float32Array, // 5 x 2d = 10 // output_right_iris\n eyeL: await results.filter((r) => r.size === 142)?.[0]?.data() as Float32Array, // 71 x 2d = 142 // output_right_eye\n irisR: await results.filter((r) => r.size === 10)?.[1]?.data() as Float32Array, // 5 x 2d = 10 // output_left_iris\n eyeR: await results.filter((r) => r.size === 142)?.[1]?.data() as Float32Array, // 71 x 2d = 142// output_left_eye\n };\n for (const val of Object.values(t)) {\n if (!val) return rawCoords; // could not find tensor\n }\n\n // augment iris: adds additional 5 keypoints per eye\n const irisLDepth = constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisL.length / 2; i++) rawCoords.push([t.irisL[2 * i + 0], t.irisL[2 * i + 1], irisLDepth]);\n const irisRDepth = constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisR.length / 2; i++) rawCoords.push([t.irisR[2 * i + 0], t.irisR[2 * i + 1], irisRDepth]);\n\n // augment eyes: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.eyeL.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]] = [t.eyeL[2 * i + 0], t.eyeL[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]][2]];\n for (let i = 0; i < t.eyeR.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]] = [t.eyeR[2 * i + 0], t.eyeR[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]][2]];\n\n // augment lips: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.lips.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]] = [t.lips[2 * i + 0], t.lips[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]][2]];\n\n return rawCoords;\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n *\n * Based on:\n * - [**MediaPipe BlazeFace**](https://drive.google.com/file/d/1f39lSzU5Oq-j_OXgS67KfN5wNsoeAZ4V/view)\n * - Facial Spacial Geometry: [**MediaPipe FaceMesh**](https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view)\n * - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view)\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as util from './facemeshutil';\nimport * as coords from './facemeshcoords';\nimport * as iris from './iris';\nimport * as attention from './attention';\nimport { histogramEqualization } from '../image/enhance';\nimport { env } from '../util/env';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { FaceResult, FaceLandmark, Point } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectBox { startPoint: Point, endPoint: Point, landmarks: Point[], confidence: number }\n\nconst cache = {\n boxes: [] as DetectBox[],\n skipped: Number.MAX_SAFE_INTEGER,\n timestamp: 0,\n};\n\nlet model: GraphModel | null = null;\nlet inputSize = 0;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n // reset cached boxes\n const skipTime = (config.face.detector?.skipTime || 0) > (now() - cache.timestamp);\n const skipFrame = cache.skipped < (config.face.detector?.skipFrames || 0);\n if (!config.skipAllowed || !skipTime || !skipFrame || cache.boxes.length === 0) {\n cache.boxes = await blazeface.getBoxes(input, config); // get results from blazeface detector\n cache.timestamp = now();\n cache.skipped = 0;\n } else {\n cache.skipped++;\n }\n const faces: FaceResult[] = [];\n const newCache: DetectBox[] = [];\n let id = 0;\n const size = inputSize;\n for (let i = 0; i < cache.boxes.length; i++) {\n const box = cache.boxes[i];\n let angle = 0;\n let rotationMatrix;\n const face: FaceResult = { // init face result\n id: id++,\n mesh: [],\n meshRaw: [],\n box: [0, 0, 0, 0],\n boxRaw: [0, 0, 0, 0],\n score: 0,\n boxScore: 0,\n faceScore: 0,\n // contoursRaw: [],\n // contours: [],\n annotations: {} as Record,\n };\n\n // optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop\n [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size());\n if (config.filter.equalization) {\n const equilized = face.tensor ? await histogramEqualization(face.tensor) : undefined;\n tf.dispose(face.tensor);\n if (equilized) face.tensor = equilized;\n }\n face.boxScore = Math.round(100 * box.confidence) / 100;\n if (!config.face.mesh?.enabled) { // mesh not enabled, return resuts from detector only\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n } else if (!model) { // mesh enabled, but not loaded\n if (config.debug) log('face mesh detection requested, but model is not loaded');\n } else { // mesh enabled\n if (config.face.attention?.enabled && !env.kernels.includes('atan2')) {\n config.face.attention.enabled = false;\n tf.dispose(face.tensor);\n return faces;\n }\n const results = model.execute(face.tensor as Tensor) as Tensor[];\n const confidenceT = results.find((t) => t.shape[t.shape.length - 1] === 1) as Tensor;\n const faceConfidence = await confidenceT.data();\n face.faceScore = Math.round(100 * faceConfidence[0]) / 100;\n if (face.faceScore < (config.face.detector?.minConfidence || 1)) { // low confidence in detected mesh\n box.confidence = face.faceScore; // reset confidence of cached box\n if (config.face.mesh.keepInvalid) {\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 1), pt[1] / (input.shape[1] || 1), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n }\n } else {\n const meshT = results.find((t) => t.shape[t.shape.length - 1] === 1404) as Tensor;\n const coordsReshaped = tf.reshape(meshT, [-1, 3]);\n let rawCoords = await coordsReshaped.array();\n tf.dispose(coordsReshaped);\n if (config.face.attention?.enabled) {\n rawCoords = await attention.augment(rawCoords, results); // augment iris results using attention model results\n } else if (config.face.iris?.enabled) {\n rawCoords = await iris.augmentIris(rawCoords, face.tensor, inputSize); // run iris model and augment results\n }\n face.mesh = util.transformRawCoords(rawCoords, box, angle, rotationMatrix, inputSize); // get processed mesh\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.meshAnnotations)) face.annotations[key] = coords.meshAnnotations[key].map((index) => face.mesh[index]); // add annotations\n face.score = face.faceScore;\n const calculatedBox = { ...util.calculateFaceBox(face.mesh, box), confidence: box.confidence, landmarks: box.landmarks };\n face.box = util.clampBox(calculatedBox, input);\n face.boxRaw = util.getRawBox(calculatedBox, input);\n /*\n const contoursT = results.find((t) => t.shape[t.shape.length - 1] === 266) as Tensor;\n const contoursData = contoursT && await contoursT.data(); // 133 x 2d points\n face.contoursRaw = [];\n for (let j = 0; j < contoursData.length / 2; j++) face.contoursRaw.push([contoursData[2 * j + 0] / inputSize, contoursData[2 * j + 1] / inputSize]);\n face.contours = face.contoursRaw.map((c) => [Math.trunc((input.shape[2] || 1) * c[0]), Math.trunc((input.shape[1] || 1) * c[1])]);\n */\n newCache.push(calculatedBox);\n }\n tf.dispose(results);\n }\n if (face.score > (config.face.detector?.minConfidence || 1)) faces.push(face);\n else tf.dispose(face.tensor);\n }\n cache.boxes = newCache; // reset cache\n return faces;\n}\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (config.face.attention?.enabled && model?.['signature']) {\n if (Object.keys(model?.['signature']?.outputs || {}).length < 6) model = null;\n }\n if (!model) {\n if (config.face.attention?.enabled) model = await loadModel(config.face.attention.modelPath);\n else model = await loadModel(config.face.mesh?.modelPath);\n } else if (config.debug) {\n log('cached model:', model['modelUrl']);\n }\n inputSize = (model['executor'] && model?.inputs?.[0].shape) ? model?.inputs?.[0].shape[2] : 256;\n return model;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * FaceRes model implementation\n *\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n *\n * Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport type { Gender, Race } from '../result';\n\nexport interface FaceRes { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] }\n\nlet model: GraphModel | null;\nconst last: {\n age: number,\n gender: Gender,\n genderScore: number,\n descriptor: number[],\n}[] = [];\n\nlet lastTime = 0;\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.description?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport function enhance(input): Tensor {\n const tensor = (input.image || input.tensor || input) as Tensor; // input received from detector is already normalized to 0..1, input is also assumed to be straightened\n if (!model?.inputs[0].shape) return tensor; // model has no shape so no point continuing\n const crop: Tensor = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const norm: Tensor = tf.mul(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n /*\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n */\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model?.['executor']) return { age: 0, gender: 'unknown', genderScore: 0, descriptor: [] };\n const skipFrame = skipped < (config.face.description?.skipFrames || 0);\n const skipTime = (config.face.description?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj = {\n age: 0 as number,\n gender: 'unknown' as Gender,\n genderScore: 0 as number,\n descriptor: [] as number[],\n };\n\n if (config.face.description?.enabled) {\n const enhanced = enhance(image);\n const resT = model?.execute(enhanced) as Tensor[];\n lastTime = now();\n tf.dispose(enhanced);\n const genderT = resT.find((t) => t.shape[1] === 1) as Tensor;\n const gender = await genderT.data();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > (config.face.description.minConfidence || 0)) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);\n const age: number = (await argmax.data())[0];\n tf.dispose(argmax);\n const ageT = resT.find((t) => t.shape[1] === 100) as Tensor;\n const all = await ageT.data();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n const descriptor = desc ? await desc.data() : [] as number[];\n obj.descriptor = Array.from(descriptor);\n resT.forEach((t) => tf.dispose(t));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Point } from '../result';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]] as Point;\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]] as Point;\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]] as Point;\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize] as Point;\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]] as Point;\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: number[] = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: number[][] = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "/**\n * HandPose model implementation constants\n * See `handpose.ts` for entry point\n */\n\nexport const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport * as anchors from './handposeanchors';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Point } from '../result';\nimport type { Config } from '../config';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model: GraphModel) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = this?.model?.inputs?.[0]?.shape?.[2] || 0;\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n const t: Record = {};\n t.boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n t.boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n t.div = tf.div(t.boxOffsets, this.inputSizeTensor);\n t.boxCenterPoints = tf.add(t.div, this.anchorsTensor);\n t.halfBoxSizes = tf.div(t.boxSizes, this.doubleInputSizeTensor);\n t.sub = tf.sub(t.boxCenterPoints, t.halfBoxSizes);\n t.startPoints = tf.mul(t.sub, this.inputSizeTensor);\n t.add = tf.add(t.boxCenterPoints, t.halfBoxSizes);\n t.endPoints = tf.mul(t.add, this.inputSizeTensor);\n const res = tf.concat2d([t.startPoints, t.endPoints], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res as Tensor;\n }\n\n normalizeLandmarks(rawPalmLandmarks, index: number) {\n const t: Record = {};\n t.reshape = tf.reshape(rawPalmLandmarks, [-1, 7, 2]);\n t.div = tf.div(t.reshape, this.inputSizeTensor);\n t.landmarks = tf.add(t.div, this.anchors[index] ? this.anchors[index] : 0);\n const res = tf.mul(t.landmarks, this.inputSizeTensor);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res as Tensor;\n }\n\n async predict(input: Tensor, config: Config): Promise<{ startPoint: Point; endPoint: Point, palmLandmarks: Point[]; confidence: number }[]> {\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(input, [this.inputSize, this.inputSize]);\n t.div = tf.div(t.resize, constants.tf127);\n t.image = tf.sub(t.div, constants.tf1);\n t.batched = this.model.execute(t.image) as Tensor;\n t.predictions = tf.squeeze(t.batched);\n t.slice = tf.slice(t.predictions, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.slice);\n t.scores = tf.squeeze(t.sigmoid);\n const scores = await t.scores.data();\n t.boxes = tf.slice(t.predictions, [0, 1], [-1, 4]);\n t.norm = this.normalizeBoxes(t.boxes);\n // box detection is flaky so we look for 3x boxes than we need results\n t.nms = await tf.image.nonMaxSuppressionAsync(t.norm, t.scores, 3 * (config.hand?.maxDetected || 1), config.hand.iouThreshold, config.hand.minConfidence);\n const nms = await t.nms.array() as number[];\n const hands: { startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number }[] = [];\n for (const index of nms) {\n const p: Record = {};\n p.box = tf.slice(t.norm, [index, 0], [1, -1]);\n p.slice = tf.slice(t.predictions, [index, 5], [1, 14]);\n p.norm = this.normalizeLandmarks(p.slice, index);\n p.palmLandmarks = tf.reshape(p.norm, [-1, 2]);\n const box = await p.box.data();\n const startPoint = box.slice(0, 2) as unknown as Point;\n const endPoint = box.slice(2, 4) as unknown as Point;\n const palmLandmarks = await p.palmLandmarks.array();\n const hand = { startPoint, endPoint, palmLandmarks, confidence: scores[index] };\n const scaled = util.scaleBoxCoordinates(hand, [(input.shape[2] || 1) / this.inputSize, (input.shape[1] || 0) / this.inputSize]);\n hands.push(scaled);\n Object.keys(p).forEach((tensor) => tf.dispose(p[tensor]));\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return hands;\n }\n}\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport type * as detector from './handposedetector';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { now } from '../util/util';\nimport type { Point } from '../result';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\nlet lastTime = 0;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: ({ startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number } | null)[];\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n this.inputSize = this.handPoseModel?.inputs?.[0].shape?.[2] || 0;\n this.storedBoxes = [];\n this.skipped = Number.MAX_SAFE_INTEGER;\n this.detectedHands = 0;\n }\n\n calculateLandmarksBoundingBox(landmarks) { // eslint-disable-line class-methods-use-this\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return util.enlargeBox(util.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = util.enlargeBox(util.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = util.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...util.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames\n let boxes;\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = this.skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n boxes = await this.handDetector.predict(image, config);\n this.skipped = 0;\n }\n if (config.skipAllowed) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: { landmarks: Point[], confidence: number, boxConfidence: number, fingerConfidence: number, box: { topLeft: Point, bottomRight: Point } }[] = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = util.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && env.kernels.includes('rotatewithoffset') ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = util.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = tf.div(croppedInput, constants.tf255);\n tf.dispose(croppedInput);\n tf.dispose(rotatedImage);\n const [confidenceT, keypoints] = this.handPoseModel.execute(handImage) as Tensor[];\n lastTime = now();\n tf.dispose(handImage);\n const confidence = (await confidenceT.data())[0];\n tf.dispose(confidenceT);\n if (confidence >= config.hand.minConfidence / 4) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = await keypointsReshaped.array();\n tf.dispose(keypoints);\n tf.dispose(keypointsReshaped);\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n tf.dispose(keypoints);\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = util.enlargeBox(util.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: 0,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n landmarks: [],\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n if (hands.length > config.hand.maxDetected) hands.length = config.hand.maxDetected;\n return hands;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nexport const Finger = {\n thumb: 0,\n index: 1,\n middle: 2,\n ring: 3,\n pinky: 4,\n all: [0, 1, 2, 3, 4], // just for convenience\n nameMapping: { 0: 'thumb', 1: 'index', 2: 'middle', 3: 'ring', 4: 'pinky' },\n // Describes mapping of joints based on the 21 points returned by handpose.\n // [0] Palm\n // [1-4] Thumb\n // [5-8] Index\n // [9-12] Middle\n // [13-16] Ring\n // [17-20] Pinky\n pointsMapping: {\n 0: [[0, 1], [1, 2], [2, 3], [3, 4]],\n 1: [[0, 5], [5, 6], [6, 7], [7, 8]],\n 2: [[0, 9], [9, 10], [10, 11], [11, 12]],\n 3: [[0, 13], [13, 14], [14, 15], [15, 16]],\n 4: [[0, 17], [17, 18], [18, 19], [19, 20]],\n },\n getName: (value) => Finger.nameMapping[value],\n getPoints: (value) => Finger.pointsMapping[value],\n};\n\nexport const FingerCurl = {\n none: 0,\n half: 1,\n full: 2,\n nameMapping: { 0: 'none', 1: 'half', 2: 'full' },\n getName: (value) => FingerCurl.nameMapping[value],\n};\n\nexport const FingerDirection = {\n verticalUp: 0,\n verticalDown: 1,\n horizontalLeft: 2,\n horizontalRight: 3,\n diagonalUpRight: 4,\n diagonalUpLeft: 5,\n diagonalDownRight: 6,\n diagonalDownLeft: 7,\n nameMapping: { 0: 'verticalUp', 1: 'verticalDown', 2: 'horizontalLeft', 3: 'horizontalRight', 4: 'diagonalUpRight', 5: 'diagonalUpLeft', 6: 'diagonalDownRight', 7: 'diagonalDownLeft' },\n getName: (value) => FingerDirection.nameMapping[value],\n};\n\nexport class FingerGesture {\n name;\n curls;\n directions;\n weights;\n weightsRelative;\n\n constructor(name) {\n // name (should be unique)\n this.name = name;\n this.curls = {};\n this.directions = {};\n this.weights = [1.0, 1.0, 1.0, 1.0, 1.0];\n this.weightsRelative = [1.0, 1.0, 1.0, 1.0, 1.0];\n }\n\n curl(finger, curl, confidence) {\n if (typeof this.curls[finger] === 'undefined') this.curls[finger] = [];\n this.curls[finger].push([curl, confidence]);\n }\n\n direction(finger, position, confidence) {\n if (!this.directions[finger]) this.directions[finger] = [];\n this.directions[finger].push([position, confidence]);\n }\n\n weight(finger, weight) {\n this.weights[finger] = weight;\n // recalculate relative weights\n const total = this.weights.reduce((a, b) => a + b, 0);\n this.weightsRelative = this.weights.map((el) => el * 5 / total);\n }\n\n matchAgainst(detectedCurls, detectedDirections) {\n let confidence = 0.0;\n // look at the detected curl of each finger and compare with\n // the expected curl of this finger inside current gesture\n for (const fingerIdx in detectedCurls) {\n const detectedCurl = detectedCurls[fingerIdx];\n const expectedCurls = this.curls[fingerIdx];\n if (typeof expectedCurls === 'undefined') {\n // no curl description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible curl of this specific finger\n for (const [expectedCurl, score] of expectedCurls) {\n if (detectedCurl === expectedCurl) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n // same for detected direction of each finger\n for (const fingerIdx in detectedDirections) {\n const detectedDirection = detectedDirections[fingerIdx];\n const expectedDirections = this.directions[fingerIdx];\n if (typeof expectedDirections === 'undefined') {\n // no direction description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible direction of this specific finger\n for (const [expectedDirection, score] of expectedDirections) {\n if (detectedDirection === expectedDirection) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n return confidence / 10;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nimport { Finger, FingerCurl, FingerDirection, FingerGesture } from './fingerdef';\n\nexport const { thumb, index, middle, ring, pinky } = Finger;\nexport const { none, half, full } = FingerCurl;\nexport const { verticalUp, verticalDown, horizontalLeft, horizontalRight, diagonalUpRight, diagonalUpLeft, diagonalDownRight, diagonalDownLeft } = FingerDirection;\n\n// describe thumbs up gesture \uD83D\uDC4D\nconst ThumbsUp = new FingerGesture('thumbs up');\nThumbsUp.curl(thumb, none, 1.0);\nThumbsUp.direction(thumb, verticalUp, 1.0);\nThumbsUp.direction(thumb, diagonalUpLeft, 0.25);\nThumbsUp.direction(thumb, diagonalUpRight, 0.25);\nfor (const finger of [Finger.index, Finger.middle, Finger.ring, Finger.pinky]) {\n ThumbsUp.curl(finger, full, 1.0);\n ThumbsUp.direction(finger, horizontalLeft, 1.0);\n ThumbsUp.direction(finger, horizontalRight, 1.0);\n}\n\n// describe Victory gesture \u270C\uFE0F\nconst Victory = new FingerGesture('victory');\nVictory.curl(thumb, half, 0.5);\nVictory.curl(thumb, none, 0.5);\nVictory.direction(thumb, verticalUp, 1.0);\nVictory.direction(thumb, diagonalUpLeft, 1.0);\nVictory.curl(index, none, 1.0);\nVictory.direction(index, verticalUp, 0.75);\nVictory.direction(index, diagonalUpLeft, 1.0);\nVictory.curl(middle, none, 1.0);\nVictory.direction(middle, verticalUp, 1.0);\nVictory.direction(middle, diagonalUpLeft, 0.75);\nVictory.curl(ring, full, 1.0);\nVictory.direction(ring, verticalUp, 0.2);\nVictory.direction(ring, diagonalUpLeft, 1.0);\nVictory.direction(ring, horizontalLeft, 0.2);\nVictory.curl(pinky, full, 1.0);\nVictory.direction(pinky, verticalUp, 0.2);\nVictory.direction(pinky, diagonalUpLeft, 1.0);\nVictory.direction(pinky, horizontalLeft, 0.2);\nVictory.weight(index, 2);\nVictory.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst Point = new FingerGesture('point');\nPoint.curl(thumb, full, 1.0);\nPoint.curl(index, none, 0.5);\nPoint.curl(middle, full, 0.5);\nPoint.curl(ring, full, 0.5);\nPoint.curl(pinky, full, 0.5);\nPoint.weight(index, 2);\nPoint.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst MiddleFinger = new FingerGesture('middle finger');\nMiddleFinger.curl(thumb, none, 1.0);\nMiddleFinger.curl(index, full, 0.5);\nMiddleFinger.curl(middle, full, 0.5);\nMiddleFinger.curl(ring, full, 0.5);\nMiddleFinger.curl(pinky, full, 0.5);\nMiddleFinger.weight(index, 2);\nMiddleFinger.weight(middle, 2);\n\n// describe Open Palm gesture \u270C\uFE0F\nconst OpenPalm = new FingerGesture('open palm');\nOpenPalm.curl(thumb, none, 0.75);\nOpenPalm.curl(index, none, 0.75);\nOpenPalm.curl(middle, none, 0.75);\nOpenPalm.curl(ring, none, 0.75);\nOpenPalm.curl(pinky, none, 0.75);\n\nexport default [ThumbsUp, Victory, Point, MiddleFinger, OpenPalm];\n", "/**\n * FingerPose algorithm implementation constants\n *\n * Based on: [**FingerPose***](https://github.com/andypotato/fingerpose)\n */\n\n/* eslint-disable camelcase */\n\nimport { Finger, FingerCurl, FingerDirection } from './fingerdef';\nimport Gestures from '../hand/fingergesture';\n\nconst minConfidence = 0.7;\nconst options = {\n // curl estimation\n HALF_CURL_START_LIMIT: 60.0,\n NO_CURL_START_LIMIT: 130.0,\n // direction estimation\n DISTANCE_VOTE_POWER: 1.1,\n SINGLE_ANGLE_VOTE_POWER: 0.9,\n TOTAL_ANGLE_VOTE_POWER: 1.6,\n};\n\nfunction calculateSlope(point1x, point1y, point2x, point2y) {\n const value = (point1y - point2y) / (point1x - point2x);\n let slope = Math.atan(value) * 180 / Math.PI;\n if (slope <= 0) slope = -slope;\n else if (slope > 0) slope = 180 - slope;\n return slope;\n}\n\n// point1, point2 are 2d or 3d point arrays (xy[z])\n// returns either a single scalar (2d) or array of two slopes (3d)\nfunction getSlopes(point1, point2) {\n if (!point1 || !point2) return [0, 0];\n const slopeXY = calculateSlope(point1[0], point1[1], point2[0], point2[1]);\n if (point1.length === 2) return slopeXY;\n const slopeYZ = calculateSlope(point1[1], point1[2], point2[1], point2[2]);\n return [slopeXY, slopeYZ];\n}\n\nfunction angleOrientationAt(angle, weightageAt = 1.0) {\n let isVertical = 0;\n let isDiagonal = 0;\n let isHorizontal = 0;\n if (angle >= 75.0 && angle <= 105.0) isVertical = 1 * weightageAt;\n else if (angle >= 25.0 && angle <= 155.0) isDiagonal = 1 * weightageAt;\n else isHorizontal = 1 * weightageAt;\n return [isVertical, isDiagonal, isHorizontal];\n}\n\nfunction estimateFingerCurl(startPoint, midPoint, endPoint) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const start_mid_z_dist = startPoint[2] - midPoint[2];\n const start_end_z_dist = startPoint[2] - endPoint[2];\n const mid_end_z_dist = midPoint[2] - endPoint[2];\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist + start_mid_z_dist * start_mid_z_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist + start_end_z_dist * start_end_z_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist + mid_end_z_dist * mid_end_z_dist);\n let cos_in = (mid_end_dist * mid_end_dist + start_mid_dist * start_mid_dist - start_end_dist * start_end_dist) / (2 * mid_end_dist * start_mid_dist);\n if (cos_in > 1.0) cos_in = 1.0;\n else if (cos_in < -1.0) cos_in = -1.0;\n let angleOfCurve = Math.acos(cos_in);\n angleOfCurve = (57.2958 * angleOfCurve) % 180;\n let fingerCurl;\n if (angleOfCurve > options.NO_CURL_START_LIMIT) fingerCurl = FingerCurl.none;\n else if (angleOfCurve > options.HALF_CURL_START_LIMIT) fingerCurl = FingerCurl.half;\n else fingerCurl = FingerCurl.full;\n return fingerCurl;\n}\n\nfunction estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n if (max_dist_x === Math.abs(start_end_x_dist)) {\n if (start_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else if (max_dist_x === Math.abs(start_mid_x_dist)) {\n if (start_mid_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else {\n if (mid_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n }\n return estimatedDirection;\n}\n\nfunction estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y) {\n let estimatedDirection;\n if (max_dist_y === Math.abs(start_end_y_dist)) {\n if (start_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else if (max_dist_y === Math.abs(start_mid_y_dist)) {\n if (start_mid_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else {\n if (mid_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n }\n return estimatedDirection;\n}\n\nfunction estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n const reqd_vertical_direction = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n const reqd_horizontal_direction = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n if (reqd_vertical_direction === FingerDirection.verticalUp) {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalUpLeft;\n else estimatedDirection = FingerDirection.diagonalUpRight;\n } else {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalDownLeft;\n else estimatedDirection = FingerDirection.diagonalDownRight;\n }\n return estimatedDirection;\n}\n\nfunction calculateFingerDirection(startPoint, midPoint, endPoint, fingerSlopes) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const max_dist_x = Math.max(Math.abs(start_mid_x_dist), Math.abs(start_end_x_dist), Math.abs(mid_end_x_dist));\n const max_dist_y = Math.max(Math.abs(start_mid_y_dist), Math.abs(start_end_y_dist), Math.abs(mid_end_y_dist));\n let voteVertical = 0.0;\n let voteDiagonal = 0.0;\n let voteHorizontal = 0.0;\n const start_end_x_y_dist_ratio = max_dist_y / (max_dist_x + 0.00001);\n if (start_end_x_y_dist_ratio > 1.5) voteVertical += options.DISTANCE_VOTE_POWER;\n else if (start_end_x_y_dist_ratio > 0.66) voteDiagonal += options.DISTANCE_VOTE_POWER;\n else voteHorizontal += options.DISTANCE_VOTE_POWER;\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist);\n const max_dist = Math.max(start_mid_dist, start_end_dist, mid_end_dist);\n let calc_start_point_x = startPoint[0];\n let calc_start_point_y = startPoint[1];\n let calc_end_point_x = endPoint[0];\n let calc_end_point_y = endPoint[1];\n if (max_dist === start_mid_dist) {\n calc_end_point_x = endPoint[0];\n calc_end_point_y = endPoint[1];\n } else if (max_dist === mid_end_dist) {\n calc_start_point_x = midPoint[0];\n calc_start_point_y = midPoint[1];\n }\n const calcStartPoint = [calc_start_point_x, calc_start_point_y];\n const calcEndPoint = [calc_end_point_x, calc_end_point_y];\n const totalAngle = getSlopes(calcStartPoint, calcEndPoint);\n const votes = angleOrientationAt(totalAngle, options.TOTAL_ANGLE_VOTE_POWER);\n voteVertical += votes[0];\n voteDiagonal += votes[1];\n voteHorizontal += votes[2];\n for (const fingerSlope of fingerSlopes) {\n const fingerVotes = angleOrientationAt(fingerSlope, options.SINGLE_ANGLE_VOTE_POWER);\n voteVertical += fingerVotes[0];\n voteDiagonal += fingerVotes[1];\n voteHorizontal += fingerVotes[2];\n }\n // in case of tie, highest preference goes to Vertical,\n // followed by horizontal and then diagonal\n let estimatedDirection;\n if (voteVertical === Math.max(voteVertical, voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n } else if (voteHorizontal === Math.max(voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n } else {\n estimatedDirection = estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n }\n return estimatedDirection;\n}\n\nfunction estimate(landmarks) {\n // step 1: calculate slopes\n const slopesXY: number[][] = [];\n const slopesYZ: number[][] = [];\n const fingerCurls: number[] = [];\n const fingerDirections: number[] = [];\n if (!landmarks) return { curls: fingerCurls, directions: fingerDirections };\n\n // step 1: calculate slopes\n for (const finger of Finger.all) {\n const points = Finger.getPoints(finger);\n const slopeAtXY: number[] = [];\n const slopeAtYZ: number[] = [];\n for (const point of points) {\n const point1 = landmarks[point[0]];\n const point2 = landmarks[point[1]];\n // calculate single slope\n const slopes = getSlopes(point1, point2);\n const slopeXY = slopes[0];\n const slopeYZ = slopes[1];\n slopeAtXY.push(slopeXY);\n slopeAtYZ.push(slopeYZ);\n }\n slopesXY.push(slopeAtXY);\n slopesYZ.push(slopeAtYZ);\n }\n\n // step 2: calculate orientations\n for (const finger of Finger.all) {\n // start finger predictions from palm - except for thumb\n const pointIndexAt = (finger === Finger.thumb) ? 1 : 0;\n const fingerPointsAt = Finger.getPoints(finger);\n const startPoint = landmarks[fingerPointsAt[pointIndexAt][0]];\n const midPoint = landmarks[fingerPointsAt[pointIndexAt + 1][1]];\n const endPoint = landmarks[fingerPointsAt[3][1]];\n // check if finger is curled\n const fingerCurled = estimateFingerCurl(startPoint, midPoint, endPoint);\n const fingerPosition = calculateFingerDirection(startPoint, midPoint, endPoint, slopesXY[finger].slice(pointIndexAt));\n fingerCurls[finger] = fingerCurled;\n fingerDirections[finger] = fingerPosition;\n }\n return { curls: fingerCurls, directions: fingerDirections };\n}\n\nexport function analyze(keypoints) { // get estimations of curl / direction for each finger\n if (!keypoints || keypoints.length === 0) return null;\n const estimatorRes = estimate(keypoints);\n const landmarks = {};\n for (const fingerIdx of Finger.all) {\n landmarks[Finger.getName(fingerIdx)] = {\n curl: FingerCurl.getName(estimatorRes.curls[fingerIdx]),\n direction: FingerDirection.getName(estimatorRes.directions[fingerIdx]),\n };\n }\n return landmarks;\n}\n\nexport function match(keypoints) { // compare gesture description to each known gesture\n const poses: { name: string, confidence: number }[] = [];\n if (!keypoints || keypoints.length === 0) return poses;\n const estimatorRes = estimate(keypoints);\n for (const gesture of Gestures) {\n const confidence = gesture.matchAgainst(estimatorRes.curls, estimatorRes.directions);\n if (confidence >= minConfidence) poses.push({ name: gesture.name, confidence });\n }\n return poses;\n}\n", "/**\n * HandPose model implementation\n *\n * Based on: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n */\n\nimport { log } from '../util/util';\nimport * as handdetector from './handposedetector';\nimport * as handpipeline from './handposepipeline';\nimport * as fingerPose from './fingerpose';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, Box, Point } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palm: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: HandResult[] = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n const keypoints = predictions[i].landmarks as unknown as Point[];\n let box: Box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: Box = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n const landmarks = fingerPose.analyze(keypoints);\n hands.push({\n id: i,\n score: Math.round(100 * predictions[i].confidence) / 100,\n boxScore: Math.round(100 * predictions[i].boxConfidence) / 100,\n fingerScore: Math.round(100 * predictions[i].fingerConfidence) / 100,\n label: 'hand',\n box,\n boxRaw,\n keypoints,\n annotations: annotations as HandResult['annotations'],\n landmarks: landmarks as HandResult['landmarks'],\n });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (env.initial) {\n handDetectorModel = null;\n handPoseModel = null;\n }\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? loadModel(config.hand.detector?.modelPath) : null,\n config.hand.landmarks ? loadModel(config.hand.skeleton?.modelPath) : null,\n ]);\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = handDetectorModel ? new handdetector.HandDetector(handDetectorModel) : undefined;\n if (handDetector && handPoseModel) handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "/** TFJS custom backend registration */\n\nimport type { Human } from '../human';\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport * as models from '../models';\nimport type { AnyCanvas } from '../exports';\n// import { env } from '../env';\n\nexport const config = {\n name: 'humangl',\n priority: 999,\n canvas: null as null | AnyCanvas,\n gl: null as null | WebGL2RenderingContext,\n extensions: [] as string[] | null,\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions();\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport function register(instance: Human): void {\n // force backend reload if gl context is not valid\n if (instance.config.backend !== 'humangl') return;\n if ((config.name in tf.engine().registry) && !config?.gl?.getParameter(config.gl.VERSION)) {\n log('error: humangl backend invalid context');\n models.reset(instance);\n /*\n log('resetting humangl backend');\n await tf.removeBackend(config.name);\n await register(instance); // re-register\n */\n }\n if (!tf.findBackend(config.name)) {\n try {\n config.canvas = image.canvas(100, 100);\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr);\n if (!config.gl) {\n log('error: cannot get WebGL context');\n return;\n }\n const glv2 = config.gl.getParameter(config.gl.VERSION).includes('2.0');\n if (!glv2) {\n log('override: using fallback webgl backend as webgl 2.0 is not detected');\n instance.config.backend = 'webgl';\n return;\n }\n if (config.canvas) {\n config.canvas.addEventListener('webglcontextlost', (e) => {\n log('error: humangl:', e.type);\n log('possible browser memory leak using webgl or conflict with multiple backend registrations');\n instance.emit('error');\n throw new Error('backend error: webgl context lost');\n // log('resetting humangl backend');\n // env.initial = true;\n // models.reset(instance);\n // await tf.removeBackend(config.name);\n // await register(instance); // re-register\n });\n config.canvas.addEventListener('webglcontextrestored', (e) => {\n log('error: humangl context restored:', e);\n });\n config.canvas.addEventListener('webglcontextcreationerror', (e) => {\n log('error: humangl context create:', e);\n });\n }\n } catch (err) {\n log('error: cannot get WebGL context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n const current = tf.backend().getGPGPUContext ? tf.backend().getGPGPUContext().gl : null;\n if (current) {\n log(`humangl webgl version:${current.getParameter(current.VERSION) as string} renderer:${current.getParameter(current.RENDERER) as string}`);\n } else {\n log('error: no current gl context:', current, config.gl);\n return;\n }\n try {\n if (tf.env().flagRegistry.WEBGL_VERSION) tf.env().set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "/** TFJS backend initialization and customization */\n\nimport type { Human, Config } from '../human';\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as humangl from './humangl';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as constants from './constants';\n\nfunction registerCustomOps(config: Config) {\n if (!env.kernels.includes('mod')) {\n const kernelMod = {\n kernelName: 'Mod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.sub(op.inputs.a, tf.mul(tf.div(op.inputs.a, op.inputs.b), op.inputs.b))),\n };\n if (config.debug) log('registered kernel:', 'Mod');\n tf.registerKernel(kernelMod);\n env.kernels.push('mod');\n }\n if (!env.kernels.includes('floormod')) {\n const kernelFloorMod = {\n kernelName: 'FloorMod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.add(tf.mul(tf.floorDiv(op.inputs.a / op.inputs.b), op.inputs.b), tf.mod(op.inputs.a, op.inputs.b))),\n };\n if (config.debug) log('registered kernel:', 'FloorMod');\n tf.registerKernel(kernelFloorMod);\n env.kernels.push('floormod');\n }\n /*\n if (!env.kernels.includes('atan2') && config.softwareKernels) {\n const kernelAtan2 = {\n kernelName: 'Atan2',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => {\n const backend = tf.getBackend();\n tf.setBackend('cpu');\n const t = tf.atan2(op.inputs.a, op.inputs.b);\n tf.setBackend(backend);\n return t;\n }),\n };\n if (config.debug) log('registered kernel:', 'atan2');\n log('registered kernel:', 'atan2');\n tf.registerKernel(kernelAtan2);\n env.kernels.push('atan2');\n }\n */\n if (!env.kernels.includes('rotatewithoffset') && config.softwareKernels) {\n const kernelRotateWithOffset = {\n kernelName: 'RotateWithOffset',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => {\n const backend = tf.getBackend();\n tf.setBackend('cpu');\n const t = tf.image.rotateWithOffset(op.inputs.image, op.attrs.radians, op.attrs.fillValue, op.attrs.center);\n tf.setBackend(backend);\n return t;\n }),\n };\n if (config.debug) log('registered kernel:', 'RotateWithOffset');\n tf.registerKernel(kernelRotateWithOffset);\n env.kernels.push('rotatewithoffset');\n }\n}\n\nexport async function check(instance: Human, force = false) {\n instance.state = 'backend';\n if (force || env.initial || (instance.config.backend && (instance.config.backend.length > 0) && (tf.getBackend() !== instance.config.backend))) {\n const timeStamp = now();\n\n if (instance.config.backend && instance.config.backend.length > 0) {\n // detect web worker\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && instance.config.debug) {\n if (instance.config.debug) log('running inside web worker');\n }\n\n // force browser vs node backend\n if (env.browser && instance.config.backend === 'tensorflow') {\n if (instance.config.debug) log('override: backend set to tensorflow while running in browser');\n instance.config.backend = 'humangl';\n }\n if (env.node && (instance.config.backend === 'webgl' || instance.config.backend === 'humangl')) {\n if (instance.config.debug) log(`override: backend set to ${instance.config.backend} while running in nodejs`);\n instance.config.backend = 'tensorflow';\n }\n\n // handle webgpu\n if (env.browser && instance.config.backend === 'webgpu') {\n if (typeof navigator === 'undefined' || typeof navigator.gpu === 'undefined') {\n log('override: backend set to webgpu but browser does not support webgpu');\n instance.config.backend = 'humangl';\n } else {\n const adapter = await navigator.gpu.requestAdapter();\n if (instance.config.debug) log('enumerated webgpu adapter:', adapter);\n if (!adapter) {\n log('override: backend set to webgpu but browser reports no available gpu');\n instance.config.backend = 'humangl';\n } else {\n // @ts-ignore requestAdapterInfo is not in tslib\n const adapterInfo = 'requestAdapterInfo' in adapter ? await (adapter as GPUAdapter).requestAdapterInfo() : undefined;\n // if (adapter.features) adapter.features.forEach((feature) => log('webgpu features:', feature));\n log('webgpu adapter info:', adapterInfo);\n }\n }\n }\n\n // check available backends\n if (instance.config.backend === 'humangl') humangl.register(instance);\n const available = Object.keys(tf.engine().registryFactory as Record);\n if (instance.config.debug) log('available backends:', available);\n\n if (!available.includes(instance.config.backend)) {\n log(`error: backend ${instance.config.backend} not found in registry`);\n instance.config.backend = env.node ? 'tensorflow' : 'webgl';\n if (instance.config.debug) log(`override: setting backend ${instance.config.backend}`);\n }\n\n if (instance.config.debug) log('setting backend:', instance.config.backend);\n\n // customize wasm\n if (instance.config.backend === 'wasm') {\n if (tf.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY) tf.env().set('CANVAS2D_WILL_READ_FREQUENTLY', true);\n if (instance.config.debug) log('wasm path:', instance.config.wasmPath);\n if (typeof tf.setWasmPaths !== 'undefined') tf.setWasmPaths(instance.config.wasmPath, instance.config.wasmPlatformFetch);\n else throw new Error('backend error: attempting to use wasm backend but wasm path is not set');\n let mt = false;\n let simd = false;\n try {\n mt = await tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n simd = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n if (instance.config.debug) log(`wasm execution: ${simd ? 'simd' : 'no simd'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (instance.config.debug && !simd) log('warning: wasm simd support is not enabled');\n } catch {\n log('wasm detection failed');\n }\n }\n\n try {\n await tf.setBackend(instance.config.backend);\n await tf.ready();\n constants.init();\n } catch (err) {\n log('error: cannot set backend:', instance.config.backend, err);\n return false;\n }\n }\n\n // customize humangl\n if (tf.getBackend() === 'humangl') {\n if (tf.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS) tf.env().set('CHECK_COMPUTATION_FOR_ERRORS', false);\n if (tf.env().flagRegistry.WEBGL_CPU_FORWARD) tf.env().set('WEBGL_CPU_FORWARD', true);\n if (tf.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS) tf.env().set('WEBGL_USE_SHAPES_UNIFORMS', true);\n if (tf.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD) tf.env().set('CPU_HANDOFF_SIZE_THRESHOLD', 256);\n if (tf.env().flagRegistry.WEBGL_EXP_CONV) tf.env().set('WEBGL_EXP_CONV', true); // \n if (tf.env().flagRegistry.USE_SETTIMEOUTCUSTOM) tf.env().set('USE_SETTIMEOUTCUSTOM', true); // \n // if (tf.env().flagRegistry['WEBGL_PACK_DEPTHWISECONV']) tf.env().set('WEBGL_PACK_DEPTHWISECONV', false);\n // if (if (tf.env().flagRegistry['WEBGL_FORCE_F16_TEXTURES']) && !instance.config.object.enabled) tf.env().set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof instance.config.deallocate !== 'undefined' && instance.config.deallocate) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n tf.env().set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n if (tf.backend().getGPGPUContext) {\n const gl = await tf.backend().getGPGPUContext().gl;\n if (instance.config.debug) log(`gl version:${gl.getParameter(gl.VERSION) as string} renderer:${gl.getParameter(gl.RENDERER) as string}`);\n }\n }\n\n // customize webgpu\n if (tf.getBackend() === 'webgpu') {\n // if (tf.env().flagRegistry['WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD']) tf.env().set('WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD', 512);\n // if (tf.env().flagRegistry['WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE']) tf.env().set('WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE', 0);\n // if (tf.env().flagRegistry['WEBGPU_CPU_FORWARD']) tf.env().set('WEBGPU_CPU_FORWARD', true);\n }\n\n // wait for ready\n tf.enableProdMode();\n await tf.ready();\n\n instance.performance.initBackend = Math.trunc(now() - timeStamp);\n instance.config.backend = tf.getBackend();\n\n await env.updateBackend(); // update env on backend init\n registerCustomOps(instance.config);\n // await env.updateBackend(); // update env on backend init\n }\n return true;\n}\n\n// register fake missing tfjs ops\nexport function fakeOps(kernelNames: string[], config) {\n // if (config.debug) log('registerKernel:', kernelNames);\n for (const kernelName of kernelNames) {\n const kernelConfig = {\n kernelName,\n backendName: config.backend,\n kernelFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // setupFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // disposeFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n };\n tf.registerKernel(kernelConfig);\n }\n env.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => (kernel.kernelName as string).toLowerCase()); // re-scan registered ops\n}\n", "/**\n * HandTrack model implementation\n *\n * Based on:\n * - Hand Detection & Skeleton: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n * - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, HandType, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as fingerPose from './fingerpose';\nimport { fakeOps } from '../tfjs/backend';\nimport { constants } from '../tfjs/constants';\n\nconst models: [GraphModel | null, GraphModel | null] = [null, null];\nconst modelOutputNodes = ['StatefulPartitionedCall/Postprocessor/Slice', 'StatefulPartitionedCall/Postprocessor/ExpandDims_1'];\n\nconst inputSize = [[0, 0], [0, 0]];\n\nconst classes = ['hand', 'fist', 'pinch', 'point', 'face', 'tip', 'pinchtip'];\nconst faceIndex = 4;\n\nconst boxExpandFact = 1.6;\nconst maxDetectorResolution = 512;\nconst detectorExpandFact = 1.4;\n\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastTime = 0;\nlet outputSize: [number, number] = [0, 0];\n\ninterface HandDetectResult {\n id: number,\n score: number,\n box: Box,\n boxRaw: Box,\n label: HandType,\n}\n\nconst cache: {\n boxes: HandDetectResult[],\n hands: HandResult[];\n} = {\n boxes: [],\n hands: [],\n};\n\nconst fingerMap = {\n /*\n thumb: [0, 1, 2, 3, 4],\n index: [0, 5, 6, 7, 8],\n middle: [0, 9, 10, 11, 12],\n ring: [0, 13, 14, 15, 16],\n pinky: [0, 17, 18, 19, 20],\n palm: [0],\n */\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n base: [0],\n palm: [0, 17, 13, 9, 5, 1, 0],\n};\n\nexport async function loadDetect(config: Config): Promise {\n // HandTrack Model: Original: TFJS Port: \n if (env.initial) models[0] = null;\n if (!models[0]) {\n // handtrack model has some kernel ops defined in model but those are never referenced and non-existent in tfjs\n // ideally need to prune the model itself\n fakeOps(['tensorlistreserve', 'enter', 'tensorlistfromtensor', 'merge', 'loopcond', 'switch', 'exit', 'tensorliststack', 'nextiteration', 'tensorlistsetitem', 'tensorlistgetitem', 'reciprocal', 'shape', 'split', 'where'], config);\n models[0] = await loadModel(config.hand.detector?.modelPath);\n const inputs = models[0]['executor'] ? Object.values(models[0].modelSignature['inputs']) : undefined;\n inputSize[0][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[0][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[0]['modelUrl']);\n return models[0];\n}\n\nexport async function loadSkeleton(config: Config): Promise {\n if (env.initial) models[1] = null;\n if (!models[1]) {\n models[1] = await loadModel(config.hand.skeleton?.modelPath);\n const inputs = models[1]['executor'] ? Object.values(models[1].modelSignature['inputs']) : undefined;\n inputSize[1][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[1][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[1]['modelUrl']);\n return models[1];\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models[0]) await loadDetect(config);\n if (!models[1]) await loadSkeleton(config);\n return models;\n}\n\nasync function detectHands(input: Tensor, config: Config): Promise {\n const hands: HandDetectResult[] = [];\n if (!input || !models[0]) return hands;\n const t: Record = {};\n const ratio = (input.shape[2] || 1) / (input.shape[1] || 1);\n const height = Math.min(Math.round((input.shape[1] || 0) / 8) * 8, maxDetectorResolution); // use dynamic input size but cap at 512\n const width = Math.round(height * ratio / 8) * 8;\n t.resize = tf.image.resizeBilinear(input, [height, width]); // todo: resize with padding\n t.cast = tf.cast(t.resize, 'int32');\n [t.rawScores, t.rawBoxes] = await models[0].executeAsync(t.cast, modelOutputNodes) as Tensor[];\n t.boxes = tf.squeeze(t.rawBoxes, [0, 2]);\n t.scores = tf.squeeze(t.rawScores, [0]);\n const classScores: Tensor[] = tf.unstack(t.scores, 1); // unstack scores based on classes\n tf.dispose(classScores[faceIndex]);\n classScores.splice(faceIndex, 1); // remove faces\n t.filtered = tf.stack(classScores, 1); // restack\n tf.dispose(classScores);\n // t.filtered = t.scores;\n t.max = tf.max(t.filtered, 1); // max overall score\n t.argmax = tf.argMax(t.filtered, 1); // class index of max overall score\n let id = 0;\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, (config.hand.maxDetected || 0) + 1, config.hand.iouThreshold || 0, config.hand.minConfidence || 1);\n const nms = await t.nms.data();\n const scores = await t.max.data();\n const classNum = await t.argmax.data();\n for (const nmsIndex of Array.from(nms)) { // generates results for each class\n const boxSlice = tf.slice(t.boxes, nmsIndex, 1);\n const boxYX = await boxSlice.data();\n tf.dispose(boxSlice);\n const boxData: Box = [boxYX[1], boxYX[0], boxYX[3] - boxYX[1], boxYX[2] - boxYX[0]]; // yx box reshaped to standard box\n const boxRaw: Box = box.scale(boxData, detectorExpandFact);\n const boxFull: Box = [Math.trunc(boxData[0] * outputSize[0]), Math.trunc(boxData[1] * outputSize[1]), Math.trunc(boxData[2] * outputSize[0]), Math.trunc(boxData[3] * outputSize[1])];\n const score = scores[nmsIndex];\n const label = classes[classNum[nmsIndex]] as HandType;\n const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, label };\n hands.push(hand);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n hands.sort((a, b) => b.score - a.score);\n if (hands.length > (config.hand.maxDetected || 1)) hands.length = (config.hand.maxDetected || 1);\n return hands;\n}\n\nasync function detectFingers(input: Tensor, h: HandDetectResult, config: Config): Promise {\n const hand: HandResult = { // initial values inherited from hand detect\n id: h.id,\n score: Math.round(100 * h.score) / 100,\n boxScore: Math.round(100 * h.score) / 100,\n fingerScore: 0,\n box: h.box,\n boxRaw: h.boxRaw,\n label: h.label,\n keypoints: [],\n landmarks: {} as HandResult['landmarks'],\n annotations: {} as HandResult['annotations'],\n };\n if (input && models[1] && config.hand.landmarks && h.score > (config.hand.minConfidence || 0)) {\n const t: Record = {};\n const boxCrop = [h.boxRaw[1], h.boxRaw[0], h.boxRaw[3] + h.boxRaw[1], h.boxRaw[2] + h.boxRaw[0]] as Box;\n t.crop = tf.image.cropAndResize(input, [boxCrop], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');\n t.div = tf.div(t.crop, constants.tf255);\n [t.score, t.keypoints] = models[1].execute(t.div, ['Identity_1', 'Identity']) as Tensor[];\n const rawScore = (await t.score.data())[0];\n const score = (100 - Math.trunc(100 / (1 + Math.exp(rawScore)))) / 100; // reverse sigmoid value\n if (score >= (config.hand.minConfidence || 0)) {\n hand.fingerScore = score;\n t.reshaped = tf.reshape(t.keypoints, [-1, 3]);\n const coordsData: Point[] = await t.reshaped.array() as Point[];\n const coordsRaw: Point[] = coordsData.map((kpt) => [kpt[0] / inputSize[1][1], kpt[1] / inputSize[1][0], (kpt[2] || 0)]);\n const coordsNorm: Point[] = coordsRaw.map((kpt) => [kpt[0] * h.boxRaw[2], kpt[1] * h.boxRaw[3], (kpt[2] || 0)]);\n hand.keypoints = (coordsNorm).map((kpt) => [outputSize[0] * (kpt[0] + h.boxRaw[0]), outputSize[1] * (kpt[1] + h.boxRaw[1]), (kpt[2] || 0)]);\n hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger gestures\n for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations\n hand.annotations[key] = fingerMap[key].map((index: number) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n return hand;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!models[0]?.['executor'] || !models[1]?.['executor'] || !models[0].inputs[0].shape || !models[1].inputs[0].shape) return []; // something is wrong with the model\n outputSize = [input.shape[2] || 0, input.shape[1] || 0];\n skipped++; // increment skip frames\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.hands; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const skipTimeExtended = 3 * (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrameExtended = skipped < 3 * (config.hand.skipFrames || 0);\n if (config.skipAllowed && cache.hands.length === config.hand.maxDetected) { // we have all detected hands so we're definitely skipping\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else if (config.skipAllowed && skipTimeExtended && skipFrameExtended && cache.hands.length > 0) { // we have some cached results: maybe not enough but anyhow continue for bit longer\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else { // finally rerun detector\n cache.boxes = await detectHands(input, config);\n lastTime = now();\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n skipped = 0;\n }\n\n const oldCache = [...cache.boxes];\n cache.boxes.length = 0; // reset cache\n if (config.cacheSensitivity > 0) {\n for (let i = 0; i < cache.hands.length; i++) {\n const boxKpt = box.square(cache.hands[i].keypoints, outputSize);\n if (boxKpt.box[2] / (input.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config.hand.minConfidence || 0)) {\n const boxScale = box.scale(boxKpt.box, boxExpandFact);\n const boxScaleRaw = box.scale(boxKpt.boxRaw, boxExpandFact);\n // const boxCrop = box.crop(boxScaleRaw);\n cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw });\n }\n }\n }\n for (let i = 0; i < cache.hands.length; i++) { // replace detected boxes with calculated boxes in final output\n const bbox = box.calc(cache.hands[i].keypoints, outputSize);\n cache.hands[i].box = bbox.box;\n cache.hands[i].boxRaw = bbox.boxRaw;\n }\n resolve(cache.hands);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: number[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.liveness?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model?.['executor']) return 0;\n const skipTime = (config.face.liveness?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.liveness?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "export const kpt: string[] = [ // used to create part labels\n 'nose',\n 'leftEye',\n 'rightEye',\n 'leftEar',\n 'rightEar',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n];\n\nexport const horizontal: string[][] = [ // used to fix left vs right\n ['leftEye', 'rightEye'],\n ['leftEar', 'rightEar'],\n ['leftShoulder', 'rightShoulder'],\n ['leftElbow', 'rightElbow'],\n ['leftWrist', 'rightWrist'],\n ['leftHip', 'rightHip'],\n ['leftKnee', 'rightKnee'],\n ['leftAnkle', 'rightAnkle'],\n];\n\nexport const vertical: string[][] = [ // used to remove unlikely keypoint positions\n ['leftKnee', 'leftShoulder'],\n ['rightKnee', 'rightShoulder'],\n ['leftAnkle', 'leftKnee'],\n ['rightAnkle', 'rightKnee'],\n];\n\nexport const relative: string[][][] = [ // used to match relative body parts\n [['leftHip', 'rightHip'], ['leftShoulder', 'rightShoulder']],\n [['leftElbow', 'rightElbow'], ['leftShoulder', 'rightShoulder']],\n];\n\nexport const connected: Record = { // used to create body outline in annotations\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "import type { BodyKeypoint, BodyResult } from '../result';\nimport * as box from '../util/box';\nimport * as coords from './movenetcoords';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\n\nconst maxJitter = 0.005; // default allowed jitter is within 0.5%\n\nconst cache: {\n keypoints: BodyKeypoint[],\n padding: [number, number][];\n} = {\n keypoints: [],\n padding: [[0, 0], [0, 0], [0, 0], [0, 0]],\n};\n\nexport function bodyParts(body: BodyResult) { // model sometimes mixes up left vs right keypoints so we fix them\n for (const pair of coords.horizontal) { // fix body parts left vs right\n const left = body.keypoints.findIndex((kp) => kp.part === pair[0]);\n const right = body.keypoints.findIndex((kp) => kp.part === pair[1]);\n if (body.keypoints[left] && body.keypoints[right]) {\n if (body.keypoints[left].position[0] < body.keypoints[right].position[0]) {\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n }\n for (const pair of coords.vertical) { // remove body parts with improbable vertical position\n const lower = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const higher = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n if (body.keypoints[lower] && body.keypoints[higher]) {\n if (body.keypoints[lower].position[1] < body.keypoints[higher].position[1]) {\n body.keypoints.splice(lower, 1);\n }\n }\n }\n for (const [pair, compare] of coords.relative) { // rearrange body parts according to their relative position\n const left = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const right = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n const leftTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[0]));\n const rightTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[1]));\n if (!body.keypoints[leftTo] || !body.keypoints[rightTo]) continue; // only if we have both compare points\n const distanceLeft = body.keypoints[left] ? [\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[left].position[0]),\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[left].position[0]),\n ] : [0, 0];\n const distanceRight = body.keypoints[right] ? [\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[right].position[0]),\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[right].position[0]),\n ] : [0, 0];\n if (distanceLeft[0] > distanceLeft[1] || distanceRight[0] > distanceRight[1]) { // should flip keypoints\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n}\n\nexport function jitter(keypoints: BodyKeypoint[]): BodyKeypoint[] {\n for (let i = 0; i < keypoints.length; i++) {\n if (keypoints[i] && cache.keypoints[i]) {\n const diff = [Math.abs(keypoints[i].positionRaw[0] - cache.keypoints[i].positionRaw[0]), Math.abs(keypoints[i].positionRaw[1] - cache.keypoints[i].positionRaw[1])];\n if (diff[0] < maxJitter && diff[1] < maxJitter) {\n keypoints[i] = cache.keypoints[i]; // below jitter so replace keypoint\n } else {\n cache.keypoints[i] = keypoints[i]; // above jitter so update cache\n }\n } else {\n cache.keypoints[i] = keypoints[i]; // cache for keypoint doesnt exist so create it here\n }\n }\n return keypoints;\n}\n\nexport function padInput(input: Tensor, inputSize: number): Tensor {\n const t: Record = {};\n if (!input?.shape?.[1] || !input?.shape?.[2]) return input;\n cache.padding = [\n [0, 0], // dont touch batch\n [input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0, input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0], // height before&after\n [input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0, input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0], // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(input, cache.padding);\n t.resize = tf.image.resizeBilinear(t.pad, [inputSize, inputSize]);\n const final = tf.cast(t.resize, 'int32');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nexport function rescaleBody(body: BodyResult, outputSize: [number, number]): BodyResult {\n body.keypoints = body.keypoints.filter((kpt) => kpt?.position); // filter invalid keypoints\n for (const kpt of body.keypoints) {\n kpt.position = [\n kpt.position[0] * (outputSize[0] + cache.padding[2][0] + cache.padding[2][1]) / outputSize[0] - cache.padding[2][0],\n kpt.position[1] * (outputSize[1] + cache.padding[1][0] + cache.padding[1][1]) / outputSize[1] - cache.padding[1][0],\n ];\n kpt.positionRaw = [\n kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1],\n ];\n }\n const rescaledBoxes = box.calc(body.keypoints.map((pt) => pt.position), outputSize);\n body.box = rescaledBoxes.box;\n body.boxRaw = rescaledBoxes.boxRaw;\n return body;\n}\n", "/**\n * MoveNet model implementation\n *\n * Based on: [**MoveNet**](https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './movenetcoords';\nimport * as fix from './movenetfix';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, BodyAnnotation, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { fakeOps } from '../tfjs/backend';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n// const boxExpandFact = 1.5; // increase to 150%\n\nconst cache: {\n boxes: Box[], // unused\n bodies: BodyResult[];\n last: number,\n} = {\n boxes: [],\n bodies: [],\n last: 0,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n fakeOps(['size'], config);\n model = await loadModel(config.body.modelPath);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model?.['executor'] && model?.inputs?.[0].shape) ? model.inputs[0].shape[2] : 0;\n if (inputSize < 64) inputSize = 256;\n return model;\n}\n\nfunction parseSinglePose(res, config, image) {\n const kpt = res[0][0];\n const keypoints: BodyKeypoint[] = [];\n let score = 0;\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[id][1], kpt[id][0]];\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw,\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * positionRaw[0]),\n Math.round((image.shape[1] || 0) * positionRaw[1]),\n ],\n });\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const bodies: BodyResult[] = [];\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n const annotations: Record = {};\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id: 0, score, box: newBox.box, boxRaw: newBox.boxRaw, keypoints, annotations };\n fix.bodyParts(body);\n bodies.push(body);\n return bodies;\n}\n\nfunction parseMultiPose(res, config, image) {\n const bodies: BodyResult[] = [];\n for (let id = 0; id < res[0].length; id++) {\n const kpt = res[0][id];\n const totalScore = Math.round(100 * kpt[51 + 4]) / 100;\n if (totalScore > config.body.minConfidence) {\n const keypoints: BodyKeypoint[] = [];\n for (let i = 0; i < 17; i++) {\n const score = kpt[3 * i + 2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[3 * i + 1], kpt[3 * i + 0]];\n keypoints.push({\n part: coords.kpt[i] as BodyLandmark,\n score: Math.round(100 * score) / 100,\n positionRaw,\n position: [Math.round((image.shape[2] || 0) * positionRaw[0]), Math.round((image.shape[1] || 0) * positionRaw[1])],\n });\n }\n }\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n // movenet-multipose has built-in box details\n // const boxRaw: Box = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];\n // const box: Box = [Math.trunc(boxRaw[0] * (image.shape[2] || 0)), Math.trunc(boxRaw[1] * (image.shape[1] || 0)), Math.trunc(boxRaw[2] * (image.shape[2] || 0)), Math.trunc(boxRaw[3] * (image.shape[1] || 0))];\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id, score: totalScore, box: newBox.box, boxRaw: newBox.boxRaw, keypoints: [...keypoints], annotations };\n fix.bodyParts(body);\n bodies.push(body);\n }\n }\n bodies.sort((a, b) => b.score - a.score);\n if (bodies.length > config.body.maxDetected) bodies.length = config.body.maxDetected;\n return bodies;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor'] || !model?.inputs?.[0].shape) return []; // something is wrong with the model\n if (!config.skipAllowed) cache.boxes.length = 0; // allowed to use cache or not\n skipped++; // increment skip frames\n const skipTime = (config.body.skipTime || 0) > (now() - cache.last);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.bodies; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const t: Record = {};\n skipped = 0;\n // run detection on squared input and cached boxes\n /*\n cache.bodies = []; // reset bodies result\n if (cache.boxes.length >= (config.body.maxDetected || 0)) { // if we have enough cached boxes run detection using cache\n for (let i = 0; i < cache.boxes.length; i++) { // run detection based on cached boxes\n t.crop = tf.image.cropAndResize(input, [cache.boxes[i]], [0], [inputSize, inputSize], 'bilinear');\n t.cast = tf.cast(t.crop, 'int32');\n // t.input = prepareImage(input);\n t.res = model?.execute(t.cast) as Tensor;\n const res = await t.res.array();\n const newBodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, cache.boxes[i]) : await parseMultiPose(res, config, input, cache.boxes[i]);\n cache.bodies = cache.bodies.concat(newBodies);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n }\n if (cache.bodies.length !== config.body.maxDetected) { // did not find enough bodies based on cached boxes so run detection on full frame\n t.input = prepareImage(input);\n t.res = model?.execute(t.input) as Tensor;\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, [0, 0, 1, 1]) : await parseMultiPose(res, config, input, [0, 0, 1, 1]);\n for (const body of cache.bodies) rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n cache.boxes.length = 0; // reset cache\n for (let i = 0; i < cache.bodies.length; i++) {\n if (cache.bodies[i].keypoints.length > (coords.kpt.length / 2)) { // only update cache if we detected at least half keypoints\n const scaledBox = box.scale(cache.bodies[i].boxRaw, boxExpandFact);\n const cropBox = box.crop(scaledBox);\n cache.boxes.push(cropBox);\n }\n }\n */\n\n // run detection on squared input and no cached boxes\n t.input = fix.padInput(input, inputSize);\n t.res = model?.execute(t.input) as Tensor;\n cache.last = now();\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17)\n ? parseSinglePose(res, config, input)\n : parseMultiPose(res, config, input);\n for (const body of cache.bodies) {\n fix.rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n fix.jitter(body.keypoints);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n\n resolve(cache.bodies);\n });\n}\n", "/**\n * NanoDet object detection model implementation\n *\n * Based on: [**MB3-CenterNet**](https://github.com/610265158/mobilenetv3_centernet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet inputSize = 0;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) {\n model = await loadModel(config.object.modelPath);\n const inputs = model?.['executor'] ? Object.values(model.modelSignature['inputs']) : undefined;\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 416;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor[], outputShape: [number, number], config: Config) {\n let id = 0;\n let results: ObjectResult[] = [];\n const size = inputSize;\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) === labels.length)));\n const scores = await scoresT.array(); // optionally use exponential scores or just as-is\n const featuresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) < labels.length)));\n const boxesMaxT = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdxT = boxesMaxT.argMax(2); // what we need is indexes of features with highest scores, not values itself\n const boxIdx = await boxIdxT.array(); // what we need is indexes of features with highest scores, not values itself\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > (config.object.minConfidence || 0) && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a: number) => a * (baseSize / strideSize / (size))); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw: Box = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))) as Box; // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label as ObjectType,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)) as Box,\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n tf.dispose([scoresT, featuresT, boxesMaxT, boxIdxT]);\n }\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: number[] = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = await nms.data();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n if (!env.kernels.includes('mod') || !env.kernels.includes('sparsetodense')) return last;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2] || 0, image.shape[1] || 0];\n const resizeT = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n const normT = tf.div(resizeT, constants.tf255);\n const transposeT = tf.transpose(normT, [0, 3, 1, 2]);\n\n let objectT;\n if (config.object.enabled) objectT = model.execute(transposeT);\n lastTime = now();\n\n const obj = await process(objectT as Tensor[], outputSize as [number, number], config);\n last = obj;\n tf.dispose([resizeT, normT, transposeT, ...objectT]);\n resolve(obj);\n });\n}\n", "/**\n * PoseNet body detection model implementation constants\n * See `posenet.ts` for entry point\n */\n\nimport type { Point, BodyResult, BodyAnnotation, BodyLandmark } from '../result';\n\nexport const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n\nexport function eitherPointDoesntMeetConfidence(a: number, b: number, minConfidence: number) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence: number) {\n return connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): BodyResult[] {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i): BodyResult => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score: score as number,\n part: part as BodyLandmark,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)] as Point,\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight] as Point,\n })),\n annotations: {} as Record,\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: unknown[]; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint: number, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + count),\n };\n}\n\nexport function getImageCoords(part, outputStride: number, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a: { x: number, y: number }, b: { x: number, y: number }) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "/**\n * PoseNet body detection model implementation\n *\n * Based on: [**PoseNet**](https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyResult, BodyLandmark, Box } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as utils from './posenetutils';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId: number, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: utils.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = utils.poseChain.map(([parentJoinName, childJoinName]) => ([utils.partIds[parentJoinName], utils.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: utils.partNames[root.part.id] as BodyLandmark,\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score: number, heatmapY: number, heatmapX: number, scores) {\n const [height, width]: [number, number] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: { keypoints, box: Box, score: number }[] = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n /** posenet is mostly obsolete\n * caching is not implemented\n */\n if (!model?.['executor']) return [];\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = tf.sub(tf.div(tf.cast(resized, 'float32'), 127.5), 1.0);\n const results: Tensor[] = model.execute(normalized, poseNetOutputs) as Tensor[];\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = tf.sigmoid(results3d[1]); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor: Tensor) => tensor.buffer()));\n for (const t of res) tf.dispose(t);\n\n const decoded = decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = utils.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "/**\n * Image segmentation for body detection model\n *\n * Based on:\n * - [**MediaPipe Meet**](https://drive.google.com/file/d/1lnP1bRi9CSqQQXUHa13159vLELYDgDu0/preview)\n * - [**MediaPipe Selfie**](https://drive.google.com/file/d/1dCfozqknMa068vVsO2j_1FgZkW_e3VWv/preview)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as image from '../image/image';\nimport { constants } from '../tfjs/constants';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport type { Input, AnyCanvas } from '../exports';\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.segmentation.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config)\n: Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n if (busy) return { data: [], canvas: null, alpha: null };\n busy = true;\n if (!model) await load(config);\n const inputImage = await image.process(input, config);\n const width = inputImage.tensor?.shape[2] || 0;\n const height = inputImage.tensor?.shape[1] || 0;\n if (!inputImage.tensor) return { data: [], canvas: null, alpha: null };\n const t: Record = {};\n\n t.resize = tf.image.resizeBilinear(inputImage.tensor, [model.inputs[0].shape ? model.inputs[0].shape[1] : 0, model.inputs[0].shape ? model.inputs[0].shape[2] : 0], false);\n tf.dispose(inputImage.tensor);\n t.norm = tf.div(t.resize, constants.tf255);\n t.res = model.execute(t.norm) as Tensor;\n\n t.squeeze = tf.squeeze(t.res, 0); // meet.shape:[1,256,256,1], selfie.shape:[1,144,256,2]\n if (t.squeeze.shape[2] === 2) {\n t.softmax = tf.softmax(t.squeeze); // model meet has two channels for fg and bg\n [t.bg, t.fg] = tf.unstack(t.softmax, 2);\n t.expand = tf.expandDims(t.fg, 2);\n t.pad = tf.expandDims(t.expand, 0);\n t.crop = tf.image.cropAndResize(t.pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n t.data = tf.squeeze(t.crop, 0);\n } else {\n t.data = tf.image.resizeBilinear(t.squeeze, [height, width]); // model selfie has a single channel that we can use directly\n }\n const data = Array.from(await t.data.data());\n\n if (env.node && !env.Canvas && (typeof ImageData === 'undefined')) {\n if (config.debug) log('canvas support missing');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return { data, canvas: null, alpha: null }; // running in nodejs so return alpha array as-is\n }\n\n const alphaCanvas = image.canvas(width, height);\n if (tf.browser) await tf.browser.toPixels(t.data, alphaCanvas);\n const alphaCtx = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (config.segmentation.blur && config.segmentation.blur > 0) alphaCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n const alphaData = alphaCtx.getImageData(0, 0, width, height);\n\n const compositeCanvas = image.canvas(width, height);\n const compositeCtx = compositeCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (inputImage.canvas) compositeCtx.drawImage(inputImage.canvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'darken'; // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n if (config.segmentation.blur && config.segmentation.blur > 0) compositeCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n compositeCtx.drawImage(alphaCanvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'source-over'; // reset composite operation\n compositeCtx.filter = 'none'; // reset css filter\n const compositeData = compositeCtx.getImageData(0, 0, width, height);\n for (let i = 0; i < width * height; i++) compositeData.data[4 * i + 3] = alphaData.data[4 * i + 0]; // copy original alpha value to new composite canvas\n compositeCtx.putImageData(compositeData, 0, 0);\n\n let mergedCanvas: AnyCanvas | null = null;\n if (background && compositeCanvas) { // draw background with segmentation as overlay if background is present\n mergedCanvas = image.canvas(width, height);\n const bgImage = await image.process(background, config);\n tf.dispose(bgImage.tensor);\n const ctxMerge = mergedCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxMerge.drawImage(bgImage.canvas as HTMLCanvasElement, 0, 0, mergedCanvas.width, mergedCanvas.height);\n ctxMerge.drawImage(compositeCanvas, 0, 0);\n }\n\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n busy = false;\n // return { data, canvas: mergedCanvas || compositeCanvas, alpha: alphaCanvas };\n return { data, canvas: compositeCanvas, alpha: alphaCanvas };\n}\n", "import { log, join } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { GraphModel } from './types';\nimport type { Config } from '../config';\nimport * as modelsDefs from '../../models/models.json';\nimport { validateModel } from '../models';\n\nconst options = {\n cacheModels: true,\n cacheSupported: true,\n verbose: true,\n debug: false,\n modelBasePath: '',\n};\n\nexport interface ModelInfo {\n name: string,\n inCache: boolean,\n sizeDesired: number,\n sizeFromManifest: number,\n sizeLoadedWeights: number,\n}\n\nexport const modelStats: Record = {};\n\nasync function httpHandler(url: string, init?: RequestInit): Promise {\n if (options.debug) log('load model fetch:', url, init);\n return fetch(url, init);\n}\n\nexport function setModelLoadOptions(config: Config) {\n options.cacheModels = config.cacheModels;\n options.verbose = config.debug;\n options.modelBasePath = config.modelBasePath;\n}\n\nexport async function loadModel(modelPath: string | undefined): Promise {\n let modelUrl = join(options.modelBasePath, modelPath || '');\n if (!modelUrl.toLowerCase().endsWith('.json')) modelUrl += '.json';\n const modelPathSegments = modelUrl.includes('/') ? modelUrl.split('/') : modelUrl.split('\\\\');\n const shortModelName = modelPathSegments[modelPathSegments.length - 1].replace('.json', '');\n const cachedModelName = 'indexeddb://' + shortModelName; // generate short model name for cache\n modelStats[shortModelName] = {\n name: shortModelName,\n sizeFromManifest: 0,\n sizeLoadedWeights: 0,\n sizeDesired: modelsDefs[shortModelName],\n inCache: false,\n };\n options.cacheSupported = (typeof window !== 'undefined') && (typeof window.localStorage !== 'undefined') && (typeof window.indexedDB !== 'undefined'); // check if running in browser and if indexedb is available\n let cachedModels = {};\n try {\n cachedModels = (options.cacheSupported && options.cacheModels) ? await tf.io.listModels() : {}; // list all models already in cache // this fails for webview although localStorage is defined\n } catch {\n options.cacheSupported = false;\n }\n modelStats[shortModelName].inCache = (options.cacheSupported && options.cacheModels) && Object.keys(cachedModels).includes(cachedModelName); // is model found in cache\n const tfLoadOptions = typeof fetch === 'undefined' ? {} : { fetchFunc: (url: string, init?: RequestInit) => httpHandler(url, init) };\n const model: GraphModel = new tf.GraphModel(modelStats[shortModelName].inCache ? cachedModelName : modelUrl, tfLoadOptions) as unknown as GraphModel; // create model prototype and decide if load from cache or from original modelurl\n let loaded = false;\n try {\n // @ts-ignore private function\n model.findIOHandler(); // decide how to actually load a model\n if (options.debug) log('model load handler:', model['handler']);\n // @ts-ignore private property\n const artifacts = await model.handler.load(); // load manifest\n modelStats[shortModelName].sizeFromManifest = artifacts?.weightData?.byteLength || 0;\n model.loadSync(artifacts); // load weights\n // @ts-ignore private property\n modelStats[shortModelName].sizeLoadedWeights = model.artifacts?.weightData?.byteLength || 0;\n if (options.verbose) log('load model:', model['modelUrl'], { bytes: modelStats[shortModelName].sizeLoadedWeights }, options);\n loaded = true;\n } catch (err) {\n log('error loading model:', modelUrl, err);\n }\n if (loaded && options.cacheModels && options.cacheSupported && !modelStats[shortModelName].inCache) { // save model to cache\n try {\n const saveResult = await model.save(cachedModelName);\n log('model saved:', cachedModelName, saveResult);\n } catch (err) {\n log('error saving model:', modelUrl, err);\n }\n }\n validateModel(null, model, `${modelPath || ''}`);\n return model;\n}\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { mergeDeep, now } from '../util/util';\nimport { env } from '../util/env';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport { face } from './face';\nimport { body } from './body';\nimport { hand } from './hand';\nimport { object } from './object';\nimport { gesture } from './gesture';\nimport type { Result, PersonResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet drawTime = 0;\n\nexport { options } from './options';\nexport { face } from './face';\nexport { body } from './body';\nexport { hand } from './hand';\nexport { object } from './object';\nexport { gesture } from './gesture';\n\n/** draw combined person results instead of individual detection result objects */\nexport function person(inCanvas: AnyCanvas, result: PersonResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\n/** draw processed canvas */\nexport function canvas(input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) {\n if (!input || !output) return;\n const ctx = getCanvasContext(output);\n if (!ctx) return;\n ctx.drawImage(input, 0, 0);\n}\n\n/** meta-function that performs draw for: canvas, face, body, hand */\nexport async function all(inCanvas: AnyCanvas, result: Result, drawOptions?: Partial) {\n if (!result?.performance || !inCanvas) return null;\n const timeStamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n const promise = Promise.all([\n face(inCanvas, result.face, localOptions),\n body(inCanvas, result.body, localOptions),\n hand(inCanvas, result.hand, localOptions),\n object(inCanvas, result.object, localOptions),\n gesture(inCanvas, result.gesture, localOptions), // gestures do not have buffering\n // person(inCanvas, result.persons, localOptions); // already included above\n ]);\n drawTime = env.perfadd ? drawTime + Math.round(now() - timeStamp) : Math.round(now() - timeStamp);\n result.performance.draw = drawTime;\n return promise;\n}\n", "import { log } from '../util/util';\nimport type { AnyCanvas } from '../exports';\nimport type { Point } from '../result';\nimport type { DrawOptions } from './options';\n\nexport const getCanvasContext = (input: AnyCanvas) => {\n if (!input) log('draw error: invalid canvas');\n else if (!input.getContext) log('draw error: canvas context not defined');\n else {\n const ctx = input.getContext('2d');\n if (!ctx) log('draw error: cannot get canvas context');\n else return ctx;\n }\n return null;\n};\n\nexport const rad2deg = (theta: number) => Math.round((theta * 180) / Math.PI);\n\nexport const colorDepth = (z: number | undefined, opt: DrawOptions): string => { // performance optimization needed\n if (!opt.useDepth || typeof z === 'undefined') return opt.color;\n const rgb = Uint8ClampedArray.from([127 + (2 * z), 127 - (2 * z), 255]);\n return `rgba(${rgb[0]}, ${rgb[1]}, ${rgb[2]}, ${opt.alpha})`;\n};\n\nexport function point(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, z: number | undefined, localOptions: DrawOptions) {\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nexport function rect(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, width: number, height: number, localOptions: DrawOptions) {\n ctx.beginPath();\n ctx.lineWidth = localOptions.lineWidth;\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nexport function lines(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = colorDepth(pt[2] || 0, localOptions);\n ctx.lineTo(Math.trunc(pt[0]), Math.trunc(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function curves(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.lineWidth = localOptions.lineWidth;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function arrow(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, from: Point, to: Point, radius = 5) {\n let angle;\n let x;\n let y;\n ctx.beginPath();\n ctx.moveTo(from[0], from[1]);\n ctx.lineTo(to[0], to[1]);\n angle = Math.atan2(to[1] - from[1], to[0] - from[0]);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.moveTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n ctx.closePath();\n ctx.stroke();\n ctx.fill();\n}\n", "/** Draw Options\n * - Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n */\nexport interface DrawOptions {\n /** draw line color */\n color: string,\n /** alpha value used for lines */\n alpha: number,\n /** label color */\n labelColor: string,\n /** label shadow color */\n shadowColor: string,\n /** label font */\n font: string,\n /** line spacing between labels */\n lineHeight: number,\n /** line width for drawn lines */\n lineWidth: number,\n /** size of drawn points */\n pointSize: number,\n /** draw rounded boxes by n pixels */\n roundRect: number,\n /** should points be drawn? */\n drawPoints: boolean,\n /** should labels be drawn? */\n drawLabels: boolean,\n /** should face attention keypoints be highlighted */\n drawAttention: boolean;\n /** should detected gestures be drawn? */\n drawGestures: boolean,\n /** should draw boxes around detection results? */\n drawBoxes: boolean,\n /** should draw polygons from detection points? */\n drawPolygons: boolean,\n /** should draw gaze arrows? */\n drawGaze: boolean,\n /** should fill polygons? */\n fillPolygons: boolean,\n /** use z-coordinate when available */\n useDepth: boolean,\n /** should lines be curved? */\n useCurves: boolean,\n}\n\n/** currently set draw options {@link DrawOptions} */\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)' as string, // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)' as string, // 'lightblue' with dark alpha channel\n shadowColor: 'black' as string,\n alpha: 0.5 as number,\n font: 'small-caps 16px \"Segoe UI\"' as string,\n lineHeight: 18 as number,\n lineWidth: 4 as number,\n pointSize: 2 as number,\n roundRect: 8 as number,\n drawPoints: false as boolean,\n drawLabels: true as boolean,\n drawBoxes: true as boolean,\n drawAttention: true as boolean,\n drawGestures: true as boolean,\n drawPolygons: true as boolean,\n drawGaze: true as boolean,\n fillPolygons: false as boolean,\n useDepth: true as boolean,\n useCurves: false as boolean,\n};\n", "import { TRI468 as triangulation } from '../face/facemeshcoords';\nimport { mergeDeep } from '../util/util';\nimport { getCanvasContext, rad2deg, rect, point, lines, arrow } from './primitives';\nimport { options } from './options';\nimport * as facemeshConstants from '../face/constants';\nimport type { FaceResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet opt: DrawOptions;\n\nfunction drawLabels(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawLabels) {\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.real) labels.push(`real: ${Math.trunc(100 * f.real)}%`);\n if (f.live) labels.push(`live: ${Math.trunc(100 * f.live)}%`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation?.angle && f.rotation?.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = opt.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * opt.lineHeight + f.box[1];\n if (opt.shadowColor && opt.shadowColor !== '') {\n ctx.fillStyle = opt.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = opt.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n }\n}\n\nfunction drawIrisElipse(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n // iris: array[center, left, top, right, bottom]\n if (f.annotations?.leftEyeIris && f.annotations?.leftEyeIris[0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.leftEyeIris[3][0] - f.annotations.leftEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.leftEyeIris[4][1] - f.annotations.leftEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n if (f.annotations?.rightEyeIris && f.annotations?.rightEyeIris[0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.rightEyeIris[3][0] - f.annotations.rightEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.rightEyeIris[4][1] - f.annotations.rightEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n}\n\nfunction drawGazeSpheres(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.angle && typeof Path2D !== 'undefined') {\n ctx.strokeStyle = 'pink';\n const valX = (f.box[0] + f.box[2] / 2) - (f.box[3] * rad2deg(f.rotation.angle.yaw) / 90);\n const valY = (f.box[1] + f.box[3] / 2) + (f.box[2] * rad2deg(f.rotation.angle.pitch) / 90);\n const pathV = new Path2D(`\n M ${f.box[0] + f.box[2] / 2} ${f.box[1]}\n C\n ${valX} ${f.box[1]},\n ${valX} ${f.box[1] + f.box[3]},\n ${f.box[0] + f.box[2] / 2} ${f.box[1] + f.box[3]}\n `);\n const pathH = new Path2D(`\n M ${f.box[0]} ${f.box[1] + f.box[3] / 2}\n C \n ${f.box[0]} ${valY},\n ${f.box[0] + f.box[2]} ${valY},\n ${f.box[0] + f.box[2]} ${f.box[1] + f.box[3] / 2}\n `);\n ctx.stroke(pathH);\n ctx.stroke(pathV);\n }\n}\n\nfunction drawGazeArrows(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.gaze.strength && f.rotation.gaze.bearing && f.annotations.leftEyeIris && f.annotations.rightEyeIris && f.annotations.leftEyeIris[0] && f.annotations.rightEyeIris[0]) {\n ctx.strokeStyle = 'pink';\n ctx.fillStyle = 'pink';\n const leftGaze = [\n f.annotations.leftEyeIris[0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations.leftEyeIris[0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1]], [leftGaze[0], leftGaze[1]], 4);\n const rightGaze = [\n f.annotations.rightEyeIris[0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations.rightEyeIris[0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1]], [rightGaze[0], rightGaze[1]], 4);\n }\n}\n\nfunction drawFacePolygons(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPolygons && f.mesh.length >= 468) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [triangulation[i * 3 + 0], triangulation[i * 3 + 1], triangulation[i * 3 + 2]].map((index) => f.mesh[index]);\n lines(ctx, points, opt);\n }\n drawIrisElipse(f, ctx);\n }\n /*\n if (opt.drawPolygons && f.contours.length > 1) {\n ctx.lineWidth = 5;\n lines(ctx, f.contours, opt);\n }\n ctx.lineWidth = 1;\n */\n}\n\nfunction drawFacePoints(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPoints && f.mesh.length >= 468) {\n for (let i = 0; i < f.mesh.length; i++) {\n point(ctx, f.mesh[i][0], f.mesh[i][1], f.mesh[i][2], opt);\n if (opt.drawAttention) {\n if (facemeshConstants.LANDMARKS_REFINEMENT_LIPS_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) + 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n }\n }\n }\n}\n\nfunction drawFaceBoxes(f: FaceResult, ctx) {\n if (opt.drawBoxes) {\n rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], opt);\n }\n}\n\n/** draw detected faces */\nexport function face(inCanvas: AnyCanvas, result: FaceResult[], drawOptions?: Partial) {\n opt = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = opt.font;\n ctx.strokeStyle = opt.color;\n ctx.fillStyle = opt.color;\n for (const f of result) {\n drawFaceBoxes(f, ctx);\n drawLabels(f, ctx);\n if (f.mesh && f.mesh.length > 0) {\n drawFacePoints(f, ctx);\n drawFacePolygons(f, ctx);\n drawGazeSpheres(f, ctx);\n drawGazeArrows(f, ctx);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, curves, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { BodyResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected bodies */\nexport function body(inCanvas: AnyCanvas, result: BodyResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box.length === 4) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints && result[i].keypoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n if (!result[i].keypoints[pt].score || (result[i].keypoints[pt].score === 0)) continue;\n ctx.fillStyle = colorDepth(result[i].keypoints[pt].position[2], localOptions);\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels && result[i].keypoints) {\n ctx.font = localOptions.font;\n for (const pt of result[i].keypoints) {\n if (!pt.score || (pt.score === 0)) continue;\n ctx.fillStyle = colorDepth(pt.position[2], localOptions);\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints && result[i].annotations) {\n for (const part of Object.values(result[i].annotations)) {\n for (const connected of part) curves(ctx, connected, localOptions);\n }\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { HandResult } from '../result';\nimport type { AnyCanvas, DrawOptions, Point } from '../exports';\n\n/** draw detected hands */\nexport function hand(inCanvas: AnyCanvas, result: HandResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = colorDepth(pt[2], localOptions);\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels && h.annotations) {\n const addHandLabel = (part: Point[], title: string) => {\n if (!part || part.length === 0 || !part[0]) return;\n const z = part[part.length - 1][2] || -256;\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations.index, 'index');\n addHandLabel(h.annotations.middle, 'middle');\n addHandLabel(h.annotations.ring, 'ring');\n addHandLabel(h.annotations.pinky, 'pinky');\n addHandLabel(h.annotations.thumb, 'thumb');\n addHandLabel(h.annotations.palm, 'palm');\n }\n if (localOptions.drawPolygons && h.annotations) {\n const addHandLine = (part: Point[]) => {\n if (!part || part.length === 0 || !part[0]) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n const z = part[i][2] || 0;\n ctx.strokeStyle = colorDepth(i * z, localOptions);\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations.index);\n addHandLine(h.annotations.middle);\n addHandLine(h.annotations.ring);\n addHandLine(h.annotations.pinky);\n addHandLine(h.annotations.thumb);\n // addPart(h.annotations.palm);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport type { ObjectResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected objects */\nexport function object(inCanvas: AnyCanvas, result: ObjectResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext } from './primitives';\nimport { options } from './options';\nimport type { GestureResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected gestures */\nexport function gesture(inCanvas: AnyCanvas, result: GestureResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (localOptions.drawGestures) {\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n }\n}\n", "import type { Tensor } from '../tfjs/types';\nimport type { FaceResult } from '../result';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { meshAnnotations } from './facemeshcoords';\n\nconst expandFact = 0.1;\nconst alpha = 0.5;\n\n// point inclusion in polygon based on https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html\nfunction insidePoly(x: number, y: number, polygon: { x: number, y: number }[]): boolean {\n let inside = false;\n let j = polygon.length - 1;\n for (let i = 0; i < polygon.length; j = i++) {\n if (((polygon[i].y > y) !== (polygon[j].y > y)) && (x < (polygon[j].x - polygon[i].x) * (y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x)) inside = !inside;\n }\n return inside;\n}\n\nexport async function mask(face: FaceResult): Promise {\n if (!face.tensor) return face.tensor;\n if (!face.mesh || face.mesh.length < 100) return face.tensor;\n const width = face.tensor.shape[2] || 0;\n const height = face.tensor.shape[1] || 0;\n const buffer = await face.tensor.buffer();\n let silhouette: { x: number, y: number }[] = [];\n for (const pt of meshAnnotations.silhouette) silhouette.push({ x: (face.mesh[pt][0] - face.box[0]) / face.box[2], y: (face.mesh[pt][1] - face.box[1]) / face.box[3] }); // add all silhouette points scaled to local box\n if (expandFact && expandFact > 0) silhouette = silhouette.map((pt) => ({ x: pt.x > 0.5 ? pt.x + expandFact : pt.x - expandFact, y: pt.y > 0.5 ? pt.y + expandFact : pt.y - expandFact })); // expand silhouette\n for (let x = 0; x < width; x++) {\n for (let y = 0; y < height; y++) {\n const inside = insidePoly(x / width, y / width, silhouette);\n if (!inside) {\n buffer.set(alpha * buffer.get(0, y, x, 0), 0, y, x, 0);\n buffer.set(alpha * buffer.get(0, y, x, 1), 0, y, x, 1);\n buffer.set(alpha * buffer.get(0, y, x, 2), 0, y, x, 2);\n }\n }\n }\n const output = buffer.toTensor();\n tf.dispose(buffer);\n return output;\n}\n", "import type { Point, FaceResult } from '../result';\n\ntype Vector = [number, number, number];\n\nconst calculateGaze = (face: FaceResult): { bearing: number, strength: number } => {\n const radians = (pt1: Point, pt2: Point) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations.rightEyeIris || !face.annotations.leftEyeIris) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = (face.mesh[33][2] || 0) > (face.mesh[263][2] || 0); // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n const eyeDiff: Point = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] * eyeDiff[0]) + (eyeDiff[1] * eyeDiff[1])); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n return { bearing, strength };\n};\n\nexport const calculateFaceAngle = (face: FaceResult, imageSize: [number, number]): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v: Vector): Vector => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a: Vector, b: Vector): Vector => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a: Vector, b: Vector): Vector => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r: number[]): { pitch: number, yaw: number, roll: number } => {\n const [r00, _r01, _r02, r10, r11, r12, r20, r21, r22] = r; // eslint-disable-line @typescript-eslint/no-unused-vars\n let thetaX: number;\n let thetaY: number;\n let thetaZ: number;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n if (Number.isNaN(thetaX)) thetaX = 0;\n if (Number.isNaN(thetaY)) thetaY = 0;\n if (Number.isNaN(thetaZ)) thetaZ = 0;\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n\n /*\n const meshToEulerAngle = (mesh) => { // simple Euler angle calculation based existing 3D mesh\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n return { // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face // pitch is face move up/down\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye // yaw is face turn left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye // roll is face lean left/right\n };\n };\n */\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts: Point[] = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [pt[0] * imageSize[0] / size, pt[1] * imageSize[1] / size, pt[2]] as Point); // make the xyz coordinates proportional, independent of the image/box size\n\n const yAxis = normalize(subVectors(pts[1] as Vector, pts[0] as Vector));\n let xAxis = normalize(subVectors(pts[3] as Vector, pts[2] as Vector));\n const zAxis = normalize(crossVectors(xAxis, yAxis));\n // adjust xAxis to make sure that all axes are perpendicular to each other\n xAxis = crossVectors(yAxis, zAxis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n xAxis[0], xAxis[1], xAxis[2],\n yAxis[0], yAxis[1], yAxis[2],\n zAxis[0], zAxis[1], zAxis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n", "/**\n * Face algorithm implementation\n * Uses FaceMesh, Emotion and FaceRes models to create a unified pipeline\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as facemesh from './facemesh';\nimport * as emotion from '../gear/emotion';\nimport * as faceres from './faceres';\nimport * as mask from './mask';\nimport * as antispoof from './antispoof';\nimport * as liveness from './liveness';\nimport * as gear from '../gear/gear';\nimport * as ssrnetAge from '../gear/ssrnet-age';\nimport * as ssrnetGender from '../gear/ssrnet-gender';\nimport * as mobilefacenet from './mobilefacenet';\nimport * as insightface from './insightface';\nimport type { FaceResult, Emotion, Gender, Race } from '../result';\nimport type { Tensor } from '../tfjs/types';\nimport type { Human } from '../human';\nimport { calculateFaceAngle } from './angles';\n\ninterface DescRes { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] }\n\nexport const detectFace = async (instance: Human /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n let timeStamp: number = now();\n let ageRes: { age: number } | Promise<{ age: number }> | null;\n let gearRes: gear.GearType | Promise | null;\n let genderRes: { gender: string, genderScore: number } | Promise<{ gender: string, genderScore: number }> | null;\n let emotionRes: { score: number, emotion: Emotion }[] | Promise<{ score: number, emotion: Emotion }[]>;\n let mobilefacenetRes: number[] | Promise | null;\n let insightfaceRes: number[] | Promise | null;\n let antispoofRes: number | Promise | null;\n let livenessRes: number | Promise | null;\n let descRes: DescRes | Promise | null;\n\n const faceRes: FaceResult[] = [];\n instance.state = 'run:face';\n\n const faces = await facemesh.predict(input, instance.config);\n instance.performance.face = env.perfadd ? (instance.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n instance.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefied\n if (!faces[i].tensor || faces[i].tensor.isDisposedInternal) {\n log('Face object is disposed:', faces[i].tensor);\n continue;\n }\n\n // optional face mask\n if (instance.config.face.detector?.mask) {\n const masked = await mask.mask(faces[i]);\n tf.dispose(faces[i].tensor);\n if (masked) faces[i].tensor = masked;\n }\n\n // calculate face angles\n const rotation = faces[i].mesh && (faces[i].mesh.length > 200) ? calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]) : null;\n\n // run emotion, inherits face from blazeface\n instance.analyze('Start Emotion:');\n if (instance.config.async) {\n emotionRes = instance.config.face.emotion?.enabled ? emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n } else {\n instance.state = 'run:emotion';\n timeStamp = now();\n emotionRes = instance.config.face.emotion?.enabled ? await emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n instance.performance.emotion = env.perfadd ? (instance.performance.emotion || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Emotion:');\n\n // run antispoof, inherits face from blazeface\n instance.analyze('Start AntiSpoof:');\n if (instance.config.async) {\n antispoofRes = instance.config.face.antispoof?.enabled ? antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:antispoof';\n timeStamp = now();\n antispoofRes = instance.config.face.antispoof?.enabled ? await antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.antispoof = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End AntiSpoof:');\n\n // run liveness, inherits face from blazeface\n instance.analyze('Start Liveness:');\n if (instance.config.async) {\n livenessRes = instance.config.face.liveness?.enabled ? liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:liveness';\n timeStamp = now();\n livenessRes = instance.config.face.liveness?.enabled ? await liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.liveness = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Liveness:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start GEAR:');\n if (instance.config.async) {\n gearRes = instance.config.face.gear?.enabled ? gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:gear';\n timeStamp = now();\n gearRes = instance.config.face.gear?.enabled ? await gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.gear = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End GEAR:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start SSRNet:');\n if (instance.config.async) {\n ageRes = instance.config.face['ssrnet']?.enabled ? ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:ssrnet';\n timeStamp = now();\n ageRes = instance.config.face['ssrnet']?.enabled ? await ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? await ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.ssrnet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End SSRNet:');\n\n // run mobilefacenet alternative, inherits face from blazeface\n instance.analyze('Start MobileFaceNet:');\n if (instance.config.async) {\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? await mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End MobileFaceNet:');\n\n // run insightface alternative, inherits face from blazeface\n instance.analyze('Start InsightFace:');\n if (instance.config.async) {\n insightfaceRes = instance.config.face['insightface']?.enabled ? insightface.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n insightfaceRes = instance.config.face['insightface']?.enabled ? await insightface.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End InsightFace:');\n\n // run faceres, inherits face from blazeface\n instance.analyze('Start Description:');\n if (instance.config.async) {\n descRes = faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length);\n } else {\n instance.state = 'run:description';\n timeStamp = now();\n descRes = await faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length);\n instance.performance.description = env.perfadd ? (instance.performance.description || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Description:');\n\n // if async wait for results\n if (instance.config.async) {\n [ageRes, genderRes, emotionRes, mobilefacenetRes, insightfaceRes, descRes, gearRes, antispoofRes, livenessRes] = await Promise.all([ageRes, genderRes, emotionRes, mobilefacenetRes, insightfaceRes, descRes, gearRes, antispoofRes, livenessRes]);\n }\n instance.analyze('Finish Face:');\n\n if (instance.config.face['ssrnet']?.enabled && ageRes && genderRes) { // override age/gender if ssrnet model is used\n descRes = {\n ...(descRes as DescRes),\n age: (ageRes as { age: number}).age,\n gender: (genderRes as { gender: Gender, genderScore: number }).gender,\n genderScore: (genderRes as { gender: Gender, genderScore: number }).genderScore,\n };\n }\n if (instance.config.face.gear?.enabled && gearRes) { // override age/gender/race if gear model is used\n descRes = {\n ...(descRes as DescRes),\n age: (gearRes as gear.GearType).age,\n gender: (gearRes as gear.GearType).gender,\n genderScore: (gearRes as gear.GearType).genderScore,\n race: (gearRes as gear.GearType).race,\n };\n }\n if (instance.config.face['mobilefacenet']?.enabled && mobilefacenetRes) { // override descriptor if mobilefacenet model is used\n (descRes as DescRes).descriptor = mobilefacenetRes as number[];\n }\n\n if (instance.config.face['insightface']?.enabled && insightfaceRes) { // override descriptor if insightface model is used\n (descRes as DescRes).descriptor = insightfaceRes as number[];\n }\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!instance.config.face.iris?.enabled) {\n // if (faces[i]?.annotations?.leftEyeIris) delete faces[i].annotations.leftEyeIris;\n // if (faces[i]?.annotations?.rightEyeIris) delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i]?.annotations?.leftEyeIris?.[0] && faces[i]?.annotations?.rightEyeIris?.[0]\n && (faces[i].annotations.leftEyeIris.length > 0) && (faces[i].annotations.rightEyeIris.length > 0)\n && (faces[i].annotations.leftEyeIris[0] !== null) && (faces[i].annotations.rightEyeIris[0] !== null))\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0; // note: average human iris size is 11.7mm\n\n // optionally return tensor\n const tensor = instance.config.face.detector?.return ? tf.squeeze(faces[i].tensor) : null;\n // dispose original face tensor\n tf.dispose(faces[i].tensor);\n // delete temp face image\n if (faces[i].tensor) delete faces[i].tensor;\n // combine results\n const res: FaceResult = {\n ...faces[i],\n id: i,\n };\n if ((descRes as DescRes).age) res.age = (descRes as DescRes).age;\n if ((descRes as DescRes).gender) res.gender = (descRes as DescRes).gender;\n if ((descRes as DescRes).genderScore) res.genderScore = (descRes as DescRes).genderScore;\n if ((descRes as DescRes).descriptor) res.embedding = (descRes as DescRes).descriptor;\n if ((descRes as DescRes).race) res.race = (descRes as DescRes).race as { score: number, race: Race }[];\n if (emotionRes) res.emotion = emotionRes as { score: number, emotion: Emotion }[];\n if (antispoofRes) res.real = antispoofRes as number;\n if (livenessRes) res.live = livenessRes as number;\n if (irisSize && irisSize !== 0) res.iris = Math.trunc(500 / irisSize / 11.7) / 100;\n if (rotation) res.rotation = rotation;\n if (tensor) res.tensor = tensor;\n faceRes.push(res);\n instance.analyze('End Face');\n }\n instance.analyze('End FaceMesh:');\n if (instance.config.async) {\n if (instance.performance.face) delete instance.performance.face;\n if (instance.performance.age) delete instance.performance.age;\n if (instance.performance.gender) delete instance.performance.gender;\n if (instance.performance.emotion) delete instance.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection algorithm\n */\n\nimport type { GestureResult, BodyResult, FaceResult, HandResult, Point } from '../result';\nimport * as fingerPose from '../hand/fingerpose';\n\n/** face gesture type */\nexport type FaceGesture =\n `facing ${'left' | 'center' | 'right'}`\n | `blink ${'left' | 'right'} eye`\n | `mouth ${number}% open`\n | `head ${'up' | 'down'}`;\n\n/** iris gesture type */\nexport type IrisGesture =\n 'facing center'\n | `looking ${'left' | 'right' | 'up' | 'down'}`\n | 'looking center';\n\n/** body gesture type */\nexport type BodyGesture =\n `leaning ${'left' | 'right'}`\n | `raise ${'left' | 'right'} hand`\n | 'i give up';\n\n/** hand gesture type */\nexport type HandGesture =\n `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} forward`\n | `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} up`\n | 'victory'\n | 'thumbs up';\n\nexport const body = (res: BodyResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { body: number, gesture: BodyGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position[1] < nose.position[1]) && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder && Math.abs(leftShoulder.positionRaw[1] - rightShoulder.positionRaw[1]) > 0.1) {\n gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position[1] > rightShoulder.position[1]) ? 'left' : 'right'}` });\n }\n }\n return gestures;\n};\n\nexport const face = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { face: number, gesture: FaceGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 450) {\n const zDiff = (res[i].mesh[33][2] || 0) - (res[i].mesh[263][2] || 0);\n const xDiff = res[i].mesh[33][0] - res[i].mesh[263][0];\n if (Math.abs(zDiff / xDiff) <= 0.15) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${zDiff < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2] || 0;\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { iris: number, gesture: IrisGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations?.leftEyeIris?.[0] || !res[i].annotations?.rightEyeIris?.[0]) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > rightIrisCenterX) { // check eye with bigger offset\n if (leftIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking right' });\n } else {\n if (rightIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking left' });\n }\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res: HandResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { hand: number, gesture: HandGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: { name: string, position: Point }[] = [];\n if (res[i].annotations) {\n for (const [finger, pos] of Object.entries(res[i].annotations)) {\n if (finger !== 'palmBase' && Array.isArray(pos) && pos[0]) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => ((best.position[2] || 0) < (a.position[2] || 0) ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward` as HandGesture });\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${highest.name} up` as HandGesture });\n }\n if (res[i].keypoints) {\n const poses = fingerPose.match(res[i].keypoints);\n for (const pose of poses) gestures.push({ hand: i, gesture: pose.name as HandGesture });\n }\n }\n return gestures;\n};\n", "/**\n * Results interpolation for smoothening of video detection results inbetween detected frames\n */\n\nimport type { Result, FaceResult, BodyResult, HandResult, ObjectResult, PersonResult, Box, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { Config } from '../config';\n\nimport * as moveNetCoords from '../body/movenetcoords';\nimport * as blazePoseCoords from '../body/blazeposecoords';\nimport * as efficientPoseCoords from '../body/efficientposecoords';\nimport { now } from './util';\nimport { env } from './env';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\nlet interpolateTime = 0;\n\nexport function calc(newResult: Result, config: Config): Result {\n const t0 = now();\n if (!newResult) return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed + 1) : 1;\n\n if (newResult.canvas) bufferedResult.canvas = newResult.canvas;\n if (newResult.error) bufferedResult.error = newResult.error;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body)) as BodyResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + newBoxCoord) / bufferedFactor) as Box;\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + newBoxCoord) / bufferedFactor) as Box;\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((newKpt, j) => ({\n score: newKpt.score,\n part: newKpt.part,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[0] || 0) + (newKpt.position[0] || 0)) / bufferedFactor : newKpt.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[1] || 0) + (newKpt.position[1] || 0)) / bufferedFactor : newKpt.position[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[2] || 0) + (newKpt.position[2] || 0)) / bufferedFactor : newKpt.position[2],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[0] || 0) + (newKpt.positionRaw[0] || 0)) / bufferedFactor : newKpt.positionRaw[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[1] || 0) + (newKpt.positionRaw[1] || 0)) / bufferedFactor : newKpt.positionRaw[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[2] || 0) + (newKpt.positionRaw[2] || 0)) / bufferedFactor : newKpt.positionRaw[2],\n ],\n distance: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[0] || 0) + (newKpt.distance?.[0] || 0)) / bufferedFactor : newKpt.distance?.[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[1] || 0) + (newKpt.distance?.[1] || 0)) / bufferedFactor : newKpt.distance?.[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[2] || 0) + (newKpt.distance?.[2] || 0)) / bufferedFactor : newKpt.distance?.[2],\n ],\n }))) as { score: number, part: BodyLandmark, position: [number, number, number?], positionRaw: [number, number, number?] }[];\n\n const annotations: Record = {} as Record; // recreate annotations\n let coords = { connected: {} };\n if (config.body.modelPath?.includes('efficientpose')) coords = efficientPoseCoords;\n else if (config.body.modelPath?.includes('blazepose')) coords = blazePoseCoords;\n else if (config.body.modelPath?.includes('movenet')) coords = moveNetCoords;\n for (const [name, indexes] of Object.entries(coords.connected as Record)) {\n const pt: Point[][] = [];\n for (let j = 0; j < indexes.length - 1; j++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[j]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[j + 1]);\n // if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints, annotations }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand)); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (bufferedResult.hand[i].keypoints.length !== newResult.hand[i].keypoints.length) bufferedResult.hand[i].keypoints = newResult.hand[i].keypoints; // reset keypoints as previous frame did not have them\n const keypoints = newResult.hand[i].keypoints && newResult.hand[i].keypoints.length > 0 ? newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * (bufferedResult.hand[i].keypoints[j][k] || 1) + (coord || 0)) / bufferedFactor)) as Point)\n : [];\n let annotations = {};\n if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length) {\n bufferedResult.hand[i].annotations = newResult.hand[i].annotations; // reset annotations as previous frame did not have them\n annotations = bufferedResult.hand[i].annotations;\n } else if (newResult.hand[i].annotations) {\n for (const key of Object.keys(newResult.hand[i].annotations)) { // update annotations\n annotations[key] = newResult.hand[i]?.annotations?.[key]?.[0]\n ? newResult.hand[i].annotations[key]\n .map((val, j: number) => val\n .map((coord: number, k: number) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor))\n : null;\n }\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations: annotations as HandResult['annotations'] }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face)) as FaceResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (newResult.face[i].rotation) {\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.roll || 0) + (newResult.face[i].rotation?.angle.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.yaw || 0) + (newResult.face[i].rotation?.angle.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.pitch || 0) + (newResult.face[i].rotation?.angle.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze.bearing || 0) + (newResult.face[i].rotation?.gaze.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze.strength || 0) + (newResult.face[i].rotation?.gaze.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n bufferedResult.face[i] = { ...newResult.face[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object)) as ObjectResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons)) as PersonResult[];\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as Box;\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture;\n\n // append interpolation performance data\n const t1 = now();\n interpolateTime = env.perfadd ? interpolateTime + Math.round(t1 - t0) : Math.round(t1 - t0);\n if (newResult.performance) bufferedResult.performance = { ...newResult.performance, interpolate: interpolateTime };\n\n return bufferedResult;\n}\n", "/** Face descriptor type as number array */\nexport type Descriptor = number[]\nexport type MatchOptions = { order?: number, threshold?: number, multiplier?: number, min?: number, max?: number } | undefined;\n\n/** Calculates distance between two descriptors\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n */\nexport function distance(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25 }) {\n // general minkowski distance, euclidean distance is limited case where order is 2\n if (!descriptor1 || !descriptor1) return Number.MAX_SAFE_INTEGER;\n let sum = 0;\n for (let i = 0; i < descriptor1.length; i++) {\n const diff = (!options.order || options.order === 2) ? (descriptor1[i] - descriptor2[i]) : (Math.abs(descriptor1[i] - descriptor2[i]));\n sum += (!options.order || options.order === 2) ? (diff * diff) : (diff ** options.order);\n }\n return (options.multiplier || 20) * sum;\n}\n\n// invert distance to similarity, normalize to given range and clamp\nconst normalizeDistance = (dist, order, min, max) => {\n if (dist === 0) return 1; // short circuit for identical inputs\n const root = order === 2 ? Math.sqrt(dist) : dist ** (1 / order); // take root of distance\n const norm = (1 - (root / 100) - min) / (max - min); // normalize to range\n const clamp = Math.max(Math.min(norm, 1), 0); // clamp to 0..1\n return clamp;\n};\n\n/** Calculates normalized similarity between two face descriptors based on their `distance`\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n * - min - normalize similarity result to a given range\n * - max - normalzie similarity resutl to a given range\n * default is 0.2...0.8\n * Returns similarity between two face descriptors normalized to 0..1 range where 0 is no similarity and 1 is perfect similarity\n */\nexport function similarity(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25, min: 0.2, max: 0.8 }) {\n const dist = distance(descriptor1, descriptor2, options);\n return normalizeDistance(dist, options.order || 2, options.min || 0, options.max || 1);\n}\n\n/** Matches given descriptor to a closest entry in array of descriptors\n * @param descriptor - face descriptor\n * @param descriptors - array of face descriptors to commpare given descriptor to\n * @param options - see `similarity` method for options description\n * Returns\n * - `index` index array index where best match was found or -1 if no matches\n * - `distance` calculated `distance` of given descriptor to the best match\n * - `similarity` calculated normalized `similarity` of given descriptor to the best match\n*/\nexport function match(descriptor: Descriptor, descriptors: Descriptor[], options: MatchOptions = { order: 2, multiplier: 25, threshold: 0, min: 0.2, max: 0.8 }) {\n if (!Array.isArray(descriptor) || !Array.isArray(descriptors) || descriptor.length < 64 || descriptors.length === 0) { // validate input\n return { index: -1, distance: Number.POSITIVE_INFINITY, similarity: 0 };\n }\n let lowestDistance = Number.MAX_SAFE_INTEGER;\n let index = -1;\n for (let i = 0; i < descriptors.length; i++) {\n const res = descriptors[i].length === descriptor.length ? distance(descriptor, descriptors[i], options) : Number.MAX_SAFE_INTEGER;\n if (res < lowestDistance) {\n lowestDistance = res;\n index = i;\n }\n if (lowestDistance < (options.threshold || 0)) break;\n }\n const normalizedSimilarity = normalizeDistance(lowestDistance, options.order || 2, options.min || 0, options.max || 1);\n return { index, distance: lowestDistance, similarity: normalizedSimilarity };\n}\n", "/**\n * Analyze detection Results and sort&combine them into per-person view\n */\n\nimport type { FaceResult, BodyResult, HandResult, GestureResult, PersonResult, Box } from '../result';\n\nexport function join(faces: FaceResult[], bodies: BodyResult[], hands: HandResult[], gestures: GestureResult[], shape: number[] | undefined): PersonResult[] {\n let id = 0;\n const persons: PersonResult[] = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: PersonResult = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands.left?.id) person.gestures.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands.right?.id) person.gestures.push(gesture);\n }\n\n // create new overarching box from all boxes belonging to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box: Box | undefined) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face.box);\n extractXY(person.body?.box);\n extractXY(person.hands.left?.box);\n extractXY(person.hands.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape?.[1] && shape?.[2]) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Warmup algorithm that uses embedded images to exercise loaded models for faster future inference\n */\n\nimport { log, now, mergeDeep } from './util/util';\nimport * as sample from './sample';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as image from './image/image';\nimport { env } from './util/env';\nimport type { Config } from './config';\nimport type { Result } from './result';\nimport type { Human, Models } from './human';\nimport type { Tensor } from './exports';\n\nasync function warmupBitmap(instance: Human): Promise {\n const b64toBlob = (base64: string, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob: Blob | null;\n let res: Result | undefined;\n switch (instance.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'body':\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await instance.detect(bitmap, instance.config);\n bitmap.close();\n }\n return res;\n}\n\nasync function warmupCanvas(instance: Human): Promise {\n return new Promise((resolve) => {\n let src: string;\n // let size = 0;\n switch (instance.config.warmup) {\n case 'face':\n // size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n // size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = '';\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n let img: HTMLImageElement;\n if (typeof Image !== 'undefined') img = new Image();\n // @ts-ignore env.image is an external monkey-patch\n else if (env.Image) img = new env.Image();\n else return;\n img.onload = async () => {\n const canvas = image.canvas(img.naturalWidth, img.naturalHeight);\n if (!canvas) {\n log('Warmup: Canvas not found');\n resolve(undefined);\n } else {\n const ctx = canvas.getContext('2d');\n if (ctx) ctx.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const tensor = await instance.image(canvas);\n const res = tensor.tensor ? await instance.detect(tensor.tensor, instance.config) : undefined;\n resolve(res);\n }\n };\n if (src) img.src = src;\n else resolve(undefined);\n });\n}\n\nasync function warmupNode(instance: Human): Promise {\n const atob = (str: string) => Buffer.from(str, 'base64');\n let img;\n if (instance.config.warmup === 'face') img = atob(sample.face);\n else img = atob(sample.body);\n let res: Result;\n if (('node' in tf) && (tf.getBackend() === 'tensorflow')) {\n const data: Tensor = tf['node'].decodeJpeg(img); // eslint-disable-line import/namespace\n const expanded: Tensor = tf.expandDims(data, 0);\n instance.tf.dispose(data);\n // log('Input:', expanded);\n res = await instance.detect(expanded, instance.config);\n instance.tf.dispose(expanded);\n } else {\n if (instance.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await instance.detect(input, instance.config);\n */\n }\n // @ts-ignore\n return res;\n}\n\nasync function runInference(instance: Human) {\n let res: Result | undefined;\n if (typeof createImageBitmap === 'function') res = await warmupBitmap(instance);\n else if (typeof Image !== 'undefined' || env.Canvas !== undefined) res = await warmupCanvas(instance);\n else res = await warmupNode(instance);\n return res;\n}\n\n/** Runs pre-compile on all loaded models */\nexport async function runCompile(allModels: Models) {\n if (!tf.env().flagRegistry.ENGINE_COMPILE_ONLY) return; // tfjs does not support compile-only inference\n const backendType = tf.getBackend();\n const webGLBackend = tf.backend();\n if ((backendType !== 'webgl' && backendType !== 'humangl') || !webGLBackend?.checkCompileCompletion) {\n // log('compile pass: skip');\n return;\n }\n tf.env().set('ENGINE_COMPILE_ONLY', true);\n const numTensorsStart = tf.engine().state.numTensors;\n const compiledModels: string[] = [];\n for (const [modelName, model] of Object.entries(allModels).filter(([key, val]) => (key !== null && val !== null))) {\n const shape = (model.inputs?.[0]?.shape) ? [...model.inputs[0].shape] : [1, 64, 64, 3];\n const dtype: string = (model.inputs?.[0]?.dtype) ? model.inputs[0].dtype : 'float32';\n for (let dim = 0; dim < shape.length; dim++) {\n if (shape[dim] === -1) shape[dim] = dim === 0 ? 1 : 64; // override batch number and any dynamic dimensions\n }\n const tensor = tf.zeros(shape, dtype);\n try {\n const res = model.execute(tensor);\n compiledModels.push(modelName);\n if (Array.isArray(res)) res.forEach((t) => tf.dispose(t));\n else tf.dispose(res);\n } catch {\n log('compile fail model:', modelName);\n }\n tf.dispose(tensor);\n }\n const kernels = await webGLBackend.checkCompileCompletionAsync();\n webGLBackend.getUniformLocations();\n log('compile pass models:', compiledModels);\n log('compile pass kernels:', kernels.length);\n tf.env().set('ENGINE_COMPILE_ONLY', false);\n const numTensorsEnd = tf.engine().state.numTensors;\n if ((numTensorsEnd - numTensorsStart) > 0) log('tensor leak:', numTensorsEnd - numTensorsStart);\n}\n\n/** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used in browser environments for `webgl` and `humangl` backends\n * @param userConfig?: Config\n*/\nexport async function warmup(instance: Human, userConfig?: Partial): Promise {\n const t0 = now();\n instance.state = 'warmup';\n if (userConfig) instance.config = mergeDeep(instance.config, userConfig) as Config;\n if (!instance.config.warmup || instance.config.warmup.length === 0 || instance.config.warmup === 'none') {\n return { face: [], body: [], hand: [], gesture: [], object: [], performance: instance.performance, timestamp: now(), persons: [], error: null };\n }\n return new Promise(async (resolve) => {\n await runCompile(instance.models);\n const res = await runInference(instance);\n const t1 = now();\n if (instance.config.debug) log('warmup', instance.config.warmup, Math.round(t1 - t0), 'ms');\n instance.emit('warmup');\n resolve(res);\n });\n}\n", "/**\n * Human main module\n * @default Human Library\n * @summary \n * @author \n * @copyright \n * @license MIT\n */\n\n// module imports\nimport { log, now, mergeDeep, validate } from './util/util';\nimport { defaults } from './config';\nimport { env, Env } from './util/env';\nimport { setModelLoadOptions } from './tfjs/load';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as app from '../package.json';\nimport * as backend from './tfjs/backend';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as draw from './draw/draw';\nimport * as efficientpose from './body/efficientpose';\nimport * as face from './face/face';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as gesture from './gesture/gesture';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as humangl from './tfjs/humangl';\nimport * as image from './image/image';\nimport * as interpolate from './util/interpolate';\nimport * as match from './face/match';\nimport * as models from './models';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as persons from './util/persons';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as warmups from './warmup';\n// type definitions\nimport type { Input, Tensor, DrawOptions, Config, Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult, AnyCanvas, ModelStats } from './exports';\n// type exports\nexport * from './exports';\n\n/** **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig - {@link Config}\n * @returns instance of {@link Human}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n\n /** Current configuration\n * - Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\n config: Config;\n\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n\n /** currenty processed image tensor and canvas */\n process: { tensor: Tensor | null, canvas: AnyCanvas | null };\n\n /** Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n * [TFJS API](https://js.tensorflow.org/api/latest/)\n */\n tf;\n\n /** Object containing environment information used for diagnostics */\n env: Env;\n\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - canvas: draws input to canvas\n * - options: are global settings for all draw operations, can be overriden for each draw method {@link DrawOptions}\n * - face, body, hand, gesture, object, person: draws detected results as overlays on canvas\n */\n draw: { canvas: typeof draw.canvas, face: typeof draw.face, body: typeof draw.body, hand: typeof draw.hand, gesture: typeof draw.gesture, object: typeof draw.object, person: typeof draw.person, all: typeof draw.all, options: DrawOptions };\n\n /** Currently loaded models\n * @internal\n * {@link Models}\n */\n models: models.Models;\n\n /** Container for events dispatched by Human\n * Possible events:\n * - `create`: triggered when Human object is instantiated\n * - `load`: triggered when models are loaded (explicitly or on-demand)\n * - `image`: triggered when input image is processed\n * - `result`: triggered when detection is complete\n * - `warmup`: triggered when warmup is complete\n * - `error`: triggered on some errors\n */\n events: EventTarget | undefined;\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: number[];\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: [number, number][];\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n /** WebGL debug info */\n gl: Record;\n // definition end\n\n /** Constructor for **Human** library that is futher used for all operations\n * @param userConfig - user configuration object {@link Config}\n */\n constructor(userConfig?: Partial) {\n this.env = env;\n /*\n defaults.wasmPath = tf.version['tfjs-core'].includes('-') // custom build or official build\n ? 'https://vladmandic.github.io/tfjs/dist/'\n : `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tf.version_core}/dist/`;\n */\n const tfVersion = (tf.version.tfjs || tf.version_core).replace(/-(.*)/, '');\n defaults.wasmPath = `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tfVersion}/dist/`;\n defaults.modelBasePath = env.browser ? '../models/' : 'file://models/';\n defaults.backend = env.browser ? 'humangl' : 'tensorflow';\n this.version = app.version; // expose version property on instance of class\n Object.defineProperty(this, 'version', { value: app.version }); // expose version property directly on class itself\n this.config = JSON.parse(JSON.stringify(defaults));\n Object.seal(this.config);\n this.config.cacheModels = typeof indexedDB !== 'undefined';\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n setModelLoadOptions(this.config);\n this.tf = tf;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.performance = {};\n this.events = (typeof EventTarget !== 'undefined') ? new EventTarget() : undefined;\n // object that contains all initialized models\n this.models = new models.Models();\n // reexport draw methods\n this.draw = {\n options: draw.options,\n canvas: (input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) => draw.canvas(input, output),\n face: (output: AnyCanvas, result: FaceResult[], options?: Partial) => draw.face(output, result, options),\n body: (output: AnyCanvas, result: BodyResult[], options?: Partial) => draw.body(output, result, options),\n hand: (output: AnyCanvas, result: HandResult[], options?: Partial) => draw.hand(output, result, options),\n gesture: (output: AnyCanvas, result: GestureResult[], options?: Partial) => draw.gesture(output, result, options),\n object: (output: AnyCanvas, result: ObjectResult[], options?: Partial) => draw.object(output, result, options),\n person: (output: AnyCanvas, result: PersonResult[], options?: Partial) => draw.person(output, result, options),\n all: (output: AnyCanvas, result: Result, options?: Partial) => draw.all(output, result, options),\n };\n this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [], error: null };\n // export access to image processing\n this.process = { tensor: null, canvas: null };\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // set gl info\n this.gl = humangl.config;\n // init model validation\n models.validateModel(this, null, '');\n // include platform info\n this.emit('create');\n }\n\n /** internal function to measure tensor leaks */\n analyze = (...msg: string[]) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n };\n\n /** internal function for quick sanity check on inputs @hidden */\n #sanity = (input: Input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.env.node && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n };\n\n /** Reset configuration to default values */\n reset(): void {\n const currentBackend = this.config.backend; // save backend;\n this.config = JSON.parse(JSON.stringify(defaults));\n this.config.backend = currentBackend;\n image.reset();\n env.initial = true;\n }\n\n /** Validate current configuration schema */\n validate(userConfig?: Partial) {\n const msgs = validate(defaults, userConfig || this.config);\n if (msgs.length === 0) this.config = mergeDeep(this.config, userConfig) as Config;\n return msgs;\n }\n\n /** Check model for invalid kernel ops for current backend */\n check() {\n return models.validate(this);\n }\n\n /** Exports face matching methods {@link match#similarity} */\n public similarity = match.similarity;\n /** Exports face matching methods {@link match#distance} */\n public distance = match.distance;\n /** Exports face matching methods {@link match#match} */\n public match = match.match;\n\n /** Utility wrapper for performance.now() */\n now(): number { // eslint-disable-line class-methods-use-this\n return now();\n }\n\n /** Process input as return canvas and tensor\n *\n * @param input - any input {@link Input}\n * @param getTensor - should image processing also return tensor or just canvas\n * Returns object with `tensor` and `canvas`\n */\n image(input: Input, getTensor: boolean = true) {\n return image.process(input, this.config, getTensor);\n }\n\n /** Segmentation method takes any input and returns processed canvas with body segmentation\n * - Segmentation is not triggered as part of detect process\n * @param input - {@link Input}\n * @param background - {@link Input}\n * - Optional parameter background is used to fill the background with specific input\n * Returns:\n * - `data` as raw data array with per-pixel segmentation values\n * - `canvas` as canvas which is input image filtered with segementation data and optionally merged with background image. canvas alpha values are set to segmentation values for easy merging\n * - `alpha` as grayscale canvas that represents segmentation alpha values\n */\n async segmentation(input: Input, background?: Input): Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n *\n * @param input - Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n enhance(input: Tensor): Tensor | null { // eslint-disable-line class-methods-use-this\n return faceres.enhance(input);\n }\n\n /** Compare two input tensors for pixel simmilarity\n * - use `human.image` to process any valid input and get a tensor that can be used for compare\n * - when passing manually generated tensors:\n * - both input tensors must be in format [1, height, width, 3]\n * - if resolution of tensors does not match, second tensor will be resized to match resolution of the first tensor\n * - return value is pixel similarity score normalized by input resolution and rgb channels\n */\n compare(firstImageTensor: Tensor, secondImageTensor: Tensor): Promise {\n return image.compare(this.config, firstImageTensor, secondImageTensor);\n }\n\n /** Explicit backend initialization\n * - Normally done implicitly during initial load phase\n * - Call to explictly register and initialize TFJS backend without any other operations\n * - Use when changing backend during runtime\n */\n async init(): Promise {\n await backend.check(this, true);\n await this.tf.ready();\n image.reset();\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n *\n * @param userConfig - {@link Config}\n */\n async load(userConfig?: Partial): Promise {\n this.state = 'load';\n const timeStamp = now();\n const count = Object.values(this.models).filter((model) => model).length;\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.env.initial) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version['tfjs-core'] as string}`);\n if (!await backend.check(this)) log('error: backend check failed');\n await tf.ready();\n if (this.env.browser) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('environment:', this.env);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n\n await models.load(this); // actually loads models\n if (this.env.initial && this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors'); // print memory stats on first run\n this.env.initial = false;\n\n const loaded = Object.values(this.models).filter((model) => model).length;\n if (loaded !== count) { // number of loaded models changed\n models.validate(this); // validate kernel ops used by model against current backend\n this.emit('load');\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.loadModels || 0)) this.performance.loadModels = this.env.perfadd ? (this.performance.loadModels || 0) + current : current;\n }\n\n /** emit event */\n emit = (event: string) => {\n if (this.events?.dispatchEvent) this.events.dispatchEvent(new Event(event));\n };\n\n /** Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result - {@link Result} optional use specific result set to run interpolation on\n * @returns result - {@link Result}\n */\n next(result: Result = this.result): Result {\n return interpolate.calc(result, this.config);\n }\n\n /** get model loading/loaded stats */\n getModelStats(): ModelStats { return models.getModelStats(this); }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async warmup(userConfig?: Partial) {\n const t0 = now();\n const res = await warmups.warmup(this, userConfig);\n const t1 = now();\n this.performance.warmup = Math.trunc(t1 - t0);\n return res;\n }\n\n /** Run detect with tensorflow profiling\n * - result object will contain total exeuction time information for top-20 kernels\n * - actual detection object can be accessed via `human.result`\n */\n async profile(input: Input, userConfig?: Partial): Promise<{ kernel: string, time: number, perc: number }[]> {\n const profile = await this.tf.profile(() => this.detect(input, userConfig));\n const kernels: Record = {};\n let total = 0;\n for (const kernel of profile.kernels) { // sum kernel time values per kernel\n if (kernels[kernel.name]) kernels[kernel.name] += kernel.kernelTimeMs;\n else kernels[kernel.name] = kernel.kernelTimeMs;\n total += kernel.kernelTimeMs;\n }\n const kernelArr: { kernel: string, time: number, perc: number }[] = [];\n Object.entries(kernels).forEach((key) => kernelArr.push({ kernel: key[0], time: key[1] as unknown as number, perc: 0 })); // convert to array\n for (const kernel of kernelArr) {\n kernel.perc = Math.round(1000 * kernel.time / total) / 1000;\n kernel.time = Math.round(1000 * kernel.time) / 1000;\n }\n kernelArr.sort((a, b) => b.time - a.time); // sort\n kernelArr.length = 20; // crop\n return kernelArr;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input - {@link Input}\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async detect(input: Input, userConfig?: Partial): Promise {\n // detection happens inside a promise\n this.state = 'detect';\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error });\n }\n\n const timeStart = now();\n\n // configure backend if needed\n await backend.check(this);\n\n // load models if enabled\n await this.load();\n\n timeStamp = now();\n this.state = 'image';\n const img = await image.process(input, this.config) as { canvas: AnyCanvas, tensor: Tensor };\n this.process = img;\n this.performance.inputProcess = this.env.perfadd ? (this.performance.inputProcess || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n if (!img.tensor) {\n if (this.config.debug) log('could not convert input to tensor');\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error: 'could not convert input to tensor' });\n return;\n }\n this.emit('image');\n\n timeStamp = now();\n this.config.skipAllowed = await image.skip(this.config, img.tensor);\n if (!this.performance.totalFrames) this.performance.totalFrames = 0;\n if (!this.performance.cachedFrames) this.performance.cachedFrames = 0;\n (this.performance.totalFrames)++;\n if (this.config.skipAllowed) this.performance.cachedFrames++;\n this.performance.cacheCheck = this.env.perfadd ? (this.performance.cacheCheck || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes: FaceResult[] | Promise | never[] = [];\n let bodyRes: BodyResult[] | Promise | never[] = [];\n let handRes: HandResult[] | Promise | never[] = [];\n let objectRes: ObjectResult[] | Promise | never[] = [];\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n this.state = 'detect:face';\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, img.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, img.tensor) : [];\n this.performance.face = this.env.perfadd ? (this.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n\n if (this.config.async && (this.config.body.maxDetected === -1 || this.config.hand.maxDetected === -1)) faceRes = await faceRes; // need face result for auto-detect number of hands or bodies\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n this.state = 'detect:body';\n const bodyConfig = this.config.body.maxDetected === -1 ? mergeDeep(this.config, { body: { maxDetected: this.config.face.enabled ? 1 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of bodies\n if (this.config.async) {\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(img.tensor, bodyConfig) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n timeStamp = now();\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(img.tensor, bodyConfig) : [];\n this.performance.body = this.env.perfadd ? (this.performance.body || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n this.state = 'detect:hand';\n const handConfig = this.config.hand.maxDetected === -1 ? mergeDeep(this.config, { hand: { maxDetected: this.config.face.enabled ? 2 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of hands\n if (this.config.async) {\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? handtrack.predict(img.tensor, handConfig) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n timeStamp = now();\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? await handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? await handtrack.predict(img.tensor, handConfig) : [];\n this.performance.hand = this.env.perfadd ? (this.performance.hand || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Hand:');\n\n // run object detection\n this.analyze('Start Object:');\n this.state = 'detect:object';\n if (this.config.async) {\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(img.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n timeStamp = now();\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(img.tensor, this.config) : [];\n this.performance.object = this.env.perfadd ? (this.performance.object || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Object:');\n\n // if async wait for results\n this.state = 'detect:await';\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n this.state = 'detect:gesture';\n let gestureRes: GestureResult[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes as FaceResult[]), ...gesture.body(bodyRes as BodyResult[]), ...gesture.hand(handRes as HandResult[]), ...gesture.iris(faceRes as FaceResult[])];\n if (!this.config.async) this.performance.gesture = this.env.perfadd ? (this.performance.gesture || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = this.env.perfadd ? (this.performance.total || 0) + Math.trunc(now() - timeStart) : Math.trunc(now() - timeStart);\n const shape = this.process.tensor?.shape || [];\n this.result = {\n face: faceRes as FaceResult[],\n body: bodyRes as BodyResult[],\n hand: handRes as HandResult[],\n gesture: gestureRes,\n object: objectRes as ObjectResult[],\n performance: this.performance,\n canvas: this.process.canvas,\n timestamp: Date.now(),\n error: null,\n get persons() { return persons.join(faceRes as FaceResult[], bodyRes as BodyResult[], handRes as HandResult[], gestureRes, shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(img.tensor);\n\n // log('Result:', result);\n this.emit('detect');\n this.state = 'idle';\n resolve(this.result);\n });\n }\n}\n\n/** Class Human as default export */\n/* eslint no-restricted-exports: [\"off\", { \"restrictedNamedExports\": [\"default\"] }] */\nexport { Human as default, match, draw, models };\n"], + "mappings": ";;;;;;m5BAOO,SAASA,KAAOC,EAAW,CAChC,IAAMC,EAAK,IAAI,KACTC,EAAK,GAAGD,EAAG,SAAS,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,KAAKA,EAAG,WAAW,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,KAAKA,EAAG,WAAW,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,KAAKA,EAAG,gBAAgB,EAAE,SAAS,EAAE,SAAS,EAAG,GAAG,IACpMD,GAAK,QAAQ,IAAIE,EAAI,SAAU,GAAGF,CAAG,CAC3C,CAGO,SAASG,GAAKC,EAAgBC,EAAsB,CACzD,IAAMC,EAAYF,EAAO,SAAS,GAAG,EAAI,GAAK,IAExCG,EADWF,EAAK,WAAW,GAAG,GAAKA,EAAK,WAAW,GAAG,GAAKA,EAAK,WAAW,OAAO,GAAKA,EAAK,WAAW,QAAQ,GAAKA,EAAK,WAAW,OAAO,EACzH,GAAGA,IAAS,GAAGD,IAASE,IAAYD,IAC5D,GAAI,CAACE,EAAK,kBAAkB,EAAE,SAAS,OAAO,EAAG,MAAM,IAAI,MAAM,yCAAyCA,GAAM,EAChH,OAAOA,CACT,CAGO,IAAMC,EAAM,IACb,OAAO,aAAgB,YAAoB,YAAY,IAAI,EACxD,UAAU,OAAO,QAAQ,OAAO,OAAO,CAAC,EAAI,IAAO,KAAM,SAAS,CAAC,EAIrE,SAASC,GAASC,EAA2BC,EAAyBC,EAAS,SAAUC,EAA+D,CAAC,EAAG,CACjK,QAAWC,KAAO,OAAO,KAAKH,CAAM,EAClC,GAAI,OAAOA,EAAOG,IAAS,SACzBL,GAASC,EAASI,GAAMH,EAAOG,GAAMA,EAAKD,CAAI,MACzC,CACL,IAAME,EAAUL,GAAa,OAAOA,EAASI,IAAS,YACjDC,GAASF,EAAK,KAAK,CAAE,OAAQ,mBAAoB,MAAO,GAAGD,KAAUE,OAASH,EAAOG,IAAO,CAAC,EAClG,IAAME,EAAON,GAAY,OAAOA,EAASI,IAAS,OAAOH,EAAOG,GAC5DC,GAAW,CAACC,GAAMH,EAAK,KAAK,CAAE,OAAQ,yBAA0B,MAAO,GAAGD,KAAUE,OAASH,EAAOG,KAAQ,SAAU,OAAOJ,EAASI,EAAK,CAAC,CAClJ,CAGF,OAAIH,EAAO,OAASC,IAAW,UAAYC,EAAK,OAAS,GAAGd,EAAI,wBAAyBc,CAAI,EACtFA,CACT,CAGO,SAASI,KAAaC,EAAS,CACpC,IAAMC,EAAYC,GAAQA,GAAO,OAAOA,GAAQ,SAChD,OAAOF,EAAQ,OAAO,CAACG,EAAMD,KAC3B,OAAO,KAAKA,GAAO,CAAC,CAAC,EAAE,QAASN,GAAQ,CACtC,IAAMQ,EAAOD,EAAKP,GACZS,EAAOH,EAAIN,GACb,MAAM,QAAQQ,CAAI,GAAK,MAAM,QAAQC,CAAI,EAAGF,EAAKP,GAAOQ,EAAK,OAAO,GAAGC,CAAI,EACtEJ,EAASG,CAAI,GAAKH,EAASI,CAAI,EAAGF,EAAKP,GAAOG,EAAUK,EAAMC,CAAI,EACtEF,EAAKP,GAAOS,CACnB,CAAC,EACMF,GACN,CAAC,CAAC,CACP,CCwQA,IAAMG,GAAiB,CACrB,QAAS,GACT,cAAe,GACf,YAAa,GACb,eAAgB,GAChB,SAAU,GACV,kBAAmB,GACnB,MAAO,GACP,MAAO,GACP,OAAQ,OACR,iBAAkB,GAClB,YAAa,GACb,WAAY,GACZ,gBAAiB,GACjB,OAAQ,CACN,QAAS,GACT,aAAc,GACd,MAAO,EACP,OAAQ,EACR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,CACZ,EACA,QAAS,CACP,QAAS,EACX,EACA,KAAM,CACJ,QAAS,GACT,SAAU,CACR,UAAW,iBACX,SAAU,GACV,YAAa,EACb,WAAY,GACZ,SAAU,KACV,cAAe,GACf,aAAc,GACd,KAAM,GACN,OAAQ,EACV,EACA,KAAM,CACJ,QAAS,GACT,UAAW,gBACX,YAAa,EACf,EACA,UAAW,CACT,QAAS,GACT,UAAW,yBACb,EACA,KAAM,CACJ,QAAS,GACT,UAAW,WACb,EACA,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GACZ,SAAU,KACV,UAAW,cACb,EACA,YAAa,CACX,QAAS,GACT,UAAW,eACX,WAAY,GACZ,SAAU,IACV,cAAe,EACjB,EACA,UAAW,CACT,QAAS,GACT,WAAY,GACZ,SAAU,IACV,UAAW,gBACb,EACA,SAAU,CACR,QAAS,GACT,WAAY,GACZ,SAAU,IACV,UAAW,eACb,CACF,EACA,KAAM,CACJ,QAAS,GACT,UAAW,yBACX,YAAa,GACb,cAAe,GACf,WAAY,EACZ,SAAU,GACZ,EACA,KAAM,CACJ,QAAS,GACT,SAAU,GACV,WAAY,GACZ,SAAU,IACV,cAAe,GACf,aAAc,GACd,YAAa,GACb,UAAW,GACX,SAAU,CACR,UAAW,gBACb,EACA,SAAU,CACR,UAAW,wBACb,CACF,EACA,OAAQ,CACN,QAAS,GACT,UAAW,qBACX,cAAe,GACf,aAAc,GACd,YAAa,GACb,WAAY,GACZ,SAAU,GACZ,EACA,aAAc,CACZ,QAAS,GACT,UAAW,cACX,KAAM,CACR,CACF,ECncA,IAAAC,EAAA,GAAAC,GAAAD,EAAA,gBAAAE,GAAA,WAAAC,GAAA,YAAAC,KAMAC,EAAAL,EAAAM,IAA4CD,EAAAL,EAAAM,IAA5C,UAAAA,OAAW,iCAAiC,UAAAA,OAAW,+CAAuP,OAAO,UAAUH,OAAM,iCAAiC,OAAO,cAAcD,OAAM,wCAA3R,IAAIK,GAAE,SAASC,GAAE,SAASC,GAAE,SAASC,GAAE,SAASC,GAAE,SAASC,GAAE,SAASC,GAAE,SAAST,GAAE,CAAC,KAAKG,GAAE,YAAYC,GAAE,YAAYC,GAAE,cAAcC,GAAE,iBAAiBC,GAAE,qBAAqBC,GAAE,oBAAoBC,EAAC,ECNrS,IAAMC,GAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;EAqBvB,IAAMC,GAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAcvBC,GAA0B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAc1BC,GAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAeXC,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAyBPC,GAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;EC9E3B,IAAMC,GAAU,CAACC,EAAQC,EAAgBC,IAAe,CACtD,IAAMC,EAAI,IAAI,OAAO,MAAQF,EAAS,eAAgB,IAAI,EAC1DD,EAAO,QAAQG,EAAG,CAACC,EAAOC,KACxBH,EAAWG,GAAQ,EACZD,EACR,CACH,EAEME,GAAN,KAAgB,CAMd,YAAYC,EAAIC,EAAcC,EAAgB,CAL9CC,EAAA,eAAU,CAAC,GACXA,EAAA,iBAAY,CAAC,GACbA,EAAA,WACAA,EAAA,WA2BAA,EAAA,eAAU,CAACV,EAAQW,IAA6B,CAC9C,IAAMC,EAAS,KAAK,GAAG,aAAaD,CAAI,EACxC,OAAKC,GAIL,KAAK,GAAG,aAAaA,EAAQZ,CAAM,EACnC,KAAK,GAAG,cAAcY,CAAM,EACvB,KAAK,GAAG,mBAAmBA,EAAQ,KAAK,GAAG,cAAc,EAIvDA,GAHLC,EAAI,8BAA8B,KAAK,GAAG,iBAAiBD,CAAM,GAAK,WAAW,EAC1E,QAPPC,EAAI,iCAAiC,EAC9B,KASX,GArCE,KAAK,GAAKN,EACV,IAAMO,EAAe,KAAK,QAAQN,EAAc,KAAK,GAAG,aAAa,EAC/DO,EAAiB,KAAK,QAAQN,EAAgB,KAAK,GAAG,eAAe,EAE3E,GADA,KAAK,GAAK,KAAK,GAAG,cAAc,EAC5B,GAACK,GAAgB,CAACC,GACtB,IAAI,CAAC,KAAK,GAAI,CACZF,EAAI,wCAAwC,EAC5C,MACF,CAIA,GAHA,KAAK,GAAG,aAAa,KAAK,GAAIC,CAAY,EAC1C,KAAK,GAAG,aAAa,KAAK,GAAIC,CAAc,EAC5C,KAAK,GAAG,YAAY,KAAK,EAAE,EACvB,CAAC,KAAK,GAAG,oBAAoB,KAAK,GAAI,KAAK,GAAG,WAAW,EAAG,CAC9DF,EAAI,2BAA2B,KAAK,GAAG,kBAAkB,KAAK,EAAE,GAAK,WAAW,EAChF,MACF,CACA,KAAK,GAAG,WAAW,KAAK,EAAE,EAC1Bd,GAAQS,EAAc,YAAa,KAAK,SAAS,EACjD,QAAW,KAAK,KAAK,UAAW,KAAK,UAAU,GAAK,KAAK,GAAG,kBAAkB,KAAK,GAAI,CAAC,EACxFT,GAAQS,EAAc,UAAW,KAAK,OAAO,EAC7CT,GAAQU,EAAgB,UAAW,KAAK,OAAO,EAC/C,QAAWO,KAAK,KAAK,QAAS,KAAK,QAAQA,GAAK,KAAK,GAAG,mBAAmB,KAAK,GAAIA,CAAC,EACvF,CAgBF,EAWO,SAASC,IAAgB,CAC9B,IAAIC,EAAY,EACZC,EAAqC,KACrCC,EAAc,GACdC,EAA0B,GAC1BC,EAAoG,CAAC,KAAM,IAAI,EAC/GC,EAAyC,CAAC,EAC1CC,EAAmC,KACnCC,EAAmC,KACjCC,EAAWC,GAAO,IAAK,GAAG,EAC1BC,EAAqB,CAAE,EACvBC,EAAO,CAAE,aAAc,CAAE,EACzBtB,EAAKmB,EAAS,WAAW,OAAO,EACtC,GAAI,CAACnB,EAAI,CACPM,EAAI,kCAAkC,EACtC,MACF,CAEA,KAAK,GAAKN,EAEV,SAASuB,EAAOC,EAAOC,EAAQ,CAC7B,GAAI,EAAAD,IAAUL,EAAS,OAASM,IAAWN,EAAS,QAGpD,IAFAA,EAAS,MAAQK,EACjBL,EAAS,OAASM,EACd,CAACR,EAAc,CACjB,IAAMS,EAAW,IAAI,aAAa,CAAC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,CAAC,EAChHT,EAAejB,EAAG,aAAa,EAC/BA,EAAG,WAAWA,EAAG,aAAciB,CAAY,EAC3CjB,EAAG,WAAWA,EAAG,aAAc0B,EAAU1B,EAAG,WAAW,EACvDA,EAAG,YAAYA,EAAG,+BAAgC,EAAI,CACxD,CACAA,EAAG,SAAS,EAAG,EAAGmB,EAAS,MAAOA,EAAS,MAAM,EACjDJ,EAAmB,CAAC,KAAM,IAAI,EAChC,CAEA,SAASY,EAAyBH,EAAOC,EAAQ,CAC/C,IAAMG,EAAM5B,EAAG,kBAAkB,EACjCA,EAAG,gBAAgBA,EAAG,YAAa4B,CAAG,EACtC,IAAMC,EAAe7B,EAAG,mBAAmB,EAC3CA,EAAG,iBAAiBA,EAAG,aAAc6B,CAAY,EACjD,IAAMC,EAAU9B,EAAG,cAAc,EACjC,OAAAA,EAAG,YAAYA,EAAG,WAAY8B,CAAO,EACrC9B,EAAG,WAAWA,EAAG,WAAY,EAAGA,EAAG,KAAMwB,EAAOC,EAAQ,EAAGzB,EAAG,KAAMA,EAAG,cAAe,IAAI,EAC1FA,EAAG,cAAcA,EAAG,WAAYA,EAAG,mBAAoBA,EAAG,MAAM,EAChEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,mBAAoBA,EAAG,MAAM,EAChEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,eAAgBA,EAAG,aAAa,EACnEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,eAAgBA,EAAG,aAAa,EACnEA,EAAG,qBAAqBA,EAAG,YAAaA,EAAG,kBAAmBA,EAAG,WAAY8B,EAAS,CAAC,EACvF9B,EAAG,YAAYA,EAAG,WAAY,IAAI,EAClCA,EAAG,gBAAgBA,EAAG,YAAa,IAAI,EAChC,CAAE,IAAA4B,EAAK,QAAAE,CAAQ,CACxB,CAEA,SAASC,EAAmBC,EAAuE,CACjG,OAAAjB,EAAiBiB,GAASjB,EAAiBiB,IAAUL,EAAyBR,EAAS,MAAOA,EAAS,MAAM,EACtGJ,EAAiBiB,EAC1B,CAEA,SAASC,EAAKC,EAAQ,EAAG,CACvB,GAAI,CAAChB,EAAgB,OACrB,IAAIzB,EAA8B,KAC9B0C,EAAkC,KAClCC,EAAQ,GACRzB,IAAc,EAAGlB,EAASmB,EACzBnB,EAASsC,EAAmBjB,CAAuB,EAAE,SAAW,KACrEH,IACIE,GAAe,EAAEqB,EAAQZ,EAAK,eAChCa,EAAS,KACTC,EAAQzB,EAAY,IAAM,IAE1BG,GAA2BA,EAA0B,GAAK,EAC1DqB,EAASJ,EAAmBjB,CAAuB,EAAE,KAAO,MAE9Dd,EAAG,YAAYA,EAAG,WAAYP,CAAM,EACpCO,EAAG,gBAAgBA,EAAG,YAAamC,CAAM,EACzCnC,EAAG,UAAUkB,EAAe,QAAQ,MAAWkB,EAAQ,GAAK,CAAE,EAC9DpC,EAAG,WAAWA,EAAG,UAAW,EAAG,CAAC,CAClC,CAEA,SAASqC,EAAcnC,EAAkC,CACvD,GAAImB,EAAmBnB,GACrB,OAAAgB,EAAiBG,EAAmBnB,GACpCF,EAAG,YAAYkB,EAAiBA,EAAe,GAAK,OAAS,IAAI,EAC1DA,EAGT,GADAA,EAAiB,IAAInB,GAAUC,EAAYsC,GAAgBpC,CAAc,EACrE,CAACgB,EACH,OAAAZ,EAAI,qCAAqC,EAClC,KAET,IAAMiC,EAAY,aAAa,kBACzBC,EAAW,EAAID,EACrB,OAAAvC,EAAG,wBAAwBkB,EAAe,UAAU,GAAM,EAC1DlB,EAAG,oBAAoBkB,EAAe,UAAU,IAAQ,EAAGlB,EAAG,MAAO,GAAOwC,EAAU,EAAID,CAAS,EACnGvC,EAAG,wBAAwBkB,EAAe,UAAU,EAAK,EACzDlB,EAAG,oBAAoBkB,EAAe,UAAU,GAAO,EAAGlB,EAAG,MAAO,GAAOwC,EAAU,EAAID,CAAS,EAClGlB,EAAmBnB,GAAkBgB,EAC9BA,CACT,CAEA,IAAMuB,EAAS,CACb,YAAcC,GAAqB,CACjC,IAAMC,EAAI,IAAI,aAAaD,CAAM,EACjCC,EAAE,IAAM,IACRA,EAAE,IAAM,IACRA,EAAE,KAAO,IACTA,EAAE,KAAO,IACT,IAAMtC,EAAUsC,EAAE,MAAQ,GAAKA,EAAE,KAAO,GAAKA,EAAE,KAAO,GAAKA,EAAE,MAAQ,GAAKA,EAAE,MAAQ,GAAKA,EAAE,MAAQ,GAAKA,EAAE,MAAQ,GAAKA,EAAE,MAAQ,EACrHC,GACAC,GACNC,EAAUT,EAAchC,CAAM,EAChC,CAACyC,IACL9C,EAAG,WAAW8C,EAAQ,QAAQ,EAAMH,CAAC,EACrCV,EAAK,EACP,EAEA,WAAac,GAAuB,CAClC,IAAMC,GAAKD,GAAc,GAAK,EAC9BN,EAAO,YAAY,CACjBO,EAAG,EAAG,EAAG,EAAG,EACZ,EAAGA,EAAG,EAAG,EAAG,EACZ,EAAG,EAAGA,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAaC,GAAmB,CAC9B,IAAMC,GAAKD,GAAU,GAAK,EAAI,EAAI,EAC5BE,GAAMD,EAAI,GAAK,IACrBT,EAAO,YAAY,CACjBS,EAAGC,EAAGA,EAAG,EAAG,EACZA,EAAGD,EAAGC,EAAG,EAAG,EACZA,EAAGA,EAAGD,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,IAAM,CAChBT,EAAO,WAAW,EAAE,CACtB,EAEA,SAAWQ,GAAmB,CAC5B,IAAMG,GAAKH,GAAU,GAAK,EACpBI,EAAI,MAAQD,EAAI,GACtBX,EAAO,YAAY,CACjBW,EAAG,EAAG,EAAG,EAAGC,EACZ,EAAGD,EAAG,EAAG,EAAGC,EACZ,EAAG,EAAGD,EAAG,EAAGC,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,SAAU,IAAM,CACdZ,EAAO,SAAS,EAAE,CACpB,EAEA,IAAMa,GAAqB,CACzBA,GAAYA,GAAY,GAAK,IAAM,KAAK,GACxC,IAAMC,EAAM,KAAK,IAAID,CAAQ,EACvBE,EAAM,KAAK,IAAIF,CAAQ,EACvBG,EAAO,KACPC,EAAO,KACPC,EAAO,KACblB,EAAO,YAAY,CACjBgB,EAAOF,GAAO,EAAIE,GAAQD,EAAO,CAACC,EAAOC,EAAOH,EAAO,CAACG,EAAQF,EAAO,CAACE,EAAOC,EAAOJ,EAAO,CAACI,EAAQH,GAAO,EAAIG,GAAO,EAAG,EAC3HF,EAAOF,EAAO,CAACE,EAAQD,EAAO,KAAQE,EAAOH,GAAO,EAAIG,GAAQF,EAAO,IAAQG,EAAOJ,EAAO,CAACI,EAAQH,EAAO,MAAS,EAAG,EACzHC,EAAOF,EAAO,CAACE,EAAQD,EAAO,EAAE,EAAIC,GAAQC,EAAOH,EAAO,CAACG,EAAQF,EAAOE,EAAOC,EAAOJ,GAAO,EAAII,GAAQH,EAAOG,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,oBAAqB,IAAM,CACzBlB,EAAO,YAAY,CACjB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,MAAO,IAAM,CACXA,EAAO,YAAY,CACjB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,QAAS,IAAM,CACbA,EAAO,YAAY,CACjB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,eAAgB,IAAM,CACpBA,EAAO,YAAY,CACjB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,IAAM,CAChBA,EAAO,YAAY,CACjB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,YAAa,IAAM,CACjBA,EAAO,YAAY,CACjB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,SAAU,IAAM,CACdA,EAAO,YAAY,CACjB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,WAAY,IAAM,CAChBA,EAAO,YAAY,CACjB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,CACd,CAAC,CACH,EAEA,YAAcC,GAAqB,CACjC,IAAMC,EAAI,IAAI,aAAaD,CAAM,EAC3BkB,EAAa,EAAIzC,EAAS,MAC1B0C,EAAa,EAAI1C,EAAS,OAC1B2B,EAAUT,EAAsByB,EAAW,EAC7C,CAAChB,IACL9C,EAAG,WAAW8C,EAAQ,QAAQ,EAAMH,CAAC,EACrC3C,EAAG,UAAU8C,EAAQ,QAAQ,GAAOc,EAAYC,CAAU,EAC1D5B,EAAK,EACP,EAEA,YAAa,IAAM,CAEjBQ,EAAO,YAAY,KAAK,KAAM,CAC5B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,CACR,CAAC,CACH,EAEA,OAAQ,IAAM,CAEZA,EAAO,YAAY,KAAK,KAAM,CAC5B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,CACT,CAAC,CACH,EAEA,OAAQ,IAAM,CAEZA,EAAO,YAAY,KAAK,KAAM,CAC5B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,CACR,CAAC,CACH,EAEA,QAAUQ,GAAW,CACnB,IAAMc,EAAId,GAAU,EAEpBR,EAAO,YAAY,KAAK,KAAM,CAC5B,EAAG,GAAKsB,EAAG,EACX,GAAKA,EAAG,EAAI,EAAIA,EAAG,GAAKA,EACxB,EAAG,GAAKA,EAAG,CACb,CAAC,CACH,EAEA,OAASC,GAAiB,CACxB,IAAMC,EAAID,GAAQ,EAElBvB,EAAO,YAAY,KAAK,KAAM,CAC5B,GAAKwB,EAAG,GAAKA,EAAG,EAChB,GAAKA,EAAG,EAAG,EAAIA,EACf,EAAG,EAAIA,EAAG,EAAIA,CAChB,CAAC,CACH,EAEA,KAAOD,GAAiB,CACtB,IAAME,EAAaF,EAAO,EAAK7C,EAAS,MAClCgD,EAAaH,EAAO,EAAK7C,EAAS,OAClC2B,EAAUT,EAAsB+B,EAAI,EACtC,CAACtB,IAEL9C,EAAG,UAAU8C,EAAQ,QAAQ,GAAO,EAAGqB,CAAS,EAChDlC,EAAKX,EAAK,YAAY,EAEtBtB,EAAG,UAAU8C,EAAQ,QAAQ,GAAOoB,EAAW,CAAC,EAChDjC,EAAK,EACP,EAEA,SAAW+B,GAAiB,CAC1B,IAAME,EAAaF,EAAQ7C,EAAS,MAC9BgD,EAAaH,EAAQ7C,EAAS,OAC9B2B,EAAUT,EAAsBgC,EAAQ,EAC1C,CAACvB,IACL9C,EAAG,UAAU8C,EAAQ,QAAQ,KAASoB,EAAWC,CAAS,EAC1DlC,EAAK,EACP,CACF,EAGA,KAAK,IAAM,SAAUnC,EAAM,CACzB,IAAMwE,EAAO,MAAM,UAAU,MAAM,KAAK,UAAW,CAAC,EAC9CC,EAAO9B,EAAO3C,GACpBkB,EAAY,KAAK,CAAE,KAAAuD,EAAM,KAAAD,CAAK,CAAC,CACjC,EAGA,KAAK,MAAQ,UAAY,CACvBtD,EAAc,CAAC,CACjB,EAGA,KAAK,IAAM,UAAY,CACrB,OAAOA,CACT,EAGA,KAAK,MAAQ,SAAUwD,EAAO,CAC5BjD,EAAOiD,EAAM,MAAOA,EAAM,MAAM,EAChC7D,EAAY,EACPC,IAAeA,EAAgBZ,EAAG,cAAc,GACrDA,EAAG,YAAYA,EAAG,WAAYY,CAAa,EAC3CZ,EAAG,cAAcA,EAAG,WAAYA,EAAG,eAAgBA,EAAG,aAAa,EACnEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,eAAgBA,EAAG,aAAa,EACnEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,mBAAoBA,EAAG,OAAO,EACjEA,EAAG,cAAcA,EAAG,WAAYA,EAAG,mBAAoBA,EAAG,OAAO,EACjEA,EAAG,WAAWA,EAAG,WAAY,EAAGA,EAAG,KAAMA,EAAG,KAAMA,EAAG,cAAewE,CAAK,EACzE,QAASC,EAAI,EAAGA,EAAIzD,EAAY,OAAQyD,IAAK,CAC3C5D,EAAe4D,IAAMzD,EAAY,OAAS,EAC1C,IAAM0D,EAAI1D,EAAYyD,GAEtBC,EAAE,KAAK,MAAM,KAAMA,EAAE,MAAQ,CAAC,CAAC,CACjC,CACA,OAAOvD,CACT,EAGA,KAAK,KAAO,SAAUqD,EAAO,CAC3B,YAAK,IAAI,aAAc,CAAC,EACjB,KAAK,MAAMA,CAAK,CACzB,CACF,CClbA,eAAsBG,GAAsBC,EAAqC,CAE/E,IAAMC,EAAUD,EAAW,MAAM,SAAW,EAAO,UAAQA,CAAU,EAAIA,EACnEE,EAAc,QAAMD,EAAS,EAAG,CAAC,EACjCE,EAAgB,CAAI,MAAID,EAAS,EAAE,EAAM,MAAIA,EAAS,EAAE,EAAM,MAAIA,EAAS,EAAE,CAAC,EAC9EE,EAAgB,CAAI,MAAIF,EAAS,EAAE,EAAM,MAAIA,EAAS,EAAE,EAAM,MAAIA,EAAS,EAAE,CAAC,EAC9EG,EAAS,MAAM,QAAQ,IAAID,EAAI,IAAKE,GAAYA,EAAQ,KAAK,CAAC,CAAC,EAC/DC,EAAW,IAAO,KAAK,IAAIF,EAAO,GAAG,GAAIA,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EACnEG,EAAM,CAAI,MAAIN,EAAS,GAAIC,EAAI,EAAE,EAAM,MAAID,EAAS,GAAIC,EAAI,EAAE,EAAM,MAAID,EAAS,GAAIC,EAAI,EAAE,CAAC,EAC5FM,EAAQ,CAAI,MAAIL,EAAI,GAAID,EAAI,EAAE,EAAM,MAAIC,EAAI,GAAID,EAAI,EAAE,EAAM,MAAIC,EAAI,GAAID,EAAI,EAAE,CAAC,EAC/EO,EAAO,CAAI,MAAIH,EAAUE,EAAM,EAAE,EAAM,MAAIF,EAAUE,EAAM,EAAE,EAAM,MAAIF,EAAUE,EAAM,EAAE,CAAC,EAC1FE,EAAM,CAAI,MAAIH,EAAI,GAAIE,EAAK,EAAE,EAAM,MAAIF,EAAI,GAAIE,EAAK,EAAE,EAAM,MAAIF,EAAI,GAAIE,EAAK,EAAE,CAAC,EAChFE,EAAS,QAAM,CAACD,EAAI,GAAIA,EAAI,GAAIA,EAAI,EAAE,EAAG,CAAC,EAC1CE,EAAa,UAAQD,EAAK,CAAC,EAAGX,EAAQ,MAAM,GAAIA,EAAQ,MAAM,GAAI,CAAC,CAAC,EAC1E,OAAG,UAAQ,CAAC,GAAGC,EAAU,GAAGC,EAAK,GAAGC,EAAK,GAAGI,EAAK,GAAGC,EAAO,GAAGC,EAAM,GAAGC,EAAKC,EAAKX,CAAO,CAAC,EAClFY,CACT,CCZA,IAAMC,GAAU,KAEZC,GAA6B,KAC7BC,GAA8B,KAC9BC,GAA8B,KAE9BC,EAEEC,GAAoG,CACxG,SAAU,EACV,UAAW,EACX,UAAW,EACX,YAAa,MACf,EAEO,SAASC,IAAQ,CACtBD,GAAK,SAAW,EAChBA,GAAK,UAAY,EACjBA,GAAK,UAAY,EACjBA,GAAK,YAAc,MACrB,CAEO,SAASE,GAAOC,EAAeC,EAA2B,CAC/D,IAAIC,EACJ,GAAIC,EAAI,QACN,GAAIA,EAAI,OAAQ,CACd,GAAI,OAAO,iBAAoB,YAAa,MAAM,IAAI,MAAM,mFAAmF,EAC/ID,EAAI,IAAI,gBAAgBF,EAAOC,CAAM,CACvC,KAAO,CACL,GAAI,OAAO,UAAa,YAAa,MAAM,IAAI,MAAM,kEAAkE,EACvHC,EAAI,SAAS,cAAc,QAAQ,EACnCA,EAAE,MAAQF,EACVE,EAAE,OAASD,CACb,MAGI,OAAOE,EAAI,QAAW,YAAaD,EAAI,IAAIC,EAAI,OAAOH,EAAOC,CAAM,EAC9D,OAAO,WAAW,QAAW,cAAaC,EAAI,IAAI,WAAW,OAAOF,EAAOC,CAAM,GAI5F,OAAOC,CACT,CAGO,SAASE,GAAKC,EAAkBC,EAAoB,CACzD,IAAMC,EAAeD,GAAUP,GAAOM,EAAM,MAAOA,EAAM,MAAM,EAE/D,OADYE,EAAa,WAAW,IAAI,EACpC,UAAUF,EAAO,EAAG,CAAC,EAClBE,CACT,CAKA,eAAsBC,GAAQH,EAAcI,EAAgBC,EAAqB,GAAoE,CAlErJ,IAAAC,EAAAC,EAmEE,GAAI,CAACP,EAEH,OAAII,EAAO,OAAOI,EAAI,+BAA+B,EAC9C,CAAE,OAAQ,KAAM,OAAQ,IAAK,EAGtC,GACE,EAAER,aAAoBS,KACnB,EAAE,OAAO,OAAU,aAAeT,aAAiB,QACnD,EAAE,OAAOF,EAAI,QAAW,aAAeE,aAAiBF,EAAI,SAC5D,EAAE,OAAO,WAAW,QAAW,aAAeE,aAAiB,WAAW,SAC1E,EAAE,OAAO,WAAc,aAAeA,aAAiB,YACvD,EAAE,OAAO,aAAgB,aAAeA,aAAiB,cACzD,EAAE,OAAO,kBAAqB,aAAeA,aAAiB,mBAC9D,EAAE,OAAO,kBAAqB,aAAeA,aAAiB,mBAC9D,EAAE,OAAO,kBAAqB,aAAeA,aAAiB,mBAC9D,EAAE,OAAO,mBAAsB,aAAeA,aAAiB,oBAC/D,EAAE,OAAO,iBAAoB,aAAeA,aAAiB,iBAEhE,MAAM,IAAI,MAAM,qCAAqC,EAEvD,GAAIA,aAAoBS,GAAQ,CAC9B,IAAIC,EAAwB,KAC5B,GAAKV,EAAiB,mBAAuB,MAAM,IAAI,MAAM,yDAAyD,EACtH,GAAI,CAAEA,EAAiB,MAAO,MAAM,IAAI,MAAM,sDAAsD,EACpG,GAAKA,EAAiB,MAAM,SAAW,GACrC,GAAKA,EAAiB,MAAM,KAAO,EACjCU,EAAY,aAAWV,EAAO,CAAC,UACrBA,EAAiB,MAAM,KAAO,EAAG,CAC3C,IAAMW,EAAS,UAAQX,EAAO,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,CAAC,CAAC,EACpDU,EAAY,aAAWC,EAAK,CAAC,EAC1B,UAAQA,CAAG,CAChB,OACUX,EAAiB,MAAM,SAAW,IACvCA,EAAiB,MAAM,KAAO,EACjCU,EAAY,QAAMV,CAAK,EACbA,EAAiB,MAAM,KAAO,IACxCU,EAAY,UAAQV,EAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,GAAI,CAAC,CAAC,IAI5D,GAAIU,GAAU,MAAQA,EAAO,MAAM,SAAW,GAAKA,EAAO,MAAM,KAAO,GAAKA,EAAO,MAAM,KAAO,EAAG,MAAM,IAAI,MAAM,iEAAmEV,EAAiB,MAAO,SAAS,GAAG,EAC1N,GAAKU,EAAQ,QAAU,QAAS,CAC9B,IAAME,EAAU,OAAKF,EAAQ,SAAS,EACnC,UAAQA,CAAM,EACjBA,EAASE,CACX,CACA,MAAO,CAAE,OAAAF,EAAQ,OAASN,EAAO,OAAO,OAASf,GAAY,IAAM,CACrE,CAEA,GAAI,OAAOW,EAAM,YAAkB,aAAgBA,EAA2B,YAAc,EAC1F,OAAII,EAAO,OAAOI,EAAI,2BAA2B,EAC1C,CAAE,OAAQ,KAAM,OAAQpB,EAAS,EAE1C,IAAMyB,EAAwBb,EAAM,cAAmBA,EAAM,YAAiBA,EAAM,OAAaA,EAAM,OAAaA,EAAM,MAAS,GAAK,EAClIc,EAAyBd,EAAM,eAAoBA,EAAM,aAAkBA,EAAM,QAAcA,EAAM,OAAaA,EAAM,MAAS,GAAK,EAC5I,GAAI,CAACa,GAAiB,CAACC,EACrB,OAAIV,EAAO,OAAOI,EAAI,mCAAmC,EAClD,CAAE,OAAQ,KAAM,OAAQpB,EAAS,EAE1C,IAAI2B,EAAsBF,EACtBG,EAAuBF,EAe3B,GAdIC,EAAc5B,KAChB4B,EAAc5B,GACd6B,EAAe,KAAK,MAAMD,EAAcD,EAAiBD,CAAa,GAEpEG,EAAe7B,KACjB6B,EAAe7B,GACf4B,EAAc,KAAK,MAAMC,EAAeH,EAAgBC,CAAc,MAInER,EAAAF,EAAO,SAAP,YAAAE,EAAe,QAAS,GAAK,EAAGS,EAAcX,EAAO,OAAO,SACvDG,EAAAH,EAAO,SAAP,YAAAG,EAAe,SAAU,GAAK,IAAGQ,EAAcF,IAAkBT,EAAO,OAAO,QAAU,GAAKU,KACnGV,EAAO,OAAO,QAAU,GAAK,EAAGY,EAAeZ,EAAO,OAAO,QACxDA,EAAO,OAAO,OAAS,GAAK,IAAGY,EAAeF,IAAmBV,EAAO,OAAO,OAAS,GAAKS,IACnG,CAACE,GAAe,CAACC,EAAc,MAAM,IAAI,MAAM,yCAAyC,GACxF,CAAC5B,IAAaA,GAAS,QAAU2B,GAAiB3B,GAAS,SAAW4B,KAAe5B,GAAWM,GAAOqB,EAAaC,CAAY,GAGpI,IAAMC,EAAQ7B,GAAS,WAAW,IAAI,EAmDtC,GAlDK,OAAO,WAAc,aAAiBY,aAAiB,UAC1DiB,EAAM,aAAajB,EAAO,EAAG,CAAC,EAE1BI,EAAO,OAAO,MAAQ,OAAOa,EAAM,WAAc,aACnDA,EAAM,UAAUJ,EAAe,CAAC,EAChCI,EAAM,MAAM,GAAI,CAAC,EACjBA,EAAM,UAAUjB,EAAoB,EAAG,EAAGa,EAAeC,EAAgB,EAAG,EAAG1B,GAAS,MAAOA,GAAS,MAAM,EAC9G6B,EAAM,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,GAEnCA,EAAM,UAAUjB,EAAoB,EAAG,EAAGa,EAAeC,EAAgB,EAAG,EAAG1B,GAAS,MAAOA,GAAS,MAAM,GAI9G,CAACC,IAAcD,GAAS,QAAUC,GAAU,OAAWD,GAAS,SAAWC,GAAU,UAASA,GAAYK,GAAON,GAAS,MAAOA,GAAS,MAAM,GAGhJgB,EAAO,OAAO,SAAWN,EAAI,MAAM,WAChCP,IAAIA,EAAKO,EAAI,QAAU,IAAYoB,GAAkB,MAC1DpB,EAAI,OAAS,CAAC,CAACP,EACVA,GAAA,MAAAA,EAAI,KAOPA,EAAG,MAAM,EACLa,EAAO,OAAO,aAAe,GAAGb,EAAG,IAAI,aAAca,EAAO,OAAO,UAAU,EAC7EA,EAAO,OAAO,WAAa,GAAGb,EAAG,IAAI,WAAYa,EAAO,OAAO,QAAQ,EACvEA,EAAO,OAAO,YAAc,GAAGb,EAAG,IAAI,UAAWa,EAAO,OAAO,SAAS,EACxEA,EAAO,OAAO,OAAS,GAAGb,EAAG,IAAI,OAAQa,EAAO,OAAO,IAAI,EAC3DA,EAAO,OAAO,aAAe,GAAGb,EAAG,IAAI,aAAca,EAAO,OAAO,UAAU,EAC7EA,EAAO,OAAO,MAAQ,GAAGb,EAAG,IAAI,MAAOa,EAAO,OAAO,GAAG,EACxDA,EAAO,OAAO,UAAUb,EAAG,IAAI,UAAU,EACzCa,EAAO,OAAO,OAAOb,EAAG,IAAI,OAAO,EACnCa,EAAO,OAAO,SAASb,EAAG,IAAI,SAAS,EACvCa,EAAO,OAAO,OAAOb,EAAG,IAAI,OAAO,EACnCa,EAAO,OAAO,YAAYb,EAAG,IAAI,YAAY,EAC7Ca,EAAO,OAAO,aAAab,EAAG,IAAI,aAAa,EAC/Ca,EAAO,OAAO,UAAUb,EAAG,IAAI,UAAU,EACzCa,EAAO,OAAO,WAAa,GAAGb,EAAG,IAAI,WAAYa,EAAO,OAAO,QAAQ,EACvEb,EAAG,IAAI,EAAI,EAAGF,GAAYE,EAAG,MAAMH,EAAQ,EAC1CC,GAAYE,EAAG,KAAKH,EAAQ,IAtB7BgB,EAAO,OAAOI,EAAI,gDAAgD,EACtEV,EAAI,MAAM,UAAY,GACtBM,EAAO,OAAO,QAAU,GACxBL,GAAKX,GAAUC,EAAS,KAsB1BU,GAAKX,GAAUC,EAAS,EACpBE,IAAIA,EAAK,MACbO,EAAI,OAAS,CAAC,CAACP,GAGb,CAACc,EAAW,MAAO,CAAE,OAAQ,KAAM,OAAQhB,EAAU,EACzD,GAAI,CAACA,GAAW,MAAM,IAAI,MAAM,oCAAoC,EAGpE,IAAI8B,EACAC,EAAQ,EACZ,GAAK,OAAO,WAAc,aAAepB,aAAiB,WAAgBA,EAAoB,MAASA,EAAoB,OAAUA,EAAoB,OACvJ,GAAIF,EAAI,SAAc,UACpBqB,EAAY,UAAa,UAAQ,WAAWnB,CAAK,EAAI,SAChD,CACLoB,EAASpB,EAAoB,KAAK,OAAUA,EAAoB,OAAUA,EAAoB,MAE9F,IAAMqB,EAAM,IAAI,WAAYrB,EAAoB,KAAK,MAAM,EAC3DmB,EAAY,SAAOE,EAAK,CAAErB,EAAoB,OAASA,EAAoB,MAAOoB,CAAK,EAAG,OAAO,CACnG,UAEI,CAAC9B,IAAcD,GAAU,QAAUC,GAAU,OAAWD,GAAU,SAAWC,GAAU,UAASA,GAAYI,GAAOL,GAAU,MAAOA,GAAU,MAAM,GACjJ,WAAWS,EAAI,QAChBM,EAAO,UAAY,SAAWA,EAAO,UAAY,WAAaA,EAAO,UAAY,SACnFe,EAAY,UAAQ,WAAW9B,EAAS,GAExCC,GAAYS,GAAKV,EAAS,EAC1B8B,EAAY,UAAQ,WAAW7B,EAAS,OAErC,CAGL,IAAMgC,EAFavB,GAAKV,EAAS,EACN,WAAW,IAAI,EACjB,aAAa,EAAG,EAAG0B,EAAaC,CAAY,EACrEI,EAAQE,EAAS,KAAK,OAASP,EAAcC,EAC7C,IAAMK,EAAM,IAAI,WAAWC,EAAS,KAAK,MAAM,EAC/CH,EAAY,SAAOE,EAAK,CAACN,EAAaC,EAAcI,CAAK,CAAC,CAC5D,CAEF,GAAIA,IAAU,EAAG,CACf,IAAMT,EAAS,UAAQQ,EAAQ,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,CAAC,CAAC,EAClD,UAAQA,CAAM,EACjBA,EAASR,CACX,CACA,GAAI,CAACQ,EAAQ,MAAM,IAAI,MAAM,mCAAmC,EAChE,IAAMI,EAAoB,OAAKJ,EAAQ,SAAS,EAC1CT,EAAiBN,EAAO,OAAO,aAAe,MAAcoB,GAAsBD,CAAM,EAAO,aAAWA,EAAQ,CAAC,EACzH,OAAG,UAAQ,CAACJ,EAAQI,CAAM,CAAC,EACpB,CAAE,OAAAb,EAAQ,OAASN,EAAO,OAAO,OAASf,GAAY,IAAM,CACrE,CAgCA,eAAsBoC,GAAKrB,EAAyBJ,EAAe,CACjE,IAAI0B,EAAY,GAChB,GAAItB,EAAO,mBAAqB,GAAK,CAACJ,EAAM,OAASA,EAAM,MAAM,SAAW,GAAKA,EAAM,MAAM,GAAK,MAAQA,EAAM,MAAM,GAAK,KAAM,OAAO0B,EAcxI,GAAI,CAAClC,GAAK,YACRA,GAAK,YAAiB,QAAMQ,CAAK,UACxBR,GAAK,YAAY,MAAM,KAAOQ,EAAM,MAAM,IAAMR,GAAK,YAAY,MAAM,KAAOQ,EAAM,MAAM,GAChG,UAAQR,GAAK,WAAW,EAC3BA,GAAK,YAAiB,QAAMQ,CAAK,MAC5B,CACL,IAAM2B,EAA4B,CAAC,EACnCA,EAAE,KAAU,MAAI3B,EAAOR,GAAK,WAAW,EACvCmC,EAAE,QAAa,MAAIA,EAAE,KAAMA,EAAE,IAAI,EACjCA,EAAE,IAAS,MAAIA,EAAE,OAAO,EAExB,IAAMC,GADU,MAAMD,EAAE,IAAI,KAAK,GACJ,IAAM3B,EAAM,MAAM,IAAM,IAAMA,EAAM,MAAM,IAAM,GAAK,IAAM,EACrF,UAAQ,CAACR,GAAK,YAAamC,EAAE,KAAMA,EAAE,QAASA,EAAE,GAAG,CAAC,EACvDnC,GAAK,YAAiB,QAAMQ,CAAK,EACjC0B,EAAYE,IAAiBxB,EAAO,kBAAoB,EAC1D,CACA,OAAOsB,CACT,CAEA,eAAsBG,GAAQzB,EAAyB0B,EAAgBC,EAAiC,CACtG,IAAMJ,EAA4B,CAAC,EACnC,GAAI,CAACG,GAAU,CAACC,GAAUD,EAAO,MAAM,SAAW,GAAKA,EAAO,MAAM,SAAWC,EAAO,MAAM,OAC1F,OAAK3B,EAAO,OAAOI,EAAI,sDAAuDsB,EAAO,MAAOC,EAAO,KAAK,EACjG,EAET,GAAID,EAAO,MAAM,KAAO,GAAKC,EAAO,MAAM,KAAO,GAAKD,EAAO,MAAM,KAAO,GAAKC,EAAO,MAAM,KAAO,EACjG,OAAK3B,EAAO,OAAOI,EAAI,wDAAyDsB,EAAO,MAAOC,EAAO,KAAK,EACnG,EAETJ,EAAE,OAAY,QAAMG,CAAM,EAC1BH,EAAE,OAAUG,EAAO,MAAM,KAAOC,EAAO,MAAM,IAAMD,EAAO,MAAM,KAAOC,EAAO,MAAM,GAAS,QAAM,eAAeA,EAAQ,CAACD,EAAO,MAAM,GAAIA,EAAO,MAAM,EAAE,CAAC,EAAO,QAAMC,CAAM,EAC/KJ,EAAE,KAAU,MAAIA,EAAE,OAAQA,EAAE,MAAM,EAClCA,EAAE,QAAa,MAAIA,EAAE,KAAMA,EAAE,IAAI,EACjCA,EAAE,IAAS,MAAIA,EAAE,OAAO,EAExB,IAAMC,GADU,MAAMD,EAAE,IAAI,KAAK,GACJ,IAAMG,EAAO,MAAM,IAAM,IAAMA,EAAO,MAAM,IAAM,GAAK,IAAM,EAC1F,OAAG,UAAQ,CAACH,EAAE,OAAQA,EAAE,OAAQA,EAAE,KAAMA,EAAE,QAASA,EAAE,GAAG,CAAC,EAClDC,CACT,CCnUO,IAAMI,GAAN,KAAU,CAoFf,aAAc,CAlFdC,EAAA,gBAEAA,EAAA,aAEAA,EAAA,eAEAA,EAAA,gBAAmB,IAEnBA,EAAA,aAAgB,IAEhBA,EAAA,gBAAqB,CAAC,GAEtBA,EAAA,gBAEAA,EAAA,eAEAA,EAAA,aAIAA,EAAA,kBAEAA,EAAA,eAAmB,IAEnBA,EAAA,kBAGI,CACA,QAAS,OACT,IAAK,MACP,GAEFA,EAAA,YAKI,CACA,UAAW,OACX,QAAS,OACT,KAAM,OACN,YAAa,MACf,GAEFA,EAAA,aAKI,CACA,UAAW,OACX,QAAS,OACT,QAAS,OACT,SAAU,MACZ,GAEFA,EAAA,cAII,CACA,UAAW,OACX,QAAS,OACT,QAAS,MACX,GAEFA,EAAA,WAGI,CACA,MAAO,OACP,MAAO,CAAC,CACV,GAEFA,EAAA,eAAoB,CAAC,GAErBA,EAAA,eAEAA,EAAA,cAEAA,EAAA,kBAWE,GARA,KAAK,QAAU,OAAO,WAAc,YACpC,KAAK,KAAQ,OAAO,SAAY,aAAiB,OAAO,QAAQ,UAAa,aAAiB,OAAO,QAAQ,SAAS,MAAS,YAC/H,KAAK,KAAO,CAAE,QAAYC,GAAQ,YAAa,EAC/C,KAAK,UAAY,OAAO,iBAAoB,YAC5C,KAAK,QAAU,GAGf,KAAK,OAAS,KAAK,SAAW,KAAK,UAAa,OAAO,mBAAsB,YAAe,OACxF,OAAO,WAAc,YAAa,CACpC,IAAMC,EAAM,UAAU,UAAU,MAAM,eAAe,EACrD,GAAIA,GAAA,MAAAA,EAAM,GAAI,CACZ,IAAMC,EAAgBD,EAAI,GAAG,MAAM,eAAe,EAClD,KAAK,SAAYC,GAAA,MAAAA,EAAgB,GAAMA,EAAc,GAAG,QAAQ,SAAU,EAAE,EAAI,GAChF,KAAK,MAAQ,UAAU,UAAU,QAAQD,EAAI,GAAI,EAAE,EAC/C,KAAK,SAAS,KAAI,KAAK,MAAQ,KAAK,MAAM,QAAQA,EAAI,GAAI,EAAE,GAChE,KAAK,MAAQ,KAAK,MAAM,QAAQ,MAAO,GAAG,CAU5C,CACF,MAAW,OAAO,SAAY,cAC5B,KAAK,SAAW,GAAG,QAAQ,YAAY,QAAQ,OAC/C,KAAK,MAAQ,UAAU,QAAQ,UAEnC,CAGA,MAAM,eAAgB,CAEpB,KAAK,SAAW,OAAO,KAAQ,SAAO,EAAE,eAAe,EACvD,KAAK,WAAa,CAChB,QAAa,UAAQ,EAAE,QAAa,UAAQ,EAAE,QAAQ,WAAa,OACnE,IAAS,UAAQ,EAAE,QAAa,UAAQ,EAAE,QAAQ,iBAAiB,EAAI,MACzE,EACA,KAAK,KAAK,UAAY,OAAO,aAAgB,YAC7C,KAAK,KAAK,QAAU,KAAK,SAAS,SAAS,MAAM,EAC7C,KAAK,KAAK,WAAa,KAAK,KAAK,SAAc,aAAW,IAAM,SAClE,KAAK,KAAK,KAAU,MAAI,EAAE,IAAI,uBAAuB,EACrD,KAAK,KAAK,YAAiB,MAAI,EAAE,IAAI,8BAA8B,GAErE,IAAME,EAAUC,GAAO,IAAK,GAAG,EACzBC,EAAMF,EAAIA,EAAE,WAAW,QAAQ,EAAI,OAIzC,GAFA,KAAK,MAAM,UAAY,OAAOE,GAAQ,YACtC,KAAK,MAAM,QAAU,KAAK,SAAS,SAAS,OAAO,EAC/C,KAAK,MAAM,WAAa,KAAK,MAAM,UAAe,aAAW,IAAM,SAAc,aAAW,IAAM,WAAY,CAChH,IAAMC,EAAQ,UAAQ,EAAE,QAAU,YAAc,MAAS,UAAQ,EAAE,gBAAgB,EAAE,GAAK,KACtFA,IACF,KAAK,MAAM,QAAUA,EAAG,aAAaA,EAAG,OAAO,EAC/C,KAAK,MAAM,SAAWA,EAAG,aAAaA,EAAG,QAAQ,EAErD,CACA,KAAK,OAAO,UAAY,KAAK,SAAW,OAAO,UAAU,KAAQ,YACjE,KAAK,OAAO,QAAU,KAAK,SAAS,SAAS,QAAQ,EACrD,GAAI,CACF,GAAI,KAAK,OAAO,UAAW,CACzB,IAAMC,EAAU,MAAM,UAAU,IAAI,eAAe,EACnD,KAAK,OAAO,QAAUA,EAAUA,EAAQ,KAAO,MACjD,CACF,OAAQC,EAAN,CACA,KAAK,OAAO,UAAY,EAC1B,CACA,GAAI,CACF,KAAK,QAAa,uBAAwB,aAAW,CAAC,EAAE,IAAKC,GAAYA,EAAO,WAAsB,YAAY,CAAC,CACrH,OAAQD,EAAN,CAAa,CACjB,CAGA,WAAY,CACV,IAAME,EAAM,CAAE,MAAO,GAAI,MAAO,CAAC,CAAE,EAC/B,KAAK,MAAQ,KAAK,SAAS,WAAW,OAAO,EAY5C,KAAK,IACL,KAAK,IAAMA,EADD,OAAO,eAAe,KAAM,MAAO,CAAE,MAAOA,CAAI,CAAC,CAElE,CACF,EAEaC,EAAM,IAAIb,u/FCtLvB,IAAAc,GAAA,GAAAC,GAAAD,GAAA,YAAAE,GAAA,kBAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,aAAAC,GAAA,kBAAAC,KCeA,IAAIC,GACEC,GAAmB,CAAC,EACpBC,GAAY,CAAC,QAAS,QAAS,QAAS,SAAU,OAAO,EACzDC,GAAa,CAAC,GAAI,GAAI,GAAI,KAAM,KAAM,KAAM,EAAE,EAChDC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAgB,CAvB3C,IAAAC,EAwBE,OAAIC,EAAI,UAASV,GAAQ,MACpBA,GACIQ,EAAO,OAAOG,EAAI,gBAAiBX,GAAM,QAAW,EADjDA,GAAQ,MAAMY,GAAUH,EAAAD,EAAO,KAAK,OAAZ,YAAAC,EAAkB,SAAS,EAExDT,EACT,CAEA,eAAsBa,GAAQC,EAAeN,EAAgBO,EAAaC,EAAkC,CA9B5G,IAAAP,EAAAQ,EA+BE,GAAI,CAACjB,GAAO,MAAO,CAAE,IAAK,EAAG,OAAQ,UAAW,YAAa,EAAG,KAAM,CAAC,CAAE,EACzE,IAAMkB,EAAYZ,MAAWG,EAAAD,EAAO,KAAK,OAAZ,YAAAC,EAAkB,aAAc,GACvDU,KAAYF,EAAAT,EAAO,KAAK,OAAZ,YAAAS,EAAkB,WAAY,GAAMG,EAAI,EAAIf,GAC9D,OAAIG,EAAO,aAAeW,GAAYD,GAAcd,KAAcY,GAAUf,GAAKc,IAC/ET,KACOL,GAAKc,KAEdT,GAAU,EACH,IAAI,QAAQ,MAAOe,GAAY,CAvCxC,IAAAZ,EAAAQ,EAwCI,GAAI,EAACjB,IAAA,MAAAA,GAAO,OAAO,GAAG,OAAO,OAC7B,IAAMsB,EAA4B,CAAC,EAE7BC,EAAM,CAAC,CAAC,EAAK,GAAM,GAAM,EAAI,CAAC,EACpCD,EAAE,OAAY,QAAM,cAAcR,EAAOS,EAAK,CAAC,CAAC,EAAG,CAACvB,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,CAAC,EACvG,IAAMwB,EAAgB,CAAE,IAAK,EAAG,OAAQ,UAAW,YAAa,EAAG,KAAM,CAAC,CAAE,GACxEf,EAAAD,EAAO,KAAK,OAAZ,MAAAC,EAAkB,UAAS,CAACa,EAAE,IAAKA,EAAE,OAAQA,EAAE,IAAI,EAAItB,GAAM,QAAQsB,EAAE,OAAQ,CAAC,aAAc,gBAAiB,aAAa,CAAC,GACjI,IAAMG,EAAS,MAAMH,EAAE,OAAO,KAAK,EACnCE,EAAI,OAASC,EAAO,GAAKA,EAAO,GAAK,OAAS,SAC9CD,EAAI,YAAc,KAAK,MAAM,KAAOC,EAAO,GAAKA,EAAO,GAAKA,EAAO,GAAKA,EAAO,GAAG,EAAI,IACtF,IAAMC,EAAO,MAAMJ,EAAE,KAAK,KAAK,EAC/B,QAASK,EAAI,EAAGA,EAAID,EAAK,OAAQC,IAC3BD,EAAKC,MAAMV,EAAAT,EAAO,KAAK,OAAZ,YAAAS,EAAkB,gBAAiB,KAAMO,EAAI,KAAK,KAAK,CAAE,MAAO,KAAK,MAAM,IAAME,EAAKC,EAAE,EAAI,IAAK,KAAMzB,GAAUyB,EAAW,CAAC,EAE9IH,EAAI,KAAK,KAAK,CAACI,EAAGC,IAAMA,EAAE,MAAQD,EAAE,KAAK,EAGzC,IAAME,EADkB,MAAM,KAAK,MAAMR,EAAE,IAAI,KAAK,CAAC,EACnB,IAAI,CAACM,EAAGD,IAAM,CAACxB,GAAWwB,GAAIC,CAAC,CAAC,EAAE,KAAK,CAACA,EAAGC,IAAMA,EAAE,GAAKD,EAAE,EAAE,EAC1FG,EAAMD,EAAU,GAAG,GACvB,QAASH,EAAI,EAAGA,EAAIG,EAAU,OAAQH,IAAKI,GAAOD,EAAUH,GAAG,IAAMG,EAAUH,GAAG,GAAKI,GACvFP,EAAI,IAAM,KAAK,MAAM,GAAKO,CAAG,EAAI,GACjC,OAAO,KAAKT,CAAC,EAAE,QAASU,GAAc,UAAQV,EAAEU,EAAO,CAAC,EACxD/B,GAAKc,GAAOS,EACZpB,GAAYY,EACZX,GAAWe,EAAI,EACfC,EAAQG,CAAG,CACb,CAAC,EACH,CChEO,IAAMS,EAAwD,CACnE,MAAO,IACP,IAAK,EACL,IAAK,EACL,KAAM,GACN,MAAO,MACP,IAAK,CAAC,MAAQ,KAAQ,IAAM,CAC9B,EAEO,SAASC,IAAO,CACrBD,EAAU,MAAW,SAAO,IAAK,SAAS,EAC1CA,EAAU,IAAS,SAAO,EAAG,SAAS,EACtCA,EAAU,IAAS,SAAO,EAAG,SAAS,EACtCA,EAAU,KAAU,SAAO,GAAK,SAAS,EACzCA,EAAU,MAAW,SAAO,MAAO,SAAS,EAC5CA,EAAU,IAAS,WAAS,CAAC,MAAQ,KAAQ,IAAM,EAAG,SAAS,CACjE,CCLA,IAAIE,GACEC,GAA0B,CAAC,EAC7BC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAgB,CACzC,OAAIC,EAAI,UAASP,GAAQ,MACpBA,GACIM,EAAO,OAAOE,EAAI,gBAAiBR,GAAM,QAAW,EADjDA,GAAQ,MAAMS,EAAUH,EAAO,KAAK,OAAU,YAAY,EAE/DN,EACT,CAEA,eAAsBU,GAAQC,EAAeL,EAAgBM,EAAaC,EAAyC,CA3BnH,IAAAC,EAAAC,EAAAC,EAAAC,EA4BE,GAAI,CAACjB,GAAO,MAAO,CAAE,IAAK,CAAE,EAC5B,IAAMkB,EAAYd,MAAWU,EAAAR,EAAO,KAAK,SAAZ,YAAAQ,EAAuB,aAAc,GAC5DK,KAAYJ,EAAAT,EAAO,KAAK,SAAZ,YAAAS,EAAuB,WAAY,GAAMK,EAAI,EAAIjB,GACnE,OAAIG,EAAO,aAAeY,GAAaC,GAAajB,KAAcW,KAAUG,EAAAf,GAAKW,KAAL,YAAAI,EAAW,QAAQC,EAAAhB,GAAKW,KAAL,YAAAK,EAAW,KAAM,GAC9Gb,KACOH,GAAKW,KAEdR,GAAU,EACH,IAAI,QAAQ,MAAOiB,GAAY,CApCxC,IAAAP,EAqCI,GAAI,EAACd,IAAA,MAAAA,GAAO,SAAU,CAACA,GAAM,OAAO,IAAM,CAACA,GAAM,OAAO,GAAG,MAAO,OAClE,IAAMsB,EAA4B,CAAC,EACnCA,EAAE,OAAY,QAAM,eAAeX,EAAO,CAACX,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EACrGsB,EAAE,QAAa,MAAIA,EAAE,OAAQC,EAAU,KAAK,EAC5C,IAAMC,EAAM,CAAE,IAAK,CAAE,EAErB,IADIV,EAAAR,EAAO,KAAK,SAAZ,MAAAQ,EAAuB,UAASQ,EAAE,IAAMtB,GAAM,QAAQsB,EAAE,OAAO,GAC/DA,EAAE,IAAK,CACT,IAAMG,EAAO,MAAMH,EAAE,IAAI,KAAK,EAC9BE,EAAI,IAAM,KAAK,MAAM,GAAKC,EAAK,EAAE,EAAI,EACvC,CACA,OAAO,KAAKH,CAAC,EAAE,QAASI,GAAc,UAAQJ,EAAEI,EAAO,CAAC,EACxDzB,GAAKW,GAAOY,EACZtB,GAAYW,EACZV,GAAWiB,EAAI,EACfC,EAAQG,CAAG,CACb,CAAC,EACH,CCtCA,IAAIG,GACEC,GAAkD,CAAC,EACrDC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAGfC,GAAM,CAAC,MAAQ,KAAQ,IAAM,EAEnC,eAAsBC,GAAKC,EAAgB,CAxB3C,IAAAC,EAyBE,OAAIC,EAAI,UAAST,GAAQ,MACpBA,GACIO,EAAO,OAAOG,EAAI,gBAAiBV,GAAM,QAAW,EADjDA,GAAQ,MAAMW,GAAUH,EAAAD,EAAO,KAAK,SAAZ,YAAAC,EAAuB,eAAe,EAEnER,EACT,CAEA,eAAsBY,GAAQC,EAAeN,EAAgBO,EAAKC,EAAyD,CA/B3H,IAAAP,EAAAQ,EAAAC,EAAAC,EAgCE,GAAI,CAAClB,GAAO,MAAO,CAAE,OAAQ,UAAW,YAAa,CAAE,EACvD,IAAMmB,EAAYf,MAAWI,EAAAD,EAAO,KAAK,SAAZ,YAAAC,EAAuB,aAAc,GAC5DY,KAAYJ,EAAAT,EAAO,KAAK,SAAZ,YAAAS,EAAuB,WAAY,GAAMK,EAAI,EAAIlB,GACnE,OAAII,EAAO,aAAeY,GAAaC,GAAalB,KAAca,KAAUE,EAAAhB,GAAKa,KAAL,YAAAG,EAAW,WAAWC,EAAAjB,GAAKa,KAAL,YAAAI,EAAW,aAAc,GACzHd,KACOH,GAAKa,KAEdV,GAAU,EACH,IAAI,QAAQ,MAAOkB,GAAY,CAxCxC,IAAAd,EAyCI,GAAI,EAACR,IAAA,MAAAA,GAAO,OAAO,GAAG,OAAO,OAC7B,IAAMuB,EAA4B,CAAC,EACnCA,EAAE,OAAY,QAAM,eAAeV,EAAO,CAACb,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EACrGuB,EAAE,QAAa,OAAK,IAAM,CACxB,GAAM,CAACC,EAAKC,EAAOC,CAAI,EAAO,QAAMH,EAAE,OAAQ,EAAG,CAAC,EAC5CI,EAAa,MAAIH,EAAKnB,GAAI,EAAE,EAC5BuB,EAAe,MAAIH,EAAOpB,GAAI,EAAE,EAChCwB,EAAc,MAAIH,EAAMrB,GAAI,EAAE,EAC9ByB,EAAe,OAAK,CAACH,EAASC,EAAWC,CAAQ,CAAC,EAExD,OADqB,MAAO,MAAIC,EAAWC,EAAU,IAAI,EAAG,CAAC,CAE/D,CAAC,EACD,IAAMC,EAA+C,CAAE,OAAQ,UAAW,YAAa,CAAE,GACrFxB,EAAAD,EAAO,KAAK,SAAZ,MAAAC,EAAuB,UAASe,EAAE,OAASvB,GAAM,QAAQuB,EAAE,OAAO,GACtE,IAAMU,EAAO,MAAMV,EAAE,OAAO,KAAK,EACjCS,EAAI,OAASC,EAAK,GAAKA,EAAK,GAAK,SAAW,OAC5CD,EAAI,YAAcC,EAAK,GAAKA,EAAK,GAAM,KAAK,MAAM,IAAMA,EAAK,EAAE,EAAI,IAAQ,KAAK,MAAM,IAAMA,EAAK,EAAE,EAAI,IACvG,OAAO,KAAKV,CAAC,EAAE,QAASW,GAAc,UAAQX,EAAEW,EAAO,CAAC,EACxDjC,GAAKa,GAAOkB,EACZ9B,GAAYa,EACZZ,GAAWkB,EAAI,EACfC,EAAQU,CAAG,CACb,CAAC,EACH,CCrDA,IAAIG,EACEC,GAAmB,CAAC,EACtBC,GAAU,OAAO,iBACjBC,GAAY,EACZC,GAAW,EAEf,eAAsBC,GAAKC,EAAqC,CAjBhE,IAAAC,EAkBE,OAAIC,EAAI,UAASR,EAAQ,MACpBA,EACIM,EAAO,OAAOG,EAAI,gBAAiBT,EAAM,QAAW,EADjDA,EAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,YAAZ,YAAAC,EAAuB,SAAS,EAE7DP,CACT,CAEA,eAAsBW,GAAQC,EAAeN,EAAgBO,EAAaC,EAAgC,CAxB1G,IAAAP,EAAAQ,EAyBE,GAAI,CAACf,GAAS,EAACA,GAAA,MAAAA,EAAQ,UAAa,MAAO,GAC3C,IAAMgB,KAAYT,EAAAD,EAAO,KAAK,YAAZ,YAAAC,EAAuB,WAAY,GAAMU,EAAI,EAAIb,GAC7Dc,EAAYhB,MAAWa,EAAAT,EAAO,KAAK,YAAZ,YAAAS,EAAuB,aAAc,GAClE,OAAIT,EAAO,aAAeU,GAAYE,GAAcf,KAAcW,GAAUb,GAAOY,IACjFX,KACOD,GAAOY,KAEhBX,GAAU,EACH,IAAI,QAAQ,MAAOiB,GAAY,CACpC,IAAMC,EAAY,QAAM,eAAeR,EAAO,CAACZ,GAAA,MAAAA,EAAO,OAAO,GAAG,MAAQA,EAAM,OAAO,GAAG,MAAM,GAAK,EAAGA,GAAA,MAAAA,EAAO,OAAO,GAAG,MAAQA,EAAM,OAAO,GAAG,MAAM,GAAK,CAAC,EAAG,EAAK,EAC7JqB,EAAMrB,GAAA,YAAAA,EAAO,QAAQoB,GACrBE,GAAO,MAAMD,EAAI,KAAK,GAAG,GAC/BpB,GAAOY,GAAO,KAAK,MAAM,IAAMS,CAAG,EAAI,IACtCnB,GAAYW,EACZV,GAAWa,EAAI,EACZ,UAAQ,CAACG,EAAQC,CAAG,CAAC,EACxBF,EAAQlB,GAAOY,EAAI,CACrB,CAAC,EACH,CCtCO,IAAMU,GAA4C,CACvD,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GACpD,EAKA,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,GAAG,EACvD,eAAgB,CAAC,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EAClE,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAG,EACxD,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EACjE,mBAAoB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EACrE,mBAAoB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAG,EAC5D,mBAAoB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAG,EACrE,mBAAoB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAG,EAC5D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAClD,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACzD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAG,EAC7C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAG,EACvD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAClD,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC5D,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAG,EACtD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAE,EAC3C,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,GAAG,EACtC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACjD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACjD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACjD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC3D,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EACzD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAC/C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,GAAG,EACrC,kBAAmB,CAAC,GAAG,EACvB,QAAS,CAAC,CAAC,EACX,WAAY,CAAC,CAAC,EACd,gBAAiB,CAAC,EAAE,EACpB,eAAgB,CAAC,GAAG,EACpB,WAAY,CAAC,GAAG,EAChB,UAAW,CAAC,GAAG,CACjB,EAEaC,GAAmD,CAC9D,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAID,GAAgB,kBAAkB,EAAE,CACzD,EAEaE,GAAwD,CACnE,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,CAAC,CACrB,EAEaC,GAAoD,CAC/D,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EACzD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAC1D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAC1D,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,CAAE,EACzD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAClE,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAClE,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EAClE,CAAE,IAAK,eAAgB,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,EACjE,CAAE,IAAK,eAAgB,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,EAAE,CAAE,CAC3D,EAEaC,GAA4B,CACvC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,eAAgB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,eAAgB,EAClC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,eAAgB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,cAAgB,gBAAiB,EAClC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,gBAAkB,gBAAiB,EACpC,CAAC,eAAiB,gBAAiB,EACnC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,EACrC,CAAC,iBAAmB,gBAAiB,CACvC,EAEaC,GAAmB,CAC9B,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAG,EAwB1I,IAAMC,GAAkB,CACjB,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAC7C,EAEaC,GAAkB,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAG,EAEvKC,GAAiB,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,GAAG,EAE/CC,GAAOH,GAAM,IAAKI,GAAMC,GAAMD,EAAE,EAEhCE,GAAOL,GAAM,IAAKG,GAAMC,GAAMD,EAAE,EAEhCG,GAAML,GAAK,IAAKE,GAAMC,GAAMD,EAAE,EAO3C,SAASI,GAAqBC,EAAwB,CACpD,IAAMC,EAAUD,EAAY,IAAKE,GAAeA,EAAW,EAAE,EAC7D,OAAAD,EAAQ,KAAKD,EAAYA,EAAY,OAAS,GAAG,EAAE,EAC5CC,CACT,CAEO,IAAME,GAAuB,CAClC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAC3N,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAC7N,EAEaC,GAA0B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEzNC,GAA8B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE7HC,GAA2B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE1EC,GAA2B,CAAC,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEpNC,GAA+B,CAAC,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,CAAC,EAEjHC,GAA4B,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE3EC,GAA8B,CACzC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACpE,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACrE,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACrE,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACrE,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACjE,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,CAChE,EAEaC,GAAmB,CAC9B,KAAMZ,GAAqBI,EAAS,EACpC,QAASJ,GAAqBK,EAAY,EAC1C,YAAaL,GAAqBM,EAAgB,EAClD,SAAUN,GAAqBO,EAAa,EAC5C,SAAUP,GAAqBQ,EAAa,EAC5C,aAAcR,GAAqBS,EAAiB,EACpD,UAAWT,GAAqBU,EAAc,EAC9C,SAAUV,GAAqBW,EAAgB,CACjD,ECrsBO,IAAME,GAAcC,GAA0B,CAAC,KAAK,IAAIA,EAAI,SAAS,GAAKA,EAAI,WAAW,EAAE,EAAG,KAAK,IAAIA,EAAI,SAAS,GAAKA,EAAI,WAAW,EAAE,CAAC,EAErIC,GAAgBD,GAAkC,CAACA,EAAI,WAAW,IAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAM,EAAGA,EAAI,WAAW,IAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAM,EAAG,CAAC,EAElLE,GAAW,CAACF,EAAKG,IAAgBH,EAAM,CAClD,KAAK,MAAM,KAAK,IAAI,EAAGA,EAAI,WAAW,EAAE,CAAC,EACzC,KAAK,MAAM,KAAK,IAAI,EAAGA,EAAI,WAAW,EAAE,CAAC,EACzC,KAAK,MAAM,KAAK,IAAKG,EAAM,MAAM,IAAM,EAAIH,EAAI,SAAS,EAAE,EAAI,KAAK,IAAI,EAAGA,EAAI,WAAW,EAAE,CAAC,EAC5F,KAAK,MAAM,KAAK,IAAKG,EAAM,MAAM,IAAM,EAAIH,EAAI,SAAS,EAAE,EAAI,KAAK,IAAI,EAAGA,EAAI,WAAW,EAAE,CAAC,CAC9F,EAAI,CAAC,EAAG,EAAG,EAAG,CAAC,EAEFI,GAAY,CAACJ,EAAKG,IAAgBH,EAAM,CACnDA,EAAI,WAAW,IAAMG,EAAM,MAAM,IAAM,GACvCH,EAAI,WAAW,IAAMG,EAAM,MAAM,IAAM,IACtCH,EAAI,SAAS,GAAKA,EAAI,WAAW,KAAOG,EAAM,MAAM,IAAM,IAC1DH,EAAI,SAAS,GAAKA,EAAI,WAAW,KAAOG,EAAM,MAAM,IAAM,EAC7D,EAAI,CAAC,EAAG,EAAG,EAAG,CAAC,EAEFE,GAAsB,CAACL,EAAKM,IAAW,CAClD,IAAMC,EAAoB,CAACP,EAAI,WAAW,GAAKM,EAAO,GAAIN,EAAI,WAAW,GAAKM,EAAO,EAAE,EACjFE,EAAkB,CAACR,EAAI,SAAS,GAAKM,EAAO,GAAIN,EAAI,SAAS,GAAKM,EAAO,EAAE,EACjF,MAAO,CAAE,WAAAC,EAAY,SAAAC,EAAU,UAAWR,EAAI,UAAW,WAAYA,EAAI,UAAW,CACtF,EAEaS,GAAe,CAACT,EAAKU,EAAOC,IAAa,CACpD,IAAMC,EAAIF,EAAM,MAAM,GAChBG,EAAIH,EAAM,MAAM,GAChBI,EAAS,CAACd,EAAI,WAAW,GAAKY,EAAGZ,EAAI,WAAW,GAAKa,EAAGb,EAAI,SAAS,GAAKY,EAAGZ,EAAI,SAAS,GAAKa,CAAC,EAChGE,EAAU,QAAM,cAAcL,EAAO,CAACI,CAAM,EAAG,CAAC,CAAC,EAAGH,CAAQ,EAC5DK,EAAU,MAAID,EAAME,EAAU,KAAK,EACzC,OAAG,UAAQF,CAAI,EACRC,CACT,EAEaE,GAAa,CAAClB,EAAKM,IAAW,CACzC,IAAMa,EAASlB,GAAaD,CAAG,EACzBoB,EAAOrB,GAAWC,CAAG,EACrBqB,EAA6B,CAACf,EAASc,EAAK,GAAK,EAAGd,EAASc,EAAK,GAAK,CAAC,EAC9E,MAAO,CAAE,WAAY,CAACD,EAAO,GAAKE,EAAS,GAAIF,EAAO,GAAKE,EAAS,EAAE,EAAY,SAAU,CAACF,EAAO,GAAKE,EAAS,GAAIF,EAAO,GAAKE,EAAS,EAAE,EAAY,UAAWrB,EAAI,UAAW,WAAYA,EAAI,UAAW,CAChN,EAEasB,GAAetB,GAAQ,CAClC,IAAMuB,EAAUtB,GAAaD,CAAG,EAC1BoB,EAAOrB,GAAWC,CAAG,EACrBqB,EAAW,KAAK,IAAI,GAAGD,CAAI,EAAI,EACrC,MAAO,CAAE,WAAY,CAAC,KAAK,MAAMG,EAAQ,GAAKF,CAAQ,EAAG,KAAK,MAAME,EAAQ,GAAKF,CAAQ,CAAC,EAAY,SAAU,CAAC,KAAK,MAAME,EAAQ,GAAKF,CAAQ,EAAG,KAAK,MAAME,EAAQ,GAAKF,CAAQ,CAAC,EAAY,UAAWrB,EAAI,UAAW,WAAYA,EAAI,UAAW,CACxP,EAEawB,GAAiCC,GAAc,CAC1D,IAAMC,EAAID,EAAU,IAAKE,GAAMA,EAAE,EAAE,EAC7BC,EAAIH,EAAU,IAAKE,GAAMA,EAAE,EAAE,EACnC,MAAO,CAAE,WAAY,CAAC,KAAK,IAAI,GAAGD,CAAC,EAAG,KAAK,IAAI,GAAGE,CAAC,CAAC,EAAY,SAAU,CAAC,KAAK,IAAI,GAAGF,CAAC,EAAG,KAAK,IAAI,GAAGE,CAAC,CAAC,EAAY,UAAAH,CAAU,CACjI,EAEaI,GAAsB,CAAC,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAEtDC,GAAoBC,GAAkBA,EAAQ,EAAI,KAAK,GAAK,KAAK,OAAOA,EAAQ,KAAK,KAAO,EAAI,KAAK,GAAG,EAExGC,GAAkB,CAACC,EAAQC,IAAWJ,GAAiB,KAAK,GAAK,EAAI,KAAK,MAAM,EAAEI,EAAO,GAAKD,EAAO,IAAKC,EAAO,GAAKD,EAAO,EAAE,CAAC,EAItI,IAAME,GAAyB,CAACC,EAAGC,IAAM,CAAC,CAAC,EAAG,EAAGD,CAAC,EAAG,CAAC,EAAG,EAAGC,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAEnEC,GAAM,CAACC,EAAcC,IAAiB,CACjD,IAAIC,EAAU,EACd,QAASC,EAAI,EAAGA,EAAIH,EAAG,OAAQG,IAAKD,GAAWF,EAAGG,GAAKF,EAAGE,GAC1D,OAAOD,CACT,EAEaE,GAAqB,CAACC,EAAKC,IAAgB,CACtD,IAAMC,EAAmB,CAAC,EAC1B,QAASJ,EAAI,EAAGA,EAAIE,EAAI,OAAQF,IAAKI,EAAO,KAAKF,EAAIF,GAAGG,EAAY,EACpE,OAAOC,CACT,EAEaC,GAA4B,CAACC,EAAMC,IAAS,CACvD,IAAMR,EAAsB,CAAC,EACvBS,EAAOF,EAAK,OAClB,QAASG,EAAM,EAAGA,EAAMD,EAAMC,IAAO,CACnCV,EAAQ,KAAK,CAAC,CAAC,EACf,QAASW,EAAM,EAAGA,EAAMF,EAAME,IAAOX,EAAQU,GAAK,KAAKb,GAAIU,EAAKG,GAAMR,GAAmBM,EAAMG,CAAG,CAAC,CAAC,CACtG,CACA,OAAOX,CACT,EAEaY,GAAsB,CAACC,EAAUC,IAAW,CACvD,IAAMC,EAAO,KAAK,IAAIF,CAAQ,EACxBG,EAAO,KAAK,IAAIH,CAAQ,EACxBI,EAAiB,CAAC,CAACF,EAAM,CAACC,EAAM,CAAC,EAAG,CAACA,EAAMD,EAAM,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAC9DG,EAAoBxB,GAAuBoB,EAAO,GAAIA,EAAO,EAAE,EAC/DK,EAA2Bb,GAA0BY,EAAmBD,CAAc,EACtFG,EAA4B1B,GAAuB,CAACoB,EAAO,GAAI,CAACA,EAAO,EAAE,EAC/E,OAAOR,GAA0Ba,EAA0BC,CAAyB,CACtF,EAEaC,GAAyBC,GAAW,CAC/C,IAAMC,EAAoB,CAAC,CAACD,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EAAG,CAACA,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,CAAC,EAC/EE,EAAuB,CAACF,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EAClDG,EAAsB,CAAC,CAAC5B,GAAI0B,EAAkB,GAAIC,CAAoB,EAAG,CAAC3B,GAAI0B,EAAkB,GAAIC,CAAoB,CAAC,EAC/H,MAAO,CAACD,EAAkB,GAAG,OAAOE,EAAoB,EAAE,EAAGF,EAAkB,GAAG,OAAOE,EAAoB,EAAE,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,CAC7H,EAEaC,GAAc,CAACC,EAAuBV,IAAmB,CAACpB,GAAI8B,EAAuBV,EAAe,EAAE,EAAGpB,GAAI8B,EAAuBV,EAAe,EAAE,CAAC,EAI5J,SAASW,GAAgBC,EAAmB,CACjD,IAAMC,EAAOD,IAAc,IACvB,CAAE,QAAS,CAAC,CAAC,EAAG,QAAS,CAAC,CAAC,CAAE,EAC7B,CAAE,QAAS,CAACA,EAAY,GAAIA,EAAY,CAAC,EAAG,QAAS,CAAC,EAAG,CAAC,CAAE,EAC1DE,EAA8B,CAAC,EACrC,QAASC,EAAI,EAAGA,EAAIF,EAAK,QAAQ,OAAQE,IAAK,CAC5C,IAAMC,EAASH,EAAK,QAAQE,GACtBE,EAAW,KAAK,OAAOL,EAAYI,EAAS,GAAKA,CAAM,EACvDE,EAAW,KAAK,OAAON,EAAYI,EAAS,GAAKA,CAAM,EACvDG,EAAaN,EAAK,QAAQE,GAChC,QAASK,EAAQ,EAAGA,EAAQH,EAAUG,IAAS,CAC7C,IAAMC,EAAUL,GAAUI,EAAQ,IAClC,QAASE,EAAQ,EAAGA,EAAQJ,EAAUI,IAAS,CAC7C,IAAMC,EAAUP,GAAUM,EAAQ,IAClC,QAASE,EAAI,EAAGA,EAAIL,EAAYK,IAAKV,EAAQ,KAAK,CAACS,EAASF,CAAO,CAAC,CACtE,CACF,CACF,CACA,OAAOP,CACT,CAEO,SAASW,GAAmBC,EAAWC,EAAKC,EAAOC,EAAgBjB,EAAW,CACnF,IAAMkB,EAAUC,GAAWJ,CAAG,EACxBK,EAAeN,EAAU,IAAKO,GAAW,CAC5CH,EAAQ,GAAKlB,GAAcqB,EAAM,GAAMrB,EAAY,GACnDkB,EAAQ,GAAKlB,GAAcqB,EAAM,GAAMrB,EAAY,GACnDqB,EAAM,IAAM,CACf,CAAE,EACIC,EAAaN,GAAUA,IAAU,GAAO,KAAK,IAAIA,CAAK,EAAI,GAC1DO,EAAuBD,EAAaE,GAAoBR,EAAO,CAAC,EAAG,CAAC,CAAC,EAAIS,GACzEC,EAAgBJ,EAAaF,EAAa,IAAKC,GAAW,CAAC,GAAGM,GAAYN,EAAOE,CAAoB,EAAGF,EAAM,EAAE,CAAE,EAAID,EACtHQ,EAAwBN,EAAaO,GAAsBZ,CAAc,EAAIQ,GAC7EK,EAAYC,GAAahB,CAAG,EAC5BiB,EAAU,CAACC,GAAIH,EAAWF,EAAsB,EAAE,EAAGK,GAAIH,EAAWF,EAAsB,EAAE,CAAC,EACnG,OAAOF,EAAc,IAAKL,GAAW,CACnC,KAAK,MAAMA,EAAM,GAAKW,EAAQ,EAAE,EAChC,KAAK,MAAMX,EAAM,GAAKW,EAAQ,EAAE,EAChC,KAAK,MAAMX,EAAM,IAAM,CAAC,CAC1B,CAAE,CACJ,CAEO,SAASa,GAAoBC,EAAQpB,EAAKqB,EAAOpC,EAAW,CACjE,IAAMqC,EAAgBtB,EAAI,UAAU,QAAiBuB,GAAc,MACxDA,GAAc,aACdC,GAAmB,aAC1BvB,EAAQ,EACRC,EAAiBQ,GACjBe,EAEJ,GAAIL,GAAUM,EAAI,QAAQ,SAAS,kBAAkB,EAGnD,GAFAzB,EAAQ0B,GAAgB3B,EAAI,UAAUsB,EAAa,IAAKtB,EAAI,UAAUsB,EAAa,GAAG,EACnErB,GAAUA,IAAU,GAAO,KAAK,IAAIA,CAAK,EAAI,GAChD,CACd,IAAM2B,EAAgBZ,GAAahB,CAAG,EAChC6B,EAAmB,CAACD,EAAO,GAAKP,EAAM,MAAM,GAAIO,EAAO,GAAKP,EAAM,MAAM,EAAE,EAC1ES,EAAa,QAAM,iBAAiBT,EAAOpB,EAAO,EAAG4B,CAAS,EACpE3B,EAAiBO,GAAoB,CAACR,EAAO2B,CAAM,EACnDH,EAAOM,GAAa/B,EAAK8B,EAAS,CAAC7C,EAAWA,CAAS,CAAC,EACrD,UAAQ6C,CAAO,CACpB,MACEL,EAAOM,GAAa/B,EAAKqB,EAAO,CAACpC,EAAWA,CAAS,CAAC,OAGxDwC,EAAOM,GAAa/B,EAAKqB,EAAO,CAACpC,EAAWA,CAAS,CAAC,EAExD,MAAO,CAACgB,EAAOC,EAAgBuB,CAAI,CACrC,CAEO,IAAMO,GAAkBC,GAAS,CACtC,IAAMC,EAAID,EAAK,IAAKE,GAAMA,EAAE,EAAE,EACxBC,EAAIH,EAAK,IAAKE,GAAMA,EAAE,EAAE,EAO9B,MAAO,CAAC,KAAK,IAAI,GAAGD,CAAC,GAAK,KAAK,IAAI,GAAGA,CAAC,EAAI,KAAK,IAAI,GAAGA,CAAC,GAAK,EAAG,KAAK,IAAI,GAAGE,CAAC,GAAK,KAAK,IAAI,GAAGA,CAAC,EAAI,KAAK,IAAI,GAAGA,CAAC,GAAK,CAAC,CACxH,EAEaC,GAAmB,CAACJ,EAAMK,IAAgB,CACrD,IAAMV,EAASI,GAAeC,CAAI,EAC5B9B,EAAUC,GAAWkC,CAAW,EAKtC,MAJsB,CACpB,WAAY,CAACV,EAAO,GAAKzB,EAAQ,GAAK,EAAGyB,EAAO,GAAKzB,EAAQ,GAAK,CAAC,EACnE,SAAU,CAACyB,EAAO,GAAKzB,EAAQ,GAAK,EAAGyB,EAAO,GAAKzB,EAAQ,GAAK,CAAC,CACnE,CAEF,ECnMA,IAAMoC,GAAiB,EACjBC,GAAqB,IACvBC,GACAC,GAAyB,KACzBC,GAAY,EACZC,GAA4B,KAInBC,GAAO,IAAMF,GAE1B,eAAsBG,GAAKC,EAAqC,CA1BhE,IAAAC,EA2BE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,SAAS,EAEnEL,GAAaF,GAAM,UAAeA,GAAM,OAAO,GAAG,MAASA,GAAM,OAAO,GAAG,MAAM,GAAK,IACtFG,GAAgB,SAAOD,GAAW,OAAO,EACzCD,GAAa,WAAcU,GAAgBT,EAAS,CAAC,EAC9CF,EACT,CAEA,SAASY,GAAYC,EAAoB,CACvC,IAAM,EAA4B,CAAC,EACnC,EAAE,UAAe,QAAMA,EAAY,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAClD,EAAE,QAAa,MAAI,EAAE,UAAWZ,EAAO,EACvC,EAAE,SAAc,QAAMY,EAAY,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EACjD,EAAE,mBAAwB,MAAI,EAAE,SAAUV,EAAU,EACpD,EAAE,kBAAuB,MAAI,EAAE,QAASA,EAAU,EAClD,EAAE,YAAiB,MAAI,EAAE,mBAAoBW,EAAU,GAAG,EAC1D,EAAE,OAAY,MAAI,EAAE,kBAAmB,EAAE,WAAW,EACpD,EAAE,KAAU,MAAI,EAAE,kBAAmB,EAAE,WAAW,EAClD,EAAE,gBAAqB,MAAI,EAAE,OAAQX,EAAU,EAC/C,EAAE,cAAmB,MAAI,EAAE,KAAMA,EAAU,EAC3C,IAAMY,EAAW,WAAS,CAAC,EAAE,gBAAiB,EAAE,aAAa,EAAG,CAAC,EACjE,cAAO,KAAK,CAAC,EAAE,QAASC,GAAc,UAAQ,EAAEA,EAAO,CAAC,EACjDD,CACT,CAEA,eAAsBE,GAASC,EAAoBZ,EAAgB,CArDnE,IAAAC,EAAAY,EAAAC,EAAAC,EAuDE,GAAK,CAACH,GAAgBA,EAAW,oBAA2BA,EAAW,MAAM,SAAW,GAAOA,EAAW,MAAM,GAAK,GAAOA,EAAW,MAAM,GAAK,EAAI,MAAO,CAAC,EAC9J,IAAMI,EAA4B,CAAC,EACnCA,EAAE,QAAa,QAAM,eAAeJ,EAAY,CAAChB,GAAWA,EAAS,CAAC,EACtEoB,EAAE,IAAS,MAAIA,EAAE,QAASR,EAAU,KAAK,EACzCQ,EAAE,WAAgB,MAAIA,EAAE,IAAKR,EAAU,IAAI,EAC3C,IAAMS,EAAMvB,IAAA,YAAAA,GAAO,QAAQsB,EAAE,YAC7B,GAAI,MAAM,QAAQC,CAAG,GAAKA,EAAI,OAAS,EAAG,CACxC,IAAMC,EAASD,EAAI,KAAK,CAACE,EAAGC,IAAMD,EAAE,KAAOC,EAAE,IAAI,EACjDJ,EAAE,UAAe,SAAO,CAACE,EAAO,GAAIA,EAAO,EAAE,EAAG,CAAC,EACjDF,EAAE,UAAe,SAAO,CAACE,EAAO,GAAIA,EAAO,EAAE,EAAG,CAAC,EACjDF,EAAE,OAAY,SAAO,CAACA,EAAE,UAAWA,EAAE,SAAS,EAAG,CAAC,EAClDA,EAAE,MAAW,UAAQA,EAAE,OAAQ,CAAC,CAClC,MAAW,MAAM,QAAQC,CAAG,EAC1BD,EAAE,MAAW,UAAQC,EAAI,EAAE,EAE3BD,EAAE,MAAW,UAAQC,CAAG,EAEvB,UAAQA,CAAG,EACdD,EAAE,MAAQV,GAAYU,EAAE,KAAK,EAC7BA,EAAE,OAAY,QAAMA,EAAE,MAAO,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC5CA,EAAE,QAAa,UAAQA,EAAE,MAAM,EAC/BA,EAAE,OAAY,UAAQA,EAAE,OAAO,EAC/BA,EAAE,IAAM,MAAS,QAAM,uBAAuBA,EAAE,MAAOA,EAAE,SAASf,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,cAAe,IAAKY,EAAAb,EAAO,KAAK,WAAZ,YAAAa,EAAsB,eAAgB,IAAKC,EAAAd,EAAO,KAAK,WAAZ,YAAAc,EAAsB,gBAAiB,CAAE,EAChM,IAAMO,EAAM,MAAML,EAAE,IAAI,MAAM,EACxBP,EAAqB,CAAC,EACtBa,EAAS,MAAMN,EAAE,OAAO,KAAK,EACnC,QAASO,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAAK,CACnC,IAAMC,EAAaF,EAAOD,EAAIE,IAC9B,GAAIC,KAAcT,EAAAf,EAAO,KAAK,WAAZ,YAAAe,EAAsB,gBAAiB,GAAI,CAC3D,IAAMK,EAA4B,CAAC,EACnCA,EAAE,KAAU,QAAMJ,EAAE,MAAO,CAACK,EAAIE,GAAI,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EAC/CH,EAAE,MAAW,QAAMJ,EAAE,MAAO,CAACK,EAAIE,GAAI/B,GAAiB,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EACjE4B,EAAE,QAAa,UAAQA,EAAE,KAAK,EAC9BA,EAAE,UAAe,UAAQA,EAAE,QAAS,CAAC5B,GAAgB,EAAE,CAAC,EACxD,IAAMiC,EAAS,MAAML,EAAE,KAAK,KAAK,EAC3BM,EAAS,CACb,WAAY,CAACD,EAAO,GAAIA,EAAO,EAAE,EACjC,SAAU,CAACA,EAAO,GAAIA,EAAO,EAAE,EAC/B,UAAY,MAAML,EAAE,UAAU,MAAM,EACpC,WAAAI,CACF,EACMG,EAAiBC,GAAoBF,EAAQ,EAAEd,EAAW,MAAM,IAAM,GAAKhB,IAAYgB,EAAW,MAAM,IAAM,GAAKhB,EAAS,CAAC,EAC7HiC,EAAmBC,GAAWH,EAAW3B,EAAO,KAAK,OAAYP,EAAkB,EACnFsC,EAAkBC,GAAYH,CAAW,EAC/CpB,EAAM,KAAKsB,CAAU,EACrB,OAAO,KAAKX,CAAC,EAAE,QAASV,GAAc,UAAQU,EAAEV,EAAO,CAAC,CAC1D,CACF,CACA,cAAO,KAAKM,CAAC,EAAE,QAASN,GAAc,UAAQM,EAAEN,EAAO,CAAC,EACjDD,CACT,CCzGA,IAAAwB,GAAA,GAAAC,GAAAD,GAAA,eAAAE,GAAA,QAAAC,KAEO,IAAMA,GAAgB,CAC3B,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,YACA,aACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,aACA,UACA,WACA,WACA,YACA,WACF,EAEaD,GAAsC,CACjD,UAAW,CAAC,eAAgB,eAAe,EAC3C,KAAM,CAAC,WAAY,SAAS,EAC5B,MAAO,CAAC,YAAa,YAAY,EACjC,aAAc,CAAC,UAAW,UAAU,EACpC,aAAc,CAAC,WAAY,WAAW,EACtC,SAAU,CAAC,YAAa,WAAY,UAAU,EAC9C,UAAW,CAAC,eAAgB,SAAS,EACrC,aAAc,CAAC,eAAgB,WAAW,EAC1C,aAAc,CAAC,YAAa,WAAW,EACvC,SAAU,CAAC,YAAa,UAAU,EAClC,cAAe,CAAC,WAAY,WAAW,EACvC,cAAe,CAAC,WAAY,WAAW,EACvC,cAAe,CAAC,WAAY,WAAW,EACvC,eAAgB,CAAC,gBAAiB,gBAAgB,EAClD,cAAe,CAAC,WAAY,WAAW,EACvC,cAAe,CAAC,YAAa,YAAY,EACzC,UAAW,CAAC,aAAc,YAAa,WAAW,EAClD,WAAY,CAAC,gBAAiB,UAAU,EACxC,cAAe,CAAC,gBAAiB,YAAY,EAC7C,cAAe,CAAC,aAAc,YAAY,EAC1C,UAAW,CAAC,aAAc,WAAW,EACrC,eAAgB,CAAC,YAAa,YAAY,EAC1C,eAAgB,CAAC,YAAa,YAAY,EAC1C,eAAgB,CAAC,YAAa,YAAY,EAC1C,gBAAiB,CAAC,iBAAkB,iBAAiB,CACvD,EC/DA,IAAME,GAAY,IACdC,GACEC,GAAY,EACZC,GAAU,CAAC,EAAG,GAAI,GAAI,GAAI,EAAE,EAE3B,SAASC,IAAgB,CAC9B,IAAMC,EAAsC,CAAC,EACzCC,EAAU,EACd,KAAOA,EAAUJ,IAAW,CAC1B,IAAIK,EAAc,EACdC,EAAsBF,EAC1B,KAAOE,EAAsBL,GAAQ,QAAUA,GAAQK,KAAyBL,GAAQG,IACtFC,GAAe,EACfC,IAEF,IAAMC,EAASN,GAAQG,GACjBI,EAAmB,KAAK,KAAKV,GAAYS,CAAM,EAC/CE,EAAkB,KAAK,KAAKX,GAAYS,CAAM,EACpD,QAASG,EAAI,EAAGA,EAAIF,EAAkB,EAAEE,EACtC,QAASC,EAAI,EAAGA,EAAIF,EAAiB,EAAEE,EACrC,QAASC,EAAW,EAAGA,EAAWP,EAAa,EAAEO,EAC/CT,EAAQ,KAAK,CAAE,GAAIQ,EAAI,IAAOF,EAAiB,GAAIC,EAAI,IAAOF,CAAiB,CAAC,EAItFJ,EAAUE,CACZ,CACAP,GAAe,CAAE,EAAM,WAASI,EAAQ,IAAKU,GAAMA,EAAE,CAAC,CAAC,EAAG,EAAM,WAASV,EAAQ,IAAKU,GAAMA,EAAE,CAAC,CAAC,CAAE,CACpG,CCjCO,SAASC,GAAKC,EAAoBC,EAA+B,CAAC,EAAG,CAAC,EAAG,CAC9E,IAAMC,EAAS,CAACF,EAAU,IAAKG,GAAOA,EAAG,EAAE,EAAGH,EAAU,IAAKG,GAAOA,EAAG,EAAE,CAAC,EACpEC,EAAM,CAAC,KAAK,IAAI,GAAGF,EAAO,EAAE,EAAG,KAAK,IAAI,GAAGA,EAAO,EAAE,CAAC,EACrDG,EAAM,CAAC,KAAK,IAAI,GAAGH,EAAO,EAAE,EAAG,KAAK,IAAI,GAAGA,EAAO,EAAE,CAAC,EACrDI,EAAW,CAACF,EAAI,GAAIA,EAAI,GAAIC,EAAI,GAAKD,EAAI,GAAIC,EAAI,GAAKD,EAAI,EAAE,EAC5DG,EAAc,CAACD,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,EAAE,EACnH,MAAO,CAAE,IAAAK,EAAK,OAAAC,CAAO,CACvB,CAEO,SAASC,GAAOR,EAAoBC,EAA+B,CAAC,EAAG,CAAC,EAAG,CAChF,IAAMC,EAAS,CAACF,EAAU,IAAKG,GAAOA,EAAG,EAAE,EAAGH,EAAU,IAAKG,GAAOA,EAAG,EAAE,CAAC,EACpEC,EAAM,CAAC,KAAK,IAAI,GAAGF,EAAO,EAAE,EAAG,KAAK,IAAI,GAAGA,EAAO,EAAE,CAAC,EACrDG,EAAM,CAAC,KAAK,IAAI,GAAGH,EAAO,EAAE,EAAG,KAAK,IAAI,GAAGA,EAAO,EAAE,CAAC,EACrDO,EAAS,EAAEL,EAAI,GAAKC,EAAI,IAAM,GAAID,EAAI,GAAKC,EAAI,IAAM,CAAC,EACtDK,EAAO,KAAK,IAAID,EAAO,GAAKL,EAAI,GAAIK,EAAO,GAAKL,EAAI,GAAI,CAACK,EAAO,GAAKJ,EAAI,GAAI,CAACI,EAAO,GAAKJ,EAAI,EAAE,EAChGC,EAAW,CAAC,KAAK,MAAMG,EAAO,GAAKC,CAAI,EAAG,KAAK,MAAMD,EAAO,GAAKC,CAAI,EAAG,KAAK,MAAM,EAAIA,CAAI,EAAG,KAAK,MAAM,EAAIA,CAAI,CAAC,EAClHH,EAAc,CAACD,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,GAAIK,EAAI,GAAKL,EAAW,EAAE,EACnH,MAAO,CAAE,IAAAK,EAAK,OAAAC,CAAO,CACvB,CAEO,SAASI,GAAML,EAAUM,EAAmB,CACjD,IAAMF,EAAO,CAACJ,EAAI,GAAKM,EAAWN,EAAI,GAAKM,CAAS,EAOpD,MANoB,CAClBN,EAAI,IAAMI,EAAK,GAAKJ,EAAI,IAAM,EAC9BA,EAAI,IAAMI,EAAK,GAAKJ,EAAI,IAAM,EAC9BI,EAAK,GACLA,EAAK,EACP,CAEF,CChBA,IAAMG,GAAM,CAAE,QAAS,EAAK,EAEtBC,GAAwE,CAAE,SAAU,KAAM,UAAW,IAAK,EAC1GC,GAAyE,CAAE,SAAU,CAAC,IAAK,GAAG,EAAG,UAAW,CAAC,IAAK,GAAG,CAAE,EACzHC,GAAU,OAAO,iBACfC,GAA2D,CAC/D,UAAW,CAAC,QAAS,0BAA2B,qBAAsB,WAAY,iBAAiB,EACnG,SAAU,CAAC,CACb,EAEIC,GAA2B,KAC3BC,GACAC,GAA8B,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAC7DC,GAAW,EAETC,GAAWC,GAAO,EAAK,GAAK,EAAI,KAAK,IAAIA,CAAC,GAEhD,eAAsBC,GAAWC,EAAqC,CAhCtE,IAAAC,EAkCE,GADIb,GAAI,UAASC,GAAO,SAAW,MAC/B,CAACA,GAAO,UAAYW,EAAO,KAAK,UAAeA,EAAO,KAAK,SAAY,UAAiB,CAC1FX,GAAO,SAAW,MAAMa,EAAUF,EAAO,KAAK,SAAY,SAAS,EACnE,IAAMG,GAASF,EAAAZ,GAAO,WAAP,MAAAY,EAAkB,SAAc,OAAO,OAAOZ,GAAO,SAAS,eAAe,MAAS,EAAI,OACzGC,GAAU,SAAS,GAAK,MAAM,QAAQa,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EAC9Fb,GAAU,SAAS,GAAK,MAAM,QAAQa,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CAChG,MAAWH,EAAO,OAASX,GAAO,UAAUe,EAAI,gBAAiBf,GAAO,SAAS,QAAW,EAC5F,OAAOgB,GAAc,EACdhB,GAAO,QAChB,CAEA,eAAsBiB,GAASN,EAAqC,CA5CpE,IAAAC,EA8CE,GADIb,GAAI,UAASC,GAAO,UAAY,MAC/BA,GAAO,UAKDW,EAAO,OAAOI,EAAI,gBAAiBf,GAAO,UAAU,QAAW,MALnD,CACrBA,GAAO,UAAY,MAAMa,EAAUF,EAAO,KAAK,SAAS,EACxD,IAAMG,GAASF,EAAAZ,GAAO,YAAP,MAAAY,EAAmB,SAAc,OAAO,OAAOZ,GAAO,UAAU,eAAe,MAAS,EAAI,OAC3GC,GAAU,UAAU,GAAK,MAAM,QAAQa,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EAC/Fb,GAAU,UAAU,GAAK,MAAM,QAAQa,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CACjG,CACA,OAAOd,GAAO,SAChB,CAQA,SAASkB,GAAaC,EAAeC,EAAsB,CA7D3D,IAAAC,EAAAC,EA8DE,IAAMC,EAA4B,CAAC,EACnC,GAAI,GAACF,EAAAF,GAAA,YAAAA,EAAO,QAAP,MAAAE,EAAe,KAAM,GAACC,EAAAH,GAAA,YAAAA,EAAO,QAAP,MAAAG,EAAe,IAAI,OAAOH,EACrD,IAAIK,EAIJ,GAHIC,KACFF,EAAE,QAAa,QAAM,cAAcJ,EAAO,CAACM,EAAO,EAAG,CAAC,CAAC,EAAG,CAACN,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,CAAC,GAExFA,EAAM,MAAM,KAAOA,EAAM,MAAM,GAAI,CACrC,IAAMO,EAA2B,CAC/BP,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,EACtFA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,CACxF,EACMQ,EAA0B,CAC9BR,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,EACtFA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,CACxF,EACAS,GAAU,CACR,CAAC,EAAG,CAAC,EACLF,EACAC,EACA,CAAC,EAAG,CAAC,CACP,EACAJ,EAAE,IAAS,MAAIA,EAAE,SAAWJ,EAAOS,EAAO,EAC1CL,EAAE,OAAY,QAAM,eAAeA,EAAE,IAAK,CAACH,EAAMA,CAAI,CAAC,EACtDI,EAAW,MAAID,EAAE,OAAQM,EAAU,KAAK,CAC1C,MAAWV,EAAM,MAAM,KAAOC,GAC5BG,EAAE,OAAY,QAAM,eAAeA,EAAE,SAAWJ,EAAO,CAACC,EAAMA,CAAI,CAAC,EACnEI,EAAW,MAAID,EAAE,OAAQM,EAAU,KAAK,GAExCL,EAAW,MAAID,EAAE,SAAWJ,EAAOU,EAAU,KAAK,EAEpD,cAAO,KAAKN,CAAC,EAAE,QAASO,GAAc,UAAQP,EAAEO,EAAO,CAAC,EACjDN,CACT,CAEA,SAASO,GAAiBC,EAA2BC,EAA8C,CACjG,QAAWC,KAAOF,EAChBE,EAAI,SAAW,CACb,KAAK,MAAMA,EAAI,SAAS,IAAMD,EAAW,GAAKL,GAAQ,GAAG,GAAKA,GAAQ,GAAG,IAAMK,EAAW,GAAKL,GAAQ,GAAG,EAAE,EAC5G,KAAK,MAAMM,EAAI,SAAS,IAAMD,EAAW,GAAKL,GAAQ,GAAG,GAAKA,GAAQ,GAAG,IAAMK,EAAW,GAAKL,GAAQ,GAAG,EAAE,EAC5GM,EAAI,SAAS,EACf,EACAA,EAAI,YAAc,CAACA,EAAI,SAAS,GAAKD,EAAW,GAAIC,EAAI,SAAS,GAAKD,EAAW,GAAI,EAAKC,EAAI,SAAS,IAAiBD,EAAW,GAAKA,EAAW,GAAG,EAExJ,GAAIR,GACF,QAAWS,KAAOF,EAChBE,EAAI,YAAc,CAChBA,EAAI,YAAY,GAAKT,GAAQ,GAC7BS,EAAI,YAAY,GAAKT,GAAQ,GAC7BS,EAAI,YAAY,EAClB,EACAA,EAAI,SAAW,CACb,KAAK,MAAMA,EAAI,YAAY,GAAKD,EAAW,EAAE,EAC7C,KAAK,MAAMC,EAAI,YAAY,GAAKD,EAAW,EAAE,EAC7CC,EAAI,YAAY,EAClB,EAGJ,OAAOF,CACT,CAEA,SAASG,GAAaH,EAA2B,CAE/C,IAAMI,EAAWJ,EAAU,KAAMK,GAAMA,EAAE,OAAS,UAAU,EACtDC,EAAYN,EAAU,KAAMK,GAAMA,EAAE,OAAS,WAAW,EACxDE,EAAYP,EAAU,KAAMK,GAAMA,EAAE,OAAS,WAAW,EAC9DD,EAAS,SAAS,KAAOE,EAAU,SAAS,IAAM,IAAMC,EAAU,SAAS,IAAM,IAAM,EACvF,IAAMC,EAAYR,EAAU,KAAMK,GAAMA,EAAE,OAAS,WAAW,EACxDI,EAAaT,EAAU,KAAMK,GAAMA,EAAE,OAAS,YAAY,EAC1DK,EAAaV,EAAU,KAAMK,GAAMA,EAAE,OAAS,YAAY,EAChEG,EAAU,SAAS,KAAOC,EAAW,SAAS,IAAM,IAAMC,EAAW,SAAS,IAAM,IAAM,CAC5F,CAEA,eAAeC,GAAgBxB,EAAeyB,EAAgBX,EAA0D,CAtIxH,IAAAZ,EAAAC,EA8IE,GAAI,GAACD,EAAAwB,GAAO,YAAP,MAAAxB,EAAmB,UAAa,OAAO,KAC5C,IAAME,EAA4B,CAAC,EACnC,CAACA,EAAE,GAAqBA,EAAE,aAA+BA,EAAE,QAAyBA,EAAE,MAAwBA,EAAE,QAAiB,GAAID,EAAAuB,GAAO,YAAP,YAAAvB,EAAkB,QAAQH,EAAO2B,GAAY,WAClL,IAAMC,GAAa,MAAMxB,EAAE,SAAS,KAAK,GAAG,GACtCyB,EAAS,MAAMzB,EAAE,GAAG,KAAK,EACzB0B,EAAY,MAAM1B,EAAE,MAAM,KAAK,EACrC,OAAO,KAAKA,CAAC,EAAE,QAASO,GAAc,UAAQP,EAAEO,EAAO,CAAC,EACxD,IAAMoB,EAAoC,CAAC,EACrCC,EAAQ,EACd,QAASC,EAAI,EAAGA,EAAIJ,EAAO,OAASG,EAAOC,IAAK,CAC9C,IAAMC,EAAQC,GAAQN,EAAOG,EAAQC,EAAI,EAAE,EACrCG,EAAWD,GAAQN,EAAOG,EAAQC,EAAI,EAAE,EACxCI,EAAW,KAAK,MAAM,IAAMH,EAAQE,EAAWR,CAAS,EAAI,IAC5DU,EAAqB,CAACT,EAAOG,EAAQC,EAAI,GAAKM,GAAU,UAAU,GAAIV,EAAOG,EAAQC,EAAI,GAAKM,GAAU,UAAU,GAAIV,EAAOG,EAAQC,EAAI,GAAK,CAAC,EAC/IO,EAAkB,CAAC,KAAK,MAAM1B,EAAW,GAAKwB,EAAY,EAAE,EAAG,KAAK,MAAMxB,EAAW,GAAKwB,EAAY,EAAE,EAAGA,EAAY,EAAY,EACnIG,EAAkB,CAACX,EAAUE,EAAQC,EAAI,GAAIH,EAAUE,EAAQC,EAAI,GAAIH,EAAUE,EAAQC,EAAI,GAAK,CAAC,EACzGF,EAAkB,KAAK,CAAE,KAAahB,GAAIkB,GAAoB,YAAAK,EAAa,SAAAE,EAAU,SAAAC,EAAU,MAAOJ,CAAS,CAAC,CAClH,CACA,GAAIT,GAAaH,EAAO,KAAK,eAAiB,GAAI,OAAO,KACzDT,GAAae,CAAiB,EAC9B,IAAMlB,EAA4BD,GAAiBmB,EAAmBjB,CAAU,EAC1E4B,EAAO7B,EAAU,IAAKK,GAAMA,EAAE,QAAQ,EACtCyB,EAAYC,GAAKF,EAAM,CAAC5B,EAAW,GAAIA,EAAW,EAAE,CAAC,EACrD+B,EAAiD,CAAC,EACxD,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAeC,EAAS,EAAG,CAC9D,IAAMC,EAAgB,CAAC,EACvB,QAAShB,EAAI,EAAGA,EAAIc,EAAQ,OAAS,EAAGd,IAAK,CAC3C,IAAMiB,EAAMrC,EAAU,KAAME,GAAQA,EAAI,OAASgC,EAAQd,EAAE,EACrDkB,EAAMtC,EAAU,KAAME,GAAQA,EAAI,OAASgC,EAAQd,EAAI,EAAE,EAC3DiB,GAAOC,GAAKF,EAAG,KAAK,CAACC,EAAI,SAAUC,EAAI,QAAQ,CAAC,CACtD,CACAN,EAAYC,GAAQG,CACtB,CAEA,MADa,CAAE,GAAI,EAAG,MAAO,KAAK,MAAM,IAAMrB,CAAS,EAAI,IAAK,IAAKe,EAAM,IAAK,OAAQA,EAAM,OAAQ,UAAA9B,EAAW,YAAAgC,CAAY,CAE/H,CAgCA,eAAsBO,GAAQpD,EAAeyB,EAAuC,CAClF,IAAMX,EAA+B,CAACd,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,EACxEqD,GAAY5B,EAAO,KAAK,UAAY,GAAM6B,EAAI,EAAIC,GAClDC,EAAYC,IAAWhC,EAAO,KAAK,YAAc,GACvD,GAAIA,EAAO,aAAe4B,GAAYG,GAAaE,KAAU,KAC3DD,SACK,CACL,IAAMrD,EAA4B,CAAC,EAOnCA,EAAE,UAAYL,GAAaC,EAAO,GAAG,EACrC0D,GAAQ,MAAMlC,GAAgBpB,EAAE,UAAWqB,EAAQX,CAAU,EAe7D,OAAO,KAAKV,CAAC,EAAE,QAASO,GAAc,UAAQP,EAAEO,EAAO,CAAC,EACxD4C,GAAWD,EAAI,EACfG,GAAU,CACZ,CACA,OAAOC,GAAQ,CAACA,EAAK,EAAI,CAAC,CAC5B,CCjPO,IAAMC,GAAS,CACpB,CAAE,MAAO,EAAG,MAAO,QAAS,EAC5B,CAAE,MAAO,EAAG,MAAO,SAAU,EAC7B,CAAE,MAAO,EAAG,MAAO,KAAM,EACzB,CAAE,MAAO,EAAG,MAAO,YAAa,EAChC,CAAE,MAAO,EAAG,MAAO,UAAW,EAC9B,CAAE,MAAO,EAAG,MAAO,KAAM,EACzB,CAAE,MAAO,EAAG,MAAO,OAAQ,EAC3B,CAAE,MAAO,EAAG,MAAO,OAAQ,EAC3B,CAAE,MAAO,EAAG,MAAO,MAAO,EAC1B,CAAE,MAAO,GAAI,MAAO,eAAgB,EACpC,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,eAAgB,EACpC,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,aAAc,EAClC,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,gBAAiB,EACrC,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,eAAgB,EACpC,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,KAAM,EAC1B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,IAAK,EACzB,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,QAAS,EAC7B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,WAAY,EAChC,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,SAAU,EAC9B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,cAAe,EACnC,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,OAAQ,EAC5B,CAAE,MAAO,GAAI,MAAO,MAAO,EAC3B,CAAE,MAAO,GAAI,MAAO,UAAW,EAC/B,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,YAAa,EACjC,CAAE,MAAO,GAAI,MAAO,YAAa,CACnC,ECrEA,IAAIC,GACAC,GAAY,EACZC,GAAuB,CAAC,EACxBC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAE9D,GADIC,EAAI,UAASP,GAAQ,MACpBA,GAKMM,EAAO,OAAOE,EAAI,gBAAiBR,GAAM,QAAW,MALnD,CAEVA,GAAQ,MAAMS,EAAUH,EAAO,OAAO,SAAS,EAC/C,IAAMI,EAASV,IAAA,MAAAA,GAAQ,SAAc,OAAO,OAAOA,GAAM,eAAe,MAAS,EAAI,OACrFC,GAAY,MAAM,QAAQS,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CACpF,CACA,OAAOV,EACT,CAEA,eAAeW,GAAQC,EAAoBC,EAA+BP,EAAgB,CACxF,GAAI,CAACM,EAAK,MAAO,CAAC,EAClB,IAAME,EAA4B,CAAC,EAC7BC,EAA0B,CAAC,EAC3BC,EAAa,MAAMJ,EAAI,MAAM,EACnCE,EAAE,QAAa,UAAQF,CAAG,EAC1B,IAAMK,EAAS,QAAMH,EAAE,QAAS,EAAG,CAAC,EACpCA,EAAE,MAAW,QAAM,CAACG,EAAI,GAAIA,EAAI,GAAIA,EAAI,GAAIA,EAAI,EAAE,EAAG,CAAC,EACtDH,EAAE,MAAW,UAAQA,EAAE,KAAK,EAC5BA,EAAE,OAAY,UAAQG,EAAI,EAAE,EAC5BH,EAAE,QAAa,UAAQG,EAAI,EAAE,EAC1B,UAAQ,CAACL,EAAK,GAAGK,CAAG,CAAC,EACxBH,EAAE,IAAM,MAAS,QAAM,uBAAuBA,EAAE,MAAOA,EAAE,OAAQR,EAAO,OAAO,YAAaA,EAAO,OAAO,aAAeA,EAAO,OAAO,eAAiB,CAAE,EAC1J,IAAMY,EAAM,MAAMJ,EAAE,IAAI,KAAK,EACzBK,EAAI,EACR,QAAWC,KAAM,MAAM,KAAKF,CAAG,EAAG,CAChC,IAAMG,EAAQ,KAAK,MAAM,IAAML,EAAW,GAAGI,GAAI,EAAE,EAAI,IACjDE,EAAWN,EAAW,GAAGI,GAAI,GACnC,GAAI,OAAO,MAAME,CAAQ,EAAG,SAC5B,IAAMC,EAAQC,GAAOF,GAAU,MACzB,CAACG,EAAGC,CAAC,EAAI,CACbV,EAAW,GAAGI,GAAI,GAAKnB,GACvBe,EAAW,GAAGI,GAAI,GAAKnB,EACzB,EACM0B,EAAc,CAClBF,EACAC,EACAV,EAAW,GAAGI,GAAI,GAAKnB,GAAYwB,EACnCT,EAAW,GAAGI,GAAI,GAAKnB,GAAYyB,CACrC,EACME,EAAW,CACf,KAAK,MAAMD,EAAO,GAAKd,EAAY,EAAE,EACrC,KAAK,MAAMc,EAAO,GAAKd,EAAY,EAAE,EACrC,KAAK,MAAMc,EAAO,GAAKd,EAAY,EAAE,EACrC,KAAK,MAAMc,EAAO,GAAKd,EAAY,EAAE,CACvC,EACAE,EAAQ,KAAK,CAAE,GAAII,IAAK,MAAAE,EAAO,MAAOC,EAAU,MAAAC,EAAO,IAAAK,EAAK,OAAAD,CAAO,CAAC,CACtE,CACA,cAAO,KAAKb,CAAC,EAAE,QAASe,GAAc,UAAQf,EAAEe,EAAO,CAAC,EACjDd,CACT,CAEA,eAAsBe,GAAQC,EAAezB,EAAyC,CACpF,GAAI,EAACN,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMgC,GAAY1B,EAAO,OAAO,UAAY,GAAM2B,EAAI,EAAI9B,GACpD+B,EAAY9B,IAAWE,EAAO,OAAO,YAAc,GACzD,OAAIA,EAAO,aAAe0B,GAAYE,GAAchC,GAAK,OAAS,GAChEE,KACOF,KAETE,GAAU,EACH,IAAI,QAAQ,MAAO+B,GAAY,CACpC,IAAMC,EAAa,CAACL,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,EACtDM,EAAY,QAAM,eAAeN,EAAO,CAAC9B,GAAWA,EAAS,CAAC,EAC9DqC,EAAUhC,EAAO,OAAO,QAAUN,IAAA,YAAAA,GAAO,QAAQqC,EAAQ,CAAC,oBAAoB,GAAe,KACnGlC,GAAW8B,EAAI,EACZ,UAAQI,CAAM,EAEjB,IAAME,EAAM,MAAM5B,GAAQ2B,EAASF,EAAY9B,CAAM,EACrDJ,GAAOqC,EAEPJ,EAAQI,CAAG,CACb,CAAC,EACH,CC/FA,IAAAC,GAAA,GAAAC,GAAAD,GAAA,eAAAE,GAAA,QAAAC,KAAO,IAAMA,GAAgB,CAC3B,OACA,OACA,gBACA,aACA,aACA,QACA,eACA,YACA,YACA,aACA,WACA,YACA,aACA,UACA,WACA,WACF,EAEaD,GAAsC,CACjD,QAAS,CAAC,UAAW,WAAY,WAAW,EAC5C,SAAU,CAAC,WAAY,YAAa,YAAY,EAChD,MAAO,CAAC,eAAgB,gBAAiB,WAAY,UAAW,cAAc,EAC9E,QAAS,CAAC,eAAgB,YAAa,WAAW,EAClD,SAAU,CAAC,gBAAiB,aAAc,YAAY,EACtD,KAAM,CAAC,CACT,ECVA,IAAIE,EACAC,GAAW,EACTC,GAAoB,CAAE,GAAI,EAAG,UAAW,CAAC,EAAG,IAAK,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,OAAQ,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,MAAO,EAAG,YAAa,CAAC,CAAuC,EAMtJC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAC9D,OAAIC,EAAI,UAASN,EAAQ,MACpBA,EACIK,EAAO,OAAOE,EAAI,gBAAiBP,EAAM,QAAW,EADjDA,EAAQ,MAAMQ,EAAUH,EAAO,KAAK,SAAS,EAElDL,CACT,CAGA,eAAeS,GAAMC,EAAQC,EAA6C,CACxE,GAAM,CAACC,EAAOC,CAAM,EAAIH,EAAO,MACzBI,EAAc,UAAQJ,EAAQ,CAACG,EAASD,CAAK,CAAC,EAC9CG,EAAS,MAAID,EAAU,CAAC,EACxBE,GAAoB,MAAMD,EAAI,KAAK,GAAG,GAC5C,GAAIC,EAAWL,EAAU,CACvB,IAAMM,EAAiB,SAAOH,EAAU,CAAC,EACnCI,EAAS,MAAID,EAAaL,CAAK,EAC/B,GAAK,MAAMM,EAAI,KAAK,GAAG,GACvBC,EAAS,MAAIF,EAAaL,CAAK,EAC/BQ,GAAa,MAAMD,EAAI,KAAK,GAAG,GACrC,OAAG,UAAQ,CAACL,EAAUC,EAAKE,EAAaC,EAAKC,CAAG,CAAC,EAC1C,CAAC,EAAGC,EAAGJ,CAAQ,CACxB,CACA,OAAG,UAAQ,CAACF,EAAUC,CAAG,CAAC,EACnB,CAAC,EAAG,EAAGC,CAAQ,CACxB,CAEA,eAAsBK,GAAQC,EAAejB,EAAuC,CAClF,GAAI,EAACL,GAAA,MAAAA,EAAQ,UAAa,MAAO,CAAC,EAClC,IAAMuB,GAAYlB,EAAO,KAAK,UAAY,GAAMmB,EAAI,EAAIvB,GAClDwB,EAAYtB,IAAWE,EAAO,KAAK,YAAc,GACvD,OAAIA,EAAO,aAAekB,GAAYE,GAAa,OAAO,KAAKvB,GAAM,SAAS,EAAE,OAAS,GACvFC,KACO,CAACD,EAAK,IAEfC,GAAU,EACH,IAAI,QAAQ,MAAOuB,GAAY,CACpC,IAAMC,EAAY,OAAK,IAAM,CAC3B,GAAI,EAAC3B,GAAA,MAAAA,EAAO,OAAO,GAAG,OAAO,OAAO,KACpC,IAAM4B,EAAY,QAAM,eAAeN,EAAO,CAACtB,EAAM,OAAO,GAAG,MAAM,GAAIA,EAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EACnG6B,EAAa,MAAID,EAAQE,EAAU,GAAG,EAE5C,OADgB,MAAID,EAASC,EAAU,GAAG,CAE5C,CAAC,EACGC,EAKJ,GAJI1B,EAAO,KAAK,UAAS0B,EAAO/B,GAAA,YAAAA,EAAO,QAAQ2B,IAC/C1B,GAAWuB,EAAI,EACZ,UAAQG,CAAM,EAEbI,EAAM,CACR7B,GAAM,UAAU,OAAS,EACzB,IAAM8B,EAAa,UAAQD,CAAI,EAC5B,UAAQA,CAAI,EAEf,IAAME,EAAW,UAAQD,EAAS,CAAC,EAChC,UAAQA,CAAO,EAGlB,QAASE,EAAK,EAAGA,EAAKD,EAAM,OAAQC,IAAM,CAExC,GAAM,CAACC,EAAGf,EAAGgB,CAAS,EAAI,MAAM3B,GAAMwB,EAAMC,GAAK7B,EAAO,KAAK,aAAa,EACtE+B,GAAa/B,EAAO,KAAK,eAAiB,IAC5CH,GAAM,UAAU,KAAK,CACnB,MAAO,KAAK,MAAM,IAAMkC,CAAS,EAAI,IACrC,KAAaC,GAAIH,GACjB,YAAa,CAEXC,EAAInC,EAAM,OAAO,GAAG,MAAM,GAAIoB,EAAIpB,EAAM,OAAO,GAAG,MAAM,EAC1D,EACA,SAAU,CAER,KAAK,MAAMsB,EAAM,MAAM,GAAKa,EAAInC,EAAM,OAAO,GAAG,MAAM,EAAE,EAAG,KAAK,MAAMsB,EAAM,MAAM,GAAKF,EAAIpB,EAAM,OAAO,GAAG,MAAM,EAAE,CACrH,CACF,CAAC,CAEL,CACAiC,EAAM,QAASK,GAAS,UAAQA,CAAC,CAAC,CACpC,CACApC,GAAM,MAAQA,GAAM,UAAU,OAAO,CAACqC,EAAMC,IAAUA,EAAK,MAAQD,EAAOC,EAAK,MAAQD,EAAO,CAAC,EAC/F,IAAMJ,EAAIjC,GAAM,UAAU,IAAKuC,GAAMA,EAAE,SAAS,EAAE,EAC5CrB,EAAIlB,GAAM,UAAU,IAAKuC,GAAMA,EAAE,SAAS,EAAE,EAClDvC,GAAM,IAAM,CACV,KAAK,IAAI,GAAGiC,CAAC,EACb,KAAK,IAAI,GAAGf,CAAC,EACb,KAAK,IAAI,GAAGe,CAAC,EAAI,KAAK,IAAI,GAAGA,CAAC,EAC9B,KAAK,IAAI,GAAGf,CAAC,EAAI,KAAK,IAAI,GAAGA,CAAC,CAChC,EACA,IAAMsB,EAAOxC,GAAM,UAAU,IAAKuC,GAAMA,EAAE,YAAY,EAAE,EAClDE,EAAOzC,GAAM,UAAU,IAAKuC,GAAMA,EAAE,YAAY,EAAE,EACxDvC,GAAM,OAAS,CACb,KAAK,IAAI,GAAGwC,CAAI,EAChB,KAAK,IAAI,GAAGC,CAAI,EAChB,KAAK,IAAI,GAAGD,CAAI,EAAI,KAAK,IAAI,GAAGA,CAAI,EACpC,KAAK,IAAI,GAAGC,CAAI,EAAI,KAAK,IAAI,GAAGA,CAAI,CACtC,EACA,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAeC,EAAS,EAAG,CAC9D,IAAMC,EAAgB,CAAC,EACvB,QAASC,EAAI,EAAGA,EAAIH,EAAQ,OAAS,EAAGG,IAAK,CAC3C,IAAMC,EAAM/C,GAAM,UAAU,KAAMmC,GAAQA,EAAI,OAASQ,EAAQG,EAAE,EAC3DE,EAAMhD,GAAM,UAAU,KAAMmC,GAAQA,EAAI,OAASQ,EAAQG,EAAI,EAAE,EACjEC,GAAOC,GAAOD,EAAI,OAAS5C,EAAO,KAAK,eAAiB,IAAM6C,EAAI,OAAS7C,EAAO,KAAK,eAAiB,IAAI0C,EAAG,KAAK,CAACE,EAAI,SAAUC,EAAI,QAAQ,CAAC,CACtJ,CACAhD,GAAM,YAAY0C,GAAQG,CAC5B,CACArB,EAAQ,CAACxB,EAAK,CAAC,CACjB,CAAC,EACH,CCpHA,IAAMiD,GAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,SAAS,EAClFC,GACEC,GAAgD,CAAC,EACnDC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAtBhE,IAAAC,EAuBE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,UAAZ,YAAAC,EAAqB,SAAS,EAE3DP,EACT,CAEA,eAAsBW,GAAQC,EAAeN,EAAgBO,EAAaC,EAA+D,CA7BzI,IAAAP,EAAAQ,EA8BE,GAAI,CAACf,GAAO,MAAO,CAAC,EACpB,IAAMgB,EAAYZ,MAAWG,EAAAD,EAAO,KAAK,UAAZ,YAAAC,EAAqB,aAAc,GAC1DU,KAAYF,EAAAT,EAAO,KAAK,UAAZ,YAAAS,EAAqB,WAAY,GAAMG,EAAI,EAAIf,GACjE,OAAIG,EAAO,aAAeW,GAAYD,GAAcd,KAAcY,GAAUb,GAAKY,IAASZ,GAAKY,GAAK,OAAS,GAC3GT,KACOH,GAAKY,KAEdT,GAAU,EACH,IAAI,QAAQ,MAAOe,GAAY,CAtCxC,IAAAZ,EAuCI,IAAMa,EAA6C,CAAC,EACpD,IAAIb,EAAAD,EAAO,KAAK,UAAZ,MAAAC,EAAqB,QAAS,CAChC,IAAMc,EAA4B,CAAC,EAC7BC,EAAYtB,IAAA,MAAAA,GAAO,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,EACtEqB,EAAE,OAAY,QAAM,eAAeT,EAAO,CAACU,EAAWA,CAAS,EAAG,EAAK,EASvED,EAAE,SAAc,MAAIA,EAAE,OAAQE,EAAU,GAAG,EAC3CF,EAAE,UAAe,MAAIA,EAAE,SAAU,EAAG,EAAI,EACxCA,EAAE,aAAkB,MAAIA,EAAE,UAAWE,EAAU,IAAI,EACnDF,EAAE,aAAkB,MAAIA,EAAE,aAAcE,EAAU,GAAG,EACrDF,EAAE,QAAUrB,IAAA,YAAAA,GAAO,QAAQqB,EAAE,cAC7BlB,GAAWe,EAAI,EACf,IAAMM,EAAO,MAAMH,EAAE,QAAQ,KAAK,EAClC,QAASI,EAAI,EAAGA,EAAID,EAAK,OAAQC,IAC3BD,EAAKC,IAAMnB,EAAO,KAAK,QAAQ,eAAiB,IAAIc,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAMI,EAAKC,EAAE,EAAI,GAAG,EAAG,QAAS1B,GAAY0B,EAAc,CAAC,EAEjKL,EAAI,KAAK,CAACM,EAAGC,IAAMA,EAAE,MAAQD,EAAE,KAAK,EACpC,OAAO,KAAKL,CAAC,EAAE,QAASO,GAAc,UAAQP,EAAEO,EAAO,CAAC,CAC1D,CACA3B,GAAKY,GAAOO,EACZlB,GAAYY,EACZK,EAAQC,CAAG,CACb,CAAC,EACH,CCtDA,IAAIS,GACEC,GAAmB,CAAC,EACtBC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CArBhE,IAAAC,EAsBE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,gBAAZ,YAAAC,EAA8B,SAAS,EAEpEP,EACT,CAoBA,eAAsBW,GAAQC,EAAeN,EAAgBO,EAAKC,EAA0B,CA9C5F,IAAAP,EAAAQ,EA+CE,GAAI,EAACf,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMgB,EAAYZ,MAAWG,EAAAD,EAAO,KAAK,gBAAZ,YAAAC,EAA8B,aAAc,GACnEU,KAAYF,EAAAT,EAAO,KAAK,gBAAZ,YAAAS,EAA8B,WAAY,GAAMG,EAAI,EAAIf,GAC1E,OAAIG,EAAO,aAAeW,GAAYD,GAAcd,KAAcY,GAAUb,GAAKY,IAC/ET,KACOH,GAAKY,IAEP,IAAI,QAAQ,MAAOM,GAAY,CAtDxC,IAAAZ,EAuDI,IAAIa,EAAiB,CAAC,EACtB,KAAIb,EAAAD,EAAO,KAAK,gBAAZ,YAAAC,EAA8B,WAAWP,IAAA,YAAAA,GAAO,OAAO,GAAG,OAAO,CACnE,IAAMqB,EAA4B,CAAC,EACnCA,EAAE,KAAU,QAAM,eAAeT,EAAO,CAACZ,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EAInGqB,EAAE,KAAOrB,GAAM,QAAQqB,EAAE,IAAI,EAa7B,IAAMC,EAAS,MAAMD,EAAE,KAAK,KAAK,EACjCD,EAAO,MAAM,KAAKE,CAAM,EACxB,OAAO,KAAKD,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,CAC1D,CACAtB,GAAKY,GAAOO,EACZlB,GAAYY,EACZX,GAAWe,EAAI,EACfC,EAAQC,CAAI,CACd,CAAC,CACH,CCrEA,IAAII,GACEC,GAAmB,CAAC,EACtBC,GAAY,EACZC,GAAW,EACXC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAC9D,OAAIC,EAAI,UAASP,GAAQ,MACpBA,GACIM,EAAO,OAAOE,EAAI,gBAAiBR,GAAM,QAAW,EADjDA,GAAQ,MAAMS,EAAUH,EAAO,KAAK,YAAe,SAAS,EAEjEN,EACT,CAEA,eAAsBU,GAAQC,EAAeL,EAAgBM,EAAKC,EAA0B,CA5B5F,IAAAC,EAAAC,EA6BE,GAAI,EAACf,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMgB,EAAYZ,MAAWU,EAAAR,EAAO,KAAK,cAAZ,YAAAQ,EAA4B,aAAc,GACjEG,KAAYF,EAAAT,EAAO,KAAK,cAAZ,YAAAS,EAA4B,WAAY,GAAMG,EAAI,EAAIf,GACxE,OAAIG,EAAO,aAAeW,GAAYD,GAAcd,KAAcW,GAAUZ,GAAKW,IAC/ER,KACOH,GAAKW,IAEP,IAAI,QAAQ,MAAOO,GAAY,CApCxC,IAAAL,EAqCI,IAAIM,EAAiB,CAAC,EACtB,KAAIN,EAAAR,EAAO,KAAK,cAAZ,YAAAQ,EAA4B,WAAWd,IAAA,YAAAA,GAAO,OAAO,GAAG,OAAO,CACjE,IAAMqB,EAA4B,CAAC,EACnCA,EAAE,KAAU,QAAM,eAAeV,EAAO,CAACX,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EAInGqB,EAAE,KAAOrB,GAAM,QAAQqB,EAAE,IAAI,EAC7B,IAAMC,EAAS,MAAMD,EAAE,KAAK,KAAK,EACjCD,EAAO,MAAM,KAAKE,CAAM,EACxB,OAAO,KAAKD,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,CAC1D,CACAtB,GAAKW,GAAOQ,EACZlB,GAAYW,EACZV,GAAWe,EAAI,EACfC,EAAQC,CAAI,CACd,CAAC,CACH,CC5CA,IAAII,GACAC,GAAY,EAEVC,GAAc,IAEdC,GAAqBC,GAAgB,cACrCC,GAAsBD,GAAgB,eAEtCE,GAAe,CACnB,WAAY,CAACH,GAAY,GAAIA,GAAYA,GAAY,OAAS,EAAE,EAChE,YAAa,CAACE,GAAa,GAAIA,GAAaA,GAAa,OAAS,EAAE,CACtE,EAEME,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,EAClB,EAEA,eAAsBC,GAAKC,EAAqC,CA9BhE,IAAAC,EAAAC,EA+BE,OAAIC,EAAI,UAASZ,GAAQ,MACpBA,GACIS,EAAO,OAAOI,EAAI,gBAAiBb,GAAM,QAAW,EADjDA,GAAQ,MAAMc,GAAUJ,EAAAD,EAAO,KAAK,OAAZ,YAAAC,EAAkB,SAAS,EAE/DT,IAAaD,IAAA,YAAAA,GAAQ,aAAeW,EAAAX,GAAM,SAAN,YAAAW,EAAe,GAAG,OAASX,GAAM,OAAO,GAAG,MAAM,GAAK,EACtFC,KAAc,KAAIA,GAAY,IAC3BD,EACT,CAGO,SAASe,GAAkBC,EAAWC,EAAWC,EAAQC,EAAM,CACpE,QAASC,EAAI,EAAGA,EAAWC,GAAY,OAAQD,IAAK,CAClD,GAAM,CAAE,IAAAE,EAAK,QAAAC,CAAQ,EAAWF,GAAYD,GACtCI,EAAyBpB,GAAgB,GAAGc,IAASI,KAC3D,GAAI,CAACH,GAAQA,EAAK,SAASG,CAAG,EAC5B,QAASG,EAAI,EAAGA,EAAIF,EAAQ,OAAQE,IAAK,CACvC,IAAMC,EAAQH,EAAQE,GACtBT,EAAUQ,EAAgBC,IAAM,CAC9BR,EAAUS,GAAO,GACjBT,EAAUS,GAAO,IAChBT,EAAUS,GAAO,GAAKV,EAAUQ,EAAgBC,IAAI,IAAM,CAC7D,CACF,CAEJ,CACF,CAEO,IAAME,GAAoCX,GAAc,CAC7D,IAAMY,EAAWZ,EAAUV,GAAa,WAAW,IAAI,GACjDuB,EAAYb,EAAUV,GAAa,YAAY,IAAI,GACzD,OAAOsB,EAAWC,CACpB,EAGaC,GAAY,CAACd,EAAWe,EAAMC,EAAqBC,EAAqBC,EAAUC,EAAO,KAAU,CAC9G,IAAMC,EAAWC,GAAiBC,GAAgBC,GAA8B,CAACvB,EAAUgB,GAAsBhB,EAAUiB,EAAoB,CAAC,EAAG/B,EAAW,CAAC,EACzJsC,EAAeC,GAAWL,CAAG,EAC/BM,EAAU,QAAM,cAAcX,EAAM,CAAC,CACvCK,EAAI,WAAW,GAAKF,EACpBE,EAAI,WAAW,GAAKF,EAAUE,EAAI,SAAS,GAAKF,EAChDE,EAAI,SAAS,GAAKF,CACpB,CAAC,EAAG,CAAC,CAAC,EAAG,CAACjC,GAAWA,EAAS,CAAC,EAC/B,GAAIkC,GAAQvB,EAAI,QAAQ,SAAS,eAAe,EAAG,CACjD,IAAM+B,EAAa,QAAM,cAAcD,CAAI,EACxC,UAAQA,CAAI,EACfA,EAAOC,CACT,CACA,MAAO,CAAE,IAAAP,EAAK,QAAAI,EAAS,KAAAE,CAAK,CAC9B,EAGaE,GAAe,CAACC,EAASC,EAAQC,EAAYZ,EAAO,KAAU,CACzE,IAAMa,EAAwB,CAAC,EAC/B,QAAS5B,EAAI,EAAGA,EAAIb,GAAc,eAAgBa,IAAK,CACrD,IAAM6B,EAAIJ,EAAQzB,EAAI,GAChB8B,EAAIL,EAAQzB,EAAI,EAAI,GACpB+B,EAAIN,EAAQzB,EAAI,EAAI,GAC1B4B,EAAa,KAAK,EACfb,EAAQ,EAAKc,EAAIhD,GAAegD,EAAIhD,IAAc8C,EAAW,GAAKD,EAAO,WAAW,GACpFI,EAAIjD,GAAa8C,EAAW,GAAKD,EAAO,WAAW,GAAIK,CAC1D,CAAC,CACH,CACA,MAAO,CAAE,UAAWH,EAAc,KAAMA,EAAa,MAAMzC,GAAc,KAAK,CAAE,CAClF,EAGa6C,GAAwB,CAACpC,EAAWqC,EAAYC,IAAc,CACzE,IAAMC,EAAevC,EAAiBZ,GAAgB,GAAGkD,cAAsB/C,GAAc,cAAc,GACrGiD,EAAexC,EAAiBZ,GAAgB,GAAGkD,cAAsB/C,GAAc,cAAc,GACrGkD,GAAYF,EAAeC,GAAgB,EAEjD,OAAOH,EAAW,IAAI,CAACK,EAAO,IAAM,CAClC,IAAIP,EAAIM,EACR,OAAI,IAAM,EACRN,EAAII,EACK,IAAM,IACfJ,EAAIK,GAEC,CAACE,EAAM,GAAIA,EAAM,GAAIP,CAAC,CAC/B,CAAC,CACH,EAEA,eAAsBQ,GAAY3C,EAAWe,EAAMG,EAAU,CAC3D,GAAI,EAAClC,IAAA,MAAAA,GAAQ,UAAa,OAAOgB,EACjC,GAAM,CAAE,IAAK4C,EAAY,QAASC,EAAgB,KAAMC,CAAY,EAAIhC,GAAUd,EAAWe,EAAMzB,GAAa,WAAW,GAAIA,GAAa,WAAW,GAAI4B,EAAU,EAAI,EACnK,CAAE,IAAK6B,EAAa,QAASC,EAAiB,KAAMC,CAAa,EAAInC,GAAUd,EAAWe,EAAMzB,GAAa,YAAY,GAAIA,GAAa,YAAY,GAAI4B,EAAU,EAAI,EACxKgC,EAAc,SAAO,CAACJ,EAAaG,CAAY,CAAC,EACnD,UAAQH,CAAW,EACnB,UAAQG,CAAY,EACvB,IAAME,EAAiBnE,GAAM,QAAQkE,CAAQ,EAC1C,UAAQA,CAAQ,EACnB,IAAME,EAAqB,MAAMD,EAAe,KAAK,EAClD,UAAQA,CAAc,EACzB,IAAME,EAAcD,EAAmB,MAAM,EAAG7D,GAAc,eAAiB,CAAC,EAC1E,CAAE,UAAW+D,EAAkB,KAAMC,CAAkB,EAAI3B,GAAayB,EAAaT,EAAYC,EAAgB,EAAI,EACrHW,EAAeJ,EAAmB,MAAM7D,GAAc,eAAiB,CAAC,EACxE,CAAE,UAAWkE,EAAmB,KAAMC,CAAmB,EAAI9B,GAAa4B,EAAcT,EAAaC,EAAiB,EAAK,EAC3HW,EAAgChD,GAAiCX,CAAS,EAC5E,KAAK,IAAI2D,CAA6B,EAAI,IAC5C5D,GAAkBC,EAAWsD,EAAkB,OAAQ,IAAI,EAC3DvD,GAAkBC,EAAWyD,EAAmB,QAAS,IAAI,GAEpDE,EAAgC,EACzC5D,GAAkBC,EAAWsD,EAAkB,OAAQ,CAAC,YAAa,WAAW,CAAC,EAEjFvD,GAAkBC,EAAWyD,EAAmB,QAAS,CAAC,YAAa,WAAW,CAAC,EAErF,IAAMG,EAAyBxB,GAAsBpC,EAAWuD,EAAmB,MAAM,EACnFM,EAA0BzB,GAAsBpC,EAAW0D,EAAoB,OAAO,EAE5F,OADkB1D,EAAU,OAAO4D,CAAsB,EAAE,OAAOC,CAAuB,CAE3F,CCxIA,IAAMC,GAA8B,CAClC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAC3N,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAC7N,EAEMC,GAAkC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEjOC,GAAsC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAErIC,GAAmC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAElFC,GAAmC,CAAC,CAAC,GAAI,CAAC,EAAG,CAAC,EAAG,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAE5NC,GAAuC,CAAC,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,CAAC,EAEzHC,GAAoC,CAAC,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAEnFC,GAAmC,CACvC,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EACpN,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,EAAG,CAAC,GAAI,GAAG,EAAG,CAAC,IAAK,EAAE,CAC5M,EAmJA,SAASC,GAAqBC,EAAwB,CACpD,IAAMC,EAAUD,EAAY,IAAKE,GAAeA,EAAW,EAAE,EAC7D,OAAAD,EAAQ,KAAKD,EAAYA,EAAY,OAAS,GAAG,EAAE,EAC5CC,CACT,CAEO,IAAME,GAA2C,CACtD,KAAMJ,GAAqBK,EAAgB,EAC3C,QAASL,GAAqBM,EAAoB,EAClD,YAAaN,GAAqBO,EAAwB,EAC1D,SAAUP,GAAqBQ,EAAqB,EACpD,SAAUR,GAAqBS,EAAqB,EACpD,aAAcT,GAAqBU,EAAyB,EAC5D,UAAWV,GAAqBW,EAAsB,EACtD,SAAUX,GAAqBY,EAAqB,CACtD,EAEMC,GAAsC,OAAO,QAAQT,EAAwC,EAChG,IAAI,CAAC,CAACU,EAAOZ,CAAO,IAAMA,EAAQ,IAAKa,GAAU,CAACA,EAAOD,CAAK,CAAqB,CAAC,EACpF,KAAK,EAEKE,GAAgC,IAAI,IAAIH,EAAe,EAQvDI,GAAmC,CAC9C,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC9C,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IACnC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC7C,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACpC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC7C,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACpC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC7C,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACtC,EAEaC,GAAuC,CAClD,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACrC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IACnC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IACzB,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,GAAI,IAAK,GAAI,GAAI,GAAI,GACrB,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GACjC,EAEaC,GAAwC,CACnD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC9B,IAAK,IAAK,IAAK,IAAK,IAAK,IACzB,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACxC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrC,ECvOA,eAAsBC,GAAQC,EAAWC,EAAmB,CAH5D,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAIE,IAAMC,EAAkC,CAGtC,KAAM,OAAMT,GAAAD,EAAAD,EAAQ,OAAQY,GAAMA,EAAE,OAAS,GAAG,IAApC,YAAAX,EAAwC,KAAxC,YAAAC,EAA4C,QACxD,MAAO,OAAME,GAAAD,EAAAH,EAAQ,OAAQY,GAAMA,EAAE,OAAS,EAAE,IAAnC,YAAAT,EAAuC,KAAvC,YAAAC,EAA2C,QACxD,KAAM,OAAME,GAAAD,EAAAL,EAAQ,OAAQY,GAAMA,EAAE,OAAS,GAAG,IAApC,YAAAP,EAAwC,KAAxC,YAAAC,EAA4C,QACxD,MAAO,OAAME,GAAAD,EAAAP,EAAQ,OAAQY,GAAMA,EAAE,OAAS,EAAE,IAAnC,YAAAL,EAAuC,KAAvC,YAAAC,EAA2C,QACxD,KAAM,OAAME,GAAAD,EAAAT,EAAQ,OAAQY,GAAMA,EAAE,OAAS,GAAG,IAApC,YAAAH,EAAwC,KAAxC,YAAAC,EAA4C,OAC1D,EACA,QAAWG,KAAO,OAAO,OAAOF,CAAC,EAC/B,GAAI,CAACE,EAAK,OAAOd,EAInB,IAAMe,EAAuBC,GAAqC,OAAO,CAACC,EAAMC,IAASD,GAAQjB,EAAUkB,GAAM,GAAI,CAAC,EAAcF,GAAqC,OACzK,QAASG,EAAI,EAAGA,EAAIP,EAAE,MAAM,OAAS,EAAGO,IAAKnB,EAAU,KAAK,CAACY,EAAE,MAAM,EAAIO,EAAI,GAAIP,EAAE,MAAM,EAAIO,EAAI,GAAIJ,CAAU,CAAC,EAChH,IAAMK,EAAuBC,GAAsC,OAAO,CAACJ,EAAMC,IAASD,GAAQjB,EAAUkB,GAAM,GAAI,CAAC,EAAcG,GAAsC,OAC3K,QAASF,EAAI,EAAGA,EAAIP,EAAE,MAAM,OAAS,EAAGO,IAAKnB,EAAU,KAAK,CAACY,EAAE,MAAM,EAAIO,EAAI,GAAIP,EAAE,MAAM,EAAIO,EAAI,GAAIC,CAAU,CAAC,EAGhH,QAASD,EAAI,EAAGA,EAAIP,EAAE,KAAK,OAAS,EAAGO,IAAKnB,EAAoBgB,GAAqCG,IAAM,CAACP,EAAE,KAAK,EAAIO,EAAI,GAAIP,EAAE,KAAK,EAAIO,EAAI,GAAInB,EAAoBgB,GAAqCG,IAAI,EAAE,EACjN,QAASA,EAAI,EAAGA,EAAIP,EAAE,KAAK,OAAS,EAAGO,IAAKnB,EAAoBqB,GAAsCF,IAAM,CAACP,EAAE,KAAK,EAAIO,EAAI,GAAIP,EAAE,KAAK,EAAIO,EAAI,GAAInB,EAAoBqB,GAAsCF,IAAI,EAAE,EAGnN,QAASA,EAAI,EAAGA,EAAIP,EAAE,KAAK,OAAS,EAAGO,IAAKnB,EAAoBsB,GAAiCH,IAAM,CAACP,EAAE,KAAK,EAAIO,EAAI,GAAIP,EAAE,KAAK,EAAIO,EAAI,GAAInB,EAAoBsB,GAAiCH,IAAI,EAAE,EAEzM,OAAOnB,CACT,CCNA,IAAMuB,GAAQ,CACZ,MAAO,CAAC,EACR,QAAS,OAAO,iBAChB,UAAW,CACb,EAEIC,EAA2B,KAC3BC,GAAY,EAEhB,eAAsBC,GAAQC,EAAeC,EAAuC,CAlCpF,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAmCE,GAAI,EAACd,GAAA,MAAAA,EAAQ,UAAa,MAAO,CAAC,EAElC,IAAMe,KAAYV,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,WAAY,GAAMW,EAAI,EAAIjB,GAAM,UAClEkB,EAAYlB,GAAM,WAAWO,EAAAF,EAAO,KAAK,WAAZ,YAAAE,EAAsB,aAAc,GACnE,CAACF,EAAO,aAAe,CAACW,GAAY,CAACE,GAAalB,GAAM,MAAM,SAAW,GAC3EA,GAAM,MAAQ,MAAgBmB,GAASf,EAAOC,CAAM,EACpDL,GAAM,UAAYiB,EAAI,EACtBjB,GAAM,QAAU,GAEhBA,GAAM,UAER,IAAMoB,EAAsB,CAAC,EACvBC,EAAwB,CAAC,EAC3BC,EAAK,EACHC,EAAOrB,GACb,QAASsB,EAAI,EAAGA,EAAIxB,GAAM,MAAM,OAAQwB,IAAK,CAC3C,IAAMC,EAAMzB,GAAM,MAAMwB,GACpBE,EAAQ,EACRC,EACEC,EAAmB,CACvB,GAAIN,IACJ,KAAM,CAAC,EACP,QAAS,CAAC,EACV,IAAK,CAAC,EAAG,EAAG,EAAG,CAAC,EAChB,OAAQ,CAAC,EAAG,EAAG,EAAG,CAAC,EACnB,MAAO,EACP,SAAU,EACV,UAAW,EAGX,YAAa,CAAC,CAChB,EAIA,GADA,CAACI,EAAOC,EAAgBC,EAAK,MAAM,EAASC,IAAoBrB,EAAAH,EAAO,KAAK,WAAZ,YAAAG,EAAsB,SAAUiB,EAAKrB,GAAOK,EAAAJ,EAAO,KAAK,OAAZ,MAAAI,EAAkB,QAAUP,GAAsBqB,GAAK,CAAC,EAChKlB,EAAO,OAAO,aAAc,CAC9B,IAAMyB,EAAYF,EAAK,OAAS,MAAMG,GAAsBH,EAAK,MAAM,EAAI,OACxE,UAAQA,EAAK,MAAM,EAClBE,IAAWF,EAAK,OAASE,EAC/B,CAEA,GADAF,EAAK,SAAW,KAAK,MAAM,IAAMH,EAAI,UAAU,EAAI,KAC9Cf,EAAAL,EAAO,KAAK,OAAZ,MAAAK,EAAkB,QAYhB,GAAI,CAACT,EACNI,EAAO,OAAO2B,EAAI,wDAAwD,MACzE,CACL,KAAIrB,EAAAN,EAAO,KAAK,YAAZ,YAAAM,EAAuB,UAAW,CAACsB,EAAI,QAAQ,SAAS,OAAO,EACjE,OAAA5B,EAAO,KAAK,UAAU,QAAU,GAC7B,UAAQuB,EAAK,MAAM,EACfR,EAET,IAAMc,EAAUjC,EAAM,QAAQ2B,EAAK,MAAgB,EAE7CO,EAAiB,MADHD,EAAQ,KAAME,GAAMA,EAAE,MAAMA,EAAE,MAAM,OAAS,KAAO,CAAC,EAChC,KAAK,EAE9C,GADAR,EAAK,UAAY,KAAK,MAAM,IAAMO,EAAe,EAAE,EAAI,IACnDP,EAAK,aAAahB,EAAAP,EAAO,KAAK,WAAZ,YAAAO,EAAsB,gBAAiB,IAE3D,GADAa,EAAI,WAAaG,EAAK,UAClBvB,EAAO,KAAK,KAAK,YAAa,CAChCuB,EAAK,IAAWS,GAASZ,EAAKrB,CAAK,EACnCwB,EAAK,OAAcU,GAAUb,EAAKrB,CAAK,EACvCwB,EAAK,MAAQA,EAAK,SAClBA,EAAK,KAAOH,EAAI,UAAU,IAAKc,GAAO,EAClCd,EAAI,WAAW,GAAKA,EAAI,SAAS,IAAO,GAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAMc,EAAG,GAAehB,GAAK,GAC5GE,EAAI,WAAW,GAAKA,EAAI,SAAS,IAAO,GAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAMc,EAAG,GAAehB,GAAK,CAChH,CAAC,EACDK,EAAK,QAAUA,EAAK,KAAK,IAAKW,GAAO,CAACA,EAAG,IAAMnC,EAAM,MAAM,IAAM,GAAImC,EAAG,IAAMnC,EAAM,MAAM,IAAM,IAAKmC,EAAG,IAAM,GAAKhB,CAAI,CAAC,EACxH,QAAWiB,KAAO,OAAO,KAAYC,EAAkB,EACrDb,EAAK,YAAYY,GAAO,CAACZ,EAAK,KAAYa,GAAmBD,GAAe,CAEhF,MACK,CACL,IAAME,EAAQR,EAAQ,KAAME,GAAMA,EAAE,MAAMA,EAAE,MAAM,OAAS,KAAO,IAAI,EAChEO,EAAoB,UAAQD,EAAO,CAAC,GAAI,CAAC,CAAC,EAC5CE,EAAY,MAAMD,EAAe,MAAM,EACxC,UAAQA,CAAc,GACrB9B,EAAAR,EAAO,KAAK,YAAZ,MAAAQ,EAAuB,QACzB+B,EAAY,MAAgBC,GAAQD,EAAWV,CAAO,GAC7CpB,EAAAT,EAAO,KAAK,OAAZ,MAAAS,EAAkB,UAC3B8B,EAAY,MAAWE,GAAYF,EAAWhB,EAAK,OAAQ1B,EAAS,GAEtE0B,EAAK,KAAYmB,GAAmBH,EAAWnB,EAAKC,EAAOC,EAAgBzB,EAAS,EACpF0B,EAAK,QAAUA,EAAK,KAAK,IAAKW,GAAO,CAACA,EAAG,IAAMnC,EAAM,MAAM,IAAM,GAAImC,EAAG,IAAMnC,EAAM,MAAM,IAAM,IAAKmC,EAAG,IAAM,GAAKhB,CAAI,CAAC,EACxH,QAAWiB,KAAO,OAAO,KAAYQ,EAAe,EAAGpB,EAAK,YAAYY,GAAcQ,GAAgBR,GAAK,IAAKS,IAAUrB,EAAK,KAAKqB,GAAM,EAC1IrB,EAAK,MAAQA,EAAK,UAClB,IAAMsB,EAAgB,CAAE,GAAQC,GAAiBvB,EAAK,KAAMH,CAAG,EAAG,WAAYA,EAAI,WAAY,UAAWA,EAAI,SAAU,EACvHG,EAAK,IAAWS,GAASa,EAAe9C,CAAK,EAC7CwB,EAAK,OAAcU,GAAUY,EAAe9C,CAAK,EAQjDiB,EAAS,KAAK6B,CAAa,CAC7B,CACG,UAAQhB,CAAO,CACpB,KAlEgC,CAC9BN,EAAK,IAAWS,GAASZ,EAAKrB,CAAK,EACnCwB,EAAK,OAAcU,GAAUb,EAAKrB,CAAK,EACvCwB,EAAK,MAAQA,EAAK,SAClBA,EAAK,KAAOH,EAAI,UAAU,IAAKc,GAAO,EAClCd,EAAI,WAAW,GAAKA,EAAI,SAAS,IAAO,GAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAMc,EAAG,GAAehB,GAAK,GAC5GE,EAAI,WAAW,GAAKA,EAAI,SAAS,IAAO,GAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAMc,EAAG,GAAehB,GAAK,CAChH,CAAC,EACDK,EAAK,QAAUA,EAAK,KAAK,IAAKW,GAAO,CAACA,EAAG,IAAMnC,EAAM,MAAM,IAAM,GAAImC,EAAG,IAAMnC,EAAM,MAAM,IAAM,IAAKmC,EAAG,IAAM,GAAKhB,CAAI,CAAC,EACxH,QAAWiB,KAAO,OAAO,KAAYC,EAAkB,EACrDb,EAAK,YAAYY,GAAO,CAACZ,EAAK,KAAYa,GAAmBD,GAAe,CAEhF,CAuDIZ,EAAK,SAASb,EAAAV,EAAO,KAAK,WAAZ,YAAAU,EAAsB,gBAAiB,GAAIK,EAAM,KAAKQ,CAAI,EACpE,UAAQA,EAAK,MAAM,CAC7B,CACA,OAAA5B,GAAM,MAAQqB,EACPD,CACT,CAEA,eAAsBgC,GAAK/C,EAAqC,CAtJhE,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAuJE,OAAIsB,EAAI,UAAShC,EAAQ,QACrBK,EAAAD,EAAO,KAAK,YAAZ,YAAAC,EAAuB,WAAWL,GAAA,YAAAA,EAAQ,YACxC,OAAO,OAAKM,EAAAN,GAAA,YAAAA,EAAQ,YAAR,YAAAM,EAAsB,UAAW,CAAC,CAAC,EAAE,OAAS,IAAGN,EAAQ,MAEtEA,EAGMI,EAAO,OAChB2B,EAAI,gBAAiB/B,EAAM,QAAW,GAHlCO,EAAAH,EAAO,KAAK,YAAZ,MAAAG,EAAuB,QAASP,EAAQ,MAAMoD,EAAUhD,EAAO,KAAK,UAAU,SAAS,EACtFJ,EAAQ,MAAMoD,GAAU5C,EAAAJ,EAAO,KAAK,OAAZ,YAAAI,EAAkB,SAAS,EAI1DP,GAAaD,EAAM,YAAeS,EAAAT,GAAA,YAAAA,EAAO,SAAP,YAAAS,EAAgB,GAAG,QAASC,EAAAV,GAAA,YAAAA,EAAO,SAAP,YAAAU,EAAgB,GAAG,MAAM,GAAK,IACrFV,CACT,CAEO,IAAMqD,GAAuBC,GACvBC,GAAeC,GClJ5B,IAAIC,GACEC,GAKA,CAAC,EAEHC,GAAW,EACXC,GAAY,EACZC,GAAU,OAAO,iBAErB,eAAsBC,GAAKC,EAAqC,CAhChE,IAAAC,EAiCE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,cAAZ,YAAAC,EAAyB,SAAS,EAE/DP,EACT,CAEO,SAASW,GAAQC,EAAe,CACrC,IAAMC,EAAUD,EAAM,OAASA,EAAM,QAAUA,EAC/C,GAAI,EAACZ,IAAA,MAAAA,GAAO,OAAO,GAAG,OAAO,OAAOa,EACpC,IAAMC,EAAkB,QAAM,eAAeD,EAAQ,CAACb,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,EAAG,EAAK,EAC1Ge,EAAkB,MAAID,EAAME,EAAU,KAAK,EACjD,OAAG,UAAQF,CAAI,EACRC,CAkBT,CAEA,eAAsBE,GAAQC,EAAeZ,EAAgBa,EAAaC,EAAiC,CAjE3G,IAAAb,EAAAc,EAAAC,EAAAC,EAkEE,GAAI,EAACvB,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAE,IAAK,EAAG,OAAQ,UAAW,YAAa,EAAG,WAAY,CAAC,CAAE,EAC7F,IAAMwB,EAAYpB,MAAWG,EAAAD,EAAO,KAAK,cAAZ,YAAAC,EAAyB,aAAc,GAC9DkB,KAAYJ,EAAAf,EAAO,KAAK,cAAZ,YAAAe,EAAyB,WAAY,GAAMK,EAAI,EAAIxB,GACrE,OAAII,EAAO,aAAekB,GAAaC,GAAatB,KAAciB,KAAUE,EAAArB,GAAKkB,KAAL,YAAAG,EAAW,QAAQC,EAAAtB,GAAKkB,KAAL,YAAAI,EAAW,KAAM,GAC9GnB,KACOH,GAAKkB,KAEdf,GAAU,EACH,IAAI,QAAQ,MAAOuB,GAAY,CA1ExC,IAAApB,EA2EI,IAAMqB,EAAM,CACV,IAAK,EACL,OAAQ,UACR,YAAa,EACb,WAAY,CAAC,CACf,EAEA,IAAIrB,EAAAD,EAAO,KAAK,cAAZ,MAAAC,EAAyB,QAAS,CACpC,IAAMsB,EAAWlB,GAAQO,CAAK,EACxBY,EAAO9B,IAAA,YAAAA,GAAO,QAAQ6B,GAC5B3B,GAAWwB,EAAI,EACZ,UAAQG,CAAQ,EAEnB,IAAME,EAAS,MADCD,EAAK,KAAME,GAAMA,EAAE,MAAM,KAAO,CAAC,EACpB,KAAK,EAC5BC,EAAa,KAAK,MAAM,IAAM,KAAK,IAAKF,EAAO,GAAK,EAAI,CAAC,EAAI,IAC/DE,GAAc3B,EAAO,KAAK,YAAY,eAAiB,KACzDsB,EAAI,OAASG,EAAO,IAAM,GAAM,SAAW,OAC3CH,EAAI,YAAc,KAAK,IAAI,IAAMK,CAAU,GAE7C,IAAMC,EAAY,SAAOJ,EAAK,KAAME,GAAMA,EAAE,MAAM,KAAO,GAAG,EAAG,CAAC,EAC1DG,GAAe,MAAMD,EAAO,KAAK,GAAG,GACvC,UAAQA,CAAM,EAEjB,IAAME,EAAM,MADCN,EAAK,KAAME,GAAMA,EAAE,MAAM,KAAO,GAAG,EACzB,KAAK,EAC5BJ,EAAI,IAAM,KAAK,MAAMQ,EAAID,EAAM,GAAKC,EAAID,EAAM,GAAK,GAAKA,EAAM,IAAMC,EAAID,EAAM,GAAK,GAAKA,EAAM,IAAMC,EAAID,EAAM,EAAE,EAAI,GAEpH,IAAME,EAAOP,EAAK,KAAME,GAAMA,EAAE,MAAM,KAAO,IAAI,EAG3CM,EAAaD,EAAO,MAAMA,EAAK,KAAK,EAAI,CAAC,EAC/CT,EAAI,WAAa,MAAM,KAAKU,CAAU,EACtCR,EAAK,QAASE,GAAS,UAAQA,CAAC,CAAC,CACnC,CACA/B,GAAKkB,GAAOS,EACZzB,GAAYiB,EACZO,EAAQC,CAAG,CACb,CAAC,EACH,CC7GO,SAASW,GAAWC,EAAK,CAC9B,MAAO,CACL,KAAK,IAAIA,EAAI,SAAS,GAAKA,EAAI,WAAW,EAAE,EAC5C,KAAK,IAAIA,EAAI,SAAS,GAAKA,EAAI,WAAW,EAAE,CAC9C,CACF,CAEO,SAASC,GAAaD,EAAK,CAChC,MAAO,CACLA,EAAI,WAAW,IAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAM,EAC5DA,EAAI,WAAW,IAAMA,EAAI,SAAS,GAAKA,EAAI,WAAW,IAAM,CAC9D,CACF,CAEO,SAASE,GAAyBF,EAAKG,EAAOC,EAAU,CAC7D,IAAMC,EAAIF,EAAM,MAAM,GAChBG,EAAIH,EAAM,MAAM,GAChBI,EAAQ,CAAC,CACbP,EAAI,WAAW,GAAKK,EACpBL,EAAI,WAAW,GAAKM,EACpBN,EAAI,SAAS,GAAKK,EAClBL,EAAI,SAAS,GAAKM,CACpB,CAAC,EACD,OAAU,QAAM,cAAcH,EAAOI,EAAO,CAAC,CAAC,EAAGH,CAAQ,CAC3D,CAEO,SAASI,GAAoBR,EAAKS,EAAQ,CAC/C,IAAMC,EAAa,CAACV,EAAI,WAAW,GAAKS,EAAO,GAAIT,EAAI,WAAW,GAAKS,EAAO,EAAE,EAC1EE,EAAW,CAACX,EAAI,SAAS,GAAKS,EAAO,GAAIT,EAAI,SAAS,GAAKS,EAAO,EAAE,EACpEG,EAAgBZ,EAAI,cAAc,IAAKa,GACvB,CAACA,EAAM,GAAKJ,EAAO,GAAII,EAAM,GAAKJ,EAAO,EAAE,CAEhE,EACD,MAAO,CAAE,WAAAC,EAAY,SAAAC,EAAU,cAAAC,EAAe,WAAYZ,EAAI,UAAW,CAC3E,CAEO,SAASc,GAAWd,EAAKS,EAAS,IAAK,CAC5C,IAAMM,EAASd,GAAaD,CAAG,EACzBgB,EAAOjB,GAAWC,CAAG,EACrBiB,EAAc,CAACR,EAASO,EAAK,GAAK,EAAGP,EAASO,EAAK,GAAK,CAAC,EACzDN,EAAa,CAACK,EAAO,GAAKE,EAAY,GAAIF,EAAO,GAAKE,EAAY,EAAE,EACpEN,EAAW,CAACI,EAAO,GAAKE,EAAY,GAAIF,EAAO,GAAKE,EAAY,EAAE,EACxE,MAAO,CAAE,WAAAP,EAAY,SAAAC,EAAU,cAAeX,EAAI,aAAc,CAClE,CAEO,SAASkB,GAAYlB,EAAK,CAC/B,IAAMmB,EAAUlB,GAAaD,CAAG,EAC1BgB,EAAOjB,GAAWC,CAAG,EAErBoB,EADU,KAAK,IAAI,GAAGJ,CAAI,EACL,EACrBN,EAAa,CAACS,EAAQ,GAAKC,EAAUD,EAAQ,GAAKC,CAAQ,EAC1DT,EAAW,CAACQ,EAAQ,GAAKC,EAAUD,EAAQ,GAAKC,CAAQ,EAC9D,MAAO,CAAE,WAAAV,EAAY,SAAAC,EAAU,cAAeX,EAAI,aAAc,CAClE,CAaO,SAASqB,GAAiBC,EAAO,CACtC,OAAOA,EAAQ,EAAI,KAAK,GAAK,KAAK,OAAOA,EAAQ,KAAK,KAAO,EAAI,KAAK,GAAG,CAC3E,CAEO,SAASC,GAAgBC,EAAQC,EAAQ,CAC9C,IAAMC,EAAU,KAAK,GAAK,EAAI,KAAK,MAAM,EAAED,EAAO,GAAKD,EAAO,IAAKC,EAAO,GAAKD,EAAO,EAAE,EACxF,OAAOH,GAAiBK,CAAO,CACjC,CAEO,IAAMC,GAAyB,CAACC,EAAGC,IAAM,CAAC,CAAC,EAAG,EAAGD,CAAC,EAAG,CAAC,EAAG,EAAGC,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAEzE,SAASC,GAAIC,EAAIC,EAAI,CAC1B,IAAIC,EAAU,EACd,QAASC,EAAI,EAAGA,EAAIH,EAAG,OAAQG,IAC7BD,GAAWF,EAAGG,GAAKF,EAAGE,GAExB,OAAOD,CACT,CAEO,SAASE,GAAmBC,EAAKC,EAAa,CACnD,IAAMC,EAAmB,CAAC,EAC1B,QAASJ,EAAI,EAAGA,EAAIE,EAAI,OAAQF,IAC9BI,EAAO,KAAKF,EAAIF,GAAGG,EAAY,EAEjC,OAAOC,CACT,CAEO,SAASC,GAA0BC,EAAMC,EAAM,CACpD,IAAMR,EAAsB,CAAC,EACvBS,EAAOF,EAAK,OAClB,QAASG,EAAM,EAAGA,EAAMD,EAAMC,IAAO,CACnCV,EAAQ,KAAK,CAAC,CAAC,EACf,QAASW,EAAM,EAAGA,EAAMF,EAAME,IAC5BX,EAAQU,GAAK,KAAKb,GAAIU,EAAKG,GAAMR,GAAmBM,EAAMG,CAAG,CAAC,CAAC,CAEnE,CACA,OAAOX,CACT,CAEO,SAASY,GAAoBC,EAAUC,EAAQ,CACpD,IAAMC,EAAO,KAAK,IAAIF,CAAQ,EACxBG,EAAO,KAAK,IAAIH,CAAQ,EACxBI,EAAiB,CAAC,CAACF,EAAM,CAACC,EAAM,CAAC,EAAG,CAACA,EAAMD,EAAM,CAAC,EAAG,CAAC,EAAG,EAAG,CAAC,CAAC,EAC9DG,EAAoBxB,GAAuBoB,EAAO,GAAIA,EAAO,EAAE,EAC/DK,EAA2Bb,GAA0BY,EAAmBD,CAAc,EACtFG,EAA4B1B,GAAuB,CAACoB,EAAO,GAAI,CAACA,EAAO,EAAE,EAC/E,OAAOR,GAA0Ba,EAA0BC,CAAyB,CACtF,CAEO,SAASC,GAAsBC,EAAQ,CAC5C,IAAMC,EAAoB,CAAC,CAACD,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EAAG,CAACA,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,CAAC,EAC/EE,EAAuB,CAACF,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EAClDG,EAAsB,CAC1B,CAAC5B,GAAI0B,EAAkB,GAAIC,CAAoB,EAC/C,CAAC3B,GAAI0B,EAAkB,GAAIC,CAAoB,CACjD,EACA,MAAO,CACLD,EAAkB,GAAG,OAAOE,EAAoB,EAAE,EAClDF,EAAkB,GAAG,OAAOE,EAAoB,EAAE,EAClD,CAAC,EAAG,EAAG,CAAC,CACV,CACF,CAEO,SAASC,GAAYC,EAAuBV,EAAgB,CACjE,MAAO,CACLpB,GAAI8B,EAAuBV,EAAe,EAAE,EAC5CpB,GAAI8B,EAAuBV,EAAe,EAAE,CAC9C,CACF,CCpIO,IAAMW,GAAU,CACrB,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,QAAU,EAAG,OAAS,EAC3B,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,OAAS,EAAG,MAAQ,EACzB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,EACvB,CAAE,EAAG,MAAQ,EAAG,KAAO,CACzB,ECz3FO,IAAMC,GAAN,KAAmB,CAQxB,YAAYC,EAAmB,CAP/BC,EAAA,cACAA,EAAA,gBACAA,EAAA,sBACAA,EAAA,kBACAA,EAAA,wBACAA,EAAA,8BAnBF,IAAAC,EAAAC,EAAAC,EAAAC,EAsBI,KAAK,MAAQL,EACb,KAAK,QAAkBM,GAAQ,IAAKC,GAAW,CAACA,EAAO,EAAGA,EAAO,CAAC,CAAC,EACnE,KAAK,cAAmB,WAAS,KAAK,OAAO,EAC7C,KAAK,YAAYF,GAAAD,GAAAD,GAAAD,EAAA,uBAAM,QAAN,YAAAA,EAAa,SAAb,YAAAC,EAAsB,KAAtB,YAAAC,EAA0B,QAA1B,YAAAC,EAAkC,KAAM,EACzD,KAAK,gBAAqB,WAAS,CAAC,KAAK,UAAW,KAAK,SAAS,CAAC,EACnE,KAAK,sBAA2B,WAAS,CAAC,KAAK,UAAY,EAAG,KAAK,UAAY,CAAC,CAAC,CACnF,CAEA,eAAeG,EAAO,CACpB,IAAMC,EAA4B,CAAC,EACnCA,EAAE,WAAgB,QAAMD,EAAO,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC9CC,EAAE,SAAc,QAAMD,EAAO,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC5CC,EAAE,IAAS,MAAIA,EAAE,WAAY,KAAK,eAAe,EACjDA,EAAE,gBAAqB,MAAIA,EAAE,IAAK,KAAK,aAAa,EACpDA,EAAE,aAAkB,MAAIA,EAAE,SAAU,KAAK,qBAAqB,EAC9DA,EAAE,IAAS,MAAIA,EAAE,gBAAiBA,EAAE,YAAY,EAChDA,EAAE,YAAiB,MAAIA,EAAE,IAAK,KAAK,eAAe,EAClDA,EAAE,IAAS,MAAIA,EAAE,gBAAiBA,EAAE,YAAY,EAChDA,EAAE,UAAe,MAAIA,EAAE,IAAK,KAAK,eAAe,EAChD,IAAMC,EAAS,WAAS,CAACD,EAAE,YAAaA,EAAE,SAAS,EAAG,CAAC,EACvD,cAAO,KAAKA,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,EACjDD,CACT,CAEA,mBAAmBE,EAAkBC,EAAe,CAClD,IAAMJ,EAA4B,CAAC,EACnCA,EAAE,QAAa,UAAQG,EAAkB,CAAC,GAAI,EAAG,CAAC,CAAC,EACnDH,EAAE,IAAS,MAAIA,EAAE,QAAS,KAAK,eAAe,EAC9CA,EAAE,UAAe,MAAIA,EAAE,IAAK,KAAK,QAAQI,GAAS,KAAK,QAAQA,GAAS,CAAC,EACzE,IAAMH,EAAS,MAAID,EAAE,UAAW,KAAK,eAAe,EACpD,cAAO,KAAKA,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,EACjDD,CACT,CAEA,MAAM,QAAQI,EAAeC,EAA+G,CAxD9I,IAAAb,EAyDI,IAAMO,EAA4B,CAAC,EACnCA,EAAE,OAAY,QAAM,eAAeK,EAAO,CAAC,KAAK,UAAW,KAAK,SAAS,CAAC,EAC1EL,EAAE,IAAS,MAAIA,EAAE,OAAQO,EAAU,KAAK,EACxCP,EAAE,MAAW,MAAIA,EAAE,IAAKO,EAAU,GAAG,EACrCP,EAAE,QAAU,KAAK,MAAM,QAAQA,EAAE,KAAK,EACtCA,EAAE,YAAiB,UAAQA,EAAE,OAAO,EACpCA,EAAE,MAAW,QAAMA,EAAE,YAAa,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EACjDA,EAAE,QAAa,UAAQA,EAAE,KAAK,EAC9BA,EAAE,OAAY,UAAQA,EAAE,OAAO,EAC/B,IAAMQ,EAAS,MAAMR,EAAE,OAAO,KAAK,EACnCA,EAAE,MAAW,QAAMA,EAAE,YAAa,CAAC,EAAG,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EACjDA,EAAE,KAAO,KAAK,eAAeA,EAAE,KAAK,EAEpCA,EAAE,IAAM,MAAS,QAAM,uBAAuBA,EAAE,KAAMA,EAAE,OAAQ,KAAKP,EAAAa,EAAO,OAAP,YAAAb,EAAa,cAAe,GAAIa,EAAO,KAAK,aAAcA,EAAO,KAAK,aAAa,EACxJ,IAAMG,EAAM,MAAMT,EAAE,IAAI,MAAM,EACxBU,EAA8F,CAAC,EACrG,QAAWN,KAASK,EAAK,CACvB,IAAME,EAA4B,CAAC,EACnCA,EAAE,IAAS,QAAMX,EAAE,KAAM,CAACI,EAAO,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EAC5CO,EAAE,MAAW,QAAMX,EAAE,YAAa,CAACI,EAAO,CAAC,EAAG,CAAC,EAAG,EAAE,CAAC,EACrDO,EAAE,KAAO,KAAK,mBAAmBA,EAAE,MAAOP,CAAK,EAC/CO,EAAE,cAAmB,UAAQA,EAAE,KAAM,CAAC,GAAI,CAAC,CAAC,EAC5C,IAAMC,EAAM,MAAMD,EAAE,IAAI,KAAK,EACvBE,EAAaD,EAAI,MAAM,EAAG,CAAC,EAC3BE,EAAWF,EAAI,MAAM,EAAG,CAAC,EACzBG,EAAgB,MAAMJ,EAAE,cAAc,MAAM,EAC5CK,EAAO,CAAE,WAAAH,EAAY,SAAAC,EAAU,cAAAC,EAAe,WAAYP,EAAOJ,EAAO,EACxEa,EAAcC,GAAoBF,EAAM,EAAEX,EAAM,MAAM,IAAM,GAAK,KAAK,WAAYA,EAAM,MAAM,IAAM,GAAK,KAAK,SAAS,CAAC,EAC9HK,EAAM,KAAKO,CAAM,EACjB,OAAO,KAAKN,CAAC,EAAE,QAAST,GAAc,UAAQS,EAAET,EAAO,CAAC,CAC1D,CACA,cAAO,KAAKF,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,EACjDQ,CACT,CACF,EC7EA,IAAMS,GAAuB,EACvBC,GAAuB,KACvBC,GAAkB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,CAAC,EACxCC,GAAwB,EACxBC,GAAgC,EAClCC,GAAW,EAEFC,GAAN,KAAmB,CAQxB,YAAYC,EAAcC,EAAe,CAPzCC,EAAA,qBACAA,EAAA,sBACAA,EAAA,kBACAA,EAAA,oBACAA,EAAA,gBACAA,EAAA,sBA3BF,IAAAC,EAAAC,EAAAC,EA8BI,KAAK,aAAeL,EACpB,KAAK,cAAgBC,EACrB,KAAK,YAAYI,GAAAD,GAAAD,EAAA,KAAK,gBAAL,YAAAA,EAAoB,SAApB,YAAAC,EAA6B,GAAG,QAAhC,YAAAC,EAAwC,KAAM,EAC/D,KAAK,YAAc,CAAC,EACpB,KAAK,QAAU,OAAO,iBACtB,KAAK,cAAgB,CACvB,CAEA,8BAA8BC,EAAW,CACvC,IAAMC,EAAKD,EAAU,IAAKE,GAAMA,EAAE,EAAE,EAC9BC,EAAKH,EAAU,IAAKE,GAAMA,EAAE,EAAE,EAC9BE,EAAa,CAAC,KAAK,IAAI,GAAGH,CAAE,EAAG,KAAK,IAAI,GAAGE,CAAE,CAAC,EAC9CE,EAAW,CAAC,KAAK,IAAI,GAAGJ,CAAE,EAAG,KAAK,IAAI,GAAGE,CAAE,CAAC,EAClD,MAAO,CAAE,WAAAC,EAAY,SAAAC,CAAS,CAChC,CAEA,uBAAuBC,EAAeC,EAAgB,CACpD,IAAMC,EAAuBF,EAAc,IAAKG,GAAeC,GAAY,CAAC,GAAGD,EAAO,CAAC,EAAGF,CAAc,CAAC,EACnGI,EAAgB,KAAK,8BAA8BH,CAAoB,EAC7E,OAAYI,GAAgBC,GAAYF,CAAa,EAAGxB,EAAoB,CAC9E,CAEA,uBAAuBa,EAAW,CAChC,IAAMc,EAAc,KAAK,8BAA8Bd,CAAS,EAC1De,EAAqBH,GAAgBC,GAAYC,CAAW,EAAG1B,EAAoB,EACzF2B,EAAc,cAAgB,CAAC,EAC/B,QAASC,EAAI,EAAGA,EAAI3B,GAAgB,OAAQ2B,IAC1CD,EAAc,cAAc,KAAKf,EAAUX,GAAgB2B,IAAI,MAAM,EAAG,CAAC,CAAC,EAE5E,OAAOD,CACT,CAEA,mBAAmBE,EAAWC,EAAMC,EAAOZ,EAAgB,CACzD,IAAMa,EAAeC,GAAWH,CAAI,EAC9BI,EAAc,CAACF,EAAQ,GAAK,KAAK,UAAWA,EAAQ,GAAK,KAAK,WAAYA,EAAQ,GAAKA,EAAQ,IAAM,KAAK,UAAY,CAAC,EACvHG,EAAeN,EAAU,IAAKR,GAAU,CAC5Ca,EAAY,IAAMb,EAAM,GAAK,KAAK,UAAY,GAC9Ca,EAAY,IAAMb,EAAM,GAAK,KAAK,UAAY,GAC9Ca,EAAY,GAAKb,EAAM,EACzB,CAAC,EACKe,EAA4BC,GAAoBN,EAAO,CAAC,EAAG,CAAC,CAAC,EAC7DO,EAAgBH,EAAa,IAAKd,GAE/B,CAAC,GADaC,GAAYD,EAAOe,CAAoB,EACxCf,EAAM,EAAE,CAC7B,EACKkB,EAA6BC,GAAsBrB,CAAc,EACjEsB,EAAY,CAAC,GAAQC,GAAaZ,CAAI,EAAG,CAAC,EAC1Ca,EAAoB,CACnBC,GAAIH,EAAWF,EAAsB,EAAE,EACvCK,GAAIH,EAAWF,EAAsB,EAAE,CAC9C,EACA,OAAOD,EAAc,IAAKjB,GAAU,CAClC,KAAK,MAAMA,EAAM,GAAKsB,EAAkB,EAAE,EAC1C,KAAK,MAAMtB,EAAM,GAAKsB,EAAkB,EAAE,EAC1C,KAAK,MAAMtB,EAAM,EAAE,CACrB,CAAC,CACH,CAEA,MAAM,cAAcwB,EAAOC,EAAQ,CACjC,IAAIC,EAAc,GAGdC,EACEC,GAAYH,EAAO,KAAK,UAAY,GAAMI,EAAI,EAAI9C,GAClD+C,EAAY,KAAK,SAAWL,EAAO,KAAK,YAAc,GACxDA,EAAO,aAAeG,GAAYE,IACpCH,EAAQ,MAAM,KAAK,aAAa,QAAQH,EAAOC,CAAM,EACrD,KAAK,QAAU,GAEbA,EAAO,aAAa,KAAK,UAGzBE,GAAUA,EAAM,OAAS,IAAQA,EAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkBF,EAAO,KAAK,aAAgB,CAACA,EAAO,KAAK,aAC5I,KAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAGE,CAAK,EAExB,KAAK,YAAY,OAAS,IAAGD,EAAc,KAEjD,IAAMK,EAAoJ,CAAC,EAG3J,QAASxB,EAAI,EAAGA,EAAI,KAAK,YAAY,OAAQA,IAAK,CAChD,IAAMyB,EAAa,KAAK,YAAYzB,GACpC,GAAI,EAACyB,EACL,GAAIP,EAAO,KAAK,UAAW,CACzB,IAAMf,EAAQe,EAAO,KAAK,SAAgBQ,GAAgBD,EAAW,cAAcnD,IAAwBmD,EAAW,cAAclD,GAA8B,EAAI,EAChKoD,EAAkBb,GAAaW,CAAU,EACzCG,EAAuB,CAACD,EAAW,GAAKV,EAAM,MAAM,GAAIU,EAAW,GAAKV,EAAM,MAAM,EAAE,EACtFY,EAAeX,EAAO,KAAK,UAAYY,EAAI,QAAQ,SAAS,kBAAkB,EAAO,QAAM,iBAAiBb,EAAOd,EAAO,EAAGyB,CAAoB,EAAIX,EAAM,MAAM,EACjK1B,EAAsBkB,GAAoB,CAACN,EAAOwB,CAAU,EAC5DI,EAASZ,EAAc,KAAK,uBAAuBM,EAAW,cAAelC,CAAc,EAAIkC,EAC/FO,EAAoBC,GAAyBF,EAAQF,EAAc,CAAC,KAAK,UAAW,KAAK,SAAS,CAAC,EACnGK,EAAe,MAAIF,EAAcG,EAAU,KAAK,EACnD,UAAQH,CAAY,EACpB,UAAQH,CAAY,EACvB,GAAM,CAACO,EAAaC,CAAS,EAAI,KAAK,cAAc,QAAQH,CAAS,EACrE1D,GAAW8C,EAAI,EACZ,UAAQY,CAAS,EACpB,IAAMI,GAAc,MAAMF,EAAY,KAAK,GAAG,GAE9C,GADG,UAAQA,CAAW,EAClBE,GAAcpB,EAAO,KAAK,cAAgB,EAAG,CAC/C,IAAMqB,EAAuB,UAAQF,EAAW,CAAC,GAAI,CAAC,CAAC,EACjDpC,EAAY,MAAMsC,EAAkB,MAAM,EAC7C,UAAQF,CAAS,EACjB,UAAQE,CAAiB,EAC5B,IAAMC,EAAS,KAAK,mBAAmBvC,EAAW8B,EAAQ5B,EAAOZ,CAAc,EACzEkD,EAAkB,KAAK,uBAAuBD,CAAM,EAC1D,KAAK,YAAYxC,GAAK,CAAE,GAAGyC,EAAiB,WAAAH,CAAW,EACvD,IAAMI,EAAS,CACb,UAAWF,EACX,WAAAF,EACA,cAAeb,EAAW,WAC1B,iBAAkBa,EAClB,IAAK,CAAE,QAASG,EAAgB,WAAY,YAAaA,EAAgB,QAAS,CACpF,EACAjB,EAAM,KAAKkB,CAAM,CACnB,MACE,KAAK,YAAY1C,GAAK,KAErB,UAAQqC,CAAS,CACtB,KAAO,CAEL,IAAMM,EAAgB/C,GAAgBC,GAAY4B,CAAU,EAAGrD,EAAoB,EAC7EsE,EAAS,CACb,WAAYjB,EAAW,WACvB,cAAeA,EAAW,WAC1B,iBAAkB,EAClB,IAAK,CAAE,QAASkB,EAAS,WAAY,YAAaA,EAAS,QAAS,EACpE,UAAW,CAAC,CACd,EACAnB,EAAM,KAAKkB,CAAM,CACnB,CACF,CACA,YAAK,YAAc,KAAK,YAAY,OAAQE,GAAMA,IAAM,IAAI,EAC5D,KAAK,cAAgBpB,EAAM,OACvBA,EAAM,OAASN,EAAO,KAAK,cAAaM,EAAM,OAASN,EAAO,KAAK,aAChEM,CACT,CACF,ECnKO,IAAMqB,GAAS,CACpB,MAAO,EACP,MAAO,EACP,OAAQ,EACR,KAAM,EACN,MAAO,EACP,IAAK,CAAC,EAAG,EAAG,EAAG,EAAG,CAAC,EACnB,YAAa,CAAE,EAAG,QAAS,EAAG,QAAS,EAAG,SAAU,EAAG,OAAQ,EAAG,OAAQ,EAQ1E,cAAe,CACb,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAClC,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAClC,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,CAAC,EACvC,EAAG,CAAC,CAAC,EAAG,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,CAAC,EACzC,EAAG,CAAC,CAAC,EAAG,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,EAAG,CAAC,GAAI,EAAE,CAAC,CAC3C,EACA,QAAUC,GAAUD,GAAO,YAAYC,GACvC,UAAYA,GAAUD,GAAO,cAAcC,EAC7C,EAEaC,GAAa,CACxB,KAAM,EACN,KAAM,EACN,KAAM,EACN,YAAa,CAAE,EAAG,OAAQ,EAAG,OAAQ,EAAG,MAAO,EAC/C,QAAUD,GAAUC,GAAW,YAAYD,EAC7C,EAEaE,EAAkB,CAC7B,WAAY,EACZ,aAAc,EACd,eAAgB,EAChB,gBAAiB,EACjB,gBAAiB,EACjB,eAAgB,EAChB,kBAAmB,EACnB,iBAAkB,EAClB,YAAa,CAAE,EAAG,aAAc,EAAG,eAAgB,EAAG,iBAAkB,EAAG,kBAAmB,EAAG,kBAAmB,EAAG,iBAAkB,EAAG,oBAAqB,EAAG,kBAAmB,EACvL,QAAUF,GAAUE,EAAgB,YAAYF,EAClD,EAEaG,GAAN,KAAoB,CAOzB,YAAYC,EAAM,CANlBC,EAAA,aACAA,EAAA,cACAA,EAAA,mBACAA,EAAA,gBACAA,EAAA,wBAIE,KAAK,KAAOD,EACZ,KAAK,MAAQ,CAAC,EACd,KAAK,WAAa,CAAC,EACnB,KAAK,QAAU,CAAC,EAAK,EAAK,EAAK,EAAK,CAAG,EACvC,KAAK,gBAAkB,CAAC,EAAK,EAAK,EAAK,EAAK,CAAG,CACjD,CAEA,KAAKE,EAAQC,EAAMC,EAAY,CACzB,OAAO,KAAK,MAAMF,IAAY,cAAa,KAAK,MAAMA,GAAU,CAAC,GACrE,KAAK,MAAMA,GAAQ,KAAK,CAACC,EAAMC,CAAU,CAAC,CAC5C,CAEA,UAAUF,EAAQG,EAAUD,EAAY,CACjC,KAAK,WAAWF,KAAS,KAAK,WAAWA,GAAU,CAAC,GACzD,KAAK,WAAWA,GAAQ,KAAK,CAACG,EAAUD,CAAU,CAAC,CACrD,CAEA,OAAOF,EAAQI,EAAQ,CACrB,KAAK,QAAQJ,GAAUI,EAEvB,IAAMC,EAAQ,KAAK,QAAQ,OAAO,CAACC,EAAGC,IAAMD,EAAIC,EAAG,CAAC,EACpD,KAAK,gBAAkB,KAAK,QAAQ,IAAKC,GAAOA,EAAK,EAAIH,CAAK,CAChE,CAEA,aAAaI,EAAeC,EAAoB,CAC9C,IAAIR,EAAa,EAGjB,QAAWS,KAAaF,EAAe,CACrC,IAAMG,EAAeH,EAAcE,GAC7BE,EAAgB,KAAK,MAAMF,GACjC,GAAI,OAAOE,GAAkB,YAAa,CAGxCX,GAAc,KAAK,gBAAgBS,GACnC,QACF,CAEA,OAAW,CAACG,EAAcC,CAAK,IAAKF,EAClC,GAAID,IAAiBE,EAAc,CACjCZ,GAAca,EAAQ,KAAK,gBAAgBJ,GAC3C,KACF,CAEJ,CAEA,QAAWA,KAAaD,EAAoB,CAC1C,IAAMM,EAAoBN,EAAmBC,GACvCM,EAAqB,KAAK,WAAWN,GAC3C,GAAI,OAAOM,GAAuB,YAAa,CAG7Cf,GAAc,KAAK,gBAAgBS,GACnC,QACF,CAEA,OAAW,CAACO,EAAmBH,CAAK,IAAKE,EACvC,GAAID,IAAsBE,EAAmB,CAC3ChB,GAAca,EAAQ,KAAK,gBAAgBJ,GAC3C,KACF,CAEJ,CACA,OAAOT,EAAa,EACtB,CACF,ECvHO,GAAM,CAAE,MAAAiB,GAAO,MAAAC,GAAO,OAAAC,GAAQ,KAAAC,GAAM,MAAAC,EAAM,EAAIC,GACxC,CAAE,KAAAC,GAAM,KAAAC,GAAM,KAAAC,EAAK,EAAIC,GACvB,CAAE,WAAAC,GAAY,aAAAC,GAAc,eAAAC,GAAgB,gBAAAC,GAAiB,gBAAAC,GAAiB,eAAAC,GAAgB,kBAAAC,GAAmB,iBAAAC,EAAiB,EAAIC,EAG7IC,GAAW,IAAIC,GAAc,WAAW,EAC9CD,GAAS,KAAKnB,GAAOM,GAAM,CAAG,EAC9Ba,GAAS,UAAUnB,GAAOU,GAAY,CAAG,EACzCS,GAAS,UAAUnB,GAAOe,GAAgB,GAAI,EAC9CI,GAAS,UAAUnB,GAAOc,GAAiB,GAAI,EAC/C,QAAWO,IAAU,CAAChB,GAAO,MAAOA,GAAO,OAAQA,GAAO,KAAMA,GAAO,KAAK,EAC1Ec,GAAS,KAAKE,EAAQb,GAAM,CAAG,EAC/BW,GAAS,UAAUE,EAAQT,GAAgB,CAAG,EAC9CO,GAAS,UAAUE,EAAQR,GAAiB,CAAG,EAIjD,IAAMS,EAAU,IAAIF,GAAc,SAAS,EAC3CE,EAAQ,KAAKtB,GAAOO,GAAM,EAAG,EAC7Be,EAAQ,KAAKtB,GAAOM,GAAM,EAAG,EAC7BgB,EAAQ,UAAUtB,GAAOU,GAAY,CAAG,EACxCY,EAAQ,UAAUtB,GAAOe,GAAgB,CAAG,EAC5CO,EAAQ,KAAKrB,GAAOK,GAAM,CAAG,EAC7BgB,EAAQ,UAAUrB,GAAOS,GAAY,GAAI,EACzCY,EAAQ,UAAUrB,GAAOc,GAAgB,CAAG,EAC5CO,EAAQ,KAAKpB,GAAQI,GAAM,CAAG,EAC9BgB,EAAQ,UAAUpB,GAAQQ,GAAY,CAAG,EACzCY,EAAQ,UAAUpB,GAAQa,GAAgB,GAAI,EAC9CO,EAAQ,KAAKnB,GAAMK,GAAM,CAAG,EAC5Bc,EAAQ,UAAUnB,GAAMO,GAAY,EAAG,EACvCY,EAAQ,UAAUnB,GAAMY,GAAgB,CAAG,EAC3CO,EAAQ,UAAUnB,GAAMS,GAAgB,EAAG,EAC3CU,EAAQ,KAAKlB,GAAOI,GAAM,CAAG,EAC7Bc,EAAQ,UAAUlB,GAAOM,GAAY,EAAG,EACxCY,EAAQ,UAAUlB,GAAOW,GAAgB,CAAG,EAC5CO,EAAQ,UAAUlB,GAAOQ,GAAgB,EAAG,EAC5CU,EAAQ,OAAOrB,GAAO,CAAC,EACvBqB,EAAQ,OAAOpB,GAAQ,CAAC,EAGxB,IAAMqB,GAAQ,IAAIH,GAAc,OAAO,EACvCG,GAAM,KAAKvB,GAAOQ,GAAM,CAAG,EAC3Be,GAAM,KAAKtB,GAAOK,GAAM,EAAG,EAC3BiB,GAAM,KAAKrB,GAAQM,GAAM,EAAG,EAC5Be,GAAM,KAAKpB,GAAMK,GAAM,EAAG,EAC1Be,GAAM,KAAKnB,GAAOI,GAAM,EAAG,EAC3Be,GAAM,OAAOtB,GAAO,CAAC,EACrBsB,GAAM,OAAOrB,GAAQ,CAAC,EAGtB,IAAMsB,GAAe,IAAIJ,GAAc,eAAe,EACtDI,GAAa,KAAKxB,GAAOM,GAAM,CAAG,EAClCkB,GAAa,KAAKvB,GAAOO,GAAM,EAAG,EAClCgB,GAAa,KAAKtB,GAAQM,GAAM,EAAG,EACnCgB,GAAa,KAAKrB,GAAMK,GAAM,EAAG,EACjCgB,GAAa,KAAKpB,GAAOI,GAAM,EAAG,EAClCgB,GAAa,OAAOvB,GAAO,CAAC,EAC5BuB,GAAa,OAAOtB,GAAQ,CAAC,EAG7B,IAAMuB,GAAW,IAAIL,GAAc,WAAW,EAC9CK,GAAS,KAAKzB,GAAOM,GAAM,GAAI,EAC/BmB,GAAS,KAAKxB,GAAOK,GAAM,GAAI,EAC/BmB,GAAS,KAAKvB,GAAQI,GAAM,GAAI,EAChCmB,GAAS,KAAKtB,GAAMG,GAAM,GAAI,EAC9BmB,GAAS,KAAKrB,GAAOE,GAAM,GAAI,EAE/B,IAAOoB,GAAQ,CAACP,GAAUG,EAASC,GAAOC,GAAcC,EAAQ,EC/DhE,IAAME,GAAgB,GAChBC,GAAU,CAEd,sBAAuB,GACvB,oBAAqB,IAErB,oBAAqB,IACrB,wBAAyB,GACzB,uBAAwB,GAC1B,EAEA,SAASC,GAAeC,EAASC,EAASC,EAASC,EAAS,CAC1D,IAAMC,GAASH,EAAUE,IAAYH,EAAUE,GAC3CG,EAAQ,KAAK,KAAKD,CAAK,EAAI,IAAM,KAAK,GAC1C,OAAIC,GAAS,EAAGA,EAAQ,CAACA,EAChBA,EAAQ,IAAGA,EAAQ,IAAMA,GAC3BA,CACT,CAIA,SAASC,GAAUC,EAAQC,EAAQ,CACjC,GAAI,CAACD,GAAU,CAACC,EAAQ,MAAO,CAAC,EAAG,CAAC,EACpC,IAAMC,EAAUV,GAAeQ,EAAO,GAAIA,EAAO,GAAIC,EAAO,GAAIA,EAAO,EAAE,EACzE,GAAID,EAAO,SAAW,EAAG,OAAOE,EAChC,IAAMC,EAAUX,GAAeQ,EAAO,GAAIA,EAAO,GAAIC,EAAO,GAAIA,EAAO,EAAE,EACzE,MAAO,CAACC,EAASC,CAAO,CAC1B,CAEA,SAASC,GAAmBC,EAAOC,EAAc,EAAK,CACpD,IAAIC,EAAa,EACbC,EAAa,EACbC,EAAe,EACnB,OAAIJ,GAAS,IAAQA,GAAS,IAAOE,EAAa,EAAID,EAC7CD,GAAS,IAAQA,GAAS,IAAOG,EAAa,EAAIF,EACtDG,EAAe,EAAIH,EACjB,CAACC,EAAYC,EAAYC,CAAY,CAC9C,CAEA,SAASC,GAAmBC,EAAYC,EAAUC,EAAU,CAC1D,IAAMC,EAAmBH,EAAW,GAAKC,EAAS,GAC5CG,EAAmBJ,EAAW,GAAKE,EAAS,GAC5CG,EAAiBJ,EAAS,GAAKC,EAAS,GACxCI,EAAmBN,EAAW,GAAKC,EAAS,GAC5CM,EAAmBP,EAAW,GAAKE,EAAS,GAC5CM,EAAiBP,EAAS,GAAKC,EAAS,GACxCO,EAAmBT,EAAW,GAAKC,EAAS,GAC5CS,EAAmBV,EAAW,GAAKE,EAAS,GAC5CS,EAAiBV,EAAS,GAAKC,EAAS,GACxCU,EAAiB,KAAK,KAAKT,EAAmBA,EAAmBG,EAAmBA,EAAmBG,EAAmBA,CAAgB,EAC1II,EAAiB,KAAK,KAAKT,EAAmBA,EAAmBG,EAAmBA,EAAmBG,EAAmBA,CAAgB,EAC1II,EAAe,KAAK,KAAKT,EAAiBA,EAAiBG,EAAiBA,EAAiBG,EAAiBA,CAAc,EAC9HI,GAAUD,EAAeA,EAAeF,EAAiBA,EAAiBC,EAAiBA,IAAmB,EAAIC,EAAeF,GACjIG,EAAS,EAAKA,EAAS,EAClBA,EAAS,KAAMA,EAAS,IACjC,IAAIC,EAAe,KAAK,KAAKD,CAAM,EACnCC,EAAgB,QAAUA,EAAgB,IAC1C,IAAIC,EACJ,OAAID,EAAepC,GAAQ,oBAAqBqC,EAAaC,GAAW,KAC/DF,EAAepC,GAAQ,sBAAuBqC,EAAaC,GAAW,KAC1ED,EAAaC,GAAW,KACtBD,CACT,CAEA,SAASE,GAA4Bf,EAAkBD,EAAkBE,EAAgBe,EAAY,CACnG,IAAIC,EACJ,OAAID,IAAe,KAAK,IAAIhB,CAAgB,EACtCA,EAAmB,EAAGiB,EAAqBC,EAAgB,eAC1DD,EAAqBC,EAAgB,gBACjCF,IAAe,KAAK,IAAIjB,CAAgB,EAC7CA,EAAmB,EAAGkB,EAAqBC,EAAgB,eAC1DD,EAAqBC,EAAgB,gBAEtCjB,EAAiB,EAAGgB,EAAqBC,EAAgB,eACxDD,EAAqBC,EAAgB,gBAErCD,CACT,CAEA,SAASE,GAA0BhB,EAAkBD,EAAkBE,EAAgBgB,EAAY,CACjG,IAAIH,EACJ,OAAIG,IAAe,KAAK,IAAIjB,CAAgB,EACtCA,EAAmB,EAAGc,EAAqBC,EAAgB,aAC1DD,EAAqBC,EAAgB,WACjCE,IAAe,KAAK,IAAIlB,CAAgB,EAC7CA,EAAmB,EAAGe,EAAqBC,EAAgB,aAC1DD,EAAqBC,EAAgB,WAEtCd,EAAiB,EAAGa,EAAqBC,EAAgB,aACxDD,EAAqBC,EAAgB,WAErCD,CACT,CAEA,SAASI,GAA0BlB,EAAkBD,EAAkBE,EAAgBgB,EAAYpB,EAAkBD,EAAkBE,EAAgBe,EAAY,CACjK,IAAIC,EACEK,EAA0BH,GAA0BhB,EAAkBD,EAAkBE,EAAgBgB,CAAU,EAClHG,EAA4BR,GAA4Bf,EAAkBD,EAAkBE,EAAgBe,CAAU,EAC5H,OAAIM,IAA4BJ,EAAgB,WAC1CK,IAA8BL,EAAgB,eAAgBD,EAAqBC,EAAgB,eAClGD,EAAqBC,EAAgB,gBAEtCK,IAA8BL,EAAgB,eAAgBD,EAAqBC,EAAgB,iBAClGD,EAAqBC,EAAgB,kBAErCD,CACT,CAEA,SAASO,GAAyB5B,EAAYC,EAAUC,EAAU2B,EAAc,CAC9E,IAAM1B,EAAmBH,EAAW,GAAKC,EAAS,GAC5CG,EAAmBJ,EAAW,GAAKE,EAAS,GAC5CG,EAAiBJ,EAAS,GAAKC,EAAS,GACxCI,EAAmBN,EAAW,GAAKC,EAAS,GAC5CM,EAAmBP,EAAW,GAAKE,EAAS,GAC5CM,EAAiBP,EAAS,GAAKC,EAAS,GACxCkB,EAAa,KAAK,IAAI,KAAK,IAAIjB,CAAgB,EAAG,KAAK,IAAIC,CAAgB,EAAG,KAAK,IAAIC,CAAc,CAAC,EACtGmB,EAAa,KAAK,IAAI,KAAK,IAAIlB,CAAgB,EAAG,KAAK,IAAIC,CAAgB,EAAG,KAAK,IAAIC,CAAc,CAAC,EACxGsB,EAAe,EACfC,EAAe,EACfC,EAAiB,EACfC,EAA2BT,GAAcJ,EAAa,MACxDa,EAA2B,IAAKH,GAAgBlD,GAAQ,oBACnDqD,EAA2B,IAAMF,GAAgBnD,GAAQ,oBAC7DoD,GAAkBpD,GAAQ,oBAC/B,IAAMgC,EAAiB,KAAK,KAAKT,EAAmBA,EAAmBG,EAAmBA,CAAgB,EACpGO,EAAiB,KAAK,KAAKT,EAAmBA,EAAmBG,EAAmBA,CAAgB,EACpGO,EAAe,KAAK,KAAKT,EAAiBA,EAAiBG,EAAiBA,CAAc,EAC1F0B,EAAW,KAAK,IAAItB,EAAgBC,EAAgBC,CAAY,EAClEqB,EAAqBnC,EAAW,GAChCoC,EAAqBpC,EAAW,GAChCqC,EAAmBnC,EAAS,GAC5BoC,EAAmBpC,EAAS,GAC5BgC,IAAatB,GACfyB,EAAmBnC,EAAS,GAC5BoC,EAAmBpC,EAAS,IACnBgC,IAAapB,IACtBqB,EAAqBlC,EAAS,GAC9BmC,EAAqBnC,EAAS,IAIhC,IAAMsC,EAAanD,GAFI,CAAC+C,EAAoBC,CAAkB,EACzC,CAACC,EAAkBC,CAAgB,CACC,EACnDE,EAAQ/C,GAAmB8C,EAAY3D,GAAQ,sBAAsB,EAC3EkD,GAAgBU,EAAM,GACtBT,GAAgBS,EAAM,GACtBR,GAAkBQ,EAAM,GACxB,QAAWC,KAAeZ,EAAc,CACtC,IAAMa,EAAcjD,GAAmBgD,EAAa7D,GAAQ,uBAAuB,EACnFkD,GAAgBY,EAAY,GAC5BX,GAAgBW,EAAY,GAC5BV,GAAkBU,EAAY,EAChC,CAGA,IAAIrB,EACJ,OAAIS,IAAiB,KAAK,IAAIA,EAAcC,EAAcC,CAAc,EACtEX,EAAqBE,GAA0BhB,EAAkBD,EAAkBE,EAAgBgB,CAAU,EACpGQ,IAAmB,KAAK,IAAID,EAAcC,CAAc,EACjEX,EAAqBF,GAA4Bf,EAAkBD,EAAkBE,EAAgBe,CAAU,EAE/GC,EAAqBI,GAA0BlB,EAAkBD,EAAkBE,EAAgBgB,EAAYpB,EAAkBD,EAAkBE,EAAgBe,CAAU,EAExKC,CACT,CAEA,SAASsB,GAASC,EAAW,CAE3B,IAAMC,EAAuB,CAAC,EACxBC,EAAuB,CAAC,EACxBC,EAAwB,CAAC,EACzBC,EAA6B,CAAC,EACpC,GAAI,CAACJ,EAAW,MAAO,CAAE,MAAOG,EAAa,WAAYC,CAAiB,EAG1E,QAAWC,KAAUC,GAAO,IAAK,CAC/B,IAAMC,EAASD,GAAO,UAAUD,CAAM,EAChCG,EAAsB,CAAC,EACvBC,EAAsB,CAAC,EAC7B,QAAWC,KAASH,EAAQ,CAC1B,IAAM9D,EAASuD,EAAUU,EAAM,IACzBhE,EAASsD,EAAUU,EAAM,IAEzBC,EAASnE,GAAUC,EAAQC,CAAM,EACjCC,EAAUgE,EAAO,GACjB/D,EAAU+D,EAAO,GACvBH,EAAU,KAAK7D,CAAO,EACtB8D,EAAU,KAAK7D,CAAO,CACxB,CACAqD,EAAS,KAAKO,CAAS,EACvBN,EAAS,KAAKO,CAAS,CACzB,CAGA,QAAWJ,KAAUC,GAAO,IAAK,CAE/B,IAAMM,EAAgBP,IAAWC,GAAO,MAAS,EAAI,EAC/CO,EAAiBP,GAAO,UAAUD,CAAM,EACxCjD,EAAa4C,EAAUa,EAAeD,GAAc,IACpDvD,EAAW2C,EAAUa,EAAeD,EAAe,GAAG,IACtDtD,EAAW0C,EAAUa,EAAe,GAAG,IAEvCC,EAAe3D,GAAmBC,EAAYC,EAAUC,CAAQ,EAChEyD,EAAiB/B,GAAyB5B,EAAYC,EAAUC,EAAU2C,EAASI,GAAQ,MAAMO,CAAY,CAAC,EACpHT,EAAYE,GAAUS,EACtBV,EAAiBC,GAAUU,CAC7B,CACA,MAAO,CAAE,MAAOZ,EAAa,WAAYC,CAAiB,CAC5D,CAEO,SAASY,GAAQC,EAAW,CACjC,GAAI,CAACA,GAAaA,EAAU,SAAW,EAAG,OAAO,KACjD,IAAMC,EAAenB,GAASkB,CAAS,EACjCjB,EAAY,CAAC,EACnB,QAAWmB,KAAab,GAAO,IAC7BN,EAAUM,GAAO,QAAQa,CAAS,GAAK,CACrC,KAAM7C,GAAW,QAAQ4C,EAAa,MAAMC,EAAU,EACtD,UAAWzC,EAAgB,QAAQwC,EAAa,WAAWC,EAAU,CACvE,EAEF,OAAOnB,CACT,CAEO,SAASoB,GAAMH,EAAW,CAC/B,IAAMI,EAAgD,CAAC,EACvD,GAAI,CAACJ,GAAaA,EAAU,SAAW,EAAG,OAAOI,EACjD,IAAMH,EAAenB,GAASkB,CAAS,EACvC,QAAWK,KAAWC,GAAU,CAC9B,IAAMC,EAAaF,EAAQ,aAAaJ,EAAa,MAAOA,EAAa,UAAU,EAC/EM,GAAczF,IAAesF,EAAM,KAAK,CAAE,KAAMC,EAAQ,KAAM,WAAAE,CAAW,CAAC,CAChF,CACA,OAAOH,CACT,CClOA,IAAMI,GAAkB,CACtB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,OAAQ,CAAC,EAAG,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,GAAI,GAAI,GAAI,EAAE,EACrB,MAAO,CAAC,GAAI,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,CAAC,CACV,EAEIC,GACAC,GACAC,GAEJ,eAAsBC,GAAQC,EAAeC,EAAuC,CAClF,IAAMC,EAAc,MAAMJ,GAAa,cAAcE,EAAOC,CAAM,EAClE,GAAI,CAACC,EAAa,MAAO,CAAC,EAC1B,IAAMC,EAAsB,CAAC,EAC7B,QAASC,EAAI,EAAGA,EAAIF,EAAY,OAAQE,IAAK,CAC3C,IAAMC,EAAc,CAAC,EACrB,GAAIH,EAAYE,GAAG,UACjB,QAAWE,KAAO,OAAO,KAAKX,EAAe,EAC3CU,EAAYC,GAAOX,GAAgBW,GAAK,IAAKC,GAAUL,EAAYE,GAAG,UAAUG,EAAM,EAG1F,IAAMC,EAAYN,EAAYE,GAAG,UAC7BK,EAAW,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,CAAC,EAClEC,EAAc,CAAC,EAAG,EAAG,EAAG,CAAC,EAC7B,GAAIF,GAAaA,EAAU,OAAS,EAAG,CACrC,QAAWG,KAAMH,EACXG,EAAG,GAAKF,EAAI,KAAIA,EAAI,GAAKE,EAAG,IAC5BA,EAAG,GAAKF,EAAI,KAAIA,EAAI,GAAKE,EAAG,IAC5BA,EAAG,GAAKF,EAAI,KAAIA,EAAI,GAAKE,EAAG,IAC5BA,EAAG,GAAKF,EAAI,KAAIA,EAAI,GAAKE,EAAG,IAElCF,EAAI,IAAMA,EAAI,GACdA,EAAI,IAAMA,EAAI,GACdC,EAAS,CAACD,EAAI,IAAMT,EAAM,MAAM,IAAM,GAAIS,EAAI,IAAMT,EAAM,MAAM,IAAM,GAAIS,EAAI,IAAMT,EAAM,MAAM,IAAM,GAAIS,EAAI,IAAMT,EAAM,MAAM,IAAM,EAAE,CAC1I,MACES,EAAMP,EAAYE,GAAG,IAAM,CACzB,KAAK,MAAM,KAAK,IAAI,EAAGF,EAAYE,GAAG,IAAI,QAAQ,EAAE,CAAC,EACrD,KAAK,MAAM,KAAK,IAAI,EAAGF,EAAYE,GAAG,IAAI,QAAQ,EAAE,CAAC,EACrD,KAAK,MAAM,KAAK,IAAKJ,EAAM,MAAM,IAAM,EAAIE,EAAYE,GAAG,IAAI,YAAY,EAAE,EAAI,KAAK,IAAI,EAAGF,EAAYE,GAAG,IAAI,QAAQ,EAAE,CAAC,EAC1H,KAAK,MAAM,KAAK,IAAKJ,EAAM,MAAM,IAAM,EAAIE,EAAYE,GAAG,IAAI,YAAY,EAAE,EAAI,KAAK,IAAI,EAAGF,EAAYE,GAAG,IAAI,QAAQ,EAAE,CAAC,CAC5H,EAAI,CAAC,EAAG,EAAG,EAAG,CAAC,EACfM,EAAS,CACNR,EAAYE,GAAG,IAAI,QAAQ,IAAOJ,EAAM,MAAM,IAAM,GACpDE,EAAYE,GAAG,IAAI,QAAQ,IAAOJ,EAAM,MAAM,IAAM,IACpDE,EAAYE,GAAG,IAAI,YAAY,GAAKF,EAAYE,GAAG,IAAI,QAAQ,KAAOJ,EAAM,MAAM,IAAM,IACxFE,EAAYE,GAAG,IAAI,YAAY,GAAKF,EAAYE,GAAG,IAAI,QAAQ,KAAOJ,EAAM,MAAM,IAAM,EAC3F,EAEF,IAAMY,EAAuBC,GAAQL,CAAS,EAC9CL,EAAM,KAAK,CACT,GAAIC,EACJ,MAAO,KAAK,MAAM,IAAMF,EAAYE,GAAG,UAAU,EAAI,IACrD,SAAU,KAAK,MAAM,IAAMF,EAAYE,GAAG,aAAa,EAAI,IAC3D,YAAa,KAAK,MAAM,IAAMF,EAAYE,GAAG,gBAAgB,EAAI,IACjE,MAAO,OACP,IAAAK,EACA,OAAAC,EACA,UAAAF,EACA,YAAaH,EACb,UAAWO,CACb,CAAC,CACH,CACA,OAAOT,CACT,CAEA,eAAsBW,GAAKb,EAAiE,CApF5F,IAAAc,EAAAC,EAqFMC,EAAI,UACNrB,GAAoB,KACpBC,GAAgB,MAEd,CAACD,IAAqB,CAACC,GACzB,CAACD,GAAmBC,EAAa,EAAI,MAAM,QAAQ,IAAI,CACrDI,EAAO,KAAK,QAAUiB,GAAUH,EAAAd,EAAO,KAAK,WAAZ,YAAAc,EAAsB,SAAS,EAAI,KACnEd,EAAO,KAAK,UAAYiB,GAAUF,EAAAf,EAAO,KAAK,WAAZ,YAAAe,EAAsB,SAAS,EAAI,IACvE,CAAC,GAEGf,EAAO,OAAOkB,EAAI,gBAAiBvB,GAAkB,QAAW,EAChEK,EAAO,OAAOkB,EAAI,gBAAiBtB,GAAc,QAAW,GAElE,IAAMuB,EAAexB,GAAoB,IAAiByB,GAAazB,EAAiB,EAAI,OAC5F,OAAIwB,GAAgBvB,KAAeC,GAAe,IAAiBwB,GAAaF,EAAcvB,EAAa,GACpG,CAACD,GAAmBC,EAAa,CAC1C,CC3FO,IAAM0B,EAAS,CACpB,KAAM,UACN,SAAU,IACV,OAAQ,KACR,GAAI,KACJ,WAAY,CAAC,EACb,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,EAClB,CACF,EAEA,SAASC,IAAmB,CAK1B,IAAMC,EAAKF,EAAO,GACd,CAACE,IACLF,EAAO,WAAaE,EAAG,uBAAuB,EAEhD,CAOO,SAASC,GAASC,EAAuB,CA5ChD,IAAAC,EA8CE,GAAID,EAAS,OAAO,UAAY,YAC3BJ,EAAO,QAAW,SAAO,EAAE,UAAa,GAACK,EAAAL,GAAA,YAAAA,EAAQ,KAAR,MAAAK,EAAY,aAAaL,EAAO,GAAG,YAC/EM,EAAI,wCAAwC,EACrCC,GAAMH,CAAQ,GAOnB,CAAI,cAAYJ,EAAO,IAAI,GAAG,CAChC,GAAI,CACFA,EAAO,OAAeQ,GAAO,IAAK,GAAG,CACvC,OAASC,EAAP,CACAH,EAAI,+BAAgCG,CAAG,EACvC,MACF,CACA,GAAI,CAEF,GADAT,EAAO,GAAKA,EAAO,OAAO,WAAW,SAAUA,EAAO,SAAS,EAC3D,CAACA,EAAO,GAAI,CACdM,EAAI,iCAAiC,EACrC,MACF,CAEA,GAAI,CADSN,EAAO,GAAG,aAAaA,EAAO,GAAG,OAAO,EAAE,SAAS,KAAK,EAC1D,CACTM,EAAI,qEAAqE,EACzEF,EAAS,OAAO,QAAU,QAC1B,MACF,CACIJ,EAAO,SACTA,EAAO,OAAO,iBAAiB,mBAAqBU,GAAM,CACxD,MAAAJ,EAAI,kBAAmBI,EAAE,IAAI,EAC7BJ,EAAI,0FAA0F,EAC9FF,EAAS,KAAK,OAAO,EACf,IAAI,MAAM,mCAAmC,CAMrD,CAAC,EACDJ,EAAO,OAAO,iBAAiB,uBAAyBU,GAAM,CAC5DJ,EAAI,mCAAoCI,CAAC,CAC3C,CAAC,EACDV,EAAO,OAAO,iBAAiB,4BAA8BU,GAAM,CACjEJ,EAAI,iCAAkCI,CAAC,CACzC,CAAC,EAEL,OAASD,EAAP,CACAH,EAAI,mCAAoCG,CAAG,EAC3C,MACF,CACA,GAAI,CACC,kBAAgB,EAAGT,EAAO,EAAE,CACjC,OAASS,EAAP,CACAH,EAAI,mCAAoCG,CAAG,EAC3C,MACF,CACA,GAAI,CACF,IAAME,EAAM,IAAO,eAAaX,EAAO,EAAE,EACtC,kBAAgBA,EAAO,KAAM,IAAM,IAAO,mBAAiBW,CAAG,EAAGX,EAAO,QAAQ,CACrF,OAASS,EAAP,CACAH,EAAI,wCAAyCG,CAAG,EAChD,MACF,CACA,GAAI,CACiB,uBAAqB,OAAO,EACvC,QAASG,GAAiB,CAChC,IAAMC,EAAkB,CAAE,GAAGD,EAAc,YAAaZ,EAAO,IAAK,EACjE,iBAAea,CAAe,CACnC,CAAC,CACH,OAASJ,EAAP,CACAH,EAAI,mDAAoDG,CAAG,EAC3D,MACF,CACA,IAAMK,EAAa,UAAQ,EAAE,gBAAqB,UAAQ,EAAE,gBAAgB,EAAE,GAAK,KACnF,GAAIA,EACFR,EAAI,yBAAyBQ,EAAQ,aAAaA,EAAQ,OAAO,cAAwBA,EAAQ,aAAaA,EAAQ,QAAQ,GAAa,MACtI,CACLR,EAAI,gCAAiCQ,EAASd,EAAO,EAAE,EACvD,MACF,CACA,GAAI,CACK,MAAI,EAAE,aAAa,eAAkB,MAAI,EAAE,IAAI,gBAAiB,CAAC,CAC1E,OAASS,EAAP,CACAH,EAAI,yCAA0CG,CAAG,EACjD,MACF,CACAR,GAAW,EACXK,EAAI,sBAAuBN,EAAO,IAAI,CACxC,CACF,CChIA,SAASe,GAAkBC,EAAgB,CACzC,GAAI,CAACC,EAAI,QAAQ,SAAS,KAAK,EAAG,CAChC,IAAMC,EAAY,CAChB,WAAY,MACZ,YAAgB,aAAW,EAC3B,WAAaC,GAAU,OAAK,IAAS,MAAIA,EAAG,OAAO,EAAM,MAAO,MAAIA,EAAG,OAAO,EAAGA,EAAG,OAAO,CAAC,EAAGA,EAAG,OAAO,CAAC,CAAC,CAAC,CAC9G,EACIH,EAAO,OAAOI,EAAI,qBAAsB,KAAK,EAC9C,iBAAeF,CAAS,EAC3BD,EAAI,QAAQ,KAAK,KAAK,CACxB,CACA,GAAI,CAACA,EAAI,QAAQ,SAAS,UAAU,EAAG,CACrC,IAAMI,EAAiB,CACrB,WAAY,WACZ,YAAgB,aAAW,EAC3B,WAAaF,GAAU,OAAK,IAAS,MAAO,MAAO,WAASA,EAAG,OAAO,EAAIA,EAAG,OAAO,CAAC,EAAGA,EAAG,OAAO,CAAC,EAAM,MAAIA,EAAG,OAAO,EAAGA,EAAG,OAAO,CAAC,CAAC,CAAC,CACzI,EACIH,EAAO,OAAOI,EAAI,qBAAsB,UAAU,EACnD,iBAAeC,CAAc,EAChCJ,EAAI,QAAQ,KAAK,UAAU,CAC7B,CAoBA,GAAI,CAACA,EAAI,QAAQ,SAAS,kBAAkB,GAAKD,EAAO,gBAAiB,CACvE,IAAMM,EAAyB,CAC7B,WAAY,mBACZ,YAAgB,aAAW,EAC3B,WAAaH,GAAU,OAAK,IAAM,CAChC,IAAMI,EAAa,aAAW,EAC3B,aAAW,KAAK,EACnB,IAAMC,EAAO,QAAM,iBAAiBL,EAAG,OAAO,MAAOA,EAAG,MAAM,QAASA,EAAG,MAAM,UAAWA,EAAG,MAAM,MAAM,EAC1G,OAAG,aAAWI,CAAO,EACdC,CACT,CAAC,CACH,EACIR,EAAO,OAAOI,EAAI,qBAAsB,kBAAkB,EAC3D,iBAAeE,CAAsB,EACxCL,EAAI,QAAQ,KAAK,kBAAkB,CACrC,CACF,CAEA,eAAsBQ,GAAMC,EAAiBC,EAAQ,GAAO,CAE1D,GADAD,EAAS,MAAQ,UACbC,GAASV,EAAI,SAAYS,EAAS,OAAO,SAAYA,EAAS,OAAO,QAAQ,OAAS,GAAU,aAAW,IAAMA,EAAS,OAAO,QAAW,CAC9I,IAAME,EAAYC,EAAI,EAEtB,GAAIH,EAAS,OAAO,SAAWA,EAAS,OAAO,QAAQ,OAAS,EAAG,CAkBjE,GAfI,OAAO,QAAW,aAAe,OAAO,mBAAsB,aAAeA,EAAS,OAAO,OAC3FA,EAAS,OAAO,OAAON,EAAI,2BAA2B,EAIxDH,EAAI,SAAWS,EAAS,OAAO,UAAY,eACzCA,EAAS,OAAO,OAAON,EAAI,8DAA8D,EAC7FM,EAAS,OAAO,QAAU,WAExBT,EAAI,OAASS,EAAS,OAAO,UAAY,SAAWA,EAAS,OAAO,UAAY,aAC9EA,EAAS,OAAO,OAAON,EAAI,4BAA4BM,EAAS,OAAO,iCAAiC,EAC5GA,EAAS,OAAO,QAAU,cAIxBT,EAAI,SAAWS,EAAS,OAAO,UAAY,SAC7C,GAAI,OAAO,WAAc,aAAe,OAAO,UAAU,KAAQ,YAC/DN,EAAI,qEAAqE,EACzEM,EAAS,OAAO,QAAU,cACrB,CACL,IAAMI,EAAU,MAAM,UAAU,IAAI,eAAe,EAEnD,GADIJ,EAAS,OAAO,OAAON,EAAI,6BAA8BU,CAAO,EAChE,CAACA,EACHV,EAAI,sEAAsE,EAC1EM,EAAS,OAAO,QAAU,cACrB,CAEL,IAAMK,EAAc,uBAAwBD,EAAU,MAAOA,EAAuB,mBAAmB,EAAI,OAE3GV,EAAI,uBAAwBW,CAAW,CACzC,CACF,CAIEL,EAAS,OAAO,UAAY,WAAmBM,GAASN,CAAQ,EACpE,IAAMO,EAAY,OAAO,KAAQ,SAAO,EAAE,eAA0C,EAYpF,GAXIP,EAAS,OAAO,OAAON,EAAI,sBAAuBa,CAAS,EAE1DA,EAAU,SAASP,EAAS,OAAO,OAAO,IAC7CN,EAAI,kBAAkBM,EAAS,OAAO,+BAA+B,EACrEA,EAAS,OAAO,QAAUT,EAAI,KAAO,aAAe,QAChDS,EAAS,OAAO,OAAON,EAAI,6BAA6BM,EAAS,OAAO,SAAS,GAGnFA,EAAS,OAAO,OAAON,EAAI,mBAAoBM,EAAS,OAAO,OAAO,EAGtEA,EAAS,OAAO,UAAY,OAAQ,CAGtC,GAFO,MAAI,EAAE,aAAa,+BAAkC,MAAI,EAAE,IAAI,gCAAiC,EAAI,EACvGA,EAAS,OAAO,OAAON,EAAI,aAAcM,EAAS,OAAO,QAAQ,EACjE,OAAU,gBAAiB,YAAgB,eAAaA,EAAS,OAAO,SAAUA,EAAS,OAAO,iBAAiB,MAClH,OAAM,IAAI,MAAM,wEAAwE,EAC7F,IAAIQ,EAAK,GACLC,EAAO,GACX,GAAI,CACFD,EAAK,MAAS,MAAI,EAAE,SAAS,8BAA8B,EAC3DC,EAAO,MAAS,MAAI,EAAE,SAAS,uBAAuB,EAClDT,EAAS,OAAO,OAAON,EAAI,mBAAmBe,EAAO,OAAS,aAAaD,EAAK,gBAAkB,kBAAkB,EACpHR,EAAS,OAAO,OAAS,CAACS,GAAMf,EAAI,2CAA2C,CACrF,OAAQgB,EAAN,CACAhB,EAAI,uBAAuB,CAC7B,CACF,CAEA,GAAI,CACF,MAAS,aAAWM,EAAS,OAAO,OAAO,EAC3C,MAAS,QAAM,EACLW,GAAK,CACjB,OAASC,EAAP,CACA,OAAAlB,EAAI,6BAA8BM,EAAS,OAAO,QAASY,CAAG,EACvD,EACT,CACF,CAGA,GAAO,aAAW,IAAM,YACf,MAAI,EAAE,aAAa,8BAAiC,MAAI,EAAE,IAAI,+BAAgC,EAAK,EACnG,MAAI,EAAE,aAAa,mBAAsB,MAAI,EAAE,IAAI,oBAAqB,EAAI,EAC5E,MAAI,EAAE,aAAa,2BAA8B,MAAI,EAAE,IAAI,4BAA6B,EAAI,EAC5F,MAAI,EAAE,aAAa,4BAA+B,MAAI,EAAE,IAAI,6BAA8B,GAAG,EAC7F,MAAI,EAAE,aAAa,gBAAmB,MAAI,EAAE,IAAI,iBAAkB,EAAI,EACtE,MAAI,EAAE,aAAa,sBAAyB,MAAI,EAAE,IAAI,uBAAwB,EAAI,EAGrF,OAAOZ,EAAS,OAAO,YAAe,aAAeA,EAAS,OAAO,aACvEN,EAAI,kDAAmD,EAAI,EACxD,MAAI,EAAE,IAAI,iCAAkC,CAAC,GAE3C,UAAQ,EAAE,iBAAiB,CAChC,IAAMmB,EAAK,MAAS,UAAQ,EAAE,gBAAgB,EAAE,GAC5Cb,EAAS,OAAO,OAAON,EAAI,cAAcmB,EAAG,aAAaA,EAAG,OAAO,cAAwBA,EAAG,aAAaA,EAAG,QAAQ,GAAa,CACzI,CAIK,aAAW,EAOf,iBAAe,EAClB,MAAS,QAAM,EAEfb,EAAS,YAAY,YAAc,KAAK,MAAMG,EAAI,EAAID,CAAS,EAC/DF,EAAS,OAAO,QAAa,aAAW,EAExC,MAAMT,EAAI,cAAc,EACxBF,GAAkBW,EAAS,MAAM,CAEnC,CACA,MAAO,EACT,CAGO,SAASc,GAAQC,EAAuBzB,EAAQ,CAErD,QAAW0B,KAAcD,EAAa,CACpC,IAAME,EAAe,CACnB,WAAAD,EACA,YAAa1B,EAAO,QACpB,WAAY,IAAM,CAAMA,EAAO,OAAOI,EAAI,aAAcsB,EAAY1B,EAAO,OAAO,CAAG,CAGvF,EACG,iBAAe2B,CAAY,CAChC,CACA1B,EAAI,QAAa,uBAAwB,aAAW,CAAC,EAAE,IAAK2B,GAAYA,EAAO,WAAsB,YAAY,CAAC,CACpH,CCzLA,IAAMC,EAAiD,CAAC,KAAM,IAAI,EAC5DC,GAAmB,CAAC,8CAA+C,oDAAoD,EAEvHC,GAAY,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,EAE3BC,GAAU,CAAC,OAAQ,OAAQ,QAAS,QAAS,OAAQ,MAAO,UAAU,EACtEC,GAAY,EAEZC,GAAgB,IAChBC,GAAwB,IACxBC,GAAqB,IAEvBC,GAAU,OAAO,iBACjBC,GAAW,EACXC,GAA+B,CAAC,EAAG,CAAC,EAUlCC,EAGF,CACF,MAAO,CAAC,EACR,MAAO,CAAC,CACV,EAEMC,GAAY,CAShB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,MAAO,CAAC,EAAG,EAAG,EAAG,CAAC,EAClB,OAAQ,CAAC,EAAG,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,GAAI,GAAI,GAAI,EAAE,EACrB,MAAO,CAAC,GAAI,GAAI,GAAI,EAAE,EACtB,KAAM,CAAC,CAAC,EACR,KAAM,CAAC,EAAG,GAAI,GAAI,EAAG,EAAG,EAAG,CAAC,CAC9B,EAEA,eAAsBC,GAAWC,EAAqC,CAtEtE,IAAAC,EAyEE,GADIC,EAAI,UAAShB,EAAO,GAAK,MACxBA,EAAO,GAQDc,EAAO,OAAOG,EAAI,gBAAiBjB,EAAO,GAAG,QAAW,MARnD,CAGdkB,GAAQ,CAAC,oBAAqB,QAAS,uBAAwB,QAAS,WAAY,SAAU,OAAQ,kBAAmB,gBAAiB,oBAAqB,oBAAqB,aAAc,QAAS,QAAS,OAAO,EAAGJ,CAAM,EACpOd,EAAO,GAAK,MAAMmB,GAAUJ,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,SAAS,EAC3D,IAAMK,EAASpB,EAAO,GAAG,SAAc,OAAO,OAAOA,EAAO,GAAG,eAAe,MAAS,EAAI,OAC3FE,GAAU,GAAG,GAAK,MAAM,QAAQkB,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EACxFlB,GAAU,GAAG,GAAK,MAAM,QAAQkB,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CAC1F,CACA,OAAOpB,EAAO,EAChB,CAEA,eAAsBqB,GAAaP,EAAqC,CArFxE,IAAAC,EAuFE,GADIC,EAAI,UAAShB,EAAO,GAAK,MACxBA,EAAO,GAKDc,EAAO,OAAOG,EAAI,gBAAiBjB,EAAO,GAAG,QAAW,MALnD,CACdA,EAAO,GAAK,MAAMmB,GAAUJ,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,SAAS,EAC3D,IAAMK,EAASpB,EAAO,GAAG,SAAc,OAAO,OAAOA,EAAO,GAAG,eAAe,MAAS,EAAI,OAC3FE,GAAU,GAAG,GAAK,MAAM,QAAQkB,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,EACxFlB,GAAU,GAAG,GAAK,MAAM,QAAQkB,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,CAC1F,CACA,OAAOpB,EAAO,EAChB,CAQA,eAAesB,GAAYC,EAAeC,EAA6C,CACrF,IAAMC,EAA4B,CAAC,EACnC,GAAI,CAACF,GAAS,CAACG,EAAO,GAAI,OAAOD,EACjC,IAAME,EAA4B,CAAC,EAC7BC,GAASL,EAAM,MAAM,IAAM,IAAMA,EAAM,MAAM,IAAM,GACnDM,EAAS,KAAK,IAAI,KAAK,OAAON,EAAM,MAAM,IAAM,GAAK,CAAC,EAAI,EAAGO,EAAqB,EAClFC,EAAQ,KAAK,MAAMF,EAASD,EAAQ,CAAC,EAAI,EAC/CD,EAAE,OAAY,QAAM,eAAeJ,EAAO,CAACM,EAAQE,CAAK,CAAC,EACzDJ,EAAE,KAAU,OAAKA,EAAE,OAAQ,OAAO,EAClC,CAACA,EAAE,UAAWA,EAAE,QAAQ,EAAI,MAAMD,EAAO,GAAG,aAAaC,EAAE,KAAMK,EAAgB,EACjFL,EAAE,MAAW,UAAQA,EAAE,SAAU,CAAC,EAAG,CAAC,CAAC,EACvCA,EAAE,OAAY,UAAQA,EAAE,UAAW,CAAC,CAAC,CAAC,EACtC,IAAMM,EAA2B,UAAQN,EAAE,OAAQ,CAAC,EACjD,UAAQM,EAAYC,GAAU,EACjCD,EAAY,OAAOC,GAAW,CAAC,EAC/BP,EAAE,SAAc,QAAMM,EAAa,CAAC,EACjC,UAAQA,CAAW,EAEtBN,EAAE,IAAS,MAAIA,EAAE,SAAU,CAAC,EAC5BA,EAAE,OAAY,SAAOA,EAAE,SAAU,CAAC,EAClC,IAAIQ,EAAK,EACTR,EAAE,IAAM,MAAS,QAAM,uBAAuBA,EAAE,MAAOA,EAAE,KAAMH,EAAO,KAAK,aAAe,GAAK,EAAGA,EAAO,KAAK,cAAgB,EAAGA,EAAO,KAAK,eAAiB,CAAC,EAC/J,IAAMY,EAAM,MAAMT,EAAE,IAAI,KAAK,EACvBU,EAAS,MAAMV,EAAE,IAAI,KAAK,EAC1BW,EAAW,MAAMX,EAAE,OAAO,KAAK,EACrC,QAAWY,KAAY,MAAM,KAAKH,CAAG,EAAG,CACtC,IAAMI,EAAc,QAAMb,EAAE,MAAOY,EAAU,CAAC,EACxCE,EAAQ,MAAMD,EAAS,KAAK,EAC/B,UAAQA,CAAQ,EACnB,IAAME,EAAe,CAACD,EAAM,GAAIA,EAAM,GAAIA,EAAM,GAAKA,EAAM,GAAIA,EAAM,GAAKA,EAAM,EAAE,EAC5EE,EAAkBC,GAAMF,EAASG,EAAkB,EACnDC,EAAe,CAAC,KAAK,MAAMJ,EAAQ,GAAKK,GAAW,EAAE,EAAG,KAAK,MAAML,EAAQ,GAAKK,GAAW,EAAE,EAAG,KAAK,MAAML,EAAQ,GAAKK,GAAW,EAAE,EAAG,KAAK,MAAML,EAAQ,GAAKK,GAAW,EAAE,CAAC,EAC9KC,EAAQX,EAAOE,GACfU,EAAQC,GAAQZ,EAASC,IACzBY,EAAyB,CAAE,GAAIhB,IAAM,MAAAa,EAAO,IAAKF,EAAS,OAAAH,EAAQ,MAAAM,CAAM,EAC9ExB,EAAM,KAAK0B,CAAI,CACjB,CACA,cAAO,KAAKxB,CAAC,EAAE,QAASyB,GAAc,UAAQzB,EAAEyB,EAAO,CAAC,EACxD3B,EAAM,KAAK,CAAC4B,EAAGC,IAAMA,EAAE,MAAQD,EAAE,KAAK,EAClC5B,EAAM,QAAUD,EAAO,KAAK,aAAe,KAAIC,EAAM,OAAUD,EAAO,KAAK,aAAe,GACvFC,CACT,CAEA,eAAe8B,GAAchC,EAAeiC,EAAqBhC,EAAqC,CACpG,IAAM2B,EAAmB,CACvB,GAAIK,EAAE,GACN,MAAO,KAAK,MAAM,IAAMA,EAAE,KAAK,EAAI,IACnC,SAAU,KAAK,MAAM,IAAMA,EAAE,KAAK,EAAI,IACtC,YAAa,EACb,IAAKA,EAAE,IACP,OAAQA,EAAE,OACV,MAAOA,EAAE,MACT,UAAW,CAAC,EACZ,UAAW,CAAC,EACZ,YAAa,CAAC,CAChB,EACA,GAAIjC,GAASG,EAAO,IAAMF,EAAO,KAAK,WAAagC,EAAE,OAAShC,EAAO,KAAK,eAAiB,GAAI,CAC7F,IAAMG,EAA4B,CAAC,EAC7B8B,EAAU,CAACD,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAKA,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAKA,EAAE,OAAO,EAAE,EAC/F7B,EAAE,KAAU,QAAM,cAAcJ,EAAO,CAACkC,CAAO,EAAG,CAAC,CAAC,EAAG,CAACC,GAAU,GAAG,GAAIA,GAAU,GAAG,EAAE,EAAG,UAAU,EACrG/B,EAAE,IAAS,MAAIA,EAAE,KAAMgC,EAAU,KAAK,EACtC,CAAChC,EAAE,MAAOA,EAAE,SAAS,EAAID,EAAO,GAAG,QAAQC,EAAE,IAAK,CAAC,aAAc,UAAU,CAAC,EAC5E,IAAMiC,GAAY,MAAMjC,EAAE,MAAM,KAAK,GAAG,GAClCqB,GAAS,IAAM,KAAK,MAAM,KAAO,EAAI,KAAK,IAAIY,CAAQ,EAAE,GAAK,IACnE,GAAIZ,IAAUxB,EAAO,KAAK,eAAiB,GAAI,CAC7C2B,EAAK,YAAcH,EACnBrB,EAAE,SAAc,UAAQA,EAAE,UAAW,CAAC,GAAI,CAAC,CAAC,EAG5C,IAAMkC,GAFsB,MAAMlC,EAAE,SAAS,MAAM,GACb,IAAKmC,GAAQ,CAACA,EAAI,GAAKJ,GAAU,GAAG,GAAII,EAAI,GAAKJ,GAAU,GAAG,GAAKI,EAAI,IAAM,CAAE,CAAC,EAChF,IAAKA,GAAQ,CAACA,EAAI,GAAKN,EAAE,OAAO,GAAIM,EAAI,GAAKN,EAAE,OAAO,GAAKM,EAAI,IAAM,CAAE,CAAC,EAC9GX,EAAK,UAAaU,EAAY,IAAKC,GAAQ,CAACf,GAAW,IAAMe,EAAI,GAAKN,EAAE,OAAO,IAAKT,GAAW,IAAMe,EAAI,GAAKN,EAAE,OAAO,IAAMM,EAAI,IAAM,CAAE,CAAC,EAC1IX,EAAK,UAAuBY,GAAQZ,EAAK,SAAS,EAClD,QAAWa,KAAO,OAAO,KAAKC,EAAS,EACrCd,EAAK,YAAYa,GAAOC,GAAUD,GAAK,IAAKE,GAAmBf,EAAK,WAAaA,EAAK,UAAUe,GAASf,EAAK,UAAUe,GAAS,IAAK,CAE1I,CACA,OAAO,KAAKvC,CAAC,EAAE,QAASyB,GAAc,UAAQzB,EAAEyB,EAAO,CAAC,CAC1D,CACA,OAAOD,CACT,CAEA,eAAsBgB,GAAQ5C,EAAeC,EAAuC,CAvLpF,IAAA4C,EAAAC,EAwLE,GAAI,GAACD,EAAA1C,EAAO,KAAP,MAAA0C,EAAY,WAAe,GAACC,EAAA3C,EAAO,KAAP,MAAA2C,EAAY,WAAe,CAAC3C,EAAO,GAAG,OAAO,GAAG,OAAS,CAACA,EAAO,GAAG,OAAO,GAAG,MAAO,MAAO,CAAC,EAC9HqB,GAAa,CAACxB,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,EACtD+C,KACA,IAAMC,GAAY/C,EAAO,KAAK,UAAY,GAAMgD,EAAI,EAAIC,GAClDC,EAAYJ,IAAW9C,EAAO,KAAK,YAAc,GACvD,OAAIA,EAAO,aAAe+C,GAAYG,EAC7BC,EAAM,MAER,IAAI,QAAQ,MAAOC,GAAY,CACpC,IAAMC,EAAmB,GAAKrD,EAAO,KAAK,UAAY,GAAMgD,EAAI,EAAIC,GAC9DK,EAAoBR,GAAU,GAAK9C,EAAO,KAAK,YAAc,GAC/DA,EAAO,aAAemD,EAAM,MAAM,SAAWnD,EAAO,KAAK,YAC3DmD,EAAM,MAAQ,MAAM,QAAQ,IAAIA,EAAM,MAAM,IAAKI,GAAYxB,GAAchC,EAAOwD,EAASvD,CAAM,CAAC,CAAC,EAC1FA,EAAO,aAAeqD,GAAoBC,GAAqBH,EAAM,MAAM,OAAS,EAC7FA,EAAM,MAAQ,MAAM,QAAQ,IAAIA,EAAM,MAAM,IAAKI,GAAYxB,GAAchC,EAAOwD,EAASvD,CAAM,CAAC,CAAC,GAEnGmD,EAAM,MAAQ,MAAMrD,GAAYC,EAAOC,CAAM,EAC7CiD,GAAWD,EAAI,EACfG,EAAM,MAAQ,MAAM,QAAQ,IAAIA,EAAM,MAAM,IAAKI,GAAYxB,GAAchC,EAAOwD,EAASvD,CAAM,CAAC,CAAC,EACnG8C,GAAU,GAGZ,IAAMU,EAAW,CAAC,GAAGL,EAAM,KAAK,EAEhC,GADAA,EAAM,MAAM,OAAS,EACjBnD,EAAO,iBAAmB,EAC5B,QAASyD,EAAI,EAAGA,EAAIN,EAAM,MAAM,OAAQM,IAAK,CAC3C,IAAMC,EAAaC,GAAOR,EAAM,MAAMM,GAAG,UAAWlC,EAAU,EAC9D,GAAImC,EAAO,IAAI,IAAM3D,EAAM,MAAM,IAAM,GAAK,KAAQ2D,EAAO,IAAI,IAAM3D,EAAM,MAAM,IAAM,GAAK,KAAQoD,EAAM,MAAMM,GAAG,aAAeN,EAAM,MAAMM,GAAG,aAAezD,EAAO,KAAK,eAAiB,GAAI,CAC/L,IAAM4D,EAAexC,GAAMsC,EAAO,IAAKG,EAAa,EAC9CC,EAAkB1C,GAAMsC,EAAO,OAAQG,EAAa,EAE1DV,EAAM,MAAM,KAAK,CAAE,GAAGK,EAASC,GAAI,IAAKG,EAAU,OAAQE,CAAY,CAAC,CACzE,CACF,CAEF,QAASL,EAAI,EAAGA,EAAIN,EAAM,MAAM,OAAQM,IAAK,CAC3C,IAAMM,EAAWC,GAAKb,EAAM,MAAMM,GAAG,UAAWlC,EAAU,EAC1D4B,EAAM,MAAMM,GAAG,IAAMM,EAAK,IAC1BZ,EAAM,MAAMM,GAAG,OAASM,EAAK,MAC/B,CACAX,EAAQD,EAAM,KAAK,CACrB,CAAC,CACH,CCvNA,IAAIc,GACEC,GAAmB,CAAC,EACtBC,GAAU,OAAO,iBACjBC,GAAY,EACZC,GAAW,EAEf,eAAsBC,GAAKC,EAAqC,CAjBhE,IAAAC,EAkBE,OAAIC,EAAI,UAASR,GAAQ,MACpBA,GACIM,EAAO,OAAOG,EAAI,gBAAiBT,GAAM,QAAW,EADjDA,GAAQ,MAAMU,GAAUH,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,SAAS,EAE5DP,EACT,CAEA,eAAsBW,GAAQC,EAAeN,EAAgBO,EAAaC,EAAgC,CAxB1G,IAAAP,EAAAQ,EAyBE,GAAI,EAACf,IAAA,MAAAA,GAAQ,UAAa,MAAO,GACjC,IAAMgB,KAAYT,EAAAD,EAAO,KAAK,WAAZ,YAAAC,EAAsB,WAAY,GAAMU,EAAI,EAAIb,GAC5Dc,EAAYhB,MAAWa,EAAAT,EAAO,KAAK,WAAZ,YAAAS,EAAsB,aAAc,GACjE,OAAIT,EAAO,aAAeU,GAAYE,GAAcf,KAAcW,GAAUb,GAAOY,IACjFX,KACOD,GAAOY,KAEhBX,GAAU,EACH,IAAI,QAAQ,MAAOiB,GAAY,CACpC,IAAMC,EAAY,QAAM,eAAeR,EAAO,CAACZ,IAAA,MAAAA,GAAO,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,EAAGA,IAAA,MAAAA,GAAO,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,CAAC,EAAG,EAAK,EAC7JqB,EAAMrB,IAAA,YAAAA,GAAO,QAAQoB,GACrBE,GAAO,MAAMD,EAAI,KAAK,GAAG,GAC/BpB,GAAOY,GAAO,KAAK,MAAM,IAAMS,CAAG,EAAI,IACtCnB,GAAYW,EACZV,GAAWa,EAAI,EACZ,UAAQ,CAACG,EAAQC,CAAG,CAAC,EACxBF,EAAQlB,GAAOY,EAAI,CACrB,CAAC,EACH,CC3CA,IAAAU,GAAA,GAAAC,GAAAD,GAAA,eAAAE,GAAA,eAAAC,GAAA,QAAAC,GAAA,aAAAC,GAAA,aAAAC,KAAO,IAAMF,GAAgB,CAC3B,OACA,UACA,WACA,UACA,WACA,eACA,gBACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,YACF,EAEaD,GAAyB,CACpC,CAAC,UAAW,UAAU,EACtB,CAAC,UAAW,UAAU,EACtB,CAAC,eAAgB,eAAe,EAChC,CAAC,YAAa,YAAY,EAC1B,CAAC,YAAa,YAAY,EAC1B,CAAC,UAAW,UAAU,EACtB,CAAC,WAAY,WAAW,EACxB,CAAC,YAAa,YAAY,CAC5B,EAEaG,GAAuB,CAClC,CAAC,WAAY,cAAc,EAC3B,CAAC,YAAa,eAAe,EAC7B,CAAC,YAAa,UAAU,EACxB,CAAC,aAAc,WAAW,CAC5B,EAEaD,GAAyB,CACpC,CAAC,CAAC,UAAW,UAAU,EAAG,CAAC,eAAgB,eAAe,CAAC,EAC3D,CAAC,CAAC,YAAa,YAAY,EAAG,CAAC,eAAgB,eAAe,CAAC,CACjE,EAEaH,GAAsC,CACjD,QAAS,CAAC,UAAW,WAAY,WAAW,EAC5C,SAAU,CAAC,WAAY,YAAa,YAAY,EAChD,MAAO,CAAC,eAAgB,gBAAiB,WAAY,UAAW,cAAc,EAC9E,QAAS,CAAC,eAAgB,YAAa,WAAW,EAClD,SAAU,CAAC,gBAAiB,aAAc,YAAY,EACtD,KAAM,CAAC,CACT,EC5CA,IAAMK,GAAY,KAEZC,GAGF,CACF,UAAW,CAAC,EACZ,QAAS,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,CAC1C,EAEO,SAASC,GAAUC,EAAkB,CAC1C,QAAWC,KAAeC,GAAY,CACpC,IAAMC,EAAOH,EAAK,UAAU,UAAWI,GAAOA,EAAG,OAASH,EAAK,EAAE,EAC3DI,EAAQL,EAAK,UAAU,UAAWI,GAAOA,EAAG,OAASH,EAAK,EAAE,EAClE,GAAID,EAAK,UAAUG,IAASH,EAAK,UAAUK,IACrCL,EAAK,UAAUG,GAAM,SAAS,GAAKH,EAAK,UAAUK,GAAO,SAAS,GAAI,CACxE,IAAMC,EAAMN,EAAK,UAAUG,GAC3BH,EAAK,UAAUG,GAAQH,EAAK,UAAUK,GACtCL,EAAK,UAAUK,GAASC,CAC1B,CAEJ,CACA,QAAWL,KAAeM,GAAU,CAClC,IAAMC,EAAQR,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASH,EAAK,EAAG,EACpEQ,EAAST,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASH,EAAK,EAAG,EACvED,EAAK,UAAUQ,IAAUR,EAAK,UAAUS,IACtCT,EAAK,UAAUQ,GAAO,SAAS,GAAKR,EAAK,UAAUS,GAAQ,SAAS,IACtET,EAAK,UAAU,OAAOQ,EAAO,CAAC,CAGpC,CACA,OAAW,CAACP,EAAMS,CAAO,IAAYC,GAAU,CAC7C,IAAMR,EAAOH,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASH,EAAK,EAAG,EACnEI,EAAQL,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASH,EAAK,EAAG,EACpEW,EAASZ,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASM,EAAQ,EAAG,EACxEG,EAAUb,EAAK,UAAU,UAAWI,GAAQA,GAAMA,EAAG,OAASM,EAAQ,EAAG,EAC/E,GAAI,CAACV,EAAK,UAAUY,IAAW,CAACZ,EAAK,UAAUa,GAAU,SACzD,IAAMC,EAAed,EAAK,UAAUG,GAAQ,CAC1C,KAAK,IAAIH,EAAK,UAAUY,GAAQ,SAAS,GAAKZ,EAAK,UAAUG,GAAM,SAAS,EAAE,EAC9E,KAAK,IAAIH,EAAK,UAAUa,GAAS,SAAS,GAAKb,EAAK,UAAUG,GAAM,SAAS,EAAE,CACjF,EAAI,CAAC,EAAG,CAAC,EACHY,EAAgBf,EAAK,UAAUK,GAAS,CAC5C,KAAK,IAAIL,EAAK,UAAUa,GAAS,SAAS,GAAKb,EAAK,UAAUK,GAAO,SAAS,EAAE,EAChF,KAAK,IAAIL,EAAK,UAAUY,GAAQ,SAAS,GAAKZ,EAAK,UAAUK,GAAO,SAAS,EAAE,CACjF,EAAI,CAAC,EAAG,CAAC,EACT,GAAIS,EAAa,GAAKA,EAAa,IAAMC,EAAc,GAAKA,EAAc,GAAI,CAC5E,IAAMT,EAAMN,EAAK,UAAUG,GAC3BH,EAAK,UAAUG,GAAQH,EAAK,UAAUK,GACtCL,EAAK,UAAUK,GAASC,CAC1B,CACF,CACF,CAEO,SAASU,GAAOC,EAA2C,CAChE,QAASC,EAAI,EAAGA,EAAID,EAAU,OAAQC,IACpC,GAAID,EAAUC,IAAMpB,GAAM,UAAUoB,GAAI,CACtC,IAAMC,EAAO,CAAC,KAAK,IAAIF,EAAUC,GAAG,YAAY,GAAKpB,GAAM,UAAUoB,GAAG,YAAY,EAAE,EAAG,KAAK,IAAID,EAAUC,GAAG,YAAY,GAAKpB,GAAM,UAAUoB,GAAG,YAAY,EAAE,CAAC,EAC9JC,EAAK,GAAKtB,IAAasB,EAAK,GAAKtB,GACnCoB,EAAUC,GAAKpB,GAAM,UAAUoB,GAE/BpB,GAAM,UAAUoB,GAAKD,EAAUC,EAEnC,MACEpB,GAAM,UAAUoB,GAAKD,EAAUC,GAGnC,OAAOD,CACT,CAEO,SAASG,GAASC,EAAeC,EAA2B,CA3EnE,IAAAC,EAAAC,EA4EE,IAAMC,EAA4B,CAAC,EACnC,GAAI,GAACF,EAAAF,GAAA,YAAAA,EAAO,QAAP,MAAAE,EAAe,KAAM,GAACC,EAAAH,GAAA,YAAAA,EAAO,QAAP,MAAAG,EAAe,IAAI,OAAOH,EACrDvB,GAAM,QAAU,CACd,CAAC,EAAG,CAAC,EACL,CAACuB,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,EAAGA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,CAAC,EACjL,CAACA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,EAAGA,EAAM,MAAM,GAAKA,EAAM,MAAM,GAAK,KAAK,OAAOA,EAAM,MAAM,GAAKA,EAAM,MAAM,IAAM,CAAC,EAAI,CAAC,EACjL,CAAC,EAAG,CAAC,CACP,EACAI,EAAE,IAAS,MAAIJ,EAAOvB,GAAM,OAAO,EACnC2B,EAAE,OAAY,QAAM,eAAeA,EAAE,IAAK,CAACH,EAAWA,CAAS,CAAC,EAChE,IAAMI,EAAW,OAAKD,EAAE,OAAQ,OAAO,EACvC,cAAO,KAAKA,CAAC,EAAE,QAASE,GAAc,UAAQF,EAAEE,EAAO,CAAC,EACjDD,CACT,CAEO,SAASE,GAAY5B,EAAkB6B,EAA0C,CACtF7B,EAAK,UAAYA,EAAK,UAAU,OAAQ8B,GAAQA,GAAA,YAAAA,EAAK,QAAQ,EAC7D,QAAWA,KAAO9B,EAAK,UACrB8B,EAAI,SAAW,CACbA,EAAI,SAAS,IAAMD,EAAW,GAAK/B,GAAM,QAAQ,GAAG,GAAKA,GAAM,QAAQ,GAAG,IAAM+B,EAAW,GAAK/B,GAAM,QAAQ,GAAG,GACjHgC,EAAI,SAAS,IAAMD,EAAW,GAAK/B,GAAM,QAAQ,GAAG,GAAKA,GAAM,QAAQ,GAAG,IAAM+B,EAAW,GAAK/B,GAAM,QAAQ,GAAG,EACnH,EACAgC,EAAI,YAAc,CAChBA,EAAI,SAAS,GAAKD,EAAW,GAAIC,EAAI,SAAS,GAAKD,EAAW,EAChE,EAEF,IAAME,EAAoBC,GAAKhC,EAAK,UAAU,IAAKiC,GAAOA,EAAG,QAAQ,EAAGJ,CAAU,EAClF,OAAA7B,EAAK,IAAM+B,EAAc,IACzB/B,EAAK,OAAS+B,EAAc,OACrB/B,CACT,CCxFA,IAAIkC,EACAC,GAAY,EACZC,GAAU,OAAO,iBAGfC,GAIF,CACF,MAAO,CAAC,EACR,OAAQ,CAAC,EACT,KAAM,CACR,EAEA,eAAsBC,GAAKC,EAAqC,CAjChE,IAAAC,EAkCE,OAAIC,EAAI,UAASP,EAAQ,MACpBA,EAGMK,EAAO,OAAOG,EAAI,gBAAiBR,EAAM,QAAW,GAF7DS,GAAQ,CAAC,MAAM,EAAGJ,CAAM,EACxBL,EAAQ,MAAMU,EAAUL,EAAO,KAAK,SAAS,GAE/CJ,IAAaD,GAAA,YAAAA,EAAQ,aAAeM,EAAAN,GAAA,YAAAA,EAAO,SAAP,YAAAM,EAAgB,GAAG,OAASN,EAAM,OAAO,GAAG,MAAM,GAAK,EACvFC,GAAY,KAAIA,GAAY,KACzBD,CACT,CAEA,SAASW,GAAgBC,EAAKP,EAAQQ,EAAO,CAC3C,IAAMC,EAAMF,EAAI,GAAG,GACbG,EAA4B,CAAC,EAC/BC,EAAQ,EACZ,QAASC,EAAK,EAAGA,EAAKH,EAAI,OAAQG,IAEhC,GADAD,EAAQF,EAAIG,GAAI,GACZD,EAAQX,EAAO,KAAK,cAAe,CACrC,IAAMa,EAAqB,CAACJ,EAAIG,GAAI,GAAIH,EAAIG,GAAI,EAAE,EAClDF,EAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAMC,CAAK,EAAI,IACjC,KAAaF,GAAIG,GACjB,YAAAC,EACA,SAAU,CACR,KAAK,OAAOL,EAAM,MAAM,IAAM,GAAKK,EAAY,EAAE,EACjD,KAAK,OAAOL,EAAM,MAAM,IAAM,GAAKK,EAAY,EAAE,CACnD,CACF,CAAC,CACH,CAEFF,EAAQD,EAAU,OAAO,CAACI,EAAMC,IAAUA,EAAK,MAAQD,EAAOC,EAAK,MAAQD,EAAO,CAAC,EACnF,IAAME,EAAuB,CAAC,EACxBC,EAAaC,GAAKR,EAAU,IAAKS,GAAOA,EAAG,QAAQ,EAAG,CAACX,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,CAAC,EACtFY,EAAyC,CAAC,EAChD,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAeC,EAAS,EAAG,CAC9D,IAAMJ,EAAgB,CAAC,EACvB,QAASK,EAAI,EAAGA,EAAIF,EAAQ,OAAS,EAAGE,IAAK,CAC3C,IAAMC,EAAMf,EAAU,KAAMgB,GAAOA,EAAG,OAASJ,EAAQE,EAAE,EACnDG,EAAMjB,EAAU,KAAMgB,GAAOA,EAAG,OAASJ,EAAQE,EAAI,EAAE,EACzDC,GAAOE,GAAOF,EAAI,OAASzB,EAAO,KAAK,eAAiB,IAAM2B,EAAI,OAAS3B,EAAO,KAAK,eAAiB,IAAImB,EAAG,KAAK,CAACM,EAAI,SAAUE,EAAI,QAAQ,CAAC,CACtJ,CACAP,EAAYC,GAAQF,CACtB,CACA,IAAMS,EAAmB,CAAE,GAAI,EAAG,MAAAjB,EAAO,IAAKM,EAAO,IAAK,OAAQA,EAAO,OAAQ,UAAAP,EAAW,YAAAU,CAAY,EACxG,OAAIS,GAAUD,CAAI,EAClBZ,EAAO,KAAKY,CAAI,EACTZ,CACT,CAEA,SAASc,GAAevB,EAAKP,EAAQQ,EAAO,CAC1C,IAAMQ,EAAuB,CAAC,EAC9B,QAASJ,EAAK,EAAGA,EAAKL,EAAI,GAAG,OAAQK,IAAM,CACzC,IAAMH,EAAMF,EAAI,GAAGK,GACbmB,EAAa,KAAK,MAAM,IAAMtB,EAAI,GAAK,EAAE,EAAI,IACnD,GAAIsB,EAAa/B,EAAO,KAAK,cAAe,CAC1C,IAAMU,EAA4B,CAAC,EACnC,QAASc,EAAI,EAAGA,EAAI,GAAIA,IAAK,CAC3B,IAAMb,EAAQF,EAAI,EAAIe,EAAI,GAC1B,GAAIb,EAAQX,EAAO,KAAK,cAAe,CACrC,IAAMa,EAAqB,CAACJ,EAAI,EAAIe,EAAI,GAAIf,EAAI,EAAIe,EAAI,EAAE,EAC1Dd,EAAU,KAAK,CACb,KAAaD,GAAIe,GACjB,MAAO,KAAK,MAAM,IAAMb,CAAK,EAAI,IACjC,YAAAE,EACA,SAAU,CAAC,KAAK,OAAOL,EAAM,MAAM,IAAM,GAAKK,EAAY,EAAE,EAAG,KAAK,OAAOL,EAAM,MAAM,IAAM,GAAKK,EAAY,EAAE,CAAC,CACnH,CAAC,CACH,CACF,CACA,IAAMI,EAAaC,GAAKR,EAAU,IAAKS,GAAOA,EAAG,QAAQ,EAAG,CAACX,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,CAAC,EAItFY,EAAiD,CAAC,EACxD,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAeC,EAAS,EAAG,CAC9D,IAAMJ,EAAgB,CAAC,EACvB,QAASK,EAAI,EAAGA,EAAIF,EAAQ,OAAS,EAAGE,IAAK,CAC3C,IAAMC,EAAMf,EAAU,KAAMgB,GAAOA,EAAG,OAASJ,EAAQE,EAAE,EACnDG,EAAMjB,EAAU,KAAMgB,GAAOA,EAAG,OAASJ,EAAQE,EAAI,EAAE,EACzDC,GAAOE,GAAOF,EAAI,OAASzB,EAAO,KAAK,eAAiB,IAAM2B,EAAI,OAAS3B,EAAO,KAAK,eAAiB,IAAImB,EAAG,KAAK,CAACM,EAAI,SAAUE,EAAI,QAAQ,CAAC,CACtJ,CACAP,EAAYC,GAAQF,CACtB,CACA,IAAMS,EAAmB,CAAE,GAAAhB,EAAI,MAAOmB,EAAY,IAAKd,EAAO,IAAK,OAAQA,EAAO,OAAQ,UAAW,CAAC,GAAGP,CAAS,EAAG,YAAAU,CAAY,EAC7HS,GAAUD,CAAI,EAClBZ,EAAO,KAAKY,CAAI,CAClB,CACF,CACA,OAAAZ,EAAO,KAAK,CAACgB,EAAGC,IAAMA,EAAE,MAAQD,EAAE,KAAK,EACnChB,EAAO,OAAShB,EAAO,KAAK,cAAagB,EAAO,OAAShB,EAAO,KAAK,aAClEgB,CACT,CAEA,eAAsBkB,GAAQC,EAAenC,EAAuC,CA7HpF,IAAAC,EA8HE,GAAI,EAACN,GAAA,MAAAA,EAAQ,WAAe,GAACM,EAAAN,GAAA,YAAAA,EAAO,SAAP,MAAAM,EAAgB,GAAG,OAAO,MAAO,CAAC,EAC1DD,EAAO,cAAaF,GAAM,MAAM,OAAS,GAC9CD,KACA,IAAMuC,GAAYpC,EAAO,KAAK,UAAY,GAAMqC,EAAI,EAAIvC,GAAM,KACxDwC,EAAYzC,IAAWG,EAAO,KAAK,YAAc,GACvD,OAAIA,EAAO,aAAeoC,GAAYE,EAC7BxC,GAAM,OAER,IAAI,QAAQ,MAAOyC,GAAY,CACpC,IAAMC,EAA4B,CAAC,EACnC3C,GAAU,EAmCV2C,EAAE,MAAYC,GAASN,EAAOvC,EAAS,EACvC4C,EAAE,IAAM7C,GAAA,YAAAA,EAAO,QAAQ6C,EAAE,OACzB1C,GAAM,KAAOuC,EAAI,EACjB,IAAM9B,EAAM,MAAMiC,EAAE,IAAI,MAAM,EAC9B1C,GAAM,OAAU0C,EAAE,IAAI,MAAM,KAAO,GAC/BlC,GAAgBC,EAAKP,EAAQmC,CAAK,EAClCL,GAAevB,EAAKP,EAAQmC,CAAK,EACrC,QAAWP,KAAQ9B,GAAM,OACnB4C,GAAYd,EAAM,CAACO,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,CAAC,EAC5DQ,GAAOf,EAAK,SAAS,EAE3B,OAAO,KAAKY,CAAC,EAAE,QAASI,GAAc,UAAQJ,EAAEI,EAAO,CAAC,EAExDL,EAAQzC,GAAM,MAAM,CACtB,CAAC,CACH,CC1KA,IAAI+C,GACAC,GAAuB,CAAC,EACxBC,GAAW,EACXC,GAAU,OAAO,iBACjBC,GAAY,EAEVC,GAAW,IAEjB,eAAsBC,GAAKC,EAAqC,CAC9D,GAAI,CAACP,IAASQ,EAAI,QAAS,CACzBR,GAAQ,MAAMS,EAAUF,EAAO,OAAO,SAAS,EAC/C,IAAMG,EAASV,IAAA,MAAAA,GAAQ,SAAc,OAAO,OAAOA,GAAM,eAAe,MAAS,EAAI,OACrFI,GAAY,MAAM,QAAQM,CAAM,EAAI,SAASA,EAAO,GAAG,YAAY,IAAI,GAAG,IAAI,EAAI,GACpF,MAAWH,EAAO,OAAOI,EAAI,gBAAiBX,GAAM,QAAW,EAC/D,OAAOA,EACT,CAEA,eAAeY,GAAQC,EAAeC,EAA+BP,EAAgB,CACnF,IAAIQ,EAAK,EACLC,EAA0B,CAAC,EACzBC,EAAOb,GACb,QAAWc,IAAc,CAAC,EAAG,EAAG,CAAC,EAAG,CAElC,IAAMC,EAAWD,EAAa,GAExBE,EAAa,UAAQP,EAAI,KAAMQ,GAAeA,EAAE,MAAM,KAAQF,GAAY,IAAOE,EAAE,MAAM,IAAM,KAAOC,GAAO,MAAO,CAAC,EACrHC,EAAS,MAAMH,EAAQ,MAAM,EAC7BI,EAAe,UAAQX,EAAI,KAAMQ,GAAeA,EAAE,MAAM,KAAQF,GAAY,IAAOE,EAAE,MAAM,IAAM,GAAKC,GAAO,MAAO,CAAC,EACrHG,EAAYD,EAAU,QAAQ,CAAC,GAAI,EAAGA,EAAU,MAAM,GAAK,CAAC,CAAC,EAC7DE,EAAUD,EAAU,OAAO,CAAC,EAC5BE,EAAS,MAAMD,EAAQ,MAAM,EACnC,QAASE,EAAI,EAAGA,EAAIR,EAAQ,MAAM,GAAIQ,IACpC,QAASC,EAAI,EAAGA,EAAIT,EAAQ,MAAM,GAAIS,IAAK,CACzC,IAAMC,EAAQP,EAAOK,GAAGC,GACxB,GAAIC,GAASvB,EAAO,OAAO,eAAiB,IAAMsB,IAAM,GAAI,CAC1D,IAAME,GAAM,GAAM,KAAK,MAAMH,EAAIT,CAAQ,GAAKA,EACxCa,GAAM,GAAM,KAAK,MAAMJ,EAAIT,CAAQ,GAAKA,EACxCc,EAAYN,EAAOC,GAAG,IAAKP,GAAcA,GAAKF,EAAWD,EAAcD,EAAM,EAC7E,CAACiB,EAAGC,CAAC,EAAI,CACbJ,EAAM1B,GAAWa,EAAae,EAAU,GACxCD,EAAM3B,GAAWa,EAAae,EAAU,EAC1C,EACM,CAACG,EAAGC,CAAC,EAAI,CACbN,EAAM1B,GAAWa,EAAae,EAAU,GAAMC,EAC9CF,EAAM3B,GAAWa,EAAae,EAAU,GAAME,CAChD,EACIG,EAAc,CAACJ,EAAGC,EAAGC,EAAGC,CAAC,EAC7BC,EAASA,EAAO,IAAKjB,GAAM,KAAK,IAAI,EAAG,KAAK,IAAIA,EAAG,CAAC,CAAC,CAAC,EACtD,IAAMkB,EAAM,CACVD,EAAO,GAAKxB,EAAY,GACxBwB,EAAO,GAAKxB,EAAY,GACxBwB,EAAO,GAAKxB,EAAY,GACxBwB,EAAO,GAAKxB,EAAY,EAC1B,EACM0B,EAAS,CACb,GAAIzB,IAEJ,MAAO,KAAK,MAAM,IAAMe,CAAK,EAAI,IACjC,MAAOD,EAAI,EACX,MAAOP,GAAOO,GAAG,MAGjB,IAAKU,EAAI,IAAKlB,GAAM,KAAK,MAAMA,CAAC,CAAC,EACjC,OAAAiB,CACF,EACAtB,EAAQ,KAAKwB,CAAM,CACrB,CACF,CAEC,UAAQ,CAACpB,EAASI,EAAWC,EAAWC,CAAO,CAAC,CACrD,CAIA,IAAMe,EAAWzB,EAAQ,IAAKK,GAAM,CAACA,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAIA,EAAE,OAAO,GAAIA,EAAE,OAAO,EAAE,CAAC,EAClFqB,EAAY1B,EAAQ,IAAKK,GAAMA,EAAE,KAAK,EACxCsB,EAAmB,CAAC,EACxB,GAAIF,GAAYA,EAAS,OAAS,EAAG,CACnC,IAAMG,EAAM,MAAS,QAAM,uBAAuBH,EAAUC,EAAWnC,EAAO,OAAO,YAAaA,EAAO,OAAO,aAAcA,EAAO,OAAO,aAAa,EACzJoC,EAAS,MAAMC,EAAI,KAAK,EACrB,UAAQA,CAAG,CAChB,CAGA,OAAA5B,EAAUA,EACP,OAAO,CAAC6B,EAAMC,IAAQH,EAAO,SAASG,CAAG,CAAC,EAC1C,KAAK,CAACzB,EAAG0B,IAAOA,EAAE,MAAQ1B,EAAE,KAAM,EAE9BL,CACT,CAEA,eAAsBgC,GAAQC,EAAe1C,EAAyC,CACpF,GAAI,EAACP,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMkD,GAAY3C,EAAO,OAAO,UAAY,GAAM4C,EAAI,EAAIjD,GACpDkD,EAAYjD,IAAWI,EAAO,OAAO,YAAc,GACzD,OAAIA,EAAO,aAAe2C,GAAYE,GAAcnD,GAAK,OAAS,GAChEE,KACOF,KAETE,GAAU,EACN,CAACK,EAAI,QAAQ,SAAS,KAAK,GAAK,CAACA,EAAI,QAAQ,SAAS,eAAe,EAAUP,GAC5E,IAAI,QAAQ,MAAOoD,GAAY,CACpC,IAAMC,EAAa,CAACL,EAAM,MAAM,IAAM,EAAGA,EAAM,MAAM,IAAM,CAAC,EACtDM,EAAa,QAAM,eAAeN,EAAO,CAAC7C,GAAWA,EAAS,EAAG,EAAK,EACtEoD,EAAW,MAAID,EAASE,EAAU,KAAK,EACvCC,EAAgB,YAAUF,EAAO,CAAC,EAAG,EAAG,EAAG,CAAC,CAAC,EAE/CG,EACApD,EAAO,OAAO,UAASoD,EAAU3D,GAAM,QAAQ0D,CAAU,GAC7DxD,GAAWiD,EAAI,EAEf,IAAMS,EAAM,MAAMhD,GAAQ+C,EAAqBL,EAAgC/C,CAAM,EACrFN,GAAO2D,EACJ,UAAQ,CAACL,EAASC,EAAOE,EAAY,GAAGC,CAAO,CAAC,EACnDN,EAAQO,CAAG,CACb,CAAC,EACH,CC7HO,IAAMC,GAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,YAC/D,EAEaC,GAAQD,GAAU,OAElBE,GAAUF,GAAU,OAAO,CAACG,EAAQC,EAAWC,KAC1DF,EAAOC,GAAaC,EACbF,GACN,CAAC,CAAC,EAECG,GAAqB,CACzB,CAAC,UAAW,cAAc,EAAG,CAAC,YAAa,cAAc,EACzD,CAAC,YAAa,WAAW,EAAG,CAAC,UAAW,UAAU,EAClD,CAAC,WAAY,WAAW,EAAG,CAAC,WAAY,eAAe,EACvD,CAAC,aAAc,eAAe,EAAG,CAAC,aAAc,YAAY,EAC5D,CAAC,WAAY,WAAW,EAAG,CAAC,YAAa,YAAY,EACrD,CAAC,eAAgB,eAAe,EAAG,CAAC,UAAW,UAAU,CAC3D,EACaC,GAAuBD,GAAmB,IAAI,CAAC,CAACE,EAAYC,CAAU,IAAO,CAACP,GAAQM,GAAaN,GAAQO,EAAW,CAAE,EAExHC,GAAY,CACvB,CAAC,OAAQ,SAAS,EAAG,CAAC,UAAW,SAAS,EAAG,CAAC,OAAQ,UAAU,EAChE,CAAC,WAAY,UAAU,EAAG,CAAC,OAAQ,cAAc,EACjD,CAAC,eAAgB,WAAW,EAAG,CAAC,YAAa,WAAW,EACxD,CAAC,eAAgB,SAAS,EAAG,CAAC,UAAW,UAAU,EACnD,CAAC,WAAY,WAAW,EAAG,CAAC,OAAQ,eAAe,EACnD,CAAC,gBAAiB,YAAY,EAAG,CAAC,aAAc,YAAY,EAC5D,CAAC,gBAAiB,UAAU,EAAG,CAAC,WAAY,WAAW,EACvD,CAAC,YAAa,YAAY,CAC5B,EAgBO,SAASC,GAAeC,EAA6C,CAC1E,IAAMC,EAAQD,EAAU,OAAO,CAAC,CAAE,KAAAE,EAAM,KAAAC,EAAM,KAAAC,EAAM,KAAAC,CAAK,EAAG,CAAE,SAAU,CAAE,EAAAC,EAAG,EAAAC,CAAE,CAAE,KAAO,CACtF,KAAM,KAAK,IAAIL,EAAMI,CAAC,EACtB,KAAM,KAAK,IAAIH,EAAMI,CAAC,EACtB,KAAM,KAAK,IAAIH,EAAME,CAAC,EACtB,KAAM,KAAK,IAAID,EAAME,CAAC,CACxB,GAAI,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,iBACf,CAAC,EACD,MAAO,CAACN,EAAM,KAAMA,EAAM,KAAMA,EAAM,KAAOA,EAAM,KAAMA,EAAM,KAAOA,EAAM,IAAI,CAClF,CAEO,SAASO,GAAWC,EAAO,CAACC,EAAQC,CAAK,EAAG,CAACC,EAAuBC,CAAoB,EAAiB,CAC9G,IAAMC,EAASJ,EAASE,EAClBG,EAASJ,EAAQE,EACjBG,EAAY,CAACC,EAAMC,KAAmB,CAC1C,GAAIA,EACJ,MAAOD,EAAK,MACZ,OAAQ,CAACA,EAAK,IAAI,GAAKJ,EAAsBI,EAAK,IAAI,GAAKL,EAAuBK,EAAK,IAAI,GAAKJ,EAAsBI,EAAK,IAAI,GAAKL,CAAqB,EACzJ,IAAK,CAAC,KAAK,MAAMK,EAAK,IAAI,GAAKF,CAAM,EAAG,KAAK,MAAME,EAAK,IAAI,GAAKH,CAAM,EAAG,KAAK,MAAMG,EAAK,IAAI,GAAKF,CAAM,EAAG,KAAK,MAAME,EAAK,IAAI,GAAKH,CAAM,CAAC,EAC5I,UAAWG,EAAK,UAAU,IAAI,CAAC,CAAE,MAAAE,EAAO,KAAAC,EAAM,SAAAC,CAAS,KAAO,CAC5D,MAAOF,EACP,KAAMC,EACN,SAAU,CAAC,KAAK,MAAMC,EAAS,EAAIN,CAAM,EAAG,KAAK,MAAMM,EAAS,EAAIP,CAAM,CAAC,EAC3E,YAAa,CAACO,EAAS,EAAIT,EAAuBS,EAAS,EAAIT,CAAqB,CACtF,EAAE,EACF,YAAa,CAAC,CAChB,GAEA,OADoBH,EAAM,IAAI,CAACQ,EAAMC,IAAMF,EAAUC,EAAMC,CAAC,CAAC,CAE/D,CAGO,IAAMI,GAAN,KAAc,CAKnB,YAAYC,EAASC,EAAiB,CAJtCC,EAAA,sBACAA,EAAA,yBACAA,EAAA,wBAGE,KAAK,cAAgB,IAAI,MAAMF,CAAO,EACtC,KAAK,iBAAmB,GACxB,KAAK,gBAAkBC,CACzB,CAEA,QAAQlB,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoBA,EAC9C,KAAK,KAAK,KAAK,gBAAgB,CACjC,CAEA,SAAU,CACR,IAAMoB,EAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,kBAAkB,EACxC,KAAK,KAAK,CAAC,EACX,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzCA,CACT,CAEA,OAAQ,CAAE,OAAO,KAAK,mBAAqB,EAAI,CAE/C,MAAO,CAAE,OAAO,KAAK,iBAAmB,CAAG,CAE3C,KAAM,CAAE,OAAO,KAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,CAAC,CAAG,CAEvE,KAAM,CAAE,OAAO,KAAK,cAAc,EAAI,CAEtC,KAAKC,EAAG,CACN,KAAOA,EAAI,GAAK,KAAK,KAAK,KAAK,MAAMA,EAAI,CAAC,EAAGA,CAAC,GAC5C,KAAK,SAASA,EAAG,KAAK,MAAMA,EAAI,CAAC,CAAC,EAClCA,EAAI,KAAK,MAAMA,EAAI,CAAC,CAExB,CAEA,KAAKA,EAAG,CACN,KAAO,EAAIA,GAAK,KAAK,kBAAkB,CACrC,IAAIC,EAAI,EAAID,EAEZ,GADIC,EAAI,KAAK,kBAAoB,KAAK,KAAKA,EAAGA,EAAI,CAAC,GAAGA,IAClD,CAAC,KAAK,KAAKD,EAAGC,CAAC,EAAG,MACtB,KAAK,SAASD,EAAGC,CAAC,EAClBD,EAAIC,CACN,CACF,CAEA,WAAWV,EAAG,CAEZ,OAAO,KAAK,gBAAgB,KAAK,cAAcA,EAAE,CACnD,CAEA,KAAKA,EAAGU,EAAG,CACT,OAAO,KAAK,WAAWV,CAAC,EAAI,KAAK,WAAWU,CAAC,CAC/C,CAEA,SAASV,EAAGU,EAAG,CACb,IAAMC,EAAI,KAAK,cAAcX,GAC7B,KAAK,cAAcA,GAAK,KAAK,cAAcU,GAC3C,KAAK,cAAcA,GAAKC,CAC1B,CACF,EAEO,SAASC,GAAevB,EAAGD,EAAGyB,EAAkBC,EAAS,CAC9D,MAAO,CACL,EAAGA,EAAQ,IAAIzB,EAAGD,EAAGyB,CAAQ,EAC7B,EAAGC,EAAQ,IAAIzB,EAAGD,EAAGyB,EAAWE,EAAK,CACvC,CACF,CAEO,SAASC,GAAed,EAAMe,EAAsBH,EAAS,CAClE,GAAM,CAAE,SAAAI,EAAU,SAAAC,EAAU,GAAIN,CAAS,EAAIX,EACvC,CAAE,EAAAb,EAAG,EAAAD,CAAE,EAAIwB,GAAeM,EAAUC,EAAUN,EAAUC,CAAO,EACrE,MAAO,CACL,EAAGZ,EAAK,SAAWe,EAAe7B,EAClC,EAAGc,EAAK,SAAWe,EAAe5B,CACpC,CACF,CAUO,SAAS+B,GAAMC,EAAGC,EAAKC,EAAK,CACjC,OAAIF,EAAIC,EAAYA,EAChBD,EAAIE,EAAYA,EACbF,CACT,CAEO,SAASG,GAAgBC,EAAIC,EAAIC,EAAIC,EAAI,CAC9C,IAAMC,EAAKF,EAAKF,EACVK,EAAKF,EAAKF,EAChB,OAAOG,EAAKA,EAAKC,EAAKA,CACxB,CAEO,SAASC,GAAWV,EAA6BW,EAA6B,CACnF,MAAO,CAAE,EAAGX,EAAE,EAAIW,EAAE,EAAG,EAAGX,EAAE,EAAIW,EAAE,CAAE,CACtC,CCnLA,IAAIC,GACEC,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,wCAA6D,EAC/OC,GAAqB,EACrBC,GAAe,GACfC,GAAmB,IAAM,EAE/B,SAASC,GAASC,EAAgBC,EAAgBC,EAAUC,EAAQC,EAASC,EAAeC,EAAmB,EAAG,CAChH,IAAMC,EAAmBC,IAAW,CAClC,EAAGH,EAAc,IAAIG,EAAM,EAAGA,EAAM,EAAGR,CAAM,EAC7C,EAAGK,EAAc,IAAIG,EAAM,EAAGA,EAAM,EAAIH,EAAc,MAAM,GAAK,EAAKL,CAAM,CAC9E,GACMS,EAA2B,CAACD,EAAOE,EAAQC,KAAW,CAC1D,EAASC,GAAM,KAAK,MAAMJ,EAAM,EAAIX,EAAY,EAAG,EAAGa,EAAS,CAAC,EAChE,EAASE,GAAM,KAAK,MAAMJ,EAAM,EAAIX,EAAY,EAAG,EAAGc,EAAQ,CAAC,CACjE,GAEM,CAACD,EAAQC,CAAK,EAAIR,EAAO,MAEzBU,EAAwBJ,EAAyBR,EAAe,SAAUS,EAAQC,CAAK,EACvFG,EAAeP,EAAgBM,CAAqB,EAEtDE,EADyBC,GAAWf,EAAe,SAAUa,CAAY,EAE7E,QAASG,EAAI,EAAGA,EAAIX,EAAkBW,IAAK,CACzC,IAAMC,EAAwBT,EAAyBM,EAAgBL,EAAQC,CAAK,EAC9EQ,EAAoBC,GAAeF,EAAsB,EAAGA,EAAsB,EAAGhB,EAAUE,CAAO,EAC5GW,EAAuBC,GACrB,CAAE,EAAGE,EAAsB,EAAIrB,GAAc,EAAGqB,EAAsB,EAAIrB,EAAa,EACvF,CAAE,EAAGsB,EAAY,EAAG,EAAGA,EAAY,CAAE,CACvC,CACF,CACA,IAAME,EAAwBZ,EAAyBM,EAAgBL,EAAQC,CAAK,EAC9EW,EAAQnB,EAAO,IAAIkB,EAAsB,EAAGA,EAAsB,EAAGnB,CAAQ,EACnF,MAAO,CAAE,SAAUa,EAAgB,KAAYQ,GAAUrB,GAAW,MAAAoB,CAAM,CAC5E,CAEO,SAASE,GAAWC,EAAMtB,EAAQC,EAASsB,EAAkBC,EAAkB,CACpF,IAAMC,EAAeC,GAAU,IAAI,CAAC,CAACC,EAAgBC,CAAa,IAAO,CAAOC,GAAQF,GAAuBE,GAAQD,EAAc,CAAE,EACjIE,EAAWL,EAAO,IAAI,CAAC,CAAC,CAAEM,CAAY,IAAMA,CAAY,EACxDC,EAAWP,EAAO,IAAI,CAAC,CAACQ,CAAa,IAAMA,CAAa,EACxDC,EAAWlC,EAAO,MAAM,GACxBmC,EAAWL,EAAS,OACpBM,EAAY,IAAI,MAAMF,CAAQ,EAE9BG,EAAkBC,GAAehB,EAAK,KAAM5B,GAAcO,CAAO,EACvEmC,EAAUd,EAAK,KAAK,IAAM,CACxB,MAAOA,EAAK,MACZ,KAAYF,GAAUE,EAAK,KAAK,IAChC,SAAUe,CACZ,EAEA,QAASE,EAAOJ,EAAW,EAAGI,GAAQ,EAAG,EAAEA,EAAM,CAC/C,IAAMC,EAAWV,EAASS,GACpBxC,EAAWiC,EAASO,GACtBH,EAAUI,IAAa,CAACJ,EAAUrC,KACpCqC,EAAUrC,GAAYH,GAAS2C,EAAMH,EAAUI,GAAWzC,EAAUC,EAAQC,EAASuB,CAAgB,EAEzG,CAEA,QAASe,EAAO,EAAGA,EAAOJ,EAAU,EAAEI,EAAM,CAC1C,IAAMC,EAAWR,EAASO,GACpBxC,EAAW+B,EAASS,GACtBH,EAAUI,IAAa,CAACJ,EAAUrC,KACpCqC,EAAUrC,GAAYH,GAAS2C,EAAMH,EAAUI,GAAWzC,EAAUC,EAAQC,EAASsB,CAAgB,EAEzG,CACA,OAAOa,CACT,CAEA,SAASK,GAA4BC,EAAYvB,EAAewB,EAAkBC,EAAkB5C,EAAQ,CAC1G,GAAM,CAACO,EAAQC,CAAK,EAAsBR,EAAO,MAC7C6C,EAAe,GACbC,EAAS,KAAK,IAAIH,EAAWlD,GAAoB,CAAC,EAClDsD,EAAO,KAAK,IAAIJ,EAAWlD,GAAqB,EAAGc,CAAM,EAC/D,QAASyC,EAAWF,EAAQE,EAAWD,EAAM,EAAEC,EAAU,CACvD,IAAMC,EAAS,KAAK,IAAIL,EAAWnD,GAAoB,CAAC,EAClDyD,EAAO,KAAK,IAAIN,EAAWnD,GAAqB,EAAGe,CAAK,EAC9D,QAAS2C,EAAWF,EAAQE,EAAWD,EAAM,EAAEC,EAC7C,GAAInD,EAAO,IAAIgD,EAAUG,EAAUT,CAAU,EAAIvB,EAAO,CACtD0B,EAAe,GACf,KACF,CAEF,GAAI,CAACA,EAAc,KACrB,CACA,OAAOA,CACT,CAEO,SAASO,GAAwBC,EAAerD,EAAQ,CAC7D,GAAM,CAACO,EAAQC,EAAO8C,CAAY,EAAItD,EAAO,MACvCuD,EAAQ,IAAUC,GAAQjD,EAASC,EAAQ8C,EAAc,CAAC,CAAE,MAAAnC,CAAM,IAAMA,CAAK,EACnF,QAASwB,EAAW,EAAGA,EAAWpC,EAAQ,EAAEoC,EAC1C,QAASC,EAAW,EAAGA,EAAWpC,EAAO,EAAEoC,EACzC,QAASF,EAAa,EAAGA,EAAaY,EAAc,EAAEZ,EAAY,CAChE,IAAMvB,EAAQnB,EAAO,IAAI2C,EAAUC,EAAUF,CAAU,EAEnDvB,EAAQkC,GAERZ,GAA4BC,EAAYvB,EAAOwB,EAAUC,EAAU5C,CAAM,GAAGuD,EAAM,QAAQ,CAAE,MAAApC,EAAO,KAAM,CAAE,SAAAwB,EAAU,SAAAC,EAAU,GAAIF,CAAW,CAAE,CAAC,CACvJ,CAGJ,OAAOa,CACT,CAEA,SAASE,GAAaC,EAAO,CAAE,EAAAC,EAAG,EAAAC,CAAE,EAAGlB,EAAY,CACjD,OAAOgB,EAAM,KAAK,CAAC,CAAE,UAAAtB,CAAU,IAAM,CAxHvC,IAAAyB,EAyHI,IAAMC,GAAwBD,EAAAzB,EAAUM,KAAV,YAAAmB,EAAuB,SACrD,OAAKC,EACQC,GAAgBH,EAAGD,EAAGG,EAAsB,EAAGA,EAAsB,CAAC,GAAKnE,GADrD,EAErC,CAAC,CACH,CAEA,SAASqE,GAAiBC,EAAe7B,EAAW,CAKlD,OAJoCA,EAAU,OAAO,CAAC8B,EAAQ,CAAE,SAAAC,EAAU,MAAAhD,CAAM,EAAGuB,KAC5Ee,GAAaQ,EAAeE,EAAUzB,CAAU,IAAGwB,GAAU/C,GAC3D+C,GACN,CAAG,EAC+B9B,EAAU,MACjD,CAEO,SAASgC,GAAOnE,EAASD,EAAQuB,EAAkBC,EAAkB6C,EAAahB,EAAe,CACtG,IAAMK,EAAkD,CAAC,EACnDH,EAAQH,GAAwBC,EAAerD,CAAM,EAE3D,KAAO0D,EAAM,OAASW,GAAe,CAACd,EAAM,MAAM,GAAG,CAEnD,IAAMjC,EAAOiC,EAAM,QAAQ,EAGrBe,EAAwBhC,GAAehB,EAAK,KAAM5B,GAAcO,CAAO,EAE7E,GAAIwD,GAAaC,EAAOY,EAAiBhD,EAAK,KAAK,EAAE,EAAG,SAExD,IAAIc,EAAYf,GAAWC,EAAMtB,EAAQC,EAASsB,EAAkBC,CAAgB,EACpFY,EAAYA,EAAU,OAAQmC,GAAMA,EAAE,MAAQlB,CAAa,EAC3D,IAAMlC,EAAQ6C,GAAiBN,EAAOtB,CAAS,EACzCoC,EAAYC,GAAerC,CAAS,EACtCjB,EAAQkC,GAAeK,EAAM,KAAK,CAAE,UAAAtB,EAAW,IAAAoC,EAAK,MAAO,KAAK,MAAM,IAAMrD,CAAK,EAAI,GAAI,CAAC,CAChG,CACA,OAAOuC,CACT,CAEA,eAAsBgB,GAAQC,EAAeC,EAAuC,CAIlF,GAAI,EAACrF,IAAA,MAAAA,GAAQ,UAAa,MAAO,CAAC,EAClC,IAAMsF,EAAS,OAAK,IAAM,CACxB,GAAI,CAACtF,GAAM,OAAO,GAAG,MAAO,MAAO,CAAC,EACpC,IAAMuF,EAAa,QAAM,eAAeH,EAAO,CAACpF,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,CAAC,EAC7FwF,EAAgB,MAAO,MAAO,OAAKD,EAAS,SAAS,EAAG,KAAK,EAAG,CAAG,EAEnEE,EADoBzF,GAAM,QAAQwF,EAAYvF,EAAc,EACxC,IAAKoE,GAAS,UAAQA,EAAG,CAAC,CAAC,CAAC,CAAC,EACvD,OAAAoB,EAAU,GAAQ,UAAQA,EAAU,EAAE,EAC/BA,CACT,CAAC,EAEKC,EAAU,MAAM,QAAQ,IAAIJ,EAAI,IAAKK,GAAmBA,EAAO,OAAO,CAAC,CAAC,EAC9E,QAAWC,KAAKN,EAAQ,UAAQM,CAAC,EAEjC,IAAMC,EAAUhB,GAAOa,EAAQ,GAAIA,EAAQ,GAAIA,EAAQ,GAAIA,EAAQ,GAAIL,EAAO,KAAK,YAAaA,EAAO,KAAK,aAAa,EACzH,OAAKrF,GAAM,OAAO,GAAG,MACA8F,GAAWD,EAAS,CAACT,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,EAAG,CAACpF,GAAM,OAAO,GAAG,MAAM,GAAIA,GAAM,OAAO,GAAG,MAAM,EAAE,CAAC,EAD5F,CAAC,CAGtC,CAEA,eAAsB+F,GAAKV,EAAqC,CAC9D,MAAI,CAACrF,IAASgG,EAAI,QAAShG,GAAQ,MAAMiG,EAAUZ,EAAO,KAAK,SAAS,EAC/DA,EAAO,OAAOa,EAAI,gBAAiBlG,GAAM,QAAW,EACtDA,EACT,CCvKA,IAAImG,GACAC,GAAO,GAEX,eAAsBC,GAAKC,EAAqC,CAC9D,MAAI,CAACH,IAASI,EAAI,QAASJ,GAAQ,MAAMK,EAAUF,EAAO,aAAa,SAAS,EACvEA,EAAO,OAAOG,EAAI,gBAAiBN,GAAM,QAAW,EACtDA,EACT,CAEA,eAAsBO,GAAQC,EAAcC,EAA+BN,EACe,CA5B1F,IAAAO,EAAAC,EA6BE,GAAIV,GAAM,MAAO,CAAE,KAAM,CAAC,EAAG,OAAQ,KAAM,MAAO,IAAK,EACvDA,GAAO,GACFD,IAAO,MAAME,GAAKC,CAAM,EAC7B,IAAMS,EAAa,MAAYL,GAAQC,EAAOL,CAAM,EAC9CU,IAAQH,EAAAE,EAAW,SAAX,YAAAF,EAAmB,MAAM,KAAM,EACvCI,IAASH,EAAAC,EAAW,SAAX,YAAAD,EAAmB,MAAM,KAAM,EAC9C,GAAI,CAACC,EAAW,OAAQ,MAAO,CAAE,KAAM,CAAC,EAAG,OAAQ,KAAM,MAAO,IAAK,EACrE,IAAMG,EAA4B,CAAC,EAEnCA,EAAE,OAAY,QAAM,eAAeH,EAAW,OAAQ,CAACZ,GAAM,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,EAAGA,GAAM,OAAO,GAAG,MAAQA,GAAM,OAAO,GAAG,MAAM,GAAK,CAAC,EAAG,EAAK,EACtK,UAAQY,EAAW,MAAM,EAC5BG,EAAE,KAAU,MAAIA,EAAE,OAAQC,EAAU,KAAK,EACzCD,EAAE,IAAMf,GAAM,QAAQe,EAAE,IAAI,EAE5BA,EAAE,QAAa,UAAQA,EAAE,IAAK,CAAC,EAC3BA,EAAE,QAAQ,MAAM,KAAO,GACzBA,EAAE,QAAa,UAAQA,EAAE,OAAO,EAChC,CAACA,EAAE,GAAIA,EAAE,EAAE,EAAO,UAAQA,EAAE,QAAS,CAAC,EACtCA,EAAE,OAAY,aAAWA,EAAE,GAAI,CAAC,EAChCA,EAAE,IAAS,aAAWA,EAAE,OAAQ,CAAC,EACjCA,EAAE,KAAU,QAAM,cAAcA,EAAE,IAAK,CAAC,CAAC,EAAG,EAAG,GAAK,EAAG,CAAC,EAAG,CAAC,CAAC,EAAG,CAACF,EAAOC,CAAM,CAAC,EAI/EC,EAAE,KAAU,UAAQA,EAAE,KAAM,CAAC,GAE7BA,EAAE,KAAU,QAAM,eAAeA,EAAE,QAAS,CAACD,EAAQD,CAAK,CAAC,EAE7D,IAAMI,EAAO,MAAM,KAAK,MAAMF,EAAE,KAAK,KAAK,CAAC,EAE3C,GAAIX,EAAI,MAAQ,CAACA,EAAI,QAAW,OAAO,WAAc,YACnD,OAAID,EAAO,OAAOG,EAAI,wBAAwB,EAC9C,OAAO,KAAKS,CAAC,EAAE,QAASG,GAAc,UAAQH,EAAEG,EAAO,CAAC,EACjD,CAAE,KAAAD,EAAM,OAAQ,KAAM,MAAO,IAAK,EAG3C,IAAME,EAAoBC,GAAOP,EAAOC,CAAM,EACvC,WAAS,MAAS,UAAQ,SAASC,EAAE,KAAMI,CAAW,EAC7D,IAAME,EAAWF,EAAY,WAAW,IAAI,EACxChB,EAAO,aAAa,MAAQA,EAAO,aAAa,KAAO,IAAGkB,EAAS,OAAS,QAAQlB,EAAO,aAAa,WAC5G,IAAMmB,EAAYD,EAAS,aAAa,EAAG,EAAGR,EAAOC,CAAM,EAErDS,EAAwBH,GAAOP,EAAOC,CAAM,EAC5CU,EAAeD,EAAgB,WAAW,IAAI,EAChDX,EAAW,QAAQY,EAAa,UAAUZ,EAAW,OAAQ,EAAG,CAAC,EACrEY,EAAa,yBAA2B,SACpCrB,EAAO,aAAa,MAAQA,EAAO,aAAa,KAAO,IAAGqB,EAAa,OAAS,QAAQrB,EAAO,aAAa,WAChHqB,EAAa,UAAUL,EAAa,EAAG,CAAC,EACxCK,EAAa,yBAA2B,cACxCA,EAAa,OAAS,OACtB,IAAMC,EAAgBD,EAAa,aAAa,EAAG,EAAGX,EAAOC,CAAM,EACnE,QAASY,EAAI,EAAGA,EAAIb,EAAQC,EAAQY,IAAKD,EAAc,KAAK,EAAIC,EAAI,GAAKJ,EAAU,KAAK,EAAII,EAAI,GAChGF,EAAa,aAAaC,EAAe,EAAG,CAAC,EAE7C,IAAIE,EAAiC,KACrC,GAAIlB,GAAcc,EAAiB,CACjCI,EAAqBP,GAAOP,EAAOC,CAAM,EACzC,IAAMc,EAAU,MAAYrB,GAAQE,EAAYN,CAAM,EACnD,UAAQyB,EAAQ,MAAM,EACzB,IAAMC,EAAWF,EAAa,WAAW,IAAI,EAC7CE,EAAS,UAAUD,EAAQ,OAA6B,EAAG,EAAGD,EAAa,MAAOA,EAAa,MAAM,EACrGE,EAAS,UAAUN,EAAiB,EAAG,CAAC,CAC1C,CAEA,cAAO,KAAKR,CAAC,EAAE,QAASG,GAAc,UAAQH,EAAEG,EAAO,CAAC,EACxDjB,GAAO,GAEA,CAAE,KAAAgB,EAAM,OAAQM,EAAiB,MAAOJ,CAAY,CAC7D,C3C5DO,IAAMW,GAAN,KAAa,CAAb,cACLC,EAAA,iBAAqD,MACrDA,EAAA,YAAgD,MAChDA,EAAA,uBAA2D,MAC3DA,EAAA,iBAAqD,MACrDA,EAAA,iBAAqD,MACrDA,EAAA,qBAAyD,MACzDA,EAAA,qBAAyD,MACzDA,EAAA,mBAAuD,MACvDA,EAAA,eAAmD,MACnDA,EAAA,kBAAsD,MACtDA,EAAA,gBAAoD,MACpDA,EAAA,gBAAoD,MACpDA,EAAA,eAAmD,MACnDA,EAAA,oBAAwD,MACxDA,EAAA,gBAAoD,MACpDA,EAAA,oBAAwD,MACxDA,EAAA,iBAAqD,MACrDA,EAAA,gBAAoD,MACpDA,EAAA,eAAmD,MACnDA,EAAA,eAAmD,MACnDA,EAAA,eAAmD,MACnDA,EAAA,oBAAwD,MACxDA,EAAA,iBAAqD,MACvD,EAcaC,GAAiBC,GAAgC,CAC5D,IAAIC,EAAwB,EACxBC,EAAmB,EACnBC,EAAmB,EACvB,QAAWC,KAAK,OAAO,OAAOC,EAAU,EACtCJ,GAAyBG,EAAE,iBAC3BF,GAAoBE,EAAE,kBACtBD,GAAoBC,EAAE,YAExB,IAAME,EAAmBH,EAAmB,EAAID,EAAmBC,EAAmB,EACtF,MAAO,CACL,gBAAiB,OAAO,OAAOE,EAAU,EAAE,OAC3C,iBAAkB,OAClB,iBAAkB,OAAO,KAAKL,EAAS,MAAM,EAAE,OAC/C,iBAAAM,EACA,sBAAAL,EACA,iBAAAC,EACA,iBAAAC,EACA,iBAAkB,OAClB,WAAY,OAAO,OAAOE,EAAU,CACtC,CACF,EAEO,SAASE,GAAMP,EAAuB,CAE3C,QAAWQ,KAAS,OAAO,KAAKR,EAAS,MAAM,EAAGA,EAAS,OAAOQ,GAAyB,IAC7F,CAGA,eAAsBC,GAAKT,EAAgC,CAxG3D,IAAAU,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAyGMC,EAAI,SAAS7B,GAAMP,CAAQ,EAC3BA,EAAS,OAAO,KAAK,UACnB,CAACA,EAAS,OAAO,YAAYW,GAAAD,EAAAV,EAAS,OAAO,KAAK,WAArB,YAAAU,EAA+B,YAA/B,YAAAC,EAA0C,SAAS,iBAClF,CAACX,EAAS,OAAO,SAAUA,EAAS,OAAO,YAAY,EAAI,MAAeS,GAAKT,EAAS,MAAM,GAE5F,CAACA,EAAS,OAAO,cAAgBA,EAAS,OAAO,KAAK,aAAaa,GAAAD,EAAAZ,EAAS,OAAO,KAAK,WAArB,YAAAY,EAA+B,YAA/B,YAAAC,EAA0C,SAAS,iBACxH,CAACb,EAAS,OAAO,SAAUA,EAAS,OAAO,YAAY,EAAI,MAAeS,GAAKT,EAAS,MAAM,IAG9FA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,aAAac,EAAAd,EAAS,OAAO,KAAK,YAArB,YAAAc,EAAgC,SAAS,gBAAcd,EAAS,OAAO,UAAsBqC,GAASrC,EAAS,MAAM,GACnLA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,iBAAmBA,EAAS,OAAO,KAAK,UAAeA,EAAS,OAAO,KAAK,SAAY,YAAWA,EAAS,OAAO,gBAA4BsC,GAAWtC,EAAS,MAAM,GAC1NA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,iBAAiBe,EAAAf,EAAS,OAAO,KAAK,YAArB,YAAAe,EAAgC,SAAS,oBAAkBf,EAAS,OAAO,cAA8BS,GAAKT,EAAS,MAAM,GAC/LA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,WAAWgB,EAAAhB,EAAS,OAAO,KAAK,YAArB,YAAAgB,EAAgC,SAAS,cAAYhB,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GACvKA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,WAAWiB,EAAAjB,EAAS,OAAO,KAAK,YAArB,YAAAiB,EAAgC,SAAS,cAAYjB,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GACvKA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,aAAYA,EAAS,OAAO,WAAuBS,GAAKT,EAAS,MAAM,GACxHA,EAAS,OAAO,KAAK,WAAWkB,EAAAlB,EAAS,OAAO,KAAK,YAArB,YAAAkB,EAAgC,UAAW,CAAClB,EAAS,OAAO,YAAWA,EAAS,OAAO,UAAsBS,GAAKT,EAAS,MAAM,GACjKA,EAAS,OAAO,KAAK,WAAWmB,EAAAnB,EAAS,OAAO,KAAK,WAArB,YAAAmB,EAA+B,UAAW,CAACnB,EAAS,OAAO,WAAUA,EAAS,OAAO,SAAoBS,GAAKT,EAAS,MAAM,GAC7JA,EAAS,OAAO,KAAK,WAAWoB,EAAApB,EAAS,OAAO,KAAK,cAArB,YAAAoB,EAAkC,UAAW,CAACpB,EAAS,OAAO,UAASA,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GAC7JA,EAAS,OAAO,KAAK,WAAWqB,EAAArB,EAAS,OAAO,KAAK,UAArB,YAAAqB,EAA8B,UAAW,CAACrB,EAAS,OAAO,UAASA,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GACzJA,EAAS,OAAO,KAAK,WAAWsB,EAAAtB,EAAS,OAAO,KAAK,OAArB,YAAAsB,EAA2B,UAAW,GAACC,EAAAvB,EAAS,OAAO,KAAK,YAArB,MAAAuB,EAAgC,UAAW,CAACvB,EAAS,OAAO,WAAUA,EAAS,OAAO,SAAgBS,GAAKT,EAAS,MAAM,GACjMA,EAAS,OAAO,KAAK,WAAWwB,EAAAxB,EAAS,OAAO,KAAK,OAArB,YAAAwB,EAA2B,UAAY,CAACxB,EAAS,OAAO,WAAWA,EAAS,OAAO,SAAoBS,GAAKT,EAAS,MAAM,GAC3JA,EAAS,OAAO,KAAK,WAAWyB,EAAAzB,EAAS,OAAO,KAAK,OAArB,YAAAyB,EAA8B,UAAW,CAACzB,EAAS,OAAO,OAAMA,EAAS,OAAO,KAAYS,GAAKT,EAAS,MAAM,GAChJA,EAAS,OAAO,KAAK,WAAW0B,EAAA1B,EAAS,OAAO,KAAK,SAArB,YAAA0B,EAAgC,UAAW,CAAC1B,EAAS,OAAO,YAAWA,EAAS,OAAO,UAAsBS,GAAKT,EAAS,MAAM,GACjKA,EAAS,OAAO,KAAK,WAAW2B,EAAA3B,EAAS,OAAO,KAAK,SAArB,YAAA2B,EAAgC,UAAW,CAAC3B,EAAS,OAAO,eAAcA,EAAS,OAAO,aAA4BS,GAAKT,EAAS,MAAM,GAC1KA,EAAS,OAAO,KAAK,WAAW4B,EAAA5B,EAAS,OAAO,KAAK,gBAArB,YAAA4B,EAAuC,UAAW,CAAC5B,EAAS,OAAO,gBAAeA,EAAS,OAAO,cAA8BS,GAAKT,EAAS,MAAM,GACpLA,EAAS,OAAO,KAAK,WAAW6B,EAAA7B,EAAS,OAAO,KAAK,cAArB,YAAA6B,EAAqC,UAAW,CAAC7B,EAAS,OAAO,cAAaA,EAAS,OAAO,YAA0BS,GAAKT,EAAS,MAAM,GAC5KA,EAAS,OAAO,KAAK,SAAW,CAACA,EAAS,OAAO,aAAa+B,GAAAD,EAAA9B,EAAS,OAAO,KAAK,WAArB,YAAA8B,EAA+B,YAA/B,YAAAC,EAA0C,SAAS,gBAAc/B,EAAS,OAAO,UAAsBsC,GAAWtC,EAAS,MAAM,GAC/LA,EAAS,OAAO,KAAK,SAAWA,EAAS,OAAO,KAAK,WAAa,CAACA,EAAS,OAAO,gBAAgBiC,GAAAD,EAAAhC,EAAS,OAAO,KAAK,WAArB,YAAAgC,EAA+B,YAA/B,YAAAC,EAA0C,SAAS,gBAAcjC,EAAS,OAAO,aAAyBuC,GAAavC,EAAS,MAAM,GACzOA,EAAS,OAAO,OAAO,SAAW,CAACA,EAAS,OAAO,aAAakC,EAAAlC,EAAS,OAAO,OAAO,YAAvB,YAAAkC,EAAkC,SAAS,gBAAclC,EAAS,OAAO,UAAsBS,GAAKT,EAAS,MAAM,GACnLA,EAAS,OAAO,OAAO,SAAW,CAACA,EAAS,OAAO,WAAWmC,EAAAnC,EAAS,OAAO,OAAO,YAAvB,YAAAmC,EAAkC,SAAS,cAAYnC,EAAS,OAAO,QAAkBS,GAAKT,EAAS,MAAM,GAC3KA,EAAS,OAAO,aAAa,SAAW,CAACA,EAAS,OAAO,eAAcA,EAAS,OAAO,aAA4BS,GAAKT,EAAS,MAAM,GAG3I,cAAiBQ,KAAS,OAAO,KAAKR,EAAS,MAAM,EAC/CA,EAAS,OAAOQ,IAA0B,OAAOR,EAAS,OAAOQ,IAA2B,cAC9FR,EAAS,OAAOQ,GAAyB,MAAMR,EAAS,OAAOQ,GAGrE,CAEA,IAAIR,GAGG,SAASwC,GAAcC,EAA2BjC,EAA0BkC,EAAgC,CApJnH,IAAAhC,EAwJE,GAHI+B,IAAazC,GAAWyC,GACxB,CAACjC,IACAR,IAAU2C,EAAI,wBAAwB,EACvC,CAAC3C,GAAS,OAAO,gBAAgB,OAAO,KAC5C,IAAM4C,EAAY,CAAC,QAAS,cAAe,OAAQ,MAAO,UAAW,MAAO,MAAO,MAAO,KAAK,EACzFC,EAAY,CAAC,UAAW,mBAAoB,QAAQ,EACpDC,EAAgB,CAAC,EACjBC,EAAoB,CAAC,EAErBC,EAAMxC,EAAM,SACZyC,EAAWzC,EAAM,SACvB,IAAIE,EAAAuC,GAAA,YAAAA,EAAU,QAAV,MAAAvC,EAAiB,MACnB,QAAWwC,KAAU,OAAO,OAAOD,EAAS,MAAM,KAAK,EAAG,CACxD,IAAME,EAAMD,EAAc,GAAG,YAAY,EACpCJ,EAAI,SAASK,CAAE,GAAGL,EAAI,KAAKK,CAAE,CACpC,KAEI,CAACF,GAAYjD,GAAS,OAAO,OAC/B2C,EAAI,mBAAoBD,CAAI,EAGhC,QAAWS,KAAML,EACX,CAACF,EAAU,SAASO,CAAE,GACrB,CAACN,EAAU,SAASM,CAAE,GACtB,CAACnD,GAAS,IAAI,QAAQ,SAASmD,CAAE,GACjC,CAACnD,GAAS,IAAI,QAAQ,SAASmD,EAAG,QAAQ,IAAK,EAAE,CAAC,GAClD,CAACnD,GAAS,IAAI,QAAQ,SAASmD,EAAG,QAAQ,SAAU,EAAE,CAAC,GACvD,CAACnD,GAAS,IAAI,QAAQ,SAASmD,EAAG,QAAQ,KAAM,EAAE,CAAC,GACtDJ,EAAQ,KAAKI,CAAE,EAGnB,OAAInD,GAAS,OAAO,OAAS+C,EAAQ,OAAS,GAAGJ,EAAI,2BAA4BD,EAAMK,CAAO,EACvFA,EAAQ,OAAS,EAAI,CAAE,KAAAL,EAAM,QAAAK,EAAS,IAAAD,EAAK,IAAAE,CAAI,EAAI,IAC5D,CAEO,SAASI,GAASX,EAA2D,CAClFzC,GAAWyC,EACX,IAAMM,EAAuB,CAAC,EAC9B,QAAWM,KAAW,OAAO,KAAKrD,GAAS,MAAM,EAAG,CAClD,IAAMQ,EAA2BR,GAAS,OAAOqD,GACjD,GAAI,CAAC7C,EAAO,SACZ,IAAM8C,EAAMd,GAAcxC,GAAUQ,EAAO6C,CAAO,EAC9CC,GAAKP,EAAQ,KAAKO,CAAG,CAC3B,CACA,OAAOP,CACT,C4C3LA,IAAMQ,GAAU,CACd,YAAa,GACb,eAAgB,GAChB,QAAS,GACT,MAAO,GACP,cAAe,EACjB,EAUaC,GAAwC,CAAC,EAEtD,eAAeC,GAAYC,EAAaC,EAA8C,CACpF,OAAIJ,GAAQ,OAAOK,EAAI,oBAAqBF,EAAKC,CAAI,EAC9C,MAAMD,EAAKC,CAAI,CACxB,CAEO,SAASE,GAAoBC,EAAgB,CAClDP,GAAQ,YAAcO,EAAO,YAC7BP,GAAQ,QAAUO,EAAO,MACzBP,GAAQ,cAAgBO,EAAO,aACjC,CAEA,eAAsBC,EAAUC,EAAoD,CApCpF,IAAAC,EAAAC,EAAAC,EAqCE,IAAIC,EAAWC,GAAKd,GAAQ,cAAeS,GAAa,EAAE,EACrDI,EAAS,YAAY,EAAE,SAAS,OAAO,IAAGA,GAAY,SAC3D,IAAME,EAAoBF,EAAS,SAAS,GAAG,EAAIA,EAAS,MAAM,GAAG,EAAIA,EAAS,MAAM,IAAI,EACtFG,EAAiBD,EAAkBA,EAAkB,OAAS,GAAG,QAAQ,QAAS,EAAE,EACpFE,EAAkB,eAAiBD,EACzCf,GAAWe,GAAkB,CAC3B,KAAMA,EACN,iBAAkB,EAClB,kBAAmB,EACnB,YAAaE,GAAWF,GACxB,QAAS,EACX,EACAhB,GAAQ,eAAkB,OAAO,QAAW,aAAiB,OAAO,OAAO,cAAiB,aAAiB,OAAO,OAAO,WAAc,YACzI,IAAImB,EAAe,CAAC,EACpB,GAAI,CACFA,EAAgBnB,GAAQ,gBAAkBA,GAAQ,YAAe,MAAS,KAAG,WAAW,EAAI,CAAC,CAC/F,OAAQoB,EAAN,CACApB,GAAQ,eAAiB,EAC3B,CACAC,GAAWe,GAAgB,QAAWhB,GAAQ,gBAAkBA,GAAQ,aAAgB,OAAO,KAAKmB,CAAY,EAAE,SAASF,CAAe,EAC1I,IAAMI,EAAgB,OAAO,OAAU,YAAc,CAAC,EAAI,CAAE,UAAW,CAAClB,EAAaC,IAAuBF,GAAYC,EAAKC,CAAI,CAAE,EAC7HkB,EAAoB,IAAOC,GAAWtB,GAAWe,GAAgB,QAAUC,EAAkBJ,EAAUQ,CAAa,EACtHG,EAAS,GACb,GAAI,CAEFF,EAAM,cAAc,EAChBtB,GAAQ,OAAOK,EAAI,sBAAuBiB,EAAM,OAAU,EAE9D,IAAMG,EAAY,MAAMH,EAAM,QAAQ,KAAK,EAC3CrB,GAAWe,GAAgB,mBAAmBN,EAAAe,GAAA,YAAAA,EAAW,aAAX,YAAAf,EAAuB,aAAc,EACnFY,EAAM,SAASG,CAAS,EAExBxB,GAAWe,GAAgB,oBAAoBJ,GAAAD,EAAAW,EAAM,YAAN,YAAAX,EAAiB,aAAjB,YAAAC,EAA6B,aAAc,EACtFZ,GAAQ,SAASK,EAAI,cAAeiB,EAAM,SAAa,CAAE,MAAOrB,GAAWe,GAAgB,iBAAkB,EAAGhB,EAAO,EAC3HwB,EAAS,EACX,OAASE,EAAP,CACArB,EAAI,uBAAwBQ,EAAUa,CAAG,CAC3C,CACA,GAAIF,GAAUxB,GAAQ,aAAeA,GAAQ,gBAAkB,CAACC,GAAWe,GAAgB,QACzF,GAAI,CACF,IAAMW,EAAa,MAAML,EAAM,KAAKL,CAAe,EACnDZ,EAAI,eAAgBY,EAAiBU,CAAU,CACjD,OAASD,EAAP,CACArB,EAAI,sBAAuBQ,EAAUa,CAAG,CAC1C,CAEF,OAAAE,GAAc,KAAMN,EAAO,GAAGb,GAAa,IAAI,EACxCa,CACT,gBCrFA,IAAAO,GAAA,GAAAC,GAAAD,GAAA,SAAAE,GAAA,SAAAC,GAAA,WAAAC,GAAA,SAAAC,GAAA,YAAAC,GAAA,SAAAC,GAAA,WAAAC,GAAA,YAAAC,GAAA,WAAAC,KCKO,IAAMC,GAAoBC,GAAqB,CACpD,GAAI,CAACA,EAAOC,EAAI,4BAA4B,UACnC,CAACD,EAAM,WAAYC,EAAI,wCAAwC,MACnE,CACH,IAAMC,EAAMF,EAAM,WAAW,IAAI,EACjC,GAAI,CAACE,EAAKD,EAAI,uCAAuC,MAChD,QAAOC,CACd,CACA,OAAO,IACT,EAEaC,GAAWC,GAAkB,KAAK,MAAOA,EAAQ,IAAO,KAAK,EAAE,EAE/DC,GAAa,CAACC,EAAuBC,IAA6B,CAC7E,GAAI,CAACA,EAAI,UAAY,OAAOD,GAAM,YAAa,OAAOC,EAAI,MAC1D,IAAMC,EAAM,kBAAkB,KAAK,CAAC,IAAO,EAAIF,EAAI,IAAO,EAAIA,EAAI,GAAG,CAAC,EACtE,MAAO,QAAQE,EAAI,OAAOA,EAAI,OAAOA,EAAI,OAAOD,EAAI,QACtD,EAEO,SAASE,GAAMP,EAAmEQ,EAAWC,EAAWL,EAAuBM,EAA2B,CAC/JV,EAAI,UAAYG,GAAWC,EAAGM,CAAY,EAC1CV,EAAI,UAAU,EACdA,EAAI,IAAIQ,EAAGC,EAAGC,EAAa,UAAW,EAAG,EAAI,KAAK,EAAE,EACpDV,EAAI,KAAK,CACX,CAEO,SAASW,GAAKX,EAAmEQ,EAAWC,EAAWG,EAAeC,EAAgBH,EAA2B,CAGtK,GAFAV,EAAI,UAAU,EACdA,EAAI,UAAYU,EAAa,UACzBA,EAAa,UAAW,CAC1B,IAAMI,GAAMN,EAAIA,EAAII,GAAS,EACvBG,GAAMN,EAAIA,EAAII,GAAU,EAC9Bb,EAAI,QAAQc,EAAIC,EAAIH,EAAQ,EAAGC,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,EAAE,CAC9D,MACEb,EAAI,OAAOQ,EAAIE,EAAa,UAAWD,CAAC,EACxCT,EAAI,OAAOQ,EAAII,EAAQF,EAAa,UAAWD,CAAC,EAChDT,EAAI,iBAAiBQ,EAAII,EAAOH,EAAGD,EAAII,EAAOH,EAAIC,EAAa,SAAS,EACxEV,EAAI,OAAOQ,EAAII,EAAOH,EAAII,EAASH,EAAa,SAAS,EACzDV,EAAI,iBAAiBQ,EAAII,EAAOH,EAAII,EAAQL,EAAII,EAAQF,EAAa,UAAWD,EAAII,CAAM,EAC1Fb,EAAI,OAAOQ,EAAIE,EAAa,UAAWD,EAAII,CAAM,EACjDb,EAAI,iBAAiBQ,EAAGC,EAAII,EAAQL,EAAGC,EAAII,EAASH,EAAa,SAAS,EAC1EV,EAAI,OAAOQ,EAAGC,EAAIC,EAAa,SAAS,EACxCV,EAAI,iBAAiBQ,EAAGC,EAAGD,EAAIE,EAAa,UAAWD,CAAC,EACxDT,EAAI,UAAU,EAEhBA,EAAI,OAAO,CACb,CAEO,SAASgB,GAAMhB,EAAmEiB,EAAiBP,EAA2B,CACnI,GAAI,EAAAO,EAAO,OAAS,GACpB,CAAAjB,EAAI,UAAU,EACdA,EAAI,OAAOiB,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EACrC,QAAWC,KAAMD,EACfjB,EAAI,YAAcG,GAAWe,EAAG,IAAM,EAAGR,CAAY,EACrDV,EAAI,OAAO,KAAK,MAAMkB,EAAG,EAAE,EAAG,KAAK,MAAMA,EAAG,EAAE,CAAC,EAEjDlB,EAAI,OAAO,EACPU,EAAa,eACfV,EAAI,UAAU,EACdA,EAAI,KAAK,GAEb,CAEO,SAASmB,GAAOnB,EAAmEiB,EAAiBP,EAA2B,CACpI,GAAI,EAAAO,EAAO,OAAS,GAEpB,IADAjB,EAAI,UAAYU,EAAa,UACzB,CAACA,EAAa,WAAaO,EAAO,QAAU,EAAG,CACjDD,GAAMhB,EAAKiB,EAAQP,CAAY,EAC/B,MACF,CACAV,EAAI,OAAOiB,EAAO,GAAG,GAAIA,EAAO,GAAG,EAAE,EACrC,QAASG,EAAI,EAAGA,EAAIH,EAAO,OAAS,EAAGG,IAAK,CAC1C,IAAMC,GAAMJ,EAAOG,GAAG,GAAKH,EAAOG,EAAI,GAAG,IAAM,EACzCE,GAAML,EAAOG,GAAG,GAAKH,EAAOG,EAAI,GAAG,IAAM,EAC/CpB,EAAI,iBAAiBiB,EAAOG,GAAG,GAAIH,EAAOG,GAAG,GAAIC,EAAIC,CAAE,CACzD,CACAtB,EAAI,iBAAiBiB,EAAOA,EAAO,OAAS,GAAG,GAAIA,EAAOA,EAAO,OAAS,GAAG,GAAIA,EAAOA,EAAO,OAAS,GAAG,GAAIA,EAAOA,EAAO,OAAS,GAAG,EAAE,EAC3IjB,EAAI,OAAO,EACPU,EAAa,eACfV,EAAI,UAAU,EACdA,EAAI,KAAK,GAEb,CAEO,SAASuB,GAAMvB,EAAmEwB,EAAaC,EAAWC,EAAS,EAAG,CAC3H,IAAIC,EACAnB,EACAC,EACJT,EAAI,UAAU,EACdA,EAAI,OAAOwB,EAAK,GAAIA,EAAK,EAAE,EAC3BxB,EAAI,OAAOyB,EAAG,GAAIA,EAAG,EAAE,EACvBE,EAAQ,KAAK,MAAMF,EAAG,GAAKD,EAAK,GAAIC,EAAG,GAAKD,EAAK,EAAE,EACnDhB,EAAIkB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClChB,EAAIiB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClCzB,EAAI,OAAOQ,EAAGC,CAAC,EACfkB,GAAU,EAAM,GAAQ,EAAI,KAAK,IACjCnB,EAAIkB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClChB,EAAIiB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClCzB,EAAI,OAAOQ,EAAGC,CAAC,EACfkB,GAAU,EAAM,GAAQ,EAAI,KAAK,IACjCnB,EAAIkB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClChB,EAAIiB,EAAS,KAAK,IAAIC,CAAK,EAAIF,EAAG,GAClCzB,EAAI,OAAOQ,EAAGC,CAAC,EACfT,EAAI,UAAU,EACdA,EAAI,OAAO,EACXA,EAAI,KAAK,CACX,CClEO,IAAM4B,GAAuB,CAClC,MAAO,2BACP,WAAY,yBACZ,YAAa,QACb,MAAO,GACP,KAAM,6BACN,WAAY,GACZ,UAAW,EACX,UAAW,EACX,UAAW,EACX,WAAY,GACZ,WAAY,GACZ,UAAW,GACX,cAAe,GACf,aAAc,GACd,aAAc,GACd,SAAU,GACV,aAAc,GACd,SAAU,GACV,UAAW,EACb,ECzDA,IAAIC,EAEJ,SAASC,GAAWC,EAAeC,EAAmE,CAVtG,IAAAC,EAAAC,EAWE,GAAIL,EAAI,WAAY,CAElB,IAAMM,EAAkB,CAAC,EAOzB,GANAA,EAAO,KAAK,SAAS,KAAK,MAAM,IAAMJ,EAAE,KAAK,IAAI,EAC7CA,EAAE,aAAaI,EAAO,KAAK,GAAGJ,EAAE,QAAU,MAAM,KAAK,MAAM,IAAMA,EAAE,WAAW,IAAI,EAClFA,EAAE,KAAKI,EAAO,KAAK,QAAQJ,EAAE,KAAO,IAAI,EACxCA,EAAE,MAAMI,EAAO,KAAK,aAAaJ,EAAE,MAAM,EACzCA,EAAE,MAAMI,EAAO,KAAK,SAAS,KAAK,MAAM,IAAMJ,EAAE,IAAI,IAAI,EACxDA,EAAE,MAAMI,EAAO,KAAK,SAAS,KAAK,MAAM,IAAMJ,EAAE,IAAI,IAAI,EACxDA,EAAE,SAAWA,EAAE,QAAQ,OAAS,EAAG,CACrC,IAAMK,EAAUL,EAAE,QAAQ,IAAK,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,KAAK,MAAM,EAAE,SAAS,EAC7EK,EAAQ,OAAS,IAAGA,EAAQ,OAAS,GACzCD,EAAO,KAAKC,EAAQ,KAAK,GAAG,CAAC,CAC/B,GACIH,EAAAF,EAAE,WAAF,YAAAE,EAAY,UAASC,EAAAH,EAAE,WAAF,YAAAG,EAAY,QAC/BH,EAAE,SAAS,MAAM,MAAMI,EAAO,KAAK,SAASE,GAAQN,EAAE,SAAS,MAAM,IAAI,aAAUM,GAAQN,EAAE,SAAS,MAAM,GAAG,eAAYM,GAAQN,EAAE,SAAS,MAAM,KAAK,OAAI,EAC7JA,EAAE,SAAS,KAAK,SAASI,EAAO,KAAK,SAASE,GAAQN,EAAE,SAAS,KAAK,OAAO,OAAI,GAEnFI,EAAO,SAAW,GAAGA,EAAO,KAAK,MAAM,EAC3CH,EAAI,UAAYH,EAAI,MACpB,QAASS,EAAIH,EAAO,OAAS,EAAGG,GAAK,EAAGA,IAAK,CAC3C,IAAMC,EAAI,KAAK,IAAIR,EAAE,IAAI,GAAI,CAAC,EACxBS,EAAIF,EAAIT,EAAI,WAAaE,EAAE,IAAI,GACjCF,EAAI,aAAeA,EAAI,cAAgB,KACzCG,EAAI,UAAYH,EAAI,YACpBG,EAAI,SAASG,EAAOG,GAAIC,EAAI,EAAGC,EAAI,EAAE,GAEvCR,EAAI,UAAYH,EAAI,WACpBG,EAAI,SAASG,EAAOG,GAAIC,EAAI,EAAGC,EAAI,EAAE,CACvC,CACF,CACF,CAEA,SAASC,GAAeV,EAAeC,EAAmE,CA5C1G,IAAAC,EAAAC,EAAAQ,EAAAC,EA8CE,KAAIV,EAAAF,EAAE,cAAF,YAAAE,EAAe,gBAAeC,EAAAH,EAAE,cAAF,YAAAG,EAAe,YAAY,IAAI,CAC/DF,EAAI,YAAcH,EAAI,SAAW,2BAA6BA,EAAI,MAClEG,EAAI,UAAU,EACd,IAAMY,EAAQ,KAAK,IAAIb,EAAE,YAAY,YAAY,GAAG,GAAKA,EAAE,YAAY,YAAY,GAAG,EAAE,EAAI,EACtFc,EAAQ,KAAK,IAAId,EAAE,YAAY,YAAY,GAAG,GAAKA,EAAE,YAAY,YAAY,GAAG,EAAE,EAAI,EAC5FC,EAAI,QAAQD,EAAE,YAAY,YAAY,GAAG,GAAIA,EAAE,YAAY,YAAY,GAAG,GAAIa,EAAOC,EAAO,EAAG,EAAG,EAAI,KAAK,EAAE,EAC7Gb,EAAI,OAAO,EACPH,EAAI,eACNG,EAAI,UAAYH,EAAI,SAAW,2BAA6BA,EAAI,MAChEG,EAAI,KAAK,EAEb,CACA,KAAIU,EAAAX,EAAE,cAAF,YAAAW,EAAe,iBAAgBC,EAAAZ,EAAE,cAAF,YAAAY,EAAe,aAAa,IAAI,CACjEX,EAAI,YAAcH,EAAI,SAAW,2BAA6BA,EAAI,MAClEG,EAAI,UAAU,EACd,IAAMY,EAAQ,KAAK,IAAIb,EAAE,YAAY,aAAa,GAAG,GAAKA,EAAE,YAAY,aAAa,GAAG,EAAE,EAAI,EACxFc,EAAQ,KAAK,IAAId,EAAE,YAAY,aAAa,GAAG,GAAKA,EAAE,YAAY,aAAa,GAAG,EAAE,EAAI,EAC9FC,EAAI,QAAQD,EAAE,YAAY,aAAa,GAAG,GAAIA,EAAE,YAAY,aAAa,GAAG,GAAIa,EAAOC,EAAO,EAAG,EAAG,EAAI,KAAK,EAAE,EAC/Gb,EAAI,OAAO,EACPH,EAAI,eACNG,EAAI,UAAYH,EAAI,SAAW,2BAA6BA,EAAI,MAChEG,EAAI,KAAK,EAEb,CACF,CAEA,SAASc,GAAgBf,EAAeC,EAAmE,CAxE3G,IAAAC,EAyEE,GAAIJ,EAAI,YAAYI,EAAAF,EAAE,WAAF,YAAAE,EAAY,QAAS,OAAO,QAAW,YAAa,CACtED,EAAI,YAAc,OAClB,IAAMe,EAAQhB,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK,EAAMA,EAAE,IAAI,GAAKM,GAAQN,EAAE,SAAS,MAAM,GAAG,EAAI,GAC/EiB,EAAQjB,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK,EAAMA,EAAE,IAAI,GAAKM,GAAQN,EAAE,SAAS,MAAM,KAAK,EAAI,GACjFkB,EAAQ,IAAI,OAAO;AAAA,UACnBlB,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK,KAAKA,EAAE,IAAI;AAAA;AAAA,UAEjCgB,KAAQhB,EAAE,IAAI;AAAA,UACdgB,KAAQhB,EAAE,IAAI,GAAKA,EAAE,IAAI;AAAA,UACzBA,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK,KAAKA,EAAE,IAAI,GAAKA,EAAE,IAAI;AAAA,KACjD,EACKmB,EAAQ,IAAI,OAAO;AAAA,UACnBnB,EAAE,IAAI,MAAMA,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK;AAAA;AAAA,UAElCA,EAAE,IAAI,MAAMiB;AAAA,UACZjB,EAAE,IAAI,GAAKA,EAAE,IAAI,MAAMiB;AAAA,UACvBjB,EAAE,IAAI,GAAKA,EAAE,IAAI,MAAMA,EAAE,IAAI,GAAKA,EAAE,IAAI,GAAK;AAAA,KAClD,EACDC,EAAI,OAAOkB,CAAK,EAChBlB,EAAI,OAAOiB,CAAK,CAClB,CACF,CAEA,SAASE,GAAepB,EAAeC,EAAmE,CAhG1G,IAAAC,EAiGE,GAAIJ,EAAI,YAAYI,EAAAF,EAAE,WAAF,YAAAE,EAAY,KAAK,WAAYF,EAAE,SAAS,KAAK,SAAWA,EAAE,YAAY,aAAeA,EAAE,YAAY,cAAgBA,EAAE,YAAY,YAAY,IAAMA,EAAE,YAAY,aAAa,GAAI,CACpMC,EAAI,YAAc,OAClBA,EAAI,UAAY,OAChB,IAAMoB,EAAW,CACfrB,EAAE,YAAY,YAAY,GAAG,GAAM,KAAK,IAAIA,EAAE,SAAS,KAAK,OAAO,EAAIA,EAAE,SAAS,KAAK,SAAWA,EAAE,IAAI,GACxGA,EAAE,YAAY,YAAY,GAAG,GAAM,KAAK,IAAIA,EAAE,SAAS,KAAK,OAAO,EAAIA,EAAE,SAAS,KAAK,SAAWA,EAAE,IAAI,EAC1G,EACAsB,GAAMrB,EAAK,CAACD,EAAE,YAAY,YAAY,GAAG,GAAIA,EAAE,YAAY,YAAY,GAAG,EAAE,EAAG,CAACqB,EAAS,GAAIA,EAAS,EAAE,EAAG,CAAC,EAC5G,IAAME,EAAY,CAChBvB,EAAE,YAAY,aAAa,GAAG,GAAM,KAAK,IAAIA,EAAE,SAAS,KAAK,OAAO,EAAIA,EAAE,SAAS,KAAK,SAAWA,EAAE,IAAI,GACzGA,EAAE,YAAY,aAAa,GAAG,GAAM,KAAK,IAAIA,EAAE,SAAS,KAAK,OAAO,EAAIA,EAAE,SAAS,KAAK,SAAWA,EAAE,IAAI,EAC3G,EACAsB,GAAMrB,EAAK,CAACD,EAAE,YAAY,aAAa,GAAG,GAAIA,EAAE,YAAY,aAAa,GAAG,EAAE,EAAG,CAACuB,EAAU,GAAIA,EAAU,EAAE,EAAG,CAAC,CAClH,CACF,CAEA,SAASC,GAAiBxB,EAAeC,EAAmE,CAC1G,GAAIH,EAAI,cAAgBE,EAAE,KAAK,QAAU,IAAK,CAC5CC,EAAI,UAAY,EAChB,QAASM,EAAI,EAAGA,EAAIkB,GAAc,OAAS,EAAGlB,IAAK,CACjD,IAAMmB,EAAS,CAACD,GAAclB,EAAI,EAAI,GAAIkB,GAAclB,EAAI,EAAI,GAAIkB,GAAclB,EAAI,EAAI,EAAE,EAAE,IAAKoB,GAAU3B,EAAE,KAAK2B,EAAM,EAC1HC,GAAM3B,EAAKyB,EAAQ5B,CAAG,CACxB,CACAY,GAAeV,EAAGC,CAAG,CACvB,CAQF,CAEA,SAAS4B,GAAe7B,EAAeC,EAAmE,CACxG,GAAIH,EAAI,YAAcE,EAAE,KAAK,QAAU,IACrC,QAASO,EAAI,EAAGA,EAAIP,EAAE,KAAK,OAAQO,IACjCuB,GAAM7B,EAAKD,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAIT,CAAG,EACpDA,EAAI,gBACgBiC,GAAiC,SAASxB,CAAC,GAAGuB,GAAM7B,EAAKD,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAKP,EAAE,KAAKO,GAAG,GAAgB,IAAKT,CAAG,EACxHkC,GAAqC,SAASzB,CAAC,GAAGuB,GAAM7B,EAAKD,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAKP,EAAE,KAAKO,GAAG,GAAgB,IAAKT,CAAG,EAC5HmC,GAAsC,SAAS1B,CAAC,GAAGuB,GAAM7B,EAAKD,EAAE,KAAKO,GAAG,GAAIP,EAAE,KAAKO,GAAG,GAAKP,EAAE,KAAKO,GAAG,GAAgB,IAAKT,CAAG,EAI3J,CAEA,SAASoC,GAAclC,EAAeC,EAAK,CACrCH,EAAI,WACNqC,GAAKlC,EAAKD,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIF,CAAG,CAEzD,CAGO,SAASsC,GAAKC,EAAqBC,EAAsBC,EAAoC,CAElG,GADAzC,EAAM0C,EAAUC,GAASF,CAAW,EAChC,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMpC,EAAMyC,GAAiBL,CAAQ,EACrC,GAAI,EAACpC,EACL,CAAAA,EAAI,KAAOH,EAAI,KACfG,EAAI,YAAcH,EAAI,MACtBG,EAAI,UAAYH,EAAI,MACpB,QAAWE,KAAKsC,EACdJ,GAAclC,EAAGC,CAAG,EACpBF,GAAWC,EAAGC,CAAG,EACbD,EAAE,MAAQA,EAAE,KAAK,OAAS,IAC5B6B,GAAe7B,EAAGC,CAAG,EACrBuB,GAAiBxB,EAAGC,CAAG,EACvBc,GAAgBf,EAAGC,CAAG,EACtBmB,GAAepB,EAAGC,CAAG,GAG3B,CClKO,SAAS0C,GAAKC,EAAqBC,EAAsBC,EAAoC,CAClG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMM,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,EAACM,EACL,CAAAA,EAAI,SAAW,QACf,QAASE,EAAI,EAAGA,EAAIP,EAAO,OAAQO,IAAK,CAgBtC,GAfAF,EAAI,YAAcH,EAAa,MAC/BG,EAAI,UAAYH,EAAa,MAC7BG,EAAI,UAAYH,EAAa,UAC7BG,EAAI,KAAOH,EAAa,KACpBA,EAAa,WAAaF,EAAOO,GAAG,KAAOP,EAAOO,GAAG,IAAI,SAAW,IACtEC,GAAKH,EAAKL,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIL,CAAY,EAC1FA,EAAa,aACXA,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAAS,QAAQ,IAAML,EAAOO,GAAG,SAAUP,EAAOO,GAAG,IAAI,GAAK,EAAG,EAAIP,EAAOO,GAAG,IAAI,GAAKL,EAAa,WAAYF,EAAOO,GAAG,IAAI,EAAE,GAEvIF,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAAS,QAAQ,IAAML,EAAOO,GAAG,SAAUP,EAAOO,GAAG,IAAI,GAAK,EAAG,EAAIP,EAAOO,GAAG,IAAI,GAAKL,EAAa,WAAYF,EAAOO,GAAG,IAAI,EAAE,IAGrIL,EAAa,YAAcF,EAAOO,GAAG,UACvC,QAASE,EAAK,EAAGA,EAAKT,EAAOO,GAAG,UAAU,OAAQE,IAC5C,CAACT,EAAOO,GAAG,UAAUE,GAAI,OAAUT,EAAOO,GAAG,UAAUE,GAAI,QAAU,IACzEJ,EAAI,UAAYK,GAAWV,EAAOO,GAAG,UAAUE,GAAI,SAAS,GAAIP,CAAY,EAC5ES,GAAMN,EAAKL,EAAOO,GAAG,UAAUE,GAAI,SAAS,GAAIT,EAAOO,GAAG,UAAUE,GAAI,SAAS,GAAI,EAAGP,CAAY,GAGxG,GAAIA,EAAa,YAAcF,EAAOO,GAAG,UAAW,CAClDF,EAAI,KAAOH,EAAa,KACxB,QAAWO,KAAMT,EAAOO,GAAG,UACrB,CAACE,EAAG,OAAUA,EAAG,QAAU,IAC/BJ,EAAI,UAAYK,GAAWD,EAAG,SAAS,GAAIP,CAAY,EACvDG,EAAI,SAAS,GAAGI,EAAG,QAAQ,KAAK,MAAM,IAAMA,EAAG,KAAK,KAAMA,EAAG,SAAS,GAAK,EAAGA,EAAG,SAAS,GAAK,CAAC,EAEpG,CACA,GAAIP,EAAa,cAAgBF,EAAOO,GAAG,WAAaP,EAAOO,GAAG,YAChE,QAAWK,KAAQ,OAAO,OAAOZ,EAAOO,GAAG,WAAW,EACpD,QAAWM,KAAaD,EAAME,GAAOT,EAAKQ,EAAWX,CAAY,CAGvE,EACF,CC3CO,SAASa,GAAKC,EAAqBC,EAAsBC,EAAoC,CAClG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMM,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,EAACM,EACL,CAAAA,EAAI,SAAW,QACfA,EAAI,KAAOH,EAAa,KACxB,QAAWK,KAAKP,EAAQ,CAetB,GAdIE,EAAa,YACfG,EAAI,YAAcH,EAAa,MAC/BG,EAAI,UAAYH,EAAa,MAC7BM,GAAKH,EAAKE,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIL,CAAY,EAC1DA,EAAa,aACXA,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAAS,QAAQ,KAAK,MAAM,IAAME,EAAE,KAAK,KAAMA,EAAE,IAAI,GAAK,EAAG,EAAIA,EAAE,IAAI,GAAKL,EAAa,WAAYK,EAAE,IAAI,EAAE,GAEnHF,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAAS,QAAQ,KAAK,MAAM,IAAME,EAAE,KAAK,KAAMA,EAAE,IAAI,GAAK,EAAG,EAAIA,EAAE,IAAI,GAAKL,EAAa,WAAYK,EAAE,IAAI,EAAE,GAEnHF,EAAI,OAAO,GAETH,EAAa,YACXK,EAAE,WAAaA,EAAE,UAAU,OAAS,EACtC,QAAWE,KAAMF,EAAE,UACjBF,EAAI,UAAYK,GAAWD,EAAG,GAAIP,CAAY,EAC9CS,GAAMN,EAAKI,EAAG,GAAIA,EAAG,GAAI,EAAGP,CAAY,EAI9C,GAAIA,EAAa,YAAcK,EAAE,YAAa,CAC5C,IAAMK,EAAe,CAACC,EAAeC,IAAkB,CACrD,GAAI,CAACD,GAAQA,EAAK,SAAW,GAAK,CAACA,EAAK,GAAI,OAC5C,IAAME,EAAIF,EAAKA,EAAK,OAAS,GAAG,IAAM,KACtCR,EAAI,UAAYK,GAAWK,EAAGb,CAAY,EAC1CG,EAAI,SAASS,EAAOD,EAAKA,EAAK,OAAS,GAAG,GAAK,EAAGA,EAAKA,EAAK,OAAS,GAAG,GAAK,CAAC,CAChF,EACAR,EAAI,KAAOH,EAAa,KACxBU,EAAaL,EAAE,YAAY,MAAO,OAAO,EACzCK,EAAaL,EAAE,YAAY,OAAQ,QAAQ,EAC3CK,EAAaL,EAAE,YAAY,KAAM,MAAM,EACvCK,EAAaL,EAAE,YAAY,MAAO,OAAO,EACzCK,EAAaL,EAAE,YAAY,MAAO,OAAO,EACzCK,EAAaL,EAAE,YAAY,KAAM,MAAM,CACzC,CACA,GAAIL,EAAa,cAAgBK,EAAE,YAAa,CAC9C,IAAMS,EAAeH,GAAkB,CACrC,GAAI,GAACA,GAAQA,EAAK,SAAW,GAAK,CAACA,EAAK,IACxC,QAASI,EAAI,EAAGA,EAAIJ,EAAK,OAAQI,IAAK,CACpCZ,EAAI,UAAU,EACd,IAAMU,EAAIF,EAAKI,GAAG,IAAM,EACxBZ,EAAI,YAAcK,GAAWO,EAAIF,EAAGb,CAAY,EAChDG,EAAI,OAAOQ,EAAKI,EAAI,EAAIA,EAAI,EAAI,GAAG,GAAIJ,EAAKI,EAAI,EAAIA,EAAI,EAAI,GAAG,EAAE,EACjEZ,EAAI,OAAOQ,EAAKI,GAAG,GAAIJ,EAAKI,GAAG,EAAE,EACjCZ,EAAI,OAAO,CACb,CACF,EACAA,EAAI,UAAYH,EAAa,UAC7Bc,EAAYT,EAAE,YAAY,KAAK,EAC/BS,EAAYT,EAAE,YAAY,MAAM,EAChCS,EAAYT,EAAE,YAAY,IAAI,EAC9BS,EAAYT,EAAE,YAAY,KAAK,EAC/BS,EAAYT,EAAE,YAAY,KAAK,CAEjC,CACF,EACF,CClEO,SAASW,GAAOC,EAAqBC,EAAwBC,EAAoC,CACtG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMM,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,EAACM,EACL,CAAAA,EAAI,SAAW,QACfA,EAAI,KAAOH,EAAa,KACxB,QAAWK,KAAKP,EACd,GAAIE,EAAa,UAAW,CAI1B,GAHAG,EAAI,YAAcH,EAAa,MAC/BG,EAAI,UAAYH,EAAa,MAC7BM,GAAKH,EAAKE,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIA,EAAE,IAAI,GAAIL,CAAY,EAC1DA,EAAa,WAAY,CAC3B,IAAMO,EAAQ,GAAGF,EAAE,SAAS,KAAK,MAAM,IAAMA,EAAE,KAAK,KAChDL,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAASI,EAAOF,EAAE,IAAI,GAAK,EAAG,EAAIA,EAAE,IAAI,GAAKL,EAAa,WAAYK,EAAE,IAAI,EAAE,GAEpFF,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAASI,EAAOF,EAAE,IAAI,GAAK,EAAG,EAAIA,EAAE,IAAI,GAAKL,EAAa,WAAYK,EAAE,IAAI,EAAE,CACpF,CACAF,EAAI,OAAO,CACb,EAEJ,CCxBO,SAASK,GAAQC,EAAqBC,EAAyBC,EAAoC,CACxG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,GAACD,GAAU,CAACD,IACZG,EAAa,aAAc,CAC7B,IAAMG,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,CAACM,EAAK,OACVA,EAAI,KAAOH,EAAa,KACxBG,EAAI,UAAYH,EAAa,MAC7B,IAAIK,EAAI,EACR,QAASC,EAAI,EAAGA,EAAIR,EAAO,OAAQQ,IAAK,CACtC,IAAIC,EAAmB,CAAC,EACpBC,EAAkB,CAAC,EAEvB,GADA,CAACD,EAAOC,CAAI,EAAI,OAAO,QAAQV,EAAOQ,EAAE,EACnCE,EAAK,OAAS,GAAQA,EAAK,GAAc,OAAS,EAAI,CACzD,IAAMC,EAAMF,EAAM,GAAe,EAAI,IAAIA,EAAM,KAAO,GAChDG,EAAQ,GAAGH,EAAM,MAAME,MAAQD,EAAK,KACtCR,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAASO,EAAO,EAAG,EAAKL,EAAIL,EAAa,UAAW,GAE1DG,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAASO,EAAO,EAAG,EAAKL,EAAIL,EAAa,UAAW,EACxDK,GAAK,CACP,CACF,CACF,CACF,CPjBA,IAAIM,GAAW,EAUR,SAASC,GAAOC,EAAqBC,EAAwBC,EAAoC,CACtG,IAAMC,EAA4BC,EAAUC,GAASH,CAAW,EAChE,GAAI,CAACD,GAAU,CAACD,EAAU,OAC1B,IAAMM,EAAMC,GAAiBP,CAAQ,EACrC,GAAI,EAACM,EACL,CAAAA,EAAI,SAAW,QACfA,EAAI,KAAOH,EAAa,KAExB,QAASK,EAAI,EAAGA,EAAIP,EAAO,OAAQO,IACjC,GAAIL,EAAa,UAAW,CAI1B,GAHAG,EAAI,YAAcH,EAAa,MAC/BG,EAAI,UAAYH,EAAa,MAC7BM,GAAKH,EAAKL,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIP,EAAOO,GAAG,IAAI,GAAIL,CAAY,EAC1FA,EAAa,WAAY,CAC3B,IAAMO,EAAQ,WAAWF,IACrBL,EAAa,aAAeA,EAAa,cAAgB,KAC3DG,EAAI,UAAYH,EAAa,YAC7BG,EAAI,SAASI,EAAOT,EAAOO,GAAG,IAAI,GAAK,EAAG,EAAIP,EAAOO,GAAG,IAAI,GAAKL,EAAa,WAAYF,EAAOO,GAAG,IAAI,EAAE,GAE5GF,EAAI,UAAYH,EAAa,WAC7BG,EAAI,SAASI,EAAOT,EAAOO,GAAG,IAAI,GAAK,EAAG,EAAIP,EAAOO,GAAG,IAAI,GAAKL,EAAa,WAAYF,EAAOO,GAAG,IAAI,EAAE,CAC5G,CACAF,EAAI,OAAO,CACb,EAEJ,CAGO,SAASK,GAAOC,EAAwDC,EAAmB,CAChG,GAAI,CAACD,GAAS,CAACC,EAAQ,OACvB,IAAMP,EAAMC,GAAiBM,CAAM,EAC/B,CAACP,GACLA,EAAI,UAAUM,EAAO,EAAG,CAAC,CAC3B,CAGA,eAAsBE,GAAId,EAAqBC,EAAgBC,EAAoC,CACjG,GAAI,EAACD,GAAA,MAAAA,EAAQ,cAAe,CAACD,EAAU,OAAO,KAC9C,IAAMe,EAAYC,EAAI,EAChBb,EAAeC,EAAUC,GAASH,CAAW,EAC7Ce,EAAU,QAAQ,IAAI,CAC1BC,GAAKlB,EAAUC,EAAO,KAAME,CAAY,EACxCgB,GAAKnB,EAAUC,EAAO,KAAME,CAAY,EACxCiB,GAAKpB,EAAUC,EAAO,KAAME,CAAY,EACxCkB,GAAOrB,EAAUC,EAAO,OAAQE,CAAY,EAC5CmB,GAAQtB,EAAUC,EAAO,QAASE,CAAY,CAEhD,CAAC,EACD,OAAAL,GAAWyB,EAAI,QAAUzB,GAAW,KAAK,MAAMkB,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,EAChGd,EAAO,YAAY,KAAOH,GACnBmB,CACT,CQxEA,IAAMO,GAAa,GACbC,GAAQ,GAGd,SAASC,GAAWC,EAAWC,EAAWC,EAA8C,CACtF,IAAIC,EAAS,GACTC,EAAIF,EAAQ,OAAS,EACzB,QAASG,EAAI,EAAGA,EAAIH,EAAQ,OAAQE,EAAIC,IAChCH,EAAQG,GAAG,EAAIJ,GAAQC,EAAQE,GAAG,EAAIH,GAAQD,GAAKE,EAAQE,GAAG,EAAIF,EAAQG,GAAG,IAAMJ,EAAIC,EAAQG,GAAG,IAAMH,EAAQE,GAAG,EAAIF,EAAQG,GAAG,GAAKH,EAAQG,GAAG,IAAIF,EAAS,CAACA,GAExK,OAAOA,CACT,CAEA,eAAsBG,GAAKC,EAA+C,CAExE,GADI,CAACA,EAAK,QACN,CAACA,EAAK,MAAQA,EAAK,KAAK,OAAS,IAAK,OAAOA,EAAK,OACtD,IAAMC,EAAQD,EAAK,OAAO,MAAM,IAAM,EAChCE,EAASF,EAAK,OAAO,MAAM,IAAM,EACjCG,EAAS,MAAMH,EAAK,OAAO,OAAO,EACpCI,EAAyC,CAAC,EAC9C,QAAWC,KAAMC,GAAgB,WAAYF,EAAW,KAAK,CAAE,GAAIJ,EAAK,KAAKK,GAAI,GAAKL,EAAK,IAAI,IAAMA,EAAK,IAAI,GAAI,GAAIA,EAAK,KAAKK,GAAI,GAAKL,EAAK,IAAI,IAAMA,EAAK,IAAI,EAAG,CAAC,EACjKV,IAAcA,GAAa,IAAGc,EAAaA,EAAW,IAAKC,IAAQ,CAAE,EAAGA,EAAG,EAAI,GAAMA,EAAG,EAAIf,GAAae,EAAG,EAAIf,GAAY,EAAGe,EAAG,EAAI,GAAMA,EAAG,EAAIf,GAAae,EAAG,EAAIf,EAAW,EAAE,GACxL,QAASG,EAAI,EAAGA,EAAIQ,EAAOR,IACzB,QAASC,EAAI,EAAGA,EAAIQ,EAAQR,IACXF,GAAWC,EAAIQ,EAAOP,EAAIO,EAAOG,CAAU,IAExDD,EAAO,IAAIZ,GAAQY,EAAO,IAAI,EAAGT,EAAGD,EAAG,CAAC,EAAG,EAAGC,EAAGD,EAAG,CAAC,EACrDU,EAAO,IAAIZ,GAAQY,EAAO,IAAI,EAAGT,EAAGD,EAAG,CAAC,EAAG,EAAGC,EAAGD,EAAG,CAAC,EACrDU,EAAO,IAAIZ,GAAQY,EAAO,IAAI,EAAGT,EAAGD,EAAG,CAAC,EAAG,EAAGC,EAAGD,EAAG,CAAC,GAI3D,IAAMc,EAASJ,EAAO,SAAS,EAC/B,OAAG,UAAQA,CAAM,EACVI,CACT,CCpCA,IAAMC,GAAiBC,GAA4D,CACjF,IAAMC,EAAU,CAACC,EAAYC,IAAe,KAAK,MAAMD,EAAI,GAAKC,EAAI,GAAID,EAAI,GAAKC,EAAI,EAAE,EACvF,GAAI,CAACH,EAAK,YAAY,cAAgB,CAACA,EAAK,YAAY,YAAa,MAAO,CAAE,QAAS,EAAG,SAAU,CAAE,EAEtG,IAAMI,EAAa,CAAC,EAAG,GAAI,EACrBC,EAAW,EAEXC,GAAQN,EAAK,KAAK,IAAI,IAAM,IAAMA,EAAK,KAAK,KAAK,IAAM,GACvDO,EAAaD,EAAON,EAAK,KAAK,KAAOA,EAAK,KAAK,KAC/CQ,EAAYF,EACd,EAAEN,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,IAAI,IAAM,GAAIA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,IAAI,IAAM,CAAC,EACvF,EAAEA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,KAAK,IAAM,GAAIA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,KAAK,IAAM,CAAC,EACvFS,EAAUH,EACZ,CAACN,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,IAAI,GAAIA,EAAK,KAAK,IAAI,GAAKA,EAAK,KAAK,IAAI,EAAE,EAC1E,CAACA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,KAAK,GAAIA,EAAK,KAAK,KAAK,GAAKA,EAAK,KAAK,KAAK,EAAE,EAC3EU,EAAiB,EACpBF,EAAU,GAAKD,EAAW,IAAME,EAAQ,GAAKL,EAAW,GACzDC,GAAYE,EAAW,GAAKC,EAAU,IAAMC,EAAQ,GAAKL,EAAW,EACtE,EACIO,EAAW,KAAK,KAAMD,EAAQ,GAAKA,EAAQ,GAAOA,EAAQ,GAAKA,EAAQ,EAAG,EAC9E,OAAAC,EAAW,KAAK,IAAIA,EAAUX,EAAK,OAAO,GAAK,EAAGA,EAAK,OAAO,GAAK,CAAC,EAE7D,CAAE,SADQC,EAAQ,CAAC,EAAG,CAAC,EAAGS,CAAO,EAAK,KAAK,GAAK,GAAM,KAAK,GAChD,SAAAC,CAAS,CAC7B,EAEaC,GAAqB,CAACZ,EAAkBa,IAIhD,CAEH,IAAMC,EAAaC,GAAsB,CACvC,IAAMC,EAAS,KAAK,KAAKD,EAAE,GAAKA,EAAE,GAAKA,EAAE,GAAKA,EAAE,GAAKA,EAAE,GAAKA,EAAE,EAAE,EAChE,OAAAA,EAAE,IAAMC,EACRD,EAAE,IAAMC,EACRD,EAAE,IAAMC,EACDD,CACT,EACME,EAAa,CAACC,EAAWC,IAAsB,CACnD,IAAMC,EAAIF,EAAE,GAAKC,EAAE,GACbE,EAAIH,EAAE,GAAKC,EAAE,GACbG,EAAIJ,EAAE,GAAKC,EAAE,GACnB,MAAO,CAACC,EAAGC,EAAGC,CAAC,CACjB,EACMC,EAAe,CAACL,EAAWC,IAAsB,CACrD,IAAMC,EAAIF,EAAE,GAAKC,EAAE,GAAKD,EAAE,GAAKC,EAAE,GAC3BE,EAAIH,EAAE,GAAKC,EAAE,GAAKD,EAAE,GAAKC,EAAE,GAC3BG,EAAIJ,EAAE,GAAKC,EAAE,GAAKD,EAAE,GAAKC,EAAE,GACjC,MAAO,CAACC,EAAGC,EAAGC,CAAC,CACjB,EAEME,EAA8BC,GAA8D,CAChG,GAAM,CAACC,EAAKC,EAAMC,EAAMC,EAAKC,EAAKC,EAAKC,EAAKC,EAAKC,CAAG,EAAIT,EACpDU,EACAC,EACAC,EACJ,OAAIR,EAAM,EACJA,EAAM,IACRQ,EAAS,KAAK,KAAKR,CAAG,EACtBO,EAAS,KAAK,MAAM,CAACJ,EAAKN,CAAG,EAC7BS,EAAS,KAAK,MAAM,CAACJ,EAAKD,CAAG,IAE7BO,EAAS,CAAC,KAAK,GAAK,EACpBD,EAAS,CAAC,KAAK,MAAMH,EAAKC,CAAG,EAC7BC,EAAS,IAGXE,EAAS,KAAK,GAAK,EACnBD,EAAS,KAAK,MAAMH,EAAKC,CAAG,EAC5BC,EAAS,GAEP,OAAO,MAAMA,CAAM,IAAGA,EAAS,GAC/B,OAAO,MAAMC,CAAM,IAAGA,EAAS,GAC/B,OAAO,MAAMC,CAAM,IAAGA,EAAS,GAC5B,CAAE,MAAO,EAAI,CAACF,EAAQ,IAAK,EAAI,CAACC,EAAQ,KAAM,EAAI,CAACC,CAAO,CACnE,EAcMC,EAAOtC,EAAK,QAClB,GAAI,CAACsC,GAAQA,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,CAAE,EAAG,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,EAAG,KAAM,CAAE,QAAS,EAAG,SAAU,CAAE,CAAE,EAEtJ,IAAMC,EAAO,KAAK,IAAIvC,EAAK,OAAO,GAAKa,EAAU,GAAIb,EAAK,OAAO,GAAKa,EAAU,EAAE,EAAI,IAEhF2B,EAAe,CAACF,EAAK,IAAKA,EAAK,KAAMA,EAAK,KAAMA,EAAK,IAAI,EAAE,IAAKG,GAAO,CAACA,EAAG,GAAK5B,EAAU,GAAK0B,EAAME,EAAG,GAAK5B,EAAU,GAAK0B,EAAME,EAAG,EAAE,CAAU,EAEjJC,EAAQ5B,EAAUG,EAAWuB,EAAI,GAAcA,EAAI,EAAY,CAAC,EAClEG,EAAQ7B,EAAUG,EAAWuB,EAAI,GAAcA,EAAI,EAAY,CAAC,EAC9DI,EAAQ9B,EAAUS,EAAaoB,EAAOD,CAAK,CAAC,EAElDC,EAAQpB,EAAamB,EAAOE,CAAK,EAIjC,IAAMC,EAAmF,CACvFF,EAAM,GAAIA,EAAM,GAAIA,EAAM,GAC1BD,EAAM,GAAIA,EAAM,GAAIA,EAAM,GAC1BE,EAAM,GAAIA,EAAM,GAAIA,EAAM,EAC5B,EACME,EAAQtB,EAA2BqB,CAAM,EAIzCE,EAAOT,EAAK,SAAW,IAAMvC,GAAcC,CAAI,EAAI,CAAE,QAAS,EAAG,SAAU,CAAE,EAEnF,MAAO,CAAE,MAAA8C,EAAO,OAAAD,EAAQ,KAAAE,CAAK,CAC/B,EC9FO,IAAMC,GAAa,MAAOC,EAAyCC,IAAyC,CA1BnH,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GA4BE,IAAIC,EAAoBC,EAAI,EACxBC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EAEEC,EAAwB,CAAC,EAC/B1C,EAAS,MAAQ,WAEjB,IAAM2C,EAAQ,MAAeC,GAAQ3C,EAAOD,EAAS,MAAM,EAE3D,GADAA,EAAS,YAAY,KAAO6C,EAAI,SAAW7C,EAAS,YAAY,MAAQ,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,EACrI,CAAC9B,EAAM,OAASA,EAAM,MAAM,SAAW,EAAG,MAAO,CAAC,EACtD,GAAI,CAAC0C,EAAO,MAAO,CAAC,EAEpB,QAASG,EAAI,EAAGA,EAAIH,EAAM,OAAQG,IAAK,CAKrC,GAJA9C,EAAS,QAAQ,UAAU,EAIvB,CAAC2C,EAAMG,GAAG,QAAUH,EAAMG,GAAG,OAAO,mBAAoB,CAC1DC,EAAI,2BAA4BJ,EAAMG,GAAG,MAAM,EAC/C,QACF,CAGA,IAAI5C,EAAAF,EAAS,OAAO,KAAK,WAArB,MAAAE,EAA+B,KAAM,CACvC,IAAM8C,GAAS,MAAWC,GAAKN,EAAMG,EAAE,EACpC,UAAQH,EAAMG,GAAG,MAAM,EACtBE,KAAQL,EAAMG,GAAG,OAASE,GAChC,CAGA,IAAME,GAAWP,EAAMG,GAAG,MAASH,EAAMG,GAAG,KAAK,OAAS,IAAOK,GAAmBR,EAAMG,GAAI,CAAC7C,EAAM,MAAM,GAAIA,EAAM,MAAM,EAAE,CAAC,EAAI,KAGlID,EAAS,QAAQ,gBAAgB,EAC7BA,EAAS,OAAO,MAClBoC,GAAajC,EAAAH,EAAS,OAAO,KAAK,UAArB,MAAAG,EAA8B,QAAkByC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,CAAC,GAE5I3C,EAAS,MAAQ,cACjB+B,EAAYC,EAAI,EAChBI,GAAahC,EAAAJ,EAAS,OAAO,KAAK,UAArB,MAAAI,EAA8B,QAAU,MAAcwC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,CAAC,EAClJ3C,EAAS,YAAY,QAAU6C,EAAI,SAAW7C,EAAS,YAAY,SAAW,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,GAEjJ/B,EAAS,QAAQ,cAAc,EAG/BA,EAAS,QAAQ,kBAAkB,EAC/BA,EAAS,OAAO,MAClBuC,GAAelC,EAAAL,EAAS,OAAO,KAAK,YAArB,MAAAK,EAAgC,QAAoBuC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,GAEjJ3C,EAAS,MAAQ,gBACjB+B,EAAYC,EAAI,EAChBO,GAAejC,EAAAN,EAAS,OAAO,KAAK,YAArB,MAAAM,EAAgC,QAAU,MAAgBsC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,EACvJ3C,EAAS,YAAY,UAAY6C,EAAI,SAAW7C,EAAS,YAAY,WAAa,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,GAErJ/B,EAAS,QAAQ,gBAAgB,EAGjCA,EAAS,QAAQ,iBAAiB,EAC9BA,EAAS,OAAO,MAClBwC,GAAcjC,EAAAP,EAAS,OAAO,KAAK,WAArB,MAAAO,EAA+B,QAAmBqC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,GAE9I3C,EAAS,MAAQ,eACjB+B,EAAYC,EAAI,EAChBQ,GAAchC,EAAAR,EAAS,OAAO,KAAK,WAArB,MAAAQ,EAA+B,QAAU,MAAeoC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,EACpJ3C,EAAS,YAAY,SAAW6C,EAAI,SAAW7C,EAAS,YAAY,WAAa,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,GAEpJ/B,EAAS,QAAQ,eAAe,EAGhCA,EAAS,QAAQ,aAAa,EAC1BA,EAAS,OAAO,MAClBkC,GAAUzB,EAAAT,EAAS,OAAO,KAAK,OAArB,MAAAS,EAA2B,QAAemC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,MAElI3C,EAAS,MAAQ,WACjB+B,EAAYC,EAAI,EAChBE,GAAUxB,EAAAV,EAAS,OAAO,KAAK,OAArB,MAAAU,EAA2B,QAAU,MAAWkC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KACxI3C,EAAS,YAAY,KAAO,KAAK,MAAMgC,EAAI,EAAID,CAAS,GAE1D/B,EAAS,QAAQ,WAAW,EAG5BA,EAAS,QAAQ,eAAe,EAC5BA,EAAS,OAAO,OAClBiC,GAAStB,EAAAX,EAAS,OAAO,KAAK,SAArB,MAAAW,EAAgC,QAAoBiC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KAC3IR,GAAYvB,EAAAZ,EAAS,OAAO,KAAK,SAArB,MAAAY,EAAgC,QAAuBgC,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,OAEjJ3C,EAAS,MAAQ,aACjB+B,EAAYC,EAAI,EAChBC,GAASpB,EAAAb,EAAS,OAAO,KAAK,SAArB,MAAAa,EAAgC,QAAU,MAAgB+B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KACjJR,GAAYrB,EAAAd,EAAS,OAAO,KAAK,SAArB,MAAAc,EAAgC,QAAU,MAAmB8B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KACvJ3C,EAAS,YAAY,OAAS,KAAK,MAAMgC,EAAI,EAAID,CAAS,GAE5D/B,EAAS,QAAQ,aAAa,EAG9BA,EAAS,QAAQ,sBAAsB,EACnCA,EAAS,OAAO,MAClBqC,GAAmBtB,EAAAf,EAAS,OAAO,KAAK,gBAArB,MAAAe,EAAuC,QAAwB6B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,MAEhK3C,EAAS,MAAQ,oBACjB+B,EAAYC,EAAI,EAChBK,GAAmBrB,EAAAhB,EAAS,OAAO,KAAK,gBAArB,MAAAgB,EAAuC,QAAU,MAAoB4B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KACtK3C,EAAS,YAAY,cAAgB,KAAK,MAAMgC,EAAI,EAAID,CAAS,GAEnE/B,EAAS,QAAQ,oBAAoB,EAGrCA,EAAS,QAAQ,oBAAoB,EACjCA,EAAS,OAAO,MAClBsC,GAAiBrB,EAAAjB,EAAS,OAAO,KAAK,cAArB,MAAAiB,EAAqC,QAAsB2B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,MAE1J3C,EAAS,MAAQ,oBACjB+B,EAAYC,EAAI,EAChBM,GAAiBpB,EAAAlB,EAAS,OAAO,KAAK,cAArB,MAAAkB,EAAqC,QAAU,MAAkB0B,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAAI,KAChK3C,EAAS,YAAY,cAAgB,KAAK,MAAMgC,EAAI,EAAID,CAAS,GAEnE/B,EAAS,QAAQ,kBAAkB,EAGnCA,EAAS,QAAQ,oBAAoB,EACjCA,EAAS,OAAO,MAClByC,EAAkBG,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,GAE5F3C,EAAS,MAAQ,kBACjB+B,EAAYC,EAAI,EAChBS,EAAU,MAAcG,GAAQD,EAAMG,GAAG,QAAa,SAAO,CAAC,CAAC,EAAG9C,EAAS,OAAQ8C,EAAGH,EAAM,MAAM,EAClG3C,EAAS,YAAY,YAAc6C,EAAI,SAAW7C,EAAS,YAAY,aAAe,GAAK,KAAK,MAAMgC,EAAI,EAAID,CAAS,EAAI,KAAK,MAAMC,EAAI,EAAID,CAAS,GAEzJ/B,EAAS,QAAQ,kBAAkB,EAG/BA,EAAS,OAAO,QAClB,CAACiC,EAAQE,EAAWC,EAAYC,EAAkBC,EAAgBG,EAASP,EAASK,EAAcC,CAAW,EAAI,MAAM,QAAQ,IAAI,CAACP,EAAQE,EAAWC,EAAYC,EAAkBC,EAAgBG,EAASP,EAASK,EAAcC,CAAW,CAAC,GAEnPxC,EAAS,QAAQ,cAAc,IAE3BmB,GAAAnB,EAAS,OAAO,KAAK,SAArB,YAAAmB,GAAgC,UAAWc,GAAUE,IACvDM,EAAU,CACR,GAAIA,EACJ,IAAMR,EAA0B,IAChC,OAASE,EAAsD,OAC/D,YAAcA,EAAsD,WACtE,KAEEf,GAAApB,EAAS,OAAO,KAAK,OAArB,YAAAoB,GAA2B,UAAWc,IACxCO,EAAU,CACR,GAAIA,EACJ,IAAMP,EAA0B,IAChC,OAASA,EAA0B,OACnC,YAAcA,EAA0B,YACxC,KAAOA,EAA0B,IACnC,KAEEb,GAAArB,EAAS,OAAO,KAAK,gBAArB,YAAAqB,GAAuC,UAAWgB,IACnDI,EAAoB,WAAaJ,KAGhCf,GAAAtB,EAAS,OAAO,KAAK,cAArB,YAAAsB,GAAqC,UAAWgB,IACjDG,EAAoB,WAAaH,IAK/Bf,GAAAvB,EAAS,OAAO,KAAK,OAArB,MAAAuB,GAA2B,QAIhC,IAAM6B,KAAY1B,IAAAD,IAAAD,GAAAmB,EAAMG,KAAN,YAAAtB,GAAU,cAAV,YAAAC,GAAuB,cAAvB,YAAAC,GAAqC,OAAMG,IAAAD,IAAAD,GAAAgB,EAAMG,KAAN,YAAAnB,GAAU,cAAV,YAAAC,GAAuB,eAAvB,YAAAC,GAAsC,KAC7Fc,EAAMG,GAAG,YAAY,YAAY,OAAS,GAAOH,EAAMG,GAAG,YAAY,aAAa,OAAS,GAC5FH,EAAMG,GAAG,YAAY,YAAY,KAAO,MAAUH,EAAMG,GAAG,YAAY,aAAa,KAAO,KAC7F,KAAK,IAAI,KAAK,IAAIH,EAAMG,GAAG,YAAY,YAAY,GAAG,GAAKH,EAAMG,GAAG,YAAY,YAAY,GAAG,EAAE,EAAG,KAAK,IAAIH,EAAMG,GAAG,YAAY,aAAa,GAAG,GAAKH,EAAMG,GAAG,YAAY,aAAa,GAAG,EAAE,CAAC,EAAI7C,EAAM,MAAM,GAC/M,EAGEoD,IAASvB,GAAA9B,EAAS,OAAO,KAAK,WAArB,MAAA8B,GAA+B,OAAY,UAAQa,EAAMG,GAAG,MAAM,EAAI,KAElF,UAAQH,EAAMG,GAAG,MAAM,EAEtBH,EAAMG,GAAG,QAAQ,OAAOH,EAAMG,GAAG,OAErC,IAAMQ,GAAkB,CACtB,GAAGX,EAAMG,GACT,GAAIA,CACN,EACKL,EAAoB,MAAKa,GAAI,IAAOb,EAAoB,KACxDA,EAAoB,SAAQa,GAAI,OAAUb,EAAoB,QAC9DA,EAAoB,cAAaa,GAAI,YAAeb,EAAoB,aACxEA,EAAoB,aAAYa,GAAI,UAAab,EAAoB,YACrEA,EAAoB,OAAMa,GAAI,KAAQb,EAAoB,MAC3DL,IAAYkB,GAAI,QAAUlB,GAC1BG,IAAce,GAAI,KAAOf,GACzBC,IAAac,GAAI,KAAOd,GACxBY,IAAYA,KAAa,IAAGE,GAAI,KAAO,KAAK,MAAM,IAAMF,GAAW,IAAI,EAAI,KAC3EF,KAAUI,GAAI,SAAWJ,IACzBG,KAAQC,GAAI,OAASD,IACzBX,EAAQ,KAAKY,EAAG,EAChBtD,EAAS,QAAQ,UAAU,CAC7B,CACA,OAAAA,EAAS,QAAQ,eAAe,EAC5BA,EAAS,OAAO,QACdA,EAAS,YAAY,MAAM,OAAOA,EAAS,YAAY,KACvDA,EAAS,YAAY,KAAK,OAAOA,EAAS,YAAY,IACtDA,EAAS,YAAY,QAAQ,OAAOA,EAAS,YAAY,OACzDA,EAAS,YAAY,SAAS,OAAOA,EAAS,YAAY,SAEzD0C,CACT,EChNO,IAAMa,GAAQC,GAAuC,CAC1D,GAAI,CAACA,EAAK,MAAO,CAAC,EAClB,IAAMC,EAAqD,CAAC,EAC5D,QAASC,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAAK,CAEnC,IAAMC,EAAYH,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,WAAY,EACjEC,EAAaL,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,YAAa,EACnEE,EAAON,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,MAAO,EACzDE,GAAQH,GAAaE,GAAeF,EAAU,SAAS,GAAKG,EAAK,SAAS,IAAQD,EAAW,SAAS,GAAKC,EAAK,SAAS,GAAKL,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,WAAY,CAAC,EACxKI,GAAQH,GAAcA,EAAU,SAAS,GAAKG,EAAK,SAAS,GAAKL,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,iBAAkB,CAAC,EACtHI,GAAQD,GAAeA,EAAW,SAAS,GAAKC,EAAK,SAAS,IAAKL,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,kBAAmB,CAAC,EAGlI,IAAMK,EAAeP,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,cAAe,EACvEI,EAAgBR,EAAIE,GAAG,UAAU,KAAME,GAAOA,EAAE,OAAS,eAAgB,EAC3EG,GAAgBC,GAAiB,KAAK,IAAID,EAAa,YAAY,GAAKC,EAAc,YAAY,EAAE,EAAI,IAC1GP,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,WAAYK,EAAa,SAAS,GAAKC,EAAc,SAAS,GAAM,OAAS,SAAU,CAAC,CAE9H,CACA,OAAOP,CACT,EAEaQ,GAAQT,GAAuC,CAC1D,GAAI,CAACA,EAAK,MAAO,CAAC,EAClB,IAAMC,EAAqD,CAAC,EAC5D,QAASC,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAC9B,GAAIF,EAAIE,GAAG,MAAQF,EAAIE,GAAG,KAAK,OAAS,IAAK,CAC3C,IAAMQ,GAASV,EAAIE,GAAG,KAAK,IAAI,IAAM,IAAMF,EAAIE,GAAG,KAAK,KAAK,IAAM,GAC5DS,EAAQX,EAAIE,GAAG,KAAK,IAAI,GAAKF,EAAIE,GAAG,KAAK,KAAK,GAChD,KAAK,IAAIQ,EAAQC,CAAK,GAAK,IAAMV,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,eAAgB,CAAC,EACnFD,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,UAAUQ,EAAQ,EAAI,OAAS,SAAU,CAAC,EAChE,KAAK,IAAIV,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,EAAI,KAAK,IAAIF,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,EAC1G,IAAKD,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,gBAAiB,CAAC,EACtD,KAAK,IAAIF,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,EAAI,KAAK,IAAIF,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,EAC1G,IAAKD,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,iBAAkB,CAAC,EAC1E,IAAMU,EAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAIZ,EAAIE,GAAG,KAAK,IAAI,GAAKF,EAAIE,GAAG,KAAK,IAAI,EAAE,EAAI,KAAK,IAAIF,EAAIE,GAAG,KAAK,IAAI,GAAKF,EAAIE,GAAG,KAAK,KAAK,EAAE,CAAC,EACxIU,EAAY,IAAIX,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,SAAS,KAAK,MAAMU,CAAS,SAAU,CAAC,EAC9F,IAAMC,EAAYb,EAAIE,GAAG,KAAK,KAAK,IAAM,EACrC,KAAK,IAAIW,CAAS,EAAI,IAAIZ,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,QAAQW,EAAY,EAAI,KAAO,QAAS,CAAC,CAC3G,CAEF,OAAOZ,CACT,EAEaa,GAAQd,GAAuC,CA7E5D,IAAAe,EAAAC,EAAAC,EAAAC,EA8EE,GAAI,CAAClB,EAAK,MAAO,CAAC,EAClB,IAAMC,EAAqD,CAAC,EAC5D,QAASC,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAAK,CACnC,GAAI,GAACc,GAAAD,EAAAf,EAAIE,GAAG,cAAP,YAAAa,EAAoB,cAApB,MAAAC,EAAkC,KAAM,GAACE,GAAAD,EAAAjB,EAAIE,GAAG,cAAP,YAAAe,EAAoB,eAApB,MAAAC,EAAmC,IAAI,SACrF,IAAMC,EAAYnB,EAAIE,GAAG,YAAY,YAAY,GAAG,GAAKF,EAAIE,GAAG,YAAY,YAAY,GAAG,GACrFkB,EAAYpB,EAAIE,GAAG,YAAY,YAAY,GAAG,GAAKF,EAAIE,GAAG,YAAY,YAAY,GAAG,GACrFmB,EAAW,KAAK,IAAIF,EAAYC,CAAS,EAEzCE,EAAatB,EAAIE,GAAG,YAAY,aAAa,GAAG,GAAKF,EAAIE,GAAG,YAAY,aAAa,GAAG,GACxFqB,EAAavB,EAAIE,GAAG,YAAY,aAAa,GAAG,GAAKF,EAAIE,GAAG,YAAY,aAAa,GAAG,GACxFsB,EAAY,KAAK,IAAIF,EAAaC,CAAU,EAE9CE,EAAS,GACM,KAAK,IAAIJ,EAAWG,CAAS,EAAI,KAAK,IAAIH,EAAUG,CAAS,EAC/D,MACfC,EAAS,GACTxB,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,eAAgB,CAAC,GAGrD,IAAMwB,EAAkB,KAAK,IAAI1B,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,YAAY,YAAY,GAAG,EAAE,EAAIF,EAAIE,GAAG,IAAI,GACpGyB,EAAmB,KAAK,IAAI3B,EAAIE,GAAG,KAAK,IAAI,GAAKF,EAAIE,GAAG,YAAY,aAAa,GAAG,EAAE,EAAIF,EAAIE,GAAG,IAAI,IACvGwB,EAAkB,KAAQC,EAAmB,OAAMF,EAAS,IAC5DC,EAAkBC,EAChBD,EAAkB,KAAMzB,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,eAAgB,CAAC,EAE3EyB,EAAmB,KAAM1B,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,cAAe,CAAC,EAGjF,IAAM0B,EAAmB,KAAK,IAAI5B,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,YAAY,aAAa,GAAG,EAAE,EAAIF,EAAIE,GAAG,IAAI,GACtG2B,EAAkB,KAAK,IAAI7B,EAAIE,GAAG,KAAK,KAAK,GAAKF,EAAIE,GAAG,YAAY,YAAY,GAAG,EAAE,EAAIF,EAAIE,GAAG,IAAI,IACtG2B,EAAkB,KAAQD,EAAmB,KAAQC,EAAkB,MAASD,EAAmB,QAAOH,EAAS,KACnHI,EAAkB,KAAQD,EAAmB,MAAM3B,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,cAAe,CAAC,GACrG2B,EAAkB,MAASD,EAAmB,OAAO3B,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,YAAa,CAAC,EAGrGuB,GAAQxB,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,gBAAiB,CAAC,CAClE,CACA,OAAOD,CACT,EAEa6B,GAAQ9B,GAAuC,CAC1D,GAAI,CAACA,EAAK,MAAO,CAAC,EAClB,IAAMC,EAAqD,CAAC,EAC5D,QAASC,EAAI,EAAGA,EAAIF,EAAI,OAAQE,IAAK,CACnC,IAAM6B,EAA+C,CAAC,EACtD,GAAI/B,EAAIE,GAAG,YACT,OAAW,CAAC8B,EAAQC,CAAG,IAAK,OAAO,QAAQjC,EAAIE,GAAG,WAAW,EACvD8B,IAAW,YAAc,MAAM,QAAQC,CAAG,GAAKA,EAAI,IAAIF,EAAQ,KAAK,CAAE,KAAMC,EAAO,YAAY,EAAG,SAAUC,EAAI,EAAG,CAAC,EAG5H,GAAIF,GAAWA,EAAQ,OAAS,EAAG,CACjC,IAAMG,EAAUH,EAAQ,OAAO,CAACI,EAAM/B,KAAQ+B,EAAK,SAAS,IAAM,IAAM/B,EAAE,SAAS,IAAM,GAAK+B,EAAO/B,CAAE,EACvGH,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,GAAGgC,EAAQ,cAA8B,CAAC,EAC5E,IAAME,EAAUL,EAAQ,OAAO,CAACI,EAAM/B,IAAO+B,EAAK,SAAS,GAAK/B,EAAE,SAAS,GAAK+B,EAAO/B,CAAE,EACzFH,EAAS,KAAK,CAAE,KAAMC,EAAG,QAAS,GAAGkC,EAAQ,SAAyB,CAAC,CACzE,CACA,GAAIpC,EAAIE,GAAG,UAAW,CACpB,IAAMmC,EAAmBC,GAAMtC,EAAIE,GAAG,SAAS,EAC/C,QAAWqC,KAAQF,EAAOpC,EAAS,KAAK,CAAE,KAAMC,EAAG,QAASqC,EAAK,IAAoB,CAAC,CACxF,CACF,CACA,OAAOtC,CACT,EC/HA,IAAMuC,EAAyB,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,QAAS,CAAC,EAAG,YAAa,CAAC,EAAG,UAAW,EAAG,MAAO,IAAK,EAC5IC,GAAkB,EAEf,SAASC,GAAKC,EAAmBC,EAAwB,CAhBhE,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAiBE,IAAMC,EAAKC,EAAI,EACf,GAAI,CAACpB,EAAW,MAAO,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,QAAS,CAAC,EAAG,YAAa,CAAC,EAAG,UAAW,EAAG,MAAO,IAAK,EAKxI,IAAMqB,EAAU,KAAK,IAAI,EAAIrB,EAAU,UAQjCsB,EAAiBD,EAAU,IAAO,EAAI,KAAK,IAAIA,EAAU,CAAC,EAAI,EAMpE,GAJIrB,EAAU,SAAQH,EAAe,OAASG,EAAU,QACpDA,EAAU,QAAOH,EAAe,MAAQG,EAAU,OAGlD,CAACH,EAAe,MAASG,EAAU,KAAK,SAAWH,EAAe,KAAK,OACzEA,EAAe,KAAO,KAAK,MAAM,KAAK,UAAUG,EAAU,IAAI,CAAC,MAE/D,SAASuB,EAAI,EAAGA,EAAIvB,EAAU,KAAK,OAAQuB,IAAK,CAC9C,IAAMC,EAAMxB,EAAU,KAAKuB,GAAG,IAC3B,IAAI,CAACE,EAAaC,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,IAAIG,GAAKD,GAAeH,CAAc,EAC1GK,EAAS3B,EAAU,KAAKuB,GAAG,OAC9B,IAAI,CAACE,EAAaC,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,OAAOG,GAAKD,GAAeH,CAAc,EAC7GM,EAAa5B,EAAU,KAAKuB,GAAG,UAClC,IAAI,CAACM,EAAQH,IAAG,CA9CzB,IAAAxB,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GA8C6B,OACnB,MAAOmB,EAAO,MACd,KAAMA,EAAO,KACb,SAAU,CACRhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,SAAS,IAAM,IAAMG,EAAO,SAAS,IAAM,IAAMP,EAAiBO,EAAO,SAAS,GACrLhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,SAAS,IAAM,IAAMG,EAAO,SAAS,IAAM,IAAMP,EAAiBO,EAAO,SAAS,GACrLhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,SAAS,IAAM,IAAMG,EAAO,SAAS,IAAM,IAAMP,EAAiBO,EAAO,SAAS,EACvL,EACA,YAAa,CACXhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,YAAY,IAAM,IAAMG,EAAO,YAAY,IAAM,IAAMP,EAAiBO,EAAO,YAAY,GAC9LhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,YAAY,IAAM,IAAMG,EAAO,YAAY,IAAM,IAAMP,EAAiBO,EAAO,YAAY,GAC9LhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAG,YAAY,IAAM,IAAMG,EAAO,YAAY,IAAM,IAAMP,EAAiBO,EAAO,YAAY,EAChM,EACA,SAAU,CACRhC,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,MAAMpB,GAAAL,EAAe,KAAK0B,GAAG,UAAUG,GAAG,WAApC,YAAAxB,GAA+C,KAAM,MAAMC,GAAA0B,EAAO,WAAP,YAAA1B,GAAkB,KAAM,IAAMmB,GAAiBlB,GAAAyB,EAAO,WAAP,YAAAzB,GAAkB,GAC3LP,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,MAAMjB,GAAAR,EAAe,KAAK0B,GAAG,UAAUG,GAAG,WAApC,YAAArB,GAA+C,KAAM,MAAMC,GAAAuB,EAAO,WAAP,YAAAvB,GAAkB,KAAM,IAAMgB,GAAiBf,GAAAsB,EAAO,WAAP,YAAAtB,GAAkB,GAC3LV,EAAe,KAAK0B,GAAG,UAAUG,KAAOJ,EAAiB,MAAMd,GAAAX,EAAe,KAAK0B,GAAG,UAAUG,GAAG,WAApC,YAAAlB,GAA+C,KAAM,MAAMC,GAAAoB,EAAO,WAAP,YAAApB,GAAkB,KAAM,IAAMa,GAAiBZ,GAAAmB,EAAO,WAAP,YAAAnB,GAAkB,EAC7L,CACF,EAAE,EAEEoB,EAAiD,CAAC,EACpDC,EAAS,CAAE,UAAW,CAAC,CAAE,GACzB7B,EAAAD,EAAO,KAAK,YAAZ,MAAAC,EAAuB,SAAS,iBAAkB6B,EAASC,IACtD7B,EAAAF,EAAO,KAAK,YAAZ,MAAAE,EAAuB,SAAS,aAAc4B,EAASE,IACvD7B,EAAAH,EAAO,KAAK,YAAZ,MAAAG,EAAuB,SAAS,aAAY2B,EAASG,IAC9D,OAAW,CAACC,EAAMC,CAAO,IAAK,OAAO,QAAQL,EAAO,SAAqC,EAAG,CAC1F,IAAMM,GAAgB,CAAC,EACvB,QAASX,GAAI,EAAGA,GAAIU,EAAQ,OAAS,EAAGV,KAAK,CAC3C,IAAMY,GAAMV,EAAU,KAAMW,IAAOA,GAAG,OAASH,EAAQV,GAAE,EACnDc,GAAMZ,EAAU,KAAMW,IAAOA,GAAG,OAASH,EAAQV,GAAI,EAAE,EAEzDY,IAAOE,IAAKH,GAAG,KAAK,CAACC,GAAI,SAAUE,GAAI,QAAQ,CAAC,CACtD,CACAV,EAAYK,GAAQE,EACtB,CACAxC,EAAe,KAAK0B,GAAK,CAAE,GAAGvB,EAAU,KAAKuB,GAAI,IAAAC,EAAK,OAAAG,EAAQ,UAAAC,EAAW,YAAAE,CAAY,CACvF,CAIF,GAAI,CAACjC,EAAe,MAASG,EAAU,KAAK,SAAWH,EAAe,KAAK,OACzEA,EAAe,KAAO,KAAK,MAAM,KAAK,UAAUG,EAAU,IAAI,CAAC,MAE/D,SAASuB,EAAI,EAAGA,EAAIvB,EAAU,KAAK,OAAQuB,IAAK,CAC9C,IAAMC,EAAOxB,EAAU,KAAKuB,GAAG,IAC5B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,IAAIG,GAAKe,GAAKnB,CAAc,EACtFK,EAAU3B,EAAU,KAAKuB,GAAG,OAC/B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,OAAOG,GAAKe,GAAKnB,CAAc,EAC3FzB,EAAe,KAAK0B,GAAG,UAAU,SAAWvB,EAAU,KAAKuB,GAAG,UAAU,SAAQ1B,EAAe,KAAK0B,GAAG,UAAYvB,EAAU,KAAKuB,GAAG,WACzI,IAAMK,EAAY5B,EAAU,KAAKuB,GAAG,WAAavB,EAAU,KAAKuB,GAAG,UAAU,OAAS,EAAIvB,EAAU,KAAKuB,GAAG,UACzG,IAAI,CAACmB,EAAUhB,IAAMgB,EACnB,IAAI,CAACC,EAAOC,OAAStB,EAAiB,IAAMzB,EAAe,KAAK0B,GAAG,UAAUG,GAAGkB,KAAM,IAAMD,GAAS,IAAMrB,CAAe,CAAU,EACrI,CAAC,EACDQ,EAAc,CAAC,EACnB,GAAI,OAAO,KAAKjC,EAAe,KAAK0B,GAAG,WAAW,EAAE,SAAW,OAAO,KAAKvB,EAAU,KAAKuB,GAAG,WAAW,EAAE,OACxG1B,EAAe,KAAK0B,GAAG,YAAcvB,EAAU,KAAKuB,GAAG,YACvDO,EAAcjC,EAAe,KAAK0B,GAAG,oBAC5BvB,EAAU,KAAKuB,GAAG,YAC3B,QAAWsB,KAAO,OAAO,KAAK7C,EAAU,KAAKuB,GAAG,WAAW,EACzDO,EAAYe,IAAOtC,GAAAD,GAAAD,EAAAL,EAAU,KAAKuB,KAAf,YAAAlB,EAAmB,cAAnB,YAAAC,EAAiCuC,KAAjC,MAAAtC,EAAwC,GACvDP,EAAU,KAAKuB,GAAG,YAAYsB,GAC7B,IAAI,CAACC,EAAKpB,IAAcoB,EACtB,IAAI,CAACH,GAAeC,OAAgBtB,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,YAAYsB,GAAKnB,GAAGkB,IAAKD,IAASrB,CAAc,CAAC,EACrI,KAGRzB,EAAe,KAAK0B,GAAK,CAAE,GAAGvB,EAAU,KAAKuB,GAAI,IAAAC,EAAK,OAAAG,EAAQ,UAAAC,EAAW,YAAaE,CAAyC,CACjI,CAIF,GAAI,CAACjC,EAAe,MAASG,EAAU,KAAK,SAAWH,EAAe,KAAK,OACzEA,EAAe,KAAO,KAAK,MAAM,KAAK,UAAUG,EAAU,IAAI,CAAC,MAE/D,SAASuB,EAAI,EAAGA,EAAIvB,EAAU,KAAK,OAAQuB,IAAK,CAC9C,IAAMC,EAAOxB,EAAU,KAAKuB,GAAG,IAC5B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,IAAIG,GAAKe,GAAKnB,CAAc,EACtFK,EAAU3B,EAAU,KAAKuB,GAAG,OAC/B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,KAAK0B,GAAG,OAAOG,GAAKe,GAAKnB,CAAc,EAC/F,GAAItB,EAAU,KAAKuB,GAAG,SAAU,CAC9B,IAAMwB,EAIF,CAAE,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,CAAC,EAAG,MAAO,CAAE,KAAM,EAAG,IAAK,EAAG,MAAO,CAAE,EAAG,KAAM,CAAE,QAAS,EAAG,SAAU,CAAE,CAAE,EACnHA,EAAS,QAASvC,EAAAR,EAAU,KAAKuB,GAAG,WAAlB,YAAAf,EAA4B,OAC9CuC,EAAS,MAAQ,CACf,OAAQzB,EAAiB,MAAMb,EAAAZ,EAAe,KAAK0B,GAAG,WAAvB,YAAAd,EAAiC,MAAM,OAAQ,MAAMC,EAAAV,EAAU,KAAKuB,GAAG,WAAlB,YAAAb,EAA4B,MAAM,OAAQ,IAAMY,EACpI,MAAOA,EAAiB,MAAMX,EAAAd,EAAe,KAAK0B,GAAG,WAAvB,YAAAZ,EAAiC,MAAM,MAAO,MAAMC,EAAAZ,EAAU,KAAKuB,GAAG,WAAlB,YAAAX,EAA4B,MAAM,MAAO,IAAMU,EACjI,QAASA,EAAiB,MAAMT,EAAAhB,EAAe,KAAK0B,GAAG,WAAvB,YAAAV,EAAiC,MAAM,QAAS,MAAMC,EAAAd,EAAU,KAAKuB,GAAG,WAAlB,YAAAT,EAA4B,MAAM,QAAS,IAAMQ,CACzI,EACAyB,EAAS,KAAO,CAEd,UAAWzB,EAAiB,MAAMP,EAAAlB,EAAe,KAAK0B,GAAG,WAAvB,YAAAR,EAAiC,KAAK,UAAW,MAAMC,EAAAhB,EAAU,KAAKuB,GAAG,WAAlB,YAAAP,EAA4B,KAAK,UAAW,IAAMM,EAC3I,WAAYA,EAAiB,MAAML,EAAApB,EAAe,KAAK0B,GAAG,WAAvB,YAAAN,EAAiC,KAAK,WAAY,MAAMC,EAAAlB,EAAU,KAAKuB,GAAG,WAAlB,YAAAL,EAA4B,KAAK,WAAY,IAAMI,CAChJ,EACAzB,EAAe,KAAK0B,GAAK,CAAE,GAAGvB,EAAU,KAAKuB,GAAI,SAAAwB,EAAU,IAAAvB,EAAK,OAAAG,CAAO,CACzE,CACA9B,EAAe,KAAK0B,GAAK,CAAE,GAAGvB,EAAU,KAAKuB,GAAI,IAAAC,EAAK,OAAAG,CAAO,CAC/D,CAIF,GAAI,CAAC9B,EAAe,QAAWG,EAAU,OAAO,SAAWH,EAAe,OAAO,OAC/EA,EAAe,OAAS,KAAK,MAAM,KAAK,UAAUG,EAAU,MAAM,CAAC,MAEnE,SAASuB,EAAI,EAAGA,EAAIvB,EAAU,OAAO,OAAQuB,IAAK,CAChD,IAAMC,EAAOxB,EAAU,OAAOuB,GAAG,IAC9B,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,OAAO0B,GAAG,IAAIG,GAAKe,GAAKnB,CAAc,EACxFK,EAAU3B,EAAU,OAAOuB,GAAG,OACjC,IAAI,CAACkB,EAAGf,MAAQJ,EAAiB,GAAKzB,EAAe,OAAO0B,GAAG,OAAOG,GAAKe,GAAKnB,CAAc,EACjGzB,EAAe,OAAO0B,GAAK,CAAE,GAAGvB,EAAU,OAAOuB,GAAI,IAAAC,EAAK,OAAAG,CAAO,CACnE,CAIF,GAAI3B,EAAU,QAAS,CACrB,IAAMgD,EAAahD,EAAU,QAC7B,GAAI,CAACH,EAAe,SAAYmD,EAAW,SAAWnD,EAAe,QAAQ,OAC3EA,EAAe,QAAU,KAAK,MAAM,KAAK,UAAUmD,CAAU,CAAC,MAE9D,SAASzB,EAAI,EAAGA,EAAIyB,EAAW,OAAQzB,IACrC1B,EAAe,QAAQ0B,GAAG,IAAOyB,EAAWzB,GAAG,IAC5C,IAAI,CAACC,EAAK,MAAQF,EAAiB,GAAKzB,EAAe,QAAQ0B,GAAG,IAAI,GAAKC,GAAOF,CAAc,CAGzG,CAGItB,EAAU,UAASH,EAAe,QAAUG,EAAU,SAG1D,IAAMiD,EAAK7B,EAAI,EACf,OAAAtB,GAAkBoD,EAAI,QAAUpD,GAAkB,KAAK,MAAMmD,EAAK9B,CAAE,EAAI,KAAK,MAAM8B,EAAK9B,CAAE,EACtFnB,EAAU,cAAaH,EAAe,YAAc,CAAE,GAAGG,EAAU,YAAa,YAAaF,EAAgB,GAE1GD,CACT,CCvLA,IAAAsD,GAAA,GAAAC,GAAAD,GAAA,cAAAE,GAAA,UAAAC,GAAA,eAAAC,KAWO,SAASF,GAASG,EAAyBC,EAAyBC,EAAwB,CAAE,MAAO,EAAG,WAAY,EAAG,EAAG,CAE/H,GAAI,CAACF,GAAe,CAACA,EAAa,OAAO,OAAO,iBAChD,IAAIG,EAAM,EACV,QAASC,EAAI,EAAGA,EAAIJ,EAAY,OAAQI,IAAK,CAC3C,IAAMC,EAAQ,CAACH,EAAQ,OAASA,EAAQ,QAAU,EAAMF,EAAYI,GAAKH,EAAYG,GAAO,KAAK,IAAIJ,EAAYI,GAAKH,EAAYG,EAAE,EACpID,GAAQ,CAACD,EAAQ,OAASA,EAAQ,QAAU,EAAMG,EAAOA,EAASA,GAAQH,EAAQ,KACpF,CACA,OAAQA,EAAQ,YAAc,IAAMC,CACtC,CAGA,IAAMG,GAAoB,CAACC,EAAMC,EAAOC,EAAKC,IAAQ,CACnD,GAAIH,IAAS,EAAG,MAAO,GACvB,IAAMI,EAAOH,IAAU,EAAI,KAAK,KAAKD,CAAI,EAAIA,IAAS,EAAIC,GACpDI,GAAQ,EAAKD,EAAO,IAAOF,IAAQC,EAAMD,GAE/C,OADc,KAAK,IAAI,KAAK,IAAIG,EAAM,CAAC,EAAG,CAAC,CAE7C,EAaO,SAASb,GAAWC,EAAyBC,EAAyBC,EAAwB,CAAE,MAAO,EAAG,WAAY,GAAI,IAAK,GAAK,IAAK,EAAI,EAAG,CACrJ,IAAMK,EAAOV,GAASG,EAAaC,EAAaC,CAAO,EACvD,OAAOI,GAAkBC,EAAML,EAAQ,OAAS,EAAGA,EAAQ,KAAO,EAAGA,EAAQ,KAAO,CAAC,CACvF,CAWO,SAASJ,GAAMe,EAAwBC,EAA2BZ,EAAwB,CAAE,MAAO,EAAG,WAAY,GAAI,UAAW,EAAG,IAAK,GAAK,IAAK,EAAI,EAAG,CAC/J,GAAI,CAAC,MAAM,QAAQW,CAAU,GAAK,CAAC,MAAM,QAAQC,CAAW,GAAKD,EAAW,OAAS,IAAMC,EAAY,SAAW,EAChH,MAAO,CAAE,MAAO,GAAI,SAAU,OAAO,kBAAmB,WAAY,CAAE,EAExE,IAAIC,EAAiB,OAAO,iBACxBC,EAAQ,GACZ,QAASZ,EAAI,EAAGA,EAAIU,EAAY,OAAQV,IAAK,CAC3C,IAAMa,EAAMH,EAAYV,GAAG,SAAWS,EAAW,OAAShB,GAASgB,EAAYC,EAAYV,GAAIF,CAAO,EAAI,OAAO,iBAKjH,GAJIe,EAAMF,IACRA,EAAiBE,EACjBD,EAAQZ,GAENW,GAAkBb,EAAQ,WAAa,GAAI,KACjD,CACA,IAAMgB,EAAuBZ,GAAkBS,EAAgBb,EAAQ,OAAS,EAAGA,EAAQ,KAAO,EAAGA,EAAQ,KAAO,CAAC,EACrH,MAAO,CAAE,MAAAc,EAAO,SAAUD,EAAgB,WAAYG,CAAqB,CAC7E,CClEO,SAASC,GAAKC,EAAqBC,EAAsBC,EAAqBC,EAA2BC,EAA6C,CAN7J,IAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAOE,IAAIC,EAAK,EACHC,EAA0B,CAAC,EACjC,QAAWC,KAAQb,EAAO,CACxB,IAAMc,EAAuB,CAAE,GAAIH,IAAM,KAAAE,EAAM,KAAM,KAAM,MAAO,CAAE,KAAM,KAAM,MAAO,IAAK,EAAG,SAAU,CAAC,EAAG,IAAK,CAAC,EAAG,EAAG,EAAG,CAAC,CAAE,EAC/H,QAAWE,KAAQd,EACbY,EAAK,IAAI,GAAKE,EAAK,IAAI,IACtBF,EAAK,IAAI,GAAKE,EAAK,IAAI,GAAKA,EAAK,IAAI,IACrCF,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKE,EAAK,IAAI,IACrCF,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKE,EAAK,IAAI,GAAKA,EAAK,IAAI,KACtDD,EAAO,KAAOC,GAGlB,GAAID,EAAO,KACT,QAAWE,KAAQd,EACbc,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,IAC3CE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,GAAKA,EAAO,KAAK,IAAI,IACjEE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,IAC5CE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,GAAKA,EAAO,KAAK,IAAI,IAChEA,EAAO,QAAOA,EAAO,MAAM,KAAOE,GAEpCA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,GAAKA,EAAO,KAAK,IAAI,IAClDE,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,IAC9BE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,IAC5CE,EAAK,IAAI,GAAKA,EAAK,IAAI,GAAKF,EAAO,KAAK,IAAI,GAAKA,EAAO,KAAK,IAAI,IAChEA,EAAO,QAAOA,EAAO,MAAM,MAAQE,GAI7C,QAAWC,KAAWd,GAChBc,EAAQ,OAAY,QAAaA,EAAQ,OAAYJ,EAAK,IACrDI,EAAQ,OAAY,QAAaA,EAAQ,OAAYJ,EAAK,IAC1DI,EAAQ,OAAY,QAAaA,EAAQ,SAAYZ,EAAAS,EAAO,OAAP,YAAAT,EAAa,KAClEY,EAAQ,OAAY,QAAaA,EAAQ,SAAYX,EAAAQ,EAAO,MAAM,OAAb,YAAAR,EAAmB,KACxEW,EAAQ,OAAY,QAAaA,EAAQ,SAAYV,EAAAO,EAAO,MAAM,QAAb,YAAAP,EAAoB,MAAIO,EAAO,SAAS,KAAKG,CAAO,EAIpH,IAAMC,EAAc,CAAC,EACfC,EAAc,CAAC,EACfC,EAAaC,GAAyB,CACtCA,GAAOA,EAAI,SAAW,IACxBH,EAAE,KAAKG,EAAI,GAAIA,EAAI,GAAKA,EAAI,EAAE,EAC9BF,EAAE,KAAKE,EAAI,GAAIA,EAAI,GAAKA,EAAI,EAAE,EAElC,EACAD,EAAUN,EAAO,KAAK,GAAG,EACzBM,GAAUZ,EAAAM,EAAO,OAAP,YAAAN,EAAa,GAAG,EAC1BY,GAAUX,EAAAK,EAAO,MAAM,OAAb,YAAAL,EAAmB,GAAG,EAChCW,GAAUV,EAAAI,EAAO,MAAM,QAAb,YAAAJ,EAAoB,GAAG,EACjC,IAAMY,EAAO,KAAK,IAAI,GAAGJ,CAAC,EACpBK,EAAO,KAAK,IAAI,GAAGJ,CAAC,EAC1BL,EAAO,IAAM,CAACQ,EAAMC,EAAM,KAAK,IAAI,GAAGL,CAAC,EAAII,EAAM,KAAK,IAAI,GAAGH,CAAC,EAAII,CAAI,GAGlEnB,GAAA,YAAAA,EAAQ,MAAMA,GAAA,YAAAA,EAAQ,MAAIU,EAAO,OAAS,CAACA,EAAO,IAAI,GAAKV,EAAM,GAAIU,EAAO,IAAI,GAAKV,EAAM,GAAIU,EAAO,IAAI,GAAKV,EAAM,GAAIU,EAAO,IAAI,GAAKV,EAAM,EAAE,GAErJQ,EAAQ,KAAKE,CAAM,CACrB,CACA,OAAOF,CACT,CC7DO,IAAMY,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JPC,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;MCjJpB,eAAeC,GAAaC,EAA8C,CACxE,IAAMC,EAAY,CAACC,EAAgBC,EAAO,6BAA+B,MAAM,QAAQA,YAAeD,GAAQ,EAAE,KAAME,GAAQA,EAAI,KAAK,CAAC,EACpIC,EACAD,EACJ,OAAQJ,EAAS,OAAO,YACjB,OAAQK,EAAO,MAAMJ,EAAiBK,EAAI,EAAG,UAC7C,WACA,OAAQD,EAAO,MAAMJ,EAAiBM,EAAI,EAAG,cACzCF,EAAO,KAElB,GAAIA,EAAM,CACR,IAAMG,EAAS,MAAM,kBAAkBH,CAAI,EAC3CD,EAAM,MAAMJ,EAAS,OAAOQ,EAAQR,EAAS,MAAM,EACnDQ,EAAO,MAAM,CACf,CACA,OAAOJ,CACT,CAEA,eAAeK,GAAaT,EAA8C,CACxE,OAAO,IAAI,QAASU,GAAY,CAC9B,IAAIC,EAEJ,OAAQX,EAAS,OAAO,YACjB,OAEHW,EAAM,0BAAmCL,GACzC,UACG,WACA,OAEHK,EAAM,0BAAmCJ,GACzC,cAEAI,EAAM,GAGV,IAAIC,EACJ,GAAI,OAAO,OAAU,YAAaA,EAAM,IAAI,cAEnCC,EAAI,MAAOD,EAAM,IAAIC,EAAI,UAC7B,QACLD,EAAI,OAAS,SAAY,CACvB,IAAME,EAAeA,GAAOF,EAAI,aAAcA,EAAI,aAAa,EAC/D,GAAI,CAACE,EACHC,EAAI,0BAA0B,EAC9BL,EAAQ,MAAS,MACZ,CACL,IAAMM,EAAMF,EAAO,WAAW,IAAI,EAC9BE,GAAKA,EAAI,UAAUJ,EAAK,EAAG,CAAC,EAEhC,IAAMK,EAAS,MAAMjB,EAAS,MAAMc,CAAM,EACpCV,EAAMa,EAAO,OAAS,MAAMjB,EAAS,OAAOiB,EAAO,OAAQjB,EAAS,MAAM,EAAI,OACpFU,EAAQN,CAAG,CACb,CACF,EACIO,EAAKC,EAAI,IAAMD,EACdD,EAAQ,MAAS,CACxB,CAAC,CACH,CAEA,eAAeQ,GAAWlB,EAA8C,CACtE,IAAMmB,EAAQC,GAAgB,OAAO,KAAKA,EAAK,QAAQ,EACnDR,EACAZ,EAAS,OAAO,SAAW,OAAQY,EAAMO,EAAYb,EAAI,EACxDM,EAAMO,EAAYZ,EAAI,EAC3B,IAAIH,EACJ,GAAK,SAAUiB,GAAW,aAAW,IAAM,aAAe,CACxD,IAAMC,EAAkB,OAAQ,WAAWV,CAAG,EACxCW,EAAsB,aAAWD,EAAM,CAAC,EAC9CtB,EAAS,GAAG,QAAQsB,CAAI,EAExBlB,EAAM,MAAMJ,EAAS,OAAOuB,EAAUvB,EAAS,MAAM,EACrDA,EAAS,GAAG,QAAQuB,CAAQ,CAC9B,MACMvB,EAAS,OAAO,OAAOe,EAAI,6BAA6B,EAU9D,OAAOX,CACT,CAEA,eAAeoB,GAAaxB,EAAiB,CAC3C,IAAII,EACJ,OAAI,OAAO,mBAAsB,WAAYA,EAAM,MAAML,GAAaC,CAAQ,EACrE,OAAO,OAAU,aAAea,EAAI,SAAW,OAAWT,EAAM,MAAMK,GAAaT,CAAQ,EAC/FI,EAAM,MAAMc,GAAWlB,CAAQ,EAC7BI,CACT,CAGA,eAAsBqB,GAAWC,EAAmB,CA9GpD,IAAAC,EAAAC,EAAAC,EAAAC,EA+GE,GAAI,CAAI,MAAI,EAAE,aAAa,oBAAqB,OAChD,IAAMC,EAAiB,aAAW,EAC5BC,EAAkB,UAAQ,EAChC,GAAKD,IAAgB,SAAWA,IAAgB,WAAc,EAACC,GAAA,MAAAA,EAAc,wBAE3E,OAEC,MAAI,EAAE,IAAI,sBAAuB,EAAI,EACxC,IAAMC,EAAqB,SAAO,EAAE,MAAM,WACpCC,EAA2B,CAAC,EAClC,OAAW,CAACC,EAAWC,CAAK,IAAK,OAAO,QAAQV,CAAS,EAAE,OAAO,CAAC,CAACW,EAAKC,CAAG,IAAOD,IAAQ,MAAQC,IAAQ,IAAK,EAAG,CACjH,IAAMC,GAASX,GAAAD,EAAAS,EAAM,SAAN,YAAAT,EAAe,KAAf,MAAAC,EAAmB,MAAS,CAAC,GAAGQ,EAAM,OAAO,GAAG,KAAK,EAAI,CAAC,EAAG,GAAI,GAAI,CAAC,EAC/EI,GAAiBV,GAAAD,EAAAO,EAAM,SAAN,YAAAP,EAAe,KAAf,MAAAC,EAAmB,MAASM,EAAM,OAAO,GAAG,MAAQ,UAC3E,QAASK,EAAM,EAAGA,EAAMF,EAAM,OAAQE,IAChCF,EAAME,KAAS,KAAIF,EAAME,GAAOA,IAAQ,EAAI,EAAI,IAEtD,IAAMxB,EAAY,QAAMsB,EAAOC,CAAK,EACpC,GAAI,CACF,IAAMpC,EAAMgC,EAAM,QAAQnB,CAAM,EAChCiB,EAAe,KAAKC,CAAS,EACzB,MAAM,QAAQ/B,CAAG,EAAGA,EAAI,QAASsC,GAAS,UAAQA,CAAC,CAAC,EAChD,UAAQtC,CAAG,CACrB,OAAQuC,EAAN,CACA5B,EAAI,sBAAuBoB,CAAS,CACtC,CACG,UAAQlB,CAAM,CACnB,CACA,IAAM2B,EAAU,MAAMZ,EAAa,4BAA4B,EAC/DA,EAAa,oBAAoB,EACjCjB,EAAI,uBAAwBmB,CAAc,EAC1CnB,EAAI,wBAAyB6B,EAAQ,MAAM,EACxC,MAAI,EAAE,IAAI,sBAAuB,EAAK,EACzC,IAAMC,EAAmB,SAAO,EAAE,MAAM,WACnCA,EAAgBZ,EAAmB,GAAGlB,EAAI,eAAgB8B,EAAgBZ,CAAe,CAChG,CAOA,eAAsBa,GAAO9C,EAAiB+C,EAA2D,CACvG,IAAMC,EAAKC,EAAI,EAGf,OAFAjD,EAAS,MAAQ,SACb+C,IAAY/C,EAAS,OAASkD,EAAUlD,EAAS,OAAQ+C,CAAU,GACnE,CAAC/C,EAAS,OAAO,QAAUA,EAAS,OAAO,OAAO,SAAW,GAAKA,EAAS,OAAO,SAAW,OACxF,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAaA,EAAS,YAAa,UAAWiD,EAAI,EAAG,QAAS,CAAC,EAAG,MAAO,IAAK,EAEzI,IAAI,QAAQ,MAAOvC,GAAY,CACpC,MAAMe,GAAWzB,EAAS,MAAM,EAChC,IAAMI,EAAM,MAAMoB,GAAaxB,CAAQ,EACjCmD,EAAKF,EAAI,EACXjD,EAAS,OAAO,OAAOe,EAAI,SAAUf,EAAS,OAAO,OAAQ,KAAK,MAAMmD,EAAKH,CAAE,EAAG,IAAI,EAC1FhD,EAAS,KAAK,QAAQ,EACtBU,EAAQN,CAAG,CACb,CAAC,CACH,CCvKA,IAAAgD,GAAAC,GAAAC,GAAAC,GAsDaC,GAAN,KAAY,CAuEjB,YAAYC,EAA8B,CArE1CC,EAAA,gBAKAA,EAAA,eAKAA,EAAA,eAMAA,EAAA,cAGAA,EAAA,gBAMAA,EAAA,WAGAA,EAAA,YAOAA,EAAA,aAMAA,EAAA,eAWAA,EAAA,eAEAA,EAAA,0BAEAA,EAAA,kBAEAA,EAAA,oBACAC,GAAA,KAAAP,GAAA,QACAO,GAAA,KAAAN,GAAA,QACAM,GAAA,KAAAL,GAAA,QAEAI,EAAA,WA4DAA,EAAA,eAAU,IAAIE,IAAkB,CAC9B,GAAI,CAACC,GAAA,KAAKR,IAAqB,OAC/B,IAAMS,EAAiB,KAAK,GAAG,OAAO,EAAE,MAAM,WACxCC,EAAkBF,GAAA,KAAKT,IAC7BY,GAAA,KAAKZ,GAAcU,GACnB,IAAMG,EAASH,EAAiBC,EAC5BE,IAAW,GAAGC,EAAI,GAAGN,EAAKK,CAAM,CACtC,GAGAN,GAAA,KAAAJ,GAAWY,GAAgC,CACzC,GAAI,CAACN,GAAA,KAAKP,IAAc,OAAO,KAC/B,GAAI,CAACa,EAAO,MAAO,uBACnB,GAAI,KAAK,IAAI,MAAQ,EAAEA,aAAoBC,IAAS,MAAO,yBAC3D,GAAI,CACF,KAAK,GAAG,WAAW,CACrB,OAAQC,EAAN,CACA,MAAO,oBACT,CACA,OAAO,IACT,GAwBAX,EAAA,KAAO,aAAmBY,IAE1BZ,EAAA,KAAO,WAAiBa,IAExBb,EAAA,KAAO,QAAcc,IAoGrBd,EAAA,YAAQe,GAAkB,CAvU5B,IAAAC,GAwUQA,EAAA,KAAK,SAAL,MAAAA,EAAa,eAAe,KAAK,OAAO,cAAc,IAAI,MAAMD,CAAK,CAAC,CAC5E,GA3ME,KAAK,IAAME,EAMX,IAAMC,GAAgBC,GAAQ,MAAW,gBAAc,QAAQ,QAAS,EAAE,EAC1EC,GAAS,SAAW,8DAA8DF,UAClFE,GAAS,cAAgBH,EAAI,QAAU,aAAe,iBACtDG,GAAS,QAAUH,EAAI,QAAU,UAAY,aAC7C,KAAK,QAAcI,GACnB,OAAO,eAAe,KAAM,UAAW,CAAE,MAAWA,EAAQ,CAAC,EAC7D,KAAK,OAAS,KAAK,MAAM,KAAK,UAAUD,EAAQ,CAAC,EACjD,OAAO,KAAK,KAAK,MAAM,EACvB,KAAK,OAAO,YAAc,OAAO,WAAc,YAC3CrB,IAAY,KAAK,OAASuB,EAAU,KAAK,OAAQvB,CAAU,GAC/DwB,GAAoB,KAAK,MAAM,EAC/B,KAAK,GAAKC,EACV,KAAK,MAAQ,OACblB,GAAA,KAAKZ,GAAc,GACnBY,GAAA,KAAKX,GAAsB,IAC3BW,GAAA,KAAKV,GAAe,IACpB,KAAK,YAAc,CAAC,EACpB,KAAK,OAAU,OAAO,aAAgB,YAAe,IAAI,YAAgB,OAEzE,KAAK,OAAS,IAAW6B,GAEzB,KAAK,KAAO,CACV,QAAcC,GACd,OAAQ,CAACjB,EAAwDkB,IAA2BC,GAAOnB,EAAOkB,CAAM,EAChH,KAAM,CAACA,EAAmBE,EAAsBH,IAAwCI,GAAKH,EAAQE,EAAQH,CAAO,EACpH,KAAM,CAACC,EAAmBE,EAAsBH,IAAwCK,GAAKJ,EAAQE,EAAQH,CAAO,EACpH,KAAM,CAACC,EAAmBE,EAAsBH,IAAwCM,GAAKL,EAAQE,EAAQH,CAAO,EACpH,QAAS,CAACC,EAAmBE,EAAyBH,IAAwCO,GAAQN,EAAQE,EAAQH,CAAO,EAC7H,OAAQ,CAACC,EAAmBE,EAAwBH,IAAwCQ,GAAOP,EAAQE,EAAQH,CAAO,EAC1H,OAAQ,CAACC,EAAmBE,EAAwBH,IAAwCS,GAAOR,EAAQE,EAAQH,CAAO,EAC1H,IAAK,CAACC,EAAmBE,EAAgBH,IAAwCU,GAAIT,EAAQE,EAAQH,CAAO,CAC9G,EACA,KAAK,OAAS,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,CAAC,EAAG,UAAW,EAAG,QAAS,CAAC,EAAG,MAAO,IAAK,EAE/H,KAAK,QAAU,CAAE,OAAQ,KAAM,OAAQ,IAAK,EAE5C,KAAK,kBAA6BW,GAClC,KAAK,UAAqBC,GAE1B,KAAK,GAAalB,EAEXmB,GAAc,KAAM,KAAM,EAAE,EAEnC,KAAK,KAAK,QAAQ,CACpB,CA0BA,OAAc,CACZ,IAAMC,EAAiB,KAAK,OAAO,QACnC,KAAK,OAAS,KAAK,MAAM,KAAK,UAAUpB,EAAQ,CAAC,EACjD,KAAK,OAAO,QAAUoB,EAChBC,GAAM,EACZxB,EAAI,QAAU,EAChB,CAGA,SAASlB,EAA8B,CACrC,IAAM2C,EAAOC,GAASvB,GAAUrB,GAAc,KAAK,MAAM,EACzD,OAAI2C,EAAK,SAAW,IAAG,KAAK,OAASpB,EAAU,KAAK,OAAQvB,CAAU,GAC/D2C,CACT,CAGA,OAAQ,CACN,OAAcC,GAAS,IAAI,CAC7B,CAUA,KAAc,CACZ,OAAOC,EAAI,CACb,CAQA,MAAMnC,EAAcoC,EAAqB,GAAM,CAC7C,OAAaC,GAAQrC,EAAO,KAAK,OAAQoC,CAAS,CACpD,CAYA,MAAM,aAAapC,EAAcsC,EAA6G,CAC5I,OAAoBD,GAAQrC,EAAOsC,EAAY,KAAK,MAAM,CAC5D,CAOA,QAAQtC,EAA8B,CACpC,OAAeuC,GAAQvC,CAAK,CAC9B,CASA,QAAQwC,EAA0BC,EAA4C,CAC5E,OAAaC,GAAQ,KAAK,OAAQF,EAAkBC,CAAiB,CACvE,CAOA,MAAM,MAAsB,CAC1B,MAAcE,GAAM,KAAM,EAAI,EAC9B,MAAM,KAAK,GAAG,MAAM,EACdX,GAAM,CACd,CAOA,MAAM,KAAK1C,EAA6C,CACtD,KAAK,MAAQ,OACb,IAAMsD,EAAYT,EAAI,EAChBU,EAAQ,OAAO,OAAO,KAAK,MAAM,EAAE,OAAQC,GAAUA,CAAK,EAAE,OAC9DxD,IAAY,KAAK,OAASuB,EAAU,KAAK,OAAQvB,CAAU,GAE3D,KAAK,IAAI,UACP,KAAK,OAAO,OAAOS,EAAI,YAAY,KAAK,SAAS,EACjD,KAAK,OAAO,OAAOA,EAAI,iBAAiB,KAAK,GAAG,QAAQ,cAAwB,EAC/E,MAAc4C,GAAM,IAAI,GAAG5C,EAAI,6BAA6B,EACjE,MAAS,QAAM,EACX,KAAK,IAAI,UACP,KAAK,OAAO,OAAOA,EAAI,iBAAkB,KAAK,MAAM,EACpD,KAAK,OAAO,OAAOA,EAAI,eAAgB,KAAK,GAAG,EAC/C,KAAK,OAAO,OAAOA,EAAI,YAAa,KAAK,GAAG,IAAI,KAAK,IAI7D,MAAagD,GAAK,IAAI,EAClB,KAAK,IAAI,SAAW,KAAK,OAAO,OAAOhD,EAAI,mBAAoB,KAAK,GAAG,OAAO,EAAE,MAAM,SAAU,QAAS,KAAK,GAAG,OAAO,EAAE,MAAM,WAAY,SAAS,EACzJ,KAAK,IAAI,QAAU,GAEJ,OAAO,OAAO,KAAK,MAAM,EAAE,OAAQ+C,GAAUA,CAAK,EAAE,SACpDD,IACNX,GAAS,IAAI,EACpB,KAAK,KAAK,MAAM,GAGlB,IAAMc,EAAU,KAAK,MAAMb,EAAI,EAAIS,CAAS,EACxCI,GAAW,KAAK,YAAY,YAAc,KAAI,KAAK,YAAY,WAAa,KAAK,IAAI,SAAW,KAAK,YAAY,YAAc,GAAKA,EAAUA,EACpJ,CAaA,KAAK5B,EAAiB,KAAK,OAAgB,CACzC,OAAmB6B,GAAK7B,EAAQ,KAAK,MAAM,CAC7C,CAGA,eAA4B,CAAE,OAAc8B,GAAc,IAAI,CAAG,CAQjE,MAAM,OAAO5D,EAA8B,CACzC,IAAM6D,EAAKhB,EAAI,EACTiB,EAAM,MAAcC,GAAO,KAAM/D,CAAU,EAC3CgE,EAAKnB,EAAI,EACf,YAAK,YAAY,OAAS,KAAK,MAAMmB,EAAKH,CAAE,EACrCC,CACT,CAMA,MAAM,QAAQpD,EAAcV,EAAyF,CACnH,IAAMiE,EAAU,MAAM,KAAK,GAAG,QAAQ,IAAM,KAAK,OAAOvD,EAAOV,CAAU,CAAC,EACpEkE,EAAkC,CAAC,EACrCC,EAAQ,EACZ,QAAWC,KAAUH,EAAQ,QACvBC,EAAQE,EAAO,MAAOF,EAAQE,EAAO,OAASA,EAAO,aACpDF,EAAQE,EAAO,MAAQA,EAAO,aACnCD,GAASC,EAAO,aAElB,IAAMC,EAA8D,CAAC,EACrE,OAAO,QAAQH,CAAO,EAAE,QAASI,GAAQD,EAAU,KAAK,CAAE,OAAQC,EAAI,GAAI,KAAMA,EAAI,GAAyB,KAAM,CAAE,CAAC,CAAC,EACvH,QAAWF,KAAUC,EACnBD,EAAO,KAAO,KAAK,MAAM,IAAOA,EAAO,KAAOD,CAAK,EAAI,IACvDC,EAAO,KAAO,KAAK,MAAM,IAAOA,EAAO,IAAI,EAAI,IAEjD,OAAAC,EAAU,KAAK,CAACE,EAAGC,IAAMA,EAAE,KAAOD,EAAE,IAAI,EACxCF,EAAU,OAAS,GACZA,CACT,CAYA,MAAM,OAAO3D,EAAcV,EAA+C,CAExE,YAAK,MAAQ,SACN,IAAI,QAAQ,MAAOyE,GAAY,CA3Y1C,IAAAxD,EAAAyD,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,EAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GAAAC,GA4YM,KAAK,MAAQ,SACb,IAAIvC,EAGJ,KAAK,OAAS/B,EAAU,KAAK,OAAQvB,CAAU,EAG/C,KAAK,MAAQ,QACb,IAAM8F,EAAQ1F,GAAA,KAAKN,IAAL,UAAaY,GACvBoF,IACFrF,EAAIqF,EAAOpF,CAAK,EAChB,KAAK,KAAK,OAAO,EACjB+D,EAAQ,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,KAAK,YAAa,UAAW5B,EAAI,EAAG,QAAS,CAAC,EAAG,MAAAiD,CAAM,CAAC,GAGxI,IAAMC,EAAYlD,EAAI,EAGtB,MAAcQ,GAAM,IAAI,EAGxB,MAAM,KAAK,KAAK,EAEhBC,EAAYT,EAAI,EAChB,KAAK,MAAQ,QACb,IAAMmD,EAAM,MAAYjD,GAAQrC,EAAO,KAAK,MAAM,EAKlD,GAJA,KAAK,QAAUsF,EACf,KAAK,YAAY,aAAe,KAAK,IAAI,SAAW,KAAK,YAAY,cAAgB,GAAK,KAAK,MAAMnD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,EACtJ,KAAK,QAAQ,YAAY,EAErB,CAAC0C,EAAI,OAAQ,CACX,KAAK,OAAO,OAAOvF,EAAI,mCAAmC,EAC9D,KAAK,KAAK,OAAO,EACjBgE,EAAQ,CAAE,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,KAAM,CAAC,EAAG,QAAS,CAAC,EAAG,OAAQ,CAAC,EAAG,YAAa,KAAK,YAAa,UAAW5B,EAAI,EAAG,QAAS,CAAC,EAAG,MAAO,mCAAoC,CAAC,EAC3K,MACF,CACA,KAAK,KAAK,OAAO,EAEjBS,EAAYT,EAAI,EAChB,KAAK,OAAO,YAAc,MAAYoD,GAAK,KAAK,OAAQD,EAAI,MAAM,EAC7D,KAAK,YAAY,cAAa,KAAK,YAAY,YAAc,GAC7D,KAAK,YAAY,eAAc,KAAK,YAAY,aAAe,GACnE,KAAK,YAAY,cACd,KAAK,OAAO,aAAa,KAAK,YAAY,eAC9C,KAAK,YAAY,WAAa,KAAK,IAAI,SAAW,KAAK,YAAY,YAAc,GAAK,KAAK,MAAMnD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,EAClJ,KAAK,QAAQ,gBAAgB,EAI7B,IAAI4C,EAA0D,CAAC,EAC3DC,EAA0D,CAAC,EAC3DC,EAA0D,CAAC,EAC3DC,EAAgE,CAAC,EAGrE,KAAK,MAAQ,cACT,KAAK,OAAO,OACdH,EAAU,KAAK,OAAO,KAAK,QAAeI,GAAW,KAAMN,EAAI,MAAM,EAAI,CAAC,EACtE,KAAK,YAAY,MAAM,OAAO,KAAK,YAAY,OAEnD1C,EAAYT,EAAI,EAChBqD,EAAU,KAAK,OAAO,KAAK,QAAU,MAAWI,GAAW,KAAMN,EAAI,MAAM,EAAI,CAAC,EAChF,KAAK,YAAY,KAAO,KAAK,IAAI,SAAW,KAAK,YAAY,MAAQ,GAAK,KAAK,MAAMnD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAGpI,KAAK,OAAO,QAAU,KAAK,OAAO,KAAK,cAAgB,IAAM,KAAK,OAAO,KAAK,cAAgB,MAAK4C,EAAU,MAAMA,GAGvH,KAAK,QAAQ,aAAa,EAC1B,KAAK,MAAQ,cACb,IAAMK,EAAa,KAAK,OAAO,KAAK,cAAgB,GAAKhF,EAAU,KAAK,OAAQ,CAAE,KAAM,CAAE,YAAa,KAAK,OAAO,KAAK,QAAU,EAAK2E,EAAyB,OAAS,CAAE,CAAE,CAAC,EAAI,KAAK,OACnL,KAAK,OAAO,QACVjF,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,WAAYkF,EAAU,KAAK,OAAO,KAAK,QAAkBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAC5H7B,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,aAAcyB,EAAU,KAAK,OAAO,KAAK,QAAoBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GACrI5B,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,iBAAkBwB,EAAU,KAAK,OAAO,KAAK,QAAwBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAC7I3B,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,aAAYuB,EAAU,KAAK,OAAO,KAAK,QAAkBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GACtI,KAAK,YAAY,MAAM,OAAO,KAAK,YAAY,OAEnDjD,EAAYT,EAAI,GACZgC,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,WAAYsB,EAAU,KAAK,OAAO,KAAK,QAAU,MAAcK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAClIzB,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,aAAcqB,EAAU,KAAK,OAAO,KAAK,QAAU,MAAgBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAC3IxB,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,iBAAkBoB,EAAU,KAAK,OAAO,KAAK,QAAU,MAAoBK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GACnJvB,EAAA,KAAK,OAAO,KAAK,YAAjB,MAAAA,EAA4B,SAAS,aAAYmB,EAAU,KAAK,OAAO,KAAK,QAAU,MAAcK,GAAQR,EAAI,OAAQO,CAAU,EAAI,CAAC,GAChJ,KAAK,YAAY,KAAO,KAAK,IAAI,SAAW,KAAK,YAAY,MAAQ,GAAK,KAAK,MAAM1D,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAExI,KAAK,QAAQ,WAAW,EAGxB,KAAK,QAAQ,aAAa,EAC1B,KAAK,MAAQ,cACb,IAAMmD,EAAa,KAAK,OAAO,KAAK,cAAgB,GAAKlF,EAAU,KAAK,OAAQ,CAAE,KAAM,CAAE,YAAa,KAAK,OAAO,KAAK,QAAU,EAAK2E,EAAyB,OAAS,CAAE,CAAE,CAAC,EAAI,KAAK,OACnL,KAAK,OAAO,QACVhB,GAAAD,EAAA,KAAK,OAAO,KAAK,WAAjB,YAAAA,EAA2B,YAA3B,MAAAC,EAAsC,SAAS,cAAekB,EAAU,KAAK,OAAO,KAAK,QAAmBI,GAAQR,EAAI,OAAQS,CAAU,EAAI,CAAC,GAC1IrB,GAAAD,EAAA,KAAK,OAAO,KAAK,WAAjB,YAAAA,EAA2B,YAA3B,MAAAC,EAAsC,SAAS,eAAcgB,EAAU,KAAK,OAAO,KAAK,QAAoBI,GAAQR,EAAI,OAAQS,CAAU,EAAI,CAAC,GACpJ,KAAK,YAAY,MAAM,OAAO,KAAK,YAAY,OAEnDnD,EAAYT,EAAI,GACZyC,GAAAD,EAAA,KAAK,OAAO,KAAK,WAAjB,YAAAA,EAA2B,YAA3B,MAAAC,EAAsC,SAAS,cAAec,EAAU,KAAK,OAAO,KAAK,QAAU,MAAeI,GAAQR,EAAI,OAAQS,CAAU,EAAI,CAAC,GAChJjB,IAAAD,EAAA,KAAK,OAAO,KAAK,WAAjB,YAAAA,EAA2B,YAA3B,MAAAC,GAAsC,SAAS,eAAcY,EAAU,KAAK,OAAO,KAAK,QAAU,MAAgBI,GAAQR,EAAI,OAAQS,CAAU,EAAI,CAAC,GAC9J,KAAK,YAAY,KAAO,KAAK,IAAI,SAAW,KAAK,YAAY,MAAQ,GAAK,KAAK,MAAM5D,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAExI,KAAK,QAAQ,WAAW,EAGxB,KAAK,QAAQ,eAAe,EAC5B,KAAK,MAAQ,gBACT,KAAK,OAAO,QACVmC,GAAA,KAAK,OAAO,OAAO,YAAnB,MAAAA,GAA8B,SAAS,WAAYY,EAAY,KAAK,OAAO,OAAO,QAAkBG,GAAQR,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GACnIN,GAAA,KAAK,OAAO,OAAO,YAAnB,MAAAA,GAA8B,SAAS,eAAcW,EAAY,KAAK,OAAO,OAAO,QAAoBG,GAAQR,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GACjJ,KAAK,YAAY,QAAQ,OAAO,KAAK,YAAY,SAErD1C,EAAYT,EAAI,GACZ8C,GAAA,KAAK,OAAO,OAAO,YAAnB,MAAAA,GAA8B,SAAS,WAAYU,EAAY,KAAK,OAAO,OAAO,QAAU,MAAcG,GAAQR,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GACzIJ,GAAA,KAAK,OAAO,OAAO,YAAnB,MAAAA,GAA8B,SAAS,eAAcS,EAAY,KAAK,OAAO,OAAO,QAAU,MAAgBG,GAAQR,EAAI,OAAQ,KAAK,MAAM,EAAI,CAAC,GAC3J,KAAK,YAAY,OAAS,KAAK,IAAI,SAAW,KAAK,YAAY,QAAU,GAAK,KAAK,MAAMnD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAE5I,KAAK,QAAQ,aAAa,EAG1B,KAAK,MAAQ,eACT,KAAK,OAAO,QAAO,CAAC4C,EAASC,EAASC,EAASC,CAAS,EAAI,MAAM,QAAQ,IAAI,CAACH,EAASC,EAASC,EAASC,CAAS,CAAC,GAGxH,KAAK,MAAQ,iBACb,IAAIK,EAA8B,CAAC,EAC/B,KAAK,OAAO,QAAQ,UACtBpD,EAAYT,EAAI,EAChB6D,EAAa,CAAC,GAAW3E,GAAKmE,CAAuB,EAAG,GAAWlE,GAAKmE,CAAuB,EAAG,GAAWlE,GAAKmE,CAAuB,EAAG,GAAWO,GAAKT,CAAuB,CAAC,EAC/K,KAAK,OAAO,MACR,KAAK,YAAY,SAAS,OAAO,KAAK,YAAY,QADnC,KAAK,YAAY,QAAU,KAAK,IAAI,SAAW,KAAK,YAAY,SAAW,GAAK,KAAK,MAAMrD,EAAI,EAAIS,CAAS,EAAI,KAAK,MAAMT,EAAI,EAAIS,CAAS,GAItK,KAAK,YAAY,MAAQ,KAAK,IAAI,SAAW,KAAK,YAAY,OAAS,GAAK,KAAK,MAAMT,EAAI,EAAIkD,CAAS,EAAI,KAAK,MAAMlD,EAAI,EAAIkD,CAAS,EACxI,IAAMa,IAAQf,GAAA,KAAK,QAAQ,SAAb,YAAAA,GAAqB,QAAS,CAAC,EAC7C,KAAK,OAAS,CACZ,KAAMK,EACN,KAAMC,EACN,KAAMC,EACN,QAASM,EACT,OAAQL,EACR,YAAa,KAAK,YAClB,OAAQ,KAAK,QAAQ,OACrB,UAAW,KAAK,IAAI,EACpB,MAAO,KACP,IAAI,SAAU,CAAE,OAAeQ,GAAKX,EAAyBC,EAAyBC,EAAyBM,EAAYE,CAAK,CAAG,CACrI,EAGG,UAAQZ,EAAI,MAAM,EAGrB,KAAK,KAAK,QAAQ,EAClB,KAAK,MAAQ,OACbvB,EAAQ,KAAK,MAAM,CACrB,CAAC,CACH,CACF,EArbE9E,GAAA,YACAC,GAAA,YACAC,GAAA,YAwEAC,GAAA", + "names": ["log", "msg", "dt", "ts", "join", "folder", "file", "separator", "path", "now", "validate", "defaults", "config", "parent", "msgs", "key", "defined", "same", "mergeDeep", "objects", "isObject", "obj", "prev", "pVal", "oVal", "config", "tfjs_esm_exports", "__export", "b", "d", "v", "__reExport", "dist_star", "r", "e", "o", "a", "t", "s", "f", "vertexIdentity", "colorMatrixWithAlpha", "colorMatrixWithoutAlpha", "pixelate", "blur", "convolution", "collect", "source", "prefix", "collection", "r", "match", "name", "GLProgram", "gl", "vertexSource", "fragmentSource", "__publicField", "type", "shader", "log", "vertexShader", "fragmentShader", "u", "GLImageFilter", "drawCount", "sourceTexture", "lastInChain", "currentFramebufferIndex", "tempFramebuffers", "filterChain", "vertexBuffer", "currentProgram", "fxcanvas", "canvas", "shaderProgramCache", "DRAW", "resize", "width", "height", "vertices", "createFramebufferTexture", "fbo", "renderbuffer", "texture", "getTempFramebuffer", "index", "draw", "flags", "target", "flipY", "compileShader", "vertexIdentity", "floatSize", "vertSize", "filter", "matrix", "m", "colorMatrixWithoutAlpha", "colorMatrixWithAlpha", "program", "brightness", "b", "amount", "x", "y", "v", "o", "rotation", "cos", "sin", "lumR", "lumG", "lumB", "pixelSizeX", "pixelSizeY", "convolution", "a", "size", "s", "blurSizeX", "blurSizeY", "blur", "pixelate", "args", "func", "image", "i", "f", "histogramEqualization", "inputImage", "squeeze", "channels", "min", "max", "absMax", "channel", "maxValue", "sub", "range", "fact", "enh", "rgb", "reshape", "maxSize", "inCanvas", "outCanvas", "tmpCanvas", "fx", "last", "reset", "canvas", "width", "height", "c", "env", "copy", "input", "output", "outputCanvas", "process", "config", "getTensor", "_a", "_b", "log", "d", "tensor", "rgb", "cast", "originalWidth", "originalHeight", "targetWidth", "targetHeight", "inCtx", "GLImageFilter", "pixels", "depth", "arr", "tempData", "casted", "histogramEqualization", "skip", "skipFrame", "t", "diffRelative", "compare", "input1", "input2", "Env", "__publicField", "v", "raw", "platformMatch", "c", "canvas", "ctx", "gl", "adapter", "e", "kernel", "cpu", "env", "models_exports", "__export", "Models", "getModelStats", "load", "reset", "validate", "validateModel", "model", "last", "raceNames", "ageWeights", "lastCount", "lastTime", "skipped", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "skipFrame", "skipTime", "now", "resolve", "t", "box", "obj", "gender", "race", "i", "a", "b", "ageSorted", "age", "tensor", "constants", "init", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "log", "loadModel", "predict", "image", "idx", "count", "_a", "_b", "_c", "_d", "skipFrame", "skipTime", "now", "resolve", "t", "constants", "obj", "data", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "rgb", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "_c", "_d", "skipFrame", "skipTime", "now", "resolve", "t", "red", "green", "blue", "redNorm", "greenNorm", "blueNorm", "grayscale", "constants", "obj", "data", "tensor", "model", "cached", "skipped", "lastCount", "lastTime", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "skipTime", "now", "skipFrame", "resolve", "resize", "res", "num", "meshAnnotations", "meshLandmarks", "blazeFaceLandmarks", "irisIndices", "UV468", "TRI468", "VTX68", "VTX33", "VTX7", "UV68", "x", "UV468", "UV33", "UV7", "connectionsToIndices", "connections", "indices", "connection", "pairsLips", "pairsLeftEye", "pairsLeftEyebrow", "pairsLeftIris", "pairsRightEye", "pairsRightEyebrow", "pairsRightIris", "pairsFaceContour", "contourKeypoints", "getBoxSize", "box", "getBoxCenter", "clampBox", "input", "getRawBox", "scaleBoxCoordinates", "factor", "startPoint", "endPoint", "cutAndResize", "image", "cropSize", "h", "w", "cutBox", "crop", "norm", "constants", "enlargeBox", "center", "size", "halfSize", "squarifyBox", "centers", "calculateLandmarksBoundingBox", "landmarks", "x", "d", "y", "fixedRotationMatrix", "normalizeRadians", "angle", "computeRotation", "point1", "point2", "buildTranslationMatrix", "x", "y", "dot", "v1", "v2", "product", "i", "getColumnFrom2DArr", "arr", "columnIndex", "column", "multiplyTransformMatrices", "mat1", "mat2", "size", "row", "col", "buildRotationMatrix", "rotation", "center", "cosA", "sinA", "rotationMatrix", "translationMatrix", "translationTimesRotation", "negativeTranslationMatrix", "invertTransformMatrix", "matrix", "rotationComponent", "translationComponent", "invertedTranslation", "rotatePoint", "homogeneousCoordinate", "generateAnchors", "inputSize", "spec", "anchors", "i", "stride", "gridRows", "gridCols", "anchorsNum", "gridY", "anchorY", "gridX", "anchorX", "n", "transformRawCoords", "coordsRaw", "box", "angle", "rotationMatrix", "boxSize", "getBoxSize", "coordsScaled", "coord", "largeAngle", "coordsRotationMatrix", "buildRotationMatrix", "fixedRotationMatrix", "coordsRotated", "rotatePoint", "inverseRotationMatrix", "invertTransformMatrix", "boxCenter", "getBoxCenter", "offsets", "dot", "correctFaceRotation", "rotate", "input", "symmetryLine", "meshLandmarks", "blazeFaceLandmarks", "face", "env", "computeRotation", "center", "centerRaw", "rotated", "cutAndResize", "findFaceCenter", "mesh", "x", "m", "y", "calculateFaceBox", "previousBox", "keypointsCount", "faceBoxScaleFactor", "model", "anchors", "inputSize", "inputSizeT", "size", "load", "config", "_a", "env", "log", "loadModel", "generateAnchors", "decodeBoxes", "boxOutputs", "constants", "boxes", "tensor", "getBoxes", "inputImage", "_b", "_c", "_d", "t", "res", "sorted", "a", "b", "nms", "scores", "i", "confidence", "points", "rawBox", "scaledBox", "scaleBoxCoordinates", "enlargedBox", "enlargeBox", "squaredBox", "squarifyBox", "blazeposecoords_exports", "__export", "connected", "kpt", "inputSize", "anchorTensor", "numLayers", "strides", "createAnchors", "anchors", "layerId", "anchorCount", "lastSameStrideLayer", "stride", "featureMapHeight", "featureMapWidth", "y", "x", "anchorId", "a", "calc", "keypoints", "outputSize", "coords", "pt", "min", "max", "box", "boxRaw", "square", "center", "dist", "scale", "scaleFact", "env", "models", "inputSize", "skipped", "outputNodes", "cache", "cropBox", "padding", "lastTime", "sigmoid", "x", "loadDetect", "config", "_a", "loadModel", "inputs", "log", "createAnchors", "loadPose", "prepareImage", "input", "size", "_a", "_b", "t", "final", "cropBox", "height", "width", "padding", "constants", "tensor", "rescaleKeypoints", "keypoints", "outputSize", "kpt", "fixKeypoints", "leftPalm", "k", "leftWrist", "leftIndex", "rightPalm", "rightWrist", "rightIndex", "detectLandmarks", "config", "models", "outputNodes", "poseScore", "points", "distances", "keypointsRelative", "depth", "i", "score", "sigmoid", "presence", "adjScore", "positionRaw", "inputSize", "position", "distance", "kpts", "boxes", "calc", "annotations", "name", "indexes", "connected", "pt", "pt0", "pt1", "predict", "skipTime", "now", "lastTime", "skipFrame", "skipped", "cache", "labels", "model", "inputSize", "last", "lastTime", "skipped", "load", "config", "env", "log", "loadModel", "inputs", "process", "res", "outputShape", "t", "results", "detections", "arr", "nms", "i", "id", "score", "classVal", "label", "labels", "x", "y", "boxRaw", "box", "tensor", "predict", "input", "skipTime", "now", "skipFrame", "resolve", "outputSize", "resize", "objectT", "obj", "efficientposecoords_exports", "__export", "connected", "kpt", "model", "lastTime", "cache", "skipped", "load", "config", "env", "log", "loadModel", "max2d", "inputs", "minScore", "width", "height", "reshaped", "max", "newScore", "coordinates", "mod", "div", "y", "predict", "image", "skipTime", "now", "skipFrame", "resolve", "tensor", "resize", "enhance", "constants", "resT", "squeeze", "stack", "id", "x", "partScore", "kpt", "s", "prev", "curr", "a", "xRaw", "yRaw", "name", "indexes", "connected", "pt", "i", "pt0", "pt1", "annotations", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "skipFrame", "skipTime", "now", "resolve", "obj", "t", "inputSize", "constants", "data", "i", "a", "b", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "_a", "env", "log", "loadModel", "predict", "input", "idx", "count", "_b", "skipFrame", "skipTime", "now", "resolve", "data", "t", "output", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "log", "loadModel", "predict", "input", "idx", "count", "_a", "_b", "skipFrame", "skipTime", "now", "resolve", "data", "t", "output", "tensor", "model", "inputSize", "irisEnlarge", "leftOutline", "meshAnnotations", "rightOutline", "eyeLandmarks", "irisLandmarks", "load", "config", "_a", "_b", "env", "log", "loadModel", "replaceIrisCoords", "rawCoords", "newCoords", "prefix", "keys", "i", "irisIndices", "key", "indices", "originalIndices", "j", "index", "getLeftToRightEyeDepthDifference", "leftEyeZ", "rightEyeZ", "getEyeBox", "face", "eyeInnerCornerIndex", "eyeOuterCornerIndex", "meshSize", "flip", "box", "squarifyBox", "enlargeBox", "calculateLandmarksBoundingBox", "boxSize", "getBoxSize", "crop", "flipped", "getEyeCoords", "eyeData", "eyeBox", "eyeBoxSize", "eyeRawCoords", "x", "y", "z", "getAdjustedIrisCoords", "irisCoords", "direction", "upperCenterZ", "lowerCenterZ", "averageZ", "coord", "augmentIris", "leftEyeBox", "leftEyeBoxSize", "leftEyeCrop", "rightEyeBox", "rightEyeBoxSize", "rightEyeCrop", "combined", "eyePredictions", "eyePredictionsData", "leftEyeData", "leftEyeRawCoords", "leftIrisRawCoords", "rightEyeData", "rightEyeRawCoords", "rightIrisRawCoords", "leftToRightEyeDepthDifference", "adjustedLeftIrisCoords", "adjustedRightIrisCoords", "LIPS_CONNECTIONS", "LEFT_EYE_CONNECTIONS", "LEFT_EYEBROW_CONNECTIONS", "LEFT_IRIS_CONNECTIONS", "RIGHT_EYE_CONNECTIONS", "RIGHT_EYEBROW_CONNECTIONS", "RIGHT_IRIS_CONNECTIONS", "FACE_OVAL_CONNECTIONS", "connectionsToIndices", "connections", "indices", "connection", "MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR", "LIPS_CONNECTIONS", "LEFT_EYE_CONNECTIONS", "LEFT_EYEBROW_CONNECTIONS", "LEFT_IRIS_CONNECTIONS", "RIGHT_EYE_CONNECTIONS", "RIGHT_EYEBROW_CONNECTIONS", "RIGHT_IRIS_CONNECTIONS", "FACE_OVAL_CONNECTIONS", "indexLabelPairs", "label", "index", "MEDIAPIPE_FACE_MESH_KEYPOINTS", "LANDMARKS_REFINEMENT_LIPS_CONFIG", "LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG", "LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG", "augment", "rawCoords", "results", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "t", "r", "val", "irisLDepth", "LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG", "prev", "curr", "i", "irisRDepth", "LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG", "LANDMARKS_REFINEMENT_LIPS_CONFIG", "cache", "model", "inputSize", "predict", "input", "config", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "skipTime", "now", "skipFrame", "getBoxes", "faces", "newCache", "id", "size", "i", "box", "angle", "rotationMatrix", "face", "correctFaceRotation", "equilized", "histogramEqualization", "log", "env", "results", "faceConfidence", "t", "clampBox", "getRawBox", "pt", "key", "blazeFaceLandmarks", "meshT", "coordsReshaped", "rawCoords", "augment", "augmentIris", "transformRawCoords", "meshAnnotations", "index", "calculatedBox", "calculateFaceBox", "load", "loadModel", "triangulation", "TRI468", "uvmap", "UV468", "model", "last", "lastTime", "lastCount", "skipped", "load", "config", "_a", "env", "log", "loadModel", "enhance", "input", "tensor", "crop", "norm", "constants", "predict", "image", "idx", "count", "_b", "_c", "_d", "skipFrame", "skipTime", "now", "resolve", "obj", "enhanced", "resT", "gender", "t", "confidence", "argmax", "age", "all", "desc", "descriptor", "getBoxSize", "box", "getBoxCenter", "cutBoxFromImageAndResize", "image", "cropSize", "h", "w", "boxes", "scaleBoxCoordinates", "factor", "startPoint", "endPoint", "palmLandmarks", "coord", "enlargeBox", "center", "size", "newHalfSize", "squarifyBox", "centers", "halfSize", "normalizeRadians", "angle", "computeRotation", "point1", "point2", "radians", "buildTranslationMatrix", "x", "y", "dot", "v1", "v2", "product", "i", "getColumnFrom2DArr", "arr", "columnIndex", "column", "multiplyTransformMatrices", "mat1", "mat2", "size", "row", "col", "buildRotationMatrix", "rotation", "center", "cosA", "sinA", "rotationMatrix", "translationMatrix", "translationTimesRotation", "negativeTranslationMatrix", "invertTransformMatrix", "matrix", "rotationComponent", "translationComponent", "invertedTranslation", "rotatePoint", "homogeneousCoordinate", "anchors", "HandDetector", "model", "__publicField", "_a", "_b", "_c", "_d", "anchors", "anchor", "boxes", "t", "res", "tensor", "rawPalmLandmarks", "index", "input", "config", "constants", "scores", "nms", "hands", "p", "box", "startPoint", "endPoint", "palmLandmarks", "hand", "scaled", "scaleBoxCoordinates", "palmBoxEnlargeFactor", "handBoxEnlargeFactor", "palmLandmarkIds", "palmLandmarksPalmBase", "palmLandmarksMiddleFingerBase", "lastTime", "HandPipeline", "handDetector", "handPoseModel", "__publicField", "_a", "_b", "_c", "landmarks", "xs", "d", "ys", "startPoint", "endPoint", "palmLandmarks", "rotationMatrix", "rotatedPalmLandmarks", "coord", "rotatePoint", "boxAroundPalm", "enlargeBox", "squarifyBox", "boundingBox", "boxAroundHand", "i", "rawCoords", "box2", "angle", "boxSize", "getBoxSize", "scaleFactor", "coordsScaled", "coordsRotationMatrix", "buildRotationMatrix", "coordsRotated", "inverseRotationMatrix", "invertTransformMatrix", "boxCenter", "getBoxCenter", "originalBoxCenter", "dot", "image", "config", "useFreshBox", "boxes", "skipTime", "now", "skipFrame", "hands", "currentBox", "computeRotation", "palmCenter", "palmCenterNormalized", "rotatedImage", "env", "newBox", "croppedInput", "cutBoxFromImageAndResize", "handImage", "constants", "confidenceT", "keypoints", "confidence", "keypointsReshaped", "coords", "nextBoundingBox", "result", "enlarged", "a", "Finger", "value", "FingerCurl", "FingerDirection", "FingerGesture", "name", "__publicField", "finger", "curl", "confidence", "position", "weight", "total", "a", "b", "el", "detectedCurls", "detectedDirections", "fingerIdx", "detectedCurl", "expectedCurls", "expectedCurl", "score", "detectedDirection", "expectedDirections", "expectedDirection", "thumb", "index", "middle", "ring", "pinky", "Finger", "none", "half", "full", "FingerCurl", "verticalUp", "verticalDown", "horizontalLeft", "horizontalRight", "diagonalUpRight", "diagonalUpLeft", "diagonalDownRight", "diagonalDownLeft", "FingerDirection", "ThumbsUp", "FingerGesture", "finger", "Victory", "Point", "MiddleFinger", "OpenPalm", "fingergesture_default", "minConfidence", "options", "calculateSlope", "point1x", "point1y", "point2x", "point2y", "value", "slope", "getSlopes", "point1", "point2", "slopeXY", "slopeYZ", "angleOrientationAt", "angle", "weightageAt", "isVertical", "isDiagonal", "isHorizontal", "estimateFingerCurl", "startPoint", "midPoint", "endPoint", "start_mid_x_dist", "start_end_x_dist", "mid_end_x_dist", "start_mid_y_dist", "start_end_y_dist", "mid_end_y_dist", "start_mid_z_dist", "start_end_z_dist", "mid_end_z_dist", "start_mid_dist", "start_end_dist", "mid_end_dist", "cos_in", "angleOfCurve", "fingerCurl", "FingerCurl", "estimateHorizontalDirection", "max_dist_x", "estimatedDirection", "FingerDirection", "estimateVerticalDirection", "max_dist_y", "estimateDiagonalDirection", "reqd_vertical_direction", "reqd_horizontal_direction", "calculateFingerDirection", "fingerSlopes", "voteVertical", "voteDiagonal", "voteHorizontal", "start_end_x_y_dist_ratio", "max_dist", "calc_start_point_x", "calc_start_point_y", "calc_end_point_x", "calc_end_point_y", "totalAngle", "votes", "fingerSlope", "fingerVotes", "estimate", "landmarks", "slopesXY", "slopesYZ", "fingerCurls", "fingerDirections", "finger", "Finger", "points", "slopeAtXY", "slopeAtYZ", "point", "slopes", "pointIndexAt", "fingerPointsAt", "fingerCurled", "fingerPosition", "analyze", "keypoints", "estimatorRes", "fingerIdx", "match", "poses", "gesture", "fingergesture_default", "confidence", "meshAnnotations", "handDetectorModel", "handPoseModel", "handPipeline", "predict", "input", "config", "predictions", "hands", "i", "annotations", "key", "index", "keypoints", "box", "boxRaw", "pt", "landmarks", "analyze", "load", "_a", "_b", "env", "loadModel", "log", "handDetector", "HandDetector", "HandPipeline", "config", "extensions", "gl", "register", "instance", "_a", "log", "reset", "canvas", "err", "e", "ctx", "kernelConfig", "newKernelConfig", "current", "registerCustomOps", "config", "env", "kernelMod", "op", "log", "kernelFloorMod", "kernelRotateWithOffset", "backend", "t", "check", "instance", "force", "timeStamp", "now", "adapter", "adapterInfo", "register", "available", "mt", "simd", "e", "init", "err", "gl", "fakeOps", "kernelNames", "kernelName", "kernelConfig", "kernel", "models", "modelOutputNodes", "inputSize", "classes", "faceIndex", "boxExpandFact", "maxDetectorResolution", "detectorExpandFact", "skipped", "lastTime", "outputSize", "cache", "fingerMap", "loadDetect", "config", "_a", "env", "log", "fakeOps", "loadModel", "inputs", "loadSkeleton", "detectHands", "input", "config", "hands", "models", "t", "ratio", "height", "maxDetectorResolution", "width", "modelOutputNodes", "classScores", "faceIndex", "id", "nms", "scores", "classNum", "nmsIndex", "boxSlice", "boxYX", "boxData", "boxRaw", "scale", "detectorExpandFact", "boxFull", "outputSize", "score", "label", "classes", "hand", "tensor", "a", "b", "detectFingers", "h", "boxCrop", "inputSize", "constants", "rawScore", "coordsNorm", "kpt", "analyze", "key", "fingerMap", "index", "predict", "_a", "_b", "skipped", "skipTime", "now", "lastTime", "skipFrame", "cache", "resolve", "skipTimeExtended", "skipFrameExtended", "handBox", "oldCache", "i", "boxKpt", "square", "boxScale", "boxExpandFact", "boxScaleRaw", "bbox", "calc", "model", "cached", "skipped", "lastCount", "lastTime", "load", "config", "_a", "env", "log", "loadModel", "predict", "image", "idx", "count", "_b", "skipTime", "now", "skipFrame", "resolve", "resize", "res", "num", "movenetcoords_exports", "__export", "connected", "horizontal", "kpt", "relative", "vertical", "maxJitter", "cache", "bodyParts", "body", "pair", "horizontal", "left", "kp", "right", "tmp", "vertical", "lower", "higher", "compare", "relative", "leftTo", "rightTo", "distanceLeft", "distanceRight", "jitter", "keypoints", "i", "diff", "padInput", "input", "inputSize", "_a", "_b", "t", "final", "tensor", "rescaleBody", "outputSize", "kpt", "rescaledBoxes", "calc", "pt", "model", "inputSize", "skipped", "cache", "load", "config", "_a", "env", "log", "fakeOps", "loadModel", "parseSinglePose", "res", "image", "kpt", "keypoints", "score", "id", "positionRaw", "prev", "curr", "bodies", "newBox", "calc", "pt", "annotations", "name", "indexes", "connected", "i", "pt0", "kp", "pt1", "body", "bodyParts", "parseMultiPose", "totalScore", "a", "b", "predict", "input", "skipTime", "now", "skipFrame", "resolve", "t", "padInput", "rescaleBody", "jitter", "tensor", "model", "last", "lastTime", "skipped", "inputSize", "scaleBox", "load", "config", "env", "loadModel", "inputs", "log", "process", "res", "outputShape", "id", "results", "size", "strideSize", "baseSize", "scoresT", "a", "labels", "scores", "featuresT", "boxesMaxT", "boxIdxT", "boxIdx", "i", "j", "score", "cx", "cy", "boxOffset", "x", "y", "w", "h", "boxRaw", "box", "result", "nmsBoxes", "nmsScores", "nmsIdx", "nms", "_val", "idx", "b", "predict", "image", "skipTime", "now", "skipFrame", "resolve", "outputSize", "resizeT", "normT", "constants", "transposeT", "objectT", "obj", "partNames", "count", "partIds", "result", "jointName", "i", "connectedPartNames", "connectedPartIndices", "jointNameA", "jointNameB", "poseChain", "getBoundingBox", "keypoints", "coord", "maxX", "maxY", "minX", "minY", "x", "y", "scalePoses", "poses", "height", "width", "inputResolutionHeight", "inputResolutionWidth", "scaleY", "scaleX", "scalePose", "pose", "i", "score", "part", "position", "MaxHeap", "maxSize", "getElementValue", "__publicField", "max", "k", "j", "t", "getOffsetPoint", "keypoint", "offsets", "count", "getImageCoords", "outputStride", "heatmapY", "heatmapX", "clamp", "a", "min", "max", "squaredDistance", "y1", "x1", "y2", "x2", "dy", "dx", "addVectors", "b", "model", "poseNetOutputs", "localMaximumRadius", "outputStride", "squaredNmsRadius", "traverse", "edgeId", "sourceKeypoint", "targetId", "scores", "offsets", "displacements", "offsetRefineStep", "getDisplacement", "point", "getStridedIndexNearPoint", "height", "width", "clamp", "sourceKeypointIndices", "displacement", "targetKeypoint", "addVectors", "i", "targetKeypointIndices", "offsetPoint", "getOffsetPoint", "targetKeyPointIndices", "score", "partNames", "decodePose", "root", "displacementsFwd", "displacementsBwd", "tuples", "poseChain", "parentJoinName", "childJoinName", "partIds", "edgesFwd", "childJointId", "edgesBwd", "parentJointId", "numParts", "numEdges", "keypoints", "rootPoint", "getImageCoords", "edge", "sourceId", "scoreIsMaximumInLocalWindow", "keypointId", "heatmapY", "heatmapX", "localMaximum", "yStart", "yEnd", "yCurrent", "xStart", "xEnd", "xCurrent", "buildPartWithScoreQueue", "minConfidence", "numKeypoints", "queue", "MaxHeap", "withinRadius", "poses", "x", "y", "_a", "correspondingKeypoint", "squaredDistance", "getInstanceScore", "existingPoses", "result", "position", "decode", "maxDetected", "rootImageCoords", "a", "box", "getBoundingBox", "predict", "input", "config", "res", "resized", "normalized", "results3d", "buffers", "tensor", "t", "decoded", "scalePoses", "load", "env", "loadModel", "log", "model", "busy", "load", "config", "env", "loadModel", "log", "process", "input", "background", "_a", "_b", "inputImage", "width", "height", "t", "constants", "data", "tensor", "alphaCanvas", "canvas", "alphaCtx", "alphaData", "compositeCanvas", "compositeCtx", "compositeData", "i", "mergedCanvas", "bgImage", "ctxMerge", "Models", "__publicField", "getModelStats", "instance", "totalSizeFromManifest", "totalSizeWeights", "totalSizeLoading", "m", "modelStats", "percentageLoaded", "reset", "model", "load", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "_k", "_l", "_m", "_n", "_o", "_p", "_q", "_r", "_s", "_t", "_u", "_v", "_w", "_x", "_y", "_z", "env", "loadPose", "loadDetect", "loadSkeleton", "validateModel", "newInstance", "name", "log", "simpleOps", "ignoreOps", "ops", "missing", "url", "executor", "kernel", "op", "validate", "defined", "res", "options", "modelStats", "httpHandler", "url", "init", "log", "setModelLoadOptions", "config", "loadModel", "modelPath", "_a", "_b", "_c", "modelUrl", "join", "modelPathSegments", "shortModelName", "cachedModelName", "models_exports", "cachedModels", "e", "tfLoadOptions", "model", "b", "loaded", "artifacts", "err", "saveResult", "validateModel", "draw_exports", "__export", "all", "body", "canvas", "face", "gesture", "hand", "object", "options", "person", "getCanvasContext", "input", "log", "ctx", "rad2deg", "theta", "colorDepth", "z", "opt", "rgb", "point", "x", "y", "localOptions", "rect", "width", "height", "cx", "cy", "lines", "points", "pt", "curves", "i", "xc", "yc", "arrow", "from", "to", "radius", "angle", "options", "opt", "drawLabels", "f", "ctx", "_a", "_b", "labels", "emotion", "rad2deg", "i", "x", "y", "drawIrisElipse", "_c", "_d", "sizeX", "sizeY", "drawGazeSpheres", "valX", "valY", "pathV", "pathH", "drawGazeArrows", "leftGaze", "arrow", "rightGaze", "drawFacePolygons", "TRI468", "points", "index", "lines", "drawFacePoints", "point", "LANDMARKS_REFINEMENT_LIPS_CONFIG", "LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG", "LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG", "drawFaceBoxes", "rect", "face", "inCanvas", "result", "drawOptions", "mergeDeep", "options", "getCanvasContext", "body", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "i", "rect", "pt", "colorDepth", "point", "part", "connected", "curves", "hand", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "h", "rect", "pt", "colorDepth", "point", "addHandLabel", "part", "title", "z", "addHandLine", "i", "object", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "h", "rect", "label", "gesture", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "i", "j", "where", "what", "who", "label", "drawTime", "person", "inCanvas", "result", "drawOptions", "localOptions", "mergeDeep", "options", "ctx", "getCanvasContext", "i", "rect", "label", "canvas", "input", "output", "all", "timeStamp", "now", "promise", "face", "body", "hand", "object", "gesture", "env", "expandFact", "alpha", "insidePoly", "x", "y", "polygon", "inside", "j", "i", "mask", "face", "width", "height", "buffer", "silhouette", "pt", "meshAnnotations", "output", "calculateGaze", "face", "radians", "pt1", "pt2", "offsetIris", "eyeRatio", "left", "irisCenter", "eyeCenter", "eyeSize", "eyeDiff", "strength", "calculateFaceAngle", "imageSize", "normalize", "v", "length", "subVectors", "a", "b", "x", "y", "z", "crossVectors", "rotationMatrixToEulerAngle", "r", "r00", "_r01", "_r02", "r10", "r11", "r12", "r20", "r21", "r22", "thetaX", "thetaY", "thetaZ", "mesh", "size", "pts", "pt", "yAxis", "xAxis", "zAxis", "matrix", "angle", "gaze", "detectFace", "instance", "input", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "_k", "_l", "_m", "_n", "_o", "_p", "_q", "_r", "_s", "_t", "_u", "_v", "_w", "_x", "_y", "_z", "_A", "_B", "_C", "timeStamp", "now", "ageRes", "gearRes", "genderRes", "emotionRes", "mobilefacenetRes", "insightfaceRes", "antispoofRes", "livenessRes", "descRes", "faceRes", "faces", "predict", "env", "i", "log", "masked", "mask", "rotation", "calculateFaceAngle", "irisSize", "tensor", "res", "body", "res", "gestures", "i", "leftWrist", "a", "rightWrist", "nose", "leftShoulder", "rightShoulder", "face", "zDiff", "xDiff", "mouthOpen", "chinDepth", "iris", "_a", "_b", "_c", "_d", "sizeXLeft", "sizeYLeft", "areaLeft", "sizeXRight", "sizeYRight", "areaRight", "center", "leftIrisCenterX", "rightIrisCenterX", "rightIrisCenterY", "leftIrisCenterY", "hand", "fingers", "finger", "pos", "closest", "best", "highest", "poses", "match", "pose", "bufferedResult", "interpolateTime", "calc", "newResult", "config", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "_k", "_l", "_m", "_n", "_o", "_p", "_q", "t0", "now", "elapsed", "bufferedFactor", "i", "box", "newBoxCoord", "j", "boxRaw", "keypoints", "newKpt", "annotations", "coords", "efficientposecoords_exports", "blazeposecoords_exports", "movenetcoords_exports", "name", "indexes", "pt", "pt0", "kp", "pt1", "b", "landmark", "coord", "k", "key", "val", "rotation", "newPersons", "t1", "env", "match_exports", "__export", "distance", "match", "similarity", "descriptor1", "descriptor2", "options", "sum", "i", "diff", "normalizeDistance", "dist", "order", "min", "max", "root", "norm", "descriptor", "descriptors", "lowestDistance", "index", "res", "normalizedSimilarity", "join", "faces", "bodies", "hands", "gestures", "shape", "_a", "_b", "_c", "_d", "_e", "_f", "id", "persons", "face", "person", "body", "hand", "gesture", "x", "y", "extractXY", "box", "minX", "minY", "face", "body", "warmupBitmap", "instance", "b64toBlob", "base64", "type", "res", "blob", "face", "body", "bitmap", "warmupCanvas", "resolve", "src", "img", "env", "canvas", "log", "ctx", "tensor", "warmupNode", "atob", "str", "tfjs_esm_exports", "data", "expanded", "runInference", "runCompile", "allModels", "_a", "_b", "_c", "_d", "backendType", "webGLBackend", "numTensorsStart", "compiledModels", "modelName", "model", "key", "val", "shape", "dtype", "dim", "t", "e", "kernels", "numTensorsEnd", "warmup", "userConfig", "t0", "now", "mergeDeep", "t1", "_numTensors", "_analyzeMemoryLeaks", "_checkSanity", "_sanity", "Human", "userConfig", "__publicField", "__privateAdd", "msg", "__privateGet", "currentTensors", "previousTensors", "__privateSet", "leaked", "log", "input", "d", "e", "similarity", "distance", "match", "event", "_a", "env", "tfVersion", "v", "config", "version", "mergeDeep", "setModelLoadOptions", "tfjs_esm_exports", "Models", "options", "output", "canvas", "result", "face", "body", "hand", "gesture", "object", "person", "all", "triangulation", "uvmap", "validateModel", "currentBackend", "reset", "msgs", "validate", "now", "getTensor", "process", "background", "enhance", "firstImageTensor", "secondImageTensor", "compare", "check", "timeStamp", "count", "model", "load", "current", "calc", "getModelStats", "t0", "res", "warmup", "t1", "profile", "kernels", "total", "kernel", "kernelArr", "key", "a", "b", "resolve", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "_j", "_k", "_l", "_m", "_n", "_o", "_p", "_q", "_r", "_s", "_t", "_u", "error", "timeStart", "img", "skip", "faceRes", "bodyRes", "handRes", "objectRes", "detectFace", "bodyConfig", "predict", "handConfig", "gestureRes", "iris", "shape", "join"] } diff --git a/dist/human.esm.js b/dist/human.esm.js index 80c49390..1a115a77 100644 --- a/dist/human.esm.js +++ b/dist/human.esm.js @@ -427,6 +427,7 @@ __export(tfjs_esm_exports, { UnsortedSegmentSum: () => UnsortedSegmentSum, UpperBound: () => UpperBound, Variable: () => Variable, + WebGPUBackend: () => WebGPUBackend, ZerosLike: () => ZerosLike, _FusedMatMul: () => _FusedMatMul, abs: () => abs, @@ -721,7 +722,7 @@ __export(tfjs_esm_exports, { version_webgl: () => version6, webgl: () => webgl, webgl_util: () => webgl_util_exports, - webgpu: () => webgpu_exports, + webgpu_util: () => webgpu_util_exports, where: () => where, whereAsync: () => whereAsync, zeros: () => zeros, @@ -1301,7 +1302,7 @@ var require_long = __commonJS({ return this.not().add(ONE); }; LongPrototype.neg = LongPrototype.negate; - LongPrototype.add = function add6(addend) { + LongPrototype.add = function add5(addend) { if (!isLong(addend)) addend = fromValue(addend); var a48 = this.high >>> 16; @@ -1332,7 +1333,7 @@ var require_long = __commonJS({ return this.add(subtrahend.neg()); }; LongPrototype.sub = LongPrototype.subtract; - LongPrototype.multiply = function multiply5(multiplier) { + LongPrototype.multiply = function multiply4(multiplier) { if (this.isZero()) return ZERO; if (!isLong(multiplier)) @@ -6845,7 +6846,7 @@ function getFilteredNodesXToY(tape, xs, y) { } return filteredTape; } -function backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add6) { +function backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add5) { for (let i2 = filteredTape.length - 1; i2 >= 0; i2--) { const node2 = filteredTape[i2]; const dys = []; @@ -6877,7 +6878,7 @@ function backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy tensorAccumulatedGradientMap[x.id] = dx; } else { const curGradient = tensorAccumulatedGradientMap[x.id]; - tensorAccumulatedGradientMap[x.id] = add6(curGradient, dx); + tensorAccumulatedGradientMap[x.id] = add5(curGradient, dx); curGradient.dispose(); } } @@ -8252,8 +8253,8 @@ function op(f) { Object.defineProperty(f2, "name", { value: opName, configurable: true }); return f2; } -function complex_(real6, imag5) { - const $real = convertToTensor(real6, "real", "complex"); +function complex_(real5, imag5) { + const $real = convertToTensor(real5, "real", "complex"); const $imag = convertToTensor(imag5, "imag", "complex"); assertShapesMatch($real.shape, $imag.shape, `real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`); const inputs = { real: $real, imag: $imag }; @@ -8416,13 +8417,13 @@ function decodeWeights(buffer2, specs) { values = new Uint8Array(byteBuffer); } else if (dtype === "complex64") { values = new Float32Array(byteBuffer); - const real6 = new Float32Array(values.length / 2); + const real5 = new Float32Array(values.length / 2); const image2 = new Float32Array(values.length / 2); - for (let i2 = 0; i2 < real6.length; i2++) { - real6[i2] = values[i2 * 2]; + for (let i2 = 0; i2 < real5.length; i2++) { + real5[i2] = values[i2 * 2]; image2[i2] = values[i2 * 2 + 1]; } - const realTensor = tensor(real6, shape, "float32"); + const realTensor = tensor(real5, shape, "float32"); const imageTensor = tensor(image2, shape, "float32"); out[name] = complex(realTensor, imageTensor); realTensor.dispose(); @@ -10785,9 +10786,9 @@ function expectPromiseToFail(fn, done) { } } function expectArraysEqual(actual, expected) { - const exp6 = typeof expected === "string" || typeof expected === "number" || typeof expected === "boolean" ? [expected] : expected; + const exp5 = typeof expected === "string" || typeof expected === "number" || typeof expected === "boolean" ? [expected] : expected; if (isString(actual) || isString(actual[0]) || isString(expected) || isString(expected[0])) { - return expectArraysPredicate(actual, exp6, (a, b) => a == b); + return expectArraysPredicate(actual, exp5, (a, b) => a == b); } return expectArraysPredicate(actual, expected, (a, b) => areClose(a, b, 0)); } @@ -11926,9 +11927,9 @@ function divNoNan_(a, b) { let $b = convertToTensor(b, "b", "div"); [$a, $b] = makeTypesMatch($a, $b); const divResult = div($a, $b); - const zeros5 = zerosLike(divResult); - const bEqualsZero = equal($b, zeros5); - return where(bEqualsZero, zeros5, divResult); + const zeros4 = zerosLike(divResult); + const bEqualsZero = equal($b, zeros4); + return where(bEqualsZero, zeros4, divResult); } var divNoNan = op({ divNoNan_ }); function dot_(t1, t2) { @@ -12058,9 +12059,9 @@ function min_(x, axis = null, keepDims = false) { return ENGINE.runKernel(Min, inputs, attrs); } var min = op({ min_ }); -function pow_(base, exp6) { +function pow_(base, exp5) { let $base = convertToTensor(base, "base", "pow"); - let $exp = convertToTensor(exp6, "exp", "pow"); + let $exp = convertToTensor(exp5, "exp", "pow"); [$base, $exp] = makeTypesMatch($base, $exp); const inputs = { a: $base, b: $exp }; return ENGINE.runKernel(Pow, inputs); @@ -12623,18 +12624,18 @@ function mean_(x, axis = null, keepDims = false) { var mean = op({ mean_ }); function zeros(shape, dtype = "float32") { if (dtype === "complex64") { - const real6 = zeros(shape, "float32"); + const real5 = zeros(shape, "float32"); const imag5 = zeros(shape, "float32"); - return complex(real6, imag5); + return complex(real5, imag5); } const values = makeZerosTypedArray(sizeFromShape(shape), dtype); return ENGINE.makeTensor(values, shape, dtype); } function ones2(shape, dtype = "float32") { if (dtype === "complex64") { - const real6 = ones2(shape, "float32"); + const real5 = ones2(shape, "float32"); const imag5 = zeros(shape, "float32"); - return complex(real6, imag5); + return complex(real5, imag5); } const values = makeOnesTypedArray(sizeFromShape(shape), dtype); return ENGINE.makeTensor(values, shape, dtype); @@ -16099,70 +16100,70 @@ var ERF_A2 = -0.284496736; var ERF_A3 = 1.421413741; var ERF_A4 = -1.453152027; var ERF_A5 = 1.061405429; -function mergeRealAndImagArrays(real6, imag5) { - if (real6.length !== imag5.length) { - throw new Error(`Cannot merge real and imag arrays of different lengths. real:${real6.length}, imag: ${imag5.length}.`); +function mergeRealAndImagArrays(real5, imag5) { + if (real5.length !== imag5.length) { + throw new Error(`Cannot merge real and imag arrays of different lengths. real:${real5.length}, imag: ${imag5.length}.`); } - const result = new Float32Array(real6.length * 2); + const result = new Float32Array(real5.length * 2); for (let i2 = 0; i2 < result.length; i2 += 2) { - result[i2] = real6[i2 / 2]; + result[i2] = real5[i2 / 2]; result[i2 + 1] = imag5[i2 / 2]; } return result; } -function splitRealAndImagArrays(complex6) { - const real6 = new Float32Array(complex6.length / 2); - const imag5 = new Float32Array(complex6.length / 2); - for (let i2 = 0; i2 < complex6.length; i2 += 2) { - real6[i2 / 2] = complex6[i2]; - imag5[i2 / 2] = complex6[i2 + 1]; +function splitRealAndImagArrays(complex5) { + const real5 = new Float32Array(complex5.length / 2); + const imag5 = new Float32Array(complex5.length / 2); + for (let i2 = 0; i2 < complex5.length; i2 += 2) { + real5[i2 / 2] = complex5[i2]; + imag5[i2 / 2] = complex5[i2 + 1]; } - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } -function complexWithEvenIndex(complex6) { - const len = Math.ceil(complex6.length / 4); - const real6 = new Float32Array(len); +function complexWithEvenIndex(complex5) { + const len = Math.ceil(complex5.length / 4); + const real5 = new Float32Array(len); const imag5 = new Float32Array(len); - for (let i2 = 0; i2 < complex6.length; i2 += 4) { - real6[Math.floor(i2 / 4)] = complex6[i2]; - imag5[Math.floor(i2 / 4)] = complex6[i2 + 1]; + for (let i2 = 0; i2 < complex5.length; i2 += 4) { + real5[Math.floor(i2 / 4)] = complex5[i2]; + imag5[Math.floor(i2 / 4)] = complex5[i2 + 1]; } - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } -function complexWithOddIndex(complex6) { - const len = Math.floor(complex6.length / 4); - const real6 = new Float32Array(len); +function complexWithOddIndex(complex5) { + const len = Math.floor(complex5.length / 4); + const real5 = new Float32Array(len); const imag5 = new Float32Array(len); - for (let i2 = 2; i2 < complex6.length; i2 += 4) { - real6[Math.floor(i2 / 4)] = complex6[i2]; - imag5[Math.floor(i2 / 4)] = complex6[i2 + 1]; + for (let i2 = 2; i2 < complex5.length; i2 += 4) { + real5[Math.floor(i2 / 4)] = complex5[i2]; + imag5[Math.floor(i2 / 4)] = complex5[i2 + 1]; } - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } -function getComplexWithIndex(complex6, index2) { - const real6 = complex6[index2 * 2]; - const imag5 = complex6[index2 * 2 + 1]; - return { real: real6, imag: imag5 }; +function getComplexWithIndex(complex5, index2) { + const real5 = complex5[index2 * 2]; + const imag5 = complex5[index2 * 2 + 1]; + return { real: real5, imag: imag5 }; } -function assignToTypedArray(data, real6, imag5, index2) { - data[index2 * 2] = real6; +function assignToTypedArray(data, real5, imag5, index2) { + data[index2 * 2] = real5; data[index2 * 2 + 1] = imag5; } function exponents(n2, inverse) { - const real6 = new Float32Array(n2 / 2); + const real5 = new Float32Array(n2 / 2); const imag5 = new Float32Array(n2 / 2); for (let i2 = 0; i2 < Math.ceil(n2 / 2); i2++) { const x = (inverse ? 2 : -2) * Math.PI * (i2 / n2); - real6[i2] = Math.cos(x); + real5[i2] = Math.cos(x); imag5[i2] = Math.sin(x); } - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } function exponent(k, n2, inverse) { const x = (inverse ? 2 : -2) * Math.PI * (k / n2); - const real6 = Math.cos(x); + const real5 = Math.cos(x); const imag5 = Math.sin(x); - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } var ARROW = "->"; var ARROW_REGEX = /->/g; @@ -17439,10 +17440,10 @@ var powGradConfig = { gradFunc: (dy, saved) => { const [a, b, y] = saved; const base = a; - const exp6 = b; - const outShape = assertAndGetBroadcastShape(base.shape, exp6.shape); + const exp5 = b; + const outShape = assertAndGetBroadcastShape(base.shape, exp5.shape); const derBase = () => { - const expFloat = cast(exp6, "float32"); + const expFloat = cast(exp5, "float32"); let res = mul(dy, mul(expFloat, pow(base, sub(expFloat, scalar(1))))); const reduceAxes = getReductionAxes(base.shape, outShape); if (reduceAxes.length > 0) { @@ -17454,11 +17455,11 @@ var powGradConfig = { const condition = greater(base, 0); const logBase = where(condition, log22(base), zerosLike(base)); let res = mul(dy, mul(y, logBase)); - const reduceAxes = getReductionAxes(exp6.shape, outShape); + const reduceAxes = getReductionAxes(exp5.shape, outShape); if (reduceAxes.length > 0) { res = sum2(res, reduceAxes); } - return reshape(res, exp6.shape); + return reshape(res, exp5.shape); }; return { a: derBase, b: derExp }; } @@ -18401,9 +18402,9 @@ getGlobalTensorClass().prototype.pool = function(windowShape, poolingType, paddi this.throwIfDisposed(); return pool(this, windowShape, poolingType, padding2, dilationRate, strides2, dimRoundingMode); }; -getGlobalTensorClass().prototype.pow = function(exp6) { +getGlobalTensorClass().prototype.pow = function(exp5) { this.throwIfDisposed(); - return pow(this, exp6); + return pow(this, exp5); }; getGlobalTensorClass().prototype.prelu = function(alpha2) { this.throwIfDisposed(); @@ -21259,8 +21260,8 @@ var BaseLogger = class extends BaseCallback { logs[key] = this.totals[key] / this.seen; } else { tidy(() => { - const log7 = mul(div(1, this.seen), this.totals[key]); - logs[key] = log7; + const log6 = mul(div(1, this.seen), this.totals[key]); + logs[key] = log6; this.totals[key].dispose(); keep(logs[key]); }); @@ -41275,13 +41276,13 @@ function createSimpleBinaryKernelImpl(op2) { } function complex2(args) { const { inputs, backend: backend2 } = args; - const { real: real6, imag: imag5 } = inputs; - const realVals = backend2.data.get(real6.dataId).values; + const { real: real5, imag: imag5 } = inputs; + const realVals = backend2.data.get(real5.dataId).values; const imagVals = backend2.data.get(imag5.dataId).values; - const complexInfo = backend2.makeTensorInfo(real6.shape, "complex64"); - const complex6 = backend2.data.get(complexInfo.dataId); - complex6.complexTensorInfos = { - real: backend2.makeTensorInfo(real6.shape, "float32", realVals), + const complexInfo = backend2.makeTensorInfo(real5.shape, "complex64"); + const complex5 = backend2.data.get(complexInfo.dataId); + complex5.complexTensorInfos = { + real: backend2.makeTensorInfo(real5.shape, "float32", realVals), imag: backend2.makeTensorInfo(imag5.shape, "float32", imagVals) }; return complexInfo; @@ -41293,9 +41294,9 @@ var complexConfig = { }; function zeros3(backend2, shape, dtype = "float32") { if (dtype === "complex64") { - const real6 = zeros3(backend2, shape, "float32"); + const real5 = zeros3(backend2, shape, "float32"); const imag5 = zeros3(backend2, shape, "float32"); - return complex2({ inputs: { real: real6, imag: imag5 }, backend: backend2 }); + return complex2({ inputs: { real: real5, imag: imag5 }, backend: backend2 }); } const values = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(shape), dtype); return backend2.makeTensorInfo(shape, dtype, values); @@ -41314,9 +41315,9 @@ var identityConfig = { function real2(args) { const { inputs, backend: backend2 } = args; const { input: input2 } = inputs; - const real6 = backend2.data.get(input2.dataId).complexTensorInfos.real; - const realVal = backend2.data.get(real6.dataId).values; - return backend2.makeTensorInfo(real6.shape, real6.dtype, realVal); + const real5 = backend2.data.get(input2.dataId).complexTensorInfos.real; + const realVal = backend2.data.get(real5.dataId).values; + return backend2.makeTensorInfo(real5.shape, real5.dtype, realVal); } var realConfig = { kernelName: Real, @@ -42963,9 +42964,9 @@ function reshape3(args) { backend2.incRef(x.dataId); const xData = backend2.data.get(x.dataId); if (xData.complexTensorInfos != null) { - const real6 = xData.complexTensorInfos.real; + const real5 = xData.complexTensorInfos.real; const imag5 = xData.complexTensorInfos.imag; - real6.shape = $shape; + real5.shape = $shape; imag5.shape = $shape; } return { dataId: x.dataId, shape: $shape, dtype: x.dtype }; @@ -43840,14 +43841,14 @@ var complexAbs = (args) => { const cpuBackend = args.backend; const resultValues = new Float32Array(util_exports.sizeFromShape(x.shape)); const complexVals = cpuBackend.data.get(x.dataId); - const real6 = complexVals.complexTensorInfos.real; + const real5 = complexVals.complexTensorInfos.real; const imag5 = complexVals.complexTensorInfos.imag; - const realVals = cpuBackend.data.get(real6.dataId).values; + const realVals = cpuBackend.data.get(real5.dataId).values; const imagVals = cpuBackend.data.get(imag5.dataId).values; for (let i2 = 0; i2 < realVals.length; i2++) { - const real7 = realVals[i2]; + const real6 = realVals[i2]; const imag6 = imagVals[i2]; - resultValues[i2] = Math.hypot(real7, imag6); + resultValues[i2] = Math.hypot(real6, imag6); } return cpuBackend.makeOutput(resultValues, x.shape, "float32"); }; @@ -45095,8 +45096,8 @@ function fftBatch(input2, inverse, cpuBackend) { attrs: { begin: [b, 0], size: [1, innerDim] } }); const input3 = complex2({ inputs: { real: r2, imag: i2 }, backend: cpuBackend }); - const { real: real6, imag: imag5 } = fftImpl(input3, inverse, cpuBackend); - const res = backend_util_exports.mergeRealAndImagArrays(real6, imag5); + const { real: real5, imag: imag5 } = fftImpl(input3, inverse, cpuBackend); + const res = backend_util_exports.mergeRealAndImagArrays(real5, imag5); for (let d = 0; d < innerDim; d++) { const c = backend_util_exports.getComplexWithIndex(res, d); resultReal[b * innerDim + d] = c.real; @@ -45244,19 +45245,19 @@ function fftRadix2(realVals, imagVals, size2, inverse, cpuBackend) { function fourierTransformByMatmul(data, size2, inverse) { const ret = new Float32Array(size2 * 2); for (let r2 = 0; r2 < size2; r2++) { - let real6 = 0; + let real5 = 0; let imag5 = 0; for (let c = 0; c < size2; c++) { const e2 = backend_util_exports.exponent(r2 * c, size2, inverse); const term = backend_util_exports.getComplexWithIndex(data, c); - real6 += term.real * e2.real - term.imag * e2.imag; + real5 += term.real * e2.real - term.imag * e2.imag; imag5 += term.real * e2.imag + term.imag * e2.real; } if (inverse) { - real6 /= size2; + real5 /= size2; imag5 /= size2; } - backend_util_exports.assignToTypedArray(ret, real6, imag5, r2); + backend_util_exports.assignToTypedArray(ret, real5, imag5, r2); } return ret; } @@ -52569,12 +52570,12 @@ var identityConfig2 = { }; function complex3(args) { const { inputs, backend: backend2 } = args; - const { real: real6, imag: imag5 } = inputs; - const complexInfo = backend2.makeTensorInfo(real6.shape, "complex64"); - const complex6 = backend2.texData.get(complexInfo.dataId); - const realTensorInfo = identity3({ inputs: { x: real6 }, backend: backend2 }); + const { real: real5, imag: imag5 } = inputs; + const complexInfo = backend2.makeTensorInfo(real5.shape, "complex64"); + const complex5 = backend2.texData.get(complexInfo.dataId); + const realTensorInfo = identity3({ inputs: { x: real5 }, backend: backend2 }); const imagTensorInfo = identity3({ inputs: { x: imag5 }, backend: backend2 }); - complex6.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo }; + complex5.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo }; return complexInfo; } var complexConfig2 = { @@ -52656,7 +52657,7 @@ function binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = fals if (supportsComplex && a.dtype === "complex64") { const aData = webglBackend.texData.get(a.dataId); const bData = webglBackend.texData.get(b.dataId); - const [real6, imag5] = [ + const [real5, imag5] = [ [aData.complexTensorInfos.real, bData.complexTensorInfos.real], [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag] ].map((complexParts) => { @@ -52674,8 +52675,8 @@ function binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = fals const program2 = new BinaryOpProgram(opSnippet, a.shape, b.shape); return webglBackend.runWebGLProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype)); }); - const complexOutput = complex3({ inputs: { real: real6, imag: imag5 }, backend: webglBackend }); - webglBackend.disposeIntermediateTensorInfo(real6); + const complexOutput = complex3({ inputs: { real: real5, imag: imag5 }, backend: webglBackend }); + webglBackend.disposeIntermediateTensorInfo(real5); webglBackend.disposeIntermediateTensorInfo(imag5); return complexOutput; } @@ -65513,392 +65514,191 @@ registerBackend("wasm", async () => { var ENV7 = env(); ENV7.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE", () => 15); ENV7.registerFlag("WEBGPU_CPU_FORWARD", () => true); -ENV7.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD", () => 4); ENV7.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE", () => -1); ENV7.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE", () => false); ENV7.registerFlag("WEBGPU_USE_LOW_POWER_GPU", () => false); ENV7.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD", () => 1e3); ENV7.registerFlag("WEBGPU_USE_PROFILE_TOOL", () => false); -ENV7.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE", () => false); -var BinaryOpType; -(function(BinaryOpType2) { - BinaryOpType2[BinaryOpType2["MUL"] = 0] = "MUL"; - BinaryOpType2[BinaryOpType2["ADD"] = 1] = "ADD"; - BinaryOpType2[BinaryOpType2["SUB"] = 2] = "SUB"; - BinaryOpType2[BinaryOpType2["DIV"] = 3] = "DIV"; - BinaryOpType2[BinaryOpType2["EQUAL"] = 4] = "EQUAL"; - BinaryOpType2[BinaryOpType2["GREATER"] = 5] = "GREATER"; - BinaryOpType2[BinaryOpType2["GREATER_EQUAL"] = 6] = "GREATER_EQUAL"; - BinaryOpType2[BinaryOpType2["LESS"] = 7] = "LESS"; - BinaryOpType2[BinaryOpType2["LESS_EQUAL"] = 8] = "LESS_EQUAL"; - BinaryOpType2[BinaryOpType2["LOGICAL_AND"] = 9] = "LOGICAL_AND"; - BinaryOpType2[BinaryOpType2["NOT_EQUAL"] = 10] = "NOT_EQUAL"; - BinaryOpType2[BinaryOpType2["SQUARED_DIFFERENCE"] = 11] = "SQUARED_DIFFERENCE"; - BinaryOpType2[BinaryOpType2["INT_DIV"] = 12] = "INT_DIV"; - BinaryOpType2[BinaryOpType2["POW"] = 13] = "POW"; - BinaryOpType2[BinaryOpType2["PRELU"] = 14] = "PRELU"; - BinaryOpType2[BinaryOpType2["MAX"] = 15] = "MAX"; - BinaryOpType2[BinaryOpType2["MIN"] = 16] = "MIN"; - BinaryOpType2[BinaryOpType2["COMPLEX_MULTIPLY_REAL"] = 17] = "COMPLEX_MULTIPLY_REAL"; - BinaryOpType2[BinaryOpType2["COMPLEX_MULTIPLY_IMAG"] = 18] = "COMPLEX_MULTIPLY_IMAG"; -})(BinaryOpType || (BinaryOpType = {})); -var ADD2 = "return a + b;"; -var COMPLEX_MULTIPLY_REAL = "return areal * breal - aimag * bimag;"; -var COMPLEX_MULTIPLY_IMAG = "return areal * bimag + aimag * breal;"; -var DIV2 = "return a / b;"; -var MUL2 = "return a * b;"; -var SQUARED_DIFFERENCE2 = "return (a - b) * (a - b);"; -var SUB2 = "return a - b;"; -var EQUAL2 = "return f32(a == b);"; -var EQUAL_VEC4 = "return vec4(a == b);"; -var GREATER2 = "return f32(a > b);"; -var GREATER_VEC4 = "return vec4(a > b);"; -var GREATER_EQUAL2 = "return f32(a >= b);"; -var GREATER_EQUAL_VEC4 = "return vec4(a >= b);"; -var LESS2 = "return f32(a < b);"; -var LESS_VEC4 = "return vec4(a < b);"; -var LESS_EQUAL2 = "return f32(a <= b);"; -var LESS_EQUAL_VEC4 = "return vec4(a <= b);"; -var LOGICAL_AND2 = "return f32(f32(a) >= 1.0 && f32(b) >= 1.0);"; -var LOGICAL_AND_VEC4 = `return (vec4(a >= vec4(1.0)) * - vec4(b >= vec4(1.0)));`; -var CHECK_NAN_SNIPPET4 = ` - if (isnan(a)) { return a; } - if (isnan(b)) { return b; } - `; -var CHECK_NAN_SNIPPET_VEC4 = ` - if (isNaN.r) { - resultTemp.r = uniforms.NAN; +ENV7.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE", () => true); +var BufferManager = class { + constructor(device) { + this.device = device; + this.numUsedBuffers = 0; + this.numFreeBuffers = 0; + this.freeBuffers = /* @__PURE__ */ new Map(); + this.usedBuffers = /* @__PURE__ */ new Map(); + this.numBytesUsed = 0; + this.numBytesAllocated = 0; } - if (isNaN.g) { - resultTemp.g = uniforms.NAN; + acquireUploadBuffer(size2, usage) { + return this.acquireBuffer(size2, usage, true); } - if (isNaN.b) { - resultTemp.b = uniforms.NAN; + acquireBuffer(size2, usage, mappedAtCreation = false) { + const key = getBufferKey(size2, usage); + if (!this.freeBuffers.has(key)) { + this.freeBuffers.set(key, []); + } + if (!this.usedBuffers.has(key)) { + this.usedBuffers.set(key, []); + } + this.numBytesUsed += size2; + this.numUsedBuffers++; + if (this.freeBuffers.get(key).length > 0) { + this.numFreeBuffers--; + const newBuffer2 = this.freeBuffers.get(key).shift(); + this.usedBuffers.get(key).push(newBuffer2); + return newBuffer2; + } + this.numBytesAllocated += size2; + const newBuffer = this.device.createBuffer({ size: size2, usage, mappedAtCreation }); + this.usedBuffers.get(key).push(newBuffer); + return newBuffer; } - if (isNaN.a) { - resultTemp.a = uniforms.NAN; + releaseBuffer(buffer2, size2, usage) { + if (this.freeBuffers.size === 0) { + return; + } + const key = getBufferKey(size2, usage); + if (!this.freeBuffers.has(key)) { + this.freeBuffers.set(key, []); + } + this.freeBuffers.get(key).push(buffer2); + this.numFreeBuffers++; + this.numUsedBuffers--; + const bufferList = this.usedBuffers.get(key); + const bufferIndex = bufferList.indexOf(buffer2); + if (bufferIndex < 0) { + throw new Error("Cannot release a buffer that was never provided by this buffer manager"); + } + bufferList.splice(bufferIndex, 1); + this.numBytesUsed -= size2; } - `; -var INT_DIV2 = ` - let s = sign(a) * sign(b); - let ia = i32(round(a)); - let ib = i32(round(b)); - return f32(idiv(ia, ib, s)); - `; -var INT_DIV_VEC4 = ` - let ia = vec4(round(a)); - let ib = vec4(round(b)); - let cond = ib != vec4(0); - var resultTemp = vec4(0); - let s = sign(a) * sign(b); - - // Windows (D3D) wants guaranteed non-zero int division at compile-time. - if (cond[0]) { - resultTemp[0] = idiv(ia[0], ib[0], s[0]); + releaseUploadBuffer(buffer2, size2, usage) { + buffer2.mapAsync(GPUMapMode.WRITE).then(() => { + this.releaseBuffer(buffer2, size2, usage); + }, (err) => { + }); } - if (cond[1]) { - resultTemp[1] = idiv(ia[1], ib[1], s[1]); + getNumUsedBuffers() { + return this.numUsedBuffers; } - if (cond[2]) { - resultTemp[2] = idiv(ia[2], ib[2], s[2]); + getNumFreeBuffers() { + return this.numFreeBuffers; } - if (cond[3]) { - resultTemp[3] = idiv(ia[3], ib[3], s[3]); - } - return vec4(resultTemp); - `; -var NOT_EQUAL2 = "return f32(a != b);"; -var NOT_EQUAL_VEC4 = "return vec4(a != b);"; -var POW2 = ` - if(a < 0.0 && floor(b) < b) { - return uniforms.NAN; - } - if (b == 0.0) { - return 1.0; - } - if (round(abs(b) % 2.0) != 1.0) { - return pow(abs(a), b); - } - return sign(a) * pow(abs(a), b); - `; -var POW_VEC4 = ` - let isModRound1Bool = vec4(round(abs(b) % vec4(2.0))) == vec4(1); - let isModRound1 = vec4(isModRound1Bool); - let multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); - var resultTemp = multiplier * pow(abs(a), b); - - // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS - let isExpZero = b == vec4(0.0); - if (isExpZero.r) { - resultTemp.r = 1.0; - } - if (isExpZero.g) { - resultTemp.g = 1.0; - } - if (isExpZero.b) { - resultTemp.b = 1.0; - } - if (isExpZero.a) { - resultTemp.a = 1.0; - } - let isNaN = a < vec4(0.0) & floor(b) < b; - ${CHECK_NAN_SNIPPET_VEC4} - return resultTemp; - `; -var PRELU2 = `if (a < 0.0) { return b * a; } return a;`; -var PRELU_VEC4 = ` - let aLessThanZero = vec4(a < vec4(0.0)); - return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); - `; -function getMinMaxString(op2, useVec4) { - const checkNanSnippet = useVec4 ? CHECK_NAN_SNIPPET_VEC4 : CHECK_NAN_SNIPPET4; - return useVec4 ? ` - var resultTemp = vec4(${op2}(a, b)); - let isNaN = isnanVec4(a) | isnanVec4(b); - ` + checkNanSnippet + ` - return resultTemp; - ` : checkNanSnippet + ` - return ${op2}(a, b); - `; -} -function getBinaryOpString(type, useVec4) { - switch (type) { - case BinaryOpType.MUL: - return MUL2; - case BinaryOpType.ADD: - return ADD2; - case BinaryOpType.SUB: - return SUB2; - case BinaryOpType.DIV: - return DIV2; - case BinaryOpType.EQUAL: - return useVec4 ? EQUAL_VEC4 : EQUAL2; - case BinaryOpType.GREATER: - return useVec4 ? GREATER_VEC4 : GREATER2; - case BinaryOpType.GREATER_EQUAL: - return useVec4 ? GREATER_EQUAL_VEC4 : GREATER_EQUAL2; - case BinaryOpType.LESS: - return useVec4 ? LESS_VEC4 : LESS2; - case BinaryOpType.LESS_EQUAL: - return useVec4 ? LESS_EQUAL_VEC4 : LESS_EQUAL2; - case BinaryOpType.LOGICAL_AND: - return useVec4 ? LOGICAL_AND_VEC4 : LOGICAL_AND2; - case BinaryOpType.NOT_EQUAL: - return useVec4 ? NOT_EQUAL_VEC4 : NOT_EQUAL2; - case BinaryOpType.SQUARED_DIFFERENCE: - return SQUARED_DIFFERENCE2; - case BinaryOpType.INT_DIV: - return useVec4 ? INT_DIV_VEC4 : INT_DIV2; - case BinaryOpType.PRELU: - return useVec4 ? PRELU_VEC4 : PRELU2; - case BinaryOpType.MAX: - return getMinMaxString("max", useVec4); - case BinaryOpType.MIN: - return getMinMaxString("min", useVec4); - case BinaryOpType.POW: - return useVec4 ? POW_VEC4 : POW2; - case BinaryOpType.COMPLEX_MULTIPLY_REAL: - return COMPLEX_MULTIPLY_REAL; - case BinaryOpType.COMPLEX_MULTIPLY_IMAG: - return COMPLEX_MULTIPLY_IMAG; - default: - throw new Error(`BinaryType ${type} is not implemented!`); - } -} -var UnaryOpType; -(function(UnaryOpType2) { - UnaryOpType2[UnaryOpType2["ABS"] = 0] = "ABS"; - UnaryOpType2[UnaryOpType2["CEIL"] = 1] = "CEIL"; - UnaryOpType2[UnaryOpType2["COS"] = 2] = "COS"; - UnaryOpType2[UnaryOpType2["COSH"] = 3] = "COSH"; - UnaryOpType2[UnaryOpType2["ELU"] = 4] = "ELU"; - UnaryOpType2[UnaryOpType2["EXP"] = 5] = "EXP"; - UnaryOpType2[UnaryOpType2["EXPM1"] = 6] = "EXPM1"; - UnaryOpType2[UnaryOpType2["FLOOR"] = 7] = "FLOOR"; - UnaryOpType2[UnaryOpType2["LINEAR"] = 8] = "LINEAR"; - UnaryOpType2[UnaryOpType2["LOG"] = 9] = "LOG"; - UnaryOpType2[UnaryOpType2["LOGICAL_NOT"] = 10] = "LOGICAL_NOT"; - UnaryOpType2[UnaryOpType2["NEG"] = 11] = "NEG"; - UnaryOpType2[UnaryOpType2["RELU"] = 12] = "RELU"; - UnaryOpType2[UnaryOpType2["RELU6"] = 13] = "RELU6"; - UnaryOpType2[UnaryOpType2["LEAKYRELU"] = 14] = "LEAKYRELU"; - UnaryOpType2[UnaryOpType2["RSQRT"] = 15] = "RSQRT"; - UnaryOpType2[UnaryOpType2["SIN"] = 16] = "SIN"; - UnaryOpType2[UnaryOpType2["SINH"] = 17] = "SINH"; - UnaryOpType2[UnaryOpType2["SIGMOID"] = 18] = "SIGMOID"; - UnaryOpType2[UnaryOpType2["SQRT"] = 19] = "SQRT"; - UnaryOpType2[UnaryOpType2["SQUARE"] = 20] = "SQUARE"; - UnaryOpType2[UnaryOpType2["TANH"] = 21] = "TANH"; - UnaryOpType2[UnaryOpType2["TO_INT"] = 22] = "TO_INT"; -})(UnaryOpType || (UnaryOpType = {})); -var ABS3 = `return abs(a);`; -var CEIL2 = `return ceil(a);`; -var COS2 = `return cos(a);`; -var COSH2 = ` - let e2x = exp(-a); - return (e2x + 1.0 / e2x) / 2.0; -`; -var EXPM12 = `return exp(a) - 1.0;`; -var ELU5 = `if (a >= 0.0) { return a; } return (exp(a) - 1.0);`; -var ELU_VEC4 = ` - var resFloat = exp(a) - vec4(1.0); - if (a.r >= 0.0) { - resFloat.r = a.r; - } - if (a.g >= 0.0) { - resFloat.g = a.g; - } - if (a.b >= 0.0) { - resFloat.b = a.b; - } - if (a.a >= 0.0) { - resFloat.a = a.a; - } - return resFloat; -`; -var EXP2 = `return exp(a);`; -var FLOOR2 = `return floor(a);`; -var LINEAR3 = `return a;`; -var LOG2 = `if (a < 0.0) { return 1.0/0.0; } - return log(a);`; -var LOGICAL_NOT2 = `return f32(!(a >= 1.0));`; -var NEG2 = `return -a;`; -var LEAKYRELU2 = `if (a < 0.0) { return uniforms.alpha * a; } return a;`; -var LEAKYRELU_VEC4 = ` - let aLessThanZero = vec4(a < vec4(0.0)); - return (aLessThanZero * (uniforms.alpha * a)) + ((vec4(1.0) - aLessThanZero) * a); -`; -var RELU4 = `return select(a, 0.0, a < 0.0);`; -var RELU64 = "return clamp(a, 0.0, 6.0);"; -var RELU6_VEC4 = "return clamp(a, vec4(0.0, 0.0, 0.0, 0.0), vec4(6.0, 6.0, 6.0, 6.0));"; -var RELU_VEC4 = ` - return select(a, vec4(0.0), a < vec4(0.0)); -`; -var RSQRT2 = `return 1.0/sqrt(a);`; -var SIGMOID4 = `return 1.0 / (1.0 + exp(-1.0 * a));`; -var SIN2 = `return sin(a);`; -var SINH2 = ` - let e2x = exp(a); - return (e2x - 1.0 / e2x) / 2.0; -`; -var SQRT2 = `return sqrt(a);`; -var SQUARE2 = `return a * a;`; -var TANH2 = ` - let e2x = exp(-2.0 * abs(a)); - return sign(a) * (1.0 - e2x) / (1.0 + e2x); -`; -var TO_INT2 = `return f32(i32((a)));`; -function getUnaryOpString(type, useVec4) { - switch (type) { - case UnaryOpType.ABS: - return ABS3; - case UnaryOpType.COS: - return COS2; - case UnaryOpType.COSH: - return COSH2; - case UnaryOpType.CEIL: - return CEIL2; - case UnaryOpType.ELU: - return useVec4 ? ELU_VEC4 : ELU5; - case UnaryOpType.EXP: - return EXP2; - case UnaryOpType.EXPM1: - return EXPM12; - case UnaryOpType.FLOOR: - return FLOOR2; - case UnaryOpType.LINEAR: - return LINEAR3; - case UnaryOpType.LOG: - return LOG2; - case UnaryOpType.LOGICAL_NOT: - return LOGICAL_NOT2; - case UnaryOpType.NEG: - return NEG2; - case UnaryOpType.LEAKYRELU: - return useVec4 ? LEAKYRELU_VEC4 : LEAKYRELU2; - case UnaryOpType.RELU: - return useVec4 ? RELU_VEC4 : RELU4; - case UnaryOpType.RELU6: - return useVec4 ? RELU6_VEC4 : RELU64; - case UnaryOpType.RSQRT: - return RSQRT2; - case UnaryOpType.SIGMOID: - return SIGMOID4; - case UnaryOpType.SIN: - return SIN2; - case UnaryOpType.SINH: - return SINH2; - case UnaryOpType.SQRT: - return SQRT2; - case UnaryOpType.SQUARE: - return SQUARE2; - case UnaryOpType.TANH: - return TANH2; - case UnaryOpType.TO_INT: - return TO_INT2; - default: - throw new Error(`BinaryType ${type} is not implemented!`); - } -} -var typeSnippet = (component) => { - switch (component) { - case 1: - return "f32"; - case 2: - return "vec2"; - case 3: - return "vec3"; - case 4: - return "vec4"; - default: - throw new Error(`${component}-component is not supported.`); + dispose() { + this.freeBuffers.forEach((buffers, key) => { + buffers.forEach((buffer2) => { + buffer2.destroy(); + }); + }); + this.usedBuffers.forEach((buffers, key) => { + buffers.forEach((buffer2) => { + buffer2.destroy(); + }); + }); + this.freeBuffers = /* @__PURE__ */ new Map(); + this.usedBuffers = /* @__PURE__ */ new Map(); + this.numUsedBuffers = 0; + this.numFreeBuffers = 0; + this.numBytesUsed = 0; + this.numBytesAllocated = 0; } }; -function activationFnSnippet(activation2, hasPreluActivationWeights = false, packed = false, coordsLength = 3) { - if (activation2 === null) { - return ""; - } - let activationOpSnippet = ""; - if (activation2 === "linear") { - activationOpSnippet = getUnaryOpString(UnaryOpType.LINEAR); - } else if (activation2 === "relu") { - activationOpSnippet = getUnaryOpString(UnaryOpType.RELU, packed); - } else if (activation2 === "elu") { - activationOpSnippet = getUnaryOpString(UnaryOpType.ELU, packed); - } else if (activation2 === "relu6") { - activationOpSnippet = getUnaryOpString(UnaryOpType.RELU6, packed); - } else if (activation2 === "prelu") { - activationOpSnippet = getBinaryOpString(BinaryOpType.PRELU, packed); - } else if (activation2 === "sigmoid") { - activationOpSnippet = getUnaryOpString(UnaryOpType.SIGMOID, packed); - } else if (activation2 === "leakyrelu") { - activationOpSnippet = getUnaryOpString(UnaryOpType.LEAKYRELU, packed); - } else { - throw new Error(`Activation ${activation2} has not been implemented for the WebGPU backend.`); - } - const elementSize = packed ? 4 : 1; - const dataType = typeSnippet(elementSize); - let activationFnSnippet2 = ""; - if (hasPreluActivationWeights) { - activationFnSnippet2 = ` - fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { - let b = getPreluActivationWeightsByOutputCoords(coords); - ${activationOpSnippet} - }`; - } else { - activationFnSnippet2 = ` - fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { - ${activationOpSnippet} - }`; - } - return activationFnSnippet2; +function getBufferKey(size2, usage) { + return `${size2}_${usage}`; } -function biasActivationSnippet(hasBias, activation2) { - return ` - ${hasBias ? "value = value + getBiasByOutputCoords(coords);" : ""} - ${activation2 ? "value = activation(value, coords);" : ""} - `; +var TextureManager2 = class { + constructor(device) { + this.device = device; + this.numUsedTextures = 0; + this.numFreeTextures = 0; + this.freeTextures = /* @__PURE__ */ new Map(); + this.usedTextures = /* @__PURE__ */ new Map(); + this.numBytesUsed = 0; + this.numBytesAllocated = 0; + } + acquireTexture(width, height, format, usage) { + const bytesPerElement2 = getBytesPerElement(format); + const byteSize = width * height * bytesPerElement2; + const key = getTextureKey(width, height, format, usage); + if (!this.freeTextures.has(key)) { + this.freeTextures.set(key, []); + } + if (!this.usedTextures.has(key)) { + this.usedTextures.set(key, []); + } + this.numBytesUsed += byteSize; + this.numUsedTextures++; + if (this.freeTextures.get(key).length > 0) { + this.numFreeTextures--; + const newTexture2 = this.freeTextures.get(key).shift(); + this.usedTextures.get(key).push(newTexture2); + return newTexture2; + } + this.numBytesAllocated += byteSize; + const newTexture = this.device.createTexture({ + size: [width, height], + format, + usage + }); + this.usedTextures.get(key).push(newTexture); + return newTexture; + } + releaseTexture(texture, width, height, format, usage) { + if (this.freeTextures.size === 0) { + return; + } + const key = getTextureKey(width, height, format, usage); + if (!this.freeTextures.has(key)) { + this.freeTextures.set(key, []); + } + this.freeTextures.get(key).push(texture); + this.numFreeTextures++; + this.numUsedTextures--; + const textureList = this.usedTextures.get(key); + const textureIndex = textureList.indexOf(texture); + if (textureIndex < 0) { + throw new Error("Cannot release a texture that was never provided by this texture manager"); + } + textureList.splice(textureIndex, 1); + const bytesPerElement2 = getBytesPerElement(format); + const byteSize = width * height * bytesPerElement2; + this.numBytesUsed -= byteSize; + } + getNumUsedTextures() { + return this.numUsedTextures; + } + getNumFreeTextures() { + return this.numFreeTextures; + } + dispose() { + this.freeTextures.forEach((textures, key) => { + textures.forEach((texture) => { + texture.destroy(); + }); + }); + this.usedTextures.forEach((textures, key) => { + textures.forEach((texture) => { + texture.destroy(); + }); + }); + this.freeTextures = /* @__PURE__ */ new Map(); + this.usedTextures = /* @__PURE__ */ new Map(); + this.numUsedTextures = 0; + this.numFreeTextures = 0; + this.numBytesUsed = 0; + this.numBytesAllocated = 0; + } +}; +function getTextureKey(width, height, format, usage) { + return `${width}_${height}_${format}_${usage}`; +} +function getBytesPerElement(format) { + if (format === "rgba8unorm") { + return 16; + } else { + throw new Error(`${format} is not supported!`); + } } function symbolicallyComputeStrides2(indicesArr, variableName) { if (Math.max(...indicesArr) > 3) { @@ -65918,7 +65718,7 @@ var compileProgram2 = (device, program, inputsData, output) => { const source = makeShader2(inputsData, outputData, program); const module = device.createShaderModule({ code: source, label: program.constructor.name }); const pipeline = device.createComputePipeline({ - compute: { module, entryPoint: "main" }, + compute: { module, entryPoint: "_start" }, label: program.constructor.name, layout: "auto" }); @@ -65958,22 +65758,43 @@ function getCoordsXYZ(index2) { throw Error(`Index ${index2} is not yet supported`); } } -function getMainHeaderAndGlobalIndexString() { - return ` - ${getMainHeaderString()} - let index = getGlobalIndex(); -`; -} -function getMainHeaderString() { - return ` - ${getWorkGroupSizeString()} - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(num_workgroups) NumWorkgroups: vec3) { - localId = LocalId; - globalId = GlobalId; - numWorkgroups = NumWorkgroups; -`; +function getMainHeaderString(...params) { + let snippet; + switch (params.length) { + case 0: + snippet = ` + ${getWorkGroupSizeString()} + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups : vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + main(); + } + + fn main() + `; + break; + case 1: + snippet = ` + ${getWorkGroupSizeString()} + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups : vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + main(getGlobalIndex()); + } + + fn main(${params[0]} : i32) + `; + break; + default: + throw Error("Unreachable"); + } + return snippet; } function getWorkGroupSizeString() { return ` @@ -66023,50 +65844,25 @@ function makeShader2(inputInfo, outputData, program) { program.getUserCode() ].join("\n"); } - let preMemberIsStruct = false; - let currentMemberIsStruct = false; let uniformDeclaration = "struct Uniforms { NAN : f32, "; program.variableNames.forEach((x, i2) => { const perDataType = getCoordsDataType2(inputInfo[i2].shape.length); - if (perDataType === "vec5" || perDataType === "vec6") { - currentMemberIsStruct = true; - } - if (preMemberIsStruct || currentMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } - preMemberIsStruct = currentMemberIsStruct; uniformDeclaration += `${x.charAt(0).toLowerCase() + x.slice(1)}Shape : ${perDataType}, `; }); const outputDataType = getCoordsDataType2(outputData.shape.length); - currentMemberIsStruct = outputDataType === "vec5" || outputDataType === "vec6"; - if (preMemberIsStruct || currentMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } - preMemberIsStruct = currentMemberIsStruct; uniformDeclaration += `outShape : ${outputDataType}, `; const stridesLength = outputData.shape.length - 1; const stridesDataType = getCoordsDataType2(stridesLength); - currentMemberIsStruct = stridesDataType === "vec5" || stridesDataType === "vec6"; - if (preMemberIsStruct || currentMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } - preMemberIsStruct = currentMemberIsStruct; uniformDeclaration += ` outShapeStrides: ${stridesDataType}, `; if (program.size) { - if (preMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } - preMemberIsStruct = false; uniformDeclaration += "size : i32, "; } if (program.uniforms) { - if (preMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } uniformDeclaration += program.uniforms; } uniformDeclaration += "};"; + uniformDeclaration = insertAlignment(uniformDeclaration); prefixSnippets.push(uniformDeclaration); if (program.atomic) { prefixSnippets.push(` @@ -66156,8 +65952,8 @@ var commonSnippet = ` fn idiv(a: i32, b: i32, sign: f32) -> i32 { var res: i32 = a / b; - let mod: i32 = a % b; - if (sign < 0. && mod != 0) { + let modulo: i32 = a % b; + if (sign < 0. && modulo != 0) { res = res - 1; } return res; @@ -66533,14 +66329,25 @@ function setOutputSnippet(outShape, outBufferType, isVec4) { } return snippet; } +function insertAlignment(uniformShader) { + const curInsertRe = /(\w+)\s*:\s*vec(5|6)/g; + uniformShader = uniformShader.replace(curInsertRe, (match3) => { + return "@align(16) " + match3; + }); + const preInsertRe = /vec(5|6)\s*,\s*(\w+)/g; + uniformShader = uniformShader.replace(preInsertRe, (_, p1, p2) => { + return `vec${p1}, @align(16) ${p2}`; + }); + return uniformShader; +} var webgpu_util_exports = {}; __export2(webgpu_util_exports, { ArrayBufferToTypedArray: () => ArrayBufferToTypedArray, GPUBytesPerElement: () => GPUBytesPerElement, MatMulProgramType: () => MatMulProgramType, computeDispatch: () => computeDispatch, + computeWorkGroupInfoForMatMul: () => computeWorkGroupInfoForMatMul, computeWorkGroupSizeForConv2d: () => computeWorkGroupSizeForConv2d, - computeWorkGroupSizeForMatMul: () => computeWorkGroupSizeForMatMul, computeWorkPerThreadForConv2d: () => computeWorkPerThreadForConv2d, flatDispatchLayout: () => flatDispatchLayout, isWebGPUSupported: () => isWebGPUSupported, @@ -66567,6 +66374,19 @@ function computeDispatch(layout, outputShape, workGroupSize = [1, 1, 1], element ]; return [dispatchX, dispatchY, dispatchZ]; } +function computeWorkGroupInfoForMatMul(dimAOuter, dimInner, dimBOuter, transposeA = false) { + const workGroupSize = [8, 8, 1]; + const elementsPerThread = [4, 4, 1]; + if (!transposeA) { + if (dimAOuter <= 8) { + elementsPerThread[1] = 1; + } + if (dimInner <= 16 && dimBOuter <= 16) { + workGroupSize[0] = 4; + } + } + return { workGroupSize, elementsPerThread }; +} function computeWorkGroupSizeForConv2d(layout, outputShape, isVec4 = false) { if (isVec4) { return [8, 8, 1]; @@ -66581,14 +66401,6 @@ function computeWorkGroupSizeForConv2d(layout, outputShape, isVec4 = false) { } return [16, 16, 1]; } -function computeWorkGroupSizeForMatMul(dimAOuter, dimInner, dimBOuter) { - if (dimAOuter === 1) { - return [32, 1, 1]; - } else if (dimBOuter === 1) { - return [1, 32, 1]; - } - return [8, 8, 1]; -} function computeWorkPerThreadForConv2d(layout, outputShape, isVec4 = false) { if (isVec4) { return [4, 4, 1]; @@ -66631,13 +66443,991 @@ function isWebGPUSupported() { } var MatMulProgramType; (function(MatMulProgramType2) { - MatMulProgramType2[MatMulProgramType2["MatMulPackedVec4Program"] = 0] = "MatMulPackedVec4Program"; - MatMulProgramType2[MatMulProgramType2["MatMulReduceProgram"] = 1] = "MatMulReduceProgram"; - MatMulProgramType2[MatMulProgramType2["MatMulSplitKProgram"] = 2] = "MatMulSplitKProgram"; - MatMulProgramType2[MatMulProgramType2["MatMulSmallOutputSizeProgram"] = 3] = "MatMulSmallOutputSizeProgram"; - MatMulProgramType2[MatMulProgramType2["MatMulPackedProgram"] = 4] = "MatMulPackedProgram"; - MatMulProgramType2[MatMulProgramType2["MatMulMax"] = 5] = "MatMulMax"; + MatMulProgramType2[MatMulProgramType2["MatMulReduceProgram"] = 0] = "MatMulReduceProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulSplitKProgram"] = 1] = "MatMulSplitKProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulSmallOutputSizeProgram"] = 2] = "MatMulSmallOutputSizeProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulPackedProgram"] = 3] = "MatMulPackedProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulMax"] = 4] = "MatMulMax"; })(MatMulProgramType || (MatMulProgramType = {})); +var CPU_HANDOFF_SIZE_THRESHOLD2 = env().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"); +var reshapeDispatch = (device, program) => { + const MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE = device.limits.maxComputeWorkgroupsPerDimension; + const layout = program["dispatchLayout"]; + const dispatch = program["dispatch"]; + if (dispatch.every((d) => d <= MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE)) { + return dispatch; + } + util_exports.assert(dispatch[0] > MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE && layout.y === void 0 && layout.z === void 0, () => "Dispatch size exceeds WebGPU limits in Y or Z dimension."); + let dispatchAverage = Math.ceil(Math.sqrt(dispatch[0])); + if (dispatchAverage > MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE) { + dispatchAverage = Math.ceil(Math.cbrt(dispatch[0])); + util_exports.assert(dispatchAverage <= MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE, () => "Total dispatch size exceeds WebGPU maximum."); + return [dispatchAverage, dispatchAverage, dispatchAverage]; + } else { + return [dispatchAverage, dispatchAverage, 1]; + } +}; +var WebGPUBackend = class extends KernelBackend { + constructor(device) { + super(); + this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet(); + this.dispatchNumberInEncoder = 0; + this.disposed = false; + this.downloadWaitMs = 0; + this.tensorDataPendingDisposal = []; + this.stagingPendingDisposal = []; + this.uniformPendingDisposal = []; + this.uploadWaitMs = 0; + if (!isWebGPUSupported()) { + throw new Error("WebGPU is not supported on this device"); + } + this.pipelineCache = {}; + this.device = device; + this.queue = device.queue; + this.currentCommandEncoder = null; + this.currentComputePass = null; + this.supportTimeQuery = device.features.has("timestamp-query"); + this.bufferManager = new BufferManager(this.device); + this.textureManager = new TextureManager2(this.device); + this.tensorMap = new DataStorage(this, engine()); + if (this.supportTimeQuery) { + this.querySet = this.device.createQuerySet({ + type: "timestamp", + count: 2 + }); + } + if (env().getBool("WEBGPU_USE_PROFILE_TOOL")) { + this.dummyCanvas = document.createElement("canvas"); + this.dummyCanvas.width = 1; + this.dummyCanvas.height = 1; + this.dummyContext = this.dummyCanvas.getContext("webgpu"); + this.dummyContext.configure({ + device, + format: "bgra8unorm" + }); + document.body.appendChild(this.dummyCanvas); + } + } + nextDataId() { + return WebGPUBackend.nextDataId++; + } + floatPrecision() { + return 32; + } + defaultGpuBufferUsage() { + return GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST; + } + disposeData(dataId, force = false) { + if (this.tensorDataPendingDisposal.indexOf(dataId) >= 0) { + return false; + } + if (!this.tensorMap.has(dataId)) { + return true; + } + const tensorData = this.tensorMap.get(dataId); + this.decRef(dataId); + if (!force && tensorData.refCount > 0) { + return false; + } + if (this.commandQueueOwnedIds.has(dataId)) { + this.tensorDataPendingDisposal.push(dataId); + return false; + } + const { complexTensorInfos } = this.tensorMap.get(dataId); + if (complexTensorInfos != null) { + this.disposeData(complexTensorInfos.real.dataId, force); + this.disposeData(complexTensorInfos.imag.dataId, force); + } + this.releaseResource(dataId); + this.tensorMap.delete(dataId); + return true; + } + memory() { + return { + numBytesInGPU: this.bufferManager.numBytesUsed, + numBytesAllocatedInGPU: this.bufferManager.numBytesAllocated, + unreliable: false + }; + } + releaseResource(dataId) { + const tensorData = this.tensorMap.get(dataId); + if (!tensorData || !tensorData.resourceInfo) { + return; + } + if ("texture" in tensorData.resourceInfo) { + const textureInfo = tensorData.resourceInfo; + if (textureInfo.texture instanceof GPUTexture) { + this.textureManager.releaseTexture(textureInfo.texture, textureInfo.width, textureInfo.height, textureInfo.format, textureInfo.usage); + } + textureInfo.texture = null; + } else { + const bufferInfo = tensorData.resourceInfo; + this.bufferManager.releaseBuffer(bufferInfo.buffer, bufferInfo.size, bufferInfo.usage); + bufferInfo.buffer = null; + } + tensorData.resourceInfo = null; + } + refCount(dataId) { + if (this.tensorMap.has(dataId)) { + const tensorData = this.tensorMap.get(dataId); + return tensorData.refCount; + } + return 0; + } + incRef(dataId) { + const tensorData = this.tensorMap.get(dataId); + tensorData.refCount++; + } + decRef(dataId) { + if (this.tensorMap.has(dataId)) { + const tensorData = this.tensorMap.get(dataId); + tensorData.refCount--; + } + } + write(values, shape, dtype) { + if (dtype === "complex64" && values != null) { + throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`); + } + const dataId = { id: this.nextDataId() }; + this.tensorMap.set(dataId, { dtype, shape, values, refCount: 1 }); + return dataId; + } + move(dataId, values, shape, dtype, refCount) { + if (dtype === "complex64") { + throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`); + } + this.tensorMap.set(dataId, { dtype, shape, values, refCount }); + } + submitQueue() { + this.ensureComputePassEnded(); + this.queue.submit([this.currentCommandEncoder.finish()]); + this.currentCommandEncoder = null; + this.dispatchNumberInEncoder = 0; + this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet(); + this.tensorDataPendingDisposal.forEach((d) => { + this.releaseResource(d); + this.tensorMap.delete(d); + }); + this.uniformPendingDisposal.forEach((d) => this.bufferManager.releaseBuffer(d.buffer, d.size, d.usage)); + this.stagingPendingDisposal.forEach((d) => this.bufferManager.releaseUploadBuffer(d.buffer, d.size, d.usage)); + this.tensorDataPendingDisposal = []; + this.uniformPendingDisposal = []; + this.stagingPendingDisposal = []; + } + ensureCommandEncoderReady() { + if (!this.currentCommandEncoder) { + this.currentCommandEncoder = this.device.createCommandEncoder(); + } + } + ensureComputePassEnded() { + if (this.currentComputePass) { + this.currentComputePass.end(); + this.currentComputePass = null; + } + } + getComputePass() { + if (!this.currentComputePass) { + this.currentComputePass = this.currentCommandEncoder.beginComputePass(); + } + return this.currentComputePass; + } + async getBufferData(buffer2, size2) { + const staging = this.bufferManager.acquireBuffer(size2, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ); + this.ensureCommandEncoderReady(); + this.ensureComputePassEnded(); + this.currentCommandEncoder.copyBufferToBuffer(buffer2, 0, staging, 0, size2); + this.submitQueue(); + await staging.mapAsync(GPUMapMode.READ); + const values = staging.getMappedRange().slice(0); + staging.unmap(); + if (staging != null) { + this.bufferManager.releaseBuffer(staging, size2, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ); + } + if (env().getBool("WEBGPU_USE_PROFILE_TOOL")) { + util_exports.assert(this.dummyContext !== void 0, () => `Fail to get context for profiling tool`); + this.dummyContext.getCurrentTexture(); + } + return values; + } + convertAndCacheOnCPU(dataId, data) { + const tensorData = this.tensorMap.get(dataId); + this.releaseResource(dataId); + tensorData.values = data; + return tensorData.values; + } + readSync(dataId) { + const tensorData = this.tensorMap.get(dataId); + const { values } = tensorData; + if (values == null) { + throw new Error("WebGPU readSync is only available for CPU-resident tensors."); + } + return values; + } + async read(dataId) { + if (!this.tensorMap.has(dataId)) { + throw new Error(`Tensor ${dataId} was not registered!`); + } + const tensorData = this.tensorMap.get(dataId); + const { values } = tensorData; + if (values != null) { + return this.convertAndCacheOnCPU(dataId, values); + } + let vals; + if (tensorData.dtype === "complex64") { + const ps = await Promise.all([ + this.read(tensorData.complexTensorInfos.real.dataId), + this.read(tensorData.complexTensorInfos.imag.dataId) + ]); + const realValues = ps[0]; + const imagValues = ps[1]; + vals = backend_util_exports.mergeRealAndImagArrays(realValues, imagValues); + } else { + const bufferInfo = tensorData.resourceInfo; + const data = await this.getBufferData(bufferInfo.buffer, bufferInfo.size); + vals = ArrayBufferToTypedArray(data, tensorData.dtype); + } + this.convertAndCacheOnCPU(dataId, vals); + return vals; + } + readToGPU(dataId) { + const srcTensorData = this.tensorMap.get(dataId); + const { values, dtype, shape, resourceInfo } = srcTensorData; + if (dtype === "complex64") { + throw new Error("Does not support reading buffer for complex64 dtype."); + } + if (resourceInfo == null) { + if (values != null) { + throw new Error("Data is not on GPU but on CPU."); + } else { + throw new Error("There is no data on GPU or CPU."); + } + } + const size2 = resourceInfo.size; + const buffer2 = this.bufferManager.acquireBuffer(size2, resourceInfo.usage); + this.ensureCommandEncoderReady(); + this.ensureComputePassEnded(); + this.currentCommandEncoder.copyBufferToBuffer(resourceInfo.buffer, 0, buffer2, 0, size2); + this.submitQueue(); + const tensorInfo = this.makeTensorInfo(shape, dtype); + const tensorRef = engine().makeTensorFromTensorInfo(tensorInfo); + const tensorData = this.tensorMap.get(tensorInfo.dataId); + tensorData.resourceInfo = { size: size2, usage: this.defaultGpuBufferUsage(), buffer: buffer2 }; + return { tensorRef, buffer: buffer2, bufSize: size2 }; + } + bufferSync(t2) { + const data = this.readSync(t2.dataId); + if (t2.dtype === "string") { + try { + const strings = data.map((d) => util_exports.decodeString(d)); + return buffer(t2.shape, t2.dtype, strings); + } catch (_a) { + throw new Error("Failed to decode encoded string bytes into utf-8"); + } + } + return buffer(t2.shape, t2.dtype, data); + } + async time(f) { + if (!this.supportTimeQuery) { + console.warn(`This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Otherwise, zero will be shown for the kernel time when profiling mode is enabled. Using performance.now is not workable for webgpu since it doesn't support synchronous data read from GPU.`); + } + const oldActiveTimers = this.activeTimers; + const newActiveTimers = []; + let outerMostTime = false; + if (this.programTimersStack == null) { + this.programTimersStack = newActiveTimers; + outerMostTime = true; + } else { + this.activeTimers.push(newActiveTimers); + } + this.activeTimers = newActiveTimers; + f(); + const flattenedActiveTimerQueries = util_exports.flatten(this.activeTimers.map((d) => d.query)).filter((d) => d != null); + const flattenedActiveTimerNames = util_exports.flatten(this.activeTimers.map((d) => d.name)).filter((d) => d != null); + this.activeTimers = oldActiveTimers; + if (outerMostTime) { + this.programTimersStack = null; + } + const res = { + uploadWaitMs: this.uploadWaitMs, + downloadWaitMs: this.downloadWaitMs, + kernelMs: null, + wallMs: null + }; + const kernelMs = await Promise.all(flattenedActiveTimerQueries); + res["kernelMs"] = util_exports.sum(kernelMs); + res["getExtraProfileInfo"] = () => kernelMs.map((d, i2) => ({ name: flattenedActiveTimerNames[i2], ms: d })).map((d) => `${d.name}: ${d.ms}`).join(", "); + this.uploadWaitMs = 0; + this.downloadWaitMs = 0; + return res; + } + makeTensorInfo(shape, dtype, values) { + if (dtype === "string" && values != null && values.length > 0 && util_exports.isString(values[0])) { + values = values.map((d) => util_exports.encodeString(d)); + } + const dataId = this.write(values, shape, dtype); + return { dataId, shape, dtype }; + } + tensorToBinding(tensor2) { + if (!tensor2) { + return null; + } + const tensorData = this.tensorMap.get(tensor2.dataId); + if ("texture" in tensorData.resourceInfo) { + const info = tensorData.resourceInfo; + if (info.texture instanceof GPUExternalTexture) { + return info.texture; + } else { + return info.texture.createView(); + } + } + const bufferInfo = tensorData.resourceInfo; + return { offset: 0, size: bufferInfo.size, buffer: bufferInfo.buffer }; + } + async getQueryTime(query) { + if (this.supportTimeQuery) { + return this.getTimeFromQuerySet(query); + } else { + return 0; + } + } + uploadToGPU(dataId) { + const tensorData = this.tensorMap.get(dataId); + if (tensorData.resourceInfo) { + return; + } + const size2 = GPUBytesPerElement(tensorData.dtype) * util_exports.sizeFromShape(tensorData.shape); + const buffer2 = this.bufferManager.acquireBuffer(size2, this.defaultGpuBufferUsage()); + tensorData.resourceInfo = { size: size2, usage: this.defaultGpuBufferUsage(), buffer: buffer2 }; + if (tensorData.values) { + const stagingBuffer = this.bufferManager.acquireUploadBuffer(size2, GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC); + const arrayBuffer = stagingBuffer.getMappedRange(); + if (tensorData.dtype === "int32" || tensorData.dtype === "bool") { + new Int32Array(arrayBuffer).set(tensorData.values); + } else { + new Float32Array(arrayBuffer).set(tensorData.values); + } + stagingBuffer.unmap(); + this.ensureCommandEncoderReady(); + this.ensureComputePassEnded(); + this.currentCommandEncoder.copyBufferToBuffer(stagingBuffer, 0, buffer2, 0, size2); + const stagingInfo = { + size: size2, + usage: GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC, + buffer: stagingBuffer + }; + this.stagingPendingDisposal.push(stagingInfo); + } + } + makeUniforms(programUniform) { + let currentOffset = 0; + let preLength = 0; + const offsets = []; + programUniform.forEach((d) => { + if (d.data.length === 0) { + d.data = [1]; + } + let baseAlignment; + switch (d.data.length) { + case 1: + baseAlignment = 4; + break; + case 2: + baseAlignment = 8; + break; + case 3: + baseAlignment = 16; + break; + case 4: + baseAlignment = 16; + break; + case 5: + baseAlignment = 16; + break; + case 6: + baseAlignment = 16; + break; + default: + util_exports.assert(false, () => `Unsupported ${d.data.length}D shape`); + } + if (preLength === 5 || preLength === 6) { + baseAlignment = 16; + } + currentOffset = Math.ceil(currentOffset / baseAlignment) * baseAlignment; + preLength = d.data.length; + offsets.push(currentOffset); + currentOffset += d.data.length * 4; + }); + const arrayBuffer = new ArrayBuffer(currentOffset); + programUniform.forEach((d, i2) => { + const offset = offsets[i2]; + if (d.type === "int32") { + new Int32Array(arrayBuffer, offset, d.data.length).set(d.data); + } else if (d.type === "uint32") { + new Uint32Array(arrayBuffer, offset, d.data.length).set(d.data); + } else { + new Float32Array(arrayBuffer, offset, d.data.length).set(d.data); + } + }); + const uniformBuffer = this.bufferManager.acquireBuffer(currentOffset, GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM); + this.queue.writeBuffer(uniformBuffer, 0, arrayBuffer, 0, currentOffset); + const uniformInfo = { + size: currentOffset, + usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM, + buffer: uniformBuffer + }; + this.uniformPendingDisposal.push(uniformInfo); + return { offset: 0, size: currentOffset, buffer: uniformBuffer }; + } + runWebGPUProgram(program, inputs, outputDtype, programDefinedUniform, output) { + if (!output) { + output = this.makeTensorInfo(program.outputShape, outputDtype); + } + if (util_exports.sizeFromShape(output.shape) === 0) { + this.tensorMap.get(output.dataId).values = util_exports.getTypedArrayFromDType(output.dtype, 0); + return output; + } + this.uploadToGPU(output.dataId); + program.dispatch = reshapeDispatch(this.device, program); + let programUniform = []; + let bufferShapes = []; + if (!program.isFromPixels) { + programUniform.push({ type: "float32", data: [NaN] }); + bufferShapes = inputs.concat(output).map((d) => d.shape); + const uniformsType = "int32"; + bufferShapes.map((d) => { + programUniform.push({ type: uniformsType, data: d }); + }); + const strides2 = util_exports.computeStrides(output.shape); + programUniform.push({ type: uniformsType, data: strides2 }); + if (program.size) { + const size2 = util_exports.sizeFromShape(program.outputShape); + programUniform.push({ type: uniformsType, data: [program.isVec4 ? size2 / 4 : size2] }); + } + } + const inputsData = inputs.map((input2, i2) => { + if (input2.dtype === "complex64") { + throw new Error(`GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.`); + } + this.uploadToGPU(input2.dataId); + return { + dtype: this.tensorMap.get(input2.dataId).dtype, + shape: input2.shape, + name: program.variableNames[i2] + }; + }); + const key = makeShaderKey2(program, bufferShapes, inputsData, output); + let pipeline; + if (key in this.pipelineCache) { + pipeline = this.pipelineCache[key]; + } else { + pipeline = compileProgram2(this.device, program, inputsData, output); + this.pipelineCache[key] = pipeline; + } + if (programDefinedUniform) { + programUniform = [...programUniform, ...programDefinedUniform]; + } + const bindings = [ + this.tensorToBinding(output), + ...inputs.map((t2) => this.tensorToBinding(t2)), + this.makeUniforms(programUniform) + ]; + const bindGroup = this.device.createBindGroup({ + layout: pipeline.getBindGroupLayout(0), + entries: bindings.map((b, i2) => ({ binding: i2, resource: b })) + }); + this.ensureCommandEncoderReady(); + const pass = this.getComputePass(); + const shouldTimeProgram = this.activeTimers != null; + if (shouldTimeProgram) { + if (this.supportTimeQuery) { + pass.writeTimestamp(this.querySet, 0); + } + } + pass.setPipeline(pipeline); + pass.setBindGroup(0, bindGroup); + pass.dispatchWorkgroups(program.dispatch[0], program.dispatch[1], program.dispatch[2]); + if (shouldTimeProgram) { + if (this.supportTimeQuery) { + pass.writeTimestamp(this.querySet, 1); + } + } + this.dispatchNumberInEncoder++; + inputs.forEach((input2) => { + this.commandQueueOwnedIds.add(input2.dataId); + }); + this.commandQueueOwnedIds.add(output.dataId); + if (env().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE") <= this.dispatchNumberInEncoder) { + this.submitQueue(); + } + if (shouldTimeProgram) { + this.activeTimers.push({ + name: program.constructor.name, + query: this.getQueryTime(this.querySet) + }); + } + return output; + } + async getTimeFromQuerySet(querySet) { + const queryBuffer = this.bufferManager.acquireBuffer(16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE); + const dst = this.bufferManager.acquireBuffer(16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST); + this.ensureCommandEncoderReady(); + this.ensureComputePassEnded(); + this.currentCommandEncoder.resolveQuerySet(querySet, 0, 2, queryBuffer, 0); + this.currentCommandEncoder.copyBufferToBuffer(queryBuffer, 0, dst, 0, 16); + this.submitQueue(); + await dst.mapAsync(GPUMapMode.READ); + const arrayBuf = new BigUint64Array(dst.getMappedRange()); + const timeElapsedNanos = Number(arrayBuf[1] - arrayBuf[0]); + dst.unmap(); + this.bufferManager.releaseBuffer(dst, 16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST); + this.bufferManager.releaseBuffer(queryBuffer, 16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE); + return timeElapsedNanos / 1e6; + } + shouldExecuteOnCPU(inputs, sizeThreshold = CPU_HANDOFF_SIZE_THRESHOLD2) { + return env().getBool("WEBGPU_CPU_FORWARD") && inputs.every((input2) => this.tensorMap.get(input2.dataId).resourceInfo == null && util_exports.sizeFromShape(input2.shape) < sizeThreshold); + } + numDataIds() { + return this.tensorMap.numDataIds() - this.tensorDataPendingDisposal.length; + } + dispose() { + if (this.disposed) { + return; + } + this.bufferManager.dispose(); + this.textureManager.dispose(); + this.disposed = true; + } +}; +WebGPUBackend.nextDataId = 0; +if (isWebGPUSupported()) { + registerBackend("webgpu", async () => { + env().set("CHECK_COMPUTATION_FOR_ERRORS", false); + const gpuDescriptor = { + powerPreference: env().get("WEBGPU_USE_LOW_POWER_GPU") ? "low-power" : "high-performance" + }; + const adapter = await navigator.gpu.requestAdapter(gpuDescriptor); + const adapterLimits = adapter.limits; + const deviceDescriptor = {}; + const supportTimeQuery = adapter.features.has("timestamp-query"); + deviceDescriptor.requiredLimits = { + "maxComputeWorkgroupStorageSize": adapterLimits.maxComputeWorkgroupStorageSize, + "maxComputeWorkgroupsPerDimension": adapterLimits.maxComputeWorkgroupsPerDimension, + "maxStorageBufferBindingSize": adapterLimits.maxStorageBufferBindingSize + }; + if (supportTimeQuery) { + deviceDescriptor.requiredFeatures = ["timestamp-query"]; + } + const device = await adapter.requestDevice(deviceDescriptor); + return new WebGPUBackend(device); + }, 3); +} +var BinaryOpType; +(function(BinaryOpType2) { + BinaryOpType2[BinaryOpType2["MUL"] = 0] = "MUL"; + BinaryOpType2[BinaryOpType2["ADD"] = 1] = "ADD"; + BinaryOpType2[BinaryOpType2["ATAN2"] = 2] = "ATAN2"; + BinaryOpType2[BinaryOpType2["SUB"] = 3] = "SUB"; + BinaryOpType2[BinaryOpType2["DIV"] = 4] = "DIV"; + BinaryOpType2[BinaryOpType2["EQUAL"] = 5] = "EQUAL"; + BinaryOpType2[BinaryOpType2["GREATER"] = 6] = "GREATER"; + BinaryOpType2[BinaryOpType2["GREATER_EQUAL"] = 7] = "GREATER_EQUAL"; + BinaryOpType2[BinaryOpType2["LESS"] = 8] = "LESS"; + BinaryOpType2[BinaryOpType2["LESS_EQUAL"] = 9] = "LESS_EQUAL"; + BinaryOpType2[BinaryOpType2["LOGICAL_AND"] = 10] = "LOGICAL_AND"; + BinaryOpType2[BinaryOpType2["NOT_EQUAL"] = 11] = "NOT_EQUAL"; + BinaryOpType2[BinaryOpType2["SQUARED_DIFFERENCE"] = 12] = "SQUARED_DIFFERENCE"; + BinaryOpType2[BinaryOpType2["INT_DIV"] = 13] = "INT_DIV"; + BinaryOpType2[BinaryOpType2["POW"] = 14] = "POW"; + BinaryOpType2[BinaryOpType2["PRELU"] = 15] = "PRELU"; + BinaryOpType2[BinaryOpType2["MAX"] = 16] = "MAX"; + BinaryOpType2[BinaryOpType2["MIN"] = 17] = "MIN"; + BinaryOpType2[BinaryOpType2["COMPLEX_MULTIPLY_REAL"] = 18] = "COMPLEX_MULTIPLY_REAL"; + BinaryOpType2[BinaryOpType2["COMPLEX_MULTIPLY_IMAG"] = 19] = "COMPLEX_MULTIPLY_IMAG"; +})(BinaryOpType || (BinaryOpType = {})); +var CHECK_NAN_SNIPPET4 = ` + if (isnan(a)) { return a; } + if (isnan(b)) { return b; } + `; +var CHECK_NAN_SNIPPET_VEC4_INNER = ` + if (isNaN.r) { + resultTemp.r = valueForNaN; + } + if (isNaN.g) { + resultTemp.g = valueForNaN; + } + if (isNaN.b) { + resultTemp.b = valueForNaN; + } + if (isNaN.a) { + resultTemp.a = valueForNaN; + } + `; +var CHECK_NAN_SNIPPET_VEC4 = ` + let isNaN = isnanVec4(a) | isnanVec4(b); + ${CHECK_NAN_SNIPPET_VEC4_INNER} + `; +var ADD2 = "return a + b;"; +var COMPLEX_MULTIPLY_REAL = "return areal * breal - aimag * bimag;"; +var COMPLEX_MULTIPLY_IMAG = "return areal * bimag + aimag * breal;"; +var DIV2 = "return a / b;"; +var MUL2 = "return a * b;"; +var SQUARED_DIFFERENCE2 = "return (a - b) * (a - b);"; +var SUB2 = "return a - b;"; +var EQUAL2 = "return f32(a == b);"; +var EQUAL_VEC4 = "return vec4(a == b);"; +var GREATER2 = "return f32(a > b);"; +var GREATER_VEC4 = "return vec4(a > b);"; +var GREATER_EQUAL2 = "return f32(a >= b);"; +var GREATER_EQUAL_VEC4 = "return vec4(a >= b);"; +var LESS2 = "return f32(a < b);"; +var LESS_VEC4 = "return vec4(a < b);"; +var LESS_EQUAL2 = "return f32(a <= b);"; +var LESS_EQUAL_VEC4 = "return vec4(a <= b);"; +var LOGICAL_AND2 = "return f32(f32(a) >= 1.0 && f32(b) >= 1.0);"; +var LOGICAL_AND_VEC4 = `return (vec4(a >= vec4(1.0)) * + vec4(b >= vec4(1.0)));`; +var INT_DIV2 = ` + let s = sign(a) * sign(b); + let ia = i32(round(a)); + let ib = i32(round(b)); + return f32(idiv(ia, ib, s)); + `; +var INT_DIV_VEC4 = ` + let ia = vec4(round(a)); + let ib = vec4(round(b)); + let cond = ib != vec4(0); + var resultTemp = vec4(0); + let s = sign(a) * sign(b); + + // Windows (D3D) wants guaranteed non-zero int division at compile-time. + if (cond[0]) { + resultTemp[0] = idiv(ia[0], ib[0], s[0]); + } + if (cond[1]) { + resultTemp[1] = idiv(ia[1], ib[1], s[1]); + } + if (cond[2]) { + resultTemp[2] = idiv(ia[2], ib[2], s[2]); + } + if (cond[3]) { + resultTemp[3] = idiv(ia[3], ib[3], s[3]); + } + return vec4(resultTemp); + `; +var NOT_EQUAL2 = ` + if (isnan(a) || isnan(b)) { + return 1.0; + } + return f32(a != b); +`; +var NOT_EQUAL_VEC4 = ` + var resultTemp = vec4(a != b); + let valueForNaN = 1.0; + ${CHECK_NAN_SNIPPET_VEC4} + + return resultTemp; +`; +var POW2 = ` + if(a < 0.0 && floor(b) < b) { + return uniforms.NAN; + } + if (b == 0.0) { + return 1.0; + } + if (round(abs(b) % 2.0) != 1.0) { + return pow(abs(a), b); + } + return sign(a) * pow(abs(a), b); + `; +var POW_VEC4 = ` + let isModRound1Bool = vec4(round(abs(b) % vec4(2.0))) == vec4(1); + let isModRound1 = vec4(isModRound1Bool); + let multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); + var resultTemp = multiplier * pow(abs(a), b); + + // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS + let isExpZero = b == vec4(0.0); + if (isExpZero.r) { + resultTemp.r = 1.0; + } + if (isExpZero.g) { + resultTemp.g = 1.0; + } + if (isExpZero.b) { + resultTemp.b = 1.0; + } + if (isExpZero.a) { + resultTemp.a = 1.0; + } + let isNaN = a < vec4(0.0) & floor(b) < b; + let valueForNaN = uniforms.NAN; + ${CHECK_NAN_SNIPPET_VEC4_INNER} + return resultTemp; + `; +var PRELU2 = `if (a < 0.0) { return b * a; } return a;`; +var PRELU_VEC4 = ` + let aLessThanZero = vec4(a < vec4(0.0)); + return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); + `; +function getBinaryWithNanString(op2, useVec4, valueForNaN = "uniforms.NAN") { + const checkNanSnippet = useVec4 ? CHECK_NAN_SNIPPET_VEC4 : CHECK_NAN_SNIPPET4; + return useVec4 ? ` + let valueForNaN = ${valueForNaN}; + var resultTemp = vec4(${op2}(a, b)); + ` + checkNanSnippet + ` + return resultTemp; + ` : checkNanSnippet + ` + return ${op2}(a, b); + `; +} +function getBinaryOpString(type, useVec4) { + switch (type) { + case BinaryOpType.MUL: + return MUL2; + case BinaryOpType.ADD: + return ADD2; + case BinaryOpType.ATAN2: + return getBinaryWithNanString("atan2", useVec4); + case BinaryOpType.SUB: + return SUB2; + case BinaryOpType.DIV: + return DIV2; + case BinaryOpType.EQUAL: + return useVec4 ? EQUAL_VEC4 : EQUAL2; + case BinaryOpType.GREATER: + return useVec4 ? GREATER_VEC4 : GREATER2; + case BinaryOpType.GREATER_EQUAL: + return useVec4 ? GREATER_EQUAL_VEC4 : GREATER_EQUAL2; + case BinaryOpType.LESS: + return useVec4 ? LESS_VEC4 : LESS2; + case BinaryOpType.LESS_EQUAL: + return useVec4 ? LESS_EQUAL_VEC4 : LESS_EQUAL2; + case BinaryOpType.LOGICAL_AND: + return useVec4 ? LOGICAL_AND_VEC4 : LOGICAL_AND2; + case BinaryOpType.NOT_EQUAL: + return useVec4 ? NOT_EQUAL_VEC4 : NOT_EQUAL2; + case BinaryOpType.SQUARED_DIFFERENCE: + return SQUARED_DIFFERENCE2; + case BinaryOpType.INT_DIV: + return useVec4 ? INT_DIV_VEC4 : INT_DIV2; + case BinaryOpType.PRELU: + return useVec4 ? PRELU_VEC4 : PRELU2; + case BinaryOpType.MAX: + return getBinaryWithNanString("max", useVec4); + case BinaryOpType.MIN: + return getBinaryWithNanString("min", useVec4); + case BinaryOpType.POW: + return useVec4 ? POW_VEC4 : POW2; + case BinaryOpType.COMPLEX_MULTIPLY_REAL: + return COMPLEX_MULTIPLY_REAL; + case BinaryOpType.COMPLEX_MULTIPLY_IMAG: + return COMPLEX_MULTIPLY_IMAG; + default: + throw new Error(`BinaryType ${type} is not implemented!`); + } +} +var UnaryOpType; +(function(UnaryOpType2) { + UnaryOpType2[UnaryOpType2["ABS"] = 0] = "ABS"; + UnaryOpType2[UnaryOpType2["CEIL"] = 1] = "CEIL"; + UnaryOpType2[UnaryOpType2["COS"] = 2] = "COS"; + UnaryOpType2[UnaryOpType2["COSH"] = 3] = "COSH"; + UnaryOpType2[UnaryOpType2["ELU"] = 4] = "ELU"; + UnaryOpType2[UnaryOpType2["EXP"] = 5] = "EXP"; + UnaryOpType2[UnaryOpType2["EXPM1"] = 6] = "EXPM1"; + UnaryOpType2[UnaryOpType2["FLOOR"] = 7] = "FLOOR"; + UnaryOpType2[UnaryOpType2["IS_NAN"] = 8] = "IS_NAN"; + UnaryOpType2[UnaryOpType2["LINEAR"] = 9] = "LINEAR"; + UnaryOpType2[UnaryOpType2["LOG"] = 10] = "LOG"; + UnaryOpType2[UnaryOpType2["LOGICAL_NOT"] = 11] = "LOGICAL_NOT"; + UnaryOpType2[UnaryOpType2["NEG"] = 12] = "NEG"; + UnaryOpType2[UnaryOpType2["RELU"] = 13] = "RELU"; + UnaryOpType2[UnaryOpType2["RELU6"] = 14] = "RELU6"; + UnaryOpType2[UnaryOpType2["LEAKYRELU"] = 15] = "LEAKYRELU"; + UnaryOpType2[UnaryOpType2["RECIPROCAL"] = 16] = "RECIPROCAL"; + UnaryOpType2[UnaryOpType2["RSQRT"] = 17] = "RSQRT"; + UnaryOpType2[UnaryOpType2["SIN"] = 18] = "SIN"; + UnaryOpType2[UnaryOpType2["SINH"] = 19] = "SINH"; + UnaryOpType2[UnaryOpType2["SIGMOID"] = 20] = "SIGMOID"; + UnaryOpType2[UnaryOpType2["SQRT"] = 21] = "SQRT"; + UnaryOpType2[UnaryOpType2["SQUARE"] = 22] = "SQUARE"; + UnaryOpType2[UnaryOpType2["TANH"] = 23] = "TANH"; + UnaryOpType2[UnaryOpType2["TO_INT"] = 24] = "TO_INT"; +})(UnaryOpType || (UnaryOpType = {})); +var ABS3 = `return abs(a);`; +var CEIL2 = `return ceil(a);`; +var COS2 = `return cos(a);`; +var COSH2 = ` + let e2x = exp(-a); + return (e2x + 1.0 / e2x) / 2.0; +`; +var EXPM12 = `return exp(a) - 1.0;`; +var ELU5 = `if (a >= 0.0) { return a; } return (exp(a) - 1.0);`; +var ELU_VEC4 = ` + var resFloat = exp(a) - vec4(1.0); + if (a.r >= 0.0) { + resFloat.r = a.r; + } + if (a.g >= 0.0) { + resFloat.g = a.g; + } + if (a.b >= 0.0) { + resFloat.b = a.b; + } + if (a.a >= 0.0) { + resFloat.a = a.a; + } + return resFloat; +`; +var EXP2 = `return exp(a);`; +var FLOOR2 = `return floor(a);`; +var IS_NAN2 = `return f32(isnan(a));`; +var LINEAR3 = `return a;`; +var LOG2 = `if (a < 0.0) { return 1.0/0.0; } + return log(a);`; +var LOGICAL_NOT2 = `return f32(!(a >= 1.0));`; +var NEG2 = `return -a;`; +var LEAKYRELU2 = `if (a < 0.0) { return uniforms.alpha * a; } return a;`; +var LEAKYRELU_VEC4 = ` + let aLessThanZero = vec4(a < vec4(0.0)); + return (aLessThanZero * (uniforms.alpha * a)) + ((vec4(1.0) - aLessThanZero) * a); +`; +var RECIPROCAL2 = `return 1.0 / a;`; +var RELU4 = `return select(a, 0.0, a < 0.0);`; +var RELU64 = "return clamp(a, 0.0, 6.0);"; +var RELU6_VEC4 = "return clamp(a, vec4(0.0, 0.0, 0.0, 0.0), vec4(6.0, 6.0, 6.0, 6.0));"; +var RELU_VEC4 = ` + return select(a, vec4(0.0), a < vec4(0.0)); +`; +var RSQRT2 = `return 1.0/sqrt(a);`; +var SIGMOID4 = `return 1.0 / (1.0 + exp(-1.0 * a));`; +var SIN2 = `return sin(a);`; +var SINH2 = ` + let e2x = exp(a); + return (e2x - 1.0 / e2x) / 2.0; +`; +var SQRT2 = `return sqrt(a);`; +var SQUARE2 = `return a * a;`; +var TANH2 = ` + let e2x = exp(-2.0 * abs(a)); + return sign(a) * (1.0 - e2x) / (1.0 + e2x); +`; +var TO_INT2 = `return f32(i32((a)));`; +function getUnaryOpString(type, useVec4) { + switch (type) { + case UnaryOpType.ABS: + return ABS3; + case UnaryOpType.COS: + return COS2; + case UnaryOpType.COSH: + return COSH2; + case UnaryOpType.CEIL: + return CEIL2; + case UnaryOpType.ELU: + return useVec4 ? ELU_VEC4 : ELU5; + case UnaryOpType.EXP: + return EXP2; + case UnaryOpType.EXPM1: + return EXPM12; + case UnaryOpType.FLOOR: + return FLOOR2; + case UnaryOpType.IS_NAN: + return IS_NAN2; + case UnaryOpType.LINEAR: + return LINEAR3; + case UnaryOpType.LOG: + return LOG2; + case UnaryOpType.LOGICAL_NOT: + return LOGICAL_NOT2; + case UnaryOpType.NEG: + return NEG2; + case UnaryOpType.LEAKYRELU: + return useVec4 ? LEAKYRELU_VEC4 : LEAKYRELU2; + case UnaryOpType.RECIPROCAL: + return RECIPROCAL2; + case UnaryOpType.RELU: + return useVec4 ? RELU_VEC4 : RELU4; + case UnaryOpType.RELU6: + return useVec4 ? RELU6_VEC4 : RELU64; + case UnaryOpType.RSQRT: + return RSQRT2; + case UnaryOpType.SIGMOID: + return SIGMOID4; + case UnaryOpType.SIN: + return SIN2; + case UnaryOpType.SINH: + return SINH2; + case UnaryOpType.SQRT: + return SQRT2; + case UnaryOpType.SQUARE: + return SQUARE2; + case UnaryOpType.TANH: + return TANH2; + case UnaryOpType.TO_INT: + return TO_INT2; + default: + throw new Error(`BinaryType ${type} is not implemented!`); + } +} +var typeSnippet = (component) => { + switch (component) { + case 1: + return "f32"; + case 2: + return "vec2"; + case 3: + return "vec3"; + case 4: + return "vec4"; + default: + throw new Error(`${component}-component is not supported.`); + } +}; +function activationFnSnippet(activation2, hasPreluActivationWeights = false, packed = false, coordsLength = 3) { + if (activation2 === null) { + return ""; + } + let activationOpSnippet = ""; + if (activation2 === "linear") { + activationOpSnippet = getUnaryOpString(UnaryOpType.LINEAR); + } else if (activation2 === "relu") { + activationOpSnippet = getUnaryOpString(UnaryOpType.RELU, packed); + } else if (activation2 === "elu") { + activationOpSnippet = getUnaryOpString(UnaryOpType.ELU, packed); + } else if (activation2 === "relu6") { + activationOpSnippet = getUnaryOpString(UnaryOpType.RELU6, packed); + } else if (activation2 === "prelu") { + activationOpSnippet = getBinaryOpString(BinaryOpType.PRELU, packed); + } else if (activation2 === "sigmoid") { + activationOpSnippet = getUnaryOpString(UnaryOpType.SIGMOID, packed); + } else if (activation2 === "leakyrelu") { + activationOpSnippet = getUnaryOpString(UnaryOpType.LEAKYRELU, packed); + } else { + throw new Error(`Activation ${activation2} has not been implemented for the WebGPU backend.`); + } + const elementSize = packed ? 4 : 1; + const dataType = typeSnippet(elementSize); + let activationFnSnippet2 = ""; + if (hasPreluActivationWeights) { + activationFnSnippet2 = ` + fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { + let b = getPreluActivationWeightsByOutputCoords(coords); + ${activationOpSnippet} + }`; + } else { + activationFnSnippet2 = ` + fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { + ${activationOpSnippet} + }`; + } + return activationFnSnippet2; +} +function biasActivationSnippet(hasBias, activation2) { + return ` + ${hasBias ? "value = value + getBiasByOutputCoords(coords);" : ""} + ${activation2 ? "value = activation(value, coords);" : ""} + `; +} function matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) { util_exports.assert(transposeA && component === 1 || !transposeA, () => `transposeA ${transposeA} is not compatible with component size ${component}`); const sampleA = ` @@ -66690,25 +67480,143 @@ function matMulReadWriteFnSource(hasBias, activation2, batchAEqualOne, batchBEqu } `; } -var writeDataToSubASnippet = (transpose7) => { - if (transpose7) { +var writeDataToSubAVec4Snippet = (transpose6) => { + if (transpose6) { return ` mm_Asub[inputRow][inputCol] = mm_readA(batch, - t * TileInner + inputRow, + kStart + inputRow, + globalRowStart / InnerElementSize + inputCol); + `; + } else { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + globalRow + innerRow, + kStart / InnerElementSize + inputCol); + `; + } +}; +var calculateResultSnippet = (transposeA, innerElementSize) => { + if (transposeA) { + return ` + let ACached0 = mm_Asub[k * InnerElementSize][localRow]; + let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow]; + let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow]; + ${innerElementSize === 3 ? "" : "let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"} + for (var i = 0; i < RowPerThread; i = i + 1) { + acc[i] = BCached0 * ACached0[i] + acc[i]; + acc[i] = BCached1 * ACached1[i] + acc[i]; + acc[i] = BCached2 * ACached2[i] + acc[i]; + ${innerElementSize === 3 ? "" : "acc[i] = BCached3 * ACached3[i] + acc[i];"} + }`; + } else { + return ` + for (var i = 0; i < RowPerThread; i = i + 1) { + let ACached = mm_Asub[tileRow + i][k]; + acc[i] = BCached0 * ACached.x + acc[i]; + acc[i] = BCached1 * ACached.y + acc[i]; + acc[i] = BCached2 * ACached.z + acc[i]; + ${innerElementSize === 3 ? "" : "acc[i] = BCached3 * ACached.w + acc[i];"} + }`; + } +}; +function makeMatMulPackedVec4Source(workPerThread, workGroupSize, transposeA = false, tileInner = 32, splitK = false, splitedDimInner = 32, isVectorA = false) { + const tileAOuter = workGroupSize[1] * workPerThread[1]; + const tileBOuter = workGroupSize[0] * workPerThread[0]; + const tileAWidth = transposeA ? tileAOuter : tileInner; + const tileAHight = transposeA ? tileInner : tileAOuter; + const innerElementSize = tileAWidth / workGroupSize[0]; + const rowPerThreadB = tileInner / workGroupSize[1]; + util_exports.assert((transposeA && innerElementSize === 4 && workPerThread[1] === 4 || !transposeA && (innerElementSize === 3 || innerElementSize === 4)) && tileAWidth % workGroupSize[0] === 0 && tileInner % workGroupSize[1] === 0 && workPerThread[0] === 4, () => `If transposeA ${transposeA} is true, innerElementSize ${innerElementSize} and workPerThread[1] ${workPerThread[1]} must be 4. + Otherwise, innerElementSize ${innerElementSize} must be 3 or 4. + tileAWidth ${tileAWidth} must be divisible by workGroupSize[0]${workGroupSize[0]}. tileInner ${tileInner} must be divisible by workGroupSize[1] ${workGroupSize[1]}. ColPerThread ${workPerThread[0]} must be 4.`); + return ` + var mm_Asub : array, ${tileAWidth / innerElementSize}>, ${tileAHight}>; + var mm_Bsub : array, ${tileBOuter / workPerThread[0]}>, ${tileInner}>; + + const RowPerThread = ${workPerThread[1]}; + const ColPerThread = ${workPerThread[0]}; + const InnerElementSize = ${innerElementSize}; + const TileInner = ${tileInner}; + + @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups: vec3, + @builtin(workgroup_id) workgroupId: vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + + let localRow = i32(localId.y); + let tileRow = ${isVectorA ? "0" : "localRow * RowPerThread"}; + let tileCol = i32(localId.x); + + let globalRow = ${isVectorA ? "0" : "i32(globalId.y) * RowPerThread"}; + let globalCol = i32(globalId.x); + let batch = ${splitK ? "0" : "i32(globalId.z)"}; + let globalRowStart = i32(workgroupId.y) * ${tileAOuter}; + + let numTiles = ${splitK ? `${Math.ceil(splitedDimInner / tileInner)}` : "(uniforms.dimInner - 1) / TileInner + 1"}; + var kStart = ${splitK ? `i32(globalId.z) * ${splitedDimInner}` : "0"}; + + var acc: array, RowPerThread>; + + // Loop over shared dimension. + let tileRowB = localRow * ${rowPerThreadB}; + for (var t = 0; t < numTiles; t = t + 1) { + // Load one tile of A into local memory. + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + let inputRow = tileRow + innerRow; + let inputCol = tileCol; + ${writeDataToSubAVec4Snippet(transposeA)} + } + + // Load one tile of B into local memory. + for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) { + let inputRow = tileRowB + innerRow; + let inputCol = tileCol; + mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalCol); + } + kStart = kStart + TileInner; + workgroupBarrier(); + + // Compute acc values for a single thread. + for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) { + let BCached0 = mm_Bsub[k * InnerElementSize][tileCol]; + let BCached1 = mm_Bsub[k * InnerElementSize + 1][tileCol]; + let BCached2 = mm_Bsub[k * InnerElementSize + 2][tileCol]; + ${innerElementSize === 3 ? "" : "let BCached3 = mm_Bsub[k * InnerElementSize + 3][tileCol];"} + + ${calculateResultSnippet(transposeA, innerElementSize)} + } + + workgroupBarrier(); + } + + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]); + } + }`; +} +var writeDataToSubASnippet = (transpose6) => { + if (transpose6) { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + kStart + inputRow, globalRowStart + inputCol); `; } else { return ` mm_Asub[inputRow][inputCol] = mm_readA(batch, globalRowStart + inputRow, - t * TileInner + inputCol); + kStart + inputCol); `; } }; var readDataFromSubASnippet = (transposeA) => { return transposeA ? "let ACached = mm_Asub[k][tileRow + innerRow];" : "let ACached = mm_Asub[tileRow + innerRow][k];"; }; -function makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false, tileInner = 32) { +function makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false, tileInner = 32, splitK = false, splitedDimInner = 32) { const tileAOuter = workPerThread[1] * workGroupSize[1]; const tileBOuter = workPerThread[0] * workGroupSize[0]; const tileAWidth = transposeA ? tileAOuter : tileInner; @@ -66725,10 +67633,10 @@ function makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false const TileInner = ${tileInner}; @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(num_workgroups) NumWorkgroups: vec3, - @builtin(workgroup_id) workgroupId: vec3) { + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups: vec3, + @builtin(workgroup_id) workgroupId: vec3) { localId = LocalId; globalId = GlobalId; numWorkgroups = NumWorkgroups; @@ -66738,10 +67646,11 @@ function makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false let globalRow = i32(globalId.y) * RowPerThread; let globalCol = i32(globalId.x) * ColPerThread; - let batch = i32(globalId.z); + let batch = ${splitK ? "0" : "i32(globalId.z)"}; let globalRowStart = i32(workgroupId.y) * ${tileAOuter}; - let numTiles = (uniforms.dimInner - 1) / TileInner + 1; + let numTiles = ${splitK ? `${Math.ceil(splitedDimInner / tileInner)}` : "(uniforms.dimInner - 1) / TileInner + 1"}; + var kStart = ${splitK ? `i32(globalId.z) * ${splitedDimInner}` : "0"}; var acc : array, RowPerThread>; @@ -66772,11 +67681,11 @@ function makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false let inputRow = tileRowB + innerRow; let inputCol = tileCol + innerCol; mm_Bsub[inputRow][inputCol] = mm_readB(batch, - t * TileInner + inputRow, + kStart + inputRow, globalCol + innerCol); } } - + kStart = kStart + TileInner; workgroupBarrier(); // Compute acc values for a single thread. @@ -66806,8 +67715,8 @@ function makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false } `; } -var readVectorASnippet = (transpose7) => { - return transpose7 ? ` +var readVectorASnippet = (transpose6) => { + return transpose6 ? ` mm_readA(batch, colA, globalRow), mm_readA(batch, colA + 1, globalRow), mm_readA(batch, colA + 2, globalRow), @@ -66825,7 +67734,7 @@ function makeVectorMatrixProductSource(workGroupSize, transposeA = false) { const TileSize = ${workGroupSize[0] * 4}; var mm_Asub : array, ${workGroupSize[0]}>; - ${getMainHeaderString()} + ${getMainHeaderString()} { let tileCol = i32(localId.x); let globalCol = i32(globalId.x); let globalRow = i32(globalId.y); @@ -66862,189 +67771,21 @@ function makeVectorMatrixProductSource(workGroupSize, transposeA = false) { `; } var MatMulPackedProgram2 = class { - constructor(aShape, outputShape, workPerThread, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) { + constructor(aShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) { this.variableNames = ["A", "B"]; this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [16, 16, 1]; this.outputShape = outputShape; this.dispatchLayout = { x: [2], y: [1], z: [0] }; const dimInner = transposeA ? aShape[1] : aShape[2]; - this.workGroupSize = computeWorkGroupSizeForMatMul(outputShape[1], dimInner, outputShape[2]); - if (outputShape[1] === 1 || outputShape[2] === 1) { - workPerThread = 1; - } - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [workPerThread, workPerThread, 1]); - if (util_exports.arraysEqual(this.dispatch, [1, 1, 1])) { - workPerThread = 1; - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [workPerThread, workPerThread, 1]); - } - const addBias = bias != null; - const hasPreluActivationWeights = preluActivationWeights != null; - if (addBias) { - this.variableNames.push("bias"); - } - if (hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - } - this.workPerThread = workPerThread; - this.transposeA = transposeA; - this.transposeB = transposeB; - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivationWeights = hasPreluActivationWeights; - this.batchAEqualOne = batchAEqualOne; - this.batchBEqualOne = batchBEqualOne; - [this.fitAOuter, this.fitBOuter, this.fitInner] = this.getShapeFit(outputShape[1], outputShape[2], dimInner); - this.shaderKey = `matMulPacked_${this.workPerThread}_${transposeA}_${transposeB}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.outputShape[1] > 1}_${this.batchAEqualOne}_${this.batchBEqualOne}`; - } - getShapeFit(dimAOuter, dimBOuter, dimInner) { - const tileAOuter = this.workGroupSize[1] * this.workPerThread; - const tileBOuter = this.workGroupSize[0] * this.workPerThread; - this.tileInner = 32; - if (this.outputShape[1] === 1) { - this.tileInner = this.workGroupSize[0] * 4; - } - const fitAOuter = dimAOuter % tileAOuter === 0; - const fitBOuter = dimBOuter % tileBOuter === 0; - const fitInner = dimInner % this.tileInner === 0; - return [fitAOuter, fitBOuter, fitInner]; - } - getUserCode() { - const userCode = ` - ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} - ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, this.fitAOuter, this.fitBOuter, this.fitInner)} - ${this.outputShape[1] > 1 ? makeMatMulPackedSource([this.workPerThread, this.workPerThread, 1], this.workGroupSize, this.transposeA, this.tileInner) : makeVectorMatrixProductSource(this.workGroupSize, this.transposeA)} - `; - return userCode; - } -}; -var writeDataToSubASnippet2 = (transpose7, innerAElementSize) => { - if (transpose7) { - return ` - mm_Asub[inputRow][inputCol] = mm_readA(batch, - t * TileInner + inputRow, - globalRowStart / ${innerAElementSize} + inputCol); - `; - } else { - return ` - mm_Asub[inputRow][inputCol] = mm_readA(batch, - globalRow + innerRow, - t * TileInner / ${innerAElementSize} + inputCol); - `; - } -}; -var calculateResultSnippet = (transposeA, innerElementSize) => { - if (transposeA) { - return ` - let ACached0 = mm_Asub[k * InnerElementSize][localRow]; - let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow]; - let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow]; - ${innerElementSize === 3 ? "" : "let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"} - for (var i = 0; i < RowPerThread; i = i + 1) { - acc[i] = BCached[0] * ACached0[i] + acc[i]; - acc[i] = BCached[1] * ACached1[i] + acc[i]; - acc[i] = BCached[2] * ACached2[i] + acc[i]; - ${innerElementSize === 3 ? "" : "acc[i] = BCached[3] * ACached3[i] + acc[i];"} - }`; - } else { - return ` - for (var i = 0; i < RowPerThread; i = i + 1) { - let ACached = mm_Asub[tileRow + i][k]; - acc[i] = BCached[0] * ACached.x + acc[i]; - acc[i] = BCached[1] * ACached.y + acc[i]; - acc[i] = BCached[2] * ACached.z + acc[i]; - ${innerElementSize === 3 ? "" : "acc[i] = BCached[3] * ACached.w + acc[i];"} - }`; - } -}; -function makeMatMulPackedVec4Source(workPerThread, tileAOuter, tileBOuter, tileInner, innerElementSize = 4, transposeA = false) { - const tileAWidth = transposeA ? tileAOuter : tileInner; - const tileAHight = transposeA ? tileInner : tileAOuter; - const innerAElementSize = transposeA ? workPerThread[1] : innerElementSize; - util_exports.assert((transposeA && tileAOuter === tileBOuter || (tileInner % 4 === 0 || tileInner % 3 === 0)) && workPerThread[0] === 4 && (innerElementSize === 3 || innerElementSize === 4), () => `tileInner ${tileInner} must be divisible by 4|3. ColPerThread ${workPerThread[0]} must be 4. - innerElementSize ${innerElementSize} must be 3|4.`); - return ` - var mm_Asub : array, ${tileAWidth / innerAElementSize}>, ${tileAHight}>; - var mm_Bsub : array, ${tileBOuter / workPerThread[0]}>, ${tileInner}>; - - const RowPerThread = ${workPerThread[1]}; - const ColPerThread = ${workPerThread[0]}; - const InnerElementSize = ${innerElementSize}; - const TileInner = ${tileInner}; - - @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(num_workgroups) NumWorkgroups: vec3, - @builtin(workgroup_id) workgroupId: vec3) { - localId = LocalId; - globalId = GlobalId; - numWorkgroups = NumWorkgroups; - - let localRow = i32(localId.y); - let tileRow = ${tileAOuter === 1 ? "0" : "localRow * RowPerThread"}; - let tileCol = i32(localId.x); - - let globalRow = ${tileAOuter === 1 ? "0" : "i32(globalId.y) * RowPerThread"}; - let globalCol = i32(globalId.x); - let batch = i32(globalId.z); - let globalRowStart = i32(workgroupId.y) * ${tileAOuter}; - - let numTiles = (uniforms.dimInner - 1) / TileInner + 1; - - var acc: array, RowPerThread>; - var BCached : array, 4>; - - // Loop over shared dimension. - let RowPerThreadB = TileInner / i32(workGroupSizeY); - let tileRowB = localRow * RowPerThreadB; - for (var t = 0; t < numTiles; t = t + 1) { - // Load one tile of A into local memory. - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - let inputRow = tileRow + innerRow; - let inputCol = tileCol; - ${writeDataToSubASnippet2(transposeA, innerAElementSize)} - } - - // Load one tile of B into local memory. - for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) { - let inputRow = tileRowB + innerRow; - let inputCol = tileCol; - mm_Bsub[inputRow][inputCol] = mm_readB(batch, t * TileInner + inputRow, globalCol); - } - - workgroupBarrier(); - - // Compute acc values for a single thread. - for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) { - BCached[0] = mm_Bsub[k * InnerElementSize][tileCol]; - BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol]; - BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol]; - ${innerElementSize === 3 ? "" : "BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"} - - ${calculateResultSnippet(transposeA, innerElementSize)} - } - - workgroupBarrier(); - } - - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]); - } - }`; -} -var MatMulPackedVec4Program = class { - constructor(aShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, bias = null, activation2 = null, preluActivationWeights = null) { - this.variableNames = ["A", "B"]; - this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [8, 8, 1]; - this.isVec4 = true; - this.outputShape = outputShape; - this.dispatchLayout = { x: [2], y: [1], z: [0] }; - if (outputShape[1] === 1 && !transposeA) { - this.elementsPerThread = [4, 1, 1]; + this.isVec4 = (dimInner % 4 === 0 && !transposeA || outputShape[1] % 4 === 0 && transposeA) && outputShape[2] % 4 === 0 && !transposeB; + this.isVectorA = outputShape[1] === 1 && !transposeA; + if (!this.isVec4 && this.isVectorA) { + this.elementsPerThread = [1, 1, 1]; + this.workGroupSize = [32, 1, 1]; } else { - this.elementsPerThread = [4, 4, 1]; + const workGroupInfo = computeWorkGroupInfoForMatMul(outputShape[1], dimInner, outputShape[2], transposeA); + this.workGroupSize = workGroupInfo.workGroupSize; + this.elementsPerThread = workGroupInfo.elementsPerThread; } this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); const addBias = bias != null; @@ -67055,27 +67796,34 @@ var MatMulPackedVec4Program = class { if (hasPreluActivationWeights) { this.variableNames.push("preluActivationWeights"); } - this.tileAOuter = outputShape[1] === 1 && !transposeA ? 1 : this.workGroupSize[1] * this.elementsPerThread[1]; - this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - this.tileInner = this.tileBOuter; - this.aShape = aShape; + this.transposeA = transposeA; + this.transposeB = transposeB; this.addBias = addBias; this.activation = activation2; this.hasPreluActivationWeights = hasPreluActivationWeights; this.batchAEqualOne = batchAEqualOne; this.batchBEqualOne = batchBEqualOne; - this.transposeA = transposeA; - const dimInner = transposeA ? aShape[1] : aShape[2]; - this.fitAOuter = outputShape[1] % this.tileAOuter === 0; - this.fitBOuter = outputShape[2] % this.tileBOuter === 0; - this.fitInner = dimInner % this.tileInner === 0; - this.shaderKey = `matMulPackedVec4_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}_${this.transposeA}`; + [this.fitAOuter, this.fitBOuter, this.fitInner] = this.getShapeFit(outputShape[1], outputShape[2], dimInner); + this.shaderKey = `matMulPacked_${this.elementsPerThread}_${transposeA}_${transposeB}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.isVectorA}_${this.batchAEqualOne}_${this.batchBEqualOne}`; + } + getShapeFit(dimAOuter, dimBOuter, dimInner) { + const tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; + const tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; + if (!this.isVec4 && this.isVectorA) { + this.tileInner = this.workGroupSize[0] * 4; + } else { + this.tileInner = tileBOuter; + } + const fitAOuter = dimAOuter % tileAOuter === 0; + const fitBOuter = dimBOuter % tileBOuter === 0; + const fitInner = dimInner % this.tileInner === 0; + return [fitAOuter, fitBOuter, fitInner]; } getUserCode() { const userCode = ` - ${activationFnSnippet(this.activation, this.hasPreluActivationWeights, true)} - ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, false, this.fitAOuter, this.fitBOuter, this.fitInner, 4)} - ${makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, 4, this.transposeA)} + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights, this.isVec4)} + ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, this.fitAOuter, this.fitBOuter, this.fitInner, this.isVec4 ? 4 : 1)} + ${this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize, this.transposeA, this.tileInner, false, null, this.isVectorA) : this.isVectorA ? makeVectorMatrixProductSource(this.workGroupSize, this.transposeA) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, this.transposeA, this.tileInner)} `; return userCode; } @@ -67083,7 +67831,7 @@ var MatMulPackedVec4Program = class { function makeMatMulReduceSource() { return ` var sumValues : array; - ${getMainHeaderString()} + ${getMainHeaderString()} { let coords = getOutputCoords(); let batch = coords[0]; let row = coords[1]; @@ -67162,7 +67910,7 @@ function makeMatMulSmallOutputSizeSource(workGroupSize) { // shared memory, so it is instruction-Level parallelism for arithmetic // operations and others handle IO operations between barrier api, makes ALU // and load/store units work simultaneously, could improves the performance. - ${getMainHeaderString()} + ${getMainHeaderString()} { let tileRow = i32(localId.y); let tileCol = i32(localId.x); let globalRow = i32(globalId.y); @@ -67248,16 +67996,20 @@ var MatMulSplitKProgram = class { this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; this.workGroupSize = [8, 8, 1]; this.atomic = true; - this.tileInner = 32; + this.isVec4 = false; + this.splitedDimInner = 128; util_exports.assert(outputShape[0] === 1, () => "MatMulSplitKProgram only supports batch = 1."); this.outputShape = outputShape; this.dispatchLayout = { x: [2], y: [1], z: [0, 3] }; - this.elementsPerThread = [4, 4, this.tileInner]; - if (this.outputShape[1] < 16) { - this.elementsPerThread[1] = 1; - } - if (this.outputShape[2] < 16) { - this.elementsPerThread[0] = 1; + this.isVec4 = (transposeA && this.outputShape[1] % 4 === 0 || !transposeA && dimInner % 4 === 0) && this.outputShape[2] % 4 === 0; + this.elementsPerThread = [4, 4, this.splitedDimInner]; + if (!this.isVec4) { + if (this.outputShape[1] < 16) { + this.elementsPerThread[1] = 1; + } + if (this.outputShape[2] < 16) { + this.elementsPerThread[0] = 1; + } } this.dispatch = computeDispatch(this.dispatchLayout, [ this.outputShape[0], @@ -67269,106 +68021,42 @@ var MatMulSplitKProgram = class { this.transposeB = transposeB; this.batchAEqualOne = batchAEqualOne; this.batchBEqualOne = batchBEqualOne; - this.shaderKey = `matMulSplitK_${transposeA}_${transposeB}_${batchAEqualOne}_${batchBEqualOne}_${this.elementsPerThread}`; + this.shaderKey = `matMulSplitK_${transposeA}_${transposeB}_${batchAEqualOne}_${batchBEqualOne}_${this.elementsPerThread}_${this.isVec4}`; } getUserCode() { - const atomicAddSnippet = ` - var oldValue = atomicLoad(&(result[flatIndex])); - var exchanged = false; - for (; !exchanged;) { - let newValueF32 = bitcast(oldValue) + value; - let newValue = bitcast(newValueF32); - let res = atomicCompareExchangeWeak(&(result[flatIndex]), oldValue, newValue); - oldValue = res.old_value; - exchanged = res.exchanged; - } - `; + const atomicAddSnippet = (component2) => { + return ` + for (var i = 0; i < ${component2}; i = i + 1) + { + var oldValue = atomicLoad(&(result[flatIndex + i])); + var exchanged = false; + for (; !exchanged;) { + let newValueF32 = bitcast(oldValue) + ${component2 > 1 ? "value[i]" : "value"}; + let newValue = bitcast(newValueF32); + let res = atomicCompareExchangeWeak(&(result[flatIndex + i]), oldValue, newValue); + oldValue = res.old_value; + exchanged = res.exchanged; + } + } + `; + }; + const component = this.isVec4 ? 4 : 1; const userCode = ` - ${matMulReadFnSource(this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)} - fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) { + ${matMulReadFnSource(this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, false, false, false, component)} + fn mm_write(batch: i32, row : i32, colIn : i32, value : ${typeSnippet(component)}) { + let col = colIn * ${component}; if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) { let coords = vec3(batch, row, col); let flatIndex = getOutputIndexFromCoords(coords); - var value = valueIn; // The problem is that we should initialize output to zero before using. // Otherwise, the original value will be added to the result. - ${atomicAddSnippet} + ${atomicAddSnippet(component)} } } - - ${this.makeMatMulSplitKSource()} + ${this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize, this.transposeA, 32, true, this.splitedDimInner) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, this.transposeA, 32, true, this.splitedDimInner)} `; return userCode; } - makeMatMulSplitKSource() { - const tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; - const tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - const rowPerThread = this.elementsPerThread[1]; - const colPerThread = this.elementsPerThread[0]; - const colPerThreadA = this.tileInner / this.workGroupSize[0]; - const rowPerThreadB = this.tileInner / this.workGroupSize[1]; - util_exports.assert(this.tileInner % this.workGroupSize[0] === 0 && this.tileInner % this.workGroupSize[1] === 0, () => `tileInner ${this.tileInner} must be divisible by workGroupSize[0]${this.workGroupSize[0]} and workGroupSize[1]${this.workGroupSize[1]}`); - return ` - var mm_Asub : array, ${tileAOuter}>; - var mm_Bsub : array, ${this.tileInner}>; - ${getMainHeaderString()} - let tileRow = i32(localId.y) * ${rowPerThread}; - let tileCol = i32(localId.x) * ${colPerThread}; - - let globalRow = i32(globalId.y) * ${rowPerThread}; - let globalCol = i32(globalId.x) * ${colPerThread}; - let batch = 0; - let kStart = i32(globalId.z) * ${this.tileInner}; - - // Load one tile of A into local memory. - let tileColA = i32(localId.x) * ${colPerThreadA}; - for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${colPerThreadA}; innerCol = innerCol + 1) { - let inputRow = tileRow + innerRow; - let inputCol = tileColA + innerCol; - mm_Asub[inputRow][inputCol] = mm_readA(${this.batchAEqualOne ? 0 : "batch"}, - globalRow + innerRow, - kStart + inputCol); - } - } - // Load one tile of B into local memory. - let tileRowB = i32(localId.y) * ${rowPerThreadB}; - for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) { - let inputRow = tileRowB + innerRow; - let inputCol = tileCol + innerCol; - mm_Bsub[inputRow][inputCol] = mm_readB(${this.batchBEqualOne ? 0 : "batch"}, - kStart + inputRow, - globalCol + innerCol); - } - } - - workgroupBarrier(); - - var acc : array, ${rowPerThread}>; - // Loop over shared dimension. Compute acc values for a single thread. - for (var k = 0; k < ${this.tileInner}; k = k + 1) { - var BCached : array; - for (var inner = 0; inner < ${colPerThread}; inner = inner + 1) { - BCached[inner] = mm_Bsub[k][tileCol + inner]; - } - - for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) { - let ACached = mm_Asub[tileRow + innerRow][k]; - for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) { - acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; - } - } - } - - for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) { - mm_write(batch, globalRow + innerRow, globalCol + innerCol, acc[innerRow][innerCol]); - } - } - } - `; - } }; var BiasActivationProgram = class { constructor(outputShape, bias = null, activation2 = null, preluActivationWeights = null) { @@ -67393,7 +68081,7 @@ var BiasActivationProgram = class { getUserCode() { return ` ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); var value = getXByOutputIndex(index); @@ -67418,7 +68106,7 @@ var FillProgram2 = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { setOutputAtIndex(index, uniforms.value); } @@ -67485,7 +68173,6 @@ function batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2, bia const batchDim = Math.max(batchDimA, batchDimB); const batchAEqualOne = batchDimA === 1; const batchBEqualOne = batchDimB === 1; - const useVec4 = (innerShapeA % 4 === 0 && !transposeA || outerShapeA % 4 === 0 && transposeA) && outerShapeB % 4 === 0 && !transposeB; const inputs = [a3d, b3d]; const dimensions = [ { type: "int32", data: [outerShapeA] }, @@ -67503,16 +68190,11 @@ function batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2, bia matmulProgramType = MatMulProgramType.MatMulSplitKProgram; } else if (outerShapeA <= 16 && (outerShapeB <= 512 || innerShapeB >= 2 * outerShapeB) || outerShapeB <= 16 && (outerShapeA <= 512 || innerShapeA >= 2 * outerShapeA)) { matmulProgramType = MatMulProgramType.MatMulSmallOutputSizeProgram; - } else if (useVec4) { - matmulProgramType = MatMulProgramType.MatMulPackedVec4Program; } else { matmulProgramType = MatMulProgramType.MatMulPackedProgram; } } switch (matmulProgramType) { - case MatMulProgramType.MatMulPackedVec4Program: - program = new MatMulPackedVec4Program(a3dShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA, bias, activation2, preluActivationWeights); - break; case MatMulProgramType.MatMulReduceProgram: program = new MatMulReduceProgram(outputShape, batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); break; @@ -67549,7 +68231,7 @@ function batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2, bia program = new MatMulSmallOutputSizeProgram(a3dShape, b3dShape, outputShape, transposeA, transposeB, bias, activation2, preluActivationWeights); break; case MatMulProgramType.MatMulPackedProgram: - program = new MatMulPackedProgram2(a3dShape, outputShape, env().get("WEBGPU_MATMUL_WORK_PER_THREAD"), batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); + program = new MatMulPackedProgram2(a3dShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); break; default: throw new Error(`Unsupported MatMulProgramType ${matmulProgramType}.`); @@ -67612,7 +68294,7 @@ var BinaryOpComplexProgram2 = class { ${opStr} } - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if(index < uniforms.size) { let areal = getARealByOutputIndex(index); let aimag = getAImagByOutputIndex(index); @@ -67675,8 +68357,7 @@ var BinaryOpProgram2 = class { ${opStr} } var sharedBuf : array; - ${getMainHeaderAndGlobalIndexString()} - + ${getMainHeaderString("index")} { // Fill in the shared memory buffer. Here we need a loop to make sure // that all data in A|B are uploaded when |sharedMemorySize| is larger // than work group size. @@ -67703,7 +68384,7 @@ var BinaryOpProgram2 = class { fn binaryOperation(a : ${dType}, b : ${dType}) -> ${dType} { ${opStr} } - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let a = getAByOutputIndex(index); let b = getBByOutputIndex(index); @@ -67728,12 +68409,12 @@ var identityConfig4 = { }; function complex4(args) { const { inputs, backend: backend2 } = args; - const { real: real6, imag: imag5 } = inputs; - const complexInfo = backend2.makeTensorInfo(real6.shape, "complex64"); - const complex6 = backend2.tensorMap.get(complexInfo.dataId); - const realTensorInfo = identity5({ inputs: { x: real6 }, backend: backend2 }); + const { real: real5, imag: imag5 } = inputs; + const complexInfo = backend2.makeTensorInfo(real5.shape, "complex64"); + const complex5 = backend2.tensorMap.get(complexInfo.dataId); + const realTensorInfo = identity5({ inputs: { x: real5 }, backend: backend2 }); const imagTensorInfo = identity5({ inputs: { x: imag5 }, backend: backend2 }); - complex6.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo }; + complex5.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo }; return complexInfo; } var complexConfig3 = { @@ -67758,7 +68439,7 @@ var UnaryOpProgram2 = class { fn unaryOperation(a : f32) -> f32 { ${getUnaryOpString(this.op, false)} } - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let a = getAByOutputIndex(index); setOutputAtIndex(index, unaryOperation(a)); @@ -67788,9 +68469,9 @@ function binaryKernelFunc3({ opType, cpuKernelImpl, supportsComplex = false, dty if (supportsComplex && a.dtype === "complex64") { const aData = webgpuBackend.tensorMap.get(a.dataId); const bData = webgpuBackend.tensorMap.get(b.dataId); - let real6, imag5; + let real5, imag5; if (opType !== BinaryOpType.MUL) { - [real6, imag5] = [ + [real5, imag5] = [ [aData.complexTensorInfos.real, bData.complexTensorInfos.real], [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag] ].map((complexParts) => { @@ -67833,11 +68514,11 @@ function binaryKernelFunc3({ opType, cpuKernelImpl, supportsComplex = false, dty shape: b.shape } ]; - real6 = webgpuBackend.runWebGPUProgram(realProgram, inputs2, "float32"); + real5 = webgpuBackend.runWebGPUProgram(realProgram, inputs2, "float32"); imag5 = webgpuBackend.runWebGPUProgram(imagProgram, inputs2, "float32"); } - const complexOutput = complex4({ inputs: { real: real6, imag: imag5 }, backend: webgpuBackend }); - webgpuBackend.disposeData(real6.dataId); + const complexOutput = complex4({ inputs: { real: real5, imag: imag5 }, backend: webgpuBackend }); + webgpuBackend.disposeData(real5.dataId); webgpuBackend.disposeData(imag5.dataId); return complexOutput; } @@ -67854,1195 +68535,7 @@ function binaryKernelFunc3({ opType, cpuKernelImpl, supportsComplex = false, dty return webgpuBackend.runWebGPUProgram(program, [a, b], $dtype); }; } -var shared_exports2 = {}; -__export2(shared_exports2, { - addImpl: () => addImpl2, - bincountImpl: () => bincountImpl2, - bincountReduceImpl: () => bincountReduceImpl2, - ceilImpl: () => ceilImpl2, - concatImpl: () => concatImpl3, - equalImpl: () => equalImpl2, - expImpl: () => expImpl2, - expm1Impl: () => expm1Impl2, - floorImpl: () => floorImpl2, - gatherNdImpl: () => gatherNdImpl2, - gatherV2Impl: () => gatherV2Impl2, - greaterEqualImpl: () => greaterEqualImpl2, - greaterImpl: () => greaterImpl2, - lessEqualImpl: () => lessEqualImpl2, - lessImpl: () => lessImpl2, - linSpaceImpl: () => linSpaceImpl2, - logImpl: () => logImpl2, - maxImpl: () => maxImpl3, - maximumImpl: () => maximumImpl2, - minimumImpl: () => minimumImpl2, - multiplyImpl: () => multiplyImpl2, - negImpl: () => negImpl2, - notEqualImpl: () => notEqualImpl2, - prodImpl: () => prodImpl2, - rangeImpl: () => rangeImpl2, - rsqrtImpl: () => rsqrtImpl2, - scatterImpl: () => scatterImpl2, - sigmoidImpl: () => sigmoidImpl2, - simpleAbsImpl: () => simpleAbsImpl2, - sliceImpl: () => sliceImpl2, - sparseFillEmptyRowsImpl: () => sparseFillEmptyRowsImpl2, - sparseReshapeImpl: () => sparseReshapeImpl2, - sparseSegmentReductionImpl: () => sparseSegmentReductionImpl2, - sqrtImpl: () => sqrtImpl2, - squaredDifferenceImpl: () => squaredDifferenceImpl2, - stridedSliceImpl: () => stridedSliceImpl2, - stringNGramsImpl: () => stringNGramsImpl2, - stringSplitImpl: () => stringSplitImpl2, - stringToHashBucketFastImpl: () => stringToHashBucketFastImpl2, - subImpl: () => subImpl2, - tileImpl: () => tileImpl2, - topKImpl: () => topKImpl2, - transposeImpl: () => transposeImpl3, - uniqueImpl: () => uniqueImpl2 -}); -function assertNotComplex3(tensor2, opName) { - if (!Array.isArray(tensor2)) { - tensor2 = [tensor2]; - } - tensor2.forEach((t2) => { - if (t2 != null) { - util_exports.assert(t2.dtype !== "complex64", () => `${opName} does not support complex64 tensors in the CPU backend.`); - } - }); -} -function simpleAbsImpl2(vals) { - const resultValues = new Float32Array(vals.length); - for (let i2 = 0; i2 < vals.length; ++i2) { - resultValues[i2] = Math.abs(vals[i2]); - } - return resultValues; -} -function createSimpleBinaryKernelImpl2(op2) { - return (aShape, bShape, aVals, bVals, dtype) => { - const newShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); - const resultRank = newShape.length; - const resultStrides = util_exports.computeStrides(newShape); - const resultSize = util_exports.sizeFromShape(newShape); - const result = util_exports.getTypedArrayFromDType(dtype, resultSize); - const aRank = aShape.length; - const bRank = bShape.length; - const aStrides = util_exports.computeStrides(aShape); - const bStrides = util_exports.computeStrides(bShape); - const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, newShape); - const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, newShape); - if (aBroadcastDims.length + bBroadcastDims.length === 0) { - for (let i2 = 0; i2 < result.length; ++i2) { - result[i2] = op2(aVals[i2 % aVals.length], bVals[i2 % bVals.length]); - } - } else { - for (let i2 = 0; i2 < result.length; ++i2) { - const loc = util_exports.indexToLoc(i2, resultRank, resultStrides); - const aLoc = loc.slice(-aRank); - aBroadcastDims.forEach((d) => aLoc[d] = 0); - const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides); - const bLoc = loc.slice(-bRank); - bBroadcastDims.forEach((d) => bLoc[d] = 0); - const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides); - result[i2] = op2(aVals[aIndex], bVals[bIndex]); - } - } - return [result, newShape]; - }; -} -function complex5(args) { - const { inputs, backend: backend2 } = args; - const { real: real6, imag: imag5 } = inputs; - const realVals = backend2.data.get(real6.dataId).values; - const imagVals = backend2.data.get(imag5.dataId).values; - const complexInfo = backend2.makeTensorInfo(real6.shape, "complex64"); - const complex6 = backend2.data.get(complexInfo.dataId); - complex6.complexTensorInfos = { - real: backend2.makeTensorInfo(real6.shape, "float32", realVals), - imag: backend2.makeTensorInfo(imag5.shape, "float32", imagVals) - }; - return complexInfo; -} -function zeros4(backend2, shape, dtype = "float32") { - if (dtype === "complex64") { - const real6 = zeros4(backend2, shape, "float32"); - const imag5 = zeros4(backend2, shape, "float32"); - return complex5({ inputs: { real: real6, imag: imag5 }, backend: backend2 }); - } - const values = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(shape), dtype); - return backend2.makeTensorInfo(shape, dtype, values); -} -function identity6(args) { - const { inputs, backend: backend2 } = args; - const { x } = inputs; - backend2.incRef(x.dataId); - return { dataId: x.dataId, shape: x.shape, dtype: x.dtype }; -} -function real4(args) { - const { inputs, backend: backend2 } = args; - const { input: input2 } = inputs; - const real6 = backend2.data.get(input2.dataId).complexTensorInfos.real; - const realVal = backend2.data.get(real6.dataId).values; - return backend2.makeTensorInfo(real6.shape, real6.dtype, realVal); -} -function cast6(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { dtype } = attrs; - if (dtype === "complex64") { - if (x.dtype === "complex64") { - return identity6({ inputs: { x }, backend: backend2 }); - } - const zerosTensorInfo = zeros4(backend2, x.shape, x.dtype); - const floatX = cast6({ inputs: { x }, backend: backend2, attrs: { dtype: "float32" } }); - const result = complex5({ inputs: { real: floatX, imag: zerosTensorInfo }, backend: backend2 }); - backend2.disposeIntermediateTensorInfo(zerosTensorInfo); - backend2.disposeIntermediateTensorInfo(floatX); - return result; - } - if (x.dtype === "complex64") { - const realPart = real4({ inputs: { input: x }, backend: backend2 }); - const result = cast6({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } }); - backend2.disposeIntermediateTensorInfo(realPart); - return result; - } - if (!util_exports.hasEncodingLoss(x.dtype, dtype)) { - const result = identity6({ inputs: { x }, backend: backend2 }); - return { dataId: result.dataId, shape: result.shape, dtype }; - } - if (dtype === "int32") { - const values = backend2.data.get(x.dataId).values; - const resultValues = Int32Array.from(values); - return backend2.makeTensorInfo(x.shape, "int32", resultValues); - } - if (dtype === "bool") { - const xVals = backend2.data.get(x.dataId).values; - const zero = util_exports.toTypedArray([0], x.dtype); - const [resultData, resultShape] = createSimpleBinaryKernelImpl2((a, b) => a !== b ? 1 : 0)(x.shape, [], xVals, zero, "bool"); - return backend2.makeTensorInfo(resultShape, "bool", resultData); - } - throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`); -} -function binaryKernelFunc4(name, simpleImpl, complexImpl, dtype) { - if (complexImpl == null) { - return ({ inputs, backend: backend2 }) => { - const { a, b } = inputs; - const cpuBackend = backend2; - assertNotComplex3([a, b], name); - const aVals = cpuBackend.data.get(a.dataId).values; - const bVals = cpuBackend.data.get(b.dataId).values; - const decodedAVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals; - const decodedBVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals; - const $dtype = dtype || a.dtype; - const [resultData, resultShape] = simpleImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype); - return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData); - }; - } - return ({ inputs, backend: backend2 }) => { - const { a, b } = inputs; - const cpuBackend = backend2; - if (a.dtype === "complex64" || b.dtype === "complex64") { - const $aComplex = cast6({ inputs: { x: a }, backend: cpuBackend, attrs: { dtype: "complex64" } }); - const $aComplexVals = cpuBackend.data.get($aComplex.dataId); - const aReal = $aComplexVals.complexTensorInfos.real; - const aImag = $aComplexVals.complexTensorInfos.imag; - const aRealVals = cpuBackend.data.get(aReal.dataId).values; - const aImagVals = cpuBackend.data.get(aImag.dataId).values; - const $bComplex = cast6({ inputs: { x: b }, backend: cpuBackend, attrs: { dtype: "complex64" } }); - const $bComplexVals = cpuBackend.data.get($bComplex.dataId); - const bReal = $bComplexVals.complexTensorInfos.real; - const bImag = $bComplexVals.complexTensorInfos.imag; - const bRealVals = cpuBackend.data.get(bReal.dataId).values; - const bImagVals = cpuBackend.data.get(bImag.dataId).values; - const [resultRealData, resultImagData, resultShape] = complexImpl(a.shape, b.shape, aRealVals, aImagVals, bRealVals, bImagVals); - const resultReal = cpuBackend.makeTensorInfo(resultShape, "float32", resultRealData); - const resultImag = cpuBackend.makeTensorInfo(resultShape, "float32", resultImagData); - const result = complex5({ inputs: { real: resultReal, imag: resultImag }, backend: cpuBackend }); - cpuBackend.disposeIntermediateTensorInfo($aComplex); - cpuBackend.disposeIntermediateTensorInfo($bComplex); - cpuBackend.disposeIntermediateTensorInfo(resultReal); - cpuBackend.disposeIntermediateTensorInfo(resultImag); - return result; - } else { - const aVals = cpuBackend.data.get(a.dataId).values; - const bVals = cpuBackend.data.get(b.dataId).values; - const $dtype = dtype || a.dtype; - const [resultData, resultShape] = simpleImpl(a.shape, b.shape, aVals, bVals, $dtype); - return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData); - } - }; -} -function createComplexBinaryKernelImpl2(op2) { - return (aShape, bShape, aRealVals, aImagVals, bRealVals, bImagVals) => { - const resultShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); - const resultSize = util_exports.sizeFromShape(resultShape); - const resultRank = resultShape.length; - const resultStrides = util_exports.computeStrides(resultShape); - const resultRealVals = util_exports.getTypedArrayFromDType("float32", resultSize); - const resultImagVals = util_exports.getTypedArrayFromDType("float32", resultSize); - const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, resultShape); - const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, resultShape); - const aVals = backend_util_exports.mergeRealAndImagArrays(aRealVals, aImagVals); - const bVals = backend_util_exports.mergeRealAndImagArrays(bRealVals, bImagVals); - const aRank = aShape.length; - const aStrides = util_exports.computeStrides(aShape); - const bRank = bShape.length; - const bStrides = util_exports.computeStrides(bShape); - if (aBroadcastDims.length + bBroadcastDims.length === 0) { - for (let i2 = 0; i2 < resultRealVals.length; i2++) { - const aIdx = i2 % aVals.length; - const bIdx = i2 % bVals.length; - const result = op2(aVals[aIdx * 2], aVals[aIdx * 2 + 1], bVals[bIdx * 2], bVals[bIdx * 2 + 1]); - resultRealVals[i2] = result.real; - resultImagVals[i2] = result.imag; - } - } else { - for (let i2 = 0; i2 < resultRealVals.length; i2++) { - const loc = util_exports.indexToLoc(i2, resultRank, resultStrides); - const aLoc = loc.slice(-aRank); - aBroadcastDims.forEach((d) => aLoc[d] = 0); - const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides); - const bLoc = loc.slice(-bRank); - bBroadcastDims.forEach((d) => bLoc[d] = 0); - const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides); - const opResult = op2(aVals[aIndex * 2], aVals[aIndex * 2 + 1], bVals[bIndex * 2], bVals[bIndex * 2 + 1]); - resultRealVals[i2] = opResult.real; - resultImagVals[i2] = opResult.imag; - } - } - return [resultRealVals, resultImagVals, resultShape]; - }; -} -var addImpl2 = createSimpleBinaryKernelImpl2((a, b) => a + b); -var addComplexImpl2 = createComplexBinaryKernelImpl2((aReal, aImag, bReal, bImag) => { - return { real: aReal + bReal, imag: aImag + bImag }; -}); -var add5 = binaryKernelFunc4(Add, addImpl2, addComplexImpl2); -function bincountImpl2(xVals, weightsVals, weightsDtype, weightsShape, size2) { - const weightsSize = util_exports.sizeFromShape(weightsShape); - const outVals = util_exports.makeZerosTypedArray(size2, weightsDtype); - for (let i2 = 0; i2 < xVals.length; i2++) { - const value = xVals[i2]; - if (value < 0) { - throw new Error("Input x must be non-negative!"); - } - if (value >= size2) { - continue; - } - if (weightsSize > 0) { - outVals[value] += weightsVals[i2]; - } else { - outVals[value] += 1; - } - } - return outVals; -} -function bincountReduceImpl2(xBuf, weightsBuf, size2, binaryOutput = false) { - const numRows = xBuf.shape[0]; - const numCols = xBuf.shape[1]; - const outBuf = buffer([numRows, size2], weightsBuf.dtype); - for (let i2 = 0; i2 < numRows; i2++) { - for (let j = 0; j < numCols; j++) { - const value = xBuf.get(i2, j); - if (value < 0) { - throw new Error("Input x must be non-negative!"); - } - if (value >= size2) { - continue; - } - if (binaryOutput) { - outBuf.set(1, i2, value); - } else { - if (weightsBuf.size > 0) { - outBuf.set(outBuf.get(i2, value) + weightsBuf.get(i2, j), i2, value); - } else { - outBuf.set(outBuf.get(i2, value) + 1, i2, value); - } - } - } - } - return outBuf; -} -function createSimpleUnaryImpl2(op2) { - return (values, dtype, attrs) => { - const newValues = util_exports.getTypedArrayFromDType(dtype, values.length); - for (let i2 = 0; i2 < values.length; ++i2) { - newValues[i2] = op2(values[i2], attrs); - } - return newValues; - }; -} -function unaryKernelFunc4(name, op2, dtype) { - return ({ inputs, attrs, backend: backend2 }) => { - const { x } = inputs; - assertNotComplex3(x, name); - if (x.dtype === "string" || dtype === "string") { - throw new Error("unaryKernelFunc does not support string input/output"); - } - const cpuBackend = backend2; - const values = cpuBackend.data.get(x.dataId).values; - const xSize = util_exports.sizeFromShape(x.shape); - const $dtype = dtype || x.dtype; - const newValues = util_exports.getArrayFromDType($dtype, xSize); - for (let i2 = 0; i2 < xSize; ++i2) { - newValues[i2] = op2(values[i2], attrs); - } - return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues); - }; -} -function unaryKernelFuncFromImpl2(name, unaryImpl, dtype) { - return ({ inputs, attrs, backend: backend2 }) => { - const { x } = inputs; - assertNotComplex3(x, name); - if (x.dtype === "string" || dtype === "string") { - throw new Error("unaryKernelFunc does not support string input/output"); - } - const cpuBackend = backend2; - const values = cpuBackend.data.get(x.dataId).values; - const $dtype = dtype || x.dtype; - const newValues = unaryImpl(values, $dtype, attrs); - return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues); - }; -} -var ceilImpl2 = createSimpleUnaryImpl2((xi) => Math.ceil(xi)); -var ceil4 = unaryKernelFuncFromImpl2(Ceil, ceilImpl2); -function concatImpl3(inputs, outShape, dtype, simplyConcat) { - const outVals = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(outShape)); - if (simplyConcat && dtype !== "string") { - let offset = 0; - inputs.forEach((input2) => { - const size2 = util_exports.sizeFromShape(input2.shape); - outVals.set(input2.vals, offset); - offset += size2; - }); - } else { - let colOffset = 0; - inputs.forEach((input2) => { - const decodedData = dtype === "string" ? backend_util_exports.fromUint8ToStringArray(input2.vals) : input2.vals; - let tIdx = 0; - for (let row = 0; row < input2.shape[0]; ++row) { - const resIdx = row * outShape[1] + colOffset; - for (let col = 0; col < input2.shape[1]; ++col) { - outVals[resIdx + col] = decodedData[tIdx++]; - } - } - colOffset += input2.shape[1]; - }); - } - return outVals; -} -var equalImpl2 = createSimpleBinaryKernelImpl2((a, b) => a === b ? 1 : 0); -var equal4 = binaryKernelFunc4(Equal, equalImpl2, null, "bool"); -var expImpl2 = createSimpleUnaryImpl2((xi) => Math.exp(xi)); -var exp4 = unaryKernelFuncFromImpl2(Exp, expImpl2, "float32"); -var expm1Impl2 = createSimpleUnaryImpl2((xi) => Math.expm1(xi)); -var expm14 = unaryKernelFuncFromImpl2(Expm1, expm1Impl2); -var floorImpl2 = createSimpleUnaryImpl2((xi) => Math.floor(xi)); -var floor4 = unaryKernelFuncFromImpl2(Floor, floorImpl2); -function gatherNdImpl2(indicesData, paramsBuf, dtype, numSlices, sliceRank, sliceSize, strides2, paramsShape, paramsSize) { - const outBuf = buffer([numSlices, sliceSize], dtype); - for (let i2 = 0; i2 < numSlices; i2++) { - const index2 = []; - let flattenIndex = 0; - for (let j = 0; j < sliceRank; j++) { - const dim = indicesData[i2 * sliceRank + j]; - flattenIndex += dim * strides2[j]; - index2.push(dim); - } - if (flattenIndex < 0 || flattenIndex >= paramsSize / sliceSize) { - throw new Error(`Invalid indices: ${index2} does not index into ${paramsShape}`); - } - for (let k = 0; k < sliceSize; k++) { - outBuf.values[i2 * sliceSize + k] = paramsBuf.get(...paramsBuf.indexToLoc(flattenIndex * sliceSize + k)); - } - } - return outBuf; -} -function gatherV2Impl2(xBuf, indicesBuf, flattenOutputShape) { - const outBuf = buffer(flattenOutputShape, xBuf.dtype); - for (let i2 = 0; i2 < outBuf.size; ++i2) { - const newLoc = outBuf.indexToLoc(i2); - const originalLoc = newLoc.slice(); - const batchIdx = originalLoc[0]; - const indicesIdx = originalLoc[2]; - const indicesIndex = indicesBuf.locToIndex([batchIdx, indicesIdx]); - originalLoc[2] = indicesBuf.values[indicesIndex]; - const originalIndex = xBuf.locToIndex(originalLoc); - if (0 <= originalIndex && originalIndex < xBuf.values.length) { - outBuf.values[i2] = xBuf.values[originalIndex]; - } - } - return outBuf; -} -var greaterImpl2 = createSimpleBinaryKernelImpl2((a, b) => a > b ? 1 : 0); -var greater5 = binaryKernelFunc4(Greater, greaterImpl2, null, "bool"); -var greaterEqualImpl2 = createSimpleBinaryKernelImpl2((a, b) => a >= b ? 1 : 0); -var greaterEqual4 = binaryKernelFunc4(GreaterEqual, greaterEqualImpl2, null, "bool"); -var lessImpl2 = createSimpleBinaryKernelImpl2((a, b) => a < b ? 1 : 0); -var less5 = binaryKernelFunc4(Less, lessImpl2, null, "bool"); -var lessEqualImpl2 = createSimpleBinaryKernelImpl2((a, b) => a <= b ? 1 : 0); -var lessEqual4 = binaryKernelFunc4(LessEqual, lessEqualImpl2, null, "bool"); -function linSpaceImpl2(start, stop, num) { - const step5 = (stop - start) / (num - 1); - const values = util_exports.makeZerosTypedArray(num, "float32"); - values[0] = start; - for (let i2 = 1; i2 < values.length; i2++) { - values[i2] = values[i2 - 1] + step5; - } - return values; -} -var logImpl2 = createSimpleUnaryImpl2((xi) => Math.log(xi)); -var log5 = unaryKernelFuncFromImpl2(Log, logImpl2); -function maxImpl3(aVals, reduceSize, outShape, dtype) { - const vals = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(outShape)); - for (let i2 = 0; i2 < vals.length; ++i2) { - const offset = i2 * reduceSize; - let max7 = aVals[offset]; - for (let j = 0; j < reduceSize; ++j) { - const value = aVals[offset + j]; - if (Number.isNaN(value) || value > max7) { - max7 = value; - } - } - vals[i2] = max7; - } - return vals; -} -var maximumImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => Math.max(aValue, bValue)); -var maximum5 = binaryKernelFunc4(Maximum, maximumImpl2); -var minimumImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => Math.min(aValue, bValue)); -var minimum5 = binaryKernelFunc4(Minimum, minimumImpl2); -var multiplyImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => aValue * bValue); -var multiplyComplexImpl2 = createComplexBinaryKernelImpl2((aReal, aImag, bReal, bImag) => { - return { - real: aReal * bReal - aImag * bImag, - imag: aReal * bImag + aImag * bReal - }; -}); -var multiply4 = binaryKernelFunc4(Multiply, multiplyImpl2, multiplyComplexImpl2); -function negImpl2(xVals, xShape, xDtype) { - const minusOne = util_exports.createScalarValue(-1, xDtype); - return multiplyImpl2([], xShape, minusOne, xVals, xDtype); -} -var notEqualImpl2 = createSimpleBinaryKernelImpl2((a, b) => a !== b ? 1 : 0); -var notEqual4 = binaryKernelFunc4(NotEqual, notEqualImpl2, null, "bool"); -function transposeImpl3(xVals, xShape, dtype, perm, newShape) { - const xRank = xShape.length; - const xSize = util_exports.sizeFromShape(xShape); - const xStrides = util_exports.computeStrides(xShape); - const newStrides = util_exports.computeStrides(newShape); - const result = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(newShape)); - for (let i2 = 0; i2 < xSize; ++i2) { - const loc = util_exports.indexToLoc(i2, xRank, xStrides); - const newLoc = new Array(loc.length); - for (let i3 = 0; i3 < newLoc.length; i3++) { - newLoc[i3] = loc[perm[i3]]; - } - const newIndex = util_exports.locToIndex(newLoc, xRank, newStrides); - result[newIndex] = xVals[i2]; - } - return result; -} -function prodImpl2(xShape, xDtype, xVals, reductionAxes) { - const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(xShape, reductionAxes); - const outDtype = upcastType(xDtype, "int32"); - const outVals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), outDtype); - const reduceSize = util_exports.sizeFromShape(reduceShape); - for (let i2 = 0; i2 < outVals.length; ++i2) { - const offset = i2 * reduceSize; - let prod6 = 1; - for (let j = 0; j < reduceSize; ++j) { - prod6 *= xVals[offset + j]; - } - outVals[i2] = prod6; - } - return { outVals, outShape, outDtype }; -} -function rangeImpl2(start, stop, step5, dtype) { - const sameStartStop = start === stop; - const increasingRangeNegativeStep = start < stop && step5 < 0; - const decreasingRangePositiveStep = stop < start && step5 > 1; - if (sameStartStop || increasingRangeNegativeStep || decreasingRangePositiveStep) { - return util_exports.makeZerosTypedArray(0, dtype); - } - const numElements = Math.abs(Math.ceil((stop - start) / step5)); - const values = util_exports.makeZerosTypedArray(numElements, dtype); - if (stop < start && step5 === 1) { - step5 = -1; - } - values[0] = start; - for (let i2 = 1; i2 < values.length; i2++) { - values[i2] = values[i2 - 1] + step5; - } - return values; -} -var rsqrtImpl2 = createSimpleUnaryImpl2((xi) => 1 / Math.sqrt(xi)); -var rsqrt4 = unaryKernelFuncFromImpl2(Rsqrt, rsqrtImpl2); -function scatterImpl2(indices, updates, shape, outputSize2, sliceSize, numUpdates, sliceRank, strides2, defaultValue, sumDupeIndices) { - const flattenShape = [outputSize2 / sliceSize, sliceSize]; - const indicesData = indices.values; - const updatesData = updates.values; - if (outputSize2 === 0) { - return buffer(shape, updates.dtype); - } - const outBuf = buffer(flattenShape, updates.dtype); - if (typeof defaultValue === "string") { - outBuf.values.fill(defaultValue); - } else if (typeof defaultValue === "number") { - outBuf.values.fill(defaultValue); - } else if (typeof defaultValue === "boolean") { - outBuf.values.fill(+defaultValue); - } - for (let i2 = 0; i2 < numUpdates; i2++) { - const index2 = []; - let flattenIndex = 0; - for (let j = 0; j < sliceRank; j++) { - const dim = indicesData[i2 * sliceRank + j]; - index2.push(dim); - flattenIndex += dim * strides2[j]; - } - if (flattenIndex < 0 || flattenIndex >= outputSize2 / sliceSize) { - throw new Error(`Invalid indices: ${index2} does not index into ${shape}`); - } - for (let k = 0; k < sliceSize; k++) { - if (sumDupeIndices) { - outBuf.values[flattenIndex * sliceSize + k] += updatesData[i2 * sliceSize + k]; - } else { - outBuf.values[flattenIndex * sliceSize + k] = updates.rank === 0 ? updatesData[0] : updatesData[i2 * sliceSize + k]; - } - } - } - return outBuf; -} -var sigmoidImpl2 = createSimpleUnaryImpl2((xi) => 1 / (1 + Math.exp(-xi))); -var sigmoid5 = unaryKernelFunc4(Sigmoid, (xi) => 1 / (1 + Math.exp(-xi))); -function sliceImpl2(vals, begin, size2, shape, dtype) { - const isContinous = slice_util_exports.isSliceContinous(shape, begin, size2); - const length = util_exports.sizeFromShape(size2); - const xStrides = util_exports.computeStrides(shape); - if (isContinous) { - const flatOffset = slice_util_exports.computeFlatOffset(begin, xStrides); - if (dtype === "string") { - return vals.slice(flatOffset, flatOffset + length); - } - return vals.subarray(flatOffset, flatOffset + length); - } - const decodedData = dtype === "string" ? backend_util_exports.fromUint8ToStringArray(vals) : vals; - const inBuf = buffer(shape, dtype, decodedData); - const outBuf = buffer(size2, dtype); - for (let i2 = 0; i2 < outBuf.size; ++i2) { - const outLoc = outBuf.indexToLoc(i2); - const inLoc = outLoc.map((idx, j) => idx + begin[j]); - outBuf.set(inBuf.get(...inLoc), ...outLoc); - } - if (dtype === "string") { - return backend_util_exports.fromStringArrayToUint8(outBuf.values); - } - return outBuf.values; -} -function sparseFillEmptyRowsImpl2(indices, indicesShape, indicesDType, values, valuesDType, denseShape, defaultValue) { - const indicesCount = indicesShape[0]; - const denseRows = denseShape[0]; - const emptyRowIndicator = new Array(denseRows); - const reverseIndexMap = new Array(indicesCount); - const rank = indicesShape[1]; - if (denseRows === 0) { - if (indicesCount !== 0) { - throw new Error(backend_util_exports.getSparseFillEmptyRowsIndicesDenseShapeMismatch(indicesCount)); - } - const outputIndices = util_exports.getArrayFromDType(indicesDType, 0); - const outputValues = util_exports.getArrayFromDType(valuesDType, 0); - return [ - outputIndices, - [0, rank], - outputValues, - emptyRowIndicator, - reverseIndexMap - ]; - } - let rowsAreOrdered = true; - let lastIndicesRow = 0; - const csrOffset = new Array(denseRows).fill(0); - for (let i2 = 0; i2 < indicesCount; ++i2) { - const row = indices[i2 * rank]; - if (row < 0) { - throw new Error(backend_util_exports.getSparseFillEmptyRowsNegativeIndexErrorMessage(i2, row)); - } - if (row >= denseRows) { - throw new Error(backend_util_exports.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(i2, row, denseRows)); - } - ++csrOffset[row]; - rowsAreOrdered = rowsAreOrdered && row >= lastIndicesRow; - lastIndicesRow = row; - } - let allRowsFull = true; - for (let row = 0; row < denseRows; ++row) { - const rowEmpty = csrOffset[row] === 0; - emptyRowIndicator[row] = rowEmpty; - allRowsFull = allRowsFull && !rowEmpty; - csrOffset[row] = Math.max(csrOffset[row], 1); - if (row > 0) { - csrOffset[row] += csrOffset[row - 1]; - } - } - if (allRowsFull && rowsAreOrdered) { - const outputIndices = indices; - const outputValues = values; - for (let i2 = 0; i2 < indicesCount; ++i2) { - reverseIndexMap[i2] = i2; - } - return [ - outputIndices, - [indicesCount, rank], - outputValues, - emptyRowIndicator, - reverseIndexMap - ]; - } else { - const fullIndicesCount = csrOffset[denseRows - 1]; - const outputIndices = util_exports.getArrayFromDType(indicesDType, fullIndicesCount * rank); - const outputValues = util_exports.getArrayFromDType(valuesDType, fullIndicesCount); - const filledCount = new Array(denseRows).fill(0); - for (let i2 = 0; i2 < indicesCount; ++i2) { - const row = indices[i2 * rank]; - const offset = filledCount[row]; - const outputI = (row === 0 ? 0 : csrOffset[row - 1]) + offset; - filledCount[row]++; - for (let j = 0; j < rank; ++j) { - outputIndices[outputI * rank + j] = indices[i2 * rank + j]; - } - outputValues[outputI] = values[i2]; - reverseIndexMap[i2] = outputI; - } - for (let row = 0; row < denseRows; ++row) { - const rowCount = filledCount[row]; - if (rowCount === 0) { - const startingIndex = row === 0 ? 0 : csrOffset[row - 1]; - outputIndices[startingIndex * rank + 0] = row; - for (let col = 1; col < rank; ++col) { - outputIndices[startingIndex * rank + col] = 0; - } - outputValues[startingIndex] = defaultValue; - } - } - return [ - outputIndices, - [fullIndicesCount, rank], - outputValues, - emptyRowIndicator, - reverseIndexMap - ]; - } -} -function sparseReshapeImpl2(inputIndices, inputIndicesShape, inputDType, inputShape, targetShape) { - const denseSize = util_exports.sizeFromShape(inputShape); - const nnz = inputIndicesShape[0]; - const outputRank = targetShape.length; - const outputShape = []; - let product = 1; - let unknownIndex = -1; - for (let d = 0; d < outputRank; ++d) { - const size2 = targetShape[d]; - if (size2 === -1) { - if (unknownIndex !== -1) { - throw new Error(backend_util_exports.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(unknownIndex, d)); - } - unknownIndex = d; - outputShape.push(1); - } else { - if (size2 < 0) { - throw new Error(backend_util_exports.getSparseReshapeNegativeOutputDimErrorMessage(d, size2)); - } - product *= size2; - outputShape.push(size2); - } - } - if (unknownIndex !== -1) { - if (product <= 0) { - throw new Error(backend_util_exports.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage()); - } - const missing = Math.trunc(denseSize / product); - if (product * missing !== denseSize) { - throw new Error(backend_util_exports.getSparseReshapeInputOutputMultipleErrorMessage(inputShape, outputShape)); - } - outputShape[unknownIndex] = missing; - } - const outputSize2 = util_exports.sizeFromShape(outputShape); - if (outputSize2 !== denseSize) { - throw new Error(backend_util_exports.getSparseReshapeInputOutputMismatchErrorMessage(inputShape, outputShape)); - } - const inputRank = inputShape.length; - const inputStrides = []; - if (inputRank > 0) { - inputStrides[inputRank - 1] = 1; - for (let d = inputRank - 2; d >= 0; --d) { - inputStrides[d] = inputStrides[d + 1] * inputShape[d + 1]; - } - } - const outputStrides = []; - if (outputRank > 0) { - outputStrides[outputRank - 1] = 1; - for (let d = outputRank - 2; d >= 0; --d) { - outputStrides[d] = outputStrides[d + 1] * outputShape[d + 1]; - } - } - const newIndices = util_exports.getArrayFromDType(inputDType, nnz * outputRank); - for (let i2 = 0; i2 < nnz; ++i2) { - let id = 0; - for (let j = 0; j < inputRank; ++j) { - id += inputIndices[i2 * inputRank + j] * inputStrides[j]; - } - for (let j = 0; j < outputRank; ++j) { - newIndices[i2 * outputRank + j] = Math.trunc(id / outputStrides[j]); - id %= outputStrides[j]; - } - } - return [newIndices, [nnz, outputRank], outputShape]; -} -function sparseSegmentReductionImpl2(input2, inputShape, inputDType, indices, segmentIds, isMean = false, defaultValue = 0) { - const numIndices = indices.length; - const inputFlat = [inputShape[0], input2.length / inputShape[0]]; - const numCol = inputFlat[1]; - const lastSegmentIdPlusOne = numIndices > 0 ? segmentIds[numIndices - 1] + 1 : 0; - const outputRows = lastSegmentIdPlusOne; - if (outputRows < 0) { - throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage()); - } - const outputShape = inputShape.slice(); - outputShape[0] = outputRows; - const outputLength = outputShape.reduce((product, value) => product * value, 1); - const output = util_exports.getArrayFromDType(inputDType, outputLength); - if (numIndices === 0) { - if (outputRows > 0) { - output.fill(defaultValue); - } - return [output, outputShape]; - } - if (outputRows <= 0) { - throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage()); - } - let start = 0, end = 1; - let uninitializedIndex = 0; - let outIndex = segmentIds[start]; - while (true) { - let nextIndex = 0; - if (end < numIndices) { - nextIndex = segmentIds[end]; - if (outIndex === nextIndex) { - ++end; - continue; - } - if (outIndex >= nextIndex) { - throw new Error(backend_util_exports.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage()); - } - } - if (outIndex < 0 || outIndex >= outputRows) { - throw new Error(backend_util_exports.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(outIndex, outputRows)); - } - if (outIndex > uninitializedIndex) { - output.fill(defaultValue, uninitializedIndex * numCol, outIndex * numCol); - } - for (let i2 = start; i2 < end; ++i2) { - const index2 = indices[i2]; - if (index2 < 0 || index2 >= inputFlat[0]) { - throw new Error(backend_util_exports.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(i2, indices[i2], inputFlat[0])); - } - for (let j = 0; j < numCol; j++) { - output[outIndex * numCol + j] += input2[index2 * numCol + j]; - } - } - if (isMean) { - for (let j = 0; j < numCol; j++) { - output[outIndex * numCol + j] /= end - start; - } - } - start = end; - ++end; - uninitializedIndex = outIndex + 1; - outIndex = nextIndex; - if (end > numIndices) { - break; - } - } - if (uninitializedIndex < outputRows) { - output.fill(defaultValue, uninitializedIndex * numCol, outputRows * numCol); - } - return [output, outputShape]; -} -var sqrtImpl2 = createSimpleUnaryImpl2((xi) => Math.sqrt(xi)); -var sqrt4 = unaryKernelFunc4(Sqrt, (xi) => Math.sqrt(xi)); -var squaredDifferenceImpl2 = createSimpleBinaryKernelImpl2((a, b) => { - const diff = a - b; - return diff * diff; -}); -var squaredDifference4 = binaryKernelFunc4(SquaredDifference, squaredDifferenceImpl2); -function stridedSliceImpl2(outShape, xBuf, strides2, begin) { - const outBuf = buffer(outShape, xBuf.dtype); - for (let i2 = 0; i2 < outBuf.size; i2++) { - const loc = outBuf.indexToLoc(i2); - const newLoc = new Array(loc.length); - for (let j = 0; j < newLoc.length; j++) { - newLoc[j] = loc[j] * strides2[j] + begin[j]; - } - outBuf.set(xBuf.get(...newLoc), ...loc); - } - return outBuf; -} -var StringNGramsOp2 = class { - constructor(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) { - this.separator = util_exports.encodeString(separator); - this.nGramWidths = nGramWidths; - this.leftPad = util_exports.encodeString(leftPad); - this.rightPad = util_exports.encodeString(rightPad2); - this.padWidth = padWidth; - this.preserveShort = preserveShortSequences; - } - getPadWidth(nGramWidth) { - return Math.min(this.padWidth < 0 ? nGramWidth - 1 : this.padWidth, nGramWidth - 1); - } - getNumNGrams(length, nGramWidth) { - const padWidth = this.getPadWidth(nGramWidth); - return Math.max(0, length + 2 * padWidth - nGramWidth + 1); - } - createNGrams(data, splitIndex, output, outputStartIndex, numNGrams, nGramWidth) { - for (let nGramIndex = 0; nGramIndex < numNGrams; ++nGramIndex) { - const padWidth = this.getPadWidth(nGramWidth); - const leftPadding = Math.max(0, padWidth - nGramIndex); - const rightPadding = Math.max(0, padWidth - (numNGrams - (nGramIndex + 1))); - const numTokens = nGramWidth - (leftPadding + rightPadding); - const dataStartIndex = splitIndex + (leftPadding > 0 ? 0 : nGramIndex - padWidth); - let nGramSize = 0; - nGramSize += leftPadding * this.leftPad.length; - for (let n2 = 0; n2 < numTokens; ++n2) { - nGramSize += data[dataStartIndex + n2].length; - } - nGramSize += rightPadding * this.rightPad.length; - const numSeparators = leftPadding + rightPadding + numTokens - 1; - nGramSize += numSeparators * this.separator.length; - output[outputStartIndex + nGramIndex] = new Uint8Array(nGramSize); - const nGram = output[outputStartIndex + nGramIndex]; - let nextNGramIndex = 0; - const appendToNGram = (str) => str.forEach((value) => nGram[nextNGramIndex++] = value); - for (let n2 = 0; n2 < leftPadding; ++n2) { - appendToNGram(this.leftPad); - appendToNGram(this.separator); - } - for (let n2 = 0; n2 < numTokens - 1; ++n2) { - appendToNGram(data[dataStartIndex + n2]); - appendToNGram(this.separator); - } - if (numTokens > 0) { - appendToNGram(data[dataStartIndex + numTokens - 1]); - for (let n2 = 0; n2 < rightPadding; ++n2) { - appendToNGram(this.separator); - appendToNGram(this.rightPad); - } - } else { - for (let n2 = 0; n2 < rightPadding - 1; ++n2) { - appendToNGram(this.rightPad); - appendToNGram(this.separator); - } - appendToNGram(this.rightPad); - } - } - } - compute(data, splits) { - const inputDataSize = data.length; - const splitsSize = splits.length; - if (splitsSize > 0) { - let prevSplit = splits[0]; - if (prevSplit !== 0) { - throw new Error(`First split value must be 0, got ${prevSplit}`); - } - for (let i2 = 1; i2 < splitsSize; ++i2) { - let validSplits = splits[i2] >= prevSplit; - validSplits = validSplits && splits[i2] <= inputDataSize; - if (!validSplits) { - throw new Error(`Invalid split value ${splits[i2]}, must be in [${prevSplit}, ${inputDataSize}]`); - } - prevSplit = splits[i2]; - } - if (prevSplit !== inputDataSize) { - throw new Error(`Last split value must be data size. Expected ${inputDataSize}, got ${prevSplit}`); - } - } - const numBatchItems = splitsSize - 1; - const nGramsSplits = util_exports.getArrayFromDType("int32", splitsSize); - if (inputDataSize === 0 || splitsSize === 0) { - const empty = new Array(inputDataSize); - for (let i2 = 0; i2 <= numBatchItems; ++i2) { - nGramsSplits[i2] = 0; - } - return [empty, nGramsSplits]; - } - nGramsSplits[0] = 0; - for (let i2 = 1; i2 <= numBatchItems; ++i2) { - const length = splits[i2] - splits[i2 - 1]; - let numNGrams = 0; - this.nGramWidths.forEach((nGramWidth) => { - numNGrams += this.getNumNGrams(length, nGramWidth); - }); - if (this.preserveShort && length > 0 && numNGrams === 0) { - numNGrams = 1; - } - nGramsSplits[i2] = nGramsSplits[i2 - 1] + numNGrams; - } - const nGrams = new Array(nGramsSplits[numBatchItems]); - for (let i2 = 0; i2 < numBatchItems; ++i2) { - const splitIndex = splits[i2]; - let outputStartIdx = nGramsSplits[i2]; - this.nGramWidths.forEach((nGramWidth) => { - const length = splits[i2 + 1] - splits[i2]; - const numNGrams = this.getNumNGrams(length, nGramWidth); - this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth); - outputStartIdx += numNGrams; - }); - if (this.preserveShort && outputStartIdx === nGramsSplits[i2]) { - const dataLength = splits[i2 + 1] - splits[i2]; - if (dataLength === 0) { - continue; - } - const nGramWidth = dataLength + 2 * this.padWidth; - const numNGrams = 1; - this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth); - } - } - return [nGrams, nGramsSplits]; - } -}; -function stringNGramsImpl2(data, dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) { - return new StringNGramsOp2(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences).compute(data, dataSplits); -} -function split4(str, delimiters, skipEmpty, result) { - if (!str.length) { - return; - } - if (delimiters.length === 0) { - for (let i2 = 0; i2 < str.length; ++i2) { - result.push(str.subarray(i2, i2 + 1)); - } - return; - } - if (delimiters.length === 1) { - const delimiter = delimiters[0]; - let f = str.indexOf(delimiter); - while (f !== -1) { - const token = str.subarray(0, f); - if (!skipEmpty || token.length !== 0) { - result.push(token); - } - str = str.subarray(f + 1); - f = str.indexOf(delimiter); - } - if (!skipEmpty || str.length !== 0) { - result.push(str); - } - return; - } - let tokenStart = 0; - for (let i2 = 0; i2 < str.length + 1; i2++) { - if (i2 === str.length || delimiters.indexOf(str[i2]) !== -1) { - const token = str.subarray(tokenStart, i2); - if (!skipEmpty || token.length !== 0) { - result.push(token); - } - tokenStart = i2 + 1; - } - } -} -function stringSplitImpl2(input2, delimiter, skipEmpty) { - const batchSize = input2.length; - const tokens = []; - let outputSize2 = 0; - let maxNumEntries = 0; - const numIndices = new Array(batchSize); - for (let i2 = 0; i2 < batchSize; ++i2) { - const prevTokensLength = tokens.length; - split4(input2[i2], delimiter, skipEmpty, tokens); - const nEntries = tokens.length - prevTokensLength; - numIndices[i2] = nEntries; - outputSize2 += nEntries; - maxNumEntries = Math.max(maxNumEntries, nEntries); - } - const indices = util_exports.getArrayFromDType("int32", outputSize2 * 2); - const values = new Array(outputSize2); - const shape = [batchSize, maxNumEntries]; - let c = 0; - for (let i2 = 0; i2 < batchSize; ++i2) { - for (let j = 0; j < numIndices[i2]; ++j) { - indices[c * 2] = i2; - indices[c * 2 + 1] = j; - values[c] = tokens[c]; - ++c; - } - } - return [indices, values, shape]; -} -function stringToHashBucketFastImpl2(input2, numBuckets) { - const output = util_exports.getArrayFromDType("int32", input2.length); - for (let i2 = 0; i2 < input2.length; ++i2) { - output[i2] = util_exports.fingerPrint64(input2[i2]).modulo(numBuckets).getLowBitsUnsigned(); - } - return output; -} -var subImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => aValue - bValue); -var subComplexImpl2 = createComplexBinaryKernelImpl2((aReal, aImag, bReal, bImag) => { - return { real: aReal - bReal, imag: aImag - bImag }; -}); -var sub4 = binaryKernelFunc4(Sub, subImpl2, subComplexImpl2); -function tileImpl2(xBuf, reps) { - const newShape = new Array(xBuf.rank); - for (let i2 = 0; i2 < newShape.length; i2++) { - newShape[i2] = xBuf.shape[i2] * reps[i2]; - } - const result = buffer(newShape, xBuf.dtype); - for (let i2 = 0; i2 < result.values.length; ++i2) { - const newLoc = result.indexToLoc(i2); - const originalLoc = new Array(xBuf.rank); - for (let j = 0; j < originalLoc.length; j++) { - originalLoc[j] = newLoc[j] % xBuf.shape[j]; - } - const originalIndex = xBuf.locToIndex(originalLoc); - result.values[i2] = xBuf.values[originalIndex]; - } - return result; -} -var comparePair2 = (a, b) => { - const valueDiff = b.value - a.value; - return valueDiff === 0 ? a.index - b.index : valueDiff; -}; -function select5(array2, k, left = 0, right = array2.length - 1) { - while (right > left) { - if (right - left > 600) { - const n2 = right - left + 1; - const i3 = k - left + 1; - const z = Math.log(n2); - const s2 = 0.5 * Math.exp(2 * z / 3); - const sd = 0.5 * Math.sqrt(z * s2 * (n2 - s2) / n2) * Math.sign(i3 - n2 / 2); - const newLeft = Math.max(left, Math.floor(k - i3 * s2 / n2 + sd)); - const newRight = Math.min(right, Math.floor(k + (n2 - i3) * s2 / n2 + sd)); - select5(array2, k, newLeft, newRight); - } - const t2 = array2[k]; - let i2 = left; - let j = right; - util_exports.swap(array2, left, k); - if (comparePair2(array2[right], t2) > 0) { - util_exports.swap(array2, left, right); - } - while (i2 < j) { - util_exports.swap(array2, i2, j); - i2++; - j--; - while (comparePair2(array2[i2], t2) < 0) { - i2 = i2 + 1; - } - while (comparePair2(array2[j], t2) > 0) { - j = j - 1; - } - } - if (comparePair2(array2[left], t2) === 0) { - util_exports.swap(array2, left, j); - } else { - j = j + 1; - util_exports.swap(array2, j, right); - } - if (j <= k) { - left = j + 1; - } - if (k <= j) { - right = j - 1; - } - } -} -function topKImpl2(x, xShape, xDtype, k, sorted) { - const lastDim = xShape[xShape.length - 1]; - const [batch, size2] = [x.length / lastDim, lastDim]; - const allTopKVals = util_exports.getTypedArrayFromDType(xDtype, batch * k); - const allTopKIndices = util_exports.getTypedArrayFromDType("int32", batch * k); - for (let b = 0; b < batch; b++) { - const offset = b * size2; - const vals = x.subarray(offset, offset + size2); - let valAndInd = new Array(vals.length); - vals.forEach((value, index2) => valAndInd[index2] = { value, index: index2 }); - if (k < valAndInd.length) { - select5(valAndInd, k); - valAndInd = valAndInd.slice(0, k); - } - if (sorted) { - valAndInd.sort(comparePair2); - } - const outOffset = b * k; - const topKVals = allTopKVals.subarray(outOffset, outOffset + k); - const topKIndices = allTopKIndices.subarray(outOffset, outOffset + k); - for (let i2 = 0; i2 < k; i2++) { - topKVals[i2] = valAndInd[i2].value; - topKIndices[i2] = valAndInd[i2].index; - } - } - const outputShape = xShape.slice(); - outputShape[outputShape.length - 1] = k; - return [ - buffer(outputShape, xDtype, allTopKVals), - buffer(outputShape, "int32", allTopKIndices) - ]; -} -function uniqueImpl2(values, axis, shape, dtype) { - const $axis = util_exports.parseAxisParam(axis, shape)[0]; - const newShape = [1, shape[0], 1]; - for (let i2 = 0; i2 < $axis; i2++) { - newShape[0] *= shape[i2]; - } - newShape[1] = shape[$axis]; - for (let i2 = $axis + 1; i2 < shape.length; i2++) { - newShape[2] *= shape[i2]; - } - const uniqueElements = {}; - const indices = new Int32Array(shape[$axis]); - const inputBuffer = new TensorBuffer(newShape, dtype, values); - const uniqueIndices = []; - const is1DTensor = newShape[0] === 1 && newShape[2] === 1; - for (let i2 = 0; i2 < shape[$axis]; i2++) { - let element; - if (is1DTensor) { - element = values[i2].toString(); - } else { - const axisValues = []; - for (let m = 0; m < newShape[0]; m++) { - for (let n2 = 0; n2 < newShape[2]; n2++) { - axisValues.push(inputBuffer.get(m, i2, n2)); - } - } - element = axisValues.join(","); - } - if (uniqueElements[element] !== void 0) { - indices[i2] = uniqueElements[element]; - } else { - const uniqueIndex = Object.keys(uniqueElements).length; - uniqueElements[element] = uniqueIndex; - indices[i2] = uniqueIndex; - uniqueIndices.push(i2); - } - } - const outputTmpShape = newShape.slice(); - outputTmpShape[1] = Object.keys(uniqueElements).length; - const outputBuffer = new TensorBuffer(outputTmpShape, dtype); - uniqueIndices.forEach((uniqueElementIndex, i2) => { - for (let m = 0; m < newShape[0]; m++) { - for (let n2 = 0; n2 < newShape[2]; n2++) { - outputBuffer.set(inputBuffer.get(m, uniqueElementIndex, n2), m, i2, n2); - } - } - }); - const outputShape = shape.slice(); - outputShape[$axis] = outputTmpShape[1]; - return { - outputValues: outputBuffer.values, - outputShape, - indices - }; -} -var { addImpl: addImplCPU2, ceilImpl: ceilImplCPU2, concatImpl: concatImplCPU2, equalImpl: equalImplCPU2, expImpl: expImplCPU2, expm1Impl: expm1ImplCPU2, floorImpl: floorImplCPU2, gatherNdImpl: gatherNdImplCPU2, gatherV2Impl: gatherV2ImplCPU2, greaterEqualImpl: greaterEqualImplCPU2, greaterImpl: greaterImplCPU2, lessEqualImpl: lessEqualImplCPU2, lessImpl: lessImplCPU2, logImpl: logImplCPU2, maxImpl: maxImplCPU2, maximumImpl: maximumImplCPU2, minimumImpl: minimumImplCPU2, multiplyImpl: multiplyImplCPU2, negImpl: negImplCPU2, notEqualImpl: notEqualImplCPU2, prodImpl: prodImplCPU2, rangeImpl: rangeImplCPU2, rsqrtImpl: rsqrtImplCPU2, scatterImpl: scatterImplCPU2, simpleAbsImpl: simpleAbsImplCPU2, sliceImpl: sliceImplCPU2, stridedSliceImpl: stridedSliceImplCPU2, stringNGramsImpl: stringNGramsImplCPU2, subImpl: subImplCPU2, tileImpl: tileImplCPU2, topKImpl: topKImplCPU2, transposeImpl: transposeImplCPU2, uniqueImpl: uniqueImplCPU2 } = shared_exports2; +var { addImpl: addImplCPU2, castImpl: castImplCPU2, ceilImpl: ceilImplCPU2, concatImpl: concatImplCPU2, equalImpl: equalImplCPU2, expImpl: expImplCPU2, expm1Impl: expm1ImplCPU2, floorImpl: floorImplCPU2, gatherNdImpl: gatherNdImplCPU2, gatherV2Impl: gatherV2ImplCPU2, greaterEqualImpl: greaterEqualImplCPU2, greaterImpl: greaterImplCPU2, lessEqualImpl: lessEqualImplCPU2, lessImpl: lessImplCPU2, logImpl: logImplCPU2, maxImpl: maxImplCPU2, maximumImpl: maximumImplCPU2, minimumImpl: minimumImplCPU2, multiplyImpl: multiplyImplCPU2, negImpl: negImplCPU2, notEqualImpl: notEqualImplCPU2, prodImpl: prodImplCPU2, rangeImpl: rangeImplCPU2, rsqrtImpl: rsqrtImplCPU2, scatterImpl: scatterImplCPU2, simpleAbsImpl: simpleAbsImplCPU2, sliceImpl: sliceImplCPU2, stridedSliceImpl: stridedSliceImplCPU2, stringNGramsImpl: stringNGramsImplCPU2, subImpl: subImplCPU2, tileImpl: tileImplCPU2, topKImpl: topKImplCPU2, transposeImpl: transposeImplCPU2, uniqueImpl: uniqueImplCPU2 } = shared_exports; var abs4 = unaryKernelFunc3({ opType: UnaryOpType.ABS, cpuKernelImpl: simpleAbsImplCPU2 }); var absConfig4 = { kernelName: Abs, @@ -69075,7 +68568,7 @@ var AddNPackedProgram2 = class { return `v${variable2}`; }).join(" + "); const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { for (var i = 0; i < ${this.workPerThread}; i = i + 1) { let flatIndex = index * ${this.workPerThread} + i; if (flatIndex < uniforms.size) { @@ -69112,20 +68605,21 @@ var ArgMinMaxProgram2 = class { this.uniforms = "infinityValue : f32,"; this.size = true; const axes = [axis]; - backend_util_exports.assertAxesAreInnerMostDims("arg" + reduceType.charAt(0).toUpperCase() + reduceType.slice(1), axes, inputShape.length); this.op = reduceType === "min" ? "<" : ">"; - const [outputShape] = backend_util_exports.computeOutAndReduceShapes(inputShape, axes); + const [outputShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(inputShape, axes); this.outputShape = outputShape.length === 0 ? [1] : outputShape; this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]); + if (util_exports.sizeFromShape(reduceShape) < 32 || util_exports.sizeFromShape(outputShape) > 1e3) { + this.type = "plain"; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + } else { + this.type = "shared"; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]); + } this.inputShape = inputShape; - this.shaderKey = `argMinMax${this.op}`; + this.shaderKey = `argMinMax_${this.op}_${this.type}`; } getUserCode() { - const sharedMemorySnippet = ` - var xBestIndices : array; - var xBestValues : array; - `; const getInputShapeLastDim = () => { if (this.inputShape.length === 1) { return "uniforms.xShape"; @@ -69146,14 +68640,19 @@ var ArgMinMaxProgram2 = class { } return snippet; }; - const userCode = ` + if (this.type === "shared") { + const sharedMemorySnippet = ` + var xBestIndices : array; + var xBestValues : array; + `; + const userCode = ` fn DIV_CEIL(a : u32, b : u32) -> u32 { return ((a - 1u) / b + 1u); } ${sharedMemorySnippet} - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { let outputIndex = index / i32(workGroupSizeX); let reduceLength = ${getInputShapeLastDim()}; @@ -69193,7 +68692,28 @@ var ArgMinMaxProgram2 = class { } } `; - return userCode; + return userCode; + } else { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let outputCoords = getCoordsFromIndex(index); + var bestIndex = 0; + var bestValue = getX(${splitOutputCoords()} 0); + let reduceLength = ${getInputShapeLastDim()}; + for (var i = 1; i < reduceLength; i++) { + let candidate = getX(${splitOutputCoords()} i); + if (candidate ${this.op} bestValue) { + bestValue = candidate; + bestIndex = i; + } + } + setOutputAtIndexI32(index, bestIndex); + } + } + `; + return userCode; + } } }; var TransposeSharedProgram = class { @@ -69214,8 +68734,8 @@ var TransposeSharedProgram = class { const TILE_DIM = ${this.workGroupSize[0]}; var tile : array, ${this.workGroupSize[0]}>; ${getWorkGroupSizeString()} - fn main(@builtin(local_invocation_id) localId : vec3, - @builtin(workgroup_id) workgroupId : vec3) { + fn _start(@builtin(local_invocation_id) localId : vec3, + @builtin(workgroup_id) workgroupId : vec3) { var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x); var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y); let width = uniforms.outShape[0]; @@ -69256,8 +68776,7 @@ var TransposeProgram2 = class { const dtype = getCoordsDataType2(this.outputShape.length); const switched = getSwitchedCoords2(this.newDim); const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - + ${getMainHeaderString("index")} { for(var i = 0; i < ${this.workPerThread}; i = i + 1) { let flatIndex = index * ${this.workPerThread} + i; if(flatIndex < uniforms.size) { @@ -69282,7 +68801,7 @@ function getSwitchedCoords2(newDim) { } return switchedCoords.join(); } -function transpose6(args) { +function transpose5(args) { const { inputs, backend: backend2, attrs } = args; const { x } = inputs; const { perm } = attrs; @@ -69308,7 +68827,7 @@ function transpose6(args) { var transposeConfig4 = { kernelName: Transpose, backendName: "webgpu", - kernelFunc: transpose6 + kernelFunc: transpose5 }; function argMax4(args) { const { inputs, backend: backend2, attrs } = args; @@ -69319,7 +68838,7 @@ function argMax4(args) { let $x = x; const intermediateTensorInfos = []; if (permutedAxes != null) { - $x = transpose6({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } }); + $x = transpose5({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } }); intermediateTensorInfos.push($x); axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length); } @@ -69344,7 +68863,7 @@ function argMin4(args) { let $x = x; const intermediateTensorInfos = []; if (permutedAxes != null) { - $x = transpose6({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } }); + $x = transpose5({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } }); intermediateTensorInfos.push($x); axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length); } @@ -69360,6 +68879,12 @@ var argMinConfig3 = { backendName: "webgpu", kernelFunc: argMin4 }; +var atan24 = binaryKernelFunc3({ opType: BinaryOpType.ATAN2 }); +var atan2Config3 = { + kernelName: Atan2, + backendName: "webgpu", + kernelFunc: atan24 +}; var Pool2DProgram2 = class { constructor(convInfo, poolType) { this.variableNames = ["x"]; @@ -69382,7 +68907,7 @@ var Pool2DProgram2 = class { returnValue = `resultValue / count`; } const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let batch = coords[0]; @@ -69431,7 +68956,7 @@ var PoolWithFilterSizeEqualsOneProgram = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let batch = coords[0]; @@ -69449,21 +68974,201 @@ var PoolWithFilterSizeEqualsOneProgram = class { return userCode; } }; -function avgPool5(args) { +var ReduceProgram2 = class { + constructor(reduceInfo, reduceType) { + this.workGroupSize = [64, 1, 1]; + this.variableNames = ["x"]; + this.uniforms = "reduceSize : i32,"; + this.size = true; + this.inputShape = [reduceInfo.batchSize, reduceInfo.inSize]; + const [outputShape] = backend_util_exports.computeOutAndReduceShapes(this.inputShape, [1]); + this.outputShape = outputShape.length === 0 ? [1] : outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]); + this.reduceType = reduceType; + this.shaderKey = `reduce_${reduceType}`; + } + getUserCode() { + let reduceOp = ``; + let initValue = "0.0"; + if (this.reduceType === "min" || this.reduceType === "max") { + reduceOp = ` + if (isnan(candidate)) { + bestValue = uniforms.NAN; + } else if (!isnan(bestValue) && candidate ${this.reduceType === "min" ? "<" : ">"} bestValue) + { bestValue = candidate; }`; + initValue = "f32(x[offset])"; + } else if (this.reduceType === "sum" || this.reduceType === "mean") { + reduceOp = " bestValue = bestValue + candidate; "; + } else if (this.reduceType === "prod") { + reduceOp = " bestValue = bestValue * candidate; "; + initValue = "1.0"; + } + const outputSnippet = this.reduceType === "mean" ? `setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));` : `setOutputAtIndex(outputIndex, bestValue);`; + const sharedMemorySnippet = ` + var xBestValues : array; + `; + const userCode = ` + fn DIV_CEIL(a : u32, b : u32) -> u32 { + return ((a - 1u) / b + 1u); + } + + ${sharedMemorySnippet} + fn getOffset(outputIndex : i32) -> i32 { + let outputCoords = getCoordsFromIndex(outputIndex); + let offset = ${this.outputShape.length === 1 ? "outputCoords" : "outputCoords[0]"} * uniforms.reduceSize; + return offset; + } + ${getMainHeaderString("index")} { + let outputIndex = index / i32(workGroupSizeX); + let offset = getOffset(outputIndex); + var bestValue = ${initValue}; + let Length = uniforms.reduceSize; + let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX); + for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size; + k = k + i32(workGroupSizeX)) { + let candidate = f32(x[offset + k]); + ${reduceOp} + } + xBestValues[localId.x] = bestValue; + workgroupBarrier(); + + var reduceSize = min(u32(Length), workGroupSizeX); + for (var currentSize = reduceSize / 2u; reduceSize > 1u; + currentSize = reduceSize / 2u) { + let interval = DIV_CEIL(reduceSize, 2u); + if (localId.x < currentSize) { + let candidate = xBestValues[localId.x + interval]; + ${reduceOp} + xBestValues[localId.x] = bestValue; + } + reduceSize = interval; + workgroupBarrier(); + } + + if (localId.x == 0u && outputIndex < uniforms.size) { + ${outputSnippet} + } + } + `; + return userCode; + } +}; +function reduce2(x, axis, keepDims, reduceType, backend2) { + const xRank = x.shape.length; + const toDispose = []; + const origAxes = util_exports.parseAxisParam(axis, x.shape); + let axes = origAxes; + const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank); + let input2 = x; + if (permutedAxes != null) { + input2 = transpose5({ inputs: { x }, attrs: { perm: permutedAxes }, backend: backend2 }); + axes = backend_util_exports.getInnerMostAxes(axes.length, xRank); + toDispose.push(input2); + } + backend_util_exports.assertAxesAreInnerMostDims(reduceType, axes, xRank); + const [reduceOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes); + let resOutShape = reduceOutShape; + if (keepDims) { + resOutShape = backend_util_exports.expandShapeToKeepDim(reduceOutShape, origAxes); + } + let res; + if ((reduceType === "max" || reduceType === "prod") && backend2.shouldExecuteOnCPU([input2])) { + const xVals = backend2.tensorMap.get(input2.dataId).values; + switch (reduceType) { + case "max": + const outValues = maxImplCPU2(xVals, util_exports.sizeFromShape(reduceShape), resOutShape, x.dtype); + res = backend2.makeTensorInfo(resOutShape, x.dtype, outValues); + break; + case "prod": + const { outVals, outShape, outDtype } = prodImplCPU2(input2.shape, input2.dtype, xVals, axes); + res = backend2.makeTensorInfo(outShape, outDtype, outVals); + break; + default: + throw new Error(`${reduceType} CPU implementation is not yet supported.`); + } + } else { + const inSize = util_exports.sizeFromShape(reduceShape); + const xSize = util_exports.sizeFromShape(input2.shape); + const batchSize = xSize / inSize; + const reduceInfo = { windowSize: inSize, inSize, batchSize, outSize: 1 }; + const dtype = reduceType === "mean" ? "float32" : sumOutType(x.dtype); + const uniformData = [ + { type: "int32", data: [inSize] } + ]; + const program = new ReduceProgram2(reduceInfo, reduceType); + const reduced = backend2.runWebGPUProgram(program, [input2], dtype, uniformData); + toDispose.push(reduced); + res = reshape6({ inputs: { x: reduced }, attrs: { shape: resOutShape }, backend: backend2 }); + } + toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); + return res; +} +function max6(args) { const { inputs, backend: backend2, attrs } = args; const { x } = inputs; - const { filterSize, strides: strides2, pad: pad3, dimRoundingMode } = attrs; - const dilations = 1; - const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides2, dilations, pad3, dimRoundingMode); + const { reductionIndices, keepDims } = attrs; + return reduce2(x, reductionIndices, keepDims, "max", backend2); +} +var maxConfig4 = { + kernelName: Max, + backendName: "webgpu", + kernelFunc: max6 +}; +function mean4(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { keepDims, axis } = attrs; + return reduce2(x, axis, keepDims, "mean", backend2); +} +var meanConfig4 = { + kernelName: Mean, + backendName: "webgpu", + kernelFunc: mean4 +}; +function poolImpl(x, convInfo, poolType, backend2) { if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) { return identity5({ inputs: { x }, backend: backend2 }); } + if (convInfo.filterWidth === convInfo.inWidth && convInfo.filterHeight === convInfo.inHeight && convInfo.batchSize === 1 && convInfo.padInfo.type === "VALID") { + const length = x.shape.length; + const reshapeX = reshape6({ + inputs: { x }, + backend: backend2, + attrs: { + shape: [ + x.shape[length - 3] * x.shape[length - 2], + x.shape[length - 1] + ] + } + }); + let reduceX; + if (poolType === "avg") { + reduceX = mean4({ inputs: { x: reshapeX }, backend: backend2, attrs: { axis: 0, keepDims: false } }); + } else { + util_exports.assert(poolType === "max", () => `Invalid pool type ${poolType}`); + reduceX = max6({ + inputs: { x: reshapeX }, + backend: backend2, + attrs: { reductionIndices: 0, keepDims: false } + }); + } + const result = reshape6({ inputs: { x: reduceX }, backend: backend2, attrs: { shape: convInfo.outShape } }); + backend2.disposeData(reshapeX.dataId); + backend2.disposeData(reduceX.dataId); + return result; + } let program; const dimensions = [{ type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }]; if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1) { program = new PoolWithFilterSizeEqualsOneProgram(convInfo); } else { - program = new Pool2DProgram2(convInfo, "avg"); + if (poolType === "avg") { + program = new Pool2DProgram2(convInfo, "avg"); + } else { + util_exports.assert(poolType === "max", () => `Invalid pool type ${poolType}`); + program = new Pool2DProgram2(convInfo, "max"); + } dimensions.push({ type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, { type: "int32", data: [convInfo.dilationHeight, convInfo.dilationWidth] @@ -69474,6 +69179,14 @@ function avgPool5(args) { } return backend2.runWebGPUProgram(program, [x], x.dtype, dimensions); } +function avgPool5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { filterSize, strides: strides2, pad: pad3, dimRoundingMode } = attrs; + const dilations = 1; + const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides2, dilations, pad3, dimRoundingMode); + return poolImpl(x, convInfo, "avg", backend2); +} var avgPoolConfig4 = { kernelName: AvgPool, backendName: "webgpu", @@ -69514,11 +69227,11 @@ var SliceProgram2 = class { }); } else { coordSum = this.outputShape.map((_, i2) => { - return `sourceLoc.${coords2[i2]} = uniforms.start[${i2}] + coords.${coords2[i2]};`; + return `sourceLoc.${coords2[i2]} = uniforms.start.${getCoordsXYZ(i2)} + coords.${coords2[i2]};`; }); } const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { var sourceLoc : ${dtype}; let coords = getCoordsFromIndex(index); @@ -69576,7 +69289,7 @@ var batchToSpaceND5 = (args) => { const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length); const toDispose = []; const reshapedIntermediate = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } }); - const transposedIntermediate = transpose6({ inputs: { x: reshapedIntermediate }, backend: backend2, attrs: { perm: permuted } }); + const transposedIntermediate = transpose5({ inputs: { x: reshapedIntermediate }, backend: backend2, attrs: { perm: permuted } }); const reshapedIntermediate2 = reshape6({ inputs: { x: transposedIntermediate }, backend: backend2, @@ -69598,7 +69311,7 @@ var batchToSpaceNDConfig4 = { backendName: "webgpu", kernelFunc: batchToSpaceND5 }; -var notEqual5 = binaryKernelFunc3({ +var notEqual4 = binaryKernelFunc3({ opType: BinaryOpType.NOT_EQUAL, dtype: "bool", cpuKernelImpl: notEqualImplCPU2 @@ -69606,9 +69319,9 @@ var notEqual5 = binaryKernelFunc3({ var notEqualConfig4 = { kernelName: NotEqual, backendName: "webgpu", - kernelFunc: notEqual5 + kernelFunc: notEqual4 }; -function real5(args) { +function real4(args) { const { inputs, backend: backend2 } = args; const { input: input2 } = inputs; const inputData = backend2.tensorMap.get(input2.dataId); @@ -69617,14 +69330,14 @@ function real5(args) { var realConfig3 = { kernelName: Real, backendName: "webgpu", - kernelFunc: real5 + kernelFunc: real4 }; function int2(input2, backend2) { const program = new UnaryOpProgram2(input2.shape, UnaryOpType.TO_INT); const output = backend2.runWebGPUProgram(program, [input2], "int32"); return { dataId: output.dataId, shape: output.shape, dtype: output.dtype }; } -function cast7(args) { +function cast6(args) { const { inputs, backend: backend2, attrs } = args; const { x } = inputs; const { dtype } = attrs; @@ -69633,15 +69346,15 @@ function cast7(args) { return identity5({ inputs: { x }, backend: backend2 }); } const zerosTensor = zeros(x.shape); - const floatX = cast7({ inputs: { x }, backend: backend2, attrs: { dtype: "float32" } }); + const floatX = cast6({ inputs: { x }, backend: backend2, attrs: { dtype: "float32" } }); const result = complex4({ inputs: { real: floatX, imag: zerosTensor }, backend: backend2 }); zerosTensor.dispose(); backend2.disposeData(floatX.dataId); return result; } if (x.dtype === "complex64") { - const realPart = real5({ inputs: { input: x }, backend: backend2 }); - const result = cast7({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } }); + const realPart = real4({ inputs: { input: x }, backend: backend2 }); + const result = cast6({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } }); backend2.disposeData(realPart.dataId); return result; } @@ -69649,13 +69362,18 @@ function cast7(args) { const result = identity5({ inputs: { x }, backend: backend2 }); return { dataId: result.dataId, shape: result.shape, dtype }; } + if (backend2.shouldExecuteOnCPU([x])) { + const values = backend2.tensorMap.get(x.dataId).values; + const [resultShape, resultType, resultData] = castImplCPU2(values, x.shape, x.dtype, dtype); + return backend2.makeTensorInfo(resultShape, resultType, resultData); + } if (dtype === "int32") { return int2(x, backend2); } if (dtype === "bool") { const zerosTensorInfo = backend2.makeTensorInfo([], "bool", util_exports.getTypedArrayFromDType("bool", 1)); const binaryInputs = { a: x, b: zerosTensorInfo }; - const result = notEqual5({ inputs: binaryInputs, backend: backend2 }); + const result = notEqual4({ inputs: binaryInputs, backend: backend2 }); backend2.disposeData(zerosTensorInfo.dataId); return result; } @@ -69664,13 +69382,13 @@ function cast7(args) { var castConfig4 = { kernelName: Cast, backendName: "webgpu", - kernelFunc: cast7 + kernelFunc: cast6 }; -var ceil5 = unaryKernelFunc3({ opType: UnaryOpType.CEIL, cpuKernelImpl: ceilImplCPU2 }); +var ceil4 = unaryKernelFunc3({ opType: UnaryOpType.CEIL, cpuKernelImpl: ceilImplCPU2 }); var ceilConfig4 = { kernelName: Ceil, backendName: "webgpu", - kernelFunc: ceil5 + kernelFunc: ceil4 }; var ClipVec4Program = class { constructor(outputShape) { @@ -69687,7 +69405,7 @@ var ClipVec4Program = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if(index < uniforms.size) { let value = getAByOutputIndex(index); var clampedValue : vec4; @@ -69719,7 +69437,7 @@ var ClipProgram2 = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if(index < uniforms.size) { let value = getAByOutputIndex(index); if (isnan(value)) { @@ -69784,7 +69502,7 @@ var ConcatProgram2 = class { snippets.push(`setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));`); } const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { for(var i = 0; i < ${this.workPerThread}; i = i + 1) { let flatIndex = index * ${this.workPerThread} + i; if(flatIndex < uniforms.size) { @@ -69811,13 +69529,13 @@ var imagConfig3 = { backendName: "webgpu", kernelFunc: imag4 }; -function concatImpl4(inputs, axis, backend2) { +function concatImpl3(inputs, axis, backend2) { const dtype = inputs[0].dtype; if (dtype === "complex64") { - const reals = inputs.map((t2) => real5({ inputs: { input: t2 }, backend: backend2 })); + const reals = inputs.map((t2) => real4({ inputs: { input: t2 }, backend: backend2 })); const imags = inputs.map((t2) => imag4({ inputs: { input: t2 }, backend: backend2 })); - const realConcated = concatImpl4(reals, axis, backend2); - const imagConcated = concatImpl4(imags, axis, backend2); + const realConcated = concatImpl3(reals, axis, backend2); + const imagConcated = concatImpl3(imags, axis, backend2); const result = complex4({ inputs: { real: realConcated, imag: imagConcated }, backend: backend2 }); reals.forEach((r2) => backend2.disposeData(r2.dataId)); imags.forEach((i2) => backend2.disposeData(i2.dataId)); @@ -69851,9 +69569,9 @@ function concatImpl4(inputs, axis, backend2) { const reducedInputs = []; for (let i2 = 0; i2 < inputs.length; i2 += maxInputNum) { const subArray = inputs.slice(i2, i2 + maxInputNum); - reducedInputs.push(concatImpl4(subArray, axis, backend2)); + reducedInputs.push(concatImpl3(subArray, axis, backend2)); } - const result = concatImpl4(reducedInputs, axis, backend2); + const result = concatImpl3(reducedInputs, axis, backend2); for (const i2 of reducedInputs) { backend2.disposeData(i2.dataId); } @@ -69906,7 +69624,7 @@ function concat5(args) { } const shapes = $inputs.map((t2) => t2.shape); backend_util_exports.assertParamsConsistent(shapes, $axis); - return concatImpl4($inputs, $axis, backend2); + return concatImpl3($inputs, $axis, backend2); } var concatConfig4 = { kernelName: Concat, @@ -70068,8 +69786,8 @@ var Conv2DMMProgram = class { this.shaderKey = `conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`; } getUserCode() { - const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, this.innerElementSize, !this.isChannelsLast) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner); - const elementsSize = this.isVec4 ? [this.isChannelsLast ? this.innerElementSize : 4, 4, 4] : [1, 1, 1]; + const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner); + const elementsSize = this.isVec4 ? [this.innerElementSize, 4, 4] : [1, 1, 1]; const userCode = ` ${conv2dCommonSnippet(this.isChannelsLast, this.fitAOuter, this.fitBOuter, this.fitInner, this.addBias, this.activation, this.hasPreluActivationWeights, elementsSize[0], elementsSize[1], elementsSize[2])} ${matMulSource} @@ -70340,18 +70058,12 @@ var Conv2DDerInputMMProgram = class { this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); if (this.isVec4) { - this.innerElementSize = 4; this.variableTypes = ["vec4", "f32"]; - } else { - this.innerElementSize = this.elementsPerThread[0]; } - this.tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; - this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - this.tileInner = Math.max(this.workGroupSize[0] * this.innerElementSize, this.workGroupSize[1]); - this.shaderKey = `conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}_${this.innerElementSize}`; + this.shaderKey = `conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`; } getUserCode() { - const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, this.innerElementSize) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize); + const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize); const userCode = ` ${conv2dTransposeCommonSnippet(this.isVec4 ? 4 : 1)} ${matMulSource} @@ -70376,7 +70088,7 @@ var Conv2DDerInputProgram2 = class { const colDim = this.isChannelsLast ? 2 : 3; const channelDim = this.isChannelsLast ? 3 : 1; return ` - ${getMainHeaderAndGlobalIndexString()} { + ${getMainHeaderString("index")} { if(index < uniforms.size) { let coords = getCoordsFromIndex(index); let batch = coords[0]; @@ -70518,7 +70230,7 @@ var CropAndResizeProgram2 = class { `0.5 * (x1+x2) * ${inputWidthFloat}` ]; const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let height_ratio = f32(${heightRatio}); @@ -70625,7 +70337,7 @@ var CumProgram2 = class { idxString = this.reverse ? "end + pow2" : "end - pow2"; } return ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { var coords = getCoordsFromIndex(index); @@ -70674,7 +70386,7 @@ function cumImpl2(op2, x, backend2, axis, exclusive, reverse5) { const permutation = backend_util_exports.getAxesPermutation([axis], xRank); let permutedX = x; if (permutation != null) { - permutedX = transpose6({ inputs: { x }, backend: backend2, attrs: { perm: permutation } }); + permutedX = transpose5({ inputs: { x }, backend: backend2, attrs: { perm: permutation } }); } const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0]; if (permutedAxis !== xRank - 1) { @@ -70698,7 +70410,7 @@ function cumImpl2(op2, x, backend2, axis, exclusive, reverse5) { } if (permutation != null) { const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation); - const reverseTransposedResult = transpose6({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } }); + const reverseTransposedResult = transpose5({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } }); backend2.disposeData(result.dataId); backend2.disposeData(permutedX.dataId); return reverseTransposedResult; @@ -70741,7 +70453,7 @@ var DepthToSpaceProgram2 = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let b = coords[0]; @@ -70863,10 +70575,10 @@ var DepthwiseConv2DNCHWSharedProgram = class { } ${getWorkGroupSizeString()} - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(local_invocation_index) LocalIndex: u32, - @builtin(num_workgroups) NumWorkgroups: vec3) { + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(local_invocation_index) LocalIndex: u32, + @builtin(num_workgroups) NumWorkgroups: vec3) { localId = LocalId; globalId = GlobalId; let localIndex = i32(LocalIndex); @@ -70957,7 +70669,7 @@ var DepthwiseConv2DVec4Program = class { return value; } ${getWorkGroupSizeString()} - fn main(@builtin(global_invocation_id) globalId: vec3) { + fn _start(@builtin(global_invocation_id) globalId: vec3) { let batch = i32(globalId.z) / uniforms.outShape[1]; let r = i32(globalId.z) % uniforms.outShape[1]; let c = i32(globalId.y) * 4; @@ -71029,7 +70741,7 @@ var DepthwiseConv2DProgram2 = class { const userCode = ` ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)} - ${getMainHeaderString()} + ${getMainHeaderString()} { let coords = getOutputCoords(); let batch = coords[0]; let xRCCorner = vec2(coords.${this.isChannelsLast ? "yz" : "zw"}) * uniforms.stride - uniforms.pad; @@ -71140,136 +70852,6 @@ var multiplyConfig4 = { backendName: "webgpu", kernelFunc: multiplyKernelFunc }; -var ReduceProgram2 = class { - constructor(reduceInfo, reduceType) { - this.workGroupSize = [64, 1, 1]; - this.variableNames = ["x"]; - this.uniforms = "reduceSize : i32,"; - this.size = true; - this.inputShape = [reduceInfo.batchSize, reduceInfo.inSize]; - const [outputShape] = backend_util_exports.computeOutAndReduceShapes(this.inputShape, [1]); - this.outputShape = outputShape.length === 0 ? [1] : outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]); - this.reduceType = reduceType; - this.shaderKey = `reduce_${reduceType}`; - } - getUserCode() { - let reduceOp = ``; - let initValue = "0.0"; - if (this.reduceType === "min" || this.reduceType === "max") { - reduceOp = ` - if (isnan(candidate)) { - bestValue = uniforms.NAN; - } else if (!isnan(bestValue) && candidate ${this.reduceType === "min" ? "<" : ">"} bestValue) - { bestValue = candidate; }`; - initValue = "f32(x[offset])"; - } else if (this.reduceType === "sum" || this.reduceType === "mean") { - reduceOp = " bestValue = bestValue + candidate; "; - } else if (this.reduceType === "prod") { - reduceOp = " bestValue = bestValue * candidate; "; - initValue = "1.0"; - } - const outputSnippet = this.reduceType === "mean" ? `setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));` : `setOutputAtIndex(outputIndex, bestValue);`; - const sharedMemorySnippet = ` - var xBestValues : array; - `; - const userCode = ` - fn DIV_CEIL(a : u32, b : u32) -> u32 { - return ((a - 1u) / b + 1u); - } - - ${sharedMemorySnippet} - fn getOffset(outputIndex : i32) -> i32 { - let outputCoords = getCoordsFromIndex(outputIndex); - let offset = ${this.outputShape.length === 1 ? "outputCoords" : "outputCoords[0]"} * uniforms.reduceSize; - return offset; - } - ${getMainHeaderAndGlobalIndexString()} - let outputIndex = index / i32(workGroupSizeX); - let offset = getOffset(outputIndex); - var bestValue = ${initValue}; - let Length = uniforms.reduceSize; - let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX); - for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size; - k = k + i32(workGroupSizeX)) { - let candidate = f32(x[offset + k]); - ${reduceOp} - } - xBestValues[localId.x] = bestValue; - workgroupBarrier(); - - var reduceSize = min(u32(Length), workGroupSizeX); - for (var currentSize = reduceSize / 2u; reduceSize > 1u; - currentSize = reduceSize / 2u) { - let interval = DIV_CEIL(reduceSize, 2u); - if (localId.x < currentSize) { - let candidate = xBestValues[localId.x + interval]; - ${reduceOp} - xBestValues[localId.x] = bestValue; - } - reduceSize = interval; - workgroupBarrier(); - } - - if (localId.x == 0u && outputIndex < uniforms.size) { - ${outputSnippet} - } - } - `; - return userCode; - } -}; -function reduce2(x, axis, keepDims, reduceType, backend2) { - const xRank = x.shape.length; - const toDispose = []; - const origAxes = util_exports.parseAxisParam(axis, x.shape); - let axes = origAxes; - const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank); - let input2 = x; - if (permutedAxes != null) { - input2 = transpose6({ inputs: { x }, attrs: { perm: permutedAxes }, backend: backend2 }); - axes = backend_util_exports.getInnerMostAxes(axes.length, xRank); - toDispose.push(input2); - } - backend_util_exports.assertAxesAreInnerMostDims(reduceType, axes, xRank); - const [reduceOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes); - let resOutShape = reduceOutShape; - if (keepDims) { - resOutShape = backend_util_exports.expandShapeToKeepDim(reduceOutShape, origAxes); - } - let res; - if ((reduceType === "max" || reduceType === "prod") && backend2.shouldExecuteOnCPU([input2])) { - const xVals = backend2.tensorMap.get(input2.dataId).values; - switch (reduceType) { - case "max": - const outValues = maxImplCPU2(xVals, util_exports.sizeFromShape(reduceShape), resOutShape, x.dtype); - res = backend2.makeTensorInfo(resOutShape, x.dtype, outValues); - break; - case "prod": - const { outVals, outShape, outDtype } = prodImplCPU2(input2.shape, input2.dtype, xVals, axes); - res = backend2.makeTensorInfo(outShape, outDtype, outVals); - break; - default: - throw new Error(`${reduceType} CPU implementation is not yet supported.`); - } - } else { - const inSize = util_exports.sizeFromShape(reduceShape); - const xSize = util_exports.sizeFromShape(input2.shape); - const batchSize = xSize / inSize; - const reduceInfo = { windowSize: inSize, inSize, batchSize, outSize: 1 }; - const dtype = reduceType === "mean" ? "float32" : sumOutType(x.dtype); - const uniformData = [ - { type: "int32", data: [inSize] } - ]; - const program = new ReduceProgram2(reduceInfo, reduceType); - const reduced = backend2.runWebGPUProgram(program, [input2], dtype, uniformData); - toDispose.push(reduced); - res = reshape6({ inputs: { x: reduced }, attrs: { shape: resOutShape }, backend: backend2 }); - } - toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); - return res; -} function sum6(args) { const { inputs, backend: backend2, attrs } = args; const { x } = inputs; @@ -71299,7 +70881,7 @@ function einsum4(args) { if (backend_util_exports.isIdentityPermutation(perm)) { x = tensors[idTerm]; } else { - x = transpose6({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } }); + x = transpose5({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } }); tensorsToDispose.push(x); } const targetShape = x.shape.slice(); @@ -71351,13 +70933,13 @@ var eluConfig4 = { backendName: "webgpu", kernelFunc: elu6 }; -var equal5 = binaryKernelFunc3({ opType: BinaryOpType.EQUAL, dtype: "bool", cpuKernelImpl: equalImplCPU2 }); +var equal4 = binaryKernelFunc3({ opType: BinaryOpType.EQUAL, dtype: "bool", cpuKernelImpl: equalImplCPU2 }); var equalConfig4 = { kernelName: Equal, backendName: "webgpu", - kernelFunc: equal5 + kernelFunc: equal4 }; -var exp5 = unaryKernelFunc3({ +var exp4 = unaryKernelFunc3({ opType: UnaryOpType.EXP, cpuKernelImpl: expImplCPU2, dtype: "float32" @@ -71365,7 +70947,7 @@ var exp5 = unaryKernelFunc3({ var expConfig4 = { kernelName: Exp, backendName: "webgpu", - kernelFunc: exp5 + kernelFunc: exp4 }; function expandDims6(args) { const { inputs, attrs, backend: backend2 } = args; @@ -71386,11 +70968,11 @@ var expandDimsConfig4 = { backendName: "webgpu", kernelFunc: expandDims6 }; -var expm15 = unaryKernelFunc3({ opType: UnaryOpType.EXPM1, cpuKernelImpl: expm1ImplCPU2 }); +var expm14 = unaryKernelFunc3({ opType: UnaryOpType.EXPM1, cpuKernelImpl: expm1ImplCPU2 }); var expm1Config3 = { kernelName: Expm1, backendName: "webgpu", - kernelFunc: expm15 + kernelFunc: expm14 }; var FlipLeftRightProgram2 = class { constructor(imageShape) { @@ -71405,7 +70987,7 @@ var FlipLeftRightProgram2 = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let coordX = uniforms.xShape[2] - coords[2] - 1; @@ -71428,11 +71010,11 @@ var flipLeftRightConfig4 = { return output; } }; -var floor5 = unaryKernelFunc3({ opType: UnaryOpType.FLOOR, cpuKernelImpl: floorImplCPU2 }); +var floor4 = unaryKernelFunc3({ opType: UnaryOpType.FLOOR, cpuKernelImpl: floorImplCPU2 }); var floorConfig4 = { kernelName: Floor, backendName: "webgpu", - kernelFunc: floor5 + kernelFunc: floor4 }; var floorDiv4 = binaryKernelFunc3({ opType: BinaryOpType.INT_DIV, dtype: "int32" }); var floorDivConfig4 = { @@ -71457,7 +71039,7 @@ var FromPixelsProgram2 = class { const textureType = this.importVideo ? "texture_external" : "texture_2d"; return ` @binding(1) @group(0) var src: ${textureType}; - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { let flatIndex = index * uniforms.numChannels; if (flatIndex < uniforms.size) { let coords = getCoordsFromIndex(flatIndex); @@ -71476,6 +71058,7 @@ var fromPixelsConfig2 = { kernelFunc: fromPixels3 }; var fromPixels2DContext3; +var willReadFrequently2 = env().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU"); var videoToTextureMap = /* @__PURE__ */ new Map(); function fromPixels3(args) { const { inputs, backend: backend2, attrs } = args; @@ -71512,8 +71095,10 @@ function fromPixels3(args) { }; } else { if (isVideoOrImage) { - if (fromPixels2DContext3 == null) { - fromPixels2DContext3 = document.createElement("canvas").getContext("2d"); + const newWillReadFrequently = env().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU"); + if (fromPixels2DContext3 == null || newWillReadFrequently !== willReadFrequently2) { + willReadFrequently2 = newWillReadFrequently; + fromPixels2DContext3 = document.createElement("canvas").getContext("2d", { willReadFrequently: willReadFrequently2 }); } fromPixels2DContext3.canvas.width = width; fromPixels2DContext3.canvas.height = height; @@ -71590,7 +71175,7 @@ var BatchNormProgram2 = class { scaleSnippet = "getScaleByOutputIndex(index)"; } const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let xValue = getXByOutputIndex(index); @@ -71716,7 +71301,7 @@ var GatherNDProgram2 = class { strideString = "uniforms.strides"; } const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); var flattenIndex = 0; @@ -71781,7 +71366,7 @@ var GatherProgram2 = class { getUserCode() { const sourceCoords = getSourceCoords4(this.aShape); const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let resRC = getCoordsFromIndex(index); let indexZ = i32(getIndices(resRC.x, resRC.z)); @@ -71861,7 +71446,7 @@ var gatherV2Config4 = { backendName: "webgpu", kernelFunc: gatherV24 }; -var greater6 = binaryKernelFunc3({ +var greater5 = binaryKernelFunc3({ opType: BinaryOpType.GREATER, cpuKernelImpl: greaterImplCPU2, dtype: "bool" @@ -71869,9 +71454,9 @@ var greater6 = binaryKernelFunc3({ var greaterConfig4 = { kernelName: Greater, backendName: "webgpu", - kernelFunc: greater6 + kernelFunc: greater5 }; -var greaterEqual5 = binaryKernelFunc3({ +var greaterEqual4 = binaryKernelFunc3({ opType: BinaryOpType.GREATER_EQUAL, dtype: "bool", cpuKernelImpl: greaterEqualImplCPU2 @@ -71879,7 +71464,13 @@ var greaterEqual5 = binaryKernelFunc3({ var greaterEqualConfig4 = { kernelName: GreaterEqual, backendName: "webgpu", - kernelFunc: greaterEqual5 + kernelFunc: greaterEqual4 +}; +var isNaN5 = unaryKernelFunc3({ opType: UnaryOpType.IS_NAN, dtype: "bool" }); +var isNaNConfig3 = { + kernelName: IsNan, + backendName: "webgpu", + kernelFunc: isNaN5 }; function leakyRelu5(args) { const { inputs, backend: backend2, attrs } = args; @@ -71895,13 +71486,13 @@ var leakyReluConfig4 = { backendName: "webgpu", kernelFunc: leakyRelu5 }; -var less6 = binaryKernelFunc3({ opType: BinaryOpType.LESS, dtype: "bool", cpuKernelImpl: lessImplCPU2 }); +var less5 = binaryKernelFunc3({ opType: BinaryOpType.LESS, dtype: "bool", cpuKernelImpl: lessImplCPU2 }); var lessConfig4 = { kernelName: Less, backendName: "webgpu", - kernelFunc: less6 + kernelFunc: less5 }; -var lessEqual5 = binaryKernelFunc3({ +var lessEqual4 = binaryKernelFunc3({ opType: BinaryOpType.LESS_EQUAL, dtype: "bool", cpuKernelImpl: lessEqualImplCPU2 @@ -71909,13 +71500,13 @@ var lessEqual5 = binaryKernelFunc3({ var lessEqualConfig4 = { kernelName: LessEqual, backendName: "webgpu", - kernelFunc: lessEqual5 + kernelFunc: lessEqual4 }; -var log6 = unaryKernelFunc3({ opType: UnaryOpType.LOG, cpuKernelImpl: logImplCPU2 }); +var log5 = unaryKernelFunc3({ opType: UnaryOpType.LOG, cpuKernelImpl: logImplCPU2 }); var logConfig4 = { kernelName: Log, backendName: "webgpu", - kernelFunc: log6 + kernelFunc: log5 }; var logicalAnd4 = binaryKernelFunc3({ opType: BinaryOpType.LOGICAL_AND, dtype: "bool" }); var logicalAndConfig4 = { @@ -71929,25 +71520,14 @@ var logicalNotConfig4 = { backendName: "webgpu", kernelFunc: logicalNot4 }; -function max6(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { reductionIndices, keepDims } = attrs; - return reduce2(x, reductionIndices, keepDims, "max", backend2); -} -var maxConfig4 = { - kernelName: Max, - backendName: "webgpu", - kernelFunc: max6 -}; -var maximum6 = binaryKernelFunc3({ +var maximum5 = binaryKernelFunc3({ opType: BinaryOpType.MAX, cpuKernelImpl: maximumImplCPU2 }); var maximumConfig4 = { kernelName: Maximum, backendName: "webgpu", - kernelFunc: maximum6 + kernelFunc: maximum5 }; function maxPool5(args) { const { inputs, backend: backend2, attrs } = args; @@ -71955,42 +71535,13 @@ function maxPool5(args) { const { filterSize, strides: strides2, pad: pad3, dimRoundingMode } = attrs; const dilations = 1; const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides2, dilations, pad3, dimRoundingMode); - let program; - const dimensions = []; - if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1) { - if (util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) { - return identity5({ inputs: { x }, backend: backend2 }); - } - program = new PoolWithFilterSizeEqualsOneProgram(convInfo); - dimensions.push({ type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }); - } else { - program = new Pool2DProgram2(convInfo, "max"); - dimensions.push({ type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, { type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, { - type: "int32", - data: [convInfo.dilationHeight, convInfo.dilationWidth] - }, { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] }, { - type: "int32", - data: [convInfo.effectiveFilterHeight, convInfo.effectiveFilterWidth] - }); - } - return backend2.runWebGPUProgram(program, [x], x.dtype, dimensions); + return poolImpl(x, convInfo, "max", backend2); } var maxPoolConfig4 = { kernelName: MaxPool, backendName: "webgpu", kernelFunc: maxPool5 }; -function mean4(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { keepDims, axis } = attrs; - return reduce2(x, axis, keepDims, "mean", backend2); -} -var meanConfig4 = { - kernelName: Mean, - backendName: "webgpu", - kernelFunc: mean4 -}; function min6(args) { const { inputs, backend: backend2, attrs } = args; const { x } = inputs; @@ -72002,14 +71553,14 @@ var minConfig4 = { backendName: "webgpu", kernelFunc: min6 }; -var minimum6 = binaryKernelFunc3({ +var minimum5 = binaryKernelFunc3({ opType: BinaryOpType.MIN, cpuKernelImpl: minimumImplCPU2 }); var minimumConfig4 = { kernelName: Minimum, backendName: "webgpu", - kernelFunc: minimum6 + kernelFunc: minimum5 }; var MirrorPadProgram2 = class { constructor(xShape, paddings, mode) { @@ -72037,7 +71588,7 @@ var MirrorPadProgram2 = class { const dtype = getCoordsDataType2(rank); const unpackedCoords = rank > 1 ? ["coords[0]", "coords[1]", "coords[2]", "coords[3]"].slice(0, rank) : "coords"; return ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let start = ${dtype}(${start}); let end = ${dtype}(${end}); @@ -72128,7 +71679,7 @@ function zerosLike5(args) { const { inputs, backend: backend2 } = args; const { x } = inputs; if (x.dtype === "complex64") { - const realPart = real5({ inputs: { input: x }, backend: backend2 }); + const realPart = real4({ inputs: { input: x }, backend: backend2 }); const r2 = zerosLike5({ inputs: { x: realPart }, backend: backend2 }); const imagPart = imag4({ inputs: { input: x }, backend: backend2 }); const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 }); @@ -72160,7 +71711,7 @@ function onesLike5(args) { if (x.dtype === "string") { throw new Error("onesLike is not supported under string dtype"); } else if (x.dtype === "complex64") { - const realPart = real5({ inputs: { input: x }, backend: backend2 }); + const realPart = real4({ inputs: { input: x }, backend: backend2 }); const r2 = onesLike5({ inputs: { x: realPart }, backend: backend2 }); const imagPart = imag4({ inputs: { input: x }, backend: backend2 }); const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 }); @@ -72232,7 +71783,7 @@ var PadProgram2 = class { const rightPadCondition = rank > 1 ? `any(outC >= end)` : `outC >= end`; const unpackedCoords = rank > 1 ? ["coords[0]", "coords[1]", "coords[2]", "coords[3]"].slice(0, rank) : "coords"; const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let start = ${startValue}; let end = ${endValue}; @@ -72321,6 +71872,12 @@ var realDivConfig4 = { backendName: "webgpu", kernelFunc: realDiv2 }; +var reciprocal4 = unaryKernelFunc3({ opType: UnaryOpType.RECIPROCAL }); +var reciprocalConfig3 = { + kernelName: Reciprocal, + backendName: "webgpu", + kernelFunc: reciprocal4 +}; var relu4 = unaryKernelFunc3({ opType: UnaryOpType.RELU }); var reluConfig4 = { kernelName: Relu, @@ -72346,7 +71903,7 @@ var ResizeBilinearProgram2 = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let b = coords[0]; @@ -72432,7 +71989,7 @@ var ResizeNearestNeighborProgram2 = class { sourceFracIndexRC = `vec2(rc) * effectiveInputOverOutputRatioRC`; } const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let b = coords[0]; @@ -72511,8 +72068,7 @@ var RotateProgram2 = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let coordXFloat = (f32(coords[2]) - uniforms.centerX) * @@ -72559,13 +72115,13 @@ var rotateWithOffsetConfig4 = { return output; } }; -var rsqrt5 = unaryKernelFunc3({ opType: UnaryOpType.RSQRT, cpuKernelImpl: rsqrtImplCPU2 }); +var rsqrt4 = unaryKernelFunc3({ opType: UnaryOpType.RSQRT, cpuKernelImpl: rsqrtImplCPU2 }); var rsqrtConfig4 = { kernelName: Rsqrt, backendName: "webgpu", - kernelFunc: rsqrt5 + kernelFunc: rsqrt4 }; -var ScatterOptimizedProgram = class { +var ScatterProgram2 = class { constructor(flattenXShape, sliceDim, indicesRank, updatesRank, strides2, shape, outputDtype, sumDupeIndices = true) { this.variableNames = ["updates", "indices"]; this.workGroupSize = [64, 1, 1]; @@ -72643,8 +72199,7 @@ var ScatterOptimizedProgram = class { const userCode = ` ${getUpdatesCoordsFromFlatIndex} - ${getMainHeaderAndGlobalIndexString()} - + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getUpdatesCoordsFromFlatIndex(index); var flattenedIndex = 0; @@ -72681,7 +72236,7 @@ function scatterNd4(args) { { type: "int32", data: strides2 }, { type: "int32", data: [size2] } ]; - const program = new ScatterOptimizedProgram(flattenX.shape, sliceRank, flattenIndices.shape.length, flattenX.shape.length, strides2, flattenShape, type); + const program = new ScatterProgram2(flattenX.shape, sliceRank, flattenIndices.shape.length, flattenX.shape.length, strides2, flattenShape, type); const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndices], type, uniformData, output); const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape } }); backend2.disposeData(flattenIndices.dataId); @@ -72729,7 +72284,7 @@ var SelectProgram2 = class { abCoords = abCoordVars.join(); } const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let resRC = getCoordsFromIndex(index); let cVal = getC(${cCoords}); @@ -72744,7 +72299,7 @@ var SelectProgram2 = class { return userCode; } }; -function select6(args) { +function select5(args) { const { inputs, backend: backend2 } = args; const { condition, t: t2, e: e2 } = inputs; const program = new SelectProgram2(condition.shape.length, t2.shape, t2.shape.length); @@ -72753,13 +72308,13 @@ function select6(args) { var selectConfig4 = { kernelName: Select, backendName: "webgpu", - kernelFunc: select6 + kernelFunc: select5 }; -var sigmoid6 = unaryKernelFunc3({ opType: UnaryOpType.SIGMOID }); +var sigmoid5 = unaryKernelFunc3({ opType: UnaryOpType.SIGMOID }); var sigmoidConfig4 = { kernelName: Sigmoid, backendName: "webgpu", - kernelFunc: sigmoid6 + kernelFunc: sigmoid5 }; var sin4 = unaryKernelFunc3({ opType: UnaryOpType.SIN }); var sinConfig4 = { @@ -72773,11 +72328,11 @@ var sinhConfig3 = { backendName: "webgpu", kernelFunc: sinh4 }; -var sub5 = binaryKernelFunc3({ opType: BinaryOpType.SUB, cpuKernelImpl: subImplCPU2, supportsComplex: true }); +var sub4 = binaryKernelFunc3({ opType: BinaryOpType.SUB, cpuKernelImpl: subImplCPU2, supportsComplex: true }); var subConfig4 = { kernelName: Sub, backendName: "webgpu", - kernelFunc: sub5 + kernelFunc: sub4 }; function softmax6(args) { const { inputs, backend: backend2, attrs } = args; @@ -72791,8 +72346,8 @@ function softmax6(args) { }); const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes); const maxLogitsReshaped = reshape6({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } }); - const a = sub5({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 }); - const b = exp5({ inputs: { x: a }, backend: backend2 }); + const a = sub4({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 }); + const b = exp4({ inputs: { x: a }, backend: backend2 }); const sumExp = sum6({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } }); const sumExpReshaped = reshape6({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } }); const res = realDiv2({ inputs: { a: b, b: sumExpReshaped }, backend: backend2 }); @@ -72830,7 +72385,7 @@ var spaceToBatchND5 = (args) => { const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false); const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false); const reshapedPaddedX = reshape6({ inputs: { x: paddedX }, backend: backend2, attrs: { shape: reshapedPaddedShape } }); - const paddedXT = transpose6({ + const paddedXT = transpose5({ inputs: { x: reshapedPaddedX }, backend: backend2, attrs: { perm: permutedReshapedPaddedPermutation } @@ -72865,7 +72420,7 @@ var TileProgram2 = class { getUserCode() { const sourceCoords = getSourceCoords5(this.rank, "uniforms."); const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let resRC = getCoordsFromIndex(index); setOutputAtIndex(index, getA(${sourceCoords})); @@ -72952,17 +72507,17 @@ function sparseToDense4(args) { break; case 1: if (true) { - const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides2, flattenShape, type, sumDupeIndices); + const program = new ScatterProgram2([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides2, flattenShape, type, sumDupeIndices); backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues); } break; default: if (true) { - const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, zero.shape.length, strides2, flattenShape, type, sumDupeIndices); + const program = new ScatterProgram2([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, zero.shape.length, strides2, flattenShape, type, sumDupeIndices); backend2.runWebGPUProgram(program, [zero, $sparseIndices], type, uniformData, $denseValues); } { - const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides2, flattenShape, type); + const program = new ScatterProgram2([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides2, flattenShape, type); backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues); } } @@ -73001,11 +72556,11 @@ var splitVConfig4 = { backendName: "webgpu", kernelFunc: splitV4 }; -var sqrt5 = unaryKernelFunc3({ opType: UnaryOpType.SQRT }); +var sqrt4 = unaryKernelFunc3({ opType: UnaryOpType.SQRT }); var sqrtConfig4 = { kernelName: Sqrt, backendName: "webgpu", - kernelFunc: sqrt5 + kernelFunc: sqrt4 }; var squareConfig4 = { kernelName: Square, @@ -73017,13 +72572,13 @@ var squareConfig4 = { return webGPUBackend.runWebGPUProgram(program, [x], x.dtype); } }; -var squaredDifference5 = binaryKernelFunc3({ +var squaredDifference4 = binaryKernelFunc3({ opType: BinaryOpType.SQUARED_DIFFERENCE }); var squaredDifferenceConfig4 = { kernelName: SquaredDifference, backendName: "webgpu", - kernelFunc: squaredDifference5 + kernelFunc: squaredDifference4 }; var StridedSliceProgram2 = class { constructor(destSize) { @@ -73051,7 +72606,7 @@ var StridedSliceProgram2 = class { }).join(","); } const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); setOutputAtIndex(index, getX(${newCoords})); @@ -73134,7 +72689,7 @@ var SwapProgram2 = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let outC = getCoordsFromIndex(index); let batch = outC[0]; @@ -73217,7 +72772,7 @@ var MergeProgram2 = class { } getUserCode() { const userCode = ` - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let outC = getCoordsFromIndex(index); let batch = outC[0]; @@ -73460,7 +73015,7 @@ var TransformProgram2 = class { return outputValue; } - ${getMainHeaderAndGlobalIndexString()} + ${getMainHeaderString("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); var outputValue : f32; @@ -73604,6 +73159,7 @@ var kernelConfigs4 = [ addNConfig4, argMaxConfig4, argMinConfig3, + atan2Config3, avgPoolConfig4, batchMatMulConfig4, batchToSpaceNDConfig4, @@ -73641,6 +73197,7 @@ var kernelConfigs4 = [ greaterEqualConfig4, identityConfig4, imagConfig3, + isNaNConfig3, leakyReluConfig4, lessConfig4, lessEqualConfig4, @@ -73668,6 +73225,7 @@ var kernelConfigs4 = [ rangeConfig4, realConfig3, realDivConfig4, + reciprocalConfig3, reluConfig4, relu6Config4, reshapeConfig4, @@ -73703,762 +73261,6 @@ var kernelConfigs4 = [ for (const kernelConfig of kernelConfigs4) { registerKernel(kernelConfig); } -var BufferManager = class { - constructor(device) { - this.device = device; - this.numUsedBuffers = 0; - this.numFreeBuffers = 0; - this.freeBuffers = /* @__PURE__ */ new Map(); - this.usedBuffers = /* @__PURE__ */ new Map(); - this.numBytesUsed = 0; - this.numBytesAllocated = 0; - } - acquireUploadBuffer(size2, usage) { - return this.acquireBuffer(size2, usage, true); - } - acquireBuffer(size2, usage, mappedAtCreation = false) { - const key = getBufferKey(size2, usage); - if (!this.freeBuffers.has(key)) { - this.freeBuffers.set(key, []); - } - if (!this.usedBuffers.has(key)) { - this.usedBuffers.set(key, []); - } - this.numBytesUsed += size2; - this.numUsedBuffers++; - if (this.freeBuffers.get(key).length > 0) { - this.numFreeBuffers--; - const newBuffer2 = this.freeBuffers.get(key).shift(); - this.usedBuffers.get(key).push(newBuffer2); - return newBuffer2; - } - this.numBytesAllocated += size2; - const newBuffer = this.device.createBuffer({ size: size2, usage, mappedAtCreation }); - this.usedBuffers.get(key).push(newBuffer); - return newBuffer; - } - releaseBuffer(buffer2, size2, usage) { - if (this.freeBuffers.size === 0) { - return; - } - const key = getBufferKey(size2, usage); - if (!this.freeBuffers.has(key)) { - this.freeBuffers.set(key, []); - } - this.freeBuffers.get(key).push(buffer2); - this.numFreeBuffers++; - this.numUsedBuffers--; - const bufferList = this.usedBuffers.get(key); - const bufferIndex = bufferList.indexOf(buffer2); - if (bufferIndex < 0) { - throw new Error("Cannot release a buffer that was never provided by this buffer manager"); - } - bufferList.splice(bufferIndex, 1); - this.numBytesUsed -= size2; - } - releaseUploadBuffer(buffer2, size2, usage) { - buffer2.mapAsync(GPUMapMode.WRITE).then(() => { - this.releaseBuffer(buffer2, size2, usage); - }, (err) => { - }); - } - getNumUsedBuffers() { - return this.numUsedBuffers; - } - getNumFreeBuffers() { - return this.numFreeBuffers; - } - dispose() { - this.freeBuffers.forEach((buffers, key) => { - buffers.forEach((buffer2) => { - buffer2.destroy(); - }); - }); - this.usedBuffers.forEach((buffers, key) => { - buffers.forEach((buffer2) => { - buffer2.destroy(); - }); - }); - this.freeBuffers = /* @__PURE__ */ new Map(); - this.usedBuffers = /* @__PURE__ */ new Map(); - this.numUsedBuffers = 0; - this.numFreeBuffers = 0; - this.numBytesUsed = 0; - this.numBytesAllocated = 0; - } -}; -function getBufferKey(size2, usage) { - return `${size2}_${usage}`; -} -var TextureManager2 = class { - constructor(device) { - this.device = device; - this.numUsedTextures = 0; - this.numFreeTextures = 0; - this.freeTextures = /* @__PURE__ */ new Map(); - this.usedTextures = /* @__PURE__ */ new Map(); - this.numBytesUsed = 0; - this.numBytesAllocated = 0; - } - acquireTexture(width, height, format, usage) { - const bytesPerElement2 = getBytesPerElement(format); - const byteSize = width * height * bytesPerElement2; - const key = getTextureKey(width, height, format, usage); - if (!this.freeTextures.has(key)) { - this.freeTextures.set(key, []); - } - if (!this.usedTextures.has(key)) { - this.usedTextures.set(key, []); - } - this.numBytesUsed += byteSize; - this.numUsedTextures++; - if (this.freeTextures.get(key).length > 0) { - this.numFreeTextures--; - const newTexture2 = this.freeTextures.get(key).shift(); - this.usedTextures.get(key).push(newTexture2); - return newTexture2; - } - this.numBytesAllocated += byteSize; - const newTexture = this.device.createTexture({ - size: [width, height], - format, - usage - }); - this.usedTextures.get(key).push(newTexture); - return newTexture; - } - releaseTexture(texture, width, height, format, usage) { - if (this.freeTextures.size === 0) { - return; - } - const key = getTextureKey(width, height, format, usage); - if (!this.freeTextures.has(key)) { - this.freeTextures.set(key, []); - } - this.freeTextures.get(key).push(texture); - this.numFreeTextures++; - this.numUsedTextures--; - const textureList = this.usedTextures.get(key); - const textureIndex = textureList.indexOf(texture); - if (textureIndex < 0) { - throw new Error("Cannot release a texture that was never provided by this texture manager"); - } - textureList.splice(textureIndex, 1); - const bytesPerElement2 = getBytesPerElement(format); - const byteSize = width * height * bytesPerElement2; - this.numBytesUsed -= byteSize; - } - getNumUsedTextures() { - return this.numUsedTextures; - } - getNumFreeTextures() { - return this.numFreeTextures; - } - dispose() { - this.freeTextures.forEach((textures, key) => { - textures.forEach((texture) => { - texture.destroy(); - }); - }); - this.usedTextures.forEach((textures, key) => { - textures.forEach((texture) => { - texture.destroy(); - }); - }); - this.freeTextures = /* @__PURE__ */ new Map(); - this.usedTextures = /* @__PURE__ */ new Map(); - this.numUsedTextures = 0; - this.numFreeTextures = 0; - this.numBytesUsed = 0; - this.numBytesAllocated = 0; - } -}; -function getTextureKey(width, height, format, usage) { - return `${width}_${height}_${format}_${usage}`; -} -function getBytesPerElement(format) { - if (format === "rgba8unorm") { - return 16; - } else { - throw new Error(`${format} is not supported!`); - } -} -var CPU_HANDOFF_SIZE_THRESHOLD2 = env().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"); -var reshapeDispatch = (device, program) => { - const MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE = device.limits.maxComputeWorkgroupsPerDimension; - const layout = program["dispatchLayout"]; - const dispatch = program["dispatch"]; - if (dispatch.every((d) => d <= MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE)) { - return dispatch; - } - util_exports.assert(dispatch[0] > MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE && layout.y === void 0 && layout.z === void 0, () => "Dispatch size exceeds WebGPU limits in Y or Z dimension."); - let dispatchAverage = Math.ceil(Math.sqrt(dispatch[0])); - if (dispatchAverage > MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE) { - dispatchAverage = Math.ceil(Math.cbrt(dispatch[0])); - util_exports.assert(dispatchAverage <= MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE, () => "Total dispatch size exceeds WebGPU maximum."); - return [dispatchAverage, dispatchAverage, dispatchAverage]; - } else { - return [dispatchAverage, dispatchAverage, 1]; - } -}; -var WebGPUBackend = class extends KernelBackend { - constructor(device, supportTimeQuery = false) { - super(); - this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet(); - this.dispatchNumberInEncoder = 0; - this.disposed = false; - this.downloadWaitMs = 0; - this.tensorDataPendingDisposal = []; - this.stagingPendingDisposal = []; - this.uniformPendingDisposal = []; - this.uploadWaitMs = 0; - if (!isWebGPUSupported()) { - throw new Error("WebGPU is not supported on this device"); - } - this.pipelineCache = {}; - this.device = device; - this.queue = device.queue; - this.currentCommandEncoder = null; - this.currentComputePass = null; - this.supportTimeQuery = supportTimeQuery; - this.bufferManager = new BufferManager(this.device); - this.textureManager = new TextureManager2(this.device); - this.tensorMap = new DataStorage(this, engine()); - if (this.supportTimeQuery) { - this.querySet = this.device.createQuerySet({ - type: "timestamp", - count: 2 - }); - } - if (env().getBool("WEBGPU_USE_PROFILE_TOOL")) { - this.dummyCanvas = document.createElement("canvas"); - this.dummyCanvas.width = 1; - this.dummyCanvas.height = 1; - this.dummyContext = this.dummyCanvas.getContext("webgpu"); - this.dummyContext.configure({ - device, - format: "bgra8unorm" - }); - document.body.appendChild(this.dummyCanvas); - } - } - nextDataId() { - return WebGPUBackend.nextDataId++; - } - floatPrecision() { - return 32; - } - defaultGpuBufferUsage() { - return GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST; - } - disposeData(dataId, force = false) { - if (this.tensorDataPendingDisposal.indexOf(dataId) >= 0) { - return false; - } - if (!this.tensorMap.has(dataId)) { - return true; - } - const tensorData = this.tensorMap.get(dataId); - this.decRef(dataId); - if (!force && tensorData.refCount > 0) { - return false; - } - if (this.commandQueueOwnedIds.has(dataId)) { - this.tensorDataPendingDisposal.push(dataId); - return false; - } - const { complexTensorInfos } = this.tensorMap.get(dataId); - if (complexTensorInfos != null) { - this.disposeData(complexTensorInfos.real.dataId, force); - this.disposeData(complexTensorInfos.imag.dataId, force); - } - this.releaseResource(dataId); - this.tensorMap.delete(dataId); - return true; - } - memory() { - return { - numBytesInGPU: this.bufferManager.numBytesUsed, - numBytesAllocatedInGPU: this.bufferManager.numBytesAllocated, - unreliable: false - }; - } - releaseResource(dataId) { - const tensorData = this.tensorMap.get(dataId); - if (!tensorData || !tensorData.resourceInfo) { - return; - } - if ("texture" in tensorData.resourceInfo) { - const textureInfo = tensorData.resourceInfo; - if (textureInfo.texture instanceof GPUTexture) { - this.textureManager.releaseTexture(textureInfo.texture, textureInfo.width, textureInfo.height, textureInfo.format, textureInfo.usage); - } - textureInfo.texture = null; - } else { - const bufferInfo = tensorData.resourceInfo; - this.bufferManager.releaseBuffer(bufferInfo.buffer, bufferInfo.size, bufferInfo.usage); - bufferInfo.buffer = null; - } - tensorData.resourceInfo = null; - } - refCount(dataId) { - if (this.tensorMap.has(dataId)) { - const tensorData = this.tensorMap.get(dataId); - return tensorData.refCount; - } - return 0; - } - incRef(dataId) { - const tensorData = this.tensorMap.get(dataId); - tensorData.refCount++; - } - decRef(dataId) { - if (this.tensorMap.has(dataId)) { - const tensorData = this.tensorMap.get(dataId); - tensorData.refCount--; - } - } - write(values, shape, dtype) { - if (dtype === "complex64" && values != null) { - throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`); - } - const dataId = { id: this.nextDataId() }; - this.tensorMap.set(dataId, { dtype, shape, values, refCount: 1 }); - return dataId; - } - move(dataId, values, shape, dtype, refCount) { - if (dtype === "complex64") { - throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`); - } - this.tensorMap.set(dataId, { dtype, shape, values, refCount }); - } - submitQueue() { - this.ensureComputePassEnded(); - this.queue.submit([this.currentCommandEncoder.finish()]); - this.currentCommandEncoder = null; - this.dispatchNumberInEncoder = 0; - this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet(); - this.tensorDataPendingDisposal.forEach((d) => { - this.releaseResource(d); - this.tensorMap.delete(d); - }); - this.uniformPendingDisposal.forEach((d) => this.bufferManager.releaseBuffer(d.buffer, d.size, d.usage)); - this.stagingPendingDisposal.forEach((d) => this.bufferManager.releaseUploadBuffer(d.buffer, d.size, d.usage)); - this.tensorDataPendingDisposal = []; - this.uniformPendingDisposal = []; - this.stagingPendingDisposal = []; - } - ensureCommandEncoderReady() { - if (!this.currentCommandEncoder) { - this.currentCommandEncoder = this.device.createCommandEncoder(); - } - } - ensureComputePassEnded() { - if (this.currentComputePass) { - this.currentComputePass.end(); - this.currentComputePass = null; - } - } - getComputePass() { - if (!this.currentComputePass) { - this.currentComputePass = this.currentCommandEncoder.beginComputePass(); - } - return this.currentComputePass; - } - async getBufferData(buffer2, size2) { - const staging = this.bufferManager.acquireBuffer(size2, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ); - this.ensureCommandEncoderReady(); - this.ensureComputePassEnded(); - this.currentCommandEncoder.copyBufferToBuffer(buffer2, 0, staging, 0, size2); - this.submitQueue(); - await staging.mapAsync(GPUMapMode.READ); - const values = staging.getMappedRange().slice(0); - staging.unmap(); - if (staging != null) { - this.bufferManager.releaseBuffer(staging, size2, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ); - } - if (env().getBool("WEBGPU_USE_PROFILE_TOOL")) { - util_exports.assert(this.dummyContext !== void 0, () => `Fail to get context for profiling tool`); - this.dummyContext.getCurrentTexture(); - } - return values; - } - convertAndCacheOnCPU(dataId, data) { - const tensorData = this.tensorMap.get(dataId); - this.releaseResource(dataId); - tensorData.values = data; - return tensorData.values; - } - readSync(dataId) { - const tensorData = this.tensorMap.get(dataId); - const { values } = tensorData; - if (values == null) { - throw new Error("WebGPU readSync is only available for CPU-resident tensors."); - } - return values; - } - async read(dataId) { - if (!this.tensorMap.has(dataId)) { - throw new Error(`Tensor ${dataId} was not registered!`); - } - const tensorData = this.tensorMap.get(dataId); - const { values } = tensorData; - if (values != null) { - return this.convertAndCacheOnCPU(dataId, values); - } - let vals; - if (tensorData.dtype === "complex64") { - const ps = await Promise.all([ - this.read(tensorData.complexTensorInfos.real.dataId), - this.read(tensorData.complexTensorInfos.imag.dataId) - ]); - const realValues = ps[0]; - const imagValues = ps[1]; - vals = backend_util_exports.mergeRealAndImagArrays(realValues, imagValues); - } else { - const bufferInfo = tensorData.resourceInfo; - const data = await this.getBufferData(bufferInfo.buffer, bufferInfo.size); - vals = ArrayBufferToTypedArray(data, tensorData.dtype); - } - this.convertAndCacheOnCPU(dataId, vals); - return vals; - } - readToGPU(dataId) { - const srcTensorData = this.tensorMap.get(dataId); - const { values, dtype, shape, resourceInfo } = srcTensorData; - if (dtype === "complex64") { - throw new Error("Does not support reading buffer for complex64 dtype."); - } - if (resourceInfo == null) { - if (values != null) { - throw new Error("Data is not on GPU but on CPU."); - } else { - throw new Error("There is no data on GPU or CPU."); - } - } - const size2 = resourceInfo.size; - const buffer2 = this.bufferManager.acquireBuffer(size2, resourceInfo.usage); - this.ensureCommandEncoderReady(); - this.ensureComputePassEnded(); - this.currentCommandEncoder.copyBufferToBuffer(resourceInfo.buffer, 0, buffer2, 0, size2); - this.submitQueue(); - const tensorInfo = this.makeTensorInfo(shape, dtype); - const tensorRef = engine().makeTensorFromTensorInfo(tensorInfo); - const tensorData = this.tensorMap.get(tensorInfo.dataId); - tensorData.resourceInfo = { size: size2, usage: this.defaultGpuBufferUsage(), buffer: buffer2 }; - return { tensorRef, buffer: buffer2, bufSize: size2 }; - } - bufferSync(t2) { - const data = this.readSync(t2.dataId); - if (t2.dtype === "string") { - try { - const strings = data.map((d) => util_exports.decodeString(d)); - return buffer(t2.shape, t2.dtype, strings); - } catch (_a) { - throw new Error("Failed to decode encoded string bytes into utf-8"); - } - } - return buffer(t2.shape, t2.dtype, data); - } - async time(f) { - const oldActiveTimers = this.activeTimers; - const newActiveTimers = []; - let outerMostTime = false; - if (this.programTimersStack == null) { - this.programTimersStack = newActiveTimers; - outerMostTime = true; - } else { - this.activeTimers.push(newActiveTimers); - } - this.activeTimers = newActiveTimers; - f(); - const flattenedActiveTimerQueries = util_exports.flatten(this.activeTimers.map((d) => d.query)).filter((d) => d != null); - const flattenedActiveTimerNames = util_exports.flatten(this.activeTimers.map((d) => d.name)).filter((d) => d != null); - this.activeTimers = oldActiveTimers; - if (outerMostTime) { - this.programTimersStack = null; - } - const res = { - uploadWaitMs: this.uploadWaitMs, - downloadWaitMs: this.downloadWaitMs, - kernelMs: null, - wallMs: null - }; - const kernelMs = await Promise.all(flattenedActiveTimerQueries); - res["kernelMs"] = util_exports.sum(kernelMs); - res["getExtraProfileInfo"] = () => kernelMs.map((d, i2) => ({ name: flattenedActiveTimerNames[i2], ms: d })).map((d) => `${d.name}: ${d.ms}`).join(", "); - this.uploadWaitMs = 0; - this.downloadWaitMs = 0; - return res; - } - makeTensorInfo(shape, dtype, values) { - if (dtype === "string" && values != null && values.length > 0 && util_exports.isString(values[0])) { - values = values.map((d) => util_exports.encodeString(d)); - } - const dataId = this.write(values, shape, dtype); - return { dataId, shape, dtype }; - } - tensorToBinding(tensor2) { - if (!tensor2) { - return null; - } - const tensorData = this.tensorMap.get(tensor2.dataId); - if ("texture" in tensorData.resourceInfo) { - const info = tensorData.resourceInfo; - if (info.texture instanceof GPUExternalTexture) { - return info.texture; - } else { - return info.texture.createView(); - } - } - const bufferInfo = tensorData.resourceInfo; - return { offset: 0, size: bufferInfo.size, buffer: bufferInfo.buffer }; - } - async getQueryTime(query) { - if (this.supportTimeQuery) { - return this.getTimeFromQuerySet(query); - } else { - return 0; - } - } - uploadToGPU(dataId) { - const tensorData = this.tensorMap.get(dataId); - if (tensorData.resourceInfo) { - return; - } - const size2 = GPUBytesPerElement(tensorData.dtype) * util_exports.sizeFromShape(tensorData.shape); - const buffer2 = this.bufferManager.acquireBuffer(size2, this.defaultGpuBufferUsage()); - tensorData.resourceInfo = { size: size2, usage: this.defaultGpuBufferUsage(), buffer: buffer2 }; - if (tensorData.values) { - const stagingBuffer = this.bufferManager.acquireUploadBuffer(size2, GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC); - const arrayBuffer = stagingBuffer.getMappedRange(); - if (tensorData.dtype === "int32" || tensorData.dtype === "bool") { - new Int32Array(arrayBuffer).set(tensorData.values); - } else { - new Float32Array(arrayBuffer).set(tensorData.values); - } - stagingBuffer.unmap(); - this.ensureCommandEncoderReady(); - this.ensureComputePassEnded(); - this.currentCommandEncoder.copyBufferToBuffer(stagingBuffer, 0, buffer2, 0, size2); - const stagingInfo = { - size: size2, - usage: GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC, - buffer: stagingBuffer - }; - this.stagingPendingDisposal.push(stagingInfo); - } - } - makeUniforms(programUniform) { - let currentOffset = 0; - let preLength = 0; - const offsets = []; - programUniform.forEach((d) => { - if (d.data.length === 0) { - d.data = [1]; - } - let baseAlignment; - switch (d.data.length) { - case 1: - baseAlignment = 4; - break; - case 2: - baseAlignment = 8; - break; - case 3: - baseAlignment = 16; - break; - case 4: - baseAlignment = 16; - break; - case 5: - baseAlignment = 16; - break; - case 6: - baseAlignment = 16; - break; - default: - util_exports.assert(false, () => `Unsupported ${d.data.length}D shape`); - } - if (preLength === 5 || preLength === 6) { - baseAlignment = 16; - } - currentOffset = Math.ceil(currentOffset / baseAlignment) * baseAlignment; - preLength = d.data.length; - offsets.push(currentOffset); - currentOffset += d.data.length * 4; - }); - const arrayBuffer = new ArrayBuffer(currentOffset); - programUniform.forEach((d, i2) => { - const offset = offsets[i2]; - if (d.type === "int32") { - new Int32Array(arrayBuffer, offset, d.data.length).set(d.data); - } else if (d.type === "uint32") { - new Uint32Array(arrayBuffer, offset, d.data.length).set(d.data); - } else { - new Float32Array(arrayBuffer, offset, d.data.length).set(d.data); - } - }); - const uniformBuffer = this.bufferManager.acquireBuffer(currentOffset, GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM); - this.queue.writeBuffer(uniformBuffer, 0, arrayBuffer, 0, currentOffset); - const uniformInfo = { - size: currentOffset, - usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM, - buffer: uniformBuffer - }; - this.uniformPendingDisposal.push(uniformInfo); - return { offset: 0, size: currentOffset, buffer: uniformBuffer }; - } - runWebGPUProgram(program, inputs, outputDtype, programDefinedUniform, output) { - if (!output) { - output = this.makeTensorInfo(program.outputShape, outputDtype); - } - if (util_exports.sizeFromShape(output.shape) === 0) { - this.tensorMap.get(output.dataId).values = util_exports.getTypedArrayFromDType(output.dtype, 0); - return output; - } - this.uploadToGPU(output.dataId); - program.dispatch = reshapeDispatch(this.device, program); - let programUniform = []; - let bufferShapes = []; - if (!program.isFromPixels) { - programUniform.push({ type: "float32", data: [NaN] }); - bufferShapes = inputs.concat(output).map((d) => d.shape); - const uniformsType = "int32"; - bufferShapes.map((d) => { - programUniform.push({ type: uniformsType, data: d }); - }); - const strides2 = util_exports.computeStrides(output.shape); - programUniform.push({ type: uniformsType, data: strides2 }); - if (program.size) { - const size2 = util_exports.sizeFromShape(program.outputShape); - programUniform.push({ type: uniformsType, data: [program.isVec4 ? size2 / 4 : size2] }); - } - } - const inputsData = inputs.map((input2, i2) => { - if (input2.dtype === "complex64") { - throw new Error(`GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.`); - } - this.uploadToGPU(input2.dataId); - return { - dtype: this.tensorMap.get(input2.dataId).dtype, - shape: input2.shape, - name: program.variableNames[i2] - }; - }); - const key = makeShaderKey2(program, bufferShapes, inputsData, output); - let pipeline; - if (key in this.pipelineCache) { - pipeline = this.pipelineCache[key]; - } else { - pipeline = compileProgram2(this.device, program, inputsData, output); - this.pipelineCache[key] = pipeline; - } - if (programDefinedUniform) { - programUniform = [...programUniform, ...programDefinedUniform]; - } - const bindings = [ - this.tensorToBinding(output), - ...inputs.map((t2) => this.tensorToBinding(t2)), - this.makeUniforms(programUniform) - ]; - const bindGroup = this.device.createBindGroup({ - layout: pipeline.getBindGroupLayout(0), - entries: bindings.map((b, i2) => ({ binding: i2, resource: b })) - }); - this.ensureCommandEncoderReady(); - const pass = this.getComputePass(); - const shouldTimeProgram = this.activeTimers != null; - if (shouldTimeProgram) { - if (this.supportTimeQuery) { - pass.writeTimestamp(this.querySet, 0); - } - } - pass.setPipeline(pipeline); - pass.setBindGroup(0, bindGroup); - pass.dispatchWorkgroups(program.dispatch[0], program.dispatch[1], program.dispatch[2]); - if (shouldTimeProgram) { - if (this.supportTimeQuery) { - pass.writeTimestamp(this.querySet, 1); - } - } - this.dispatchNumberInEncoder++; - inputs.forEach((input2) => { - this.commandQueueOwnedIds.add(input2.dataId); - }); - this.commandQueueOwnedIds.add(output.dataId); - if (env().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE") <= this.dispatchNumberInEncoder) { - this.submitQueue(); - } - if (shouldTimeProgram) { - this.activeTimers.push({ - name: program.constructor.name, - query: this.getQueryTime(this.querySet) - }); - } - return output; - } - async getTimeFromQuerySet(querySet) { - const queryBuffer = this.bufferManager.acquireBuffer(16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE); - const dst = this.bufferManager.acquireBuffer(16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST); - this.ensureCommandEncoderReady(); - this.ensureComputePassEnded(); - this.currentCommandEncoder.resolveQuerySet(querySet, 0, 2, queryBuffer, 0); - this.currentCommandEncoder.copyBufferToBuffer(queryBuffer, 0, dst, 0, 16); - this.submitQueue(); - await dst.mapAsync(GPUMapMode.READ); - const arrayBuf = new BigUint64Array(dst.getMappedRange()); - const timeElapsedNanos = Number(arrayBuf[1] - arrayBuf[0]); - dst.unmap(); - this.bufferManager.releaseBuffer(dst, 16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST); - this.bufferManager.releaseBuffer(queryBuffer, 16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE); - return timeElapsedNanos / 1e6; - } - shouldExecuteOnCPU(inputs, sizeThreshold = CPU_HANDOFF_SIZE_THRESHOLD2) { - return env().getBool("WEBGPU_CPU_FORWARD") && inputs.every((input2) => this.tensorMap.get(input2.dataId).resourceInfo == null && util_exports.sizeFromShape(input2.shape) < sizeThreshold); - } - numDataIds() { - return this.tensorMap.numDataIds() - this.tensorDataPendingDisposal.length; - } - dispose() { - if (this.disposed) { - return; - } - this.bufferManager.dispose(); - this.textureManager.dispose(); - this.disposed = true; - } -}; -WebGPUBackend.nextDataId = 0; -var webgpu_exports = {}; -__export2(webgpu_exports, { - WebGPUBackend: () => WebGPUBackend, - webgpu_util: () => webgpu_util_exports -}); -if (isWebGPUSupported()) { - registerBackend("webgpu", async () => { - env().set("CHECK_COMPUTATION_FOR_ERRORS", false); - const gpuDescriptor = { - powerPreference: env().get("WEBGPU_USE_LOW_POWER_GPU") ? "low-power" : "high-performance" - }; - const adapter = await navigator.gpu.requestAdapter(gpuDescriptor); - const adapterLimits = adapter.limits; - const deviceDescriptor = {}; - const supportTimeQuery = adapter.features.has("timestamp-query"); - deviceDescriptor.requiredLimits = { - "maxComputeWorkgroupStorageSize": adapterLimits.maxComputeWorkgroupStorageSize, - "maxComputeWorkgroupsPerDimension": adapterLimits.maxComputeWorkgroupsPerDimension, - "maxStorageBufferBindingSize": adapterLimits.maxStorageBufferBindingSize - }; - if (supportTimeQuery) { - deviceDescriptor.requiredFeatures = ["timestamp-query"]; - } else { - console.warn(`This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.`); - } - const device = await adapter.requestDevice(deviceDescriptor); - return new WebGPUBackend(device, supportTimeQuery); - }, 3); -} var e = "3.20.0"; var s = "3.20.0"; var t = "3.20.0"; @@ -75181,13 +73983,13 @@ async function histogramEqualization(inputImage) { const max7 = [max(channels[0]), max(channels[1]), max(channels[2])]; const absMax = await Promise.all(max7.map((channel) => channel.data())); const maxValue = 0.99 * Math.max(absMax[0][0], absMax[1][0], absMax[2][0]); - const sub6 = [sub(channels[0], min7[0]), sub(channels[1], min7[1]), sub(channels[2], min7[2])]; + const sub5 = [sub(channels[0], min7[0]), sub(channels[1], min7[1]), sub(channels[2], min7[2])]; const range7 = [sub(max7[0], min7[0]), sub(max7[1], min7[1]), sub(max7[2], min7[2])]; const fact = [div(maxValue, range7[0]), div(maxValue, range7[1]), div(maxValue, range7[2])]; - const enh = [mul(sub6[0], fact[0]), mul(sub6[1], fact[1]), mul(sub6[2], fact[2])]; + const enh = [mul(sub5[0], fact[0]), mul(sub5[1], fact[1]), mul(sub5[2], fact[2])]; const rgb2 = stack([enh[0], enh[1], enh[2]], 2); const reshape7 = reshape(rgb2, [1, squeeze2.shape[0], squeeze2.shape[1], 3]); - dispose([...channels, ...min7, ...max7, ...sub6, ...range7, ...fact, ...enh, rgb2, squeeze2]); + dispose([...channels, ...min7, ...max7, ...sub5, ...range7, ...fact, ...enh, rgb2, squeeze2]); return reshape7; } @@ -75203,6 +74005,12 @@ var last = { sumMethod: 0, inputTensor: void 0 }; +function reset() { + last.inputSum = 0; + last.cacheDiff = 1; + last.sumMethod = 0; + last.inputTensor = void 0; +} function canvas(width, height) { let c; if (env2.browser) { @@ -75265,9 +74073,9 @@ async function process2(input2, config3, getTensor2 = true) { if (tensor3 == null || tensor3.shape.length !== 4 || tensor3.shape[0] !== 1 || tensor3.shape[3] !== 3) throw new Error(`input error: attempted to use tensor with unrecognized shape: ${input2.shape.toString()}`); if (tensor3.dtype === "int32") { - const cast8 = cast(tensor3, "float32"); + const cast7 = cast(tensor3, "float32"); dispose(tensor3); - tensor3 = cast8; + tensor3 = cast7; } return { tensor: tensor3, canvas: config3.filter.return ? outCanvas : null }; } @@ -75760,7 +74568,7 @@ __export(models_exports2, { Models: () => Models, getModelStats: () => getModelStats, load: () => load20, - reset: () => reset, + reset: () => reset2, validate: () => validate2, validateModel: () => validateModel }); @@ -79783,7 +78591,7 @@ var cache = null; var cropBox; var padding = [[0, 0], [0, 0], [0, 0], [0, 0]]; var lastTime5 = 0; -var sigmoid7 = (x) => 1 - 1 / (1 + Math.exp(x)); +var sigmoid6 = (x) => 1 - 1 / (1 + Math.exp(x)); async function loadDetect(config3) { var _a; if (env3.initial) @@ -79895,8 +78703,8 @@ async function detectLandmarks(input2, config3, outputSize2) { const keypointsRelative = []; const depth = 5; for (let i2 = 0; i2 < points.length / depth; i2++) { - const score = sigmoid7(points[depth * i2 + 3]); - const presence = sigmoid7(points[depth * i2 + 4]); + const score = sigmoid6(points[depth * i2 + 3]); + const presence = sigmoid6(points[depth * i2 + 4]); const adjScore = Math.trunc(100 * score * presence * poseScore) / 100; const positionRaw = [points[depth * i2 + 0] / inputSize3.landmarks[0], points[depth * i2 + 1] / inputSize3.landmarks[1], points[depth * i2 + 2] + 0]; const position = [Math.trunc(outputSize2[0] * positionRaw[0]), Math.trunc(outputSize2[1] * positionRaw[1]), positionRaw[2]]; @@ -80060,6 +78868,8 @@ async function process3(res, outputShape, config3) { for (const id of Array.from(nms)) { const score = Math.trunc(100 * detections[0][id][4]) / 100; const classVal = detections[0][id][5]; + if (Number.isNaN(classVal)) + continue; const label = labels[classVal].label; const [x, y] = [ detections[0][id][0] / inputSize4, @@ -80850,13 +79660,18 @@ var LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG = [ // src/face/attention.ts async function augment(rawCoords, results) { + var _a, _b, _c, _d, _e, _f, _g, _h, _i, _j; const t2 = { - lips: await results.filter((r2) => r2.size === 160)[0].data(), - irisL: await results.filter((r2) => r2.size === 10)[0].data(), - eyeL: await results.filter((r2) => r2.size === 142)[0].data(), - irisR: await results.filter((r2) => r2.size === 10)[1].data(), - eyeR: await results.filter((r2) => r2.size === 142)[1].data() + lips: await ((_b = (_a = results.filter((r2) => r2.size === 160)) == null ? void 0 : _a[0]) == null ? void 0 : _b.data()), + irisL: await ((_d = (_c = results.filter((r2) => r2.size === 10)) == null ? void 0 : _c[0]) == null ? void 0 : _d.data()), + eyeL: await ((_f = (_e = results.filter((r2) => r2.size === 142)) == null ? void 0 : _e[0]) == null ? void 0 : _f.data()), + irisR: await ((_h = (_g = results.filter((r2) => r2.size === 10)) == null ? void 0 : _g[1]) == null ? void 0 : _h.data()), + eyeR: await ((_j = (_i = results.filter((r2) => r2.size === 142)) == null ? void 0 : _i[1]) == null ? void 0 : _j.data()) }; + for (const val of Object.values(t2)) { + if (!val) + return rawCoords; + } const irisLDepth = LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.length; for (let i2 = 0; i2 < t2.irisL.length / 2; i2++) rawCoords.push([t2.irisL[2 * i2 + 0], t2.irisL[2 * i2 + 1], irisLDepth]); @@ -80937,6 +79752,7 @@ async function predict11(input2, config3) { log("face mesh detection requested, but model is not loaded"); } else { if (((_f = config3.face.attention) == null ? void 0 : _f.enabled) && !env2.kernels.includes("atan2")) { + config3.face.attention.enabled = false; dispose(face4.tensor); return faces; } @@ -84896,7 +83712,7 @@ function register(instance2) { return; if (config2.name in engine().registry && !((_a = config2 == null ? void 0 : config2.gl) == null ? void 0 : _a.getParameter(config2.gl.VERSION))) { log("error: humangl backend invalid context"); - reset(instance2); + reset2(instance2); } if (!findBackend(config2.name)) { try { @@ -86227,14 +85043,14 @@ var getModelStats = (instance2) => { modelStats: Object.values(modelStats) }; }; -function reset(instance2) { +function reset2(instance2) { for (const model20 of Object.keys(instance2.models)) instance2.models[model20] = null; } async function load20(instance2) { var _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, _k, _l, _m, _n, _o, _p, _q, _r, _s, _t, _u, _v, _w, _x, _y, _z; if (env2.initial) - reset(instance2); + reset2(instance2); if (instance2.config.hand.enabled) { if (!instance2.models.handpose && ((_b = (_a = instance2.config.hand.detector) == null ? void 0 : _a.modelPath) == null ? void 0 : _b.includes("handdetect"))) { [instance2.models.handpose, instance2.models.handskeleton] = await load14(instance2.config); @@ -88628,9 +87444,14 @@ var Human = class { const currentBackend = this.config.backend; this.config = JSON.parse(JSON.stringify(config)); this.config.backend = currentBackend; + reset(); + env2.initial = true; } validate(userConfig) { - return validate(config, userConfig || this.config); + const msgs = validate(config, userConfig || this.config); + if (msgs.length === 0) + this.config = mergeDeep(this.config, userConfig); + return msgs; } check() { return validate2(this); @@ -88653,6 +87474,7 @@ var Human = class { async init() { await check(this, true); await this.tf.ready(); + reset(); } async load(userConfig) { this.state = "load"; diff --git a/dist/human.esm.js.map b/dist/human.esm.js.map index da1f323b..8591f80c 100644 --- a/dist/human.esm.js.map +++ b/dist/human.esm.js.map @@ -1,7 +1,7 @@ { "version": 3, "sources": ["../src/util/util.ts", "../src/config.ts", "tfjs.esm.js", "../src/image/imagefxshaders.ts", "../src/image/imagefx.ts", "../src/image/enhance.ts", "../src/image/image.ts", "../src/util/env.ts", "../src/models.ts", "../src/gear/gear.ts", "../src/tfjs/constants.ts", "../src/gear/ssrnet-age.ts", "../src/gear/ssrnet-gender.ts", "../src/face/antispoof.ts", "../src/face/facemeshcoords.ts", "../src/face/facemeshutil.ts", "../src/face/blazeface.ts", "../src/body/blazeposecoords.ts", "../src/body/blazeposedetector.ts", "../src/util/box.ts", "../src/body/blazepose.ts", "../src/object/labels.ts", "../src/object/centernet.ts", "../src/body/efficientposecoords.ts", "../src/body/efficientpose.ts", "../src/gear/emotion.ts", "../src/face/mobilefacenet.ts", "../src/face/insightface.ts", "../src/face/iris.ts", "../src/face/constants.ts", "../src/face/attention.ts", "../src/face/facemesh.ts", "../src/face/faceres.ts", "../src/hand/handposeutil.ts", "../src/hand/handposeanchors.ts", "../src/hand/handposedetector.ts", "../src/hand/handposepipeline.ts", "../src/hand/fingerdef.ts", "../src/hand/fingergesture.ts", "../src/hand/fingerpose.ts", "../src/hand/handpose.ts", "../src/tfjs/humangl.ts", "../src/tfjs/backend.ts", "../src/hand/handtrack.ts", "../src/face/liveness.ts", "../src/body/movenetcoords.ts", "../src/body/movenetfix.ts", "../src/body/movenet.ts", "../src/object/nanodet.ts", "../src/body/posenetutils.ts", "../src/body/posenet.ts", "../src/segmentation/segmentation.ts", "../src/tfjs/load.ts", "../src/draw/draw.ts", "../src/draw/primitives.ts", "../src/draw/options.ts", "../src/draw/face.ts", "../src/draw/body.ts", "../src/draw/hand.ts", "../src/draw/object.ts", "../src/draw/gesture.ts", "../src/face/mask.ts", "../src/face/angles.ts", "../src/face/face.ts", "../src/gesture/gesture.ts", "../src/util/interpolate.ts", "../src/face/match.ts", "../src/util/persons.ts", "../src/sample.ts", "../src/warmup.ts", "../src/human.ts"], - "sourcesContent": ["import type { Config } from '../exports';\n\n/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n if (msg) console.log(ts, 'Human:', ...msg); // eslint-disable-line no-console\n}\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`modelpath error: expecting json file: ${path}`);\n return path;\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: checks current config validity\nexport function validate(defaults: Partial, config: Partial, parent = 'config', msgs: { reason: string, where: string, expected?: string }[] = []) {\n for (const key of Object.keys(config)) {\n if (typeof config[key] === 'object') {\n validate(defaults[key], config[key], key, msgs);\n } else {\n const defined = defaults && (typeof defaults[key] !== 'undefined');\n if (!defined) msgs.push({ reason: 'unknown property', where: `${parent}.${key} = ${config[key]}` });\n const same = defaults && typeof defaults[key] === typeof config[key];\n if (defined && !same) msgs.push({ reason: 'property type mismatch', where: `${parent}.${key} = ${config[key]}`, expected: typeof defaults[key] });\n }\n // ok = ok && defined && same;\n }\n if (config.debug && parent === 'config' && msgs.length > 0) log('invalid configuration', msgs);\n return msgs;\n}\n\n// helper function: perform deep merge of multiple objects so it allows full inheritance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: number[]) => data.reduce((acc: number[], val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n\n// helper function: async wait\nexport async function wait(time: number) {\n const waiting = new Promise((resolve) => { setTimeout(() => resolve(true), time); });\n await waiting;\n}\n", "/* eslint-disable no-multi-spaces */\n\n/** Generic config type inherited by all module types */\nexport interface GenericConfig {\n /** is module enabled? */\n enabled: boolean,\n /** path to model json file (relative to `modelBasePath` */\n modelPath: string,\n /** how many max frames to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipFrames: number,\n /** how many max milliseconds to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipTime: number,\n}\n\n/** Detector part of face configuration */\nexport interface FaceDetectorConfig extends GenericConfig {\n /** is face rotation correction performed after detecting face?\n * used to correctly analyze faces under high angles\n */\n rotation: boolean,\n /** maximum number of detected faces */\n maxDetected: number,\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected faces before one is discarded */\n iouThreshold: number,\n /** should child models perform on masked image of a face */\n mask: boolean,\n /** should face detection return processed and cropped face tensor that can with an external model for addtional processing?\n * if enabled it must be manually deallocated to avoid memory leak */\n return: boolean,\n}\n\n/** Mesh part of face configuration */\nexport interface FaceMeshConfig extends GenericConfig {\n /** Keep detected faces that cannot be verified using facemesh */\n keepInvalid: boolean\n}\n\n/** Iris part of face configuration */\nexport interface FaceIrisConfig extends GenericConfig {}\n\n/** Attention part of face configuration */\nexport interface FaceAttentionConfig extends GenericConfig {}\n\n/** Description or face embedding part of face configuration\n * - also used by age and gender detection\n */\nexport interface FaceDescriptionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Emotion part of face configuration */\nexport interface FaceEmotionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Anti-spoofing part of face configuration */\nexport interface FaceAntiSpoofConfig extends GenericConfig {}\n\n/** Liveness part of face configuration */\nexport interface FaceLivenessConfig extends GenericConfig {}\n\n/** Gear part of face configuration */\nexport interface FaceGearConfig extends GenericConfig {\n /** minimum confidence for a detected race before results are discarded */\n minConfidence: number,\n}\n\n/** Configures all face-specific options: face detection, mesh analysis, age, gender, emotion detection and face description */\nexport interface FaceConfig extends GenericConfig {\n detector: Partial,\n mesh: Partial,\n attention: Partial,\n iris: Partial,\n description: Partial,\n emotion: Partial,\n antispoof: Partial,\n liveness: Partial,\n gear: Partial,\n}\n\n/** Configures all body detection specific options */\nexport interface BodyConfig extends GenericConfig {\n /** maximum number of detected bodies */\n maxDetected: number,\n /** minimum confidence for a detected body before results are discarded */\n minConfidence: number,\n /* experimental\n /** experimental: detector used for body model before actual analysis\n detector?: {\n /** experimental: enable body detector before body landmarks\n enabled: boolean,\n /** experimental: path to optional body detector model json file\n modelPath: string,\n /** experimental: minimum confidence for a detected body before results are discarded\n minConfidence: number,\n /** experimental: minimum overlap between two detected bodies before one is discarded\n iouThreshold: number\n },\n */\n}\n\n/** Configures all hand detection specific options */\nexport interface HandConfig extends GenericConfig {\n /** should hand rotation correction be performed after hand detection? */\n rotation: boolean,\n /** minimum confidence for a detected hand before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected hands before one is discarded */\n iouThreshold: number,\n /** maximum number of detected hands */\n maxDetected: number,\n /** should hand landmarks be detected or just return detected hand box */\n landmarks: boolean,\n detector: {\n /** path to hand detector model json */\n modelPath?: string,\n },\n skeleton: {\n /** path to hand skeleton model json */\n modelPath?: string,\n },\n}\n\n/** Configures all object detection specific options */\nexport interface ObjectConfig extends GenericConfig {\n /** minimum confidence for a detected objects before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected objects before one is discarded */\n iouThreshold: number,\n /** maximum number of detected objects */\n maxDetected: number,\n}\n\n/** Configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n*/\nexport interface SegmentationConfig extends GenericConfig {\n /** blur segmentation output by pixels for more realistic image */\n blur: number,\n}\n\n/** Run input through image filters before inference\n * - available only in Browser environments\n * - image filters run with near-zero latency as they are executed on the GPU using WebGL\n*/\nexport interface FilterConfig {\n /** are image filters enabled? */\n enabled: boolean,\n /** perform image histogram equalization\n * - equalization is performed on input as a whole and detected face before its passed for further analysis\n */\n equalization: boolean,\n /** resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** return processed canvas imagedata in result */\n return: boolean,\n /** flip input as mirror image */\n flip: boolean,\n /** range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** image negative */\n negative: boolean,\n /** image sepia colors */\n sepia: boolean,\n /** image vintage colors */\n vintage: boolean,\n /** image kodachrome colors */\n kodachrome: boolean,\n /** image technicolor colors */\n technicolor: boolean,\n /** image polaroid camera effect */\n polaroid: boolean,\n /** range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n}\n\n/** Controlls gesture detection */\nexport interface GestureConfig {\n /** is gesture detection enabled? */\n enabled: boolean,\n}\n/** Possible TensorFlow backends */\nexport type BackendType = ['cpu', 'wasm', 'webgl', 'humangl', 'tensorflow', 'webgpu'];\n\n/** Possible values for `human.warmup` */\nexport type WarmupType = ['' | 'none' | 'face' | 'full' | 'body'];\n\n/**\n * Configuration interface definition for **Human** library\n * Contains all configurable parameters\n * Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\nexport interface Config {\n /** Backend used for TFJS operations\n * valid build-in backends are:\n * - Browser: `cpu`, `wasm`, `webgl`, `humangl`, `webgpu`\n * - NodeJS: `cpu`, `wasm`, `tensorflow`\n * default: `humangl` for browser and `tensorflow` for nodejs\n */\n backend: '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm`\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPath: string,\n\n /** Force WASM loader to use platform fetch\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPlatformFetch: boolean,\n\n /** Print debug statements to console\n *\n * default: `true`\n */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially\n *\n * default: `true`\n */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - used by `webgl`, `humangl` and `webgpu` backends\n *\n * default: `full`\n */\n warmup: '' | 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n *\n * default: `../models/` for browsers and `file://models/` for nodejs\n */\n modelBasePath: string,\n\n /** Cache models in IndexDB on first sucessfull load\n * default: true if indexdb is available (browsers), false if its not (nodejs)\n */\n cacheModels: boolean,\n\n /** Validate kernel ops used in model during model load\n * default: true\n * any errors will be printed on console but will be treated as non-fatal\n */\n validateModels: boolean,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n *\n * default: 0.7\n */\n cacheSensitivity: number;\n\n /** Software Kernels\n * Registers software kernel ops running on CPU when accelerated version of kernel is not found in the current backend\n */\n softwareKernels: boolean,\n\n /** Perform immediate garbage collection on deallocated tensors instead of caching them */\n deallocate: boolean;\n\n /** Internal Variable */\n skipAllowed: boolean;\n\n /** Filter config {@link FilterConfig} */\n filter: Partial,\n\n /** Gesture config {@link GestureConfig} */\n gesture: Partial;\n\n /** Face config {@link FaceConfig} */\n face: Partial,\n\n /** Body config {@link BodyConfig} */\n body: Partial,\n\n /** Hand config {@link HandConfig} */\n hand: Partial,\n\n /** Object config {@link ObjectConfig} */\n object: Partial,\n\n /** Segmentation config {@link SegmentationConfig} */\n segmentation: Partial,\n}\n\n/** - [See all default Config values...](https://github.com/vladmandic/human/blob/main/src/config.ts#L262) */\nconst config: Config = {\n backend: '',\n modelBasePath: '',\n cacheModels: true,\n validateModels: true,\n wasmPath: '',\n wasmPlatformFetch: false,\n debug: false,\n async: true,\n warmup: 'full',\n cacheSensitivity: 0.70,\n skipAllowed: false,\n deallocate: false,\n softwareKernels: false,\n filter: {\n enabled: true,\n equalization: false,\n width: 0,\n height: 0,\n flip: false,\n return: true,\n brightness: 0,\n contrast: 0,\n sharpness: 0,\n blur: 0,\n saturation: 0,\n hue: 0,\n negative: false,\n sepia: false,\n vintage: false,\n kodachrome: false,\n technicolor: false,\n polaroid: false,\n pixelate: 0,\n },\n gesture: {\n enabled: true,\n },\n face: {\n enabled: true,\n detector: {\n modelPath: 'blazeface.json',\n rotation: true,\n maxDetected: 1,\n skipFrames: 99,\n skipTime: 2500,\n minConfidence: 0.2,\n iouThreshold: 0.1,\n mask: false,\n return: false,\n },\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json',\n keepInvalid: false,\n },\n attention: {\n enabled: false,\n modelPath: 'facemesh-attention.json',\n },\n iris: {\n enabled: true,\n modelPath: 'iris.json',\n },\n emotion: {\n enabled: true,\n minConfidence: 0.1,\n skipFrames: 99,\n skipTime: 1500,\n modelPath: 'emotion.json',\n },\n description: {\n enabled: true,\n modelPath: 'faceres.json',\n skipFrames: 99,\n skipTime: 3000,\n minConfidence: 0.1,\n },\n antispoof: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'antispoof.json',\n },\n liveness: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'liveness.json',\n },\n },\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json',\n maxDetected: -1,\n minConfidence: 0.3,\n skipFrames: 1,\n skipTime: 200,\n },\n hand: {\n enabled: true,\n rotation: true,\n skipFrames: 99,\n skipTime: 1000,\n minConfidence: 0.50,\n iouThreshold: 0.2,\n maxDetected: -1,\n landmarks: true,\n detector: {\n modelPath: 'handtrack.json',\n },\n skeleton: {\n modelPath: 'handlandmark-full.json',\n },\n },\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json',\n minConfidence: 0.2,\n iouThreshold: 0.4,\n maxDetected: 10,\n skipFrames: 99,\n skipTime: 2000,\n },\n segmentation: {\n enabled: false,\n modelPath: 'selfie.json',\n blur: 8,\n },\n};\n\nexport { config as defaults };\n", "/*\n Human\n homepage: \n author: '\n*/\n\nvar __create = Object.create;\nvar __defProp = Object.defineProperty;\nvar __getOwnPropDesc = Object.getOwnPropertyDescriptor;\nvar __getOwnPropNames = Object.getOwnPropertyNames;\nvar __getProtoOf = Object.getPrototypeOf;\nvar __hasOwnProp = Object.prototype.hasOwnProperty;\nvar __commonJS = (cb, mod4) => function __require() {\n return mod4 || (0, cb[__getOwnPropNames(cb)[0]])((mod4 = { exports: {} }).exports, mod4), mod4.exports;\n};\nvar __export = (target, all5) => {\n for (var name in all5)\n __defProp(target, name, { get: all5[name], enumerable: true });\n};\nvar __copyProps = (to, from, except, desc) => {\n if (from && typeof from === \"object\" || typeof from === \"function\") {\n for (let key of __getOwnPropNames(from))\n if (!__hasOwnProp.call(to, key) && key !== except)\n __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });\n }\n return to;\n};\nvar __toESM = (mod4, isNodeMode, target) => (target = mod4 != null ? __create(__getProtoOf(mod4)) : {}, __copyProps(\n isNodeMode || !mod4 || !mod4.__esModule ? __defProp(target, \"default\", { value: mod4, enumerable: true }) : target,\n mod4\n));\n\n// node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js\nvar require_long = __commonJS({\n \"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js\"(exports, module) {\n module.exports = Long2;\n var wasm = null;\n try {\n wasm = new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([\n 0,\n 97,\n 115,\n 109,\n 1,\n 0,\n 0,\n 0,\n 1,\n 13,\n 2,\n 96,\n 0,\n 1,\n 127,\n 96,\n 4,\n 127,\n 127,\n 127,\n 127,\n 1,\n 127,\n 3,\n 7,\n 6,\n 0,\n 1,\n 1,\n 1,\n 1,\n 1,\n 6,\n 6,\n 1,\n 127,\n 1,\n 65,\n 0,\n 11,\n 7,\n 50,\n 6,\n 3,\n 109,\n 117,\n 108,\n 0,\n 1,\n 5,\n 100,\n 105,\n 118,\n 95,\n 115,\n 0,\n 2,\n 5,\n 100,\n 105,\n 118,\n 95,\n 117,\n 0,\n 3,\n 5,\n 114,\n 101,\n 109,\n 95,\n 115,\n 0,\n 4,\n 5,\n 114,\n 101,\n 109,\n 95,\n 117,\n 0,\n 5,\n 8,\n 103,\n 101,\n 116,\n 95,\n 104,\n 105,\n 103,\n 104,\n 0,\n 0,\n 10,\n 191,\n 1,\n 6,\n 4,\n 0,\n 35,\n 0,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 126,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 127,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 128,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 129,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 130,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11\n ])), {}).exports;\n } catch (e2) {\n }\n function Long2(low, high, unsigned) {\n this.low = low | 0;\n this.high = high | 0;\n this.unsigned = !!unsigned;\n }\n Long2.prototype.__isLong__;\n Object.defineProperty(Long2.prototype, \"__isLong__\", { value: true });\n function isLong(obj) {\n return (obj && obj[\"__isLong__\"]) === true;\n }\n Long2.isLong = isLong;\n var INT_CACHE = {};\n var UINT_CACHE = {};\n function fromInt(value, unsigned) {\n var obj, cachedObj, cache;\n if (unsigned) {\n value >>>= 0;\n if (cache = 0 <= value && value < 256) {\n cachedObj = UINT_CACHE[value];\n if (cachedObj)\n return cachedObj;\n }\n obj = fromBits(value, (value | 0) < 0 ? -1 : 0, true);\n if (cache)\n UINT_CACHE[value] = obj;\n return obj;\n } else {\n value |= 0;\n if (cache = -128 <= value && value < 128) {\n cachedObj = INT_CACHE[value];\n if (cachedObj)\n return cachedObj;\n }\n obj = fromBits(value, value < 0 ? -1 : 0, false);\n if (cache)\n INT_CACHE[value] = obj;\n return obj;\n }\n }\n Long2.fromInt = fromInt;\n function fromNumber(value, unsigned) {\n if (isNaN(value))\n return unsigned ? UZERO : ZERO;\n if (unsigned) {\n if (value < 0)\n return UZERO;\n if (value >= TWO_PWR_64_DBL)\n return MAX_UNSIGNED_VALUE;\n } else {\n if (value <= -TWO_PWR_63_DBL)\n return MIN_VALUE;\n if (value + 1 >= TWO_PWR_63_DBL)\n return MAX_VALUE;\n }\n if (value < 0)\n return fromNumber(-value, unsigned).neg();\n return fromBits(value % TWO_PWR_32_DBL | 0, value / TWO_PWR_32_DBL | 0, unsigned);\n }\n Long2.fromNumber = fromNumber;\n function fromBits(lowBits, highBits, unsigned) {\n return new Long2(lowBits, highBits, unsigned);\n }\n Long2.fromBits = fromBits;\n var pow_dbl = Math.pow;\n function fromString(str, unsigned, radix) {\n if (str.length === 0)\n throw Error(\"empty string\");\n if (str === \"NaN\" || str === \"Infinity\" || str === \"+Infinity\" || str === \"-Infinity\")\n return ZERO;\n if (typeof unsigned === \"number\") {\n radix = unsigned, unsigned = false;\n } else {\n unsigned = !!unsigned;\n }\n radix = radix || 10;\n if (radix < 2 || 36 < radix)\n throw RangeError(\"radix\");\n var p2;\n if ((p2 = str.indexOf(\"-\")) > 0)\n throw Error(\"interior hyphen\");\n else if (p2 === 0) {\n return fromString(str.substring(1), unsigned, radix).neg();\n }\n var radixToPower = fromNumber(pow_dbl(radix, 8));\n var result = ZERO;\n for (var i2 = 0; i2 < str.length; i2 += 8) {\n var size = Math.min(8, str.length - i2), value = parseInt(str.substring(i2, i2 + size), radix);\n if (size < 8) {\n var power = fromNumber(pow_dbl(radix, size));\n result = result.mul(power).add(fromNumber(value));\n } else {\n result = result.mul(radixToPower);\n result = result.add(fromNumber(value));\n }\n }\n result.unsigned = unsigned;\n return result;\n }\n Long2.fromString = fromString;\n function fromValue(val, unsigned) {\n if (typeof val === \"number\")\n return fromNumber(val, unsigned);\n if (typeof val === \"string\")\n return fromString(val, unsigned);\n return fromBits(val.low, val.high, typeof unsigned === \"boolean\" ? unsigned : val.unsigned);\n }\n Long2.fromValue = fromValue;\n var TWO_PWR_16_DBL = 1 << 16;\n var TWO_PWR_24_DBL = 1 << 24;\n var TWO_PWR_32_DBL = TWO_PWR_16_DBL * TWO_PWR_16_DBL;\n var TWO_PWR_64_DBL = TWO_PWR_32_DBL * TWO_PWR_32_DBL;\n var TWO_PWR_63_DBL = TWO_PWR_64_DBL / 2;\n var TWO_PWR_24 = fromInt(TWO_PWR_24_DBL);\n var ZERO = fromInt(0);\n Long2.ZERO = ZERO;\n var UZERO = fromInt(0, true);\n Long2.UZERO = UZERO;\n var ONE = fromInt(1);\n Long2.ONE = ONE;\n var UONE = fromInt(1, true);\n Long2.UONE = UONE;\n var NEG_ONE = fromInt(-1);\n Long2.NEG_ONE = NEG_ONE;\n var MAX_VALUE = fromBits(4294967295 | 0, 2147483647 | 0, false);\n Long2.MAX_VALUE = MAX_VALUE;\n var MAX_UNSIGNED_VALUE = fromBits(4294967295 | 0, 4294967295 | 0, true);\n Long2.MAX_UNSIGNED_VALUE = MAX_UNSIGNED_VALUE;\n var MIN_VALUE = fromBits(0, 2147483648 | 0, false);\n Long2.MIN_VALUE = MIN_VALUE;\n var LongPrototype = Long2.prototype;\n LongPrototype.toInt = function toInt() {\n return this.unsigned ? this.low >>> 0 : this.low;\n };\n LongPrototype.toNumber = function toNumber() {\n if (this.unsigned)\n return (this.high >>> 0) * TWO_PWR_32_DBL + (this.low >>> 0);\n return this.high * TWO_PWR_32_DBL + (this.low >>> 0);\n };\n LongPrototype.toString = function toString(radix) {\n radix = radix || 10;\n if (radix < 2 || 36 < radix)\n throw RangeError(\"radix\");\n if (this.isZero())\n return \"0\";\n if (this.isNegative()) {\n if (this.eq(MIN_VALUE)) {\n var radixLong = fromNumber(radix), div3 = this.div(radixLong), rem1 = div3.mul(radixLong).sub(this);\n return div3.toString(radix) + rem1.toInt().toString(radix);\n } else\n return \"-\" + this.neg().toString(radix);\n }\n var radixToPower = fromNumber(pow_dbl(radix, 6), this.unsigned), rem = this;\n var result = \"\";\n while (true) {\n var remDiv = rem.div(radixToPower), intval = rem.sub(remDiv.mul(radixToPower)).toInt() >>> 0, digits = intval.toString(radix);\n rem = remDiv;\n if (rem.isZero())\n return digits + result;\n else {\n while (digits.length < 6)\n digits = \"0\" + digits;\n result = \"\" + digits + result;\n }\n }\n };\n LongPrototype.getHighBits = function getHighBits() {\n return this.high;\n };\n LongPrototype.getHighBitsUnsigned = function getHighBitsUnsigned() {\n return this.high >>> 0;\n };\n LongPrototype.getLowBits = function getLowBits() {\n return this.low;\n };\n LongPrototype.getLowBitsUnsigned = function getLowBitsUnsigned() {\n return this.low >>> 0;\n };\n LongPrototype.getNumBitsAbs = function getNumBitsAbs() {\n if (this.isNegative())\n return this.eq(MIN_VALUE) ? 64 : this.neg().getNumBitsAbs();\n var val = this.high != 0 ? this.high : this.low;\n for (var bit = 31; bit > 0; bit--)\n if ((val & 1 << bit) != 0)\n break;\n return this.high != 0 ? bit + 33 : bit + 1;\n };\n LongPrototype.isZero = function isZero() {\n return this.high === 0 && this.low === 0;\n };\n LongPrototype.eqz = LongPrototype.isZero;\n LongPrototype.isNegative = function isNegative() {\n return !this.unsigned && this.high < 0;\n };\n LongPrototype.isPositive = function isPositive() {\n return this.unsigned || this.high >= 0;\n };\n LongPrototype.isOdd = function isOdd() {\n return (this.low & 1) === 1;\n };\n LongPrototype.isEven = function isEven2() {\n return (this.low & 1) === 0;\n };\n LongPrototype.equals = function equals(other) {\n if (!isLong(other))\n other = fromValue(other);\n if (this.unsigned !== other.unsigned && this.high >>> 31 === 1 && other.high >>> 31 === 1)\n return false;\n return this.high === other.high && this.low === other.low;\n };\n LongPrototype.eq = LongPrototype.equals;\n LongPrototype.notEquals = function notEquals(other) {\n return !this.eq(other);\n };\n LongPrototype.neq = LongPrototype.notEquals;\n LongPrototype.ne = LongPrototype.notEquals;\n LongPrototype.lessThan = function lessThan(other) {\n return this.comp(other) < 0;\n };\n LongPrototype.lt = LongPrototype.lessThan;\n LongPrototype.lessThanOrEqual = function lessThanOrEqual(other) {\n return this.comp(other) <= 0;\n };\n LongPrototype.lte = LongPrototype.lessThanOrEqual;\n LongPrototype.le = LongPrototype.lessThanOrEqual;\n LongPrototype.greaterThan = function greaterThan(other) {\n return this.comp(other) > 0;\n };\n LongPrototype.gt = LongPrototype.greaterThan;\n LongPrototype.greaterThanOrEqual = function greaterThanOrEqual(other) {\n return this.comp(other) >= 0;\n };\n LongPrototype.gte = LongPrototype.greaterThanOrEqual;\n LongPrototype.ge = LongPrototype.greaterThanOrEqual;\n LongPrototype.compare = function compare(other) {\n if (!isLong(other))\n other = fromValue(other);\n if (this.eq(other))\n return 0;\n var thisNeg = this.isNegative(), otherNeg = other.isNegative();\n if (thisNeg && !otherNeg)\n return -1;\n if (!thisNeg && otherNeg)\n return 1;\n if (!this.unsigned)\n return this.sub(other).isNegative() ? -1 : 1;\n return other.high >>> 0 > this.high >>> 0 || other.high === this.high && other.low >>> 0 > this.low >>> 0 ? -1 : 1;\n };\n LongPrototype.comp = LongPrototype.compare;\n LongPrototype.negate = function negate() {\n if (!this.unsigned && this.eq(MIN_VALUE))\n return MIN_VALUE;\n return this.not().add(ONE);\n };\n LongPrototype.neg = LongPrototype.negate;\n LongPrototype.add = function add6(addend) {\n if (!isLong(addend))\n addend = fromValue(addend);\n var a48 = this.high >>> 16;\n var a32 = this.high & 65535;\n var a16 = this.low >>> 16;\n var a00 = this.low & 65535;\n var b48 = addend.high >>> 16;\n var b32 = addend.high & 65535;\n var b16 = addend.low >>> 16;\n var b00 = addend.low & 65535;\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\n c00 += a00 + b00;\n c16 += c00 >>> 16;\n c00 &= 65535;\n c16 += a16 + b16;\n c32 += c16 >>> 16;\n c16 &= 65535;\n c32 += a32 + b32;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c48 += a48 + b48;\n c48 &= 65535;\n return fromBits(c16 << 16 | c00, c48 << 16 | c32, this.unsigned);\n };\n LongPrototype.subtract = function subtract(subtrahend) {\n if (!isLong(subtrahend))\n subtrahend = fromValue(subtrahend);\n return this.add(subtrahend.neg());\n };\n LongPrototype.sub = LongPrototype.subtract;\n LongPrototype.multiply = function multiply5(multiplier) {\n if (this.isZero())\n return ZERO;\n if (!isLong(multiplier))\n multiplier = fromValue(multiplier);\n if (wasm) {\n var low = wasm.mul(\n this.low,\n this.high,\n multiplier.low,\n multiplier.high\n );\n return fromBits(low, wasm.get_high(), this.unsigned);\n }\n if (multiplier.isZero())\n return ZERO;\n if (this.eq(MIN_VALUE))\n return multiplier.isOdd() ? MIN_VALUE : ZERO;\n if (multiplier.eq(MIN_VALUE))\n return this.isOdd() ? MIN_VALUE : ZERO;\n if (this.isNegative()) {\n if (multiplier.isNegative())\n return this.neg().mul(multiplier.neg());\n else\n return this.neg().mul(multiplier).neg();\n } else if (multiplier.isNegative())\n return this.mul(multiplier.neg()).neg();\n if (this.lt(TWO_PWR_24) && multiplier.lt(TWO_PWR_24))\n return fromNumber(this.toNumber() * multiplier.toNumber(), this.unsigned);\n var a48 = this.high >>> 16;\n var a32 = this.high & 65535;\n var a16 = this.low >>> 16;\n var a00 = this.low & 65535;\n var b48 = multiplier.high >>> 16;\n var b32 = multiplier.high & 65535;\n var b16 = multiplier.low >>> 16;\n var b00 = multiplier.low & 65535;\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\n c00 += a00 * b00;\n c16 += c00 >>> 16;\n c00 &= 65535;\n c16 += a16 * b00;\n c32 += c16 >>> 16;\n c16 &= 65535;\n c16 += a00 * b16;\n c32 += c16 >>> 16;\n c16 &= 65535;\n c32 += a32 * b00;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c32 += a16 * b16;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c32 += a00 * b32;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;\n c48 &= 65535;\n return fromBits(c16 << 16 | c00, c48 << 16 | c32, this.unsigned);\n };\n LongPrototype.mul = LongPrototype.multiply;\n LongPrototype.divide = function divide(divisor) {\n if (!isLong(divisor))\n divisor = fromValue(divisor);\n if (divisor.isZero())\n throw Error(\"division by zero\");\n if (wasm) {\n if (!this.unsigned && this.high === -2147483648 && divisor.low === -1 && divisor.high === -1) {\n return this;\n }\n var low = (this.unsigned ? wasm.div_u : wasm.div_s)(\n this.low,\n this.high,\n divisor.low,\n divisor.high\n );\n return fromBits(low, wasm.get_high(), this.unsigned);\n }\n if (this.isZero())\n return this.unsigned ? UZERO : ZERO;\n var approx, rem, res;\n if (!this.unsigned) {\n if (this.eq(MIN_VALUE)) {\n if (divisor.eq(ONE) || divisor.eq(NEG_ONE))\n return MIN_VALUE;\n else if (divisor.eq(MIN_VALUE))\n return ONE;\n else {\n var halfThis = this.shr(1);\n approx = halfThis.div(divisor).shl(1);\n if (approx.eq(ZERO)) {\n return divisor.isNegative() ? ONE : NEG_ONE;\n } else {\n rem = this.sub(divisor.mul(approx));\n res = approx.add(rem.div(divisor));\n return res;\n }\n }\n } else if (divisor.eq(MIN_VALUE))\n return this.unsigned ? UZERO : ZERO;\n if (this.isNegative()) {\n if (divisor.isNegative())\n return this.neg().div(divisor.neg());\n return this.neg().div(divisor).neg();\n } else if (divisor.isNegative())\n return this.div(divisor.neg()).neg();\n res = ZERO;\n } else {\n if (!divisor.unsigned)\n divisor = divisor.toUnsigned();\n if (divisor.gt(this))\n return UZERO;\n if (divisor.gt(this.shru(1)))\n return UONE;\n res = UZERO;\n }\n rem = this;\n while (rem.gte(divisor)) {\n approx = Math.max(1, Math.floor(rem.toNumber() / divisor.toNumber()));\n var log22 = Math.ceil(Math.log(approx) / Math.LN2), delta = log22 <= 48 ? 1 : pow_dbl(2, log22 - 48), approxRes = fromNumber(approx), approxRem = approxRes.mul(divisor);\n while (approxRem.isNegative() || approxRem.gt(rem)) {\n approx -= delta;\n approxRes = fromNumber(approx, this.unsigned);\n approxRem = approxRes.mul(divisor);\n }\n if (approxRes.isZero())\n approxRes = ONE;\n res = res.add(approxRes);\n rem = rem.sub(approxRem);\n }\n return res;\n };\n LongPrototype.div = LongPrototype.divide;\n LongPrototype.modulo = function modulo(divisor) {\n if (!isLong(divisor))\n divisor = fromValue(divisor);\n if (wasm) {\n var low = (this.unsigned ? wasm.rem_u : wasm.rem_s)(\n this.low,\n this.high,\n divisor.low,\n divisor.high\n );\n return fromBits(low, wasm.get_high(), this.unsigned);\n }\n return this.sub(this.div(divisor).mul(divisor));\n };\n LongPrototype.mod = LongPrototype.modulo;\n LongPrototype.rem = LongPrototype.modulo;\n LongPrototype.not = function not() {\n return fromBits(~this.low, ~this.high, this.unsigned);\n };\n LongPrototype.and = function and(other) {\n if (!isLong(other))\n other = fromValue(other);\n return fromBits(this.low & other.low, this.high & other.high, this.unsigned);\n };\n LongPrototype.or = function or(other) {\n if (!isLong(other))\n other = fromValue(other);\n return fromBits(this.low | other.low, this.high | other.high, this.unsigned);\n };\n LongPrototype.xor = function xor(other) {\n if (!isLong(other))\n other = fromValue(other);\n return fromBits(this.low ^ other.low, this.high ^ other.high, this.unsigned);\n };\n LongPrototype.shiftLeft = function shiftLeft(numBits) {\n if (isLong(numBits))\n numBits = numBits.toInt();\n if ((numBits &= 63) === 0)\n return this;\n else if (numBits < 32)\n return fromBits(this.low << numBits, this.high << numBits | this.low >>> 32 - numBits, this.unsigned);\n else\n return fromBits(0, this.low << numBits - 32, this.unsigned);\n };\n LongPrototype.shl = LongPrototype.shiftLeft;\n LongPrototype.shiftRight = function shiftRight(numBits) {\n if (isLong(numBits))\n numBits = numBits.toInt();\n if ((numBits &= 63) === 0)\n return this;\n else if (numBits < 32)\n return fromBits(this.low >>> numBits | this.high << 32 - numBits, this.high >> numBits, this.unsigned);\n else\n return fromBits(this.high >> numBits - 32, this.high >= 0 ? 0 : -1, this.unsigned);\n };\n LongPrototype.shr = LongPrototype.shiftRight;\n LongPrototype.shiftRightUnsigned = function shiftRightUnsigned(numBits) {\n if (isLong(numBits))\n numBits = numBits.toInt();\n numBits &= 63;\n if (numBits === 0)\n return this;\n else {\n var high = this.high;\n if (numBits < 32) {\n var low = this.low;\n return fromBits(low >>> numBits | high << 32 - numBits, high >>> numBits, this.unsigned);\n } else if (numBits === 32)\n return fromBits(high, 0, this.unsigned);\n else\n return fromBits(high >>> numBits - 32, 0, this.unsigned);\n }\n };\n LongPrototype.shru = LongPrototype.shiftRightUnsigned;\n LongPrototype.shr_u = LongPrototype.shiftRightUnsigned;\n LongPrototype.toSigned = function toSigned() {\n if (!this.unsigned)\n return this;\n return fromBits(this.low, this.high, false);\n };\n LongPrototype.toUnsigned = function toUnsigned() {\n if (this.unsigned)\n return this;\n return fromBits(this.low, this.high, true);\n };\n LongPrototype.toBytes = function toBytes(le) {\n return le ? this.toBytesLE() : this.toBytesBE();\n };\n LongPrototype.toBytesLE = function toBytesLE() {\n var hi = this.high, lo = this.low;\n return [\n lo & 255,\n lo >>> 8 & 255,\n lo >>> 16 & 255,\n lo >>> 24,\n hi & 255,\n hi >>> 8 & 255,\n hi >>> 16 & 255,\n hi >>> 24\n ];\n };\n LongPrototype.toBytesBE = function toBytesBE() {\n var hi = this.high, lo = this.low;\n return [\n hi >>> 24,\n hi >>> 16 & 255,\n hi >>> 8 & 255,\n hi & 255,\n lo >>> 24,\n lo >>> 16 & 255,\n lo >>> 8 & 255,\n lo & 255\n ];\n };\n Long2.fromBytes = function fromBytes(bytes, unsigned, le) {\n return le ? Long2.fromBytesLE(bytes, unsigned) : Long2.fromBytesBE(bytes, unsigned);\n };\n Long2.fromBytesLE = function fromBytesLE(bytes, unsigned) {\n return new Long2(\n bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes[3] << 24,\n bytes[4] | bytes[5] << 8 | bytes[6] << 16 | bytes[7] << 24,\n unsigned\n );\n };\n Long2.fromBytesBE = function fromBytesBE(bytes, unsigned) {\n return new Long2(\n bytes[4] << 24 | bytes[5] << 16 | bytes[6] << 8 | bytes[7],\n bytes[0] << 24 | bytes[1] << 16 | bytes[2] << 8 | bytes[3],\n unsigned\n );\n };\n }\n});\n\n// (disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js\nvar require_browser = __commonJS({\n \"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js\"() {\n }\n});\n\n// (disabled):util\nvar require_util = __commonJS({\n \"(disabled):util\"() {\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js\nvar require_alea = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js\"(exports, module) {\n (function(global2, module2, define2) {\n function Alea(seed) {\n var me = this, mash = Mash();\n me.next = function() {\n var t2 = 2091639 * me.s0 + me.c * 23283064365386963e-26;\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t2 - (me.c = t2 | 0);\n };\n me.c = 1;\n me.s0 = mash(\" \");\n me.s1 = mash(\" \");\n me.s2 = mash(\" \");\n me.s0 -= mash(seed);\n if (me.s0 < 0) {\n me.s0 += 1;\n }\n me.s1 -= mash(seed);\n if (me.s1 < 0) {\n me.s1 += 1;\n }\n me.s2 -= mash(seed);\n if (me.s2 < 0) {\n me.s2 += 1;\n }\n mash = null;\n }\n function copy(f, t2) {\n t2.c = f.c;\n t2.s0 = f.s0;\n t2.s1 = f.s1;\n t2.s2 = f.s2;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new Alea(seed), state = opts && opts.state, prng = xg.next;\n prng.int32 = function() {\n return xg.next() * 4294967296 | 0;\n };\n prng.double = function() {\n return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32;\n };\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n function Mash() {\n var n2 = 4022871197;\n var mash = function(data) {\n data = String(data);\n for (var i2 = 0; i2 < data.length; i2++) {\n n2 += data.charCodeAt(i2);\n var h = 0.02519603282416938 * n2;\n n2 = h >>> 0;\n h -= n2;\n h *= n2;\n n2 = h >>> 0;\n h -= n2;\n n2 += h * 4294967296;\n }\n return (n2 >>> 0) * 23283064365386963e-26;\n };\n return mash;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.alea = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js\nvar require_xor128 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.next = function() {\n var t2 = me.x ^ me.x << 11;\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= me.w >>> 19 ^ t2 ^ t2 >>> 8;\n };\n if (seed === (seed | 0)) {\n me.x = seed;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n }\n function copy(f, t2) {\n t2.x = f.x;\n t2.y = f.y;\n t2.z = f.z;\n t2.w = f.w;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xor128 = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js\nvar require_xorwow = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.next = function() {\n var t2 = me.x ^ me.x >>> 2;\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n me.w = me.v;\n return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t2 ^ t2 << 1)) | 0;\n };\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n if (seed === (seed | 0)) {\n me.x = seed;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n }\n function copy(f, t2) {\n t2.x = f.x;\n t2.y = f.y;\n t2.z = f.z;\n t2.w = f.w;\n t2.v = f.v;\n t2.d = f.d;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xorwow = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js\nvar require_xorshift7 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this;\n me.next = function() {\n var X = me.x, i2 = me.i, t2, v, w;\n t2 = X[i2];\n t2 ^= t2 >>> 7;\n v = t2 ^ t2 << 24;\n t2 = X[i2 + 1 & 7];\n v ^= t2 ^ t2 >>> 10;\n t2 = X[i2 + 3 & 7];\n v ^= t2 ^ t2 >>> 3;\n t2 = X[i2 + 4 & 7];\n v ^= t2 ^ t2 << 7;\n t2 = X[i2 + 7 & 7];\n t2 = t2 ^ t2 << 13;\n v ^= t2 ^ t2 << 9;\n X[i2] = v;\n me.i = i2 + 1 & 7;\n return v;\n };\n function init2(me2, seed2) {\n var j, w, X = [];\n if (seed2 === (seed2 | 0)) {\n w = X[0] = seed2;\n } else {\n seed2 = \"\" + seed2;\n for (j = 0; j < seed2.length; ++j) {\n X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13;\n }\n }\n while (X.length < 8)\n X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j)\n ;\n if (j == 8)\n w = X[7] = -1;\n else\n w = X[j];\n me2.x = X;\n me2.i = 0;\n for (j = 256; j > 0; --j) {\n me2.next();\n }\n }\n init2(me, seed);\n }\n function copy(f, t2) {\n t2.x = f.x.slice();\n t2.i = f.i;\n return t2;\n }\n function impl(seed, opts) {\n if (seed == null)\n seed = +new Date();\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x)\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xorshift7 = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js\nvar require_xor4096 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this;\n me.next = function() {\n var w = me.w, X = me.X, i2 = me.i, t2, v;\n me.w = w = w + 1640531527 | 0;\n v = X[i2 + 34 & 127];\n t2 = X[i2 = i2 + 1 & 127];\n v ^= v << 13;\n t2 ^= t2 << 17;\n v ^= v >>> 15;\n t2 ^= t2 >>> 12;\n v = X[i2] = v ^ t2;\n me.i = i2;\n return v + (w ^ w >>> 16) | 0;\n };\n function init2(me2, seed2) {\n var t2, v, i2, j, w, X = [], limit = 128;\n if (seed2 === (seed2 | 0)) {\n v = seed2;\n seed2 = null;\n } else {\n seed2 = seed2 + \"\\0\";\n v = 0;\n limit = Math.max(limit, seed2.length);\n }\n for (i2 = 0, j = -32; j < limit; ++j) {\n if (seed2)\n v ^= seed2.charCodeAt((j + 32) % seed2.length);\n if (j === 0)\n w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = w + 1640531527 | 0;\n t2 = X[j & 127] ^= v + w;\n i2 = 0 == t2 ? i2 + 1 : 0;\n }\n }\n if (i2 >= 128) {\n X[(seed2 && seed2.length || 0) & 127] = -1;\n }\n i2 = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[i2 + 34 & 127];\n t2 = X[i2 = i2 + 1 & 127];\n v ^= v << 13;\n t2 ^= t2 << 17;\n v ^= v >>> 15;\n t2 ^= t2 >>> 12;\n X[i2] = v ^ t2;\n }\n me2.w = w;\n me2.X = X;\n me2.i = i2;\n }\n init2(me, seed);\n }\n function copy(f, t2) {\n t2.i = f.i;\n t2.w = f.w;\n t2.X = f.X.slice();\n return t2;\n }\n ;\n function impl(seed, opts) {\n if (seed == null)\n seed = +new Date();\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X)\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xor4096 = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js\nvar require_tychei = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = b << 25 ^ b >>> 7 ^ c;\n c = c - d | 0;\n d = d << 24 ^ d >>> 8 ^ a;\n a = a - b | 0;\n me.b = b = b << 20 ^ b >>> 12 ^ c;\n me.c = c = c - d | 0;\n me.d = d << 16 ^ c >>> 16 ^ a;\n return me.a = a - b | 0;\n };\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n if (seed === Math.floor(seed)) {\n me.a = seed / 4294967296 | 0;\n me.b = seed | 0;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n }\n function copy(f, t2) {\n t2.a = f.a;\n t2.b = f.b;\n t2.c = f.c;\n t2.d = f.d;\n return t2;\n }\n ;\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.tychei = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// (disabled):crypto\nvar require_crypto = __commonJS({\n \"(disabled):crypto\"() {\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js\nvar require_seedrandom = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js\"(exports, module) {\n (function(global2, pool3, math) {\n var width = 256, chunks = 6, digits = 52, rngname = \"random\", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto;\n function seedrandom5(seed, options, callback) {\n var key = [];\n options = options == true ? { entropy: true } : options || {};\n var shortseed = mixkey(flatten4(\n options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed,\n 3\n ), key);\n var arc4 = new ARC4(key);\n var prng = function() {\n var n2 = arc4.g(chunks), d = startdenom, x = 0;\n while (n2 < significance) {\n n2 = (n2 + x) * width;\n d *= width;\n x = arc4.g(1);\n }\n while (n2 >= overflow) {\n n2 /= 2;\n d /= 2;\n x >>>= 1;\n }\n return (n2 + x) / d;\n };\n prng.int32 = function() {\n return arc4.g(4) | 0;\n };\n prng.quick = function() {\n return arc4.g(4) / 4294967296;\n };\n prng.double = prng;\n mixkey(tostring(arc4.S), pool3);\n return (options.pass || callback || function(prng2, seed2, is_math_call, state) {\n if (state) {\n if (state.S) {\n copy(state, arc4);\n }\n prng2.state = function() {\n return copy(arc4, {});\n };\n }\n if (is_math_call) {\n math[rngname] = prng2;\n return seed2;\n } else\n return prng2;\n })(\n prng,\n shortseed,\n \"global\" in options ? options.global : this == math,\n options.state\n );\n }\n function ARC4(key) {\n var t2, keylen = key.length, me = this, i2 = 0, j = me.i = me.j = 0, s2 = me.S = [];\n if (!keylen) {\n key = [keylen++];\n }\n while (i2 < width) {\n s2[i2] = i2++;\n }\n for (i2 = 0; i2 < width; i2++) {\n s2[i2] = s2[j = mask & j + key[i2 % keylen] + (t2 = s2[i2])];\n s2[j] = t2;\n }\n (me.g = function(count2) {\n var t3, r2 = 0, i3 = me.i, j2 = me.j, s3 = me.S;\n while (count2--) {\n t3 = s3[i3 = mask & i3 + 1];\n r2 = r2 * width + s3[mask & (s3[i3] = s3[j2 = mask & j2 + t3]) + (s3[j2] = t3)];\n }\n me.i = i3;\n me.j = j2;\n return r2;\n })(width);\n }\n function copy(f, t2) {\n t2.i = f.i;\n t2.j = f.j;\n t2.S = f.S.slice();\n return t2;\n }\n ;\n function flatten4(obj, depth) {\n var result = [], typ = typeof obj, prop;\n if (depth && typ == \"object\") {\n for (prop in obj) {\n try {\n result.push(flatten4(obj[prop], depth - 1));\n } catch (e2) {\n }\n }\n }\n return result.length ? result : typ == \"string\" ? obj : obj + \"\\0\";\n }\n function mixkey(seed, key) {\n var stringseed = seed + \"\", smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++);\n }\n return tostring(key);\n }\n function autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global2.crypto || global2.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e2) {\n var browser = global2.navigator, plugins = browser && browser.plugins;\n return [+new Date(), global2, plugins, global2.screen, tostring(pool3)];\n }\n }\n function tostring(a) {\n return String.fromCharCode.apply(0, a);\n }\n mixkey(math.random(), pool3);\n if (typeof module == \"object\" && module.exports) {\n module.exports = seedrandom5;\n try {\n nodecrypto = require_crypto();\n } catch (ex) {\n }\n } else if (typeof define == \"function\" && define.amd) {\n define(function() {\n return seedrandom5;\n });\n } else {\n math[\"seed\" + rngname] = seedrandom5;\n }\n })(\n typeof self !== \"undefined\" ? self : exports,\n [],\n Math\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js\nvar require_seedrandom2 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js\"(exports, module) {\n var alea5 = require_alea();\n var xor128 = require_xor128();\n var xorwow = require_xorwow();\n var xorshift7 = require_xorshift7();\n var xor4096 = require_xor4096();\n var tychei = require_tychei();\n var sr = require_seedrandom();\n sr.alea = alea5;\n sr.xor128 = xor128;\n sr.xorwow = xorwow;\n sr.xorshift7 = xorshift7;\n sr.xor4096 = xor4096;\n sr.tychei = tychei;\n module.exports = sr;\n }\n});\n\n// (disabled):node_modules/.pnpm/string_decoder@1.3.0/node_modules/string_decoder/lib/string_decoder.js\nvar require_string_decoder = __commonJS({\n \"(disabled):node_modules/.pnpm/string_decoder@1.3.0/node_modules/string_decoder/lib/string_decoder.js\"() {\n }\n});\n\n// (disabled):fs\nvar require_fs = __commonJS({\n \"(disabled):fs\"() {\n }\n});\n\n// (disabled):path\nvar require_path = __commonJS({\n \"(disabled):path\"() {\n }\n});\n\n// (disabled):worker_threads\nvar require_worker_threads = __commonJS({\n \"(disabled):worker_threads\"() {\n }\n});\n\n// (disabled):perf_hooks\nvar require_perf_hooks = __commonJS({\n \"(disabled):perf_hooks\"() {\n }\n});\n\n// (disabled):os\nvar require_os = __commonJS({\n \"(disabled):os\"() {\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js\nvar require_tfjs_backend_wasm_threaded_simd = __commonJS({\n \"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js\"(exports, module) {\n var WasmBackendModuleThreadedSimd2 = (() => {\n var _scriptDir = typeof document !== \"undefined\" && document.currentScript ? document.currentScript.src : void 0;\n if (typeof __filename !== \"undefined\")\n _scriptDir = _scriptDir || __filename;\n return function(WasmBackendModuleThreadedSimd3) {\n WasmBackendModuleThreadedSimd3 = WasmBackendModuleThreadedSimd3 || {};\n function GROWABLE_HEAP_I8() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAP8;\n }\n function GROWABLE_HEAP_U8() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPU8;\n }\n function GROWABLE_HEAP_I16() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAP16;\n }\n function GROWABLE_HEAP_U16() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPU16;\n }\n function GROWABLE_HEAP_I32() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAP32;\n }\n function GROWABLE_HEAP_F32() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPF32;\n }\n function GROWABLE_HEAP_F64() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPF64;\n }\n var Module = typeof WasmBackendModuleThreadedSimd3 !== \"undefined\" ? WasmBackendModuleThreadedSimd3 : {};\n var readyPromiseResolve, readyPromiseReject;\n Module[\"ready\"] = new Promise(function(resolve, reject) {\n readyPromiseResolve = resolve;\n readyPromiseReject = reject;\n });\n var beforeListeners;\n if (typeof process !== \"undefined\" && process.listeners) {\n beforeListeners = { uncaughtException: process.listeners(\"uncaughtException\"), unhandledRejection: process.listeners(\"unhandledRejection\") };\n }\n var moduleOverrides = Object.assign({}, Module);\n var arguments_ = [];\n var thisProgram = \"./this.program\";\n var quit_ = (status, toThrow) => {\n throw toThrow;\n };\n var ENVIRONMENT_IS_WEB = typeof window === \"object\";\n var ENVIRONMENT_IS_WORKER = typeof importScripts === \"function\";\n var ENVIRONMENT_IS_NODE = typeof process === \"object\" && typeof process.versions === \"object\" && typeof process.versions.node === \"string\";\n var ENVIRONMENT_IS_PTHREAD = Module[\"ENVIRONMENT_IS_PTHREAD\"] || false;\n var scriptDirectory = \"\";\n function locateFile(path) {\n if (Module[\"locateFile\"]) {\n return Module[\"locateFile\"](path, scriptDirectory);\n }\n return scriptDirectory + path;\n }\n var read_, readAsync, readBinary, setWindowTitle;\n function logExceptionOnExit(e2) {\n if (e2 instanceof ExitStatus)\n return;\n let toLog = e2;\n err(\"exiting due to exception: \" + toLog);\n }\n var fs;\n var nodePath;\n var requireNodeFS;\n if (ENVIRONMENT_IS_NODE) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = require_path().dirname(scriptDirectory) + \"/\";\n } else {\n scriptDirectory = __dirname + \"/\";\n }\n requireNodeFS = () => {\n if (!nodePath) {\n fs = require_fs();\n nodePath = require_path();\n }\n };\n read_ = function shell_read(filename, binary) {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n return fs.readFileSync(filename, binary ? void 0 : \"utf8\");\n };\n readBinary = (filename) => {\n var ret = read_(filename, true);\n if (!ret.buffer) {\n ret = new Uint8Array(ret);\n }\n return ret;\n };\n readAsync = (filename, onload, onerror) => {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n fs.readFile(filename, function(err2, data) {\n if (err2)\n onerror(err2);\n else\n onload(data.buffer);\n });\n };\n if (process[\"argv\"].length > 1) {\n thisProgram = process[\"argv\"][1].replace(/\\\\/g, \"/\");\n }\n arguments_ = process[\"argv\"].slice(2);\n process[\"on\"](\"uncaughtException\", function(ex) {\n if (!(ex instanceof ExitStatus)) {\n throw ex;\n }\n });\n process[\"on\"](\"unhandledRejection\", function(reason) {\n throw reason;\n });\n quit_ = (status, toThrow) => {\n if (keepRuntimeAlive()) {\n process[\"exitCode\"] = status;\n throw toThrow;\n }\n logExceptionOnExit(toThrow);\n process[\"exit\"](status);\n };\n Module[\"inspect\"] = function() {\n return \"[Emscripten Module object]\";\n };\n let nodeWorkerThreads;\n try {\n nodeWorkerThreads = require_worker_threads();\n } catch (e2) {\n console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?');\n throw e2;\n }\n global.Worker = nodeWorkerThreads.Worker;\n } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = self.location.href;\n } else if (typeof document !== \"undefined\" && document.currentScript) {\n scriptDirectory = document.currentScript.src;\n }\n if (typeof _scriptDir !== \"undefined\" && _scriptDir) {\n scriptDirectory = _scriptDir;\n }\n if (scriptDirectory.indexOf(\"blob:\") !== 0) {\n scriptDirectory = scriptDirectory.substr(0, scriptDirectory.replace(/[?#].*/, \"\").lastIndexOf(\"/\") + 1);\n } else {\n scriptDirectory = \"\";\n }\n if (!ENVIRONMENT_IS_NODE) {\n read_ = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.send(null);\n return xhr.responseText;\n };\n if (ENVIRONMENT_IS_WORKER) {\n readBinary = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.responseType = \"arraybuffer\";\n xhr.send(null);\n return new Uint8Array(xhr.response);\n };\n }\n readAsync = (url, onload, onerror) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, true);\n xhr.responseType = \"arraybuffer\";\n xhr.onload = () => {\n if (xhr.status == 200 || xhr.status == 0 && xhr.response) {\n onload(xhr.response);\n return;\n }\n onerror();\n };\n xhr.onerror = onerror;\n xhr.send(null);\n };\n }\n setWindowTitle = (title) => document.title = title;\n } else {\n }\n if (ENVIRONMENT_IS_NODE) {\n if (typeof performance === \"undefined\") {\n global.performance = require_perf_hooks().performance;\n }\n }\n var defaultPrint = console.log.bind(console);\n var defaultPrintErr = console.warn.bind(console);\n if (ENVIRONMENT_IS_NODE) {\n requireNodeFS();\n defaultPrint = (str) => fs.writeSync(1, str + \"\\n\");\n defaultPrintErr = (str) => fs.writeSync(2, str + \"\\n\");\n }\n var out = Module[\"print\"] || defaultPrint;\n var err = Module[\"printErr\"] || defaultPrintErr;\n Object.assign(Module, moduleOverrides);\n moduleOverrides = null;\n if (Module[\"arguments\"])\n arguments_ = Module[\"arguments\"];\n if (Module[\"thisProgram\"])\n thisProgram = Module[\"thisProgram\"];\n if (Module[\"quit\"])\n quit_ = Module[\"quit\"];\n var POINTER_SIZE = 4;\n function warnOnce(text) {\n if (!warnOnce.shown)\n warnOnce.shown = {};\n if (!warnOnce.shown[text]) {\n warnOnce.shown[text] = 1;\n err(text);\n }\n }\n function convertJsFunctionToWasm(func2, sig) {\n if (typeof WebAssembly.Function === \"function\") {\n var typeNames = { \"i\": \"i32\", \"j\": \"i64\", \"f\": \"f32\", \"d\": \"f64\" };\n var type = { parameters: [], results: sig[0] == \"v\" ? [] : [typeNames[sig[0]]] };\n for (var i2 = 1; i2 < sig.length; ++i2) {\n type.parameters.push(typeNames[sig[i2]]);\n }\n return new WebAssembly.Function(type, func2);\n }\n var typeSection = [1, 0, 1, 96];\n var sigRet = sig.slice(0, 1);\n var sigParam = sig.slice(1);\n var typeCodes = { \"i\": 127, \"j\": 126, \"f\": 125, \"d\": 124 };\n typeSection.push(sigParam.length);\n for (var i2 = 0; i2 < sigParam.length; ++i2) {\n typeSection.push(typeCodes[sigParam[i2]]);\n }\n if (sigRet == \"v\") {\n typeSection.push(0);\n } else {\n typeSection = typeSection.concat([1, typeCodes[sigRet]]);\n }\n typeSection[1] = typeSection.length - 2;\n var bytes = new Uint8Array([0, 97, 115, 109, 1, 0, 0, 0].concat(typeSection, [2, 7, 1, 1, 101, 1, 102, 0, 0, 7, 5, 1, 1, 102, 0, 0]));\n var module2 = new WebAssembly.Module(bytes);\n var instance = new WebAssembly.Instance(module2, { \"e\": { \"f\": func2 } });\n var wrappedFunc = instance.exports[\"f\"];\n return wrappedFunc;\n }\n var freeTableIndexes = [];\n var functionsInTableMap;\n function getEmptyTableSlot() {\n if (freeTableIndexes.length) {\n return freeTableIndexes.pop();\n }\n try {\n wasmTable.grow(1);\n } catch (err2) {\n if (!(err2 instanceof RangeError)) {\n throw err2;\n }\n throw \"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.\";\n }\n return wasmTable.length - 1;\n }\n function updateTableMap(offset, count2) {\n for (var i2 = offset; i2 < offset + count2; i2++) {\n var item = getWasmTableEntry(i2);\n if (item) {\n functionsInTableMap.set(item, i2);\n }\n }\n }\n var tempRet0 = 0;\n var setTempRet0 = (value) => {\n tempRet0 = value;\n };\n var Atomics_load = Atomics.load;\n var Atomics_store = Atomics.store;\n var Atomics_compareExchange = Atomics.compareExchange;\n var wasmBinary;\n if (Module[\"wasmBinary\"])\n wasmBinary = Module[\"wasmBinary\"];\n var noExitRuntime = Module[\"noExitRuntime\"] || true;\n if (typeof WebAssembly !== \"object\") {\n abort(\"no native wasm support detected\");\n }\n var wasmMemory;\n var wasmModule;\n var ABORT = false;\n var EXITSTATUS;\n function assert3(condition, text) {\n if (!condition) {\n abort(text);\n }\n }\n function getCFunc(ident) {\n var func2 = Module[\"_\" + ident];\n return func2;\n }\n function ccall(ident, returnType, argTypes, args, opts) {\n var toC = { \"string\": function(str) {\n var ret2 = 0;\n if (str !== null && str !== void 0 && str !== 0) {\n var len = (str.length << 2) + 1;\n ret2 = stackAlloc(len);\n stringToUTF8(str, ret2, len);\n }\n return ret2;\n }, \"array\": function(arr) {\n var ret2 = stackAlloc(arr.length);\n writeArrayToMemory(arr, ret2);\n return ret2;\n } };\n function convertReturnValue(ret2) {\n if (returnType === \"string\")\n return UTF8ToString(ret2);\n if (returnType === \"boolean\")\n return Boolean(ret2);\n return ret2;\n }\n var func2 = getCFunc(ident);\n var cArgs = [];\n var stack2 = 0;\n if (args) {\n for (var i2 = 0; i2 < args.length; i2++) {\n var converter = toC[argTypes[i2]];\n if (converter) {\n if (stack2 === 0)\n stack2 = stackSave();\n cArgs[i2] = converter(args[i2]);\n } else {\n cArgs[i2] = args[i2];\n }\n }\n }\n var ret = func2.apply(null, cArgs);\n function onDone(ret2) {\n if (stack2 !== 0)\n stackRestore(stack2);\n return convertReturnValue(ret2);\n }\n ret = onDone(ret);\n return ret;\n }\n function cwrap(ident, returnType, argTypes, opts) {\n argTypes = argTypes || [];\n var numericArgs = argTypes.every(function(type) {\n return type === \"number\";\n });\n var numericRet = returnType !== \"string\";\n if (numericRet && numericArgs && !opts) {\n return getCFunc(ident);\n }\n return function() {\n return ccall(ident, returnType, argTypes, arguments, opts);\n };\n }\n var ALLOC_STACK = 1;\n function TextDecoderWrapper(encoding) {\n var textDecoder = new TextDecoder(encoding);\n this.decode = (data) => {\n if (data.buffer instanceof SharedArrayBuffer) {\n data = new Uint8Array(data);\n }\n return textDecoder.decode.call(textDecoder, data);\n };\n }\n var UTF8Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoderWrapper(\"utf8\") : void 0;\n function UTF8ArrayToString(heap, idx, maxBytesToRead) {\n var endIdx = idx + maxBytesToRead;\n var endPtr = idx;\n while (heap[endPtr] && !(endPtr >= endIdx))\n ++endPtr;\n if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) {\n return UTF8Decoder.decode(heap.subarray(idx, endPtr));\n } else {\n var str = \"\";\n while (idx < endPtr) {\n var u0 = heap[idx++];\n if (!(u0 & 128)) {\n str += String.fromCharCode(u0);\n continue;\n }\n var u1 = heap[idx++] & 63;\n if ((u0 & 224) == 192) {\n str += String.fromCharCode((u0 & 31) << 6 | u1);\n continue;\n }\n var u2 = heap[idx++] & 63;\n if ((u0 & 240) == 224) {\n u0 = (u0 & 15) << 12 | u1 << 6 | u2;\n } else {\n u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63;\n }\n if (u0 < 65536) {\n str += String.fromCharCode(u0);\n } else {\n var ch = u0 - 65536;\n str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023);\n }\n }\n }\n return str;\n }\n function UTF8ToString(ptr, maxBytesToRead) {\n return ptr ? UTF8ArrayToString(GROWABLE_HEAP_U8(), ptr, maxBytesToRead) : \"\";\n }\n function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) {\n if (!(maxBytesToWrite > 0))\n return 0;\n var startIdx = outIdx;\n var endIdx = outIdx + maxBytesToWrite - 1;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343) {\n var u1 = str.charCodeAt(++i2);\n u = 65536 + ((u & 1023) << 10) | u1 & 1023;\n }\n if (u <= 127) {\n if (outIdx >= endIdx)\n break;\n heap[outIdx++] = u;\n } else if (u <= 2047) {\n if (outIdx + 1 >= endIdx)\n break;\n heap[outIdx++] = 192 | u >> 6;\n heap[outIdx++] = 128 | u & 63;\n } else if (u <= 65535) {\n if (outIdx + 2 >= endIdx)\n break;\n heap[outIdx++] = 224 | u >> 12;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n } else {\n if (outIdx + 3 >= endIdx)\n break;\n heap[outIdx++] = 240 | u >> 18;\n heap[outIdx++] = 128 | u >> 12 & 63;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n }\n }\n heap[outIdx] = 0;\n return outIdx - startIdx;\n }\n function stringToUTF8(str, outPtr, maxBytesToWrite) {\n return stringToUTF8Array(str, GROWABLE_HEAP_U8(), outPtr, maxBytesToWrite);\n }\n function lengthBytesUTF8(str) {\n var len = 0;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343)\n u = 65536 + ((u & 1023) << 10) | str.charCodeAt(++i2) & 1023;\n if (u <= 127)\n ++len;\n else if (u <= 2047)\n len += 2;\n else if (u <= 65535)\n len += 3;\n else\n len += 4;\n }\n return len;\n }\n var UTF16Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoderWrapper(\"utf-16le\") : void 0;\n function writeArrayToMemory(array2, buffer3) {\n GROWABLE_HEAP_I8().set(array2, buffer3);\n }\n function writeAsciiToMemory(str, buffer3, dontAddNull) {\n for (var i2 = 0; i2 < str.length; ++i2) {\n GROWABLE_HEAP_I8()[buffer3++ >> 0] = str.charCodeAt(i2);\n }\n if (!dontAddNull)\n GROWABLE_HEAP_I8()[buffer3 >> 0] = 0;\n }\n function alignUp(x, multiple) {\n if (x % multiple > 0) {\n x += multiple - x % multiple;\n }\n return x;\n }\n var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64;\n if (ENVIRONMENT_IS_PTHREAD) {\n buffer2 = Module[\"buffer\"];\n }\n function updateGlobalBufferAndViews(buf) {\n buffer2 = buf;\n Module[\"HEAP8\"] = HEAP8 = new Int8Array(buf);\n Module[\"HEAP16\"] = HEAP16 = new Int16Array(buf);\n Module[\"HEAP32\"] = HEAP32 = new Int32Array(buf);\n Module[\"HEAPU8\"] = HEAPU8 = new Uint8Array(buf);\n Module[\"HEAPU16\"] = HEAPU16 = new Uint16Array(buf);\n Module[\"HEAPU32\"] = HEAPU32 = new Uint32Array(buf);\n Module[\"HEAPF32\"] = HEAPF32 = new Float32Array(buf);\n Module[\"HEAPF64\"] = HEAPF64 = new Float64Array(buf);\n }\n var INITIAL_MEMORY = Module[\"INITIAL_MEMORY\"] || 16777216;\n if (ENVIRONMENT_IS_PTHREAD) {\n wasmMemory = Module[\"wasmMemory\"];\n buffer2 = Module[\"buffer\"];\n } else {\n if (Module[\"wasmMemory\"]) {\n wasmMemory = Module[\"wasmMemory\"];\n } else {\n wasmMemory = new WebAssembly.Memory({ \"initial\": INITIAL_MEMORY / 65536, \"maximum\": 2147483648 / 65536, \"shared\": true });\n if (!(wasmMemory.buffer instanceof SharedArrayBuffer)) {\n err(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\");\n if (ENVIRONMENT_IS_NODE) {\n console.log(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)\");\n }\n throw Error(\"bad memory\");\n }\n }\n }\n if (wasmMemory) {\n buffer2 = wasmMemory.buffer;\n }\n INITIAL_MEMORY = buffer2.byteLength;\n updateGlobalBufferAndViews(buffer2);\n var wasmTable;\n var __ATPRERUN__ = [];\n var __ATINIT__ = [];\n var __ATEXIT__ = [];\n var __ATPOSTRUN__ = [];\n var runtimeInitialized = false;\n var runtimeExited = false;\n var runtimeKeepaliveCounter = 0;\n function keepRuntimeAlive() {\n return noExitRuntime || runtimeKeepaliveCounter > 0;\n }\n function preRun() {\n if (Module[\"preRun\"]) {\n if (typeof Module[\"preRun\"] == \"function\")\n Module[\"preRun\"] = [Module[\"preRun\"]];\n while (Module[\"preRun\"].length) {\n addOnPreRun(Module[\"preRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPRERUN__);\n }\n function initRuntime() {\n runtimeInitialized = true;\n if (ENVIRONMENT_IS_PTHREAD)\n return;\n callRuntimeCallbacks(__ATINIT__);\n }\n function exitRuntime() {\n if (ENVIRONMENT_IS_PTHREAD)\n return;\n PThread.terminateAllThreads();\n runtimeExited = true;\n }\n function postRun() {\n if (ENVIRONMENT_IS_PTHREAD)\n return;\n if (Module[\"postRun\"]) {\n if (typeof Module[\"postRun\"] == \"function\")\n Module[\"postRun\"] = [Module[\"postRun\"]];\n while (Module[\"postRun\"].length) {\n addOnPostRun(Module[\"postRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPOSTRUN__);\n }\n function addOnPreRun(cb) {\n __ATPRERUN__.unshift(cb);\n }\n function addOnInit(cb) {\n __ATINIT__.unshift(cb);\n }\n function addOnPostRun(cb) {\n __ATPOSTRUN__.unshift(cb);\n }\n var runDependencies = 0;\n var runDependencyWatcher = null;\n var dependenciesFulfilled = null;\n function addRunDependency(id) {\n runDependencies++;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n }\n function removeRunDependency(id) {\n runDependencies--;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n if (runDependencies == 0) {\n if (runDependencyWatcher !== null) {\n clearInterval(runDependencyWatcher);\n runDependencyWatcher = null;\n }\n if (dependenciesFulfilled) {\n var callback = dependenciesFulfilled;\n dependenciesFulfilled = null;\n callback();\n }\n }\n }\n Module[\"preloadedImages\"] = {};\n Module[\"preloadedAudios\"] = {};\n function abort(what) {\n if (ENVIRONMENT_IS_PTHREAD) {\n postMessage({ \"cmd\": \"onAbort\", \"arg\": what });\n } else {\n if (Module[\"onAbort\"]) {\n Module[\"onAbort\"](what);\n }\n }\n what = \"Aborted(\" + what + \")\";\n err(what);\n ABORT = true;\n EXITSTATUS = 1;\n what += \". Build with -s ASSERTIONS=1 for more info.\";\n var e2 = new WebAssembly.RuntimeError(what);\n readyPromiseReject(e2);\n throw e2;\n }\n var dataURIPrefix = \"data:application/octet-stream;base64,\";\n function isDataURI(filename) {\n return filename.startsWith(dataURIPrefix);\n }\n function isFileURI(filename) {\n return filename.startsWith(\"file://\");\n }\n var wasmBinaryFile;\n wasmBinaryFile = \"tfjs-backend-wasm-threaded-simd.wasm\";\n if (!isDataURI(wasmBinaryFile)) {\n wasmBinaryFile = locateFile(wasmBinaryFile);\n }\n function getBinary(file) {\n try {\n if (file == wasmBinaryFile && wasmBinary) {\n return new Uint8Array(wasmBinary);\n }\n if (readBinary) {\n return readBinary(file);\n } else {\n throw \"both async and sync fetching of the wasm failed\";\n }\n } catch (err2) {\n abort(err2);\n }\n }\n function getBinaryPromise() {\n if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) {\n if (typeof fetch === \"function\" && !isFileURI(wasmBinaryFile)) {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n if (!response[\"ok\"]) {\n throw \"failed to load wasm binary file at '\" + wasmBinaryFile + \"'\";\n }\n return response[\"arrayBuffer\"]();\n }).catch(function() {\n return getBinary(wasmBinaryFile);\n });\n } else {\n if (readAsync) {\n return new Promise(function(resolve, reject) {\n readAsync(wasmBinaryFile, function(response) {\n resolve(new Uint8Array(response));\n }, reject);\n });\n }\n }\n }\n return Promise.resolve().then(function() {\n return getBinary(wasmBinaryFile);\n });\n }\n function createWasm() {\n var info = { \"env\": asmLibraryArg, \"wasi_snapshot_preview1\": asmLibraryArg };\n function receiveInstance(instance, module2) {\n var exports3 = instance.exports;\n Module[\"asm\"] = exports3;\n registerTlsInit(Module[\"asm\"][\"emscripten_tls_init\"]);\n wasmTable = Module[\"asm\"][\"__indirect_function_table\"];\n addOnInit(Module[\"asm\"][\"__wasm_call_ctors\"]);\n wasmModule = module2;\n if (!ENVIRONMENT_IS_PTHREAD) {\n var numWorkersToLoad = PThread.unusedWorkers.length;\n PThread.unusedWorkers.forEach(function(w) {\n PThread.loadWasmModuleToWorker(w, function() {\n if (!--numWorkersToLoad)\n removeRunDependency(\"wasm-instantiate\");\n });\n });\n }\n }\n if (!ENVIRONMENT_IS_PTHREAD) {\n addRunDependency(\"wasm-instantiate\");\n }\n function receiveInstantiationResult(result) {\n receiveInstance(result[\"instance\"], result[\"module\"]);\n }\n function instantiateArrayBuffer(receiver) {\n return getBinaryPromise().then(function(binary) {\n return WebAssembly.instantiate(binary, info);\n }).then(function(instance) {\n return instance;\n }).then(receiver, function(reason) {\n err(\"failed to asynchronously prepare wasm: \" + reason);\n abort(reason);\n });\n }\n function instantiateAsync() {\n if (!wasmBinary && typeof WebAssembly.instantiateStreaming === \"function\" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === \"function\") {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n var result = WebAssembly.instantiateStreaming(response, info);\n return result.then(receiveInstantiationResult, function(reason) {\n err(\"wasm streaming compile failed: \" + reason);\n err(\"falling back to ArrayBuffer instantiation\");\n return instantiateArrayBuffer(receiveInstantiationResult);\n });\n });\n } else {\n return instantiateArrayBuffer(receiveInstantiationResult);\n }\n }\n if (Module[\"instantiateWasm\"]) {\n try {\n var exports2 = Module[\"instantiateWasm\"](info, receiveInstance);\n return exports2;\n } catch (e2) {\n err(\"Module.instantiateWasm callback failed with error: \" + e2);\n return false;\n }\n }\n instantiateAsync().catch(readyPromiseReject);\n return {};\n }\n var tempDouble;\n var tempI64;\n var ASM_CONSTS = {};\n function callRuntimeCallbacks(callbacks2) {\n while (callbacks2.length > 0) {\n var callback = callbacks2.shift();\n if (typeof callback == \"function\") {\n callback(Module);\n continue;\n }\n var func2 = callback.func;\n if (typeof func2 === \"number\") {\n if (callback.arg === void 0) {\n getWasmTableEntry(func2)();\n } else {\n getWasmTableEntry(func2)(callback.arg);\n }\n } else {\n func2(callback.arg === void 0 ? null : callback.arg);\n }\n }\n }\n function withStackSave(f) {\n var stack2 = stackSave();\n var ret = f();\n stackRestore(stack2);\n return ret;\n }\n function demangle(func2) {\n return func2;\n }\n function demangleAll(text) {\n var regex = /\\b_Z[\\w\\d_]+/g;\n return text.replace(regex, function(x) {\n var y = demangle(x);\n return x === y ? x : y + \" [\" + x + \"]\";\n });\n }\n function killThread(pthread_ptr) {\n GROWABLE_HEAP_I32()[pthread_ptr >> 2] = 0;\n var pthread = PThread.pthreads[pthread_ptr];\n delete PThread.pthreads[pthread_ptr];\n pthread.worker.terminate();\n __emscripten_thread_free_data(pthread_ptr);\n PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker), 1);\n pthread.worker.pthread = void 0;\n }\n function cancelThread(pthread_ptr) {\n var pthread = PThread.pthreads[pthread_ptr];\n pthread.worker.postMessage({ \"cmd\": \"cancel\" });\n }\n function cleanupThread(pthread_ptr) {\n var pthread = PThread.pthreads[pthread_ptr];\n if (pthread) {\n GROWABLE_HEAP_I32()[pthread_ptr >> 2] = 0;\n var worker = pthread.worker;\n PThread.returnWorkerToPool(worker);\n }\n }\n function _exit(status) {\n exit(status);\n }\n function handleException(e2) {\n if (e2 instanceof ExitStatus || e2 == \"unwind\") {\n return EXITSTATUS;\n }\n quit_(1, e2);\n }\n var PThread = { unusedWorkers: [], runningWorkers: [], tlsInitFunctions: [], init: function() {\n if (ENVIRONMENT_IS_PTHREAD) {\n PThread.initWorker();\n } else {\n PThread.initMainThread();\n }\n }, initMainThread: function() {\n var pthreadPoolSize = 8;\n for (var i2 = 0; i2 < pthreadPoolSize; ++i2) {\n PThread.allocateUnusedWorker();\n }\n }, initWorker: function() {\n noExitRuntime = false;\n }, pthreads: {}, setExitStatus: function(status) {\n EXITSTATUS = status;\n }, terminateAllThreads: function() {\n for (var t2 in PThread.pthreads) {\n var pthread = PThread.pthreads[t2];\n if (pthread && pthread.worker) {\n PThread.returnWorkerToPool(pthread.worker);\n }\n }\n for (var i2 = 0; i2 < PThread.unusedWorkers.length; ++i2) {\n var worker = PThread.unusedWorkers[i2];\n worker.terminate();\n }\n PThread.unusedWorkers = [];\n }, returnWorkerToPool: function(worker) {\n PThread.runWithoutMainThreadQueuedCalls(function() {\n delete PThread.pthreads[worker.pthread.threadInfoStruct];\n PThread.unusedWorkers.push(worker);\n PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker), 1);\n __emscripten_thread_free_data(worker.pthread.threadInfoStruct);\n worker.pthread = void 0;\n });\n }, runWithoutMainThreadQueuedCalls: function(func2) {\n GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 0;\n try {\n func2();\n } finally {\n GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 1;\n }\n }, receiveObjectTransfer: function(data) {\n }, threadInit: function() {\n for (var i2 in PThread.tlsInitFunctions) {\n PThread.tlsInitFunctions[i2]();\n }\n }, loadWasmModuleToWorker: function(worker, onFinishedLoading) {\n worker.onmessage = (e2) => {\n var d = e2[\"data\"];\n var cmd = d[\"cmd\"];\n if (worker.pthread)\n PThread.currentProxiedOperationCallerThread = worker.pthread.threadInfoStruct;\n if (d[\"targetThread\"] && d[\"targetThread\"] != _pthread_self()) {\n var thread = PThread.pthreads[d.targetThread];\n if (thread) {\n thread.worker.postMessage(d, d[\"transferList\"]);\n } else {\n err('Internal error! Worker sent a message \"' + cmd + '\" to target pthread ' + d[\"targetThread\"] + \", but that thread no longer exists!\");\n }\n PThread.currentProxiedOperationCallerThread = void 0;\n return;\n }\n if (cmd === \"processQueuedMainThreadWork\") {\n _emscripten_main_thread_process_queued_calls();\n } else if (cmd === \"spawnThread\") {\n spawnThread(d);\n } else if (cmd === \"cleanupThread\") {\n cleanupThread(d[\"thread\"]);\n } else if (cmd === \"killThread\") {\n killThread(d[\"thread\"]);\n } else if (cmd === \"cancelThread\") {\n cancelThread(d[\"thread\"]);\n } else if (cmd === \"loaded\") {\n worker.loaded = true;\n if (onFinishedLoading)\n onFinishedLoading(worker);\n if (worker.runPthread) {\n worker.runPthread();\n delete worker.runPthread;\n }\n } else if (cmd === \"print\") {\n out(\"Thread \" + d[\"threadId\"] + \": \" + d[\"text\"]);\n } else if (cmd === \"printErr\") {\n err(\"Thread \" + d[\"threadId\"] + \": \" + d[\"text\"]);\n } else if (cmd === \"alert\") {\n alert(\"Thread \" + d[\"threadId\"] + \": \" + d[\"text\"]);\n } else if (d.target === \"setimmediate\") {\n worker.postMessage(d);\n } else if (cmd === \"onAbort\") {\n if (Module[\"onAbort\"]) {\n Module[\"onAbort\"](d[\"arg\"]);\n }\n } else {\n err(\"worker sent an unknown command \" + cmd);\n }\n PThread.currentProxiedOperationCallerThread = void 0;\n };\n worker.onerror = (e2) => {\n var message = \"worker sent an error!\";\n err(message + \" \" + e2.filename + \":\" + e2.lineno + \": \" + e2.message);\n throw e2;\n };\n if (ENVIRONMENT_IS_NODE) {\n worker.on(\"message\", function(data) {\n worker.onmessage({ data });\n });\n worker.on(\"error\", function(e2) {\n worker.onerror(e2);\n });\n worker.on(\"detachedExit\", function() {\n });\n }\n worker.postMessage({ \"cmd\": \"load\", \"urlOrBlob\": Module[\"mainScriptUrlOrBlob\"] || _scriptDir, \"wasmMemory\": wasmMemory, \"wasmModule\": wasmModule });\n }, allocateUnusedWorker: function() {\n var pthreadMainJs = locateFile(\"tfjs-backend-wasm-threaded-simd.worker.js\");\n PThread.unusedWorkers.push(new Worker(pthreadMainJs));\n }, getNewWorker: function() {\n if (PThread.unusedWorkers.length == 0) {\n PThread.allocateUnusedWorker();\n PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0]);\n }\n return PThread.unusedWorkers.pop();\n } };\n function establishStackSpace() {\n var pthread_ptr = _pthread_self();\n var stackTop = GROWABLE_HEAP_I32()[pthread_ptr + 44 >> 2];\n var stackSize = GROWABLE_HEAP_I32()[pthread_ptr + 48 >> 2];\n var stackMax = stackTop - stackSize;\n _emscripten_stack_set_limits(stackTop, stackMax);\n stackRestore(stackTop);\n }\n Module[\"establishStackSpace\"] = establishStackSpace;\n function exitOnMainThread(returnCode) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(1, 0, returnCode);\n try {\n _exit(returnCode);\n } catch (e2) {\n handleException(e2);\n }\n }\n var wasmTableMirror = [];\n function getWasmTableEntry(funcPtr) {\n var func2 = wasmTableMirror[funcPtr];\n if (!func2) {\n if (funcPtr >= wasmTableMirror.length)\n wasmTableMirror.length = funcPtr + 1;\n wasmTableMirror[funcPtr] = func2 = wasmTable.get(funcPtr);\n }\n return func2;\n }\n function invokeEntryPoint(ptr, arg) {\n return getWasmTableEntry(ptr)(arg);\n }\n Module[\"invokeEntryPoint\"] = invokeEntryPoint;\n function jsStackTrace() {\n var error = new Error();\n if (!error.stack) {\n try {\n throw new Error();\n } catch (e2) {\n error = e2;\n }\n if (!error.stack) {\n return \"(no stack trace available)\";\n }\n }\n return error.stack.toString();\n }\n function registerTlsInit(tlsInitFunc, moduleExports, metadata) {\n PThread.tlsInitFunctions.push(tlsInitFunc);\n }\n function setWasmTableEntry(idx, func2) {\n wasmTable.set(idx, func2);\n wasmTableMirror[idx] = func2;\n }\n var _emscripten_get_now;\n if (ENVIRONMENT_IS_NODE) {\n _emscripten_get_now = () => {\n var t2 = process[\"hrtime\"]();\n return t2[0] * 1e3 + t2[1] / 1e6;\n };\n } else if (ENVIRONMENT_IS_PTHREAD) {\n _emscripten_get_now = () => performance.now() - Module[\"__performance_now_clock_drift\"];\n } else\n _emscripten_get_now = () => performance.now();\n var _emscripten_get_now_is_monotonic = true;\n function setErrNo(value) {\n GROWABLE_HEAP_I32()[___errno_location() >> 2] = value;\n return value;\n }\n function _clock_gettime(clk_id, tp) {\n var now2;\n if (clk_id === 0) {\n now2 = Date.now();\n } else if ((clk_id === 1 || clk_id === 4) && _emscripten_get_now_is_monotonic) {\n now2 = _emscripten_get_now();\n } else {\n setErrNo(28);\n return -1;\n }\n GROWABLE_HEAP_I32()[tp >> 2] = now2 / 1e3 | 0;\n GROWABLE_HEAP_I32()[tp + 4 >> 2] = now2 % 1e3 * 1e3 * 1e3 | 0;\n return 0;\n }\n function ___clock_gettime(a0, a12) {\n return _clock_gettime(a0, a12);\n }\n function ___emscripten_init_main_thread_js(tb) {\n __emscripten_thread_init(tb, !ENVIRONMENT_IS_WORKER, 1, !ENVIRONMENT_IS_WEB);\n PThread.threadInit();\n }\n function ___emscripten_thread_cleanup(thread) {\n if (!ENVIRONMENT_IS_PTHREAD)\n cleanupThread(thread);\n else\n postMessage({ \"cmd\": \"cleanupThread\", \"thread\": thread });\n }\n function spawnThread(threadParams) {\n var worker = PThread.getNewWorker();\n if (!worker) {\n return 6;\n }\n PThread.runningWorkers.push(worker);\n var pthread = PThread.pthreads[threadParams.pthread_ptr] = { worker, threadInfoStruct: threadParams.pthread_ptr };\n worker.pthread = pthread;\n var msg = { \"cmd\": \"run\", \"start_routine\": threadParams.startRoutine, \"arg\": threadParams.arg, \"threadInfoStruct\": threadParams.pthread_ptr };\n worker.runPthread = () => {\n msg.time = performance.now();\n worker.postMessage(msg, threadParams.transferList);\n };\n if (worker.loaded) {\n worker.runPthread();\n delete worker.runPthread;\n }\n return 0;\n }\n function ___pthread_create_js(pthread_ptr, attr, start_routine, arg) {\n if (typeof SharedArrayBuffer === \"undefined\") {\n err(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\");\n return 6;\n }\n var transferList = [];\n var error = 0;\n if (ENVIRONMENT_IS_PTHREAD && (transferList.length === 0 || error)) {\n return _emscripten_sync_run_in_main_thread_4(687865856, pthread_ptr, attr, start_routine, arg);\n }\n if (error)\n return error;\n var threadParams = { startRoutine: start_routine, pthread_ptr, arg, transferList };\n if (ENVIRONMENT_IS_PTHREAD) {\n threadParams.cmd = \"spawnThread\";\n postMessage(threadParams, transferList);\n return 0;\n }\n return spawnThread(threadParams);\n }\n function __emscripten_default_pthread_stack_size() {\n return 2097152;\n }\n function __emscripten_notify_thread_queue(targetThreadId, mainThreadId) {\n if (targetThreadId == mainThreadId) {\n postMessage({ \"cmd\": \"processQueuedMainThreadWork\" });\n } else if (ENVIRONMENT_IS_PTHREAD) {\n postMessage({ \"targetThread\": targetThreadId, \"cmd\": \"processThreadQueue\" });\n } else {\n var pthread = PThread.pthreads[targetThreadId];\n var worker = pthread && pthread.worker;\n if (!worker) {\n return;\n }\n worker.postMessage({ \"cmd\": \"processThreadQueue\" });\n }\n return 1;\n }\n function _abort() {\n abort(\"\");\n }\n function _emscripten_check_blocking_allowed() {\n if (ENVIRONMENT_IS_NODE)\n return;\n if (ENVIRONMENT_IS_WORKER)\n return;\n warnOnce(\"Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread\");\n }\n function _emscripten_get_heap_max() {\n return 2147483648;\n }\n function _emscripten_memcpy_big(dest, src, num) {\n GROWABLE_HEAP_U8().copyWithin(dest, src, src + num);\n }\n function _emscripten_num_logical_cores() {\n if (ENVIRONMENT_IS_NODE)\n return require_os().cpus().length;\n return navigator[\"hardwareConcurrency\"];\n }\n function _emscripten_proxy_to_main_thread_js(index, sync) {\n var numCallArgs = arguments.length - 2;\n var outerArgs = arguments;\n return withStackSave(function() {\n var serializedNumCallArgs = numCallArgs;\n var args = stackAlloc(serializedNumCallArgs * 8);\n var b = args >> 3;\n for (var i2 = 0; i2 < numCallArgs; i2++) {\n var arg = outerArgs[2 + i2];\n GROWABLE_HEAP_F64()[b + i2] = arg;\n }\n return _emscripten_run_in_main_runtime_thread_js(index, serializedNumCallArgs, args, sync);\n });\n }\n var _emscripten_receive_on_main_thread_js_callArgs = [];\n function _emscripten_receive_on_main_thread_js(index, numCallArgs, args) {\n _emscripten_receive_on_main_thread_js_callArgs.length = numCallArgs;\n var b = args >> 3;\n for (var i2 = 0; i2 < numCallArgs; i2++) {\n _emscripten_receive_on_main_thread_js_callArgs[i2] = GROWABLE_HEAP_F64()[b + i2];\n }\n var isEmAsmConst = index < 0;\n var func2 = !isEmAsmConst ? proxiedFunctionTable[index] : ASM_CONSTS[-index - 1];\n return func2.apply(null, _emscripten_receive_on_main_thread_js_callArgs);\n }\n function emscripten_realloc_buffer(size) {\n try {\n wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16);\n updateGlobalBufferAndViews(wasmMemory.buffer);\n return 1;\n } catch (e2) {\n }\n }\n function _emscripten_resize_heap(requestedSize) {\n var oldSize = GROWABLE_HEAP_U8().length;\n requestedSize = requestedSize >>> 0;\n if (requestedSize <= oldSize) {\n return false;\n }\n var maxHeapSize = _emscripten_get_heap_max();\n if (requestedSize > maxHeapSize) {\n return false;\n }\n for (var cutDown = 1; cutDown <= 4; cutDown *= 2) {\n var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown);\n overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296);\n var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536));\n var replacement = emscripten_realloc_buffer(newSize);\n if (replacement) {\n return true;\n }\n }\n return false;\n }\n var JSEvents = { inEventHandler: 0, removeAllEventListeners: function() {\n for (var i2 = JSEvents.eventHandlers.length - 1; i2 >= 0; --i2) {\n JSEvents._removeHandler(i2);\n }\n JSEvents.eventHandlers = [];\n JSEvents.deferredCalls = [];\n }, registerRemoveEventListeners: function() {\n if (!JSEvents.removeEventListenersRegistered) {\n __ATEXIT__.push(JSEvents.removeAllEventListeners);\n JSEvents.removeEventListenersRegistered = true;\n }\n }, deferredCalls: [], deferCall: function(targetFunction, precedence, argsList) {\n function arraysHaveEqualContent(arrA, arrB) {\n if (arrA.length != arrB.length)\n return false;\n for (var i3 in arrA) {\n if (arrA[i3] != arrB[i3])\n return false;\n }\n return true;\n }\n for (var i2 in JSEvents.deferredCalls) {\n var call = JSEvents.deferredCalls[i2];\n if (call.targetFunction == targetFunction && arraysHaveEqualContent(call.argsList, argsList)) {\n return;\n }\n }\n JSEvents.deferredCalls.push({ targetFunction, precedence, argsList });\n JSEvents.deferredCalls.sort(function(x, y) {\n return x.precedence < y.precedence;\n });\n }, removeDeferredCalls: function(targetFunction) {\n for (var i2 = 0; i2 < JSEvents.deferredCalls.length; ++i2) {\n if (JSEvents.deferredCalls[i2].targetFunction == targetFunction) {\n JSEvents.deferredCalls.splice(i2, 1);\n --i2;\n }\n }\n }, canPerformEventHandlerRequests: function() {\n return JSEvents.inEventHandler && JSEvents.currentEventHandler.allowsDeferredCalls;\n }, runDeferredCalls: function() {\n if (!JSEvents.canPerformEventHandlerRequests()) {\n return;\n }\n for (var i2 = 0; i2 < JSEvents.deferredCalls.length; ++i2) {\n var call = JSEvents.deferredCalls[i2];\n JSEvents.deferredCalls.splice(i2, 1);\n --i2;\n call.targetFunction.apply(null, call.argsList);\n }\n }, eventHandlers: [], removeAllHandlersOnTarget: function(target, eventTypeString) {\n for (var i2 = 0; i2 < JSEvents.eventHandlers.length; ++i2) {\n if (JSEvents.eventHandlers[i2].target == target && (!eventTypeString || eventTypeString == JSEvents.eventHandlers[i2].eventTypeString)) {\n JSEvents._removeHandler(i2--);\n }\n }\n }, _removeHandler: function(i2) {\n var h = JSEvents.eventHandlers[i2];\n h.target.removeEventListener(h.eventTypeString, h.eventListenerFunc, h.useCapture);\n JSEvents.eventHandlers.splice(i2, 1);\n }, registerOrRemoveHandler: function(eventHandler) {\n var jsEventHandler = function jsEventHandler2(event) {\n ++JSEvents.inEventHandler;\n JSEvents.currentEventHandler = eventHandler;\n JSEvents.runDeferredCalls();\n eventHandler.handlerFunc(event);\n JSEvents.runDeferredCalls();\n --JSEvents.inEventHandler;\n };\n if (eventHandler.callbackfunc) {\n eventHandler.eventListenerFunc = jsEventHandler;\n eventHandler.target.addEventListener(eventHandler.eventTypeString, jsEventHandler, eventHandler.useCapture);\n JSEvents.eventHandlers.push(eventHandler);\n JSEvents.registerRemoveEventListeners();\n } else {\n for (var i2 = 0; i2 < JSEvents.eventHandlers.length; ++i2) {\n if (JSEvents.eventHandlers[i2].target == eventHandler.target && JSEvents.eventHandlers[i2].eventTypeString == eventHandler.eventTypeString) {\n JSEvents._removeHandler(i2--);\n }\n }\n }\n }, queueEventHandlerOnThread_iiii: function(targetThread, eventHandlerFunc, eventTypeId, eventData, userData) {\n withStackSave(function() {\n var varargs = stackAlloc(12);\n GROWABLE_HEAP_I32()[varargs >> 2] = eventTypeId;\n GROWABLE_HEAP_I32()[varargs + 4 >> 2] = eventData;\n GROWABLE_HEAP_I32()[varargs + 8 >> 2] = userData;\n _emscripten_dispatch_to_thread_(targetThread, 637534208, eventHandlerFunc, eventData, varargs);\n });\n }, getTargetThreadForEventCallback: function(targetThread) {\n switch (targetThread) {\n case 1:\n return 0;\n case 2:\n return PThread.currentProxiedOperationCallerThread;\n default:\n return targetThread;\n }\n }, getNodeNameForTarget: function(target) {\n if (!target)\n return \"\";\n if (target == window)\n return \"#window\";\n if (target == screen)\n return \"#screen\";\n return target && target.nodeName ? target.nodeName : \"\";\n }, fullscreenEnabled: function() {\n return document.fullscreenEnabled || document.webkitFullscreenEnabled;\n } };\n function stringToNewUTF8(jsString) {\n var length = lengthBytesUTF8(jsString) + 1;\n var cString = _malloc(length);\n stringToUTF8(jsString, cString, length);\n return cString;\n }\n function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height) {\n withStackSave(function() {\n var varargs = stackAlloc(12);\n var targetCanvasPtr = 0;\n if (targetCanvas) {\n targetCanvasPtr = stringToNewUTF8(targetCanvas);\n }\n GROWABLE_HEAP_I32()[varargs >> 2] = targetCanvasPtr;\n GROWABLE_HEAP_I32()[varargs + 4 >> 2] = width;\n GROWABLE_HEAP_I32()[varargs + 8 >> 2] = height;\n _emscripten_dispatch_to_thread_(targetThread, 657457152, 0, targetCanvasPtr, varargs);\n });\n }\n function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, targetCanvas, width, height) {\n targetCanvas = targetCanvas ? UTF8ToString(targetCanvas) : \"\";\n _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height);\n }\n function maybeCStringToJsString(cString) {\n return cString > 2 ? UTF8ToString(cString) : cString;\n }\n var specialHTMLTargets = [0, typeof document !== \"undefined\" ? document : 0, typeof window !== \"undefined\" ? window : 0];\n function findEventTarget(target) {\n target = maybeCStringToJsString(target);\n var domElement = specialHTMLTargets[target] || (typeof document !== \"undefined\" ? document.querySelector(target) : void 0);\n return domElement;\n }\n function findCanvasEventTarget(target) {\n return findEventTarget(target);\n }\n function _emscripten_set_canvas_element_size_calling_thread(target, width, height) {\n var canvas = findCanvasEventTarget(target);\n if (!canvas)\n return -4;\n if (canvas.canvasSharedPtr) {\n GROWABLE_HEAP_I32()[canvas.canvasSharedPtr >> 2] = width;\n GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 4 >> 2] = height;\n }\n if (canvas.offscreenCanvas || !canvas.controlTransferredOffscreen) {\n if (canvas.offscreenCanvas)\n canvas = canvas.offscreenCanvas;\n var autoResizeViewport = false;\n if (canvas.GLctxObject && canvas.GLctxObject.GLctx) {\n var prevViewport = canvas.GLctxObject.GLctx.getParameter(2978);\n autoResizeViewport = prevViewport[0] === 0 && prevViewport[1] === 0 && prevViewport[2] === canvas.width && prevViewport[3] === canvas.height;\n }\n canvas.width = width;\n canvas.height = height;\n if (autoResizeViewport) {\n canvas.GLctxObject.GLctx.viewport(0, 0, width, height);\n }\n } else if (canvas.canvasSharedPtr) {\n var targetThread = GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 8 >> 2];\n _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, target, width, height);\n return 1;\n } else {\n return -4;\n }\n return 0;\n }\n function _emscripten_set_canvas_element_size_main_thread(target, width, height) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(2, 1, target, width, height);\n return _emscripten_set_canvas_element_size_calling_thread(target, width, height);\n }\n function _emscripten_set_canvas_element_size(target, width, height) {\n var canvas = findCanvasEventTarget(target);\n if (canvas) {\n return _emscripten_set_canvas_element_size_calling_thread(target, width, height);\n } else {\n return _emscripten_set_canvas_element_size_main_thread(target, width, height);\n }\n }\n function _emscripten_unwind_to_js_event_loop() {\n throw \"unwind\";\n }\n function __webgl_enable_ANGLE_instanced_arrays(ctx) {\n var ext = ctx.getExtension(\"ANGLE_instanced_arrays\");\n if (ext) {\n ctx[\"vertexAttribDivisor\"] = function(index, divisor) {\n ext[\"vertexAttribDivisorANGLE\"](index, divisor);\n };\n ctx[\"drawArraysInstanced\"] = function(mode, first, count2, primcount) {\n ext[\"drawArraysInstancedANGLE\"](mode, first, count2, primcount);\n };\n ctx[\"drawElementsInstanced\"] = function(mode, count2, type, indices, primcount) {\n ext[\"drawElementsInstancedANGLE\"](mode, count2, type, indices, primcount);\n };\n return 1;\n }\n }\n function __webgl_enable_OES_vertex_array_object(ctx) {\n var ext = ctx.getExtension(\"OES_vertex_array_object\");\n if (ext) {\n ctx[\"createVertexArray\"] = function() {\n return ext[\"createVertexArrayOES\"]();\n };\n ctx[\"deleteVertexArray\"] = function(vao) {\n ext[\"deleteVertexArrayOES\"](vao);\n };\n ctx[\"bindVertexArray\"] = function(vao) {\n ext[\"bindVertexArrayOES\"](vao);\n };\n ctx[\"isVertexArray\"] = function(vao) {\n return ext[\"isVertexArrayOES\"](vao);\n };\n return 1;\n }\n }\n function __webgl_enable_WEBGL_draw_buffers(ctx) {\n var ext = ctx.getExtension(\"WEBGL_draw_buffers\");\n if (ext) {\n ctx[\"drawBuffers\"] = function(n2, bufs) {\n ext[\"drawBuffersWEBGL\"](n2, bufs);\n };\n return 1;\n }\n }\n function __webgl_enable_WEBGL_multi_draw(ctx) {\n return !!(ctx.multiDrawWebgl = ctx.getExtension(\"WEBGL_multi_draw\"));\n }\n var GL = { counter: 1, buffers: [], programs: [], framebuffers: [], renderbuffers: [], textures: [], shaders: [], vaos: [], contexts: {}, offscreenCanvases: {}, queries: [], stringCache: {}, unpackAlignment: 4, recordError: function recordError(errorCode) {\n if (!GL.lastError) {\n GL.lastError = errorCode;\n }\n }, getNewId: function(table) {\n var ret = GL.counter++;\n for (var i2 = table.length; i2 < ret; i2++) {\n table[i2] = null;\n }\n return ret;\n }, getSource: function(shader, count2, string2, length) {\n var source = \"\";\n for (var i2 = 0; i2 < count2; ++i2) {\n var len = length ? GROWABLE_HEAP_I32()[length + i2 * 4 >> 2] : -1;\n source += UTF8ToString(GROWABLE_HEAP_I32()[string2 + i2 * 4 >> 2], len < 0 ? void 0 : len);\n }\n return source;\n }, createContext: function(canvas, webGLContextAttributes) {\n if (!canvas.getContextSafariWebGL2Fixed) {\n canvas.getContextSafariWebGL2Fixed = canvas.getContext;\n canvas.getContext = function(ver, attrs) {\n var gl = canvas.getContextSafariWebGL2Fixed(ver, attrs);\n return ver == \"webgl\" == gl instanceof WebGLRenderingContext ? gl : null;\n };\n }\n var ctx = canvas.getContext(\"webgl\", webGLContextAttributes);\n if (!ctx)\n return 0;\n var handle = GL.registerContext(ctx, webGLContextAttributes);\n return handle;\n }, registerContext: function(ctx, webGLContextAttributes) {\n var handle = _malloc(8);\n GROWABLE_HEAP_I32()[handle + 4 >> 2] = _pthread_self();\n var context = { handle, attributes: webGLContextAttributes, version: webGLContextAttributes.majorVersion, GLctx: ctx };\n if (ctx.canvas)\n ctx.canvas.GLctxObject = context;\n GL.contexts[handle] = context;\n if (typeof webGLContextAttributes.enableExtensionsByDefault === \"undefined\" || webGLContextAttributes.enableExtensionsByDefault) {\n GL.initExtensions(context);\n }\n return handle;\n }, makeContextCurrent: function(contextHandle) {\n GL.currentContext = GL.contexts[contextHandle];\n Module.ctx = GLctx = GL.currentContext && GL.currentContext.GLctx;\n return !(contextHandle && !GLctx);\n }, getContext: function(contextHandle) {\n return GL.contexts[contextHandle];\n }, deleteContext: function(contextHandle) {\n if (GL.currentContext === GL.contexts[contextHandle])\n GL.currentContext = null;\n if (typeof JSEvents === \"object\")\n JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);\n if (GL.contexts[contextHandle] && GL.contexts[contextHandle].GLctx.canvas)\n GL.contexts[contextHandle].GLctx.canvas.GLctxObject = void 0;\n _free(GL.contexts[contextHandle].handle);\n GL.contexts[contextHandle] = null;\n }, initExtensions: function(context) {\n if (!context)\n context = GL.currentContext;\n if (context.initExtensionsDone)\n return;\n context.initExtensionsDone = true;\n var GLctx2 = context.GLctx;\n __webgl_enable_ANGLE_instanced_arrays(GLctx2);\n __webgl_enable_OES_vertex_array_object(GLctx2);\n __webgl_enable_WEBGL_draw_buffers(GLctx2);\n {\n GLctx2.disjointTimerQueryExt = GLctx2.getExtension(\"EXT_disjoint_timer_query\");\n }\n __webgl_enable_WEBGL_multi_draw(GLctx2);\n var exts = GLctx2.getSupportedExtensions() || [];\n exts.forEach(function(ext) {\n if (!ext.includes(\"lose_context\") && !ext.includes(\"debug\")) {\n GLctx2.getExtension(ext);\n }\n });\n } };\n var __emscripten_webgl_power_preferences = [\"default\", \"low-power\", \"high-performance\"];\n function _emscripten_webgl_do_create_context(target, attributes) {\n var a = attributes >> 2;\n var powerPreference = GROWABLE_HEAP_I32()[a + (24 >> 2)];\n var contextAttributes = { \"alpha\": !!GROWABLE_HEAP_I32()[a + (0 >> 2)], \"depth\": !!GROWABLE_HEAP_I32()[a + (4 >> 2)], \"stencil\": !!GROWABLE_HEAP_I32()[a + (8 >> 2)], \"antialias\": !!GROWABLE_HEAP_I32()[a + (12 >> 2)], \"premultipliedAlpha\": !!GROWABLE_HEAP_I32()[a + (16 >> 2)], \"preserveDrawingBuffer\": !!GROWABLE_HEAP_I32()[a + (20 >> 2)], \"powerPreference\": __emscripten_webgl_power_preferences[powerPreference], \"failIfMajorPerformanceCaveat\": !!GROWABLE_HEAP_I32()[a + (28 >> 2)], majorVersion: GROWABLE_HEAP_I32()[a + (32 >> 2)], minorVersion: GROWABLE_HEAP_I32()[a + (36 >> 2)], enableExtensionsByDefault: GROWABLE_HEAP_I32()[a + (40 >> 2)], explicitSwapControl: GROWABLE_HEAP_I32()[a + (44 >> 2)], proxyContextToMainThread: GROWABLE_HEAP_I32()[a + (48 >> 2)], renderViaOffscreenBackBuffer: GROWABLE_HEAP_I32()[a + (52 >> 2)] };\n var canvas = findCanvasEventTarget(target);\n if (!canvas) {\n return 0;\n }\n if (contextAttributes.explicitSwapControl) {\n return 0;\n }\n var contextHandle = GL.createContext(canvas, contextAttributes);\n return contextHandle;\n }\n function _emscripten_webgl_create_context(a0, a12) {\n return _emscripten_webgl_do_create_context(a0, a12);\n }\n var SYSCALLS = { mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) {\n var buffer3 = SYSCALLS.buffers[stream];\n if (curr === 0 || curr === 10) {\n (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0));\n buffer3.length = 0;\n } else {\n buffer3.push(curr);\n }\n }, varargs: void 0, get: function() {\n SYSCALLS.varargs += 4;\n var ret = GROWABLE_HEAP_I32()[SYSCALLS.varargs - 4 >> 2];\n return ret;\n }, getStr: function(ptr) {\n var ret = UTF8ToString(ptr);\n return ret;\n }, get64: function(low, high) {\n return low;\n } };\n function _fd_close(fd) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(3, 1, fd);\n return 0;\n }\n function _fd_seek(fd, offset_low, offset_high, whence, newOffset) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(4, 1, fd, offset_low, offset_high, whence, newOffset);\n }\n function _fd_write(fd, iov, iovcnt, pnum) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(5, 1, fd, iov, iovcnt, pnum);\n var num = 0;\n for (var i2 = 0; i2 < iovcnt; i2++) {\n var ptr = GROWABLE_HEAP_I32()[iov >> 2];\n var len = GROWABLE_HEAP_I32()[iov + 4 >> 2];\n iov += 8;\n for (var j = 0; j < len; j++) {\n SYSCALLS.printChar(fd, GROWABLE_HEAP_U8()[ptr + j]);\n }\n num += len;\n }\n GROWABLE_HEAP_I32()[pnum >> 2] = num;\n return 0;\n }\n function _setTempRet0(val) {\n setTempRet0(val);\n }\n PThread.init();\n var GLctx;\n var proxiedFunctionTable = [null, exitOnMainThread, _emscripten_set_canvas_element_size_main_thread, _fd_close, _fd_seek, _fd_write];\n var ASSERTIONS = false;\n var asmLibraryArg = { \"__clock_gettime\": ___clock_gettime, \"__emscripten_init_main_thread_js\": ___emscripten_init_main_thread_js, \"__emscripten_thread_cleanup\": ___emscripten_thread_cleanup, \"__pthread_create_js\": ___pthread_create_js, \"_emscripten_default_pthread_stack_size\": __emscripten_default_pthread_stack_size, \"_emscripten_notify_thread_queue\": __emscripten_notify_thread_queue, \"abort\": _abort, \"emscripten_check_blocking_allowed\": _emscripten_check_blocking_allowed, \"emscripten_get_heap_max\": _emscripten_get_heap_max, \"emscripten_get_now\": _emscripten_get_now, \"emscripten_memcpy_big\": _emscripten_memcpy_big, \"emscripten_num_logical_cores\": _emscripten_num_logical_cores, \"emscripten_receive_on_main_thread_js\": _emscripten_receive_on_main_thread_js, \"emscripten_resize_heap\": _emscripten_resize_heap, \"emscripten_set_canvas_element_size\": _emscripten_set_canvas_element_size, \"emscripten_unwind_to_js_event_loop\": _emscripten_unwind_to_js_event_loop, \"emscripten_webgl_create_context\": _emscripten_webgl_create_context, \"exit\": _exit, \"fd_close\": _fd_close, \"fd_seek\": _fd_seek, \"fd_write\": _fd_write, \"memory\": wasmMemory || Module[\"wasmMemory\"], \"setTempRet0\": _setTempRet0 };\n var asm = createWasm();\n var ___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = function() {\n return (___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = Module[\"asm\"][\"__wasm_call_ctors\"]).apply(null, arguments);\n };\n var _init = Module[\"_init\"] = function() {\n return (_init = Module[\"_init\"] = Module[\"asm\"][\"init\"]).apply(null, arguments);\n };\n var _init_with_threads_count = Module[\"_init_with_threads_count\"] = function() {\n return (_init_with_threads_count = Module[\"_init_with_threads_count\"] = Module[\"asm\"][\"init_with_threads_count\"]).apply(null, arguments);\n };\n var _get_threads_count = Module[\"_get_threads_count\"] = function() {\n return (_get_threads_count = Module[\"_get_threads_count\"] = Module[\"asm\"][\"get_threads_count\"]).apply(null, arguments);\n };\n var _register_tensor = Module[\"_register_tensor\"] = function() {\n return (_register_tensor = Module[\"_register_tensor\"] = Module[\"asm\"][\"register_tensor\"]).apply(null, arguments);\n };\n var _dispose_data = Module[\"_dispose_data\"] = function() {\n return (_dispose_data = Module[\"_dispose_data\"] = Module[\"asm\"][\"dispose_data\"]).apply(null, arguments);\n };\n var _dispose = Module[\"_dispose\"] = function() {\n return (_dispose = Module[\"_dispose\"] = Module[\"asm\"][\"dispose\"]).apply(null, arguments);\n };\n var _Abs = Module[\"_Abs\"] = function() {\n return (_Abs = Module[\"_Abs\"] = Module[\"asm\"][\"Abs\"]).apply(null, arguments);\n };\n var _Add = Module[\"_Add\"] = function() {\n return (_Add = Module[\"_Add\"] = Module[\"asm\"][\"Add\"]).apply(null, arguments);\n };\n var _AddN = Module[\"_AddN\"] = function() {\n return (_AddN = Module[\"_AddN\"] = Module[\"asm\"][\"AddN\"]).apply(null, arguments);\n };\n var _All = Module[\"_All\"] = function() {\n return (_All = Module[\"_All\"] = Module[\"asm\"][\"All\"]).apply(null, arguments);\n };\n var _Any = Module[\"_Any\"] = function() {\n return (_Any = Module[\"_Any\"] = Module[\"asm\"][\"Any\"]).apply(null, arguments);\n };\n var _ArgMax = Module[\"_ArgMax\"] = function() {\n return (_ArgMax = Module[\"_ArgMax\"] = Module[\"asm\"][\"ArgMax\"]).apply(null, arguments);\n };\n var _AvgPool = Module[\"_AvgPool\"] = function() {\n return (_AvgPool = Module[\"_AvgPool\"] = Module[\"asm\"][\"AvgPool\"]).apply(null, arguments);\n };\n var _BatchMatMul = Module[\"_BatchMatMul\"] = function() {\n return (_BatchMatMul = Module[\"_BatchMatMul\"] = Module[\"asm\"][\"BatchMatMul\"]).apply(null, arguments);\n };\n var _Ceil = Module[\"_Ceil\"] = function() {\n return (_Ceil = Module[\"_Ceil\"] = Module[\"asm\"][\"Ceil\"]).apply(null, arguments);\n };\n var _ClipByValue = Module[\"_ClipByValue\"] = function() {\n return (_ClipByValue = Module[\"_ClipByValue\"] = Module[\"asm\"][\"ClipByValue\"]).apply(null, arguments);\n };\n var _Conv2D = Module[\"_Conv2D\"] = function() {\n return (_Conv2D = Module[\"_Conv2D\"] = Module[\"asm\"][\"Conv2D\"]).apply(null, arguments);\n };\n var _Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = function() {\n return (_Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = Module[\"asm\"][\"Conv2DBackpropInput\"]).apply(null, arguments);\n };\n var _Cos = Module[\"_Cos\"] = function() {\n return (_Cos = Module[\"_Cos\"] = Module[\"asm\"][\"Cos\"]).apply(null, arguments);\n };\n var _Cosh = Module[\"_Cosh\"] = function() {\n return (_Cosh = Module[\"_Cosh\"] = Module[\"asm\"][\"Cosh\"]).apply(null, arguments);\n };\n var _CropAndResize = Module[\"_CropAndResize\"] = function() {\n return (_CropAndResize = Module[\"_CropAndResize\"] = Module[\"asm\"][\"CropAndResize\"]).apply(null, arguments);\n };\n var _Cumprod = Module[\"_Cumprod\"] = function() {\n return (_Cumprod = Module[\"_Cumprod\"] = Module[\"asm\"][\"Cumprod\"]).apply(null, arguments);\n };\n var _Cumsum = Module[\"_Cumsum\"] = function() {\n return (_Cumsum = Module[\"_Cumsum\"] = Module[\"asm\"][\"Cumsum\"]).apply(null, arguments);\n };\n var _DepthToSpace = Module[\"_DepthToSpace\"] = function() {\n return (_DepthToSpace = Module[\"_DepthToSpace\"] = Module[\"asm\"][\"DepthToSpace\"]).apply(null, arguments);\n };\n var _DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = function() {\n return (_DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = Module[\"asm\"][\"DepthwiseConv2dNative\"]).apply(null, arguments);\n };\n var _Elu = Module[\"_Elu\"] = function() {\n return (_Elu = Module[\"_Elu\"] = Module[\"asm\"][\"Elu\"]).apply(null, arguments);\n };\n var _Equal = Module[\"_Equal\"] = function() {\n return (_Equal = Module[\"_Equal\"] = Module[\"asm\"][\"Equal\"]).apply(null, arguments);\n };\n var _Exp = Module[\"_Exp\"] = function() {\n return (_Exp = Module[\"_Exp\"] = Module[\"asm\"][\"Exp\"]).apply(null, arguments);\n };\n var _FlipLeftRight = Module[\"_FlipLeftRight\"] = function() {\n return (_FlipLeftRight = Module[\"_FlipLeftRight\"] = Module[\"asm\"][\"FlipLeftRight\"]).apply(null, arguments);\n };\n var _Floor = Module[\"_Floor\"] = function() {\n return (_Floor = Module[\"_Floor\"] = Module[\"asm\"][\"Floor\"]).apply(null, arguments);\n };\n var _FloorDiv = Module[\"_FloorDiv\"] = function() {\n return (_FloorDiv = Module[\"_FloorDiv\"] = Module[\"asm\"][\"FloorDiv\"]).apply(null, arguments);\n };\n var _FusedBatchNorm = Module[\"_FusedBatchNorm\"] = function() {\n return (_FusedBatchNorm = Module[\"_FusedBatchNorm\"] = Module[\"asm\"][\"FusedBatchNorm\"]).apply(null, arguments);\n };\n var _FusedConv2D = Module[\"_FusedConv2D\"] = function() {\n return (_FusedConv2D = Module[\"_FusedConv2D\"] = Module[\"asm\"][\"FusedConv2D\"]).apply(null, arguments);\n };\n var _FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = function() {\n return (_FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = Module[\"asm\"][\"FusedDepthwiseConv2D\"]).apply(null, arguments);\n };\n var _Gather = Module[\"_Gather\"] = function() {\n return (_Gather = Module[\"_Gather\"] = Module[\"asm\"][\"Gather\"]).apply(null, arguments);\n };\n var _GatherNd = Module[\"_GatherNd\"] = function() {\n return (_GatherNd = Module[\"_GatherNd\"] = Module[\"asm\"][\"GatherNd\"]).apply(null, arguments);\n };\n var _Greater = Module[\"_Greater\"] = function() {\n return (_Greater = Module[\"_Greater\"] = Module[\"asm\"][\"Greater\"]).apply(null, arguments);\n };\n var _GreaterEqual = Module[\"_GreaterEqual\"] = function() {\n return (_GreaterEqual = Module[\"_GreaterEqual\"] = Module[\"asm\"][\"GreaterEqual\"]).apply(null, arguments);\n };\n var _LeakyRelu = Module[\"_LeakyRelu\"] = function() {\n return (_LeakyRelu = Module[\"_LeakyRelu\"] = Module[\"asm\"][\"LeakyRelu\"]).apply(null, arguments);\n };\n var _Less = Module[\"_Less\"] = function() {\n return (_Less = Module[\"_Less\"] = Module[\"asm\"][\"Less\"]).apply(null, arguments);\n };\n var _LessEqual = Module[\"_LessEqual\"] = function() {\n return (_LessEqual = Module[\"_LessEqual\"] = Module[\"asm\"][\"LessEqual\"]).apply(null, arguments);\n };\n var _Log = Module[\"_Log\"] = function() {\n return (_Log = Module[\"_Log\"] = Module[\"asm\"][\"Log\"]).apply(null, arguments);\n };\n var _LogicalAnd = Module[\"_LogicalAnd\"] = function() {\n return (_LogicalAnd = Module[\"_LogicalAnd\"] = Module[\"asm\"][\"LogicalAnd\"]).apply(null, arguments);\n };\n var _LogicalNot = Module[\"_LogicalNot\"] = function() {\n return (_LogicalNot = Module[\"_LogicalNot\"] = Module[\"asm\"][\"LogicalNot\"]).apply(null, arguments);\n };\n var _LogicalOr = Module[\"_LogicalOr\"] = function() {\n return (_LogicalOr = Module[\"_LogicalOr\"] = Module[\"asm\"][\"LogicalOr\"]).apply(null, arguments);\n };\n var _LogicalXor = Module[\"_LogicalXor\"] = function() {\n return (_LogicalXor = Module[\"_LogicalXor\"] = Module[\"asm\"][\"LogicalXor\"]).apply(null, arguments);\n };\n var _Max = Module[\"_Max\"] = function() {\n return (_Max = Module[\"_Max\"] = Module[\"asm\"][\"Max\"]).apply(null, arguments);\n };\n var _MaxPool = Module[\"_MaxPool\"] = function() {\n return (_MaxPool = Module[\"_MaxPool\"] = Module[\"asm\"][\"MaxPool\"]).apply(null, arguments);\n };\n var _Maximum = Module[\"_Maximum\"] = function() {\n return (_Maximum = Module[\"_Maximum\"] = Module[\"asm\"][\"Maximum\"]).apply(null, arguments);\n };\n var _Mean = Module[\"_Mean\"] = function() {\n return (_Mean = Module[\"_Mean\"] = Module[\"asm\"][\"Mean\"]).apply(null, arguments);\n };\n var _Min = Module[\"_Min\"] = function() {\n return (_Min = Module[\"_Min\"] = Module[\"asm\"][\"Min\"]).apply(null, arguments);\n };\n var _Minimum = Module[\"_Minimum\"] = function() {\n return (_Minimum = Module[\"_Minimum\"] = Module[\"asm\"][\"Minimum\"]).apply(null, arguments);\n };\n var _MirrorPad = Module[\"_MirrorPad\"] = function() {\n return (_MirrorPad = Module[\"_MirrorPad\"] = Module[\"asm\"][\"MirrorPad\"]).apply(null, arguments);\n };\n var _Multiply = Module[\"_Multiply\"] = function() {\n return (_Multiply = Module[\"_Multiply\"] = Module[\"asm\"][\"Multiply\"]).apply(null, arguments);\n };\n var _Neg = Module[\"_Neg\"] = function() {\n return (_Neg = Module[\"_Neg\"] = Module[\"asm\"][\"Neg\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = function() {\n return (_NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = Module[\"asm\"][\"NonMaxSuppressionV3\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = function() {\n return (_NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = Module[\"asm\"][\"NonMaxSuppressionV4\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = function() {\n return (_NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = Module[\"asm\"][\"NonMaxSuppressionV5\"]).apply(null, arguments);\n };\n var _NotEqual = Module[\"_NotEqual\"] = function() {\n return (_NotEqual = Module[\"_NotEqual\"] = Module[\"asm\"][\"NotEqual\"]).apply(null, arguments);\n };\n var _OneHot = Module[\"_OneHot\"] = function() {\n return (_OneHot = Module[\"_OneHot\"] = Module[\"asm\"][\"OneHot\"]).apply(null, arguments);\n };\n var _PadV2 = Module[\"_PadV2\"] = function() {\n return (_PadV2 = Module[\"_PadV2\"] = Module[\"asm\"][\"PadV2\"]).apply(null, arguments);\n };\n var _Pow = Module[\"_Pow\"] = function() {\n return (_Pow = Module[\"_Pow\"] = Module[\"asm\"][\"Pow\"]).apply(null, arguments);\n };\n var _Prelu = Module[\"_Prelu\"] = function() {\n return (_Prelu = Module[\"_Prelu\"] = Module[\"asm\"][\"Prelu\"]).apply(null, arguments);\n };\n var _Prod = Module[\"_Prod\"] = function() {\n return (_Prod = Module[\"_Prod\"] = Module[\"asm\"][\"Prod\"]).apply(null, arguments);\n };\n var _RealDiv = Module[\"_RealDiv\"] = function() {\n return (_RealDiv = Module[\"_RealDiv\"] = Module[\"asm\"][\"RealDiv\"]).apply(null, arguments);\n };\n var _Relu = Module[\"_Relu\"] = function() {\n return (_Relu = Module[\"_Relu\"] = Module[\"asm\"][\"Relu\"]).apply(null, arguments);\n };\n var _Relu6 = Module[\"_Relu6\"] = function() {\n return (_Relu6 = Module[\"_Relu6\"] = Module[\"asm\"][\"Relu6\"]).apply(null, arguments);\n };\n var _ResizeBilinear = Module[\"_ResizeBilinear\"] = function() {\n return (_ResizeBilinear = Module[\"_ResizeBilinear\"] = Module[\"asm\"][\"ResizeBilinear\"]).apply(null, arguments);\n };\n var _ResizeNearestNeighbor = Module[\"_ResizeNearestNeighbor\"] = function() {\n return (_ResizeNearestNeighbor = Module[\"_ResizeNearestNeighbor\"] = Module[\"asm\"][\"ResizeNearestNeighbor\"]).apply(null, arguments);\n };\n var _Reverse = Module[\"_Reverse\"] = function() {\n return (_Reverse = Module[\"_Reverse\"] = Module[\"asm\"][\"Reverse\"]).apply(null, arguments);\n };\n var _RotateWithOffset = Module[\"_RotateWithOffset\"] = function() {\n return (_RotateWithOffset = Module[\"_RotateWithOffset\"] = Module[\"asm\"][\"RotateWithOffset\"]).apply(null, arguments);\n };\n var _Round = Module[\"_Round\"] = function() {\n return (_Round = Module[\"_Round\"] = Module[\"asm\"][\"Round\"]).apply(null, arguments);\n };\n var _Rsqrt = Module[\"_Rsqrt\"] = function() {\n return (_Rsqrt = Module[\"_Rsqrt\"] = Module[\"asm\"][\"Rsqrt\"]).apply(null, arguments);\n };\n var _ScatterNd = Module[\"_ScatterNd\"] = function() {\n return (_ScatterNd = Module[\"_ScatterNd\"] = Module[\"asm\"][\"ScatterNd\"]).apply(null, arguments);\n };\n var _SelectV2 = Module[\"_SelectV2\"] = function() {\n return (_SelectV2 = Module[\"_SelectV2\"] = Module[\"asm\"][\"SelectV2\"]).apply(null, arguments);\n };\n var _Sigmoid = Module[\"_Sigmoid\"] = function() {\n return (_Sigmoid = Module[\"_Sigmoid\"] = Module[\"asm\"][\"Sigmoid\"]).apply(null, arguments);\n };\n var _Sin = Module[\"_Sin\"] = function() {\n return (_Sin = Module[\"_Sin\"] = Module[\"asm\"][\"Sin\"]).apply(null, arguments);\n };\n var _Softmax = Module[\"_Softmax\"] = function() {\n return (_Softmax = Module[\"_Softmax\"] = Module[\"asm\"][\"Softmax\"]).apply(null, arguments);\n };\n var _SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = function() {\n return (_SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = Module[\"asm\"][\"SparseFillEmptyRows\"]).apply(null, arguments);\n };\n var _SparseReshape = Module[\"_SparseReshape\"] = function() {\n return (_SparseReshape = Module[\"_SparseReshape\"] = Module[\"asm\"][\"SparseReshape\"]).apply(null, arguments);\n };\n var _SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = function() {\n return (_SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = Module[\"asm\"][\"SparseSegmentReduction\"]).apply(null, arguments);\n };\n var _Sqrt = Module[\"_Sqrt\"] = function() {\n return (_Sqrt = Module[\"_Sqrt\"] = Module[\"asm\"][\"Sqrt\"]).apply(null, arguments);\n };\n var _Square = Module[\"_Square\"] = function() {\n return (_Square = Module[\"_Square\"] = Module[\"asm\"][\"Square\"]).apply(null, arguments);\n };\n var _SquaredDifference = Module[\"_SquaredDifference\"] = function() {\n return (_SquaredDifference = Module[\"_SquaredDifference\"] = Module[\"asm\"][\"SquaredDifference\"]).apply(null, arguments);\n };\n var _Step = Module[\"_Step\"] = function() {\n return (_Step = Module[\"_Step\"] = Module[\"asm\"][\"Step\"]).apply(null, arguments);\n };\n var _StridedSlice = Module[\"_StridedSlice\"] = function() {\n return (_StridedSlice = Module[\"_StridedSlice\"] = Module[\"asm\"][\"StridedSlice\"]).apply(null, arguments);\n };\n var _Sub = Module[\"_Sub\"] = function() {\n return (_Sub = Module[\"_Sub\"] = Module[\"asm\"][\"Sub\"]).apply(null, arguments);\n };\n var _Sum = Module[\"_Sum\"] = function() {\n return (_Sum = Module[\"_Sum\"] = Module[\"asm\"][\"Sum\"]).apply(null, arguments);\n };\n var _Tan = Module[\"_Tan\"] = function() {\n return (_Tan = Module[\"_Tan\"] = Module[\"asm\"][\"Tan\"]).apply(null, arguments);\n };\n var _Tanh = Module[\"_Tanh\"] = function() {\n return (_Tanh = Module[\"_Tanh\"] = Module[\"asm\"][\"Tanh\"]).apply(null, arguments);\n };\n var _Tile = Module[\"_Tile\"] = function() {\n return (_Tile = Module[\"_Tile\"] = Module[\"asm\"][\"Tile\"]).apply(null, arguments);\n };\n var _TopK = Module[\"_TopK\"] = function() {\n return (_TopK = Module[\"_TopK\"] = Module[\"asm\"][\"TopK\"]).apply(null, arguments);\n };\n var _Transform = Module[\"_Transform\"] = function() {\n return (_Transform = Module[\"_Transform\"] = Module[\"asm\"][\"Transform\"]).apply(null, arguments);\n };\n var _Transpose = Module[\"_Transpose\"] = function() {\n return (_Transpose = Module[\"_Transpose\"] = Module[\"asm\"][\"Transpose\"]).apply(null, arguments);\n };\n var __FusedMatMul = Module[\"__FusedMatMul\"] = function() {\n return (__FusedMatMul = Module[\"__FusedMatMul\"] = Module[\"asm\"][\"_FusedMatMul\"]).apply(null, arguments);\n };\n var _malloc = Module[\"_malloc\"] = function() {\n return (_malloc = Module[\"_malloc\"] = Module[\"asm\"][\"malloc\"]).apply(null, arguments);\n };\n var _free = Module[\"_free\"] = function() {\n return (_free = Module[\"_free\"] = Module[\"asm\"][\"free\"]).apply(null, arguments);\n };\n var _emscripten_tls_init = Module[\"_emscripten_tls_init\"] = function() {\n return (_emscripten_tls_init = Module[\"_emscripten_tls_init\"] = Module[\"asm\"][\"emscripten_tls_init\"]).apply(null, arguments);\n };\n var ___errno_location = Module[\"___errno_location\"] = function() {\n return (___errno_location = Module[\"___errno_location\"] = Module[\"asm\"][\"__errno_location\"]).apply(null, arguments);\n };\n var _pthread_self = Module[\"_pthread_self\"] = function() {\n return (_pthread_self = Module[\"_pthread_self\"] = Module[\"asm\"][\"pthread_self\"]).apply(null, arguments);\n };\n var _emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = function() {\n return (_emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = Module[\"asm\"][\"emscripten_main_thread_process_queued_calls\"]).apply(null, arguments);\n };\n var __emscripten_thread_crashed = Module[\"__emscripten_thread_crashed\"] = function() {\n return (__emscripten_thread_crashed = Module[\"__emscripten_thread_crashed\"] = Module[\"asm\"][\"_emscripten_thread_crashed\"]).apply(null, arguments);\n };\n var __emscripten_thread_init = Module[\"__emscripten_thread_init\"] = function() {\n return (__emscripten_thread_init = Module[\"__emscripten_thread_init\"] = Module[\"asm\"][\"_emscripten_thread_init\"]).apply(null, arguments);\n };\n var _emscripten_current_thread_process_queued_calls = Module[\"_emscripten_current_thread_process_queued_calls\"] = function() {\n return (_emscripten_current_thread_process_queued_calls = Module[\"_emscripten_current_thread_process_queued_calls\"] = Module[\"asm\"][\"emscripten_current_thread_process_queued_calls\"]).apply(null, arguments);\n };\n var _emscripten_main_browser_thread_id = Module[\"_emscripten_main_browser_thread_id\"] = function() {\n return (_emscripten_main_browser_thread_id = Module[\"_emscripten_main_browser_thread_id\"] = Module[\"asm\"][\"emscripten_main_browser_thread_id\"]).apply(null, arguments);\n };\n var _emscripten_sync_run_in_main_thread_2 = Module[\"_emscripten_sync_run_in_main_thread_2\"] = function() {\n return (_emscripten_sync_run_in_main_thread_2 = Module[\"_emscripten_sync_run_in_main_thread_2\"] = Module[\"asm\"][\"emscripten_sync_run_in_main_thread_2\"]).apply(null, arguments);\n };\n var _emscripten_sync_run_in_main_thread_4 = Module[\"_emscripten_sync_run_in_main_thread_4\"] = function() {\n return (_emscripten_sync_run_in_main_thread_4 = Module[\"_emscripten_sync_run_in_main_thread_4\"] = Module[\"asm\"][\"emscripten_sync_run_in_main_thread_4\"]).apply(null, arguments);\n };\n var _emscripten_run_in_main_runtime_thread_js = Module[\"_emscripten_run_in_main_runtime_thread_js\"] = function() {\n return (_emscripten_run_in_main_runtime_thread_js = Module[\"_emscripten_run_in_main_runtime_thread_js\"] = Module[\"asm\"][\"emscripten_run_in_main_runtime_thread_js\"]).apply(null, arguments);\n };\n var _emscripten_dispatch_to_thread_ = Module[\"_emscripten_dispatch_to_thread_\"] = function() {\n return (_emscripten_dispatch_to_thread_ = Module[\"_emscripten_dispatch_to_thread_\"] = Module[\"asm\"][\"emscripten_dispatch_to_thread_\"]).apply(null, arguments);\n };\n var __emscripten_thread_free_data = Module[\"__emscripten_thread_free_data\"] = function() {\n return (__emscripten_thread_free_data = Module[\"__emscripten_thread_free_data\"] = Module[\"asm\"][\"_emscripten_thread_free_data\"]).apply(null, arguments);\n };\n var __emscripten_thread_exit = Module[\"__emscripten_thread_exit\"] = function() {\n return (__emscripten_thread_exit = Module[\"__emscripten_thread_exit\"] = Module[\"asm\"][\"_emscripten_thread_exit\"]).apply(null, arguments);\n };\n var _memalign = Module[\"_memalign\"] = function() {\n return (_memalign = Module[\"_memalign\"] = Module[\"asm\"][\"memalign\"]).apply(null, arguments);\n };\n var _emscripten_stack_set_limits = Module[\"_emscripten_stack_set_limits\"] = function() {\n return (_emscripten_stack_set_limits = Module[\"_emscripten_stack_set_limits\"] = Module[\"asm\"][\"emscripten_stack_set_limits\"]).apply(null, arguments);\n };\n var stackSave = Module[\"stackSave\"] = function() {\n return (stackSave = Module[\"stackSave\"] = Module[\"asm\"][\"stackSave\"]).apply(null, arguments);\n };\n var stackRestore = Module[\"stackRestore\"] = function() {\n return (stackRestore = Module[\"stackRestore\"] = Module[\"asm\"][\"stackRestore\"]).apply(null, arguments);\n };\n var stackAlloc = Module[\"stackAlloc\"] = function() {\n return (stackAlloc = Module[\"stackAlloc\"] = Module[\"asm\"][\"stackAlloc\"]).apply(null, arguments);\n };\n var dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = function() {\n return (dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = Module[\"asm\"][\"dynCall_iijjiiii\"]).apply(null, arguments);\n };\n var dynCall_jiji = Module[\"dynCall_jiji\"] = function() {\n return (dynCall_jiji = Module[\"dynCall_jiji\"] = Module[\"asm\"][\"dynCall_jiji\"]).apply(null, arguments);\n };\n var __emscripten_allow_main_runtime_queued_calls = Module[\"__emscripten_allow_main_runtime_queued_calls\"] = 21672;\n Module[\"cwrap\"] = cwrap;\n Module[\"keepRuntimeAlive\"] = keepRuntimeAlive;\n Module[\"PThread\"] = PThread;\n Module[\"PThread\"] = PThread;\n Module[\"wasmMemory\"] = wasmMemory;\n Module[\"ExitStatus\"] = ExitStatus;\n var calledRun;\n function ExitStatus(status) {\n this.name = \"ExitStatus\";\n this.message = \"Program terminated with exit(\" + status + \")\";\n this.status = status;\n }\n dependenciesFulfilled = function runCaller() {\n if (!calledRun)\n run();\n if (!calledRun)\n dependenciesFulfilled = runCaller;\n };\n function run(args) {\n args = args || arguments_;\n if (runDependencies > 0) {\n return;\n }\n if (ENVIRONMENT_IS_PTHREAD) {\n readyPromiseResolve(Module);\n initRuntime();\n postMessage({ \"cmd\": \"loaded\" });\n return;\n }\n preRun();\n if (runDependencies > 0) {\n return;\n }\n function doRun() {\n if (calledRun)\n return;\n calledRun = true;\n Module[\"calledRun\"] = true;\n if (ABORT)\n return;\n initRuntime();\n readyPromiseResolve(Module);\n if (Module[\"onRuntimeInitialized\"])\n Module[\"onRuntimeInitialized\"]();\n postRun();\n }\n if (Module[\"setStatus\"]) {\n Module[\"setStatus\"](\"Running...\");\n setTimeout(function() {\n setTimeout(function() {\n Module[\"setStatus\"](\"\");\n }, 1);\n doRun();\n }, 1);\n } else {\n doRun();\n }\n }\n Module[\"run\"] = run;\n function exit(status, implicit) {\n EXITSTATUS = status;\n if (!implicit) {\n if (ENVIRONMENT_IS_PTHREAD) {\n exitOnMainThread(status);\n throw \"unwind\";\n } else {\n }\n }\n if (keepRuntimeAlive()) {\n } else {\n exitRuntime();\n }\n procExit(status);\n }\n function procExit(code) {\n EXITSTATUS = code;\n if (!keepRuntimeAlive()) {\n PThread.terminateAllThreads();\n if (Module[\"onExit\"])\n Module[\"onExit\"](code);\n ABORT = true;\n }\n quit_(code, new ExitStatus(code));\n }\n if (Module[\"preInit\"]) {\n if (typeof Module[\"preInit\"] == \"function\")\n Module[\"preInit\"] = [Module[\"preInit\"]];\n while (Module[\"preInit\"].length > 0) {\n Module[\"preInit\"].pop()();\n }\n }\n run();\n var listenersAdded;\n if (beforeListeners) {\n listenersAdded = { uncaughtException: process.listeners(\"uncaughtException\").filter(function(listener) {\n return !beforeListeners.uncaughtException.indexOf(listener) > -1;\n }), unhandledRejection: process.listeners(\"unhandledRejection\").filter(function(listener) {\n return !beforeListeners.unhandledRejection.indexOf(listener) > -1;\n }) };\n }\n var actualModule;\n if (typeof WasmBackendModule !== \"undefined\") {\n actualModule = WasmBackendModule;\n } else if (typeof WasmBackendModuleThreadedSimd3 !== \"undefined\") {\n actualModule = WasmBackendModuleThreadedSimd3;\n } else {\n throw new Error(\"Could not find wasm module in post.js\");\n }\n if (listenersAdded) {\n var tmpDispose = actualModule[\"_dispose\"];\n actualModule[\"_dispose\"] = function() {\n tmpDispose();\n listenersAdded.uncaughtException.forEach(function(listener) {\n process.removeListener(\"uncaughtException\", listener);\n });\n listenersAdded.unhandledRejection.forEach(function(listener) {\n process.removeListener(\"unhandledRejection\", listener);\n });\n };\n }\n return WasmBackendModuleThreadedSimd3.ready;\n };\n })();\n if (typeof exports === \"object\" && typeof module === \"object\")\n module.exports = WasmBackendModuleThreadedSimd2;\n else if (typeof define === \"function\" && define[\"amd\"])\n define([], function() {\n return WasmBackendModuleThreadedSimd2;\n });\n else if (typeof exports === \"object\")\n exports[\"WasmBackendModuleThreadedSimd\"] = WasmBackendModuleThreadedSimd2;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js\nvar require_tfjs_backend_wasm_threaded_simd_worker = __commonJS({\n \"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js\"(exports, module) {\n module.exports.wasmWorkerContents = `\"use strict\";var Module={};var ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require(\"worker_threads\");var parentPort=nodeWorkerThreads.parentPort;parentPort.on(\"message\",function(data){onmessage({data:data})});var fs=require(\"fs\");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,\"utf8\"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(\" \");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+\"\n\");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(\" \");postMessage({cmd:\"alert\",text:text,threadId:Module[\"_pthread_self\"]()})}var err=threadPrintErr;self.alert=threadAlert;Module[\"instantiateWasm\"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module[\"wasmModule\"],info);receiveInstance(instance);Module[\"wasmModule\"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd===\"load\"){Module[\"wasmModule\"]=e.data.wasmModule;Module[\"wasmMemory\"]=e.data.wasmMemory;Module[\"buffer\"]=Module[\"wasmMemory\"].buffer;Module[\"ENVIRONMENT_IS_PTHREAD\"]=true;if(typeof e.data.urlOrBlob===\"string\"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd===\"run\"){Module[\"__performance_now_clock_drift\"]=performance.now()-e.data.time;Module[\"__emscripten_thread_init\"](e.data.threadInfoStruct,0,0,1);Module[\"establishStackSpace\"]();Module[\"PThread\"].receiveObjectTransfer(e.data);Module[\"PThread\"].threadInit();try{var result=Module[\"invokeEntryPoint\"](e.data.start_routine,e.data.arg);if(Module[\"keepRuntimeAlive\"]()){Module[\"PThread\"].setExitStatus(result)}else{Module[\"__emscripten_thread_exit\"](result)}}catch(ex){if(ex!=\"unwind\"){if(ex instanceof Module[\"ExitStatus\"]){if(Module[\"keepRuntimeAlive\"]()){}else{Module[\"__emscripten_thread_exit\"](ex.status)}}else{throw ex}}}}else if(e.data.cmd===\"cancel\"){if(Module[\"_pthread_self\"]()){Module[\"__emscripten_thread_exit\"](-1)}}else if(e.data.target===\"setimmediate\"){}else if(e.data.cmd===\"processThreadQueue\"){if(Module[\"_pthread_self\"]()){Module[\"_emscripten_current_thread_process_queued_calls\"]()}}else if(e.data.cmd===\"processProxyingQueue\"){if(Module[\"_pthread_self\"]()){Module[\"_emscripten_proxy_execute_queue\"](e.data.queue)}}else{err(\"worker.js received unknown command \"+e.data.cmd);err(e.data)}}catch(ex){err(\"worker.js onmessage() captured an uncaught exception: \"+ex);if(ex&&ex.stack)err(ex.stack);if(Module[\"__emscripten_thread_crashed\"]){Module[\"__emscripten_thread_crashed\"]()}throw ex}});`;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js\nvar require_tfjs_backend_wasm = __commonJS({\n \"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js\"(exports, module) {\n var WasmBackendModule2 = (() => {\n var _scriptDir = typeof document !== \"undefined\" && document.currentScript ? document.currentScript.src : void 0;\n if (typeof __filename !== \"undefined\")\n _scriptDir = _scriptDir || __filename;\n return function(WasmBackendModule3) {\n WasmBackendModule3 = WasmBackendModule3 || {};\n var Module = typeof WasmBackendModule3 !== \"undefined\" ? WasmBackendModule3 : {};\n var readyPromiseResolve, readyPromiseReject;\n Module[\"ready\"] = new Promise(function(resolve, reject) {\n readyPromiseResolve = resolve;\n readyPromiseReject = reject;\n });\n var beforeListeners;\n if (typeof process !== \"undefined\" && process.listeners) {\n beforeListeners = { uncaughtException: process.listeners(\"uncaughtException\"), unhandledRejection: process.listeners(\"unhandledRejection\") };\n }\n var moduleOverrides = Object.assign({}, Module);\n var arguments_ = [];\n var thisProgram = \"./this.program\";\n var quit_ = (status, toThrow) => {\n throw toThrow;\n };\n var ENVIRONMENT_IS_WEB = typeof window === \"object\";\n var ENVIRONMENT_IS_WORKER = typeof importScripts === \"function\";\n var ENVIRONMENT_IS_NODE = typeof process === \"object\" && typeof process.versions === \"object\" && typeof process.versions.node === \"string\";\n var scriptDirectory = \"\";\n function locateFile(path) {\n if (Module[\"locateFile\"]) {\n return Module[\"locateFile\"](path, scriptDirectory);\n }\n return scriptDirectory + path;\n }\n var read_, readAsync, readBinary, setWindowTitle;\n function logExceptionOnExit(e2) {\n if (e2 instanceof ExitStatus)\n return;\n let toLog = e2;\n err(\"exiting due to exception: \" + toLog);\n }\n var fs;\n var nodePath;\n var requireNodeFS;\n if (ENVIRONMENT_IS_NODE) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = require_path().dirname(scriptDirectory) + \"/\";\n } else {\n scriptDirectory = __dirname + \"/\";\n }\n requireNodeFS = () => {\n if (!nodePath) {\n fs = require_fs();\n nodePath = require_path();\n }\n };\n read_ = function shell_read(filename, binary) {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n return fs.readFileSync(filename, binary ? void 0 : \"utf8\");\n };\n readBinary = (filename) => {\n var ret = read_(filename, true);\n if (!ret.buffer) {\n ret = new Uint8Array(ret);\n }\n return ret;\n };\n readAsync = (filename, onload, onerror) => {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n fs.readFile(filename, function(err2, data) {\n if (err2)\n onerror(err2);\n else\n onload(data.buffer);\n });\n };\n if (process[\"argv\"].length > 1) {\n thisProgram = process[\"argv\"][1].replace(/\\\\/g, \"/\");\n }\n arguments_ = process[\"argv\"].slice(2);\n process[\"on\"](\"uncaughtException\", function(ex) {\n if (!(ex instanceof ExitStatus)) {\n throw ex;\n }\n });\n process[\"on\"](\"unhandledRejection\", function(reason) {\n throw reason;\n });\n quit_ = (status, toThrow) => {\n if (keepRuntimeAlive()) {\n process[\"exitCode\"] = status;\n throw toThrow;\n }\n logExceptionOnExit(toThrow);\n process[\"exit\"](status);\n };\n Module[\"inspect\"] = function() {\n return \"[Emscripten Module object]\";\n };\n } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = self.location.href;\n } else if (typeof document !== \"undefined\" && document.currentScript) {\n scriptDirectory = document.currentScript.src;\n }\n if (_scriptDir) {\n scriptDirectory = _scriptDir;\n }\n if (scriptDirectory.indexOf(\"blob:\") !== 0) {\n scriptDirectory = scriptDirectory.substr(0, scriptDirectory.replace(/[?#].*/, \"\").lastIndexOf(\"/\") + 1);\n } else {\n scriptDirectory = \"\";\n }\n {\n read_ = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.send(null);\n return xhr.responseText;\n };\n if (ENVIRONMENT_IS_WORKER) {\n readBinary = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.responseType = \"arraybuffer\";\n xhr.send(null);\n return new Uint8Array(xhr.response);\n };\n }\n readAsync = (url, onload, onerror) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, true);\n xhr.responseType = \"arraybuffer\";\n xhr.onload = () => {\n if (xhr.status == 200 || xhr.status == 0 && xhr.response) {\n onload(xhr.response);\n return;\n }\n onerror();\n };\n xhr.onerror = onerror;\n xhr.send(null);\n };\n }\n setWindowTitle = (title) => document.title = title;\n } else {\n }\n var out = Module[\"print\"] || console.log.bind(console);\n var err = Module[\"printErr\"] || console.warn.bind(console);\n Object.assign(Module, moduleOverrides);\n moduleOverrides = null;\n if (Module[\"arguments\"])\n arguments_ = Module[\"arguments\"];\n if (Module[\"thisProgram\"])\n thisProgram = Module[\"thisProgram\"];\n if (Module[\"quit\"])\n quit_ = Module[\"quit\"];\n var POINTER_SIZE = 4;\n function warnOnce(text) {\n if (!warnOnce.shown)\n warnOnce.shown = {};\n if (!warnOnce.shown[text]) {\n warnOnce.shown[text] = 1;\n err(text);\n }\n }\n function convertJsFunctionToWasm(func2, sig) {\n if (typeof WebAssembly.Function === \"function\") {\n var typeNames = { \"i\": \"i32\", \"j\": \"i64\", \"f\": \"f32\", \"d\": \"f64\" };\n var type = { parameters: [], results: sig[0] == \"v\" ? [] : [typeNames[sig[0]]] };\n for (var i2 = 1; i2 < sig.length; ++i2) {\n type.parameters.push(typeNames[sig[i2]]);\n }\n return new WebAssembly.Function(type, func2);\n }\n var typeSection = [1, 0, 1, 96];\n var sigRet = sig.slice(0, 1);\n var sigParam = sig.slice(1);\n var typeCodes = { \"i\": 127, \"j\": 126, \"f\": 125, \"d\": 124 };\n typeSection.push(sigParam.length);\n for (var i2 = 0; i2 < sigParam.length; ++i2) {\n typeSection.push(typeCodes[sigParam[i2]]);\n }\n if (sigRet == \"v\") {\n typeSection.push(0);\n } else {\n typeSection = typeSection.concat([1, typeCodes[sigRet]]);\n }\n typeSection[1] = typeSection.length - 2;\n var bytes = new Uint8Array([0, 97, 115, 109, 1, 0, 0, 0].concat(typeSection, [2, 7, 1, 1, 101, 1, 102, 0, 0, 7, 5, 1, 1, 102, 0, 0]));\n var module2 = new WebAssembly.Module(bytes);\n var instance = new WebAssembly.Instance(module2, { \"e\": { \"f\": func2 } });\n var wrappedFunc = instance.exports[\"f\"];\n return wrappedFunc;\n }\n var freeTableIndexes = [];\n var functionsInTableMap;\n function getEmptyTableSlot() {\n if (freeTableIndexes.length) {\n return freeTableIndexes.pop();\n }\n try {\n wasmTable.grow(1);\n } catch (err2) {\n if (!(err2 instanceof RangeError)) {\n throw err2;\n }\n throw \"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.\";\n }\n return wasmTable.length - 1;\n }\n function updateTableMap(offset, count2) {\n for (var i2 = offset; i2 < offset + count2; i2++) {\n var item = getWasmTableEntry(i2);\n if (item) {\n functionsInTableMap.set(item, i2);\n }\n }\n }\n var tempRet0 = 0;\n var setTempRet0 = (value) => {\n tempRet0 = value;\n };\n var wasmBinary;\n if (Module[\"wasmBinary\"])\n wasmBinary = Module[\"wasmBinary\"];\n var noExitRuntime = Module[\"noExitRuntime\"] || true;\n if (typeof WebAssembly !== \"object\") {\n abort(\"no native wasm support detected\");\n }\n var wasmMemory;\n var ABORT = false;\n var EXITSTATUS;\n function assert3(condition, text) {\n if (!condition) {\n abort(text);\n }\n }\n function getCFunc(ident) {\n var func2 = Module[\"_\" + ident];\n return func2;\n }\n function ccall(ident, returnType, argTypes, args, opts) {\n var toC = { \"string\": function(str) {\n var ret2 = 0;\n if (str !== null && str !== void 0 && str !== 0) {\n var len = (str.length << 2) + 1;\n ret2 = stackAlloc(len);\n stringToUTF8(str, ret2, len);\n }\n return ret2;\n }, \"array\": function(arr) {\n var ret2 = stackAlloc(arr.length);\n writeArrayToMemory(arr, ret2);\n return ret2;\n } };\n function convertReturnValue(ret2) {\n if (returnType === \"string\")\n return UTF8ToString(ret2);\n if (returnType === \"boolean\")\n return Boolean(ret2);\n return ret2;\n }\n var func2 = getCFunc(ident);\n var cArgs = [];\n var stack2 = 0;\n if (args) {\n for (var i2 = 0; i2 < args.length; i2++) {\n var converter = toC[argTypes[i2]];\n if (converter) {\n if (stack2 === 0)\n stack2 = stackSave();\n cArgs[i2] = converter(args[i2]);\n } else {\n cArgs[i2] = args[i2];\n }\n }\n }\n var ret = func2.apply(null, cArgs);\n function onDone(ret2) {\n if (stack2 !== 0)\n stackRestore(stack2);\n return convertReturnValue(ret2);\n }\n ret = onDone(ret);\n return ret;\n }\n function cwrap(ident, returnType, argTypes, opts) {\n argTypes = argTypes || [];\n var numericArgs = argTypes.every(function(type) {\n return type === \"number\";\n });\n var numericRet = returnType !== \"string\";\n if (numericRet && numericArgs && !opts) {\n return getCFunc(ident);\n }\n return function() {\n return ccall(ident, returnType, argTypes, arguments, opts);\n };\n }\n var ALLOC_STACK = 1;\n var UTF8Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoder(\"utf8\") : void 0;\n function UTF8ArrayToString(heap, idx, maxBytesToRead) {\n var endIdx = idx + maxBytesToRead;\n var endPtr = idx;\n while (heap[endPtr] && !(endPtr >= endIdx))\n ++endPtr;\n if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) {\n return UTF8Decoder.decode(heap.subarray(idx, endPtr));\n } else {\n var str = \"\";\n while (idx < endPtr) {\n var u0 = heap[idx++];\n if (!(u0 & 128)) {\n str += String.fromCharCode(u0);\n continue;\n }\n var u1 = heap[idx++] & 63;\n if ((u0 & 224) == 192) {\n str += String.fromCharCode((u0 & 31) << 6 | u1);\n continue;\n }\n var u2 = heap[idx++] & 63;\n if ((u0 & 240) == 224) {\n u0 = (u0 & 15) << 12 | u1 << 6 | u2;\n } else {\n u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63;\n }\n if (u0 < 65536) {\n str += String.fromCharCode(u0);\n } else {\n var ch = u0 - 65536;\n str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023);\n }\n }\n }\n return str;\n }\n function UTF8ToString(ptr, maxBytesToRead) {\n return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : \"\";\n }\n function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) {\n if (!(maxBytesToWrite > 0))\n return 0;\n var startIdx = outIdx;\n var endIdx = outIdx + maxBytesToWrite - 1;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343) {\n var u1 = str.charCodeAt(++i2);\n u = 65536 + ((u & 1023) << 10) | u1 & 1023;\n }\n if (u <= 127) {\n if (outIdx >= endIdx)\n break;\n heap[outIdx++] = u;\n } else if (u <= 2047) {\n if (outIdx + 1 >= endIdx)\n break;\n heap[outIdx++] = 192 | u >> 6;\n heap[outIdx++] = 128 | u & 63;\n } else if (u <= 65535) {\n if (outIdx + 2 >= endIdx)\n break;\n heap[outIdx++] = 224 | u >> 12;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n } else {\n if (outIdx + 3 >= endIdx)\n break;\n heap[outIdx++] = 240 | u >> 18;\n heap[outIdx++] = 128 | u >> 12 & 63;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n }\n }\n heap[outIdx] = 0;\n return outIdx - startIdx;\n }\n function stringToUTF8(str, outPtr, maxBytesToWrite) {\n return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite);\n }\n function lengthBytesUTF8(str) {\n var len = 0;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343)\n u = 65536 + ((u & 1023) << 10) | str.charCodeAt(++i2) & 1023;\n if (u <= 127)\n ++len;\n else if (u <= 2047)\n len += 2;\n else if (u <= 65535)\n len += 3;\n else\n len += 4;\n }\n return len;\n }\n var UTF16Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoder(\"utf-16le\") : void 0;\n function writeArrayToMemory(array2, buffer3) {\n HEAP8.set(array2, buffer3);\n }\n function writeAsciiToMemory(str, buffer3, dontAddNull) {\n for (var i2 = 0; i2 < str.length; ++i2) {\n HEAP8[buffer3++ >> 0] = str.charCodeAt(i2);\n }\n if (!dontAddNull)\n HEAP8[buffer3 >> 0] = 0;\n }\n function alignUp(x, multiple) {\n if (x % multiple > 0) {\n x += multiple - x % multiple;\n }\n return x;\n }\n var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64;\n function updateGlobalBufferAndViews(buf) {\n buffer2 = buf;\n Module[\"HEAP8\"] = HEAP8 = new Int8Array(buf);\n Module[\"HEAP16\"] = HEAP16 = new Int16Array(buf);\n Module[\"HEAP32\"] = HEAP32 = new Int32Array(buf);\n Module[\"HEAPU8\"] = HEAPU8 = new Uint8Array(buf);\n Module[\"HEAPU16\"] = HEAPU16 = new Uint16Array(buf);\n Module[\"HEAPU32\"] = HEAPU32 = new Uint32Array(buf);\n Module[\"HEAPF32\"] = HEAPF32 = new Float32Array(buf);\n Module[\"HEAPF64\"] = HEAPF64 = new Float64Array(buf);\n }\n var INITIAL_MEMORY = Module[\"INITIAL_MEMORY\"] || 16777216;\n var wasmTable;\n var __ATPRERUN__ = [];\n var __ATINIT__ = [];\n var __ATPOSTRUN__ = [];\n var runtimeInitialized = false;\n var runtimeExited = false;\n var runtimeKeepaliveCounter = 0;\n function keepRuntimeAlive() {\n return noExitRuntime || runtimeKeepaliveCounter > 0;\n }\n function preRun() {\n if (Module[\"preRun\"]) {\n if (typeof Module[\"preRun\"] == \"function\")\n Module[\"preRun\"] = [Module[\"preRun\"]];\n while (Module[\"preRun\"].length) {\n addOnPreRun(Module[\"preRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPRERUN__);\n }\n function initRuntime() {\n runtimeInitialized = true;\n callRuntimeCallbacks(__ATINIT__);\n }\n function exitRuntime() {\n runtimeExited = true;\n }\n function postRun() {\n if (Module[\"postRun\"]) {\n if (typeof Module[\"postRun\"] == \"function\")\n Module[\"postRun\"] = [Module[\"postRun\"]];\n while (Module[\"postRun\"].length) {\n addOnPostRun(Module[\"postRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPOSTRUN__);\n }\n function addOnPreRun(cb) {\n __ATPRERUN__.unshift(cb);\n }\n function addOnInit(cb) {\n __ATINIT__.unshift(cb);\n }\n function addOnPostRun(cb) {\n __ATPOSTRUN__.unshift(cb);\n }\n var runDependencies = 0;\n var runDependencyWatcher = null;\n var dependenciesFulfilled = null;\n function addRunDependency(id) {\n runDependencies++;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n }\n function removeRunDependency(id) {\n runDependencies--;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n if (runDependencies == 0) {\n if (runDependencyWatcher !== null) {\n clearInterval(runDependencyWatcher);\n runDependencyWatcher = null;\n }\n if (dependenciesFulfilled) {\n var callback = dependenciesFulfilled;\n dependenciesFulfilled = null;\n callback();\n }\n }\n }\n Module[\"preloadedImages\"] = {};\n Module[\"preloadedAudios\"] = {};\n function abort(what) {\n {\n if (Module[\"onAbort\"]) {\n Module[\"onAbort\"](what);\n }\n }\n what = \"Aborted(\" + what + \")\";\n err(what);\n ABORT = true;\n EXITSTATUS = 1;\n what += \". Build with -s ASSERTIONS=1 for more info.\";\n var e2 = new WebAssembly.RuntimeError(what);\n readyPromiseReject(e2);\n throw e2;\n }\n var dataURIPrefix = \"data:application/octet-stream;base64,\";\n function isDataURI(filename) {\n return filename.startsWith(dataURIPrefix);\n }\n function isFileURI(filename) {\n return filename.startsWith(\"file://\");\n }\n var wasmBinaryFile;\n wasmBinaryFile = \"tfjs-backend-wasm.wasm\";\n if (!isDataURI(wasmBinaryFile)) {\n wasmBinaryFile = locateFile(wasmBinaryFile);\n }\n function getBinary(file) {\n try {\n if (file == wasmBinaryFile && wasmBinary) {\n return new Uint8Array(wasmBinary);\n }\n if (readBinary) {\n return readBinary(file);\n } else {\n throw \"both async and sync fetching of the wasm failed\";\n }\n } catch (err2) {\n abort(err2);\n }\n }\n function getBinaryPromise() {\n if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) {\n if (typeof fetch === \"function\" && !isFileURI(wasmBinaryFile)) {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n if (!response[\"ok\"]) {\n throw \"failed to load wasm binary file at '\" + wasmBinaryFile + \"'\";\n }\n return response[\"arrayBuffer\"]();\n }).catch(function() {\n return getBinary(wasmBinaryFile);\n });\n } else {\n if (readAsync) {\n return new Promise(function(resolve, reject) {\n readAsync(wasmBinaryFile, function(response) {\n resolve(new Uint8Array(response));\n }, reject);\n });\n }\n }\n }\n return Promise.resolve().then(function() {\n return getBinary(wasmBinaryFile);\n });\n }\n function createWasm() {\n var info = { \"env\": asmLibraryArg, \"wasi_snapshot_preview1\": asmLibraryArg };\n function receiveInstance(instance, module2) {\n var exports3 = instance.exports;\n Module[\"asm\"] = exports3;\n wasmMemory = Module[\"asm\"][\"memory\"];\n updateGlobalBufferAndViews(wasmMemory.buffer);\n wasmTable = Module[\"asm\"][\"__indirect_function_table\"];\n addOnInit(Module[\"asm\"][\"__wasm_call_ctors\"]);\n removeRunDependency(\"wasm-instantiate\");\n }\n addRunDependency(\"wasm-instantiate\");\n function receiveInstantiationResult(result) {\n receiveInstance(result[\"instance\"]);\n }\n function instantiateArrayBuffer(receiver) {\n return getBinaryPromise().then(function(binary) {\n return WebAssembly.instantiate(binary, info);\n }).then(function(instance) {\n return instance;\n }).then(receiver, function(reason) {\n err(\"failed to asynchronously prepare wasm: \" + reason);\n abort(reason);\n });\n }\n function instantiateAsync() {\n if (!wasmBinary && typeof WebAssembly.instantiateStreaming === \"function\" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === \"function\") {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n var result = WebAssembly.instantiateStreaming(response, info);\n return result.then(receiveInstantiationResult, function(reason) {\n err(\"wasm streaming compile failed: \" + reason);\n err(\"falling back to ArrayBuffer instantiation\");\n return instantiateArrayBuffer(receiveInstantiationResult);\n });\n });\n } else {\n return instantiateArrayBuffer(receiveInstantiationResult);\n }\n }\n if (Module[\"instantiateWasm\"]) {\n try {\n var exports2 = Module[\"instantiateWasm\"](info, receiveInstance);\n return exports2;\n } catch (e2) {\n err(\"Module.instantiateWasm callback failed with error: \" + e2);\n return false;\n }\n }\n instantiateAsync().catch(readyPromiseReject);\n return {};\n }\n var tempDouble;\n var tempI64;\n function callRuntimeCallbacks(callbacks2) {\n while (callbacks2.length > 0) {\n var callback = callbacks2.shift();\n if (typeof callback == \"function\") {\n callback(Module);\n continue;\n }\n var func2 = callback.func;\n if (typeof func2 === \"number\") {\n if (callback.arg === void 0) {\n getWasmTableEntry(func2)();\n } else {\n getWasmTableEntry(func2)(callback.arg);\n }\n } else {\n func2(callback.arg === void 0 ? null : callback.arg);\n }\n }\n }\n function demangle(func2) {\n return func2;\n }\n function demangleAll(text) {\n var regex = /\\b_Z[\\w\\d_]+/g;\n return text.replace(regex, function(x) {\n var y = demangle(x);\n return x === y ? x : y + \" [\" + x + \"]\";\n });\n }\n var wasmTableMirror = [];\n function getWasmTableEntry(funcPtr) {\n var func2 = wasmTableMirror[funcPtr];\n if (!func2) {\n if (funcPtr >= wasmTableMirror.length)\n wasmTableMirror.length = funcPtr + 1;\n wasmTableMirror[funcPtr] = func2 = wasmTable.get(funcPtr);\n }\n return func2;\n }\n function jsStackTrace() {\n var error = new Error();\n if (!error.stack) {\n try {\n throw new Error();\n } catch (e2) {\n error = e2;\n }\n if (!error.stack) {\n return \"(no stack trace available)\";\n }\n }\n return error.stack.toString();\n }\n function setWasmTableEntry(idx, func2) {\n wasmTable.set(idx, func2);\n wasmTableMirror[idx] = func2;\n }\n function _abort() {\n abort(\"\");\n }\n function _emscripten_get_heap_max() {\n return 2147483648;\n }\n function _emscripten_memcpy_big(dest, src, num) {\n HEAPU8.copyWithin(dest, src, src + num);\n }\n function emscripten_realloc_buffer(size) {\n try {\n wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16);\n updateGlobalBufferAndViews(wasmMemory.buffer);\n return 1;\n } catch (e2) {\n }\n }\n function _emscripten_resize_heap(requestedSize) {\n var oldSize = HEAPU8.length;\n requestedSize = requestedSize >>> 0;\n var maxHeapSize = _emscripten_get_heap_max();\n if (requestedSize > maxHeapSize) {\n return false;\n }\n for (var cutDown = 1; cutDown <= 4; cutDown *= 2) {\n var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown);\n overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296);\n var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536));\n var replacement = emscripten_realloc_buffer(newSize);\n if (replacement) {\n return true;\n }\n }\n return false;\n }\n var SYSCALLS = { mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) {\n var buffer3 = SYSCALLS.buffers[stream];\n if (curr === 0 || curr === 10) {\n (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0));\n buffer3.length = 0;\n } else {\n buffer3.push(curr);\n }\n }, varargs: void 0, get: function() {\n SYSCALLS.varargs += 4;\n var ret = HEAP32[SYSCALLS.varargs - 4 >> 2];\n return ret;\n }, getStr: function(ptr) {\n var ret = UTF8ToString(ptr);\n return ret;\n }, get64: function(low, high) {\n return low;\n } };\n function _fd_close(fd) {\n return 0;\n }\n function _fd_seek(fd, offset_low, offset_high, whence, newOffset) {\n }\n function _fd_write(fd, iov, iovcnt, pnum) {\n var num = 0;\n for (var i2 = 0; i2 < iovcnt; i2++) {\n var ptr = HEAP32[iov >> 2];\n var len = HEAP32[iov + 4 >> 2];\n iov += 8;\n for (var j = 0; j < len; j++) {\n SYSCALLS.printChar(fd, HEAPU8[ptr + j]);\n }\n num += len;\n }\n HEAP32[pnum >> 2] = num;\n return 0;\n }\n function _setTempRet0(val) {\n setTempRet0(val);\n }\n var ASSERTIONS = false;\n var asmLibraryArg = { \"abort\": _abort, \"emscripten_get_heap_max\": _emscripten_get_heap_max, \"emscripten_memcpy_big\": _emscripten_memcpy_big, \"emscripten_resize_heap\": _emscripten_resize_heap, \"fd_close\": _fd_close, \"fd_seek\": _fd_seek, \"fd_write\": _fd_write, \"setTempRet0\": _setTempRet0 };\n var asm = createWasm();\n var ___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = function() {\n return (___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = Module[\"asm\"][\"__wasm_call_ctors\"]).apply(null, arguments);\n };\n var _init = Module[\"_init\"] = function() {\n return (_init = Module[\"_init\"] = Module[\"asm\"][\"init\"]).apply(null, arguments);\n };\n var _init_with_threads_count = Module[\"_init_with_threads_count\"] = function() {\n return (_init_with_threads_count = Module[\"_init_with_threads_count\"] = Module[\"asm\"][\"init_with_threads_count\"]).apply(null, arguments);\n };\n var _get_threads_count = Module[\"_get_threads_count\"] = function() {\n return (_get_threads_count = Module[\"_get_threads_count\"] = Module[\"asm\"][\"get_threads_count\"]).apply(null, arguments);\n };\n var _register_tensor = Module[\"_register_tensor\"] = function() {\n return (_register_tensor = Module[\"_register_tensor\"] = Module[\"asm\"][\"register_tensor\"]).apply(null, arguments);\n };\n var _dispose_data = Module[\"_dispose_data\"] = function() {\n return (_dispose_data = Module[\"_dispose_data\"] = Module[\"asm\"][\"dispose_data\"]).apply(null, arguments);\n };\n var _dispose = Module[\"_dispose\"] = function() {\n return (_dispose = Module[\"_dispose\"] = Module[\"asm\"][\"dispose\"]).apply(null, arguments);\n };\n var _Abs = Module[\"_Abs\"] = function() {\n return (_Abs = Module[\"_Abs\"] = Module[\"asm\"][\"Abs\"]).apply(null, arguments);\n };\n var _Add = Module[\"_Add\"] = function() {\n return (_Add = Module[\"_Add\"] = Module[\"asm\"][\"Add\"]).apply(null, arguments);\n };\n var _AddN = Module[\"_AddN\"] = function() {\n return (_AddN = Module[\"_AddN\"] = Module[\"asm\"][\"AddN\"]).apply(null, arguments);\n };\n var _All = Module[\"_All\"] = function() {\n return (_All = Module[\"_All\"] = Module[\"asm\"][\"All\"]).apply(null, arguments);\n };\n var _Any = Module[\"_Any\"] = function() {\n return (_Any = Module[\"_Any\"] = Module[\"asm\"][\"Any\"]).apply(null, arguments);\n };\n var _ArgMax = Module[\"_ArgMax\"] = function() {\n return (_ArgMax = Module[\"_ArgMax\"] = Module[\"asm\"][\"ArgMax\"]).apply(null, arguments);\n };\n var _AvgPool = Module[\"_AvgPool\"] = function() {\n return (_AvgPool = Module[\"_AvgPool\"] = Module[\"asm\"][\"AvgPool\"]).apply(null, arguments);\n };\n var _BatchMatMul = Module[\"_BatchMatMul\"] = function() {\n return (_BatchMatMul = Module[\"_BatchMatMul\"] = Module[\"asm\"][\"BatchMatMul\"]).apply(null, arguments);\n };\n var _Ceil = Module[\"_Ceil\"] = function() {\n return (_Ceil = Module[\"_Ceil\"] = Module[\"asm\"][\"Ceil\"]).apply(null, arguments);\n };\n var _ClipByValue = Module[\"_ClipByValue\"] = function() {\n return (_ClipByValue = Module[\"_ClipByValue\"] = Module[\"asm\"][\"ClipByValue\"]).apply(null, arguments);\n };\n var _Conv2D = Module[\"_Conv2D\"] = function() {\n return (_Conv2D = Module[\"_Conv2D\"] = Module[\"asm\"][\"Conv2D\"]).apply(null, arguments);\n };\n var _Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = function() {\n return (_Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = Module[\"asm\"][\"Conv2DBackpropInput\"]).apply(null, arguments);\n };\n var _Cos = Module[\"_Cos\"] = function() {\n return (_Cos = Module[\"_Cos\"] = Module[\"asm\"][\"Cos\"]).apply(null, arguments);\n };\n var _Cosh = Module[\"_Cosh\"] = function() {\n return (_Cosh = Module[\"_Cosh\"] = Module[\"asm\"][\"Cosh\"]).apply(null, arguments);\n };\n var _CropAndResize = Module[\"_CropAndResize\"] = function() {\n return (_CropAndResize = Module[\"_CropAndResize\"] = Module[\"asm\"][\"CropAndResize\"]).apply(null, arguments);\n };\n var _Cumprod = Module[\"_Cumprod\"] = function() {\n return (_Cumprod = Module[\"_Cumprod\"] = Module[\"asm\"][\"Cumprod\"]).apply(null, arguments);\n };\n var _Cumsum = Module[\"_Cumsum\"] = function() {\n return (_Cumsum = Module[\"_Cumsum\"] = Module[\"asm\"][\"Cumsum\"]).apply(null, arguments);\n };\n var _DepthToSpace = Module[\"_DepthToSpace\"] = function() {\n return (_DepthToSpace = Module[\"_DepthToSpace\"] = Module[\"asm\"][\"DepthToSpace\"]).apply(null, arguments);\n };\n var _DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = function() {\n return (_DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = Module[\"asm\"][\"DepthwiseConv2dNative\"]).apply(null, arguments);\n };\n var _Elu = Module[\"_Elu\"] = function() {\n return (_Elu = Module[\"_Elu\"] = Module[\"asm\"][\"Elu\"]).apply(null, arguments);\n };\n var _Equal = Module[\"_Equal\"] = function() {\n return (_Equal = Module[\"_Equal\"] = Module[\"asm\"][\"Equal\"]).apply(null, arguments);\n };\n var _Exp = Module[\"_Exp\"] = function() {\n return (_Exp = Module[\"_Exp\"] = Module[\"asm\"][\"Exp\"]).apply(null, arguments);\n };\n var _FlipLeftRight = Module[\"_FlipLeftRight\"] = function() {\n return (_FlipLeftRight = Module[\"_FlipLeftRight\"] = Module[\"asm\"][\"FlipLeftRight\"]).apply(null, arguments);\n };\n var _Floor = Module[\"_Floor\"] = function() {\n return (_Floor = Module[\"_Floor\"] = Module[\"asm\"][\"Floor\"]).apply(null, arguments);\n };\n var _FloorDiv = Module[\"_FloorDiv\"] = function() {\n return (_FloorDiv = Module[\"_FloorDiv\"] = Module[\"asm\"][\"FloorDiv\"]).apply(null, arguments);\n };\n var _FusedBatchNorm = Module[\"_FusedBatchNorm\"] = function() {\n return (_FusedBatchNorm = Module[\"_FusedBatchNorm\"] = Module[\"asm\"][\"FusedBatchNorm\"]).apply(null, arguments);\n };\n var _FusedConv2D = Module[\"_FusedConv2D\"] = function() {\n return (_FusedConv2D = Module[\"_FusedConv2D\"] = Module[\"asm\"][\"FusedConv2D\"]).apply(null, arguments);\n };\n var _FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = function() {\n return (_FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = Module[\"asm\"][\"FusedDepthwiseConv2D\"]).apply(null, arguments);\n };\n var _Gather = Module[\"_Gather\"] = function() {\n return (_Gather = Module[\"_Gather\"] = Module[\"asm\"][\"Gather\"]).apply(null, arguments);\n };\n var _GatherNd = Module[\"_GatherNd\"] = function() {\n return (_GatherNd = Module[\"_GatherNd\"] = Module[\"asm\"][\"GatherNd\"]).apply(null, arguments);\n };\n var _Greater = Module[\"_Greater\"] = function() {\n return (_Greater = Module[\"_Greater\"] = Module[\"asm\"][\"Greater\"]).apply(null, arguments);\n };\n var _GreaterEqual = Module[\"_GreaterEqual\"] = function() {\n return (_GreaterEqual = Module[\"_GreaterEqual\"] = Module[\"asm\"][\"GreaterEqual\"]).apply(null, arguments);\n };\n var _LeakyRelu = Module[\"_LeakyRelu\"] = function() {\n return (_LeakyRelu = Module[\"_LeakyRelu\"] = Module[\"asm\"][\"LeakyRelu\"]).apply(null, arguments);\n };\n var _Less = Module[\"_Less\"] = function() {\n return (_Less = Module[\"_Less\"] = Module[\"asm\"][\"Less\"]).apply(null, arguments);\n };\n var _LessEqual = Module[\"_LessEqual\"] = function() {\n return (_LessEqual = Module[\"_LessEqual\"] = Module[\"asm\"][\"LessEqual\"]).apply(null, arguments);\n };\n var _Log = Module[\"_Log\"] = function() {\n return (_Log = Module[\"_Log\"] = Module[\"asm\"][\"Log\"]).apply(null, arguments);\n };\n var _LogicalAnd = Module[\"_LogicalAnd\"] = function() {\n return (_LogicalAnd = Module[\"_LogicalAnd\"] = Module[\"asm\"][\"LogicalAnd\"]).apply(null, arguments);\n };\n var _LogicalNot = Module[\"_LogicalNot\"] = function() {\n return (_LogicalNot = Module[\"_LogicalNot\"] = Module[\"asm\"][\"LogicalNot\"]).apply(null, arguments);\n };\n var _LogicalOr = Module[\"_LogicalOr\"] = function() {\n return (_LogicalOr = Module[\"_LogicalOr\"] = Module[\"asm\"][\"LogicalOr\"]).apply(null, arguments);\n };\n var _LogicalXor = Module[\"_LogicalXor\"] = function() {\n return (_LogicalXor = Module[\"_LogicalXor\"] = Module[\"asm\"][\"LogicalXor\"]).apply(null, arguments);\n };\n var _Max = Module[\"_Max\"] = function() {\n return (_Max = Module[\"_Max\"] = Module[\"asm\"][\"Max\"]).apply(null, arguments);\n };\n var _MaxPool = Module[\"_MaxPool\"] = function() {\n return (_MaxPool = Module[\"_MaxPool\"] = Module[\"asm\"][\"MaxPool\"]).apply(null, arguments);\n };\n var _Maximum = Module[\"_Maximum\"] = function() {\n return (_Maximum = Module[\"_Maximum\"] = Module[\"asm\"][\"Maximum\"]).apply(null, arguments);\n };\n var _Mean = Module[\"_Mean\"] = function() {\n return (_Mean = Module[\"_Mean\"] = Module[\"asm\"][\"Mean\"]).apply(null, arguments);\n };\n var _Min = Module[\"_Min\"] = function() {\n return (_Min = Module[\"_Min\"] = Module[\"asm\"][\"Min\"]).apply(null, arguments);\n };\n var _Minimum = Module[\"_Minimum\"] = function() {\n return (_Minimum = Module[\"_Minimum\"] = Module[\"asm\"][\"Minimum\"]).apply(null, arguments);\n };\n var _MirrorPad = Module[\"_MirrorPad\"] = function() {\n return (_MirrorPad = Module[\"_MirrorPad\"] = Module[\"asm\"][\"MirrorPad\"]).apply(null, arguments);\n };\n var _Multiply = Module[\"_Multiply\"] = function() {\n return (_Multiply = Module[\"_Multiply\"] = Module[\"asm\"][\"Multiply\"]).apply(null, arguments);\n };\n var _Neg = Module[\"_Neg\"] = function() {\n return (_Neg = Module[\"_Neg\"] = Module[\"asm\"][\"Neg\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = function() {\n return (_NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = Module[\"asm\"][\"NonMaxSuppressionV3\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = function() {\n return (_NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = Module[\"asm\"][\"NonMaxSuppressionV4\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = function() {\n return (_NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = Module[\"asm\"][\"NonMaxSuppressionV5\"]).apply(null, arguments);\n };\n var _NotEqual = Module[\"_NotEqual\"] = function() {\n return (_NotEqual = Module[\"_NotEqual\"] = Module[\"asm\"][\"NotEqual\"]).apply(null, arguments);\n };\n var _OneHot = Module[\"_OneHot\"] = function() {\n return (_OneHot = Module[\"_OneHot\"] = Module[\"asm\"][\"OneHot\"]).apply(null, arguments);\n };\n var _PadV2 = Module[\"_PadV2\"] = function() {\n return (_PadV2 = Module[\"_PadV2\"] = Module[\"asm\"][\"PadV2\"]).apply(null, arguments);\n };\n var _Pow = Module[\"_Pow\"] = function() {\n return (_Pow = Module[\"_Pow\"] = Module[\"asm\"][\"Pow\"]).apply(null, arguments);\n };\n var _Prelu = Module[\"_Prelu\"] = function() {\n return (_Prelu = Module[\"_Prelu\"] = Module[\"asm\"][\"Prelu\"]).apply(null, arguments);\n };\n var _Prod = Module[\"_Prod\"] = function() {\n return (_Prod = Module[\"_Prod\"] = Module[\"asm\"][\"Prod\"]).apply(null, arguments);\n };\n var _RealDiv = Module[\"_RealDiv\"] = function() {\n return (_RealDiv = Module[\"_RealDiv\"] = Module[\"asm\"][\"RealDiv\"]).apply(null, arguments);\n };\n var _Relu = Module[\"_Relu\"] = function() {\n return (_Relu = Module[\"_Relu\"] = Module[\"asm\"][\"Relu\"]).apply(null, arguments);\n };\n var _Relu6 = Module[\"_Relu6\"] = function() {\n return (_Relu6 = Module[\"_Relu6\"] = Module[\"asm\"][\"Relu6\"]).apply(null, arguments);\n };\n var _ResizeBilinear = Module[\"_ResizeBilinear\"] = function() {\n return (_ResizeBilinear = Module[\"_ResizeBilinear\"] = Module[\"asm\"][\"ResizeBilinear\"]).apply(null, arguments);\n };\n var _ResizeNearestNeighbor = Module[\"_ResizeNearestNeighbor\"] = function() {\n return (_ResizeNearestNeighbor = Module[\"_ResizeNearestNeighbor\"] = Module[\"asm\"][\"ResizeNearestNeighbor\"]).apply(null, arguments);\n };\n var _Reverse = Module[\"_Reverse\"] = function() {\n return (_Reverse = Module[\"_Reverse\"] = Module[\"asm\"][\"Reverse\"]).apply(null, arguments);\n };\n var _RotateWithOffset = Module[\"_RotateWithOffset\"] = function() {\n return (_RotateWithOffset = Module[\"_RotateWithOffset\"] = Module[\"asm\"][\"RotateWithOffset\"]).apply(null, arguments);\n };\n var _Round = Module[\"_Round\"] = function() {\n return (_Round = Module[\"_Round\"] = Module[\"asm\"][\"Round\"]).apply(null, arguments);\n };\n var _Rsqrt = Module[\"_Rsqrt\"] = function() {\n return (_Rsqrt = Module[\"_Rsqrt\"] = Module[\"asm\"][\"Rsqrt\"]).apply(null, arguments);\n };\n var _ScatterNd = Module[\"_ScatterNd\"] = function() {\n return (_ScatterNd = Module[\"_ScatterNd\"] = Module[\"asm\"][\"ScatterNd\"]).apply(null, arguments);\n };\n var _SelectV2 = Module[\"_SelectV2\"] = function() {\n return (_SelectV2 = Module[\"_SelectV2\"] = Module[\"asm\"][\"SelectV2\"]).apply(null, arguments);\n };\n var _Sigmoid = Module[\"_Sigmoid\"] = function() {\n return (_Sigmoid = Module[\"_Sigmoid\"] = Module[\"asm\"][\"Sigmoid\"]).apply(null, arguments);\n };\n var _Sin = Module[\"_Sin\"] = function() {\n return (_Sin = Module[\"_Sin\"] = Module[\"asm\"][\"Sin\"]).apply(null, arguments);\n };\n var _Softmax = Module[\"_Softmax\"] = function() {\n return (_Softmax = Module[\"_Softmax\"] = Module[\"asm\"][\"Softmax\"]).apply(null, arguments);\n };\n var _SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = function() {\n return (_SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = Module[\"asm\"][\"SparseFillEmptyRows\"]).apply(null, arguments);\n };\n var _SparseReshape = Module[\"_SparseReshape\"] = function() {\n return (_SparseReshape = Module[\"_SparseReshape\"] = Module[\"asm\"][\"SparseReshape\"]).apply(null, arguments);\n };\n var _SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = function() {\n return (_SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = Module[\"asm\"][\"SparseSegmentReduction\"]).apply(null, arguments);\n };\n var _Sqrt = Module[\"_Sqrt\"] = function() {\n return (_Sqrt = Module[\"_Sqrt\"] = Module[\"asm\"][\"Sqrt\"]).apply(null, arguments);\n };\n var _Square = Module[\"_Square\"] = function() {\n return (_Square = Module[\"_Square\"] = Module[\"asm\"][\"Square\"]).apply(null, arguments);\n };\n var _SquaredDifference = Module[\"_SquaredDifference\"] = function() {\n return (_SquaredDifference = Module[\"_SquaredDifference\"] = Module[\"asm\"][\"SquaredDifference\"]).apply(null, arguments);\n };\n var _Step = Module[\"_Step\"] = function() {\n return (_Step = Module[\"_Step\"] = Module[\"asm\"][\"Step\"]).apply(null, arguments);\n };\n var _StridedSlice = Module[\"_StridedSlice\"] = function() {\n return (_StridedSlice = Module[\"_StridedSlice\"] = Module[\"asm\"][\"StridedSlice\"]).apply(null, arguments);\n };\n var _Sub = Module[\"_Sub\"] = function() {\n return (_Sub = Module[\"_Sub\"] = Module[\"asm\"][\"Sub\"]).apply(null, arguments);\n };\n var _Sum = Module[\"_Sum\"] = function() {\n return (_Sum = Module[\"_Sum\"] = Module[\"asm\"][\"Sum\"]).apply(null, arguments);\n };\n var _Tan = Module[\"_Tan\"] = function() {\n return (_Tan = Module[\"_Tan\"] = Module[\"asm\"][\"Tan\"]).apply(null, arguments);\n };\n var _Tanh = Module[\"_Tanh\"] = function() {\n return (_Tanh = Module[\"_Tanh\"] = Module[\"asm\"][\"Tanh\"]).apply(null, arguments);\n };\n var _Tile = Module[\"_Tile\"] = function() {\n return (_Tile = Module[\"_Tile\"] = Module[\"asm\"][\"Tile\"]).apply(null, arguments);\n };\n var _TopK = Module[\"_TopK\"] = function() {\n return (_TopK = Module[\"_TopK\"] = Module[\"asm\"][\"TopK\"]).apply(null, arguments);\n };\n var _Transform = Module[\"_Transform\"] = function() {\n return (_Transform = Module[\"_Transform\"] = Module[\"asm\"][\"Transform\"]).apply(null, arguments);\n };\n var _Transpose = Module[\"_Transpose\"] = function() {\n return (_Transpose = Module[\"_Transpose\"] = Module[\"asm\"][\"Transpose\"]).apply(null, arguments);\n };\n var __FusedMatMul = Module[\"__FusedMatMul\"] = function() {\n return (__FusedMatMul = Module[\"__FusedMatMul\"] = Module[\"asm\"][\"_FusedMatMul\"]).apply(null, arguments);\n };\n var _malloc = Module[\"_malloc\"] = function() {\n return (_malloc = Module[\"_malloc\"] = Module[\"asm\"][\"malloc\"]).apply(null, arguments);\n };\n var _free = Module[\"_free\"] = function() {\n return (_free = Module[\"_free\"] = Module[\"asm\"][\"free\"]).apply(null, arguments);\n };\n var ___errno_location = Module[\"___errno_location\"] = function() {\n return (___errno_location = Module[\"___errno_location\"] = Module[\"asm\"][\"__errno_location\"]).apply(null, arguments);\n };\n var _emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = function() {\n return (_emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = Module[\"asm\"][\"emscripten_main_thread_process_queued_calls\"]).apply(null, arguments);\n };\n var stackSave = Module[\"stackSave\"] = function() {\n return (stackSave = Module[\"stackSave\"] = Module[\"asm\"][\"stackSave\"]).apply(null, arguments);\n };\n var stackRestore = Module[\"stackRestore\"] = function() {\n return (stackRestore = Module[\"stackRestore\"] = Module[\"asm\"][\"stackRestore\"]).apply(null, arguments);\n };\n var stackAlloc = Module[\"stackAlloc\"] = function() {\n return (stackAlloc = Module[\"stackAlloc\"] = Module[\"asm\"][\"stackAlloc\"]).apply(null, arguments);\n };\n var dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = function() {\n return (dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = Module[\"asm\"][\"dynCall_iijjiiii\"]).apply(null, arguments);\n };\n var dynCall_jiji = Module[\"dynCall_jiji\"] = function() {\n return (dynCall_jiji = Module[\"dynCall_jiji\"] = Module[\"asm\"][\"dynCall_jiji\"]).apply(null, arguments);\n };\n Module[\"cwrap\"] = cwrap;\n var calledRun;\n function ExitStatus(status) {\n this.name = \"ExitStatus\";\n this.message = \"Program terminated with exit(\" + status + \")\";\n this.status = status;\n }\n dependenciesFulfilled = function runCaller() {\n if (!calledRun)\n run();\n if (!calledRun)\n dependenciesFulfilled = runCaller;\n };\n function run(args) {\n args = args || arguments_;\n if (runDependencies > 0) {\n return;\n }\n preRun();\n if (runDependencies > 0) {\n return;\n }\n function doRun() {\n if (calledRun)\n return;\n calledRun = true;\n Module[\"calledRun\"] = true;\n if (ABORT)\n return;\n initRuntime();\n readyPromiseResolve(Module);\n if (Module[\"onRuntimeInitialized\"])\n Module[\"onRuntimeInitialized\"]();\n postRun();\n }\n if (Module[\"setStatus\"]) {\n Module[\"setStatus\"](\"Running...\");\n setTimeout(function() {\n setTimeout(function() {\n Module[\"setStatus\"](\"\");\n }, 1);\n doRun();\n }, 1);\n } else {\n doRun();\n }\n }\n Module[\"run\"] = run;\n function procExit(code) {\n EXITSTATUS = code;\n if (!keepRuntimeAlive()) {\n if (Module[\"onExit\"])\n Module[\"onExit\"](code);\n ABORT = true;\n }\n quit_(code, new ExitStatus(code));\n }\n if (Module[\"preInit\"]) {\n if (typeof Module[\"preInit\"] == \"function\")\n Module[\"preInit\"] = [Module[\"preInit\"]];\n while (Module[\"preInit\"].length > 0) {\n Module[\"preInit\"].pop()();\n }\n }\n run();\n var listenersAdded;\n if (beforeListeners) {\n listenersAdded = { uncaughtException: process.listeners(\"uncaughtException\").filter(function(listener) {\n return !beforeListeners.uncaughtException.indexOf(listener) > -1;\n }), unhandledRejection: process.listeners(\"unhandledRejection\").filter(function(listener) {\n return !beforeListeners.unhandledRejection.indexOf(listener) > -1;\n }) };\n }\n var actualModule;\n if (typeof WasmBackendModule3 !== \"undefined\") {\n actualModule = WasmBackendModule3;\n } else if (typeof WasmBackendModuleThreadedSimd !== \"undefined\") {\n actualModule = WasmBackendModuleThreadedSimd;\n } else {\n throw new Error(\"Could not find wasm module in post.js\");\n }\n if (listenersAdded) {\n var tmpDispose = actualModule[\"_dispose\"];\n actualModule[\"_dispose\"] = function() {\n tmpDispose();\n listenersAdded.uncaughtException.forEach(function(listener) {\n process.removeListener(\"uncaughtException\", listener);\n });\n listenersAdded.unhandledRejection.forEach(function(listener) {\n process.removeListener(\"unhandledRejection\", listener);\n });\n };\n }\n return WasmBackendModule3.ready;\n };\n })();\n if (typeof exports === \"object\" && typeof module === \"object\")\n module.exports = WasmBackendModule2;\n else if (typeof define === \"function\" && define[\"amd\"])\n define([], function() {\n return WasmBackendModule2;\n });\n else if (typeof exports === \"object\")\n exports[\"WasmBackendModule\"] = WasmBackendModule2;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/backend.js\nvar EPSILON_FLOAT32 = 1e-7;\nvar EPSILON_FLOAT16 = 1e-4;\nvar DataStorage = class {\n constructor(backend2, dataMover) {\n this.backend = backend2;\n this.dataMover = dataMover;\n this.data = /* @__PURE__ */ new WeakMap();\n this.dataIdsCount = 0;\n }\n get(dataId) {\n if (!this.data.has(dataId)) {\n this.dataMover.moveData(this.backend, dataId);\n }\n return this.data.get(dataId);\n }\n set(dataId, value) {\n this.dataIdsCount++;\n this.data.set(dataId, value);\n }\n has(dataId) {\n return this.data.has(dataId);\n }\n delete(dataId) {\n this.dataIdsCount--;\n return this.data.delete(dataId);\n }\n numDataIds() {\n return this.dataIdsCount;\n }\n};\nvar KernelBackend = class {\n refCount(dataId) {\n return notYetImplemented(\"refCount\");\n }\n incRef(dataId) {\n return notYetImplemented(\"incRef\");\n }\n timerAvailable() {\n return true;\n }\n time(f) {\n return notYetImplemented(\"time\");\n }\n read(dataId) {\n return notYetImplemented(\"read\");\n }\n readSync(dataId) {\n return notYetImplemented(\"readSync\");\n }\n readToGPU(dataId, options) {\n return notYetImplemented(\"readToGPU\");\n }\n numDataIds() {\n return notYetImplemented(\"numDataIds\");\n }\n disposeData(dataId, force) {\n return notYetImplemented(\"disposeData\");\n }\n write(values, shape, dtype) {\n return notYetImplemented(\"write\");\n }\n move(dataId, values, shape, dtype, refCount) {\n return notYetImplemented(\"move\");\n }\n memory() {\n return notYetImplemented(\"memory\");\n }\n floatPrecision() {\n return notYetImplemented(\"floatPrecision\");\n }\n epsilon() {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16;\n }\n dispose() {\n return notYetImplemented(\"dispose\");\n }\n};\nfunction notYetImplemented(kernelName) {\n throw new Error(`'${kernelName}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/util_base.js\nfunction shuffle(array2) {\n let counter = array2.length;\n let index = 0;\n while (counter > 0) {\n index = Math.random() * counter | 0;\n counter--;\n swap(array2, counter, index);\n }\n}\nfunction shuffleCombo(array2, array22) {\n if (array2.length !== array22.length) {\n throw new Error(`Array sizes must match to be shuffled together First array length was ${array2.length}Second array length was ${array22.length}`);\n }\n let counter = array2.length;\n let index = 0;\n while (counter > 0) {\n index = Math.random() * counter | 0;\n counter--;\n swap(array2, counter, index);\n swap(array22, counter, index);\n }\n}\nfunction clamp(min7, x, max7) {\n return Math.max(min7, Math.min(x, max7));\n}\nfunction nearestLargerEven(val) {\n return val % 2 === 0 ? val : val + 1;\n}\nfunction swap(object, left, right) {\n const temp = object[left];\n object[left] = object[right];\n object[right] = temp;\n}\nfunction sum(arr) {\n let sum7 = 0;\n for (let i2 = 0; i2 < arr.length; i2++) {\n sum7 += arr[i2];\n }\n return sum7;\n}\nfunction randUniform(a, b) {\n const r2 = Math.random();\n return b * r2 + (1 - r2) * a;\n}\nfunction distSquared(a, b) {\n let result = 0;\n for (let i2 = 0; i2 < a.length; i2++) {\n const diff = Number(a[i2]) - Number(b[i2]);\n result += diff * diff;\n }\n return result;\n}\nfunction assert(expr, msg) {\n if (!expr) {\n throw new Error(typeof msg === \"string\" ? msg : msg());\n }\n}\nfunction assertShapesMatch(shapeA, shapeB, errorMessagePrefix = \"\") {\n assert(arraysEqual(shapeA, shapeB), () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n}\nfunction assertNonNull(a) {\n assert(a != null, () => `The input to the tensor constructor must be a non-null value.`);\n}\nfunction flatten(arr, result = [], skipTypedArray = false) {\n if (result == null) {\n result = [];\n }\n if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {\n for (let i2 = 0; i2 < arr.length; ++i2) {\n flatten(arr[i2], result, skipTypedArray);\n }\n } else {\n result.push(arr);\n }\n return result;\n}\nfunction sizeFromShape(shape) {\n if (shape.length === 0) {\n return 1;\n }\n let size = shape[0];\n for (let i2 = 1; i2 < shape.length; i2++) {\n size *= shape[i2];\n }\n return size;\n}\nfunction isScalarShape(shape) {\n return shape.length === 0;\n}\nfunction arraysEqual(n1, n2) {\n if (n1 === n2) {\n return true;\n }\n if (n1 == null || n2 == null) {\n return false;\n }\n if (n1.length !== n2.length) {\n return false;\n }\n for (let i2 = 0; i2 < n1.length; i2++) {\n if (n1[i2] !== n2[i2]) {\n return false;\n }\n }\n return true;\n}\nfunction isInt(a) {\n return a % 1 === 0;\n}\nfunction tanh(x) {\n if (Math.tanh != null) {\n return Math.tanh(x);\n }\n if (x === Infinity) {\n return 1;\n } else if (x === -Infinity) {\n return -1;\n } else {\n const e2x = Math.exp(2 * x);\n return (e2x - 1) / (e2x + 1);\n }\n}\nfunction sizeToSquarishShape(size) {\n const width = Math.ceil(Math.sqrt(size));\n return [width, Math.ceil(size / width)];\n}\nfunction createShuffledIndices(n2) {\n const shuffledIndices = new Uint32Array(n2);\n for (let i2 = 0; i2 < n2; ++i2) {\n shuffledIndices[i2] = i2;\n }\n shuffle(shuffledIndices);\n return shuffledIndices;\n}\nfunction rightPad(a, size) {\n if (size <= a.length) {\n return a;\n }\n return a + \" \".repeat(size - a.length);\n}\nfunction repeatedTry(checkFn, delayFn = (counter) => 0, maxCounter) {\n return new Promise((resolve, reject) => {\n let tryCount = 0;\n const tryFn = () => {\n if (checkFn()) {\n resolve();\n return;\n }\n tryCount++;\n const nextBackoff = delayFn(tryCount);\n if (maxCounter != null && tryCount >= maxCounter) {\n reject();\n return;\n }\n setTimeout(tryFn, nextBackoff);\n };\n tryFn();\n });\n}\nfunction inferFromImplicitShape(shape, size) {\n let shapeProd = 1;\n let implicitIdx = -1;\n for (let i2 = 0; i2 < shape.length; ++i2) {\n if (shape[i2] >= 0) {\n shapeProd *= shape[i2];\n } else if (shape[i2] === -1) {\n if (implicitIdx !== -1) {\n throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${implicitIdx} and dim ${i2}`);\n }\n implicitIdx = i2;\n } else if (shape[i2] < 0) {\n throw Error(`Shapes can not be < 0. Found ${shape[i2]} at dim ${i2}`);\n }\n }\n if (implicitIdx === -1) {\n if (size > 0 && size !== shapeProd) {\n throw Error(`Size(${size}) must match the product of shape ${shape}`);\n }\n return shape;\n }\n if (shapeProd === 0) {\n throw Error(`Cannot infer the missing size in [${shape}] when there are 0 elements`);\n }\n if (size % shapeProd !== 0) {\n throw Error(`The implicit shape can't be a fractional number. Got ${size} / ${shapeProd}`);\n }\n const newShape = shape.slice();\n newShape[implicitIdx] = size / shapeProd;\n return newShape;\n}\nfunction parseAxisParam(axis, shape) {\n const rank = shape.length;\n axis = axis == null ? shape.map((s2, i2) => i2) : [].concat(axis);\n assert(axis.every((ax) => ax >= -rank && ax < rank), () => `All values in axis param must be in range [-${rank}, ${rank}) but got axis ${axis}`);\n assert(axis.every((ax) => isInt(ax)), () => `All values in axis param must be integers but got axis ${axis}`);\n return axis.map((a) => a < 0 ? rank + a : a);\n}\nfunction squeezeShape(shape, axis) {\n const newShape = [];\n const keptDims = [];\n const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;\n const axes = axis == null || isEmptyArray ? null : parseAxisParam(axis, shape).sort();\n let j = 0;\n for (let i2 = 0; i2 < shape.length; ++i2) {\n if (axes != null) {\n if (axes[j] === i2 && shape[i2] !== 1) {\n throw new Error(`Can't squeeze axis ${i2} since its dim '${shape[i2]}' is not 1`);\n }\n if ((axes[j] == null || axes[j] > i2) && shape[i2] === 1) {\n newShape.push(shape[i2]);\n keptDims.push(i2);\n }\n if (axes[j] <= i2) {\n j++;\n }\n }\n if (shape[i2] !== 1) {\n newShape.push(shape[i2]);\n keptDims.push(i2);\n }\n }\n return { newShape, keptDims };\n}\nfunction getTypedArrayFromDType(dtype, size) {\n let values = null;\n if (dtype == null || dtype === \"float32\") {\n values = new Float32Array(size);\n } else if (dtype === \"int32\") {\n values = new Int32Array(size);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values;\n}\nfunction getArrayFromDType(dtype, size) {\n let values = null;\n if (dtype == null || dtype === \"float32\") {\n values = new Float32Array(size);\n } else if (dtype === \"int32\") {\n values = new Int32Array(size);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(size);\n } else if (dtype === \"string\") {\n values = new Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values;\n}\nfunction checkConversionForErrors(vals, dtype) {\n for (let i2 = 0; i2 < vals.length; i2++) {\n const num = vals[i2];\n if (isNaN(num) || !isFinite(num)) {\n throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);\n }\n }\n}\nfunction isValidDtype(dtype) {\n return dtype === \"bool\" || dtype === \"complex64\" || dtype === \"float32\" || dtype === \"int32\" || dtype === \"string\";\n}\nfunction hasEncodingLoss(oldType, newType) {\n if (newType === \"complex64\") {\n return false;\n }\n if (newType === \"float32\" && oldType !== \"complex64\") {\n return false;\n }\n if (newType === \"int32\" && oldType !== \"float32\" && oldType !== \"complex64\") {\n return false;\n }\n if (newType === \"bool\" && oldType === \"bool\") {\n return false;\n }\n return true;\n}\nfunction isTypedArray(a) {\n return a instanceof Float32Array || a instanceof Int32Array || a instanceof Uint8Array || a instanceof Uint8ClampedArray;\n}\nfunction bytesPerElement(dtype) {\n if (dtype === \"float32\" || dtype === \"int32\") {\n return 4;\n } else if (dtype === \"complex64\") {\n return 8;\n } else if (dtype === \"bool\") {\n return 1;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\nfunction bytesFromStringArray(arr) {\n if (arr == null) {\n return 0;\n }\n let bytes = 0;\n arr.forEach((x) => bytes += x.length);\n return bytes;\n}\nfunction isString(value) {\n return typeof value === \"string\" || value instanceof String;\n}\nfunction isBoolean(value) {\n return typeof value === \"boolean\";\n}\nfunction isNumber(value) {\n return typeof value === \"number\";\n}\nfunction inferDtype(values) {\n if (Array.isArray(values)) {\n return inferDtype(values[0]);\n }\n if (values instanceof Float32Array) {\n return \"float32\";\n } else if (values instanceof Int32Array || values instanceof Uint8Array || values instanceof Uint8ClampedArray) {\n return \"int32\";\n } else if (isNumber(values)) {\n return \"float32\";\n } else if (isString(values)) {\n return \"string\";\n } else if (isBoolean(values)) {\n return \"bool\";\n }\n return \"float32\";\n}\nfunction isFunction(f) {\n return !!(f && f.constructor && f.call && f.apply);\n}\nfunction nearestDivisor(size, start) {\n for (let i2 = start; i2 < size; ++i2) {\n if (size % i2 === 0) {\n return i2;\n }\n }\n return size;\n}\nfunction computeStrides(shape) {\n const rank = shape.length;\n if (rank < 2) {\n return [];\n }\n const strides = new Array(rank - 1);\n strides[rank - 2] = shape[rank - 1];\n for (let i2 = rank - 3; i2 >= 0; --i2) {\n strides[i2] = strides[i2 + 1] * shape[i2 + 1];\n }\n return strides;\n}\nfunction createNestedArray(offset, shape, a, isComplex = false) {\n const ret = new Array();\n if (shape.length === 1) {\n const d = shape[0] * (isComplex ? 2 : 1);\n for (let i2 = 0; i2 < d; i2++) {\n ret[i2] = a[offset + i2];\n }\n } else {\n const d = shape[0];\n const rest = shape.slice(1);\n const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n for (let i2 = 0; i2 < d; i2++) {\n ret[i2] = createNestedArray(offset + i2 * len, rest, a, isComplex);\n }\n }\n return ret;\n}\nfunction toNestedArray(shape, a, isComplex = false) {\n if (shape.length === 0) {\n return a[0];\n }\n const size = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n if (size === 0) {\n return [];\n }\n if (size !== a.length) {\n throw new Error(`[${shape}] does not match the input size ${a.length}${isComplex ? \" for a complex tensor\" : \"\"}.`);\n }\n return createNestedArray(0, shape, a, isComplex);\n}\nfunction makeOnesTypedArray(size, dtype) {\n const array2 = makeZerosTypedArray(size, dtype);\n for (let i2 = 0; i2 < array2.length; i2++) {\n array2[i2] = 1;\n }\n return array2;\n}\nfunction makeZerosTypedArray(size, dtype) {\n if (dtype == null || dtype === \"float32\" || dtype === \"complex64\") {\n return new Float32Array(size);\n } else if (dtype === \"int32\") {\n return new Int32Array(size);\n } else if (dtype === \"bool\") {\n return new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\nfunction makeZerosNestedTypedArray(shape, dtype) {\n const size = shape.reduce((prev, curr) => prev * curr, 1);\n if (dtype == null || dtype === \"float32\") {\n return toNestedArray(shape, new Float32Array(size));\n } else if (dtype === \"int32\") {\n return toNestedArray(shape, new Int32Array(size));\n } else if (dtype === \"bool\") {\n return toNestedArray(shape, new Uint8Array(size));\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\nfunction assertNonNegativeIntegerDimensions(shape) {\n shape.forEach((dimSize) => {\n assert(Number.isInteger(dimSize) && dimSize >= 0, () => `Tensor must have a shape comprised of positive integers but got shape [${shape}].`);\n });\n}\nfunction locToIndex(locs, rank, strides) {\n if (rank === 0) {\n return 0;\n } else if (rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n index += strides[i2] * locs[i2];\n }\n return index;\n}\nfunction indexToLoc(index, rank, strides) {\n if (rank === 0) {\n return [];\n } else if (rank === 1) {\n return [index];\n }\n const locs = new Array(rank);\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n locs[i2] = Math.floor(index / strides[i2]);\n index -= locs[i2] * strides[i2];\n }\n locs[locs.length - 1] = index;\n return locs;\n}\nfunction isPromise(object) {\n return object && object.then && typeof object.then === \"function\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/environment.js\nvar TENSORFLOWJS_FLAGS_PREFIX = \"tfjsflags\";\nvar Environment = class {\n constructor(global2) {\n this.global = global2;\n this.flags = {};\n this.flagRegistry = {};\n this.urlFlags = {};\n this.getQueryParams = getQueryParams;\n this.populateURLFlags();\n }\n setPlatform(platformName, platform) {\n if (this.platform != null) {\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${platformName}.`);\n }\n }\n this.platformName = platformName;\n this.platform = platform;\n }\n registerFlag(flagName, evaluationFn, setHook) {\n this.flagRegistry[flagName] = { evaluationFn, setHook };\n if (this.urlFlags[flagName] != null) {\n const flagValue = this.urlFlags[flagName];\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.warn(`Setting feature override from URL ${flagName}: ${flagValue}.`);\n }\n this.set(flagName, flagValue);\n }\n }\n async getAsync(flagName) {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n this.flags[flagName] = await this.evaluateFlag(flagName);\n return this.flags[flagName];\n }\n get(flagName) {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n const flagValue = this.evaluateFlag(flagName);\n if (isPromise(flagValue)) {\n throw new Error(`Flag ${flagName} cannot be synchronously evaluated. Please use getAsync() instead.`);\n }\n this.flags[flagName] = flagValue;\n return this.flags[flagName];\n }\n getNumber(flagName) {\n return this.get(flagName);\n }\n getBool(flagName) {\n return this.get(flagName);\n }\n getFlags() {\n return this.flags;\n }\n get features() {\n return this.flags;\n }\n set(flagName, value) {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(`Cannot set flag ${flagName} as it has not been registered.`);\n }\n this.flags[flagName] = value;\n if (this.flagRegistry[flagName].setHook != null) {\n this.flagRegistry[flagName].setHook(value);\n }\n }\n evaluateFlag(flagName) {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(`Cannot evaluate flag '${flagName}': no evaluation function found.`);\n }\n return this.flagRegistry[flagName].evaluationFn();\n }\n setFlags(flags) {\n this.flags = Object.assign({}, flags);\n }\n reset() {\n this.flags = {};\n this.urlFlags = {};\n this.populateURLFlags();\n }\n populateURLFlags() {\n if (typeof this.global === \"undefined\" || typeof this.global.location === \"undefined\" || typeof this.global.location.search === \"undefined\") {\n return;\n }\n const urlParams = this.getQueryParams(this.global.location.search);\n if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) {\n const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(\",\");\n keyValues.forEach((keyValue) => {\n const [key, value] = keyValue.split(\":\");\n this.urlFlags[key] = parseValue(key, value);\n });\n }\n }\n};\nfunction getQueryParams(queryString) {\n const params = {};\n queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s2, ...t2) => {\n decodeParam(params, t2[0], t2[1]);\n return t2.join(\"=\");\n });\n return params;\n}\nfunction decodeParam(params, name, value) {\n params[decodeURIComponent(name)] = decodeURIComponent(value || \"\");\n}\nfunction parseValue(flagName, value) {\n value = value.toLowerCase();\n if (value === \"true\" || value === \"false\") {\n return value === \"true\";\n } else if (`${+value}` === value) {\n return +value;\n }\n throw new Error(`Could not parse value flag value ${value} for flag ${flagName}.`);\n}\nfunction env() {\n return ENV;\n}\nvar ENV = null;\nfunction setEnvironmentGlobal(environment) {\n ENV = environment;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/global_util.js\nvar globalNameSpace;\nfunction getGlobalNamespace() {\n if (globalNameSpace == null) {\n let ns;\n if (typeof window !== \"undefined\") {\n ns = window;\n } else if (typeof global !== \"undefined\") {\n ns = global;\n } else if (typeof process !== \"undefined\") {\n ns = process;\n } else if (typeof self !== \"undefined\") {\n ns = self;\n } else {\n throw new Error(\"Could not find a global object\");\n }\n globalNameSpace = ns;\n }\n return globalNameSpace;\n}\nfunction getGlobalMap() {\n const ns = getGlobalNamespace();\n if (ns._tfGlobals == null) {\n ns._tfGlobals = /* @__PURE__ */ new Map();\n }\n return ns._tfGlobals;\n}\nfunction getGlobal(key, init2) {\n const globalMap = getGlobalMap();\n if (globalMap.has(key)) {\n return globalMap.get(key);\n } else {\n const singleton = init2();\n globalMap.set(key, singleton);\n return globalMap.get(key);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/kernel_names.js\nvar Abs = \"Abs\";\nvar Acos = \"Acos\";\nvar Acosh = \"Acosh\";\nvar Add = \"Add\";\nvar AddN = \"AddN\";\nvar All = \"All\";\nvar Any = \"Any\";\nvar ArgMax = \"ArgMax\";\nvar ArgMin = \"ArgMin\";\nvar Asin = \"Asin\";\nvar Asinh = \"Asinh\";\nvar Atan = \"Atan\";\nvar Atanh = \"Atanh\";\nvar Atan2 = \"Atan2\";\nvar AvgPool = \"AvgPool\";\nvar AvgPoolGrad = \"AvgPoolGrad\";\nvar AvgPool3D = \"AvgPool3D\";\nvar AvgPool3DGrad = \"AvgPool3DGrad\";\nvar BatchMatMul = \"BatchMatMul\";\nvar BatchToSpaceND = \"BatchToSpaceND\";\nvar Bincount = \"Bincount\";\nvar BroadcastTo = \"BroadcastTo\";\nvar BroadcastArgs = \"BroadcastArgs\";\nvar Cast = \"Cast\";\nvar Ceil = \"Ceil\";\nvar ClipByValue = \"ClipByValue\";\nvar Complex = \"Complex\";\nvar ComplexAbs = \"ComplexAbs\";\nvar Concat = \"Concat\";\nvar Conv2D = \"Conv2D\";\nvar Conv2DBackpropFilter = \"Conv2DBackpropFilter\";\nvar Conv2DBackpropInput = \"Conv2DBackpropInput\";\nvar Conv3D = \"Conv3D\";\nvar Conv3DBackpropFilterV2 = \"Conv3DBackpropFilterV2\";\nvar Conv3DBackpropInputV2 = \"Conv3DBackpropInputV2\";\nvar Cos = \"Cos\";\nvar Cosh = \"Cosh\";\nvar Cumprod = \"Cumprod\";\nvar Cumsum = \"Cumsum\";\nvar CropAndResize = \"CropAndResize\";\nvar DenseBincount = \"DenseBincount\";\nvar DepthToSpace = \"DepthToSpace\";\nvar DepthwiseConv2dNative = \"DepthwiseConv2dNative\";\nvar DepthwiseConv2dNativeBackpropFilter = \"DepthwiseConv2dNativeBackpropFilter\";\nvar DepthwiseConv2dNativeBackpropInput = \"DepthwiseConv2dNativeBackpropInput\";\nvar Diag = \"Diag\";\nvar Dilation2D = \"Dilation2D\";\nvar Dilation2DBackpropInput = \"Dilation2DBackpropInput\";\nvar Dilation2DBackpropFilter = \"Dilation2DBackpropFilter\";\nvar RealDiv = \"RealDiv\";\nvar Einsum = \"Einsum\";\nvar Elu = \"Elu\";\nvar EluGrad = \"EluGrad\";\nvar Erf = \"Erf\";\nvar Equal = \"Equal\";\nvar Exp = \"Exp\";\nvar ExpandDims = \"ExpandDims\";\nvar Expm1 = \"Expm1\";\nvar FFT = \"FFT\";\nvar Fill = \"Fill\";\nvar FlipLeftRight = \"FlipLeftRight\";\nvar Floor = \"Floor\";\nvar FloorDiv = \"FloorDiv\";\nvar FusedBatchNorm = \"FusedBatchNorm\";\nvar GatherV2 = \"GatherV2\";\nvar GatherNd = \"GatherNd\";\nvar Greater = \"Greater\";\nvar GreaterEqual = \"GreaterEqual\";\nvar Identity = \"Identity\";\nvar IFFT = \"IFFT\";\nvar Imag = \"Imag\";\nvar IsFinite = \"IsFinite\";\nvar IsInf = \"IsInf\";\nvar IsNan = \"IsNan\";\nvar LeakyRelu = \"LeakyRelu\";\nvar Less = \"Less\";\nvar LessEqual = \"LessEqual\";\nvar LinSpace = \"LinSpace\";\nvar Log = \"Log\";\nvar Log1p = \"Log1p\";\nvar LogicalAnd = \"LogicalAnd\";\nvar LogicalNot = \"LogicalNot\";\nvar LogicalOr = \"LogicalOr\";\nvar LogicalXor = \"LogicalXor\";\nvar LogSoftmax = \"LogSoftmax\";\nvar LowerBound = \"LowerBound\";\nvar LRN = \"LRN\";\nvar LRNGrad = \"LRNGrad\";\nvar Max = \"Max\";\nvar Maximum = \"Maximum\";\nvar MaxPool = \"MaxPool\";\nvar MaxPoolGrad = \"MaxPoolGrad\";\nvar MaxPool3D = \"MaxPool3D\";\nvar MaxPool3DGrad = \"MaxPool3DGrad\";\nvar MaxPoolWithArgmax = \"MaxPoolWithArgmax\";\nvar Mean = \"Mean\";\nvar Min = \"Min\";\nvar Minimum = \"Minimum\";\nvar MirrorPad = \"MirrorPad\";\nvar Mod = \"Mod\";\nvar Multinomial = \"Multinomial\";\nvar Multiply = \"Multiply\";\nvar Neg = \"Neg\";\nvar NotEqual = \"NotEqual\";\nvar NonMaxSuppressionV3 = \"NonMaxSuppressionV3\";\nvar NonMaxSuppressionV4 = \"NonMaxSuppressionV4\";\nvar NonMaxSuppressionV5 = \"NonMaxSuppressionV5\";\nvar OnesLike = \"OnesLike\";\nvar OneHot = \"OneHot\";\nvar Pack = \"Pack\";\nvar PadV2 = \"PadV2\";\nvar Pool = \"Pool\";\nvar Pow = \"Pow\";\nvar Prelu = \"Prelu\";\nvar Prod = \"Prod\";\nvar RaggedTensorToTensor = \"RaggedTensorToTensor\";\nvar Range = \"Range\";\nvar Real = \"Real\";\nvar Reciprocal = \"Reciprocal\";\nvar Relu = \"Relu\";\nvar Reshape = \"Reshape\";\nvar ResizeNearestNeighbor = \"ResizeNearestNeighbor\";\nvar ResizeNearestNeighborGrad = \"ResizeNearestNeighborGrad\";\nvar ResizeBilinear = \"ResizeBilinear\";\nvar ResizeBilinearGrad = \"ResizeBilinearGrad\";\nvar Relu6 = \"Relu6\";\nvar Reverse = \"Reverse\";\nvar Round = \"Round\";\nvar Rsqrt = \"Rsqrt\";\nvar ScatterNd = \"ScatterNd\";\nvar SearchSorted = \"SearchSorted\";\nvar Select = \"Select\";\nvar Selu = \"Selu\";\nvar Slice = \"Slice\";\nvar Sin = \"Sin\";\nvar Sinh = \"Sinh\";\nvar Sign = \"Sign\";\nvar Sigmoid = \"Sigmoid\";\nvar Softplus = \"Softplus\";\nvar Sqrt = \"Sqrt\";\nvar Sum = \"Sum\";\nvar SpaceToBatchND = \"SpaceToBatchND\";\nvar SplitV = \"SplitV\";\nvar Softmax = \"Softmax\";\nvar SparseFillEmptyRows = \"SparseFillEmptyRows\";\nvar SparseReshape = \"SparseReshape\";\nvar SparseSegmentMean = \"SparseSegmentMean\";\nvar SparseSegmentSum = \"SparseSegmentSum\";\nvar SparseToDense = \"SparseToDense\";\nvar SquaredDifference = \"SquaredDifference\";\nvar Square = \"Square\";\nvar StridedSlice = \"StridedSlice\";\nvar StringNGrams = \"StringNGrams\";\nvar StringSplit = \"StringSplit\";\nvar StringToHashBucketFast = \"StringToHashBucketFast\";\nvar Sub = \"Sub\";\nvar Tan = \"Tan\";\nvar Tanh = \"Tanh\";\nvar Tile = \"Tile\";\nvar TopK = \"TopK\";\nvar Transform = \"Transform\";\nvar Transpose = \"Transpose\";\nvar Unique = \"Unique\";\nvar Unpack = \"Unpack\";\nvar UnsortedSegmentSum = \"UnsortedSegmentSum\";\nvar UpperBound = \"UpperBound\";\nvar ZerosLike = \"ZerosLike\";\nvar Step = \"Step\";\nvar FromPixels = \"FromPixels\";\nvar RotateWithOffset = \"RotateWithOffset\";\nvar _FusedMatMul = \"_FusedMatMul\";\nvar FusedConv2D = \"FusedConv2D\";\nvar FusedDepthwiseConv2D = \"FusedDepthwiseConv2D\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/log.js\nfunction warn(...msg) {\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.warn(...msg);\n }\n}\nfunction log(...msg) {\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.log(...msg);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/kernel_registry.js\nvar kernelRegistry = getGlobal(\"kernelRegistry\", () => /* @__PURE__ */ new Map());\nvar gradRegistry = getGlobal(\"gradRegistry\", () => /* @__PURE__ */ new Map());\nfunction getKernel(kernelName, backendName) {\n const key = makeKey(kernelName, backendName);\n return kernelRegistry.get(key);\n}\nfunction getGradient(kernelName) {\n return gradRegistry.get(kernelName);\n}\nfunction getKernelsForBackend(backendName) {\n const it = kernelRegistry.entries();\n const result = [];\n while (true) {\n const { done, value } = it.next();\n if (done) {\n break;\n }\n const [key, config] = value;\n const [backend2] = key.split(\"_\");\n if (backend2 === backendName) {\n result.push(config);\n }\n }\n return result;\n}\nfunction registerKernel(config) {\n const { kernelName, backendName } = config;\n const key = makeKey(kernelName, backendName);\n if (kernelRegistry.has(key)) {\n warn(`The kernel '${kernelName}' for backend '${backendName}' is already registered`);\n }\n kernelRegistry.set(key, config);\n}\nfunction registerGradient(config) {\n const { kernelName } = config;\n if (gradRegistry.has(kernelName)) {\n if (env().getBool(\"DEBUG\")) {\n warn(`Overriding the gradient for '${kernelName}'`);\n }\n }\n gradRegistry.set(kernelName, config);\n}\nfunction unregisterKernel(kernelName, backendName) {\n const key = makeKey(kernelName, backendName);\n if (!kernelRegistry.has(key)) {\n throw new Error(`The kernel '${kernelName}' for backend '${backendName}' is not registered`);\n }\n kernelRegistry.delete(key);\n}\nfunction unregisterGradient(kernelName) {\n if (!gradRegistry.has(kernelName)) {\n throw new Error(`The gradient '${kernelName}' for backend is not registered`);\n }\n gradRegistry.delete(kernelName);\n}\nfunction copyRegisteredKernels(registeredBackendName, newBackendName) {\n const kernels = getKernelsForBackend(registeredBackendName);\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = Object.assign({}, kernelConfig, { backendName: newBackendName });\n registerKernel(newKernelConfig);\n });\n}\nfunction makeKey(kernelName, backendName) {\n return `${backendName}_${kernelName}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/util.js\nvar util_exports = {};\n__export(util_exports, {\n arraysEqual: () => arraysEqual,\n assert: () => assert,\n assertNonNegativeIntegerDimensions: () => assertNonNegativeIntegerDimensions,\n assertNonNull: () => assertNonNull,\n assertShapesMatch: () => assertShapesMatch,\n bytesFromStringArray: () => bytesFromStringArray,\n bytesPerElement: () => bytesPerElement,\n checkConversionForErrors: () => checkConversionForErrors,\n clamp: () => clamp,\n computeStrides: () => computeStrides,\n createScalarValue: () => createScalarValue,\n createShuffledIndices: () => createShuffledIndices,\n decodeString: () => decodeString,\n distSquared: () => distSquared,\n encodeString: () => encodeString,\n fetch: () => fetch3,\n fingerPrint64: () => fingerPrint64,\n flatten: () => flatten,\n getArrayFromDType: () => getArrayFromDType,\n getTypedArrayFromDType: () => getTypedArrayFromDType,\n hasEncodingLoss: () => hasEncodingLoss,\n hexToLong: () => hexToLong,\n indexToLoc: () => indexToLoc,\n inferDtype: () => inferDtype,\n inferFromImplicitShape: () => inferFromImplicitShape,\n isBoolean: () => isBoolean,\n isFunction: () => isFunction,\n isInt: () => isInt,\n isNumber: () => isNumber,\n isPromise: () => isPromise,\n isScalarShape: () => isScalarShape,\n isString: () => isString,\n isTypedArray: () => isTypedArray,\n isValidDtype: () => isValidDtype,\n locToIndex: () => locToIndex,\n makeOnesTypedArray: () => makeOnesTypedArray,\n makeZerosNestedTypedArray: () => makeZerosNestedTypedArray,\n makeZerosTypedArray: () => makeZerosTypedArray,\n nearestDivisor: () => nearestDivisor,\n nearestLargerEven: () => nearestLargerEven,\n now: () => now,\n parseAxisParam: () => parseAxisParam,\n randUniform: () => randUniform,\n repeatedTry: () => repeatedTry,\n rightPad: () => rightPad,\n shuffle: () => shuffle,\n shuffleCombo: () => shuffleCombo,\n sizeFromShape: () => sizeFromShape,\n sizeToSquarishShape: () => sizeToSquarishShape,\n squeezeShape: () => squeezeShape,\n sum: () => sum,\n swap: () => swap,\n tanh: () => tanh,\n toNestedArray: () => toNestedArray,\n toTypedArray: () => toTypedArray\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/hash_util.js\nvar LongExports = __toESM(require_long());\nvar Long = LongExports.default || LongExports;\nfunction hexToLong(hex) {\n return Long.fromString(hex, true, 16);\n}\nvar k0 = hexToLong(\"c3a5c85c97cb3127\");\nvar k1 = hexToLong(\"b492b66fbe98f273\");\nvar k2 = hexToLong(\"9ae16a3b2f90404f\");\nfunction shiftMix(val) {\n return val.xor(val.shru(47));\n}\nfunction fetch2(s2, offset, numBytes) {\n const bytes = s2.slice(offset, offset + numBytes);\n return Long.fromBytes(Array.from(bytes), true, true);\n}\nfunction fetch64(s2, offset) {\n return fetch2(s2, offset, 8);\n}\nfunction fetch32(s2, offset) {\n return fetch2(s2, offset, 4);\n}\nfunction rotate64(val, shift) {\n return shift === 0 ? val : val.shru(shift).or(val.shl(64 - shift));\n}\nfunction hashLen16(u, v, mul2 = hexToLong(\"9ddfea08eb382d69\")) {\n let a = u.xor(v).mul(mul2);\n a = a.xor(a.shru(47));\n let b = v.xor(a).mul(mul2);\n b = b.xor(b.shru(47));\n b = b.mul(mul2);\n return b;\n}\nfunction weakHashLen32WithSeeds(w, x, y, z, a, b) {\n a = a.add(w);\n b = rotate64(b.add(a).add(z), 21);\n const c = a;\n a = a.add(x);\n a = a.add(y);\n b = b.add(rotate64(a, 44));\n return [a.add(z), b.add(c)];\n}\nfunction weakHashLen32WithSeedsStr(s2, offset, a, b) {\n return weakHashLen32WithSeeds(fetch64(s2, offset), fetch64(s2, offset + 8), fetch64(s2, offset + 16), fetch64(s2, offset + 24), a, b);\n}\nfunction hashLen0to16(s2, len = s2.length) {\n if (len >= 8) {\n const mul2 = k2.add(len * 2);\n const a = fetch64(s2, 0).add(k2);\n const b = fetch64(s2, len - 8);\n const c = rotate64(b, 37).mul(mul2).add(a);\n const d = rotate64(a, 25).add(b).mul(mul2);\n return hashLen16(c, d, mul2);\n }\n if (len >= 4) {\n const mul2 = k2.add(len * 2);\n const a = fetch32(s2, 0);\n return hashLen16(a.shl(3).add(len), fetch32(s2, len - 4), mul2);\n }\n if (len > 0) {\n const a = s2[0];\n const b = s2[len >> 1];\n const c = s2[len - 1];\n const y = a + (b << 8);\n const z = len + (c << 2);\n return shiftMix(k2.mul(y).xor(k0.mul(z))).mul(k2);\n }\n return k2;\n}\nfunction hashLen17to32(s2, len = s2.length) {\n const mul2 = k2.add(len * 2);\n const a = fetch64(s2, 0).mul(k1);\n const b = fetch64(s2, 8);\n const c = fetch64(s2, len - 8).mul(mul2);\n const d = fetch64(s2, len - 16).mul(k2);\n return hashLen16(rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d), a.add(rotate64(b.add(k2), 18)).add(c), mul2);\n}\nfunction hashLen33to64(s2, len = s2.length) {\n const mul2 = k2.add(len * 2);\n const a = fetch64(s2, 0).mul(k2);\n const b = fetch64(s2, 8);\n const c = fetch64(s2, len - 8).mul(mul2);\n const d = fetch64(s2, len - 16).mul(k2);\n const y = rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d);\n const z = hashLen16(y, a.add(rotate64(b.add(k2), 18)).add(c), mul2);\n const e2 = fetch64(s2, 16).mul(mul2);\n const f = fetch64(s2, 24);\n const g = y.add(fetch64(s2, len - 32)).mul(mul2);\n const h = z.add(fetch64(s2, len - 24)).mul(mul2);\n return hashLen16(rotate64(e2.add(f), 43).add(rotate64(g, 30)).add(h), e2.add(rotate64(f.add(a), 18)).add(g), mul2);\n}\nfunction fingerPrint64(s2, len = s2.length) {\n const seed = Long.fromNumber(81, true);\n if (len <= 32) {\n if (len <= 16) {\n return hashLen0to16(s2, len);\n } else {\n return hashLen17to32(s2, len);\n }\n } else if (len <= 64) {\n return hashLen33to64(s2, len);\n }\n let x = seed;\n let y = seed.mul(k1).add(113);\n let z = shiftMix(y.mul(k2).add(113)).mul(k2);\n let v = [Long.UZERO, Long.UZERO];\n let w = [Long.UZERO, Long.UZERO];\n x = x.mul(k2).add(fetch64(s2, 0));\n let offset = 0;\n const end = (len - 1 >> 6) * 64;\n const last64 = end + (len - 1 & 63) - 63;\n do {\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s2, offset + 8)), 37).mul(k1);\n y = rotate64(y.add(v[1]).add(fetch64(s2, offset + 48)), 42).mul(k1);\n x = x.xor(w[1]);\n y = y.add(v[0]).add(fetch64(s2, offset + 40));\n z = rotate64(z.add(w[0]), 33).mul(k1);\n v = weakHashLen32WithSeedsStr(s2, offset, v[1].mul(k1), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(s2, offset + 32, z.add(w[1]), y.add(fetch64(s2, offset + 16)));\n [z, x] = [x, z];\n offset += 64;\n } while (offset !== end);\n const mul2 = k1.add(z.and(255).shl(1));\n offset = last64;\n w[0] = w[0].add(len - 1 & 63);\n v[0] = v[0].add(w[0]);\n w[0] = w[0].add(v[0]);\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s2, offset + 8)), 37).mul(mul2);\n y = rotate64(y.add(v[1]).add(fetch64(s2, offset + 48)), 42).mul(mul2);\n x = x.xor(w[1].mul(9));\n y = y.add(v[0].mul(9).add(fetch64(s2, offset + 40)));\n z = rotate64(z.add(w[0]), 33).mul(mul2);\n v = weakHashLen32WithSeedsStr(s2, offset, v[1].mul(mul2), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(s2, offset + 32, z.add(w[1]), y.add(fetch64(s2, offset + 16)));\n [z, x] = [x, z];\n return hashLen16(hashLen16(v[0], w[0], mul2).add(shiftMix(y).mul(k0)).add(z), hashLen16(v[1], w[1], mul2).add(x), mul2);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/util.js\nfunction createScalarValue(value, dtype) {\n if (dtype === \"string\") {\n return encodeString(value);\n }\n return toTypedArray([value], dtype);\n}\nfunction noConversionNeeded(a, dtype) {\n return a instanceof Float32Array && dtype === \"float32\" || a instanceof Int32Array && dtype === \"int32\" || a instanceof Uint8Array && dtype === \"bool\";\n}\nfunction toTypedArray(a, dtype) {\n if (dtype === \"string\") {\n throw new Error(\"Cannot convert a string[] to a TypedArray\");\n }\n if (Array.isArray(a)) {\n a = flatten(a);\n }\n if (env().getBool(\"DEBUG\")) {\n checkConversionForErrors(a, dtype);\n }\n if (noConversionNeeded(a, dtype)) {\n return a;\n }\n if (dtype == null || dtype === \"float32\" || dtype === \"complex64\") {\n return new Float32Array(a);\n } else if (dtype === \"int32\") {\n return new Int32Array(a);\n } else if (dtype === \"bool\") {\n const bool = new Uint8Array(a.length);\n for (let i2 = 0; i2 < bool.length; ++i2) {\n if (Math.round(a[i2]) !== 0) {\n bool[i2] = 1;\n }\n }\n return bool;\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\nfunction now() {\n return env().platform.now();\n}\nfunction fetch3(path, requestInits) {\n return env().platform.fetch(path, requestInits);\n}\nfunction encodeString(s2, encoding = \"utf-8\") {\n encoding = encoding || \"utf-8\";\n return env().platform.encode(s2, encoding);\n}\nfunction decodeString(bytes, encoding = \"utf-8\") {\n encoding = encoding || \"utf-8\";\n return env().platform.decode(bytes, encoding);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/profiler.js\nvar Profiler = class {\n constructor(backendTimer, logger) {\n this.backendTimer = backendTimer;\n this.logger = logger;\n if (logger == null) {\n this.logger = new Logger();\n }\n }\n profileKernel(kernelName, inputs, f) {\n let outputs;\n const holdResultWrapperFn = () => {\n outputs = f();\n };\n let timer;\n const start = now();\n if (this.backendTimer.timerAvailable()) {\n timer = this.backendTimer.time(holdResultWrapperFn);\n } else {\n holdResultWrapperFn();\n for (const output of outputs) {\n output.dataSync();\n }\n timer = Promise.resolve({ kernelMs: now() - start });\n }\n if (env().getBool(\"CHECK_COMPUTATION_FOR_ERRORS\")) {\n for (let i2 = 0; i2 < outputs.length; i2++) {\n const output = outputs[i2];\n output.data().then((tensorVals) => {\n checkComputationForErrors(tensorVals, output.dtype, kernelName);\n });\n }\n }\n const kernelProfile = {\n kernelName,\n outputs,\n inputs,\n timeMs: timer.then((timing) => timing.kernelMs),\n extraInfo: timer.then((timing) => timing.getExtraProfileInfo != null ? timing.getExtraProfileInfo() : \"\")\n };\n return kernelProfile;\n }\n logKernelProfile(kernelProfile) {\n const { kernelName, outputs, timeMs, inputs, extraInfo } = kernelProfile;\n outputs.forEach((result) => {\n Promise.all([result.data(), timeMs, extraInfo]).then((valueContainer) => {\n this.logger.logKernelProfile(kernelName, result, valueContainer[0], valueContainer[1], inputs, valueContainer[2]);\n });\n });\n }\n};\nfunction checkComputationForErrors(vals, dtype, kernelName) {\n if (dtype !== \"float32\") {\n return false;\n }\n for (let i2 = 0; i2 < vals.length; i2++) {\n const num = vals[i2];\n if (isNaN(num) || !isFinite(num)) {\n console.warn(`Found ${num} in the result of '${kernelName}'`);\n return true;\n }\n }\n return false;\n}\nvar Logger = class {\n logKernelProfile(name, result, vals, timeMs, inputs, extraInfo) {\n const time2 = typeof timeMs === \"number\" ? rightPad(`${timeMs}ms`, 9) : timeMs[\"error\"];\n const paddedName = rightPad(name, 25);\n const rank = result.rank;\n const size = result.size;\n const shape = rightPad(result.shape.toString(), 14);\n let inputShapesDescription = \"\";\n for (const name2 in inputs) {\n const input2 = inputs[name2];\n if (input2 != null) {\n const inputShape = input2.shape || result.shape;\n const inputRank = inputShape.length;\n inputShapesDescription += `${name2}: ${inputRank}D ${inputRank > 0 ? inputShape : \"\"} `;\n }\n }\n console.log(`%c${paddedName}\t%c${time2}\t%c${rank}D ${shape}\t%c${size}\t%c${inputShapesDescription}\t%c${extraInfo}`, \"font-weight:bold\", \"color:red\", \"color:blue\", \"color: orange\", \"color: green\", \"color: steelblue\");\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tape.js\nfunction getFilteredNodesXToY(tape, xs, y) {\n const tensorsFromX = {};\n const nodesFromX = {};\n for (let i2 = 0; i2 < xs.length; i2++) {\n tensorsFromX[xs[i2].id] = true;\n }\n for (let i2 = 0; i2 < tape.length; i2++) {\n const node = tape[i2];\n const nodeInputs = node.inputs;\n for (const inputName in nodeInputs) {\n const input2 = nodeInputs[inputName];\n let anyInputFromX = false;\n for (let j = 0; j < xs.length; j++) {\n if (tensorsFromX[input2.id]) {\n node.outputs.forEach((output) => tensorsFromX[output.id] = true);\n anyInputFromX = true;\n nodesFromX[node.id] = true;\n break;\n }\n }\n if (anyInputFromX) {\n break;\n }\n }\n }\n const tensorsLeadToY = {};\n tensorsLeadToY[y.id] = true;\n const nodesToY = {};\n for (let i2 = tape.length - 1; i2 >= 0; i2--) {\n const node = tape[i2];\n const nodeInputs = node.inputs;\n for (let j = 0; j < node.outputs.length; j++) {\n if (tensorsLeadToY[node.outputs[j].id]) {\n for (const inputName in nodeInputs) {\n tensorsLeadToY[nodeInputs[inputName].id] = true;\n nodesToY[node.id] = true;\n }\n break;\n }\n }\n }\n const filteredTape = [];\n for (let i2 = 0; i2 < tape.length; i2++) {\n const node = tape[i2];\n if (nodesFromX[node.id] && nodesToY[node.id]) {\n const prunedInputs = {};\n for (const inputName in node.inputs) {\n const nodeInput = node.inputs[inputName];\n if (tensorsFromX[nodeInput.id]) {\n prunedInputs[inputName] = nodeInput;\n }\n }\n const prunedNode = Object.assign({}, node);\n prunedNode.inputs = prunedInputs;\n prunedNode.outputs = node.outputs;\n filteredTape.push(prunedNode);\n }\n }\n return filteredTape;\n}\nfunction backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add6) {\n for (let i2 = filteredTape.length - 1; i2 >= 0; i2--) {\n const node = filteredTape[i2];\n const dys = [];\n node.outputs.forEach((o) => {\n const gradTensor = tensorAccumulatedGradientMap[o.id];\n if (gradTensor != null) {\n dys.push(gradTensor);\n } else {\n dys.push(null);\n }\n });\n if (node.gradient == null) {\n throw new Error(`Cannot compute gradient: gradient function not found for ${node.kernelName}.`);\n }\n const inputGradients = node.gradient(dys);\n for (const inputName in node.inputs) {\n if (!(inputName in inputGradients)) {\n throw new Error(`Cannot backprop through input ${inputName}. Available gradients found: ${Object.keys(inputGradients)}.`);\n }\n const dx = tidy2(() => inputGradients[inputName]());\n if (dx.dtype !== \"float32\") {\n throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input ${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);\n }\n const x = node.inputs[inputName];\n if (!arraysEqual(dx.shape, x.shape)) {\n throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input '${inputName}' has shape '${dx.shape}', which does not match the shape of the input '${x.shape}'`);\n }\n if (tensorAccumulatedGradientMap[x.id] == null) {\n tensorAccumulatedGradientMap[x.id] = dx;\n } else {\n const curGradient = tensorAccumulatedGradientMap[x.id];\n tensorAccumulatedGradientMap[x.id] = add6(curGradient, dx);\n curGradient.dispose();\n }\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor_format.js\nvar FORMAT_LIMIT_NUM_VALS = 20;\nvar FORMAT_NUM_FIRST_LAST_VALS = 3;\nvar FORMAT_NUM_SIG_DIGITS = 7;\nfunction tensorToString(vals, shape, dtype, verbose) {\n const strides = computeStrides(shape);\n const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides);\n const rank = shape.length;\n const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol);\n const lines = [\"Tensor\"];\n if (verbose) {\n lines.push(` dtype: ${dtype}`);\n lines.push(` rank: ${rank}`);\n lines.push(` shape: [${shape}]`);\n lines.push(` values:`);\n }\n lines.push(valsLines.map((l3) => \" \" + l3).join(\"\\n\"));\n return lines.join(\"\\n\");\n}\nfunction computeMaxSizePerColumn(vals, shape, dtype, strides) {\n const n2 = sizeFromShape(shape);\n const numCols = strides[strides.length - 1];\n const padPerCol = new Array(numCols).fill(0);\n const rank = shape.length;\n const valuesOrTuples = dtype === \"complex64\" ? createComplexTuples(vals) : vals;\n if (rank > 1) {\n for (let row = 0; row < n2 / numCols; row++) {\n const offset = row * numCols;\n for (let j = 0; j < numCols; j++) {\n padPerCol[j] = Math.max(padPerCol[j], valToString(valuesOrTuples[offset + j], 0, dtype).length);\n }\n }\n }\n return padPerCol;\n}\nfunction valToString(val, pad3, dtype) {\n let valStr;\n if (Array.isArray(val)) {\n valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`;\n } else if (isString(val)) {\n valStr = `'${val}'`;\n } else if (dtype === \"bool\") {\n valStr = boolNumToString(val);\n } else {\n valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString();\n }\n return rightPad(valStr, pad3);\n}\nfunction boolNumToString(v) {\n return v === 0 ? \"false\" : \"true\";\n}\nfunction subTensorToString(vals, shape, dtype, strides, padPerCol, isLast = true) {\n const storagePerElement = dtype === \"complex64\" ? 2 : 1;\n const size = shape[0];\n const rank = shape.length;\n if (rank === 0) {\n if (dtype === \"complex64\") {\n const complexTuple = createComplexTuples(vals);\n return [valToString(complexTuple[0], 0, dtype)];\n }\n if (dtype === \"bool\") {\n return [boolNumToString(vals[0])];\n }\n return [vals[0].toString()];\n }\n if (rank === 1) {\n if (size > FORMAT_LIMIT_NUM_VALS) {\n const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement;\n let firstVals = Array.from(vals.slice(0, firstValsSize));\n let lastVals = Array.from(vals.slice((size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement, size * storagePerElement));\n if (dtype === \"complex64\") {\n firstVals = createComplexTuples(firstVals);\n lastVals = createComplexTuples(lastVals);\n }\n return [\n \"[\" + firstVals.map((x, i2) => valToString(x, padPerCol[i2], dtype)).join(\", \") + \", ..., \" + lastVals.map((x, i2) => valToString(x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i2], dtype)).join(\", \") + \"]\"\n ];\n }\n const displayVals = dtype === \"complex64\" ? createComplexTuples(vals) : Array.from(vals);\n return [\n \"[\" + displayVals.map((x, i2) => valToString(x, padPerCol[i2], dtype)).join(\", \") + \"]\"\n ];\n }\n const subshape = shape.slice(1);\n const substrides = strides.slice(1);\n const stride = strides[0] * storagePerElement;\n const lines = [];\n if (size > FORMAT_LIMIT_NUM_VALS) {\n for (let i2 = 0; i2 < FORMAT_NUM_FIRST_LAST_VALS; i2++) {\n const start = i2 * stride;\n const end = start + stride;\n lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, false));\n }\n lines.push(\"...\");\n for (let i2 = size - FORMAT_NUM_FIRST_LAST_VALS; i2 < size; i2++) {\n const start = i2 * stride;\n const end = start + stride;\n lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i2 === size - 1));\n }\n } else {\n for (let i2 = 0; i2 < size; i2++) {\n const start = i2 * stride;\n const end = start + stride;\n lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i2 === size - 1));\n }\n }\n const sep = rank === 2 ? \",\" : \"\";\n lines[0] = \"[\" + lines[0] + sep;\n for (let i2 = 1; i2 < lines.length - 1; i2++) {\n lines[i2] = \" \" + lines[i2] + sep;\n }\n let newLineSep = \",\\n\";\n for (let i2 = 2; i2 < rank; i2++) {\n newLineSep += \"\\n\";\n }\n lines[lines.length - 1] = \" \" + lines[lines.length - 1] + \"]\" + (isLast ? \"\" : newLineSep);\n return lines;\n}\nfunction createComplexTuples(vals) {\n const complexTuples = [];\n for (let i2 = 0; i2 < vals.length; i2 += 2) {\n complexTuples.push([vals[i2], vals[i2 + 1]]);\n }\n return complexTuples;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor.js\nvar TensorBuffer = class {\n constructor(shape, dtype, values) {\n this.dtype = dtype;\n this.shape = shape.slice();\n this.size = sizeFromShape(shape);\n if (values != null) {\n const n2 = values.length;\n assert(n2 === this.size, () => `Length of values '${n2}' does not match the size inferred by the shape '${this.size}'.`);\n }\n if (dtype === \"complex64\") {\n throw new Error(`complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).`);\n }\n this.values = values || getArrayFromDType(dtype, this.size);\n this.strides = computeStrides(shape);\n }\n set(value, ...locs) {\n if (locs.length === 0) {\n locs = [0];\n }\n assert(locs.length === this.rank, () => `The number of provided coordinates (${locs.length}) must match the rank (${this.rank})`);\n const index = this.locToIndex(locs);\n this.values[index] = value;\n }\n get(...locs) {\n if (locs.length === 0) {\n locs = [0];\n }\n let i2 = 0;\n for (const loc of locs) {\n if (loc < 0 || loc >= this.shape[i2]) {\n const msg = `Requested out of range element at ${locs}. Buffer shape=${this.shape}`;\n throw new Error(msg);\n }\n i2++;\n }\n let index = locs[locs.length - 1];\n for (let i3 = 0; i3 < locs.length - 1; ++i3) {\n index += this.strides[i3] * locs[i3];\n }\n return this.values[index];\n }\n locToIndex(locs) {\n if (this.rank === 0) {\n return 0;\n } else if (this.rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n index += this.strides[i2] * locs[i2];\n }\n return index;\n }\n indexToLoc(index) {\n if (this.rank === 0) {\n return [];\n } else if (this.rank === 1) {\n return [index];\n }\n const locs = new Array(this.shape.length);\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n locs[i2] = Math.floor(index / this.strides[i2]);\n index -= locs[i2] * this.strides[i2];\n }\n locs[locs.length - 1] = index;\n return locs;\n }\n get rank() {\n return this.shape.length;\n }\n toTensor() {\n return trackerFn().makeTensor(this.values, this.shape, this.dtype);\n }\n};\nvar trackerFn = null;\nvar opHandler = null;\nvar deprecationWarningFn = null;\nfunction setTensorTracker(fn) {\n trackerFn = fn;\n}\nfunction setOpHandler(handler) {\n opHandler = handler;\n}\nfunction setDeprecationWarningFn(fn) {\n deprecationWarningFn = fn;\n}\nvar Tensor = class {\n constructor(shape, dtype, dataId, id) {\n this.kept = false;\n this.isDisposedInternal = false;\n this.shape = shape.slice();\n this.dtype = dtype || \"float32\";\n this.size = sizeFromShape(shape);\n this.strides = computeStrides(shape);\n this.dataId = dataId;\n this.id = id;\n this.rankType = this.rank < 5 ? this.rank.toString() : \"higher\";\n }\n get rank() {\n return this.shape.length;\n }\n async buffer() {\n const vals = await this.data();\n return opHandler.buffer(this.shape, this.dtype, vals);\n }\n bufferSync() {\n return opHandler.buffer(this.shape, this.dtype, this.dataSync());\n }\n async array() {\n const vals = await this.data();\n return toNestedArray(this.shape, vals, this.dtype === \"complex64\");\n }\n arraySync() {\n return toNestedArray(this.shape, this.dataSync(), this.dtype === \"complex64\");\n }\n async data() {\n this.throwIfDisposed();\n const data = trackerFn().read(this.dataId);\n if (this.dtype === \"string\") {\n const bytes = await data;\n try {\n return bytes.map((b) => decodeString(b));\n } catch (_a) {\n throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\");\n }\n }\n return data;\n }\n dataToGPU(options) {\n this.throwIfDisposed();\n return trackerFn().readToGPU(this.dataId, options);\n }\n dataSync() {\n this.throwIfDisposed();\n const data = trackerFn().readSync(this.dataId);\n if (this.dtype === \"string\") {\n try {\n return data.map((b) => decodeString(b));\n } catch (_a) {\n throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\");\n }\n }\n return data;\n }\n async bytes() {\n this.throwIfDisposed();\n const data = await trackerFn().read(this.dataId);\n if (this.dtype === \"string\") {\n return data;\n } else {\n return new Uint8Array(data.buffer);\n }\n }\n dispose() {\n if (this.isDisposed) {\n return;\n }\n trackerFn().disposeTensor(this);\n this.isDisposedInternal = true;\n }\n get isDisposed() {\n return this.isDisposedInternal;\n }\n throwIfDisposed() {\n if (this.isDisposed) {\n throw new Error(`Tensor is disposed.`);\n }\n }\n print(verbose = false) {\n return opHandler.print(this, verbose);\n }\n clone() {\n this.throwIfDisposed();\n return opHandler.clone(this);\n }\n toString(verbose = false) {\n const vals = this.dataSync();\n return tensorToString(vals, this.shape, this.dtype, verbose);\n }\n cast(dtype) {\n this.throwIfDisposed();\n return opHandler.cast(this, dtype);\n }\n variable(trainable = true, name, dtype) {\n this.throwIfDisposed();\n return trackerFn().makeVariable(this, trainable, name, dtype);\n }\n};\nObject.defineProperty(Tensor, Symbol.hasInstance, {\n value: (instance) => {\n return !!instance && instance.data != null && instance.dataSync != null && instance.throwIfDisposed != null;\n }\n});\nfunction getGlobalTensorClass() {\n return getGlobal(\"Tensor\", () => {\n return Tensor;\n });\n}\ngetGlobalTensorClass();\nvar Variable = class extends Tensor {\n constructor(initialValue, trainable, name, tensorId) {\n super(initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId);\n this.trainable = trainable;\n this.name = name;\n }\n assign(newValue) {\n if (newValue.dtype !== this.dtype) {\n throw new Error(`dtype of the new value (${newValue.dtype}) and previous value (${this.dtype}) must match`);\n }\n if (!arraysEqual(newValue.shape, this.shape)) {\n throw new Error(`shape of the new value (${newValue.shape}) and previous value (${this.shape}) must match`);\n }\n trackerFn().disposeTensor(this);\n this.dataId = newValue.dataId;\n trackerFn().incRef(this, null);\n }\n dispose() {\n trackerFn().disposeVariable(this);\n this.isDisposedInternal = true;\n }\n};\nObject.defineProperty(Variable, Symbol.hasInstance, {\n value: (instance) => {\n return instance instanceof Tensor && instance.assign != null && instance.assign instanceof Function;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor_util.js\nvar tensor_util_exports = {};\n__export(tensor_util_exports, {\n assertTypesMatch: () => assertTypesMatch,\n getTensorsInContainer: () => getTensorsInContainer,\n isTensorInList: () => isTensorInList,\n makeTypesMatch: () => makeTypesMatch\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/types.js\nvar Rank;\n(function(Rank2) {\n Rank2[\"R0\"] = \"R0\";\n Rank2[\"R1\"] = \"R1\";\n Rank2[\"R2\"] = \"R2\";\n Rank2[\"R3\"] = \"R3\";\n Rank2[\"R4\"] = \"R4\";\n Rank2[\"R5\"] = \"R5\";\n Rank2[\"R6\"] = \"R6\";\n})(Rank || (Rank = {}));\nvar UpcastInt32AndMap;\n(function(UpcastInt32AndMap2) {\n UpcastInt32AndMap2[\"float32\"] = \"float32\";\n UpcastInt32AndMap2[\"int32\"] = \"int32\";\n UpcastInt32AndMap2[\"bool\"] = \"int32\";\n UpcastInt32AndMap2[\"complex64\"] = \"complex64\";\n})(UpcastInt32AndMap || (UpcastInt32AndMap = {}));\nvar UpcastBoolAndMap;\n(function(UpcastBoolAndMap2) {\n UpcastBoolAndMap2[\"float32\"] = \"float32\";\n UpcastBoolAndMap2[\"int32\"] = \"int32\";\n UpcastBoolAndMap2[\"bool\"] = \"bool\";\n UpcastBoolAndMap2[\"complex64\"] = \"complex64\";\n})(UpcastBoolAndMap || (UpcastBoolAndMap = {}));\nvar UpcastFloat32AndMap;\n(function(UpcastFloat32AndMap2) {\n UpcastFloat32AndMap2[\"float32\"] = \"float32\";\n UpcastFloat32AndMap2[\"int32\"] = \"float32\";\n UpcastFloat32AndMap2[\"bool\"] = \"float32\";\n UpcastFloat32AndMap2[\"complex64\"] = \"complex64\";\n})(UpcastFloat32AndMap || (UpcastFloat32AndMap = {}));\nvar UpcastComplex64AndMap;\n(function(UpcastComplex64AndMap2) {\n UpcastComplex64AndMap2[\"float32\"] = \"complex64\";\n UpcastComplex64AndMap2[\"int32\"] = \"complex64\";\n UpcastComplex64AndMap2[\"bool\"] = \"complex64\";\n UpcastComplex64AndMap2[\"complex64\"] = \"complex64\";\n})(UpcastComplex64AndMap || (UpcastComplex64AndMap = {}));\nvar upcastTypeMap = {\n \"float32\": UpcastFloat32AndMap,\n \"int32\": UpcastInt32AndMap,\n \"bool\": UpcastBoolAndMap,\n \"complex64\": UpcastComplex64AndMap\n};\nfunction upcastType(typeA, typeB) {\n if (typeA === \"string\" || typeB === \"string\") {\n if (typeA === \"string\" && typeB === \"string\") {\n return \"string\";\n }\n throw new Error(`Can not upcast ${typeA} with ${typeB}`);\n }\n return upcastTypeMap[typeA][typeB];\n}\nfunction sumOutType(type) {\n return upcastType(type, \"int32\");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor_util.js\nfunction makeTypesMatch(a, b) {\n if (a.dtype === b.dtype) {\n return [a, b];\n }\n const dtype = upcastType(a.dtype, b.dtype);\n return [a.cast(dtype), b.cast(dtype)];\n}\nfunction assertTypesMatch(a, b) {\n assert(a.dtype === b.dtype, () => `The dtypes of the first(${a.dtype}) and second(${b.dtype}) input must match`);\n}\nfunction isTensorInList(tensor2, tensorList) {\n return tensorList.some((x) => x.id === tensor2.id);\n}\nfunction getTensorsInContainer(result) {\n const list = [];\n const seen = /* @__PURE__ */ new Set();\n walkTensorContainer(result, list, seen);\n return list;\n}\nfunction walkTensorContainer(container, list, seen) {\n if (container == null) {\n return;\n }\n if (container instanceof Tensor) {\n list.push(container);\n return;\n }\n if (!isIterable(container)) {\n return;\n }\n const iterable = container;\n for (const k in iterable) {\n const val = iterable[k];\n if (!seen.has(val)) {\n seen.add(val);\n walkTensorContainer(val, list, seen);\n }\n }\n}\nfunction isIterable(obj) {\n return Array.isArray(obj) || typeof obj === \"object\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/engine.js\nfunction isRegisteredKernelInvocation(kernelInvocation) {\n return kernelInvocation.kernelName != null;\n}\nvar EngineState = class {\n constructor() {\n this.registeredVariables = {};\n this.nextTapeNodeId = 0;\n this.numBytes = 0;\n this.numTensors = 0;\n this.numStringTensors = 0;\n this.numDataBuffers = 0;\n this.gradientDepth = 0;\n this.kernelDepth = 0;\n this.scopeStack = [];\n this.numDataMovesStack = [];\n this.nextScopeId = 0;\n this.tensorInfo = /* @__PURE__ */ new WeakMap();\n this.profiling = false;\n this.activeProfile = {\n newBytes: 0,\n newTensors: 0,\n peakBytes: 0,\n kernels: [],\n result: null,\n get kernelNames() {\n return Array.from(new Set(this.kernels.map((k) => k.name)));\n }\n };\n }\n dispose() {\n for (const variableName in this.registeredVariables) {\n this.registeredVariables[variableName].dispose();\n }\n }\n};\nvar Engine = class {\n constructor(ENV8) {\n this.ENV = ENV8;\n this.registry = {};\n this.registryFactory = {};\n this.pendingBackendInitId = 0;\n this.state = new EngineState();\n }\n async ready() {\n if (this.pendingBackendInit != null) {\n return this.pendingBackendInit.then(() => {\n });\n }\n if (this.backendInstance != null) {\n return;\n }\n const sortedBackends = this.getSortedBackends();\n for (let i2 = 0; i2 < sortedBackends.length; i2++) {\n const backendName = sortedBackends[i2];\n const success = await this.initializeBackend(backendName).success;\n if (success) {\n await this.setBackend(backendName);\n return;\n }\n }\n throw new Error(`Could not initialize any backends, all backend initializations failed.`);\n }\n get backend() {\n if (this.pendingBackendInit != null) {\n throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);\n }\n if (this.backendInstance == null) {\n const { name, asyncInit } = this.initializeBackendsAndReturnBest();\n if (asyncInit) {\n throw new Error(`The highest priority backend '${name}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);\n }\n this.setBackend(name);\n }\n return this.backendInstance;\n }\n backendNames() {\n return Object.keys(this.registryFactory);\n }\n findBackend(backendName) {\n if (!(backendName in this.registry)) {\n if (backendName in this.registryFactory) {\n const { asyncInit } = this.initializeBackend(backendName);\n if (asyncInit) {\n return null;\n }\n } else {\n return null;\n }\n }\n return this.registry[backendName];\n }\n findBackendFactory(backendName) {\n if (!(backendName in this.registryFactory)) {\n return null;\n }\n return this.registryFactory[backendName].factory;\n }\n registerBackend(backendName, factory, priority = 1) {\n if (backendName in this.registryFactory) {\n warn(`${backendName} backend was already registered. Reusing existing backend factory.`);\n return false;\n }\n this.registryFactory[backendName] = { factory, priority };\n return true;\n }\n async setBackend(backendName) {\n if (this.registryFactory[backendName] == null) {\n throw new Error(`Backend name '${backendName}' not found in registry`);\n }\n this.backendName = backendName;\n if (this.registry[backendName] == null) {\n this.backendInstance = null;\n const { success, asyncInit } = this.initializeBackend(backendName);\n const result = asyncInit ? await success : success;\n if (!result) {\n return false;\n }\n }\n this.backendInstance = this.registry[backendName];\n this.setupRegisteredKernels();\n this.profiler = new Profiler(this.backendInstance);\n return true;\n }\n setupRegisteredKernels() {\n const kernels = getKernelsForBackend(this.backendName);\n kernels.forEach((kernel) => {\n if (kernel.setupFunc != null) {\n kernel.setupFunc(this.backendInstance);\n }\n });\n }\n disposeRegisteredKernels(backendName) {\n const kernels = getKernelsForBackend(backendName);\n kernels.forEach((kernel) => {\n if (kernel.disposeFunc != null) {\n kernel.disposeFunc(this.registry[backendName]);\n }\n });\n }\n initializeBackend(backendName) {\n const registryFactoryEntry = this.registryFactory[backendName];\n if (registryFactoryEntry == null) {\n throw new Error(`Cannot initialize backend ${backendName}, no registration found.`);\n }\n try {\n const backend2 = registryFactoryEntry.factory();\n if (backend2 && !(backend2 instanceof KernelBackend) && typeof backend2.then === \"function\") {\n const promiseId = ++this.pendingBackendInitId;\n const success = backend2.then((backendInstance) => {\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.registry[backendName] = backendInstance;\n this.pendingBackendInit = null;\n return true;\n }).catch((err) => {\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.pendingBackendInit = null;\n warn(`Initialization of backend ${backendName} failed`);\n warn(err.stack || err.message);\n return false;\n });\n this.pendingBackendInit = success;\n return { success, asyncInit: true };\n } else {\n this.registry[backendName] = backend2;\n return { success: true, asyncInit: false };\n }\n } catch (err) {\n warn(`Initialization of backend ${backendName} failed`);\n warn(err.stack || err.message);\n return { success: false, asyncInit: false };\n }\n }\n removeBackend(backendName) {\n if (!(backendName in this.registryFactory)) {\n throw new Error(`${backendName} backend not found in registry`);\n }\n if (this.backendName === backendName && this.pendingBackendInit != null) {\n this.pendingBackendInitId++;\n }\n if (backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n delete this.registryFactory[backendName];\n if (this.backendName === backendName) {\n this.pendingBackendInit = null;\n this.backendName = null;\n this.backendInstance = null;\n }\n }\n getSortedBackends() {\n if (Object.keys(this.registryFactory).length === 0) {\n throw new Error(\"No backend found in registry.\");\n }\n return Object.keys(this.registryFactory).sort((a, b) => {\n return this.registryFactory[b].priority - this.registryFactory[a].priority;\n });\n }\n initializeBackendsAndReturnBest() {\n const sortedBackends = this.getSortedBackends();\n for (let i2 = 0; i2 < sortedBackends.length; i2++) {\n const backendName = sortedBackends[i2];\n const { success, asyncInit } = this.initializeBackend(backendName);\n if (asyncInit || success) {\n return { name: backendName, asyncInit };\n }\n }\n throw new Error(`Could not initialize any backends, all backend initializations failed.`);\n }\n moveData(backend2, dataId) {\n const info = this.state.tensorInfo.get(dataId);\n const srcBackend = info.backend;\n const values = this.readSync(dataId);\n const refCount = srcBackend.refCount(dataId);\n srcBackend.disposeData(dataId, true);\n info.backend = backend2;\n backend2.move(dataId, values, info.shape, info.dtype, refCount);\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;\n }\n }\n tidy(nameOrFn, fn) {\n let name = null;\n if (fn == null) {\n if (typeof nameOrFn !== \"function\") {\n throw new Error(\"Please provide a function to tidy()\");\n }\n fn = nameOrFn;\n } else {\n if (typeof nameOrFn !== \"string\" && !(nameOrFn instanceof String)) {\n throw new Error(\"When calling with two arguments, the first argument to tidy() must be a string\");\n }\n if (typeof fn !== \"function\") {\n throw new Error(\"When calling with two arguments, the 2nd argument to tidy() must be a function\");\n }\n name = nameOrFn;\n }\n let result;\n return this.scopedRun(() => this.startScope(name), () => this.endScope(result), () => {\n result = fn();\n if (result instanceof Promise) {\n console.error(\"Cannot return a Promise inside of tidy.\");\n }\n return result;\n });\n }\n scopedRun(start, end, f) {\n start();\n try {\n const res = f();\n end();\n return res;\n } catch (ex) {\n end();\n throw ex;\n }\n }\n nextTensorId() {\n return Engine.nextTensorId++;\n }\n nextVariableId() {\n return Engine.nextVariableId++;\n }\n clone(x) {\n const y = ENGINE.runKernel(Identity, { x });\n const inputs = { x };\n const grad2 = (dy) => ({\n x: () => {\n const dtype = \"float32\";\n const gradInputs = { x: dy };\n const attrs = { dtype };\n return ENGINE.runKernel(\n Cast,\n gradInputs,\n attrs\n );\n }\n });\n const saved = [];\n this.addTapeNode(this.state.activeScope.name, inputs, [y], grad2, saved, {});\n return y;\n }\n runKernel(kernelName, inputs, attrs) {\n if (this.backendName == null) {\n this.backend;\n }\n const hasKernel = getKernel(kernelName, this.backendName) != null;\n if (!hasKernel) {\n throw new Error(`Kernel '${kernelName}' not registered for backend '${this.backendName}'`);\n }\n return this.runKernelFunc({ kernelName, inputs, attrs });\n }\n shouldCheckForMemLeaks() {\n return this.ENV.getBool(\"IS_TEST\");\n }\n checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos) {\n const numDataIdsAfter = this.backend.numDataIds();\n let numOutputDataIds = 0;\n outInfos.forEach((info) => {\n numOutputDataIds += info.dtype === \"complex64\" ? 3 : 1;\n });\n const numMoves = this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1];\n const dataIdsLeaked = numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves;\n if (dataIdsLeaked > 0) {\n throw new Error(`Backend '${this.backendName}' has an internal memory leak (${dataIdsLeaked} data ids) after running '${kernelName}'`);\n }\n }\n runKernelFunc(kernelParams) {\n let outputs;\n let saved = [];\n const isTapeOn = this.isTapeOn();\n const startingBytecount = this.state.numBytes;\n const startingNumTensors = this.state.numTensors;\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack.push(0);\n }\n let kernelFunc3;\n if (this.backendName == null) {\n this.backend;\n }\n let out;\n const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ? kernelParams.kernelName : this.state.activeScope != null ? this.state.activeScope.name : \"\";\n if (isRegisteredKernelInvocation(kernelParams)) {\n const { kernelName, inputs: inputs2, attrs: attrs2 } = kernelParams;\n if (this.backendName == null) {\n this.backend;\n }\n const kernel = getKernel(kernelName, this.backendName);\n assert(kernel != null, () => `Cannot find registered kernel '${kernelName}' for backend '${this.backendName}'`);\n kernelFunc3 = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = kernel.kernelFunc({ inputs: inputs2, attrs: attrs2, backend: this.backend });\n const outInfos = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos);\n }\n const outTensors = outInfos.map((outInfo) => {\n if (outInfo.rank != null) {\n return outInfo;\n }\n return this.makeTensorFromTensorInfo(outInfo);\n });\n if (isTapeOn) {\n const tensorsToSave = this.getTensorsForGradient(kernelName, inputs2, outTensors);\n saved = this.saveTensorsForBackwardMode(tensorsToSave);\n }\n return outTensors;\n };\n } else {\n const { forwardFunc } = kernelParams;\n const saveFunc = (tensors) => {\n if (!isTapeOn) {\n return;\n }\n saved = tensors.map((tensor2) => this.keep(this.clone(tensor2)));\n };\n kernelFunc3 = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = this.tidy(() => forwardFunc(this.backend, saveFunc));\n const outs = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs);\n }\n return outs;\n };\n }\n const { inputs, attrs } = kernelParams;\n const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ? null : kernelParams.backwardsFunc;\n let kernelProfile;\n this.scopedRun(\n () => this.state.kernelDepth++,\n () => this.state.kernelDepth--,\n () => {\n if (!this.ENV.getBool(\"DEBUG\") && !this.state.profiling) {\n outputs = kernelFunc3();\n } else {\n kernelProfile = this.profiler.profileKernel(kernelOrScopeName, inputs, () => kernelFunc3());\n if (this.ENV.getBool(\"DEBUG\")) {\n this.profiler.logKernelProfile(kernelProfile);\n }\n outputs = kernelProfile.outputs;\n }\n }\n );\n if (isTapeOn) {\n this.addTapeNode(kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs);\n }\n if (this.state.profiling) {\n this.state.activeProfile.kernels.push({\n name: kernelOrScopeName,\n bytesAdded: this.state.numBytes - startingBytecount,\n totalBytesSnapshot: this.state.numBytes,\n tensorsAdded: this.state.numTensors - startingNumTensors,\n totalTensorsSnapshot: this.state.numTensors,\n inputShapes: Object.keys(inputs).map((key) => inputs[key] != null ? inputs[key].shape : null),\n outputShapes: outputs.map((item) => item.shape),\n kernelTimeMs: kernelProfile.timeMs,\n extraInfo: kernelProfile.extraInfo\n });\n }\n return Array.isArray(out) ? outputs : outputs[0];\n }\n saveTensorsForBackwardMode(tensors) {\n const saved = tensors.map((tensor2) => this.keep(this.clone(tensor2)));\n return saved;\n }\n getTensorsForGradient(kernelName, inputs, outputs) {\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n const inputsToSave = gradConfig.inputsToSave || [];\n const outputsToSave = gradConfig.outputsToSave || [];\n let inputTensorsToSave;\n if (gradConfig.saveAllInputs) {\n assert(Array.isArray(inputs), () => \"saveAllInputs is true, expected inputs to be an array.\");\n inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]);\n } else {\n inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]);\n }\n const outputTensorsToSave = outputs.filter((_, i2) => outputsToSave[i2]);\n return inputTensorsToSave.concat(outputTensorsToSave);\n }\n return [];\n }\n makeTensor(values, shape, dtype, backend2) {\n if (values == null) {\n throw new Error(\"Values passed to engine.makeTensor() are null\");\n }\n dtype = dtype || \"float32\";\n backend2 = backend2 || this.backend;\n let backendVals = values;\n if (dtype === \"string\" && isString(values[0])) {\n backendVals = values.map((d) => encodeString(d));\n }\n const dataId = backend2.write(backendVals, shape, dtype);\n const t2 = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t2, backend2);\n if (dtype === \"string\") {\n const info = this.state.tensorInfo.get(dataId);\n const newBytes = bytesFromStringArray(backendVals);\n this.state.numBytes += newBytes - info.bytes;\n info.bytes = newBytes;\n }\n return t2;\n }\n makeTensorFromDataId(dataId, shape, dtype, backend2) {\n dtype = dtype || \"float32\";\n const tensorInfo = { dataId, shape, dtype };\n return this.makeTensorFromTensorInfo(tensorInfo, backend2);\n }\n makeTensorFromTensorInfo(tensorInfo, backend2) {\n const { dataId, shape, dtype } = tensorInfo;\n const t2 = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t2, backend2);\n return t2;\n }\n makeVariable(initialValue, trainable = true, name, dtype) {\n name = name || this.nextVariableId().toString();\n if (dtype != null && dtype !== initialValue.dtype) {\n initialValue = initialValue.cast(dtype);\n }\n const v = new Variable(initialValue, trainable, name, this.nextTensorId());\n if (this.state.registeredVariables[v.name] != null) {\n throw new Error(`Variable with name ${v.name} was already registered`);\n }\n this.state.registeredVariables[v.name] = v;\n this.incRef(v, this.backend);\n return v;\n }\n trackTensor(a, backend2) {\n this.state.numTensors++;\n if (a.dtype === \"string\") {\n this.state.numStringTensors++;\n }\n let bytes = 0;\n if (a.dtype !== \"complex64\" && a.dtype !== \"string\") {\n bytes = a.size * bytesPerElement(a.dtype);\n }\n this.state.numBytes += bytes;\n if (!this.state.tensorInfo.has(a.dataId)) {\n this.state.numDataBuffers++;\n this.state.tensorInfo.set(a.dataId, {\n backend: backend2 || this.backend,\n dtype: a.dtype,\n shape: a.shape,\n bytes\n });\n }\n if (!(a instanceof Variable)) {\n this.track(a);\n }\n }\n incRef(a, backend2) {\n this.trackTensor(a, backend2);\n this.backend.incRef(a.dataId);\n }\n removeDataId(dataId, backend2) {\n if (this.state.tensorInfo.has(dataId) && this.state.tensorInfo.get(dataId).backend === backend2) {\n this.state.tensorInfo.delete(dataId);\n this.state.numDataBuffers--;\n }\n }\n disposeTensor(a) {\n if (!this.state.tensorInfo.has(a.dataId)) {\n return;\n }\n const info = this.state.tensorInfo.get(a.dataId);\n this.state.numTensors--;\n if (a.dtype === \"string\") {\n this.state.numStringTensors--;\n this.state.numBytes -= info.bytes;\n }\n if (a.dtype !== \"complex64\" && a.dtype !== \"string\") {\n const bytes = a.size * bytesPerElement(a.dtype);\n this.state.numBytes -= bytes;\n }\n if (info.backend.disposeData(a.dataId)) {\n this.removeDataId(a.dataId, info.backend);\n }\n }\n disposeVariables() {\n for (const varName in this.state.registeredVariables) {\n const v = this.state.registeredVariables[varName];\n this.disposeVariable(v);\n }\n }\n disposeVariable(v) {\n this.disposeTensor(v);\n if (this.state.registeredVariables[v.name] != null) {\n delete this.state.registeredVariables[v.name];\n }\n }\n memory() {\n const info = this.backend.memory();\n info.numTensors = this.state.numTensors;\n info.numDataBuffers = this.state.numDataBuffers;\n info.numBytes = this.state.numBytes;\n if (this.state.numStringTensors > 0) {\n info.unreliable = true;\n if (info.reasons == null) {\n info.reasons = [];\n }\n info.reasons.push(\"Memory usage by string tensors is approximate (2 bytes per character)\");\n }\n return info;\n }\n async profile(query) {\n this.state.profiling = true;\n const startBytes = this.state.numBytes;\n const startNumTensors = this.state.numTensors;\n this.state.activeProfile.kernels = [];\n this.state.activeProfile.result = await query();\n this.state.profiling = false;\n this.state.activeProfile.peakBytes = Math.max(...this.state.activeProfile.kernels.map((d) => d.totalBytesSnapshot));\n this.state.activeProfile.newBytes = this.state.numBytes - startBytes;\n this.state.activeProfile.newTensors = this.state.numTensors - startNumTensors;\n for (const kernel of this.state.activeProfile.kernels) {\n kernel.kernelTimeMs = await kernel.kernelTimeMs;\n kernel.extraInfo = await kernel.extraInfo;\n }\n return this.state.activeProfile;\n }\n isTapeOn() {\n return this.state.gradientDepth > 0 && this.state.kernelDepth === 0;\n }\n addTapeNode(kernelName, inputs, outputs, gradientsFunc, saved, attrs) {\n const tapeNode = { id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved };\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n gradientsFunc = gradConfig.gradFunc;\n }\n if (gradientsFunc != null) {\n tapeNode.gradient = (dys) => {\n dys = dys.map((dy, i2) => {\n if (dy == null) {\n const output = outputs[i2];\n const vals = makeZerosTypedArray(output.size, output.dtype);\n return this.makeTensor(vals, output.shape, output.dtype);\n }\n return dy;\n });\n return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs);\n };\n }\n this.state.activeTape.push(tapeNode);\n }\n keep(result) {\n result.kept = true;\n return result;\n }\n startTape() {\n if (this.state.gradientDepth === 0) {\n this.state.activeTape = [];\n }\n this.state.gradientDepth++;\n }\n endTape() {\n this.state.gradientDepth--;\n }\n startScope(name) {\n const scopeInfo = {\n track: [],\n name: \"unnamed scope\",\n id: this.state.nextScopeId++\n };\n if (name) {\n scopeInfo.name = name;\n }\n this.state.scopeStack.push(scopeInfo);\n this.state.activeScope = scopeInfo;\n }\n endScope(result) {\n const tensorsToTrackInParent = getTensorsInContainer(result);\n const tensorsToTrackInParentSet = new Set(tensorsToTrackInParent.map((t2) => t2.id));\n for (let i2 = 0; i2 < this.state.activeScope.track.length; i2++) {\n const tensor2 = this.state.activeScope.track[i2];\n if (!tensor2.kept && !tensorsToTrackInParentSet.has(tensor2.id)) {\n tensor2.dispose();\n }\n }\n const oldScope = this.state.scopeStack.pop();\n this.state.activeScope = this.state.scopeStack.length === 0 ? null : this.state.scopeStack[this.state.scopeStack.length - 1];\n tensorsToTrackInParent.forEach((tensor2) => {\n if (!tensor2.kept && tensor2.scopeId === oldScope.id) {\n this.track(tensor2);\n }\n });\n }\n gradients(f, xs, dy, allowNoGradients = false) {\n assert(xs.length > 0, () => \"gradients() received an empty list of xs.\");\n if (dy != null && dy.dtype !== \"float32\") {\n throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);\n }\n const y = this.scopedRun(() => this.startTape(), () => this.endTape(), () => this.tidy(\"forward\", f));\n assert(y instanceof Tensor, () => \"The result y returned by f() must be a tensor.\");\n const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y);\n if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) {\n throw new Error(\"Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.\");\n }\n return this.tidy(\"backward\", () => {\n const accumulatedGradientMap = {};\n accumulatedGradientMap[y.id] = dy == null ? ones(y.shape) : dy;\n backpropagateGradients(\n accumulatedGradientMap,\n filteredTape,\n (f2) => this.tidy(f2),\n add\n );\n const grads2 = xs.map((x) => accumulatedGradientMap[x.id]);\n if (this.state.gradientDepth === 0) {\n this.state.activeTape.forEach((node) => {\n for (const tensor2 of node.saved) {\n tensor2.dispose();\n }\n });\n this.state.activeTape = null;\n }\n return { value: y, grads: grads2 };\n });\n }\n customGrad(f) {\n assert(isFunction(f), () => \"The f passed in customGrad(f) must be a function.\");\n return (...inputs) => {\n assert(inputs.every((t2) => t2 instanceof Tensor), () => \"The args passed in customGrad(f)(x1, x2,...) must all be tensors\");\n let res;\n const inputMap = {};\n inputs.forEach((input2, i2) => {\n inputMap[i2] = input2;\n });\n const forwardFunc = (_, save) => {\n res = f(...[...inputs, save]);\n assert(res.value instanceof Tensor, () => \"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor\");\n assert(isFunction(res.gradFunc), () => \"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function.\");\n return res.value;\n };\n const backwardsFunc = (dy, saved) => {\n const gradRes = res.gradFunc(dy, saved);\n const grads2 = Array.isArray(gradRes) ? gradRes : [gradRes];\n assert(grads2.length === inputs.length, () => \"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...).\");\n assert(grads2.every((t2) => t2 instanceof Tensor), () => \"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.\");\n const gradMap = {};\n grads2.forEach((grad2, i2) => {\n gradMap[i2] = () => grad2;\n });\n return gradMap;\n };\n return this.runKernelFunc({\n forwardFunc,\n backwardsFunc,\n inputs: inputMap\n });\n };\n }\n readSync(dataId) {\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readSync(dataId);\n }\n read(dataId) {\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.read(dataId);\n }\n readToGPU(dataId, options) {\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readToGPU(dataId, options);\n }\n async time(query) {\n const start = now();\n const timingInfo = await this.backend.time(query);\n timingInfo.wallMs = now() - start;\n return timingInfo;\n }\n track(result) {\n if (this.state.activeScope != null) {\n result.scopeId = this.state.activeScope.id;\n this.state.activeScope.track.push(result);\n }\n return result;\n }\n get registeredVariables() {\n return this.state.registeredVariables;\n }\n reset() {\n this.pendingBackendInitId++;\n this.state.dispose();\n this.ENV.reset();\n this.state = new EngineState();\n for (const backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n this.backendName = null;\n this.backendInstance = null;\n this.pendingBackendInit = null;\n }\n};\nEngine.nextTensorId = 0;\nEngine.nextVariableId = 0;\nfunction ones(shape) {\n const values = makeOnesTypedArray(sizeFromShape(shape), \"float32\");\n return ENGINE.makeTensor(values, shape, \"float32\");\n}\nfunction getOrMakeEngine() {\n const ns = getGlobalNamespace();\n if (ns._tfengine == null) {\n const environment = new Environment(ns);\n ns._tfengine = new Engine(environment);\n }\n setEnvironmentGlobal(ns._tfengine.ENV);\n setTensorTracker(() => ns._tfengine);\n return ns._tfengine;\n}\nvar ENGINE = getOrMakeEngine();\nfunction add(a, b) {\n const inputs = { a, b };\n return ENGINE.runKernel(Add, inputs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/device_util.js\nvar device_util_exports = {};\n__export(device_util_exports, {\n isBrowser: () => isBrowser,\n isMobile: () => isMobile,\n mockIsMobile: () => mockIsMobile\n});\nfunction _isNavigatorDefined() {\n return typeof navigator !== \"undefined\" && navigator != null;\n}\nvar isMobileMockValue;\nfunction mockIsMobile(value) {\n isMobileMockValue = value;\n}\nfunction isMobile(nav) {\n if (isMobileMockValue !== void 0) {\n return isMobileMockValue;\n }\n if (nav || _isNavigatorDefined()) {\n if (!nav) {\n nav = navigator;\n }\n if (nav.product === \"ReactNative\") {\n return true;\n }\n const a = nav.userAgent || nav.vendor || (typeof window !== \"undefined\" ? window.opera : \"\");\n if (!a) {\n const navAny = nav;\n return navAny.userAgentData && navAny.userAgentData.mobile;\n }\n return /(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i.test(a.substr(0, 4));\n }\n return false;\n}\nfunction isBrowser() {\n return typeof window !== \"undefined\" && window.document != null || typeof WorkerGlobalScope !== \"undefined\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/flags.js\nvar ENV2 = env();\nENV2.registerFlag(\"DEBUG\", () => false, (debugValue) => {\n if (debugValue) {\n console.warn(\"Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.\");\n }\n});\nENV2.registerFlag(\"IS_BROWSER\", () => isBrowser());\nENV2.registerFlag(\"IS_NODE\", () => typeof process !== \"undefined\" && typeof process.versions !== \"undefined\" && typeof process.versions.node !== \"undefined\");\nENV2.registerFlag(\"IS_CHROME\", () => typeof navigator !== \"undefined\" && navigator != null && navigator.userAgent != null && /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor));\nENV2.registerFlag(\"PROD\", () => false);\nENV2.registerFlag(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\", () => ENV2.getBool(\"DEBUG\"));\nENV2.registerFlag(\"DEPRECATION_WARNINGS_ENABLED\", () => true);\nENV2.registerFlag(\"IS_TEST\", () => false);\nENV2.registerFlag(\"CHECK_COMPUTATION_FOR_ERRORS\", () => true);\nENV2.registerFlag(\"WRAP_TO_IMAGEBITMAP\", () => false);\nENV2.registerFlag(\"ENGINE_COMPILE_ONLY\", () => false);\nENV2.registerFlag(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\", () => false);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor_util_env.js\nfunction inferShape(val, dtype) {\n let firstElem = val;\n if (isTypedArray(val)) {\n return dtype === \"string\" ? [] : [val.length];\n }\n if (!Array.isArray(val)) {\n return [];\n }\n const shape = [];\n while (Array.isArray(firstElem) || isTypedArray(firstElem) && dtype !== \"string\") {\n shape.push(firstElem.length);\n firstElem = firstElem[0];\n }\n if (Array.isArray(val) && env().getBool(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\")) {\n deepAssertShapeConsistency(val, shape, []);\n }\n return shape;\n}\nfunction deepAssertShapeConsistency(val, shape, indices) {\n indices = indices || [];\n if (!Array.isArray(val) && !isTypedArray(val)) {\n assert(shape.length === 0, () => `Element arr[${indices.join(\"][\")}] is a primitive, but should be an array/TypedArray of ${shape[0]} elements`);\n return;\n }\n assert(shape.length > 0, () => `Element arr[${indices.join(\"][\")}] should be a primitive, but is an array of ${val.length} elements`);\n assert(val.length === shape[0], () => `Element arr[${indices.join(\"][\")}] should have ${shape[0]} elements, but has ${val.length} elements`);\n const subShape = shape.slice(1);\n for (let i2 = 0; i2 < val.length; ++i2) {\n deepAssertShapeConsistency(val[i2], subShape, indices.concat(i2));\n }\n}\nfunction assertDtype(expectedDtype, actualDType, argName, functionName) {\n if (expectedDtype === \"string_or_numeric\") {\n return;\n }\n if (expectedDtype == null) {\n throw new Error(`Expected dtype cannot be null.`);\n }\n if (expectedDtype !== \"numeric\" && expectedDtype !== actualDType || expectedDtype === \"numeric\" && actualDType === \"string\") {\n throw new Error(`Argument '${argName}' passed to '${functionName}' must be ${expectedDtype} tensor, but got ${actualDType} tensor`);\n }\n}\nfunction convertToTensor(x, argName, functionName, parseAsDtype = \"numeric\") {\n if (x instanceof Tensor) {\n assertDtype(parseAsDtype, x.dtype, argName, functionName);\n return x;\n }\n let inferredDtype = inferDtype(x);\n if (inferredDtype !== \"string\" && [\"bool\", \"int32\", \"float32\"].indexOf(parseAsDtype) >= 0) {\n inferredDtype = parseAsDtype;\n }\n assertDtype(parseAsDtype, inferredDtype, argName, functionName);\n if (x == null || !isTypedArray(x) && !Array.isArray(x) && typeof x !== \"number\" && typeof x !== \"boolean\" && typeof x !== \"string\") {\n const type = x == null ? \"null\" : x.constructor.name;\n throw new Error(`Argument '${argName}' passed to '${functionName}' must be a Tensor or TensorLike, but got '${type}'`);\n }\n const inferredShape = inferShape(x, inferredDtype);\n if (!isTypedArray(x) && !Array.isArray(x)) {\n x = [x];\n }\n const skipTypedArray = true;\n const values = inferredDtype !== \"string\" ? toTypedArray(x, inferredDtype) : flatten(x, [], skipTypedArray);\n return ENGINE.makeTensor(values, inferredShape, inferredDtype);\n}\nfunction convertToTensorArray(arg, argName, functionName, parseAsDtype = \"numeric\") {\n if (!Array.isArray(arg)) {\n throw new Error(`Argument ${argName} passed to ${functionName} must be a \\`Tensor[]\\` or \\`TensorLike[]\\``);\n }\n const tensors = arg;\n return tensors.map((t2, i2) => convertToTensor(t2, `${argName}[${i2}]`, functionName, parseAsDtype));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/operation.js\nvar OP_SCOPE_SUFFIX = \"__op\";\nfunction op(f) {\n const keys = Object.keys(f);\n if (keys.length !== 1) {\n throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${keys.length} keys.`);\n }\n let opName = keys[0];\n const fn = f[opName];\n if (opName.endsWith(\"_\")) {\n opName = opName.substring(0, opName.length - 1);\n }\n opName = opName + OP_SCOPE_SUFFIX;\n const f2 = (...args) => {\n ENGINE.startScope(opName);\n try {\n const result = fn(...args);\n if (isPromise(result)) {\n console.error(\"Cannot return a Promise inside of tidy.\");\n }\n ENGINE.endScope(result);\n return result;\n } catch (ex) {\n ENGINE.endScope(null);\n throw ex;\n }\n };\n Object.defineProperty(f2, \"name\", { value: opName, configurable: true });\n return f2;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/complex.js\nfunction complex_(real6, imag5) {\n const $real = convertToTensor(real6, \"real\", \"complex\");\n const $imag = convertToTensor(imag5, \"imag\", \"complex\");\n assertShapesMatch($real.shape, $imag.shape, `real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`);\n const inputs = { real: $real, imag: $imag };\n return ENGINE.runKernel(Complex, inputs);\n}\nvar complex = op({ complex_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor_ops_util.js\nfunction makeTensor(values, shape, inferredShape, dtype) {\n if (dtype == null) {\n dtype = inferDtype(values);\n }\n if (dtype === \"complex64\") {\n throw new Error(`Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).`);\n }\n if (!isTypedArray(values) && !Array.isArray(values) && typeof values !== \"number\" && typeof values !== \"boolean\" && typeof values !== \"string\") {\n throw new Error(\"values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray\");\n }\n if (shape != null) {\n assertNonNegativeIntegerDimensions(shape);\n const providedSize = sizeFromShape(shape);\n const inferredSize = sizeFromShape(inferredShape);\n assert(providedSize === inferredSize, () => `Based on the provided shape, [${shape}], the tensor should have ${providedSize} values but has ${inferredSize}`);\n for (let i2 = 0; i2 < inferredShape.length; ++i2) {\n const inferred = inferredShape[i2];\n const flatDimsDontMatch = i2 === inferredShape.length - 1 ? inferred !== sizeFromShape(shape.slice(i2)) : true;\n assert(inferredShape[i2] === shape[i2] || !flatDimsDontMatch, () => `Error creating a new Tensor. Inferred shape (${inferredShape}) does not match the provided shape (${shape}). `);\n }\n }\n if (!isTypedArray(values) && !Array.isArray(values)) {\n values = [values];\n }\n shape = shape || inferredShape;\n values = dtype !== \"string\" ? toTypedArray(values, dtype) : flatten(values, [], true);\n return ENGINE.makeTensor(values, shape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor.js\nfunction tensor(values, shape, dtype) {\n const inferredShape = inferShape(values, dtype);\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/types.js\nvar DTYPE_VALUE_SIZE_MAP = {\n \"float32\": 4,\n \"float16\": 2,\n \"int32\": 4,\n \"uint16\": 2,\n \"uint8\": 1,\n \"bool\": 1,\n \"complex64\": 8\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/io_utils.js\nvar NUM_BYTES_STRING_LENGTH = 4;\nasync function encodeWeights(tensors, group) {\n const specs = [];\n const dataPromises = [];\n const names = Array.isArray(tensors) ? tensors.map((tensor2) => tensor2.name) : Object.keys(tensors);\n for (let i2 = 0; i2 < names.length; ++i2) {\n const name = names[i2];\n const t2 = Array.isArray(tensors) ? tensors[i2].tensor : tensors[name];\n if (t2.dtype !== \"float32\" && t2.dtype !== \"int32\" && t2.dtype !== \"bool\" && t2.dtype !== \"string\" && t2.dtype !== \"complex64\") {\n throw new Error(`Unsupported dtype in weight '${name}': ${t2.dtype}`);\n }\n const spec = { name, shape: t2.shape, dtype: t2.dtype };\n if (t2.dtype === \"string\") {\n const utf8bytes = new Promise(async (resolve) => {\n const vals = await t2.bytes();\n const totalNumBytes = vals.reduce((p2, c) => p2 + c.length, 0) + NUM_BYTES_STRING_LENGTH * vals.length;\n const bytes = new Uint8Array(totalNumBytes);\n let offset = 0;\n for (let i3 = 0; i3 < vals.length; i3++) {\n const val = vals[i3];\n const bytesOfLength = new Uint8Array(new Uint32Array([val.length]).buffer);\n bytes.set(bytesOfLength, offset);\n offset += NUM_BYTES_STRING_LENGTH;\n bytes.set(val, offset);\n offset += val.length;\n }\n resolve(bytes);\n });\n dataPromises.push(utf8bytes);\n } else {\n dataPromises.push(t2.data());\n }\n if (group != null) {\n spec.group = group;\n }\n specs.push(spec);\n }\n const tensorValues = await Promise.all(dataPromises);\n return { data: concatenateTypedArrays(tensorValues), specs };\n}\nfunction decodeWeights(buffer2, specs) {\n const out = {};\n let float16Decode;\n let offset = 0;\n for (const spec of specs) {\n const name = spec.name;\n const dtype = spec.dtype;\n const shape = spec.shape;\n const size = sizeFromShape(shape);\n let values;\n if (\"quantization\" in spec) {\n const quantization = spec.quantization;\n if (quantization.dtype === \"uint8\" || quantization.dtype === \"uint16\") {\n if (!(\"min\" in quantization && \"scale\" in quantization)) {\n throw new Error(`Weight ${spec.name} with quantization ${quantization.dtype} doesn't have corresponding metadata min and scale.`);\n }\n } else if (quantization.dtype === \"float16\") {\n if (dtype !== \"float32\") {\n throw new Error(`Weight ${spec.name} is quantized with ${quantization.dtype} which only supports weights of type float32 not ${dtype}.`);\n }\n } else {\n throw new Error(`Weight ${spec.name} has unknown quantization dtype ${quantization.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);\n }\n const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype];\n const byteBuffer = buffer2.slice(offset, offset + size * quantizationSizeFactor);\n const quantizedArray = quantization.dtype === \"uint8\" ? new Uint8Array(byteBuffer) : new Uint16Array(byteBuffer);\n if (dtype === \"float32\") {\n if (quantization.dtype === \"uint8\" || quantization.dtype === \"uint16\") {\n values = new Float32Array(quantizedArray.length);\n for (let i2 = 0; i2 < quantizedArray.length; i2++) {\n const v = quantizedArray[i2];\n values[i2] = v * quantization.scale + quantization.min;\n }\n } else if (quantization.dtype === \"float16\") {\n if (float16Decode === void 0) {\n float16Decode = getFloat16Decoder();\n }\n values = float16Decode(quantizedArray);\n } else {\n throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type float32.`);\n }\n } else if (dtype === \"int32\") {\n if (quantization.dtype !== \"uint8\" && quantization.dtype !== \"uint16\") {\n throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type int32.`);\n }\n values = new Int32Array(quantizedArray.length);\n for (let i2 = 0; i2 < quantizedArray.length; i2++) {\n const v = quantizedArray[i2];\n values[i2] = Math.round(v * quantization.scale + quantization.min);\n }\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * quantizationSizeFactor;\n } else if (dtype === \"string\") {\n const size2 = sizeFromShape(spec.shape);\n values = [];\n for (let i2 = 0; i2 < size2; i2++) {\n const byteLength = new Uint32Array(buffer2.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0];\n offset += NUM_BYTES_STRING_LENGTH;\n const bytes = new Uint8Array(buffer2.slice(offset, offset + byteLength));\n values.push(bytes);\n offset += byteLength;\n }\n } else {\n const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype];\n const byteBuffer = buffer2.slice(offset, offset + size * dtypeFactor);\n if (dtype === \"float32\") {\n values = new Float32Array(byteBuffer);\n } else if (dtype === \"int32\") {\n values = new Int32Array(byteBuffer);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(byteBuffer);\n } else if (dtype === \"complex64\") {\n values = new Float32Array(byteBuffer);\n const real6 = new Float32Array(values.length / 2);\n const image2 = new Float32Array(values.length / 2);\n for (let i2 = 0; i2 < real6.length; i2++) {\n real6[i2] = values[i2 * 2];\n image2[i2] = values[i2 * 2 + 1];\n }\n const realTensor = tensor(real6, shape, \"float32\");\n const imageTensor = tensor(image2, shape, \"float32\");\n out[name] = complex(realTensor, imageTensor);\n realTensor.dispose();\n imageTensor.dispose();\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * dtypeFactor;\n }\n if (dtype !== \"complex64\") {\n out[name] = tensor(values, shape, dtype);\n }\n }\n return out;\n}\nfunction concatenateTypedArrays(xs) {\n if (xs === null) {\n throw new Error(`Invalid input value: ${JSON.stringify(xs)}`);\n }\n let totalByteLength = 0;\n const normalizedXs = [];\n xs.forEach((x) => {\n totalByteLength += x.byteLength;\n normalizedXs.push(x.byteLength === x.buffer.byteLength ? x : new x.constructor(x));\n if (!(x instanceof Float32Array || x instanceof Int32Array || x instanceof Uint8Array)) {\n throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`);\n }\n });\n const y = new Uint8Array(totalByteLength);\n let offset = 0;\n normalizedXs.forEach((x) => {\n y.set(new Uint8Array(x.buffer), offset);\n offset += x.byteLength;\n });\n return y.buffer;\n}\nvar useNodeBuffer = typeof Buffer !== \"undefined\" && (typeof Blob === \"undefined\" || typeof atob === \"undefined\" || typeof btoa === \"undefined\");\nfunction stringByteLength(str) {\n if (useNodeBuffer) {\n return Buffer.byteLength(str);\n }\n return new Blob([str]).size;\n}\nfunction arrayBufferToBase64String(buffer2) {\n if (useNodeBuffer) {\n return Buffer.from(buffer2).toString(\"base64\");\n }\n const buf = new Uint8Array(buffer2);\n let s2 = \"\";\n for (let i2 = 0, l3 = buf.length; i2 < l3; i2++) {\n s2 += String.fromCharCode(buf[i2]);\n }\n return btoa(s2);\n}\nfunction base64StringToArrayBuffer(str) {\n if (useNodeBuffer) {\n const buf = Buffer.from(str, \"base64\");\n return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);\n }\n const s2 = atob(str);\n const buffer2 = new Uint8Array(s2.length);\n for (let i2 = 0; i2 < s2.length; ++i2) {\n buffer2.set([s2.charCodeAt(i2)], i2);\n }\n return buffer2.buffer;\n}\nfunction concatenateArrayBuffers(buffers) {\n if (buffers.length === 1) {\n return buffers[0];\n }\n let totalByteLength = 0;\n buffers.forEach((buffer2) => {\n totalByteLength += buffer2.byteLength;\n });\n const temp = new Uint8Array(totalByteLength);\n let offset = 0;\n buffers.forEach((buffer2) => {\n temp.set(new Uint8Array(buffer2), offset);\n offset += buffer2.byteLength;\n });\n return temp.buffer;\n}\nfunction basename(path) {\n const SEPARATOR = \"/\";\n path = path.trim();\n while (path.endsWith(SEPARATOR)) {\n path = path.slice(0, path.length - 1);\n }\n const items = path.split(SEPARATOR);\n return items[items.length - 1];\n}\nfunction getModelJSONForModelArtifacts(artifacts, manifest) {\n const result = {\n modelTopology: artifacts.modelTopology,\n format: artifacts.format,\n generatedBy: artifacts.generatedBy,\n convertedBy: artifacts.convertedBy,\n weightsManifest: manifest\n };\n if (artifacts.signature != null) {\n result.signature = artifacts.signature;\n }\n if (artifacts.userDefinedMetadata != null) {\n result.userDefinedMetadata = artifacts.userDefinedMetadata;\n }\n if (artifacts.modelInitializer != null) {\n result.modelInitializer = artifacts.modelInitializer;\n }\n if (artifacts.trainingConfig != null) {\n result.trainingConfig = artifacts.trainingConfig;\n }\n return result;\n}\nasync function getModelArtifactsForJSON(modelJSON, loadWeights2) {\n const modelArtifacts = {\n modelTopology: modelJSON.modelTopology,\n format: modelJSON.format,\n generatedBy: modelJSON.generatedBy,\n convertedBy: modelJSON.convertedBy\n };\n if (modelJSON.trainingConfig != null) {\n modelArtifacts.trainingConfig = modelJSON.trainingConfig;\n }\n if (modelJSON.weightsManifest != null) {\n const [weightSpecs, weightData] = await loadWeights2(modelJSON.weightsManifest);\n modelArtifacts.weightSpecs = weightSpecs;\n modelArtifacts.weightData = weightData;\n }\n if (modelJSON.signature != null) {\n modelArtifacts.signature = modelJSON.signature;\n }\n if (modelJSON.userDefinedMetadata != null) {\n modelArtifacts.userDefinedMetadata = modelJSON.userDefinedMetadata;\n }\n if (modelJSON.modelInitializer != null) {\n modelArtifacts.modelInitializer = modelJSON.modelInitializer;\n }\n return modelArtifacts;\n}\nfunction getModelArtifactsInfoForJSON(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"Expected JSON model topology, received ArrayBuffer.\");\n }\n return {\n dateSaved: new Date(),\n modelTopologyType: \"JSON\",\n modelTopologyBytes: modelArtifacts.modelTopology == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),\n weightSpecsBytes: modelArtifacts.weightSpecs == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),\n weightDataBytes: modelArtifacts.weightData == null ? 0 : modelArtifacts.weightData.byteLength\n };\n}\nfunction computeFloat16MantisaTable() {\n const convertMantissa = (i2) => {\n let m = i2 << 13;\n let e2 = 0;\n while ((m & 8388608) === 0) {\n e2 -= 8388608;\n m <<= 1;\n }\n m &= ~8388608;\n e2 += 947912704;\n return m | e2;\n };\n const mantisaTable = new Uint32Array(2048);\n mantisaTable[0] = 0;\n for (let i2 = 1; i2 < 1024; i2++) {\n mantisaTable[i2] = convertMantissa(i2);\n }\n for (let i2 = 1024; i2 < 2048; i2++) {\n mantisaTable[i2] = 939524096 + (i2 - 1024 << 13);\n }\n return mantisaTable;\n}\nfunction computeFloat16ExponentTable() {\n const exponentTable = new Uint32Array(64);\n exponentTable[0] = 0;\n exponentTable[31] = 1199570944;\n exponentTable[32] = 2147483648;\n exponentTable[63] = 3347054592;\n for (let i2 = 1; i2 < 31; i2++) {\n exponentTable[i2] = i2 << 23;\n }\n for (let i2 = 33; i2 < 63; i2++) {\n exponentTable[i2] = 2147483648 + (i2 - 32 << 23);\n }\n return exponentTable;\n}\nfunction computeFloat16OffsetTable() {\n const offsetTable = new Uint32Array(64);\n for (let i2 = 0; i2 < 64; i2++) {\n offsetTable[i2] = 1024;\n }\n offsetTable[0] = offsetTable[32] = 0;\n return offsetTable;\n}\nfunction getFloat16Decoder() {\n const mantisaTable = computeFloat16MantisaTable();\n const exponentTable = computeFloat16ExponentTable();\n const offsetTable = computeFloat16OffsetTable();\n return (quantizedArray) => {\n const buffer2 = new ArrayBuffer(4 * quantizedArray.length);\n const bufferUint32View = new Uint32Array(buffer2);\n for (let index = 0; index < quantizedArray.length; index++) {\n const float16Bits = quantizedArray[index];\n const float32Bits = mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 1023)] + exponentTable[float16Bits >> 10];\n bufferUint32View[index] = float32Bits;\n }\n return new Float32Array(buffer2);\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/router_registry.js\nvar IORouterRegistry = class {\n constructor() {\n this.saveRouters = [];\n this.loadRouters = [];\n }\n static getInstance() {\n if (IORouterRegistry.instance == null) {\n IORouterRegistry.instance = new IORouterRegistry();\n }\n return IORouterRegistry.instance;\n }\n static registerSaveRouter(saveRouter) {\n IORouterRegistry.getInstance().saveRouters.push(saveRouter);\n }\n static registerLoadRouter(loadRouter) {\n IORouterRegistry.getInstance().loadRouters.push(loadRouter);\n }\n static getSaveHandlers(url) {\n return IORouterRegistry.getHandlers(url, \"save\");\n }\n static getLoadHandlers(url, loadOptions) {\n return IORouterRegistry.getHandlers(url, \"load\", loadOptions);\n }\n static getHandlers(url, handlerType, loadOptions) {\n const validHandlers = [];\n const routers = handlerType === \"load\" ? IORouterRegistry.getInstance().loadRouters : IORouterRegistry.getInstance().saveRouters;\n routers.forEach((router) => {\n const handler = router(url, loadOptions);\n if (handler !== null) {\n validHandlers.push(handler);\n }\n });\n return validHandlers;\n }\n};\nvar registerSaveRouter = (loudRouter) => IORouterRegistry.registerSaveRouter(loudRouter);\nvar registerLoadRouter = (loudRouter) => IORouterRegistry.registerLoadRouter(loudRouter);\nvar getSaveHandlers = (url) => IORouterRegistry.getSaveHandlers(url);\nvar getLoadHandlers = (url, loadOptions) => IORouterRegistry.getLoadHandlers(url, loadOptions);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/indexed_db.js\nvar DATABASE_NAME = \"tensorflowjs\";\nvar DATABASE_VERSION = 1;\nvar MODEL_STORE_NAME = \"models_store\";\nvar INFO_STORE_NAME = \"model_info_store\";\nfunction getIndexedDBFactory() {\n if (!env().getBool(\"IS_BROWSER\")) {\n throw new Error(\"Failed to obtain IndexedDB factory because the current environmentis not a web browser.\");\n }\n const theWindow = typeof window === \"undefined\" ? self : window;\n const factory = theWindow.indexedDB || theWindow.mozIndexedDB || theWindow.webkitIndexedDB || theWindow.msIndexedDB || theWindow.shimIndexedDB;\n if (factory == null) {\n throw new Error(\"The current browser does not appear to support IndexedDB.\");\n }\n return factory;\n}\nfunction setUpDatabase(openRequest) {\n const db = openRequest.result;\n db.createObjectStore(MODEL_STORE_NAME, { keyPath: \"modelPath\" });\n db.createObjectStore(INFO_STORE_NAME, { keyPath: \"modelPath\" });\n}\nvar BrowserIndexedDB = class {\n constructor(modelPath) {\n this.indexedDB = getIndexedDBFactory();\n if (modelPath == null || !modelPath) {\n throw new Error(\"For IndexedDB, modelPath must not be null, undefined or empty.\");\n }\n this.modelPath = modelPath;\n }\n async save(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");\n }\n return this.databaseAction(this.modelPath, modelArtifacts);\n }\n async load() {\n return this.databaseAction(this.modelPath);\n }\n databaseAction(modelPath, modelArtifacts) {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n if (modelArtifacts == null) {\n const modelTx = db.transaction(MODEL_STORE_NAME, \"readonly\");\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const getRequest = modelStore.get(this.modelPath);\n getRequest.onsuccess = () => {\n if (getRequest.result == null) {\n db.close();\n return reject(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));\n } else {\n resolve(getRequest.result.modelArtifacts);\n }\n };\n getRequest.onerror = (error) => {\n db.close();\n return reject(getRequest.error);\n };\n modelTx.oncomplete = () => db.close();\n } else {\n const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts);\n const infoTx = db.transaction(INFO_STORE_NAME, \"readwrite\");\n let infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const putInfoRequest = infoStore.put({ modelPath: this.modelPath, modelArtifactsInfo });\n let modelTx;\n putInfoRequest.onsuccess = () => {\n modelTx = db.transaction(MODEL_STORE_NAME, \"readwrite\");\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const putModelRequest = modelStore.put({\n modelPath: this.modelPath,\n modelArtifacts,\n modelArtifactsInfo\n });\n putModelRequest.onsuccess = () => resolve({ modelArtifactsInfo });\n putModelRequest.onerror = (error) => {\n infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const deleteInfoRequest = infoStore.delete(this.modelPath);\n deleteInfoRequest.onsuccess = () => {\n db.close();\n return reject(putModelRequest.error);\n };\n deleteInfoRequest.onerror = (error2) => {\n db.close();\n return reject(putModelRequest.error);\n };\n };\n };\n putInfoRequest.onerror = (error) => {\n db.close();\n return reject(putInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n }\n };\n openRequest.onerror = (error) => reject(openRequest.error);\n });\n }\n};\nBrowserIndexedDB.URL_SCHEME = \"indexeddb://\";\nvar indexedDBRouter = (url) => {\n if (!env().getBool(\"IS_BROWSER\")) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) {\n return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(indexedDBRouter);\nIORouterRegistry.registerLoadRouter(indexedDBRouter);\nfunction browserIndexedDB(modelPath) {\n return new BrowserIndexedDB(modelPath);\n}\nfunction maybeStripScheme(key) {\n return key.startsWith(BrowserIndexedDB.URL_SCHEME) ? key.slice(BrowserIndexedDB.URL_SCHEME.length) : key;\n}\nvar BrowserIndexedDBManager = class {\n constructor() {\n this.indexedDB = getIndexedDBFactory();\n }\n async listModels() {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const tx = db.transaction(INFO_STORE_NAME, \"readonly\");\n const store = tx.objectStore(INFO_STORE_NAME);\n const getAllInfoRequest = store.getAll();\n getAllInfoRequest.onsuccess = () => {\n const out = {};\n for (const item of getAllInfoRequest.result) {\n out[item.modelPath] = item.modelArtifactsInfo;\n }\n resolve(out);\n };\n getAllInfoRequest.onerror = (error) => {\n db.close();\n return reject(getAllInfoRequest.error);\n };\n tx.oncomplete = () => db.close();\n };\n openRequest.onerror = (error) => reject(openRequest.error);\n });\n }\n async removeModel(path) {\n path = maybeStripScheme(path);\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const infoTx = db.transaction(INFO_STORE_NAME, \"readwrite\");\n const infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const getInfoRequest = infoStore.get(path);\n let modelTx;\n getInfoRequest.onsuccess = () => {\n if (getInfoRequest.result == null) {\n db.close();\n return reject(new Error(`Cannot find model with path '${path}' in IndexedDB.`));\n } else {\n const deleteInfoRequest = infoStore.delete(path);\n const deleteModelData = () => {\n modelTx = db.transaction(MODEL_STORE_NAME, \"readwrite\");\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const deleteModelRequest = modelStore.delete(path);\n deleteModelRequest.onsuccess = () => resolve(getInfoRequest.result.modelArtifactsInfo);\n deleteModelRequest.onerror = (error) => reject(getInfoRequest.error);\n };\n deleteInfoRequest.onsuccess = deleteModelData;\n deleteInfoRequest.onerror = (error) => {\n deleteModelData();\n db.close();\n return reject(getInfoRequest.error);\n };\n }\n };\n getInfoRequest.onerror = (error) => {\n db.close();\n return reject(getInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n };\n openRequest.onerror = (error) => reject(openRequest.error);\n });\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/local_storage.js\nvar PATH_SEPARATOR = \"/\";\nvar PATH_PREFIX = \"tensorflowjs_models\";\nvar INFO_SUFFIX = \"info\";\nvar MODEL_TOPOLOGY_SUFFIX = \"model_topology\";\nvar WEIGHT_SPECS_SUFFIX = \"weight_specs\";\nvar WEIGHT_DATA_SUFFIX = \"weight_data\";\nvar MODEL_METADATA_SUFFIX = \"model_metadata\";\nfunction getModelKeys(path) {\n return {\n info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR),\n topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),\n weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),\n weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),\n modelMetadata: [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)\n };\n}\nfunction removeItems(keys) {\n for (const key of Object.values(keys)) {\n window.localStorage.removeItem(key);\n }\n}\nfunction getModelPathFromKey(key) {\n const items = key.split(PATH_SEPARATOR);\n if (items.length < 3) {\n throw new Error(`Invalid key format: ${key}`);\n }\n return items.slice(1, items.length - 1).join(PATH_SEPARATOR);\n}\nfunction maybeStripScheme2(key) {\n return key.startsWith(BrowserLocalStorage.URL_SCHEME) ? key.slice(BrowserLocalStorage.URL_SCHEME.length) : key;\n}\nvar BrowserLocalStorage = class {\n constructor(modelPath) {\n if (!env().getBool(\"IS_BROWSER\") || typeof window === \"undefined\" || typeof window.localStorage === \"undefined\") {\n throw new Error(\"The current environment does not support local storage.\");\n }\n this.LS = window.localStorage;\n if (modelPath == null || !modelPath) {\n throw new Error(\"For local storage, modelPath must not be null, undefined or empty.\");\n }\n this.modelPath = modelPath;\n this.keys = getModelKeys(this.modelPath);\n }\n async save(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");\n } else {\n const topology = JSON.stringify(modelArtifacts.modelTopology);\n const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs);\n const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts);\n try {\n this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo));\n this.LS.setItem(this.keys.topology, topology);\n this.LS.setItem(this.keys.weightSpecs, weightSpecs);\n this.LS.setItem(this.keys.weightData, arrayBufferToBase64String(modelArtifacts.weightData));\n const metadata = {\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n signature: modelArtifacts.signature != null ? modelArtifacts.signature : void 0,\n userDefinedMetadata: modelArtifacts.userDefinedMetadata != null ? modelArtifacts.userDefinedMetadata : void 0,\n modelInitializer: modelArtifacts.modelInitializer != null ? modelArtifacts.modelInitializer : void 0,\n trainingConfig: modelArtifacts.trainingConfig != null ? modelArtifacts.trainingConfig : void 0\n };\n this.LS.setItem(this.keys.modelMetadata, JSON.stringify(metadata));\n return { modelArtifactsInfo };\n } catch (err) {\n removeItems(this.keys);\n throw new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`);\n }\n }\n }\n async load() {\n const info = JSON.parse(this.LS.getItem(this.keys.info));\n if (info == null) {\n throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);\n }\n if (info.modelTopologyType !== \"JSON\") {\n throw new Error(\"BrowserLocalStorage does not support loading non-JSON model topology yet.\");\n }\n const out = {};\n const topology = JSON.parse(this.LS.getItem(this.keys.topology));\n if (topology == null) {\n throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);\n }\n out.modelTopology = topology;\n const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs));\n if (weightSpecs == null) {\n throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);\n }\n out.weightSpecs = weightSpecs;\n const metadataString = this.LS.getItem(this.keys.modelMetadata);\n if (metadataString != null) {\n const metadata = JSON.parse(metadataString);\n out.format = metadata.format;\n out.generatedBy = metadata.generatedBy;\n out.convertedBy = metadata.convertedBy;\n if (metadata.signature != null) {\n out.signature = metadata.signature;\n }\n if (metadata.userDefinedMetadata != null) {\n out.userDefinedMetadata = metadata.userDefinedMetadata;\n }\n if (metadata.modelInitializer != null) {\n out.modelInitializer = metadata.modelInitializer;\n }\n if (metadata.trainingConfig != null) {\n out.trainingConfig = metadata.trainingConfig;\n }\n }\n const weightDataBase64 = this.LS.getItem(this.keys.weightData);\n if (weightDataBase64 == null) {\n throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);\n }\n out.weightData = base64StringToArrayBuffer(weightDataBase64);\n return out;\n }\n};\nBrowserLocalStorage.URL_SCHEME = \"localstorage://\";\nvar localStorageRouter = (url) => {\n if (!env().getBool(\"IS_BROWSER\")) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) {\n return browserLocalStorage(url.slice(BrowserLocalStorage.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(localStorageRouter);\nIORouterRegistry.registerLoadRouter(localStorageRouter);\nfunction browserLocalStorage(modelPath) {\n return new BrowserLocalStorage(modelPath);\n}\nvar BrowserLocalStorageManager = class {\n constructor() {\n assert(env().getBool(\"IS_BROWSER\"), () => \"Current environment is not a web browser\");\n assert(typeof window === \"undefined\" || typeof window.localStorage !== \"undefined\", () => \"Current browser does not appear to support localStorage\");\n this.LS = window.localStorage;\n }\n async listModels() {\n const out = {};\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n const suffix = PATH_SEPARATOR + INFO_SUFFIX;\n for (let i2 = 0; i2 < this.LS.length; ++i2) {\n const key = this.LS.key(i2);\n if (key.startsWith(prefix) && key.endsWith(suffix)) {\n const modelPath = getModelPathFromKey(key);\n out[modelPath] = JSON.parse(this.LS.getItem(key));\n }\n }\n return out;\n }\n async removeModel(path) {\n path = maybeStripScheme2(path);\n const keys = getModelKeys(path);\n if (this.LS.getItem(keys.info) == null) {\n throw new Error(`Cannot find model at path '${path}'`);\n }\n const info = JSON.parse(this.LS.getItem(keys.info));\n removeItems(keys);\n return info;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/model_management.js\nvar URL_SCHEME_SUFFIX = \"://\";\nvar ModelStoreManagerRegistry = class {\n constructor() {\n this.managers = {};\n }\n static getInstance() {\n if (ModelStoreManagerRegistry.instance == null) {\n ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry();\n }\n return ModelStoreManagerRegistry.instance;\n }\n static registerManager(scheme, manager) {\n assert(scheme != null, () => \"scheme must not be undefined or null.\");\n if (scheme.endsWith(URL_SCHEME_SUFFIX)) {\n scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX));\n }\n assert(scheme.length > 0, () => \"scheme must not be an empty string.\");\n const registry = ModelStoreManagerRegistry.getInstance();\n assert(registry.managers[scheme] == null, () => `A model store manager is already registered for scheme '${scheme}'.`);\n registry.managers[scheme] = manager;\n }\n static getManager(scheme) {\n const manager = ModelStoreManagerRegistry.getInstance().managers[scheme];\n if (manager == null) {\n throw new Error(`Cannot find model manager for scheme '${scheme}'`);\n }\n return manager;\n }\n static getSchemes() {\n return Object.keys(ModelStoreManagerRegistry.getInstance().managers);\n }\n};\nfunction parseURL(url) {\n if (url.indexOf(URL_SCHEME_SUFFIX) === -1) {\n throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ModelStoreManagerRegistry.getSchemes().join(\",\")}`);\n }\n return {\n scheme: url.split(URL_SCHEME_SUFFIX)[0],\n path: url.split(URL_SCHEME_SUFFIX)[1]\n };\n}\nasync function cloneModelInternal(sourceURL, destURL, deleteSource = false) {\n assert(sourceURL !== destURL, () => `Old path and new path are the same: '${sourceURL}'`);\n const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL);\n assert(loadHandlers.length > 0, () => `Copying failed because no load handler is found for source URL ${sourceURL}.`);\n assert(loadHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) load handlers for source URL ${sourceURL}.`);\n const loadHandler = loadHandlers[0];\n const saveHandlers = IORouterRegistry.getSaveHandlers(destURL);\n assert(saveHandlers.length > 0, () => `Copying failed because no save handler is found for destination URL ${destURL}.`);\n assert(saveHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) save handlers for destination URL ${destURL}.`);\n const saveHandler = saveHandlers[0];\n const sourceScheme = parseURL(sourceURL).scheme;\n const sourcePath = parseURL(sourceURL).path;\n const sameMedium = sourceScheme === parseURL(sourceURL).scheme;\n const modelArtifacts = await loadHandler.load();\n if (deleteSource && sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath);\n }\n const saveResult = await saveHandler.save(modelArtifacts);\n if (deleteSource && !sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath);\n }\n return saveResult.modelArtifactsInfo;\n}\nasync function listModels() {\n const schemes = ModelStoreManagerRegistry.getSchemes();\n const out = {};\n for (const scheme of schemes) {\n const schemeOut = await ModelStoreManagerRegistry.getManager(scheme).listModels();\n for (const path in schemeOut) {\n const url = scheme + URL_SCHEME_SUFFIX + path;\n out[url] = schemeOut[path];\n }\n }\n return out;\n}\nasync function removeModel(url) {\n const schemeAndPath = parseURL(url);\n const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);\n return manager.removeModel(schemeAndPath.path);\n}\nasync function copyModel(sourceURL, destURL) {\n const deleteSource = false;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\nasync function moveModel(sourceURL, destURL) {\n const deleteSource = true;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/platforms/platform_browser.js\nvar PlatformBrowser = class {\n fetch(path, init2) {\n return fetch(path, init2);\n }\n now() {\n return performance.now();\n }\n encode(text, encoding) {\n if (encoding !== \"utf-8\" && encoding !== \"utf8\") {\n throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`);\n }\n if (this.textEncoder == null) {\n this.textEncoder = new TextEncoder();\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes, encoding) {\n return new TextDecoder(encoding).decode(bytes);\n }\n};\nif (env().get(\"IS_BROWSER\")) {\n env().setPlatform(\"browser\", new PlatformBrowser());\n try {\n ModelStoreManagerRegistry.registerManager(BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager());\n } catch (err) {\n }\n try {\n ModelStoreManagerRegistry.registerManager(BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager());\n } catch (err) {\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/platforms/platform_node.js\nvar getNodeFetch = {\n importFetch: () => require_browser()\n};\nvar systemFetch;\nvar PlatformNode = class {\n constructor() {\n this.util = require_util();\n this.textEncoder = new this.util.TextEncoder();\n }\n fetch(path, requestInits) {\n if (env().global.fetch != null) {\n return env().global.fetch(path, requestInits);\n }\n if (systemFetch == null) {\n systemFetch = getNodeFetch.importFetch();\n }\n return systemFetch(path, requestInits);\n }\n now() {\n const time2 = process.hrtime();\n return time2[0] * 1e3 + time2[1] / 1e6;\n }\n encode(text, encoding) {\n if (encoding !== \"utf-8\" && encoding !== \"utf8\") {\n throw new Error(`Node built-in encoder only supports utf-8, but got ${encoding}`);\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes, encoding) {\n if (bytes.length === 0) {\n return \"\";\n }\n return new this.util.TextDecoder(encoding).decode(bytes);\n }\n};\nif (env().get(\"IS_NODE\") && !env().get(\"IS_BROWSER\")) {\n env().setPlatform(\"node\", new PlatformNode());\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/buffer.js\nfunction buffer(shape, dtype = \"float32\", values) {\n dtype = dtype || \"float32\";\n assertNonNegativeIntegerDimensions(shape);\n return new TensorBuffer(shape, dtype, values);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cast.js\nfunction cast_(x, dtype) {\n const $x = convertToTensor(x, \"x\", \"cast\");\n if (!isValidDtype(dtype)) {\n throw new Error(`Failed to cast to unknown dtype ${dtype}`);\n }\n if (dtype === \"string\" && $x.dtype !== \"string\" || dtype !== \"string\" && $x.dtype === \"string\") {\n throw new Error(\"Only strings can be casted to strings\");\n }\n const inputs = { x: $x };\n const attrs = { dtype };\n return ENGINE.runKernel(Cast, inputs, attrs);\n}\nvar cast = op({ cast_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/clone.js\nfunction clone_(x) {\n const $x = convertToTensor(x, \"x\", \"clone\", \"string_or_numeric\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Identity, inputs);\n}\nvar clone = op({ clone_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/print.js\nfunction print(x, verbose = false) {\n console.log(x.toString(verbose));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/base_side_effects.js\ngetOrMakeEngine();\nvar opHandler2 = {\n buffer,\n cast,\n clone,\n print\n};\nsetOpHandler(opHandler2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/io.js\nvar io_exports = {};\n__export(io_exports, {\n browserFiles: () => browserFiles,\n browserHTTPRequest: () => browserHTTPRequest,\n concatenateArrayBuffers: () => concatenateArrayBuffers,\n copyModel: () => copyModel,\n decodeWeights: () => decodeWeights,\n encodeWeights: () => encodeWeights,\n fromMemory: () => fromMemory,\n fromMemorySync: () => fromMemorySync,\n getLoadHandlers: () => getLoadHandlers,\n getModelArtifactsForJSON: () => getModelArtifactsForJSON,\n getModelArtifactsInfoForJSON: () => getModelArtifactsInfoForJSON,\n getSaveHandlers: () => getSaveHandlers,\n http: () => http,\n isHTTPScheme: () => isHTTPScheme,\n listModels: () => listModels,\n loadWeights: () => loadWeights,\n moveModel: () => moveModel,\n registerLoadRouter: () => registerLoadRouter,\n registerSaveRouter: () => registerSaveRouter,\n removeModel: () => removeModel,\n weightsLoaderFactory: () => weightsLoaderFactory,\n withSaveHandler: () => withSaveHandler,\n withSaveHandlerSync: () => withSaveHandlerSync\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/browser_files.js\nvar DEFAULT_FILE_NAME_PREFIX = \"model\";\nvar DEFAULT_JSON_EXTENSION_NAME = \".json\";\nvar DEFAULT_WEIGHT_DATA_EXTENSION_NAME = \".weights.bin\";\nfunction defer(f) {\n return new Promise((resolve) => setTimeout(resolve)).then(f);\n}\nvar BrowserDownloads = class {\n constructor(fileNamePrefix) {\n if (!env().getBool(\"IS_BROWSER\")) {\n throw new Error(\"browserDownloads() cannot proceed because the current environment is not a browser.\");\n }\n if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) {\n fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length);\n }\n if (fileNamePrefix == null || fileNamePrefix.length === 0) {\n fileNamePrefix = DEFAULT_FILE_NAME_PREFIX;\n }\n this.modelJsonFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME;\n this.weightDataFileName = fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME;\n }\n async save(modelArtifacts) {\n if (typeof document === \"undefined\") {\n throw new Error(\"Browser downloads are not supported in this environment since `document` is not present\");\n }\n const weightsURL = window.URL.createObjectURL(new Blob([modelArtifacts.weightData], { type: \"application/octet-stream\" }));\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserDownloads.save() does not support saving model topology in binary formats yet.\");\n } else {\n const weightsManifest = [{\n paths: [\"./\" + this.weightDataFileName],\n weights: modelArtifacts.weightSpecs\n }];\n const modelJSON = getModelJSONForModelArtifacts(modelArtifacts, weightsManifest);\n const modelJsonURL = window.URL.createObjectURL(new Blob([JSON.stringify(modelJSON)], { type: \"application/json\" }));\n const jsonAnchor = this.modelJsonAnchor == null ? document.createElement(\"a\") : this.modelJsonAnchor;\n jsonAnchor.download = this.modelJsonFileName;\n jsonAnchor.href = modelJsonURL;\n await defer(() => jsonAnchor.dispatchEvent(new MouseEvent(\"click\")));\n if (modelArtifacts.weightData != null) {\n const weightDataAnchor = this.weightDataAnchor == null ? document.createElement(\"a\") : this.weightDataAnchor;\n weightDataAnchor.download = this.weightDataFileName;\n weightDataAnchor.href = weightsURL;\n await defer(() => weightDataAnchor.dispatchEvent(new MouseEvent(\"click\")));\n }\n return { modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts) };\n }\n }\n};\nBrowserDownloads.URL_SCHEME = \"downloads://\";\nvar BrowserFiles = class {\n constructor(files) {\n if (files == null || files.length < 1) {\n throw new Error(`When calling browserFiles, at least 1 file is required, but received ${files}`);\n }\n this.jsonFile = files[0];\n this.weightsFiles = files.slice(1);\n }\n async load() {\n return new Promise((resolve, reject) => {\n const jsonReader = new FileReader();\n jsonReader.onload = (event) => {\n const modelJSON = JSON.parse(event.target.result);\n const modelTopology = modelJSON.modelTopology;\n if (modelTopology == null) {\n reject(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));\n return;\n }\n const weightsManifest = modelJSON.weightsManifest;\n if (weightsManifest == null) {\n reject(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));\n return;\n }\n if (this.weightsFiles.length === 0) {\n resolve({ modelTopology });\n return;\n }\n const modelArtifactsPromise = getModelArtifactsForJSON(modelJSON, (weightsManifest2) => this.loadWeights(weightsManifest2));\n resolve(modelArtifactsPromise);\n };\n jsonReader.onerror = (error) => reject(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`);\n jsonReader.readAsText(this.jsonFile);\n });\n }\n loadWeights(weightsManifest) {\n const weightSpecs = [];\n const paths = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n paths.push(...entry.paths);\n }\n const pathToFile = this.checkManifestAndWeightFiles(weightsManifest);\n const promises = paths.map((path) => this.loadWeightsFile(path, pathToFile[path]));\n return Promise.all(promises).then((buffers) => [weightSpecs, concatenateArrayBuffers(buffers)]);\n }\n loadWeightsFile(path, file) {\n return new Promise((resolve, reject) => {\n const weightFileReader = new FileReader();\n weightFileReader.onload = (event) => {\n const weightData = event.target.result;\n resolve(weightData);\n };\n weightFileReader.onerror = (error) => reject(`Failed to weights data from file of path '${path}'.`);\n weightFileReader.readAsArrayBuffer(file);\n });\n }\n checkManifestAndWeightFiles(manifest) {\n const basenames = [];\n const fileNames = this.weightsFiles.map((file) => basename(file.name));\n const pathToFile = {};\n for (const group of manifest) {\n group.paths.forEach((path) => {\n const pathBasename = basename(path);\n if (basenames.indexOf(pathBasename) !== -1) {\n throw new Error(`Duplicate file basename found in weights manifest: '${pathBasename}'`);\n }\n basenames.push(pathBasename);\n if (fileNames.indexOf(pathBasename) === -1) {\n throw new Error(`Weight file with basename '${pathBasename}' is not provided.`);\n } else {\n pathToFile[path] = this.weightsFiles[fileNames.indexOf(pathBasename)];\n }\n });\n }\n if (basenames.length !== this.weightsFiles.length) {\n throw new Error(`Mismatch in the number of files in weights manifest (${basenames.length}) and the number of weight files provided (${this.weightsFiles.length}).`);\n }\n return pathToFile;\n }\n};\nvar browserDownloadsRouter = (url) => {\n if (!env().getBool(\"IS_BROWSER\")) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) {\n return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(browserDownloadsRouter);\nfunction browserDownloads(fileNamePrefix = \"model\") {\n return new BrowserDownloads(fileNamePrefix);\n}\nfunction browserFiles(files) {\n return new BrowserFiles(files);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/progress.js\nfunction monitorPromisesProgress(promises, onProgress, startFraction, endFraction) {\n checkPromises(promises);\n startFraction = startFraction == null ? 0 : startFraction;\n endFraction = endFraction == null ? 1 : endFraction;\n checkFraction(startFraction, endFraction);\n let resolvedPromise = 0;\n const registerMonitor = (promise) => {\n promise.then((value) => {\n const fraction = startFraction + ++resolvedPromise / promises.length * (endFraction - startFraction);\n onProgress(fraction);\n return value;\n });\n return promise;\n };\n function checkPromises(promises2) {\n assert(promises2 != null && Array.isArray(promises2) && promises2.length > 0, () => \"promises must be a none empty array\");\n }\n function checkFraction(startFraction2, endFraction2) {\n assert(startFraction2 >= 0 && startFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got startFraction ${startFraction2}`);\n assert(endFraction2 >= 0 && endFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got endFraction ${endFraction2}`);\n assert(endFraction2 >= startFraction2, () => `startFraction must be no more than endFraction, but got startFraction ${startFraction2} and endFraction ${endFraction2}`);\n }\n return Promise.all(promises.map(registerMonitor));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/weights_loader.js\nasync function loadWeightsAsArrayBuffer(fetchURLs, loadOptions) {\n if (loadOptions == null) {\n loadOptions = {};\n }\n const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch : loadOptions.fetchFunc;\n const requests = fetchURLs.map((fetchURL) => fetchFunc(fetchURL, loadOptions.requestInit, { isBinary: true }));\n const fetchStartFraction = 0;\n const fetchEndFraction = 0.5;\n const responses = loadOptions.onProgress == null ? await Promise.all(requests) : await monitorPromisesProgress(requests, loadOptions.onProgress, fetchStartFraction, fetchEndFraction);\n const bufferPromises = responses.map((response) => response.arrayBuffer());\n const bufferStartFraction = 0.5;\n const bufferEndFraction = 1;\n const buffers = loadOptions.onProgress == null ? await Promise.all(bufferPromises) : await monitorPromisesProgress(bufferPromises, loadOptions.onProgress, bufferStartFraction, bufferEndFraction);\n return buffers;\n}\nasync function loadWeights(manifest, filePathPrefix = \"\", weightNames, requestInit) {\n const fetchWeights = (fetchUrls) => loadWeightsAsArrayBuffer(fetchUrls, { requestInit });\n const loadWeights2 = weightsLoaderFactory(fetchWeights);\n return loadWeights2(manifest, filePathPrefix, weightNames);\n}\nfunction weightsLoaderFactory(fetchWeightsFunction) {\n return async (manifest, filePathPrefix = \"\", weightNames) => {\n const groupIndicesToFetchMap = manifest.map(() => false);\n const groupWeightsToFetch = {};\n const weightsFound = weightNames != null ? weightNames.map(() => false) : [];\n const allManifestWeightNames = [];\n manifest.forEach((manifestGroupConfig, groupIndex) => {\n let groupOffset = 0;\n manifestGroupConfig.weights.forEach((weightsEntry) => {\n const rawDtype = \"quantization\" in weightsEntry ? weightsEntry.quantization.dtype : weightsEntry.dtype;\n const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] * sizeFromShape(weightsEntry.shape);\n const enqueueWeightsForFetchingFn = () => {\n groupIndicesToFetchMap[groupIndex] = true;\n if (groupWeightsToFetch[groupIndex] == null) {\n groupWeightsToFetch[groupIndex] = [];\n }\n groupWeightsToFetch[groupIndex].push({\n manifestEntry: weightsEntry,\n groupOffset,\n sizeBytes: weightsBytes\n });\n };\n if (weightNames != null) {\n weightNames.forEach((weightName, weightIndex) => {\n if (weightName === weightsEntry.name) {\n enqueueWeightsForFetchingFn();\n weightsFound[weightIndex] = true;\n }\n });\n } else {\n enqueueWeightsForFetchingFn();\n }\n allManifestWeightNames.push(weightsEntry.name);\n groupOffset += weightsBytes;\n });\n });\n if (!weightsFound.every((found) => found)) {\n const weightsNotFound = weightNames.filter((_, i2) => !weightsFound[i2]);\n throw new Error(`Could not find weights in manifest with names: ${weightsNotFound.join(\", \")}. \nManifest JSON has weights with names: ${allManifestWeightNames.join(\", \")}.`);\n }\n const groupIndicesToFetch = groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i2) => {\n if (shouldFetch) {\n accumulator.push(i2);\n }\n return accumulator;\n }, []);\n const fetchUrls = [];\n groupIndicesToFetch.forEach((i2) => {\n manifest[i2].paths.forEach((filepath) => {\n const fetchUrl = filePathPrefix + (!filePathPrefix.endsWith(\"/\") ? \"/\" : \"\") + filepath;\n fetchUrls.push(fetchUrl);\n });\n });\n const buffers = await fetchWeightsFunction(fetchUrls);\n const weightsTensorMap = {};\n let bufferIndexOffset = 0;\n groupIndicesToFetch.forEach((i2) => {\n const numBuffers = manifest[i2].paths.length;\n let groupBytes = 0;\n for (let i3 = 0; i3 < numBuffers; i3++) {\n groupBytes += buffers[bufferIndexOffset + i3].byteLength;\n }\n const groupBuffer = new ArrayBuffer(groupBytes);\n const groupByteBuffer = new Uint8Array(groupBuffer);\n let groupBufferOffset = 0;\n for (let i3 = 0; i3 < numBuffers; i3++) {\n const buffer2 = new Uint8Array(buffers[bufferIndexOffset + i3]);\n groupByteBuffer.set(buffer2, groupBufferOffset);\n groupBufferOffset += buffer2.byteLength;\n }\n const weightsEntries = groupWeightsToFetch[i2];\n weightsEntries.forEach((weightsEntry) => {\n const byteBuffer = groupBuffer.slice(weightsEntry.groupOffset, weightsEntry.groupOffset + weightsEntry.sizeBytes);\n const nameToTensorMap = decodeWeights(byteBuffer, [weightsEntry.manifestEntry]);\n for (const name in nameToTensorMap) {\n weightsTensorMap[name] = nameToTensorMap[name];\n }\n });\n bufferIndexOffset += numBuffers;\n });\n return weightsTensorMap;\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/http.js\nvar OCTET_STREAM_MIME_TYPE = \"application/octet-stream\";\nvar JSON_TYPE = \"application/json\";\nvar HTTPRequest = class {\n constructor(path, loadOptions) {\n this.DEFAULT_METHOD = \"POST\";\n if (loadOptions == null) {\n loadOptions = {};\n }\n this.weightPathPrefix = loadOptions.weightPathPrefix;\n this.onProgress = loadOptions.onProgress;\n this.weightUrlConverter = loadOptions.weightUrlConverter;\n if (loadOptions.fetchFunc != null) {\n assert(typeof loadOptions.fetchFunc === \"function\", () => \"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)\");\n this.fetch = loadOptions.fetchFunc;\n } else {\n this.fetch = env().platform.fetch;\n }\n assert(path != null && path.length > 0, () => \"URL path for http must not be null, undefined or empty.\");\n if (Array.isArray(path)) {\n assert(path.length === 2, () => `URL paths for http must have a length of 2, (actual length is ${path.length}).`);\n }\n this.path = path;\n if (loadOptions.requestInit != null && loadOptions.requestInit.body != null) {\n throw new Error(\"requestInit is expected to have no pre-existing body, but has one.\");\n }\n this.requestInit = loadOptions.requestInit || {};\n }\n async save(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.\");\n }\n const init2 = Object.assign({ method: this.DEFAULT_METHOD }, this.requestInit);\n init2.body = new FormData();\n const weightsManifest = [{\n paths: [\"./model.weights.bin\"],\n weights: modelArtifacts.weightSpecs\n }];\n const modelTopologyAndWeightManifest = getModelJSONForModelArtifacts(modelArtifacts, weightsManifest);\n init2.body.append(\"model.json\", new Blob([JSON.stringify(modelTopologyAndWeightManifest)], { type: JSON_TYPE }), \"model.json\");\n if (modelArtifacts.weightData != null) {\n init2.body.append(\"model.weights.bin\", new Blob([modelArtifacts.weightData], { type: OCTET_STREAM_MIME_TYPE }), \"model.weights.bin\");\n }\n const response = await this.fetch(this.path, init2);\n if (response.ok) {\n return {\n modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts),\n responses: [response]\n };\n } else {\n throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${response.status}.`);\n }\n }\n async load() {\n const modelConfigRequest = await this.fetch(this.path, this.requestInit);\n if (!modelConfigRequest.ok) {\n throw new Error(`Request to ${this.path} failed with status code ${modelConfigRequest.status}. Please verify this URL points to the model JSON of the model to load.`);\n }\n let modelJSON;\n try {\n modelJSON = await modelConfigRequest.json();\n } catch (e2) {\n let message = `Failed to parse model JSON of response from ${this.path}.`;\n if (this.path.endsWith(\".pb\")) {\n message += \" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.\";\n } else {\n message += \" Please make sure the server is serving valid JSON for this request.\";\n }\n throw new Error(message);\n }\n const modelTopology = modelJSON.modelTopology;\n const weightsManifest = modelJSON.weightsManifest;\n if (modelTopology == null && weightsManifest == null) {\n throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);\n }\n return getModelArtifactsForJSON(modelJSON, (weightsManifest2) => this.loadWeights(weightsManifest2));\n }\n async loadWeights(weightsManifest) {\n const weightPath = Array.isArray(this.path) ? this.path[1] : this.path;\n const [prefix, suffix] = parseUrl(weightPath);\n const pathPrefix = this.weightPathPrefix || prefix;\n const weightSpecs = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n }\n const fetchURLs = [];\n const urlPromises = [];\n for (const weightsGroup of weightsManifest) {\n for (const path of weightsGroup.paths) {\n if (this.weightUrlConverter != null) {\n urlPromises.push(this.weightUrlConverter(path));\n } else {\n fetchURLs.push(pathPrefix + path + suffix);\n }\n }\n }\n if (this.weightUrlConverter) {\n fetchURLs.push(...await Promise.all(urlPromises));\n }\n const buffers = await loadWeightsAsArrayBuffer(fetchURLs, {\n requestInit: this.requestInit,\n fetchFunc: this.fetch,\n onProgress: this.onProgress\n });\n return [weightSpecs, concatenateArrayBuffers(buffers)];\n }\n};\nHTTPRequest.URL_SCHEME_REGEX = /^https?:\\/\\//;\nfunction parseUrl(url) {\n const lastSlash = url.lastIndexOf(\"/\");\n const lastSearchParam = url.lastIndexOf(\"?\");\n const prefix = url.substring(0, lastSlash);\n const suffix = lastSearchParam > lastSlash ? url.substring(lastSearchParam) : \"\";\n return [prefix + \"/\", suffix];\n}\nfunction isHTTPScheme(url) {\n return url.match(HTTPRequest.URL_SCHEME_REGEX) != null;\n}\nvar httpRouter = (url, loadOptions) => {\n if (typeof fetch === \"undefined\" && (loadOptions == null || loadOptions.fetchFunc == null)) {\n return null;\n } else {\n let isHTTP = true;\n if (Array.isArray(url)) {\n isHTTP = url.every((urlItem) => isHTTPScheme(urlItem));\n } else {\n isHTTP = isHTTPScheme(url);\n }\n if (isHTTP) {\n return http(url, loadOptions);\n }\n }\n return null;\n};\nIORouterRegistry.registerSaveRouter(httpRouter);\nIORouterRegistry.registerLoadRouter(httpRouter);\nfunction http(path, loadOptions) {\n return new HTTPRequest(path, loadOptions);\n}\nfunction browserHTTPRequest(path, loadOptions) {\n return http(path, loadOptions);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/passthrough.js\nvar PassthroughLoader = class {\n constructor(modelArtifacts) {\n this.modelArtifacts = modelArtifacts;\n }\n load() {\n return this.modelArtifacts;\n }\n};\nvar PassthroughSaver = class {\n constructor(saveHandler) {\n this.saveHandler = saveHandler;\n }\n save(modelArtifacts) {\n return this.saveHandler(modelArtifacts);\n }\n};\nvar PassthroughAsync = class {\n constructor(handler) {\n if (handler.load) {\n this.load = () => Promise.resolve(handler.load());\n }\n if (handler.save) {\n this.save = (modelArtifacts) => Promise.resolve(handler.save(modelArtifacts));\n }\n }\n};\nfunction fromMemory(modelArtifacts, weightSpecs, weightData, trainingConfig) {\n const args = arguments;\n return new PassthroughAsync(fromMemorySync(...args));\n}\nfunction fromMemorySync(modelArtifacts, weightSpecs, weightData, trainingConfig) {\n if (arguments.length === 1) {\n const isModelArtifacts = modelArtifacts.modelTopology != null || modelArtifacts.weightSpecs != null;\n if (isModelArtifacts) {\n return new PassthroughLoader(modelArtifacts);\n } else {\n console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\");\n return new PassthroughLoader({ modelTopology: modelArtifacts });\n }\n } else {\n console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\");\n return new PassthroughLoader({\n modelTopology: modelArtifacts,\n weightSpecs,\n weightData,\n trainingConfig\n });\n }\n}\nfunction withSaveHandler(saveHandler) {\n return new PassthroughSaver(saveHandler);\n}\nfunction withSaveHandlerSync(saveHandler) {\n return new PassthroughSaver(saveHandler);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/math.js\nvar math_exports = {};\n__export(math_exports, {\n confusionMatrix: () => confusionMatrix\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mat_mul.js\nfunction matMul_(a, b, transposeA = false, transposeB = false) {\n let $a = convertToTensor(a, \"a\", \"matMul\");\n let $b = convertToTensor(b, \"b\", \"matMul\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n const attrs = { transposeA, transposeB };\n return ENGINE.runKernel(BatchMatMul, inputs, attrs);\n}\nvar matMul = op({ matMul_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/one_hot.js\nfunction oneHot_(indices, depth, onValue = 1, offValue = 0, dtype = \"int32\") {\n if (depth < 2) {\n throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);\n }\n const $indices = convertToTensor(indices, \"indices\", \"oneHot\", \"int32\");\n const inputs = { indices: $indices };\n const attrs = { dtype, depth, onValue, offValue };\n return ENGINE.runKernel(OneHot, inputs, attrs);\n}\nvar oneHot = op({ oneHot_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/globals.js\nfunction enableProdMode() {\n env().set(\"PROD\", true);\n}\nfunction enableDebugMode() {\n env().set(\"DEBUG\", true);\n}\nfunction disableDeprecationWarnings() {\n env().set(\"DEPRECATION_WARNINGS_ENABLED\", false);\n console.warn(`TensorFlow.js deprecation warnings have been disabled.`);\n}\nfunction deprecationWarn(msg) {\n if (env().getBool(\"DEPRECATION_WARNINGS_ENABLED\")) {\n console.warn(msg + \" You can disable deprecation warnings with tf.disableDeprecationWarnings().\");\n }\n}\nsetDeprecationWarningFn(deprecationWarn);\nfunction disposeVariables() {\n ENGINE.disposeVariables();\n}\nfunction engine() {\n return ENGINE;\n}\nfunction memory() {\n return ENGINE.memory();\n}\nfunction profile(f) {\n return ENGINE.profile(f);\n}\nfunction tidy(nameOrFn, fn) {\n return ENGINE.tidy(nameOrFn, fn);\n}\nfunction dispose(container) {\n const tensors = getTensorsInContainer(container);\n tensors.forEach((tensor2) => tensor2.dispose());\n}\nfunction keep(result) {\n return ENGINE.keep(result);\n}\nfunction time(f) {\n return ENGINE.time(f);\n}\nfunction setBackend(backendName) {\n return ENGINE.setBackend(backendName);\n}\nfunction ready() {\n return ENGINE.ready();\n}\nfunction getBackend() {\n return ENGINE.backendName;\n}\nfunction removeBackend(name) {\n ENGINE.removeBackend(name);\n}\nfunction findBackend(name) {\n return ENGINE.findBackend(name);\n}\nfunction findBackendFactory(name) {\n return ENGINE.findBackendFactory(name);\n}\nfunction registerBackend(name, factory, priority = 1) {\n return ENGINE.registerBackend(name, factory, priority);\n}\nfunction backend() {\n return ENGINE.backend;\n}\nfunction setPlatform(platformName, platform) {\n env().setPlatform(platformName, platform);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/imag.js\nfunction imag_(input2) {\n const $input = convertToTensor(input2, \"input\", \"imag\");\n const inputs = { input: $input };\n return ENGINE.runKernel(Imag, inputs);\n}\nvar imag = op({ imag_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/neg.js\nfunction neg_(x) {\n const $x = convertToTensor(x, \"x\", \"neg\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Neg, inputs);\n}\nvar neg = op({ neg_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/real.js\nfunction real_(input2) {\n const $input = convertToTensor(input2, \"input\", \"real\");\n const inputs = { input: $input };\n return ENGINE.runKernel(Real, inputs);\n}\nvar real = op({ real_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/transpose.js\nfunction transpose_(x, perm, conjugate) {\n const $x = convertToTensor(x, \"x\", \"transpose\");\n if (perm == null) {\n perm = $x.shape.map((s2, i2) => i2).reverse();\n }\n assert($x.rank === perm.length, () => `Error in transpose: rank of input ${$x.rank} must match length of perm ${perm}.`);\n perm.forEach((axis) => {\n assert(axis >= 0 && axis < $x.rank, () => `All entries in 'perm' must be between 0 and ${$x.rank - 1} but got ${perm}`);\n });\n if ($x.rank <= 1) {\n return $x.clone();\n }\n const inputs = { x: $x };\n const attrs = { perm };\n if ($x.dtype === \"complex64\") {\n return tidy(() => {\n let $real = real($x);\n let $imag = imag($x);\n $real = ENGINE.runKernel(Transpose, { x: $real }, attrs);\n $imag = ENGINE.runKernel(Transpose, { x: $imag }, attrs);\n if (conjugate) {\n $imag = neg($imag);\n }\n return complex($real, $imag);\n });\n }\n return ENGINE.runKernel(Transpose, inputs, attrs);\n}\nvar transpose = op({ transpose_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/confusion_matrix.js\nfunction confusionMatrix_(labels, predictions, numClasses) {\n const $labels = convertToTensor(labels, \"labels\", \"confusionMatrix\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"confusionMatrix\");\n assert(numClasses == null || numClasses > 0 && Number.isInteger(numClasses), () => `If provided, numClasses must be a positive integer, but got ${numClasses}`);\n assert($labels.rank === 1, () => `Expected the rank of labels to be 1, but got ${$labels.rank}`);\n assert($predictions.rank === 1, () => `Expected the rank of predictions to be 1, but got ${$predictions.rank}`);\n assert($labels.shape[0] === $predictions.shape[0], () => `Mismatch in the number of examples: ${$labels.shape[0]} vs. ${$predictions.shape[0]}. Labels and predictions should have the same number of elements.`);\n assert(numClasses > 0 && Number.isInteger(numClasses), () => `numClasses is required to be a positive integer, but got ${numClasses}`);\n const oneHotLabels = oneHot(cast($labels, \"int32\"), numClasses);\n const oneHotPredictions = oneHot(cast($predictions, \"int32\"), numClasses);\n const oneHotLabelsT = transpose(oneHotLabels);\n const product = matMul(oneHotLabelsT, oneHotPredictions);\n return cast(product, \"int32\");\n}\nvar confusionMatrix = op({ confusionMatrix_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/broadcast_util.js\nvar broadcast_util_exports = {};\n__export(broadcast_util_exports, {\n assertAndGetBroadcastShape: () => assertAndGetBroadcastShape,\n getBroadcastDims: () => getBroadcastDims,\n getReductionAxes: () => getReductionAxes\n});\nfunction getBroadcastDims(inShape, outShape) {\n const inRank = inShape.length;\n const dims = [];\n for (let i2 = 0; i2 < inRank; i2++) {\n const dim = inRank - 1 - i2;\n const a = inShape[dim] || 1;\n const b = outShape[outShape.length - 1 - i2] || 1;\n if (b > 1 && a === 1) {\n dims.unshift(dim);\n }\n }\n return dims;\n}\nfunction getReductionAxes(inShape, outShape) {\n const result = [];\n for (let i2 = 0; i2 < outShape.length; i2++) {\n const inDim = inShape[inShape.length - i2 - 1];\n const outAxis = outShape.length - i2 - 1;\n const outDim = outShape[outAxis];\n if (inDim == null || inDim === 1 && outDim > 1) {\n result.unshift(outAxis);\n }\n }\n return result;\n}\nfunction assertAndGetBroadcastShape(shapeA, shapeB) {\n const result = [];\n const l3 = Math.max(shapeA.length, shapeB.length);\n for (let i2 = 0; i2 < l3; i2++) {\n let a = shapeA[shapeA.length - i2 - 1];\n if (a == null) {\n a = 1;\n }\n let b = shapeB[shapeB.length - i2 - 1];\n if (b == null) {\n b = 1;\n }\n if (a === 1) {\n result.unshift(b);\n } else if (b === 1) {\n result.unshift(a);\n } else if (a !== b) {\n const errMsg = `Operands could not be broadcast together with shapes ${shapeA} and ${shapeB}.`;\n throw Error(errMsg);\n } else {\n result.unshift(a);\n }\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/browser.js\nvar browser_exports = {};\n__export(browser_exports, {\n fromPixels: () => fromPixels,\n fromPixelsAsync: () => fromPixelsAsync,\n toPixels: () => toPixels\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor3d.js\nfunction tensor3d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 3) {\n throw new Error(\"tensor3d() requires shape to have three numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 3 && inferredShape.length !== 1) {\n throw new Error(\"tensor3d() requires values to be number[][][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor3d() requires shape to be provided when `values` are a flat array\");\n }\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/browser.js\nvar fromPixels2DContext;\nfunction fromPixels_(pixels, numChannels = 3) {\n if (numChannels > 4) {\n throw new Error(\"Cannot construct Tensor with more than 4 channels from pixels.\");\n }\n if (pixels == null) {\n throw new Error(\"pixels passed to tf.browser.fromPixels() can not be null\");\n }\n let isPixelData2 = false;\n let isImageData = false;\n let isVideo = false;\n let isImage = false;\n let isCanvasLike = false;\n let isImageBitmap = false;\n if (pixels.data instanceof Uint8Array) {\n isPixelData2 = true;\n } else if (typeof ImageData !== \"undefined\" && pixels instanceof ImageData) {\n isImageData = true;\n } else if (typeof HTMLVideoElement !== \"undefined\" && pixels instanceof HTMLVideoElement) {\n isVideo = true;\n } else if (typeof HTMLImageElement !== \"undefined\" && pixels instanceof HTMLImageElement) {\n isImage = true;\n } else if (pixels.getContext != null) {\n isCanvasLike = true;\n } else if (typeof ImageBitmap !== \"undefined\" && pixels instanceof ImageBitmap) {\n isImageBitmap = true;\n } else {\n throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${pixels.constructor.name}`);\n }\n const kernel = getKernel(FromPixels, ENGINE.backendName);\n if (kernel != null) {\n const inputs = { pixels };\n const attrs = { numChannels };\n return ENGINE.runKernel(FromPixels, inputs, attrs);\n }\n const [width, height] = isVideo ? [\n pixels.videoWidth,\n pixels.videoHeight\n ] : [pixels.width, pixels.height];\n let vals;\n if (isCanvasLike) {\n vals = pixels.getContext(\"2d\").getImageData(0, 0, width, height).data;\n } else if (isImageData || isPixelData2) {\n vals = pixels.data;\n } else if (isImage || isVideo || isImageBitmap) {\n if (fromPixels2DContext == null) {\n if (typeof document === \"undefined\") {\n if (typeof OffscreenCanvas !== \"undefined\" && typeof OffscreenCanvasRenderingContext2D !== \"undefined\") {\n fromPixels2DContext = new OffscreenCanvas(1, 1).getContext(\"2d\");\n } else {\n throw new Error(\"Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.\");\n }\n } else {\n fromPixels2DContext = document.createElement(\"canvas\").getContext(\"2d\", { willReadFrequently: true });\n }\n }\n fromPixels2DContext.canvas.width = width;\n fromPixels2DContext.canvas.height = height;\n fromPixels2DContext.drawImage(pixels, 0, 0, width, height);\n vals = fromPixels2DContext.getImageData(0, 0, width, height).data;\n }\n let values;\n if (numChannels === 4) {\n values = new Int32Array(vals);\n } else {\n const numPixels = width * height;\n values = new Int32Array(numPixels * numChannels);\n for (let i2 = 0; i2 < numPixels; i2++) {\n for (let channel = 0; channel < numChannels; ++channel) {\n values[i2 * numChannels + channel] = vals[i2 * 4 + channel];\n }\n }\n }\n const outShape = [height, width, numChannels];\n return tensor3d(values, outShape, \"int32\");\n}\nfunction isPixelData(pixels) {\n return pixels != null && pixels.data instanceof Uint8Array;\n}\nfunction isImageBitmapFullySupported() {\n return typeof window !== \"undefined\" && typeof ImageBitmap !== \"undefined\" && window.hasOwnProperty(\"createImageBitmap\");\n}\nfunction isNonEmptyPixels(pixels) {\n return pixels != null && pixels.width !== 0 && pixels.height !== 0;\n}\nfunction canWrapPixelsToImageBitmap(pixels) {\n return isImageBitmapFullySupported() && !(pixels instanceof ImageBitmap) && isNonEmptyPixels(pixels) && !isPixelData(pixels);\n}\nasync function fromPixelsAsync(pixels, numChannels = 3) {\n let inputs = null;\n if (env().getBool(\"WRAP_TO_IMAGEBITMAP\") && canWrapPixelsToImageBitmap(pixels)) {\n let imageBitmap;\n try {\n imageBitmap = await createImageBitmap(pixels, { premultiplyAlpha: \"none\" });\n } catch (e2) {\n imageBitmap = null;\n }\n if (imageBitmap != null && imageBitmap.width === pixels.width && imageBitmap.height === pixels.height) {\n inputs = imageBitmap;\n } else {\n inputs = pixels;\n }\n } else {\n inputs = pixels;\n }\n return fromPixels_(inputs, numChannels);\n}\nasync function toPixels(img, canvas) {\n let $img = convertToTensor(img, \"img\", \"toPixels\");\n if (!(img instanceof Tensor)) {\n const originalImgTensor = $img;\n $img = cast(originalImgTensor, \"int32\");\n originalImgTensor.dispose();\n }\n if ($img.rank !== 2 && $img.rank !== 3) {\n throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${$img.rank}.`);\n }\n const [height, width] = $img.shape.slice(0, 2);\n const depth = $img.rank === 2 ? 1 : $img.shape[2];\n if (depth > 4 || depth === 2) {\n throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${depth}`);\n }\n if ($img.dtype !== \"float32\" && $img.dtype !== \"int32\") {\n throw new Error(`Unsupported type for toPixels: ${$img.dtype}. Please use float32 or int32 tensors.`);\n }\n const data = await $img.data();\n const multiplier = $img.dtype === \"float32\" ? 255 : 1;\n const bytes = new Uint8ClampedArray(width * height * 4);\n for (let i2 = 0; i2 < height * width; ++i2) {\n const rgba = [0, 0, 0, 255];\n for (let d = 0; d < depth; d++) {\n const value = data[i2 * depth + d];\n if ($img.dtype === \"float32\") {\n if (value < 0 || value > 1) {\n throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${value}.`);\n }\n } else if ($img.dtype === \"int32\") {\n if (value < 0 || value > 255) {\n throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${value}.`);\n }\n }\n if (depth === 1) {\n rgba[0] = value * multiplier;\n rgba[1] = value * multiplier;\n rgba[2] = value * multiplier;\n } else {\n rgba[d] = value * multiplier;\n }\n }\n const j = i2 * 4;\n bytes[j + 0] = Math.round(rgba[0]);\n bytes[j + 1] = Math.round(rgba[1]);\n bytes[j + 2] = Math.round(rgba[2]);\n bytes[j + 3] = Math.round(rgba[3]);\n }\n if (canvas != null) {\n canvas.width = width;\n canvas.height = height;\n const ctx = canvas.getContext(\"2d\");\n const imageData = new ImageData(bytes, width, height);\n ctx.putImageData(imageData, 0, 0);\n }\n if ($img !== img) {\n $img.dispose();\n }\n return bytes;\n}\nvar fromPixels = op({ fromPixels_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/gather_nd_util.js\nvar gather_nd_util_exports = {};\n__export(gather_nd_util_exports, {\n prepareAndValidate: () => prepareAndValidate\n});\nfunction prepareAndValidate(tensor2, indices) {\n const tensorRank = tensor2.shape.length;\n const indicesRank = indices.shape.length;\n if (tensorRank < 1) {\n throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${tensorRank}.`);\n }\n if (indicesRank < 1) {\n throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${indicesRank}.`);\n }\n if (indices.dtype !== \"int32\") {\n throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${indices.dtype}.`);\n }\n if (indices.shape[indicesRank - 1] > tensorRank) {\n throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${indices.shape[indicesRank - 1]} vs. ${tensorRank}`);\n }\n if (sizeFromShape(tensor2.shape) === 0) {\n throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${tensor2.shape}.`);\n }\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n let nResult = 1;\n for (let i2 = 0; i2 < indicesShape.length - 1; ++i2) {\n nResult *= indicesShape[i2];\n }\n const inputShape = tensor2.shape;\n const resultShape = indicesShape.slice();\n resultShape.pop();\n let sliceSize = 1;\n for (let i2 = sliceRank; i2 < tensorRank; ++i2) {\n sliceSize *= inputShape[i2];\n resultShape.push(inputShape[i2]);\n }\n const strides = [\n ...computeStrides(tensor2.shape).map((stride) => stride / sliceSize),\n 1\n ].slice(0, sliceRank);\n return [resultShape, nResult, sliceSize, strides];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/scatter_nd_util.js\nvar scatter_nd_util_exports = {};\n__export(scatter_nd_util_exports, {\n calculateShapes: () => calculateShapes,\n validateInput: () => validateInput,\n validateUpdateShape: () => validateUpdateShape\n});\nfunction validateUpdateShape(shape, indices, updates) {\n const sliceDim = indices.rank > 1 ? indices.shape[indices.rank - 1] : 1;\n const batchDim = indices.rank > 1 ? indices.rank - 1 : 1;\n const shapeError = `Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${updates.shape}, indices.shape: ${indices.shape}, shape: ${shape}, sliceDim: ${sliceDim}, and batchDim: ${batchDim}.`;\n if (updates.rank < batchDim) {\n throw new Error(shapeError + ` update.rank < ${batchDim}. `);\n }\n if (shape.length < sliceDim + (updates.rank - batchDim)) {\n throw new Error(shapeError + ` Output shape length < ${sliceDim + (updates.rank - batchDim)}`);\n }\n if (updates.rank !== batchDim + shape.length - sliceDim) {\n throw new Error(shapeError + ` update.rank != ${batchDim + shape.length - sliceDim}`);\n }\n for (let d = 0; d < batchDim; ++d) {\n if (updates.shape[d] !== indices.shape[d]) {\n throw new Error(shapeError + ` updates.shape[${d}] (${updates.shape[d]}) != indices.shape[${d}] (${indices.shape[d]}).`);\n }\n }\n for (let d = 0; d < updates.rank - batchDim; ++d) {\n if (updates.shape[d + batchDim] !== shape[d + sliceDim]) {\n throw new Error(shapeError + ` updates.shape[${d + batchDim}] (${updates.shape[d + batchDim]}) != shape[${d + batchDim}] (${shape[d + batchDim]})`);\n }\n }\n}\nfunction validateInput(updates, indices, shape) {\n if (indices.rank < 1) {\n throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${indices.rank}.`);\n }\n if (updates.rank < 1) {\n throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${updates.rank}.`);\n }\n if (indices.dtype !== \"int32\") {\n throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${indices.dtype}`);\n }\n if (shape.length < 1) {\n throw new Error(`Output rank must be greater or equal to 1, but got shape: ${shape}`);\n }\n if (shape.length === 0) {\n if (indices.size === 0) {\n throw new Error(`Indices specified for empty output. indices shape: ${indices.shape}`);\n }\n if (updates.size === 0) {\n throw new Error(`Updates specified for empty output. updates shape: ${updates.shape}`);\n }\n }\n validateUpdateShape(shape, indices, updates);\n}\nfunction calculateShapes(updates, indices, shape) {\n const indicesRank = indices.shape.length;\n const sliceRank = indicesRank > 1 ? indices.shape[indicesRank - 1] : 1;\n const totalNd = shape.length;\n let sliceSize = 1;\n for (let i2 = sliceRank; i2 < totalNd; ++i2) {\n sliceSize *= shape[i2];\n }\n const safeSliceDim = sliceRank < 1 ? 1 : sliceRank;\n const numUpdates = sizeFromShape(indices.shape) / safeSliceDim;\n const strides = [...computeStrides(shape.slice(0, sliceRank)), 1];\n const outputSize = sizeFromShape(shape);\n return { sliceRank, numUpdates, sliceSize, strides, outputSize };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice_util.js\nvar slice_util_exports = {};\n__export(slice_util_exports, {\n assertParamsValid: () => assertParamsValid,\n computeFlatOffset: () => computeFlatOffset,\n computeOutShape: () => computeOutShape,\n getNormalizedAxes: () => getNormalizedAxes,\n isSliceContinous: () => isSliceContinous,\n maskToAxes: () => maskToAxes,\n parseSliceParams: () => parseSliceParams,\n sliceInfo: () => sliceInfo,\n startForAxis: () => startForAxis,\n startIndicesWithElidedDims: () => startIndicesWithElidedDims,\n stopForAxis: () => stopForAxis,\n stopIndicesWithElidedDims: () => stopIndicesWithElidedDims,\n stridesForAxis: () => stridesForAxis,\n stridesWithElidedDims: () => stridesWithElidedDims\n});\nvar NEW_AXIS = -2;\nvar SHRINK_AXIS = -1;\nfunction assertParamsValid(input2, begin, size) {\n const inputRank = input2.shape.length;\n assert(inputRank === begin.length, () => `Error in slice${inputRank}D: Length of begin ${begin} must match the rank of the array (${inputRank}).`);\n assert(inputRank === size.length, () => `Error in slice${inputRank}D: Length of size ${size} must match the rank of the array (${inputRank}).`);\n for (let i2 = 0; i2 < inputRank; ++i2) {\n assert(begin[i2] + size[i2] <= input2.shape[i2], () => `Error in slice${inputRank}D: begin[${i2}] + size[${i2}] (${begin[i2] + size[i2]}) would overflow input.shape[${i2}] (${input2.shape[i2]})`);\n }\n}\nfunction maskToAxes(mask) {\n const axes = [];\n let axis = 0;\n while (mask > 0) {\n if (mask & 1) {\n axes.push(axis);\n }\n mask /= 2;\n axis++;\n }\n return axes;\n}\nfunction computeOutShape(begin, end, strides) {\n const size = [];\n for (let axis = 0; axis < begin.length; axis++) {\n size[axis] = Math.ceil((end[axis] - begin[axis]) / strides[axis]);\n }\n return size;\n}\nfunction stridesWithElidedDims(strides, ellipsisInsertionIndex, numElidedAxes, inputShape) {\n const newStrides = [...strides];\n for (let i2 = newStrides.length; i2 < inputShape.length; i2++) {\n newStrides.push(1);\n }\n for (let i2 = 0; i2 < numElidedAxes; i2++) {\n if (i2 === 0) {\n newStrides[ellipsisInsertionIndex] = 1;\n } else {\n newStrides.splice(ellipsisInsertionIndex, 0, 1);\n newStrides.pop();\n }\n }\n return newStrides;\n}\nfunction unnormalizeAxis(ellipsisInsertionIndex, numElidedAxes, normalizedAxis) {\n if (normalizedAxis <= ellipsisInsertionIndex) {\n return normalizedAxis;\n }\n return normalizedAxis - (numElidedAxes - 1);\n}\nfunction getElidedAxes(numElidedAxes, ellipsisInsertionIndex) {\n const elidedAxes = [];\n for (let i2 = 0; i2 < numElidedAxes; i2++) {\n elidedAxes.push(ellipsisInsertionIndex + i2);\n }\n return elidedAxes;\n}\nfunction getNormalizedAxes(inputShape, ellipsisAxes, numInterpolatedAxes, begin, end, strides, beginMask, endMask, ellipsisMask) {\n const inputRank = inputShape.length;\n let normalizedBegin = new Array(inputRank), normalizedEnd = new Array(inputRank), normalizedStrides = new Array(inputRank);\n if (ellipsisAxes.length && numInterpolatedAxes > 0) {\n const fullIndex = ellipsisAxes[0];\n const numElidedAxes = numInterpolatedAxes + 1;\n normalizedBegin = startIndicesWithElidedDims(beginMask, fullIndex, numElidedAxes, begin, inputShape);\n normalizedEnd = stopIndicesWithElidedDims(endMask, fullIndex, numElidedAxes, end, inputShape);\n normalizedStrides = stridesWithElidedDims(strides, fullIndex, numElidedAxes, inputShape);\n } else {\n for (let axis = 0; axis < inputRank; axis++) {\n normalizedBegin[axis] = startForAxis(beginMask, begin, strides, inputShape, axis, ellipsisMask);\n normalizedEnd[axis] = stopForAxis(endMask, end, strides, inputShape, axis, ellipsisMask);\n normalizedStrides[axis] = stridesForAxis(strides, axis, ellipsisMask);\n }\n }\n return {\n begin: normalizedBegin,\n end: normalizedEnd,\n strides: normalizedStrides\n };\n}\nfunction startIndicesWithElidedDims(beginMask, ellipsisInsertionIndex, numElidedAxes, originalBegin, inputShape) {\n const newIndices = [...inputShape];\n const elidedAxes = getElidedAxes(numElidedAxes, ellipsisInsertionIndex);\n for (let axis = 0; axis < newIndices.length; axis++) {\n if (elidedAxes.indexOf(axis) > -1) {\n newIndices[axis] = 0;\n } else {\n const originalAxis = unnormalizeAxis(ellipsisInsertionIndex, numElidedAxes, axis);\n let originalValue = originalBegin[originalAxis];\n if (beginMask & 1 << originalAxis) {\n originalValue = 0;\n }\n newIndices[axis] = originalValue;\n }\n }\n return newIndices;\n}\nfunction stopIndicesWithElidedDims(endMask, ellipsisInsertionIndex, numElidedAxes, originalEnd, inputShape) {\n const newIndices = [...inputShape];\n const elidedAxes = getElidedAxes(numElidedAxes, ellipsisInsertionIndex);\n for (let axis = 0; axis < newIndices.length; axis++) {\n if (elidedAxes.indexOf(axis) > -1) {\n newIndices[axis] = Number.MAX_SAFE_INTEGER;\n } else {\n const originalAxis = unnormalizeAxis(ellipsisInsertionIndex, numElidedAxes, axis);\n let originalValue = originalEnd[originalAxis];\n if (endMask & 1 << originalAxis) {\n originalValue = Number.MAX_SAFE_INTEGER;\n }\n newIndices[axis] = originalValue;\n }\n }\n for (let i2 = 0; i2 < newIndices.length; i2++) {\n const axisSize = inputShape[i2];\n if (newIndices[i2] < 0) {\n newIndices[i2] += axisSize;\n }\n newIndices[i2] = clamp(0, newIndices[i2], inputShape[i2]);\n }\n return newIndices;\n}\nfunction stridesForAxis(strides, axis, ellipsisMask) {\n let stride = strides[axis];\n if (ellipsisMask & 1 << axis || stride == null) {\n stride = 1;\n }\n return stride;\n}\nfunction startForAxis(beginMask, startIndices, strides, inputShape, axis, ellipsisMask) {\n let start = startIndices[axis];\n const stride = strides[axis] || 1;\n if (beginMask & 1 << axis || ellipsisMask & 1 << axis || start == null) {\n if (stride > 0) {\n start = Number.MIN_SAFE_INTEGER;\n } else {\n start = Number.MAX_SAFE_INTEGER;\n }\n }\n const axisSize = inputShape[axis];\n if (start < 0) {\n start += axisSize;\n }\n start = clamp(0, start, axisSize - 1);\n return start;\n}\nfunction stopForAxis(endMask, stopIndices, strides, inputShape, axis, ellipsisMask) {\n let stop = stopIndices[axis];\n const stride = strides[axis] || 1;\n if (endMask & 1 << axis || ellipsisMask & 1 << axis || stop == null) {\n if (stride > 0) {\n stop = Number.MAX_SAFE_INTEGER;\n } else {\n stop = Number.MIN_SAFE_INTEGER;\n }\n }\n const axisSize = inputShape[axis];\n if (stop < 0) {\n stop += axisSize;\n }\n if (stride > 0) {\n stop = clamp(0, stop, axisSize);\n } else {\n stop = clamp(-1, stop, axisSize - 1);\n }\n return stop;\n}\nfunction isSliceContinous(shape, begin, size) {\n let firstNonOneAxis = size.length;\n for (let i2 = 0; i2 < size.length; i2++) {\n if (size[i2] > 1) {\n firstNonOneAxis = i2;\n break;\n }\n }\n for (let i2 = firstNonOneAxis + 1; i2 < size.length; i2++) {\n if (begin[i2] > 0 || size[i2] !== shape[i2]) {\n return false;\n }\n }\n return true;\n}\nfunction computeFlatOffset(begin, strides) {\n let flatOffset = begin.length > 0 ? begin[begin.length - 1] : 1;\n for (let i2 = 0; i2 < begin.length - 1; i2++) {\n flatOffset += begin[i2] * strides[i2];\n }\n return flatOffset;\n}\nfunction parseSliceParams(x, begin, size) {\n let begin_;\n const xRank = x.shape.length;\n if (typeof begin === \"number\") {\n begin_ = [begin, ...new Array(xRank - 1).fill(0)];\n } else if (begin.length < xRank) {\n begin_ = begin.concat(new Array(xRank - begin.length).fill(0));\n } else {\n begin_ = begin.slice();\n }\n begin_.forEach((d) => {\n assert(d !== -1, () => \"slice() does not support negative begin indexing.\");\n });\n let size_;\n if (size == null) {\n size_ = new Array(xRank).fill(-1);\n } else if (typeof size === \"number\") {\n size_ = [size, ...new Array(xRank - 1).fill(-1)];\n } else if (size.length < xRank) {\n size_ = size.concat(new Array(xRank - size.length).fill(-1));\n } else {\n size_ = size;\n }\n size_ = size_.map((d, i2) => {\n if (d >= 0) {\n return d;\n } else {\n assert(d === -1, () => `Negative size values should be exactly -1 but got ${d} for the slice() size at index ${i2}.`);\n return x.shape[i2] - begin_[i2];\n }\n });\n return [begin_, size_];\n}\nfunction sliceInfo(xShape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask) {\n let stridesNonNull;\n if (strides == null) {\n stridesNonNull = new Array(begin.length);\n stridesNonNull.fill(1);\n } else {\n stridesNonNull = strides;\n }\n if (ellipsisMask != null && (ellipsisMask & ellipsisMask - 1) !== 0) {\n throw new Error(\"Multiple ellipses in slice is not allowed.\");\n }\n let ellipsisSeen = false;\n const sparseSpec = {\n dims: stridesNonNull.length,\n numAddAxisAfterEllipsis: 0,\n begin: begin.slice(),\n end: end.slice(),\n strides: stridesNonNull.slice(),\n beginMask,\n endMask,\n ellipsisMask,\n newAxisMask,\n shrinkAxisMask\n };\n for (let i2 = 0; i2 < sparseSpec.dims; i2++) {\n if (ellipsisSeen && (1 << i2 & newAxisMask) !== 0) {\n sparseSpec.numAddAxisAfterEllipsis++;\n }\n if (1 << i2 & ellipsisMask) {\n ellipsisSeen = true;\n }\n }\n if (!ellipsisSeen) {\n sparseSpec.ellipsisMask |= 1 << sparseSpec.dims;\n sparseSpec.dims++;\n }\n const denseSpec = {\n dims: xShape.length,\n beginMask: 0,\n endMask: 0,\n beginValid: false,\n endValid: false\n };\n buildDenseSpec(sparseSpec, denseSpec);\n let isIdentity = true;\n let sliceDim0 = true;\n let isSimpleSlice = true;\n const processingShape = [];\n const finalShape = [];\n for (let i2 = 0; i2 < xShape.length; ++i2) {\n if (denseSpec.strides[i2] === 0) {\n throw Error(`strides[${i2}] must be non-zero`);\n }\n const shrinkI = !!(denseSpec.shrinkAxisMask & 1 << i2);\n const dimI = xShape[i2];\n if (dimI === -1) {\n processingShape.push(shrinkI ? 1 : -1);\n continue;\n }\n const masks = [denseSpec.beginMask & 1 << i2, denseSpec.endMask & 1 << i2];\n const validRange = [\n denseSpec.strides[i2] > 0 ? 0 : -1,\n denseSpec.strides[i2] > 0 ? dimI : dimI - 1\n ];\n if (shrinkI && denseSpec.strides[i2] <= 0) {\n throw Error(\"only stride 1 allowed on non-range indexing.\");\n }\n isSimpleSlice = isSimpleSlice && denseSpec.strides[i2] === 1;\n const beginAndEndMasked = !!(denseSpec.beginMask & 1 << i2 && denseSpec.endMask & 1 << i2);\n if (denseSpec.beginValid && denseSpec.endValid) {\n if (shrinkI) {\n const xFwd = denseSpec.begin[i2] < 0 ? dimI + denseSpec.begin[i2] : denseSpec.begin[i2];\n denseSpec.begin[i2] = xFwd;\n denseSpec.end[i2] = denseSpec.begin[i2] + 1;\n if (xFwd < 0 || xFwd >= dimI) {\n throw Error(`slice index ${denseSpec.begin[i2]} of dimension ${i2} out of bounds.`);\n }\n } else {\n denseSpec.begin[i2] = canonical(denseSpec.begin[i2], 0, denseSpec.strides[i2], dimI, masks, validRange);\n denseSpec.end[i2] = canonical(denseSpec.end[i2], 1, denseSpec.strides[i2], dimI, masks, validRange);\n }\n const takeAllInDimension = denseSpec.strides[i2] === 1 && denseSpec.begin[i2] === 0 && denseSpec.end[i2] === dimI;\n isIdentity = isIdentity && takeAllInDimension;\n sliceDim0 = sliceDim0 && (i2 === 0 && denseSpec.strides[i2] === 1 || takeAllInDimension);\n } else {\n isIdentity = isIdentity && (denseSpec.strides[i2] === 1 && beginAndEndMasked);\n sliceDim0 = sliceDim0 && (i2 === 0 && denseSpec.strides[i2] === 1 || beginAndEndMasked);\n }\n let intervalLength;\n let knownInterval = false;\n if (denseSpec.beginValid && denseSpec.endValid) {\n intervalLength = denseSpec.end[i2] - denseSpec.begin[i2];\n knownInterval = true;\n } else if (shrinkI) {\n intervalLength = 1;\n knownInterval = true;\n } else if (beginAndEndMasked) {\n if (dimI >= 0) {\n if (denseSpec.strides[i2] < 0) {\n intervalLength = -dimI;\n } else {\n intervalLength = dimI;\n }\n knownInterval = true;\n }\n }\n if (knownInterval) {\n let sizeI;\n if (intervalLength === 0 || intervalLength < 0 !== denseSpec.strides[i2] < 0) {\n sizeI = 0;\n } else {\n sizeI = Math.trunc(intervalLength / denseSpec.strides[i2]) + (intervalLength % denseSpec.strides[i2] !== 0 ? 1 : 0);\n }\n processingShape.push(sizeI);\n } else {\n processingShape.push(-1);\n }\n }\n for (let denseDim = 0; denseDim < denseSpec.finalShapeGatherIndices.length; ++denseDim) {\n const gatherIndex = denseSpec.finalShapeGatherIndices[denseDim];\n if (gatherIndex >= 0) {\n finalShape.push(processingShape[gatherIndex]);\n } else if (gatherIndex === NEW_AXIS) {\n finalShape.push(1);\n }\n }\n const finalShapeSparse = finalShape.filter((dim, i2) => denseSpec.finalShapeGatherIndices[i2] !== NEW_AXIS);\n return {\n finalShapeSparse,\n finalShape,\n isIdentity,\n sliceDim0,\n isSimpleSlice,\n begin: denseSpec.begin,\n end: denseSpec.end,\n strides: denseSpec.strides\n };\n}\nfunction buildDenseSpec(sparse2, dense2) {\n dense2.beginMask = 0;\n dense2.endMask = 0;\n dense2.shrinkAxisMask = 0;\n let fullIndex = 0;\n dense2.beginValid = sparse2.begin != null;\n dense2.endValid = sparse2.end != null;\n dense2.begin = new Array(dense2.dims);\n dense2.end = new Array(dense2.dims);\n dense2.strides = new Array(dense2.dims);\n dense2.finalShapeGatherIndices = [];\n dense2.finalShapeGatherIndicesSparse = [];\n dense2.inputShapeGatherIndicesSparse = new Array(dense2.dims);\n for (let i2 = 0; i2 < sparse2.dims; i2++) {\n if (1 << i2 & sparse2.ellipsisMask) {\n const nextIndex = Math.min(dense2.dims - (sparse2.dims - i2) + 1 + sparse2.numAddAxisAfterEllipsis, dense2.dims);\n for (; fullIndex < nextIndex; fullIndex++) {\n dense2.begin[fullIndex] = 0;\n dense2.end[fullIndex] = 0;\n dense2.strides[fullIndex] = 1;\n dense2.beginMask |= 1 << fullIndex;\n dense2.endMask |= 1 << fullIndex;\n dense2.finalShapeGatherIndices.push(fullIndex);\n dense2.finalShapeGatherIndicesSparse.push(-1);\n dense2.inputShapeGatherIndicesSparse[fullIndex] = i2;\n }\n } else if (1 << i2 & sparse2.newAxisMask) {\n dense2.finalShapeGatherIndices.push(NEW_AXIS);\n dense2.finalShapeGatherIndicesSparse.push(-1);\n } else {\n if (fullIndex === dense2.begin.length) {\n throw Error(`Index out of range using input dim ${fullIndex}; input has only ${dense2.dims} dims, ${dense2.begin.length}.`);\n }\n if (sparse2.begin != null) {\n dense2.begin[fullIndex] = sparse2.begin[i2];\n }\n if (sparse2.end != null) {\n dense2.end[fullIndex] = sparse2.end[i2];\n }\n dense2.strides[fullIndex] = sparse2.strides[i2];\n if (sparse2.beginMask & 1 << i2) {\n dense2.beginMask |= 1 << fullIndex;\n }\n if (sparse2.endMask & 1 << i2) {\n dense2.endMask |= 1 << fullIndex;\n }\n if (sparse2.shrinkAxisMask & 1 << i2) {\n dense2.finalShapeGatherIndices.push(SHRINK_AXIS);\n dense2.finalShapeGatherIndicesSparse.push(-1);\n dense2.shrinkAxisMask |= 1 << fullIndex;\n } else {\n dense2.finalShapeGatherIndices.push(fullIndex);\n dense2.finalShapeGatherIndicesSparse.push(i2);\n }\n dense2.inputShapeGatherIndicesSparse[fullIndex] = i2;\n fullIndex++;\n }\n }\n}\nfunction canonical(x, c, strideI, dimI, masks, validRange) {\n if (masks[c]) {\n return strideI > 0 ? validRange[c] : validRange[c + 1 & 1];\n } else {\n const xFwd = x < 0 ? dimI + x : x;\n return xFwd < validRange[0] ? validRange[0] : xFwd > validRange[1] ? validRange[1] : xFwd;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/serialization.js\nvar serialization_exports = {};\n__export(serialization_exports, {\n Serializable: () => Serializable,\n SerializationMap: () => SerializationMap,\n registerClass: () => registerClass\n});\nvar Serializable = class {\n getClassName() {\n return this.constructor.className;\n }\n static fromConfig(cls, config) {\n return new cls(config);\n }\n};\nvar SerializationMap = class {\n constructor() {\n this.classNameMap = {};\n }\n static getMap() {\n if (SerializationMap.instance == null) {\n SerializationMap.instance = new SerializationMap();\n }\n return SerializationMap.instance;\n }\n static register(cls) {\n SerializationMap.getMap().classNameMap[cls.className] = [cls, cls.fromConfig];\n }\n};\nfunction registerClass(cls) {\n assert(cls.className != null, () => `Class being registered does not have the static className property defined.`);\n assert(typeof cls.className === \"string\", () => `className is required to be a string, but got type ` + typeof cls.className);\n assert(cls.className.length > 0, () => `Class being registered has an empty-string as its className, which is disallowed.`);\n SerializationMap.register(cls);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/test_util.js\nvar test_util_exports = {};\n__export(test_util_exports, {\n TEST_EPSILON_FLOAT16: () => TEST_EPSILON_FLOAT16,\n createVideoElement: () => createVideoElement,\n encodeStrings: () => encodeStrings,\n expectArrayBuffersEqual: () => expectArrayBuffersEqual,\n expectArraysClose: () => expectArraysClose,\n expectArraysEqual: () => expectArraysEqual,\n expectNumbersClose: () => expectNumbersClose,\n expectPromiseToFail: () => expectPromiseToFail,\n expectValuesInRange: () => expectValuesInRange,\n play: () => play,\n testEpsilon: () => testEpsilon\n});\nvar TEST_EPSILON_FLOAT32 = 1e-3;\nvar TEST_EPSILON_FLOAT16 = 0.1;\nfunction expectArraysClose(actual, expected, epsilon3) {\n if (epsilon3 == null) {\n epsilon3 = testEpsilon();\n }\n return expectArraysPredicate(actual, expected, (a, b) => areClose(a, b, epsilon3));\n}\nfunction testEpsilon() {\n return ENGINE.backend.floatPrecision() === 32 ? TEST_EPSILON_FLOAT32 : TEST_EPSILON_FLOAT16;\n}\nfunction expectArraysPredicate(actual, expected, predicate) {\n let checkClassType = true;\n if (isTypedArray(actual) || isTypedArray(expected)) {\n checkClassType = false;\n }\n if (isTypedArray(actual) && isTypedArray(expected)) {\n checkClassType = true;\n }\n if (checkClassType) {\n const aType = actual.constructor.name;\n const bType = expected.constructor.name;\n if (aType !== bType) {\n throw new Error(`Arrays are of different type. Actual: ${aType}. Expected: ${bType}`);\n }\n }\n if (Array.isArray(actual) && Array.isArray(expected)) {\n const actualShape = inferShape(actual);\n const expectedShape = inferShape(expected);\n if (!arraysEqual(actualShape, expectedShape)) {\n throw new Error(`Arrays have different shapes. Actual: [${actualShape}]. Expected: [${expectedShape}]`);\n }\n }\n const actualFlat = isTypedArray(actual) ? actual : flatten(actual);\n const expectedFlat = isTypedArray(expected) ? expected : flatten(expected);\n if (actualFlat.length !== expectedFlat.length) {\n throw new Error(`Arrays have different lengths actual: ${actualFlat.length} vs expected: ${expectedFlat.length}.\nActual: ${actualFlat}.\nExpected: ${expectedFlat}.`);\n }\n for (let i2 = 0; i2 < expectedFlat.length; ++i2) {\n const a = actualFlat[i2];\n const e2 = expectedFlat[i2];\n if (!predicate(a, e2)) {\n throw new Error(`Arrays differ: actual[${i2}] = ${a}, expected[${i2}] = ${e2}.\nActual: ${actualFlat}.\nExpected: ${expectedFlat}.`);\n }\n }\n if (typeof expect !== \"undefined\") {\n expect().nothing();\n }\n}\nfunction expectPromiseToFail(fn, done) {\n fn().then(() => done.fail(), () => done());\n if (typeof expect !== \"undefined\") {\n expect().nothing();\n }\n}\nfunction expectArraysEqual(actual, expected) {\n const exp6 = typeof expected === \"string\" || typeof expected === \"number\" || typeof expected === \"boolean\" ? [expected] : expected;\n if (isString(actual) || isString(actual[0]) || isString(expected) || isString(expected[0])) {\n return expectArraysPredicate(actual, exp6, (a, b) => a == b);\n }\n return expectArraysPredicate(actual, expected, (a, b) => areClose(a, b, 0));\n}\nfunction expectNumbersClose(a, e2, epsilon3) {\n if (epsilon3 == null) {\n epsilon3 = testEpsilon();\n }\n if (!areClose(a, e2, epsilon3)) {\n throw new Error(`Numbers differ: actual === ${a}, expected === ${e2}`);\n }\n if (typeof expect !== \"undefined\") {\n expect().nothing();\n }\n}\nfunction areClose(a, e2, epsilon3) {\n if (!isFinite(a) && !isFinite(e2)) {\n return true;\n }\n if (isNaN(a) || isNaN(e2) || Math.abs(a - e2) > epsilon3) {\n return false;\n }\n return true;\n}\nfunction expectValuesInRange(actual, low, high) {\n for (let i2 = 0; i2 < actual.length; i2++) {\n if (actual[i2] < low || actual[i2] > high) {\n throw new Error(`Value out of range:${actual[i2]} low: ${low}, high: ${high}`);\n }\n }\n}\nfunction expectArrayBuffersEqual(actual, expected) {\n const actualArray = new Float32Array(actual);\n const expectedArray = new Float32Array(expected);\n if (actualArray.length !== expectedArray.length) {\n throw new Error(`Expected ArrayBuffer to be of length ${expectedArray.length}, but it was ${actualArray.length}`);\n }\n for (let i2 = 0; i2 < expectedArray.length; i2++) {\n if (actualArray[i2] !== expectedArray[i2]) {\n throw new Error(`Expected ArrayBuffer value at ${i2} to be ${expectedArray[i2]} but got ${actualArray[i2]} instead`);\n }\n }\n}\nfunction encodeStrings(a) {\n for (let i2 = 0; i2 < a.length; i2++) {\n const val = a[i2];\n if (Array.isArray(val)) {\n encodeStrings(val);\n } else {\n a[i2] = encodeString(val);\n }\n }\n return a;\n}\nfunction createVideoElement(source) {\n const video = document.createElement(\"video\");\n if (\"playsInline\" in video) {\n video.playsInline = true;\n }\n video.muted = true;\n video.loop = true;\n video.style.position = \"fixed\";\n video.style.left = \"0px\";\n video.style.top = \"0px\";\n video.preload = \"auto\";\n video.appendChild(source);\n return new Promise((resolve) => {\n video.addEventListener(\"loadeddata\", (_) => resolve(video));\n video.load();\n });\n}\nasync function play(video) {\n await video.play();\n if (\"requestVideoFrameCallback\" in video) {\n await new Promise((resolve) => {\n video.requestVideoFrameCallback(resolve);\n });\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/version.js\nvar version = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/add.js\nfunction add_(a, b) {\n let $a = convertToTensor(a, \"a\", \"add\");\n let $b = convertToTensor(b, \"b\", \"add\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Add, inputs);\n}\nvar add2 = op({ add_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/floorDiv.js\nfunction floorDiv_(a, b) {\n let $a = convertToTensor(a, \"a\", \"floorDiv\");\n let $b = convertToTensor(b, \"b\", \"floorDiv\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(FloorDiv, inputs);\n}\nvar floorDiv = op({ floorDiv_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/div.js\nfunction div_(a, b) {\n let $a = convertToTensor(a, \"a\", \"div\");\n let $b = convertToTensor(b, \"b\", \"div\");\n [$a, $b] = makeTypesMatch($a, $b);\n if ($a.dtype === \"int32\" && $b.dtype === \"int32\") {\n return floorDiv($a, $b);\n }\n const inputs = { a: $a, b: $b };\n const attrs = {};\n return ENGINE.runKernel(RealDiv, inputs, attrs);\n}\nvar div = op({ div_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mul.js\nfunction mul_(a, b) {\n let $a = convertToTensor(a, \"a\", \"mul\");\n let $b = convertToTensor(b, \"b\", \"mul\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Multiply, inputs);\n}\nvar mul = op({ mul_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/abs.js\nfunction abs_(x) {\n const $x = convertToTensor(x, \"x\", \"abs\");\n if ($x.dtype === \"complex64\") {\n const inputs = { x: $x };\n return ENGINE.runKernel(ComplexAbs, inputs);\n } else {\n const inputs = { x: $x };\n return ENGINE.runKernel(Abs, inputs);\n }\n}\nvar abs = op({ abs_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/acos.js\nfunction acos_(x) {\n const $x = convertToTensor(x, \"x\", \"acos\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Acos, inputs);\n}\nvar acos = op({ acos_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/acosh.js\nfunction acosh_(x) {\n const $x = convertToTensor(x, \"x\", \"acosh\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Acosh, inputs);\n}\nvar acosh = op({ acosh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/add_n.js\nfunction addN_(tensors) {\n assert(Array.isArray(tensors), () => \"The argument passed to tf.addN() must be a list of tensors\");\n assert(tensors.length >= 1, () => `Must pass at least one tensor to tf.addN(), but got ${tensors.length}`);\n const $tensors = tensors.map((t2, i2) => convertToTensor(t2, `tensors${i2}`, \"addN\"));\n const firstTensor = $tensors[0];\n $tensors.forEach((t2) => {\n if (t2.dtype !== firstTensor.dtype) {\n throw new Error(\"All tensors passed to tf.addN() must have the same dtype\");\n }\n });\n $tensors.forEach((t2) => {\n if (!arraysEqual(t2.shape, firstTensor.shape)) {\n throw new Error(\"All tensors passed to tf.addN() must have the same shape\");\n }\n });\n const inputs = $tensors;\n return ENGINE.runKernel(AddN, inputs);\n}\nvar addN = op({ addN_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/all.js\nfunction all_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"all\", \"bool\");\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(All, inputs, attrs);\n}\nvar all = op({ all_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/any.js\nfunction any_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"any\", \"bool\");\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Any, inputs, attrs);\n}\nvar any = op({ any_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/arg_max.js\nfunction argMax_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"argMax\");\n const inputs = { x: $x };\n const attrs = { axis };\n return ENGINE.runKernel(ArgMax, inputs, attrs);\n}\nvar argMax = op({ argMax_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/arg_min.js\nfunction argMin_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"argMin\");\n const inputs = { x: $x };\n const attrs = { axis };\n return ENGINE.runKernel(ArgMin, inputs, attrs);\n}\nvar argMin = op({ argMin_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/asin.js\nfunction asin_(x) {\n const $x = convertToTensor(x, \"x\", \"asin\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Asin, inputs);\n}\nvar asin = op({ asin_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/asinh.js\nfunction asinh_(x) {\n const $x = convertToTensor(x, \"x\", \"asinh\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Asinh, inputs);\n}\nvar asinh = op({ asinh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/atan.js\nfunction atan_(x) {\n const $x = convertToTensor(x, \"x\", \"atan\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Atan, inputs);\n}\nvar atan = op({ atan_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/atan2.js\nfunction atan2_(a, b) {\n let $a = convertToTensor(a, \"a\", \"atan2\");\n let $b = convertToTensor(b, \"b\", \"atan2\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Atan2, inputs);\n}\nvar atan2 = op({ atan2_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/atanh.js\nfunction atanh_(x) {\n const $x = convertToTensor(x, \"x\", \"atanh\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Atanh, inputs);\n}\nvar atanh = op({ atanh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv_util.js\nfunction computeDilation2DInfo(inputShape, filterShape, strides, pad3, dataFormat = \"NHWC\", dilations) {\n const inputChannels = inputShape[3];\n const $filterShape = [...filterShape, inputChannels];\n const $dataFormat = convertConv2DDataFormat(dataFormat);\n return computeConv2DInfo(inputShape, $filterShape, strides, dilations, pad3, null, null, $dataFormat);\n}\nfunction computePool2DInfo(inShape, filterSize, strides, dilations, pad3, roundingMode, dataFormat = \"channelsLast\") {\n const [filterHeight, filterWidth] = parseTupleParam(filterSize);\n let filterShape;\n if (dataFormat === \"channelsLast\") {\n filterShape = [filterHeight, filterWidth, inShape[3], inShape[3]];\n } else if (dataFormat === \"channelsFirst\") {\n filterShape = [filterHeight, filterWidth, inShape[1], inShape[1]];\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n return computeConv2DInfo(inShape, filterShape, strides, dilations, pad3, roundingMode, false, dataFormat);\n}\nfunction computePool3DInfo(inShape, filterSize, strides, dilations, pad3, roundingMode, dataFormat = \"NDHWC\") {\n const [filterDepth, filterHeight, filterWidth] = parse3TupleParam(filterSize);\n let filterShape;\n let $dataFormat;\n if (dataFormat === \"NDHWC\") {\n $dataFormat = \"channelsLast\";\n filterShape = [filterDepth, filterHeight, filterWidth, inShape[4], inShape[4]];\n } else if (dataFormat === \"NCDHW\") {\n $dataFormat = \"channelsFirst\";\n filterShape = [filterDepth, filterHeight, filterWidth, inShape[1], inShape[1]];\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n return computeConv3DInfo(inShape, filterShape, strides, dilations, pad3, false, $dataFormat, roundingMode);\n}\nfunction computeConv2DInfo(inShape, filterShape, strides, dilations, pad3, roundingMode, depthwise = false, dataFormat = \"channelsLast\") {\n let [batchSize, inHeight, inWidth, inChannels] = [-1, -1, -1, -1];\n if (dataFormat === \"channelsLast\") {\n [batchSize, inHeight, inWidth, inChannels] = inShape;\n } else if (dataFormat === \"channelsFirst\") {\n [batchSize, inChannels, inHeight, inWidth] = inShape;\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n const [filterHeight, filterWidth, , filterChannels] = filterShape;\n const [strideHeight, strideWidth] = parseTupleParam(strides);\n const [dilationHeight, dilationWidth] = parseTupleParam(dilations);\n const effectiveFilterHeight = getEffectiveFilterSize(filterHeight, dilationHeight);\n const effectiveFilterWidth = getEffectiveFilterSize(filterWidth, dilationWidth);\n const { padInfo, outHeight, outWidth } = getPadAndOutInfo(pad3, inHeight, inWidth, strideHeight, strideWidth, effectiveFilterHeight, effectiveFilterWidth, roundingMode, dataFormat);\n const outChannels = depthwise ? filterChannels * inChannels : filterChannels;\n let outShape;\n if (dataFormat === \"channelsFirst\") {\n outShape = [batchSize, outChannels, outHeight, outWidth];\n } else if (dataFormat === \"channelsLast\") {\n outShape = [batchSize, outHeight, outWidth, outChannels];\n }\n return {\n batchSize,\n dataFormat,\n inHeight,\n inWidth,\n inChannels,\n outHeight,\n outWidth,\n outChannels,\n padInfo,\n strideHeight,\n strideWidth,\n filterHeight,\n filterWidth,\n effectiveFilterHeight,\n effectiveFilterWidth,\n dilationHeight,\n dilationWidth,\n inShape,\n outShape,\n filterShape\n };\n}\nfunction computeConv3DInfo(inShape, filterShape, strides, dilations, pad3, depthwise = false, dataFormat = \"channelsLast\", roundingMode) {\n let [batchSize, inDepth, inHeight, inWidth, inChannels] = [-1, -1, -1, -1, -1];\n if (dataFormat === \"channelsLast\") {\n [batchSize, inDepth, inHeight, inWidth, inChannels] = inShape;\n } else if (dataFormat === \"channelsFirst\") {\n [batchSize, inChannels, inDepth, inHeight, inWidth] = inShape;\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n const [filterDepth, filterHeight, filterWidth, , filterChannels] = filterShape;\n const [strideDepth, strideHeight, strideWidth] = parse3TupleParam(strides);\n const [dilationDepth, dilationHeight, dilationWidth] = parse3TupleParam(dilations);\n const effectiveFilterDepth = getEffectiveFilterSize(filterDepth, dilationDepth);\n const effectiveFilterHeight = getEffectiveFilterSize(filterHeight, dilationHeight);\n const effectiveFilterWidth = getEffectiveFilterSize(filterWidth, dilationWidth);\n const { padInfo, outDepth, outHeight, outWidth } = get3DPadAndOutInfo(pad3, inDepth, inHeight, inWidth, strideDepth, strideHeight, strideWidth, effectiveFilterDepth, effectiveFilterHeight, effectiveFilterWidth, roundingMode);\n const outChannels = depthwise ? filterChannels * inChannels : filterChannels;\n let outShape;\n if (dataFormat === \"channelsFirst\") {\n outShape = [batchSize, outChannels, outDepth, outHeight, outWidth];\n } else if (dataFormat === \"channelsLast\") {\n outShape = [batchSize, outDepth, outHeight, outWidth, outChannels];\n }\n return {\n batchSize,\n dataFormat,\n inDepth,\n inHeight,\n inWidth,\n inChannels,\n outDepth,\n outHeight,\n outWidth,\n outChannels,\n padInfo,\n strideDepth,\n strideHeight,\n strideWidth,\n filterDepth,\n filterHeight,\n filterWidth,\n effectiveFilterDepth,\n effectiveFilterHeight,\n effectiveFilterWidth,\n dilationDepth,\n dilationHeight,\n dilationWidth,\n inShape,\n outShape,\n filterShape\n };\n}\nfunction computeOutputShape2D(inShape, fieldSize, stride, zeroPad, roundingMode) {\n if (zeroPad == null) {\n zeroPad = computeDefaultPad(inShape, fieldSize, stride);\n }\n const inputRows = inShape[0];\n const inputCols = inShape[1];\n const outputRows = round((inputRows - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n const outputCols = round((inputCols - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n return [outputRows, outputCols];\n}\nfunction computeOutputShape4D(inShape, fieldSize, outChannels, stride, zeroPad, roundingMode) {\n if (zeroPad == null) {\n zeroPad = computeDefaultPad(inShape, fieldSize, stride);\n }\n const inputDepth = inShape[0];\n const inputRows = inShape[1];\n const inputCols = inShape[2];\n const outputDepths = round((inputDepth - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n const outputRows = round((inputRows - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n const outputCols = round((inputCols - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n return [outputDepths, outputRows, outputCols, outChannels];\n}\nfunction computeDefaultPad(inputShape, fieldSize, stride, dilation = 1) {\n const effectiveFieldSize = getEffectiveFilterSize(fieldSize, dilation);\n return Math.floor((inputShape[0] * (stride - 1) - stride + effectiveFieldSize) / 2);\n}\nfunction parseTupleParam(param) {\n if (typeof param === \"number\") {\n return [param, param, param];\n }\n if (param.length === 2) {\n return [param[0], param[1], 1];\n }\n return param;\n}\nfunction parse3TupleParam(param) {\n return typeof param === \"number\" ? [param, param, param] : param;\n}\nfunction getEffectiveFilterSize(filterSize, dilation) {\n if (dilation <= 1) {\n return filterSize;\n }\n return filterSize + (filterSize - 1) * (dilation - 1);\n}\nfunction getPadAndOutInfo(pad3, inHeight, inWidth, strideHeight, strideWidth, filterHeight, filterWidth, roundingMode, dataFormat) {\n let padInfo;\n let outHeight;\n let outWidth;\n if (typeof pad3 === \"number\") {\n const padType = pad3 === 0 ? \"VALID\" : \"NUMBER\";\n padInfo = { top: pad3, bottom: pad3, left: pad3, right: pad3, type: padType };\n const outShape = computeOutputShape2D([inHeight, inWidth], filterHeight, strideHeight, pad3, roundingMode);\n outHeight = outShape[0];\n outWidth = outShape[1];\n } else if (pad3 === \"same\") {\n outHeight = Math.ceil(inHeight / strideHeight);\n outWidth = Math.ceil(inWidth / strideWidth);\n const padAlongHeight = Math.max(0, (outHeight - 1) * strideHeight + filterHeight - inHeight);\n const padAlongWidth = Math.max(0, (outWidth - 1) * strideWidth + filterWidth - inWidth);\n const top = Math.floor(padAlongHeight / 2);\n const bottom = padAlongHeight - top;\n const left = Math.floor(padAlongWidth / 2);\n const right = padAlongWidth - left;\n padInfo = { top, bottom, left, right, type: \"SAME\" };\n } else if (pad3 === \"valid\") {\n padInfo = { top: 0, bottom: 0, left: 0, right: 0, type: \"VALID\" };\n outHeight = Math.ceil((inHeight - filterHeight + 1) / strideHeight);\n outWidth = Math.ceil((inWidth - filterWidth + 1) / strideWidth);\n } else if (typeof pad3 === \"object\") {\n const top = dataFormat === \"channelsLast\" ? pad3[1][0] : pad3[2][0];\n const bottom = dataFormat === \"channelsLast\" ? pad3[1][1] : pad3[2][1];\n const left = dataFormat === \"channelsLast\" ? pad3[2][0] : pad3[3][0];\n const right = dataFormat === \"channelsLast\" ? pad3[2][1] : pad3[3][1];\n const padType = top === 0 && bottom === 0 && left === 0 && right === 0 ? \"VALID\" : \"EXPLICIT\";\n padInfo = { top, bottom, left, right, type: padType };\n outHeight = round((inHeight - filterHeight + top + bottom) / strideHeight + 1, roundingMode);\n outWidth = round((inWidth - filterWidth + left + right) / strideWidth + 1, roundingMode);\n } else {\n throw Error(`Unknown padding parameter: ${pad3}`);\n }\n return { padInfo, outHeight, outWidth };\n}\nfunction get3DPadAndOutInfo(pad3, inDepth, inHeight, inWidth, strideDepth, strideHeight, strideWidth, filterDepth, filterHeight, filterWidth, roundingMode) {\n let padInfo;\n let outDepth;\n let outHeight;\n let outWidth;\n if (typeof pad3 === \"number\") {\n const padType = pad3 === 0 ? \"VALID\" : \"NUMBER\";\n padInfo = {\n top: pad3,\n bottom: pad3,\n left: pad3,\n right: pad3,\n front: pad3,\n back: pad3,\n type: padType\n };\n const outShape = computeOutputShape4D([inDepth, inHeight, inWidth, 1], filterDepth, 1, strideDepth, pad3, roundingMode);\n outDepth = outShape[0];\n outHeight = outShape[1];\n outWidth = outShape[2];\n } else if (pad3 === \"same\") {\n outDepth = Math.ceil(inDepth / strideDepth);\n outHeight = Math.ceil(inHeight / strideHeight);\n outWidth = Math.ceil(inWidth / strideWidth);\n const padAlongDepth = (outDepth - 1) * strideDepth + filterDepth - inDepth;\n const padAlongHeight = (outHeight - 1) * strideHeight + filterHeight - inHeight;\n const padAlongWidth = (outWidth - 1) * strideWidth + filterWidth - inWidth;\n const front = Math.floor(padAlongDepth / 2);\n const back = padAlongDepth - front;\n const top = Math.floor(padAlongHeight / 2);\n const bottom = padAlongHeight - top;\n const left = Math.floor(padAlongWidth / 2);\n const right = padAlongWidth - left;\n padInfo = { top, bottom, left, right, front, back, type: \"SAME\" };\n } else if (pad3 === \"valid\") {\n padInfo = {\n top: 0,\n bottom: 0,\n left: 0,\n right: 0,\n front: 0,\n back: 0,\n type: \"VALID\"\n };\n outDepth = Math.ceil((inDepth - filterDepth + 1) / strideDepth);\n outHeight = Math.ceil((inHeight - filterHeight + 1) / strideHeight);\n outWidth = Math.ceil((inWidth - filterWidth + 1) / strideWidth);\n } else {\n throw Error(`Unknown padding parameter: ${pad3}`);\n }\n return { padInfo, outDepth, outHeight, outWidth };\n}\nfunction round(value, roundingMode) {\n if (!roundingMode) {\n return Math.trunc(value);\n }\n switch (roundingMode) {\n case \"round\":\n return Math.round(value);\n case \"ceil\":\n return Math.ceil(value);\n case \"floor\":\n return Math.floor(value);\n default:\n throw new Error(`Unknown roundingMode ${roundingMode}`);\n }\n}\nfunction tupleValuesAreOne(param) {\n const [dimA, dimB, dimC] = parseTupleParam(param);\n return dimA === 1 && dimB === 1 && dimC === 1;\n}\nfunction eitherStridesOrDilationsAreOne(strides, dilations) {\n return tupleValuesAreOne(strides) || tupleValuesAreOne(dilations);\n}\nfunction convertConv2DDataFormat(dataFormat) {\n if (dataFormat === \"NHWC\") {\n return \"channelsLast\";\n } else if (dataFormat === \"NCHW\") {\n return \"channelsFirst\";\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n}\nfunction checkPadOnDimRoundingMode(opDesc, pad3, dimRoundingMode) {\n if (dimRoundingMode != null) {\n if (typeof pad3 === \"string\") {\n throw Error(`Error in ${opDesc}: pad must be an integer when using dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`);\n } else if (typeof pad3 === \"number\") {\n assert(isInt(pad3), () => `Error in ${opDesc}: pad must be an integer when using dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`);\n } else if (typeof pad3 === \"object\") {\n pad3.forEach((p2) => {\n p2.forEach((v) => {\n assert(isInt(v), () => `Error in ${opDesc}: pad must be an integer when using dimRoundingMode ${dimRoundingMode} but got pad ${v}.`);\n });\n });\n } else {\n throw Error(`Error in ${opDesc}: Unknown padding parameter: ${pad3}`);\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reshape.js\nfunction reshape_(x, shape) {\n const $x = convertToTensor(x, \"x\", \"reshape\", \"string_or_numeric\");\n const inputs = { x: $x };\n const attrs = { shape };\n return ENGINE.runKernel(Reshape, inputs, attrs);\n}\nvar reshape = op({ reshape_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/avg_pool.js\nfunction avgPool_(x, filterSize, strides, pad3, dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"avgPool\", \"float32\");\n const dilations = 1;\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in avgPool: x must be rank 4 but got rank ${x4D.rank}.`);\n checkPadOnDimRoundingMode(\"avgPool\", pad3, dimRoundingMode);\n const inputs = { x: x4D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n let res = ENGINE.runKernel(AvgPool, inputs, attrs);\n res = cast(res, $x.dtype);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar avgPool = op({ avgPool_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/avg_pool_3d.js\nfunction avgPool3d_(x, filterSize, strides, pad3, dimRoundingMode, dataFormat = \"NDHWC\") {\n const $x = convertToTensor(x, \"x\", \"avgPool3d\", \"float32\");\n let x5D = $x;\n let reshapedTo5D = false;\n if ($x.rank === 4) {\n reshapedTo5D = true;\n x5D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]]);\n }\n assert(x5D.rank === 5, () => `Error in avgPool3d: x must be rank 5 but got rank ${x5D.rank}.`);\n assert(dataFormat === \"NDHWC\", () => `Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${dataFormat}`);\n checkPadOnDimRoundingMode(\"avgPool3d\", pad3, dimRoundingMode);\n const inputs = { x: x5D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat };\n let res = ENGINE.runKernel(AvgPool3D, inputs, attrs);\n res = cast(res, x5D.dtype);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar avgPool3d = op({ avgPool3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat.js\nfunction concat_(tensors, axis = 0) {\n assert(tensors.length >= 1, () => \"Pass at least one tensor to concat\");\n const $tensors = convertToTensorArray(tensors, \"tensors\", \"concat\", \"string_or_numeric\");\n if ($tensors[0].dtype === \"complex64\") {\n $tensors.forEach((tensor2) => {\n if (tensor2.dtype !== \"complex64\") {\n throw new Error(`Cannot concatenate complex64 tensors with a tensor\n with dtype ${tensor2.dtype}. `);\n }\n });\n }\n if ($tensors.length === 1) {\n return clone($tensors[0]);\n }\n const inputs = $tensors;\n const attr = { axis };\n return ENGINE.runKernel(Concat, inputs, attr);\n}\nvar concat = op({ concat_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sigmoid.js\nfunction sigmoid_(x) {\n const $x = convertToTensor(x, \"x\", \"sigmoid\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sigmoid, inputs);\n}\nvar sigmoid = op({ sigmoid_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice.js\nfunction slice_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice\", \"string_or_numeric\");\n if ($x.rank === 0) {\n throw new Error(\"Slicing scalar is not possible\");\n }\n const inputs = { x: $x };\n const attrs = { begin, size };\n return ENGINE.runKernel(Slice, inputs, attrs);\n}\nvar slice = op({ slice_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tanh.js\nfunction tanh_(x) {\n const $x = convertToTensor(x, \"x\", \"tanh\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Tanh, inputs);\n}\nvar tanh2 = op({ tanh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/basic_lstm_cell.js\nfunction basicLSTMCell_(forgetBias, lstmKernel, lstmBias, data, c, h) {\n const $forgetBias = convertToTensor(forgetBias, \"forgetBias\", \"basicLSTMCell\");\n const $lstmKernel = convertToTensor(lstmKernel, \"lstmKernel\", \"basicLSTMCell\");\n const $lstmBias = convertToTensor(lstmBias, \"lstmBias\", \"basicLSTMCell\");\n const $data = convertToTensor(data, \"data\", \"basicLSTMCell\");\n const $c = convertToTensor(c, \"c\", \"basicLSTMCell\");\n const $h = convertToTensor(h, \"h\", \"basicLSTMCell\");\n const combined = concat([$data, $h], 1);\n const weighted = matMul(combined, $lstmKernel);\n const res = add2(weighted, $lstmBias);\n const batchSize = res.shape[0];\n const sliceCols = res.shape[1] / 4;\n const sliceSize = [batchSize, sliceCols];\n const i2 = slice(res, [0, 0], sliceSize);\n const j = slice(res, [0, sliceCols], sliceSize);\n const f = slice(res, [0, sliceCols * 2], sliceSize);\n const o = slice(res, [0, sliceCols * 3], sliceSize);\n const newC = add2(mul(sigmoid(i2), tanh2(j)), mul($c, sigmoid(add2($forgetBias, f))));\n const newH = mul(tanh2(newC), sigmoid(o));\n return [newC, newH];\n}\nvar basicLSTMCell = op({ basicLSTMCell_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batch_to_space_nd.js\nfunction batchToSpaceND_(x, blockShape, crops) {\n const $x = convertToTensor(x, \"x\", \"batchToSpaceND\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n assert($x.rank >= 1 + blockShape.length, () => `input rank is ${$x.rank} but should be > than blockShape.length ${blockShape.length}`);\n assert(crops.length === blockShape.length, () => `crops.length is ${crops.length} but should be equal to blockShape.length ${blockShape.length}`);\n assert($x.shape[0] % prod6 === 0, () => `input tensor batch is ${$x.shape[0]} but is not divisible by the product of the elements of blockShape ${blockShape.join(\" * \")} === ${prod6}`);\n const inputs = { x: $x };\n const attrs = { blockShape, crops };\n return ENGINE.runKernel(BatchToSpaceND, inputs, attrs);\n}\nvar batchToSpaceND = op({ batchToSpaceND_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm_util.js\nfunction xAs4D(x) {\n let x4D;\n if (x.rank === 0 || x.rank === 1) {\n x4D = reshape(x, [1, 1, 1, x.size]);\n } else if (x.rank === 2) {\n x4D = reshape(x, [1, 1, x.shape[0], x.shape[1]]);\n } else if (x.rank === 3) {\n x4D = reshape(x, [1, x.shape[0], x.shape[1], x.shape[2]]);\n } else {\n x4D = x;\n }\n return x4D;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm.js\nfunction batchNorm_(x, mean5, variance, offset, scale2, varianceEpsilon) {\n if (varianceEpsilon == null) {\n varianceEpsilon = 1e-3;\n }\n const $x = convertToTensor(x, \"x\", \"batchNorm\");\n const $mean = convertToTensor(mean5, \"mean\", \"batchNorm\");\n const $variance = convertToTensor(variance, \"variance\", \"batchNorm\");\n let $scale;\n if (scale2 != null) {\n $scale = convertToTensor(scale2, \"scale\", \"batchNorm\");\n }\n let $offset;\n if (offset != null) {\n $offset = convertToTensor(offset, \"offset\", \"batchNorm\");\n }\n assert($mean.rank === $variance.rank, () => \"Batch normalization gradient requires mean and variance to have equal ranks.\");\n assert($offset == null || $mean.rank === $offset.rank, () => \"Batch normalization gradient requires mean and offset to have equal ranks.\");\n assert($scale == null || $mean.rank === $scale.rank, () => \"Batch normalization gradient requires mean and scale to have equal ranks.\");\n const x4D = xAs4D($x);\n const inputs = {\n x: x4D,\n scale: $scale,\n offset: $offset,\n mean: $mean,\n variance: $variance\n };\n const attrs = { varianceEpsilon };\n const res = ENGINE.runKernel(FusedBatchNorm, inputs, attrs);\n return reshape(res, $x.shape);\n}\nvar batchNorm = op({ batchNorm_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm2d.js\nfunction batchNorm2d_(x, mean5, variance, offset, scale2, varianceEpsilon) {\n const $x = convertToTensor(x, \"x\", \"batchNorm\");\n const $mean = convertToTensor(mean5, \"mean\", \"batchNorm\");\n const $variance = convertToTensor(variance, \"variance\", \"batchNorm\");\n let $scale;\n if (scale2 != null) {\n $scale = convertToTensor(scale2, \"scale\", \"batchNorm\");\n }\n let $offset;\n if (offset != null) {\n $offset = convertToTensor(offset, \"offset\", \"batchNorm\");\n }\n assert($x.rank === 2, () => `Error in batchNorm2D: x must be rank 2 but got rank ${$x.rank}.`);\n assert($mean.rank === 2 || $mean.rank === 1, () => `Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${$mean.rank}.`);\n assert($variance.rank === 2 || $variance.rank === 1, () => `Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${$variance.rank}.`);\n if ($scale != null) {\n assert($scale.rank === 2 || $scale.rank === 1, () => `Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${$scale.rank}.`);\n }\n if ($offset != null) {\n assert($offset.rank === 2 || $offset.rank === 1, () => `Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${$offset.rank}.`);\n }\n return batchNorm($x, $mean, $variance, $offset, $scale, varianceEpsilon);\n}\nvar batchNorm2d = op({ batchNorm2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm3d.js\nfunction batchNorm3d_(x, mean5, variance, offset, scale2, varianceEpsilon) {\n const $x = convertToTensor(x, \"x\", \"batchNorm\");\n const $mean = convertToTensor(mean5, \"mean\", \"batchNorm\");\n const $variance = convertToTensor(variance, \"variance\", \"batchNorm\");\n let $scale;\n if (scale2 != null) {\n $scale = convertToTensor(scale2, \"scale\", \"batchNorm\");\n }\n let $offset;\n if (offset != null) {\n $offset = convertToTensor(offset, \"offset\", \"batchNorm\");\n }\n assert($x.rank === 3, () => `Error in batchNorm3D: x must be rank 3 but got rank ${$x.rank}.`);\n assert($mean.rank === 3 || $mean.rank === 1, () => `Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${$mean.rank}.`);\n assert($variance.rank === 3 || $variance.rank === 1, () => `Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${$variance.rank}.`);\n if ($scale != null) {\n assert($scale.rank === 3 || $scale.rank === 1, () => `Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${$scale.rank}.`);\n }\n if ($offset != null) {\n assert($offset.rank === 3 || $offset.rank === 1, () => `Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${$offset.rank}.`);\n }\n return batchNorm($x, $mean, $variance, $offset, $scale, varianceEpsilon);\n}\nvar batchNorm3d = op({ batchNorm3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm4d.js\nfunction batchNorm4d_(x, mean5, variance, offset, scale2, varianceEpsilon) {\n const $x = convertToTensor(x, \"x\", \"batchNorm\");\n const $mean = convertToTensor(mean5, \"mean\", \"batchNorm\");\n const $variance = convertToTensor(variance, \"variance\", \"batchNorm\");\n let $scale;\n if (scale2 != null) {\n $scale = convertToTensor(scale2, \"scale\", \"batchNorm\");\n }\n let $offset;\n if (offset != null) {\n $offset = convertToTensor(offset, \"offset\", \"batchNorm\");\n }\n assert($x.rank === 4, () => `Error in batchNorm4D: x must be rank 4 but got rank ${$x.rank}.`);\n assert($mean.rank === 4 || $mean.rank === 1, () => `Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${$mean.rank}.`);\n assert($variance.rank === 4 || $variance.rank === 1, () => `Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${$variance.rank}.`);\n if ($scale != null) {\n assert($scale.rank === 4 || $scale.rank === 1, () => `Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${$scale.rank}.`);\n }\n if ($offset != null) {\n assert($offset.rank === 4 || $offset.rank === 1, () => `Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${$offset.rank}.`);\n }\n return batchNorm($x, $mean, $variance, $offset, $scale, varianceEpsilon);\n}\nvar batchNorm4d = op({ batchNorm4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/bincount.js\nfunction bincount_(x, weights, size) {\n const $x = convertToTensor(x, \"x\", \"bincount\");\n const $weights = convertToTensor(weights, \"weights\", \"bincount\");\n assert($x.dtype === \"int32\", () => `Error in bincount: input dtype must be int32, but got ${$x.dtype}`);\n assert(size >= 0, () => `size must be non-negative, but got ${size}.`);\n assert($weights.size === $x.size || $weights.size === 0, () => `Error in bincount: weights must have the same size as input or0-length, but got input shape: ${$x.shape}, weights shape: ${$weights.shape}.`);\n const inputs = { x: $x, weights: $weights };\n const attrs = { size };\n return ENGINE.runKernel(Bincount, inputs, attrs);\n}\nvar bincount = op({ bincount_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/broadcast_args.js\nfunction broadcastArgs_(s0, s1) {\n const shape1Input = convertToTensor(s0, \"s0\", \"broadcastArgs\", \"int32\");\n const shape2Input = convertToTensor(s1, \"s1\", \"broadcastArgs\", \"int32\");\n if (shape1Input.rank !== 1) {\n throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${shape1Input.rank}`);\n }\n if (shape2Input.rank !== 1) {\n throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${shape2Input.rank}`);\n }\n const inputs = { s0: shape1Input, s1: shape2Input };\n return ENGINE.runKernel(BroadcastArgs, inputs);\n}\nvar broadcastArgs = op({ broadcastArgs_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/broadcast_to.js\nfunction broadcastTo_(x, shape) {\n let input2 = convertToTensor(x, \"broadcastTo\", \"x\");\n const xShape = input2.shape;\n if (shape.some((d) => !(d > 0) || d % 1 !== 0)) {\n throw new Error(`broadcastTo(): Invalid broadcast shape [${shape}].`);\n }\n if (shape.length < input2.rank) {\n throw new Error(`broadcastTo(): shape.length=${shape.length} < input.rank=${input2.rank}.`);\n }\n if (shape.length > input2.rank) {\n const newShape = input2.shape.slice();\n while (newShape.length < shape.length) {\n newShape.unshift(1);\n }\n input2 = reshape(input2, newShape);\n }\n const inputShape = input2.shape;\n const reps = Array.from(shape);\n for (let i2 = shape.length - 1; i2 >= 0; i2--) {\n if (inputShape[i2] === shape[i2]) {\n reps[i2] = 1;\n } else if (input2.shape[i2] !== 1) {\n throw new Error(`broadcastTo(): [${xShape}] cannot be broadcast to [${shape}].`);\n }\n }\n const axes = reps.map((n2, i2) => n2 > 1 ? i2 : -1).filter((i2) => i2 >= 0);\n if (axes.length === 0) {\n return clone(input2);\n }\n const inputs = { x: input2 };\n const attrs = { reps };\n return ENGINE.runKernel(Tile, inputs, attrs);\n}\nvar broadcastTo = op({ broadcastTo_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ceil.js\nfunction ceil_(x) {\n const $x = convertToTensor(x, \"x\", \"ceil\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Ceil, inputs);\n}\nvar ceil = op({ ceil_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/clip_by_value.js\nfunction clipByValue_(x, clipValueMin, clipValueMax) {\n const $x = convertToTensor(x, \"x\", \"clipByValue\");\n assert(clipValueMin <= clipValueMax, () => `Error in clip: min (${clipValueMin}) must be less than or equal to max (${clipValueMax}).`);\n const inputs = { x: $x };\n const attrs = { clipValueMin, clipValueMax };\n return ENGINE.runKernel(ClipByValue, inputs, attrs);\n}\nvar clipByValue = op({ clipByValue_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_1d.js\nfunction concat1d_(tensors) {\n return concat(tensors, 0);\n}\nvar concat1d = op({ concat1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_2d.js\nfunction concat2d_(tensors, axis) {\n return concat(tensors, axis);\n}\nvar concat2d = op({ concat2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_3d.js\nfunction concat3d_(tensors, axis) {\n return concat(tensors, axis);\n}\nvar concat3d = op({ concat3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_4d.js\nfunction concat4d_(tensors, axis) {\n return concat(tensors, axis);\n}\nvar concat4d = op({ concat4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv2d.js\nfunction conv2d_(x, filter, strides, pad3, dataFormat = \"NHWC\", dilations = [1, 1], dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"conv2d\", \"float32\");\n const $filter = convertToTensor(filter, \"filter\", \"conv2d\", \"float32\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in conv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($filter.rank === 4, () => `Error in conv2d: filter must be rank 4, but got rank ${$filter.rank}.`);\n checkPadOnDimRoundingMode(\"conv2d\", pad3, dimRoundingMode);\n const inDepth = dataFormat === \"NHWC\" ? x4D.shape[3] : x4D.shape[1];\n assert(inDepth === $filter.shape[2], () => `Error in conv2d: depth of input (${inDepth}) must match input depth for filter ${$filter.shape[2]}.`);\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in conv2D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const inputs = { x: x4D, filter: $filter };\n const attrs = { strides, pad: pad3, dataFormat, dilations, dimRoundingMode };\n const res = ENGINE.runKernel(Conv2D, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar conv2d = op({ conv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv1d.js\nfunction conv1d_(x, filter, stride, pad3, dataFormat = \"NWC\", dilation = 1, dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"conv1d\");\n const $filter = convertToTensor(filter, \"filter\", \"conv1d\");\n let x3D = $x;\n let reshapedTo3D = false;\n if ($x.rank === 2) {\n reshapedTo3D = true;\n x3D = reshape($x, [1, $x.shape[0], $x.shape[1]]);\n }\n assert(x3D.rank === 3, () => `Error in conv1d: input must be rank 3, but got rank ${x3D.rank}.`);\n assert($filter.rank === 3, () => `Error in conv1d: filter must be rank 3, but got rank ${$filter.rank}.`);\n checkPadOnDimRoundingMode(\"conv1d\", pad3, dimRoundingMode);\n assert(x3D.shape[2] === $filter.shape[1], () => `Error in conv1d: depth of input (${x3D.shape[2]}) must match input depth for filter ${$filter.shape[1]}.`);\n assert(eitherStridesOrDilationsAreOne(stride, dilation), () => `Error in conv1D: Either stride or dilation must be 1. Got stride ${stride} and dilation '${dilation}'`);\n assert(dataFormat === \"NWC\", () => `Error in conv1d: got dataFormat of ${dataFormat} but only NWC is currently supported.`);\n const filter4D = reshape($filter, [1, $filter.shape[0], $filter.shape[1], $filter.shape[2]]);\n const input4D = reshape(x3D, [x3D.shape[0], 1, x3D.shape[1], x3D.shape[2]]);\n const strides = [1, stride];\n const dilations = [1, dilation];\n const conv2dDataFormat = \"NHWC\";\n const res = conv2d(input4D, filter4D, strides, pad3, conv2dDataFormat, dilations, dimRoundingMode);\n if (reshapedTo3D) {\n return reshape(res, [res.shape[2], res.shape[3]]);\n }\n return reshape(res, [res.shape[0], res.shape[2], res.shape[3]]);\n}\nvar conv1d = op({ conv1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv2d_backprop_input.js\nfunction conv2DBackpropInput_(xShape, dy, filter, strides, pad3, dataFormat = \"NHWC\", dimRoundingMode) {\n assert(xShape.length === dy.rank, () => `Length of inShape (${xShape.length}) and rank of dy (${dy.rank}) must match`);\n let xShape4D = xShape;\n let dy4D = dy;\n let reshapedTo4D = false;\n if (dy.rank === 3) {\n reshapedTo4D = true;\n dy4D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2]]);\n xShape4D = [1, xShape[0], xShape[1], xShape[2]];\n }\n assert(xShape4D.length === 4, () => `Error in conv2dDerInput: inShape must be length 4, but got length ${xShape4D.length}.`);\n assert(dy4D.rank === 4, () => `Error in conv2dDerInput: dy must be rank 4, but got rank ${dy4D.rank}`);\n assert(filter.rank === 4, () => `Error in conv2dDerInput: filter must be rank 4, but got rank ${filter.rank}`);\n const inDepth = dataFormat === \"NHWC\" ? xShape4D[3] : xShape4D[1];\n const outDepth = dataFormat === \"NHWC\" ? dy4D.shape[3] : dy4D.shape[1];\n assert(inDepth === filter.shape[2], () => `Error in conv2dDerInput: depth of input (${inDepth}) must match input depth for filter ${filter.shape[2]}.`);\n assert(outDepth === filter.shape[3], () => `Error in conv2dDerInput: depth of output (${outDepth}) must match output depth for filter ${filter.shape[3]}.`);\n checkPadOnDimRoundingMode(\"conv2dDerInput\", pad3, dimRoundingMode);\n const inputs = { dy: dy4D, filter };\n const attrs = { strides, pad: pad3, dataFormat, dimRoundingMode, inputShape: xShape4D };\n const res = ENGINE.runKernel(Conv2DBackpropInput, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar conv2DBackpropInput = op({ conv2DBackpropInput_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv2d_transpose.js\nfunction conv2dTranspose_(x, filter, outputShape, strides, pad3, dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"conv2dTranspose\");\n const $filter = convertToTensor(filter, \"filter\", \"conv2dTranspose\");\n return conv2DBackpropInput(outputShape, $x, $filter, strides, pad3, \"NHWC\", dimRoundingMode);\n}\nvar conv2dTranspose = op({ conv2dTranspose_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv3d.js\nfunction conv3d_(x, filter, strides, pad3, dataFormat = \"NDHWC\", dilations = [1, 1, 1]) {\n const $x = convertToTensor(x, \"x\", \"conv3d\");\n const $filter = convertToTensor(filter, \"filter\", \"conv3d\");\n let x5D = $x;\n let reshapedTo5D = false;\n if ($x.rank === 4) {\n reshapedTo5D = true;\n x5D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]]);\n }\n assert(x5D.rank === 5, () => `Error in conv3d: input must be rank 5, but got rank ${x5D.rank}.`);\n assert($filter.rank === 5, () => `Error in conv3d: filter must be rank 5, but got rank ${$filter.rank}.`);\n assert(x5D.shape[4] === $filter.shape[3], () => `Error in conv3d: depth of input (${x5D.shape[4]}) must match input depth for filter ${$filter.shape[3]}.`);\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in conv3D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n assert(dataFormat === \"NDHWC\", () => `Error in conv3d: got dataFormat of ${dataFormat} but only NDHWC is currently supported.`);\n const inputs = { x: x5D, filter: $filter };\n const attrs = { strides, pad: pad3, dataFormat, dilations };\n const res = ENGINE.runKernel(Conv3D, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar conv3d = op({ conv3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv3d_backprop_input.js\nfunction conv3DBackpropInput_(xShape, dy, filter, strides, pad3) {\n assert(xShape.length === dy.rank, () => `Length of inShape (${xShape.length}) and rank of dy (${dy.rank}) must match`);\n let xShape5D = xShape;\n let dy5D = dy;\n let reshapedTo5D = false;\n if (dy.rank === 4) {\n reshapedTo5D = true;\n dy5D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2], dy.shape[3]]);\n xShape5D = [1, xShape[0], xShape[1], xShape[2], xShape[3]];\n }\n const inDepth = xShape5D[4];\n const outDepth = dy5D.shape[4];\n assert(xShape5D.length === 5, () => `Error in conv3dDerInput: inShape must be length 5, but got length ${xShape5D.length}.`);\n assert(dy5D.rank === 5, () => `Error in conv3dDerInput: dy must be rank 5, but got rank ${dy5D.rank}`);\n assert(filter.rank === 5, () => `Error in conv3dDerInput: filter must be rank 5, but got rank ${filter.rank}`);\n assert(inDepth === filter.shape[3], () => `Error in conv3dDerInput: depth of input (${inDepth}) must match input depth for filter ${filter.shape[3]}.`);\n assert(outDepth === filter.shape[4], () => `Error in conv3dDerInput: depth of output (${outDepth}) must match output depth for filter ${filter.shape[4]}.`);\n const inputs = { dy: dy5D, filter };\n const attrs = { pad: pad3, strides, inputShape: xShape5D };\n const res = ENGINE.runKernel(Conv3DBackpropInputV2, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar conv3DBackpropInput = op({ conv3DBackpropInput_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv3d_transpose.js\nfunction conv3dTranspose_(x, filter, outputShape, strides, pad3) {\n const $x = convertToTensor(x, \"x\", \"conv3dTranspose\");\n const $filter = convertToTensor(filter, \"filter\", \"conv3dTranspose\");\n return conv3DBackpropInput(outputShape, $x, $filter, strides, pad3);\n}\nvar conv3dTranspose = op({ conv3dTranspose_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cos.js\nfunction cos_(x) {\n const $x = convertToTensor(x, \"x\", \"cos\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Cos, inputs);\n}\nvar cos = op({ cos_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cosh.js\nfunction cosh_(x) {\n const $x = convertToTensor(x, \"x\", \"cosh\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Cosh, inputs);\n}\nvar cosh = op({ cosh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cumprod.js\nfunction cumprod_(x, axis = 0, exclusive = false, reverse5 = false) {\n const $x = convertToTensor(x, \"x\", \"cumprod\");\n const inputs = { x: $x };\n const attrs = { axis, exclusive, reverse: reverse5 };\n return ENGINE.runKernel(Cumprod, inputs, attrs);\n}\nvar cumprod = op({ cumprod_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cumsum.js\nfunction cumsum_(x, axis = 0, exclusive = false, reverse5 = false) {\n const $x = convertToTensor(x, \"x\", \"cumsum\");\n const inputs = { x: $x };\n const attrs = { axis, exclusive, reverse: reverse5 };\n return ENGINE.runKernel(Cumsum, inputs, attrs);\n}\nvar cumsum = op({ cumsum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dense_bincount.js\nfunction denseBincount_(x, weights, size, binaryOutput = false) {\n const $x = convertToTensor(x, \"x\", \"denseBincount\");\n const $weights = convertToTensor(weights, \"weights\", \"denseBincount\");\n assert($x.dtype === \"int32\", () => `Error in denseBincount: input dtype must be int32, but got ${$x.dtype}`);\n assert($x.rank <= 2, () => `Error in denseBincount: input must be at most rank 2, but got rank ${$x.rank}.`);\n assert(size >= 0, () => `size must be non-negative, but got ${size}.`);\n assert($weights.size === $x.size || $weights.size === 0, () => `Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${$x.shape}, weights shape: ${$weights.shape}.`);\n const inputs = { x: $x, weights: $weights };\n const attrs = { size, binaryOutput };\n return ENGINE.runKernel(DenseBincount, inputs, attrs);\n}\nvar denseBincount = op({ denseBincount_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/depth_to_space.js\nfunction depthToSpace_(x, blockSize, dataFormat = \"NHWC\") {\n const $x = convertToTensor(x, \"x\", \"depthToSpace\", \"float32\");\n const inputHeight = dataFormat === \"NHWC\" ? $x.shape[1] : $x.shape[2];\n const inputWidth = dataFormat === \"NHWC\" ? $x.shape[2] : $x.shape[3];\n const inputDepth = dataFormat === \"NHWC\" ? $x.shape[3] : $x.shape[1];\n assert(blockSize > 1, () => `blockSize should be > 1 for depthToSpace, but was: ${blockSize}`);\n assert(inputHeight * blockSize >= 0, () => `Negative dimension size caused by overflow when multiplying\n ${inputHeight} and ${blockSize} for depthToSpace with input shape\n ${$x.shape}`);\n assert(inputWidth * blockSize >= 0, () => `Negative dimension size caused by overflow when multiplying\n ${inputWidth} and ${blockSize} for depthToSpace with input shape\n ${$x.shape}`);\n assert(inputDepth % (blockSize * blockSize) === 0, () => `Dimension size must be evenly divisible by ${blockSize * blockSize} but is ${inputDepth} for depthToSpace with input shape ${$x.shape}`);\n const inputs = { x: $x };\n const attrs = { blockSize, dataFormat };\n return ENGINE.runKernel(DepthToSpace, inputs, attrs);\n}\nvar depthToSpace = op({ depthToSpace_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/depthwise_conv2d.js\nfunction depthwiseConv2d_(x, filter, strides, pad3, dataFormat = \"NHWC\", dilations = [1, 1], dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"depthwiseConv2d\", \"float32\");\n const $filter = convertToTensor(filter, \"filter\", \"depthwiseConv2d\", \"float32\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in depthwiseConv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($filter.rank === 4, () => `Error in depthwiseConv2d: filter must be rank 4, but got rank ${$filter.rank}.`);\n const inChannels = dataFormat === \"NHWC\" ? x4D.shape[3] : x4D.shape[1];\n assert(inChannels === $filter.shape[2], () => `Error in depthwiseConv2d: number of input channels (${inChannels}) must match the inChannels dimension in filter ${$filter.shape[2]}.`);\n checkPadOnDimRoundingMode(\"depthwiseConv2d\", pad3, dimRoundingMode);\n const inputs = { x: x4D, filter: $filter };\n const attrs = { strides, pad: pad3, dataFormat, dilations, dimRoundingMode };\n const res = ENGINE.runKernel(DepthwiseConv2dNative, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar depthwiseConv2d = op({ depthwiseConv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/diag.js\nfunction diag_(x) {\n const $x = convertToTensor(x, \"x\", \"diag\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Diag, inputs);\n}\nvar diag = op({ diag_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dilation2d.js\nfunction dilation2d_(x, filter, strides, pad3, dilations = [1, 1], dataFormat = \"NHWC\") {\n const $x = convertToTensor(x, \"x\", \"dilation2d\");\n const $filter = convertToTensor(filter, \"filter\", \"dilation2d\");\n assert($x.rank === 3 || $x.rank === 4, () => `Error in dilation2d: input must be rank 3 or 4, but got rank ${$x.rank}.`);\n assert($filter.rank === 3, () => `Error in dilation2d: filter must be rank 3, but got rank ${$filter.rank}.`);\n assert(dataFormat === \"NHWC\", () => `Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${dataFormat}`);\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n reshapedTo4D = true;\n }\n const inputs = { x: x4D, filter: $filter };\n const attrs = { strides, pad: pad3, dilations };\n const res = ENGINE.runKernel(Dilation2D, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar dilation2d = op({ dilation2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/equal.js\nfunction equal_(a, b) {\n let $a = convertToTensor(a, \"a\", \"equal\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"equal\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Equal, inputs);\n}\nvar equal = op({ equal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/where.js\nfunction where_(condition, a, b) {\n const $a = convertToTensor(a, \"a\", \"where\");\n const $b = convertToTensor(b, \"b\", \"where\");\n const $condition = convertToTensor(condition, \"condition\", \"where\", \"bool\");\n const broadcastShape = assertAndGetBroadcastShape(assertAndGetBroadcastShape($condition.shape, $a.shape), $b.shape);\n const $broadcastedCondition = broadcastTo($condition, broadcastShape);\n const $broadcastedA = broadcastTo($a, broadcastShape);\n const $broadcastedB = broadcastTo($b, broadcastShape);\n const inputs = {\n condition: $broadcastedCondition,\n t: $broadcastedA,\n e: $broadcastedB\n };\n return ENGINE.runKernel(Select, inputs);\n}\nvar where = op({ where_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/zeros_like.js\nfunction zerosLike_(x) {\n const $x = convertToTensor(x, \"x\", \"zerosLike\");\n const inputs = { x: $x };\n return ENGINE.runKernel(ZerosLike, inputs);\n}\nvar zerosLike = op({ zerosLike_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/div_no_nan.js\nfunction divNoNan_(a, b) {\n let $a = convertToTensor(a, \"a\", \"div\");\n let $b = convertToTensor(b, \"b\", \"div\");\n [$a, $b] = makeTypesMatch($a, $b);\n const divResult = div($a, $b);\n const zeros5 = zerosLike(divResult);\n const bEqualsZero = equal($b, zeros5);\n return where(bEqualsZero, zeros5, divResult);\n}\nvar divNoNan = op({ divNoNan_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dot.js\nfunction dot_(t1, t2) {\n const $t1 = convertToTensor(t1, \"t1\", \"dot\");\n const $t2 = convertToTensor(t2, \"t2\", \"dot\");\n assert(($t1.rank === 1 || $t1.rank === 2) && ($t2.rank === 1 || $t2.rank === 2), () => `Error in dot: inputs must all be rank 1 or 2, but got ranks ${$t1.rank} and ${$t2.rank}.`);\n const t1Inner = $t1.rank === 1 ? $t1.size : $t1.shape[1];\n const t2Inner = $t2.rank === 1 ? $t2.size : $t2.shape[0];\n assert(t1Inner === t2Inner, () => `Error in dot: inner dimensions of inputs must match, but got ${t1Inner} and ${t2Inner}.`);\n if ($t1.rank === 1 && $t2.rank === 1) {\n const t12D = reshape($t1, [1, -1]);\n const t22D = reshape($t2, [-1, 1]);\n const t1t2 = matMul(t12D, t22D);\n return reshape(t1t2, []);\n } else if ($t1.rank === 1 && $t2.rank === 2) {\n const t12D = reshape($t1, [1, -1]);\n const t22D = reshape($t2, [$t2.shape[0], $t2.shape[1]]);\n const t1t2 = matMul(t12D, t22D);\n return reshape(t1t2, [t1t2.size]);\n } else if ($t1.rank === 2 && $t2.rank === 1) {\n const t22D = reshape($t2, [-1, 1]);\n const t1t2 = matMul($t1, t22D);\n return reshape(t1t2, [t1t2.size]);\n } else {\n const t22D = reshape($t2, [$t2.shape[0], $t2.shape[1]]);\n const t1t2 = matMul($t1, t22D);\n return t1t2;\n }\n}\nvar dot = op({ dot_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/einsum.js\nfunction einsum_(equation, ...tensors) {\n const $tensors = tensors.map((t2, i2) => convertToTensor(t2, `tensors${i2}`, \"einsum\"));\n const attrs = { equation };\n return ENGINE.runKernel(Einsum, $tensors, attrs);\n}\nvar einsum = op({ einsum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/elu.js\nfunction elu_(x) {\n const $x = convertToTensor(x, \"x\", \"elu\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Elu, inputs);\n}\nvar elu = op({ elu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/erf.js\nfunction erf_(x) {\n let $x = convertToTensor(x, \"x\", \"erf\");\n assert($x.dtype === \"int32\" || $x.dtype === \"float32\", () => \"Input dtype must be `int32` or `float32`.\");\n if ($x.dtype === \"int32\") {\n $x = cast($x, \"float32\");\n }\n const inputs = { x: $x };\n return ENGINE.runKernel(Erf, inputs);\n}\nvar erf = op({ erf_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/axis_util.js\nfunction axesAreInnerMostDims(axes, rank) {\n for (let i2 = 0; i2 < axes.length; ++i2) {\n if (axes[axes.length - i2 - 1] !== rank - 1 - i2) {\n return false;\n }\n }\n return true;\n}\nfunction combineLocations(outputLoc, reduceLoc, axes) {\n const rank = outputLoc.length + reduceLoc.length;\n const loc = [];\n let outIdx = 0;\n let reduceIdx = 0;\n for (let dim = 0; dim < rank; dim++) {\n if (axes.indexOf(dim) === -1) {\n loc.push(outputLoc[outIdx++]);\n } else {\n loc.push(reduceLoc[reduceIdx++]);\n }\n }\n return loc;\n}\nfunction computeOutAndReduceShapes(aShape, axes) {\n const outShape = [];\n const rank = aShape.length;\n for (let dim = 0; dim < rank; dim++) {\n if (axes.indexOf(dim) === -1) {\n outShape.push(aShape[dim]);\n }\n }\n const reduceShape = axes.map((dim) => aShape[dim]);\n return [outShape, reduceShape];\n}\nfunction expandShapeToKeepDim(shape, axes) {\n const reduceSubShape = axes.map((x) => 1);\n return combineLocations(shape, reduceSubShape, axes);\n}\nfunction assertAxesAreInnerMostDims(msg, axes, rank) {\n assert(axesAreInnerMostDims(axes, rank), () => `${msg} supports only inner-most axes for now. Got axes ${axes} and rank-${rank} input.`);\n}\nfunction getAxesPermutation(axes, rank) {\n if (axesAreInnerMostDims(axes, rank)) {\n return null;\n }\n const result = [];\n for (let i2 = 0; i2 < rank; ++i2) {\n if (axes.indexOf(i2) === -1) {\n result.push(i2);\n }\n }\n axes.forEach((axis) => result.push(axis));\n return result;\n}\nfunction getUndoAxesPermutation(axes) {\n return axes.map((axis, i2) => [i2, axis]).sort((a, b) => a[1] - b[1]).map((x) => x[0]);\n}\nfunction getInnerMostAxes(numAxes, rank) {\n const res = [];\n for (let i2 = rank - numAxes; i2 < rank; ++i2) {\n res.push(i2);\n }\n return res;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max.js\nfunction max_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"max\");\n const inputs = { x: $x };\n const attrs = { reductionIndices: axis, keepDims };\n return ENGINE.runKernel(Max, inputs, attrs);\n}\nvar max = op({ max_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/min.js\nfunction min_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"min\");\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Min, inputs, attrs);\n}\nvar min = op({ min_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pow.js\nfunction pow_(base, exp6) {\n let $base = convertToTensor(base, \"base\", \"pow\");\n let $exp = convertToTensor(exp6, \"exp\", \"pow\");\n [$base, $exp] = makeTypesMatch($base, $exp);\n const inputs = { a: $base, b: $exp };\n return ENGINE.runKernel(Pow, inputs);\n}\nvar pow = op({ pow_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/scalar.js\nfunction scalar(value, dtype) {\n if ((isTypedArray(value) && dtype !== \"string\" || Array.isArray(value)) && dtype !== \"complex64\") {\n throw new Error(\"Error creating a new Scalar: value must be a primitive (number|boolean|string)\");\n }\n if (dtype === \"string\" && isTypedArray(value) && !(value instanceof Uint8Array)) {\n throw new Error(\"When making a scalar from encoded string, the value must be `Uint8Array`.\");\n }\n const shape = [];\n const inferredShape = [];\n return makeTensor(value, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sqrt.js\nfunction sqrt_(x) {\n const $x = convertToTensor(x, \"x\", \"sqrt\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sqrt, inputs);\n}\nvar sqrt = op({ sqrt_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/square.js\nfunction square_(x) {\n const $x = convertToTensor(x, \"x\", \"square\");\n const attrs = {};\n return ENGINE.runKernel(\"Square\", { x: $x }, attrs);\n}\nvar square = op({ square_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sum.js\nfunction sum_(x, axis = null, keepDims = false) {\n let $x = convertToTensor(x, \"x\", \"sum\");\n if ($x.dtype === \"bool\") {\n $x = cast($x, \"int32\");\n }\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Sum, inputs, attrs);\n}\nvar sum2 = op({ sum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/norm.js\nfunction norm_(x, ord = \"euclidean\", axis = null, keepDims = false) {\n x = convertToTensor(x, \"x\", \"norm\");\n const norm2 = normImpl(x, ord, axis);\n let keepDimsShape = norm2.shape;\n if (keepDims) {\n const axes = parseAxisParam(axis, x.shape);\n keepDimsShape = expandShapeToKeepDim(norm2.shape, axes);\n }\n return reshape(norm2, keepDimsShape);\n}\nfunction normImpl(x, p2, axis = null) {\n if (x.rank === 0) {\n return abs(x);\n }\n if (x.rank !== 1 && axis === null) {\n return normImpl(reshape(x, [-1]), p2, axis);\n }\n if (x.rank === 1 || typeof axis === \"number\" || Array.isArray(axis) && axis.length === 1) {\n if (p2 === 1) {\n return sum2(abs(x), axis);\n }\n if (p2 === Infinity) {\n return max(abs(x), axis);\n }\n if (p2 === -Infinity) {\n return min(abs(x), axis);\n }\n if (p2 === \"euclidean\" || p2 === 2) {\n return sqrt(sum2(pow(abs(x), scalar(2, \"int32\")), axis));\n }\n throw new Error(`Error in norm: invalid ord value: ${p2}`);\n }\n if (Array.isArray(axis) && axis.length === 2) {\n if (p2 === 1) {\n return max(sum2(abs(x), axis[0]), axis[1] - 1);\n }\n if (p2 === Infinity) {\n return max(sum2(abs(x), axis[1]), axis[0]);\n }\n if (p2 === -Infinity) {\n return min(sum2(abs(x), axis[1]), axis[0]);\n }\n if (p2 === \"fro\" || p2 === \"euclidean\") {\n return sqrt(sum2(square(x), axis));\n }\n throw new Error(`Error in norm: invalid ord value: ${p2}`);\n }\n throw new Error(`Error in norm: invalid axis: ${axis}`);\n}\nvar norm = op({ norm_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/euclidean_norm.js\nfunction euclideanNorm_(x, axis = null, keepDims = false) {\n return norm(x, \"euclidean\", axis, keepDims);\n}\nvar euclideanNorm = op({ euclideanNorm_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/exp.js\nfunction exp_(x) {\n const $x = convertToTensor(x, \"x\", \"exp\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Exp, inputs);\n}\nvar exp = op({ exp_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/expand_dims.js\nfunction expandDims_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"expandDims\", \"string_or_numeric\");\n assert(axis <= $x.rank, () => \"Axis must be <= rank of the tensor\");\n const inputs = { input: $x };\n const attrs = { dim: axis };\n return ENGINE.runKernel(ExpandDims, inputs, attrs);\n}\nvar expandDims = op({ expandDims_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/expm1.js\nfunction expm1_(x) {\n const $x = convertToTensor(x, \"x\", \"expm1\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Expm1, inputs);\n}\nvar expm1 = op({ expm1_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tile.js\nfunction tile_(x, reps) {\n const $x = convertToTensor(x, \"x\", \"tile\", \"string_or_numeric\");\n assert($x.rank === reps.length, () => `Error in transpose: rank of input ${$x.rank} must match length of reps ${reps}.`);\n const inputs = { x: $x };\n const attrs = { reps };\n return ENGINE.runKernel(Tile, inputs, attrs);\n}\nvar tile = op({ tile_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/eye.js\nfunction eye_(numRows, numColumns, batchShape, dtype = \"float32\") {\n if (numColumns == null) {\n numColumns = numRows;\n }\n const buff = buffer([numRows, numColumns], dtype);\n const n2 = numRows <= numColumns ? numRows : numColumns;\n for (let i2 = 0; i2 < n2; ++i2) {\n buff.set(1, i2, i2);\n }\n const out = reshape(buff.toTensor(), [numRows, numColumns]);\n if (batchShape == null) {\n return out;\n } else {\n if (batchShape.length === 1) {\n return tile(expandDims(out, 0), [batchShape[0], 1, 1]);\n } else if (batchShape.length === 2) {\n return tile(expandDims(expandDims(out, 0), 0), [batchShape[0], batchShape[1], 1, 1]);\n } else if (batchShape.length === 3) {\n return tile(expandDims(expandDims(expandDims(out, 0), 0), 0), [\n batchShape[0],\n batchShape[1],\n batchShape[2],\n 1,\n 1\n ]);\n } else {\n throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${batchShape.length}D.`);\n }\n }\n}\nvar eye = op({ eye_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fill.js\nfunction fill(shape, value, dtype) {\n const attrs = { shape, value, dtype };\n return ENGINE.runKernel(Fill, {}, attrs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/floor.js\nfunction floor_(x) {\n const $x = convertToTensor(x, \"x\", \"floor\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Floor, inputs);\n}\nvar floor = op({ floor_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/gather.js\nfunction gather_(x, indices, axis = 0, batchDims = 0) {\n const $x = convertToTensor(x, \"x\", \"gather\");\n const $indices = convertToTensor(indices, \"indices\", \"gather\", \"int32\");\n const inputs = { x: $x, indices: $indices };\n const attrs = { axis, batchDims };\n return ENGINE.runKernel(GatherV2, inputs, attrs);\n}\nvar gather = op({ gather_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/greater.js\nfunction greater_(a, b) {\n let $a = convertToTensor(a, \"a\", \"greater\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"greater\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Greater, inputs);\n}\nvar greater = op({ greater_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/greater_equal.js\nfunction greaterEqual_(a, b) {\n let $a = convertToTensor(a, \"a\", \"greaterEqual\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"greaterEqual\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(GreaterEqual, inputs);\n}\nvar greaterEqual = op({ greaterEqual_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/is_finite.js\nfunction isFinite_(x) {\n const $x = convertToTensor(x, \"x\", \"isFinite\");\n const inputs = { x: $x };\n return ENGINE.runKernel(IsFinite, inputs);\n}\nvar isFinite2 = op({ isFinite_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/is_inf.js\nfunction isInf_(x) {\n const $x = convertToTensor(x, \"x\", \"isInf\");\n const inputs = { x: $x };\n return ENGINE.runKernel(IsInf, inputs);\n}\nvar isInf = op({ isInf_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/is_nan.js\nfunction isNaN_(x) {\n const $x = convertToTensor(x, \"x\", \"isNaN\");\n const inputs = { x: $x };\n return ENGINE.runKernel(IsNan, inputs);\n}\nvar isNaN2 = op({ isNaN_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/leaky_relu.js\nfunction leakyRelu_(x, alpha = 0.2) {\n const $x = convertToTensor(x, \"x\", \"leakyRelu\");\n const inputs = { x: $x };\n const attrs = { alpha };\n return ENGINE.runKernel(LeakyRelu, inputs, attrs);\n}\nvar leakyRelu = op({ leakyRelu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/less.js\nfunction less_(a, b) {\n let $a = convertToTensor(a, \"a\", \"less\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"less\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Less, inputs);\n}\nvar less = op({ less_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/less_equal.js\nfunction lessEqual_(a, b) {\n let $a = convertToTensor(a, \"a\", \"lessEqual\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"lessEqual\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(LessEqual, inputs);\n}\nvar lessEqual = op({ lessEqual_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/linspace.js\nfunction linspace(start, stop, num) {\n if (num <= 0) {\n throw new Error(\"The number of values should be positive.\");\n }\n const attrs = { start, stop, num };\n return ENGINE.runKernel(LinSpace, {}, attrs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/local_response_normalization.js\nfunction localResponseNormalization_(x, depthRadius = 5, bias = 1, alpha = 1, beta = 0.5) {\n const $x = convertToTensor(x, \"x\", \"localResponseNormalization\");\n assert($x.rank === 4 || $x.rank === 3, () => `Error in localResponseNormalization: x must be rank 3 or 4 but got\n rank ${$x.rank}.`);\n assert(isInt(depthRadius), () => `Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${depthRadius}.`);\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n const inputs = { x: x4D };\n const attrs = { depthRadius, bias, alpha, beta };\n const res = ENGINE.runKernel(LRN, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n } else {\n return res;\n }\n}\nvar localResponseNormalization = op({ localResponseNormalization_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log.js\nfunction log_(x) {\n const $x = convertToTensor(x, \"x\", \"log\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Log, inputs);\n}\nvar log2 = op({ log_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log1p.js\nfunction log1p_(x) {\n const $x = convertToTensor(x, \"x\", \"log1p\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Log1p, inputs);\n}\nvar log1p = op({ log1p_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients.js\nfunction grad(f) {\n assert(isFunction(f), () => \"The f passed in grad(f) must be a function\");\n return (x, dy) => {\n const $x = convertToTensor(x, \"x\", \"tf.grad\", \"string_or_numeric\");\n const $dy = dy != null ? convertToTensor(dy, \"dy\", \"tf.grad\") : null;\n return ENGINE.tidy(() => {\n const { value, grads: grads2 } = ENGINE.gradients(() => f($x), [$x], $dy);\n if ($dy != null) {\n assertShapesMatch(value.shape, $dy.shape, \"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)\");\n }\n checkGrads(grads2);\n return grads2[0];\n });\n };\n}\nfunction grads(f) {\n assert(isFunction(f), () => \"The f passed in grads(f) must be a function\");\n return (args, dy) => {\n assert(Array.isArray(args), () => \"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s\");\n const $args = convertToTensorArray(args, \"args\", \"tf.grads\", \"string_or_numeric\");\n const $dy = dy != null ? convertToTensor(dy, \"dy\", \"tf.grads\") : null;\n return ENGINE.tidy(() => {\n const { value, grads: grads2 } = ENGINE.gradients(() => f(...$args), $args, $dy);\n if ($dy != null) {\n assertShapesMatch(value.shape, $dy.shape, \"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])\");\n }\n checkGrads(grads2);\n return grads2;\n });\n };\n}\nfunction valueAndGrad(f) {\n assert(isFunction(f), () => \"The f passed in valueAndGrad(f) must be a function\");\n return (x, dy) => {\n assert(x instanceof Tensor, () => \"The x passed in valueAndGrad(f)(x) must be a tensor\");\n assert(dy == null || dy instanceof Tensor, () => \"The dy passed in valueAndGrad(f)(x, dy) must be a tensor\");\n const { grads: grads2, value } = ENGINE.gradients(() => f(x), [x], dy);\n checkGrads(grads2);\n return { grad: grads2[0], value };\n };\n}\nfunction valueAndGrads(f) {\n assert(isFunction(f), () => \"The f passed in valueAndGrads(f) must be a function\");\n return (args, dy) => {\n assert(Array.isArray(args) && args.every((arg) => arg instanceof Tensor), () => \"The args passed in valueAndGrads(f)(args) must be array of tensors\");\n assert(dy == null || dy instanceof Tensor, () => \"The dy passed in valueAndGrads(f)(args, dy) must be a tensor\");\n const res = ENGINE.gradients(() => f(...args), args, dy);\n if (dy != null) {\n assertShapesMatch(res.value.shape, dy.shape, \"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])\");\n }\n checkGrads(res.grads);\n return res;\n };\n}\nfunction variableGrads(f, varList) {\n assert(isFunction(f), () => \"The f passed in variableGrads(f) must be a function\");\n assert(varList == null || Array.isArray(varList) && varList.every((v) => v instanceof Variable), () => \"The varList passed in variableGrads(f, varList) must be an array of variables\");\n const specifiedVarList = varList != null;\n if (!specifiedVarList) {\n varList = [];\n for (const varName in ENGINE.registeredVariables) {\n varList.push(ENGINE.registeredVariables[varName]);\n }\n }\n const specifiedNonTrainable = specifiedVarList ? varList.filter((variable2) => !variable2.trainable) : null;\n const originalVarCount = varList.length;\n varList = varList.filter((variable2) => variable2.trainable);\n assert(varList.length > 0, () => `variableGrads() expects at least one of the input variables to be trainable, but none of the ${originalVarCount} variables is trainable.`);\n const allowNoGradients = true;\n const { value, grads: grads2 } = ENGINE.gradients(f, varList, null, allowNoGradients);\n assert(grads2.some((g) => g != null), () => \"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize().\");\n assert(value.rank === 0, () => `The f passed in variableGrads(f) must return a scalar, but it returned a rank-${value.rank} tensor`);\n const namedGrads = {};\n varList.forEach((v, i2) => {\n if (grads2[i2] != null) {\n namedGrads[v.name] = grads2[i2];\n }\n });\n if (specifiedNonTrainable != null) {\n specifiedNonTrainable.forEach((v) => namedGrads[v.name] = null);\n }\n return { value, grads: namedGrads };\n}\nfunction customGrad(f) {\n return ENGINE.customGrad(f);\n}\nfunction checkGrads(grads2) {\n const numNullGradients = grads2.filter((g) => g == null).length;\n if (numNullGradients > 0) {\n throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that\n the f you passed encloses all operations that lead from x to y.`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/softplus.js\nfunction softplus_(x) {\n const $x = convertToTensor(x, \"x\", \"softplus\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Softplus, inputs);\n}\nvar softplus = op({ softplus_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log_sigmoid.js\nfunction logSigmoid_(x) {\n const $x = convertToTensor(x, \"x\", \"logSigmoid\");\n const customOp = customGrad((x2) => {\n const value = neg(softplus(neg(x2)));\n const gradFunc = (dy) => {\n const derX = mul(dy, sigmoid(neg(x2)));\n return derX;\n };\n return { value, gradFunc };\n });\n return customOp($x);\n}\nvar logSigmoid = op({ logSigmoid_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sub.js\nfunction sub_(a, b) {\n let $a = convertToTensor(a, \"a\", \"sub\");\n let $b = convertToTensor(b, \"b\", \"sub\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Sub, inputs);\n}\nvar sub = op({ sub_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log_softmax.js\nfunction logSoftmax_(logits, axis = -1) {\n const $logits = convertToTensor(logits, \"logits\", \"logSoftmax\");\n if (axis === -1) {\n axis = $logits.rank - 1;\n }\n if (axis !== $logits.rank - 1) {\n throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${$logits.rank} and axis was ${axis}`);\n }\n const customOp = customGrad((logits2, save) => {\n const keepDims = true;\n const xMax = max(logits2, axis, true);\n const shifted = sub(logits2, xMax);\n const value = sub(cast(shifted, \"float32\"), log2(sum2(exp(shifted), axis, keepDims)));\n save([value]);\n const gradFunc = (dy, saved) => {\n const [value2] = saved;\n const keepDims2 = true;\n const softmax7 = exp(value2);\n return sub(dy, mul(sum2(dy, axis, keepDims2), softmax7));\n };\n return { value, gradFunc };\n });\n return customOp($logits);\n}\nvar logSoftmax = op({ logSoftmax_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log_sum_exp.js\nfunction logSumExp_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"logSumExp\");\n const axes = parseAxisParam(axis, $x.shape);\n const xMax = max($x, axes, true);\n const a = sub($x, xMax);\n const b = exp(a);\n const c = sum2(b, axes);\n const d = log2(c);\n const res = add2(reshape(xMax, d.shape), d);\n if (keepDims) {\n const newShape = expandShapeToKeepDim(res.shape, axes);\n return reshape(res, newShape);\n }\n return res;\n}\nvar logSumExp = op({ logSumExp_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/logical_and.js\nfunction logicalAnd_(a, b) {\n const $a = convertToTensor(a, \"a\", \"logicalAnd\", \"bool\");\n const $b = convertToTensor(b, \"b\", \"logicalAnd\", \"bool\");\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(LogicalAnd, inputs);\n}\nvar logicalAnd = op({ logicalAnd_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/logical_not.js\nfunction logicalNot_(x) {\n const $x = convertToTensor(x, \"x\", \"logicalNot\", \"bool\");\n const inputs = { x: $x };\n return ENGINE.runKernel(LogicalNot, inputs);\n}\nvar logicalNot = op({ logicalNot_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/logical_or.js\nfunction logicalOr_(a, b) {\n const $a = convertToTensor(a, \"a\", \"logicalOr\", \"bool\");\n const $b = convertToTensor(b, \"b\", \"logicalOr\", \"bool\");\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(LogicalOr, inputs);\n}\nvar logicalOr = op({ logicalOr_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/logical_xor.js\nfunction logicalXor_(a, b) {\n const $a = convertToTensor(a, \"a\", \"logicalXor\", \"bool\");\n const $b = convertToTensor(b, \"b\", \"logicalXor\", \"bool\");\n assertAndGetBroadcastShape($a.shape, $b.shape);\n return logicalAnd(logicalOr(a, b), logicalNot(logicalAnd(a, b)));\n}\nvar logicalXor = op({ logicalXor_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/search_sorted.js\nvar INT32_MAX = 2147483648;\nfunction searchSorted_(sortedSequence, values, side = \"left\") {\n const $sortedSequence = convertToTensor(sortedSequence, \"sortedSequence\", \"searchSorted\");\n const $values = convertToTensor(values, \"values\", \"searchSorted\");\n const sequenceSize = $sortedSequence.shape[$sortedSequence.shape.length - 1];\n const valuesSize = $values.shape[$values.shape.length - 1];\n const $sortedSequence2D = reshape($sortedSequence, [-1, sequenceSize]);\n const $values2D = reshape($values, [-1, valuesSize]);\n if ($sortedSequence2D.rank < 2) {\n throw new Error(`Sorted input argument must be at least 2-dimensional`);\n }\n if ($sortedSequence2D.shape[0] !== $values2D.shape[0]) {\n throw new Error(`Leading dimension of 'sortedSequence' and 'values' must match.`);\n }\n if (sizeFromShape($values2D.shape) >= INT32_MAX) {\n throw new Error(`values tensor size must less than ${INT32_MAX}`);\n }\n if ($sortedSequence2D.shape[1] >= INT32_MAX) {\n throw new Error(`trailing dim_size must less than ${INT32_MAX} for int32 output type, was ${$sortedSequence2D.shape[1]}`);\n }\n const inputs = {\n sortedSequence: $sortedSequence2D,\n values: $values2D\n };\n const attrs = { side };\n return ENGINE.runKernel(SearchSorted, inputs, attrs);\n}\nvar searchSorted = op({ searchSorted_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/lower_bound.js\nfunction lowerBound(sortedSequence, values) {\n return searchSorted(sortedSequence, values, \"left\");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool.js\nfunction maxPool_(x, filterSize, strides, pad3, dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"maxPool\");\n const dilations = 1;\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in maxPool: input must be rank 4 but got rank ${x4D.rank}.`);\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n checkPadOnDimRoundingMode(\"maxPool\", pad3, dimRoundingMode);\n const inputs = { x: x4D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n const res = ENGINE.runKernel(MaxPool, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar maxPool = op({ maxPool_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool_3d.js\nfunction maxPool3d_(x, filterSize = [1, 1, 1], strides, pad3, dimRoundingMode, dataFormat = \"NDHWC\") {\n const $x = convertToTensor(x, \"x\", \"maxPool3d\");\n let x5D = $x;\n let reshapedTo5D = false;\n if ($x.rank === 4) {\n reshapedTo5D = true;\n x5D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]]);\n }\n assert(x5D.rank === 5, () => `Error in maxPool3d: x must be rank 5 but got rank ${x5D.rank}.`);\n assert(dataFormat === \"NDHWC\", () => `Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${dataFormat}`);\n checkPadOnDimRoundingMode(\"maxPool3d\", pad3, dimRoundingMode);\n const inputs = { x: x5D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat };\n const res = ENGINE.runKernel(MaxPool3D, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar maxPool3d = op({ maxPool3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool_with_argmax.js\nfunction maxPoolWithArgmax_(x, filterSize, strides, pad3, includeBatchInIndex = false) {\n const $x = convertToTensor(x, \"x\", \"maxPoolWithArgmax\");\n const inputs = { x: $x };\n const attrs = { filterSize, strides, pad: pad3, includeBatchInIndex };\n const result = ENGINE.runKernel(MaxPoolWithArgmax, inputs, attrs);\n return { result: result[0], indexes: result[1] };\n}\nvar maxPoolWithArgmax = op({ maxPoolWithArgmax_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/maximum.js\nfunction maximum_(a, b) {\n let $a = convertToTensor(a, \"a\", \"maximum\");\n let $b = convertToTensor(b, \"b\", \"maximum\");\n [$a, $b] = makeTypesMatch($a, $b);\n if ($a.dtype === \"bool\") {\n $a = cast($a, \"int32\");\n $b = cast($b, \"int32\");\n }\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Maximum, inputs);\n}\nvar maximum = op({ maximum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mean.js\nfunction mean_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"mean\");\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Mean, inputs, attrs);\n}\nvar mean = op({ mean_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/zeros.js\nfunction zeros(shape, dtype = \"float32\") {\n if (dtype === \"complex64\") {\n const real6 = zeros(shape, \"float32\");\n const imag5 = zeros(shape, \"float32\");\n return complex(real6, imag5);\n }\n const values = makeZerosTypedArray(sizeFromShape(shape), dtype);\n return ENGINE.makeTensor(values, shape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ones.js\nfunction ones2(shape, dtype = \"float32\") {\n if (dtype === \"complex64\") {\n const real6 = ones2(shape, \"float32\");\n const imag5 = zeros(shape, \"float32\");\n return complex(real6, imag5);\n }\n const values = makeOnesTypedArray(sizeFromShape(shape), dtype);\n return ENGINE.makeTensor(values, shape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/meshgrid.js\nfunction meshgrid(x, y, { indexing = \"xy\" } = {}) {\n if (indexing !== \"xy\" && indexing !== \"ij\") {\n throw new TypeError(`${indexing} is not a valid third argument to meshgrid`);\n }\n if (x === void 0) {\n return [];\n }\n let $x = convertToTensor(x, \"x\", \"meshgrid\", x instanceof Tensor ? x.dtype : \"float32\");\n if (y === void 0) {\n return [$x];\n }\n let $y = convertToTensor(y, \"y\", \"meshgrid\", y instanceof Tensor ? y.dtype : \"float32\");\n const w = sizeFromShape($x.shape);\n const h = sizeFromShape($y.shape);\n if (indexing === \"xy\") {\n $x = reshape($x, [1, -1]);\n $y = reshape($y, [-1, 1]);\n return [\n matMul(ones2([h, 1], $x.dtype), $x),\n matMul($y, ones2([1, w], $y.dtype))\n ];\n }\n $x = reshape($x, [-1, 1]);\n $y = reshape($y, [1, -1]);\n return [\n matMul($x, ones2([1, h], $x.dtype)),\n matMul(ones2([w, 1], $y.dtype), $y)\n ];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/minimum.js\nfunction minimum_(a, b) {\n let $a = convertToTensor(a, \"a\", \"minimum\");\n let $b = convertToTensor(b, \"b\", \"minimum\");\n [$a, $b] = makeTypesMatch($a, $b);\n if ($a.dtype === \"bool\") {\n $a = cast($a, \"int32\");\n $b = cast($b, \"int32\");\n }\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Minimum, inputs);\n}\nvar minimum = op({ minimum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mirror_pad.js\nfunction mirrorPad_(x, paddings, mode) {\n assert(mode === \"reflect\" || mode === \"symmetric\", () => `Invalid mode. Mode must be either reflect or symmetric. Got ${mode}.`);\n const $x = convertToTensor(x, \"x\", \"mirrorPad\");\n if ($x.rank === 0) {\n throw new Error(\"mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad\");\n }\n assert(paddings.length === $x.rank, () => `Padding doesn't match input. Must be ${$x.rank}. Got ${paddings.length}.`);\n const shapeOffset = mode === \"reflect\" ? 1 : 0;\n for (let i2 = 0; i2 < $x.rank; i2++) {\n assert(paddings[i2].length === 2, () => `Invalid number of paddings. Must be length of 2 each.`);\n assert(paddings[i2][0] >= 0 && paddings[i2][0] <= $x.shape[i2] - shapeOffset && paddings[i2][1] >= 0 && paddings[i2][1] <= $x.shape[i2] - shapeOffset, () => `Padding in dimension ${i2} cannot be greater than or equal to ${$x.shape[i2] - shapeOffset} or less than 0 for input of shape ${$x.shape}`);\n }\n const attrs = { paddings, mode };\n const inputs = { x: $x };\n return ENGINE.runKernel(MirrorPad, inputs, attrs);\n}\nvar mirrorPad = op({ mirrorPad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mod.js\nfunction mod_(a, b) {\n let $a = convertToTensor(a, \"a\", \"mod\");\n let $b = convertToTensor(b, \"b\", \"mod\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Mod, inputs);\n}\nvar mod = op({ mod_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/moments.js\nfunction moments_(x, axis = null, keepDims = false) {\n x = convertToTensor(x, \"x\", \"moments\");\n const axes = parseAxisParam(axis, x.shape);\n const xMean = mean(x, axes, keepDims);\n let keepDimsShape = xMean.shape;\n if (!keepDims) {\n keepDimsShape = expandShapeToKeepDim(xMean.shape, axes);\n }\n const devSquared = square(sub(cast(x, \"float32\"), reshape(xMean, keepDimsShape)));\n const variance = mean(devSquared, axes, keepDims);\n return { mean: xMean, variance };\n}\nvar moments = op({ moments_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/multi_rnn_cell.js\nfunction multiRNNCell_(lstmCells, data, c, h) {\n const $data = convertToTensor(data, \"data\", \"multiRNNCell\");\n const $c = convertToTensorArray(c, \"c\", \"multiRNNCell\");\n const $h = convertToTensorArray(h, \"h\", \"multiRNNCell\");\n let input2 = $data;\n const newStates = [];\n for (let i2 = 0; i2 < lstmCells.length; i2++) {\n const output = lstmCells[i2](input2, $c[i2], $h[i2]);\n newStates.push(output[0]);\n newStates.push(output[1]);\n input2 = output[1];\n }\n const newC = [];\n const newH = [];\n for (let i2 = 0; i2 < newStates.length; i2 += 2) {\n newC.push(newStates[i2]);\n newH.push(newStates[i2 + 1]);\n }\n return [newC, newH];\n}\nvar multiRNNCell = op({ multiRNNCell_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/multinomial.js\nfunction multinomial_(logits, numSamples, seed, normalized = false) {\n const $logits = convertToTensor(logits, \"logits\", \"multinomial\");\n const numOutcomes = $logits.size;\n const origRank = $logits.rank;\n if (numOutcomes < 2) {\n throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${numOutcomes}.`);\n }\n if (origRank > 2) {\n throw new Error(`Rank of probabilities must be 1 or 2, but is ${origRank}`);\n }\n seed = seed || Math.random();\n const logits2D = origRank === 1 ? reshape($logits, [1, -1]) : $logits;\n const inputs = { logits: logits2D };\n const attrs = { numSamples, seed, normalized };\n const res = ENGINE.runKernel(Multinomial, inputs, attrs);\n return origRank === 1 ? reshape(res, [res.size]) : res;\n}\nvar multinomial = op({ multinomial_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/not_equal.js\nfunction notEqual_(a, b) {\n let $a = convertToTensor(a, \"a\", \"notEqual\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"notEqual\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(NotEqual, inputs);\n}\nvar notEqual = op({ notEqual_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ones_like.js\nfunction onesLike_(x) {\n const $x = convertToTensor(x, \"x\", \"onesLike\");\n const inputs = { x: $x };\n return ENGINE.runKernel(OnesLike, inputs);\n}\nvar onesLike = op({ onesLike_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/outer_product.js\nfunction outerProduct_(v1, v2) {\n const $v1 = convertToTensor(v1, \"v1\", \"outerProduct\");\n const $v2 = convertToTensor(v2, \"v2\", \"outerProduct\");\n assert($v1.rank === 1 && $v2.rank === 1, () => `Error in outerProduct: inputs must be rank 1, but got ranks ${$v1.rank} and ${$v2.rank}.`);\n const v12D = reshape($v1, [-1, 1]);\n const v22D = reshape($v2, [1, -1]);\n return matMul(v12D, v22D);\n}\nvar outerProduct = op({ outerProduct_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad.js\nfunction pad_(x, paddings, constantValue = 0) {\n const $x = convertToTensor(x, \"x\", \"pad\");\n if ($x.rank === 0) {\n throw new Error(\"pad(scalar) is not defined. Pass non-scalar to pad\");\n }\n const attrs = { paddings, constantValue };\n const inputs = { x: $x };\n return ENGINE.runKernel(PadV2, inputs, attrs);\n}\nvar pad = op({ pad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad1d.js\nfunction pad1d_(x, paddings, constantValue = 0) {\n assert(paddings.length === 2, () => \"Invalid number of paddings. Must be length of 2.\");\n return pad(x, [paddings], constantValue);\n}\nvar pad1d = op({ pad1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad2d.js\nfunction pad2d_(x, paddings, constantValue = 0) {\n assert(paddings.length === 2 && paddings[0].length === 2 && paddings[1].length === 2, () => \"Invalid number of paddings. Must be length of 2 each.\");\n return pad(x, paddings, constantValue);\n}\nvar pad2d = op({ pad2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad3d.js\nfunction pad3d_(x, paddings, constantValue = 0) {\n assert(paddings.length === 3 && paddings[0].length === 2 && paddings[1].length === 2 && paddings[2].length === 2, () => \"Invalid number of paddings. Must be length of 2 each.\");\n return pad(x, paddings, constantValue);\n}\nvar pad3d = op({ pad3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad4d.js\nfunction pad4d_(x, paddings, constantValue = 0) {\n assert(paddings.length === 4 && paddings[0].length === 2 && paddings[1].length === 2 && paddings[2].length === 2 && paddings[3].length === 2, () => \"Invalid number of paddings. Must be length of 2 each.\");\n return pad(x, paddings, constantValue);\n}\nvar pad4d = op({ pad4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/space_to_batch_nd.js\nfunction spaceToBatchND_(x, blockShape, paddings) {\n const $x = convertToTensor(x, \"x\", \"spaceToBatchND\");\n assert($x.rank >= 1 + blockShape.length, () => `input rank ${$x.rank} should be > than [blockShape] ${blockShape.length}`);\n assert(paddings.length === blockShape.length, () => `paddings.shape[0] ${paddings.length} must be equal to [blockShape] ${blockShape.length}`);\n assert($x.shape.reduce((a, b, i2) => {\n if (i2 > 0 && i2 <= blockShape.length) {\n return a && (b + paddings[i2 - 1][0] + paddings[i2 - 1][1]) % blockShape[i2 - 1] === 0;\n }\n return a;\n }, true), () => `input spatial dimensions ${$x.shape.slice(1)} with paddings ${paddings.toString()} must be divisible by blockShapes ${blockShape.toString()}`);\n const inputs = { x: $x };\n const attrs = { blockShape, paddings };\n return ENGINE.runKernel(SpaceToBatchND, inputs, attrs);\n}\nvar spaceToBatchND = op({ spaceToBatchND_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pool.js\nfunction pool_(input2, windowShape, poolingType, pad3, dilations, strides, dimRoundingMode) {\n if (dilations == null) {\n dilations = [1, 1];\n }\n if (strides == null) {\n strides = 1;\n }\n if (pad3 === 0) {\n pad3 = \"valid\";\n }\n const $x = convertToTensor(input2, \"x\", \"maxPool\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in pool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = computePool2DInfo(x4D.shape, windowShape, strides, dilations, pad3);\n const dilation = [convInfo.dilationHeight, convInfo.dilationWidth];\n let basePadding;\n if (pad3 === \"same\") {\n basePadding = withSpaceToBatchBasePaddings([convInfo.filterHeight, convInfo.filterWidth], dilation);\n } else {\n basePadding = [[0, 0], [0, 0]];\n }\n const isDilationOne = dilation[0] === 1 && dilation[1] === 1;\n const [adjustedPadding, adjustedCrops] = requiredSpaceToBatchPaddings([convInfo.inHeight, convInfo.inWidth], dilation, basePadding);\n const convertedPad = isDilationOne ? pad3 : \"valid\";\n const convertedX = isDilationOne ? x4D : spaceToBatchND(x4D, dilation, adjustedPadding);\n const forwardOp = poolingType === \"avg\" ? () => avgPool(convertedX, windowShape, strides, convertedPad, dimRoundingMode) : () => maxPool(convertedX, windowShape, strides, convertedPad, dimRoundingMode);\n const y = forwardOp();\n const res = isDilationOne ? y : batchToSpaceND(y, dilation, adjustedCrops);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nfunction requiredSpaceToBatchPaddings(inputShape, blockShape, basePadding) {\n const padStart = basePadding.map((b) => b[0]);\n const origPadEnd = basePadding.map((b) => b[1]);\n const fullInputShape = inputShape.concat(padStart, origPadEnd);\n const padEndExtra = blockShape.map((b, i2) => (b - fullInputShape[i2] % b) % b);\n const padEnd = origPadEnd.map((s2, i2) => s2 + padEndExtra[i2]);\n const paddings = blockShape.map((_, i2) => [padStart[i2], padEnd[i2]]);\n const crops = blockShape.map((_, i2) => [0, padEndExtra[i2]]);\n return [paddings, crops];\n}\nfunction withSpaceToBatchBasePaddings(filterShape, dilation) {\n const dilatedFilterShape = filterShape.map((s2, i2) => {\n return s2 + (s2 - 1) * (dilation[i2] - 1);\n });\n const padExtraShape = dilatedFilterShape.map((s2) => s2 - 1);\n const padExtraStart = padExtraShape.map((s2) => Math.floor(s2 / 2));\n const padExtraEnd = padExtraShape.map((s2, i2) => s2 - padExtraStart[i2]);\n return padExtraShape.map((_, i2) => {\n return [padExtraStart[i2], padExtraEnd[i2]];\n });\n}\nvar pool = op({ pool_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/prelu.js\nfunction prelu_(x, alpha) {\n const $x = convertToTensor(x, \"x\", \"prelu\");\n const $alpha = convertToTensor(alpha, \"alpha\", \"prelu\");\n const inputs = { x: $x, alpha: $alpha };\n return ENGINE.runKernel(Prelu, inputs);\n}\nvar prelu = op({ prelu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/prod.js\nfunction prod_(x, axis = null, keepDims = false) {\n let $x = convertToTensor(x, \"x\", \"prod\");\n if ($x.dtype === \"bool\") {\n $x = cast($x, \"int32\");\n }\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Prod, inputs, attrs);\n}\nvar prod = op({ prod_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ragged_tensor_to_tensor.js\nfunction raggedTensorToTensor_(shape, values, defaultValue, rowPartitionTensors, rowPartitionTypes) {\n const $shape = convertToTensor(shape, \"shape\", \"raggedTensorToTensor\", \"int32\");\n const $values = convertToTensor(values, \"values\", \"raggedTensorToTensor\");\n const $defaultValue = convertToTensor(defaultValue, \"defaultValue\", \"raggedTensorToTensor\", $values.dtype);\n const $rowPartitionTensors = rowPartitionTensors.map((t2, i2) => convertToTensor(t2, `tensors${i2}`, \"raggedTensorToTensor\", \"int32\"));\n const inputs = {\n shape: $shape,\n values: $values,\n defaultValue: $defaultValue,\n rowPartitionTensors: $rowPartitionTensors\n };\n const attrs = { rowPartitionTypes };\n return ENGINE.runKernel(RaggedTensorToTensor, inputs, attrs);\n}\nvar raggedTensorToTensor = op({ raggedTensorToTensor_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/rand.js\nfunction rand_(shape, randFunction, dtype) {\n const size = sizeFromShape(shape);\n let values = null;\n if (dtype == null || dtype === \"float32\") {\n values = new Float32Array(size);\n } else if (dtype === \"int32\") {\n values = new Int32Array(size);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n for (let i2 = 0; i2 < size; i2++) {\n values[i2] = randFunction();\n }\n return ENGINE.makeTensor(values, shape, dtype);\n}\nvar rand = op({ rand_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/rand_util.js\nvar seedrandom = __toESM(require_seedrandom2());\nvar MPRandGauss = class {\n constructor(mean5, stdDeviation, dtype, truncated, seed) {\n this.mean = mean5;\n this.stdDev = stdDeviation;\n this.dtype = dtype;\n this.nextVal = NaN;\n this.truncated = truncated;\n if (this.truncated) {\n this.upper = this.mean + this.stdDev * 2;\n this.lower = this.mean - this.stdDev * 2;\n }\n const seedValue = seed ? seed : Math.random();\n this.random = seedrandom.alea(seedValue.toString());\n }\n nextValue() {\n if (!isNaN(this.nextVal)) {\n const value = this.nextVal;\n this.nextVal = NaN;\n return value;\n }\n let resultX, resultY;\n let isValid = false;\n while (!isValid) {\n let v1, v2, s2;\n do {\n v1 = 2 * this.random() - 1;\n v2 = 2 * this.random() - 1;\n s2 = v1 * v1 + v2 * v2;\n } while (s2 >= 1 || s2 === 0);\n const mul2 = Math.sqrt(-2 * Math.log(s2) / s2);\n resultX = this.mean + this.stdDev * v1 * mul2;\n resultY = this.mean + this.stdDev * v2 * mul2;\n if (!this.truncated || this.isValidTruncated(resultX)) {\n isValid = true;\n }\n }\n if (!this.truncated || this.isValidTruncated(resultY)) {\n this.nextVal = this.convertValue(resultY);\n }\n return this.convertValue(resultX);\n }\n convertValue(value) {\n if (this.dtype == null || this.dtype === \"float32\") {\n return value;\n }\n return Math.round(value);\n }\n isValidTruncated(value) {\n return value <= this.upper && value >= this.lower;\n }\n};\nvar RandGamma = class {\n constructor(alpha, beta, dtype, seed) {\n this.alpha = alpha;\n this.beta = 1 / beta;\n this.dtype = dtype;\n const seedValue = seed ? seed : Math.random();\n this.randu = seedrandom.alea(seedValue.toString());\n this.randn = new MPRandGauss(0, 1, dtype, false, this.randu());\n if (alpha < 1) {\n this.d = alpha + 2 / 3;\n } else {\n this.d = alpha - 1 / 3;\n }\n this.c = 1 / Math.sqrt(9 * this.d);\n }\n nextValue() {\n let x2, v0, v1, x, u, v;\n while (true) {\n do {\n x = this.randn.nextValue();\n v = 1 + this.c * x;\n } while (v <= 0);\n v *= v * v;\n x2 = x * x;\n v0 = 1 - 0.331 * x2 * x2;\n v1 = 0.5 * x2 + this.d * (1 - v + Math.log(v));\n u = this.randu();\n if (u < v0 || Math.log(u) < v1) {\n break;\n }\n }\n v = 1 / this.beta * this.d * v;\n if (this.alpha < 1) {\n v *= Math.pow(this.randu(), 1 / this.alpha);\n }\n return this.convertValue(v);\n }\n convertValue(value) {\n if (this.dtype === \"float32\") {\n return value;\n }\n return Math.round(value);\n }\n};\nvar UniformRandom = class {\n constructor(min7 = 0, max7 = 1, dtype, seed) {\n this.canReturnFloat = () => this.dtype == null || this.dtype === \"float32\";\n this.min = min7;\n this.range = max7 - min7;\n this.dtype = dtype;\n if (seed == null) {\n seed = Math.random();\n }\n if (typeof seed === \"number\") {\n seed = seed.toString();\n }\n if (!this.canReturnFloat() && this.range <= 1) {\n throw new Error(`The difference between ${min7} - ${max7} <= 1 and dtype is not float`);\n }\n this.random = seedrandom.alea(seed);\n }\n convertValue(value) {\n if (this.canReturnFloat()) {\n return value;\n }\n return Math.round(value);\n }\n nextValue() {\n return this.convertValue(this.min + this.range * this.random());\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/random_gamma.js\nfunction randomGamma_(shape, alpha, beta = 1, dtype = \"float32\", seed) {\n if (beta == null) {\n beta = 1;\n }\n if (dtype == null) {\n dtype = \"float32\";\n }\n if (dtype !== \"float32\" && dtype !== \"int32\") {\n throw new Error(`Unsupported data type ${dtype}`);\n }\n const rgamma = new RandGamma(alpha, beta, dtype, seed);\n const res = buffer(shape, dtype);\n for (let i2 = 0; i2 < res.values.length; i2++) {\n res.values[i2] = rgamma.nextValue();\n }\n return res.toTensor();\n}\nvar randomGamma = op({ randomGamma_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/random_normal.js\nfunction randomNormal_(shape, mean5 = 0, stdDev = 1, dtype, seed) {\n if (dtype != null && dtype === \"bool\") {\n throw new Error(`Unsupported data type ${dtype}`);\n }\n const randGauss = new MPRandGauss(mean5, stdDev, dtype, false, seed);\n const res = buffer(shape, dtype);\n for (let i2 = 0; i2 < res.values.length; i2++) {\n res.values[i2] = randGauss.nextValue();\n }\n return res.toTensor();\n}\nvar randomNormal = op({ randomNormal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/random_standard_normal.js\nfunction randomStandardNormal_(shape, dtype, seed) {\n if (dtype != null && dtype === \"bool\") {\n throw new Error(`Unsupported data type ${dtype}`);\n }\n return randomNormal(shape, 0, 1, dtype, seed);\n}\nvar randomStandardNormal = op({ randomStandardNormal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/random_uniform.js\nfunction randomUniform_(shape, minval = 0, maxval = 1, dtype = \"float32\", seed) {\n const res = buffer(shape, dtype);\n const random = new UniformRandom(minval, maxval, null, seed);\n for (let i2 = 0; i2 < res.values.length; i2++) {\n res.values[i2] = random.nextValue();\n }\n return res.toTensor();\n}\nvar randomUniform = op({ randomUniform_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/range.js\nfunction range(start, stop, step5 = 1, dtype = \"float32\") {\n if (step5 === 0) {\n throw new Error(\"Cannot have a step of zero\");\n }\n const attrs = { start, stop, step: step5, dtype };\n return ENGINE.runKernel(Range, {}, attrs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reciprocal.js\nfunction reciprocal_(x) {\n const $x = convertToTensor(x, \"x\", \"reciprocal\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Reciprocal, inputs);\n}\nvar reciprocal = op({ reciprocal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/relu.js\nfunction relu_(x) {\n const $x = convertToTensor(x, \"x\", \"relu\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Relu, inputs);\n}\nvar relu = op({ relu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/relu6.js\nfunction relu6_(x) {\n const $x = convertToTensor(x, \"x\", \"relu6\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Relu6, inputs);\n}\nvar relu6 = op({ relu6_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse.js\nfunction reverse_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n const inputs = { x: $x };\n const attrs = { dims: axis };\n return ENGINE.runKernel(Reverse, inputs, attrs);\n}\nvar reverse = op({ reverse_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse_1d.js\nfunction reverse1d_(x) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n assert($x.rank === 1, () => `Error in reverse1D: x must be rank 1 but got rank ${$x.rank}.`);\n return reverse($x, 0);\n}\nvar reverse1d = op({ reverse1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse_2d.js\nfunction reverse2d_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n assert($x.rank === 2, () => `Error in reverse2D: x must be rank 2 but got rank ${$x.rank}.`);\n return reverse($x, axis);\n}\nvar reverse2d = op({ reverse2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse_3d.js\nfunction reverse3d_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n assert($x.rank === 3, () => `Error in reverse3D: x must be rank 3 but got rank ${$x.rank}.`);\n return reverse($x, axis);\n}\nvar reverse3d = op({ reverse3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse_4d.js\nfunction reverse4d_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n assert($x.rank === 4, () => `Error in reverse4D: x must be rank 4 but got rank ${$x.rank}.`);\n return reverse($x, axis);\n}\nvar reverse4d = op({ reverse4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/round.js\nfunction round_(x) {\n const $x = convertToTensor(x, \"x\", \"round\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Round, inputs);\n}\nvar round2 = op({ round_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/rsqrt.js\nfunction rsqrt_(x) {\n const $x = convertToTensor(x, \"x\", \"rsqrt\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Rsqrt, inputs);\n}\nvar rsqrt = op({ rsqrt_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/selu.js\nfunction selu_(x) {\n const $x = convertToTensor(x, \"x\", \"selu\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Selu, inputs);\n}\nvar selu = op({ selu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/separable_conv2d.js\nfunction separableConv2d_(x, depthwiseFilter, pointwiseFilter, strides, pad3, dilation = [1, 1], dataFormat = \"NHWC\") {\n const $x = convertToTensor(x, \"x\", \"separableConv2d\");\n const $depthwiseFilter = convertToTensor(depthwiseFilter, \"depthwiseFilter\", \"separableConv2d\");\n const $pointwiseFilter = convertToTensor(pointwiseFilter, \"pointwiseFilter\", \"separableConv2d\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n if (dataFormat === \"NCHW\") {\n throw new Error(\"separableConv2d currently does not support dataFormat NCHW; only NHWC is supported\");\n }\n assert(x4D.rank === 4, () => `Error in separableConv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($depthwiseFilter.rank === 4, () => `Error in separableConv2d: depthwise filter must be rank 4, but got rank ${$depthwiseFilter.rank}.`);\n assert($pointwiseFilter.rank === 4, () => `Error in separableConv2d: pointwise filter must be rank 4, but got rank ${$depthwiseFilter.rank}.`);\n assert($pointwiseFilter.shape[0] === 1, () => `Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${$pointwiseFilter.shape[0]}.`);\n assert($pointwiseFilter.shape[1] === 1, () => `Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${$pointwiseFilter.shape[1]}.`);\n const inChannels = $depthwiseFilter.shape[2];\n const channelMultiplier = $depthwiseFilter.shape[3];\n assert($pointwiseFilter.shape[2] === inChannels * channelMultiplier, () => `Error in separableConv2d: the third dimension of pointwise filter must be ${inChannels * channelMultiplier}, but got ${$pointwiseFilter.shape[2]}.`);\n const depthwise = depthwiseConv2d(x4D, $depthwiseFilter, strides, pad3, dataFormat, dilation);\n const pointwiseStride = 1;\n const res = conv2d(depthwise, $pointwiseFilter, pointwiseStride, \"valid\", dataFormat);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar separableConv2d = op({ separableConv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/setdiff1d_async.js\nasync function setdiff1dAsync_(x, y) {\n const $x = convertToTensor(x, \"x\", \"setdiff1d\");\n const $y = convertToTensor(y, \"y\", \"setdiff1d\");\n assert($x.dtype === $y.dtype, () => `x and y should have the same dtype, but got x (${$x.dtype}) and y (${$y.dtype}).`);\n assert($x.rank === 1, () => `x should be 1D tensor, but got x (${$x.shape}).`);\n assert($y.rank === 1, () => `y should be 1D tensor, but got y (${$y.shape}).`);\n const xVals = await $x.data();\n const yVals = await $y.data();\n const ySet = new Set(yVals);\n let outputSize = 0;\n for (let i2 = 0; i2 < xVals.length; i2++) {\n if (!ySet.has(xVals[i2])) {\n outputSize++;\n }\n }\n const buffer2 = new TensorBuffer([outputSize], $x.dtype);\n const indices = new TensorBuffer([outputSize], \"int32\");\n for (let i2 = 0, p2 = 0; i2 < xVals.length; i2++) {\n if (!ySet.has(xVals[i2])) {\n buffer2.values[p2] = xVals[i2];\n indices.values[p2] = i2;\n p2++;\n }\n }\n return [buffer2.toTensor(), indices.toTensor()];\n}\nvar setdiff1dAsync = setdiff1dAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sign.js\nfunction sign_(x) {\n const $x = convertToTensor(x, \"x\", \"sign\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sign, inputs);\n}\nvar sign = op({ sign_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sin.js\nfunction sin_(x) {\n const $x = convertToTensor(x, \"x\", \"sin\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sin, inputs);\n}\nvar sin = op({ sin_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sinh.js\nfunction sinh_(x) {\n const $x = convertToTensor(x, \"x\", \"sinh\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sinh, inputs);\n}\nvar sinh = op({ sinh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice1d.js\nfunction slice1d_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice1d\");\n assert($x.rank === 1, () => `slice1d expects a rank-1 tensor, but got a rank-${$x.rank} tensor`);\n return slice($x, [begin], [size]);\n}\nvar slice1d = op({ slice1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice2d.js\nfunction slice2d_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice2d\");\n assert($x.rank === 2, () => `slice2d expects a rank-2 tensor, but got a rank-${$x.rank} tensor`);\n return slice($x, begin, size);\n}\nvar slice2d = op({ slice2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice3d.js\nfunction slice3d_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice3d\");\n assert($x.rank === 3, () => `slice3d expects a rank-3 tensor, but got a rank-${$x.rank} tensor`);\n return slice($x, begin, size);\n}\nvar slice3d = op({ slice3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice4d.js\nfunction slice4d_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice4d\");\n assert($x.rank === 4, () => `slice4d expects a rank-4 tensor, but got a rank-${$x.rank} tensor`);\n return slice($x, begin, size);\n}\nvar slice4d = op({ slice4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/softmax.js\nfunction softmax_(logits, dim = -1) {\n const $logits = convertToTensor(logits, \"logits\", \"softmax\", \"float32\");\n if (dim === -1) {\n dim = $logits.rank - 1;\n }\n if (dim !== $logits.rank - 1) {\n throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${$logits.rank} and dim was ${dim}`);\n }\n const inputs = { logits: $logits };\n const attrs = { dim };\n return ENGINE.runKernel(Softmax, inputs, attrs);\n}\nvar softmax = op({ softmax_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/spectral/fft.js\nfunction fft_(input2) {\n assert(input2.dtype === \"complex64\", () => `The dtype for tf.spectral.fft() must be complex64 but got ${input2.dtype}.`);\n const inputs = { input: input2 };\n return ENGINE.runKernel(FFT, inputs);\n}\nvar fft = op({ fft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/spectral/ifft.js\nfunction ifft_(input2) {\n assert(input2.dtype === \"complex64\", () => `The dtype for tf.spectral.ifft() must be complex64 but got ${input2.dtype}.`);\n const inputs = { input: input2 };\n return ENGINE.runKernel(IFFT, inputs);\n}\nvar ifft = op({ ifft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/spectral/irfft.js\nfunction irfft_(input2) {\n const innerDimensionSize = input2.shape[input2.shape.length - 1];\n const batch = input2.size / innerDimensionSize;\n let ret;\n if (innerDimensionSize <= 2) {\n const complexInput = reshape(input2, [batch, innerDimensionSize]);\n ret = ifft(complexInput);\n } else {\n const outputShape = [batch, 2 * (innerDimensionSize - 1)];\n const realInput = reshape(real(input2), [batch, innerDimensionSize]);\n const imagInput = reshape(imag(input2), [batch, innerDimensionSize]);\n const realConjugate = reverse(slice(realInput, [0, 1], [batch, innerDimensionSize - 2]), 1);\n const imagConjugate = mul(reverse(slice(imagInput, [0, 1], [batch, innerDimensionSize - 2]), 1), scalar(-1));\n const r2 = concat([realInput, realConjugate], 1);\n const i2 = concat([imagInput, imagConjugate], 1);\n const complexInput = reshape(complex(r2, i2), [outputShape[0], outputShape[1]]);\n ret = ifft(complexInput);\n }\n ret = real(ret);\n if (input2.rank === 3 && input2.shape[0] !== 0) {\n const temp = ret;\n const batch2 = input2.shape[0];\n ret = reshape(ret, [batch2, ret.shape[0] / batch2, ret.shape[1]]);\n temp.dispose();\n }\n return ret;\n}\nvar irfft = op({ irfft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/split.js\nfunction split_(x, numOrSizeSplits, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"split\");\n const inputs = { x: $x };\n const attr = { numOrSizeSplits, axis };\n return ENGINE.runKernel(SplitV, inputs, attr);\n}\nvar split = op({ split_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/spectral/rfft.js\nfunction rfft_(input2, fftLength) {\n assert(input2.dtype === \"float32\", () => `The dtype for rfft() must be real value but got ${input2.dtype}`);\n let innerDimensionSize = input2.shape[input2.shape.length - 1];\n const batch = input2.size / innerDimensionSize;\n let adjustedInput;\n if (fftLength != null && fftLength < innerDimensionSize) {\n const begin = input2.shape.map((v) => 0);\n const size = input2.shape.map((v) => v);\n size[input2.shape.length - 1] = fftLength;\n adjustedInput = slice(input2, begin, size);\n innerDimensionSize = fftLength;\n } else if (fftLength != null && fftLength > innerDimensionSize) {\n const zerosShape = input2.shape.map((v) => v);\n zerosShape[input2.shape.length - 1] = fftLength - innerDimensionSize;\n adjustedInput = concat([input2, zeros(zerosShape)], input2.shape.length - 1);\n innerDimensionSize = fftLength;\n } else {\n adjustedInput = input2;\n }\n const zerosInput = zerosLike(adjustedInput);\n const complexInput = reshape(complex(adjustedInput, zerosInput), [batch, innerDimensionSize]);\n const ret = fft(complexInput);\n const half = Math.floor(innerDimensionSize / 2) + 1;\n const realValues = real(ret);\n const imagValues = imag(ret);\n const realComplexConjugate = split(realValues, [half, innerDimensionSize - half], realValues.shape.length - 1);\n const imagComplexConjugate = split(imagValues, [half, innerDimensionSize - half], imagValues.shape.length - 1);\n const outputShape = adjustedInput.shape.slice();\n outputShape[adjustedInput.shape.length - 1] = half;\n return reshape(complex(realComplexConjugate[0], imagComplexConjugate[0]), outputShape);\n}\nvar rfft = op({ rfft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/squared_difference.js\nfunction squaredDifference_(a, b) {\n let $a = convertToTensor(a, \"a\", \"squaredDifference\");\n let $b = convertToTensor(b, \"b\", \"squaredDifference\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n const attrs = {};\n return ENGINE.runKernel(SquaredDifference, inputs, attrs);\n}\nvar squaredDifference = op({ squaredDifference_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/squeeze.js\nfunction squeeze_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"squeeze\", \"string_or_numeric\");\n return reshape($x, squeezeShape($x.shape, axis).newShape);\n}\nvar squeeze = op({ squeeze_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/stack.js\nfunction stack_(tensors, axis = 0) {\n const $tensors = convertToTensorArray(tensors, \"tensors\", \"stack\", \"string_or_numeric\");\n assert($tensors.length >= 1, () => \"Pass at least one tensor to tf.stack\");\n if ($tensors.length > 0) {\n assert(axis <= $tensors[0].rank, () => \"Axis must be <= rank of the tensor\");\n }\n const inputs = $tensors;\n const attrs = { axis };\n return ENGINE.runKernel(Pack, inputs, attrs);\n}\nvar stack = op({ stack_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/step.js\nfunction step_(x, alpha = 0) {\n const $x = convertToTensor(x, \"x\", \"step\");\n const inputs = { x: $x };\n const attrs = { alpha };\n return ENGINE.runKernel(Step, inputs, attrs);\n}\nvar step = op({ step_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/strided_slice.js\nfunction stridedSlice_(x, begin, end, strides, beginMask = 0, endMask = 0, ellipsisMask = 0, newAxisMask = 0, shrinkAxisMask = 0) {\n const $x = convertToTensor(x, \"x\", \"stridedSlice\", \"string_or_numeric\");\n const inputs = { x: $x };\n const attrs = {\n begin,\n end,\n strides,\n beginMask,\n endMask,\n ellipsisMask,\n newAxisMask,\n shrinkAxisMask\n };\n return ENGINE.runKernel(StridedSlice, inputs, attrs);\n}\nvar stridedSlice = op({ stridedSlice_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tan.js\nfunction tan_(x) {\n const $x = convertToTensor(x, \"x\", \"tan\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Tan, inputs);\n}\nvar tan = op({ tan_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor1d.js\nfunction tensor1d(values, dtype) {\n assertNonNull(values);\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 1) {\n throw new Error(\"tensor1d() requires values to be a flat/TypedArray\");\n }\n const shape = null;\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor2d.js\nfunction tensor2d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 2) {\n throw new Error(\"tensor2d() requires shape to have two numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 2 && inferredShape.length !== 1) {\n throw new Error(\"tensor2d() requires values to be number[][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor2d() requires shape to be provided when `values` are a flat/TypedArray\");\n }\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor4d.js\nfunction tensor4d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 4) {\n throw new Error(\"tensor4d() requires shape to have four numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 4 && inferredShape.length !== 1) {\n throw new Error(\"tensor4d() requires values to be number[][][][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor4d() requires shape to be provided when `values` are a flat array\");\n }\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor5d.js\nfunction tensor5d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 5) {\n throw new Error(\"tensor5d() requires shape to have five numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 5 && inferredShape.length !== 1) {\n throw new Error(\"tensor5d() requires values to be number[][][][][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor5d() requires shape to be provided when `values` are a flat array\");\n }\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor6d.js\nfunction tensor6d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 6) {\n throw new Error(\"tensor6d() requires shape to have six numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 6 && inferredShape.length !== 1) {\n throw new Error(\"tensor6d() requires values to be number[][][][][][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor6d() requires shape to be provided when `values` are a flat array\");\n }\n shape = shape || inferredShape;\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/topk.js\nfunction topk_(x, k = 1, sorted = true) {\n const $x = convertToTensor(x, \"x\", \"topk\");\n if ($x.rank === 0) {\n throw new Error(\"topk() expects the input to be of rank 1 or higher\");\n }\n const lastDim = $x.shape[$x.shape.length - 1];\n if (k < 0) {\n throw new Error(`'k' passed to topk() must be >= 0 but got ${k}`);\n }\n if (k > lastDim) {\n throw new Error(`'k' passed to topk() must be <= the last dimension (${lastDim}) but got ${k}`);\n }\n const inputs = { x: $x };\n const attrs = { k, sorted };\n const [values, indices] = ENGINE.runKernel(TopK, inputs, attrs);\n return { values, indices };\n}\nvar topk = op({ topk_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/truncated_normal.js\nfunction truncatedNormal_(shape, mean5 = 0, stdDev = 1, dtype, seed) {\n if (dtype != null && dtype === \"bool\") {\n throw new Error(`Unsupported data type $ { dtype }`);\n }\n const randGauss = new MPRandGauss(mean5, stdDev, dtype, true, seed);\n const res = buffer(shape, dtype);\n for (let i2 = 0; i2 < res.values.length; i2++) {\n res.values[i2] = randGauss.nextValue();\n }\n return res.toTensor();\n}\nvar truncatedNormal = op({ truncatedNormal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/unique.js\nfunction unique_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"unique\", \"string_or_numeric\");\n assert($x.rank > 0, () => \"The input tensor must be at least 1D\");\n const inputs = { x: $x };\n const attrs = { axis };\n const [values, indices] = ENGINE.runKernel(Unique, inputs, attrs);\n return { values, indices };\n}\nvar unique = op({ unique_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/unsorted_segment_sum.js\nfunction unsortedSegmentSum_(x, segmentIds, numSegments) {\n const $x = convertToTensor(x, \"x\", \"unsortedSegmentSum\");\n const $segmentIds = convertToTensor(segmentIds, \"segmentIds\", \"unsortedSegmentSum\", \"int32\");\n assert(isInt(numSegments), () => \"numSegments must be of dtype int\");\n const inputs = { x: $x, segmentIds: $segmentIds };\n const attrs = { numSegments };\n return ENGINE.runKernel(UnsortedSegmentSum, inputs, attrs);\n}\nvar unsortedSegmentSum = op({ unsortedSegmentSum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/unstack.js\nfunction unstack_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"unstack\", \"string_or_numeric\");\n assert(axis >= -$x.shape.length && axis < $x.shape.length, () => `Axis = ${axis} is not in [-${$x.shape.length}, ${$x.shape.length})`);\n const inputs = { value: $x };\n const attrs = { axis };\n return ENGINE.runKernel(Unpack, inputs, attrs);\n}\nvar unstack = op({ unstack_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/upper_bound.js\nfunction upperBound(sortedSequence, values) {\n return searchSorted(sortedSequence, values, \"right\");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/variable.js\nfunction variable(initialValue, trainable = true, name, dtype) {\n return ENGINE.makeVariable(initialValue, trainable, name, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/where_impl.js\nfunction whereImpl(condShape, condVals) {\n const indices = [];\n for (let i2 = 0; i2 < condVals.length; i2++) {\n if (condVals[i2]) {\n indices.push(i2);\n }\n }\n const inBuffer = buffer(condShape, \"int32\");\n const out = buffer([indices.length, condShape.length], \"int32\");\n for (let i2 = 0; i2 < indices.length; i2++) {\n const loc = inBuffer.indexToLoc(indices[i2]);\n const offset = i2 * condShape.length;\n out.values.set(loc, offset);\n }\n return out.toTensor();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/where_async.js\nasync function whereAsync_(condition) {\n const $condition = convertToTensor(condition, \"condition\", \"whereAsync\", \"bool\");\n const vals = await $condition.data();\n const res = whereImpl($condition.shape, vals);\n if (condition !== $condition) {\n $condition.dispose();\n }\n return res;\n}\nvar whereAsync = whereAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/boolean_mask.js\nasync function booleanMaskAsync_(tensor2, mask, axis) {\n const $tensor = convertToTensor(tensor2, \"tensor\", \"boolMask\");\n const $mask = convertToTensor(mask, \"mask\", \"boolMask\", \"bool\");\n const axisFrom = axis == null ? 0 : axis;\n const maskDim = $mask.rank;\n const tensorShape = $tensor.shape;\n assert(maskDim > 0, () => \"mask cannot be scalar\");\n assertShapesMatch(tensorShape.slice(axisFrom, axisFrom + maskDim), $mask.shape, `mask's shape must match the first K dimensions of tensor's shape,`);\n let leadingSize = 1;\n for (let i2 = axisFrom; i2 < axisFrom + maskDim; i2++) {\n leadingSize *= tensorShape[i2];\n }\n const targetTensorShape = tensorShape.slice(0, axisFrom).concat([leadingSize], tensorShape.slice(axisFrom + maskDim));\n const reshapedTensor = reshape($tensor, targetTensorShape);\n const reshapedMask = reshape($mask, [-1]);\n const positivePositions = await whereAsync(reshapedMask);\n const indices = squeeze(positivePositions, [1]);\n const res = gather(reshapedTensor, indices, axisFrom);\n if (tensor2 !== $tensor) {\n $tensor.dispose();\n }\n if (mask !== $mask) {\n $mask.dispose();\n }\n indices.dispose();\n reshapedTensor.dispose();\n reshapedMask.dispose();\n positivePositions.dispose();\n return res;\n}\nvar booleanMaskAsync = booleanMaskAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/moving_average.js\nfunction movingAverage_(v, x, decay, step5, zeroDebias = true) {\n const $v = convertToTensor(v, \"v\", \"movingAverage\");\n const $x = convertToTensor(x, \"x\", \"movingAverage\");\n const $decay = convertToTensor(decay, \"decay\", \"movingAverage\");\n assertTypesMatch($v, $x);\n assert(arraysEqual($v.shape, $x.shape), () => \"Shape mismatch in v and x\");\n const one = scalar(1);\n const oneMinusDecay = sub(one, $decay);\n let update = mul(sub($x, $v), oneMinusDecay);\n if (zeroDebias) {\n assert(step5 != null, () => \"When using zeroDebias: true, step is required.\");\n const $step = convertToTensor(step5, \"step\", \"movingAverage\");\n update = div(update, sub(one, pow($decay, $step)));\n }\n return add2($v, update);\n}\nvar movingAverage = op({ movingAverage_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/scatter_nd.js\nfunction scatterND_(indices, updates, shape) {\n const $indices = convertToTensor(indices, \"indices\", \"scatterND\", \"int32\");\n const $updates = convertToTensor(updates, \"updates\", \"scatterND\");\n validateInput($updates, $indices, shape);\n const inputs = { indices: $indices, updates: $updates };\n const attrs = { shape };\n return ENGINE.runKernel(ScatterNd, inputs, attrs);\n}\nvar scatterND = op({ scatterND_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse_to_dense_util.js\nfunction validateInput2(sparseIndices, sparseValues, outputShape, defaultValues) {\n if (sparseIndices.dtype !== \"int32\") {\n throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${sparseIndices.dtype}.`);\n }\n if (sparseIndices.rank > 2) {\n throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${sparseIndices.shape}.`);\n }\n const numElems = sparseIndices.rank > 0 ? sparseIndices.shape[0] : 1;\n const numDims = sparseIndices.rank > 1 ? sparseIndices.shape[1] : 1;\n if (outputShape.length !== numDims) {\n throw new Error(`outputShape has incorrect number of elements:, ${outputShape.length}, should be: ${numDims}.`);\n }\n const numValues = sparseValues.size;\n if (!(sparseValues.rank === 0 || sparseValues.rank === 1 && numValues === numElems)) {\n throw new Error(`sparseValues has incorrect shape ${sparseValues.shape}, should be [] or [${numElems}]`);\n }\n if (sparseValues.dtype !== defaultValues.dtype) {\n throw new Error(\"sparseValues.dtype must match defaultValues.dtype\");\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse_to_dense.js\nfunction sparseToDense_(sparseIndices, sparseValues, outputShape, defaultValue = 0) {\n const $sparseIndices = convertToTensor(sparseIndices, \"sparseIndices\", \"sparseToDense\", \"int32\");\n const $sparseValues = convertToTensor(sparseValues, \"sparseValues\", \"sparseToDense\", \"string_or_numeric\");\n const $defaultValue = convertToTensor(defaultValue, \"defaultValue\", \"sparseToDense\", $sparseValues.dtype);\n validateInput2($sparseIndices, $sparseValues, outputShape, $defaultValue);\n const inputs = {\n sparseIndices: $sparseIndices,\n sparseValues: $sparseValues,\n defaultValue: $defaultValue\n };\n const attrs = { outputShape };\n return ENGINE.runKernel(SparseToDense, inputs, attrs);\n}\nvar sparseToDense = op({ sparseToDense_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/gather_nd.js\nfunction gatherND_(x, indices) {\n const $indices = convertToTensor(indices, \"indices\", \"gatherND\", \"int32\");\n const $x = convertToTensor(x, \"x\", \"gatherND\", \"string_or_numeric\");\n const inputs = { params: $x, indices: $indices };\n return ENGINE.runKernel(GatherNd, inputs);\n}\nvar gatherND = op({ gatherND_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dropout_util.js\nfunction getNoiseShape(x, noiseShape) {\n if (noiseShape == null) {\n return x.shape.slice();\n }\n if (arraysEqual(x.shape, noiseShape)) {\n return noiseShape;\n }\n if (x.shape.length === noiseShape.length) {\n const newDimension = [];\n for (let i2 = 0; i2 < x.shape.length; i2++) {\n if (noiseShape[i2] == null && x.shape[i2] != null) {\n newDimension.push(x.shape[i2]);\n } else {\n newDimension.push(noiseShape[i2]);\n }\n }\n return newDimension;\n }\n return noiseShape;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dropout.js\nfunction dropout_(x, rate, noiseShape, seed) {\n const $x = convertToTensor(x, \"x\", \"dropout\");\n assert($x.dtype === \"float32\", () => `x has to be a floating point tensor since it's going to be scaled, but got a ${$x.dtype} tensor instead.`);\n assert(rate >= 0 && rate < 1, () => `rate must be a float in the range [0, 1), but got ${rate}.`);\n if (rate === 0) {\n return x instanceof Tensor ? $x.clone() : $x;\n }\n const $noiseShape = getNoiseShape($x, noiseShape);\n const keepProb = 1 - rate;\n const multiplier = div(floor(add2(randomUniform($noiseShape, 0, 1, \"float32\", seed), keepProb)), keepProb);\n return mul($x, multiplier);\n}\nvar dropout = op({ dropout_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal_ops_util.js\nfunction enclosingPowerOfTwo(value) {\n return Math.floor(Math.pow(2, Math.ceil(Math.log(value) / Math.log(2))));\n}\nfunction cosineWindow(windowLength, a, b) {\n const even = 1 - windowLength % 2;\n const newValues = new Float32Array(windowLength);\n for (let i2 = 0; i2 < windowLength; ++i2) {\n const cosArg = 2 * Math.PI * i2 / (windowLength + even - 1);\n newValues[i2] = a - b * Math.cos(cosArg);\n }\n return tensor1d(newValues, \"float32\");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/in_top_k.js\nasync function inTopKAsync_(predictions, targets, k = 1) {\n const $predictions = convertToTensor(predictions, \"predictions\", \"inTopK\");\n const $targets = convertToTensor(targets, \"targets\", \"inTopK\");\n assert($predictions.rank > 1, () => `inTopK() expects the predictions to be of rank 2 or higher, but got ${$predictions.rank}`);\n assert($predictions.rank - 1 === $targets.rank, () => `predictions rank should be 1 larger than targets rank, but got predictions rank ${$predictions.rank} and targets rank ${$targets.rank}`);\n assertShapesMatch($predictions.shape.slice(0, $predictions.shape.length - 1), $targets.shape, `predictions's shape should be align with the targets' shape, except the last dimension.`);\n const lastDim = $predictions.shape[$predictions.shape.length - 1];\n assert(k > 0 && k <= lastDim, () => `'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${lastDim}), but got ${k}`);\n const predictionsVals = await $predictions.data();\n const targetsVals = await $targets.data();\n const [batch, size] = [predictionsVals.length / lastDim, lastDim];\n const precision3 = getTypedArrayFromDType(\"bool\", batch);\n for (let b = 0; b < batch; b++) {\n const offset = b * size;\n const vals = predictionsVals.subarray(offset, offset + size);\n const valAndInd = [];\n for (let i2 = 0; i2 < vals.length; i2++) {\n valAndInd.push({ value: vals[i2], index: i2 });\n }\n valAndInd.sort((a, b2) => b2.value - a.value);\n precision3[b] = 0;\n for (let i2 = 0; i2 < k; i2++) {\n if (valAndInd[i2].index === targetsVals[b]) {\n precision3[b] = 1;\n break;\n }\n }\n }\n if (predictions !== $predictions) {\n $predictions.dispose();\n }\n if (targets !== $targets) {\n $targets.dispose();\n }\n return tensor(precision3, $targets.shape, \"bool\");\n}\nvar inTopKAsync = inTopKAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused_ops.js\nvar fused_ops_exports = {};\n__export(fused_ops_exports, {\n conv2d: () => conv2d2,\n depthwiseConv2d: () => depthwiseConv2d2,\n matMul: () => matMul2\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv2d_backprop_filter.js\nfunction conv2DBackpropFilter_(x, dy, filterShape, strides, pad3, dataFormat = \"NHWC\", dimRoundingMode) {\n let x4D = x;\n if (x.rank === 3) {\n x4D = reshape(x, [1, x.shape[0], x.shape[1], x.shape[2]]);\n }\n let dy4D = dy;\n if (dy4D.rank === 3) {\n dy4D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in conv2dDerFilter: input must be rank 4, but got shape ${x4D.shape}.`);\n assert(dy4D.rank === 4, () => `Error in conv2dDerFilter: dy must be rank 4, but got shape ${dy4D.shape}.`);\n assert(filterShape.length === 4, () => `Error in conv2dDerFilter: filterShape must be length 4, but got ${filterShape}.`);\n const inDepth = dataFormat === \"NHWC\" ? x4D.shape[3] : x4D.shape[1];\n const outDepth = dataFormat === \"NHWC\" ? dy4D.shape[3] : dy4D.shape[1];\n assert(inDepth === filterShape[2], () => `Error in conv2dDerFilter: depth of input ${inDepth}) must match input depth in filter (${filterShape[2]}.`);\n assert(outDepth === filterShape[3], () => `Error in conv2dDerFilter: depth of dy (${outDepth}) must match output depth for filter (${filterShape[3]}).`);\n checkPadOnDimRoundingMode(\"conv2dDerFilter\", pad3, dimRoundingMode);\n const inputs = { x: x4D, dy: dy4D };\n const attrs = { strides, pad: pad3, dataFormat, dimRoundingMode, filterShape };\n return ENGINE.runKernel(Conv2DBackpropFilter, inputs, attrs);\n}\nvar conv2DBackpropFilter = op({ conv2DBackpropFilter_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused_util.js\nfunction getFusedDyActivation(dy, y, activation2) {\n if (activation2 == null || activation2 === \"linear\") {\n return dy;\n }\n if (activation2 === \"relu\") {\n return mul(dy, step(y));\n }\n throw new Error(`Cannot compute gradient for fused activation ${activation2}.`);\n}\nfunction getFusedBiasGradient(bias, dyActivation) {\n let res = dyActivation;\n const reduceAxes = getReductionAxes(bias.shape, dyActivation.shape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, bias.shape);\n}\nfunction applyActivation(x, activation2, preluActivationWeights, leakyreluAlpha) {\n if (activation2 === \"linear\") {\n return x;\n } else if (activation2 === \"relu\") {\n return relu(x);\n } else if (activation2 === \"elu\") {\n return elu(x);\n } else if (activation2 === \"relu6\") {\n return relu6(x);\n } else if (activation2 === \"prelu\") {\n return prelu(x, preluActivationWeights);\n } else if (activation2 === \"leakyrelu\") {\n return leakyRelu(x, leakyreluAlpha);\n } else if (activation2 === \"sigmoid\") {\n return sigmoid(x);\n }\n throw new Error(`Unknown fused activation ${activation2}.`);\n}\nvar shouldFuse = (gradientDepth, activation2) => {\n const gradientMode = gradientDepth > 0;\n return !gradientMode || activation2 === \"linear\";\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused/conv2d.js\nfunction fusedConv2d_({ x, filter, strides, pad: pad3, dataFormat = \"NHWC\", dilations = [1, 1], dimRoundingMode, bias, activation: activation2 = \"linear\", preluActivationWeights, leakyreluAlpha }) {\n activation2 = activation2 || \"linear\";\n if (shouldFuse(ENGINE.state.gradientDepth, activation2) === false) {\n assert(dataFormat === \"NHWC\", () => `Error in fused conv2d: got dataFormat of ${dataFormat} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);\n let result = conv2d(x, filter, strides, pad3, dataFormat, dilations, dimRoundingMode);\n if (bias != null) {\n result = add2(result, bias);\n }\n return applyActivation(result, activation2, preluActivationWeights, leakyreluAlpha);\n }\n const $x = convertToTensor(x, \"x\", \"conv2d\", \"float32\");\n const $filter = convertToTensor(filter, \"filter\", \"conv2d\", \"float32\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in fused conv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($filter.rank === 4, () => `Error in fused conv2d: filter must be rank 4, but got rank ${$filter.rank}.`);\n checkPadOnDimRoundingMode(\"fused conv2d\", pad3, dimRoundingMode);\n const inputChannels = dataFormat === \"NHWC\" ? x4D.shape[3] : x4D.shape[1];\n assert($filter.shape[2] === inputChannels, () => `Error in conv2d: depth of input (${inputChannels}) must match input depth for filter ${$filter.shape[2]}.`);\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in conv2D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad3, dimRoundingMode);\n let $bias;\n if (bias != null) {\n $bias = convertToTensor(bias, \"bias\", \"fused conv2d\");\n [$bias] = makeTypesMatch($bias, $x);\n if (dataFormat === \"NHWC\") {\n assertAndGetBroadcastShape(convInfo.outShape, $bias.shape);\n } else {\n assert($bias.shape.length <= 1, () => `Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${$bias.shape.length}.`);\n assert($bias.shape.length === 0 || $bias.shape[0] === convInfo.outChannels || $bias.shape[0] === 1, () => `Error in fused conv2d: bias shape (${$bias.shape}) is not compatible with the number of output channels (${convInfo.outChannels})`);\n }\n }\n let $preluActivationWeights;\n if (preluActivationWeights != null) {\n const alphaShape = preluActivationWeights.shape;\n assert(alphaShape.length <= 1 || alphaShape.length === 3, () => `Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${alphaShape.length}.`);\n if (alphaShape.length === 1) {\n assert(alphaShape[0] === 1 || alphaShape[0] === convInfo.outChannels, () => `Error in fused conv2d: PReLU activation weights (${alphaShape}) is not compatible with the number of output channels (${convInfo.outChannels}).`);\n } else if (alphaShape.length === 3) {\n try {\n assertAndGetBroadcastShape(alphaShape, convInfo.outShape);\n } catch (e2) {\n const errMsg = `Error in fused conv2d: PReLU activation weights (${alphaShape}) is not compatible with the output shape of the conv2d (${convInfo.outShape}).`;\n throw Error(errMsg);\n }\n }\n $preluActivationWeights = convertToTensor(preluActivationWeights, \"prelu weights\", \"fused conv2d\");\n }\n const grad2 = (dy, saved) => {\n assert(dataFormat === \"NHWC\", () => `Error in gradient of fused conv2D: got dataFormat of ${dataFormat} but only NHWC is currently supported.`);\n const [$filter2, x4D2, y, $bias2] = saved;\n const dyActivation = getFusedDyActivation(dy, y, activation2);\n assert(tupleValuesAreOne(dilations), () => `Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);\n const xDer = conv2DBackpropInput(x4D2.shape, dyActivation, $filter2, strides, pad3);\n const filterDer = conv2DBackpropFilter(x4D2, dyActivation, $filter2.shape, strides, pad3);\n const der = [xDer, filterDer];\n if ($bias2 != null) {\n const biasDer = getFusedBiasGradient($bias2, dyActivation);\n der.push(biasDer);\n }\n return der;\n };\n const inputs = {\n x: x4D,\n filter: $filter,\n bias: $bias,\n preluActivationWeights: $preluActivationWeights\n };\n const attrs = {\n strides,\n pad: pad3,\n dataFormat,\n dilations,\n dimRoundingMode,\n activation: activation2,\n leakyreluAlpha\n };\n if (bias == null) {\n const customOp = customGrad((x4D2, filter2, save) => {\n let res = ENGINE.runKernel(FusedConv2D, inputs, attrs);\n save([filter2, x4D2, res]);\n if (reshapedTo4D) {\n res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return { value: res, gradFunc: grad2 };\n });\n return customOp(x4D, $filter);\n } else {\n const customOpWithBias = customGrad((x4D2, filter2, bias2, save) => {\n let res = ENGINE.runKernel(FusedConv2D, inputs, attrs);\n save([filter2, x4D2, res, bias2]);\n if (reshapedTo4D) {\n res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return { value: res, gradFunc: grad2 };\n });\n return customOpWithBias(x4D, $filter, $bias);\n }\n}\nvar conv2d2 = op({ fusedConv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/depthwise_conv2d_native_backprop_filter.js\nfunction depthwiseConv2dNativeBackpropFilter_(x, dy, filterShape, strides, pad3, dilations = [1, 1], dimRoundingMode) {\n let x4D = x;\n if (x.rank === 3) {\n x4D = reshape(x, [1, x.shape[0], x.shape[1], x.shape[2]]);\n }\n let dy4D = dy;\n if (dy4D.rank === 3) {\n dy4D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2]]);\n }\n const inputs = { x: x4D, dy: dy4D };\n const attrs = { strides, pad: pad3, dimRoundingMode, dilations, filterShape };\n return ENGINE.runKernel(DepthwiseConv2dNativeBackpropFilter, inputs, attrs);\n}\nvar depthwiseConv2dNativeBackpropFilter = op({ depthwiseConv2dNativeBackpropFilter_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/depthwise_conv2d_native_backprop_input.js\nfunction depthwiseConv2dNativeBackpropInput_(xShape, dy, filter, strides, pad3, dilations = [1, 1], dimRoundingMode) {\n let dy4D = dy;\n let reshapedTo4D = false;\n if (dy.rank === 3) {\n reshapedTo4D = true;\n dy4D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2]]);\n }\n const inputs = { dy: dy4D, filter };\n const attrs = { strides, pad: pad3, dimRoundingMode, dilations, inputShape: xShape };\n const res = ENGINE.runKernel(DepthwiseConv2dNativeBackpropInput, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar depthwiseConv2dNativeBackpropInput = op({ depthwiseConv2dNativeBackpropInput_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused/depthwise_conv2d.js\nfunction fusedDepthwiseConv2d_({ x, filter, strides, pad: pad3, dataFormat = \"NHWC\", dilations = [1, 1], dimRoundingMode, bias, activation: activation2 = \"linear\", preluActivationWeights, leakyreluAlpha }) {\n if (shouldFuse(ENGINE.state.gradientDepth, activation2) === false) {\n let result = depthwiseConv2d(x, filter, strides, pad3, dataFormat, dilations, dimRoundingMode);\n if (bias != null) {\n result = add2(result, bias);\n }\n return applyActivation(result, activation2, preluActivationWeights, leakyreluAlpha);\n }\n const $x = convertToTensor(x, \"x\", \"depthwiseConv2d\", \"float32\");\n const $filter = convertToTensor(filter, \"filter\", \"depthwiseConv2d\", \"float32\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in fused depthwiseConv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($filter.rank === 4, () => `Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${$filter.rank}.`);\n assert(x4D.shape[3] === $filter.shape[2], () => `Error in fused depthwiseConv2d: number of input channels (${x4D.shape[3]}) must match the inChannels dimension in filter ${$filter.shape[2]}.`);\n if (dilations == null) {\n dilations = [1, 1];\n }\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n checkPadOnDimRoundingMode(\"fused depthwiseConv2d\", pad3, dimRoundingMode);\n const convInfo = computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad3, dimRoundingMode, true);\n let $bias;\n if (bias != null) {\n $bias = convertToTensor(bias, \"bias\", \"fused conv2d\");\n [$bias] = makeTypesMatch($bias, $x);\n assertAndGetBroadcastShape(convInfo.outShape, $bias.shape);\n }\n let $preluActivationWeights;\n if (preluActivationWeights != null) {\n $preluActivationWeights = convertToTensor(preluActivationWeights, \"prelu weights\", \"fused depthwiseConv2d\");\n }\n const grad2 = (dy, saved) => {\n assert(tupleValuesAreOne(dilations), () => `Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${dilations}'`);\n const [$filter2, x4D2, y, bias2] = saved;\n const dyActivation = getFusedDyActivation(dy, y, activation2);\n const xDer = depthwiseConv2dNativeBackpropInput(x4D2.shape, dyActivation, $filter2, strides, pad3, dilations, dimRoundingMode);\n const filterDer = depthwiseConv2dNativeBackpropFilter(x4D2, dyActivation, $filter2.shape, strides, pad3, dilations, dimRoundingMode);\n if (bias2 != null) {\n const biasDer = getFusedBiasGradient($bias, dyActivation);\n return [xDer, filterDer, biasDer];\n }\n return [xDer, filterDer];\n };\n const inputs = {\n x: x4D,\n filter: $filter,\n bias: $bias,\n preluActivationWeights: $preluActivationWeights\n };\n const attrs = {\n strides,\n pad: pad3,\n dataFormat,\n dilations,\n dimRoundingMode,\n activation: activation2,\n leakyreluAlpha\n };\n if (bias == null) {\n const customOp = customGrad((x4D2, filter2, save) => {\n let res = ENGINE.runKernel(FusedDepthwiseConv2D, inputs, attrs);\n save([filter2, x4D2, res]);\n if (reshapedTo4D) {\n res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return { value: res, gradFunc: grad2 };\n });\n return customOp(x4D, $filter);\n } else {\n const customOpWithBias = customGrad((x4D2, filter2, bias2, save) => {\n let res = ENGINE.runKernel(FusedDepthwiseConv2D, inputs, attrs);\n save([filter2, x4D2, res, bias2]);\n if (reshapedTo4D) {\n res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return { value: res, gradFunc: grad2 };\n });\n return customOpWithBias(x4D, $filter, $bias);\n }\n}\nvar depthwiseConv2d2 = op({ fusedDepthwiseConv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused/mat_mul.js\nfunction fusedMatMul_({ a, b, transposeA = false, transposeB = false, bias, activation: activation2 = \"linear\", preluActivationWeights, leakyreluAlpha = 0.2 }) {\n if (shouldFuse(ENGINE.state.gradientDepth, activation2) === false) {\n let result = matMul(a, b, transposeA, transposeB);\n if (bias != null) {\n result = add2(result, bias);\n }\n return applyActivation(result, activation2, preluActivationWeights, leakyreluAlpha);\n }\n let $a = convertToTensor(a, \"a\", \"fused matMul\");\n let $b = convertToTensor(b, \"b\", \"fused matMul\");\n [$a, $b] = makeTypesMatch($a, $b);\n const innerShapeA = transposeA ? $a.shape[$a.rank - 2] : $a.shape[$a.rank - 1];\n const innerShapeB = transposeB ? $b.shape[$b.rank - 1] : $b.shape[$b.rank - 2];\n const outerShapeA = transposeA ? $a.shape[$a.rank - 1] : $a.shape[$a.rank - 2];\n const outerShapeB = transposeB ? $b.shape[$b.rank - 2] : $b.shape[$b.rank - 1];\n const outerDimsA = $a.shape.slice(0, -2);\n const outerDimsB = $b.shape.slice(0, -2);\n const batchDimA = sizeFromShape(outerDimsA);\n const batchDimB = sizeFromShape(outerDimsB);\n assert(innerShapeA === innerShapeB, () => `Error in fused matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${$a.shape} and ${$b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const outShapeOuterDims = assertAndGetBroadcastShape($a.shape.slice(0, -2), $b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n const a3D = transposeA ? reshape($a, [batchDimA, innerShapeA, outerShapeA]) : reshape($a, [batchDimA, outerShapeA, innerShapeA]);\n const b3D = transposeB ? reshape($b, [batchDimB, outerShapeB, innerShapeB]) : reshape($b, [batchDimB, innerShapeB, outerShapeB]);\n let $bias;\n if (bias != null) {\n $bias = convertToTensor(bias, \"bias\", \"fused matMul\");\n [$bias] = makeTypesMatch($bias, $a);\n assertAndGetBroadcastShape(outShape, $bias.shape);\n }\n let $preluActivationWeights;\n if (preluActivationWeights != null) {\n $preluActivationWeights = convertToTensor(preluActivationWeights, \"prelu weights\", \"fused matMul\");\n }\n const grad2 = (dy, saved) => {\n const [a3D2, b3D2, y, $bias2] = saved;\n const dyActivation = getFusedDyActivation(reshape(dy, y.shape), y, activation2);\n let aDer;\n let bDer;\n if (!transposeA && !transposeB) {\n aDer = matMul(dyActivation, b3D2, false, true);\n bDer = matMul(a3D2, dyActivation, true, false);\n } else if (!transposeA && transposeB) {\n aDer = matMul(dyActivation, b3D2, false, false);\n bDer = matMul(dyActivation, a3D2, true, false);\n } else if (transposeA && !transposeB) {\n aDer = matMul(b3D2, dyActivation, false, true);\n bDer = matMul(a3D2, dyActivation, false, false);\n } else {\n aDer = matMul(b3D2, dyActivation, true, true);\n bDer = matMul(dyActivation, a3D2, true, true);\n }\n if (bias != null) {\n const biasDer = getFusedBiasGradient($bias2, dyActivation);\n return [aDer, bDer, biasDer];\n } else {\n return [aDer, bDer];\n }\n };\n const inputs = {\n a: a3D,\n b: b3D,\n bias: $bias,\n preluActivationWeights: $preluActivationWeights\n };\n const attrs = { transposeA, transposeB, activation: activation2, leakyreluAlpha };\n if (bias == null) {\n const customOp = customGrad((a3D2, b3D2, save) => {\n const res = ENGINE.runKernel(_FusedMatMul, inputs, attrs);\n save([a3D2, b3D2, res]);\n return { value: reshape(res, outShape), gradFunc: grad2 };\n });\n return customOp(a3D, b3D);\n } else {\n const customOpWithBias = customGrad((a3D2, b3D2, $bias2, save) => {\n const res = ENGINE.runKernel(_FusedMatMul, inputs, attrs);\n save([a3D2, b3D2, res, $bias2]);\n return { value: reshape(res, outShape), gradFunc: grad2 };\n });\n return customOpWithBias(a3D, b3D, $bias);\n }\n}\nvar matMul2 = op({ fusedMatMul_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal/hamming_window.js\nfunction hammingWindow_(windowLength) {\n return cosineWindow(windowLength, 0.54, 0.46);\n}\nvar hammingWindow = op({ hammingWindow_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal/hann_window.js\nfunction hannWindow_(windowLength) {\n return cosineWindow(windowLength, 0.5, 0.5);\n}\nvar hannWindow = op({ hannWindow_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal/frame.js\nfunction frame_(signal2, frameLength, frameStep, padEnd = false, padValue = 0) {\n let start = 0;\n const output = [];\n while (start + frameLength <= signal2.size) {\n output.push(slice(signal2, start, frameLength));\n start += frameStep;\n }\n if (padEnd) {\n while (start < signal2.size) {\n const padLen = start + frameLength - signal2.size;\n const pad3 = concat([\n slice(signal2, start, frameLength - padLen),\n fill([padLen], padValue)\n ]);\n output.push(pad3);\n start += frameStep;\n }\n }\n if (output.length === 0) {\n return tensor2d([], [0, frameLength]);\n }\n return reshape(concat(output), [output.length, frameLength]);\n}\nvar frame = op({ frame_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal/stft.js\nfunction stft_(signal2, frameLength, frameStep, fftLength, windowFn = hannWindow) {\n if (fftLength == null) {\n fftLength = enclosingPowerOfTwo(frameLength);\n }\n const framedSignal = frame(signal2, frameLength, frameStep);\n const windowedSignal = mul(framedSignal, windowFn(frameLength));\n return rfft(windowedSignal, fftLength);\n}\nvar stft = op({ stft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/crop_and_resize.js\nfunction cropAndResize_(image2, boxes, boxInd, cropSize, method = \"bilinear\", extrapolationValue = 0) {\n const $image = convertToTensor(image2, \"image\", \"cropAndResize\");\n const $boxes = convertToTensor(boxes, \"boxes\", \"cropAndResize\", \"float32\");\n const $boxInd = convertToTensor(boxInd, \"boxInd\", \"cropAndResize\", \"int32\");\n const numBoxes = $boxes.shape[0];\n assert($image.rank === 4, () => `Error in cropAndResize: image must be rank 4,but got rank ${$image.rank}.`);\n assert($boxes.rank === 2 && $boxes.shape[1] === 4, () => `Error in cropAndResize: boxes must be have size [${numBoxes},4] but had shape ${$boxes.shape}.`);\n assert($boxInd.rank === 1 && $boxInd.shape[0] === numBoxes, () => `Error in cropAndResize: boxInd must be have size [${numBoxes}] but had shape ${$boxes.shape}.`);\n assert(cropSize.length === 2, () => `Error in cropAndResize: cropSize must be of length 2, but got length ${cropSize.length}.`);\n assert(cropSize[0] >= 1 && cropSize[1] >= 1, () => `cropSize must be atleast [1,1], but was ${cropSize}`);\n assert(method === \"bilinear\" || method === \"nearest\", () => `method must be bilinear or nearest, but was ${method}`);\n const inputs = { image: $image, boxes: $boxes, boxInd: $boxInd };\n const attrs = { method, extrapolationValue, cropSize };\n const res = ENGINE.runKernel(CropAndResize, inputs, attrs);\n return res;\n}\nvar cropAndResize = op({ cropAndResize_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/flip_left_right.js\nfunction flipLeftRight_(image2) {\n const $image = convertToTensor(image2, \"image\", \"flipLeftRight\", \"float32\");\n assert($image.rank === 4, () => `Error in flipLeftRight: image must be rank 4,but got rank ${$image.rank}.`);\n const inputs = { image: $image };\n const res = ENGINE.runKernel(FlipLeftRight, inputs, {});\n return res;\n}\nvar flipLeftRight = op({ flipLeftRight_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/grayscale_to_rgb.js\nfunction grayscaleToRGB_(image2) {\n const $image = convertToTensor(image2, \"image\", \"grayscaleToRGB\");\n const lastDimsIdx = $image.rank - 1;\n const lastDims = $image.shape[lastDimsIdx];\n assert($image.rank >= 2, () => `Error in grayscaleToRGB: images must be at least rank 2, but got rank ${$image.rank}.`);\n assert(lastDims === 1, () => `Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${lastDims}.`);\n const reps = new Array($image.rank);\n reps.fill(1, 0, lastDimsIdx);\n reps[lastDimsIdx] = 3;\n return tile($image, reps);\n}\nvar grayscaleToRGB = op({ grayscaleToRGB_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/rotate_with_offset.js\nfunction rotateWithOffset_(image2, radians, fillValue = 0, center = 0.5) {\n const $image = convertToTensor(image2, \"image\", \"rotateWithOffset\", \"float32\");\n assert($image.rank === 4, () => `Error in rotateWithOffset: image must be rank 4,but got rank ${$image.rank}.`);\n const inputs = { image: $image };\n const attrs = { radians, fillValue, center };\n const res = ENGINE.runKernel(RotateWithOffset, inputs, attrs);\n return res;\n}\nvar rotateWithOffset = op({ rotateWithOffset_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/nonmax_util.js\nfunction nonMaxSuppSanityCheck(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma) {\n if (iouThreshold == null) {\n iouThreshold = 0.5;\n }\n if (scoreThreshold == null) {\n scoreThreshold = Number.NEGATIVE_INFINITY;\n }\n if (softNmsSigma == null) {\n softNmsSigma = 0;\n }\n const numBoxes = boxes.shape[0];\n maxOutputSize = Math.min(maxOutputSize, numBoxes);\n assert(0 <= iouThreshold && iouThreshold <= 1, () => `iouThreshold must be in [0, 1], but was '${iouThreshold}'`);\n assert(boxes.rank === 2, () => `boxes must be a 2D tensor, but was of rank '${boxes.rank}'`);\n assert(boxes.shape[1] === 4, () => `boxes must have 4 columns, but 2nd dimension was ${boxes.shape[1]}`);\n assert(scores.rank === 1, () => \"scores must be a 1D tensor\");\n assert(scores.shape[0] === numBoxes, () => `scores has incompatible shape with boxes. Expected ${numBoxes}, but was ${scores.shape[0]}`);\n assert(0 <= softNmsSigma && softNmsSigma <= 1, () => `softNmsSigma must be in [0, 1], but was '${softNmsSigma}'`);\n return { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression.js\nfunction nonMaxSuppression_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppression\", \"float32\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppression\", \"float32\");\n const inputs = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold);\n maxOutputSize = inputs.maxOutputSize;\n iouThreshold = inputs.iouThreshold;\n scoreThreshold = inputs.scoreThreshold;\n const attrs = { maxOutputSize, iouThreshold, scoreThreshold };\n return ENGINE.runKernel(NonMaxSuppressionV3, { boxes: $boxes, scores: $scores }, attrs);\n}\nvar nonMaxSuppression = op({ nonMaxSuppression_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/non_max_suppression_util.js\nfunction binaryInsert(arr, element, comparator) {\n const index = binarySearch(arr, element, comparator);\n const insertionPoint = index < 0 ? -(index + 1) : index;\n arr.splice(insertionPoint, 0, element);\n}\nfunction binarySearch(arr, target, comparator) {\n return binarySearch_(arr, target, comparator || defaultComparator);\n}\nfunction defaultComparator(a, b) {\n return a > b ? 1 : a < b ? -1 : 0;\n}\nfunction binarySearch_(arr, target, comparator) {\n let left = 0;\n let right = arr.length;\n let middle = 0;\n let found = false;\n while (left < right) {\n middle = left + (right - left >>> 1);\n const compareResult = comparator(target, arr[middle]);\n if (compareResult > 0) {\n left = middle + 1;\n } else {\n right = middle;\n found = !compareResult;\n }\n }\n return found ? left : -left - 1;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/non_max_suppression_impl.js\nfunction nonMaxSuppressionV3Impl(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold) {\n return nonMaxSuppressionImpl_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, 0);\n}\nfunction nonMaxSuppressionV4Impl(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize) {\n return nonMaxSuppressionImpl_(\n boxes,\n scores,\n maxOutputSize,\n iouThreshold,\n scoreThreshold,\n 0,\n false,\n padToMaxOutputSize,\n true\n );\n}\nfunction nonMaxSuppressionV5Impl(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma) {\n return nonMaxSuppressionImpl_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma, true);\n}\nfunction nonMaxSuppressionImpl_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma, returnScoresTensor = false, padToMaxOutputSize = false, returnValidOutputs = false) {\n const candidates = [];\n for (let i2 = 0; i2 < scores.length; i2++) {\n if (scores[i2] > scoreThreshold) {\n candidates.push({ score: scores[i2], boxIndex: i2, suppressBeginIndex: 0 });\n }\n }\n candidates.sort(ascendingComparator);\n const scale2 = softNmsSigma > 0 ? -0.5 / softNmsSigma : 0;\n const selectedIndices = [];\n const selectedScores = [];\n while (selectedIndices.length < maxOutputSize && candidates.length > 0) {\n const candidate = candidates.pop();\n const { score: originalScore, boxIndex, suppressBeginIndex } = candidate;\n if (originalScore < scoreThreshold) {\n break;\n }\n let ignoreCandidate = false;\n for (let j = selectedIndices.length - 1; j >= suppressBeginIndex; --j) {\n const iou = intersectionOverUnion(boxes, boxIndex, selectedIndices[j]);\n if (iou >= iouThreshold) {\n ignoreCandidate = true;\n break;\n }\n candidate.score = candidate.score * suppressWeight(iouThreshold, scale2, iou);\n if (candidate.score <= scoreThreshold) {\n break;\n }\n }\n candidate.suppressBeginIndex = selectedIndices.length;\n if (!ignoreCandidate) {\n if (candidate.score === originalScore) {\n selectedIndices.push(boxIndex);\n selectedScores.push(candidate.score);\n } else if (candidate.score > scoreThreshold) {\n binaryInsert(candidates, candidate, ascendingComparator);\n }\n }\n }\n const validOutputs = selectedIndices.length;\n const elemsToPad = maxOutputSize - validOutputs;\n if (padToMaxOutputSize && elemsToPad > 0) {\n selectedIndices.push(...new Array(elemsToPad).fill(0));\n selectedScores.push(...new Array(elemsToPad).fill(0));\n }\n const result = { selectedIndices };\n if (returnScoresTensor) {\n result[\"selectedScores\"] = selectedScores;\n }\n if (returnValidOutputs) {\n result[\"validOutputs\"] = validOutputs;\n }\n return result;\n}\nfunction intersectionOverUnion(boxes, i2, j) {\n const iCoord = boxes.subarray(i2 * 4, i2 * 4 + 4);\n const jCoord = boxes.subarray(j * 4, j * 4 + 4);\n const yminI = Math.min(iCoord[0], iCoord[2]);\n const xminI = Math.min(iCoord[1], iCoord[3]);\n const ymaxI = Math.max(iCoord[0], iCoord[2]);\n const xmaxI = Math.max(iCoord[1], iCoord[3]);\n const yminJ = Math.min(jCoord[0], jCoord[2]);\n const xminJ = Math.min(jCoord[1], jCoord[3]);\n const ymaxJ = Math.max(jCoord[0], jCoord[2]);\n const xmaxJ = Math.max(jCoord[1], jCoord[3]);\n const areaI = (ymaxI - yminI) * (xmaxI - xminI);\n const areaJ = (ymaxJ - yminJ) * (xmaxJ - xminJ);\n if (areaI <= 0 || areaJ <= 0) {\n return 0;\n }\n const intersectionYmin = Math.max(yminI, yminJ);\n const intersectionXmin = Math.max(xminI, xminJ);\n const intersectionYmax = Math.min(ymaxI, ymaxJ);\n const intersectionXmax = Math.min(xmaxI, xmaxJ);\n const intersectionArea = Math.max(intersectionYmax - intersectionYmin, 0) * Math.max(intersectionXmax - intersectionXmin, 0);\n return intersectionArea / (areaI + areaJ - intersectionArea);\n}\nfunction suppressWeight(iouThreshold, scale2, iou) {\n const weight = Math.exp(scale2 * iou * iou);\n return iou <= iouThreshold ? weight : 0;\n}\nfunction ascendingComparator(c1, c2) {\n return c1.score - c2.score || c1.score === c2.score && c2.boxIndex - c1.boxIndex;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_async.js\nasync function nonMaxSuppressionAsync_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppressionAsync\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppressionAsync\");\n const inputs = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold);\n maxOutputSize = inputs.maxOutputSize;\n iouThreshold = inputs.iouThreshold;\n scoreThreshold = inputs.scoreThreshold;\n const boxesAndScores = await Promise.all([$boxes.data(), $scores.data()]);\n const boxesVals = boxesAndScores[0];\n const scoresVals = boxesAndScores[1];\n const { selectedIndices } = nonMaxSuppressionV3Impl(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold);\n if ($boxes !== boxes) {\n $boxes.dispose();\n }\n if ($scores !== scores) {\n $scores.dispose();\n }\n return tensor1d(selectedIndices, \"int32\");\n}\nvar nonMaxSuppressionAsync = nonMaxSuppressionAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_with_score.js\nfunction nonMaxSuppressionWithScore_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY, softNmsSigma = 0) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppression\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppression\");\n const params = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n maxOutputSize = params.maxOutputSize;\n iouThreshold = params.iouThreshold;\n scoreThreshold = params.scoreThreshold;\n softNmsSigma = params.softNmsSigma;\n const inputs = { boxes: $boxes, scores: $scores };\n const attrs = { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma };\n const result = ENGINE.runKernel(NonMaxSuppressionV5, inputs, attrs);\n return { selectedIndices: result[0], selectedScores: result[1] };\n}\nvar nonMaxSuppressionWithScore = op({ nonMaxSuppressionWithScore_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_with_score_async.js\nasync function nonMaxSuppressionWithScoreAsync_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY, softNmsSigma = 0) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppressionAsync\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppressionAsync\");\n const params = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n maxOutputSize = params.maxOutputSize;\n iouThreshold = params.iouThreshold;\n scoreThreshold = params.scoreThreshold;\n softNmsSigma = params.softNmsSigma;\n const boxesAndScores = await Promise.all([$boxes.data(), $scores.data()]);\n const boxesVals = boxesAndScores[0];\n const scoresVals = boxesAndScores[1];\n const { selectedIndices, selectedScores } = nonMaxSuppressionV5Impl(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n if ($boxes !== boxes) {\n $boxes.dispose();\n }\n if ($scores !== scores) {\n $scores.dispose();\n }\n return {\n selectedIndices: tensor1d(selectedIndices, \"int32\"),\n selectedScores: tensor1d(selectedScores)\n };\n}\nvar nonMaxSuppressionWithScoreAsync = nonMaxSuppressionWithScoreAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_padded.js\nfunction nonMaxSuppressionPadded_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY, padToMaxOutputSize = false) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppression\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppression\");\n const params = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, null);\n const $maxOutputSize = params.maxOutputSize;\n const $iouThreshold = params.iouThreshold;\n const $scoreThreshold = params.scoreThreshold;\n const inputs = { boxes: $boxes, scores: $scores };\n const attrs = {\n maxOutputSize: $maxOutputSize,\n iouThreshold: $iouThreshold,\n scoreThreshold: $scoreThreshold,\n padToMaxOutputSize\n };\n const result = ENGINE.runKernel(NonMaxSuppressionV4, inputs, attrs);\n return { selectedIndices: result[0], validOutputs: result[1] };\n}\nvar nonMaxSuppressionPadded = op({ nonMaxSuppressionPadded_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_padded_async.js\nasync function nonMaxSuppressionPaddedAsync_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY, padToMaxOutputSize = false) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppressionAsync\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppressionAsync\");\n const params = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, null);\n const $maxOutputSize = params.maxOutputSize;\n const $iouThreshold = params.iouThreshold;\n const $scoreThreshold = params.scoreThreshold;\n const [boxesVals, scoresVals] = await Promise.all([$boxes.data(), $scores.data()]);\n const { selectedIndices, validOutputs } = nonMaxSuppressionV4Impl(boxesVals, scoresVals, $maxOutputSize, $iouThreshold, $scoreThreshold, padToMaxOutputSize);\n if ($boxes !== boxes) {\n $boxes.dispose();\n }\n if ($scores !== scores) {\n $scores.dispose();\n }\n return {\n selectedIndices: tensor1d(selectedIndices, \"int32\"),\n validOutputs: scalar(validOutputs, \"int32\")\n };\n}\nvar nonMaxSuppressionPaddedAsync = nonMaxSuppressionPaddedAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/resize_bilinear.js\nfunction resizeBilinear_(images, size, alignCorners = false, halfPixelCenters = false) {\n const $images = convertToTensor(images, \"images\", \"resizeBilinear\");\n assert($images.rank === 3 || $images.rank === 4, () => `Error in resizeBilinear: x must be rank 3 or 4, but got rank ${$images.rank}.`);\n assert(size.length === 2, () => `Error in resizeBilinear: new shape must 2D, but got shape ${size}.`);\n assert(halfPixelCenters === false || alignCorners === false, () => `Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.`);\n let batchImages = $images;\n let reshapedTo4D = false;\n if ($images.rank === 3) {\n reshapedTo4D = true;\n batchImages = reshape($images, [1, $images.shape[0], $images.shape[1], $images.shape[2]]);\n }\n const [] = size;\n const inputs = { images: batchImages };\n const attrs = { alignCorners, halfPixelCenters, size };\n const res = ENGINE.runKernel(ResizeBilinear, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar resizeBilinear = op({ resizeBilinear_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/resize_nearest_neighbor.js\nfunction resizeNearestNeighbor_(images, size, alignCorners = false, halfPixelCenters = false) {\n const $images = convertToTensor(images, \"images\", \"resizeNearestNeighbor\");\n assert($images.rank === 3 || $images.rank === 4, () => `Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${$images.rank}.`);\n assert(size.length === 2, () => `Error in resizeNearestNeighbor: new shape must 2D, but got shape ${size}.`);\n assert($images.dtype === \"float32\" || $images.dtype === \"int32\", () => \"`images` must have `int32` or `float32` as dtype\");\n assert(halfPixelCenters === false || alignCorners === false, () => `Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.`);\n let batchImages = $images;\n let reshapedTo4D = false;\n if ($images.rank === 3) {\n reshapedTo4D = true;\n batchImages = reshape($images, [1, $images.shape[0], $images.shape[1], $images.shape[2]]);\n }\n const [] = size;\n const inputs = { images: batchImages };\n const attrs = { alignCorners, halfPixelCenters, size };\n const res = ENGINE.runKernel(ResizeNearestNeighbor, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar resizeNearestNeighbor = op({ resizeNearestNeighbor_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/threshold.js\nfunction threshold_(image2, method = \"binary\", inverted = false, threshValue = 0.5) {\n const $image = convertToTensor(image2, \"image\", \"threshold\");\n const RED_INTENCITY_COEF = 0.2989;\n const GREEN_INTENCITY_COEF = 0.587;\n const BLUE_INTENCITY_COEF = 0.114;\n const totalPixelsInImage = $image.shape[0] * $image.shape[1];\n let $threshold = mul(tensor1d([threshValue]), 255);\n let r2, g, b, grayscale;\n assert($image.rank === 3, () => `Error in threshold: image must be rank 3,but got rank ${$image.rank}.`);\n assert($image.shape[2] === 3 || $image.shape[2] === 1, () => `Error in threshold: image color channel must be equal to 3 or 1but got ${$image.shape[2]}.`);\n assert($image.dtype === \"int32\" || $image.dtype === \"float32\", () => `Error in dtype: image dtype must be int32 or float32,but got dtype ${$image.dtype}.`);\n assert(method === \"otsu\" || method === \"binary\", () => `Method must be binary or otsu, but was ${method}`);\n if ($image.shape[2] === 3) {\n [r2, g, b] = split($image, [1, 1, 1], -1);\n const $r = mul(r2, RED_INTENCITY_COEF);\n const $g = mul(g, GREEN_INTENCITY_COEF);\n const $b = mul(b, BLUE_INTENCITY_COEF);\n grayscale = add2(add2($r, $g), $b);\n } else {\n grayscale = image2;\n }\n if (method === \"otsu\") {\n const $histogram = bincount(cast(round2(grayscale), \"int32\"), tensor([]), 256);\n $threshold = otsu($histogram, totalPixelsInImage);\n }\n const invCondition = inverted ? lessEqual(grayscale, $threshold) : greater(grayscale, $threshold);\n const result = cast(mul(invCondition, 255), \"int32\");\n return result;\n}\nfunction otsu(histogram, total) {\n let bestThresh = tensor1d([-1]);\n let bestInBetVar = tensor1d([0]);\n let cInBetVar = tensor1d([0]);\n let classFirst, classSecond, meanFirst, meanSec, weightForeground, weightBack;\n for (let index = 0; index < histogram.size - 1; index++) {\n classFirst = slice(histogram, 0, index + 1);\n classSecond = slice(histogram, index + 1);\n weightForeground = div(sum2(classFirst), total);\n weightBack = div(sum2(classSecond), total);\n const meanFirstDivA = sum2(mul(classFirst, range(0, classFirst.size)));\n meanFirst = div(meanFirstDivA, sum2(classFirst));\n const meanSecFill = fill(classSecond.shape, classFirst.size);\n const meanSecAdd = add2(range(0, classSecond.size), meanSecFill);\n const meanSecMul = mul(classSecond, meanSecAdd);\n meanSec = div(sum2(meanSecMul), sum2(classSecond));\n const cInBetVarSubA = sub(meanFirst, meanSec);\n const cInBetVarSubB = sub(meanFirst, meanSec);\n const cInBetVarMul = mul(weightForeground, weightBack);\n cInBetVar = mul(mul(cInBetVarMul, cInBetVarSubA), cInBetVarSubB);\n const condition = greater(cInBetVar, bestInBetVar);\n bestInBetVar = where(condition, cInBetVar, bestInBetVar);\n bestThresh = where(condition, tensor1d([index]), bestThresh);\n }\n return bestThresh;\n}\nvar threshold = op({ threshold_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/transform.js\nfunction transform_(image2, transforms, interpolation = \"nearest\", fillMode = \"constant\", fillValue = 0, outputShape) {\n const $image = convertToTensor(image2, \"image\", \"transform\", \"float32\");\n const $transforms = convertToTensor(transforms, \"transforms\", \"transform\", \"float32\");\n assert($image.rank === 4, () => `Error in transform: image must be rank 4,but got rank ${$image.rank}.`);\n assert($transforms.rank === 2 && ($transforms.shape[0] === $image.shape[0] || $transforms.shape[0] === 1) && $transforms.shape[1] === 8, () => `Error in transform: Input transform should be batch x 8 or 1 x 8`);\n assert(outputShape == null || outputShape.length === 2, () => `Error in transform: outputShape must be [height, width] or null, but got ${outputShape}.`);\n const inputs = { image: $image, transforms: $transforms };\n const attrs = { interpolation, fillMode, fillValue, outputShape };\n return ENGINE.runKernel(Transform, inputs, attrs);\n}\nvar transform = op({ transform_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/linalg/band_part.js\nfunction bandPart_(a, numLower, numUpper) {\n assert(numLower % 1 === 0, () => `bandPart(): numLower must be an integer, got ${numLower}.`);\n assert(numUpper % 1 === 0, () => `bandPart(): numUpper must be an integer, got ${numUpper}.`);\n const $a = convertToTensor(a, \"a\", \"bandPart\");\n assert($a.rank >= 2, () => `bandPart(): Rank must be at least 2, got ${$a.rank}.`);\n const shape = $a.shape;\n const [M, N] = $a.shape.slice(-2);\n if (!(numLower <= M)) {\n throw new Error(`bandPart(): numLower (${numLower}) must not be greater than the number of rows (${M}).`);\n }\n if (!(numUpper <= N)) {\n throw new Error(`bandPart(): numUpper (${numUpper}) must not be greater than the number of columns (${N}).`);\n }\n if (numLower < 0) {\n numLower = M;\n }\n if (numUpper < 0) {\n numUpper = N;\n }\n const i2 = reshape(range(0, M, 1, \"int32\"), [-1, 1]);\n const j = range(0, N, 1, \"int32\");\n const ij = sub(i2, j);\n const inBand = logicalAnd(lessEqual(ij, scalar(+numLower, \"int32\")), greaterEqual(ij, scalar(-numUpper, \"int32\")));\n const zero = zeros([M, N], $a.dtype);\n return reshape(stack(unstack(reshape($a, [-1, M, N])).map((mat) => where(inBand, mat, zero))), shape);\n}\nvar bandPart = op({ bandPart_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/linalg/gram_schmidt.js\nfunction gramSchmidt_(xs) {\n let inputIsTensor2D;\n if (Array.isArray(xs)) {\n inputIsTensor2D = false;\n assert(xs != null && xs.length > 0, () => \"Gram-Schmidt process: input must not be null, undefined, or empty\");\n const dim = xs[0].shape[0];\n for (let i2 = 1; i2 < xs.length; ++i2) {\n assert(xs[i2].shape[0] === dim, () => `Gram-Schmidt: Non-unique lengths found in the input vectors: (${xs[i2].shape[0]} vs. ${dim})`);\n }\n } else {\n inputIsTensor2D = true;\n xs = split(xs, xs.shape[0], 0).map((x) => squeeze(x, [0]));\n }\n assert(xs.length <= xs[0].shape[0], () => `Gram-Schmidt: Number of vectors (${xs.length}) exceeds number of dimensions (${xs[0].shape[0]}).`);\n const ys = [];\n const xs1d = xs;\n for (let i2 = 0; i2 < xs.length; ++i2) {\n ys.push(ENGINE.tidy(() => {\n let x = xs1d[i2];\n if (i2 > 0) {\n for (let j = 0; j < i2; ++j) {\n const proj = mul(sum2(mul(ys[j], x)), ys[j]);\n x = sub(x, proj);\n }\n }\n return div(x, norm(x, \"euclidean\"));\n }));\n }\n if (inputIsTensor2D) {\n return stack(ys, 0);\n } else {\n return ys;\n }\n}\nvar gramSchmidt = op({ gramSchmidt_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/linalg/qr.js\nfunction qr_(x, fullMatrices = false) {\n assert(x.rank >= 2, () => `qr() requires input tensor to have a rank >= 2, but got rank ${x.rank}`);\n if (x.rank === 2) {\n return qr2d(x, fullMatrices);\n } else {\n const outerDimsProd = x.shape.slice(0, x.shape.length - 2).reduce((value, prev) => value * prev);\n const x2ds = unstack(reshape(x, [\n outerDimsProd,\n x.shape[x.shape.length - 2],\n x.shape[x.shape.length - 1]\n ]), 0);\n const q2ds = [];\n const r2ds = [];\n x2ds.forEach((x2d) => {\n const [q2d, r2d] = qr2d(x2d, fullMatrices);\n q2ds.push(q2d);\n r2ds.push(r2d);\n });\n const q = reshape(stack(q2ds, 0), x.shape);\n const r2 = reshape(stack(r2ds, 0), x.shape);\n return [q, r2];\n }\n}\nfunction qr2d(x, fullMatrices = false) {\n return ENGINE.tidy(() => {\n assert(x.shape.length === 2, () => `qr2d() requires a 2D Tensor, but got a ${x.shape.length}D Tensor.`);\n const m = x.shape[0];\n const n2 = x.shape[1];\n let q = eye(m);\n let r2 = clone(x);\n const one2D = tensor2d([[1]], [1, 1]);\n let w = clone(one2D);\n const iters = m >= n2 ? n2 : m;\n for (let j = 0; j < iters; ++j) {\n const rTemp = r2;\n const wTemp = w;\n const qTemp = q;\n [w, r2, q] = ENGINE.tidy(() => {\n const rjEnd1 = slice(r2, [j, j], [m - j, 1]);\n const normX = norm(rjEnd1);\n const rjj = slice(r2, [j, j], [1, 1]);\n const s2 = where(greater(rjj, 0), tensor2d([[-1]]), tensor2d([[1]]));\n const u1 = sub(rjj, mul(s2, normX));\n const wPre = div(rjEnd1, u1);\n if (wPre.shape[0] === 1) {\n w = clone(one2D);\n } else {\n w = concat([\n one2D,\n slice(wPre, [1, 0], [wPre.shape[0] - 1, wPre.shape[1]])\n ], 0);\n }\n const tau = neg(div(matMul(s2, u1), normX));\n const rjEndAll = slice(r2, [j, 0], [m - j, n2]);\n const tauTimesW = mul(tau, w);\n const wT = transpose(w);\n if (j === 0) {\n r2 = sub(rjEndAll, matMul(tauTimesW, matMul(wT, rjEndAll)));\n } else {\n const rTimesTau = sub(rjEndAll, matMul(tauTimesW, matMul(wT, rjEndAll)));\n r2 = concat([slice(r2, [0, 0], [j, n2]), rTimesTau], 0);\n }\n const tawTimesWT = transpose(tauTimesW);\n const qAllJEnd = slice(q, [0, j], [m, q.shape[1] - j]);\n if (j === 0) {\n q = sub(qAllJEnd, matMul(matMul(qAllJEnd, w), tawTimesWT));\n } else {\n const qTimesTau = sub(qAllJEnd, matMul(matMul(qAllJEnd, w), tawTimesWT));\n q = concat([slice(q, [0, 0], [m, j]), qTimesTau], 1);\n }\n return [w, r2, q];\n });\n dispose([rTemp, wTemp, qTemp]);\n }\n if (!fullMatrices && m > n2) {\n q = slice(q, [0, 0], [m, n2]);\n r2 = slice(r2, [0, 0], [n2, n2]);\n }\n return [q, r2];\n });\n}\nvar qr = op({ qr_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/loss_ops_utils.js\nvar Reduction;\n(function(Reduction2) {\n Reduction2[Reduction2[\"NONE\"] = 0] = \"NONE\";\n Reduction2[Reduction2[\"MEAN\"] = 1] = \"MEAN\";\n Reduction2[Reduction2[\"SUM\"] = 2] = \"SUM\";\n Reduction2[Reduction2[\"SUM_BY_NONZERO_WEIGHTS\"] = 3] = \"SUM_BY_NONZERO_WEIGHTS\";\n})(Reduction || (Reduction = {}));\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/compute_weighted_loss.js\nfunction computeWeightedLoss_(losses2, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $losses = convertToTensor(losses2, \"losses\", \"computeWeightedLoss\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"computeWeightedLoss\");\n }\n const weightedLoss = $weights == null ? $losses : mul($losses, $weights);\n if (reduction === Reduction.NONE) {\n return weightedLoss;\n }\n if (reduction === Reduction.SUM) {\n return sum2(weightedLoss);\n }\n if (reduction === Reduction.MEAN) {\n if ($weights == null) {\n return mean(weightedLoss);\n } else {\n const broadcastFactor = $losses.size / $weights.size;\n const result = div(sum2(weightedLoss), sum2($weights));\n return broadcastFactor > 1 ? div(result, scalar(broadcastFactor)) : result;\n }\n }\n if (reduction === Reduction.SUM_BY_NONZERO_WEIGHTS) {\n if ($weights == null) {\n return div(sum2(weightedLoss), scalar($losses.size));\n } else {\n const broadcastedWeights = mul($weights, ones2($losses.shape));\n const numNonZeros = cast(sum2(notEqual(broadcastedWeights, scalar(0))), \"float32\");\n return div(sum2(weightedLoss), numNonZeros);\n }\n }\n throw Error(`Unknown reduction: ${reduction}`);\n}\nvar computeWeightedLoss = op({ computeWeightedLoss_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/absolute_difference.js\nfunction absoluteDifference_(labels, predictions, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"absoluteDifference\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"absoluteDifference\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"absoluteDifference\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in absoluteDifference: \");\n const losses2 = abs(sub($labels, $predictions));\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar absoluteDifference = op({ absoluteDifference_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/cosine_distance.js\nfunction cosineDistance_(labels, predictions, axis, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"cosineDistance\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"cosineDistance\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"cosineDistance\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in cosineDistance: \");\n const one = scalar(1);\n const losses2 = sub(one, sum2(mul($labels, $predictions), axis, true));\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar cosineDistance = op({ cosineDistance_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/hinge_loss.js\nfunction hingeLoss_(labels, predictions, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n let $labels = convertToTensor(labels, \"labels\", \"hingeLoss\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"hingeLoss\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"hingeLoss\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in hingeLoss: \");\n const one = scalar(1);\n $labels = sub(mul(scalar(2), $labels), one);\n const losses2 = relu(sub(one, mul($labels, $predictions)));\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar hingeLoss = op({ hingeLoss_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/huber_loss.js\nfunction huberLoss_(labels, predictions, weights, delta = 1, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"huberLoss\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"huberLoss\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"huberLoss\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in huberLoss: \");\n const deltaScalar = scalar(delta);\n const error = abs(sub($predictions, $labels));\n const quadratic = minimum(error, deltaScalar);\n const linear = sub(error, quadratic);\n const losses2 = add2(mul(scalar(0.5), square(quadratic)), mul(deltaScalar, linear));\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar huberLoss = op({ huberLoss_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/log_loss.js\nfunction logLoss_(labels, predictions, weights, epsilon3 = 1e-7, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"logLoss\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"logLoss\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"logLoss\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in logLoss: \");\n const one = scalar(1);\n const epsilonScalar = scalar(epsilon3);\n const l13 = neg(mul($labels, log2(add2($predictions, epsilonScalar))));\n const l23 = mul(sub(one, $labels), log2(add2(sub(one, $predictions), epsilonScalar)));\n const losses2 = sub(l13, l23);\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar logLoss = op({ logLoss_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/mean_squared_error.js\nfunction meanSquaredError_(labels, predictions, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"meanSquaredError\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"meanSquaredError\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"meanSquaredError\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in meanSquaredError: \");\n const losses2 = squaredDifference($labels, $predictions);\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar meanSquaredError = op({ meanSquaredError_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/sigmoid_cross_entropy.js\nfunction sigmoidCrossEntropyWithLogits_(labels, logits) {\n const $labels = convertToTensor(labels, \"labels\", \"sigmoidCrossEntropyWithLogits\");\n const $logits = convertToTensor(logits, \"logits\", \"sigmoidCrossEntropyWithLogits\");\n assertShapesMatch($labels.shape, $logits.shape, \"Error in sigmoidCrossEntropyWithLogits: \");\n const maxOutput = relu($logits);\n const outputXTarget = mul($logits, $labels);\n const sigmoidOutput = log1p(exp(neg(abs($logits))));\n return add2(sub(maxOutput, outputXTarget), sigmoidOutput);\n}\nfunction sigmoidCrossEntropy_(multiClassLabels, logits, weights, labelSmoothing = 0, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n let $multiClassLabels = convertToTensor(multiClassLabels, \"multiClassLabels\", \"sigmoidCrossEntropy\");\n const $logits = convertToTensor(logits, \"logits\", \"sigmoidCrossEntropy\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"sigmoidCrossEntropy\");\n }\n assertShapesMatch($multiClassLabels.shape, $logits.shape, \"Error in sigmoidCrossEntropy: \");\n if (labelSmoothing > 0) {\n const labelSmoothingScalar = scalar(labelSmoothing);\n const one = scalar(1);\n const half = scalar(0.5);\n $multiClassLabels = add2(mul($multiClassLabels, sub(one, labelSmoothingScalar)), mul(half, labelSmoothingScalar));\n }\n const losses2 = sigmoidCrossEntropyWithLogits_($multiClassLabels, $logits);\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar sigmoidCrossEntropy = op({ sigmoidCrossEntropy_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/softmax_cross_entropy.js\nfunction softmaxCrossEntropyWithLogits_(labels, logits, dim = -1) {\n if (dim === -1) {\n dim = logits.rank - 1;\n }\n if (dim !== logits.rank - 1) {\n throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${logits.rank} and dim was ${dim}`);\n }\n const customOp = customGrad((labels2, logits2, save) => {\n const keepDims = true;\n const lse = logSumExp(logits2, [dim], keepDims);\n const logResult = sub(cast(logits2, \"float32\"), lse);\n save([labels2, logResult]);\n const costVector = neg(mul(logResult, labels2));\n const value = sum2(costVector, [dim]);\n const gradFunc = (dy, saved) => {\n const [labels3, logResult2] = saved;\n const dyShape = expandShapeToKeepDim(dy.shape, [dim]);\n return [\n mul(reshape(dy, dyShape), sub(cast(labels3, \"float32\"), exp(logResult2))),\n mul(reshape(dy, dyShape), sub(exp(logResult2), cast(labels3, \"float32\")))\n ];\n };\n return { value, gradFunc };\n });\n return customOp(labels, logits);\n}\nfunction softmaxCrossEntropy_(onehotLabels, logits, weights, labelSmoothing = 0, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n let $onehotLabels = convertToTensor(onehotLabels, \"onehotLabels\", \"softmaxCrossEntropy\");\n const $logits = convertToTensor(logits, \"logits\", \"softmaxCrossEntropy\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"softmaxCrossEntropy\");\n }\n assertShapesMatch($onehotLabels.shape, $logits.shape, \"Error in softmaxCrossEntropy: \");\n if (labelSmoothing > 0) {\n const labelSmoothingScalar = scalar(labelSmoothing);\n const one = scalar(1);\n const numClasses = scalar($onehotLabels.shape[1]);\n $onehotLabels = add2(mul($onehotLabels, sub(one, labelSmoothingScalar)), div(labelSmoothingScalar, numClasses));\n }\n const losses2 = softmaxCrossEntropyWithLogits_($onehotLabels, $logits);\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar softmaxCrossEntropy = op({ softmaxCrossEntropy_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_fill_empty_rows.js\nfunction sparseFillEmptyRows_(indices, values, denseShape, defaultValue) {\n const $indices = convertToTensor(indices, \"indices\", \"sparseFillEmptyRows\", \"int32\");\n const $values = convertToTensor(values, \"values\", \"sparseFillEmptyRows\");\n const $denseShape = convertToTensor(denseShape, \"denseShape\", \"sparseFillEmptyRows\", \"int32\");\n const $defaultValue = convertToTensor(defaultValue, \"defaultValue\", \"sparseFillEmptyRows\", $values.dtype);\n if ($indices.rank !== 2) {\n throw new Error(`Indices should be Tensor2D but received shape\n ${$indices.shape}`);\n }\n if ($values.rank !== 1) {\n throw new Error(`Values should be Tensor1D but received shape ${$values.shape}`);\n }\n if ($denseShape.rank !== 1) {\n throw new Error(`Dense shape should be Tensor1D but received shape ${$denseShape.shape}`);\n }\n if ($defaultValue.rank !== 0) {\n throw new Error(`Default value should be a scalar but received shape ${$defaultValue.shape}`);\n }\n const inputs = {\n indices: $indices,\n values: $values,\n denseShape: $denseShape,\n defaultValue: $defaultValue\n };\n const result = ENGINE.runKernel(SparseFillEmptyRows, inputs);\n return {\n outputIndices: result[0],\n outputValues: result[1],\n emptyRowIndicator: result[2],\n reverseIndexMap: result[3]\n };\n}\nvar sparseFillEmptyRows = op({ sparseFillEmptyRows_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_reshape.js\nfunction sparseReshape_(inputIndices, inputShape, newShape) {\n const $inputIndices = convertToTensor(inputIndices, \"inputIndices\", \"sparseReshape\", \"int32\");\n const $inputShape = convertToTensor(inputShape, \"inputShape\", \"sparseReshape\", \"int32\");\n const $newShape = convertToTensor(newShape, \"newShape\", \"sparseReshape\", \"int32\");\n if ($inputIndices.rank !== 2) {\n throw new Error(`Input indices should be Tensor2D but received shape\n ${$inputIndices.shape}`);\n }\n if ($inputShape.rank !== 1) {\n throw new Error(`Input shape should be Tensor1D but received shape ${$inputShape.shape}`);\n }\n if ($newShape.rank !== 1) {\n throw new Error(`New shape should be Tensor1D but received shape ${$newShape.shape}`);\n }\n const inputs = {\n inputIndices: $inputIndices,\n inputShape: $inputShape,\n newShape: $newShape\n };\n const result = ENGINE.runKernel(SparseReshape, inputs);\n return { outputIndices: result[0], outputShape: result[1] };\n}\nvar sparseReshape = op({ sparseReshape_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_segment_mean.js\nfunction sparseSegmentMean_(data, indices, segmentIds) {\n const $data = convertToTensor(data, \"data\", \"sparseSegmentMean\");\n const $indices = convertToTensor(indices, \"indices\", \"sparseSegmentMean\", \"int32\");\n const $segmentIds = convertToTensor(segmentIds, \"segmentIds\", \"sparseSegmentMean\", \"int32\");\n if ($data.rank < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if ($indices.rank !== 1) {\n throw new Error(`Indices should be Tensor1D but received shape\n ${$indices.shape}`);\n }\n if ($segmentIds.rank !== 1) {\n throw new Error(`Segment ids should be Tensor1D but received shape\n ${$segmentIds.shape}`);\n }\n const inputs = {\n data: $data,\n indices: $indices,\n segmentIds: $segmentIds\n };\n return ENGINE.runKernel(SparseSegmentMean, inputs);\n}\nvar sparseSegmentMean = op({ sparseSegmentMean_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_segment_sum.js\nfunction sparseSegmentSum_(data, indices, segmentIds) {\n const $data = convertToTensor(data, \"data\", \"sparseSegmentSum\");\n const $indices = convertToTensor(indices, \"indices\", \"sparseSegmentSum\", \"int32\");\n const $segmentIds = convertToTensor(segmentIds, \"segmentIds\", \"sparseSegmentSum\", \"int32\");\n if ($data.rank < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if ($indices.rank !== 1) {\n throw new Error(`Indices should be Tensor1D but received shape\n ${$indices.shape}`);\n }\n if ($segmentIds.rank !== 1) {\n throw new Error(`Segment ids should be Tensor1D but received shape\n ${$segmentIds.shape}`);\n }\n const inputs = {\n data: $data,\n indices: $indices,\n segmentIds: $segmentIds\n };\n return ENGINE.runKernel(SparseSegmentSum, inputs);\n}\nvar sparseSegmentSum = op({ sparseSegmentSum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/string/string_n_grams.js\nfunction stringNGrams_(data, dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) {\n const $data = convertToTensor(data, \"data\", \"stringNGrams\", \"string\");\n if ($data.dtype !== \"string\") {\n throw new Error(\"Data must be of datatype string\");\n }\n if ($data.shape.length !== 1) {\n throw new Error(`Data must be a vector, saw: ${$data.shape}`);\n }\n const $dataSplits = convertToTensor(dataSplits, \"dataSplits\", \"stringNGrams\");\n if ($dataSplits.dtype !== \"int32\") {\n throw new Error(\"Data splits must be of datatype int32\");\n }\n const attrs = {\n separator,\n nGramWidths,\n leftPad,\n rightPad: rightPad2,\n padWidth,\n preserveShortSequences\n };\n const inputs = { data: $data, dataSplits: $dataSplits };\n const result = ENGINE.runKernel(StringNGrams, inputs, attrs);\n return { nGrams: result[0], nGramsSplits: result[1] };\n}\nvar stringNGrams = op({ stringNGrams_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/string/string_split.js\nfunction stringSplit_(input2, delimiter, skipEmpty = true) {\n const $input = convertToTensor(input2, \"input\", \"stringSplit\", \"string\");\n const $delimiter = convertToTensor(delimiter, \"delimiter\", \"stringSplit\", \"string\");\n if ($input.rank !== 1) {\n throw new Error(`Input should be Tensor1D but received shape ${$input.shape}`);\n }\n if ($delimiter.rank !== 0) {\n throw new Error(`Delimiter should be a scalar but received shape ${$delimiter.shape}`);\n }\n const attrs = { skipEmpty };\n const inputs = { input: $input, delimiter: $delimiter };\n const result = ENGINE.runKernel(StringSplit, inputs, attrs);\n return { indices: result[0], values: result[1], shape: result[2] };\n}\nvar stringSplit = op({ stringSplit_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/string/string_to_hash_bucket_fast.js\nfunction stringToHashBucketFast_(input2, numBuckets) {\n const $input = convertToTensor(input2, \"input\", \"stringToHashBucketFast\", \"string\");\n const attrs = { numBuckets };\n if (numBuckets <= 0) {\n throw new Error(`Number of buckets must be at least 1`);\n }\n const inputs = { input: $input };\n return ENGINE.runKernel(StringToHashBucketFast, inputs, attrs);\n}\nvar stringToHashBucketFast = op({ stringToHashBucketFast_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ops.js\nvar spectral = {\n fft,\n ifft,\n rfft,\n irfft\n};\nvar signal = {\n hammingWindow,\n hannWindow,\n frame,\n stft\n};\nvar image = {\n flipLeftRight,\n grayscaleToRGB,\n resizeNearestNeighbor,\n resizeBilinear,\n rotateWithOffset,\n cropAndResize,\n nonMaxSuppression,\n nonMaxSuppressionAsync,\n nonMaxSuppressionWithScore,\n nonMaxSuppressionWithScoreAsync,\n nonMaxSuppressionPadded,\n nonMaxSuppressionPaddedAsync,\n threshold,\n transform\n};\nvar linalg = {\n bandPart,\n gramSchmidt,\n qr\n};\nvar losses = {\n absoluteDifference,\n computeWeightedLoss,\n cosineDistance,\n hingeLoss,\n huberLoss,\n logLoss,\n meanSquaredError,\n sigmoidCrossEntropy,\n softmaxCrossEntropy\n};\nvar sparse = {\n sparseFillEmptyRows,\n sparseReshape,\n sparseSegmentMean,\n sparseSegmentSum\n};\nvar string = {\n stringNGrams,\n stringSplit,\n stringToHashBucketFast\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/optimizer.js\nvar Optimizer = class extends Serializable {\n minimize(f, returnCost = false, varList) {\n const { value, grads: grads2 } = this.computeGradients(f, varList);\n if (varList != null) {\n const gradArray = varList.map((v) => ({ name: v.name, tensor: grads2[v.name] }));\n this.applyGradients(gradArray);\n } else {\n this.applyGradients(grads2);\n }\n dispose(grads2);\n if (returnCost) {\n return value;\n } else {\n value.dispose();\n return null;\n }\n }\n get iterations() {\n if (this.iterations_ == null) {\n this.iterations_ = 0;\n }\n return this.iterations_;\n }\n incrementIterations() {\n this.iterations_ = this.iterations + 1;\n }\n computeGradients(f, varList) {\n return variableGrads(f, varList);\n }\n dispose() {\n if (this.iterations_ != null) {\n dispose(this.iterations_);\n }\n }\n async saveIterations() {\n if (this.iterations_ == null) {\n this.iterations_ = 0;\n }\n return {\n name: \"iter\",\n tensor: scalar(this.iterations_, \"int32\")\n };\n }\n async getWeights() {\n throw new Error(\"getWeights() is not implemented for this optimizer yet.\");\n }\n async setWeights(weightValues) {\n throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`);\n }\n async extractIterations(weightValues) {\n this.iterations_ = (await weightValues[0].tensor.data())[0];\n return weightValues.slice(1);\n }\n};\nObject.defineProperty(Optimizer, Symbol.hasInstance, {\n value: (instance) => {\n return instance.minimize != null && instance.computeGradients != null && instance.applyGradients != null;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/adadelta_optimizer.js\nvar AdadeltaOptimizer = class extends Optimizer {\n constructor(learningRate, rho, epsilon3 = null) {\n super();\n this.learningRate = learningRate;\n this.rho = rho;\n this.epsilon = epsilon3;\n this.accumulatedGrads = [];\n this.accumulatedUpdates = [];\n if (epsilon3 == null) {\n this.epsilon = ENGINE.backend.epsilon();\n }\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n const trainable = false;\n if (this.accumulatedGrads[i2] == null) {\n this.accumulatedGrads[i2] = {\n originalName: `${name}/accum_grad`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n if (this.accumulatedUpdates[i2] == null) {\n this.accumulatedUpdates[i2] = {\n originalName: `${name}/accum_var`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const accumulatedGrad = this.accumulatedGrads[i2].variable;\n const accumulatedUpdate = this.accumulatedUpdates[i2].variable;\n tidy(() => {\n const newAccumulatedGrad = add2(mul(accumulatedGrad, this.rho), mul(square(gradient), 1 - this.rho));\n const updates = mul(div(sqrt(add2(accumulatedUpdate, this.epsilon)), sqrt(add2(accumulatedGrad, this.epsilon))), gradient);\n const newAccumulatedUpdate = add2(mul(accumulatedUpdate, this.rho), mul(square(updates), 1 - this.rho));\n accumulatedGrad.assign(newAccumulatedGrad);\n accumulatedUpdate.assign(newAccumulatedUpdate);\n const newValue = add2(mul(updates, -this.learningRate), value);\n value.assign(newValue);\n });\n });\n this.incrementIterations();\n }\n dispose() {\n if (this.accumulatedUpdates != null) {\n dispose(this.accumulatedGrads.map((v) => v.variable));\n dispose(this.accumulatedUpdates.map((v) => v.variable));\n }\n }\n async getWeights() {\n const variables = [...this.accumulatedGrads, ...this.accumulatedUpdates];\n return [await this.saveIterations()].concat(variables.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n const variableCount = weightValues.length / 2;\n const trainable = false;\n this.accumulatedGrads = weightValues.slice(0, variableCount).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n this.accumulatedUpdates = weightValues.slice(variableCount, variableCount * 2).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"rho\": this.rho,\n \"epsilon\": this.epsilon\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"rho\"], config[\"epsilon\"]);\n }\n};\nAdadeltaOptimizer.className = \"Adadelta\";\nregisterClass(AdadeltaOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/adagrad_optimizer.js\nvar AdagradOptimizer = class extends Optimizer {\n constructor(learningRate, initialAccumulatorValue = 0.1) {\n super();\n this.learningRate = learningRate;\n this.initialAccumulatorValue = initialAccumulatorValue;\n this.accumulatedGrads = [];\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n if (this.accumulatedGrads[i2] == null) {\n const trainable = false;\n this.accumulatedGrads[i2] = {\n originalName: `${name}/accumulator`,\n variable: tidy(() => fill(value.shape, this.initialAccumulatorValue).variable(trainable))\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const accumulatedGrad = this.accumulatedGrads[i2].variable;\n tidy(() => {\n const newAccumulatedGrad = add2(accumulatedGrad, square(gradient));\n accumulatedGrad.assign(newAccumulatedGrad);\n const newValue = add2(mul(div(gradient, sqrt(add2(newAccumulatedGrad, ENGINE.backend.epsilon()))), -this.learningRate), value);\n value.assign(newValue);\n });\n });\n this.incrementIterations();\n }\n dispose() {\n if (this.accumulatedGrads != null) {\n dispose(this.accumulatedGrads.map((v) => v.variable));\n }\n }\n async getWeights() {\n return [await this.saveIterations()].concat(this.accumulatedGrads.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n const trainable = false;\n this.accumulatedGrads = weightValues.map((v) => ({ originalName: v.name, variable: v.tensor.variable(trainable) }));\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"initialAccumulatorValue\": this.initialAccumulatorValue\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"initialAccumulatorValue\"]);\n }\n};\nAdagradOptimizer.className = \"Adagrad\";\nregisterClass(AdagradOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/adam_optimizer.js\nvar AdamOptimizer = class extends Optimizer {\n constructor(learningRate, beta1, beta2, epsilon3 = null) {\n super();\n this.learningRate = learningRate;\n this.beta1 = beta1;\n this.beta2 = beta2;\n this.epsilon = epsilon3;\n this.accumulatedFirstMoment = [];\n this.accumulatedSecondMoment = [];\n tidy(() => {\n this.accBeta1 = scalar(beta1).variable();\n this.accBeta2 = scalar(beta2).variable();\n });\n if (epsilon3 == null) {\n this.epsilon = ENGINE.backend.epsilon();\n }\n }\n applyGradients(variableGradients) {\n const varNames = Array.isArray(variableGradients) ? variableGradients.map((v) => v.name) : Object.keys(variableGradients);\n tidy(() => {\n const oneMinusAccBeta1 = sub(1, this.accBeta1);\n const oneMinusAccBeta2 = sub(1, this.accBeta2);\n varNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n const trainable = false;\n if (this.accumulatedFirstMoment[i2] == null) {\n this.accumulatedFirstMoment[i2] = {\n originalName: `${name}/m`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n if (this.accumulatedSecondMoment[i2] == null) {\n this.accumulatedSecondMoment[i2] = {\n originalName: `${name}/v`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const firstMoment = this.accumulatedFirstMoment[i2].variable;\n const secondMoment = this.accumulatedSecondMoment[i2].variable;\n const newFirstMoment = add2(mul(firstMoment, this.beta1), mul(gradient, 1 - this.beta1));\n const newSecondMoment = add2(mul(secondMoment, this.beta2), mul(square(gradient), 1 - this.beta2));\n const biasCorrectedFirstMoment = div(newFirstMoment, oneMinusAccBeta1);\n const biasCorrectedSecondMoment = div(newSecondMoment, oneMinusAccBeta2);\n firstMoment.assign(newFirstMoment);\n secondMoment.assign(newSecondMoment);\n const newValue = add2(mul(div(biasCorrectedFirstMoment, add2(sqrt(biasCorrectedSecondMoment), this.epsilon)), -this.learningRate), value);\n value.assign(newValue);\n });\n this.accBeta1.assign(mul(this.accBeta1, this.beta1));\n this.accBeta2.assign(mul(this.accBeta2, this.beta2));\n });\n this.incrementIterations();\n }\n dispose() {\n this.accBeta1.dispose();\n this.accBeta2.dispose();\n if (this.accumulatedFirstMoment != null) {\n dispose(this.accumulatedFirstMoment.map((v) => v.variable));\n }\n if (this.accumulatedSecondMoment != null) {\n dispose(this.accumulatedSecondMoment.map((v) => v.variable));\n }\n }\n async getWeights() {\n const variables = [...this.accumulatedFirstMoment, ...this.accumulatedSecondMoment];\n return [await this.saveIterations()].concat(variables.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n tidy(() => {\n this.accBeta1.assign(pow(this.beta1, this.iterations_ + 1));\n this.accBeta2.assign(pow(this.beta2, this.iterations_ + 1));\n });\n const variableCount = weightValues.length / 2;\n const trainable = false;\n this.accumulatedFirstMoment = weightValues.slice(0, variableCount).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n this.accumulatedSecondMoment = weightValues.slice(variableCount, variableCount * 2).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"beta1\": this.beta1,\n \"beta2\": this.beta2,\n \"epsilon\": this.epsilon\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"beta1\"], config[\"beta2\"], config[\"epsilon\"]);\n }\n};\nAdamOptimizer.className = \"Adam\";\nregisterClass(AdamOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/adamax_optimizer.js\nvar AdamaxOptimizer = class extends Optimizer {\n constructor(learningRate, beta1, beta2, epsilon3 = null, decay = 0) {\n super();\n this.learningRate = learningRate;\n this.beta1 = beta1;\n this.beta2 = beta2;\n this.epsilon = epsilon3;\n this.decay = decay;\n this.accumulatedFirstMoment = [];\n this.accumulatedWeightedInfNorm = [];\n tidy(() => {\n this.iteration = scalar(0).variable();\n this.accBeta1 = scalar(beta1).variable();\n });\n if (epsilon3 == null) {\n this.epsilon = ENGINE.backend.epsilon();\n }\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n tidy(() => {\n const oneMinusAccBeta1 = sub(1, this.accBeta1);\n const lr = div(-this.learningRate, add2(mul(this.iteration, this.decay), 1));\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n const trainable = false;\n if (this.accumulatedFirstMoment[i2] == null) {\n this.accumulatedFirstMoment[i2] = {\n originalName: `${name}/m`,\n variable: zerosLike(value).variable(trainable)\n };\n }\n if (this.accumulatedWeightedInfNorm[i2] == null) {\n this.accumulatedWeightedInfNorm[i2] = {\n originalName: `${name}/v`,\n variable: zerosLike(value).variable(trainable)\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const firstMoment = this.accumulatedFirstMoment[i2].variable;\n const weightedInfNorm = this.accumulatedWeightedInfNorm[i2].variable;\n const newFirstMoment = add2(mul(firstMoment, this.beta1), mul(gradient, 1 - this.beta1));\n const ut0 = mul(weightedInfNorm, this.beta2);\n const ut1 = abs(gradient);\n const newWeightedInfNorm = maximum(ut0, ut1);\n firstMoment.assign(newFirstMoment);\n weightedInfNorm.assign(newWeightedInfNorm);\n const newValue = add2(mul(div(lr, oneMinusAccBeta1), div(newFirstMoment, add2(newWeightedInfNorm, this.epsilon))), value);\n value.assign(newValue);\n });\n this.iteration.assign(add2(this.iteration, 1));\n this.accBeta1.assign(mul(this.accBeta1, this.beta1));\n });\n this.incrementIterations();\n }\n dispose() {\n this.accBeta1.dispose();\n this.iteration.dispose();\n if (this.accumulatedFirstMoment != null) {\n dispose(this.accumulatedFirstMoment.map((v) => v.variable));\n }\n if (this.accumulatedWeightedInfNorm != null) {\n dispose(this.accumulatedWeightedInfNorm.map((v) => v.variable));\n }\n }\n async getWeights() {\n throw new Error(\"getWeights() is not implemented for Adamax yet.\");\n }\n async setWeights(weightValues) {\n throw new Error(\"setWeights() is not implemented for Adamax yet.\");\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"beta1\": this.beta1,\n \"beta2\": this.beta2,\n \"epsilon\": this.epsilon,\n \"decay\": this.decay\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"beta1\"], config[\"beta2\"], config[\"epsilon\"], config[\"decay\"]);\n }\n};\nAdamaxOptimizer.className = \"Adamax\";\nregisterClass(AdamaxOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/sgd_optimizer.js\nvar SGDOptimizer = class extends Optimizer {\n constructor(learningRate) {\n super();\n this.learningRate = learningRate;\n this.setLearningRate(learningRate);\n }\n applyGradients(variableGradients) {\n const varNames = Array.isArray(variableGradients) ? variableGradients.map((v) => v.name) : Object.keys(variableGradients);\n varNames.forEach((name, i2) => {\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const value = ENGINE.registeredVariables[name];\n tidy(() => {\n const newValue = add2(mul(this.c, gradient), value);\n value.assign(newValue);\n });\n });\n this.incrementIterations();\n }\n setLearningRate(learningRate) {\n this.learningRate = learningRate;\n if (this.c != null) {\n this.c.dispose();\n }\n this.c = keep(scalar(-learningRate));\n }\n dispose() {\n this.c.dispose();\n }\n async getWeights() {\n return [await this.saveIterations()];\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n if (weightValues.length !== 0) {\n throw new Error(\"SGD optimizer does not have settable weights.\");\n }\n }\n getConfig() {\n return { \"learningRate\": this.learningRate };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"]);\n }\n};\nSGDOptimizer.className = \"SGD\";\nregisterClass(SGDOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/momentum_optimizer.js\nvar MomentumOptimizer = class extends SGDOptimizer {\n constructor(learningRate, momentum, useNesterov = false) {\n super(learningRate);\n this.learningRate = learningRate;\n this.momentum = momentum;\n this.useNesterov = useNesterov;\n this.accumulations = [];\n this.m = scalar(this.momentum);\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n if (this.accumulations[i2] == null) {\n const trainable = false;\n this.accumulations[i2] = {\n originalName: `${name}/momentum`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n const accumulation = this.accumulations[i2].variable;\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n tidy(() => {\n let newValue;\n const newAccumulation = add2(mul(this.m, accumulation), gradient);\n if (this.useNesterov) {\n newValue = add2(mul(this.c, add2(gradient, mul(newAccumulation, this.m))), value);\n } else {\n newValue = add2(mul(this.c, newAccumulation), value);\n }\n accumulation.assign(newAccumulation);\n value.assign(newValue);\n });\n });\n this.incrementIterations();\n }\n dispose() {\n this.m.dispose();\n if (this.accumulations != null) {\n dispose(this.accumulations.map((v) => v.variable));\n }\n }\n setMomentum(momentum) {\n this.momentum = momentum;\n }\n async getWeights() {\n return [await this.saveIterations()].concat(this.accumulations.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n const trainable = false;\n this.accumulations = weightValues.map((v) => ({ originalName: v.name, variable: v.tensor.variable(trainable) }));\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"momentum\": this.momentum,\n \"useNesterov\": this.useNesterov\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"momentum\"], config[\"useNesterov\"]);\n }\n};\nMomentumOptimizer.className = \"Momentum\";\nregisterClass(MomentumOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/rmsprop_optimizer.js\nvar RMSPropOptimizer = class extends Optimizer {\n constructor(learningRate, decay = 0.9, momentum = 0, epsilon3 = null, centered = false) {\n super();\n this.learningRate = learningRate;\n this.decay = decay;\n this.momentum = momentum;\n this.epsilon = epsilon3;\n this.accumulatedMeanSquares = [];\n this.accumulatedMoments = [];\n this.accumulatedMeanGrads = [];\n this.centered = centered;\n if (epsilon3 == null) {\n this.epsilon = ENGINE.backend.epsilon();\n }\n if (learningRate == null) {\n throw new Error(`learningRate for RMSPropOptimizer must be defined.`);\n }\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n const trainable = false;\n if (this.accumulatedMeanSquares[i2] == null) {\n this.accumulatedMeanSquares[i2] = {\n originalName: `${name}/rms`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n if (this.accumulatedMoments[i2] == null) {\n this.accumulatedMoments[i2] = {\n originalName: `${name}/momentum`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n if (this.accumulatedMeanGrads[i2] == null && this.centered) {\n this.accumulatedMeanGrads[i2] = {\n originalName: `${name}/mg`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const accumulatedMeanSquare = this.accumulatedMeanSquares[i2].variable;\n const accumulatedMoments = this.accumulatedMoments[i2].variable;\n tidy(() => {\n const newAccumulatedMeanSquare = add2(mul(accumulatedMeanSquare, this.decay), mul(square(gradient), 1 - this.decay));\n if (this.centered) {\n const accumulatedMeanGrad = this.accumulatedMeanGrads[i2].variable;\n const newAccumulatedMeanGrad = add2(mul(accumulatedMeanGrad, this.decay), mul(gradient, 1 - this.decay));\n const gradContribution = div(mul(gradient, this.learningRate), sqrt(sub(newAccumulatedMeanSquare, add2(square(newAccumulatedMeanGrad), this.epsilon))));\n const newAccumulatedMoments = add2(mul(accumulatedMoments, this.momentum), gradContribution);\n accumulatedMeanSquare.assign(newAccumulatedMeanSquare);\n accumulatedMeanGrad.assign(newAccumulatedMeanGrad);\n accumulatedMoments.assign(newAccumulatedMoments);\n const newValue = sub(value, newAccumulatedMoments);\n value.assign(newValue);\n } else {\n const newAccumulatedMeanSquare2 = add2(mul(accumulatedMeanSquare, this.decay), mul(square(gradient), 1 - this.decay));\n const newAccumulatedMoments = add2(mul(accumulatedMoments, this.momentum), div(mul(gradient, this.learningRate), sqrt(add2(newAccumulatedMeanSquare2, this.epsilon))));\n accumulatedMeanSquare.assign(newAccumulatedMeanSquare2);\n accumulatedMoments.assign(newAccumulatedMoments);\n const newValue = sub(value, newAccumulatedMoments);\n value.assign(newValue);\n }\n });\n });\n this.incrementIterations();\n }\n dispose() {\n if (this.accumulatedMeanSquares != null) {\n dispose(this.accumulatedMeanSquares.map((v) => v.variable));\n }\n if (this.accumulatedMeanGrads != null && this.centered) {\n dispose(this.accumulatedMeanGrads.map((v) => v.variable));\n }\n if (this.accumulatedMoments != null) {\n dispose(this.accumulatedMoments.map((v) => v.variable));\n }\n }\n async getWeights() {\n const variables = [...this.accumulatedMeanSquares, ...this.accumulatedMoments];\n if (this.centered) {\n variables.push(...this.accumulatedMeanGrads);\n }\n return [await this.saveIterations()].concat(variables.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n const variableCount = this.centered ? weightValues.length / 3 : weightValues.length / 2;\n const trainable = false;\n this.accumulatedMeanSquares = weightValues.slice(0, variableCount).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n this.accumulatedMoments = weightValues.slice(variableCount, variableCount * 2).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n if (this.centered) {\n this.accumulatedMeanGrads = weightValues.slice(variableCount * 2, variableCount * 3).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n }\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"decay\": this.decay,\n \"momentum\": this.momentum,\n \"epsilon\": this.epsilon,\n \"centered\": this.centered\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"decay\"], config[\"momentum\"], config[\"epsilon\"], config[\"centered\"]);\n }\n};\nRMSPropOptimizer.className = \"RMSProp\";\nregisterClass(RMSPropOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/optimizer_constructors.js\nvar OptimizerConstructors = class {\n static sgd(learningRate) {\n return new SGDOptimizer(learningRate);\n }\n static momentum(learningRate, momentum, useNesterov = false) {\n return new MomentumOptimizer(learningRate, momentum, useNesterov);\n }\n static rmsprop(learningRate, decay = 0.9, momentum = 0, epsilon3 = null, centered = false) {\n return new RMSPropOptimizer(learningRate, decay, momentum, epsilon3, centered);\n }\n static adam(learningRate = 1e-3, beta1 = 0.9, beta2 = 0.999, epsilon3 = null) {\n return new AdamOptimizer(learningRate, beta1, beta2, epsilon3);\n }\n static adadelta(learningRate = 1e-3, rho = 0.95, epsilon3 = null) {\n return new AdadeltaOptimizer(learningRate, rho, epsilon3);\n }\n static adamax(learningRate = 2e-3, beta1 = 0.9, beta2 = 0.999, epsilon3 = null, decay = 0) {\n return new AdamaxOptimizer(learningRate, beta1, beta2, epsilon3, decay);\n }\n static adagrad(learningRate, initialAccumulatorValue = 0.1) {\n return new AdagradOptimizer(learningRate, initialAccumulatorValue);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/train.js\nvar train = {\n sgd: OptimizerConstructors.sgd,\n momentum: OptimizerConstructors.momentum,\n adadelta: OptimizerConstructors.adadelta,\n adagrad: OptimizerConstructors.adagrad,\n rmsprop: OptimizerConstructors.rmsprop,\n adamax: OptimizerConstructors.adamax,\n adam: OptimizerConstructors.adam\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/browser_util.js\nvar delayCallback = (() => {\n if (typeof requestAnimationFrame !== \"undefined\") {\n return requestAnimationFrame;\n } else if (typeof setImmediate !== \"undefined\") {\n return setImmediate;\n }\n return (f) => f();\n})();\nfunction nextFrame() {\n return new Promise((resolve) => delayCallback(() => resolve()));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/backend_util.js\nvar backend_util_exports = {};\n__export(backend_util_exports, {\n ERF_A1: () => ERF_A1,\n ERF_A2: () => ERF_A2,\n ERF_A3: () => ERF_A3,\n ERF_A4: () => ERF_A4,\n ERF_A5: () => ERF_A5,\n ERF_P: () => ERF_P,\n PARALLELIZE_THRESHOLD: () => PARALLELIZE_THRESHOLD,\n RowPartitionType: () => RowPartitionType,\n SELU_SCALE: () => SELU_SCALE,\n SELU_SCALEALPHA: () => SELU_SCALEALPHA,\n applyActivation: () => applyActivation,\n assertAndGetBroadcastShape: () => assertAndGetBroadcastShape,\n assertAxesAreInnerMostDims: () => assertAxesAreInnerMostDims,\n assertParamsConsistent: () => assertParamsConsistent,\n assignToTypedArray: () => assignToTypedArray,\n axesAreInnerMostDims: () => axesAreInnerMostDims,\n calculateShapes: () => calculateShapes,\n checkEinsumDimSizes: () => checkEinsumDimSizes,\n checkPadOnDimRoundingMode: () => checkPadOnDimRoundingMode,\n combineLocations: () => combineLocations,\n combineRaggedTensorToTensorShapes: () => combineRaggedTensorToTensorShapes,\n complexWithEvenIndex: () => complexWithEvenIndex,\n complexWithOddIndex: () => complexWithOddIndex,\n computeConv2DInfo: () => computeConv2DInfo,\n computeConv3DInfo: () => computeConv3DInfo,\n computeDefaultPad: () => computeDefaultPad,\n computeDilation2DInfo: () => computeDilation2DInfo,\n computeOptimalWindowSize: () => computeOptimalWindowSize,\n computeOutAndReduceShapes: () => computeOutAndReduceShapes,\n computeOutShape: () => computeOutShape2,\n computePool2DInfo: () => computePool2DInfo,\n computePool3DInfo: () => computePool3DInfo,\n convertConv2DDataFormat: () => convertConv2DDataFormat,\n decodeEinsumEquation: () => decodeEinsumEquation,\n eitherStridesOrDilationsAreOne: () => eitherStridesOrDilationsAreOne,\n expandShapeToKeepDim: () => expandShapeToKeepDim,\n exponent: () => exponent,\n exponents: () => exponents,\n fromStringArrayToUint8: () => fromStringArrayToUint8,\n fromUint8ToStringArray: () => fromUint8ToStringArray,\n getAxesPermutation: () => getAxesPermutation,\n getBroadcastDims: () => getBroadcastDims,\n getComplexWithIndex: () => getComplexWithIndex,\n getEinsumComputePath: () => getEinsumComputePath,\n getEinsumPermutation: () => getEinsumPermutation,\n getFusedBiasGradient: () => getFusedBiasGradient,\n getFusedDyActivation: () => getFusedDyActivation,\n getImageCenter: () => getImageCenter,\n getInnerMostAxes: () => getInnerMostAxes,\n getPermuted: () => getPermuted,\n getRaggedRank: () => getRaggedRank,\n getReductionAxes: () => getReductionAxes,\n getReshaped: () => getReshaped,\n getReshapedPermuted: () => getReshapedPermuted,\n getRowPartitionTypesHelper: () => getRowPartitionTypesHelper,\n getSliceBeginCoords: () => getSliceBeginCoords,\n getSliceSize: () => getSliceSize,\n getSparseFillEmptyRowsIndicesDenseShapeMismatch: () => getSparseFillEmptyRowsIndicesDenseShapeMismatch,\n getSparseFillEmptyRowsNegativeIndexErrorMessage: () => getSparseFillEmptyRowsNegativeIndexErrorMessage,\n getSparseFillEmptyRowsOutOfRangeIndexErrorMessage: () => getSparseFillEmptyRowsOutOfRangeIndexErrorMessage,\n getSparseReshapeEmptyTensorZeroOutputDimErrorMessage: () => getSparseReshapeEmptyTensorZeroOutputDimErrorMessage,\n getSparseReshapeInputOutputMismatchErrorMessage: () => getSparseReshapeInputOutputMismatchErrorMessage,\n getSparseReshapeInputOutputMultipleErrorMessage: () => getSparseReshapeInputOutputMultipleErrorMessage,\n getSparseReshapeMultipleNegativeOneOutputDimErrorMessage: () => getSparseReshapeMultipleNegativeOneOutputDimErrorMessage,\n getSparseReshapeNegativeOutputDimErrorMessage: () => getSparseReshapeNegativeOutputDimErrorMessage,\n getSparseSegmentReductionIndicesOutOfRangeErrorMessage: () => getSparseSegmentReductionIndicesOutOfRangeErrorMessage,\n getSparseSegmentReductionNegativeSegmentIdsErrorMessage: () => getSparseSegmentReductionNegativeSegmentIdsErrorMessage,\n getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage: () => getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage,\n getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage: () => getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage,\n getUndoAxesPermutation: () => getUndoAxesPermutation,\n isIdentityPermutation: () => isIdentityPermutation,\n log: () => log,\n mergeRealAndImagArrays: () => mergeRealAndImagArrays,\n prepareAndValidate: () => prepareAndValidate,\n prepareSplitSize: () => prepareSplitSize,\n segment_util: () => segment_util_exports,\n shouldFuse: () => shouldFuse,\n slice_util: () => slice_util_exports,\n splitRealAndImagArrays: () => splitRealAndImagArrays,\n tupleValuesAreOne: () => tupleValuesAreOne,\n upcastType: () => upcastType,\n validateDefaultValueShape: () => validateDefaultValueShape,\n validateInput: () => validateInput,\n validateUpdateShape: () => validateUpdateShape,\n warn: () => warn\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_util.js\nfunction assertParamsConsistent(shapes, axis) {\n const rank = shapes[0].length;\n shapes.forEach((shape, i2) => {\n assert(shape.length === rank, () => `Error in concat${rank}D: rank of tensors[${i2}] must be the same as the rank of the rest (${rank})`);\n });\n assert(axis >= 0 && axis < rank, () => `Error in concat${rank}D: axis must be between 0 and ${rank - 1}.`);\n const firstShape = shapes[0];\n shapes.forEach((shape, i2) => {\n for (let r2 = 0; r2 < rank; r2++) {\n assert(r2 === axis || shape[r2] === firstShape[r2], () => `Error in concat${rank}D: Shape of tensors[${i2}] (${shape}) does not match the shape of the rest (${firstShape}) along the non-concatenated axis ${i2}.`);\n }\n });\n}\nfunction computeOutShape2(shapes, axis) {\n const outputShape = shapes[0].slice();\n for (let i2 = 1; i2 < shapes.length; i2++) {\n outputShape[axis] += shapes[i2][axis];\n }\n return outputShape;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ragged_to_dense_util.js\nvar RowPartitionType;\n(function(RowPartitionType3) {\n RowPartitionType3[RowPartitionType3[\"FIRST_DIM_SIZE\"] = 0] = \"FIRST_DIM_SIZE\";\n RowPartitionType3[RowPartitionType3[\"VALUE_ROWIDS\"] = 1] = \"VALUE_ROWIDS\";\n RowPartitionType3[RowPartitionType3[\"ROW_LENGTHS\"] = 2] = \"ROW_LENGTHS\";\n RowPartitionType3[RowPartitionType3[\"ROW_SPLITS\"] = 3] = \"ROW_SPLITS\";\n RowPartitionType3[RowPartitionType3[\"ROW_LIMITS\"] = 4] = \"ROW_LIMITS\";\n RowPartitionType3[RowPartitionType3[\"ROW_STARTS\"] = 5] = \"ROW_STARTS\";\n})(RowPartitionType || (RowPartitionType = {}));\nfunction combineRaggedTensorToTensorShapes(raggedRank, shape, valueShape) {\n let outputShape = new Array();\n if (valueShape == null && shape == null) {\n return outputShape;\n }\n if (shape == null) {\n while (outputShape.length < raggedRank + valueShape.length) {\n outputShape.push(-1);\n }\n } else {\n outputShape = shape.slice();\n }\n if (valueShape == null) {\n return outputShape;\n }\n if (raggedRank + valueShape.length !== outputShape.length) {\n throw new Error(`rt input.shape and shape=${shape} are incompatible: rt input.rank = ${raggedRank + valueShape.length}, but shape.rank = ${outputShape.length}`);\n }\n for (let i2 = 1; i2 < valueShape.length; ++i2) {\n const valueDim = valueShape[i2];\n const outputShapeDimIndex = outputShape[outputShape.length - valueShape.length + i2];\n const outputShapeDim = outputShape[outputShapeDimIndex];\n if (valueDim >= 0) {\n if (outputShapeDim >= 0) {\n if (outputShapeDim !== valueDim) {\n throw new Error(`rt input.shape and shape=${shape} are incompatible: rt input.shape[${i2 + raggedRank}] = ${valueDim} but shape[${i2 + raggedRank}] = ${outputShapeDim}`);\n }\n } else {\n outputShape[outputShapeDimIndex] = valueDim;\n }\n }\n }\n return outputShape;\n}\nfunction getRowPartitionTypesHelper(rowPartitionTypeStrings) {\n const stringToType = {\n \"FIRST_DIM_SIZE\": RowPartitionType.FIRST_DIM_SIZE,\n \"VALUE_ROWIDS\": RowPartitionType.VALUE_ROWIDS,\n \"ROW_LENGTHS\": RowPartitionType.ROW_LENGTHS,\n \"ROW_SPLITS\": RowPartitionType.ROW_SPLITS,\n \"ROW_LIMITS\": RowPartitionType.ROW_LIMITS,\n \"ROW_STARTS\": RowPartitionType.ROW_STARTS\n };\n const result = [];\n for (const typeStr of rowPartitionTypeStrings) {\n if (typeStr in stringToType) {\n result.push(stringToType[typeStr]);\n } else {\n break;\n }\n }\n return result;\n}\nfunction getRaggedRank(rowPartitionTypes) {\n if (rowPartitionTypes.length === 0) {\n return 0;\n }\n if (rowPartitionTypes[0] === RowPartitionType.FIRST_DIM_SIZE) {\n return rowPartitionTypes.length - 1;\n }\n return rowPartitionTypes.length;\n}\nfunction validateDefaultValueShape(defaultValueShape, valueShape) {\n if (defaultValueShape == null || valueShape == null) {\n return;\n }\n const defaultNDims = defaultValueShape.length;\n const valuesNDims = valueShape.length;\n if (defaultNDims >= valuesNDims) {\n throw new Error(`defaultValue.shape=${defaultValueShape} and ragged tensor flatValues.shape=${valueShape}, are incompatible: defaultValue.rank = ${defaultNDims} must be less than ragged tensor input flatValues.rank = ${valuesNDims})`);\n }\n for (let i2 = 0; i2 < Math.min(defaultNDims, valuesNDims - 1); ++i2) {\n const defaultDim = defaultValueShape[i2];\n const valueDim = valueShape[i2 + 1];\n if (defaultDim >= 0 && valueDim >= 0 && defaultDim !== 1 && defaultDim !== valueDim) {\n throw new Error(`defaultValue.shape=${defaultValueShape}, and ragged tensor input flatValues.shape=${valueShape} are incompatible: defaultValue.shape[${i2 - defaultValueShape.length}] = ${defaultDim} but ragged tensor input.flatValues.shape[${i2 - defaultValueShape.length}] = ${valueDim}`);\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reduce_util.js\nvar PARALLELIZE_THRESHOLD = 30;\nfunction computeOptimalWindowSize(inSize) {\n if (inSize <= PARALLELIZE_THRESHOLD) {\n return inSize;\n }\n return nearestDivisor(inSize, Math.floor(Math.sqrt(inSize)));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/rotate_util.js\nfunction getImageCenter(center, imageHeight, imageWidth) {\n const centerX = imageWidth * (typeof center === \"number\" ? center : center[0]);\n const centerY = imageHeight * (typeof center === \"number\" ? center : center[1]);\n return [centerX, centerY];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/array_ops_util.js\nfunction getReshaped(inputShape, blockShape, prod6, batchToSpace = true) {\n let reshaped = [];\n if (batchToSpace) {\n reshaped = reshaped.concat(blockShape.slice(0));\n reshaped.push(inputShape[0] / prod6);\n reshaped = reshaped.concat(inputShape.slice(1));\n } else {\n reshaped = reshaped.concat(inputShape[0]);\n const spatialLength = blockShape.length;\n for (let i2 = 0; i2 < spatialLength; ++i2) {\n reshaped = reshaped.concat([inputShape[i2 + 1] / blockShape[i2], blockShape[i2]]);\n }\n reshaped = reshaped.concat(inputShape.slice(spatialLength + 1));\n }\n return reshaped;\n}\nfunction getPermuted(reshapedRank, blockShapeRank, batchToSpace = true) {\n const permuted = [];\n if (batchToSpace) {\n permuted.push(blockShapeRank);\n for (let i2 = blockShapeRank + 1; i2 < reshapedRank; ++i2) {\n if (i2 <= 2 * blockShapeRank) {\n permuted.push(i2);\n permuted.push(i2 - (blockShapeRank + 1));\n } else {\n permuted.push(i2);\n }\n }\n } else {\n const permutedBeforeBatch = [];\n const permutedAfterBatch = [];\n for (let i2 = 1; i2 < reshapedRank; ++i2) {\n if (i2 >= blockShapeRank * 2 + 1 || i2 % 2 === 1) {\n permutedAfterBatch.push(i2);\n } else {\n permutedBeforeBatch.push(i2);\n }\n }\n permuted.push(...permutedBeforeBatch);\n permuted.push(0);\n permuted.push(...permutedAfterBatch);\n }\n return permuted;\n}\nfunction getReshapedPermuted(inputShape, blockShape, prod6, batchToSpace = true) {\n const reshapedPermuted = [];\n if (batchToSpace) {\n reshapedPermuted.push(inputShape[0] / prod6);\n } else {\n reshapedPermuted.push(inputShape[0] * prod6);\n }\n for (let i2 = 1; i2 < inputShape.length; ++i2) {\n if (i2 <= blockShape.length) {\n if (batchToSpace) {\n reshapedPermuted.push(blockShape[i2 - 1] * inputShape[i2]);\n } else {\n reshapedPermuted.push(inputShape[i2] / blockShape[i2 - 1]);\n }\n } else {\n reshapedPermuted.push(inputShape[i2]);\n }\n }\n return reshapedPermuted;\n}\nfunction getSliceBeginCoords(crops, blockShape) {\n const sliceBeginCoords = [0];\n for (let i2 = 0; i2 < blockShape; ++i2) {\n sliceBeginCoords.push(crops[i2][0]);\n }\n return sliceBeginCoords;\n}\nfunction getSliceSize(uncroppedShape, crops, blockShape) {\n const sliceSize = uncroppedShape.slice(0, 1);\n for (let i2 = 0; i2 < blockShape; ++i2) {\n sliceSize.push(uncroppedShape[i2 + 1] - crops[i2][0] - crops[i2][1]);\n }\n return sliceSize;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/selu_util.js\nvar SELU_SCALEALPHA = 1.7580993408473768;\nvar SELU_SCALE = 1.0507009873554805;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/erf_util.js\nvar ERF_P = 0.3275911;\nvar ERF_A1 = 0.254829592;\nvar ERF_A2 = -0.284496736;\nvar ERF_A3 = 1.421413741;\nvar ERF_A4 = -1.453152027;\nvar ERF_A5 = 1.061405429;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/complex_util.js\nfunction mergeRealAndImagArrays(real6, imag5) {\n if (real6.length !== imag5.length) {\n throw new Error(`Cannot merge real and imag arrays of different lengths. real:${real6.length}, imag: ${imag5.length}.`);\n }\n const result = new Float32Array(real6.length * 2);\n for (let i2 = 0; i2 < result.length; i2 += 2) {\n result[i2] = real6[i2 / 2];\n result[i2 + 1] = imag5[i2 / 2];\n }\n return result;\n}\nfunction splitRealAndImagArrays(complex6) {\n const real6 = new Float32Array(complex6.length / 2);\n const imag5 = new Float32Array(complex6.length / 2);\n for (let i2 = 0; i2 < complex6.length; i2 += 2) {\n real6[i2 / 2] = complex6[i2];\n imag5[i2 / 2] = complex6[i2 + 1];\n }\n return { real: real6, imag: imag5 };\n}\nfunction complexWithEvenIndex(complex6) {\n const len = Math.ceil(complex6.length / 4);\n const real6 = new Float32Array(len);\n const imag5 = new Float32Array(len);\n for (let i2 = 0; i2 < complex6.length; i2 += 4) {\n real6[Math.floor(i2 / 4)] = complex6[i2];\n imag5[Math.floor(i2 / 4)] = complex6[i2 + 1];\n }\n return { real: real6, imag: imag5 };\n}\nfunction complexWithOddIndex(complex6) {\n const len = Math.floor(complex6.length / 4);\n const real6 = new Float32Array(len);\n const imag5 = new Float32Array(len);\n for (let i2 = 2; i2 < complex6.length; i2 += 4) {\n real6[Math.floor(i2 / 4)] = complex6[i2];\n imag5[Math.floor(i2 / 4)] = complex6[i2 + 1];\n }\n return { real: real6, imag: imag5 };\n}\nfunction getComplexWithIndex(complex6, index) {\n const real6 = complex6[index * 2];\n const imag5 = complex6[index * 2 + 1];\n return { real: real6, imag: imag5 };\n}\nfunction assignToTypedArray(data, real6, imag5, index) {\n data[index * 2] = real6;\n data[index * 2 + 1] = imag5;\n}\nfunction exponents(n2, inverse) {\n const real6 = new Float32Array(n2 / 2);\n const imag5 = new Float32Array(n2 / 2);\n for (let i2 = 0; i2 < Math.ceil(n2 / 2); i2++) {\n const x = (inverse ? 2 : -2) * Math.PI * (i2 / n2);\n real6[i2] = Math.cos(x);\n imag5[i2] = Math.sin(x);\n }\n return { real: real6, imag: imag5 };\n}\nfunction exponent(k, n2, inverse) {\n const x = (inverse ? 2 : -2) * Math.PI * (k / n2);\n const real6 = Math.cos(x);\n const imag5 = Math.sin(x);\n return { real: real6, imag: imag5 };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/einsum_util.js\nvar ARROW = \"->\";\nvar ARROW_REGEX = /->/g;\nvar COMMA = \",\";\nvar ELLIPSIS = \"...\";\nfunction decodeEinsumEquation(equation, numTensors) {\n equation = equation.replace(/\\s/g, \"\");\n const numArrows = (equation.length - equation.replace(ARROW_REGEX, \"\").length) / ARROW.length;\n if (numArrows < 1) {\n throw new Error(\"Equations without an arrow are not supported.\");\n } else if (numArrows > 1) {\n throw new Error(`Equation must contain exactly one arrow (\"${ARROW}\").`);\n }\n const [inputString, outputString] = equation.split(ARROW);\n assert(inputString.indexOf(ELLIPSIS) === -1, () => `The ellipsis notation (\"${ELLIPSIS}\") is not supported yet.`);\n const inputTerms = inputString.split(COMMA);\n const numInputs = inputTerms.length;\n if (numTensors !== numInputs) {\n throw new Error(`Expected ${numInputs} input tensors, received ${numTensors}`);\n }\n if (numInputs > 2) {\n throw new Error(\"Support for more than 2 input tensors is not implemented yet.\");\n }\n const allDims = [];\n for (let i2 = 0; i2 < outputString.length; ++i2) {\n const dimName = outputString[i2];\n if (!inputTerms.some((inputTerm) => inputTerm.indexOf(dimName) !== -1)) {\n throw new Error(`Output subscripts contain the label ${dimName} not present in the input subscripts.`);\n }\n if (allDims.indexOf(dimName) === -1) {\n allDims.push(dimName);\n }\n }\n for (let i2 = 0; i2 < inputString.length; ++i2) {\n const dimName = inputString[i2];\n if (allDims.indexOf(dimName) === -1 && dimName !== COMMA) {\n allDims.push(dimName);\n }\n }\n const idDims = new Array(inputTerms.length);\n for (let i2 = 0; i2 < numInputs; ++i2) {\n if (new Set(inputTerms[i2].split(\"\")).size !== inputTerms[i2].length) {\n throw new Error(`Found duplicate axes in input component ${inputTerms[i2]}. Support for duplicate axes in input is not implemented yet.`);\n }\n idDims[i2] = [];\n for (let j = 0; j < inputTerms[i2].length; ++j) {\n idDims[i2].push(allDims.indexOf(inputTerms[i2][j]));\n }\n }\n const numDims = allDims.length;\n const numOutDims = outputString.length;\n const summedDims = [];\n for (let i2 = numOutDims; i2 < numDims; ++i2) {\n summedDims.push(i2);\n }\n return { allDims, summedDims, idDims };\n}\nfunction getEinsumPermutation(nDims, idDims) {\n let permutationIndices = new Array(nDims);\n permutationIndices.fill(-1);\n for (let i2 = 0; i2 < idDims.length; ++i2) {\n permutationIndices[idDims[i2]] = i2;\n }\n const expandDims7 = [];\n for (let i2 = 0; i2 < nDims; ++i2) {\n if (permutationIndices[i2] === -1) {\n expandDims7.push(i2);\n }\n }\n permutationIndices = permutationIndices.filter((d) => d !== -1);\n return { permutationIndices, expandDims: expandDims7 };\n}\nfunction checkEinsumDimSizes(nDims, idDims, tensors) {\n const dimSizes = new Array(nDims);\n for (let i2 = 0; i2 < tensors.length; ++i2) {\n const shape = tensors[i2].shape;\n for (let j = 0; j < idDims[i2].length; ++j) {\n if (dimSizes[idDims[i2][j]] === void 0) {\n dimSizes[idDims[i2][j]] = shape[j];\n } else {\n assert(dimSizes[idDims[i2][j]] === shape[j], () => `Expected dimension ${dimSizes[idDims[i2][j]]} at axis ${j} of input shaped ${JSON.stringify(shape)}, but got dimension ${shape[j]}`);\n }\n }\n }\n}\nfunction getEinsumComputePath(summedDims, idDims) {\n const path = summedDims;\n const steps = [];\n let nSteps = 0;\n if (summedDims.length === 0) {\n path.push(-1);\n }\n nSteps = summedDims.length + 1;\n for (let i2 = 0; i2 < nSteps; ++i2) {\n steps.push([]);\n }\n const computedTermIndices = [];\n for (let i2 = 0; i2 < path.length; ++i2) {\n const summedDim = path[i2];\n const termIndices = findTermsWithDim(idDims, summedDim);\n for (const termIndex of termIndices) {\n if (computedTermIndices.indexOf(termIndex) === -1) {\n steps[i2].push(termIndex);\n computedTermIndices.push(termIndex);\n }\n }\n }\n return { path, steps };\n}\nfunction isIdentityPermutation(perm) {\n return perm.every((dim, index) => dim === index);\n}\nfunction findTermsWithDim(idDims, dim) {\n const termIndices = [];\n for (let i2 = 0; i2 < idDims.length; ++i2) {\n if (idDims[i2].length === 0 || idDims[i2].indexOf(dim) !== -1 || dim === -1) {\n termIndices.push(i2);\n }\n }\n return termIndices;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/split_util.js\nfunction prepareSplitSize(x, numOrSizeSplits, axis = 0) {\n let splitSizes = [];\n if (typeof numOrSizeSplits === \"number\") {\n assert(x.shape[axis] % numOrSizeSplits === 0, () => \"Number of splits must evenly divide the axis.\");\n splitSizes = new Array(numOrSizeSplits).fill(x.shape[axis] / numOrSizeSplits);\n } else {\n const numOfNegs = numOrSizeSplits.reduce((count2, value) => {\n if (value === -1) {\n count2 += 1;\n }\n return count2;\n }, 0);\n assert(numOfNegs <= 1, () => \"There should be only one negative value in split array.\");\n const negIndex = numOrSizeSplits.indexOf(-1);\n if (negIndex !== -1) {\n const total = numOrSizeSplits.reduce((a, b) => b > 0 ? a + b : a);\n numOrSizeSplits[negIndex] = x.shape[axis] - total;\n }\n assert(x.shape[axis] === numOrSizeSplits.reduce((a, b) => a + b), () => \"The sum of sizes must match the size of the axis dimension.\");\n splitSizes = numOrSizeSplits;\n }\n return splitSizes;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_fill_empty_rows_util.js\nfunction getSparseFillEmptyRowsIndicesDenseShapeMismatch(indicesLength) {\n return `Received SparseTensor with denseShape[0] = 0 but\n indices.shape[0] = ${indicesLength}`;\n}\nfunction getSparseFillEmptyRowsNegativeIndexErrorMessage(index, value) {\n return `indices(${index}, 0) is invalid: ${value} < 0`;\n}\nfunction getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(index, value, limit) {\n return `indices(${index}, 0) is invalid: ${value} >= ${limit}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_reshape_util.js\nfunction getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(dim1, dim2) {\n return `only one output dimension may be -1, not both ${dim1} and ${dim2}`;\n}\nfunction getSparseReshapeNegativeOutputDimErrorMessage(dim, value) {\n return `size ${dim} must be non-negative, not ${value}`;\n}\nfunction getSparseReshapeEmptyTensorZeroOutputDimErrorMessage() {\n return \"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero\";\n}\nfunction getSparseReshapeInputOutputMultipleErrorMessage(inputShape, outputShape) {\n const inputSize = sizeFromShape(inputShape);\n const outputSize = sizeFromShape(outputShape);\n return `Input to reshape is a SparseTensor with ${inputSize}\n dense values, but the requested shape requires a multiple of ${outputSize}. inputShape=${inputShape} outputShape= ${outputShape}`;\n}\nfunction getSparseReshapeInputOutputMismatchErrorMessage(inputShape, outputShape) {\n const inputSize = sizeFromShape(inputShape);\n const outputSize = sizeFromShape(outputShape);\n return `Input to reshape is a tensor with ${inputSize} dense values, but the requested shape has ${outputSize}. inputShape=${inputShape} outputShape=${outputShape}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_segment_reduction_util.js\nfunction getSparseSegmentReductionNegativeSegmentIdsErrorMessage() {\n return `segment ids must be >= 0`;\n}\nfunction getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage() {\n return `segment ids are not increasing`;\n}\nfunction getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(segmentId, outputRows) {\n return `Segment id ${segmentId} out of range [0, ${outputRows}), possibly because segmentIds input is not sorted.`;\n}\nfunction getSparseSegmentReductionIndicesOutOfRangeErrorMessage(index, indexValue, inputRows) {\n return `Bad: indices[${index}] == ${indexValue} out of range [0, ${inputRows})`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/segment_util.js\nvar segment_util_exports = {};\n__export(segment_util_exports, {\n collectGatherOpShapeInfo: () => collectGatherOpShapeInfo,\n computeOutShape: () => computeOutShape3,\n segOpComputeOptimalWindowSize: () => segOpComputeOptimalWindowSize\n});\nfunction segOpComputeOptimalWindowSize(inSize, numSegments) {\n let done = false;\n let res;\n if (inSize <= PARALLELIZE_THRESHOLD) {\n res = inSize;\n done = true;\n } else {\n res = nearestDivisor(inSize, Math.floor(Math.sqrt(inSize)));\n }\n while (!done) {\n if (res > numSegments || res === inSize) {\n done = true;\n } else {\n res = nearestDivisor(inSize, res + 1);\n }\n }\n return res;\n}\nfunction computeOutShape3(aShape, axis, numSegments) {\n const outShape = [];\n const rank = aShape.length;\n for (let dim = 0; dim < rank; dim++) {\n if (dim !== axis) {\n outShape.push(aShape[dim]);\n } else {\n outShape.push(numSegments);\n }\n }\n return outShape;\n}\nfunction collectGatherOpShapeInfo(x, indices, axis, batchDims) {\n const indicesRank = indices.shape.length;\n const xRank = x.shape.length;\n if (batchDims !== 0) {\n if (batchDims < -indicesRank || batchDims > indicesRank) {\n throw new Error(`Expect batchDims in the range of [-${indicesRank}, ${indicesRank}], but got ${batchDims}`);\n }\n }\n if (batchDims < 0) {\n batchDims += indicesRank;\n }\n if (batchDims > xRank) {\n throw new Error(`batchDims (${batchDims}) must be less than rank(x) (\n ${xRank}).`);\n }\n if (axis < batchDims) {\n throw new Error(`batchDims (${batchDims}) must be less than or equal to axis (${axis}).`);\n }\n for (let i2 = 0; i2 < batchDims; ++i2) {\n if (x.shape[i2] !== indices.shape[i2]) {\n throw new Error(`x.shape[${i2}]: ${x.shape[i2]} should be equal to indices.shape[${i2}]: ${indices.shape[i2]}.`);\n }\n }\n const dimSize = x.shape[axis];\n const outputShape = [];\n let batchSize = 1;\n let outerSize = 1;\n let sliceSize = 1;\n for (let i2 = 0; i2 < batchDims; ++i2) {\n outputShape.push(x.shape[i2]);\n batchSize *= x.shape[i2];\n }\n for (let i2 = batchDims; i2 < axis; i2++) {\n outputShape.push(x.shape[i2]);\n outerSize *= x.shape[i2];\n }\n for (let i2 = batchDims; i2 < indicesRank; i2++) {\n outputShape.push(indices.shape[i2]);\n }\n for (let i2 = axis + 1; i2 < xRank; i2++) {\n outputShape.push(x.shape[i2]);\n sliceSize *= x.shape[i2];\n }\n return { batchSize, sliceSize, outerSize, dimSize, outputShape };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/backend_util.js\nfunction fromUint8ToStringArray(vals) {\n try {\n return vals.map((val) => decodeString(val));\n } catch (err) {\n throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${err}`);\n }\n}\nfunction fromStringArrayToUint8(strings) {\n return strings.map((s2) => encodeString(s2));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/kernel_impls.js\nvar kernel_impls_exports = {};\n__export(kernel_impls_exports, {\n nonMaxSuppressionV3Impl: () => nonMaxSuppressionV3Impl,\n nonMaxSuppressionV4Impl: () => nonMaxSuppressionV4Impl,\n nonMaxSuppressionV5Impl: () => nonMaxSuppressionV5Impl,\n whereImpl: () => whereImpl\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Abs_grad.js\nvar absGradConfig = {\n kernelName: Abs,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, step(cast(x, \"float32\"), -1)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Acos_grad.js\nvar acosGradConfig = {\n kernelName: Acos,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return {\n x: () => {\n const a = square(cast(x, \"float32\"));\n const b = sqrt(sub(scalar(1), a));\n return neg(div(dy, b));\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Acosh_grad.js\nvar acoshGradConfig = {\n kernelName: Acosh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return {\n x: () => {\n const a = sqrt(sub(square(cast(x, \"float32\")), 1));\n return div(dy, a);\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Add_grad.js\nvar addGradConfig = {\n kernelName: Add,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n let res = dy;\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, a.shape);\n };\n const derB = () => {\n let res = dy;\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, b.shape);\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/AddN_grad.js\nvar addNGradConfig = {\n kernelName: AddN,\n saveAllInputs: true,\n gradFunc: (dy, saved) => {\n const ders = {};\n saved.forEach((_, i2) => {\n ders[i2] = () => dy.clone();\n });\n return ders;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ArgMax_grad.js\nvar argMaxGradConfig = {\n kernelName: ArgMax,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => zerosLike(x) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ArgMin_grad.js\nvar argMinGradConfig = {\n kernelName: ArgMin,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => zerosLike(x) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Asin_grad.js\nvar asinGradConfig = {\n kernelName: Asin,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, sqrt(sub(scalar(1), square(cast(x, \"float32\"))))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Asinh_grad.js\nvar asinhGradConfig = {\n kernelName: Asinh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return {\n x: () => {\n const a = sqrt(add2(scalar(1), square(cast(x, \"float32\"))));\n return div(dy, a);\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Atan2_grad.js\nvar atan2GradConfig = {\n kernelName: Atan2,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const d = add2(square(a), square(b));\n let res = mul(dy, div(b, d));\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, a.shape);\n };\n const derB = () => {\n const d = add2(square(a), square(b));\n let res = neg(mul(dy, div(a, d)));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, b.shape);\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Atan_grad.js\nvar atanGradConfig = {\n kernelName: Atan,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, add2(square(cast(x, \"float32\")), 1)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Atanh_grad.js\nvar atanhGradConfig = {\n kernelName: Atanh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, sub(scalar(1), square(cast(x, \"float32\")))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/avg_pool_3d_grad.js\nfunction avgPool3dGrad_(dy, input2, filterSize, strides, pad3, dimRoundingMode) {\n const $dy = convertToTensor(dy, \"dy\", \"avgPool3dGrad\");\n const $input = convertToTensor(input2, \"input\", \"avgPool3dGrad\");\n let dy5D = $dy;\n let input5D = $input;\n let reshapedTo5D = false;\n if ($input.rank === 4) {\n reshapedTo5D = true;\n dy5D = reshape($dy, [1, $dy.shape[0], $dy.shape[1], $dy.shape[2], $dy.shape[3]]);\n input5D = reshape($input, [\n 1,\n $input.shape[0],\n $input.shape[1],\n $input.shape[2],\n $input.shape[3]\n ]);\n }\n assert(dy5D.rank === 5, () => `Error in avgPool3dGrad: dy must be rank 5 but got rank ${dy5D.rank}.`);\n assert(input5D.rank === 5, () => `Error in avgPool3dGrad: input must be rank 5 but got rank ${input5D.rank}.`);\n checkPadOnDimRoundingMode(\"avgPool3dGrad\", pad3, dimRoundingMode);\n const inputs = { dy: dy5D, input: input5D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n const res = ENGINE.runKernel(AvgPool3DGrad, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar avgPool3dGrad = op({ avgPool3dGrad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/AvgPool3D_grad.js\nvar avgPool3DGradConfig = {\n kernelName: AvgPool3D,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n return {\n x: () => avgPool3dGrad(dy, x, filterSize, strides, pad3, dimRoundingMode)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/avg_pool_grad.js\nfunction avgPoolGrad_(dy, input2, filterSize, strides, pad3) {\n const $dy = convertToTensor(dy, \"dy\", \"avgPoolGrad\");\n const $input = convertToTensor(input2, \"input\", \"avgPoolGrad\");\n assert($input.rank === $dy.rank, () => `Rank of input (${$input.rank}) does not match rank of dy (${$dy.rank})`);\n let input4D = $input;\n let dy4D = $dy;\n let reshapedTo4D = false;\n if ($input.rank === 3) {\n reshapedTo4D = true;\n input4D = reshape($input, [1, $input.shape[0], $input.shape[1], $input.shape[2]]);\n dy4D = reshape($dy, [1, $dy.shape[0], $dy.shape[1], $dy.shape[2]]);\n }\n assert(dy4D.rank === 4, () => `Error in avgPoolGrad: dy must be rank 4 but got rank ${dy4D.rank}.`);\n assert(input4D.rank === 4, () => `Error in avgPoolGrad: input must be rank 4 but got rank ${input4D.rank}.`);\n const inputs = { dy: dy4D, input: input4D };\n const attrs = { filterSize, strides, pad: pad3 };\n const res = ENGINE.runKernel(AvgPoolGrad, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar avgPoolGrad = op({ avgPoolGrad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/AvgPool_grad.js\nvar avgPoolGradConfig = {\n kernelName: AvgPool,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { filterSize, strides, pad: pad3 } = attrs;\n return { x: () => avgPoolGrad(dy, x, filterSize, strides, pad3) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/BatchMatMul_grad.js\nvar batchMatMulGradConfig = {\n kernelName: BatchMatMul,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved, attrs) => {\n const [a, b] = saved;\n const { transposeA, transposeB } = attrs;\n if (!transposeA && !transposeB) {\n return {\n a: () => matMul(dy, b, false, true),\n b: () => matMul(a, dy, true, false)\n };\n } else if (!transposeA && transposeB) {\n return {\n a: () => matMul(dy, b, false, false),\n b: () => matMul(dy, a, true, false)\n };\n } else if (transposeA && !transposeB) {\n return {\n a: () => matMul(b, dy, false, true),\n b: () => matMul(a, dy, false, false)\n };\n } else {\n return {\n a: () => matMul(b, dy, true, true),\n b: () => matMul(dy, a, true, true)\n };\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/BatchToSpaceND_grad.js\nvar batchToSpaceNDGradConfig = {\n kernelName: BatchToSpaceND,\n gradFunc: (dy, saved, attrs) => {\n const { blockShape, crops } = attrs;\n return { x: () => spaceToBatchND(dy, blockShape, crops) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/BroadcastTo_grad.js\nvar broadcastToGradConfig = {\n kernelName: BroadcastTo,\n gradFunc: (dy, saved, attrs) => {\n const broadCastToAttrs = attrs;\n const inputShape = broadCastToAttrs.inputShape;\n const outputShape = broadCastToAttrs.shape;\n const reps = Array.from(outputShape);\n for (let i2 = inputShape.length - 1; i2 >= 0; i2--) {\n if (inputShape[i2] === outputShape[i2]) {\n reps[i2] = 1;\n } else if (inputShape[i2] !== 1) {\n throw new Error(`broadcastTo(): [${inputShape}] cannot be broadcast to [${outputShape}].`);\n }\n }\n const axes = [];\n for (let i2 = 0; i2 < reps.length; i2++) {\n if (reps[i2] > 1) {\n axes.push(i2);\n }\n }\n return { x: () => sum2(dy, axes, true) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Cast_grad.js\nvar castGradConfig = {\n kernelName: Cast,\n gradFunc: (dy) => {\n return { x: () => dy.clone() };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Ceil_grad.js\nvar ceilGradConfig = {\n kernelName: Ceil,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ClipByValue_grad.js\nvar clipByValueGradConfig = {\n kernelName: ClipByValue,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { clipValueMin, clipValueMax } = attrs;\n return {\n x: () => where(logicalAnd(greaterEqual(x, clipValueMin), lessEqual(x, clipValueMax)), dy, zerosLike(dy))\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ComplexAbs_grad.js\nvar complexAbsGradConfig = {\n kernelName: ComplexAbs,\n inputsToSave: [\"x\"],\n gradFunc: absGradConfig.gradFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Concat_grad.js\nvar concatGradConfig = {\n kernelName: Concat,\n saveAllInputs: true,\n gradFunc: (dy, saved, attrs) => {\n const shapes = saved.map((t2) => t2.shape);\n const { axis } = attrs;\n const $axis = parseAxisParam(axis, saved[0].shape)[0];\n const sizeSplits = shapes.map((s2) => s2[$axis]);\n const derTensors = split(dy, sizeSplits, $axis);\n return derTensors.map((t2) => () => t2);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Conv2D_grad.js\nvar conv2DGradConfig = {\n kernelName: Conv2D,\n inputsToSave: [\"x\", \"filter\"],\n gradFunc: (dy, saved, attrs) => {\n const [x4D, $filter] = saved;\n const { dilations, strides, pad: pad3, dataFormat } = attrs;\n assert(tupleValuesAreOne(dilations), () => `Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);\n return {\n x: () => conv2DBackpropInput(x4D.shape, dy, $filter, strides, pad3, dataFormat),\n filter: () => conv2DBackpropFilter(x4D, dy, $filter.shape, strides, pad3, dataFormat)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Conv2DBackpropInput_grad.js\nvar conv2DBackpropInputGradConfig = {\n kernelName: Conv2DBackpropInput,\n inputsToSave: [\"dy\", \"filter\"],\n gradFunc: (ddx, saved, attrs) => {\n const [dy, filter] = saved;\n const { strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n return {\n dy: () => conv2d(ddx, filter, strides, pad3, dataFormat, 1, dimRoundingMode),\n filter: () => conv2DBackpropFilter(ddx, dy, filter.shape, strides, pad3, dataFormat, dimRoundingMode)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv3d_backprop_filter.js\nfunction conv3DBackpropFilter_(x, dy, filterShape, strides, pad3) {\n let x5D = x;\n if (x.rank === 4) {\n x5D = reshape(x, [1, x.shape[0], x.shape[1], x.shape[2], x.shape[3]]);\n }\n let dy5D = dy;\n if (dy5D.rank === 4) {\n dy5D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2], dy.shape[3]]);\n }\n assert(x5D.rank === 5, () => `Error in conv3dDerFilter: input must be rank 5, but got shape ${x5D.shape}.`);\n assert(dy5D.rank === 5, () => `Error in conv3dDerFilter: dy must be rank 5, but got shape ${dy5D.shape}.`);\n assert(filterShape.length === 5, () => `Error in conv3dDerFilter: filterShape must be length 5, but got ${filterShape}.`);\n assert(x5D.shape[4] === filterShape[3], () => `Error in conv3dDerFilter: depth of input ${x5D.shape[4]}) must match input depth in filter (${filterShape[3]}.`);\n assert(dy5D.shape[4] === filterShape[4], () => `Error in conv3dDerFilter: depth of dy (${dy5D.shape[4]}) must match output depth for filter (${filterShape[4]}).`);\n const inputs = { x: x5D, dy: dy5D };\n const attrs = { strides, pad: pad3, filterShape };\n return ENGINE.runKernel(Conv3DBackpropFilterV2, inputs, attrs);\n}\nvar conv3DBackpropFilter = op({ conv3DBackpropFilter_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Conv3D_grad.js\nvar conv3DGradConfig = {\n kernelName: Conv3D,\n inputsToSave: [\"x\", \"filter\"],\n gradFunc: (dy, saved, attrs) => {\n const { dilations, strides, pad: pad3 } = attrs;\n assert(tupleValuesAreOne(dilations), () => `Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);\n const [x5D, $filter] = saved;\n return {\n x: () => conv3DBackpropInput(x5D.shape, dy, $filter, strides, pad3),\n filter: () => conv3DBackpropFilter(x5D, dy, $filter.shape, strides, pad3)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Cos_grad.js\nvar cosGradConfig = {\n kernelName: Cos,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(neg(sin(cast(x, \"float32\"))), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Cosh_grad.js\nvar coshGradConfig = {\n kernelName: Cosh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(sinh(cast(x, \"float32\")), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Cumsum_grad.js\nvar cumsumGradConfig = {\n kernelName: Cumsum,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return {\n x: () => {\n const permutation = getAxesPermutation([axis], x.rank);\n let out = cumsum(dy, axis, exclusive, !reverse5);\n if (permutation != null) {\n out = transpose(out, permutation);\n }\n return out;\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/DepthwiseConv2dNative_grad.js\nvar depthwiseConv2dNativeGradConfig = {\n kernelName: DepthwiseConv2dNative,\n inputsToSave: [\"x\", \"filter\"],\n gradFunc: (dy, saved, attrs) => {\n const { dilations, strides, pad: pad3, dimRoundingMode } = attrs;\n const $dilations = dilations == null ? [1, 1] : dilations;\n assert(tupleValuesAreOne($dilations), () => `Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${$dilations}'`);\n const [x, filter] = saved;\n assert(x.rank === 4, () => `Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${x.rank}.`);\n assert(filter.rank === 4, () => `Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${filter.rank}.`);\n assert(x.shape[3] === filter.shape[2], () => `Error in gradient of depthwiseConv2d: number of input channels (${x.shape[3]}) must match the inChannels dimension in filter ${filter.shape[2]}.`);\n assert(eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'.`);\n checkPadOnDimRoundingMode(\"depthwiseConv2d\", pad3, dimRoundingMode);\n return {\n x: () => depthwiseConv2dNativeBackpropInput(x.shape, dy, filter, strides, pad3, $dilations, dimRoundingMode),\n filter: () => depthwiseConv2dNativeBackpropFilter(x, dy, filter.shape, strides, pad3, $dilations, dimRoundingMode)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Dilation2D_grad.js\nvar dilation2dGradConfig = {\n kernelName: Dilation2D,\n inputsToSave: [\"x\", \"filter\"],\n gradFunc: (dy, saved, attrs) => {\n const [x, filter] = saved;\n const inputInputs = { x, filter, dy };\n const filterInputs = { x, filter, dy };\n return {\n x: () => ENGINE.runKernel(Dilation2DBackpropInput, inputInputs, attrs),\n filter: () => ENGINE.runKernel(Dilation2DBackpropFilter, filterInputs, attrs)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Elu_grad.js\nvar eluGradConfig = {\n kernelName: Elu,\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [y] = saved;\n const inputs = { dy, y };\n return { x: () => ENGINE.runKernel(EluGrad, inputs) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Erf_grad.js\nvar erfGradConfig = {\n kernelName: Erf,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n const a = mul(exp(neg(square(x))), 2 / Math.sqrt(Math.PI));\n return { x: () => mul(dy, a) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Exp_grad.js\nvar expGradConfig = {\n kernelName: Exp,\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [y] = saved;\n return { x: () => mul(dy, y) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ExpandDims_grad.js\nvar expandDimsGradConfig = {\n kernelName: ExpandDims,\n inputsToSave: [\"input\"],\n gradFunc: (dy, saved) => {\n const [input2] = saved;\n return { input: () => reshape(dy, input2.shape) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Expm1_grad.js\nvar expm1GradConfig = {\n kernelName: Expm1,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, exp(x)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Floor_grad.js\nvar floorGradConfig = {\n kernelName: Floor,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/FloorDiv_grad.js\nvar floorDivGradConfig = {\n kernelName: FloorDiv,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const res = div(dy, cast(b, \"float32\"));\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), a.shape);\n }\n return res;\n };\n const derB = () => {\n let res = mul(dy, cast(a, \"float32\"));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = reshape(sum2(res, reduceAxes), b.shape);\n }\n const tmp = square(b);\n return neg(div(res, cast(tmp, \"float32\")));\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/FusedBatchNorm_grad.js\nvar fusedBatchNormGradConfig = {\n kernelName: FusedBatchNorm,\n inputsToSave: [\"x\", \"mean\", \"variance\", \"scale\"],\n gradFunc: (dy, saved, attrs) => {\n const { varianceEpsilon } = attrs;\n const [x, mean5, variance, scale2] = saved;\n const scaleValue = scale2 == null ? scalar(1) : scale2;\n const reductionAxes = getReductionAxes(mean5.shape, x.shape);\n const tileShape = [];\n if (mean5.rank === 1) {\n for (let i2 = 0; i2 < x.shape.length - 1; ++i2) {\n tileShape.push(x.shape[i2]);\n }\n tileShape.push(1);\n }\n const xMinusMean = sub(x, mean5);\n const dyTimesScaleValue = mul(dy, scaleValue);\n const oneOverSqrtVariance = rsqrt(add2(variance, scalar(varianceEpsilon)));\n const minusHalfRCube = mul(mul(mul(oneOverSqrtVariance, oneOverSqrtVariance), oneOverSqrtVariance), scalar(-0.5));\n const derX = () => {\n if (mean5.rank === 1) {\n return reshape(mul(mul(dy, tile(reshape(oneOverSqrtVariance, [1, 1, 1, mean5.shape[0]]), tileShape)), scaleValue), x.shape);\n } else {\n return reshape(mul(mul(dy, oneOverSqrtVariance), scaleValue), x.shape);\n }\n };\n const derMean = () => {\n let meanDer = mul(mul(oneOverSqrtVariance, scalar(-1)), dyTimesScaleValue);\n if (mean5.rank === 1) {\n meanDer = sum2(meanDer, reductionAxes);\n }\n return reshape(meanDer, mean5.shape);\n };\n const derVariance = () => {\n let varianceDer = mul(mul(minusHalfRCube, xMinusMean), dyTimesScaleValue);\n if (mean5.rank === 1) {\n varianceDer = sum2(varianceDer, reductionAxes);\n }\n return reshape(varianceDer, mean5.shape);\n };\n const derScale = () => {\n const xMinusMean2TimesRsqrt = mul(xMinusMean, oneOverSqrtVariance);\n let scaleDer = mul(dy, xMinusMean2TimesRsqrt);\n if (mean5.rank === 1) {\n scaleDer = sum2(scaleDer, reductionAxes);\n }\n return reshape(scaleDer, mean5.shape);\n };\n const derOffset = () => {\n let offsetDer = dy;\n if (mean5.rank === 1) {\n offsetDer = sum2(offsetDer, reductionAxes);\n }\n return reshape(offsetDer, mean5.shape);\n };\n return {\n x: derX,\n mean: derMean,\n variance: derVariance,\n scale: derScale,\n offset: derOffset\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/GatherV2_grad.js\nvar gatherGradConfig = {\n kernelName: GatherV2,\n inputsToSave: [\"x\", \"indices\"],\n gradFunc: (dy, saved, attrs) => {\n const [x, indices] = saved;\n const { axis } = attrs;\n const parsedAxis = parseAxisParam(axis, x.shape)[0];\n const derX = () => {\n const paramsShape = x.shape;\n const indicesSize = indices.size;\n const outerShape = paramsShape.slice(0, parsedAxis);\n const outerDims = outerShape.length;\n const innerShape = paramsShape.slice(axis, paramsShape.length).slice(1);\n const innerDims = innerShape.length;\n const outerAxesIndices = arrayRange(0, outerDims);\n const innerAxesIndices = arrayRange(outerDims + 1, outerDims + 1 + innerDims);\n const valuesShape = arrayConcat([outerShape, [indicesSize], innerShape]);\n const values = reshape(dy, valuesShape);\n const reshapedIndices = reshape(indices, [indicesSize]);\n const transposeDims = arrayConcat([[outerDims], outerAxesIndices, innerAxesIndices]);\n const valuesTranspose = transpose(values, transposeDims);\n let paramsGrad = unsortedSegmentSum(valuesTranspose, reshapedIndices, x.shape[parsedAxis]);\n const invertTransposeDims = getUndoAxesPermutation(transposeDims);\n paramsGrad = transpose(paramsGrad, invertTransposeDims);\n return paramsGrad;\n };\n return { x: derX, indices: () => indices };\n }\n};\nfunction arrayRange(start, stop) {\n const result = [];\n for (let i2 = start; i2 < stop; ++i2) {\n result.push(i2);\n }\n return result;\n}\nfunction arrayConcat(arrays) {\n const result = [];\n for (let i2 = 0; i2 < arrays.length; ++i2) {\n for (let j = 0; j < arrays[i2].length; ++j) {\n result.push(arrays[i2][j]);\n }\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/GreaterEqual_grad.js\nvar greaterEqualGradConfig = {\n kernelName: GreaterEqual,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n return { a: () => zerosLike(a), b: () => zerosLike(b) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Identity_grad.js\nvar identityGradConfig = {\n kernelName: Identity,\n gradFunc: (dy) => {\n return { x: () => cast(dy, \"float32\") };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/IsFinite_grad.js\nvar isFiniteGradConfig = {\n kernelName: IsFinite,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/IsInf_grad.js\nvar isInfGradConfig = {\n kernelName: IsInf,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/IsNan_grad.js\nvar isNanGradConfig = {\n kernelName: IsNan,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/LeakyRelu_grad.js\nvar leakyReluGradConfig = {\n kernelName: LeakyRelu,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { alpha } = attrs;\n const mask = greater(x, 0);\n return { x: () => where(mask, dy, mul(dy, alpha)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Log1p_grad.js\nvar log1pGradConfig = {\n kernelName: Log1p,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, add2(x, 1)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Log_grad.js\nvar logGradConfig = {\n kernelName: Log,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, cast(x, \"float32\")) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/LogSoftmax_grad.js\nvar logSoftmaxGradConfig = {\n kernelName: LogSoftmax,\n inputsToSave: [],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [value] = saved;\n const { axis } = attrs;\n return {\n logits: () => {\n const keepDims = true;\n const softmax7 = exp(value);\n return sub(dy, mul(sum2(dy, axis, keepDims), softmax7));\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/local_response_normalization_backprop.js\nfunction localResponseNormalizationBackprop_(x, y, dy, depthRadius = 5, bias = 1, alpha = 1, beta = 0.5) {\n const inputs = { x, y, dy };\n const attrs = { depthRadius, bias, alpha, beta };\n return ENGINE.runKernel(LRNGrad, inputs, attrs);\n}\nvar localResponseNormalizationBackprop = op({ localResponseNormalizationBackprop_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/LRN_grad.js\nvar lrnGradConfig = {\n kernelName: LRN,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [x, y] = saved;\n const { depthRadius, bias, alpha, beta } = attrs;\n return {\n x: () => localResponseNormalizationBackprop(x, y, dy, depthRadius, bias, alpha, beta)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/min_max_grad_util.js\nfunction gradForMinAndMax(dy, y, xOrig, origAxes) {\n if (y.rank < xOrig.rank) {\n y = reshape(y, expandShapeToKeepDim(y.shape, origAxes));\n }\n if (dy.rank < xOrig.rank) {\n dy = reshape(dy, expandShapeToKeepDim(dy.shape, origAxes));\n }\n return {\n x: () => {\n const dx = mul(dy, cast(equal(xOrig, y), dy.dtype));\n return dx;\n }\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Max_grad.js\nvar maxGradConfig = {\n kernelName: Max,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const maxAttrs = attrs;\n const { reductionIndices } = maxAttrs;\n const x = saved[0];\n const y = saved[1];\n const origAxes = parseAxisParam(reductionIndices, x.shape);\n const maxGrad = gradForMinAndMax(dy, y, x, origAxes);\n return {\n x: () => {\n return maxGrad[\"x\"]();\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Maximum_grad.js\nvar maximumGradConfig = {\n kernelName: Maximum,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const derA = () => mul(dy, cast(greaterEqual(a, b), \"float32\"));\n const derB = () => mul(dy, cast(less(a, b), \"float32\"));\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool_3d_grad.js\nfunction maxPool3dGrad_(dy, input2, output, filterSize, strides, pad3, dimRoundingMode) {\n const $dy = convertToTensor(dy, \"dy\", \"maxPool3dGrad\");\n const $input = convertToTensor(input2, \"input\", \"maxPool3dGrad\");\n const $output = convertToTensor(output, \"output\", \"maxPool3dGrad\");\n let dy5D = $dy;\n let input5D = $input;\n let output5D = $output;\n let reshapedTo5D = false;\n if ($input.rank === 4) {\n reshapedTo5D = true;\n dy5D = reshape($dy, [1, $dy.shape[0], $dy.shape[1], $dy.shape[2], $dy.shape[3]]);\n input5D = reshape($input, [\n 1,\n $input.shape[0],\n $input.shape[1],\n $input.shape[2],\n $input.shape[3]\n ]);\n output5D = reshape($output, [\n 1,\n $output.shape[0],\n $output.shape[1],\n $output.shape[2],\n $output.shape[3]\n ]);\n }\n assert(dy5D.rank === 5, () => `Error in maxPool3dGrad: dy must be rank 5 but got rank ${dy5D.rank}.`);\n assert(input5D.rank === 5, () => `Error in maxPool3dGrad: input must be rank 5 but got rank ${input5D.rank}.`);\n assert(output5D.rank === 5, () => `Error in maxPool3dGrad: output must be rank 5 but got rank ${output5D.rank}.`);\n checkPadOnDimRoundingMode(\"maxPool3dGrad\", pad3, dimRoundingMode);\n const inputs = { dy: dy5D, input: input5D, output: output5D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n const res = ENGINE.runKernel(MaxPool3DGrad, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar maxPool3dGrad = op({ maxPool3dGrad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/MaxPool3D_grad.js\nvar maxPool3DGradConfig = {\n kernelName: MaxPool3D,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [x, y] = saved;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n return {\n x: () => maxPool3dGrad(dy, x, y, filterSize, strides, pad3, dimRoundingMode)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool_grad.js\nfunction maxPoolGrad_(dy, input2, output, filterSize, strides, pad3, dimRoundingMode) {\n const $dy = convertToTensor(dy, \"dy\", \"maxPoolGrad\");\n const $input = convertToTensor(input2, \"input\", \"maxPoolGrad\");\n const $output = convertToTensor(output, \"output\", \"maxPoolGrad\");\n assert($input.rank === $dy.rank, () => `Rank of input (${$input.rank}) does not match rank of dy (${$dy.rank})`);\n assert($dy.rank === 4, () => `Error in maxPoolGrad: dy must be rank 4 but got rank ${$dy.rank}.`);\n assert($input.rank === 4, () => `Error in maxPoolGrad: input must be rank 4 but got rank ${$input.rank}.`);\n checkPadOnDimRoundingMode(\"maxPoolGrad\", pad3, dimRoundingMode);\n const inputs = { dy: $dy, input: $input, output: $output };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n return ENGINE.runKernel(MaxPoolGrad, inputs, attrs);\n}\nvar maxPoolGrad = op({ maxPoolGrad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/MaxPool_grad.js\nvar maxPoolGradConfig = {\n kernelName: MaxPool,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [x, y] = saved;\n const { filterSize, strides, pad: pad3 } = attrs;\n return {\n x: () => maxPoolGrad(dy, x, y, filterSize, strides, pad3)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Mean_grad.js\nvar meanGradConfig = {\n kernelName: Mean,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { axis } = attrs;\n const axes = parseAxisParam(axis, x.shape);\n const shapes = computeOutAndReduceShapes(x.shape, axes);\n const reduceShape = shapes[1];\n const reduceSize = sizeFromShape(reduceShape);\n const derX = () => {\n const expandedDyShape = x.shape.slice();\n axes.forEach((axis2) => {\n expandedDyShape[axis2] = 1;\n });\n const expandedDy = reshape(dy, expandedDyShape);\n const res = div(mul(expandedDy, ones2(x.shape, \"float32\")), reduceSize);\n return res;\n };\n return { x: derX };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Min_grad.js\nvar minGradConfig = {\n kernelName: Min,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const minAttrs = attrs;\n const { axis } = minAttrs;\n const [x, y] = saved;\n const origAxes = parseAxisParam(axis, x.shape);\n const minGrad = gradForMinAndMax(dy, y, x, origAxes);\n return {\n x: () => {\n return minGrad[\"x\"]();\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Minimum_grad.js\nvar minimumGradConfig = {\n kernelName: Minimum,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const derA = () => mul(dy, cast(lessEqual(a, b), \"float32\"));\n const derB = () => mul(dy, cast(greater(a, b), \"float32\"));\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/MirrorPad_grad.js\nvar mirrorPadGradConfig = {\n kernelName: MirrorPad,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const x = saved[0];\n const { paddings } = attrs;\n const begin = paddings.map((p2) => p2[0]);\n return { x: () => slice(dy, begin, x.shape) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Mod_grad.js\nvar modGradConfig = {\n kernelName: Mod,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(dy, reduceAxes), a.shape);\n }\n return dy;\n };\n const derB = () => {\n const res = mul(dy, neg(floor(div(a, b))));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), b.shape);\n }\n return res;\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Multiply_grad.js\nvar multiplyGradConfig = {\n kernelName: Multiply,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const res = mul(dy, cast(b, \"float32\"));\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), a.shape);\n }\n return res;\n };\n const derB = () => {\n const res = mul(dy, cast(a, \"float32\"));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), b.shape);\n }\n return res;\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Neg_grad.js\nvar negGradConfig = {\n kernelName: Neg,\n gradFunc: (dy) => {\n return { x: () => neg(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/OneHot_grad.js\nvar oneHotGradConfig = {\n kernelName: OneHot,\n inputsToSave: [\"indices\"],\n gradFunc: (dy, saved) => {\n const indices = saved[0];\n return { indices: () => zeros(indices.shape, \"float32\") };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/OnesLike_grad.js\nvar onesLikeGradConfig = {\n kernelName: OnesLike,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Pack_grad.js\nvar packGradConfig = {\n kernelName: Pack,\n saveAllInputs: true,\n gradFunc: (dy, saved, attrs) => {\n const { axis } = attrs;\n const derTensors = unstack(dy, axis);\n return derTensors.map((t2) => () => t2);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/PadV2_grad.js\nvar padV2GradConfig = {\n kernelName: PadV2,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const x = saved[0];\n const { paddings } = attrs;\n const begin = paddings.map((p2) => p2[0]);\n return { x: () => slice(dy, begin, x.shape) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Pow_grad.js\nvar powGradConfig = {\n kernelName: Pow,\n inputsToSave: [\"a\", \"b\"],\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [a, b, y] = saved;\n const base = a;\n const exp6 = b;\n const outShape = assertAndGetBroadcastShape(base.shape, exp6.shape);\n const derBase = () => {\n const expFloat = cast(exp6, \"float32\");\n let res = mul(dy, mul(expFloat, pow(base, sub(expFloat, scalar(1)))));\n const reduceAxes = getReductionAxes(base.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, base.shape);\n };\n const derExp = () => {\n const condition = greater(base, 0);\n const logBase = where(condition, log2(base), zerosLike(base));\n let res = mul(dy, mul(y, logBase));\n const reduceAxes = getReductionAxes(exp6.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, exp6.shape);\n };\n return { a: derBase, b: derExp };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Prelu_grad.js\nvar preluGradConfig = {\n kernelName: Prelu,\n inputsToSave: [\"x\", \"alpha\"],\n gradFunc: (dy, saved) => {\n const [x, alpha] = saved;\n const mask = greater(x, 0);\n return {\n x: () => where(mask, dy, mul(dy, alpha)),\n alpha: () => {\n let res = where(mask, zerosLike(dy), mul(dy, x));\n const reduceAxes = getReductionAxes(alpha.shape, dy.shape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, alpha.shape);\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Prod_grad.js\nfunction prodGradFn_(x, dy, axis) {\n const expandedYShape = x.shape.slice();\n expandedYShape[axis] = 1;\n const expandedDy = reshape(dy, expandedYShape);\n const xCumProd = cumprod(x, axis, true, false);\n const xCumRevProd = cumprod(x, axis, true, true);\n const dx = mul(xCumProd, xCumRevProd);\n return mul(expandedDy, dx);\n}\nfunction prodsGradFn_(x, dy, axis) {\n const xRank = x.shape.length;\n const finalProdAxis = xRank - axis.length;\n const xPermutation = backend_util_exports.getAxesPermutation(axis, xRank);\n let permutedX = x;\n if (xPermutation != null) {\n permutedX = transpose(x, xPermutation);\n }\n const newShape = permutedX.shape.slice();\n const removedShape = newShape.splice(xRank - axis.length, axis.length);\n const endPartShape = removedShape.reduce((p2, c) => p2 * c, 1);\n newShape.push(endPartShape);\n const reshapedPermutedX = permutedX.reshape(newShape);\n let prodGrad = prodGradFn_(reshapedPermutedX, dy, finalProdAxis);\n prodGrad = prodGrad.reshape(permutedX.shape);\n if (xPermutation != null) {\n const undoPermutation = backend_util_exports.getUndoAxesPermutation(xPermutation);\n prodGrad = transpose(prodGrad, undoPermutation);\n }\n return prodGrad;\n}\nvar prodGradConfig = {\n kernelName: Prod,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { axis } = attrs;\n let axisArr = [];\n if (axis === void 0 || axis === null) {\n axisArr = x.shape.map((_, i2) => i2);\n } else if (typeof axis === \"number\") {\n axisArr = [axis];\n } else {\n axisArr = axis;\n }\n return { x: () => prodsGradFn_(x, dy, axisArr) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/RealDiv_grad.js\nvar divGradConfig = {\n kernelName: RealDiv,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const res = div(dy, cast(b, \"float32\"));\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), a.shape);\n }\n return res;\n };\n const derB = () => {\n let res = mul(dy, cast(a, \"float32\"));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = reshape(sum2(res, reduceAxes), b.shape);\n }\n const tmp = square(b);\n return neg(div(res, cast(tmp, \"float32\")));\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Reciprocal_grad.js\nvar reciprocalGradConfig = {\n kernelName: Reciprocal,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, neg(square(x))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Relu6_grad.js\nvar relu6GradConfig = {\n kernelName: Relu6,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n const mask = mul(lessEqual(x, 6), step(x));\n return { x: () => mul(dy, cast(mask, \"float32\")) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Relu_grad.js\nvar reluGradConfig = {\n kernelName: Relu,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, cast(step(x), \"float32\")) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Reshape_grad.js\nvar reshapeGradConfig = {\n kernelName: Reshape,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => reshape(dy, x.shape) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ResizeBilinear_grad.js\nvar resizeBilinearGradConfig = {\n kernelName: ResizeBilinear,\n inputsToSave: [\"images\"],\n gradFunc: (dy, saved, attrs) => {\n const [images] = saved;\n const inputs = { dy, images };\n const imagesDer = () => ENGINE.runKernel(ResizeBilinearGrad, inputs, attrs);\n return { images: imagesDer };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ResizeNearestNeighbor_grad.js\nvar resizeNearestNeighborGradConfig = {\n kernelName: ResizeNearestNeighbor,\n inputsToSave: [\"images\"],\n gradFunc: (dy, saved, attrs) => {\n const [images] = saved;\n const inputs = { dy, images };\n const imagesDer = () => ENGINE.runKernel(ResizeNearestNeighborGrad, inputs, attrs);\n return { images: imagesDer };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Reverse_grad.js\nvar reverseGradConfig = {\n kernelName: Reverse,\n gradFunc: (dy, saved, attrs) => {\n const { dims } = attrs;\n const axes = parseAxisParam(dims, dy.shape);\n return { x: () => reverse(dy, axes) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Round_grad.js\nvar roundGradConfig = {\n kernelName: Round,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Rsqrt_grad.js\nvar rsqrtGradConfig = {\n kernelName: Rsqrt,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => neg(div(dy, mul(pow(x, 1.5), 2))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Select_grad.js\nvar selectGradConfig = {\n kernelName: Select,\n inputsToSave: [\"condition\"],\n gradFunc: (dy, saved) => {\n const [condition] = saved;\n return {\n condition: () => cast(zerosLike(condition), \"float32\"),\n t: () => mul(dy, cast(condition, dy.dtype)),\n e: () => mul(dy, cast(logicalNot(condition), dy.dtype))\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Selu_grad.js\nvar seluGradConfig = {\n kernelName: Selu,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return {\n x: () => {\n const mask = greater(x, scalar(0));\n const scaleAlpha2 = scalar(SELU_SCALEALPHA);\n const scale2 = scalar(SELU_SCALE);\n const greaterThanZeroDer = mul(dy, scale2);\n const lessEqualZeroDer = mul(mul(dy, scaleAlpha2), exp(cast(x, \"float32\")));\n return where(mask, greaterThanZeroDer, lessEqualZeroDer);\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sigmoid_grad.js\nvar sigmoidGradConfig = {\n kernelName: Sigmoid,\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [y] = saved;\n return { x: () => mul(dy, mul(y, sub(scalar(1), y))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sign_grad.js\nvar signGradConfig = {\n kernelName: Sign,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sin_grad.js\nvar sinGradConfig = {\n kernelName: Sin,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(cos(cast(x, \"float32\")), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sinh_grad.js\nvar sinhGradConfig = {\n kernelName: Sinh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(cosh(cast(x, \"float32\")), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Slice_grad.js\nvar sliceGradConfig = {\n kernelName: Slice,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { begin, size } = attrs;\n const inputShape = x.shape;\n const [begin_, size_] = parseSliceParams(x, begin, size);\n const paddings = [];\n for (let i2 = 0; i2 < dy.rank; i2++) {\n paddings.push([begin_[i2], inputShape[i2] - begin_[i2] - size_[i2]]);\n }\n return { x: () => pad(dy, paddings) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Softmax_grad.js\nvar softmaxGradConfig = {\n kernelName: Softmax,\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [y] = saved;\n const { dim } = attrs;\n const keepDims = true;\n const dyTimesY = mul(dy, y);\n return {\n logits: () => sub(dyTimesY, mul(sum2(dyTimesY, [dim], keepDims), y))\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Softplus_grad.js\nvar softplusGradConfig = {\n kernelName: Softplus,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, sigmoid(x)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/SpaceToBatchND_grad.js\nvar spaceToBatchNDGradConfig = {\n kernelName: SpaceToBatchND,\n gradFunc: (dy, saved, attrs) => {\n const { blockShape, paddings } = attrs;\n return { x: () => batchToSpaceND(dy, blockShape, paddings) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/SplitV_grad.js\nvar splitVGradConfig = {\n kernelName: SplitV,\n gradFunc: (dy, saved, attrs) => {\n const { axis } = attrs;\n return { x: () => concat(dy, axis) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sqrt_grad.js\nvar sqrtGradConfig = {\n kernelName: Sqrt,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, mul(sqrt(cast(x, \"float32\")), 2)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Square_grad.js\nvar squareGradConfig = {\n kernelName: Square,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, mul(cast(x, \"float32\"), 2)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/SquaredDifference_grad.js\nvar squaredDifferenceGradConfig = {\n kernelName: SquaredDifference,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const two = scalar(2);\n const derA = () => mul(dy, mul(two, sub(a, b)));\n const derB = () => mul(dy, mul(two, sub(b, a)));\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Step_grad.js\nvar stepGradConfig = {\n kernelName: Step,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sub_grad.js\nvar subGradConfig = {\n kernelName: Sub,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n let res = dy;\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, a.shape);\n };\n const derB = () => {\n let res = dy;\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(neg(res), b.shape);\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sum_grad.js\nvar sumGradConfig = {\n kernelName: Sum,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const expandedDyShape = x.shape.slice();\n const { axis } = attrs;\n const axes = parseAxisParam(axis, x.shape);\n axes.forEach((axis2) => {\n expandedDyShape[axis2] = 1;\n });\n const expandedDy = reshape(dy, expandedDyShape);\n const derX = mul(expandedDy, ones2(x.shape, \"float32\"));\n return { x: () => derX };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Tan_grad.js\nvar tanGradConfig = {\n kernelName: Tan,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, square(cos(x))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Tanh_grad.js\nvar tanhGradConfig = {\n kernelName: Tanh,\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [y] = saved;\n return { x: () => mul(sub(scalar(1), square(y)), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Tile_grad.js\nvar tileGradConfig = {\n kernelName: Tile,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { reps } = attrs;\n const derX = () => {\n let xGrad = zerosLike(x);\n if (x.rank === 1) {\n for (let i2 = 0; i2 < reps[0]; ++i2) {\n xGrad = add2(xGrad, slice(dy, [i2 * x.shape[0]], [x.shape[0]]));\n }\n } else if (x.rank === 2) {\n for (let i2 = 0; i2 < reps[0]; ++i2) {\n for (let j = 0; j < reps[1]; ++j) {\n xGrad = add2(xGrad, slice(dy, [i2 * x.shape[0], j * x.shape[1]], [\n x.shape[0],\n x.shape[1]\n ]));\n }\n }\n } else if (x.rank === 3) {\n for (let i2 = 0; i2 < reps[0]; ++i2) {\n for (let j = 0; j < reps[1]; ++j) {\n for (let k = 0; k < reps[2]; ++k) {\n xGrad = add2(xGrad, slice(dy, [i2 * x.shape[0], j * x.shape[1], k * x.shape[2]], [x.shape[0], x.shape[1], x.shape[2]]));\n }\n }\n }\n } else if (x.rank === 4) {\n for (let i2 = 0; i2 < reps[0]; ++i2) {\n for (let j = 0; j < reps[1]; ++j) {\n for (let k = 0; k < reps[2]; ++k) {\n for (let l3 = 0; l3 < reps[3]; ++l3) {\n xGrad = add2(xGrad, slice(dy, [\n i2 * x.shape[0],\n j * x.shape[1],\n k * x.shape[2],\n l3 * x.shape[3]\n ], [x.shape[0], x.shape[1], x.shape[2], x.shape[3]]));\n }\n }\n }\n }\n } else {\n throw new Error(`Gradient for tile operation is not implemented for rank-${x.rank} tensors yet.`);\n }\n return xGrad;\n };\n return { x: derX };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Transpose_grad.js\nvar transposeGradConfig = {\n kernelName: Transpose,\n gradFunc: (dy, saved, attrs) => {\n const transposeAttrs = attrs;\n const { perm } = transposeAttrs;\n const undoPerm = getUndoAxesPermutation(perm);\n return { x: () => transpose(dy, undoPerm) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Unpack_grad.js\nvar unpackGradConfig = {\n kernelName: Unpack,\n gradFunc: (dy, saved, attrs) => {\n const unpackAttrs = attrs;\n const { axis } = unpackAttrs;\n return { value: () => stack(dy, axis) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/UnsortedSegmentSum_grad.js\nvar unsortedSegmentSumGradConfig = {\n kernelName: UnsortedSegmentSum,\n inputsToSave: [\"segmentIds\"],\n gradFunc: (dy, saved) => {\n const [segmentIds] = saved;\n const derX = () => {\n return gatherDropNegatives(dy, segmentIds);\n };\n return { x: derX };\n }\n};\nfunction gatherDropNegatives(x, indices) {\n const zeroClippedIndices = maximum(indices, zerosLike(indices));\n const gathered = gather(x, zeroClippedIndices);\n let isPositive = greaterEqual(indices, scalar(0, \"int32\"));\n const numIters = gathered.rank - isPositive.rank;\n for (let i2 = 0; i2 < numIters; ++i2) {\n isPositive = expandDims(isPositive, i2 + 1);\n }\n isPositive = logicalAnd(isPositive, ones2(gathered.shape, \"bool\"));\n const zeroSlice = zerosLike(gathered);\n return where(isPositive, gathered, zeroSlice);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ZerosLike_grad.js\nvar zerosLikeGradConfig = {\n kernelName: ZerosLike,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/register_all_gradients.js\nvar gradConfigs = [\n absGradConfig,\n acosGradConfig,\n acoshGradConfig,\n addGradConfig,\n addNGradConfig,\n argMaxGradConfig,\n argMinGradConfig,\n asinGradConfig,\n asinhGradConfig,\n atan2GradConfig,\n atanGradConfig,\n atanhGradConfig,\n avgPool3DGradConfig,\n avgPoolGradConfig,\n batchMatMulGradConfig,\n batchToSpaceNDGradConfig,\n broadcastToGradConfig,\n castGradConfig,\n ceilGradConfig,\n clipByValueGradConfig,\n complexAbsGradConfig,\n concatGradConfig,\n conv2DBackpropInputGradConfig,\n conv2DGradConfig,\n conv3DGradConfig,\n cosGradConfig,\n coshGradConfig,\n cumsumGradConfig,\n depthwiseConv2dNativeGradConfig,\n dilation2dGradConfig,\n divGradConfig,\n eluGradConfig,\n erfGradConfig,\n expGradConfig,\n expandDimsGradConfig,\n expm1GradConfig,\n floorDivGradConfig,\n floorGradConfig,\n fusedBatchNormGradConfig,\n gatherGradConfig,\n greaterEqualGradConfig,\n identityGradConfig,\n isFiniteGradConfig,\n isInfGradConfig,\n isNanGradConfig,\n leakyReluGradConfig,\n log1pGradConfig,\n logGradConfig,\n logSoftmaxGradConfig,\n lrnGradConfig,\n maxGradConfig,\n maxGradConfig,\n maximumGradConfig,\n maxPool3DGradConfig,\n maxPoolGradConfig,\n meanGradConfig,\n minGradConfig,\n minimumGradConfig,\n mirrorPadGradConfig,\n modGradConfig,\n multiplyGradConfig,\n negGradConfig,\n oneHotGradConfig,\n onesLikeGradConfig,\n packGradConfig,\n padV2GradConfig,\n padV2GradConfig,\n powGradConfig,\n preluGradConfig,\n prodGradConfig,\n reciprocalGradConfig,\n relu6GradConfig,\n reluGradConfig,\n reshapeGradConfig,\n resizeBilinearGradConfig,\n resizeNearestNeighborGradConfig,\n reverseGradConfig,\n roundGradConfig,\n rsqrtGradConfig,\n selectGradConfig,\n seluGradConfig,\n sigmoidGradConfig,\n signGradConfig,\n sinGradConfig,\n sinhGradConfig,\n sliceGradConfig,\n softmaxGradConfig,\n softplusGradConfig,\n spaceToBatchNDGradConfig,\n spaceToBatchNDGradConfig,\n splitVGradConfig,\n splitVGradConfig,\n sqrtGradConfig,\n squaredDifferenceGradConfig,\n squareGradConfig,\n stepGradConfig,\n subGradConfig,\n sumGradConfig,\n tanGradConfig,\n tanhGradConfig,\n tileGradConfig,\n transposeGradConfig,\n unpackGradConfig,\n unsortedSegmentSumGradConfig,\n zerosLikeGradConfig\n];\nfor (const gradientConfig of gradConfigs) {\n registerGradient(gradientConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/abs.js\ngetGlobalTensorClass().prototype.abs = function() {\n this.throwIfDisposed();\n return abs(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/acos.js\ngetGlobalTensorClass().prototype.acos = function() {\n this.throwIfDisposed();\n return acos(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/acosh.js\ngetGlobalTensorClass().prototype.acosh = function() {\n this.throwIfDisposed();\n return acosh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/add.js\ngetGlobalTensorClass().prototype.add = function(b) {\n this.throwIfDisposed();\n return add2(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/all.js\ngetGlobalTensorClass().prototype.all = function(axis, keepDims) {\n this.throwIfDisposed();\n return all(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/any.js\ngetGlobalTensorClass().prototype.any = function(axis, keepDims) {\n this.throwIfDisposed();\n return any(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/arg_max.js\ngetGlobalTensorClass().prototype.argMax = function(axis) {\n this.throwIfDisposed();\n return argMax(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/arg_min.js\ngetGlobalTensorClass().prototype.argMin = function(axis) {\n this.throwIfDisposed();\n return argMin(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as_scalar.js\ngetGlobalTensorClass().prototype.asScalar = function() {\n this.throwIfDisposed();\n assert(this.size === 1, () => \"The array must have only 1 element.\");\n return reshape(this, []);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as_type.js\ngetGlobalTensorClass().prototype.asType = function(dtype) {\n this.throwIfDisposed();\n return cast(this, dtype);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as1d.js\ngetGlobalTensorClass().prototype.as1D = function() {\n this.throwIfDisposed();\n return reshape(this, [this.size]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as2d.js\ngetGlobalTensorClass().prototype.as2D = function(rows, columns) {\n this.throwIfDisposed();\n return reshape(this, [rows, columns]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as3d.js\ngetGlobalTensorClass().prototype.as3D = function(rows, columns, depth) {\n this.throwIfDisposed();\n return reshape(this, [rows, columns, depth]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as4d.js\ngetGlobalTensorClass().prototype.as4D = function(rows, columns, depth, depth2) {\n this.throwIfDisposed();\n return reshape(this, [rows, columns, depth, depth2]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as5d.js\ngetGlobalTensorClass().prototype.as5D = function(rows, columns, depth, depth2, depth3) {\n this.throwIfDisposed();\n return reshape(this, [rows, columns, depth, depth2, depth3]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/asin.js\ngetGlobalTensorClass().prototype.asin = function() {\n this.throwIfDisposed();\n return asin(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/asinh.js\ngetGlobalTensorClass().prototype.asinh = function() {\n this.throwIfDisposed();\n return asinh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/atan.js\ngetGlobalTensorClass().prototype.atan = function() {\n this.throwIfDisposed();\n return atan(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/atan2.js\ngetGlobalTensorClass().prototype.atan2 = function(b) {\n this.throwIfDisposed();\n return atan2(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/atanh.js\ngetGlobalTensorClass().prototype.atanh = function() {\n this.throwIfDisposed();\n return atanh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/avg_pool.js\ngetGlobalTensorClass().prototype.avgPool = function(filterSize, strides, pad3, dimRoundingMode) {\n this.throwIfDisposed();\n return avgPool(this, filterSize, strides, pad3, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/batch_to_space_nd.js\ngetGlobalTensorClass().prototype.batchToSpaceND = function(blockShape, crops) {\n this.throwIfDisposed();\n return batchToSpaceND(this, blockShape, crops);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/batchnorm.js\ngetGlobalTensorClass().prototype.batchNorm = function(mean5, variance, offset, scale2, varianceEpsilon) {\n this.throwIfDisposed();\n return batchNorm(this, mean5, variance, offset, scale2, varianceEpsilon);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/broadcast_to.js\ngetGlobalTensorClass().prototype.broadcastTo = function(shape) {\n this.throwIfDisposed();\n return broadcastTo(this, shape);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cast.js\ngetGlobalTensorClass().prototype.cast = function(dtype) {\n this.throwIfDisposed();\n return cast(this, dtype);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/ceil.js\ngetGlobalTensorClass().prototype.ceil = function() {\n this.throwIfDisposed();\n return ceil(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/clip_by_value.js\ngetGlobalTensorClass().prototype.clipByValue = function(min7, max7) {\n this.throwIfDisposed();\n return clipByValue(this, min7, max7);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/concat.js\ngetGlobalTensorClass().prototype.concat = function(x, axis) {\n this.throwIfDisposed();\n if (x instanceof Tensor) {\n x = [x];\n }\n return concat([this, ...x], axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/conv1d.js\ngetGlobalTensorClass().prototype.conv1d = function(filter, stride, pad3, dataFormat, dilation, dimRoundingMode) {\n this.throwIfDisposed();\n return conv1d(this, filter, stride, pad3, dataFormat, dilation, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/conv2d_transpose.js\ngetGlobalTensorClass().prototype.conv2dTranspose = function(filter, outputShape, strides, pad3, dimRoundingMode) {\n this.throwIfDisposed();\n return conv2dTranspose(this, filter, outputShape, strides, pad3, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/conv2d.js\ngetGlobalTensorClass().prototype.conv2d = function(filter, strides, pad3, dataFormat, dilations, dimRoundingMode) {\n this.throwIfDisposed();\n return conv2d(this, filter, strides, pad3, dataFormat, dilations, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cos.js\ngetGlobalTensorClass().prototype.cos = function() {\n this.throwIfDisposed();\n return cos(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cosh.js\ngetGlobalTensorClass().prototype.cosh = function() {\n this.throwIfDisposed();\n return cosh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cumprod.js\ngetGlobalTensorClass().prototype.cumprod = function(axis, exclusive, reverse5) {\n this.throwIfDisposed();\n return cumprod(this, axis, exclusive, reverse5);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cumsum.js\ngetGlobalTensorClass().prototype.cumsum = function(axis, exclusive, reverse5) {\n this.throwIfDisposed();\n return cumsum(this, axis, exclusive, reverse5);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/depth_to_space.js\ngetGlobalTensorClass().prototype.depthToSpace = function(blockSize, dataFormat) {\n this.throwIfDisposed();\n return depthToSpace(this, blockSize, dataFormat);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/depthwise_conv2d.js\ngetGlobalTensorClass().prototype.depthwiseConv2d = function(filter, strides, pad3, dataFormat, dilations, dimRoundingMode) {\n this.throwIfDisposed();\n return depthwiseConv2d(this, filter, strides, pad3, dataFormat, dilations, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/dilation2d.js\ngetGlobalTensorClass().prototype.dilation2d = function(filter, strides, pad3, dilations, dataFormat) {\n this.throwIfDisposed();\n return dilation2d(this, filter, strides, pad3, dilations, dataFormat);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/div_no_nan.js\ngetGlobalTensorClass().prototype.divNoNan = function(b) {\n this.throwIfDisposed();\n return divNoNan(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/div.js\ngetGlobalTensorClass().prototype.div = function(b) {\n this.throwIfDisposed();\n return div(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/dot.js\ngetGlobalTensorClass().prototype.dot = function(b) {\n this.throwIfDisposed();\n return dot(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/elu.js\ngetGlobalTensorClass().prototype.elu = function() {\n this.throwIfDisposed();\n return elu(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/equal.js\ngetGlobalTensorClass().prototype.equal = function(b) {\n this.throwIfDisposed();\n return equal(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/erf.js\ngetGlobalTensorClass().prototype.erf = function() {\n this.throwIfDisposed();\n return erf(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/euclidean_norm.js\ngetGlobalTensorClass().prototype.euclideanNorm = function(axis, keepDims) {\n this.throwIfDisposed();\n return euclideanNorm(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/exp.js\ngetGlobalTensorClass().prototype.exp = function() {\n this.throwIfDisposed();\n return exp(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/expand_dims.js\ngetGlobalTensorClass().prototype.expandDims = function(axis) {\n this.throwIfDisposed();\n return expandDims(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/expm1.js\ngetGlobalTensorClass().prototype.expm1 = function() {\n this.throwIfDisposed();\n return expm1(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/fft.js\ngetGlobalTensorClass().prototype.fft = function() {\n this.throwIfDisposed();\n return fft(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/flatten.js\ngetGlobalTensorClass().prototype.flatten = function() {\n this.throwIfDisposed();\n return reshape(this, [this.size]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/floor.js\ngetGlobalTensorClass().prototype.floor = function() {\n this.throwIfDisposed();\n return floor(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/floorDiv.js\ngetGlobalTensorClass().prototype.floorDiv = function(b) {\n this.throwIfDisposed();\n return floorDiv(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/gather.js\ngetGlobalTensorClass().prototype.gather = function(indices, axis) {\n this.throwIfDisposed();\n return gather(this, indices, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/greater_equal.js\ngetGlobalTensorClass().prototype.greaterEqual = function(b) {\n this.throwIfDisposed();\n return greaterEqual(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/greater.js\ngetGlobalTensorClass().prototype.greater = function(b) {\n this.throwIfDisposed();\n return greater(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/ifft.js\ngetGlobalTensorClass().prototype.ifft = function() {\n this.throwIfDisposed();\n return ifft(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/irfft.js\ngetGlobalTensorClass().prototype.irfft = function() {\n this.throwIfDisposed();\n return irfft(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/is_finite.js\ngetGlobalTensorClass().prototype.isFinite = function() {\n this.throwIfDisposed();\n return isFinite2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/is_inf.js\ngetGlobalTensorClass().prototype.isInf = function() {\n this.throwIfDisposed();\n return isInf(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/is_nan.js\ngetGlobalTensorClass().prototype.isNaN = function() {\n this.throwIfDisposed();\n return isNaN2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/leaky_relu.js\ngetGlobalTensorClass().prototype.leakyRelu = function(alpha) {\n this.throwIfDisposed();\n return leakyRelu(this, alpha);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/less_equal.js\ngetGlobalTensorClass().prototype.lessEqual = function(b) {\n this.throwIfDisposed();\n return lessEqual(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/less.js\ngetGlobalTensorClass().prototype.less = function(b) {\n this.throwIfDisposed();\n return less(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/local_response_normalization.js\ngetGlobalTensorClass().prototype.localResponseNormalization = function(depthRadius, bias, alpha, beta) {\n this.throwIfDisposed();\n return localResponseNormalization(this, depthRadius, bias, alpha, beta);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log_sigmoid.js\ngetGlobalTensorClass().prototype.logSigmoid = function() {\n this.throwIfDisposed();\n return logSigmoid(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log_softmax.js\ngetGlobalTensorClass().prototype.logSoftmax = function(axis) {\n this.throwIfDisposed();\n return logSoftmax(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log_sum_exp.js\ngetGlobalTensorClass().prototype.logSumExp = function(axis, keepDims) {\n this.throwIfDisposed();\n return logSumExp(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log.js\ngetGlobalTensorClass().prototype.log = function() {\n this.throwIfDisposed();\n return log2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log1p.js\ngetGlobalTensorClass().prototype.log1p = function() {\n this.throwIfDisposed();\n return log1p(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/logical_and.js\ngetGlobalTensorClass().prototype.logicalAnd = function(b) {\n this.throwIfDisposed();\n return logicalAnd(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/logical_not.js\ngetGlobalTensorClass().prototype.logicalNot = function() {\n this.throwIfDisposed();\n return logicalNot(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/logical_or.js\ngetGlobalTensorClass().prototype.logicalOr = function(b) {\n this.throwIfDisposed();\n return logicalOr(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/logical_xor.js\ngetGlobalTensorClass().prototype.logicalXor = function(b) {\n this.throwIfDisposed();\n return logicalXor(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mat_mul.js\ngetGlobalTensorClass().prototype.matMul = function(b, transposeA, transposeB) {\n this.throwIfDisposed();\n return matMul(this, b, transposeA, transposeB);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/max_pool.js\ngetGlobalTensorClass().prototype.maxPool = function(filterSize, strides, pad3, dimRoundingMode) {\n this.throwIfDisposed();\n return maxPool(this, filterSize, strides, pad3, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/max.js\ngetGlobalTensorClass().prototype.max = function(axis, keepDims) {\n this.throwIfDisposed();\n return max(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/maximum.js\ngetGlobalTensorClass().prototype.maximum = function(b) {\n this.throwIfDisposed();\n return maximum(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mean.js\ngetGlobalTensorClass().prototype.mean = function(axis, keepDims) {\n this.throwIfDisposed();\n return mean(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/min.js\ngetGlobalTensorClass().prototype.min = function(axis, keepDims) {\n this.throwIfDisposed();\n return min(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/minimum.js\ngetGlobalTensorClass().prototype.minimum = function(b) {\n this.throwIfDisposed();\n return minimum(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mirror_pad.js\ngetGlobalTensorClass().prototype.mirrorPad = function(paddings, mode) {\n this.throwIfDisposed();\n return mirrorPad(this, paddings, mode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mod.js\ngetGlobalTensorClass().prototype.mod = function(b) {\n this.throwIfDisposed();\n return mod(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mul.js\ngetGlobalTensorClass().prototype.mul = function(b) {\n this.throwIfDisposed();\n return mul(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/neg.js\ngetGlobalTensorClass().prototype.neg = function() {\n this.throwIfDisposed();\n return neg(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/norm.js\ngetGlobalTensorClass().prototype.norm = function(ord, axis, keepDims) {\n this.throwIfDisposed();\n return norm(this, ord, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/not_equal.js\ngetGlobalTensorClass().prototype.notEqual = function(b) {\n this.throwIfDisposed();\n return notEqual(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/one_hot.js\ngetGlobalTensorClass().prototype.oneHot = function(depth, onValue = 1, offValue = 0) {\n this.throwIfDisposed();\n return oneHot(this, depth, onValue, offValue);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/ones_like.js\ngetGlobalTensorClass().prototype.onesLike = function() {\n this.throwIfDisposed();\n return onesLike(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/pad.js\ngetGlobalTensorClass().prototype.pad = function(paddings, constantValue) {\n this.throwIfDisposed();\n return pad(this, paddings, constantValue);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/pool.js\ngetGlobalTensorClass().prototype.pool = function(windowShape, poolingType, padding, dilationRate, strides, dimRoundingMode) {\n this.throwIfDisposed();\n return pool(this, windowShape, poolingType, padding, dilationRate, strides, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/pow.js\ngetGlobalTensorClass().prototype.pow = function(exp6) {\n this.throwIfDisposed();\n return pow(this, exp6);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/prelu.js\ngetGlobalTensorClass().prototype.prelu = function(alpha) {\n this.throwIfDisposed();\n return prelu(this, alpha);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/prod.js\ngetGlobalTensorClass().prototype.prod = function(axis, keepDims) {\n this.throwIfDisposed();\n return prod(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/reciprocal.js\ngetGlobalTensorClass().prototype.reciprocal = function() {\n this.throwIfDisposed();\n return reciprocal(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/relu.js\ngetGlobalTensorClass().prototype.relu = function() {\n this.throwIfDisposed();\n return relu(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/relu6.js\ngetGlobalTensorClass().prototype.relu6 = function() {\n this.throwIfDisposed();\n return relu6(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/reshape_as.js\ngetGlobalTensorClass().prototype.reshapeAs = function(x) {\n this.throwIfDisposed();\n return reshape(this, x.shape);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/reshape.js\ngetGlobalTensorClass().prototype.reshape = function(shape) {\n this.throwIfDisposed();\n return reshape(this, shape);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/resize_bilinear.js\ngetGlobalTensorClass().prototype.resizeBilinear = function(newShape2D, alignCorners, halfPixelCenters) {\n this.throwIfDisposed();\n return resizeBilinear(this, newShape2D, alignCorners, halfPixelCenters);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/resize_nearest_neighbor.js\ngetGlobalTensorClass().prototype.resizeNearestNeighbor = function(newShape2D, alignCorners, halfFloatCenters) {\n this.throwIfDisposed();\n return resizeNearestNeighbor(this, newShape2D, alignCorners, halfFloatCenters);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/reverse.js\ngetGlobalTensorClass().prototype.reverse = function(axis) {\n this.throwIfDisposed();\n return reverse(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/rfft.js\ngetGlobalTensorClass().prototype.rfft = function() {\n this.throwIfDisposed();\n return rfft(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/round.js\ngetGlobalTensorClass().prototype.round = function() {\n this.throwIfDisposed();\n return round2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/rsqrt.js\ngetGlobalTensorClass().prototype.rsqrt = function() {\n this.throwIfDisposed();\n return rsqrt(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/selu.js\ngetGlobalTensorClass().prototype.selu = function() {\n this.throwIfDisposed();\n return selu(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/separable_conv2d.js\ngetGlobalTensorClass().prototype.separableConv2d = function(depthwiseFilter, pointwiseFilter, strides, pad3, dilation, dataFormat) {\n this.throwIfDisposed();\n return separableConv2d(this, depthwiseFilter, pointwiseFilter, strides, pad3, dilation, dataFormat);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sigmoid.js\ngetGlobalTensorClass().prototype.sigmoid = function() {\n this.throwIfDisposed();\n return sigmoid(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sign.js\ngetGlobalTensorClass().prototype.sign = function() {\n this.throwIfDisposed();\n return sign(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sin.js\ngetGlobalTensorClass().prototype.sin = function() {\n this.throwIfDisposed();\n return sin(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sinh.js\ngetGlobalTensorClass().prototype.sinh = function() {\n this.throwIfDisposed();\n return sinh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/slice.js\ngetGlobalTensorClass().prototype.slice = function(begin, size) {\n this.throwIfDisposed();\n return slice(this, begin, size);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/softmax.js\ngetGlobalTensorClass().prototype.softmax = function(dim) {\n this.throwIfDisposed();\n return softmax(this, dim);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/softplus.js\ngetGlobalTensorClass().prototype.softplus = function() {\n this.throwIfDisposed();\n return softplus(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/space_to_batch_nd.js\ngetGlobalTensorClass().prototype.spaceToBatchND = function(blockShape, paddings) {\n this.throwIfDisposed();\n return spaceToBatchND(this, blockShape, paddings);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/split.js\ngetGlobalTensorClass().prototype.split = function(numOrSizeSplits, axis) {\n this.throwIfDisposed();\n return split(this, numOrSizeSplits, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sqrt.js\ngetGlobalTensorClass().prototype.sqrt = function() {\n this.throwIfDisposed();\n return sqrt(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/square.js\ngetGlobalTensorClass().prototype.square = function() {\n this.throwIfDisposed();\n return square(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/squared_difference.js\ngetGlobalTensorClass().prototype.squaredDifference = function(b) {\n this.throwIfDisposed();\n return squaredDifference(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/squeeze.js\ngetGlobalTensorClass().prototype.squeeze = function(axis) {\n this.throwIfDisposed();\n return squeeze(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/stack.js\ngetGlobalTensorClass().prototype.stack = function(x, axis) {\n this.throwIfDisposed();\n const tensorsToBeStacked = x instanceof Tensor ? [this, x] : [this, ...x];\n return stack(tensorsToBeStacked, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/step.js\ngetGlobalTensorClass().prototype.step = function(alpha) {\n this.throwIfDisposed();\n return step(this, alpha);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/strided_slice.js\ngetGlobalTensorClass().prototype.stridedSlice = function(begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask) {\n this.throwIfDisposed();\n return stridedSlice(this, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sub.js\ngetGlobalTensorClass().prototype.sub = function(b) {\n this.throwIfDisposed();\n return sub(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sum.js\ngetGlobalTensorClass().prototype.sum = function(axis, keepDims) {\n this.throwIfDisposed();\n return sum2(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/tan.js\ngetGlobalTensorClass().prototype.tan = function() {\n this.throwIfDisposed();\n return tan(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/tanh.js\ngetGlobalTensorClass().prototype.tanh = function() {\n this.throwIfDisposed();\n return tanh2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/tile.js\ngetGlobalTensorClass().prototype.tile = function(reps) {\n this.throwIfDisposed();\n return tile(this, reps);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/to_bool.js\ngetGlobalTensorClass().prototype.toBool = function() {\n this.throwIfDisposed();\n return cast(this, \"bool\");\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/to_float.js\ngetGlobalTensorClass().prototype.toFloat = function() {\n this.throwIfDisposed();\n return cast(this, \"float32\");\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/to_int.js\ngetGlobalTensorClass().prototype.toInt = function() {\n this.throwIfDisposed();\n return cast(this, \"int32\");\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/topk.js\ngetGlobalTensorClass().prototype.topk = function(k, sorted) {\n this.throwIfDisposed();\n return topk(this, k, sorted);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/transpose.js\ngetGlobalTensorClass().prototype.transpose = function(perm) {\n this.throwIfDisposed();\n return transpose(this, perm);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/unique.js\ngetGlobalTensorClass().prototype.unique = function(axis) {\n this.throwIfDisposed();\n return unique(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/unsorted_segment_sum.js\ngetGlobalTensorClass().prototype.unsortedSegmentSum = function(segmentIds, numSegments) {\n this.throwIfDisposed();\n return unsortedSegmentSum(this, segmentIds, numSegments);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/unstack.js\ngetGlobalTensorClass().prototype.unstack = function(axis) {\n this.throwIfDisposed();\n return unstack(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/where.js\ngetGlobalTensorClass().prototype.where = function(condition, x) {\n this.throwIfDisposed();\n return where(condition, this, x);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/zeros_like.js\ngetGlobalTensorClass().prototype.zerosLike = function() {\n this.throwIfDisposed();\n return zerosLike(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/errors.js\nvar AttributeError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, AttributeError.prototype);\n }\n};\nvar RuntimeError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, RuntimeError.prototype);\n }\n};\nvar ValueError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, ValueError.prototype);\n }\n};\nvar NotImplementedError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, NotImplementedError.prototype);\n }\n};\nvar AssertionError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, AssertionError.prototype);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/executor_utils.js\nvar LruCache = class {\n constructor(maxEntries) {\n this.maxEntries = maxEntries || 100;\n this.cache = /* @__PURE__ */ new Map();\n }\n get(key) {\n let entry;\n if (this.cache.has(key)) {\n entry = this.cache.get(key);\n this.cache.delete(key);\n this.cache.set(key, entry);\n }\n return entry;\n }\n put(key, value) {\n if (this.cache.has(key)) {\n this.cache.delete(key);\n } else if (this.cache.size >= this.maxEntries) {\n const keyToDelete = this.cache.keys().next().value;\n this.cache.delete(keyToDelete);\n }\n this.cache.set(key, value);\n }\n getMaxEntries() {\n return this.maxEntries;\n }\n setMaxEntries(maxEntries) {\n if (maxEntries < 0) {\n throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${maxEntries}.`);\n }\n if (this.maxEntries > maxEntries) {\n for (let i2 = 0; i2 < this.maxEntries - maxEntries; i2++) {\n const keyToDelete = this.cache.keys().next().value;\n this.cache.delete(keyToDelete);\n }\n }\n this.maxEntries = maxEntries;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/generic_utils.js\nfunction pyListRepeat(value, numValues) {\n if (Array.isArray(value)) {\n let newArray = [];\n for (let i2 = 0; i2 < numValues; i2++) {\n newArray = newArray.concat(value);\n }\n return newArray;\n } else {\n const newArray = new Array(numValues);\n newArray.fill(value);\n return newArray;\n }\n}\nfunction assert2(val, message) {\n if (!val) {\n throw new AssertionError(message);\n }\n}\nfunction count(array2, refernce) {\n let counter = 0;\n for (const item of array2) {\n if (item === refernce) {\n counter++;\n }\n }\n return counter;\n}\nfunction singletonOrArray(xs) {\n if (xs.length === 1) {\n return xs[0];\n }\n return xs;\n}\nfunction toList(x) {\n if (Array.isArray(x)) {\n return x;\n }\n return [x];\n}\nfunction toSnakeCase(name) {\n const intermediate = name.replace(/(.)([A-Z][a-z0-9]+)/g, \"$1_$2\");\n const insecure = intermediate.replace(/([a-z])([A-Z])/g, \"$1_$2\").toLowerCase();\n if (insecure[0] !== \"_\") {\n return insecure;\n }\n return \"private\" + insecure;\n}\nfunction toCamelCase(identifier) {\n if (identifier.length <= 1) {\n return identifier;\n }\n if (identifier.indexOf(\"_\") === -1) {\n return identifier;\n }\n return identifier.replace(/[_]+(\\w|$)/g, (m, p1) => p1.toUpperCase());\n}\nvar _GLOBAL_CUSTOM_OBJECTS = {};\nfunction serializeKerasObject(instance) {\n if (instance === null || instance === void 0) {\n return null;\n }\n const dict = {};\n dict[\"className\"] = instance.getClassName();\n dict[\"config\"] = instance.getConfig();\n return dict;\n}\nfunction convertNDArrayScalarsInConfig(config) {\n if (config == null || typeof config !== \"object\") {\n return;\n } else if (Array.isArray(config)) {\n config.forEach((configItem) => convertNDArrayScalarsInConfig(configItem));\n } else {\n const fields = Object.keys(config);\n for (const field of fields) {\n const value = config[field];\n if (value != null && typeof value === \"object\") {\n if (!Array.isArray(value) && value[\"type\"] === \"ndarray\" && typeof value[\"value\"] === \"number\") {\n config[field] = value[\"value\"];\n } else {\n convertNDArrayScalarsInConfig(value);\n }\n }\n }\n }\n}\nfunction deserializeKerasObject(identifier, moduleObjects = {}, customObjects = {}, printableModuleName = \"object\", fastWeightInit = false) {\n if (typeof identifier === \"string\") {\n const functionName = identifier;\n let fn;\n if (functionName in customObjects) {\n fn = customObjects[functionName];\n } else if (functionName in _GLOBAL_CUSTOM_OBJECTS) {\n fn = _GLOBAL_CUSTOM_OBJECTS[functionName];\n } else {\n fn = moduleObjects[functionName];\n if (fn == null) {\n throw new ValueError(`Unknown ${printableModuleName}: ${identifier}. This may be due to one of the following reasons:\n1. The ${printableModuleName} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom ${printableModuleName} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);\n }\n }\n return fn;\n } else {\n const config = identifier;\n if (config[\"className\"] == null || config[\"config\"] == null) {\n throw new ValueError(`${printableModuleName}: Improper config format: ${JSON.stringify(config)}.\n'className' and 'config' must set.`);\n }\n const className = config[\"className\"];\n let cls, fromConfig;\n if (className in customObjects) {\n [cls, fromConfig] = customObjects[className];\n } else if (className in _GLOBAL_CUSTOM_OBJECTS) {\n [cls, fromConfig] = _GLOBAL_CUSTOM_OBJECTS[\"className\"];\n } else if (className in moduleObjects) {\n [cls, fromConfig] = moduleObjects[className];\n }\n if (cls == null) {\n throw new ValueError(`Unknown ${printableModuleName}: ${className}. This may be due to one of the following reasons:\n1. The ${printableModuleName} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom ${printableModuleName} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);\n }\n if (fromConfig != null) {\n const customObjectsCombined = {};\n for (const key of Object.keys(_GLOBAL_CUSTOM_OBJECTS)) {\n customObjectsCombined[key] = _GLOBAL_CUSTOM_OBJECTS[key];\n }\n for (const key of Object.keys(customObjects)) {\n customObjectsCombined[key] = customObjects[key];\n }\n const nestedConfig = config[\"config\"];\n nestedConfig[\"customObjects\"] = customObjectsCombined;\n const backupCustomObjects = Object.assign({}, _GLOBAL_CUSTOM_OBJECTS);\n for (const key of Object.keys(customObjects)) {\n _GLOBAL_CUSTOM_OBJECTS[key] = customObjects[key];\n }\n convertNDArrayScalarsInConfig(config[\"config\"]);\n const returnObj = fromConfig(cls, config[\"config\"], customObjects, fastWeightInit);\n _GLOBAL_CUSTOM_OBJECTS = Object.assign({}, backupCustomObjects);\n return returnObj;\n } else {\n const backupCustomObjects = Object.assign({}, _GLOBAL_CUSTOM_OBJECTS);\n for (const key of Object.keys(customObjects)) {\n _GLOBAL_CUSTOM_OBJECTS[key] = customObjects[key];\n }\n const returnObj = new cls(config[\"config\"]);\n _GLOBAL_CUSTOM_OBJECTS = Object.assign({}, backupCustomObjects);\n return returnObj;\n }\n }\n}\nfunction numberCompare(a, b) {\n return a < b ? -1 : a > b ? 1 : 0;\n}\nfunction reverseNumberCompare(a, b) {\n return -1 * numberCompare(a, b);\n}\nfunction unique2(xs) {\n if (xs == null) {\n return xs;\n }\n const out = [];\n for (const x of xs) {\n if (out.indexOf(x) === -1) {\n out.push(x);\n }\n }\n return out;\n}\nfunction isObjectEmpty(obj) {\n if (obj == null) {\n throw new ValueError(`Invalid value in obj: ${JSON.stringify(obj)}`);\n }\n for (const key in obj) {\n if (obj.hasOwnProperty(key)) {\n return false;\n }\n }\n return true;\n}\nfunction checkStringTypeUnionValue(values, label, value) {\n if (value == null) {\n return;\n }\n if (values.indexOf(value) < 0) {\n throw new ValueError(`${value} is not a valid ${label}. Valid values are ${values} or null/undefined.`);\n }\n}\nfunction checkArrayTypeAndLength(x, expectedType, minLength = 0, maxLength = Infinity) {\n assert2(minLength >= 0);\n assert2(maxLength >= minLength);\n return Array.isArray(x) && x.length >= minLength && x.length <= maxLength && x.every((e2) => typeof e2 === expectedType);\n}\nfunction assertPositiveInteger(value, name) {\n if (Array.isArray(value)) {\n util_exports.assert(value.length > 0, () => `${name} is unexpectedly an empty array.`);\n value.forEach((v, i2) => assertPositiveInteger(v, `element ${i2 + 1} of ${name}`));\n } else {\n util_exports.assert(Number.isInteger(value) && value > 0, () => `Expected ${name} to be a positive integer, but got ${formatAsFriendlyString(value)}.`);\n }\n}\nfunction formatAsFriendlyString(value) {\n if (value === null) {\n return \"null\";\n } else if (Array.isArray(value)) {\n return \"[\" + value.map((v) => formatAsFriendlyString(v)).join(\",\") + \"]\";\n } else if (typeof value === \"string\") {\n return `\"${value}\"`;\n } else {\n return `${value}`;\n }\n}\nfunction debounce(f, waitMs, nowFunc) {\n let lastTime = nowFunc != null ? nowFunc() : util_exports.now();\n let lastResult;\n const f2 = (...args) => {\n const now2 = nowFunc != null ? nowFunc() : util_exports.now();\n if (now2 - lastTime < waitMs) {\n return lastResult;\n }\n lastTime = now2;\n lastResult = f(...args);\n return lastResult;\n };\n return f2;\n}\nfunction mapActivationToFusedKernel(activationName) {\n if (activationName === \"relu\") {\n return \"relu\";\n }\n if (activationName === \"linear\") {\n return \"linear\";\n }\n if (activationName === \"elu\") {\n return \"elu\";\n }\n return null;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/backend/state.js\nvar _nextUniqueTensorId = 0;\nfunction getNextUniqueTensorId() {\n return _nextUniqueTensorId++;\n}\nvar _uidPrefixes = {};\nfunction getUid(prefix = \"\") {\n if (!(prefix in _uidPrefixes)) {\n _uidPrefixes[prefix] = 0;\n }\n _uidPrefixes[prefix] += 1;\n return prefix + _uidPrefixes[prefix].toString();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/keras_format/common.js\nvar VALID_DATA_FORMAT_VALUES = [\"channelsFirst\", \"channelsLast\"];\nvar VALID_INTERPOLATION_FORMAT_VALUES = [\"nearest\", \"bilinear\"];\nvar VALID_PADDING_MODE_VALUES = [\"valid\", \"same\", \"causal\"];\nvar VALID_POOL_MODE_VALUES = [\"max\", \"avg\"];\nvar VALID_BIDIRECTIONAL_MERGE_MODES = [\"sum\", \"mul\", \"concat\", \"ave\"];\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/common.js\nvar nameMap = /* @__PURE__ */ new Map();\nfunction checkDataFormat(value) {\n checkStringTypeUnionValue(VALID_DATA_FORMAT_VALUES, \"DataFormat\", value);\n}\nfunction checkInterpolationFormat(value) {\n checkStringTypeUnionValue(VALID_INTERPOLATION_FORMAT_VALUES, \"InterpolationFormat\", value);\n}\nfunction checkPaddingMode(value) {\n checkStringTypeUnionValue(VALID_PADDING_MODE_VALUES, \"PaddingMode\", value);\n}\nfunction checkPoolMode(value) {\n checkStringTypeUnionValue(VALID_POOL_MODE_VALUES, \"PoolMode\", value);\n}\nvar _nameScopeStack = [];\nvar _nameScopeDivider = \"/\";\nfunction nameScope(name, fn) {\n _nameScopeStack.push(name);\n try {\n const val = fn();\n _nameScopeStack.pop();\n return val;\n } catch (e2) {\n _nameScopeStack.pop();\n throw e2;\n }\n}\nfunction currentNameScopePrefix() {\n if (_nameScopeStack.length === 0) {\n return \"\";\n } else {\n return _nameScopeStack.join(_nameScopeDivider) + _nameScopeDivider;\n }\n}\nfunction getScopedTensorName(tensorName) {\n if (!isValidTensorName(tensorName)) {\n throw new Error(\"Not a valid tensor name: '\" + tensorName + \"'\");\n }\n return currentNameScopePrefix() + tensorName;\n}\nfunction getUniqueTensorName(scopedName) {\n if (!isValidTensorName(scopedName)) {\n throw new Error(\"Not a valid tensor name: '\" + scopedName + \"'\");\n }\n if (!nameMap.has(scopedName)) {\n nameMap.set(scopedName, 0);\n }\n const index = nameMap.get(scopedName);\n nameMap.set(scopedName, nameMap.get(scopedName) + 1);\n if (index > 0) {\n const result = `${scopedName}_${index}`;\n nameMap.set(result, 1);\n return result;\n } else {\n return scopedName;\n }\n}\nvar tensorNameRegex = new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\\._\\/]*$/);\nfunction isValidTensorName(name) {\n return !!name.match(tensorNameRegex);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/math_utils.js\nfunction isInteger(x) {\n return x === parseInt(x.toString(), 10);\n}\nfunction arrayProd(array2, begin, end) {\n if (begin == null) {\n begin = 0;\n }\n if (end == null) {\n end = array2.length;\n }\n let prod6 = 1;\n for (let i2 = begin; i2 < end; ++i2) {\n prod6 *= array2[i2];\n }\n return prod6;\n}\nfunction min2(array2) {\n if (array2.length === 0) {\n return Number.NaN;\n }\n let min7 = Number.POSITIVE_INFINITY;\n for (let i2 = 0; i2 < array2.length; i2++) {\n const value = array2[i2];\n if (value < min7) {\n min7 = value;\n }\n }\n return min7;\n}\nfunction max2(array2) {\n if (array2.length === 0) {\n return Number.NaN;\n }\n let max7 = Number.NEGATIVE_INFINITY;\n for (let i2 = 0; i2 < array2.length; i2++) {\n const value = array2[i2];\n if (value > max7) {\n max7 = value;\n }\n }\n return max7;\n}\nfunction range2(begin, end) {\n if (end < begin) {\n throw new ValueError(`end (${end}) < begin (${begin}) is forbidden.`);\n }\n const out = [];\n for (let i2 = begin; i2 < end; ++i2) {\n out.push(i2);\n }\n return out;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/backend/common.js\nvar _epsilon;\nfunction epsilon() {\n if (_epsilon == null) {\n _epsilon = backend().epsilon();\n }\n return _epsilon;\n}\nfunction imageDataFormat() {\n return \"channelsLast\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/backend/tfjs_backend.js\nfunction cast2(x, dtype) {\n return cast(x, dtype);\n}\nfunction expandDims2(x, axis = -1) {\n const outShape = x.shape.slice();\n if (axis < 0) {\n axis = outShape.length + axis + 1;\n }\n outShape.splice(axis, 0, 1);\n return reshape(x, outShape);\n}\nfunction repeat(x, n2) {\n return tidy(() => {\n if (x.shape.length !== 2) {\n throw new ValueError(`repeat() expects a rank-2 tensor, but received a rank-${x.shape.length} tensor.`);\n }\n const y = expandDims2(x, 1);\n return tile2(y, [1, n2, 1]);\n });\n}\nfunction flatten2(x) {\n const newShape = [arrayProd(x.shape)];\n return reshape(x, newShape);\n}\nfunction batchFlatten(x) {\n if (x.rank <= 1) {\n throw new ValueError(`batchFlatten requires a minimum rank of 2. Got rank: ${x.rank}.`);\n }\n const newShape = [x.shape[0], arrayProd(x.shape, 1)];\n return reshape(x, newShape);\n}\nfunction sliceAlongFirstAxis(array2, start, size) {\n return tidy(() => {\n switch (array2.rank) {\n case 1:\n return slice1d(array2, start, size);\n case 2:\n return slice2d(array2, [start, 0], [size, array2.shape[1]]);\n case 3:\n return slice3d(array2, [start, 0, 0], [size, array2.shape[1], array2.shape[2]]);\n case 4:\n return slice4d(array2, [start, 0, 0, 0], [size, array2.shape[1], array2.shape[2], array2.shape[3]]);\n case 5:\n return slice(array2, [start, 0, 0, 0, 0], [\n size,\n array2.shape[1],\n array2.shape[2],\n array2.shape[3],\n array2.shape[4]\n ]);\n case 6:\n return slice(array2, [start, 0, 0, 0, 0, 0], [\n size,\n array2.shape[1],\n array2.shape[2],\n array2.shape[3],\n array2.shape[4],\n array2.shape[5]\n ]);\n default:\n throw new ValueError(`sliceAlongFirstAxis() received an unsupported tensor rank: ${array2.rank}`);\n }\n });\n}\nfunction sliceAlongLastAxis(array2, start, size) {\n return tidy(() => {\n switch (array2.rank) {\n case 1:\n return slice1d(array2, start, size);\n case 2:\n return slice2d(array2, [0, start], [array2.shape[0], size]);\n case 3:\n return slice3d(array2, [0, 0, start], [array2.shape[0], array2.shape[1], size]);\n case 4:\n return slice4d(array2, [0, 0, 0, start], [array2.shape[0], array2.shape[1], array2.shape[2], size]);\n default:\n throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ${array2.rank}`);\n }\n });\n}\nfunction sliceAlongAxis(array2, start, size, axis) {\n return tidy(() => {\n switch (array2.rank) {\n case 1:\n return slice1d(array2, start, size);\n case 2:\n switch (axis) {\n case 1:\n return sliceAlongFirstAxis(array2, start, size);\n case 2:\n return sliceAlongLastAxis(array2, start, size);\n default:\n throw new ValueError(`The axis is not within the rank of the tensor ${axis}`);\n }\n case 3:\n switch (axis) {\n case 1:\n return sliceAlongFirstAxis(array2, start, size);\n case 2:\n return slice3d(array2, [0, start, 0], [array2.shape[0], size, array2.shape[2]]);\n case 3:\n return sliceAlongLastAxis(array2, start, size);\n default:\n throw new ValueError(`The axis is not within the rank of the tensor ${axis}`);\n }\n case 4:\n switch (axis) {\n case 1:\n return sliceAlongFirstAxis(array2, start, size);\n case 2:\n return slice4d(array2, [0, start, 0, 0], [array2.shape[0], size, array2.shape[2], array2.shape[3]]);\n case 3:\n return slice4d(array2, [0, 0, start, 0], [array2.shape[0], array2.shape[1], size, array2.shape[3]]);\n case 4:\n return sliceAlongLastAxis(array2, start, size);\n default:\n throw new ValueError(`The axis is not within the rank of the tensor ${axis}`);\n }\n default:\n throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ${array2.rank}`);\n }\n });\n}\nfunction concatenate(tensors, axis = -1) {\n let rank;\n if (axis < 0) {\n rank = tensors[0].rank;\n if (rank !== 0) {\n axis = rank;\n } else {\n axis = 0;\n }\n }\n if (axis === tensors[0].rank) {\n axis = -1;\n }\n return concat(tensors, axis);\n}\nfunction concatAlongFirstAxis(a, b) {\n switch (a.rank) {\n case 1:\n return concat1d([a, b]);\n case 2:\n return concat2d([a, b], 0);\n case 3:\n return concat3d([a, b], 0);\n case 4:\n return concat4d([a, b], 0);\n default:\n throw new ValueError(`concatAlongFirstAxis() received an unsupported tensor rank: ${a.rank}`);\n }\n}\nfunction tile2(x, n2) {\n if (!Array.isArray(n2)) {\n n2 = [n2];\n }\n if (x.rank !== n2.length) {\n throw new ValueError(`The length of input n (${n2.length}) does not match the number of dimensions in input x (${x.rank})`);\n }\n return tile(x, n2);\n}\nfunction randomNormal2(shape, mean5 = 0, stddev = 1, dtype, seed) {\n return randomNormal(shape, mean5, stddev, dtype, seed);\n}\nfunction dot2(a, b, activation2, bias) {\n if (a.rank < 2 || b.rank < 2) {\n throw new NotImplementedError(`dot requires both inputs to be rank >= 2 but got x shape = ${a.shape} and y shape = ${b.shape}`);\n }\n if (b.rank >= 3) {\n const xLastDim = a.shape.slice(-1)[0];\n const ySecondLastDim = b.shape.slice(-2)[0];\n if (xLastDim !== ySecondLastDim) {\n throw new NotImplementedError(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${a.shape} and y shape = ${b.shape}`);\n }\n }\n if (a.rank === 2 && b.rank === 2) {\n const transposeA = false;\n const transposeB = false;\n return fused_ops_exports.matMul({\n a,\n b,\n transposeA,\n transposeB,\n bias: bias ? reshapeBias(a.rank, bias, imageDataFormat()) : null,\n activation: activation2\n });\n } else {\n const aFirstDims = a.shape.slice();\n const aLastDim = aFirstDims.pop();\n a = reshape(a, [-1, aLastDim]);\n const bShape = b.shape.slice();\n const bLastDim = bShape.pop();\n const ySecondLastDim = bShape.pop();\n const yOtherDims = [...bShape, bLastDim];\n const perm = Array.from({ length: b.rank }, (_, i2) => {\n if (i2 === 0) {\n return b.rank - 2;\n } else if (i2 <= b.rank - 2) {\n return i2 - 1;\n }\n return i2;\n });\n b = reshape(transpose(b, perm), [ySecondLastDim, -1]);\n const outputShape = [...aFirstDims, ...yOtherDims];\n const transposeA = false;\n const transposeB = false;\n return reshape(fused_ops_exports.matMul({\n a,\n b,\n transposeA,\n transposeB,\n bias: bias ? reshapeBias(a.rank, bias, imageDataFormat()) : null,\n activation: activation2\n }), outputShape);\n }\n}\nfunction gather2(reference, indices, axis) {\n return tidy(() => {\n if (Array.isArray(indices)) {\n indices = tensor1d(indices, \"int32\");\n } else {\n indices = cast(indices, \"int32\");\n }\n return gather(reference, indices, axis);\n });\n}\nfunction square2(x) {\n return mul(x, x);\n}\nfunction reshapeBias(xRank, bias, dataFormat) {\n const biasShape = bias.shape;\n if (bias.rank !== 1 && bias.rank !== xRank) {\n throw new ValueError(`Unexpected bias dimensions: ${bias.rank}; expected it to be 1 or ${xRank}`);\n }\n if (xRank === 5) {\n if (dataFormat === \"channelsFirst\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, biasShape[0], 1, 1, 1]);\n } else {\n return reshape(bias, [1, biasShape[3], biasShape[0], biasShape[1], biasShape[2]]);\n }\n } else if (dataFormat === \"channelsLast\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, 1, 1, 1, biasShape[0]]);\n } else {\n return reshape(bias, [1].concat(biasShape));\n }\n }\n } else if (xRank === 4) {\n if (dataFormat === \"channelsFirst\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, biasShape[0], 1, 1]);\n } else {\n return reshape(bias, [1, biasShape[2], biasShape[0], biasShape[1]]);\n }\n } else if (dataFormat === \"channelsLast\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, 1, 1, biasShape[0]]);\n } else {\n return reshape(bias, [1].concat(biasShape));\n }\n }\n } else if (xRank === 3) {\n if (dataFormat === \"channelsFirst\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, biasShape[0], 1]);\n } else {\n return reshape(bias, [1, biasShape[1], biasShape[0]]);\n }\n } else if (dataFormat === \"channelsLast\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, 1, biasShape[0]]);\n } else {\n return reshape(bias, [1].concat(biasShape));\n }\n }\n } else if (xRank < 3) {\n return bias;\n }\n throw new ValueError(`Unsupported input rank by biasAdd: ${bias.rank}`);\n}\nfunction biasAdd(x, bias, dataFormat) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n return add2(x, reshapeBias(x.rank, bias, dataFormat));\n });\n}\nfunction elu2(x, alpha = 1) {\n if (alpha !== 1) {\n throw new NotImplementedError(`Support for alpha values other than 1 (${alpha}) is not implemented yet.`);\n }\n return elu(x);\n}\nfunction softsign(x) {\n return tidy(() => div(x, add2(abs(x), 1)));\n}\nfunction dropout2(x, level, noiseShape, seed) {\n return tidy(() => dropout(x, level, noiseShape, seed));\n}\nfunction hardSigmoid(x) {\n return tidy(() => {\n const y = add2(0.5, mul(0.2, x));\n return clipByValue(y, 0, 1);\n });\n}\nfunction inTrainPhase(x, alt, training = false) {\n return training ? x() : alt();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/keras_format/initializer_config.js\nvar VALID_FAN_MODE_VALUES = [\"fanIn\", \"fanOut\", \"fanAvg\"];\nvar VALID_DISTRIBUTION_VALUES = [\"normal\", \"uniform\", \"truncatedNormal\"];\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/initializers.js\nfunction checkFanMode(value) {\n checkStringTypeUnionValue(VALID_FAN_MODE_VALUES, \"FanMode\", value);\n}\nfunction checkDistribution(value) {\n checkStringTypeUnionValue(VALID_DISTRIBUTION_VALUES, \"Distribution\", value);\n}\nvar Initializer = class extends serialization_exports.Serializable {\n fromConfigUsesCustomObjects() {\n return false;\n }\n getConfig() {\n return {};\n }\n};\nvar Zeros = class extends Initializer {\n apply(shape, dtype) {\n return zeros(shape, dtype);\n }\n};\nZeros.className = \"Zeros\";\nserialization_exports.registerClass(Zeros);\nvar Ones = class extends Initializer {\n apply(shape, dtype) {\n return ones2(shape, dtype);\n }\n};\nOnes.className = \"Ones\";\nserialization_exports.registerClass(Ones);\nvar Constant = class extends Initializer {\n constructor(args) {\n super();\n if (typeof args !== \"object\") {\n throw new ValueError(`Expected argument of type ConstantConfig but got ${args}`);\n }\n if (args.value === void 0) {\n throw new ValueError(`config must have value set but got ${args}`);\n }\n this.value = args.value;\n }\n apply(shape, dtype) {\n return tidy(() => mul(scalar(this.value), ones2(shape, dtype)));\n }\n getConfig() {\n return {\n value: this.value\n };\n }\n};\nConstant.className = \"Constant\";\nserialization_exports.registerClass(Constant);\nvar RandomUniform = class extends Initializer {\n constructor(args) {\n super();\n this.DEFAULT_MINVAL = -0.05;\n this.DEFAULT_MAXVAL = 0.05;\n this.minval = args.minval || this.DEFAULT_MINVAL;\n this.maxval = args.maxval || this.DEFAULT_MAXVAL;\n this.seed = args.seed;\n }\n apply(shape, dtype) {\n return randomUniform(shape, this.minval, this.maxval, dtype);\n }\n getConfig() {\n return { minval: this.minval, maxval: this.maxval, seed: this.seed };\n }\n};\nRandomUniform.className = \"RandomUniform\";\nserialization_exports.registerClass(RandomUniform);\nvar RandomNormal = class extends Initializer {\n constructor(args) {\n super();\n this.DEFAULT_MEAN = 0;\n this.DEFAULT_STDDEV = 0.05;\n this.mean = args.mean || this.DEFAULT_MEAN;\n this.stddev = args.stddev || this.DEFAULT_STDDEV;\n this.seed = args.seed;\n }\n apply(shape, dtype) {\n dtype = dtype || \"float32\";\n if (dtype !== \"float32\" && dtype !== \"int32\") {\n throw new NotImplementedError(`randomNormal does not support dType ${dtype}.`);\n }\n return randomNormal2(shape, this.mean, this.stddev, dtype, this.seed);\n }\n getConfig() {\n return { mean: this.mean, stddev: this.stddev, seed: this.seed };\n }\n};\nRandomNormal.className = \"RandomNormal\";\nserialization_exports.registerClass(RandomNormal);\nvar TruncatedNormal = class extends Initializer {\n constructor(args) {\n super();\n this.DEFAULT_MEAN = 0;\n this.DEFAULT_STDDEV = 0.05;\n this.mean = args.mean || this.DEFAULT_MEAN;\n this.stddev = args.stddev || this.DEFAULT_STDDEV;\n this.seed = args.seed;\n }\n apply(shape, dtype) {\n dtype = dtype || \"float32\";\n if (dtype !== \"float32\" && dtype !== \"int32\") {\n throw new NotImplementedError(`truncatedNormal does not support dType ${dtype}.`);\n }\n return truncatedNormal(shape, this.mean, this.stddev, dtype, this.seed);\n }\n getConfig() {\n return { mean: this.mean, stddev: this.stddev, seed: this.seed };\n }\n};\nTruncatedNormal.className = \"TruncatedNormal\";\nserialization_exports.registerClass(TruncatedNormal);\nvar Identity2 = class extends Initializer {\n constructor(args) {\n super();\n this.gain = args.gain != null ? args.gain : 1;\n }\n apply(shape, dtype) {\n return tidy(() => {\n if (shape.length !== 2 || shape[0] !== shape[1]) {\n throw new ValueError(\"Identity matrix initializer can only be used for 2D square matrices.\");\n } else {\n return mul(this.gain, eye(shape[0]));\n }\n });\n }\n getConfig() {\n return { gain: this.gain };\n }\n};\nIdentity2.className = \"Identity\";\nserialization_exports.registerClass(Identity2);\nfunction computeFans(shape, dataFormat = \"channelsLast\") {\n let fanIn;\n let fanOut;\n checkDataFormat(dataFormat);\n if (shape.length === 2) {\n fanIn = shape[0];\n fanOut = shape[1];\n } else if ([3, 4, 5].indexOf(shape.length) !== -1) {\n if (dataFormat === \"channelsFirst\") {\n const receptiveFieldSize = arrayProd(shape, 2);\n fanIn = shape[1] * receptiveFieldSize;\n fanOut = shape[0] * receptiveFieldSize;\n } else if (dataFormat === \"channelsLast\") {\n const receptiveFieldSize = arrayProd(shape, 0, shape.length - 2);\n fanIn = shape[shape.length - 2] * receptiveFieldSize;\n fanOut = shape[shape.length - 1] * receptiveFieldSize;\n }\n } else {\n const shapeProd = arrayProd(shape);\n fanIn = Math.sqrt(shapeProd);\n fanOut = Math.sqrt(shapeProd);\n }\n return [fanIn, fanOut];\n}\nvar VarianceScaling = class extends Initializer {\n constructor(args) {\n super();\n if (args.scale < 0) {\n throw new ValueError(`scale must be a positive float. Got: ${args.scale}`);\n }\n this.scale = args.scale == null ? 1 : args.scale;\n this.mode = args.mode == null ? \"fanIn\" : args.mode;\n checkFanMode(this.mode);\n this.distribution = args.distribution == null ? \"normal\" : args.distribution;\n checkDistribution(this.distribution);\n this.seed = args.seed;\n }\n apply(shape, dtype) {\n const fans = computeFans(shape);\n const fanIn = fans[0];\n const fanOut = fans[1];\n let scale2 = this.scale;\n if (this.mode === \"fanIn\") {\n scale2 /= Math.max(1, fanIn);\n } else if (this.mode === \"fanOut\") {\n scale2 /= Math.max(1, fanOut);\n } else {\n scale2 /= Math.max(1, (fanIn + fanOut) / 2);\n }\n if (this.distribution === \"normal\") {\n const stddev = Math.sqrt(scale2);\n dtype = dtype || \"float32\";\n if (dtype !== \"float32\" && dtype !== \"int32\") {\n throw new NotImplementedError(`${this.getClassName()} does not support dType ${dtype}.`);\n }\n return truncatedNormal(shape, 0, stddev, dtype, this.seed);\n } else {\n const limit = Math.sqrt(3 * scale2);\n return randomUniform(shape, -limit, limit, dtype);\n }\n }\n getConfig() {\n return {\n scale: this.scale,\n mode: this.mode,\n distribution: this.distribution,\n seed: this.seed\n };\n }\n};\nVarianceScaling.className = \"VarianceScaling\";\nserialization_exports.registerClass(VarianceScaling);\nvar GlorotUniform = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 1,\n mode: \"fanAvg\",\n distribution: \"uniform\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nGlorotUniform.className = \"GlorotUniform\";\nserialization_exports.registerClass(GlorotUniform);\nvar GlorotNormal = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 1,\n mode: \"fanAvg\",\n distribution: \"normal\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nGlorotNormal.className = \"GlorotNormal\";\nserialization_exports.registerClass(GlorotNormal);\nvar HeNormal = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 2,\n mode: \"fanIn\",\n distribution: \"normal\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nHeNormal.className = \"HeNormal\";\nserialization_exports.registerClass(HeNormal);\nvar HeUniform = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 2,\n mode: \"fanIn\",\n distribution: \"uniform\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nHeUniform.className = \"HeUniform\";\nserialization_exports.registerClass(HeUniform);\nvar LeCunNormal = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 1,\n mode: \"fanIn\",\n distribution: \"normal\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nLeCunNormal.className = \"LeCunNormal\";\nserialization_exports.registerClass(LeCunNormal);\nvar LeCunUniform = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 1,\n mode: \"fanIn\",\n distribution: \"uniform\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nLeCunUniform.className = \"LeCunNormal\";\nserialization_exports.registerClass(LeCunUniform);\nvar Orthogonal = class extends Initializer {\n constructor(args) {\n super();\n this.DEFAULT_GAIN = 1;\n this.gain = args.gain == null ? this.DEFAULT_GAIN : args.gain;\n this.seed = args.seed;\n if (this.seed != null) {\n throw new NotImplementedError(\"Random seed is not implemented for Orthogonal Initializer yet.\");\n }\n }\n apply(shape, dtype) {\n return tidy(() => {\n if (shape.length < 2) {\n throw new NotImplementedError(\"Shape must be at least 2D.\");\n }\n if (shape[0] * shape[1] > 2e3) {\n console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${shape[0] * shape[1]}) elements: Slowness may result.`);\n }\n const normalizedShape = shape[0] > shape[1] ? [shape[1], shape[0]] : shape;\n const a = randomNormal2(normalizedShape, 0, 1, \"float32\");\n let q = linalg.gramSchmidt(a);\n if (shape[0] > shape[1]) {\n q = transpose(q);\n }\n return mul(this.gain, q);\n });\n }\n getConfig() {\n return {\n gain: this.gain,\n seed: this.seed\n };\n }\n};\nOrthogonal.className = \"Orthogonal\";\nserialization_exports.registerClass(Orthogonal);\nvar INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP = {\n \"constant\": \"Constant\",\n \"glorotNormal\": \"GlorotNormal\",\n \"glorotUniform\": \"GlorotUniform\",\n \"heNormal\": \"HeNormal\",\n \"heUniform\": \"HeUniform\",\n \"identity\": \"Identity\",\n \"leCunNormal\": \"LeCunNormal\",\n \"leCunUniform\": \"LeCunUniform\",\n \"ones\": \"Ones\",\n \"orthogonal\": \"Orthogonal\",\n \"randomNormal\": \"RandomNormal\",\n \"randomUniform\": \"RandomUniform\",\n \"truncatedNormal\": \"TruncatedNormal\",\n \"varianceScaling\": \"VarianceScaling\",\n \"zeros\": \"Zeros\"\n};\nfunction deserializeInitializer(config, customObjects = {}) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"initializer\");\n}\nfunction serializeInitializer(initializer) {\n return serializeKerasObject(initializer);\n}\nfunction getInitializer(identifier) {\n if (typeof identifier === \"string\") {\n const className = identifier in INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP ? INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier] : identifier;\n if (className === \"GlorotNormal\") {\n return new GlorotNormal();\n } else if (className === \"GlorotUniform\") {\n return new GlorotUniform();\n } else if (className === \"HeNormal\") {\n return new HeNormal();\n } else if (className === \"HeUniform\") {\n return new HeUniform();\n } else if (className === \"LeCunNormal\") {\n return new LeCunNormal();\n } else if (className === \"LeCunUniform\") {\n return new LeCunUniform();\n } else {\n const config = {};\n config[\"className\"] = className;\n config[\"config\"] = {};\n return deserializeInitializer(config);\n }\n } else if (identifier instanceof Initializer) {\n return identifier;\n } else {\n return deserializeInitializer(identifier);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/types_utils.js\nfunction isArrayOfShapes(x) {\n return Array.isArray(x) && Array.isArray(x[0]);\n}\nfunction normalizeShapeList(x) {\n if (x.length === 0) {\n return [];\n }\n if (!Array.isArray(x[0])) {\n return [x];\n }\n return x;\n}\nfunction getExactlyOneTensor(xs) {\n let x;\n if (Array.isArray(xs)) {\n if (xs.length !== 1) {\n throw new ValueError(`Expected Tensor length to be 1; got ${xs.length}`);\n }\n x = xs[0];\n } else {\n x = xs;\n }\n return x;\n}\nfunction getExactlyOneShape(shapes) {\n if (Array.isArray(shapes) && Array.isArray(shapes[0])) {\n if (shapes.length === 1) {\n shapes = shapes;\n return shapes[0];\n } else {\n throw new ValueError(`Expected exactly 1 Shape; got ${shapes.length}`);\n }\n } else {\n return shapes;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/variable_utils.js\nfunction countParamsInWeights(weights) {\n let count2 = 0;\n for (const weight of weights) {\n if (weight.shape.length === 0) {\n count2 += 1;\n } else {\n count2 += weight.shape.reduce((a, b) => a * b);\n }\n }\n return count2;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/variables.js\nvar DEFAULT_VARIABLE_NAME_PREFIX = \"Variable\";\nvar LayerVariable = class {\n constructor(val, dtype = \"float32\", name = DEFAULT_VARIABLE_NAME_PREFIX, trainable = true, constraint = null) {\n this.dtype = dtype == null ? \"float32\" : dtype;\n this.shape = val.shape;\n this.id = getNextUniqueTensorId();\n name = name == null ? DEFAULT_VARIABLE_NAME_PREFIX : name;\n this.originalName = getScopedTensorName(name);\n this.name = getUniqueTensorName(this.originalName);\n this.trainable_ = trainable;\n this.constraint = constraint;\n this.val = variable(val, this.trainable_, this.name, this.dtype);\n }\n read() {\n this.assertNotDisposed();\n return this.val;\n }\n write(newVal) {\n this.assertNotDisposed();\n checkShapesMatch(this.val, newVal);\n if (this.val.id !== newVal.id) {\n this.val.assign(newVal);\n if (this.constraint != null) {\n this.val.assign(this.constraint.apply(this.val));\n }\n }\n return this;\n }\n dispose() {\n this.assertNotDisposed();\n this.val.dispose();\n }\n assertNotDisposed() {\n if (this.val.isDisposed) {\n throw new Error(`LayersVariable ${this.name} is already disposed.`);\n }\n }\n get trainable() {\n return this.trainable_;\n }\n set trainable(trainable) {\n this.trainable_ = trainable;\n this.val.trainable = trainable;\n }\n};\nfunction checkShapesMatch(x, y) {\n if (x.shape.toString() !== y.shape.toString()) {\n throw new Error(\"Shape mismatch: \" + JSON.stringify(x.shape) + \" vs. \" + JSON.stringify(y.shape));\n }\n}\nfunction batchGetValue(xs) {\n return xs.map((x) => x.read());\n}\nfunction batchSetValue(variablesAndValues) {\n variablesAndValues.forEach((variableAndValue) => {\n const variable2 = variableAndValue[0];\n variable2.write(variableAndValue[1]);\n });\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/topology.js\nvar InputSpec = class {\n constructor(args) {\n this.dtype = args.dtype;\n this.shape = args.shape;\n if (args.shape != null) {\n this.ndim = args.shape.length;\n } else {\n this.ndim = args.ndim;\n }\n this.maxNDim = args.maxNDim;\n this.minNDim = args.minNDim;\n this.axes = args.axes || {};\n }\n};\nvar SymbolicTensor = class {\n constructor(dtype, shape, sourceLayer, inputs, callArgs, name, outputTensorIndex) {\n this.dtype = dtype;\n this.shape = shape;\n this.sourceLayer = sourceLayer;\n this.inputs = inputs;\n this.callArgs = callArgs;\n this.outputTensorIndex = outputTensorIndex;\n this.id = getNextUniqueTensorId();\n if (name != null) {\n this.originalName = getScopedTensorName(name);\n this.name = getUniqueTensorName(this.originalName);\n }\n this.rank = shape.length;\n }\n};\nvar _nextNodeID = 0;\nvar Node = class {\n constructor(args, callArgs) {\n this.callArgs = callArgs;\n this.id = _nextNodeID++;\n this.outboundLayer = args.outboundLayer;\n this.inboundLayers = args.inboundLayers;\n this.nodeIndices = args.nodeIndices;\n this.tensorIndices = args.tensorIndices;\n this.inputTensors = args.inputTensors;\n this.outputTensors = args.outputTensors;\n this.inputMasks = args.inputMasks;\n this.outputMasks = args.outputMasks;\n this.inputShapes = args.inputShapes;\n this.outputShapes = args.outputShapes;\n for (const layer of args.inboundLayers) {\n if (layer != null) {\n layer.outboundNodes.push(this);\n }\n }\n args.outboundLayer.inboundNodes.push(this);\n }\n getConfig() {\n const inboundNames = [];\n for (const layer of this.inboundLayers) {\n if (layer != null) {\n inboundNames.push(layer.name);\n } else {\n inboundNames.push(null);\n }\n }\n return {\n outboundLayer: this.outboundLayer ? this.outboundLayer.name : null,\n inboundLayers: inboundNames,\n nodeIndices: this.nodeIndices,\n tensorIndices: this.tensorIndices\n };\n }\n};\nvar _nextLayerID = 0;\nvar Layer = class extends serialization_exports.Serializable {\n constructor(args = {}) {\n super();\n this._callHook = null;\n this._addedWeightNames = [];\n this._stateful = false;\n this.id = _nextLayerID++;\n this.activityRegularizer = null;\n this.inputSpec = null;\n this.supportsMasking = false;\n this._trainableWeights = [];\n this._nonTrainableWeights = [];\n this._losses = [];\n this._updates = [];\n this._built = false;\n this.inboundNodes = [];\n this.outboundNodes = [];\n let name = args.name;\n if (!name) {\n const prefix = this.getClassName();\n name = toSnakeCase(prefix) + \"_\" + getUid(prefix);\n }\n this.name = name;\n this.trainable_ = args.trainable == null ? true : args.trainable;\n if (args.inputShape != null || args.batchInputShape != null) {\n let batchInputShape;\n if (args.batchInputShape != null) {\n batchInputShape = args.batchInputShape;\n } else if (args.inputShape != null) {\n let batchSize = null;\n if (args.batchSize != null) {\n batchSize = args.batchSize;\n }\n batchInputShape = [batchSize].concat(args.inputShape);\n }\n this.batchInputShape = batchInputShape;\n let dtype = args.dtype;\n if (dtype == null) {\n dtype = args.inputDType;\n }\n if (dtype == null) {\n dtype = \"float32\";\n }\n this.dtype = dtype;\n }\n if (args.weights != null) {\n this.initialWeights = args.weights;\n } else {\n this.initialWeights = null;\n }\n this._refCount = null;\n this.fastWeightInitDuringBuild = false;\n }\n static nodeKey(layer, nodeIndex) {\n return layer.name + \"_ib-\" + nodeIndex.toString();\n }\n getNodeAtIndex(nodeIndex, attrName) {\n if (this.inboundNodes.length === 0) {\n throw new RuntimeError(`The layer has never been called and thus has no defined ${attrName}.`);\n }\n if (this.inboundNodes.length <= nodeIndex) {\n throw new ValueError(`Asked to get ${attrName} at node ${nodeIndex}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);\n }\n return this.inboundNodes[nodeIndex];\n }\n getInputAt(nodeIndex) {\n return singletonOrArray(this.getNodeAtIndex(nodeIndex, \"input\").inputTensors);\n }\n getOutputAt(nodeIndex) {\n return singletonOrArray(this.getNodeAtIndex(nodeIndex, \"output\").outputTensors);\n }\n get input() {\n if (this.inboundNodes.length > 1) {\n throw new AttributeError(`Layer ${this.name} has multiple inbound nodes, hence the notion of \"layer input\" is ill-defined. Use \\`getInputAt(nodeIndex)\\` instead.`);\n } else if (this.inboundNodes.length === 0) {\n throw new AttributeError(`Layer ${this.name} is not connected, no input to return.`);\n }\n return singletonOrArray(this.getNodeAtIndex(0, \"input\").inputTensors);\n }\n get output() {\n if (this.inboundNodes.length === 0) {\n throw new AttributeError(`Layer ${this.name} has no inbound nodes.`);\n }\n if (this.inboundNodes.length > 1) {\n throw new AttributeError(`Layer ${this.name} has multiple inbound nodes, hence the notion of \"layer output\" is ill-defined. Use \\`getOutputAt(nodeIndex)\\` instead.`);\n }\n return singletonOrArray(this.getNodeAtIndex(0, \"output\").outputTensors);\n }\n get losses() {\n return this._losses;\n }\n calculateLosses() {\n return this.losses.map((lossFn) => lossFn());\n }\n get updates() {\n return this._updates;\n }\n get built() {\n return this._built;\n }\n set built(built) {\n this._built = built;\n }\n get trainable() {\n return this.trainable_;\n }\n set trainable(trainable) {\n this._trainableWeights.forEach((w) => w.trainable = trainable);\n this.trainable_ = trainable;\n }\n get trainableWeights() {\n if (this.trainable_) {\n return this._trainableWeights.filter((w) => w.trainable);\n } else {\n return [];\n }\n }\n set trainableWeights(weights) {\n this._trainableWeights = weights;\n }\n get nonTrainableWeights() {\n if (this.trainable) {\n return this._trainableWeights.filter((w) => !w.trainable).concat(this._nonTrainableWeights);\n } else {\n return this._trainableWeights.concat(this._nonTrainableWeights);\n }\n }\n set nonTrainableWeights(weights) {\n this._nonTrainableWeights = weights;\n }\n get weights() {\n return this.trainableWeights.concat(this.nonTrainableWeights);\n }\n get stateful() {\n return this._stateful;\n }\n resetStates() {\n if (!this.stateful) {\n throw new Error(\"Cannot call the resetStates() method of a non-stateful Layer object.\");\n }\n }\n assertInputCompatibility(inputs) {\n inputs = toList(inputs);\n if (this.inputSpec == null || this.inputSpec.length === 0) {\n return;\n }\n const inputSpec = toList(this.inputSpec);\n if (inputs.length !== inputSpec.length) {\n throw new ValueError(`Layer ${this.name} expects ${inputSpec.length} inputs, but it received ${inputs.length} input tensors. Input received: ${inputs}`);\n }\n for (let inputIndex = 0; inputIndex < inputs.length; inputIndex++) {\n const x = inputs[inputIndex];\n const spec = inputSpec[inputIndex];\n if (spec == null) {\n continue;\n }\n const ndim = x.rank;\n if (spec.ndim != null) {\n if (ndim !== spec.ndim) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected ndim=${spec.ndim}, found ndim=${ndim}`);\n }\n }\n if (spec.maxNDim != null) {\n if (ndim > spec.maxNDim) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected max_ndim=${spec.maxNDim}, found ndim=${ndim}`);\n }\n }\n if (spec.minNDim != null) {\n if (ndim < spec.minNDim) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected min_ndim=${spec.minNDim}, found ndim=${ndim}.`);\n }\n }\n if (spec.dtype != null) {\n if (x.dtype !== spec.dtype) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name} : expected dtype=${spec.dtype}, found dtype=${x.dtype}.`);\n }\n }\n if (spec.axes) {\n const xShape = x.shape;\n for (const key in spec.axes) {\n const axis = Number(key);\n const value = spec.axes[key];\n const xShapeAtAxis = axis >= 0 ? xShape[axis] : xShape[xShape.length + axis];\n if (value != null && [value, null].indexOf(xShapeAtAxis) === -1) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected axis ${axis} of input shape to have value ${value} but got shape ${xShape}.`);\n }\n }\n }\n if (spec.shape != null) {\n for (let i2 = 0; i2 < spec.shape.length; ++i2) {\n const specDim = spec.shape[i2];\n const dim = x.shape[i2];\n if (specDim != null && dim != null) {\n if (specDim !== dim) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected shape=${spec.shape}, found shape=${x.shape}.`);\n }\n }\n }\n }\n }\n }\n call(inputs, kwargs) {\n return inputs;\n }\n invokeCallHook(inputs, kwargs) {\n if (this._callHook != null) {\n this._callHook(inputs, kwargs);\n }\n }\n setCallHook(callHook) {\n this._callHook = callHook;\n }\n clearCallHook() {\n this._callHook = null;\n }\n apply(inputs, kwargs) {\n kwargs = kwargs || {};\n this.assertNotDisposed();\n const inputsList = toList(inputs);\n let allAreSymbolic = true;\n for (const input2 of inputsList) {\n if (!(input2 instanceof SymbolicTensor)) {\n allAreSymbolic = false;\n break;\n }\n }\n let noneAreSymbolic = true;\n for (const input2 of inputsList) {\n if (input2 instanceof SymbolicTensor) {\n noneAreSymbolic = false;\n break;\n }\n }\n if (allAreSymbolic === noneAreSymbolic) {\n throw new ValueError(\"Arguments to apply() must be all SymbolicTensors or all Tensors\");\n }\n return nameScope(this.name, () => {\n if (!this.built) {\n this.assertInputCompatibility(inputs);\n const inputShapes = [];\n for (const xElem of toList(inputs)) {\n inputShapes.push(xElem.shape);\n }\n this.build(singletonOrArray(inputShapes));\n this.built = true;\n if (this.initialWeights) {\n this.setWeights(this.initialWeights);\n }\n if (this._refCount === null && noneAreSymbolic) {\n this._refCount = 1;\n }\n }\n this.assertInputCompatibility(inputs);\n if (noneAreSymbolic) {\n let output = this.call(inputs, kwargs);\n const outputList = toList(output);\n const outputListCopy = [];\n for (let x of outputList) {\n if (inputsList.indexOf(x) !== -1) {\n x = x.clone();\n }\n outputListCopy.push(x);\n }\n output = singletonOrArray(outputListCopy);\n if (this.activityRegularizer != null) {\n throw new NotImplementedError(\"Layer invocation in the presence of activity regularizer(s) is not supported yet.\");\n }\n return output;\n } else {\n const inputShape = collectInputShape(inputs);\n const outputShape = this.computeOutputShape(inputShape);\n let output;\n const outputDType = guessOutputDType(inputs);\n this.warnOnIncompatibleInputShape(Array.isArray(inputs) ? inputShape[0] : inputShape);\n if (outputShape != null && outputShape.length > 0 && Array.isArray(outputShape[0])) {\n output = outputShape.map((shape, index) => new SymbolicTensor(outputDType, shape, this, toList(inputs), kwargs, this.name, index));\n } else {\n output = new SymbolicTensor(outputDType, outputShape, this, toList(inputs), kwargs, this.name);\n }\n this.addInboundNode(inputs, output, null, null, inputShape, outputShape, kwargs);\n this._refCount++;\n if (this.activityRegularizer != null) {\n throw new NotImplementedError(\"Layer invocation in the presence of activity regularizer(s) is not supported yet.\");\n }\n return output;\n }\n });\n }\n warnOnIncompatibleInputShape(inputShape) {\n if (this.batchInputShape == null) {\n return;\n } else if (inputShape.length !== this.batchInputShape.length) {\n console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(inputShape)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);\n } else {\n let dimMismatch = false;\n this.batchInputShape.forEach((dimension, i2) => {\n if (dimension != null && inputShape[i2] != null && inputShape[i2] !== dimension) {\n dimMismatch = true;\n }\n });\n if (dimMismatch) {\n console.warn(`The shape of the input tensor (${JSON.stringify(inputShape)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`);\n }\n }\n }\n get outputShape() {\n if (this.inboundNodes == null || this.inboundNodes.length === 0) {\n throw new AttributeError(`The layer ${this.name} has never been called and thus has no defined output shape.`);\n }\n const allOutputShapes = [];\n for (const node of this.inboundNodes) {\n const shapeString = JSON.stringify(node.outputShapes);\n if (allOutputShapes.indexOf(shapeString) === -1) {\n allOutputShapes.push(shapeString);\n }\n }\n if (allOutputShapes.length === 1) {\n const outputShapes = this.inboundNodes[0].outputShapes;\n if (Array.isArray(outputShapes) && Array.isArray(outputShapes[0]) && outputShapes.length === 1) {\n return outputShapes[0];\n } else {\n return outputShapes;\n }\n } else {\n throw new AttributeError(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of \"output shape\" is ill-defined for the layer.`);\n }\n }\n countParams() {\n if (!this.built) {\n throw new RuntimeError(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);\n }\n return countParamsInWeights(this.weights);\n }\n build(inputShape) {\n this.built = true;\n }\n getWeights(trainableOnly = false) {\n return batchGetValue(trainableOnly ? this.trainableWeights : this.weights);\n }\n setWeights(weights) {\n tidy(() => {\n const params = this.weights;\n if (params.length !== weights.length) {\n throw new ValueError(`You called setWeights(weights) on layer \"${this.name}\" with a weight list of length ${weights.length}, but the layer was expecting ${params.length} weights. Provided weights: ${weights}...`);\n }\n if (params.length === 0) {\n return;\n }\n const weightValueTuples = [];\n const paramValues = batchGetValue(params);\n for (let i2 = 0; i2 < paramValues.length; ++i2) {\n const pv = paramValues[i2];\n const p2 = params[i2];\n const w = weights[i2];\n if (!util_exports.arraysEqual(pv.shape, w.shape)) {\n throw new ValueError(`Layer weight shape ${pv.shape} not compatible with provided weight shape ${w.shape}`);\n }\n weightValueTuples.push([p2, w]);\n }\n batchSetValue(weightValueTuples);\n });\n }\n addWeight(name, shape, dtype, initializer, regularizer, trainable, constraint, getInitializerFunc) {\n if (this._addedWeightNames.indexOf(name) !== -1) {\n throw new ValueError(`Duplicate weight name ${name} for layer ${this.name}`);\n }\n this._addedWeightNames.push(name);\n if (dtype == null) {\n dtype = \"float32\";\n }\n if (this.fastWeightInitDuringBuild) {\n initializer = getInitializerFunc != null ? getInitializerFunc() : getInitializer(\"zeros\");\n }\n const initValue = initializer.apply(shape, dtype);\n const weight = new LayerVariable(initValue, dtype, name, trainable, constraint);\n initValue.dispose();\n if (regularizer != null) {\n this.addLoss(() => regularizer.apply(weight.read()));\n }\n if (trainable == null) {\n trainable = true;\n }\n if (trainable) {\n this._trainableWeights.push(weight);\n } else {\n this._nonTrainableWeights.push(weight);\n }\n return weight;\n }\n setFastWeightInitDuringBuild(value) {\n this.fastWeightInitDuringBuild = value;\n }\n addLoss(losses2) {\n if (losses2 == null || Array.isArray(losses2) && losses2.length === 0) {\n return;\n }\n losses2 = toList(losses2);\n if (this._losses !== void 0 && this._losses !== null) {\n this.losses.push(...losses2);\n }\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n computeMask(inputs, mask) {\n if (!this.supportsMasking) {\n if (mask != null) {\n if (Array.isArray(mask)) {\n mask.forEach((maskElement) => {\n if (maskElement != null) {\n throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);\n }\n });\n } else {\n throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);\n }\n }\n return null;\n }\n return mask;\n }\n addInboundNode(inputTensors, outputTensors, inputMasks, outputMasks, inputShapes, outputShapes, kwargs = null) {\n const inputTensorList = toList(inputTensors);\n outputTensors = toList(outputTensors);\n inputMasks = toList(inputMasks);\n outputMasks = toList(outputMasks);\n inputShapes = normalizeShapeList(inputShapes);\n outputShapes = normalizeShapeList(outputShapes);\n const inboundLayers = [];\n const nodeIndices = [];\n const tensorIndices = [];\n for (const x of inputTensorList) {\n inboundLayers.push(x.sourceLayer);\n nodeIndices.push(x.nodeIndex);\n tensorIndices.push(x.tensorIndex);\n }\n new Node({\n outboundLayer: this,\n inboundLayers,\n nodeIndices,\n tensorIndices,\n inputTensors: inputTensorList,\n outputTensors,\n inputMasks,\n outputMasks,\n inputShapes,\n outputShapes\n }, kwargs);\n for (let i2 = 0; i2 < outputTensors.length; i2++) {\n outputTensors[i2].sourceLayer = this;\n outputTensors[i2].nodeIndex = this.inboundNodes.length - 1;\n outputTensors[i2].tensorIndex = i2;\n }\n }\n getConfig() {\n const config = { name: this.name, trainable: this.trainable };\n if (this.batchInputShape != null) {\n config[\"batchInputShape\"] = this.batchInputShape;\n }\n if (this.dtype != null) {\n config[\"dtype\"] = this.dtype;\n }\n return config;\n }\n disposeWeights() {\n this.weights.forEach((weight) => weight.dispose());\n return this.weights.length;\n }\n assertNotDisposed() {\n if (this._refCount === 0) {\n throw new Error(`Layer '${this.name}' is already disposed.`);\n }\n }\n dispose() {\n if (!this.built) {\n throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);\n }\n if (this._refCount === null) {\n throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);\n }\n this.assertNotDisposed();\n let numDisposedVariables = 0;\n if (--this._refCount === 0) {\n numDisposedVariables = this.disposeWeights();\n }\n return { refCountAfterDispose: this._refCount, numDisposedVariables };\n }\n};\nfunction collectInputShape(inputTensors) {\n inputTensors = toList(inputTensors);\n const shapes = [];\n for (const x of inputTensors) {\n shapes.push(x.shape);\n }\n return singletonOrArray(shapes);\n}\nfunction guessOutputDType(inputTensors) {\n return \"float32\";\n}\nfunction getSourceInputs(tensor2, layer, nodeIndex) {\n if (layer == null || nodeIndex != null && nodeIndex > 0) {\n layer = tensor2.sourceLayer;\n nodeIndex = tensor2.nodeIndex;\n }\n if (layer.inboundNodes.length === 0) {\n return [tensor2];\n } else {\n const node = layer.inboundNodes[nodeIndex];\n if (node.inboundLayers.length === 0) {\n return node.inputTensors;\n } else {\n const sourceTensors = [];\n for (let i2 = 0; i2 < node.inboundLayers.length; i2++) {\n const x = node.inputTensors[i2];\n const layer2 = node.inboundLayers[i2];\n const nodeIndex2 = node.nodeIndices[i2];\n const previousSources = getSourceInputs(x, layer2, nodeIndex2);\n for (const x2 of previousSources) {\n if (sourceTensors.indexOf(x2) === -1) {\n sourceTensors.push(x2);\n }\n }\n }\n return sourceTensors;\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/input_layer.js\nvar InputLayer = class extends Layer {\n constructor(args) {\n super({\n dtype: args.dtype,\n name: args.name != null ? args.name : getUid(\"input\").toString()\n });\n if (args.batchSize == null) {\n args.batchSize = null;\n }\n if (args.sparse == null) {\n args.sparse = false;\n }\n this.trainable = false;\n this.built = true;\n this.sparse = args.sparse;\n if (args.inputShape != null && args.batchInputShape != null) {\n throw new ValueError(\"Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.\");\n }\n let batchInputShape = args.batchInputShape;\n if (batchInputShape == null) {\n if (args.inputShape == null) {\n throw new ValueError(\"An InputLayer should be passed either a `batchInputShape` or an `inputShape`.\");\n } else {\n batchInputShape = [args.batchSize].concat(args.inputShape);\n }\n } else {\n if (args.batchSize != null) {\n throw new ValueError(\"Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.\");\n }\n }\n const dtype = args.dtype || \"float32\";\n this.batchInputShape = batchInputShape;\n this.dtype = dtype;\n this.inputSpec = [{ shape: batchInputShape }];\n const inputTensor = new SymbolicTensor(this.dtype, this.batchInputShape, this, [], {}, this.name);\n inputTensor.nodeIndex = 0;\n inputTensor.tensorIndex = 0;\n new Node({\n outboundLayer: this,\n inboundLayers: [],\n nodeIndices: [],\n tensorIndices: [],\n inputTensors: [inputTensor],\n outputTensors: [inputTensor],\n inputMasks: [null],\n outputMasks: [null],\n inputShapes: [batchInputShape],\n outputShapes: [batchInputShape]\n });\n }\n apply(inputs, kwargs) {\n throw new ValueError(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`);\n }\n dispose() {\n return { refCountAfterDispose: this._refCount, numDisposedVariables: 0 };\n }\n getConfig() {\n return {\n batchInputShape: this.batchInputShape,\n dtype: this.dtype,\n sparse: this.sparse,\n name: this.name\n };\n }\n};\nInputLayer.className = \"InputLayer\";\nserialization_exports.registerClass(InputLayer);\nfunction Input(config) {\n if (config.batchShape == null && config.shape == null) {\n throw new Error(\"Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.\");\n }\n if (config.batchShape != null && config.shape != null) {\n throw new ValueError(\"Please provide either a `shape` or `batchShape` argument to Input, but not both.\");\n }\n let batchShape = config.batchShape;\n if (config.shape != null && batchShape == null) {\n batchShape = [null].concat(config.shape);\n }\n let dtype = config.dtype;\n if (dtype == null) {\n dtype = \"float32\";\n }\n const inputLayer2 = new InputLayer({\n batchInputShape: batchShape,\n name: config.name,\n dtype,\n sparse: config.sparse\n });\n const outputs = inputLayer2.inboundNodes[0].outputTensors;\n return outputs[0];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/executor.js\nfunction assertFeedCompatibility(key, val) {\n if (key.dtype == null || key.dtype === val.dtype) {\n return val;\n }\n try {\n return cast(val, key.dtype);\n } catch (err) {\n throw new ValueError(`The dtype of the feed (${val.dtype}) can not be cast to the dtype of the key '${key.name}' (${key.dtype}).`);\n }\n}\nvar FeedDict = class {\n constructor(feeds) {\n this.id2Value = {};\n this.id2Mask = {};\n this.name2Id = {};\n if (feeds instanceof FeedDict) {\n for (const id in feeds.id2Value) {\n this.id2Value[id] = feeds.id2Value[id];\n if (id in feeds.id2Mask) {\n this.id2Mask[id] = feeds.id2Mask[id];\n }\n }\n } else {\n if (feeds == null) {\n return;\n }\n for (const feed of feeds) {\n this.add(feed.key, feed.value);\n }\n }\n }\n add(key, value, mask) {\n if (this.id2Value[key.id] == null) {\n this.id2Value[key.id] = assertFeedCompatibility(key, value);\n this.name2Id[key.name] = key.id;\n if (mask != null) {\n this.id2Mask[key.id] = mask;\n }\n } else {\n throw new ValueError(`Duplicate key: name=${key.name}, id=${key.id}`);\n }\n return this;\n }\n addFeed(feed) {\n this.add(feed.key, feed.value);\n }\n hasKey(key) {\n return this.id2Value[key.id] != null;\n }\n names() {\n return Object.keys(this.name2Id);\n }\n getValue(key) {\n if (key instanceof SymbolicTensor) {\n if (this.id2Value[key.id] == null) {\n throw new ValueError(`Nonexistent key: ${key.name}`);\n } else {\n return this.id2Value[key.id];\n }\n } else {\n const id = this.name2Id[key];\n if (id == null) {\n throw new ValueError(`Feed dict has no SymbolicTensor name: ${key}`);\n }\n return this.id2Value[id];\n }\n }\n getMask(key) {\n if (key instanceof SymbolicTensor) {\n if (this.id2Value[key.id] == null) {\n throw new ValueError(`Nonexistent key: ${key.name}`);\n } else {\n return this.id2Mask[key.id];\n }\n } else {\n const id = this.name2Id[key];\n if (id == null) {\n throw new ValueError(`Feed dict has no SymbolicTensor name: ${key}`);\n }\n return this.id2Mask[id];\n }\n }\n disposeMasks() {\n if (this.id2Mask != null) {\n dispose(this.id2Mask);\n }\n }\n};\nvar cachedSorted = new LruCache();\nvar cachedRecipientCounts = new LruCache();\nfunction updateCacheMaxEntries(maxEntries) {\n if (cachedSorted != null) {\n cachedSorted.setMaxEntries(maxEntries);\n }\n if (cachedRecipientCounts != null) {\n cachedRecipientCounts.setMaxEntries(maxEntries);\n }\n}\nfunction execute(fetches, feedDict, kwargs, probe) {\n const training = kwargs == null ? false : kwargs[\"training\"];\n const arrayFetches = Array.isArray(fetches);\n const fetchArray = arrayFetches ? fetches : [fetches];\n const outputNames = fetchArray.map((t2) => t2.name);\n const finalOutputs = [];\n const feedNames = feedDict.names();\n for (const outputName of outputNames) {\n if (feedNames.indexOf(outputName) !== -1) {\n finalOutputs.push(feedDict.getValue(outputName));\n } else {\n finalOutputs.push(null);\n }\n }\n if (probe != null) {\n probe.maxNumTensors = -Infinity;\n probe.minNumTensors = Infinity;\n }\n const fetchAndFeedKey = outputNames.join(\",\") + \"|\" + feedDict.names().sort().join(\",\");\n let sorted = cachedSorted.get(fetchAndFeedKey);\n let recipientCounts;\n if (sorted == null) {\n const out = getTopologicalSortAndRecipientCounts(fetchArray, feedDict);\n sorted = out.sorted;\n recipientCounts = out.recipientCounts;\n cachedSorted.put(fetchAndFeedKey, sorted);\n cachedRecipientCounts.put(fetchAndFeedKey, recipientCounts);\n }\n recipientCounts = {};\n if (!training) {\n Object.assign(recipientCounts, cachedRecipientCounts.get(fetchAndFeedKey));\n }\n const internalFeedDict = new FeedDict(feedDict);\n for (let i2 = 0; i2 < sorted.length; ++i2) {\n if (probe != null) {\n const numTensors = memory().numTensors;\n if (numTensors > probe.maxNumTensors) {\n probe.maxNumTensors = numTensors;\n }\n if (numTensors < probe.minNumTensors) {\n probe.minNumTensors = numTensors;\n }\n }\n const symbolic = sorted[i2];\n const srcLayer = symbolic.sourceLayer;\n if (srcLayer instanceof InputLayer) {\n continue;\n }\n const inputValues = [];\n const inputMasks = [];\n const tensorsToDispose = [];\n let maskExists = false;\n for (const input2 of symbolic.inputs) {\n const value = internalFeedDict.getValue(input2);\n const mask = internalFeedDict.getMask(input2);\n inputValues.push(value);\n inputMasks.push(mask);\n if (mask != null) {\n maskExists = true;\n }\n if (!training) {\n recipientCounts[input2.name]--;\n if (recipientCounts[input2.name] === 0 && !feedDict.hasKey(input2) && outputNames.indexOf(input2.name) === -1 && !value.isDisposed && input2.sourceLayer.stateful !== true) {\n tensorsToDispose.push(value);\n }\n }\n }\n if (maskExists) {\n kwargs = kwargs || {};\n kwargs[\"mask\"] = inputMasks[0];\n }\n const outputTensors = toList(srcLayer.apply(inputValues, kwargs));\n let outputMask = null;\n if (srcLayer.supportsMasking) {\n outputMask = srcLayer.computeMask(inputValues, inputMasks);\n }\n const layerOutputs = getNodeOutputs(symbolic);\n const outputSymbolicTensors = Array.isArray(layerOutputs) ? layerOutputs : [layerOutputs];\n for (let i3 = 0; i3 < outputSymbolicTensors.length; ++i3) {\n if (!internalFeedDict.hasKey(outputSymbolicTensors[i3])) {\n internalFeedDict.add(outputSymbolicTensors[i3], outputTensors[i3], Array.isArray(outputMask) ? outputMask[0] : outputMask);\n }\n const index = outputNames.indexOf(outputSymbolicTensors[i3].name);\n if (index !== -1) {\n finalOutputs[index] = outputTensors[i3];\n }\n }\n if (!training) {\n dispose(tensorsToDispose);\n }\n }\n internalFeedDict.disposeMasks();\n return arrayFetches ? finalOutputs : finalOutputs[0];\n}\nfunction getTopologicalSortAndRecipientCounts(fetches, feedDict) {\n util_exports.assert(fetches != null && fetches.length > 0, () => `Expected at least one fetch, got none`);\n let finalSorted = [];\n let finalRecipientMap = {};\n if (fetches.length === 1) {\n const out = getTopologicalSortAndRecipientCountsForOneFetch(fetches[0], feedDict);\n finalSorted = out.sorted;\n finalRecipientMap = out.recipientMap;\n } else {\n const visited = /* @__PURE__ */ new Set();\n for (const fetch4 of fetches) {\n const { sorted, recipientMap } = getTopologicalSortAndRecipientCountsForOneFetch(fetch4, feedDict);\n for (const symbolicTensor of sorted) {\n if (!visited.has(symbolicTensor.name)) {\n finalSorted.push(symbolicTensor);\n visited.add(symbolicTensor.name);\n }\n }\n for (const name in recipientMap) {\n if (finalRecipientMap[name] == null) {\n finalRecipientMap[name] = /* @__PURE__ */ new Set();\n }\n recipientMap[name].forEach((recipient) => finalRecipientMap[name].add(recipient));\n }\n }\n }\n return {\n sorted: finalSorted,\n recipientCounts: recipientMap2Counts(finalRecipientMap)\n };\n}\nfunction recipientMap2Counts(recipientMap) {\n const recipientCounts = {};\n for (const name in recipientMap) {\n recipientCounts[name] = recipientMap[name].size;\n }\n return recipientCounts;\n}\nfunction getTopologicalSortAndRecipientCountsForOneFetch(fetch4, feedDict) {\n const visited = /* @__PURE__ */ new Set();\n const sorted = [];\n const recipientMap = {};\n for (const key of feedDict.names()) {\n visited.add(key);\n }\n const stack2 = [];\n const marks = [];\n stack2.push(fetch4);\n while (stack2.length > 0) {\n const top = stack2[stack2.length - 1];\n if (visited.has(top.name)) {\n stack2.pop();\n continue;\n }\n const topIsMarked = marks[marks.length - 1] === stack2.length - 1;\n if (top.inputs.length === 0 || topIsMarked) {\n stack2.pop();\n sorted.push(top);\n visited.add(top.name);\n if (topIsMarked) {\n marks.pop();\n }\n } else {\n marks.push(stack2.length - 1);\n for (const input2 of top.inputs) {\n if (recipientMap[input2.name] == null) {\n recipientMap[input2.name] = /* @__PURE__ */ new Set();\n }\n recipientMap[input2.name].add(top.name);\n if (visited.has(input2.name)) {\n continue;\n }\n stack2.push(input2);\n }\n }\n }\n return { sorted, recipientMap };\n}\nfunction getNodeOutputs(fetch4) {\n let layerOutputs;\n if (fetch4.sourceLayer.inboundNodes.length === 1) {\n layerOutputs = fetch4.sourceLayer.output;\n } else {\n let nodeIndex = null;\n for (let i2 = 0; i2 < fetch4.sourceLayer.inboundNodes.length; ++i2) {\n for (const outputTensor of fetch4.sourceLayer.inboundNodes[i2].outputTensors) {\n if (outputTensor.id === fetch4.id) {\n nodeIndex = i2;\n break;\n }\n }\n }\n layerOutputs = fetch4.sourceLayer.getOutputAt(nodeIndex);\n }\n return layerOutputs;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/flags_layers.js\nvar ENV3 = env();\nENV3.registerFlag(\"TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES\", () => 100, updateCacheMaxEntries);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_constraints.js\nvar exports_constraints_exports = {};\n__export(exports_constraints_exports, {\n maxNorm: () => maxNorm,\n minMaxNorm: () => minMaxNorm,\n nonNeg: () => nonNeg,\n unitNorm: () => unitNorm\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/constraints.js\nfunction calcL2Norms(w, axis) {\n return tidy(() => sqrt(sum2(mul(w, w), axis, true)));\n}\nvar Constraint = class extends serialization_exports.Serializable {\n getConfig() {\n return {};\n }\n};\nvar MaxNorm = class extends Constraint {\n constructor(args) {\n super();\n this.defaultMaxValue = 2;\n this.defaultAxis = 0;\n this.maxValue = args.maxValue != null ? args.maxValue : this.defaultMaxValue;\n this.axis = args.axis != null ? args.axis : this.defaultAxis;\n }\n apply(w) {\n return tidy(() => {\n const norms = calcL2Norms(w, this.axis);\n const desired = clipByValue(norms, 0, this.maxValue);\n return mul(w, div(desired, add2(epsilon(), norms)));\n });\n }\n getConfig() {\n return { maxValue: this.maxValue, axis: this.axis };\n }\n};\nMaxNorm.className = \"MaxNorm\";\nserialization_exports.registerClass(MaxNorm);\nvar UnitNorm = class extends Constraint {\n constructor(args) {\n super();\n this.defaultAxis = 0;\n this.axis = args.axis != null ? args.axis : this.defaultAxis;\n }\n apply(w) {\n return tidy(() => div(w, add2(epsilon(), calcL2Norms(w, this.axis))));\n }\n getConfig() {\n return { axis: this.axis };\n }\n};\nUnitNorm.className = \"UnitNorm\";\nserialization_exports.registerClass(UnitNorm);\nvar NonNeg = class extends Constraint {\n apply(w) {\n return relu(w);\n }\n};\nNonNeg.className = \"NonNeg\";\nserialization_exports.registerClass(NonNeg);\nvar MinMaxNorm = class extends Constraint {\n constructor(args) {\n super();\n this.defaultMinValue = 0;\n this.defaultMaxValue = 1;\n this.defaultRate = 1;\n this.defaultAxis = 0;\n this.minValue = args.minValue != null ? args.minValue : this.defaultMinValue;\n this.maxValue = args.maxValue != null ? args.maxValue : this.defaultMaxValue;\n this.rate = args.rate != null ? args.rate : this.defaultRate;\n this.axis = args.axis != null ? args.axis : this.defaultAxis;\n }\n apply(w) {\n return tidy(() => {\n const norms = calcL2Norms(w, this.axis);\n const desired = add2(mul(this.rate, clipByValue(norms, this.minValue, this.maxValue)), mul(1 - this.rate, norms));\n return mul(w, div(desired, add2(epsilon(), norms)));\n });\n }\n getConfig() {\n return {\n minValue: this.minValue,\n maxValue: this.maxValue,\n rate: this.rate,\n axis: this.axis\n };\n }\n};\nMinMaxNorm.className = \"MinMaxNorm\";\nserialization_exports.registerClass(MinMaxNorm);\nvar CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP = {\n \"maxNorm\": \"MaxNorm\",\n \"minMaxNorm\": \"MinMaxNorm\",\n \"nonNeg\": \"NonNeg\",\n \"unitNorm\": \"UnitNorm\"\n};\nfunction serializeConstraint(constraint) {\n return serializeKerasObject(constraint);\n}\nfunction deserializeConstraint(config, customObjects = {}) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"constraint\");\n}\nfunction getConstraint(identifier) {\n if (identifier == null) {\n return null;\n }\n if (typeof identifier === \"string\") {\n const className = identifier in CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP ? CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier] : identifier;\n const config = { className, config: {} };\n return deserializeConstraint(config);\n } else if (identifier instanceof Constraint) {\n return identifier;\n } else {\n return deserializeConstraint(identifier);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_constraints.js\nfunction maxNorm(args) {\n return new MaxNorm(args);\n}\nfunction unitNorm(args) {\n return new UnitNorm(args);\n}\nfunction nonNeg() {\n return new NonNeg();\n}\nfunction minMaxNorm(config) {\n return new MinMaxNorm(config);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_initializers.js\nvar exports_initializers_exports = {};\n__export(exports_initializers_exports, {\n constant: () => constant,\n glorotNormal: () => glorotNormal,\n glorotUniform: () => glorotUniform,\n heNormal: () => heNormal,\n heUniform: () => heUniform,\n identity: () => identity,\n leCunNormal: () => leCunNormal,\n leCunUniform: () => leCunUniform,\n ones: () => ones3,\n orthogonal: () => orthogonal,\n randomNormal: () => randomNormal3,\n randomUniform: () => randomUniform2,\n truncatedNormal: () => truncatedNormal2,\n varianceScaling: () => varianceScaling,\n zeros: () => zeros2\n});\nfunction zeros2() {\n return new Zeros();\n}\nfunction ones3() {\n return new Ones();\n}\nfunction constant(args) {\n return new Constant(args);\n}\nfunction randomUniform2(args) {\n return new RandomUniform(args);\n}\nfunction randomNormal3(args) {\n return new RandomNormal(args);\n}\nfunction truncatedNormal2(args) {\n return new TruncatedNormal(args);\n}\nfunction identity(args) {\n return new Identity2(args);\n}\nfunction varianceScaling(config) {\n return new VarianceScaling(config);\n}\nfunction glorotUniform(args) {\n return new GlorotUniform(args);\n}\nfunction glorotNormal(args) {\n return new GlorotNormal(args);\n}\nfunction heNormal(args) {\n return new HeNormal(args);\n}\nfunction heUniform(args) {\n return new HeUniform(args);\n}\nfunction leCunNormal(args) {\n return new LeCunNormal(args);\n}\nfunction leCunUniform(args) {\n return new LeCunUniform(args);\n}\nfunction orthogonal(args) {\n return new Orthogonal(args);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_layers.js\nvar exports_layers_exports = {};\n__export(exports_layers_exports, {\n Layer: () => Layer,\n RNN: () => RNN,\n RNNCell: () => RNNCell,\n activation: () => activation,\n add: () => add3,\n alphaDropout: () => alphaDropout,\n average: () => average,\n averagePooling1d: () => averagePooling1d,\n averagePooling2d: () => averagePooling2d,\n averagePooling3d: () => averagePooling3d,\n avgPool1d: () => avgPool1d,\n avgPool2d: () => avgPool2d,\n avgPool3d: () => avgPool3d2,\n avgPooling1d: () => avgPooling1d,\n avgPooling2d: () => avgPooling2d,\n avgPooling3d: () => avgPooling3d,\n batchNormalization: () => batchNormalization2,\n bidirectional: () => bidirectional,\n concatenate: () => concatenate2,\n conv1d: () => conv1d2,\n conv2d: () => conv2d3,\n conv2dTranspose: () => conv2dTranspose2,\n conv3d: () => conv3d2,\n conv3dTranspose: () => conv3dTranspose2,\n convLstm2d: () => convLstm2d,\n convLstm2dCell: () => convLstm2dCell,\n cropping2D: () => cropping2D,\n dense: () => dense,\n depthwiseConv2d: () => depthwiseConv2d4,\n dot: () => dot3,\n dropout: () => dropout3,\n elu: () => elu3,\n embedding: () => embedding,\n flatten: () => flatten3,\n gaussianDropout: () => gaussianDropout,\n gaussianNoise: () => gaussianNoise,\n globalAveragePooling1d: () => globalAveragePooling1d,\n globalAveragePooling2d: () => globalAveragePooling2d,\n globalMaxPool1d: () => globalMaxPool1d,\n globalMaxPool2d: () => globalMaxPool2d,\n globalMaxPooling1d: () => globalMaxPooling1d,\n globalMaxPooling2d: () => globalMaxPooling2d,\n gru: () => gru,\n gruCell: () => gruCell,\n input: () => input,\n inputLayer: () => inputLayer,\n layerNormalization: () => layerNormalization,\n leakyReLU: () => leakyReLU,\n lstm: () => lstm,\n lstmCell: () => lstmCell,\n masking: () => masking,\n maxPool1d: () => maxPool1d,\n maxPool2d: () => maxPool2d,\n maxPooling1d: () => maxPooling1d,\n maxPooling2d: () => maxPooling2d,\n maxPooling3d: () => maxPooling3d,\n maximum: () => maximum2,\n minimum: () => minimum2,\n multiply: () => multiply,\n permute: () => permute,\n prelu: () => prelu2,\n reLU: () => reLU,\n repeatVector: () => repeatVector,\n reshape: () => reshape2,\n rnn: () => rnn2,\n separableConv2d: () => separableConv2d2,\n simpleRNN: () => simpleRNN,\n simpleRNNCell: () => simpleRNNCell,\n softmax: () => softmax2,\n spatialDropout1d: () => spatialDropout1d,\n stackedRNNCells: () => stackedRNNCells,\n thresholdedReLU: () => thresholdedReLU,\n timeDistributed: () => timeDistributed,\n upSampling2d: () => upSampling2d,\n zeroPadding2d: () => zeroPadding2d\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/logs.js\nasync function resolveScalarsInLogs(logs) {\n if (logs == null) {\n return;\n }\n const promises = [];\n const keys = [];\n const scalarsToDispose = [];\n for (const key in logs) {\n const value = logs[key];\n if (typeof value !== \"number\") {\n const valueScalar = value;\n promises.push(valueScalar.data());\n keys.push(key);\n scalarsToDispose.push(valueScalar);\n }\n }\n if (promises.length > 0) {\n const values = await Promise.all(promises);\n for (let i2 = 0; i2 < values.length; ++i2) {\n logs[keys[i2]] = values[i2][0];\n }\n dispose(scalarsToDispose);\n }\n}\nfunction disposeTensorsInLogs(logs) {\n if (logs == null) {\n return;\n }\n for (const key in logs) {\n const value = logs[key];\n if (typeof value !== \"number\") {\n value.dispose();\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/base_callbacks.js\nvar ModelLoggingVerbosity;\n(function(ModelLoggingVerbosity2) {\n ModelLoggingVerbosity2[ModelLoggingVerbosity2[\"SILENT\"] = 0] = \"SILENT\";\n ModelLoggingVerbosity2[ModelLoggingVerbosity2[\"VERBOSE\"] = 1] = \"VERBOSE\";\n})(ModelLoggingVerbosity || (ModelLoggingVerbosity = {}));\nvar DEFAULT_YIELD_EVERY_MS = 125;\nvar BaseCallback = class {\n constructor() {\n this.validationData = null;\n }\n setParams(params) {\n this.params = params;\n }\n async onEpochBegin(epoch, logs) {\n }\n async onEpochEnd(epoch, logs) {\n }\n async onBatchBegin(batch, logs) {\n }\n async onBatchEnd(batch, logs) {\n }\n async onTrainBegin(logs) {\n }\n async onTrainEnd(logs) {\n }\n setModel(model2) {\n }\n};\nvar CallbackList = class {\n constructor(callbacks2, queueLength = 10) {\n if (callbacks2 == null) {\n callbacks2 = [];\n }\n this.callbacks = callbacks2;\n this.queueLength = queueLength;\n }\n append(callback) {\n this.callbacks.push(callback);\n }\n setParams(params) {\n for (const callback of this.callbacks) {\n callback.setParams(params);\n }\n }\n setModel(model2) {\n for (const callback of this.callbacks) {\n callback.setModel(model2);\n }\n }\n async onEpochBegin(epoch, logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onEpochBegin(epoch, logs);\n }\n }\n async onEpochEnd(epoch, logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onEpochEnd(epoch, logs);\n }\n }\n async onBatchBegin(batch, logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onBatchBegin(batch, logs);\n }\n }\n async onBatchEnd(batch, logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onBatchEnd(batch, logs);\n }\n }\n async onTrainBegin(logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onTrainBegin(logs);\n }\n }\n async onTrainEnd(logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onTrainEnd(logs);\n }\n }\n};\nvar BaseLogger = class extends BaseCallback {\n constructor() {\n super();\n }\n async onEpochBegin(epoch) {\n this.seen = 0;\n this.totals = {};\n }\n async onBatchEnd(batch, logs) {\n if (logs == null) {\n logs = {};\n }\n const batchSize = logs[\"size\"] == null ? 0 : logs[\"size\"];\n this.seen += batchSize;\n for (const key in logs) {\n const value = logs[key];\n if (typeof value === \"number\") {\n if (!this.totals.hasOwnProperty(key)) {\n this.totals[key] = 0;\n }\n this.totals[key] = this.totals[key] + value * batchSize;\n } else {\n let oldTotalsToDispose;\n if (key in this.totals) {\n oldTotalsToDispose = this.totals[key];\n } else {\n this.totals[key] = 0;\n }\n const total = tidy(() => add2(this.totals[key], mul(value, batchSize)));\n this.totals[key] = total;\n if (oldTotalsToDispose != null) {\n oldTotalsToDispose.dispose();\n }\n }\n }\n }\n async onEpochEnd(epoch, logs) {\n if (logs != null) {\n for (const key of this.params[\"metrics\"]) {\n if (this.totals[key] == null) {\n continue;\n }\n if (typeof this.totals[key] === \"number\") {\n logs[key] = this.totals[key] / this.seen;\n } else {\n tidy(() => {\n const log7 = mul(div(1, this.seen), this.totals[key]);\n logs[key] = log7;\n this.totals[key].dispose();\n keep(logs[key]);\n });\n }\n }\n }\n }\n};\nvar History = class extends BaseCallback {\n async onTrainBegin(logs) {\n this.epoch = [];\n this.history = {};\n }\n async onEpochEnd(epoch, logs) {\n if (logs == null) {\n logs = {};\n }\n this.epoch.push(epoch);\n for (const key in logs) {\n if (this.history[key] == null) {\n this.history[key] = [];\n }\n this.history[key].push(logs[key]);\n }\n }\n async syncData() {\n const promises = [];\n const keys = [];\n const indices = [];\n for (const key in this.history) {\n const valueArray = this.history[key];\n for (let i2 = 0; i2 < valueArray.length; ++i2) {\n if (typeof valueArray[i2] !== \"number\") {\n const valueScalar = valueArray[i2];\n promises.push(valueScalar.data());\n keys.push(key);\n indices.push(i2);\n }\n }\n }\n const values = await Promise.all(promises);\n for (let n2 = 0; n2 < values.length; ++n2) {\n const tensorToDispose = this.history[keys[n2]][indices[n2]];\n tensorToDispose.dispose();\n this.history[keys[n2]][indices[n2]] = values[n2][0];\n }\n }\n};\nvar CustomCallback = class extends BaseCallback {\n constructor(args, yieldEvery) {\n super();\n this.currentEpoch = 0;\n this.nowFunc = args.nowFunc;\n this.nextFrameFunc = args.nextFrameFunc || nextFrame;\n this.yieldEvery = yieldEvery || \"auto\";\n if (this.yieldEvery === \"auto\") {\n this.yieldEvery = DEFAULT_YIELD_EVERY_MS;\n }\n if (this.yieldEvery === \"never\" && args.onYield != null) {\n throw new Error(\"yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback\");\n }\n if (util_exports.isNumber(this.yieldEvery)) {\n this.maybeWait = debounce(this.maybeWait.bind(this), this.yieldEvery, this.nowFunc);\n }\n this.trainBegin = args.onTrainBegin;\n this.trainEnd = args.onTrainEnd;\n this.epochBegin = args.onEpochBegin;\n this.epochEnd = args.onEpochEnd;\n this.batchBegin = args.onBatchBegin;\n this.batchEnd = args.onBatchEnd;\n this.yield = args.onYield;\n }\n async maybeWait(epoch, batch, logs) {\n const ps = [];\n if (this.yield != null) {\n await resolveScalarsInLogs(logs);\n ps.push(this.yield(epoch, batch, logs));\n }\n ps.push(this.nextFrameFunc());\n await Promise.all(ps);\n }\n async onEpochBegin(epoch, logs) {\n this.currentEpoch = epoch;\n if (this.epochBegin != null) {\n await resolveScalarsInLogs(logs);\n await this.epochBegin(epoch, logs);\n }\n }\n async onEpochEnd(epoch, logs) {\n const ps = [];\n if (this.epochEnd != null) {\n await resolveScalarsInLogs(logs);\n ps.push(this.epochEnd(epoch, logs));\n }\n if (this.yieldEvery === \"epoch\") {\n ps.push(this.nextFrameFunc());\n }\n await Promise.all(ps);\n }\n async onBatchBegin(batch, logs) {\n if (this.batchBegin != null) {\n await resolveScalarsInLogs(logs);\n await this.batchBegin(batch, logs);\n }\n }\n async onBatchEnd(batch, logs) {\n const ps = [];\n if (this.batchEnd != null) {\n await resolveScalarsInLogs(logs);\n ps.push(this.batchEnd(batch, logs));\n }\n if (this.yieldEvery === \"batch\") {\n ps.push(this.nextFrameFunc());\n } else if (util_exports.isNumber(this.yieldEvery)) {\n ps.push(this.maybeWait(this.currentEpoch, batch, logs));\n }\n await Promise.all(ps);\n }\n async onTrainBegin(logs) {\n if (this.trainBegin != null) {\n await resolveScalarsInLogs(logs);\n await this.trainBegin(logs);\n }\n }\n async onTrainEnd(logs) {\n if (this.trainEnd != null) {\n await resolveScalarsInLogs(logs);\n await this.trainEnd(logs);\n }\n }\n};\nfunction standardizeCallbacks(callbacks2, yieldEvery) {\n if (callbacks2 == null) {\n callbacks2 = {};\n }\n if (callbacks2 instanceof BaseCallback) {\n return [callbacks2];\n }\n if (Array.isArray(callbacks2) && callbacks2[0] instanceof BaseCallback) {\n return callbacks2;\n }\n const callbackConfigs = toList(callbacks2);\n return callbackConfigs.map((callbackConfig) => new CustomCallback(callbackConfig, yieldEvery));\n}\nvar CallbackConstructorRegistry = class {\n constructor() {\n }\n static registerCallbackConstructor(verbosityLevel, callbackConstructor) {\n util_exports.assert(verbosityLevel >= 0 && Number.isInteger(verbosityLevel), () => `Verbosity level is expected to be an integer >= 0, but got ${verbosityLevel}`);\n CallbackConstructorRegistry.checkForDuplicate(callbackConstructor);\n if (CallbackConstructorRegistry.constructors[verbosityLevel] == null) {\n CallbackConstructorRegistry.constructors[verbosityLevel] = [];\n }\n CallbackConstructorRegistry.constructors[verbosityLevel].push(callbackConstructor);\n }\n static checkForDuplicate(callbackConstructor) {\n for (const levelName in CallbackConstructorRegistry.constructors) {\n const constructors = CallbackConstructorRegistry.constructors[+levelName];\n constructors.forEach((ctor) => {\n if (ctor === callbackConstructor) {\n throw new ValueError(\"Duplicate callback constructor.\");\n }\n });\n }\n }\n static clear() {\n CallbackConstructorRegistry.constructors = {};\n }\n static createCallbacks(verbosityLevel) {\n const constructors = [];\n for (const levelName in CallbackConstructorRegistry.constructors) {\n const level = +levelName;\n if (verbosityLevel >= level) {\n constructors.push(...CallbackConstructorRegistry.constructors[level]);\n }\n }\n return constructors.map((ctor) => new ctor());\n }\n};\nCallbackConstructorRegistry.constructors = {};\nfunction configureCallbacks(callbacks2, verbose, epochs, initialEpoch, numTrainSamples, stepsPerEpoch, batchSize, doValidation, callbackMetrics) {\n const history = new History();\n const actualCallbacks = [\n new BaseLogger(),\n ...CallbackConstructorRegistry.createCallbacks(verbose)\n ];\n if (callbacks2 != null) {\n actualCallbacks.push(...callbacks2);\n }\n actualCallbacks.push(history);\n const callbackList = new CallbackList(actualCallbacks);\n callbackList.setParams({\n epochs,\n initialEpoch,\n samples: numTrainSamples,\n steps: stepsPerEpoch,\n batchSize,\n verbose,\n doValidation,\n metrics: callbackMetrics\n });\n return { callbackList, history };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/serialization.js\nfunction deserialize(config, customObjects = {}, fastWeightInit = false) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"layer\", fastWeightInit);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/losses.js\nfunction l2Normalize(x, axis) {\n return tidy(() => {\n if (x.dtype !== \"float32\") {\n x = cast(x, \"float32\");\n }\n const squareSum = sum2(square2(x), axis, true);\n const epsilonTensor = fill(squareSum.shape, epsilon());\n const norm2 = sqrt(maximum(squareSum, epsilonTensor));\n return div(x, norm2);\n });\n}\nfunction meanSquaredError2(yTrue, yPred) {\n return tidy(() => mean(square2(sub(yPred, yTrue)), -1));\n}\nfunction meanAbsoluteError(yTrue, yPred) {\n return tidy(() => mean(abs(sub(yPred, yTrue)), -1));\n}\nfunction meanAbsolutePercentageError(yTrue, yPred) {\n return tidy(() => {\n const diff = sub(yTrue, yPred);\n const clippedTrue = clipByValue(abs(yTrue), epsilon(), Number.MAX_VALUE);\n const absResult = abs(div(diff, clippedTrue));\n return mul(100, mean(absResult, -1));\n });\n}\nfunction meanSquaredLogarithmicError(yTrue, yPred) {\n return tidy(() => {\n const clippedPred = clipByValue(yPred, epsilon(), Number.MAX_VALUE);\n const firstLog = log2(add2(1, clippedPred));\n const clippedTrue = clipByValue(yTrue, epsilon(), Number.MAX_VALUE);\n const secondLog = log2(add2(1, clippedTrue));\n return mean(square2(sub(firstLog, secondLog)), -1);\n });\n}\nfunction squaredHinge(yTrue, yPred) {\n return tidy(() => {\n const maxResult = maximum(0, sub(1, mul(yTrue, yPred)));\n return mean(square2(maxResult), -1);\n });\n}\nfunction hinge(yTrue, yPred) {\n return tidy(() => {\n const maxResult = maximum(0, sub(1, mul(yTrue, yPred)));\n return mean(maxResult, -1);\n });\n}\nfunction categoricalHinge(yTrue, yPred) {\n return tidy(() => {\n const pos = sum2(mul(yTrue, yPred), -1);\n const neg5 = max(mul(sub(1, yTrue), yPred), -1);\n return maximum(0, add2(1, sub(neg5, pos)));\n });\n}\nfunction logcosh(yTrue, yPred) {\n return tidy(() => {\n const log22 = Math.log(2);\n const predictionDiff = sub(yPred, yTrue);\n const logcoshResult = sub(add2(predictionDiff, softplus(mul(-2, predictionDiff))), log22);\n return mean(logcoshResult, -1);\n });\n}\nfunction categoricalCrossentropy(target, output, fromLogits = false) {\n return tidy(() => {\n if (fromLogits) {\n output = softmax(output);\n } else {\n const outputSum = sum2(output, output.shape.length - 1, true);\n output = div(output, outputSum);\n }\n output = clipByValue(output, epsilon(), 1 - epsilon());\n return neg(sum2(mul(cast(target, \"float32\"), log2(output)), output.shape.length - 1));\n });\n}\nfunction sparseCategoricalCrossentropy(target, output, fromLogits = false) {\n return tidy(() => {\n const flatTarget = cast(floor(flatten2(target)), \"int32\");\n output = clipByValue(output, epsilon(), 1 - epsilon());\n const outputShape = output.shape;\n const oneHotTarget = reshape(oneHot(flatTarget, outputShape[outputShape.length - 1]), outputShape);\n return categoricalCrossentropy(oneHotTarget, output, fromLogits);\n });\n}\nfunction sigmoidCrossEntropyWithLogits(labels, logits) {\n if (!util_exports.arraysEqual(labels.shape, logits.shape)) {\n throw new ValueError(`logits and labels must have the same shape, but got shapes ${JSON.stringify(labels.shape)} and ${JSON.stringify(logits.shape)}`);\n }\n return tidy(() => {\n const reluLogits = relu(logits);\n const negAbsLogits = neg(abs(logits));\n return add2(sub(reluLogits, mul(logits, labels)), log1p(exp(negAbsLogits)));\n });\n}\nfunction binaryCrossentropy(yTrue, yPred) {\n return tidy(() => {\n let y;\n y = clipByValue(yPred, epsilon(), 1 - epsilon());\n y = log2(div(y, sub(1, y)));\n return mean(sigmoidCrossEntropyWithLogits(yTrue, y), -1);\n });\n}\nfunction kullbackLeiblerDivergence(yTrue, yPred) {\n return tidy(() => {\n const clippedTrue = clipByValue(yTrue, epsilon(), 1);\n const clippedPred = clipByValue(yPred, epsilon(), 1);\n return sum2(mul(yTrue, log2(div(clippedTrue, clippedPred))), -1);\n });\n}\nfunction poisson(yTrue, yPred) {\n return tidy(() => {\n const logPred = log2(add2(epsilon(), yPred));\n return mean(sub(yPred, mul(yTrue, logPred)), -1);\n });\n}\nfunction cosineProximity(yTrue, yPred) {\n return tidy(() => {\n const trueNormalized = l2Normalize(yTrue, -1);\n const predNormalized = l2Normalize(yPred, -1);\n const trueXPred = mul(trueNormalized, predNormalized);\n return neg(sum2(trueXPred, -1));\n });\n}\nvar lossesMap = {\n meanSquaredError: meanSquaredError2,\n meanAbsoluteError,\n meanAbsolutePercentageError,\n meanSquaredLogarithmicError,\n squaredHinge,\n hinge,\n categoricalHinge,\n logcosh,\n categoricalCrossentropy,\n sparseCategoricalCrossentropy,\n binaryCrossentropy,\n kullbackLeiblerDivergence,\n poisson,\n cosineProximity\n};\nfunction get(identifierOrFn) {\n if (typeof identifierOrFn === \"string\") {\n if (identifierOrFn in lossesMap) {\n return lossesMap[identifierOrFn];\n }\n let errMsg = `Unknown loss ${identifierOrFn}`;\n if (identifierOrFn.toLowerCase().includes(\"softmaxcrossentropy\")) {\n errMsg = `Unknown loss ${identifierOrFn}. Use \"categoricalCrossentropy\" as the string name for tf.losses.softmaxCrossEntropy`;\n }\n throw new ValueError(errMsg);\n } else {\n return identifierOrFn;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/metrics.js\nfunction binaryAccuracy(yTrue, yPred) {\n return tidy(() => {\n const threshold3 = mul(0.5, onesLike(yPred));\n const yPredThresholded = cast2(greater(yPred, threshold3), yTrue.dtype);\n return mean(equal(yTrue, yPredThresholded), -1);\n });\n}\nfunction categoricalAccuracy(yTrue, yPred) {\n return tidy(() => cast2(equal(argMax(yTrue, -1), argMax(yPred, -1)), \"float32\"));\n}\nfunction truePositives(yTrue, yPred) {\n return tidy(() => {\n return cast(sum2(logicalAnd(equal(yTrue, 1), equal(yPred, 1))), \"float32\");\n });\n}\nfunction falseNegatives(yTrue, yPred) {\n return tidy(() => {\n return cast(sum2(logicalAnd(equal(yTrue, 1), equal(yPred, 0))), \"float32\");\n });\n}\nfunction falsePositives(yTrue, yPred) {\n return tidy(() => {\n return cast(sum2(logicalAnd(equal(yTrue, 0), equal(yPred, 1))), \"float32\");\n });\n}\nfunction precision(yTrue, yPred) {\n return tidy(() => {\n const tp = truePositives(yTrue, yPred);\n const fp = falsePositives(yTrue, yPred);\n const denominator = add2(tp, fp);\n return cast(where(greater(denominator, 0), div(tp, denominator), 0), \"float32\");\n });\n}\nfunction recall(yTrue, yPred) {\n return tidy(() => {\n const tp = truePositives(yTrue, yPred);\n const fn = falseNegatives(yTrue, yPred);\n const denominator = add2(tp, fn);\n return cast(where(greater(denominator, 0), div(tp, denominator), 0), \"float32\");\n });\n}\nfunction binaryCrossentropy2(yTrue, yPred) {\n return binaryCrossentropy(yTrue, yPred);\n}\nfunction sparseCategoricalAccuracy(yTrue, yPred) {\n if (yTrue.rank === yPred.rank) {\n yTrue = squeeze(yTrue, [yTrue.rank - 1]);\n }\n yPred = argMax(yPred, -1);\n if (yPred.dtype !== yTrue.dtype) {\n yPred = cast(yPred, yTrue.dtype);\n }\n return cast(equal(yTrue, yPred), \"float32\");\n}\nvar mse = meanSquaredError2;\nvar MSE = meanSquaredError2;\nvar mae = meanAbsoluteError;\nvar MAE = meanAbsoluteError;\nvar mape = meanAbsolutePercentageError;\nvar MAPE = meanAbsolutePercentageError;\nvar categoricalCrossentropy2 = categoricalCrossentropy;\nvar cosine = cosineProximity;\nvar sparseCategoricalCrossentropy2 = sparseCategoricalCrossentropy;\nvar metricsMap = {\n binaryAccuracy,\n categoricalAccuracy,\n precision,\n categoricalCrossentropy: categoricalCrossentropy2,\n sparseCategoricalCrossentropy: sparseCategoricalCrossentropy2,\n mse,\n MSE,\n mae,\n MAE,\n mape,\n MAPE,\n cosine\n};\nfunction get2(identifier) {\n if (typeof identifier === \"string\" && identifier in metricsMap) {\n return metricsMap[identifier];\n } else if (typeof identifier !== \"string\" && identifier != null) {\n return identifier;\n } else {\n throw new ValueError(`Unknown metric ${identifier}`);\n }\n}\nfunction getLossOrMetricName(fn) {\n assert2(fn !== null, `Unknown LossOrMetricFn ${fn}`);\n if (typeof fn === \"string\") {\n return fn;\n } else {\n let fnName;\n for (const key of Object.keys(lossesMap)) {\n if (lossesMap[key] === fn) {\n fnName = key;\n break;\n }\n }\n if (fnName !== void 0) {\n return fnName;\n }\n for (const key of Object.keys(metricsMap)) {\n if (metricsMap[key] === fn) {\n fnName = key;\n break;\n }\n }\n if (fnName !== void 0) {\n return fnName;\n }\n return fn.name;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/optimizers.js\nfunction getOptimizer(identifier) {\n const optimizerMap = {\n \"Adagrad\": () => train.adagrad(0.01),\n \"Adadelta\": () => train.adadelta(1, 0.95, epsilon()),\n \"Adam\": () => train.adam(1e-3, 0.9, 0.999, epsilon()),\n \"Adamax\": () => train.adamax(2e-3, 0.9, 0.999, epsilon(), 0),\n \"RMSProp\": () => train.rmsprop(1e-3, 0.9, 0, epsilon()),\n \"SGD\": () => train.sgd(0.01)\n };\n optimizerMap[\"adagrad\"] = optimizerMap[\"Adagrad\"];\n optimizerMap[\"adadelta\"] = optimizerMap[\"Adadelta\"];\n optimizerMap[\"adam\"] = optimizerMap[\"Adam\"];\n optimizerMap[\"adamax\"] = optimizerMap[\"Adamax\"];\n optimizerMap[\"rmsprop\"] = optimizerMap[\"RMSProp\"];\n optimizerMap[\"sgd\"] = optimizerMap[\"SGD\"];\n if (identifier in optimizerMap) {\n return optimizerMap[identifier]();\n }\n throw new ValueError(`Unknown Optimizer ${identifier}`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/user_defined_metadata.js\nvar MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH = 1 * 1024 * 1024;\nfunction checkUserDefinedMetadata(userDefinedMetadata, modelName, checkSize = false) {\n if (userDefinedMetadata == null || typeof userDefinedMetadata !== \"object\" || Object.getPrototypeOf(userDefinedMetadata) !== Object.prototype || !plainObjectCheck(userDefinedMetadata)) {\n throw new Error(\"User-defined metadata is expected to be a JSON object, but is not.\");\n }\n if (checkSize) {\n const out = JSON.stringify(userDefinedMetadata);\n if (out.length > MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH) {\n console.warn(`User-defined metadata of model \"${modelName}\" is too large in size (length=${out.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH}.`);\n }\n }\n}\nfunction plainObjectCheck(x) {\n if (x === null) {\n return true;\n } else if (typeof x === \"object\") {\n if (Object.getPrototypeOf(x) === Object.prototype) {\n const keys = Object.keys(x);\n for (const key of keys) {\n if (typeof key !== \"string\") {\n return false;\n }\n if (!plainObjectCheck(x[key])) {\n return false;\n }\n }\n return true;\n } else {\n if (Array.isArray(x)) {\n for (const item of x) {\n if (!plainObjectCheck(item)) {\n return false;\n }\n }\n return true;\n } else {\n return false;\n }\n }\n } else {\n const xType = typeof x;\n return xType === \"string\" || xType === \"number\" || xType === \"boolean\";\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/layer_utils.js\nfunction printSummary(model2, lineLength, positions, printFn = console.log) {\n const sequentialLike = isModelSequentialLike(model2);\n const toDisplay = [\"Layer (type)\", \"Input Shape\", \"Output shape\", \"Param #\"];\n if (sequentialLike) {\n lineLength = lineLength || 90;\n positions = positions || [0.32, 0.61, 0.89, 1];\n } else {\n lineLength = lineLength || 115;\n positions = positions || [0.24, 0.48, 0.7, 0.8, 1];\n }\n if (positions[positions.length - 1] <= 1) {\n positions = positions.map((p2) => Math.floor(lineLength * p2));\n }\n let relevantNodes;\n if (!sequentialLike) {\n toDisplay.push(\"Receives inputs\");\n relevantNodes = [];\n for (const depth in model2.nodesByDepth) {\n relevantNodes.push(...model2.nodesByDepth[depth]);\n }\n }\n printFn(\"_\".repeat(lineLength));\n printRow(toDisplay, positions, printFn);\n printFn(\"=\".repeat(lineLength));\n const layers = model2.layers;\n for (let i2 = 0; i2 < layers.length; ++i2) {\n if (sequentialLike) {\n printLayerSummary(layers[i2], positions, printFn);\n } else {\n printLayerSummaryWithConnections(layers[i2], positions, relevantNodes, printFn);\n }\n printFn((i2 === layers.length - 1 ? \"=\" : \"_\").repeat(lineLength));\n }\n model2.checkTrainableWeightsConsistency();\n const trainableCount = countTrainableParams(model2);\n const nonTrainableCount = countParamsInWeights(model2.nonTrainableWeights);\n printFn(`Total params: ${trainableCount + nonTrainableCount}`);\n printFn(`Trainable params: ${trainableCount}`);\n printFn(`Non-trainable params: ${nonTrainableCount}`);\n printFn(\"_\".repeat(lineLength));\n}\nfunction countTrainableParams(model2) {\n let trainableCount;\n if (model2.collectedTrainableWeights != null) {\n trainableCount = countParamsInWeights(model2.collectedTrainableWeights);\n } else {\n trainableCount = countParamsInWeights(model2.trainableWeights);\n }\n return trainableCount;\n}\nfunction isModelSequentialLike(model2) {\n let sequentialLike = true;\n const nodesByDepth = [];\n const nodes = [];\n for (const depth in model2.nodesByDepth) {\n nodesByDepth.push(model2.nodesByDepth[depth]);\n }\n for (const depthNodes of nodesByDepth) {\n if (depthNodes.length > 1 || depthNodes.length === 1 && depthNodes[0].inboundLayers.length > 1) {\n sequentialLike = false;\n break;\n }\n nodes.push(...depthNodes);\n }\n if (sequentialLike) {\n for (const layer of model2.layers) {\n let flag = false;\n for (const node of layer.inboundNodes) {\n if (nodes.indexOf(node) !== -1) {\n if (flag) {\n sequentialLike = false;\n break;\n } else {\n flag = true;\n }\n }\n }\n if (!sequentialLike) {\n break;\n }\n }\n }\n return sequentialLike;\n}\nfunction printRow(fields, positions, printFn = console.log) {\n let line = \"\";\n for (let i2 = 0; i2 < fields.length; ++i2) {\n if (i2 > 0) {\n line = line.slice(0, line.length - 1) + \" \";\n }\n line += fields[i2];\n line = line.slice(0, positions[i2]);\n line += \" \".repeat(positions[i2] - line.length);\n }\n printFn(line);\n}\nfunction printLayerSummary(layer, positions, printFn) {\n let outputShape;\n let inputShape;\n try {\n inputShape = layer.inboundNodes.map((x) => JSON.stringify(x.inputShapes)).join(\",\");\n } catch (err) {\n inputShape = \"multiple\";\n }\n try {\n outputShape = JSON.stringify(layer.outputShape);\n } catch (err) {\n outputShape = \"multiple\";\n }\n const name = layer.name;\n const className = layer.getClassName();\n const fields = [\n `${name} (${className})`,\n inputShape,\n outputShape,\n layer.countParams().toString()\n ];\n printRow(fields, positions, printFn);\n}\nfunction printLayerSummaryWithConnections(layer, positions, relevantNodes, printFn) {\n let outputShape;\n let inputShape;\n try {\n inputShape = layer.inboundNodes.map((x) => JSON.stringify(x.inputShapes)).join(\",\");\n } catch (err) {\n inputShape = \"multiple\";\n }\n try {\n outputShape = JSON.stringify(layer.outputShape);\n } catch (err) {\n outputShape = \"multiple\";\n }\n const connections = [];\n for (const node of layer.inboundNodes) {\n if (relevantNodes != null && relevantNodes.length > 0 && relevantNodes.indexOf(node) === -1) {\n continue;\n }\n for (let i2 = 0; i2 < node.inboundLayers.length; ++i2) {\n const inboundLayer = node.inboundLayers[i2].name;\n const inboundLayerIndex = node.nodeIndices[i2];\n const inboundTensorIndex = node.tensorIndices[i2];\n connections.push(`${inboundLayer}[${inboundLayerIndex}][${inboundTensorIndex}]`);\n }\n }\n const name = layer.name;\n const className = layer.getClassName();\n const firstConnection = connections.length === 0 ? \"\" : connections[0];\n const fields = [\n `${name} (${className})`,\n inputShape,\n outputShape,\n layer.countParams().toString(),\n firstConnection\n ];\n printRow(fields, positions, printFn);\n for (let i2 = 1; i2 < connections.length; ++i2) {\n printRow([\"\", \"\", \"\", \"\", connections[i2]], positions, printFn);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/serialization_utils.js\nfunction isArrayItemInputOrOutputName(key, index, value) {\n return (key === \"inboundNodes\" || key === \"outputLayers\" || key === \"inputLayers\") && index === 0 && typeof value === \"string\";\n}\nfunction convertPythonicToTs(pythonicConfig, key) {\n if (pythonicConfig === null) {\n return null;\n } else if (typeof pythonicConfig === \"string\") {\n return toCamelCase(pythonicConfig);\n } else if (typeof pythonicConfig === \"number\" || typeof pythonicConfig === \"boolean\") {\n return pythonicConfig;\n } else if (pythonicConfig instanceof Array) {\n const tsArray = [];\n const arrayLength = pythonicConfig.length;\n for (let i2 = 0; i2 < arrayLength; ++i2) {\n const item = pythonicConfig[i2];\n if (isArrayItemInputOrOutputName(key, i2, item)) {\n tsArray.push(item);\n } else {\n tsArray.push(convertPythonicToTs(item, key));\n }\n }\n return tsArray;\n } else {\n const tsDict = {};\n for (const pythonicKey of Object.keys(pythonicConfig)) {\n const pythonicValue = pythonicConfig[pythonicKey];\n if (pythonicKey === \"name\" && typeof pythonicValue === \"string\") {\n tsDict[pythonicKey] = pythonicValue;\n } else {\n const tsKey = toCamelCase(pythonicKey);\n tsDict[tsKey] = convertPythonicToTs(pythonicValue, tsKey);\n }\n }\n return tsDict;\n }\n}\nfunction convertTsToPythonic(tsConfig, key) {\n if (tsConfig === null || tsConfig === void 0) {\n return null;\n } else if (typeof tsConfig === \"string\") {\n return toSnakeCase(tsConfig);\n } else if (typeof tsConfig === \"number\" || typeof tsConfig === \"boolean\") {\n return tsConfig;\n } else if (tsConfig instanceof Array) {\n const pyArray = [];\n const arrayLength = tsConfig.length;\n for (let i2 = 0; i2 < arrayLength; ++i2) {\n const item = tsConfig[i2];\n if (isArrayItemInputOrOutputName(key, i2, item)) {\n pyArray.push(item);\n } else {\n pyArray.push(convertTsToPythonic(item, key));\n }\n }\n return pyArray;\n } else {\n const pyDict = {};\n for (const tsKey of Object.keys(tsConfig)) {\n const tsValue = tsConfig[tsKey];\n const pyKey = toSnakeCase(tsKey);\n if ((tsKey === \"name\" || tsKey === \"className\") && typeof tsValue === \"string\") {\n pyDict[pyKey] = tsValue;\n } else {\n pyDict[pyKey] = convertTsToPythonic(tsValue, tsKey);\n }\n }\n return pyDict;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/version.js\nvar version2 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/container.js\nvar Container = class extends Layer {\n constructor(args) {\n super({});\n this.containerNodes = /* @__PURE__ */ new Set();\n this.name = args.name;\n if (this.name == null) {\n const prefix = this.getClassName().toLowerCase();\n this.name = getUid(prefix);\n }\n this.supportsMasking = false;\n this.trainable_ = true;\n if (Array.isArray(args.inputs)) {\n this.inputs = args.inputs.slice();\n } else {\n this.inputs = [args.inputs];\n }\n if (Array.isArray(args.outputs)) {\n this.outputs = args.outputs.slice();\n } else {\n this.outputs = [args.outputs];\n }\n if (unique2(this.inputs).length !== this.inputs.length) {\n throw new ValueError(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map((x) => x.name)}`);\n }\n if (unique2(this.outputs).length !== this.outputs.length) {\n console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map((x) => x.name)}`);\n }\n this.inputLayers = [];\n this.inputLayersNodeIndices = [];\n this.inputLayersTensorIndices = [];\n this.outputLayers = [];\n this.outputLayersNodeIndices = [];\n this.outputLayersTensorIndices = [];\n this.layers = [];\n this.internalContainerRefs = [];\n for (const x of this.outputs) {\n const layer = x.sourceLayer;\n const nodeIndex = x.nodeIndex;\n const tensorIndex = x.tensorIndex;\n this.outputLayers.push(layer);\n this.outputLayersNodeIndices.push(nodeIndex);\n this.outputLayersTensorIndices.push(tensorIndex);\n }\n for (const x of this.inputs) {\n const layer = x.sourceLayer;\n const nodeIndex = x.nodeIndex;\n const tensorIndex = x.tensorIndex;\n assert2(nodeIndex === 0, \"input layer has >1 nodes\");\n assert2(tensorIndex === 0, \"input layer has >1 tensors\");\n this.inputLayers.push(layer);\n this.inputLayersNodeIndices.push(nodeIndex);\n this.inputLayersTensorIndices.push(tensorIndex);\n }\n this.inputNames = [];\n this.outputNames = [];\n this.feedInputShapes = [];\n this.feedInputNames = [];\n this.feedOutputNames = [];\n for (let i2 = 0; i2 < this.inputLayers.length; i2++) {\n const layer = this.inputLayers[i2];\n if (!(layer instanceof InputLayer)) {\n throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${args.inputs}. Input ${i2} (0-based) originates from layer type ${layer.getClassName()}.`);\n }\n this.inputNames.push(layer.name);\n this.feedInputShapes.push(layer.batchInputShape);\n this.feedInputNames.push(layer.name);\n }\n for (const layer of this.outputLayers) {\n this.outputNames.push(layer.name);\n }\n this.internalInputShapes = this.inputs.map((x) => x.shape);\n this.internalOutputShapes = this.outputs.map((x) => x.shape);\n const nodesDepths = {};\n const nodeIDToNode = {};\n const layersDepths = {};\n const layerIDToLayer = {};\n const layerIndices = {};\n const nodesInDecreasingDepth = [];\n const buildMapOfGraph = (tensor2, finishedNodes2, nodesInProgress2, layer, nodeIndex, tensorIndex) => {\n if (layer == null || nodeIndex == null || tensorIndex == null) {\n layer = tensor2.sourceLayer;\n nodeIndex = tensor2.nodeIndex;\n tensorIndex = tensor2.tensorIndex;\n }\n const node = layer.inboundNodes[nodeIndex];\n if (nodesInProgress2.indexOf(node) !== -1) {\n throw new RuntimeError(`The tensor ${tensor2.name} at layer \"${layer.name}\" is part of a cycle.`);\n }\n if (finishedNodes2.indexOf(node) !== -1) {\n return;\n }\n this.containerNodes.add(Container.nodeKey(layer, nodeIndex));\n if (!(layer.id in layerIndices)) {\n layerIndices[layer.id] = Object.keys(layerIndices).length;\n }\n if (nodesInProgress2.indexOf(node) === -1) {\n nodesInProgress2.push(node);\n }\n const numInboundLayers = node.inboundLayers.length;\n for (let i2 = 0; i2 < numInboundLayers; i2++) {\n const x = node.inputTensors[i2];\n const layer2 = node.inboundLayers[i2];\n const nodeIndex2 = node.nodeIndices[i2];\n const tensorIndex2 = node.tensorIndices[i2];\n buildMapOfGraph(x, finishedNodes2, nodesInProgress2, layer2, nodeIndex2, tensorIndex2);\n }\n finishedNodes2.push(node);\n while (nodesInProgress2.indexOf(node) >= 0) {\n nodesInProgress2.splice(nodesInProgress2.indexOf(node), 1);\n }\n nodesInDecreasingDepth.push(node);\n };\n const finishedNodes = [];\n const nodesInProgress = [];\n for (const x of this.outputs) {\n buildMapOfGraph(x, finishedNodes, nodesInProgress);\n }\n const reversedNodesInDecreasingDepth = nodesInDecreasingDepth.slice().reverse();\n for (const node of reversedNodesInDecreasingDepth) {\n nodeIDToNode[node.id] = node;\n if (!(node.id in nodesDepths)) {\n nodesDepths[node.id] = 0;\n }\n let depth = nodesDepths[node.id];\n const previousDepth = layersDepths[node.outboundLayer.id] == null ? 0 : layersDepths[node.outboundLayer.id];\n depth = Math.max(depth, previousDepth);\n layersDepths[node.outboundLayer.id] = depth;\n layerIDToLayer[node.outboundLayer.id] = node.outboundLayer;\n nodesDepths[node.id] = depth;\n for (let i2 = 0; i2 < node.inboundLayers.length; i2++) {\n const inboundLayer = node.inboundLayers[i2];\n const nodeIndex = node.nodeIndices[i2];\n const inboundNode = inboundLayer.inboundNodes[nodeIndex];\n const previousDepth2 = nodesDepths[inboundNode.id] == null ? 0 : nodesDepths[inboundNode.id];\n nodesDepths[inboundNode.id] = Math.max(depth + 1, previousDepth2);\n nodeIDToNode[inboundNode.id] = inboundNode;\n }\n }\n const nodesByDepth = {};\n for (const nodeID in nodesDepths) {\n const depth = nodesDepths[nodeID];\n if (!(depth in nodesByDepth)) {\n nodesByDepth[depth] = [];\n }\n nodesByDepth[depth].push(nodeIDToNode[nodeID]);\n }\n const layersByDepth = {};\n for (const layerID in layersDepths) {\n const depth = layersDepths[layerID];\n if (!(depth in layersByDepth)) {\n layersByDepth[depth] = [];\n }\n layersByDepth[depth].push(layerIDToLayer[layerID]);\n }\n let depthKeys = Object.keys(layersByDepth).map((x) => parseInt(x, 10)).sort(reverseNumberCompare);\n this.layers = [];\n for (const depth of depthKeys) {\n const layersForDepth = layersByDepth[depth];\n layersForDepth.sort((a, b) => {\n const aIndex = layerIndices[a.id];\n const bIndex = layerIndices[b.id];\n if (aIndex < bIndex) {\n return -1;\n }\n if (aIndex > bIndex) {\n return 1;\n }\n return 0;\n });\n for (const layer of layersForDepth) {\n if (layer instanceof Container) {\n this.internalContainerRefs.push(layer);\n }\n this.layers.push(layer);\n }\n }\n this.layersByDepth = layersByDepth;\n depthKeys = Object.keys(nodesByDepth).map((x) => parseInt(x, 10)).sort(reverseNumberCompare);\n const computableTensors = this.inputs.slice();\n const layersWithCompleteInput = [];\n for (const depth of depthKeys) {\n for (const node of nodesByDepth[depth]) {\n const layer = node.outboundLayer;\n if (layer != null) {\n for (const x of node.inputTensors) {\n if (computableTensors.indexOf(x) === -1) {\n throw new RuntimeError(`Graph disconnected: cannot obtain value for tensor ${x} at layer \"${layer.name}\". The following previous layers were accessed without issue: ${layersWithCompleteInput}`);\n }\n }\n for (const x of node.outputTensors) {\n computableTensors.push(x);\n }\n layersWithCompleteInput.push(layer.name);\n }\n }\n }\n this.nodesByDepth = nodesByDepth;\n const allNames = this.layers.map((x) => x.name);\n for (const name of allNames) {\n const numOccurrences = allNames.filter((x) => x === name).length;\n if (numOccurrences !== 1) {\n throw new RuntimeError(`The name \"${name}\" is used ${numOccurrences} times in the model. All layer names should be unique. Layer names: ` + JSON.stringify(allNames));\n }\n }\n this.outboundNodes = [];\n this.inboundNodes = [];\n new Node({\n outboundLayer: this,\n inboundLayers: [],\n nodeIndices: [],\n tensorIndices: [],\n inputTensors: this.inputs,\n outputTensors: this.outputs,\n inputMasks: this.inputs.map((x) => null),\n outputMasks: this.outputs.map((x) => null),\n inputShapes: this.inputs.map((x) => x.shape),\n outputShapes: this.outputs.map((x) => x.shape)\n });\n this.built = true;\n this._refCount = 1;\n }\n assertNotDisposed() {\n if (this._refCount === 0) {\n throw new Error(`Container '${this.name}' is already disposed.`);\n }\n }\n dispose() {\n this.assertNotDisposed();\n const result = { refCountAfterDispose: null, numDisposedVariables: 0 };\n if (--this._refCount === 0) {\n for (const layer of this.layers) {\n result.numDisposedVariables += layer.dispose().numDisposedVariables;\n }\n for (const container of this.internalContainerRefs) {\n result.numDisposedVariables += container.dispose().numDisposedVariables;\n }\n }\n result.refCountAfterDispose = this._refCount;\n return result;\n }\n get trainable() {\n return this.trainable_;\n }\n set trainable(trainable) {\n this.layers.forEach((layer) => {\n layer._trainableWeights.forEach((w) => w.trainable = trainable);\n });\n this.trainable_ = trainable;\n }\n get trainableWeights() {\n if (this._trainableWeights.length > 0) {\n throw new ValueError(\"Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.\");\n }\n if (!this.trainable) {\n return [];\n }\n let weights = [];\n for (const layer of this.layers) {\n weights = weights.concat(layer.trainableWeights);\n }\n return weights;\n }\n get nonTrainableWeights() {\n const weights = [];\n for (const layer of this.layers) {\n weights.push(...layer.nonTrainableWeights);\n }\n if (!this.trainable) {\n const trainableWeights = [];\n for (const layer of this.layers) {\n trainableWeights.push(...layer.trainableWeights);\n }\n return trainableWeights.concat(weights);\n }\n return weights;\n }\n get weights() {\n return this.trainableWeights.concat(this.nonTrainableWeights);\n }\n loadWeights(weights, strict = true) {\n const nameToWeight = {};\n let totalWeightsCount = 0;\n for (const layer of this.layers) {\n for (const weight of layer.weights) {\n if (nameToWeight[weight.originalName] != null) {\n throw new ValueError(`Duplicate weight name: ${weight.originalName}`);\n }\n nameToWeight[weight.originalName] = weight;\n totalWeightsCount++;\n }\n }\n const weightValueTuples = [];\n for (const name in weights) {\n let validatedName = name;\n if (nameToWeight[name] == null) {\n const tokens = name.split(\"/\");\n const shortenNameArray = tokens.slice(0, -2).concat([tokens[tokens.length - 1]]);\n validatedName = shortenNameArray.join(\"/\");\n }\n if (nameToWeight[validatedName] != null) {\n weightValueTuples.push([nameToWeight[validatedName], weights[name]]);\n } else if (strict) {\n throw new ValueError(`Provided weight data has no target variable: ${name}`);\n }\n delete nameToWeight[validatedName];\n }\n if (strict) {\n const unsetNames = [];\n for (const name in nameToWeight) {\n unsetNames.push(name);\n }\n if (unsetNames.length > 0) {\n throw new ValueError(`${unsetNames.length} of ${totalWeightsCount} weights are not set: ${unsetNames}`);\n }\n }\n batchSetValue(weightValueTuples);\n }\n updatedConfig() {\n const theConfig = this.getConfig();\n const modelConfig = {};\n modelConfig[\"className\"] = this.getClassName();\n modelConfig[\"config\"] = theConfig;\n modelConfig[\"kerasVersion\"] = `tfjs-layers ${version2}`;\n modelConfig[\"backend\"] = \"TensorFlow.js\";\n return modelConfig;\n }\n toJSON(unused, returnString = true) {\n const modelConfig = convertTsToPythonic(this.updatedConfig());\n return returnString ? JSON.stringify(modelConfig) : modelConfig;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = toList(inputs);\n const feedDict = new FeedDict();\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n feedDict.add(this.inputs[i2], inputs[i2]);\n }\n return execute(this.outputs, feedDict, kwargs);\n });\n }\n computeMask(inputs, mask) {\n return tidy(() => {\n inputs = toList(inputs);\n let masks;\n if (mask == null) {\n masks = pyListRepeat(null, inputs.length);\n } else {\n masks = toList(mask);\n }\n return this.runInternalGraph(inputs, masks)[1];\n });\n }\n computeOutputShape(inputShape) {\n const inputShapes = normalizeShapeList(inputShape);\n if (inputShapes.length !== this.inputLayers.length) {\n throw new ValueError(`Invalid inputShape argument ${inputShape}: model has ${this.inputLayers.length} tensor inputs.`);\n }\n const layersToOutputShapes = {};\n for (let i2 = 0; i2 < inputShapes.length; i2++) {\n const layer = this.inputLayers[i2];\n const inputShape2 = inputShapes[i2];\n const shapeKey = layer.name + \"_0_0\";\n layersToOutputShapes[shapeKey] = inputShape2;\n }\n const depthKeys = Object.keys(this.nodesByDepth).map((x) => parseInt(x, 10)).sort(reverseNumberCompare);\n if (depthKeys.length > 1) {\n for (const depth of depthKeys) {\n const nodes = this.nodesByDepth[depth];\n for (const node of nodes) {\n const layer = node.outboundLayer;\n if (this.inputLayers.map((x) => x.id).indexOf(layer.id) !== -1) {\n continue;\n }\n const inputShapes2 = [];\n for (let j = 0; j < node.inboundLayers.length; j++) {\n const inboundLayer = node.inboundLayers[j];\n const nodeIndex2 = node.nodeIndices[j];\n const tensorIndex = node.tensorIndices[j];\n const shapeKey = `${inboundLayer.name}_${nodeIndex2}_${tensorIndex}`;\n const inputShape2 = layersToOutputShapes[shapeKey];\n inputShapes2.push(inputShape2);\n }\n const outputShape = layer.computeOutputShape(singletonOrArray(inputShapes2));\n const outputShapes2 = normalizeShapeList(outputShape);\n const nodeIndex = layer.inboundNodes.indexOf(node);\n for (let j = 0; j < outputShapes2.length; j++) {\n const shapeKey = `${layer.name}_${nodeIndex}_${j}`;\n layersToOutputShapes[shapeKey] = outputShapes2[j];\n }\n }\n }\n }\n const outputShapes = [];\n const outputShapeKeys = [];\n for (let i2 = 0; i2 < this.outputLayers.length; i2++) {\n const layer = this.outputLayers[i2];\n const nodeIndex = this.outputLayersNodeIndices[i2];\n const tensorIndex = this.outputLayersTensorIndices[i2];\n const shapeKey = `${layer.name}_${nodeIndex}_${tensorIndex}`;\n outputShapeKeys.push(shapeKey);\n }\n for (let i2 = 0; i2 < outputShapeKeys.length; i2++) {\n const key = outputShapeKeys[i2];\n assert2(key in layersToOutputShapes);\n outputShapes.push(layersToOutputShapes[key]);\n }\n return singletonOrArray(outputShapes);\n }\n runInternalGraph(inputs, masks) {\n if (masks == null) {\n masks = pyListRepeat(null, inputs.length);\n }\n const tensorMap = {};\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n const x = this.inputs[i2];\n const y = inputs[i2];\n const mask = masks[i2];\n tensorMap[x.id] = [y, mask];\n }\n const depthKeys = Object.keys(this.nodesByDepth).map((x) => parseInt(x, 10)).sort(reverseNumberCompare);\n for (const depth of depthKeys) {\n const nodes = this.nodesByDepth[depth];\n for (const node of nodes) {\n const layer = node.outboundLayer;\n const referenceInputTensors = node.inputTensors;\n const referenceOutputTensors = node.outputTensors;\n const computedData = new Array();\n for (const x of referenceInputTensors) {\n if (x.id in tensorMap) {\n computedData.push(tensorMap[x.id]);\n }\n }\n if (computedData.length === referenceInputTensors.length) {\n let kwargs = {};\n let computedTensors;\n let computedMasks;\n let outputTensors2;\n let outputMasks2;\n if (node.callArgs != null) {\n kwargs = node.callArgs;\n }\n if (computedData.length === 1) {\n const [computedTensor, computedMask] = computedData[0];\n if (kwargs[\"mask\"] == null) {\n kwargs[\"mask\"] = computedMask;\n }\n outputTensors2 = toList(layer.call(computedTensor, kwargs));\n outputMasks2 = toList(layer.computeMask(computedTensor, computedMask));\n computedTensors = [computedTensor];\n computedMasks = [computedMask];\n } else {\n computedTensors = computedData.map((x) => x[0]);\n computedMasks = computedData.map((x) => x[1]);\n if (kwargs[\"mask\"] == null) {\n kwargs[\"mask\"] = computedMasks;\n }\n outputTensors2 = toList(layer.call(computedTensors, kwargs));\n outputMasks2 = toList(layer.computeMask(computedTensors, computedMasks));\n }\n if (layer.activityRegularizer) {\n throw new NotImplementedError(\"LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.\");\n }\n for (let i2 = 0; i2 < referenceOutputTensors.length; ++i2) {\n const x = referenceOutputTensors[i2];\n const y = outputTensors2[i2];\n const mask = outputMasks2[i2];\n tensorMap[x.id] = [y, mask];\n }\n }\n }\n }\n const outputTensors = [];\n const outputMasks = [];\n const outputShapes = [];\n for (const x of this.outputs) {\n assert2(x.id in tensorMap, `Could not compute output ${x.name} : ${x.id}`);\n const [tensor2, mask] = tensorMap[x.id];\n outputShapes.push(tensor2.shape);\n outputTensors.push(tensor2);\n outputMasks.push(mask);\n }\n return [outputTensors, outputMasks, outputShapes];\n }\n buildNodeConversionMap(layers) {\n const nodeConversionMap = {};\n let keptNodes;\n for (const layer of this.layers) {\n keptNodes = layer instanceof Container ? 1 : 0;\n for (let originalNodeIndex = 0; originalNodeIndex < layer.inboundNodes.length; originalNodeIndex++) {\n const nodeKey = Container.nodeKey(layer, originalNodeIndex);\n if (this.containerNodes.has(nodeKey)) {\n nodeConversionMap[nodeKey] = keptNodes;\n keptNodes += 1;\n }\n }\n }\n return nodeConversionMap;\n }\n getLayer(name, index) {\n if (index != null) {\n if (this.layers.length <= index) {\n throw new ValueError(`Was asked to retrieve layer at index ${index}, but model only has ${this.layers.length} layer(s).`);\n } else {\n return this.layers[index];\n }\n } else {\n if (name == null) {\n throw new ValueError(\"Provide either a layer name or layer index\");\n }\n }\n for (const layer of this.layers) {\n if (layer.name === name) {\n return layer;\n }\n }\n throw new ValueError(`No such layer: ${name}`);\n }\n calculateLosses() {\n return tidy(() => {\n const losses2 = [];\n for (const layer of this.layers) {\n for (let nodeIndex = 0; nodeIndex < layer.inboundNodes.length; ++nodeIndex) {\n const nodeKey = Container.nodeKey(layer, nodeIndex);\n if (this.containerNodes.has(nodeKey)) {\n losses2.push(...layer.calculateLosses());\n }\n }\n }\n return losses2;\n });\n }\n getConfig() {\n const config = { name: this.name };\n const nodeConversionMap = this.buildNodeConversionMap(this.layers);\n const layerConfigs = [];\n for (const layer of this.layers) {\n const layerClassName = layer.getClassName();\n const layerConfig = layer.getConfig();\n const filteredInboundNodes = [];\n for (let originalNodeIndex = 0; originalNodeIndex < layer.inboundNodes.length; originalNodeIndex++) {\n const node = layer.inboundNodes[originalNodeIndex];\n const nodeKey = Container.nodeKey(layer, originalNodeIndex);\n let kwargs = {};\n if (this.containerNodes.has(nodeKey)) {\n if (node.callArgs) {\n try {\n JSON.stringify(node.callArgs);\n kwargs = node.callArgs;\n } catch (err) {\n console.warn(`Layer ${layer.name} was passed non-serializable keyword arguments: ${node.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`);\n kwargs = {};\n }\n }\n if (node.inboundLayers.length > 0) {\n const nodeData = [];\n for (let i2 = 0; i2 < node.inboundLayers.length; i2++) {\n const inboundLayer = node.inboundLayers[i2];\n const nodeIndex = node.nodeIndices[i2];\n const tensorIndex = node.tensorIndices[i2];\n const nodeKey2 = Container.nodeKey(inboundLayer, nodeIndex);\n let newNodeIndex = nodeConversionMap[nodeKey2];\n if (newNodeIndex == null) {\n newNodeIndex = 0;\n }\n nodeData.push([inboundLayer.name, newNodeIndex, tensorIndex, kwargs]);\n }\n filteredInboundNodes.push(nodeData);\n }\n }\n }\n const dict = {};\n dict[\"name\"] = layer.name;\n dict[\"className\"] = layerClassName;\n dict[\"config\"] = layerConfig;\n dict[\"inboundNodes\"] = filteredInboundNodes;\n layerConfigs.push(dict);\n }\n config[\"layers\"] = layerConfigs;\n const modelInputs = [];\n for (let i2 = 0; i2 < this.inputLayers.length; i2++) {\n const layer = this.inputLayers[i2];\n const nodeIndex = this.inputLayersNodeIndices[i2];\n const nodeKey = Container.nodeKey(layer, nodeIndex);\n if (!this.containerNodes.has(nodeKey)) {\n continue;\n }\n let newNodeIndex = nodeConversionMap[nodeKey];\n if (newNodeIndex === null || newNodeIndex === void 0) {\n newNodeIndex = 0;\n }\n const tensorIndex = this.inputLayersTensorIndices[i2];\n modelInputs.push([layer.name, newNodeIndex, tensorIndex]);\n }\n config[\"inputLayers\"] = modelInputs;\n const modelOutputs = [];\n for (let i2 = 0; i2 < this.outputLayers.length; i2++) {\n const layer = this.outputLayers[i2];\n const nodeIndex = this.outputLayersNodeIndices[i2];\n const nodeKey = Container.nodeKey(layer, nodeIndex);\n if (!this.containerNodes.has(nodeKey)) {\n continue;\n }\n let newNodeIndex = nodeConversionMap[nodeKey];\n if (newNodeIndex === null || newNodeIndex === void 0) {\n newNodeIndex = 0;\n }\n const tensorIndex = this.outputLayersTensorIndices[i2];\n modelOutputs.push([layer.name, newNodeIndex, tensorIndex]);\n }\n config[\"outputLayers\"] = modelOutputs;\n return config;\n }\n static fromConfig(cls, config, customObjects = {}, fastWeightInit = false) {\n const createdLayers = {};\n const unprocessedNodes = {};\n function addUnprocessedNode(layer, nodeData) {\n if (!(layer.name in unprocessedNodes)) {\n unprocessedNodes[layer.name] = [nodeData];\n } else {\n unprocessedNodes[layer.name].push(nodeData);\n }\n }\n function processNode(layer, nodeData) {\n const inputTensors2 = [];\n let kwargs;\n for (const inputData of nodeData) {\n const inboundLayerName = inputData[0];\n const inboundNodeIndex = inputData[1];\n const inboundTensorIndex = inputData[2];\n kwargs = inputData[3] == null ? {} : inputData[3];\n if (!(inboundLayerName in createdLayers)) {\n addUnprocessedNode(layer, nodeData);\n return;\n }\n const inboundLayer = createdLayers[inboundLayerName];\n if (inboundLayer.inboundNodes.length <= inboundNodeIndex) {\n addUnprocessedNode(layer, nodeData);\n return;\n }\n const inboundNode = inboundLayer.inboundNodes[inboundNodeIndex];\n inputTensors2.push(inboundNode.outputTensors[inboundTensorIndex]);\n }\n if (inputTensors2.length > 0) {\n layer.apply(singletonOrArray(inputTensors2), kwargs);\n }\n }\n function processLayer(layerData) {\n const layerName = layerData[\"name\"];\n const layer = deserialize(layerData, config[\"customObjects\"] != null ? config[\"customObjects\"] : {});\n layer.setFastWeightInitDuringBuild(fastWeightInit);\n createdLayers[layerName] = layer;\n const inboundNodesData = layerData[\"inboundNodes\"];\n inboundNodesData.forEach((nodeData) => {\n if (!(nodeData instanceof Array)) {\n throw new ValueError(`Corrupted configuration, expected array for nodeData: ${nodeData}`);\n }\n addUnprocessedNode(layer, nodeData);\n });\n }\n const name = config[\"name\"];\n const layersFromConfig = config[\"layers\"];\n for (const layerData of layersFromConfig) {\n processLayer(layerData);\n }\n while (!isObjectEmpty(unprocessedNodes)) {\n for (const layerData of layersFromConfig) {\n const layer = createdLayers[layerData[\"name\"]];\n if (layer.name in unprocessedNodes) {\n const currentUnprocessedNodesForLayer = unprocessedNodes[layer.name];\n delete unprocessedNodes[layer.name];\n for (const nodeData of currentUnprocessedNodesForLayer) {\n processNode(layer, nodeData);\n }\n }\n }\n }\n const inputTensors = [];\n const outputTensors = [];\n const inputLayersFromConfig = config[\"inputLayers\"];\n for (const layerData of inputLayersFromConfig) {\n const layerName = layerData[0];\n const nodeIndex = layerData[1];\n const tensorIndex = layerData[2];\n assert2(layerName in createdLayers);\n const layer = createdLayers[layerName];\n const layerOutputTensors = layer.inboundNodes[nodeIndex].outputTensors;\n inputTensors.push(layerOutputTensors[tensorIndex]);\n }\n const outputLayersFromConfig = config[\"outputLayers\"];\n for (const layerData of outputLayersFromConfig) {\n const layerName = layerData[0];\n const nodeIndex = layerData[1];\n const tensorIndex = layerData[2];\n assert2(layerName in createdLayers);\n const layer = createdLayers[layerName];\n const layerOutputTensors = layer.inboundNodes[nodeIndex].outputTensors;\n outputTensors.push(layerOutputTensors[tensorIndex]);\n }\n return new cls({ inputs: inputTensors, outputs: outputTensors, name });\n }\n get stateful() {\n if (this._stateful) {\n throw new ValueError(\"Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.\");\n }\n for (const layer of this.layers) {\n if (layer.stateful) {\n return true;\n }\n }\n return false;\n }\n resetStates() {\n tidy(() => {\n this.layers.forEach((layer) => {\n if (layer.stateful) {\n layer.resetStates();\n }\n });\n });\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/training_utils.js\nfunction standardizeSampleOrClassWeights(xWeight, outputNames, weightType) {\n const numOutputs = outputNames.length;\n if (xWeight == null || Array.isArray(xWeight) && xWeight.length === 0) {\n return outputNames.map((name) => null);\n }\n if (numOutputs === 1) {\n if (Array.isArray(xWeight) && xWeight.length === 1) {\n return xWeight;\n } else if (typeof xWeight === \"object\" && outputNames[0] in xWeight) {\n return [xWeight[outputNames[0]]];\n } else {\n return [xWeight];\n }\n }\n if (Array.isArray(xWeight)) {\n if (xWeight.length !== numOutputs) {\n throw new Error(`Provided ${weightType} is an array of ${xWeight.length} element(s), but the model has ${numOutputs} outputs. Make sure a set of weights is provided for each model output.`);\n }\n return xWeight;\n } else if (typeof xWeight === \"object\" && Object.keys(xWeight).length > 0 && typeof xWeight[Object.keys(xWeight)[0]] === \"object\") {\n const output = [];\n outputNames.forEach((outputName) => {\n if (outputName in xWeight) {\n output.push(xWeight[outputName]);\n } else {\n output.push(null);\n }\n });\n return output;\n } else {\n throw new Error(`The model has multiple (${numOutputs}) outputs, so ${weightType} must be either an array with ${numOutputs} elements or an object with ${outputNames} keys. Provided ${weightType} not understood: ${JSON.stringify(xWeight)}`);\n }\n}\nfunction standardizeClassWeights(classWeight, outputNames) {\n return standardizeSampleOrClassWeights(classWeight, outputNames, \"classWeight\");\n}\nasync function standardizeWeights(y, sampleWeight, classWeight, sampleWeightMode) {\n if (sampleWeight != null || sampleWeightMode != null) {\n throw new Error(\"Support sampleWeight is not implemented yet\");\n }\n if (classWeight != null) {\n const yClasses = tidy(() => {\n if (y.shape.length === 1) {\n return clone(y);\n } else if (y.shape.length === 2) {\n if (y.shape[1] > 1) {\n const axis = 1;\n return argMax(y, axis);\n } else if (y.shape[1] === 1) {\n return reshape(y, [y.shape[0]]);\n } else {\n throw new Error(`Encountered unexpected last-dimension size (${y.shape[1]}) during handling of class weights. The size is expected to be >= 1.`);\n }\n } else {\n throw new Error(`Unexpected rank of target (y) tensor (${y.rank}) during handling of class weights. The rank is expected to be 1 or 2.`);\n }\n });\n const yClassIndices = Array.from(await yClasses.data());\n dispose(yClasses);\n const classSampleWeight = [];\n yClassIndices.forEach((classIndex) => {\n if (classWeight[classIndex] == null) {\n throw new Error(`classWeight must contain all classes in the training data. The class ${classIndex} exists in the data but not in classWeight`);\n } else {\n classSampleWeight.push(classWeight[classIndex]);\n }\n });\n return tensor1d(classSampleWeight, \"float32\");\n } else {\n return null;\n }\n}\nfunction computeWeightedLoss2(losses2, sampleWeights) {\n return mul(losses2, sampleWeights);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/training_dataset.js\nvar DEFAULT_VALIDATION_BATCH_SIZE = 32;\nfunction standardizeDataIteratorOutput(model2, iteratorOut) {\n let xs;\n let ys;\n const iteratorOutObj = iteratorOut;\n xs = iteratorOutObj[\"xs\"];\n ys = iteratorOutObj[\"ys\"];\n util_exports.assert(xs != null && ys != null, () => `A Dataset iterator for fitDataset() is expected to generate objects of the form \\`{xs: xVal, ys: yVal}\\`, where the two values may be \\`tf.Tensor\\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${iteratorOut}`);\n const flattenedXs = flattenTensorOrArrayOrMap(\"input\", model2.inputNames, xs);\n const flattenedYs = flattenTensorOrArrayOrMap(\"output\", model2.outputNames, ys);\n const batchSize = flattenedXs[0].shape[0];\n util_exports.assert(flattenedXs.length === model2.inputs.length, () => `LayersModel has ${model2.inputs.length} inputs, but the dataset provides ${flattenedXs.length} inputs. (Expected input keys: ${JSON.stringify(model2.inputNames)})`);\n util_exports.assert(flattenedYs.length === model2.outputs.length, () => `LayersModel has ${model2.outputs.length} outputs, but the dataset provides ${flattenedYs.length} outputs. (Expected output keys: ${JSON.stringify(model2.outputNames)})`);\n for (let xIndex = 0; xIndex < flattenedXs.length; xIndex++) {\n util_exports.assert(flattenedXs[xIndex].shape[0] === batchSize, () => `Batch size mismatch: input ${model2.inputNames[xIndex]} has ${flattenedXs[xIndex].shape[0]}; expected ${batchSize} based on input ${model2.inputNames[0]}.`);\n }\n for (let yIndex = 0; yIndex < flattenedYs.length; yIndex++) {\n util_exports.assert(flattenedYs[yIndex].shape[0] === batchSize, () => `Batch size mismatch: output ${model2.outputNames[yIndex]} has ${flattenedYs[yIndex].shape[0]}; expected ${batchSize} based on input ${model2.inputNames[0]}.`);\n }\n return { xs: flattenedXs, ys: flattenedYs };\n}\nfunction flattenTensorOrArrayOrMap(inputOrOutput, names, values) {\n if (values instanceof Tensor) {\n return [values];\n } else if (Array.isArray(values)) {\n util_exports.assert(values.length === names.length, () => `Received an array of ${values.length} Tensors, but expected ${names.length} to match the ${inputOrOutput} keys ${names}.`);\n return values;\n } else {\n const result = [];\n for (const name of names) {\n if (values[name] == null) {\n throw new ValueError(`The feature data generated by the dataset lacks the required ${inputOrOutput} key '${name}'.`);\n }\n result.push(values[name]);\n }\n return result;\n }\n}\nfunction standardizeTensorValidationData(data) {\n if (data.length === 3) {\n throw new NotImplementedError(\"Validation with sample weights is not implemented yet.\");\n }\n return { xs: data[0], ys: data[1] };\n}\nasync function fitDataset(model2, dataset, args) {\n const hasBatchesPerEpoch = args.batchesPerEpoch != null;\n util_exports.assert(model2.optimizer != null, () => \"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig).\");\n util_exports.assert(args != null, () => `For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call.`);\n util_exports.assert(args.epochs != null && args.epochs > 0 && Number.isInteger(args.epochs), () => `For fitDataset(), config.epochs is expected to be a positive integer, but got ${args.epochs}`);\n util_exports.assert(!hasBatchesPerEpoch || args.batchesPerEpoch > 0 && Number.isInteger(args.batchesPerEpoch), () => `For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${args.batchesPerEpoch}`);\n util_exports.assert(\n args[\"validationSplit\"] == null,\n () => \"`validationSplit` is not supported by `fitDataset()`. Use validationData instead.\"\n );\n if (model2.isTraining) {\n throw new Error(\"Cannot start training because another fit() call is ongoing.\");\n }\n model2.isTraining = true;\n try {\n const doValidation = args.validationData != null;\n let valXs;\n let valYs;\n if (doValidation) {\n if (isDatasetObject(args.validationData)) {\n util_exports.assert(args.validationBatches == null || args.validationBatches > 0 && Number.isInteger(args.validationBatches), () => `For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${args.validationBatches}`);\n } else {\n const validationData = standardizeTensorValidationData(args.validationData);\n valXs = validationData.xs;\n valYs = validationData.ys;\n }\n }\n const trainFunction = model2.makeTrainFunction();\n const outLabels = model2.getDedupedMetricsNames();\n let callbackMetrics;\n if (doValidation) {\n callbackMetrics = outLabels.slice().concat(outLabels.map((n2) => \"val_\" + n2));\n } else {\n callbackMetrics = outLabels.slice();\n }\n const callbacks2 = standardizeCallbacks(args.callbacks, args.yieldEvery);\n const verbose = args.verbose == null ? 1 : args.verbose;\n const { callbackList, history } = configureCallbacks(\n callbacks2,\n verbose,\n args.epochs,\n null,\n null,\n getStepsPerEpoch(dataset, args),\n null,\n doValidation,\n callbackMetrics\n );\n callbackList.setModel(model2);\n model2.history = history;\n await callbackList.onTrainBegin();\n model2.stopTraining_ = false;\n let epoch = args.initialEpoch == null ? 0 : args.initialEpoch;\n let dataIterator = await dataset.iterator();\n while (epoch < args.epochs) {\n const epochLogs = {};\n await callbackList.onEpochBegin(epoch);\n let stepsDone = 0;\n let batchIndex = 0;\n if (!hasBatchesPerEpoch) {\n dataIterator = await dataset.iterator();\n }\n while (hasBatchesPerEpoch ? stepsDone < args.batchesPerEpoch : true) {\n const iteratorOut = await dataIterator.next();\n if (hasBatchesPerEpoch && iteratorOut.done) {\n console.warn(`You provided \\`batchesPerEpoch\\` as ${args.batchesPerEpoch}, but your dataset iterator ran out of data after ${stepsDone} batches; interrupting training. Make sure that your dataset can generate at least \\`batchesPerEpoch * epochs\\` batches (in this case, ${args.batchesPerEpoch * args.epochs} batches). You may need to use the repeat() function when building your dataset.`);\n break;\n }\n if (iteratorOut.value != null) {\n const { xs, ys } = standardizeDataIteratorOutput(model2, iteratorOut.value);\n const batchLogs = {};\n batchLogs[\"batch\"] = batchIndex;\n batchLogs[\"size\"] = xs[0].shape[0];\n await callbackList.onBatchBegin(batchIndex, batchLogs);\n const sampleWeights = [];\n if (args.classWeight != null) {\n const standardClassWeights = standardizeClassWeights(args.classWeight, model2.outputNames);\n for (let i2 = 0; i2 < standardClassWeights.length; ++i2) {\n sampleWeights.push(await standardizeWeights(ys[i2], null, standardClassWeights[i2]));\n }\n }\n const ins = xs.concat(ys).concat(sampleWeights);\n const outs = trainFunction(ins);\n dispose(ins);\n for (let i2 = 0; i2 < outLabels.length; ++i2) {\n const label = outLabels[i2];\n const out = outs[i2];\n batchLogs[label] = out;\n keep(out);\n }\n await callbackList.onBatchEnd(batchIndex, batchLogs);\n disposeTensorsInLogs(batchLogs);\n batchIndex++;\n stepsDone++;\n }\n if (hasBatchesPerEpoch ? stepsDone >= args.batchesPerEpoch : iteratorOut.done) {\n if (doValidation) {\n let valOuts;\n if (isDatasetObject(args.validationData)) {\n valOuts = toList(await model2.evaluateDataset(args.validationData, { batches: args.validationBatches }));\n } else {\n valOuts = toList(model2.evaluate(valXs, valYs, {\n batchSize: args.validationBatchSize == null ? DEFAULT_VALIDATION_BATCH_SIZE : args.validationBatchSize,\n verbose: 0\n }));\n }\n for (let i2 = 0; i2 < model2.metricsNames.length; ++i2) {\n epochLogs[`val_${model2.metricsNames[i2]}`] = valOuts[i2];\n }\n }\n break;\n }\n if (model2.stopTraining_) {\n break;\n }\n }\n await callbackList.onEpochEnd(epoch, epochLogs);\n epoch++;\n if (model2.stopTraining_) {\n break;\n }\n }\n await callbackList.onTrainEnd();\n await model2.history.syncData();\n return model2.history;\n } finally {\n model2.isTraining = false;\n }\n}\nfunction getStepsPerEpoch(dataset, args) {\n let stepsPerEpoch = null;\n if (args.batchesPerEpoch != null) {\n stepsPerEpoch = args.batchesPerEpoch;\n } else if (Number.isFinite(dataset.size)) {\n stepsPerEpoch = dataset.size;\n }\n return stepsPerEpoch;\n}\nfunction isDatasetObject(dataset) {\n return typeof dataset.iterator === \"function\";\n}\nfunction isLazyIteratorObject(iterator) {\n return typeof iterator.next === \"function\";\n}\nasync function evaluateDataset(model2, dataset, args) {\n args = args || {};\n const hasBatches = args.batches != null;\n const f = model2.testFunction;\n let outs = [];\n if (args.verbose > 0) {\n throw new NotImplementedError(\"Verbose mode is not implemented yet.\");\n }\n util_exports.assert(!hasBatches || args.batches > 0 && Number.isInteger(args.batches), () => `Test loop expects \\`batches\\` to be a positive integer, but received ${JSON.stringify(args.batches)}`);\n const dataIterator = isLazyIteratorObject(dataset) ? dataset : await dataset.iterator();\n let numExamples = 0;\n let batch = 0;\n while (hasBatches ? batch < args.batches : true) {\n const iteratorOut = await dataIterator.next();\n outs = tidy(() => {\n if (iteratorOut.value) {\n const { xs, ys } = standardizeDataIteratorOutput(model2, iteratorOut.value);\n const xsAndYs = xs.concat(ys);\n const batchOuts = tidy(() => f(xsAndYs));\n dispose(xsAndYs);\n if (batch === 0) {\n for (let i2 = 0; i2 < batchOuts.length; ++i2) {\n outs.push(scalar(0));\n }\n }\n const batchSize = xsAndYs[0].shape[0];\n for (let i2 = 0; i2 < batchOuts.length; ++i2) {\n const batchOut = batchOuts[i2];\n const oldScalar = outs[i2];\n outs[i2] = tidy(() => add2(outs[i2], mul(batchSize, batchOut)));\n if (batch > 0) {\n dispose(oldScalar);\n }\n }\n dispose(batchOuts);\n numExamples += batchSize;\n ++batch;\n }\n return outs;\n });\n if (iteratorOut.done) {\n if (hasBatches) {\n console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \\`batches\\` batches (in this case, ${args.batches} batches). You may need to use the repeat() function when building your dataset.`);\n }\n break;\n }\n }\n for (let i2 = 0; i2 < outs.length; ++i2) {\n const oldScalar = outs[i2];\n outs[i2] = div(outs[i2], numExamples);\n dispose(oldScalar);\n }\n return singletonOrArray(outs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/training_tensors.js\nfunction checkBatchSize(batchSize) {\n util_exports.assert(batchSize > 0 && Number.isInteger(batchSize), () => `batchSize is required to be a positive integer, but got ${batchSize}`);\n}\nfunction sliceArrays(arrays, start, stop) {\n if (arrays == null) {\n return [null];\n } else if (Array.isArray(arrays)) {\n return arrays.map((array2) => sliceAlongFirstAxis(array2, start, stop - start));\n } else {\n return sliceAlongFirstAxis(arrays, start, stop - start);\n }\n}\nfunction sliceArraysByIndices(arrays, indices) {\n return tidy(() => {\n if (arrays == null) {\n return null;\n } else if (Array.isArray(arrays)) {\n return arrays.map((array2) => sliceArraysByIndices(array2, indices));\n } else {\n return gather2(arrays, indices.dtype === \"int32\" ? indices : cast(indices, \"int32\"));\n }\n });\n}\nfunction makeBatches(size, batchSize) {\n const output = [];\n let batchStart = 0;\n let batchEnd = null;\n while (batchStart < size) {\n batchEnd = batchStart + batchSize;\n if (batchEnd >= size) {\n batchEnd = size;\n }\n output.push([batchStart, batchEnd]);\n batchStart = batchEnd;\n }\n return output;\n}\nasync function fitLoop(model2, f, ins, outLabels, batchSize, epochs, verbose, callbacks2, valF, valIns, shuffle2, callbackMetrics, initialEpoch, stepsPerEpoch, validationSteps) {\n if (batchSize == null) {\n batchSize = 32;\n }\n if (epochs == null) {\n epochs = 1;\n }\n if (shuffle2 == null) {\n shuffle2 = true;\n }\n if (initialEpoch == null) {\n initialEpoch = 0;\n }\n let doValidation = false;\n if (valF != null && valIns != null) {\n doValidation = true;\n }\n if (validationSteps != null) {\n doValidation = true;\n if (stepsPerEpoch == null) {\n throw new ValueError(\"Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.\");\n }\n }\n const numTrainSamples = model2.checkNumSamples(ins, batchSize, stepsPerEpoch, \"steps_per_epoch\");\n let indexArray;\n if (numTrainSamples != null) {\n indexArray = range2(0, numTrainSamples);\n }\n if (verbose == null) {\n verbose = 1;\n }\n const { callbackList, history } = configureCallbacks(callbacks2, verbose, epochs, initialEpoch, numTrainSamples, stepsPerEpoch, batchSize, doValidation, callbackMetrics);\n callbackList.setModel(model2);\n model2.history = history;\n await callbackList.onTrainBegin();\n model2.stopTraining_ = false;\n for (let epoch = initialEpoch; epoch < epochs; ++epoch) {\n await callbackList.onEpochBegin(epoch);\n const epochLogs = {};\n if (stepsPerEpoch != null) {\n throw new NotImplementedError(\"stepsPerEpoch mode is not implemented yet.\");\n } else {\n if (shuffle2 === \"batch\") {\n throw new NotImplementedError(\"batch shuffling is not implemneted yet\");\n } else if (shuffle2) {\n util_exports.shuffle(indexArray);\n }\n const epochIndexArray1D = tensor1d(indexArray);\n const batches = makeBatches(numTrainSamples, batchSize);\n for (let batchIndex = 0; batchIndex < batches.length; ++batchIndex) {\n const batchLogs = {};\n await callbackList.onBatchBegin(batchIndex, batchLogs);\n tidy(() => {\n const batchStart = batches[batchIndex][0];\n const batchEnd = batches[batchIndex][1];\n const batchIds = sliceAlongFirstAxis(epochIndexArray1D, batchStart, batchEnd - batchStart);\n batchLogs[\"batch\"] = batchIndex;\n batchLogs[\"size\"] = batchEnd - batchStart;\n const insBatch = sliceArraysByIndices(ins, batchIds);\n const outs = f(insBatch);\n for (let i2 = 0; i2 < outLabels.length; ++i2) {\n const label = outLabels[i2];\n const out = outs[i2];\n batchLogs[label] = out;\n keep(out);\n }\n if (batchIndex === batches.length - 1) {\n if (doValidation) {\n const valOuts = model2.testLoop(valF, valIns, batchSize);\n for (let i2 = 0; i2 < outLabels.length; ++i2) {\n const label = outLabels[i2];\n const out = valOuts[i2];\n keep(out);\n epochLogs[\"val_\" + label] = out;\n }\n }\n }\n });\n await callbackList.onBatchEnd(batchIndex, batchLogs);\n disposeTensorsInLogs(batchLogs);\n if (model2.stopTraining_) {\n break;\n }\n }\n epochIndexArray1D.dispose();\n }\n await callbackList.onEpochEnd(epoch, epochLogs);\n if (model2.stopTraining_) {\n break;\n }\n }\n await callbackList.onTrainEnd();\n await model2.history.syncData();\n return model2.history;\n}\nasync function fitTensors(model2, x, y, args = {}) {\n if (model2.isTraining) {\n throw new Error(\"Cannot start training because another fit() call is ongoing.\");\n }\n model2.isTraining = true;\n let inputs;\n let targets;\n let originalInputs;\n let originalTargets;\n let inputValX;\n let inputValY;\n let valX;\n let valY;\n let sampleWeights;\n try {\n const batchSize = args.batchSize == null ? 32 : args.batchSize;\n checkBatchSize(batchSize);\n const checkBatchAxis = false;\n const standardizedOuts = await model2.standardizeUserData(x, y, args.sampleWeight, args.classWeight, checkBatchAxis, batchSize);\n inputs = standardizedOuts[0];\n targets = standardizedOuts[1];\n sampleWeights = standardizedOuts[2];\n let doValidation = false;\n let valIns;\n if (args.validationData != null && args.validationData.length > 0) {\n doValidation = true;\n if (args.validationData.length === 2) {\n inputValX = args.validationData[0];\n inputValY = args.validationData[1];\n } else if (args.validationData.length === 3) {\n throw new NotImplementedError(\"validationData including sample weights is not supported yet.\");\n } else {\n throw new ValueError(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${args.validationData} is invalid.`);\n }\n const checkBatchAxis2 = true;\n const valStandardized = await model2.standardizeUserData(inputValX, inputValY, null, null, checkBatchAxis2, batchSize);\n valX = valStandardized[0];\n valY = valStandardized[1];\n valIns = valX.concat(valY);\n } else if (args.validationSplit != null && args.validationSplit > 0 && args.validationSplit < 1) {\n doValidation = true;\n const splitAt = Math.floor(inputs[0].shape[0] * (1 - args.validationSplit));\n const originalBatchSize = inputs[0].shape[0];\n valX = sliceArrays(inputs, splitAt, originalBatchSize);\n originalInputs = inputs;\n inputs = sliceArrays(inputs, 0, splitAt);\n valY = sliceArrays(targets, splitAt, originalBatchSize);\n originalTargets = targets;\n targets = sliceArrays(targets, 0, splitAt);\n valIns = valX.concat(valY);\n } else if (args.validationSteps != null) {\n doValidation = true;\n }\n const ins = inputs.concat(targets).concat(sampleWeights);\n model2.checkTrainableWeightsConsistency();\n const trainFunction = model2.makeTrainFunction();\n const outLabels = model2.getDedupedMetricsNames();\n let valFunction;\n let callbackMetrics;\n if (doValidation) {\n model2.makeTestFunction();\n valFunction = model2.testFunction;\n callbackMetrics = outLabels.slice().concat(outLabels.map((n2) => \"val_\" + n2));\n } else {\n valFunction = null;\n valIns = [];\n callbackMetrics = outLabels.slice();\n }\n const callbacks2 = standardizeCallbacks(args.callbacks, args.yieldEvery);\n const out = await fitLoop(model2, trainFunction, ins, outLabels, batchSize, args.epochs, args.verbose, callbacks2, valFunction, valIns, args.shuffle, callbackMetrics, args.initialEpoch, null, null);\n return out;\n } finally {\n model2.isTraining = false;\n disposeNewTensors(inputs, x);\n disposeNewTensors(targets, y);\n disposeNewTensors(originalInputs, x);\n disposeNewTensors(originalTargets, y);\n disposeNewTensors(valX, inputValX);\n disposeNewTensors(valY, inputValY);\n if (sampleWeights != null) {\n dispose(sampleWeights);\n }\n }\n}\nfunction ensureTensorsRank2OrHigher(tensors) {\n const outs = [];\n if (tensors instanceof Tensor) {\n tensors = [tensors];\n }\n for (let i2 = 0; i2 < tensors.length; ++i2) {\n const tensor2 = tensors[i2];\n if (tensor2.rank === 1) {\n outs.push(expandDims2(tensor2, 1));\n } else if (tensor2.rank === 0) {\n throw new Error(\"Expected tensor to be at least 1D, but received a 0D tensor (scalar).\");\n } else {\n outs.push(tensor2);\n }\n }\n return outs;\n}\nfunction disposeNewTensors(tensors, refTensors) {\n if (tensors == null) {\n return;\n }\n const oldTensorIds = [];\n if (refTensors instanceof Tensor) {\n oldTensorIds.push(refTensors.id);\n } else if (Array.isArray(refTensors)) {\n refTensors.forEach((t2) => oldTensorIds.push(t2.id));\n } else if (refTensors != null) {\n for (const name in refTensors) {\n const oldTensor = refTensors[name];\n oldTensorIds.push(oldTensor.id);\n }\n }\n const tensorsToDispose = [];\n if (tensors instanceof Tensor) {\n if (oldTensorIds.indexOf(tensors.id) === -1) {\n tensorsToDispose.push(tensors);\n }\n } else if (Array.isArray(tensors)) {\n tensors.forEach((t2) => {\n if (oldTensorIds.indexOf(t2.id) === -1) {\n tensorsToDispose.push(t2);\n }\n });\n } else if (tensors != null) {\n for (const name in tensors) {\n const tensor2 = tensors[name];\n if (oldTensorIds.indexOf(tensor2.id) === -1) {\n tensorsToDispose.push(tensor2);\n }\n }\n }\n tensorsToDispose.forEach((t2) => {\n if (!t2.isDisposed) {\n t2.dispose();\n }\n });\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/training.js\nfunction isDataTensor(x) {\n return x instanceof Tensor;\n}\nfunction isDataArray(x) {\n return Array.isArray(x);\n}\nfunction isDataDict(x) {\n return !isDataTensor(x) && !isDataArray(x);\n}\nfunction standardizeInputData(data, names, shapes, checkBatchAxis = true, exceptionPrefix = \"\") {\n if (names == null || names.length === 0) {\n if (data != null) {\n let gotUnexpectedData = false;\n if (isDataArray(data) && data.length > 0) {\n gotUnexpectedData = true;\n } else if (isDataDict(data)) {\n for (const key in data) {\n if (data.hasOwnProperty(key)) {\n gotUnexpectedData = true;\n break;\n }\n }\n } else {\n gotUnexpectedData = true;\n }\n if (gotUnexpectedData) {\n throw new ValueError(`Error when checking model ${exceptionPrefix} expected no data, but got ${data}`);\n }\n }\n return [];\n }\n if (data == null) {\n return names.map((name) => null);\n }\n let arrays;\n if (isDataDict(data)) {\n data = data;\n arrays = [];\n for (const name of names) {\n if (data[name] == null) {\n throw new ValueError(`No data provided for \"${name}\". Need data for each key in: ${names}`);\n }\n arrays.push(data[name]);\n }\n } else if (isDataArray(data)) {\n data = data;\n if (data.length !== names.length) {\n throw new ValueError(`Error when checking model ${exceptionPrefix}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${names.length} Tensor(s), but instead got the following list of Tensor(s): ${data}`);\n }\n arrays = data;\n } else {\n data = data;\n if (names.length > 1) {\n throw new ValueError(`The model ${exceptionPrefix} expects ${names.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${data.shape}`);\n }\n arrays = [data];\n }\n arrays = ensureTensorsRank2OrHigher(arrays);\n if (shapes != null) {\n for (let i2 = 0; i2 < names.length; ++i2) {\n if (shapes[i2] == null) {\n continue;\n }\n const array2 = arrays[i2];\n if (array2.shape.length !== shapes[i2].length) {\n throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i2]} to have ${shapes[i2].length} dimension(s). but got array with shape ${array2.shape}`);\n }\n for (let j = 0; j < shapes[i2].length; ++j) {\n if (j === 0 && !checkBatchAxis) {\n continue;\n }\n const dim = array2.shape[j];\n const refDim = shapes[i2][j];\n if (refDim != null && refDim >= 0 && dim !== refDim) {\n throw new ValueError(`${exceptionPrefix} expected a batch of elements where each example has shape [${shapes[i2].slice(1, shapes[i2].length)}] (i.e.,tensor shape [*,${shapes[i2].slice(1, shapes[i2].length)}]) but the ${exceptionPrefix} received an input with ${array2.shape[0]} examples, each with shape [${array2.shape.slice(1, array2.shape.length)}] (tensor shape [${array2.shape}])`);\n }\n }\n }\n }\n return arrays;\n}\nfunction checkArrayLengths(inputs, targets, weights) {\n const setX = unique2(inputs.map((input2) => input2.shape[0]));\n setX.sort();\n const setY = unique2(targets.map((target) => target.shape[0]));\n setY.sort();\n if (setX.length > 1) {\n throw new ValueError(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(inputs.map((input2) => input2.shape))}`);\n }\n if (setY.length > 1) {\n throw new ValueError(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(targets.map((target) => target.shape))}`);\n }\n if (setX.length > 0 && setY.length > 0 && !util_exports.arraysEqual(setX, setY)) {\n throw new ValueError(`Input Tensors should have the same number of samples as target Tensors. Found ${setX[0]} input sample(s) and ${setY[0]} target sample(s).`);\n }\n}\nfunction checkLossAndTargetCompatibility(targets, lossFns, outputShapes) {\n const keyLosses = [\n meanSquaredError2,\n binaryCrossentropy,\n categoricalCrossentropy\n ];\n for (let i2 = 0; i2 < targets.length; ++i2) {\n const y = targets[i2];\n const loss = lossFns[i2];\n const shape = outputShapes[i2];\n if (loss == null) {\n continue;\n }\n if (loss === categoricalCrossentropy) {\n if (y.shape[y.shape.length - 1] === 1) {\n throw new ValueError(`You are passing a target array of shape ${y.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);\n }\n }\n if (keyLosses.indexOf(loss) !== -1) {\n const slicedYShape = y.shape.slice(1);\n const slicedShape = shape.slice(1);\n for (let j = 0; j < slicedYShape.length; ++j) {\n const targetDim = slicedYShape[j];\n const outDim = slicedShape[j];\n if (outDim != null && targetDim !== outDim) {\n throw new ValueError(`A target Tensor with shape ${y.shape} was passed for an output of shape ${shape}, while using a loss function that expects targets to have the same shape as the output.`);\n }\n }\n }\n }\n}\nfunction checkInputData(data, names, shapes, checkBatchAxis = true, exceptionPrefix = \"\") {\n let arrays;\n if (Array.isArray(data)) {\n if (data.length !== names.length) {\n throw new ValueError(`Error when checking model ${exceptionPrefix}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${names.length} Tensor(s), but instead got ${data.length} Tensors(s).`);\n }\n arrays = data;\n } else {\n if (names.length > 1) {\n throw new ValueError(`The model expects ${names.length} ${exceptionPrefix} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(data.shape)}.`);\n }\n arrays = [data];\n }\n if (shapes != null) {\n for (let i2 = 0; i2 < names.length; ++i2) {\n if (shapes[i2] == null) {\n continue;\n }\n const array2 = arrays[i2];\n if (array2.shape.length !== shapes[i2].length) {\n throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i2]} to have ${shapes[i2].length} dimension(s), but got array with shape ${JSON.stringify(array2.shape)}`);\n }\n for (let j = 0; j < shapes[i2].length; ++j) {\n if (j === 0 && !checkBatchAxis) {\n continue;\n }\n const dim = array2.shape[j];\n const refDim = shapes[i2][j];\n if (refDim != null) {\n if (refDim !== dim) {\n throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i2]} to have shape ${JSON.stringify(shapes[i2])} but got array with shape ${JSON.stringify(array2.shape)}.`);\n }\n }\n }\n }\n }\n}\nfunction collectMetrics(metrics, outputNames) {\n if (metrics == null || Array.isArray(metrics) && metrics.length === 0) {\n return outputNames.map((name) => []);\n }\n let wrappedMetrics;\n if (typeof metrics === \"string\" || typeof metrics === \"function\") {\n wrappedMetrics = [metrics];\n } else if (Array.isArray(metrics) || typeof metrics === \"object\") {\n wrappedMetrics = metrics;\n } else {\n throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${metrics}`);\n }\n if (Array.isArray(wrappedMetrics)) {\n return outputNames.map((name) => wrappedMetrics);\n } else {\n const nestedMetrics = [];\n for (const name of outputNames) {\n let outputMetrics = wrappedMetrics.hasOwnProperty(name) ? wrappedMetrics[name] : [];\n if (!Array.isArray(outputMetrics)) {\n outputMetrics = [outputMetrics];\n }\n nestedMetrics.push(outputMetrics);\n }\n return nestedMetrics;\n }\n}\nvar LAYERS_MODEL_FORMAT_NAME = \"layers-model\";\nvar LayersModel = class extends Container {\n constructor(args) {\n super(args);\n this.isTraining = false;\n }\n summary(lineLength, positions, printFn = console.log) {\n if (!this.built) {\n throw new ValueError(`This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).`);\n }\n printSummary(this, lineLength, positions, printFn);\n }\n compile(args) {\n if (args.loss == null) {\n args.loss = [];\n }\n this.loss = args.loss;\n if (typeof args.optimizer === \"string\") {\n this.optimizer_ = getOptimizer(args.optimizer);\n this.isOptimizerOwned = true;\n } else {\n if (!(args.optimizer instanceof Optimizer)) {\n throw new ValueError(`User-defined optimizer must be an instance of tf.Optimizer.`);\n }\n this.optimizer_ = args.optimizer;\n this.isOptimizerOwned = false;\n }\n let lossFunctions = [];\n if (!Array.isArray(args.loss) && typeof args.loss !== \"string\" && typeof args.loss !== \"function\") {\n args.loss = args.loss;\n for (const name in args.loss) {\n if (this.outputNames.indexOf(name) === -1) {\n throw new ValueError(`Unknown entry in loss dictionary: \"${name}\". Only expected the following keys: ${this.outputNames}`);\n }\n }\n for (const name of this.outputNames) {\n if (args.loss[name] == null) {\n console.warn(`Output \"${name}\" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${name} during training`);\n }\n lossFunctions.push(get(args.loss[name]));\n }\n } else if (Array.isArray(args.loss)) {\n if (args.loss.length !== this.outputs.length) {\n throw new ValueError(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${args.loss}.`);\n }\n const theLosses = args.loss;\n lossFunctions = theLosses.map((l3) => get(l3));\n } else {\n const lossFunction = get(args.loss);\n this.outputs.forEach((_) => {\n lossFunctions.push(lossFunction);\n });\n }\n this.lossFunctions = lossFunctions;\n this.feedOutputNames = [];\n this.feedOutputShapes = [];\n this.feedLossFns = [];\n for (let i2 = 0; i2 < this.outputs.length; ++i2) {\n const shape = this.internalOutputShapes[i2];\n const name = this.outputNames[i2];\n this.feedOutputNames.push(name);\n this.feedOutputShapes.push(shape);\n this.feedLossFns.push(this.lossFunctions[i2]);\n }\n const skipTargetIndices = [];\n this.metrics = args.metrics;\n this.metricsNames = [\"loss\"];\n this.metricsTensors = [];\n nameScope(\"loss\", () => {\n for (let i2 = 0; i2 < this.outputs.length; ++i2) {\n if (skipTargetIndices.indexOf(i2) !== -1) {\n continue;\n }\n const weightedLoss = this.lossFunctions[i2];\n if (this.outputs.length > 1) {\n this.metricsTensors.push([weightedLoss, i2]);\n this.metricsNames.push(this.outputNames[i2] + \"_loss\");\n }\n }\n });\n const nestedMetrics = collectMetrics(args.metrics, this.outputNames);\n const appendMetric = (outputIndex, metricName, metricTensor) => {\n if (this.outputNames.length > 1) {\n metricName = this.outputNames[outputIndex] + \"_\" + metricName;\n }\n this.metricsNames.push(metricName);\n this.metricsTensors.push([metricTensor, outputIndex]);\n };\n nameScope(\"metric\", () => {\n for (let i2 = 0; i2 < this.outputs.length; ++i2) {\n if (skipTargetIndices.indexOf(i2) !== -1) {\n continue;\n }\n const outputMetrics = nestedMetrics[i2];\n const handleMetrics = (metrics) => {\n const metricNamePrefix = \"\";\n let metricName;\n let accFn;\n let weightedMetricFn;\n for (const metric of metrics) {\n if (typeof metric === \"string\" && [\"accuracy\", \"acc\", \"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n const outputShape = this.internalOutputShapes[i2];\n if (outputShape[outputShape.length - 1] === 1 || this.lossFunctions[i2] === binaryCrossentropy) {\n if ([\"accuracy\", \"acc\"].indexOf(metric) !== -1) {\n accFn = binaryAccuracy;\n } else if ([\"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n accFn = binaryCrossentropy2;\n }\n } else if (this.lossFunctions[i2] === sparseCategoricalCrossentropy) {\n if ([\"accuracy\", \"acc\"].indexOf(metric) !== -1) {\n accFn = sparseCategoricalAccuracy;\n } else if ([\"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n accFn = sparseCategoricalCrossentropy2;\n }\n } else {\n if ([\"accuracy\", \"acc\"].indexOf(metric) !== -1) {\n accFn = categoricalAccuracy;\n } else if ([\"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n accFn = categoricalCrossentropy2;\n }\n }\n let suffix;\n if ([\"accuracy\", \"acc\"].indexOf(metric) !== -1) {\n suffix = \"acc\";\n } else if ([\"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n suffix = \"ce\";\n }\n weightedMetricFn = accFn;\n metricName = metricNamePrefix + suffix;\n } else {\n const metricFn = get2(metric);\n weightedMetricFn = metricFn;\n metricName = metricNamePrefix + getLossOrMetricName(metric);\n }\n let metricResult;\n nameScope(metricName, () => {\n metricResult = weightedMetricFn;\n });\n appendMetric(i2, metricName, metricResult);\n }\n };\n handleMetrics(outputMetrics);\n }\n });\n this.collectedTrainableWeights = this.trainableWeights;\n }\n checkTrainableWeightsConsistency() {\n if (this.collectedTrainableWeights == null) {\n return;\n }\n if (this.trainableWeights.length !== this.collectedTrainableWeights.length) {\n console.warn(\"Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?\");\n }\n }\n evaluate(x, y, args = {}) {\n const batchSize = args.batchSize == null ? 32 : args.batchSize;\n checkBatchSize(batchSize);\n const checkBatchAxis = true;\n const standardizedOuts = this.standardizeUserDataXY(x, y, checkBatchAxis, batchSize);\n try {\n const ins = standardizedOuts[0].concat(standardizedOuts[1]);\n this.makeTestFunction();\n const f = this.testFunction;\n const testOuts = this.testLoop(f, ins, batchSize, args.verbose, args.steps);\n return singletonOrArray(testOuts);\n } finally {\n disposeNewTensors(standardizedOuts[0], x);\n disposeNewTensors(standardizedOuts[1], y);\n }\n }\n async evaluateDataset(dataset, args) {\n this.makeTestFunction();\n return evaluateDataset(this, dataset, args);\n }\n checkNumSamples(ins, batchSize, steps, stepsName = \"steps\") {\n let numSamples;\n if (steps != null) {\n numSamples = null;\n if (batchSize != null) {\n throw new ValueError(`If ${stepsName} is set, batchSize must be null or undefined.Got batchSize = ${batchSize}`);\n }\n } else if (ins != null) {\n if (Array.isArray(ins)) {\n numSamples = ins[0].shape[0];\n } else {\n numSamples = ins.shape[0];\n }\n } else {\n throw new ValueError(`Either the input data should have a defined shape, or ${stepsName} shoud be specified.`);\n }\n return numSamples;\n }\n execute(inputs, outputs) {\n if (Array.isArray(outputs) && outputs.length === 0) {\n throw new ValueError(\"`outputs` is an empty Array, which is not allowed.\");\n }\n const outputsIsArray = Array.isArray(outputs);\n const outputNames = outputsIsArray ? outputs : [outputs];\n const outputSymbolicTensors = this.retrieveSymbolicTensors(outputNames);\n const feedDict = new FeedDict();\n if (inputs instanceof Tensor) {\n inputs = [inputs];\n }\n if (Array.isArray(inputs)) {\n if (inputs.length !== this.inputs.length) {\n throw new ValueError(`The number of inputs provided (${inputs.length}) does not match the number of inputs of this model (${this.inputs.length}).`);\n }\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n feedDict.add(this.inputs[i2], inputs[i2]);\n }\n } else {\n for (const input2 of this.inputs) {\n const tensorValue = inputs[input2.name];\n if (tensorValue == null) {\n throw new ValueError(`No value is provided for the model's input ${input2.name}`);\n }\n feedDict.add(input2, tensorValue);\n }\n }\n const executeOutputs = execute(outputSymbolicTensors, feedDict);\n return outputsIsArray ? executeOutputs : executeOutputs[0];\n }\n retrieveSymbolicTensors(symbolicTensorNames) {\n const outputSymbolicTensors = pyListRepeat(null, symbolicTensorNames.length);\n let outputsRemaining = symbolicTensorNames.length;\n for (const layer of this.layers) {\n const layerOutputs = Array.isArray(layer.output) ? layer.output : [layer.output];\n const layerOutputNames = layerOutputs.map((output) => output.name);\n for (let i2 = 0; i2 < symbolicTensorNames.length; ++i2) {\n const index = layerOutputNames.indexOf(symbolicTensorNames[i2]);\n if (index !== -1) {\n outputSymbolicTensors[i2] = layerOutputs[index];\n outputsRemaining--;\n }\n if (outputsRemaining === 0) {\n break;\n }\n }\n if (outputsRemaining === 0) {\n break;\n }\n }\n if (outputsRemaining > 0) {\n const remainingNames = [];\n outputSymbolicTensors.forEach((tensor2, i2) => {\n if (tensor2 == null) {\n remainingNames.push(symbolicTensorNames[i2]);\n }\n });\n throw new ValueError(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(remainingNames)}`);\n }\n return outputSymbolicTensors;\n }\n predictLoop(ins, batchSize = 32, verbose = false) {\n return tidy(() => {\n const numSamples = this.checkNumSamples(ins);\n if (verbose) {\n throw new NotImplementedError(\"Verbose predictLoop() is not implemented yet.\");\n }\n const batches = makeBatches(numSamples, batchSize);\n const outsBatches = this.outputs.map((output) => []);\n for (let batchIndex = 0; batchIndex < batches.length; ++batchIndex) {\n const batchOuts = tidy(() => {\n const batchStart = batches[batchIndex][0];\n const batchEnd = batches[batchIndex][1];\n const insBatch = sliceArrays(ins, batchStart, batchEnd);\n const feeds = [];\n if (Array.isArray(insBatch)) {\n for (let i2 = 0; i2 < insBatch.length; ++i2) {\n feeds.push({ key: this.inputs[i2], value: insBatch[i2] });\n }\n } else {\n feeds.push({ key: this.inputs[0], value: insBatch });\n }\n const feedDict = new FeedDict(feeds);\n return execute(this.outputs, feedDict);\n });\n batchOuts.forEach((batchOut, i2) => outsBatches[i2].push(batchOut));\n }\n return singletonOrArray(outsBatches.map((batches2) => concat(batches2, 0)));\n });\n }\n predict(x, args = {}) {\n const xsRank2OrHigher = ensureTensorsRank2OrHigher(x);\n checkInputData(xsRank2OrHigher, this.inputNames, this.feedInputShapes, false);\n try {\n const batchSize = args.batchSize == null ? 32 : args.batchSize;\n checkBatchSize(batchSize);\n return this.predictLoop(xsRank2OrHigher, batchSize);\n } finally {\n disposeNewTensors(xsRank2OrHigher, x);\n }\n }\n predictOnBatch(x) {\n checkInputData(x, this.inputNames, this.feedInputShapes, true);\n const batchSize = (Array.isArray(x) ? x[0] : x).shape[0];\n return this.predictLoop(x, batchSize);\n }\n standardizeUserDataXY(x, y, checkBatchAxis = true, batchSize) {\n if (this.optimizer_ == null) {\n throw new RuntimeError(\"You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).\");\n }\n const outputShapes = [];\n for (let i2 = 0; i2 < this.feedOutputShapes.length; ++i2) {\n const outputShape = this.feedOutputShapes[i2];\n const lossFn = this.feedLossFns[i2];\n if (lossFn === sparseCategoricalCrossentropy) {\n outputShapes.push(outputShape.slice(0, outputShape.length - 1).concat([1]));\n } else {\n outputShapes.push(outputShape);\n }\n }\n x = standardizeInputData(x, this.feedInputNames, this.feedInputShapes, false, \"input\");\n y = standardizeInputData(y, this.feedOutputNames, outputShapes, false, \"target\");\n checkArrayLengths(x, y, null);\n checkLossAndTargetCompatibility(y, this.feedLossFns, this.feedOutputShapes);\n if (this.stateful && batchSize != null && batchSize > 0) {\n if (x[0].shape[0] % batchSize !== 0) {\n throw new ValueError(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${batchSize}. Found: ${x[0].shape[0]} sample(s).`);\n }\n }\n return [x, y];\n }\n async standardizeUserData(x, y, sampleWeight, classWeight, checkBatchAxis = true, batchSize) {\n const [standardXs, standardYs] = this.standardizeUserDataXY(x, y, checkBatchAxis, batchSize);\n if (sampleWeight != null) {\n throw new Error(\"sample weight is not supported yet.\");\n }\n let standardSampleWeights = null;\n if (classWeight != null) {\n const classWeights = standardizeClassWeights(classWeight, this.outputNames);\n standardSampleWeights = [];\n for (let i2 = 0; i2 < classWeights.length; ++i2) {\n standardSampleWeights.push(await standardizeWeights(standardYs[i2], null, classWeights[i2]));\n }\n }\n return [standardXs, standardYs, standardSampleWeights];\n }\n testLoop(f, ins, batchSize, verbose = 0, steps) {\n return tidy(() => {\n const numSamples = this.checkNumSamples(ins, batchSize, steps, \"steps\");\n const outs = [];\n if (verbose > 0) {\n throw new NotImplementedError(\"Verbose mode is not implemented yet.\");\n }\n if (steps != null) {\n throw new NotImplementedError(\"steps mode in testLoop() is not implemented yet\");\n } else {\n const batches = makeBatches(numSamples, batchSize);\n const indexArray = tensor1d(range2(0, numSamples));\n for (let batchIndex = 0; batchIndex < batches.length; ++batchIndex) {\n const batchStart = batches[batchIndex][0];\n const batchEnd = batches[batchIndex][1];\n const batchIds = sliceAlongFirstAxis(indexArray, batchStart, batchEnd - batchStart);\n const insBatch = sliceArraysByIndices(ins, batchIds);\n const batchOuts = f(insBatch);\n if (batchIndex === 0) {\n for (let i2 = 0; i2 < batchOuts.length; ++i2) {\n outs.push(scalar(0));\n }\n }\n for (let i2 = 0; i2 < batchOuts.length; ++i2) {\n const batchOut = batchOuts[i2];\n outs[i2] = add2(outs[i2], mul(batchEnd - batchStart, batchOut));\n }\n }\n for (let i2 = 0; i2 < outs.length; ++i2) {\n outs[i2] = div(outs[i2], numSamples);\n }\n }\n return outs;\n });\n }\n getDedupedMetricsNames() {\n const outLabels = this.metricsNames;\n const dedupedOutLabels = [];\n for (let i2 = 0; i2 < outLabels.length; ++i2) {\n const label = outLabels[i2];\n let newLabel = label;\n if (count(outLabels, label) > 1) {\n const dupIndex = count(outLabels.slice(0, i2), label);\n newLabel += `_${dupIndex}`;\n }\n dedupedOutLabels.push(newLabel);\n }\n return dedupedOutLabels;\n }\n makeTrainFunction() {\n return (data) => {\n const lossValues = [];\n const inputs = data.slice(0, this.inputs.length);\n const targets = data.slice(this.inputs.length, this.inputs.length + this.outputs.length);\n const sampleWeights = data.slice(this.inputs.length + this.outputs.length, this.inputs.length + this.outputs.length * 2);\n const metricsValues = [];\n const totalLossFunction = () => {\n const feeds = [];\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n feeds.push({ key: this.inputs[i2], value: inputs[i2] });\n }\n const feedDict = new FeedDict(feeds);\n const outputs = execute(this.outputs, feedDict, { \"training\": true });\n let totalLoss;\n for (let i2 = 0; i2 < this.lossFunctions.length; ++i2) {\n const lossFunction = this.lossFunctions[i2];\n let loss = lossFunction(targets[i2], outputs[i2]);\n if (sampleWeights[i2] != null) {\n loss = computeWeightedLoss2(loss, sampleWeights[i2]);\n }\n const meanLoss = mean(loss);\n lossValues.push(meanLoss);\n if (i2 === 0) {\n totalLoss = loss;\n } else {\n totalLoss = add2(totalLoss, loss);\n }\n }\n for (let i2 = 0; i2 < this.metricsTensors.length; ++i2) {\n let weightedMetric;\n if (this.outputs.length > 1 && i2 < this.outputs.length) {\n weightedMetric = lossValues[i2];\n } else {\n const metric = this.metricsTensors[i2][0];\n const outputIndex = this.metricsTensors[i2][1];\n weightedMetric = mean(metric(targets[outputIndex], outputs[outputIndex]));\n }\n keep(weightedMetric);\n metricsValues.push(weightedMetric);\n }\n totalLoss = mean(totalLoss);\n this.calculateLosses().forEach((regularizerLoss) => {\n totalLoss = add2(totalLoss, regularizerLoss);\n });\n return totalLoss;\n };\n const variables = this.collectedTrainableWeights.map((param) => param.read());\n const returnCost = true;\n const totalLossValue = this.optimizer_.minimize(totalLossFunction, returnCost, variables);\n return [totalLossValue].concat(metricsValues);\n };\n }\n makeTestFunction() {\n this.testFunction = (data) => {\n return tidy(() => {\n const valOutputs = [];\n let totalLoss;\n const inputs = data.slice(0, this.inputs.length);\n const targets = data.slice(this.inputs.length, this.inputs.length + this.outputs.length);\n const feeds = [];\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n feeds.push({ key: this.inputs[i2], value: inputs[i2] });\n }\n const feedDict = new FeedDict(feeds);\n const outputs = execute(this.outputs, feedDict);\n for (let i2 = 0; i2 < this.lossFunctions.length; ++i2) {\n const lossFunction = this.lossFunctions[i2];\n const loss = mean(lossFunction(targets[i2], outputs[i2]));\n if (i2 === 0) {\n totalLoss = loss;\n } else {\n totalLoss = add2(totalLoss, loss);\n }\n valOutputs.push(totalLoss);\n }\n for (let i2 = 0; i2 < this.metricsTensors.length; ++i2) {\n const metric = this.metricsTensors[i2][0];\n const outputIndex = this.metricsTensors[i2][1];\n const meanMetric = mean(metric(targets[outputIndex], outputs[outputIndex]));\n valOutputs.push(meanMetric);\n }\n return valOutputs;\n });\n };\n }\n async fit(x, y, args = {}) {\n return fitTensors(this, x, y, args);\n }\n async fitDataset(dataset, args) {\n return fitDataset(this, dataset, args);\n }\n async trainOnBatch(x, y) {\n const standardizeOut = await this.standardizeUserData(x, y);\n const inputs = standardizeOut[0];\n const targets = standardizeOut[1];\n const trainFunction = this.makeTrainFunction();\n const losses2 = trainFunction(inputs.concat(targets));\n const lossValues = [];\n for (const loss of losses2) {\n const v = await loss.data();\n lossValues.push(v[0]);\n }\n dispose(losses2);\n disposeNewTensors(standardizeOut[0], x);\n disposeNewTensors(standardizeOut[1], y);\n return singletonOrArray(lossValues);\n }\n getNamedWeights(config) {\n const namedWeights = [];\n const trainableOnly = config != null && config.trainableOnly;\n const weights = trainableOnly ? this.trainableWeights : this.weights;\n const weightValues = this.getWeights(trainableOnly);\n for (let i2 = 0; i2 < weights.length; ++i2) {\n if (trainableOnly && !weights[i2].trainable) {\n continue;\n }\n namedWeights.push({ name: weights[i2].originalName, tensor: weightValues[i2] });\n }\n return namedWeights;\n }\n set stopTraining(stop) {\n this.stopTraining_ = stop;\n }\n get stopTraining() {\n return this.stopTraining_;\n }\n get optimizer() {\n return this.optimizer_;\n }\n set optimizer(optimizer) {\n if (this.optimizer_ !== optimizer) {\n this.optimizer_ = optimizer;\n this.isOptimizerOwned = false;\n }\n }\n dispose() {\n const result = super.dispose();\n if (result.refCountAfterDispose === 0 && this.optimizer != null && this.isOptimizerOwned) {\n const numTensorsBeforeOptmizerDisposal = memory().numTensors;\n this.optimizer_.dispose();\n result.numDisposedVariables += numTensorsBeforeOptmizerDisposal - memory().numTensors;\n }\n return result;\n }\n getLossIdentifiers() {\n let lossNames;\n if (typeof this.loss === \"string\") {\n lossNames = toSnakeCase(this.loss);\n } else if (Array.isArray(this.loss)) {\n for (const loss of this.loss) {\n if (typeof loss !== \"string\") {\n throw new Error(\"Serialization of non-string loss is not supported.\");\n }\n }\n lossNames = this.loss.map((name) => toSnakeCase(name));\n } else {\n const outputNames = Object.keys(this.loss);\n lossNames = {};\n const losses2 = this.loss;\n for (const outputName of outputNames) {\n if (typeof losses2[outputName] === \"string\") {\n lossNames[outputName] = toSnakeCase(losses2[outputName]);\n } else {\n throw new Error(\"Serialization of non-string loss is not supported.\");\n }\n }\n }\n return lossNames;\n }\n getMetricIdentifiers() {\n if (typeof this.metrics === \"string\" || typeof this.metrics === \"function\") {\n return [toSnakeCase(getLossOrMetricName(this.metrics))];\n } else if (Array.isArray(this.metrics)) {\n return this.metrics.map((metric) => toSnakeCase(getLossOrMetricName(metric)));\n } else {\n const metricsIdentifiers = {};\n for (const key in this.metrics) {\n metricsIdentifiers[key] = toSnakeCase(getLossOrMetricName(this.metrics[key]));\n }\n return metricsIdentifiers;\n }\n }\n getTrainingConfig() {\n return {\n loss: this.getLossIdentifiers(),\n metrics: this.getMetricIdentifiers(),\n optimizer_config: {\n class_name: this.optimizer.getClassName(),\n config: this.optimizer.getConfig()\n }\n };\n }\n loadTrainingConfig(trainingConfig) {\n if (trainingConfig.weighted_metrics != null) {\n throw new Error(\"Loading weight_metrics is not supported yet.\");\n }\n if (trainingConfig.loss_weights != null) {\n throw new Error(\"Loading loss_weights is not supported yet.\");\n }\n if (trainingConfig.sample_weight_mode != null) {\n throw new Error(\"Loading sample_weight_mode is not supported yet.\");\n }\n const tsConfig = convertPythonicToTs(trainingConfig.optimizer_config);\n const optimizer = deserialize(tsConfig);\n let loss;\n if (typeof trainingConfig.loss === \"string\") {\n loss = toCamelCase(trainingConfig.loss);\n } else if (Array.isArray(trainingConfig.loss)) {\n loss = trainingConfig.loss.map((lossEntry) => toCamelCase(lossEntry));\n } else if (trainingConfig.loss != null) {\n loss = {};\n for (const key in trainingConfig.loss) {\n loss[key] = toCamelCase(trainingConfig.loss[key]);\n }\n }\n let metrics;\n if (Array.isArray(trainingConfig.metrics)) {\n metrics = trainingConfig.metrics.map((metric) => toCamelCase(metric));\n } else if (trainingConfig.metrics != null) {\n metrics = {};\n for (const key in trainingConfig.metrics) {\n metrics[key] = toCamelCase(trainingConfig.metrics[key]);\n }\n }\n this.compile({ loss, metrics, optimizer });\n }\n async save(handlerOrURL, config) {\n if (typeof handlerOrURL === \"string\") {\n const handlers = io_exports.getSaveHandlers(handlerOrURL);\n if (handlers.length === 0) {\n throw new ValueError(`Cannot find any save handlers for URL '${handlerOrURL}'`);\n } else if (handlers.length > 1) {\n throw new ValueError(`Found more than one (${handlers.length}) save handlers for URL '${handlerOrURL}'`);\n }\n handlerOrURL = handlers[0];\n }\n if (handlerOrURL.save == null) {\n throw new ValueError(\"LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.\");\n }\n const weightDataAndSpecs = await io_exports.encodeWeights(this.getNamedWeights(config));\n const returnString = false;\n const unusedArg = null;\n const modelConfig = this.toJSON(unusedArg, returnString);\n const modelArtifacts = {\n modelTopology: modelConfig,\n format: LAYERS_MODEL_FORMAT_NAME,\n generatedBy: `TensorFlow.js tfjs-layers v${version2}`,\n convertedBy: null\n };\n const includeOptimizer = config == null ? false : config.includeOptimizer;\n if (includeOptimizer && this.optimizer != null) {\n modelArtifacts.trainingConfig = this.getTrainingConfig();\n const weightType = \"optimizer\";\n const { data: optimizerWeightData, specs: optimizerWeightSpecs } = await io_exports.encodeWeights(await this.optimizer.getWeights(), weightType);\n weightDataAndSpecs.specs.push(...optimizerWeightSpecs);\n weightDataAndSpecs.data = io_exports.concatenateArrayBuffers([weightDataAndSpecs.data, optimizerWeightData]);\n }\n if (this.userDefinedMetadata != null) {\n const checkSize = true;\n checkUserDefinedMetadata(this.userDefinedMetadata, this.name, checkSize);\n modelArtifacts.userDefinedMetadata = this.userDefinedMetadata;\n }\n modelArtifacts.weightData = weightDataAndSpecs.data;\n modelArtifacts.weightSpecs = weightDataAndSpecs.specs;\n return handlerOrURL.save(modelArtifacts);\n }\n setUserDefinedMetadata(userDefinedMetadata) {\n checkUserDefinedMetadata(userDefinedMetadata, this.name);\n this.userDefinedMetadata = userDefinedMetadata;\n }\n getUserDefinedMetadata() {\n return this.userDefinedMetadata;\n }\n};\nLayersModel.className = \"Model\";\nserialization_exports.registerClass(LayersModel);\nvar Functional = class extends LayersModel {\n};\nFunctional.className = \"Functional\";\nserialization_exports.registerClass(Functional);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/models.js\nasync function modelFromJSON(modelAndWeightsConfig, customObjects) {\n if (!(\"modelTopology\" in modelAndWeightsConfig)) {\n modelAndWeightsConfig = { modelTopology: modelAndWeightsConfig };\n }\n modelAndWeightsConfig = modelAndWeightsConfig;\n let modelTopology = modelAndWeightsConfig.modelTopology;\n if (modelTopology[\"model_config\"] != null) {\n modelTopology = modelTopology[\"model_config\"];\n }\n const tsConfig = convertPythonicToTs(modelTopology);\n const model2 = deserialize(tsConfig, customObjects);\n if (modelAndWeightsConfig.weightsManifest != null) {\n const weightValues = await io_exports.loadWeights(modelAndWeightsConfig.weightsManifest, modelAndWeightsConfig.pathPrefix, model2.weights.map((weight) => weight.originalName));\n const uniqueWeightValues = {};\n for (const weight of model2.weights) {\n uniqueWeightValues[weight.originalName] = weightValues[weight.originalName];\n }\n model2.loadWeights(uniqueWeightValues);\n dispose(weightValues);\n }\n return model2;\n}\nasync function loadLayersModelInternal(pathOrIOHandler, options) {\n if (options == null) {\n options = {};\n }\n if (typeof pathOrIOHandler === \"string\") {\n const handlers = io_exports.getLoadHandlers(pathOrIOHandler, options);\n if (handlers.length === 0) {\n handlers.push(io_exports.browserHTTPRequest(pathOrIOHandler, options));\n } else if (handlers.length > 1) {\n throw new ValueError(`Found more than one (${handlers.length}) load handlers for URL '${pathOrIOHandler}'`);\n }\n pathOrIOHandler = handlers[0];\n }\n return loadLayersModelFromIOHandler(pathOrIOHandler, void 0, options);\n}\nasync function loadLayersModelFromIOHandler(handler, customObjects, options) {\n if (options == null) {\n options = {};\n }\n if (handler.load == null) {\n throw new ValueError(\"Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.\");\n }\n const artifacts = await handler.load();\n let modelTopology = artifacts.modelTopology;\n if (modelTopology[\"model_config\"] != null) {\n modelTopology = modelTopology[\"model_config\"];\n }\n const strict = options.strict == null ? true : options.strict;\n const fastWeightInit = artifacts.weightData != null && artifacts.weightSpecs != null && strict;\n const model2 = deserialize(convertPythonicToTs(modelTopology), customObjects, fastWeightInit);\n const trainingConfig = artifacts.trainingConfig;\n if (trainingConfig != null) {\n model2.loadTrainingConfig(trainingConfig);\n }\n if (artifacts.userDefinedMetadata != null) {\n model2.setUserDefinedMetadata(artifacts.userDefinedMetadata);\n }\n if (artifacts.weightData != null) {\n if (artifacts.weightSpecs == null) {\n throw new ValueError(\"LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.\");\n }\n const { modelWeights, optimizerWeights } = decodeModelAndOptimizerWeights(artifacts.weightData, artifacts.weightSpecs);\n model2.loadWeights(modelWeights, strict);\n if (model2.optimizer != null && optimizerWeights.length > 0) {\n await model2.optimizer.setWeights(optimizerWeights);\n }\n dispose(modelWeights);\n dispose(optimizerWeights.map((w) => w.tensor));\n }\n return model2;\n}\nfunction decodeModelAndOptimizerWeights(buffer2, specs) {\n const name2Tensor = io_exports.decodeWeights(buffer2, specs);\n const modelWeights = {};\n const optimizerWeights = [];\n specs.forEach((spec) => {\n if (spec.group === \"optimizer\") {\n optimizerWeights.push({ name: spec.name, tensor: name2Tensor[spec.name] });\n } else {\n modelWeights[spec.name] = name2Tensor[spec.name];\n }\n });\n return { modelWeights, optimizerWeights };\n}\nvar Sequential = class extends LayersModel {\n constructor(args) {\n super({ inputs: [], outputs: [] });\n args = args || {};\n this.trainable = true;\n this.built = false;\n this.name = args.name != null ? args.name : getUid(\"sequential_\");\n if (args.layers != null) {\n for (const layer of args.layers) {\n this.add(layer);\n }\n }\n }\n checkShape(layer) {\n const shape = layer.inboundNodes[0].outputTensors[0].shape;\n if (shape.some((x) => x < 0)) {\n throw new ValueError(`Negative dimension size caused by adding layer ${layer.name} with input shape [${layer.inboundNodes[0].inputTensors[0].shape}]`);\n }\n }\n add(layer) {\n const isLayerModelInstance = layer instanceof Sequential || layer instanceof LayersModel;\n let modelLayer;\n if (isLayerModelInstance) {\n modelLayer = layer;\n if (modelLayer.outputs.length !== 1) {\n throw new ValueError(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");\n }\n if (modelLayer.inputs.length !== 1) {\n throw new ValueError(\"All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.\");\n }\n }\n if (this.outputs.length === 0) {\n if (layer.inboundNodes.length === 0) {\n if (layer.batchInputShape == null) {\n throw new ValueError(\"The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.\");\n }\n const x = Input({\n batchShape: layer.batchInputShape,\n dtype: layer.dtype,\n name: layer.name + \"_input\"\n });\n layer.apply(x);\n }\n if (isLayerModelInstance) {\n this.outputs = modelLayer.outputs;\n this.inputs = modelLayer.inputs;\n } else {\n if (layer.inboundNodes.length !== 1) {\n throw new ValueError(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${layer.name} which has ${layer.inboundNodes.length} pre-existing inbound connections.`);\n }\n if (layer.inboundNodes[0].outputTensors.length !== 1) {\n throw new ValueError(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");\n }\n this.checkShape(layer);\n this.outputs = [layer.inboundNodes[0].outputTensors[0]];\n this.inputs = getSourceInputs(this.outputs[0]);\n }\n this.inboundNodes = [];\n new Node({\n outboundLayer: this,\n inboundLayers: [],\n nodeIndices: [],\n tensorIndices: [],\n inputTensors: this.inputs,\n outputTensors: this.outputs,\n inputMasks: pyListRepeat(null, this.inputs.length),\n outputMasks: [null],\n inputShapes: this.inputs.map((x) => x.shape),\n outputShapes: this.outputs[0].shape\n });\n } else {\n const outputTensor = layer.apply(this.outputs[0]);\n if (Array.isArray(outputTensor)) {\n throw new TypeError(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");\n }\n this.checkShape(layer);\n this.outputs = [outputTensor];\n this.inboundNodes[0].outputTensors = this.outputs;\n this.inboundNodes[0].outputShapes = [this.outputs[0].shape];\n }\n this.layers.push(layer);\n this.built = false;\n }\n pop() {\n if (this.layers.length === 0) {\n throw new TypeError(\"There are no layers in the model.\");\n }\n this.layers.pop();\n if (this.layers.length === 0) {\n this.outputs = [];\n this.inboundNodes = [];\n this.outboundNodes = [];\n } else {\n const lastLayerIndex = this.layers.length - 1;\n this.layers[lastLayerIndex].outboundNodes = [];\n this.outputs = [this.layers[lastLayerIndex].output];\n this.inboundNodes[0].outputTensors = this.outputs;\n this.inboundNodes[0].outputShapes = [this.outputs[0].shape];\n }\n }\n call(inputs, kwargs) {\n if (this.model == null) {\n this.build();\n }\n return this.model.call(inputs, kwargs);\n }\n build(inputShape) {\n getExactlyOneShape(inputShape);\n if (this.inputs.length === 0 || this.outputs.length === 0) {\n throw new TypeError(\"Sequential model cannot be built: model is empty. Add some layers first.\");\n }\n this.model = new LayersModel({\n inputs: this.inputs,\n outputs: this.outputs[0],\n name: this.name + \"_model\"\n });\n this.model.trainable = this.trainable;\n this.supportsMasking = this.model.supportsMasking;\n this.inputLayers = this.model.inputLayers;\n this.inputLayersNodeIndices = this.model.inputLayersNodeIndices;\n this.inputLayersTensorIndices = this.model.inputLayersTensorIndices;\n this.outputLayers = this.model.outputLayers;\n this.outputLayersNodeIndices = this.model.outputLayersNodeIndices;\n this.outputLayersTensorIndices = this.model.outputLayersTensorIndices;\n this.nodesByDepth = this.model.nodesByDepth;\n this.containerNodes = this.model.containerNodes;\n this.outputNames = this.model.outputNames;\n this.inputNames = this.model.inputNames;\n this.built = true;\n }\n countParams() {\n if (!this.built) {\n this.build();\n }\n return super.countParams();\n }\n summary(lineLength, positions, printFn = console.log) {\n if (!this.built) {\n this.build();\n }\n super.summary(lineLength, positions, printFn);\n }\n setWeights(weights) {\n if (this.model == null) {\n this.build();\n }\n this.model.setWeights(weights);\n }\n evaluate(x, y, args = {}) {\n if (!this.built) {\n throw new RuntimeError(\"The model needs to be compiled before being used.\");\n }\n return this.model.evaluate(x, y, args);\n }\n async evaluateDataset(dataset, args) {\n if (!this.built) {\n throw new RuntimeError(\"The model needs to be compiled before being used.\");\n }\n return this.model.evaluateDataset(dataset, args);\n }\n predict(x, args = {}) {\n if (this.model == null) {\n this.build();\n }\n return this.model.predict(x, args);\n }\n predictOnBatch(x) {\n if (this.model == null) {\n this.build();\n }\n return this.model.predictOnBatch(x);\n }\n compile(args) {\n this.build();\n this.model.compile(args);\n this.optimizer_ = this.model.optimizer;\n this.isOptimizerOwned = this.model.isOptimizerOwned;\n this.loss = this.model.loss;\n this.metrics = this.model.metrics;\n this.metricsTensors = this.model.metricsTensors;\n this.metricsNames = this.model.metricsNames;\n }\n get optimizer() {\n return this.model == null ? void 0 : this.model.optimizer;\n }\n set optimizer(optimizer) {\n this.model.optimizer = optimizer;\n }\n async fit(x, y, args = {}) {\n if (!this.built) {\n throw new RuntimeError(\"The model needs to be compiled before being used.\");\n }\n return this.model.fit(x, y, args);\n }\n async fitDataset(dataset, args) {\n if (!this.built) {\n throw new RuntimeError(\"The model needs to be compiled before being used.\");\n }\n return this.model.fitDataset(dataset, args);\n }\n async trainOnBatch(x, y) {\n return this.model.trainOnBatch(x, y);\n }\n static fromConfig(cls, config, customObjects = {}, fastWeightInit = false) {\n let configArray;\n let extraModelConfig = {};\n if (config instanceof Array) {\n if (!(config[0].className != null) || config[0][\"className\"] === \"Merge\") {\n throw new ValueError(\"Legacy serialization format not supported yet.\");\n }\n configArray = config;\n } else {\n util_exports.assert(config[\"layers\"] != null, () => `When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field.`);\n configArray = config[\"layers\"];\n delete config[\"layers\"];\n extraModelConfig = config;\n }\n const model2 = new cls(extraModelConfig);\n if (!(model2 instanceof Sequential)) {\n throw new NotImplementedError(`Sequential.fromConfig called on non-Sequential input: ${model2}`);\n }\n for (const conf of configArray) {\n const customObjects2 = void 0;\n const layer = deserialize(conf, customObjects2, fastWeightInit);\n if (fastWeightInit) {\n layer.setFastWeightInitDuringBuild(true);\n }\n model2.add(layer);\n }\n return model2;\n }\n set stopTraining(stop) {\n if (this.model == null) {\n throw new ValueError(\"Cannot set the stopTraining property of a sequential model before it is compiled.\");\n }\n this.model.stopTraining = stop;\n }\n get stopTraining() {\n if (this.model == null) {\n throw new ValueError(\"Cannot get the stopTraining property of a sequential model before it is compiled.\");\n }\n return this.model.stopTraining;\n }\n getConfig() {\n const layers = [];\n for (const layer of this.layers) {\n const dict = {};\n dict[\"className\"] = layer.getClassName();\n dict[\"config\"] = layer.getConfig();\n layers.push(dict);\n }\n return { name: this.name, layers };\n }\n};\nSequential.className = \"Sequential\";\nserialization_exports.registerClass(Sequential);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports.js\nfunction model(args) {\n return new LayersModel(args);\n}\nfunction sequential(config) {\n return new Sequential(config);\n}\nfunction loadLayersModel(pathOrIOHandler, options) {\n if (options == null) {\n options = {};\n }\n return loadLayersModelInternal(pathOrIOHandler, options);\n}\nfunction input(config) {\n return Input(config);\n}\nfunction registerCallbackConstructor(verbosityLevel, callbackConstructor) {\n CallbackConstructorRegistry.registerCallbackConstructor(verbosityLevel, callbackConstructor);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/activations.js\nvar Activation = class extends serialization_exports.Serializable {\n getConfig() {\n return {};\n }\n};\nvar Elu2 = class extends Activation {\n apply(x, alpha = 1) {\n return elu2(x, alpha);\n }\n};\nElu2.className = \"elu\";\nserialization_exports.registerClass(Elu2);\nvar Selu2 = class extends Activation {\n apply(x) {\n return selu(x);\n }\n};\nSelu2.className = \"selu\";\nserialization_exports.registerClass(Selu2);\nvar Relu2 = class extends Activation {\n apply(x) {\n return relu(x);\n }\n};\nRelu2.className = \"relu\";\nserialization_exports.registerClass(Relu2);\nvar Relu62 = class extends Activation {\n apply(x) {\n return tidy(() => minimum(6, relu(x)));\n }\n};\nRelu62.className = \"relu6\";\nserialization_exports.registerClass(Relu62);\nvar Linear = class extends Activation {\n apply(x) {\n return x;\n }\n};\nLinear.className = \"linear\";\nserialization_exports.registerClass(Linear);\nvar Sigmoid2 = class extends Activation {\n apply(x) {\n return sigmoid(x);\n }\n};\nSigmoid2.className = \"sigmoid\";\nserialization_exports.registerClass(Sigmoid2);\nvar HardSigmoid = class extends Activation {\n apply(x) {\n return hardSigmoid(x);\n }\n};\nHardSigmoid.className = \"hardSigmoid\";\nserialization_exports.registerClass(HardSigmoid);\nvar Softplus2 = class extends Activation {\n apply(x) {\n return softplus(x);\n }\n};\nSoftplus2.className = \"softplus\";\nserialization_exports.registerClass(Softplus2);\nvar Softsign = class extends Activation {\n apply(x) {\n return softsign(x);\n }\n};\nSoftsign.className = \"softsign\";\nserialization_exports.registerClass(Softsign);\nvar Tanh2 = class extends Activation {\n apply(x) {\n return tanh2(x);\n }\n};\nTanh2.className = \"tanh\";\nserialization_exports.registerClass(Tanh2);\nvar Softmax2 = class extends Activation {\n apply(x, axis = -1) {\n return softmax(x, axis);\n }\n};\nSoftmax2.className = \"softmax\";\nserialization_exports.registerClass(Softmax2);\nvar LogSoftmax2 = class extends Activation {\n apply(x, axis = -1) {\n return logSoftmax(x, axis);\n }\n};\nLogSoftmax2.className = \"logSoftmax\";\nserialization_exports.registerClass(LogSoftmax2);\nvar Swish = class extends Activation {\n apply(x, alpha = 1) {\n return tidy(() => mul(sigmoid(mul(x, alpha)), x));\n }\n};\nSwish.className = \"swish\";\nserialization_exports.registerClass(Swish);\nvar Mish = class extends Activation {\n apply(x) {\n return tidy(() => mul(x, tanh2(softplus(x))));\n }\n};\nMish.className = \"mish\";\nserialization_exports.registerClass(Mish);\nfunction serializeActivation(activation2) {\n return activation2.getClassName();\n}\nfunction deserializeActivation(config, customObjects = {}) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"activation\");\n}\nfunction getActivation(identifier) {\n if (identifier == null) {\n const config = {};\n config[\"className\"] = \"linear\";\n config[\"config\"] = {};\n return deserializeActivation(config);\n }\n if (typeof identifier === \"string\") {\n const config = {};\n config[\"className\"] = identifier;\n config[\"config\"] = {};\n return deserializeActivation(config);\n } else if (identifier instanceof Activation) {\n return identifier;\n } else {\n return deserializeActivation(identifier);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/regularizers.js\nfunction assertObjectArgs(args) {\n if (args != null && typeof args !== \"object\") {\n throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${args}`);\n }\n}\nvar Regularizer = class extends serialization_exports.Serializable {\n};\nvar L1L2 = class extends Regularizer {\n constructor(args) {\n super();\n assertObjectArgs(args);\n this.l1 = args == null || args.l1 == null ? 0.01 : args.l1;\n this.l2 = args == null || args.l2 == null ? 0.01 : args.l2;\n this.hasL1 = this.l1 !== 0;\n this.hasL2 = this.l2 !== 0;\n }\n apply(x) {\n return tidy(() => {\n let regularization = zeros([1]);\n if (this.hasL1) {\n regularization = add2(regularization, sum2(mul(this.l1, abs(x))));\n }\n if (this.hasL2) {\n regularization = add2(regularization, sum2(mul(this.l2, square2(x))));\n }\n return reshape(regularization, []);\n });\n }\n getConfig() {\n return { \"l1\": this.l1, \"l2\": this.l2 };\n }\n static fromConfig(cls, config) {\n return new cls({ l1: config[\"l1\"], l2: config[\"l2\"] });\n }\n};\nL1L2.className = \"L1L2\";\nserialization_exports.registerClass(L1L2);\nfunction l1(args) {\n assertObjectArgs(args);\n return new L1L2({ l1: args != null ? args.l1 : null, l2: 0 });\n}\nfunction l2(args) {\n assertObjectArgs(args);\n return new L1L2({ l2: args != null ? args.l2 : null, l1: 0 });\n}\nvar REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP = {\n \"l1l2\": \"L1L2\"\n};\nfunction serializeRegularizer(constraint) {\n return serializeKerasObject(constraint);\n}\nfunction deserializeRegularizer(config, customObjects = {}) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"regularizer\");\n}\nfunction getRegularizer(identifier) {\n if (identifier == null) {\n return null;\n }\n if (typeof identifier === \"string\") {\n const className = identifier in REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP ? REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier] : identifier;\n const config = { className, config: {} };\n return deserializeRegularizer(config);\n } else if (identifier instanceof Regularizer) {\n return identifier;\n } else {\n return deserializeRegularizer(identifier);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/advanced_activations.js\nvar ReLU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.supportsMasking = true;\n if (args != null) {\n this.maxValue = args.maxValue;\n }\n }\n call(inputs, kwargs) {\n inputs = getExactlyOneTensor(inputs);\n let output = relu(inputs);\n if (this.maxValue != null) {\n output = clipByValue(output, 0, this.maxValue);\n }\n return output;\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { maxValue: this.maxValue };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nReLU.className = \"ReLU\";\nserialization_exports.registerClass(ReLU);\nvar LeakyReLU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_ALPHA = 0.3;\n if (args == null) {\n args = {};\n }\n this.alpha = args.alpha == null ? this.DEFAULT_ALPHA : args.alpha;\n }\n call(inputs, kwargs) {\n const x = getExactlyOneTensor(inputs);\n return leakyRelu(x, this.alpha);\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { alpha: this.alpha };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nLeakyReLU.className = \"LeakyReLU\";\nserialization_exports.registerClass(LeakyReLU);\nvar PReLU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_ALPHA_INITIALIZER = \"zeros\";\n if (args == null) {\n args = {};\n }\n this.supportsMasking = true;\n this.alphaInitializer = getInitializer(args.alphaInitializer || this.DEFAULT_ALPHA_INITIALIZER);\n this.alphaRegularizer = getRegularizer(args.alphaRegularizer);\n this.alphaConstraint = getConstraint(args.alphaConstraint);\n if (args.sharedAxes == null) {\n this.sharedAxes = null;\n } else if (Array.isArray(args.sharedAxes)) {\n this.sharedAxes = args.sharedAxes;\n } else if (typeof args.sharedAxes === \"number\") {\n this.sharedAxes = [args.sharedAxes];\n } else {\n throw new ValueError(`Expected sharedAxes to be a number or an array of numbers, but got ${args.sharedAxes}`);\n }\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const paramShape = inputShape.slice(1);\n if (this.sharedAxes != null) {\n for (const i2 of this.sharedAxes) {\n paramShape[i2 - 1] = 1;\n }\n }\n this.alpha = this.addWeight(\"alpha\", paramShape, \"float32\", this.alphaInitializer, this.alphaRegularizer, true, this.alphaConstraint);\n const axes = {};\n if (this.sharedAxes != null) {\n for (let i2 = 1; i2 < inputShape.length; ++i2) {\n axes[i2] = inputShape[i2];\n }\n }\n this.inputSpec = [new InputSpec({\n ndim: inputShape.length,\n axes\n })];\n this.built = true;\n }\n call(inputs, kwargs) {\n inputs = getExactlyOneTensor(inputs);\n return prelu(inputs, this.alpha.read());\n }\n getConfig() {\n const config = {\n alphaInitializer: serializeInitializer(this.alphaInitializer),\n alphaRegularizer: serializeRegularizer(this.alphaRegularizer),\n alphaConstraint: serializeConstraint(this.alphaConstraint),\n sharedAxes: this.sharedAxes\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nPReLU.className = \"PReLU\";\nserialization_exports.registerClass(PReLU);\nvar ELU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_ALPHA = 1;\n if (args == null) {\n args = {};\n }\n if (args.alpha != null && args.alpha !== this.DEFAULT_ALPHA) {\n throw new NotImplementedError(`Non-default alpha value (${args.alpha}) is not supported by the ELU layer yet.`);\n }\n this.alpha = args.alpha == null ? this.DEFAULT_ALPHA : args.alpha;\n }\n call(inputs, kwargs) {\n const x = getExactlyOneTensor(inputs);\n return elu(x);\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { alpha: this.alpha };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nELU.className = \"ELU\";\nserialization_exports.registerClass(ELU);\nvar ThresholdedReLU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_THETA = 1;\n if (args == null) {\n args = {};\n }\n this.theta = args.theta == null ? this.DEFAULT_THETA : args.theta;\n }\n call(inputs, kwargs) {\n const x = getExactlyOneTensor(inputs);\n return mul(x, cast(greater(x, this.theta), \"float32\"));\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { theta: this.theta };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nThresholdedReLU.className = \"ThresholdedReLU\";\nserialization_exports.registerClass(ThresholdedReLU);\nvar Softmax3 = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_AXIS = 1;\n if (args == null) {\n args = {};\n }\n this.softmax = new Softmax2().apply;\n this.axis = args.axis == null ? this.DEFAULT_AXIS : args.axis;\n }\n call(inputs, kwargs) {\n const x = getExactlyOneTensor(inputs);\n return this.softmax(x, this.axis);\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { axis: this.axis };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nSoftmax3.className = \"Softmax\";\nserialization_exports.registerClass(Softmax3);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/conv_utils.js\nfunction normalizeArray(value, n2, name) {\n if (typeof value === \"number\") {\n return pyListRepeat(value, n2);\n } else {\n if (value.length !== n2) {\n throw new ValueError(`The ${name} argument must be an integer or tuple of ${n2} integers. Received: ${value.length} elements.`);\n }\n for (let i2 = 0; i2 < n2; ++i2) {\n const singleValue = value[i2];\n if (!isInteger(singleValue)) {\n throw new ValueError(`The ${name} argument must be an integer or tuple of ${n2} integers. Received: ${JSON.stringify(value)} including a non-integer number ${singleValue}`);\n }\n }\n return value;\n }\n}\nfunction convOutputLength(inputLength, filterSize, padding, stride, dilation = 1) {\n if (inputLength == null) {\n return inputLength;\n }\n const dilatedFilterSize = filterSize + (filterSize - 1) * (dilation - 1);\n let outputLength;\n if (padding === \"same\") {\n outputLength = inputLength;\n } else {\n outputLength = inputLength - dilatedFilterSize + 1;\n }\n return Math.floor((outputLength + stride - 1) / stride);\n}\nfunction deconvLength(dimSize, strideSize, kernelSize, padding) {\n if (dimSize == null) {\n return null;\n }\n if (padding === \"valid\") {\n dimSize = dimSize * strideSize + max2([kernelSize - strideSize, 0]);\n } else if (padding === \"same\") {\n dimSize = dimSize * strideSize;\n } else {\n throw new ValueError(`Unsupport padding mode: ${padding}.`);\n }\n return dimSize;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/convolutional.js\nfunction preprocessConv2DInput(x, dataFormat) {\n return tidy(() => {\n checkDataFormat(dataFormat);\n if (dataFormat === \"channelsFirst\") {\n return transpose(x, [0, 2, 3, 1]);\n } else {\n return x;\n }\n });\n}\nfunction preprocessConv3DInput(x, dataFormat) {\n return tidy(() => {\n checkDataFormat(dataFormat);\n if (dataFormat === \"channelsFirst\") {\n return transpose(x, [0, 2, 3, 4, 1]);\n } else {\n return x;\n }\n });\n}\nfunction conv1dWithBias(x, kernel, bias, strides = 1, padding = \"valid\", dataFormat, dilationRate = 1) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n if (x.shape.length !== 3) {\n throw new ValueError(`The input of a conv1dWithBias operation should be 3, but is ${x.shape.length} instead.`);\n }\n if (kernel.shape.length !== 3) {\n throw new ValueError(`The kernel for a conv1dWithBias operation should be 3, but is ${kernel.shape.length} instead`);\n }\n if (bias != null && bias.shape.length !== 1) {\n throw new ValueError(`The bias for a conv1dWithBias operation should be 1, but is ${kernel.shape.length} instead`);\n }\n if (dataFormat === \"channelsFirst\") {\n x = transpose(x, [0, 2, 1]);\n }\n if (padding === \"causal\") {\n throw new NotImplementedError(\"The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.\");\n }\n let y = conv1d(x, kernel, strides, padding === \"same\" ? \"same\" : \"valid\", \"NWC\", dilationRate);\n if (bias != null) {\n y = biasAdd(y, bias);\n }\n return y;\n });\n}\nfunction conv2dWithBiasActivation(x, kernel, bias, strides = [1, 1], padding = \"valid\", dataFormat, dilationRate, activation2 = null) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n if (x.rank !== 3 && x.rank !== 4) {\n throw new ValueError(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${x.rank}.`);\n }\n if (kernel.rank !== 3 && kernel.rank !== 4) {\n throw new ValueError(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${x.rank}.`);\n }\n let y = preprocessConv2DInput(x, dataFormat);\n if (padding === \"causal\") {\n throw new NotImplementedError(\"The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.\");\n }\n y = fused_ops_exports.conv2d({\n x: y,\n filter: kernel,\n strides,\n pad: padding === \"same\" ? \"same\" : \"valid\",\n dilations: dilationRate,\n dataFormat: \"NHWC\",\n bias,\n activation: activation2\n });\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 3, 1, 2]);\n }\n return y;\n });\n}\nfunction conv3dWithBias(x, kernel, bias, strides = [1, 1, 1], padding = \"valid\", dataFormat, dilationRate) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n if (x.rank !== 4 && x.rank !== 5) {\n throw new ValueError(`conv3dWithBias expects input to be of rank 4 or 5, but received ${x.rank}.`);\n }\n if (kernel.rank !== 4 && kernel.rank !== 5) {\n throw new ValueError(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${x.rank}.`);\n }\n let y = preprocessConv3DInput(x, dataFormat);\n if (padding === \"causal\") {\n throw new NotImplementedError(\"The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.\");\n }\n y = conv3d(y, kernel, strides, padding === \"same\" ? \"same\" : \"valid\", \"NDHWC\", dilationRate);\n if (bias != null) {\n y = biasAdd(y, bias);\n }\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 4, 1, 2, 3]);\n }\n return y;\n });\n}\nvar BaseConv = class extends Layer {\n constructor(rank, args) {\n super(args);\n this.bias = null;\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n BaseConv.verifyArgs(args);\n this.rank = rank;\n assertPositiveInteger(this.rank, \"rank\");\n if (this.rank !== 1 && this.rank !== 2 && this.rank !== 3) {\n throw new NotImplementedError(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);\n }\n this.kernelSize = normalizeArray(args.kernelSize, rank, \"kernelSize\");\n this.strides = normalizeArray(args.strides == null ? 1 : args.strides, rank, \"strides\");\n this.padding = args.padding == null ? \"valid\" : args.padding;\n checkPaddingMode(this.padding);\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n this.activation = getActivation(args.activation);\n this.useBias = args.useBias == null ? true : args.useBias;\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.activityRegularizer = getRegularizer(args.activityRegularizer);\n this.dilationRate = normalizeArray(args.dilationRate == null ? 1 : args.dilationRate, rank, \"dilationRate\");\n if (this.rank === 1 && (Array.isArray(this.dilationRate) && this.dilationRate.length !== 1)) {\n throw new ValueError(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);\n } else if (this.rank === 2) {\n if (typeof this.dilationRate === \"number\") {\n this.dilationRate = [this.dilationRate, this.dilationRate];\n } else if (this.dilationRate.length !== 2) {\n throw new ValueError(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`);\n }\n } else if (this.rank === 3) {\n if (typeof this.dilationRate === \"number\") {\n this.dilationRate = [this.dilationRate, this.dilationRate, this.dilationRate];\n } else if (this.dilationRate.length !== 3) {\n throw new ValueError(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`);\n }\n }\n }\n static verifyArgs(args) {\n assert2(\"kernelSize\" in args, `required key 'kernelSize' not in config`);\n if (typeof args.kernelSize !== \"number\" && !checkArrayTypeAndLength(args.kernelSize, \"number\", 1, 3)) {\n throw new ValueError(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(args.kernelSize)}.`);\n }\n }\n getConfig() {\n const config = {\n kernelSize: this.kernelSize,\n strides: this.strides,\n padding: this.padding,\n dataFormat: this.dataFormat,\n dilationRate: this.dilationRate,\n activation: serializeActivation(this.activation),\n useBias: this.useBias,\n biasInitializer: serializeInitializer(this.biasInitializer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n biasConstraint: serializeConstraint(this.biasConstraint)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar Conv = class extends BaseConv {\n constructor(rank, args) {\n super(rank, args);\n this.kernel = null;\n Conv.verifyArgs(args);\n this.filters = args.filters;\n assertPositiveInteger(this.filters, \"filters\");\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null) {\n throw new ValueError(`The channel dimension of the input should be defined. Found ${inputShape[channelAxis]}`);\n }\n const inputDim = inputShape[channelAxis];\n const kernelShape = this.kernelSize.concat([inputDim, this.filters]);\n this.kernel = this.addWeight(\"kernel\", kernelShape, null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.filters], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n this.inputSpec = [{ ndim: this.rank + 2, axes: { [channelAxis]: inputDim } }];\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n let outputs;\n const biasValue = this.bias == null ? null : this.bias.read();\n const fusedActivationName = mapActivationToFusedKernel(this.activation.getClassName());\n if (fusedActivationName != null && this.rank === 2) {\n outputs = conv2dWithBiasActivation(inputs, this.kernel.read(), biasValue, this.strides, this.padding, this.dataFormat, this.dilationRate, fusedActivationName);\n } else {\n if (this.rank === 1) {\n outputs = conv1dWithBias(inputs, this.kernel.read(), biasValue, this.strides[0], this.padding, this.dataFormat, this.dilationRate[0]);\n } else if (this.rank === 2) {\n outputs = conv2dWithBiasActivation(inputs, this.kernel.read(), biasValue, this.strides, this.padding, this.dataFormat, this.dilationRate);\n } else if (this.rank === 3) {\n outputs = conv3dWithBias(inputs, this.kernel.read(), biasValue, this.strides, this.padding, this.dataFormat, this.dilationRate);\n } else {\n throw new NotImplementedError(\"convolutions greater than 3D are not implemented yet.\");\n }\n if (this.activation != null) {\n outputs = this.activation.apply(outputs);\n }\n }\n return outputs;\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const newSpace = [];\n const space = this.dataFormat === \"channelsLast\" ? inputShape.slice(1, inputShape.length - 1) : inputShape.slice(2);\n for (let i2 = 0; i2 < space.length; ++i2) {\n const newDim = convOutputLength(space[i2], this.kernelSize[i2], this.padding, this.strides[i2], typeof this.dilationRate === \"number\" ? this.dilationRate : this.dilationRate[i2]);\n newSpace.push(newDim);\n }\n let outputShape = [inputShape[0]];\n if (this.dataFormat === \"channelsLast\") {\n outputShape = outputShape.concat(newSpace);\n outputShape.push(this.filters);\n } else {\n outputShape.push(this.filters);\n outputShape = outputShape.concat(newSpace);\n }\n return outputShape;\n }\n getConfig() {\n const config = {\n filters: this.filters,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n static verifyArgs(args) {\n if (!(\"filters\" in args) || typeof args.filters !== \"number\" || args.filters < 1) {\n throw new ValueError(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(args.filters)}`);\n }\n }\n};\nvar Conv2D2 = class extends Conv {\n constructor(args) {\n super(2, args);\n Conv2D2.verifyArgs(args);\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"rank\"];\n return config;\n }\n static verifyArgs(args) {\n if (typeof args.kernelSize !== \"number\" && !checkArrayTypeAndLength(args.kernelSize, \"number\", 1, 2)) {\n throw new ValueError(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(args.kernelSize)}.`);\n }\n }\n};\nConv2D2.className = \"Conv2D\";\nserialization_exports.registerClass(Conv2D2);\nvar Conv3D2 = class extends Conv {\n constructor(args) {\n super(3, args);\n Conv3D2.verifyArgs(args);\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"rank\"];\n return config;\n }\n static verifyArgs(args) {\n if (typeof args.kernelSize !== \"number\") {\n if (!(Array.isArray(args.kernelSize) && (args.kernelSize.length === 1 || args.kernelSize.length === 3))) {\n throw new ValueError(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(args.kernelSize)}.`);\n }\n }\n }\n};\nConv3D2.className = \"Conv3D\";\nserialization_exports.registerClass(Conv3D2);\nvar Conv2DTranspose = class extends Conv2D2 {\n constructor(args) {\n super(args);\n this.inputSpec = [new InputSpec({ ndim: 4 })];\n if (this.padding !== \"same\" && this.padding !== \"valid\") {\n throw new ValueError(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`);\n }\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length !== 4) {\n throw new ValueError(\"Input should have rank 4; Received input shape: \" + JSON.stringify(inputShape));\n }\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null) {\n throw new ValueError(\"The channel dimension of the inputs should be defined. Found `None`.\");\n }\n const inputDim = inputShape[channelAxis];\n const kernelShape = this.kernelSize.concat([this.filters, inputDim]);\n this.kernel = this.addWeight(\"kernel\", kernelShape, \"float32\", this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.filters], \"float32\", this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n this.inputSpec = [new InputSpec({ ndim: 4, axes: { [channelAxis]: inputDim } })];\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n let input2 = getExactlyOneTensor(inputs);\n if (input2.shape.length !== 4) {\n throw new ValueError(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${input2.shape.length}`);\n }\n const inputShape = input2.shape;\n const batchSize = inputShape[0];\n let hAxis;\n let wAxis;\n if (this.dataFormat === \"channelsFirst\") {\n hAxis = 2;\n wAxis = 3;\n } else {\n hAxis = 1;\n wAxis = 2;\n }\n const height = inputShape[hAxis];\n const width = inputShape[wAxis];\n const kernelH = this.kernelSize[0];\n const kernelW = this.kernelSize[1];\n const strideH = this.strides[0];\n const strideW = this.strides[1];\n const outHeight = deconvLength(height, strideH, kernelH, this.padding);\n const outWidth = deconvLength(width, strideW, kernelW, this.padding);\n const outputShape = [batchSize, outHeight, outWidth, this.filters];\n if (this.dataFormat !== \"channelsLast\") {\n input2 = transpose(input2, [0, 2, 3, 1]);\n }\n let outputs = conv2dTranspose(input2, this.kernel.read(), outputShape, this.strides, this.padding);\n if (this.dataFormat !== \"channelsLast\") {\n outputs = transpose(outputs, [0, 3, 1, 2]);\n }\n if (this.bias != null) {\n outputs = biasAdd(outputs, this.bias.read(), this.dataFormat);\n }\n if (this.activation != null) {\n outputs = this.activation.apply(outputs);\n }\n return outputs;\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const outputShape = inputShape.slice();\n let channelAxis;\n let heightAxis;\n let widthAxis;\n if (this.dataFormat === \"channelsFirst\") {\n channelAxis = 1;\n heightAxis = 2;\n widthAxis = 3;\n } else {\n channelAxis = 3;\n heightAxis = 1;\n widthAxis = 2;\n }\n const kernelH = this.kernelSize[0];\n const kernelW = this.kernelSize[1];\n const strideH = this.strides[0];\n const strideW = this.strides[1];\n outputShape[channelAxis] = this.filters;\n outputShape[heightAxis] = deconvLength(outputShape[heightAxis], strideH, kernelH, this.padding);\n outputShape[widthAxis] = deconvLength(outputShape[widthAxis], strideW, kernelW, this.padding);\n return outputShape;\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"dilationRate\"];\n return config;\n }\n};\nConv2DTranspose.className = \"Conv2DTranspose\";\nserialization_exports.registerClass(Conv2DTranspose);\nvar Conv3DTranspose = class extends Conv3D2 {\n constructor(args) {\n super(args);\n this.inputSpec = [new InputSpec({ ndim: 5 })];\n if (this.padding !== \"same\" && this.padding !== \"valid\") {\n throw new ValueError(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`);\n }\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length !== 5) {\n throw new ValueError(\"Input should have rank 5; Received input shape: \" + JSON.stringify(inputShape));\n }\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null) {\n throw new ValueError(\"The channel dimension of the inputs should be defined. Found `None`.\");\n }\n const inputDim = inputShape[channelAxis];\n const kernelShape = this.kernelSize.concat([this.filters, inputDim]);\n this.kernel = this.addWeight(\"kernel\", kernelShape, \"float32\", this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.filters], \"float32\", this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n this.inputSpec = [new InputSpec({ ndim: 5, axes: { [channelAxis]: inputDim } })];\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n let input2 = getExactlyOneTensor(inputs);\n if (input2.shape.length !== 5) {\n throw new ValueError(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${input2.shape.length}`);\n }\n const inputShape = input2.shape;\n const batchSize = inputShape[0];\n let hAxis;\n let wAxis;\n let dAxis;\n if (this.dataFormat === \"channelsFirst\") {\n dAxis = 2;\n hAxis = 3;\n wAxis = 4;\n } else {\n dAxis = 1;\n hAxis = 2;\n wAxis = 3;\n }\n const depth = inputShape[dAxis];\n const height = inputShape[hAxis];\n const width = inputShape[wAxis];\n const kernelD = this.kernelSize[0];\n const kernelH = this.kernelSize[1];\n const kernelW = this.kernelSize[2];\n const strideD = this.strides[0];\n const strideH = this.strides[1];\n const strideW = this.strides[2];\n const outDepth = deconvLength(depth, strideD, kernelD, this.padding);\n const outHeight = deconvLength(height, strideH, kernelH, this.padding);\n const outWidth = deconvLength(width, strideW, kernelW, this.padding);\n const outputShape = [batchSize, outDepth, outHeight, outWidth, this.filters];\n if (this.dataFormat !== \"channelsLast\") {\n input2 = transpose(input2, [0, 2, 3, 4, 1]);\n }\n let outputs = conv3dTranspose(input2, this.kernel.read(), outputShape, this.strides, this.padding);\n if (this.dataFormat !== \"channelsLast\") {\n outputs = transpose(outputs, [0, 4, 1, 2, 3]);\n }\n if (this.bias !== null) {\n outputs = biasAdd(outputs, this.bias.read(), this.dataFormat);\n }\n if (this.activation !== null) {\n outputs = this.activation.apply(outputs);\n }\n return outputs;\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const outputShape = inputShape.slice();\n let channelAxis;\n let depthAxis;\n let heightAxis;\n let widthAxis;\n if (this.dataFormat === \"channelsFirst\") {\n channelAxis = 1;\n depthAxis = 2;\n heightAxis = 3;\n widthAxis = 4;\n } else {\n channelAxis = 4;\n depthAxis = 1;\n heightAxis = 2;\n widthAxis = 3;\n }\n const kernelD = this.kernelSize[0];\n const kernelH = this.kernelSize[1];\n const kernelW = this.kernelSize[2];\n const strideD = this.strides[0];\n const strideH = this.strides[1];\n const strideW = this.strides[2];\n outputShape[channelAxis] = this.filters;\n outputShape[depthAxis] = deconvLength(outputShape[depthAxis], strideD, kernelD, this.padding);\n outputShape[heightAxis] = deconvLength(outputShape[heightAxis], strideH, kernelH, this.padding);\n outputShape[widthAxis] = deconvLength(outputShape[widthAxis], strideW, kernelW, this.padding);\n return outputShape;\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"dilationRate\"];\n return config;\n }\n};\nConv3DTranspose.className = \"Conv3DTranspose\";\nserialization_exports.registerClass(Conv3DTranspose);\nvar SeparableConv = class extends Conv {\n constructor(rank, config) {\n super(rank, config);\n this.DEFAULT_DEPTHWISE_INITIALIZER = \"glorotUniform\";\n this.DEFAULT_POINTWISE_INITIALIZER = \"glorotUniform\";\n this.depthwiseKernel = null;\n this.pointwiseKernel = null;\n if (config.filters == null) {\n throw new ValueError(\"The `filters` configuration field is required by SeparableConv, but is unspecified.\");\n }\n if (config.kernelInitializer != null || config.kernelRegularizer != null || config.kernelConstraint != null) {\n throw new ValueError(\"Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.\");\n }\n if (config.padding != null && config.padding !== \"same\" && config.padding !== \"valid\") {\n throw new ValueError(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(config.padding)}`);\n }\n this.depthMultiplier = config.depthMultiplier == null ? 1 : config.depthMultiplier;\n this.depthwiseInitializer = getInitializer(config.depthwiseInitializer || this.DEFAULT_DEPTHWISE_INITIALIZER);\n this.depthwiseRegularizer = getRegularizer(config.depthwiseRegularizer);\n this.depthwiseConstraint = getConstraint(config.depthwiseConstraint);\n this.pointwiseInitializer = getInitializer(config.depthwiseInitializer || this.DEFAULT_POINTWISE_INITIALIZER);\n this.pointwiseRegularizer = getRegularizer(config.pointwiseRegularizer);\n this.pointwiseConstraint = getConstraint(config.pointwiseConstraint);\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length < this.rank + 2) {\n throw new ValueError(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank + 2}, but received input shape: ${JSON.stringify(inputShape)}`);\n }\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null || inputShape[channelAxis] < 0) {\n throw new ValueError(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(inputShape[channelAxis])}`);\n }\n const inputDim = inputShape[channelAxis];\n const depthwiseKernelShape = this.kernelSize.concat([inputDim, this.depthMultiplier]);\n const pointwiseKernelShape = [];\n for (let i2 = 0; i2 < this.rank; ++i2) {\n pointwiseKernelShape.push(1);\n }\n pointwiseKernelShape.push(inputDim * this.depthMultiplier, this.filters);\n const trainable = true;\n this.depthwiseKernel = this.addWeight(\"depthwise_kernel\", depthwiseKernelShape, \"float32\", this.depthwiseInitializer, this.depthwiseRegularizer, trainable, this.depthwiseConstraint);\n this.pointwiseKernel = this.addWeight(\"pointwise_kernel\", pointwiseKernelShape, \"float32\", this.pointwiseInitializer, this.pointwiseRegularizer, trainable, this.pointwiseConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.filters], \"float32\", this.biasInitializer, this.biasRegularizer, trainable, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.inputSpec = [new InputSpec({ ndim: this.rank + 2, axes: { [channelAxis]: inputDim } })];\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n let output;\n if (this.rank === 1) {\n throw new NotImplementedError(\"1D separable convolution is not implemented yet.\");\n } else if (this.rank === 2) {\n if (this.dataFormat === \"channelsFirst\") {\n inputs = transpose(inputs, [0, 2, 3, 1]);\n }\n output = separableConv2d(inputs, this.depthwiseKernel.read(), this.pointwiseKernel.read(), this.strides, this.padding, this.dilationRate, \"NHWC\");\n }\n if (this.useBias) {\n output = biasAdd(output, this.bias.read(), this.dataFormat);\n }\n if (this.activation != null) {\n output = this.activation.apply(output);\n }\n if (this.dataFormat === \"channelsFirst\") {\n output = transpose(output, [0, 3, 1, 2]);\n }\n return output;\n });\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"rank\"];\n delete config[\"kernelInitializer\"];\n delete config[\"kernelRegularizer\"];\n delete config[\"kernelConstraint\"];\n config[\"depthwiseInitializer\"] = serializeInitializer(this.depthwiseInitializer);\n config[\"pointwiseInitializer\"] = serializeInitializer(this.pointwiseInitializer);\n config[\"depthwiseRegularizer\"] = serializeRegularizer(this.depthwiseRegularizer);\n config[\"pointwiseRegularizer\"] = serializeRegularizer(this.pointwiseRegularizer);\n config[\"depthwiseConstraint\"] = serializeConstraint(this.depthwiseConstraint);\n config[\"pointwiseConstraint\"] = serializeConstraint(this.pointwiseConstraint);\n return config;\n }\n};\nSeparableConv.className = \"SeparableConv\";\nvar SeparableConv2D = class extends SeparableConv {\n constructor(args) {\n super(2, args);\n }\n};\nSeparableConv2D.className = \"SeparableConv2D\";\nserialization_exports.registerClass(SeparableConv2D);\nvar Conv1D = class extends Conv {\n constructor(args) {\n super(1, args);\n Conv1D.verifyArgs(args);\n this.inputSpec = [{ ndim: 3 }];\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"rank\"];\n delete config[\"dataFormat\"];\n return config;\n }\n static verifyArgs(args) {\n if (typeof args.kernelSize !== \"number\" && !checkArrayTypeAndLength(args.kernelSize, \"number\", 1, 1)) {\n throw new ValueError(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(args.kernelSize)}.`);\n }\n }\n};\nConv1D.className = \"Conv1D\";\nserialization_exports.registerClass(Conv1D);\nvar Cropping2D = class extends Layer {\n constructor(args) {\n super(args);\n if (typeof args.cropping === \"number\") {\n this.cropping = [[args.cropping, args.cropping], [args.cropping, args.cropping]];\n } else if (typeof args.cropping[0] === \"number\") {\n this.cropping = [\n [args.cropping[0], args.cropping[0]],\n [args.cropping[1], args.cropping[1]]\n ];\n } else {\n this.cropping = args.cropping;\n }\n this.dataFormat = args.dataFormat === void 0 ? \"channelsLast\" : args.dataFormat;\n this.inputSpec = [{ ndim: 4 }];\n }\n computeOutputShape(inputShape) {\n if (this.dataFormat === \"channelsFirst\") {\n return [\n inputShape[0],\n inputShape[1],\n inputShape[2] - this.cropping[0][0] - this.cropping[0][1],\n inputShape[3] - this.cropping[1][0] - this.cropping[1][1]\n ];\n } else {\n return [\n inputShape[0],\n inputShape[1] - this.cropping[0][0] - this.cropping[0][1],\n inputShape[2] - this.cropping[1][0] - this.cropping[1][1],\n inputShape[3]\n ];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n if (this.dataFormat === \"channelsLast\") {\n const hSliced = sliceAlongAxis(inputs, this.cropping[0][0], inputs.shape[1] - this.cropping[0][0] - this.cropping[0][1], 2);\n return sliceAlongAxis(hSliced, this.cropping[1][0], inputs.shape[2] - this.cropping[1][1] - this.cropping[1][0], 3);\n } else {\n const hSliced = sliceAlongAxis(inputs, this.cropping[0][0], inputs.shape[2] - this.cropping[0][0] - this.cropping[0][1], 3);\n return sliceAlongAxis(hSliced, this.cropping[1][0], inputs.shape[3] - this.cropping[1][1] - this.cropping[1][0], 4);\n }\n });\n }\n getConfig() {\n const config = { cropping: this.cropping, dataFormat: this.dataFormat };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nCropping2D.className = \"Cropping2D\";\nserialization_exports.registerClass(Cropping2D);\nvar UpSampling2D = class extends Layer {\n constructor(args) {\n super(args);\n this.DEFAULT_SIZE = [2, 2];\n this.inputSpec = [{ ndim: 4 }];\n this.size = args.size == null ? this.DEFAULT_SIZE : args.size;\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n this.interpolation = args.interpolation == null ? \"nearest\" : args.interpolation;\n checkInterpolationFormat(this.interpolation);\n }\n computeOutputShape(inputShape) {\n if (this.dataFormat === \"channelsFirst\") {\n const height = inputShape[2] == null ? null : this.size[0] * inputShape[2];\n const width = inputShape[3] == null ? null : this.size[1] * inputShape[3];\n return [inputShape[0], inputShape[1], height, width];\n } else {\n const height = inputShape[1] == null ? null : this.size[0] * inputShape[1];\n const width = inputShape[2] == null ? null : this.size[1] * inputShape[2];\n return [inputShape[0], height, width, inputShape[3]];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n let input2 = getExactlyOneTensor(inputs);\n const inputShape = input2.shape;\n if (this.dataFormat === \"channelsFirst\") {\n input2 = transpose(input2, [0, 2, 3, 1]);\n const height = this.size[0] * inputShape[2];\n const width = this.size[1] * inputShape[3];\n const resized = this.interpolation === \"nearest\" ? image.resizeNearestNeighbor(input2, [height, width]) : image.resizeBilinear(input2, [height, width]);\n return transpose(resized, [0, 3, 1, 2]);\n } else {\n const height = this.size[0] * inputShape[1];\n const width = this.size[1] * inputShape[2];\n return this.interpolation === \"nearest\" ? image.resizeNearestNeighbor(input2, [height, width]) : image.resizeBilinear(input2, [height, width]);\n }\n });\n }\n getConfig() {\n const config = {\n size: this.size,\n dataFormat: this.dataFormat,\n interpolation: this.interpolation\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nUpSampling2D.className = \"UpSampling2D\";\nserialization_exports.registerClass(UpSampling2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/convolutional_depthwise.js\nfunction depthwiseConv2d3(x, depthwiseKernel, strides = [1, 1], padding = \"valid\", dataFormat, dilationRate) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n let y = preprocessConv2DInput(x, dataFormat);\n if (x.rank !== 4) {\n throw new ValueError(`Input for depthwiseConv2d is required to be 4-D, but is instead ${x.rank}-D`);\n }\n if (depthwiseKernel.rank !== 4) {\n throw new ValueError(`depthwiseKernel is required to be 4-D, but is instead ${depthwiseKernel.rank}-D`);\n }\n y = depthwiseConv2d(y, depthwiseKernel, strides, padding === \"same\" ? \"same\" : \"valid\", \"NHWC\", dilationRate);\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 3, 1, 2]);\n }\n return y;\n });\n}\nvar DepthwiseConv2D = class extends BaseConv {\n constructor(args) {\n super(2, args);\n this.depthwiseKernel = null;\n this.depthMultiplier = args.depthMultiplier == null ? 1 : args.depthMultiplier;\n this.depthwiseInitializer = getInitializer(args.depthwiseInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.depthwiseConstraint = getConstraint(args.depthwiseConstraint);\n this.depthwiseRegularizer = getRegularizer(args.depthwiseRegularizer);\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length < 4) {\n throw new ValueError(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(inputShape)}.`);\n }\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : 3;\n if (inputShape[channelAxis] == null || inputShape[channelAxis] < 0) {\n throw new ValueError(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${inputShape[channelAxis]}).`);\n }\n const inputDim = inputShape[channelAxis];\n const depthwiseKernelShape = [\n this.kernelSize[0],\n this.kernelSize[1],\n inputDim,\n this.depthMultiplier\n ];\n this.depthwiseKernel = this.addWeight(\"depthwise_kernel\", depthwiseKernelShape, null, this.depthwiseInitializer, this.depthwiseRegularizer, true, this.depthwiseConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [inputDim * this.depthMultiplier], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n let outputs = depthwiseConv2d3(inputs, this.depthwiseKernel.read(), this.strides, this.padding, this.dataFormat, null);\n if (this.useBias) {\n outputs = biasAdd(outputs, this.bias.read(), this.dataFormat);\n }\n if (this.activation != null) {\n outputs = this.activation.apply(outputs);\n }\n return outputs;\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const rows = this.dataFormat === \"channelsFirst\" ? inputShape[2] : inputShape[1];\n const cols = this.dataFormat === \"channelsFirst\" ? inputShape[3] : inputShape[2];\n const outFilters = this.dataFormat === \"channelsFirst\" ? inputShape[1] * this.depthMultiplier : inputShape[3] * this.depthMultiplier;\n const outRows = convOutputLength(rows, this.kernelSize[0], this.padding, this.strides[0]);\n const outCols = convOutputLength(cols, this.kernelSize[1], this.padding, this.strides[1]);\n if (this.dataFormat === \"channelsFirst\") {\n return [inputShape[0], outFilters, outRows, outCols];\n } else {\n return [inputShape[0], outRows, outCols, outFilters];\n }\n }\n getConfig() {\n const config = super.getConfig();\n config[\"depthMultiplier\"] = this.depthMultiplier;\n config[\"depthwiseInitializer\"] = serializeInitializer(this.depthwiseInitializer);\n config[\"depthwiseRegularizer\"] = serializeRegularizer(this.depthwiseRegularizer);\n config[\"depthwiseConstraint\"] = serializeConstraint(this.depthwiseRegularizer);\n return config;\n }\n};\nDepthwiseConv2D.className = \"DepthwiseConv2D\";\nserialization_exports.registerClass(DepthwiseConv2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/recurrent.js\nfunction standardizeArgs(inputs, initialState, constants, numConstants) {\n if (Array.isArray(inputs)) {\n if (initialState != null || constants != null) {\n throw new ValueError(\"When inputs is an array, neither initialState or constants should be provided\");\n }\n if (numConstants != null) {\n constants = inputs.slice(inputs.length - numConstants, inputs.length);\n inputs = inputs.slice(0, inputs.length - numConstants);\n }\n if (inputs.length > 1) {\n initialState = inputs.slice(1, inputs.length);\n }\n inputs = inputs[0];\n }\n function toListOrNull(x) {\n if (x == null || Array.isArray(x)) {\n return x;\n } else {\n return [x];\n }\n }\n initialState = toListOrNull(initialState);\n constants = toListOrNull(constants);\n return { inputs, initialState, constants };\n}\nfunction rnn(stepFunction, inputs, initialStates, goBackwards = false, mask, constants, unroll = false, needPerStepOutputs = false) {\n return tidy(() => {\n const ndim = inputs.shape.length;\n if (ndim < 3) {\n throw new ValueError(`Input should be at least 3D, but is ${ndim}D.`);\n }\n const axes = [1, 0].concat(range2(2, ndim));\n inputs = transpose(inputs, axes);\n if (constants != null) {\n throw new NotImplementedError(\"The rnn() functoin of the deeplearn.js backend does not support constants yet.\");\n }\n if (unroll) {\n console.warn(\"Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend.\");\n }\n if (mask != null) {\n mask = cast(cast(mask, \"bool\"), \"float32\");\n if (mask.rank === ndim - 1) {\n mask = expandDims(mask, -1);\n }\n mask = transpose(mask, axes);\n }\n if (goBackwards) {\n inputs = reverse(inputs, 0);\n if (mask != null) {\n mask = reverse(mask, 0);\n }\n }\n const perStepOutputs = [];\n let lastOutput;\n let states = initialStates;\n const timeSteps = inputs.shape[0];\n const perStepInputs = unstack(inputs);\n let perStepMasks;\n if (mask != null) {\n perStepMasks = unstack(mask);\n }\n for (let t2 = 0; t2 < timeSteps; ++t2) {\n const currentInput = perStepInputs[t2];\n const stepOutputs = tidy(() => stepFunction(currentInput, states));\n if (mask == null) {\n lastOutput = stepOutputs[0];\n states = stepOutputs[1];\n } else {\n const maskedOutputs = tidy(() => {\n const stepMask = perStepMasks[t2];\n const negStepMask = sub(onesLike(stepMask), stepMask);\n const output = add2(mul(stepOutputs[0], stepMask), mul(states[0], negStepMask));\n const newStates = states.map((state, i2) => {\n return add2(mul(stepOutputs[1][i2], stepMask), mul(state, negStepMask));\n });\n return { output, newStates };\n });\n lastOutput = maskedOutputs.output;\n states = maskedOutputs.newStates;\n }\n if (needPerStepOutputs) {\n perStepOutputs.push(lastOutput);\n }\n }\n let outputs;\n if (needPerStepOutputs) {\n const axis = 1;\n outputs = stack(perStepOutputs, axis);\n }\n return [lastOutput, outputs, states];\n });\n}\nvar RNN = class extends Layer {\n constructor(args) {\n super(args);\n let cell;\n if (args.cell == null) {\n throw new ValueError(\"cell property is missing for the constructor of RNN.\");\n } else if (Array.isArray(args.cell)) {\n cell = new StackedRNNCells({ cells: args.cell });\n } else {\n cell = args.cell;\n }\n if (cell.stateSize == null) {\n throw new ValueError(\"The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).\");\n }\n this.cell = cell;\n this.returnSequences = args.returnSequences == null ? false : args.returnSequences;\n this.returnState = args.returnState == null ? false : args.returnState;\n this.goBackwards = args.goBackwards == null ? false : args.goBackwards;\n this._stateful = args.stateful == null ? false : args.stateful;\n this.unroll = args.unroll == null ? false : args.unroll;\n this.supportsMasking = true;\n this.inputSpec = [new InputSpec({ ndim: 3 })];\n this.stateSpec = null;\n this.states_ = null;\n this.numConstants = null;\n this.keptStates = [];\n }\n getStates() {\n if (this.states_ == null) {\n const numStates = Array.isArray(this.cell.stateSize) ? this.cell.stateSize.length : 1;\n return range2(0, numStates).map((x) => null);\n } else {\n return this.states_;\n }\n }\n setStates(states) {\n this.states_ = states;\n }\n computeOutputShape(inputShape) {\n if (isArrayOfShapes(inputShape)) {\n inputShape = inputShape[0];\n }\n inputShape = inputShape;\n let stateSize = this.cell.stateSize;\n if (!Array.isArray(stateSize)) {\n stateSize = [stateSize];\n }\n const outputDim = stateSize[0];\n let outputShape;\n if (this.returnSequences) {\n outputShape = [inputShape[0], inputShape[1], outputDim];\n } else {\n outputShape = [inputShape[0], outputDim];\n }\n if (this.returnState) {\n const stateShape = [];\n for (const dim of stateSize) {\n stateShape.push([inputShape[0], dim]);\n }\n return [outputShape].concat(stateShape);\n } else {\n return outputShape;\n }\n }\n computeMask(inputs, mask) {\n return tidy(() => {\n if (Array.isArray(mask)) {\n mask = mask[0];\n }\n const outputMask = this.returnSequences ? mask : null;\n if (this.returnState) {\n const stateMask = this.states.map((s2) => null);\n return [outputMask].concat(stateMask);\n } else {\n return outputMask;\n }\n });\n }\n get states() {\n if (this.states_ == null) {\n const numStates = Array.isArray(this.cell.stateSize) ? this.cell.stateSize.length : 1;\n const output = [];\n for (let i2 = 0; i2 < numStates; ++i2) {\n output.push(null);\n }\n return output;\n } else {\n return this.states_;\n }\n }\n set states(s2) {\n this.states_ = s2;\n }\n build(inputShape) {\n const constantShape = null;\n if (this.numConstants != null) {\n throw new NotImplementedError(\"Constants support is not implemented in RNN yet.\");\n }\n if (isArrayOfShapes(inputShape)) {\n inputShape = inputShape[0];\n }\n inputShape = inputShape;\n const batchSize = this.stateful ? inputShape[0] : null;\n const inputDim = inputShape.slice(2);\n this.inputSpec[0] = new InputSpec({ shape: [batchSize, null, ...inputDim] });\n const stepInputShape = [inputShape[0]].concat(inputShape.slice(2));\n if (constantShape != null) {\n throw new NotImplementedError(\"Constants support is not implemented in RNN yet.\");\n } else {\n this.cell.build(stepInputShape);\n }\n let stateSize;\n if (Array.isArray(this.cell.stateSize)) {\n stateSize = this.cell.stateSize;\n } else {\n stateSize = [this.cell.stateSize];\n }\n if (this.stateSpec != null) {\n if (!util_exports.arraysEqual(this.stateSpec.map((spec) => spec.shape[spec.shape.length - 1]), stateSize)) {\n throw new ValueError(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`);\n }\n } else {\n this.stateSpec = stateSize.map((dim) => new InputSpec({ shape: [null, dim] }));\n }\n if (this.stateful) {\n this.resetStates();\n }\n }\n resetStates(states, training = false) {\n tidy(() => {\n if (!this.stateful) {\n throw new AttributeError(\"Cannot call resetStates() on an RNN Layer that is not stateful.\");\n }\n const batchSize = this.inputSpec[0].shape[0];\n if (batchSize == null) {\n throw new ValueError(\"If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \\n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.\");\n }\n if (this.states_ == null) {\n if (Array.isArray(this.cell.stateSize)) {\n this.states_ = this.cell.stateSize.map((dim) => zeros([batchSize, dim]));\n } else {\n this.states_ = [zeros([batchSize, this.cell.stateSize])];\n }\n } else if (states == null) {\n dispose(this.states_);\n if (this.keptStates != null) {\n dispose(this.keptStates);\n this.keptStates = [];\n }\n if (Array.isArray(this.cell.stateSize)) {\n this.states_ = this.cell.stateSize.map((dim) => zeros([batchSize, dim]));\n } else {\n this.states_[0] = zeros([batchSize, this.cell.stateSize]);\n }\n } else {\n if (!Array.isArray(states)) {\n states = [states];\n }\n if (states.length !== this.states_.length) {\n throw new ValueError(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${states.length} state value(s). Input received: ${states}`);\n }\n if (training === true) {\n this.keptStates.push(this.states_.slice());\n } else {\n dispose(this.states_);\n }\n for (let index = 0; index < this.states_.length; ++index) {\n const value = states[index];\n const dim = Array.isArray(this.cell.stateSize) ? this.cell.stateSize[index] : this.cell.stateSize;\n const expectedShape = [batchSize, dim];\n if (!util_exports.arraysEqual(value.shape, expectedShape)) {\n throw new ValueError(`State ${index} is incompatible with layer ${this.name}: expected shape=${expectedShape}, received shape=${value.shape}`);\n }\n this.states_[index] = value;\n }\n }\n this.states_ = this.states_.map((state) => keep(state.clone()));\n });\n }\n apply(inputs, kwargs) {\n let initialState = kwargs == null ? null : kwargs[\"initialState\"];\n let constants = kwargs == null ? null : kwargs[\"constants\"];\n if (kwargs == null) {\n kwargs = {};\n }\n const standardized = standardizeArgs(inputs, initialState, constants, this.numConstants);\n inputs = standardized.inputs;\n initialState = standardized.initialState;\n constants = standardized.constants;\n let additionalInputs = [];\n let additionalSpecs = [];\n if (initialState != null) {\n kwargs[\"initialState\"] = initialState;\n additionalInputs = additionalInputs.concat(initialState);\n this.stateSpec = [];\n for (const state of initialState) {\n this.stateSpec.push(new InputSpec({ shape: state.shape }));\n }\n additionalSpecs = additionalSpecs.concat(this.stateSpec);\n }\n if (constants != null) {\n kwargs[\"constants\"] = constants;\n additionalInputs = additionalInputs.concat(constants);\n this.numConstants = constants.length;\n }\n const isTensor = additionalInputs[0] instanceof SymbolicTensor;\n if (isTensor) {\n const fullInput = [inputs].concat(additionalInputs);\n const fullInputSpec = this.inputSpec.concat(additionalSpecs);\n const originalInputSpec = this.inputSpec;\n this.inputSpec = fullInputSpec;\n const output = super.apply(fullInput, kwargs);\n this.inputSpec = originalInputSpec;\n return output;\n } else {\n return super.apply(inputs, kwargs);\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n let initialState = kwargs == null ? null : kwargs[\"initialState\"];\n inputs = getExactlyOneTensor(inputs);\n if (initialState == null) {\n if (this.stateful) {\n initialState = this.states_;\n } else {\n initialState = this.getInitialState(inputs);\n }\n }\n const numStates = Array.isArray(this.cell.stateSize) ? this.cell.stateSize.length : 1;\n if (initialState.length !== numStates) {\n throw new ValueError(`RNN Layer has ${numStates} state(s) but was passed ${initialState.length} initial state(s).`);\n }\n if (this.unroll) {\n console.warn(\"Ignoring unroll = true for RNN layer, due to imperative backend.\");\n }\n const cellCallKwargs = { training };\n const step5 = (inputs2, states2) => {\n const outputs2 = this.cell.call([inputs2].concat(states2), cellCallKwargs);\n return [outputs2[0], outputs2.slice(1)];\n };\n const rnnOutputs = rnn(step5, inputs, initialState, this.goBackwards, mask, null, this.unroll, this.returnSequences);\n const lastOutput = rnnOutputs[0];\n const outputs = rnnOutputs[1];\n const states = rnnOutputs[2];\n if (this.stateful) {\n this.resetStates(states, training);\n }\n const output = this.returnSequences ? outputs : lastOutput;\n if (this.returnState) {\n return [output].concat(states);\n } else {\n return output;\n }\n });\n }\n getInitialState(inputs) {\n return tidy(() => {\n let initialState = zeros(inputs.shape);\n initialState = sum2(initialState, [1, 2]);\n initialState = expandDims2(initialState);\n if (Array.isArray(this.cell.stateSize)) {\n return this.cell.stateSize.map((dim) => dim > 1 ? tile2(initialState, [1, dim]) : initialState);\n } else {\n return this.cell.stateSize > 1 ? [tile2(initialState, [1, this.cell.stateSize])] : [initialState];\n }\n });\n }\n get trainableWeights() {\n if (!this.trainable) {\n return [];\n }\n return this.cell.trainableWeights;\n }\n get nonTrainableWeights() {\n if (!this.trainable) {\n return this.cell.weights;\n }\n return this.cell.nonTrainableWeights;\n }\n setFastWeightInitDuringBuild(value) {\n super.setFastWeightInitDuringBuild(value);\n if (this.cell != null) {\n this.cell.setFastWeightInitDuringBuild(value);\n }\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = {\n returnSequences: this.returnSequences,\n returnState: this.returnState,\n goBackwards: this.goBackwards,\n stateful: this.stateful,\n unroll: this.unroll\n };\n if (this.numConstants != null) {\n config[\"numConstants\"] = this.numConstants;\n }\n const cellConfig = this.cell.getConfig();\n if (this.getClassName() === RNN.className) {\n config[\"cell\"] = {\n \"className\": this.cell.getClassName(),\n \"config\": cellConfig\n };\n }\n return Object.assign({}, cellConfig, baseConfig, config);\n }\n static fromConfig(cls, config, customObjects = {}) {\n const cellConfig = config[\"cell\"];\n const cell = deserialize(cellConfig, customObjects);\n return new cls(Object.assign(config, { cell }));\n }\n};\nRNN.className = \"RNN\";\nserialization_exports.registerClass(RNN);\nvar RNNCell = class extends Layer {\n};\nvar SimpleRNNCell = class extends RNNCell {\n constructor(args) {\n super(args);\n this.DEFAULT_ACTIVATION = \"tanh\";\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_RECURRENT_INITIALIZER = \"orthogonal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n this.units = args.units;\n assertPositiveInteger(this.units, `units`);\n this.activation = getActivation(args.activation == null ? this.DEFAULT_ACTIVATION : args.activation);\n this.useBias = args.useBias == null ? true : args.useBias;\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.recurrentInitializer = getInitializer(args.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER);\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n this.recurrentRegularizer = getRegularizer(args.recurrentRegularizer);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.recurrentConstraint = getConstraint(args.recurrentConstraint);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.dropout = min2([1, max2([0, args.dropout == null ? 0 : args.dropout])]);\n this.recurrentDropout = min2([\n 1,\n max2([0, args.recurrentDropout == null ? 0 : args.recurrentDropout])\n ]);\n this.dropoutFunc = args.dropoutFunc;\n this.stateSize = this.units;\n this.dropoutMask = null;\n this.recurrentDropoutMask = null;\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n this.kernel = this.addWeight(\"kernel\", [inputShape[inputShape.length - 1], this.units], null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n this.recurrentKernel = this.addWeight(\"recurrent_kernel\", [this.units, this.units], null, this.recurrentInitializer, this.recurrentRegularizer, true, this.recurrentConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.units], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = inputs;\n if (inputs.length !== 2) {\n throw new ValueError(`SimpleRNNCell expects 2 input Tensors, got ${inputs.length}.`);\n }\n let prevOutput = inputs[1];\n inputs = inputs[0];\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n if (0 < this.dropout && this.dropout < 1 && this.dropoutMask == null) {\n this.dropoutMask = generateDropoutMask({\n ones: () => onesLike(inputs),\n rate: this.dropout,\n training,\n dropoutFunc: this.dropoutFunc\n });\n }\n if (0 < this.recurrentDropout && this.recurrentDropout < 1 && this.recurrentDropoutMask == null) {\n this.recurrentDropoutMask = generateDropoutMask({\n ones: () => onesLike(prevOutput),\n rate: this.recurrentDropout,\n training,\n dropoutFunc: this.dropoutFunc\n });\n }\n let h;\n const dpMask = this.dropoutMask;\n const recDpMask = this.recurrentDropoutMask;\n if (dpMask != null) {\n h = dot2(mul(inputs, dpMask), this.kernel.read());\n } else {\n h = dot2(inputs, this.kernel.read());\n }\n if (this.bias != null) {\n h = biasAdd(h, this.bias.read());\n }\n if (recDpMask != null) {\n prevOutput = mul(prevOutput, recDpMask);\n }\n let output = add2(h, dot2(prevOutput, this.recurrentKernel.read()));\n if (this.activation != null) {\n output = this.activation.apply(output);\n }\n return [output, output];\n });\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = {\n units: this.units,\n activation: serializeActivation(this.activation),\n useBias: this.useBias,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n recurrentInitializer: serializeInitializer(this.recurrentInitializer),\n biasInitializer: serializeInitializer(this.biasInitializer),\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint),\n recurrentConstraint: serializeConstraint(this.recurrentConstraint),\n biasConstraint: serializeConstraint(this.biasConstraint),\n dropout: this.dropout,\n recurrentDropout: this.recurrentDropout\n };\n return Object.assign({}, baseConfig, config);\n }\n};\nSimpleRNNCell.className = \"SimpleRNNCell\";\nserialization_exports.registerClass(SimpleRNNCell);\nvar SimpleRNN = class extends RNN {\n constructor(args) {\n args.cell = new SimpleRNNCell(args);\n super(args);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.cell.dropoutMask != null) {\n dispose(this.cell.dropoutMask);\n this.cell.dropoutMask = null;\n }\n if (this.cell.recurrentDropoutMask != null) {\n dispose(this.cell.recurrentDropoutMask);\n this.cell.recurrentDropoutMask = null;\n }\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n const initialState = kwargs == null ? null : kwargs[\"initialState\"];\n return super.call(inputs, { mask, training, initialState });\n });\n }\n static fromConfig(cls, config) {\n return new cls(config);\n }\n};\nSimpleRNN.className = \"SimpleRNN\";\nserialization_exports.registerClass(SimpleRNN);\nvar GRUCell = class extends RNNCell {\n constructor(args) {\n super(args);\n this.DEFAULT_ACTIVATION = \"tanh\";\n this.DEFAULT_RECURRENT_ACTIVATION = \"hardSigmoid\";\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_RECURRENT_INITIALIZER = \"orthogonal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n if (args.resetAfter) {\n throw new ValueError(`GRUCell does not support reset_after parameter set to true.`);\n }\n this.units = args.units;\n assertPositiveInteger(this.units, \"units\");\n this.activation = getActivation(args.activation === void 0 ? this.DEFAULT_ACTIVATION : args.activation);\n this.recurrentActivation = getActivation(args.recurrentActivation === void 0 ? this.DEFAULT_RECURRENT_ACTIVATION : args.recurrentActivation);\n this.useBias = args.useBias == null ? true : args.useBias;\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.recurrentInitializer = getInitializer(args.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER);\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n this.recurrentRegularizer = getRegularizer(args.recurrentRegularizer);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.recurrentConstraint = getConstraint(args.recurrentConstraint);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.dropout = min2([1, max2([0, args.dropout == null ? 0 : args.dropout])]);\n this.recurrentDropout = min2([\n 1,\n max2([0, args.recurrentDropout == null ? 0 : args.recurrentDropout])\n ]);\n this.dropoutFunc = args.dropoutFunc;\n this.implementation = args.implementation;\n this.stateSize = this.units;\n this.dropoutMask = null;\n this.recurrentDropoutMask = null;\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const inputDim = inputShape[inputShape.length - 1];\n this.kernel = this.addWeight(\"kernel\", [inputDim, this.units * 3], null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n this.recurrentKernel = this.addWeight(\"recurrent_kernel\", [this.units, this.units * 3], null, this.recurrentInitializer, this.recurrentRegularizer, true, this.recurrentConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.units * 3], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = inputs;\n if (inputs.length !== 2) {\n throw new ValueError(`GRUCell expects 2 input Tensors (inputs, h, c), got ${inputs.length}.`);\n }\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n let hTMinus1 = inputs[1];\n inputs = inputs[0];\n if (0 < this.dropout && this.dropout < 1 && this.dropoutMask == null) {\n this.dropoutMask = generateDropoutMask({\n ones: () => onesLike(inputs),\n rate: this.dropout,\n training,\n count: 3,\n dropoutFunc: this.dropoutFunc\n });\n }\n if (0 < this.recurrentDropout && this.recurrentDropout < 1 && this.recurrentDropoutMask == null) {\n this.recurrentDropoutMask = generateDropoutMask({\n ones: () => onesLike(hTMinus1),\n rate: this.recurrentDropout,\n training,\n count: 3,\n dropoutFunc: this.dropoutFunc\n });\n }\n const dpMask = this.dropoutMask;\n const recDpMask = this.recurrentDropoutMask;\n let z;\n let r2;\n let hh;\n if (0 < this.dropout && this.dropout < 1) {\n inputs = mul(inputs, dpMask[0]);\n }\n let matrixX = dot2(inputs, this.kernel.read());\n if (this.useBias) {\n matrixX = biasAdd(matrixX, this.bias.read());\n }\n if (0 < this.recurrentDropout && this.recurrentDropout < 1) {\n hTMinus1 = mul(hTMinus1, recDpMask[0]);\n }\n const recurrentKernelValue = this.recurrentKernel.read();\n const [rk1, rk2] = split(recurrentKernelValue, [2 * this.units, this.units], recurrentKernelValue.rank - 1);\n const matrixInner = dot2(hTMinus1, rk1);\n const [xZ, xR, xH] = split(matrixX, 3, matrixX.rank - 1);\n const [recurrentZ, recurrentR] = split(matrixInner, 2, matrixInner.rank - 1);\n z = this.recurrentActivation.apply(add2(xZ, recurrentZ));\n r2 = this.recurrentActivation.apply(add2(xR, recurrentR));\n const recurrentH = dot2(mul(r2, hTMinus1), rk2);\n hh = this.activation.apply(add2(xH, recurrentH));\n const h = add2(mul(z, hTMinus1), mul(add2(1, neg(z)), hh));\n return [h, h];\n });\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = {\n units: this.units,\n activation: serializeActivation(this.activation),\n recurrentActivation: serializeActivation(this.recurrentActivation),\n useBias: this.useBias,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n recurrentInitializer: serializeInitializer(this.recurrentInitializer),\n biasInitializer: serializeInitializer(this.biasInitializer),\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint),\n recurrentConstraint: serializeConstraint(this.recurrentConstraint),\n biasConstraint: serializeConstraint(this.biasConstraint),\n dropout: this.dropout,\n recurrentDropout: this.recurrentDropout,\n implementation: this.implementation,\n resetAfter: false\n };\n return Object.assign({}, baseConfig, config);\n }\n};\nGRUCell.className = \"GRUCell\";\nserialization_exports.registerClass(GRUCell);\nvar GRU = class extends RNN {\n constructor(args) {\n if (args.implementation === 0) {\n console.warn(\"`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call.\");\n }\n args.cell = new GRUCell(args);\n super(args);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.cell.dropoutMask != null) {\n dispose(this.cell.dropoutMask);\n this.cell.dropoutMask = null;\n }\n if (this.cell.recurrentDropoutMask != null) {\n dispose(this.cell.recurrentDropoutMask);\n this.cell.recurrentDropoutMask = null;\n }\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n const initialState = kwargs == null ? null : kwargs[\"initialState\"];\n return super.call(inputs, { mask, training, initialState });\n });\n }\n static fromConfig(cls, config) {\n if (config[\"implmentation\"] === 0) {\n config[\"implementation\"] = 1;\n }\n return new cls(config);\n }\n};\nGRU.className = \"GRU\";\nserialization_exports.registerClass(GRU);\nvar LSTMCell = class extends RNNCell {\n constructor(args) {\n super(args);\n this.DEFAULT_ACTIVATION = \"tanh\";\n this.DEFAULT_RECURRENT_ACTIVATION = \"hardSigmoid\";\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_RECURRENT_INITIALIZER = \"orthogonal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n this.units = args.units;\n assertPositiveInteger(this.units, \"units\");\n this.activation = getActivation(args.activation === void 0 ? this.DEFAULT_ACTIVATION : args.activation);\n this.recurrentActivation = getActivation(args.recurrentActivation === void 0 ? this.DEFAULT_RECURRENT_ACTIVATION : args.recurrentActivation);\n this.useBias = args.useBias == null ? true : args.useBias;\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.recurrentInitializer = getInitializer(args.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER);\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.unitForgetBias = args.unitForgetBias;\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n this.recurrentRegularizer = getRegularizer(args.recurrentRegularizer);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.recurrentConstraint = getConstraint(args.recurrentConstraint);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.dropout = min2([1, max2([0, args.dropout == null ? 0 : args.dropout])]);\n this.recurrentDropout = min2([\n 1,\n max2([0, args.recurrentDropout == null ? 0 : args.recurrentDropout])\n ]);\n this.dropoutFunc = args.dropoutFunc;\n this.implementation = args.implementation;\n this.stateSize = [this.units, this.units];\n this.dropoutMask = null;\n this.recurrentDropoutMask = null;\n }\n build(inputShape) {\n var _a;\n inputShape = getExactlyOneShape(inputShape);\n const inputDim = inputShape[inputShape.length - 1];\n this.kernel = this.addWeight(\"kernel\", [inputDim, this.units * 4], null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n this.recurrentKernel = this.addWeight(\"recurrent_kernel\", [this.units, this.units * 4], null, this.recurrentInitializer, this.recurrentRegularizer, true, this.recurrentConstraint);\n let biasInitializer;\n if (this.useBias) {\n if (this.unitForgetBias) {\n const capturedBiasInit = this.biasInitializer;\n const capturedUnits = this.units;\n biasInitializer = new (_a = class CustomInit extends Initializer {\n apply(shape, dtype) {\n const bI = capturedBiasInit.apply([capturedUnits]);\n const bF = new Ones().apply([capturedUnits]);\n const bCAndH = capturedBiasInit.apply([capturedUnits * 2]);\n return concatAlongFirstAxis(concatAlongFirstAxis(bI, bF), bCAndH);\n }\n }, _a.className = \"CustomInit\", _a)();\n } else {\n biasInitializer = this.biasInitializer;\n }\n this.bias = this.addWeight(\"bias\", [this.units * 4], null, biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n inputs = inputs;\n if (inputs.length !== 3) {\n throw new ValueError(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${inputs.length}.`);\n }\n let hTMinus1 = inputs[1];\n const cTMinus1 = inputs[2];\n inputs = inputs[0];\n if (0 < this.dropout && this.dropout < 1 && this.dropoutMask == null) {\n this.dropoutMask = generateDropoutMask({\n ones: () => onesLike(inputs),\n rate: this.dropout,\n training,\n count: 4,\n dropoutFunc: this.dropoutFunc\n });\n }\n if (0 < this.recurrentDropout && this.recurrentDropout < 1 && this.recurrentDropoutMask == null) {\n this.recurrentDropoutMask = generateDropoutMask({\n ones: () => onesLike(hTMinus1),\n rate: this.recurrentDropout,\n training,\n count: 4,\n dropoutFunc: this.dropoutFunc\n });\n }\n const dpMask = this.dropoutMask;\n const recDpMask = this.recurrentDropoutMask;\n let i2;\n let f;\n let c;\n let o;\n if (0 < this.dropout && this.dropout < 1) {\n inputs = mul(inputs, dpMask[0]);\n }\n let z = dot2(inputs, this.kernel.read());\n if (0 < this.recurrentDropout && this.recurrentDropout < 1) {\n hTMinus1 = mul(hTMinus1, recDpMask[0]);\n }\n z = add2(z, dot2(hTMinus1, this.recurrentKernel.read()));\n if (this.useBias) {\n z = biasAdd(z, this.bias.read());\n }\n const [z0, z1, z2, z3] = split(z, 4, z.rank - 1);\n i2 = this.recurrentActivation.apply(z0);\n f = this.recurrentActivation.apply(z1);\n c = add2(mul(f, cTMinus1), mul(i2, this.activation.apply(z2)));\n o = this.recurrentActivation.apply(z3);\n const h = mul(o, this.activation.apply(c));\n return [h, h, c];\n });\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = {\n units: this.units,\n activation: serializeActivation(this.activation),\n recurrentActivation: serializeActivation(this.recurrentActivation),\n useBias: this.useBias,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n recurrentInitializer: serializeInitializer(this.recurrentInitializer),\n biasInitializer: serializeInitializer(this.biasInitializer),\n unitForgetBias: this.unitForgetBias,\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint),\n recurrentConstraint: serializeConstraint(this.recurrentConstraint),\n biasConstraint: serializeConstraint(this.biasConstraint),\n dropout: this.dropout,\n recurrentDropout: this.recurrentDropout,\n implementation: this.implementation\n };\n return Object.assign({}, baseConfig, config);\n }\n};\nLSTMCell.className = \"LSTMCell\";\nserialization_exports.registerClass(LSTMCell);\nvar LSTM = class extends RNN {\n constructor(args) {\n if (args.implementation === 0) {\n console.warn(\"`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call.\");\n }\n args.cell = new LSTMCell(args);\n super(args);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.cell.dropoutMask != null) {\n dispose(this.cell.dropoutMask);\n this.cell.dropoutMask = null;\n }\n if (this.cell.recurrentDropoutMask != null) {\n dispose(this.cell.recurrentDropoutMask);\n this.cell.recurrentDropoutMask = null;\n }\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n const initialState = kwargs == null ? null : kwargs[\"initialState\"];\n return super.call(inputs, { mask, training, initialState });\n });\n }\n static fromConfig(cls, config) {\n if (config[\"implmentation\"] === 0) {\n config[\"implementation\"] = 1;\n }\n return new cls(config);\n }\n};\nLSTM.className = \"LSTM\";\nserialization_exports.registerClass(LSTM);\nvar StackedRNNCells = class extends RNNCell {\n constructor(args) {\n super(args);\n this.cells = args.cells;\n }\n get stateSize() {\n const stateSize = [];\n for (const cell of this.cells.slice().reverse()) {\n if (Array.isArray(cell.stateSize)) {\n stateSize.push(...cell.stateSize);\n } else {\n stateSize.push(cell.stateSize);\n }\n }\n return stateSize;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = inputs;\n let states = inputs.slice(1);\n const nestedStates = [];\n for (const cell of this.cells.slice().reverse()) {\n if (Array.isArray(cell.stateSize)) {\n nestedStates.push(states.splice(0, cell.stateSize.length));\n } else {\n nestedStates.push(states.splice(0, 1));\n }\n }\n nestedStates.reverse();\n const newNestedStates = [];\n let callInputs;\n for (let i2 = 0; i2 < this.cells.length; ++i2) {\n const cell = this.cells[i2];\n states = nestedStates[i2];\n if (i2 === 0) {\n callInputs = [inputs[0]].concat(states);\n } else {\n callInputs = [callInputs[0]].concat(states);\n }\n callInputs = cell.call(callInputs, kwargs);\n newNestedStates.push(callInputs.slice(1));\n }\n states = [];\n for (const cellStates of newNestedStates.slice().reverse()) {\n states.push(...cellStates);\n }\n return [callInputs[0]].concat(states);\n });\n }\n build(inputShape) {\n if (isArrayOfShapes(inputShape)) {\n inputShape = inputShape[0];\n }\n inputShape = inputShape;\n let outputDim;\n this.cells.forEach((cell, i2) => {\n nameScope(`RNNCell_${i2}`, () => {\n cell.build(inputShape);\n if (Array.isArray(cell.stateSize)) {\n outputDim = cell.stateSize[0];\n } else {\n outputDim = cell.stateSize;\n }\n inputShape = [inputShape[0], outputDim];\n });\n });\n this.built = true;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const getCellConfig = (cell) => {\n return {\n \"className\": cell.getClassName(),\n \"config\": cell.getConfig()\n };\n };\n const cellConfigs = this.cells.map(getCellConfig);\n const config = { \"cells\": cellConfigs };\n return Object.assign({}, baseConfig, config);\n }\n static fromConfig(cls, config, customObjects = {}) {\n const cells = [];\n for (const cellConfig of config[\"cells\"]) {\n cells.push(deserialize(cellConfig, customObjects));\n }\n return new cls({ cells });\n }\n get trainableWeights() {\n if (!this.trainable) {\n return [];\n }\n const weights = [];\n for (const cell of this.cells) {\n weights.push(...cell.trainableWeights);\n }\n return weights;\n }\n get nonTrainableWeights() {\n const weights = [];\n for (const cell of this.cells) {\n weights.push(...cell.nonTrainableWeights);\n }\n if (!this.trainable) {\n const trainableWeights = [];\n for (const cell of this.cells) {\n trainableWeights.push(...cell.trainableWeights);\n }\n return trainableWeights.concat(weights);\n }\n return weights;\n }\n getWeights() {\n const weights = [];\n for (const cell of this.cells) {\n weights.push(...cell.weights);\n }\n return batchGetValue(weights);\n }\n setWeights(weights) {\n const tuples = [];\n for (const cell of this.cells) {\n const numParams = cell.weights.length;\n const inputWeights = weights.splice(numParams);\n for (let i2 = 0; i2 < cell.weights.length; ++i2) {\n tuples.push([cell.weights[i2], inputWeights[i2]]);\n }\n }\n batchSetValue(tuples);\n }\n};\nStackedRNNCells.className = \"StackedRNNCells\";\nserialization_exports.registerClass(StackedRNNCells);\nfunction generateDropoutMask(args) {\n const { ones: ones4, rate, training = false, count: count2 = 1, dropoutFunc } = args;\n const droppedInputs = () => dropoutFunc != null ? dropoutFunc(ones4(), rate) : dropout2(ones4(), rate);\n const createMask = () => inTrainPhase(droppedInputs, ones4, training);\n if (!count2 || count2 <= 1) {\n return keep(createMask().clone());\n }\n const masks = Array(count2).fill(void 0).map(createMask);\n return masks.map((m) => keep(m.clone()));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/convolutional_recurrent.js\nvar __rest = function(s2, e2) {\n var t2 = {};\n for (var p2 in s2)\n if (Object.prototype.hasOwnProperty.call(s2, p2) && e2.indexOf(p2) < 0)\n t2[p2] = s2[p2];\n if (s2 != null && typeof Object.getOwnPropertySymbols === \"function\")\n for (var i2 = 0, p2 = Object.getOwnPropertySymbols(s2); i2 < p2.length; i2++) {\n if (e2.indexOf(p2[i2]) < 0 && Object.prototype.propertyIsEnumerable.call(s2, p2[i2]))\n t2[p2[i2]] = s2[p2[i2]];\n }\n return t2;\n};\nvar ConvRNN2D = class extends RNN {\n constructor(args) {\n if (args.unroll) {\n throw new NotImplementedError(\"Unrolling is not possible with convolutional RNNs.\");\n }\n if (Array.isArray(args.cell)) {\n throw new NotImplementedError(\"It is not possible at the moment to stack convolutional cells.\");\n }\n super(args);\n this.inputSpec = [new InputSpec({ ndim: 5 })];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.cell.dropoutMask != null) {\n dispose(this.cell.dropoutMask);\n this.cell.dropoutMask = null;\n }\n if (this.cell.recurrentDropoutMask != null) {\n dispose(this.cell.recurrentDropoutMask);\n this.cell.recurrentDropoutMask = null;\n }\n if (kwargs && kwargs[\"constants\"]) {\n throw new ValueError(\"ConvRNN2D cell does not support constants\");\n }\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n const initialState = kwargs == null ? null : kwargs[\"initialState\"];\n return super.call(inputs, { mask, training, initialState });\n });\n }\n computeOutputShape(inputShape) {\n let outShape = this.computeSingleOutputShape(inputShape);\n if (!this.returnSequences) {\n outShape = [outShape[0], ...outShape.slice(2)];\n }\n if (this.returnState) {\n outShape = [outShape, ...Array(2).fill([inputShape[0], ...outShape.slice(-3)])];\n }\n return outShape;\n }\n getInitialState(inputs) {\n return tidy(() => {\n const { stateSize } = this.cell;\n const inputShape = inputs.shape;\n const outputShape = this.computeSingleOutputShape(inputShape);\n const stateShape = [outputShape[0], ...outputShape.slice(2)];\n const initialState = zeros(stateShape);\n if (Array.isArray(stateSize)) {\n return Array(stateSize.length).fill(initialState);\n }\n return [initialState];\n });\n }\n resetStates(states, training = false) {\n tidy(() => {\n if (!this.stateful) {\n throw new AttributeError(\"Cannot call resetStates() on an RNN Layer that is not stateful.\");\n }\n const inputShape = this.inputSpec[0].shape;\n const outputShape = this.computeSingleOutputShape(inputShape);\n const stateShape = [outputShape[0], ...outputShape.slice(2)];\n const batchSize = inputShape[0];\n if (batchSize == null) {\n throw new ValueError(\"If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \\n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.\");\n }\n if (this.getStates() == null) {\n if (Array.isArray(this.cell.stateSize)) {\n this.states_ = this.cell.stateSize.map(() => zeros(stateShape));\n } else {\n this.states_ = [zeros(stateShape)];\n }\n } else if (states == null) {\n dispose(this.states_);\n if (this.keptStates != null) {\n dispose(this.keptStates);\n this.keptStates = [];\n }\n if (Array.isArray(this.cell.stateSize)) {\n this.states_ = this.cell.stateSize.map(() => zeros(stateShape));\n } else {\n this.states_[0] = zeros(stateShape);\n }\n } else {\n if (!Array.isArray(states)) {\n states = [states];\n }\n if (states.length !== this.states_.length) {\n throw new ValueError(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${states.length} state value(s). Input received: ${states}`);\n }\n if (training) {\n this.keptStates.push(this.states_.slice());\n } else {\n dispose(this.states_);\n }\n for (let index = 0; index < this.states_.length; ++index) {\n const value = states[index];\n const expectedShape = stateShape;\n if (!util_exports.arraysEqual(value.shape, expectedShape)) {\n throw new ValueError(`State ${index} is incompatible with layer ${this.name}: expected shape=${expectedShape}, received shape=${value.shape}`);\n }\n this.states_[index] = value;\n }\n }\n this.states_ = this.states_.map((state) => keep(state.clone()));\n });\n }\n computeSingleOutputShape(inputShape) {\n const { dataFormat, filters, kernelSize, padding, strides, dilationRate } = this.cell;\n const isChannelsFirst = dataFormat === \"channelsFirst\";\n const h = inputShape[isChannelsFirst ? 3 : 2];\n const w = inputShape[isChannelsFirst ? 4 : 3];\n const hOut = convOutputLength(h, kernelSize[0], padding, strides[0], dilationRate[0]);\n const wOut = convOutputLength(w, kernelSize[1], padding, strides[1], dilationRate[1]);\n const outShape = [\n ...inputShape.slice(0, 2),\n ...isChannelsFirst ? [filters, hOut, wOut] : [hOut, wOut, filters]\n ];\n return outShape;\n }\n};\nConvRNN2D.className = \"ConvRNN2D\";\nvar ConvLSTM2DCell = class extends LSTMCell {\n constructor(args) {\n const { filters, kernelSize, strides, padding, dataFormat, dilationRate } = args;\n super(Object.assign({}, args, { units: filters }));\n this.filters = filters;\n assertPositiveInteger(this.filters, \"filters\");\n this.kernelSize = normalizeArray(kernelSize, 2, \"kernelSize\");\n this.kernelSize.forEach((size) => assertPositiveInteger(size, \"kernelSize\"));\n this.strides = normalizeArray(strides || 1, 2, \"strides\");\n this.strides.forEach((stride) => assertPositiveInteger(stride, \"strides\"));\n this.padding = padding || \"valid\";\n checkPaddingMode(this.padding);\n this.dataFormat = dataFormat || \"channelsLast\";\n checkDataFormat(this.dataFormat);\n this.dilationRate = normalizeArray(dilationRate || 1, 2, \"dilationRate\");\n this.dilationRate.forEach((rate) => assertPositiveInteger(rate, \"dilationRate\"));\n }\n build(inputShape) {\n var _a;\n inputShape = getExactlyOneShape(inputShape);\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null) {\n throw new ValueError(`The channel dimension of the input should be defined. Found ${inputShape[channelAxis]}`);\n }\n const inputDim = inputShape[channelAxis];\n const numOfKernels = 4;\n const kernelShape = this.kernelSize.concat([inputDim, this.filters * numOfKernels]);\n this.kernel = this.addWeight(\"kernel\", kernelShape, null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n const recurrentKernelShape = this.kernelSize.concat([this.filters, this.filters * numOfKernels]);\n this.recurrentKernel = this.addWeight(\"recurrent_kernel\", recurrentKernelShape, null, this.recurrentInitializer, this.recurrentRegularizer, true, this.recurrentConstraint);\n if (this.useBias) {\n let biasInitializer;\n if (this.unitForgetBias) {\n const init2 = this.biasInitializer;\n const filters = this.filters;\n biasInitializer = new (_a = class CustomInit extends Initializer {\n apply(shape, dtype) {\n const biasI = init2.apply([filters]);\n const biasF = ones2([filters]);\n const biasCAndO = init2.apply([filters * 2]);\n return concatenate([biasI, biasF, biasCAndO]);\n }\n }, _a.className = \"CustomInit\", _a)();\n } else {\n biasInitializer = this.biasInitializer;\n }\n this.bias = this.addWeight(\"bias\", [this.filters * numOfKernels], null, biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (inputs.length !== 3) {\n throw new ValueError(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${inputs.length}.`);\n }\n const training = kwargs[\"training\"] || false;\n const x = inputs[0];\n const hTMinus1 = inputs[1];\n const cTMinus1 = inputs[2];\n const numOfKernels = 4;\n if (0 < this.dropout && this.dropout < 1 && this.dropoutMask == null) {\n this.dropoutMask = generateDropoutMask({\n ones: () => onesLike(x),\n rate: this.dropout,\n training,\n count: numOfKernels,\n dropoutFunc: this.dropoutFunc\n });\n }\n const dropoutMask = this.dropoutMask;\n const applyDropout = (x2, mask, index) => {\n if (!mask || !mask[index]) {\n return x2;\n }\n return mul(mask[index], x2);\n };\n let xI = applyDropout(x, dropoutMask, 0);\n let xF = applyDropout(x, dropoutMask, 1);\n let xC = applyDropout(x, dropoutMask, 2);\n let xO = applyDropout(x, dropoutMask, 3);\n if (0 < this.recurrentDropout && this.recurrentDropout < 1 && this.recurrentDropoutMask == null) {\n this.recurrentDropoutMask = generateDropoutMask({\n ones: () => onesLike(hTMinus1),\n rate: this.recurrentDropout,\n training,\n count: numOfKernels,\n dropoutFunc: this.dropoutFunc\n });\n }\n const recDropoutMask = this.recurrentDropoutMask;\n let hI = applyDropout(hTMinus1, recDropoutMask, 0);\n let hF = applyDropout(hTMinus1, recDropoutMask, 1);\n let hC = applyDropout(hTMinus1, recDropoutMask, 2);\n let hO = applyDropout(hTMinus1, recDropoutMask, 3);\n const kernelChannelAxis = 3;\n const [kernelI, kernelF, kernelC, kernelO] = split(this.kernel.read(), numOfKernels, kernelChannelAxis);\n const [biasI, biasF, biasC, biasO] = this.useBias ? split(this.bias.read(), numOfKernels) : [null, null, null, null];\n xI = this.inputConv(xI, kernelI, biasI, this.padding);\n xF = this.inputConv(xF, kernelF, biasF, this.padding);\n xC = this.inputConv(xC, kernelC, biasC, this.padding);\n xO = this.inputConv(xO, kernelO, biasO, this.padding);\n const [recKernelI, recKernelF, recKernelC, recKernelO] = split(this.recurrentKernel.read(), numOfKernels, kernelChannelAxis);\n hI = this.recurrentConv(hI, recKernelI);\n hF = this.recurrentConv(hF, recKernelF);\n hC = this.recurrentConv(hC, recKernelC);\n hO = this.recurrentConv(hO, recKernelO);\n const i2 = this.recurrentActivation.apply(add2(xI, hI));\n const f = this.recurrentActivation.apply(add2(xF, hF));\n const c = add2(mul(f, cTMinus1), mul(i2, this.activation.apply(add2(xC, hC))));\n const h = mul(this.recurrentActivation.apply(add2(xO, hO)), this.activation.apply(c));\n return [h, h, c];\n });\n }\n getConfig() {\n const _a = super.getConfig(), { \"units\": _ } = _a, baseConfig = __rest(_a, [\"units\"]);\n const config = {\n filters: this.filters,\n kernelSize: this.kernelSize,\n padding: this.padding,\n dataFormat: this.dataFormat,\n dilationRate: this.dilationRate,\n strides: this.strides\n };\n return Object.assign({}, baseConfig, config);\n }\n inputConv(x, w, b, padding) {\n const out = conv2d(x, w, this.strides, padding || \"valid\", this.dataFormat === \"channelsFirst\" ? \"NCHW\" : \"NHWC\", this.dilationRate);\n if (b) {\n return biasAdd(out, b, this.dataFormat);\n }\n return out;\n }\n recurrentConv(x, w) {\n const strides = 1;\n return conv2d(x, w, strides, \"same\", this.dataFormat === \"channelsFirst\" ? \"NCHW\" : \"NHWC\");\n }\n};\nConvLSTM2DCell.className = \"ConvLSTM2DCell\";\nserialization_exports.registerClass(ConvLSTM2DCell);\nvar ConvLSTM2D = class extends ConvRNN2D {\n constructor(args) {\n const cell = new ConvLSTM2DCell(args);\n super(Object.assign({}, args, { cell }));\n }\n static fromConfig(cls, config) {\n return new cls(config);\n }\n};\nConvLSTM2D.className = \"ConvLSTM2D\";\nserialization_exports.registerClass(ConvLSTM2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/core.js\nvar Dropout = class extends Layer {\n constructor(args) {\n super(args);\n this.rate = Math.max(Math.min(args.rate, 1), 0);\n this.noiseShape = args.noiseShape;\n this.seed = args.seed;\n this.supportsMasking = true;\n }\n getNoiseShape(input2) {\n if (this.noiseShape == null) {\n return this.noiseShape;\n }\n const inputShape = input2.shape;\n const noiseShape = [];\n for (let i2 = 0; i2 < this.noiseShape.length; ++i2) {\n noiseShape.push(this.noiseShape[i2] == null ? inputShape[i2] : this.noiseShape[i2]);\n }\n return noiseShape;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n if (0 < this.rate && this.rate < 1) {\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n const noiseShape = this.getNoiseShape(input2);\n const output = inTrainPhase(() => dropout2(input2, this.rate, noiseShape, this.seed), () => input2, training);\n return output;\n }\n return inputs;\n });\n }\n getConfig() {\n const config = {\n rate: this.rate,\n noiseShape: this.noiseShape,\n seed: this.seed\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n dispose() {\n return super.dispose();\n }\n};\nDropout.className = \"Dropout\";\nserialization_exports.registerClass(Dropout);\nvar SpatialDropout1D = class extends Dropout {\n constructor(args) {\n super(args);\n this.inputSpec = [{ ndim: 3 }];\n }\n getNoiseShape(input2) {\n const inputShape = input2.shape;\n return [inputShape[0], 1, inputShape[2]];\n }\n};\nSpatialDropout1D.className = \"SpatialDropout1D\";\nserialization_exports.registerClass(SpatialDropout1D);\nvar Dense = class extends Layer {\n constructor(args) {\n super(args);\n this.activation = null;\n this.useBias = true;\n this.kernel = null;\n this.bias = null;\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n if (args.batchInputShape == null && args.inputShape == null && args.inputDim != null) {\n let batchSize = null;\n if (args.batchSize != null) {\n batchSize = args.batchSize;\n }\n this.batchInputShape = [batchSize, args.inputDim];\n }\n this.units = args.units;\n assertPositiveInteger(this.units, \"units\");\n this.activation = getActivation(args.activation);\n if (args.useBias != null) {\n this.useBias = args.useBias;\n }\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.activityRegularizer = getRegularizer(args.activityRegularizer);\n this.supportsMasking = true;\n this.inputSpec = [{ minNDim: 2 }];\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const inputLastDim = inputShape[inputShape.length - 1];\n if (this.kernel == null) {\n this.kernel = this.addWeight(\"kernel\", [inputLastDim, this.units], null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.units], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n }\n this.inputSpec = [{ minNDim: 2, axes: { [-1]: inputLastDim } }];\n this.built = true;\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const outputShape = inputShape.slice();\n outputShape[outputShape.length - 1] = this.units;\n return outputShape;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n const fusedActivationName = mapActivationToFusedKernel(this.activation.getClassName());\n let output;\n if (fusedActivationName != null) {\n output = dot2(input2, this.kernel.read(), fusedActivationName, this.bias ? this.bias.read() : null);\n } else {\n output = dot2(input2, this.kernel.read());\n if (this.bias != null) {\n output = biasAdd(output, this.bias.read());\n }\n if (this.activation != null) {\n output = this.activation.apply(output);\n }\n }\n return output;\n });\n }\n getConfig() {\n const config = {\n units: this.units,\n activation: serializeActivation(this.activation),\n useBias: this.useBias,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n biasInitializer: serializeInitializer(this.biasInitializer),\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint),\n biasConstraint: serializeConstraint(this.biasConstraint)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nDense.className = \"Dense\";\nserialization_exports.registerClass(Dense);\nvar Flatten = class extends Layer {\n constructor(args) {\n args = args || {};\n super(args);\n this.inputSpec = [{ minNDim: 3 }];\n this.dataFormat = args.dataFormat;\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n for (const dim of inputShape.slice(1)) {\n if (dim == null) {\n throw new ValueError(`The shape of the input to \"Flatten\" is not fully defined (got ${inputShape.slice(1)}). Make sure to pass a complete \"input_shape\" or \"batch_input_shape\" argument to the first layer in your model.`);\n }\n }\n return [inputShape[0], arrayProd(inputShape, 1)];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n let input2 = getExactlyOneTensor(inputs);\n if (this.dataFormat === \"channelsFirst\" && input2.rank > 1) {\n const permutation = [0];\n for (let i2 = 2; i2 < input2.rank; ++i2) {\n permutation.push(i2);\n }\n permutation.push(1);\n input2 = transpose(input2, permutation);\n }\n return batchFlatten(input2);\n });\n }\n getConfig() {\n const config = {};\n if (this.dataFormat != null) {\n config[\"dataFormat\"] = this.dataFormat;\n }\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nFlatten.className = \"Flatten\";\nserialization_exports.registerClass(Flatten);\nvar Activation2 = class extends Layer {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n this.activation = getActivation(args.activation);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n return this.activation.apply(input2);\n });\n }\n getConfig() {\n const config = { activation: serializeActivation(this.activation) };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nActivation2.className = \"Activation\";\nserialization_exports.registerClass(Activation2);\nvar RepeatVector = class extends Layer {\n constructor(args) {\n super(args);\n this.n = args.n;\n this.inputSpec = [{ ndim: 2 }];\n }\n computeOutputShape(inputShape) {\n return [inputShape[0], this.n, inputShape[1]];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n return repeat(inputs, this.n);\n });\n }\n getConfig() {\n const config = {\n n: this.n\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nRepeatVector.className = \"RepeatVector\";\nserialization_exports.registerClass(RepeatVector);\nvar Reshape2 = class extends Layer {\n constructor(args) {\n super(args);\n this.targetShape = args.targetShape;\n for (let i2 = 0; i2 < this.targetShape.length; ++i2) {\n if (this.isUnknown(this.targetShape[i2])) {\n this.targetShape[i2] = null;\n }\n }\n }\n isUnknown(dim) {\n return dim < 0 || dim == null;\n }\n fixUnknownDimension(inputShape, outputShape) {\n const errorMsg = \"Total size of new array must be unchanged.\";\n const finalShape = outputShape.slice();\n let known = 1;\n let unknown = null;\n for (let i2 = 0; i2 < finalShape.length; ++i2) {\n const dim = finalShape[i2];\n if (this.isUnknown(dim)) {\n if (unknown === null) {\n unknown = i2;\n } else {\n throw new ValueError(\"Can only specifiy one unknown dimension.\");\n }\n } else {\n known *= dim;\n }\n }\n const originalSize = arrayProd(inputShape);\n if (unknown !== null) {\n if (known === 0 || originalSize % known !== 0) {\n throw new ValueError(errorMsg);\n }\n finalShape[unknown] = originalSize / known;\n } else if (originalSize !== known) {\n throw new ValueError(errorMsg);\n }\n return finalShape;\n }\n computeOutputShape(inputShape) {\n let anyUnknownDims = false;\n for (let i2 = 0; i2 < inputShape.length; ++i2) {\n if (this.isUnknown(inputShape[i2])) {\n anyUnknownDims = true;\n break;\n }\n }\n if (anyUnknownDims) {\n return inputShape.slice(0, 1).concat(this.targetShape);\n } else {\n return inputShape.slice(0, 1).concat(this.fixUnknownDimension(inputShape.slice(1), this.targetShape));\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n const inputShape = input2.shape;\n const outputShape = inputShape.slice(0, 1).concat(this.fixUnknownDimension(inputShape.slice(1), this.targetShape));\n return reshape(input2, outputShape);\n });\n }\n getConfig() {\n const config = {\n targetShape: this.targetShape\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nReshape2.className = \"Reshape\";\nserialization_exports.registerClass(Reshape2);\nvar Permute = class extends Layer {\n constructor(args) {\n super(args);\n if (args.dims == null) {\n throw new Error(\"Required configuration field `dims` is missing during Permute constructor call.\");\n }\n if (!Array.isArray(args.dims)) {\n throw new Error(`Permute constructor requires \\`dims\\` to be an Array, but received ${args.dims} instead.`);\n }\n const expectedSortedIndices = range2(1, args.dims.length + 1);\n if (!util_exports.arraysEqual(args.dims.slice().sort(), expectedSortedIndices)) {\n throw new Error(\"Invalid permutation `dims`: \" + JSON.stringify(args.dims) + \" `dims` must contain consecutive integers starting from 1.\");\n }\n this.dims = args.dims;\n this.dimsIncludingBatch = [0].concat(this.dims);\n this.inputSpec = [new InputSpec({ ndim: this.dims.length + 1 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const outputShape = inputShape.slice();\n this.dims.forEach((dim, i2) => {\n outputShape[i2 + 1] = inputShape[dim];\n });\n return outputShape;\n }\n call(inputs, kwargs) {\n return transpose(getExactlyOneTensor(inputs), this.dimsIncludingBatch);\n }\n getConfig() {\n const config = {\n dims: this.dims\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nPermute.className = \"Permute\";\nserialization_exports.registerClass(Permute);\nvar Masking = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.supportsMasking = true;\n if (args != null) {\n this.maskValue = args.maskValue == null ? 0 : args.maskValue;\n } else {\n this.maskValue = 0;\n }\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = { maskValue: this.maskValue };\n Object.assign(config, baseConfig);\n return config;\n }\n computeMask(inputs, mask) {\n const input2 = getExactlyOneTensor(inputs);\n const axis = -1;\n return any(notEqual(input2, this.maskValue), axis);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n const axis = -1;\n const keepDims = true;\n const booleanMask = any(notEqual(input2, this.maskValue), axis, keepDims);\n const output = mul(input2, cast(booleanMask, input2.dtype));\n return output;\n });\n }\n};\nMasking.className = \"Masking\";\nserialization_exports.registerClass(Masking);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/embeddings.js\nvar Embedding = class extends Layer {\n constructor(args) {\n super(args);\n this.embeddings = null;\n this.DEFAULT_EMBEDDINGS_INITIALIZER = \"randomUniform\";\n if (args.batchInputShape == null && args.inputShape == null) {\n let batchSize = null;\n if (args.batchSize != null) {\n batchSize = args.batchSize;\n }\n if (args.inputLength == null) {\n this.batchInputShape = [batchSize, null];\n } else {\n this.batchInputShape = [batchSize].concat(toList(args.inputLength));\n }\n }\n this.inputDim = args.inputDim;\n assertPositiveInteger(this.inputDim, \"inputDim\");\n this.outputDim = args.outputDim;\n assertPositiveInteger(this.outputDim, \"outputDim\");\n this.embeddingsInitializer = getInitializer(args.embeddingsInitializer || this.DEFAULT_EMBEDDINGS_INITIALIZER);\n this.embeddingsRegularizer = getRegularizer(args.embeddingsRegularizer);\n this.activityRegularizer = getRegularizer(args.activityRegularizer);\n this.embeddingsConstraint = getConstraint(args.embeddingsConstraint);\n this.maskZero = args.maskZero;\n this.supportsMasking = args.maskZero;\n this.inputLength = args.inputLength;\n }\n build(inputShape) {\n this.embeddings = this.addWeight(\"embeddings\", [this.inputDim, this.outputDim], this.dtype, this.embeddingsInitializer, this.embeddingsRegularizer, true, this.embeddingsConstraint);\n this.built = true;\n }\n warnOnIncompatibleInputShape(inputShape) {\n }\n computeMask(inputs, mask) {\n return tidy(() => {\n if (!this.maskZero) {\n return null;\n } else {\n inputs = getExactlyOneTensor(inputs);\n return notEqual(inputs, zerosLike(inputs));\n }\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (this.inputLength == null) {\n return [...inputShape, this.outputDim];\n }\n const inLens = toList(this.inputLength);\n if (inLens.length !== inputShape.length - 1) {\n throw new ValueError(`\"inputLength\" is ${this.inputLength}, but received input shape has shape ${inputShape}`);\n } else {\n let i2 = 0;\n for (let k = 0; k < inLens.length; ++k) {\n const s1 = inLens[k];\n const s2 = inputShape[k + 1];\n if (s1 != null && s2 != null && s1 !== s2) {\n throw new ValueError(`\"inputLength\" is ${this.inputLength}, but received input shape has shape ${inputShape}`);\n } else if (s1 == null) {\n inLens[i2] = s2;\n }\n i2++;\n }\n }\n return [inputShape[0], ...inLens, this.outputDim];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n let input2 = getExactlyOneTensor(inputs);\n if (input2.dtype !== \"int32\") {\n input2 = cast2(input2, \"int32\");\n }\n const output = gather2(this.embeddings.read(), reshape(input2, [input2.size]));\n return reshape(output, getExactlyOneShape(this.computeOutputShape(input2.shape)));\n });\n }\n getConfig() {\n const config = {\n inputDim: this.inputDim,\n outputDim: this.outputDim,\n embeddingsInitializer: serializeInitializer(this.embeddingsInitializer),\n embeddingsRegularizer: serializeRegularizer(this.embeddingsRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n embeddingsConstraint: serializeConstraint(this.embeddingsConstraint),\n maskZero: this.maskZero,\n inputLength: this.inputLength\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nEmbedding.className = \"Embedding\";\nserialization_exports.registerClass(Embedding);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/merge.js\nvar Merge = class extends Layer {\n constructor(args) {\n super(args || {});\n this.supportsMasking = true;\n }\n mergeFunction(inputs) {\n throw new NotImplementedError();\n }\n computeElementwiseOpOutputShape(shape1, shape2) {\n if (shape1 == null || shape2 == null) {\n return null;\n } else if (shape1.length < shape2.length) {\n return this.computeElementwiseOpOutputShape(shape2, shape1);\n } else if (shape2.length === 0) {\n return shape1;\n }\n const outputShape = shape1.slice(0, shape1.length - shape2.length);\n for (let k = 0; k < shape2.length; ++k) {\n const i2 = shape1[shape1.length - shape2.length + k];\n const j = shape2[k];\n if (i2 == null || j == null || i2 < 0 || j < 0) {\n outputShape.push(null);\n } else if (i2 === 1) {\n outputShape.push(j);\n } else if (j === 1) {\n outputShape.push(i2);\n } else {\n if (i2 !== j) {\n throw new ValueError(\"Operands could not be broadcast together with shapes \" + JSON.stringify(shape1) + \" \" + JSON.stringify(shape2));\n }\n outputShape.push(i2);\n }\n }\n return outputShape;\n }\n build(inputShape) {\n if (Array.isArray(inputShape) && !Array.isArray(inputShape[0])) {\n inputShape = [getExactlyOneShape(inputShape)];\n }\n inputShape = inputShape;\n if (inputShape.length < 2) {\n throw new ValueError(`A merge layer should be called on an Array of at least 2 inputs. Got ${inputShape.length} input(s).`);\n }\n let batchSizes = [];\n for (const shape of inputShape) {\n if (shape != null && shape[0] !== null) {\n batchSizes.push(shape[0]);\n }\n }\n batchSizes = unique2(batchSizes);\n if (batchSizes.length > 1) {\n throw new ValueError(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(inputShape)}.`);\n }\n let outputShape = inputShape[0] == null ? null : inputShape[0].slice(1);\n for (let i2 = 1; i2 < inputShape.length; ++i2) {\n const shape = inputShape[i2] == null ? null : inputShape[i2].slice(1);\n outputShape = this.computeElementwiseOpOutputShape(outputShape, shape);\n }\n const allRanks = inputShape.map((shape) => shape.length);\n if (inputShape.indexOf(null) === -1 && unique2(allRanks).length === 1) {\n this.reshapeRequired = false;\n } else {\n this.reshapeRequired = true;\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = inputs;\n if (this.reshapeRequired) {\n const reshapedInputs = [];\n const inputDims = inputs.map((input2) => input2.rank);\n if (inputDims.indexOf(null) === -1) {\n const maxNDim = max2(inputDims);\n for (let x of inputs) {\n const xNDim = x.rank;\n for (let k = 0; k < maxNDim - xNDim; ++k) {\n x = expandDims2(x, 1);\n }\n reshapedInputs.push(x);\n }\n return this.mergeFunction(reshapedInputs);\n } else {\n let transposed = false;\n for (const x of inputs) {\n const xNDim = x.rank;\n if (xNDim == null) {\n const xShape = x.shape;\n const batchSize = xShape[0];\n const newShape = xShape.slice(1).concat([batchSize]);\n let xTransposed = reshape(x, [batchSize].concat(arrayProd(xShape.slice(1))));\n xTransposed = transpose(xTransposed, [1, 0]);\n xTransposed = reshape(xTransposed, newShape);\n reshapedInputs.push(xTransposed);\n transposed = true;\n } else if (xNDim > 1) {\n const dims = range2(1, xNDim).concat([0]);\n reshapedInputs.push(transpose(x, dims));\n transposed = true;\n } else {\n reshapedInputs.push(x);\n }\n }\n let y = this.mergeFunction(reshapedInputs);\n const yNDim = y.rank;\n if (transposed) {\n if (yNDim == null) {\n const yShape = y.shape;\n const yNDim2 = yShape.length;\n const batchSize = yShape[yNDim2 - 1];\n const newShape = [batchSize].concat(yShape.slice(0, yShape.length - 1));\n y = reshape(transpose(reshape(y, [-1, batchSize]), [1, 0]), newShape);\n } else if (yNDim > 1) {\n const dims = [yNDim - 1].concat(range2(0, yNDim - 1));\n y = transpose(y, dims);\n }\n }\n return y;\n }\n } else {\n return this.mergeFunction(inputs);\n }\n });\n }\n computeOutputShape(inputShape) {\n inputShape = inputShape;\n let outputShape;\n if (inputShape[0] == null) {\n outputShape = null;\n } else {\n outputShape = inputShape[0].slice(1);\n }\n for (let i2 = 1; i2 < inputShape.length; ++i2) {\n const shape = inputShape[i2] == null ? null : inputShape[i2].slice(1);\n outputShape = this.computeElementwiseOpOutputShape(outputShape, shape);\n }\n let batchSizes = [];\n for (const shape of inputShape) {\n if (shape != null && shape[0] !== null) {\n batchSizes.push(shape[0]);\n }\n }\n batchSizes = unique2(batchSizes);\n if (batchSizes.length === 1) {\n outputShape = batchSizes.concat(outputShape);\n } else {\n outputShape = [null].concat(outputShape);\n }\n return outputShape;\n }\n computeMask(inputs, mask) {\n return tidy(() => {\n if (mask == null) {\n return null;\n }\n if (!Array.isArray(mask)) {\n throw new ValueError(\"`mask` should be an Array\");\n }\n if (!Array.isArray(inputs)) {\n throw new ValueError(\"`inputs` should be an Array\");\n }\n if (mask.length !== inputs.length) {\n throw new ValueError(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${inputs.length} vs ${mask.length})`);\n }\n if (mask.every((m) => m == null)) {\n return null;\n }\n mask = mask.map((m) => m == null ? m : expandDims(m, 0));\n let output = mask[0];\n for (let i2 = 1; i2 < mask.length - 1; ++i2) {\n output = logicalAnd(output, mask[i2]);\n }\n return output;\n });\n }\n};\nvar Add2 = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0].clone();\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = add2(output, inputs[i2]);\n }\n return output;\n });\n }\n};\nAdd2.className = \"Add\";\nserialization_exports.registerClass(Add2);\nvar Multiply2 = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0].clone();\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = mul(output, inputs[i2]);\n }\n return output;\n });\n }\n};\nMultiply2.className = \"Multiply\";\nserialization_exports.registerClass(Multiply2);\nvar Average = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0].clone();\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = add2(output, inputs[i2]);\n }\n return mul(1 / inputs.length, output);\n });\n }\n};\nAverage.className = \"Average\";\nserialization_exports.registerClass(Average);\nvar Maximum2 = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0];\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = maximum(output, inputs[i2]);\n }\n return output;\n });\n }\n};\nMaximum2.className = \"Maximum\";\nserialization_exports.registerClass(Maximum2);\nvar Minimum2 = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0];\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = minimum(output, inputs[i2]);\n }\n return output;\n });\n }\n};\nMinimum2.className = \"Minimum\";\nserialization_exports.registerClass(Minimum2);\nvar Concatenate = class extends Merge {\n constructor(args) {\n super(args);\n this.DEFAULT_AXIS = -1;\n if (args == null) {\n args = {};\n }\n this.axis = args.axis == null ? this.DEFAULT_AXIS : args.axis;\n this.supportsMasking = true;\n this.reshapeRequired = false;\n }\n build(inputShape) {\n if (!(Array.isArray(inputShape) && Array.isArray(inputShape[0])) || inputShape.length === 1) {\n throw new ValueError(\"A `Concatenate` layer should be called on a list of at least 2 inputs\");\n }\n inputShape = inputShape;\n let allNoneShape = true;\n for (const shape of inputShape) {\n if (shape != null) {\n allNoneShape = false;\n break;\n }\n }\n if (allNoneShape) {\n return;\n }\n const shapeSet = [];\n for (let i2 = 0; i2 < inputShape.length; ++i2) {\n const shapeWithoutConcatAxis = inputShape[i2].slice();\n shapeWithoutConcatAxis.splice(this.axis, 1);\n let exists = false;\n for (const shape of shapeSet) {\n if (util_exports.arraysEqual(shape, shapeWithoutConcatAxis)) {\n exists = true;\n break;\n }\n }\n if (!exists) {\n shapeSet.push(shapeWithoutConcatAxis);\n }\n }\n if (shapeSet.length > 1) {\n throw new ValueError(\"A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: \" + JSON.stringify(inputShape));\n }\n }\n mergeFunction(inputs) {\n return tidy(() => {\n return concatenate(inputs, this.axis);\n });\n }\n computeOutputShape(inputShape) {\n if (!(Array.isArray(inputShape) && Array.isArray(inputShape[0]))) {\n throw new ValueError(\"A `Concatenate` layer should be called on a list of inputs.\");\n }\n const inputShapes = inputShape;\n const outputShape = inputShapes[0].slice();\n const axis = this.axis < 0 ? outputShape.length + this.axis : this.axis;\n for (const shape of inputShapes.slice(1)) {\n if (outputShape[axis] == null || shape[axis] == null) {\n outputShape[axis] = null;\n break;\n }\n outputShape[axis] += shape[axis];\n }\n return outputShape;\n }\n computeMask(inputs, mask) {\n if (mask == null) {\n return null;\n }\n if (!Array.isArray(mask)) {\n throw new ValueError(\"`mask` should be an array for Concatenate\");\n }\n if (!Array.isArray(inputs)) {\n throw new ValueError(\"`inputs` should be an array for Concatenate\");\n }\n if (mask.length !== inputs.length) {\n throw new ValueError(`Mismatch in the length of mask (${mask.length}) and the legnth of inputs (${inputs.length})`);\n }\n return tidy(() => {\n let allNullMasks = true;\n mask.forEach((m) => {\n if (m != null) {\n allNullMasks = false;\n return;\n }\n });\n if (allNullMasks) {\n return null;\n }\n const outputMasks = [];\n for (let i2 = 0; i2 < inputs.length; ++i2) {\n if (mask[i2] == null) {\n outputMasks.push(cast(onesLike(inputs[i2]), \"bool\"));\n } else if (mask[i2].rank < inputs[i2].rank) {\n outputMasks.push(expandDims(mask[i2], -1));\n } else {\n outputMasks.push(mask[i2]);\n }\n }\n const concatenatedMasks = concat(outputMasks, this.axis);\n return all(concatenatedMasks, -1, false);\n });\n }\n getConfig() {\n const config = {\n \"axis\": this.axis\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nConcatenate.className = \"Concatenate\";\nserialization_exports.registerClass(Concatenate);\nfunction interpretAxis(axis, dim) {\n while (axis < 0) {\n axis += dim;\n }\n return axis;\n}\nfunction batchDot(x, y, axes) {\n if (x.shape.length > 3 || y.shape.length > 3) {\n throw new NotImplementedError(\"batchDot is not implemented for tensors of 4D or higher rank yet\");\n }\n util_exports.assert(x.shape.length >= 2, () => `batchDot requires the rank of x to be >= 2, but got ${x.shape.length}`);\n util_exports.assert(x.shape.length >= 2, () => `batchDot requires the rank of y to be >= 2, but got ${y.shape.length}`);\n if (typeof axes === \"number\") {\n axes = [axes, axes];\n }\n if (x.dtype === \"complex64\" || y.dtype === \"complex64\") {\n throw new NotImplementedError(\"batchDot is not implemented for complex64-type Tensors yet.\");\n }\n const xNDim = x.shape.length;\n const yNDim = y.shape.length;\n if (axes == null) {\n axes = [xNDim - 1, yNDim - 2];\n }\n const axesArray = axes;\n return tidy(() => {\n let diff;\n if (xNDim > yNDim) {\n diff = xNDim - yNDim;\n const diffShape = [];\n for (let i2 = 0; i2 < diff; ++i2) {\n diffShape.push(1);\n }\n y = reshape(y, y.shape.concat(diffShape));\n } else if (yNDim > xNDim) {\n diff = yNDim - xNDim;\n const diffShape = [];\n for (let i2 = 0; i2 < diff; ++i2) {\n diffShape.push(1);\n }\n x = reshape(x, x.shape.concat(diffShape));\n } else {\n diff = 0;\n }\n let out;\n if (x.shape.length === 2 && y.shape.length === 2) {\n if (axesArray[0] === axesArray[1]) {\n out = sum2(mul(x, y), axesArray[0]);\n } else {\n out = sum2(mul(transpose(x, [1, 0]), y), axesArray[1]);\n }\n } else {\n const adjX = axesArray[0] !== x.shape.length - 1;\n const adjY = axesArray[1] === y.shape.length - 1;\n out = matMul(x, y, adjX, adjY);\n }\n if (diff > 0) {\n let idx;\n if (xNDim > yNDim) {\n idx = xNDim + yNDim - 3;\n } else {\n idx = xNDim - 1;\n }\n const squeezeAxes = [];\n for (let i2 = idx; i2 < idx + diff; ++i2) {\n squeezeAxes.push(i2);\n }\n out = squeeze(out, squeezeAxes);\n }\n if (out.shape.length === 1) {\n out = expandDims(out, 1);\n }\n return out;\n });\n}\nvar Dot = class extends Merge {\n constructor(args) {\n super(args);\n this.axes = args.axes;\n this.normalize = args.normalize == null ? false : args.normalize;\n this.supportsMasking = true;\n this.reshapeRequired = false;\n }\n build(inputShape) {\n util_exports.assert(Array.isArray(inputShape) && inputShape.length === 2 && Array.isArray(inputShape[0]) && Array.isArray(inputShape[1]), () => \"A `Dot` layer should be called on a list of exactly 2 inputs.\");\n const shape1 = inputShape[0];\n const shape2 = inputShape[1];\n if (shape1.length > 3 || shape2.length > 3) {\n throw new NotImplementedError(\"Dot layer does not support tensors of 4D or higher rank yet.\");\n }\n const axes = this.interpretAxes(shape1, shape2);\n if (shape1[axes[0]] !== shape2[axes[1]]) {\n throw new ValueError(`Dimension incompatibility: ${shape1[axes[0]]} !== ${shape2[axes[1]]}`);\n }\n }\n mergeFunction(inputs) {\n if (inputs.length !== 2) {\n throw new ValueError(`A \\`Dot\\` layer must be called on exactly 2 inputs, but received ${inputs.length} input(s).`);\n }\n let x1 = inputs[0];\n let x2 = inputs[1];\n let axes;\n if (!Array.isArray(this.axes)) {\n axes = [\n interpretAxis(this.axes, x1.shape.length),\n interpretAxis(this.axes, x2.shape.length)\n ];\n } else {\n axes = this.axes.map((axis, i2) => interpretAxis(axis, inputs[i2].shape.length));\n }\n if (this.normalize) {\n x1 = l2Normalize(x1, axes[0]);\n x2 = l2Normalize(x2, axes[1]);\n }\n return batchDot(x1, x2, axes);\n }\n interpretAxes(shape1, shape2) {\n let axes;\n if (!Array.isArray(this.axes)) {\n axes = [\n interpretAxis(this.axes, shape1.length),\n interpretAxis(this.axes, shape2.length)\n ];\n } else {\n axes = this.axes;\n }\n return axes;\n }\n computeOutputShape(inputShape) {\n util_exports.assert(Array.isArray(inputShape) && inputShape.length === 2 && Array.isArray(inputShape[0]) && Array.isArray(inputShape[1]), () => \"A `Dot` layer should be called on a list of exactly 2 inputs.\");\n const shape1 = inputShape[0].slice();\n const shape2 = inputShape[1].slice();\n if (shape1.length > 3 || shape2.length > 3) {\n throw new NotImplementedError(\"Dot layer does not support tensors of 4D or higher rank yet.\");\n }\n const axes = this.interpretAxes(shape1, shape2);\n shape1.splice(axes[0], 1);\n shape2.splice(axes[1], 1);\n shape2.splice(0, 1);\n const outputShape = shape1.concat(shape2);\n if (outputShape.length === 1) {\n outputShape.push(1);\n }\n return outputShape;\n }\n computeMask(inputs, mask) {\n return null;\n }\n getConfig() {\n const config = {\n \"axes\": this.axes,\n \"normalize\": this.normalize\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nDot.className = \"Dot\";\nserialization_exports.registerClass(Dot);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/noise.js\nvar GaussianNoise = class extends Layer {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n this.stddev = args.stddev;\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = { stddev: this.stddev };\n Object.assign(config, baseConfig);\n return config;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n const noised = () => add2(randomNormal2(input2.shape, 0, this.stddev), input2);\n const output = inTrainPhase(noised, () => input2, kwargs[\"training\"] || false);\n return output;\n });\n }\n};\nGaussianNoise.className = \"GaussianNoise\";\nserialization_exports.registerClass(GaussianNoise);\nvar GaussianDropout = class extends Layer {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n this.rate = args.rate;\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = { rate: this.rate };\n Object.assign(config, baseConfig);\n return config;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n if (this.rate > 0 && this.rate < 1) {\n const noised = () => {\n const stddev = Math.sqrt(this.rate / (1 - this.rate));\n return mul(input2, randomNormal2(input2.shape, 1, stddev));\n };\n return inTrainPhase(noised, () => input2, kwargs[\"training\"] || false);\n }\n return input2;\n });\n }\n};\nGaussianDropout.className = \"GaussianDropout\";\nserialization_exports.registerClass(GaussianDropout);\nvar AlphaDropout = class extends Layer {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n this.rate = args.rate;\n this.noiseShape = args.noiseShape;\n }\n _getNoiseShape(inputs) {\n return this.noiseShape || getExactlyOneTensor(inputs).shape;\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = { rate: this.rate };\n Object.assign(config, baseConfig);\n return config;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.rate < 1 && this.rate > 0) {\n const noiseShape = this._getNoiseShape(inputs);\n const droppedInputs = () => {\n const input2 = getExactlyOneTensor(inputs);\n const alpha = 1.6732632423543772;\n const scale2 = 1.0507009873554805;\n const alphaP = -alpha * scale2;\n let keptIdx = greaterEqual(randomUniform(noiseShape), this.rate);\n keptIdx = cast2(keptIdx, \"float32\");\n const a = ((1 - this.rate) * (1 + this.rate * alphaP ** 2)) ** -0.5;\n const b = -a * alphaP * this.rate;\n const x = add2(mul(input2, keptIdx), mul(add2(keptIdx, -1), alphaP));\n return add2(mul(x, a), b);\n };\n return inTrainPhase(droppedInputs, () => getExactlyOneTensor(inputs), kwargs[\"training\"] || false);\n }\n return inputs;\n });\n }\n};\nAlphaDropout.className = \"AlphaDropout\";\nserialization_exports.registerClass(AlphaDropout);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/normalization.js\nfunction batchNormalization(x, mean5, variance, beta, gamma, epsilon3 = 1e-3) {\n let out;\n if (x.rank === 2) {\n out = batchNorm2d(x, mean5, variance, beta, gamma, epsilon3);\n } else if (x.rank === 3) {\n out = batchNorm3d(x, mean5, variance, beta, gamma, epsilon3);\n } else if (x.rank === 4) {\n out = batchNorm4d(x, mean5, variance, beta, gamma, epsilon3);\n } else {\n throw new NotImplementedError(`batchNormalization is not implemented for array of rank ${x.rank} yet`);\n }\n return out;\n}\nfunction regularNormalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3 = 1e-3) {\n return tidy(() => {\n const meanAndVariance = moments(x, reductionAxes);\n const mean5 = meanAndVariance.mean;\n const variance = meanAndVariance.variance;\n const normed = batchNormalization(x, mean5, variance, beta, gamma, epsilon3);\n return [normed, mean5, variance];\n });\n}\nfunction broadcastNormalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3 = 1e-3) {\n return tidy(() => {\n const meanAndVariance = moments(x, reductionAxes);\n const mean5 = meanAndVariance.mean;\n const variance = meanAndVariance.variance;\n const targetShape = [];\n for (const axis of range2(0, x.rank)) {\n if (reductionAxes.indexOf(axis) !== -1) {\n targetShape.push(1);\n } else {\n targetShape.push(x.shape[axis]);\n }\n }\n const broadcastMean = reshape(mean5, targetShape);\n const broadcastVariance = reshape(variance, targetShape);\n const broadcastGamma = gamma == null ? null : reshape(gamma, targetShape);\n const broadcastBeta = beta == null ? null : reshape(beta, targetShape);\n const normed = batchNormalization(x, broadcastMean, broadcastVariance, broadcastBeta, broadcastGamma, epsilon3);\n return [normed, mean5, variance];\n });\n}\nfunction normalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3 = 1e-3) {\n if (util_exports.arraysEqual(reductionAxes.slice().sort(), range2(0, x.rank - 1))) {\n return regularNormalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3);\n } else {\n return broadcastNormalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3);\n }\n}\nvar BatchNormalization = class extends Layer {\n constructor(args) {\n if (args == null) {\n args = {};\n }\n super(args);\n this.supportsMasking = true;\n this.axis = args.axis == null ? -1 : args.axis;\n this.momentum = args.momentum == null ? 0.99 : args.momentum;\n this.epsilon = args.epsilon == null ? 1e-3 : args.epsilon;\n this.center = args.center == null ? true : args.center;\n this.scale = args.scale == null ? true : args.scale;\n this.betaInitializer = getInitializer(args.betaInitializer || \"zeros\");\n this.gammaInitializer = getInitializer(args.gammaInitializer || \"ones\");\n this.movingMeanInitializer = getInitializer(args.movingMeanInitializer || \"zeros\");\n this.movingVarianceInitializer = getInitializer(args.movingVarianceInitializer || \"ones\");\n this.betaConstraint = getConstraint(args.betaConstraint);\n this.gammaConstraint = getConstraint(args.gammaConstraint);\n this.betaRegularizer = getRegularizer(args.betaRegularizer);\n this.gammaRegularizer = getRegularizer(args.gammaRegularizer);\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const axis = this.axis >= 0 ? this.axis : this.axis + inputShape.length;\n const dim = inputShape[axis];\n if (dim == null) {\n throw new ValueError(`Axis ${axis} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(inputShape)}.`);\n }\n this.inputSpec = [new InputSpec({ ndim: inputShape.length, axes: { [axis]: dim } })];\n const shape = [dim];\n if (this.scale) {\n this.gamma = this.addWeight(\"gamma\", shape, null, this.gammaInitializer, this.gammaRegularizer, true, this.gammaConstraint);\n }\n if (this.center) {\n this.beta = this.addWeight(\"beta\", shape, null, this.betaInitializer, this.betaRegularizer, true, this.betaConstraint);\n }\n this.movingMean = this.addWeight(\"moving_mean\", shape, null, this.movingMeanInitializer, null, false);\n this.movingVariance = this.addWeight(\"moving_variance\", shape, null, this.movingVarianceInitializer, null, false);\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n const input2 = getExactlyOneTensor(inputs);\n const inputShape = input2.shape;\n const ndim = inputShape.length;\n const reductionAxes = range2(0, ndim);\n const axis = this.axis >= 0 ? this.axis : this.axis + ndim;\n reductionAxes.splice(axis, 1);\n const broadcastShape = pyListRepeat(1, ndim);\n broadcastShape[axis] = inputShape[axis];\n const sortedReductionAxes = reductionAxes.slice();\n sortedReductionAxes.sort();\n const needsBroadcasting = !util_exports.arraysEqual(sortedReductionAxes, range2(0, ndim).slice(0, ndim - 1));\n const normalizeInference = () => {\n if (needsBroadcasting) {\n const broadcastMovingMean = reshape(this.movingMean.read(), broadcastShape);\n const broadcastMovingVariance = reshape(this.movingVariance.read(), broadcastShape);\n const broadcastBeta = this.center ? reshape(this.beta.read(), broadcastShape) : null;\n const broadcastGamma = this.scale ? reshape(this.gamma.read(), broadcastShape) : null;\n return batchNormalization(input2, broadcastMovingMean, broadcastMovingVariance, broadcastBeta, broadcastGamma, this.epsilon);\n } else {\n return batchNormalization(input2, this.movingMean.read(), this.movingVariance.read(), this.beta == null ? null : this.beta.read(), this.gamma == null ? null : this.gamma.read(), this.epsilon);\n }\n };\n if (!training) {\n return normalizeInference();\n }\n const [normedTraining, mean5, variance] = normalizeBatchInTraining(input2, this.gamma.read(), this.beta.read(), reductionAxes, this.epsilon);\n const doMovingAverage = (variable2, value, momentum) => {\n tidy(() => {\n const decay = 1 - momentum;\n const origValue = variable2.read();\n const updateDelta = mul(sub(origValue, value), decay);\n variable2.write(sub(origValue, updateDelta));\n });\n };\n const updateMovingMeanAndVariance = () => {\n doMovingAverage(this.movingMean, mean5, this.momentum);\n doMovingAverage(this.movingVariance, variance, this.momentum);\n };\n updateMovingMeanAndVariance();\n return normedTraining;\n });\n }\n getConfig() {\n const config = {\n axis: this.axis,\n momentum: this.momentum,\n epsilon: this.epsilon,\n center: this.center,\n scale: this.scale,\n betaInitializer: serializeInitializer(this.betaInitializer),\n gammaInitializer: serializeInitializer(this.gammaInitializer),\n movingMeanInitializer: serializeInitializer(this.movingMeanInitializer),\n movingVarianceInitializer: serializeInitializer(this.movingVarianceInitializer),\n betaRegularizer: serializeRegularizer(this.betaRegularizer),\n gammaRegularizer: serializeRegularizer(this.gammaRegularizer),\n betaConstraint: serializeConstraint(this.betaConstraint),\n gammaConstraint: serializeConstraint(this.gammaConstraint)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nBatchNormalization.className = \"BatchNormalization\";\nserialization_exports.registerClass(BatchNormalization);\nvar LayerNormalization = class extends Layer {\n constructor(args) {\n if (args == null) {\n args = {};\n }\n super(args);\n this.axis = args.axis == null ? -1 : args.axis;\n if (typeof this.axis === \"number\") {\n if (!Number.isInteger(this.axis)) {\n throw new Error(`Expected axis to be an integer, but received ${this.axis}`);\n }\n } else if (Array.isArray(this.axis)) {\n for (const axis of this.axis) {\n if (!Number.isInteger(axis)) {\n throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`);\n }\n }\n } else {\n throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);\n }\n this.epsilon = args.epsilon == null ? 1e-3 : args.epsilon;\n this.center = args.center == null ? true : args.center;\n this.scale = args.scale == null ? true : args.scale;\n this.betaInitializer = getInitializer(args.betaInitializer || \"zeros\");\n this.gammaInitializer = getInitializer(args.gammaInitializer || \"ones\");\n this.betaRegularizer = getRegularizer(args.betaRegularizer);\n this.gammaRegularizer = getRegularizer(args.gammaRegularizer);\n this.supportsMasking = true;\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const nDims = inputShape.length;\n if (typeof this.axis === \"number\") {\n this.axis = [this.axis];\n }\n for (let i2 = 0; i2 < this.axis.length; ++i2) {\n if (this.axis[i2] < 0) {\n this.axis[i2] += nDims;\n }\n }\n for (const axis of this.axis) {\n if (axis < 0 || axis >= nDims) {\n throw new Error(`Invalid axis: ${axis}`);\n }\n }\n if (this.axis.length !== unique2(this.axis).length) {\n throw new Error(`Found duplicate axes in: ${this.axis}`);\n }\n const paramShape = this.axis.map((axis) => inputShape[axis]);\n const trainable = true;\n if (this.scale) {\n this.gamma = this.addWeight(\"gamma\", paramShape, \"float32\", this.gammaInitializer, this.gammaRegularizer, trainable);\n } else {\n this.gamma = null;\n }\n if (this.center) {\n this.beta = this.addWeight(\"beta\", paramShape, \"float32\", this.betaInitializer, this.betaRegularizer, trainable);\n } else {\n this.beta = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n const input2 = getExactlyOneTensor(inputs);\n const inputShape = input2.shape;\n const nDims = inputShape.length;\n return tidy(() => {\n const keepDims = true;\n let { mean: mean5, variance } = moments(input2, this.axis, keepDims);\n const broadcastShape = pyListRepeat(1, nDims);\n for (const dim of this.axis) {\n broadcastShape[dim] = inputShape[dim];\n }\n const broadcast = (v) => {\n if (v != null && v.shape.length !== nDims) {\n return reshape(v, broadcastShape);\n } else {\n return v;\n }\n };\n let scale2 = this.scale ? broadcast(this.gamma.read()) : null;\n let offset = this.center ? broadcast(this.beta.read()) : null;\n const momentsTiling = [];\n const scaleOffsetTiling = [];\n for (let i2 = 0; i2 < nDims; ++i2) {\n if (this.axis.indexOf(i2) !== -1) {\n momentsTiling.push(inputShape[i2]);\n scaleOffsetTiling.push(1);\n } else {\n momentsTiling.push(1);\n scaleOffsetTiling.push(inputShape[i2]);\n }\n }\n mean5 = tile(mean5, momentsTiling);\n variance = tile(variance, momentsTiling);\n if (scale2 != null) {\n scale2 = tile(scale2, scaleOffsetTiling);\n }\n if (offset != null) {\n offset = tile(offset, scaleOffsetTiling);\n }\n return batchNormalization(input2, mean5, variance, offset, scale2, this.epsilon);\n });\n }\n getConfig() {\n const config = {\n axis: this.axis,\n epsilon: this.epsilon,\n center: this.center,\n scale: this.scale,\n betaInitializer: serializeInitializer(this.betaInitializer),\n gammaInitializer: serializeInitializer(this.gammaInitializer),\n betaRegularizer: serializeRegularizer(this.betaRegularizer),\n gammaRegularizer: serializeRegularizer(this.gammaRegularizer)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nLayerNormalization.className = \"LayerNormalization\";\nserialization_exports.registerClass(LayerNormalization);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/padding.js\nfunction spatial2dPadding(x, padding, dataFormat) {\n return tidy(() => {\n if (x.rank !== 4) {\n throw new ValueError(`temporalPadding expects input tensor to be 4-D, but received a ${x.rank}-D tensor.`);\n }\n if (padding == null) {\n padding = [[1, 1], [1, 1]];\n }\n if (padding.length !== 2 || padding[0].length !== 2 || padding[1].length !== 2) {\n throw new ValueError(\"spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.\");\n }\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n if (dataFormat !== \"channelsLast\" && dataFormat !== \"channelsFirst\") {\n throw new ValueError(`Unknown data format: ${dataFormat}. Supported data formats are 'channelsLast' and 'channelsFirst.`);\n }\n let pattern;\n if (dataFormat === \"channelsFirst\") {\n pattern = [[0, 0], [0, 0], padding[0], padding[1]];\n } else {\n pattern = [[0, 0], padding[0], padding[1], [0, 0]];\n }\n return pad(x, pattern);\n });\n}\nvar ZeroPadding2D = class extends Layer {\n constructor(args) {\n if (args == null) {\n args = {};\n }\n super(args);\n this.dataFormat = args.dataFormat == null ? imageDataFormat() : args.dataFormat;\n if (args.padding == null) {\n this.padding = [[1, 1], [1, 1]];\n } else if (typeof args.padding === \"number\") {\n this.padding = [[args.padding, args.padding], [args.padding, args.padding]];\n } else {\n args.padding = args.padding;\n if (args.padding.length !== 2) {\n throw new ValueError(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${args.padding.length} array.`);\n }\n let heightPadding;\n let widthPadding;\n if (typeof args.padding[0] === \"number\") {\n heightPadding = [args.padding[0], args.padding[0]];\n widthPadding = [args.padding[1], args.padding[1]];\n } else {\n args.padding = args.padding;\n if (args.padding[0].length !== 2) {\n throw new ValueError(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${args.padding[0].length} array.`);\n }\n heightPadding = args.padding[0];\n if (args.padding[1].length !== 2) {\n throw new ValueError(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${args.padding[1].length} array.`);\n }\n widthPadding = args.padding[1];\n }\n this.padding = [heightPadding, widthPadding];\n }\n this.inputSpec = [new InputSpec({ ndim: 4 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n let rows;\n let cols;\n if (this.dataFormat === \"channelsFirst\") {\n if (inputShape[2] != null && inputShape[2] >= 0) {\n rows = inputShape[2] + this.padding[0][0] + this.padding[0][1];\n } else {\n rows = null;\n }\n if (inputShape[3] != null && inputShape[3] >= 0) {\n cols = inputShape[3] + this.padding[1][0] + this.padding[1][1];\n } else {\n cols = null;\n }\n return [inputShape[0], inputShape[1], rows, cols];\n } else {\n if (inputShape[1] != null && inputShape[1] >= 0) {\n rows = inputShape[1] + this.padding[0][0] + this.padding[0][1];\n } else {\n rows = null;\n }\n if (inputShape[2] != null && inputShape[2] >= 0) {\n cols = inputShape[2] + this.padding[1][0] + this.padding[1][1];\n } else {\n cols = null;\n }\n return [inputShape[0], rows, cols, inputShape[3]];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => spatial2dPadding(getExactlyOneTensor(inputs), this.padding, this.dataFormat));\n }\n getConfig() {\n const config = {\n padding: this.padding,\n dataFormat: this.dataFormat\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nZeroPadding2D.className = \"ZeroPadding2D\";\nserialization_exports.registerClass(ZeroPadding2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/pooling.js\nfunction pool2d(x, poolSize, strides, padding, dataFormat, poolMode) {\n return tidy(() => {\n checkDataFormat(dataFormat);\n checkPoolMode(poolMode);\n checkPaddingMode(padding);\n if (strides == null) {\n strides = [1, 1];\n }\n if (padding == null) {\n padding = \"valid\";\n }\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n if (poolMode == null) {\n poolMode = \"max\";\n }\n x = preprocessConv2DInput(x, dataFormat);\n let y;\n const paddingString = padding === \"same\" ? \"same\" : \"valid\";\n if (poolMode === \"max\") {\n y = maxPool(x, poolSize, strides, paddingString);\n } else {\n y = avgPool(\n x,\n poolSize,\n strides,\n paddingString\n );\n }\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 3, 1, 2]);\n }\n return y;\n });\n}\nfunction pool3d(x, poolSize, strides, padding, dataFormat, poolMode) {\n return tidy(() => {\n checkDataFormat(dataFormat);\n checkPoolMode(poolMode);\n checkPaddingMode(padding);\n if (strides == null) {\n strides = [1, 1, 1];\n }\n if (padding == null) {\n padding = \"valid\";\n }\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n if (poolMode == null) {\n poolMode = \"max\";\n }\n x = preprocessConv3DInput(x, dataFormat);\n let y;\n const paddingString = padding === \"same\" ? \"same\" : \"valid\";\n if (poolMode === \"max\") {\n y = maxPool3d(x, poolSize, strides, paddingString);\n } else {\n y = avgPool3d(x, poolSize, strides, paddingString);\n }\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 4, 1, 2, 3]);\n }\n return y;\n });\n}\nvar Pooling1D = class extends Layer {\n constructor(args) {\n if (args.poolSize == null) {\n args.poolSize = 2;\n }\n super(args);\n if (typeof args.poolSize === \"number\") {\n this.poolSize = [args.poolSize];\n } else if (Array.isArray(args.poolSize) && args.poolSize.length === 1 && typeof args.poolSize[0] === \"number\") {\n this.poolSize = args.poolSize;\n } else {\n throw new ValueError(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(args.poolSize)}`);\n }\n assertPositiveInteger(this.poolSize, \"poolSize\");\n if (args.strides == null) {\n this.strides = this.poolSize;\n } else {\n if (typeof args.strides === \"number\") {\n this.strides = [args.strides];\n } else if (Array.isArray(args.strides) && args.strides.length === 1 && typeof args.strides[0] === \"number\") {\n this.strides = args.strides;\n } else {\n throw new ValueError(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(args.strides)}`);\n }\n }\n assertPositiveInteger(this.strides, \"strides\");\n this.padding = args.padding == null ? \"valid\" : args.padding;\n checkPaddingMode(this.padding);\n this.inputSpec = [new InputSpec({ ndim: 3 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const length = convOutputLength(inputShape[1], this.poolSize[0], this.padding, this.strides[0]);\n return [inputShape[0], length, inputShape[2]];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n inputs = expandDims2(getExactlyOneTensor(inputs), 2);\n const output = this.poolingFunction(getExactlyOneTensor(inputs), [this.poolSize[0], 1], [this.strides[0], 1], this.padding, \"channelsLast\");\n return squeeze(output, [2]);\n });\n }\n getConfig() {\n const config = {\n poolSize: this.poolSize,\n padding: this.padding,\n strides: this.strides\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar MaxPooling1D = class extends Pooling1D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool2d(inputs, poolSize, strides, padding, dataFormat, \"max\");\n }\n};\nMaxPooling1D.className = \"MaxPooling1D\";\nserialization_exports.registerClass(MaxPooling1D);\nvar AveragePooling1D = class extends Pooling1D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool2d(inputs, poolSize, strides, padding, dataFormat, \"avg\");\n }\n};\nAveragePooling1D.className = \"AveragePooling1D\";\nserialization_exports.registerClass(AveragePooling1D);\nvar Pooling2D = class extends Layer {\n constructor(args) {\n if (args.poolSize == null) {\n args.poolSize = [2, 2];\n }\n super(args);\n this.poolSize = Array.isArray(args.poolSize) ? args.poolSize : [args.poolSize, args.poolSize];\n if (args.strides == null) {\n this.strides = this.poolSize;\n } else if (Array.isArray(args.strides)) {\n if (args.strides.length !== 2) {\n throw new ValueError(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${args.strides.length}.`);\n }\n this.strides = args.strides;\n } else {\n this.strides = [args.strides, args.strides];\n }\n assertPositiveInteger(this.poolSize, \"poolSize\");\n assertPositiveInteger(this.strides, \"strides\");\n this.padding = args.padding == null ? \"valid\" : args.padding;\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n checkPaddingMode(this.padding);\n this.inputSpec = [new InputSpec({ ndim: 4 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n let rows = this.dataFormat === \"channelsFirst\" ? inputShape[2] : inputShape[1];\n let cols = this.dataFormat === \"channelsFirst\" ? inputShape[3] : inputShape[2];\n rows = convOutputLength(rows, this.poolSize[0], this.padding, this.strides[0]);\n cols = convOutputLength(cols, this.poolSize[1], this.padding, this.strides[1]);\n if (this.dataFormat === \"channelsFirst\") {\n return [inputShape[0], inputShape[1], rows, cols];\n } else {\n return [inputShape[0], rows, cols, inputShape[3]];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n return this.poolingFunction(getExactlyOneTensor(inputs), this.poolSize, this.strides, this.padding, this.dataFormat);\n });\n }\n getConfig() {\n const config = {\n poolSize: this.poolSize,\n padding: this.padding,\n strides: this.strides,\n dataFormat: this.dataFormat\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar MaxPooling2D = class extends Pooling2D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool2d(inputs, poolSize, strides, padding, dataFormat, \"max\");\n }\n};\nMaxPooling2D.className = \"MaxPooling2D\";\nserialization_exports.registerClass(MaxPooling2D);\nvar AveragePooling2D = class extends Pooling2D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool2d(inputs, poolSize, strides, padding, dataFormat, \"avg\");\n }\n};\nAveragePooling2D.className = \"AveragePooling2D\";\nserialization_exports.registerClass(AveragePooling2D);\nvar Pooling3D = class extends Layer {\n constructor(args) {\n if (args.poolSize == null) {\n args.poolSize = [2, 2, 2];\n }\n super(args);\n this.poolSize = Array.isArray(args.poolSize) ? args.poolSize : [args.poolSize, args.poolSize, args.poolSize];\n if (args.strides == null) {\n this.strides = this.poolSize;\n } else if (Array.isArray(args.strides)) {\n if (args.strides.length !== 3) {\n throw new ValueError(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${args.strides.length}.`);\n }\n this.strides = args.strides;\n } else {\n this.strides = [args.strides, args.strides, args.strides];\n }\n assertPositiveInteger(this.poolSize, \"poolSize\");\n assertPositiveInteger(this.strides, \"strides\");\n this.padding = args.padding == null ? \"valid\" : args.padding;\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n checkPaddingMode(this.padding);\n this.inputSpec = [new InputSpec({ ndim: 5 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n let depths = this.dataFormat === \"channelsFirst\" ? inputShape[2] : inputShape[1];\n let rows = this.dataFormat === \"channelsFirst\" ? inputShape[3] : inputShape[2];\n let cols = this.dataFormat === \"channelsFirst\" ? inputShape[4] : inputShape[3];\n depths = convOutputLength(depths, this.poolSize[0], this.padding, this.strides[0]);\n rows = convOutputLength(rows, this.poolSize[1], this.padding, this.strides[1]);\n cols = convOutputLength(cols, this.poolSize[2], this.padding, this.strides[2]);\n if (this.dataFormat === \"channelsFirst\") {\n return [inputShape[0], inputShape[1], depths, rows, cols];\n } else {\n return [inputShape[0], depths, rows, cols, inputShape[4]];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n return this.poolingFunction(getExactlyOneTensor(inputs), this.poolSize, this.strides, this.padding, this.dataFormat);\n });\n }\n getConfig() {\n const config = {\n poolSize: this.poolSize,\n padding: this.padding,\n strides: this.strides,\n dataFormat: this.dataFormat\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar MaxPooling3D = class extends Pooling3D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool3d(inputs, poolSize, strides, padding, dataFormat, \"max\");\n }\n};\nMaxPooling3D.className = \"MaxPooling3D\";\nserialization_exports.registerClass(MaxPooling3D);\nvar AveragePooling3D = class extends Pooling3D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool3d(inputs, poolSize, strides, padding, dataFormat, \"avg\");\n }\n};\nAveragePooling3D.className = \"AveragePooling3D\";\nserialization_exports.registerClass(AveragePooling3D);\nvar GlobalPooling1D = class extends Layer {\n constructor(args) {\n super(args);\n this.inputSpec = [new InputSpec({ ndim: 3 })];\n }\n computeOutputShape(inputShape) {\n return [inputShape[0], inputShape[2]];\n }\n call(inputs, kwargs) {\n throw new NotImplementedError();\n }\n};\nvar GlobalAveragePooling1D = class extends GlobalPooling1D {\n constructor(args) {\n super(args || {});\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const input2 = getExactlyOneTensor(inputs);\n return mean(input2, 1);\n });\n }\n};\nGlobalAveragePooling1D.className = \"GlobalAveragePooling1D\";\nserialization_exports.registerClass(GlobalAveragePooling1D);\nvar GlobalMaxPooling1D = class extends GlobalPooling1D {\n constructor(args) {\n super(args || {});\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const input2 = getExactlyOneTensor(inputs);\n return max(input2, 1);\n });\n }\n};\nGlobalMaxPooling1D.className = \"GlobalMaxPooling1D\";\nserialization_exports.registerClass(GlobalMaxPooling1D);\nvar GlobalPooling2D = class extends Layer {\n constructor(args) {\n super(args);\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n this.inputSpec = [new InputSpec({ ndim: 4 })];\n }\n computeOutputShape(inputShape) {\n inputShape = inputShape;\n if (this.dataFormat === \"channelsLast\") {\n return [inputShape[0], inputShape[3]];\n } else {\n return [inputShape[0], inputShape[1]];\n }\n }\n call(inputs, kwargs) {\n throw new NotImplementedError();\n }\n getConfig() {\n const config = { dataFormat: this.dataFormat };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar GlobalAveragePooling2D = class extends GlobalPooling2D {\n call(inputs, kwargs) {\n return tidy(() => {\n const input2 = getExactlyOneTensor(inputs);\n if (this.dataFormat === \"channelsLast\") {\n return mean(input2, [1, 2]);\n } else {\n return mean(input2, [2, 3]);\n }\n });\n }\n};\nGlobalAveragePooling2D.className = \"GlobalAveragePooling2D\";\nserialization_exports.registerClass(GlobalAveragePooling2D);\nvar GlobalMaxPooling2D = class extends GlobalPooling2D {\n call(inputs, kwargs) {\n return tidy(() => {\n const input2 = getExactlyOneTensor(inputs);\n if (this.dataFormat === \"channelsLast\") {\n return max(input2, [1, 2]);\n } else {\n return max(input2, [2, 3]);\n }\n });\n }\n};\nGlobalMaxPooling2D.className = \"GlobalMaxPooling2D\";\nserialization_exports.registerClass(GlobalMaxPooling2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/wrappers.js\nvar Wrapper = class extends Layer {\n constructor(args) {\n super(args);\n this.layer = args.layer;\n }\n build(inputShape) {\n this.built = true;\n }\n get trainable() {\n if (this.layer != null) {\n return this.layer.trainable;\n } else {\n return false;\n }\n }\n set trainable(value) {\n if (this.layer != null) {\n this.layer.trainable = value;\n }\n }\n get trainableWeights() {\n return this.layer.trainableWeights;\n }\n get nonTrainableWeights() {\n return this.layer.nonTrainableWeights;\n }\n get updates() {\n return this.layer._updates;\n }\n get losses() {\n return this.layer.losses;\n }\n getWeights() {\n return this.layer.getWeights();\n }\n setWeights(weights) {\n this.layer.setWeights(weights);\n }\n getConfig() {\n const config = {\n \"layer\": {\n \"className\": this.layer.getClassName(),\n \"config\": this.layer.getConfig()\n }\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n setFastWeightInitDuringBuild(value) {\n super.setFastWeightInitDuringBuild(value);\n if (this.layer != null) {\n this.layer.setFastWeightInitDuringBuild(value);\n }\n }\n static fromConfig(cls, config, customObjects = {}) {\n const layerConfig = config[\"layer\"];\n const layer = deserialize(layerConfig, customObjects);\n delete config[\"layer\"];\n const newConfig = { layer };\n Object.assign(newConfig, config);\n return new cls(newConfig);\n }\n};\nvar TimeDistributed = class extends Wrapper {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length < 3) {\n throw new ValueError(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(inputShape)}`);\n }\n this.inputSpec = [{ shape: inputShape }];\n const childInputShape = [inputShape[0]].concat(inputShape.slice(2));\n if (!this.layer.built) {\n this.layer.build(childInputShape);\n this.layer.built = true;\n }\n super.build(inputShape);\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const childInputShape = [inputShape[0]].concat(inputShape.slice(2));\n const childOutputShape = this.layer.computeOutputShape(childInputShape);\n const timesteps = inputShape[1];\n return [childOutputShape[0], timesteps].concat(childOutputShape.slice(1));\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n const step5 = (inputs2, states) => {\n const output = getExactlyOneTensor(this.layer.call(inputs2, kwargs));\n return [output, []];\n };\n const rnnOutputs = rnn(step5, inputs, [], false, null, null, false, true);\n const y = rnnOutputs[1];\n return y;\n });\n }\n};\nTimeDistributed.className = \"TimeDistributed\";\nserialization_exports.registerClass(TimeDistributed);\nfunction checkBidirectionalMergeMode(value) {\n checkStringTypeUnionValue(VALID_BIDIRECTIONAL_MERGE_MODES, \"BidirectionalMergeMode\", value);\n}\nvar DEFAULT_BIDIRECTIONAL_MERGE_MODE = \"concat\";\nvar Bidirectional = class extends Wrapper {\n constructor(args) {\n super(args);\n const layerConfig = args.layer.getConfig();\n const forwDict = {};\n forwDict[\"className\"] = args.layer.getClassName();\n forwDict[\"config\"] = layerConfig;\n this.forwardLayer = deserialize(forwDict);\n layerConfig[\"goBackwards\"] = layerConfig[\"goBackwards\"] === true ? false : true;\n const backDict = {};\n backDict[\"className\"] = args.layer.getClassName();\n backDict[\"config\"] = layerConfig;\n this.backwardLayer = deserialize(backDict);\n this.forwardLayer.name = \"forward_\" + this.forwardLayer.name;\n this.backwardLayer.name = \"backward_\" + this.backwardLayer.name;\n this.mergeMode = args.mergeMode === void 0 ? DEFAULT_BIDIRECTIONAL_MERGE_MODE : args.mergeMode;\n checkBidirectionalMergeMode(this.mergeMode);\n if (args.weights) {\n throw new NotImplementedError(\"weights support is not implemented for Bidirectional layer yet.\");\n }\n this._stateful = args.layer.stateful;\n this.returnSequences = args.layer.returnSequences;\n this.returnState = args.layer.returnState;\n this.supportsMasking = true;\n this._trainable = true;\n this.inputSpec = args.layer.inputSpec;\n this.numConstants = null;\n }\n get trainable() {\n return this._trainable;\n }\n set trainable(value) {\n this._trainable = value;\n if (this.forwardLayer != null) {\n this.forwardLayer.trainable = value;\n }\n if (this.backwardLayer != null) {\n this.backwardLayer.trainable = value;\n }\n }\n getWeights() {\n return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights());\n }\n setWeights(weights) {\n const numWeights = weights.length;\n const numeightsOver2 = Math.floor(numWeights / 2);\n this.forwardLayer.setWeights(weights.slice(0, numeightsOver2));\n this.backwardLayer.setWeights(weights.slice(numeightsOver2));\n }\n computeOutputShape(inputShape) {\n let layerShapes = this.forwardLayer.computeOutputShape(inputShape);\n if (!(Array.isArray(layerShapes) && Array.isArray(layerShapes[0]))) {\n layerShapes = [layerShapes];\n }\n layerShapes = layerShapes;\n let outputShape;\n let outputShapes;\n let stateShape;\n if (this.returnState) {\n stateShape = layerShapes.slice(1);\n outputShape = layerShapes[0];\n } else {\n outputShape = layerShapes[0];\n }\n outputShape = outputShape;\n if (this.mergeMode === \"concat\") {\n outputShape[outputShape.length - 1] *= 2;\n outputShapes = [outputShape];\n } else if (this.mergeMode == null) {\n outputShapes = [outputShape, outputShape.slice()];\n } else {\n outputShapes = [outputShape];\n }\n if (this.returnState) {\n if (this.mergeMode == null) {\n return outputShapes.concat(stateShape).concat(stateShape.slice());\n }\n return [outputShape].concat(stateShape).concat(stateShape.slice());\n }\n return singletonOrArray(outputShapes);\n }\n apply(inputs, kwargs) {\n let initialState = kwargs == null ? null : kwargs[\"initialState\"];\n let constants = kwargs == null ? null : kwargs[\"constants\"];\n if (kwargs == null) {\n kwargs = {};\n }\n const standardized = standardizeArgs(inputs, initialState, constants, this.numConstants);\n inputs = standardized.inputs;\n initialState = standardized.initialState;\n constants = standardized.constants;\n if (Array.isArray(inputs)) {\n initialState = inputs.slice(1);\n inputs = inputs[0];\n }\n if ((initialState == null || initialState.length === 0) && constants == null) {\n return super.apply(inputs, kwargs);\n }\n const additionalInputs = [];\n const additionalSpecs = [];\n if (initialState != null) {\n const numStates = initialState.length;\n if (numStates % 2 > 0) {\n throw new ValueError(\"When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.\");\n }\n kwargs[\"initialState\"] = initialState;\n additionalInputs.push(...initialState);\n const stateSpecs = initialState.map((state) => new InputSpec({ shape: state.shape }));\n this.forwardLayer.stateSpec = stateSpecs.slice(0, numStates / 2);\n this.backwardLayer.stateSpec = stateSpecs.slice(numStates / 2);\n additionalSpecs.push(...stateSpecs);\n }\n if (constants != null) {\n throw new NotImplementedError(\"Support for constants in Bidirectional layers is not implemented yet.\");\n }\n const isSymbolicTensor = additionalInputs[0] instanceof SymbolicTensor;\n for (const tensor2 of additionalInputs) {\n if (tensor2 instanceof SymbolicTensor !== isSymbolicTensor) {\n throw new ValueError(\"The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors\");\n }\n }\n if (isSymbolicTensor) {\n const fullInput = [inputs].concat(additionalInputs);\n const fullInputSpec = this.inputSpec.concat(additionalSpecs);\n const originalInputSpec = this.inputSpec;\n this.inputSpec = fullInputSpec;\n const output = super.apply(fullInput, kwargs);\n this.inputSpec = originalInputSpec;\n return output;\n } else {\n return super.apply(inputs, kwargs);\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const initialState = kwargs[\"initialState\"];\n let y;\n let yRev;\n if (initialState == null) {\n y = this.forwardLayer.call(inputs, kwargs);\n yRev = this.backwardLayer.call(inputs, kwargs);\n } else {\n const forwardState = initialState.slice(0, initialState.length / 2);\n const backwardState = initialState.slice(initialState.length / 2);\n y = this.forwardLayer.call(inputs, Object.assign(kwargs, { initialState: forwardState }));\n yRev = this.backwardLayer.call(inputs, Object.assign(kwargs, { initialState: backwardState }));\n }\n let states;\n if (this.returnState) {\n if (Array.isArray(y)) {\n states = y.slice(1).concat(yRev.slice(1));\n } else {\n }\n y = y[0];\n yRev = yRev[0];\n }\n if (this.returnSequences) {\n yRev = reverse(yRev, 1);\n }\n let output;\n if (this.mergeMode === \"concat\") {\n output = concatenate([y, yRev]);\n } else if (this.mergeMode === \"sum\") {\n output = add2(y, yRev);\n } else if (this.mergeMode === \"ave\") {\n output = mul(0.5, add2(y, yRev));\n } else if (this.mergeMode === \"mul\") {\n output = mul(y, yRev);\n } else if (this.mergeMode == null) {\n output = [y, yRev];\n }\n if (this.returnState) {\n if (this.mergeMode == null) {\n return output.concat(states);\n }\n return [output].concat(states);\n }\n return output;\n });\n }\n resetStates(states) {\n this.forwardLayer.resetStates();\n this.backwardLayer.resetStates();\n }\n build(inputShape) {\n nameScope(this.forwardLayer.name, () => {\n this.forwardLayer.build(inputShape);\n });\n nameScope(this.backwardLayer.name, () => {\n this.backwardLayer.build(inputShape);\n });\n this.built = true;\n }\n computeMask(inputs, mask) {\n if (Array.isArray(mask)) {\n mask = mask[0];\n }\n let outputMask;\n if (this.returnSequences) {\n if (this.mergeMode == null) {\n outputMask = [mask, mask];\n } else {\n outputMask = mask;\n }\n } else {\n if (this.mergeMode == null) {\n outputMask = [null, null];\n } else {\n outputMask = null;\n }\n }\n if (this.returnState) {\n const states = this.forwardLayer.states;\n const stateMask = states.map((state) => null);\n if (Array.isArray(outputMask)) {\n return outputMask.concat(stateMask).concat(stateMask);\n } else {\n return [outputMask].concat(stateMask).concat(stateMask);\n }\n } else {\n return outputMask;\n }\n }\n get trainableWeights() {\n return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights);\n }\n get nonTrainableWeights() {\n return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights);\n }\n setFastWeightInitDuringBuild(value) {\n super.setFastWeightInitDuringBuild(value);\n if (this.forwardLayer != null) {\n this.forwardLayer.setFastWeightInitDuringBuild(value);\n }\n if (this.backwardLayer != null) {\n this.backwardLayer.setFastWeightInitDuringBuild(value);\n }\n }\n getConfig() {\n const config = {\n \"mergeMode\": this.mergeMode\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n static fromConfig(cls, config) {\n const rnnLayer = deserialize(config[\"layer\"]);\n delete config[\"layer\"];\n if (config[\"numConstants\"] != null) {\n throw new NotImplementedError(`Deserialization of a Bidirectional layer with numConstants present is not supported yet.`);\n }\n const newConfig = config;\n newConfig[\"layer\"] = rnnLayer;\n return new cls(newConfig);\n }\n};\nBidirectional.className = \"Bidirectional\";\nserialization_exports.registerClass(Bidirectional);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_layers.js\nfunction inputLayer(args) {\n return new InputLayer(args);\n}\nfunction elu3(args) {\n return new ELU(args);\n}\nfunction reLU(args) {\n return new ReLU(args);\n}\nfunction leakyReLU(args) {\n return new LeakyReLU(args);\n}\nfunction prelu2(args) {\n return new PReLU(args);\n}\nfunction softmax2(args) {\n return new Softmax3(args);\n}\nfunction thresholdedReLU(args) {\n return new ThresholdedReLU(args);\n}\nfunction conv1d2(args) {\n return new Conv1D(args);\n}\nfunction conv2d3(args) {\n return new Conv2D2(args);\n}\nfunction conv2dTranspose2(args) {\n return new Conv2DTranspose(args);\n}\nfunction conv3d2(args) {\n return new Conv3D2(args);\n}\nfunction conv3dTranspose2(args) {\n return new Conv3DTranspose(args);\n}\nfunction separableConv2d2(args) {\n return new SeparableConv2D(args);\n}\nfunction cropping2D(args) {\n return new Cropping2D(args);\n}\nfunction upSampling2d(args) {\n return new UpSampling2D(args);\n}\nfunction depthwiseConv2d4(args) {\n return new DepthwiseConv2D(args);\n}\nfunction activation(args) {\n return new Activation2(args);\n}\nfunction dense(args) {\n return new Dense(args);\n}\nfunction dropout3(args) {\n return new Dropout(args);\n}\nfunction spatialDropout1d(args) {\n return new SpatialDropout1D(args);\n}\nfunction flatten3(args) {\n return new Flatten(args);\n}\nfunction repeatVector(args) {\n return new RepeatVector(args);\n}\nfunction reshape2(args) {\n return new Reshape2(args);\n}\nfunction permute(args) {\n return new Permute(args);\n}\nfunction embedding(args) {\n return new Embedding(args);\n}\nfunction add3(args) {\n return new Add2(args);\n}\nfunction average(args) {\n return new Average(args);\n}\nfunction concatenate2(args) {\n return new Concatenate(args);\n}\nfunction maximum2(args) {\n return new Maximum2(args);\n}\nfunction minimum2(args) {\n return new Minimum2(args);\n}\nfunction multiply(args) {\n return new Multiply2(args);\n}\nfunction dot3(args) {\n return new Dot(args);\n}\nfunction batchNormalization2(args) {\n return new BatchNormalization(args);\n}\nfunction layerNormalization(args) {\n return new LayerNormalization(args);\n}\nfunction zeroPadding2d(args) {\n return new ZeroPadding2D(args);\n}\nfunction averagePooling1d(args) {\n return new AveragePooling1D(args);\n}\nfunction avgPool1d(args) {\n return averagePooling1d(args);\n}\nfunction avgPooling1d(args) {\n return averagePooling1d(args);\n}\nfunction averagePooling2d(args) {\n return new AveragePooling2D(args);\n}\nfunction avgPool2d(args) {\n return averagePooling2d(args);\n}\nfunction avgPooling2d(args) {\n return averagePooling2d(args);\n}\nfunction averagePooling3d(args) {\n return new AveragePooling3D(args);\n}\nfunction avgPool3d2(args) {\n return averagePooling3d(args);\n}\nfunction avgPooling3d(args) {\n return averagePooling3d(args);\n}\nfunction globalAveragePooling1d(args) {\n return new GlobalAveragePooling1D(args);\n}\nfunction globalAveragePooling2d(args) {\n return new GlobalAveragePooling2D(args);\n}\nfunction globalMaxPooling1d(args) {\n return new GlobalMaxPooling1D(args);\n}\nfunction globalMaxPooling2d(args) {\n return new GlobalMaxPooling2D(args);\n}\nfunction maxPooling1d(args) {\n return new MaxPooling1D(args);\n}\nfunction maxPooling2d(args) {\n return new MaxPooling2D(args);\n}\nfunction maxPooling3d(args) {\n return new MaxPooling3D(args);\n}\nfunction gru(args) {\n return new GRU(args);\n}\nfunction gruCell(args) {\n return new GRUCell(args);\n}\nfunction lstm(args) {\n return new LSTM(args);\n}\nfunction lstmCell(args) {\n return new LSTMCell(args);\n}\nfunction simpleRNN(args) {\n return new SimpleRNN(args);\n}\nfunction simpleRNNCell(args) {\n return new SimpleRNNCell(args);\n}\nfunction convLstm2d(args) {\n return new ConvLSTM2D(args);\n}\nfunction convLstm2dCell(args) {\n return new ConvLSTM2DCell(args);\n}\nfunction rnn2(args) {\n return new RNN(args);\n}\nfunction stackedRNNCells(args) {\n return new StackedRNNCells(args);\n}\nfunction bidirectional(args) {\n return new Bidirectional(args);\n}\nfunction timeDistributed(args) {\n return new TimeDistributed(args);\n}\nvar globalMaxPool1d = globalMaxPooling1d;\nvar globalMaxPool2d = globalMaxPooling2d;\nvar maxPool1d = maxPooling1d;\nvar maxPool2d = maxPooling2d;\nfunction gaussianNoise(args) {\n return new GaussianNoise(args);\n}\nfunction gaussianDropout(args) {\n return new GaussianDropout(args);\n}\nfunction alphaDropout(args) {\n return new AlphaDropout(args);\n}\nfunction masking(args) {\n return new Masking(args);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_metrics.js\nvar exports_metrics_exports = {};\n__export(exports_metrics_exports, {\n MAPE: () => MAPE2,\n MSE: () => MSE2,\n binaryAccuracy: () => binaryAccuracy2,\n binaryCrossentropy: () => binaryCrossentropy3,\n categoricalAccuracy: () => categoricalAccuracy2,\n categoricalCrossentropy: () => categoricalCrossentropy3,\n cosineProximity: () => cosineProximity2,\n mape: () => mape2,\n meanAbsoluteError: () => meanAbsoluteError2,\n meanAbsolutePercentageError: () => meanAbsolutePercentageError2,\n meanSquaredError: () => meanSquaredError3,\n mse: () => mse2,\n precision: () => precision2,\n recall: () => recall2,\n sparseCategoricalAccuracy: () => sparseCategoricalAccuracy2\n});\nfunction binaryAccuracy2(yTrue, yPred) {\n return binaryAccuracy(yTrue, yPred);\n}\nfunction binaryCrossentropy3(yTrue, yPred) {\n return binaryCrossentropy2(yTrue, yPred);\n}\nfunction sparseCategoricalAccuracy2(yTrue, yPred) {\n return sparseCategoricalAccuracy(yTrue, yPred);\n}\nfunction categoricalAccuracy2(yTrue, yPred) {\n return categoricalAccuracy(yTrue, yPred);\n}\nfunction categoricalCrossentropy3(yTrue, yPred) {\n return categoricalCrossentropy2(yTrue, yPred);\n}\nfunction precision2(yTrue, yPred) {\n return precision(yTrue, yPred);\n}\nfunction recall2(yTrue, yPred) {\n return recall(yTrue, yPred);\n}\nfunction cosineProximity2(yTrue, yPred) {\n return cosineProximity(yTrue, yPred);\n}\nfunction meanAbsoluteError2(yTrue, yPred) {\n return meanAbsoluteError(yTrue, yPred);\n}\nfunction meanAbsolutePercentageError2(yTrue, yPred) {\n return meanAbsolutePercentageError(yTrue, yPred);\n}\nfunction MAPE2(yTrue, yPred) {\n return meanAbsolutePercentageError(yTrue, yPred);\n}\nfunction mape2(yTrue, yPred) {\n return meanAbsolutePercentageError(yTrue, yPred);\n}\nfunction meanSquaredError3(yTrue, yPred) {\n return meanSquaredError2(yTrue, yPred);\n}\nfunction MSE2(yTrue, yPred) {\n return meanSquaredError2(yTrue, yPred);\n}\nfunction mse2(yTrue, yPred) {\n return meanSquaredError2(yTrue, yPred);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_models.js\nvar exports_models_exports = {};\n__export(exports_models_exports, {\n modelFromJSON: () => modelFromJSON\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_regularizers.js\nvar exports_regularizers_exports = {};\n__export(exports_regularizers_exports, {\n l1: () => l12,\n l1l2: () => l1l2,\n l2: () => l22\n});\nfunction l1l2(config) {\n return new L1L2(config);\n}\nfunction l12(config) {\n return l1(config);\n}\nfunction l22(config) {\n return l2(config);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/callbacks.js\nvar Callback = class extends BaseCallback {\n constructor() {\n super(...arguments);\n this.model = null;\n }\n setModel(model2) {\n if (!(model2 instanceof LayersModel)) {\n throw new Error(\"model must be a LayersModel, not some other Container\");\n }\n this.model = model2;\n }\n};\nfunction less2(currVal, prevVal) {\n return currVal < prevVal;\n}\nfunction greater2(currVal, prevVal) {\n return currVal > prevVal;\n}\nvar EarlyStopping = class extends Callback {\n constructor(args) {\n super();\n if (args == null) {\n args = {};\n }\n if (args.restoreBestWeights) {\n throw new NotImplementedError(\"restoreBestWeights = True is not implemented in EarlyStopping yet.\");\n }\n this.monitor = args.monitor || \"val_loss\";\n this.minDelta = Math.abs(args.minDelta || 0);\n this.patience = args.patience || 0;\n this.verbose = args.verbose || 0;\n this.mode = args.mode || \"auto\";\n this.baseline = args.baseline;\n if ([\"auto\", \"min\", \"max\"].indexOf(this.mode) === -1) {\n console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`);\n this.mode = \"auto\";\n }\n if (this.mode === \"min\") {\n this.monitorFunc = less2;\n } else if (this.mode === \"max\") {\n this.monitorFunc = greater2;\n } else {\n if (this.monitor.indexOf(\"acc\") !== -1) {\n this.monitorFunc = greater2;\n } else {\n this.monitorFunc = less2;\n }\n }\n if (this.monitorFunc === less2) {\n this.minDelta *= -1;\n }\n }\n async onTrainBegin(logs) {\n this.wait = 0;\n this.stoppedEpoch = 0;\n if (this.baseline != null) {\n this.best = this.baseline;\n } else {\n this.best = this.monitorFunc === less2 ? Infinity : -Infinity;\n }\n }\n async onEpochEnd(epoch, logs) {\n await resolveScalarsInLogs(logs);\n const current = this.getMonitorValue(logs);\n if (current == null) {\n return;\n }\n if (this.monitorFunc(current - this.minDelta, this.best)) {\n this.best = current;\n this.wait = 0;\n } else {\n this.wait++;\n if (this.wait >= this.patience) {\n this.stoppedEpoch = epoch;\n this.model.stopTraining = true;\n }\n }\n }\n async onTrainEnd(logs) {\n if (this.stoppedEpoch > 0 && this.verbose) {\n console.log(`Epoch ${this.stoppedEpoch}: early stopping.`);\n }\n }\n getMonitorValue(logs) {\n if (logs == null) {\n logs = {};\n }\n const monitorValue = logs[this.monitor];\n if (monitorValue == null) {\n console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(logs)}`);\n }\n return monitorValue;\n }\n};\nfunction earlyStopping(args) {\n return new EarlyStopping(args);\n}\nvar callbacks = { earlyStopping };\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/flags.js\nvar ENV4 = env();\nENV4.registerFlag(\"KEEP_INTERMEDIATE_TENSORS\", () => false, (debugValue) => {\n if (debugValue) {\n console.warn(\"Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.\");\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/data/compiled_api.js\nvar DataType;\n(function(DataType2) {\n DataType2[DataType2[\"DT_INVALID\"] = 0] = \"DT_INVALID\";\n DataType2[DataType2[\"DT_FLOAT\"] = 1] = \"DT_FLOAT\";\n DataType2[DataType2[\"DT_DOUBLE\"] = 2] = \"DT_DOUBLE\";\n DataType2[DataType2[\"DT_INT32\"] = 3] = \"DT_INT32\";\n DataType2[DataType2[\"DT_UINT8\"] = 4] = \"DT_UINT8\";\n DataType2[DataType2[\"DT_INT16\"] = 5] = \"DT_INT16\";\n DataType2[DataType2[\"DT_INT8\"] = 6] = \"DT_INT8\";\n DataType2[DataType2[\"DT_STRING\"] = 7] = \"DT_STRING\";\n DataType2[DataType2[\"DT_COMPLEX64\"] = 8] = \"DT_COMPLEX64\";\n DataType2[DataType2[\"DT_INT64\"] = 9] = \"DT_INT64\";\n DataType2[DataType2[\"DT_BOOL\"] = 10] = \"DT_BOOL\";\n DataType2[DataType2[\"DT_QINT8\"] = 11] = \"DT_QINT8\";\n DataType2[DataType2[\"DT_QUINT8\"] = 12] = \"DT_QUINT8\";\n DataType2[DataType2[\"DT_QINT32\"] = 13] = \"DT_QINT32\";\n DataType2[DataType2[\"DT_BFLOAT16\"] = 14] = \"DT_BFLOAT16\";\n DataType2[DataType2[\"DT_QINT16\"] = 15] = \"DT_QINT16\";\n DataType2[DataType2[\"DT_QUINT16\"] = 16] = \"DT_QUINT16\";\n DataType2[DataType2[\"DT_UINT16\"] = 17] = \"DT_UINT16\";\n DataType2[DataType2[\"DT_COMPLEX128\"] = 18] = \"DT_COMPLEX128\";\n DataType2[DataType2[\"DT_HALF\"] = 19] = \"DT_HALF\";\n DataType2[DataType2[\"DT_RESOURCE\"] = 20] = \"DT_RESOURCE\";\n DataType2[DataType2[\"DT_VARIANT\"] = 21] = \"DT_VARIANT\";\n DataType2[DataType2[\"DT_UINT32\"] = 22] = \"DT_UINT32\";\n DataType2[DataType2[\"DT_UINT64\"] = 23] = \"DT_UINT64\";\n DataType2[DataType2[\"DT_FLOAT_REF\"] = 101] = \"DT_FLOAT_REF\";\n DataType2[DataType2[\"DT_DOUBLE_REF\"] = 102] = \"DT_DOUBLE_REF\";\n DataType2[DataType2[\"DT_INT32_REF\"] = 103] = \"DT_INT32_REF\";\n DataType2[DataType2[\"DT_UINT8_REF\"] = 104] = \"DT_UINT8_REF\";\n DataType2[DataType2[\"DT_INT16_REF\"] = 105] = \"DT_INT16_REF\";\n DataType2[DataType2[\"DT_INT8_REF\"] = 106] = \"DT_INT8_REF\";\n DataType2[DataType2[\"DT_STRING_REF\"] = 107] = \"DT_STRING_REF\";\n DataType2[DataType2[\"DT_COMPLEX64_REF\"] = 108] = \"DT_COMPLEX64_REF\";\n DataType2[DataType2[\"DT_INT64_REF\"] = 109] = \"DT_INT64_REF\";\n DataType2[DataType2[\"DT_BOOL_REF\"] = 110] = \"DT_BOOL_REF\";\n DataType2[DataType2[\"DT_QINT8_REF\"] = 111] = \"DT_QINT8_REF\";\n DataType2[DataType2[\"DT_QUINT8_REF\"] = 112] = \"DT_QUINT8_REF\";\n DataType2[DataType2[\"DT_QINT32_REF\"] = 113] = \"DT_QINT32_REF\";\n DataType2[DataType2[\"DT_BFLOAT16_REF\"] = 114] = \"DT_BFLOAT16_REF\";\n DataType2[DataType2[\"DT_QINT16_REF\"] = 115] = \"DT_QINT16_REF\";\n DataType2[DataType2[\"DT_QUINT16_REF\"] = 116] = \"DT_QUINT16_REF\";\n DataType2[DataType2[\"DT_UINT16_REF\"] = 117] = \"DT_UINT16_REF\";\n DataType2[DataType2[\"DT_COMPLEX128_REF\"] = 118] = \"DT_COMPLEX128_REF\";\n DataType2[DataType2[\"DT_HALF_REF\"] = 119] = \"DT_HALF_REF\";\n DataType2[DataType2[\"DT_RESOURCE_REF\"] = 120] = \"DT_RESOURCE_REF\";\n DataType2[DataType2[\"DT_VARIANT_REF\"] = 121] = \"DT_VARIANT_REF\";\n DataType2[DataType2[\"DT_UINT32_REF\"] = 122] = \"DT_UINT32_REF\";\n DataType2[DataType2[\"DT_UINT64_REF\"] = 123] = \"DT_UINT64_REF\";\n})(DataType || (DataType = {}));\nvar SaverDef;\n(function(SaverDef2) {\n let CheckpointFormatVersion;\n (function(CheckpointFormatVersion2) {\n CheckpointFormatVersion2[CheckpointFormatVersion2[\"LEGACY\"] = 0] = \"LEGACY\";\n CheckpointFormatVersion2[CheckpointFormatVersion2[\"V1\"] = 1] = \"V1\";\n CheckpointFormatVersion2[CheckpointFormatVersion2[\"V2\"] = 2] = \"V2\";\n })(CheckpointFormatVersion = SaverDef2.CheckpointFormatVersion || (SaverDef2.CheckpointFormatVersion = {}));\n})(SaverDef || (SaverDef = {}));\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/custom_op/register.js\nvar CUSTOM_OPS = {};\nfunction registerOp(name, opFunc) {\n const opMapper = {\n tfOpName: name,\n category: \"custom\",\n inputs: [],\n attrs: [],\n customExecutor: opFunc\n };\n CUSTOM_OPS[name] = opMapper;\n}\nfunction getRegisteredOp(name) {\n return CUSTOM_OPS[name];\n}\nfunction deregisterOp(name) {\n delete CUSTOM_OPS[name];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/utils.js\nfunction getParamValue(paramName, node, tensorMap, context, resourceManager) {\n const inputParam = node.inputParams[paramName];\n if (inputParam && inputParam.inputIndexStart !== void 0) {\n const start = inputParam.inputIndexStart;\n const end = inputParam.inputIndexEnd === 0 ? void 0 : inputParam.inputIndexEnd === void 0 ? start + 1 : inputParam.inputIndexEnd;\n if (inputParam.type === \"tensor\") {\n return getTensor(node.inputNames[inputParam.inputIndexStart], tensorMap, context, resourceManager);\n }\n if (inputParam.type === \"tensors\") {\n const inputs = node.inputNames.slice(start, end);\n return inputs.map((name) => getTensor(name, tensorMap, context, resourceManager));\n }\n const tensor2 = getTensor(node.inputNames.slice(start)[0], tensorMap, context, resourceManager);\n const data = tensor2.dataSync();\n return inputParam.type === \"number\" ? data[0] : util_exports.toNestedArray(tensor2.shape, data);\n }\n const attrParam = node.attrParams[paramName];\n return attrParam && attrParam.value;\n}\nfunction getTensor(name, tensorsMap, context, resourceManager) {\n const [nodeName, index] = parseNodeName(name);\n if (resourceManager != null) {\n const tensor2 = resourceManager.getHashTableHandleByName(nodeName);\n if (tensor2 != null) {\n return tensor2;\n }\n }\n const contextId = context.currentContextIds.find((contextId2) => {\n return !!tensorsMap[getNodeNameWithContextId(nodeName, contextId2)];\n });\n return contextId !== void 0 ? tensorsMap[getNodeNameWithContextId(nodeName, contextId)][index] : void 0;\n}\nfunction getTensorsForCurrentContenxt(name, tensorsMap, context) {\n return tensorsMap[getNodeNameWithContextId(name, context.currentContextId)];\n}\nfunction getNodeNameAndIndex(inputName, context) {\n const [nodeName, index, outputName] = parseNodeName(inputName);\n return [\n getNodeNameWithContextId(nodeName, context && context.currentContextId),\n index,\n outputName\n ];\n}\nfunction getNodeNameWithContextId(name, contextId) {\n return !!contextId ? `${name}-${contextId}` : name;\n}\nfunction parseNodeName(name) {\n const parts = name.split(\":\");\n if (parts.length === 1) {\n return [name, 0, void 0];\n }\n const nodeName = parts[0];\n const outputName = parts.length === 3 ? parts[1] : void 0;\n const index = Number(parts[parts.length - 1]);\n return [nodeName, index, outputName];\n}\nfunction getPadding(node, tensorMap, context) {\n let pad3 = getParamValue(\"pad\", node, tensorMap, context);\n if (pad3 === \"explicit\") {\n pad3 = getParamValue(\"explicitPaddings\", node, tensorMap, context);\n const explicitPadding = [[0, 0], [0, 0], [0, 0], [0, 0]];\n for (let i2 = 0; i2 < 4; i2++) {\n explicitPadding[i2][0] = pad3[i2 * 2];\n explicitPadding[i2][1] = pad3[i2 * 2 + 1];\n }\n return explicitPadding;\n }\n return pad3;\n}\nfunction cloneTensor(tensor2) {\n return tensor2.kept ? tensor2 : clone(tensor2);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/arithmetic.js\nvar arithmetic_exports = {};\n__export(arithmetic_exports, {\n json: () => json\n});\nvar json = [\n {\n \"tfOpName\": \"Add\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"AddV2\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"AddN\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n }\n ]\n },\n {\n \"tfOpName\": \"BiasAdd\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sub\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"RealDiv\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Div\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"DivNoNan\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"FloorDiv\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Mul\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Maximum\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Minimum\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Pow\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"SquaredDifference\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Mod\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"FloorMod\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/basic_math.js\nvar basic_math_exports = {};\n__export(basic_math_exports, {\n json: () => json2\n});\nvar json2 = [\n {\n \"tfOpName\": \"Abs\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Acos\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Asin\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Atan\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Atan2\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"y\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Ceil\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"ClipByValue\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"clipValueMin\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"clipValueMax\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Complex\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"real\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"imag\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"ComplexAbs\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Cos\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Cosh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Elu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Exp\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Floor\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Log\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Imag\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"outputType\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Neg\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Real\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"outputType\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Prelu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"alpha\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Relu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Relu6\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Selu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sigmoid\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sin\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sinh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sqrt\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Rsqrt\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Square\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Tan\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Tanh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sign\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Round\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Expm1\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Log1p\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Reciprocal\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Softplus\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Asinh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Acosh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Atanh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Erf\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Prod\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axes\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LeakyRelu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"alpha\",\n \"name\": \"alpha\",\n \"type\": \"number\",\n \"defaultValue\": 0.2\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"IsNan\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/control.js\nvar control_exports = {};\n__export(control_exports, {\n json: () => json3\n});\nvar json3 = [\n {\n \"tfOpName\": \"EmptyTensorList\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"start\": 1,\n \"name\": \"maxNumElements\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"LoopCond\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"pred\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Switch\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"data\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"pred\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Merge\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n }\n ]\n },\n {\n \"tfOpName\": \"Enter\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"frame_name\",\n \"name\": \"frameName\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"is_constant\",\n \"name\": \"isConstant\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Exit\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"NextIteration\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"size\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"element_shape\",\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"dynamic_size\",\n \"name\": \"dynamicSize\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"clear_after_read\",\n \"name\": \"clearAfterRead\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"identical_element_shapes\",\n \"name\": \"identicalElementShapes\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"tensor_array_name\",\n \"name\": \"name\",\n \"type\": \"string\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayWriteV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"index\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayReadV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"index\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayGatherV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"element_shape\",\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayScatterV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayConcatV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"element_shape_except0\",\n \"name\": \"elementShapeExcept0\",\n \"type\": \"shape\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArraySplitV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"lengths\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 3,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArraySizeV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayCloseV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"StatelessIf\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"cond\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"then_branch\",\n \"name\": \"thenBranch\",\n \"type\": \"func\"\n },\n {\n \"tfName\": \"else_branch\",\n \"name\": \"elseBranch\",\n \"type\": \"func\"\n }\n ]\n },\n {\n \"tfOpName\": \"If\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"cond\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"then_branch\",\n \"name\": \"thenBranch\",\n \"type\": \"func\"\n },\n {\n \"tfName\": \"else_branch\",\n \"name\": \"elseBranch\",\n \"type\": \"func\"\n }\n ]\n },\n {\n \"tfOpName\": \"StatelessWhile\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"cond\",\n \"name\": \"cond\",\n \"type\": \"func\"\n },\n {\n \"tfName\": \"body\",\n \"name\": \"body\",\n \"type\": \"func\"\n }\n ]\n },\n {\n \"tfOpName\": \"While\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"cond\",\n \"name\": \"cond\",\n \"type\": \"func\"\n },\n {\n \"tfName\": \"body\",\n \"name\": \"body\",\n \"type\": \"func\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListScatter\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListScatterV2\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"start\": 3,\n \"name\": \"numElements\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListGather\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListGetItem\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"index\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListSetItem\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"index\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListReserve\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"start\": 1,\n \"name\": \"numElements\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListFromTensor\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListStack\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"num_elements\",\n \"name\": \"numElements\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListSplit\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"start\": 2,\n \"name\": \"lengths\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListConcat\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_shape\",\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListConcatV2\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_shape\",\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListPopBack\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListPushBack\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListLength\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListResize\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/convolution.js\nvar convolution_exports = {};\n__export(convolution_exports, {\n json: () => json4\n});\nvar json4 = [\n {\n \"tfOpName\": \"AvgPool\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"MaxPool\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": [],\n \"notSupported\": true\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"MaxPoolWithArgmax\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"include_batch_in_index\",\n \"name\": \"includeBatchInIndex\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"AvgPool3D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"MaxPool3D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Conv1D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"stride\",\n \"name\": \"stride\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NWC\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"dilation\",\n \"name\": \"dilation\",\n \"type\": \"number\",\n \"defaultValue\": 1\n }\n ]\n },\n {\n \"tfOpName\": \"Conv2D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"useCudnnOnGpu\",\n \"name\": \"useCudnnOnGpu\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"_FusedConv2D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_args\",\n \"name\": \"numArgs\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"use_cudnn_on_gpu\",\n \"name\": \"useCudnnOnGpu\",\n \"type\": \"bool\",\n \"defaultValue\": true\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\",\n \"defaultValue\": [\n 1,\n 1,\n 1,\n 1\n ]\n },\n {\n \"tfName\": \"fused_ops\",\n \"name\": \"fusedOps\",\n \"type\": \"string[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-4\n },\n {\n \"tfName\": \"leakyrelu_alpha\",\n \"name\": \"leakyreluAlpha\",\n \"type\": \"number\",\n \"defaultValue\": 0.2\n }\n ]\n },\n {\n \"tfOpName\": \"Conv2DBackpropInput\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 2,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 0,\n \"name\": \"outputShape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"DepthwiseConv2d\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"input\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"DepthwiseConv2dNative\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"input\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"FusedDepthwiseConv2dNative\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_args\",\n \"name\": \"numArgs\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\",\n \"defaultValue\": [\n 1,\n 1,\n 1,\n 1\n ]\n },\n {\n \"tfName\": \"fused_ops\",\n \"name\": \"fusedOps\",\n \"type\": \"string[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n }\n ]\n },\n {\n \"tfOpName\": \"Conv3D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"Dilation2D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"rates\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/creation.js\nvar creation_exports = {};\n__export(creation_exports, {\n json: () => json5\n});\nvar json5 = [\n {\n \"tfOpName\": \"Fill\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 1,\n \"name\": \"value\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"LinSpace\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"start\",\n \"type\": \"number\"\n },\n {\n \"start\": 1,\n \"name\": \"stop\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"num\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"OneHot\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"depth\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"onValue\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"start\": 3,\n \"name\": \"offValue\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"axis\",\n \"name\": \"axis\",\n \"type\": \"number\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"Ones\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"OnesLike\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"RandomStandardNormal\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"seed\",\n \"name\": \"seed\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"seed2\",\n \"name\": \"seed2\",\n \"type\": \"number\",\n \"defaultValue\": 0,\n \"notSupported\": true\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"T\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"RandomUniform\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"minval\",\n \"name\": \"minval\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"maxval\",\n \"name\": \"maxval\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"seed\",\n \"name\": \"seed\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"seed2\",\n \"name\": \"seed2\",\n \"type\": \"number\",\n \"defaultValue\": 0,\n \"notSupported\": true\n },\n {\n \"tfName\": \"T\",\n \"name\": \"T\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Range\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"start\",\n \"type\": \"number\"\n },\n {\n \"start\": 1,\n \"name\": \"stop\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"step\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tidx\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TruncatedNormal\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"means\",\n \"name\": \"mean\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"stddev\",\n \"name\": \"stdDev\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"tfName\": \"seed\",\n \"name\": \"seed\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"seed2\",\n \"name\": \"seed2\",\n \"type\": \"number\",\n \"defaultValue\": 0,\n \"notSupported\": true\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"T\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Zeros\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"ZerosLike\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"Multinomial\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"logits\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"numSamples\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"seed\",\n \"name\": \"seed\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"seed2\",\n \"name\": \"seed2\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"output_dtype\",\n \"name\": \"output_dtype\",\n \"type\": \"dtype\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/dynamic.js\nvar dynamic_exports = {};\n__export(dynamic_exports, {\n json: () => json6\n});\nvar json6 = [\n {\n \"tfOpName\": \"NonMaxSuppressionV2\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scores\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"maxOutputSize\",\n \"type\": \"number\"\n },\n {\n \"start\": 3,\n \"name\": \"iouThreshold\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"NonMaxSuppressionV3\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scores\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"maxOutputSize\",\n \"type\": \"number\"\n },\n {\n \"start\": 3,\n \"name\": \"iouThreshold\",\n \"type\": \"number\"\n },\n {\n \"start\": 4,\n \"name\": \"scoreThreshold\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"NonMaxSuppressionV4\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scores\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"maxOutputSize\",\n \"type\": \"number\"\n },\n {\n \"start\": 3,\n \"name\": \"iouThreshold\",\n \"type\": \"number\"\n },\n {\n \"start\": 4,\n \"name\": \"scoreThreshold\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"T_threshold\",\n \"name\": \"threshold\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"pad_to_max_output_size\",\n \"name\": \"padToMaxOutputSize\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"NonMaxSuppressionV5\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scores\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"maxOutputSize\",\n \"type\": \"number\"\n },\n {\n \"start\": 3,\n \"name\": \"iouThreshold\",\n \"type\": \"number\"\n },\n {\n \"start\": 4,\n \"name\": \"scoreThreshold\",\n \"type\": \"number\"\n },\n {\n \"start\": 5,\n \"name\": \"softNmsSigma\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"Where\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"condition\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"ListDiff\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"y\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/evaluation.js\nvar evaluation_exports = {};\n__export(evaluation_exports, {\n json: () => json7\n});\nvar json7 = [\n {\n \"tfOpName\": \"LowerBound\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"sortedSequence\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"values\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"TopKV2\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"k\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"sorted\",\n \"name\": \"sorted\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"UpperBound\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"sortedSequence\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"values\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Unique\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"UniqueV2\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/graph.js\nvar graph_exports = {};\n__export(graph_exports, {\n json: () => json8\n});\nvar json8 = [\n {\n \"tfOpName\": \"PlaceholderWithDefault\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"default\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"shape\",\n \"name\": \"shape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"Placeholder\",\n \"category\": \"graph\",\n \"attrs\": [\n {\n \"tfName\": \"shape\",\n \"name\": \"shape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"Const\",\n \"category\": \"graph\"\n },\n {\n \"tfOpName\": \"Identity\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"IdentityN\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"x\",\n \"type\": \"tensors\"\n }\n ]\n },\n {\n \"tfOpName\": \"Snapshot\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Rank\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Size\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Shape\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"ShapeN\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"x\",\n \"type\": \"tensors\"\n }\n ]\n },\n {\n \"tfOpName\": \"Print\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"data\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"message\",\n \"name\": \"message\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"first_n\",\n \"name\": \"firstN\",\n \"type\": \"number\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"summarize\",\n \"name\": \"summarize\",\n \"type\": \"number\",\n \"defaultValue\": 3\n }\n ]\n },\n {\n \"tfOpName\": \"NoOp\",\n \"category\": \"graph\",\n \"inputs\": []\n },\n {\n \"tfOpName\": \"StopGradient\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"FakeQuantWithMinMaxVars\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"min\",\n \"name\": \"min\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"max\",\n \"name\": \"max\",\n \"type\": \"number\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/hash_table.js\nvar hash_table_exports = {};\n__export(hash_table_exports, {\n json: () => json9\n});\nvar json9 = [\n {\n \"tfOpName\": \"HashTable\",\n \"category\": \"hash_table\",\n \"inputs\": [],\n \"attrs\": [\n {\n \"tfName\": \"shared_name\",\n \"name\": \"sharedName\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"use_node_name_sharing\",\n \"name\": \"useNodeNameSharing\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"key_dtype\",\n \"name\": \"keyDType\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"value_dtype\",\n \"name\": \"valueDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"HashTableV2\",\n \"category\": \"hash_table\",\n \"inputs\": [],\n \"attrs\": [\n {\n \"tfName\": \"shared_name\",\n \"name\": \"sharedName\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"use_node_name_sharing\",\n \"name\": \"useNodeNameSharing\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"key_dtype\",\n \"name\": \"keyDType\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"value_dtype\",\n \"name\": \"valueDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableImport\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"keys\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"values\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tin\",\n \"name\": \"tIn\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"tOut\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableImportV2\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"keys\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"values\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tin\",\n \"name\": \"tIn\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"tOut\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableFind\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"keys\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tin\",\n \"name\": \"tIn\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"tOut\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableFindV2\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"keys\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tin\",\n \"name\": \"tIn\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"tOut\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableSize\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableSizeV2\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/image.js\nvar image_exports = {};\n__export(image_exports, {\n json: () => json10\n});\nvar json10 = [\n {\n \"tfOpName\": \"ResizeBilinear\",\n \"category\": \"image\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"images\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"align_corners\",\n \"name\": \"alignCorners\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"half_pixel_centers\",\n \"name\": \"halfPixelCenters\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"ResizeNearestNeighbor\",\n \"category\": \"image\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"images\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"align_corners\",\n \"name\": \"alignCorners\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"half_pixel_centers\",\n \"name\": \"halfPixelCenters\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"CropAndResize\",\n \"category\": \"image\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"image\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"boxInd\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"cropSize\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"method\",\n \"name\": \"method\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"extrapolation_value\",\n \"name\": \"extrapolationValue\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"ImageProjectiveTransformV3\",\n \"category\": \"image\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"images\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"transforms\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"outputShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 3,\n \"name\": \"fillValue\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"interpolation\",\n \"name\": \"interpolation\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"fill_mode\",\n \"name\": \"fillMode\",\n \"type\": \"string\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/logical.js\nvar logical_exports = {};\n__export(logical_exports, {\n json: () => json11\n});\nvar json11 = [\n {\n \"tfOpName\": \"Equal\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"NotEqual\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Greater\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"GreaterEqual\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Less\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LessEqual\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LogicalAnd\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LogicalNot\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LogicalOr\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Select\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"condition\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"SelectV2\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"condition\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/matrices.js\nvar matrices_exports = {};\n__export(matrices_exports, {\n json: () => json12\n});\nvar json12 = [\n {\n \"tfOpName\": \"_FusedMatMul\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_args\",\n \"name\": \"numArgs\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"fused_ops\",\n \"name\": \"fusedOps\",\n \"type\": \"string[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-4\n },\n {\n \"tfName\": \"transpose_a\",\n \"name\": \"transposeA\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"transpose_b\",\n \"name\": \"transposeB\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"leakyrelu_alpha\",\n \"name\": \"leakyreluAlpha\",\n \"type\": \"number\",\n \"defaultValue\": 0.2\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"MatMul\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"transpose_a\",\n \"name\": \"transposeA\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"transpose_b\",\n \"name\": \"transposeB\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"BatchMatMul\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"adj_x\",\n \"name\": \"transposeA\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"adj_y\",\n \"name\": \"transposeB\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"BatchMatMulV2\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"adj_x\",\n \"name\": \"transposeA\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"adj_y\",\n \"name\": \"transposeB\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Transpose\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"perm\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Einsum\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"equation\",\n \"name\": \"equation\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"N\",\n \"name\": \"n\",\n \"type\": \"number\",\n \"defaultValue\": 2\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/normalization.js\nvar normalization_exports = {};\n__export(normalization_exports, {\n json: () => json13\n});\nvar json13 = [\n {\n \"tfOpName\": \"EuclideanNorm\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\",\n \"defaultValue\": false\n }\n ]\n },\n {\n \"tfOpName\": \"FusedBatchNorm\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scale\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"offset\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"mean\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 4,\n \"name\": \"variance\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-3\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"FusedBatchNormV2\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scale\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"offset\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"mean\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 4,\n \"name\": \"variance\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-3\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"FusedBatchNormV3\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scale\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"offset\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"mean\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 4,\n \"name\": \"variance\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-3\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LRN\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"depth_radius\",\n \"name\": \"radius\",\n \"type\": \"number\",\n \"defaultValue\": 5\n },\n {\n \"tfName\": \"bias\",\n \"name\": \"bias\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"tfName\": \"alpha\",\n \"name\": \"alpha\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"tfName\": \"beta\",\n \"name\": \"beta\",\n \"type\": \"number\",\n \"defaultValue\": 0.5\n }\n ]\n },\n {\n \"tfOpName\": \"Softmax\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"LogSoftmax\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"SparseToDense\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"sparseIndices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"outputShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"sparseValues\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"validate_indices\",\n \"name\": \"validateIndices\",\n \"type\": \"bool\",\n \"defaultValue\": true,\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/reduction.js\nvar reduction_exports = {};\n__export(reduction_exports, {\n json: () => json14\n});\nvar json14 = [\n {\n \"tfOpName\": \"Bincount\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"weights\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"DenseBincount\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"weights\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"binary_output\",\n \"name\": \"binaryOutput\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Max\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Mean\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Min\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Sum\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"All\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Any\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"ArgMax\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"ArgMin\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"Prod\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Cumprod\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"exclusive\",\n \"name\": \"exclusive\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"reverse\",\n \"name\": \"reverse\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Cumsum\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"exclusive\",\n \"name\": \"exclusive\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"reverse\",\n \"name\": \"reverse\",\n \"type\": \"bool\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/slice_join.js\nvar slice_join_exports = {};\n__export(slice_join_exports, {\n json: () => json15\n});\nvar json15 = [\n {\n \"tfOpName\": \"ConcatV2\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": -1,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n },\n {\n \"start\": -1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"N\",\n \"name\": \"n\",\n \"type\": \"number\",\n \"defaultValue\": 2\n }\n ]\n },\n {\n \"tfOpName\": \"Concat\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 1,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n },\n {\n \"start\": 0,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"N\",\n \"name\": \"n\",\n \"type\": \"number\",\n \"defaultValue\": 2\n }\n ]\n },\n {\n \"tfOpName\": \"GatherV2\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"batch_dims\",\n \"name\": \"batchDims\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"Gather\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"validate_indices\",\n \"name\": \"validateIndices\",\n \"type\": \"bool\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Reverse\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"dims\",\n \"type\": \"bool[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"ReverseV2\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"Slice\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"begin\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"size\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"StridedSlice\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"begin\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"end\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 3,\n \"name\": \"strides\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"begin_mask\",\n \"name\": \"beginMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"end_mask\",\n \"name\": \"endMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"new_axis_mask\",\n \"name\": \"newAxisMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"ellipsis_mask\",\n \"name\": \"ellipsisMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"shrink_axis_mask\",\n \"name\": \"shrinkAxisMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"Pack\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"axis\",\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"Unpack\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"axis\",\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"num\",\n \"name\": \"num\",\n \"type\": \"number\",\n \"defaultValue\": 0,\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Tile\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"reps\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"Split\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"start\": 1,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_split\",\n \"name\": \"numOrSizeSplits\",\n \"type\": \"number\",\n \"defaultValue\": 1\n }\n ]\n },\n {\n \"tfOpName\": \"SplitV\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"numOrSizeSplits\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"ScatterNd\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"values\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"GatherNd\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"SparseToDense\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"sparseIndices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"outputShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"sparseValues\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"validate_indices\",\n \"name\": \"validateIndices\",\n \"type\": \"bool\",\n \"defaultValue\": false,\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/sparse.js\nvar sparse_exports = {};\n__export(sparse_exports, {\n json: () => json16\n});\nvar json16 = [\n {\n \"tfOpName\": \"SparseFillEmptyRows\",\n \"category\": \"sparse\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"values\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"denseShape\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"SparseReshape\",\n \"category\": \"sparse\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"inputIndices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"inputShape\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"newShape\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"SparseSegmentMean\",\n \"category\": \"sparse\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"data\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"segmentIds\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"SparseSegmentSum\",\n \"category\": \"sparse\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"data\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"segmentIds\",\n \"type\": \"tensor\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/spectral.js\nvar spectral_exports = {};\n__export(spectral_exports, {\n json: () => json17\n});\nvar json17 = [\n {\n \"tfOpName\": \"FFT\",\n \"category\": \"spectral\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"IFFT\",\n \"category\": \"spectral\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"RFFT\",\n \"category\": \"spectral\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"fft_length\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"IRFFT\",\n \"category\": \"spectral\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"fft_length\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/string.js\nvar string_exports = {};\n__export(string_exports, {\n json: () => json18\n});\nvar json18 = [\n {\n \"tfOpName\": \"StringNGrams\",\n \"category\": \"string\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"data\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"dataSplits\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"separator\",\n \"name\": \"separator\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"ngram_widths\",\n \"name\": \"nGramWidths\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"left_pad\",\n \"name\": \"leftPad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"right_pad\",\n \"name\": \"rightPad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"pad_width\",\n \"name\": \"padWidth\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"preserve_short_sequences\",\n \"name\": \"preserveShortSequences\",\n \"type\": \"bool\"\n }\n ],\n \"outputs\": [\n \"ngrams\",\n \"ngrams_splits\"\n ]\n },\n {\n \"tfOpName\": \"StringSplit\",\n \"category\": \"string\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"input\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"delimiter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"skip_empty\",\n \"name\": \"skipEmpty\",\n \"type\": \"bool\"\n }\n ],\n \"outputs\": [\n \"indices\",\n \"values\",\n \"shape\"\n ]\n },\n {\n \"tfOpName\": \"StringToHashBucketFast\",\n \"category\": \"string\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"input\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_buckets\",\n \"name\": \"numBuckets\",\n \"type\": \"number\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/transformation.js\nvar transformation_exports = {};\n__export(transformation_exports, {\n json: () => json19\n});\nvar json19 = [\n {\n \"tfOpName\": \"Cast\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"SrcT\",\n \"name\": \"sdtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"DstT\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"ExpandDims\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"MirrorPad\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"padding\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"mode\",\n \"name\": \"mode\",\n \"type\": \"string\"\n }\n ]\n },\n {\n \"tfOpName\": \"Pad\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"padding\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"constant_value\",\n \"name\": \"constantValue\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"PadV2\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"padding\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"constantValue\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"Reshape\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"Squeeze\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"axis\",\n \"tfDeprecatedName\": \"squeeze_dims\",\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"SpaceToBatchND\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"blockShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"paddings\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"BatchToSpaceND\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"blockShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"crops\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"DepthToSpace\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"block_size\",\n \"name\": \"blockSize\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\"\n }\n ]\n },\n {\n \"tfOpName\": \"BroadcastTo\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": []\n },\n {\n \"tfOpName\": \"BroadcastArgs\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"s0\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"s1\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": []\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/operation_mapper.js\nvar OperationMapper = class {\n static get Instance() {\n return this._instance || (this._instance = new this());\n }\n constructor() {\n const ops = [\n arithmetic_exports,\n basic_math_exports,\n control_exports,\n convolution_exports,\n creation_exports,\n dynamic_exports,\n evaluation_exports,\n graph_exports,\n hash_table_exports,\n image_exports,\n logical_exports,\n matrices_exports,\n normalization_exports,\n reduction_exports,\n slice_join_exports,\n sparse_exports,\n spectral_exports,\n string_exports,\n transformation_exports\n ];\n const mappersJson = [].concat(...ops.map((op2) => op2.json));\n this.opMappers = mappersJson.reduce((map, mapper) => {\n map[mapper.tfOpName] = mapper;\n return map;\n }, {});\n }\n transformGraph(graph, signature = {}) {\n const tfNodes = graph.node;\n const placeholders = [];\n const weights = [];\n const initNodes = [];\n const nodes = tfNodes.reduce((map, node) => {\n map[node.name] = this.mapNode(node);\n if (node.op.startsWith(\"Placeholder\")) {\n placeholders.push(map[node.name]);\n } else if (node.op === \"Const\") {\n weights.push(map[node.name]);\n } else if (node.input == null || node.input.length === 0) {\n initNodes.push(map[node.name]);\n }\n return map;\n }, {});\n let inputs = [];\n const outputs = [];\n let inputNodeNameToKey = {};\n let outputNodeNameToKey = {};\n if (signature != null) {\n inputNodeNameToKey = this.mapSignatureEntries(signature.inputs);\n outputNodeNameToKey = this.mapSignatureEntries(signature.outputs);\n }\n const allNodes = Object.keys(nodes);\n allNodes.forEach((key) => {\n const node = nodes[key];\n node.inputNames.forEach((name, index) => {\n const [nodeName, , outputName] = getNodeNameAndIndex(name);\n const inputNode = nodes[nodeName];\n if (inputNode.outputs != null) {\n const outputIndex = inputNode.outputs.indexOf(outputName);\n if (outputIndex !== -1) {\n const inputName = `${nodeName}:${outputIndex}`;\n node.inputNames[index] = inputName;\n }\n }\n node.inputs.push(inputNode);\n inputNode.children.push(node);\n });\n });\n if (Object.keys(outputNodeNameToKey).length === 0) {\n allNodes.forEach((key) => {\n const node = nodes[key];\n if (node.children.length === 0) {\n outputs.push(node);\n }\n });\n } else {\n Object.keys(outputNodeNameToKey).forEach((name) => {\n const [nodeName] = getNodeNameAndIndex(name);\n const node = nodes[nodeName];\n if (node != null) {\n node.signatureKey = outputNodeNameToKey[name];\n outputs.push(node);\n }\n });\n }\n if (Object.keys(inputNodeNameToKey).length > 0) {\n Object.keys(inputNodeNameToKey).forEach((name) => {\n const [nodeName] = getNodeNameAndIndex(name);\n const node = nodes[nodeName];\n if (node) {\n node.signatureKey = inputNodeNameToKey[name];\n inputs.push(node);\n }\n });\n } else {\n inputs = placeholders;\n }\n let functions = {};\n if (graph.library != null && graph.library.function != null) {\n functions = graph.library.function.reduce((functions2, func2) => {\n functions2[func2.signature.name] = this.mapFunction(func2);\n return functions2;\n }, {});\n }\n const result = { nodes, inputs, outputs, weights, placeholders, signature, functions };\n if (initNodes.length > 0) {\n result.initNodes = initNodes;\n }\n return result;\n }\n mapSignatureEntries(entries) {\n return Object.keys(entries || {}).reduce((prev, curr) => {\n prev[entries[curr].name] = curr;\n return prev;\n }, {});\n }\n mapNode(node) {\n const mapper = getRegisteredOp(node.op) || this.opMappers[node.op] || {};\n if (node.attr == null) {\n node.attr = {};\n }\n const newNode = {\n name: node.name,\n op: node.op,\n category: mapper.category,\n inputNames: (node.input || []).map((input2) => input2.startsWith(\"^\") ? input2.slice(1) : input2),\n inputs: [],\n children: [],\n inputParams: {},\n attrParams: {},\n rawAttrs: node.attr,\n outputs: mapper.outputs\n };\n if (mapper.inputs != null) {\n newNode.inputParams = mapper.inputs.reduce((map, param) => {\n map[param.name] = {\n type: param.type,\n inputIndexStart: param.start,\n inputIndexEnd: param.end\n };\n return map;\n }, {});\n }\n if (mapper.attrs != null) {\n newNode.attrParams = mapper.attrs.reduce((map, param) => {\n const type = param.type;\n let value = void 0;\n switch (param.type) {\n case \"string\":\n value = getStringParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getStringParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"string[]\":\n value = getStringArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getStringArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"number\":\n value = getNumberParam(node.attr, param.tfName, param.defaultValue || 0);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getNumberParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"number[]\":\n value = getNumericArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getNumericArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"bool\":\n value = getBoolParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getBoolParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"bool[]\":\n value = getBoolArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getBoolArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"shape\":\n value = getTensorShapeParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getTensorShapeParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"shape[]\":\n value = getTensorShapeArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getTensorShapeArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"dtype\":\n value = getDtypeParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getDtypeParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"dtype[]\":\n value = getDtypeArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getDtypeArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"func\":\n value = getFuncParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getFuncParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"tensor\":\n case \"tensors\":\n break;\n default:\n throw new Error(`Unsupported param type: ${param.type} for op: ${node.op}`);\n }\n map[param.name] = { value, type };\n return map;\n }, {});\n }\n return newNode;\n }\n mapFunction(functionDef) {\n const tfNodes = functionDef.nodeDef;\n const placeholders = [];\n const weights = [];\n let nodes = {};\n if (tfNodes != null) {\n nodes = tfNodes.reduce((map, node) => {\n map[node.name] = this.mapNode(node);\n if (node.op === \"Const\") {\n weights.push(map[node.name]);\n }\n return map;\n }, {});\n }\n const inputs = [];\n const outputs = [];\n functionDef.signature.inputArg.forEach((arg) => {\n const [nodeName] = getNodeNameAndIndex(arg.name);\n const node = {\n name: nodeName,\n op: \"Placeholder\",\n inputs: [],\n inputNames: [],\n category: \"graph\",\n inputParams: {},\n attrParams: { dtype: { value: parseDtypeParam(arg.type), type: \"dtype\" } },\n children: []\n };\n node.signatureKey = arg.name;\n inputs.push(node);\n nodes[nodeName] = node;\n });\n const allNodes = Object.keys(nodes);\n allNodes.forEach((key) => {\n const node = nodes[key];\n node.inputNames.forEach((name, index) => {\n const [nodeName, , outputName] = getNodeNameAndIndex(name);\n const inputNode = nodes[nodeName];\n if (inputNode.outputs != null) {\n const outputIndex = inputNode.outputs.indexOf(outputName);\n if (outputIndex !== -1) {\n const inputName = `${nodeName}:${outputIndex}`;\n node.inputNames[index] = inputName;\n }\n }\n node.inputs.push(inputNode);\n inputNode.children.push(node);\n });\n });\n const returnNodeMap = functionDef.ret;\n functionDef.signature.outputArg.forEach((output) => {\n const [nodeName, index] = getNodeNameAndIndex(returnNodeMap[output.name]);\n const node = nodes[nodeName];\n if (node != null) {\n node.defaultOutput = index;\n outputs.push(node);\n }\n });\n const signature = this.mapArgsToSignature(functionDef);\n return { nodes, inputs, outputs, weights, placeholders, signature };\n }\n mapArgsToSignature(functionDef) {\n return {\n methodName: functionDef.signature.name,\n inputs: functionDef.signature.inputArg.reduce((map, arg) => {\n map[arg.name] = this.mapArgToTensorInfo(arg);\n return map;\n }, {}),\n outputs: functionDef.signature.outputArg.reduce((map, arg) => {\n map[arg.name] = this.mapArgToTensorInfo(arg, functionDef.ret);\n return map;\n }, {})\n };\n }\n mapArgToTensorInfo(arg, nameMap2) {\n let name = arg.name;\n if (nameMap2 != null) {\n name = nameMap2[name];\n }\n return { name, dtype: arg.type };\n }\n};\nfunction decodeBase64(text) {\n const global2 = env().global;\n if (typeof global2.atob !== \"undefined\") {\n return global2.atob(text);\n } else if (typeof Buffer !== \"undefined\") {\n return new Buffer(text, \"base64\").toString();\n } else {\n throw new Error(\"Unable to decode base64 in this environment. Missing built-in atob() or Buffer()\");\n }\n}\nfunction parseStringParam(s2, keepCase) {\n const value = Array.isArray(s2) ? String.fromCharCode.apply(null, s2) : decodeBase64(s2);\n return keepCase ? value : value.toLowerCase();\n}\nfunction getStringParam(attrs, name, def, keepCase = false) {\n const param = attrs[name];\n if (param != null) {\n return parseStringParam(param.s, keepCase);\n }\n return def;\n}\nfunction getBoolParam(attrs, name, def) {\n const param = attrs[name];\n return param ? param.b : def;\n}\nfunction getNumberParam(attrs, name, def) {\n const param = attrs[name] || {};\n const value = param[\"i\"] != null ? param[\"i\"] : param[\"f\"] != null ? param[\"f\"] : def;\n return typeof value === \"number\" ? value : parseInt(value, 10);\n}\nfunction parseDtypeParam(value) {\n if (typeof value === \"string\") {\n value = DataType[value];\n }\n switch (value) {\n case DataType.DT_FLOAT:\n case DataType.DT_HALF:\n return \"float32\";\n case DataType.DT_INT32:\n case DataType.DT_INT64:\n case DataType.DT_INT8:\n case DataType.DT_UINT8:\n return \"int32\";\n case DataType.DT_BOOL:\n return \"bool\";\n case DataType.DT_DOUBLE:\n return \"float32\";\n case DataType.DT_STRING:\n return \"string\";\n default:\n return null;\n }\n}\nfunction getFuncParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.func) {\n return param.func.name;\n }\n return def;\n}\nfunction getDtypeParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.type) {\n return parseDtypeParam(param.type);\n }\n return def;\n}\nfunction getDtypeArrayParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.list && param.list.type) {\n return param.list.type.map((v) => parseDtypeParam(v));\n }\n return def;\n}\nfunction parseTensorShapeParam(shape) {\n if (shape.unknownRank) {\n return void 0;\n }\n if (shape.dim != null) {\n return shape.dim.map((dim) => typeof dim.size === \"number\" ? dim.size : parseInt(dim.size, 10));\n }\n return [];\n}\nfunction getTensorShapeParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.shape) {\n return parseTensorShapeParam(param.shape);\n }\n return def;\n}\nfunction getNumericArrayParam(attrs, name, def) {\n const param = attrs[name];\n if (param) {\n return ((param.list.f && param.list.f.length ? param.list.f : param.list.i) || []).map((v) => typeof v === \"number\" ? v : parseInt(v, 10));\n }\n return def;\n}\nfunction getStringArrayParam(attrs, name, def, keepCase = false) {\n const param = attrs[name];\n if (param && param.list && param.list.s) {\n return param.list.s.map((v) => {\n return parseStringParam(v, keepCase);\n });\n }\n return def;\n}\nfunction getTensorShapeArrayParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.list && param.list.shape) {\n return param.list.shape.map((v) => {\n return parseTensorShapeParam(v);\n });\n }\n return def;\n}\nfunction getBoolArrayParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.list && param.list.b) {\n return param.list.b;\n }\n return def;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/custom_op/node_value_impl.js\nvar NodeValueImpl = class {\n constructor(node, tensorMap, context) {\n this.node = node;\n this.tensorMap = tensorMap;\n this.context = context;\n this.inputs = [];\n this.attrs = {};\n this.inputs = node.inputNames.map((name) => this.getInput(name));\n if (node.rawAttrs != null) {\n this.attrs = Object.keys(node.rawAttrs).reduce((attrs, key) => {\n attrs[key] = this.getAttr(key);\n return attrs;\n }, {});\n }\n }\n getInput(name) {\n return getTensor(name, this.tensorMap, this.context);\n }\n getAttr(name, defaultValue) {\n const value = this.node.rawAttrs[name];\n if (value.tensor != null) {\n return getTensor(name, this.tensorMap, this.context);\n }\n if (value.i != null || value.f != null) {\n return getNumberParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.s != null) {\n return getStringParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.b != null) {\n return getBoolParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.shape != null) {\n return getTensorShapeParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.type != null) {\n return getDtypeParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list != null) {\n if (value.list.i != null || value.list.f != null) {\n return getNumericArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list.s != null) {\n return getStringArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list.shape != null) {\n return getTensorShapeArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list.b != null) {\n return getBoolArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list.type != null) {\n return getDtypeArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n }\n return defaultValue;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ops_for_converter.js\nvar ops_for_converter_exports = {};\n__export(ops_for_converter_exports, {\n OP_SCOPE_SUFFIX: () => OP_SCOPE_SUFFIX,\n abs: () => abs,\n acos: () => acos,\n acosh: () => acosh,\n add: () => add2,\n addN: () => addN,\n all: () => all,\n any: () => any,\n argMax: () => argMax,\n argMin: () => argMin,\n asin: () => asin,\n asinh: () => asinh,\n atan: () => atan,\n atan2: () => atan2,\n atanh: () => atanh,\n avgPool: () => avgPool,\n avgPool3d: () => avgPool3d,\n basicLSTMCell: () => basicLSTMCell,\n batchNorm: () => batchNorm,\n batchNorm2d: () => batchNorm2d,\n batchNorm3d: () => batchNorm3d,\n batchNorm4d: () => batchNorm4d,\n batchToSpaceND: () => batchToSpaceND,\n bincount: () => bincount,\n booleanMaskAsync: () => booleanMaskAsync,\n broadcastArgs: () => broadcastArgs,\n broadcastTo: () => broadcastTo,\n buffer: () => buffer,\n cast: () => cast,\n ceil: () => ceil,\n clipByValue: () => clipByValue,\n clone: () => clone,\n complex: () => complex,\n concat: () => concat,\n concat1d: () => concat1d,\n concat2d: () => concat2d,\n concat3d: () => concat3d,\n concat4d: () => concat4d,\n conv1d: () => conv1d,\n conv2d: () => conv2d,\n conv2dTranspose: () => conv2dTranspose,\n conv3d: () => conv3d,\n conv3dTranspose: () => conv3dTranspose,\n cos: () => cos,\n cosh: () => cosh,\n cosineWindow: () => cosineWindow,\n cumprod: () => cumprod,\n cumsum: () => cumsum,\n denseBincount: () => denseBincount,\n depthToSpace: () => depthToSpace,\n depthwiseConv2d: () => depthwiseConv2d,\n diag: () => diag,\n dilation2d: () => dilation2d,\n div: () => div,\n divNoNan: () => divNoNan,\n dot: () => dot,\n dropout: () => dropout,\n einsum: () => einsum,\n elu: () => elu,\n enclosingPowerOfTwo: () => enclosingPowerOfTwo,\n equal: () => equal,\n erf: () => erf,\n euclideanNorm: () => euclideanNorm,\n exp: () => exp,\n expandDims: () => expandDims,\n expm1: () => expm1,\n eye: () => eye,\n fft: () => fft,\n fill: () => fill,\n floor: () => floor,\n floorDiv: () => floorDiv,\n fused: () => fused_ops_exports,\n gather: () => gather,\n gatherND: () => gatherND,\n greater: () => greater,\n greaterEqual: () => greaterEqual,\n ifft: () => ifft,\n imag: () => imag,\n image: () => image,\n inTopKAsync: () => inTopKAsync,\n irfft: () => irfft,\n isFinite: () => isFinite2,\n isInf: () => isInf,\n isNaN: () => isNaN2,\n leakyRelu: () => leakyRelu,\n less: () => less,\n lessEqual: () => lessEqual,\n linalg: () => linalg,\n linspace: () => linspace,\n localResponseNormalization: () => localResponseNormalization,\n log: () => log2,\n log1p: () => log1p,\n logSigmoid: () => logSigmoid,\n logSoftmax: () => logSoftmax,\n logSumExp: () => logSumExp,\n logicalAnd: () => logicalAnd,\n logicalNot: () => logicalNot,\n logicalOr: () => logicalOr,\n logicalXor: () => logicalXor,\n losses: () => losses,\n lowerBound: () => lowerBound,\n matMul: () => matMul,\n max: () => max,\n maxPool: () => maxPool,\n maxPool3d: () => maxPool3d,\n maxPoolWithArgmax: () => maxPoolWithArgmax,\n maximum: () => maximum,\n mean: () => mean,\n meshgrid: () => meshgrid,\n min: () => min,\n minimum: () => minimum,\n mirrorPad: () => mirrorPad,\n mod: () => mod,\n moments: () => moments,\n movingAverage: () => movingAverage,\n mul: () => mul,\n multiRNNCell: () => multiRNNCell,\n multinomial: () => multinomial,\n neg: () => neg,\n norm: () => norm,\n notEqual: () => notEqual,\n oneHot: () => oneHot,\n ones: () => ones2,\n onesLike: () => onesLike,\n op: () => op,\n outerProduct: () => outerProduct,\n pad: () => pad,\n pad1d: () => pad1d,\n pad2d: () => pad2d,\n pad3d: () => pad3d,\n pad4d: () => pad4d,\n pool: () => pool,\n pow: () => pow,\n prelu: () => prelu,\n print: () => print,\n prod: () => prod,\n raggedTensorToTensor: () => raggedTensorToTensor,\n rand: () => rand,\n randomGamma: () => randomGamma,\n randomNormal: () => randomNormal,\n randomStandardNormal: () => randomStandardNormal,\n randomUniform: () => randomUniform,\n range: () => range,\n real: () => real,\n reciprocal: () => reciprocal,\n relu: () => relu,\n relu6: () => relu6,\n reshape: () => reshape,\n reverse: () => reverse,\n reverse1d: () => reverse1d,\n reverse2d: () => reverse2d,\n reverse3d: () => reverse3d,\n reverse4d: () => reverse4d,\n rfft: () => rfft,\n round: () => round2,\n rsqrt: () => rsqrt,\n scalar: () => scalar,\n scatterND: () => scatterND,\n searchSorted: () => searchSorted,\n selu: () => selu,\n separableConv2d: () => separableConv2d,\n setdiff1dAsync: () => setdiff1dAsync,\n sigmoid: () => sigmoid,\n sign: () => sign,\n signal: () => signal,\n sin: () => sin,\n sinh: () => sinh,\n slice: () => slice,\n slice1d: () => slice1d,\n slice2d: () => slice2d,\n slice3d: () => slice3d,\n slice4d: () => slice4d,\n softmax: () => softmax,\n softplus: () => softplus,\n spaceToBatchND: () => spaceToBatchND,\n sparse: () => sparse,\n sparseToDense: () => sparseToDense,\n spectral: () => spectral,\n split: () => split,\n sqrt: () => sqrt,\n square: () => square,\n squaredDifference: () => squaredDifference,\n squeeze: () => squeeze,\n stack: () => stack,\n step: () => step,\n stridedSlice: () => stridedSlice,\n string: () => string,\n sub: () => sub,\n sum: () => sum2,\n tan: () => tan,\n tanh: () => tanh2,\n tensor: () => tensor,\n tensor1d: () => tensor1d,\n tensor2d: () => tensor2d,\n tensor3d: () => tensor3d,\n tensor4d: () => tensor4d,\n tensor5d: () => tensor5d,\n tensor6d: () => tensor6d,\n tile: () => tile,\n topk: () => topk,\n transpose: () => transpose,\n truncatedNormal: () => truncatedNormal,\n unique: () => unique,\n unsortedSegmentSum: () => unsortedSegmentSum,\n unstack: () => unstack,\n upperBound: () => upperBound,\n variable: () => variable,\n where: () => where,\n whereAsync: () => whereAsync,\n zeros: () => zeros,\n zerosLike: () => zerosLike\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/arithmetic_executor.js\nvar executeOp = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"BiasAdd\":\n case \"AddV2\":\n case \"Add\": {\n return [ops.add(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"AddN\": {\n return [ops.addN(getParamValue(\"tensors\", node, tensorMap, context))];\n }\n case \"FloorMod\":\n case \"Mod\":\n return [ops.mod(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n case \"Mul\":\n return [ops.mul(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n case \"RealDiv\":\n case \"Div\": {\n return [ops.div(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"DivNoNan\": {\n return [ops.divNoNan(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"FloorDiv\": {\n return [ops.floorDiv(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Sub\": {\n return [ops.sub(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Minimum\": {\n return [ops.minimum(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Maximum\": {\n return [ops.maximum(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Pow\": {\n return [ops.pow(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"SquaredDifference\": {\n return [ops.squaredDifference(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/basic_math_executor.js\nvar executeOp2 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Abs\":\n case \"ComplexAbs\":\n return [ops.abs(getParamValue(\"x\", node, tensorMap, context))];\n case \"Acos\":\n return [ops.acos(getParamValue(\"x\", node, tensorMap, context))];\n case \"Acosh\":\n return [ops.acosh(getParamValue(\"x\", node, tensorMap, context))];\n case \"Asin\":\n return [ops.asin(getParamValue(\"x\", node, tensorMap, context))];\n case \"Asinh\":\n return [ops.asinh(getParamValue(\"x\", node, tensorMap, context))];\n case \"Atan\":\n return [ops.atan(getParamValue(\"x\", node, tensorMap, context))];\n case \"Atan2\":\n return [ops.atan2(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"y\", node, tensorMap, context))];\n case \"Atanh\":\n return [ops.atanh(getParamValue(\"x\", node, tensorMap, context))];\n case \"Ceil\":\n return [ops.ceil(getParamValue(\"x\", node, tensorMap, context))];\n case \"Complex\":\n return [ops.complex(getParamValue(\"real\", node, tensorMap, context), getParamValue(\"imag\", node, tensorMap, context))];\n case \"Cos\":\n return [ops.cos(getParamValue(\"x\", node, tensorMap, context))];\n case \"Cosh\":\n return [ops.cosh(getParamValue(\"x\", node, tensorMap, context))];\n case \"Elu\":\n return [ops.elu(getParamValue(\"x\", node, tensorMap, context))];\n case \"Erf\":\n return [ops.erf(getParamValue(\"x\", node, tensorMap, context))];\n case \"Exp\":\n return [ops.exp(getParamValue(\"x\", node, tensorMap, context))];\n case \"Expm1\": {\n return [ops.expm1(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Floor\":\n return [ops.floor(getParamValue(\"x\", node, tensorMap, context))];\n case \"Log\":\n return [ops.log(getParamValue(\"x\", node, tensorMap, context))];\n case \"Log1p\": {\n return [ops.log1p(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Imag\":\n return [ops.imag(getParamValue(\"x\", node, tensorMap, context))];\n case \"Neg\":\n return [ops.neg(getParamValue(\"x\", node, tensorMap, context))];\n case \"Reciprocal\": {\n return [ops.reciprocal(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Real\":\n return [ops.real(getParamValue(\"x\", node, tensorMap, context))];\n case \"Relu\":\n return [ops.relu(getParamValue(\"x\", node, tensorMap, context))];\n case \"Round\": {\n return [ops.round(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Selu\":\n return [ops.selu(getParamValue(\"x\", node, tensorMap, context))];\n case \"Sigmoid\":\n return [ops.sigmoid(getParamValue(\"x\", node, tensorMap, context))];\n case \"Sin\":\n return [ops.sin(getParamValue(\"x\", node, tensorMap, context))];\n case \"Sign\": {\n return [ops.sign(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Sinh\": {\n return [ops.sinh(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Softplus\": {\n return [ops.softplus(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Sqrt\": {\n return [ops.sqrt(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Square\": {\n return [ops.square(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Tanh\": {\n return [ops.tanh(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Tan\":\n return [ops.tan(getParamValue(\"x\", node, tensorMap, context))];\n case \"ClipByValue\":\n return [ops.clipByValue(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"clipValueMin\", node, tensorMap, context), getParamValue(\"clipValueMax\", node, tensorMap, context))];\n case \"Relu6\":\n return [ops.relu6(getParamValue(\"x\", node, tensorMap, context))];\n case \"Rsqrt\":\n return [ops.rsqrt(getTensor(node.inputNames[0], tensorMap, context))];\n case \"Prod\":\n return [ops.prod(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"axes\", node, tensorMap, context))];\n case \"LeakyRelu\":\n return [ops.leakyRelu(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"alpha\", node, tensorMap, context))];\n case \"Prelu\":\n return [ops.prelu(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"alpha\", node, tensorMap, context))];\n case \"IsNan\":\n return [ops.isNaN(getTensor(node.inputNames[0], tensorMap, context))];\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/tensor_utils.js\nfunction assertShapesMatchAllowUndefinedSize(shapeA, shapeB, errorMessagePrefix = \"\") {\n if (typeof shapeA === \"number\" || typeof shapeB === \"number\") {\n return;\n }\n util_exports.assert(shapeA.length === shapeB.length, () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n for (let i2 = 0; i2 < shapeA.length; i2++) {\n const dim0 = shapeA[i2];\n const dim1 = shapeB[i2];\n util_exports.assert(dim0 < 0 || dim1 < 0 || dim0 === dim1, () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n }\n}\nfunction fullDefinedShape(elementShape) {\n if (typeof elementShape === \"number\" || elementShape.some((dim) => dim < 0)) {\n return false;\n }\n return true;\n}\nfunction inferElementShape(listElementShape, tensors, elementShape) {\n let partialShape = mergeElementShape(listElementShape, elementShape);\n const notfullDefinedShape = !fullDefinedShape(partialShape);\n if (notfullDefinedShape && tensors.length === 0) {\n throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${partialShape}`);\n }\n if (notfullDefinedShape) {\n tensors.forEach((tensor2) => {\n partialShape = mergeElementShape(tensor2.shape, partialShape);\n });\n }\n if (!fullDefinedShape(partialShape)) {\n throw new Error(`Non-fully-defined elementShape: ${partialShape}`);\n }\n return partialShape;\n}\nfunction mergeElementShape(elementShapeA, elementShapeB) {\n if (typeof elementShapeA === \"number\") {\n return elementShapeB;\n }\n if (typeof elementShapeB === \"number\") {\n return elementShapeA;\n }\n if (elementShapeA.length !== elementShapeB.length) {\n throw new Error(`Incompatible ranks during merge: ${elementShapeA} vs. ${elementShapeB}`);\n }\n const result = [];\n for (let i2 = 0; i2 < elementShapeA.length; ++i2) {\n const dim0 = elementShapeA[i2];\n const dim1 = elementShapeB[i2];\n if (dim0 >= 0 && dim1 >= 0 && dim0 !== dim1) {\n throw new Error(`Incompatible shape during merge: ${elementShapeA} vs. ${elementShapeB}`);\n }\n result[i2] = dim0 >= 0 ? dim0 : dim1;\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/tensor_array.js\nvar TensorArray = class {\n constructor(name, dtype, maxSize, elementShape, identicalElementShapes, dynamicSize, clearAfterRead) {\n this.name = name;\n this.dtype = dtype;\n this.maxSize = maxSize;\n this.elementShape = elementShape;\n this.identicalElementShapes = identicalElementShapes;\n this.dynamicSize = dynamicSize;\n this.clearAfterRead = clearAfterRead;\n this.tensors = [];\n this.closed_ = false;\n this.idTensor = scalar(0);\n keep(this.idTensor);\n }\n get id() {\n return this.idTensor.id;\n }\n get closed() {\n return this.closed_;\n }\n clearAndClose(keepIds) {\n this.tensors.forEach((tensor2) => {\n if (keepIds == null || !keepIds.has(tensor2.tensor.id)) {\n tensor2.tensor.dispose();\n }\n });\n this.tensors = [];\n this.closed_ = true;\n this.idTensor.dispose();\n }\n size() {\n return this.tensors.length;\n }\n read(index) {\n if (this.closed_) {\n throw new Error(`TensorArray ${this.name} has already been closed.`);\n }\n if (index < 0 || index >= this.size()) {\n throw new Error(`Tried to read from index ${index}, but array size is: ${this.size()}`);\n }\n const tensorWithState = this.tensors[index];\n if (tensorWithState.cleared) {\n throw new Error(`TensorArray ${this.name}: Could not read index ${index} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);\n }\n if (this.clearAfterRead) {\n tensorWithState.cleared = true;\n }\n tensorWithState.read = true;\n return tensorWithState.tensor;\n }\n readMany(indices) {\n return indices.map((index) => this.read(index));\n }\n write(index, tensor2) {\n if (this.closed_) {\n throw new Error(`TensorArray ${this.name} has already been closed.`);\n }\n if (index < 0 || !this.dynamicSize && index >= this.maxSize) {\n throw new Error(`Tried to write to index ${index}, but array is not resizeable and size is: ${this.maxSize}`);\n }\n const t2 = this.tensors[index] || {};\n if (tensor2.dtype !== this.dtype) {\n throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index},\n because the value dtype is ${tensor2.dtype}, but TensorArray dtype is ${this.dtype}.`);\n }\n if (this.size() === 0 && (this.elementShape == null || this.elementShape.length === 0)) {\n this.elementShape = tensor2.shape;\n }\n assertShapesMatchAllowUndefinedSize(this.elementShape, tensor2.shape, `TensorArray ${this.name}: Could not write to TensorArray index ${index}.`);\n if (t2.read) {\n throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index}, because it has already been read.`);\n }\n if (t2.written) {\n throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index}, because it has already been written.`);\n }\n t2.tensor = tensor2;\n keep(tensor2);\n t2.written = true;\n this.tensors[index] = t2;\n }\n writeMany(indices, tensors) {\n if (indices.length !== tensors.length) {\n throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${indices.length} is not the same as tensors size: ${tensors.length}.`);\n }\n indices.forEach((i2, index) => this.write(i2, tensors[index]));\n }\n gather(indices, dtype) {\n if (!!dtype && dtype !== this.dtype) {\n throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${dtype}`);\n }\n if (!indices) {\n indices = [];\n for (let i2 = 0; i2 < this.size(); i2++) {\n indices.push(i2);\n }\n } else {\n indices = indices.slice(0, this.size());\n }\n if (indices.length === 0) {\n return tensor([], [0].concat(this.elementShape));\n }\n const tensors = this.readMany(indices);\n assertShapesMatchAllowUndefinedSize(this.elementShape, tensors[0].shape, \"TensorArray shape mismatch: \");\n return stack(tensors, 0);\n }\n concat(dtype) {\n if (!!dtype && dtype !== this.dtype) {\n throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${dtype}`);\n }\n if (this.size() === 0) {\n return tensor([], [0].concat(this.elementShape));\n }\n const indices = [];\n for (let i2 = 0; i2 < this.size(); i2++) {\n indices.push(i2);\n }\n const tensors = this.readMany(indices);\n assertShapesMatchAllowUndefinedSize(this.elementShape, tensors[0].shape, `TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${tensors[0].shape})`);\n return concat(tensors, 0);\n }\n scatter(indices, tensor2) {\n if (tensor2.dtype !== this.dtype) {\n throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${tensor2.dtype}`);\n }\n if (indices.length !== tensor2.shape[0]) {\n throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${indices.length} vs. ${tensor2.shape[0]}`);\n }\n const maxIndex = Math.max(...indices);\n if (!this.dynamicSize && maxIndex >= this.maxSize) {\n throw new Error(`Max index must be < array size (${maxIndex} vs. ${this.maxSize})`);\n }\n this.writeMany(indices, unstack(tensor2, 0));\n }\n split(length, tensor2) {\n if (tensor2.dtype !== this.dtype) {\n throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${tensor2.dtype}`);\n }\n let totalLength = 0;\n const cumulativeLengths = length.map((len) => {\n totalLength += len;\n return totalLength;\n });\n if (totalLength !== tensor2.shape[0]) {\n throw new Error(`Expected sum of lengths to be equal to\n tensor.shape[0], but sum of lengths is\n ${totalLength}, and tensor's shape is: ${tensor2.shape}`);\n }\n if (!this.dynamicSize && length.length !== this.maxSize) {\n throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${length.length}), and the TensorArray is not marked as dynamically resizeable`);\n }\n const elementPerRow = totalLength === 0 ? 0 : tensor2.size / totalLength;\n const tensors = [];\n tidy(() => {\n tensor2 = reshape(tensor2, [1, totalLength, elementPerRow]);\n for (let i2 = 0; i2 < length.length; ++i2) {\n const previousLength = i2 === 0 ? 0 : cumulativeLengths[i2 - 1];\n const indices2 = [0, previousLength, 0];\n const sizes = [1, length[i2], elementPerRow];\n tensors[i2] = reshape(slice(tensor2, indices2, sizes), this.elementShape);\n }\n return tensors;\n });\n const indices = [];\n for (let i2 = 0; i2 < length.length; i2++) {\n indices[i2] = i2;\n }\n this.writeMany(indices, tensors);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/tensor_list.js\nvar TensorList = class {\n constructor(tensors, elementShape, elementDtype, maxNumElements = -1) {\n this.tensors = tensors;\n this.elementShape = elementShape;\n this.elementDtype = elementDtype;\n if (tensors != null) {\n tensors.forEach((tensor2) => {\n if (elementDtype !== tensor2.dtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${tensor2.dtype}`);\n }\n assertShapesMatchAllowUndefinedSize(elementShape, tensor2.shape, \"TensorList shape mismatch: \");\n keep(tensor2);\n });\n }\n this.idTensor = scalar(0);\n this.maxNumElements = maxNumElements;\n keep(this.idTensor);\n }\n get id() {\n return this.idTensor.id;\n }\n copy() {\n return new TensorList([...this.tensors], this.elementShape, this.elementDtype);\n }\n clearAndClose(keepIds) {\n this.tensors.forEach((tensor2) => {\n if (keepIds == null || !keepIds.has(tensor2.id)) {\n tensor2.dispose();\n }\n });\n this.tensors.length = 0;\n this.idTensor.dispose();\n }\n size() {\n return this.tensors.length;\n }\n stack(elementShape, elementDtype, numElements = -1) {\n if (elementDtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);\n }\n if (numElements !== -1 && this.tensors.length !== numElements) {\n throw new Error(`Operation expected a list with ${numElements} elements but got a list with ${this.tensors.length} elements.`);\n }\n assertShapesMatchAllowUndefinedSize(elementShape, this.elementShape, \"TensorList shape mismatch: \");\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n return tidy(() => {\n const reshapedTensors = this.tensors.map((tensor2) => reshape(tensor2, outputElementShape));\n return stack(reshapedTensors, 0);\n });\n }\n popBack(elementShape, elementDtype) {\n if (elementDtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);\n }\n if (this.size() === 0) {\n throw new Error(\"Trying to pop from an empty list.\");\n }\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n const tensor2 = this.tensors.pop();\n tensor2.kept = false;\n assertShapesMatchAllowUndefinedSize(tensor2.shape, elementShape, \"TensorList shape mismatch: \");\n return reshape(tensor2, outputElementShape);\n }\n pushBack(tensor2) {\n if (tensor2.dtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${tensor2.dtype}, but list elements ${this.elementDtype}`);\n }\n assertShapesMatchAllowUndefinedSize(tensor2.shape, this.elementShape, \"TensorList shape mismatch: \");\n if (this.maxNumElements === this.size()) {\n throw new Error(`Trying to push element into a full list.`);\n }\n keep(tensor2);\n this.tensors.push(tensor2);\n }\n resize(size) {\n if (size < 0) {\n throw new Error(`TensorListResize expects size to be non-negative. Got: ${size}`);\n }\n if (this.maxNumElements !== -1 && size > this.maxNumElements) {\n throw new Error(`TensorListResize input size ${size} is greater maxNumElement ${this.maxNumElements}.`);\n }\n const destTensorList = new TensorList([], this.elementShape, this.elementDtype, this.maxNumElements);\n destTensorList.tensors.length = size;\n for (let i2 = 0; i2 < Math.min(this.tensors.length, size); ++i2) {\n destTensorList.tensors[i2] = this.tensors[i2];\n }\n return destTensorList;\n }\n getItem(elementIndex, elementShape, elementDtype) {\n if (elementDtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);\n }\n if (elementIndex < 0 || elementIndex > this.tensors.length) {\n throw new Error(`Trying to access element ${elementIndex} in a list with ${this.tensors.length} elements.`);\n }\n if (this.tensors[elementIndex] == null) {\n throw new Error(`element at index ${elementIndex} is null.`);\n }\n assertShapesMatchAllowUndefinedSize(this.tensors[elementIndex].shape, elementShape, \"TensorList shape mismatch: \");\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n return reshape(this.tensors[elementIndex], outputElementShape);\n }\n setItem(elementIndex, tensor2) {\n if (tensor2.dtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${tensor2.dtype}, but list elements ${this.elementDtype}`);\n }\n if (elementIndex < 0 || this.maxNumElements !== -1 && elementIndex >= this.maxNumElements) {\n throw new Error(`Trying to set element ${elementIndex} in a list with max ${this.maxNumElements} elements.`);\n }\n assertShapesMatchAllowUndefinedSize(this.elementShape, tensor2.shape, \"TensorList shape mismatch: \");\n keep(tensor2);\n if (this.tensors[elementIndex] != null) {\n this.tensors[elementIndex].kept = false;\n }\n this.tensors[elementIndex] = tensor2;\n }\n gather(indices, elementDtype, elementShape) {\n if (elementDtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);\n }\n assertShapesMatchAllowUndefinedSize(this.elementShape, elementShape, \"TensorList shape mismatch: \");\n indices = indices.slice(0, this.size());\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n if (indices.length === 0) {\n return tensor([], [0].concat(outputElementShape));\n }\n return tidy(() => {\n const tensors = indices.map((i2) => reshape(this.tensors[i2], outputElementShape));\n return stack(tensors, 0);\n });\n }\n concat(elementDtype, elementShape) {\n if (!!elementDtype && elementDtype !== this.elementDtype) {\n throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${elementDtype}`);\n }\n assertShapesMatchAllowUndefinedSize(this.elementShape, elementShape, \"TensorList shape mismatch: \");\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n if (this.size() === 0) {\n return tensor([], [0].concat(outputElementShape));\n }\n return tidy(() => {\n const tensors = this.tensors.map((t2) => reshape(t2, outputElementShape));\n return concat(tensors, 0);\n });\n }\n};\nfunction fromTensor(tensor2, elementShape, elementDtype) {\n const dtype = tensor2.dtype;\n if (tensor2.shape.length < 1) {\n throw new Error(`Tensor must be at least a vector, but saw shape: ${tensor2.shape}`);\n }\n if (tensor2.dtype !== elementDtype) {\n throw new Error(`Invalid data types; op elements ${tensor2.dtype}, but list elements ${elementDtype}`);\n }\n const tensorElementShape = tensor2.shape.slice(1);\n assertShapesMatchAllowUndefinedSize(tensorElementShape, elementShape, \"TensorList shape mismatch: \");\n const tensorList = unstack(tensor2);\n return new TensorList(tensorList, elementShape, dtype);\n}\nfunction reserve(elementShape, elementDtype, numElements, maxNumElements) {\n return new TensorList([], elementShape, elementDtype, maxNumElements);\n}\nfunction scatter(tensor2, indices, elementShape, numElements) {\n if (indices.length !== tensor2.shape[0]) {\n throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${indices.length} vs. ${tensor2.shape[0]}`);\n }\n const maxIndex = Math.max(...indices);\n if (numElements != null && numElements !== -1 && maxIndex >= numElements) {\n throw new Error(`Max index must be < array size (${maxIndex} vs. ${numElements})`);\n }\n const list = new TensorList([], elementShape, tensor2.dtype, numElements);\n const tensors = unstack(tensor2, 0);\n indices.forEach((value, index) => {\n list.setItem(value, tensors[index]);\n });\n return list;\n}\nfunction split2(tensor2, length, elementShape) {\n let totalLength = 0;\n const cumulativeLengths = length.map((len) => {\n totalLength += len;\n return totalLength;\n });\n if (totalLength !== tensor2.shape[0]) {\n throw new Error(`Expected sum of lengths to be equal to\n tensor.shape[0], but sum of lengths is\n ${totalLength}, and tensor's shape is: ${tensor2.shape}`);\n }\n const shapeWithoutFirstDim = tensor2.shape.slice(1);\n const outputElementShape = mergeElementShape(shapeWithoutFirstDim, elementShape);\n const elementPerRow = totalLength === 0 ? 0 : tensor2.size / totalLength;\n const tensors = tidy(() => {\n const tensors2 = [];\n tensor2 = reshape(tensor2, [1, totalLength, elementPerRow]);\n for (let i2 = 0; i2 < length.length; ++i2) {\n const previousLength = i2 === 0 ? 0 : cumulativeLengths[i2 - 1];\n const indices = [0, previousLength, 0];\n const sizes = [1, length[i2], elementPerRow];\n tensors2[i2] = reshape(slice(tensor2, indices, sizes), outputElementShape);\n }\n tensor2.dispose();\n return tensors2;\n });\n const list = new TensorList([], elementShape, tensor2.dtype, length.length);\n for (let i2 = 0; i2 < tensors.length; i2++) {\n list.setItem(i2, tensors[i2]);\n }\n return list;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/control_executor.js\nvar executeOp3 = async (node, tensorMap, context) => {\n switch (node.op) {\n case \"If\":\n case \"StatelessIf\": {\n const thenFunc = getParamValue(\"thenBranch\", node, tensorMap, context);\n const elseFunc = getParamValue(\"elseBranch\", node, tensorMap, context);\n const cond = getParamValue(\"cond\", node, tensorMap, context);\n const args = getParamValue(\"args\", node, tensorMap, context);\n const condValue = await cond.data();\n if (condValue[0]) {\n return context.functionMap[thenFunc].executeFunctionAsync(args, context.tensorArrayMap, context.tensorListMap);\n } else {\n return context.functionMap[elseFunc].executeFunctionAsync(args, context.tensorArrayMap, context.tensorListMap);\n }\n }\n case \"While\":\n case \"StatelessWhile\": {\n const bodyFunc = getParamValue(\"body\", node, tensorMap, context);\n const condFunc = getParamValue(\"cond\", node, tensorMap, context);\n const args = getParamValue(\"args\", node, tensorMap, context);\n const condResult = await context.functionMap[condFunc].executeFunctionAsync(args, context.tensorArrayMap, context.tensorListMap);\n const argIds = args.map((tensor2) => tensor2.id);\n let condValue = await condResult[0].data();\n condResult.forEach((tensor2) => {\n if (!tensor2.kept && argIds.indexOf(tensor2.id) === -1) {\n tensor2.dispose();\n }\n });\n let result = args;\n while (condValue[0]) {\n const origResult = result;\n result = await context.functionMap[bodyFunc].executeFunctionAsync(result, context.tensorArrayMap, context.tensorListMap);\n const resultIds = result.map((tensor2) => tensor2.id);\n origResult.forEach((tensor2) => {\n if (!tensor2.kept && argIds.indexOf(tensor2.id) === -1 && resultIds.indexOf(tensor2.id) === -1) {\n tensor2.dispose();\n }\n });\n const condResult2 = await context.functionMap[condFunc].executeFunctionAsync(result, context.tensorArrayMap, context.tensorListMap);\n condValue = await condResult2[0].data();\n condResult2.forEach((tensor2) => {\n if (!tensor2.kept && argIds.indexOf(tensor2.id) === -1 && resultIds.indexOf(tensor2.id) === -1) {\n tensor2.dispose();\n }\n });\n }\n return result;\n }\n case \"LoopCond\": {\n const pred = getParamValue(\"pred\", node, tensorMap, context);\n return [cloneTensor(pred)];\n }\n case \"Switch\": {\n const pred = getParamValue(\"pred\", node, tensorMap, context);\n let data = getParamValue(\"data\", node, tensorMap, context);\n if (!data.kept) {\n data = cloneTensor(data);\n }\n return (await pred.data())[0] ? [void 0, data] : [data, void 0];\n }\n case \"Merge\": {\n const inputName = node.inputNames.find((name) => getTensor(name, tensorMap, context) !== void 0);\n if (inputName) {\n const data = getTensor(inputName, tensorMap, context);\n return [cloneTensor(data)];\n }\n return void 0;\n }\n case \"Enter\": {\n const frameId = getParamValue(\"frameName\", node, tensorMap, context);\n const data = getParamValue(\"tensor\", node, tensorMap, context);\n context.enterFrame(frameId);\n return [cloneTensor(data)];\n }\n case \"Exit\": {\n const data = getParamValue(\"tensor\", node, tensorMap, context);\n context.exitFrame();\n return [cloneTensor(data)];\n }\n case \"NextIteration\": {\n const data = getParamValue(\"tensor\", node, tensorMap, context);\n context.nextIteration();\n return [cloneTensor(data)];\n }\n case \"TensorArrayV3\": {\n const size = getParamValue(\"size\", node, tensorMap, context);\n const dtype = getParamValue(\"dtype\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const dynamicSize = getParamValue(\"dynamicSize\", node, tensorMap, context);\n const clearAfterRead = getParamValue(\"clearAfterRead\", node, tensorMap, context);\n const identicalElementShapes = getParamValue(\"identicalElementShapes\", node, tensorMap, context);\n const name = getParamValue(\"name\", node, tensorMap, context);\n const tensorArray = new TensorArray(name, dtype, size, elementShape, identicalElementShapes, dynamicSize, clearAfterRead);\n context.addTensorArray(tensorArray);\n return [tensorArray.idTensor, scalar(1)];\n }\n case \"TensorArrayWriteV3\": {\n const id = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const index = getParamValue(\"index\", node, tensorMap, context);\n const writeTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const writeTensorArray = context.getTensorArray(id.id);\n writeTensorArray.write(index, writeTensor);\n return [writeTensorArray.idTensor];\n }\n case \"TensorArrayReadV3\": {\n const readId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const readIndex = getParamValue(\"index\", node, tensorMap, context);\n const readTensorArray = context.getTensorArray(readId.id);\n return [readTensorArray.read(readIndex)];\n }\n case \"TensorArrayGatherV3\": {\n const gatherId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const gatherIndices = getParamValue(\"indices\", node, tensorMap, context);\n const gatherDtype = getParamValue(\"dtype\", node, tensorMap, context);\n const gatherTensorArray = context.getTensorArray(gatherId.id);\n return [gatherTensorArray.gather(gatherIndices, gatherDtype)];\n }\n case \"TensorArrayScatterV3\": {\n const scatterId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const scatterIndices = getParamValue(\"indices\", node, tensorMap, context);\n const scatterTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const scatterTensorArray = context.getTensorArray(scatterId.id);\n scatterTensorArray.scatter(scatterIndices, scatterTensor);\n return [scatterTensorArray.idTensor];\n }\n case \"TensorArrayConcatV3\": {\n const concatId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const concatTensorArray = context.getTensorArray(concatId.id);\n const concatDtype = getParamValue(\"dtype\", node, tensorMap, context);\n return [concatTensorArray.concat(concatDtype)];\n }\n case \"TensorArraySplitV3\": {\n const splitId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const splitTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const lengths = getParamValue(\"lengths\", node, tensorMap, context);\n const splitTensorArray = context.getTensorArray(splitId.id);\n splitTensorArray.split(lengths, splitTensor);\n return [splitTensorArray.idTensor];\n }\n case \"TensorArraySizeV3\": {\n const sizeId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const sizeTensorArray = context.getTensorArray(sizeId.id);\n return [scalar(sizeTensorArray.size(), \"int32\")];\n }\n case \"TensorArrayCloseV3\": {\n const closeId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const closeTensorArray = context.getTensorArray(closeId.id);\n closeTensorArray.clearAndClose();\n return [closeTensorArray.idTensor];\n }\n case \"TensorListSetItem\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const index = getParamValue(\"index\", node, tensorMap, context);\n const writeTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n tensorList.setItem(index, writeTensor);\n return [tensorList.idTensor];\n }\n case \"TensorListGetItem\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const readIndex = getParamValue(\"index\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDType = getParamValue(\"elementDType\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n return [tensorList.getItem(readIndex, elementShape, elementDType)];\n }\n case \"TensorListScatterV2\":\n case \"TensorListScatter\": {\n const scatterIndices = getParamValue(\"indices\", node, tensorMap, context);\n const scatterTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const numElements = getParamValue(\"numElements\", node, tensorMap, context);\n const tensorList = scatter(scatterTensor, scatterIndices, elementShape, numElements);\n context.addTensorList(tensorList);\n return [tensorList.idTensor];\n }\n case \"TensorListReserve\":\n case \"EmptyTensorList\": {\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDtype = getParamValue(\"elementDType\", node, tensorMap, context);\n let numElementsParam;\n if (node.op === \"TensorListReserve\") {\n numElementsParam = \"numElements\";\n } else {\n numElementsParam = \"maxNumElements\";\n }\n const numElements = getParamValue(numElementsParam, node, tensorMap, context);\n const maxNumElements = node.op === \"TensorListReserve\" ? -1 : numElements;\n const tensorList = reserve(elementShape, elementDtype, numElements, maxNumElements);\n context.addTensorList(tensorList);\n return [tensorList.idTensor];\n }\n case \"TensorListGather\": {\n const gatherId = getParamValue(\"tensorListId\", node, tensorMap, context);\n const gatherIndices = getParamValue(\"indices\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDtype = getParamValue(\"elementDType\", node, tensorMap, context);\n const tensorList = context.getTensorList(gatherId.id);\n return [tensorList.gather(gatherIndices, elementDtype, elementShape)];\n }\n case \"TensorListStack\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDtype = getParamValue(\"elementDType\", node, tensorMap, context);\n const numElements = getParamValue(\"numElements\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n return [tensorList.stack(elementShape, elementDtype, numElements)];\n }\n case \"TensorListFromTensor\": {\n const tensor2 = getParamValue(\"tensor\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDtype = getParamValue(\"elementDType\", node, tensorMap, context);\n const tensorList = fromTensor(tensor2, elementShape, elementDtype);\n context.addTensorList(tensorList);\n return [tensorList.idTensor];\n }\n case \"TensorListConcat\":\n case \"TensorListConcatV2\": {\n const concatId = getParamValue(\"tensorListId\", node, tensorMap, context);\n const tensorList = context.getTensorList(concatId.id);\n const concatDtype = getParamValue(\"dtype\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n return [tensorList.concat(concatDtype, elementShape)];\n }\n case \"TensorListPushBack\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const writeTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n tensorList.pushBack(writeTensor);\n return [tensorList.idTensor];\n }\n case \"TensorListPopBack\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDType = getParamValue(\"elementDType\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n return [tensorList.popBack(elementShape, elementDType)];\n }\n case \"TensorListSplit\": {\n const splitTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const lengths = getParamValue(\"lengths\", node, tensorMap, context);\n const tensorList = split2(splitTensor, lengths, elementShape);\n context.addTensorList(tensorList);\n return [tensorList.idTensor];\n }\n case \"TensorListLength\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n return [scalar(tensorList.size(), \"int32\")];\n }\n case \"TensorListResize\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n const srcTensorList = context.getTensorList(idTensor.id);\n const destTensorList = srcTensorList.resize(size);\n context.addTensorList(destTensorList);\n return [destTensorList.idTensor];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/convolution_executor.js\nfunction fusedConvAndDepthWiseParams(node, tensorMap, context) {\n const [extraOp, activationFunc] = getParamValue(\"fusedOps\", node, tensorMap, context);\n const isBiasAdd = extraOp === \"biasadd\";\n const noBiasAdd = !isBiasAdd;\n const isPrelu = activationFunc === \"prelu\";\n const isBatchNorm = extraOp === \"fusedbatchnorm\";\n const numArgs = getParamValue(\"numArgs\", node, tensorMap, context);\n if (isBiasAdd) {\n if (isPrelu && numArgs !== 2) {\n throw new Error(\"FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.\");\n }\n if (!isPrelu && isBiasAdd && numArgs !== 1) {\n throw new Error(\"FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.\");\n }\n }\n if (isBatchNorm) {\n throw new Error(\"FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported\");\n }\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getPadding(node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n let [biasArg, preluArg] = getParamValue(\"args\", node, tensorMap, context);\n if (noBiasAdd) {\n preluArg = biasArg;\n biasArg = void 0;\n }\n const leakyreluAlpha = getParamValue(\"leakyreluAlpha\", node, tensorMap, context);\n return {\n stride,\n pad: pad3,\n dataFormat,\n dilations,\n biasArg,\n preluArg,\n activationFunc,\n leakyreluAlpha\n };\n}\nvar executeOp4 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Conv1D\": {\n const stride = getParamValue(\"stride\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n const dilation = getParamValue(\"dilation\", node, tensorMap, context);\n return [ops.conv1d(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), stride, pad3, dataFormat, dilation)];\n }\n case \"Conv2D\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getPadding(node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n return [ops.conv2d(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), [stride[1], stride[2]], pad3, dataFormat, [dilations[1], dilations[2]])];\n }\n case \"_FusedConv2D\": {\n const { stride, pad: pad3, dataFormat, dilations, biasArg, preluArg, activationFunc, leakyreluAlpha } = fusedConvAndDepthWiseParams(node, tensorMap, context);\n return [ops.fused.conv2d({\n x: getParamValue(\"x\", node, tensorMap, context),\n filter: getParamValue(\"filter\", node, tensorMap, context),\n strides: [stride[1], stride[2]],\n pad: pad3,\n dataFormat,\n dilations: [dilations[1], dilations[2]],\n bias: biasArg,\n activation: activationFunc,\n preluActivationWeights: preluArg,\n leakyreluAlpha\n })];\n }\n case \"FusedDepthwiseConv2dNative\": {\n const { stride, pad: pad3, dataFormat, dilations, biasArg, preluArg, activationFunc, leakyreluAlpha } = fusedConvAndDepthWiseParams(node, tensorMap, context);\n return [ops.fused.depthwiseConv2d({\n x: getParamValue(\"x\", node, tensorMap, context),\n filter: getParamValue(\"filter\", node, tensorMap, context),\n strides: [stride[1], stride[2]],\n pad: pad3,\n dataFormat,\n dilations: [dilations[1], dilations[2]],\n bias: biasArg,\n activation: activationFunc,\n preluActivationWeights: preluArg,\n leakyreluAlpha\n })];\n }\n case \"Conv2DBackpropInput\":\n case \"Conv2dTranspose\": {\n const shape = getParamValue(\"outputShape\", node, tensorMap, context);\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getPadding(node, tensorMap, context);\n return [ops.conv2dTranspose(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), shape, [stride[1], stride[2]], pad3)];\n }\n case \"DepthwiseConv2dNative\":\n case \"DepthwiseConv2d\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getPadding(node, tensorMap, context);\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n return [ops.depthwiseConv2d(getParamValue(\"input\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), [stride[1], stride[2]], pad3, dataFormat, [dilations[1], dilations[2]])];\n }\n case \"Conv3D\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n return [ops.conv3d(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), [stride[1], stride[2], stride[3]], pad3, dataFormat, [dilations[1], dilations[2], dilations[3]])];\n }\n case \"AvgPool\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n return [ops.avgPool(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3)];\n }\n case \"MaxPool\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n return [ops.maxPool(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3)];\n }\n case \"MaxPoolWithArgmax\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n const includeBatchInIndex = getParamValue(\"includeBatchInIndex\", node, tensorMap, context);\n const { result, indexes } = ops.maxPoolWithArgmax(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3, includeBatchInIndex);\n return [result, indexes];\n }\n case \"AvgPool3D\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n return [ops.avgPool3d(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2], kernelSize[3]], [stride[1], stride[2], stride[3]], pad3)];\n }\n case \"MaxPool3D\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n return [ops.maxPool3d(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2], kernelSize[3]], [stride[1], stride[2], stride[3]], pad3)];\n }\n case \"Dilation2D\": {\n const strides = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n const strideHeight = strides[1];\n const strideWidth = strides[2];\n const dilationHeight = dilations[1];\n const dilationWidth = dilations[2];\n return [ops.dilation2d(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), [strideHeight, strideWidth], pad3, [dilationHeight, dilationWidth], \"NHWC\")];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/creation_executor.js\nvar executeOp5 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Fill\": {\n const shape = getParamValue(\"shape\", node, tensorMap, context);\n const dtype = getParamValue(\"dtype\", node, tensorMap, context);\n const value = getParamValue(\"value\", node, tensorMap, context);\n return [ops.fill(shape, value, dtype)];\n }\n case \"LinSpace\": {\n const start = getParamValue(\"start\", node, tensorMap, context);\n const stop = getParamValue(\"stop\", node, tensorMap, context);\n const num = getParamValue(\"num\", node, tensorMap, context);\n return [ops.linspace(start, stop, num)];\n }\n case \"Multinomial\": {\n const logits = getParamValue(\"logits\", node, tensorMap, context);\n const numSamples = getParamValue(\"numSamples\", node, tensorMap, context);\n const seed = getParamValue(\"seed\", node, tensorMap, context);\n return [ops.multinomial(logits, numSamples, seed)];\n }\n case \"OneHot\": {\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n const depth = getParamValue(\"depth\", node, tensorMap, context);\n const onValue = getParamValue(\"onValue\", node, tensorMap, context);\n const offValue = getParamValue(\"offValue\", node, tensorMap, context);\n const dtype = getParamValue(\"dtype\", node, tensorMap, context);\n return [ops.oneHot(indices, depth, onValue, offValue, dtype)];\n }\n case \"Ones\": {\n return [ops.ones(getParamValue(\"shape\", node, tensorMap, context), getParamValue(\"dtype\", node, tensorMap, context))];\n }\n case \"OnesLike\": {\n return [ops.onesLike(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"RandomStandardNormal\": {\n return [ops.randomStandardNormal(getParamValue(\"shape\", node, tensorMap, context), getParamValue(\"dtype\", node, tensorMap, context), getParamValue(\"seed\", node, tensorMap, context))];\n }\n case \"RandomUniform\": {\n return [ops.randomUniform(\n getParamValue(\"shape\", node, tensorMap, context),\n getParamValue(\"minval\", node, tensorMap, context),\n getParamValue(\"maxval\", node, tensorMap, context),\n getParamValue(\"dtype\", node, tensorMap, context)\n )];\n }\n case \"Range\": {\n const start = getParamValue(\"start\", node, tensorMap, context);\n const stop = getParamValue(\"stop\", node, tensorMap, context);\n const step5 = getParamValue(\"step\", node, tensorMap, context);\n return [ops.range(start, stop, step5, getParamValue(\"dtype\", node, tensorMap, context))];\n }\n case \"TruncatedNormal\": {\n const shape = getParamValue(\"shape\", node, tensorMap, context);\n const mean5 = getParamValue(\"mean\", node, tensorMap, context);\n const stdDev = getParamValue(\"stdDev\", node, tensorMap, context);\n const seed = getParamValue(\"seed\", node, tensorMap, context);\n return [ops.truncatedNormal(shape, mean5, stdDev, getParamValue(\"dtype\", node, tensorMap, context), seed)];\n }\n case \"Zeros\": {\n return [ops.zeros(getParamValue(\"shape\", node, tensorMap, context), getParamValue(\"dtype\", node, tensorMap, context))];\n }\n case \"ZerosLike\": {\n return [ops.zerosLike(getParamValue(\"x\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/dynamic_executor.js\nfunction nmsParams(node, tensorMap, context) {\n const boxes = getParamValue(\"boxes\", node, tensorMap, context);\n const scores = getParamValue(\"scores\", node, tensorMap, context);\n const maxOutputSize = getParamValue(\"maxOutputSize\", node, tensorMap, context);\n const iouThreshold = getParamValue(\"iouThreshold\", node, tensorMap, context);\n const scoreThreshold = getParamValue(\"scoreThreshold\", node, tensorMap, context);\n const softNmsSigma = getParamValue(\"softNmsSigma\", node, tensorMap, context);\n return {\n boxes,\n scores,\n maxOutputSize,\n iouThreshold,\n scoreThreshold,\n softNmsSigma\n };\n}\nvar executeOp6 = async (node, tensorMap, context, resourceManager, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"NonMaxSuppressionV5\": {\n const { boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = nmsParams(node, tensorMap, context);\n const result = await ops.image.nonMaxSuppressionWithScoreAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n return [result.selectedIndices, result.selectedScores];\n }\n case \"NonMaxSuppressionV4\": {\n const { boxes, scores, maxOutputSize, iouThreshold, scoreThreshold } = nmsParams(node, tensorMap, context);\n const padToMaxOutputSize = getParamValue(\"padToMaxOutputSize\", node, tensorMap, context);\n const result = await ops.image.nonMaxSuppressionPaddedAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize);\n return [result.selectedIndices, result.validOutputs];\n }\n case \"NonMaxSuppressionV3\":\n case \"NonMaxSuppressionV2\": {\n const { boxes, scores, maxOutputSize, iouThreshold, scoreThreshold } = nmsParams(node, tensorMap, context);\n return [await ops.image.nonMaxSuppressionAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold)];\n }\n case \"Where\": {\n const condition = ops.cast(getParamValue(\"condition\", node, tensorMap, context), \"bool\");\n const result = [await ops.whereAsync(condition)];\n condition.dispose();\n return result;\n }\n case \"ListDiff\": {\n return ops.setdiff1dAsync(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"y\", node, tensorMap, context));\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/evaluation_executor.js\nvar executeOp7 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"LowerBound\": {\n const sortedSequence = getParamValue(\"sortedSequence\", node, tensorMap, context);\n const values = getParamValue(\"values\", node, tensorMap, context);\n return [ops.lowerBound(sortedSequence, values)];\n }\n case \"TopKV2\": {\n const x = getParamValue(\"x\", node, tensorMap, context);\n const k = getParamValue(\"k\", node, tensorMap, context);\n const sorted = getParamValue(\"sorted\", node, tensorMap, context);\n const result = ops.topk(x, k, sorted);\n return [result.values, result.indices];\n }\n case \"UpperBound\": {\n const sortedSequence = getParamValue(\"sortedSequence\", node, tensorMap, context);\n const values = getParamValue(\"values\", node, tensorMap, context);\n return [ops.upperBound(sortedSequence, values)];\n }\n case \"Unique\": {\n const x = getParamValue(\"x\", node, tensorMap, context);\n const result = ops.unique(x);\n return [result.values, result.indices];\n }\n case \"UniqueV2\": {\n const x = getParamValue(\"x\", node, tensorMap, context);\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const result = ops.unique(x, axis);\n return [result.values, result.indices];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/graph_executor.js\nvar executeOp8 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Const\": {\n return tensorMap[node.name];\n }\n case \"PlaceholderWithDefault\":\n const def = getParamValue(\"default\", node, tensorMap, context);\n return [getTensor(node.name, tensorMap, context) || def];\n case \"Placeholder\":\n return [getTensor(node.name, tensorMap, context)];\n case \"Identity\":\n case \"StopGradient\":\n case \"FakeQuantWithMinMaxVars\": {\n const data2 = getParamValue(\"x\", node, tensorMap, context);\n return [cloneTensor(data2)];\n }\n case \"IdentityN\":\n return getParamValue(\"x\", node, tensorMap, context).map((t2) => cloneTensor(t2));\n case \"Snapshot\":\n const snapshot = getParamValue(\"x\", node, tensorMap, context);\n return [cloneTensor(snapshot)];\n case \"Shape\":\n return [ops.tensor1d(getParamValue(\"x\", node, tensorMap, context).shape, \"int32\")];\n case \"ShapeN\":\n return getParamValue(\"x\", node, tensorMap, context).map((t2) => ops.tensor1d(t2.shape));\n case \"Size\":\n return [ops.scalar(getParamValue(\"x\", node, tensorMap, context).size, \"int32\")];\n case \"Rank\":\n return [ops.scalar(getParamValue(\"x\", node, tensorMap, context).rank, \"int32\")];\n case \"NoOp\":\n return [ops.scalar(1)];\n case \"Print\":\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n const data = getParamValue(\"data\", node, tensorMap, context);\n const message = getParamValue(\"message\", node, tensorMap, context);\n const summarize = getParamValue(\"summarize\", node, tensorMap, context);\n console.warn(\"The graph has a tf.print() operation,usually used for debugging, which slows down performance.\");\n console.log(message);\n for (let i2 = 0; i2 < data.length; i2++) {\n console.log(Array.prototype.slice.call(data[i2].dataSync()).slice(0, summarize));\n }\n return [input2];\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/hash_table.js\nvar HashTable = class {\n constructor(keyDType, valueDType) {\n this.keyDType = keyDType;\n this.valueDType = valueDType;\n this.handle = scalar(0);\n this.tensorMap = /* @__PURE__ */ new Map();\n keep(this.handle);\n }\n get id() {\n return this.handle.id;\n }\n clearAndClose() {\n this.tensorMap.forEach((value) => value.dispose());\n this.tensorMap.clear();\n this.handle.dispose();\n }\n size() {\n return this.tensorMap.size;\n }\n tensorSize() {\n return scalar(this.size(), \"int32\");\n }\n async import(keys, values) {\n this.checkKeyAndValueTensor(keys, values);\n const $keys = await keys.data();\n this.tensorMap.forEach((value) => value.dispose());\n this.tensorMap.clear();\n return tidy(() => {\n const $values = unstack(values);\n const keysLength = $keys.length;\n const valuesLength = $values.length;\n util_exports.assert(keysLength === valuesLength, () => `The number of elements doesn't match, keys has ${keysLength} elements, the values has ${valuesLength} elements.`);\n for (let i2 = 0; i2 < keysLength; i2++) {\n const key = $keys[i2];\n const value = $values[i2];\n keep(value);\n this.tensorMap.set(key, value);\n }\n return this.handle;\n });\n }\n async find(keys, defaultValue) {\n this.checkKeyAndValueTensor(keys, defaultValue);\n const $keys = await keys.data();\n return tidy(() => {\n const result = [];\n for (let i2 = 0; i2 < $keys.length; i2++) {\n const key = $keys[i2];\n const value = this.findWithDefault(key, defaultValue);\n result.push(value);\n }\n return stack(result);\n });\n }\n findWithDefault(key, defaultValue) {\n const result = this.tensorMap.get(key);\n return result != null ? result : defaultValue;\n }\n checkKeyAndValueTensor(key, value) {\n if (key.dtype !== this.keyDType) {\n throw new Error(`Expect key dtype ${this.keyDType}, but got ${key.dtype}`);\n }\n if (value.dtype !== this.valueDType) {\n throw new Error(`Expect value dtype ${this.valueDType}, but got ${value.dtype}`);\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/hash_table_executor.js\nvar executeOp9 = async (node, tensorMap, context, resourceManager) => {\n switch (node.op) {\n case \"HashTable\":\n case \"HashTableV2\": {\n const keyDType = getParamValue(\"keyDType\", node, tensorMap, context);\n const valueDType = getParamValue(\"valueDType\", node, tensorMap, context);\n const hashTable = new HashTable(keyDType, valueDType);\n resourceManager.addHashTable(node.name, hashTable);\n return [hashTable.handle];\n }\n case \"LookupTableImport\":\n case \"LookupTableImportV2\": {\n const handle = getParamValue(\"tableHandle\", node, tensorMap, context, resourceManager);\n const keys = getParamValue(\"keys\", node, tensorMap, context);\n const values = getParamValue(\"values\", node, tensorMap, context);\n const hashTable = resourceManager.getHashTableById(handle.id);\n return [await hashTable.import(keys, values)];\n }\n case \"LookupTableFind\":\n case \"LookupTableFindV2\": {\n const handle = getParamValue(\"tableHandle\", node, tensorMap, context, resourceManager);\n const keys = getParamValue(\"keys\", node, tensorMap, context);\n const defaultValue = getParamValue(\"defaultValue\", node, tensorMap, context);\n const hashTable = resourceManager.getHashTableById(handle.id);\n return [await hashTable.find(keys, defaultValue)];\n }\n case \"LookupTableSize\":\n case \"LookupTableSizeV2\": {\n const handle = getParamValue(\"tableHandle\", node, tensorMap, context, resourceManager);\n const hashTable = resourceManager.getHashTableById(handle.id);\n return [hashTable.tensorSize()];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/image_executor.js\nvar executeOp10 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"ResizeBilinear\": {\n const images = getParamValue(\"images\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n const alignCorners = getParamValue(\"alignCorners\", node, tensorMap, context);\n const halfPixelCenters = getParamValue(\"halfPixelCenters\", node, tensorMap, context);\n return [ops.image.resizeBilinear(images, [size[0], size[1]], alignCorners, halfPixelCenters)];\n }\n case \"ResizeNearestNeighbor\": {\n const images = getParamValue(\"images\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n const alignCorners = getParamValue(\"alignCorners\", node, tensorMap, context);\n const halfPixelCenters = getParamValue(\"halfPixelCenters\", node, tensorMap, context);\n return [ops.image.resizeNearestNeighbor(images, [size[0], size[1]], alignCorners, halfPixelCenters)];\n }\n case \"CropAndResize\": {\n const image2 = getParamValue(\"image\", node, tensorMap, context);\n const boxes = getParamValue(\"boxes\", node, tensorMap, context);\n const boxInd = getParamValue(\"boxInd\", node, tensorMap, context);\n const cropSize = getParamValue(\"cropSize\", node, tensorMap, context);\n const method = getParamValue(\"method\", node, tensorMap, context);\n const extrapolationValue = getParamValue(\"extrapolationValue\", node, tensorMap, context);\n return [ops.image.cropAndResize(image2, boxes, boxInd, cropSize, method, extrapolationValue)];\n }\n case \"ImageProjectiveTransformV3\": {\n const images = getParamValue(\"images\", node, tensorMap, context);\n const transforms = getParamValue(\"transforms\", node, tensorMap, context);\n const outputShape = getParamValue(\"outputShape\", node, tensorMap, context);\n const fillValue = getParamValue(\"fillValue\", node, tensorMap, context);\n const interpolation = getParamValue(\"interpolation\", node, tensorMap, context);\n const fillMode = getParamValue(\"fillMode\", node, tensorMap, context);\n return [ops.image.transform(images, transforms, interpolation.toLowerCase(), fillMode.toLowerCase(), fillValue, outputShape)];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/logical_executor.js\nvar executeOp11 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Equal\": {\n return [ops.equal(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"NotEqual\": {\n return [ops.notEqual(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Greater\": {\n return [ops.greater(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"GreaterEqual\": {\n return [ops.greaterEqual(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Less\": {\n return [ops.less(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"LessEqual\": {\n return [ops.lessEqual(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"LogicalAnd\": {\n return [ops.logicalAnd(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"LogicalNot\": {\n return [ops.logicalNot(getParamValue(\"a\", node, tensorMap, context))];\n }\n case \"LogicalOr\": {\n return [ops.logicalOr(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Select\":\n case \"SelectV2\": {\n return [ops.where(getParamValue(\"condition\", node, tensorMap, context), getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/matrices_executor.js\nvar executeOp12 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"BatchMatMul\":\n case \"BatchMatMulV2\":\n case \"MatMul\":\n return [ops.matMul(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context), getParamValue(\"transposeA\", node, tensorMap, context), getParamValue(\"transposeB\", node, tensorMap, context))];\n case \"Einsum\":\n return [ops.einsum(getParamValue(\"equation\", node, tensorMap, context), ...getParamValue(\"tensors\", node, tensorMap, context))];\n case \"Transpose\":\n return [ops.transpose(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"perm\", node, tensorMap, context))];\n case \"_FusedMatMul\":\n const [extraOp, activationFunc] = getParamValue(\"fusedOps\", node, tensorMap, context);\n const isBiasAdd = extraOp === \"biasadd\";\n const isPrelu = activationFunc === \"prelu\";\n const numArgs = getParamValue(\"numArgs\", node, tensorMap, context);\n const leakyreluAlpha = getParamValue(\"leakyreluAlpha\", node, tensorMap, context);\n if (isBiasAdd) {\n if (isPrelu && numArgs !== 2) {\n throw new Error(\"Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.\");\n }\n if (!isPrelu && numArgs !== 1) {\n throw new Error(\"Fused MatMul with BiasAdd must have one extra argument: bias.\");\n }\n }\n const [biasArg, preluArg] = getParamValue(\"args\", node, tensorMap, context);\n return [ops.fused.matMul({\n a: getParamValue(\"a\", node, tensorMap, context),\n b: getParamValue(\"b\", node, tensorMap, context),\n transposeA: getParamValue(\"transposeA\", node, tensorMap, context),\n transposeB: getParamValue(\"transposeB\", node, tensorMap, context),\n bias: biasArg,\n activation: activationFunc,\n preluActivationWeights: preluArg,\n leakyreluAlpha\n })];\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/normalization_executor.js\nvar executeOp13 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"EuclideanNorm\":\n return [ops.euclideanNorm(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"axis\", node, tensorMap, context), getParamValue(\"keepDims\", node, tensorMap, context))];\n case \"FusedBatchNorm\":\n case \"FusedBatchNormV2\": {\n return [ops.batchNorm(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"mean\", node, tensorMap, context), getParamValue(\"variance\", node, tensorMap, context), getParamValue(\"offset\", node, tensorMap, context), getParamValue(\"scale\", node, tensorMap, context), getParamValue(\"epsilon\", node, tensorMap, context))];\n }\n case \"FusedBatchNormV3\": {\n return [ops.batchNorm(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"mean\", node, tensorMap, context), getParamValue(\"variance\", node, tensorMap, context), getParamValue(\"offset\", node, tensorMap, context), getParamValue(\"scale\", node, tensorMap, context), getParamValue(\"epsilon\", node, tensorMap, context))];\n }\n case \"LRN\": {\n return [ops.localResponseNormalization(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"radius\", node, tensorMap, context), getParamValue(\"bias\", node, tensorMap, context), getParamValue(\"alpha\", node, tensorMap, context), getParamValue(\"beta\", node, tensorMap, context))];\n }\n case \"Softmax\": {\n return [ops.softmax(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"LogSoftmax\": {\n return [ops.logSoftmax(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"SparseToDense\": {\n return [ops.sparseToDense(getParamValue(\"sparseIndices\", node, tensorMap, context), getParamValue(\"outputShape\", node, tensorMap, context), getParamValue(\"sparseValues\", node, tensorMap, context), getParamValue(\"defaultValue\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/reduction_executor.js\nvar executeOp14 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Max\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.max(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Mean\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.mean(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Min\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.min(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Sum\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.sum(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"All\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.all(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Any\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.any(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"ArgMax\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n return [ops.argMax(getParamValue(\"x\", node, tensorMap, context), axis)];\n }\n case \"ArgMin\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n return [ops.argMin(getParamValue(\"x\", node, tensorMap, context), axis)];\n }\n case \"Prod\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.prod(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Cumprod\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const exclusive = getParamValue(\"exclusive\", node, tensorMap, context);\n const reverse5 = getParamValue(\"reverse\", node, tensorMap, context);\n return [ops.cumprod(getParamValue(\"x\", node, tensorMap, context), axis, exclusive, reverse5)];\n }\n case \"Cumsum\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const exclusive = getParamValue(\"exclusive\", node, tensorMap, context);\n const reverse5 = getParamValue(\"reverse\", node, tensorMap, context);\n return [ops.cumsum(getParamValue(\"x\", node, tensorMap, context), axis, exclusive, reverse5)];\n }\n case \"Bincount\":\n const x = getParamValue(\"x\", node, tensorMap, context);\n const weights = getParamValue(\"weights\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n return [ops.bincount(x, weights, size)];\n case \"DenseBincount\": {\n const x2 = getParamValue(\"x\", node, tensorMap, context);\n const weights2 = getParamValue(\"weights\", node, tensorMap, context);\n const size2 = getParamValue(\"size\", node, tensorMap, context);\n const binaryOutput = getParamValue(\"binaryOutput\", node, tensorMap, context);\n return [ops.denseBincount(x2, weights2, size2, binaryOutput)];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/slice_join_executor.js\nvar executeOp15 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"ConcatV2\":\n case \"Concat\": {\n const n2 = getParamValue(\"n\", node, tensorMap, context);\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n let inputs = getParamValue(\"tensors\", node, tensorMap, context);\n inputs = inputs.slice(0, n2);\n return [ops.concat(inputs, axis)];\n }\n case \"Gather\": {\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n return [ops.gather(input2, ops.cast(indices, \"int32\"), 0)];\n }\n case \"GatherV2\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const batchDims = getParamValue(\"batchDims\", node, tensorMap, context);\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n return [ops.gather(input2, ops.cast(indices, \"int32\"), axis, batchDims)];\n }\n case \"Reverse\": {\n const dims = getParamValue(\"dims\", node, tensorMap, context);\n const axis = [];\n for (let i2 = 0; i2 < dims.length; i2++) {\n if (dims[i2]) {\n axis.push(i2);\n }\n }\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n return [ops.reverse(input2, axis)];\n }\n case \"ReverseV2\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n return [ops.reverse(input2, axis)];\n }\n case \"Slice\": {\n const begin = getParamValue(\"begin\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n return [ops.slice(getParamValue(\"x\", node, tensorMap, context), begin, size)];\n }\n case \"StridedSlice\": {\n const begin = getParamValue(\"begin\", node, tensorMap, context);\n const end = getParamValue(\"end\", node, tensorMap, context);\n const strides = getParamValue(\"strides\", node, tensorMap, context);\n const beginMask = getParamValue(\"beginMask\", node, tensorMap, context);\n const endMask = getParamValue(\"endMask\", node, tensorMap, context);\n const ellipsisMask = getParamValue(\"ellipsisMask\", node, tensorMap, context);\n const newAxisMask = getParamValue(\"newAxisMask\", node, tensorMap, context);\n const shrinkAxisMask = getParamValue(\"shrinkAxisMask\", node, tensorMap, context);\n const tensor2 = getParamValue(\"x\", node, tensorMap, context);\n return [ops.stridedSlice(tensor2, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask)];\n }\n case \"Pack\": {\n return tidy(() => {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const tensors = getParamValue(\"tensors\", node, tensorMap, context);\n const shape = tensors[0].shape;\n const squeezedShape = ops.squeeze(tensors[0]).shape;\n const mapped = tensors.map((tensor2) => {\n const sameShape = util_exports.arraysEqual(tensor2.shape, shape);\n if (!sameShape && !util_exports.arraysEqual(ops.squeeze(tensor2).shape, squeezedShape)) {\n throw new Error(\"the input tensors shape does not match\");\n }\n return sameShape ? tensor2 : ops.reshape(tensor2, shape);\n });\n return [ops.stack(mapped, axis)];\n });\n }\n case \"Unpack\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const tensor2 = getParamValue(\"tensor\", node, tensorMap, context);\n return ops.unstack(tensor2, axis);\n }\n case \"Tile\": {\n const reps = getParamValue(\"reps\", node, tensorMap, context);\n return [ops.tile(getParamValue(\"x\", node, tensorMap, context), reps)];\n }\n case \"Split\":\n case \"SplitV\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const numOrSizeSplits = getParamValue(\"numOrSizeSplits\", node, tensorMap, context);\n const tensor2 = getParamValue(\"x\", node, tensorMap, context);\n return ops.split(tensor2, numOrSizeSplits, axis);\n }\n case \"ScatterNd\": {\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n const values = getParamValue(\"values\", node, tensorMap, context);\n const shape = getParamValue(\"shape\", node, tensorMap, context);\n return [ops.scatterND(indices, values, shape)];\n }\n case \"GatherNd\": {\n const x = getParamValue(\"x\", node, tensorMap, context);\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n return [ops.gatherND(x, indices)];\n }\n case \"SparseToDense\": {\n const indices = getParamValue(\"sparseIndices\", node, tensorMap, context);\n const shape = getParamValue(\"outputShape\", node, tensorMap, context);\n const sparseValues = getParamValue(\"sparseValues\", node, tensorMap, context);\n const defaultValue = getParamValue(\"defaultValue\", node, tensorMap, context);\n return [ops.sparseToDense(indices, sparseValues, shape, sparseValues.dtype === defaultValue.dtype ? defaultValue : ops.cast(defaultValue, sparseValues.dtype))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/sparse_executor.js\nvar executeOp16 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"SparseFillEmptyRows\": {\n const { outputIndices, outputValues, emptyRowIndicator, reverseIndexMap } = ops.sparse.sparseFillEmptyRows(getParamValue(\"indices\", node, tensorMap, context), getParamValue(\"values\", node, tensorMap, context), getParamValue(\"denseShape\", node, tensorMap, context), getParamValue(\"defaultValue\", node, tensorMap, context));\n return [\n outputIndices,\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n }\n case \"SparseReshape\": {\n const { outputIndices, outputShape } = ops.sparse.sparseReshape(getParamValue(\"inputIndices\", node, tensorMap, context), getParamValue(\"inputShape\", node, tensorMap, context), getParamValue(\"newShape\", node, tensorMap, context));\n return [outputIndices, outputShape];\n }\n case \"SparseSegmentMean\": {\n const outputData = ops.sparse.sparseSegmentMean(getParamValue(\"data\", node, tensorMap, context), getParamValue(\"indices\", node, tensorMap, context), getParamValue(\"segmentIds\", node, tensorMap, context));\n return [outputData];\n }\n case \"SparseSegmentSum\": {\n const outputData = ops.sparse.sparseSegmentSum(getParamValue(\"data\", node, tensorMap, context), getParamValue(\"indices\", node, tensorMap, context), getParamValue(\"segmentIds\", node, tensorMap, context));\n return [outputData];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/spectral_executor.js\nvar executeOp17 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"FFT\": {\n return [ops.fft(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"IFFT\": {\n return [ops.ifft(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"RFFT\": {\n return [ops.rfft(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"IRFFT\": {\n return [ops.irfft(getParamValue(\"x\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/string_executor.js\nvar executeOp18 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"StringNGrams\": {\n const { nGrams, nGramsSplits } = ops.string.stringNGrams(getParamValue(\"data\", node, tensorMap, context), getParamValue(\"dataSplits\", node, tensorMap, context), getParamValue(\"separator\", node, tensorMap, context), getParamValue(\"nGramWidths\", node, tensorMap, context), getParamValue(\"leftPad\", node, tensorMap, context), getParamValue(\"rightPad\", node, tensorMap, context), getParamValue(\"padWidth\", node, tensorMap, context), getParamValue(\"preserveShortSequences\", node, tensorMap, context));\n return [nGrams, nGramsSplits];\n }\n case \"StringSplit\": {\n const { indices, values, shape } = ops.string.stringSplit(getParamValue(\"input\", node, tensorMap, context), getParamValue(\"delimiter\", node, tensorMap, context), getParamValue(\"skipEmpty\", node, tensorMap, context));\n return [indices, values, shape];\n }\n case \"StringToHashBucketFast\": {\n const output = ops.string.stringToHashBucketFast(getParamValue(\"input\", node, tensorMap, context), getParamValue(\"numBuckets\", node, tensorMap, context));\n return [output];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/transformation_executor.js\nvar executeOp19 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Cast\": {\n return [ops.cast(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"dtype\", node, tensorMap, context))];\n }\n case \"ExpandDims\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n return [ops.expandDims(getParamValue(\"x\", node, tensorMap, context), axis)];\n }\n case \"Squeeze\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n return [ops.squeeze(getParamValue(\"x\", node, tensorMap, context), axis)];\n }\n case \"Reshape\": {\n return [ops.reshape(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"shape\", node, tensorMap, context))];\n }\n case \"MirrorPad\": {\n return [ops.mirrorPad(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"padding\", node, tensorMap, context), getParamValue(\"mode\", node, tensorMap, context))];\n }\n case \"PadV2\":\n case \"Pad\": {\n return [ops.pad(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"padding\", node, tensorMap, context), getParamValue(\"constantValue\", node, tensorMap, context))];\n }\n case \"SpaceToBatchND\": {\n const blockShape = getParamValue(\"blockShape\", node, tensorMap, context);\n const paddings = getParamValue(\"paddings\", node, tensorMap, context);\n return [ops.spaceToBatchND(getParamValue(\"x\", node, tensorMap, context), blockShape, paddings)];\n }\n case \"BatchToSpaceND\": {\n const blockShape = getParamValue(\"blockShape\", node, tensorMap, context);\n const crops = getParamValue(\"crops\", node, tensorMap, context);\n return [ops.batchToSpaceND(getParamValue(\"x\", node, tensorMap, context), blockShape, crops)];\n }\n case \"DepthToSpace\": {\n const blockSize = getParamValue(\"blockSize\", node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n return [ops.depthToSpace(getParamValue(\"x\", node, tensorMap, context), blockSize, dataFormat)];\n }\n case \"BroadcastTo\": {\n return [ops.broadcastTo(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"shape\", node, tensorMap, context))];\n }\n case \"BroadcastArgs\": {\n return [ops.broadcastArgs(getParamValue(\"s0\", node, tensorMap, context), getParamValue(\"s1\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/operation_executor.js\nfunction executeOp20(node, tensorMap, context, resourceManager, tidy2 = tidy) {\n const value = ((node2, tensorMap2, context2) => {\n switch (node2.category) {\n case \"arithmetic\":\n return tidy2(() => executeOp(node2, tensorMap2, context2));\n case \"basic_math\":\n return tidy2(() => executeOp2(node2, tensorMap2, context2));\n case \"control\":\n return executeOp3(node2, tensorMap2, context2);\n case \"convolution\":\n return tidy2(() => executeOp4(node2, tensorMap2, context2));\n case \"creation\":\n return tidy2(() => executeOp5(node2, tensorMap2, context2));\n case \"dynamic\":\n return executeOp6(node2, tensorMap2, context2);\n case \"evaluation\":\n return tidy2(() => executeOp7(node2, tensorMap2, context2));\n case \"image\":\n return tidy2(() => executeOp10(node2, tensorMap2, context2));\n case \"graph\":\n return tidy2(() => executeOp8(node2, tensorMap2, context2));\n case \"logical\":\n return tidy2(() => executeOp11(node2, tensorMap2, context2));\n case \"matrices\":\n return tidy2(() => executeOp12(node2, tensorMap2, context2));\n case \"normalization\":\n return tidy2(() => executeOp13(node2, tensorMap2, context2));\n case \"reduction\":\n return tidy2(() => executeOp14(node2, tensorMap2, context2));\n case \"slice_join\":\n return tidy2(() => executeOp15(node2, tensorMap2, context2));\n case \"sparse\":\n return tidy2(() => executeOp16(node2, tensorMap2, context2));\n case \"spectral\":\n return tidy2(() => executeOp17(node2, tensorMap2, context2));\n case \"string\":\n return tidy2(() => executeOp18(node2, tensorMap2, context2));\n case \"transformation\":\n return tidy2(() => executeOp19(node2, tensorMap2, context2));\n case \"hash_table\":\n return executeOp9(node2, tensorMap2, context2, resourceManager);\n case \"custom\":\n const opMapper = getRegisteredOp(node2.op);\n if (opMapper && opMapper.customExecutor) {\n return opMapper.customExecutor(new NodeValueImpl(node2, tensorMap2, context2));\n } else {\n throw TypeError(`Custom op ${node2.op} is not registered.`);\n }\n default:\n throw TypeError(`Unknown op '${node2.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`);\n }\n })(node, tensorMap, context);\n if (util_exports.isPromise(value)) {\n return value.then((data) => [].concat(data));\n }\n return [].concat(value);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/execution_context.js\nvar ExecutionContext = class {\n constructor(weightMap = {}, tensorArrayMap = {}, tensorListMap = {}, functionMap = {}) {\n this.weightMap = weightMap;\n this.tensorArrayMap = tensorArrayMap;\n this.tensorListMap = tensorListMap;\n this.functionMap = functionMap;\n this.rootContext = { id: 0, frameName: \"\", iterationId: 0 };\n this.contexts = [this.rootContext];\n this.lastId = 0;\n this.generateCurrentContextIds();\n }\n newFrame(id, frameName) {\n return { id, frameName, iterationId: 0 };\n }\n set currentContext(contexts2) {\n if (this.contexts !== contexts2) {\n this.contexts = contexts2;\n this.generateCurrentContextIds();\n }\n }\n get currentContext() {\n return this.contexts;\n }\n get currentContextId() {\n return this._currentContextIds[0];\n }\n get currentContextIds() {\n return this._currentContextIds;\n }\n generateCurrentContextIds() {\n const names = [];\n for (let i2 = 0; i2 < this.contexts.length - 1; i2++) {\n const contexts2 = this.contexts.slice(0, this.contexts.length - i2);\n names.push(this.contextIdforContexts(contexts2));\n }\n names.push(\"\");\n this._currentContextIds = names;\n }\n contextIdforContexts(contexts2) {\n return contexts2 ? contexts2.map((context) => context.id === 0 && context.iterationId === 0 ? \"\" : `${context.frameName}-${context.iterationId}`).join(\"/\") : \"\";\n }\n enterFrame(frameId) {\n if (this.contexts) {\n this.lastId++;\n this.contexts = this.contexts.slice();\n this.contexts.push(this.newFrame(this.lastId, frameId));\n this._currentContextIds.unshift(this.contextIdforContexts(this.contexts));\n }\n }\n exitFrame() {\n if (this.contexts && this.contexts.length > 1) {\n this.contexts = this.contexts.slice();\n this.contexts.splice(-1);\n this.currentContextIds.shift();\n } else {\n throw new Error(\"Cannot exit frame, the context is empty\");\n }\n }\n nextIteration() {\n if (this.contexts && this.contexts.length > 0) {\n this.contexts = this.contexts.slice();\n this.lastId++;\n const context = Object.assign({}, this.contexts[this.contexts.length - 1]);\n context.iterationId += 1;\n context.id = this.lastId;\n this.contexts.splice(-1, 1, context);\n this._currentContextIds.splice(0, 1, this.contextIdforContexts(this.contexts));\n } else {\n throw new Error(\"Cannot increase frame iteration, the context is empty\");\n }\n }\n getWeight(name) {\n return this.weightMap[name];\n }\n addTensorArray(tensorArray) {\n this.tensorArrayMap[tensorArray.id] = tensorArray;\n }\n getTensorArray(id) {\n return this.tensorArrayMap[id];\n }\n addTensorList(tensorList) {\n this.tensorListMap[tensorList.id] = tensorList;\n }\n getTensorList(id) {\n return this.tensorListMap[id];\n }\n dispose(keepIds) {\n for (const key in this.tensorArrayMap) {\n this.tensorArrayMap[key].clearAndClose(keepIds);\n }\n for (const key in this.tensorListMap) {\n this.tensorListMap[key].clearAndClose(keepIds);\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/model_analysis.js\nfunction getExecutionSubgraph(inputs, outputs, weightMap, initNodes) {\n const usedNodes = /* @__PURE__ */ new Set();\n const missingInputs = [];\n let dynamicNode = null;\n let syncInputs = null;\n const seen = /* @__PURE__ */ new Set();\n const inputNodeNames = Object.keys(inputs).map((name) => parseNodeName(name)[0]);\n let initNodeNames = [];\n if (initNodes != null) {\n initNodeNames = initNodes.map((node) => parseNodeName(node.name)[0]);\n }\n const frontier = [...outputs];\n while (frontier.length > 0) {\n const node = frontier.pop();\n if (isControlFlow(node) || isDynamicShape(node) || isHashTable(node)) {\n if (dynamicNode == null) {\n dynamicNode = node;\n syncInputs = dynamicNode.children.map((child) => child.name).filter((name) => usedNodes.has(name));\n }\n }\n usedNodes.add(node.name);\n if (weightMap[node.name] != null) {\n continue;\n }\n if (inputNodeNames.indexOf(node.name) !== -1) {\n continue;\n }\n if (initNodeNames.indexOf(node.name) !== -1) {\n continue;\n }\n if (node.inputs.length === 0) {\n missingInputs.push(node.name);\n continue;\n }\n node.inputs.forEach((input2) => {\n if (seen.has(input2.name)) {\n return;\n }\n seen.add(input2.name);\n frontier.push(input2);\n });\n }\n return { inputs, outputs, usedNodes, missingInputs, dynamicNode, syncInputs };\n}\nfunction getNodesInTopologicalOrder(graph, weightMap, executionInfo) {\n const { usedNodes, inputs } = executionInfo;\n const frontier = [];\n const inputNodes = Object.keys(inputs).map((name) => parseNodeName(name)[0]).map((name) => graph.nodes[name]);\n const initNodes = graph.initNodes;\n inputNodes.forEach((input2) => {\n if (usedNodes.has(input2.name)) {\n frontier.push(input2);\n }\n });\n graph.weights.forEach((weight) => {\n if (usedNodes.has(weight.name)) {\n frontier.push(weight);\n }\n });\n if (initNodes != null) {\n initNodes.forEach((node) => {\n if (usedNodes.has(node.name)) {\n frontier.push(node);\n }\n });\n }\n const seen = /* @__PURE__ */ new Set();\n const orderedNodes = [];\n while (frontier.length > 0) {\n const node = frontier.pop();\n seen.add(node.name);\n if (!weightMap[node.name]) {\n orderedNodes.push(node);\n }\n node.children.forEach((child) => {\n if (!seen.has(child.name) && usedNodes.has(child.name) && child.inputs.every((input2) => seen.has(input2.name))) {\n frontier.push(child);\n }\n });\n }\n return orderedNodes;\n}\nvar CONTROL_FLOW_OPS = [\n \"Switch\",\n \"Merge\",\n \"Enter\",\n \"Exit\",\n \"NextIteration\",\n \"StatelessIf\",\n \"StatelessWhile\",\n \"if\",\n \"While\"\n];\nvar DYNAMIC_SHAPE_OPS = [\n \"NonMaxSuppressionV2\",\n \"NonMaxSuppressionV3\",\n \"NonMaxSuppressionV5\",\n \"Where\"\n];\nvar HASH_TABLE_OPS = [\n \"HashTable\",\n \"HashTableV2\",\n \"LookupTableImport\",\n \"LookupTableImportV2\",\n \"LookupTableFind\",\n \"LookupTableFindV2\",\n \"LookupTableSize\",\n \"LookupTableSizeV2\"\n];\nfunction isControlFlow(node) {\n return CONTROL_FLOW_OPS.indexOf(node.op) >= 0;\n}\nfunction isDynamicShape(node) {\n return DYNAMIC_SHAPE_OPS.indexOf(node.op) >= 0;\n}\nfunction isHashTable(node) {\n return HASH_TABLE_OPS.indexOf(node.op) >= 0;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/graph_executor.js\nvar GraphExecutor = class {\n constructor(graph, parent) {\n this.graph = graph;\n this.parent = parent;\n this.compiledMap = /* @__PURE__ */ new Map();\n this._weightMap = {};\n this.SEPERATOR = \",\";\n this._functions = {};\n this._functionExecutorMap = {};\n this.intermediateTensors = {};\n this.keepTensorForDebug = false;\n this._outputs = graph.outputs;\n this._inputs = graph.inputs;\n this._initNodes = graph.initNodes;\n this._signature = graph.signature;\n this._functions = graph.functions;\n if (graph.functions != null) {\n Object.keys(graph.functions).forEach((name) => {\n this._functionExecutorMap[name] = new GraphExecutor(graph.functions[name], this);\n });\n }\n }\n get weightIds() {\n return this.parent ? this.parent.weightIds : this._weightIds;\n }\n get functionExecutorMap() {\n return this.parent ? this.parent.functionExecutorMap : this._functionExecutorMap;\n }\n get weightMap() {\n return this.parent ? this.parent.weightMap : this._weightMap;\n }\n set weightMap(weightMap) {\n const weightIds = Object.keys(weightMap).map((key) => weightMap[key].map((tensor2) => tensor2.id));\n this._weightIds = [].concat(...weightIds);\n this._weightMap = weightMap;\n }\n set resourceManager(resourceManager) {\n this._resourceManager = resourceManager;\n }\n get inputs() {\n return this._inputs.map((node) => {\n return {\n name: node.name,\n shape: node.attrParams[\"shape\"] ? node.attrParams[\"shape\"].value : void 0,\n dtype: node.attrParams[\"dtype\"] ? node.attrParams[\"dtype\"].value : void 0\n };\n });\n }\n get outputs() {\n return this._outputs.map((node) => {\n return {\n name: node.name,\n shape: node.attrParams[\"shape\"] ? node.attrParams[\"shape\"].value : void 0,\n dtype: node.attrParams[\"dtype\"] ? node.attrParams[\"dtype\"].value : void 0\n };\n });\n }\n get inputNodes() {\n return this._inputs.map((node) => node.signatureKey || node.name);\n }\n get outputNodes() {\n return this._outputs.map((node) => {\n const name = node.signatureKey || node.name;\n return node.defaultOutput ? `${name}:${node.defaultOutput}` : name;\n });\n }\n get functions() {\n return Object.keys(this._functions).reduce((map, key) => {\n map[key] = this._functions[key].signature;\n return map;\n }, {});\n }\n getCompilationKey(inputs, outputs) {\n const sortedInputs = inputs.map((node) => node.name).sort();\n const sortedOutputs = outputs.map((node) => node.name).sort();\n return sortedInputs.join(this.SEPERATOR) + \"--\" + sortedOutputs.join(this.SEPERATOR);\n }\n compile(inputs, outputs) {\n const executionInfo = getExecutionSubgraph(inputs, outputs, this.weightMap, this._initNodes);\n const { missingInputs, dynamicNode, syncInputs } = executionInfo;\n if (dynamicNode != null) {\n throw new Error(`This execution contains the node '${dynamicNode.name}', which has the dynamic op '${dynamicNode.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${syncInputs}]`);\n }\n if (missingInputs.length > 0) {\n const outNames = outputs.map((n2) => n2.name);\n const inNames = Object.keys(inputs);\n throw new Error(`Cannot compute the outputs [${outNames}] from the provided inputs [${inNames}]. Missing the following inputs: [${missingInputs}]`);\n }\n return getNodesInTopologicalOrder(this.graph, this.weightMap, executionInfo);\n }\n execute(inputs, outputs) {\n inputs = this.mapInputs(inputs);\n const names = Object.keys(inputs).sort();\n this.checkInputs(inputs);\n this.checkInputShapeAndType(inputs);\n outputs = this.mapOutputs(outputs);\n this.checkOutputs(outputs);\n const inputNodes = names.map((name) => this.graph.nodes[parseNodeName(name)[0]]);\n const outputNodeNames = outputs.map((name) => parseNodeName(name)[0]);\n let outputNodes = outputNodeNames.map((name) => this.graph.nodes[name]);\n this.resetIntermediateTensors();\n if (outputNodes.length === 0) {\n outputNodes = this._outputs;\n }\n const compilationKey = this.getCompilationKey(inputNodes, outputNodes);\n let orderedNodes = this.compiledMap.get(compilationKey);\n if (orderedNodes == null) {\n orderedNodes = this.compile(inputs, outputNodes);\n this.compiledMap.set(compilationKey, orderedNodes);\n }\n const tensorArrayMap = {};\n const tensorListMap = {};\n return tidy(() => {\n const context = new ExecutionContext(this.weightMap, tensorArrayMap, tensorListMap, this.functionExecutorMap);\n const tensorsMap = Object.assign({}, this.weightMap);\n Object.keys(inputs).forEach((name) => {\n const [nodeName, index] = parseNodeName(name);\n const tensors = [];\n tensors[index] = inputs[name];\n tensorsMap[nodeName] = tensors;\n });\n const tensorsToKeep = this.getFrozenTensorIds(tensorsMap);\n const intermediateTensorConsumerCount = {};\n for (let i2 = 0; i2 < orderedNodes.length; i2++) {\n const node = orderedNodes[i2];\n if (!tensorsMap[node.name]) {\n const tensors = executeOp20(node, tensorsMap, context, this._resourceManager);\n if (util_exports.isPromise(tensors)) {\n throw new Error(`The execution of the op '${node.op}' returned a promise. Please use model.executeAsync() instead.`);\n }\n tensorsMap[node.name] = tensors;\n this.checkTensorForDisposal(node.name, node, tensorsMap, context, tensorsToKeep, outputNodeNames, intermediateTensorConsumerCount);\n }\n }\n if (this.parent == null) {\n context.dispose(tensorsToKeep);\n }\n return outputs.map((name) => getTensor(name, tensorsMap, context));\n });\n }\n getFrozenTensorIds(tensorMap) {\n const ids = [].concat.apply([], Object.keys(tensorMap).map((key) => tensorMap[key]).map((tensors) => tensors.map((tensor2) => tensor2.id)));\n return new Set(ids);\n }\n checkTensorForDisposal(nodeName, node, tensorMap, context, tensorsToKeep, outputNames, intermediateTensorConsumerCount) {\n if (node.category === \"control\" || outputNames.indexOf(nodeName) !== -1) {\n return;\n }\n tensorMap[nodeName].forEach((tensor2) => {\n if (tensor2 != null) {\n intermediateTensorConsumerCount[tensor2.id] = (intermediateTensorConsumerCount[tensor2.id] || 0) + node.children.length;\n }\n });\n node.inputs.forEach((input2) => {\n if (input2.category !== \"control\") {\n const tensors = getTensorsForCurrentContenxt(input2.name, tensorMap, context);\n if (tensors != null) {\n tensors.forEach((tensor2) => {\n if (tensor2 && !tensor2.kept && !tensorsToKeep.has(tensor2.id)) {\n const count2 = intermediateTensorConsumerCount[tensor2.id];\n if (count2 === 1) {\n if (!this.keepTensorForDebug) {\n tensor2.dispose();\n } else {\n const [nodeName2, index] = getNodeNameAndIndex(node.name, context);\n if (this.intermediateTensors[nodeName2]) {\n this.intermediateTensors[nodeName2][index] = tensor2;\n } else {\n this.intermediateTensors[nodeName2] = [];\n this.intermediateTensors[nodeName2][index] = tensor2;\n }\n }\n delete intermediateTensorConsumerCount[tensor2.id];\n } else if (count2 != null) {\n intermediateTensorConsumerCount[tensor2.id]--;\n }\n }\n });\n }\n }\n });\n }\n async executeAsync(inputs, outputs) {\n return this._executeAsync(inputs, outputs);\n }\n disposeIntermediateTensors() {\n if (!this.intermediateTensors) {\n return;\n }\n Object.keys(this.intermediateTensors).forEach((key) => this.intermediateTensors[key].forEach((tensor2) => tensor2.dispose()));\n this.disposeTensorsMap();\n }\n disposeTensorsMap() {\n if (!this.tensorsMap) {\n return;\n }\n Object.keys(this.tensorsMap).forEach((key) => {\n const tensorArray = this.tensorsMap[key];\n tensorArray.forEach((tensor2) => {\n if (tensor2 && !tensor2.kept && !tensor2.isDisposed && !this.keepIds.has(tensor2.id)) {\n tensor2.dispose();\n }\n });\n });\n }\n getIntermediateTensors() {\n return this.tensorsMap;\n }\n resetIntermediateTensors() {\n for (const key in this.intermediateTensors) {\n this.intermediateTensors[key].forEach((tensor2) => tensor2.dispose());\n delete this.intermediateTensors[key];\n }\n }\n async _executeAsync(inputs, outputs, isFunctionExecution = false, tensorArrayMap = {}, tensorListMap = {}) {\n if (!isFunctionExecution) {\n inputs = this.mapInputs(inputs);\n this.checkInputs(inputs);\n this.checkInputShapeAndType(inputs);\n outputs = this.mapOutputs(outputs);\n this.checkOutputs(outputs);\n }\n try {\n this.keepTensorForDebug = env().getBool(\"KEEP_INTERMEDIATE_TENSORS\");\n } catch (e2) {\n console.warn(e2.message);\n }\n this.resetIntermediateTensors();\n const context = new ExecutionContext(this.weightMap, tensorArrayMap, tensorListMap, this.functionExecutorMap);\n this.tensorsMap = await this.executeWithControlFlow(inputs, context, outputs, isFunctionExecution);\n const results = outputs.map((name) => getTensor(name, this.tensorsMap, context));\n const outputIds = results.map((t2) => t2.id);\n const inputIds = Object.keys(inputs).map((name) => inputs[name].id);\n this.keepIds = /* @__PURE__ */ new Set([...outputIds, ...inputIds, ...this.weightIds]);\n if (!this.keepTensorForDebug) {\n this.disposeTensorsMap();\n }\n if (this.parent == null) {\n context.dispose(this.keepIds);\n }\n return results;\n }\n async executeFunctionAsync(inputs, tensorArrayMap, tensorListMap) {\n const mappedInputs = inputs.reduce((map, tensor2, index) => {\n map[this.inputs[index].name] = tensor2;\n return map;\n }, {});\n return this._executeAsync(mappedInputs, this.outputNodes, true, tensorArrayMap, tensorListMap);\n }\n async executeWithControlFlow(inputs, context, outputNames, isFunctionExecution) {\n const names = Object.keys(inputs);\n const inputNodes = names.map((name) => this.graph.nodes[parseNodeName(name)[0]]);\n const outputNodeNames = outputNames.map((name) => parseNodeName(name)[0]);\n let outputNodes = outputNodeNames.map((name) => this.graph.nodes[name]);\n if (outputNodes.length === 0) {\n outputNodes = this._outputs;\n }\n const { usedNodes, missingInputs, dynamicNode, syncInputs } = getExecutionSubgraph(inputs, outputNodes, this.weightMap, this._initNodes);\n const stack2 = [\n ...inputNodes,\n ...this.graph.weights,\n ...this._initNodes || []\n ].map((node) => {\n return { node, contexts: context.currentContext };\n });\n const tensorsMap = Object.assign({}, this.weightMap);\n Object.keys(inputs).forEach((name) => {\n const [nodeName, index] = parseNodeName(name);\n const tensors = [];\n tensors[index] = inputs[name];\n tensorsMap[nodeName] = tensors;\n });\n const intermediateTensorConsumerCount = {};\n const tensorsToKeep = this.getFrozenTensorIds(tensorsMap);\n const added = {};\n while (stack2.length > 0) {\n const promises = this.processStack(inputNodes, stack2, context, tensorsMap, added, tensorsToKeep, outputNodeNames, intermediateTensorConsumerCount, usedNodes);\n await Promise.all(promises);\n }\n if (dynamicNode == null && !isFunctionExecution) {\n console.warn(`This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.`);\n }\n const missingOutputs = outputNodes.filter((node) => !isControlFlow(node) && !getTensor(node.name, tensorsMap, context)).map((node) => node.name);\n if (missingOutputs.length > 0) {\n let alternativeMsg = \"\";\n if (dynamicNode != null) {\n alternativeMsg = `Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${syncInputs}]`;\n }\n throw new Error(`Cannot compute the outputs [${missingOutputs}] from the provided inputs [${names}]. Consider providing the following inputs: [${missingInputs}]. ${alternativeMsg}`);\n }\n return tensorsMap;\n }\n processStack(inputNodes, stack2, context, tensorMap, added, tensorsToKeep, outputNames, intermediateTensorConsumerCount, usedNodes) {\n const promises = [];\n while (stack2.length > 0) {\n const item = stack2.pop();\n context.currentContext = item.contexts;\n let nodeName = \"\";\n if (item.node.op === \"Enter\" && getParamValue(\"isConstant\", item.node, tensorMap, context)) {\n [nodeName] = getNodeNameAndIndex(item.node.name, context);\n }\n if (tensorMap[item.node.name] == null) {\n const tensors = executeOp20(item.node, tensorMap, context, this._resourceManager);\n if (!nodeName) {\n [nodeName] = getNodeNameAndIndex(item.node.name, context);\n }\n const currentContext = context.currentContext;\n if (util_exports.isPromise(tensors)) {\n promises.push(tensors.then((t2) => {\n tensorMap[nodeName] = t2;\n context.currentContext = currentContext;\n this.checkTensorForDisposal(nodeName, item.node, tensorMap, context, tensorsToKeep, outputNames, intermediateTensorConsumerCount);\n this.processChildNodes(item.node, stack2, context, tensorMap, added, usedNodes);\n return t2;\n }));\n } else {\n tensorMap[nodeName] = tensors;\n this.checkTensorForDisposal(nodeName, item.node, tensorMap, context, tensorsToKeep, outputNames, intermediateTensorConsumerCount);\n this.processChildNodes(item.node, stack2, context, tensorMap, added, usedNodes);\n }\n } else {\n this.processChildNodes(item.node, stack2, context, tensorMap, added, usedNodes);\n }\n }\n return promises;\n }\n processChildNodes(node, stack2, context, tensorMap, added, usedNodes) {\n node.children.forEach((childNode) => {\n const [nodeName] = getNodeNameAndIndex(childNode.name, context);\n if (added[nodeName] || !usedNodes.has(childNode.name)) {\n return;\n }\n if (childNode.op === \"Merge\") {\n if (childNode.inputNames.some((name) => {\n return !!getTensor(name, tensorMap, context);\n })) {\n added[nodeName] = true;\n stack2.push({ contexts: context.currentContext, node: childNode });\n }\n } else if (childNode.inputNames.every((name) => {\n return !!getTensor(name, tensorMap, context);\n })) {\n added[nodeName] = true;\n stack2.push({ contexts: context.currentContext, node: childNode });\n }\n });\n }\n dispose() {\n Object.keys(this.weightMap).forEach((key) => this.weightMap[key].forEach((tensor2) => tensor2.dispose()));\n }\n checkInputShapeAndType(inputs) {\n Object.keys(inputs).forEach((name) => {\n const input2 = inputs[name];\n const [nodeName] = parseNodeName(name);\n const node = this.graph.nodes[nodeName];\n if (node.attrParams[\"shape\"] && node.attrParams[\"shape\"].value) {\n const shape = node.attrParams[\"shape\"].value;\n const match = shape.length === input2.shape.length && input2.shape.every((dim, index) => shape[index] === -1 || shape[index] === dim);\n util_exports.assert(match, () => `The shape of dict['${node.name}'] provided in model.execute(dict) must be [${shape}], but was [${input2.shape}]`);\n }\n if (node.attrParams[\"dtype\"] && node.attrParams[\"dtype\"].value) {\n util_exports.assert(input2.dtype === node.attrParams[\"dtype\"].value, () => `The dtype of dict['${node.name}'] provided in model.execute(dict) must be ${node.attrParams[\"dtype\"].value}, but was ${input2.dtype}`);\n }\n });\n }\n mapInputs(inputs) {\n const result = {};\n for (const inputName in inputs) {\n if (this._signature != null && this._signature.inputs != null && this._signature.inputs[inputName] != null) {\n const tensor2 = this._signature.inputs[inputName];\n result[tensor2.name] = inputs[inputName];\n } else {\n result[inputName] = inputs[inputName];\n }\n }\n return result;\n }\n checkInputs(inputs) {\n const notInGraph = Object.keys(inputs).filter((name) => {\n const [nodeName] = parseNodeName(name);\n return this.graph.nodes[nodeName] == null;\n });\n if (notInGraph.length > 0) {\n throw new Error(`The dict provided in model.execute(dict) has keys: [${notInGraph}] that are not part of graph`);\n }\n }\n mapOutputs(outputs) {\n return outputs.map((name) => {\n if (this._signature != null && this._signature.outputs != null && this._signature.outputs[name] != null) {\n const tensor2 = this._signature.outputs[name];\n return tensor2.name;\n }\n return name;\n }, {});\n }\n checkOutputs(outputs) {\n outputs.forEach((name) => {\n const [normalizedName] = parseNodeName(name);\n if (!this.graph.nodes[normalizedName]) {\n throw new Error(`The output '${name}' is not found in the graph`);\n }\n });\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/resource_manager.js\nvar ResourceManager = class {\n constructor(hashTableNameToHandle = {}, hashTableMap = {}) {\n this.hashTableNameToHandle = hashTableNameToHandle;\n this.hashTableMap = hashTableMap;\n }\n addHashTable(name, hashTable) {\n this.hashTableNameToHandle[name] = hashTable.handle;\n this.hashTableMap[hashTable.id] = hashTable;\n }\n getHashTableHandleByName(name) {\n return this.hashTableNameToHandle[name];\n }\n getHashTableById(id) {\n return this.hashTableMap[id];\n }\n dispose() {\n for (const key in this.hashTableMap) {\n this.hashTableMap[key].clearAndClose();\n delete this.hashTableMap[key];\n }\n for (const name in this.hashTableNameToHandle) {\n this.hashTableNameToHandle[name].dispose();\n delete this.hashTableNameToHandle[name];\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/graph_model.js\nvar TFHUB_SEARCH_PARAM = \"?tfjs-format=file\";\nvar DEFAULT_MODEL_NAME = \"model.json\";\nvar GraphModel = class {\n constructor(modelUrl, loadOptions = {}, tfio = io_exports) {\n this.modelUrl = modelUrl;\n this.loadOptions = loadOptions;\n this.version = \"n/a\";\n this.io = tfio;\n if (loadOptions == null) {\n this.loadOptions = {};\n }\n this.resourceManager = new ResourceManager();\n }\n get modelVersion() {\n return this.version;\n }\n get inputNodes() {\n return this.executor.inputNodes;\n }\n get outputNodes() {\n return this.executor.outputNodes;\n }\n get inputs() {\n return this.executor.inputs;\n }\n get outputs() {\n return this.executor.outputs;\n }\n get weights() {\n return this.executor.weightMap;\n }\n get metadata() {\n return this.artifacts.userDefinedMetadata;\n }\n get modelSignature() {\n return this.signature;\n }\n get modelStructuredOutputKeys() {\n return this.structuredOutputKeys;\n }\n findIOHandler() {\n const path = this.modelUrl;\n if (path.load != null) {\n this.handler = path;\n } else if (this.loadOptions.requestInit != null) {\n this.handler = this.io.browserHTTPRequest(path, this.loadOptions);\n } else {\n const handlers = this.io.getLoadHandlers(path, this.loadOptions);\n if (handlers.length === 0) {\n handlers.push(this.io.browserHTTPRequest(path, this.loadOptions));\n } else if (handlers.length > 1) {\n throw new Error(`Found more than one (${handlers.length}) load handlers for URL '${[path]}'`);\n }\n this.handler = handlers[0];\n }\n }\n load() {\n this.findIOHandler();\n if (this.handler.load == null) {\n throw new Error(\"Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.\");\n }\n const loadResult = this.handler.load();\n if (util_exports.isPromise(loadResult)) {\n return loadResult.then((artifacts) => this.loadSync(artifacts));\n }\n return this.loadSync(loadResult);\n }\n loadSync(artifacts) {\n this.artifacts = artifacts;\n const graph = this.artifacts.modelTopology;\n let signature = this.artifacts.signature;\n if (this.artifacts.userDefinedMetadata != null) {\n const metadata = this.artifacts.userDefinedMetadata;\n if (metadata.signature != null) {\n signature = metadata.signature;\n }\n if (metadata.structuredOutputKeys != null) {\n this.structuredOutputKeys = metadata.structuredOutputKeys;\n }\n }\n this.signature = signature;\n this.version = `${graph.versions.producer}.${graph.versions.minConsumer}`;\n const weightMap = this.io.decodeWeights(this.artifacts.weightData, this.artifacts.weightSpecs);\n this.executor = new GraphExecutor(OperationMapper.Instance.transformGraph(graph, this.signature));\n this.executor.weightMap = this.convertTensorMapToTensorsMap(weightMap);\n this.executor.resourceManager = this.resourceManager;\n if (artifacts.modelInitializer != null && artifacts.modelInitializer.node != null) {\n const initializer = OperationMapper.Instance.transformGraph(artifacts.modelInitializer);\n this.initializer = new GraphExecutor(initializer);\n this.initializer.weightMap = this.executor.weightMap;\n this.initializer.resourceManager = this.resourceManager;\n this.initializer.executeAsync({}, []);\n }\n return true;\n }\n async save(handlerOrURL, config) {\n if (typeof handlerOrURL === \"string\") {\n const handlers = this.io.getSaveHandlers(handlerOrURL);\n if (handlers.length === 0) {\n throw new Error(`Cannot find any save handlers for URL '${handlerOrURL}'`);\n } else if (handlers.length > 1) {\n throw new Error(`Found more than one (${handlers.length}) save handlers for URL '${handlerOrURL}'`);\n }\n handlerOrURL = handlers[0];\n }\n if (handlerOrURL.save == null) {\n throw new Error(\"GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.\");\n }\n return handlerOrURL.save(this.artifacts);\n }\n predict(inputs, config) {\n const outputTensors = this.execute(inputs, this.outputNodes);\n if (this.structuredOutputKeys) {\n const outputTensorsArray = outputTensors instanceof Tensor ? [outputTensors] : outputTensors;\n const outputTensorMap = {};\n outputTensorsArray.forEach((outputTensor, i2) => outputTensorMap[this.structuredOutputKeys[i2]] = outputTensor);\n return outputTensorMap;\n }\n return outputTensors;\n }\n normalizeInputs(inputs) {\n if (!(inputs instanceof Tensor) && !Array.isArray(inputs)) {\n return inputs;\n }\n inputs = Array.isArray(inputs) ? inputs : [inputs];\n if (inputs.length !== this.inputNodes.length) {\n throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${inputs.length} input tensors.`);\n }\n return this.inputNodes.reduce((map, inputName, i2) => {\n map[inputName] = inputs[i2];\n return map;\n }, {});\n }\n normalizeOutputs(outputs) {\n outputs = outputs || this.outputNodes;\n return !Array.isArray(outputs) ? [outputs] : outputs;\n }\n execute(inputs, outputs) {\n inputs = this.normalizeInputs(inputs);\n outputs = this.normalizeOutputs(outputs);\n const result = this.executor.execute(inputs, outputs);\n return result.length > 1 ? result : result[0];\n }\n async executeAsync(inputs, outputs) {\n inputs = this.normalizeInputs(inputs);\n outputs = this.normalizeOutputs(outputs);\n const result = await this.executor.executeAsync(inputs, outputs);\n return result.length > 1 ? result : result[0];\n }\n getIntermediateTensors() {\n return this.executor.getIntermediateTensors();\n }\n disposeIntermediateTensors() {\n this.executor.disposeIntermediateTensors();\n }\n convertTensorMapToTensorsMap(map) {\n return Object.keys(map).reduce((newMap, key) => {\n newMap[key] = [map[key]];\n return newMap;\n }, {});\n }\n dispose() {\n this.executor.dispose();\n if (this.initializer) {\n this.initializer.dispose();\n }\n this.resourceManager.dispose();\n }\n};\nasync function loadGraphModel(modelUrl, options = {}, tfio = io_exports) {\n if (modelUrl == null) {\n throw new Error(\"modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model\");\n }\n if (options == null) {\n options = {};\n }\n if (options.fromTFHub && typeof modelUrl === \"string\") {\n modelUrl = getTFHubUrl(modelUrl);\n }\n const model2 = new GraphModel(modelUrl, options, tfio);\n await model2.load();\n return model2;\n}\nfunction loadGraphModelSync(modelSource) {\n if (modelSource == null) {\n throw new Error(\"modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model\");\n }\n if (!modelSource.load) {\n throw new Error(`modelUrl IO Handler ${modelSource} has no load function`);\n }\n const model2 = new GraphModel(modelSource);\n model2.load();\n return model2;\n}\nfunction getTFHubUrl(modelUrl) {\n if (!modelUrl.endsWith(\"/\")) {\n modelUrl = modelUrl + \"/\";\n }\n return `${modelUrl}${DEFAULT_MODEL_NAME}${TFHUB_SEARCH_PARAM}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/version.js\nvar version3 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/index.js\nvar dist_exports2 = {};\n__export(dist_exports2, {\n CSVDataset: () => CSVDataset,\n Dataset: () => Dataset,\n FileDataSource: () => FileDataSource,\n TextLineDataset: () => TextLineDataset,\n URLDataSource: () => URLDataSource,\n array: () => array,\n csv: () => csv,\n func: () => func,\n generator: () => generator,\n microphone: () => microphone,\n version_data: () => version4,\n webcam: () => webcam,\n zip: () => zip\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/dataset.js\nvar seedrandom3 = __toESM(require_seedrandom2());\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/lazy_iterator.js\nvar seedrandom2 = __toESM(require_seedrandom2());\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/deep_map.js\nfunction deepMap(input2, mapFn) {\n return deepMapInternal(input2, mapFn);\n}\nfunction deepMapInternal(input2, mapFn, seen = /* @__PURE__ */ new Map(), containedIn = /* @__PURE__ */ new Set()) {\n if (input2 == null) {\n return null;\n }\n if (typeof Blob === \"function\" && input2 instanceof Blob) {\n return input2.slice();\n }\n if (containedIn.has(input2)) {\n throw new Error(\"Circular references are not supported.\");\n }\n if (seen.has(input2)) {\n return seen.get(input2);\n }\n const result = mapFn(input2);\n if (result.recurse && result.value !== null) {\n throw new Error(\"A deep map function may not return both a value and recurse=true.\");\n }\n if (!result.recurse) {\n seen.set(input2, result.value);\n return result.value;\n } else if (isIterable2(input2)) {\n const mappedIterable = Array.isArray(input2) ? [] : {};\n containedIn.add(input2);\n for (const k in input2) {\n const child = input2[k];\n const childResult = deepMapInternal(child, mapFn, seen, containedIn);\n mappedIterable[k] = childResult;\n }\n containedIn.delete(input2);\n if (input2.__proto__) {\n mappedIterable.__proto__ = input2.__proto__;\n }\n return mappedIterable;\n } else {\n throw new Error(`Can't recurse into non-iterable type: ${input2}`);\n }\n}\nfunction deepZip(inputs, zipFn = zipToList) {\n return deepZipInternal(inputs, zipFn);\n}\nfunction deepZipInternal(inputs, zipFn, containedIn = /* @__PURE__ */ new Set()) {\n const input2 = inputs[0];\n if (containedIn.has(input2)) {\n throw new Error(\"Circular references are not supported.\");\n }\n const result = zipFn(inputs);\n if (result.recurse && result.value !== null) {\n throw new Error(\"A deep zip function may not return both a value and recurse=true.\");\n }\n if (!result.recurse) {\n return result.value;\n } else if (isIterable2(input2)) {\n const mappedIterable = Array.isArray(input2) ? [] : {};\n containedIn.add(input2);\n for (const k in input2) {\n const children = inputs.map((x) => x[k]);\n const childResult = deepZipInternal(children, zipFn, containedIn);\n mappedIterable[k] = childResult;\n }\n containedIn.delete(input2);\n return mappedIterable;\n } else {\n throw new Error(`Can't recurse into non-iterable type: ${input2}`);\n }\n}\nfunction zipToList(x) {\n if (x === null) {\n return null;\n }\n if (isIterable2(x[0])) {\n return { value: null, recurse: true };\n } else {\n return { value: x, recurse: false };\n }\n}\nasync function deepMapAndAwaitAll(input2, mapFn) {\n const seen = /* @__PURE__ */ new Map();\n deepMapInternal(input2, mapFn, seen);\n for (const key of Array.from(seen.keys())) {\n const value = seen.get(key);\n if (util_exports.isPromise(value)) {\n const mappedValue = await value;\n seen.set(key, mappedValue);\n }\n }\n const result = deepMapInternal(input2, mapFn, seen);\n return result;\n}\nfunction isIterable2(obj) {\n let isTextDecoder = false;\n if (env().get(\"IS_BROWSER\")) {\n isTextDecoder = obj instanceof TextDecoder;\n } else {\n const { StringDecoder } = require_string_decoder();\n isTextDecoder = obj instanceof StringDecoder;\n }\n return obj != null && !ArrayBuffer.isView(obj) && (Array.isArray(obj) || typeof obj === \"object\" && !(obj instanceof Tensor) && !(obj instanceof Promise) && !isTextDecoder);\n}\nfunction canTensorify(obj) {\n return obj == null || isPrimitive(obj) || Array.isArray(obj) || typeof obj === \"object\" && obj instanceof Tensor || util_exports.isTypedArray(obj);\n}\nfunction isPrimitive(value) {\n return value === null || typeof value !== \"object\" && typeof value !== \"function\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/deep_clone.js\nfunction deepClone(container) {\n return deepMap(container, cloneIfTensor);\n}\nfunction cloneIfTensor(item) {\n if (item instanceof Tensor) {\n return { value: item.clone(), recurse: false };\n } else if (isIterable2(item)) {\n return { value: null, recurse: true };\n } else {\n return { value: item, recurse: false };\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/ring_buffer.js\nvar RingBuffer = class {\n constructor(capacity) {\n this.capacity = capacity;\n this.begin = 0;\n this.end = 0;\n if (capacity == null) {\n throw new RangeError(\"Can't create a ring buffer of unknown capacity.\");\n }\n if (capacity < 1) {\n throw new RangeError(\"Can't create ring buffer of capacity < 1.\");\n }\n this.data = new Array(capacity);\n this.doubledCapacity = 2 * capacity;\n }\n wrap(index) {\n while (index < 0) {\n index += this.doubledCapacity;\n }\n return index % this.doubledCapacity;\n }\n get(index) {\n if (index < 0) {\n throw new RangeError(\"Can't get item at a negative index.\");\n }\n return this.data[index % this.capacity];\n }\n set(index, value) {\n if (index < 0) {\n throw new RangeError(\"Can't set item at a negative index.\");\n }\n this.data[index % this.capacity] = value;\n }\n length() {\n let length = this.end - this.begin;\n if (length < 0) {\n length = this.doubledCapacity + length;\n }\n return length;\n }\n isFull() {\n return this.length() === this.capacity;\n }\n isEmpty() {\n return this.length() === 0;\n }\n push(value) {\n if (this.isFull()) {\n throw new RangeError(\"Ring buffer is full.\");\n }\n this.set(this.end, value);\n this.end = this.wrap(this.end + 1);\n }\n pushAll(values) {\n for (const value of values) {\n this.push(value);\n }\n }\n pop() {\n if (this.isEmpty()) {\n throw new RangeError(\"Ring buffer is empty.\");\n }\n this.end = this.wrap(this.end - 1);\n const result = this.get(this.end);\n this.set(this.end, void 0);\n return result;\n }\n unshift(value) {\n if (this.isFull()) {\n throw new RangeError(\"Ring buffer is full.\");\n }\n this.begin = this.wrap(this.begin - 1);\n this.set(this.begin, value);\n }\n shift() {\n if (this.isEmpty()) {\n throw new RangeError(\"Ring buffer is empty.\");\n }\n const result = this.get(this.begin);\n this.set(this.begin, void 0);\n this.begin = this.wrap(this.begin + 1);\n return result;\n }\n shuffleExcise(relativeIndex) {\n if (this.isEmpty()) {\n throw new RangeError(\"Ring buffer is empty.\");\n }\n const index = this.wrap(this.begin + relativeIndex);\n const result = this.get(index);\n this.set(index, this.pop());\n return result;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/growing_ring_buffer.js\nvar GrowingRingBuffer = class extends RingBuffer {\n constructor() {\n super(GrowingRingBuffer.INITIAL_CAPACITY);\n }\n isFull() {\n return false;\n }\n push(value) {\n if (super.isFull()) {\n this.expand();\n }\n super.push(value);\n }\n unshift(value) {\n if (super.isFull()) {\n this.expand();\n }\n super.unshift(value);\n }\n expand() {\n const newCapacity = this.capacity * 2;\n const newData = new Array(newCapacity);\n const len = this.length();\n for (let i2 = 0; i2 < len; i2++) {\n newData[i2] = this.get(this.wrap(this.begin + i2));\n }\n this.data = newData;\n this.capacity = newCapacity;\n this.doubledCapacity = 2 * this.capacity;\n this.begin = 0;\n this.end = len;\n }\n};\nGrowingRingBuffer.INITIAL_CAPACITY = 32;\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/lazy_iterator.js\nfunction iteratorFromItems(items) {\n return new ArrayIterator(items);\n}\nfunction iteratorFromFunction(func2) {\n return new FunctionCallIterator(func2);\n}\nfunction iteratorFromConcatenated(baseIterators, baseErrorHandler) {\n return new ChainedIterator(baseIterators, baseErrorHandler);\n}\nfunction iteratorFromZipped(iterators, mismatchMode = ZipMismatchMode.FAIL) {\n return new ZipIterator(iterators, mismatchMode);\n}\nvar LazyIterator = class {\n async toArray() {\n const result = [];\n let x = await this.next();\n while (!x.done) {\n result.push(x.value);\n x = await this.next();\n }\n return result;\n }\n async toArrayForTest() {\n const stream = this.prefetch(100);\n const result = [];\n let x = await stream.next();\n while (!x.done) {\n result.push(x.value);\n x = await stream.next();\n }\n return result;\n }\n async resolveFully() {\n let x = await this.next();\n while (!x.done) {\n x = await this.next();\n }\n }\n async resolveWhile(predicate) {\n let x = await this.next();\n let shouldContinue = predicate(x.value);\n while (!x.done && shouldContinue) {\n x = await this.next();\n shouldContinue = predicate(x.value);\n }\n }\n handleErrors(handler) {\n return new ErrorHandlingLazyIterator(this, handler);\n }\n filter(predicate) {\n return new FilterIterator(this, predicate);\n }\n map(transform6) {\n return new MapIterator(this, transform6);\n }\n mapAsync(transform6) {\n return new AsyncMapIterator(this, transform6);\n }\n serialMapAsync(transform6) {\n return new AsyncMapIterator(this, transform6).serial();\n }\n flatmap(transform6) {\n return new FlatmapIterator(this, transform6);\n }\n async forEachAsync(f) {\n return this.map(f).resolveFully();\n }\n async serialForEach(f) {\n return this.serialMapAsync(f).resolveWhile((x) => x === true);\n }\n rowMajorBatch(batchSize, smallLastBatch = true) {\n return new RowMajorBatchIterator(this, batchSize, smallLastBatch);\n }\n columnMajorBatch(batchSize, smallLastBatch = true, zipFn = zipToList) {\n const rowBatches = this.rowMajorBatch(batchSize, smallLastBatch);\n return rowBatches.map((x) => deepZip(x, zipFn));\n }\n concatenate(iterator, baseErrorHandler) {\n return new ChainedIterator(iteratorFromItems([this, iterator]), baseErrorHandler);\n }\n take(count2) {\n if (count2 < 0 || count2 == null) {\n return this;\n }\n return new TakeIterator(this, count2);\n }\n skip(count2) {\n if (count2 < 0 || count2 == null) {\n return this;\n }\n return new SkipIterator(this, count2);\n }\n prefetch(bufferSize) {\n return new PrefetchIterator(this, bufferSize);\n }\n shuffle(windowSize, seed) {\n return new ShuffleIterator(this, windowSize, seed);\n }\n serial() {\n return new SerialIterator(this);\n }\n};\nvar ArrayIterator = class extends LazyIterator {\n constructor(items) {\n super();\n this.items = items;\n this.trav = 0;\n }\n summary() {\n return `Array of ${this.items.length} items`;\n }\n async next() {\n if (this.trav >= this.items.length) {\n return { value: null, done: true };\n }\n const item = this.items[this.trav];\n this.trav++;\n return { value: deepClone(item), done: false };\n }\n};\nvar FunctionCallIterator = class extends LazyIterator {\n constructor(nextFn) {\n super();\n this.nextFn = nextFn;\n }\n summary() {\n return `Function call`;\n }\n async next() {\n try {\n return this.nextFn();\n } catch (e2) {\n e2.message = `Error thrown while iterating through a dataset: ${e2.message}`;\n throw e2;\n }\n }\n};\nvar SerialIterator = class extends LazyIterator {\n constructor(upstream) {\n super();\n this.upstream = upstream;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> Serial`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n return this.upstream.next();\n }\n};\nvar SkipIterator = class extends LazyIterator {\n constructor(upstream, maxCount) {\n super();\n this.upstream = upstream;\n this.maxCount = maxCount;\n this.count = 0;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> Skip`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n while (this.count++ < this.maxCount) {\n const skipped = await this.upstream.next();\n if (skipped.done) {\n return skipped;\n }\n dispose(skipped.value);\n }\n return this.upstream.next();\n }\n};\nvar TakeIterator = class extends LazyIterator {\n constructor(upstream, maxCount) {\n super();\n this.upstream = upstream;\n this.maxCount = maxCount;\n this.count = 0;\n }\n summary() {\n return `${this.upstream.summary()} -> Take`;\n }\n async next() {\n if (this.count++ >= this.maxCount) {\n return { value: null, done: true };\n }\n return this.upstream.next();\n }\n};\nvar RowMajorBatchIterator = class extends LazyIterator {\n constructor(upstream, batchSize, enableSmallLastBatch = true) {\n super();\n this.upstream = upstream;\n this.batchSize = batchSize;\n this.enableSmallLastBatch = enableSmallLastBatch;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> RowMajorBatch`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n const batch = [];\n while (batch.length < this.batchSize) {\n const item = await this.upstream.next();\n if (item.done) {\n if (this.enableSmallLastBatch && batch.length > 0) {\n return { value: batch, done: false };\n }\n return { value: null, done: true };\n }\n batch.push(item.value);\n }\n return { value: batch, done: false };\n }\n};\nvar FilterIterator = class extends LazyIterator {\n constructor(upstream, predicate) {\n super();\n this.upstream = upstream;\n this.predicate = predicate;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> Filter`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n while (true) {\n const item = await this.upstream.next();\n if (item.done || this.predicate(item.value)) {\n return item;\n }\n dispose(item.value);\n }\n }\n};\nvar MapIterator = class extends LazyIterator {\n constructor(upstream, transform6) {\n super();\n this.upstream = upstream;\n this.transform = transform6;\n }\n summary() {\n return `${this.upstream.summary()} -> Map`;\n }\n async next() {\n const item = await this.upstream.next();\n if (item.done) {\n return { value: null, done: true };\n }\n const inputTensors = tensor_util_exports.getTensorsInContainer(item.value);\n const mapped = this.transform(item.value);\n const outputTensors = tensor_util_exports.getTensorsInContainer(mapped);\n for (const t2 of inputTensors) {\n if (!tensor_util_exports.isTensorInList(t2, outputTensors)) {\n t2.dispose();\n }\n }\n return { value: mapped, done: false };\n }\n};\nvar ErrorHandlingLazyIterator = class extends LazyIterator {\n constructor(upstream, handler) {\n super();\n this.upstream = upstream;\n this.handler = handler;\n this.count = 0;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> handleErrors`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n while (true) {\n try {\n return await this.upstream.next();\n } catch (e2) {\n if (!this.handler(e2)) {\n return { value: null, done: true };\n }\n }\n }\n }\n};\nvar AsyncMapIterator = class extends LazyIterator {\n constructor(upstream, transform6) {\n super();\n this.upstream = upstream;\n this.transform = transform6;\n }\n summary() {\n return `${this.upstream.summary()} -> AsyncMap`;\n }\n async next() {\n const item = await this.upstream.next();\n if (item.done) {\n return { value: null, done: true };\n }\n const inputTensors = tensor_util_exports.getTensorsInContainer(item.value);\n const mapped = await this.transform(item.value);\n const outputTensors = tensor_util_exports.getTensorsInContainer(mapped);\n for (const t2 of inputTensors) {\n if (!tensor_util_exports.isTensorInList(t2, outputTensors)) {\n t2.dispose();\n }\n }\n return { value: mapped, done: false };\n }\n};\nvar OneToManyIterator = class extends LazyIterator {\n constructor() {\n super();\n this.outputQueue = new GrowingRingBuffer();\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n while (this.outputQueue.length() === 0) {\n if (!await this.pump()) {\n return { value: null, done: true };\n }\n }\n return { value: this.outputQueue.shift(), done: false };\n }\n};\nvar FlatmapIterator = class extends OneToManyIterator {\n constructor(upstream, transform6) {\n super();\n this.upstream = upstream;\n this.transform = transform6;\n }\n summary() {\n return `${this.upstream.summary()} -> Flatmap`;\n }\n async pump() {\n const item = await this.upstream.next();\n if (item.done) {\n return false;\n }\n const inputTensors = tensor_util_exports.getTensorsInContainer(item.value);\n const mappedArray = this.transform(item.value);\n const outputTensors = tensor_util_exports.getTensorsInContainer(mappedArray);\n this.outputQueue.pushAll(mappedArray);\n for (const t2 of inputTensors) {\n if (!tensor_util_exports.isTensorInList(t2, outputTensors)) {\n t2.dispose();\n }\n }\n return true;\n }\n};\nvar ChainedIterator = class extends LazyIterator {\n constructor(iterators, baseErrorHandler) {\n super();\n this.baseErrorHandler = baseErrorHandler;\n this.lastRead = null;\n this.iterator = null;\n this.moreIterators = iterators;\n }\n summary() {\n const upstreamSummaries = \"TODO: fill in upstream of chained summaries\";\n return `${upstreamSummaries} -> Chained`;\n }\n async next() {\n this.lastRead = this.readFromChain(this.lastRead);\n return this.lastRead;\n }\n async readFromChain(lastRead) {\n await lastRead;\n if (this.iterator == null) {\n const iteratorResult = await this.moreIterators.next();\n if (iteratorResult.done) {\n return { value: null, done: true };\n }\n this.iterator = iteratorResult.value;\n if (this.baseErrorHandler != null) {\n this.iterator = this.iterator.handleErrors(this.baseErrorHandler);\n }\n }\n const itemResult = await this.iterator.next();\n if (itemResult.done) {\n this.iterator = null;\n return this.readFromChain(lastRead);\n }\n return itemResult;\n }\n};\nvar ZipMismatchMode;\n(function(ZipMismatchMode2) {\n ZipMismatchMode2[ZipMismatchMode2[\"FAIL\"] = 0] = \"FAIL\";\n ZipMismatchMode2[ZipMismatchMode2[\"SHORTEST\"] = 1] = \"SHORTEST\";\n ZipMismatchMode2[ZipMismatchMode2[\"LONGEST\"] = 2] = \"LONGEST\";\n})(ZipMismatchMode || (ZipMismatchMode = {}));\nvar ZipIterator = class extends LazyIterator {\n constructor(iterators, mismatchMode = ZipMismatchMode.FAIL) {\n super();\n this.iterators = iterators;\n this.mismatchMode = mismatchMode;\n this.count = 0;\n this.currentPromise = null;\n }\n summary() {\n const upstreamSummaries = \"TODO: fill in upstream of zip summaries\";\n return `{${upstreamSummaries}} -> Zip`;\n }\n async nextState(afterState) {\n await afterState;\n let numIterators = 0;\n let iteratorsDone = 0;\n function getNext(container) {\n if (container instanceof LazyIterator) {\n const result = container.next();\n return {\n value: result.then((x) => {\n numIterators++;\n if (x.done) {\n iteratorsDone++;\n }\n return x.value;\n }),\n recurse: false\n };\n } else {\n return { value: null, recurse: true };\n }\n }\n const mapped = await deepMapAndAwaitAll(this.iterators, getNext);\n if (numIterators === iteratorsDone) {\n return { value: null, done: true };\n }\n if (iteratorsDone > 0) {\n switch (this.mismatchMode) {\n case ZipMismatchMode.FAIL:\n throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);\n case ZipMismatchMode.SHORTEST:\n return { value: null, done: true };\n case ZipMismatchMode.LONGEST:\n default:\n }\n }\n this.count++;\n return { value: mapped, done: false };\n }\n async next() {\n this.currentPromise = this.nextState(this.currentPromise);\n return this.currentPromise;\n }\n};\nvar PrefetchIterator = class extends LazyIterator {\n constructor(upstream, bufferSize) {\n super();\n this.upstream = upstream;\n this.bufferSize = bufferSize;\n this.buffer = new RingBuffer(bufferSize);\n }\n summary() {\n return `${this.upstream.summary()} -> Prefetch`;\n }\n refill() {\n while (!this.buffer.isFull()) {\n const v = this.upstream.next();\n this.buffer.push(v);\n }\n }\n next() {\n this.refill();\n return this.buffer.shift();\n }\n};\nvar ShuffleIterator = class extends PrefetchIterator {\n constructor(upstream, windowSize, seed) {\n super(upstream, windowSize);\n this.upstream = upstream;\n this.windowSize = windowSize;\n this.upstreamExhausted = false;\n this.random = seedrandom2.alea(seed || util_exports.now().toString());\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n randomInt(max7) {\n return Math.floor(this.random() * max7);\n }\n chooseIndex() {\n return this.randomInt(this.buffer.length());\n }\n async serialNext() {\n if (!this.upstreamExhausted) {\n this.refill();\n }\n while (!this.buffer.isEmpty()) {\n const chosenIndex = this.chooseIndex();\n const result = await this.buffer.shuffleExcise(chosenIndex);\n if (result.done) {\n this.upstreamExhausted = true;\n } else {\n this.refill();\n return result;\n }\n }\n return { value: null, done: true };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/dataset.js\nvar Dataset = class {\n constructor() {\n this.size = null;\n }\n batch(batchSize, smallLastBatch = true) {\n const base = this;\n util_exports.assert(batchSize > 0, () => `batchSize needs to be positive, but it is\n ${batchSize}`);\n let size;\n if (this.size === Infinity || this.size == null) {\n size = this.size;\n } else if (smallLastBatch) {\n size = Math.ceil(this.size / batchSize);\n } else {\n size = Math.floor(this.size / batchSize);\n }\n return datasetFromIteratorFn(async () => {\n return (await base.iterator()).columnMajorBatch(batchSize, smallLastBatch, deepBatchConcat);\n }, size);\n }\n concatenate(dataset) {\n const base = this;\n let size;\n if (this.size === Infinity || dataset.size === Infinity) {\n size = Infinity;\n } else if (this.size != null && dataset.size != null) {\n size = this.size + dataset.size;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => (await base.iterator()).concatenate(await dataset.iterator()), size);\n }\n filter(predicate) {\n const base = this;\n let size;\n if (this.size === Infinity) {\n size = Infinity;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => {\n return (await base.iterator()).filter((x) => tidy(() => predicate(x)));\n }, size);\n }\n async forEachAsync(f) {\n return (await this.iterator()).forEachAsync(f);\n }\n map(transform6) {\n const base = this;\n return datasetFromIteratorFn(async () => {\n return (await base.iterator()).map((x) => tidy(() => transform6(x)));\n }, this.size);\n }\n mapAsync(transform6) {\n const base = this;\n return datasetFromIteratorFn(async () => {\n return (await base.iterator()).mapAsync(transform6);\n }, this.size);\n }\n prefetch(bufferSize) {\n if (bufferSize == null) {\n throw new RangeError(\"`Dataset.prefetch()` requires bufferSize to be specified.\");\n }\n const base = this;\n return datasetFromIteratorFn(async () => (await base.iterator()).prefetch(bufferSize), this.size);\n }\n repeat(count2) {\n const base = this;\n let size;\n if (this.size != null && count2 > 0) {\n size = this.size * count2;\n } else if (count2 === 0) {\n size = 0;\n } else if (this.size != null && (count2 === void 0 || count2 < 0)) {\n size = Infinity;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => {\n const iteratorIterator = iteratorFromFunction(async () => ({ value: await base.iterator(), done: false }));\n return iteratorFromConcatenated(iteratorIterator.take(count2));\n }, size);\n }\n skip(count2) {\n const base = this;\n let size;\n if (this.size != null && count2 >= 0 && this.size >= count2) {\n size = this.size - count2;\n } else if (this.size != null && (this.size < count2 || count2 === void 0 || count2 < 0)) {\n size = 0;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => (await base.iterator()).skip(count2), size);\n }\n shuffle(bufferSize, seed, reshuffleEachIteration = true) {\n if (bufferSize == null || bufferSize < 0) {\n if (this.size == null) {\n throw new RangeError(\"`Dataset.shuffle()` requires bufferSize to be specified.\");\n } else {\n throw new RangeError(`\\`Dataset.shuffle()\\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \\`tf.Tensor\\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);\n }\n }\n const base = this;\n const random = seedrandom3.alea(seed || util_exports.now().toString());\n return datasetFromIteratorFn(async () => {\n let seed2 = random.int32();\n if (reshuffleEachIteration) {\n seed2 += random.int32();\n }\n return (await base.iterator()).shuffle(bufferSize, seed2.toString());\n }, this.size);\n }\n take(count2) {\n const base = this;\n let size;\n if (this.size != null && this.size > count2) {\n size = count2;\n } else if (this.size != null && this.size <= count2) {\n size = this.size;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => (await base.iterator()).take(count2), size);\n }\n async toArray() {\n if (this.size === Infinity) {\n throw new Error(\"Can not convert infinite data stream to array.\");\n }\n return (await this.iterator()).toArray();\n }\n async toArrayForTest() {\n if (this.size === Infinity) {\n throw new Error(\"Can not convert infinite data stream to array.\");\n }\n return (await this.iterator()).toArrayForTest();\n }\n};\nDataset.MAX_BUFFER_SIZE = 1e4;\nfunction datasetFromIteratorFn(iteratorFn, size = null) {\n return new class extends Dataset {\n constructor() {\n super(...arguments);\n this.size = size;\n }\n async iterator() {\n return iteratorFn();\n }\n }();\n}\nfunction array(items) {\n return datasetFromIteratorFn(async () => iteratorFromItems(items), items.length);\n}\nfunction zip(datasets) {\n if (!isIterable2(datasets)) {\n throw new Error(\"The argument to zip() must be an object or array.\");\n }\n let size;\n if (Array.isArray(datasets)) {\n for (let i2 = 0; i2 < datasets.length; i2++) {\n size = size == null ? datasets[i2].size : Math.min(size, datasets[i2].size);\n }\n } else if (datasets instanceof Object) {\n for (const ds in datasets) {\n size = size == null ? datasets[ds].size : Math.min(size, datasets[ds].size);\n }\n }\n return datasetFromIteratorFn(async () => {\n const streams = await deepMapAndAwaitAll(datasets, (d) => {\n if (d instanceof Dataset) {\n return { value: d.iterator(), recurse: false };\n } else if (isIterable2(d)) {\n return { value: null, recurse: true };\n } else {\n throw new Error(\"Leaves of the structure passed to zip() must be Datasets, not primitives.\");\n }\n });\n return iteratorFromZipped(streams, ZipMismatchMode.SHORTEST);\n }, size);\n}\nfunction deepBatchConcat(rows) {\n if (rows === null) {\n return null;\n }\n const exampleRow = rows[0];\n if (canTensorify(exampleRow)) {\n const value = batchConcat(rows);\n return { value, recurse: false };\n }\n return { value: null, recurse: true };\n}\nfunction batchConcat(arrays) {\n if (arrays.length === 0) {\n throw new Error(\"Can't make a batch of zero elements.\");\n }\n if (arrays[0] instanceof Tensor) {\n return stack(arrays);\n } else {\n return tensor(arrays);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/datasets/text_line_dataset.js\nvar TextLineDataset = class extends Dataset {\n constructor(input2) {\n super();\n this.input = input2;\n }\n async iterator() {\n const inputIterator = await this.input.iterator();\n const utf8Iterator = inputIterator.decodeUTF8();\n const lineIterator = utf8Iterator.split(\"\\n\").map((line) => {\n if (line.endsWith(\"\\r\")) {\n line = line.slice(0, -1);\n }\n return line;\n });\n return lineIterator;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/datasets/csv_dataset.js\nvar CODE_QUOTE = '\"';\nvar STATE_OUT = Symbol(\"out\");\nvar STATE_FIELD = Symbol(\"field\");\nvar STATE_QUOTE = Symbol(\"quote\");\nvar STATE_QUOTE_AFTER_QUOTE = Symbol(\"quoteafterquote\");\nvar STATE_WITHIN_QUOTE_IN_QUOTE = Symbol(\"quoteinquote\");\nvar CSVDataset = class extends Dataset {\n constructor(input2, csvConfig) {\n super();\n this.input = input2;\n this.hasHeader = true;\n this.fullColumnNames = null;\n this.columnNamesValidated = false;\n this.columnConfigs = null;\n this.configuredColumnsOnly = false;\n this.delimiter = \",\";\n this.delimWhitespace = false;\n this.base = new TextLineDataset(input2);\n if (!csvConfig) {\n csvConfig = {};\n }\n this.hasHeader = csvConfig.hasHeader === false ? false : true;\n this.fullColumnNames = csvConfig.columnNames;\n this.columnConfigs = csvConfig.columnConfigs;\n this.configuredColumnsOnly = csvConfig.configuredColumnsOnly;\n if (csvConfig.delimWhitespace) {\n util_exports.assert(csvConfig.delimiter == null, () => \"Delimiter should not be provided when delimWhitespace is true.\");\n this.delimWhitespace = true;\n this.delimiter = \" \";\n } else {\n this.delimiter = csvConfig.delimiter ? csvConfig.delimiter : \",\";\n }\n }\n async columnNames() {\n if (!this.columnNamesValidated) {\n await this.setColumnNames();\n }\n return this.configuredColumnsOnly ? Object.keys(this.columnConfigs) : this.fullColumnNames;\n }\n async setColumnNames() {\n const columnNamesFromFile = await this.maybeReadHeaderLine();\n if (!this.fullColumnNames && !columnNamesFromFile) {\n throw new Error(\"Column names must be provided if there is no header line.\");\n } else if (this.fullColumnNames && columnNamesFromFile) {\n util_exports.assert(columnNamesFromFile.length === this.fullColumnNames.length, () => \"The length of provided columnNames (\" + this.fullColumnNames.length.toString() + \") does not match the length of the header line read from file (\" + columnNamesFromFile.length.toString() + \").\");\n }\n if (!this.fullColumnNames) {\n this.fullColumnNames = columnNamesFromFile;\n }\n const counts = this.fullColumnNames.reduce((countAcc, name) => {\n countAcc[name] = countAcc[name] + 1 || 1;\n return countAcc;\n }, {});\n const duplicateNames = Object.keys(counts).filter((name) => counts[name] > 1);\n util_exports.assert(duplicateNames.length === 0, () => \"Duplicate column names found: \" + duplicateNames.toString());\n if (this.columnConfigs) {\n for (const key of Object.keys(this.columnConfigs)) {\n const index = this.fullColumnNames.indexOf(key);\n if (index === -1) {\n throw new Error('The key \"' + key + '\" provided in columnConfigs does not match any of the column names (' + this.fullColumnNames.toString() + \").\");\n }\n }\n }\n this.columnNamesValidated = true;\n }\n async maybeReadHeaderLine() {\n if (this.hasHeader) {\n const iter = await this.base.iterator();\n const firstElement = await iter.next();\n if (firstElement.done) {\n throw new Error(\"No data was found for CSV parsing.\");\n }\n const firstLine = firstElement.value;\n const headers = this.parseRow(firstLine, false);\n return headers;\n } else {\n return null;\n }\n }\n async iterator() {\n if (!this.columnNamesValidated) {\n await this.setColumnNames();\n }\n let lines = await this.base.iterator();\n if (this.hasHeader) {\n lines = lines.skip(1);\n }\n return lines.map((x) => this.makeDataElement(x));\n }\n makeDataElement(line) {\n const values = this.parseRow(line);\n const features = {};\n const labels = {};\n for (let i2 = 0; i2 < this.fullColumnNames.length; i2++) {\n const key = this.fullColumnNames[i2];\n const config = this.columnConfigs ? this.columnConfigs[key] : null;\n if (this.configuredColumnsOnly && !config) {\n continue;\n } else {\n const value = values[i2];\n let parsedValue = null;\n if (value === \"\") {\n if (config && config.default !== void 0) {\n parsedValue = config.default;\n } else if (config && (config.required || config.isLabel)) {\n throw new Error(`Required column ${key} is empty in this line: ${line}`);\n } else {\n parsedValue = void 0;\n }\n } else {\n const valueAsNum = Number(value);\n if (isNaN(valueAsNum)) {\n if (config && config.dtype === \"bool\") {\n parsedValue = this.getBoolean(value);\n } else {\n parsedValue = value;\n }\n } else if (!config || !config.dtype) {\n parsedValue = valueAsNum;\n } else {\n switch (config.dtype) {\n case \"float32\":\n parsedValue = valueAsNum;\n break;\n case \"int32\":\n parsedValue = Math.floor(valueAsNum);\n break;\n case \"bool\":\n parsedValue = this.getBoolean(value);\n break;\n default:\n parsedValue = valueAsNum;\n }\n }\n }\n config && config.isLabel ? labels[key] = parsedValue : features[key] = parsedValue;\n }\n }\n if (Object.keys(labels).length === 0) {\n return features;\n } else {\n return { xs: features, ys: labels };\n }\n }\n getBoolean(value) {\n if (value === \"1\" || value.toLowerCase() === \"true\") {\n return 1;\n } else {\n return 0;\n }\n }\n parseRow(line, validateElementCount = true) {\n const result = [];\n let readOffset = 0;\n const readLength = line.length;\n let currentState = STATE_OUT;\n for (let i2 = 0; i2 < readLength; i2++) {\n switch (currentState) {\n case STATE_OUT:\n switch (line.charAt(i2)) {\n case CODE_QUOTE:\n readOffset = i2 + 1;\n currentState = STATE_QUOTE;\n break;\n case this.delimiter:\n readOffset = i2 + 1;\n if (this.delimiter === \" \" && this.delimWhitespace) {\n break;\n }\n result.push(\"\");\n currentState = STATE_OUT;\n break;\n default:\n currentState = STATE_FIELD;\n readOffset = i2;\n break;\n }\n break;\n case STATE_FIELD:\n switch (line.charAt(i2)) {\n case this.delimiter:\n result.push(line.substring(readOffset, i2));\n currentState = STATE_OUT;\n readOffset = i2 + 1;\n break;\n default:\n }\n break;\n case STATE_QUOTE:\n switch (line.charAt(i2)) {\n case CODE_QUOTE:\n currentState = STATE_QUOTE_AFTER_QUOTE;\n break;\n default:\n }\n break;\n case STATE_QUOTE_AFTER_QUOTE:\n switch (line.charAt(i2)) {\n case this.delimiter:\n result.push(line.substring(readOffset, i2 - 1));\n currentState = STATE_OUT;\n readOffset = i2 + 1;\n break;\n case CODE_QUOTE:\n currentState = STATE_QUOTE;\n break;\n default:\n currentState = STATE_WITHIN_QUOTE_IN_QUOTE;\n break;\n }\n break;\n case STATE_WITHIN_QUOTE_IN_QUOTE:\n switch (line.charAt(i2)) {\n case CODE_QUOTE:\n currentState = STATE_QUOTE;\n break;\n default:\n }\n break;\n default:\n }\n }\n if (currentState === STATE_QUOTE_AFTER_QUOTE) {\n result.push(line.substring(readOffset, readLength - 1));\n } else {\n result.push(line.substring(readOffset));\n }\n if (validateElementCount && result.length !== this.fullColumnNames.length) {\n throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${result}`);\n }\n return result;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/microphone_iterator.js\nvar MicrophoneIterator = class extends LazyIterator {\n constructor(microphoneConfig) {\n super();\n this.microphoneConfig = microphoneConfig;\n this.isClosed = false;\n this.fftSize = microphoneConfig.fftSize || 1024;\n const fftSizeLog2 = Math.log2(this.fftSize);\n if (this.fftSize < 0 || fftSizeLog2 < 4 || fftSizeLog2 > 14 || !Number.isInteger(fftSizeLog2)) {\n throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);\n }\n this.numFrames = microphoneConfig.numFramesPerSpectrogram || 43;\n this.sampleRateHz = microphoneConfig.sampleRateHz;\n this.columnTruncateLength = microphoneConfig.columnTruncateLength || this.fftSize;\n this.audioTrackConstraints = microphoneConfig.audioTrackConstraints;\n this.smoothingTimeConstant = microphoneConfig.smoothingTimeConstant || 0;\n this.includeSpectrogram = microphoneConfig.includeSpectrogram === false ? false : true;\n this.includeWaveform = microphoneConfig.includeWaveform === true ? true : false;\n if (!this.includeSpectrogram && !this.includeWaveform) {\n throw new Error(\"Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.\");\n }\n }\n summary() {\n return `microphone`;\n }\n static async create(microphoneConfig = {}) {\n if (!env().get(\"IS_BROWSER\")) {\n throw new Error(\"microphone API is only supported in browser environment.\");\n }\n const microphoneIterator = new MicrophoneIterator(microphoneConfig);\n await microphoneIterator.start();\n return microphoneIterator;\n }\n async start() {\n try {\n this.stream = await navigator.mediaDevices.getUserMedia({\n audio: this.audioTrackConstraints == null ? true : this.audioTrackConstraints,\n video: false\n });\n } catch (e2) {\n throw new Error(`Error thrown while initializing video stream: ${e2.message}`);\n }\n if (!this.stream) {\n throw new Error(\"Could not obtain audio from microphone.\");\n }\n const ctxConstructor = window.AudioContext || window.webkitAudioContext;\n this.audioContext = new ctxConstructor();\n if (!this.sampleRateHz) {\n this.sampleRateHz = this.audioContext.sampleRate;\n } else if (this.audioContext.sampleRate !== this.sampleRateHz) {\n throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);\n }\n const streamSource = this.audioContext.createMediaStreamSource(this.stream);\n this.analyser = this.audioContext.createAnalyser();\n this.analyser.fftSize = this.fftSize * 2;\n this.analyser.smoothingTimeConstant = this.smoothingTimeConstant;\n streamSource.connect(this.analyser);\n this.freqData = new Float32Array(this.fftSize);\n this.timeData = new Float32Array(this.fftSize);\n return;\n }\n async next() {\n if (this.isClosed) {\n return { value: null, done: true };\n }\n let spectrogramTensor;\n let waveformTensor;\n const audioDataQueue = await this.getAudioData();\n if (this.includeSpectrogram) {\n const freqData = this.flattenQueue(audioDataQueue.freqDataQueue);\n spectrogramTensor = this.getTensorFromAudioDataArray(freqData, [this.numFrames, this.columnTruncateLength, 1]);\n }\n if (this.includeWaveform) {\n const timeData = this.flattenQueue(audioDataQueue.timeDataQueue);\n waveformTensor = this.getTensorFromAudioDataArray(timeData, [this.numFrames * this.fftSize, 1]);\n }\n return {\n value: { \"spectrogram\": spectrogramTensor, \"waveform\": waveformTensor },\n done: false\n };\n }\n async capture() {\n return (await this.next()).value;\n }\n async getAudioData() {\n const freqDataQueue = [];\n const timeDataQueue = [];\n let currentFrames = 0;\n return new Promise((resolve) => {\n const intervalID = setInterval(() => {\n if (this.includeSpectrogram) {\n this.analyser.getFloatFrequencyData(this.freqData);\n if (this.freqData[0] === -Infinity) {\n resolve({ freqDataQueue, timeDataQueue });\n }\n freqDataQueue.push(this.freqData.slice(0, this.columnTruncateLength));\n }\n if (this.includeWaveform) {\n this.analyser.getFloatTimeDomainData(this.timeData);\n timeDataQueue.push(this.timeData.slice());\n }\n if (++currentFrames === this.numFrames) {\n clearInterval(intervalID);\n resolve({ freqDataQueue, timeDataQueue });\n }\n }, this.fftSize / this.sampleRateHz * 1e3);\n });\n }\n stop() {\n if (!this.isClosed) {\n this.isClosed = true;\n this.analyser.disconnect();\n this.audioContext.close();\n if (this.stream != null && this.stream.getTracks().length > 0) {\n this.stream.getTracks()[0].stop();\n }\n }\n }\n toArray() {\n throw new Error(\"Can not convert infinite audio stream to array.\");\n }\n getSampleRate() {\n return this.sampleRateHz;\n }\n flattenQueue(queue) {\n const frameSize = queue[0].length;\n const freqData = new Float32Array(queue.length * frameSize);\n queue.forEach((data, i2) => freqData.set(data, i2 * frameSize));\n return freqData;\n }\n getTensorFromAudioDataArray(freqData, shape) {\n const vals = new Float32Array(util_exports.sizeFromShape(shape));\n vals.set(freqData, vals.length - freqData.length);\n return tensor(vals, shape);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/webcam_iterator.js\nvar WebcamIterator = class extends LazyIterator {\n constructor(webcamVideoElement, webcamConfig) {\n super();\n this.webcamVideoElement = webcamVideoElement;\n this.webcamConfig = webcamConfig;\n this.isClosed = true;\n this.resize = false;\n if (this.needToResize()) {\n this.resize = true;\n this.cropSize = [this.webcamConfig.resizeHeight, this.webcamConfig.resizeWidth];\n this.cropBoxInd = tensor1d([0], \"int32\");\n if (this.webcamConfig.centerCrop) {\n const widthCroppingRatio = this.webcamConfig.resizeWidth * 1 / this.webcamVideoElement.width;\n const heightCroppingRatio = this.webcamConfig.resizeHeight * 1 / this.webcamVideoElement.height;\n const widthCropStart = (1 - widthCroppingRatio) / 2;\n const heightCropStart = (1 - heightCroppingRatio) / 2;\n const widthCropEnd = widthCropStart + widthCroppingRatio;\n const heightCropEnd = heightCroppingRatio + heightCropStart;\n this.cropBox = tensor2d([heightCropStart, widthCropStart, heightCropEnd, widthCropEnd], [1, 4]);\n } else {\n this.cropBox = tensor2d([0, 0, 1, 1], [1, 4]);\n }\n }\n }\n summary() {\n return `webcam`;\n }\n static async create(webcamVideoElement, webcamConfig = {}) {\n if (!env().get(\"IS_BROWSER\")) {\n throw new Error(\"tf.data.webcam is only supported in browser environment.\");\n }\n if (!webcamVideoElement) {\n webcamVideoElement = document.createElement(\"video\");\n if (!webcamConfig.resizeWidth || !webcamConfig.resizeHeight) {\n throw new Error(\"Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.\");\n }\n webcamVideoElement.width = webcamConfig.resizeWidth;\n webcamVideoElement.height = webcamConfig.resizeHeight;\n }\n const webcamIterator = new WebcamIterator(webcamVideoElement, webcamConfig);\n await webcamIterator.start();\n return webcamIterator;\n }\n async start() {\n if (this.webcamConfig.facingMode) {\n util_exports.assert(this.webcamConfig.facingMode === \"user\" || this.webcamConfig.facingMode === \"environment\", () => `Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);\n }\n try {\n this.stream = await navigator.mediaDevices.getUserMedia({\n video: {\n deviceId: this.webcamConfig.deviceId,\n facingMode: this.webcamConfig.facingMode ? this.webcamConfig.facingMode : \"user\",\n width: this.webcamVideoElement.width,\n height: this.webcamVideoElement.height\n }\n });\n } catch (e2) {\n e2.message = `Error thrown while initializing video stream: ${e2.message}`;\n throw e2;\n }\n if (!this.stream) {\n throw new Error(\"Could not obtain video from webcam.\");\n }\n try {\n this.webcamVideoElement.srcObject = this.stream;\n } catch (error) {\n console.log(error);\n this.webcamVideoElement.src = window.URL.createObjectURL(this.stream);\n }\n this.webcamVideoElement.play();\n this.isClosed = false;\n return new Promise((resolve) => {\n this.webcamVideoElement.onloadedmetadata = () => {\n resolve();\n };\n });\n }\n async next() {\n if (this.isClosed) {\n return { value: null, done: true };\n }\n let img;\n try {\n img = browser_exports.fromPixels(this.webcamVideoElement);\n } catch (e2) {\n throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e2)}`);\n }\n if (this.resize) {\n try {\n return { value: this.cropAndResizeFrame(img), done: false };\n } catch (e2) {\n throw new Error(`Error thrown cropping the video: ${e2.message}`);\n } finally {\n img.dispose();\n }\n } else {\n return { value: img, done: false };\n }\n }\n needToResize() {\n if (this.webcamConfig.resizeWidth && this.webcamConfig.resizeHeight && (this.webcamVideoElement.width !== this.webcamConfig.resizeWidth || this.webcamVideoElement.height !== this.webcamConfig.resizeHeight)) {\n return true;\n }\n return false;\n }\n cropAndResizeFrame(img) {\n return tidy(() => {\n const expandedImage = expandDims(cast(img, \"float32\"), 0);\n let resizedImage;\n resizedImage = image.cropAndResize(expandedImage, this.cropBox, this.cropBoxInd, this.cropSize, \"bilinear\");\n const shape = resizedImage.shape;\n return reshape(resizedImage, shape.slice(1));\n });\n }\n async capture() {\n return (await this.next()).value;\n }\n stop() {\n const tracks = this.stream.getTracks();\n tracks.forEach((track) => track.stop());\n try {\n this.webcamVideoElement.srcObject = null;\n } catch (error) {\n console.log(error);\n this.webcamVideoElement.src = null;\n }\n this.isClosed = true;\n }\n toArray() {\n throw new Error(\"Can not convert infinite video stream to array.\");\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/datasource.js\nvar DataSource = class {\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/string_iterator.js\nvar StringIterator = class extends LazyIterator {\n split(separator) {\n return new SplitIterator(this, separator);\n }\n};\nvar SplitIterator = class extends StringIterator {\n constructor(upstream, separator) {\n super();\n this.upstream = upstream;\n this.impl = new SplitIteratorImpl(upstream, separator);\n }\n summary() {\n return this.impl.summary();\n }\n async next() {\n return this.impl.next();\n }\n};\nvar SplitIteratorImpl = class extends OneToManyIterator {\n constructor(upstream, separator) {\n super();\n this.upstream = upstream;\n this.separator = separator;\n this.carryover = \"\";\n }\n summary() {\n return `${this.upstream.summary()} -> Split('${this.separator}')`;\n }\n async pump() {\n const chunkResult = await this.upstream.next();\n if (chunkResult.done) {\n if (this.carryover === \"\") {\n return false;\n }\n this.outputQueue.push(this.carryover);\n this.carryover = \"\";\n return true;\n }\n const lines = chunkResult.value.split(this.separator);\n lines[0] = this.carryover + lines[0];\n for (const line of lines.slice(0, -1)) {\n this.outputQueue.push(line);\n }\n this.carryover = lines[lines.length - 1];\n return true;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/byte_chunk_iterator.js\nvar ByteChunkIterator = class extends LazyIterator {\n decodeUTF8() {\n return new Utf8Iterator(this);\n }\n};\nvar Utf8Iterator = class extends StringIterator {\n constructor(upstream) {\n super();\n this.upstream = upstream;\n this.impl = new Utf8IteratorImpl(upstream);\n }\n summary() {\n return this.impl.summary();\n }\n async next() {\n return this.impl.next();\n }\n};\nvar Utf8IteratorImpl = class extends OneToManyIterator {\n constructor(upstream) {\n super();\n this.upstream = upstream;\n if (env().get(\"IS_BROWSER\")) {\n this.decoder = new TextDecoder(\"utf-8\");\n } else {\n const { StringDecoder } = require_string_decoder();\n this.decoder = new StringDecoder(\"utf8\");\n }\n }\n summary() {\n return `${this.upstream.summary()} -> Utf8`;\n }\n async pump() {\n const chunkResult = await this.upstream.next();\n let chunk;\n if (chunkResult.done) {\n return false;\n } else {\n chunk = chunkResult.value;\n }\n let text;\n if (env().get(\"IS_BROWSER\")) {\n text = this.decoder.decode(chunk, { stream: true });\n } else {\n text = this.decoder.write(Buffer.from(chunk.buffer));\n }\n this.outputQueue.push(text);\n return true;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/file_chunk_iterator.js\nvar FileChunkIterator = class extends ByteChunkIterator {\n constructor(file, options = {}) {\n super();\n this.file = file;\n this.options = options;\n util_exports.assert(file instanceof Uint8Array || (env().get(\"IS_BROWSER\") ? file instanceof File || file instanceof Blob : false), () => \"FileChunkIterator only supports File, Blob and Uint8Array right now.\");\n this.offset = options.offset || 0;\n this.chunkSize = options.chunkSize || 1024 * 1024;\n }\n summary() {\n return `FileChunks ${this.file}`;\n }\n async next() {\n if (this.offset >= (this.file instanceof Uint8Array ? this.file.byteLength : this.file.size)) {\n return { value: null, done: true };\n }\n const chunk = new Promise((resolve, reject) => {\n const end = this.offset + this.chunkSize;\n if (this.file instanceof Uint8Array) {\n resolve(new Uint8Array(this.file.slice(this.offset, end)));\n } else {\n const fileReader = new FileReader();\n fileReader.onload = (event) => {\n let data = fileReader.result;\n if (data instanceof ArrayBuffer) {\n data = new Uint8Array(data);\n }\n if (!(data instanceof Uint8Array)) {\n return reject(new TypeError(\"FileReader returned unknown type.\"));\n }\n resolve(data);\n };\n fileReader.onabort = (event) => {\n return reject(new Error(\"Aborted\"));\n };\n fileReader.onerror = (event) => {\n return reject(new Error(event.type));\n };\n const slice6 = this.file.slice(this.offset, end);\n fileReader.readAsArrayBuffer(slice6);\n }\n this.offset = end;\n });\n return { value: await chunk, done: false };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/url_chunk_iterator.js\nasync function urlChunkIterator(url, options = {}, fetchFunc) {\n let urlString;\n let requestInit;\n if (typeof url === \"string\") {\n urlString = url;\n } else {\n urlString = url.url;\n requestInit = getRequestInitFromRequest(url);\n }\n const response = await (fetchFunc || util_exports.fetch)(urlString, requestInit);\n if (response.ok) {\n const uint8Array = new Uint8Array(await response.arrayBuffer());\n return new FileChunkIterator(uint8Array, options);\n } else {\n throw new Error(response.statusText);\n }\n}\nvar getRequestInitFromRequest = (request) => {\n const init2 = {\n method: request.method,\n headers: request.headers,\n body: request.body,\n mode: request.mode,\n credentials: request.credentials,\n cache: request.cache,\n redirect: request.redirect,\n referrer: request.referrer,\n integrity: request.integrity\n };\n return init2;\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/source_util.js\nfunction isLocalPath(source) {\n return typeof source === \"string\" && source.slice(0, 7) === \"file://\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/sources/file_data_source.js\nvar FileDataSource = class extends DataSource {\n constructor(input2, options = {}) {\n super();\n this.input = input2;\n this.options = options;\n }\n async iterator() {\n if (isLocalPath(this.input) && env().get(\"IS_NODE\")) {\n const fs = require_fs();\n this.input = fs.readFileSync(this.input.slice(7));\n }\n return new FileChunkIterator(this.input, this.options);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/sources/url_data_source.js\nvar URLDataSource = class extends DataSource {\n constructor(url, fileOptions = {}) {\n super();\n this.url = url;\n this.fileOptions = fileOptions;\n }\n async iterator() {\n if (isLocalPath(this.url)) {\n return new FileDataSource(this.url, this.fileOptions).iterator();\n } else {\n return urlChunkIterator(this.url, this.fileOptions);\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/readers.js\nfunction csv(source, csvConfig = {}) {\n return new CSVDataset(new URLDataSource(source), csvConfig);\n}\nfunction func(f) {\n const iter = iteratorFromFunction(f);\n return datasetFromIteratorFn(async () => iter);\n}\nfunction generator(generator2) {\n return datasetFromIteratorFn(async () => {\n const gen = await generator2();\n return iteratorFromFunction(() => gen.next());\n });\n}\nasync function webcam(webcamVideoElement, webcamConfig) {\n return WebcamIterator.create(webcamVideoElement, webcamConfig);\n}\nasync function microphone(microphoneConfig) {\n return MicrophoneIterator.create(microphoneConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/version.js\nvar version4 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/cpu_util.js\nfunction assertNotComplex(tensor2, opName) {\n if (!Array.isArray(tensor2)) {\n tensor2 = [tensor2];\n }\n tensor2.forEach((t2) => {\n if (t2 != null) {\n util_exports.assert(t2.dtype !== \"complex64\", () => `${opName} does not support complex64 tensors in the CPU backend.`);\n }\n });\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/backend_cpu.js\nvar whereImpl2 = kernel_impls_exports.whereImpl;\nvar MathBackendCPU = class extends KernelBackend {\n constructor() {\n super();\n this.blockSize = 48;\n this.firstUse = true;\n this.data = new DataStorage(this, engine());\n }\n nextDataId() {\n return MathBackendCPU.nextDataId++;\n }\n write(values, shape, dtype) {\n if (this.firstUse) {\n this.firstUse = false;\n if (env().get(\"IS_NODE\")) {\n backend_util_exports.warn(\"\\n============================\\nHi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details. \\n============================\");\n }\n }\n const dataId = { id: this.nextDataId() };\n this.data.set(dataId, { values, dtype, refCount: 1 });\n return dataId;\n }\n makeTensorInfo(shape, dtype, values) {\n let outId;\n if (dtype === \"string\" && values != null && values.length > 0 && util_exports.isString(values[0])) {\n const encodedValues = values.map((d) => util_exports.encodeString(d));\n outId = this.write(encodedValues, shape, dtype);\n } else {\n outId = this.write(values, shape, dtype);\n }\n return { dataId: outId, shape, dtype };\n }\n refCount(dataId) {\n if (this.data.has(dataId)) {\n const tensorData = this.data.get(dataId);\n return tensorData.refCount;\n }\n return 0;\n }\n incRef(dataId) {\n const tensorData = this.data.get(dataId);\n tensorData.refCount++;\n }\n decRef(dataId) {\n if (this.data.has(dataId)) {\n const tensorData = this.data.get(dataId);\n tensorData.refCount--;\n }\n }\n move(dataId, values, shape, dtype, refCount) {\n this.data.set(dataId, { values, dtype, refCount });\n }\n numDataIds() {\n return this.data.numDataIds();\n }\n async read(dataId) {\n return this.readSync(dataId);\n }\n readSync(dataId) {\n const { dtype, complexTensorInfos } = this.data.get(dataId);\n if (dtype === \"complex64\") {\n const realValues = this.readSync(complexTensorInfos.real.dataId);\n const imagValues = this.readSync(complexTensorInfos.imag.dataId);\n return backend_util_exports.mergeRealAndImagArrays(realValues, imagValues);\n }\n return this.data.get(dataId).values;\n }\n bufferSync(t2) {\n const data = this.readSync(t2.dataId);\n if (t2.dtype === \"string\") {\n try {\n const strings = data.map((d) => util_exports.decodeString(d));\n return buffer(t2.shape, t2.dtype, strings);\n } catch (_a) {\n throw new Error(\"Failed to decode encoded string bytes into utf-8\");\n }\n }\n return buffer(t2.shape, t2.dtype, data);\n }\n makeOutput(values, shape, dtype) {\n return engine().makeTensorFromTensorInfo(this.makeTensorInfo(shape, dtype, values), this);\n }\n disposeData(dataId, force = false) {\n if (this.data.has(dataId)) {\n this.data.get(dataId).refCount--;\n if (!force && this.data.get(dataId).refCount > 0) {\n return false;\n }\n const { complexTensorInfos } = this.data.get(dataId);\n if (complexTensorInfos != null) {\n this.disposeData(complexTensorInfos.real.dataId, true);\n this.disposeData(complexTensorInfos.imag.dataId, true);\n }\n this.data.delete(dataId);\n }\n return true;\n }\n disposeIntermediateTensorInfo(tensorInfo) {\n this.disposeData(tensorInfo.dataId);\n }\n async time(f) {\n const start = util_exports.now();\n f();\n const kernelMs = util_exports.now() - start;\n return { kernelMs };\n }\n memory() {\n return {\n unreliable: true,\n reasons: [\"The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less.\"]\n };\n }\n where(condition) {\n assertNotComplex([condition], \"where\");\n const condVals = this.readSync(condition.dataId);\n return whereImpl2(condition.shape, condVals);\n }\n dispose() {\n }\n floatPrecision() {\n return 32;\n }\n epsilon() {\n return super.epsilon();\n }\n};\nMathBackendCPU.nextDataId = 0;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/shared.js\nvar shared_exports = {};\n__export(shared_exports, {\n addImpl: () => addImpl,\n bincountImpl: () => bincountImpl,\n bincountReduceImpl: () => bincountReduceImpl,\n castImpl: () => castImpl,\n ceilImpl: () => ceilImpl,\n concatImpl: () => concatImpl,\n equalImpl: () => equalImpl,\n expImpl: () => expImpl,\n expm1Impl: () => expm1Impl,\n floorImpl: () => floorImpl,\n gatherNdImpl: () => gatherNdImpl,\n gatherV2Impl: () => gatherV2Impl,\n greaterEqualImpl: () => greaterEqualImpl,\n greaterImpl: () => greaterImpl,\n lessEqualImpl: () => lessEqualImpl,\n lessImpl: () => lessImpl,\n linSpaceImpl: () => linSpaceImpl,\n logImpl: () => logImpl,\n maxImpl: () => maxImpl,\n maximumImpl: () => maximumImpl,\n minimumImpl: () => minimumImpl,\n multiplyImpl: () => multiplyImpl,\n negImpl: () => negImpl,\n notEqualImpl: () => notEqualImpl,\n prodImpl: () => prodImpl,\n raggedTensorToTensorImpl: () => raggedTensorToTensorImpl,\n rangeImpl: () => rangeImpl,\n rsqrtImpl: () => rsqrtImpl,\n scatterImpl: () => scatterImpl,\n sigmoidImpl: () => sigmoidImpl,\n simpleAbsImpl: () => simpleAbsImpl,\n sliceImpl: () => sliceImpl,\n sparseFillEmptyRowsImpl: () => sparseFillEmptyRowsImpl,\n sparseReshapeImpl: () => sparseReshapeImpl,\n sparseSegmentReductionImpl: () => sparseSegmentReductionImpl,\n sqrtImpl: () => sqrtImpl,\n squaredDifferenceImpl: () => squaredDifferenceImpl,\n stridedSliceImpl: () => stridedSliceImpl,\n stringNGramsImpl: () => stringNGramsImpl,\n stringSplitImpl: () => stringSplitImpl,\n stringToHashBucketFastImpl: () => stringToHashBucketFastImpl,\n subImpl: () => subImpl,\n tileImpl: () => tileImpl,\n topKImpl: () => topKImpl,\n transposeImpl: () => transposeImpl,\n uniqueImpl: () => uniqueImpl\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Abs.js\nfunction simpleAbsImpl(vals) {\n const resultValues = new Float32Array(vals.length);\n for (let i2 = 0; i2 < vals.length; ++i2) {\n resultValues[i2] = Math.abs(vals[i2]);\n }\n return resultValues;\n}\nvar abs2 = (args) => {\n const { x } = args.inputs;\n const cpuBackend = args.backend;\n assertNotComplex(x, \"abs\");\n let resultValues = new Float32Array(util_exports.sizeFromShape(x.shape));\n const values = cpuBackend.data.get(x.dataId).values;\n resultValues = simpleAbsImpl(values);\n return cpuBackend.makeOutput(resultValues, x.shape, x.dtype);\n};\nvar absConfig = {\n kernelName: Abs,\n backendName: \"cpu\",\n kernelFunc: abs2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/binary_impl.js\nfunction createSimpleBinaryKernelImpl(op2) {\n return (aShape, bShape, aVals, bVals, dtype) => {\n const newShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n const resultRank = newShape.length;\n const resultStrides = util_exports.computeStrides(newShape);\n const resultSize = util_exports.sizeFromShape(newShape);\n const result = util_exports.getTypedArrayFromDType(dtype, resultSize);\n const aRank = aShape.length;\n const bRank = bShape.length;\n const aStrides = util_exports.computeStrides(aShape);\n const bStrides = util_exports.computeStrides(bShape);\n const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, newShape);\n const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, newShape);\n if (aBroadcastDims.length + bBroadcastDims.length === 0) {\n for (let i2 = 0; i2 < result.length; ++i2) {\n result[i2] = op2(aVals[i2 % aVals.length], bVals[i2 % bVals.length]);\n }\n } else {\n for (let i2 = 0; i2 < result.length; ++i2) {\n const loc = util_exports.indexToLoc(i2, resultRank, resultStrides);\n const aLoc = loc.slice(-aRank);\n aBroadcastDims.forEach((d) => aLoc[d] = 0);\n const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides);\n const bLoc = loc.slice(-bRank);\n bBroadcastDims.forEach((d) => bLoc[d] = 0);\n const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides);\n result[i2] = op2(aVals[aIndex], bVals[bIndex]);\n }\n }\n return [result, newShape];\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Complex.js\nfunction complex2(args) {\n const { inputs, backend: backend2 } = args;\n const { real: real6, imag: imag5 } = inputs;\n const realVals = backend2.data.get(real6.dataId).values;\n const imagVals = backend2.data.get(imag5.dataId).values;\n const complexInfo = backend2.makeTensorInfo(real6.shape, \"complex64\");\n const complex6 = backend2.data.get(complexInfo.dataId);\n complex6.complexTensorInfos = {\n real: backend2.makeTensorInfo(real6.shape, \"float32\", realVals),\n imag: backend2.makeTensorInfo(imag5.shape, \"float32\", imagVals)\n };\n return complexInfo;\n}\nvar complexConfig = {\n kernelName: Complex,\n backendName: \"cpu\",\n kernelFunc: complex2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/zeros_impl.js\nfunction zeros3(backend2, shape, dtype = \"float32\") {\n if (dtype === \"complex64\") {\n const real6 = zeros3(backend2, shape, \"float32\");\n const imag5 = zeros3(backend2, shape, \"float32\");\n return complex2({ inputs: { real: real6, imag: imag5 }, backend: backend2 });\n }\n const values = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(shape), dtype);\n return backend2.makeTensorInfo(shape, dtype, values);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Identity.js\nfunction identity2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n backend2.incRef(x.dataId);\n return { dataId: x.dataId, shape: x.shape, dtype: x.dtype };\n}\nvar identityConfig = {\n kernelName: Identity,\n backendName: \"cpu\",\n kernelFunc: identity2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Real.js\nfunction real2(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const real6 = backend2.data.get(input2.dataId).complexTensorInfos.real;\n const realVal = backend2.data.get(real6.dataId).values;\n return backend2.makeTensorInfo(real6.shape, real6.dtype, realVal);\n}\nvar realConfig = {\n kernelName: Real,\n backendName: \"cpu\",\n kernelFunc: real2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cast.js\nfunction castImpl(values, shape, inputType, dtype) {\n if (dtype === \"int32\") {\n const resultValues = Int32Array.from(values);\n return [shape, \"int32\", resultValues];\n }\n if (dtype === \"bool\") {\n const zero = util_exports.toTypedArray([0], inputType);\n const [resultData, resultShape] = createSimpleBinaryKernelImpl((a, b) => a !== b ? 1 : 0)(shape, [], values, zero, \"bool\");\n return [resultShape, \"bool\", resultData];\n }\n throw new Error(`Error in Cast: failed to cast ${inputType} to ${dtype}`);\n}\nfunction cast3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dtype } = attrs;\n if (dtype === \"complex64\") {\n if (x.dtype === \"complex64\") {\n return identity2({ inputs: { x }, backend: backend2 });\n }\n const zerosTensorInfo = zeros3(backend2, x.shape, x.dtype);\n const floatX = cast3({ inputs: { x }, backend: backend2, attrs: { dtype: \"float32\" } });\n const result = complex2({ inputs: { real: floatX, imag: zerosTensorInfo }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(zerosTensorInfo);\n backend2.disposeIntermediateTensorInfo(floatX);\n return result;\n }\n if (x.dtype === \"complex64\") {\n const realPart = real2({ inputs: { input: x }, backend: backend2 });\n const result = cast3({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } });\n backend2.disposeIntermediateTensorInfo(realPart);\n return result;\n }\n if (!util_exports.hasEncodingLoss(x.dtype, dtype)) {\n const result = identity2({ inputs: { x }, backend: backend2 });\n return { dataId: result.dataId, shape: result.shape, dtype };\n }\n const values = backend2.data.get(x.dataId).values;\n const [resultShape, resultType, resultData] = castImpl(values, x.shape, x.dtype, dtype);\n return backend2.makeTensorInfo(resultShape, resultType, resultData);\n}\nvar castConfig = {\n kernelName: Cast,\n backendName: \"cpu\",\n kernelFunc: cast3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/binary_utils.js\nfunction binaryKernelFunc(name, simpleImpl, complexImpl, dtype) {\n if (complexImpl == null) {\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const cpuBackend = backend2;\n assertNotComplex([a, b], name);\n const aVals = cpuBackend.data.get(a.dataId).values;\n const bVals = cpuBackend.data.get(b.dataId).values;\n const decodedAVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals;\n const decodedBVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals;\n const $dtype = dtype || a.dtype;\n const [resultData, resultShape] = simpleImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype);\n return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData);\n };\n }\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const cpuBackend = backend2;\n if (a.dtype === \"complex64\" || b.dtype === \"complex64\") {\n const $aComplex = cast3({ inputs: { x: a }, backend: cpuBackend, attrs: { dtype: \"complex64\" } });\n const $aComplexVals = cpuBackend.data.get($aComplex.dataId);\n const aReal = $aComplexVals.complexTensorInfos.real;\n const aImag = $aComplexVals.complexTensorInfos.imag;\n const aRealVals = cpuBackend.data.get(aReal.dataId).values;\n const aImagVals = cpuBackend.data.get(aImag.dataId).values;\n const $bComplex = cast3({ inputs: { x: b }, backend: cpuBackend, attrs: { dtype: \"complex64\" } });\n const $bComplexVals = cpuBackend.data.get($bComplex.dataId);\n const bReal = $bComplexVals.complexTensorInfos.real;\n const bImag = $bComplexVals.complexTensorInfos.imag;\n const bRealVals = cpuBackend.data.get(bReal.dataId).values;\n const bImagVals = cpuBackend.data.get(bImag.dataId).values;\n const [resultRealData, resultImagData, resultShape] = complexImpl(a.shape, b.shape, aRealVals, aImagVals, bRealVals, bImagVals);\n const resultReal = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultRealData);\n const resultImag = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultImagData);\n const result = complex2({ inputs: { real: resultReal, imag: resultImag }, backend: cpuBackend });\n cpuBackend.disposeIntermediateTensorInfo($aComplex);\n cpuBackend.disposeIntermediateTensorInfo($bComplex);\n cpuBackend.disposeIntermediateTensorInfo(resultReal);\n cpuBackend.disposeIntermediateTensorInfo(resultImag);\n return result;\n } else {\n const aVals = cpuBackend.data.get(a.dataId).values;\n const bVals = cpuBackend.data.get(b.dataId).values;\n const $dtype = dtype || a.dtype;\n const [resultData, resultShape] = simpleImpl(a.shape, b.shape, aVals, bVals, $dtype);\n return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData);\n }\n };\n}\nfunction createComplexBinaryKernelImpl(op2) {\n return (aShape, bShape, aRealVals, aImagVals, bRealVals, bImagVals) => {\n const resultShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n const resultSize = util_exports.sizeFromShape(resultShape);\n const resultRank = resultShape.length;\n const resultStrides = util_exports.computeStrides(resultShape);\n const resultRealVals = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n const resultImagVals = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, resultShape);\n const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, resultShape);\n const aVals = backend_util_exports.mergeRealAndImagArrays(aRealVals, aImagVals);\n const bVals = backend_util_exports.mergeRealAndImagArrays(bRealVals, bImagVals);\n const aRank = aShape.length;\n const aStrides = util_exports.computeStrides(aShape);\n const bRank = bShape.length;\n const bStrides = util_exports.computeStrides(bShape);\n if (aBroadcastDims.length + bBroadcastDims.length === 0) {\n for (let i2 = 0; i2 < resultRealVals.length; i2++) {\n const aIdx = i2 % aVals.length;\n const bIdx = i2 % bVals.length;\n const result = op2(aVals[aIdx * 2], aVals[aIdx * 2 + 1], bVals[bIdx * 2], bVals[bIdx * 2 + 1]);\n resultRealVals[i2] = result.real;\n resultImagVals[i2] = result.imag;\n }\n } else {\n for (let i2 = 0; i2 < resultRealVals.length; i2++) {\n const loc = util_exports.indexToLoc(i2, resultRank, resultStrides);\n const aLoc = loc.slice(-aRank);\n aBroadcastDims.forEach((d) => aLoc[d] = 0);\n const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides);\n const bLoc = loc.slice(-bRank);\n bBroadcastDims.forEach((d) => bLoc[d] = 0);\n const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides);\n const opResult = op2(aVals[aIndex * 2], aVals[aIndex * 2 + 1], bVals[bIndex * 2], bVals[bIndex * 2 + 1]);\n resultRealVals[i2] = opResult.real;\n resultImagVals[i2] = opResult.imag;\n }\n }\n return [resultRealVals, resultImagVals, resultShape];\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Add.js\nvar addImpl = createSimpleBinaryKernelImpl((a, b) => a + b);\nvar addComplexImpl = createComplexBinaryKernelImpl((aReal, aImag, bReal, bImag) => {\n return { real: aReal + bReal, imag: aImag + bImag };\n});\nvar add4 = binaryKernelFunc(Add, addImpl, addComplexImpl);\nvar addConfig = {\n kernelName: Add,\n backendName: \"cpu\",\n kernelFunc: add4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Bincount_impl.js\nfunction bincountImpl(xVals, weightsVals, weightsDtype, weightsShape, size) {\n const weightsSize = util_exports.sizeFromShape(weightsShape);\n const outVals = util_exports.makeZerosTypedArray(size, weightsDtype);\n for (let i2 = 0; i2 < xVals.length; i2++) {\n const value = xVals[i2];\n if (value < 0) {\n throw new Error(\"Input x must be non-negative!\");\n }\n if (value >= size) {\n continue;\n }\n if (weightsSize > 0) {\n outVals[value] += weightsVals[i2];\n } else {\n outVals[value] += 1;\n }\n }\n return outVals;\n}\nfunction bincountReduceImpl(xBuf, weightsBuf, size, binaryOutput = false) {\n const numRows = xBuf.shape[0];\n const numCols = xBuf.shape[1];\n const outBuf = buffer([numRows, size], weightsBuf.dtype);\n for (let i2 = 0; i2 < numRows; i2++) {\n for (let j = 0; j < numCols; j++) {\n const value = xBuf.get(i2, j);\n if (value < 0) {\n throw new Error(\"Input x must be non-negative!\");\n }\n if (value >= size) {\n continue;\n }\n if (binaryOutput) {\n outBuf.set(1, i2, value);\n } else {\n if (weightsBuf.size > 0) {\n outBuf.set(outBuf.get(i2, value) + weightsBuf.get(i2, j), i2, value);\n } else {\n outBuf.set(outBuf.get(i2, value) + 1, i2, value);\n }\n }\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/unary_impl.js\nfunction createSimpleUnaryImpl(op2) {\n return (values, dtype, attrs) => {\n const newValues = util_exports.getTypedArrayFromDType(dtype, values.length);\n for (let i2 = 0; i2 < values.length; ++i2) {\n newValues[i2] = op2(values[i2], attrs);\n }\n return newValues;\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/unary_utils.js\nfunction unaryKernelFunc(name, op2, dtype) {\n return ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n assertNotComplex(x, name);\n if (x.dtype === \"string\" || dtype === \"string\") {\n throw new Error(\"unaryKernelFunc does not support string input/output\");\n }\n const cpuBackend = backend2;\n const values = cpuBackend.data.get(x.dataId).values;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $dtype = dtype || x.dtype;\n const newValues = util_exports.getArrayFromDType($dtype, xSize);\n for (let i2 = 0; i2 < xSize; ++i2) {\n newValues[i2] = op2(values[i2], attrs);\n }\n return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues);\n };\n}\nfunction unaryKernelFuncFromImpl(name, unaryImpl, dtype) {\n return ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n assertNotComplex(x, name);\n if (x.dtype === \"string\" || dtype === \"string\") {\n throw new Error(\"unaryKernelFunc does not support string input/output\");\n }\n const cpuBackend = backend2;\n const values = cpuBackend.data.get(x.dataId).values;\n const $dtype = dtype || x.dtype;\n const newValues = unaryImpl(values, $dtype, attrs);\n return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues);\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Ceil.js\nvar ceilImpl = createSimpleUnaryImpl((xi) => Math.ceil(xi));\nvar ceil2 = unaryKernelFuncFromImpl(Ceil, ceilImpl);\nvar ceilConfig = {\n kernelName: Ceil,\n backendName: \"cpu\",\n kernelFunc: ceil2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Concat_impl.js\nfunction concatImpl(inputs, outShape, dtype, simplyConcat) {\n const outVals = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(outShape));\n if (simplyConcat && dtype !== \"string\") {\n let offset = 0;\n inputs.forEach((input2) => {\n const size = util_exports.sizeFromShape(input2.shape);\n outVals.set(input2.vals, offset);\n offset += size;\n });\n } else {\n let colOffset = 0;\n inputs.forEach((input2) => {\n const decodedData = dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(input2.vals) : input2.vals;\n let tIdx = 0;\n for (let row = 0; row < input2.shape[0]; ++row) {\n const resIdx = row * outShape[1] + colOffset;\n for (let col = 0; col < input2.shape[1]; ++col) {\n outVals[resIdx + col] = decodedData[tIdx++];\n }\n }\n colOffset += input2.shape[1];\n });\n }\n return outVals;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Equal.js\nvar equalImpl = createSimpleBinaryKernelImpl((a, b) => a === b ? 1 : 0);\nvar equal2 = binaryKernelFunc(Equal, equalImpl, null, \"bool\");\nvar equalConfig = {\n kernelName: Equal,\n backendName: \"cpu\",\n kernelFunc: equal2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Exp.js\nvar expImpl = createSimpleUnaryImpl((xi) => Math.exp(xi));\nvar exp2 = unaryKernelFuncFromImpl(Exp, expImpl, \"float32\");\nvar expConfig = {\n kernelName: Exp,\n backendName: \"cpu\",\n kernelFunc: exp2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Expm1.js\nvar expm1Impl = createSimpleUnaryImpl((xi) => Math.expm1(xi));\nvar expm12 = unaryKernelFuncFromImpl(Expm1, expm1Impl);\nvar expm1Config = {\n kernelName: Expm1,\n backendName: \"cpu\",\n kernelFunc: expm12\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Floor.js\nvar floorImpl = createSimpleUnaryImpl((xi) => Math.floor(xi));\nvar floor2 = unaryKernelFuncFromImpl(Floor, floorImpl);\nvar floorConfig = {\n kernelName: Floor,\n backendName: \"cpu\",\n kernelFunc: floor2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherNd_Impl.js\nfunction gatherNdImpl(indicesData, paramsBuf, dtype, numSlices, sliceRank, sliceSize, strides, paramsShape, paramsSize) {\n const outBuf = buffer([numSlices, sliceSize], dtype);\n for (let i2 = 0; i2 < numSlices; i2++) {\n const index = [];\n let flattenIndex = 0;\n for (let j = 0; j < sliceRank; j++) {\n const dim = indicesData[i2 * sliceRank + j];\n flattenIndex += dim * strides[j];\n index.push(dim);\n }\n if (flattenIndex < 0 || flattenIndex >= paramsSize / sliceSize) {\n throw new Error(`Invalid indices: ${index} does not index into ${paramsShape}`);\n }\n for (let k = 0; k < sliceSize; k++) {\n outBuf.values[i2 * sliceSize + k] = paramsBuf.get(...paramsBuf.indexToLoc(flattenIndex * sliceSize + k));\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherV2_impl.js\nfunction gatherV2Impl(xBuf, indicesBuf, flattenOutputShape) {\n const outBuf = buffer(flattenOutputShape, xBuf.dtype);\n for (let i2 = 0; i2 < outBuf.size; ++i2) {\n const newLoc = outBuf.indexToLoc(i2);\n const originalLoc = newLoc.slice();\n const batchIdx = originalLoc[0];\n const indicesIdx = originalLoc[2];\n const indicesIndex = indicesBuf.locToIndex([batchIdx, indicesIdx]);\n originalLoc[2] = indicesBuf.values[indicesIndex];\n const originalIndex = xBuf.locToIndex(originalLoc);\n if (0 <= originalIndex && originalIndex < xBuf.values.length) {\n outBuf.values[i2] = xBuf.values[originalIndex];\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Greater.js\nvar greaterImpl = createSimpleBinaryKernelImpl((a, b) => a > b ? 1 : 0);\nvar greater3 = binaryKernelFunc(Greater, greaterImpl, null, \"bool\");\nvar greaterConfig = {\n kernelName: Greater,\n backendName: \"cpu\",\n kernelFunc: greater3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GreaterEqual.js\nvar greaterEqualImpl = createSimpleBinaryKernelImpl((a, b) => a >= b ? 1 : 0);\nvar greaterEqual2 = binaryKernelFunc(GreaterEqual, greaterEqualImpl, null, \"bool\");\nvar greaterEqualConfig = {\n kernelName: GreaterEqual,\n backendName: \"cpu\",\n kernelFunc: greaterEqual2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Less.js\nvar lessImpl = createSimpleBinaryKernelImpl((a, b) => a < b ? 1 : 0);\nvar less3 = binaryKernelFunc(Less, lessImpl, null, \"bool\");\nvar lessConfig = {\n kernelName: Less,\n backendName: \"cpu\",\n kernelFunc: less3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LessEqual.js\nvar lessEqualImpl = createSimpleBinaryKernelImpl((a, b) => a <= b ? 1 : 0);\nvar lessEqual2 = binaryKernelFunc(LessEqual, lessEqualImpl, null, \"bool\");\nvar lessEqualConfig = {\n kernelName: LessEqual,\n backendName: \"cpu\",\n kernelFunc: lessEqual2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LinSpace_impl.js\nfunction linSpaceImpl(start, stop, num) {\n const step5 = (stop - start) / (num - 1);\n const values = util_exports.makeZerosTypedArray(num, \"float32\");\n values[0] = start;\n for (let i2 = 1; i2 < values.length; i2++) {\n values[i2] = values[i2 - 1] + step5;\n }\n return values;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Log.js\nvar logImpl = createSimpleUnaryImpl((xi) => Math.log(xi));\nvar log3 = unaryKernelFuncFromImpl(Log, logImpl);\nvar logConfig = {\n kernelName: Log,\n backendName: \"cpu\",\n kernelFunc: log3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Max_impl.js\nfunction maxImpl(aVals, reduceSize, outShape, dtype) {\n const vals = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(outShape));\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let max7 = aVals[offset];\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n if (Number.isNaN(value) || value > max7) {\n max7 = value;\n }\n }\n vals[i2] = max7;\n }\n return vals;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Maximum.js\nvar maximumImpl = createSimpleBinaryKernelImpl((aValue, bValue) => Math.max(aValue, bValue));\nvar maximum3 = binaryKernelFunc(Maximum, maximumImpl);\nvar maximumConfig = {\n kernelName: Maximum,\n backendName: \"cpu\",\n kernelFunc: maximum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Minimum.js\nvar minimumImpl = createSimpleBinaryKernelImpl((aValue, bValue) => Math.min(aValue, bValue));\nvar minimum3 = binaryKernelFunc(Minimum, minimumImpl);\nvar minimumConfig = {\n kernelName: Minimum,\n backendName: \"cpu\",\n kernelFunc: minimum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Multiply.js\nvar multiplyImpl = createSimpleBinaryKernelImpl((aValue, bValue) => aValue * bValue);\nvar multiplyComplexImpl = createComplexBinaryKernelImpl((aReal, aImag, bReal, bImag) => {\n return {\n real: aReal * bReal - aImag * bImag,\n imag: aReal * bImag + aImag * bReal\n };\n});\nvar multiply2 = binaryKernelFunc(Multiply, multiplyImpl, multiplyComplexImpl);\nvar multiplyConfig = {\n kernelName: Multiply,\n backendName: \"cpu\",\n kernelFunc: multiply2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Neg.js\nfunction negImpl(xVals, xShape, xDtype) {\n const minusOne = util_exports.createScalarValue(-1, xDtype);\n return multiplyImpl([], xShape, minusOne, xVals, xDtype);\n}\nfunction neg2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n assertNotComplex(x, \"neg\");\n const xVals = backend2.data.get(x.dataId).values;\n const [res, newShape] = negImpl(xVals, x.shape, x.dtype);\n return backend2.makeTensorInfo(newShape, x.dtype, res);\n}\nvar negConfig = {\n kernelName: Neg,\n backendName: \"cpu\",\n kernelFunc: neg2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NotEqual.js\nvar notEqualImpl = createSimpleBinaryKernelImpl((a, b) => a !== b ? 1 : 0);\nvar notEqual2 = binaryKernelFunc(NotEqual, notEqualImpl, null, \"bool\");\nvar notEqualConfig = {\n kernelName: NotEqual,\n backendName: \"cpu\",\n kernelFunc: notEqual2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Transpose_impl.js\nfunction transposeImpl(xVals, xShape, dtype, perm, newShape) {\n const xRank = xShape.length;\n const xSize = util_exports.sizeFromShape(xShape);\n const xStrides = util_exports.computeStrides(xShape);\n const newStrides = util_exports.computeStrides(newShape);\n const result = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(newShape));\n for (let i2 = 0; i2 < xSize; ++i2) {\n const loc = util_exports.indexToLoc(i2, xRank, xStrides);\n const newLoc = new Array(loc.length);\n for (let i3 = 0; i3 < newLoc.length; i3++) {\n newLoc[i3] = loc[perm[i3]];\n }\n const newIndex = util_exports.locToIndex(newLoc, xRank, newStrides);\n result[newIndex] = xVals[i2];\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Transpose.js\nfunction transpose2(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x } = inputs;\n const { perm } = attrs;\n assertNotComplex(x, \"transpose\");\n const xRank = x.shape.length;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[perm[i2]];\n }\n const values = backend2.data.get(x.dataId).values;\n const result = transposeImpl(values, x.shape, x.dtype, perm, newShape);\n const dataId = backend2.write(result, newShape, x.dtype);\n return { dataId, shape: newShape, dtype: x.dtype };\n}\nvar transposeConfig = {\n kernelName: Transpose,\n backendName: \"cpu\",\n kernelFunc: transpose2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Prod.js\nfunction prodImpl(xShape, xDtype, xVals, reductionAxes) {\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(xShape, reductionAxes);\n const outDtype = upcastType(xDtype, \"int32\");\n const outVals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), outDtype);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n for (let i2 = 0; i2 < outVals.length; ++i2) {\n const offset = i2 * reduceSize;\n let prod6 = 1;\n for (let j = 0; j < reduceSize; ++j) {\n prod6 *= xVals[offset + j];\n }\n outVals[i2] = prod6;\n }\n return { outVals, outShape, outDtype };\n}\nfunction prod2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"prod\");\n const xRank = x.shape.length;\n const axes = util_exports.parseAxisParam(axis, x.shape);\n const permutation = backend_util_exports.getAxesPermutation(axes, xRank);\n let reductionAxes = axes;\n let permutedX = x;\n const intermediateTensorInfos = [];\n if (permutation != null) {\n permutedX = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n intermediateTensorInfos.push(permutedX);\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, xRank);\n }\n const xVals = backend2.data.get(permutedX.dataId).values;\n const { outVals, outShape, outDtype } = prodImpl(permutedX.shape, permutedX.dtype, xVals, reductionAxes);\n let resultShape = outShape;\n if (keepDims) {\n resultShape = backend_util_exports.expandShapeToKeepDim(outShape, axes);\n }\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return backend2.makeTensorInfo(resultShape, outDtype, outVals);\n}\nvar prodConfig = {\n kernelName: Prod,\n backendName: \"cpu\",\n kernelFunc: prod2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/RaggedTensorToTensor_impl.js\nvar RowPartitionType2 = backend_util_exports.RowPartitionType;\nvar RaggedTensorToTensorOp = class {\n constructor(shape, shapeShape, values, valuesShape, valuesDType, defaultValue, defaultValueShape, rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypeStrings) {\n this.shape = shape;\n this.shapeShape = shapeShape;\n this.values = values;\n this.valuesShape = valuesShape;\n this.valuesDType = valuesDType;\n this.defaultValue = defaultValue;\n this.defaultValueShape = defaultValueShape;\n this.rowPartitionValues = rowPartitionValues;\n this.rowPartitionValuesShapes = rowPartitionValuesShapes;\n this.rowPartitionTypes = backend_util_exports.getRowPartitionTypesHelper(rowPartitionTypeStrings);\n this.raggedRank = backend_util_exports.getRaggedRank(this.rowPartitionTypes);\n }\n getRowPartitionTypeByDimension(dimension) {\n if (this.rowPartitionTypes[0] === RowPartitionType2.FIRST_DIM_SIZE) {\n return this.rowPartitionTypes[dimension + 1];\n } else {\n return this.rowPartitionTypes[dimension];\n }\n }\n getRowPartitionTensor(dimension) {\n if (this.rowPartitionTypes[0] === RowPartitionType2.FIRST_DIM_SIZE) {\n return this.rowPartitionValues[dimension + 1];\n } else {\n return this.rowPartitionValues[dimension];\n }\n }\n getMaxWidth(dimension) {\n const rowPartitionTensor = this.getRowPartitionTensor(dimension - 1);\n switch (this.getRowPartitionTypeByDimension(dimension - 1)) {\n case RowPartitionType2.VALUE_ROWIDS:\n return RaggedTensorToTensorOp.getMaxWidthValueRowID(rowPartitionTensor);\n case RowPartitionType2.ROW_SPLITS:\n return RaggedTensorToTensorOp.getMaxWidthRowSplit(rowPartitionTensor);\n default:\n throw new Error(`Cannot handle partition type ${RowPartitionType2[this.getRowPartitionTypeByDimension(dimension - 1)]}`);\n }\n }\n static getMaxWidthRowSplit(rowSplit) {\n const tensorLength = rowSplit.length;\n if (tensorLength === 0 || tensorLength === 1) {\n return 0;\n }\n let maxWidth = 0;\n for (let i2 = 0; i2 < tensorLength - 1; ++i2) {\n const currentWidth = rowSplit[i2 + 1] - rowSplit[i2];\n if (currentWidth > maxWidth) {\n maxWidth = currentWidth;\n }\n }\n return maxWidth;\n }\n static getMaxWidthValueRowID(valueRowIds) {\n const indexLength = valueRowIds.length;\n if (indexLength === 0) {\n return 0;\n }\n let firstEqualIndex = 0;\n let firstEqualIndexValue = valueRowIds[0];\n let maxWidth = 0;\n for (let i2 = 1; i2 < indexLength; ++i2) {\n const value = valueRowIds[i2];\n if (value !== firstEqualIndexValue) {\n firstEqualIndexValue = value;\n maxWidth = Math.max(i2 - firstEqualIndex, maxWidth);\n firstEqualIndex = i2;\n }\n }\n return Math.max(indexLength - firstEqualIndex, maxWidth);\n }\n tensorShapeFromTensor(t2, tShape, isPartial = true) {\n if (tShape.length === 0) {\n if (t2[0] === -1) {\n return [];\n }\n throw new Error(`The only valid scalar shape tensor is the fully unknown shape specified as -1.`);\n }\n return makeShape(t2, isPartial);\n }\n calculateOutputSize(firstDim) {\n const valueShape = this.valuesShape;\n const defaultValueShape = this.defaultValueShape;\n backend_util_exports.validateDefaultValueShape(defaultValueShape, valueShape);\n const shape = this.tensorShapeFromTensor(this.shape, this.shapeShape);\n const outputShape = backend_util_exports.combineRaggedTensorToTensorShapes(this.raggedRank, shape, valueShape);\n const result = outputShape;\n if (result[0] < 0) {\n result[0] = firstDim;\n }\n for (let i2 = 1; i2 <= this.raggedRank; ++i2) {\n if (result[i2] < 0) {\n result[i2] = this.getMaxWidth(i2);\n }\n }\n return result;\n }\n calculateFirstParentOutputIndex(firstDimension, outputIndexMultiplier, firstDimensionOutput) {\n const minDimension = Math.min(firstDimension, firstDimensionOutput);\n const result = [];\n let currentOutputIndex = 0;\n for (let i2 = 0; i2 < minDimension; ++i2, currentOutputIndex += outputIndexMultiplier) {\n result.push(currentOutputIndex);\n }\n for (let i2 = minDimension; i2 < firstDimension; ++i2) {\n result.push(-1);\n }\n util_exports.assert(result.length === firstDimension, () => \"Final length of result must be equal to firstDimension.\");\n return result;\n }\n calculateOutputIndexRowSplit(rowSplit, parentOutputIndex, outputIndexMultiplier, outputSize) {\n const rowSplitSize = rowSplit.length;\n const result = [];\n for (let i2 = 0; i2 < rowSplitSize - 1; ++i2) {\n const rowLength = rowSplit[i2 + 1] - rowSplit[i2];\n let realLength = Math.min(outputSize, rowLength);\n let parentOutputIndexCurrent = parentOutputIndex[i2];\n if (parentOutputIndexCurrent === -1) {\n realLength = 0;\n }\n for (let j = 0; j < realLength; ++j) {\n result.push(parentOutputIndexCurrent);\n parentOutputIndexCurrent += outputIndexMultiplier;\n }\n for (let j = 0; j < rowLength - realLength; ++j) {\n result.push(-1);\n }\n }\n if (rowSplitSize > 0 && result.length !== rowSplit[rowSplitSize - 1]) {\n throw new Error(\"Invalid row split size.\");\n }\n return result;\n }\n calculateOutputIndexValueRowID(valueRowIds, parentOutputIndex, outputIndexMultiplier, outputSize) {\n const indexSize = valueRowIds.length;\n const result = [];\n if (indexSize === 0) {\n return [];\n }\n let currentOutputColumn = 0;\n let currentValueRowId = valueRowIds[0];\n if (currentValueRowId >= parentOutputIndex.length) {\n throw new Error(`Got currentValueRowId=${currentValueRowId}, which is not less than ${parentOutputIndex.length}`);\n }\n let currentOutputIndex = parentOutputIndex[currentValueRowId];\n result.push(currentOutputIndex);\n for (let i2 = 1; i2 < indexSize; ++i2) {\n const nextValueRowId = valueRowIds[i2];\n if (nextValueRowId === currentValueRowId) {\n if (currentOutputIndex >= 0) {\n ++currentOutputColumn;\n if (currentOutputColumn < outputSize) {\n currentOutputIndex += outputIndexMultiplier;\n } else {\n currentOutputIndex = -1;\n }\n }\n } else {\n currentOutputColumn = 0;\n currentValueRowId = nextValueRowId;\n if (nextValueRowId >= parentOutputIndex.length) {\n throw new Error(`Got nextValueRowId=${nextValueRowId} which is not less than ${parentOutputIndex.length}`);\n }\n currentOutputIndex = parentOutputIndex[nextValueRowId];\n }\n result.push(currentOutputIndex);\n }\n if (result.length !== valueRowIds.length) {\n throw new Error(\"Invalid row ids.\");\n }\n return result;\n }\n calculateOutputIndex(dimension, parentOutputIndex, outputIndexMultiplier, outputSize) {\n const rowPartitionTensor = this.getRowPartitionTensor(dimension);\n const partitionType = this.getRowPartitionTypeByDimension(dimension);\n switch (partitionType) {\n case RowPartitionType2.VALUE_ROWIDS:\n return this.calculateOutputIndexValueRowID(rowPartitionTensor, parentOutputIndex, outputIndexMultiplier, outputSize);\n case RowPartitionType2.ROW_SPLITS:\n if (rowPartitionTensor.length - 1 > parentOutputIndex.length) {\n throw new Error(`Row partition size is greater than output size: ${rowPartitionTensor.length - 1} > ${parentOutputIndex.length}`);\n }\n return this.calculateOutputIndexRowSplit(rowPartitionTensor, parentOutputIndex, outputIndexMultiplier, outputSize);\n default:\n throw new Error(`Unsupported partition type: ${RowPartitionType2[partitionType]}`);\n }\n }\n getFirstDimensionSize() {\n const firstPartitionTensor = this.rowPartitionValues[0];\n if (this.rowPartitionTypes.length === 0) {\n throw new Error(\"No row_partition_types given.\");\n }\n const firstPartitionType = this.rowPartitionTypes[0];\n switch (firstPartitionType) {\n case RowPartitionType2.FIRST_DIM_SIZE:\n return firstPartitionTensor[0];\n case RowPartitionType2.VALUE_ROWIDS:\n throw new Error(\"Cannot handle VALUE_ROWIDS in first dimension.\");\n case RowPartitionType2.ROW_SPLITS:\n return this.rowPartitionValuesShapes[0][0] - 1;\n default:\n throw new Error(`Cannot handle type ${RowPartitionType2[firstPartitionType]}`);\n }\n }\n compute() {\n const firstPartitionTensor = this.rowPartitionValues[0];\n if (firstPartitionTensor.length <= 0) {\n throw new Error(\"Invalid first partition input. Tensor requires at least one element.\");\n }\n const firstDimension = this.getFirstDimensionSize();\n const outputSize = this.calculateOutputSize(firstDimension);\n const multiplier = new Array(this.raggedRank + 1);\n multiplier[multiplier.length - 1] = 1;\n for (let i2 = multiplier.length - 2; i2 >= 0; --i2) {\n multiplier[i2] = multiplier[i2 + 1] * outputSize[i2 + 1];\n }\n const outputShape = makeShape(outputSize, false);\n const outputTensor = util_exports.getArrayFromDType(this.valuesDType, util_exports.sizeFromShape(outputShape));\n const fullSize = multiplier[0] * outputSize[0];\n if (fullSize > 0) {\n let outputIndex = this.calculateFirstParentOutputIndex(firstDimension, multiplier[0], outputSize[0]);\n for (let i2 = 1; i2 <= this.raggedRank; ++i2) {\n const newOutputIndex = this.calculateOutputIndex(i2 - 1, outputIndex, multiplier[i2], outputSize[i2]);\n outputIndex = newOutputIndex;\n }\n this.setOutput(this.raggedRank, outputIndex, outputTensor, outputShape);\n }\n return [outputShape, outputTensor];\n }\n setOutput(raggedRank, outputIndex, outputTensor, outputShape) {\n if (outputTensor.length === 0) {\n return;\n }\n const valuesBase = this.values;\n const outputBase = outputTensor;\n let elementShape = outputShape.slice();\n elementShape = elementShape.slice(raggedRank + 1);\n const valueElementSize = util_exports.sizeFromShape(elementShape);\n const outputIndexSize = outputIndex.length;\n let defaultValue = this.defaultValue;\n if (defaultValue.length !== valueElementSize && defaultValue.length !== 1) {\n const srcShape = this.defaultValueShape;\n tidy(() => {\n const defaultValueTensor = reshape(defaultValue, srcShape);\n const bCastDefault = broadcastTo(defaultValueTensor, elementShape);\n defaultValue = bCastDefault.dataSync();\n });\n }\n let srcStart = 0;\n let dstStart = 0;\n let dstEnd = 0;\n for (let srcI = 0; srcI <= outputIndexSize; ++srcI) {\n let dstI = srcI < outputIndexSize ? outputIndex[srcI] : -1;\n if (dstI === dstEnd) {\n ++dstEnd;\n continue;\n }\n if (dstStart < dstEnd) {\n const src = valuesBase.subarray(srcStart * valueElementSize);\n const dst = outputBase.subarray(dstStart * valueElementSize);\n const nVals = (dstEnd - dstStart) * valueElementSize;\n copyArray(dst, src, nVals);\n }\n if (srcI >= outputIndexSize) {\n const outputSize = outputTensor.length;\n dstI = Math.floor(outputSize / valueElementSize);\n }\n if (dstI > dstEnd) {\n if (this.defaultValue.length === 1) {\n outputBase.subarray(dstEnd * valueElementSize, dstI * valueElementSize).fill(this.defaultValue[0]);\n dstEnd = dstI;\n } else {\n while (dstI > dstEnd) {\n const dst = outputBase.slice(dstEnd * valueElementSize);\n copyArray(dst, defaultValue, valueElementSize);\n ++dstEnd;\n }\n }\n }\n if (dstI < 0) {\n srcStart = srcI + 1;\n dstStart = dstEnd;\n } else {\n srcStart = srcI;\n dstStart = dstEnd;\n dstEnd = dstStart + 1;\n }\n }\n }\n};\nfunction copyArray(dst, src, size) {\n for (let i2 = 0; i2 < size; i2++) {\n dst[i2] = src[i2];\n }\n}\nfunction makeShape(shape, isPartial) {\n const out = [];\n for (let dim of shape) {\n if (dim < 0) {\n if (!isPartial) {\n throw new Error(`Dimension ${dim} must be >= 0`);\n }\n if (dim < -1) {\n throw new Error(`Dimension ${dim} must be >= -1`);\n }\n dim = -1;\n }\n out.push(dim);\n }\n return out;\n}\nfunction raggedTensorToTensorImpl(shape, shapesShape, values, valuesShape, valuesDType, defaultValue, defaultValueShape, rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypes) {\n return new RaggedTensorToTensorOp(shape, shapesShape, values, valuesShape, valuesDType, defaultValue, defaultValueShape, rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypes).compute();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Range_impl.js\nfunction rangeImpl(start, stop, step5, dtype) {\n const sameStartStop = start === stop;\n const increasingRangeNegativeStep = start < stop && step5 < 0;\n const decreasingRangePositiveStep = stop < start && step5 > 1;\n if (sameStartStop || increasingRangeNegativeStep || decreasingRangePositiveStep) {\n return util_exports.makeZerosTypedArray(0, dtype);\n }\n const numElements = Math.abs(Math.ceil((stop - start) / step5));\n const values = util_exports.makeZerosTypedArray(numElements, dtype);\n if (stop < start && step5 === 1) {\n step5 = -1;\n }\n values[0] = start;\n for (let i2 = 1; i2 < values.length; i2++) {\n values[i2] = values[i2 - 1] + step5;\n }\n return values;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Rsqrt.js\nvar rsqrtImpl = createSimpleUnaryImpl((xi) => 1 / Math.sqrt(xi));\nvar rsqrt2 = unaryKernelFuncFromImpl(Rsqrt, rsqrtImpl);\nvar rsqrtConfig = {\n kernelName: Rsqrt,\n backendName: \"cpu\",\n kernelFunc: rsqrt2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Scatter_impl.js\nfunction scatterImpl(indices, updates, shape, outputSize, sliceSize, numUpdates, sliceRank, strides, defaultValue, sumDupeIndices) {\n const flattenShape = [outputSize / sliceSize, sliceSize];\n const indicesData = indices.values;\n const updatesData = updates.values;\n if (outputSize === 0) {\n return buffer(shape, updates.dtype);\n }\n const outBuf = buffer(flattenShape, updates.dtype);\n if (typeof defaultValue === \"string\") {\n outBuf.values.fill(defaultValue);\n } else if (typeof defaultValue === \"number\") {\n outBuf.values.fill(defaultValue);\n } else if (typeof defaultValue === \"boolean\") {\n outBuf.values.fill(+defaultValue);\n }\n for (let i2 = 0; i2 < numUpdates; i2++) {\n const index = [];\n let flattenIndex = 0;\n for (let j = 0; j < sliceRank; j++) {\n const dim = indicesData[i2 * sliceRank + j];\n index.push(dim);\n flattenIndex += dim * strides[j];\n }\n if (flattenIndex < 0 || flattenIndex >= outputSize / sliceSize) {\n throw new Error(`Invalid indices: ${index} does not index into ${shape}`);\n }\n for (let k = 0; k < sliceSize; k++) {\n if (sumDupeIndices) {\n outBuf.values[flattenIndex * sliceSize + k] += updatesData[i2 * sliceSize + k];\n } else {\n outBuf.values[flattenIndex * sliceSize + k] = updates.rank === 0 ? updatesData[0] : updatesData[i2 * sliceSize + k];\n }\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sigmoid.js\nvar sigmoidImpl = createSimpleUnaryImpl((xi) => 1 / (1 + Math.exp(-xi)));\nvar sigmoid2 = unaryKernelFunc(Sigmoid, (xi) => 1 / (1 + Math.exp(-xi)));\nvar sigmoidConfig = {\n kernelName: Sigmoid,\n backendName: \"cpu\",\n kernelFunc: sigmoid2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Slice.js\nfunction sliceImpl(vals, begin, size, shape, dtype) {\n const isContinous = slice_util_exports.isSliceContinous(shape, begin, size);\n const length = util_exports.sizeFromShape(size);\n const xStrides = util_exports.computeStrides(shape);\n if (isContinous) {\n const flatOffset = slice_util_exports.computeFlatOffset(begin, xStrides);\n if (dtype === \"string\") {\n return vals.slice(flatOffset, flatOffset + length);\n }\n return vals.subarray(flatOffset, flatOffset + length);\n }\n const decodedData = dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(vals) : vals;\n const inBuf = buffer(shape, dtype, decodedData);\n const outBuf = buffer(size, dtype);\n for (let i2 = 0; i2 < outBuf.size; ++i2) {\n const outLoc = outBuf.indexToLoc(i2);\n const inLoc = outLoc.map((idx, j) => idx + begin[j]);\n outBuf.set(inBuf.get(...inLoc), ...outLoc);\n }\n if (dtype === \"string\") {\n return backend_util_exports.fromStringArrayToUint8(outBuf.values);\n }\n return outBuf.values;\n}\nfunction slice2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, size } = attrs;\n assertNotComplex(x, \"slice\");\n const [$begin, $size] = slice_util_exports.parseSliceParams(x, begin, size);\n slice_util_exports.assertParamsValid(x, $begin, $size);\n const vals = backend2.data.get(x.dataId).values;\n const outVals = sliceImpl(vals, $begin, $size, x.shape, x.dtype);\n return backend2.makeTensorInfo($size, x.dtype, outVals);\n}\nvar sliceConfig = {\n kernelName: Slice,\n backendName: \"cpu\",\n kernelFunc: slice2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseFillEmptyRows_impl.js\nfunction sparseFillEmptyRowsImpl(indices, indicesShape, indicesDType, values, valuesDType, denseShape, defaultValue) {\n const indicesCount = indicesShape[0];\n const denseRows = denseShape[0];\n const emptyRowIndicator = new Array(denseRows);\n const reverseIndexMap = new Array(indicesCount);\n const rank = indicesShape[1];\n if (denseRows === 0) {\n if (indicesCount !== 0) {\n throw new Error(backend_util_exports.getSparseFillEmptyRowsIndicesDenseShapeMismatch(indicesCount));\n }\n const outputIndices = util_exports.getArrayFromDType(indicesDType, 0);\n const outputValues = util_exports.getArrayFromDType(valuesDType, 0);\n return [\n outputIndices,\n [0, rank],\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n }\n let rowsAreOrdered = true;\n let lastIndicesRow = 0;\n const csrOffset = new Array(denseRows).fill(0);\n for (let i2 = 0; i2 < indicesCount; ++i2) {\n const row = indices[i2 * rank];\n if (row < 0) {\n throw new Error(backend_util_exports.getSparseFillEmptyRowsNegativeIndexErrorMessage(i2, row));\n }\n if (row >= denseRows) {\n throw new Error(backend_util_exports.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(i2, row, denseRows));\n }\n ++csrOffset[row];\n rowsAreOrdered = rowsAreOrdered && row >= lastIndicesRow;\n lastIndicesRow = row;\n }\n let allRowsFull = true;\n for (let row = 0; row < denseRows; ++row) {\n const rowEmpty = csrOffset[row] === 0;\n emptyRowIndicator[row] = rowEmpty;\n allRowsFull = allRowsFull && !rowEmpty;\n csrOffset[row] = Math.max(csrOffset[row], 1);\n if (row > 0) {\n csrOffset[row] += csrOffset[row - 1];\n }\n }\n if (allRowsFull && rowsAreOrdered) {\n const outputIndices = indices;\n const outputValues = values;\n for (let i2 = 0; i2 < indicesCount; ++i2) {\n reverseIndexMap[i2] = i2;\n }\n return [\n outputIndices,\n [indicesCount, rank],\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n } else {\n const fullIndicesCount = csrOffset[denseRows - 1];\n const outputIndices = util_exports.getArrayFromDType(indicesDType, fullIndicesCount * rank);\n const outputValues = util_exports.getArrayFromDType(valuesDType, fullIndicesCount);\n const filledCount = new Array(denseRows).fill(0);\n for (let i2 = 0; i2 < indicesCount; ++i2) {\n const row = indices[i2 * rank];\n const offset = filledCount[row];\n const outputI = (row === 0 ? 0 : csrOffset[row - 1]) + offset;\n filledCount[row]++;\n for (let j = 0; j < rank; ++j) {\n outputIndices[outputI * rank + j] = indices[i2 * rank + j];\n }\n outputValues[outputI] = values[i2];\n reverseIndexMap[i2] = outputI;\n }\n for (let row = 0; row < denseRows; ++row) {\n const rowCount = filledCount[row];\n if (rowCount === 0) {\n const startingIndex = row === 0 ? 0 : csrOffset[row - 1];\n outputIndices[startingIndex * rank + 0] = row;\n for (let col = 1; col < rank; ++col) {\n outputIndices[startingIndex * rank + col] = 0;\n }\n outputValues[startingIndex] = defaultValue;\n }\n }\n return [\n outputIndices,\n [fullIndicesCount, rank],\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseReshape_impl.js\nfunction sparseReshapeImpl(inputIndices, inputIndicesShape, inputDType, inputShape, targetShape) {\n const denseSize = util_exports.sizeFromShape(inputShape);\n const nnz = inputIndicesShape[0];\n const outputRank = targetShape.length;\n const outputShape = [];\n let product = 1;\n let unknownIndex = -1;\n for (let d = 0; d < outputRank; ++d) {\n const size = targetShape[d];\n if (size === -1) {\n if (unknownIndex !== -1) {\n throw new Error(backend_util_exports.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(unknownIndex, d));\n }\n unknownIndex = d;\n outputShape.push(1);\n } else {\n if (size < 0) {\n throw new Error(backend_util_exports.getSparseReshapeNegativeOutputDimErrorMessage(d, size));\n }\n product *= size;\n outputShape.push(size);\n }\n }\n if (unknownIndex !== -1) {\n if (product <= 0) {\n throw new Error(backend_util_exports.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());\n }\n const missing = Math.trunc(denseSize / product);\n if (product * missing !== denseSize) {\n throw new Error(backend_util_exports.getSparseReshapeInputOutputMultipleErrorMessage(inputShape, outputShape));\n }\n outputShape[unknownIndex] = missing;\n }\n const outputSize = util_exports.sizeFromShape(outputShape);\n if (outputSize !== denseSize) {\n throw new Error(backend_util_exports.getSparseReshapeInputOutputMismatchErrorMessage(inputShape, outputShape));\n }\n const inputRank = inputShape.length;\n const inputStrides = [];\n if (inputRank > 0) {\n inputStrides[inputRank - 1] = 1;\n for (let d = inputRank - 2; d >= 0; --d) {\n inputStrides[d] = inputStrides[d + 1] * inputShape[d + 1];\n }\n }\n const outputStrides = [];\n if (outputRank > 0) {\n outputStrides[outputRank - 1] = 1;\n for (let d = outputRank - 2; d >= 0; --d) {\n outputStrides[d] = outputStrides[d + 1] * outputShape[d + 1];\n }\n }\n const newIndices = util_exports.getArrayFromDType(inputDType, nnz * outputRank);\n for (let i2 = 0; i2 < nnz; ++i2) {\n let id = 0;\n for (let j = 0; j < inputRank; ++j) {\n id += inputIndices[i2 * inputRank + j] * inputStrides[j];\n }\n for (let j = 0; j < outputRank; ++j) {\n newIndices[i2 * outputRank + j] = Math.trunc(id / outputStrides[j]);\n id %= outputStrides[j];\n }\n }\n return [newIndices, [nnz, outputRank], outputShape];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseSegmentReduction_impl.js\nfunction sparseSegmentReductionImpl(input2, inputShape, inputDType, indices, segmentIds, isMean = false, defaultValue = 0) {\n const numIndices = indices.length;\n const inputFlat = [inputShape[0], input2.length / inputShape[0]];\n const numCol = inputFlat[1];\n const lastSegmentIdPlusOne = numIndices > 0 ? segmentIds[numIndices - 1] + 1 : 0;\n const outputRows = lastSegmentIdPlusOne;\n if (outputRows < 0) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());\n }\n const outputShape = inputShape.slice();\n outputShape[0] = outputRows;\n const outputLength = outputShape.reduce((product, value) => product * value, 1);\n const output = util_exports.getArrayFromDType(inputDType, outputLength);\n if (numIndices === 0) {\n if (outputRows > 0) {\n output.fill(defaultValue);\n }\n return [output, outputShape];\n }\n if (outputRows <= 0) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());\n }\n let start = 0, end = 1;\n let uninitializedIndex = 0;\n let outIndex = segmentIds[start];\n while (true) {\n let nextIndex = 0;\n if (end < numIndices) {\n nextIndex = segmentIds[end];\n if (outIndex === nextIndex) {\n ++end;\n continue;\n }\n if (outIndex >= nextIndex) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage());\n }\n }\n if (outIndex < 0 || outIndex >= outputRows) {\n throw new Error(backend_util_exports.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(outIndex, outputRows));\n }\n if (outIndex > uninitializedIndex) {\n output.fill(defaultValue, uninitializedIndex * numCol, outIndex * numCol);\n }\n for (let i2 = start; i2 < end; ++i2) {\n const index = indices[i2];\n if (index < 0 || index >= inputFlat[0]) {\n throw new Error(backend_util_exports.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(i2, indices[i2], inputFlat[0]));\n }\n for (let j = 0; j < numCol; j++) {\n output[outIndex * numCol + j] += input2[index * numCol + j];\n }\n }\n if (isMean) {\n for (let j = 0; j < numCol; j++) {\n output[outIndex * numCol + j] /= end - start;\n }\n }\n start = end;\n ++end;\n uninitializedIndex = outIndex + 1;\n outIndex = nextIndex;\n if (end > numIndices) {\n break;\n }\n }\n if (uninitializedIndex < outputRows) {\n output.fill(defaultValue, uninitializedIndex * numCol, outputRows * numCol);\n }\n return [output, outputShape];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sqrt.js\nvar sqrtImpl = createSimpleUnaryImpl((xi) => Math.sqrt(xi));\nvar sqrt2 = unaryKernelFunc(Sqrt, (xi) => Math.sqrt(xi));\nvar sqrtConfig = {\n kernelName: Sqrt,\n backendName: \"cpu\",\n kernelFunc: sqrt2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SquaredDifference.js\nvar squaredDifferenceImpl = createSimpleBinaryKernelImpl((a, b) => {\n const diff = a - b;\n return diff * diff;\n});\nvar squaredDifference2 = binaryKernelFunc(SquaredDifference, squaredDifferenceImpl);\nvar squaredDifferenceConfig = {\n kernelName: SquaredDifference,\n backendName: \"cpu\",\n kernelFunc: squaredDifference2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StridedSlice_impl.js\nfunction stridedSliceImpl(outShape, xBuf, strides, begin) {\n const outBuf = buffer(outShape, xBuf.dtype);\n for (let i2 = 0; i2 < outBuf.size; i2++) {\n const loc = outBuf.indexToLoc(i2);\n const newLoc = new Array(loc.length);\n for (let j = 0; j < newLoc.length; j++) {\n newLoc[j] = loc[j] * strides[j] + begin[j];\n }\n outBuf.set(xBuf.get(...newLoc), ...loc);\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringNGrams_impl.js\nvar StringNGramsOp = class {\n constructor(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) {\n this.separator = util_exports.encodeString(separator);\n this.nGramWidths = nGramWidths;\n this.leftPad = util_exports.encodeString(leftPad);\n this.rightPad = util_exports.encodeString(rightPad2);\n this.padWidth = padWidth;\n this.preserveShort = preserveShortSequences;\n }\n getPadWidth(nGramWidth) {\n return Math.min(this.padWidth < 0 ? nGramWidth - 1 : this.padWidth, nGramWidth - 1);\n }\n getNumNGrams(length, nGramWidth) {\n const padWidth = this.getPadWidth(nGramWidth);\n return Math.max(0, length + 2 * padWidth - nGramWidth + 1);\n }\n createNGrams(data, splitIndex, output, outputStartIndex, numNGrams, nGramWidth) {\n for (let nGramIndex = 0; nGramIndex < numNGrams; ++nGramIndex) {\n const padWidth = this.getPadWidth(nGramWidth);\n const leftPadding = Math.max(0, padWidth - nGramIndex);\n const rightPadding = Math.max(0, padWidth - (numNGrams - (nGramIndex + 1)));\n const numTokens = nGramWidth - (leftPadding + rightPadding);\n const dataStartIndex = splitIndex + (leftPadding > 0 ? 0 : nGramIndex - padWidth);\n let nGramSize = 0;\n nGramSize += leftPadding * this.leftPad.length;\n for (let n2 = 0; n2 < numTokens; ++n2) {\n nGramSize += data[dataStartIndex + n2].length;\n }\n nGramSize += rightPadding * this.rightPad.length;\n const numSeparators = leftPadding + rightPadding + numTokens - 1;\n nGramSize += numSeparators * this.separator.length;\n output[outputStartIndex + nGramIndex] = new Uint8Array(nGramSize);\n const nGram = output[outputStartIndex + nGramIndex];\n let nextNGramIndex = 0;\n const appendToNGram = (str) => str.forEach((value) => nGram[nextNGramIndex++] = value);\n for (let n2 = 0; n2 < leftPadding; ++n2) {\n appendToNGram(this.leftPad);\n appendToNGram(this.separator);\n }\n for (let n2 = 0; n2 < numTokens - 1; ++n2) {\n appendToNGram(data[dataStartIndex + n2]);\n appendToNGram(this.separator);\n }\n if (numTokens > 0) {\n appendToNGram(data[dataStartIndex + numTokens - 1]);\n for (let n2 = 0; n2 < rightPadding; ++n2) {\n appendToNGram(this.separator);\n appendToNGram(this.rightPad);\n }\n } else {\n for (let n2 = 0; n2 < rightPadding - 1; ++n2) {\n appendToNGram(this.rightPad);\n appendToNGram(this.separator);\n }\n appendToNGram(this.rightPad);\n }\n }\n }\n compute(data, splits) {\n const inputDataSize = data.length;\n const splitsSize = splits.length;\n if (splitsSize > 0) {\n let prevSplit = splits[0];\n if (prevSplit !== 0) {\n throw new Error(`First split value must be 0, got ${prevSplit}`);\n }\n for (let i2 = 1; i2 < splitsSize; ++i2) {\n let validSplits = splits[i2] >= prevSplit;\n validSplits = validSplits && splits[i2] <= inputDataSize;\n if (!validSplits) {\n throw new Error(`Invalid split value ${splits[i2]}, must be in [${prevSplit}, ${inputDataSize}]`);\n }\n prevSplit = splits[i2];\n }\n if (prevSplit !== inputDataSize) {\n throw new Error(`Last split value must be data size. Expected ${inputDataSize}, got ${prevSplit}`);\n }\n }\n const numBatchItems = splitsSize - 1;\n const nGramsSplits = util_exports.getArrayFromDType(\"int32\", splitsSize);\n if (inputDataSize === 0 || splitsSize === 0) {\n const empty = new Array(inputDataSize);\n for (let i2 = 0; i2 <= numBatchItems; ++i2) {\n nGramsSplits[i2] = 0;\n }\n return [empty, nGramsSplits];\n }\n nGramsSplits[0] = 0;\n for (let i2 = 1; i2 <= numBatchItems; ++i2) {\n const length = splits[i2] - splits[i2 - 1];\n let numNGrams = 0;\n this.nGramWidths.forEach((nGramWidth) => {\n numNGrams += this.getNumNGrams(length, nGramWidth);\n });\n if (this.preserveShort && length > 0 && numNGrams === 0) {\n numNGrams = 1;\n }\n nGramsSplits[i2] = nGramsSplits[i2 - 1] + numNGrams;\n }\n const nGrams = new Array(nGramsSplits[numBatchItems]);\n for (let i2 = 0; i2 < numBatchItems; ++i2) {\n const splitIndex = splits[i2];\n let outputStartIdx = nGramsSplits[i2];\n this.nGramWidths.forEach((nGramWidth) => {\n const length = splits[i2 + 1] - splits[i2];\n const numNGrams = this.getNumNGrams(length, nGramWidth);\n this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth);\n outputStartIdx += numNGrams;\n });\n if (this.preserveShort && outputStartIdx === nGramsSplits[i2]) {\n const dataLength = splits[i2 + 1] - splits[i2];\n if (dataLength === 0) {\n continue;\n }\n const nGramWidth = dataLength + 2 * this.padWidth;\n const numNGrams = 1;\n this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth);\n }\n }\n return [nGrams, nGramsSplits];\n }\n};\nfunction stringNGramsImpl(data, dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) {\n return new StringNGramsOp(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences).compute(data, dataSplits);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringSplit_impl.js\nfunction split3(str, delimiters, skipEmpty, result) {\n if (!str.length) {\n return;\n }\n if (delimiters.length === 0) {\n for (let i2 = 0; i2 < str.length; ++i2) {\n result.push(str.subarray(i2, i2 + 1));\n }\n return;\n }\n if (delimiters.length === 1) {\n const delimiter = delimiters[0];\n let f = str.indexOf(delimiter);\n while (f !== -1) {\n const token = str.subarray(0, f);\n if (!skipEmpty || token.length !== 0) {\n result.push(token);\n }\n str = str.subarray(f + 1);\n f = str.indexOf(delimiter);\n }\n if (!skipEmpty || str.length !== 0) {\n result.push(str);\n }\n return;\n }\n let tokenStart = 0;\n for (let i2 = 0; i2 < str.length + 1; i2++) {\n if (i2 === str.length || delimiters.indexOf(str[i2]) !== -1) {\n const token = str.subarray(tokenStart, i2);\n if (!skipEmpty || token.length !== 0) {\n result.push(token);\n }\n tokenStart = i2 + 1;\n }\n }\n}\nfunction stringSplitImpl(input2, delimiter, skipEmpty) {\n const batchSize = input2.length;\n const tokens = [];\n let outputSize = 0;\n let maxNumEntries = 0;\n const numIndices = new Array(batchSize);\n for (let i2 = 0; i2 < batchSize; ++i2) {\n const prevTokensLength = tokens.length;\n split3(input2[i2], delimiter, skipEmpty, tokens);\n const nEntries = tokens.length - prevTokensLength;\n numIndices[i2] = nEntries;\n outputSize += nEntries;\n maxNumEntries = Math.max(maxNumEntries, nEntries);\n }\n const indices = util_exports.getArrayFromDType(\"int32\", outputSize * 2);\n const values = new Array(outputSize);\n const shape = [batchSize, maxNumEntries];\n let c = 0;\n for (let i2 = 0; i2 < batchSize; ++i2) {\n for (let j = 0; j < numIndices[i2]; ++j) {\n indices[c * 2] = i2;\n indices[c * 2 + 1] = j;\n values[c] = tokens[c];\n ++c;\n }\n }\n return [indices, values, shape];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringToHashBucketFast_impl.js\nfunction stringToHashBucketFastImpl(input2, numBuckets) {\n const output = util_exports.getArrayFromDType(\"int32\", input2.length);\n for (let i2 = 0; i2 < input2.length; ++i2) {\n output[i2] = util_exports.fingerPrint64(input2[i2]).modulo(numBuckets).getLowBitsUnsigned();\n }\n return output;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sub.js\nvar subImpl = createSimpleBinaryKernelImpl((aValue, bValue) => aValue - bValue);\nvar subComplexImpl = createComplexBinaryKernelImpl((aReal, aImag, bReal, bImag) => {\n return { real: aReal - bReal, imag: aImag - bImag };\n});\nvar sub2 = binaryKernelFunc(Sub, subImpl, subComplexImpl);\nvar subConfig = {\n kernelName: Sub,\n backendName: \"cpu\",\n kernelFunc: sub2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tile_impl.js\nfunction tileImpl(xBuf, reps) {\n const newShape = new Array(xBuf.rank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = xBuf.shape[i2] * reps[i2];\n }\n const result = buffer(newShape, xBuf.dtype);\n for (let i2 = 0; i2 < result.values.length; ++i2) {\n const newLoc = result.indexToLoc(i2);\n const originalLoc = new Array(xBuf.rank);\n for (let j = 0; j < originalLoc.length; j++) {\n originalLoc[j] = newLoc[j] % xBuf.shape[j];\n }\n const originalIndex = xBuf.locToIndex(originalLoc);\n result.values[i2] = xBuf.values[originalIndex];\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/TopK_impl.js\nvar comparePair = (a, b) => {\n const valueDiff = b.value - a.value;\n return valueDiff === 0 ? a.index - b.index : valueDiff;\n};\nfunction select(array2, k, left = 0, right = array2.length - 1) {\n while (right > left) {\n if (right - left > 600) {\n const n2 = right - left + 1;\n const i3 = k - left + 1;\n const z = Math.log(n2);\n const s2 = 0.5 * Math.exp(2 * z / 3);\n const sd = 0.5 * Math.sqrt(z * s2 * (n2 - s2) / n2) * Math.sign(i3 - n2 / 2);\n const newLeft = Math.max(left, Math.floor(k - i3 * s2 / n2 + sd));\n const newRight = Math.min(right, Math.floor(k + (n2 - i3) * s2 / n2 + sd));\n select(array2, k, newLeft, newRight);\n }\n const t2 = array2[k];\n let i2 = left;\n let j = right;\n util_exports.swap(array2, left, k);\n if (comparePair(array2[right], t2) > 0) {\n util_exports.swap(array2, left, right);\n }\n while (i2 < j) {\n util_exports.swap(array2, i2, j);\n i2++;\n j--;\n while (comparePair(array2[i2], t2) < 0) {\n i2 = i2 + 1;\n }\n while (comparePair(array2[j], t2) > 0) {\n j = j - 1;\n }\n }\n if (comparePair(array2[left], t2) === 0) {\n util_exports.swap(array2, left, j);\n } else {\n j = j + 1;\n util_exports.swap(array2, j, right);\n }\n if (j <= k) {\n left = j + 1;\n }\n if (k <= j) {\n right = j - 1;\n }\n }\n}\nfunction topKImpl(x, xShape, xDtype, k, sorted) {\n const lastDim = xShape[xShape.length - 1];\n const [batch, size] = [x.length / lastDim, lastDim];\n const allTopKVals = util_exports.getTypedArrayFromDType(xDtype, batch * k);\n const allTopKIndices = util_exports.getTypedArrayFromDType(\"int32\", batch * k);\n for (let b = 0; b < batch; b++) {\n const offset = b * size;\n const vals = x.subarray(offset, offset + size);\n let valAndInd = new Array(vals.length);\n vals.forEach((value, index) => valAndInd[index] = { value, index });\n if (k < valAndInd.length) {\n select(valAndInd, k);\n valAndInd = valAndInd.slice(0, k);\n }\n if (sorted) {\n valAndInd.sort(comparePair);\n }\n const outOffset = b * k;\n const topKVals = allTopKVals.subarray(outOffset, outOffset + k);\n const topKIndices = allTopKIndices.subarray(outOffset, outOffset + k);\n for (let i2 = 0; i2 < k; i2++) {\n topKVals[i2] = valAndInd[i2].value;\n topKIndices[i2] = valAndInd[i2].index;\n }\n }\n const outputShape = xShape.slice();\n outputShape[outputShape.length - 1] = k;\n return [\n buffer(outputShape, xDtype, allTopKVals),\n buffer(outputShape, \"int32\", allTopKIndices)\n ];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Unique_impl.js\nfunction uniqueImpl(values, axis, shape, dtype) {\n const $axis = util_exports.parseAxisParam(axis, shape)[0];\n const newShape = [1, shape[0], 1];\n for (let i2 = 0; i2 < $axis; i2++) {\n newShape[0] *= shape[i2];\n }\n newShape[1] = shape[$axis];\n for (let i2 = $axis + 1; i2 < shape.length; i2++) {\n newShape[2] *= shape[i2];\n }\n const uniqueElements = {};\n const indices = new Int32Array(shape[$axis]);\n const inputBuffer = new TensorBuffer(newShape, dtype, values);\n const uniqueIndices = [];\n const is1DTensor = newShape[0] === 1 && newShape[2] === 1;\n for (let i2 = 0; i2 < shape[$axis]; i2++) {\n let element;\n if (is1DTensor) {\n element = values[i2].toString();\n } else {\n const axisValues = [];\n for (let m = 0; m < newShape[0]; m++) {\n for (let n2 = 0; n2 < newShape[2]; n2++) {\n axisValues.push(inputBuffer.get(m, i2, n2));\n }\n }\n element = axisValues.join(\",\");\n }\n if (uniqueElements[element] !== void 0) {\n indices[i2] = uniqueElements[element];\n } else {\n const uniqueIndex = Object.keys(uniqueElements).length;\n uniqueElements[element] = uniqueIndex;\n indices[i2] = uniqueIndex;\n uniqueIndices.push(i2);\n }\n }\n const outputTmpShape = newShape.slice();\n outputTmpShape[1] = Object.keys(uniqueElements).length;\n const outputBuffer = new TensorBuffer(outputTmpShape, dtype);\n uniqueIndices.forEach((uniqueElementIndex, i2) => {\n for (let m = 0; m < newShape[0]; m++) {\n for (let n2 = 0; n2 < newShape[2]; n2++) {\n outputBuffer.set(inputBuffer.get(m, uniqueElementIndex, n2), m, i2, n2);\n }\n }\n });\n const outputShape = shape.slice();\n outputShape[$axis] = outputTmpShape[1];\n return {\n outputValues: outputBuffer.values,\n outputShape,\n indices\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/base.js\nregisterBackend(\"cpu\", () => new MathBackendCPU(), 1);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Elu.js\nvar elu4 = unaryKernelFunc(Elu, (xi) => xi >= 0 ? xi : Math.exp(xi) - 1);\nvar eluConfig = {\n kernelName: Elu,\n backendName: \"cpu\",\n kernelFunc: elu4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LeakyRelu.js\nfunction leakyRelu2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { alpha } = attrs;\n assertNotComplex([x], \"leakyRelu\");\n const xSize = util_exports.sizeFromShape(x.shape);\n const xVals = backend2.data.get(x.dataId).values;\n const outVals = util_exports.getTypedArrayFromDType(\"float32\", xSize);\n for (let i2 = 0; i2 < xVals.length; i2++) {\n outVals[i2] = xVals[i2] < 0 ? alpha * xVals[i2] : xVals[i2];\n }\n return backend2.makeTensorInfo(x.shape, \"float32\", outVals);\n}\nvar leakyReluConfig = {\n kernelName: LeakyRelu,\n backendName: \"cpu\",\n kernelFunc: leakyRelu2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Prelu.js\nvar preluImpl = createSimpleBinaryKernelImpl((xValue, aValue) => xValue < 0 ? aValue * xValue : xValue);\nfunction prelu3(args) {\n const { inputs, backend: backend2 } = args;\n const { x, alpha } = inputs;\n assertNotComplex([x, alpha], \"prelu\");\n const aVals = backend2.data.get(x.dataId).values;\n const bVals = backend2.data.get(alpha.dataId).values;\n const [resultData, resultShape] = preluImpl(x.shape, alpha.shape, aVals, bVals, \"float32\");\n return backend2.makeTensorInfo(resultShape, \"float32\", resultData);\n}\nvar preluConfig = {\n kernelName: Prelu,\n backendName: \"cpu\",\n kernelFunc: prelu3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Relu.js\nvar relu2 = unaryKernelFunc(Relu, (xi) => Math.max(0, xi));\nvar reluConfig = {\n kernelName: Relu,\n backendName: \"cpu\",\n kernelFunc: relu2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Relu6.js\nvar relu62 = unaryKernelFunc(Relu6, (xi) => Math.min(Math.max(0, xi), 6));\nvar relu6Config = {\n kernelName: Relu6,\n backendName: \"cpu\",\n kernelFunc: relu62\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/fused_utils.js\nfunction applyActivation2(backend2, x, activation2, preluActivationWeights, leakyreluAlpha) {\n if (activation2 === \"linear\") {\n return identity2({ inputs: { x }, backend: backend2 });\n } else if (activation2 === \"relu\") {\n return relu2({ inputs: { x }, backend: backend2 });\n } else if (activation2 === \"elu\") {\n return elu4({ inputs: { x }, backend: backend2 });\n } else if (activation2 === \"relu6\") {\n return relu62({ inputs: { x }, backend: backend2 });\n } else if (activation2 === \"prelu\") {\n return prelu3({ inputs: { x, alpha: preluActivationWeights }, backend: backend2 });\n } else if (activation2 === \"leakyrelu\") {\n return leakyRelu2({ inputs: { x }, backend: backend2, attrs: { alpha: leakyreluAlpha } });\n } else if (activation2 === \"sigmoid\") {\n return sigmoid2({ inputs: { x }, backend: backend2 });\n }\n throw new Error(`Activation ${activation2} has not been implemented for the CPU backend.`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Reshape.js\nfunction reshape3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { shape } = attrs;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $shape = util_exports.inferFromImplicitShape(shape, xSize);\n const $xSize = util_exports.sizeFromShape($shape);\n util_exports.assert(xSize === $xSize, () => `The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`);\n backend2.incRef(x.dataId);\n const xData = backend2.data.get(x.dataId);\n if (xData.complexTensorInfos != null) {\n const real6 = xData.complexTensorInfos.real;\n const imag5 = xData.complexTensorInfos.imag;\n real6.shape = $shape;\n imag5.shape = $shape;\n }\n return { dataId: x.dataId, shape: $shape, dtype: x.dtype };\n}\nvar reshapeConfig = {\n kernelName: Reshape,\n backendName: \"cpu\",\n kernelFunc: reshape3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/BatchMatMul.js\nfunction batchMatMul(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b } = inputs;\n const { transposeA, transposeB } = attrs;\n assertNotComplex([a, b], \"matMul\");\n const aRank = a.shape.length;\n const bRank = b.shape.length;\n const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1];\n const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2];\n const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2];\n const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1];\n const outerDimsA = a.shape.slice(0, -2);\n const outerDimsB = b.shape.slice(0, -2);\n const batchDimA = util_exports.sizeFromShape(outerDimsA);\n const batchDimB = util_exports.sizeFromShape(outerDimsB);\n const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA];\n const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB];\n const a3d = reshape3({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } });\n const b3d = reshape3({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } });\n const sharedDim = transposeA ? a3d.shape[1] : a3d.shape[2];\n const leftDim = transposeA ? a3d.shape[2] : a3d.shape[1];\n const rightDim = transposeB ? b3d.shape[1] : b3d.shape[2];\n const batchDim = Math.max(batchDimA, batchDimB);\n const a3dValues = backend2.data.get(a3d.dataId).values;\n const b3dValues = backend2.data.get(b3d.dataId).values;\n const a3dStrides = util_exports.computeStrides(a3d.shape);\n const b3dStrides = util_exports.computeStrides(b3d.shape);\n const [aBatch, aOuterStep, aInnerStep] = transposeA ? [a3dStrides[0], 1, a3dStrides[1]] : [a3dStrides[0], a3dStrides[1], 1];\n const [bInnerStep, bOuterStep, bBatch] = transposeB ? [1, b3dStrides[1], b3dStrides[0]] : [b3dStrides[1], 1, b3dStrides[0]];\n const size = leftDim * rightDim;\n const result = buffer([batchDim, leftDim, rightDim], a3d.dtype);\n const resVals = result.values;\n const blockSize = backend2.blockSize;\n for (let bi = 0; bi < batchDim; bi++) {\n for (let i0 = 0; i0 < leftDim; i0 += blockSize) {\n for (let j0 = 0; j0 < rightDim; j0 += blockSize) {\n for (let k02 = 0; k02 < sharedDim; k02 += blockSize) {\n const iBlock = Math.min(i0 + blockSize, leftDim);\n const jBlock = Math.min(j0 + blockSize, rightDim);\n const kBlock = Math.min(k02 + blockSize, sharedDim);\n for (let i2 = i0; i2 < iBlock; i2++) {\n for (let j = j0; j < jBlock; j++) {\n let sum7 = 0;\n for (let k = k02; k < kBlock; k++) {\n const batchOffsetA = Math.min(bi, batchDimA - 1) * aBatch;\n const batchOffsetB = Math.min(bi, batchDimB - 1) * bBatch;\n const aVal = a3dValues[batchOffsetA + i2 * aOuterStep + k * aInnerStep];\n const bVal = b3dValues[k * bInnerStep + j * bOuterStep + batchOffsetB];\n sum7 += aVal * bVal;\n }\n resVals[bi * size + (i2 * rightDim + j)] += sum7;\n }\n }\n }\n }\n }\n }\n backend2.disposeIntermediateTensorInfo(a3d);\n backend2.disposeIntermediateTensorInfo(b3d);\n return backend2.makeTensorInfo(outShape, result.dtype, result.values);\n}\nvar batchMatMulConfig = {\n kernelName: BatchMatMul,\n backendName: \"cpu\",\n kernelFunc: batchMatMul\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/_FusedMatMul.js\nfunction _fusedMatMul(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b, bias, preluActivationWeights } = inputs;\n const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs;\n let current;\n let addRes;\n let activationRes;\n const intermediates = [];\n const matMulRes = batchMatMul({ inputs: { a, b }, attrs: { transposeA, transposeB }, backend: backend2 });\n current = matMulRes;\n if (bias) {\n addRes = add4({ inputs: { a: current, b: bias }, backend: backend2 });\n intermediates.push(current);\n current = addRes;\n }\n if (activation2) {\n activationRes = applyActivation2(backend2, current, activation2, preluActivationWeights, leakyreluAlpha);\n intermediates.push(current);\n current = activationRes;\n }\n for (const i2 of intermediates) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return current;\n}\nvar _fusedMatMulConfig = {\n kernelName: _FusedMatMul,\n backendName: \"cpu\",\n kernelFunc: _fusedMatMul\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Acos.js\nvar acos2 = unaryKernelFunc(Acos, (xi) => Math.acos(xi));\nvar acosConfig = {\n kernelName: Acos,\n backendName: \"cpu\",\n kernelFunc: acos2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Acosh.js\nvar acosh2 = unaryKernelFunc(Acosh, (xi) => Math.acosh(xi));\nvar acoshConfig = {\n kernelName: Acosh,\n backendName: \"cpu\",\n kernelFunc: acosh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AddN.js\nfunction addN2(args) {\n const { inputs, backend: backend2 } = args;\n const tensors = inputs;\n assertNotComplex(inputs, \"addN\");\n const vals = tensors.map((t2) => backend2.data.get(t2.dataId).values);\n const outBuf = buffer(tensors[0].shape, tensors[0].dtype);\n const outVals = outBuf.values;\n for (let i2 = 0; i2 < tensors.length; i2++) {\n const currVals = vals[i2];\n for (let j = 0; j < outVals.length; j++) {\n outVals[j] += currVals[j];\n }\n }\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n}\nvar addNConfig = {\n kernelName: AddN,\n backendName: \"cpu\",\n kernelFunc: addN2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/All.js\nfunction all2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"all\");\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"all\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const vals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), $x.dtype);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let all5 = aVals[offset];\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n all5 = all5 && value;\n }\n vals[i2] = all5;\n }\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo($x);\n }\n const result = backend2.makeTensorInfo(outShape, $x.dtype, vals);\n if (keepDims) {\n const expandedShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n const reshapedResult = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: expandedShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return reshapedResult;\n }\n return result;\n}\nvar allConfig = {\n kernelName: All,\n backendName: \"cpu\",\n kernelFunc: all2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Any.js\nfunction any2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"any\");\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"any\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const vals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), $x.dtype);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let anyVal = aVals[offset];\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n anyVal = anyVal || value;\n }\n vals[i2] = anyVal;\n }\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo($x);\n }\n const result = backend2.makeTensorInfo(outShape, $x.dtype, vals);\n if (keepDims) {\n const expandedShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n const reshapedResult = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: expandedShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return reshapedResult;\n }\n return result;\n}\nvar anyConfig = {\n kernelName: Any,\n backendName: \"cpu\",\n kernelFunc: any2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ArgMax.js\nfunction argMax2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n assertNotComplex(x, \"argMax\");\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n axes = [axes[0]];\n backend_util_exports.assertAxesAreInnerMostDims(\"argMax\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const outSize = util_exports.sizeFromShape(outShape);\n const vals = util_exports.makeZerosTypedArray(outSize, \"int32\");\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let max7 = aVals[offset];\n let maxIndex = 0;\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n if (value > max7) {\n max7 = value;\n maxIndex = j;\n }\n }\n vals[i2] = maxIndex;\n }\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return backend2.makeTensorInfo(outShape, \"int32\", vals);\n}\nvar argMaxConfig = {\n kernelName: ArgMax,\n backendName: \"cpu\",\n kernelFunc: argMax2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ArgMin.js\nfunction argMin2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n assertNotComplex(x, \"argMin\");\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n axes = [axes[0]];\n backend_util_exports.assertAxesAreInnerMostDims(\"argMin\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const outSize = util_exports.sizeFromShape(outShape);\n const vals = util_exports.makeZerosTypedArray(outSize, \"int32\");\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let min7 = aVals[offset];\n let minIndex = 0;\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n if (value < min7) {\n min7 = value;\n minIndex = j;\n }\n }\n vals[i2] = minIndex;\n }\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return backend2.makeTensorInfo(outShape, \"int32\", vals);\n}\nvar argMinConfig = {\n kernelName: ArgMin,\n backendName: \"cpu\",\n kernelFunc: argMin2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Asin.js\nvar asin2 = unaryKernelFunc(Asin, (xi) => Math.asin(xi));\nvar asinConfig = {\n kernelName: Asin,\n backendName: \"cpu\",\n kernelFunc: asin2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Asinh.js\nvar asinh2 = unaryKernelFunc(Asinh, (xi) => Math.asinh(xi));\nvar asinhConfig = {\n kernelName: Asinh,\n backendName: \"cpu\",\n kernelFunc: asinh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Atan.js\nvar atan3 = unaryKernelFunc(Atan, (xi) => Math.atan(xi));\nvar atanConfig = {\n kernelName: Atan,\n backendName: \"cpu\",\n kernelFunc: atan3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Atan2.js\nvar atan2Impl = createSimpleBinaryKernelImpl((aValue, bValue) => Math.atan2(aValue, bValue));\nvar atan22 = binaryKernelFunc(Atan2, atan2Impl);\nvar atan2Config = {\n kernelName: Atan2,\n backendName: \"cpu\",\n kernelFunc: atan22\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Atanh.js\nvar atanh2 = unaryKernelFunc(Atanh, (xi) => Math.atanh(xi));\nvar atanhConfig = {\n kernelName: Atanh,\n backendName: \"cpu\",\n kernelFunc: atanh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/pool_utils.js\nfunction pool2(xValues, xShape, dtype, strides, convInfo, poolType) {\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const initialValue = poolType === \"max\" ? Number.NEGATIVE_INFINITY : Number.POSITIVE_INFINITY;\n const output = buffer(convInfo.outShape, dtype);\n const outputVals = output.values;\n const outputBatchStrides = convInfo.outShape[1] * convInfo.outShape[2] * convInfo.outShape[3];\n const outputRowStrides = convInfo.outShape[2] * convInfo.outShape[3];\n const outputColStrides = convInfo.outShape[3];\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const outputBatchOffset = b * outputBatchStrides;\n const inputBatchOffset = b * strides[0];\n for (let d = 0; d < convInfo.inChannels; ++d) {\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const xRCorner = yR * strideHeight - padTop;\n const xRMin = Math.max(0, xRCorner);\n const xRMax = Math.min(convInfo.inHeight, effectiveFilterHeight + xRCorner);\n const outputRowOffset = outputBatchOffset + yR * outputRowStrides;\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const xCCorner = yC * strideWidth - padLeft;\n const xCMin = Math.max(0, xCCorner);\n const xCMax = Math.min(convInfo.inWidth, effectiveFilterWidth + xCCorner);\n let minMaxValue = initialValue;\n let avgValue = 0;\n let count2 = 0;\n for (let xR = xRMin; xR < xRMax; xR += dilationHeight) {\n const xROffset = inputBatchOffset + xR * strides[1];\n for (let xC = xCMin; xC < xCMax; xC += dilationWidth) {\n const xCOffset = xROffset + xC * strides[2];\n const pixel = xValues[xCOffset + d];\n if (poolType === \"max\" && pixel > minMaxValue) {\n minMaxValue = pixel;\n } else if (poolType === \"avg\") {\n avgValue += pixel;\n count2++;\n }\n }\n if (isNaN(minMaxValue)) {\n break;\n }\n }\n const outputOffset = outputRowOffset + yC * outputColStrides + d;\n outputVals[outputOffset] = poolType === \"avg\" ? avgValue / count2 : minMaxValue;\n }\n }\n }\n }\n return output;\n}\nfunction maxPoolPositions(xValues, xShape, dtype, convInfo, flattenPositions = false, includeBatchInIndex = false) {\n const maxPositions = buffer(convInfo.outShape, \"int32\");\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const xBuf = buffer(xShape, dtype, xValues);\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let d = 0; d < convInfo.inChannels; ++d) {\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const xRCorner = yR * strideHeight - padTop;\n let xRMin = xRCorner;\n while (xRMin < 0) {\n xRMin += dilationHeight;\n }\n const xRMax = Math.min(convInfo.inHeight, effectiveFilterHeight + xRCorner);\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const xCCorner = yC * strideWidth - padLeft;\n let xCMin = xCCorner;\n while (xCMin < 0) {\n xCMin += dilationWidth;\n }\n const xCMax = Math.min(convInfo.inWidth, effectiveFilterWidth + xCCorner);\n let maxValue = Number.NEGATIVE_INFINITY;\n let maxPosition = -1;\n for (let xR = xRMin; xR < xRMax; xR += dilationHeight) {\n const wR = xR - xRCorner;\n for (let xC = xCMin; xC < xCMax; xC += dilationWidth) {\n const wC = xC - xCCorner;\n const pixel = xBuf.get(b, xR, xC, d);\n if (pixel > maxValue) {\n maxValue = pixel;\n if (flattenPositions) {\n maxPosition = includeBatchInIndex ? ((b * convInfo.inHeight + xR) * convInfo.inWidth + xC) * convInfo.inChannels + d : (xR * convInfo.inWidth + xC) * convInfo.inChannels + d;\n } else {\n maxPosition = wR * effectiveFilterWidth + wC;\n }\n }\n }\n }\n maxPositions.set(maxPosition, b, yR, yC, d);\n }\n }\n }\n }\n return maxPositions;\n}\nfunction pool3d2(xValues, xShape, dtype, strides, convInfo, poolType) {\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const initialValue = poolType === \"max\" ? Number.NEGATIVE_INFINITY : Number.POSITIVE_INFINITY;\n const output = buffer(convInfo.outShape, dtype);\n const outputVals = output.values;\n const outputBatchStrides = convInfo.outShape[1] * convInfo.outShape[2] * convInfo.outShape[3] * convInfo.outShape[4];\n const outputDepthStrides = convInfo.outShape[2] * convInfo.outShape[3] * convInfo.outShape[4];\n const outputRowStrides = convInfo.outShape[3] * convInfo.outShape[4];\n const outputColStrides = convInfo.outShape[4];\n for (let batch = 0; batch < convInfo.batchSize; ++batch) {\n const outputBatchOffset = batch * outputBatchStrides;\n const inputBatchOffset = batch * strides[0];\n for (let channel = 0; channel < convInfo.inChannels; ++channel) {\n for (let yDepth = 0; yDepth < convInfo.outDepth; ++yDepth) {\n const xDepthCorner = yDepth * strideDepth - padFront;\n let xDepthMin = xDepthCorner;\n while (xDepthMin < 0) {\n xDepthMin += dilationDepth;\n }\n const xDepthMax = Math.min(convInfo.inDepth, effectiveFilterDepth + xDepthCorner);\n const outputDepthOffset = outputBatchOffset + yDepth * outputDepthStrides;\n for (let yRow = 0; yRow < convInfo.outHeight; ++yRow) {\n const xRowCorner = yRow * strideHeight - padTop;\n let xRowMin = xRowCorner;\n while (xRowMin < 0) {\n xRowMin += dilationHeight;\n }\n const xRowMax = Math.min(convInfo.inHeight, effectiveFilterHeight + xRowCorner);\n const outputRowOffset = outputDepthOffset + yRow * outputRowStrides;\n for (let yCol = 0; yCol < convInfo.outWidth; ++yCol) {\n const xColCorner = yCol * strideWidth - padLeft;\n let xColMin = xColCorner;\n while (xColMin < 0) {\n xColMin += dilationWidth;\n }\n const xColMax = Math.min(convInfo.inWidth, effectiveFilterWidth + xColCorner);\n const outputColOffset = outputRowOffset + yCol * outputColStrides;\n let minMaxValue = initialValue;\n let avgValue = 0;\n let count2 = 0;\n for (let xDepth = xDepthMin; xDepth < xDepthMax; xDepth += dilationDepth) {\n const xDepthOffset = inputBatchOffset + xDepth * strides[1];\n for (let xRow = xRowMin; xRow < xRowMax; xRow += dilationHeight) {\n const xRowOffset = xDepthOffset + xRow * strides[2];\n for (let xCol = xColMin; xCol < xColMax; xCol += dilationWidth) {\n const xColOffset = xRowOffset + xCol * strides[3];\n const pixel = xValues[xColOffset + channel];\n if (poolType === \"max\" && pixel > minMaxValue) {\n minMaxValue = pixel;\n } else if (poolType === \"avg\") {\n avgValue += pixel;\n count2++;\n }\n if (isNaN(minMaxValue)) {\n break;\n }\n }\n if (isNaN(minMaxValue)) {\n break;\n }\n }\n if (isNaN(minMaxValue)) {\n break;\n }\n }\n const outputOffset = outputColOffset + channel;\n outputVals[outputOffset] = poolType === \"avg\" ? avgValue / count2 : minMaxValue;\n }\n }\n }\n }\n }\n return output;\n}\nfunction maxPool3dPositions(xBuf, convInfo) {\n const maxPositions = buffer(convInfo.outShape, \"int32\");\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n for (let batch = 0; batch < convInfo.batchSize; ++batch) {\n for (let channel = 0; channel < convInfo.inChannels; ++channel) {\n for (let yDepth = 0; yDepth < convInfo.outDepth; ++yDepth) {\n const xDepthCorner = yDepth * strideDepth - padFront;\n let xDepthMin = xDepthCorner;\n while (xDepthMin < 0) {\n xDepthMin += dilationDepth;\n }\n const xDepthMax = Math.min(convInfo.inDepth, effectiveFilterDepth + xDepthCorner);\n for (let yRow = 0; yRow < convInfo.outHeight; ++yRow) {\n const xRowCorner = yRow * strideHeight - padTop;\n let xRowMin = xRowCorner;\n while (xRowMin < 0) {\n xRowMin += dilationHeight;\n }\n const xRowMax = Math.min(convInfo.inHeight, effectiveFilterHeight + xRowCorner);\n for (let yCol = 0; yCol < convInfo.outWidth; ++yCol) {\n const xColCorner = yCol * strideWidth - padLeft;\n let xColMin = xColCorner;\n while (xColMin < 0) {\n xColMin += dilationWidth;\n }\n const xColMax = Math.min(convInfo.inWidth, effectiveFilterWidth + xColCorner);\n let maxValue = Number.NEGATIVE_INFINITY;\n let maxPosition = -1;\n for (let xDepth = xDepthMin; xDepth < xDepthMax; xDepth += dilationDepth) {\n const wDepth = xDepth - xDepthCorner;\n for (let xRow = xRowMin; xRow < xRowMax; xRow += dilationHeight) {\n const wRow = xRow - xRowCorner;\n for (let xCol = xColMin; xCol < xColMax; xCol += dilationWidth) {\n const wCol = xCol - xColCorner;\n const pixel = xBuf.get(batch, xDepth, xRow, xCol, channel);\n if (pixel >= maxValue) {\n maxValue = pixel;\n maxPosition = wDepth * effectiveFilterHeight * effectiveFilterWidth + wRow * effectiveFilterHeight + wCol;\n }\n }\n }\n }\n maxPositions.set(maxPosition, batch, yDepth, yRow, yCol, channel);\n }\n }\n }\n }\n }\n return maxPositions;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AvgPool.js\nfunction avgPool2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n assertNotComplex(x, \"avgPool\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n let res;\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n res = identity2({ inputs: { x }, backend: backend2 });\n } else {\n const xValues = backend2.data.get(x.dataId).values;\n const strides2 = util_exports.computeStrides(x.shape);\n const buffer2 = pool2(xValues, x.shape, x.dtype, strides2, convInfo, \"avg\");\n res = backend2.makeTensorInfo(convInfo.outShape, x.dtype, buffer2.values);\n }\n return res;\n}\nvar avgPoolConfig = {\n kernelName: AvgPool,\n backendName: \"cpu\",\n kernelFunc: avgPool2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AvgPool3D.js\nfunction avgPool3D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat } = attrs;\n assertNotComplex(x, \"avgPool3d\");\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode, dataFormat);\n const xValues = backend2.data.get(x.dataId).values;\n const outBuf = pool3d2(xValues, x.shape, x.dtype, util_exports.computeStrides(x.shape), convInfo, \"avg\");\n return backend2.makeTensorInfo(outBuf.shape, \"float32\", outBuf.values);\n}\nvar avgPool3DConfig = {\n kernelName: AvgPool3D,\n backendName: \"cpu\",\n kernelFunc: avgPool3D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AvgPool3DGrad.js\nfunction avgPool3DGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n assertNotComplex([dy, input2], \"avgPool3DGrad\");\n const convInfo = backend_util_exports.computePool3DInfo(input2.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = effectiveFilterDepth - 1 - convInfo.padInfo.front;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const dx = buffer(input2.shape, \"float32\");\n const avgMultiplier = 1 / (filterDepth * filterHeight * filterWidth);\n const dyBuf = backend2.bufferSync(dy);\n for (let batch = 0; batch < convInfo.batchSize; ++batch) {\n for (let channel = 0; channel < convInfo.inChannels; ++channel) {\n for (let dxDepth = 0; dxDepth < convInfo.inDepth; ++dxDepth) {\n for (let dxRow = 0; dxRow < convInfo.inHeight; ++dxRow) {\n for (let dxCol = 0; dxCol < convInfo.inWidth; ++dxCol) {\n const dyDepthCorner = dxDepth - padFront;\n const dyRowCorner = dxRow - padTop;\n const dyColCorner = dxCol - padLeft;\n let dotProd = 0;\n for (let wDepth = 0; wDepth < effectiveFilterDepth; wDepth += dilationDepth) {\n const dyDepth = (dyDepthCorner + wDepth) / strideDepth;\n if (dyDepth < 0 || dyDepth >= convInfo.outDepth || Math.floor(dyDepth) !== dyDepth) {\n continue;\n }\n for (let wRow = 0; wRow < effectiveFilterHeight; wRow += dilationHeight) {\n const dyRow = (dyRowCorner + wRow) / strideHeight;\n if (dyRow < 0 || dyRow >= convInfo.outHeight || Math.floor(dyRow) !== dyRow) {\n continue;\n }\n for (let wCol = 0; wCol < effectiveFilterWidth; wCol += dilationWidth) {\n const dyCol = (dyColCorner + wCol) / strideWidth;\n if (dyCol < 0 || dyCol >= convInfo.outWidth || Math.floor(dyCol) !== dyCol) {\n continue;\n }\n const pixel = dyBuf.get(batch, dyDepth, dyRow, dyCol, channel);\n dotProd += pixel;\n }\n }\n }\n dx.set(dotProd * avgMultiplier, batch, dxDepth, dxRow, dxCol, channel);\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar avgPool3DGradConfig2 = {\n kernelName: AvgPool3DGrad,\n backendName: \"cpu\",\n kernelFunc: avgPool3DGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AvgPoolGrad.js\nfunction avgPoolGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const x = input2;\n assertNotComplex([dy, input2], \"avgPoolGrad\");\n const { filterSize, strides, pad: pad3 } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3);\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const dx = buffer(x.shape, \"float32\");\n const avgMultiplier = 1 / (filterHeight * filterWidth);\n const dyData = backend2.data.get(dy.dataId).values;\n const dyBuf = buffer(dy.shape, \"float32\", dyData);\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let d = 0; d < convInfo.inChannels; ++d) {\n for (let dxR = 0; dxR < convInfo.inHeight; ++dxR) {\n for (let dxC = 0; dxC < convInfo.inWidth; ++dxC) {\n const dyRCorner = dxR - padTop;\n const dyCCorner = dxC - padLeft;\n let dotProd = 0;\n for (let wR = 0; wR < effectiveFilterHeight; wR += dilationHeight) {\n const dyR = (dyRCorner + wR) / strideHeight;\n if (dyR < 0 || dyR >= convInfo.outHeight || Math.floor(dyR) !== dyR) {\n continue;\n }\n for (let wC = 0; wC < effectiveFilterWidth; wC += dilationWidth) {\n const dyC = (dyCCorner + wC) / strideWidth;\n if (dyC < 0 || dyC >= convInfo.outWidth || Math.floor(dyC) !== dyC) {\n continue;\n }\n const pixel = dyBuf.get(b, dyR, dyC, d);\n dotProd += pixel;\n }\n }\n dx.set(dotProd * avgMultiplier, b, dxR, dxC, d);\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar avgPoolGradConfig2 = {\n kernelName: AvgPoolGrad,\n backendName: \"cpu\",\n kernelFunc: avgPoolGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/BatchNorm.js\nfunction batchNorm2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, scale: scale2, offset, mean: mean5, variance } = inputs;\n util_exports.assert(mean5.shape.length === variance.shape.length, () => \"Batch normalization gradient requires mean and variance to have equal ranks.\");\n util_exports.assert(offset == null || mean5.shape.length === offset.shape.length, () => \"Batch normalization gradient requires mean and offset to have equal ranks.\");\n util_exports.assert(scale2 == null || mean5.shape.length === scale2.shape.length, () => \"Batch normalization gradient requires mean and scale to have equal ranks.\");\n assertNotComplex([x, mean5, variance, scale2, offset], \"batchNorm\");\n let { varianceEpsilon } = attrs;\n if (varianceEpsilon == null) {\n varianceEpsilon = 1e-3;\n }\n const xVals = backend2.data.get(x.dataId).values;\n const mVals = backend2.data.get(mean5.dataId).values;\n const varVals = backend2.data.get(variance.dataId).values;\n const sVals = scale2 ? backend2.data.get(scale2.dataId).values : new Float32Array([1]);\n const offVals = offset ? backend2.data.get(offset.dataId).values : new Float32Array([0]);\n const outVals = new Float32Array(xVals.length);\n const offValsLength = offVals.length;\n const sValsLength = sVals.length;\n const varValsLength = varVals.length;\n const mValsLength = mVals.length;\n let offi = 0;\n let mi = 0;\n let si = 0;\n let vi = 0;\n for (let i2 = 0; i2 < xVals.length; ++i2) {\n outVals[i2] = offVals[offi++] + (xVals[i2] - mVals[mi++]) * sVals[si++] / Math.sqrt(varVals[vi++] + varianceEpsilon);\n if (offi >= offValsLength) {\n offi = 0;\n }\n if (mi >= mValsLength) {\n mi = 0;\n }\n if (si >= sValsLength) {\n si = 0;\n }\n if (vi >= varValsLength) {\n vi = 0;\n }\n }\n return backend2.makeTensorInfo(x.shape, x.dtype, outVals);\n}\nvar batchNormConfig = {\n kernelName: FusedBatchNorm,\n backendName: \"cpu\",\n kernelFunc: batchNorm2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/BatchToSpaceND.js\nfunction batchToSpaceND2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, crops } = attrs;\n assertNotComplex([x], \"batchToSpaceND\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6);\n const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length);\n const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6);\n const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length);\n const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length);\n const xReshaped = reshape3({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } });\n const xTransposed = transpose2({ inputs: { x: xReshaped }, backend: backend2, attrs: { perm: permuted } });\n const xTransposedReshaped = reshape3({ inputs: { x: xTransposed }, backend: backend2, attrs: { shape: reshapedPermuted } });\n const result = slice2({\n inputs: { x: xTransposedReshaped },\n backend: backend2,\n attrs: { begin: sliceBeginCoords, size: sliceSize }\n });\n backend2.disposeIntermediateTensorInfo(xReshaped);\n backend2.disposeIntermediateTensorInfo(xTransposed);\n backend2.disposeIntermediateTensorInfo(xTransposedReshaped);\n return result;\n}\nvar batchToSpaceNDConfig = {\n kernelName: BatchToSpaceND,\n backendName: \"cpu\",\n kernelFunc: batchToSpaceND2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Bincount.js\nfunction bincount2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, weights } = inputs;\n const { size } = attrs;\n const xVals = backend2.data.get(x.dataId).values;\n const weightsVals = backend2.data.get(weights.dataId).values;\n const outVals = bincountImpl(xVals, weightsVals, weights.dtype, weights.shape, size);\n return backend2.makeTensorInfo([size], weights.dtype, outVals);\n}\nvar bincountConfig = {\n kernelName: Bincount,\n backendName: \"cpu\",\n kernelFunc: bincount2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/BroadcastArgs.js\nfunction broadcastArgs2(args) {\n const { inputs, backend: backend2 } = args;\n const { s0, s1 } = inputs;\n const s0Vals = backend2.data.get(s0.dataId).values;\n const s1Vals = backend2.data.get(s1.dataId).values;\n const broadcastShape = backend_util_exports.assertAndGetBroadcastShape(Array.from(s0Vals), Array.from(s1Vals));\n return backend2.makeTensorInfo([broadcastShape.length], \"int32\", Int32Array.from(broadcastShape));\n}\nvar broadcastArgsConfig = {\n kernelName: BroadcastArgs,\n backendName: \"cpu\",\n kernelFunc: broadcastArgs2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ClipByValue.js\nvar clipByValue2 = unaryKernelFunc(ClipByValue, (xi, attrs) => {\n const clipAttrs = attrs;\n if (xi > clipAttrs.clipValueMax) {\n return clipAttrs.clipValueMax;\n }\n return xi < clipAttrs.clipValueMin ? clipAttrs.clipValueMin : xi;\n});\nvar clipByValueConfig = {\n kernelName: ClipByValue,\n backendName: \"cpu\",\n kernelFunc: clipByValue2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ComplexAbs.js\nvar complexAbs = (args) => {\n const { x } = args.inputs;\n const cpuBackend = args.backend;\n const resultValues = new Float32Array(util_exports.sizeFromShape(x.shape));\n const complexVals = cpuBackend.data.get(x.dataId);\n const real6 = complexVals.complexTensorInfos.real;\n const imag5 = complexVals.complexTensorInfos.imag;\n const realVals = cpuBackend.data.get(real6.dataId).values;\n const imagVals = cpuBackend.data.get(imag5.dataId).values;\n for (let i2 = 0; i2 < realVals.length; i2++) {\n const real7 = realVals[i2];\n const imag6 = imagVals[i2];\n resultValues[i2] = Math.hypot(real7, imag6);\n }\n return cpuBackend.makeOutput(resultValues, x.shape, \"float32\");\n};\nvar complexAbsConfig = {\n kernelName: ComplexAbs,\n backendName: \"cpu\",\n kernelFunc: complexAbs\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Imag.js\nfunction imag2(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const imag5 = backend2.data.get(input2.dataId).complexTensorInfos.imag;\n const imagVal = backend2.data.get(imag5.dataId).values;\n return backend2.makeTensorInfo(imag5.shape, imag5.dtype, imagVal);\n}\nvar imagConfig = {\n kernelName: Imag,\n backendName: \"cpu\",\n kernelFunc: imag2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Concat.js\nfunction concat2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, inputs[0].shape)[0];\n let outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), $axis);\n if (util_exports.sizeFromShape(outShape) === 0) {\n return backend2.makeTensorInfo(outShape, inputs[0].dtype, []);\n }\n const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0);\n if ($inputs.length === 1) {\n return identity2({ inputs: { x: $inputs[0] }, backend: backend2 });\n }\n const shapes = $inputs.map((t2) => t2.shape);\n backend_util_exports.assertParamsConsistent(shapes, $axis);\n if ($inputs[0].dtype === \"complex64\") {\n const reals = $inputs.map((t2) => real2({ inputs: { input: t2 }, backend: backend2 }));\n const imags = $inputs.map((t2) => imag2({ inputs: { input: t2 }, backend: backend2 }));\n const realConcated = concat2({ inputs: reals, backend: backend2, attrs: { axis: $axis } });\n const imagConcated = concat2({ inputs: imags, backend: backend2, attrs: { axis: $axis } });\n const result = complex2({ inputs: { real: realConcated, imag: imagConcated }, backend: backend2 });\n reals.forEach((r2) => backend2.disposeIntermediateTensorInfo(r2));\n imags.forEach((i2) => backend2.disposeIntermediateTensorInfo(i2));\n backend2.disposeIntermediateTensorInfo(realConcated);\n backend2.disposeIntermediateTensorInfo(imagConcated);\n return result;\n }\n const inputs2D = $inputs.map((t2) => {\n const innerSize = util_exports.sizeFromShape(t2.shape.slice($axis));\n const shape = [-1, innerSize];\n return reshape3({ inputs: { x: t2 }, backend: backend2, attrs: { shape } });\n });\n const inputsValShapes = inputs2D.map((t2) => {\n return { vals: backend2.data.get(t2.dataId).values, shape: t2.shape };\n });\n outShape = backend_util_exports.computeOutShape(inputs2D.map((t2) => t2.shape), 1);\n const simplyConcat = inputs2D[0].shape[0] === 1;\n const outVals = concatImpl(inputsValShapes, outShape, inputs[0].dtype, simplyConcat);\n const finalOutShape = backend_util_exports.computeOutShape($inputs.map((t2) => t2.shape), $axis);\n const outInfo = backend2.makeTensorInfo(finalOutShape, inputs[0].dtype, outVals);\n inputs2D.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return outInfo;\n}\nvar concatConfig = {\n kernelName: Concat,\n backendName: \"cpu\",\n kernelFunc: concat2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv2D.js\nfunction conv2D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs;\n assertNotComplex([x, filter], \"conv2d\");\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const padLeft = convInfo.padInfo.left;\n const padTop = convInfo.padInfo.top;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const y = new TensorBuffer(convInfo.outShape, x.dtype);\n const xStrides = util_exports.computeStrides(x.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n const xBatchStride = xStrides[0];\n const xRowStride = isChannelsLast ? xStrides[1] : xStrides[2];\n const xColStride = isChannelsLast ? xStrides[2] : 1;\n const xChannelStride = isChannelsLast ? 1 : xStrides[1];\n const yBatchStride = y.strides[0];\n const yRowStride = isChannelsLast ? y.strides[1] : y.strides[2];\n const yColStride = isChannelsLast ? y.strides[2] : 1;\n const yChannelStride = isChannelsLast ? 1 : y.strides[1];\n const xVals = backend2.data.get(x.dataId).values;\n const wVals = backend2.data.get(filter.dataId).values;\n const yVals = y.values;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const xOffset1 = b * xBatchStride;\n const yOffset1 = b * yBatchStride;\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const yOffset2 = yOffset1 + yR * yRowStride;\n const xRCorner = yR * convInfo.strideHeight - padTop;\n for (let wR = 0; wR < filterHeight; ++wR) {\n const xR = xRCorner + wR * dilationHeight;\n if (xR < 0 || xR >= convInfo.inHeight) {\n continue;\n }\n const wOffset1 = wR * filterStrides[0];\n const xOffset2 = xOffset1 + xR * xRowStride;\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const yOffset3 = yOffset2 + yC * yColStride;\n const xCCorner = yC * convInfo.strideWidth - padLeft;\n for (let wC = 0; wC < filterWidth; ++wC) {\n const xC = xCCorner + wC * dilationWidth;\n if (xC < 0 || xC >= convInfo.inWidth) {\n continue;\n }\n const wOffset2 = wOffset1 + wC * filterStrides[1];\n const xOffset3 = xOffset2 + xC * xColStride;\n let wOffset3 = wOffset2;\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n const xVal = xVals[xOffset3 + d1 * xChannelStride];\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n yVals[yOffset3 + d2 * yChannelStride] += xVal * wVals[wOffset3 + d2];\n }\n wOffset3 += convInfo.outChannels;\n }\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(y.shape, y.dtype, yVals);\n}\nvar conv2DConfig = {\n kernelName: Conv2D,\n backendName: \"cpu\",\n kernelFunc: conv2D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv2DBackpropFilter.js\nfunction conv2DBackpropFilter2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, pad: pad3, dataFormat, dimRoundingMode, filterShape } = attrs;\n assertNotComplex([x, dy], \"conv2dBackpropFilter\");\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filterShape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const { strideHeight, strideWidth, filterHeight, filterWidth } = convInfo;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const dW = new TensorBuffer(convInfo.filterShape, \"float32\");\n const leftPad = convInfo.padInfo.left;\n const topPad = convInfo.padInfo.top;\n const xVals = backend2.data.get(x.dataId).values;\n const dyVals = backend2.data.get(dy.dataId).values;\n const xBuf = new TensorBuffer(x.shape, x.dtype, xVals);\n const dyBuf = new TensorBuffer(dy.shape, dy.dtype, dyVals);\n for (let wR = 0; wR < filterHeight; ++wR) {\n const yRMin = Math.max(0, Math.ceil((topPad - wR) / strideHeight));\n const yRMax = Math.min(convInfo.outHeight, (convInfo.inHeight + topPad - wR) / strideHeight);\n for (let wC = 0; wC < filterWidth; ++wC) {\n const yCMin = Math.max(0, Math.ceil((leftPad - wC) / strideWidth));\n const yCMax = Math.min(convInfo.outWidth, (convInfo.inWidth + leftPad - wC) / strideWidth);\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n let dotProd = 0;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let yR = yRMin; yR < yRMax; ++yR) {\n const xR = wR + yR * strideHeight - topPad;\n for (let yC = yCMin; yC < yCMax; ++yC) {\n const xC = wC + yC * strideWidth - leftPad;\n if (isChannelsLast) {\n dotProd += xBuf.get(b, xR, xC, d1) * dyBuf.get(b, yR, yC, d2);\n } else {\n dotProd += xBuf.get(b, d1, xR, xC) * dyBuf.get(b, d2, yR, yC);\n }\n }\n }\n }\n dW.set(dotProd, wR, wC, d1, d2);\n }\n }\n }\n }\n return backend2.makeTensorInfo(dW.shape, dW.dtype, dW.values);\n}\nvar conv2DBackpropFilterConfig = {\n kernelName: Conv2DBackpropFilter,\n backendName: \"cpu\",\n kernelFunc: conv2DBackpropFilter2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv2DBackpropInput.js\nfunction conv2DBackpropInput2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { inputShape, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n assertNotComplex([dy, filter], \"conv2dBackpropInput\");\n const filterStrides = util_exports.computeStrides(filter.shape);\n const dyStrides = util_exports.computeStrides(dy.shape);\n let $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const dx = new TensorBuffer(convInfo.inShape, \"float32\");\n const dxValues = dx.values;\n const dyValues = backend2.data.get(dy.dataId).values;\n const fltValues = backend2.data.get(filter.dataId).values;\n const [fltS0, fltS1, fltS2] = filterStrides;\n const { batchSize, filterHeight, filterWidth, inChannels, inHeight, inWidth, outChannels, outHeight, outWidth, strideHeight, strideWidth } = convInfo;\n $dataFormat = convInfo.dataFormat;\n const topPad = filterHeight - 1 - convInfo.padInfo.top;\n const leftPad = filterWidth - 1 - convInfo.padInfo.left;\n const isChannelsLast = $dataFormat === \"channelsLast\";\n const xBatchStride = dx.strides[0];\n const xRowStride = isChannelsLast ? dx.strides[1] : dx.strides[2];\n const xColStride = isChannelsLast ? dx.strides[2] : 1;\n const xChannelStride = isChannelsLast ? 1 : dx.strides[1];\n const yBatchStride = dyStrides[0];\n const yRowStride = isChannelsLast ? dyStrides[1] : dyStrides[2];\n const yColStride = isChannelsLast ? dyStrides[2] : 1;\n const yChannelStride = isChannelsLast ? 1 : dyStrides[1];\n for (let b = 0; b < batchSize; ++b) {\n for (let d1 = 0; d1 < inChannels; ++d1) {\n for (let xR = 0; xR < inHeight; ++xR) {\n const xRCorner = xR - topPad;\n const xRMin = Math.max(0, Math.ceil(xRCorner / strideHeight));\n const yRMax = Math.min(outHeight, (filterHeight + xRCorner) / strideHeight);\n for (let xC = 0; xC < inWidth; ++xC) {\n const xCCorner = xC - leftPad;\n const xCMin = Math.max(0, Math.ceil(xCCorner / strideWidth));\n const yCMax = Math.min(outWidth, (filterWidth + xCCorner) / strideWidth);\n let dotProd = 0;\n for (let yR = xRMin; yR < yRMax; ++yR) {\n const wR = yR * strideHeight - xRCorner;\n for (let yC = xCMin; yC < yCMax; ++yC) {\n const wC = yC * strideWidth - xCCorner;\n const dyOffset = yBatchStride * b + yRowStride * yR + yColStride * yC;\n const fltOffset = fltS0 * (filterHeight - 1 - wR) + fltS1 * (filterWidth - 1 - wC) + fltS2 * d1;\n for (let d2 = 0; d2 < outChannels; ++d2) {\n const pixel = dyValues[dyOffset + yChannelStride * d2];\n const weight = fltValues[fltOffset + d2];\n dotProd += pixel * weight;\n }\n }\n }\n const dxOffset = xBatchStride * b + xRowStride * xR + xColStride * xC + xChannelStride * d1;\n dxValues[dxOffset] = dotProd;\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar conv2DBackpropInputConfig = {\n kernelName: Conv2DBackpropInput,\n backendName: \"cpu\",\n kernelFunc: conv2DBackpropInput2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv3D.js\nfunction conv3D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n assertNotComplex([x, filter], \"conv3d\");\n const convInfo = backend_util_exports.computeConv3DInfo(x.shape, filter.shape, strides, dilations, pad3);\n const { filterDepth, filterHeight, filterWidth, dilationDepth, dilationHeight, dilationWidth, padInfo } = convInfo;\n const padFront = padInfo.front;\n const padLeft = padInfo.left;\n const padTop = padInfo.top;\n const y = new TensorBuffer(convInfo.outShape, x.dtype);\n const xVals = backend2.data.get(x.dataId).values;\n const wVals = backend2.data.get(filter.dataId).values;\n const yVals = y.values;\n const xStrides = util_exports.computeStrides(x.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const xOffset1 = b * xStrides[0];\n const yOffset1 = b * y.strides[0];\n for (let yF = 0; yF < convInfo.outDepth; ++yF) {\n const yOffset2 = yOffset1 + yF * y.strides[1];\n const xFCorner = yF * convInfo.strideDepth - padFront;\n for (let wF = 0; wF < filterDepth; ++wF) {\n const xF = xFCorner + wF * dilationDepth;\n if (xF < 0 || xF >= convInfo.inDepth) {\n continue;\n }\n const wOffset1 = wF * filterStrides[0];\n const xOffset2 = xOffset1 + xF * xStrides[1];\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const yOffset3 = yOffset2 + yR * y.strides[2];\n const xRCorner = yR * convInfo.strideHeight - padTop;\n for (let wR = 0; wR < filterHeight; ++wR) {\n const xR = xRCorner + wR * dilationHeight;\n if (xR < 0 || xR >= convInfo.inHeight) {\n continue;\n }\n const wOffset2 = wOffset1 + wR * filterStrides[1];\n const xOffset3 = xOffset2 + xR * xStrides[2];\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const yOffset4 = yOffset3 + yC * convInfo.outChannels;\n const xCCorner = yC * convInfo.strideWidth - padLeft;\n for (let wC = 0; wC < filterWidth; ++wC) {\n const xC = xCCorner + wC * dilationWidth;\n if (xC < 0 || xC >= convInfo.inWidth) {\n continue;\n }\n const wOffset3 = wOffset2 + wC * filterStrides[2];\n const xOffset4 = xOffset3 + xC * convInfo.inChannels;\n let wOffset4 = wOffset3;\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n const xVal = xVals[xOffset4 + d1];\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n yVals[yOffset4 + d2] += xVal * wVals[wOffset4 + d2];\n }\n wOffset4 += convInfo.outChannels;\n }\n }\n }\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(y.shape, y.dtype, y.values);\n}\nvar conv3DConfig = {\n kernelName: Conv3D,\n backendName: \"cpu\",\n kernelFunc: conv3D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv3DBackpropFilterV2.js\nfunction conv3DBackpropFilterV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, pad: pad3, filterShape } = attrs;\n assertNotComplex([x, dy], \"conv3dBackpropFilterV2\");\n const xStrides = util_exports.computeStrides(x.shape);\n const dyStrides = util_exports.computeStrides(dy.shape);\n const convInfo = backend_util_exports.computeConv3DInfo(x.shape, filterShape, strides, 1, pad3);\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const dw = new TensorBuffer(convInfo.filterShape, \"float32\");\n const dwValues = dw.values;\n const [dwS0, dwS1, dwS2, dwS3] = dw.strides;\n const dyValues = backend2.data.get(dy.dataId).values;\n const [dyS0, dyS1, dyS2, dyS3] = dyStrides;\n const xValues = backend2.data.get(x.dataId).values;\n const [xS0, xS1, xS2, xS3] = xStrides;\n const frontPad = convInfo.padInfo.front;\n const leftPad = convInfo.padInfo.left;\n const topPad = convInfo.padInfo.top;\n for (let wF = 0; wF < filterDepth; ++wF) {\n const yFMin = Math.max(0, Math.ceil((frontPad - wF) / strideDepth));\n const yFMax = Math.min(convInfo.outDepth, (convInfo.inDepth + frontPad - wF) / strideDepth);\n const wOffset1 = wF * dwS0;\n for (let wR = 0; wR < filterHeight; ++wR) {\n const yRMin = Math.max(0, Math.ceil((topPad - wR) / strideHeight));\n const yRMax = Math.min(convInfo.outHeight, (convInfo.inHeight + topPad - wR) / strideHeight);\n const wOffset2 = wR * dwS1 + wOffset1;\n for (let wC = 0; wC < filterWidth; ++wC) {\n const yCMin = Math.max(0, Math.ceil((leftPad - wC) / strideWidth));\n const yCMax = Math.min(convInfo.outWidth, (convInfo.inWidth + leftPad - wC) / strideWidth);\n const wOffset3 = wC * dwS2 + wOffset2;\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n const wOffset4 = d1 * dwS3 + wOffset3;\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n let dotProd = 0;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const xOffset1 = b * xS0;\n const yOffset1 = b * dyS0;\n for (let yF = yFMin; yF < yFMax; ++yF) {\n const xF = wF + yF * strideDepth - frontPad;\n const xOffset2 = xF * xS1 + xOffset1;\n const yOffset2 = yF * dyS1 + yOffset1;\n for (let yR = yRMin; yR < yRMax; ++yR) {\n const xR = wR + yR * strideHeight - topPad;\n const xOffset3 = xR * xS2 + xOffset2;\n const yOffset3 = yR * dyS2 + yOffset2;\n for (let yC = yCMin; yC < yCMax; ++yC) {\n const xC = wC + yC * strideWidth - leftPad;\n const xOffset4 = xC * xS3 + xOffset3;\n const yOffset4 = yC * dyS3 + yOffset3;\n dotProd += xValues[xOffset4 + d1] * dyValues[yOffset4 + d2];\n }\n }\n }\n }\n dwValues[wOffset4 + d2] = dotProd;\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(dw.shape, dw.dtype, dw.values);\n}\nvar conv3DBackpropFilterV2Config = {\n kernelName: Conv3DBackpropFilterV2,\n backendName: \"cpu\",\n kernelFunc: conv3DBackpropFilterV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv3DBackpropInputV2.js\nfunction conv3DBackpropInputV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { pad: pad3, strides, inputShape } = attrs;\n assertNotComplex([dy], \"conv3dBackpropInputV2\");\n const dyStrides = util_exports.computeStrides(dy.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n const convInfo = backend_util_exports.computeConv3DInfo(inputShape, filter.shape, strides, 1, pad3);\n const dx = new TensorBuffer(convInfo.inShape, \"float32\");\n const dxValues = dx.values;\n const [dxS0, dxS1, dxS2, dxS3] = dx.strides;\n const dyValues = backend2.data.get(dy.dataId).values;\n const [dyS0, dyS1, dyS2, dyS3] = dyStrides;\n const fltValues = backend2.data.get(filter.dataId).values;\n const [fltS0, fltS1, fltS2, fltS3] = filterStrides;\n const { batchSize, filterDepth, filterHeight, filterWidth, inChannels, inDepth, inHeight, inWidth, outChannels, outDepth, outHeight, outWidth, strideDepth, strideHeight, strideWidth } = convInfo;\n const frontPad = filterDepth - 1 - convInfo.padInfo.front;\n const topPad = filterHeight - 1 - convInfo.padInfo.top;\n const leftPad = filterWidth - 1 - convInfo.padInfo.left;\n for (let b = 0; b < batchSize; ++b) {\n for (let d1 = 0; d1 < inChannels; ++d1) {\n for (let xF = 0; xF < inDepth; ++xF) {\n const xFCorner = xF - frontPad;\n const xFMin = Math.max(0, Math.ceil(xFCorner / strideDepth));\n const yFMax = Math.min(outDepth, (filterDepth + xFCorner) / strideDepth);\n for (let xR = 0; xR < inHeight; ++xR) {\n const xRCorner = xR - topPad;\n const xRMin = Math.max(0, Math.ceil(xRCorner / strideHeight));\n const yRMax = Math.min(outHeight, (filterHeight + xRCorner) / strideHeight);\n for (let xC = 0; xC < inWidth; ++xC) {\n const xCCorner = xC - leftPad;\n const xCMin = Math.max(0, Math.ceil(xCCorner / strideWidth));\n const yCMax = Math.min(outWidth, (filterWidth + xCCorner) / strideWidth);\n let dotProd = 0;\n for (let yF = xFMin; yF < yFMax; ++yF) {\n const wF = yF * strideDepth - xFCorner;\n for (let yR = xRMin; yR < yRMax; ++yR) {\n const wR = yR * strideHeight - xRCorner;\n for (let yC = xCMin; yC < yCMax; ++yC) {\n const wC = yC * strideWidth - xCCorner;\n const dyOffset = dyS0 * b + dyS1 * yF + dyS2 * yR + dyS3 * yC;\n const fltOffset = fltS0 * (filterDepth - 1 - wF) + fltS1 * (filterHeight - 1 - wR) + fltS2 * (filterWidth - 1 - wC) + fltS3 * d1;\n for (let d2 = 0; d2 < outChannels; ++d2) {\n const pixel = dyValues[dyOffset + d2];\n const weight = fltValues[fltOffset + d2];\n dotProd += pixel * weight;\n }\n }\n }\n }\n dxValues[dxS0 * b + dxS1 * xF + dxS2 * xR + dxS3 * xC + d1] = dotProd;\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar conv3DBackpropInputV2Config = {\n kernelName: Conv3DBackpropInputV2,\n backendName: \"cpu\",\n kernelFunc: conv3DBackpropInputV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cos.js\nvar cos2 = unaryKernelFunc(Cos, (xi) => Math.cos(xi));\nvar cosConfig = {\n kernelName: Cos,\n backendName: \"cpu\",\n kernelFunc: cos2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cosh.js\nvar cosh2 = unaryKernelFunc(Cosh, (xi) => Math.cosh(xi));\nvar coshConfig = {\n kernelName: Cosh,\n backendName: \"cpu\",\n kernelFunc: cosh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/CropAndResize.js\nfunction cropAndResize2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, boxes, boxInd } = inputs;\n const { cropSize, method, extrapolationValue } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const numBoxes = boxes.shape[0];\n const [cropHeight, cropWidth] = cropSize;\n const output = buffer([numBoxes, cropHeight, cropWidth, numChannels], \"float32\");\n const boxVals = backend2.data.get(boxes.dataId).values;\n const boxIndVals = backend2.data.get(boxInd.dataId).values;\n const imageVals = backend2.data.get(image2.dataId).values;\n const inStride = util_exports.computeStrides(image2.shape);\n const outStride = util_exports.computeStrides(output.shape);\n for (let b = 0; b < numBoxes; b++) {\n const startInd = b * 4;\n const y1 = boxVals[startInd];\n const x1 = boxVals[startInd + 1];\n const y2 = boxVals[startInd + 2];\n const x2 = boxVals[startInd + 3];\n const bInd = boxIndVals[b];\n if (bInd >= batch) {\n continue;\n }\n const heightScale = cropHeight > 1 ? (y2 - y1) * (imageHeight - 1) / (cropHeight - 1) : 0;\n const widthScale = cropWidth > 1 ? (x2 - x1) * (imageWidth - 1) / (cropWidth - 1) : 0;\n for (let y = 0; y < cropHeight; y++) {\n const yInd = cropHeight > 1 ? y1 * (imageHeight - 1) + y * heightScale : 0.5 * (y1 + y2) * (imageHeight - 1);\n if (yInd < 0 || yInd > imageHeight - 1) {\n for (let x = 0; x < cropWidth; x++) {\n for (let c = 0; c < numChannels; c++) {\n const ind = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[ind] = extrapolationValue;\n }\n }\n continue;\n }\n if (method === \"bilinear\") {\n const topInd = Math.floor(yInd);\n const bottomInd = Math.ceil(yInd);\n const yLerp = yInd - topInd;\n for (let x = 0; x < cropWidth; x++) {\n const xInd = cropWidth > 1 ? x1 * (imageWidth - 1) + x * widthScale : 0.5 * (x1 + x2) * (imageWidth - 1);\n if (xInd < 0 || xInd > imageWidth - 1) {\n for (let c = 0; c < numChannels; c++) {\n const ind = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[ind] = extrapolationValue;\n }\n continue;\n }\n const leftInd = Math.floor(xInd);\n const rightInd = Math.ceil(xInd);\n const xLerp = xInd - leftInd;\n for (let c = 0; c < numChannels; c++) {\n let ind = c + leftInd * inStride[2] + topInd * inStride[1] + bInd * inStride[0];\n const topLeft = imageVals[ind];\n ind = c + rightInd * inStride[2] + topInd * inStride[1] + bInd * inStride[0];\n const topRight = imageVals[ind];\n ind = c + leftInd * inStride[2] + bottomInd * inStride[1] + bInd * inStride[0];\n const bottomLeft = imageVals[ind];\n ind = c + rightInd * inStride[2] + bottomInd * inStride[1] + bInd * inStride[0];\n const bottomRight = imageVals[ind];\n const top = topLeft + (topRight - topLeft) * xLerp;\n const bottom = bottomLeft + (bottomRight - bottomLeft) * xLerp;\n ind = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[ind] = top + (bottom - top) * yLerp;\n }\n }\n } else {\n for (let x = 0; x < cropWidth; ++x) {\n const xInd = cropWidth > 1 ? x1 * (imageWidth - 1) + x * widthScale : 0.5 * (x1 + x2) * (imageWidth - 1);\n if (xInd < 0 || xInd > imageWidth - 1) {\n for (let c = 0; c < numChannels; c++) {\n const ind = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[ind] = extrapolationValue;\n }\n continue;\n }\n const closestX = Math.round(xInd);\n const closestY = Math.round(yInd);\n for (let c = 0; c < numChannels; c++) {\n const inInd = c + closestX * inStride[2] + closestY * inStride[1] + bInd * inStride[0];\n const outInd = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[outInd] = imageVals[inInd];\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(output.shape, output.dtype, output.values);\n}\nvar cropAndResizeConfig = {\n kernelName: CropAndResize,\n backendName: \"cpu\",\n kernelFunc: cropAndResize2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cumprod.js\nfunction cumprod2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n assertNotComplex(x, \"cumprod\");\n const permutation = backend_util_exports.getAxesPermutation([axis], x.shape.length);\n let $x = x;\n if (permutation != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, x.shape.length)[0];\n if (permutedAxis !== $x.shape.length - 1) {\n throw new Error(`backend.cumprod in CPU expects an inner-most axis=${$x.shape.length - 1} but got axis=${permutedAxis}`);\n }\n const resultDtype = upcastType($x.dtype, \"int32\");\n const vals = util_exports.makeOnesTypedArray(util_exports.sizeFromShape($x.shape), resultDtype);\n const aVals = backend2.data.get($x.dataId).values;\n const finalDim = $x.shape[$x.shape.length - 1];\n const indexAdjuster = reverse5 ? (i2, j) => i2 + finalDim - j - 1 : (i2, j) => i2 + j;\n for (let i2 = 0; i2 < aVals.length; i2 += finalDim) {\n for (let j = 0; j < finalDim; j++) {\n const idx = indexAdjuster(i2, j);\n if (j === 0) {\n vals[idx] = exclusive ? 1 : aVals[idx];\n } else {\n const prevIdx = indexAdjuster(i2, j - 1);\n vals[idx] = exclusive ? aVals[prevIdx] * vals[prevIdx] : aVals[idx] * vals[prevIdx];\n }\n }\n }\n const result = backend2.makeTensorInfo($x.shape, resultDtype, vals);\n if (permutation != null) {\n const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n const reverseTransposedResult = transpose2({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } });\n backend2.disposeIntermediateTensorInfo(result);\n backend2.disposeIntermediateTensorInfo($x);\n return reverseTransposedResult;\n }\n return result;\n}\nvar cumprodConfig = {\n kernelName: Cumprod,\n backendName: \"cpu\",\n kernelFunc: cumprod2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cumsum.js\nfunction cumsum2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n assertNotComplex(x, \"cumsum\");\n const permutation = backend_util_exports.getAxesPermutation([axis], x.shape.length);\n let $x = x;\n if (permutation != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, x.shape.length)[0];\n if (permutedAxis !== $x.shape.length - 1) {\n throw new Error(`backend.cumsum in CPU expects an inner-most axis=${$x.shape.length - 1} but got axis=${permutedAxis}`);\n }\n const resultDtype = upcastType($x.dtype, \"int32\");\n const vals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape($x.shape), resultDtype);\n const aVals = backend2.data.get($x.dataId).values;\n const finalDim = $x.shape[$x.shape.length - 1];\n const indexAdjuster = reverse5 ? (i2, j) => i2 + finalDim - j - 1 : (i2, j) => i2 + j;\n for (let i2 = 0; i2 < aVals.length; i2 += finalDim) {\n for (let j = 0; j < finalDim; j++) {\n const idx = indexAdjuster(i2, j);\n if (j === 0) {\n vals[idx] = exclusive ? 0 : aVals[idx];\n } else {\n const prevIdx = indexAdjuster(i2, j - 1);\n vals[idx] = exclusive ? aVals[prevIdx] + vals[prevIdx] : aVals[idx] + vals[prevIdx];\n }\n }\n }\n const result = backend2.makeTensorInfo($x.shape, resultDtype, vals);\n if (permutation != null) {\n const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n const reverseTransposedResult = transpose2({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } });\n backend2.disposeIntermediateTensorInfo(result);\n backend2.disposeIntermediateTensorInfo($x);\n return reverseTransposedResult;\n }\n return result;\n}\nvar cumsumConfig = {\n kernelName: Cumsum,\n backendName: \"cpu\",\n kernelFunc: cumsum2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DenseBincount.js\nfunction denseBincount2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, weights } = inputs;\n const { size, binaryOutput } = attrs;\n if (x.shape.length === 1) {\n const xVals = backend2.data.get(x.dataId).values;\n const weightsVals = backend2.data.get(weights.dataId).values;\n const outVals = bincountImpl(xVals, weightsVals, weights.dtype, weights.shape, size);\n return backend2.makeTensorInfo([size], weights.dtype, outVals);\n } else if (x.shape.length === 2) {\n const xBuf = backend2.bufferSync(x);\n const weightsBuf = backend2.bufferSync(weights);\n const outBuf = bincountReduceImpl(xBuf, weightsBuf, size, binaryOutput);\n return backend2.makeTensorInfo(outBuf.shape, weights.dtype, outBuf.values);\n }\n throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${x.shape.length}.`);\n}\nvar denseBincountConfig = {\n kernelName: DenseBincount,\n backendName: \"cpu\",\n kernelFunc: denseBincount2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DepthToSpace.js\nfunction depthToSpace2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockSize, dataFormat } = attrs;\n util_exports.assert(dataFormat === \"NHWC\", () => `Only NHWC dataFormat supported on CPU for depthToSpace. Got ${dataFormat}`);\n const batchSize = x.shape[0];\n const inputHeight = x.shape[1];\n const inputWidth = x.shape[2];\n const inputDepth = x.shape[3];\n const outputHeight = inputHeight * blockSize;\n const outputWidth = inputWidth * blockSize;\n const outputDepth = inputDepth / (blockSize * blockSize);\n const xValues = backend2.data.get(x.dataId).values;\n const result = new Float32Array(batchSize * outputHeight * outputWidth * outputDepth);\n let outputIdx = 0;\n for (let b = 0; b < batchSize; ++b) {\n for (let h = 0; h < outputHeight; ++h) {\n const inH = Math.floor(h / blockSize);\n const offsetH = h % blockSize;\n for (let w = 0; w < outputWidth; ++w) {\n const inW = Math.floor(w / blockSize);\n const offsetW = w % blockSize;\n const offsetD = (offsetH * blockSize + offsetW) * outputDepth;\n for (let d = 0; d < outputDepth; ++d) {\n const inD = d + offsetD;\n const inputIdx = inD + inputDepth * (inW + inputWidth * (inH + inputHeight * b));\n result[outputIdx++] = xValues[inputIdx];\n }\n }\n }\n }\n return backend2.makeTensorInfo([batchSize, outputHeight, outputWidth, outputDepth], x.dtype, result);\n}\nvar depthToSpaceConfig = {\n kernelName: DepthToSpace,\n backendName: \"cpu\",\n kernelFunc: depthToSpace2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DepthwiseConv2dNative.js\nfunction depthwiseConv2dNative(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations, dimRoundingMode } = attrs;\n assertNotComplex([x, filter], \"depthwiseConv2DNative\");\n const xStrides = util_exports.computeStrides(x.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n const { filterHeight, filterWidth, dilationHeight, dilationWidth, padInfo } = convInfo;\n const padLeft = padInfo.left;\n const padTop = padInfo.top;\n const chMul = convInfo.outChannels / convInfo.inChannels;\n const y = new TensorBuffer(convInfo.outShape, x.dtype);\n const xVals = backend2.data.get(x.dataId).values;\n const wVals = backend2.data.get(filter.dataId).values;\n const yVals = y.values;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const xOffset1 = b * xStrides[0];\n const yOffset1 = b * y.strides[0];\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const yOffset2 = yOffset1 + yR * y.strides[1];\n const xRCorner = yR * convInfo.strideHeight - padTop;\n for (let wR = 0; wR < filterHeight; ++wR) {\n const xR = xRCorner + wR * dilationHeight;\n if (xR < 0 || xR >= convInfo.inHeight) {\n continue;\n }\n const wOffset1 = wR * filterStrides[0];\n const xOffset2 = xOffset1 + xR * xStrides[1];\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const yOffset3 = yOffset2 + yC * y.strides[2];\n const xCCorner = yC * convInfo.strideWidth - padLeft;\n for (let wC = 0; wC < filterWidth; ++wC) {\n const xC = xCCorner + wC * dilationWidth;\n if (xC < 0 || xC >= convInfo.inWidth) {\n continue;\n }\n const wOffset2 = wOffset1 + wC * filterStrides[1];\n const xOffset3 = xOffset2 + xC * convInfo.inChannels;\n let yOffset4 = yOffset3;\n let wOffset3 = wOffset2;\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n const xVal = xVals[xOffset3 + d1];\n for (let q = 0; q < chMul; ++q) {\n yVals[yOffset4 + q] += xVal * wVals[wOffset3 + q];\n }\n yOffset4 += chMul;\n wOffset3 += chMul;\n }\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(y.shape, y.dtype, y.values);\n}\nvar depthwiseConv2dNativeConfig = {\n kernelName: DepthwiseConv2dNative,\n backendName: \"cpu\",\n kernelFunc: depthwiseConv2dNative\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DepthwiseConv2dNativeBackpropFilter.js\nfunction depthwiseConv2dNativeBackpropFilter2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, dilations, pad: pad3, dimRoundingMode, filterShape } = attrs;\n assertNotComplex([x, dy], \"depthwiseConv2dNativeBackpropFilter\");\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filterShape, strides, dilations, pad3, dimRoundingMode, true);\n const { strideHeight, strideWidth, filterHeight, filterWidth } = convInfo;\n const dW = new TensorBuffer(convInfo.filterShape, \"float32\");\n const leftPad = convInfo.padInfo.left;\n const topPad = convInfo.padInfo.top;\n const chMul = convInfo.outChannels / convInfo.inChannels;\n const xVals = backend2.data.get(x.dataId).values;\n const xBuf = new TensorBuffer(x.shape, x.dtype, xVals);\n const dyVals = backend2.data.get(dy.dataId).values;\n const dyBuf = new TensorBuffer(dy.shape, dy.dtype, dyVals);\n for (let wR = 0; wR < filterHeight; ++wR) {\n const yRMin = Math.max(0, Math.ceil((topPad - wR) / strideHeight));\n const yRMax = Math.min(convInfo.outHeight, (convInfo.inHeight + topPad - wR) / strideHeight);\n for (let wC = 0; wC < filterWidth; ++wC) {\n const yCMin = Math.max(0, Math.ceil((leftPad - wC) / strideWidth));\n const yCMax = Math.min(convInfo.outWidth, (convInfo.inWidth + leftPad - wC) / strideWidth);\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n const d1 = Math.trunc(d2 / chMul);\n const dm = d2 % chMul;\n let dotProd = 0;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let yR = yRMin; yR < yRMax; ++yR) {\n const xR = wR + yR * strideHeight - topPad;\n for (let yC = yCMin; yC < yCMax; ++yC) {\n const xC = wC + yC * strideWidth - leftPad;\n dotProd += xBuf.get(b, xR, xC, d1) * dyBuf.get(b, yR, yC, d2);\n }\n }\n }\n dW.set(dotProd, wR, wC, d1, dm);\n }\n }\n }\n return backend2.makeTensorInfo(dW.shape, dW.dtype, dW.values);\n}\nvar depthwiseConv2dNativeBackpropFilterConfig = {\n kernelName: DepthwiseConv2dNativeBackpropFilter,\n backendName: \"cpu\",\n kernelFunc: depthwiseConv2dNativeBackpropFilter2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DepthwiseConv2dNativeBackpropInput.js\nfunction depthwiseConv2dNativeBackpropInput2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { strides, dilations, pad: pad3, dimRoundingMode, inputShape } = attrs;\n assertNotComplex([dy, filter], \"depthwiseConv2DNativeBackpropInput\");\n const dyStrides = util_exports.computeStrides(dy.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, dilations, pad3, dimRoundingMode, true);\n const dx = new TensorBuffer(convInfo.inShape, \"float32\");\n const dxValues = dx.values;\n const [dxS0, dxS1, dxS2] = dx.strides;\n const dyValues = backend2.data.get(dy.dataId).values;\n const [dyS0, dyS1, dyS2] = dyStrides;\n const fltValues = backend2.data.get(filter.dataId).values;\n const [fltS0, fltS1, fltS2] = filterStrides;\n const { batchSize, filterHeight, filterWidth, inChannels, inHeight, inWidth, outChannels, outHeight, outWidth, strideHeight, strideWidth } = convInfo;\n const topPad = filterHeight - 1 - convInfo.padInfo.top;\n const leftPad = filterWidth - 1 - convInfo.padInfo.left;\n const chMul = outChannels / inChannels;\n for (let b = 0; b < batchSize; ++b) {\n for (let d1 = 0; d1 < inChannels; ++d1) {\n for (let xR = 0; xR < inHeight; ++xR) {\n const xRCorner = xR - topPad;\n const xRMin = Math.max(0, Math.ceil(xRCorner / strideHeight));\n const yRMax = Math.min(outHeight, (filterHeight + xRCorner) / strideHeight);\n for (let xC = 0; xC < inWidth; ++xC) {\n const xCCorner = xC - leftPad;\n const xCMin = Math.max(0, Math.ceil(xCCorner / strideWidth));\n const yCMax = Math.min(outWidth, (filterWidth + xCCorner) / strideWidth);\n let dotProd = 0;\n for (let yR = xRMin; yR < yRMax; ++yR) {\n const wR = yR * strideHeight - xRCorner;\n for (let yC = xCMin; yC < yCMax; ++yC) {\n const wC = yC * strideWidth - xCCorner;\n const dyOffset = dyS0 * b + dyS1 * yR + dyS2 * yC;\n const fltOffset = fltS0 * (filterHeight - 1 - wR) + fltS1 * (filterWidth - 1 - wC) + fltS2 * d1;\n for (let dm = 0; dm < chMul; ++dm) {\n const d2 = d1 * chMul + dm;\n const pixel = dyValues[dyOffset + d2];\n const weight = fltValues[fltOffset + dm];\n dotProd += pixel * weight;\n }\n }\n }\n dxValues[dxS0 * b + dxS1 * xR + dxS2 * xC + d1] = dotProd;\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar depthwiseConv2dNativeBackpropInputConfig = {\n kernelName: DepthwiseConv2dNativeBackpropInput,\n backendName: \"cpu\",\n kernelFunc: depthwiseConv2dNativeBackpropInput2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Diag.js\nfunction diag2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n const xSize = util_exports.sizeFromShape(x.shape);\n const xVals = backend2.data.get(x.dataId).values;\n const outBuf = buffer([xSize, xSize], x.dtype);\n const vals = outBuf.values;\n for (let i2 = 0; i2 < xVals.length; i2++) {\n vals[i2 * xSize + i2] = xVals[i2];\n }\n const outShape = [...x.shape, ...x.shape];\n return backend2.makeTensorInfo(outShape, outBuf.dtype, outBuf.values);\n}\nvar diagConfig = {\n kernelName: Diag,\n backendName: \"cpu\",\n kernelFunc: diag2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Dilation2D.js\nvar dilation2DConfig = {\n kernelName: Dilation2D,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, backend: backend2, attrs }) => {\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const cpuBackend = backend2;\n const xVals = cpuBackend.data.get(x.dataId).values;\n const xRank = x.shape.length;\n const filterVals = cpuBackend.data.get(filter.dataId).values;\n const filterRank = filter.shape.length;\n const { batchSize, inHeight, inWidth, inChannels, outHeight, outWidth, padInfo, strideHeight, strideWidth, filterHeight, filterWidth, dilationHeight, dilationWidth, outShape } = backend_util_exports.computeDilation2DInfo(x.shape, filter.shape, strides, pad3, \"NHWC\", dilations);\n const outSize = util_exports.sizeFromShape(outShape);\n const outRank = outShape.length;\n const outputVals = util_exports.getArrayFromDType(x.dtype, outSize);\n for (let b = 0; b < batchSize; ++b) {\n for (let hOut = 0; hOut < outHeight; ++hOut) {\n const hBeg = hOut * strideHeight - padInfo.top;\n for (let wOut = 0; wOut < outWidth; ++wOut) {\n const wBeg = wOut * strideWidth - padInfo.left;\n for (let d = 0; d < inChannels; ++d) {\n let curVal = Number.MIN_SAFE_INTEGER;\n for (let h = 0; h < filterHeight; ++h) {\n const hIn = hBeg + h * dilationHeight;\n if (hIn >= 0 && hIn < inHeight) {\n for (let w = 0; w < filterWidth; ++w) {\n const wIn = wBeg + w * dilationWidth;\n if (wIn >= 0 && wIn < inWidth) {\n const xIndex = util_exports.locToIndex([b, hIn, wIn, d], xRank, util_exports.computeStrides(x.shape));\n const filterIndex = util_exports.locToIndex([h, w, d], filterRank, util_exports.computeStrides(filter.shape));\n const val = xVals[xIndex] + filterVals[filterIndex];\n if (val > curVal) {\n curVal = val;\n }\n }\n }\n }\n }\n const outputIndex = util_exports.locToIndex([b, hOut, wOut, d], outRank, util_exports.computeStrides(outShape));\n outputVals[outputIndex] = curVal;\n }\n }\n }\n }\n const dataId = cpuBackend.write(util_exports.toTypedArray(outputVals, x.dtype), outShape, x.dtype);\n return { dataId, shape: outShape, dtype: x.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Dilation2DBackpropFilter.js\nvar dilation2DBackpropFilterConfig = {\n kernelName: Dilation2DBackpropFilter,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, backend: backend2, attrs }) => {\n const { x, filter, dy } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const cpuBackend = backend2;\n const $x = util_exports.toNestedArray(x.shape, cpuBackend.data.get(x.dataId).values);\n const $filter = util_exports.toNestedArray(filter.shape, cpuBackend.data.get(filter.dataId).values);\n const { batchSize, inHeight, inWidth, inChannels, outHeight, outWidth, padInfo, strideHeight, strideWidth, filterHeight, filterWidth, dilationHeight, dilationWidth, outShape } = backend_util_exports.computeDilation2DInfo(x.shape, filter.shape, strides, pad3, \"NHWC\", dilations);\n util_exports.assert(dy.rank === outShape.length, () => `Error in ${Dilation2DBackpropFilter}, dy must have the same rank as output ${outShape.length}, but got ${dy.rank}`);\n const $dy = util_exports.toNestedArray(outShape, cpuBackend.data.get(dy.dataId).values);\n const gradients = util_exports.makeZerosNestedTypedArray(filter.shape, filter.dtype);\n for (let b = 0; b < batchSize; ++b) {\n for (let hOut = 0; hOut < outHeight; ++hOut) {\n const hBeg = hOut * strideHeight - padInfo.top;\n for (let wOut = 0; wOut < outWidth; ++wOut) {\n const wBeg = wOut * strideWidth - padInfo.left;\n for (let d = 0; d < inChannels; ++d) {\n let curVal = Number.MIN_SAFE_INTEGER;\n let hMax = 0;\n let wMax = 0;\n for (let h = 0; h < filterHeight; ++h) {\n const hIn = hBeg + h * dilationHeight;\n if (hIn >= 0 && hIn < inHeight) {\n for (let w = 0; w < filterWidth; ++w) {\n const wIn = wBeg + w * dilationWidth;\n if (wIn >= 0 && wIn < inWidth) {\n const val = $x[b][hIn][wIn][d] + $filter[h][w][d];\n if (val > curVal) {\n curVal = val;\n hMax = h;\n wMax = w;\n }\n }\n }\n }\n }\n gradients[hMax][wMax][d] += $dy[b][hOut][wOut][d];\n }\n }\n }\n }\n const dataId = cpuBackend.write(util_exports.toTypedArray(gradients, x.dtype), filter.shape, filter.dtype);\n return { dataId, shape: filter.shape, dtype: filter.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Dilation2DBackpropInput.js\nvar dilation2DBackpropInputConfig = {\n kernelName: Dilation2DBackpropInput,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, backend: backend2, attrs }) => {\n const { x, filter, dy } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const cpuBackend = backend2;\n const $x = util_exports.toNestedArray(x.shape, cpuBackend.data.get(x.dataId).values);\n const $filter = util_exports.toNestedArray(filter.shape, cpuBackend.data.get(filter.dataId).values);\n const { batchSize, inHeight, inWidth, inChannels, outHeight, outWidth, padInfo, strideHeight, strideWidth, filterHeight, filterWidth, dilationHeight, dilationWidth, outShape } = backend_util_exports.computeDilation2DInfo(x.shape, filter.shape, strides, pad3, \"NHWC\", dilations);\n util_exports.assert(dy.rank === outShape.length, () => `Error in ${Dilation2DBackpropInput}, dy must have the same rank as output ${outShape.length}, but got ${dy.rank}`);\n const $dy = util_exports.toNestedArray(outShape, cpuBackend.data.get(dy.dataId).values);\n const gradients = util_exports.makeZerosNestedTypedArray(x.shape, x.dtype);\n for (let b = 0; b < batchSize; ++b) {\n for (let hOut = 0; hOut < outHeight; ++hOut) {\n const hBeg = hOut * strideHeight - padInfo.top;\n for (let wOut = 0; wOut < outWidth; ++wOut) {\n const wBeg = wOut * strideWidth - padInfo.left;\n for (let d = 0; d < inChannels; ++d) {\n let curVal = Number.MIN_SAFE_INTEGER;\n let hInMax = hBeg < 0 ? 0 : hBeg;\n let wInMax = wBeg < 0 ? 0 : wBeg;\n for (let h = 0; h < filterHeight; ++h) {\n const hIn = hBeg + h * dilationHeight;\n if (hIn >= 0 && hIn < inHeight) {\n for (let w = 0; w < filterWidth; ++w) {\n const wIn = wBeg + w * dilationWidth;\n if (wIn >= 0 && wIn < inWidth) {\n const val = $x[b][hIn][wIn][d] + $filter[h][w][d];\n if (val > curVal) {\n curVal = val;\n hInMax = hIn;\n wInMax = wIn;\n }\n }\n }\n }\n }\n gradients[b][hInMax][wInMax][d] += $dy[b][hOut][wOut][d];\n }\n }\n }\n }\n const dataId = cpuBackend.write(util_exports.toTypedArray(gradients, x.dtype), x.shape, x.dtype);\n return { dataId, shape: x.shape, dtype: x.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sum.js\nfunction sum3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"sum\");\n let $x;\n if (x.dtype === \"bool\") {\n $x = cast3({ inputs: { x }, backend: backend2, attrs: { dtype: \"int32\" } });\n } else {\n $x = identity2({ inputs: { x }, backend: backend2 });\n }\n const xRank = $x.shape.length;\n const axes = util_exports.parseAxisParam(axis, $x.shape);\n const permutation = backend_util_exports.getAxesPermutation(axes, xRank);\n let reductionAxes = axes;\n let permutedX = $x;\n if (permutation != null) {\n permutedX = transpose2({ inputs: { x: $x }, backend: backend2, attrs: { perm: permutation } });\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"sum\", reductionAxes, permutedX.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, reductionAxes);\n const resultDtype = backend_util_exports.upcastType(permutedX.dtype, \"int32\");\n let result = zeros3(backend2, outShape, resultDtype);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const vals = backend2.data.get(result.dataId).values;\n const aVals = backend2.data.get(permutedX.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let sum7 = 0;\n for (let j = 0; j < reduceSize; ++j) {\n sum7 += aVals[offset + j];\n }\n vals[i2] = sum7;\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(result.shape, axes);\n const oldResult = result;\n result = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: newShape } });\n backend2.disposeIntermediateTensorInfo(oldResult);\n }\n backend2.disposeIntermediateTensorInfo($x);\n if (permutation != null) {\n backend2.disposeIntermediateTensorInfo(permutedX);\n }\n return result;\n}\nvar sumConfig = {\n kernelName: Sum,\n backendName: \"cpu\",\n kernelFunc: sum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Einsum.js\nfunction einsum2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { equation } = attrs;\n const tensors = inputs;\n const { allDims, summedDims, idDims } = backend_util_exports.decodeEinsumEquation(equation, tensors.length);\n backend_util_exports.checkEinsumDimSizes(allDims.length, idDims, tensors);\n const { path, steps } = backend_util_exports.getEinsumComputePath(summedDims, idDims);\n const nSteps = steps.length;\n let out = null;\n let numDimsRemaining = allDims.length;\n const tensorsToDispose = [];\n for (let i2 = 0; i2 < nSteps; ++i2) {\n for (const idTerm of steps[i2]) {\n const { permutationIndices: perm, expandDims: dimsToExpand } = backend_util_exports.getEinsumPermutation(numDimsRemaining, idDims[idTerm]);\n let x;\n if (backend_util_exports.isIdentityPermutation(perm)) {\n x = tensors[idTerm];\n } else {\n x = transpose2({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } });\n tensorsToDispose.push(x);\n }\n const targetShape = x.shape.slice();\n for (let k = 0; k < dimsToExpand.length; ++k) {\n targetShape.splice(dimsToExpand[k], 0, 1);\n }\n if (!util_exports.arraysEqual(x.shape, targetShape)) {\n x = reshape3({ inputs: { x }, backend: backend2, attrs: { shape: targetShape } });\n tensorsToDispose.push(x);\n }\n if (out === null) {\n out = x;\n } else {\n out = multiply2({ inputs: { a: x, b: out }, backend: backend2 });\n tensorsToDispose.push(out);\n }\n }\n if (i2 < nSteps - 1) {\n if (path[i2] >= 0) {\n out = sum3({\n inputs: { x: out },\n backend: backend2,\n attrs: {\n axis: path[i2] - (allDims.length - numDimsRemaining),\n keepDims: false\n }\n });\n tensorsToDispose.push(out);\n }\n numDimsRemaining--;\n }\n }\n for (const tensorInfo of tensorsToDispose) {\n if (tensorInfo === out) {\n continue;\n }\n backend2.disposeIntermediateTensorInfo(tensorInfo);\n }\n return out;\n}\nvar einsumConfig = {\n kernelName: Einsum,\n backendName: \"cpu\",\n kernelFunc: einsum2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/EluGrad.js\nfunction eluGrad(args) {\n const { inputs, backend: backend2 } = args;\n const { dy, y } = inputs;\n assertNotComplex([dy, y], \"eluGrad\");\n const resultValues = new Float32Array(util_exports.sizeFromShape(y.shape));\n const values = backend2.data.get(y.dataId).values;\n const dyValues = backend2.data.get(dy.dataId).values;\n for (let i2 = 0; i2 < values.length; ++i2) {\n const v = values[i2];\n if (v >= 1) {\n resultValues[i2] = dyValues[i2];\n } else {\n resultValues[i2] = dyValues[i2] * (v + 1);\n }\n }\n return backend2.makeTensorInfo(y.shape, \"float32\", resultValues);\n}\nvar eluGradConfig2 = {\n kernelName: EluGrad,\n backendName: \"cpu\",\n kernelFunc: eluGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Erf.js\nvar p = backend_util_exports.ERF_P;\nvar a1 = backend_util_exports.ERF_A1;\nvar a2 = backend_util_exports.ERF_A2;\nvar a3 = backend_util_exports.ERF_A3;\nvar a4 = backend_util_exports.ERF_A4;\nvar a5 = backend_util_exports.ERF_A5;\nvar erf2 = unaryKernelFunc(Erf, (xi) => {\n const sign4 = Math.sign(xi);\n const v = Math.abs(xi);\n const t2 = 1 / (1 + p * v);\n return sign4 * (1 - ((((a5 * t2 + a4) * t2 + a3) * t2 + a2) * t2 + a1) * t2 * Math.exp(-v * v));\n});\nvar erfConfig = {\n kernelName: Erf,\n backendName: \"cpu\",\n kernelFunc: erf2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ExpandDims.js\nfunction expandDims3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { input: input2 } = inputs;\n const { dim } = attrs;\n const inputRank = input2.shape.length;\n const newShape = input2.shape.slice();\n let $dim = dim;\n if (dim < 0) {\n util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`);\n $dim = inputRank + dim + 1;\n }\n newShape.splice($dim, 0, 1);\n return reshape3({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } });\n}\nvar expandDimsConfig = {\n kernelName: ExpandDims,\n backendName: \"cpu\",\n kernelFunc: expandDims3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/RealDiv.js\nvar realDivImpl = createSimpleBinaryKernelImpl((a, b) => a / b);\nvar div2 = binaryKernelFunc(RealDiv, realDivImpl);\nvar realDivConfig = {\n kernelName: RealDiv,\n backendName: \"cpu\",\n kernelFunc: div2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/fft_utils.js\nfunction fftBatch(input2, inverse, cpuBackend) {\n const inputShape = input2.shape;\n const batch = inputShape[0];\n const innerDim = inputShape[1];\n const inputVals = cpuBackend.data.get(input2.dataId);\n const real2D = inputVals.complexTensorInfos.real;\n const imag2D = inputVals.complexTensorInfos.imag;\n const resultShape = [batch, innerDim];\n const resultSize = util_exports.sizeFromShape(resultShape);\n const resultReal = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n const resultImag = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n for (let b = 0; b < batch; b++) {\n const r2 = slice2({\n inputs: { x: real2D },\n backend: cpuBackend,\n attrs: { begin: [b, 0], size: [1, innerDim] }\n });\n const i2 = slice2({\n inputs: { x: imag2D },\n backend: cpuBackend,\n attrs: { begin: [b, 0], size: [1, innerDim] }\n });\n const input3 = complex2({ inputs: { real: r2, imag: i2 }, backend: cpuBackend });\n const { real: real6, imag: imag5 } = fftImpl(input3, inverse, cpuBackend);\n const res = backend_util_exports.mergeRealAndImagArrays(real6, imag5);\n for (let d = 0; d < innerDim; d++) {\n const c = backend_util_exports.getComplexWithIndex(res, d);\n resultReal[b * innerDim + d] = c.real;\n resultImag[b * innerDim + d] = c.imag;\n }\n cpuBackend.disposeIntermediateTensorInfo(r2);\n cpuBackend.disposeIntermediateTensorInfo(i2);\n cpuBackend.disposeIntermediateTensorInfo(input3);\n }\n const $realInfo = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultReal);\n const $imagInfo = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultImag);\n const result = complex2({ inputs: { real: $realInfo, imag: $imagInfo }, backend: cpuBackend });\n cpuBackend.disposeIntermediateTensorInfo($realInfo);\n cpuBackend.disposeIntermediateTensorInfo($imagInfo);\n return result;\n}\nfunction fftImpl(input2, inverse, cpuBackend) {\n const inputSize = util_exports.sizeFromShape(input2.shape);\n const inputVals = cpuBackend.data.get(input2.dataId);\n const realVals = cpuBackend.data.get(inputVals.complexTensorInfos.real.dataId).values;\n const imagVals = cpuBackend.data.get(inputVals.complexTensorInfos.imag.dataId).values;\n if (isExponentOf2(inputSize)) {\n const result = fftRadix2(realVals, imagVals, inputSize, inverse, cpuBackend);\n const resultShape = [input2.shape[0], input2.shape[1]];\n if (inverse) {\n const realInfo = cpuBackend.makeTensorInfo(resultShape, \"float32\", result.real);\n const imagInfo = cpuBackend.makeTensorInfo(resultShape, \"float32\", result.imag);\n const sizeInfo = cpuBackend.makeTensorInfo([], \"float32\", util_exports.createScalarValue(inputSize, \"float32\"));\n const sizeInfoCopy = identity2({ inputs: { x: sizeInfo }, backend: cpuBackend });\n const divRealInfo = realDivConfig.kernelFunc({ inputs: { a: realInfo, b: sizeInfo }, backend: cpuBackend });\n const divImagInfo = realDivConfig.kernelFunc({ inputs: { a: imagInfo, b: sizeInfoCopy }, backend: cpuBackend });\n const divRealVals = cpuBackend.data.get(divRealInfo.dataId).values;\n const divImagVals = cpuBackend.data.get(divImagInfo.dataId).values;\n cpuBackend.disposeIntermediateTensorInfo(realInfo);\n cpuBackend.disposeIntermediateTensorInfo(imagInfo);\n cpuBackend.disposeIntermediateTensorInfo(sizeInfo);\n cpuBackend.disposeIntermediateTensorInfo(sizeInfoCopy);\n cpuBackend.disposeIntermediateTensorInfo(divRealInfo);\n cpuBackend.disposeIntermediateTensorInfo(divImagInfo);\n return { real: divRealVals, imag: divImagVals };\n }\n return result;\n } else {\n const data = backend_util_exports.mergeRealAndImagArrays(realVals, imagVals);\n const rawOutput = fourierTransformByMatmul(data, inputSize, inverse);\n return backend_util_exports.splitRealAndImagArrays(rawOutput);\n }\n}\nfunction isExponentOf2(size) {\n return (size & size - 1) === 0;\n}\nfunction fftRadix2(realVals, imagVals, size, inverse, cpuBackend) {\n if (size === 1) {\n return { real: realVals, imag: imagVals };\n }\n const data = backend_util_exports.mergeRealAndImagArrays(realVals, imagVals);\n const half = size / 2;\n const evenComplex = backend_util_exports.complexWithEvenIndex(data);\n const evenRealVals = evenComplex.real;\n const evenImagVals = evenComplex.imag;\n const evenShape = [evenRealVals.length];\n const evenRealInfo = cpuBackend.makeTensorInfo(evenShape, \"float32\", evenRealVals);\n const evenImagInfo = cpuBackend.makeTensorInfo(evenShape, \"float32\", evenImagVals);\n const evenTensorInfo = complex2({ inputs: { real: evenRealInfo, imag: evenImagInfo }, backend: cpuBackend });\n const oddComplex = backend_util_exports.complexWithOddIndex(data);\n const oddRealVals = oddComplex.real;\n const oddImagVals = oddComplex.imag;\n const oddShape = [oddRealVals.length];\n const oddRealInfo = cpuBackend.makeTensorInfo(oddShape, \"float32\", oddRealVals);\n const oddImagInfo = cpuBackend.makeTensorInfo(oddShape, \"float32\", oddImagVals);\n const oddTensorInfo = complex2({ inputs: { real: oddRealInfo, imag: oddImagInfo }, backend: cpuBackend });\n const $evenComplex = fftRadix2(evenRealVals, evenImagVals, half, inverse, cpuBackend);\n const $evenRealVals = $evenComplex.real;\n const $evenImagVals = $evenComplex.imag;\n const $evenShape = [$evenRealVals.length];\n const $evenRealInfo = cpuBackend.makeTensorInfo($evenShape, \"float32\", $evenRealVals);\n const $evenImagInfo = cpuBackend.makeTensorInfo($evenShape, \"float32\", $evenImagVals);\n const $evenTensorInfo = complex2({\n inputs: { real: $evenRealInfo, imag: $evenImagInfo },\n backend: cpuBackend\n });\n const $oddComplex = fftRadix2(oddRealVals, oddImagVals, half, inverse, cpuBackend);\n const $oddRealVals = $oddComplex.real;\n const $oddImagVals = $oddComplex.imag;\n const $oddShape = [$oddRealVals.length];\n const $oddRealInfo = cpuBackend.makeTensorInfo($oddShape, \"float32\", $oddRealVals);\n const $oddImagInfo = cpuBackend.makeTensorInfo($oddShape, \"float32\", $oddImagVals);\n const $oddTensorInfo = complex2({ inputs: { real: $oddRealInfo, imag: $oddImagInfo }, backend: cpuBackend });\n const e2 = backend_util_exports.exponents(size, inverse);\n const eShape = [e2.real.length];\n const eRealInfo = cpuBackend.makeTensorInfo(eShape, \"float32\", e2.real);\n const eImagInfo = cpuBackend.makeTensorInfo(eShape, \"float32\", e2.imag);\n const complexInfo = complex2({ inputs: { real: eRealInfo, imag: eImagInfo }, backend: cpuBackend });\n const exponentInfo = multiply2({ inputs: { a: complexInfo, b: $oddTensorInfo }, backend: cpuBackend });\n const addPart = add4({\n inputs: { a: $evenTensorInfo, b: exponentInfo },\n backend: cpuBackend\n });\n const subPart = sub2({\n inputs: { a: $evenTensorInfo, b: exponentInfo },\n backend: cpuBackend\n });\n const addPartReal = real2({ inputs: { input: addPart }, backend: cpuBackend });\n const subPartReal = real2({ inputs: { input: subPart }, backend: cpuBackend });\n const addPartImag = imag2({ inputs: { input: addPart }, backend: cpuBackend });\n const subPartImag = imag2({ inputs: { input: subPart }, backend: cpuBackend });\n const $real = concat2({\n inputs: [addPartReal, subPartReal],\n backend: cpuBackend,\n attrs: { axis: 0 }\n });\n const $imag = concat2({\n inputs: [addPartImag, subPartImag],\n backend: cpuBackend,\n attrs: { axis: 0 }\n });\n const $realVals = cpuBackend.data.get($real.dataId).values;\n const $imagVals = cpuBackend.data.get($imag.dataId).values;\n cpuBackend.disposeIntermediateTensorInfo(evenRealInfo);\n cpuBackend.disposeIntermediateTensorInfo(evenImagInfo);\n cpuBackend.disposeIntermediateTensorInfo(evenTensorInfo);\n cpuBackend.disposeIntermediateTensorInfo(oddRealInfo);\n cpuBackend.disposeIntermediateTensorInfo(oddImagInfo);\n cpuBackend.disposeIntermediateTensorInfo(oddTensorInfo);\n cpuBackend.disposeIntermediateTensorInfo($evenRealInfo);\n cpuBackend.disposeIntermediateTensorInfo($evenImagInfo);\n cpuBackend.disposeIntermediateTensorInfo($evenTensorInfo);\n cpuBackend.disposeIntermediateTensorInfo($oddRealInfo);\n cpuBackend.disposeIntermediateTensorInfo($oddImagInfo);\n cpuBackend.disposeIntermediateTensorInfo($oddTensorInfo);\n cpuBackend.disposeIntermediateTensorInfo(eRealInfo);\n cpuBackend.disposeIntermediateTensorInfo(eImagInfo);\n cpuBackend.disposeIntermediateTensorInfo(complexInfo);\n cpuBackend.disposeIntermediateTensorInfo(exponentInfo);\n cpuBackend.disposeIntermediateTensorInfo(addPart);\n cpuBackend.disposeIntermediateTensorInfo(subPart);\n cpuBackend.disposeIntermediateTensorInfo(addPartReal);\n cpuBackend.disposeIntermediateTensorInfo(addPartImag);\n cpuBackend.disposeIntermediateTensorInfo(subPartReal);\n cpuBackend.disposeIntermediateTensorInfo(subPartImag);\n cpuBackend.disposeIntermediateTensorInfo($real);\n cpuBackend.disposeIntermediateTensorInfo($imag);\n return { real: $realVals, imag: $imagVals };\n}\nfunction fourierTransformByMatmul(data, size, inverse) {\n const ret = new Float32Array(size * 2);\n for (let r2 = 0; r2 < size; r2++) {\n let real6 = 0;\n let imag5 = 0;\n for (let c = 0; c < size; c++) {\n const e2 = backend_util_exports.exponent(r2 * c, size, inverse);\n const term = backend_util_exports.getComplexWithIndex(data, c);\n real6 += term.real * e2.real - term.imag * e2.imag;\n imag5 += term.real * e2.imag + term.imag * e2.real;\n }\n if (inverse) {\n real6 /= size;\n imag5 /= size;\n }\n backend_util_exports.assignToTypedArray(ret, real6, imag5, r2);\n }\n return ret;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FFT.js\nfunction fft2(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputSize = util_exports.sizeFromShape(input2.shape);\n const innerDimensionSize = input2.shape[input2.shape.length - 1];\n const batch = inputSize / innerDimensionSize;\n const input2D = reshape3({\n inputs: { x: input2 },\n backend: backend2,\n attrs: { shape: [batch, innerDimensionSize] }\n });\n const result = fftBatch(input2D, false, backend2);\n const resultReshaped = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: input2.shape } });\n backend2.disposeIntermediateTensorInfo(input2D);\n backend2.disposeIntermediateTensorInfo(result);\n return resultReshaped;\n}\nvar fftConfig = {\n kernelName: FFT,\n backendName: \"cpu\",\n kernelFunc: fft2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Fill.js\nfunction fill2(args) {\n const { backend: backend2, attrs } = args;\n const { shape, value, dtype } = attrs;\n const $dtype = dtype || util_exports.inferDtype(value);\n const values = util_exports.getArrayFromDType($dtype, util_exports.sizeFromShape(shape));\n fillValues(values, value, $dtype);\n return backend2.makeTensorInfo(shape, $dtype, values);\n}\nvar fillConfig = {\n kernelName: Fill,\n backendName: \"cpu\",\n kernelFunc: fill2\n};\nfunction fillValues(values, value, dtype) {\n if (dtype === \"string\") {\n values.fill(value);\n } else {\n values.fill(value);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FlipLeftRight.js\nvar flipLeftRightConfig = {\n kernelName: FlipLeftRight,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const cpuBackend = backend2;\n const output = util_exports.getTypedArrayFromDType(image2.dtype, util_exports.sizeFromShape(image2.shape));\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const imageVals = cpuBackend.data.get(image2.dataId).values;\n for (let batchIdx = 0; batchIdx < batch; batchIdx++) {\n const batchOffset = batchIdx * imageWidth * imageHeight * numChannels;\n for (let row = 0; row < imageHeight; row++) {\n const rowOffset = row * (imageWidth * numChannels);\n for (let col = 0; col < imageWidth; col++) {\n const colOffset = col * numChannels;\n for (let channel = 0; channel < numChannels; channel++) {\n const coordX = Math.round(imageWidth - col - 1);\n const outIdx = batchOffset + rowOffset + colOffset + channel;\n let outputValue = imageVals[outIdx];\n if (coordX >= 0 && coordX < imageWidth) {\n const rotatedColOffset = coordX * numChannels;\n const imageIdx = batchOffset + rowOffset + rotatedColOffset + channel;\n outputValue = imageVals[imageIdx];\n }\n output[outIdx] = outputValue;\n }\n }\n }\n }\n const dataId = cpuBackend.write(output, image2.shape, image2.dtype);\n return { dataId, shape: image2.shape, dtype: image2.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FloorDiv.js\nvar floorDivImpl = createSimpleBinaryKernelImpl((a, b) => Math.floor(a / b));\nvar floorDiv2 = binaryKernelFunc(FloorDiv, floorDivImpl, null, \"int32\");\nvar floorDivConfig = {\n kernelName: FloorDiv,\n backendName: \"cpu\",\n kernelFunc: floorDiv2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FusedConv2D.js\nfunction fusedConv2D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n let result = conv2D({\n inputs: { x, filter },\n backend: backend2,\n attrs: { strides, pad: pad3, dataFormat, dilations, dimRoundingMode }\n });\n if (bias) {\n const resultOld = result;\n if (dataFormat === \"NCHW\" && bias.shape.length === 1 && bias.shape[0] !== 1) {\n const reshapedBias = reshape3({ inputs: { x: bias }, backend: backend2, attrs: { shape: [bias.shape[0], 1, 1] } });\n result = add4({ inputs: { a: result, b: reshapedBias }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(reshapedBias);\n } else {\n result = add4({ inputs: { a: result, b: bias }, backend: backend2 });\n }\n backend2.disposeIntermediateTensorInfo(resultOld);\n }\n if (activation2) {\n const resultOld = result;\n if (dataFormat === \"NCHW\" && activation2 === \"prelu\" && preluActivationWeights.shape.length === 1 && preluActivationWeights.shape[0] !== 1) {\n const reshapedAlpha = reshape3({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: [preluActivationWeights.shape[0], 1, 1] }\n });\n result = applyActivation2(backend2, result, activation2, reshapedAlpha, leakyreluAlpha);\n backend2.disposeIntermediateTensorInfo(reshapedAlpha);\n } else {\n result = applyActivation2(backend2, result, activation2, preluActivationWeights, leakyreluAlpha);\n }\n backend2.disposeIntermediateTensorInfo(resultOld);\n }\n return result;\n}\nvar fusedConv2DConfig = {\n kernelName: FusedConv2D,\n backendName: \"cpu\",\n kernelFunc: fusedConv2D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FusedDepthwiseConv2D.js\nfunction fusedDepthwiseConv2D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n let result = depthwiseConv2dNative({\n inputs: { x, filter },\n backend: backend2,\n attrs: { strides, pad: pad3, dataFormat, dilations, dimRoundingMode }\n });\n if (bias) {\n const oldResult = result;\n result = add4({ inputs: { a: result, b: bias }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(oldResult);\n }\n if (activation2) {\n const oldResult = result;\n result = applyActivation2(backend2, result, activation2, preluActivationWeights, leakyreluAlpha);\n backend2.disposeIntermediateTensorInfo(oldResult);\n }\n return result;\n}\nvar fusedDepthwiseConv2DConfig = {\n kernelName: FusedDepthwiseConv2D,\n backendName: \"cpu\",\n kernelFunc: fusedDepthwiseConv2D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherNd.js\nfunction gatherNd(args) {\n const { inputs, backend: backend2 } = args;\n const { params, indices } = inputs;\n const paramsSize = util_exports.sizeFromShape(params.shape);\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n const [resultShape, numSlices, sliceSize, strides] = backend_util_exports.prepareAndValidate(params, indices);\n if (numSlices === 0) {\n return backend2.makeTensorInfo(resultShape, params.dtype, []);\n }\n const indicesData = backend2.data.get(indices.dataId).values;\n const paramsBuf = backend2.bufferSync(params);\n const outBuf = gatherNdImpl(indicesData, paramsBuf, params.dtype, numSlices, sliceRank, sliceSize, strides, params.shape, paramsSize);\n return backend2.makeTensorInfo(resultShape, params.dtype, outBuf.values);\n}\nvar gatherNdConfig = {\n kernelName: GatherNd,\n backendName: \"cpu\",\n kernelFunc: gatherNd\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherV2.js\nfunction gatherV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, indices } = inputs;\n const { axis, batchDims } = attrs;\n assertNotComplex([x, indices], \"gatherV2\");\n const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0];\n const indicesVals = backend2.data.get(indices.dataId).values;\n const axisDim = x.shape[parsedAxis];\n for (let i2 = 0; i2 < indicesVals.length; ++i2) {\n const index = indicesVals[i2];\n util_exports.assert(index <= axisDim - 1 && index >= 0, () => `GatherV2: the index value ${index} is not in [0, ${axisDim - 1}]`);\n }\n let $batchDims = batchDims;\n if (batchDims == null) {\n $batchDims = 0;\n }\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, $batchDims);\n const flattenX = reshape3({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n shapeInfo.dimSize,\n shapeInfo.sliceSize\n ]\n }\n });\n const flattenIndex = reshape3({\n inputs: { x: indices },\n backend: backend2,\n attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] }\n });\n const flattenOutputShape = [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n indicesSize / shapeInfo.batchSize,\n shapeInfo.sliceSize\n ];\n const indicesBuf = backend2.bufferSync(flattenIndex);\n const xBuf = backend2.bufferSync(flattenX);\n const outBuf = gatherV2Impl(xBuf, indicesBuf, flattenOutputShape);\n backend2.disposeIntermediateTensorInfo(flattenX);\n backend2.disposeIntermediateTensorInfo(flattenIndex);\n return backend2.makeTensorInfo(shapeInfo.outputShape, outBuf.dtype, outBuf.values);\n}\nvar gatherV2Config = {\n kernelName: GatherV2,\n backendName: \"cpu\",\n kernelFunc: gatherV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/IFFT.js\nfunction ifft2(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputSize = util_exports.sizeFromShape(input2.shape);\n const innerDimensionSize = input2.shape[input2.shape.length - 1];\n const batch = inputSize / innerDimensionSize;\n const input2D = reshape3({\n inputs: { x: input2 },\n backend: backend2,\n attrs: { shape: [batch, innerDimensionSize] }\n });\n const result = fftBatch(input2D, true, backend2);\n const resultReshaped = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: input2.shape } });\n backend2.disposeIntermediateTensorInfo(input2D);\n backend2.disposeIntermediateTensorInfo(result);\n return resultReshaped;\n}\nvar ifftConfig = {\n kernelName: IFFT,\n backendName: \"cpu\",\n kernelFunc: ifft2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/IsFinite.js\nvar isFinite3 = unaryKernelFunc(IsFinite, (xi) => Number.isFinite(xi) ? 1 : 0, \"bool\");\nvar isFiniteConfig = {\n kernelName: IsFinite,\n backendName: \"cpu\",\n kernelFunc: isFinite3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/IsInf.js\nvar isInf2 = unaryKernelFunc(IsInf, (xi) => Math.abs(xi) === Infinity ? 1 : 0, \"bool\");\nvar isInfConfig = {\n kernelName: IsInf,\n backendName: \"cpu\",\n kernelFunc: isInf2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/IsNaN.js\nvar isNaN3 = unaryKernelFunc(IsNan, (xi) => Number.isNaN(xi) ? 1 : 0, \"bool\");\nvar isNaNConfig = {\n kernelName: IsNan,\n backendName: \"cpu\",\n kernelFunc: isNaN3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LinSpace.js\nfunction linSpace(args) {\n const { backend: backend2, attrs } = args;\n const { start, stop, num } = attrs;\n const outVals = linSpaceImpl(start, stop, num);\n return backend2.makeTensorInfo([outVals.length], \"float32\", outVals);\n}\nvar linSpaceConfig = {\n kernelName: LinSpace,\n backendName: \"cpu\",\n kernelFunc: linSpace\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Log1p.js\nvar log1p2 = unaryKernelFunc(Log1p, (xi) => Math.log1p(xi));\nvar log1pConfig = {\n kernelName: Log1p,\n backendName: \"cpu\",\n kernelFunc: log1p2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LogicalAnd.js\nvar logicalAndImpl = createSimpleBinaryKernelImpl((a, b) => a && b);\nvar logicalAnd2 = binaryKernelFunc(LogicalAnd, logicalAndImpl, null, \"bool\");\nvar logicalAndConfig = {\n kernelName: LogicalAnd,\n backendName: \"cpu\",\n kernelFunc: logicalAnd2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LogicalNot.js\nvar logicalNot2 = unaryKernelFunc(LogicalNot, (xi) => xi ? 0 : 1, \"bool\");\nvar logicalNotConfig = {\n kernelName: LogicalNot,\n backendName: \"cpu\",\n kernelFunc: logicalNot2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LogicalOr.js\nvar logicalOrImpl = createSimpleBinaryKernelImpl((a, b) => a || b);\nvar logicalOr2 = binaryKernelFunc(LogicalOr, logicalOrImpl, null, \"bool\");\nvar logicalOrConfig = {\n kernelName: LogicalOr,\n backendName: \"cpu\",\n kernelFunc: logicalOr2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LRN.js\nfunction lRN(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { depthRadius, bias, alpha, beta } = attrs;\n assertNotComplex(x, \"LRN\");\n const channels = x.shape[3];\n const maxD = channels - 1;\n const xValues = backend2.data.get(x.dataId).values;\n const size = util_exports.sizeFromShape(x.shape);\n const result = new Float32Array(size);\n function sumAcrossChannels(offset) {\n const currentChannel = offset % channels;\n let beginSumOffset = offset - currentChannel + Math.max(0, currentChannel - depthRadius);\n const endSumOffset = offset - currentChannel + Math.min(currentChannel + depthRadius, maxD);\n let sum7 = 0;\n for (; beginSumOffset <= endSumOffset; beginSumOffset++) {\n const z = xValues[beginSumOffset];\n sum7 += z * z;\n }\n return sum7;\n }\n for (let offset = 0; offset < size; offset++) {\n const sum7 = sumAcrossChannels(offset);\n const val = xValues[offset] * Math.pow(bias + alpha * sum7, -beta);\n result[offset] = val;\n }\n return backend2.makeTensorInfo(x.shape, x.dtype, result);\n}\nvar LRNConfig = {\n kernelName: LRN,\n backendName: \"cpu\",\n kernelFunc: lRN\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LRNGrad.js\nfunction lRNGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, y, dy } = inputs;\n const { depthRadius, bias, alpha, beta } = attrs;\n assertNotComplex(dy, \"LRNGrad\");\n const dySize = util_exports.sizeFromShape(dy.shape);\n const channels = dy.shape[3];\n const dyValues = backend2.data.get(dy.dataId).values;\n const xValues = backend2.data.get(x.dataId).values;\n const yValues = backend2.data.get(y.dataId).values;\n const result = new Float32Array(dySize);\n const size = dySize;\n for (let offset = 0; offset < size; offset++) {\n const currentChannel = offset % channels;\n const depthBegin = offset - currentChannel + Math.max(0, currentChannel - depthRadius);\n const depthEnd = offset - currentChannel + Math.min(channels, currentChannel + depthRadius + 1);\n let norm2 = 0;\n for (let k = depthBegin; k < depthEnd; k++) {\n norm2 += Math.pow(xValues[k], 2);\n }\n norm2 = alpha * norm2 + bias;\n for (let k = depthBegin; k < depthEnd; k++) {\n let dyi = -2 * alpha * beta * xValues[k] * yValues[offset] / norm2;\n if (offset === k) {\n dyi += Math.pow(norm2, -beta);\n }\n dyi *= dyValues[offset];\n result[k] += dyi;\n }\n }\n return backend2.makeTensorInfo(dy.shape, x.dtype, result);\n}\nvar LRNGradConfig = {\n kernelName: LRNGrad,\n backendName: \"cpu\",\n kernelFunc: lRNGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Max.js\nfunction max3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { reductionIndices, keepDims } = attrs;\n const cpuBackend = backend2;\n let xShape = x.shape;\n const xRank = xShape.length;\n const origAxes = util_exports.parseAxisParam(reductionIndices, xShape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let xVals = cpuBackend.data.get(x.dataId).values;\n if (permutedAxes != null) {\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = xShape[permutedAxes[i2]];\n }\n xVals = transposeImpl(xVals, xShape, x.dtype, permutedAxes, newShape);\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n xShape = newShape;\n }\n assertNotComplex(x, \"max\");\n backend_util_exports.assertAxesAreInnerMostDims(\"max\", axes, xRank);\n const [maxOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(xShape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const result = maxImpl(xVals, reduceSize, maxOutShape, x.dtype);\n const dataId = cpuBackend.write(result, maxOutShape, x.dtype);\n let outShape = maxOutShape;\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(maxOutShape, origAxes);\n outShape = newShape;\n }\n return { dataId, shape: outShape, dtype: x.dtype };\n}\nvar maxConfig = {\n kernelName: Max,\n backendName: \"cpu\",\n kernelFunc: max3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPool.js\nfunction maxPool2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n assertNotComplex(x, \"maxPool\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n let res;\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n res = identity2({ inputs: { x }, backend: backend2 });\n } else {\n const xValues = backend2.data.get(x.dataId).values;\n const strides2 = util_exports.computeStrides(x.shape);\n const buffer2 = pool2(xValues, x.shape, x.dtype, strides2, convInfo, \"max\");\n res = backend2.makeTensorInfo(convInfo.outShape, x.dtype, buffer2.values);\n }\n return res;\n}\nvar maxPoolConfig = {\n kernelName: MaxPool,\n backendName: \"cpu\",\n kernelFunc: maxPool2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPool3D.js\nfunction maxPool3D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat } = attrs;\n assertNotComplex(x, \"maxPool3d\");\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode, dataFormat);\n const xValues = backend2.data.get(x.dataId).values;\n const outBuf = pool3d2(xValues, x.shape, x.dtype, util_exports.computeStrides(x.shape), convInfo, \"max\");\n return backend2.makeTensorInfo(outBuf.shape, \"float32\", outBuf.values);\n}\nvar maxPool3DConfig = {\n kernelName: MaxPool3D,\n backendName: \"cpu\",\n kernelFunc: maxPool3D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPool3DGrad.js\nfunction maxPool3DGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n assertNotComplex([dy, input2], \"maxPool3DGrad\");\n const convInfo = backend_util_exports.computePool3DInfo(input2.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const inputBuf = backend2.bufferSync(input2);\n const maxPosBuf = maxPool3dPositions(inputBuf, convInfo);\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = effectiveFilterDepth - 1 - convInfo.padInfo.front;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const dx = buffer(input2.shape, \"float32\");\n const dyBuf = backend2.bufferSync(dy);\n for (let batch = 0; batch < convInfo.batchSize; ++batch) {\n for (let channel = 0; channel < convInfo.inChannels; ++channel) {\n for (let dxDepth = 0; dxDepth < convInfo.inDepth; ++dxDepth) {\n for (let dxRow = 0; dxRow < convInfo.inHeight; ++dxRow) {\n for (let dxCol = 0; dxCol < convInfo.inWidth; ++dxCol) {\n const dyDepthCorner = dxDepth - padFront;\n const dyRowCorner = dxRow - padTop;\n const dyColCorner = dxCol - padLeft;\n let dotProd = 0;\n for (let wDepth = 0; wDepth < effectiveFilterDepth; wDepth += dilationDepth) {\n const dyDepth = (dyDepthCorner + wDepth) / strideDepth;\n if (dyDepth < 0 || dyDepth >= convInfo.outDepth || Math.floor(dyDepth) !== dyDepth) {\n continue;\n }\n for (let wRow = 0; wRow < effectiveFilterHeight; wRow += dilationHeight) {\n const dyRow = (dyRowCorner + wRow) / strideHeight;\n if (dyRow < 0 || dyRow >= convInfo.outHeight || Math.floor(dyRow) !== dyRow) {\n continue;\n }\n for (let wCol = 0; wCol < effectiveFilterWidth; wCol += dilationWidth) {\n const dyCol = (dyColCorner + wCol) / strideWidth;\n if (dyCol < 0 || dyCol >= convInfo.outWidth || Math.floor(dyCol) !== dyCol) {\n continue;\n }\n const maxPos = effectiveFilterDepth * effectiveFilterHeight * effectiveFilterWidth - 1 - maxPosBuf.get(batch, dyDepth, dyRow, dyCol, channel);\n const curPos = wDepth * effectiveFilterHeight * effectiveFilterWidth + wRow * effectiveFilterWidth + wCol;\n const mask = maxPos === curPos ? 1 : 0;\n if (mask === 0) {\n continue;\n }\n const pixel = dyBuf.get(batch, dyDepth, dyRow, dyCol, channel);\n dotProd += pixel * mask;\n }\n }\n }\n dx.set(dotProd, batch, dxDepth, dxRow, dxCol, channel);\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar maxPool3DGradConfig2 = {\n kernelName: MaxPool3DGrad,\n backendName: \"cpu\",\n kernelFunc: maxPool3DGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPoolGrad.js\nfunction maxPoolGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2, output } = inputs;\n const x = input2;\n assertNotComplex([input2, output], \"maxPoolGrad\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const xValues = backend2.data.get(x.dataId).values;\n const maxPosBuf = buffer(convInfo.outShape, x.dtype, maxPoolPositions(xValues, x.shape, x.dtype, convInfo).values);\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const dx = buffer(x.shape, \"float32\");\n const dyData = backend2.data.get(dy.dataId).values;\n const dyBuf = buffer(dy.shape, \"float32\", dyData);\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let d = 0; d < convInfo.inChannels; ++d) {\n for (let dxR = 0; dxR < convInfo.inHeight; ++dxR) {\n for (let dxC = 0; dxC < convInfo.inWidth; ++dxC) {\n const dyRCorner = dxR - padTop;\n const dyCCorner = dxC - padLeft;\n let dotProd = 0;\n for (let wR = 0; wR < effectiveFilterHeight; wR += dilationHeight) {\n const dyR = (dyRCorner + wR) / strideHeight;\n if (dyR < 0 || dyR >= convInfo.outHeight || Math.floor(dyR) !== dyR) {\n continue;\n }\n for (let wC = 0; wC < effectiveFilterWidth; wC += dilationWidth) {\n const dyC = (dyCCorner + wC) / strideWidth;\n if (dyC < 0 || dyC >= convInfo.outWidth || Math.floor(dyC) !== dyC) {\n continue;\n }\n const maxPos = effectiveFilterHeight * effectiveFilterWidth - 1 - maxPosBuf.get(b, dyR, dyC, d);\n const curPos = wR * effectiveFilterWidth + wC;\n const mask = maxPos === curPos ? 1 : 0;\n if (mask === 0) {\n continue;\n }\n const pixel = dyBuf.get(b, dyR, dyC, d);\n dotProd += pixel * mask;\n }\n }\n dx.set(dotProd, b, dxR, dxC, d);\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar maxPoolGradConfig2 = {\n kernelName: MaxPoolGrad,\n backendName: \"cpu\",\n kernelFunc: maxPoolGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPoolWithArgmax_impl.js\nfunction maxPoolWithArgmaxImpl(xValues, xShape, dtype, includeBatchInIndex, convInfo) {\n const strides = util_exports.computeStrides(xShape);\n const maxPools = pool2(xValues, xShape, dtype, strides, convInfo, \"max\");\n const maxPositions = maxPoolPositions(xValues, xShape, dtype, convInfo, true, includeBatchInIndex);\n return [maxPools.values, maxPositions.values];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPoolWithArgmax.js\nvar maxPoolWithArgmaxConfig = {\n kernelName: MaxPoolWithArgmax,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, includeBatchInIndex } = attrs;\n const cpuBackend = backend2;\n assertNotComplex(x, \"MaxPoolWithArgmax\");\n const values = cpuBackend.data.get(x.dataId).values;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, [1, 1], pad3);\n const [pooled, indexes] = maxPoolWithArgmaxImpl(values, x.shape, x.dtype, includeBatchInIndex, convInfo);\n const pooledDataId = cpuBackend.write(pooled, convInfo.outShape, x.dtype);\n const indexesDataId = cpuBackend.write(indexes, convInfo.outShape, x.dtype);\n return [\n { dataId: pooledDataId, shape: convInfo.outShape, dtype: x.dtype },\n { dataId: indexesDataId, shape: convInfo.outShape, dtype: \"int32\" }\n ];\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Mean.js\nfunction mean2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const axes = util_exports.parseAxisParam(axis, x.shape);\n const shapes = backend_util_exports.computeOutAndReduceShapes(x.shape, axes);\n const reduceShape = shapes[1];\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const toDispose = [];\n const reduceSizeScalar = backend2.makeTensorInfo([], \"float32\", new Float32Array([reduceSize]));\n toDispose.push(reduceSizeScalar);\n const $x = cast3({ inputs: { x }, backend: backend2, attrs: { dtype: \"float32\" } });\n toDispose.push($x);\n const res = div2({ inputs: { a: $x, b: reduceSizeScalar }, backend: backend2 });\n toDispose.push(res);\n const result = sum3({ inputs: { x: res }, backend: backend2, attrs: { axis, keepDims } });\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar meanConfig = {\n kernelName: Mean,\n backendName: \"cpu\",\n kernelFunc: mean2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Min.js\nfunction min3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"min\");\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"min\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const vals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), $x.dtype);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let min7 = aVals[offset];\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n if (Number.isNaN(value) || value < min7) {\n min7 = value;\n }\n }\n vals[i2] = min7;\n }\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo($x);\n }\n const result = backend2.makeTensorInfo(outShape, $x.dtype, vals);\n if (keepDims) {\n const expandedShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n const reshapedResult = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: expandedShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return reshapedResult;\n }\n return result;\n}\nvar minConfig = {\n kernelName: Min,\n backendName: \"cpu\",\n kernelFunc: min3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MirrorPad.js\nfunction mirrorPad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { paddings, mode } = attrs;\n assertNotComplex(x, \"mirrorPad\");\n const outShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n const start = paddings.map((p2) => p2[0]);\n const end = paddings.map((p2, i2) => p2[0] + x.shape[i2]);\n const offset = mode === \"reflect\" ? 0 : 1;\n const xVals = backend2.data.get(x.dataId).values;\n const xRank = x.shape.length;\n const xStrides = util_exports.computeStrides(x.shape);\n const resultSize = util_exports.sizeFromShape(outShape);\n const resultRank = outShape.length;\n const resultStrides = util_exports.computeStrides(outShape);\n const resVals = util_exports.getTypedArrayFromDType(x.dtype, resultSize);\n for (let i2 = 0; i2 < resultSize; i2++) {\n let coords3 = util_exports.indexToLoc(i2, resultRank, resultStrides);\n for (let i3 = 0; i3 < resultRank; i3++) {\n if (coords3[i3] < start[i3]) {\n coords3[i3] = start[i3] * 2 - coords3[i3] - offset;\n } else if (coords3[i3] >= end[i3]) {\n coords3[i3] = (end[i3] - 1) * 2 - coords3[i3] + offset;\n }\n }\n coords3 = coords3.map((c, i3) => c - start[i3]);\n const inIndex = util_exports.locToIndex(coords3, xRank, xStrides);\n resVals[i2] = xVals[inIndex];\n }\n const outId = backend2.write(resVals, outShape, x.dtype);\n return { dataId: outId, shape: outShape, dtype: x.dtype };\n}\nvar mirrorPadConfig = {\n kernelName: MirrorPad,\n backendName: \"cpu\",\n kernelFunc: mirrorPad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Mod.js\nvar modImpl = createSimpleBinaryKernelImpl((aValue, bValue) => {\n const rem = aValue % bValue;\n if (aValue < 0 && bValue < 0 || aValue >= 0 && bValue >= 0) {\n return rem;\n } else {\n return (rem + bValue) % bValue;\n }\n});\nvar mod2 = binaryKernelFunc(Mod, modImpl);\nvar modConfig = {\n kernelName: Mod,\n backendName: \"cpu\",\n kernelFunc: mod2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Multinomial.js\nvar seedrandom4 = __toESM(require_seedrandom2());\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Softmax.js\nfunction softmax3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { dim } = attrs;\n const logitsRank = logits.shape.length;\n let $dim = dim;\n if ($dim === -1) {\n $dim = logitsRank - 1;\n }\n if ($dim !== logitsRank - 1) {\n throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${logitsRank} and dim was ${$dim}`);\n }\n const axes = util_exports.parseAxisParam([$dim], logits.shape);\n const maxLogit = max3({\n inputs: { x: logits },\n backend: backend2,\n attrs: { reductionIndices: axes, keepDims: false }\n });\n const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes);\n const maxLogitReshaped = reshape3({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } });\n const a = sub2({ inputs: { a: logits, b: maxLogitReshaped }, backend: backend2 });\n const b = exp2({ inputs: { x: a }, backend: backend2 });\n const sumExp = sum3({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } });\n const sumReshaped = reshape3({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } });\n const result = div2({ inputs: { a: b, b: sumReshaped }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(maxLogit);\n backend2.disposeIntermediateTensorInfo(maxLogitReshaped);\n backend2.disposeIntermediateTensorInfo(a);\n backend2.disposeIntermediateTensorInfo(b);\n backend2.disposeIntermediateTensorInfo(sumExp);\n backend2.disposeIntermediateTensorInfo(sumReshaped);\n return result;\n}\nvar softmaxConfig = {\n kernelName: Softmax,\n backendName: \"cpu\",\n kernelFunc: softmax3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Multinomial.js\nfunction multinomial2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { numSamples, seed, normalized } = attrs;\n assertNotComplex(logits, \"multinomial\");\n const probabilities = normalized ? logits : softmax3({ inputs: { logits }, backend: backend2, attrs: { dim: -1 } });\n const batchSize = probabilities.shape[0];\n const numEvents = probabilities.shape[1];\n const probVals = backend2.data.get(probabilities.dataId).values;\n const resShape = [batchSize, numSamples];\n const resVals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(resShape), \"int32\");\n for (let b = 0; b < batchSize; ++b) {\n const offset = b * numEvents;\n const cdf = new Float32Array(numEvents - 1);\n cdf[0] = probVals[offset];\n for (let event = 1; event < cdf.length; ++event) {\n cdf[event] = cdf[event - 1] + probVals[offset + event];\n }\n const random = seedrandom4.alea(seed.toString());\n const outOffset = b * numSamples;\n for (let sampleId = 0; sampleId < numSamples; ++sampleId) {\n const r2 = random();\n resVals[outOffset + sampleId] = cdf.length;\n for (let event = 0; event < cdf.length; event++) {\n if (r2 < cdf[event]) {\n resVals[outOffset + sampleId] = event;\n break;\n }\n }\n }\n }\n if (!normalized) {\n backend2.disposeIntermediateTensorInfo(probabilities);\n }\n return backend2.makeTensorInfo(resShape, \"int32\", resVals);\n}\nvar multinomialConfig = {\n kernelName: Multinomial,\n backendName: \"cpu\",\n kernelFunc: multinomial2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NonMaxSuppressionV3.js\nvar nonMaxSuppressionV3Impl2 = kernel_impls_exports.nonMaxSuppressionV3Impl;\nfunction nonMaxSuppressionV3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold } = attrs;\n assertNotComplex(boxes, \"NonMaxSuppression\");\n const boxesVals = backend2.data.get(boxes.dataId).values;\n const scoresVals = backend2.data.get(scores.dataId).values;\n const { selectedIndices } = nonMaxSuppressionV3Impl2(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold);\n return backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices));\n}\nvar nonMaxSuppressionV3Config = {\n kernelName: NonMaxSuppressionV3,\n backendName: \"cpu\",\n kernelFunc: nonMaxSuppressionV3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NonMaxSuppressionV4.js\nvar nonMaxSuppressionV4Impl2 = kernel_impls_exports.nonMaxSuppressionV4Impl;\nfunction nonMaxSuppressionV4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize } = attrs;\n assertNotComplex(boxes, \"NonMaxSuppressionPadded\");\n const boxesVals = backend2.data.get(boxes.dataId).values;\n const scoresVals = backend2.data.get(scores.dataId).values;\n const { selectedIndices, validOutputs } = nonMaxSuppressionV4Impl2(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([], \"int32\", new Int32Array([validOutputs]))\n ];\n}\nvar nonMaxSuppressionV4Config = {\n kernelName: NonMaxSuppressionV4,\n backendName: \"cpu\",\n kernelFunc: nonMaxSuppressionV4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NonMaxSuppressionV5.js\nvar nonMaxSuppressionV5Impl2 = kernel_impls_exports.nonMaxSuppressionV5Impl;\nfunction nonMaxSuppressionV5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = attrs;\n assertNotComplex(boxes, \"NonMaxSuppressionWithScore\");\n const boxesVals = backend2.data.get(boxes.dataId).values;\n const scoresVals = backend2.data.get(scores.dataId).values;\n const maxOutputSizeVal = maxOutputSize;\n const iouThresholdVal = iouThreshold;\n const scoreThresholdVal = scoreThreshold;\n const softNmsSigmaVal = softNmsSigma;\n const { selectedIndices, selectedScores } = nonMaxSuppressionV5Impl2(boxesVals, scoresVals, maxOutputSizeVal, iouThresholdVal, scoreThresholdVal, softNmsSigmaVal);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([selectedScores.length], \"float32\", new Float32Array(selectedScores))\n ];\n}\nvar nonMaxSuppressionV5Config = {\n kernelName: NonMaxSuppressionV5,\n backendName: \"cpu\",\n kernelFunc: nonMaxSuppressionV5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/OneHot.js\nfunction oneHot2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices } = inputs;\n const { dtype, depth, onValue, offValue } = attrs;\n assertNotComplex(indices, \"oneHot\");\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const res = new Float32Array(indicesSize * depth);\n res.fill(offValue);\n const indicesVal = backend2.data.get(indices.dataId).values;\n for (let event = 0; event < indicesSize; ++event) {\n if (indicesVal[event] >= 0 && indicesVal[event] < depth) {\n res[event * depth + indicesVal[event]] = onValue;\n }\n }\n return backend2.makeTensorInfo([...indices.shape, depth], dtype, res);\n}\nvar oneHotConfig = {\n kernelName: OneHot,\n backendName: \"cpu\",\n kernelFunc: oneHot2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ZerosLike.js\nfunction zerosLike2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"string\") {\n throw new Error(\"zerosLike is not supported for string tensors\");\n } else if (x.dtype === \"complex64\") {\n const realPart = real2({ inputs: { input: x }, backend: backend2 });\n const r2 = zerosLike2({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag2({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike2({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex2({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(r2);\n backend2.disposeIntermediateTensorInfo(imagPart);\n backend2.disposeIntermediateTensorInfo(i2);\n return result;\n } else {\n return fill2({ backend: backend2, attrs: { shape: x.shape, value: 0, dtype: x.dtype } });\n }\n}\nvar zerosLikeConfig = {\n kernelName: ZerosLike,\n backendName: \"cpu\",\n kernelFunc: zerosLike2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/OnesLike.js\nfunction onesLike2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"string\") {\n throw new Error(\"onesLike is not supported for string tensors\");\n } else if (x.dtype === \"complex64\") {\n const realPart = real2({ inputs: { input: x }, backend: backend2 });\n const r2 = onesLike2({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag2({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike2({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex2({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(r2);\n backend2.disposeIntermediateTensorInfo(imagPart);\n backend2.disposeIntermediateTensorInfo(i2);\n return result;\n } else {\n return fill2({ backend: backend2, attrs: { shape: x.shape, value: 1, dtype: x.dtype } });\n }\n}\nvar onesLikeConfig = {\n kernelName: OnesLike,\n backendName: \"cpu\",\n kernelFunc: onesLike2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Pack.js\nfunction pack(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n if (inputs.length === 1) {\n return expandDims3({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } });\n }\n const shape = inputs[0].shape;\n const dtype = inputs[0].dtype;\n inputs.forEach((t2) => {\n util_exports.assertShapesMatch(shape, t2.shape, \"All tensors passed to stack must have matching shapes\");\n util_exports.assert(dtype === t2.dtype, () => \"All tensors passed to stack must have matching dtypes\");\n });\n const intermediateTensorInfos = [];\n const expandedTensors = inputs.map((t2) => {\n const expandedT = expandDims3({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } });\n intermediateTensorInfos.push(expandedT);\n return expandedT;\n });\n const result = concat2({ inputs: expandedTensors, backend: backend2, attrs: { axis } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar packConfig = {\n kernelName: Pack,\n backendName: \"cpu\",\n kernelFunc: pack\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/PadV2.js\nfunction padV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { paddings, constantValue } = attrs;\n assertNotComplex(x, \"pad\");\n const outShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n const start = paddings.map((p2) => p2[0]);\n const xVals = backend2.data.get(x.dataId).values;\n const xSize = util_exports.sizeFromShape(x.shape);\n const xRank = x.shape.length;\n const xStrides = util_exports.computeStrides(x.shape);\n const resultSize = util_exports.sizeFromShape(outShape);\n const resultRank = outShape.length;\n const resultStrides = util_exports.computeStrides(outShape);\n const resVals = util_exports.getTypedArrayFromDType(x.dtype, resultSize);\n if (constantValue !== 0) {\n resVals.fill(constantValue);\n }\n for (let i2 = 0; i2 < xSize; i2++) {\n const coords3 = util_exports.indexToLoc(i2, xRank, xStrides);\n const outCoords = coords3.map((c, i3) => c + start[i3]);\n const outIndex = util_exports.locToIndex(outCoords, resultRank, resultStrides);\n resVals[outIndex] = xVals[i2];\n }\n const outId = backend2.write(resVals, outShape, x.dtype);\n return { dataId: outId, shape: outShape, dtype: x.dtype };\n}\nvar padV2Config = {\n kernelName: PadV2,\n backendName: \"cpu\",\n kernelFunc: padV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Pow.js\nvar powImpl = createSimpleBinaryKernelImpl((a, b) => Math.pow(a, b));\nvar pow2 = binaryKernelFunc(Pow, powImpl);\nvar powConfig = {\n kernelName: Pow,\n backendName: \"cpu\",\n kernelFunc: pow2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/RaggedTensorToTensor.js\nfunction raggedTensorToTensor2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { shape, values, defaultValue, rowPartitionTensors } = inputs;\n const { rowPartitionTypes } = attrs;\n const $shape = backend2.data.get(shape.dataId).values;\n const $values = backend2.data.get(values.dataId).values;\n const $defaultValue = backend2.data.get(defaultValue.dataId).values;\n const $rowPartitionValues = rowPartitionTensors.map((t2) => backend2.data.get(t2.dataId).values);\n const rowPartitionValuesShapes = rowPartitionTensors.map((t2) => t2.shape);\n const [outputShape, output] = raggedTensorToTensorImpl($shape, shape.shape, $values, values.shape, values.dtype, $defaultValue, defaultValue.shape, $rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypes);\n return backend2.makeTensorInfo(outputShape, values.dtype, output);\n}\nvar raggedTensorToTensorConfig = {\n kernelName: RaggedTensorToTensor,\n backendName: \"cpu\",\n kernelFunc: raggedTensorToTensor2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Range.js\nfunction range3(args) {\n const { backend: backend2, attrs } = args;\n const { start, stop, dtype, step: step5 } = attrs;\n const values = rangeImpl(start, stop, step5, dtype);\n return backend2.makeTensorInfo([values.length], dtype, values);\n}\nvar rangeConfig = {\n kernelName: Range,\n backendName: \"cpu\",\n kernelFunc: range3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Reciprocal.js\nvar reciprocal2 = unaryKernelFunc(Reciprocal, (xi) => 1 / xi);\nvar reciprocalConfig = {\n kernelName: Reciprocal,\n backendName: \"cpu\",\n kernelFunc: reciprocal2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ResizeBilinear.js\nfunction resizeBilinear2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n assertNotComplex(images, \"resizeBilinear\");\n const imagesStrides = util_exports.computeStrides(images.shape);\n const [newHeight, newWidth] = size;\n const [batch, oldHeight, oldWidth, numChannels] = images.shape;\n const xValues = backend2.data.get(images.dataId).values;\n const result = new Float32Array(util_exports.sizeFromShape([batch, newHeight, newWidth, numChannels]));\n const effectiveInputSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutputSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n let outputIdx = 0;\n const effectiveRowSizeRatio = effectiveInputSize[0] / effectiveOutputSize[0];\n const effectiveColSizeRatio = effectiveInputSize[1] / effectiveOutputSize[1];\n for (let b = 0; b < batch; b++) {\n for (let r2 = 0; r2 < newHeight; r2++) {\n let sourceFracRow;\n if (halfPixelCenters) {\n sourceFracRow = effectiveRowSizeRatio * (r2 + 0.5) - 0.5;\n } else {\n sourceFracRow = effectiveRowSizeRatio * r2;\n }\n const sourceRowFloor = Math.max(0, Math.floor(sourceFracRow));\n const rowFrac = sourceFracRow - sourceRowFloor;\n const sourceRowCeil = Math.min(oldHeight - 1, Math.ceil(sourceFracRow));\n const topRowOffset = b * imagesStrides[0] + sourceRowFloor * imagesStrides[1];\n const botRowOffset = b * imagesStrides[0] + sourceRowCeil * imagesStrides[1];\n for (let c = 0; c < newWidth; c++) {\n let sourceFracCol;\n if (halfPixelCenters) {\n sourceFracCol = effectiveColSizeRatio * (c + 0.5) - 0.5;\n } else {\n sourceFracCol = effectiveColSizeRatio * c;\n }\n const sourceColFloor = Math.max(0, Math.floor(sourceFracCol));\n const colFrac = sourceFracCol - sourceColFloor;\n const sourceColCeil = Math.min(oldWidth - 1, Math.ceil(sourceFracCol));\n const topLeftOffest = topRowOffset + sourceColFloor * imagesStrides[2];\n const botLeftOffset = botRowOffset + sourceColFloor * imagesStrides[2];\n const topRightOffset = topRowOffset + sourceColCeil * imagesStrides[2];\n const botRightOffest = botRowOffset + sourceColCeil * imagesStrides[2];\n for (let d = 0; d < numChannels; d++) {\n const topLeft = xValues[topLeftOffest + d];\n const bottomLeft = xValues[botLeftOffset + d];\n const topRight = xValues[topRightOffset + d];\n const bottomRight = xValues[botRightOffest + d];\n const top = topLeft + (topRight - topLeft) * colFrac;\n const bottom = bottomLeft + (bottomRight - bottomLeft) * colFrac;\n const newValue = top + (bottom - top) * rowFrac;\n result[outputIdx++] = newValue;\n }\n }\n }\n }\n return backend2.makeTensorInfo([batch, newHeight, newWidth, numChannels], \"float32\", result);\n}\nvar resizeBilinearConfig = {\n kernelName: ResizeBilinear,\n backendName: \"cpu\",\n kernelFunc: resizeBilinear2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ResizeBilinearGrad.js\nfunction resizeBilinearGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images, dy } = inputs;\n const { alignCorners } = attrs;\n assertNotComplex([dy, images], \"resizeBilinearGrad\");\n const imagesStrides = util_exports.computeStrides(images.shape);\n const [batch, xHeight, xWidth, depth] = images.shape;\n const [, yHeight, yWidth] = dy.shape;\n const output = new Float32Array(batch * xHeight * xWidth * depth);\n const effectiveXSize = [\n alignCorners && yHeight > 1 ? xHeight - 1 : xHeight,\n alignCorners && yWidth > 1 ? xWidth - 1 : xWidth\n ];\n const effectiveYSize = [\n alignCorners && yHeight > 1 ? yHeight - 1 : yHeight,\n alignCorners && yWidth > 1 ? yWidth - 1 : yWidth\n ];\n const heightScale = effectiveXSize[0] / effectiveYSize[0];\n const widthScale = effectiveXSize[1] / effectiveYSize[1];\n const dyValues = backend2.data.get(dy.dataId).values;\n let offset = 0;\n for (let b = 0; b < batch; b++) {\n const bOffset = b * imagesStrides[0];\n for (let r2 = 0; r2 < yHeight; r2++) {\n const dxR = r2 * heightScale;\n const topDxRIndex = Math.floor(dxR);\n const bottomDxRIndex = Math.min(Math.ceil(dxR), xHeight - 1);\n const topDxROffset = bOffset + topDxRIndex * imagesStrides[1];\n const bottomDxROffset = bOffset + bottomDxRIndex * imagesStrides[1];\n const dxRLerp = dxR - topDxRIndex;\n const inverseDxRLerp = 1 - dxRLerp;\n for (let c = 0; c < yWidth; c++) {\n const dxC = c * widthScale;\n const leftDxCIndex = Math.floor(dxC);\n const rightDxCIndex = Math.min(Math.ceil(dxC), xWidth - 1);\n const dxCLerp = dxC - leftDxCIndex;\n const inverseDxCLerp = 1 - dxCLerp;\n const topLeftRCOffset = topDxROffset + leftDxCIndex * imagesStrides[2];\n const topRightRCOffset = topDxROffset + rightDxCIndex * imagesStrides[2];\n const bottomLeftRCOffset = bottomDxROffset + leftDxCIndex * imagesStrides[2];\n const bottomRightRCOffset = bottomDxROffset + rightDxCIndex * imagesStrides[2];\n const inverseDxRLerpTimesInverseDxCLerp = inverseDxRLerp * inverseDxCLerp;\n const inverseDxRLerpTimesDxCLerp = inverseDxRLerp * dxCLerp;\n const dxRLerpTimesInverseDxCLerp = dxRLerp * inverseDxCLerp;\n const dxRLerpTimesDxCLerp = dxRLerp * dxCLerp;\n for (let d = 0; d < depth; d++) {\n const dyVal = dyValues[offset++];\n output[topLeftRCOffset + d] += dyVal * inverseDxRLerpTimesInverseDxCLerp;\n output[topRightRCOffset + d] += dyVal * inverseDxRLerpTimesDxCLerp;\n output[bottomLeftRCOffset + d] += dyVal * dxRLerpTimesInverseDxCLerp;\n output[bottomRightRCOffset + d] += dyVal * dxRLerpTimesDxCLerp;\n }\n }\n }\n }\n return backend2.makeTensorInfo([batch, xWidth, xHeight, depth], \"float32\", output);\n}\nvar resizeBilinearGradConfig2 = {\n kernelName: ResizeBilinearGrad,\n backendName: \"cpu\",\n kernelFunc: resizeBilinearGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ResizeNearestNeighbor.js\nfunction resizeNearestNeighbor2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n assertNotComplex(images, \"resizeNearestNeighbor\");\n const imagesStrides = util_exports.computeStrides(images.shape);\n const [newHeight, newWidth] = size;\n const [batch, oldHeight, oldWidth, numChannels] = images.shape;\n const xValues = backend2.data.get(images.dataId).values;\n const output = new Float32Array(batch * newHeight * newWidth * numChannels);\n const effectiveInputSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutputSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n const effectiveRowSizeRatio = effectiveInputSize[0] / effectiveOutputSize[0];\n const effectiveColSizeRatio = effectiveInputSize[1] / effectiveOutputSize[1];\n let outputOffset = 0;\n for (let b = 0; b < batch; b++) {\n const batchOffset = b * imagesStrides[0];\n for (let r2 = 0; r2 < newHeight; r2++) {\n const sourceFracRow = halfPixelCenters ? effectiveRowSizeRatio * (r2 + 0.5) : effectiveRowSizeRatio * r2;\n let sourceNearestRow = Math.min(oldHeight - 1, alignCorners ? Math.round(sourceFracRow) : Math.floor(sourceFracRow));\n if (halfPixelCenters) {\n sourceNearestRow = Math.max(0, sourceNearestRow);\n }\n const rowOffset = batchOffset + sourceNearestRow * imagesStrides[1];\n for (let c = 0; c < newWidth; c++) {\n const sourceFracCol = halfPixelCenters ? effectiveColSizeRatio * (c + 0.5) : effectiveColSizeRatio * c;\n let sourceNearestCol = Math.min(oldWidth - 1, alignCorners ? Math.round(sourceFracCol) : Math.floor(sourceFracCol));\n if (halfPixelCenters) {\n sourceNearestCol = Math.max(0, sourceNearestCol);\n }\n const colOffset = rowOffset + sourceNearestCol * imagesStrides[2];\n for (let d = 0; d < numChannels; d++) {\n const newVal = xValues[colOffset + d];\n output[outputOffset++] = newVal;\n }\n }\n }\n }\n return backend2.makeTensorInfo([batch, newHeight, newWidth, numChannels], images.dtype, output);\n}\nvar resizeNearestNeighborConfig = {\n kernelName: ResizeNearestNeighbor,\n backendName: \"cpu\",\n kernelFunc: resizeNearestNeighbor2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ResizeNearestNeighborGrad.js\nfunction resizeNearestNeighborGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images, dy } = inputs;\n const { alignCorners } = attrs;\n assertNotComplex([dy, images], \"resizeNearestNeighborGrad\");\n const imagesStrides = util_exports.computeStrides(images.shape);\n const dyStrides = util_exports.computeStrides(dy.shape);\n const [batch, xHeight, xWidth, depth] = images.shape;\n const [, yHeight, yWidth] = dy.shape;\n const output = new Float32Array(batch * xHeight * xWidth * depth);\n const dyValues = backend2.data.get(dy.dataId).values;\n const effectiveXSize = [\n alignCorners && yHeight > 1 ? xHeight - 1 : xHeight,\n alignCorners && yWidth > 1 ? xWidth - 1 : xWidth\n ];\n const effectiveYSize = [\n alignCorners && yHeight > 1 ? yHeight - 1 : yHeight,\n alignCorners && yWidth > 1 ? yWidth - 1 : yWidth\n ];\n const heightScale = effectiveXSize[0] / effectiveYSize[0];\n const widthScale = effectiveXSize[1] / effectiveYSize[1];\n const invHeightScale = 1 / heightScale;\n const invWidthScale = 1 / widthScale;\n const winHeight = Math.ceil(invHeightScale) * 2 + 2;\n const winWidth = Math.ceil(invWidthScale) * 2 + 2;\n for (let b = 0; b < batch; b++) {\n const batchOffset = b * imagesStrides[0];\n for (let r2 = 0; r2 < xHeight; r2++) {\n const rowOffset = batchOffset + r2 * imagesStrides[1];\n const startRLerp = Math.floor(r2 * invHeightScale);\n const startDyR = Math.floor(startRLerp - winHeight / 2);\n for (let c = 0; c < xWidth; c++) {\n const colOffset = rowOffset + c * imagesStrides[2];\n const startCLerp = Math.floor(c * invWidthScale);\n const startDyC = Math.floor(startCLerp - winWidth / 2);\n for (let d = 0; d < depth; d++) {\n let accum = 0;\n for (let dyRIndex = 0; dyRIndex < winHeight; dyRIndex++) {\n const dyR = dyRIndex + startDyR;\n if (dyR < 0 || dyR >= yHeight) {\n continue;\n }\n const dyROffset = batchOffset + dyR * dyStrides[1];\n const sourceFracRow = dyR * heightScale;\n const sourceNearestRow = Math.min(xHeight - 1, alignCorners ? Math.round(sourceFracRow) : Math.floor(sourceFracRow));\n if (r2 !== sourceNearestRow) {\n continue;\n }\n for (let dyCIndex = 0; dyCIndex < winWidth; dyCIndex++) {\n const dyC = dyCIndex + startDyC;\n if (dyC < 0 || dyC >= yWidth) {\n continue;\n }\n const dyCOffset = dyROffset + dyC * dyStrides[2];\n const sourceFracCol = dyC * widthScale;\n const sourceNearestCol = Math.min(xWidth - 1, alignCorners ? Math.round(sourceFracCol) : Math.floor(sourceFracCol));\n if (c === sourceNearestCol) {\n accum += dyValues[dyCOffset + d];\n }\n }\n }\n output[colOffset + d] = accum;\n }\n }\n }\n }\n return backend2.makeTensorInfo(images.shape, images.dtype, output);\n}\nvar resizeNearestNeighborGradConfig2 = {\n kernelName: ResizeNearestNeighborGrad,\n backendName: \"cpu\",\n kernelFunc: resizeNearestNeighborGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Reverse.js\nfunction reverse2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dims } = attrs;\n assertNotComplex(x, \"reverse\");\n const xRank = x.shape.length;\n const $dims = util_exports.parseAxisParam(dims, x.shape);\n if (xRank === 0) {\n return identity2({ inputs: { x }, backend: backend2 });\n }\n const outBuf = new TensorBuffer(x.shape, x.dtype);\n const xBuf = backend2.bufferSync(x);\n for (let i2 = 0; i2 < outBuf.size; i2++) {\n const outLoc = outBuf.indexToLoc(i2);\n const inLoc = outLoc.slice();\n $dims.forEach((d) => inLoc[d] = x.shape[d] - 1 - inLoc[d]);\n outBuf.set(xBuf.get(...inLoc), ...outLoc);\n }\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n}\nvar reverseConfig = {\n kernelName: Reverse,\n backendName: \"cpu\",\n kernelFunc: reverse2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/RotateWithOffset.js\nvar rotateWithOffsetConfig = {\n kernelName: RotateWithOffset,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const { radians, fillValue, center } = attrs;\n const cpuBackend = backend2;\n const output = util_exports.getTypedArrayFromDType(image2.dtype, util_exports.sizeFromShape(image2.shape));\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [centerX, centerY] = backend_util_exports.getImageCenter(center, imageHeight, imageWidth);\n const fullOpacityValue = 255;\n const sinFactor = Math.sin(radians);\n const cosFactor = Math.cos(radians);\n const imageVals = cpuBackend.data.get(image2.dataId).values;\n for (let batchIdx = 0; batchIdx < batch; batchIdx++) {\n const batchOffset = batchIdx * imageWidth * imageHeight * numChannels;\n for (let row = 0; row < imageHeight; row++) {\n const rowOffset = row * (imageWidth * numChannels);\n for (let col = 0; col < imageWidth; col++) {\n const colOffset = col * numChannels;\n for (let channel = 0; channel < numChannels; channel++) {\n const coords3 = [batch, row, col, channel];\n const x = coords3[2];\n const y = coords3[1];\n let coordX = (x - centerX) * cosFactor - (y - centerY) * sinFactor;\n let coordY = (x - centerX) * sinFactor + (y - centerY) * cosFactor;\n coordX = Math.round(coordX + centerX);\n coordY = Math.round(coordY + centerY);\n let outputValue = fillValue;\n if (typeof fillValue !== \"number\") {\n if (channel === 3) {\n outputValue = fullOpacityValue;\n } else {\n outputValue = fillValue[channel];\n }\n }\n if (coordX >= 0 && coordX < imageWidth && coordY >= 0 && coordY < imageHeight) {\n const rotatedRowOffset = coordY * (imageWidth * numChannels);\n const rotatedColOffset = coordX * numChannels;\n const imageIdx = batchOffset + rotatedRowOffset + rotatedColOffset + channel;\n outputValue = imageVals[imageIdx];\n }\n const outIdx = batchOffset + rowOffset + colOffset + channel;\n output[outIdx] = outputValue;\n }\n }\n }\n }\n const dataId = cpuBackend.write(output, image2.shape, image2.dtype);\n return { dataId, shape: image2.shape, dtype: image2.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Round.js\nvar round3 = unaryKernelFunc(Round, (xi) => {\n const base = Math.floor(xi);\n if (xi - base < 0.5) {\n return Math.floor(xi);\n } else if (xi - base > 0.5) {\n return Math.ceil(xi);\n } else {\n if (base % 2 === 0) {\n return base;\n } else {\n return base + 1;\n }\n }\n});\nvar roundConfig = {\n kernelName: Round,\n backendName: \"cpu\",\n kernelFunc: round3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ScatterNd.js\nfunction scatterNd(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices, updates } = inputs;\n const { shape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(updates, indices, shape);\n const sumDupeIndices = true;\n const indicesBuf = backend2.bufferSync(indices);\n const updatesBuf = backend2.bufferSync(updates);\n const outBuf = scatterImpl(indicesBuf, updatesBuf, shape, outputSize, sliceSize, numUpdates, sliceRank, strides, 0, sumDupeIndices);\n return backend2.makeTensorInfo(shape, outBuf.dtype, outBuf.values);\n}\nvar scatterNdConfig = {\n kernelName: ScatterNd,\n backendName: \"cpu\",\n kernelFunc: scatterNd\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SearchSorted_impl.js\nfunction lowerBound2(array2, value) {\n let left = 0;\n let right = array2.length;\n let mid = 0;\n while (left < right) {\n mid = Math.floor((left + right) / 2);\n if (array2[mid] < value) {\n left = mid + 1;\n } else {\n right = mid;\n }\n }\n return right;\n}\nfunction upperBound2(array2, value) {\n let left = 0;\n let right = array2.length;\n let mid = 0;\n while (left < right) {\n mid = Math.floor((left + right) / 2);\n if (array2[mid] <= value) {\n left = mid + 1;\n } else {\n right = mid;\n }\n }\n return right;\n}\nfunction searchSortedImpl(sortedInputs, values, batchSize, numInputs, numValues, side) {\n const output = util_exports.getArrayFromDType(\"int32\", batchSize * numValues);\n for (let b = 0; b < batchSize; ++b) {\n const sortedInputsSlice = sortedInputs.slice(b * numInputs, (b + 1) * numInputs);\n const outputOffset = b * numValues;\n for (let i2 = 0; i2 < numValues; ++i2) {\n output[outputOffset + i2] = side === \"left\" ? lowerBound2(sortedInputsSlice, values[i2 + outputOffset]) : upperBound2(sortedInputsSlice, values[i2 + outputOffset]);\n }\n }\n return output;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SearchSorted.js\nfunction searchSorted2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sortedSequence, values } = inputs;\n const { side } = attrs;\n const $sortedSequence = backend2.data.get(sortedSequence.dataId).values;\n const $values = backend2.data.get(values.dataId).values;\n const output = searchSortedImpl($sortedSequence, $values, sortedSequence.shape[0], sortedSequence.shape[1], values.shape[1], side);\n return backend2.makeTensorInfo(values.shape, \"int32\", output);\n}\nvar searchSortedConfig = {\n kernelName: SearchSorted,\n backendName: \"cpu\",\n kernelFunc: searchSorted2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Select.js\nfunction select2(args) {\n const { inputs, backend: backend2 } = args;\n const { condition, t: t2, e: e2 } = inputs;\n assertNotComplex([condition, t2, e2], \"select\");\n const conditionRank = condition.shape.length;\n const values = backend2.data.get(condition.dataId).values;\n const tValues = backend2.data.get(t2.dataId).values;\n const eValues = backend2.data.get(e2.dataId).values;\n const resultDtype = upcastType(t2.dtype, e2.dtype);\n const newValues = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(t2.shape), resultDtype);\n let index = 0;\n const offset = conditionRank === 0 || conditionRank > 1 || t2.shape.length === 1 ? 1 : util_exports.sizeFromShape(t2.shape.slice(1));\n for (let i2 = 0; i2 < values.length; i2++) {\n for (let j = 0; j < offset; j++) {\n if (values[i2] === 1) {\n newValues[index++] = tValues[i2];\n } else {\n newValues[index++] = eValues[i2];\n }\n }\n }\n return backend2.makeTensorInfo(t2.shape, resultDtype, newValues);\n}\nvar selectConfig = {\n kernelName: Select,\n backendName: \"cpu\",\n kernelFunc: select2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Selu.js\nvar scaleAlpha = backend_util_exports.SELU_SCALEALPHA;\nvar scale = backend_util_exports.SELU_SCALE;\nvar selu2 = unaryKernelFunc(Selu, (xi) => {\n if (xi >= 0) {\n return scale * xi;\n } else {\n return scaleAlpha * (Math.exp(xi) - 1);\n }\n});\nvar seluConfig = {\n kernelName: Selu,\n backendName: \"cpu\",\n kernelFunc: selu2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sign.js\nvar sign2 = unaryKernelFunc(Sign, (xi) => {\n if (xi < 0) {\n return -1;\n } else if (xi > 0) {\n return 1;\n } else {\n return 0;\n }\n});\nvar signConfig = {\n kernelName: Sign,\n backendName: \"cpu\",\n kernelFunc: sign2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sin.js\nvar sin2 = unaryKernelFunc(Sin, (xi) => Math.sin(xi));\nvar sinConfig = {\n kernelName: Sin,\n backendName: \"cpu\",\n kernelFunc: sin2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sinh.js\nvar sinh2 = unaryKernelFunc(Sinh, (xi) => Math.sinh(xi));\nvar sinhConfig = {\n kernelName: Sinh,\n backendName: \"cpu\",\n kernelFunc: sinh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Softplus.js\nvar epsilon2 = 11920928955078125e-23;\nvar threshold2 = Math.log(epsilon2) + 2;\nvar softplus2 = unaryKernelFunc(Softplus, (xi) => {\n const tooLarge = xi > -threshold2;\n const tooSmall = xi < threshold2;\n const expX = Math.exp(xi);\n let result;\n if (tooSmall) {\n result = expX;\n } else if (tooLarge) {\n result = xi;\n } else {\n result = Math.log(1 + expX);\n }\n return result;\n});\nvar softplusConfig = {\n kernelName: Softplus,\n backendName: \"cpu\",\n kernelFunc: softplus2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SpaceToBatchND.js\nfunction spaceToBatchND2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, paddings } = attrs;\n assertNotComplex([x], \"spaceToBatchND\");\n const prod6 = util_exports.sizeFromShape(blockShape);\n const completePaddings = [[0, 0]];\n completePaddings.push(...paddings);\n for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) {\n completePaddings.push([0, 0]);\n }\n const paddedX = padV2Config.kernelFunc({\n inputs: { x },\n backend: backend2,\n attrs: { paddings: completePaddings, constantValue: 0 }\n });\n const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false);\n const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false);\n const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false);\n const reshapeInputs = { x: paddedX };\n const reshapeAttrs = { shape: reshapedPaddedShape };\n const paddedXReshaped = reshape3({ inputs: reshapeInputs, backend: backend2, attrs: reshapeAttrs });\n const transposeInputs = { x: paddedXReshaped };\n const transposeAttrs = { perm: permutedReshapedPaddedPermutation };\n const paddedXT = transpose2({ inputs: transposeInputs, backend: backend2, attrs: transposeAttrs });\n const resultReshapeInputs = { x: paddedXT };\n const resultReshapeAttrs = { shape: flattenShape };\n const result = reshape3({ inputs: resultReshapeInputs, backend: backend2, attrs: resultReshapeAttrs });\n backend2.disposeIntermediateTensorInfo(paddedX);\n backend2.disposeIntermediateTensorInfo(paddedXReshaped);\n backend2.disposeIntermediateTensorInfo(paddedXT);\n return result;\n}\nvar spaceToBatchNDConfig = {\n kernelName: SpaceToBatchND,\n backendName: \"cpu\",\n kernelFunc: spaceToBatchND2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseFillEmptyRows.js\nfunction sparseFillEmptyRows2(args) {\n const { inputs, backend: backend2 } = args;\n const { indices, values, denseShape, defaultValue } = inputs;\n if (denseShape.shape.length !== 1) {\n throw new Error(`Dense shape must be a vector, saw:\n ${denseShape.shape}`);\n }\n if (indices.shape.length !== 2) {\n throw new Error(`Indices must be a matrix, saw:\n ${indices.shape}`);\n }\n if (values.shape.length !== 1) {\n throw new Error(`Values must be a vector, saw:\n ${values.shape}`);\n }\n if (defaultValue.shape.length !== 0) {\n throw new Error(`Default value must be a scalar, saw:\n ${defaultValue.shape}`);\n }\n const $indices = backend2.data.get(indices.dataId).values;\n const $values = backend2.data.get(values.dataId).values;\n const $denseShape = backend2.data.get(denseShape.dataId).values;\n const $defaultValue = backend2.data.get(defaultValue.dataId).values[0];\n const [outputIndices, outputIndicesShape, outputValues, emptyRowIndicator, reverseIndexMap] = sparseFillEmptyRowsImpl($indices, indices.shape, indices.dtype, $values, values.dtype, $denseShape, $defaultValue);\n return [\n backend2.makeTensorInfo(outputIndicesShape, indices.dtype, outputIndices),\n backend2.makeTensorInfo([outputIndicesShape[0]], values.dtype, outputValues),\n backend2.makeTensorInfo([emptyRowIndicator.length], \"bool\", new Uint8Array(emptyRowIndicator.map((value) => Number(value)))),\n backend2.makeTensorInfo([reverseIndexMap.length], indices.dtype, new Int32Array(reverseIndexMap))\n ];\n}\nvar sparseFillEmptyRowsConfig = {\n kernelName: SparseFillEmptyRows,\n backendName: \"cpu\",\n kernelFunc: sparseFillEmptyRows2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseReshape.js\nfunction sparseReshape2(args) {\n const { inputs, backend: backend2 } = args;\n const { inputIndices, inputShape, newShape } = inputs;\n if (inputIndices.shape.length !== 2) {\n throw new Error(`Input indices should be a matrix but received shape\n ${inputIndices.shape}`);\n }\n if (inputShape.shape.length !== 1) {\n throw new Error(`Input shape should be a vector but received shape\n ${inputShape.shape}`);\n }\n if (newShape.shape.length !== 1) {\n throw new Error(`Target shape should be a vector but received shape ${newShape.shape}`);\n }\n const $inputShape = Array.from(backend2.data.get(inputShape.dataId).values);\n const $inputIndices = backend2.data.get(inputIndices.dataId).values;\n const targetShape = Array.from(backend2.data.get(newShape.dataId).values);\n const [newIndices, indicesShape, outputShape] = sparseReshapeImpl($inputIndices, inputIndices.shape, inputIndices.dtype, $inputShape, targetShape);\n return [\n backend2.makeTensorInfo(indicesShape, inputIndices.dtype, newIndices),\n backend2.makeTensorInfo([outputShape.length], newShape.dtype, new Int32Array(outputShape))\n ];\n}\nvar sparseReshapeConfig = {\n kernelName: SparseReshape,\n backendName: \"cpu\",\n kernelFunc: sparseReshape2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseSegmentMean.js\nfunction sparseSegmentMean2(args) {\n const { inputs, backend: backend2 } = args;\n const { data, indices, segmentIds } = inputs;\n if (data.shape.length < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if (indices.shape.length !== 1) {\n throw new Error(`Indices should be a vector but received shape\n ${indices.shape}`);\n }\n if (segmentIds.shape.length !== 1) {\n throw new Error(`Segment ids should be a vector but received shape\n ${segmentIds.shape}`);\n }\n if (indices.shape[0] !== segmentIds.shape[0]) {\n throw new Error(`segmentIds and indices should have same size.`);\n }\n const $data = backend2.data.get(data.dataId).values;\n const $indices = backend2.data.get(indices.dataId).values;\n const $segmentIds = backend2.data.get(segmentIds.dataId).values;\n const [outputData, outputDataShape] = sparseSegmentReductionImpl($data, data.shape, data.dtype, $indices, $segmentIds, true);\n return backend2.makeTensorInfo(outputDataShape, data.dtype, outputData);\n}\nvar sparseSegmentMeanConfig = {\n kernelName: SparseSegmentMean,\n backendName: \"cpu\",\n kernelFunc: sparseSegmentMean2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseSegmentSum.js\nfunction sparseSegmentSum2(args) {\n const { inputs, backend: backend2 } = args;\n const { data, indices, segmentIds } = inputs;\n if (data.shape.length < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if (indices.shape.length !== 1) {\n throw new Error(`Indices should be a vector but received shape\n ${indices.shape}`);\n }\n if (segmentIds.shape.length !== 1) {\n throw new Error(`Segment ids should be a vector but received shape\n ${segmentIds.shape}`);\n }\n if (indices.shape[0] !== segmentIds.shape[0]) {\n throw new Error(`segmentIds and indices should have same size.`);\n }\n const $data = backend2.data.get(data.dataId).values;\n const $indices = backend2.data.get(indices.dataId).values;\n const $segmentIds = backend2.data.get(segmentIds.dataId).values;\n const [outputData, outputDataShape] = sparseSegmentReductionImpl($data, data.shape, data.dtype, $indices, $segmentIds);\n return backend2.makeTensorInfo(outputDataShape, data.dtype, outputData);\n}\nvar sparseSegmentSumConfig = {\n kernelName: SparseSegmentSum,\n backendName: \"cpu\",\n kernelFunc: sparseSegmentSum2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseToDense.js\nfunction sparseToDense2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sparseIndices, sparseValues, defaultValue } = inputs;\n const { outputShape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(sparseValues, sparseIndices, outputShape);\n const sumDupeIndices = false;\n const indicesBuf = backend2.bufferSync(sparseIndices);\n let outBuf;\n switch (sparseValues.dtype) {\n case \"bool\": {\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = Boolean(backend2.data.get(defaultValue.dataId).values[0]);\n outBuf = scatterImpl(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n break;\n }\n case \"float32\": {\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = backend2.data.get(defaultValue.dataId).values[0];\n outBuf = scatterImpl(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n break;\n }\n case \"int32\": {\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = backend2.data.get(defaultValue.dataId).values[0];\n outBuf = scatterImpl(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n break;\n }\n case \"string\": {\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = util_exports.decodeString(backend2.data.get(defaultValue.dataId).values[0]);\n outBuf = scatterImpl(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n break;\n }\n default:\n throw new Error(`Unsupported type ${sparseValues.dtype}`);\n }\n return backend2.makeTensorInfo(outputShape, outBuf.dtype, outBuf.values);\n}\nvar sparseToDenseConfig = {\n kernelName: SparseToDense,\n backendName: \"cpu\",\n kernelFunc: sparseToDense2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SplitV.js\nfunction splitV(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { numOrSizeSplits, axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, x.shape)[0];\n const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis);\n const begin = new Array(x.shape.length).fill(0);\n const size = x.shape.slice();\n return splitSizes.map((s2) => {\n const sliceSize = [...size];\n sliceSize[$axis] = s2;\n const sliceT = slice2({ inputs: { x }, backend: backend2, attrs: { begin, size: sliceSize } });\n begin[$axis] += s2;\n return sliceT;\n });\n}\nvar splitVConfig = {\n kernelName: SplitV,\n backendName: \"cpu\",\n kernelFunc: splitV\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Square.js\nvar squareConfig = {\n kernelName: Square,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, backend: backend2 }) => {\n const { x } = inputs;\n const cpuBackend = backend2;\n assertNotComplex(x, \"square\");\n const values = cpuBackend.data.get(x.dataId).values;\n const newValues = new Float32Array(values.length);\n for (let i2 = 0; i2 < values.length; ++i2) {\n const value = values[i2];\n newValues[i2] = value * value;\n }\n const dataId = cpuBackend.write(newValues, x.shape, x.dtype);\n return { dataId, shape: x.shape, dtype: x.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Step.js\nvar step2 = unaryKernelFunc(Step, (xi, attrs) => {\n const stepAttrs = attrs;\n if (isNaN(xi)) {\n return NaN;\n } else {\n return xi > 0 ? 1 : stepAttrs.alpha;\n }\n});\nvar stepConfig = {\n kernelName: Step,\n backendName: \"cpu\",\n kernelFunc: step2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StridedSlice.js\nfunction stridedSlice2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs;\n assertNotComplex(x, \"stridedSlice\");\n const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n let result;\n if (isIdentity) {\n result = reshape3({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } });\n } else if (sliceDim0 || isSimpleSlice) {\n util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`);\n const size = slice_util_exports.computeOutShape($begin, $end, $strides);\n const sliced = slice2({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } });\n result = reshape3({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeIntermediateTensorInfo(sliced);\n } else {\n const xBuf = backend2.bufferSync(x);\n const outBuf = stridedSliceImpl(finalShapeSparse, xBuf, $strides, $begin);\n result = backend2.makeTensorInfo(finalShape, outBuf.dtype, outBuf.values);\n }\n return result;\n}\nvar stridedSliceConfig = {\n kernelName: StridedSlice,\n backendName: \"cpu\",\n kernelFunc: stridedSlice2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringNGrams.js\nfunction stringNGrams2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs;\n const { data, dataSplits } = inputs;\n const $data = backend2.data.get(data.dataId).values;\n const $dataSplits = backend2.data.get(dataSplits.dataId).values;\n const [nGrams, nGramsSplits] = stringNGramsImpl($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences);\n return [\n backend2.makeTensorInfo([nGrams.length], \"string\", nGrams),\n backend2.makeTensorInfo(dataSplits.shape, \"int32\", nGramsSplits)\n ];\n}\nvar stringNGramsConfig = {\n kernelName: StringNGrams,\n backendName: \"cpu\",\n kernelFunc: stringNGrams2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringSplit.js\nfunction stringSplit2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { skipEmpty } = attrs;\n const { input: input2, delimiter } = inputs;\n if (input2.dtype !== \"string\") {\n throw new Error(\"Input must be of datatype string\");\n }\n if (input2.shape.length !== 1) {\n throw new Error(`Input must be a vector, got shape: ${input2.shape}`);\n }\n if (delimiter.shape.length !== 0) {\n throw new Error(`Delimiter must be a scalar, got shape: ${delimiter.shape}`);\n }\n const $input = backend2.data.get(input2.dataId).values;\n const $delimiter = backend2.data.get(delimiter.dataId).values[0];\n const [indices, values, shape] = stringSplitImpl($input, $delimiter, skipEmpty);\n const outputSize = values.length;\n return [\n backend2.makeTensorInfo([outputSize, 2], \"int32\", indices),\n backend2.makeTensorInfo([outputSize], \"string\", values),\n backend2.makeTensorInfo([2], \"int32\", new Int32Array(shape))\n ];\n}\nvar stringSplitConfig = {\n kernelName: StringSplit,\n backendName: \"cpu\",\n kernelFunc: stringSplit2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringToHashBucketFast.js\nfunction stringToHashBucketFast2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { numBuckets } = attrs;\n const { input: input2 } = inputs;\n if (input2.dtype !== \"string\") {\n throw new Error(\"Input must be of datatype string\");\n }\n if (numBuckets <= 0) {\n throw new Error(`Number of buckets must be at least 1`);\n }\n const $input = backend2.data.get(input2.dataId).values;\n const output = stringToHashBucketFastImpl($input, numBuckets);\n return backend2.makeTensorInfo(input2.shape, \"int32\", output);\n}\nvar stringToHashBucketFastConfig = {\n kernelName: StringToHashBucketFast,\n backendName: \"cpu\",\n kernelFunc: stringToHashBucketFast2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tan.js\nvar tan2 = unaryKernelFunc(Tan, (xi) => Math.tan(xi));\nvar tanConfig = {\n kernelName: Tan,\n backendName: \"cpu\",\n kernelFunc: tan2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tanh.js\nvar tanh3 = unaryKernelFunc(Tanh, (xi) => Math.tanh(xi));\nvar tanhConfig = {\n kernelName: Tanh,\n backendName: \"cpu\",\n kernelFunc: tanh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tile.js\nfunction tile3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { reps } = attrs;\n assertNotComplex(x, \"tile\");\n const outBuf = tileImpl(backend2.bufferSync(x), reps);\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n}\nvar tileConfig = {\n kernelName: Tile,\n backendName: \"cpu\",\n kernelFunc: tile3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/TopK.js\nfunction topK(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { k, sorted } = attrs;\n assertNotComplex(x, \"topk\");\n const xVals = backend2.data.get(x.dataId).values;\n const [allTopKVals, allTopKIndices] = topKImpl(xVals, x.shape, x.dtype, k, sorted);\n return [\n backend2.makeTensorInfo(allTopKVals.shape, allTopKVals.dtype, allTopKVals.values),\n backend2.makeTensorInfo(allTopKIndices.shape, allTopKIndices.dtype, allTopKIndices.values)\n ];\n}\nvar topKConfig = {\n kernelName: TopK,\n backendName: \"cpu\",\n kernelFunc: topK\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Transform.js\nfunction transform2(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { image: image2, transforms } = inputs;\n const { interpolation, fillMode, fillValue, outputShape } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth];\n const outShape = [batch, outHeight, outWidth, numChannels];\n const inStrides = util_exports.computeStrides(image2.shape);\n const batchInStride = inStrides[0];\n const rowInStride = inStrides[1];\n const colInStride = inStrides[2];\n const outStrides = util_exports.computeStrides(outShape);\n const batchOutStride = outStrides[0];\n const rowOutStride = outStrides[1];\n const colOutStride = outStrides[2];\n const outVals = util_exports.getTypedArrayFromDType(image2.dtype, util_exports.sizeFromShape(outShape));\n outVals.fill(fillValue);\n const imageVals = backend2.data.get(image2.dataId).values;\n const transformVals = backend2.data.get(transforms.dataId).values;\n for (let b = 0; b < batch; ++b) {\n const transform6 = transforms.shape[0] === 1 ? transformVals : transformVals.subarray(b * 8, b * 8 + 8);\n for (let outY = 0; outY < outHeight; ++outY) {\n for (let outX = 0; outX < outWidth; ++outX) {\n for (let channel = 0; channel < numChannels; ++channel) {\n let val;\n const projection = transform6[6] * outX + transform6[7] * outY + 1;\n if (projection === 0) {\n continue;\n }\n const inX = (transform6[0] * outX + transform6[1] * outY + transform6[2]) / projection;\n const inY = (transform6[3] * outX + transform6[4] * outY + transform6[5]) / projection;\n const x = mapCoord(inX, imageWidth, fillMode);\n const y = mapCoord(inY, imageHeight, fillMode);\n switch (interpolation) {\n case \"nearest\":\n val = nearestInterpolation(imageVals, imageHeight, imageWidth, batchInStride, rowInStride, colInStride, b, y, x, channel, fillValue);\n break;\n case \"bilinear\":\n val = bilinearInterpolation(imageVals, imageHeight, imageWidth, batchInStride, rowInStride, colInStride, b, y, x, channel, fillValue);\n break;\n default:\n throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${interpolation}`);\n }\n const ind = b * batchOutStride + outY * rowOutStride + outX * colOutStride + channel;\n outVals[ind] = val;\n }\n }\n }\n return backend2.makeTensorInfo(outShape, image2.dtype, outVals);\n }\n const dataId = backend2.write(outVals, outShape, image2.dtype);\n return { dataId, shape: image2.shape, dtype: image2.dtype };\n}\nvar transformConfig = {\n kernelName: Transform,\n backendName: \"cpu\",\n kernelFunc: transform2\n};\nfunction mapCoord(outCoord, len, mode) {\n switch (mode) {\n case \"reflect\":\n return mapCoordReflect(outCoord, len);\n case \"wrap\":\n return mapCoordWrap(outCoord, len);\n case \"nearest\":\n return mapCoordNearest(outCoord, len);\n case \"constant\":\n default:\n return mapCoordConstant(outCoord, len);\n }\n}\nfunction mapCoordReflect(outCoord, len) {\n let inCoord = outCoord;\n if (inCoord < 0) {\n if (len <= 1) {\n inCoord = 0;\n } else {\n const sz2 = 2 * len;\n if (inCoord < sz2) {\n inCoord = sz2 * Math.trunc(-inCoord / sz2) + inCoord;\n }\n inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1;\n }\n } else if (inCoord > len - 1) {\n if (len <= 1) {\n inCoord = 0;\n } else {\n const sz2 = 2 * len;\n inCoord -= sz2 * Math.trunc(inCoord / sz2);\n if (inCoord >= len) {\n inCoord = sz2 - inCoord - 1;\n }\n }\n }\n return util_exports.clamp(0, inCoord, len - 1);\n}\nfunction mapCoordWrap(outCoord, len) {\n let inCoord = outCoord;\n if (inCoord < 0) {\n if (len <= 1) {\n inCoord = 0;\n } else {\n const sz = len - 1;\n inCoord += len * (Math.trunc(-inCoord / sz) + 1);\n }\n } else if (inCoord > len - 1) {\n if (len <= 1) {\n inCoord = 0;\n } else {\n const sz = len - 1;\n inCoord -= len * Math.trunc(inCoord / sz);\n }\n }\n return util_exports.clamp(0, inCoord, len - 1);\n}\nfunction mapCoordConstant(outCoord, len) {\n return outCoord;\n}\nfunction mapCoordNearest(outCoord, len) {\n return util_exports.clamp(0, outCoord, len - 1);\n}\nfunction readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, y, x, channel, fillValue) {\n const ind = batch * batchStride + y * rowStride + x * colStride + channel;\n if (0 <= y && y < imageHeight && 0 <= x && x < imageWidth) {\n return imageVals[ind];\n } else {\n return fillValue;\n }\n}\nfunction nearestInterpolation(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, y, x, channel, fillValue) {\n const $y = Math.round(y);\n const $x = Math.round(x);\n return readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, $y, $x, channel, fillValue);\n}\nfunction bilinearInterpolation(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, y, x, channel, fillValue) {\n const yFloor = Math.floor(y);\n const xFloor = Math.floor(x);\n const yCeil = yFloor + 1;\n const xCeil = xFloor + 1;\n const valueYFloor = (xCeil - x) * readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, yFloor, xFloor, channel, fillValue) + (x - xFloor) * readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, yFloor, xCeil, channel, fillValue);\n const valueYCeil = (xCeil - x) * readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, yCeil, xFloor, channel, fillValue) + (x - xFloor) * readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, yCeil, xCeil, channel, fillValue);\n return (yCeil - y) * valueYFloor + (y - yFloor) * valueYCeil;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Unique.js\nfunction unique3(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { axis } = attrs;\n const { x } = inputs;\n assertNotComplex(x, \"unique\");\n const values = backend2.data.get(x.dataId).values;\n const { outputValues, outputShape, indices } = uniqueImpl(values, axis, x.shape, x.dtype);\n return [\n backend2.makeTensorInfo(outputShape, x.dtype, outputValues),\n backend2.makeTensorInfo([indices.length], \"int32\", indices)\n ];\n}\nvar uniqueConfig = {\n kernelName: Unique,\n backendName: \"cpu\",\n kernelFunc: unique3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Unpack.js\nfunction unpack(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { value } = inputs;\n let { axis } = attrs;\n if (axis < 0) {\n axis += value.shape.length;\n }\n const valueRank = value.shape.length;\n const num = value.shape[axis];\n const outShape = new Array(valueRank - 1);\n let outIndex = 0;\n for (let i2 = 0; i2 < valueRank; i2++) {\n if (i2 !== axis) {\n outShape[outIndex++] = value.shape[i2];\n }\n }\n const begin = new Array(valueRank).fill(0);\n const size = value.shape.slice();\n size[axis] = 1;\n const res = new Array(num);\n for (let i2 = 0; i2 < res.length; i2++) {\n begin[axis] = i2;\n const tempRes = slice2({ inputs: { x: value }, backend: backend2, attrs: { begin, size } });\n res[i2] = reshape3({ inputs: { x: tempRes }, backend: backend2, attrs: { shape: outShape } });\n backend2.disposeIntermediateTensorInfo(tempRes);\n }\n return res;\n}\nvar unpackConfig = {\n kernelName: Unpack,\n backendName: \"cpu\",\n kernelFunc: unpack\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/UnsortedSegmentSum.js\nfunction unsortedSegmentSum2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, segmentIds } = inputs;\n const { numSegments } = attrs;\n assertNotComplex(x, \"unsortedSegmentSum\");\n const xRank = x.shape.length;\n const segmentIdsRank = segmentIds.shape.length;\n const res = [];\n const intermediates = [];\n const numIters = xRank - segmentIdsRank;\n let $segmentIds = segmentIds;\n for (let i2 = 0; i2 < numIters; ++i2) {\n const expanded = expandDims3({ inputs: { input: $segmentIds }, backend: backend2, attrs: { dim: i2 + 1 } });\n $segmentIds = expanded;\n intermediates.push(expanded);\n }\n for (let i2 = 0; i2 < numSegments; ++i2) {\n const scalarValue = util_exports.createScalarValue(i2, \"int32\");\n const segmentId = backend2.makeTensorInfo([], \"int32\", scalarValue);\n const mask = equal2({ inputs: { a: segmentId, b: $segmentIds }, backend: backend2 });\n const maskCasted = cast3({ inputs: { x: mask }, backend: backend2, attrs: { dtype: \"float32\" } });\n const mul2 = multiply2({ inputs: { a: maskCasted, b: x }, backend: backend2 });\n const sumTensorInfo = sum3({ inputs: { x: mul2 }, backend: backend2, attrs: { axis: 0, keepDims: false } });\n res.push(sumTensorInfo);\n intermediates.push(segmentId);\n intermediates.push(mask);\n intermediates.push(maskCasted);\n intermediates.push(mul2);\n intermediates.push(sumTensorInfo);\n }\n const result = pack({ inputs: res, backend: backend2, attrs: { axis: 0 } });\n intermediates.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar unsortedSegmentSumConfig = {\n kernelName: UnsortedSegmentSum,\n backendName: \"cpu\",\n kernelFunc: unsortedSegmentSum2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/register_all_kernels.js\nvar kernelConfigs = [\n _fusedMatMulConfig,\n absConfig,\n acosConfig,\n acoshConfig,\n addConfig,\n addNConfig,\n allConfig,\n anyConfig,\n argMaxConfig,\n argMinConfig,\n asinConfig,\n asinhConfig,\n atanConfig,\n atan2Config,\n atanhConfig,\n avgPoolConfig,\n avgPool3DConfig,\n avgPool3DGradConfig2,\n avgPoolGradConfig2,\n batchMatMulConfig,\n batchNormConfig,\n batchToSpaceNDConfig,\n bincountConfig,\n broadcastArgsConfig,\n castConfig,\n ceilConfig,\n clipByValueConfig,\n complexConfig,\n complexAbsConfig,\n concatConfig,\n conv2DConfig,\n conv2DBackpropFilterConfig,\n conv2DBackpropInputConfig,\n conv3DConfig,\n conv3DBackpropFilterV2Config,\n conv3DBackpropInputV2Config,\n cosConfig,\n coshConfig,\n cropAndResizeConfig,\n cumprodConfig,\n cumsumConfig,\n denseBincountConfig,\n depthToSpaceConfig,\n depthwiseConv2dNativeConfig,\n depthwiseConv2dNativeBackpropFilterConfig,\n depthwiseConv2dNativeBackpropInputConfig,\n diagConfig,\n dilation2DConfig,\n dilation2DBackpropFilterConfig,\n dilation2DBackpropInputConfig,\n einsumConfig,\n eluConfig,\n eluGradConfig2,\n equalConfig,\n erfConfig,\n expConfig,\n expandDimsConfig,\n expm1Config,\n fftConfig,\n fillConfig,\n flipLeftRightConfig,\n floorConfig,\n floorDivConfig,\n fusedConv2DConfig,\n fusedDepthwiseConv2DConfig,\n gatherNdConfig,\n gatherV2Config,\n greaterConfig,\n greaterEqualConfig,\n identityConfig,\n ifftConfig,\n imagConfig,\n isFiniteConfig,\n isInfConfig,\n isNaNConfig,\n leakyReluConfig,\n lessConfig,\n lessEqualConfig,\n linSpaceConfig,\n logConfig,\n log1pConfig,\n logicalAndConfig,\n logicalNotConfig,\n logicalOrConfig,\n LRNConfig,\n LRNGradConfig,\n maxConfig,\n maximumConfig,\n maxPoolConfig,\n maxPool3DConfig,\n maxPool3DGradConfig2,\n maxPoolGradConfig2,\n maxPoolWithArgmaxConfig,\n meanConfig,\n minConfig,\n minimumConfig,\n mirrorPadConfig,\n modConfig,\n multinomialConfig,\n multiplyConfig,\n negConfig,\n nonMaxSuppressionV3Config,\n nonMaxSuppressionV4Config,\n nonMaxSuppressionV5Config,\n notEqualConfig,\n oneHotConfig,\n onesLikeConfig,\n packConfig,\n padV2Config,\n powConfig,\n preluConfig,\n prodConfig,\n raggedTensorToTensorConfig,\n rangeConfig,\n realConfig,\n realDivConfig,\n reciprocalConfig,\n reluConfig,\n relu6Config,\n reshapeConfig,\n resizeBilinearConfig,\n resizeBilinearGradConfig2,\n resizeNearestNeighborConfig,\n resizeNearestNeighborGradConfig2,\n reverseConfig,\n rotateWithOffsetConfig,\n roundConfig,\n rsqrtConfig,\n scatterNdConfig,\n searchSortedConfig,\n selectConfig,\n seluConfig,\n sigmoidConfig,\n signConfig,\n sinConfig,\n sinhConfig,\n sliceConfig,\n softmaxConfig,\n softplusConfig,\n spaceToBatchNDConfig,\n sparseFillEmptyRowsConfig,\n sparseReshapeConfig,\n sparseSegmentMeanConfig,\n sparseSegmentSumConfig,\n sparseToDenseConfig,\n splitVConfig,\n sqrtConfig,\n squareConfig,\n squaredDifferenceConfig,\n stepConfig,\n stridedSliceConfig,\n stringNGramsConfig,\n stringSplitConfig,\n stringToHashBucketFastConfig,\n subConfig,\n sumConfig,\n tanConfig,\n tanhConfig,\n tileConfig,\n topKConfig,\n transformConfig,\n transposeConfig,\n uniqueConfig,\n unpackConfig,\n unsortedSegmentSumConfig,\n zerosLikeConfig\n];\nfor (const kernelConfig of kernelConfigs) {\n registerKernel(kernelConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/webgl_util.js\nvar webgl_util_exports = {};\n__export(webgl_util_exports, {\n assertNotComplex: () => assertNotComplex2,\n bindCanvasToFramebuffer: () => bindCanvasToFramebuffer,\n bindColorTextureToFramebuffer: () => bindColorTextureToFramebuffer,\n bindTextureToProgramUniformSampler: () => bindTextureToProgramUniformSampler,\n bindTextureUnit: () => bindTextureUnit,\n bindVertexBufferToProgramAttribute: () => bindVertexBufferToProgramAttribute,\n callAndCheck: () => callAndCheck,\n canBeRepresented: () => canBeRepresented,\n createFragmentShader: () => createFragmentShader,\n createFramebuffer: () => createFramebuffer,\n createProgram: () => createProgram,\n createStaticIndexBuffer: () => createStaticIndexBuffer,\n createStaticVertexBuffer: () => createStaticVertexBuffer,\n createTexture: () => createTexture,\n createVertexShader: () => createVertexShader,\n getBatchDim: () => getBatchDim,\n getExtensionOrThrow: () => getExtensionOrThrow,\n getFramebufferErrorMessage: () => getFramebufferErrorMessage,\n getMaxTexturesInShader: () => getMaxTexturesInShader,\n getNumChannels: () => getNumChannels,\n getProgramUniformLocation: () => getProgramUniformLocation,\n getProgramUniformLocationOrThrow: () => getProgramUniformLocationOrThrow,\n getRowsCols: () => getRowsCols,\n getShapeAs3D: () => getShapeAs3D,\n getTextureShapeFromLogicalShape: () => getTextureShapeFromLogicalShape,\n getWebGLDisjointQueryTimerVersion: () => getWebGLDisjointQueryTimerVersion,\n getWebGLErrorMessage: () => getWebGLErrorMessage,\n getWebGLMaxTextureSize: () => getWebGLMaxTextureSize,\n hasExtension: () => hasExtension,\n isCapableOfRenderingToFloatTexture: () => isCapableOfRenderingToFloatTexture,\n isDownloadFloatTextureEnabled: () => isDownloadFloatTextureEnabled,\n isReshapeFree: () => isReshapeFree,\n isWebGLFenceEnabled: () => isWebGLFenceEnabled,\n isWebGLVersionEnabled: () => isWebGLVersionEnabled,\n linkProgram: () => linkProgram,\n logShaderSourceAndInfoLog: () => logShaderSourceAndInfoLog,\n resetMaxTextureSize: () => resetMaxTextureSize,\n resetMaxTexturesInShader: () => resetMaxTexturesInShader,\n unbindColorTextureFromFramebuffer: () => unbindColorTextureFromFramebuffer,\n unbindTextureUnit: () => unbindTextureUnit,\n validateFramebuffer: () => validateFramebuffer,\n validateProgram: () => validateProgram,\n validateTextureSize: () => validateTextureSize\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/canvas_util.js\nvar contexts = {};\nvar WEBGL_ATTRIBUTES = {\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: true\n};\nfunction setWebGLContext(webGLVersion, gl) {\n contexts[webGLVersion] = gl;\n}\nfunction getWebGLContext(webGLVersion, customCanvas) {\n if (!(webGLVersion in contexts) || customCanvas != null) {\n const newCtx = getWebGLRenderingContext(webGLVersion, customCanvas);\n if (newCtx !== null) {\n contexts[webGLVersion] = newCtx;\n } else {\n console.log(\"Could not get context for WebGL version\", webGLVersion);\n return null;\n }\n }\n const gl = contexts[webGLVersion];\n if (gl == null || gl.isContextLost()) {\n delete contexts[webGLVersion];\n return getWebGLContext(webGLVersion);\n }\n gl.disable(gl.DEPTH_TEST);\n gl.disable(gl.STENCIL_TEST);\n gl.disable(gl.BLEND);\n gl.disable(gl.DITHER);\n gl.disable(gl.POLYGON_OFFSET_FILL);\n gl.disable(gl.SAMPLE_COVERAGE);\n gl.enable(gl.SCISSOR_TEST);\n gl.enable(gl.CULL_FACE);\n gl.cullFace(gl.BACK);\n return contexts[webGLVersion];\n}\nfunction createCanvas(webGLVersion) {\n if (typeof OffscreenCanvas !== \"undefined\" && webGLVersion === 2) {\n return new OffscreenCanvas(300, 150);\n } else if (typeof document !== \"undefined\") {\n return document.createElement(\"canvas\");\n } else {\n throw new Error(\"Cannot create a canvas in this context\");\n }\n}\nfunction getWebGLRenderingContext(webGLVersion, customCanvas) {\n if (webGLVersion !== 1 && webGLVersion !== 2) {\n throw new Error(\"Cannot get WebGL rendering context, WebGL is disabled.\");\n }\n const canvas = customCanvas == null ? createCanvas(webGLVersion) : customCanvas;\n canvas.addEventListener(\"webglcontextlost\", (ev) => {\n ev.preventDefault();\n delete contexts[webGLVersion];\n }, false);\n if (env().getBool(\"SOFTWARE_WEBGL_ENABLED\")) {\n WEBGL_ATTRIBUTES.failIfMajorPerformanceCaveat = false;\n }\n if (webGLVersion === 1) {\n return canvas.getContext(\"webgl\", WEBGL_ATTRIBUTES) || canvas.getContext(\"experimental-webgl\", WEBGL_ATTRIBUTES);\n }\n return canvas.getContext(\"webgl2\", WEBGL_ATTRIBUTES);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/tex_util.js\nvar PackingScheme;\n(function(PackingScheme2) {\n PackingScheme2[PackingScheme2[\"DENSE\"] = 0] = \"DENSE\";\n PackingScheme2[PackingScheme2[\"SHARED_BATCH\"] = 1] = \"SHARED_BATCH\";\n})(PackingScheme || (PackingScheme = {}));\nvar TextureUsage;\n(function(TextureUsage2) {\n TextureUsage2[TextureUsage2[\"RENDER\"] = 0] = \"RENDER\";\n TextureUsage2[TextureUsage2[\"UPLOAD\"] = 1] = \"UPLOAD\";\n TextureUsage2[TextureUsage2[\"PIXELS\"] = 2] = \"PIXELS\";\n TextureUsage2[TextureUsage2[\"DOWNLOAD\"] = 3] = \"DOWNLOAD\";\n})(TextureUsage || (TextureUsage = {}));\nvar PhysicalTextureType;\n(function(PhysicalTextureType2) {\n PhysicalTextureType2[PhysicalTextureType2[\"UNPACKED_FLOAT16\"] = 0] = \"UNPACKED_FLOAT16\";\n PhysicalTextureType2[PhysicalTextureType2[\"UNPACKED_FLOAT32\"] = 1] = \"UNPACKED_FLOAT32\";\n PhysicalTextureType2[PhysicalTextureType2[\"PACKED_4X1_UNSIGNED_BYTE\"] = 2] = \"PACKED_4X1_UNSIGNED_BYTE\";\n PhysicalTextureType2[PhysicalTextureType2[\"PACKED_2X2_FLOAT32\"] = 3] = \"PACKED_2X2_FLOAT32\";\n PhysicalTextureType2[PhysicalTextureType2[\"PACKED_2X2_FLOAT16\"] = 4] = \"PACKED_2X2_FLOAT16\";\n})(PhysicalTextureType || (PhysicalTextureType = {}));\nfunction getUnpackedMatrixTextureShapeWidthHeight(rows, columns) {\n return [columns, rows];\n}\nfunction getUnpackedArraySizeFromMatrixSize(matrixSize, channelsPerTexture) {\n return matrixSize * channelsPerTexture;\n}\nfunction getDenseTexShape(shape) {\n const size = util_exports.sizeFromShape(shape);\n const texelsNeeded = Math.ceil(size / 4);\n return util_exports.sizeToSquarishShape(texelsNeeded);\n}\nfunction getPackedMatrixTextureShapeWidthHeight(rows, columns) {\n return [\n Math.max(1, Math.ceil(columns / 2)),\n Math.max(1, Math.ceil(rows / 2))\n ];\n}\nfunction getPackedRGBAArraySizeFromMatrixShape(rows, columns) {\n const [w, h] = getPackedMatrixTextureShapeWidthHeight(rows, columns);\n return w * h * 4;\n}\nfunction getTextureConfig(gl, textureHalfFloatExtension) {\n const glany = gl;\n let internalFormatFloat;\n let internalFormatHalfFloat;\n let internalFormatPackedHalfFloat;\n let internalFormatPackedFloat;\n let textureFormatFloat;\n let downloadTextureFormat;\n let downloadUnpackNumChannels;\n let defaultNumChannels;\n let textureTypeHalfFloat;\n let textureTypeFloat;\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n internalFormatFloat = glany.R32F;\n internalFormatHalfFloat = glany.R16F;\n internalFormatPackedHalfFloat = glany.RGBA16F;\n internalFormatPackedFloat = glany.RGBA32F;\n textureFormatFloat = glany.RED;\n downloadUnpackNumChannels = 4;\n defaultNumChannels = 1;\n textureTypeHalfFloat = glany.HALF_FLOAT;\n textureTypeFloat = glany.FLOAT;\n downloadTextureFormat = glany.RGBA8;\n } else {\n internalFormatFloat = gl.RGBA;\n internalFormatHalfFloat = gl.RGBA;\n internalFormatPackedHalfFloat = gl.RGBA;\n internalFormatPackedFloat = glany.RGBA;\n textureFormatFloat = gl.RGBA;\n downloadUnpackNumChannels = 4;\n defaultNumChannels = 4;\n textureTypeHalfFloat = textureHalfFloatExtension != null ? textureHalfFloatExtension.HALF_FLOAT_OES : null;\n textureTypeFloat = gl.FLOAT;\n downloadTextureFormat = gl.RGBA;\n }\n return {\n internalFormatFloat,\n internalFormatHalfFloat,\n internalFormatPackedHalfFloat,\n internalFormatPackedFloat,\n textureFormatFloat,\n downloadTextureFormat,\n downloadUnpackNumChannels,\n defaultNumChannels,\n textureTypeHalfFloat,\n textureTypeFloat\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/webgl_util.js\nfunction callAndCheck(gl, func2) {\n const returnValue = func2();\n if (env().getBool(\"DEBUG\")) {\n checkWebGLError(gl);\n }\n return returnValue;\n}\nfunction checkWebGLError(gl) {\n const error = gl.getError();\n if (error !== gl.NO_ERROR) {\n throw new Error(\"WebGL Error: \" + getWebGLErrorMessage(gl, error));\n }\n}\nvar MIN_FLOAT16 = 596e-10;\nvar MAX_FLOAT16 = 65504;\nfunction canBeRepresented(num) {\n if (env().getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\") || num === 0 || MIN_FLOAT16 < Math.abs(num) && Math.abs(num) < MAX_FLOAT16) {\n return true;\n }\n return false;\n}\nfunction getWebGLErrorMessage(gl, status) {\n switch (status) {\n case gl.NO_ERROR:\n return \"NO_ERROR\";\n case gl.INVALID_ENUM:\n return \"INVALID_ENUM\";\n case gl.INVALID_VALUE:\n return \"INVALID_VALUE\";\n case gl.INVALID_OPERATION:\n return \"INVALID_OPERATION\";\n case gl.INVALID_FRAMEBUFFER_OPERATION:\n return \"INVALID_FRAMEBUFFER_OPERATION\";\n case gl.OUT_OF_MEMORY:\n return \"OUT_OF_MEMORY\";\n case gl.CONTEXT_LOST_WEBGL:\n return \"CONTEXT_LOST_WEBGL\";\n default:\n return `Unknown error code ${status}`;\n }\n}\nfunction getExtensionOrThrow(gl, extensionName) {\n return throwIfNull(gl, () => gl.getExtension(extensionName), 'Extension \"' + extensionName + '\" not supported on this browser.');\n}\nfunction createVertexShader(gl, vertexShaderSource) {\n const vertexShader = throwIfNull(gl, () => gl.createShader(gl.VERTEX_SHADER), \"Unable to create vertex WebGLShader.\");\n callAndCheck(gl, () => gl.shaderSource(vertexShader, vertexShaderSource));\n callAndCheck(gl, () => gl.compileShader(vertexShader));\n if (gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS) === false) {\n console.log(gl.getShaderInfoLog(vertexShader));\n throw new Error(\"Failed to compile vertex shader.\");\n }\n return vertexShader;\n}\nfunction createFragmentShader(gl, fragmentShaderSource) {\n const fragmentShader = throwIfNull(gl, () => gl.createShader(gl.FRAGMENT_SHADER), \"Unable to create fragment WebGLShader.\");\n callAndCheck(gl, () => gl.shaderSource(fragmentShader, fragmentShaderSource));\n callAndCheck(gl, () => gl.compileShader(fragmentShader));\n if (env().get(\"ENGINE_COMPILE_ONLY\")) {\n return fragmentShader;\n }\n if (gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS) === false) {\n logShaderSourceAndInfoLog(fragmentShaderSource, gl.getShaderInfoLog(fragmentShader));\n throw new Error(\"Failed to compile fragment shader.\");\n }\n return fragmentShader;\n}\nvar lineNumberRegex = /ERROR: [0-9]+:([0-9]+):/g;\nfunction logShaderSourceAndInfoLog(shaderSource, shaderInfoLog) {\n const lineNumberRegexResult = lineNumberRegex.exec(shaderInfoLog);\n if (lineNumberRegexResult == null) {\n console.log(`Couldn't parse line number in error: ${shaderInfoLog}`);\n console.log(shaderSource);\n return;\n }\n const lineNumber = +lineNumberRegexResult[1];\n const shaderLines = shaderSource.split(\"\\n\");\n const pad3 = shaderLines.length.toString().length + 2;\n const linesWithLineNumbers = shaderLines.map((line, lineNumber2) => util_exports.rightPad((lineNumber2 + 1).toString(), pad3) + line);\n let maxLineLength = 0;\n for (let i2 = 0; i2 < linesWithLineNumbers.length; i2++) {\n maxLineLength = Math.max(linesWithLineNumbers[i2].length, maxLineLength);\n }\n const beforeErrorLines = linesWithLineNumbers.slice(0, lineNumber - 1);\n const errorLine = linesWithLineNumbers.slice(lineNumber - 1, lineNumber);\n const afterErrorLines = linesWithLineNumbers.slice(lineNumber);\n console.log(beforeErrorLines.join(\"\\n\"));\n console.log(shaderInfoLog.split(\"\\n\")[0]);\n console.log(`%c ${util_exports.rightPad(errorLine[0], maxLineLength)}`, \"border:1px solid red; background-color:#e3d2d2; color:#a61717\");\n console.log(afterErrorLines.join(\"\\n\"));\n}\nfunction createProgram(gl) {\n return throwIfNull(gl, () => gl.createProgram(), \"Unable to create WebGLProgram.\");\n}\nfunction linkProgram(gl, program) {\n callAndCheck(gl, () => gl.linkProgram(program));\n if (env().get(\"ENGINE_COMPILE_ONLY\")) {\n return;\n }\n if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) {\n console.log(gl.getProgramInfoLog(program));\n throw new Error(\"Failed to link vertex and fragment shaders.\");\n }\n}\nfunction validateProgram(gl, program) {\n callAndCheck(gl, () => gl.validateProgram(program));\n if (gl.getProgramParameter(program, gl.VALIDATE_STATUS) === false) {\n console.log(gl.getProgramInfoLog(program));\n throw new Error(\"Shader program validation failed.\");\n }\n}\nfunction createStaticVertexBuffer(gl, data) {\n const buffer2 = throwIfNull(gl, () => gl.createBuffer(), \"Unable to create WebGLBuffer\");\n callAndCheck(gl, () => gl.bindBuffer(gl.ARRAY_BUFFER, buffer2));\n callAndCheck(gl, () => gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW));\n return buffer2;\n}\nfunction createStaticIndexBuffer(gl, data) {\n const buffer2 = throwIfNull(gl, () => gl.createBuffer(), \"Unable to create WebGLBuffer\");\n callAndCheck(gl, () => gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffer2));\n callAndCheck(gl, () => gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, data, gl.STATIC_DRAW));\n return buffer2;\n}\nfunction getNumChannels() {\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n return 1;\n }\n return 4;\n}\nfunction createTexture(gl) {\n return throwIfNull(gl, () => gl.createTexture(), \"Unable to create WebGLTexture.\");\n}\nfunction validateTextureSize(width, height) {\n const maxTextureSize = env().getNumber(\"WEBGL_MAX_TEXTURE_SIZE\");\n if (width <= 0 || height <= 0) {\n const requested = `[${width}x${height}]`;\n throw new Error(\"Requested texture size \" + requested + \" is invalid.\");\n }\n if (width > maxTextureSize || height > maxTextureSize) {\n const requested = `[${width}x${height}]`;\n const max7 = `[${maxTextureSize}x${maxTextureSize}]`;\n throw new Error(\"Requested texture size \" + requested + \" greater than WebGL maximum on this browser / GPU \" + max7 + \".\");\n }\n}\nfunction createFramebuffer(gl) {\n return throwIfNull(gl, () => gl.createFramebuffer(), \"Unable to create WebGLFramebuffer.\");\n}\nfunction bindVertexBufferToProgramAttribute(gl, program, attribute, buffer2, arrayEntriesPerItem, itemStrideInBytes, itemOffsetInBytes) {\n const loc = gl.getAttribLocation(program, attribute);\n if (loc === -1) {\n return false;\n }\n callAndCheck(gl, () => gl.bindBuffer(gl.ARRAY_BUFFER, buffer2));\n callAndCheck(gl, () => gl.vertexAttribPointer(loc, arrayEntriesPerItem, gl.FLOAT, false, itemStrideInBytes, itemOffsetInBytes));\n callAndCheck(gl, () => gl.enableVertexAttribArray(loc));\n return true;\n}\nfunction bindTextureUnit(gl, texture, textureUnit) {\n validateTextureUnit(gl, textureUnit);\n callAndCheck(gl, () => gl.activeTexture(gl.TEXTURE0 + textureUnit));\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, texture));\n}\nfunction unbindTextureUnit(gl, textureUnit) {\n validateTextureUnit(gl, textureUnit);\n callAndCheck(gl, () => gl.activeTexture(gl.TEXTURE0 + textureUnit));\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, null));\n}\nfunction getProgramUniformLocationOrThrow(gl, program, uniformName) {\n return throwIfNull(gl, () => gl.getUniformLocation(program, uniformName), 'uniform \"' + uniformName + '\" not present in program.');\n}\nfunction getProgramUniformLocation(gl, program, uniformName) {\n return gl.getUniformLocation(program, uniformName);\n}\nfunction bindTextureToProgramUniformSampler(gl, texture, uniformSamplerLocation, textureUnit) {\n callAndCheck(gl, () => bindTextureUnit(gl, texture, textureUnit));\n callAndCheck(gl, () => gl.uniform1i(uniformSamplerLocation, textureUnit));\n}\nfunction bindCanvasToFramebuffer(gl) {\n callAndCheck(gl, () => gl.bindFramebuffer(gl.FRAMEBUFFER, null));\n callAndCheck(gl, () => gl.viewport(0, 0, gl.canvas.width, gl.canvas.height));\n callAndCheck(gl, () => gl.scissor(0, 0, gl.canvas.width, gl.canvas.height));\n}\nfunction bindColorTextureToFramebuffer(gl, texture, framebuffer) {\n callAndCheck(gl, () => gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer));\n callAndCheck(gl, () => gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0));\n}\nfunction unbindColorTextureFromFramebuffer(gl, framebuffer) {\n callAndCheck(gl, () => gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer));\n callAndCheck(gl, () => gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, null, 0));\n}\nfunction validateFramebuffer(gl) {\n const status = gl.checkFramebufferStatus(gl.FRAMEBUFFER);\n if (status !== gl.FRAMEBUFFER_COMPLETE) {\n throw new Error(\"Error binding framebuffer: \" + getFramebufferErrorMessage(gl, status));\n }\n}\nfunction getFramebufferErrorMessage(gl, status) {\n switch (status) {\n case gl.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:\n return \"FRAMEBUFFER_INCOMPLETE_ATTACHMENT\";\n case gl.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:\n return \"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT\";\n case gl.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:\n return \"FRAMEBUFFER_INCOMPLETE_DIMENSIONS\";\n case gl.FRAMEBUFFER_UNSUPPORTED:\n return \"FRAMEBUFFER_UNSUPPORTED\";\n default:\n return `unknown error ${status}`;\n }\n}\nfunction throwIfNull(gl, returnTOrNull, failureMessage) {\n const tOrNull = callAndCheck(gl, () => returnTOrNull());\n if (tOrNull == null) {\n throw new Error(failureMessage);\n }\n return tOrNull;\n}\nfunction validateTextureUnit(gl, textureUnit) {\n const maxTextureUnit = gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1;\n const glTextureUnit = textureUnit + gl.TEXTURE0;\n if (glTextureUnit < gl.TEXTURE0 || glTextureUnit > maxTextureUnit) {\n const textureUnitRange = `[gl.TEXTURE0, gl.TEXTURE${maxTextureUnit}]`;\n throw new Error(`textureUnit must be in ${textureUnitRange}.`);\n }\n}\nfunction getBatchDim(shape, dimsToSkip = 2) {\n return util_exports.sizeFromShape(shape.slice(0, shape.length - dimsToSkip));\n}\nfunction getRowsCols(shape) {\n if (shape.length === 0) {\n throw Error(\"Cannot get rows and columns of an empty shape array.\");\n }\n return [\n shape.length > 1 ? shape[shape.length - 2] : 1,\n shape[shape.length - 1]\n ];\n}\nfunction getShapeAs3D(shape) {\n let shapeAs3D = [1, 1, 1];\n const isScalar = shape.length === 0 || shape.length === 1 && shape[0] === 1;\n if (!isScalar) {\n shapeAs3D = [getBatchDim(shape), ...getRowsCols(shape)];\n }\n return shapeAs3D;\n}\nfunction getTextureShapeFromLogicalShape(logShape, isPacked = false) {\n let maxTexSize = env().getNumber(\"WEBGL_MAX_TEXTURE_SIZE\");\n if (isPacked) {\n maxTexSize = maxTexSize * 2;\n logShape = logShape.map((d, i2) => i2 >= logShape.length - 2 ? util_exports.nearestLargerEven(logShape[i2]) : logShape[i2]);\n if (logShape.length === 1) {\n logShape = [2, logShape[0]];\n }\n }\n if (logShape.length !== 2) {\n const squeezeResult = util_exports.squeezeShape(logShape);\n logShape = squeezeResult.newShape;\n }\n let size = util_exports.sizeFromShape(logShape);\n if (logShape.length <= 1 && size <= maxTexSize) {\n return [1, size];\n } else if (logShape.length === 2 && logShape[0] <= maxTexSize && logShape[1] <= maxTexSize) {\n return logShape;\n } else if (logShape.length === 3 && logShape[0] * logShape[1] <= maxTexSize && logShape[2] <= maxTexSize) {\n return [logShape[0] * logShape[1], logShape[2]];\n } else if (logShape.length === 3 && logShape[0] <= maxTexSize && logShape[1] * logShape[2] <= maxTexSize) {\n return [logShape[0], logShape[1] * logShape[2]];\n } else if (logShape.length === 4 && logShape[0] * logShape[1] * logShape[2] <= maxTexSize && logShape[3] <= maxTexSize) {\n return [logShape[0] * logShape[1] * logShape[2], logShape[3]];\n } else if (logShape.length === 4 && logShape[0] <= maxTexSize && logShape[1] * logShape[2] * logShape[3] <= maxTexSize) {\n return [logShape[0], logShape[1] * logShape[2] * logShape[3]];\n } else {\n if (isPacked) {\n const batchDim = getBatchDim(logShape);\n let rows = 2, cols = 2;\n if (logShape.length) {\n [rows, cols] = getRowsCols(logShape);\n }\n size = batchDim * (rows / 2) * (cols / 2);\n return util_exports.sizeToSquarishShape(size).map((d) => d * 2);\n }\n return util_exports.sizeToSquarishShape(size);\n }\n}\nfunction isEven(n2) {\n return n2 % 2 === 0;\n}\nfunction isReshapeFree(shape1, shape2) {\n shape1 = shape1.slice(-2);\n shape2 = shape2.slice(-2);\n if (util_exports.arraysEqual(shape1, shape2)) {\n return true;\n }\n if (!shape1.length || !shape2.length) {\n return true;\n }\n if (shape1[0] === 0 || shape1[1] === 0 || shape2[0] === 0 || shape2[1] === 0) {\n return true;\n }\n if (shape1.length !== shape2.length) {\n const shape1Cols = shape1.slice(-1)[0];\n const shape2Cols = shape2.slice(-1)[0];\n if (shape1Cols === shape2Cols) {\n return true;\n }\n if (isEven(shape1Cols) && isEven(shape2Cols) && (shape1[0] === 1 || shape2[0] === 1)) {\n return true;\n }\n }\n return shape1[1] === shape2[1] && isEven(shape1[0]) && isEven(shape2[0]);\n}\nvar MAX_TEXTURE_SIZE;\nvar MAX_TEXTURES_IN_SHADER;\nfunction getWebGLMaxTextureSize(webGLVersion) {\n if (MAX_TEXTURE_SIZE == null) {\n const gl = getWebGLContext(webGLVersion);\n MAX_TEXTURE_SIZE = gl.getParameter(gl.MAX_TEXTURE_SIZE);\n }\n return MAX_TEXTURE_SIZE;\n}\nfunction resetMaxTextureSize() {\n MAX_TEXTURE_SIZE = null;\n}\nfunction resetMaxTexturesInShader() {\n MAX_TEXTURES_IN_SHADER = null;\n}\nfunction getMaxTexturesInShader(webGLVersion) {\n if (MAX_TEXTURES_IN_SHADER == null) {\n const gl = getWebGLContext(webGLVersion);\n MAX_TEXTURES_IN_SHADER = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS);\n }\n return Math.min(16, MAX_TEXTURES_IN_SHADER);\n}\nfunction getWebGLDisjointQueryTimerVersion(webGLVersion) {\n if (webGLVersion === 0) {\n return 0;\n }\n let queryTimerVersion;\n const gl = getWebGLContext(webGLVersion);\n if (hasExtension(gl, \"EXT_disjoint_timer_query_webgl2\") && webGLVersion === 2) {\n queryTimerVersion = 2;\n } else if (hasExtension(gl, \"EXT_disjoint_timer_query\")) {\n queryTimerVersion = 1;\n } else {\n queryTimerVersion = 0;\n }\n return queryTimerVersion;\n}\nfunction hasExtension(gl, extensionName) {\n const ext = gl.getExtension(extensionName);\n return ext != null;\n}\nfunction isWebGLVersionEnabled(webGLVersion) {\n try {\n const gl = getWebGLContext(webGLVersion);\n if (gl != null) {\n return true;\n }\n } catch (e2) {\n console.log(\"Error when getting WebGL context: \", e2);\n return false;\n }\n return false;\n}\nfunction isCapableOfRenderingToFloatTexture(webGLVersion) {\n if (webGLVersion === 0) {\n return false;\n }\n const gl = getWebGLContext(webGLVersion);\n if (webGLVersion === 1) {\n if (!hasExtension(gl, \"OES_texture_float\")) {\n return false;\n }\n } else {\n if (!hasExtension(gl, \"EXT_color_buffer_float\")) {\n return false;\n }\n }\n const isFrameBufferComplete = createFloatTextureAndBindToFramebuffer(gl);\n return isFrameBufferComplete;\n}\nfunction isDownloadFloatTextureEnabled(webGLVersion) {\n if (webGLVersion === 0) {\n return false;\n }\n const gl = getWebGLContext(webGLVersion);\n if (webGLVersion === 1) {\n if (!hasExtension(gl, \"OES_texture_float\")) {\n return false;\n }\n if (!hasExtension(gl, \"WEBGL_color_buffer_float\")) {\n return false;\n }\n } else {\n if (hasExtension(gl, \"EXT_color_buffer_float\")) {\n return createFloatTextureAndBindToFramebuffer(gl);\n }\n const COLOR_BUFFER_HALF_FLOAT = \"EXT_color_buffer_half_float\";\n if (hasExtension(gl, COLOR_BUFFER_HALF_FLOAT)) {\n const textureHalfFloatExtension = gl.getExtension(COLOR_BUFFER_HALF_FLOAT);\n return createHalfFloatTextureAndBindToFramebuffer(gl, textureHalfFloatExtension);\n }\n return false;\n }\n const isFrameBufferComplete = createFloatTextureAndBindToFramebuffer(gl);\n return isFrameBufferComplete;\n}\nfunction createFloatTextureAndBindToFramebuffer(gl) {\n const texConfig = getTextureConfig(gl);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n const width = 1;\n const height = 1;\n gl.texImage2D(gl.TEXTURE_2D, 0, texConfig.internalFormatFloat, width, height, 0, texConfig.textureFormatFloat, texConfig.textureTypeFloat, null);\n const frameBuffer = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, frameBuffer);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n const isFrameBufferComplete = gl.checkFramebufferStatus(gl.FRAMEBUFFER) === gl.FRAMEBUFFER_COMPLETE;\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n gl.deleteTexture(texture);\n gl.deleteFramebuffer(frameBuffer);\n return isFrameBufferComplete;\n}\nfunction createHalfFloatTextureAndBindToFramebuffer(gl, textureHalfFloatExtension) {\n const texConfig = getTextureConfig(gl, textureHalfFloatExtension);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n const width = 1;\n const height = 1;\n gl.texImage2D(gl.TEXTURE_2D, 0, texConfig.internalFormatHalfFloat, width, height, 0, texConfig.textureFormatFloat, texConfig.textureTypeHalfFloat, null);\n const frameBuffer = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, frameBuffer);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n const isFrameBufferComplete = gl.checkFramebufferStatus(gl.FRAMEBUFFER) === gl.FRAMEBUFFER_COMPLETE;\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n gl.deleteTexture(texture);\n gl.deleteFramebuffer(frameBuffer);\n return isFrameBufferComplete;\n}\nfunction isWebGLFenceEnabled(webGLVersion) {\n if (webGLVersion !== 2) {\n return false;\n }\n const gl = getWebGLContext(webGLVersion);\n const isEnabled = gl.fenceSync != null;\n return isEnabled;\n}\nfunction assertNotComplex2(tensor2, opName) {\n if (!Array.isArray(tensor2)) {\n tensor2 = [tensor2];\n }\n tensor2.forEach((t2) => {\n if (t2 != null) {\n util_exports.assert(t2.dtype !== \"complex64\", () => `${opName} does not support complex64 tensors in the WebGL backend.`);\n }\n });\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/flags_webgl.js\nvar ENV5 = env();\nENV5.registerFlag(\"HAS_WEBGL\", () => ENV5.getNumber(\"WEBGL_VERSION\") > 0);\nENV5.registerFlag(\"WEBGL_VERSION\", () => {\n if (isWebGLVersionEnabled(2)) {\n return 2;\n } else if (isWebGLVersionEnabled(1)) {\n return 1;\n }\n return 0;\n});\nENV5.registerFlag(\"WEBGL_CHECK_NUMERICAL_PROBLEMS\", () => false);\nENV5.registerFlag(\"WEBGL_BUFFER_SUPPORTED\", () => ENV5.get(\"WEBGL_VERSION\") === 2);\nENV5.registerFlag(\"WEBGL_CPU_FORWARD\", () => true);\nENV5.registerFlag(\"WEBGL_FORCE_F16_TEXTURES\", () => false);\nENV5.registerFlag(\"WEBGL_PACK\", () => ENV5.getBool(\"HAS_WEBGL\"));\nENV5.registerFlag(\"WEBGL_PACK_NORMALIZATION\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_CLIP\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_DEPTHWISECONV\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_BINARY_OPERATIONS\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_UNARY_OPERATIONS\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_ARRAY_OPERATIONS\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_IMAGE_OPERATIONS\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_REDUCE\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_LAZILY_UNPACK\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_CONV_IM2COL\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_MAX_TEXTURE_SIZE\", () => getWebGLMaxTextureSize(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_MAX_TEXTURES_IN_SHADER\", () => getMaxTexturesInShader(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\", () => {\n const webGLVersion = ENV5.getNumber(\"WEBGL_VERSION\");\n if (webGLVersion === 0) {\n return 0;\n }\n return getWebGLDisjointQueryTimerVersion(webGLVersion);\n});\nENV5.registerFlag(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\", () => ENV5.getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") > 0 && !device_util_exports.isMobile());\nENV5.registerFlag(\"WEBGL_RENDER_FLOAT32_CAPABLE\", () => isCapableOfRenderingToFloatTexture(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_RENDER_FLOAT32_ENABLED\", () => {\n return ENV5.getBool(\"WEBGL_FORCE_F16_TEXTURES\") ? false : ENV5.getBool(\"WEBGL_RENDER_FLOAT32_CAPABLE\");\n});\nENV5.registerFlag(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\", () => isDownloadFloatTextureEnabled(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_FENCE_API_ENABLED\", () => isWebGLFenceEnabled(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_SIZE_UPLOAD_UNIFORM\", () => {\n const useUniforms = ENV5.getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\");\n return useUniforms ? 4 : 0;\n});\nENV5.registerFlag(\"WEBGL_DELETE_TEXTURE_THRESHOLD\", () => {\n return -1;\n}, (threshold3) => {\n if (threshold3 < 0 && threshold3 !== -1) {\n throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${threshold3}.`);\n }\n});\nENV5.registerFlag(\"WEBGL_FLUSH_THRESHOLD\", () => {\n return device_util_exports.isMobile() ? 1 : -1;\n}, (threshold3) => {\n if (threshold3 < 0 && threshold3 !== -1) {\n throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${threshold3}.`);\n }\n});\nENV5.registerFlag(\"CPU_HANDOFF_SIZE_THRESHOLD\", () => 128);\nENV5.registerFlag(\"WEBGL_USE_SHAPES_UNIFORMS\", () => false);\nENV5.registerFlag(\"TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD\", () => 1e5);\nENV5.registerFlag(\"TOPK_K_CPU_HANDOFF_THRESHOLD\", () => 128);\nENV5.registerFlag(\"WEBGL_EXP_CONV\", () => false);\nENV5.registerFlag(\"SOFTWARE_WEBGL_ENABLED\", () => ENV5.getBool(\"IS_TEST\"));\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/glsl_version.js\nfunction getGlslDifferences() {\n let version9;\n let attribute;\n let varyingVs;\n let varyingFs;\n let texture2D;\n let output;\n let defineOutput;\n let defineSpecialNaN;\n let defineSpecialInf;\n let defineRound;\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n version9 = \"#version 300 es\";\n attribute = \"in\";\n varyingVs = \"out\";\n varyingFs = \"in\";\n texture2D = \"texture\";\n output = \"outputColor\";\n defineOutput = \"out vec4 outputColor;\";\n defineSpecialNaN = `\n bool isnan_custom(float val) {\n uint floatToUint = floatBitsToUint(val);\n return (floatToUint & 0x7fffffffu) > 0x7f800000u;\n }\n\n bvec4 isnan_custom(vec4 val) {\n return bvec4(isnan_custom(val.x),\n isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));\n }\n\n #define isnan(value) isnan_custom(value)\n `;\n defineSpecialInf = ``;\n defineRound = `\n #define round(value) newRound(value)\n int newRound(float value) {\n return int(floor(value + 0.5));\n }\n\n ivec4 newRound(vec4 value) {\n return ivec4(floor(value + vec4(0.5)));\n }\n `;\n } else {\n version9 = \"\";\n attribute = \"attribute\";\n varyingVs = \"varying\";\n varyingFs = \"varying\";\n texture2D = \"texture2D\";\n output = \"gl_FragColor\";\n defineOutput = \"\";\n defineSpecialNaN = `\n #define isnan(value) isnan_custom(value)\n bool isnan_custom(float val) {\n return (val > 0. || val < 1. || val == 0.) ? false : true;\n }\n bvec4 isnan_custom(vec4 val) {\n return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));\n }\n `;\n defineSpecialInf = `\n uniform float INFINITY;\n\n bool isinf(float val) {\n return abs(val) == INFINITY;\n }\n bvec4 isinf(vec4 val) {\n return equal(abs(val), vec4(INFINITY));\n }\n `;\n defineRound = `\n int round(float value) {\n return int(floor(value + 0.5));\n }\n\n ivec4 round(vec4 value) {\n return ivec4(floor(value + vec4(0.5)));\n }\n `;\n }\n return {\n version: version9,\n attribute,\n varyingVs,\n varyingFs,\n texture2D,\n output,\n defineOutput,\n defineSpecialNaN,\n defineSpecialInf,\n defineRound\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/shader_compiler_util.js\nfunction getLogicalCoordinatesFromFlatIndex(coords3, shape, index = \"index\") {\n const strides = util_exports.computeStrides(shape);\n return strides.map((stride, i2) => {\n const line1 = `int ${coords3[i2]} = ${index} / ${stride}`;\n const line2 = i2 === strides.length - 1 ? `int ${coords3[i2 + 1]} = ${index} - ${coords3[i2]} * ${stride}` : `index -= ${coords3[i2]} * ${stride}`;\n return `${line1}; ${line2};`;\n }).join(\"\");\n}\nfunction getOutputLogicalCoordinatesFromFlatIndexByUniform(coords3, shape, index = \"index\") {\n const strides = util_exports.computeStrides(shape);\n return strides.map((_, i2) => {\n const line1 = `int ${coords3[i2]} = ${index} / outShapeStrides[${i2}]`;\n const line2 = i2 === strides.length - 1 ? `int ${coords3[i2 + 1]} = ${index} - ${coords3[i2]} * outShapeStrides[${i2}]` : `index -= ${coords3[i2]} * outShapeStrides[${i2}]`;\n return `${line1}; ${line2};`;\n }).join(\"\");\n}\nfunction symbolicallyComputeStrides(indicesArr, variableName) {\n const numCoords = indicesArr.length;\n const shape = indicesArr.map((d) => `${variableName}[${d}]`);\n const strides = new Array(numCoords - 1);\n strides[numCoords - 2] = shape[numCoords - 1];\n for (let i2 = numCoords - 3; i2 >= 0; --i2) {\n strides[i2] = `(${strides[i2 + 1]} * ${shape[i2 + 1]})`;\n }\n return strides;\n}\nfunction getLogicalCoordinatesFromFlatIndexByUniform(coords3, variableName, index = \"index\") {\n const indicesArray = coords3.map((_, i2) => i2);\n const strides = symbolicallyComputeStrides(indicesArray, variableName);\n return strides.map((_, i2) => {\n const line1 = `int ${coords3[i2]} = ${index} / ${strides[i2]}`;\n const line2 = i2 === strides.length - 1 ? `int ${coords3[i2 + 1]} = ${index} - ${coords3[i2]} * ${strides[i2]}` : `index -= ${coords3[i2]} * ${strides[i2]}`;\n return `${line1}; ${line2};`;\n }).join(\"\");\n}\nfunction getFlatIndexFrom3D(shape) {\n const strides = util_exports.computeStrides(shape).map((d) => d.toString());\n return `\n int getFlatIndex(ivec3 coords) {\n return coords.x * ${strides[0]} + coords.y * ${strides[1]} + coords.z;\n }\n`;\n}\nfunction getFlatIndexFrom3DOutput() {\n return `\n int getFlatIndex(ivec3 coords) {\n return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;\n }\n`;\n}\nvar ENCODE_FLOAT_SNIPPET = `\n const float FLOAT_MAX = 1.70141184e38;\n const float FLOAT_MIN = 1.17549435e-38;\n\n lowp vec4 encode_float(highp float v) {\n if (isnan(v)) {\n return vec4(255, 255, 255, 255);\n }\n\n highp float av = abs(v);\n\n if(av < FLOAT_MIN) {\n return vec4(0.0, 0.0, 0.0, 0.0);\n } else if(v > FLOAT_MAX) {\n return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;\n } else if(v < -FLOAT_MAX) {\n return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;\n }\n\n highp vec4 c = vec4(0,0,0,0);\n\n highp float e = floor(log2(av));\n highp float m = exp2(fract(log2(av))) - 1.0;\n\n c[2] = floor(128.0 * m);\n m -= c[2] / 128.0;\n c[1] = floor(32768.0 * m);\n m -= c[1] / 32768.0;\n c[0] = floor(8388608.0 * m);\n\n highp float ebias = e + 127.0;\n c[3] = floor(ebias / 2.0);\n ebias -= c[3] * 2.0;\n c[2] += floor(ebias) * 128.0;\n\n c[3] += 128.0 * step(0.0, -v);\n\n return c / 255.0;\n }\n`;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/shader_compiler.js\nvar { getBroadcastDims: getBroadcastDims2 } = backend_util_exports;\nfunction makeShader(inputsInfo, outputShape, program) {\n const prefixSnippets = [];\n inputsInfo.forEach((x) => {\n const size = util_exports.sizeFromShape(x.shapeInfo.logicalShape);\n if (x.shapeInfo.isUniform) {\n prefixSnippets.push(`uniform float ${x.name}${size > 1 ? `[${size}]` : \"\"};`);\n } else {\n prefixSnippets.push(`uniform sampler2D ${x.name};`);\n prefixSnippets.push(`uniform int offset${x.name};`);\n }\n if (program.enableShapeUniforms) {\n const { uniformShape } = getUniformInfoFromShape(program.packedInputs, x.shapeInfo.logicalShape, x.shapeInfo.texShape);\n switch (uniformShape.length) {\n case 1:\n prefixSnippets.push(`uniform int ${x.name}Shape;`);\n break;\n case 2:\n prefixSnippets.push(`uniform ivec2 ${x.name}Shape;`);\n break;\n case 3:\n prefixSnippets.push(`uniform ivec3 ${x.name}Shape;`);\n break;\n case 4:\n prefixSnippets.push(`uniform ivec4 ${x.name}Shape;`);\n break;\n default:\n break;\n }\n prefixSnippets.push(`uniform ivec2 ${x.name}TexShape;`);\n }\n });\n if (program.enableShapeUniforms) {\n switch (outputShape.logicalShape.length) {\n case 1:\n prefixSnippets.push(`uniform int outShape;`);\n break;\n case 2:\n prefixSnippets.push(`uniform ivec2 outShape;`);\n prefixSnippets.push(`uniform int outShapeStrides;`);\n break;\n case 3:\n prefixSnippets.push(`uniform ivec3 outShape;`);\n prefixSnippets.push(`uniform ivec2 outShapeStrides;`);\n break;\n case 4:\n prefixSnippets.push(`uniform ivec4 outShape;`);\n prefixSnippets.push(`uniform ivec3 outShapeStrides;`);\n break;\n default:\n break;\n }\n prefixSnippets.push(`uniform ivec2 outTexShape;`);\n }\n if (program.customUniforms) {\n program.customUniforms.forEach((d) => {\n prefixSnippets.push(`uniform ${d.type} ${d.name}${d.arrayIndex ? `[${d.arrayIndex}]` : \"\"};`);\n });\n }\n const inputPrefixSnippet = prefixSnippets.join(\"\\n\");\n const inputSamplingSnippet = inputsInfo.map((x) => getInputSamplingSnippet(x, outputShape, program.packedInputs, program.enableShapeUniforms)).join(\"\\n\");\n const outTexShape = outputShape.texShape;\n const glsl = getGlslDifferences();\n const floatTextureSampleSnippet = getFloatTextureSampleSnippet(glsl);\n let outputSamplingSnippet;\n let floatTextureSetOutputSnippet;\n let shaderPrefix = getShaderPrefix(glsl);\n if (outputShape.isPacked) {\n outputSamplingSnippet = getPackedOutputSamplingSnippet(outputShape.logicalShape, outTexShape, program.enableShapeUniforms);\n floatTextureSetOutputSnippet = getFloatTextureSetRGBASnippet(glsl);\n } else {\n outputSamplingSnippet = getOutputSamplingSnippet(outputShape.logicalShape, outTexShape, program.enableShapeUniforms);\n floatTextureSetOutputSnippet = getFloatTextureSetRSnippet(glsl);\n }\n if (program.packedInputs) {\n shaderPrefix += SHADER_PACKED_PREFIX;\n }\n const source = [\n shaderPrefix,\n floatTextureSampleSnippet,\n floatTextureSetOutputSnippet,\n inputPrefixSnippet,\n outputSamplingSnippet,\n inputSamplingSnippet,\n program.userCode\n ].join(\"\\n\");\n return source;\n}\nfunction getSamplerFromInInfo(inInfo, enableShapeUniforms = false) {\n const shape = inInfo.shapeInfo.logicalShape;\n switch (shape.length) {\n case 0:\n return getSamplerScalar(inInfo, enableShapeUniforms);\n case 1:\n return getSampler1D(inInfo, enableShapeUniforms);\n case 2:\n return getSampler2D(inInfo, enableShapeUniforms);\n case 3:\n return getSampler3D(inInfo, enableShapeUniforms);\n case 4:\n return getSampler4D(inInfo, enableShapeUniforms);\n case 5:\n return getSampler5D(inInfo);\n case 6:\n return getSampler6D(inInfo);\n default:\n throw new Error(`${shape.length}-D input sampling is not yet supported`);\n }\n}\nfunction getPackedSamplerFromInInfo(inInfo, enableShapeUniforms) {\n const shape = inInfo.shapeInfo.logicalShape;\n switch (shape.length) {\n case 0:\n return getPackedSamplerScalar(inInfo);\n case 1:\n return getPackedSampler1D(inInfo, enableShapeUniforms);\n case 2:\n return getPackedSampler2D(inInfo, enableShapeUniforms);\n case 3:\n return getPackedSampler3D(inInfo, enableShapeUniforms);\n default:\n return getPackedSamplerND(inInfo, enableShapeUniforms);\n }\n}\nfunction getInputSamplingSnippet(inInfo, outShapeInfo, usesPackedTextures = false, enableShapeUniforms) {\n let res = \"\";\n if (usesPackedTextures) {\n res += getPackedSamplerFromInInfo(inInfo, enableShapeUniforms);\n } else {\n res += getSamplerFromInInfo(inInfo, enableShapeUniforms);\n }\n const inShape = inInfo.shapeInfo.logicalShape;\n const outShape = outShapeInfo.logicalShape;\n if (inShape.length <= outShape.length) {\n if (usesPackedTextures) {\n res += getPackedSamplerAtOutputCoords(inInfo, outShapeInfo);\n } else {\n res += getSamplerAtOutputCoords(inInfo, outShapeInfo);\n }\n }\n return res;\n}\nfunction getPackedOutputSamplingSnippet(outShape, outTexShape, enableShapeUniforms) {\n switch (outShape.length) {\n case 0:\n return getOutputScalarCoords();\n case 1:\n return getOutputPacked1DCoords(outShape, outTexShape, enableShapeUniforms);\n case 2:\n return getOutputPacked2DCoords(outShape, outTexShape, enableShapeUniforms);\n case 3:\n return getOutputPacked3DCoords(outShape, outTexShape, enableShapeUniforms);\n default:\n return getOutputPackedNDCoords(outShape, outTexShape, enableShapeUniforms);\n }\n}\nfunction getOutputSamplingSnippet(outShape, outTexShape, enableShapeUniforms) {\n switch (outShape.length) {\n case 0:\n return getOutputScalarCoords();\n case 1:\n return getOutput1DCoords(outShape, outTexShape, enableShapeUniforms);\n case 2:\n return getOutput2DCoords(outShape, outTexShape, enableShapeUniforms);\n case 3:\n return getOutput3DCoords(outShape, outTexShape, enableShapeUniforms);\n case 4:\n return getOutput4DCoords(outShape, outTexShape, enableShapeUniforms);\n case 5:\n return getOutput5DCoords(outShape, outTexShape);\n case 6:\n return getOutput6DCoords(outShape, outTexShape);\n default:\n throw new Error(`${outShape.length}-D output sampling is not yet supported`);\n }\n}\nfunction getFloatTextureSampleSnippet(glsl) {\n return `\n float sampleTexture(sampler2D textureSampler, vec2 uv) {\n return ${glsl.texture2D}(textureSampler, uv).r;\n }\n `;\n}\nfunction getFloatTextureSetRSnippet(glsl) {\n return `\n void setOutput(float val) {\n ${glsl.output} = vec4(val, 0, 0, 0);\n }\n `;\n}\nfunction getFloatTextureSetRGBASnippet(glsl) {\n return `\n void setOutput(vec4 val) {\n ${glsl.output} = val;\n }\n `;\n}\nfunction getShaderPrefix(glsl) {\n const SHADER_PREFIX = `${glsl.version}\n precision highp float;\n precision highp int;\n precision highp sampler2D;\n ${glsl.varyingFs} vec2 resultUV;\n ${glsl.defineOutput}\n const vec2 halfCR = vec2(0.5, 0.5);\n\n struct ivec5\n {\n int x;\n int y;\n int z;\n int w;\n int u;\n };\n\n struct ivec6\n {\n int x;\n int y;\n int z;\n int w;\n int u;\n int v;\n };\n\n uniform float NAN;\n ${glsl.defineSpecialNaN}\n ${glsl.defineSpecialInf}\n ${glsl.defineRound}\n\n int imod(int x, int y) {\n return x - y * (x / y);\n }\n\n int idiv(int a, int b, float sign) {\n int res = a / b;\n int mod = imod(a, b);\n if (sign < 0. && mod != 0) {\n res -= 1;\n }\n return res;\n }\n\n //Based on the work of Dave Hoskins\n //https://www.shadertoy.com/view/4djSRW\n #define HASHSCALE1 443.8975\n float random(float seed){\n vec2 p = resultUV * seed;\n vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);\n p3 += dot(p3, p3.yzx + 19.19);\n return fract((p3.x + p3.y) * p3.z);\n }\n\n ${SAMPLE_1D_SNIPPET}\n ${SAMPLE_2D_SNIPPET}\n ${SAMPLE_3D_SNIPPET}\n `;\n return SHADER_PREFIX;\n}\nvar SAMPLE_1D_SNIPPET = `\nvec2 uvFromFlat(int texNumR, int texNumC, int index) {\n int texR = index / texNumC;\n int texC = index - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\nvec2 packedUVfrom1D(int texNumR, int texNumC, int index) {\n int texelIndex = index / 2;\n int texR = texelIndex / texNumC;\n int texC = texelIndex - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`;\nvar SAMPLE_2D_SNIPPET = `\nvec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,\n int texNumC, int row, int col) {\n int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);\n int texR = texelIndex / texNumC;\n int texC = texelIndex - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`;\nvar SAMPLE_3D_SNIPPET = `\nvec2 packedUVfrom3D(int texNumR, int texNumC,\n int texelsInBatch, int texelsInLogicalRow, int b,\n int row, int col) {\n int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);\n int texR = index / texNumC;\n int texC = index - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`;\nvar SHADER_PACKED_PREFIX = `\n float getChannel(vec4 frag, vec2 innerDims) {\n vec2 modCoord = mod(innerDims, 2.);\n return modCoord.x == 0. ?\n (modCoord.y == 0. ? frag.r : frag.g) :\n (modCoord.y == 0. ? frag.b : frag.a);\n }\n float getChannel(vec4 frag, int dim) {\n float modCoord = mod(float(dim), 2.);\n return modCoord == 0. ? frag.r : frag.g;\n }\n`;\nfunction getOutputScalarCoords() {\n return `\n int getOutputCoords() {\n return 0;\n }\n `;\n}\nfunction getOutputPacked1DCoords(shape, texShape, enableShapeUniforms) {\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n if (packedTexShape[0] === 1) {\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));\n }\n `;\n }\n return `\n int getOutputCoords() {\n return 2 * int(resultUV.x * ${packedTexShape[1]}.0);\n }\n `;\n }\n if (packedTexShape[1] === 1) {\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));\n }\n `;\n }\n return `\n int getOutputCoords() {\n return 2 * int(resultUV.y * ${packedTexShape[0]}.0);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);\n }\n `;\n }\n return `\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n return 2 * (resTexRC.x * ${packedTexShape[1]} + resTexRC.y);\n }\n `;\n}\nfunction getOutput1DCoords(shape, texShape, enableShapeUniforms) {\n if (texShape[0] === 1) {\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n return int(resultUV.x * float(outTexShape[1]));\n }\n `;\n }\n return `\n int getOutputCoords() {\n return int(resultUV.x * ${texShape[1]}.0);\n }\n `;\n }\n if (texShape[1] === 1) {\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n return int(resultUV.y * float(outTexShape[0]));\n }\n `;\n }\n return `\n int getOutputCoords() {\n return int(resultUV.y * ${texShape[0]}.0);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n return resTexRC.x * outTexShape[1] + resTexRC.y;\n }\n `;\n }\n return `\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n return resTexRC.x * ${texShape[1]} + resTexRC.y;\n }\n `;\n}\nfunction getOutputPacked3DCoords(shape, texShape, enableShapeUniforms) {\n if (enableShapeUniforms) {\n return `\n ivec3 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));\n int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n\n int b = index / texelsInBatch;\n index -= b * texelsInBatch;\n\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec3(b, r, c);\n }\n `;\n }\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n const texelsInLogicalRow = Math.ceil(shape[2] / 2);\n const texelsInBatch = texelsInLogicalRow * Math.ceil(shape[1] / 2);\n return `\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y;\n\n int b = index / ${texelsInBatch};\n index -= b * ${texelsInBatch};\n\n int r = 2 * (index / ${texelsInLogicalRow});\n int c = imod(index, ${texelsInLogicalRow}) * 2;\n\n return ivec3(b, r, c);\n }\n `;\n}\nfunction getOutput3DCoords(shape, texShape, enableShapeUniforms) {\n if (enableShapeUniforms) {\n const coordsFromIndexSnippet2 = getOutputLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\"], shape);\n return `\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n ${coordsFromIndexSnippet2}\n return ivec3(r, c, d);\n }\n`;\n }\n const coordsFromIndexSnippet = getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\"], shape);\n return `\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n ${coordsFromIndexSnippet}\n return ivec3(r, c, d);\n }\n `;\n}\nfunction getOutputPackedNDCoords(shape, texShape, enableShapeUniforms) {\n if (enableShapeUniforms) {\n return `\n ivec4 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n\n int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));\n int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));\n int texelsInBatchN = texelsInBatch * outShape[1];\n\n int b2 = index / texelsInBatchN;\n index -= b2 * texelsInBatchN;\n\n int b = index / texelsInBatch;\n index -= b * texelsInBatch;\n\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec4(b2, b, r, c);\n }\n `;\n }\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n const texelsInLogicalRow = Math.ceil(shape[shape.length - 1] / 2);\n const texelsInBatch = texelsInLogicalRow * Math.ceil(shape[shape.length - 2] / 2);\n let texelsInBatchN = texelsInBatch;\n let batches = ``;\n let coords3 = \"b, r, c\";\n for (let b = 2; b < shape.length - 1; b++) {\n texelsInBatchN *= shape[shape.length - b - 1];\n batches = `\n int b${b} = index / ${texelsInBatchN};\n index -= b${b} * ${texelsInBatchN};\n ` + batches;\n coords3 = `b${b}, ` + coords3;\n }\n return `\n ivec${shape.length} getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y;\n\n ${batches}\n\n int b = index / ${texelsInBatch};\n index -= b * ${texelsInBatch};\n\n int r = 2 * (index / ${texelsInLogicalRow});\n int c = imod(index, ${texelsInLogicalRow}) * 2;\n\n return ivec${shape.length}(${coords3});\n }\n `;\n}\nfunction getOutput4DCoords(shape, texShape, enableShapeUniforms) {\n if (enableShapeUniforms) {\n const coordsFromIndexSnippet2 = getOutputLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\", \"d2\"], shape);\n return `\n ivec4 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n ${coordsFromIndexSnippet2}\n return ivec4(r, c, d, d2);\n }\n `;\n }\n const coordsFromIndexSnippet = getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\", \"d2\"], shape);\n return `\n ivec4 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n ${coordsFromIndexSnippet}\n return ivec4(r, c, d, d2);\n }\n `;\n}\nfunction getOutput5DCoords(shape, texShape) {\n const coordsFromIndexSnippet = getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\", \"d2\", \"d3\"], shape);\n return `\n ivec5 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(${texShape[0]},\n ${texShape[1]}));\n\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n\n ${coordsFromIndexSnippet}\n\n ivec5 outShape = ivec5(r, c, d, d2, d3);\n return outShape;\n }\n `;\n}\nfunction getOutput6DCoords(shape, texShape) {\n const coordsFromIndexSnippet = getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\", \"d2\", \"d3\", \"d4\"], shape);\n return `\n ivec6 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n\n ${coordsFromIndexSnippet}\n\n ivec6 result = ivec6(r, c, d, d2, d3, d4);\n return result;\n }\n `;\n}\nfunction getOutputPacked2DCoords(shape, texShape, enableShapeUniforms) {\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n if (util_exports.arraysEqual(shape, texShape)) {\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n return 2 * ivec2(resultUV.yx * vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n }\n `;\n }\n const texelsInLogicalRow = Math.ceil(shape[1] / 2);\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec2(r, c);\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n\n int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y;\n int r = 2 * (index / ${texelsInLogicalRow});\n int c = imod(index, ${texelsInLogicalRow}) * 2;\n\n return ivec2(r, c);\n }\n `;\n}\nfunction getOutput2DCoords(shape, texShape, enableShapeUniforms) {\n if (util_exports.arraysEqual(shape, texShape)) {\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n return ivec2(resultUV.yx * vec2(${texShape[0]}, ${texShape[1]}));\n }\n `;\n }\n if (shape[1] === 1) {\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n return ivec2(index, 0);\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n return ivec2(index, 0);\n }\n `;\n }\n if (shape[0] === 1) {\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n return ivec2(0, index);\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n return ivec2(0, index);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n int r = index / outShape[1];\n int c = index - r * outShape[1];\n return ivec2(r, c);\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n int r = index / ${shape[1]};\n int c = index - r * ${shape[1]};\n return ivec2(r, c);\n }\n `;\n}\nfunction getFlatOffsetUniformName(texName) {\n return `offset${texName}`;\n}\nfunction getPackedSamplerScalar(inputInfo) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const glsl = getGlslDifferences();\n return `\n vec4 ${funcName}() {\n return ${glsl.texture2D}(${texName}, halfCR);\n }\n `;\n}\nfunction getSamplerScalar(inputInfo, enableShapeUniforms) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n if (inputInfo.shapeInfo.isUniform) {\n return `float ${funcName}() {return ${texName};}`;\n }\n const [texNumR, texNumC] = inputInfo.shapeInfo.texShape;\n if (texNumR === 1 && texNumC === 1) {\n return `\n float ${funcName}() {\n return sampleTexture(${texName}, halfCR);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n if (enableShapeUniforms) {\n return `\n float ${funcName}() {\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const [tNumR, tNumC] = inputInfo.shapeInfo.texShape;\n return `\n float ${funcName}() {\n vec2 uv = uvFromFlat(${tNumR}, ${tNumC}, ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getPackedSampler1D(inputInfo, enableShapeUniforms) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const texShape = inputInfo.shapeInfo.texShape;\n const glsl = getGlslDifferences();\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int index) {\n ivec2 packedTexShape = ivec2(ceil(float(${texName}TexShape[0]) / 2.0), ceil(float(${texName}TexShape[1]) / 2.0));\n vec2 uv = packedUVfrom1D(\n packedTexShape[0], packedTexShape[1], index);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n return `\n vec4 ${funcName}(int index) {\n vec2 uv = packedUVfrom1D(\n ${packedTexShape[0]}, ${packedTexShape[1]}, index);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n}\nfunction getSampler1D(inputInfo, enableShapeUniforms) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int index) {\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const texShape = inputInfo.shapeInfo.texShape;\n const tNumR = texShape[0];\n const tNumC = texShape[1];\n if (tNumC === 1 && tNumR === 1) {\n return `\n float ${funcName}(int index) {\n return sampleTexture(${texName}, halfCR);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n if (tNumC === 1) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int index) {\n vec2 uv = vec2(0.5, (float(index + ${offset}) + 0.5) / float(${texName}TexShape[0]));\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int index) {\n vec2 uv = vec2(0.5, (float(index + ${offset}) + 0.5) / ${tNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (tNumR === 1) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int index) {\n vec2 uv = vec2((float(index + ${offset}) + 0.5) / float(${texName}TexShape[1]), 0.5);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int index) {\n vec2 uv = vec2((float(index + ${offset}) + 0.5) / ${tNumC}.0, 0.5);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int index) {\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], index + ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int index) {\n vec2 uv = uvFromFlat(${tNumR}, ${tNumC}, index + ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getPackedSampler2D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n const glsl = getGlslDifferences();\n if (texShape != null && util_exports.arraysEqual(shape, texShape)) {\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int row, int col) {\n vec2 uv = (vec2(col, row) + halfCR) / vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n return `\n vec4 ${funcName}(int row, int col) {\n vec2 uv = (vec2(col, row) + halfCR) / vec2(${texNumC}.0, ${texNumR}.0);\n\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int row, int col) {\n ivec2 packedTexShape = ivec2(ceil(float(${texName}TexShape[0]) / 2.0), ceil(float(${texName}TexShape[1]) / 2.0));\n int valuesPerRow = int(ceil(float(${texName}Shape[1]) / 2.0));\n vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n const valuesPerRow = Math.ceil(shape[1] / 2);\n return `\n vec4 ${funcName}(int row, int col) {\n vec2 uv = packedUVfrom2D(${valuesPerRow}, ${packedTexShape[0]}, ${packedTexShape[1]}, row, col);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n}\nfunction getSampler2D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const texShape = inputInfo.shapeInfo.texShape;\n if (texShape != null && util_exports.arraysEqual(shape, texShape)) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col) {\n vec2 uv = (vec2(col, row) + halfCR) / vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const texNumR2 = texShape[0];\n const texNumC2 = texShape[1];\n return `\n float ${funcName}(int row, int col) {\n vec2 uv = (vec2(col, row) + halfCR) / vec2(${texNumC2}.0, ${texNumR2}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n const squeezedShape = newShape;\n if (squeezedShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, squeezedShape);\n const params = [\"row\", \"col\"];\n return `\n ${getSamplerFromInInfo(newInputInfo, enableShapeUniforms)}\n float ${funcName}(int row, int col) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col) {\n int index = round(dot(vec2(row, col), vec2(${shape[1]}, 1)));\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n const offset = getFlatOffsetUniformName(texName);\n if (texNumC === 1) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col) {\n float index = dot(vec3(row, col, ${offset}), vec3(${texName}Shape[1], 1, 1));\n vec2 uv = vec2(0.5, (index + 0.5) / float(${texName}TexShape[0]));\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col) {\n float index = dot(vec3(row, col, ${offset}), vec3(${shape[1]}, 1, 1));\n vec2 uv = vec2(0.5, (index + 0.5) / ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumR === 1) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col) {\n float index = dot(vec3(row, col, ${offset}), vec3(${texName}Shape[1], 1, 1));\n vec2 uv = vec2((index + 0.5) / float(${texName}TexShape[1]), 0.5);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col) {\n float index = dot(vec3(row, col, ${offset}), vec3(${shape[1]}, 1, 1));\n vec2 uv = vec2((index + 0.5) / ${texNumC}.0, 0.5);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${texName}Shape[1] + col + ${offset};\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], index);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${shape[1]} + col + ${offset};\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);\n return sampleTexture(${texName}, uv);\n }\n`;\n}\nfunction getPackedSampler3D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const texShape = inputInfo.shapeInfo.texShape;\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n if (shape[0] === 1) {\n const squeezedShape = shape.slice(1);\n const keptDims = [1, 2];\n const newInputInfo = squeezeInputInfo(inputInfo, squeezedShape);\n const params = [\"b\", \"row\", \"col\"];\n return `\n ${getPackedSamplerFromInInfo(newInputInfo, enableShapeUniforms)}\n vec4 ${funcName}(int b, int row, int col) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n const glsl = getGlslDifferences();\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int b, int row, int col) {\n ivec2 packedTexShape = ivec2(ceil(float(${texName}TexShape[0]) / 2.0), ceil(float(${texName}TexShape[1]) / 2.0));\n int valuesPerRow = int(ceil(float(${texName}Shape[2]) / 2.0));\n int texelsInBatch = valuesPerRow * int(ceil(float(${texName}Shape[1]) / 2.0));\n vec2 uv = packedUVfrom3D(\n packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n const texNumR = packedTexShape[0];\n const texNumC = packedTexShape[1];\n const valuesPerRow = Math.ceil(shape[2] / 2);\n const texelsInBatch = valuesPerRow * Math.ceil(shape[1] / 2);\n return `\n vec4 ${funcName}(int b, int row, int col) {\n vec2 uv = packedUVfrom3D(\n ${texNumR}, ${texNumC}, ${texelsInBatch}, ${valuesPerRow}, b, row, col);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n}\nfunction getSampler3D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const stride0 = shape[1] * shape[2];\n const stride1 = shape[2];\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n const squeezedShape = newShape;\n if (squeezedShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, squeezedShape);\n const params = [\"row\", \"col\", \"depth\"];\n return `\n ${getSamplerFromInInfo(newInputInfo, enableShapeUniforms)}\n float ${funcName}(int row, int col, int depth) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col, int depth) {\n int index = round(dot(vec3(row, col, depth),\n vec3(${stride0}, ${stride1}, 1)));\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n const flatOffset = inputInfo.shapeInfo.flatOffset;\n if (texNumC === stride0 && flatOffset == null) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth) {\n int stride1 = ${texName}Shape[2];\n float texR = float(row);\n float texC = dot(vec2(col, depth), vec2(stride1, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth) {\n float texR = float(row);\n float texC = dot(vec2(col, depth), vec2(${stride1}, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumC === stride1 && flatOffset == null) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth) {\n float texR = dot(vec2(row, col), vec2(${texName}Shape[1], 1));\n float texC = float(depth);\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth) {\n float texR = dot(vec2(row, col), vec2(${shape[1]}, 1));\n float texC = float(depth);\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth) {\n // Explicitly use integer operations as dot() only works on floats.\n int stride0 = ${texName}Shape[1] * ${texName}Shape[2];\n int stride1 = ${texName}Shape[2];\n int index = row * ${stride0} + col * ${stride1} + depth + ${offset};\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], index);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${stride0} + col * ${stride1} + depth + ${offset};\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getPackedSamplerND(inputInfo, enableShapeUniforms) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const glsl = getGlslDifferences();\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int b2, int b, int row, int col) {\n int valuesPerRow = int(ceil(float(${texName}Shape[3]) / 2.0));\n int texelsInBatch = valuesPerRow * int(ceil(float(${texName}Shape[2]) / 2.0));\n int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);\n texelsInBatch *= ${texName}Shape[1];\n index = b2 * texelsInBatch + index;\n ivec2 packedTexShape = ivec2(ceil(float(${texName}TexShape[0]) / 2.0), ceil(float(${texName}TexShape[1]) / 2.0));\n int texR = index / packedTexShape[1];\n int texC = index - texR * packedTexShape[1];\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n const shape = inputInfo.shapeInfo.logicalShape;\n const rank = shape.length;\n const texShape = inputInfo.shapeInfo.texShape;\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n const texNumR = packedTexShape[0];\n const texNumC = packedTexShape[1];\n const valuesPerRow = Math.ceil(shape[rank - 1] / 2);\n let texelsInBatch = valuesPerRow * Math.ceil(shape[rank - 2] / 2);\n let params = `int b, int row, int col`;\n let index = `b * ${texelsInBatch} + (row / 2) * ${valuesPerRow} + (col / 2)`;\n for (let b = 2; b < rank - 1; b++) {\n params = `int b${b}, ` + params;\n texelsInBatch *= shape[rank - b - 1];\n index = `b${b} * ${texelsInBatch} + ` + index;\n }\n return `\n vec4 ${funcName}(${params}) {\n int index = ${index};\n int texR = index / ${texNumC};\n int texC = index - texR * ${texNumC};\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${texNumC}, ${texNumR});\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n}\nfunction getSampler4D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const stride2 = shape[3];\n const stride1 = shape[2] * stride2;\n const stride0 = shape[1] * stride1;\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n if (newShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, newShape);\n const params = [\"row\", \"col\", \"depth\", \"depth2\"];\n return `\n ${getSamplerFromInInfo(newInputInfo, enableShapeUniforms)}\n float ${funcName}(int row, int col, int depth, int depth2) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n int index = round(dot(vec4(row, col, depth, depth2),\n vec4(${stride0}, ${stride1}, ${stride2}, 1)));\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const flatOffset = inputInfo.shapeInfo.flatOffset;\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n const stride2Str = `int stride2 = ${texName}Shape[3];`;\n const stride1Str = `int stride1 = ${texName}Shape[2] * stride2;`;\n const stride0Str = `int stride0 = ${texName}Shape[1] * stride1;`;\n if (texNumC === stride0 && flatOffset == null) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n ${stride2Str}\n ${stride1Str}\n float texR = float(row);\n float texC =\n dot(vec3(col, depth, depth2),\n vec3(stride1, stride2, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n float texR = float(row);\n float texC =\n dot(vec3(col, depth, depth2),\n vec3(${stride1}, ${stride2}, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumC === stride2 && flatOffset == null) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n float texR = dot(vec3(row, col, depth),\n vec3(${texName}Shape[1] * ${texName}Shape[2], ${texName}Shape[2], 1));\n float texC = float(depth2);\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n float texR = dot(vec3(row, col, depth),\n vec3(${shape[1] * shape[2]}, ${shape[2]}, 1));\n float texC = float(depth2);\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n // Explicitly use integer operations as dot() only works on floats.\n ${stride2Str}\n ${stride1Str}\n ${stride0Str}\n int index = row * stride0 + col * stride1 +\n depth * stride2 + depth2;\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], index + ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${stride0} + col * ${stride1} +\n depth * ${stride2} + depth2;\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index + ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getSampler5D(inputInfo) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const stride3 = shape[4];\n const stride2 = shape[3] * stride3;\n const stride1 = shape[2] * stride2;\n const stride0 = shape[1] * stride1;\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n if (newShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, newShape);\n const params = [\"row\", \"col\", \"depth\", \"depth2\", \"depth3\"];\n return `\n ${getSamplerFromInInfo(newInputInfo)}\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n float index = dot(\n vec4(row, col, depth, depth2),\n vec4(${stride0}, ${stride1}, ${stride2}, ${stride3})) +\n depth3;\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const flatOffset = inputInfo.shapeInfo.flatOffset;\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n if (texNumC === stride0 && flatOffset == null) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n int texR = row;\n float texC = dot(vec4(col, depth, depth2, depth3),\n vec4(${stride1}, ${stride2}, ${stride3}, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumC === stride3 && flatOffset == null) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n float texR = dot(\n vec4(row, col, depth, depth2),\n vec4(${shape[1] * shape[2] * shape[3]},\n ${shape[2] * shape[3]}, ${shape[3]}, 1));\n int texC = depth3;\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n return `\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${stride0} + col * ${stride1} + depth * ${stride2} +\n depth2 * ${stride3} + depth3 + ${offset};\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getSampler6D(inputInfo) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n if (newShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, newShape);\n const params = [\"row\", \"col\", \"depth\", \"depth2\", \"depth3\", \"depth4\"];\n return `\n ${getSamplerFromInInfo(newInputInfo)}\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n const stride4 = shape[5];\n const stride3 = shape[4] * stride4;\n const stride2 = shape[3] * stride3;\n const stride1 = shape[2] * stride2;\n const stride0 = shape[1] * stride1;\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n int index = round(dot(\n vec4(row, col, depth, depth2),\n vec4(${stride0}, ${stride1}, ${stride2}, ${stride3})) +\n dot(\n vec2(depth3, depth4),\n vec2(${stride4}, 1)));\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const flatOffset = inputInfo.shapeInfo.flatOffset;\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n if (texNumC === stride0 && flatOffset == null) {\n return `\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n int texR = row;\n float texC = dot(vec4(col, depth, depth2, depth3),\n vec4(${stride1}, ${stride2}, ${stride3}, ${stride4})) +\n float(depth4);\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumC === stride4 && flatOffset == null) {\n return `\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n float texR = dot(vec4(row, col, depth, depth2),\n vec4(${shape[1] * shape[2] * shape[3] * shape[4]},\n ${shape[2] * shape[3] * shape[4]},\n ${shape[3] * shape[4]},\n ${shape[4]})) + float(depth3);\n int texC = depth4;\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n return `\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${stride0} + col * ${stride1} + depth * ${stride2} +\n depth2 * ${stride3} + depth3 * ${stride4} + depth4 + ${offset};\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getUniformSampler(inputInfo) {\n const texName = inputInfo.name;\n const inSize = util_exports.sizeFromShape(inputInfo.shapeInfo.logicalShape);\n if (inSize < 2) {\n return `return ${texName};`;\n }\n return `\n for (int i = 0; i < ${inSize}; i++) {\n if (i == index) {\n return ${texName}[i];\n }\n }\n `;\n}\nfunction getPackedSamplerAtOutputCoords(inputInfo, outShapeInfo) {\n const texName = inputInfo.name;\n const texFuncSnippet = texName.charAt(0).toUpperCase() + texName.slice(1);\n const funcName = \"get\" + texFuncSnippet + \"AtOutCoords\";\n const inRank = inputInfo.shapeInfo.logicalShape.length;\n const outRank = outShapeInfo.logicalShape.length;\n const broadcastDims = getBroadcastDims2(inputInfo.shapeInfo.logicalShape, outShapeInfo.logicalShape);\n const type = getCoordsDataType(outRank);\n const rankDiff = outRank - inRank;\n let coordsSnippet;\n const fields = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"];\n if (inRank === 0) {\n coordsSnippet = \"\";\n } else if (outRank < 2 && broadcastDims.length >= 1) {\n coordsSnippet = \"coords = 0;\";\n } else {\n coordsSnippet = broadcastDims.map((d) => `coords.${fields[d + rankDiff]} = 0;`).join(\"\\n\");\n }\n let unpackedCoordsSnippet = \"\";\n if (outRank < 2 && inRank > 0) {\n unpackedCoordsSnippet = \"coords\";\n } else {\n unpackedCoordsSnippet = inputInfo.shapeInfo.logicalShape.map((s2, i2) => `coords.${fields[i2 + rankDiff]}`).join(\", \");\n }\n let output = `return outputValue;`;\n const inSize = util_exports.sizeFromShape(inputInfo.shapeInfo.logicalShape);\n const isInputScalar = inSize === 1;\n const outSize = util_exports.sizeFromShape(outShapeInfo.logicalShape);\n const isOutputScalar = outSize === 1;\n if (inRank === 1 && !isInputScalar && !isOutputScalar) {\n output = `\n return vec4(outputValue.xy, outputValue.xy);\n `;\n } else if (isInputScalar && !isOutputScalar) {\n if (outRank === 1) {\n output = `\n return vec4(outputValue.x, outputValue.x, 0., 0.);\n `;\n } else {\n output = `\n return vec4(outputValue.x);\n `;\n }\n } else if (broadcastDims.length) {\n const rows = inRank - 2;\n const cols = inRank - 1;\n if (broadcastDims.indexOf(rows) > -1 && broadcastDims.indexOf(cols) > -1) {\n output = `return vec4(outputValue.x);`;\n } else if (broadcastDims.indexOf(rows) > -1) {\n output = `return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);`;\n } else if (broadcastDims.indexOf(cols) > -1) {\n output = `return vec4(outputValue.xx, outputValue.zz);`;\n }\n }\n return `\n vec4 ${funcName}() {\n ${type} coords = getOutputCoords();\n ${coordsSnippet}\n vec4 outputValue = get${texFuncSnippet}(${unpackedCoordsSnippet});\n ${output}\n }\n `;\n}\nfunction getSamplerAtOutputCoords(inputInfo, outShapeInfo) {\n const texName = inputInfo.name;\n const texFuncSnippet = texName.charAt(0).toUpperCase() + texName.slice(1);\n const funcName = \"get\" + texFuncSnippet + \"AtOutCoords\";\n const outTexShape = outShapeInfo.texShape;\n const inTexShape = inputInfo.shapeInfo.texShape;\n const inRank = inputInfo.shapeInfo.logicalShape.length;\n const outRank = outShapeInfo.logicalShape.length;\n if (!inputInfo.shapeInfo.isUniform && inRank === outRank && inputInfo.shapeInfo.flatOffset == null && util_exports.arraysEqual(inTexShape, outTexShape)) {\n return `\n float ${funcName}() {\n return sampleTexture(${texName}, resultUV);\n }\n `;\n }\n const type = getCoordsDataType(outRank);\n const broadcastDims = getBroadcastDims2(inputInfo.shapeInfo.logicalShape, outShapeInfo.logicalShape);\n const rankDiff = outRank - inRank;\n let coordsSnippet;\n const fields = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"];\n if (inRank === 0) {\n coordsSnippet = \"\";\n } else if (outRank < 2 && broadcastDims.length >= 1) {\n coordsSnippet = \"coords = 0;\";\n } else {\n coordsSnippet = broadcastDims.map((d) => `coords.${fields[d + rankDiff]} = 0;`).join(\"\\n\");\n }\n let unpackedCoordsSnippet = \"\";\n if (outRank < 2 && inRank > 0) {\n unpackedCoordsSnippet = \"coords\";\n } else {\n unpackedCoordsSnippet = inputInfo.shapeInfo.logicalShape.map((s2, i2) => `coords.${fields[i2 + rankDiff]}`).join(\", \");\n }\n return `\n float ${funcName}() {\n ${type} coords = getOutputCoords();\n ${coordsSnippet}\n return get${texFuncSnippet}(${unpackedCoordsSnippet});\n }\n `;\n}\nfunction getCoordsDataType(rank) {\n if (rank <= 1) {\n return \"int\";\n } else if (rank === 2) {\n return \"ivec2\";\n } else if (rank === 3) {\n return \"ivec3\";\n } else if (rank === 4) {\n return \"ivec4\";\n } else if (rank === 5) {\n return \"ivec5\";\n } else if (rank === 6) {\n return \"ivec6\";\n } else {\n throw Error(`GPU for rank ${rank} is not yet supported`);\n }\n}\nfunction getUniformInfoFromShape(isPacked, shape, texShape) {\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n const rank = shape.length;\n const useSqueezePackedShape = isPacked && rank === 3 && shape[0] === 1;\n const squeezeShape2 = useSqueezePackedShape ? shape.slice(1) : newShape;\n const useSqueezeShape = !isPacked && rank > 1 && !util_exports.arraysEqual(shape, texShape) && newShape.length < rank || useSqueezePackedShape;\n const uniformShape = useSqueezeShape ? squeezeShape2 : shape;\n return { useSqueezeShape, uniformShape, keptDims };\n}\nfunction squeezeInputInfo(inInfo, squeezedShape) {\n const newInputInfo = JSON.parse(JSON.stringify(inInfo));\n newInputInfo.shapeInfo.logicalShape = squeezedShape;\n return newInputInfo;\n}\nfunction getSqueezedParams(params, keptDims) {\n return keptDims.map((d) => params[d]).join(\", \");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gpgpu_math.js\nfunction compileProgram(gpgpu, program, inputs, output) {\n const inputInfos = inputs.map((input2, i2) => {\n const shapeInfo = {\n logicalShape: input2.shape,\n texShape: input2.isUniform ? null : input2.texData.texShape,\n isUniform: input2.isUniform,\n isPacked: input2.isUniform ? false : input2.texData.isPacked,\n flatOffset: null\n };\n if (input2.texData != null && input2.texData.slice != null && input2.texData.slice.flatOffset > 0) {\n shapeInfo.flatOffset = input2.texData.slice.flatOffset;\n }\n return { name: program.variableNames[i2], shapeInfo };\n });\n const inShapeInfos = inputInfos.map((x) => x.shapeInfo);\n const outShapeInfo = {\n logicalShape: output.shape,\n texShape: output.texData.texShape,\n isUniform: false,\n isPacked: output.texData.isPacked,\n flatOffset: null\n };\n const source = makeShader(inputInfos, outShapeInfo, program);\n const fragmentShader = createFragmentShader(gpgpu.gl, source);\n const webGLProgram = gpgpu.createProgram(fragmentShader);\n if (!env().get(\"ENGINE_COMPILE_ONLY\")) {\n return Object.assign({\n program,\n fragmentShader,\n source,\n webGLProgram,\n inShapeInfos,\n outShapeInfo\n }, getUniformLocations(gpgpu, program, webGLProgram));\n } else {\n return {\n program,\n fragmentShader,\n source,\n webGLProgram,\n inShapeInfos,\n outShapeInfo,\n uniformLocations: null,\n customUniformLocations: null,\n infLoc: null,\n nanLoc: null,\n inShapesLocations: null,\n inTexShapesLocations: null,\n outShapeLocation: null,\n outShapeStridesLocation: null,\n outTexShapeLocation: null\n };\n }\n}\nfunction getUniformLocations(gpgpu, program, webGLProgram) {\n const uniformLocations = {};\n const inShapesLocations = {};\n const inTexShapesLocations = {};\n const customUniformLocations = [];\n let outShapeLocation;\n let outTexShapeLocation;\n let outShapeStridesLocation;\n let infLoc = null;\n let nanLoc = null;\n nanLoc = gpgpu.getUniformLocation(webGLProgram, \"NAN\", false);\n if (env().getNumber(\"WEBGL_VERSION\") === 1) {\n infLoc = gpgpu.getUniformLocation(webGLProgram, \"INFINITY\", false);\n }\n const shouldThrow = false;\n for (let i2 = 0; i2 < program.variableNames.length; i2++) {\n const varName = program.variableNames[i2];\n uniformLocations[varName] = gpgpu.getUniformLocation(webGLProgram, varName, shouldThrow);\n uniformLocations[`offset${varName}`] = gpgpu.getUniformLocation(webGLProgram, `offset${varName}`, shouldThrow);\n if (program.enableShapeUniforms) {\n inShapesLocations[`${varName}Shape`] = gpgpu.getUniformLocation(webGLProgram, `${varName}Shape`, shouldThrow);\n inTexShapesLocations[`${varName}TexShape`] = gpgpu.getUniformLocation(webGLProgram, `${varName}TexShape`, shouldThrow);\n }\n }\n if (program.enableShapeUniforms) {\n outShapeLocation = gpgpu.getUniformLocation(webGLProgram, \"outShape\", shouldThrow);\n outShapeStridesLocation = gpgpu.getUniformLocation(webGLProgram, \"outShapeStrides\", shouldThrow);\n outTexShapeLocation = gpgpu.getUniformLocation(webGLProgram, \"outTexShape\", shouldThrow);\n }\n if (program.customUniforms) {\n program.customUniforms.forEach((d, i2) => {\n customUniformLocations[i2] = gpgpu.getUniformLocation(webGLProgram, d.name, shouldThrow);\n });\n }\n return {\n uniformLocations,\n customUniformLocations,\n infLoc,\n nanLoc,\n inShapesLocations,\n inTexShapesLocations,\n outShapeLocation,\n outShapeStridesLocation,\n outTexShapeLocation\n };\n}\nfunction validateBinaryAndProgram(shapeInfos, inputs) {\n if (shapeInfos.length !== inputs.length) {\n throw Error(`Binary was compiled with ${shapeInfos.length} inputs, but was executed with ${inputs.length} inputs`);\n }\n shapeInfos.forEach((s2, i2) => {\n const shapeA = s2.logicalShape;\n const input2 = inputs[i2];\n const shapeB = input2.shape;\n if (!util_exports.arraysEqual(shapeA, shapeB)) {\n throw Error(`Binary was compiled with different shapes than the current args. Shapes ${shapeA} and ${shapeB} must match`);\n }\n if (s2.isUniform && input2.isUniform) {\n return;\n }\n const texShapeA = s2.texShape;\n const texShapeB = input2.isUniform ? null : input2.texData.texShape;\n if (!util_exports.arraysEqual(texShapeA, texShapeB)) {\n throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${texShapeA} and ${texShapeB} must match`);\n }\n });\n}\nfunction runProgram(gpgpu, binary, inputs, output, customUniformValues) {\n if (!binary.program.enableShapeUniforms) {\n validateBinaryAndProgram(binary.inShapeInfos, inputs);\n validateBinaryAndProgram([binary.outShapeInfo], [output]);\n }\n const outTex = output.texData.texture;\n const outTexShape = output.texData.texShape;\n if (output.texData.isPacked) {\n gpgpu.setOutputPackedMatrixTexture(outTex.texture, outTexShape[0], outTexShape[1]);\n } else {\n gpgpu.setOutputMatrixTexture(outTex.texture, outTexShape[0], outTexShape[1]);\n }\n gpgpu.setProgram(binary.webGLProgram);\n if (env().getNumber(\"WEBGL_VERSION\") === 1) {\n if (binary.infLoc !== null) {\n gpgpu.gl.uniform1f(binary.infLoc, Infinity);\n }\n }\n if (binary.nanLoc !== null) {\n gpgpu.gl.uniform1f(binary.nanLoc, NaN);\n }\n inputs.forEach((input2, i2) => {\n const varName = binary.program.variableNames[i2];\n const varLoc = binary.uniformLocations[varName];\n const varOffsetLoc = binary.uniformLocations[`offset${varName}`];\n const varShapeLoc = binary.inShapesLocations[`${varName}Shape`];\n const varTexShapeLoc = binary.inTexShapesLocations[`${varName}TexShape`];\n if (varShapeLoc) {\n const { uniformShape } = getUniformInfoFromShape(binary.program.packedInputs, input2.shape, input2.texData.texShape);\n switch (uniformShape.length) {\n case 1:\n gpgpu.gl.uniform1iv(varShapeLoc, new Int32Array(uniformShape));\n break;\n case 2:\n gpgpu.gl.uniform2iv(varShapeLoc, new Int32Array(uniformShape));\n break;\n case 3:\n gpgpu.gl.uniform3iv(varShapeLoc, new Int32Array(uniformShape));\n break;\n case 4:\n gpgpu.gl.uniform4iv(varShapeLoc, new Int32Array(uniformShape));\n break;\n default:\n break;\n }\n }\n if (varTexShapeLoc) {\n gpgpu.gl.uniform2i(varTexShapeLoc, input2.texData.texShape[0], input2.texData.texShape[1]);\n }\n if (varLoc == null) {\n return;\n }\n if (input2.isUniform) {\n if (util_exports.sizeFromShape(input2.shape) < 2) {\n gpgpu.gl.uniform1f(varLoc, input2.uniformValues[0]);\n } else {\n let vals = input2.uniformValues;\n if (!(vals instanceof Float32Array)) {\n vals = new Float32Array(vals);\n }\n gpgpu.gl.uniform1fv(varLoc, vals);\n }\n return;\n }\n if (input2.texData.slice != null && varOffsetLoc != null) {\n gpgpu.gl.uniform1i(varOffsetLoc, input2.texData.slice.flatOffset);\n }\n gpgpu.setInputMatrixTexture(input2.texData.texture.texture, varLoc, i2);\n });\n const outShapeLoc = binary.outShapeLocation;\n if (outShapeLoc) {\n switch (output.shape.length) {\n case 1:\n gpgpu.gl.uniform1iv(outShapeLoc, new Int32Array(output.shape));\n break;\n case 2:\n gpgpu.gl.uniform2iv(outShapeLoc, new Int32Array(output.shape));\n break;\n case 3:\n gpgpu.gl.uniform3iv(outShapeLoc, new Int32Array(output.shape));\n break;\n case 4:\n gpgpu.gl.uniform4iv(outShapeLoc, new Int32Array(output.shape));\n break;\n default:\n break;\n }\n }\n if (binary.outShapeStridesLocation) {\n const strides = util_exports.computeStrides(output.shape);\n switch (output.shape.length) {\n case 2:\n gpgpu.gl.uniform1iv(binary.outShapeStridesLocation, new Int32Array(strides));\n break;\n case 3:\n gpgpu.gl.uniform2iv(binary.outShapeStridesLocation, new Int32Array(strides));\n break;\n case 4:\n gpgpu.gl.uniform3iv(binary.outShapeStridesLocation, new Int32Array(strides));\n break;\n default:\n break;\n }\n }\n if (binary.outTexShapeLocation) {\n gpgpu.gl.uniform2i(binary.outTexShapeLocation, output.texData.texShape[0], output.texData.texShape[1]);\n }\n if (binary.program.customUniforms && customUniformValues) {\n binary.program.customUniforms.forEach((d, i2) => {\n const customLoc = binary.customUniformLocations[i2];\n const customValue = customUniformValues[i2];\n if (d.type === \"float\") {\n gpgpu.gl.uniform1fv(customLoc, customValue);\n } else if (d.type === \"vec2\") {\n gpgpu.gl.uniform2fv(customLoc, customValue);\n } else if (d.type === \"vec3\") {\n gpgpu.gl.uniform3fv(customLoc, customValue);\n } else if (d.type === \"vec4\") {\n gpgpu.gl.uniform4fv(customLoc, customValue);\n } else if (d.type === \"int\") {\n gpgpu.gl.uniform1iv(customLoc, customValue);\n } else if (d.type === \"ivec2\") {\n gpgpu.gl.uniform2iv(customLoc, customValue);\n } else if (d.type === \"ivec3\") {\n gpgpu.gl.uniform3iv(customLoc, customValue);\n } else if (d.type === \"ivec4\") {\n gpgpu.gl.uniform4iv(customLoc, customValue);\n } else {\n throw Error(`uniform type ${d.type} is not supported yet.`);\n }\n });\n }\n gpgpu.executeProgram();\n}\nfunction makeShaderKey(program, inputs, output) {\n let keyInputs = \"\";\n inputs.concat(output).forEach((x) => {\n const hasOffset = x.texData != null && x.texData.slice != null && x.texData.slice.flatOffset > 0;\n if (program.enableShapeUniforms && !x.isUniform) {\n const xTexShape = x.texData.texShape;\n const { useSqueezeShape, uniformShape, keptDims } = getUniformInfoFromShape(program.packedInputs, x.shape, xTexShape);\n let rank1 = \"\", rank2 = \"\", rank34 = \"\";\n if (uniformShape.length === 1 && program.packedInputs) {\n const packedTexShape = [Math.ceil(xTexShape[0] / 2), Math.ceil(xTexShape[1] / 2)];\n rank1 = `${packedTexShape[0] > 1}_${packedTexShape[1] > 1}`;\n } else if (uniformShape.length === 2 && !program.packedInputs) {\n rank2 = `${uniformShape[0] > 1}_${uniformShape[1] > 1}`;\n } else if (uniformShape.length > 2 && !program.packedInputs) {\n const strides = util_exports.computeStrides(uniformShape);\n rank34 = `${strides[0] === xTexShape[1]}_${strides[strides.length - 1] === xTexShape[1]}`;\n }\n const xRank = x.shape.length;\n const isLogicalShapTexShapeEqual = uniformShape.length === 2 && util_exports.arraysEqual(x.shape, xTexShape);\n const isScalar = util_exports.sizeFromShape(x.shape) === 1;\n const broadcastDims = backend_util_exports.getBroadcastDims(x.shape, output.shape);\n const isInOutTexShapeEqual = !program.packedInputs && xRank === output.shape.length && util_exports.arraysEqual(xTexShape, output.texData.texShape);\n const isTexShapeGreaterThanOne = program.packedInputs || uniformShape.length > 2 ? \"\" : `${xTexShape[0] > 1}_${xTexShape[1] > 1}`;\n keyInputs += `${xRank}_${isInOutTexShapeEqual}_${useSqueezeShape ? keptDims : \"\"}_${uniformShape.length}_${isScalar}_${broadcastDims}_${isLogicalShapTexShapeEqual}_${rank1}_${rank2}_${rank34}_${isTexShapeGreaterThanOne}_${hasOffset}`;\n } else {\n const texShape = x.isUniform ? \"uniform\" : x.texData.texShape;\n keyInputs += `${x.shape}_${texShape}_${hasOffset}`;\n }\n });\n const keyUserCode = program.userCode;\n let key = program.constructor.name;\n key += \"_\" + keyInputs + \"_\" + keyUserCode + `${env().getNumber(\"WEBGL_VERSION\")}`;\n return key;\n}\nfunction useShapeUniforms(rank) {\n return env().getBool(\"WEBGL_USE_SHAPES_UNIFORMS\") && rank <= 4;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/decode_matrix_gpu.js\nvar DecodeMatrixProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = false;\n this.packedOutput = true;\n this.outPackingScheme = PackingScheme.DENSE;\n this.customUniforms = [{ name: \"texShape\", type: \"ivec2\" }];\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n ivec3 outCoordsFromFlatIndex(int index) {\n ${this.enableShapeUniforms ? getOutputLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\"], outputShape) : getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\"], outputShape)}\n return ivec3(r, c, d);\n }\n\n void main() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));\n int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);\n\n vec4 result = vec4(0.);\n\n for (int i=0; i<4; i++) {\n int flatIndex = index + i;\n ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n result[i] = getA(rc.x, rc.y, rc.z);\n }\n\n ${glsl.output} = result;\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/decode_matrix_packed_gpu.js\nvar DecodeMatrixPackedProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outPackingScheme = PackingScheme.DENSE;\n this.customUniforms = [{ name: \"texShape\", type: \"ivec2\" }];\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n ivec3 outCoordsFromFlatIndex(int index) {\n ${this.enableShapeUniforms ? getOutputLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\"], outputShape) : getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\"], outputShape)}\n return ivec3(r, c, d);\n }\n\n void main() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));\n int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);\n\n vec4 result = vec4(0.);\n\n for (int i=0; i<4; i++) {\n int flatIndex = index + i;\n ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));\n }\n\n ${glsl.output} = result;\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/encode_float_gpu.js\nvar EncodeFloatProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.outTexUsage = TextureUsage.DOWNLOAD;\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.userCode = `\n ${ENCODE_FLOAT_SNIPPET}\n\n void main() {\n float x = getAAtOutCoords();\n ${glsl.output} = encode_float(x);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/encode_float_packed_gpu.js\nvar EncodeFloatPackedProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = false;\n this.outTexUsage = TextureUsage.DOWNLOAD;\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.userCode = `\n ${ENCODE_FLOAT_SNIPPET}\n\n void main() {\n ivec3 coords = getOutputCoords();\n float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));\n ${glsl.output} = encode_float(x);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/encode_matrix_gpu.js\nvar EncodeMatrixProgram = class {\n constructor(outputShape, inputIsUnsignedByte = false) {\n this.variableNames = [\"A\"];\n this.customUniforms = [{ name: \"texShape\", type: \"ivec2\" }];\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n let output = `result`;\n if (inputIsUnsignedByte) {\n output = `floor(result * 255. + 0.5)`;\n }\n this.userCode = `\n ${this.enableShapeUniforms ? getFlatIndexFrom3DOutput() : getFlatIndexFrom3D(outputShape)}\n\n void main() {\n ivec3 coords = getOutputCoords();\n\n int flatIndex = getFlatIndex(coords);\n int offset = imod(flatIndex, 4);\n\n flatIndex = idiv(flatIndex, 4, 1.);\n\n int r = flatIndex / texShape[1];\n int c = imod(flatIndex, texShape[1]);\n vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);\n vec4 values = ${glsl.texture2D}(A, uv);\n\n float result;\n\n if(offset == 0) {\n result = values[0];\n } else if(offset == 1) {\n result = values[1];\n } else if(offset == 2) {\n result = values[2];\n } else {\n result = values[3];\n }\n\n ${glsl.output} = vec4(${output}, 0., 0., 0.);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/encode_matrix_packed_gpu.js\nvar EncodeMatrixPackedProgram = class {\n constructor(outputShape, inputIsUnsignedByte = false) {\n this.variableNames = [\"A\"];\n this.packedInputs = false;\n this.packedOutput = true;\n this.customUniforms = [{ name: \"texShape\", type: \"ivec2\" }];\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n let mainLoop = \"\";\n let output = \"result\";\n if (inputIsUnsignedByte) {\n output = \"floor(result * 255. + 0.5)\";\n }\n for (let row = 0; row <= 1; row++) {\n for (let col = 0; col <= 1; col++) {\n const channel = row * 2 + col;\n mainLoop += `\n localCoords = coords;\n if(localCoords[2] + ${col} < ${this.enableShapeUniforms ? \"outShape[2]\" : `${outputShape[2]}`}) {\n localCoords[2] += ${col};\n if (localCoords[1] + ${row} < ${this.enableShapeUniforms ? \"outShape[1]\" : `${outputShape[1]}`}) {\n localCoords[1] += ${row};\n\n flatIndex = getFlatIndex(localCoords);\n offset = imod(flatIndex, 4);\n\n flatIndex = idiv(flatIndex, 4, 1.);\n\n int r = flatIndex / texShape[1];\n int c = imod(flatIndex, texShape[1]);\n vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);\n values = ${glsl.texture2D}(A, uv);\n\n if (offset == 0) {\n result[${channel}] = values[0];\n } else if (offset == 1) {\n result[${channel}] = values[1];\n } else if (offset == 2) {\n result[${channel}] = values[2];\n } else {\n result[${channel}] = values[3];\n }\n }\n }\n `;\n }\n }\n this.userCode = `\n ${this.enableShapeUniforms ? getFlatIndexFrom3DOutput() : getFlatIndexFrom3D(outputShape)}\n\n void main() {\n ivec3 coords = getOutputCoords();\n\n vec4 result = vec4(0.);\n int flatIndex, r, c, offset;\n ivec3 localCoords;\n vec2 uv;\n vec4 values;\n\n ${mainLoop}\n\n ${glsl.output} = ${output};\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gpgpu_util.js\nvar gpgpu_util_exports = {};\n__export(gpgpu_util_exports, {\n bindVertexProgramAttributeStreams: () => bindVertexProgramAttributeStreams,\n createBufferFromOutputTexture: () => createBufferFromOutputTexture,\n createFloat16MatrixTexture: () => createFloat16MatrixTexture,\n createFloat16PackedMatrixTexture: () => createFloat16PackedMatrixTexture,\n createFloat32MatrixTexture: () => createFloat32MatrixTexture,\n createIndexBuffer: () => createIndexBuffer,\n createPackedMatrixTexture: () => createPackedMatrixTexture,\n createUnsignedBytesMatrixTexture: () => createUnsignedBytesMatrixTexture,\n createVertexBuffer: () => createVertexBuffer,\n createVertexShader: () => createVertexShader2,\n downloadByteEncodedFloatMatrixFromOutputTexture: () => downloadByteEncodedFloatMatrixFromOutputTexture,\n downloadFloat32MatrixFromBuffer: () => downloadFloat32MatrixFromBuffer,\n downloadMatrixFromPackedOutputTexture: () => downloadMatrixFromPackedOutputTexture,\n downloadPackedMatrixFromBuffer: () => downloadPackedMatrixFromBuffer,\n getInternalFormatForFloat16MatrixTexture: () => getInternalFormatForFloat16MatrixTexture,\n getInternalFormatForFloat16PackedMatrixTexture: () => getInternalFormatForFloat16PackedMatrixTexture,\n getInternalFormatForFloat32MatrixTexture: () => getInternalFormatForFloat32MatrixTexture,\n getInternalFormatForPackedMatrixTexture: () => getInternalFormatForPackedMatrixTexture,\n getInternalFormatForUnsignedBytesMatrixTexture: () => getInternalFormatForUnsignedBytesMatrixTexture,\n uploadDenseMatrixToTexture: () => uploadDenseMatrixToTexture,\n uploadPixelDataToTexture: () => uploadPixelDataToTexture\n});\nfunction createVertexShader2(gl) {\n const glsl = getGlslDifferences();\n const vertexShaderSource = `${glsl.version}\n precision highp float;\n ${glsl.attribute} vec3 clipSpacePos;\n ${glsl.attribute} vec2 uv;\n ${glsl.varyingVs} vec2 resultUV;\n\n void main() {\n gl_Position = vec4(clipSpacePos, 1);\n resultUV = uv;\n }`;\n return createVertexShader(gl, vertexShaderSource);\n}\nfunction createVertexBuffer(gl) {\n const vertexArray = new Float32Array([-1, 1, 0, 0, 1, -1, -1, 0, 0, 0, 1, 1, 0, 1, 1, 1, -1, 0, 1, 0]);\n return createStaticVertexBuffer(gl, vertexArray);\n}\nfunction createIndexBuffer(gl) {\n const triangleVertexIndices = new Uint16Array([0, 1, 2, 2, 1, 3]);\n return createStaticIndexBuffer(gl, triangleVertexIndices);\n}\nfunction createAndConfigureTexture(gl, width, height, internalFormat, textureFormat, textureType) {\n validateTextureSize(width, height);\n const texture = createTexture(gl);\n const tex2d = gl.TEXTURE_2D;\n callAndCheck(gl, () => gl.bindTexture(tex2d, texture));\n callAndCheck(gl, () => gl.texParameteri(tex2d, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE));\n callAndCheck(gl, () => gl.texParameteri(tex2d, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE));\n callAndCheck(gl, () => gl.texParameteri(tex2d, gl.TEXTURE_MIN_FILTER, gl.NEAREST));\n callAndCheck(gl, () => gl.texParameteri(tex2d, gl.TEXTURE_MAG_FILTER, gl.NEAREST));\n if (env().getNumber(\"WEBGL_VERSION\") === 1) {\n callAndCheck(gl, () => gl.texImage2D(tex2d, 0, internalFormat, width, height, 0, textureFormat, textureType, null));\n } else {\n callAndCheck(gl, () => gl.texStorage2D(tex2d, 1, internalFormat, width, height));\n }\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, null));\n return { texture, texShape: [height, width] };\n}\nfunction getInternalFormatForFloat32MatrixTexture(textureConfig) {\n return textureConfig.internalFormatFloat;\n}\nfunction createFloat32MatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getUnpackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForFloat32MatrixTexture(textureConfig), textureConfig.textureFormatFloat, gl.FLOAT);\n}\nfunction getInternalFormatForFloat16MatrixTexture(textureConfig) {\n return textureConfig.internalFormatHalfFloat;\n}\nfunction createFloat16MatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getUnpackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForFloat16MatrixTexture(textureConfig), textureConfig.textureFormatFloat, textureConfig.textureTypeHalfFloat);\n}\nfunction getInternalFormatForUnsignedBytesMatrixTexture(textureConfig) {\n return textureConfig.downloadTextureFormat;\n}\nfunction createUnsignedBytesMatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getUnpackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForUnsignedBytesMatrixTexture(textureConfig), gl.RGBA, gl.UNSIGNED_BYTE);\n}\nfunction getInternalFormatForPackedMatrixTexture(textureConfig) {\n return textureConfig.internalFormatPackedFloat;\n}\nfunction createPackedMatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getPackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForPackedMatrixTexture(textureConfig), gl.RGBA, gl.FLOAT);\n}\nfunction getInternalFormatForFloat16PackedMatrixTexture(textureConfig) {\n return textureConfig.internalFormatPackedHalfFloat;\n}\nfunction createFloat16PackedMatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getPackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForFloat16PackedMatrixTexture(textureConfig), gl.RGBA, textureConfig.textureTypeHalfFloat);\n}\nfunction bindVertexProgramAttributeStreams(gl, program, vertexBuffer) {\n const posOffset = 0;\n const uvOffset = 3 * 4;\n const stride = 3 * 4 + 2 * 4;\n callAndCheck(gl, () => gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer));\n const success = bindVertexBufferToProgramAttribute(gl, program, \"clipSpacePos\", vertexBuffer, 3, stride, posOffset);\n return success && bindVertexBufferToProgramAttribute(gl, program, \"uv\", vertexBuffer, 2, stride, uvOffset);\n}\nfunction uploadDenseMatrixToTexture(gl, texture, width, height, data, textureConfig) {\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, texture));\n let dataForUpload, texelDataType, internalFormat;\n if (data instanceof Uint8Array) {\n dataForUpload = new Uint8Array(width * height * 4);\n texelDataType = gl.UNSIGNED_BYTE;\n internalFormat = gl.RGBA;\n } else {\n dataForUpload = new Float32Array(width * height * 4);\n texelDataType = gl.FLOAT;\n internalFormat = textureConfig.internalFormatPackedFloat;\n }\n dataForUpload.set(data);\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n callAndCheck(gl, () => gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, width, height, gl.RGBA, texelDataType, dataForUpload));\n } else {\n callAndCheck(gl, () => gl.texImage2D(gl.TEXTURE_2D, 0, internalFormat, width, height, 0, gl.RGBA, texelDataType, dataForUpload));\n }\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, null));\n}\nfunction uploadPixelDataToTexture(gl, texture, pixels) {\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, texture));\n if (pixels.data instanceof Uint8Array) {\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n callAndCheck(gl, () => gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, pixels.width, pixels.height, gl.RGBA, gl.UNSIGNED_BYTE, pixels.data));\n } else {\n callAndCheck(gl, () => gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, pixels.width, pixels.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, pixels.data));\n }\n } else {\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n callAndCheck(gl, () => gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, gl.RGBA, gl.UNSIGNED_BYTE, pixels));\n } else {\n callAndCheck(gl, () => gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, pixels));\n }\n }\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, null));\n}\nfunction createBufferFromOutputTexture(gl2, rows, columns, textureConfig) {\n const buffer2 = gl2.createBuffer();\n callAndCheck(gl2, () => gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, buffer2));\n const bytesPerFloat = 4;\n const valuesPerTexel = 4;\n const bufferSizeBytes = bytesPerFloat * valuesPerTexel * rows * columns;\n callAndCheck(gl2, () => gl2.bufferData(gl2.PIXEL_PACK_BUFFER, bufferSizeBytes, gl2.STREAM_READ));\n callAndCheck(gl2, () => gl2.readPixels(0, 0, columns, rows, gl2.RGBA, gl2.FLOAT, 0));\n callAndCheck(gl2, () => gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, null));\n return buffer2;\n}\nfunction downloadFloat32MatrixFromBuffer(gl, buffer2, size) {\n const gl2 = gl;\n const downloadTarget = new Float32Array(size);\n gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, buffer2);\n gl2.getBufferSubData(gl2.PIXEL_PACK_BUFFER, 0, downloadTarget);\n gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, null);\n return downloadTarget;\n}\nfunction downloadByteEncodedFloatMatrixFromOutputTexture(gl, rows, columns, textureConfig) {\n const [w, h] = getUnpackedMatrixTextureShapeWidthHeight(rows, columns);\n const numChannels = 4;\n const downloadTarget = new Uint8Array(getUnpackedArraySizeFromMatrixSize(rows * columns, numChannels));\n callAndCheck(gl, () => gl.readPixels(0, 0, w, h, textureConfig.downloadTextureFormat, gl.UNSIGNED_BYTE, downloadTarget));\n return new Float32Array(downloadTarget.buffer);\n}\nfunction downloadPackedMatrixFromBuffer(gl, buffer2, batch, rows, cols, physicalRows, physicalCols, textureConfig) {\n const gl2 = gl;\n const downloadTarget = new Float32Array(getPackedRGBAArraySizeFromMatrixShape(physicalRows, physicalCols));\n gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, buffer2);\n gl2.getBufferSubData(gl2.PIXEL_PACK_BUFFER, 0, downloadTarget);\n gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, null);\n return downloadTarget;\n}\nfunction downloadMatrixFromPackedOutputTexture(gl, physicalRows, physicalCols) {\n const packedRGBA = new Float32Array(physicalRows * physicalCols * 4);\n callAndCheck(gl, () => gl.readPixels(0, 0, physicalCols, physicalRows, gl.RGBA, gl.FLOAT, packedRGBA));\n return packedRGBA;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gpgpu_context.js\nvar GPGPUContext = class {\n constructor(gl) {\n this.outputTexture = null;\n this.program = null;\n this.disposed = false;\n this.vertexAttrsAreBound = false;\n this.itemsToPoll = [];\n const glVersion = env().getNumber(\"WEBGL_VERSION\");\n if (gl != null) {\n this.gl = gl;\n setWebGLContext(glVersion, gl);\n } else {\n this.gl = getWebGLContext(glVersion);\n }\n let COLOR_BUFFER_FLOAT = \"WEBGL_color_buffer_float\";\n const COLOR_BUFFER_HALF_FLOAT = \"EXT_color_buffer_half_float\";\n this.parallelCompilationExtension = this.gl.getExtension(\"KHR_parallel_shader_compile\");\n if (env().getNumber(\"WEBGL_VERSION\") === 1) {\n const TEXTURE_FLOAT = \"OES_texture_float\";\n const TEXTURE_HALF_FLOAT = \"OES_texture_half_float\";\n this.textureFloatExtension = getExtensionOrThrow(this.gl, TEXTURE_FLOAT);\n if (hasExtension(this.gl, TEXTURE_HALF_FLOAT)) {\n this.textureHalfFloatExtension = getExtensionOrThrow(this.gl, TEXTURE_HALF_FLOAT);\n } else if (env().get(\"WEBGL_FORCE_F16_TEXTURES\")) {\n throw new Error(\"GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.\");\n }\n this.colorBufferFloatExtension = this.gl.getExtension(COLOR_BUFFER_FLOAT);\n if (hasExtension(this.gl, COLOR_BUFFER_HALF_FLOAT)) {\n this.colorBufferHalfFloatExtension = getExtensionOrThrow(this.gl, COLOR_BUFFER_HALF_FLOAT);\n } else if (env().get(\"WEBGL_FORCE_F16_TEXTURES\")) {\n throw new Error(\"GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.\");\n }\n } else {\n COLOR_BUFFER_FLOAT = \"EXT_color_buffer_float\";\n if (hasExtension(this.gl, COLOR_BUFFER_FLOAT)) {\n this.colorBufferFloatExtension = this.gl.getExtension(COLOR_BUFFER_FLOAT);\n } else if (hasExtension(this.gl, COLOR_BUFFER_HALF_FLOAT)) {\n this.colorBufferHalfFloatExtension = this.gl.getExtension(COLOR_BUFFER_HALF_FLOAT);\n } else {\n throw new Error(\"GL context does not support color renderable floats\");\n }\n }\n this.vertexBuffer = createVertexBuffer(this.gl);\n this.indexBuffer = createIndexBuffer(this.gl);\n this.framebuffer = createFramebuffer(this.gl);\n this.textureConfig = getTextureConfig(this.gl, this.textureHalfFloatExtension);\n }\n get debug() {\n return env().getBool(\"DEBUG\");\n }\n dispose() {\n if (this.disposed) {\n return;\n }\n if (this.program != null) {\n console.warn(\"Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing.\");\n }\n if (this.outputTexture != null) {\n console.warn(\"Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.\");\n }\n const gl = this.gl;\n callAndCheck(gl, () => gl.finish());\n callAndCheck(gl, () => gl.bindFramebuffer(gl.FRAMEBUFFER, null));\n callAndCheck(gl, () => gl.deleteFramebuffer(this.framebuffer));\n callAndCheck(gl, () => gl.bindBuffer(gl.ARRAY_BUFFER, null));\n callAndCheck(gl, () => gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null));\n callAndCheck(gl, () => gl.deleteBuffer(this.indexBuffer));\n this.disposed = true;\n }\n createFloat32MatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createFloat32MatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n createFloat16MatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createFloat16MatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n createUnsignedBytesMatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createUnsignedBytesMatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n uploadPixelDataToTexture(texture, pixels) {\n this.throwIfDisposed();\n uploadPixelDataToTexture(this.gl, texture, pixels);\n }\n uploadDenseMatrixToTexture(texture, width, height, data) {\n this.throwIfDisposed();\n uploadDenseMatrixToTexture(this.gl, texture, width, height, data, this.textureConfig);\n }\n createFloat16PackedMatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createFloat16PackedMatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n createPackedMatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createPackedMatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n deleteMatrixTexture(texture) {\n this.throwIfDisposed();\n if (this.outputTexture === texture) {\n unbindColorTextureFromFramebuffer(this.gl, this.framebuffer);\n this.outputTexture = null;\n }\n callAndCheck(this.gl, () => this.gl.deleteTexture(texture));\n }\n downloadByteEncodedFloatMatrixFromOutputTexture(texture, rows, columns) {\n return this.downloadMatrixDriver(texture, () => downloadByteEncodedFloatMatrixFromOutputTexture(this.gl, rows, columns, this.textureConfig));\n }\n downloadPackedMatrixFromBuffer(buffer2, batch, rows, columns, physicalRows, physicalCols) {\n return downloadPackedMatrixFromBuffer(this.gl, buffer2, batch, rows, columns, physicalRows, physicalCols, this.textureConfig);\n }\n downloadFloat32MatrixFromBuffer(buffer2, size) {\n return downloadFloat32MatrixFromBuffer(this.gl, buffer2, size);\n }\n createBufferFromTexture(texture, rows, columns) {\n this.bindTextureToFrameBuffer(texture);\n const result = createBufferFromOutputTexture(this.gl, rows, columns, this.textureConfig);\n this.unbindTextureToFrameBuffer();\n return result;\n }\n createAndWaitForFence() {\n const fenceContext = this.createFence(this.gl);\n return this.pollFence(fenceContext);\n }\n createFence(gl) {\n let query;\n let isFencePassed;\n if (env().getBool(\"WEBGL_FENCE_API_ENABLED\")) {\n const gl2 = gl;\n const sync = gl2.fenceSync(gl2.SYNC_GPU_COMMANDS_COMPLETE, 0);\n gl.flush();\n isFencePassed = () => {\n const status = gl2.clientWaitSync(sync, 0, 0);\n return status === gl2.ALREADY_SIGNALED || status === gl2.CONDITION_SATISFIED;\n };\n query = sync;\n } else if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") > 0) {\n query = this.beginQuery();\n this.endQuery();\n isFencePassed = () => this.isQueryAvailable(query, env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"));\n } else {\n isFencePassed = () => true;\n }\n return { query, isFencePassed };\n }\n downloadMatrixFromPackedTexture(texture, physicalRows, physicalCols) {\n return this.downloadMatrixDriver(texture, () => downloadMatrixFromPackedOutputTexture(this.gl, physicalRows, physicalCols));\n }\n createProgram(fragmentShader) {\n this.throwIfDisposed();\n const gl = this.gl;\n if (this.vertexShader == null) {\n this.vertexShader = createVertexShader2(gl);\n }\n const program = createProgram(gl);\n callAndCheck(gl, () => gl.attachShader(program, this.vertexShader));\n callAndCheck(gl, () => gl.attachShader(program, fragmentShader));\n linkProgram(gl, program);\n if (this.debug) {\n validateProgram(gl, program);\n }\n if (!this.vertexAttrsAreBound) {\n this.setProgram(program);\n this.vertexAttrsAreBound = bindVertexProgramAttributeStreams(gl, this.program, this.vertexBuffer);\n }\n return program;\n }\n deleteProgram(program) {\n this.throwIfDisposed();\n if (program === this.program) {\n this.program = null;\n }\n if (program != null) {\n callAndCheck(this.gl, () => this.gl.deleteProgram(program));\n }\n }\n setProgram(program) {\n this.throwIfDisposed();\n this.program = program;\n if (this.program != null && this.debug) {\n validateProgram(this.gl, this.program);\n }\n callAndCheck(this.gl, () => this.gl.useProgram(program));\n }\n getUniformLocation(program, uniformName, shouldThrow = true) {\n this.throwIfDisposed();\n if (shouldThrow) {\n return getProgramUniformLocationOrThrow(this.gl, program, uniformName);\n } else {\n return getProgramUniformLocation(this.gl, program, uniformName);\n }\n }\n getAttributeLocation(program, attribute) {\n this.throwIfDisposed();\n return callAndCheck(this.gl, () => this.gl.getAttribLocation(program, attribute));\n }\n getUniformLocationNoThrow(program, uniformName) {\n this.throwIfDisposed();\n return this.gl.getUniformLocation(program, uniformName);\n }\n setInputMatrixTexture(inputMatrixTexture, uniformLocation, textureUnit) {\n this.throwIfDisposed();\n this.throwIfNoProgram();\n bindTextureToProgramUniformSampler(this.gl, inputMatrixTexture, uniformLocation, textureUnit);\n }\n setOutputMatrixTexture(outputMatrixTexture, rows, columns) {\n this.setOutputMatrixTextureDriver(outputMatrixTexture, columns, rows);\n }\n setOutputPackedMatrixTexture(outputPackedMatrixTexture, rows, columns) {\n this.throwIfDisposed();\n const [width, height] = getPackedMatrixTextureShapeWidthHeight(rows, columns);\n this.setOutputMatrixTextureDriver(outputPackedMatrixTexture, width, height);\n }\n setOutputMatrixWriteRegion(startRow, numRows, startColumn, numColumns) {\n this.setOutputMatrixWriteRegionDriver(startColumn, startRow, numColumns, numRows);\n }\n setOutputPackedMatrixWriteRegion(startRow, numRows, startColumn, numColumns) {\n throw new Error(\"setOutputPackedMatrixWriteRegion not implemented.\");\n }\n debugValidate() {\n if (this.program != null) {\n validateProgram(this.gl, this.program);\n }\n validateFramebuffer(this.gl);\n }\n executeProgram() {\n this.throwIfDisposed();\n this.throwIfNoProgram();\n const gl = this.gl;\n if (this.debug) {\n this.debugValidate();\n }\n callAndCheck(gl, () => gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0));\n }\n blockUntilAllProgramsCompleted() {\n this.throwIfDisposed();\n callAndCheck(this.gl, () => this.gl.finish());\n }\n getQueryTimerExtension() {\n if (this.disjointQueryTimerExtension == null) {\n this.disjointQueryTimerExtension = getExtensionOrThrow(this.gl, env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") === 2 ? \"EXT_disjoint_timer_query_webgl2\" : \"EXT_disjoint_timer_query\");\n }\n return this.disjointQueryTimerExtension;\n }\n getQueryTimerExtensionWebGL2() {\n return this.getQueryTimerExtension();\n }\n getQueryTimerExtensionWebGL1() {\n return this.getQueryTimerExtension();\n }\n beginQuery() {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") === 2) {\n const gl2 = this.gl;\n const ext2 = this.getQueryTimerExtensionWebGL2();\n const query2 = gl2.createQuery();\n gl2.beginQuery(ext2.TIME_ELAPSED_EXT, query2);\n return query2;\n }\n const ext = this.getQueryTimerExtensionWebGL1();\n const query = ext.createQueryEXT();\n ext.beginQueryEXT(ext.TIME_ELAPSED_EXT, query);\n return query;\n }\n endQuery() {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") === 2) {\n const gl2 = this.gl;\n const ext2 = this.getQueryTimerExtensionWebGL2();\n gl2.endQuery(ext2.TIME_ELAPSED_EXT);\n return;\n }\n const ext = this.getQueryTimerExtensionWebGL1();\n ext.endQueryEXT(ext.TIME_ELAPSED_EXT);\n }\n async waitForQueryAndGetTime(query) {\n await util_exports.repeatedTry(() => this.disposed || this.isQueryAvailable(query, env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")));\n return this.getQueryTime(query, env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"));\n }\n getQueryTime(query, queryTimerVersion) {\n if (queryTimerVersion === 0) {\n return null;\n }\n if (queryTimerVersion === 2) {\n const gl2 = this.gl;\n const timeElapsedNanos = gl2.getQueryParameter(query, gl2.QUERY_RESULT);\n return timeElapsedNanos / 1e6;\n } else {\n const ext = this.getQueryTimerExtensionWebGL1();\n const timeElapsedNanos = ext.getQueryObjectEXT(query, ext.QUERY_RESULT_EXT);\n return timeElapsedNanos / 1e6;\n }\n }\n isQueryAvailable(query, queryTimerVersion) {\n if (queryTimerVersion === 0) {\n return true;\n }\n if (queryTimerVersion === 2) {\n const gl2 = this.gl;\n const ext = this.getQueryTimerExtensionWebGL2();\n const available = gl2.getQueryParameter(query, gl2.QUERY_RESULT_AVAILABLE);\n if (this.disjoint == null) {\n this.disjoint = this.gl.getParameter(ext.GPU_DISJOINT_EXT);\n }\n return available && !this.disjoint;\n } else {\n const ext = this.getQueryTimerExtensionWebGL1();\n const available = ext.getQueryObjectEXT(query, ext.QUERY_RESULT_AVAILABLE_EXT);\n if (this.disjoint == null) {\n this.disjoint = this.gl.getParameter(ext.GPU_DISJOINT_EXT);\n }\n return available && !this.disjoint;\n }\n }\n pollFence(fenceContext) {\n return new Promise((resolve) => {\n this.addItemToPoll(() => fenceContext.isFencePassed(), () => resolve());\n });\n }\n pollItems() {\n const index = linearSearchLastTrue(this.itemsToPoll.map((x) => x.isDoneFn));\n for (let i2 = 0; i2 <= index; ++i2) {\n const { resolveFn } = this.itemsToPoll[i2];\n resolveFn();\n }\n this.itemsToPoll = this.itemsToPoll.slice(index + 1);\n }\n addItemToPoll(isDoneFn, resolveFn) {\n this.itemsToPoll.push({ isDoneFn, resolveFn });\n if (this.itemsToPoll.length > 1) {\n return;\n }\n util_exports.repeatedTry(() => {\n this.pollItems();\n return this.itemsToPoll.length === 0;\n });\n }\n bindTextureToFrameBuffer(texture) {\n this.throwIfDisposed();\n bindColorTextureToFramebuffer(this.gl, texture, this.framebuffer);\n if (this.debug) {\n validateFramebuffer(this.gl);\n }\n }\n unbindTextureToFrameBuffer() {\n if (this.outputTexture != null) {\n bindColorTextureToFramebuffer(this.gl, this.outputTexture, this.framebuffer);\n if (this.debug) {\n validateFramebuffer(this.gl);\n }\n } else {\n unbindColorTextureFromFramebuffer(this.gl, this.framebuffer);\n }\n }\n downloadMatrixDriver(texture, downloadAndDecode) {\n this.bindTextureToFrameBuffer(texture);\n const result = downloadAndDecode();\n this.unbindTextureToFrameBuffer();\n return result;\n }\n setOutputMatrixTextureDriver(outputMatrixTextureMaybePacked, width, height) {\n this.throwIfDisposed();\n const gl = this.gl;\n bindColorTextureToFramebuffer(gl, outputMatrixTextureMaybePacked, this.framebuffer);\n if (this.debug) {\n validateFramebuffer(gl);\n }\n this.outputTexture = outputMatrixTextureMaybePacked;\n callAndCheck(gl, () => gl.viewport(0, 0, width, height));\n callAndCheck(gl, () => gl.scissor(0, 0, width, height));\n }\n setOutputMatrixWriteRegionDriver(x, y, width, height) {\n this.throwIfDisposed();\n callAndCheck(this.gl, () => this.gl.scissor(x, y, width, height));\n }\n throwIfDisposed() {\n if (this.disposed) {\n throw new Error(\"Attempted to use disposed GPGPUContext.\");\n }\n }\n throwIfNoProgram() {\n if (this.program == null) {\n throw new Error(\"No GPU program is currently set.\");\n }\n }\n};\nfunction linearSearchLastTrue(arr) {\n let i2 = 0;\n for (; i2 < arr.length; ++i2) {\n const isDone = arr[i2]();\n if (!isDone) {\n break;\n }\n }\n return i2 - 1;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/shared.js\nvar { addImpl: addImplCPU, bincountImpl: bincountImplCPU, bincountReduceImpl: bincountReduceImplCPU, castImpl: castImplCPU, ceilImpl: ceilImplCPU, concatImpl: concatImplCPU, equalImpl: equalImplCPU, expImpl: expImplCPU, expm1Impl: expm1ImplCPU, floorImpl: floorImplCPU, gatherNdImpl: gatherNdImplCPU, gatherV2Impl: gatherV2ImplCPU, greaterImpl: greaterImplCPU, greaterEqualImpl: greaterEqualImplCPU, lessImpl: lessImplCPU, lessEqualImpl: lessEqualImplCPU, linSpaceImpl: linSpaceImplCPU, logImpl: logImplCPU, maxImpl: maxImplCPU, maximumImpl: maximumImplCPU, minimumImpl: minimumImplCPU, multiplyImpl: multiplyImplCPU, negImpl: negImplCPU, notEqualImpl: notEqualImplCPU, prodImpl: prodImplCPU, raggedTensorToTensorImpl: raggedTensorToTensorImplCPU, rangeImpl: rangeImplCPU, rsqrtImpl: rsqrtImplCPU, scatterImpl: scatterImplCPU, sigmoidImpl: sigmoidImplCPU, simpleAbsImpl: simpleAbsImplCPU, sliceImpl: sliceImplCPU, sparseFillEmptyRowsImpl: sparseFillEmptyRowsImplCPU, sparseReshapeImpl: sparseReshapeImplCPU, sparseSegmentReductionImpl: sparseSegmentReductionImplCPU, sqrtImpl: sqrtImplCPU, stridedSliceImpl: stridedSliceImplCPU, stringNGramsImpl: stringNGramsImplCPU, stringSplitImpl: stringSplitImplCPU, stringToHashBucketFastImpl: stringToHashBucketFastImplCPU, subImpl: subImplCPU, tileImpl: tileImplCPU, topKImpl: topKImplCPU, transposeImpl: transposeImplCPU, uniqueImpl: uniqueImplCPU } = shared_exports;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/packing_util.js\nfunction getVecChannels(name, rank) {\n return [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"].slice(0, rank).map((d) => `${name}.${d}`);\n}\nfunction getChannels(name, rank) {\n if (rank === 1) {\n return [name];\n }\n return getVecChannels(name, rank);\n}\nfunction getSourceCoords(rank, dims) {\n if (rank === 1) {\n return \"rc\";\n }\n let coords3 = \"\";\n for (let i2 = 0; i2 < rank; i2++) {\n coords3 += dims[i2];\n if (i2 < rank - 1) {\n coords3 += \",\";\n }\n }\n return coords3;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/pack_gpu.js\nvar PackProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = false;\n this.packedOutput = true;\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n if (this.rank === 0) {\n this.userCode = `\n void main() {\n setOutput(vec4(getA(), 0., 0., 0.));\n }\n `;\n } else {\n const channels = getChannels(\"rc\", this.rank);\n const dtype = getCoordsDataType(this.rank);\n const outOfBoundsCondition = this.getOutOfBoundsCondition(channels);\n const setup51 = this.getSetup(channels);\n const output = this.getOutput(channels);\n this.userCode = `\n void main() {\n ${dtype} rc = getOutputCoords();\n\n if(${outOfBoundsCondition}) {\n setOutput(vec4(0));\n } else {\n ${setup51}\n\n setOutput(vec4(${output}));\n }\n }\n `;\n }\n }\n getSourceCoordsArr(dims) {\n const coords3 = [];\n for (let row = 0; row <= 1; row++) {\n for (let col = 0; col <= 1; col++) {\n let coord = `${row === 0 ? \"r\" : \"rp1\"}, ${col === 0 ? \"c\" : \"cp1\"}`;\n for (let d = 2; d < this.rank; d++) {\n coord = `${dims[dims.length - 1 - d]},` + coord;\n }\n coords3.push(coord);\n }\n }\n return coords3;\n }\n getOutOfBoundsCondition(dims) {\n if (this.rank === 1) {\n return `rc > ${this.enableShapeUniforms ? \"outShape\" : this.outputShape[0]}`;\n }\n let cond = \"\";\n for (let i2 = this.rank - 2; i2 < this.rank; i2++) {\n cond += `${dims[i2]} >= ${this.enableShapeUniforms ? `outShape[${i2}]` : this.outputShape[i2]}`;\n if (i2 < this.rank - 1) {\n cond += \"||\";\n }\n }\n return cond;\n }\n getSetup(dims) {\n if (this.rank === 1) {\n return \"\";\n }\n const innerDims = dims.slice(-2);\n const col = this.enableShapeUniforms ? `outShape[${this.rank} - 1]` : this.outputShape[this.rank - 1];\n const row = this.enableShapeUniforms ? `outShape[${this.rank} - 2]` : this.outputShape[this.rank - 2];\n return `\n int r = ${innerDims[0]};\n int c = ${innerDims[1]};\n int rp1 = r + 1;\n int cp1 = c + 1;\n\n bool cEdge = cp1 >= ${col};\n bool rEdge = rp1 >= ${row};\n `;\n }\n getOutput(dims) {\n const sourceCoords = this.getSourceCoordsArr(dims);\n if (this.rank === 1) {\n const outShape = this.enableShapeUniforms ? \"outShape\" : this.outputShape[0];\n return `getA(rc), (rc + 1 >= ${outShape} ? 0. : getA(rc + 1)), 0, 0`;\n }\n return `getA(${sourceCoords[0]}),\n cEdge ? 0. : getA(${sourceCoords[1]}),\n rEdge ? 0. : getA(${sourceCoords[2]}),\n rEdge || cEdge ? 0. : getA(${sourceCoords[3]})`;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/reshape_packed_gpu.js\nvar ReshapePackedProgram = class {\n constructor(outputShape, inputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [{ name: \"inputShape\", type: \"ivec3\" }];\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n let mainLoop = ``;\n for (let i2 = 0; i2 < 4; i2++) {\n let thisRC = `thisRC = rc;`;\n if (i2 % 2 === 1) {\n thisRC += `thisRC.z += 1;`;\n }\n if (i2 > 1) {\n thisRC += `thisRC.y += 1;`;\n }\n mainLoop += `\n ${thisRC}\n ${i2 > 0 ? `if(thisRC.y < rows && thisRC.z < cols){` : \"\"}\n int flatIndex = getFlatIndex(thisRC);\n\n ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);\n vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));\n\n result[${i2}] =\n getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);\n ${i2 > 0 ? \"}\" : \"\"}\n `;\n }\n this.userCode = `\n ${getReshapedInputCoords(inputShape, this.enableShapeUniforms)}\n ${this.enableShapeUniforms ? getFlatIndexFrom3DOutput() : getFlatIndexFrom3D(outputShape)}\n\n void main() {\n ivec3 rc = getOutputCoords();\n\n vec4 result = vec4(0.);\n\n ivec3 thisRC;\n int rows = ${this.enableShapeUniforms ? \"outShape[1]\" : outputShape[1]};\n int cols = ${this.enableShapeUniforms ? \"outShape[2]\" : outputShape[2]};\n\n ${mainLoop}\n\n setOutput(result);\n }\n `;\n }\n};\nfunction getReshapedInputCoords(shape, enableShapeUniforms) {\n const coordsFromIndexSnippet = enableShapeUniforms ? getLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\"], \"inputShape\") : getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\"], shape);\n return `\n ivec3 inputCoordsFromReshapedOutCoords(int index) {\n ${coordsFromIndexSnippet}\n return ivec3(r, c, d);\n }\n `;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/texture_manager.js\nvar TextureManager = class {\n constructor(gpgpu) {\n this.gpgpu = gpgpu;\n this.numUsedTextures = 0;\n this.numFreeTextures = 0;\n this._numBytesAllocated = 0;\n this._numBytesFree = 0;\n this.freeTextures = {};\n this.logEnabled = false;\n this.usedTextures = {};\n }\n acquireTexture(shapeRC, usage, isPacked) {\n const physicalTexType = getPhysicalFromLogicalTextureType(usage, isPacked);\n const shapeKey = getKeyFromTextureShape(shapeRC, physicalTexType, isPacked);\n if (!(shapeKey in this.freeTextures)) {\n this.freeTextures[shapeKey] = [];\n }\n if (!(shapeKey in this.usedTextures)) {\n this.usedTextures[shapeKey] = [];\n }\n const texBytes = computeBytes(shapeRC, physicalTexType, this.gpgpu.gl, this.gpgpu.textureConfig, isPacked);\n if (this.freeTextures[shapeKey].length > 0) {\n this.numFreeTextures--;\n this.numUsedTextures++;\n this._numBytesFree -= texBytes;\n this.log();\n const newTexture2 = this.freeTextures[shapeKey].shift();\n this.usedTextures[shapeKey].push(newTexture2);\n return newTexture2;\n }\n let newTexture;\n if (physicalTexType === PhysicalTextureType.PACKED_2X2_FLOAT32) {\n newTexture = this.gpgpu.createPackedMatrixTexture(shapeRC[0], shapeRC[1]);\n } else if (physicalTexType === PhysicalTextureType.PACKED_2X2_FLOAT16) {\n newTexture = this.gpgpu.createFloat16PackedMatrixTexture(shapeRC[0], shapeRC[1]);\n } else if (physicalTexType === PhysicalTextureType.UNPACKED_FLOAT32) {\n newTexture = this.gpgpu.createFloat32MatrixTexture(shapeRC[0], shapeRC[1]);\n } else if (physicalTexType === PhysicalTextureType.UNPACKED_FLOAT16) {\n newTexture = this.gpgpu.createFloat16MatrixTexture(shapeRC[0], shapeRC[1]);\n } else if (physicalTexType === PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE) {\n newTexture = this.gpgpu.createUnsignedBytesMatrixTexture(shapeRC[0], shapeRC[1]);\n }\n this.usedTextures[shapeKey].push(newTexture);\n this.numUsedTextures++;\n this._numBytesAllocated += texBytes;\n this.log();\n return newTexture;\n }\n releaseTexture(texture, shape, logicalTexType, isPacked) {\n if (this.freeTextures == null) {\n return;\n }\n const physicalTexType = getPhysicalFromLogicalTextureType(logicalTexType, isPacked);\n const shapeKey = getKeyFromTextureShape(shape, physicalTexType, isPacked);\n if (!(shapeKey in this.freeTextures)) {\n this.freeTextures[shapeKey] = [];\n }\n const texBytes = computeBytes(shape, physicalTexType, this.gpgpu.gl, this.gpgpu.textureConfig, isPacked);\n const deleteTexThreshold = env().get(\"WEBGL_DELETE_TEXTURE_THRESHOLD\");\n if (deleteTexThreshold !== -1 && this._numBytesAllocated > deleteTexThreshold) {\n this.gpgpu.deleteMatrixTexture(texture.texture);\n this._numBytesAllocated -= texBytes;\n } else {\n this.freeTextures[shapeKey].push(texture);\n this.numFreeTextures++;\n this._numBytesFree += texBytes;\n }\n this.numUsedTextures--;\n const texList = this.usedTextures[shapeKey];\n const texIndex = texList.indexOf(texture);\n if (texIndex < 0) {\n throw new Error(\"Cannot release a texture that was never provided by this texture manager\");\n }\n texList.splice(texIndex, 1);\n this.log();\n }\n log() {\n if (!this.logEnabled) {\n return;\n }\n const total = this.numFreeTextures + this.numUsedTextures;\n console.log(\"Free/Used\", `${this.numFreeTextures} / ${this.numUsedTextures}`, `(${total})`);\n const freeRatio = this._numBytesFree / this._numBytesAllocated;\n console.log(`Bytes allocated: ${this._numBytesAllocated}`);\n console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100 * freeRatio)}%)`);\n }\n get numBytesAllocated() {\n return this._numBytesAllocated;\n }\n get numBytesFree() {\n return this._numBytesFree;\n }\n getNumUsedTextures() {\n return this.numUsedTextures;\n }\n getNumFreeTextures() {\n return this.numFreeTextures;\n }\n dispose() {\n if (this.freeTextures == null) {\n return;\n }\n for (const texShape in this.freeTextures) {\n this.freeTextures[texShape].forEach((tex) => {\n this.gpgpu.deleteMatrixTexture(tex.texture);\n });\n }\n for (const texShape in this.usedTextures) {\n this.usedTextures[texShape].forEach((tex) => {\n this.gpgpu.deleteMatrixTexture(tex.texture);\n });\n }\n this.freeTextures = null;\n this.usedTextures = null;\n this.numUsedTextures = 0;\n this.numFreeTextures = 0;\n this._numBytesAllocated = 0;\n this._numBytesFree = 0;\n }\n};\nfunction numBytesForInternalFormat(gl, internalFormat) {\n const glany = gl;\n if (internalFormat === glany.R32F) {\n return 4;\n } else if (internalFormat === glany.R16F) {\n return 2;\n } else if (internalFormat === glany.RGBA32F) {\n return 16;\n } else if (internalFormat === gl.RGBA) {\n return 16;\n } else if (internalFormat === glany.RGBA16F) {\n return 8;\n } else if (internalFormat === glany.RGBA8) {\n return 4;\n }\n throw new Error(`Unknown internal format ${internalFormat}`);\n}\nfunction computeBytes(shape, physicalTexType, gl, textureConfig, isPacked) {\n const internalFormat = internalFormatForPhysicalTexType(physicalTexType, textureConfig);\n let numElements;\n if (isPacked) {\n const [packedWidth, packedHeight] = getPackedMatrixTextureShapeWidthHeight(shape[0], shape[1]);\n numElements = packedWidth * packedHeight;\n } else {\n const [width, height] = getUnpackedMatrixTextureShapeWidthHeight(shape[0], shape[1]);\n numElements = width * height;\n }\n const bytesPerElement2 = numBytesForInternalFormat(gl, internalFormat);\n return numElements * bytesPerElement2;\n}\nfunction internalFormatForPhysicalTexType(physicalTexType, textureConfig) {\n switch (physicalTexType) {\n case PhysicalTextureType.PACKED_2X2_FLOAT32:\n return getInternalFormatForPackedMatrixTexture(textureConfig);\n case PhysicalTextureType.PACKED_2X2_FLOAT16:\n return getInternalFormatForFloat16PackedMatrixTexture(textureConfig);\n case PhysicalTextureType.UNPACKED_FLOAT32:\n return getInternalFormatForFloat32MatrixTexture(textureConfig);\n case PhysicalTextureType.UNPACKED_FLOAT16:\n return getInternalFormatForFloat16MatrixTexture(textureConfig);\n case PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE:\n return getInternalFormatForUnsignedBytesMatrixTexture(textureConfig);\n default:\n throw new Error(`Unknown physical texture type ${physicalTexType}`);\n }\n}\nfunction getPhysicalTextureForRendering(isPacked) {\n if (env().getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\")) {\n if (isPacked) {\n return PhysicalTextureType.PACKED_2X2_FLOAT32;\n }\n return PhysicalTextureType.UNPACKED_FLOAT32;\n }\n if (isPacked) {\n return PhysicalTextureType.PACKED_2X2_FLOAT16;\n }\n return PhysicalTextureType.UNPACKED_FLOAT16;\n}\nfunction getPhysicalFromLogicalTextureType(logicalTexType, isPacked) {\n if (logicalTexType === TextureUsage.UPLOAD) {\n return PhysicalTextureType.PACKED_2X2_FLOAT32;\n } else if (logicalTexType === TextureUsage.RENDER || logicalTexType == null) {\n return getPhysicalTextureForRendering(isPacked);\n } else if (logicalTexType === TextureUsage.DOWNLOAD || logicalTexType === TextureUsage.PIXELS) {\n return PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE;\n }\n throw new Error(`Unknown logical texture type ${logicalTexType}`);\n}\nfunction getKeyFromTextureShape(shapeRowsCol, physicalTexType, isPacked) {\n return `${shapeRowsCol[0]}_${shapeRowsCol[1]}_${physicalTexType}_${isPacked}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/unaryop_gpu.js\nvar UnaryOpProgram = class {\n constructor(aShape, opSnippet) {\n this.variableNames = [\"A\"];\n this.outputShape = aShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n float unaryOperation(float x) {\n ${opSnippet}\n }\n\n void main() {\n float x = getAAtOutCoords();\n float y = unaryOperation(x);\n\n setOutput(y);\n }\n `;\n }\n};\nvar CHECK_NAN_SNIPPET = `if (isnan(x)) return x;`;\nvar LINEAR = `return x;`;\nvar ABS = `return abs(x);`;\nvar ELU2 = `return (x >= 0.0) ? x : (exp(x) - 1.0);`;\nvar RELU = CHECK_NAN_SNIPPET + `\n return (x < 0.0) ? 0.0 : x;\n`;\nvar RELU6 = CHECK_NAN_SNIPPET + `\n return (x < 0.0) ? 0.0 : min(6.0, x);\n`;\nvar CLONE = \"return x;\";\nvar SIGMOID = `return 1.0 / (1.0 + exp(-1.0 * x));`;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/unaryop_packed_gpu.js\nvar LINEAR2 = `return x;`;\nvar ELU3 = `\n vec4 result;\n\n result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);\n result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);\n result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);\n result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);\n\n return result;\n`;\nvar RELU2 = `\n vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar RELU62 = `\n vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar SIGMOID2 = `return 1.0 / (1.0 + exp(-1.0 * x));`;\nvar UnaryOpPackedProgram = class {\n constructor(aShape, opSnippet) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = aShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n vec4 unaryOperation(vec4 x) {\n ${opSnippet}\n }\n\n void main() {\n vec4 x = getAAtOutCoords();\n vec4 y = unaryOperation(x);\n\n setOutput(y);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/unpack_gpu.js\nvar UnpackProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = false;\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const rank = outputShape.length;\n const channels = getChannels(\"rc\", rank);\n const dtype = getCoordsDataType(rank);\n const sourceCoords = getSourceCoords(rank, channels);\n const innerDims = channels.slice(-2);\n const coords3 = rank <= 1 ? \"rc\" : `vec2(${innerDims.join(\",\")})`;\n this.userCode = `\n void main() {\n ${dtype} rc = getOutputCoords();\n vec4 packedInput = getA(${sourceCoords});\n\n setOutput(getChannel(packedInput, ${coords3}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/backend_webgl.js\nvar whereImpl3 = kernel_impls_exports.whereImpl;\nvar EPSILON_FLOAT322 = 1e-7;\nvar EPSILON_FLOAT162 = 1e-4;\nvar binaryCaches = {};\nfunction getBinaryCache(webGLVersion) {\n if (webGLVersion in binaryCaches) {\n return binaryCaches[webGLVersion];\n }\n binaryCaches[webGLVersion] = {};\n return binaryCaches[webGLVersion];\n}\nvar CPU_HANDOFF_SIZE_THRESHOLD = env().getNumber(\"CPU_HANDOFF_SIZE_THRESHOLD\");\nvar BEFORE_PAGING_CONSTANT = 600;\nfunction numMBBeforeWarning() {\n if (env().global.screen == null) {\n return 1024;\n }\n return env().global.screen.height * env().global.screen.width * window.devicePixelRatio * BEFORE_PAGING_CONSTANT / 1024 / 1024;\n}\nvar MathBackendWebGL = class extends KernelBackend {\n constructor(gpuResource) {\n super();\n this.pendingRead = /* @__PURE__ */ new WeakMap();\n this.pendingDisposal = /* @__PURE__ */ new WeakSet();\n this.dataRefCount = /* @__PURE__ */ new WeakMap();\n this.numBytesInGPU = 0;\n this.uploadWaitMs = 0;\n this.downloadWaitMs = 0;\n this.lastGlFlushTime = 0;\n this.warnedAboutMemory = false;\n this.pendingDeletes = 0;\n this.disposed = false;\n if (!env().getBool(\"HAS_WEBGL\")) {\n throw new Error(\"WebGL is not supported on this device\");\n }\n let newGPGPU;\n if (gpuResource != null) {\n if (gpuResource instanceof GPGPUContext) {\n newGPGPU = gpuResource;\n } else {\n const gl = getWebGLContext(env().getNumber(\"WEBGL_VERSION\"), gpuResource);\n newGPGPU = new GPGPUContext(gl);\n }\n this.binaryCache = {};\n this.gpgpuCreatedLocally = false;\n } else {\n const gl = getWebGLContext(env().getNumber(\"WEBGL_VERSION\"));\n newGPGPU = new GPGPUContext(gl);\n this.binaryCache = getBinaryCache(env().getNumber(\"WEBGL_VERSION\"));\n this.gpgpuCreatedLocally = true;\n }\n this.gpgpu = newGPGPU;\n this.canvas = this.gpgpu.gl.canvas;\n this.textureManager = new TextureManager(this.gpgpu);\n this.numMBBeforeWarning = numMBBeforeWarning();\n this.texData = new DataStorage(this, engine());\n }\n nextDataId() {\n return MathBackendWebGL.nextDataId++;\n }\n numDataIds() {\n return this.texData.numDataIds() - this.pendingDeletes;\n }\n write(values, shape, dtype) {\n if (env().getBool(\"WEBGL_CHECK_NUMERICAL_PROBLEMS\") || env().getBool(\"DEBUG\")) {\n this.checkNumericalProblems(values);\n }\n if (dtype === \"complex64\" && values != null) {\n throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`);\n }\n const dataId = { id: this.nextDataId() };\n this.texData.set(dataId, { shape, dtype, values, usage: TextureUsage.UPLOAD, refCount: 1 });\n return dataId;\n }\n refCount(dataId) {\n if (this.texData.has(dataId)) {\n const tensorData = this.texData.get(dataId);\n return tensorData.refCount;\n }\n return 0;\n }\n incRef(dataId) {\n const texData = this.texData.get(dataId);\n texData.refCount++;\n }\n decRef(dataId) {\n if (this.texData.has(dataId)) {\n const texData = this.texData.get(dataId);\n texData.refCount--;\n }\n }\n move(dataId, values, shape, dtype, refCount) {\n if (env().getBool(\"DEBUG\")) {\n this.checkNumericalProblems(values);\n }\n if (dtype === \"complex64\") {\n throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`);\n }\n this.texData.set(dataId, { shape, dtype, values, usage: TextureUsage.UPLOAD, refCount });\n }\n disposeIntermediateTensorInfo(tensorInfo) {\n this.disposeData(tensorInfo.dataId);\n }\n readSync(dataId) {\n const texData = this.texData.get(dataId);\n const { values, dtype, complexTensorInfos, slice: slice6, shape, isPacked } = texData;\n if (slice6 != null) {\n let program;\n if (isPacked) {\n program = new UnaryOpPackedProgram(shape, CLONE);\n } else {\n program = new UnaryOpProgram(shape, CLONE);\n }\n const res = this.runWebGLProgram(program, [{ dataId, shape, dtype }], dtype);\n const data = this.readSync(res.dataId);\n this.disposeIntermediateTensorInfo(res);\n return data;\n }\n if (values != null) {\n return this.convertAndCacheOnCPU(dataId);\n }\n if (dtype === \"string\") {\n return values;\n }\n const shouldTimeProgram = this.activeTimers != null;\n let start;\n if (shouldTimeProgram) {\n start = util_exports.now();\n }\n let result;\n if (dtype === \"complex64\") {\n const realValues = this.readSync(complexTensorInfos.real.dataId);\n const imagValues = this.readSync(complexTensorInfos.imag.dataId);\n result = backend_util_exports.mergeRealAndImagArrays(realValues, imagValues);\n } else {\n result = this.getValuesFromTexture(dataId);\n }\n if (shouldTimeProgram) {\n this.downloadWaitMs += util_exports.now() - start;\n }\n return this.convertAndCacheOnCPU(dataId, result);\n }\n async read(dataId) {\n if (this.pendingRead.has(dataId)) {\n const subscribers2 = this.pendingRead.get(dataId);\n return new Promise((resolve) => subscribers2.push(resolve));\n }\n const texData = this.texData.get(dataId);\n const { values, shape, slice: slice6, dtype, complexTensorInfos, isPacked } = texData;\n if (slice6 != null) {\n let program;\n if (isPacked) {\n program = new UnaryOpPackedProgram(shape, CLONE);\n } else {\n program = new UnaryOpProgram(shape, CLONE);\n }\n const res = this.runWebGLProgram(program, [{ dataId, shape, dtype }], dtype);\n const data = this.read(res.dataId);\n this.disposeIntermediateTensorInfo(res);\n return data;\n }\n if (values != null) {\n return this.convertAndCacheOnCPU(dataId);\n }\n if (env().getBool(\"DEBUG\")) {\n if (!env().getBool(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\") && env().getNumber(\"WEBGL_VERSION\") === 2) {\n throw new Error(`tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.`);\n }\n }\n let buffer2 = null;\n let tmpDownloadTarget;\n if (dtype !== \"complex64\" && env().get(\"WEBGL_BUFFER_SUPPORTED\")) {\n tmpDownloadTarget = this.decode(dataId);\n const tmpData = this.texData.get(tmpDownloadTarget.dataId);\n buffer2 = this.gpgpu.createBufferFromTexture(tmpData.texture.texture, ...getDenseTexShape(shape));\n }\n this.pendingRead.set(dataId, []);\n if (dtype !== \"complex64\") {\n await this.gpgpu.createAndWaitForFence();\n }\n let vals;\n if (dtype === \"complex64\") {\n const ps = await Promise.all([\n this.read(complexTensorInfos.real.dataId),\n this.read(complexTensorInfos.imag.dataId)\n ]);\n const realValues = ps[0];\n const imagValues = ps[1];\n vals = backend_util_exports.mergeRealAndImagArrays(realValues, imagValues);\n } else if (buffer2 == null) {\n vals = this.getValuesFromTexture(dataId);\n } else {\n const size = util_exports.sizeFromShape(shape);\n vals = this.gpgpu.downloadFloat32MatrixFromBuffer(buffer2, size);\n }\n if (tmpDownloadTarget != null) {\n this.disposeIntermediateTensorInfo(tmpDownloadTarget);\n }\n if (buffer2 != null) {\n const gl = this.gpgpu.gl;\n callAndCheck(gl, () => gl.deleteBuffer(buffer2));\n }\n const dTypeVals = this.convertAndCacheOnCPU(dataId, vals);\n const subscribers = this.pendingRead.get(dataId);\n this.pendingRead.delete(dataId);\n subscribers.forEach((resolve) => resolve(dTypeVals));\n if (this.pendingDisposal.has(dataId)) {\n this.pendingDisposal.delete(dataId);\n if (this.disposeData(dataId)) {\n engine().removeDataId(dataId, this);\n }\n this.pendingDeletes--;\n }\n return dTypeVals;\n }\n readToGPU(dataId, options = {}) {\n const texData = this.texData.get(dataId);\n const { values, shape, slice: slice6, dtype, isPacked, texture } = texData;\n if (dtype === \"complex64\") {\n throw new Error(\"Does not support reading texture for complex64 dtype.\");\n }\n if (slice6 != null) {\n let program;\n if (isPacked) {\n program = new UnaryOpPackedProgram(shape, CLONE);\n } else {\n program = new UnaryOpProgram(shape, CLONE);\n }\n const res = this.runWebGLProgram(program, [{ dataId, shape, dtype }], dtype);\n const gpuResouorce = this.readToGPU(res, options);\n this.disposeIntermediateTensorInfo(res);\n return gpuResouorce;\n }\n if (texture == null) {\n if (values != null) {\n throw new Error(\"Data is not on GPU but on CPU.\");\n } else {\n throw new Error(\"There is no data on GPU or CPU.\");\n }\n }\n const tmpTarget = this.decode(dataId, options.customTexShape);\n const tensorRef = engine().makeTensorFromTensorInfo(tmpTarget);\n const tmpData = this.texData.get(tmpTarget.dataId);\n return Object.assign({ tensorRef }, tmpData.texture);\n }\n bufferSync(t2) {\n const data = this.readSync(t2.dataId);\n if (t2.dtype === \"string\") {\n try {\n const strings = data.map((d) => util_exports.decodeString(d));\n return buffer(t2.shape, t2.dtype, strings);\n } catch (_a) {\n throw new Error(\"Failed to decode encoded string bytes into utf-8\");\n }\n }\n return buffer(t2.shape, t2.dtype, data);\n }\n checkNumericalProblems(values) {\n if (values == null) {\n return;\n }\n for (let i2 = 0; i2 < values.length; i2++) {\n const num = values[i2];\n if (!canBeRepresented(num)) {\n if (env().getBool(\"WEBGL_RENDER_FLOAT32_CAPABLE\")) {\n throw Error(`The value ${num} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`);\n }\n throw Error(`The value ${num} cannot be represented on this device.`);\n }\n }\n }\n getValuesFromTexture(dataId) {\n const { shape, dtype, isPacked } = this.texData.get(dataId);\n const size = util_exports.sizeFromShape(shape);\n if (env().getBool(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\")) {\n const tmpTarget = this.decode(dataId);\n const tmpData2 = this.texData.get(tmpTarget.dataId);\n const vals2 = this.gpgpu.downloadMatrixFromPackedTexture(tmpData2.texture.texture, ...getDenseTexShape(shape)).subarray(0, size);\n this.disposeIntermediateTensorInfo(tmpTarget);\n return vals2;\n }\n const shouldUsePackedProgram = env().getBool(\"WEBGL_PACK\") && isPacked === true;\n const outputShape = shouldUsePackedProgram ? getShapeAs3D(shape) : shape;\n const program = shouldUsePackedProgram ? new EncodeFloatPackedProgram(outputShape) : new EncodeFloatProgram(outputShape);\n const output = this.runWebGLProgram(program, [{ shape: outputShape, dtype, dataId }], \"float32\");\n const tmpData = this.texData.get(output.dataId);\n const vals = this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(tmpData.texture.texture, tmpData.texShape[0], tmpData.texShape[1]).subarray(0, size);\n this.disposeIntermediateTensorInfo(output);\n return vals;\n }\n timerAvailable() {\n return env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0;\n }\n time(f) {\n const oldActiveTimers = this.activeTimers;\n const newActiveTimers = [];\n let outerMostTime = false;\n if (this.programTimersStack == null) {\n this.programTimersStack = newActiveTimers;\n outerMostTime = true;\n } else {\n this.activeTimers.push(newActiveTimers);\n }\n this.activeTimers = newActiveTimers;\n f();\n const flattenedActiveTimerQueries = util_exports.flatten(this.activeTimers.map((d) => d.query)).filter((d) => d != null);\n const flattenedActiveTimerNames = util_exports.flatten(this.activeTimers.map((d) => d.name)).filter((d) => d != null);\n this.activeTimers = oldActiveTimers;\n if (outerMostTime) {\n this.programTimersStack = null;\n }\n const res = {\n uploadWaitMs: this.uploadWaitMs,\n downloadWaitMs: this.downloadWaitMs,\n kernelMs: null,\n wallMs: null\n };\n return (async () => {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0) {\n const kernelMs = await Promise.all(flattenedActiveTimerQueries);\n res[\"kernelMs\"] = util_exports.sum(kernelMs);\n res[\"getExtraProfileInfo\"] = () => kernelMs.map((d, i2) => ({ name: flattenedActiveTimerNames[i2], ms: d })).map((d) => `${d.name}: ${d.ms}`).join(\", \");\n } else {\n res[\"kernelMs\"] = {\n error: \"WebGL query timers are not supported in this environment.\"\n };\n }\n this.uploadWaitMs = 0;\n this.downloadWaitMs = 0;\n return res;\n })();\n }\n memory() {\n return {\n unreliable: false,\n numBytesInGPU: this.numBytesInGPU,\n numBytesInGPUAllocated: this.textureManager.numBytesAllocated,\n numBytesInGPUFree: this.textureManager.numBytesFree\n };\n }\n startTimer() {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0) {\n return this.gpgpu.beginQuery();\n }\n return { startMs: util_exports.now(), endMs: null };\n }\n endTimer(query) {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0) {\n this.gpgpu.endQuery();\n return query;\n }\n query.endMs = util_exports.now();\n return query;\n }\n async getQueryTime(query) {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0) {\n return this.gpgpu.waitForQueryAndGetTime(query);\n }\n const timerQuery = query;\n return timerQuery.endMs - timerQuery.startMs;\n }\n disposeData(dataId, force = false) {\n if (this.pendingDisposal.has(dataId)) {\n return false;\n }\n if (!this.texData.has(dataId)) {\n return true;\n }\n if (force) {\n this.texData.get(dataId).refCount = 0;\n } else {\n this.texData.get(dataId).refCount--;\n }\n if (!force && this.texData.get(dataId).refCount > 0) {\n return false;\n }\n if (this.pendingRead.has(dataId)) {\n this.pendingDisposal.add(dataId);\n this.pendingDeletes++;\n return false;\n }\n this.releaseGPUData(dataId);\n const { complexTensorInfos } = this.texData.get(dataId);\n if (complexTensorInfos != null) {\n this.disposeData(complexTensorInfos.real.dataId, force);\n this.disposeData(complexTensorInfos.imag.dataId, force);\n }\n this.texData.delete(dataId);\n return true;\n }\n releaseGPUData(dataId) {\n const { texture, dtype, texShape, usage, isPacked, slice: slice6 } = this.texData.get(dataId);\n const key = slice6 && slice6.origDataId || dataId;\n const refCount = this.dataRefCount.get(key);\n if (refCount > 1) {\n this.dataRefCount.set(key, refCount - 1);\n } else {\n this.dataRefCount.delete(key);\n if (texture != null) {\n this.numBytesInGPU -= this.computeBytes(texShape, dtype);\n this.textureManager.releaseTexture(texture, texShape, usage, isPacked);\n }\n }\n const texData = this.texData.get(dataId);\n texData.texture = null;\n texData.texShape = null;\n texData.isPacked = false;\n texData.slice = null;\n }\n getTexture(dataId) {\n this.uploadToGPU(dataId);\n return this.texData.get(dataId).texture.texture;\n }\n getDataInfo(dataId) {\n return this.texData.get(dataId);\n }\n shouldExecuteOnCPU(inputs, sizeThreshold = CPU_HANDOFF_SIZE_THRESHOLD) {\n return env().getBool(\"WEBGL_CPU_FORWARD\") && inputs.every((input2) => this.texData.get(input2.dataId).texture == null && util_exports.sizeFromShape(input2.shape) < sizeThreshold);\n }\n getGPGPUContext() {\n return this.gpgpu;\n }\n where(condition) {\n backend_util_exports.warn(\"tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead\");\n const condVals = condition.dataSync();\n return whereImpl3(condition.shape, condVals);\n }\n packedUnaryOp(x, op2, dtype) {\n const program = new UnaryOpPackedProgram(x.shape, op2);\n const outInfo = this.compileAndRun(program, [x], dtype);\n return engine().makeTensorFromTensorInfo(outInfo);\n }\n abs(x) {\n if (this.shouldExecuteOnCPU([x]) && x.dtype !== \"complex64\") {\n const outValues = simpleAbsImplCPU(this.texData.get(x.dataId).values);\n return this.makeOutput(x.shape, x.dtype, outValues);\n }\n if (env().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")) {\n return this.packedUnaryOp(x, ABS, x.dtype);\n }\n const program = new UnaryOpProgram(x.shape, ABS);\n const outInfo = this.compileAndRun(program, [x]);\n return engine().makeTensorFromTensorInfo(outInfo);\n }\n makeTensorInfo(shape, dtype, values) {\n let dataId;\n if (dtype === \"string\" && values != null && values.length > 0 && util_exports.isString(values[0])) {\n const encodedValues = values.map((d) => util_exports.encodeString(d));\n dataId = this.write(encodedValues, shape, dtype);\n } else {\n dataId = this.write(values, shape, dtype);\n }\n this.texData.get(dataId).usage = null;\n return { dataId, shape, dtype };\n }\n makeOutput(shape, dtype, values) {\n return engine().makeTensorFromTensorInfo(this.makeTensorInfo(shape, dtype, values), this);\n }\n unpackTensor(input2) {\n const program = new UnpackProgram(input2.shape);\n return this.runWebGLProgram(program, [input2], input2.dtype);\n }\n packTensor(input2) {\n const program = new PackProgram(input2.shape);\n const preventEagerUnpackingOutput = true;\n return this.runWebGLProgram(program, [input2], input2.dtype, null, preventEagerUnpackingOutput);\n }\n packedReshape(input2, afterShape) {\n const input3DShape = [\n getBatchDim(input2.shape),\n ...getRowsCols(input2.shape)\n ];\n const input3D = {\n dtype: input2.dtype,\n shape: input3DShape,\n dataId: input2.dataId\n };\n const afterShapeAs3D = [\n getBatchDim(afterShape),\n ...getRowsCols(afterShape)\n ];\n const program = new ReshapePackedProgram(afterShapeAs3D, input3DShape);\n const preventEagerUnpackingOfOutput = true;\n const customValues = [input3DShape];\n const output = this.runWebGLProgram(program, [input3D], input2.dtype, customValues, preventEagerUnpackingOfOutput);\n return { dataId: output.dataId, shape: afterShape, dtype: output.dtype };\n }\n decode(dataId, customTexShape) {\n const texData = this.texData.get(dataId);\n const { isPacked, shape, dtype } = texData;\n if (customTexShape != null) {\n const size = util_exports.sizeFromShape(shape);\n const texSize = customTexShape[0] * customTexShape[1] * 4;\n util_exports.assert(size <= texSize, () => \"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.\");\n }\n const shapeAs3D = getShapeAs3D(shape);\n let program;\n if (isPacked) {\n program = new DecodeMatrixPackedProgram(shapeAs3D);\n } else {\n program = new DecodeMatrixProgram(shapeAs3D);\n }\n const preventEagerUnpackingOfOutput = true;\n const customValues = [customTexShape != null ? customTexShape : getDenseTexShape(shapeAs3D)];\n const out = this.runWebGLProgram(program, [{ shape: shapeAs3D, dtype, dataId }], dtype, customValues, preventEagerUnpackingOfOutput, customTexShape);\n return { dtype, shape, dataId: out.dataId };\n }\n runWebGLProgram(program, inputs, outputDtype, customUniformValues, preventEagerUnpackingOfOutput = false, customTexShape) {\n const output = this.makeTensorInfo(program.outputShape, outputDtype);\n const outData = this.texData.get(output.dataId);\n if (program.packedOutput) {\n outData.isPacked = true;\n }\n if (program.outPackingScheme === PackingScheme.DENSE) {\n const texelShape = customTexShape != null ? customTexShape : getDenseTexShape(program.outputShape);\n outData.texShape = texelShape.map((d) => d * 2);\n }\n if (program.outTexUsage != null) {\n outData.usage = program.outTexUsage;\n }\n if (util_exports.sizeFromShape(output.shape) === 0) {\n outData.values = util_exports.getTypedArrayFromDType(output.dtype, 0);\n return output;\n }\n const dataToDispose = [];\n const inputsData = inputs.map((input2) => {\n if (input2.dtype === \"complex64\") {\n throw new Error(`GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.`);\n }\n let texData = this.texData.get(input2.dataId);\n if (texData.texture == null) {\n if (!program.packedInputs && util_exports.sizeFromShape(input2.shape) <= env().getNumber(\"WEBGL_SIZE_UPLOAD_UNIFORM\")) {\n return {\n shape: input2.shape,\n texData: null,\n isUniform: true,\n uniformValues: texData.values\n };\n }\n if (program.packedInputs) {\n texData.isPacked = true;\n texData.shape = input2.shape;\n }\n }\n this.uploadToGPU(input2.dataId);\n if (!!texData.isPacked !== !!program.packedInputs) {\n input2 = texData.isPacked ? this.unpackTensor(input2) : this.packTensor(input2);\n dataToDispose.push(input2);\n texData = this.texData.get(input2.dataId);\n } else if (texData.isPacked && !isReshapeFree(texData.shape, input2.shape)) {\n const savedInput = input2;\n const targetShape = input2.shape;\n input2.shape = texData.shape;\n input2 = this.packedReshape(input2, targetShape);\n dataToDispose.push(input2);\n texData = this.texData.get(input2.dataId);\n savedInput.shape = targetShape;\n }\n return { shape: input2.shape, texData, isUniform: false };\n });\n this.uploadToGPU(output.dataId);\n const outputData = { shape: output.shape, texData: outData, isUniform: false };\n const key = makeShaderKey(program, inputsData, outputData);\n const binary = this.getAndSaveBinary(key, () => {\n return compileProgram(this.gpgpu, program, inputsData, outputData);\n });\n const shouldTimeProgram = this.activeTimers != null;\n let query;\n if (shouldTimeProgram) {\n query = this.startTimer();\n }\n if (!env().get(\"ENGINE_COMPILE_ONLY\")) {\n runProgram(this.gpgpu, binary, inputsData, outputData, customUniformValues);\n }\n dataToDispose.forEach((info) => this.disposeIntermediateTensorInfo(info));\n if (shouldTimeProgram) {\n query = this.endTimer(query);\n this.activeTimers.push({ name: program.constructor.name, query: this.getQueryTime(query) });\n }\n const glFlushThreshold = env().get(\"WEBGL_FLUSH_THRESHOLD\");\n if (glFlushThreshold > 0) {\n const time2 = util_exports.now();\n if (time2 - this.lastGlFlushTime > glFlushThreshold) {\n this.gpgpu.gl.flush();\n this.lastGlFlushTime = time2;\n }\n }\n if (!env().getBool(\"WEBGL_LAZILY_UNPACK\") && outData.isPacked && preventEagerUnpackingOfOutput === false) {\n const unpacked = this.unpackTensor(output);\n this.disposeIntermediateTensorInfo(output);\n return unpacked;\n }\n return output;\n }\n compileAndRun(program, inputs, outputDtype, customUniformValues, preventEagerUnpackingOfOutput = false) {\n outputDtype = outputDtype || inputs[0].dtype;\n const outInfo = this.runWebGLProgram(program, inputs, outputDtype, customUniformValues, preventEagerUnpackingOfOutput);\n return outInfo;\n }\n getAndSaveBinary(key, getBinary) {\n if (!(key in this.binaryCache)) {\n this.binaryCache[key] = getBinary();\n }\n return this.binaryCache[key];\n }\n getTextureManager() {\n return this.textureManager;\n }\n dispose() {\n if (this.disposed) {\n return;\n }\n if (!env().getBool(\"IS_TEST\")) {\n const allKeys = Object.keys(this.binaryCache);\n allKeys.forEach((key) => {\n this.gpgpu.deleteProgram(this.binaryCache[key].webGLProgram);\n delete this.binaryCache[key];\n });\n }\n this.textureManager.dispose();\n if (this.canvas != null && (typeof HTMLCanvasElement !== \"undefined\" && this.canvas instanceof HTMLCanvasElement)) {\n this.canvas.remove();\n } else {\n this.canvas = null;\n }\n if (this.gpgpuCreatedLocally) {\n this.gpgpu.program = null;\n this.gpgpu.dispose();\n }\n this.disposed = true;\n }\n floatPrecision() {\n if (this.floatPrecisionValue == null) {\n this.floatPrecisionValue = tidy(() => {\n if (!env().get(\"WEBGL_RENDER_FLOAT32_ENABLED\")) {\n const debugFlag = env().getBool(\"DEBUG\");\n env().set(\"DEBUG\", false);\n const underflowCheckValue = this.abs(scalar(1e-8)).dataSync()[0];\n env().set(\"DEBUG\", debugFlag);\n if (underflowCheckValue > 0) {\n return 32;\n }\n }\n return 16;\n });\n }\n return this.floatPrecisionValue;\n }\n epsilon() {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT322 : EPSILON_FLOAT162;\n }\n uploadToGPU(dataId) {\n const texData = this.texData.get(dataId);\n const { shape, dtype, values, texture, usage, isPacked } = texData;\n if (texture != null) {\n return;\n }\n const shouldTimeProgram = this.activeTimers != null;\n let start;\n if (shouldTimeProgram) {\n start = util_exports.now();\n }\n let texShape = texData.texShape;\n if (texShape == null) {\n texShape = getTextureShapeFromLogicalShape(shape, isPacked);\n texData.texShape = texShape;\n }\n if (values != null) {\n const shapeAs3D = getShapeAs3D(shape);\n let program;\n let width = texShape[1], height = texShape[0];\n const isByteArray = values instanceof Uint8Array || values instanceof Uint8ClampedArray;\n if (isPacked || !isByteArray) {\n [width, height] = getPackedMatrixTextureShapeWidthHeight(texShape[0], texShape[1]);\n }\n if (isPacked) {\n program = new EncodeMatrixPackedProgram(shapeAs3D, isByteArray);\n } else {\n program = new EncodeMatrixProgram(shapeAs3D, isByteArray);\n }\n const tempDenseInputTexShape = isByteArray ? [height, width] : texShape;\n const tempDenseInputHandle = this.makeTensorInfo(tempDenseInputTexShape, dtype);\n const tempDenseInputTexData = this.texData.get(tempDenseInputHandle.dataId);\n if (isByteArray) {\n tempDenseInputTexData.usage = TextureUsage.PIXELS;\n } else {\n tempDenseInputTexData.usage = TextureUsage.UPLOAD;\n }\n tempDenseInputTexData.texShape = tempDenseInputTexShape;\n this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(tempDenseInputHandle.dataId), width, height, values);\n const customValues = [[height, width]];\n const preventEagerUnpacking = true;\n const encodedOutputTarget = this.runWebGLProgram(program, [tempDenseInputHandle], dtype, customValues, preventEagerUnpacking);\n const outputTexData = this.texData.get(encodedOutputTarget.dataId);\n texData.texShape = outputTexData.texShape;\n texData.isPacked = outputTexData.isPacked;\n texData.usage = outputTexData.usage;\n if (!env().get(\"ENGINE_COMPILE_ONLY\")) {\n texData.texture = outputTexData.texture;\n texData.values = null;\n this.texData.delete(encodedOutputTarget.dataId);\n } else {\n this.disposeData(encodedOutputTarget.dataId);\n }\n this.disposeIntermediateTensorInfo(tempDenseInputHandle);\n if (shouldTimeProgram) {\n this.uploadWaitMs += util_exports.now() - start;\n }\n } else {\n const newTexture = this.acquireTexture(texShape, usage, dtype, isPacked);\n texData.texture = newTexture;\n }\n }\n convertAndCacheOnCPU(dataId, float32Values) {\n const texData = this.texData.get(dataId);\n const { dtype } = texData;\n this.releaseGPUData(dataId);\n if (float32Values != null) {\n texData.values = float32ToTypedArray(float32Values, dtype);\n }\n return texData.values;\n }\n acquireTexture(texShape, texType, dtype, isPacked) {\n this.numBytesInGPU += this.computeBytes(texShape, dtype);\n if (!this.warnedAboutMemory && this.numBytesInGPU > this.numMBBeforeWarning * 1024 * 1024) {\n const mb = (this.numBytesInGPU / 1024 / 1024).toFixed(2);\n this.warnedAboutMemory = true;\n console.warn(`High memory usage in GPU: ${mb} MB, most likely due to a memory leak`);\n }\n return this.textureManager.acquireTexture(texShape, texType, isPacked);\n }\n computeBytes(shape, dtype) {\n return shape[0] * shape[1] * util_exports.bytesPerElement(dtype);\n }\n checkCompileCompletion() {\n for (const [, binary] of Object.entries(this.binaryCache)) {\n this.checkCompletion_(binary);\n }\n }\n async checkCompileCompletionAsync() {\n const ps = [];\n if (this.gpgpu.parallelCompilationExtension) {\n for (const [, binary] of Object.entries(this.binaryCache)) {\n ps.push(this.checkCompletionAsync_(binary));\n }\n return Promise.all(ps);\n } else {\n for (const [, binary] of Object.entries(this.binaryCache)) {\n const p2 = new Promise((resolve) => {\n try {\n this.checkCompletion_(binary);\n resolve(true);\n } catch (error) {\n throw error;\n }\n });\n ps.push(p2);\n }\n return Promise.all(ps);\n }\n }\n async checkCompletionAsync_(binary) {\n if (this.gpgpu.gl.getProgramParameter(binary.webGLProgram, this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)) {\n return this.checkCompletion_(binary);\n } else {\n await nextFrame();\n return this.checkCompletionAsync_(binary);\n }\n }\n checkCompletion_(binary) {\n if (this.gpgpu.gl.getProgramParameter(binary.webGLProgram, this.gpgpu.gl.LINK_STATUS) === false) {\n console.log(this.gpgpu.gl.getProgramInfoLog(binary.webGLProgram));\n if (this.gpgpu.gl.getShaderParameter(binary.fragmentShader, this.gpgpu.gl.COMPILE_STATUS) === false) {\n logShaderSourceAndInfoLog(binary.source, this.gpgpu.gl.getShaderInfoLog(binary.fragmentShader));\n throw new Error(\"Failed to compile fragment shader.\");\n }\n throw new Error(\"Failed to link vertex and fragment shaders.\");\n }\n return true;\n }\n getUniformLocations() {\n for (const [, binary] of Object.entries(this.binaryCache)) {\n const { uniformLocations, customUniformLocations, infLoc, nanLoc, inShapesLocations, inTexShapesLocations, outShapeLocation, outShapeStridesLocation, outTexShapeLocation } = getUniformLocations(this.gpgpu, binary.program, binary.webGLProgram);\n binary.uniformLocations = uniformLocations;\n binary.customUniformLocations = customUniformLocations;\n binary.infLoc = infLoc;\n binary.nanLoc = nanLoc;\n binary.inShapesLocations = inShapesLocations;\n binary.inTexShapesLocations = inTexShapesLocations;\n binary.outShapeLocation = outShapeLocation;\n binary.outShapeStridesLocation = outShapeStridesLocation;\n binary.outTexShapeLocation = outTexShapeLocation;\n }\n }\n};\nMathBackendWebGL.nextDataId = 0;\nfunction float32ToTypedArray(a, dtype) {\n if (dtype === \"float32\" || dtype === \"complex64\") {\n return a;\n } else if (dtype === \"int32\" || dtype === \"bool\") {\n const result = dtype === \"int32\" ? new Int32Array(a.length) : new Uint8Array(a.length);\n for (let i2 = 0; i2 < result.length; ++i2) {\n result[i2] = Math.round(a[i2]);\n }\n return result;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/version.js\nvar version6 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/webgl.js\nfunction forceHalfFloat() {\n env().set(\"WEBGL_FORCE_F16_TEXTURES\", true);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/base.js\nif (device_util_exports.isBrowser()) {\n registerBackend(\"webgl\", () => new MathBackendWebGL(), 2);\n}\nvar webgl = { forceHalfFloat };\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/binaryop_gpu.js\nvar CHECK_NAN_SNIPPET2 = `\n if (isnan(a)) return a;\n if (isnan(b)) return b;\n`;\nvar BinaryOpProgram = class {\n constructor(op2, aShape, bShape) {\n this.variableNames = [\"A\", \"B\"];\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n float binaryOperation(float a, float b) {\n ${op2}\n }\n\n void main() {\n float a = getAAtOutCoords();\n float b = getBAtOutCoords();\n setOutput(binaryOperation(a, b));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/binaryop_packed_gpu.js\nvar CHECK_NAN_SNIPPET3 = `\n result.r = isNaN.r > 0. ? NAN : result.r;\n result.g = isNaN.g > 0. ? NAN : result.g;\n result.b = isNaN.b > 0. ? NAN : result.b;\n result.a = isNaN.a > 0. ? NAN : result.a;\n`;\nvar BinaryOpPackedProgram = class {\n constructor(op2, aShape, bShape, checkOutOfBounds = false) {\n this.variableNames = [\"A\", \"B\"];\n this.supportsBroadcasting = true;\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n const rank = this.outputShape.length;\n this.enableShapeUniforms = useShapeUniforms(rank);\n let checkOutOfBoundsString = \"\";\n if (checkOutOfBounds) {\n if (rank === 0 || util_exports.sizeFromShape(this.outputShape) === 1) {\n checkOutOfBoundsString = `\n result.y = 0.;\n result.z = 0.;\n result.w = 0.;\n `;\n } else {\n const dtype = getCoordsDataType(rank);\n checkOutOfBoundsString = `\n ${dtype} coords = getOutputCoords();\n `;\n if (rank === 1) {\n if (this.enableShapeUniforms) {\n checkOutOfBoundsString += `\n result.y = (coords + 1) >= outShape ? 0. : result.y;\n result.z = 0.;\n result.w = 0.;\n `;\n } else {\n checkOutOfBoundsString += `\n result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;\n result.z = 0.;\n result.w = 0.;\n `;\n }\n } else {\n const channels = getChannels(\"coords\", rank);\n if (this.enableShapeUniforms) {\n checkOutOfBoundsString += `\n bool nextRowOutOfBounds =\n (${channels[rank - 2]} + 1) >= outShape[${rank} - 2];\n bool nextColOutOfBounds =\n (${channels[rank - 1]} + 1) >= outShape[${rank} - 1];\n result.y = nextColOutOfBounds ? 0. : result.y;\n result.z = nextRowOutOfBounds ? 0. : result.z;\n result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;\n `;\n } else {\n checkOutOfBoundsString += `\n bool nextRowOutOfBounds =\n (${channels[rank - 2]} + 1) >= ${this.outputShape[rank - 2]};\n bool nextColOutOfBounds =\n (${channels[rank - 1]} + 1) >= ${this.outputShape[rank - 1]};\n result.y = nextColOutOfBounds ? 0. : result.y;\n result.z = nextRowOutOfBounds ? 0. : result.z;\n result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;\n `;\n }\n }\n }\n }\n this.userCode = `\n vec4 binaryOperation(vec4 a, vec4 b) {\n ${op2}\n }\n\n void main() {\n vec4 a = getAAtOutCoords();\n vec4 b = getBAtOutCoords();\n\n vec4 result = binaryOperation(a, b);\n ${checkOutOfBoundsString}\n\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Identity.js\nfunction identity3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n backend2.incRef(x.dataId);\n return { dataId: x.dataId, shape: x.shape, dtype: x.dtype };\n}\nvar identityConfig2 = {\n kernelName: Identity,\n backendName: \"webgl\",\n kernelFunc: identity3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Complex.js\nfunction complex3(args) {\n const { inputs, backend: backend2 } = args;\n const { real: real6, imag: imag5 } = inputs;\n const complexInfo = backend2.makeTensorInfo(real6.shape, \"complex64\");\n const complex6 = backend2.texData.get(complexInfo.dataId);\n const realTensorInfo = identity3({ inputs: { x: real6 }, backend: backend2 });\n const imagTensorInfo = identity3({ inputs: { x: imag5 }, backend: backend2 });\n complex6.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo };\n return complexInfo;\n}\nvar complexConfig2 = {\n kernelName: Complex,\n backendName: \"webgl\",\n kernelFunc: complex3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LeakyRelu.js\nvar LEAKYRELU = `return (a < 0.) ? b * a : a;`;\nvar LEAKYRELU_PACKED = `\n vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;\nfunction leakyRelu3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { alpha } = attrs;\n const $alpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(alpha, \"float32\"));\n const program = env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\") ? new BinaryOpPackedProgram(LEAKYRELU_PACKED, x.shape, $alpha.shape) : new BinaryOpProgram(LEAKYRELU, x.shape, $alpha.shape);\n const result = backend2.runWebGLProgram(program, [x, $alpha], \"float32\");\n backend2.disposeIntermediateTensorInfo($alpha);\n return result;\n}\nvar leakyReluConfig2 = {\n kernelName: LeakyRelu,\n backendName: \"webgl\",\n kernelFunc: leakyRelu3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Prelu.js\nvar PRELU = `return (a < 0.) ? b * a : a;`;\nvar PRELU_PACKED = `\n vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;\nfunction prelu4(args) {\n const { inputs, backend: backend2 } = args;\n const { x, alpha } = inputs;\n const program = env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\") ? new BinaryOpPackedProgram(PRELU_PACKED, x.shape, alpha.shape) : new BinaryOpProgram(PRELU, x.shape, alpha.shape);\n return backend2.runWebGLProgram(program, [x, alpha], \"float32\");\n}\nvar preluConfig2 = {\n kernelName: Prelu,\n backendName: \"webgl\",\n kernelFunc: prelu4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/kernel_funcs_utils.js\nvar CHECK_NAN_SNIPPET_UNARY = `if (isnan(x)) return x;`;\nvar CHECK_NAN_SNIPPET_BINARY = `\n if (isnan(a)) return a;\n if (isnan(b)) return b;\n`;\nvar CHECK_NAN_SNIPPET_BINARY_PACKED = `\n result.r = isNaN.r > 0. ? NAN : result.r;\n result.g = isNaN.g > 0. ? NAN : result.g;\n result.b = isNaN.b > 0. ? NAN : result.b;\n result.a = isNaN.a > 0. ? NAN : result.a;\n`;\nfunction unaryKernelFunc2({ opSnippet, packedOpSnippet, cpuKernelImpl, dtype }) {\n return ({ inputs, backend: backend2 }) => {\n const { x } = inputs;\n const webglBackend = backend2;\n const $dtype = dtype || x.dtype;\n if (webglBackend.shouldExecuteOnCPU([x]) && cpuKernelImpl != null) {\n const xData = webglBackend.texData.get(x.dataId);\n const outValues = cpuKernelImpl(xData.values, $dtype);\n return webglBackend.makeTensorInfo(x.shape, $dtype, outValues);\n }\n const shouldUsePackedProgram = env().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\") && packedOpSnippet != null;\n let program;\n if (shouldUsePackedProgram) {\n program = new UnaryOpPackedProgram(x.shape, packedOpSnippet);\n } else {\n program = new UnaryOpProgram(x.shape, opSnippet);\n }\n return webglBackend.runWebGLProgram(program, [x], $dtype);\n };\n}\nfunction binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = false, supportsComplex = false, cpuKernelImpl, dtype }) {\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const webglBackend = backend2;\n if (supportsComplex && a.dtype === \"complex64\") {\n const aData = webglBackend.texData.get(a.dataId);\n const bData = webglBackend.texData.get(b.dataId);\n const [real6, imag5] = [\n [aData.complexTensorInfos.real, bData.complexTensorInfos.real],\n [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag]\n ].map((complexParts) => {\n const [aPart, bPart] = complexParts;\n const aHandle = {\n dataId: aPart.dataId,\n dtype: aPart.dtype,\n shape: a.shape\n };\n const bHandle = {\n dataId: bPart.dataId,\n dtype: bPart.dtype,\n shape: b.shape\n };\n const program2 = new BinaryOpProgram(opSnippet, a.shape, b.shape);\n return webglBackend.runWebGLProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype));\n });\n const complexOutput = complex3({ inputs: { real: real6, imag: imag5 }, backend: webglBackend });\n webglBackend.disposeIntermediateTensorInfo(real6);\n webglBackend.disposeIntermediateTensorInfo(imag5);\n return complexOutput;\n }\n const $dtype = dtype || upcastType(a.dtype, b.dtype);\n if ((a.dtype === \"string\" || b.dtype === \"string\" || webglBackend.shouldExecuteOnCPU([a, b])) && cpuKernelImpl != null) {\n const aVals = webglBackend.texData.get(a.dataId).values;\n const bVals = webglBackend.texData.get(b.dataId).values;\n const decodedAVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals;\n const decodedBVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals;\n const [outValues, outShape] = cpuKernelImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype);\n const out = webglBackend.makeTensorInfo(outShape, $dtype);\n const outData = webglBackend.texData.get(out.dataId);\n outData.values = outValues;\n return out;\n }\n const shouldUsePackedProgram = env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\") && packedOpSnippet != null;\n let program;\n if (shouldUsePackedProgram) {\n program = new BinaryOpPackedProgram(packedOpSnippet, a.shape, b.shape, checkOutOfBounds);\n } else {\n program = new BinaryOpProgram(opSnippet, a.shape, b.shape);\n }\n return webglBackend.runWebGLProgram(program, [a, b], $dtype);\n };\n}\nfunction mapActivationToShaderProgram(activation2, packed = false) {\n if (activation2 === \"linear\") {\n if (packed) {\n return LINEAR2;\n }\n return LINEAR;\n } else if (activation2 === \"relu\") {\n if (packed) {\n return RELU2;\n }\n return RELU;\n } else if (activation2 === \"elu\") {\n if (packed) {\n return ELU3;\n }\n return ELU2;\n } else if (activation2 === \"relu6\") {\n if (packed) {\n return RELU62;\n }\n return RELU6;\n } else if (activation2 === \"prelu\") {\n if (packed) {\n return PRELU_PACKED;\n }\n return PRELU;\n } else if (activation2 === \"leakyrelu\") {\n if (packed) {\n return LEAKYRELU_PACKED;\n }\n return LEAKYRELU;\n } else if (activation2 === \"sigmoid\") {\n if (packed) {\n return SIGMOID2;\n }\n return SIGMOID;\n }\n throw new Error(`Activation ${activation2} has not been implemented for the WebGL backend.`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/mulmat_packed_gpu.js\nvar MatMulPackedProgram = class {\n constructor(aShape, bShape, outputShape, transposeA = false, transposeB = false, addBias = false, activation2 = null, hasPreluActivation = false, hasLeakyreluActivation = false) {\n this.variableNames = [\"matrixA\", \"matrixB\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const sharedDim = transposeA ? aShape[1] : aShape[2];\n const sharedDimensionPacked = Math.ceil(sharedDim / 2);\n const aSample = transposeA ? \"i * 2, rc.y\" : \"rc.y, i * 2\";\n const bSample = transposeB ? \"rc.z, i * 2\" : \"i * 2, rc.z\";\n const aSwizzle = transposeA ? [\"a.xxyy\", \"a.zzww\"] : [\"a.xxzz\", \"a.yyww\"];\n const bSwizzle = transposeB ? [\"b.xzxz\", \"b.ywyw\"] : [\"b.xyxy\", \"b.zwzw\"];\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivation) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyreluActivation) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `vec4 activation(vec4 x) {\n ${activation2}\n }`;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyreluActivation) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n let batchASnippet = \"rc.x\";\n let batchBSnippet = \"rc.x\";\n if (aShape[0] < bShape[0]) {\n batchASnippet = `int(min(float(rc.x), ${aShape[0] - 1}.))`;\n } else if (bShape[0] < aShape[0]) {\n batchBSnippet = `int(min(float(rc.x), ${bShape[0] - 1}.))`;\n }\n this.userCode = `\n ${activationSnippet}\n // Don't use uniform for sharedDimensionPacked for performance.\n const float sharedDimension = ${sharedDimensionPacked}.0;\n\n vec4 dot2x2ARowBCol(ivec3 rc) {\n vec4 result = vec4(0);\n for (int i = 0; i < ${sharedDimensionPacked}; i++) {\n int batchA = ${batchASnippet};\n int batchB = ${batchBSnippet};\n vec4 a = getMatrixA(batchA, ${aSample});\n vec4 b = getMatrixB(batchB, ${bSample});\n\n // These swizzled products need to be separately added.\n // See: https://github.com/tensorflow/tfjs/issues/1735\n result += (${aSwizzle[0]} * ${bSwizzle[0]});\n result += (${aSwizzle[1]} * ${bSwizzle[1]});\n }\n return result;\n }\n\n void main() {\n ivec3 rc = getOutputCoords();\n vec4 result = dot2x2ARowBCol(rc);\n\n ${addBiasSnippet}\n\n ${applyActivationSnippet}\n\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/binaryop_complex_gpu.js\nvar COMPLEX_MULTIPLY = {\n REAL: \"return areal * breal - aimag * bimag;\",\n IMAG: \"return areal * bimag + aimag * breal;\"\n};\nvar BinaryOpComplexProgram = class {\n constructor(op2, aShape, bShape) {\n this.variableNames = [\"AReal\", \"AImag\", \"BReal\", \"BImag\"];\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n this.userCode = `\n float binaryOpComplex(\n float areal, float aimag, float breal, float bimag) {\n ${op2}\n }\n\n void main() {\n float areal = getARealAtOutCoords();\n float aimag = getAImagAtOutCoords();\n float breal = getBRealAtOutCoords();\n float bimag = getBImagAtOutCoords();\n setOutput(binaryOpComplex(areal, aimag, breal, bimag));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Multiply.js\nvar MUL = \"return a * b;\";\nfunction multiply3(args) {\n const { inputs, backend: backend2 } = args;\n const { a, b } = inputs;\n const dtype = backend_util_exports.upcastType(a.dtype, b.dtype);\n if (a.dtype === \"complex64\") {\n const aData = backend2.texData.get(a.dataId);\n const bData = backend2.texData.get(b.dataId);\n const realProgram = new BinaryOpComplexProgram(COMPLEX_MULTIPLY.REAL, a.shape, b.shape);\n const imagProgram = new BinaryOpComplexProgram(COMPLEX_MULTIPLY.IMAG, a.shape, b.shape);\n const inputs2 = [\n {\n dataId: aData.complexTensorInfos.real.dataId,\n dtype: aData.complexTensorInfos.real.dtype,\n shape: a.shape\n },\n {\n dataId: aData.complexTensorInfos.imag.dataId,\n dtype: aData.complexTensorInfos.imag.dtype,\n shape: a.shape\n },\n {\n dataId: bData.complexTensorInfos.real.dataId,\n dtype: bData.complexTensorInfos.real.dtype,\n shape: b.shape\n },\n {\n dataId: bData.complexTensorInfos.imag.dataId,\n dtype: bData.complexTensorInfos.imag.dtype,\n shape: b.shape\n }\n ];\n const realPart = backend2.runWebGLProgram(realProgram, inputs2, \"float32\");\n const imagPart = backend2.runWebGLProgram(imagProgram, inputs2, \"float32\");\n const complexOutput = complex3({ inputs: { real: realPart, imag: imagPart }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(imagPart);\n return complexOutput;\n }\n if (backend2.shouldExecuteOnCPU([a, b])) {\n const aData = backend2.texData.get(a.dataId);\n const bData = backend2.texData.get(b.dataId);\n const [outValues, outShape] = multiplyImplCPU(a.shape, b.shape, aData.values, bData.values, dtype);\n const out = backend2.makeTensorInfo(outShape, dtype);\n const outData = backend2.texData.get(out.dataId);\n outData.values = outValues;\n return out;\n }\n let program;\n if (env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")) {\n program = new BinaryOpPackedProgram(MUL, a.shape, b.shape);\n } else {\n program = new BinaryOpProgram(MUL, a.shape, b.shape);\n }\n return backend2.runWebGLProgram(program, [a, b], dtype);\n}\nvar multiplyConfig2 = {\n kernelName: Multiply,\n backendName: \"webgl\",\n kernelFunc: multiply3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/reshape.js\nfunction packedReshape(input2, afterShape, backend2) {\n const input3DShape = [\n getBatchDim(input2.shape),\n ...getRowsCols(input2.shape)\n ];\n const input3D = {\n dtype: input2.dtype,\n shape: input3DShape,\n dataId: input2.dataId\n };\n const afterShapeAs3D = [\n getBatchDim(afterShape),\n ...getRowsCols(afterShape)\n ];\n const program = new ReshapePackedProgram(afterShapeAs3D, input3DShape);\n const preventEagerUnpackingOfOutput = true;\n const customValues = [input3DShape];\n const output = backend2.runWebGLProgram(program, [input3D], input2.dtype, customValues, preventEagerUnpackingOfOutput);\n return { dataId: output.dataId, shape: afterShape, dtype: output.dtype };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Reshape.js\nfunction reshape4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { shape } = attrs;\n const webglBackend = backend2;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $shape = util_exports.inferFromImplicitShape(shape, xSize);\n const $xSize = util_exports.sizeFromShape($shape);\n util_exports.assert(xSize === $xSize, () => `The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`);\n const xTexData = webglBackend.texData.get(x.dataId);\n if (xTexData.isPacked && !isReshapeFree(x.shape, $shape) && !(xTexData.texture !== null && isReshapeFree(xTexData.shape, $shape))) {\n return packedReshape(x, $shape, webglBackend);\n }\n webglBackend.incRef(x.dataId);\n return { dataId: x.dataId, shape: $shape, dtype: x.dtype };\n}\nvar reshapeConfig2 = {\n kernelName: Reshape,\n backendName: \"webgl\",\n kernelFunc: reshape4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/mean_gpu.js\nvar MeanProgram = class {\n constructor(reduceInfo, divisor) {\n this.variableNames = [\"x\"];\n const { windowSize, batchSize, inSize, outSize } = reduceInfo;\n this.outputShape = [batchSize, outSize];\n const windowSizeNearestVec4 = Math.floor(windowSize / 4) * 4;\n const windowSizeVec4Remainder = windowSize % 4;\n let updateSnippet = `sumValue += dot(values, ones);`;\n if (divisor != null) {\n const denominator = 1 / divisor;\n updateSnippet = `sumValue += dot(values * ${util_exports.isInt(denominator) ? denominator.toPrecision(2) : denominator}, ones);`;\n }\n let checkOutOfBounds = \"\";\n if (inSize % windowSize > 0) {\n checkOutOfBounds = `\n if (inIdx < 0 || inIdx >= ${inSize}) {\n return 0.0;\n }\n `;\n }\n this.userCode = `\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float getValue(int batch, int inIdx) {\n ${checkOutOfBounds}\n return getX(batch, inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${windowSize};\n\n float sumValue = 0.0;\n\n for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) {\n int inIdx = inOffset + i;\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n ${updateSnippet}\n }\n\n int inIdx = inOffset + ${windowSizeNearestVec4};\n if (${windowSizeVec4Remainder === 1}) {\n vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 2}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1), 0.0, 0.0);\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 3}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2), 0.0);\n\n ${updateSnippet}\n }\n setOutput(sumValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/reduce_gpu.js\nvar ReduceProgram = class {\n constructor(reduceInfo, reduceType) {\n this.variableNames = [\"x\"];\n const { windowSize, batchSize, inSize, outSize } = reduceInfo;\n this.outputShape = [batchSize, outSize];\n let initializationValue = \"0.0\";\n let compareOp = ``;\n if (reduceType === \"prod\") {\n initializationValue = \"1.0\";\n } else if (reduceType === \"min\") {\n initializationValue = \"1.0 / 1e-20\";\n compareOp = `min`;\n } else if (reduceType === \"max\") {\n initializationValue = \"-1.0 / 1e-20\";\n compareOp = `max`;\n }\n let returnValue = `${reduceType}(${reduceType}(${reduceType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;\n if (reduceType === \"sum\") {\n returnValue = `sumValue`;\n } else if (reduceType === \"prod\") {\n returnValue = `prodValue`;\n } else if (reduceType === \"all\") {\n returnValue = `allValue`;\n } else if (reduceType === \"any\") {\n returnValue = `anyValue`;\n }\n const windowSizeNearestVec4 = Math.floor(windowSize / 4) * 4;\n const windowSizeVec4Remainder = windowSize % 4;\n let updateSnippet = `\n if (${reduceType === \"sum\"}) {\n sumValue += dot(values, ones);\n } else if (${reduceType === \"prod\"}) {\n vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);\n prodValue *= tmp[0] * tmp[1];\n } else {\n minMaxValue = ${compareOp}(values, minMaxValue);\n if (${reduceType === \"min\"} || ${reduceType === \"max\"}) {\n minMaxValue = ${compareOp}(values, minMaxValue);\n bvec4 isNaN = isnan(values);\n if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {\n minMaxValue = vec4(NAN);\n }\n }\n }\n `;\n let vecType = `vec4`;\n if (reduceType === \"all\") {\n initializationValue = \"1.0\";\n updateSnippet = `\n bool reducedAllValue = all(values);\n float floatedReducedAllValue = float(reducedAllValue);\n allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);\n `;\n vecType = `bvec4`;\n } else if (reduceType === \"any\") {\n initializationValue = \"0.0\";\n updateSnippet = `\n bool reducedAnyValue = any(values);\n float floatedReducedAnyValue = float(reducedAnyValue);\n anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);\n `;\n vecType = `bvec4`;\n }\n let checkOutOfBounds = \"\";\n if (inSize % windowSize > 0) {\n checkOutOfBounds = `\n if (inIdx < 0 || inIdx >= ${inSize}) {\n return initializationValue;\n }\n `;\n }\n this.userCode = `\n const float initializationValue = ${initializationValue};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float getValue(int batch, int inIdx) {\n ${checkOutOfBounds}\n return getX(batch, inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${windowSize};\n\n vec4 minMaxValue = vec4(${initializationValue});\n float prodValue = 1.0;\n float sumValue = 0.0;\n float allValue = 1.0;\n float anyValue = 0.0;\n\n for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) {\n int inIdx = inOffset + i;\n ${vecType} values = ${vecType}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n ${updateSnippet}\n }\n\n int inIdx = inOffset + ${windowSizeNearestVec4};\n if (${windowSizeVec4Remainder === 1}) {\n ${vecType} values = ${vecType}(\n getValue(batch, inIdx),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 2}) {\n ${vecType} values = ${vecType}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 3}) {\n ${vecType} values = ${vecType}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n initializationValue\n );\n\n ${updateSnippet}\n }\n setOutput(${returnValue});\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/reduce.js\nfunction getReductionStages(inShape) {\n const stages = [];\n while (stages.length === 0 || stages[stages.length - 1].outSize !== 1) {\n const outSize = stages.length ? stages[stages.length - 1].outSize : inShape[1];\n const windowSize = backend_util_exports.computeOptimalWindowSize(outSize);\n stages.push({\n inSize: outSize,\n windowSize,\n outSize: Math.ceil(outSize / windowSize)\n });\n }\n return stages;\n}\nfunction reduce(x, dtype, reductionType, backend2) {\n const reductionStages = getReductionStages(x.shape);\n let result = x;\n for (let i2 = 0; i2 < reductionStages.length; i2++) {\n const { inSize, windowSize, outSize } = reductionStages[i2];\n let program;\n let previousResult;\n if (reductionType === \"mean\") {\n program = i2 === 0 ? new MeanProgram({ windowSize, inSize, batchSize: x.shape[0], outSize }, inSize) : new MeanProgram({ windowSize, inSize, batchSize: x.shape[0], outSize });\n } else {\n program = new ReduceProgram({ windowSize, inSize, batchSize: x.shape[0], outSize }, reductionType);\n }\n previousResult = result;\n result = backend2.runWebGLProgram(program, [result], dtype);\n if (previousResult.dataId !== x.dataId) {\n backend2.disposeIntermediateTensorInfo(previousResult);\n }\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/transpose_gpu.js\nvar TransposeProgram = class {\n constructor(aShape, newDim) {\n this.variableNames = [\"A\"];\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[newDim[i2]];\n }\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n const dtype = getCoordsDataType(this.rank);\n const switched = getSwitchedCoords(newDim);\n this.userCode = `\n void main() {\n ${dtype} resRC = getOutputCoords();\n setOutput(getA(${switched}));\n }\n `;\n }\n};\nfunction getSwitchedCoords(newDim) {\n const rank = newDim.length;\n if (rank > 6) {\n throw Error(`Transpose for rank ${rank} is not yet supported`);\n }\n const originalOrder = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\", \"resRC.u\", \"resRC.v\"];\n const switchedCoords = new Array(rank);\n for (let i2 = 0; i2 < newDim.length; i2++) {\n switchedCoords[newDim[i2]] = originalOrder[i2];\n }\n return switchedCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/transpose_packed_gpu.js\nvar TransposePackedProgram = class {\n constructor(aShape, newDim) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[newDim[i2]];\n }\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n if (this.rank > 6) {\n throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);\n }\n const dtype = getCoordsDataType(this.rank);\n const outputOrder = getVecChannels(\"rc\", this.rank);\n const switchedOrder = new Array(this.rank);\n for (let i2 = 0; i2 < newDim.length; i2++) {\n switchedOrder[newDim[i2]] = outputOrder[i2];\n }\n const innerDims = `vec2(${switchedOrder.slice(-2).join()})`;\n const nextColumn = `++${outputOrder[this.rank - 1]} < ${outputShape[this.rank - 1]}`;\n const getc = `getChannel(getA(${switchedOrder.join()}), ${innerDims})`;\n this.userCode = `\n void main() {\n ${dtype} rc = getOutputCoords();\n vec4 result = vec4(0.);\n result[0] = ${getc};\n if(${nextColumn}) {\n result[1] = ${getc};\n }\n --${outputOrder[this.rank - 1]};\n if(++${outputOrder[this.rank - 2]} < ${outputShape[this.rank - 2]}) {\n result[2] = ${getc};\n if(${nextColumn}) {\n result[3] = ${getc};\n }\n }\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Transpose_impl.js\nfunction transposeImpl2(x, perm, backend2) {\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new TransposePackedProgram(x.shape, perm) : new TransposeProgram(x.shape, perm);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sum_impl.js\nfunction sumImpl(x, axis, keepDims, backend2) {\n const reductionIndices = axis;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(reductionIndices, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n const sumInputIsTransposed = permutedAxes != null;\n let sumInput = x;\n if (sumInputIsTransposed) {\n sumInput = transposeImpl2(x, permutedAxes, backend2);\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"sum\", axes, xRank);\n const [sumOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(sumInput.shape, axes);\n let outShape = sumOutShape;\n if (keepDims) {\n outShape = backend_util_exports.expandShapeToKeepDim(sumOutShape, origAxes);\n }\n const inSize = util_exports.sizeFromShape(reduceShape);\n const xSize = util_exports.sizeFromShape(x.shape);\n const batchSize = xSize / inSize;\n const reshapedInput = reshape4({ inputs: { x: sumInput }, attrs: { shape: [batchSize, inSize] }, backend: backend2 });\n const outType = sumOutType(x.dtype);\n const reduced = reduce(reshapedInput, outType, \"sum\", backend2);\n const out = reshape4({ inputs: { x: reduced }, attrs: { shape: outShape }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(reshapedInput);\n backend2.disposeIntermediateTensorInfo(reduced);\n if (sumInputIsTransposed) {\n backend2.disposeIntermediateTensorInfo(sumInput);\n }\n return out;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sum.js\nfunction sum4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n return sumImpl(x, axis, keepDims, backend2);\n}\nvar sumConfig2 = {\n kernelName: Sum,\n backendName: \"webgl\",\n kernelFunc: sum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Transpose.js\nfunction transpose3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { perm } = attrs;\n const webglBackend = backend2;\n const xRank = x.shape.length;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[perm[i2]];\n }\n let out;\n if (webglBackend.shouldExecuteOnCPU([x])) {\n const xTexData = webglBackend.texData.get(x.dataId);\n const values = xTexData.values;\n const outValues = transposeImplCPU(values, x.shape, x.dtype, perm, newShape);\n out = webglBackend.makeTensorInfo(newShape, x.dtype);\n const outData = webglBackend.texData.get(out.dataId);\n outData.values = outValues;\n } else {\n out = transposeImpl2(x, perm, webglBackend);\n }\n return out;\n}\nvar transposeConfig2 = {\n kernelName: Transpose,\n backendName: \"webgl\",\n kernelFunc: transpose3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BatchMatMul_impl.js\nvar MATMUL_SHARED_DIM_THRESHOLD = 1e3;\nfunction batchMatMulImpl({ a, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const aRank = a.shape.length;\n const bRank = b.shape.length;\n const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1];\n const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2];\n const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2];\n const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1];\n const outerDimsA = a.shape.slice(0, -2);\n const outerDimsB = b.shape.slice(0, -2);\n const batchDimA = util_exports.sizeFromShape(outerDimsA);\n const batchDimB = util_exports.sizeFromShape(outerDimsB);\n const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA];\n const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB];\n const a3d = reshape4({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } });\n const b3d = reshape4({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } });\n const intermediates = [a3d, b3d];\n const batchDim = Math.max(batchDimA, batchDimB);\n const sharedDim = transposeA ? a3d.shape[1] : a3d.shape[2];\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const hasLeakyreluAlpha = activation2 === \"leakyrelu\";\n const fusedActivation = activation2 != null ? mapActivationToShaderProgram(activation2, true) : null;\n const containsFusedOps = hasBias || hasPreluActivationWeights || hasLeakyreluAlpha || fusedActivation != null;\n let out;\n if ((outerShapeA === 1 || outerShapeB === 1) && sharedDim > MATMUL_SHARED_DIM_THRESHOLD && containsFusedOps === false) {\n let aVec = a3d;\n let bVec = b3d;\n if (transposeA) {\n aVec = transpose3({ inputs: { x: a3d }, backend: backend2, attrs: { perm: [0, 2, 1] } });\n intermediates.push(aVec);\n }\n if (transposeB) {\n bVec = transpose3({ inputs: { x: b3d }, backend: backend2, attrs: { perm: [0, 2, 1] } });\n intermediates.push(bVec);\n }\n const shouldReshapeA = outerShapeB !== 1;\n const shouldReshapeB = outerShapeB === 1;\n let aVec3d = aVec;\n if (shouldReshapeA) {\n aVec3d = reshape4({\n inputs: { x: aVec },\n backend: backend2,\n attrs: { shape: [batchDim, sharedDim, 1] }\n });\n intermediates.push(aVec3d);\n }\n const axis = outerShapeB === 1 ? 2 : 1;\n let bVec3d = bVec;\n if (shouldReshapeB) {\n bVec3d = reshape4({\n inputs: { x: bVec },\n backend: backend2,\n attrs: { shape: [batchDim, 1, sharedDim] }\n });\n intermediates.push(bVec3d);\n }\n const product = multiply3({ inputs: { a: aVec3d, b: bVec3d }, backend: backend2 });\n out = sum4({ inputs: { x: product }, backend: backend2, attrs: { axis, keepDims: true } });\n intermediates.push(product);\n } else {\n const dtype = upcastType(a.dtype, b.dtype);\n const program = new MatMulPackedProgram(a3dShape, b3dShape, [batchDim, outerShapeA, outerShapeB], transposeA, transposeB, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n const inputs = [a3d, b3d];\n if (bias != null) {\n inputs.push(bias);\n }\n if (hasPreluActivationWeights) {\n inputs.push(preluActivationWeights);\n }\n if (hasLeakyreluAlpha) {\n const $leakyreluAlpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(leakyreluAlpha, \"float32\"));\n inputs.push($leakyreluAlpha);\n intermediates.push($leakyreluAlpha);\n }\n out = backend2.runWebGLProgram(program, inputs, dtype);\n }\n const outReshaped = reshape4({ inputs: { x: out }, backend: backend2, attrs: { shape: outShape } });\n intermediates.push(out);\n for (const i2 of intermediates) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return outReshaped;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/_FusedMatMul.js\nfunction _fusedMatMul2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b, bias, preluActivationWeights } = inputs;\n const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs;\n return batchMatMulImpl({\n a,\n b,\n transposeA,\n transposeB,\n backend: backend2,\n bias,\n preluActivationWeights,\n leakyreluAlpha,\n activation: activation2\n });\n}\nvar _fusedMatMulConfig2 = {\n kernelName: _FusedMatMul,\n backendName: \"webgl\",\n kernelFunc: _fusedMatMul2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Abs.js\nvar ABS2 = `return abs(x);`;\nfunction abs3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (backend2.shouldExecuteOnCPU([x]) && x.dtype !== \"complex64\") {\n const xData = backend2.texData.get(x.dataId);\n const outValues = simpleAbsImplCPU(xData.values);\n return backend2.makeTensorInfo(x.shape, x.dtype, outValues);\n }\n let program;\n if (env().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")) {\n program = new UnaryOpPackedProgram(x.shape, ABS2);\n } else {\n program = new UnaryOpProgram(x.shape, ABS2);\n }\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar absConfig2 = {\n kernelName: Abs,\n backendName: \"webgl\",\n kernelFunc: abs3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Acos.js\nvar ACOS = CHECK_NAN_SNIPPET + `\n if (abs(x) > 1.) {\n return NAN;\n }\n return acos(x);\n`;\nvar acos3 = unaryKernelFunc2({ opSnippet: ACOS });\nvar acosConfig2 = {\n kernelName: Acos,\n backendName: \"webgl\",\n kernelFunc: acos3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Acosh.js\nvar ACOSH = CHECK_NAN_SNIPPET + `\n if (x < 1.0) return NAN;\nreturn log(x + sqrt(x * x - 1.0));`;\nvar acosh3 = unaryKernelFunc2({ opSnippet: ACOSH });\nvar acoshConfig2 = {\n kernelName: Acosh,\n backendName: \"webgl\",\n kernelFunc: acosh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Add.js\nvar ADD = \"return a + b;\";\nvar addKernelFunc = binaryKernelFunc2({\n opSnippet: ADD,\n packedOpSnippet: ADD,\n supportsComplex: true,\n cpuKernelImpl: addImplCPU\n});\nvar addConfig2 = {\n kernelName: Add,\n backendName: \"webgl\",\n kernelFunc: addKernelFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/addn_gpu.js\nvar AddNProgram = class {\n constructor(outputShape, shapes) {\n this.outputShape = [];\n this.outputShape = outputShape;\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n const snippets = [];\n this.variableNames.forEach((variable2) => {\n snippets.push(`float v${variable2} = get${variable2}AtOutCoords();`);\n });\n const operation = this.variableNames.map((variable2) => {\n return `v${variable2}`;\n }).join(\" + \");\n this.userCode = `\n void main() {\n ${snippets.join(\"\\n \")}\n\n float result = ${operation};\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/addn_packed_gpu.js\nvar AddNPackedProgram = class {\n constructor(outputShape, shapes) {\n this.outputShape = [];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = outputShape;\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n const snippets = [];\n this.variableNames.forEach((variable2) => {\n snippets.push(`vec4 v${variable2} = get${variable2}AtOutCoords();`);\n });\n const operation = this.variableNames.map((variable2) => {\n return `v${variable2}`;\n }).join(\" + \");\n this.userCode = `\n void main() {\n ${snippets.join(\"\\n \")}\n\n vec4 result = ${operation};\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AddN.js\nfunction addN3(args) {\n const { inputs, backend: backend2 } = args;\n const tensors = inputs;\n if (tensors.length === 1) {\n return identity3({ inputs: { x: tensors[0] }, backend: backend2 });\n }\n if (tensors.length > env().get(\"WEBGL_MAX_TEXTURES_IN_SHADER\")) {\n const midIndex = Math.floor(tensors.length / 2);\n const leftSide = addN3({ inputs: tensors.slice(0, midIndex), backend: backend2 });\n const rightSide = addN3({ inputs: tensors.slice(midIndex), backend: backend2 });\n return addN3({ inputs: [leftSide, rightSide], backend: backend2 });\n }\n const dtype = tensors.map((t2) => t2.dtype).reduce((d1, d2) => upcastType(d1, d2));\n const shapes = tensors.map((t2) => t2.shape);\n const usePackedOp = env().getBool(\"WEBGL_PACK\");\n const program = usePackedOp ? new AddNPackedProgram(tensors[0].shape, shapes) : new AddNProgram(tensors[0].shape, shapes);\n return backend2.runWebGLProgram(program, tensors, dtype);\n}\nvar addNConfig2 = {\n kernelName: AddN,\n backendName: \"webgl\",\n kernelFunc: addN3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/All.js\nfunction all3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let permutedX = x;\n if (permutedAxes != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"all\", axes, xRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n const reduced = reduce(a2D, a2D.dtype, \"all\", backend2);\n let res;\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: newShape } });\n } else {\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n }\n backend2.disposeIntermediateTensorInfo(a2D);\n backend2.disposeIntermediateTensorInfo(reduced);\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo(permutedX);\n }\n return res;\n}\nvar allConfig2 = {\n kernelName: All,\n backendName: \"webgl\",\n kernelFunc: all3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Any.js\nfunction any3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let permutedX = x;\n if (permutedAxes != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"any\", axes, xRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n const reduced = reduce(a2D, a2D.dtype, \"any\", backend2);\n let res;\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: newShape } });\n } else {\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n }\n backend2.disposeIntermediateTensorInfo(a2D);\n backend2.disposeIntermediateTensorInfo(reduced);\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo(permutedX);\n }\n return res;\n}\nvar anyConfig2 = {\n kernelName: Any,\n backendName: \"webgl\",\n kernelFunc: any3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/argminmax_gpu.js\nvar ArgMinMaxProgram = class {\n constructor(reduceInfo, op2, firstPass) {\n this.variableNames = [\"A\"];\n const { windowSize, batchSize, outSize } = reduceInfo;\n if (!firstPass) {\n this.variableNames.push(\"bestIndicesA\");\n }\n this.outputShape = [batchSize, outSize];\n const compOp = op2 === \"max\" ? \">\" : \"<\";\n const indexSnippet = firstPass ? \"inOffset + i;\" : \"round(getBestIndicesA(batch, inOffset + i));\";\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${windowSize};\n\n int bestIndex = inOffset;\n float bestValue = getA(batch, bestIndex);\n\n for (int i = 0; i < ${windowSize}; i++) {\n int inIdx = ${indexSnippet};\n float candidate = getA(batch, inIdx);\n if (candidate ${compOp} bestValue) {\n bestValue = candidate;\n bestIndex = inIdx;\n }\n }\n setOutput(float(bestIndex));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/argminmax_packed_gpu.js\nvar ArgMinMaxPackedProgram = class {\n constructor(shape, windowSize, op2, firstPass) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n util_exports.assert(shape.length > 2, () => `Packed arg${op2.charAt(0).toUpperCase() + op2.slice(1)} supports only inputs with rank above 2.`);\n const inSize = shape[shape.length - 1];\n const outSize = Math.ceil(inSize / windowSize);\n this.outputShape = shape.slice(0, -1);\n if (outSize > 1) {\n this.outputShape.push(outSize);\n }\n if (!firstPass) {\n this.variableNames.push(\"bestIndicesA\");\n }\n const outShape = this.outputShape;\n const rank = outShape.length;\n const dtype = getCoordsDataType(rank);\n const coords3 = getChannels(\"coords\", rank);\n let sourceLocSetup;\n let sourceRank;\n if (outSize === 1) {\n sourceRank = rank + 1;\n const sourceLocDType = getCoordsDataType(sourceRank);\n sourceLocSetup = `\n ${sourceLocDType} sourceLocR = ${sourceLocDType}(${coords3.join()}, 0);\n ++${coords3[rank - 1]};\n ${sourceLocDType} sourceLocG = ${sourceLocDType}(${coords3.join()}, 0);\n ++${coords3[rank - 2]};\n ${sourceLocDType} sourceLocA = ${sourceLocDType}(${coords3.join()}, 0);\n --${coords3[rank - 1]};\n ${sourceLocDType} sourceLocB = ${sourceLocDType}(${coords3.join()}, 0);\n --${coords3[rank - 2]};`;\n } else {\n sourceRank = rank;\n sourceLocSetup = `\n ${dtype} sourceLocR = coords;\n ++${coords3[rank - 1]};\n ${dtype} sourceLocG = coords;\n ++${coords3[rank - 2]};\n ${dtype} sourceLocA = coords;\n --${coords3[rank - 1]};\n ${dtype} sourceLocB = coords;\n --${coords3[rank - 2]};`;\n }\n const channels = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"].slice(0, sourceRank);\n const inChannel = \".\" + channels[sourceRank - 1];\n const intChannels = channels.map((x) => \"int \" + x);\n const srcRCoords = getChannels(\"sourceLocR\", sourceRank - 1).concat(\"inIdx.r\");\n const srcGCoords = getChannels(\"sourceLocG\", sourceRank - 1).concat(\"inIdx.g\");\n const srcBCoords = getChannels(\"sourceLocB\", sourceRank - 1).concat(\"inIdx.b\");\n const srcACoords = getChannels(\"sourceLocA\", sourceRank - 1).concat(\"inIdx.a\");\n const compOp = op2 === \"max\" ? \"greaterThan\" : \"lessThan\";\n const fetchCandidateIdx = firstPass ? \"\" : `\n inIdx = round(vec4(getBestIndicesAChannel(${srcRCoords.join()}),\n getBestIndicesAChannel(${srcGCoords.join()}),\n getBestIndicesAChannel(${srcBCoords.join()}),\n getBestIndicesAChannel(${srcACoords.join()})));`;\n const fetchValue = `vec4(\n getAChannel(${srcRCoords.join()}),\n hasNextCol ? getAChannel(${srcGCoords.join()}) : 0.,\n hasNextRow ? getAChannel(${srcBCoords.join()}) : 0.,\n hasNextRow && hasNextCol ? getAChannel(${srcACoords.join()}) : 0.)`;\n const getBestIndicesAChannelSnippet = firstPass ? \"\" : `\n float getBestIndicesAChannel(${intChannels.join()}) {\n return getChannel(getBestIndicesA(${channels.join()}),\n vec2(${channels.slice(-2).join()}));\n }`;\n this.userCode = `\n float getAChannel(${intChannels.join()}) {\n return getChannel(getA(${channels.join()}),\n vec2(${channels.slice(-2).join()}));\n }\n ${getBestIndicesAChannelSnippet}\n void main() {\n ${dtype} coords = getOutputCoords();\n bool hasNextCol = ${coords3[rank - 1]} < ${outShape[rank - 1] - 1};\n bool hasNextRow = ${coords3[rank - 2]} < ${outShape[rank - 2] - 1};\n ${sourceLocSetup}\n ivec4 srcIdx = ivec4(sourceLocR${inChannel}, sourceLocG${inChannel},\n sourceLocB${inChannel}, sourceLocA${inChannel}) * ${windowSize};\n ivec4 inIdx = srcIdx;\n vec4 bestIndex = vec4(inIdx);\n vec4 bestValue = ${fetchValue};\n\n for (int i = 0; i < ${windowSize}; i++) {\n inIdx = srcIdx;\n ${fetchCandidateIdx}\n vec4 candidate = ${fetchValue};\n bvec4 nan = isnan(candidate);\n bvec4 replace = bvec4(\n vec4(${compOp}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));\n\n bestValue = vec4(replace.x ? candidate.x : bestValue.x,\n replace.y ? candidate.y : bestValue.y,\n replace.z ? candidate.z : bestValue.z,\n replace.w ? candidate.w : bestValue.w);\n bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));\n srcIdx++;\n }\n setOutput(bestIndex);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/arg_min_max.js\nfunction argReduce(backend2, x, reduceType, bestIndicesA = null) {\n let batchSize = x.shape[0];\n let inSize = x.shape[1];\n if (bestIndicesA != null) {\n batchSize = bestIndicesA.shape[0];\n inSize = bestIndicesA.shape[1];\n }\n const windowSize = backend_util_exports.computeOptimalWindowSize(inSize);\n const reduceInfo = { windowSize, inSize, batchSize, outSize: Math.ceil(inSize / windowSize) };\n const program = new ArgMinMaxProgram(reduceInfo, reduceType, bestIndicesA == null);\n const inputs = [x];\n if (bestIndicesA != null) {\n inputs.push(bestIndicesA);\n }\n const output = backend2.runWebGLProgram(program, inputs, \"int32\");\n if (output.shape[1] === 1) {\n return output;\n }\n const result = argReduce(backend2, x, reduceType, output);\n backend2.disposeIntermediateTensorInfo(output);\n return result;\n}\nfunction argReducePacked(backend2, x, reduceType, bestIndicesA = null) {\n const inShape = bestIndicesA != null ? bestIndicesA.shape : x.shape;\n const inSize = inShape[inShape.length - 1];\n const windowSize = backend_util_exports.computeOptimalWindowSize(inSize);\n const program = new ArgMinMaxPackedProgram(inShape, windowSize, reduceType, bestIndicesA == null);\n const inputs = bestIndicesA == null ? [x] : [x, bestIndicesA];\n const output = backend2.runWebGLProgram(program, inputs, \"int32\");\n if (output.shape.length === x.shape.length) {\n const result = argReducePacked(backend2, x, reduceType, output);\n backend2.disposeIntermediateTensorInfo(output);\n return result;\n }\n return output;\n}\nfunction argMinMaxReduce(backend2, x, axis, reduceType) {\n const axes = [axis];\n backend_util_exports.assertAxesAreInnerMostDims(\"arg\" + reduceType.charAt(0).toUpperCase() + reduceType.slice(1), axes, x.shape.length);\n if (!env().getBool(\"WEBGL_PACK_REDUCE\") || x.shape.length <= 2) {\n const intermediateTensorInfos = [];\n const xtexData = backend2.texData.get(x.dataId);\n const xIsPacked = xtexData !== null && xtexData.isPacked;\n let xUnPacked = x;\n if (xIsPacked) {\n xUnPacked = backend2.unpackTensor(x);\n intermediateTensorInfos.push(xUnPacked);\n }\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(xUnPacked.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: xUnPacked }, backend: backend2, attrs: { shape: [-1, inSize] } });\n intermediateTensorInfos.push(a2D);\n const reduced = argReduce(backend2, a2D, reduceType);\n intermediateTensorInfos.push(reduced);\n const reshaped = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return reshaped;\n }\n return argReducePacked(backend2, x, reduceType);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ArgMax.js\nfunction argMax3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"argMax\", [axes[0]], $x.shape.length);\n const out = argMinMaxReduce(backend2, $x, axes[0], \"max\");\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return out;\n}\nvar argMaxConfig2 = {\n kernelName: ArgMax,\n backendName: \"webgl\",\n kernelFunc: argMax3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ArgMin.js\nfunction argMin3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"argMin\", [axes[0]], $x.shape.length);\n const out = argMinMaxReduce(backend2, $x, axes[0], \"min\");\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return out;\n}\nvar argMinConfig2 = {\n kernelName: ArgMin,\n backendName: \"webgl\",\n kernelFunc: argMin3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Asin.js\nvar ASIN = CHECK_NAN_SNIPPET + `\n if (abs(x) > 1.) {\n return NAN;\n }\n return asin(x);\n`;\nvar asin3 = unaryKernelFunc2({ opSnippet: ASIN });\nvar asinConfig2 = {\n kernelName: Asin,\n backendName: \"webgl\",\n kernelFunc: asin3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Asinh.js\nvar ASINH = CHECK_NAN_SNIPPET + `return log(x + sqrt(x * x + 1.0));`;\nvar asinh3 = unaryKernelFunc2({ opSnippet: ASINH });\nvar asinhConfig2 = {\n kernelName: Asinh,\n backendName: \"webgl\",\n kernelFunc: asinh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Atan.js\nvar ATAN = CHECK_NAN_SNIPPET + `\n return atan(x);\n`;\nvar atan4 = unaryKernelFunc2({ opSnippet: ATAN });\nvar atanConfig2 = {\n kernelName: Atan,\n backendName: \"webgl\",\n kernelFunc: atan4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Atan2.js\nvar ATAN2 = CHECK_NAN_SNIPPET_BINARY + `\n return atan(a, b);\n`;\nvar ATAN2_PACKED = `\n vec4 result = atan(a, b);\n vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));\n ` + CHECK_NAN_SNIPPET_BINARY_PACKED + `\n return result;\n`;\nvar atan23 = binaryKernelFunc2({ opSnippet: ATAN2, packedOpSnippet: ATAN2_PACKED });\nvar atan2Config2 = {\n kernelName: Atan2,\n backendName: \"webgl\",\n kernelFunc: atan23\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Atanh.js\nvar ATANH = CHECK_NAN_SNIPPET + `\n if ((x < -1.0) || (x > 1.0)) return NAN;\nreturn (log(1.0 + x) - log(1.0 - x)) / 2.0;`;\nvar atanh3 = unaryKernelFunc2({ opSnippet: ATANH });\nvar atanhConfig2 = {\n kernelName: Atanh,\n backendName: \"webgl\",\n kernelFunc: atanh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/pool_gpu.js\nvar Pool2DProgram = class {\n constructor(convInfo, poolType, computePositions, flattenPositions = false, includeBatchInIndex = false) {\n this.variableNames = [\"x\"];\n if (poolType === \"avg\" && computePositions) {\n throw new Error(\"Cannot compute positions for average pool.\");\n }\n const filterWidth = convInfo.filterWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n this.outputShape = convInfo.outShape;\n const isAvgPool = poolType === \"avg\";\n const batchFlattenPositionStr = `((batch * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + d`;\n const flattenPositionStr = `(xR * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + d`;\n let initializationValue = \"0.0\";\n if (!isAvgPool) {\n initializationValue = \"-1.0 / 1e-20\";\n }\n if (computePositions) {\n const compareOp2 = \">=\";\n this.userCode = `\n const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d = coords[3];\n\n ivec2 xRCCorner = coords.yz * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // max/min x(?, ?, d) to get y(yR, yC, d).\n // ? = to be determined\n float minMaxValue = 0.0;\n float minMaxValueFound = 0.0;\n int minMaxPosition = 0;\n float avgValue = 0.0;\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC += ${dilationWidth}) {\n int xC = xCCorner + wC;\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n float value = getX(batch, xR, xC, d);\n\n // If a min / max value has already been found, use it. If not,\n // use the current value.\n float currMinMaxValue = mix(\n value, minMaxValue, minMaxValueFound);\n if (value ${compareOp2} currMinMaxValue) {\n minMaxValue = value;\n minMaxValueFound = 1.0;\n minMaxPosition = ${flattenPositions ? includeBatchInIndex ? batchFlattenPositionStr : flattenPositionStr : `wR * ${effectiveFilterWidth} + wC`};\n }\n }\n }\n setOutput(float(minMaxPosition));\n }\n `;\n return;\n }\n const compareOp = \"max\";\n let returnValue = `${poolType}(${poolType}(${poolType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;\n if (poolType === \"avg\") {\n returnValue = `avgValue / count`;\n }\n const filterWidthNearestVec4 = Math.floor(filterWidth / 4) * 4;\n const filterWidthVec4Remainder = filterWidth % 4;\n const updateSnippet = `\n if (${isAvgPool}) {\n avgValue += dot(values, ones);\n } else {\n minMaxValue = ${compareOp}(values, minMaxValue);\n }\n `;\n this.userCode = `\n const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n const float initializationValue = ${initializationValue};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float count = 0.0;\n\n float getValue(int batch, int xR, int xC, int d) {\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n return initializationValue;\n }\n count += 1.0;\n return getX(batch, xR, xC, d);\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d = coords[3];\n\n ivec2 xRCCorner = coords.yz * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // max/min x(?, ?, d) to get y(yR, yC, d).\n // ? = to be determined\n vec4 minMaxValue = vec4(${initializationValue});\n float avgValue = 0.0;\n count = 0.0;\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidthNearestVec4}; wC += 4) {\n int xC = xCCorner + wC * ${dilationWidth};\n\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${dilationWidth}, d),\n getValue(batch, xR, xC + 2 * ${dilationWidth}, d),\n getValue(batch, xR, xC + 3 * ${dilationWidth}, d)\n );\n\n ${updateSnippet}\n }\n\n int xC = xCCorner + ${filterWidthNearestVec4};\n if (${filterWidthVec4Remainder === 1}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${filterWidthVec4Remainder === 2}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${dilationWidth}, d),\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${filterWidthVec4Remainder === 3}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${dilationWidth}, d),\n getValue(batch, xR, xC + 2 * ${dilationWidth}, d),\n initializationValue\n );\n\n ${updateSnippet}\n }\n }\n setOutput(${returnValue});\n }\n `;\n }\n};\nvar Pool3DProgram = class {\n constructor(convInfo, poolType, computePositions, flattenPositions = false, includeBatchInIndex = false) {\n this.variableNames = [\"x\"];\n if (poolType === \"avg\" && computePositions) {\n throw new Error(\"Cannot compute positions for average pool.\");\n }\n const filterWidth = convInfo.filterWidth;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n this.outputShape = convInfo.outShape;\n const isAvgPool = poolType === \"avg\";\n let initializationValue = \"0.0\";\n if (!isAvgPool) {\n initializationValue = \"-1.0 / 1e-20\";\n }\n if (computePositions) {\n const compareOp2 = \">=\";\n this.userCode = `\n const ivec3 strides =\n ivec3(${strideDepth}, ${strideHeight}, ${strideWidth});\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xDCorner = xCorner.x;\n int xRCorner = xCorner.y;\n int xCCorner = xCorner.z;\n\n // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).\n // ? = to be determined\n float minMaxValue = 0.0;\n float minMaxValueFound = 0.0;\n int minMaxPosition = 0;\n\n for (int wD = 0; wD < ${effectiveFilterDepth};\n wD += ${dilationDepth}) {\n int xD = xDCorner + wD;\n\n if (xD < 0 || xD >= ${convInfo.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC += ${dilationWidth}) {\n int xC = xCCorner + wC;\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n float value = getX(batch, xD, xR, xC, ch);\n\n // If a min / max value has already been found, use it. If not,\n // use the current value.\n float currMinMaxValue = mix(\n value, minMaxValue, minMaxValueFound);\n if (value ${compareOp2} currMinMaxValue) {\n minMaxValue = value;\n minMaxValueFound = 1.0;\n minMaxPosition = ${flattenPositions ? includeBatchInIndex ? `(((batch * ${convInfo.inDepth} + xD) * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + ch` : `((xD * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + ch` : `wD * ${effectiveFilterHeight} * ${effectiveFilterWidth} +\n wR * ${effectiveFilterWidth} + wC`};\n }\n }\n }\n }\n setOutput(float(minMaxPosition));\n }\n `;\n return;\n }\n const compareOp = \"max\";\n let returnValue = `${poolType}(${poolType}(${poolType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;\n if (poolType === \"avg\") {\n returnValue = `avgValue / count`;\n }\n const filterWidthNearestVec4 = Math.floor(filterWidth / 4) * 4;\n const filterWidthVec4Remainder = filterWidth % 4;\n const updateSnippet = `\n if (${isAvgPool}) {\n avgValue += dot(values, ones);\n } else {\n minMaxValue = ${compareOp}(values, minMaxValue);\n }\n `;\n this.userCode = `\n const ivec3 strides =\n ivec3(${strideDepth}, ${strideHeight}, ${strideWidth});\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n const float initializationValue = ${initializationValue};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float count = 0.0;\n\n float getValue(int batch, int xD, int xR, int xC, int ch) {\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n return initializationValue;\n }\n count += 1.0;\n return getX(batch, xD, xR, xC, ch);\n }\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xDCorner = xCorner.x;\n int xRCorner = xCorner.y;\n int xCCorner = xCorner.z;\n\n // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).\n // ? = to be determined\n vec4 minMaxValue = vec4(${initializationValue});\n float avgValue = 0.0;\n count = 0.0;\n\n for (int wD = 0; wD < ${effectiveFilterDepth};\n wD += ${dilationDepth}) {\n int xD = xDCorner + wD;\n\n if (xD < 0 || xD >= ${convInfo.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidthNearestVec4}; wC += 4) {\n int xC = xCCorner + wC * ${dilationWidth};\n\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${dilationWidth}, ch),\n getValue(batch, xD, xR, xC + 2 * ${dilationWidth}, ch),\n getValue(batch, xD, xR, xC + 3 * ${dilationWidth}, ch)\n );\n\n ${updateSnippet}\n }\n\n int xC = xCCorner + ${filterWidthNearestVec4};\n if (${filterWidthVec4Remainder === 1}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${filterWidthVec4Remainder === 2}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${dilationWidth}, ch),\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${filterWidthVec4Remainder === 3}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${dilationWidth}, ch),\n getValue(batch, xD, xR, xC + 2 * ${dilationWidth}, ch),\n initializationValue\n );\n\n ${updateSnippet}\n }\n }\n setOutput(${returnValue});\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AvgPool.js\nfunction avgPool3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n assertNotComplex2(x, \"avgPool\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n return identity3({ inputs: { x }, backend: backend2 });\n }\n const avgPoolProgram = new Pool2DProgram(convInfo, \"avg\", false);\n return backend2.runWebGLProgram(avgPoolProgram, [x], \"float32\");\n}\nvar avgPoolConfig2 = {\n kernelName: AvgPool,\n backendName: \"webgl\",\n kernelFunc: avgPool3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AvgPool3D.js\nfunction avgPool3D2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat } = attrs;\n const dilations = [1, 1, 1];\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode, dataFormat);\n const avgPoolProgram = new Pool3DProgram(convInfo, \"avg\", false);\n return backend2.runWebGLProgram(avgPoolProgram, [x], \"float32\");\n}\nvar avgPool3DConfig2 = {\n kernelName: AvgPool3D,\n backendName: \"webgl\",\n kernelFunc: avgPool3D2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/avg_pool_backprop_gpu.js\nvar AvgPool2DBackpropProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\"];\n this.outputShape = convInfo.inShape;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const avgMultiplier = 1 / (filterHeight * filterWidth);\n this.userCode = `\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n const float avgMultiplier = float(${avgMultiplier});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n\n ivec2 dyRCCorner = coords.yz - pads;\n int dyRCorner = dyRCCorner.x;\n int dyCCorner = dyRCCorner.y;\n\n // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC+= ${dilationWidth}) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(b, idyR, idyC, d);\n\n dotProd += dyValue * avgMultiplier;\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar AvgPool3DBackpropProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\"];\n this.outputShape = convInfo.inShape;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = effectiveFilterDepth - 1 - convInfo.padInfo.front;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const avgMultiplier = 1 / (filterDepth * filterHeight * filterWidth);\n this.userCode = `\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n const float avgMultiplier = float(${avgMultiplier});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyDCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get\n // dx(xD, xR, xC, ch).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int wD = 0; wD < ${effectiveFilterDepth};\n wD += ${dilationDepth}) {\n float dyD = float(dyDCorner + wD) / ${strideDepth}.0;\n\n if (dyD < 0.0 || dyD >= ${convInfo.outDepth}.0 || fract(dyD) > 0.0) {\n continue;\n }\n int idyD = int(dyD);\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC += ${dilationWidth}) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n\n dotProd += dyValue * avgMultiplier;\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AvgPool3DGrad.js\nfunction avgPool3DGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const x = input2;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = [1, 1, 1];\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n const avgPoolBackpropProgram = new AvgPool3DBackpropProgram(convInfo);\n return backend2.runWebGLProgram(avgPoolBackpropProgram, [dy], x.dtype);\n}\nvar avgPool3DGradConfig3 = {\n kernelName: AvgPool3DGrad,\n backendName: \"webgl\",\n kernelFunc: avgPool3DGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AvgPoolGrad.js\nfunction avgPoolGrad3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const x = input2;\n assertNotComplex2([dy, input2], \"avgPoolGrad\");\n const { filterSize, strides, pad: pad3 } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3);\n const avgPoolBackpropProgram = new AvgPool2DBackpropProgram(convInfo);\n return backend2.runWebGLProgram(avgPoolBackpropProgram, [dy], x.dtype);\n}\nvar avgPoolGradConfig3 = {\n kernelName: AvgPoolGrad,\n backendName: \"webgl\",\n kernelFunc: avgPoolGrad3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BatchMatMul.js\nfunction batchMatMul2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b } = inputs;\n const { transposeA, transposeB } = attrs;\n return batchMatMulImpl({ a, b, transposeA, transposeB, backend: backend2 });\n}\nvar batchMatMulConfig2 = {\n kernelName: BatchMatMul,\n backendName: \"webgl\",\n kernelFunc: batchMatMul2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/batchnorm_gpu.js\nvar BatchNormProgram = class {\n constructor(xShape, meanShape, varianceShape, offsetShape, scaleShape, varianceEpsilon) {\n this.outputShape = [];\n this.variableNames = [\"x\", \"mean\", \"variance\"];\n backend_util_exports.assertAndGetBroadcastShape(xShape, meanShape);\n backend_util_exports.assertAndGetBroadcastShape(xShape, varianceShape);\n let offsetSnippet = \"0.0\";\n if (offsetShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, offsetShape);\n this.variableNames.push(\"offset\");\n offsetSnippet = \"getOffsetAtOutCoords()\";\n }\n let scaleSnippet = \"1.0\";\n if (scaleShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, scaleShape);\n this.variableNames.push(\"scale\");\n scaleSnippet = \"getScaleAtOutCoords()\";\n }\n this.outputShape = xShape;\n this.userCode = `\n void main() {\n float x = getXAtOutCoords();\n float mean = getMeanAtOutCoords();\n float variance = getVarianceAtOutCoords();\n float offset = ${offsetSnippet};\n float scale = ${scaleSnippet};\n float inv = scale * inversesqrt(variance + float(${varianceEpsilon}));\n setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/batchnorm_packed_gpu.js\nvar BatchNormPackedProgram = class {\n constructor(xShape, meanShape, varianceShape, offsetShape, scaleShape, varianceEpsilon) {\n this.packedInputs = true;\n this.packedOutput = true;\n this.variableNames = [\"x\", \"mean\", \"variance\"];\n backend_util_exports.assertAndGetBroadcastShape(xShape, meanShape);\n backend_util_exports.assertAndGetBroadcastShape(xShape, varianceShape);\n let offsetSnippet = \"vec4(0.0)\";\n if (offsetShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, offsetShape);\n this.variableNames.push(\"offset\");\n offsetSnippet = \"getOffsetAtOutCoords()\";\n }\n let scaleSnippet = \"vec4(1.0)\";\n if (scaleShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, scaleShape);\n this.variableNames.push(\"scale\");\n scaleSnippet = \"getScaleAtOutCoords()\";\n }\n this.outputShape = xShape;\n this.userCode = `\n void main() {\n vec4 offset = ${offsetSnippet};\n vec4 scale = ${scaleSnippet};\n\n vec4 x = getXAtOutCoords();\n vec4 mean = getMeanAtOutCoords();\n vec4 variance = getVarianceAtOutCoords();\n\n vec4 inv = scale * inversesqrt(variance + vec4(${varianceEpsilon}));\n\n setOutput((x - mean) * inv + offset);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BatchNorm.js\nvar batchNorm3 = ({ inputs, backend: backend2, attrs }) => {\n const { x, mean: mean5, variance, offset, scale: scale2 } = inputs;\n util_exports.assert(mean5.shape.length === variance.shape.length, () => \"Batch normalization gradient requires mean and variance to have equal ranks.\");\n util_exports.assert(offset == null || mean5.shape.length === offset.shape.length, () => \"Batch normalization gradient requires mean and offset to have equal ranks.\");\n util_exports.assert(scale2 == null || mean5.shape.length === scale2.shape.length, () => \"Batch normalization gradient requires mean and scale to have equal ranks.\");\n let { varianceEpsilon } = attrs;\n if (varianceEpsilon == null) {\n varianceEpsilon = 1e-3;\n }\n const finalInputs = [x, mean5, variance];\n let offsetShape = null;\n if (offset != null) {\n offsetShape = offset.shape;\n finalInputs.push(offset);\n }\n let scaleShape = null;\n if (scale2 != null) {\n scaleShape = scale2.shape;\n finalInputs.push(scale2);\n }\n const program = env().getBool(\"WEBGL_PACK_NORMALIZATION\") ? new BatchNormPackedProgram(x.shape, mean5.shape, variance.shape, offsetShape, scaleShape, varianceEpsilon) : new BatchNormProgram(x.shape, mean5.shape, variance.shape, offsetShape, scaleShape, varianceEpsilon);\n const output = backend2.runWebGLProgram(program, finalInputs, finalInputs[0].dtype);\n return output;\n};\nvar batchNormConfig2 = {\n kernelName: FusedBatchNorm,\n backendName: \"webgl\",\n kernelFunc: batchNorm3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/slice_gpu.js\nvar SliceProgram = class {\n constructor(destSize) {\n this.variableNames = [\"source\"];\n this.outputShape = destSize;\n this.rank = destSize.length;\n const dtype = getCoordsDataType(this.rank);\n this.customUniforms = [{ name: \"start\", arrayIndex: this.rank, type: \"int\" }];\n const sourceCoords = getCoords(this.rank);\n let body;\n const coordSum = destSize.map((_, i2) => {\n return `sourceLoc.${coords[i2]} = start[${i2}] + coords.${coords[i2]};`;\n });\n body = `\n ${dtype} sourceLoc;\n ${dtype} coords = getOutputCoords();\n ${coordSum.join(\"\\n\")}\n `;\n this.userCode = `\n void main() {\n ${body}\n setOutput(getSource(${sourceCoords}));\n }\n `;\n }\n};\nvar coords = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"];\nfunction getCoords(rank) {\n if (rank === 1) {\n return \"sourceLoc\";\n } else if (rank <= 6) {\n return coords.slice(0, rank).map((x) => \"sourceLoc.\" + x).join(\",\");\n } else {\n throw Error(`Slicing for rank ${rank} is not yet supported`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/slice_packed_gpu.js\nvar SlicePackedProgram = class {\n constructor(destSize) {\n this.variableNames = [\"source\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = destSize;\n this.rank = destSize.length;\n this.customUniforms = [{ name: \"start\", arrayIndex: this.rank, type: \"int\" }];\n const dtype = getCoordsDataType(this.rank);\n const coords3 = getChannels(\"coords\", this.rank);\n const sourceLoc = getChannels(\"sourceLoc\", this.rank);\n const innerDims = this.rank === 1 ? \"sourceLoc\" : `vec2(${sourceLoc.slice(-2).join()})`;\n const getChannel = `getChannel(getSource(${sourceLoc.join()}), ${innerDims})`;\n const upperRow = `\n result.x = ${getChannel};\n if (++${coords3[this.rank - 1]} < ${destSize[this.rank - 1]}) {\n ++${sourceLoc[this.rank - 1]};\n result.y = ${getChannel};\n --${sourceLoc[this.rank - 1]};\n }\n `;\n const lowerRow = this.rank === 1 ? \"\" : `\n --${coords3[this.rank - 1]};\n if (++${coords3[this.rank - 2]} < ${destSize[this.rank - 2]}) {\n ++${sourceLoc[this.rank - 2]};\n result.z = ${getChannel};\n if (++${coords3[this.rank - 1]} < ${destSize[this.rank - 1]}) {\n ++${sourceLoc[this.rank - 1]};\n result.w = ${getChannel};\n }\n }\n `;\n const sourceLocSetup = this.rank <= 4 ? `sourceLoc = coords +\n ${dtype}(${destSize.map((_, i2) => `start[${i2}]`).join()});` : destSize.map((_, i2) => `${sourceLoc[i2]} = ${coords3[i2]} + start[${i2}];`).join(\"\\n\");\n this.userCode = `\n void main() {\n ${dtype} coords = getOutputCoords();\n ${dtype} sourceLoc;\n ${sourceLocSetup}\n vec4 result = vec4(0.);\n ${upperRow}\n ${lowerRow}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Slice.js\nfunction shallowSlice(x, begin, size, backend2) {\n const xTexData = backend2.texData.get(x.dataId);\n const t2 = backend2.makeTensorInfo(size, x.dtype);\n const newTexData = backend2.texData.get(t2.dataId);\n Object.assign(newTexData, xTexData);\n newTexData.refCount = 1;\n newTexData.shape = size;\n newTexData.dtype = x.dtype;\n let flatOffset = slice_util_exports.computeFlatOffset(begin, util_exports.computeStrides(x.shape));\n if (xTexData.slice) {\n flatOffset += xTexData.slice.flatOffset;\n }\n newTexData.slice = {\n flatOffset,\n origDataId: xTexData.slice && xTexData.slice.origDataId || x.dataId\n };\n const refCount = backend2.dataRefCount.get(newTexData.slice.origDataId) || 1;\n backend2.dataRefCount.set(newTexData.slice.origDataId, refCount + 1);\n return t2;\n}\nfunction slice3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, size } = attrs;\n const [$begin, $size] = slice_util_exports.parseSliceParams(x, begin, size);\n slice_util_exports.assertParamsValid(x, $begin, $size);\n if (util_exports.sizeFromShape($size) === 0) {\n return backend2.makeTensorInfo($size, x.dtype, []);\n }\n if (backend2.shouldExecuteOnCPU([x]) || x.dtype === \"string\") {\n const xTexData = backend2.texData.get(x.dataId);\n const outValues = sliceImplCPU(xTexData.values, $begin, $size, x.shape, x.dtype);\n return backend2.makeTensorInfo($size, x.dtype, outValues);\n }\n const { isPacked } = backend2.texData.get(x.dataId);\n const isContinous = slice_util_exports.isSliceContinous(x.shape, $begin, $size);\n if (isPacked || !isContinous) {\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new SlicePackedProgram($size) : new SliceProgram($size);\n const customValues = [$begin];\n return backend2.runWebGLProgram(program, [x], x.dtype, customValues);\n }\n backend2.uploadToGPU(x.dataId);\n return shallowSlice(x, $begin, $size, backend2);\n}\nvar sliceConfig2 = {\n kernelName: Slice,\n backendName: \"webgl\",\n kernelFunc: slice3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BatchToSpaceND.js\nvar batchToSpaceND3 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, crops } = attrs;\n util_exports.assert(x.shape.length <= 4, () => \"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6);\n const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length);\n const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6);\n const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length);\n const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length);\n const toDispose = [];\n const reshapedIntermediate = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } });\n const transposedIntermediate = transpose3({ inputs: { x: reshapedIntermediate }, backend: backend2, attrs: { perm: permuted } });\n const reshapedIntermediate2 = reshape4({\n inputs: { x: transposedIntermediate },\n backend: backend2,\n attrs: { shape: reshapedPermuted }\n });\n const sliced = slice3({\n inputs: { x: reshapedIntermediate2 },\n backend: backend2,\n attrs: { begin: sliceBeginCoords, size: sliceSize }\n });\n toDispose.push(reshapedIntermediate);\n toDispose.push(transposedIntermediate);\n toDispose.push(reshapedIntermediate2);\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return sliced;\n};\nvar batchToSpaceNDConfig2 = {\n kernelName: BatchToSpaceND,\n backendName: \"webgl\",\n kernelFunc: batchToSpaceND3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Bincount.js\nfunction bincount3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, weights } = inputs;\n const { size } = attrs;\n const xVals = backend2.readSync(x.dataId);\n const weightsVals = backend2.readSync(weights.dataId);\n const outVals = bincountImplCPU(xVals, weightsVals, weights.dtype, weights.shape, size);\n return backend2.makeTensorInfo([size], weights.dtype, outVals);\n}\nvar bincountConfig2 = {\n kernelName: Bincount,\n backendName: \"webgl\",\n kernelFunc: bincount3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BroadcastArgs.js\nfunction broadcastArgs3(args) {\n const { inputs, backend: backend2 } = args;\n const { s0, s1 } = inputs;\n const s0Vals = backend2.readSync(s0.dataId);\n const s1Vals = backend2.readSync(s1.dataId);\n const broadcastShape = backend_util_exports.assertAndGetBroadcastShape(Array.from(s0Vals), Array.from(s1Vals));\n return backend2.makeTensorInfo([broadcastShape.length], \"int32\", Int32Array.from(broadcastShape));\n}\nvar broadcastArgsConfig2 = {\n kernelName: BroadcastArgs,\n backendName: \"webgl\",\n kernelFunc: broadcastArgs3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/NotEqual.js\nvar NOT_EQUAL = `return float(a != b);`;\nvar notEqual3 = binaryKernelFunc2({ opSnippet: NOT_EQUAL, cpuKernelImpl: notEqualImplCPU, dtype: \"bool\" });\nvar notEqualConfig2 = {\n kernelName: NotEqual,\n backendName: \"webgl\",\n kernelFunc: notEqual3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Real.js\nfunction real3(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputData = backend2.texData.get(input2.dataId);\n return identity3({ inputs: { x: inputData.complexTensorInfos.real }, backend: backend2 });\n}\nvar realConfig2 = {\n kernelName: Real,\n backendName: \"webgl\",\n kernelFunc: real3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/int.js\nvar TO_INT = `return float(int(x));`;\nfunction int(input2, backend2) {\n const program = new UnaryOpProgram(input2.shape, TO_INT);\n const output = backend2.runWebGLProgram(program, [input2], \"int32\");\n return { dataId: output.dataId, shape: output.shape, dtype: output.dtype };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cast.js\nfunction cast4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dtype } = attrs;\n if (dtype === \"complex64\") {\n if (x.dtype === \"complex64\") {\n return identity3({ inputs: { x }, backend: backend2 });\n }\n const zerosTensor = zeros(x.shape);\n const floatX = cast4({ inputs: { x }, backend: backend2, attrs: { dtype: \"float32\" } });\n const result = complex3({ inputs: { real: floatX, imag: zerosTensor }, backend: backend2 });\n zerosTensor.dispose();\n backend2.disposeIntermediateTensorInfo(floatX);\n return result;\n }\n if (x.dtype === \"complex64\") {\n const realPart = real3({ inputs: { input: x }, backend: backend2 });\n const result = cast4({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } });\n backend2.disposeIntermediateTensorInfo(realPart);\n return result;\n }\n if (!util_exports.hasEncodingLoss(x.dtype, dtype)) {\n const result = identity3({ inputs: { x }, backend: backend2 });\n return { dataId: result.dataId, shape: result.shape, dtype };\n }\n if (backend2.shouldExecuteOnCPU([x])) {\n const values = backend2.texData.get(x.dataId).values;\n const [resultShape, resultType, resultData] = castImplCPU(values, x.shape, x.dtype, dtype);\n return backend2.makeTensorInfo(resultShape, resultType, resultData);\n }\n if (dtype === \"int32\") {\n return int(x, backend2);\n }\n if (dtype === \"bool\") {\n const zerosTensorInfo = backend2.makeTensorInfo([], \"bool\", util_exports.getTypedArrayFromDType(\"bool\", 1));\n const binaryInputs = { a: x, b: zerosTensorInfo };\n const result = notEqual3({ inputs: binaryInputs, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(zerosTensorInfo);\n return result;\n }\n throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`);\n}\nvar castConfig2 = {\n kernelName: Cast,\n backendName: \"webgl\",\n kernelFunc: cast4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Ceil.js\nvar CEIL = `return ceil(x);`;\nvar ceil3 = unaryKernelFunc2({ opSnippet: CEIL, packedOpSnippet: CEIL, cpuKernelImpl: ceilImplCPU });\nvar ceilConfig2 = {\n kernelName: Ceil,\n backendName: \"webgl\",\n kernelFunc: ceil3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/clip_gpu.js\nvar ClipProgram = class {\n constructor(aShape) {\n this.variableNames = [\"A\"];\n this.customUniforms = [\n { name: \"minVal\", type: \"float\" },\n { name: \"maxVal\", type: \"float\" }\n ];\n this.outputShape = aShape;\n this.userCode = `\n\n void main() {\n float value = getAAtOutCoords();\n if (isnan(value)) {\n setOutput(value);\n return;\n }\n\n setOutput(clamp(value, minVal, maxVal));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/clip_packed_gpu.js\nvar ClipPackedProgram = class {\n constructor(aShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [\n { name: \"minVal\", type: \"float\" },\n { name: \"maxVal\", type: \"float\" }\n ];\n this.outputShape = aShape;\n this.userCode = `\n void main() {\n vec4 value = getAAtOutCoords();\n\n if (any(isnan(value))) {\n setOutput(value);\n return;\n }\n\n setOutput(clamp(value, vec4(minVal), vec4(maxVal)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ClipByValue.js\nfunction clipByValue3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { clipValueMin, clipValueMax } = attrs;\n let program;\n if (env().getBool(\"WEBGL_PACK_CLIP\")) {\n program = new ClipPackedProgram(x.shape);\n } else {\n program = new ClipProgram(x.shape);\n }\n const customValues = [[clipValueMin], [clipValueMax]];\n return backend2.runWebGLProgram(program, [x], x.dtype, customValues);\n}\nvar clipByValueConfig2 = {\n kernelName: ClipByValue,\n backendName: \"webgl\",\n kernelFunc: clipByValue3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/complex_abs_gpu.js\nvar ComplexAbsProgram = class {\n constructor(shape) {\n this.variableNames = [\"real\", \"imag\"];\n this.outputShape = shape;\n this.userCode = `\n void main() {\n float re = abs(getRealAtOutCoords());\n float im = abs(getImagAtOutCoords());\n float mx = max(re, im);\n\n // sadly the length function in glsl is not underflow-safe\n // (at least not on Intel GPUs). So the safe solution is\n // to ensure underflow-safety in all cases.\n setOutput(\n mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))\n );\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ComplexAbs.js\nfunction makeComplexComponentTensorInfo(complexTensor, complexPart) {\n return {\n dataId: complexPart.dataId,\n dtype: complexPart.dtype,\n shape: complexTensor.shape\n };\n}\nfunction complexAbs2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n const xData = backend2.texData.get(x.dataId);\n const program = new ComplexAbsProgram(x.shape);\n const programInputs = [\n makeComplexComponentTensorInfo(x, xData.complexTensorInfos.real),\n makeComplexComponentTensorInfo(x, xData.complexTensorInfos.imag)\n ];\n return backend2.runWebGLProgram(program, programInputs, programInputs[0].dtype);\n}\nvar complexAbsConfig2 = {\n kernelName: ComplexAbs,\n backendName: \"webgl\",\n kernelFunc: complexAbs2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/concat_gpu.js\nvar ConcatProgram = class {\n constructor(shapes) {\n this.outputShape = [];\n this.outputShape = backend_util_exports.computeOutShape(shapes, 1);\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n const offsets = new Array(shapes.length - 1);\n offsets[0] = shapes[0][1];\n for (let i2 = 1; i2 < offsets.length; i2++) {\n offsets[i2] = offsets[i2 - 1] + shapes[i2][1];\n }\n const snippets = [`if (yC < ${offsets[0]}) setOutput(getT0(yR, yC));`];\n for (let i2 = 1; i2 < offsets.length; i2++) {\n const shift = offsets[i2 - 1];\n snippets.push(`else if (yC < ${offsets[i2]}) setOutput(getT${i2}(yR, yC-${shift}));`);\n }\n const lastIndex = offsets.length;\n const lastShift = offsets[offsets.length - 1];\n snippets.push(`else setOutput(getT${lastIndex}(yR, yC-${lastShift}));`);\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int yR = coords.x;\n int yC = coords.y;\n\n ${snippets.join(\"\\n \")}\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/concat_packed_gpu.js\nvar ConcatPackedProgram = class {\n constructor(shapes, axis) {\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = [];\n this.outputShape = backend_util_exports.computeOutShape(shapes, axis);\n const shape = this.outputShape;\n const rank = shape.length;\n const dtype = getCoordsDataType(rank);\n const coords3 = getChannels(\"coords\", rank);\n const channels = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"].slice(0, rank);\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n const offsets = new Array(shapes.length - 1);\n offsets[0] = shapes[0][axis];\n for (let i2 = 1; i2 < offsets.length; i2++) {\n offsets[i2] = offsets[i2 - 1] + shapes[i2][axis];\n }\n const channel = channels[axis];\n const lastChannels = channels.slice(-2);\n const allChannels = channels.join();\n let getValueSnippet = `if (${channel} < ${offsets[0]}) {\n return getChannel(\n getT0(${allChannels}), vec2(${lastChannels.join()}));\n }`;\n for (let i2 = 1; i2 < offsets.length; i2++) {\n const shift2 = offsets[i2 - 1];\n getValueSnippet += `\n if (${channel} < ${offsets[i2]} && ${channel} >= ${offsets[i2 - 1]}) {\n return getChannel(\n getT${i2}(${shiftedChannels(channels, channel, shift2)}),\n vec2(${shiftedChannels(lastChannels, channel, shift2)}));\n }`;\n }\n const lastIndex = offsets.length;\n const shift = offsets[offsets.length - 1];\n getValueSnippet += `\n return getChannel(\n getT${lastIndex}(${shiftedChannels(channels, channel, shift)}),\n vec2(${shiftedChannels(lastChannels, channel, shift)}));`;\n this.userCode = `\n float getValue(${channels.map((x) => \"int \" + x)}) {\n ${getValueSnippet}\n }\n\n void main() {\n ${dtype} coords = getOutputCoords();\n vec4 result = vec4(getValue(${coords3}), 0., 0., 0.);\n\n ${coords3[rank - 1]} = ${coords3[rank - 1]} + 1;\n if (${coords3[rank - 1]} < ${shape[rank - 1]}) {\n result.g = getValue(${coords3});\n }\n\n ${coords3[rank - 2]} = ${coords3[rank - 2]} + 1;\n if (${coords3[rank - 2]} < ${shape[rank - 2]}) {\n result.a = getValue(${coords3});\n }\n\n ${coords3[rank - 1]} = ${coords3[rank - 1]} - 1;\n if (${coords3[rank - 2]} < ${shape[rank - 2]} &&\n ${coords3[rank - 1]} < ${shape[rank - 1]}) {\n result.b = getValue(${coords3});\n }\n setOutput(result);\n }\n `;\n }\n};\nfunction shiftedChannels(channels, channel, shift) {\n const channelIdx = channels.indexOf(channel);\n const res = channels.map((c, idx) => {\n if (idx === channelIdx) {\n return `${c} - ${shift}`;\n } else {\n return c;\n }\n });\n return res.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Imag.js\nfunction imag3(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputData = backend2.texData.get(input2.dataId);\n return identity3({ inputs: { x: inputData.complexTensorInfos.imag }, backend: backend2 });\n}\nvar imagConfig2 = {\n kernelName: Imag,\n backendName: \"webgl\",\n kernelFunc: imag3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Concat_impl.js\nfunction concatImpl2(inputs, axis, backend2) {\n const dtype = inputs[0].dtype;\n if (dtype === \"complex64\") {\n const reals = inputs.map((t2) => real3({ inputs: { input: t2 }, backend: backend2 }));\n const imags = inputs.map((t2) => imag3({ inputs: { input: t2 }, backend: backend2 }));\n const realConcated = concatImpl2(reals, axis, backend2);\n const imagConcated = concatImpl2(imags, axis, backend2);\n const result2 = complex3({ inputs: { real: realConcated, imag: imagConcated }, backend: backend2 });\n reals.forEach((r2) => backend2.disposeIntermediateTensorInfo(r2));\n imags.forEach((i2) => backend2.disposeIntermediateTensorInfo(i2));\n backend2.disposeIntermediateTensorInfo(realConcated);\n backend2.disposeIntermediateTensorInfo(imagConcated);\n return result2;\n }\n let runOnCpu = backend2.shouldExecuteOnCPU(inputs);\n if (dtype === \"string\") {\n runOnCpu = true;\n }\n if (runOnCpu) {\n const tensors2D2 = inputs.map((t2) => {\n const innerSize = util_exports.sizeFromShape(t2.shape.slice(axis));\n const shape = [-1, innerSize];\n return reshape4({ inputs: { x: t2 }, backend: backend2, attrs: { shape } });\n });\n const inputsValShapes = tensors2D2.map((t2) => {\n return { vals: backend2.readSync(t2.dataId), shape: t2.shape };\n });\n const outShape2 = backend_util_exports.computeOutShape(tensors2D2.map((t2) => t2.shape), 1);\n const simplyConcat = tensors2D2[0].shape[0] === 1;\n const outVals = concatImplCPU(inputsValShapes, outShape2, dtype, simplyConcat);\n const finalOutShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const outInfo = backend2.makeTensorInfo(finalOutShape, dtype, outVals);\n tensors2D2.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return outInfo;\n }\n const maxTexturesInShader = env().getNumber(\"WEBGL_MAX_TEXTURES_IN_SHADER\");\n if (inputs.length > maxTexturesInShader) {\n const reducedInputs = [];\n for (let i2 = 0; i2 < inputs.length; i2 += maxTexturesInShader) {\n const subArray = inputs.slice(i2, i2 + maxTexturesInShader);\n reducedInputs.push(concatImpl2(subArray, axis, backend2));\n }\n const result2 = concatImpl2(reducedInputs, axis, backend2);\n for (const i2 of reducedInputs) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return result2;\n }\n if (env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") && inputs[0].shape.length > 1) {\n const program2 = new ConcatPackedProgram(inputs.map((t2) => t2.shape), axis);\n return backend2.runWebGLProgram(program2, inputs, dtype);\n }\n const { tensors2D, outShape } = computeTensors2D(inputs, axis, backend2);\n const program = new ConcatProgram(tensors2D.map((t2) => t2.shape));\n const result = backend2.runWebGLProgram(program, tensors2D, dtype);\n tensors2D.forEach((r2) => backend2.disposeIntermediateTensorInfo(r2));\n const reshapedResult = reshape4({ inputs: { x: result }, attrs: { shape: outShape }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(result);\n return reshapedResult;\n}\nfunction computeTensors2D(inputs, axis, backend2) {\n const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const tensors2D = inputs.map((x) => reshape4({\n inputs: { x },\n attrs: { shape: [-1, util_exports.sizeFromShape(x.shape.slice(axis))] },\n backend: backend2\n }));\n return { tensors2D, outShape };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Concat.js\nfunction concat3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, inputs[0].shape)[0];\n const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), $axis);\n if (util_exports.sizeFromShape(outShape) === 0) {\n return backend2.makeTensorInfo(outShape, inputs[0].dtype, []);\n }\n const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0);\n if ($inputs.length === 1) {\n return identity3({ inputs: { x: $inputs[0] }, backend: backend2 });\n }\n const shapes = $inputs.map((t2) => t2.shape);\n backend_util_exports.assertParamsConsistent(shapes, $axis);\n return concatImpl2($inputs, $axis, backend2);\n}\nvar concatConfig2 = {\n kernelName: Concat,\n backendName: \"webgl\",\n kernelFunc: concat3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_gpu.js\nvar Conv2DProgram = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivationWeights = false, hasLeakyreluAlpha = false) {\n this.variableNames = [\"x\", \"W\"];\n this.outputShape = convInfo.outShape;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const inputDepthNearestVec4 = Math.floor(convInfo.inChannels / 4) * 4;\n const inputDepthVec4Remainder = convInfo.inChannels % 4;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const rowDim = isChannelsLast ? 1 : 2;\n const colDim = isChannelsLast ? 2 : 3;\n const channelDim = isChannelsLast ? 3 : 1;\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivationWeights) {\n activationSnippet = `float activation(float a) {\n float b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyreluAlpha) {\n activationSnippet = `float activation(float a) {\n float b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `\n float activation(float x) {\n ${activation2}\n }\n `;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyreluAlpha) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n this.userCode = `\n ${activationSnippet}\n\n const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d2 = coords[${channelDim}];\n\n ivec2 xRCCorner =\n ivec2(coords[${rowDim}], coords[${colDim}]) * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n int xR = xRCorner + wR * ${dilationHeight};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n int xC = xCCorner + wC * ${dilationWidth};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n for (int d1 = 0; d1 < ${inputDepthNearestVec4}; d1 += 4) {\n vec4 wValues = vec4(\n getW(wR, wC, d1, d2),\n getW(wR, wC, d1 + 1, d2),\n getW(wR, wC, d1 + 2, d2),\n getW(wR, wC, d1 + 3, d2)\n );\n\n if (${isChannelsLast}) {\n vec4 xValues = vec4(\n getX(batch, xR, xC, d1),\n getX(batch, xR, xC, d1 + 1),\n getX(batch, xR, xC, d1 + 2),\n getX(batch, xR, xC, d1 + 3)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec4 xValues = vec4(\n getX(batch, d1, xR, xC),\n getX(batch, d1 + 1, xR, xC),\n getX(batch, d1 + 2, xR, xC),\n getX(batch, d1 + 3, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n }\n\n if (${inputDepthVec4Remainder === 1}) {\n\n if (${isChannelsLast}) {\n dotProd +=\n getX(batch, xR, xC, ${inputDepthNearestVec4}) *\n getW(wR, wC, ${inputDepthNearestVec4}, d2);\n } else {\n dotProd +=\n getX(batch, ${inputDepthNearestVec4}, xR, xC) *\n getW(wR, wC, ${inputDepthNearestVec4}, d2);\n }\n\n } else if (${inputDepthVec4Remainder === 2}) {\n vec2 wValues = vec2(\n getW(wR, wC, ${inputDepthNearestVec4}, d2),\n getW(wR, wC, ${inputDepthNearestVec4} + 1, d2)\n );\n\n if (${isChannelsLast}) {\n vec2 xValues = vec2(\n getX(batch, xR, xC, ${inputDepthNearestVec4}),\n getX(batch, xR, xC, ${inputDepthNearestVec4} + 1)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec2 xValues = vec2(\n getX(batch, ${inputDepthNearestVec4}, xR, xC),\n getX(batch, ${inputDepthNearestVec4} + 1, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n\n } else if (${inputDepthVec4Remainder === 3}) {\n vec3 wValues = vec3(\n getW(wR, wC, ${inputDepthNearestVec4}, d2),\n getW(wR, wC, ${inputDepthNearestVec4} + 1, d2),\n getW(wR, wC, ${inputDepthNearestVec4} + 2, d2)\n );\n\n if (${isChannelsLast}) {\n vec3 xValues = vec3(\n getX(batch, xR, xC, ${inputDepthNearestVec4}),\n getX(batch, xR, xC, ${inputDepthNearestVec4} + 1),\n getX(batch, xR, xC, ${inputDepthNearestVec4} + 2)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec3 xValues = vec3(\n getX(batch, ${inputDepthNearestVec4}, xR, xC),\n getX(batch, ${inputDepthNearestVec4} + 1, xR, xC),\n getX(batch, ${inputDepthNearestVec4} + 2, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n\n }\n }\n }\n\n float result = dotProd;\n ${addBiasSnippet}\n ${applyActivationSnippet}\n setOutput(result);\n }\n `;\n }\n};\nvar Conv3DProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"W\"];\n this.outputShape = convInfo.outShape;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const inputDepthNearestVec4 = Math.floor(convInfo.inChannels / 4) * 4;\n const inputDepthVec4Remainder = convInfo.inChannels % 4;\n this.userCode = `\n const ivec3 strides = ivec3(${strideDepth}, ${strideHeight}, ${strideWidth});\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int d2 = coords.u;\n\n ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xFCorner = xFRCCorner.x;\n int xRCorner = xFRCCorner.y;\n int xCCorner = xFRCCorner.z;\n\n // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get\n // y(yF, yR, yC, d2). ? = to be determined. : = across all\n // values in that axis.\n float dotProd = 0.0;\n for (int wF = 0; wF < ${filterDepth}; wF++) {\n int xF = xFCorner + wF * ${dilationDepth};\n\n if (xF < 0 || xF >= ${convInfo.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n int xR = xRCorner + wR * ${dilationHeight};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n int xC = xCCorner + wC * ${dilationWidth};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n for (int d1 = 0; d1 < ${inputDepthNearestVec4}; d1 += 4) {\n vec4 xValues = vec4(\n getX(batch, xF, xR, xC, d1),\n getX(batch, xF, xR, xC, d1 + 1),\n getX(batch, xF, xR, xC, d1 + 2),\n getX(batch, xF, xR, xC, d1 + 3)\n );\n vec4 wValues = vec4(\n getW(wF, wR, wC, d1, d2),\n getW(wF, wR, wC, d1 + 1, d2),\n getW(wF, wR, wC, d1 + 2, d2),\n getW(wF, wR, wC, d1 + 3, d2)\n );\n\n dotProd += dot(xValues, wValues);\n }\n\n if (${inputDepthVec4Remainder === 1}) {\n dotProd +=\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4}) *\n getW(wF, wR, wC, ${inputDepthNearestVec4}, d2);\n } else if (${inputDepthVec4Remainder === 2}) {\n vec2 xValues = vec2(\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4}),\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 1)\n );\n vec2 wValues = vec2(\n getW(wF, wR, wC, ${inputDepthNearestVec4}, d2),\n getW(wF, wR, wC, ${inputDepthNearestVec4} + 1, d2)\n );\n dotProd += dot(xValues, wValues);\n } else if (${inputDepthVec4Remainder === 3}) {\n vec3 xValues = vec3(\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4}),\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 1),\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 2)\n );\n vec3 wValues = vec3(\n getW(wF, wR, wC, ${inputDepthNearestVec4}, d2),\n getW(wF, wR, wC, ${inputDepthNearestVec4} + 1, d2),\n getW(wF, wR, wC, ${inputDepthNearestVec4} + 2, d2)\n );\n dotProd += dot(xValues, wValues);\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_packed_gpu.js\nvar Conv2DPackedProgram = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false, hasLeakyReluAlpha = false) {\n this.variableNames = [\"x\", \"W\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [\n { name: \"pads\", type: \"ivec2\" },\n { name: \"strides\", type: \"ivec2\" },\n { name: \"dilations\", type: \"ivec2\" },\n { name: \"inDims\", type: \"ivec2\" }\n ];\n this.outputShape = convInfo.outShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const padLeft = convInfo.padInfo.left;\n const strideWidth = convInfo.strideWidth;\n const dilationWidth = convInfo.dilationWidth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const texelsAcross = filterWidth;\n let mainLoop = `\n int xR; int xC; int xCOffset;\n vec4 wTexel; vec4 previous; vec4 final;`;\n for (let c = 0; c < filterWidth; c++) {\n mainLoop += `\n vec4 xTexelC${c * 2};\n int xTexelC${c * 2}Ready;\n vec4 xTexelC${c * 2 + 1};\n int xTexelC${c * 2 + 1}Ready;\n vec4 xC${c};`;\n }\n mainLoop += `\n for (int r = 0; r < ${filterHeight}; r++) {\n for (int d1 = 0; d1 < ${convInfo.inChannels}; d1 += 2) {\n `;\n for (let c = 0; c < filterWidth; c++) {\n mainLoop += `\n xTexelC${c * 2} = vec4(0.0);\n xTexelC${c * 2}Ready = 0;\n xTexelC${c * 2 + 1} = vec4(0.0);\n xTexelC${c * 2 + 1}Ready = 0;\n xC${c} = vec4(0.0);`;\n }\n mainLoop += `\n xR = xRCorner + r * dilations[0];\n if (xR >=0 && xR < inDims[0]) {\n `;\n for (let texelC = 0; texelC < (texelsAcross + 1) / 2; texelC++) {\n const colIndex = texelC * 2;\n mainLoop += `\n xC = xCCorner + ${colIndex * dilationWidth};\n `;\n if (strideWidth === 1) {\n if (colIndex < filterWidth) {\n if (padLeft % 2 === 1) {\n mainLoop += `\n xCOffset = xC + 1;\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n `;\n if (dilationWidth === 1 && colIndex > 0) {\n mainLoop += `\n xC${colIndex} = vec4(xTexelC${colIndex - 2}.zw, xTexelC${colIndex}.xy);\n `;\n } else {\n mainLoop += `\n xCOffset = xC + 1 - 2;\n\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n previous.zw = vec2(0.0);\n }\n\n xC${colIndex} = vec4(previous.zw, xTexelC${colIndex}.xy);\n } else {\n xC${colIndex} = vec4(0.0, 0.0, xTexelC${colIndex}.xy);\n }\n `;\n }\n } else {\n mainLoop += `\n if (xC >= 0 && xC < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n xC${colIndex} = xTexelC${colIndex};\n `;\n }\n if (colIndex + 1 < filterWidth) {\n const nextTexelOffset = padLeft % 2 === 0 ? util_exports.nearestLargerEven(dilationWidth) : dilationWidth;\n if (dilationWidth % 2 === 0 && padLeft % 2 === 1 || dilationWidth % 2 !== 0 && padLeft % 2 !== 1) {\n mainLoop += `\n xCOffset = xC + imod(pads[1], 2) + ${nextTexelOffset};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n `;\n if (dilationWidth > 1) {\n mainLoop += `\n xCOffset -= 2;\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n xC${colIndex + 1} = vec4(previous.zw, xTexelC${colIndex + 1}.xy);\n } else {\n xC${colIndex + 1} = vec4(0.0, 0.0, xTexelC${colIndex + 1}.xy);\n }\n `;\n } else {\n mainLoop += `\n xC${colIndex + 1} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.xy);\n `;\n }\n } else {\n if (nextTexelOffset === 1) {\n mainLoop += `\n xC${colIndex + 1} = xTexelC${colIndex};\n `;\n } else {\n mainLoop += `\n xCOffset = xC + ${nextTexelOffset};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex + 1} = xTexelC${colIndex + 1};\n `;\n }\n }\n }\n }\n } else {\n if (colIndex < filterWidth) {\n if (padLeft % 2 === 1) {\n mainLoop += `\n xCOffset = xC + 1 - strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xCOffset, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xC + 1, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xC + 2 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.zw);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n final = vec4(0.0);\n xCOffset = xC + 1 + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1]) {\n final = getX(batch, xR, xCOffset, d1);\n }\n xC${colIndex + 1} = vec4(xTexelC${colIndex + 1}.xy, final.xy);\n `;\n }\n } else {\n mainLoop += `\n if(xC >= 0 && xC < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n xCOffset = xC + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex} = vec4(\n xTexelC${colIndex}.xy, xTexelC${colIndex + 1}.xy);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n xC${colIndex + 1} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.zw);\n `;\n }\n }\n }\n }\n if (colIndex < filterWidth) {\n mainLoop += `\n wTexel = getW(r, ${colIndex}, d1, d2);\n dotProd += xC${colIndex}.xxzz * vec4(wTexel.xy, wTexel.xy);\n if(d1 + 1 < ${convInfo.inChannels}) {\n dotProd += xC${colIndex}.yyww * vec4(wTexel.zw, wTexel.zw);\n }\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n wTexel = getW(r, ${colIndex + 1}, d1, d2);\n dotProd += xC${colIndex + 1}.xxzz * vec4(wTexel.xy, wTexel.xy);\n if(d1 + 1 < ${convInfo.inChannels}) {\n dotProd += xC${colIndex + 1}.yyww * vec4(wTexel.zw, wTexel.zw);\n }\n `;\n }\n }\n }\n mainLoop += `\n }\n `;\n mainLoop += `\n }\n `;\n mainLoop += `\n }\n `;\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivation) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyReluAlpha) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `vec4 activation(vec4 x) {\n ${activation2}\n }`;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyReluAlpha) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n this.userCode = `\n ${activationSnippet}\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n ivec2 xRCCorner = coords.yz * strides - pads;\n int d2 = coords.w;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n //intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.\n vec4 dotProd = vec4(0.000000000000001);\n\n ${mainLoop}\n\n vec4 result = dotProd - vec4(0.000000000000001);\n ${addBiasSnippet}\n ${applyActivationSnippet}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/im2col_packed_gpu.js\nvar Im2ColPackedProgram = class {\n constructor(outputShape, convInfo) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [\n { name: \"inputShape\", type: \"ivec4\" },\n { name: \"pad\", type: \"ivec2\" },\n { name: \"stride\", type: \"ivec2\" },\n { name: \"dilation\", type: \"ivec2\" },\n { name: \"inChannels\", type: \"int\" },\n { name: \"itemsPerBlockRow\", type: \"int\" },\n { name: \"outWidth\", type: \"int\" }\n ];\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const { dataFormat } = convInfo;\n const glsl = getGlslDifferences();\n const isChannelsLast = dataFormat === \"channelsLast\";\n const rowDim = isChannelsLast ? 1 : 2;\n const colDim = isChannelsLast ? 2 : 3;\n const boundsCheckingSnippet = this.enableShapeUniforms ? \"if(blockIndex < outShape[2] && pos < outShape[1]) {\" : `if(blockIndex < ${outputShape[2]} && pos < ${outputShape[1]}) {`;\n let unrolled = ``;\n for (let row = 0; row <= 1; row++) {\n for (let col = 0; col <= 1; col++) {\n unrolled += `\n blockIndex = rc.z + ${col};\n pos = rc.y + ${row};\n\n ${boundsCheckingSnippet}\n offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];\n d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);\n\n if(d0 < inputShape[${rowDim}] && d0 >= 0) {\n // Use custom imod instead mod. On Intel GPU, mod may generate\n // unexpected value.\n // https://github.com/tensorflow/tfjs/issues/5447\n offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];\n d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /\n inChannels);\n\n if(d1 < inputShape[${colDim}] && d1 >= 0) {\n\n ch = imod(pos, inChannels);\n\n if (${isChannelsLast}) {\n innerDims = vec2(d1, ch);\n result[${row * 2 + col}] = getChannel(\n getA(rc.x, d0, int(innerDims.x),\n int(innerDims.y)), innerDims);\n } else {\n innerDims = vec2(d0, d1);\n result[${row * 2 + col}] = getChannel(\n getA(rc.x, ch, int(innerDims.x),\n int(innerDims.y)), innerDims);\n }\n }\n }\n }\n `;\n }\n }\n this.userCode = `\n void main() {\n ivec3 rc = getOutputCoords();\n\n vec4 result = vec4(0);\n\n int blockIndex, pos, offsetY, d0, offsetX, d1, ch;\n vec2 innerDims;\n\n ${unrolled}\n\n ${glsl.output} = result;\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv2D_impl.js\nfunction getShapeForBatchMatMul(shape, isChannelsLast) {\n const length = shape.length;\n if (length >= 3) {\n return isChannelsLast ? [\n ...shape.slice(0, -3),\n shape[length - 3] * shape[length - 2],\n shape[length - 1]\n ] : [\n ...shape.slice(0, -3),\n shape[length - 3],\n shape[length - 2] * shape[length - 1]\n ];\n } else if (!isChannelsLast && length === 1 && shape[0] > 1) {\n return [shape[0], 1];\n } else {\n return null;\n }\n}\nfunction conv2dByMatMul({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const xShape = x.shape;\n const xTexData = backend2.texData.get(x.dataId);\n const sharedMatMulDim = convInfo.inChannels;\n const outerShapeX = xShape[0] * xShape[1] * xShape[2];\n const outerShapeFilter = convInfo.outChannels;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const transposeA = false;\n const transposeB = false;\n let out;\n const intermediates = [];\n if (preluActivationWeights != null) {\n const targetShape = getShapeForBatchMatMul(preluActivationWeights.shape, isChannelsLast);\n if (targetShape != null) {\n preluActivationWeights = reshape4({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: targetShape }\n });\n intermediates.push(preluActivationWeights);\n }\n }\n if (bias != null) {\n const targetShape = getShapeForBatchMatMul(bias.shape, isChannelsLast);\n if (targetShape != null) {\n bias = reshape4({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } });\n intermediates.push(bias);\n }\n }\n const batchMatMulWillBeUnpacked = (outerShapeX === 1 || outerShapeFilter === 1) && sharedMatMulDim > MATMUL_SHARED_DIM_THRESHOLD;\n const canOptimize = !batchMatMulWillBeUnpacked && xTexData.isPacked && isChannelsLast && xTexData.texture != null && xShape[2] % 2 !== 0 && util_exports.arraysEqual(xTexData.shape.slice(-3), xShape.slice(-3));\n if (canOptimize) {\n const targetShape = xShape[0] * xShape[1] * (xShape[2] + 1);\n const xReshaped = {\n dataId: x.dataId,\n shape: [1, targetShape, convInfo.inChannels],\n dtype: x.dtype\n };\n const originalXTexDataShape = xTexData.shape;\n xTexData.shape = xTexData.shape.slice();\n xTexData.shape[xTexData.shape.length - 2]++;\n util_exports.assert(isReshapeFree(xTexData.shape, xReshaped.shape), () => `packed reshape ${xTexData.shape} to ${xReshaped.shape} isn't free`);\n const filterReshaped = reshape4({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] }\n });\n intermediates.push(filterReshaped);\n const pointwiseConv = batchMatMulImpl({\n a: xReshaped,\n b: filterReshaped,\n backend: backend2,\n transposeA,\n transposeB,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n const pointwiseConvTexData = backend2.texData.get(pointwiseConv.dataId);\n util_exports.assert(pointwiseConvTexData.isPacked, () => \"batchMatMul result is expected to be packed\");\n xTexData.shape = originalXTexDataShape;\n pointwiseConvTexData.shape = convInfo.outShape;\n out = identity3({ inputs: { x: pointwiseConv }, backend: backend2 });\n out.shape = convInfo.outShape;\n intermediates.push(pointwiseConv);\n } else {\n const numCols = convInfo.outHeight * convInfo.outWidth;\n const xReshaped = reshape4({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: isChannelsLast ? [convInfo.batchSize, numCols, convInfo.inChannels] : [convInfo.batchSize, convInfo.inChannels, numCols]\n }\n });\n const filterReshaped = reshape4({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] }\n });\n const result = batchMatMulImpl({\n a: isChannelsLast ? xReshaped : filterReshaped,\n b: isChannelsLast ? filterReshaped : xReshaped,\n transposeA: !isChannelsLast,\n transposeB,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n out = reshape4({ inputs: { x: result }, backend: backend2, attrs: { shape: convInfo.outShape } });\n intermediates.push(xReshaped);\n intermediates.push(filterReshaped);\n intermediates.push(result);\n }\n for (const i2 of intermediates) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return out;\n}\nfunction conv2dWithIm2Row({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const { filterWidth, filterHeight, inChannels, outWidth, outHeight, dataFormat } = convInfo;\n const isChannelsLast = dataFormat === \"channelsLast\";\n const sharedDim = filterWidth * filterHeight * inChannels;\n const numCols = outHeight * outWidth;\n const x2ColShape = [convInfo.batchSize, sharedDim, numCols];\n const transposeA = true;\n const transposeB = false;\n const intermediates = [];\n if (preluActivationWeights != null) {\n const targetShape = getShapeForBatchMatMul(preluActivationWeights.shape, isChannelsLast);\n if (targetShape != null) {\n preluActivationWeights = reshape4({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: targetShape }\n });\n intermediates.push(preluActivationWeights);\n }\n }\n if (bias != null) {\n const targetShape = getShapeForBatchMatMul(bias.shape, isChannelsLast);\n if (targetShape != null) {\n bias = reshape4({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } });\n intermediates.push(bias);\n }\n }\n const w2Row = reshape4({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, sharedDim, util_exports.sizeFromShape(filter.shape) / sharedDim] }\n });\n intermediates.push(w2Row);\n const im2ColProgram = new Im2ColPackedProgram(x2ColShape, convInfo);\n const customValues = [\n x.shape,\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inChannels],\n [convInfo.filterWidth * convInfo.inChannels],\n [convInfo.outWidth]\n ];\n const im2Col = backend2.runWebGLProgram(im2ColProgram, [x], \"float32\", customValues);\n const im2ColReshaped = reshape4({ inputs: { x: im2Col }, backend: backend2, attrs: { shape: x2ColShape } });\n intermediates.push(im2Col);\n intermediates.push(im2ColReshaped);\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const hasLeakyreluAlpha = activation2 === \"leakyrelu\";\n const fusedActivation = activation2 ? mapActivationToShaderProgram(activation2, true) : null;\n const matmulProgram = new MatMulPackedProgram(isChannelsLast ? im2ColReshaped.shape : w2Row.shape, isChannelsLast ? w2Row.shape : im2ColReshaped.shape, isChannelsLast ? [convInfo.batchSize, numCols, convInfo.outChannels] : [convInfo.batchSize, convInfo.outChannels, numCols], transposeA, transposeB, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n const inputs = isChannelsLast ? [im2ColReshaped, w2Row] : [w2Row, im2ColReshaped];\n if (bias) {\n inputs.push(bias);\n }\n if (hasPreluActivationWeights) {\n inputs.push(preluActivationWeights);\n }\n if (hasLeakyreluAlpha) {\n const $leakyreluAlpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(leakyreluAlpha, \"float32\"));\n inputs.push($leakyreluAlpha);\n intermediates.push($leakyreluAlpha);\n }\n const product = backend2.runWebGLProgram(matmulProgram, inputs, \"float32\");\n const out = reshape4({ inputs: { x: product }, backend: backend2, attrs: { shape: convInfo.outShape } });\n intermediates.push(product);\n for (const i2 of intermediates) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return out;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv2D.js\nfunction conv2d4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n let out;\n if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === \"SAME\" || convInfo.padInfo.type === \"VALID\")) {\n out = conv2dByMatMul({ x, filter, convInfo, backend: backend2 });\n } else if (convInfo.strideWidth <= 2 && $dataFormat === \"channelsLast\" && env().getBool(\"WEBGL_EXP_CONV\")) {\n const program = new Conv2DPackedProgram(convInfo);\n const customValues = [\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inHeight, convInfo.inWidth]\n ];\n out = backend2.runWebGLProgram(program, [x, filter], \"float32\", customValues);\n } else if (env().getBool(\"WEBGL_CONV_IM2COL\")) {\n out = conv2dWithIm2Row({ x, filter, convInfo, backend: backend2 });\n } else {\n const program = new Conv2DProgram(convInfo);\n out = backend2.runWebGLProgram(program, [x, filter], \"float32\");\n }\n const outReshaped = reshape4({ inputs: { x: out }, backend: backend2, attrs: { shape: convInfo.outShape } });\n backend2.disposeIntermediateTensorInfo(out);\n return outReshaped;\n}\nvar conv2DConfig2 = {\n kernelName: Conv2D,\n backendName: \"webgl\",\n kernelFunc: conv2d4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_backprop_gpu.js\nvar Conv2DDerFilterProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"dy\"];\n this.outputShape = convInfo.filterShape;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int wR = coords.x;\n int wC = coords.y;\n int d1 = coords.z;\n int d2 = coords.w;\n\n // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int b = 0; b < ${convInfo.batchSize}; b++) {\n for (int yR = 0; yR < ${convInfo.outHeight}; yR++) {\n int xR = wR + yR * ${strideHeight} - ${padTop};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${convInfo.outWidth}; yC++) {\n int xC = wC + yC * ${strideWidth} - ${padLeft};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n if (${isChannelsLast}) {\n float dyValue = getDy(b, yR, yC, d2);\n float xValue = getX(b, xR, xC, d1);\n dotProd += (xValue * dyValue);\n } else {\n float dyValue = getDy(b, d2, yR, yC);\n float xValue = getX(b, d1, xR, xC);\n dotProd += (xValue * dyValue);\n }\n\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar Conv2DDerInputProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"W\"];\n this.outputShape = convInfo.inShape;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const padTop = filterHeight - 1 - convInfo.padInfo.top;\n const padLeft = filterWidth - 1 - convInfo.padInfo.left;\n const rowDim = isChannelsLast ? 1 : 2;\n const colDim = isChannelsLast ? 2 : 3;\n const channelDim = isChannelsLast ? 3 : 1;\n this.userCode = `\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[${channelDim}];\n\n ivec2 dyCorner = ivec2(coords[${rowDim}], coords[${colDim}]) - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${filterHeight} - 1 - wR;\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${filterWidth} - 1 - wC;\n\n for (int d2 = 0; d2 < ${convInfo.outChannels}; d2++) {\n\n if (${isChannelsLast}) {\n float xValue = getDy(batch, idyR, idyC, d2);\n float wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n } else {\n float xValue = getDy(batch, d2, idyR, idyC);\n float wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n }\n\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar Conv3DDerFilterProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"dy\"];\n this.outputShape = convInfo.filterShape;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n this.userCode = `\n void main() {\n ivec5 coords = getOutputCoords();\n int wF = coords.x;\n int wR = coords.y;\n int wC = coords.z;\n int d1 = coords.w;\n int d2 = coords.u;\n\n float dotProd = 0.0;\n\n for (int b = 0; b < ${convInfo.batchSize}; b++) {\n for (int yF = 0; yF < ${convInfo.outDepth}; yF++) {\n int xF = wF + yF * ${strideDepth} - ${padFront};\n\n if (xF < 0 || xF >= ${convInfo.inDepth}) {\n continue;\n }\n\n for (int yR = 0; yR < ${convInfo.outHeight}; yR++) {\n int xR = wR + yR * ${strideHeight} - ${padTop};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${convInfo.outWidth}; yC++) {\n int xC = wC + yC * ${strideWidth} - ${padLeft};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n float dyValue = getDy(b, yF, yR, yC, d2);\n float xValue = getX(b, xF, xR, xC, d1);\n dotProd += (xValue * dyValue);\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar Conv3DDerInputProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"W\"];\n this.outputShape = convInfo.inShape;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padFront = filterDepth - 1 - convInfo.padInfo.front;\n const padTop = filterHeight - 1 - convInfo.padInfo.top;\n const padLeft = filterWidth - 1 - convInfo.padInfo.left;\n this.userCode = `\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int d1 = coords.u;\n\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyFCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n float dotProd = 0.0;\n for (int wF = 0; wF < ${filterDepth}; wF++) {\n float dyF = float(dyFCorner + wF) / ${strideDepth}.0;\n\n if (dyF < 0.0 || dyF >= ${convInfo.outDepth}.0 || fract(dyF) > 0.0) {\n continue;\n }\n int idyF = int(dyF);\n\n int wFPerm = ${filterDepth} - 1 - wF;\n\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${filterHeight} - 1 - wR;\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${filterWidth} - 1 - wC;\n\n for (int d2 = 0; d2 < ${convInfo.outChannels}; d2++) {\n float xValue = getDy(batch, idyF, idyR, idyC, d2);\n float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv2DBackpropFilter.js\nfunction conv2DBackpropFilter3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, pad: pad3, dataFormat, dimRoundingMode, filterShape } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filterShape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const program = new Conv2DDerFilterProgram(convInfo);\n return backend2.runWebGLProgram(program, [x, dy], \"float32\");\n}\nvar conv2DBackpropFilterConfig2 = {\n kernelName: Conv2DBackpropFilter,\n backendName: \"webgl\",\n kernelFunc: conv2DBackpropFilter3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv2DBackpropInput.js\nfunction conv2DBackpropInput3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { inputShape, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const program = new Conv2DDerInputProgram(convInfo);\n return backend2.runWebGLProgram(program, [dy, filter], \"float32\");\n}\nvar conv2DBackpropInputConfig2 = {\n kernelName: Conv2DBackpropInput,\n backendName: \"webgl\",\n kernelFunc: conv2DBackpropInput3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv3D.js\nfunction conv3D2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const convInfo = backend_util_exports.computeConv3DInfo(x.shape, filter.shape, strides, dilations, pad3);\n const program = new Conv3DProgram(convInfo);\n return backend2.runWebGLProgram(program, [x, filter], \"float32\");\n}\nvar conv3DConfig2 = {\n kernelName: Conv3D,\n backendName: \"webgl\",\n kernelFunc: conv3D2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv3DBackpropFilterV2.js\nfunction conv3DBackpropFilterV22(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, pad: pad3, filterShape } = attrs;\n const convInfo = backend_util_exports.computeConv3DInfo(x.shape, filterShape, strides, 1, pad3);\n const program = new Conv3DDerFilterProgram(convInfo);\n return backend2.runWebGLProgram(program, [x, dy], \"float32\");\n}\nvar conv3DBackpropFilterV2Config2 = {\n kernelName: Conv3DBackpropFilterV2,\n backendName: \"webgl\",\n kernelFunc: conv3DBackpropFilterV22\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv3DBackpropInputV2.js\nfunction conv3DBackpropInput2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { pad: pad3, strides, inputShape } = attrs;\n const convInfo = backend_util_exports.computeConv3DInfo(inputShape, filter.shape, strides, 1, pad3);\n const program = new Conv3DDerInputProgram(convInfo);\n return backend2.runWebGLProgram(program, [dy, filter], \"float32\");\n}\nvar conv3DBackpropInputConfig = {\n kernelName: Conv3DBackpropInputV2,\n backendName: \"webgl\",\n kernelFunc: conv3DBackpropInput2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cos.js\nvar COS = CHECK_NAN_SNIPPET_UNARY + `\n return cos(x);\n`;\nvar cos3 = unaryKernelFunc2({ opSnippet: COS });\nvar cosConfig2 = {\n kernelName: Cos,\n backendName: \"webgl\",\n kernelFunc: cos3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cosh.js\nvar COSH = `\n float e2x = exp(-x);\n return (e2x + 1.0 / e2x) / 2.0;\n`;\nvar cosh3 = unaryKernelFunc2({ opSnippet: COSH });\nvar coshConfig2 = {\n kernelName: Cosh,\n backendName: \"webgl\",\n kernelFunc: cosh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/crop_and_resize_gpu.js\nvar CropAndResizeProgram = class {\n constructor(imageShape, boxShape, cropSize, method, extrapolationValue) {\n this.variableNames = [\"Image\", \"Boxes\", \"BoxInd\"];\n this.outputShape = [];\n const [batch, imageHeight, imageWidth, depth] = imageShape;\n const [numBoxes] = boxShape;\n const [cropHeight, cropWidth] = cropSize;\n this.outputShape = [numBoxes, cropHeight, cropWidth, depth];\n const methodId = method === \"bilinear\" ? 1 : 0;\n const [inputHeightFloat, inputWidthFloat] = [`${imageHeight - 1}.0`, `${imageWidth - 1}.0`];\n const [heightRatio, heightScale, inY] = cropHeight > 1 ? [\n `${(imageHeight - 1) / (cropHeight - 1)}`,\n \"(y2-y1) * height_ratio\",\n `y1*${inputHeightFloat} + float(y)*(height_scale)`\n ] : [\n \"0.0\",\n \"0.0\",\n `0.5 * (y1+y2) * ${inputHeightFloat}`\n ];\n const [widthRatio, widthScale, inX] = cropWidth > 1 ? [\n `${(imageWidth - 1) / (cropWidth - 1)}`,\n \"(x2-x1) * width_ratio\",\n `x1*${inputWidthFloat} + float(x)*(width_scale)`\n ] : [\n \"0.0\",\n \"0.0\",\n `0.5 * (x1+x2) * ${inputWidthFloat}`\n ];\n this.userCode = `\n const float height_ratio = float(${heightRatio});\n const float width_ratio = float(${widthRatio});\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int y = coords[1];\n int x = coords[2];\n int d = coords[3];\n\n // get box vals\n float y1 = getBoxes(b,0);\n float x1 = getBoxes(b,1);\n float y2 = getBoxes(b,2);\n float x2 = getBoxes(b,3);\n\n // get image in batch index\n int bInd = round(getBoxInd(b));\n if(bInd < 0 || bInd >= ${batch}) {\n return;\n }\n\n float height_scale = ${heightScale};\n float width_scale = ${widthScale};\n\n float in_y = ${inY};\n if( in_y < 0.0 || in_y > ${inputHeightFloat} ) {\n setOutput(float(${extrapolationValue}));\n return;\n }\n float in_x = ${inX};\n if( in_x < 0.0 || in_x > ${inputWidthFloat} ) {\n setOutput(float(${extrapolationValue}));\n return;\n }\n\n vec2 sourceFracIndexCR = vec2(in_x,in_y);\n if(${methodId} == 1) {\n // Compute the four integer indices.\n ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);\n ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));\n\n float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);\n float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);\n float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);\n float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);\n\n vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);\n\n float top = topLeft + (topRight - topLeft) * fracCR.x;\n float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;\n float newValue = top + (bottom - top) * fracCR.y;\n setOutput(newValue);\n } else {\n // Compute the coordinators of nearest neighbor point.\n ivec2 sourceNearestCR = ivec2(floor(\n sourceFracIndexCR + vec2(0.5,0.5)));\n float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);\n setOutput(newValue);\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/CropAndResize.js\nvar cropAndResize3 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, boxes, boxInd } = inputs;\n const { cropSize, method, extrapolationValue } = attrs;\n const program = new CropAndResizeProgram(image2.shape, boxes.shape, cropSize, method, extrapolationValue);\n return backend2.runWebGLProgram(program, [image2, boxes, boxInd], \"float32\");\n};\nvar cropAndResizeConfig2 = {\n kernelName: CropAndResize,\n backendName: \"webgl\",\n kernelFunc: cropAndResize3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/cum_gpu.js\nvar CumOpType;\n(function(CumOpType3) {\n CumOpType3[\"Prod\"] = \"*\";\n CumOpType3[\"Sum\"] = \"+\";\n})(CumOpType || (CumOpType = {}));\nvar CumProgram = class {\n constructor(op2, outputShape, exclusive, reverse5) {\n this.op = op2;\n this.outputShape = outputShape;\n this.variableNames = [\"x\"];\n this.customUniforms = [{ name: \"index\", type: \"float\" }];\n const rank = this.outputShape.length;\n const initVal = this.op === CumOpType.Prod ? \"1.0\" : \"0.0\";\n const val = exclusive ? initVal : `getX(${getCoords2(rank, \"coords\", this.op)})`;\n const length = this.outputShape[this.outputShape.length - 1];\n let condition = \"\";\n let idxString = \"\";\n if (exclusive) {\n condition = reverse5 ? `end != ${length - 1}` : \"end != 0\";\n idxString = reverse5 ? \"end + 1\" : \"end - 1\";\n } else {\n condition = reverse5 ? `end + pow2 < ${length}` : \"end >= pow2\";\n idxString = reverse5 ? \"end + pow2\" : \"end - pow2\";\n }\n this.userCode = `\n void main() {\n ${getCoordsDataType(rank)} coords = getOutputCoords();\n int end = ${getFinalCoord(rank, \"coords\", this.op)};\n float val = ${val};\n int pow2 = int(pow(2.0, index));\n if (${condition}) {\n int idx = ${idxString};\n ${getFinalCoord(rank, \"coords\", this.op)} = idx;\n val ${this.op}= getX(${getCoords2(rank, \"coords\", this.op)});\n }\n setOutput(val);\n }\n `;\n }\n};\nfunction getCoords2(rank, name, op2) {\n if (rank === 1) {\n return `${name}`;\n } else if (rank === 2) {\n return `${name}.x, ${name}.y`;\n } else if (rank === 3) {\n return `${name}.x, ${name}.y, ${name}.z`;\n } else if (rank === 4) {\n return `${name}.x, ${name}.y, ${name}.z, ${name}.w`;\n } else {\n throw new Error(`Cumulative ${op2} for rank ${rank} is not yet supported`);\n }\n}\nfunction getFinalCoord(rank, name, op2) {\n if (rank === 1) {\n return `${name}`;\n } else if (rank === 2) {\n return `${name}.y`;\n } else if (rank === 3) {\n return `${name}.z`;\n } else if (rank === 4) {\n return `${name}.w`;\n } else {\n throw new Error(`Cumulative ${op2} for rank ${rank} is not yet supported`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cum_impl.js\nfunction cumImpl(op2, x, backend2, axis, exclusive, reverse5) {\n const xRank = x.shape.length;\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n if (permutedAxis !== xRank - 1) {\n throw new Error(`WebGL cumprod shader expects an inner-most axis=${x.shape.length - 1} but got axis=${axis}`);\n }\n const size = permutedX.shape[permutedAxis];\n let result = identity3({ inputs: { x: permutedX }, backend: backend2 });\n for (let i2 = 0; i2 <= Math.ceil(Math.log2(size)) - 1; i2++) {\n const program = new CumProgram(op2, permutedX.shape, false, reverse5);\n const customValues = [[i2]];\n const prevResult = result;\n result = backend2.runWebGLProgram(program, [result], result.dtype, customValues);\n backend2.disposeIntermediateTensorInfo(prevResult);\n }\n if (exclusive) {\n const program = new CumProgram(op2, permutedX.shape, exclusive, reverse5);\n const prevResult = result;\n result = backend2.runWebGLProgram(program, [result], result.dtype);\n backend2.disposeIntermediateTensorInfo(prevResult);\n }\n if (permutation != null) {\n const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n const reverseTransposedResult = transpose3({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } });\n backend2.disposeIntermediateTensorInfo(result);\n backend2.disposeIntermediateTensorInfo(permutedX);\n return reverseTransposedResult;\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cumprod.js\nfunction cumprod3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return cumImpl(CumOpType.Prod, x, backend2, axis, exclusive, reverse5);\n}\nvar cumprodConfig2 = {\n kernelName: Cumprod,\n backendName: \"webgl\",\n kernelFunc: cumprod3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cumsum.js\nfunction cumsum3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return cumImpl(CumOpType.Sum, x, backend2, axis, exclusive, reverse5);\n}\nvar cumsumConfig2 = {\n kernelName: Cumsum,\n backendName: \"webgl\",\n kernelFunc: cumsum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DenseBincount.js\nfunction denseBincount3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, weights } = inputs;\n const { size, binaryOutput } = attrs;\n if (x.shape.length === 1) {\n const xVals = backend2.readSync(x.dataId);\n const weightsVals = backend2.readSync(weights.dataId);\n const outVals = bincountImplCPU(xVals, weightsVals, weights.dtype, weights.shape, size);\n return backend2.makeTensorInfo([size], weights.dtype, outVals);\n } else if (x.shape.length === 2) {\n const xBuf = backend2.bufferSync(x);\n const weightsBuf = backend2.bufferSync(weights);\n const outBuf = bincountReduceImplCPU(xBuf, weightsBuf, size, binaryOutput);\n return backend2.makeTensorInfo(outBuf.shape, weights.dtype, outBuf.values);\n }\n throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${x.shape.length}.`);\n}\nvar denseBincountConfig2 = {\n kernelName: DenseBincount,\n backendName: \"webgl\",\n kernelFunc: denseBincount3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/depth_to_space_gpu.js\nvar DepthToSpaceProgram = class {\n constructor(outputShape, blockSize, dataFormat) {\n this.variableNames = [\"x\"];\n this.outputShape = [];\n this.outputShape = outputShape;\n this.blockSize = blockSize;\n this.dataFormat = dataFormat;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int h = ${this.getHeightCoordString()};\n int w = ${this.getWidthCoordString()};\n int d = ${this.getDepthCoordString()};\n\n int in_h = h / ${blockSize};\n int offset_h = imod(h, ${blockSize});\n int in_w = w / ${blockSize};\n int offset_w = imod(w, ${blockSize});\n int offset_d = (offset_h * ${blockSize} + offset_w) *\n ${this.getOutputDepthSize()};\n int in_d = d + offset_d;\n\n float result = ${this.getInputSamplingString()};\n setOutput(result);\n }\n `;\n }\n getHeightCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[1]`;\n } else {\n return `coords[2]`;\n }\n }\n getWidthCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[2]`;\n } else {\n return `coords[3]`;\n }\n }\n getDepthCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[3]`;\n } else {\n return `coords[1]`;\n }\n }\n getOutputDepthSize() {\n if (this.dataFormat === \"NHWC\") {\n return this.outputShape[3];\n } else {\n return this.outputShape[1];\n }\n }\n getInputSamplingString() {\n if (this.dataFormat === \"NHWC\") {\n return `getX(b, in_h, in_w, in_d)`;\n } else {\n return `getX(b, in_d, in_h, in_w)`;\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DepthToSpace.js\nfunction depthToSpace3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockSize, dataFormat } = attrs;\n const batchSize = x.shape[0];\n const inputHeight = dataFormat === \"NHWC\" ? x.shape[1] : x.shape[2];\n const inputWidth = dataFormat === \"NHWC\" ? x.shape[2] : x.shape[3];\n const inputDepth = dataFormat === \"NHWC\" ? x.shape[3] : x.shape[1];\n const outputHeight = inputHeight * blockSize;\n const outputWidth = inputWidth * blockSize;\n const outputDepth = inputDepth / (blockSize * blockSize);\n const outputShape = dataFormat === \"NHWC\" ? [batchSize, outputHeight, outputWidth, outputDepth] : [batchSize, outputDepth, outputHeight, outputWidth];\n const program = new DepthToSpaceProgram(outputShape, blockSize, dataFormat);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar depthToSpaceConfig2 = {\n kernelName: DepthToSpace,\n backendName: \"webgl\",\n kernelFunc: depthToSpace3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_gpu_depthwise.js\nvar DepthwiseConv2DProgram = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false, hasLeakyReluAlpha = false) {\n this.variableNames = [\"x\", \"W\"];\n this.customUniforms = [\n { name: \"pads\", type: \"ivec2\" },\n { name: \"strides\", type: \"ivec2\" },\n { name: \"dilations\", type: \"ivec2\" },\n { name: \"inDims\", type: \"ivec2\" }\n ];\n this.outputShape = convInfo.outShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const channelMul = convInfo.outChannels / convInfo.inChannels;\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivation) {\n activationSnippet = `float activation(float a) {\n float b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyReluAlpha) {\n activationSnippet = `float activation(float a) {\n float b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `\n float activation(float x) {\n ${activation2}\n }\n `;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyReluAlpha) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n this.userCode = `\n ${activationSnippet}\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n ivec2 xRCCorner = coords.yz * strides - pads;\n int d2 = coords.w;\n int d1 = d2 / ${channelMul};\n int q = d2 - d1 * ${channelMul};\n\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n int xR = xRCorner + wR * dilations[0];\n\n if (xR < 0 || xR >= inDims[0]) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n int xC = xCCorner + wC * dilations[1];\n\n if (xC < 0 || xC >= inDims[1]) {\n continue;\n }\n\n float xVal = getX(batch, xR, xC, d1);\n float wVal = getW(wR, wC, d1, q);\n dotProd += xVal * wVal;\n }\n }\n\n float result = dotProd;\n ${addBiasSnippet}\n ${applyActivationSnippet}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_packed_gpu_depthwise.js\nvar DepthwiseConvPacked2DProgram = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false, hasLeakyReluAlpha = false) {\n this.variableNames = [\"x\", \"W\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [\n { name: \"pads\", type: \"ivec2\" },\n { name: \"strides\", type: \"ivec2\" },\n { name: \"dilations\", type: \"ivec2\" },\n { name: \"inDims\", type: \"ivec2\" }\n ];\n this.outputShape = convInfo.outShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const channelMul = convInfo.outChannels / convInfo.inChannels;\n const padLeft = convInfo.padInfo.left;\n const strideWidth = convInfo.strideWidth;\n const dilationWidth = convInfo.dilationWidth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const texelsAcross = filterWidth;\n let mainLoop = `\n int xR; int xC; int xCOffset;\n vec4 wTexel; vec4 previous; vec4 final;`;\n for (let c = 0; c < filterWidth; c++) {\n mainLoop += `\n vec4 xTexelC${c * 2};\n int xTexelC${c * 2}Ready;\n vec4 xTexelC${c * 2 + 1};\n int xTexelC${c * 2 + 1}Ready;\n vec4 xC${c};`;\n }\n mainLoop += `\n for (int r = 0; r < ${filterHeight}; r++) {\n `;\n for (let c = 0; c < filterWidth; c++) {\n mainLoop += `\n xTexelC${c * 2} = vec4(0.0);\n xTexelC${c * 2}Ready = 0;\n xTexelC${c * 2 + 1} = vec4(0.0);\n xTexelC${c * 2 + 1}Ready = 0;\n xC${c} = vec4(0.0);`;\n }\n mainLoop += `\n xR = xRCorner + r * dilations[0];\n if (xR >=0 && xR < inDims[0]) {\n `;\n for (let texelC = 0; texelC < (texelsAcross + 1) / 2; texelC++) {\n const colIndex = texelC * 2;\n mainLoop += `\n xC = xCCorner + ${colIndex * dilationWidth};\n `;\n if (strideWidth === 1) {\n if (colIndex < filterWidth) {\n if (padLeft % 2 === 1) {\n mainLoop += `\n xCOffset = xC + 1;\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n `;\n if (dilationWidth === 1 && colIndex > 0) {\n mainLoop += `\n xC${colIndex} = vec4(xTexelC${colIndex - 2}.zw, xTexelC${colIndex}.xy);\n `;\n } else {\n mainLoop += `\n xCOffset = xC + 1 - 2;\n\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n previous.zw = vec2(0.0);\n }\n\n xC${colIndex} = vec4(previous.zw, xTexelC${colIndex}.xy);\n } else {\n xC${colIndex} = vec4(0.0, 0.0, xTexelC${colIndex}.xy);\n }\n `;\n }\n } else {\n mainLoop += `\n if (xC >= 0 && xC < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n xC${colIndex} = xTexelC${colIndex};\n `;\n }\n if (colIndex + 1 < filterWidth) {\n const nextTexelOffset = padLeft % 2 === 0 ? util_exports.nearestLargerEven(dilationWidth) : dilationWidth;\n if (dilationWidth % 2 === 0 && padLeft % 2 === 1 || dilationWidth % 2 !== 0 && padLeft % 2 !== 1) {\n mainLoop += `\n xCOffset = xC + imod(pads[1], 2) + ${nextTexelOffset};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n `;\n if (dilationWidth > 1) {\n mainLoop += `\n xCOffset -= 2;\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n xC${colIndex + 1} = vec4(previous.zw, xTexelC${colIndex + 1}.xy);\n } else {\n xC${colIndex + 1} = vec4(0.0, 0.0, xTexelC${colIndex + 1}.xy);\n }\n `;\n } else {\n mainLoop += `\n xC${colIndex + 1} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.xy);\n `;\n }\n } else {\n if (nextTexelOffset === 1) {\n mainLoop += `\n xC${colIndex + 1} = xTexelC${colIndex};\n `;\n } else {\n mainLoop += `\n xCOffset = xC + ${nextTexelOffset};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex + 1} = xTexelC${colIndex + 1};\n `;\n }\n }\n }\n }\n } else {\n if (colIndex < filterWidth) {\n if (padLeft % 2 === 1) {\n mainLoop += `\n xCOffset = xC + 1 - strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xCOffset, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xC + 1, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xC + 2 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.zw);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n final = vec4(0.0);\n xCOffset = xC + 1 + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1]) {\n final = getX(batch, xR, xCOffset, d1);\n }\n xC${colIndex + 1} = vec4(xTexelC${colIndex + 1}.xy, final.xy);\n `;\n }\n } else {\n mainLoop += `\n if(xC >= 0 && xC < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n xCOffset = xC + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex} = vec4(\n xTexelC${colIndex}.xy, xTexelC${colIndex + 1}.xy);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n xC${colIndex + 1} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.zw);\n `;\n }\n }\n }\n }\n if (colIndex < filterWidth) {\n mainLoop += `\n wTexel = getW(r, ${colIndex}, d1, q);\n dotProd += xC${colIndex} * vec4(wTexel.xz, wTexel.xz);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n wTexel = getW(r, ${colIndex + 1}, d1, q);\n dotProd += xC${colIndex + 1} * vec4(wTexel.xz, wTexel.xz);\n `;\n }\n }\n }\n mainLoop += `\n }\n `;\n mainLoop += `\n }\n `;\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivation) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyReluAlpha) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `vec4 activation(vec4 x) {\n ${activation2}\n }`;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyReluAlpha) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n this.userCode = `\n ${activationSnippet}\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n ivec2 xRCCorner = coords.yz * strides - pads;\n int d2 = coords.w;\n int d1 = d2 / ${channelMul};\n int q = d2 - d1 * ${channelMul};\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n //intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.\n vec4 dotProd = vec4(0.000000000000001);\n\n ${mainLoop}\n\n vec4 result = dotProd - vec4(0.000000000000001);\n ${addBiasSnippet}\n ${applyActivationSnippet}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DepthwiseConv2dNative.js\nfunction depthwiseConv2dNative2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations, dimRoundingMode } = attrs;\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n let program;\n if (env().getBool(\"WEBGL_PACK_DEPTHWISECONV\") && convInfo.strideWidth <= 2 && convInfo.outChannels / convInfo.inChannels === 1) {\n program = new DepthwiseConvPacked2DProgram(convInfo);\n } else {\n program = new DepthwiseConv2DProgram(convInfo);\n }\n const customValues = [\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inHeight, convInfo.inWidth]\n ];\n return backend2.runWebGLProgram(program, [x, filter], \"float32\", customValues);\n}\nvar depthwiseConv2dNativeConfig2 = {\n kernelName: DepthwiseConv2dNative,\n backendName: \"webgl\",\n kernelFunc: depthwiseConv2dNative2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_backprop_gpu_depthwise.js\nvar DepthwiseConv2DDerFilterProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"dy\"];\n this.outputShape = convInfo.filterShape;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const channelMul = convInfo.outChannels / convInfo.inChannels;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int wR = coords.x;\n int wC = coords.y;\n int d1 = coords.z;\n int dm = coords.w;\n int d2 = d1 * ${channelMul} + dm;\n\n float dotProd = 0.0;\n\n // TO DO: Vec4 over the batch size\n for (int b = 0; b < ${convInfo.batchSize}; b++) {\n for (int yR = 0; yR < ${convInfo.outHeight}; yR++) {\n int xR = wR + yR * ${strideHeight} - ${padTop};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${convInfo.outWidth}; yC++) {\n int xC = wC + yC * ${strideWidth} - ${padLeft};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n float dyValue = getDy(b, yR, yC, d2);\n float xValue = getX(b, xR, xC, d1);\n dotProd += (xValue * dyValue);\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar DepthwiseConv2DDerInputProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"W\"];\n this.outputShape = convInfo.inShape;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padTop = filterHeight - 1 - convInfo.padInfo.top;\n const padLeft = filterWidth - 1 - convInfo.padInfo.left;\n const channelMul = convInfo.outChannels / convInfo.inChannels;\n this.userCode = `\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[3];\n ivec2 dyCorner = coords.yz - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n float dotProd = 0.0;\n\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${filterHeight} - 1 - wR;\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${filterWidth} - 1 - wC;\n\n // TO DO: Vec4 over the channelMul\n for (int dm = 0; dm < ${channelMul}; dm++) {\n int d2 = d1 * ${channelMul} + dm;\n float xValue = getDy(batch, idyR, idyC, d2);\n float wValue = getW(wRPerm, wCPerm, d1, dm);\n dotProd += xValue * wValue;\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DepthwiseConv2dNativeBackpropFilter.js\nfunction depthwiseConv2dNativeBackpropFilter3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, dilations, pad: pad3, dimRoundingMode, filterShape } = attrs;\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filterShape, strides, dilations, pad3, dimRoundingMode, true);\n const program = new DepthwiseConv2DDerFilterProgram(convInfo);\n return backend2.runWebGLProgram(program, [x, dy], \"float32\");\n}\nvar depthwiseConv2dNativeBackpropFilterConfig2 = {\n kernelName: DepthwiseConv2dNativeBackpropFilter,\n backendName: \"webgl\",\n kernelFunc: depthwiseConv2dNativeBackpropFilter3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DepthwiseConv2dNativeBackpropInput.js\nfunction depthwiseConv2dNativeBackpropInput3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { strides, dilations, pad: pad3, dimRoundingMode, inputShape } = attrs;\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, dilations, pad3, dimRoundingMode, true);\n const program = new DepthwiseConv2DDerInputProgram(convInfo);\n return backend2.runWebGLProgram(program, [dy, filter], \"float32\");\n}\nvar depthwiseConv2dNativeBackpropInputConfig2 = {\n kernelName: DepthwiseConv2dNativeBackpropInput,\n backendName: \"webgl\",\n kernelFunc: depthwiseConv2dNativeBackpropInput3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/diag_gpu.js\nvar DiagProgram = class {\n constructor(size) {\n this.variableNames = [\"X\"];\n this.outputShape = [size, size];\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;\n setOutput(val);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Diag.js\nfunction diag3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n const outShape = [...x.shape, ...x.shape];\n const xSize = util_exports.sizeFromShape(x.shape);\n const flat = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: [xSize] } });\n const program = new DiagProgram(xSize);\n const res = backend2.runWebGLProgram(program, [flat], flat.dtype);\n const out = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: outShape } });\n backend2.disposeIntermediateTensorInfo(flat);\n backend2.disposeIntermediateTensorInfo(res);\n return out;\n}\nvar diagConfig2 = {\n kernelName: Diag,\n backendName: \"webgl\",\n kernelFunc: diag3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/dilation_gpu.js\nvar Dilation2DProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"W\"];\n this.outputShape = convInfo.outShape;\n const { inHeight, inWidth, padInfo, strideHeight, strideWidth, filterHeight, filterWidth, dilationHeight, dilationWidth } = convInfo;\n const { top: padTop, left: padLeft } = padInfo;\n this.userCode = `\n const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n const float neg_infinity = -3.4e38;\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n int d1 = coords.w;\n ivec2 outTopLeftCorner =\n coords.yz * strides - pads;\n int hBeg = outTopLeftCorner.x;\n int wBeg = outTopLeftCorner.y;\n\n float curVal = neg_infinity;\n for (int h = 0; h < ${filterHeight}; h++) {\n int hIn = hBeg + h * ${dilationHeight};\n\n if (hIn >= 0 && hIn < ${inHeight}) {\n for (int w = 0; w < ${filterWidth}; w++) {\n int wIn = wBeg + w * ${dilationWidth};\n\n if (wIn >= 0 && wIn < ${inWidth}) {\n float xVal = getX(batch, hIn, wIn, d1);\n float wVal = getW(h, w, d1);\n\n float val = xVal + wVal;\n if (val > curVal) {\n curVal = val;\n }\n }\n }\n }\n }\n\n float result = curVal;\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Dilation2D.js\nfunction dilation2D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const convInfo = backend_util_exports.computeDilation2DInfo(x.shape, filter.shape, strides, pad3, \"NHWC\", dilations);\n let out;\n const program = new Dilation2DProgram(convInfo);\n out = backend2.runWebGLProgram(program, [x, filter], \"float32\");\n const outReshaped = reshape4({ inputs: { x: out }, backend: backend2, attrs: { shape: convInfo.outShape } });\n backend2.disposeIntermediateTensorInfo(out);\n return outReshaped;\n}\nvar dilation2DConfig2 = {\n kernelName: Dilation2D,\n backendName: \"webgl\",\n kernelFunc: dilation2D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Einsum.js\nfunction einsum3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { equation } = attrs;\n const tensors = inputs;\n const { allDims, summedDims, idDims } = backend_util_exports.decodeEinsumEquation(equation, tensors.length);\n backend_util_exports.checkEinsumDimSizes(allDims.length, idDims, tensors);\n const { path, steps } = backend_util_exports.getEinsumComputePath(summedDims, idDims);\n const nSteps = steps.length;\n let out = null;\n let numDimsRemaining = allDims.length;\n const tensorsToDispose = [];\n for (let i2 = 0; i2 < nSteps; ++i2) {\n for (const idTerm of steps[i2]) {\n const { permutationIndices: perm, expandDims: dimsToExpand } = backend_util_exports.getEinsumPermutation(numDimsRemaining, idDims[idTerm]);\n let x;\n if (backend_util_exports.isIdentityPermutation(perm)) {\n x = tensors[idTerm];\n } else {\n x = transpose3({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } });\n tensorsToDispose.push(x);\n }\n const targetShape = x.shape.slice();\n for (let k = 0; k < dimsToExpand.length; ++k) {\n targetShape.splice(dimsToExpand[k], 0, 1);\n }\n if (!util_exports.arraysEqual(x.shape, targetShape)) {\n x = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: targetShape } });\n tensorsToDispose.push(x);\n }\n if (out === null) {\n out = x;\n } else {\n out = multiply3({ inputs: { a: x, b: out }, backend: backend2 });\n tensorsToDispose.push(out);\n }\n }\n if (i2 < nSteps - 1) {\n if (path[i2] >= 0) {\n out = sum4({\n inputs: { x: out },\n backend: backend2,\n attrs: {\n axis: path[i2] - (allDims.length - numDimsRemaining),\n keepDims: false\n }\n });\n tensorsToDispose.push(out);\n }\n numDimsRemaining--;\n }\n }\n for (const tensorInfo of tensorsToDispose) {\n if (tensorInfo === out) {\n continue;\n }\n backend2.disposeIntermediateTensorInfo(tensorInfo);\n }\n return out;\n}\nvar einsumConfig2 = {\n kernelName: Einsum,\n backendName: \"webgl\",\n kernelFunc: einsum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Elu.js\nvar ELU4 = `return (x >= 0.0) ? x : (exp(x) - 1.0);`;\nvar ELU_PACKED = `\n vec4 result;\n\n result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);\n result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);\n result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);\n result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);\n\n return result;\n`;\nvar elu5 = unaryKernelFunc2({ opSnippet: ELU4, packedOpSnippet: ELU_PACKED });\nvar eluConfig2 = {\n kernelName: Elu,\n backendName: \"webgl\",\n kernelFunc: elu5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/EluGrad.js\nvar ELU_DER = `return (b >= 1.0) ? a : a * (b + 1.0);`;\nvar ELU_DER_PACKED = `\n vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));\n return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));\n`;\nvar eluGrad2 = (args) => {\n const { inputs, backend: backend2 } = args;\n const { dy, y } = inputs;\n const program = env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\") ? new BinaryOpPackedProgram(ELU_DER_PACKED, dy.shape, y.shape) : new BinaryOpProgram(ELU_DER, dy.shape, y.shape);\n return backend2.runWebGLProgram(program, [dy, y], dy.dtype);\n};\nvar eluGradConfig3 = {\n kernelName: EluGrad,\n backendName: \"webgl\",\n kernelFunc: eluGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Equal.js\nvar PACKED_EQUAL = `\n return vec4(equal(a, b));\n`;\nvar EQUAL = `return float(a == b);`;\nvar equal3 = binaryKernelFunc2({\n opSnippet: EQUAL,\n packedOpSnippet: PACKED_EQUAL,\n dtype: \"bool\",\n cpuKernelImpl: equalImplCPU\n});\nvar equalConfig2 = {\n kernelName: Equal,\n backendName: \"webgl\",\n kernelFunc: equal3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Erf.js\nvar ERF = `\n // Error function is calculated approximately with elementary function.\n // See \"Handbook of Mathematical Functions with Formulas,\n // Graphs, and Mathematical Tables\", Abramowitz and Stegun.\n float p = ${backend_util_exports.ERF_P};\n float a1 = ${backend_util_exports.ERF_A1};\n float a2 = ${backend_util_exports.ERF_A2};\n float a3 = ${backend_util_exports.ERF_A3};\n float a4 = ${backend_util_exports.ERF_A4};\n float a5 = ${backend_util_exports.ERF_A5};\n\n float sign = sign(x);\n x = abs(x);\n float t = 1.0 / (1.0 + p * x);\n return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));\n`;\nvar erf3 = unaryKernelFunc2({ opSnippet: ERF });\nvar erfConfig2 = {\n kernelName: Erf,\n backendName: \"webgl\",\n kernelFunc: erf3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Exp.js\nvar EXP = CHECK_NAN_SNIPPET_UNARY + `\n return exp(x);\n`;\nvar EXP_PACKED = `\n vec4 result = exp(x);\n bvec4 isNaN = isnan(x);\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar exp3 = unaryKernelFunc2({\n opSnippet: EXP,\n packedOpSnippet: EXP_PACKED,\n cpuKernelImpl: expImplCPU,\n dtype: \"float32\"\n});\nvar expConfig2 = {\n kernelName: Exp,\n backendName: \"webgl\",\n kernelFunc: exp3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ExpandDims.js\nfunction expandDims4(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { dim } = attrs;\n const { input: input2 } = inputs;\n const inputRank = input2.shape.length;\n const newShape = input2.shape.slice();\n let $dim = dim;\n if (dim < 0) {\n util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`);\n $dim = inputRank + dim + 1;\n }\n newShape.splice($dim, 0, 1);\n return reshape4({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } });\n}\nvar expandDimsConfig2 = {\n kernelName: ExpandDims,\n backendName: \"webgl\",\n kernelFunc: expandDims4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Expm1.js\nvar EXPM1 = `return exp(x) - 1.0;`;\nvar expm13 = unaryKernelFunc2({ opSnippet: EXPM1, packedOpSnippet: EXPM1, cpuKernelImpl: expm1ImplCPU });\nvar expm1Config2 = {\n kernelName: Expm1,\n backendName: \"webgl\",\n kernelFunc: expm13\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/fft_gpu.js\nvar FFTProgram = class {\n constructor(component, inputShape, inverse) {\n this.variableNames = [\"real\", \"imag\"];\n const innerDim = inputShape[1];\n this.outputShape = inputShape;\n const exponentMultiplierSnippet = inverse ? `2.0 * ${Math.PI}` : `-2.0 * ${Math.PI}`;\n const resultDenominator = inverse ? `${innerDim}.0` : \"1.0\";\n let opString;\n if (component === \"real\") {\n opString = \"return real * expR - imag * expI;\";\n } else if (component === \"imag\") {\n opString = \"return real * expI + imag * expR;\";\n } else {\n throw new Error(`FFT component must be either \"real\" or \"imag\", got ${component}.`);\n }\n this.userCode = `\n const float exponentMultiplier = ${exponentMultiplierSnippet};\n\n float unaryOpComplex(float real, float expR, float imag, float expI) {\n ${opString}\n }\n\n float mulMatDFT(int batch, int index) {\n float indexRatio = float(index) / float(${innerDim});\n float exponentMultiplierTimesIndexRatio =\n exponentMultiplier * indexRatio;\n\n float result = 0.0;\n\n for (int i = 0; i < ${innerDim}; i++) {\n // x = (-2|2 * PI / N) * index * i;\n float x = exponentMultiplierTimesIndexRatio * float(i);\n float expR = cos(x);\n float expI = sin(x);\n float real = getReal(batch, i);\n float imag = getImag(batch, i);\n\n result +=\n unaryOpComplex(real, expR, imag, expI) / ${resultDenominator};\n }\n\n return result;\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n setOutput(mulMatDFT(coords[0], coords[1]));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FFT_impl.js\nfunction fftImpl2(x, inverse, backend2) {\n const xData = backend2.texData.get(x.dataId);\n const inputSize = util_exports.sizeFromShape(x.shape);\n const innerDimensionSize = x.shape[x.shape.length - 1];\n const batch = inputSize / innerDimensionSize;\n const input2D = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: [batch, innerDimensionSize] } });\n const xShape = input2D.shape;\n const realProgram = new FFTProgram(\"real\", xShape, inverse);\n const imagProgram = new FFTProgram(\"imag\", xShape, inverse);\n const inputs = [\n {\n dataId: xData.complexTensorInfos.real.dataId,\n dtype: xData.complexTensorInfos.real.dtype,\n shape: xShape\n },\n {\n dataId: xData.complexTensorInfos.imag.dataId,\n dtype: xData.complexTensorInfos.imag.dtype,\n shape: xShape\n }\n ];\n const realPart = backend2.runWebGLProgram(realProgram, inputs, \"float32\");\n const imagPart = backend2.runWebGLProgram(imagProgram, inputs, \"float32\");\n const complexOutput = complex3({ inputs: { real: realPart, imag: imagPart }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(imagPart);\n const complexOutputReshaped = reshape4({ inputs: { x: complexOutput }, backend: backend2, attrs: { shape: x.shape } });\n backend2.disposeIntermediateTensorInfo(input2D);\n backend2.disposeIntermediateTensorInfo(complexOutput);\n return complexOutputReshaped;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FFT.js\nfunction fft3(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n return fftImpl2(input2, false, backend2);\n}\nvar fftConfig2 = {\n kernelName: FFT,\n backendName: \"webgl\",\n kernelFunc: fft3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/fill_gpu.js\nvar FillProgram = class {\n constructor(shape, value) {\n this.outputShape = [];\n this.customUniforms = [{ name: \"value\", type: \"float\" }];\n this.variableNames = [\"x\"];\n this.outputShape = shape;\n this.userCode = `\n void main() {\n // Input can be obtained from uniform value.\n setOutput(value);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Fill.js\nfunction fill3(args) {\n const { backend: backend2, attrs } = args;\n const { shape, value } = attrs;\n let { dtype } = attrs;\n dtype = dtype || util_exports.inferDtype(value);\n if (dtype === \"string\") {\n const values = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(shape));\n values.fill(value);\n return backend2.makeTensorInfo(shape, dtype, values);\n } else {\n const program = new FillProgram(shape, value);\n const customValues = [[value]];\n return backend2.runWebGLProgram(program, [], dtype, customValues);\n }\n}\nvar fillConfig2 = {\n kernelName: Fill,\n backendName: \"webgl\",\n kernelFunc: fill3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/flip_left_right_gpu.js\nvar FlipLeftRightProgram = class {\n constructor(imageShape) {\n this.variableNames = [\"Image\"];\n this.outputShape = [];\n const imageWidth = imageShape[2];\n this.outputShape = imageShape;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int x = coords[2];\n\n int coordX = ${imageWidth} - x - 1;\n float outputValue;\n if(coordX >= 0 && coordX < ${imageWidth}) {\n outputValue = getImage(coords[0], coords[1], coordX, coords[3]);\n } else {\n outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);\n }\n setOutput(outputValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FlipLeftRight.js\nvar flipLeftRightConfig2 = {\n kernelName: FlipLeftRight,\n backendName: \"webgl\",\n kernelFunc: ({ inputs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const webglBackend = backend2;\n const program = new FlipLeftRightProgram(image2.shape);\n const output = webglBackend.runWebGLProgram(program, [image2], image2.dtype);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Floor.js\nvar FLOOR = `return floor(x);`;\nvar floor3 = unaryKernelFunc2({ opSnippet: FLOOR, packedOpSnippet: FLOOR, cpuKernelImpl: floorImplCPU });\nvar floorConfig2 = {\n kernelName: Floor,\n backendName: \"webgl\",\n kernelFunc: floor3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FloorDiv.js\nvar INT_DIV = `\n float s = sign(a) * sign(b);\n int ia = round(a);\n int ib = round(b);\n if (ib != 0) {\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n return float(idiv(ia, ib, s));\n } else {\n return NAN;\n }\n`;\nvar INT_DIV_PACKED = `\n ivec4 ia = round(a);\n ivec4 ib = round(b);\n bvec4 cond = notEqual(ib, ivec4(0));\n ivec4 result = ivec4(0);\n vec4 s = sign(a) * sign(b);\n\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n if (cond[0]) {\n result[0] = idiv(ia[0], ib[0], s[0]);\n }\n if (cond[1]) {\n result[1] = idiv(ia[1], ib[1], s[1]);\n }\n if (cond[2]) {\n result[2] = idiv(ia[2], ib[2], s[2]);\n }\n if (cond[3]) {\n result[3] = idiv(ia[3], ib[3], s[3]);\n }\n return vec4(result);\n`;\nvar floorDiv3 = binaryKernelFunc2({ opSnippet: INT_DIV, packedOpSnippet: INT_DIV_PACKED, dtype: \"int32\" });\nvar floorDivConfig2 = {\n kernelName: FloorDiv,\n backendName: \"webgl\",\n kernelFunc: floorDiv3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FromPixels_utils/from_pixels_gpu.js\nvar FromPixelsProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n const glsl = getGlslDifferences();\n const [height, width] = outputShape;\n this.outputShape = outputShape;\n this.userCode = `\n void main() {\n ivec3 coords = getOutputCoords();\n int texR = coords[0];\n int texC = coords[1];\n int depth = coords[2];\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${width}.0, ${height}.0);\n\n vec4 values = ${glsl.texture2D}(A, uv);\n float value;\n if (depth == 0) {\n value = values.r;\n } else if (depth == 1) {\n value = values.g;\n } else if (depth == 2) {\n value = values.b;\n } else if (depth == 3) {\n value = values.a;\n }\n\n setOutput(floor(value * 255.0 + 0.5));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FromPixels_utils/from_pixels_packed_gpu.js\nvar FromPixelsPackedProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = false;\n this.packedOutput = true;\n const glsl = getGlslDifferences();\n const [height, width] = outputShape;\n this.outputShape = outputShape;\n this.userCode = `\n void main() {\n ivec3 coords = getOutputCoords();\n int texR = coords[0];\n int texC = coords[1];\n int depth = coords[2];\n\n vec4 result = vec4(0.);\n\n for(int row=0; row<=1; row++) {\n for(int col=0; col<=1; col++) {\n texC = coords[1] + row;\n depth = coords[2] + col;\n\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${width}.0, ${height}.0);\n vec4 values = ${glsl.texture2D}(A, uv);\n float value;\n if (depth == 0) {\n value = values.r;\n } else if (depth == 1) {\n value = values.g;\n } else if (depth == 2) {\n value = values.b;\n } else if (depth == 3) {\n value = values.a;\n }\n\n result[row * 2 + col] = floor(value * 255.0 + 0.5);\n }\n }\n\n ${glsl.output} = result;\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FromPixels.js\nvar fromPixelsConfig = {\n kernelName: FromPixels,\n backendName: \"webgl\",\n kernelFunc: fromPixels2\n};\nvar fromPixels2DContext2;\nvar willReadFrequently = env().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");\nfunction fromPixels2(args) {\n const { inputs, backend: backend2, attrs } = args;\n let { pixels } = inputs;\n const { numChannels } = attrs;\n const isVideo = typeof HTMLVideoElement !== \"undefined\" && pixels instanceof HTMLVideoElement;\n const isImage = typeof HTMLImageElement !== \"undefined\" && pixels instanceof HTMLImageElement;\n const [width, height] = isVideo ? [\n pixels.videoWidth,\n pixels.videoHeight\n ] : [pixels.width, pixels.height];\n const texShape = [height, width];\n const outShape = [height, width, numChannels];\n if (isImage || isVideo) {\n const newWillReadFrequently = env().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");\n if (fromPixels2DContext2 == null || newWillReadFrequently !== willReadFrequently) {\n willReadFrequently = newWillReadFrequently;\n fromPixels2DContext2 = document.createElement(\"canvas\").getContext(\"2d\", { willReadFrequently });\n }\n fromPixels2DContext2.canvas.width = width;\n fromPixels2DContext2.canvas.height = height;\n fromPixels2DContext2.drawImage(pixels, 0, 0, width, height);\n pixels = fromPixels2DContext2.canvas;\n }\n const tempPixelHandle = backend2.makeTensorInfo(texShape, \"int32\");\n backend2.texData.get(tempPixelHandle.dataId).usage = TextureUsage.PIXELS;\n backend2.gpgpu.uploadPixelDataToTexture(backend2.getTexture(tempPixelHandle.dataId), pixels);\n const program = env().getBool(\"WEBGL_PACK\") ? new FromPixelsPackedProgram(outShape) : new FromPixelsProgram(outShape);\n const res = backend2.runWebGLProgram(program, [tempPixelHandle], \"int32\");\n backend2.disposeData(tempPixelHandle.dataId);\n return res;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FusedConv2D.js\nfunction fusedConv2d(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n let out;\n const intermediates = [];\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const hasLeakyreluAlpha = activation2 === \"leakyrelu\";\n const prepareInputs = () => {\n const inputs2 = [x, filter];\n const alignInputWithDataFormat = (input2, dataFormat2) => {\n if (dataFormat2 === \"NCHW\" && input2.shape.length === 1 && input2.shape[0] !== 1) {\n const alignedInput = reshape4({\n inputs: { x: input2 },\n backend: backend2,\n attrs: { shape: [input2.shape[0], 1, 1] }\n });\n intermediates.push(alignedInput);\n return alignedInput;\n }\n return input2;\n };\n if (hasBias) {\n inputs2.push(alignInputWithDataFormat(bias, dataFormat));\n }\n if (hasPreluActivationWeights) {\n inputs2.push(alignInputWithDataFormat(preluActivationWeights, dataFormat));\n }\n if (hasLeakyreluAlpha) {\n const $leakyreluAlpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(leakyreluAlpha, \"float32\"));\n inputs2.push($leakyreluAlpha);\n intermediates.push($leakyreluAlpha);\n }\n return inputs2;\n };\n if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === \"SAME\" || convInfo.padInfo.type === \"VALID\")) {\n out = conv2dByMatMul({\n x,\n filter,\n convInfo,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n } else if (convInfo.strideWidth <= 2 && $dataFormat === \"channelsLast\" && env().getBool(\"WEBGL_EXP_CONV\")) {\n const fusedActivation = activation2 ? mapActivationToShaderProgram(activation2, true) : null;\n const program = new Conv2DPackedProgram(convInfo, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n const customValues = [\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inHeight, convInfo.inWidth]\n ];\n const inputs2 = prepareInputs();\n out = backend2.runWebGLProgram(program, inputs2, \"float32\", customValues);\n } else if (env().getBool(\"WEBGL_CONV_IM2COL\")) {\n out = conv2dWithIm2Row({\n x,\n filter,\n convInfo,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n } else {\n const fusedActivation = activation2 ? mapActivationToShaderProgram(activation2, false) : null;\n const program = new Conv2DProgram(convInfo, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n const inputs2 = prepareInputs();\n out = backend2.runWebGLProgram(program, inputs2, \"float32\");\n }\n const outReshaped = reshape4({ inputs: { x: out }, backend: backend2, attrs: { shape: convInfo.outShape } });\n intermediates.push(out);\n intermediates.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return outReshaped;\n}\nvar fusedConv2DConfig2 = {\n kernelName: FusedConv2D,\n backendName: \"webgl\",\n kernelFunc: fusedConv2d\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FusedDepthwiseConv2D.js\nfunction fusedDepthwiseConv2D2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const intermediates = [];\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n const shouldPackDepthwiseConv = env().getBool(\"WEBGL_PACK_DEPTHWISECONV\") && convInfo.strideWidth <= 2 && convInfo.outChannels / convInfo.inChannels === 1;\n const fusedActivation = activation2 ? mapActivationToShaderProgram(activation2, shouldPackDepthwiseConv) : null;\n const programInputs = [x, filter];\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const hasLeakyreluAlpha = activation2 === \"leakyrelu\";\n if (hasBias) {\n programInputs.push(bias);\n }\n if (hasPreluActivationWeights) {\n programInputs.push(preluActivationWeights);\n }\n if (hasLeakyreluAlpha) {\n const $leakyreluAlpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(leakyreluAlpha, \"float32\"));\n programInputs.push($leakyreluAlpha);\n intermediates.push($leakyreluAlpha);\n }\n let program;\n if (shouldPackDepthwiseConv) {\n program = new DepthwiseConvPacked2DProgram(convInfo, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n } else {\n program = new DepthwiseConv2DProgram(convInfo, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n }\n const customValues = [\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inHeight, convInfo.inWidth]\n ];\n const result = backend2.runWebGLProgram(program, programInputs, \"float32\", customValues);\n intermediates.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar fusedDepthwiseConv2DConfig2 = {\n kernelName: FusedDepthwiseConv2D,\n backendName: \"webgl\",\n kernelFunc: fusedDepthwiseConv2D2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gather_nd_gpu.js\nvar GatherNDProgram = class {\n constructor(sliceDim, strides, shape, paramsShape) {\n this.sliceDim = sliceDim;\n this.strides = strides;\n this.paramsShape = paramsShape;\n this.variableNames = [\"x\", \"indices\"];\n this.outputShape = shape;\n const stridesType = getCoordsDataType(strides.length);\n const dtype = getCoordsDataType(shape.length);\n const strideString = this.sliceDim > 1 ? \"strides[j]\" : \"strides\";\n const paramsShapeType = getCoordsDataType(paramsShape.length);\n const paramsShapeString = paramsShape.length > 1 ? \"paramsShape[j]\" : \"paramsShape\";\n this.userCode = `\n ${stridesType} strides = ${stridesType}(${this.strides});\n ${paramsShapeType} paramsShape = ${paramsShapeType}(${this.paramsShape});\n void main() {\n ${dtype} coords = getOutputCoords();\n int flattenIndex = 0;\n bool out_of_bounds = false;\n for (int j = 0; j < ${this.sliceDim}; j++) {\n int index = round(getIndices(coords[0], j));\n out_of_bounds = out_of_bounds || index < 0;\n out_of_bounds = out_of_bounds || index >= ${paramsShapeString};\n flattenIndex += index * ${strideString};\n }\n setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/GatherNd.js\nfunction gatherNd2(args) {\n const { inputs, backend: backend2 } = args;\n const { params, indices } = inputs;\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n const paramsSize = util_exports.sizeFromShape(params.shape);\n const [resultShape, numSlices, sliceSize, strides] = backend_util_exports.prepareAndValidate(params, indices);\n const flattenIndices = reshape4({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numSlices, sliceRank] } });\n const flattenX = reshape4({\n inputs: { x: params },\n backend: backend2,\n attrs: { shape: [util_exports.sizeFromShape(params.shape) / sliceSize, sliceSize] }\n });\n if (backend2.shouldExecuteOnCPU([params, indices]) || params.dtype === \"string\") {\n const indicesData = backend2.readSync(indices.dataId);\n const paramsBuf = backend2.bufferSync(params);\n const outValue = gatherNdImplCPU(indicesData, paramsBuf, params.dtype, numSlices, sliceRank, sliceSize, strides, params.shape, paramsSize);\n return backend2.makeTensorInfo(resultShape, params.dtype, outValue.values);\n }\n const program = new GatherNDProgram(sliceRank, strides, [numSlices, sliceSize], params.shape);\n const res = backend2.runWebGLProgram(program, [flattenX, flattenIndices], flattenX.dtype);\n const reshaped = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: resultShape } });\n backend2.disposeIntermediateTensorInfo(flattenIndices);\n backend2.disposeIntermediateTensorInfo(flattenX);\n backend2.disposeIntermediateTensorInfo(res);\n return reshaped;\n}\nvar gatherNdConfig2 = {\n kernelName: GatherNd,\n backendName: \"webgl\",\n kernelFunc: gatherNd2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gather_gpu.js\nvar GatherProgram = class {\n constructor(aShape, outputShape) {\n this.variableNames = [\"A\", \"indices\"];\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n const dtype = getCoordsDataType(this.rank);\n const sourceCoords = getSourceCoords2(aShape, 2);\n this.userCode = `\n void main() {\n ${dtype} resRC = getOutputCoords();\n int index = int(getIndices(resRC.x, resRC.z));\n float inBounds = (index >= 0) && (index < ${aShape[2]}) ? 1.0 : 0.0;\n setOutput(inBounds * getA(${sourceCoords}));\n }\n `;\n }\n};\nfunction getSourceCoords2(aShape, axis) {\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const sourceCoords = [];\n for (let i2 = 0; i2 < aShape.length; i2++) {\n if (i2 === 2) {\n sourceCoords.push(\"index\");\n } else {\n sourceCoords.push(`${currentCoords[i2]}`);\n }\n }\n return sourceCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/GatherV2.js\nfunction gatherV22(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, indices } = inputs;\n const { axis, batchDims } = attrs;\n const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0];\n if (env().get(\"DEBUG\")) {\n const indicesVals = backend2.readSync(indices.dataId);\n const axisDim = x.shape[parsedAxis];\n for (let i2 = 0; i2 < indicesVals.length; ++i2) {\n const index = indicesVals[i2];\n util_exports.assert(index <= axisDim - 1 && index >= 0, () => `GatherV2: the index value ${index} is not in [0, ${axisDim - 1}]`);\n }\n }\n const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, batchDims);\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const toDispose = [];\n const flattenX = reshape4({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n shapeInfo.dimSize,\n shapeInfo.sliceSize\n ]\n }\n });\n const flattenIndex = reshape4({\n inputs: { x: indices },\n backend: backend2,\n attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] }\n });\n toDispose.push(flattenX);\n toDispose.push(flattenIndex);\n const flattenOutputShape = [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n indicesSize / shapeInfo.batchSize,\n shapeInfo.sliceSize\n ];\n if (backend2.shouldExecuteOnCPU([x, indices]) || x.dtype === \"string\") {\n const indicesBuf = backend2.bufferSync(flattenIndex);\n const xBuf = backend2.bufferSync(flattenX);\n const outBuf = gatherV2ImplCPU(xBuf, indicesBuf, flattenOutputShape);\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return backend2.makeTensorInfo(shapeInfo.outputShape, outBuf.dtype, outBuf.values);\n }\n const program = new GatherProgram(flattenX.shape, flattenOutputShape);\n const res = backend2.runWebGLProgram(program, [flattenX, flattenIndex], flattenX.dtype);\n toDispose.push(res);\n const reshaped = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: shapeInfo.outputShape } });\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return reshaped;\n}\nvar gatherV2Config2 = {\n kernelName: GatherV2,\n backendName: \"webgl\",\n kernelFunc: gatherV22\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Greater.js\nvar GREATER = `return float(a > b);`;\nvar GREATER_PACKED = `\n return vec4(greaterThan(a, b));\n`;\nvar greater4 = binaryKernelFunc2({\n opSnippet: GREATER,\n packedOpSnippet: GREATER_PACKED,\n cpuKernelImpl: greaterImplCPU,\n dtype: \"bool\"\n});\nvar greaterConfig2 = {\n kernelName: Greater,\n backendName: \"webgl\",\n kernelFunc: greater4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/GreaterEqual.js\nvar GREATER_EQUAL = `return float(a >= b);`;\nvar GREATER_EQUAL_PACKED = `\n return vec4(greaterThanEqual(a, b));\n`;\nvar greaterEqual3 = binaryKernelFunc2({\n opSnippet: GREATER_EQUAL,\n packedOpSnippet: GREATER_EQUAL_PACKED,\n dtype: \"bool\",\n cpuKernelImpl: greaterEqualImplCPU\n});\nvar greaterEqualConfig2 = {\n kernelName: GreaterEqual,\n backendName: \"webgl\",\n kernelFunc: greaterEqual3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/IFFT.js\nfunction ifft3(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n return fftImpl2(input2, true, backend2);\n}\nvar ifftConfig2 = {\n kernelName: IFFT,\n backendName: \"webgl\",\n kernelFunc: ifft3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/IsFinite.js\nvar IS_FINITE = `return float(!isnan(x) && !isinf(x));`;\nvar isFinite4 = unaryKernelFunc2({ opSnippet: IS_FINITE, dtype: \"bool\" });\nvar isFiniteConfig2 = {\n kernelName: IsFinite,\n backendName: \"webgl\",\n kernelFunc: isFinite4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/IsInf.js\nvar IS_INF = `return float(isinf(x));`;\nvar isInf3 = unaryKernelFunc2({ opSnippet: IS_INF, dtype: \"bool\" });\nvar isInfConfig2 = {\n kernelName: IsInf,\n backendName: \"webgl\",\n kernelFunc: isInf3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/IsNaN.js\nvar IS_NAN = `return float(isnan(x));`;\nvar isNaN4 = unaryKernelFunc2({ opSnippet: IS_NAN, dtype: \"bool\" });\nvar isNaNConfig2 = {\n kernelName: IsNan,\n backendName: \"webgl\",\n kernelFunc: isNaN4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Less.js\nvar LESS = `return float(a < b);`;\nvar LESS_PACKED = `\n return vec4(lessThan(a, b));\n`;\nvar less4 = binaryKernelFunc2({\n opSnippet: LESS,\n packedOpSnippet: LESS_PACKED,\n cpuKernelImpl: lessImplCPU,\n dtype: \"bool\"\n});\nvar lessConfig2 = {\n kernelName: Less,\n backendName: \"webgl\",\n kernelFunc: less4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LessEqual.js\nvar LESS_EQUAL = `return float(a <= b);`;\nvar LESS_EQUAL_PACKED = `\n return vec4(lessThanEqual(a, b));\n`;\nvar lessEqual3 = binaryKernelFunc2({\n opSnippet: LESS_EQUAL,\n packedOpSnippet: LESS_EQUAL_PACKED,\n cpuKernelImpl: lessEqualImplCPU,\n dtype: \"bool\"\n});\nvar lessEqualConfig2 = {\n kernelName: LessEqual,\n backendName: \"webgl\",\n kernelFunc: lessEqual3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LinSpace.js\nfunction linSpace2(args) {\n const { backend: backend2, attrs } = args;\n const { start, stop, num } = attrs;\n const outVals = linSpaceImplCPU(start, stop, num);\n return backend2.makeTensorInfo([outVals.length], \"float32\", outVals);\n}\nvar linSpaceConfig2 = {\n kernelName: LinSpace,\n backendName: \"webgl\",\n kernelFunc: linSpace2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Log.js\nvar LOG = CHECK_NAN_SNIPPET_UNARY + `\n return x < 0.0 ? 0./0. : log(x);\n`;\nvar LOG_PACKED = `\n vec4 result = log(x);\n bvec4 isNaN = isnan(x);\n result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);\n result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);\n result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);\n result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);\n return result;\n`;\nvar log4 = unaryKernelFunc2({ opSnippet: LOG, packedOpSnippet: LOG_PACKED, cpuKernelImpl: logImplCPU });\nvar logConfig2 = {\n kernelName: Log,\n backendName: \"webgl\",\n kernelFunc: log4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Log1p.js\nvar LOG1P = CHECK_NAN_SNIPPET_UNARY + `\n return log(1.0 + x);\n`;\nvar log1p3 = unaryKernelFunc2({ opSnippet: LOG1P });\nvar log1pConfig2 = {\n kernelName: Log1p,\n backendName: \"webgl\",\n kernelFunc: log1p3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LogicalAnd.js\nvar LOGICAL_AND = `return float(a >= 1.0 && b >= 1.0);`;\nvar LOGICAL_AND_PACKED = `\n return vec4(\n vec4(greaterThanEqual(a, vec4(1.0))) *\n vec4(greaterThanEqual(b, vec4(1.0))));\n`;\nvar logicalAnd3 = binaryKernelFunc2({\n opSnippet: LOGICAL_AND,\n packedOpSnippet: LOGICAL_AND_PACKED,\n dtype: \"bool\"\n});\nvar logicalAndConfig2 = {\n kernelName: LogicalAnd,\n backendName: \"webgl\",\n kernelFunc: logicalAnd3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LogicalNot.js\nvar LOGICAL_NOT = `return float(!(x >= 1.0));`;\nvar logicalNot3 = unaryKernelFunc2({ opSnippet: LOGICAL_NOT });\nvar logicalNotConfig2 = {\n kernelName: LogicalNot,\n backendName: \"webgl\",\n kernelFunc: logicalNot3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LogicalOr.js\nvar LOGICAL_OR = `return float(a >= 1.0 || b >= 1.0);`;\nvar LOGICAL_OR_PACKED = `\n return min(\n vec4(greaterThanEqual(a, vec4(1.0))) +\n vec4(greaterThanEqual(b, vec4(1.0))),\n vec4(1.0));\n`;\nvar logicalOr3 = binaryKernelFunc2({ opSnippet: LOGICAL_OR, packedOpSnippet: LOGICAL_OR_PACKED, dtype: \"bool\" });\nvar logicalOrConfig2 = {\n kernelName: LogicalOr,\n backendName: \"webgl\",\n kernelFunc: logicalOr3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/lrn_gpu.js\nvar LRNProgram = class {\n constructor(xShape, radius, bias, alpha, beta) {\n this.variableNames = [\"x\"];\n this.outputShape = [];\n const rad = radius;\n const maxD = xShape[3] - 1;\n this.outputShape = xShape;\n let powOperator;\n const basis = `float(${bias}) + float(${alpha}) * sum`;\n if (beta === 0.5) {\n powOperator = `inversesqrt(${basis})`;\n } else if (beta === 1) {\n powOperator = `1.0/(${basis})`;\n } else {\n powOperator = `exp(log(${basis}) * float(-${beta}));`;\n }\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int r = coords[1];\n int c = coords[2];\n int d = coords[3];\n float x = getX(b, r, c, d);\n float sum = 0.0;\n for (int j = -${rad}; j <= ${rad}; j++) {\n int idx = d + j;\n if (idx >= 0 && idx <= ${maxD}) {\n float z = getX(b, r, c, idx);\n sum += z * z;\n }\n }\n float val = x * ${powOperator};\n setOutput(val);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/lrn_packed_gpu.js\nvar LRNPackedProgram = class {\n constructor(xShape, radius, bias, alpha, beta) {\n this.variableNames = [\"x\"];\n this.outputShape = [];\n this.packedInputs = true;\n this.packedOutput = true;\n const rad = radius;\n const maxD = xShape[3] - 1;\n this.outputShape = xShape;\n let powOperator;\n const basis = `float(${bias}) + float(${alpha}) * sum`;\n if (beta === 0.5) {\n powOperator = `inversesqrt(${basis})`;\n } else if (beta === 1) {\n powOperator = `1.0/(${basis})`;\n } else {\n powOperator = `exp(log(${basis}) * float(-${beta}));`;\n }\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords.x;\n int r = coords.y;\n int c = coords.z;\n int d = coords.w;\n\n bool hasNextCol = d < ${this.outputShape[3]};\n bool hasNextRow = c < ${this.outputShape[2]};\n\n vec4 sum = vec4(0.);\n vec4 xFragAtOutputCoords = getX(b, r, c, d);\n\n vec4 xAtOutputCoords = vec4(\n getChannel(xFragAtOutputCoords, vec2(c, d)),\n hasNextCol ?\n getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,\n hasNextRow ?\n getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,\n (hasNextRow && hasNextCol) ?\n getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0\n );\n\n int firstChannel = d - ${rad};\n vec2 cache = vec2(0.);\n if(firstChannel >= 0){\n vec4 firstChannelFrag = getX(b, r, c, firstChannel);\n cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));\n if(hasNextRow){\n cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));\n }\n }\n\n ivec2 depth = ivec2(d, d + 1);\n for (int j = - ${rad}; j <= ${rad}; j++) {\n ivec2 idx = depth + j;\n bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));\n bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${maxD}));\n\n bool depthInRange = aboveLowerBound.x && belowUpperBound.x;\n bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;\n\n if(depthInRange || depthPlusOneInRange){\n vec4 z = vec4(0.);\n vec4 xFragAtCurrentDepth;\n z.xz = cache.xy;\n if(depthPlusOneInRange && hasNextCol){\n xFragAtCurrentDepth = idx.y != d ?\n getX(b, r, c, idx.y) : xFragAtOutputCoords;\n z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));\n if(hasNextRow){\n z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));\n }\n }\n cache.xy = z.yw;\n sum += z * z;\n }\n }\n vec4 result = xAtOutputCoords * ${powOperator};\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LRN.js\nvar lrn = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { depthRadius, bias, alpha, beta } = attrs;\n const program = env().getBool(\"WEBGL_PACK_NORMALIZATION\") ? new LRNPackedProgram(x.shape, depthRadius, bias, alpha, beta) : new LRNProgram(x.shape, depthRadius, bias, alpha, beta);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n};\nvar LRNConfig2 = {\n kernelName: LRN,\n backendName: \"webgl\",\n kernelFunc: lrn\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/lrn_grad_gpu.js\nvar LRNGradProgram = class {\n constructor(inputShape, depthRadius, bias, alpha, beta) {\n this.variableNames = [\"inputImage\", \"outputImage\", \"dy\"];\n this.outputShape = [];\n this.outputShape = inputShape;\n this.depth = inputShape[3];\n this.depthRadius = depthRadius;\n this.bias = bias;\n this.alpha = alpha;\n this.beta = beta;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int r = coords[1];\n int c = coords[2];\n\n float result = 0.0;\n for (int d = 0; d < ${this.depth}; ++d) {\n int depthBegin = int(max(0.0, float(d - ${depthRadius})));\n int depthEnd = int(min(float(${this.depth}),\n float(d + ${depthRadius} + 1)));\n\n const int MIN_DEPTH_BEGIN = 0;\n const int MAX_DEPTH_END = ${this.depth};\n\n float norm = 0.0;\n for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {\n if (k < depthBegin){\n continue;\n }\n else if (k >= depthBegin && k < depthEnd) {\n norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);\n }\n else {\n break;\n }\n }\n\n norm = float(${alpha}) * norm + float(${bias});\n\n for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){\n if (k < depthBegin){\n continue;\n }\n else if (k >= depthBegin && k < depthEnd){\n float dyi = -2.0 * float(${alpha})\n * float(${beta})\n * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)\n / norm;\n if (k == d) {\n dyi += pow(norm, -1.0 * ${beta});\n }\n if (k == coords[3]) {\n dyi *= getDy(b, r, c, d);\n result += dyi;\n }\n }\n else {\n break;\n }\n }\n }\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LRNGrad.js\nvar lrnGrad = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x, y, dy } = inputs;\n const { depthRadius, bias, alpha, beta } = attrs;\n const program = new LRNGradProgram(x.shape, depthRadius, bias, alpha, beta);\n return backend2.runWebGLProgram(program, [x, y, dy], x.dtype);\n};\nvar LRNGradConfig2 = {\n kernelName: LRNGrad,\n backendName: \"webgl\",\n kernelFunc: lrnGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Max_impl.js\nfunction maxImpl2(x, reduceShape, outShape, backend2) {\n const inSize = util_exports.sizeFromShape(reduceShape);\n const xSize = util_exports.sizeFromShape(x.shape);\n const batchSize = xSize / inSize;\n const reshapedInput = reshape4({ inputs: { x }, attrs: { shape: [batchSize, inSize] }, backend: backend2 });\n const reduced = reduce(reshapedInput, x.dtype, \"max\", backend2);\n const reshapedOutput = reshape4({ inputs: { x: reduced }, attrs: { shape: outShape }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(reshapedInput);\n backend2.disposeIntermediateTensorInfo(reduced);\n return reshapedOutput;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Max.js\nfunction max4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { reductionIndices, keepDims } = attrs;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(reductionIndices, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n const maxInputIsTransposed = permutedAxes != null;\n const shouldExecuteOnCPU = backend2.shouldExecuteOnCPU([x]);\n let maxInput = x;\n if (maxInputIsTransposed) {\n if (shouldExecuteOnCPU) {\n const xTexData = backend2.texData.get(maxInput.dataId);\n const values = xTexData.values;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[permutedAxes[i2]];\n }\n const maxInputValues = transposeImplCPU(values, x.shape, x.dtype, permutedAxes, newShape);\n maxInput = backend2.makeTensorInfo(newShape, x.dtype);\n const maxInputData = backend2.texData.get(maxInput.dataId);\n maxInputData.values = maxInputValues;\n } else {\n maxInput = transposeImpl2(x, permutedAxes, backend2);\n }\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"max\", axes, xRank);\n const [maxOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(maxInput.shape, axes);\n let outShape = maxOutShape;\n if (keepDims) {\n outShape = backend_util_exports.expandShapeToKeepDim(maxOutShape, origAxes);\n }\n let out;\n if (shouldExecuteOnCPU) {\n const xTexData = backend2.texData.get(maxInput.dataId);\n const values = xTexData.values;\n const outValues = maxImplCPU(values, util_exports.sizeFromShape(reduceShape), outShape, x.dtype);\n out = backend2.makeTensorInfo(outShape, x.dtype);\n const outData = backend2.texData.get(out.dataId);\n outData.values = outValues;\n } else {\n out = maxImpl2(maxInput, reduceShape, outShape, backend2);\n }\n if (maxInputIsTransposed) {\n backend2.disposeIntermediateTensorInfo(maxInput);\n }\n return out;\n}\nvar maxConfig2 = {\n kernelName: Max,\n backendName: \"webgl\",\n kernelFunc: max4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Maximum.js\nvar MAXIMUM = CHECK_NAN_SNIPPET2 + `\n return max(a, b);\n`;\nvar MAXIMUM_PACKED = `\n vec4 result = vec4(max(a, b));\n vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));\n ` + CHECK_NAN_SNIPPET3 + `\n return result;\n`;\nvar maximum4 = binaryKernelFunc2({\n opSnippet: MAXIMUM,\n packedOpSnippet: MAXIMUM_PACKED,\n cpuKernelImpl: maximumImplCPU\n});\nvar maximumConfig2 = {\n kernelName: Maximum,\n backendName: \"webgl\",\n kernelFunc: maximum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPool.js\nfunction maxPool3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n assertNotComplex2(x, \"maxPool\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n return identity3({ inputs: { x }, backend: backend2 });\n }\n const maxPoolProgram = new Pool2DProgram(convInfo, \"max\", false);\n return backend2.runWebGLProgram(maxPoolProgram, [x], x.dtype);\n}\nvar maxPoolConfig2 = {\n kernelName: MaxPool,\n backendName: \"webgl\",\n kernelFunc: maxPool3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPool3D.js\nfunction maxPool3d2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n const dilations = [1, 1, 1];\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode, dataFormat);\n const maxPoolProgram = new Pool3DProgram(convInfo, \"max\", false);\n return backend2.runWebGLProgram(maxPoolProgram, [x], x.dtype);\n}\nvar maxPool3DConfig2 = {\n kernelName: MaxPool3D,\n backendName: \"webgl\",\n kernelFunc: maxPool3d2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/max_pool_backprop_gpu.js\nvar MaxPool2DBackpropProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"maxPos\"];\n this.outputShape = convInfo.inShape;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const lastIndex = effectiveFilterHeight * effectiveFilterWidth - 1;\n this.userCode = `\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n\n ivec2 dyRCCorner = coords.yz - pads;\n int dyRCorner = dyRCCorner.x;\n int dyCCorner = dyRCCorner.y;\n\n // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${effectiveFilterWidth}; wC++) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(b, idyR, idyC, d);\n int maxPosValue = ${lastIndex} - int(getMaxPos(b, idyR, idyC, d));\n\n // Get the current value, check it against the value from the\n // position matrix.\n int curPosValue = wR * ${effectiveFilterWidth} + wC;\n float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n dotProd += dyValue * mask;\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar MaxPool3DBackpropProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"maxPos\"];\n this.outputShape = convInfo.inShape;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = effectiveFilterDepth - 1 - convInfo.padInfo.front;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const lastIndex = effectiveFilterDepth * effectiveFilterHeight * effectiveFilterWidth - 1;\n this.userCode = `\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyDCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get\n // dx(xD, xR, xC, ch).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int wD = 0; wD < ${effectiveFilterDepth};\n wD += ${dilationDepth}) {\n float dyD = float(dyDCorner + wD) / ${strideDepth}.0;\n\n if (dyD < 0.0 || dyD >= ${convInfo.outDepth}.0 || fract(dyD) > 0.0) {\n continue;\n }\n int idyD = int(dyD);\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC += ${dilationWidth}) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n int maxPosValue = ${lastIndex} -\n int(getMaxPos(batch, idyD, idyR, idyC, ch));\n\n // Get the current value, check it against the value from the\n // position matrix.\n int curPosValue =\n wD * ${effectiveFilterHeight} * ${effectiveFilterWidth} +\n wR * ${effectiveFilterWidth} + wC;\n float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n dotProd += dyValue * mask;\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPool3DGrad.js\nfunction maxPool3DGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const x = input2;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = [1, 1, 1];\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n const maxPool3dPositionsProgram = new Pool3DProgram(convInfo, \"max\", true);\n const maxPool3dPositions2 = backend2.runWebGLProgram(maxPool3dPositionsProgram, [x], x.dtype);\n const maxPoolBackpropProgram = new MaxPool3DBackpropProgram(convInfo);\n const result = backend2.runWebGLProgram(maxPoolBackpropProgram, [dy, maxPool3dPositions2], x.dtype);\n backend2.disposeIntermediateTensorInfo(maxPool3dPositions2);\n return result;\n}\nvar maxPool3DGradConfig3 = {\n kernelName: MaxPool3DGrad,\n backendName: \"webgl\",\n kernelFunc: maxPool3DGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPoolGrad.js\nfunction maxPoolGrad3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2, output } = inputs;\n const x = input2;\n assertNotComplex2([input2, output], \"maxPoolGrad\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const getPositions = true;\n const maxPoolPositionsProgram = new Pool2DProgram(convInfo, \"max\", getPositions);\n const maxPoolPositions2 = backend2.runWebGLProgram(maxPoolPositionsProgram, [x], x.dtype);\n const maxPoolBackPropProgram = new MaxPool2DBackpropProgram(convInfo);\n const result = backend2.runWebGLProgram(maxPoolBackPropProgram, [dy, maxPoolPositions2], x.dtype);\n backend2.disposeIntermediateTensorInfo(maxPoolPositions2);\n return result;\n}\nvar maxPoolGradConfig3 = {\n kernelName: MaxPoolGrad,\n backendName: \"webgl\",\n kernelFunc: maxPoolGrad3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPoolWithArgmax_impl.js\nfunction maxPoolWithArgmaxImpl2(x, includeBatchInIndex, convInfo, backend2) {\n let program = new Pool2DProgram(convInfo, \"max\", false);\n const poolOutput = backend2.runWebGLProgram(program, [x], \"float32\");\n program = new Pool2DProgram(convInfo, \"max\", true, true, includeBatchInIndex);\n const indexOutput = backend2.runWebGLProgram(program, [x], \"float32\");\n return [poolOutput, indexOutput];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPoolWithArgmax.js\nvar maxPoolWithArgmaxConfig2 = {\n kernelName: MaxPoolWithArgmax,\n backendName: \"webgl\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, includeBatchInIndex } = attrs;\n const webglBackend = backend2;\n util_exports.assert(x.shape.length === 4, () => `Error in maxPool: input must be rank 4 but got rank ${x.shape.length}.`);\n const dilations = [1, 1];\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3);\n const [result, indexes] = maxPoolWithArgmaxImpl2(x, includeBatchInIndex, convInfo, webglBackend);\n return [result, indexes];\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Mean_impl.js\nfunction meanImpl(x, reduceShape, outShape, backend2) {\n const inSize = util_exports.sizeFromShape(reduceShape);\n const xSize = util_exports.sizeFromShape(x.shape);\n const batchSize = xSize / inSize;\n const reshapedInput = reshape4({ inputs: { x }, attrs: { shape: [batchSize, inSize] }, backend: backend2 });\n const reduced = reduce(reshapedInput, \"float32\", \"mean\", backend2);\n const reshapedOutput = reshape4({ inputs: { x: reduced }, attrs: { shape: outShape }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(reshapedInput);\n backend2.disposeIntermediateTensorInfo(reduced);\n return reshapedOutput;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Mean.js\nvar meanConfig2 = {\n kernelName: Mean,\n backendName: \"webgl\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n const { keepDims, axis } = attrs;\n const webglBackend = backend2;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n const meanInputIsTransposed = permutedAxes != null;\n const shouldExecuteOnCPU = webglBackend.shouldExecuteOnCPU([x]);\n const intermediates = [];\n let meanInput = x;\n if (meanInputIsTransposed) {\n if (shouldExecuteOnCPU) {\n const xTexData = webglBackend.texData.get(meanInput.dataId);\n const values = xTexData.values;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[permutedAxes[i2]];\n }\n const meanInputValues = transposeImplCPU(values, x.shape, x.dtype, permutedAxes, newShape);\n meanInput = webglBackend.makeTensorInfo(newShape, x.dtype);\n const meanInputData = webglBackend.texData.get(meanInput.dataId);\n meanInputData.values = meanInputValues;\n } else {\n meanInput = transposeImpl2(x, permutedAxes, webglBackend);\n }\n intermediates.push(meanInput);\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"sum\", axes, xRank);\n const [meanOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(meanInput.shape, axes);\n let outShape = meanOutShape;\n if (keepDims) {\n outShape = backend_util_exports.expandShapeToKeepDim(meanOutShape, origAxes);\n }\n const out = meanImpl(meanInput, reduceShape, outShape, webglBackend);\n for (const i2 of intermediates) {\n webglBackend.disposeIntermediateTensorInfo(i2);\n }\n return out;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Min.js\nfunction min4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let permutedX = x;\n if (permutedAxes != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"min\", axes, xRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n const reduced = reduce(a2D, a2D.dtype, \"min\", backend2);\n let res;\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: newShape } });\n } else {\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n }\n backend2.disposeIntermediateTensorInfo(a2D);\n backend2.disposeIntermediateTensorInfo(reduced);\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo(permutedX);\n }\n return res;\n}\nvar minConfig2 = {\n kernelName: Min,\n backendName: \"webgl\",\n kernelFunc: min4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Minimum.js\nvar MINIMUM = CHECK_NAN_SNIPPET2 + `\n return min(a, b);\n`;\nvar MINIMUM_PACKED = `\n vec4 result = vec4(min(a, b));\n vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));\n ` + CHECK_NAN_SNIPPET3 + `\n return result;\n`;\nvar minimum4 = binaryKernelFunc2({\n opSnippet: MINIMUM,\n packedOpSnippet: MINIMUM_PACKED,\n cpuKernelImpl: minimumImplCPU\n});\nvar minimumConfig2 = {\n kernelName: Minimum,\n backendName: \"webgl\",\n kernelFunc: minimum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/mirror_pad_gpu.js\nvar MirrorPadProgram = class {\n constructor(xShape, paddings, mode) {\n this.variableNames = [\"x\"];\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n const rank = xShape.length;\n const dtype = getCoordsDataType(rank);\n const start = paddings.map((p2) => p2[0]).join(\",\");\n const end = paddings.map((p2, i2) => p2[0] + xShape[i2]).join(\",\");\n const unpackedCoords = [\"coords[0]\", \"coords[1]\", \"coords[2]\", \"coords[3]\"].slice(0, rank);\n const offset = mode === \"reflect\" ? 0 : 1;\n if (rank === 1) {\n this.userCode = `\n int start = ${start};\n int end = ${end};\n\n void main() {\n int outC = getOutputCoords();\n if (outC < start) {\n outC = start * 2 - outC - ${offset};\n } else if(outC >= end) {\n outC = (end - 1) * 2 - outC + ${offset};\n }\n setOutput(getX(outC - start));\n }\n `;\n return;\n }\n this.userCode = `\n ${dtype} start = ${dtype}(${start});\n ${dtype} end = ${dtype}(${end});\n\n void main() {\n ${dtype} outC = getOutputCoords();\n for (int i = 0; i < ${rank}; i++) {\n if (outC[i] < start[i]) {\n outC[i] = start[i] * 2 - outC[i] - ${offset};\n } else if(outC[i] >= end[i]) {\n outC[i] = (end[i] - 1) * 2 - outC[i] + ${offset};\n }\n }\n ${dtype} coords = outC - start;\n setOutput(getX(${unpackedCoords}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/mirror_pad_packed_gpu.js\nvar MirrorPadPackedProgram = class {\n constructor(xShape, paddings, mode) {\n this.variableNames = [\"x\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n const rank = xShape.length;\n const dtype = getCoordsDataType(rank);\n const start = paddings.map((p2) => p2[0]).join(\",\");\n const end = paddings.map((p2, i2) => p2[0] + xShape[i2]).join(\",\");\n const coords3 = getChannels(\"rc\", rank);\n const source = getChannels(\"source\", rank);\n const cLimit = `${coords3[rank - 1]} < ${this.outputShape[rank - 1]}`;\n const innerDims = rank === 1 ? \"source\" : `vec2(${source.slice(-2).join()})`;\n const offset = mode === \"reflect\" ? 0 : 1;\n let mainLoop = \"\";\n if (rank === 1) {\n const padSetup = `\n ${dtype} source = rc;\n if (source < start) {\n source = start * 2 - source - ${offset};\n } else if (source >= end) {\n source = (end - 1) * 2 - source + ${offset};\n }\n source -= start;\n `;\n mainLoop = `\n ${dtype} rc = outputLoc;\n ${padSetup}\n result[0] = getChannel(getX(${source.join()}), ${innerDims});\n ${coords3[rank - 1]} += 1;\n if(${cLimit}) {\n ${padSetup}\n result[1] = getChannel(getX(${source.join()}), ${innerDims});\n }\n `;\n } else {\n const padSetup = `\n ${dtype} source = rc;\n ${dtype} lt = ${dtype}(lessThan(source, start));\n ${dtype} gte = ${dtype}(greaterThanEqual(source, end));\n ${dtype} orig = 1 - (lt + gte);\n source = orig * source +\n lt * (start * 2 - source - ${offset}) +\n gte * ((end - 1) * 2 - source + ${offset});\n source -= start;\n `;\n mainLoop = `\n ${dtype} rc = outputLoc;\n ${padSetup}\n result[0] = getChannel(getX(${source.join()}), ${innerDims});\n ${coords3[rank - 1]} += 1;\n if(${cLimit}) {\n ${padSetup}\n result[1] = getChannel(getX(${source.join()}), ${innerDims});\n }\n rc = outputLoc;\n ${coords3[rank - 2]} += 1;\n if(${coords3[rank - 2]} < ${this.outputShape[rank - 2]}) {\n ${padSetup}\n result[2] = getChannel(getX(${source.join()}), ${innerDims});\n ${coords3[rank - 1]} += 1;\n if(${cLimit}) {\n ${padSetup}\n result[3] = getChannel(getX(${source.join()}), ${innerDims});\n }\n }\n `;\n }\n this.userCode = `\n const ${dtype} start = ${dtype}(${start});\n const ${dtype} end = ${dtype}(${end});\n\n void main() {\n ${dtype} outputLoc = getOutputCoords();\n vec4 result = vec4(0.);\n ${mainLoop}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MirrorPad.js\nvar mirrorPadKernelFunc = ({ inputs, backend: backend2, attrs }) => {\n const { x } = inputs;\n const { paddings, mode } = attrs;\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new MirrorPadPackedProgram(x.shape, paddings, mode) : new MirrorPadProgram(x.shape, paddings, mode);\n const output = backend2.runWebGLProgram(program, [x], x.dtype);\n return output;\n};\nvar mirrorPadConfig2 = {\n kernelName: MirrorPad,\n backendName: \"webgl\",\n kernelFunc: mirrorPadKernelFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Mod.js\nvar MOD = `if (b == 0.0) return NAN;\n return mod(a, b);`;\nvar MOD_PACKED = `\n vec4 result = mod(a, b);\n vec4 isNaN = vec4(equal(b, vec4(0.0)));\n ` + CHECK_NAN_SNIPPET3 + `\n return result;\n`;\nvar mod3 = binaryKernelFunc2({\n opSnippet: MOD,\n packedOpSnippet: MOD_PACKED\n});\nvar modConfig2 = {\n kernelName: Mod,\n backendName: \"webgl\",\n kernelFunc: mod3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/multinomial_gpu.js\nvar MultinomialProgram = class {\n constructor(batchSize, numOutcomes, numSamples) {\n this.variableNames = [\"probs\"];\n this.customUniforms = [{ name: \"seed\", type: \"float\" }];\n this.outputShape = [batchSize, numSamples];\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n\n float r = random(seed);\n float cdf = 0.0;\n\n for (int i = 0; i < ${numOutcomes - 1}; i++) {\n cdf += getProbs(batch, i);\n\n if (r < cdf) {\n setOutput(float(i));\n return;\n }\n }\n\n // If no other event happened, last event happened.\n setOutput(float(${numOutcomes - 1}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/RealDiv.js\nvar DIV = `\nif (a == b) {\n return 1.0;\n};\nreturn a / b;`;\nvar DIV_PACKED = `\n // vec4 one = vec4(equal(a, b));\n // return one + (vec4(1.0) - one) * a / b;\n vec4 result = a / b;\n if(a.x == b.x) {\n result.x = 1.;\n }\n if(a.y == b.y) {\n result.y = 1.;\n }\n if(a.z == b.z) {\n result.z = 1.;\n }\n if(a.w == b.w) {\n result.w = 1.;\n }\n\n return result;\n`;\nvar realDiv = binaryKernelFunc2({ opSnippet: DIV, packedOpSnippet: DIV_PACKED, checkOutOfBounds: true });\nvar realDivConfig2 = {\n kernelName: RealDiv,\n backendName: \"webgl\",\n kernelFunc: realDiv\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sub.js\nvar SUB = \"return a - b;\";\nvar sub3 = binaryKernelFunc2({\n opSnippet: SUB,\n packedOpSnippet: SUB,\n supportsComplex: true,\n cpuKernelImpl: subImplCPU\n});\nvar subConfig2 = {\n kernelName: Sub,\n backendName: \"webgl\",\n kernelFunc: sub3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Softmax.js\nfunction softmax4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { dim } = attrs;\n const axes = util_exports.parseAxisParam([dim], logits.shape);\n const maxLogit = max4({\n inputs: { x: logits },\n backend: backend2,\n attrs: { reductionIndices: axes, keepDims: false }\n });\n const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes);\n const maxLogitsReshaped = reshape4({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } });\n const a = sub3({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 });\n const b = exp3({ inputs: { x: a }, backend: backend2 });\n const sumExp = sum4({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } });\n const sumExpReshaped = reshape4({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } });\n const res = realDiv({ inputs: { a: b, b: sumExpReshaped }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(maxLogit);\n backend2.disposeIntermediateTensorInfo(maxLogitsReshaped);\n backend2.disposeIntermediateTensorInfo(a);\n backend2.disposeIntermediateTensorInfo(b);\n backend2.disposeIntermediateTensorInfo(sumExp);\n backend2.disposeIntermediateTensorInfo(sumExpReshaped);\n return res;\n}\nvar softmaxConfig2 = {\n kernelName: Softmax,\n backendName: \"webgl\",\n kernelFunc: softmax4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Multinomial.js\nfunction multinomial3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { numSamples, seed, normalized } = attrs;\n const probs = normalized ? logits : softmax4({ inputs: { logits }, backend: backend2, attrs: { dim: logits.shape.length - 1 } });\n const batchSize = probs.shape[0];\n const numOutcomes = probs.shape[1];\n const program = new MultinomialProgram(batchSize, numOutcomes, numSamples);\n const customValues = [[seed]];\n const res = backend2.runWebGLProgram(program, [probs], \"int32\", customValues);\n if (!normalized) {\n backend2.disposeIntermediateTensorInfo(probs);\n }\n return res;\n}\nvar multinomialConfig2 = {\n kernelName: Multinomial,\n backendName: \"webgl\",\n kernelFunc: multinomial3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Neg.js\nvar NEG = CHECK_NAN_SNIPPET + `\n return -x;\n`;\nvar NEG_PACKED = `\n vec4 result = -x;\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nfunction neg3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (backend2.shouldExecuteOnCPU([x])) {\n const xData = backend2.texData.get(x.dataId);\n const [outValues, newShape] = negImplCPU(xData.values, x.shape, x.dtype);\n return backend2.makeTensorInfo(newShape, x.dtype, outValues);\n }\n let program;\n if (env().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")) {\n program = new UnaryOpPackedProgram(x.shape, NEG_PACKED);\n } else {\n program = new UnaryOpProgram(x.shape, NEG);\n }\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar negConfig2 = {\n kernelName: Neg,\n backendName: \"webgl\",\n kernelFunc: neg3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/NonMaxSuppressionV3.js\nvar nonMaxSuppressionV3Impl3 = kernel_impls_exports.nonMaxSuppressionV3Impl;\nfunction nonMaxSuppressionV32(args) {\n backend_util_exports.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const { selectedIndices } = nonMaxSuppressionV3Impl3(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold);\n return backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices));\n}\nvar nonMaxSuppressionV3Config2 = {\n kernelName: NonMaxSuppressionV3,\n backendName: \"webgl\",\n kernelFunc: nonMaxSuppressionV32\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/NonMaxSuppressionV4.js\nvar nonMaxSuppressionV4Impl3 = kernel_impls_exports.nonMaxSuppressionV4Impl;\nfunction nonMaxSuppressionV42(args) {\n backend_util_exports.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const { selectedIndices, validOutputs } = nonMaxSuppressionV4Impl3(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([], \"int32\", new Int32Array([validOutputs]))\n ];\n}\nvar nonMaxSuppressionV4Config2 = {\n kernelName: NonMaxSuppressionV4,\n backendName: \"webgl\",\n kernelFunc: nonMaxSuppressionV42\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/NonMaxSuppressionV5.js\nvar nonMaxSuppressionV5Impl3 = kernel_impls_exports.nonMaxSuppressionV5Impl;\nfunction nonMaxSuppressionV52(args) {\n backend_util_exports.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const maxOutputSizeVal = maxOutputSize;\n const iouThresholdVal = iouThreshold;\n const scoreThresholdVal = scoreThreshold;\n const softNmsSigmaVal = softNmsSigma;\n const { selectedIndices, selectedScores } = nonMaxSuppressionV5Impl3(boxesVals, scoresVals, maxOutputSizeVal, iouThresholdVal, scoreThresholdVal, softNmsSigmaVal);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([selectedScores.length], \"float32\", new Float32Array(selectedScores))\n ];\n}\nvar nonMaxSuppressionV5Config2 = {\n kernelName: NonMaxSuppressionV5,\n backendName: \"webgl\",\n kernelFunc: nonMaxSuppressionV52\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/onehot_gpu.js\nvar OneHotProgram = class {\n constructor(numIndices, depth, onValue, offValue) {\n this.variableNames = [\"indices\"];\n this.outputShape = [numIndices, depth];\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int index = round(getIndices(coords.x));\n setOutput(mix(float(${offValue}), float(${onValue}),\n float(index == coords.y)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/OneHot.js\nvar oneHot3 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { indices } = inputs;\n const { dtype, depth, onValue, offValue } = attrs;\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const program = new OneHotProgram(indicesSize, depth, onValue, offValue);\n const reshaped = reshape4({ inputs: { x: indices }, backend: backend2, attrs: { shape: [indicesSize] } });\n const result = backend2.runWebGLProgram(program, [reshaped], dtype);\n backend2.disposeIntermediateTensorInfo(reshaped);\n const outShape = [...indices.shape, depth];\n const out = reshape4({ inputs: { x: result }, backend: backend2, attrs: { shape: outShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return out;\n};\nvar oneHotConfig2 = {\n kernelName: OneHot,\n backendName: \"webgl\",\n kernelFunc: oneHot3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ZerosLike.js\nfunction zerosLike3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"complex64\") {\n const realPart = real3({ inputs: { input: x }, backend: backend2 });\n const r2 = zerosLike3({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag3({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike3({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex3({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(r2);\n backend2.disposeIntermediateTensorInfo(imagPart);\n backend2.disposeIntermediateTensorInfo(i2);\n return result;\n } else {\n return fill3({\n attrs: {\n shape: x.shape,\n dtype: x.dtype,\n value: x.dtype === \"string\" ? \"\" : 0\n },\n backend: backend2\n });\n }\n}\nvar zerosLikeConfig2 = {\n kernelName: ZerosLike,\n backendName: \"webgl\",\n kernelFunc: zerosLike3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/OnesLike.js\nfunction onesLike3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"string\") {\n throw new Error(\"onesLike is not supported under string dtype\");\n } else if (x.dtype === \"complex64\") {\n const realPart = real3({ inputs: { input: x }, backend: backend2 });\n const r2 = onesLike3({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag3({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike3({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex3({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(r2);\n backend2.disposeIntermediateTensorInfo(imagPart);\n backend2.disposeIntermediateTensorInfo(i2);\n return result;\n } else {\n return fill3({ attrs: { shape: x.shape, dtype: x.dtype, value: 1 }, backend: backend2 });\n }\n}\nvar onesLikeConfig2 = {\n kernelName: OnesLike,\n backendName: \"webgl\",\n kernelFunc: onesLike3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Pack.js\nfunction pack2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n if (inputs.length === 1) {\n return expandDims4({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } });\n }\n const shape = inputs[0].shape;\n const dtype = inputs[0].dtype;\n inputs.forEach((t2) => {\n util_exports.assertShapesMatch(shape, t2.shape, \"All tensors passed to stack must have matching shapes\");\n util_exports.assert(dtype === t2.dtype, () => \"All tensors passed to stack must have matching dtypes\");\n });\n const intermediateTensorInfos = [];\n const expandedTensors = inputs.map((t2) => {\n const expandedT = expandDims4({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } });\n intermediateTensorInfos.push(expandedT);\n return expandedT;\n });\n const result = concat3({ inputs: expandedTensors, backend: backend2, attrs: { axis } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar packConfig2 = {\n kernelName: Pack,\n backendName: \"webgl\",\n kernelFunc: pack2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/pad_gpu.js\nvar PadProgram = class {\n constructor(xShape, paddings, constantValue) {\n this.variableNames = [\"x\"];\n this.customUniforms = [{ name: \"value\", type: \"float\" }];\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n const rank = xShape.length;\n const type = getCoordsDataType(rank);\n const start = paddings.map((p2) => p2[0]).join(\",\");\n const end = paddings.map((p2, i2) => p2[0] + xShape[i2]).join(\",\");\n const unpackedCoords = [\"coords[0]\", \"coords[1]\", \"coords[2]\", \"coords[3]\"].slice(0, rank);\n if (rank === 1) {\n this.userCode = `\n int start = ${start};\n int end = ${end};\n\n void main() {\n int outC = getOutputCoords();\n if (outC < start || outC >= end) {\n setOutput(value);\n } else {\n setOutput(getX(outC - start));\n }\n }\n `;\n return;\n }\n this.userCode = `\n ${type} start = ${type}(${start});\n ${type} end = ${type}(${end});\n\n void main() {\n ${type} outC = getOutputCoords();\n if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {\n setOutput(value);\n } else {\n ${type} coords = outC - start;\n setOutput(getX(${unpackedCoords}));\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/pad_packed_gpu.js\nvar PadPackedProgram = class {\n constructor(xShape, paddings, constantValue) {\n this.variableNames = [\"x\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [{ name: \"value\", type: \"float\" }];\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n const rank = xShape.length;\n const dtype = getCoordsDataType(rank);\n const start = paddings.map((p2) => p2[0]).join(\",\");\n const end = paddings.map((p2, i2) => p2[0] + xShape[i2]).join(\",\");\n const coords3 = getChannels(\"rc\", rank);\n const source = getChannels(\"source\", rank);\n const cLimit = `${coords3[rank - 1]} < ${this.outputShape[rank - 1]}`;\n const innerDims = rank === 1 ? \"source\" : `vec2(${source.slice(-2).join()})`;\n const componentSetup = [\n `${dtype} rc = outputLoc;`,\n `${coords3[rank - 1]} += 1;\n if(${cLimit}) {\n `,\n rank === 1 ? \"\" : `}\n rc = outputLoc;\n ${coords3[rank - 2]} += 1;\n if(${coords3[rank - 2]} < ${this.outputShape[rank - 2]}) {`,\n rank === 1 ? \"\" : ` ${coords3[rank - 1]} += 1;\n if(${cLimit}) {`\n ];\n const paddingArea = rank === 1 ? \"rc < start || rc >= end\" : \"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))\";\n let mainLoop = \"\";\n for (let i2 = 0, j = rank === 1 ? 2 : 4; i2 < j; i2++) {\n mainLoop += `\n ${componentSetup[i2]}\n if (${paddingArea}) {\n result[${i2}] = float(value);\n } else {\n ${dtype} source = rc - start;\n result[${i2}] = getChannel(getX(${source.join()}), ${innerDims});\n }\n `;\n }\n mainLoop += rank === 1 ? `} ` : `}}`;\n this.userCode = `\n const ${dtype} start = ${dtype}(${start});\n const ${dtype} end = ${dtype}(${end});\n\n void main() {\n ${dtype} outputLoc = getOutputCoords();\n vec4 result = vec4(0.);\n ${mainLoop}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/PadV2.js\nvar padV22 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { paddings, constantValue } = attrs;\n if (util_exports.sizeFromShape(x.shape) === 0) {\n const outputShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n return fill3({\n backend: backend2,\n attrs: { shape: outputShape, value: constantValue, dtype: x.dtype }\n });\n }\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new PadPackedProgram(x.shape, paddings, constantValue) : new PadProgram(x.shape, paddings, constantValue);\n const customValues = [[constantValue]];\n return backend2.runWebGLProgram(program, [x], x.dtype, customValues);\n};\nvar padV2Config2 = {\n kernelName: PadV2,\n backendName: \"webgl\",\n kernelFunc: padV22\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Pow.js\nvar POW = `\n if(a < 0.0 && floor(b) < b){\n return NAN;\n }\n if (b == 0.0) {\n return 1.0;\n }\n return (round(mod(b, 2.0)) != 1) ?\n pow(abs(a), b) : sign(a) * pow(abs(a), b);\n`;\nvar POW_PACKED = `\n // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.\n vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));\n vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);\n vec4 result = multiplier * pow(abs(a), b);\n\n // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS\n bvec4 isExpZero = equal(b, vec4(0.0));\n result.r = isExpZero.r ? 1.0 : result.r;\n result.g = isExpZero.g ? 1.0 : result.g;\n result.b = isExpZero.b ? 1.0 : result.b;\n result.a = isExpZero.a ? 1.0 : result.a;\n\n vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));\n ` + CHECK_NAN_SNIPPET3 + `\n return result;\n`;\nvar pow3 = binaryKernelFunc2({ opSnippet: POW, packedOpSnippet: POW_PACKED });\nvar powConfig2 = {\n kernelName: Pow,\n backendName: \"webgl\",\n kernelFunc: pow3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Prod.js\nfunction prod3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const xRank = x.shape.length;\n const toDispose = [];\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let permutedX = x;\n if (permutedAxes != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n toDispose.push(permutedX);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"prod\", axes, xRank);\n let res;\n if (backend2.shouldExecuteOnCPU([permutedX])) {\n const xVals = backend2.texData.get(permutedX.dataId).values;\n const { outVals, outShape, outDtype } = prodImplCPU(permutedX.shape, permutedX.dtype, xVals, axes);\n res = backend2.makeTensorInfo(outShape, outDtype, outVals);\n } else {\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n const outputDType = sumOutType(x.dtype);\n const reduced = reduce(a2D, outputDType, \"prod\", backend2);\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n toDispose.push(a2D);\n toDispose.push(reduced);\n }\n if (keepDims) {\n toDispose.push(res);\n const newShape = backend_util_exports.expandShapeToKeepDim(res.shape, origAxes);\n res = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: newShape } });\n }\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return res;\n}\nvar prodConfig2 = {\n kernelName: Prod,\n backendName: \"webgl\",\n kernelFunc: prod3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/RaggedTensorToTensor.js\nfunction raggedTensorToTensor3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { shape, values, defaultValue, rowPartitionTensors } = inputs;\n const { rowPartitionTypes } = attrs;\n const $shape = backend2.readSync(shape.dataId);\n const $values = backend2.readSync(values.dataId);\n const $defaultValue = backend2.readSync(defaultValue.dataId);\n const $rowPartitionValues = rowPartitionTensors.map((t2) => backend2.readSync(t2.dataId));\n const rowPartitionValuesShapes = rowPartitionTensors.map((t2) => t2.shape);\n const [outputShape, output] = raggedTensorToTensorImplCPU($shape, shape.shape, $values, values.shape, values.dtype, $defaultValue, defaultValue.shape, $rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypes);\n return backend2.makeTensorInfo(outputShape, values.dtype, output);\n}\nvar raggedTensorToTensorConfig2 = {\n kernelName: RaggedTensorToTensor,\n backendName: \"webgl\",\n kernelFunc: raggedTensorToTensor3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Range.js\nvar range4 = (args) => {\n const { backend: backend2, attrs } = args;\n const { start, stop, step: step5, dtype } = attrs;\n const values = rangeImplCPU(start, stop, step5, dtype);\n return backend2.makeTensorInfo([values.length], dtype, values);\n};\nvar rangeConfig2 = {\n kernelName: Range,\n backendName: \"webgl\",\n kernelFunc: range4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Reciprocal.js\nvar RECIPROCAL = `return 1.0 / x;`;\nvar reciprocal3 = unaryKernelFunc2({ opSnippet: RECIPROCAL });\nvar reciprocalConfig2 = {\n kernelName: Reciprocal,\n backendName: \"webgl\",\n kernelFunc: reciprocal3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Relu.js\nvar RELU3 = CHECK_NAN_SNIPPET + `\n return (x < 0.0) ? 0.0 : x;\n`;\nvar RELU_PACKED = `\n vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar relu3 = unaryKernelFunc2({ opSnippet: RELU3, packedOpSnippet: RELU_PACKED });\nvar reluConfig2 = {\n kernelName: Relu,\n backendName: \"webgl\",\n kernelFunc: relu3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Relu6.js\nvar RELU63 = CHECK_NAN_SNIPPET + `\n return (x < 0.0) ? 0.0 : min(6.0, x);\n`;\nvar RELU6_PACKED = `\n vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar relu63 = unaryKernelFunc2({ opSnippet: RELU63, packedOpSnippet: RELU6_PACKED });\nvar relu6Config2 = {\n kernelName: Relu6,\n backendName: \"webgl\",\n kernelFunc: relu63\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_bilinear_gpu.js\nvar ResizeBilinearProgram = class {\n constructor(inputShape, newHeight, newWidth, alignCorners, halfPixelCenters) {\n this.variableNames = [\"A\"];\n this.outputShape = [];\n const [batch, oldHeight, oldWidth, depth] = inputShape;\n this.outputShape = [batch, newHeight, newWidth, depth];\n const effectiveInSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n let sourceFracIndexRC;\n if (halfPixelCenters) {\n sourceFracIndexRC = `(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)`;\n } else {\n sourceFracIndexRC = `vec2(yRC) * effectiveInputOverOutputRatioRC`;\n }\n this.userCode = `\n const vec2 effectiveInputOverOutputRatioRC = vec2(\n ${effectiveInSize[0] / effectiveOutSize[0]},\n ${effectiveInSize[1] / effectiveOutSize[1]});\n const vec2 inputShapeRC = vec2(${oldHeight}.0, ${oldWidth}.0);\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n ivec2 yRC = coords.yz;\n\n // Fractional source index.\n vec2 sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the four integer indices.\n ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));\n ivec2 sourceCeilRC = ivec2(\n min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);\n float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);\n float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);\n float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);\n\n vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);\n\n float top = topLeft + (topRight - topLeft) * fracRC.y;\n float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;\n float newValue = top + (bottom - top) * fracRC.x;\n\n setOutput(newValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_bilinear_packed_gpu.js\nvar ResizeBilinearPackedProgram = class {\n constructor(inputShape, newHeight, newWidth, alignCorners, halfPixelCenters) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = [];\n const [batch, oldHeight, oldWidth, depth] = inputShape;\n this.outputShape = [batch, newHeight, newWidth, depth];\n const effectiveInSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n let sourceFracIndexRC;\n if (halfPixelCenters) {\n sourceFracIndexRC = `(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)`;\n } else {\n sourceFracIndexRC = `vec3(yRC) * effectiveInputOverOutputRatioRC`;\n }\n this.userCode = `\n const vec3 effectiveInputOverOutputRatioRC = vec3(\n ${effectiveInSize[0] / effectiveOutSize[0]},\n ${effectiveInSize[1] / effectiveOutSize[1]},\n ${effectiveInSize[1] / effectiveOutSize[1]});\n const vec3 inputShapeRC = vec3(${oldHeight}.0, ${oldWidth}.0,\n ${oldWidth}.0);\n\n float getAValue(int b, int r, int c, int d) {\n return getChannel(getA(b, r, c, d), vec2(c, d));\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n // Calculate values for next column in yRC.z.\n ivec3 yRC = coords.yzz + ivec3(0, 0, 1);\n\n // Fractional source index.\n vec3 sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the four integer indices.\n ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));\n ivec3 sourceCeilRC = ivec3(\n min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n // Should we calculate next column and row elements in 2x2 packed cell.\n bool hasNextCol = d < ${depth - 1};\n bool hasNextRow = coords.z < ${newWidth - 1};\n\n // In parallel, construct four corners for all four components in\n // packed 2x2 cell.\n vec4 topLeft = vec4(\n getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),\n hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n vec4 bottomLeft = vec4(\n getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),\n hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n vec4 topRight = vec4(\n getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),\n hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n vec4 bottomRight = vec4(\n getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),\n hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);\n\n vec4 top = mix(topLeft, topRight, fracRC.yyzz);\n vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);\n vec4 newValue = mix(top, bottom, fracRC.x);\n\n setOutput(newValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ResizeBilinear.js\nfunction resizeBilinear3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const program = env().getBool(\"WEBGL_PACK_IMAGE_OPERATIONS\") ? new ResizeBilinearPackedProgram(images.shape, newHeight, newWidth, alignCorners, halfPixelCenters) : new ResizeBilinearProgram(images.shape, newHeight, newWidth, alignCorners, halfPixelCenters);\n return backend2.runWebGLProgram(program, [images], \"float32\");\n}\nvar resizeBilinearConfig2 = {\n kernelName: ResizeBilinear,\n backendName: \"webgl\",\n kernelFunc: resizeBilinear3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_bilinear_backprop_gpu.js\nvar ResizeBilinearBackpropProgram = class {\n constructor(dyShape, inputShape, alignCorners) {\n this.variableNames = [\"dy\"];\n this.outputShape = [];\n this.outputShape = inputShape;\n const [, xHeight, xWidth] = inputShape;\n const [, yHeight, yWidth] = dyShape;\n const effectiveXSize = [\n alignCorners && yHeight > 1 ? xHeight - 1 : xHeight,\n alignCorners && yWidth > 1 ? xWidth - 1 : xWidth\n ];\n const effectiveYSize = [\n alignCorners && yHeight > 1 ? yHeight - 1 : yHeight,\n alignCorners && yWidth > 1 ? yWidth - 1 : yWidth\n ];\n const heightScale = effectiveXSize[0] / effectiveYSize[0];\n const widthScale = effectiveXSize[1] / effectiveYSize[1];\n const invHeightScale = 1 / heightScale;\n const invWidthScale = 1 / widthScale;\n const winHeight = Math.ceil(invHeightScale) * 2 + 2;\n const winWidth = Math.ceil(invWidthScale) * 2 + 2;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n int r = coords[1];\n int c = coords[2];\n\n float accumulator = 0.0;\n\n const float heightScale = float(${heightScale});\n const float widthScale = float(${widthScale});\n\n const float invHeightScale = float(${invHeightScale});\n const float invWidthScale = float(${invWidthScale});\n\n const int winHeight = int(${winHeight});\n const int winWidth = int(${winWidth});\n\n // Compute bounds for where in dy we will look\n float startRLerp = floor(float(r) * invHeightScale);\n int startDyR = int(startRLerp - float(winHeight / 2));\n\n float startCLerp = floor(float(c) * invWidthScale);\n int startDyC = int(startCLerp - float(winWidth / 2));\n\n // Loop over dy\n for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n int dyR = dyROffset + startDyR;\n\n // Guard against the window exceeding the bounds of dy\n if (dyR < 0 || dyR >= ${yHeight}) {\n continue;\n }\n\n for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n int dyC = dyCOffset + startDyC;\n\n // Guard against the window exceeding the bounds of dy\n if (dyC < 0 || dyC >= ${yWidth}) {\n continue;\n }\n\n float dxR = float(dyR) * heightScale;\n int topDxRIndex = int(floor(dxR));\n int bottomDxRIndex = int(min(ceil(dxR), ${xHeight - 1}.0));\n float dxRLerp = dxR - float(topDxRIndex);\n float inverseDxRLerp = 1.0 - dxRLerp;\n\n float dxC = float(dyC) * widthScale;\n int leftDxCIndex = int(floor(dxC));\n int rightDxCIndex = int(min(ceil(dxC), ${xWidth - 1}.0));\n float dxCLerp = dxC - float(leftDxCIndex);\n float inverseDxCLerp = 1.0 - dxCLerp;\n\n if (r == topDxRIndex && c == leftDxCIndex) {\n // topLeft\n accumulator +=\n getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;\n }\n\n if (r == topDxRIndex && c == rightDxCIndex) {\n // topRight\n accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;\n }\n\n if (r == bottomDxRIndex && c == leftDxCIndex) {\n // bottomLeft\n accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;\n }\n\n if (r == bottomDxRIndex && c == rightDxCIndex) {\n // bottomRight\n accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;\n }\n }\n }\n // End loop over dy\n\n setOutput(accumulator);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ResizeBilinearGrad.js\nfunction resizeBilinearGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images, dy } = inputs;\n const { alignCorners } = attrs;\n const program = new ResizeBilinearBackpropProgram(dy.shape, images.shape, alignCorners);\n return backend2.runWebGLProgram(program, [dy], dy.dtype);\n}\nvar resizeBilinearGradConfig3 = {\n kernelName: ResizeBilinearGrad,\n backendName: \"webgl\",\n kernelFunc: resizeBilinearGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_nearest_neighbor_gpu.js\nvar ResizeNearestNeighborProgram = class {\n constructor(inputShape, newHeight, newWidth, alignCorners, halfPixelCenters) {\n this.variableNames = [\"A\"];\n this.outputShape = [];\n const [batch, oldHeight, oldWidth, depth] = inputShape;\n this.outputShape = [batch, newHeight, newWidth, depth];\n const effectiveInSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n const roundBase = alignCorners ? \"0.5\" : \"0.0\";\n let sourceFracIndexRC;\n if (halfPixelCenters) {\n sourceFracIndexRC = `max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))`;\n } else {\n sourceFracIndexRC = `vec2(yRC) * effectiveInputOverOutputRatioRC`;\n }\n this.userCode = `\n const vec2 effectiveInputOverOutputRatioRC = vec2(\n ${effectiveInSize[0] / effectiveOutSize[0]},\n ${effectiveInSize[1] / effectiveOutSize[1]});\n const vec2 inputShapeRC = vec2(${oldHeight}.0, ${oldWidth}.0);\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n ivec2 yRC = coords.yz;\n\n // Fractional source index.\n vec2 sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the coordinators of nearest neighbor point.\n ivec2 sourceNearestRC = ivec2(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${roundBase})));\n float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);\n\n setOutput(newValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_nearest_neighbor_packed_gpu.js\nvar ResizeNearestNeighborPackedProgram = class {\n constructor(inputShape, newHeight, newWidth, alignCorners, halfPixelCenters) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = [];\n const [batch, oldHeight, oldWidth, depth] = inputShape;\n this.outputShape = [batch, newHeight, newWidth, depth];\n const effectiveInSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n const roundBase = alignCorners ? \"0.5\" : \"0.0\";\n let sourceFracIndexRC;\n if (halfPixelCenters) {\n sourceFracIndexRC = `max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))`;\n } else {\n sourceFracIndexRC = `vec3(yRC) * effectiveInputOverOutputRatioRC`;\n }\n this.userCode = `\n const vec3 effectiveInputOverOutputRatioRC = vec3(\n ${effectiveInSize[0] / effectiveOutSize[0]},\n ${effectiveInSize[1] / effectiveOutSize[1]},\n ${effectiveInSize[1] / effectiveOutSize[1]});\n const vec3 inputShapeRC = vec3(${oldHeight}.0, ${oldWidth}.0,\n ${oldWidth}.0);\n\n float getAValue(int b, int r, int c, int d) {\n return getChannel(getA(b, r, c, d), vec2(c, d));\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n // Calculate values for next column in yRC.z.\n ivec3 yRC = coords.yzz + ivec3(0, 0, 1);\n\n // Fractional source index.\n vec3 sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the coordinators of nearest neighbor point.\n ivec3 sourceNearestRC = ivec3(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${roundBase})));\n\n // Should we calculate next column and row elements in 2x2 packed cell.\n bool hasNextCol = d < ${depth - 1};\n bool hasNextRow = coords.z < ${newWidth - 1};\n\n vec4 newValue = vec4(\n getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),\n hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);\n\n setOutput(newValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ResizeNearestNeighbor.js\nfunction resizeNearestNeighbor3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const program = env().getBool(\"WEBGL_PACK_IMAGE_OPERATIONS\") ? new ResizeNearestNeighborPackedProgram(images.shape, newHeight, newWidth, alignCorners, halfPixelCenters) : new ResizeNearestNeighborProgram(images.shape, newHeight, newWidth, alignCorners, halfPixelCenters);\n return backend2.runWebGLProgram(program, [images], images.dtype);\n}\nvar resizeNearestNeighborConfig2 = {\n kernelName: ResizeNearestNeighbor,\n backendName: \"webgl\",\n kernelFunc: resizeNearestNeighbor3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_nearest_neighbor_backprop_gpu.js\nvar ResizeNearestNeigborBackpropProgram = class {\n constructor(dyShape, inputShape, alignCorners) {\n this.variableNames = [\"dy\"];\n this.outputShape = [];\n this.outputShape = inputShape;\n const [, xHeight, xWidth] = inputShape;\n const [, yHeight, yWidth] = dyShape;\n const effectiveXSize = [\n alignCorners && yHeight > 1 ? xHeight - 1 : xHeight,\n alignCorners && yWidth > 1 ? xWidth - 1 : xWidth\n ];\n const effectiveYSize = [\n alignCorners && yHeight > 1 ? yHeight - 1 : yHeight,\n alignCorners && yWidth > 1 ? yWidth - 1 : yWidth\n ];\n const heightScale = effectiveXSize[0] / effectiveYSize[0];\n const widthScale = effectiveXSize[1] / effectiveYSize[1];\n const invHeightScale = 1 / heightScale;\n const invWidthScale = 1 / widthScale;\n const winHeight = Math.ceil(invHeightScale) * 2 + 2;\n const winWidth = Math.ceil(invWidthScale) * 2 + 2;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n int r = coords[1];\n int c = coords[2];\n\n float accumulator = 0.0;\n\n const float heightScale = float(${heightScale});\n const float widthScale = float(${widthScale});\n\n const float invHeightScale = float(${invHeightScale});\n const float invWidthScale = float(${invWidthScale});\n\n const int winHeight = int(${winHeight});\n const int winWidth = int(${winWidth});\n\n // Compute bounds for where in dy we will look\n float startRLerp = floor(float(r) * invHeightScale);\n int startDyR = int(floor(startRLerp - float(winHeight / 2)));\n\n float startCLerp = floor(float(c) * invWidthScale);\n int startDyC = int(floor(startCLerp - float(winWidth / 2)));\n\n // Loop over dy\n for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n int dyR = dyROffset + startDyR;\n\n // Guard against the window exceeding the bounds of dy\n if (dyR < 0 || dyR >= ${yHeight}) {\n continue;\n }\n\n for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n int dyC = dyCOffset + startDyC;\n\n // Guard against the window exceeding the bounds of dy\n if (dyC < 0 || dyC >= ${yWidth}) {\n continue;\n }\n\n float sourceFracRow =\n float(${effectiveXSize[0]}) *\n (float(dyR) / float(${effectiveYSize[0]}));\n\n float sourceFracCol =\n float(${effectiveXSize[1]}) *\n (float(dyC) / float(${effectiveYSize[1]}));\n\n int sourceNearestRow = int(min(\n float(int(${xHeight}) - 1),\n ${alignCorners} ? float(round(sourceFracRow)) :\n float(floor(sourceFracRow))));\n\n int sourceNearestCol = int(min(\n float(int(${xWidth}) - 1),\n ${alignCorners} ? float(round(sourceFracCol)) :\n float(floor(sourceFracCol))));\n\n if (r == sourceNearestRow && c == sourceNearestCol) {\n accumulator += getDy(b, dyR, dyC, d);\n }\n }\n }\n // End loop over dy\n\n setOutput(accumulator);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ResizeNearestNeighborGrad.js\nfunction resizeNearestNeighborGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images, dy } = inputs;\n const { alignCorners } = attrs;\n const program = new ResizeNearestNeigborBackpropProgram(dy.shape, images.shape, alignCorners);\n return backend2.runWebGLProgram(program, [dy], dy.dtype);\n}\nvar resizeNearestNeighborGradConfig3 = {\n kernelName: ResizeNearestNeighborGrad,\n backendName: \"webgl\",\n kernelFunc: resizeNearestNeighborGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/reverse_gpu.js\nvar ReverseProgram = class {\n constructor(xShape, axis) {\n this.variableNames = [\"x\"];\n const rank = xShape.length;\n if (rank > 4) {\n throw new Error(`WebGL backend: Reverse of rank-${rank} tensor is not yet supported`);\n }\n this.outputShape = xShape;\n if (rank === 1) {\n this.userCode = `\n void main() {\n int coord = getOutputCoords();\n setOutput(getX(${xShape[0]} - coord - 1));\n }\n `;\n return;\n }\n const getInCoord = (i2) => {\n if (axis.indexOf(i2) !== -1 && xShape[i2] !== 1) {\n return `${xShape[i2]} - coords[${i2}] - 1`;\n }\n return `coords[${i2}]`;\n };\n const inCoords = xShape.map((_, i2) => getInCoord(i2)).join(\",\");\n const type = getCoordsDataType(rank);\n this.userCode = `\n void main() {\n ${type} coords = getOutputCoords();\n setOutput(getX(${inCoords}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/reverse_packed_gpu.js\nvar ReversePackedProgram = class {\n constructor(xShape, axis) {\n this.variableNames = [\"x\"];\n this.packedInputs = true;\n this.packedOutput = true;\n const rank = xShape.length;\n if (rank > 4) {\n throw new Error(`WebGL backend: Reverse of rank-${rank} tensor is not yet supported`);\n }\n this.outputShape = xShape;\n const channels = getChannels(\"rc\", rank);\n const nextColumn = `${channels[rank - 1]} + 1 < ${this.outputShape[rank - 1]}`;\n const nextRow = `${channels[rank - 2]} + 1 < ${this.outputShape[rank - 2]}`;\n const type = getCoordsDataType(rank);\n if (rank === 1) {\n this.userCode = `\n void main(){\n int rc = getOutputCoords();\n vec4 result = vec4(0.);\n result.r = getChannel(getX(${xShape[0]} - rc - 1),\n ${xShape[0]} - rc - 1);\n if(${nextColumn}){\n result.g = getChannel(getX(${xShape[0]} - (rc + 1) - 1),\n ${xShape[0]} - (rc + 1) - 1);\n }\n setOutput(result);\n }\n `;\n } else {\n this.userCode = `\n void main() {\n ${type} rc = getOutputCoords();\n vec4 result = vec4(0.);\n result.r = ${getR(channels.slice())};\n if(${nextColumn}){\n result.g = ${getG(channels.slice())};\n }\n if(${nextRow}) {\n result.b = ${getB(channels.slice())};\n if(${nextColumn}) {\n result.a = ${getA(channels.slice())};\n }\n }\n setOutput(result);\n }\n `;\n }\n function getR(channels2) {\n return getChannel(channels2);\n }\n function getG(channels2) {\n channels2[rank - 1] = \"(\" + channels2[rank - 1] + ` + 1)`;\n return getChannel(channels2);\n }\n function getB(channels2) {\n channels2[rank - 2] = \"(\" + channels2[rank - 2] + ` + 1)`;\n return getChannel(channels2);\n }\n function getA(channels2) {\n channels2[rank - 1] = \"(\" + channels2[rank - 1] + ` + 1)`;\n channels2[rank - 2] = \"(\" + channels2[rank - 2] + ` + 1)`;\n return getChannel(channels2);\n }\n function getChannel(channels2) {\n const inCoordsArray = xShape.map((_, i2) => getInCoord(i2, channels2));\n const inCoords = inCoordsArray.join(\",\");\n const innerDims = inCoordsArray.slice(-2).join(\",\");\n return `getChannel(getX(${inCoords}), vec2(${innerDims}))`;\n }\n function getInCoord(i2, channels1) {\n if (axis.indexOf(i2) !== -1 && xShape[i2] !== 1) {\n return `${xShape[i2]} - ${channels1[i2]} - 1`;\n } else {\n return `${channels1[i2]}`;\n }\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Reverse.js\nfunction reverse3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dims } = attrs;\n const xRank = x.shape.length;\n const $dims = util_exports.parseAxisParam(dims, x.shape);\n if (xRank === 0) {\n return identity3({ inputs: { x }, backend: backend2 });\n }\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new ReversePackedProgram(x.shape, $dims) : new ReverseProgram(x.shape, $dims);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar reverseConfig2 = {\n kernelName: Reverse,\n backendName: \"webgl\",\n kernelFunc: reverse3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/rotate_gpu.js\nvar RotateProgram = class {\n constructor(imageShape, fillValue) {\n this.variableNames = [\"Image\"];\n this.outputShape = [];\n this.customUniforms = [{ name: \"params\", type: \"vec4\" }];\n const imageHeight = imageShape[1];\n const imageWidth = imageShape[2];\n this.outputShape = imageShape;\n let fillSnippet = \"\";\n if (typeof fillValue === \"number\") {\n fillSnippet = `float outputValue = ${fillValue.toFixed(2)};`;\n } else {\n fillSnippet = `\n vec3 fill = vec3(${fillValue.join(\",\")});\n float outputValue = fill[coords[3]];`;\n }\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int x = coords[2];\n int y = coords[1];\n float coordXFloat = (float(x) - params[0]) * params[3] -\n (float(y) - params[1]) * params[2];\n float coordYFloat = (float(x) - params[0]) * params[2] +\n (float(y) - params[1]) * params[3];\n int coordX = int(round(coordXFloat + params[0]));\n int coordY = int(round(coordYFloat + params[1]));\n ${fillSnippet}\n if(coordX >= 0 && coordX < ${imageWidth} && coordY >= 0 && coordY < ${imageHeight}) {\n outputValue = getImage(coords[0], coordY, coordX, coords[3]);\n }\n setOutput(outputValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/RotateWithOffset.js\nvar rotateWithOffsetConfig2 = {\n kernelName: RotateWithOffset,\n backendName: \"webgl\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const { radians, fillValue, center } = attrs;\n const webglBackend = backend2;\n const program = new RotateProgram(image2.shape, fillValue);\n const [centerX, centerY] = backend_util_exports.getImageCenter(center, image2.shape[1], image2.shape[2]);\n const customValues = [[centerX, centerY, Math.sin(radians), Math.cos(radians)]];\n const output = webglBackend.runWebGLProgram(program, [image2], image2.dtype, customValues);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Round.js\nvar ROUND = `\n // OpenGL ES does not support round function.\n // The algorithm is based on banker's rounding.\n float base = floor(x);\n if ((x - base) < 0.5) {\n return floor(x);\n } else if ((x - base) > 0.5) {\n return ceil(x);\n } else {\n if (mod(base, 2.0) == 0.0) {\n return base;\n } else {\n return base + 1.0;\n }\n }\n`;\nvar round4 = unaryKernelFunc2({ opSnippet: ROUND });\nvar roundConfig2 = {\n kernelName: Round,\n backendName: \"webgl\",\n kernelFunc: round4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Rsqrt.js\nvar RSQRT = `return inversesqrt(x);`;\nvar rsqrt3 = unaryKernelFunc2({ opSnippet: RSQRT, cpuKernelImpl: rsqrtImplCPU });\nvar rsqrtConfig2 = {\n kernelName: Rsqrt,\n backendName: \"webgl\",\n kernelFunc: rsqrt3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/scatter_gpu.js\nvar ScatterProgram = class {\n constructor(updateSize, sliceDim, indicesRank, updatesRank, strides, shape, summingDupeIndex = true) {\n this.variableNames = [\"updates\", \"indices\", \"defaultValue\"];\n this.outputShape = shape;\n const stridesType = getCoordsDataType(strides.length);\n const dtype = getCoordsDataType(shape.length);\n let indicesString = \"\";\n if (indicesRank === 1) {\n indicesString = \"i\";\n } else if (indicesRank === 2) {\n indicesString = \"i, j\";\n }\n const indicesSnippet = `getIndices(${indicesString})`;\n let updatesString = \"\";\n if (updatesRank === 1) {\n updatesString = \"i\";\n } else if (updatesRank === 2) {\n updatesString = \"i, coords[1]\";\n }\n const updatesSnippet = `getUpdates(${updatesString})`;\n const strideString = sliceDim > 1 ? \"strides[j]\" : \"strides\";\n this.userCode = `\n ${stridesType} strides = ${stridesType}(${strides});\n\n void main() {\n ${dtype} coords = getOutputCoords();\n float sum = 0.0;\n bool found = false;\n for (int i = 0; i < ${updateSize}; i++) {\n int flattenedIndex = 0;\n for (int j = 0; j < ${sliceDim}; j++) {\n int index = round(${indicesSnippet});\n flattenedIndex += index * ${strideString};\n }\n if (flattenedIndex == coords[0]) {\n sum += ${updatesSnippet};\n found = true;\n }\n }\n setOutput(mix(getDefaultValue(), sum, float(found)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ScatterNd.js\nfunction scatterNd2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices, updates } = inputs;\n const { shape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(updates, indices, shape);\n const flattenShape = [outputSize / sliceSize, sliceSize];\n if (outputSize === 0) {\n return backend2.makeTensorInfo(shape, indices.dtype);\n }\n const flattenIndices = reshape4({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numUpdates, sliceRank] } });\n const flattenX = reshape4({ inputs: { x: updates }, backend: backend2, attrs: { shape: [numUpdates, sliceSize] } });\n const defaultValue = backend2.makeTensorInfo([], \"float32\", new Float32Array([0]));\n const program = new ScatterProgram(numUpdates, sliceRank, flattenIndices.shape.length, flattenX.shape.length, strides, flattenShape);\n const res = backend2.runWebGLProgram(program, [flattenX, flattenIndices, defaultValue], flattenX.dtype);\n const reshaped = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape } });\n backend2.disposeIntermediateTensorInfo(flattenIndices);\n backend2.disposeIntermediateTensorInfo(flattenX);\n backend2.disposeIntermediateTensorInfo(res);\n backend2.disposeIntermediateTensorInfo(defaultValue);\n return reshaped;\n}\nvar scatterNdConfig2 = {\n kernelName: ScatterNd,\n backendName: \"webgl\",\n kernelFunc: scatterNd2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/search_sorted_gpu.js\nvar SearchSortedProgram = class {\n constructor(batchSize, numInputs, numValues, side) {\n this.variableNames = [\"sortedSequence\", \"values\"];\n this.customUniforms = [{ name: \"numInputs\", type: \"int\" }];\n this.outputShape = [batchSize, numValues];\n const webGL2LoopHead = \"while (left < right) {\";\n const webGL1LoopHead = `for (int i = 0; i < ${Math.ceil(Math.log2(numInputs + 1))}; ++i) { if (left >= right) break;`;\n const loopHead = env().getNumber(\"WEBGL_VERSION\") === 2 ? webGL2LoopHead : webGL1LoopHead;\n const boundComparator = side === \"left\" ? \"<\" : \"<=\";\n this.userCode = `\n int findBound(int batch, float value) {\n int left = 0;\n int right = numInputs;\n int mid;\n ${loopHead}\n mid = (left + right) / 2;\n if (getSortedSequence(batch, mid) ${boundComparator} value) {\n left = mid + 1;\n } else {\n right = mid;\n }\n }\n return right;\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int valueIndex = coords[1];\n\n float value = getValues(batch, valueIndex);\n\n setOutput(float(findBound(batch, value)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SearchSorted.js\nfunction searchSorted3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sortedSequence, values } = inputs;\n const { side } = attrs;\n const program = new SearchSortedProgram(sortedSequence.shape[0], sortedSequence.shape[1], values.shape[1], side);\n const customValues = [[sortedSequence.shape[1]]];\n return backend2.runWebGLProgram(program, [sortedSequence, values], \"int32\", customValues);\n}\nvar searchSortedConfig2 = {\n kernelName: SearchSorted,\n backendName: \"webgl\",\n kernelFunc: searchSorted3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/select_gpu.js\nvar SelectProgram = class {\n constructor(cRank, shape, rank) {\n this.variableNames = [\"c\", \"a\", \"b\"];\n this.outputShape = shape;\n let cCoords;\n let abCoords;\n if (rank > 4) {\n throw Error(`Where for rank ${rank} is not yet supported`);\n }\n if (rank === 1) {\n abCoords = `resRC`;\n cCoords = `resRC`;\n } else {\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const cCoordVars = [];\n const abCoordVars = [];\n for (let i2 = 0; i2 < shape.length; i2++) {\n abCoordVars.push(`${currentCoords[i2]}`);\n if (i2 < cRank) {\n cCoordVars.push(`${currentCoords[i2]}`);\n }\n }\n cCoords = cCoordVars.join();\n abCoords = abCoordVars.join();\n }\n const dtype = getCoordsDataType(rank);\n this.userCode = `\n void main() {\n ${dtype} resRC = getOutputCoords();\n float cVal = getC(${cCoords});\n if (cVal >= 1.0) {\n setOutput(getA(${abCoords}));\n } else {\n setOutput(getB(${abCoords}));\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Select.js\nfunction select3(args) {\n const { inputs, backend: backend2 } = args;\n const { condition, t: t2, e: e2 } = inputs;\n const program = new SelectProgram(condition.shape.length, t2.shape, t2.shape.length);\n return backend2.runWebGLProgram(program, [condition, t2, e2], upcastType(t2.dtype, e2.dtype));\n}\nvar selectConfig2 = {\n kernelName: Select,\n backendName: \"webgl\",\n kernelFunc: select3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Selu.js\nvar SELU = `\n // Stable and Attracting Fixed Point (0, 1) for Normalized Weights.\n // see: https://arxiv.org/abs/1706.02515\n float scaleAlpha = ${backend_util_exports.SELU_SCALEALPHA};\n float scale = ${backend_util_exports.SELU_SCALE};\n return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);\n`;\nvar selu3 = unaryKernelFunc2({ opSnippet: SELU });\nvar seluConfig2 = {\n kernelName: Selu,\n backendName: \"webgl\",\n kernelFunc: selu3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sigmoid.js\nvar SIGMOID3 = CHECK_NAN_SNIPPET_UNARY + `\n return 1.0 / (1.0 + exp(-1.0 * x));\n`;\nvar SIGMOID_PACKED = `\n vec4 result = 1.0 / (1.0 + exp(-1.0 * x));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar sigmoid3 = unaryKernelFunc2({\n opSnippet: SIGMOID3,\n packedOpSnippet: SIGMOID_PACKED,\n cpuKernelImpl: sigmoidImplCPU\n});\nvar sigmoidConfig2 = {\n kernelName: Sigmoid,\n backendName: \"webgl\",\n kernelFunc: sigmoid3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sign.js\nvar SIGN = `\n if (isnan(x)) { return 0.0; }\n return sign(x);\n`;\nvar sign3 = unaryKernelFunc2({ opSnippet: SIGN });\nvar signConfig2 = {\n kernelName: Sign,\n backendName: \"webgl\",\n kernelFunc: sign3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sin.js\nvar SIN = CHECK_NAN_SNIPPET_UNARY + `\n return sin(x);\n`;\nvar sin3 = unaryKernelFunc2({ opSnippet: SIN });\nvar sinConfig2 = {\n kernelName: Sin,\n backendName: \"webgl\",\n kernelFunc: sin3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sinh.js\nvar SINH = `\n float e2x = exp(x);\n return (e2x - 1.0 / e2x) / 2.0;\n`;\nvar sinh3 = unaryKernelFunc2({ opSnippet: SINH });\nvar sinhConfig2 = {\n kernelName: Sinh,\n backendName: \"webgl\",\n kernelFunc: sinh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Softplus.js\nvar SOFTPLUS = `\n float epsilon = 1.1920928955078125e-7;\n float threshold = log(epsilon) + 2.0;\n\n bool too_large = x > -threshold;\n bool too_small = x < threshold;\n\n float result;\n float exp_x = exp(x);\n\n if (too_large){\n result = x;\n }\n else if (too_small){\n result = exp_x;\n }\n else{\n result = log(exp_x + 1.0);\n }\n return result;\n`;\nvar softplus3 = unaryKernelFunc2({ opSnippet: SOFTPLUS });\nvar softplusConfig2 = {\n kernelName: Softplus,\n backendName: \"webgl\",\n kernelFunc: softplus3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SpaceToBatchND.js\nvar spaceToBatchND3 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, paddings } = attrs;\n util_exports.assert(x.shape.length <= 4, () => \"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const completePaddings = [[0, 0]];\n completePaddings.push(...paddings);\n for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) {\n completePaddings.push([0, 0]);\n }\n const toDispose = [];\n const paddedX = padV22({\n inputs: { x },\n backend: backend2,\n attrs: { paddings: completePaddings, constantValue: 0 }\n });\n const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false);\n const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false);\n const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false);\n const reshapedPaddedX = reshape4({ inputs: { x: paddedX }, backend: backend2, attrs: { shape: reshapedPaddedShape } });\n const paddedXT = transpose3({\n inputs: { x: reshapedPaddedX },\n backend: backend2,\n attrs: { perm: permutedReshapedPaddedPermutation }\n });\n const result = reshape4({ inputs: { x: paddedXT }, backend: backend2, attrs: { shape: flattenShape } });\n toDispose.push(paddedX);\n toDispose.push(reshapedPaddedX);\n toDispose.push(paddedXT);\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n};\nvar spaceToBatchNDConfig2 = {\n kernelName: SpaceToBatchND,\n backendName: \"webgl\",\n kernelFunc: spaceToBatchND3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseFillEmptyRows.js\nfunction sparseFillEmptyRows3(args) {\n const { inputs, backend: backend2 } = args;\n const { indices, values, denseShape, defaultValue } = inputs;\n if (denseShape.shape.length !== 1) {\n throw new Error(`Dense shape must be a vector, saw:\n ${denseShape.shape}`);\n }\n if (indices.shape.length !== 2) {\n throw new Error(`Indices must be a matrix, saw:\n ${indices.shape}`);\n }\n if (values.shape.length !== 1) {\n throw new Error(`Values must be a vector, saw:\n ${values.shape}`);\n }\n if (defaultValue.shape.length !== 0) {\n throw new Error(`Default value must be a scalar, saw:\n ${defaultValue.shape}`);\n }\n const $indices = backend2.readSync(indices.dataId);\n const $values = backend2.readSync(values.dataId);\n const $denseShape = backend2.readSync(denseShape.dataId);\n const $defaultValue = backend2.readSync(defaultValue.dataId)[0];\n const [outputIndices, outputIndicesShape, outputValues, emptyRowIndicator, reverseIndexMap] = sparseFillEmptyRowsImplCPU($indices, indices.shape, indices.dtype, $values, values.dtype, $denseShape, $defaultValue);\n return [\n backend2.makeTensorInfo(outputIndicesShape, indices.dtype, outputIndices),\n backend2.makeTensorInfo([outputIndicesShape[0]], values.dtype, outputValues),\n backend2.makeTensorInfo([emptyRowIndicator.length], \"bool\", new Uint8Array(emptyRowIndicator.map((value) => Number(value)))),\n backend2.makeTensorInfo([reverseIndexMap.length], indices.dtype, new Int32Array(reverseIndexMap))\n ];\n}\nvar sparseFillEmptyRowsConfig2 = {\n kernelName: SparseFillEmptyRows,\n backendName: \"webgl\",\n kernelFunc: sparseFillEmptyRows3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseReshape.js\nfunction sparseReshape3(args) {\n const { inputs, backend: backend2 } = args;\n const { inputIndices, inputShape, newShape } = inputs;\n if (inputIndices.shape.length !== 2) {\n throw new Error(`Input indices should be a matrix but received shape ${inputIndices.shape}`);\n }\n if (inputShape.shape.length !== 1) {\n throw new Error(`Input shape should be a vector but received shape ${inputShape.shape}`);\n }\n if (newShape.shape.length !== 1) {\n throw new Error(`Target shape should be a vector but received shape ${newShape.shape}`);\n }\n const $inputShape = Array.from(backend2.readSync(inputShape.dataId));\n const $inputIndices = backend2.readSync(inputIndices.dataId);\n const targetShape = Array.from(backend2.readSync(newShape.dataId));\n const [newIndices, indicesShape, outputShape] = sparseReshapeImplCPU($inputIndices, inputIndices.shape, inputIndices.dtype, $inputShape, targetShape);\n return [\n backend2.makeTensorInfo(indicesShape, inputIndices.dtype, newIndices),\n backend2.makeTensorInfo([outputShape.length], newShape.dtype, new Int32Array(outputShape))\n ];\n}\nvar sparseReshapeConfig2 = {\n kernelName: SparseReshape,\n backendName: \"webgl\",\n kernelFunc: sparseReshape3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseSegmentMean.js\nfunction sparseSegmentMean3(args) {\n const { inputs, backend: backend2 } = args;\n const { data, indices, segmentIds } = inputs;\n if (data.shape.length < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if (indices.shape.length !== 1) {\n throw new Error(`Indices should be a vector but received shape\n ${indices.shape}`);\n }\n if (segmentIds.shape.length !== 1) {\n throw new Error(`Segment ids should be a vector but received shape\n ${segmentIds.shape}`);\n }\n const $data = backend2.readSync(data.dataId);\n const $indices = backend2.readSync(indices.dataId);\n const $segmentIds = backend2.readSync(segmentIds.dataId);\n const [outputData, outputDataShape] = sparseSegmentReductionImplCPU($data, data.shape, data.dtype, $indices, $segmentIds, true);\n return backend2.makeTensorInfo(outputDataShape, data.dtype, outputData);\n}\nvar sparseSegmentMeanConfig2 = {\n kernelName: SparseSegmentMean,\n backendName: \"webgl\",\n kernelFunc: sparseSegmentMean3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseSegmentSum.js\nfunction sparseSegmentSum3(args) {\n const { inputs, backend: backend2 } = args;\n const { data, indices, segmentIds } = inputs;\n if (data.shape.length < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if (indices.shape.length !== 1) {\n throw new Error(`Indices should be a vector but received shape\n ${indices.shape}`);\n }\n if (segmentIds.shape.length !== 1) {\n throw new Error(`Segment ids should be a vector but received shape\n ${segmentIds.shape}`);\n }\n const $data = backend2.readSync(data.dataId);\n const $indices = backend2.readSync(indices.dataId);\n const $segmentIds = backend2.readSync(segmentIds.dataId);\n const [outputData, outputDataShape] = sparseSegmentReductionImplCPU($data, data.shape, data.dtype, $indices, $segmentIds);\n return backend2.makeTensorInfo(outputDataShape, data.dtype, outputData);\n}\nvar sparseSegmentSumConfig2 = {\n kernelName: SparseSegmentSum,\n backendName: \"webgl\",\n kernelFunc: sparseSegmentSum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseToDense.js\nfunction sparseToDense3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sparseIndices, sparseValues, defaultValue } = inputs;\n const { outputShape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(sparseValues, sparseIndices, outputShape);\n const sumDupeIndices = false;\n if (sparseValues.dtype === \"string\") {\n const indicesBuf = backend2.bufferSync(sparseIndices);\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = util_exports.decodeString(backend2.readSync(defaultValue.dataId)[0]);\n const outBuf = scatterImplCPU(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n return backend2.makeTensorInfo(outputShape, outBuf.dtype, outBuf.values);\n }\n const program = new ScatterProgram(numUpdates, sliceRank, sparseIndices.shape.length, sparseValues.shape.length, strides, [outputSize, 1], sumDupeIndices);\n const res = backend2.runWebGLProgram(program, [sparseValues, sparseIndices, defaultValue], sparseValues.dtype);\n const reshaped = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: outputShape } });\n backend2.disposeIntermediateTensorInfo(res);\n return reshaped;\n}\nvar sparseToDenseConfig2 = {\n kernelName: SparseToDense,\n backendName: \"webgl\",\n kernelFunc: sparseToDense3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SplitV.js\nfunction splitV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { numOrSizeSplits, axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, x.shape)[0];\n const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis);\n const xRank = x.shape.length;\n const begin = new Array(xRank).fill(0);\n const size = x.shape.slice();\n return splitSizes.map((s2) => {\n const sliceSize = [...size];\n sliceSize[$axis] = s2;\n const sliceT = slice3({ inputs: { x }, backend: backend2, attrs: { begin, size: sliceSize } });\n begin[$axis] += s2;\n return sliceT;\n });\n}\nvar splitVConfig2 = {\n kernelName: SplitV,\n backendName: \"webgl\",\n kernelFunc: splitV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sqrt.js\nvar SQRT = `return sqrt(x);`;\nvar sqrt3 = unaryKernelFunc2({ opSnippet: SQRT, packedOpSnippet: SQRT, cpuKernelImpl: sqrtImplCPU });\nvar sqrtConfig2 = {\n kernelName: Sqrt,\n backendName: \"webgl\",\n kernelFunc: sqrt3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Square.js\nvar SQUARE = `return x * x;`;\nvar square3 = unaryKernelFunc2({ opSnippet: SQUARE });\nvar squareConfig2 = {\n kernelName: Square,\n backendName: \"webgl\",\n kernelFunc: square3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SquaredDifference.js\nvar SQUARED_DIFFERENCE = \"return (a - b) * (a - b);\";\nvar squaredDifference3 = binaryKernelFunc2({ opSnippet: SQUARED_DIFFERENCE, packedOpSnippet: SQUARED_DIFFERENCE });\nvar squaredDifferenceConfig2 = {\n kernelName: SquaredDifference,\n backendName: \"webgl\",\n kernelFunc: squaredDifference3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Step.js\nfunction step3({ inputs, attrs, backend: backend2 }) {\n const { x } = inputs;\n const opSnippet = CHECK_NAN_SNIPPET + `\n return x > 0.0 ? 1.0 : float(${attrs.alpha});\n `;\n const program = new UnaryOpProgram(x.shape, opSnippet);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar stepConfig2 = {\n kernelName: Step,\n backendName: \"webgl\",\n kernelFunc: step3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/strided_slice_gpu.js\nvar StridedSliceProgram = class {\n constructor(begin, strides, size) {\n this.variableNames = [\"x\"];\n this.outputShape = size;\n const rank = size.length;\n const inputDtype = getCoordsDataType(size.length);\n const dtype = getCoordsDataType(size.length);\n let newCoords = \"\";\n if (rank === 1) {\n newCoords = \"coords * strides + begin\";\n } else {\n let outputAxis = 0;\n newCoords = size.map((_, i2) => {\n outputAxis++;\n return size.length === 1 ? `coords * strides[${i2}] + begin[${i2}]` : `coords[${outputAxis - 1}] * strides[${i2}] + begin[${i2}]`;\n }).join(\",\");\n }\n this.userCode = `\n ${inputDtype} begin = ${inputDtype}(${begin});\n ${inputDtype} strides = ${inputDtype}(${strides});\n\n void main() {\n ${dtype} coords = getOutputCoords();\n setOutput(getX(${newCoords}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/StridedSlice.js\nfunction stridedSlice3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs;\n const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n let result;\n if (isIdentity) {\n result = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } });\n } else if (sliceDim0 || isSimpleSlice) {\n util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`);\n const size = slice_util_exports.computeOutShape($begin, $end, $strides);\n const sliced = slice3({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } });\n result = reshape4({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeIntermediateTensorInfo(sliced);\n } else {\n const shouldExecuteOnCPU = backend2.shouldExecuteOnCPU([x]);\n if (shouldExecuteOnCPU) {\n const values = backend2.readSync(x.dataId);\n const xBuf = buffer(x.shape, x.dtype, values);\n const resultValues = stridedSliceImplCPU(finalShapeSparse, xBuf, $strides, $begin);\n result = backend2.makeTensorInfo(finalShape, x.dtype, resultValues.values);\n } else {\n const program = new StridedSliceProgram($begin, $strides, finalShapeSparse);\n result = backend2.runWebGLProgram(program, [x], x.dtype);\n }\n }\n const resultReshaped = reshape4({ inputs: { x: result }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return resultReshaped;\n}\nvar stridedSliceConfig2 = {\n kernelName: StridedSlice,\n backendName: \"webgl\",\n kernelFunc: stridedSlice3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/StringNGrams.js\nfunction stringNGrams3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs;\n const { data, dataSplits } = inputs;\n const $data = backend2.readSync(data.dataId);\n const $dataSplits = backend2.readSync(dataSplits.dataId);\n const [nGrams, nGramsSplits] = stringNGramsImplCPU($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences);\n return [\n backend2.makeTensorInfo([nGrams.length], \"string\", nGrams),\n backend2.makeTensorInfo(dataSplits.shape, \"int32\", nGramsSplits)\n ];\n}\nvar stringNGramsConfig2 = {\n kernelName: StringNGrams,\n backendName: \"webgl\",\n kernelFunc: stringNGrams3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/StringSplit.js\nfunction stringSplit3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { skipEmpty } = attrs;\n const { input: input2, delimiter } = inputs;\n if (input2.dtype !== \"string\") {\n throw new Error(\"Input must be of datatype string\");\n }\n if (input2.shape.length !== 1) {\n throw new Error(`Input must be a vector, got shape: ${input2.shape}`);\n }\n if (delimiter.shape.length !== 0) {\n throw new Error(`Delimiter must be a scalar, got shape: ${delimiter.shape}`);\n }\n const $input = backend2.readSync(input2.dataId);\n const $delimiter = backend2.readSync(delimiter.dataId)[0];\n const [indices, values, shape] = stringSplitImplCPU($input, $delimiter, skipEmpty);\n const outputSize = values.length;\n return [\n backend2.makeTensorInfo([outputSize, 2], \"int32\", indices),\n backend2.makeTensorInfo([outputSize], \"string\", values),\n backend2.makeTensorInfo([2], \"int32\", new Int32Array(shape))\n ];\n}\nvar stringSplitConfig2 = {\n kernelName: StringSplit,\n backendName: \"webgl\",\n kernelFunc: stringSplit3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/StringToHashBucketFast.js\nfunction stringToHashBucketFast3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { numBuckets } = attrs;\n const { input: input2 } = inputs;\n if (input2.dtype !== \"string\") {\n throw new Error(\"Input must be of datatype string\");\n }\n if (numBuckets <= 0) {\n throw new Error(`Number of buckets must be at least 1`);\n }\n const $input = backend2.readSync(input2.dataId);\n const output = stringToHashBucketFastImplCPU($input, numBuckets);\n return backend2.makeTensorInfo(input2.shape, \"int32\", output);\n}\nvar stringToHashBucketFastConfig2 = {\n kernelName: StringToHashBucketFast,\n backendName: \"webgl\",\n kernelFunc: stringToHashBucketFast3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Tan.js\nvar TAN = `return tan(x);`;\nvar tan3 = unaryKernelFunc2({ opSnippet: TAN });\nvar tanConfig2 = {\n kernelName: Tan,\n backendName: \"webgl\",\n kernelFunc: tan3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Tanh.js\nvar TANH = `\n float e2x = exp(-2.0 * abs(x));\n return sign(x) * (1.0 - e2x) / (1.0 + e2x);\n`;\nvar tanh4 = unaryKernelFunc2({ opSnippet: TANH });\nvar tanhConfig2 = {\n kernelName: Tanh,\n backendName: \"webgl\",\n kernelFunc: tanh4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/tile_gpu.js\nvar TileProgram = class {\n constructor(aShape, reps) {\n this.variableNames = [\"A\"];\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[i2] * reps[i2];\n }\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n const dtype = getCoordsDataType(this.rank);\n const sourceCoords = getSourceCoords3(aShape);\n this.userCode = `\n void main() {\n ${dtype} resRC = getOutputCoords();\n setOutput(getA(${sourceCoords}));\n }\n `;\n }\n};\nfunction getSourceCoords3(aShape) {\n const rank = aShape.length;\n if (rank > 5) {\n throw Error(`Tile for rank ${rank} is not yet supported`);\n }\n if (rank === 1) {\n return `imod(resRC, ${aShape[0]})`;\n }\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\", \"resRC.u\"];\n const sourceCoords = [];\n for (let i2 = 0; i2 < aShape.length; i2++) {\n sourceCoords.push(`imod(${currentCoords[i2]}, ${aShape[i2]})`);\n }\n return sourceCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Tile.js\nfunction tile4(params) {\n const { inputs, backend: backend2, attrs } = params;\n const { x } = inputs;\n const { reps } = attrs;\n if (x.dtype === \"string\" || x.shape.length > 5) {\n const data = backend2.readSync(x.dataId);\n const value = x.dtype === \"string\" ? data.map((d) => util_exports.decodeString(d)) : data;\n const buf = buffer(x.shape, x.dtype, value);\n const outBuf = tileImplCPU(buf, reps);\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n }\n const program = new TileProgram(x.shape, reps);\n const output = backend2.runWebGLProgram(program, [x], x.dtype);\n return output;\n}\nvar tileConfig2 = {\n kernelName: Tile,\n backendName: \"webgl\",\n kernelFunc: tile4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/top_k_gpu.js\nvar SwapProgram = class {\n constructor(shape) {\n this.variableNames = [\"x\", \"indices\"];\n this.customUniforms = [\n { name: \"n\", type: \"int\" },\n { name: \"firstPass\", type: \"int\" },\n { name: \"negativeInf\", type: \"float\" },\n { name: \"dir\", type: \"int\" },\n { name: \"inc\", type: \"int\" }\n ];\n this.outputShape = shape;\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int elemIdx = coords[1];\n\n // We compare elements pair-wise within a group of size 2 * inc.\n // The comparing rule for each group alternates between ascending\n // and descending. Within each group, we compare each pair at\n // positions i and i+inc. To decide whether an element at position i\n // is x0 or x1, we mod it by 2 * inc, if the result is smaller than\n // inc, it is in the first half of the group, we denote it as x0,\n // otherwise we denote it as x1.\n // For example, as shown in the Bitonic top K paper referenced above,\n // Figure5(a) shows that element[1] is in the\n // second half of the group when group size is 2, but it is in the\n // first half of the group when group size is 4.\n\n bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;\n int i = isFirstInPair ? elemIdx : elemIdx - inc;\n\n int i0 = firstPass == 1 ? i : int(getIndices(batch, i));\n int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));\n float x0 = i0 < n ? getX(batch, i0) : negativeInf;\n float x1 = i1 < n ? getX(batch, i1) : negativeInf;\n\n // Denotes which direction indices are in (ascending or descending).\n bool reverse = imod(elemIdx, 2 * dir) >= dir;\n bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);\n if (reverse == isGreater) { // Elements in opposite order of direction\n int iTemp = i0;\n i0 = i1;\n i1 = iTemp;\n }\n if (isFirstInPair) {\n setOutput(float(i0));\n } else {\n setOutput(float(i1));\n }\n }\n `;\n }\n};\nvar MergeProgram = class {\n constructor(shape) {\n this.variableNames = [\"x\", \"indices\"];\n this.customUniforms = [\n { name: \"n\", type: \"int\" },\n { name: \"firstPass\", type: \"int\" },\n { name: \"k\", type: \"int\" }\n ];\n this.outputShape = shape;\n this.userCode = `\n void main() {\n // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int elemIdx = coords[1];\n\n // The output size is half of the previous size.\n // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),\n // we only need to output the indices at positions |, the indices at\n // positions _ can be thrown away, see Figure5(b) After Phase 2\n // (Merge phase) in the Bitonic Top K paper referenced above.\n // For example, the paper shows we only need to output the orange bars.\n // The output sequence should look like this | | | | | | | |.\n // Because the sequence is halved, to map the output index back\n // to the previous sequence to find the corresponding value,\n // we need to double the index. When we double the index,\n // we basically interpolate a position, so 2i looks like\n // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position\n // of each 2k positions by - elemIdx % k. E.g. for output at\n // index 4,5,6,7, we want to get the corresponding element at\n // original index 8,9,10,11, for output at index 8,9,10,11,\n // we want to get the corresponding element at original index\n // 16,17,18,19, so on and so forth.\n\n int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));\n int i0 = firstPass == 1 ? i : int(getIndices(batch, i));\n int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));\n\n float x0 = getX(batch, i0);\n float x1 = i1 < n ? getX(batch, i1) : x0;\n\n setOutput(x0 >= x1 ? float(i0) : float(i1));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/TopK.js\nfunction disposeIntermediateTensorInfoOrNull(backend2, tensorInfo) {\n if (tensorInfo !== null) {\n backend2.disposeIntermediateTensorInfo(tensorInfo);\n }\n}\nfunction roundUpToPow2(num) {\n let pow22 = 1;\n while (pow22 < num) {\n pow22 *= 2;\n }\n return pow22;\n}\nfunction topK2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { k, sorted } = attrs;\n const TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD = env().getNumber(\"TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD\");\n const TOPK_K_CPU_HANDOFF_THRESHOLD = env().getNumber(\"TOPK_K_CPU_HANDOFF_THRESHOLD\");\n const xShape = x.shape;\n const lastDim = xShape[xShape.length - 1];\n if (backend2.shouldExecuteOnCPU([x]) || lastDim < TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD || k > TOPK_K_CPU_HANDOFF_THRESHOLD) {\n const xVals = backend2.readSync(x.dataId);\n const [allTopKVals, allTopKIndices] = topKImplCPU(xVals, xShape, x.dtype, k, sorted);\n return [\n backend2.makeTensorInfo(allTopKVals.shape, allTopKVals.dtype, allTopKVals.values),\n backend2.makeTensorInfo(allTopKIndices.shape, allTopKIndices.dtype, allTopKIndices.values)\n ];\n }\n if (k === 0) {\n xShape[xShape.length - 1] = 0;\n return [\n backend2.makeTensorInfo(xShape, x.dtype, []),\n backend2.makeTensorInfo(xShape, \"int32\", [])\n ];\n }\n if (lastDim === 1) {\n return [\n x,\n fill3({ attrs: { shape: xShape, dtype: \"int32\", value: 0 }, backend: backend2 })\n ];\n }\n const xtexData = backend2.texData.get(x.dataId);\n const xIsPacked = xtexData !== null && xtexData.isPacked;\n const xUnPacked = xIsPacked ? backend2.unpackTensor(x) : x;\n const xSize = util_exports.sizeFromShape(xShape);\n const batch = xSize / lastDim;\n const x2D = reshape4({ inputs: { x: xUnPacked }, attrs: { shape: [batch, lastDim] }, backend: backend2 });\n if (xIsPacked) {\n disposeIntermediateTensorInfoOrNull(backend2, xUnPacked);\n }\n const kPow2 = roundUpToPow2(k);\n const lastDimPow2 = roundUpToPow2(lastDim);\n let indices = null;\n const getInputs = () => indices === null ? [x2D, x2D] : [x2D, indices];\n const runSwap = (dir, inc, shape) => {\n const inputs2 = getInputs();\n const program = new SwapProgram(shape);\n const fistPass = indices === null ? 1 : 0;\n const customValues = [[lastDim], [fistPass], [Number.NEGATIVE_INFINITY], [dir], [inc]];\n const prevIndices2 = indices;\n indices = backend2.runWebGLProgram(program, inputs2, \"int32\", customValues);\n disposeIntermediateTensorInfoOrNull(backend2, prevIndices2);\n };\n for (let len = 1; len < kPow2; len *= 2) {\n const dir = len * 2;\n for (let inc = len; inc >= 1; inc /= 2) {\n runSwap(dir, inc, [batch, lastDimPow2]);\n }\n }\n for (let indicesSize = lastDimPow2; indicesSize > kPow2; indicesSize /= 2) {\n const inputs2 = getInputs();\n const mergeProgram = new MergeProgram([batch, indicesSize / 2]);\n const firstPass = indices === null ? 1 : 0;\n const customValues = [[lastDim], [firstPass], [kPow2]];\n const prevIndices2 = indices;\n indices = backend2.runWebGLProgram(mergeProgram, inputs2, \"int32\", customValues);\n disposeIntermediateTensorInfoOrNull(backend2, prevIndices2);\n const len = kPow2 / 2;\n const dir = len * 2;\n for (let inc = len; inc >= 1; inc /= 2) {\n runSwap(dir, inc, indices.shape);\n }\n }\n let prevIndices = indices;\n indices = slice3({ inputs: { x: indices }, backend: backend2, attrs: { begin: 0, size: [batch, k] } });\n disposeIntermediateTensorInfoOrNull(backend2, prevIndices);\n let values = gatherV22({ inputs: { x: x2D, indices }, backend: backend2, attrs: { axis: 1, batchDims: 1 } });\n disposeIntermediateTensorInfoOrNull(backend2, x2D);\n const newShape = xShape.slice(0, -1);\n newShape.push(k);\n prevIndices = indices;\n indices = reshape4({ inputs: { x: indices }, attrs: { shape: newShape }, backend: backend2 });\n disposeIntermediateTensorInfoOrNull(backend2, prevIndices);\n const prevValues = values;\n values = reshape4({ inputs: { x: values }, attrs: { shape: newShape }, backend: backend2 });\n disposeIntermediateTensorInfoOrNull(backend2, prevValues);\n return [values, indices];\n}\nvar topKConfig2 = {\n kernelName: TopK,\n backendName: \"webgl\",\n kernelFunc: topK2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/transform_gpu.js\nvar TransformProgram = class {\n constructor(imageHeight, imageWidth, interpolation, fillMode, fillValue, outShape) {\n this.variableNames = [\"Image\", \"Transforms\"];\n this.outputShape = outShape;\n const interpolationModeId = interpolation === \"nearest\" ? 1 : 2;\n let fillModeId;\n switch (fillMode) {\n case \"constant\":\n fillModeId = 1;\n break;\n case \"reflect\":\n fillModeId = 2;\n break;\n case \"wrap\":\n fillModeId = 3;\n break;\n case \"nearest\":\n fillModeId = 4;\n break;\n default:\n fillModeId = 1;\n break;\n }\n this.userCode = `\n float mapCoord(float outCoord, float len) {\n float inCoord = outCoord;\n if(${fillModeId} == 2) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz2 = 2.0 * len;\n if (inCoord < sz2) {\n inCoord = sz2 * float(int(float(-inCoord / sz2))) +\n inCoord;\n }\n inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz2 = 2.0 * len;\n inCoord -= sz2 * float(int(float(inCoord / sz2)));\n if (inCoord >= len) {\n inCoord = sz2 - inCoord - 1.0;\n }\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (${fillModeId} == 3) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz = len - 1.0;\n inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz = len - 1.0;\n inCoord -= len * float(int(float(inCoord / sz)));\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (${fillModeId} == 4) {\n return clamp(outCoord, 0.0, len - 1.0);\n } else {\n return outCoord;\n }\n }\n\n float readWithFillValue(int batch, int coordY, int coordX,\n int channel) {\n float outputValue;\n if (0 <= coordY && coordY < ${imageHeight} && 0 <= coordX && coordX < ${imageWidth}) {\n outputValue = getImage(batch, coordY, coordX, channel);\n } else {\n outputValue = float(${fillValue});\n }\n return outputValue;\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n float outputValue;\n int batch = coords[0];\n int x = coords[2];\n int y = coords[1];\n int channel = coords[3];\n float xf = float(x);\n float yf = float(y);\n float a1 = getTransforms(batch, 0);\n float a2 = getTransforms(batch, 1);\n float a3 = getTransforms(batch, 2);\n float b1 = getTransforms(batch, 3);\n float b2 = getTransforms(batch, 4);\n float b3 = getTransforms(batch, 5);\n float c1 = getTransforms(batch, 6);\n float c2 = getTransforms(batch, 7);\n float projection = c1 * xf + c2 * yf + 1.0;\n if (projection == 0.0) {\n outputValue = float(${fillValue});\n } else {\n float inX = (a1 * xf + a2 * yf + a3) / projection;\n float inY = (b1 * xf + b2 * yf + b3) / projection;\n float mapX = mapCoord(inX, float(${imageWidth}));\n float mapY = mapCoord(inY, float(${imageHeight}));\n\n if (${interpolationModeId} == 1) {\n int coordY = int(round(mapY));\n int coordX = int(round(mapX));\n outputValue = readWithFillValue(batch, coordY, coordX,\n channel);\n } else {\n float yFloor = floor(mapY);\n float xFloor = floor(mapX);\n float yCeil = yFloor + 1.0;\n float xCeil = xFloor + 1.0;\n float valueYFloor = (xCeil - mapX) *\n readWithFillValue(batch, int(yFloor), int(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, int(yFloor), int(xCeil), channel);\n float valueYCeil = (xCeil - mapX) *\n readWithFillValue(batch, int(yCeil), int(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, int(yCeil), int(xCeil), channel);\n outputValue = (yCeil - mapY) * valueYFloor +\n (mapY - yFloor) * valueYCeil;\n }\n }\n setOutput(outputValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Transform.js\nfunction transform3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, transforms } = inputs;\n const { interpolation, fillMode, fillValue, outputShape } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth];\n const outShape = [\n batch,\n outHeight,\n outWidth,\n numChannels\n ];\n const program = new TransformProgram(imageHeight, imageWidth, interpolation, fillMode, fillValue, outShape);\n return backend2.runWebGLProgram(program, [image2, transforms], \"float32\");\n}\nvar transformConfig2 = {\n kernelName: Transform,\n backendName: \"webgl\",\n kernelFunc: transform3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Unique.js\nfunction unique4(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { axis } = attrs;\n const { x } = inputs;\n assertNotComplex2(x, \"unique\");\n console.warn(\"WARNING: \", \"UI might be locked temporarily as data is being downloaded\");\n const values = backend2.readSync(x.dataId);\n const { outputValues, outputShape, indices } = uniqueImplCPU(values, axis, x.shape, x.dtype);\n return [\n backend2.makeTensorInfo(outputShape, x.dtype, outputValues),\n backend2.makeTensorInfo([indices.length], \"int32\", indices)\n ];\n}\nvar uniqueConfig2 = {\n kernelName: Unique,\n backendName: \"webgl\",\n kernelFunc: unique4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Unpack.js\nfunction unpack2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { value } = inputs;\n let { axis } = attrs;\n if (axis < 0) {\n axis += value.shape.length;\n }\n const x = value;\n const xRank = x.shape.length;\n const num = value.shape[axis];\n const outShape = new Array(xRank - 1);\n let outIndex = 0;\n for (let i2 = 0; i2 < xRank; i2++) {\n if (i2 !== axis) {\n outShape[outIndex++] = x.shape[i2];\n }\n }\n const toDispose = [];\n const begin = new Array(xRank).fill(0);\n const size = x.shape.slice();\n size[axis] = 1;\n const res = new Array(num);\n for (let i2 = 0; i2 < res.length; i2++) {\n begin[axis] = i2;\n const sliced = slice3({ inputs: { x }, backend: backend2, attrs: { begin, size } });\n const reshaped = reshape4({ inputs: { x: sliced }, backend: backend2, attrs: { shape: outShape } });\n res[i2] = reshaped;\n toDispose.push(sliced);\n }\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return res;\n}\nvar unpackConfig2 = {\n kernelName: Unpack,\n backendName: \"webgl\",\n kernelFunc: unpack2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/segment_gpu.js\nvar SegmentOpProgram = class {\n constructor(segOpInfo, segOpType) {\n this.variableNames = [\"x\", \"segmentIds\"];\n const windowSize = segOpInfo.windowSize;\n const batchSize = segOpInfo.batchSize;\n const inSize = segOpInfo.inSize;\n const numSegments = segOpInfo.numSegments;\n const outSize = numSegments * Math.ceil(inSize / windowSize);\n this.outputShape = [batchSize, outSize];\n const initializationValue = \"0.0\";\n const returnValue = `sumValue`;\n const windowSizeNearestVec4 = Math.floor(windowSize / 4) * 4;\n const windowSizeVec4Remainder = windowSize % 4;\n const updateSnippet = `\n sumValue += dot(values, segFilter);\n `;\n let checkValueOutOfBounds = \"\";\n if (inSize % windowSize > 0) {\n checkValueOutOfBounds = `\n if (inIdx < 0 || inIdx >= ${inSize}) {\n return initializationValue;\n }\n `;\n }\n let checkSegmentIdOutOfBounds = \"\";\n if (inSize % windowSize > 0) {\n checkSegmentIdOutOfBounds = `\n if (inIdx < 0 || inIdx >= ${inSize}) {\n return -1.0;\n }\n `;\n }\n this.userCode = `\n const float initializationValue = ${initializationValue};\n\n float getValue(int batch, int inIdx) {\n ${checkValueOutOfBounds}\n return getX(batch, inIdx);\n }\n\n float getSegmentIdAtIndex(int inIdx) {\n ${checkSegmentIdOutOfBounds}\n return getSegmentIds(inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = int(floor(float(outIdx) / float(\n ${numSegments})) * float(${windowSize}));\n int currentSeg = int(mod(float(outIdx), float(${numSegments})));\n\n float sumValue = 0.0;\n\n for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) {\n int inIdx = inOffset + i;\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0\n );\n\n ${updateSnippet}\n }\n\n int inIdx = inOffset + ${windowSizeNearestVec4};\n if (${windowSizeVec4Remainder === 1}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n int inIdxSeg = int(getSegmentIdAtIndex(inIdx));\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n 0,\n 0,\n 0\n );\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 2}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n initializationValue,\n initializationValue\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n 0,\n 0\n );\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 3}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n initializationValue\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n 0\n );\n\n ${updateSnippet}\n }\n setOutput(${returnValue});\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/UnsortedSegmentSum.js\nfunction unsortedSegmentSum3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, segmentIds } = inputs;\n const { numSegments } = attrs;\n const xRank = x.shape.length;\n const toDispose = [];\n let axis = 0;\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n toDispose.push(permutedX);\n axis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n }\n const outShape = backend_util_exports.segment_util.computeOutShape(permutedX.shape, axis, numSegments);\n const inSize = util_exports.sizeFromShape([permutedX.shape[axis]]);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n toDispose.push(a2D);\n const outputDType = sumOutType(x.dtype);\n const segOpCompute = (x2, segOpType, segmentIds2, dtype, numSegments2) => {\n const batchSize = x2.shape[0];\n const inSize2 = x2.shape[1];\n const windowSize = backend_util_exports.segment_util.segOpComputeOptimalWindowSize(inSize2, numSegments2);\n const segOpInfo = { windowSize, inSize: inSize2, batchSize, numSegments: numSegments2 };\n const program = new SegmentOpProgram(segOpInfo, segOpType);\n const output = backend2.compileAndRun(program, [x2, segmentIds2], dtype);\n toDispose.push(output);\n if (output.shape[1] === numSegments2) {\n return output;\n }\n const rangeInfo = range4({\n backend: backend2,\n attrs: { start: 0, stop: numSegments2, step: 1, dtype: \"float32\" }\n });\n const tileInfo = tile4({\n inputs: { x: rangeInfo },\n backend: backend2,\n attrs: { reps: [inSize2 / windowSize] }\n });\n toDispose.push(rangeInfo);\n toDispose.push(tileInfo);\n const result2 = segOpCompute(output, segOpType, tileInfo, dtype, numSegments2);\n return result2;\n };\n const segOpResult = segOpCompute(a2D, \"unsortedSegmentSum\", segmentIds, outputDType, numSegments);\n const reshaped = reshape4({ inputs: { x: segOpResult }, backend: backend2, attrs: { shape: outShape } });\n let result = reshaped;\n if (permutation != null) {\n toDispose.push(reshaped);\n const perm = backend_util_exports.getUndoAxesPermutation(permutation);\n result = transpose3({ inputs: { x: result }, backend: backend2, attrs: { perm } });\n }\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar unsortedSegmentSumConfig2 = {\n kernelName: UnsortedSegmentSum,\n backendName: \"webgl\",\n kernelFunc: unsortedSegmentSum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/register_all_kernels.js\nvar kernelConfigs2 = [\n _fusedMatMulConfig2,\n absConfig2,\n acosConfig2,\n acoshConfig2,\n addConfig2,\n addNConfig2,\n allConfig2,\n anyConfig2,\n argMaxConfig2,\n argMinConfig2,\n asinConfig2,\n asinhConfig2,\n atanConfig2,\n atan2Config2,\n atanhConfig2,\n avgPoolConfig2,\n avgPool3DConfig2,\n avgPool3DGradConfig3,\n avgPoolGradConfig3,\n batchMatMulConfig2,\n batchNormConfig2,\n batchToSpaceNDConfig2,\n bincountConfig2,\n broadcastArgsConfig2,\n castConfig2,\n ceilConfig2,\n clipByValueConfig2,\n complexConfig2,\n complexAbsConfig2,\n concatConfig2,\n conv2DConfig2,\n conv2DBackpropFilterConfig2,\n conv2DBackpropInputConfig2,\n conv3DConfig2,\n conv3DBackpropFilterV2Config2,\n conv3DBackpropInputConfig,\n cosConfig2,\n coshConfig2,\n cropAndResizeConfig2,\n cumprodConfig2,\n cumsumConfig2,\n denseBincountConfig2,\n depthToSpaceConfig2,\n depthwiseConv2dNativeConfig2,\n depthwiseConv2dNativeBackpropFilterConfig2,\n depthwiseConv2dNativeBackpropInputConfig2,\n diagConfig2,\n dilation2DConfig2,\n einsumConfig2,\n eluConfig2,\n eluGradConfig3,\n equalConfig2,\n erfConfig2,\n expConfig2,\n expandDimsConfig2,\n expm1Config2,\n fftConfig2,\n fillConfig2,\n flipLeftRightConfig2,\n floorConfig2,\n floorDivConfig2,\n fromPixelsConfig,\n fusedConv2DConfig2,\n fusedDepthwiseConv2DConfig2,\n gatherNdConfig2,\n gatherV2Config2,\n greaterConfig2,\n greaterEqualConfig2,\n identityConfig2,\n ifftConfig2,\n imagConfig2,\n isFiniteConfig2,\n isInfConfig2,\n isNaNConfig2,\n leakyReluConfig2,\n lessConfig2,\n lessEqualConfig2,\n linSpaceConfig2,\n logConfig2,\n log1pConfig2,\n logicalAndConfig2,\n logicalNotConfig2,\n logicalOrConfig2,\n LRNConfig2,\n LRNGradConfig2,\n maxConfig2,\n maximumConfig2,\n maxPoolConfig2,\n maxPool3DConfig2,\n maxPool3DGradConfig3,\n maxPoolGradConfig3,\n maxPoolWithArgmaxConfig2,\n meanConfig2,\n minConfig2,\n minimumConfig2,\n mirrorPadConfig2,\n modConfig2,\n multinomialConfig2,\n multiplyConfig2,\n negConfig2,\n nonMaxSuppressionV3Config2,\n nonMaxSuppressionV4Config2,\n nonMaxSuppressionV5Config2,\n notEqualConfig2,\n oneHotConfig2,\n onesLikeConfig2,\n packConfig2,\n padV2Config2,\n powConfig2,\n preluConfig2,\n prodConfig2,\n raggedTensorToTensorConfig2,\n rangeConfig2,\n realConfig2,\n realDivConfig2,\n reciprocalConfig2,\n reluConfig2,\n relu6Config2,\n reshapeConfig2,\n resizeBilinearConfig2,\n resizeBilinearGradConfig3,\n resizeNearestNeighborConfig2,\n resizeNearestNeighborGradConfig3,\n reverseConfig2,\n rotateWithOffsetConfig2,\n roundConfig2,\n rsqrtConfig2,\n scatterNdConfig2,\n searchSortedConfig2,\n selectConfig2,\n seluConfig2,\n sigmoidConfig2,\n signConfig2,\n sinConfig2,\n sinhConfig2,\n sliceConfig2,\n softmaxConfig2,\n softplusConfig2,\n spaceToBatchNDConfig2,\n sparseFillEmptyRowsConfig2,\n sparseReshapeConfig2,\n sparseSegmentMeanConfig2,\n sparseSegmentSumConfig2,\n sparseToDenseConfig2,\n splitVConfig2,\n sqrtConfig2,\n squareConfig2,\n squaredDifferenceConfig2,\n stepConfig2,\n stridedSliceConfig2,\n stringNGramsConfig2,\n stringSplitConfig2,\n stringToHashBucketFastConfig2,\n subConfig2,\n sumConfig2,\n tanConfig2,\n tanhConfig2,\n tileConfig2,\n topKConfig2,\n transformConfig2,\n transposeConfig2,\n uniqueConfig2,\n unpackConfig2,\n unsortedSegmentSumConfig2,\n zerosLikeConfig2\n];\nfor (const kernelConfig of kernelConfigs2) {\n registerKernel(kernelConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/types.js\nvar CppDType;\n(function(CppDType2) {\n CppDType2[CppDType2[\"float32\"] = 0] = \"float32\";\n CppDType2[CppDType2[\"int32\"] = 1] = \"int32\";\n CppDType2[CppDType2[\"bool\"] = 2] = \"bool\";\n CppDType2[CppDType2[\"string\"] = 3] = \"string\";\n CppDType2[CppDType2[\"complex64\"] = 4] = \"complex64\";\n})(CppDType || (CppDType = {}));\nvar FusableActivation;\n(function(FusableActivation2) {\n FusableActivation2[FusableActivation2[\"linear\"] = 0] = \"linear\";\n FusableActivation2[FusableActivation2[\"relu\"] = 1] = \"relu\";\n FusableActivation2[FusableActivation2[\"relu6\"] = 2] = \"relu6\";\n FusableActivation2[FusableActivation2[\"prelu\"] = 3] = \"prelu\";\n FusableActivation2[FusableActivation2[\"leakyrelu\"] = 4] = \"leakyrelu\";\n FusableActivation2[FusableActivation2[\"sigmoid\"] = 5] = \"sigmoid\";\n FusableActivation2[FusableActivation2[\"elu\"] = 6] = \"elu\";\n})(FusableActivation || (FusableActivation = {}));\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/_FusedMatMul.js\nvar wasmFusedMatMul;\nfunction setup(backend2) {\n wasmFusedMatMul = backend2.wasm.cwrap(_FusedMatMul, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction fusedBatchMatMul(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b, bias, preluActivationWeights } = inputs;\n if (a.dtype !== \"float32\" || b.dtype !== \"float32\") {\n throw new Error(`_FusedMatMul for non non-float32 tensors not yet supported.`);\n }\n const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs;\n const aId = backend2.dataIdMap.get(a.dataId).id;\n const bId = backend2.dataIdMap.get(b.dataId).id;\n let biasId = 0;\n if (bias != null) {\n const biasData = backend2.dataIdMap.get(bias.dataId);\n if (biasData.shape.length !== 1) {\n throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${biasData.shape.length}.`);\n }\n biasId = biasData.id;\n }\n const preluActivationWeightsId = preluActivationWeights == null ? 0 : backend2.dataIdMap.get(preluActivationWeights.dataId).id;\n const fusedActivation = FusableActivation[activation2];\n if (fusedActivation == null) {\n throw new Error(`${activation2} activation not yet supported for FusedConv2D in the wasm backend.`);\n }\n const leftDim = transposeA ? a.shape[2] : a.shape[1];\n const rightDim = transposeB ? b.shape[1] : b.shape[2];\n const batchDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const out = backend2.makeOutput([...batchDims, leftDim, rightDim], a.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const aShapeBytes = new Uint8Array(new Int32Array(a.shape).buffer);\n const bShapeBytes = new Uint8Array(new Int32Array(b.shape).buffer);\n wasmFusedMatMul(aId, aShapeBytes, a.shape.length, bId, bShapeBytes, b.shape.length, transposeA, transposeB, fusedActivation, biasId, preluActivationWeightsId, leakyreluAlpha || 0, outId);\n return out;\n}\nvar _fusedMatMulConfig3 = {\n kernelName: _FusedMatMul,\n backendName: \"wasm\",\n setupFunc: setup,\n kernelFunc: fusedBatchMatMul\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/unary_kernel.js\nfunction createUnaryKernelConfig(kernelName, outType) {\n let wasmFunc9;\n function setupFunc3(backend2) {\n wasmFunc9 = backend2.wasm.cwrap(kernelName, null, [\n \"number\",\n \"number\",\n \"number\"\n ]);\n }\n function kernelFunc3(args) {\n const { backend: backend2, inputs: { x } } = args;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, outType || x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n if (util_exports.sizeFromShape(out.shape) === 0) {\n return out;\n }\n wasmFunc9(xId, CppDType[x.dtype], outId);\n return out;\n }\n return { kernelName, backendName: \"wasm\", setupFunc: setupFunc3, kernelFunc: kernelFunc3 };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Abs.js\nvar absConfig3 = createUnaryKernelConfig(Abs);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/binary_kernel.js\nfunction createBinaryKernelConfig(kernelName, supportsFullBroadcast19, dtype) {\n let wasmFunc9;\n function setupFunc3(backend2) {\n wasmFunc9 = backend2.wasm.cwrap(kernelName, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n }\n function kernelFunc3(args) {\n const { backend: backend2, inputs } = args;\n const { a, b } = inputs;\n const aId = backend2.dataIdMap.get(a.dataId).id;\n const bId = backend2.dataIdMap.get(b.dataId).id;\n const outputType = dtype != null ? dtype : a.dtype;\n const newShape = backend_util_exports.assertAndGetBroadcastShape(a.shape, b.shape);\n const out = backend2.makeOutput(newShape, outputType);\n if (util_exports.sizeFromShape(newShape) === 0) {\n return out;\n }\n const aShapeBytes = new Uint8Array(new Int32Array(a.shape).buffer);\n const bShapeBytes = new Uint8Array(new Int32Array(b.shape).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const kernelFunc4 = () => wasmFunc9(aId, aShapeBytes, a.shape.length, bId, bShapeBytes, b.shape.length, CppDType[a.dtype], outId);\n kernelFunc4();\n return out;\n }\n return { kernelName, backendName: \"wasm\", setupFunc: setupFunc3, kernelFunc: kernelFunc3 };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Add.js\nvar supportsFullBroadcast = true;\nvar addConfig3 = createBinaryKernelConfig(Add, supportsFullBroadcast);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/AddN.js\nvar wasmFunc;\nfunction setupFunc(backend2) {\n wasmFunc = backend2.wasm.cwrap(AddN, null, [\n \"array\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction addn(args) {\n const { inputs, backend: backend2 } = args;\n const out = backend2.makeOutput(inputs[0].shape, inputs[0].dtype);\n if (util_exports.sizeFromShape(out.shape) === 0) {\n return out;\n }\n const inputIds = inputs.map((x) => backend2.dataIdMap.get(x.dataId).id);\n const inputIdsBytes = new Uint8Array(new Int32Array(inputIds).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmFunc(inputIdsBytes, inputIds.length, CppDType[out.dtype], outId);\n return out;\n}\nvar addNConfig3 = {\n kernelName: AddN,\n backendName: \"wasm\",\n setupFunc,\n kernelFunc: addn\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Identity.js\nfunction identity4(args) {\n const { inputs: { x }, backend: backend2 } = args;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const inVals = backend2.typedArrayFromHeap(x);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.set(inVals);\n return out;\n}\nvar identityConfig3 = {\n kernelName: Identity,\n backendName: \"wasm\",\n kernelFunc: identity4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Transpose.js\nvar wasmTranspose;\nfunction setup2(backend2) {\n wasmTranspose = backend2.wasm.cwrap(Transpose, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\"\n ]);\n}\nfunction transpose4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const [reducedShape, perm] = removeOneSizeDims(inputs.x.shape, attrs.perm);\n let permIsNoOp = true;\n for (let i2 = 0; i2 < perm.length; i2++) {\n if (perm[i2] !== i2) {\n permIsNoOp = false;\n }\n }\n const outShape = computeOutShape4(inputs.x.shape, attrs.perm);\n const x = {\n dataId: inputs.x.dataId,\n shape: reducedShape,\n dtype: inputs.x.dtype\n };\n if (permIsNoOp) {\n const cloned = identity4({ inputs, backend: backend2 });\n cloned.shape = outShape;\n return cloned;\n }\n const out = backend2.makeOutput(outShape, x.dtype);\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const permBytes = new Uint8Array(new Int32Array(perm).buffer);\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n wasmTranspose(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], outId, permBytes, perm.length);\n return out;\n}\nfunction computeOutShape4(inShape, perm) {\n const outShape = new Array(inShape.length);\n for (let i2 = 0; i2 < outShape.length; i2++) {\n outShape[i2] = inShape[perm[i2]];\n }\n return outShape;\n}\nfunction removeOneSizeDims(shape, perm) {\n const newShape = [];\n const newPerm = [];\n for (let i2 = 0; i2 < shape.length; ++i2) {\n if (shape[i2] !== 1) {\n newShape.push(shape[i2]);\n }\n if (shape[perm[i2]] !== 1) {\n newPerm.push(perm[i2]);\n }\n }\n for (let i2 = 0; i2 < newPerm.length; ++i2) {\n let minValIdx = -1;\n for (let j = 0; j < newPerm.length; ++j) {\n if (newPerm[j] >= i2 && (minValIdx === -1 || newPerm[minValIdx] > newPerm[j])) {\n minValIdx = j;\n }\n }\n newPerm[minValIdx] = i2;\n }\n return [newShape, newPerm];\n}\nvar transposeConfig3 = {\n kernelName: Transpose,\n backendName: \"wasm\",\n kernelFunc: transpose4,\n setupFunc: setup2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/kernel_utils.js\nfunction permuteAxesAndTranspose(x, axis, backend2) {\n const xShape = x.shape;\n const xRank = x.shape.length;\n const originalAxes = util_exports.parseAxisParam(axis, xShape);\n let axes = originalAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let xTransposed = null;\n let inputWasTransposed = false;\n if (permutedAxes != null) {\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = xShape[permutedAxes[i2]];\n }\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n xTransposed = transpose4({ inputs: { x }, attrs: { perm: permutedAxes }, backend: backend2 });\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const transposedId = backend2.dataIdMap.get(xTransposed.dataId).id;\n if (transposedId !== xId) {\n inputWasTransposed = true;\n }\n }\n return { transposed: xTransposed, originalAxes, axes, inputWasTransposed };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/All.js\nvar wasmAll;\nfunction setup3(backend2) {\n wasmAll = backend2.wasm.cwrap(All, null, [\"number, number, number\"]);\n}\nfunction all4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n input2 = transposed;\n inputId = transposedId;\n }\n const inputRank = input2.shape.length;\n backend_util_exports.assertAxesAreInnerMostDims(\"all\", axes, inputRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, x.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmAll(inputId, reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar allConfig3 = {\n kernelName: All,\n backendName: \"wasm\",\n setupFunc: setup3,\n kernelFunc: all4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Any.js\nvar wasmAny;\nfunction setup4(backend2) {\n wasmAny = backend2.wasm.cwrap(Any, null, [\"number, number, number\"]);\n}\nfunction any4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n input2 = transposed;\n inputId = transposedId;\n }\n const inputRank = input2.shape.length;\n backend_util_exports.assertAxesAreInnerMostDims(\"any\", axes, inputRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, x.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmAny(inputId, reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar anyConfig3 = {\n kernelName: Any,\n backendName: \"wasm\",\n setupFunc: setup4,\n kernelFunc: any4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ArgMax.js\nvar wasmFunc2;\nfunction setup5(backend2) {\n wasmFunc2 = backend2.wasm.cwrap(ArgMax, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction argmax(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n }\n }\n const outShape = input2.shape.slice(0, -1);\n const out = backend2.makeOutput(outShape, \"int32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const outerSize = util_exports.sizeFromShape(out.shape);\n const innerSize = input2.shape[axes[0]];\n wasmFunc2(inputId, CppDType[input2.dtype], outerSize, innerSize, outId);\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n return out;\n}\nvar argMaxConfig3 = {\n kernelName: ArgMax,\n backendName: \"wasm\",\n kernelFunc: argmax,\n setupFunc: setup5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/AvgPool.js\nvar wasmAvgPool;\nfunction setup6(backend2) {\n wasmAvgPool = backend2.wasm.cwrap(AvgPool, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction avgPool4(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const x = inputs.x;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const channels = convInfo.inChannels;\n if (convInfo.dataFormat !== \"channelsLast\") {\n throw new Error(`wasm backend does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);\n }\n if (convInfo.dilationWidth !== 1 || convInfo.dilationHeight !== 1) {\n throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${convInfo.dilationHeight}, ${convInfo.dilationWidth}].`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmAvgPool(xId, x.shape[0], x.shape[1], x.shape[2], filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, strideHeight, strideWidth, channels, outId);\n return out;\n}\nvar avgPoolConfig3 = {\n kernelName: AvgPool,\n backendName: \"wasm\",\n setupFunc: setup6,\n kernelFunc: avgPool4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Reshape.js\nfunction reshape5(args) {\n const { inputs, attrs } = args;\n const { x } = inputs;\n const { shape } = attrs;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $shape = util_exports.inferFromImplicitShape(shape, xSize);\n util_exports.assert(xSize === util_exports.sizeFromShape($shape), () => `new shape: ${$shape}, old shape: ${x.shape}. New shape and old shape must have the same number of elements.`);\n args.backend.incRef(x.dataId);\n return { dataId: x.dataId, shape: $shape, dtype: x.dtype };\n}\nvar reshapeConfig3 = {\n kernelName: Reshape,\n backendName: \"wasm\",\n kernelFunc: reshape5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/BatchMatMul.js\nvar wasmBatchMatMul;\nfunction setup7(backend2) {\n wasmBatchMatMul = backend2.wasm.cwrap(BatchMatMul, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction batchMatMul3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b } = inputs;\n const { transposeA, transposeB } = attrs;\n if (a.dtype !== \"float32\" || b.dtype !== \"float32\") {\n throw new Error(`BatchMatMul for non non-float32 tensors not yet supported.`);\n }\n const aRank = a.shape.length;\n const bRank = b.shape.length;\n const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1];\n const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2];\n const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2];\n const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1];\n const outerDimsA = a.shape.slice(0, -2);\n const outerDimsB = b.shape.slice(0, -2);\n const batchDimA = util_exports.sizeFromShape(outerDimsA);\n const batchDimB = util_exports.sizeFromShape(outerDimsB);\n const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA];\n const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB];\n const a3d = reshape5({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } });\n const b3d = reshape5({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } });\n const a3dId = backend2.dataIdMap.get(a3d.dataId).id;\n const b3dId = backend2.dataIdMap.get(b3d.dataId).id;\n const leftDim = transposeA ? a3d.shape[2] : a3d.shape[1];\n const rightDim = transposeB ? b3d.shape[1] : b3d.shape[2];\n const batchDim = Math.max(batchDimA, batchDimB);\n const out = backend2.makeOutput([batchDim, leftDim, rightDim], a3d.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const aShapeBytes = new Uint8Array(new Int32Array(a3d.shape).buffer);\n const bShapeBytes = new Uint8Array(new Int32Array(b3d.shape).buffer);\n wasmBatchMatMul(a3dId, aShapeBytes, a3d.shape.length, b3dId, bShapeBytes, b3d.shape.length, transposeA, transposeB, outId);\n backend2.disposeData(a3d.dataId);\n backend2.disposeData(b3d.dataId);\n out.shape = outShape;\n return out;\n}\nvar batchMatMulConfig3 = {\n kernelName: BatchMatMul,\n backendName: \"wasm\",\n setupFunc: setup7,\n kernelFunc: batchMatMul3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Slice.js\nfunction slice4(args) {\n const { inputs: { x }, attrs: { begin, size }, backend: backend2 } = args;\n const [begin_, size_] = slice_util_exports.parseSliceParams(x, begin, size);\n const isContinous = slice_util_exports.isSliceContinous(x.shape, begin_, size_);\n const xVals = backend2.readSync(x.dataId);\n const out = backend2.makeOutput(size_, x.dtype);\n const xStrides = util_exports.computeStrides(x.shape);\n const outData = backend2.dataIdMap.get(out.dataId);\n if (isContinous) {\n const flatOffset = slice_util_exports.computeFlatOffset(begin_, xStrides);\n if (x.dtype === \"string\") {\n outData.stringBytes = xVals.slice(flatOffset, flatOffset + util_exports.sizeFromShape(size_));\n } else {\n const outVals2 = backend2.typedArrayFromHeap(out);\n outVals2.set(xVals.subarray(flatOffset, flatOffset + util_exports.sizeFromShape(size_)));\n }\n return out;\n }\n if (x.dtype === \"string\") {\n const res = sliceImpl(xVals, begin_, size_, x.shape, x.dtype);\n outData.stringBytes = res;\n return out;\n }\n const outVals = backend2.typedArrayFromHeap(out);\n const rank = x.shape.length;\n if (rank === 2) {\n slice2d2(xVals, xStrides[0], outVals, begin_, size_);\n } else if (rank === 3) {\n slice3d2(xVals, xStrides[0], xStrides[1], outVals, begin_, size_);\n } else if (rank === 4) {\n slice4d2(xVals, xStrides[0], xStrides[1], xStrides[2], outVals, begin_, size_);\n } else {\n const res = sliceImpl(xVals, begin_, size_, x.shape, x.dtype);\n outVals.set(res);\n }\n return out;\n}\nfunction slice2d2(xVals, xStride, outVals, begin, size) {\n let outOffset = 0;\n const beginI = begin[0];\n const beginJ = begin[1];\n const endI = beginI + size[0];\n for (let i2 = beginI; i2 < endI; i2++) {\n const xOffset = i2 * xStride + beginJ;\n outVals.set(xVals.subarray(xOffset, xOffset + size[1]), outOffset);\n outOffset += size[1];\n }\n}\nfunction slice3d2(xVals, xStride1, xStride2, outVals, begin, size) {\n let outOffset = 0;\n const beginI = begin[0];\n const beginJ = begin[1];\n const beginK = begin[2];\n const endI = beginI + size[0];\n const endJ = beginJ + size[1];\n for (let i2 = beginI; i2 < endI; i2++) {\n for (let j = beginJ; j < endJ; j++) {\n const xOffset = i2 * xStride1 + j * xStride2 + beginK;\n outVals.set(xVals.subarray(xOffset, xOffset + size[2]), outOffset);\n outOffset += size[2];\n }\n }\n}\nfunction slice4d2(xVals, xStride1, xStride2, xStride3, outVals, begin, size) {\n let outOffset = 0;\n const beginI = begin[0];\n const beginJ = begin[1];\n const beginK = begin[2];\n const endI = beginI + size[0];\n const endJ = beginJ + size[1];\n const endK = beginK + size[2];\n const beginL = begin[3];\n for (let i2 = beginI; i2 < endI; i2++) {\n for (let j = beginJ; j < endJ; j++) {\n for (let k = beginK; k < endK; k++) {\n const xOffset = i2 * xStride1 + j * xStride2 + k * xStride3 + beginL;\n outVals.set(xVals.subarray(xOffset, xOffset + size[3]), outOffset);\n outOffset += size[3];\n }\n }\n }\n}\nvar sliceConfig3 = {\n kernelName: Slice,\n backendName: \"wasm\",\n kernelFunc: slice4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/BatchToSpaceND.js\nfunction batchToSpaceND4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, crops } = attrs;\n const prod6 = blockShape.reduce((a, b) => a * b);\n const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6);\n const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length);\n const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6);\n const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length);\n const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length);\n const xReshaped = reshape5({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } });\n const xTransposed = transpose4({ inputs: { x: xReshaped }, backend: backend2, attrs: { perm: permuted } });\n const xTransposedReshaped = reshape5({ inputs: { x: xTransposed }, backend: backend2, attrs: { shape: reshapedPermuted } });\n const result = slice4({\n inputs: { x: xTransposedReshaped },\n backend: backend2,\n attrs: { begin: sliceBeginCoords, size: sliceSize }\n });\n backend2.disposeData(xReshaped.dataId);\n backend2.disposeData(xTransposed.dataId);\n backend2.disposeData(xReshaped.dataId);\n return result;\n}\nvar batchToSpaceNDConfig3 = {\n kernelName: BatchToSpaceND,\n backendName: \"wasm\",\n kernelFunc: batchToSpaceND4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cast.js\nfunction cast5(args) {\n const { inputs: { x }, attrs: { dtype }, backend: backend2 } = args;\n const out = backend2.makeOutput(x.shape, dtype);\n const inVals = backend2.typedArrayFromHeap(x);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.set(inVals);\n return out;\n}\nvar castConfig3 = {\n kernelName: Cast,\n backendName: \"wasm\",\n kernelFunc: cast5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Ceil.js\nvar ceilConfig3 = createUnaryKernelConfig(Ceil);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ClipByValue.js\nvar wasmClip;\nfunction setup8(backend2) {\n wasmClip = backend2.wasm.cwrap(ClipByValue, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction clip(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { clipValueMin, clipValueMax } = attrs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmClip(xId, clipValueMin, clipValueMax, outId);\n return out;\n}\nvar clipByValueConfig3 = {\n kernelName: ClipByValue,\n backendName: \"wasm\",\n setupFunc: setup8,\n kernelFunc: clip\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Concat.js\nfunction concat4(args) {\n const { inputs, backend: backend2 } = args;\n const axis = util_exports.parseAxisParam(args.attrs.axis, inputs[0].shape)[0];\n let outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0);\n if ($inputs.length === 1) {\n return identity4({ inputs: { x: $inputs[0] }, backend: backend2 });\n }\n const out = backend2.makeOutput(outShape, inputs[0].dtype);\n if (util_exports.sizeFromShape(outShape) === 0) {\n return out;\n }\n const shapes = $inputs.map((t2) => t2.shape);\n backend_util_exports.assertParamsConsistent(shapes, axis);\n if ($inputs[0].dtype === \"string\") {\n const inputs2D = $inputs.map((t2) => {\n const innerSize = util_exports.sizeFromShape(t2.shape.slice(axis));\n const shape = [-1, innerSize];\n return reshape5({ inputs: { x: t2 }, backend: backend2, attrs: { shape } });\n });\n const inputsValShapes = inputs2D.map((t2) => {\n return { vals: backend2.readSync(t2.dataId), shape: t2.shape };\n });\n outShape = backend_util_exports.computeOutShape(inputs2D.map((t2) => t2.shape), 1);\n const simplyConcat = inputs2D[0].shape[0] === 1;\n const outVals2 = concatImpl(inputsValShapes, outShape, inputs[0].dtype, simplyConcat);\n const finalOutShape = backend_util_exports.computeOutShape($inputs.map((t2) => t2.shape), axis);\n out.shape = finalOutShape;\n const outData = backend2.dataIdMap.get(out.dataId);\n outData.stringBytes = backend_util_exports.fromStringArrayToUint8(outVals2);\n inputs2D.forEach((t2) => backend2.disposeData(t2.dataId));\n return out;\n }\n const batchDim = util_exports.sizeFromShape($inputs[0].shape.slice(0, axis));\n let sumInnerDims = 0;\n const innerDims = $inputs.map((input2) => {\n const innerDim = util_exports.sizeFromShape(input2.shape.slice(axis));\n sumInnerDims += innerDim;\n return innerDim;\n });\n const inVals = $inputs.map((input2) => backend2.typedArrayFromHeap(input2));\n const outVals = backend2.typedArrayFromHeap(out);\n for (let b = 0; b < batchDim; b++) {\n let outOffset = b * sumInnerDims;\n for (let i2 = 0; i2 < inVals.length; i2++) {\n const innerDim = innerDims[i2];\n const inOffset = b * innerDim;\n const vals = inVals[i2].subarray(inOffset, inOffset + innerDim);\n outVals.set(vals, outOffset);\n outOffset += innerDim;\n }\n }\n return out;\n}\nvar concatConfig3 = {\n kernelName: Concat,\n backendName: \"wasm\",\n kernelFunc: concat4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Conv2D.js\nvar wasmConv2d;\nfunction setup9(backend2) {\n wasmConv2d = backend2.wasm.cwrap(Conv2D, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction conv2d5(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n const { strides, dilations, pad: pad3, dimRoundingMode, dataFormat } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const outputChannels = convInfo.outChannels;\n const isSamePad = convInfo.padInfo.type === \"SAME\" ? 1 : 0;\n if (convInfo.dataFormat !== \"channelsLast\") {\n throw new Error(`wasm backend Conv2D does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmConv2d(xId, x.shape[0], x.shape[1], x.shape[2], filterId, filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, outId);\n return out;\n}\nvar conv2DConfig3 = {\n kernelName: Conv2D,\n backendName: \"wasm\",\n setupFunc: setup9,\n kernelFunc: conv2d5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Conv2DBackpropInput.js\nvar wasmConv2DBackpropInput;\nfunction setup10(backend2) {\n wasmConv2DBackpropInput = backend2.wasm.cwrap(Conv2DBackpropInput, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction conv2DBackpropInput4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { dy, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dimRoundingMode, inputShape } = attrs;\n const dilations = 1;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n const { batchSize, filterHeight, filterWidth, inChannels, inHeight, inWidth, outChannels, outHeight, outWidth, strideHeight, strideWidth } = convInfo;\n const topPad = filterHeight - 1 - convInfo.padInfo.top;\n const leftPad = filterWidth - 1 - convInfo.padInfo.left;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const dxStrides = util_exports.computeStrides(convInfo.inShape);\n const dyStrides = util_exports.computeStrides(dy.shape);\n const [fltS0, fltS1, fltS2] = util_exports.computeStrides(filter.shape);\n const xBatchStride = dxStrides[0];\n const xRowStride = isChannelsLast ? dxStrides[1] : dxStrides[2];\n const xColStride = isChannelsLast ? dxStrides[2] : 1;\n const xChannelStride = isChannelsLast ? 1 : dxStrides[1];\n const yBatchStride = dyStrides[0];\n const yRowStride = isChannelsLast ? dyStrides[1] : dyStrides[2];\n const yColStride = isChannelsLast ? dyStrides[2] : 1;\n const yChannelStride = isChannelsLast ? 1 : dyStrides[1];\n const out = backend2.makeOutput(convInfo.inShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const dyId = backend2.dataIdMap.get(dy.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n wasmConv2DBackpropInput(dyId, filterId, batchSize, filterHeight, filterWidth, inHeight, inWidth, inChannels, outHeight, outWidth, outChannels, strideHeight, strideWidth, topPad, leftPad, fltS0, fltS1, fltS2, xBatchStride, xRowStride, xColStride, xChannelStride, yBatchStride, yRowStride, yColStride, yChannelStride, outId);\n return out;\n}\nvar conv2DBackpropInputConfig3 = {\n kernelName: Conv2DBackpropInput,\n backendName: \"wasm\",\n setupFunc: setup10,\n kernelFunc: conv2DBackpropInput4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cos.js\nvar cosConfig3 = createUnaryKernelConfig(Cos);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cosh.js\nvar coshConfig3 = createUnaryKernelConfig(Cosh);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/CropAndResize.js\nvar InterpolationMethod;\n(function(InterpolationMethod2) {\n InterpolationMethod2[InterpolationMethod2[\"bilinear\"] = 0] = \"bilinear\";\n InterpolationMethod2[InterpolationMethod2[\"nearest\"] = 1] = \"nearest\";\n})(InterpolationMethod || (InterpolationMethod = {}));\nvar wasmCropAndResize;\nfunction setup11(backend2) {\n wasmCropAndResize = backend2.wasm.cwrap(CropAndResize, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction cropAndResize4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { method, extrapolationValue, cropSize } = attrs;\n const { image: image2, boxes, boxInd } = inputs;\n const numBoxes = boxes.shape[0];\n const [cropHeight, cropWidth] = cropSize;\n const outShape = [numBoxes, cropHeight, cropWidth, image2.shape[3]];\n let imagesData = backend2.dataIdMap.get(image2.dataId);\n let castedData;\n if (image2.dtype !== \"float32\") {\n castedData = cast5({ backend: backend2, inputs: { x: image2 }, attrs: { dtype: \"float32\" } });\n imagesData = backend2.dataIdMap.get(castedData.dataId);\n }\n const imagesId = imagesData.id;\n const boxesId = backend2.dataIdMap.get(boxes.dataId).id;\n const boxIndId = backend2.dataIdMap.get(boxInd.dataId).id;\n const out = backend2.makeOutput(outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const imagesShapeBytes = new Uint8Array(new Int32Array(image2.shape).buffer);\n wasmCropAndResize(imagesId, boxesId, boxIndId, numBoxes, imagesShapeBytes, cropHeight, cropWidth, InterpolationMethod[method], extrapolationValue, outId);\n if (castedData != null) {\n backend2.disposeData(castedData.dataId);\n }\n return out;\n}\nvar cropAndResizeConfig3 = {\n kernelName: CropAndResize,\n backendName: \"wasm\",\n setupFunc: setup11,\n kernelFunc: cropAndResize4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cumprod.js\nvar wasmCumprod;\nfunction setup12(backend2) {\n wasmCumprod = backend2.wasm.cwrap(Cumprod, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction cumprod4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n const xRank = x.shape.length;\n util_exports.assert(x.dtype === \"float32\" || x.dtype === \"int32\", () => `cumprod does not support ${x.dtype} tensors in the WASM backend`);\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation !== null) {\n permutedX = transpose4({ inputs: { x }, attrs: { perm: permutation }, backend: backend2 });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n backend_util_exports.assertAxesAreInnerMostDims(\"cumprod\", [permutedAxis], xRank);\n const permutedOut = backend2.makeOutput(permutedX.shape, permutedX.dtype);\n const finalDim = permutedX.shape[permutedAxis];\n const permutedXId = backend2.dataIdMap.get(permutedX.dataId).id;\n const permutedOutId = backend2.dataIdMap.get(permutedOut.dataId).id;\n wasmCumprod(permutedXId, exclusive ? 1 : 0, reverse5 ? 1 : 0, finalDim, permutedOutId, CppDType[x.dtype]);\n let out = permutedOut;\n if (permutation !== null) {\n const undoPermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n out = transpose4({ inputs: { x: permutedOut }, attrs: { perm: undoPermutation }, backend: backend2 });\n backend2.disposeData(permutedX.dataId);\n backend2.disposeData(permutedOut.dataId);\n }\n return out;\n}\nvar cumprodConfig3 = {\n kernelName: Cumprod,\n backendName: \"wasm\",\n setupFunc: setup12,\n kernelFunc: cumprod4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cumsum.js\nvar wasmCumsum;\nfunction setup13(backend2) {\n wasmCumsum = backend2.wasm.cwrap(Cumsum, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction cumsum4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n const xRank = x.shape.length;\n util_exports.assert(x.dtype === \"float32\" || x.dtype === \"int32\", () => `cumsum does not support ${x.dtype} tensors in the WASM backend`);\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation !== null) {\n permutedX = transpose4({ inputs: { x }, attrs: { perm: permutation }, backend: backend2 });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n backend_util_exports.assertAxesAreInnerMostDims(\"cumsum\", [permutedAxis], xRank);\n const permutedOut = backend2.makeOutput(permutedX.shape, permutedX.dtype);\n const finalDim = permutedX.shape[permutedAxis];\n const permutedXId = backend2.dataIdMap.get(permutedX.dataId).id;\n const permutedOutId = backend2.dataIdMap.get(permutedOut.dataId).id;\n wasmCumsum(permutedXId, exclusive ? 1 : 0, reverse5 ? 1 : 0, finalDim, permutedOutId, CppDType[x.dtype]);\n let out = permutedOut;\n if (permutation !== null) {\n const undoPermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n out = transpose4({ inputs: { x: permutedOut }, attrs: { perm: undoPermutation }, backend: backend2 });\n backend2.disposeData(permutedX.dataId);\n backend2.disposeData(permutedOut.dataId);\n }\n return out;\n}\nvar cumsumConfig3 = {\n kernelName: Cumsum,\n backendName: \"wasm\",\n setupFunc: setup13,\n kernelFunc: cumsum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/DepthToSpace.js\nvar wasmDepthToSpace;\nfunction setup14(backend2) {\n wasmDepthToSpace = backend2.wasm.cwrap(DepthToSpace, null, [\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction depthToSpace4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { x } = inputs;\n const { blockSize, dataFormat } = attrs;\n const batchSize = x.shape[0];\n const inputHeight = dataFormat === \"NHWC\" ? x.shape[1] : x.shape[2];\n const inputWidth = dataFormat === \"NHWC\" ? x.shape[2] : x.shape[3];\n const inputDepth = dataFormat === \"NHWC\" ? x.shape[3] : x.shape[1];\n const outputHeight = inputHeight * blockSize;\n const outputWidth = inputWidth * blockSize;\n const outputDepth = inputDepth / (blockSize * blockSize);\n const outputShape = dataFormat === \"NHWC\" ? [batchSize, outputHeight, outputWidth, outputDepth] : [batchSize, outputDepth, outputHeight, outputWidth];\n const out = backend2.makeOutput(outputShape, \"float32\");\n const xData = backend2.dataIdMap.get(x.dataId);\n const xId = xData.id;\n const xStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(x.shape)).buffer);\n const outputShapeBytes = new Uint8Array(new Int32Array(outputShape).buffer);\n const outStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(outputShape)).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const channelsLast = dataFormat === \"NHWC\" ? 1 : 0;\n wasmDepthToSpace(xId, blockSize, channelsLast, xStridesBytes, x.shape.length - 1, outputShapeBytes, outStridesBytes, outputShape.length, outId);\n return out;\n}\nvar depthToSpaceConfig3 = {\n kernelName: DepthToSpace,\n backendName: \"wasm\",\n setupFunc: setup14,\n kernelFunc: depthToSpace4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/DepthwiseConv2dNative.js\nvar wasmDepthwiseConv2d;\nfunction setup15(backend2) {\n wasmDepthwiseConv2d = backend2.wasm.cwrap(DepthwiseConv2dNative, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction depthwiseConv2d5(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n const { strides, dilations, pad: pad3, dimRoundingMode } = attrs;\n const $dilations = dilations == null ? [1, 1] : dilations;\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const outputChannels = convInfo.outChannels;\n const isSamePad = convInfo.padInfo.type === \"SAME\" ? 1 : 0;\n if (convInfo.dataFormat !== \"channelsLast\") {\n throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmDepthwiseConv2d(xId, x.shape[0], x.shape[1], x.shape[2], filterId, filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, outId);\n return out;\n}\nvar depthwiseConv2dNativeConfig3 = {\n kernelName: DepthwiseConv2dNative,\n backendName: \"wasm\",\n setupFunc: setup15,\n kernelFunc: depthwiseConv2d5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Elu.js\nvar eluConfig3 = createUnaryKernelConfig(Elu);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Equal.js\nvar supportsFullBroadcast2 = false;\nvar equalConfig3 = createBinaryKernelConfig(Equal, supportsFullBroadcast2, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Exp.js\nvar expConfig3 = createUnaryKernelConfig(Exp, \"float32\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ExpandDims.js\nfunction expandDims5(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const { dim } = attrs;\n const inputRank = input2.shape.length;\n const newShape = input2.shape.slice();\n let $dim = dim;\n if (dim < 0) {\n util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`);\n $dim = inputRank + dim + 1;\n }\n newShape.splice($dim, 0, 1);\n return reshape5({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } });\n}\nvar expandDimsConfig3 = {\n kernelName: ExpandDims,\n backendName: \"wasm\",\n kernelFunc: expandDims5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Fill.js\nfunction fill4(args) {\n const { attrs: { shape, value, dtype }, backend: backend2 } = args;\n const out = backend2.makeOutput(shape, dtype);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.fill(value);\n return out;\n}\nvar fillConfig3 = {\n kernelName: Fill,\n backendName: \"wasm\",\n kernelFunc: fill4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FlipLeftRight.js\nvar wasmFlipLeftRight;\nfunction setup16(backend2) {\n wasmFlipLeftRight = backend2.wasm.cwrap(FlipLeftRight, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction flipLeftRight2(args) {\n const { inputs, backend: backend2 } = args;\n const { image: image2 } = inputs;\n const out = backend2.makeOutput(image2.shape, image2.dtype);\n const imageId = backend2.dataIdMap.get(image2.dataId).id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n wasmFlipLeftRight(imageId, batch, imageHeight, imageWidth, numChannels, outId);\n return out;\n}\nvar flipLeftRightConfig3 = {\n kernelName: FlipLeftRight,\n backendName: \"wasm\",\n kernelFunc: flipLeftRight2,\n setupFunc: setup16\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Floor.js\nvar floorConfig3 = createUnaryKernelConfig(Floor);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FloorDiv.js\nvar supportsFullBroadcast3 = false;\nvar floorDivConfig3 = createBinaryKernelConfig(FloorDiv, supportsFullBroadcast3);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FusedBatchNorm.js\nvar wasmBatchNorm;\nfunction setup17(backend2) {\n wasmBatchNorm = backend2.wasm.cwrap(FusedBatchNorm, null, [\"number\", \"number\", \"number\", \"number\", \"number\", \"number\", \"number\"]);\n}\nfunction fusedBatchNorm(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { varianceEpsilon } = attrs;\n const { x, mean: mean5, variance, offset, scale: scale2 } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const meanId = backend2.dataIdMap.get(mean5.dataId).id;\n const varianceId = backend2.dataIdMap.get(variance.dataId).id;\n const offsetId = offset != null ? backend2.dataIdMap.get(offset.dataId).id : 0;\n const scaleId = scale2 != null ? backend2.dataIdMap.get(scale2.dataId).id : 0;\n const out = backend2.makeOutput(x.shape, x.dtype);\n if (util_exports.sizeFromShape(x.shape) === 0) {\n return out;\n }\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmBatchNorm(xId, meanId, varianceId, offsetId, scaleId, varianceEpsilon, outId);\n return out;\n}\nvar fusedBatchNormConfig = {\n kernelName: FusedBatchNorm,\n backendName: \"wasm\",\n setupFunc: setup17,\n kernelFunc: fusedBatchNorm\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FusedConv2D.js\nvar wasmFusedConv2d;\nfunction setup18(backend2) {\n wasmFusedConv2d = backend2.wasm.cwrap(FusedConv2D, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction fusedConv2d2(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dilations, dataFormat, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode);\n const fusedActivation = FusableActivation[activation2];\n if (fusedActivation == null) {\n throw new Error(`${activation2} activation not yet supported for FusedConv2D in the wasm backend.`);\n }\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n const outputChannels = convInfo.outChannels;\n let biasId = 0;\n if (bias != null) {\n const biasData = backend2.dataIdMap.get(bias.dataId);\n if (biasData.shape.length !== 1) {\n throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${biasData.shape.length}.`);\n }\n if (biasData.shape[0] !== outputChannels) {\n throw new Error(`FusedConv2D bias shape (${biasData.shape}) does not match the number of output channels (${outputChannels})`);\n }\n biasId = biasData.id;\n }\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const isSamePad = convInfo.padInfo.type === \"SAME\" ? 1 : 0;\n const batchSize = convInfo.batchSize;\n const inHeight = convInfo.inHeight;\n const inWidth = convInfo.inWidth;\n if (dataFormat !== \"NHWC\") {\n throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${dataFormat}'. Please use 'NHWC'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const preluActivationWeightsId = preluActivationWeights == null ? 0 : backend2.dataIdMap.get(preluActivationWeights.dataId).id;\n wasmFusedConv2d(xId, batchSize, inHeight, inWidth, filterId, filterHeight, filterWidth, biasId, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, fusedActivation, preluActivationWeightsId, leakyreluAlpha || 0, outId);\n return out;\n}\nvar fusedConv2DConfig3 = {\n kernelName: FusedConv2D,\n backendName: \"wasm\",\n setupFunc: setup18,\n kernelFunc: fusedConv2d2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FusedDepthwiseConv2D.js\nvar wasmFusedDepthwiseConv2d;\nfunction setup19(backend2) {\n wasmFusedDepthwiseConv2d = backend2.wasm.cwrap(FusedDepthwiseConv2D, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction fusedDepthwiseConv2d(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dilations, dataFormat, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, true);\n const fusedActivation = FusableActivation[activation2];\n if (fusedActivation == null) {\n throw new Error(`${activation2} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);\n }\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n const outputChannels = convInfo.outChannels;\n let biasId = 0;\n if (bias != null) {\n const biasData = backend2.dataIdMap.get(bias.dataId);\n if (biasData.shape.length !== 1) {\n throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${biasData.shape.length}.`);\n }\n if (biasData.shape[0] !== outputChannels) {\n throw new Error(`FusedDepthwiseConv2D bias shape (${biasData.shape}) does not match the number of output channels (${outputChannels})`);\n }\n biasId = biasData.id;\n }\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const isSamePad = convInfo.padInfo.type === \"SAME\" ? 1 : 0;\n const batchSize = convInfo.batchSize;\n const inHeight = convInfo.inHeight;\n const inWidth = convInfo.inWidth;\n if (dataFormat !== \"NHWC\") {\n throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${dataFormat}'. Please use 'NHWC'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const preluActivationWeightsId = preluActivationWeights == null ? 0 : backend2.dataIdMap.get(preluActivationWeights.dataId).id;\n wasmFusedDepthwiseConv2d(xId, batchSize, inHeight, inWidth, filterId, filterHeight, filterWidth, biasId, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, fusedActivation, preluActivationWeightsId, leakyreluAlpha || 0, outId);\n return out;\n}\nvar fusedDepthwiseConv2DConfig3 = {\n kernelName: FusedDepthwiseConv2D,\n backendName: \"wasm\",\n setupFunc: setup19,\n kernelFunc: fusedDepthwiseConv2d\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/GatherNd.js\nvar wasmGatherNd;\nfunction setup20(backend2) {\n wasmGatherNd = backend2.wasm.cwrap(GatherNd, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\"\n ]);\n}\nfunction gatherNd3(args) {\n const { backend: backend2, inputs } = args;\n const { params, indices } = inputs;\n const [resultShape, numSlices, sliceSize, strides] = gather_nd_util_exports.prepareAndValidate(params, indices);\n const out = backend2.makeOutput(resultShape, params.dtype);\n if (numSlices === 0) {\n return out;\n }\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n const xData = backend2.dataIdMap.get(params.dataId);\n const xId = xData.id;\n const indicesData = backend2.dataIdMap.get(indices.dataId);\n const indicesId = indicesData.id;\n const stridesBytes = new Uint8Array(new Int32Array(strides).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmGatherNd(xId, CppDType[params.dtype], indicesId, numSlices, sliceRank, sliceSize, stridesBytes, outId);\n return out;\n}\nvar gatherNdConfig3 = {\n kernelName: GatherNd,\n backendName: \"wasm\",\n setupFunc: setup20,\n kernelFunc: gatherNd3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/GatherV2.js\nvar wasmGather;\nfunction setup21(backend2) {\n wasmGather = backend2.wasm.cwrap(\"Gather\", null, [\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\"\n ]);\n}\nfunction gatherV23(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { x, indices } = inputs;\n const { axis, batchDims } = attrs;\n const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0];\n const indicesVals = backend2.readSync(indices.dataId);\n const axisDim = x.shape[parsedAxis];\n for (let i2 = 0; i2 < indicesVals.length; ++i2) {\n const index = indicesVals[i2];\n util_exports.assert(index <= axisDim - 1 && index >= 0, () => `GatherV2: the index value ${index} is not in [0, ${axisDim - 1}]`);\n }\n const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, batchDims);\n const flattenX = reshape5({\n inputs: { x },\n attrs: {\n shape: [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n shapeInfo.dimSize,\n shapeInfo.sliceSize\n ]\n },\n backend: backend2\n });\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const flattenIndex = reshape5({\n inputs: { x: indices },\n attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] },\n backend: backend2\n });\n const flattenOutputShape = [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n indicesSize / shapeInfo.batchSize,\n shapeInfo.sliceSize\n ];\n const out = backend2.makeOutput(flattenOutputShape, x.dtype);\n if (util_exports.sizeFromShape(x.shape) === 0) {\n return out;\n }\n const stridesSize = flattenX.shape.length - 1;\n const xData = backend2.dataIdMap.get(flattenX.dataId);\n const xId = xData.id;\n const indicesData = backend2.dataIdMap.get(flattenIndex.dataId);\n const indicesId = indicesData.id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const xStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(flattenX.shape)).buffer);\n const outStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(flattenOutputShape)).buffer);\n wasmGather(xId, CppDType[x.dtype], xStridesBytes, stridesSize, indicesId, shapeInfo.batchSize, outStridesBytes, outId);\n backend2.disposeData(flattenX.dataId);\n backend2.disposeData(flattenIndex.dataId);\n out.shape = shapeInfo.outputShape;\n return out;\n}\nvar gatherV2Config3 = {\n kernelName: GatherV2,\n backendName: \"wasm\",\n setupFunc: setup21,\n kernelFunc: gatherV23\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Greater.js\nvar supportsFullBroadcast4 = false;\nvar greaterConfig3 = createBinaryKernelConfig(Greater, supportsFullBroadcast4, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/GreaterEqual.js\nvar supportsFullBroadcast5 = false;\nvar greaterEqualConfig3 = createBinaryKernelConfig(GreaterEqual, supportsFullBroadcast5, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LeakyRelu.js\nvar wasmFunc3;\nfunction setupFunc2(backend2) {\n wasmFunc3 = backend2.wasm.cwrap(LeakyRelu, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction leakyRelu4(args) {\n const { inputs: { x }, attrs: { alpha }, backend: backend2 } = args;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, \"float32\");\n if (util_exports.sizeFromShape(x.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmFunc3(xId, CppDType[x.dtype], alpha, outId);\n }\n return out;\n}\nvar leakyReluConfig3 = {\n kernelName: LeakyRelu,\n backendName: \"wasm\",\n setupFunc: setupFunc2,\n kernelFunc: leakyRelu4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Less.js\nvar supportsFullBroadcast6 = false;\nvar lessConfig3 = createBinaryKernelConfig(Less, supportsFullBroadcast6, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LessEqual.js\nvar supportsFullBroadcast7 = false;\nvar lessEqualConfig3 = createBinaryKernelConfig(LessEqual, supportsFullBroadcast7, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Log.js\nvar logConfig3 = createUnaryKernelConfig(Log);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LogicalAnd.js\nvar supportsFullBroadcast8 = false;\nvar logicalAndConfig3 = createBinaryKernelConfig(LogicalAnd, supportsFullBroadcast8, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LogicalNot.js\nvar logicalNotConfig3 = createUnaryKernelConfig(LogicalNot);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LogicalOr.js\nvar supportsFullBroadcast9 = false;\nvar logicalOrConfig3 = createBinaryKernelConfig(LogicalOr, supportsFullBroadcast9, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LogicalXor.js\nvar supportsFullBroadcast10 = false;\nvar logicalXorConfig = createBinaryKernelConfig(LogicalXor, supportsFullBroadcast10, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Max.js\nvar wasmMax;\nfunction setup22(backend2) {\n wasmMax = backend2.wasm.cwrap(Max, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction max5(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { reductionIndices: axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n input2 = transposed;\n inputId = transposedId;\n }\n const inputRank = input2.shape.length;\n backend_util_exports.assertAxesAreInnerMostDims(\"max\", axes, inputRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, x.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmMax(inputId, CppDType[x.dtype], reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar maxConfig3 = {\n kernelName: Max,\n backendName: \"wasm\",\n setupFunc: setup22,\n kernelFunc: max5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Maximum.js\nvar supportsFullBroadcast11 = false;\nvar maximumConfig3 = createBinaryKernelConfig(Maximum, supportsFullBroadcast11);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/MaxPool.js\nvar wasmMaxPool;\nfunction setup23(backend2) {\n wasmMaxPool = backend2.wasm.cwrap(MaxPool, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction maxPool4(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const x = inputs.x;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n util_exports.assert(x.dtype === \"float32\", () => `Error in MaxPool: only float32 input is supported. Got ${x.dtype}.`);\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const outputChannels = convInfo.outChannels;\n if (convInfo.dataFormat !== \"channelsLast\") {\n throw new Error(`wasm backend does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmMaxPool(xId, x.shape[0], x.shape[1], x.shape[2], filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, outId);\n return out;\n}\nvar maxPoolConfig3 = {\n kernelName: MaxPool,\n backendName: \"wasm\",\n setupFunc: setup23,\n kernelFunc: maxPool4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Mean.js\nvar wasmMean;\nfunction setup24(backend2) {\n wasmMean = backend2.wasm.cwrap(Mean, null, [\"number, number, number\"]);\n}\nfunction mean3(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n let reductionAxes = axes;\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, input2.shape.length);\n }\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"mean\", reductionAxes, input2.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, reductionAxes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n let castedInput = input2;\n if (input2.dtype !== \"float32\") {\n castedInput = cast5({ backend: backend2, inputs: { x: input2 }, attrs: { dtype: \"float32\" } });\n inputId = backend2.dataIdMap.get(castedInput.dataId).id;\n }\n const out = backend2.makeOutput(outShape, \"float32\");\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmMean(inputId, reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n if (input2.dtype !== \"float32\") {\n backend2.disposeData(castedInput.dataId);\n }\n return out;\n}\nvar meanConfig3 = {\n kernelName: Mean,\n backendName: \"wasm\",\n setupFunc: setup24,\n kernelFunc: mean3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Min.js\nvar wasmMin;\nfunction setup25(backend2) {\n wasmMin = backend2.wasm.cwrap(Min, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction min5(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n }\n }\n const inputRank = input2.shape.length;\n backend_util_exports.assertAxesAreInnerMostDims(\"min\", axes, inputRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, input2.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmMin(inputId, CppDType[x.dtype], reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar minConfig3 = {\n kernelName: Min,\n backendName: \"wasm\",\n setupFunc: setup25,\n kernelFunc: min5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Minimum.js\nvar supportsFullBroadcast12 = false;\nvar minimumConfig3 = createBinaryKernelConfig(Minimum, supportsFullBroadcast12);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/MirrorPad.js\nvar MirrorPaddingMode;\n(function(MirrorPaddingMode2) {\n MirrorPaddingMode2[MirrorPaddingMode2[\"reflect\"] = 0] = \"reflect\";\n MirrorPaddingMode2[MirrorPaddingMode2[\"symmetric\"] = 1] = \"symmetric\";\n})(MirrorPaddingMode || (MirrorPaddingMode = {}));\nvar wasmMirrorPad;\nfunction setup26(backend2) {\n wasmMirrorPad = backend2.wasm.cwrap(MirrorPad, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction mirrorPad3(args) {\n const { inputs: { x }, backend: backend2, attrs: { paddings, mode } } = args;\n const outShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(outShape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n const prePaddingsFlat = paddings.map((padTuple) => padTuple[0]);\n const postPaddingsFlat = paddings.map((padTuple) => padTuple[1]);\n const prePaddingsBytes = new Uint8Array(new Int32Array(prePaddingsFlat).buffer);\n const postPaddingsBytes = new Uint8Array(new Int32Array(postPaddingsFlat).buffer);\n wasmMirrorPad(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], prePaddingsBytes, postPaddingsBytes, MirrorPaddingMode[mode], outId);\n return out;\n}\nvar mirrorPadConfig3 = {\n kernelName: MirrorPad,\n backendName: \"wasm\",\n kernelFunc: mirrorPad3,\n setupFunc: setup26\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Multiply.js\nvar supportsFullBroadcast13 = true;\nvar multiplyConfig3 = createBinaryKernelConfig(Multiply, supportsFullBroadcast13);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Neg.js\nvar negConfig3 = createUnaryKernelConfig(Neg);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NonMaxSuppression_util.js\nfunction parseResultStruct(backend2, resOffset) {\n const result = new Int32Array(backend2.wasm.HEAPU8.buffer, resOffset, 4);\n const pSelectedIndices = result[0];\n const selectedSize = result[1];\n const pSelectedScores = result[2];\n const pValidOutputs = result[3];\n backend2.wasm._free(resOffset);\n return { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NonMaxSuppressionV3.js\nvar wasmFunc4;\nfunction setup27(backend2) {\n wasmFunc4 = backend2.wasm.cwrap(\n NonMaxSuppressionV3,\n \"number\",\n [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]\n );\n}\nfunction kernelFunc(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { iouThreshold, maxOutputSize, scoreThreshold } = attrs;\n const { boxes, scores } = inputs;\n const boxesId = backend2.dataIdMap.get(boxes.dataId).id;\n const scoresId = backend2.dataIdMap.get(scores.dataId).id;\n const resOffset = wasmFunc4(boxesId, scoresId, maxOutputSize, iouThreshold, scoreThreshold);\n const { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs } = parseResultStruct(backend2, resOffset);\n backend2.wasm._free(pSelectedScores);\n backend2.wasm._free(pValidOutputs);\n const selectedIndicesTensor = backend2.makeOutput([selectedSize], \"int32\", pSelectedIndices);\n return selectedIndicesTensor;\n}\nvar nonMaxSuppressionV3Config3 = {\n kernelName: NonMaxSuppressionV3,\n backendName: \"wasm\",\n setupFunc: setup27,\n kernelFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NonMaxSuppressionV4.js\nvar wasmFunc5;\nfunction setup28(backend2) {\n wasmFunc5 = backend2.wasm.cwrap(\n NonMaxSuppressionV4,\n \"number\",\n [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"bool\"\n ]\n );\n}\nfunction nonMaxSuppressionV43(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { iouThreshold, maxOutputSize, scoreThreshold, padToMaxOutputSize } = attrs;\n const { boxes, scores } = inputs;\n const boxesId = backend2.dataIdMap.get(boxes.dataId).id;\n const scoresId = backend2.dataIdMap.get(scores.dataId).id;\n const resOffset = wasmFunc5(boxesId, scoresId, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize);\n const { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs } = parseResultStruct(backend2, resOffset);\n backend2.wasm._free(pSelectedScores);\n const selectedIndicesTensor = backend2.makeOutput([selectedSize], \"int32\", pSelectedIndices);\n const validOutputsTensor = backend2.makeOutput([], \"int32\", pValidOutputs);\n return [selectedIndicesTensor, validOutputsTensor];\n}\nvar nonMaxSuppressionV4Config3 = {\n kernelName: NonMaxSuppressionV4,\n backendName: \"wasm\",\n setupFunc: setup28,\n kernelFunc: nonMaxSuppressionV43\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NonMaxSuppressionV5.js\nvar wasmFunc6;\nfunction setup29(backend2) {\n wasmFunc6 = backend2.wasm.cwrap(\n NonMaxSuppressionV5,\n \"number\",\n [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]\n );\n}\nfunction kernelFunc2(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { iouThreshold, maxOutputSize, scoreThreshold, softNmsSigma } = attrs;\n const { boxes, scores } = inputs;\n const boxesId = backend2.dataIdMap.get(boxes.dataId).id;\n const scoresId = backend2.dataIdMap.get(scores.dataId).id;\n const resOffset = wasmFunc6(boxesId, scoresId, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n const { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs } = parseResultStruct(backend2, resOffset);\n backend2.wasm._free(pValidOutputs);\n const selectedIndicesTensor = backend2.makeOutput([selectedSize], \"int32\", pSelectedIndices);\n const selectedScoresTensor = backend2.makeOutput([selectedSize], \"float32\", pSelectedScores);\n return [selectedIndicesTensor, selectedScoresTensor];\n}\nvar nonMaxSuppressionV5Config3 = {\n kernelName: NonMaxSuppressionV5,\n backendName: \"wasm\",\n setupFunc: setup29,\n kernelFunc: kernelFunc2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NotEqual.js\nvar supportsFullBroadcast14 = false;\nvar notEqualConfig3 = createBinaryKernelConfig(NotEqual, supportsFullBroadcast14, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/OneHot.js\nvar wasmOneHot;\nfunction setup30(backend2) {\n wasmOneHot = backend2.wasm.cwrap(OneHot, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction oneHot4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices } = inputs;\n const { dtype, depth, onValue, offValue } = attrs;\n const out = backend2.makeOutput([...indices.shape, depth], dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const indicesData = backend2.dataIdMap.get(indices.dataId);\n const indicesId = indicesData.id;\n wasmOneHot(indicesId, depth, onValue, offValue, outId);\n return out;\n}\nvar oneHotConfig3 = {\n kernelName: OneHot,\n backendName: \"wasm\",\n setupFunc: setup30,\n kernelFunc: oneHot4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/OnesLike.js\nfunction onesLike4(args) {\n const { inputs: { x }, backend: backend2 } = args;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.fill(1);\n return out;\n}\nvar onesLikeConfig3 = {\n kernelName: OnesLike,\n backendName: \"wasm\",\n kernelFunc: onesLike4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Pack.js\nfunction pack3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n if (inputs.length === 1) {\n return expandDims5({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } });\n }\n const shape = inputs[0].shape;\n const dtype = inputs[0].dtype;\n inputs.forEach((t2) => {\n util_exports.assertShapesMatch(shape, t2.shape, \"All tensors passed to stack must have matching shapes\");\n util_exports.assert(dtype === t2.dtype, () => \"All tensors passed to stack must have matching dtypes\");\n });\n const intermediateTensorInfos = [];\n const expandedTensors = inputs.map((t2) => {\n const expandedT = expandDims5({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } });\n intermediateTensorInfos.push(expandedT);\n return expandedT;\n });\n const result = concat4({ inputs: expandedTensors, backend: backend2, attrs: { axis } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId));\n return result;\n}\nvar packConfig3 = {\n kernelName: Pack,\n backendName: \"wasm\",\n kernelFunc: pack3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/PadV2.js\nvar wasmPadV2;\nfunction setup31(backend2) {\n wasmPadV2 = backend2.wasm.cwrap(PadV2, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction pad2(args) {\n const { inputs: { x }, backend: backend2, attrs: { paddings, constantValue } } = args;\n const outShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n if (util_exports.sizeFromShape(x.shape) === 0) {\n return fill4({\n backend: backend2,\n attrs: { shape: outShape, value: constantValue, dtype: x.dtype }\n });\n }\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(outShape, x.dtype);\n const outTensorData = backend2.dataIdMap.get(out.dataId);\n const outId = outTensorData.id;\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n const prePaddingsFlat = paddings.map((padTuple) => padTuple[0]);\n const postPaddingsFlat = paddings.map((padTuple) => padTuple[1]);\n const prePaddingsBytes = new Uint8Array(new Int32Array(prePaddingsFlat).buffer);\n const postPaddingsBytes = new Uint8Array(new Int32Array(postPaddingsFlat).buffer);\n wasmPadV2(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], prePaddingsBytes, postPaddingsBytes, constantValue, outId);\n return out;\n}\nvar padV2Config3 = {\n kernelName: PadV2,\n backendName: \"wasm\",\n kernelFunc: pad2,\n setupFunc: setup31\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Pow.js\nvar supportsFullBroadcast15 = false;\nvar powConfig3 = createBinaryKernelConfig(Pow, supportsFullBroadcast15);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Prelu.js\nvar wasmPrelu;\nfunction setup32(backend2) {\n wasmPrelu = backend2.wasm.cwrap(Prelu, null, [\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction prelu5(args) {\n const { inputs, backend: backend2 } = args;\n const { x, alpha } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const weightsId = backend2.dataIdMap.get(alpha.dataId).id;\n let inputId = xId;\n const input2 = x;\n let castedInput = input2;\n if (input2.dtype !== \"float32\") {\n castedInput = cast5({ backend: backend2, inputs: { x }, attrs: { dtype: \"float32\" } });\n inputId = backend2.dataIdMap.get(castedInput.dataId).id;\n }\n const out = backend2.makeOutput(x.shape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmPrelu(inputId, weightsId, outId);\n if (input2.dtype !== \"float32\") {\n backend2.disposeData(castedInput.dataId);\n }\n return out;\n}\nvar preluConfig3 = {\n kernelName: Prelu,\n backendName: \"wasm\",\n setupFunc: setup32,\n kernelFunc: prelu5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Prod.js\nvar wasmProd;\nfunction setup33(backend2) {\n wasmProd = backend2.wasm.cwrap(Prod, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction prod4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n let reductionAxes = axes;\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, input2.shape.length);\n }\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"prod\", reductionAxes, input2.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, reductionAxes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, input2.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmProd(inputId, reduceSize, CppDType[out.dtype], outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar prodConfig3 = {\n kernelName: Prod,\n backendName: \"wasm\",\n setupFunc: setup33,\n kernelFunc: prod4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Range.js\nvar range5 = (args) => {\n const { backend: backend2, attrs } = args;\n const { start, stop, step: step5, dtype } = attrs;\n const values = rangeImpl(start, stop, step5, dtype);\n const out = backend2.makeOutput([values.length], dtype);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.set(values);\n return out;\n};\nvar rangeConfig3 = {\n kernelName: Range,\n backendName: \"wasm\",\n kernelFunc: range5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/RealDiv.js\nvar supportsFullBroadcast16 = true;\nvar realDivConfig3 = createBinaryKernelConfig(RealDiv, supportsFullBroadcast16);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Relu.js\nvar reluConfig3 = createUnaryKernelConfig(Relu);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Relu6.js\nvar relu6Config3 = createUnaryKernelConfig(Relu6);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ResizeBilinear.js\nvar wasmResizeBilinear;\nfunction setup34(backend2) {\n wasmResizeBilinear = backend2.wasm.cwrap(ResizeBilinear, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction resizeBilinear4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const [batch, oldHeight, oldWidth, numChannels] = images.shape;\n const outShape = [batch, newHeight, newWidth, numChannels];\n let xData = backend2.dataIdMap.get(images.dataId);\n let castedData;\n if (xData.dtype !== \"float32\") {\n castedData = cast5({ backend: backend2, inputs: { x: images }, attrs: { dtype: \"float32\" } });\n xData = backend2.dataIdMap.get(castedData.dataId);\n }\n const xId = xData.id;\n const out = backend2.makeOutput(outShape, \"float32\");\n if (util_exports.sizeFromShape(images.shape) === 0) {\n return out;\n }\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmResizeBilinear(xId, batch, oldHeight, oldWidth, numChannels, newHeight, newWidth, alignCorners ? 1 : 0, halfPixelCenters ? 1 : 0, outId);\n if (castedData != null) {\n backend2.disposeData(castedData.dataId);\n }\n return out;\n}\nvar resizeBilinearConfig3 = {\n kernelName: ResizeBilinear,\n backendName: \"wasm\",\n setupFunc: setup34,\n kernelFunc: resizeBilinear4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ResizeNearestNeighbor.js\nvar wasmResizeNearestNeighbor;\nfunction setup35(backend2) {\n wasmResizeNearestNeighbor = backend2.wasm.cwrap(ResizeNearestNeighbor, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction resizeNearestNeighbor4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const [batch, oldHeight, oldWidth, numChannels] = images.shape;\n const outShape = [batch, newHeight, newWidth, numChannels];\n const out = backend2.makeOutput(outShape, \"float32\");\n if (util_exports.sizeFromShape(images.shape) === 0) {\n return out;\n }\n let xData = backend2.dataIdMap.get(images.dataId);\n let castedData;\n if (xData.dtype !== \"float32\") {\n castedData = cast5({\n backend: backend2,\n inputs: { x: images },\n attrs: { dtype: \"float32\" }\n });\n xData = backend2.dataIdMap.get(castedData.dataId);\n }\n const xId = xData.id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmResizeNearestNeighbor(xId, batch, oldHeight, oldWidth, numChannels, newHeight, newWidth, alignCorners ? 1 : 0, halfPixelCenters ? 1 : 0, outId);\n if (castedData != null) {\n backend2.disposeData(castedData.dataId);\n }\n return out;\n}\nvar resizeNearestNeighborConfig3 = {\n kernelName: ResizeNearestNeighbor,\n backendName: \"wasm\",\n setupFunc: setup35,\n kernelFunc: resizeNearestNeighbor4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Reverse.js\nvar wasmReverse;\nfunction setup36(backend2) {\n wasmReverse = backend2.wasm.cwrap(Reverse, null, [\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction reverse4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dims } = attrs;\n const axes = util_exports.parseAxisParam(dims, x.shape);\n if (x.shape.length === 0) {\n return identity4({ inputs: { x }, backend: backend2 });\n }\n const out = backend2.makeOutput(x.shape, x.dtype);\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const axesBytes = new Uint8Array(new Int32Array(axes).buffer);\n const outShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n wasmReverse(xId, axesBytes, axes.length, outShapeBytes, x.shape.length, outId);\n const reshaped = reshape5({ inputs: { x: out }, attrs: { shape: x.shape }, backend: backend2 });\n backend2.disposeData(out.dataId);\n return reshaped;\n}\nvar reverseConfig3 = {\n kernelName: Reverse,\n backendName: \"wasm\",\n kernelFunc: reverse4,\n setupFunc: setup36\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/RotateWithOffset.js\nvar wasmRotate;\nfunction setup37(backend2) {\n wasmRotate = backend2.wasm.cwrap(RotateWithOffset, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction rotateWithOffset2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2 } = inputs;\n const { radians, fillValue, center } = attrs;\n const out = backend2.makeOutput(image2.shape, image2.dtype);\n const imageId = backend2.dataIdMap.get(image2.dataId).id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [centerX, centerY] = backend_util_exports.getImageCenter(center, imageHeight, imageWidth);\n const fillIsBlack = fillValue === 0;\n const fullOpacityValue = 255;\n const fillValues2 = typeof fillValue === \"number\" ? [fillValue, fillValue, fillValue, fillIsBlack ? 0 : fullOpacityValue] : [...fillValue, fullOpacityValue];\n const fillBytes = new Uint8Array(new Int32Array(fillValues2).buffer);\n wasmRotate(imageId, batch, imageHeight, imageWidth, numChannels, radians, centerX, centerY, fillBytes, fillValues2.length, outId);\n return out;\n}\nvar rotateWithOffsetConfig3 = {\n kernelName: RotateWithOffset,\n backendName: \"wasm\",\n kernelFunc: rotateWithOffset2,\n setupFunc: setup37\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Round.js\nvar roundConfig3 = createUnaryKernelConfig(Round);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Rsqrt.js\nvar rsqrtConfig3 = createUnaryKernelConfig(Rsqrt);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ScatterNd.js\nvar wasmScatterNd;\nfunction setup38(backend2) {\n wasmScatterNd = backend2.wasm.cwrap(ScatterNd, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction scatterNd3(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { indices, updates } = inputs;\n const { shape } = attrs;\n const out = backend2.makeOutput(shape, updates.dtype);\n if (util_exports.sizeFromShape(shape) === 0) {\n return out;\n }\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = scatter_nd_util_exports.calculateShapes(updates, indices, shape);\n const indicesData = backend2.dataIdMap.get(indices.dataId);\n const indicesId = indicesData.id;\n const updatesData = backend2.dataIdMap.get(updates.dataId);\n const updatesId = updatesData.id;\n const stridesBytes = new Uint8Array(new Int32Array(strides).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmScatterNd(indicesId, updatesId, CppDType[updates.dtype], sliceRank, numUpdates, sliceSize, stridesBytes, outputSize, outId);\n return out;\n}\nvar scatterNdConfig3 = {\n kernelName: ScatterNd,\n backendName: \"wasm\",\n setupFunc: setup38,\n kernelFunc: scatterNd3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Select.js\nvar wasmSelect;\nfunction setup39(backend2) {\n wasmSelect = backend2.wasm.cwrap(\"SelectV2\", null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction select4(args) {\n const { inputs, backend: backend2 } = args;\n const { condition, t: t2, e: e2 } = inputs;\n const conditionId = backend2.dataIdMap.get(condition.dataId).id;\n const tId = backend2.dataIdMap.get(t2.dataId).id;\n const eId = backend2.dataIdMap.get(e2.dataId).id;\n const out = backend2.makeOutput(t2.shape, t2.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const cRank = condition.shape.length;\n const tRank = t2.shape.length;\n const offset = cRank === 0 || cRank > 1 || tRank === 1 ? 1 : util_exports.sizeFromShape(t2.shape.slice(1));\n wasmSelect(conditionId, tId, eId, offset, outId);\n return out;\n}\nvar selectConfig3 = {\n kernelName: Select,\n backendName: \"wasm\",\n kernelFunc: select4,\n setupFunc: setup39\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sigmoid.js\nvar wasmFunc7;\nfunction setup40(backend2) {\n wasmFunc7 = backend2.wasm.cwrap(Sigmoid, null, [\"number\", \"number\"]);\n}\nfunction sigmoid4(args) {\n const { backend: backend2, inputs: { x } } = args;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n if (util_exports.sizeFromShape(out.shape) === 0) {\n return out;\n }\n wasmFunc7(xId, outId);\n return out;\n}\nvar sigmoidConfig3 = {\n kernelName: \"Sigmoid\",\n backendName: \"wasm\",\n setupFunc: setup40,\n kernelFunc: sigmoid4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sin.js\nvar sinConfig3 = createUnaryKernelConfig(Sin);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Softmax.js\nvar wasmFunc8;\nfunction setup41(backend2) {\n wasmFunc8 = backend2.wasm.cwrap(Softmax, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction softmax5(args) {\n const { backend: backend2, inputs: { logits }, attrs: { dim } } = args;\n const xId = backend2.dataIdMap.get(logits.dataId).id;\n const out = backend2.makeOutput(logits.shape, logits.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const channels = logits.shape[dim];\n const batch = util_exports.sizeFromShape(logits.shape) / channels;\n if (util_exports.sizeFromShape(out.shape) === 0) {\n return out;\n }\n wasmFunc8(xId, outId, channels, batch);\n return out;\n}\nvar softmaxConfig3 = {\n kernelName: Softmax,\n backendName: \"wasm\",\n setupFunc: setup41,\n kernelFunc: softmax5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SpaceToBatchND.js\nfunction spaceToBatchND4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, paddings } = attrs;\n const prod6 = util_exports.sizeFromShape(blockShape);\n const completePaddings = [[0, 0]];\n completePaddings.push(...paddings);\n for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) {\n completePaddings.push([0, 0]);\n }\n const paddedX = padV2Config3.kernelFunc({\n inputs: { x },\n backend: backend2,\n attrs: { paddings: completePaddings, constantValue: 0 }\n });\n const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false);\n const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false);\n const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false);\n const reshapeInputs = { x: paddedX };\n const reshapeAttrs = { shape: reshapedPaddedShape };\n const paddedXReshaped = reshape5({ inputs: reshapeInputs, backend: backend2, attrs: reshapeAttrs });\n const transposeInputs = { x: paddedXReshaped };\n const transposeAttrs = { perm: permutedReshapedPaddedPermutation };\n const paddedXT = transpose4({ inputs: transposeInputs, backend: backend2, attrs: transposeAttrs });\n const resultReshapeInputs = { x: paddedXT };\n const resultReshapeAttrs = { shape: flattenShape };\n const result = reshape5({ inputs: resultReshapeInputs, backend: backend2, attrs: resultReshapeAttrs });\n backend2.disposeData(paddedX.dataId);\n backend2.disposeData(paddedXReshaped.dataId);\n backend2.disposeData(paddedXT.dataId);\n return result;\n}\nvar spaceToBatchNDConfig3 = {\n kernelName: SpaceToBatchND,\n backendName: \"wasm\",\n kernelFunc: spaceToBatchND4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseFillEmptyRows.js\nvar wasmSparseFillEmptyRows;\nfunction setup42(backend2) {\n wasmSparseFillEmptyRows = backend2.wasm.cwrap(\"SparseFillEmptyRows\", \"number\", [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction sparseFillEmptyRows4(args) {\n const { backend: backend2, inputs } = args;\n const { indices, values, denseShape, defaultValue } = inputs;\n const indicesCount = indices.shape[0];\n const rank = indices.shape[1];\n const denseRows = backend2.readSync(denseShape.dataId)[0];\n const maxOutputIndicesShape = [indicesCount + denseRows, rank];\n const indicesId = backend2.dataIdMap.get(indices.dataId).id;\n const valuesId = backend2.dataIdMap.get(values.dataId).id;\n const defaultValueId = backend2.dataIdMap.get(defaultValue.dataId).id;\n const outputIndices = backend2.makeOutput(maxOutputIndicesShape, indices.dtype);\n const outputIndicesId = backend2.dataIdMap.get(outputIndices.dataId).id;\n const outputValues = backend2.makeOutput(maxOutputIndicesShape.slice(0, 1), values.dtype);\n const outputValuesId = backend2.dataIdMap.get(outputValues.dataId).id;\n const emptyRowIndicator = backend2.makeOutput([denseRows], \"bool\");\n const emptyRowIndicatorId = backend2.dataIdMap.get(emptyRowIndicator.dataId).id;\n const reverseIndexMap = backend2.makeOutput([indicesCount], indices.dtype);\n const reverseIndexMapId = backend2.dataIdMap.get(reverseIndexMap.dataId).id;\n const exceptionValues = backend2.makeOutput([4], \"int32\");\n const exceptionValuesId = backend2.dataIdMap.get(exceptionValues.dataId).id;\n const outputRows = wasmSparseFillEmptyRows(indicesId, valuesId, CppDType[values.dtype], indicesCount, denseRows, rank, defaultValueId, outputIndicesId, outputValuesId, emptyRowIndicatorId, reverseIndexMapId, exceptionValuesId);\n const exceptionValuesArray = backend2.readSync(exceptionValues.dataId);\n let exceptionMessage;\n switch (exceptionValuesArray[0]) {\n case 1: {\n exceptionMessage = backend_util_exports.getSparseFillEmptyRowsIndicesDenseShapeMismatch(exceptionValuesArray[1]);\n break;\n }\n case 2: {\n exceptionMessage = backend_util_exports.getSparseFillEmptyRowsNegativeIndexErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2]);\n break;\n }\n case 3:\n exceptionMessage = backend_util_exports.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2], exceptionValuesArray[3]);\n break;\n default:\n exceptionMessage = \"\";\n }\n backend2.disposeData(exceptionValues.dataId);\n if (exceptionMessage) {\n backend2.disposeData(outputIndices.dataId);\n backend2.disposeData(outputValues.dataId);\n backend2.disposeData(emptyRowIndicator.dataId);\n backend2.disposeData(reverseIndexMap.dataId);\n throw new Error(exceptionMessage);\n }\n let resizedIndices = outputIndices;\n let resizedValues = outputValues;\n if (outputRows !== maxOutputIndicesShape[0]) {\n resizedIndices = slice4({\n inputs: { x: outputIndices },\n attrs: { begin: 0, size: [outputRows, rank] },\n backend: backend2\n });\n resizedValues = slice4({\n inputs: { x: outputValues },\n attrs: { begin: 0, size: outputRows },\n backend: backend2\n });\n backend2.disposeData(outputIndices.dataId);\n backend2.disposeData(outputValues.dataId);\n }\n return [resizedIndices, resizedValues, emptyRowIndicator, reverseIndexMap];\n}\nvar sparseFillEmptyRowsConfig3 = {\n kernelName: SparseFillEmptyRows,\n backendName: \"wasm\",\n setupFunc: setup42,\n kernelFunc: sparseFillEmptyRows4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseReshape.js\nvar wasmSparseReshape;\nfunction setup43(backend2) {\n wasmSparseReshape = backend2.wasm.cwrap(SparseReshape, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction sparseReshape4(args) {\n const { backend: backend2, inputs } = args;\n const { inputIndices, inputShape, newShape } = inputs;\n if (inputIndices.shape.length !== 2) {\n throw new Error(`Input indices should be a matrix but received shape\n ${inputIndices.shape}`);\n }\n if (inputShape.shape.length !== 1) {\n throw new Error(`Input shape should be a vector but received shape\n ${inputShape.shape}`);\n }\n if (newShape.shape.length !== 1) {\n throw new Error(`Target shape should be a vector but received shape ${newShape.shape}`);\n }\n const inputIndicesId = backend2.dataIdMap.get(inputIndices.dataId).id;\n const inputShapeId = backend2.dataIdMap.get(inputShape.dataId).id;\n const newShapeId = backend2.dataIdMap.get(newShape.dataId).id;\n const nnz = inputIndices.shape[0];\n const outputRank = util_exports.sizeFromShape(newShape.shape);\n const newIndices = backend2.makeOutput([nnz, outputRank], inputIndices.dtype);\n const newIndicesId = backend2.dataIdMap.get(newIndices.dataId).id;\n const outputShape = backend2.makeOutput([outputRank], newShape.dtype);\n const outputShapeId = backend2.dataIdMap.get(outputShape.dataId).id;\n const exceptionValues = backend2.makeOutput([3], \"int32\");\n const exceptionValuesId = backend2.dataIdMap.get(exceptionValues.dataId).id;\n wasmSparseReshape(inputIndicesId, inputShapeId, newShapeId, nnz, newIndicesId, outputShapeId, exceptionValuesId);\n const exceptionValuesArray = backend2.readSync(exceptionValues.dataId);\n let exceptionMessage;\n switch (exceptionValuesArray[0]) {\n case 0: {\n exceptionMessage = backend_util_exports.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2]);\n break;\n }\n case 1: {\n exceptionMessage = backend_util_exports.getSparseReshapeNegativeOutputDimErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2]);\n break;\n }\n case 2:\n exceptionMessage = backend_util_exports.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();\n break;\n case 3: {\n const inputShapeValues = Array.from(backend2.readSync(inputShape.dataId)), outputShapeValues = Array.from(backend2.readSync(outputShape.dataId));\n exceptionMessage = backend_util_exports.getSparseReshapeInputOutputMultipleErrorMessage(inputShapeValues, outputShapeValues);\n break;\n }\n case 4: {\n const inputShapeValues = Array.from(backend2.readSync(inputShape.dataId)), outputShapeValues = Array.from(backend2.readSync(outputShape.dataId));\n exceptionMessage = backend_util_exports.getSparseReshapeInputOutputMismatchErrorMessage(inputShapeValues, outputShapeValues);\n break;\n }\n default:\n exceptionMessage = \"\";\n }\n backend2.disposeData(exceptionValues.dataId);\n if (exceptionMessage) {\n backend2.disposeData(newIndices.dataId);\n backend2.disposeData(outputShape.dataId);\n throw new Error(exceptionMessage);\n }\n return [newIndices, outputShape];\n}\nvar sparseReshapeConfig3 = {\n kernelName: SparseReshape,\n backendName: \"wasm\",\n setupFunc: setup43,\n kernelFunc: sparseReshape4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseSegmentReduction.js\nvar wasmSparseSegmentReduction;\nfunction setup44(backend2) {\n wasmSparseSegmentReduction = backend2.wasm.cwrap(\"SparseSegmentReduction\", null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction sparseSegmentReduction(args, isMean) {\n const { backend: backend2, inputs } = args;\n const { data, indices, segmentIds } = inputs;\n const numIndices = indices.shape[0];\n const segmentIdsBack = backend2.readSync(segmentIds.dataId, numIndices - 1, numIndices)[0];\n const lastSegmentIdPlusOne = numIndices > 0 ? segmentIdsBack + 1 : 0;\n const outputRows = lastSegmentIdPlusOne;\n if (outputRows < 0) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());\n }\n const outputShape = data.shape.slice();\n outputShape[0] = outputRows;\n const dataId = backend2.dataIdMap.get(data.dataId).id;\n const indicesId = backend2.dataIdMap.get(indices.dataId).id;\n const segmentIdsId = backend2.dataIdMap.get(segmentIds.dataId).id;\n const output = backend2.makeOutput(outputShape, data.dtype);\n const outputId = backend2.dataIdMap.get(output.dataId).id;\n const exceptionValues = backend2.makeOutput([4], \"int32\");\n const exceptionValuesId = backend2.dataIdMap.get(exceptionValues.dataId).id;\n wasmSparseSegmentReduction(dataId, CppDType[data.dtype], data.shape[0], indicesId, segmentIdsId, outputId, exceptionValuesId, isMean, 0);\n const exceptionValuesArray = backend2.readSync(exceptionValues.dataId);\n let exceptionMessage;\n switch (exceptionValuesArray[0]) {\n case 0: {\n exceptionMessage = backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();\n break;\n }\n case 1: {\n exceptionMessage = backend_util_exports.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();\n break;\n }\n case 2:\n exceptionMessage = backend_util_exports.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2]);\n break;\n case 3:\n exceptionMessage = backend_util_exports.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2], exceptionValuesArray[3]);\n break;\n default:\n exceptionMessage = \"\";\n }\n backend2.disposeData(exceptionValues.dataId);\n if (exceptionMessage) {\n backend2.disposeData(output.dataId);\n throw new Error(exceptionMessage);\n }\n return output;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseSegmentMean.js\nfunction sparseSegmentMean4(args) {\n return sparseSegmentReduction(args, true);\n}\nvar sparseSegmentMeanConfig3 = {\n kernelName: SparseSegmentMean,\n backendName: \"wasm\",\n setupFunc: setup44,\n kernelFunc: sparseSegmentMean4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseSegmentSum.js\nfunction sparseSegmentSum4(args) {\n return sparseSegmentReduction(args, false);\n}\nvar sparseSegmentSumConfig3 = {\n kernelName: SparseSegmentSum,\n backendName: \"wasm\",\n setupFunc: setup44,\n kernelFunc: sparseSegmentSum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SplitV.js\nfunction splitV3(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x } = inputs;\n const { numOrSizeSplits, axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, x.shape)[0];\n const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis);\n const begin = new Array(x.shape.length).fill(0);\n const size = x.shape.slice();\n return splitSizes.map((s2) => {\n const xSliceSize = [...size];\n xSliceSize[$axis] = s2;\n const xSlice = slice4({ inputs: { x }, attrs: { begin, size: xSliceSize }, backend: backend2 });\n begin[$axis] += s2;\n return xSlice;\n });\n}\nvar splitVConfig3 = {\n kernelName: SplitV,\n backendName: \"wasm\",\n kernelFunc: splitV3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sqrt.js\nvar sqrtConfig3 = createUnaryKernelConfig(Sqrt);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Square.js\nvar squareConfig3 = createUnaryKernelConfig(Square);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SquaredDifference.js\nvar supportsFullBroadcast17 = true;\nvar squaredDifferenceConfig3 = createBinaryKernelConfig(SquaredDifference, supportsFullBroadcast17);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Step.js\nvar wasmStep;\nfunction setup45(backend2) {\n wasmStep = backend2.wasm.cwrap(Step, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction step4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { alpha } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmStep(xId, alpha, CppDType[x.dtype], outId);\n return out;\n}\nvar stepConfig3 = {\n kernelName: Step,\n backendName: \"wasm\",\n setupFunc: setup45,\n kernelFunc: step4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/StridedSlice.js\nvar wasmStridedSlice;\nfunction setup46(backend2) {\n wasmStridedSlice = backend2.wasm.cwrap(StridedSlice, null, [\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"array\",\n \"array\",\n \"array\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction stridedSlice4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { x } = inputs;\n const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs;\n const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n let result;\n if (isIdentity) {\n result = reshape5({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } });\n } else if (sliceDim0 || isSimpleSlice) {\n util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`);\n const size = slice_util_exports.computeOutShape($begin, $end, $strides);\n const sliced = slice4({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } });\n result = reshape5({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeData(sliced.dataId);\n } else {\n const out = backend2.makeOutput(finalShapeSparse, \"float32\");\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const xStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(x.shape)).buffer);\n const beginBytes = new Uint8Array(new Int32Array($begin).buffer);\n const endBytes = new Uint8Array(new Int32Array($end).buffer);\n const stridesBytes = new Uint8Array(new Int32Array($strides).buffer);\n const outputShapeBytes = new Uint8Array(new Int32Array(finalShapeSparse).buffer);\n const outStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(finalShapeSparse)).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmStridedSlice(xId, xStridesBytes, x.shape.length, beginBytes, endBytes, stridesBytes, outputShapeBytes, outStridesBytes, finalShapeSparse.length, outId);\n result = reshape5({ inputs: { x: out }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeData(out.dataId);\n }\n return result;\n}\nvar stridedSliceConfig3 = {\n kernelName: StridedSlice,\n backendName: \"wasm\",\n setupFunc: setup46,\n kernelFunc: stridedSlice4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/StringNGrams.js\nfunction stringNGrams4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { data, dataSplits } = inputs;\n const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs;\n const $data = backend2.readSync(data.dataId);\n const $dataSplits = backend2.readSync(dataSplits.dataId);\n const [nGrams, nGramsSplits] = stringNGramsImpl($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences);\n const nGramsOut = backend2.makeOutput([nGrams.length], \"string\");\n const nGramsOutData = backend2.dataIdMap.get(nGramsOut.dataId);\n nGramsOutData.stringBytes = nGrams;\n const nGramsSplitsOut = backend2.makeOutput(dataSplits.shape, \"int32\");\n const nGramsSplitsOutVals = backend2.typedArrayFromHeap(nGramsSplitsOut);\n nGramsSplitsOutVals.set(nGramsSplits);\n return [nGramsOut, nGramsSplitsOut];\n}\nvar stringNGramsConfig3 = {\n kernelName: StringNGrams,\n backendName: \"wasm\",\n kernelFunc: stringNGrams4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/StringSplit.js\nfunction stringSplit4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { input: input2, delimiter } = inputs;\n const { skipEmpty } = attrs;\n const inputVals = backend2.readSync(input2.dataId);\n const delimiterVals = backend2.readSync(delimiter.dataId);\n const [indices, values, shape] = stringSplitImpl(inputVals, delimiterVals[0], skipEmpty);\n const outputSize = values.length;\n const indicesOut = backend2.makeOutput([outputSize, 2], \"int32\");\n const indicesOutVals = backend2.typedArrayFromHeap(indicesOut);\n indicesOutVals.set(indices);\n const valuesOut = backend2.makeOutput([outputSize], \"string\");\n const valuesOutData = backend2.dataIdMap.get(valuesOut.dataId);\n valuesOutData.stringBytes = values;\n const shapeOut = backend2.makeOutput([2], \"int32\");\n const shapeOutVals = backend2.typedArrayFromHeap(shapeOut);\n shapeOutVals.set(shape);\n return [indicesOut, valuesOut, shapeOut];\n}\nvar stringSplitConfig3 = {\n kernelName: StringSplit,\n backendName: \"wasm\",\n kernelFunc: stringSplit4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/StringToHashBucketFast.js\nfunction stringToHashBucketFast4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { input: input2 } = inputs;\n const { numBuckets } = attrs;\n const inputVals = backend2.readSync(input2.dataId);\n const values = stringToHashBucketFastImpl(inputVals, numBuckets);\n const out = backend2.makeOutput(input2.shape, \"int32\");\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.set(values);\n return out;\n}\nvar stringToHashBucketFastConfig3 = {\n kernelName: StringToHashBucketFast,\n backendName: \"wasm\",\n kernelFunc: stringToHashBucketFast4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sub.js\nvar supportsFullBroadcast18 = true;\nvar subConfig3 = createBinaryKernelConfig(Sub, supportsFullBroadcast18);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sum.js\nvar wasmSum;\nfunction setup47(backend2) {\n wasmSum = backend2.wasm.cwrap(Sum, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction sum5(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n let reductionAxes = axes;\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, input2.shape.length);\n }\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"sum\", reductionAxes, input2.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, reductionAxes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, input2.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmSum(inputId, reduceSize, CppDType[out.dtype], outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar sumConfig3 = {\n kernelName: Sum,\n backendName: \"wasm\",\n setupFunc: setup47,\n kernelFunc: sum5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Tan.js\nvar tanConfig3 = createUnaryKernelConfig(Tan);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Tanh.js\nvar tanhConfig3 = createUnaryKernelConfig(Tanh);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Tile.js\nvar wasmTile;\nfunction setup48(backend2) {\n wasmTile = backend2.wasm.cwrap(Tile, null, [\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction tile5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const { reps } = attrs;\n const newShape = new Array(x.shape.length);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[i2] * reps[i2];\n }\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n const newShapeBytes = new Uint8Array(new Int32Array(newShape).buffer);\n const out = backend2.makeOutput(newShape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmTile(xId, xShapeBytes, x.shape.length, newShapeBytes, newShape.length, CppDType[out.dtype], outId);\n return out;\n}\nvar tileConfig3 = {\n kernelName: Tile,\n backendName: \"wasm\",\n setupFunc: setup48,\n kernelFunc: tile5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/TopK.js\nvar wasmTopK;\nfunction setup49(backend2) {\n wasmTopK = backend2.wasm.cwrap(TopK, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"bool\",\n \"number\",\n \"number\"\n ]);\n}\nvar topk2 = ({ inputs, backend: backend2, attrs }) => {\n const { x } = inputs;\n const { k, sorted } = attrs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n const outputShape = x.shape.slice();\n outputShape[outputShape.length - 1] = k;\n const outValues = backend2.makeOutput(outputShape, x.dtype);\n const outValuesId = backend2.dataIdMap.get(outValues.dataId).id;\n const outIndices = backend2.makeOutput(outputShape, \"int32\");\n const outIndicesId = backend2.dataIdMap.get(outIndices.dataId).id;\n wasmTopK(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], k, sorted, outValuesId, outIndicesId);\n return [outValues, outIndices];\n};\nvar topKConfig3 = {\n kernelName: TopK,\n backendName: \"wasm\",\n setupFunc: setup49,\n kernelFunc: topk2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Transform.js\nvar wasmTransform;\nfunction setup50(backend2) {\n wasmTransform = backend2.wasm.cwrap(Transform, null, [\n \"number\",\n \"number\",\n \"bool\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction transform4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { image: image2, transforms } = inputs;\n const { interpolation, fillMode, fillValue, outputShape } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth];\n const outShape = [\n batch,\n outHeight,\n outWidth,\n numChannels\n ];\n const inputStrides = new Uint8Array(new Int32Array(util_exports.computeStrides(image2.shape)).buffer);\n const outputStrides = new Uint8Array(new Int32Array(util_exports.computeStrides(outShape)).buffer);\n const out = backend2.makeOutput(outShape, image2.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const imageData = backend2.dataIdMap.get(image2.dataId);\n const imageId = imageData.id;\n const transformsData = backend2.dataIdMap.get(transforms.dataId);\n const transformsId = transformsData.id;\n const interpolationModeId = interpolation === \"nearest\" ? 1 : 2;\n let fillModeId;\n switch (fillMode) {\n case \"constant\":\n fillModeId = 1;\n break;\n case \"reflect\":\n fillModeId = 2;\n break;\n case \"wrap\":\n fillModeId = 3;\n break;\n case \"nearest\":\n fillModeId = 4;\n break;\n default:\n fillModeId = 1;\n break;\n }\n wasmTransform(imageId, transformsId, transforms.shape[0] > 1, batch, outHeight, outWidth, numChannels, imageWidth, imageHeight, inputStrides, image2.shape.length - 1, outputStrides, outShape.length - 1, interpolationModeId, fillModeId, fillValue, outId);\n return out;\n}\nvar transformConfig3 = {\n kernelName: Transform,\n backendName: \"wasm\",\n setupFunc: setup50,\n kernelFunc: transform4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Unpack.js\nfunction unpack3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { value } = inputs;\n let { axis } = attrs;\n if (axis < 0) {\n axis += value.shape.length;\n }\n const numOutputs = value.shape[axis];\n const rank = value.shape.length;\n const outShape = new Array(rank - 1);\n let outIndex = 0;\n for (let i2 = 0; i2 < rank; i2++) {\n if (i2 !== axis) {\n outShape[outIndex++] = value.shape[i2];\n }\n }\n const outs = new Array(numOutputs);\n const begin = new Array(rank).fill(0);\n const size = value.shape.slice();\n size[axis] = 1;\n for (let i2 = 0; i2 < outs.length; i2++) {\n begin[axis] = i2;\n outs[i2] = slice4({ inputs: { x: value }, attrs: { begin, size }, backend: backend2 });\n }\n return outs.map(({ dataId, dtype }) => ({ dataId, dtype, shape: outShape }));\n}\nvar unpackConfig3 = {\n kernelName: Unpack,\n backendName: \"wasm\",\n kernelFunc: unpack3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ZerosLike.js\nfunction zerosLike4(args) {\n const { inputs: { x }, backend: backend2 } = args;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.fill(0);\n return out;\n}\nvar zerosLikeConfig3 = {\n kernelName: ZerosLike,\n backendName: \"wasm\",\n kernelFunc: zerosLike4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/register_all_kernels.js\nvar kernelConfigs3 = [\n _fusedMatMulConfig3,\n absConfig3,\n addConfig3,\n addNConfig3,\n allConfig3,\n anyConfig3,\n argMaxConfig3,\n avgPoolConfig3,\n batchMatMulConfig3,\n batchToSpaceNDConfig3,\n castConfig3,\n ceilConfig3,\n clipByValueConfig3,\n concatConfig3,\n conv2DConfig3,\n conv2DBackpropInputConfig3,\n cosConfig3,\n coshConfig3,\n cropAndResizeConfig3,\n cumprodConfig3,\n cumsumConfig3,\n depthToSpaceConfig3,\n depthwiseConv2dNativeConfig3,\n eluConfig3,\n equalConfig3,\n expConfig3,\n expandDimsConfig3,\n fillConfig3,\n flipLeftRightConfig3,\n floorConfig3,\n floorDivConfig3,\n fusedBatchNormConfig,\n fusedConv2DConfig3,\n fusedDepthwiseConv2DConfig3,\n gatherNdConfig3,\n gatherV2Config3,\n greaterConfig3,\n greaterEqualConfig3,\n identityConfig3,\n leakyReluConfig3,\n lessConfig3,\n lessEqualConfig3,\n logConfig3,\n logicalAndConfig3,\n logicalNotConfig3,\n logicalOrConfig3,\n logicalXorConfig,\n maxConfig3,\n maximumConfig3,\n maxPoolConfig3,\n meanConfig3,\n minConfig3,\n minimumConfig3,\n mirrorPadConfig3,\n multiplyConfig3,\n negConfig3,\n nonMaxSuppressionV3Config3,\n nonMaxSuppressionV4Config3,\n nonMaxSuppressionV5Config3,\n notEqualConfig3,\n oneHotConfig3,\n onesLikeConfig3,\n packConfig3,\n padV2Config3,\n powConfig3,\n preluConfig3,\n prodConfig3,\n rangeConfig3,\n realDivConfig3,\n reluConfig3,\n relu6Config3,\n reshapeConfig3,\n resizeBilinearConfig3,\n resizeNearestNeighborConfig3,\n reverseConfig3,\n rotateWithOffsetConfig3,\n roundConfig3,\n rsqrtConfig3,\n scatterNdConfig3,\n selectConfig3,\n sigmoidConfig3,\n sinConfig3,\n sliceConfig3,\n softmaxConfig3,\n spaceToBatchNDConfig3,\n sparseFillEmptyRowsConfig3,\n sparseReshapeConfig3,\n sparseSegmentMeanConfig3,\n sparseSegmentSumConfig3,\n splitVConfig3,\n sqrtConfig3,\n squareConfig3,\n squaredDifferenceConfig3,\n stepConfig3,\n stridedSliceConfig3,\n stringNGramsConfig3,\n stringSplitConfig3,\n stringToHashBucketFastConfig3,\n subConfig3,\n sumConfig3,\n tanConfig3,\n tanhConfig3,\n tileConfig3,\n topKConfig3,\n transformConfig3,\n transposeConfig3,\n unpackConfig3,\n zerosLikeConfig3\n];\nfor (const kernelConfig of kernelConfigs3) {\n registerKernel(kernelConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/flags_wasm.js\nvar ENV6 = env();\nENV6.registerFlag(\n \"WASM_HAS_SIMD_SUPPORT\",\n async () => WebAssembly.validate(new Uint8Array([\n 0,\n 97,\n 115,\n 109,\n 1,\n 0,\n 0,\n 0,\n 1,\n 4,\n 1,\n 96,\n 0,\n 0,\n 3,\n 2,\n 1,\n 0,\n 10,\n 9,\n 1,\n 7,\n 0,\n 65,\n 0,\n 253,\n 15,\n 26,\n 11\n ]))\n);\nENV6.registerFlag(\"WASM_HAS_MULTITHREAD_SUPPORT\", async () => {\n if (ENV6.get(\"IS_NODE\")) {\n return false;\n }\n try {\n new MessageChannel().port1.postMessage(new SharedArrayBuffer(1));\n return WebAssembly.validate(new Uint8Array([\n 0,\n 97,\n 115,\n 109,\n 1,\n 0,\n 0,\n 0,\n 1,\n 4,\n 1,\n 96,\n 0,\n 0,\n 3,\n 2,\n 1,\n 0,\n 5,\n 4,\n 1,\n 3,\n 1,\n 1,\n 10,\n 11,\n 1,\n 9,\n 0,\n 65,\n 0,\n 254,\n 16,\n 2,\n 0,\n 26,\n 11\n ]));\n } catch (e2) {\n return false;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/backend_wasm.js\nvar wasmFactoryThreadedSimd_import = __toESM(require_tfjs_backend_wasm_threaded_simd());\nvar import_tfjs_backend_wasm_threaded_simd_worker = __toESM(require_tfjs_backend_wasm_threaded_simd_worker());\nvar wasmFactory_import = __toESM(require_tfjs_backend_wasm());\nvar wasmFactoryThreadedSimd = wasmFactoryThreadedSimd_import.default || wasmFactoryThreadedSimd_import;\nvar wasmFactory = wasmFactory_import.default || wasmFactory_import;\nvar BackendWasm = class extends KernelBackend {\n constructor(wasm) {\n super();\n this.wasm = wasm;\n this.dataIdNextNumber = 1;\n this.wasm.tfjs.initWithThreadsCount(threadsCount);\n actualThreadsCount = this.wasm.tfjs.getThreadsCount();\n this.dataIdMap = new DataStorage(this, engine());\n }\n write(values, shape, dtype) {\n const dataId = { id: this.dataIdNextNumber++ };\n this.move(dataId, values, shape, dtype, 1);\n return dataId;\n }\n numDataIds() {\n return this.dataIdMap.numDataIds();\n }\n async time(f) {\n const start = util_exports.now();\n f();\n const kernelMs = util_exports.now() - start;\n return { kernelMs };\n }\n move(dataId, values, shape, dtype, refCount) {\n const id = this.dataIdNextNumber++;\n if (dtype === \"string\") {\n const stringBytes = values;\n this.dataIdMap.set(dataId, { id, stringBytes, shape, dtype, memoryOffset: null, refCount });\n return;\n }\n const size = util_exports.sizeFromShape(shape);\n const numBytes = size * util_exports.bytesPerElement(dtype);\n const memoryOffset = this.wasm._malloc(numBytes);\n this.dataIdMap.set(dataId, { id, memoryOffset, shape, dtype, refCount });\n this.wasm.tfjs.registerTensor(id, size, memoryOffset);\n if (values != null) {\n this.wasm.HEAPU8.set(new Uint8Array(values.buffer, values.byteOffset, numBytes), memoryOffset);\n }\n }\n async read(dataId) {\n return this.readSync(dataId);\n }\n readSync(dataId, start, end) {\n const { memoryOffset, dtype, shape, stringBytes } = this.dataIdMap.get(dataId);\n if (dtype === \"string\") {\n if ((start == null || start === 0) && (end == null || end >= stringBytes.length)) {\n return stringBytes;\n }\n return stringBytes.slice(start, end);\n }\n start = start || 0;\n end = end || util_exports.sizeFromShape(shape);\n const bytesPerElement2 = util_exports.bytesPerElement(dtype);\n const bytes = this.wasm.HEAPU8.slice(memoryOffset + start * bytesPerElement2, memoryOffset + end * bytesPerElement2);\n return typedArrayFromBuffer(bytes.buffer, dtype);\n }\n disposeData(dataId, force = false) {\n if (this.dataIdMap.has(dataId)) {\n const data = this.dataIdMap.get(dataId);\n data.refCount--;\n if (!force && data.refCount > 0) {\n return false;\n }\n this.wasm._free(data.memoryOffset);\n this.wasm.tfjs.disposeData(data.id);\n this.dataIdMap.delete(dataId);\n }\n return true;\n }\n refCount(dataId) {\n if (this.dataIdMap.has(dataId)) {\n const tensorData = this.dataIdMap.get(dataId);\n return tensorData.refCount;\n }\n return 0;\n }\n incRef(dataId) {\n const data = this.dataIdMap.get(dataId);\n if (data != null) {\n data.refCount++;\n }\n }\n floatPrecision() {\n return 32;\n }\n getMemoryOffset(dataId) {\n return this.dataIdMap.get(dataId).memoryOffset;\n }\n dispose() {\n this.wasm.tfjs.dispose();\n if (\"PThread\" in this.wasm) {\n this.wasm.PThread.terminateAllThreads();\n }\n this.wasm = null;\n }\n memory() {\n return { unreliable: false };\n }\n makeOutput(shape, dtype, memoryOffset) {\n let dataId;\n if (memoryOffset == null) {\n dataId = this.write(null, shape, dtype);\n } else {\n const id = this.dataIdNextNumber++;\n dataId = { id };\n this.dataIdMap.set(dataId, { id, memoryOffset, shape, dtype, refCount: 1 });\n const size = util_exports.sizeFromShape(shape);\n this.wasm.tfjs.registerTensor(id, size, memoryOffset);\n }\n return { dataId, shape, dtype };\n }\n typedArrayFromHeap({ shape, dtype, dataId }) {\n const buffer2 = this.wasm.HEAPU8.buffer;\n const { memoryOffset } = this.dataIdMap.get(dataId);\n const size = util_exports.sizeFromShape(shape);\n switch (dtype) {\n case \"float32\":\n return new Float32Array(buffer2, memoryOffset, size);\n case \"int32\":\n return new Int32Array(buffer2, memoryOffset, size);\n case \"bool\":\n return new Uint8Array(buffer2, memoryOffset, size);\n default:\n throw new Error(`Unknown dtype ${dtype}`);\n }\n }\n};\nfunction createInstantiateWasmFunc(path) {\n return (imports, callback) => {\n util_exports.fetch(path, { credentials: \"same-origin\" }).then((response) => {\n if (!response[\"ok\"]) {\n imports.env.a(`failed to load wasm binary file at '${path}'`);\n }\n response.arrayBuffer().then((binary) => {\n WebAssembly.instantiate(binary, imports).then((output) => {\n callback(output.instance, output.module);\n });\n });\n });\n return {};\n };\n}\nfunction getPathToWasmBinary(simdSupported, threadsSupported, wasmModuleFolder) {\n if (wasmPath != null) {\n return wasmPath;\n }\n let path = \"tfjs-backend-wasm.wasm\";\n if (simdSupported && threadsSupported) {\n path = \"tfjs-backend-wasm-threaded-simd.wasm\";\n } else if (simdSupported) {\n path = \"tfjs-backend-wasm-simd.wasm\";\n }\n if (wasmFileMap != null) {\n if (wasmFileMap[path] != null) {\n return wasmFileMap[path];\n }\n }\n return wasmModuleFolder + path;\n}\nasync function init() {\n const [simdSupported, threadsSupported] = await Promise.all([\n env().getAsync(\"WASM_HAS_SIMD_SUPPORT\"),\n env().getAsync(\"WASM_HAS_MULTITHREAD_SUPPORT\")\n ]);\n return new Promise((resolve, reject) => {\n const factoryConfig = {};\n factoryConfig.locateFile = (path, prefix) => {\n if (path.endsWith(\".worker.js\")) {\n const response = import_tfjs_backend_wasm_threaded_simd_worker.wasmWorkerContents.replace(/\\n/g, \"\\\\n\");\n const blob = new Blob([response], { type: \"application/javascript\" });\n return URL.createObjectURL(blob);\n }\n if (path.endsWith(\".wasm\")) {\n return getPathToWasmBinary(simdSupported, threadsSupported, wasmPathPrefix != null ? wasmPathPrefix : prefix);\n }\n return prefix + path;\n };\n if (customFetch) {\n factoryConfig.instantiateWasm = createInstantiateWasmFunc(getPathToWasmBinary(simdSupported, threadsSupported, wasmPathPrefix != null ? wasmPathPrefix : \"\"));\n }\n let initialized = false;\n factoryConfig.onAbort = () => {\n if (initialized) {\n return;\n }\n if (initAborted) {\n return;\n }\n initAborted = true;\n const rejectMsg = \"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers\";\n reject({ message: rejectMsg });\n };\n let wasm;\n if (threadsSupported && simdSupported && wasmPath == null) {\n factoryConfig.mainScriptUrlOrBlob = new Blob([`var WasmBackendModuleThreadedSimd = ` + wasmFactoryThreadedSimd.toString()], { type: \"text/javascript\" });\n wasm = wasmFactoryThreadedSimd(factoryConfig);\n } else {\n wasm = wasmFactory(factoryConfig);\n }\n wasm.then((module) => {\n initialized = true;\n initAborted = false;\n const voidReturnType = null;\n module.tfjs = {\n init: module.cwrap(\"init\", null, []),\n initWithThreadsCount: module.cwrap(\"init_with_threads_count\", null, [\"number\"]),\n getThreadsCount: module.cwrap(\"get_threads_count\", \"number\", []),\n registerTensor: module.cwrap(\"register_tensor\", null, [\n \"number\",\n \"number\",\n \"number\"\n ]),\n disposeData: module.cwrap(\"dispose_data\", voidReturnType, [\"number\"]),\n dispose: module.cwrap(\"dispose\", voidReturnType, [])\n };\n resolve({ wasm: module });\n }).catch(reject);\n });\n}\nfunction typedArrayFromBuffer(buffer2, dtype) {\n switch (dtype) {\n case \"float32\":\n return new Float32Array(buffer2);\n case \"int32\":\n return new Int32Array(buffer2);\n case \"bool\":\n return new Uint8Array(buffer2);\n default:\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\nvar wasmBinaryNames = [\n \"tfjs-backend-wasm.wasm\",\n \"tfjs-backend-wasm-simd.wasm\",\n \"tfjs-backend-wasm-threaded-simd.wasm\"\n];\nvar wasmPath = null;\nvar wasmPathPrefix = null;\nvar wasmFileMap = {};\nvar initAborted = false;\nvar customFetch = false;\nfunction setWasmPath(path, usePlatformFetch = false) {\n deprecationWarn(\"setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release.\");\n if (initAborted) {\n throw new Error(\"The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`\");\n }\n wasmPath = path;\n customFetch = usePlatformFetch;\n}\nfunction setWasmPaths(prefixOrFileMap, usePlatformFetch = false) {\n if (initAborted) {\n throw new Error(\"The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`\");\n }\n if (typeof prefixOrFileMap === \"string\") {\n wasmPathPrefix = prefixOrFileMap;\n } else {\n wasmFileMap = prefixOrFileMap;\n const missingPaths = wasmBinaryNames.filter((name) => wasmFileMap[name] == null);\n if (missingPaths.length > 0) {\n throw new Error(`There were no entries found for the following binaries: ${missingPaths.join(\",\")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`);\n }\n }\n customFetch = usePlatformFetch;\n}\nvar threadsCount = -1;\nvar actualThreadsCount = -1;\nfunction setThreadsCount(numThreads) {\n threadsCount = numThreads;\n}\nfunction getThreadsCount() {\n if (actualThreadsCount === -1) {\n throw new Error(`WASM backend not initialized.`);\n }\n return actualThreadsCount;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/version.js\nvar version8 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/base.js\nvar WASM_PRIORITY = 2;\nregisterBackend(\"wasm\", async () => {\n const { wasm } = await init();\n return new BackendWasm(wasm);\n}, WASM_PRIORITY);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/flags_webgpu.js\nvar ENV7 = env();\nENV7.registerFlag(\"WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE\", () => 15);\nENV7.registerFlag(\"WEBGPU_CPU_FORWARD\", () => true);\nENV7.registerFlag(\"WEBGPU_MATMUL_WORK_PER_THREAD\", () => 4);\nENV7.registerFlag(\"WEBGPU_MATMUL_PROGRAM_TYPE\", () => -1);\nENV7.registerFlag(\"WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE\", () => false);\nENV7.registerFlag(\"WEBGPU_USE_LOW_POWER_GPU\", () => false);\nENV7.registerFlag(\"WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD\", () => 1e3);\nENV7.registerFlag(\"WEBGPU_USE_PROFILE_TOOL\", () => false);\nENV7.registerFlag(\"WEBGPU_IMPORT_EXTERNAL_TEXTURE\", () => false);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_util.js\nvar BinaryOpType;\n(function(BinaryOpType2) {\n BinaryOpType2[BinaryOpType2[\"MUL\"] = 0] = \"MUL\";\n BinaryOpType2[BinaryOpType2[\"ADD\"] = 1] = \"ADD\";\n BinaryOpType2[BinaryOpType2[\"SUB\"] = 2] = \"SUB\";\n BinaryOpType2[BinaryOpType2[\"DIV\"] = 3] = \"DIV\";\n BinaryOpType2[BinaryOpType2[\"EQUAL\"] = 4] = \"EQUAL\";\n BinaryOpType2[BinaryOpType2[\"GREATER\"] = 5] = \"GREATER\";\n BinaryOpType2[BinaryOpType2[\"GREATER_EQUAL\"] = 6] = \"GREATER_EQUAL\";\n BinaryOpType2[BinaryOpType2[\"LESS\"] = 7] = \"LESS\";\n BinaryOpType2[BinaryOpType2[\"LESS_EQUAL\"] = 8] = \"LESS_EQUAL\";\n BinaryOpType2[BinaryOpType2[\"LOGICAL_AND\"] = 9] = \"LOGICAL_AND\";\n BinaryOpType2[BinaryOpType2[\"NOT_EQUAL\"] = 10] = \"NOT_EQUAL\";\n BinaryOpType2[BinaryOpType2[\"SQUARED_DIFFERENCE\"] = 11] = \"SQUARED_DIFFERENCE\";\n BinaryOpType2[BinaryOpType2[\"INT_DIV\"] = 12] = \"INT_DIV\";\n BinaryOpType2[BinaryOpType2[\"POW\"] = 13] = \"POW\";\n BinaryOpType2[BinaryOpType2[\"PRELU\"] = 14] = \"PRELU\";\n BinaryOpType2[BinaryOpType2[\"MAX\"] = 15] = \"MAX\";\n BinaryOpType2[BinaryOpType2[\"MIN\"] = 16] = \"MIN\";\n BinaryOpType2[BinaryOpType2[\"COMPLEX_MULTIPLY_REAL\"] = 17] = \"COMPLEX_MULTIPLY_REAL\";\n BinaryOpType2[BinaryOpType2[\"COMPLEX_MULTIPLY_IMAG\"] = 18] = \"COMPLEX_MULTIPLY_IMAG\";\n})(BinaryOpType || (BinaryOpType = {}));\nvar ADD2 = \"return a + b;\";\nvar COMPLEX_MULTIPLY_REAL = \"return areal * breal - aimag * bimag;\";\nvar COMPLEX_MULTIPLY_IMAG = \"return areal * bimag + aimag * breal;\";\nvar DIV2 = \"return a / b;\";\nvar MUL2 = \"return a * b;\";\nvar SQUARED_DIFFERENCE2 = \"return (a - b) * (a - b);\";\nvar SUB2 = \"return a - b;\";\nvar EQUAL2 = \"return f32(a == b);\";\nvar EQUAL_VEC4 = \"return vec4(a == b);\";\nvar GREATER2 = \"return f32(a > b);\";\nvar GREATER_VEC4 = \"return vec4(a > b);\";\nvar GREATER_EQUAL2 = \"return f32(a >= b);\";\nvar GREATER_EQUAL_VEC4 = \"return vec4(a >= b);\";\nvar LESS2 = \"return f32(a < b);\";\nvar LESS_VEC4 = \"return vec4(a < b);\";\nvar LESS_EQUAL2 = \"return f32(a <= b);\";\nvar LESS_EQUAL_VEC4 = \"return vec4(a <= b);\";\nvar LOGICAL_AND2 = \"return f32(f32(a) >= 1.0 && f32(b) >= 1.0);\";\nvar LOGICAL_AND_VEC4 = `return (vec4(a >= vec4(1.0)) *\n vec4(b >= vec4(1.0)));`;\nvar CHECK_NAN_SNIPPET4 = `\n if (isnan(a)) { return a; }\n if (isnan(b)) { return b; }\n `;\nvar CHECK_NAN_SNIPPET_VEC4 = `\n if (isNaN.r) {\n resultTemp.r = uniforms.NAN;\n }\n if (isNaN.g) {\n resultTemp.g = uniforms.NAN;\n }\n if (isNaN.b) {\n resultTemp.b = uniforms.NAN;\n }\n if (isNaN.a) {\n resultTemp.a = uniforms.NAN;\n }\n `;\nvar INT_DIV2 = `\n let s = sign(a) * sign(b);\n let ia = i32(round(a));\n let ib = i32(round(b));\n return f32(idiv(ia, ib, s));\n `;\nvar INT_DIV_VEC4 = `\n let ia = vec4(round(a));\n let ib = vec4(round(b));\n let cond = ib != vec4(0);\n var resultTemp = vec4(0);\n let s = sign(a) * sign(b);\n\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n if (cond[0]) {\n resultTemp[0] = idiv(ia[0], ib[0], s[0]);\n }\n if (cond[1]) {\n resultTemp[1] = idiv(ia[1], ib[1], s[1]);\n }\n if (cond[2]) {\n resultTemp[2] = idiv(ia[2], ib[2], s[2]);\n }\n if (cond[3]) {\n resultTemp[3] = idiv(ia[3], ib[3], s[3]);\n }\n return vec4(resultTemp);\n `;\nvar NOT_EQUAL2 = \"return f32(a != b);\";\nvar NOT_EQUAL_VEC4 = \"return vec4(a != b);\";\nvar POW2 = `\n if(a < 0.0 && floor(b) < b) {\n return uniforms.NAN;\n }\n if (b == 0.0) {\n return 1.0;\n }\n if (round(abs(b) % 2.0) != 1.0) {\n return pow(abs(a), b);\n }\n return sign(a) * pow(abs(a), b);\n `;\nvar POW_VEC4 = `\n let isModRound1Bool = vec4(round(abs(b) % vec4(2.0))) == vec4(1);\n let isModRound1 = vec4(isModRound1Bool);\n let multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);\n var resultTemp = multiplier * pow(abs(a), b);\n\n // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS\n let isExpZero = b == vec4(0.0);\n if (isExpZero.r) {\n resultTemp.r = 1.0;\n }\n if (isExpZero.g) {\n resultTemp.g = 1.0;\n }\n if (isExpZero.b) {\n resultTemp.b = 1.0;\n }\n if (isExpZero.a) {\n resultTemp.a = 1.0;\n }\n let isNaN = a < vec4(0.0) & floor(b) < b;\n ${CHECK_NAN_SNIPPET_VEC4}\n return resultTemp;\n `;\nvar PRELU2 = `if (a < 0.0) { return b * a; } return a;`;\nvar PRELU_VEC4 = `\n let aLessThanZero = vec4(a < vec4(0.0));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n `;\nfunction getMinMaxString(op2, useVec4) {\n const checkNanSnippet = useVec4 ? CHECK_NAN_SNIPPET_VEC4 : CHECK_NAN_SNIPPET4;\n return useVec4 ? `\n var resultTemp = vec4(${op2}(a, b));\n let isNaN = isnanVec4(a) | isnanVec4(b);\n ` + checkNanSnippet + `\n return resultTemp;\n ` : checkNanSnippet + `\n return ${op2}(a, b);\n `;\n}\nfunction getBinaryOpString(type, useVec4) {\n switch (type) {\n case BinaryOpType.MUL:\n return MUL2;\n case BinaryOpType.ADD:\n return ADD2;\n case BinaryOpType.SUB:\n return SUB2;\n case BinaryOpType.DIV:\n return DIV2;\n case BinaryOpType.EQUAL:\n return useVec4 ? EQUAL_VEC4 : EQUAL2;\n case BinaryOpType.GREATER:\n return useVec4 ? GREATER_VEC4 : GREATER2;\n case BinaryOpType.GREATER_EQUAL:\n return useVec4 ? GREATER_EQUAL_VEC4 : GREATER_EQUAL2;\n case BinaryOpType.LESS:\n return useVec4 ? LESS_VEC4 : LESS2;\n case BinaryOpType.LESS_EQUAL:\n return useVec4 ? LESS_EQUAL_VEC4 : LESS_EQUAL2;\n case BinaryOpType.LOGICAL_AND:\n return useVec4 ? LOGICAL_AND_VEC4 : LOGICAL_AND2;\n case BinaryOpType.NOT_EQUAL:\n return useVec4 ? NOT_EQUAL_VEC4 : NOT_EQUAL2;\n case BinaryOpType.SQUARED_DIFFERENCE:\n return SQUARED_DIFFERENCE2;\n case BinaryOpType.INT_DIV:\n return useVec4 ? INT_DIV_VEC4 : INT_DIV2;\n case BinaryOpType.PRELU:\n return useVec4 ? PRELU_VEC4 : PRELU2;\n case BinaryOpType.MAX:\n return getMinMaxString(\"max\", useVec4);\n case BinaryOpType.MIN:\n return getMinMaxString(\"min\", useVec4);\n case BinaryOpType.POW:\n return useVec4 ? POW_VEC4 : POW2;\n case BinaryOpType.COMPLEX_MULTIPLY_REAL:\n return COMPLEX_MULTIPLY_REAL;\n case BinaryOpType.COMPLEX_MULTIPLY_IMAG:\n return COMPLEX_MULTIPLY_IMAG;\n default:\n throw new Error(`BinaryType ${type} is not implemented!`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/unary_op_util.js\nvar UnaryOpType;\n(function(UnaryOpType2) {\n UnaryOpType2[UnaryOpType2[\"ABS\"] = 0] = \"ABS\";\n UnaryOpType2[UnaryOpType2[\"CEIL\"] = 1] = \"CEIL\";\n UnaryOpType2[UnaryOpType2[\"COS\"] = 2] = \"COS\";\n UnaryOpType2[UnaryOpType2[\"COSH\"] = 3] = \"COSH\";\n UnaryOpType2[UnaryOpType2[\"ELU\"] = 4] = \"ELU\";\n UnaryOpType2[UnaryOpType2[\"EXP\"] = 5] = \"EXP\";\n UnaryOpType2[UnaryOpType2[\"EXPM1\"] = 6] = \"EXPM1\";\n UnaryOpType2[UnaryOpType2[\"FLOOR\"] = 7] = \"FLOOR\";\n UnaryOpType2[UnaryOpType2[\"LINEAR\"] = 8] = \"LINEAR\";\n UnaryOpType2[UnaryOpType2[\"LOG\"] = 9] = \"LOG\";\n UnaryOpType2[UnaryOpType2[\"LOGICAL_NOT\"] = 10] = \"LOGICAL_NOT\";\n UnaryOpType2[UnaryOpType2[\"NEG\"] = 11] = \"NEG\";\n UnaryOpType2[UnaryOpType2[\"RELU\"] = 12] = \"RELU\";\n UnaryOpType2[UnaryOpType2[\"RELU6\"] = 13] = \"RELU6\";\n UnaryOpType2[UnaryOpType2[\"LEAKYRELU\"] = 14] = \"LEAKYRELU\";\n UnaryOpType2[UnaryOpType2[\"RSQRT\"] = 15] = \"RSQRT\";\n UnaryOpType2[UnaryOpType2[\"SIN\"] = 16] = \"SIN\";\n UnaryOpType2[UnaryOpType2[\"SINH\"] = 17] = \"SINH\";\n UnaryOpType2[UnaryOpType2[\"SIGMOID\"] = 18] = \"SIGMOID\";\n UnaryOpType2[UnaryOpType2[\"SQRT\"] = 19] = \"SQRT\";\n UnaryOpType2[UnaryOpType2[\"SQUARE\"] = 20] = \"SQUARE\";\n UnaryOpType2[UnaryOpType2[\"TANH\"] = 21] = \"TANH\";\n UnaryOpType2[UnaryOpType2[\"TO_INT\"] = 22] = \"TO_INT\";\n})(UnaryOpType || (UnaryOpType = {}));\nvar ABS3 = `return abs(a);`;\nvar CEIL2 = `return ceil(a);`;\nvar COS2 = `return cos(a);`;\nvar COSH2 = `\n let e2x = exp(-a);\n return (e2x + 1.0 / e2x) / 2.0;\n`;\nvar EXPM12 = `return exp(a) - 1.0;`;\nvar ELU5 = `if (a >= 0.0) { return a; } return (exp(a) - 1.0);`;\nvar ELU_VEC4 = `\n var resFloat = exp(a) - vec4(1.0);\n if (a.r >= 0.0) {\n resFloat.r = a.r;\n }\n if (a.g >= 0.0) {\n resFloat.g = a.g;\n }\n if (a.b >= 0.0) {\n resFloat.b = a.b;\n }\n if (a.a >= 0.0) {\n resFloat.a = a.a;\n }\n return resFloat;\n`;\nvar EXP2 = `return exp(a);`;\nvar FLOOR2 = `return floor(a);`;\nvar LINEAR3 = `return a;`;\nvar LOG2 = `if (a < 0.0) { return 1.0/0.0; }\n return log(a);`;\nvar LOGICAL_NOT2 = `return f32(!(a >= 1.0));`;\nvar NEG2 = `return -a;`;\nvar LEAKYRELU2 = `if (a < 0.0) { return uniforms.alpha * a; } return a;`;\nvar LEAKYRELU_VEC4 = `\n let aLessThanZero = vec4(a < vec4(0.0));\n return (aLessThanZero * (uniforms.alpha * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;\nvar RELU4 = `return select(a, 0.0, a < 0.0);`;\nvar RELU64 = \"return clamp(a, 0.0, 6.0);\";\nvar RELU6_VEC4 = \"return clamp(a, vec4(0.0, 0.0, 0.0, 0.0), vec4(6.0, 6.0, 6.0, 6.0));\";\nvar RELU_VEC4 = `\n return select(a, vec4(0.0), a < vec4(0.0));\n`;\nvar RSQRT2 = `return 1.0/sqrt(a);`;\nvar SIGMOID4 = `return 1.0 / (1.0 + exp(-1.0 * a));`;\nvar SIN2 = `return sin(a);`;\nvar SINH2 = `\n let e2x = exp(a);\n return (e2x - 1.0 / e2x) / 2.0;\n`;\nvar SQRT2 = `return sqrt(a);`;\nvar SQUARE2 = `return a * a;`;\nvar TANH2 = `\n let e2x = exp(-2.0 * abs(a));\n return sign(a) * (1.0 - e2x) / (1.0 + e2x);\n`;\nvar TO_INT2 = `return f32(i32((a)));`;\nfunction getUnaryOpString(type, useVec4) {\n switch (type) {\n case UnaryOpType.ABS:\n return ABS3;\n case UnaryOpType.COS:\n return COS2;\n case UnaryOpType.COSH:\n return COSH2;\n case UnaryOpType.CEIL:\n return CEIL2;\n case UnaryOpType.ELU:\n return useVec4 ? ELU_VEC4 : ELU5;\n case UnaryOpType.EXP:\n return EXP2;\n case UnaryOpType.EXPM1:\n return EXPM12;\n case UnaryOpType.FLOOR:\n return FLOOR2;\n case UnaryOpType.LINEAR:\n return LINEAR3;\n case UnaryOpType.LOG:\n return LOG2;\n case UnaryOpType.LOGICAL_NOT:\n return LOGICAL_NOT2;\n case UnaryOpType.NEG:\n return NEG2;\n case UnaryOpType.LEAKYRELU:\n return useVec4 ? LEAKYRELU_VEC4 : LEAKYRELU2;\n case UnaryOpType.RELU:\n return useVec4 ? RELU_VEC4 : RELU4;\n case UnaryOpType.RELU6:\n return useVec4 ? RELU6_VEC4 : RELU64;\n case UnaryOpType.RSQRT:\n return RSQRT2;\n case UnaryOpType.SIGMOID:\n return SIGMOID4;\n case UnaryOpType.SIN:\n return SIN2;\n case UnaryOpType.SINH:\n return SINH2;\n case UnaryOpType.SQRT:\n return SQRT2;\n case UnaryOpType.SQUARE:\n return SQUARE2;\n case UnaryOpType.TANH:\n return TANH2;\n case UnaryOpType.TO_INT:\n return TO_INT2;\n default:\n throw new Error(`BinaryType ${type} is not implemented!`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/activation_util.js\nvar typeSnippet = (component) => {\n switch (component) {\n case 1:\n return \"f32\";\n case 2:\n return \"vec2\";\n case 3:\n return \"vec3\";\n case 4:\n return \"vec4\";\n default:\n throw new Error(`${component}-component is not supported.`);\n }\n};\nfunction activationFnSnippet(activation2, hasPreluActivationWeights = false, packed = false, coordsLength = 3) {\n if (activation2 === null) {\n return \"\";\n }\n let activationOpSnippet = \"\";\n if (activation2 === \"linear\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.LINEAR);\n } else if (activation2 === \"relu\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.RELU, packed);\n } else if (activation2 === \"elu\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.ELU, packed);\n } else if (activation2 === \"relu6\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.RELU6, packed);\n } else if (activation2 === \"prelu\") {\n activationOpSnippet = getBinaryOpString(BinaryOpType.PRELU, packed);\n } else if (activation2 === \"sigmoid\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.SIGMOID, packed);\n } else if (activation2 === \"leakyrelu\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.LEAKYRELU, packed);\n } else {\n throw new Error(`Activation ${activation2} has not been implemented for the WebGPU backend.`);\n }\n const elementSize = packed ? 4 : 1;\n const dataType = typeSnippet(elementSize);\n let activationFnSnippet2 = \"\";\n if (hasPreluActivationWeights) {\n activationFnSnippet2 = `\n fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} {\n let b = getPreluActivationWeightsByOutputCoords(coords);\n ${activationOpSnippet}\n }`;\n } else {\n activationFnSnippet2 = `\n fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} {\n ${activationOpSnippet}\n }`;\n }\n return activationFnSnippet2;\n}\nfunction biasActivationSnippet(hasBias, activation2) {\n return `\n ${hasBias ? \"value = value + getBiasByOutputCoords(coords);\" : \"\"}\n ${activation2 ? \"value = activation(value, coords);\" : \"\"}\n `;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/shader_util.js\nfunction symbolicallyComputeStrides2(indicesArr, variableName) {\n if (Math.max(...indicesArr) > 3) {\n throw new Error(\"Cannot symbolically compute strides for rank > 4 tensor.\");\n }\n const numCoords = indicesArr.length;\n const shape = indicesArr.map((d) => `${variableName}[${d}]`);\n const strides = new Array(numCoords - 1);\n strides[numCoords - 2] = shape[numCoords - 1];\n for (let i2 = numCoords - 3; i2 >= 0; --i2) {\n strides[i2] = `(${strides[i2 + 1]} * ${shape[i2 + 1]})`;\n }\n return strides;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu_program.js\nvar compileProgram2 = (device, program, inputsData, output) => {\n const outputData = { dtype: output.dtype, shape: output.shape };\n const source = makeShader2(inputsData, outputData, program);\n const module = device.createShaderModule({ code: source, label: program.constructor.name });\n const pipeline = device.createComputePipeline({\n compute: { module, entryPoint: \"main\" },\n label: program.constructor.name,\n layout: \"auto\"\n });\n return pipeline;\n};\nfunction getCoordsDataType2(rank) {\n if (rank <= 1) {\n return \"i32\";\n } else if (rank === 2) {\n return `vec2`;\n } else if (rank === 3) {\n return `vec3`;\n } else if (rank === 4) {\n return `vec4`;\n } else if (rank === 5) {\n return `vec5`;\n } else if (rank === 6) {\n return `vec6`;\n } else {\n throw Error(`GPU for rank ${rank} is not yet supported`);\n }\n}\nfunction getCoordsXYZ(index) {\n if (index === 0) {\n return \"x\";\n } else if (index === 1) {\n return \"y\";\n } else if (index === 2) {\n return \"z\";\n } else if (index === 3) {\n return \"w\";\n } else if (index === 4) {\n return \"u\";\n } else if (index === 5) {\n return \"v\";\n } else {\n throw Error(`Index ${index} is not yet supported`);\n }\n}\nfunction getMainHeaderAndGlobalIndexString() {\n return `\n ${getMainHeaderString()}\n let index = getGlobalIndex();\n`;\n}\nfunction getMainHeaderString() {\n return `\n ${getWorkGroupSizeString()}\n fn main(@builtin(local_invocation_id) LocalId : vec3,\n @builtin(global_invocation_id) GlobalId : vec3,\n @builtin(num_workgroups) NumWorkgroups: vec3) {\n localId = LocalId;\n globalId = GlobalId;\n numWorkgroups = NumWorkgroups;\n`;\n}\nfunction getWorkGroupSizeString() {\n return `\n @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)\n`;\n}\nfunction makeShader2(inputInfo, outputData, program) {\n const prefixSnippets = [];\n prefixSnippets.push(`\n const workGroupSizeX = ${program.workGroupSize[0]}u;\n const workGroupSizeY = ${program.workGroupSize[1]}u;\n const workGroupSizeZ = ${program.workGroupSize[2]}u;\n\n var localId: vec3;\n var globalId: vec3;\n var numWorkgroups: vec3;\n\n // Only used when the y/z dimension of workgroup size is 1.\n fn getGlobalIndex() -> i32 {\n ${isFlatDispatch(program) ? ` return i32(globalId.x);` : ` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +\n localId.y * workGroupSizeX + localId.x;\n let workGroupID = (globalId - localId)/vec3(\n workGroupSizeX, workGroupSizeY, workGroupSizeZ);\n\n return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +\n workGroupID.y * numWorkgroups.x + workGroupID.x) *\n (workGroupSizeX * workGroupSizeY * workGroupSizeZ) +\n localInvocationIndex);\n `}\n }\n `);\n if (program.isFromPixels) {\n prefixSnippets.push(`\n struct Uniform {\n size : i32,\n numChannels : i32,\n outShapeStrides : vec2,\n };\n\n @group(0) @binding(0) var result: array<${mapToWgslTypes(outputData.dtype, program.isVec4)}>;\n @group(0) @binding(2) var uniforms: Uniform;\n `);\n return [\n commonSnippet,\n prefixSnippets.join(\"\\n\"),\n getCoordsFromIndexSnippet(outputData.shape),\n program.getUserCode()\n ].join(\"\\n\");\n }\n let preMemberIsStruct = false;\n let currentMemberIsStruct = false;\n let uniformDeclaration = \"struct Uniforms { NAN : f32, \";\n program.variableNames.forEach((x, i2) => {\n const perDataType = getCoordsDataType2(inputInfo[i2].shape.length);\n if (perDataType === \"vec5\" || perDataType === \"vec6\") {\n currentMemberIsStruct = true;\n }\n if (preMemberIsStruct || currentMemberIsStruct) {\n uniformDeclaration += `@align(16) `;\n }\n preMemberIsStruct = currentMemberIsStruct;\n uniformDeclaration += `${x.charAt(0).toLowerCase() + x.slice(1)}Shape : ${perDataType}, `;\n });\n const outputDataType = getCoordsDataType2(outputData.shape.length);\n currentMemberIsStruct = outputDataType === \"vec5\" || outputDataType === \"vec6\";\n if (preMemberIsStruct || currentMemberIsStruct) {\n uniformDeclaration += `@align(16) `;\n }\n preMemberIsStruct = currentMemberIsStruct;\n uniformDeclaration += `outShape : ${outputDataType}, `;\n const stridesLength = outputData.shape.length - 1;\n const stridesDataType = getCoordsDataType2(stridesLength);\n currentMemberIsStruct = stridesDataType === \"vec5\" || stridesDataType === \"vec6\";\n if (preMemberIsStruct || currentMemberIsStruct) {\n uniformDeclaration += `@align(16) `;\n }\n preMemberIsStruct = currentMemberIsStruct;\n uniformDeclaration += `\n outShapeStrides: ${stridesDataType}, `;\n if (program.size) {\n if (preMemberIsStruct) {\n uniformDeclaration += `@align(16) `;\n }\n preMemberIsStruct = false;\n uniformDeclaration += \"size : i32, \";\n }\n if (program.uniforms) {\n if (preMemberIsStruct) {\n uniformDeclaration += `@align(16) `;\n }\n uniformDeclaration += program.uniforms;\n }\n uniformDeclaration += \"};\";\n prefixSnippets.push(uniformDeclaration);\n if (program.atomic) {\n prefixSnippets.push(`\n @group(0) @binding(0) var result: array>;\n `);\n } else {\n prefixSnippets.push(`\n @group(0) @binding(0) var result: array<${mapToWgslTypes(outputData.dtype, program.isVec4)}>;\n `);\n }\n program.variableNames.forEach((x, i2) => {\n prefixSnippets.push(`\n @group(0) @binding(${1 + i2}) var ${x}: array<${program.variableTypes ? program.variableTypes[i2] : mapToWgslTypes(inputInfo[i2].dtype, program.isVec4)}>;\n `);\n });\n if (uniformDeclaration !== \"\") {\n prefixSnippets.push(`\n @group(0) @binding(${1 + program.variableNames.length}) var uniforms: Uniforms;\n `);\n }\n const coordsSnippet = getOutputCoordsSnippet(outputData.shape, program.dispatchLayout);\n const sources = [\n commonSnippet,\n prefixSnippets.join(\"\\n\"),\n getCoordsFromIndexSnippet(outputData.shape),\n coordsSnippet,\n getOutputIndexFromCoordsSnippet(outputData.shape.length)\n ];\n if (!program.atomic) {\n sources.push(setOutputSnippet(outputData.shape, outputData.dtype, program.isVec4));\n }\n const inputSnippet = inputInfo.map((x, i2) => getInputSnippet(x, outputData.shape, program.variableTypes ? program.variableTypes[i2] === \"vec4\" : program.isVec4, program.dispatchLayout.x.length === outputData.shape.length)).join(\"\\n\");\n sources.push(inputSnippet);\n sources.push(program.getUserCode());\n const source = sources.join(\"\\n\");\n return source;\n}\nfunction makeShaderKey2(program, shapes, inputsData, output) {\n let key = program.shaderKey;\n if (program.isFromPixels) {\n return key;\n }\n const types = inputsData.map((d) => d.dtype).concat(output.dtype);\n const broadcastDims = inputsData.map((d) => backend_util_exports.getBroadcastDims(d.shape, output.shape));\n const inputShapesEqualsOutShape = inputsData.map((d) => util_exports.arraysEqual(d.shape, output.shape)).join(\"_\");\n const broadcastDimsKey = broadcastDims.map((d) => d.join(\"_\")).join(\";\");\n const flatDispatchString = isFlatDispatch(program) ? \"flatDispatch\" : \"\";\n key += \"_\" + (program.workGroupSize ? program.workGroupSize.join(\",\") : \"\") + shapes.map((shape) => shape.length).join(\",\") + types.join(\",\") + program.variableNames.join(\",\") + broadcastDimsKey + inputShapesEqualsOutShape + flatDispatchString;\n return key;\n}\nvar commonSnippet = `\n struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};\n struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};\n\n // Checks whether coordinates lie within the bounds of the shape.\n fn coordsInBounds2D(coord : vec2, shape : vec2) -> bool {\n return all(coord >= vec2(0)) && all(coord < shape);\n }\n fn coordsInBounds3D(coord : vec3, shape : vec3) -> bool {\n return all(coord >= vec3(0)) && all(coord < shape);\n }\n fn coordsInBounds4D(coord : vec4, shape : vec4) -> bool {\n return all(coord >= vec4(0)) && all(coord < shape);\n }\n\n fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {\n return coord;\n }\n fn getIndexFromCoords2D(coords : vec2, shape : vec2) -> i32 {\n return dot(coords, vec2(shape.y, 1));\n }\n fn getIndexFromCoords3D(coords : vec3, shape : vec3) -> i32 {\n return dot(coords, vec3(shape.y * shape.z, shape.z, 1));\n }\n fn getIndexFromCoords4D(coords : vec4, shape : vec4) -> i32 {\n return dot(coords, vec4(\n shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));\n }\n fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {\n let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);\n return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;\n }\n fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {\n let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);\n return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;\n }\n\n fn idiv(a: i32, b: i32, sign: f32) -> i32 {\n var res: i32 = a / b;\n let mod: i32 = a % b;\n if (sign < 0. && mod != 0) {\n res = res - 1;\n }\n return res;\n }\n\n // NaN defination in IEEE 754-1985 is :\n // - sign = either 0 or 1.\n // - biased exponent = all 1 bits.\n // - fraction = anything except all 0 bits (since all 0 bits represents infinity).\n // https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers\n fn isnan(val: f32) -> bool {\n let floatToUint: u32 = bitcast(val);\n return (floatToUint & 0x7fffffffu) > 0x7f800000u;\n }\n fn isnanVec4(val : vec4) -> vec4 {\n return vec4(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));\n }\n`;\nfunction getCoordsFromIndexSnippet(shape) {\n const rank = shape.length;\n if (rank <= 1) {\n return `fn getCoordsFromIndex(index : i32) -> i32 { return index; }`;\n }\n const strides = util_exports.computeStrides(shape);\n const dtype = getCoordsDataType2(rank);\n const coords3 = [];\n for (let i2 = 0; i2 < rank; i2++) {\n coords3.push(`d${i2}`);\n }\n if (strides.length === 1) {\n return ` fn getCoordsFromIndex(index : i32) -> vec2 {\n let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;\n return vec2(d0, d1);\n }`;\n }\n let snippet;\n snippet = \"var index2 = index;\" + strides.map((_, i2) => {\n const line1 = `let ${coords3[i2]} = index2 / uniforms.outShapeStrides.${getCoordsXYZ(i2)}`;\n const line2 = i2 === strides.length - 1 ? `let ${coords3[i2 + 1]} = index2 - ${coords3[i2]} * uniforms.outShapeStrides.${getCoordsXYZ(i2)}` : `index2 = index2 - ${coords3[i2]} * uniforms.outShapeStrides.${getCoordsXYZ(i2)}`;\n return `${line1}; ${line2};`;\n }).join(\"\");\n return `\n fn getCoordsFromIndex(index : i32) -> ${dtype} {\n ${snippet}\n return ${dtype}(${coords3.join(\",\")});\n }\n `;\n}\nfunction getInputAtCoordsSnippet(inputInfo, isVec4) {\n const texName = inputInfo.name;\n const rank = inputInfo.shape.length;\n const type = getCoordsDataType2(rank);\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const dims = [\"d0\", \"d1\", \"d2\", \"d3\", \"d4\", \"d5\"].slice(0, rank);\n const inputs = dims.map((d) => `${d} : i32`).join(\", \");\n if (rank < 1) {\n if (isVec4) {\n return `\n fn ${funcName}() -> vec4 {\n return vec4(${texName}[0]);\n }\n `;\n }\n return `\n fn ${funcName}() ->f32 {\n return f32(${texName}[0]);\n }\n `;\n }\n const shapeStr = `uniforms.${texName.charAt(0).toLowerCase() + texName.slice(1)}Shape`;\n let rankStr = `${rank}D`;\n if (rank === 0) {\n rankStr = \"1D\";\n }\n if (isVec4) {\n return `\n fn ${funcName}(${inputs}) -> vec4 {\n return vec4(${texName}[getIndexFromCoords${rankStr}(${type}(${dims.join(\",\")}),\n ${shapeStr}) / 4]);\n }\n `;\n }\n return `\n fn ${funcName}(${inputs}) -> f32 {\n return f32(${texName}[getIndexFromCoords${rankStr}(${type}(${dims.join(\",\")}),\n ${shapeStr})]);\n }\n `;\n}\nfunction getInputByOutputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout) {\n const texName = inputInfo.name;\n const texFuncSnippet = texName.charAt(0).toUpperCase() + texName.slice(1);\n const funcName = \"get\" + texFuncSnippet + \"ByOutput\";\n const inRank = inputInfo.shape.length;\n const outRank = outShape.length;\n const type = getCoordsDataType2(outRank);\n if (util_exports.arraysEqual(inputInfo.shape, outShape) && isFlatDispatchLayout) {\n if (isVec4) {\n return `\n fn ${funcName}Index(globalIndex : i32) -> vec4 {\n return vec4(${texName}[globalIndex]);\n }\n\n fn ${funcName}Coords(coords : ${type}) -> vec4 {\n return vec4(${texName}[${outRank > 1 ? \"getOutputIndexFromCoords(coords)\" : \"coords\"} / 4]);\n }\n `;\n } else {\n return `\n fn ${funcName}Index(globalIndex : i32) -> f32 {\n return f32(${texName}[globalIndex]);\n }\n\n fn ${funcName}Coords(coords : ${type}) -> f32 {\n return f32(${texName}[${outRank > 1 ? \"getOutputIndexFromCoords(coords)\" : \"coords\"}]);\n }\n `;\n }\n }\n const broadcastDims = backend_util_exports.getBroadcastDims(inputInfo.shape, outShape);\n const rankDiff = outRank - inRank;\n let coordsSnippet = \"\";\n if (inRank === 0) {\n if (isVec4) {\n return `\n fn ${funcName}Index(globalIndex : i32) -> vec4 {\n return get${texFuncSnippet}();\n }\n\n fn ${funcName}Coords(coords : ${type}) -> vec4 {\n return get${texFuncSnippet}();\n }\n `;\n }\n return `\n fn ${funcName}Index(globalIndex : i32) -> f32{\n return get${texFuncSnippet}();\n }\n\n fn ${funcName}Coords(coords : ${type}) -> f32{\n return get${texFuncSnippet}();\n }\n `;\n } else {\n if (outRank < 2 && broadcastDims.length >= 1) {\n coordsSnippet = \"coords = 0;\";\n } else {\n coordsSnippet = broadcastDims.map((d) => `coords.${getCoordsXYZ(d + rankDiff)} = 0;`).join(\"\\n\");\n }\n }\n let unpackedCoordsSnippet = \"\";\n if (outRank < 2 && inRank > 0) {\n unpackedCoordsSnippet = \"coords\";\n } else {\n if (outRank > 1) {\n const coordsType = getCoordsDataType2(inRank);\n const coordsValues = inputInfo.shape.map((s2, i2) => `coords.${getCoordsXYZ(i2 + rankDiff)}`).join(\", \");\n unpackedCoordsSnippet = `${coordsType}(${coordsValues})`;\n } else {\n unpackedCoordsSnippet = \"coords\";\n }\n }\n const shapeStr = `uniforms.${texName.charAt(0).toLowerCase() + texName.slice(1)}Shape`;\n const rankStr = `${inRank}D`;\n if (isVec4) {\n return `\n fn ${funcName}Index(globalIndex : i32) -> vec4 {\n var coords = getCoordsFromIndex(globalIndex);\n ${coordsSnippet}\n return ${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr}) / 4];\n }\n\n fn ${funcName}Coords(coordsIn : ${type}) -> vec4 {\n var coords = coordsIn;\n ${coordsSnippet}\n return ${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr}) / 4];\n }\n `;\n }\n return `\n fn ${funcName}Index(globalIndex : i32) -> f32 {\n var coords = getCoordsFromIndex(globalIndex);\n ${coordsSnippet}\n return f32(${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr})]);\n }\n\n fn ${funcName}Coords(coordsIn : ${type}) -> f32 {\n var coords = coordsIn;\n ${coordsSnippet}\n return f32(${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr})]);\n }\n`;\n}\nfunction getInputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout) {\n let res = getInputAtCoordsSnippet(inputInfo, isVec4);\n const inShape = inputInfo.shape;\n if (inShape.length <= outShape.length) {\n res += getInputByOutputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout);\n }\n return res;\n}\nfunction getOutputCoordsSnippet(outShape, dispatchLayout) {\n const { x, y = [], z = [] } = dispatchLayout;\n const outRank = outShape.length;\n if (x.length === outRank) {\n const dtype2 = getCoordsDataType2(outRank);\n const snippet2 = `fn getOutputCoords() -> ${dtype2}{\n let globalIndex = getGlobalIndex();\n return getCoordsFromIndex(globalIndex);\n }\n `;\n return snippet2;\n }\n let gatherDimensionsStr = \"\";\n const dims = [x, y, z];\n let rank = 0;\n for (let i2 = 0; i2 < dims.length; i2++) {\n const arr = dims[i2];\n if (arr.length === 0) {\n continue;\n }\n rank += arr.length;\n if (arr.length === 1) {\n gatherDimensionsStr += `let d${arr[0]} = i32(globalId[${i2}]);`;\n } else {\n const strides = symbolicallyComputeStrides2(arr, \"uniforms.outShape\");\n gatherDimensionsStr += `var index${i2} = i32(globalId[${i2}]);`;\n for (let j = 0; j < strides.length; j++) {\n gatherDimensionsStr += `let d${arr[j]} = index${i2} / ${strides[j]};`;\n if (j === strides.length - 1) {\n gatherDimensionsStr += `let d${arr[j + 1]} = index${i2} - d${arr[j]} * ${strides[j]};`;\n } else {\n gatherDimensionsStr += `index${i2} = index${i2} - d${arr[j]} * ${strides[j]};`;\n }\n }\n }\n }\n const dimensions = [];\n for (let i2 = 0; i2 < rank; i2++) {\n dimensions.push(`d${i2}`);\n }\n const dtype = getCoordsDataType2(rank);\n let snippet = `fn getOutputCoords() -> ${dtype} {\n ${gatherDimensionsStr}\n`;\n if (dimensions.length === 0) {\n snippet += `return ${dtype}(0); }`;\n } else {\n snippet += `return ${dtype}(${dimensions.join(\",\")}); }`;\n }\n return snippet;\n}\nfunction getOutputIndexFromCoordsSnippet(outRank) {\n let snippet = \"\";\n switch (outRank) {\n case 0:\n case 1:\n snippet += `\n fn getOutputIndexFromCoords(coords : i32) -> i32 {\n return coords;\n }\n `;\n break;\n case 2:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec2) -> i32 {\n return dot(coords, vec2(uniforms.outShapeStrides, 1));\n }\n `;\n break;\n case 3:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec3) -> i32 {\n return dot(coords, vec3(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));\n }\n `;\n break;\n case 4:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec4) -> i32 {\n return dot(coords, vec4(\n uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));\n }\n `;\n break;\n case 5:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec5) -> i32 {\n return coords.x * uniforms.outShapeStrides.x +\n coords.y * uniforms.outShapeStrides.y +\n coords.z * uniforms.outShapeStrides.z +\n coords.w * uniforms.outShapeStrides.w +\n coords.u;\n }\n `;\n break;\n case 6:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec6) -> i32 {\n return coords.x * uniforms.outShapeStrides.x +\n coords.y * uniforms.outShapeStrides.y +\n coords.z * uniforms.outShapeStrides.z +\n coords.w * uniforms.outShapeStrides.w +\n coords.u * uniforms.outShapeStrides.u +\n coords.v;\n }\n `;\n break;\n default:\n util_exports.assert(false, () => `Unsupported ${outRank}D shape`);\n break;\n }\n return snippet;\n}\nfunction isFlatDispatch(program) {\n return program.dispatch[1] === 1 && program.dispatch[2] === 1;\n}\nfunction mapToWgslTypes(type, isVec4) {\n if (type === \"float32\") {\n return isVec4 ? \"vec4\" : \"f32\";\n } else if (type === \"int32\") {\n return isVec4 ? \"vec4\" : \"i32\";\n } else if (type === \"bool\") {\n return isVec4 ? \"vec4\" : \"i32\";\n }\n return type;\n}\nfunction setOutputSnippet(outShape, outBufferType, isVec4) {\n const outRank = outShape.length;\n const wgslType = mapToWgslTypes(outBufferType, isVec4);\n let snippet;\n if (isVec4) {\n snippet = `fn setOutputAtIndex(flatIndex : i32, value : vec4) {\n result[flatIndex] = ${wgslType}(value);\n }\n fn setOutputAtIndexI32(flatIndex : i32, value : vec4) {\n result[flatIndex] = ${wgslType}(value);\n }`;\n } else {\n snippet = `fn setOutputAtIndex(flatIndex : i32, value : f32) {\n result[flatIndex] = ${wgslType}(value);\n }\n fn setOutputAtIndexI32(flatIndex : i32, value : i32) {\n result[flatIndex] = ${wgslType}(value);\n }`;\n }\n if (outRank >= 2) {\n const dims = [\"d0\", \"d1\", \"d2\", \"d3\", \"d4\", \"d5\"].slice(0, outRank);\n const type = getCoordsDataType2(outRank);\n if (isVec4) {\n snippet += `\n fn setOutputAtCoords(${dims.map((d) => `${d} : i32`).join(\", \")}, value : vec4) {\n let flatIndex = getOutputIndexFromCoords(${type}(${dims.join(\", \")}));\n setOutputAtIndex(flatIndex / 4, value);\n }\n fn setOutputAtCoordsI32(${dims.map((d) => `${d} : i32`).join(\", \")}, value : vec4) {\n let flatIndex = getOutputIndexFromCoords(${type}(${dims.join(\", \")}));\n setOutputAtIndexI32(flatIndex / 4, value);\n }\n `;\n } else {\n snippet += `\n fn setOutputAtCoords(${dims.map((d) => `${d} : i32`).join(\", \")}, value : f32) {\n let flatIndex = getOutputIndexFromCoords(${type}(${dims.join(\", \")}));\n setOutputAtIndex(flatIndex, value);\n }\n fn setOutputAtCoordsI32(${dims.map((d) => `${d} : i32`).join(\", \")}, value : i32) {\n let flatIndex = getOutputIndexFromCoords(${type}(${dims.join(\", \")}));\n setOutputAtIndexI32(flatIndex, value);\n }\n `;\n }\n }\n return snippet;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu_util.js\nvar webgpu_util_exports = {};\n__export(webgpu_util_exports, {\n ArrayBufferToTypedArray: () => ArrayBufferToTypedArray,\n GPUBytesPerElement: () => GPUBytesPerElement,\n MatMulProgramType: () => MatMulProgramType,\n computeDispatch: () => computeDispatch,\n computeWorkGroupSizeForConv2d: () => computeWorkGroupSizeForConv2d,\n computeWorkGroupSizeForMatMul: () => computeWorkGroupSizeForMatMul,\n computeWorkPerThreadForConv2d: () => computeWorkPerThreadForConv2d,\n flatDispatchLayout: () => flatDispatchLayout,\n isWebGPUSupported: () => isWebGPUSupported,\n tilesFitEvenlyIntoShape: () => tilesFitEvenlyIntoShape\n});\nvar arrayProduct = (arr) => {\n let product = 1;\n for (let i2 = 0; i2 < arr.length; i2++) {\n product *= arr[i2];\n }\n return product;\n};\nfunction tilesFitEvenlyIntoShape(tileSize, shape) {\n if (tileSize.length !== shape.length) {\n throw new Error(`Cannot compute whether rank ${tileSize.length} tiles fit evenly into rank ${shape.length} shape - ranks must match.`);\n }\n return shape.every((dim, dimIdx) => dim % tileSize[dimIdx] === 0);\n}\nfunction computeDispatch(layout, outputShape, workGroupSize = [1, 1, 1], elementsPerThread = [1, 1, 1]) {\n const [dispatchX, dispatchY, dispatchZ] = [\n Math.ceil(arrayProduct(layout.x.map((d) => outputShape[d])) / (workGroupSize[0] * elementsPerThread[0])),\n layout.y ? Math.ceil(arrayProduct(layout.y.map((d) => outputShape[d])) / (workGroupSize[1] * elementsPerThread[1])) : 1,\n layout.z ? Math.ceil(arrayProduct(layout.z.map((d) => outputShape[d])) / (workGroupSize[2] * elementsPerThread[2])) : 1\n ];\n return [dispatchX, dispatchY, dispatchZ];\n}\nfunction computeWorkGroupSizeForConv2d(layout, outputShape, isVec4 = false) {\n if (isVec4) {\n return [8, 8, 1];\n }\n const dim0 = arrayProduct(layout.x.map((d) => outputShape[d]));\n const dim1 = arrayProduct(layout.y.map((d) => outputShape[d]));\n if (dim0 <= 4) {\n return [4, 16, 1];\n }\n if (dim1 <= 4) {\n return [16, 4, 1];\n }\n return [16, 16, 1];\n}\nfunction computeWorkGroupSizeForMatMul(dimAOuter, dimInner, dimBOuter) {\n if (dimAOuter === 1) {\n return [32, 1, 1];\n } else if (dimBOuter === 1) {\n return [1, 32, 1];\n }\n return [8, 8, 1];\n}\nfunction computeWorkPerThreadForConv2d(layout, outputShape, isVec4 = false) {\n if (isVec4) {\n return [4, 4, 1];\n }\n const dim0 = arrayProduct(layout.x.map((d) => outputShape[d]));\n const dim1 = arrayProduct(layout.y.map((d) => outputShape[d]));\n if (dim0 <= 4) {\n return [1, 2, 1];\n }\n if (dim1 <= 4) {\n return [2, 1, 1];\n }\n return [2, 2, 1];\n}\nfunction flatDispatchLayout(shape) {\n return { x: shape.map((d, i2) => i2) };\n}\nfunction GPUBytesPerElement(dtype) {\n if (dtype === \"float32\" || dtype === \"int32\" || dtype === \"bool\" || dtype === \"string\") {\n return 4;\n } else if (dtype === \"complex64\") {\n return 8;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\nfunction ArrayBufferToTypedArray(data, dtype) {\n if (dtype === \"float32\") {\n return new Float32Array(data);\n } else if (dtype === \"int32\") {\n return new Int32Array(data);\n } else if (dtype === \"bool\" || dtype === \"string\") {\n return Uint8Array.from(new Int32Array(data));\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\nfunction isWebGPUSupported() {\n return (typeof window !== \"undefined\" || typeof WorkerGlobalScope !== \"undefined\") && !!navigator.gpu;\n}\nvar MatMulProgramType;\n(function(MatMulProgramType2) {\n MatMulProgramType2[MatMulProgramType2[\"MatMulPackedVec4Program\"] = 0] = \"MatMulPackedVec4Program\";\n MatMulProgramType2[MatMulProgramType2[\"MatMulReduceProgram\"] = 1] = \"MatMulReduceProgram\";\n MatMulProgramType2[MatMulProgramType2[\"MatMulSplitKProgram\"] = 2] = \"MatMulSplitKProgram\";\n MatMulProgramType2[MatMulProgramType2[\"MatMulSmallOutputSizeProgram\"] = 3] = \"MatMulSmallOutputSizeProgram\";\n MatMulProgramType2[MatMulProgramType2[\"MatMulPackedProgram\"] = 4] = \"MatMulPackedProgram\";\n MatMulProgramType2[MatMulProgramType2[\"MatMulMax\"] = 5] = \"MatMulMax\";\n})(MatMulProgramType || (MatMulProgramType = {}));\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_packed_webgpu.js\nfunction matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) {\n util_exports.assert(transposeA && component === 1 || !transposeA, () => `transposeA ${transposeA} is not compatible with component size ${component}`);\n const sampleA = `\n let batch = ${batchAEqualOne ? \"0\" : \"batchIn\"};\n let batchASize = uniforms.aShape[1] * uniforms.aShape[2];\n ${transposeA ? `value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${component}];` : `value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${component}];`}\n\n `;\n let sampleB;\n if (transposeB === false) {\n sampleB = `value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${component}];`;\n } else {\n sampleB = `value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${component}];`;\n }\n return `\n fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} {\n var value = ${typeSnippet(component)}(0.0);\n let col = colIn * ${component};\n ${fitAOuter && fitInner ? sampleA : `\n ${transposeA ? `if(row < uniforms.dimAOuter && col < uniforms.dimInner)` : `if(row < uniforms.aShape[1] && col < uniforms.aShape[2])`}\n {\n ${sampleA}\n }\n `}\n return value;\n }\n\n fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} {\n let col = colIn * ${component};\n let batch = ${batchBEqualOne ? \"0\" : \"batchIn\"};\n let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];\n var value = ${typeSnippet(component)}(0.0);\n ${sampleB}\n return value;\n }\n `;\n}\nfunction matMulReadWriteFnSource(hasBias, activation2, batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) {\n return `\n ${matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter, fitBOuter, fitInner, component)}\n fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${typeSnippet(component)}) {\n let col = colIn * ${component};\n ${fitAOuter && fitBOuter ? \"\" : \"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)\"}\n {\n var value = valueIn;\n let coords = vec3(batch, row, col);\n ${biasActivationSnippet(hasBias, activation2)}\n setOutputAtCoords(coords[0], coords[1], coords[2], value);\n }\n }\n `;\n}\nvar writeDataToSubASnippet = (transpose7) => {\n if (transpose7) {\n return `\n mm_Asub[inputRow][inputCol] = mm_readA(batch,\n t * TileInner + inputRow,\n globalRowStart + inputCol);\n `;\n } else {\n return `\n mm_Asub[inputRow][inputCol] = mm_readA(batch,\n globalRowStart + inputRow,\n t * TileInner + inputCol);\n `;\n }\n};\nvar readDataFromSubASnippet = (transposeA) => {\n return transposeA ? \"let ACached = mm_Asub[k][tileRow + innerRow];\" : \"let ACached = mm_Asub[tileRow + innerRow][k];\";\n};\nfunction makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false, tileInner = 32) {\n const tileAOuter = workPerThread[1] * workGroupSize[1];\n const tileBOuter = workPerThread[0] * workGroupSize[0];\n const tileAWidth = transposeA ? tileAOuter : tileInner;\n const tileAHight = transposeA ? tileInner : tileAOuter;\n util_exports.assert(tileAHight % workGroupSize[1] === 0 && tileAWidth % workGroupSize[0] === 0 && tileInner % workGroupSize[1] === 0, () => `tileAHight ${tileAHight} must be divisible by workGroupSize[1]${workGroupSize[1]}, tileAWidth ${tileAWidth} must be divisible by workGroupSize[0]${workGroupSize[0]}, tileInner ${tileInner} must be divisible by workGroupSize[1]${workGroupSize[1]}`);\n const rowPerThreadA = tileAHight / workGroupSize[1];\n const colPerThreadA = tileAWidth / workGroupSize[0];\n const rowPerThreadB = tileInner / workGroupSize[1];\n return `\n var mm_Asub : array, ${tileAHight}>;\n var mm_Bsub : array, ${tileInner}>;\n const RowPerThread = ${workPerThread[1]};\n const ColPerThread = ${workPerThread[0]};\n const TileInner = ${tileInner};\n\n @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)\n fn main(@builtin(local_invocation_id) LocalId : vec3,\n @builtin(global_invocation_id) GlobalId : vec3,\n @builtin(num_workgroups) NumWorkgroups: vec3,\n @builtin(workgroup_id) workgroupId: vec3) {\n localId = LocalId;\n globalId = GlobalId;\n numWorkgroups = NumWorkgroups;\n\n let tileRow = i32(localId.y) * RowPerThread;\n let tileCol = i32(localId.x) * ColPerThread;\n\n let globalRow = i32(globalId.y) * RowPerThread;\n let globalCol = i32(globalId.x) * ColPerThread;\n let batch = i32(globalId.z);\n let globalRowStart = i32(workgroupId.y) * ${tileAOuter};\n\n let numTiles = (uniforms.dimInner - 1) / TileInner + 1;\n\n var acc : array, RowPerThread>;\n\n // Without this initialization strange values show up in acc.\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {\n acc[innerRow][innerCol] = 0.0;\n }\n }\n\n let tileRowA = i32(localId.y) * ${rowPerThreadA};\n let tileColA = i32(localId.x) * ${colPerThreadA};\n let tileRowB = i32(localId.y) * ${rowPerThreadB};\n // Loop over shared dimension.\n for (var t = 0; t < numTiles; t = t + 1) {\n // Load one tile of A into local memory.\n for (var innerRow = 0; innerRow < ${rowPerThreadA}; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ${colPerThreadA}; innerCol = innerCol + 1) {\n let inputRow = tileRowA + innerRow;\n let inputCol = tileColA + innerCol;\n ${writeDataToSubASnippet(transposeA)}\n }\n }\n\n // Load one tile of B into local memory.\n for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {\n let inputRow = tileRowB + innerRow;\n let inputCol = tileCol + innerCol;\n mm_Bsub[inputRow][inputCol] = mm_readB(batch,\n t * TileInner + inputRow,\n globalCol + innerCol);\n }\n }\n\n workgroupBarrier();\n\n // Compute acc values for a single thread.\n var BCached : array;\n for (var k = 0; k < TileInner; k = k + 1) {\n for (var inner = 0; inner < ColPerThread; inner = inner + 1) {\n BCached[inner] = mm_Bsub[k][tileCol + inner];\n }\n\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n ${readDataFromSubASnippet(transposeA)}\n for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {\n acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];\n }\n }\n }\n\n workgroupBarrier();\n }\n\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {\n mm_write(batch, globalRow + innerRow, globalCol + innerCol,\n acc[innerRow][innerCol]);\n }\n }\n }\n `;\n}\nvar readVectorASnippet = (transpose7) => {\n return transpose7 ? `\n mm_readA(batch, colA, globalRow),\n mm_readA(batch, colA + 1, globalRow),\n mm_readA(batch, colA + 2, globalRow),\n mm_readA(batch, colA + 3, globalRow)\n ` : `\n mm_readA(batch, globalRow, colA),\n mm_readA(batch, globalRow, colA + 1),\n mm_readA(batch, globalRow, colA + 2),\n mm_readA(batch, globalRow, colA + 3)\n `;\n};\nfunction makeVectorMatrixProductSource(workGroupSize, transposeA = false) {\n util_exports.assert(workGroupSize[1] === 1 && workGroupSize[2] === 1, () => `A linear work group size is required. But got ${workGroupSize}.`);\n return `\n const TileSize = ${workGroupSize[0] * 4};\n var mm_Asub : array, ${workGroupSize[0]}>;\n\n ${getMainHeaderString()}\n let tileCol = i32(localId.x);\n let globalCol = i32(globalId.x);\n let globalRow = i32(globalId.y);\n\n let numTiles = (uniforms.dimInner - 1) / TileSize + 1;\n let batch = i32(globalId.z);\n // Without this initialization strange values show up in acc.\n var acc = 0.0;\n\n // Loop over shared dimension.\n for (var t = 0; t < numTiles; t = t + 1) {\n // Load one tile of A into local memory.\n let colA = t * TileSize + tileCol * 4;\n mm_Asub[tileCol] = vec4(${readVectorASnippet(transposeA)});\n workgroupBarrier();\n\n // Compute acc values for a single thread.\n for (var k = 0; k < TileSize / 4; k = k + 1) {\n let rowB = t * TileSize + k * 4;\n let BCached = vec4(mm_readB(batch, rowB, globalCol),\n mm_readB(batch, rowB + 1, globalCol),\n mm_readB(batch, rowB + 2, globalCol),\n mm_readB(batch, rowB + 3, globalCol));\n\n let ACached = mm_Asub[k];\n acc = acc + dot(ACached, BCached);\n }\n\n workgroupBarrier();\n }\n\n mm_write(batch, globalRow, globalCol, acc);\n }\n `;\n}\nvar MatMulPackedProgram2 = class {\n constructor(aShape, outputShape, workPerThread, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) {\n this.variableNames = [\"A\", \"B\"];\n this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.workGroupSize = [16, 16, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [2], y: [1], z: [0] };\n const dimInner = transposeA ? aShape[1] : aShape[2];\n this.workGroupSize = computeWorkGroupSizeForMatMul(outputShape[1], dimInner, outputShape[2]);\n if (outputShape[1] === 1 || outputShape[2] === 1) {\n workPerThread = 1;\n }\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [workPerThread, workPerThread, 1]);\n if (util_exports.arraysEqual(this.dispatch, [1, 1, 1])) {\n workPerThread = 1;\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [workPerThread, workPerThread, 1]);\n }\n const addBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.workPerThread = workPerThread;\n this.transposeA = transposeA;\n this.transposeB = transposeB;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivationWeights = hasPreluActivationWeights;\n this.batchAEqualOne = batchAEqualOne;\n this.batchBEqualOne = batchBEqualOne;\n [this.fitAOuter, this.fitBOuter, this.fitInner] = this.getShapeFit(outputShape[1], outputShape[2], dimInner);\n this.shaderKey = `matMulPacked_${this.workPerThread}_${transposeA}_${transposeB}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.outputShape[1] > 1}_${this.batchAEqualOne}_${this.batchBEqualOne}`;\n }\n getShapeFit(dimAOuter, dimBOuter, dimInner) {\n const tileAOuter = this.workGroupSize[1] * this.workPerThread;\n const tileBOuter = this.workGroupSize[0] * this.workPerThread;\n this.tileInner = 32;\n if (this.outputShape[1] === 1) {\n this.tileInner = this.workGroupSize[0] * 4;\n }\n const fitAOuter = dimAOuter % tileAOuter === 0;\n const fitBOuter = dimBOuter % tileBOuter === 0;\n const fitInner = dimInner % this.tileInner === 0;\n return [fitAOuter, fitBOuter, fitInner];\n }\n getUserCode() {\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)}\n ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, this.fitAOuter, this.fitBOuter, this.fitInner)}\n ${this.outputShape[1] > 1 ? makeMatMulPackedSource([this.workPerThread, this.workPerThread, 1], this.workGroupSize, this.transposeA, this.tileInner) : makeVectorMatrixProductSource(this.workGroupSize, this.transposeA)}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_packed_vec4_webgpu.js\nvar writeDataToSubASnippet2 = (transpose7, innerAElementSize) => {\n if (transpose7) {\n return `\n mm_Asub[inputRow][inputCol] = mm_readA(batch,\n t * TileInner + inputRow,\n globalRowStart / ${innerAElementSize} + inputCol);\n `;\n } else {\n return `\n mm_Asub[inputRow][inputCol] = mm_readA(batch,\n globalRow + innerRow,\n t * TileInner / ${innerAElementSize} + inputCol);\n `;\n }\n};\nvar calculateResultSnippet = (transposeA, innerElementSize) => {\n if (transposeA) {\n return `\n let ACached0 = mm_Asub[k * InnerElementSize][localRow];\n let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow];\n let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow];\n ${innerElementSize === 3 ? \"\" : \"let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];\"}\n for (var i = 0; i < RowPerThread; i = i + 1) {\n acc[i] = BCached[0] * ACached0[i] + acc[i];\n acc[i] = BCached[1] * ACached1[i] + acc[i];\n acc[i] = BCached[2] * ACached2[i] + acc[i];\n ${innerElementSize === 3 ? \"\" : \"acc[i] = BCached[3] * ACached3[i] + acc[i];\"}\n }`;\n } else {\n return `\n for (var i = 0; i < RowPerThread; i = i + 1) {\n let ACached = mm_Asub[tileRow + i][k];\n acc[i] = BCached[0] * ACached.x + acc[i];\n acc[i] = BCached[1] * ACached.y + acc[i];\n acc[i] = BCached[2] * ACached.z + acc[i];\n ${innerElementSize === 3 ? \"\" : \"acc[i] = BCached[3] * ACached.w + acc[i];\"}\n }`;\n }\n};\nfunction makeMatMulPackedVec4Source(workPerThread, tileAOuter, tileBOuter, tileInner, innerElementSize = 4, transposeA = false) {\n const tileAWidth = transposeA ? tileAOuter : tileInner;\n const tileAHight = transposeA ? tileInner : tileAOuter;\n const innerAElementSize = transposeA ? workPerThread[1] : innerElementSize;\n util_exports.assert((transposeA && tileAOuter === tileBOuter || (tileInner % 4 === 0 || tileInner % 3 === 0)) && workPerThread[0] === 4 && (innerElementSize === 3 || innerElementSize === 4), () => `tileInner ${tileInner} must be divisible by 4|3. ColPerThread ${workPerThread[0]} must be 4.\n innerElementSize ${innerElementSize} must be 3|4.`);\n return `\n var mm_Asub : array, ${tileAWidth / innerAElementSize}>, ${tileAHight}>;\n var mm_Bsub : array, ${tileBOuter / workPerThread[0]}>, ${tileInner}>;\n\n const RowPerThread = ${workPerThread[1]};\n const ColPerThread = ${workPerThread[0]};\n const InnerElementSize = ${innerElementSize};\n const TileInner = ${tileInner};\n\n @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)\n fn main(@builtin(local_invocation_id) LocalId : vec3,\n @builtin(global_invocation_id) GlobalId : vec3,\n @builtin(num_workgroups) NumWorkgroups: vec3,\n @builtin(workgroup_id) workgroupId: vec3) {\n localId = LocalId;\n globalId = GlobalId;\n numWorkgroups = NumWorkgroups;\n\n let localRow = i32(localId.y);\n let tileRow = ${tileAOuter === 1 ? \"0\" : \"localRow * RowPerThread\"};\n let tileCol = i32(localId.x);\n\n let globalRow = ${tileAOuter === 1 ? \"0\" : \"i32(globalId.y) * RowPerThread\"};\n let globalCol = i32(globalId.x);\n let batch = i32(globalId.z);\n let globalRowStart = i32(workgroupId.y) * ${tileAOuter};\n\n let numTiles = (uniforms.dimInner - 1) / TileInner + 1;\n\n var acc: array, RowPerThread>;\n var BCached : array, 4>;\n\n // Loop over shared dimension.\n let RowPerThreadB = TileInner / i32(workGroupSizeY);\n let tileRowB = localRow * RowPerThreadB;\n for (var t = 0; t < numTiles; t = t + 1) {\n // Load one tile of A into local memory.\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n let inputRow = tileRow + innerRow;\n let inputCol = tileCol;\n ${writeDataToSubASnippet2(transposeA, innerAElementSize)}\n }\n\n // Load one tile of B into local memory.\n for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {\n let inputRow = tileRowB + innerRow;\n let inputCol = tileCol;\n mm_Bsub[inputRow][inputCol] = mm_readB(batch, t * TileInner + inputRow, globalCol);\n }\n\n workgroupBarrier();\n\n // Compute acc values for a single thread.\n for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {\n BCached[0] = mm_Bsub[k * InnerElementSize][tileCol];\n BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol];\n BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol];\n ${innerElementSize === 3 ? \"\" : \"BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];\"}\n\n ${calculateResultSnippet(transposeA, innerElementSize)}\n }\n\n workgroupBarrier();\n }\n\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]);\n }\n }`;\n}\nvar MatMulPackedVec4Program = class {\n constructor(aShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, bias = null, activation2 = null, preluActivationWeights = null) {\n this.variableNames = [\"A\", \"B\"];\n this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.workGroupSize = [8, 8, 1];\n this.isVec4 = true;\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [2], y: [1], z: [0] };\n if (outputShape[1] === 1 && !transposeA) {\n this.elementsPerThread = [4, 1, 1];\n } else {\n this.elementsPerThread = [4, 4, 1];\n }\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread);\n const addBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.tileAOuter = outputShape[1] === 1 && !transposeA ? 1 : this.workGroupSize[1] * this.elementsPerThread[1];\n this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0];\n this.tileInner = this.tileBOuter;\n this.aShape = aShape;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivationWeights = hasPreluActivationWeights;\n this.batchAEqualOne = batchAEqualOne;\n this.batchBEqualOne = batchBEqualOne;\n this.transposeA = transposeA;\n const dimInner = transposeA ? aShape[1] : aShape[2];\n this.fitAOuter = outputShape[1] % this.tileAOuter === 0;\n this.fitBOuter = outputShape[2] % this.tileBOuter === 0;\n this.fitInner = dimInner % this.tileInner === 0;\n this.shaderKey = `matMulPackedVec4_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}_${this.transposeA}`;\n }\n getUserCode() {\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivationWeights, true)}\n ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, false, this.fitAOuter, this.fitBOuter, this.fitInner, 4)}\n ${makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, 4, this.transposeA)}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_reduce_webgpu.js\nfunction makeMatMulReduceSource() {\n return `\n var sumValues : array;\n ${getMainHeaderString()}\n let coords = getOutputCoords();\n let batch = coords[0];\n let row = coords[1];\n let col = coords[2];\n var sum = 0.0;\n let Length = uniforms.dimInner;\n for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {\n let dataA = mm_readA(batch, row, k);\n let dataB = mm_readB(batch, k, col);\n sum = sum + dataA * dataB;\n }\n sumValues[localId.x] = sum;\n workgroupBarrier();\n\n for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;\n currentSize = currentSize / 2u) {\n if (localId.x < currentSize)\n {\n sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];\n }\n workgroupBarrier();\n }\n\n if (localId.x == 0u) {\n sum = sumValues[0] + sumValues[1];\n mm_write(batch, row, col, sum);\n }\n }\n `;\n}\nvar MatMulReduceProgram = class {\n constructor(outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) {\n this.variableNames = [\"A\", \"B\"];\n this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.workGroupSize = [256, 1, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [], y: [1, 2], z: [0] };\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n const addBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.transposeA = transposeA;\n this.transposeB = transposeB;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivationWeights = hasPreluActivationWeights;\n this.batchAEqualOne = batchAEqualOne;\n this.batchBEqualOne = batchBEqualOne;\n this.shaderKey = `matMulReduce_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`;\n }\n getUserCode() {\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)}\n ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)}\n ${makeMatMulReduceSource()}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_small_output_size_webgpu.js\nfunction makeMatMulSmallOutputSizeSource(workGroupSize) {\n const tileAOuter = workGroupSize[1];\n const tileBOuter = workGroupSize[0];\n const tileInner = tileAOuter > tileBOuter ? tileAOuter : tileBOuter;\n return `\n var mm_Asub : array, ${tileAOuter}>;\n var mm_Bsub : array, ${tileInner}>;\n\n // If the output size is small for matrix multiplication, avoid to use vec4\n // and handle some elements per thread to optimally utilize the ALU.\n // Read data from global memory to registers firstly, then store them into\n // shared memory, so it is instruction-Level parallelism for arithmetic\n // operations and others handle IO operations between barrier api, makes ALU\n // and load/store units work simultaneously, could improves the performance.\n ${getMainHeaderString()}\n let tileRow = i32(localId.y);\n let tileCol = i32(localId.x);\n let globalRow = i32(globalId.y);\n let globalCol = i32(globalId.x);\n let batch = i32(globalId.z);\n\n // uniforms.dimInner should be greater than 0.\n let numTiles = (uniforms.dimInner - 1) / ${tileInner} + 1;\n var acc = 0.0;\n\n var globalColA = tileCol;\n var globalRowB = 0;\n var regA = mm_readA(batch, globalRow, globalColA);\n var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);\n var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);\n globalColA = globalColA + ${tileInner};\n globalRowB = globalRowB + ${tileInner};\n\n for (var t = 0; t < numTiles; t = t + 1) {\n mm_Asub[tileRow][tileCol] = regA;\n mm_Bsub[2 * tileRow][tileCol] = regB0;\n mm_Bsub[2 * tileRow + 1][tileCol] = regB1;\n\n workgroupBarrier();\n\n regA = mm_readA(batch, globalRow, globalColA);\n regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);\n regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);\n globalColA = globalColA + ${tileInner};\n globalRowB = globalRowB + ${tileInner};\n\n for (var k = 0; k < ${tileInner}; k = k + 1) {\n acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol];\n }\n workgroupBarrier();\n }\n\n mm_write(batch, globalRow, globalCol, acc);\n }\n `;\n}\nvar MatMulSmallOutputSizeProgram = class {\n constructor(aShape, bShape, outputShape, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) {\n this.variableNames = [\"A\", \"B\"];\n this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.workGroupSize = [16, 8, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [2], y: [1], z: [0] };\n this.dispatch = [\n Math.ceil(outputShape[2] / this.workGroupSize[0]),\n Math.ceil(outputShape[1] / this.workGroupSize[1]),\n outputShape[0]\n ];\n const addBias = bias != null;\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n const hasPreluActivationWeights = preluActivationWeights != null;\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.transposeA = transposeA;\n this.transposeB = transposeB;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivationWeights = hasPreluActivationWeights;\n this.batchAEqualOne = aShape[0] === 1;\n this.batchBEqualOne = bShape[0] === 1;\n this.shaderKey = `matMulSmallOutputSize_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`;\n }\n getUserCode() {\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)}\n ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)}\n ${makeMatMulSmallOutputSizeSource(this.workGroupSize)}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_splitK_webgpu.js\nvar MatMulSplitKProgram = class {\n constructor(outputShape, dimInner, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false) {\n this.variableNames = [\"A\", \"B\"];\n this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.workGroupSize = [8, 8, 1];\n this.atomic = true;\n this.tileInner = 32;\n util_exports.assert(outputShape[0] === 1, () => \"MatMulSplitKProgram only supports batch = 1.\");\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [2], y: [1], z: [0, 3] };\n this.elementsPerThread = [4, 4, this.tileInner];\n if (this.outputShape[1] < 16) {\n this.elementsPerThread[1] = 1;\n }\n if (this.outputShape[2] < 16) {\n this.elementsPerThread[0] = 1;\n }\n this.dispatch = computeDispatch(this.dispatchLayout, [\n this.outputShape[0],\n this.outputShape[1],\n this.outputShape[2],\n dimInner\n ], this.workGroupSize, this.elementsPerThread);\n this.transposeA = transposeA;\n this.transposeB = transposeB;\n this.batchAEqualOne = batchAEqualOne;\n this.batchBEqualOne = batchBEqualOne;\n this.shaderKey = `matMulSplitK_${transposeA}_${transposeB}_${batchAEqualOne}_${batchBEqualOne}_${this.elementsPerThread}`;\n }\n getUserCode() {\n const atomicAddSnippet = `\n var oldValue = atomicLoad(&(result[flatIndex]));\n var exchanged = false;\n for (; !exchanged;) {\n let newValueF32 = bitcast(oldValue) + value;\n let newValue = bitcast(newValueF32);\n let res = atomicCompareExchangeWeak(&(result[flatIndex]), oldValue, newValue);\n oldValue = res.old_value;\n exchanged = res.exchanged;\n }\n `;\n const userCode = `\n ${matMulReadFnSource(this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)}\n fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {\n if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {\n let coords = vec3(batch, row, col);\n let flatIndex = getOutputIndexFromCoords(coords);\n var value = valueIn;\n // The problem is that we should initialize output to zero before using.\n // Otherwise, the original value will be added to the result.\n ${atomicAddSnippet}\n }\n }\n\n ${this.makeMatMulSplitKSource()}\n `;\n return userCode;\n }\n makeMatMulSplitKSource() {\n const tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1];\n const tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0];\n const rowPerThread = this.elementsPerThread[1];\n const colPerThread = this.elementsPerThread[0];\n const colPerThreadA = this.tileInner / this.workGroupSize[0];\n const rowPerThreadB = this.tileInner / this.workGroupSize[1];\n util_exports.assert(this.tileInner % this.workGroupSize[0] === 0 && this.tileInner % this.workGroupSize[1] === 0, () => `tileInner ${this.tileInner} must be divisible by workGroupSize[0]${this.workGroupSize[0]} and workGroupSize[1]${this.workGroupSize[1]}`);\n return `\n var mm_Asub : array, ${tileAOuter}>;\n var mm_Bsub : array, ${this.tileInner}>;\n ${getMainHeaderString()}\n let tileRow = i32(localId.y) * ${rowPerThread};\n let tileCol = i32(localId.x) * ${colPerThread};\n\n let globalRow = i32(globalId.y) * ${rowPerThread};\n let globalCol = i32(globalId.x) * ${colPerThread};\n let batch = 0;\n let kStart = i32(globalId.z) * ${this.tileInner};\n\n // Load one tile of A into local memory.\n let tileColA = i32(localId.x) * ${colPerThreadA};\n for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ${colPerThreadA}; innerCol = innerCol + 1) {\n let inputRow = tileRow + innerRow;\n let inputCol = tileColA + innerCol;\n mm_Asub[inputRow][inputCol] = mm_readA(${this.batchAEqualOne ? 0 : \"batch\"},\n globalRow + innerRow,\n kStart + inputCol);\n }\n }\n // Load one tile of B into local memory.\n let tileRowB = i32(localId.y) * ${rowPerThreadB};\n for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) {\n let inputRow = tileRowB + innerRow;\n let inputCol = tileCol + innerCol;\n mm_Bsub[inputRow][inputCol] = mm_readB(${this.batchBEqualOne ? 0 : \"batch\"},\n kStart + inputRow,\n globalCol + innerCol);\n }\n }\n\n workgroupBarrier();\n\n var acc : array, ${rowPerThread}>;\n // Loop over shared dimension. Compute acc values for a single thread.\n for (var k = 0; k < ${this.tileInner}; k = k + 1) {\n var BCached : array;\n for (var inner = 0; inner < ${colPerThread}; inner = inner + 1) {\n BCached[inner] = mm_Bsub[k][tileCol + inner];\n }\n\n for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) {\n let ACached = mm_Asub[tileRow + innerRow][k];\n for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) {\n acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];\n }\n }\n }\n\n for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) {\n mm_write(batch, globalRow + innerRow, globalCol + innerCol, acc[innerRow][innerCol]);\n }\n }\n }\n `;\n }\n};\nvar BiasActivationProgram = class {\n constructor(outputShape, bias = null, activation2 = null, preluActivationWeights = null) {\n this.uniforms = \"\";\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.addBias = bias != null;\n this.hasPreluActivationWeights = preluActivationWeights != null;\n this.activation = activation2;\n if (this.addBias) {\n this.variableNames.push(\"bias\");\n }\n if (this.hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.shaderKey = `biasActivation_${activation2}`;\n }\n getUserCode() {\n return `\n ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)}\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n var value = getXByOutputIndex(index);\n ${biasActivationSnippet(this.addBias, this.activation)}\n setOutputAtIndex(index, value);\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/fill_webgpu.js\nvar FillProgram2 = class {\n constructor(shape) {\n this.variableNames = [];\n this.outputShape = [];\n this.uniforms = \"value : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"fill\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n setOutputAtIndex(index, uniforms.value);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Fill.js\nfunction fill5(args) {\n const { backend: backend2, attrs } = args;\n const { shape, value } = attrs;\n let { dtype } = attrs;\n dtype = dtype || util_exports.inferDtype(value);\n if (dtype === \"string\") {\n const values = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(shape));\n values.fill(value);\n return backend2.makeTensorInfo(shape, dtype, values);\n } else {\n const program = new FillProgram2(shape);\n const uniformData = [{ type: \"float32\", data: [value] }];\n return backend2.runWebGPUProgram(program, [], dtype, uniformData);\n }\n}\nvar fillConfig4 = {\n kernelName: Fill,\n backendName: \"webgpu\",\n kernelFunc: fill5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Reshape.js\nfunction reshape6(args) {\n const { inputs, attrs } = args;\n const { x } = inputs;\n const { shape } = attrs;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $shape = util_exports.inferFromImplicitShape(shape, xSize);\n const $xSize = util_exports.sizeFromShape($shape);\n util_exports.assert(xSize === $xSize, () => `The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`);\n args.backend.incRef(x.dataId);\n return { dataId: x.dataId, shape: $shape, dtype: x.dtype };\n}\nvar reshapeConfig4 = {\n kernelName: Reshape,\n backendName: \"webgpu\",\n kernelFunc: reshape6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchMatMul_impl.js\nfunction batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const aRank = a.shape.length;\n const bRank = b.shape.length;\n const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1];\n const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2];\n const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2];\n const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1];\n const outerDimsA = a.shape.slice(0, -2);\n const outerDimsB = b.shape.slice(0, -2);\n const batchDimA = util_exports.sizeFromShape(outerDimsA);\n const batchDimB = util_exports.sizeFromShape(outerDimsB);\n const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA];\n const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB];\n const a3d = reshape6({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } });\n const b3d = reshape6({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } });\n const intermediates = [a3d, b3d];\n const batchDim = Math.max(batchDimA, batchDimB);\n const batchAEqualOne = batchDimA === 1;\n const batchBEqualOne = batchDimB === 1;\n const useVec4 = (innerShapeA % 4 === 0 && !transposeA || outerShapeA % 4 === 0 && transposeA) && outerShapeB % 4 === 0 && !transposeB;\n const inputs = [a3d, b3d];\n const dimensions = [\n { type: \"int32\", data: [outerShapeA] },\n { type: \"int32\", data: [outerShapeB] },\n { type: \"int32\", data: [innerShapeA] }\n ];\n let program;\n let out;\n const outputShape = [batchDim, outerShapeA, outerShapeB];\n let matmulProgramType = env().get(\"WEBGPU_MATMUL_PROGRAM_TYPE\");\n if (matmulProgramType < 0) {\n if (outerShapeA * outerShapeB <= 128) {\n matmulProgramType = MatMulProgramType.MatMulReduceProgram;\n } else if (batchDim === 1 && outerShapeA <= 128 && outerShapeB <= 48 && innerShapeB >= 2e3) {\n matmulProgramType = MatMulProgramType.MatMulSplitKProgram;\n } else if (outerShapeA <= 16 && (outerShapeB <= 512 || innerShapeB >= 2 * outerShapeB) || outerShapeB <= 16 && (outerShapeA <= 512 || innerShapeA >= 2 * outerShapeA)) {\n matmulProgramType = MatMulProgramType.MatMulSmallOutputSizeProgram;\n } else if (useVec4) {\n matmulProgramType = MatMulProgramType.MatMulPackedVec4Program;\n } else {\n matmulProgramType = MatMulProgramType.MatMulPackedProgram;\n }\n }\n switch (matmulProgramType) {\n case MatMulProgramType.MatMulPackedVec4Program:\n program = new MatMulPackedVec4Program(a3dShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA, bias, activation2, preluActivationWeights);\n break;\n case MatMulProgramType.MatMulReduceProgram:\n program = new MatMulReduceProgram(outputShape, batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights);\n break;\n case MatMulProgramType.MatMulSplitKProgram: {\n out = fill5({ backend: backend2, attrs: { shape: outputShape, value: 0, dtype: a.dtype } });\n program = new MatMulSplitKProgram(outputShape, innerShapeB, batchAEqualOne, batchBEqualOne, transposeA, transposeB);\n if (bias || activation2) {\n out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out);\n const biasActivationProgram = new BiasActivationProgram(out.shape, bias, activation2, preluActivationWeights);\n let uniformData = null;\n const activationInputs = [out];\n if (bias) {\n activationInputs.push(bias);\n }\n if (preluActivationWeights) {\n activationInputs.push(preluActivationWeights);\n }\n if (activation2 === \"leakyrelu\") {\n uniformData = [{ type: \"float32\", data: [leakyreluAlpha] }];\n biasActivationProgram.uniforms += \" alpha : f32,\";\n }\n const outActivated = backend2.runWebGPUProgram(biasActivationProgram, activationInputs, out.dtype, uniformData);\n intermediates.push(out);\n const outReshaped2 = reshape6({ inputs: { x: outActivated }, backend: backend2, attrs: { shape: outShape } });\n intermediates.push(outActivated);\n for (const i2 of intermediates) {\n backend2.disposeData(i2.dataId);\n }\n return outReshaped2;\n }\n break;\n }\n case MatMulProgramType.MatMulSmallOutputSizeProgram:\n program = new MatMulSmallOutputSizeProgram(a3dShape, b3dShape, outputShape, transposeA, transposeB, bias, activation2, preluActivationWeights);\n break;\n case MatMulProgramType.MatMulPackedProgram:\n program = new MatMulPackedProgram2(a3dShape, outputShape, env().get(\"WEBGPU_MATMUL_WORK_PER_THREAD\"), batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights);\n break;\n default:\n throw new Error(`Unsupported MatMulProgramType ${matmulProgramType}.`);\n }\n if (bias) {\n inputs.push(bias);\n }\n if (preluActivationWeights) {\n inputs.push(preluActivationWeights);\n }\n if (activation2 === \"leakyrelu\") {\n dimensions.push({ type: \"float32\", data: [leakyreluAlpha] });\n program.uniforms += \" alpha : f32,\";\n }\n out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out);\n const outReshaped = reshape6({ inputs: { x: out }, backend: backend2, attrs: { shape: outShape } });\n intermediates.push(out);\n for (const i2 of intermediates) {\n backend2.disposeData(i2.dataId);\n }\n return outReshaped;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/_FusedMatMul.js\nfunction _fusedMatMul3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b, bias, preluActivationWeights } = inputs;\n const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs;\n return batchMatMulImpl2({\n a,\n b,\n transposeA,\n transposeB,\n backend: backend2,\n bias,\n preluActivationWeights,\n leakyreluAlpha,\n activation: activation2\n });\n}\nvar _fusedMatMulConfig4 = {\n kernelName: _FusedMatMul,\n backendName: \"webgpu\",\n kernelFunc: _fusedMatMul3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_complex_webgpu.js\nvar BinaryOpComplexProgram2 = class {\n constructor(op2, aShape, bShape) {\n this.variableNames = [\"AReal\", \"AImag\", \"BReal\", \"BImag\"];\n this.workGroupSize = [128, 1, 1];\n this.size = true;\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `binaryOpComplex_${op2}`;\n this.op = op2;\n }\n getUserCode() {\n const opStr = getBinaryOpString(this.op, false);\n const userCode = `\n fn binaryOpComplex(\n areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {\n ${opStr}\n }\n\n ${getMainHeaderAndGlobalIndexString()}\n if(index < uniforms.size) {\n let areal = getARealByOutputIndex(index);\n let aimag = getAImagByOutputIndex(index);\n let breal = getBRealByOutputIndex(index);\n let bimag = getBImagByOutputIndex(index);\n setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_webgpu.js\nvar BinaryOpProgram2 = class {\n constructor(op2, aShape, bShape) {\n this.size = true;\n this.variableNames = [\"A\", \"B\"];\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.op = op2;\n this.useSharedMemoryWithA = aShape.length === 1 && bShape.length > 1 && aShape[0] < 1024;\n this.useSharedMemoryWithB = bShape.length === 1 && aShape.length > 1 && bShape[0] < 1024;\n if (this.useSharedMemoryWithA || this.useSharedMemoryWithB) {\n this.isVec4 = false;\n this.lastDimensionSize = this.useSharedMemoryWithB ? bShape[0] : aShape[0];\n this.shaderKey = `binary_${this.type}_${op2}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`;\n this.type = \"shared\";\n this.workGroupSize = [256, 1, 1];\n if (this.lastDimensionSize < 256) {\n this.workPerThread = 1;\n } else if (this.lastDimensionSize < 512) {\n this.workPerThread = 2;\n } else {\n this.workPerThread = 4;\n }\n } else {\n if (util_exports.arraysEqual(aShape, bShape) && util_exports.sizeFromShape(aShape) % 4 === 0) {\n this.isVec4 = true;\n this.type = \"vec4\";\n this.workPerThread = 4;\n } else {\n this.isVec4 = false;\n this.type = \"plain\";\n this.workPerThread = 1;\n }\n this.shaderKey = `binary_${this.type}_${op2}`;\n this.workGroupSize = [128, 1, 1];\n }\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n }\n getUserCode() {\n let userCode;\n if (this.type === \"shared\") {\n const sharedIndexSnippet = this.lastDimensionSize > 1 ? `coords[${this.outputShape.length - 1}]` : \"0\";\n const accessDataSnippet = this.useSharedMemoryWithB ? `let a = getAByOutputCoords(coords);\n let b = sharedBuf[${sharedIndexSnippet}];` : `let a = sharedBuf[${sharedIndexSnippet}];\n let b = getBByOutputCoords(coords);`;\n const opStr = getBinaryOpString(this.op, this.isVec4);\n userCode = `\n fn binaryOperation(a : f32, b : f32) -> f32 {\n ${opStr}\n }\n var sharedBuf : array;\n ${getMainHeaderAndGlobalIndexString()}\n\n // Fill in the shared memory buffer. Here we need a loop to make sure\n // that all data in A|B are uploaded when |sharedMemorySize| is larger\n // than work group size.\n for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {\n sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB ? \"B\" : \"A\"}[localIndex]);\n }\n workgroupBarrier();\n\n for(var i = 0; i < ${this.workPerThread}; i = i + 1) {\n let flatIndex = index * ${this.workPerThread} + i;\n if(flatIndex < uniforms.size) {\n let coords = getCoordsFromIndex(flatIndex);\n\n ${accessDataSnippet}\n setOutputAtIndex(flatIndex, binaryOperation(a, b));\n }\n }\n }\n `;\n } else {\n const dType = this.type === \"vec4\" ? \"vec4\" : \"f32\";\n const opStr = getBinaryOpString(this.op, this.isVec4);\n userCode = `\n fn binaryOperation(a : ${dType}, b : ${dType}) -> ${dType} {\n ${opStr}\n }\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let a = getAByOutputIndex(index);\n let b = getBByOutputIndex(index);\n setOutputAtIndex(index, binaryOperation(a, b));\n }\n }\n `;\n }\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Identity.js\nfunction identity5(args) {\n const { inputs } = args;\n const { x } = inputs;\n args.backend.incRef(x.dataId);\n return { dataId: x.dataId, shape: x.shape, dtype: x.dtype };\n}\nvar identityConfig4 = {\n kernelName: Identity,\n backendName: \"webgpu\",\n kernelFunc: identity5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Complex.js\nfunction complex4(args) {\n const { inputs, backend: backend2 } = args;\n const { real: real6, imag: imag5 } = inputs;\n const complexInfo = backend2.makeTensorInfo(real6.shape, \"complex64\");\n const complex6 = backend2.tensorMap.get(complexInfo.dataId);\n const realTensorInfo = identity5({ inputs: { x: real6 }, backend: backend2 });\n const imagTensorInfo = identity5({ inputs: { x: imag5 }, backend: backend2 });\n complex6.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo };\n return complexInfo;\n}\nvar complexConfig3 = {\n kernelName: Complex,\n backendName: \"webgpu\",\n kernelFunc: complex4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/unary_op_webgpu.js\nvar UnaryOpProgram2 = class {\n constructor(outputShape, op2) {\n this.variableNames = [\"A\"];\n this.size = true;\n const workGroupSizeX = 128;\n this.workGroupSize = [workGroupSizeX, 1, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.op = op2;\n this.shaderKey = `unary_${op2}`;\n }\n getUserCode() {\n return `\n fn unaryOperation(a : f32) -> f32 {\n ${getUnaryOpString(this.op, false)}\n }\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let a = getAByOutputIndex(index);\n setOutputAtIndex(index, unaryOperation(a));\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/kernel_funcs_utils.js\nfunction unaryKernelFunc3({ opType, cpuKernelImpl, dtype }) {\n return ({ inputs, backend: backend2 }) => {\n const { x } = inputs;\n const webgpuBackend = backend2;\n const $dtype = dtype || x.dtype;\n if (webgpuBackend.shouldExecuteOnCPU([x]) && cpuKernelImpl != null) {\n const xData = webgpuBackend.tensorMap.get(x.dataId);\n const outValues = cpuKernelImpl(xData.values, $dtype);\n return webgpuBackend.makeTensorInfo(x.shape, $dtype, outValues);\n }\n const program = new UnaryOpProgram2(x.shape, opType);\n return webgpuBackend.runWebGPUProgram(program, [x], $dtype);\n };\n}\nfunction binaryKernelFunc3({ opType, cpuKernelImpl, supportsComplex = false, dtype }) {\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const webgpuBackend = backend2;\n if (supportsComplex && a.dtype === \"complex64\") {\n const aData = webgpuBackend.tensorMap.get(a.dataId);\n const bData = webgpuBackend.tensorMap.get(b.dataId);\n let real6, imag5;\n if (opType !== BinaryOpType.MUL) {\n [real6, imag5] = [\n [aData.complexTensorInfos.real, bData.complexTensorInfos.real],\n [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag]\n ].map((complexParts) => {\n const [aPart, bPart] = complexParts;\n const aHandle = {\n dataId: aPart.dataId,\n dtype: aPart.dtype,\n shape: a.shape\n };\n const bHandle = {\n dataId: bPart.dataId,\n dtype: bPart.dtype,\n shape: b.shape\n };\n const program2 = new BinaryOpProgram2(opType, a.shape, b.shape);\n return webgpuBackend.runWebGPUProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype));\n });\n } else {\n const realProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_REAL, a.shape, b.shape);\n const imagProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_IMAG, a.shape, b.shape);\n const inputs2 = [\n {\n dataId: aData.complexTensorInfos.real.dataId,\n dtype: aData.complexTensorInfos.real.dtype,\n shape: a.shape\n },\n {\n dataId: aData.complexTensorInfos.imag.dataId,\n dtype: aData.complexTensorInfos.imag.dtype,\n shape: a.shape\n },\n {\n dataId: bData.complexTensorInfos.real.dataId,\n dtype: bData.complexTensorInfos.real.dtype,\n shape: b.shape\n },\n {\n dataId: bData.complexTensorInfos.imag.dataId,\n dtype: bData.complexTensorInfos.imag.dtype,\n shape: b.shape\n }\n ];\n real6 = webgpuBackend.runWebGPUProgram(realProgram, inputs2, \"float32\");\n imag5 = webgpuBackend.runWebGPUProgram(imagProgram, inputs2, \"float32\");\n }\n const complexOutput = complex4({ inputs: { real: real6, imag: imag5 }, backend: webgpuBackend });\n webgpuBackend.disposeData(real6.dataId);\n webgpuBackend.disposeData(imag5.dataId);\n return complexOutput;\n }\n const $dtype = dtype || upcastType(a.dtype, b.dtype);\n if ((a.dtype === \"string\" || b.dtype === \"string\" || webgpuBackend.shouldExecuteOnCPU([a, b])) && cpuKernelImpl != null) {\n const aData = webgpuBackend.tensorMap.get(a.dataId).values;\n const bData = webgpuBackend.tensorMap.get(b.dataId).values;\n const decodedAVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(aData) : aData;\n const decodedBVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(bData) : bData;\n const [outValues, outShape] = cpuKernelImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype);\n return webgpuBackend.makeTensorInfo(outShape, $dtype, outValues);\n }\n const program = new BinaryOpProgram2(opType, a.shape, b.shape);\n return webgpuBackend.runWebGPUProgram(program, [a, b], $dtype);\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/shared.js\nvar shared_exports2 = {};\n__export(shared_exports2, {\n addImpl: () => addImpl2,\n bincountImpl: () => bincountImpl2,\n bincountReduceImpl: () => bincountReduceImpl2,\n ceilImpl: () => ceilImpl2,\n concatImpl: () => concatImpl3,\n equalImpl: () => equalImpl2,\n expImpl: () => expImpl2,\n expm1Impl: () => expm1Impl2,\n floorImpl: () => floorImpl2,\n gatherNdImpl: () => gatherNdImpl2,\n gatherV2Impl: () => gatherV2Impl2,\n greaterEqualImpl: () => greaterEqualImpl2,\n greaterImpl: () => greaterImpl2,\n lessEqualImpl: () => lessEqualImpl2,\n lessImpl: () => lessImpl2,\n linSpaceImpl: () => linSpaceImpl2,\n logImpl: () => logImpl2,\n maxImpl: () => maxImpl3,\n maximumImpl: () => maximumImpl2,\n minimumImpl: () => minimumImpl2,\n multiplyImpl: () => multiplyImpl2,\n negImpl: () => negImpl2,\n notEqualImpl: () => notEqualImpl2,\n prodImpl: () => prodImpl2,\n rangeImpl: () => rangeImpl2,\n rsqrtImpl: () => rsqrtImpl2,\n scatterImpl: () => scatterImpl2,\n sigmoidImpl: () => sigmoidImpl2,\n simpleAbsImpl: () => simpleAbsImpl2,\n sliceImpl: () => sliceImpl2,\n sparseFillEmptyRowsImpl: () => sparseFillEmptyRowsImpl2,\n sparseReshapeImpl: () => sparseReshapeImpl2,\n sparseSegmentReductionImpl: () => sparseSegmentReductionImpl2,\n sqrtImpl: () => sqrtImpl2,\n squaredDifferenceImpl: () => squaredDifferenceImpl2,\n stridedSliceImpl: () => stridedSliceImpl2,\n stringNGramsImpl: () => stringNGramsImpl2,\n stringSplitImpl: () => stringSplitImpl2,\n stringToHashBucketFastImpl: () => stringToHashBucketFastImpl2,\n subImpl: () => subImpl2,\n tileImpl: () => tileImpl2,\n topKImpl: () => topKImpl2,\n transposeImpl: () => transposeImpl3,\n uniqueImpl: () => uniqueImpl2\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/cpu_util.js\nfunction assertNotComplex3(tensor2, opName) {\n if (!Array.isArray(tensor2)) {\n tensor2 = [tensor2];\n }\n tensor2.forEach((t2) => {\n if (t2 != null) {\n util_exports.assert(t2.dtype !== \"complex64\", () => `${opName} does not support complex64 tensors in the CPU backend.`);\n }\n });\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Abs.js\nfunction simpleAbsImpl2(vals) {\n const resultValues = new Float32Array(vals.length);\n for (let i2 = 0; i2 < vals.length; ++i2) {\n resultValues[i2] = Math.abs(vals[i2]);\n }\n return resultValues;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/binary_impl.js\nfunction createSimpleBinaryKernelImpl2(op2) {\n return (aShape, bShape, aVals, bVals, dtype) => {\n const newShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n const resultRank = newShape.length;\n const resultStrides = util_exports.computeStrides(newShape);\n const resultSize = util_exports.sizeFromShape(newShape);\n const result = util_exports.getTypedArrayFromDType(dtype, resultSize);\n const aRank = aShape.length;\n const bRank = bShape.length;\n const aStrides = util_exports.computeStrides(aShape);\n const bStrides = util_exports.computeStrides(bShape);\n const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, newShape);\n const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, newShape);\n if (aBroadcastDims.length + bBroadcastDims.length === 0) {\n for (let i2 = 0; i2 < result.length; ++i2) {\n result[i2] = op2(aVals[i2 % aVals.length], bVals[i2 % bVals.length]);\n }\n } else {\n for (let i2 = 0; i2 < result.length; ++i2) {\n const loc = util_exports.indexToLoc(i2, resultRank, resultStrides);\n const aLoc = loc.slice(-aRank);\n aBroadcastDims.forEach((d) => aLoc[d] = 0);\n const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides);\n const bLoc = loc.slice(-bRank);\n bBroadcastDims.forEach((d) => bLoc[d] = 0);\n const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides);\n result[i2] = op2(aVals[aIndex], bVals[bIndex]);\n }\n }\n return [result, newShape];\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Complex.js\nfunction complex5(args) {\n const { inputs, backend: backend2 } = args;\n const { real: real6, imag: imag5 } = inputs;\n const realVals = backend2.data.get(real6.dataId).values;\n const imagVals = backend2.data.get(imag5.dataId).values;\n const complexInfo = backend2.makeTensorInfo(real6.shape, \"complex64\");\n const complex6 = backend2.data.get(complexInfo.dataId);\n complex6.complexTensorInfos = {\n real: backend2.makeTensorInfo(real6.shape, \"float32\", realVals),\n imag: backend2.makeTensorInfo(imag5.shape, \"float32\", imagVals)\n };\n return complexInfo;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/zeros_impl.js\nfunction zeros4(backend2, shape, dtype = \"float32\") {\n if (dtype === \"complex64\") {\n const real6 = zeros4(backend2, shape, \"float32\");\n const imag5 = zeros4(backend2, shape, \"float32\");\n return complex5({ inputs: { real: real6, imag: imag5 }, backend: backend2 });\n }\n const values = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(shape), dtype);\n return backend2.makeTensorInfo(shape, dtype, values);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Identity.js\nfunction identity6(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n backend2.incRef(x.dataId);\n return { dataId: x.dataId, shape: x.shape, dtype: x.dtype };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Real.js\nfunction real4(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const real6 = backend2.data.get(input2.dataId).complexTensorInfos.real;\n const realVal = backend2.data.get(real6.dataId).values;\n return backend2.makeTensorInfo(real6.shape, real6.dtype, realVal);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cast.js\nfunction cast6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dtype } = attrs;\n if (dtype === \"complex64\") {\n if (x.dtype === \"complex64\") {\n return identity6({ inputs: { x }, backend: backend2 });\n }\n const zerosTensorInfo = zeros4(backend2, x.shape, x.dtype);\n const floatX = cast6({ inputs: { x }, backend: backend2, attrs: { dtype: \"float32\" } });\n const result = complex5({ inputs: { real: floatX, imag: zerosTensorInfo }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(zerosTensorInfo);\n backend2.disposeIntermediateTensorInfo(floatX);\n return result;\n }\n if (x.dtype === \"complex64\") {\n const realPart = real4({ inputs: { input: x }, backend: backend2 });\n const result = cast6({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } });\n backend2.disposeIntermediateTensorInfo(realPart);\n return result;\n }\n if (!util_exports.hasEncodingLoss(x.dtype, dtype)) {\n const result = identity6({ inputs: { x }, backend: backend2 });\n return { dataId: result.dataId, shape: result.shape, dtype };\n }\n if (dtype === \"int32\") {\n const values = backend2.data.get(x.dataId).values;\n const resultValues = Int32Array.from(values);\n return backend2.makeTensorInfo(x.shape, \"int32\", resultValues);\n }\n if (dtype === \"bool\") {\n const xVals = backend2.data.get(x.dataId).values;\n const zero = util_exports.toTypedArray([0], x.dtype);\n const [resultData, resultShape] = createSimpleBinaryKernelImpl2((a, b) => a !== b ? 1 : 0)(x.shape, [], xVals, zero, \"bool\");\n return backend2.makeTensorInfo(resultShape, \"bool\", resultData);\n }\n throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/binary_utils.js\nfunction binaryKernelFunc4(name, simpleImpl, complexImpl, dtype) {\n if (complexImpl == null) {\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const cpuBackend = backend2;\n assertNotComplex3([a, b], name);\n const aVals = cpuBackend.data.get(a.dataId).values;\n const bVals = cpuBackend.data.get(b.dataId).values;\n const decodedAVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals;\n const decodedBVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals;\n const $dtype = dtype || a.dtype;\n const [resultData, resultShape] = simpleImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype);\n return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData);\n };\n }\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const cpuBackend = backend2;\n if (a.dtype === \"complex64\" || b.dtype === \"complex64\") {\n const $aComplex = cast6({ inputs: { x: a }, backend: cpuBackend, attrs: { dtype: \"complex64\" } });\n const $aComplexVals = cpuBackend.data.get($aComplex.dataId);\n const aReal = $aComplexVals.complexTensorInfos.real;\n const aImag = $aComplexVals.complexTensorInfos.imag;\n const aRealVals = cpuBackend.data.get(aReal.dataId).values;\n const aImagVals = cpuBackend.data.get(aImag.dataId).values;\n const $bComplex = cast6({ inputs: { x: b }, backend: cpuBackend, attrs: { dtype: \"complex64\" } });\n const $bComplexVals = cpuBackend.data.get($bComplex.dataId);\n const bReal = $bComplexVals.complexTensorInfos.real;\n const bImag = $bComplexVals.complexTensorInfos.imag;\n const bRealVals = cpuBackend.data.get(bReal.dataId).values;\n const bImagVals = cpuBackend.data.get(bImag.dataId).values;\n const [resultRealData, resultImagData, resultShape] = complexImpl(a.shape, b.shape, aRealVals, aImagVals, bRealVals, bImagVals);\n const resultReal = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultRealData);\n const resultImag = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultImagData);\n const result = complex5({ inputs: { real: resultReal, imag: resultImag }, backend: cpuBackend });\n cpuBackend.disposeIntermediateTensorInfo($aComplex);\n cpuBackend.disposeIntermediateTensorInfo($bComplex);\n cpuBackend.disposeIntermediateTensorInfo(resultReal);\n cpuBackend.disposeIntermediateTensorInfo(resultImag);\n return result;\n } else {\n const aVals = cpuBackend.data.get(a.dataId).values;\n const bVals = cpuBackend.data.get(b.dataId).values;\n const $dtype = dtype || a.dtype;\n const [resultData, resultShape] = simpleImpl(a.shape, b.shape, aVals, bVals, $dtype);\n return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData);\n }\n };\n}\nfunction createComplexBinaryKernelImpl2(op2) {\n return (aShape, bShape, aRealVals, aImagVals, bRealVals, bImagVals) => {\n const resultShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n const resultSize = util_exports.sizeFromShape(resultShape);\n const resultRank = resultShape.length;\n const resultStrides = util_exports.computeStrides(resultShape);\n const resultRealVals = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n const resultImagVals = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, resultShape);\n const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, resultShape);\n const aVals = backend_util_exports.mergeRealAndImagArrays(aRealVals, aImagVals);\n const bVals = backend_util_exports.mergeRealAndImagArrays(bRealVals, bImagVals);\n const aRank = aShape.length;\n const aStrides = util_exports.computeStrides(aShape);\n const bRank = bShape.length;\n const bStrides = util_exports.computeStrides(bShape);\n if (aBroadcastDims.length + bBroadcastDims.length === 0) {\n for (let i2 = 0; i2 < resultRealVals.length; i2++) {\n const aIdx = i2 % aVals.length;\n const bIdx = i2 % bVals.length;\n const result = op2(aVals[aIdx * 2], aVals[aIdx * 2 + 1], bVals[bIdx * 2], bVals[bIdx * 2 + 1]);\n resultRealVals[i2] = result.real;\n resultImagVals[i2] = result.imag;\n }\n } else {\n for (let i2 = 0; i2 < resultRealVals.length; i2++) {\n const loc = util_exports.indexToLoc(i2, resultRank, resultStrides);\n const aLoc = loc.slice(-aRank);\n aBroadcastDims.forEach((d) => aLoc[d] = 0);\n const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides);\n const bLoc = loc.slice(-bRank);\n bBroadcastDims.forEach((d) => bLoc[d] = 0);\n const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides);\n const opResult = op2(aVals[aIndex * 2], aVals[aIndex * 2 + 1], bVals[bIndex * 2], bVals[bIndex * 2 + 1]);\n resultRealVals[i2] = opResult.real;\n resultImagVals[i2] = opResult.imag;\n }\n }\n return [resultRealVals, resultImagVals, resultShape];\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Add.js\nvar addImpl2 = createSimpleBinaryKernelImpl2((a, b) => a + b);\nvar addComplexImpl2 = createComplexBinaryKernelImpl2((aReal, aImag, bReal, bImag) => {\n return { real: aReal + bReal, imag: aImag + bImag };\n});\nvar add5 = binaryKernelFunc4(Add, addImpl2, addComplexImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Bincount_impl.js\nfunction bincountImpl2(xVals, weightsVals, weightsDtype, weightsShape, size) {\n const weightsSize = util_exports.sizeFromShape(weightsShape);\n const outVals = util_exports.makeZerosTypedArray(size, weightsDtype);\n for (let i2 = 0; i2 < xVals.length; i2++) {\n const value = xVals[i2];\n if (value < 0) {\n throw new Error(\"Input x must be non-negative!\");\n }\n if (value >= size) {\n continue;\n }\n if (weightsSize > 0) {\n outVals[value] += weightsVals[i2];\n } else {\n outVals[value] += 1;\n }\n }\n return outVals;\n}\nfunction bincountReduceImpl2(xBuf, weightsBuf, size, binaryOutput = false) {\n const numRows = xBuf.shape[0];\n const numCols = xBuf.shape[1];\n const outBuf = buffer([numRows, size], weightsBuf.dtype);\n for (let i2 = 0; i2 < numRows; i2++) {\n for (let j = 0; j < numCols; j++) {\n const value = xBuf.get(i2, j);\n if (value < 0) {\n throw new Error(\"Input x must be non-negative!\");\n }\n if (value >= size) {\n continue;\n }\n if (binaryOutput) {\n outBuf.set(1, i2, value);\n } else {\n if (weightsBuf.size > 0) {\n outBuf.set(outBuf.get(i2, value) + weightsBuf.get(i2, j), i2, value);\n } else {\n outBuf.set(outBuf.get(i2, value) + 1, i2, value);\n }\n }\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/unary_impl.js\nfunction createSimpleUnaryImpl2(op2) {\n return (values, dtype, attrs) => {\n const newValues = util_exports.getTypedArrayFromDType(dtype, values.length);\n for (let i2 = 0; i2 < values.length; ++i2) {\n newValues[i2] = op2(values[i2], attrs);\n }\n return newValues;\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/unary_utils.js\nfunction unaryKernelFunc4(name, op2, dtype) {\n return ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n assertNotComplex3(x, name);\n if (x.dtype === \"string\" || dtype === \"string\") {\n throw new Error(\"unaryKernelFunc does not support string input/output\");\n }\n const cpuBackend = backend2;\n const values = cpuBackend.data.get(x.dataId).values;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $dtype = dtype || x.dtype;\n const newValues = util_exports.getArrayFromDType($dtype, xSize);\n for (let i2 = 0; i2 < xSize; ++i2) {\n newValues[i2] = op2(values[i2], attrs);\n }\n return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues);\n };\n}\nfunction unaryKernelFuncFromImpl2(name, unaryImpl, dtype) {\n return ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n assertNotComplex3(x, name);\n if (x.dtype === \"string\" || dtype === \"string\") {\n throw new Error(\"unaryKernelFunc does not support string input/output\");\n }\n const cpuBackend = backend2;\n const values = cpuBackend.data.get(x.dataId).values;\n const $dtype = dtype || x.dtype;\n const newValues = unaryImpl(values, $dtype, attrs);\n return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues);\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Ceil.js\nvar ceilImpl2 = createSimpleUnaryImpl2((xi) => Math.ceil(xi));\nvar ceil4 = unaryKernelFuncFromImpl2(Ceil, ceilImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Concat_impl.js\nfunction concatImpl3(inputs, outShape, dtype, simplyConcat) {\n const outVals = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(outShape));\n if (simplyConcat && dtype !== \"string\") {\n let offset = 0;\n inputs.forEach((input2) => {\n const size = util_exports.sizeFromShape(input2.shape);\n outVals.set(input2.vals, offset);\n offset += size;\n });\n } else {\n let colOffset = 0;\n inputs.forEach((input2) => {\n const decodedData = dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(input2.vals) : input2.vals;\n let tIdx = 0;\n for (let row = 0; row < input2.shape[0]; ++row) {\n const resIdx = row * outShape[1] + colOffset;\n for (let col = 0; col < input2.shape[1]; ++col) {\n outVals[resIdx + col] = decodedData[tIdx++];\n }\n }\n colOffset += input2.shape[1];\n });\n }\n return outVals;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Equal.js\nvar equalImpl2 = createSimpleBinaryKernelImpl2((a, b) => a === b ? 1 : 0);\nvar equal4 = binaryKernelFunc4(Equal, equalImpl2, null, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Exp.js\nvar expImpl2 = createSimpleUnaryImpl2((xi) => Math.exp(xi));\nvar exp4 = unaryKernelFuncFromImpl2(Exp, expImpl2, \"float32\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Expm1.js\nvar expm1Impl2 = createSimpleUnaryImpl2((xi) => Math.expm1(xi));\nvar expm14 = unaryKernelFuncFromImpl2(Expm1, expm1Impl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Floor.js\nvar floorImpl2 = createSimpleUnaryImpl2((xi) => Math.floor(xi));\nvar floor4 = unaryKernelFuncFromImpl2(Floor, floorImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherNd_Impl.js\nfunction gatherNdImpl2(indicesData, paramsBuf, dtype, numSlices, sliceRank, sliceSize, strides, paramsShape, paramsSize) {\n const outBuf = buffer([numSlices, sliceSize], dtype);\n for (let i2 = 0; i2 < numSlices; i2++) {\n const index = [];\n let flattenIndex = 0;\n for (let j = 0; j < sliceRank; j++) {\n const dim = indicesData[i2 * sliceRank + j];\n flattenIndex += dim * strides[j];\n index.push(dim);\n }\n if (flattenIndex < 0 || flattenIndex >= paramsSize / sliceSize) {\n throw new Error(`Invalid indices: ${index} does not index into ${paramsShape}`);\n }\n for (let k = 0; k < sliceSize; k++) {\n outBuf.values[i2 * sliceSize + k] = paramsBuf.get(...paramsBuf.indexToLoc(flattenIndex * sliceSize + k));\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherV2_impl.js\nfunction gatherV2Impl2(xBuf, indicesBuf, flattenOutputShape) {\n const outBuf = buffer(flattenOutputShape, xBuf.dtype);\n for (let i2 = 0; i2 < outBuf.size; ++i2) {\n const newLoc = outBuf.indexToLoc(i2);\n const originalLoc = newLoc.slice();\n const batchIdx = originalLoc[0];\n const indicesIdx = originalLoc[2];\n const indicesIndex = indicesBuf.locToIndex([batchIdx, indicesIdx]);\n originalLoc[2] = indicesBuf.values[indicesIndex];\n const originalIndex = xBuf.locToIndex(originalLoc);\n if (0 <= originalIndex && originalIndex < xBuf.values.length) {\n outBuf.values[i2] = xBuf.values[originalIndex];\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Greater.js\nvar greaterImpl2 = createSimpleBinaryKernelImpl2((a, b) => a > b ? 1 : 0);\nvar greater5 = binaryKernelFunc4(Greater, greaterImpl2, null, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GreaterEqual.js\nvar greaterEqualImpl2 = createSimpleBinaryKernelImpl2((a, b) => a >= b ? 1 : 0);\nvar greaterEqual4 = binaryKernelFunc4(GreaterEqual, greaterEqualImpl2, null, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Less.js\nvar lessImpl2 = createSimpleBinaryKernelImpl2((a, b) => a < b ? 1 : 0);\nvar less5 = binaryKernelFunc4(Less, lessImpl2, null, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LessEqual.js\nvar lessEqualImpl2 = createSimpleBinaryKernelImpl2((a, b) => a <= b ? 1 : 0);\nvar lessEqual4 = binaryKernelFunc4(LessEqual, lessEqualImpl2, null, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LinSpace_impl.js\nfunction linSpaceImpl2(start, stop, num) {\n const step5 = (stop - start) / (num - 1);\n const values = util_exports.makeZerosTypedArray(num, \"float32\");\n values[0] = start;\n for (let i2 = 1; i2 < values.length; i2++) {\n values[i2] = values[i2 - 1] + step5;\n }\n return values;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Log.js\nvar logImpl2 = createSimpleUnaryImpl2((xi) => Math.log(xi));\nvar log5 = unaryKernelFuncFromImpl2(Log, logImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Max_impl.js\nfunction maxImpl3(aVals, reduceSize, outShape, dtype) {\n const vals = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(outShape));\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let max7 = aVals[offset];\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n if (Number.isNaN(value) || value > max7) {\n max7 = value;\n }\n }\n vals[i2] = max7;\n }\n return vals;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Maximum.js\nvar maximumImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => Math.max(aValue, bValue));\nvar maximum5 = binaryKernelFunc4(Maximum, maximumImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Minimum.js\nvar minimumImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => Math.min(aValue, bValue));\nvar minimum5 = binaryKernelFunc4(Minimum, minimumImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Multiply.js\nvar multiplyImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => aValue * bValue);\nvar multiplyComplexImpl2 = createComplexBinaryKernelImpl2((aReal, aImag, bReal, bImag) => {\n return {\n real: aReal * bReal - aImag * bImag,\n imag: aReal * bImag + aImag * bReal\n };\n});\nvar multiply4 = binaryKernelFunc4(Multiply, multiplyImpl2, multiplyComplexImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Neg.js\nfunction negImpl2(xVals, xShape, xDtype) {\n const minusOne = util_exports.createScalarValue(-1, xDtype);\n return multiplyImpl2([], xShape, minusOne, xVals, xDtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NotEqual.js\nvar notEqualImpl2 = createSimpleBinaryKernelImpl2((a, b) => a !== b ? 1 : 0);\nvar notEqual4 = binaryKernelFunc4(NotEqual, notEqualImpl2, null, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Transpose_impl.js\nfunction transposeImpl3(xVals, xShape, dtype, perm, newShape) {\n const xRank = xShape.length;\n const xSize = util_exports.sizeFromShape(xShape);\n const xStrides = util_exports.computeStrides(xShape);\n const newStrides = util_exports.computeStrides(newShape);\n const result = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(newShape));\n for (let i2 = 0; i2 < xSize; ++i2) {\n const loc = util_exports.indexToLoc(i2, xRank, xStrides);\n const newLoc = new Array(loc.length);\n for (let i3 = 0; i3 < newLoc.length; i3++) {\n newLoc[i3] = loc[perm[i3]];\n }\n const newIndex = util_exports.locToIndex(newLoc, xRank, newStrides);\n result[newIndex] = xVals[i2];\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Prod.js\nfunction prodImpl2(xShape, xDtype, xVals, reductionAxes) {\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(xShape, reductionAxes);\n const outDtype = upcastType(xDtype, \"int32\");\n const outVals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), outDtype);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n for (let i2 = 0; i2 < outVals.length; ++i2) {\n const offset = i2 * reduceSize;\n let prod6 = 1;\n for (let j = 0; j < reduceSize; ++j) {\n prod6 *= xVals[offset + j];\n }\n outVals[i2] = prod6;\n }\n return { outVals, outShape, outDtype };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Range_impl.js\nfunction rangeImpl2(start, stop, step5, dtype) {\n const sameStartStop = start === stop;\n const increasingRangeNegativeStep = start < stop && step5 < 0;\n const decreasingRangePositiveStep = stop < start && step5 > 1;\n if (sameStartStop || increasingRangeNegativeStep || decreasingRangePositiveStep) {\n return util_exports.makeZerosTypedArray(0, dtype);\n }\n const numElements = Math.abs(Math.ceil((stop - start) / step5));\n const values = util_exports.makeZerosTypedArray(numElements, dtype);\n if (stop < start && step5 === 1) {\n step5 = -1;\n }\n values[0] = start;\n for (let i2 = 1; i2 < values.length; i2++) {\n values[i2] = values[i2 - 1] + step5;\n }\n return values;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Rsqrt.js\nvar rsqrtImpl2 = createSimpleUnaryImpl2((xi) => 1 / Math.sqrt(xi));\nvar rsqrt4 = unaryKernelFuncFromImpl2(Rsqrt, rsqrtImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Scatter_impl.js\nfunction scatterImpl2(indices, updates, shape, outputSize, sliceSize, numUpdates, sliceRank, strides, defaultValue, sumDupeIndices) {\n const flattenShape = [outputSize / sliceSize, sliceSize];\n const indicesData = indices.values;\n const updatesData = updates.values;\n if (outputSize === 0) {\n return buffer(shape, updates.dtype);\n }\n const outBuf = buffer(flattenShape, updates.dtype);\n if (typeof defaultValue === \"string\") {\n outBuf.values.fill(defaultValue);\n } else if (typeof defaultValue === \"number\") {\n outBuf.values.fill(defaultValue);\n } else if (typeof defaultValue === \"boolean\") {\n outBuf.values.fill(+defaultValue);\n }\n for (let i2 = 0; i2 < numUpdates; i2++) {\n const index = [];\n let flattenIndex = 0;\n for (let j = 0; j < sliceRank; j++) {\n const dim = indicesData[i2 * sliceRank + j];\n index.push(dim);\n flattenIndex += dim * strides[j];\n }\n if (flattenIndex < 0 || flattenIndex >= outputSize / sliceSize) {\n throw new Error(`Invalid indices: ${index} does not index into ${shape}`);\n }\n for (let k = 0; k < sliceSize; k++) {\n if (sumDupeIndices) {\n outBuf.values[flattenIndex * sliceSize + k] += updatesData[i2 * sliceSize + k];\n } else {\n outBuf.values[flattenIndex * sliceSize + k] = updates.rank === 0 ? updatesData[0] : updatesData[i2 * sliceSize + k];\n }\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sigmoid.js\nvar sigmoidImpl2 = createSimpleUnaryImpl2((xi) => 1 / (1 + Math.exp(-xi)));\nvar sigmoid5 = unaryKernelFunc4(Sigmoid, (xi) => 1 / (1 + Math.exp(-xi)));\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Slice.js\nfunction sliceImpl2(vals, begin, size, shape, dtype) {\n const isContinous = slice_util_exports.isSliceContinous(shape, begin, size);\n const length = util_exports.sizeFromShape(size);\n const xStrides = util_exports.computeStrides(shape);\n if (isContinous) {\n const flatOffset = slice_util_exports.computeFlatOffset(begin, xStrides);\n if (dtype === \"string\") {\n return vals.slice(flatOffset, flatOffset + length);\n }\n return vals.subarray(flatOffset, flatOffset + length);\n }\n const decodedData = dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(vals) : vals;\n const inBuf = buffer(shape, dtype, decodedData);\n const outBuf = buffer(size, dtype);\n for (let i2 = 0; i2 < outBuf.size; ++i2) {\n const outLoc = outBuf.indexToLoc(i2);\n const inLoc = outLoc.map((idx, j) => idx + begin[j]);\n outBuf.set(inBuf.get(...inLoc), ...outLoc);\n }\n if (dtype === \"string\") {\n return backend_util_exports.fromStringArrayToUint8(outBuf.values);\n }\n return outBuf.values;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseFillEmptyRows_impl.js\nfunction sparseFillEmptyRowsImpl2(indices, indicesShape, indicesDType, values, valuesDType, denseShape, defaultValue) {\n const indicesCount = indicesShape[0];\n const denseRows = denseShape[0];\n const emptyRowIndicator = new Array(denseRows);\n const reverseIndexMap = new Array(indicesCount);\n const rank = indicesShape[1];\n if (denseRows === 0) {\n if (indicesCount !== 0) {\n throw new Error(backend_util_exports.getSparseFillEmptyRowsIndicesDenseShapeMismatch(indicesCount));\n }\n const outputIndices = util_exports.getArrayFromDType(indicesDType, 0);\n const outputValues = util_exports.getArrayFromDType(valuesDType, 0);\n return [\n outputIndices,\n [0, rank],\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n }\n let rowsAreOrdered = true;\n let lastIndicesRow = 0;\n const csrOffset = new Array(denseRows).fill(0);\n for (let i2 = 0; i2 < indicesCount; ++i2) {\n const row = indices[i2 * rank];\n if (row < 0) {\n throw new Error(backend_util_exports.getSparseFillEmptyRowsNegativeIndexErrorMessage(i2, row));\n }\n if (row >= denseRows) {\n throw new Error(backend_util_exports.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(i2, row, denseRows));\n }\n ++csrOffset[row];\n rowsAreOrdered = rowsAreOrdered && row >= lastIndicesRow;\n lastIndicesRow = row;\n }\n let allRowsFull = true;\n for (let row = 0; row < denseRows; ++row) {\n const rowEmpty = csrOffset[row] === 0;\n emptyRowIndicator[row] = rowEmpty;\n allRowsFull = allRowsFull && !rowEmpty;\n csrOffset[row] = Math.max(csrOffset[row], 1);\n if (row > 0) {\n csrOffset[row] += csrOffset[row - 1];\n }\n }\n if (allRowsFull && rowsAreOrdered) {\n const outputIndices = indices;\n const outputValues = values;\n for (let i2 = 0; i2 < indicesCount; ++i2) {\n reverseIndexMap[i2] = i2;\n }\n return [\n outputIndices,\n [indicesCount, rank],\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n } else {\n const fullIndicesCount = csrOffset[denseRows - 1];\n const outputIndices = util_exports.getArrayFromDType(indicesDType, fullIndicesCount * rank);\n const outputValues = util_exports.getArrayFromDType(valuesDType, fullIndicesCount);\n const filledCount = new Array(denseRows).fill(0);\n for (let i2 = 0; i2 < indicesCount; ++i2) {\n const row = indices[i2 * rank];\n const offset = filledCount[row];\n const outputI = (row === 0 ? 0 : csrOffset[row - 1]) + offset;\n filledCount[row]++;\n for (let j = 0; j < rank; ++j) {\n outputIndices[outputI * rank + j] = indices[i2 * rank + j];\n }\n outputValues[outputI] = values[i2];\n reverseIndexMap[i2] = outputI;\n }\n for (let row = 0; row < denseRows; ++row) {\n const rowCount = filledCount[row];\n if (rowCount === 0) {\n const startingIndex = row === 0 ? 0 : csrOffset[row - 1];\n outputIndices[startingIndex * rank + 0] = row;\n for (let col = 1; col < rank; ++col) {\n outputIndices[startingIndex * rank + col] = 0;\n }\n outputValues[startingIndex] = defaultValue;\n }\n }\n return [\n outputIndices,\n [fullIndicesCount, rank],\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseReshape_impl.js\nfunction sparseReshapeImpl2(inputIndices, inputIndicesShape, inputDType, inputShape, targetShape) {\n const denseSize = util_exports.sizeFromShape(inputShape);\n const nnz = inputIndicesShape[0];\n const outputRank = targetShape.length;\n const outputShape = [];\n let product = 1;\n let unknownIndex = -1;\n for (let d = 0; d < outputRank; ++d) {\n const size = targetShape[d];\n if (size === -1) {\n if (unknownIndex !== -1) {\n throw new Error(backend_util_exports.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(unknownIndex, d));\n }\n unknownIndex = d;\n outputShape.push(1);\n } else {\n if (size < 0) {\n throw new Error(backend_util_exports.getSparseReshapeNegativeOutputDimErrorMessage(d, size));\n }\n product *= size;\n outputShape.push(size);\n }\n }\n if (unknownIndex !== -1) {\n if (product <= 0) {\n throw new Error(backend_util_exports.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());\n }\n const missing = Math.trunc(denseSize / product);\n if (product * missing !== denseSize) {\n throw new Error(backend_util_exports.getSparseReshapeInputOutputMultipleErrorMessage(inputShape, outputShape));\n }\n outputShape[unknownIndex] = missing;\n }\n const outputSize = util_exports.sizeFromShape(outputShape);\n if (outputSize !== denseSize) {\n throw new Error(backend_util_exports.getSparseReshapeInputOutputMismatchErrorMessage(inputShape, outputShape));\n }\n const inputRank = inputShape.length;\n const inputStrides = [];\n if (inputRank > 0) {\n inputStrides[inputRank - 1] = 1;\n for (let d = inputRank - 2; d >= 0; --d) {\n inputStrides[d] = inputStrides[d + 1] * inputShape[d + 1];\n }\n }\n const outputStrides = [];\n if (outputRank > 0) {\n outputStrides[outputRank - 1] = 1;\n for (let d = outputRank - 2; d >= 0; --d) {\n outputStrides[d] = outputStrides[d + 1] * outputShape[d + 1];\n }\n }\n const newIndices = util_exports.getArrayFromDType(inputDType, nnz * outputRank);\n for (let i2 = 0; i2 < nnz; ++i2) {\n let id = 0;\n for (let j = 0; j < inputRank; ++j) {\n id += inputIndices[i2 * inputRank + j] * inputStrides[j];\n }\n for (let j = 0; j < outputRank; ++j) {\n newIndices[i2 * outputRank + j] = Math.trunc(id / outputStrides[j]);\n id %= outputStrides[j];\n }\n }\n return [newIndices, [nnz, outputRank], outputShape];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseSegmentReduction_impl.js\nfunction sparseSegmentReductionImpl2(input2, inputShape, inputDType, indices, segmentIds, isMean = false, defaultValue = 0) {\n const numIndices = indices.length;\n const inputFlat = [inputShape[0], input2.length / inputShape[0]];\n const numCol = inputFlat[1];\n const lastSegmentIdPlusOne = numIndices > 0 ? segmentIds[numIndices - 1] + 1 : 0;\n const outputRows = lastSegmentIdPlusOne;\n if (outputRows < 0) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());\n }\n const outputShape = inputShape.slice();\n outputShape[0] = outputRows;\n const outputLength = outputShape.reduce((product, value) => product * value, 1);\n const output = util_exports.getArrayFromDType(inputDType, outputLength);\n if (numIndices === 0) {\n if (outputRows > 0) {\n output.fill(defaultValue);\n }\n return [output, outputShape];\n }\n if (outputRows <= 0) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());\n }\n let start = 0, end = 1;\n let uninitializedIndex = 0;\n let outIndex = segmentIds[start];\n while (true) {\n let nextIndex = 0;\n if (end < numIndices) {\n nextIndex = segmentIds[end];\n if (outIndex === nextIndex) {\n ++end;\n continue;\n }\n if (outIndex >= nextIndex) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage());\n }\n }\n if (outIndex < 0 || outIndex >= outputRows) {\n throw new Error(backend_util_exports.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(outIndex, outputRows));\n }\n if (outIndex > uninitializedIndex) {\n output.fill(defaultValue, uninitializedIndex * numCol, outIndex * numCol);\n }\n for (let i2 = start; i2 < end; ++i2) {\n const index = indices[i2];\n if (index < 0 || index >= inputFlat[0]) {\n throw new Error(backend_util_exports.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(i2, indices[i2], inputFlat[0]));\n }\n for (let j = 0; j < numCol; j++) {\n output[outIndex * numCol + j] += input2[index * numCol + j];\n }\n }\n if (isMean) {\n for (let j = 0; j < numCol; j++) {\n output[outIndex * numCol + j] /= end - start;\n }\n }\n start = end;\n ++end;\n uninitializedIndex = outIndex + 1;\n outIndex = nextIndex;\n if (end > numIndices) {\n break;\n }\n }\n if (uninitializedIndex < outputRows) {\n output.fill(defaultValue, uninitializedIndex * numCol, outputRows * numCol);\n }\n return [output, outputShape];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sqrt.js\nvar sqrtImpl2 = createSimpleUnaryImpl2((xi) => Math.sqrt(xi));\nvar sqrt4 = unaryKernelFunc4(Sqrt, (xi) => Math.sqrt(xi));\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SquaredDifference.js\nvar squaredDifferenceImpl2 = createSimpleBinaryKernelImpl2((a, b) => {\n const diff = a - b;\n return diff * diff;\n});\nvar squaredDifference4 = binaryKernelFunc4(SquaredDifference, squaredDifferenceImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StridedSlice_impl.js\nfunction stridedSliceImpl2(outShape, xBuf, strides, begin) {\n const outBuf = buffer(outShape, xBuf.dtype);\n for (let i2 = 0; i2 < outBuf.size; i2++) {\n const loc = outBuf.indexToLoc(i2);\n const newLoc = new Array(loc.length);\n for (let j = 0; j < newLoc.length; j++) {\n newLoc[j] = loc[j] * strides[j] + begin[j];\n }\n outBuf.set(xBuf.get(...newLoc), ...loc);\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringNGrams_impl.js\nvar StringNGramsOp2 = class {\n constructor(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) {\n this.separator = util_exports.encodeString(separator);\n this.nGramWidths = nGramWidths;\n this.leftPad = util_exports.encodeString(leftPad);\n this.rightPad = util_exports.encodeString(rightPad2);\n this.padWidth = padWidth;\n this.preserveShort = preserveShortSequences;\n }\n getPadWidth(nGramWidth) {\n return Math.min(this.padWidth < 0 ? nGramWidth - 1 : this.padWidth, nGramWidth - 1);\n }\n getNumNGrams(length, nGramWidth) {\n const padWidth = this.getPadWidth(nGramWidth);\n return Math.max(0, length + 2 * padWidth - nGramWidth + 1);\n }\n createNGrams(data, splitIndex, output, outputStartIndex, numNGrams, nGramWidth) {\n for (let nGramIndex = 0; nGramIndex < numNGrams; ++nGramIndex) {\n const padWidth = this.getPadWidth(nGramWidth);\n const leftPadding = Math.max(0, padWidth - nGramIndex);\n const rightPadding = Math.max(0, padWidth - (numNGrams - (nGramIndex + 1)));\n const numTokens = nGramWidth - (leftPadding + rightPadding);\n const dataStartIndex = splitIndex + (leftPadding > 0 ? 0 : nGramIndex - padWidth);\n let nGramSize = 0;\n nGramSize += leftPadding * this.leftPad.length;\n for (let n2 = 0; n2 < numTokens; ++n2) {\n nGramSize += data[dataStartIndex + n2].length;\n }\n nGramSize += rightPadding * this.rightPad.length;\n const numSeparators = leftPadding + rightPadding + numTokens - 1;\n nGramSize += numSeparators * this.separator.length;\n output[outputStartIndex + nGramIndex] = new Uint8Array(nGramSize);\n const nGram = output[outputStartIndex + nGramIndex];\n let nextNGramIndex = 0;\n const appendToNGram = (str) => str.forEach((value) => nGram[nextNGramIndex++] = value);\n for (let n2 = 0; n2 < leftPadding; ++n2) {\n appendToNGram(this.leftPad);\n appendToNGram(this.separator);\n }\n for (let n2 = 0; n2 < numTokens - 1; ++n2) {\n appendToNGram(data[dataStartIndex + n2]);\n appendToNGram(this.separator);\n }\n if (numTokens > 0) {\n appendToNGram(data[dataStartIndex + numTokens - 1]);\n for (let n2 = 0; n2 < rightPadding; ++n2) {\n appendToNGram(this.separator);\n appendToNGram(this.rightPad);\n }\n } else {\n for (let n2 = 0; n2 < rightPadding - 1; ++n2) {\n appendToNGram(this.rightPad);\n appendToNGram(this.separator);\n }\n appendToNGram(this.rightPad);\n }\n }\n }\n compute(data, splits) {\n const inputDataSize = data.length;\n const splitsSize = splits.length;\n if (splitsSize > 0) {\n let prevSplit = splits[0];\n if (prevSplit !== 0) {\n throw new Error(`First split value must be 0, got ${prevSplit}`);\n }\n for (let i2 = 1; i2 < splitsSize; ++i2) {\n let validSplits = splits[i2] >= prevSplit;\n validSplits = validSplits && splits[i2] <= inputDataSize;\n if (!validSplits) {\n throw new Error(`Invalid split value ${splits[i2]}, must be in [${prevSplit}, ${inputDataSize}]`);\n }\n prevSplit = splits[i2];\n }\n if (prevSplit !== inputDataSize) {\n throw new Error(`Last split value must be data size. Expected ${inputDataSize}, got ${prevSplit}`);\n }\n }\n const numBatchItems = splitsSize - 1;\n const nGramsSplits = util_exports.getArrayFromDType(\"int32\", splitsSize);\n if (inputDataSize === 0 || splitsSize === 0) {\n const empty = new Array(inputDataSize);\n for (let i2 = 0; i2 <= numBatchItems; ++i2) {\n nGramsSplits[i2] = 0;\n }\n return [empty, nGramsSplits];\n }\n nGramsSplits[0] = 0;\n for (let i2 = 1; i2 <= numBatchItems; ++i2) {\n const length = splits[i2] - splits[i2 - 1];\n let numNGrams = 0;\n this.nGramWidths.forEach((nGramWidth) => {\n numNGrams += this.getNumNGrams(length, nGramWidth);\n });\n if (this.preserveShort && length > 0 && numNGrams === 0) {\n numNGrams = 1;\n }\n nGramsSplits[i2] = nGramsSplits[i2 - 1] + numNGrams;\n }\n const nGrams = new Array(nGramsSplits[numBatchItems]);\n for (let i2 = 0; i2 < numBatchItems; ++i2) {\n const splitIndex = splits[i2];\n let outputStartIdx = nGramsSplits[i2];\n this.nGramWidths.forEach((nGramWidth) => {\n const length = splits[i2 + 1] - splits[i2];\n const numNGrams = this.getNumNGrams(length, nGramWidth);\n this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth);\n outputStartIdx += numNGrams;\n });\n if (this.preserveShort && outputStartIdx === nGramsSplits[i2]) {\n const dataLength = splits[i2 + 1] - splits[i2];\n if (dataLength === 0) {\n continue;\n }\n const nGramWidth = dataLength + 2 * this.padWidth;\n const numNGrams = 1;\n this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth);\n }\n }\n return [nGrams, nGramsSplits];\n }\n};\nfunction stringNGramsImpl2(data, dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) {\n return new StringNGramsOp2(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences).compute(data, dataSplits);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringSplit_impl.js\nfunction split4(str, delimiters, skipEmpty, result) {\n if (!str.length) {\n return;\n }\n if (delimiters.length === 0) {\n for (let i2 = 0; i2 < str.length; ++i2) {\n result.push(str.subarray(i2, i2 + 1));\n }\n return;\n }\n if (delimiters.length === 1) {\n const delimiter = delimiters[0];\n let f = str.indexOf(delimiter);\n while (f !== -1) {\n const token = str.subarray(0, f);\n if (!skipEmpty || token.length !== 0) {\n result.push(token);\n }\n str = str.subarray(f + 1);\n f = str.indexOf(delimiter);\n }\n if (!skipEmpty || str.length !== 0) {\n result.push(str);\n }\n return;\n }\n let tokenStart = 0;\n for (let i2 = 0; i2 < str.length + 1; i2++) {\n if (i2 === str.length || delimiters.indexOf(str[i2]) !== -1) {\n const token = str.subarray(tokenStart, i2);\n if (!skipEmpty || token.length !== 0) {\n result.push(token);\n }\n tokenStart = i2 + 1;\n }\n }\n}\nfunction stringSplitImpl2(input2, delimiter, skipEmpty) {\n const batchSize = input2.length;\n const tokens = [];\n let outputSize = 0;\n let maxNumEntries = 0;\n const numIndices = new Array(batchSize);\n for (let i2 = 0; i2 < batchSize; ++i2) {\n const prevTokensLength = tokens.length;\n split4(input2[i2], delimiter, skipEmpty, tokens);\n const nEntries = tokens.length - prevTokensLength;\n numIndices[i2] = nEntries;\n outputSize += nEntries;\n maxNumEntries = Math.max(maxNumEntries, nEntries);\n }\n const indices = util_exports.getArrayFromDType(\"int32\", outputSize * 2);\n const values = new Array(outputSize);\n const shape = [batchSize, maxNumEntries];\n let c = 0;\n for (let i2 = 0; i2 < batchSize; ++i2) {\n for (let j = 0; j < numIndices[i2]; ++j) {\n indices[c * 2] = i2;\n indices[c * 2 + 1] = j;\n values[c] = tokens[c];\n ++c;\n }\n }\n return [indices, values, shape];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringToHashBucketFast_impl.js\nfunction stringToHashBucketFastImpl2(input2, numBuckets) {\n const output = util_exports.getArrayFromDType(\"int32\", input2.length);\n for (let i2 = 0; i2 < input2.length; ++i2) {\n output[i2] = util_exports.fingerPrint64(input2[i2]).modulo(numBuckets).getLowBitsUnsigned();\n }\n return output;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sub.js\nvar subImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => aValue - bValue);\nvar subComplexImpl2 = createComplexBinaryKernelImpl2((aReal, aImag, bReal, bImag) => {\n return { real: aReal - bReal, imag: aImag - bImag };\n});\nvar sub4 = binaryKernelFunc4(Sub, subImpl2, subComplexImpl2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tile_impl.js\nfunction tileImpl2(xBuf, reps) {\n const newShape = new Array(xBuf.rank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = xBuf.shape[i2] * reps[i2];\n }\n const result = buffer(newShape, xBuf.dtype);\n for (let i2 = 0; i2 < result.values.length; ++i2) {\n const newLoc = result.indexToLoc(i2);\n const originalLoc = new Array(xBuf.rank);\n for (let j = 0; j < originalLoc.length; j++) {\n originalLoc[j] = newLoc[j] % xBuf.shape[j];\n }\n const originalIndex = xBuf.locToIndex(originalLoc);\n result.values[i2] = xBuf.values[originalIndex];\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/TopK_impl.js\nvar comparePair2 = (a, b) => {\n const valueDiff = b.value - a.value;\n return valueDiff === 0 ? a.index - b.index : valueDiff;\n};\nfunction select5(array2, k, left = 0, right = array2.length - 1) {\n while (right > left) {\n if (right - left > 600) {\n const n2 = right - left + 1;\n const i3 = k - left + 1;\n const z = Math.log(n2);\n const s2 = 0.5 * Math.exp(2 * z / 3);\n const sd = 0.5 * Math.sqrt(z * s2 * (n2 - s2) / n2) * Math.sign(i3 - n2 / 2);\n const newLeft = Math.max(left, Math.floor(k - i3 * s2 / n2 + sd));\n const newRight = Math.min(right, Math.floor(k + (n2 - i3) * s2 / n2 + sd));\n select5(array2, k, newLeft, newRight);\n }\n const t2 = array2[k];\n let i2 = left;\n let j = right;\n util_exports.swap(array2, left, k);\n if (comparePair2(array2[right], t2) > 0) {\n util_exports.swap(array2, left, right);\n }\n while (i2 < j) {\n util_exports.swap(array2, i2, j);\n i2++;\n j--;\n while (comparePair2(array2[i2], t2) < 0) {\n i2 = i2 + 1;\n }\n while (comparePair2(array2[j], t2) > 0) {\n j = j - 1;\n }\n }\n if (comparePair2(array2[left], t2) === 0) {\n util_exports.swap(array2, left, j);\n } else {\n j = j + 1;\n util_exports.swap(array2, j, right);\n }\n if (j <= k) {\n left = j + 1;\n }\n if (k <= j) {\n right = j - 1;\n }\n }\n}\nfunction topKImpl2(x, xShape, xDtype, k, sorted) {\n const lastDim = xShape[xShape.length - 1];\n const [batch, size] = [x.length / lastDim, lastDim];\n const allTopKVals = util_exports.getTypedArrayFromDType(xDtype, batch * k);\n const allTopKIndices = util_exports.getTypedArrayFromDType(\"int32\", batch * k);\n for (let b = 0; b < batch; b++) {\n const offset = b * size;\n const vals = x.subarray(offset, offset + size);\n let valAndInd = new Array(vals.length);\n vals.forEach((value, index) => valAndInd[index] = { value, index });\n if (k < valAndInd.length) {\n select5(valAndInd, k);\n valAndInd = valAndInd.slice(0, k);\n }\n if (sorted) {\n valAndInd.sort(comparePair2);\n }\n const outOffset = b * k;\n const topKVals = allTopKVals.subarray(outOffset, outOffset + k);\n const topKIndices = allTopKIndices.subarray(outOffset, outOffset + k);\n for (let i2 = 0; i2 < k; i2++) {\n topKVals[i2] = valAndInd[i2].value;\n topKIndices[i2] = valAndInd[i2].index;\n }\n }\n const outputShape = xShape.slice();\n outputShape[outputShape.length - 1] = k;\n return [\n buffer(outputShape, xDtype, allTopKVals),\n buffer(outputShape, \"int32\", allTopKIndices)\n ];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Unique_impl.js\nfunction uniqueImpl2(values, axis, shape, dtype) {\n const $axis = util_exports.parseAxisParam(axis, shape)[0];\n const newShape = [1, shape[0], 1];\n for (let i2 = 0; i2 < $axis; i2++) {\n newShape[0] *= shape[i2];\n }\n newShape[1] = shape[$axis];\n for (let i2 = $axis + 1; i2 < shape.length; i2++) {\n newShape[2] *= shape[i2];\n }\n const uniqueElements = {};\n const indices = new Int32Array(shape[$axis]);\n const inputBuffer = new TensorBuffer(newShape, dtype, values);\n const uniqueIndices = [];\n const is1DTensor = newShape[0] === 1 && newShape[2] === 1;\n for (let i2 = 0; i2 < shape[$axis]; i2++) {\n let element;\n if (is1DTensor) {\n element = values[i2].toString();\n } else {\n const axisValues = [];\n for (let m = 0; m < newShape[0]; m++) {\n for (let n2 = 0; n2 < newShape[2]; n2++) {\n axisValues.push(inputBuffer.get(m, i2, n2));\n }\n }\n element = axisValues.join(\",\");\n }\n if (uniqueElements[element] !== void 0) {\n indices[i2] = uniqueElements[element];\n } else {\n const uniqueIndex = Object.keys(uniqueElements).length;\n uniqueElements[element] = uniqueIndex;\n indices[i2] = uniqueIndex;\n uniqueIndices.push(i2);\n }\n }\n const outputTmpShape = newShape.slice();\n outputTmpShape[1] = Object.keys(uniqueElements).length;\n const outputBuffer = new TensorBuffer(outputTmpShape, dtype);\n uniqueIndices.forEach((uniqueElementIndex, i2) => {\n for (let m = 0; m < newShape[0]; m++) {\n for (let n2 = 0; n2 < newShape[2]; n2++) {\n outputBuffer.set(inputBuffer.get(m, uniqueElementIndex, n2), m, i2, n2);\n }\n }\n });\n const outputShape = shape.slice();\n outputShape[$axis] = outputTmpShape[1];\n return {\n outputValues: outputBuffer.values,\n outputShape,\n indices\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/shared.js\nvar { addImpl: addImplCPU2, ceilImpl: ceilImplCPU2, concatImpl: concatImplCPU2, equalImpl: equalImplCPU2, expImpl: expImplCPU2, expm1Impl: expm1ImplCPU2, floorImpl: floorImplCPU2, gatherNdImpl: gatherNdImplCPU2, gatherV2Impl: gatherV2ImplCPU2, greaterEqualImpl: greaterEqualImplCPU2, greaterImpl: greaterImplCPU2, lessEqualImpl: lessEqualImplCPU2, lessImpl: lessImplCPU2, logImpl: logImplCPU2, maxImpl: maxImplCPU2, maximumImpl: maximumImplCPU2, minimumImpl: minimumImplCPU2, multiplyImpl: multiplyImplCPU2, negImpl: negImplCPU2, notEqualImpl: notEqualImplCPU2, prodImpl: prodImplCPU2, rangeImpl: rangeImplCPU2, rsqrtImpl: rsqrtImplCPU2, scatterImpl: scatterImplCPU2, simpleAbsImpl: simpleAbsImplCPU2, sliceImpl: sliceImplCPU2, stridedSliceImpl: stridedSliceImplCPU2, stringNGramsImpl: stringNGramsImplCPU2, subImpl: subImplCPU2, tileImpl: tileImplCPU2, topKImpl: topKImplCPU2, transposeImpl: transposeImplCPU2, uniqueImpl: uniqueImplCPU2 } = shared_exports2;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Abs.js\nvar abs4 = unaryKernelFunc3({ opType: UnaryOpType.ABS, cpuKernelImpl: simpleAbsImplCPU2 });\nvar absConfig4 = {\n kernelName: Abs,\n backendName: \"webgpu\",\n kernelFunc: abs4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Add.js\nvar addKernelFunc2 = binaryKernelFunc3({ opType: BinaryOpType.ADD, cpuKernelImpl: addImplCPU2, supportsComplex: true });\nvar addConfig4 = {\n kernelName: Add,\n backendName: \"webgpu\",\n kernelFunc: addKernelFunc2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/addn_packed_webgpu.js\nvar AddNPackedProgram2 = class {\n constructor(shapes) {\n this.workPerThread = 4;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = shapes[0];\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.shaderKey = \"addN\";\n }\n getUserCode() {\n const snippets = [];\n this.variableNames.forEach((variable2) => {\n snippets.push(`let v${variable2} = get${variable2}ByOutputCoords(coords);`);\n });\n const operation = this.variableNames.map((variable2) => {\n return `v${variable2}`;\n }).join(\" + \");\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n for (var i = 0; i < ${this.workPerThread}; i = i + 1) {\n let flatIndex = index * ${this.workPerThread} + i;\n if (flatIndex < uniforms.size) {\n let coords = getCoordsFromIndex(flatIndex);\n ${snippets.join(\"\\n \")}\n setOutputAtIndex(flatIndex, ${operation});\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/AddN.js\nfunction addN4(args) {\n const { inputs, backend: backend2 } = args;\n const tensors = inputs;\n if (tensors.length === 1) {\n return identity5({ inputs: { x: tensors[0] }, backend: backend2 });\n }\n const dtype = tensors.map((t2) => t2.dtype).reduce((d1, d2) => upcastType(d1, d2));\n const shapes = tensors.map((t2) => t2.shape);\n const program = new AddNPackedProgram2(shapes);\n return backend2.runWebGPUProgram(program, tensors, dtype);\n}\nvar addNConfig4 = {\n kernelName: AddN,\n backendName: \"webgpu\",\n kernelFunc: addN4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/argminmax_webgpu.js\nvar ArgMinMaxProgram2 = class {\n constructor(inputShape, axis, reduceType) {\n this.workGroupSize = [64, 1, 1];\n this.variableNames = [\"x\"];\n this.uniforms = \"infinityValue : f32,\";\n this.size = true;\n const axes = [axis];\n backend_util_exports.assertAxesAreInnerMostDims(\"arg\" + reduceType.charAt(0).toUpperCase() + reduceType.slice(1), axes, inputShape.length);\n this.op = reduceType === \"min\" ? \"<\" : \">\";\n const [outputShape] = backend_util_exports.computeOutAndReduceShapes(inputShape, axes);\n this.outputShape = outputShape.length === 0 ? [1] : outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]);\n this.inputShape = inputShape;\n this.shaderKey = `argMinMax${this.op}`;\n }\n getUserCode() {\n const sharedMemorySnippet = `\n var xBestIndices : array;\n var xBestValues : array;\n `;\n const getInputShapeLastDim = () => {\n if (this.inputShape.length === 1) {\n return \"uniforms.xShape\";\n } else {\n return `uniforms.xShape.${getCoordsXYZ(this.inputShape.length - 1)}`;\n }\n };\n const splitOutputCoords = () => {\n let snippet = \"\";\n if (this.outputShape.length === 1) {\n if (this.inputShape.length !== 1) {\n snippet += \"outputCoords,\";\n }\n } else {\n for (let i2 = 0; i2 < this.outputShape.length; i2++) {\n snippet += `outputCoords.${getCoordsXYZ(i2)},`;\n }\n }\n return snippet;\n };\n const userCode = `\n fn DIV_CEIL(a : u32, b : u32) -> u32 {\n return ((a - 1u) / b + 1u);\n }\n\n ${sharedMemorySnippet}\n\n ${getMainHeaderAndGlobalIndexString()}\n let outputIndex = index / i32(workGroupSizeX);\n let reduceLength = ${getInputShapeLastDim()};\n\n var bestIndex = i32(localId.x);\n var bestValue = uniforms.infinityValue;\n let outputCoords = getCoordsFromIndex(outputIndex);\n for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;\n k = k + i32(workGroupSizeX)) {\n let candidate = getX(${splitOutputCoords()} k);\n if (!isnan(candidate) && candidate ${this.op} bestValue) {\n bestValue = candidate;\n bestIndex = k;\n }\n }\n xBestValues[localId.x] = bestValue;\n xBestIndices[localId.x] = bestIndex;\n workgroupBarrier();\n\n var reduceSize = min(u32(reduceLength), workGroupSizeX);\n for (var currentSize = reduceSize / 2u; reduceSize > 1u;\n currentSize = reduceSize / 2u) {\n let interval = DIV_CEIL(reduceSize, 2u);\n if (localId.x < currentSize) {\n let candidate = xBestValues[localId.x + interval];\n if (candidate ${this.op} bestValue) {\n bestValue = candidate;\n xBestValues[localId.x] = bestValue;\n xBestIndices[localId.x] = xBestIndices[localId.x + interval];\n }\n }\n reduceSize = interval;\n workgroupBarrier();\n }\n\n if (localId.x == 0u && outputIndex < uniforms.size) {\n setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transpose_shared_webgpu.js\nvar TransposeSharedProgram = class {\n constructor(aShape, newDim) {\n this.variableNames = [\"A\"];\n this.workGroupSize = [16, 16, 1];\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[newDim[i2]];\n }\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [0], y: [1] };\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [1, 1, 1]);\n this.shaderKey = \"transposeShared\";\n }\n getUserCode() {\n const userCode = `\n const TILE_DIM = ${this.workGroupSize[0]};\n var tile : array, ${this.workGroupSize[0]}>;\n ${getWorkGroupSizeString()}\n fn main(@builtin(local_invocation_id) localId : vec3,\n @builtin(workgroup_id) workgroupId : vec3) {\n var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);\n var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);\n let width = uniforms.outShape[0];\n let height = uniforms.outShape[1];\n if (x < width && y < height) {\n tile[localId.y][localId.x] = A[y * width + x];\n }\n workgroupBarrier();\n\n x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);\n y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);\n if (x < height && y < width) {\n setOutputAtIndex((y * height + x), tile[localId.x]\n [localId.y]);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transpose_webgpu.js\nvar TransposeProgram2 = class {\n constructor(aShape, newDim) {\n this.variableNames = [\"A\"];\n this.workPerThread = 4;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[newDim[i2]];\n }\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.newDim = newDim;\n this.shaderKey = `transpose_${newDim}`;\n }\n getUserCode() {\n const dtype = getCoordsDataType2(this.outputShape.length);\n const switched = getSwitchedCoords2(this.newDim);\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n\n for(var i = 0; i < ${this.workPerThread}; i = i + 1) {\n let flatIndex = index * ${this.workPerThread} + i;\n if(flatIndex < uniforms.size) {\n let resRC = getCoordsFromIndex(flatIndex);\n setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(\n ${dtype}(${switched}), uniforms.aShape)]);\n }\n }\n }\n `;\n return userCode;\n }\n};\nfunction getSwitchedCoords2(newDim) {\n const rank = newDim.length;\n if (rank > 6) {\n throw Error(`Transpose for rank ${rank} is not yet supported`);\n }\n const switchedCoords = new Array(rank);\n for (let i2 = 0; i2 < newDim.length; i2++) {\n switchedCoords[newDim[i2]] = `resRC.${getCoordsXYZ(i2)}`;\n }\n return switchedCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Transpose.js\nfunction transpose6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { perm } = attrs;\n const webgpuBackend = backend2;\n const xRank = x.shape.length;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[perm[i2]];\n }\n if (backend2.shouldExecuteOnCPU([x])) {\n const xData = webgpuBackend.tensorMap.get(x.dataId);\n const values = xData.values;\n const outValues = transposeImplCPU2(values, x.shape, x.dtype, perm, newShape);\n return backend2.makeTensorInfo(newShape, x.dtype, outValues);\n }\n if (x.shape.length === 2 && util_exports.arraysEqual(perm, [1, 0])) {\n const program2 = new TransposeSharedProgram(x.shape, perm);\n return webgpuBackend.runWebGPUProgram(program2, [x], x.dtype);\n }\n const program = new TransposeProgram2(x.shape, perm);\n return webgpuBackend.runWebGPUProgram(program, [x], x.dtype);\n}\nvar transposeConfig4 = {\n kernelName: Transpose,\n backendName: \"webgpu\",\n kernelFunc: transpose6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ArgMax.js\nfunction argMax4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose6({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"argMax\", [axes[0]], $x.shape.length);\n const program = new ArgMinMaxProgram2($x.shape, axes[0], \"max\");\n const uniformData = [{ type: \"float32\", data: [Number.NEGATIVE_INFINITY] }];\n const out = backend2.runWebGPUProgram(program, [$x], \"int32\", uniformData);\n intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId));\n return out;\n}\nvar argMaxConfig4 = {\n kernelName: ArgMax,\n backendName: \"webgpu\",\n kernelFunc: argMax4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ArgMin.js\nfunction argMin4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose6({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"argMin\", [axes[0]], $x.shape.length);\n const program = new ArgMinMaxProgram2($x.shape, axes[0], \"min\");\n const uniformData = [{ type: \"float32\", data: [Number.POSITIVE_INFINITY] }];\n const out = backend2.runWebGPUProgram(program, [$x], \"int32\", uniformData);\n intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId));\n return out;\n}\nvar argMinConfig3 = {\n kernelName: ArgMin,\n backendName: \"webgpu\",\n kernelFunc: argMin4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pool2d_webgpu.js\nvar Pool2DProgram2 = class {\n constructor(convInfo, poolType) {\n this.variableNames = [\"x\"];\n this.uniforms = `stride : vec2, pad : vec2, dilation : vec2, convDims : vec2, filterDims : vec2,`;\n this.workGroupSize = [128, 1, 1];\n this.size = true;\n this.outputShape = convInfo.outShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `pool2D_${poolType}`;\n this.poolType = poolType;\n }\n getUserCode() {\n let updateSnippet = `resultValue = max(value, resultValue);`;\n if (this.poolType === \"avg\") {\n updateSnippet = `resultValue = resultValue + value; count = count + 1.0;`;\n }\n let returnValue = `resultValue`;\n if (this.poolType === \"avg\") {\n returnValue = `resultValue / count`;\n }\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let batch = coords[0];\n let xRCCorner = vec2(coords.yz) * uniforms.stride - uniforms.pad;\n let xRCorner = xRCCorner.x;\n let xCCorner = xRCCorner.y;\n\n var resultValue = ${this.poolType === \"avg\" ? \"0.0\" : \"-1.0 / pow(10.0, -20.0)\"};\n var count = 0.0;\n\n for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {\n let xR = xRCorner + wR;\n\n if (xR < 0 || xR >= uniforms.convDims.x) {\n continue;\n }\n\n for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {\n let xC = xCCorner + wC;\n if (xC < 0 || xC >= uniforms.convDims.y) {\n continue;\n }\n\n let value = getX(batch, xR, xC, coords[3]);\n ${updateSnippet}\n }\n }\n\n setOutputAtIndex(index, ${returnValue});\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pool_filtersizeone_webgpu.js\nvar PoolWithFilterSizeEqualsOneProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\"];\n this.uniforms = `stride : vec2,`;\n this.workGroupSize = [256, 1, 1];\n this.size = true;\n this.outputShape = convInfo.outShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"poolWithFilterSizeEqualsOne\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let batch = coords[0];\n let d = coords[3];\n\n let xRCCorner = coords.yz * uniforms.stride;\n let xRCorner = xRCCorner.x;\n let xCCorner = xRCCorner.y;\n\n let value = getX(batch, xRCorner, xCCorner, d);\n setOutputAtIndex(index, value);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/AvgPool.js\nfunction avgPool5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n return identity5({ inputs: { x }, backend: backend2 });\n }\n let program;\n const dimensions = [{ type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] }];\n if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1) {\n program = new PoolWithFilterSizeEqualsOneProgram(convInfo);\n } else {\n program = new Pool2DProgram2(convInfo, \"avg\");\n dimensions.push({ type: \"int32\", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, {\n type: \"int32\",\n data: [convInfo.dilationHeight, convInfo.dilationWidth]\n }, { type: \"int32\", data: [convInfo.inHeight, convInfo.inWidth] }, {\n type: \"int32\",\n data: [convInfo.effectiveFilterHeight, convInfo.effectiveFilterWidth]\n });\n }\n return backend2.runWebGPUProgram(program, [x], x.dtype, dimensions);\n}\nvar avgPoolConfig4 = {\n kernelName: AvgPool,\n backendName: \"webgpu\",\n kernelFunc: avgPool5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchMatMul.js\nfunction batchMatMul4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b } = inputs;\n const { transposeA, transposeB } = attrs;\n return batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2 });\n}\nvar batchMatMulConfig4 = {\n kernelName: BatchMatMul,\n backendName: \"webgpu\",\n kernelFunc: batchMatMul4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/slice_webgpu.js\nvar SliceProgram2 = class {\n constructor(start, destSize) {\n this.variableNames = [\"source\"];\n this.workPerThread = 1;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = destSize;\n this.rank = destSize.length;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.start = start;\n this.uniforms = `start : ${getCoordsDataType2(start.length)}, `;\n this.shaderKey = \"slice\";\n }\n getUserCode() {\n const dtype = getCoordsDataType2(this.rank);\n const sourceCoords = getCoords3(this.rank);\n let coordSum;\n if (this.start.length === 1) {\n coordSum = this.outputShape.map((_, i2) => {\n return `sourceLoc = uniforms.start + coords;`;\n });\n } else {\n coordSum = this.outputShape.map((_, i2) => {\n return `sourceLoc.${coords2[i2]} = uniforms.start[${i2}] + coords.${coords2[i2]};`;\n });\n }\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n var sourceLoc : ${dtype};\n let coords = getCoordsFromIndex(index);\n ${coordSum.join(\"\\n\")}\n setOutputAtIndex(index, getSource(${sourceCoords}));\n }\n }\n `;\n return userCode;\n }\n};\nvar coords2 = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"];\nfunction getCoords3(rank) {\n if (rank === 1) {\n return \"sourceLoc\";\n } else if (rank <= 6) {\n return coords2.slice(0, rank).map((coord) => `sourceLoc.${coord}`).join(\",\");\n } else {\n throw Error(`Slicing for rank ${rank} is not yet supported`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Slice.js\nfunction slice5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, size } = attrs;\n const [$begin, $size] = slice_util_exports.parseSliceParams(x, begin, size);\n slice_util_exports.assertParamsValid(x, $begin, $size);\n if (backend2.shouldExecuteOnCPU([x]) || x.dtype === \"string\") {\n const xBufferInfo = backend2.tensorMap.get(x.dataId);\n const outValues = sliceImplCPU2(xBufferInfo.values, $begin, $size, x.shape, x.dtype);\n return backend2.makeTensorInfo($size, x.dtype, outValues);\n }\n if (util_exports.sizeFromShape($size) === 0) {\n return backend2.makeTensorInfo($size, x.dtype, []);\n }\n const program = new SliceProgram2($begin, $size);\n const uniformData = [{ type: \"int32\", data: $begin }];\n return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n}\nvar sliceConfig4 = {\n kernelName: Slice,\n backendName: \"webgpu\",\n kernelFunc: slice5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchToSpaceND.js\nvar batchToSpaceND5 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, crops } = attrs;\n util_exports.assert(x.shape.length <= 4, () => \"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6);\n const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length);\n const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6);\n const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length);\n const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length);\n const toDispose = [];\n const reshapedIntermediate = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } });\n const transposedIntermediate = transpose6({ inputs: { x: reshapedIntermediate }, backend: backend2, attrs: { perm: permuted } });\n const reshapedIntermediate2 = reshape6({\n inputs: { x: transposedIntermediate },\n backend: backend2,\n attrs: { shape: reshapedPermuted }\n });\n const sliced = slice5({\n inputs: { x: reshapedIntermediate2 },\n backend: backend2,\n attrs: { begin: sliceBeginCoords, size: sliceSize }\n });\n toDispose.push(reshapedIntermediate);\n toDispose.push(transposedIntermediate);\n toDispose.push(reshapedIntermediate2);\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return sliced;\n};\nvar batchToSpaceNDConfig4 = {\n kernelName: BatchToSpaceND,\n backendName: \"webgpu\",\n kernelFunc: batchToSpaceND5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NotEqual.js\nvar notEqual5 = binaryKernelFunc3({\n opType: BinaryOpType.NOT_EQUAL,\n dtype: \"bool\",\n cpuKernelImpl: notEqualImplCPU2\n});\nvar notEqualConfig4 = {\n kernelName: NotEqual,\n backendName: \"webgpu\",\n kernelFunc: notEqual5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Real.js\nfunction real5(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputData = backend2.tensorMap.get(input2.dataId);\n return identity5({ inputs: { x: inputData.complexTensorInfos.real }, backend: backend2 });\n}\nvar realConfig3 = {\n kernelName: Real,\n backendName: \"webgpu\",\n kernelFunc: real5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/int.js\nfunction int2(input2, backend2) {\n const program = new UnaryOpProgram2(input2.shape, UnaryOpType.TO_INT);\n const output = backend2.runWebGPUProgram(program, [input2], \"int32\");\n return { dataId: output.dataId, shape: output.shape, dtype: output.dtype };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cast.js\nfunction cast7(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dtype } = attrs;\n if (dtype === \"complex64\") {\n if (x.dtype === \"complex64\") {\n return identity5({ inputs: { x }, backend: backend2 });\n }\n const zerosTensor = zeros(x.shape);\n const floatX = cast7({ inputs: { x }, backend: backend2, attrs: { dtype: \"float32\" } });\n const result = complex4({ inputs: { real: floatX, imag: zerosTensor }, backend: backend2 });\n zerosTensor.dispose();\n backend2.disposeData(floatX.dataId);\n return result;\n }\n if (x.dtype === \"complex64\") {\n const realPart = real5({ inputs: { input: x }, backend: backend2 });\n const result = cast7({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } });\n backend2.disposeData(realPart.dataId);\n return result;\n }\n if (!util_exports.hasEncodingLoss(x.dtype, dtype)) {\n const result = identity5({ inputs: { x }, backend: backend2 });\n return { dataId: result.dataId, shape: result.shape, dtype };\n }\n if (dtype === \"int32\") {\n return int2(x, backend2);\n }\n if (dtype === \"bool\") {\n const zerosTensorInfo = backend2.makeTensorInfo([], \"bool\", util_exports.getTypedArrayFromDType(\"bool\", 1));\n const binaryInputs = { a: x, b: zerosTensorInfo };\n const result = notEqual5({ inputs: binaryInputs, backend: backend2 });\n backend2.disposeData(zerosTensorInfo.dataId);\n return result;\n }\n throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`);\n}\nvar castConfig4 = {\n kernelName: Cast,\n backendName: \"webgpu\",\n kernelFunc: cast7\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Ceil.js\nvar ceil5 = unaryKernelFunc3({ opType: UnaryOpType.CEIL, cpuKernelImpl: ceilImplCPU2 });\nvar ceilConfig4 = {\n kernelName: Ceil,\n backendName: \"webgpu\",\n kernelFunc: ceil5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/clip_vec4_webgpu.js\nvar ClipVec4Program = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.uniforms = \"minVal : f32, maxVal : f32,\";\n this.workPerThread = 4;\n this.workGroupSize = [64, 1, 1];\n this.isVec4 = true;\n this.size = true;\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.shaderKey = \"clipVec4\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if(index < uniforms.size) {\n let value = getAByOutputIndex(index);\n var clampedValue : vec4;\n for (var i = 0; i < 4; i = i + 1) {\n if (isnan(value[i])) {\n clampedValue[i] = value[i];\n } else {\n clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);\n }\n }\n\n setOutputAtIndex(index, clampedValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/clip_webgpu.js\nvar ClipProgram2 = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.uniforms = \"minVal : f32, maxVal : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"clip\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if(index < uniforms.size) {\n let value = getAByOutputIndex(index);\n if (isnan(value)) {\n setOutputAtIndex(index, value);\n return;\n }\n setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ClipByValue.js\nfunction clipByValue4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { clipValueMin, clipValueMax } = attrs;\n let program;\n const uniformData = [\n { type: \"float32\", data: [clipValueMin] },\n { type: \"float32\", data: [clipValueMax] }\n ];\n if (util_exports.sizeFromShape(x.shape) % 4 === 0) {\n program = new ClipVec4Program(x.shape);\n } else {\n program = new ClipProgram2(x.shape);\n }\n return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n}\nvar clipByValueConfig4 = {\n kernelName: ClipByValue,\n backendName: \"webgpu\",\n kernelFunc: clipByValue4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/concat_webgpu.js\nvar ConcatProgram2 = class {\n constructor(shapes) {\n this.uniforms = \"\";\n this.workPerThread = 4;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = backend_util_exports.computeOutShape(shapes, 1);\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.offsetLength = shapes.length - 1;\n for (let i2 = 0; i2 < this.offsetLength; i2++) {\n this.uniforms += `offset${i2} : i32,`;\n }\n this.shaderKey = \"concat\";\n }\n getUserCode() {\n const snippets = [];\n if (this.offsetLength > 0) {\n snippets.push(`if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }`);\n for (let i2 = 1; i2 < this.offsetLength; i2++) {\n snippets.push(`else if (yC < uniforms.offset${[i2]}){ setOutputAtCoords(coords.x, coords.y, getT${i2}(yR, yC - uniforms.offset${i2 - 1})); }`);\n }\n const lastIndex = this.offsetLength;\n const lastShiftIndex = this.offsetLength - 1;\n snippets.push(`else { setOutputAtCoords(coords.x, coords.y, getT${lastIndex}(yR, yC - uniforms.offset${lastShiftIndex})); }`);\n } else {\n snippets.push(`setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));`);\n }\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n for(var i = 0; i < ${this.workPerThread}; i = i + 1) {\n let flatIndex = index * ${this.workPerThread} + i;\n if(flatIndex < uniforms.size) {\n let coords = getCoordsFromIndex(flatIndex);\n let yR = coords.x;\n let yC = coords.y;\n\n ${snippets.join(\"\\n \")}\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Imag.js\nfunction imag4(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputData = backend2.tensorMap.get(input2.dataId);\n return identity5({ inputs: { x: inputData.complexTensorInfos.imag }, backend: backend2 });\n}\nvar imagConfig3 = {\n kernelName: Imag,\n backendName: \"webgpu\",\n kernelFunc: imag4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Concat_impl.js\nfunction concatImpl4(inputs, axis, backend2) {\n const dtype = inputs[0].dtype;\n if (dtype === \"complex64\") {\n const reals = inputs.map((t2) => real5({ inputs: { input: t2 }, backend: backend2 }));\n const imags = inputs.map((t2) => imag4({ inputs: { input: t2 }, backend: backend2 }));\n const realConcated = concatImpl4(reals, axis, backend2);\n const imagConcated = concatImpl4(imags, axis, backend2);\n const result = complex4({ inputs: { real: realConcated, imag: imagConcated }, backend: backend2 });\n reals.forEach((r2) => backend2.disposeData(r2.dataId));\n imags.forEach((i2) => backend2.disposeData(i2.dataId));\n backend2.disposeData(realConcated.dataId);\n backend2.disposeData(imagConcated.dataId);\n return result;\n }\n let runOnCpu = backend2.shouldExecuteOnCPU(inputs);\n if (dtype === \"string\") {\n runOnCpu = true;\n }\n if (runOnCpu) {\n const tensors2D2 = inputs.map((t2) => {\n const innerSize = util_exports.sizeFromShape(t2.shape.slice(axis));\n const shape = [-1, innerSize];\n return reshape6({ inputs: { x: t2 }, backend: backend2, attrs: { shape } });\n });\n const inputsValShapes = tensors2D2.map((t2) => {\n return { vals: backend2.readSync(t2.dataId), shape: t2.shape };\n });\n const outShape2 = backend_util_exports.computeOutShape(tensors2D2.map((t2) => t2.shape), 1);\n const simplyConcat = tensors2D2[0].shape[0] === 1;\n const outVals = concatImplCPU2(inputsValShapes, outShape2, dtype, simplyConcat);\n const finalOutShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const outInfo = backend2.makeTensorInfo(finalOutShape, dtype, outVals);\n tensors2D2.forEach((t2) => backend2.disposeData(t2.dataId));\n return outInfo;\n }\n const maxInputNum = backend2.device.limits.maxStorageBuffersPerShaderStage - 1;\n if (inputs.length > maxInputNum) {\n const reducedInputs = [];\n for (let i2 = 0; i2 < inputs.length; i2 += maxInputNum) {\n const subArray = inputs.slice(i2, i2 + maxInputNum);\n reducedInputs.push(concatImpl4(subArray, axis, backend2));\n }\n const result = concatImpl4(reducedInputs, axis, backend2);\n for (const i2 of reducedInputs) {\n backend2.disposeData(i2.dataId);\n }\n return result;\n }\n const { tensors2D, outShape } = computeTensors2D2(inputs, axis, backend2);\n const shapes = tensors2D.map((t2) => t2.shape);\n const program = new ConcatProgram2(shapes);\n const uniformData = [];\n const offsets = new Array(shapes.length - 1);\n if (offsets.length > 0) {\n offsets[0] = shapes[0][1];\n uniformData.push({ type: \"int32\", data: [offsets[0]] });\n for (let i2 = 1; i2 < offsets.length; i2++) {\n offsets[i2] = offsets[i2 - 1] + shapes[i2][1];\n uniformData.push({ type: \"int32\", data: [offsets[i2]] });\n }\n }\n const res = backend2.runWebGPUProgram(program, tensors2D, tensors2D[0].dtype, uniformData);\n tensors2D.forEach((r2) => backend2.disposeData(r2.dataId));\n const reshapedResult = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: outShape } });\n backend2.disposeData(res.dataId);\n return reshapedResult;\n}\nfunction computeTensors2D2(inputs, axis, backend2) {\n const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const tensors2D = inputs.map((t2) => reshape6({\n inputs: { x: t2 },\n backend: backend2,\n attrs: {\n shape: [\n util_exports.sizeFromShape(t2.shape.slice(0, axis)),\n util_exports.sizeFromShape(t2.shape.slice(axis))\n ]\n }\n }));\n return { tensors2D, outShape };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Concat.js\nfunction concat5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, inputs[0].shape)[0];\n const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), $axis);\n if (util_exports.sizeFromShape(outShape) === 0) {\n return backend2.makeTensorInfo(outShape, inputs[0].dtype, []);\n }\n const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0);\n if ($inputs.length === 1) {\n return identity5({ inputs: { x: $inputs[0] }, backend: backend2 });\n }\n const shapes = $inputs.map((t2) => t2.shape);\n backend_util_exports.assertParamsConsistent(shapes, $axis);\n return concatImpl4($inputs, $axis, backend2);\n}\nvar concatConfig4 = {\n kernelName: Concat,\n backendName: \"webgpu\",\n kernelFunc: concat5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv2d_mm_webgpu.js\nfunction conv2dCommonSnippet(isChannelsLast, fitAOuter, fitBOuter, fitInner, addBias = false, activation2 = null, hasPreluActivationWeights = false, innerElementSizeX = 4, innerElementSizeW = 4, innerElementSize = 4) {\n const getXSnippet = (innerElementSize2) => {\n switch (innerElementSize2) {\n case 1:\n return \"resData = x[xIndex];\";\n case 3:\n return \"resData = vec3(x[xIndex], x[xIndex + 1], x[xIndex + 2]);\";\n case 4:\n return \"resData = x[xIndex / 4];\";\n default:\n throw new Error(`innerElementSize ${innerElementSize2} is not supported.`);\n }\n };\n const getWSnippet = (innerElementSize2) => {\n switch (innerElementSize2) {\n case 1:\n return \"return W[row * uniforms.wShape[3] + colIn];\";\n case 4:\n return \"return W[row * uniforms.wShape[3] / 4 + colIn];\";\n default:\n throw new Error(`innerElementSize ${innerElementSize2} is not supported.`);\n }\n };\n const coordASnippet = isChannelsLast ? `\n let coord = vec4(batch, xRow, xCol, xCh);\n ` : `\n let coord = vec4(batch, xCh, xRow, xCol);\n `;\n const coordResSnippet = isChannelsLast ? `\n let coords = vec4(\n batch,\n row / outWidth,\n row % outWidth,\n col);\n ` : `\n let coords = vec4(\n batch,\n row,\n col / outWidth,\n col % outWidth);\n `;\n const xHight = isChannelsLast ? \"uniforms.xShape[1]\" : \"uniforms.xShape[2]\";\n const xWidth = isChannelsLast ? \"uniforms.xShape[2]\" : \"uniforms.xShape[3]\";\n const row = isChannelsLast ? \"row\" : \"col\";\n const col = isChannelsLast ? \"col\" : \"row\";\n const readXSnippet = `\n let inChannels = uniforms.wShape[2];\n let outWidth = ${isChannelsLast ? \"uniforms.outShape[2]\" : \"uniforms.outShape[3]\"};\n let outRow = ${row} / outWidth;\n let outCol = ${row} % outWidth;\n\n let WRow = ${col} / (uniforms.filterDims[1] * inChannels);\n let WCol = ${col} / inChannels % uniforms.filterDims[1];\n let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];\n let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];\n let xCh = ${col} % inChannels;\n var resData = ${typeSnippet(innerElementSizeX)}(0.0);\n // The bounds checking is always needed since we use it to pad zero for\n // the 'same' padding type.\n if (xRow >= 0 && xRow < ${xHight} && xCol >= 0 && xCol < ${xWidth}) {\n ${coordASnippet}\n let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);\n ${getXSnippet(innerElementSizeX)}\n }\n return resData;`;\n const sampleX = isChannelsLast ? fitAOuter && fitInner ? `\n let col = colIn * ${innerElementSizeX};\n ${readXSnippet}` : `\n let col = colIn * ${innerElementSizeX};\n if (row < uniforms.dimAOuter && col < uniforms.dimInner) {\n ${readXSnippet}\n }\n return ${typeSnippet(innerElementSizeX)}(0.0);` : fitInner && fitBOuter ? `\n let col = colIn * ${innerElementSizeX};\n ${readXSnippet}` : `\n let col = colIn * ${innerElementSizeX};\n if (row < uniforms.dimInner && col < uniforms.dimBOuter) {\n ${readXSnippet}\n }\n return ${typeSnippet(innerElementSizeX)}(0.0);`;\n const sampleW = `${getWSnippet(innerElementSizeW)}`;\n const resType = typeSnippet(innerElementSize);\n const aType = isChannelsLast ? typeSnippet(innerElementSizeX) : typeSnippet(innerElementSizeW);\n const bType = isChannelsLast ? typeSnippet(innerElementSizeW) : typeSnippet(innerElementSizeX);\n const userCode = `\n ${activationFnSnippet(activation2, hasPreluActivationWeights, innerElementSize === 4, 4)}\n fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${aType} {\n ${isChannelsLast ? sampleX : sampleW}\n }\n\n fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${bType} {\n ${isChannelsLast ? sampleW : sampleX}\n }\n\n fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${resType}) {\n let col = colIn * ${innerElementSize};\n if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)\n {\n var value = valueIn;\n let outWidth = ${isChannelsLast ? \"uniforms.outShape[2]\" : \"uniforms.outShape[3]\"};\n ${coordResSnippet}\n ${biasActivationSnippet(addBias, activation2)}\n setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);\n }\n }`;\n return userCode;\n}\nvar Conv2DMMProgram = class {\n constructor(convInfo, dimAOuter, dimBOuter, dimInner, addBias = false, activation2 = null, hasPreluActivationWeights = false) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = `filterDims : vec2, pad : vec2, stride : vec2, dilation : vec2, dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.outputShape = convInfo.outShape;\n this.isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n this.isVec4 = ((convInfo.inChannels % 4 === 0 || convInfo.inChannels % 3 === 0) && this.isChannelsLast || convInfo.outWidth % 4 === 0 && !this.isChannelsLast) && convInfo.outChannels % 4 === 0;\n this.dispatchLayout = this.isChannelsLast ? { x: [3], y: [1, 2], z: [0] } : { x: [2, 3], y: [1], z: [0] };\n this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4);\n this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread);\n if (this.isVec4) {\n if (this.isChannelsLast && convInfo.inChannels % 4 !== 0) {\n this.innerElementSize = 3;\n this.variableTypes = [\"f32\", \"vec4\"];\n } else {\n this.innerElementSize = 4;\n this.variableTypes = [\"vec4\", \"vec4\"];\n }\n if (addBias) {\n this.variableNames.push(\"bias\");\n this.variableTypes.push(\"vec4\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n this.variableTypes.push(\"vec4\");\n }\n } else {\n this.innerElementSize = this.elementsPerThread[0];\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n }\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivationWeights = hasPreluActivationWeights;\n this.tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1];\n this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0];\n this.tileInner = Math.max(this.workGroupSize[0] * this.innerElementSize, this.workGroupSize[1]);\n this.fitAOuter = dimAOuter % this.tileAOuter === 0;\n this.fitBOuter = dimBOuter % this.tileBOuter === 0;\n this.fitInner = dimInner % this.tileInner === 0;\n this.shaderKey = `conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`;\n }\n getUserCode() {\n const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, this.innerElementSize, !this.isChannelsLast) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner);\n const elementsSize = this.isVec4 ? [this.isChannelsLast ? this.innerElementSize : 4, 4, 4] : [1, 1, 1];\n const userCode = `\n ${conv2dCommonSnippet(this.isChannelsLast, this.fitAOuter, this.fitBOuter, this.fitInner, this.addBias, this.activation, this.hasPreluActivationWeights, elementsSize[0], elementsSize[1], elementsSize[2])}\n ${matMulSource}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2D_impl.js\nfunction getShapeForBatchMatMul2(shape, isChannelsLast) {\n const length = shape.length;\n if (length >= 3) {\n return isChannelsLast ? [\n ...shape.slice(0, -3),\n shape[length - 3] * shape[length - 2],\n shape[length - 1]\n ] : [\n ...shape.slice(0, -3),\n shape[length - 3],\n shape[length - 2] * shape[length - 1]\n ];\n } else if (!isChannelsLast && length === 1 && shape[0] > 1) {\n return [shape[0], 1];\n } else {\n return null;\n }\n}\nfunction conv2dByMatMul2({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const transposeA = isChannelsLast ? false : true;\n const transposeB = false;\n const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === \"VALID\";\n const intermediates = [];\n let xReshaped;\n let filterReshaped;\n if (sameSize) {\n const sharedDim = convInfo.inHeight * convInfo.inWidth * convInfo.inChannels;\n xReshaped = reshape6({\n inputs: { x },\n backend: backend2,\n attrs: { shape: [1, convInfo.batchSize, sharedDim] }\n });\n filterReshaped = reshape6({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, sharedDim, convInfo.outChannels] }\n });\n } else {\n xReshaped = reshape6({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: isChannelsLast ? [\n convInfo.batchSize,\n convInfo.inHeight * convInfo.inWidth,\n convInfo.inChannels\n ] : [\n convInfo.batchSize,\n convInfo.inChannels,\n convInfo.inHeight * convInfo.inWidth\n ]\n }\n });\n filterReshaped = reshape6({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] }\n });\n }\n intermediates.push(xReshaped);\n intermediates.push(filterReshaped);\n if (preluActivationWeights != null) {\n const targetShape = getShapeForBatchMatMul2(preluActivationWeights.shape, isChannelsLast);\n if (targetShape != null) {\n preluActivationWeights = reshape6({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: targetShape }\n });\n intermediates.push(preluActivationWeights);\n }\n }\n if (bias != null) {\n const targetShape = getShapeForBatchMatMul2(bias.shape, isChannelsLast);\n if (targetShape != null) {\n bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } });\n intermediates.push(bias);\n }\n }\n const result = batchMatMulImpl2({\n a: isChannelsLast ? xReshaped : filterReshaped,\n b: isChannelsLast ? filterReshaped : xReshaped,\n transposeA,\n transposeB,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n const out = reshape6({ inputs: { x: result }, backend: backend2, attrs: { shape: convInfo.outShape } });\n intermediates.push(result);\n for (const i2 of intermediates) {\n backend2.disposeData(i2.dataId);\n }\n return out;\n}\nfunction conv2DImpl({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === \"VALID\";\n if (sameSize || convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === \"SAME\" || convInfo.padInfo.type === \"VALID\")) {\n return conv2dByMatMul2({\n x,\n filter,\n convInfo,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n }\n const dimAOuter = isChannelsLast ? convInfo.outHeight * convInfo.outWidth : convInfo.outChannels;\n const dimBOuter = isChannelsLast ? convInfo.outChannels : convInfo.outHeight * convInfo.outWidth;\n const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.inChannels;\n const padInfo = [convInfo.padInfo.top, convInfo.padInfo.left];\n const dimensions = [\n { type: \"int32\", data: [convInfo.filterHeight, convInfo.filterWidth] },\n { type: \"int32\", data: [...padInfo] },\n { type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] },\n { type: \"int32\", data: [convInfo.dilationHeight, convInfo.dilationWidth] },\n { type: \"int32\", data: [dimAOuter] },\n { type: \"int32\", data: [dimBOuter] },\n { type: \"int32\", data: [dimInner] }\n ];\n const program = new Conv2DMMProgram(convInfo, dimAOuter, dimBOuter, dimInner, hasBias, activation2, hasPreluActivationWeights);\n const intermediates = [];\n const inputVar = [x, filter];\n if (hasBias) {\n if (!isChannelsLast && bias.shape.length === 1) {\n bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: [bias.shape[0], 1, 1] } });\n intermediates.push(bias);\n }\n inputVar.push(bias);\n }\n if (hasPreluActivationWeights) {\n if (!isChannelsLast && preluActivationWeights.shape.length === 1) {\n preluActivationWeights = reshape6({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: [preluActivationWeights.shape[0], 1, 1] }\n });\n intermediates.push(preluActivationWeights);\n }\n inputVar.push(preluActivationWeights);\n }\n if (activation2 === \"leakyrelu\") {\n dimensions.push({ type: \"float32\", data: [leakyreluAlpha] });\n program.uniforms += \" alpha : f32,\";\n }\n const out = backend2.runWebGPUProgram(program, inputVar, x.dtype, dimensions);\n for (const i2 of intermediates) {\n backend2.disposeData(i2.dataId);\n }\n return out;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2D.js\nfunction conv2d6(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n return conv2DImpl({ x, filter, convInfo, backend: backend2 });\n}\nvar conv2DConfig4 = {\n kernelName: Conv2D,\n backendName: \"webgpu\",\n kernelFunc: conv2d6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv_backprop_mm_webgpu.js\nfunction conv2dTransposeCommonSnippet(innerElementSize = 4) {\n const getWSnippet = (innerElementSize2) => {\n switch (innerElementSize2) {\n case 1:\n return \"return W[getIndexFromCoords4D(coord, uniforms.wShape)];\";\n case 4:\n return `\n let coord1 = vec4(coordX, coordY, col + 1, rowInner);\n let coord2 = vec4(coordX, coordY, col + 2, rowInner);\n let coord3 = vec4(coordX, coordY, col + 3, rowInner);\n let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)];\n let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)];\n let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)];\n let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)];\n return vec4(v0, v1, v2, v3);\n `;\n default:\n throw new Error(`innerElementSize ${innerElementSize2} is not supported.`);\n }\n };\n const readASnippet = `\n let outRow = row / uniforms.outShape[2];\n let outCol = row % uniforms.outShape[2];\n\n let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);\n let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];\n let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);\n let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);\n if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {\n return ${typeSnippet(innerElementSize)}(0.0);\n }\n if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {\n return ${typeSnippet(innerElementSize)}(0.0);\n }\n let coord = vec4(\n batch,\n i32(xR),\n i32(xC),\n col % uniforms.outBackprop[3]);\n return x[getIndexFromCoords4D(coord, uniforms.xShape)/${innerElementSize}];`;\n const sampleA = `if (row < uniforms.dimAOuter && col < uniforms.dimInner) {\n ${readASnippet}\n }\n return ${typeSnippet(innerElementSize)}(0.0);`;\n const userCode = `\n fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} {\n let col = colIn * ${innerElementSize};\n ${sampleA}\n }\n\n fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} {\n let col = colIn * ${innerElementSize};\n let coordX = uniforms.filterDims.x - 1 -\n row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);\n let coordY = uniforms.filterDims.y - 1 -\n (row / uniforms.outBackprop[3]) % uniforms.filterDims[1];\n if (row < uniforms.dimInner && col < uniforms.dimBOuter &&\n coordX >= 0 && coordY >= 0) {\n let rowInner = row % uniforms.outBackprop[3];\n let coord = vec4(coordX, coordY, col, rowInner);\n ${getWSnippet(innerElementSize)}\n }\n return ${typeSnippet(innerElementSize)}(0.0);\n }\n\n fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${typeSnippet(innerElementSize)}) {\n let col = colIn * ${innerElementSize};\n if (row < uniforms.dimAOuter && (col + ${innerElementSize - 1}) < uniforms.dimBOuter) {\n var value = valueInput;\n let outCoord = vec4(\n batch,\n row / uniforms.outShape[2],\n row % uniforms.outShape[2],\n col);\n result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${innerElementSize}] = value;\n }\n }`;\n return userCode;\n}\nvar Conv2DDerInputMMProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = \"filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4, dimAOuter : i32, dimBOuter : i32, dimInner : i32,\";\n this.outputShape = convInfo.inShape;\n util_exports.assert(convInfo.dataFormat === \"channelsLast\", () => \"TODO: NCHW is unimplemented\");\n this.isVec4 = convInfo.inChannels % 4 === 0 && convInfo.outChannels % 4 === 0;\n this.dispatchLayout = { x: [3], y: [1, 2], z: [0] };\n this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4);\n this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread);\n if (this.isVec4) {\n this.innerElementSize = 4;\n this.variableTypes = [\"vec4\", \"f32\"];\n } else {\n this.innerElementSize = this.elementsPerThread[0];\n }\n this.tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1];\n this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0];\n this.tileInner = Math.max(this.workGroupSize[0] * this.innerElementSize, this.workGroupSize[1]);\n this.shaderKey = `conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}_${this.innerElementSize}`;\n }\n getUserCode() {\n const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, this.innerElementSize) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize);\n const userCode = `\n ${conv2dTransposeCommonSnippet(this.isVec4 ? 4 : 1)}\n ${matMulSource}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv_backprop_webgpu.js\nvar Conv2DDerInputProgram2 = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"W\"];\n this.uniforms = \"filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = convInfo.inShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n this.shaderKey = `conv2DDerInput_${this.isChannelsLast}`;\n }\n getUserCode() {\n const rowDim = this.isChannelsLast ? 1 : 2;\n const colDim = this.isChannelsLast ? 2 : 3;\n const channelDim = this.isChannelsLast ? 3 : 1;\n return `\n ${getMainHeaderAndGlobalIndexString()} {\n if(index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let batch = coords[0];\n let d1 = coords[${channelDim}];\n\n let dyCorner = vec2(coords[${rowDim}]), coords[${colDim}]) - uniforms.pads;\n let dyRCorner = dyCorner.x;\n let dyCCorner = dyCorner.y;\n\n // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).\n // ? = to be determined. : = across all values in that axis.\n var dotProd = 0.0;\n for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {\n let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);\n let wRPerm = uniforms.filterDims.x - 1 - wR;\n if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||\n wRPerm < 0) {\n continue;\n }\n let idyR = dyR;\n\n for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {\n let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);\n let wCPerm = uniforms.filterDims.y - 1 - wC;\n if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||\n fract(dyC) > 0.0 || wCPerm < 0) {\n continue;\n }\n let idyC = dyC;\n\n for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {\n if (${this.isChannelsLast}) {\n let xValue = getDy(batch, idyR, idyC, d2);\n let wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd = dotProd + xValue * wValue;\n } else {\n let xValue = getDy(batch, d2, idyR, idyC);\n let wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd = dotProd + xValue * wValue;\n }\n\n }\n }\n }\n setOutputAtIndex(index, dotProd);\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2DBackpropInput.js\nfunction conv2DBackpropInput5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { inputShape, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const dimensions = [\n { type: \"int32\", data: [convInfo.filterHeight, convInfo.filterWidth] },\n {\n type: \"int32\",\n data: [\n convInfo.filterHeight - 1 - convInfo.padInfo.top,\n convInfo.filterWidth - 1 - convInfo.padInfo.left\n ]\n },\n { type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] },\n {\n type: \"int32\",\n data: [\n convInfo.batchSize,\n convInfo.outHeight,\n convInfo.outWidth,\n convInfo.outChannels\n ]\n }\n ];\n let program;\n if (env().getBool(\"WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE\")) {\n program = new Conv2DDerInputProgram2(convInfo);\n } else {\n program = new Conv2DDerInputMMProgram(convInfo);\n const dimAOuter = convInfo.inShape[1] * convInfo.inShape[2];\n const dimBOuter = convInfo.inShape[3];\n const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.outChannels;\n dimensions.push({ type: \"uint32\", data: [dimAOuter] }, { type: \"uint32\", data: [dimBOuter] }, { type: \"uint32\", data: [dimInner] });\n }\n return backend2.runWebGPUProgram(program, [dy, filter], \"float32\", dimensions);\n}\nvar conv2DBackpropInputConfig4 = {\n kernelName: Conv2DBackpropInput,\n backendName: \"webgpu\",\n kernelFunc: conv2DBackpropInput5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cos.js\nvar cos4 = unaryKernelFunc3({ opType: UnaryOpType.COS });\nvar cosConfig4 = {\n kernelName: Cos,\n backendName: \"webgpu\",\n kernelFunc: cos4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cosh.js\nvar cosh4 = unaryKernelFunc3({ opType: UnaryOpType.COSH });\nvar coshConfig4 = {\n kernelName: Cosh,\n backendName: \"webgpu\",\n kernelFunc: cosh4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/crop_and_resize_webgpu.js\nvar CropAndResizeProgram2 = class {\n constructor(channnel, boxShape, cropSize, method) {\n this.variableNames = [\"Image\", \"Boxes\", \"BoxInd\"];\n this.uniforms = \"extrapolationValue : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n const [numBoxes] = boxShape;\n this.outputShape = [numBoxes, cropSize[0], cropSize[1], channnel];\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.methodId = method === \"bilinear\" ? 1 : 0;\n this.cropHeightBiggerThan1 = this.outputShape[1] > 1;\n this.cropWidthBiggerThan1 = this.outputShape[2] > 1;\n this.shaderKey = `cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`;\n }\n getUserCode() {\n const [inputHeightFloat, inputWidthFloat] = [`f32(uniforms.imageShape[1] - 1)`, `f32(uniforms.imageShape[2] - 1)`];\n const [heightRatio, heightScale, inY] = this.cropHeightBiggerThan1 ? [\n `(${inputHeightFloat} / f32(uniforms.outShape[1] - 1))`,\n \"(y2-y1) * height_ratio\",\n `y1*${inputHeightFloat} + f32(y)*(height_scale)`\n ] : [\n \"0.0\",\n \"0.0\",\n `0.5 * (y1+y2) * ${inputHeightFloat}`\n ];\n const [widthRatio, widthScale, inX] = this.cropWidthBiggerThan1 ? [\n `(${inputWidthFloat} / f32(uniforms.outShape[2] - 1))`,\n \"(x2-x1) * width_ratio\",\n `x1*${inputWidthFloat} + f32(x)*(width_scale)`\n ] : [\n \"0.0\",\n \"0.0\",\n `0.5 * (x1+x2) * ${inputWidthFloat}`\n ];\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let height_ratio = f32(${heightRatio});\n let width_ratio = f32(${widthRatio});\n let b = coords[0];\n let y = coords[1];\n let x = coords[2];\n let d = coords[3];\n // get box vals\n let y1 = getBoxes(b, 0);\n let x1 = getBoxes(b, 1);\n let y2 = getBoxes(b, 2);\n let x2 = getBoxes(b, 3);\n // get image in batch index\n let bInd = i32(round(getBoxInd(b)));\n if(bInd < 0 || bInd >= uniforms.outShape[0]) {\n return;\n }\n let height_scale = ${heightScale};\n let width_scale = ${widthScale};\n let in_y = ${inY};\n if( in_y < 0.0 || in_y > ${inputHeightFloat} ) {\n setOutputAtIndex(index, uniforms.extrapolationValue);\n return;\n }\n let in_x = ${inX};\n if( in_x < 0.0 || in_x > ${inputWidthFloat} ) {\n setOutputAtIndex(index, uniforms.extrapolationValue);\n return;\n }\n let sourceFracIndexCR = vec2(in_x,in_y);\n if(${this.methodId} == 1) {\n // Compute the four integer indices.\n let sourceFloorCR = vec2(sourceFracIndexCR);\n let sourceCeilCR = vec2(ceil(sourceFracIndexCR));\n let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);\n let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);\n let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);\n let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);\n let fracCR = sourceFracIndexCR - vec2(sourceFloorCR);\n let top = topLeft + (topRight - topLeft) * fracCR.x;\n let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;\n let newValue = top + (bottom - top) * fracCR.y;\n setOutputAtIndex(index, newValue);\n } else {\n // Compute the coordinators of nearest neighbor point.\n let sourceNearestCR = vec2(floor(\n sourceFracIndexCR + vec2(0.5,0.5)));\n let newValue = getImage(\n bInd, sourceNearestCR.y, sourceNearestCR.x, d);\n setOutputAtIndex(index, newValue);\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/CropAndResize.js\nvar cropAndResize5 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, boxes, boxInd } = inputs;\n const { cropSize, method, extrapolationValue } = attrs;\n const program = new CropAndResizeProgram2(image2.shape[3], boxes.shape, cropSize, method);\n const uniformData = [{ type: \"float32\", data: [extrapolationValue] }];\n return backend2.runWebGPUProgram(program, [image2, boxes, boxInd], \"float32\", uniformData);\n};\nvar cropAndResizeConfig4 = {\n kernelName: CropAndResize,\n backendName: \"webgpu\",\n kernelFunc: cropAndResize5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/cum_webgpu.js\nvar CumOpType2;\n(function(CumOpType3) {\n CumOpType3[\"Prod\"] = \"*\";\n CumOpType3[\"Sum\"] = \"+\";\n})(CumOpType2 || (CumOpType2 = {}));\nvar CumProgram2 = class {\n constructor(op2, shape, exclusive, reverse5) {\n this.variableNames = [\"x\"];\n this.uniforms = \"index : f32,\";\n this.size = true;\n const workGroupSizeX = 128;\n this.workGroupSize = [workGroupSizeX, 1, 1];\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.exclusive = exclusive;\n this.reverse = reverse5;\n this.op = op2;\n this.shaderKey = `cum_${this.op}_${this.exclusive}_${this.reverse}`;\n }\n getUserCode() {\n const rank = this.outputShape.length;\n const initVal = this.op === CumOpType2.Prod ? \"1.0\" : \"0.0\";\n const val = this.exclusive ? initVal : `getX(${getCoords4(rank, \"coords\", this.op)})`;\n const length = this.outputShape[this.outputShape.length - 1];\n let condition = \"\";\n let idxString = \"\";\n if (this.exclusive) {\n condition = this.reverse ? `end != ${length - 1}` : \"end != 0\";\n idxString = this.reverse ? \"end + 1\" : \"end - 1\";\n } else {\n condition = this.reverse ? `end + pow2 < ${length}` : \"end >= pow2\";\n idxString = this.reverse ? \"end + pow2\" : \"end - pow2\";\n }\n return `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n var coords = getCoordsFromIndex(index);\n\n let end = ${getFinalCoord2(rank, \"coords\", this.op)};\n var val = ${val};\n let pow2 = i32(pow(2.0, uniforms.index));\n if (${condition}) {\n let idx = ${idxString};\n ${getFinalCoord2(rank, \"coords\", this.op)} = idx;\n val ${this.op}= getX(${getCoords4(rank, \"coords\", this.op)});\n }\n setOutputAtIndex(index, val);\n }\n }\n `;\n }\n};\nfunction getCoords4(rank, name, op2) {\n if (rank === 1) {\n return `${name}`;\n } else if (rank === 2) {\n return `${name}.x, ${name}.y`;\n } else if (rank === 3) {\n return `${name}.x, ${name}.y, ${name}.z`;\n } else if (rank === 4) {\n return `${name}.x, ${name}.y, ${name}.z, ${name}.w`;\n } else {\n throw Error(`Cumulative ${op2} for rank ${rank} is not yet supported`);\n }\n}\nfunction getFinalCoord2(rank, name, op2) {\n if (rank === 1) {\n return `${name}`;\n } else if (rank === 2) {\n return `${name}.y`;\n } else if (rank === 3) {\n return `${name}.z`;\n } else if (rank === 4) {\n return `${name}.w`;\n } else {\n throw Error(`Cumulative ${op2} for rank ${rank} is not yet supported`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cum_impl.js\nfunction cumImpl2(op2, x, backend2, axis, exclusive, reverse5) {\n const xRank = x.shape.length;\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation != null) {\n permutedX = transpose6({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n if (permutedAxis !== xRank - 1) {\n throw new Error(`WebGPU cumprod shader expects an inner-most axis=${x.shape.length - 1} but got axis=${axis}`);\n }\n const size = permutedX.shape[permutedAxis];\n let result = identity5({ inputs: { x: permutedX }, backend: backend2 });\n for (let i2 = 0; i2 <= Math.ceil(Math.log2(size)) - 1; i2++) {\n const program = new CumProgram2(op2, permutedX.shape, false, reverse5);\n const prevResult = result;\n const uniformData = [{ type: \"float32\", data: [i2] }];\n result = backend2.runWebGPUProgram(program, [result], result.dtype, uniformData);\n backend2.disposeData(prevResult.dataId);\n }\n if (exclusive) {\n const program = new CumProgram2(op2, permutedX.shape, exclusive, reverse5);\n const prevResult = result;\n const uniformData = [{ type: \"float32\", data: [0] }];\n result = backend2.runWebGPUProgram(program, [result], result.dtype, uniformData);\n backend2.disposeData(prevResult.dataId);\n }\n if (permutation != null) {\n const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n const reverseTransposedResult = transpose6({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } });\n backend2.disposeData(result.dataId);\n backend2.disposeData(permutedX.dataId);\n return reverseTransposedResult;\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cumprod.js\nfunction cumprod5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return cumImpl2(CumOpType2.Prod, x, backend2, axis, exclusive, reverse5);\n}\nvar cumprodConfig4 = {\n kernelName: Cumprod,\n backendName: \"webgpu\",\n kernelFunc: cumprod5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cumsum.js\nfunction cumsum5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return cumImpl2(CumOpType2.Sum, x, backend2, axis, exclusive, reverse5);\n}\nvar cumsumConfig4 = {\n kernelName: Cumsum,\n backendName: \"webgpu\",\n kernelFunc: cumsum5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depth_to_space_webgpu.js\nvar DepthToSpaceProgram2 = class {\n constructor(outputShape, dataFormat) {\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.uniforms = \"blockSize : i32,\";\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `depthToSpace_${dataFormat}`;\n this.dataFormat = dataFormat;\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let b = coords[0];\n let h = ${this.getHeightCoordString()};\n let w = ${this.getWidthCoordString()};\n let d = ${this.getDepthCoordString()};\n\n let in_h = h / uniforms.blockSize;\n let offset_h = h % uniforms.blockSize;\n let in_w = w / uniforms.blockSize;\n let offset_w = w % uniforms.blockSize;\n let offset_d = (offset_h * uniforms.blockSize + offset_w) *\n ${this.getOutputDepthSize()};\n let in_d = d + offset_d;\n\n let rlt = ${this.getInputSamplingString()};\n setOutputAtIndex(index, rlt);\n }\n }`;\n return userCode;\n }\n getHeightCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[1]`;\n } else {\n return `coords[2]`;\n }\n }\n getWidthCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[2]`;\n } else {\n return `coords[3]`;\n }\n }\n getDepthCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[3]`;\n } else {\n return `coords[1]`;\n }\n }\n getOutputDepthSize() {\n if (this.dataFormat === \"NHWC\") {\n return `uniforms.outShape[3]`;\n } else {\n return `uniforms.outShape[1]`;\n }\n }\n getInputSamplingString() {\n if (this.dataFormat === \"NHWC\") {\n return `getX(b, in_h, in_w, in_d)`;\n } else {\n return `getX(b, in_d, in_h, in_w)`;\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/DepthToSpace.js\nfunction depthToSpace5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockSize, dataFormat } = attrs;\n const batchSize = x.shape[0];\n const inputHeight = dataFormat === \"NHWC\" ? x.shape[1] : x.shape[2];\n const inputWidth = dataFormat === \"NHWC\" ? x.shape[2] : x.shape[3];\n const inputDepth = dataFormat === \"NHWC\" ? x.shape[3] : x.shape[1];\n const outputHeight = inputHeight * blockSize;\n const outputWidth = inputWidth * blockSize;\n const outputDepth = inputDepth / (blockSize * blockSize);\n const outputShape = dataFormat === \"NHWC\" ? [batchSize, outputHeight, outputWidth, outputDepth] : [batchSize, outputDepth, outputHeight, outputWidth];\n const uniformData = [\n { type: \"int32\", data: [blockSize] }\n ];\n const program = new DepthToSpaceProgram2(outputShape, dataFormat);\n return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n}\nvar depthToSpaceConfig4 = {\n kernelName: DepthToSpace,\n backendName: \"webgpu\",\n kernelFunc: depthToSpace5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_nchw_shared_webgpu.js\nvar DepthwiseConv2DNCHWSharedProgram = class {\n constructor(outputShape, filterHeight, filterWidth, addBias = false, activation2 = null, hasPreluActivation = false) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = `pad : vec2, inDims : vec2,`;\n this.workGroupSize = [16, 16, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [3], y: [2], z: [0, 1] };\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivation = hasPreluActivation;\n this.filterHeight = filterHeight;\n this.filterWidth = filterWidth;\n this.shaderKey = `depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`;\n }\n getUserCode() {\n const filterSize = this.filterWidth * this.filterHeight;\n const workGroupSize = this.workGroupSize[0] * this.workGroupSize[1] * this.workGroupSize[2];\n const tileAHeight = this.workGroupSize[1] + this.filterHeight - 1;\n const tileAWidth = this.workGroupSize[0] + this.filterWidth - 1;\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)}\n\n var mm_Asub : array, ${tileAHeight}>;\n var mm_Bsub : array, ${this.filterHeight}>;\n fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 {\n var value = 0.0;\n if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])\n {\n value = getX(batch, channel, row, col);\n }\n return value;\n }\n\n ${getWorkGroupSizeString()}\n fn main(@builtin(local_invocation_id) LocalId : vec3,\n @builtin(global_invocation_id) GlobalId : vec3,\n @builtin(local_invocation_index) LocalIndex: u32,\n @builtin(num_workgroups) NumWorkgroups: vec3) {\n localId = LocalId;\n globalId = GlobalId;\n let localIndex = i32(LocalIndex);\n numWorkgroups = NumWorkgroups;\n let coords = getOutputCoords();\n let batch = coords[0];\n let xRCCorner = vec2(coords.zw) - uniforms.pad;\n let channelMul = uniforms.wShape[3];\n let d1 = coords[1] / channelMul;\n let q = coords[1] % channelMul;\n\n let inputRowStart = xRCCorner.x;\n let inputColStart = xRCCorner.y;\n\n let localRow = i32(localId.y);\n let localCol = i32(localId.x);\n\n // Load one tile of X into local memory.\n for (var inputRow = localRow; inputRow < ${tileAHeight}; inputRow = inputRow + ${this.workGroupSize[1]}) {\n for (var inputCol = localCol; inputCol < ${tileAWidth}; inputCol = inputCol + ${this.workGroupSize[0]}) {\n let rowOffset = inputRow - localRow;\n let colOffset = inputCol - localCol;\n mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset);\n }\n }\n\n // Load one tile of W into local memory.\n var wIndex = localIndex;\n ${filterSize < workGroupSize ? `if (wIndex < ${filterSize})` : `for(; wIndex < ${filterSize}; wIndex = wIndex + ${workGroupSize})`}\n\n {\n let wRow = wIndex / ${this.filterWidth};\n let wCol = wIndex % ${this.filterWidth};\n mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q);\n }\n\n workgroupBarrier();\n\n var value = 0.0;\n for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) {\n for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) {\n let xVal = mm_Asub[localRow + wR][localCol + wC];\n let wVal = mm_Bsub[wR][wC];\n value = fma(xVal, wVal, value);\n }\n }\n ${biasActivationSnippet(this.addBias, this.activation)}\n if (coordsInBounds4D(coords, uniforms.outShape)) {\n setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_vec4_webgpu.js\nvar DepthwiseConv2DVec4Program = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = \"pad : vec2, inDims : vec2,\";\n this.workGroupSize = [4, 4, 4];\n this.isVec4 = true;\n this.outputShape = convInfo.outShape;\n this.dispatchLayout = { x: [3], y: [2], z: [0, 1] };\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [4, 4, 1]);\n util_exports.assert(convInfo.dataFormat === \"channelsLast\", () => \"TODO: NCHW is unimplemented\");\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.convInfo = convInfo;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivation = hasPreluActivation;\n this.shaderKey = `depthwiseVec4_${activation2}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`;\n }\n getUserCode() {\n const xNumber = 4 + this.convInfo.filterWidth - 1;\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivation, true, 4)}\n fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4 {\n var value = vec4(0.0);\n if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])\n {\n value = getX(batch, row, col, channel);\n }\n return value;\n }\n ${getWorkGroupSizeString()}\n fn main(@builtin(global_invocation_id) globalId: vec3) {\n let batch = i32(globalId.z) / uniforms.outShape[1];\n let r = i32(globalId.z) % uniforms.outShape[1];\n let c = i32(globalId.y) * 4;\n let d1 = i32(globalId.x) * 4;\n let xRCCorner = vec2(r, c) - uniforms.pad;\n\n let xRCorner = xRCCorner.x;\n let xCCorner = xRCCorner.y;\n var xVals : array, ${xNumber}>;\n var dotProd : array, 4>;\n dotProd[0] = vec4(0.0);\n dotProd[1] = vec4(0.0);\n dotProd[2] = vec4(0.0);\n dotProd[3] = vec4(0.0);\n\n // Use constant instead of uniform can give better performance.\n for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {\n let xR = xRCorner + wR;\n for (var i = 0; i < ${xNumber}; i++)\n {\n xVals[i] = readX(batch, xR, xCCorner + i, d1);\n }\n for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {\n let wValue = getW(wR, wC, d1, 0);\n dotProd[0] = dotProd[0] + xVals[0 + wC] * wValue;\n dotProd[1] = dotProd[1] + xVals[1 + wC] * wValue;\n dotProd[2] = dotProd[2] + xVals[2 + wC] * wValue;\n dotProd[3] = dotProd[3] + xVals[3 + wC] * wValue;\n }\n }\n\n for (var i = 0; i < 4; i = i + 1) {\n let coords = vec4(batch, r, c + i, d1);\n if (coordsInBounds4D(coords, uniforms.outShape)) {\n var value = dotProd[i];\n ${biasActivationSnippet(this.addBias, this.activation)}\n setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_webgpu.js\nvar DepthwiseConv2DProgram2 = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = `pad : vec2, inDims : vec2, filterHeight : i32,\n filterWidth : i32, stride : vec2, dilation : vec2,`;\n this.workGroupSize = [256, 1, 1];\n this.outputShape = convInfo.outShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.convInfo = convInfo;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivation = hasPreluActivation;\n this.shaderKey = `depthwise_${this.activation}_${this.isChannelsLast}`;\n }\n getUserCode() {\n const getXSnippet = this.isChannelsLast ? \"getX(batch, xR, xC, d1);\" : \"getX(batch, d1, xR, xC);\";\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)}\n\n ${getMainHeaderString()}\n let coords = getOutputCoords();\n let batch = coords[0];\n let xRCCorner = vec2(coords.${this.isChannelsLast ? \"yz\" : \"zw\"}) * uniforms.stride - uniforms.pad;\n let d2 = coords[${this.isChannelsLast ? 3 : 1}];\n let channelMul = uniforms.wShape[3];\n let d1 = d2 / channelMul;\n let q = d2 % channelMul;\n\n let inputRowStart = xRCCorner.x;\n let inputColStart = xRCCorner.y;\n let inputRowEnd = inputRowStart + uniforms.filterHeight *\n uniforms.dilation[0];\n let inputColEnd = inputColStart + uniforms.filterWidth *\n uniforms.dilation[1];\n\n // Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get\n // y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all\n // values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC.\n // x(d1, ?, ?) and y(d2, yR, yC) is for NCHW.\n var value = 0.0;\n\n // Extract if checking out of for loop for performance.\n if (inputRowStart >= 0 && inputColStart >= 0 &&\n inputRowEnd < uniforms.inDims[0] &&\n inputColEnd < uniforms.inDims[1]) {\n for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {\n let xR = inputRowStart + wR * uniforms.dilation[0];\n\n for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {\n let xC = inputColStart + wC * uniforms.dilation[1];\n\n let xVal = ${getXSnippet};\n let wVal = getW(wR, wC, d1, q);\n value = value + xVal * wVal;\n }\n }\n } else {\n for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {\n let xR = inputRowStart + wR * uniforms.dilation[0];\n\n if (xR < 0 || xR >= uniforms.inDims[0]) {\n continue;\n }\n\n for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {\n let xC = inputColStart + wC * uniforms.dilation[1];\n\n if (xC < 0 || xC >= uniforms.inDims[1]) {\n continue;\n }\n\n let xVal = ${getXSnippet};\n let wVal = getW(wR, wC, d1, q);\n value = value + xVal * wVal;\n }\n }\n }\n ${biasActivationSnippet(this.addBias, this.activation)}\n if (coordsInBounds4D(coords, uniforms.outShape)) {\n setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/DepthwiseConv2dNative.js\nfunction depthwiseConv2dNative3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true, $dataFormat);\n const dimensions = [\n { type: \"int32\", data: [convInfo.padInfo.top, convInfo.padInfo.left] },\n { type: \"int32\", data: [convInfo.inHeight, convInfo.inWidth] }\n ];\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n let program;\n if (!isChannelsLast && convInfo.inHeight > 16 && convInfo.inWidth > 16 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.dilationWidth === 1 && convInfo.dilationHeight === 1 && convInfo.inChannels === convInfo.outChannels) {\n program = new DepthwiseConv2DNCHWSharedProgram(convInfo.outShape, convInfo.filterHeight, convInfo.filterWidth);\n } else if (isChannelsLast && convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) {\n program = new DepthwiseConv2DVec4Program(convInfo);\n } else {\n program = new DepthwiseConv2DProgram2(convInfo);\n dimensions.push({ type: \"int32\", data: [convInfo.filterHeight] }, { type: \"int32\", data: [convInfo.filterWidth] }, { type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] }, {\n type: \"int32\",\n data: [convInfo.dilationHeight, convInfo.dilationWidth]\n });\n }\n return backend2.runWebGPUProgram(program, [x, filter], x.dtype, dimensions);\n}\nvar depthwiseConv2dNativeConfig4 = {\n kernelName: DepthwiseConv2dNative,\n backendName: \"webgpu\",\n kernelFunc: depthwiseConv2dNative3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Multiply.js\nvar multiplyKernelFunc = binaryKernelFunc3({\n opType: BinaryOpType.MUL,\n cpuKernelImpl: multiplyImplCPU2,\n supportsComplex: true\n});\nvar multiplyConfig4 = {\n kernelName: Multiply,\n backendName: \"webgpu\",\n kernelFunc: multiplyKernelFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/reduce_webgpu.js\nvar ReduceProgram2 = class {\n constructor(reduceInfo, reduceType) {\n this.workGroupSize = [64, 1, 1];\n this.variableNames = [\"x\"];\n this.uniforms = \"reduceSize : i32,\";\n this.size = true;\n this.inputShape = [reduceInfo.batchSize, reduceInfo.inSize];\n const [outputShape] = backend_util_exports.computeOutAndReduceShapes(this.inputShape, [1]);\n this.outputShape = outputShape.length === 0 ? [1] : outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]);\n this.reduceType = reduceType;\n this.shaderKey = `reduce_${reduceType}`;\n }\n getUserCode() {\n let reduceOp = ``;\n let initValue = \"0.0\";\n if (this.reduceType === \"min\" || this.reduceType === \"max\") {\n reduceOp = `\n if (isnan(candidate)) {\n bestValue = uniforms.NAN;\n } else if (!isnan(bestValue) && candidate ${this.reduceType === \"min\" ? \"<\" : \">\"} bestValue)\n { bestValue = candidate; }`;\n initValue = \"f32(x[offset])\";\n } else if (this.reduceType === \"sum\" || this.reduceType === \"mean\") {\n reduceOp = \" bestValue = bestValue + candidate; \";\n } else if (this.reduceType === \"prod\") {\n reduceOp = \" bestValue = bestValue * candidate; \";\n initValue = \"1.0\";\n }\n const outputSnippet = this.reduceType === \"mean\" ? `setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));` : `setOutputAtIndex(outputIndex, bestValue);`;\n const sharedMemorySnippet = `\n var xBestValues : array;\n `;\n const userCode = `\n fn DIV_CEIL(a : u32, b : u32) -> u32 {\n return ((a - 1u) / b + 1u);\n }\n\n ${sharedMemorySnippet}\n fn getOffset(outputIndex : i32) -> i32 {\n let outputCoords = getCoordsFromIndex(outputIndex);\n let offset = ${this.outputShape.length === 1 ? \"outputCoords\" : \"outputCoords[0]\"} * uniforms.reduceSize;\n return offset;\n }\n ${getMainHeaderAndGlobalIndexString()}\n let outputIndex = index / i32(workGroupSizeX);\n let offset = getOffset(outputIndex);\n var bestValue = ${initValue};\n let Length = uniforms.reduceSize;\n let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);\n for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;\n k = k + i32(workGroupSizeX)) {\n let candidate = f32(x[offset + k]);\n ${reduceOp}\n }\n xBestValues[localId.x] = bestValue;\n workgroupBarrier();\n\n var reduceSize = min(u32(Length), workGroupSizeX);\n for (var currentSize = reduceSize / 2u; reduceSize > 1u;\n currentSize = reduceSize / 2u) {\n let interval = DIV_CEIL(reduceSize, 2u);\n if (localId.x < currentSize) {\n let candidate = xBestValues[localId.x + interval];\n ${reduceOp}\n xBestValues[localId.x] = bestValue;\n }\n reduceSize = interval;\n workgroupBarrier();\n }\n\n if (localId.x == 0u && outputIndex < uniforms.size) {\n ${outputSnippet}\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/reduce.js\nfunction reduce2(x, axis, keepDims, reduceType, backend2) {\n const xRank = x.shape.length;\n const toDispose = [];\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let input2 = x;\n if (permutedAxes != null) {\n input2 = transpose6({ inputs: { x }, attrs: { perm: permutedAxes }, backend: backend2 });\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n toDispose.push(input2);\n }\n backend_util_exports.assertAxesAreInnerMostDims(reduceType, axes, xRank);\n const [reduceOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n let resOutShape = reduceOutShape;\n if (keepDims) {\n resOutShape = backend_util_exports.expandShapeToKeepDim(reduceOutShape, origAxes);\n }\n let res;\n if ((reduceType === \"max\" || reduceType === \"prod\") && backend2.shouldExecuteOnCPU([input2])) {\n const xVals = backend2.tensorMap.get(input2.dataId).values;\n switch (reduceType) {\n case \"max\":\n const outValues = maxImplCPU2(xVals, util_exports.sizeFromShape(reduceShape), resOutShape, x.dtype);\n res = backend2.makeTensorInfo(resOutShape, x.dtype, outValues);\n break;\n case \"prod\":\n const { outVals, outShape, outDtype } = prodImplCPU2(input2.shape, input2.dtype, xVals, axes);\n res = backend2.makeTensorInfo(outShape, outDtype, outVals);\n break;\n default:\n throw new Error(`${reduceType} CPU implementation is not yet supported.`);\n }\n } else {\n const inSize = util_exports.sizeFromShape(reduceShape);\n const xSize = util_exports.sizeFromShape(input2.shape);\n const batchSize = xSize / inSize;\n const reduceInfo = { windowSize: inSize, inSize, batchSize, outSize: 1 };\n const dtype = reduceType === \"mean\" ? \"float32\" : sumOutType(x.dtype);\n const uniformData = [\n { type: \"int32\", data: [inSize] }\n ];\n const program = new ReduceProgram2(reduceInfo, reduceType);\n const reduced = backend2.runWebGPUProgram(program, [input2], dtype, uniformData);\n toDispose.push(reduced);\n res = reshape6({ inputs: { x: reduced }, attrs: { shape: resOutShape }, backend: backend2 });\n }\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return res;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sum.js\nfunction sum6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n return reduce2(x, axis, keepDims, \"sum\", backend2);\n}\nvar sumConfig4 = {\n kernelName: Sum,\n backendName: \"webgpu\",\n kernelFunc: sum6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Einsum.js\nfunction einsum4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { equation } = attrs;\n const tensors = inputs;\n const { allDims, summedDims, idDims } = backend_util_exports.decodeEinsumEquation(equation, tensors.length);\n backend_util_exports.checkEinsumDimSizes(allDims.length, idDims, tensors);\n const { path, steps } = backend_util_exports.getEinsumComputePath(summedDims, idDims);\n const nSteps = steps.length;\n let out = null;\n let numDimsRemaining = allDims.length;\n const tensorsToDispose = [];\n for (let i2 = 0; i2 < nSteps; ++i2) {\n for (const idTerm of steps[i2]) {\n const { permutationIndices: perm, expandDims: dimsToExpand } = backend_util_exports.getEinsumPermutation(numDimsRemaining, idDims[idTerm]);\n let x;\n if (backend_util_exports.isIdentityPermutation(perm)) {\n x = tensors[idTerm];\n } else {\n x = transpose6({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } });\n tensorsToDispose.push(x);\n }\n const targetShape = x.shape.slice();\n for (let k = 0; k < dimsToExpand.length; ++k) {\n targetShape.splice(dimsToExpand[k], 0, 1);\n }\n if (!util_exports.arraysEqual(x.shape, targetShape)) {\n x = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: targetShape } });\n tensorsToDispose.push(x);\n }\n if (out === null) {\n out = x;\n } else {\n out = multiplyKernelFunc({ inputs: { a: x, b: out }, backend: backend2 });\n tensorsToDispose.push(out);\n }\n }\n if (i2 < nSteps - 1) {\n if (path[i2] >= 0) {\n out = sum6({\n inputs: { x: out },\n backend: backend2,\n attrs: {\n axis: path[i2] - (allDims.length - numDimsRemaining),\n keepDims: false\n }\n });\n tensorsToDispose.push(out);\n }\n numDimsRemaining--;\n }\n }\n for (const tensorInfo of tensorsToDispose) {\n if (tensorInfo === out) {\n continue;\n }\n backend2.disposeData(tensorInfo.dataId);\n }\n return out;\n}\nvar einsumConfig3 = {\n kernelName: Einsum,\n backendName: \"webgpu\",\n kernelFunc: einsum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Elu.js\nvar elu6 = unaryKernelFunc3({ opType: UnaryOpType.ELU });\nvar eluConfig4 = {\n kernelName: Elu,\n backendName: \"webgpu\",\n kernelFunc: elu6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Equal.js\nvar equal5 = binaryKernelFunc3({ opType: BinaryOpType.EQUAL, dtype: \"bool\", cpuKernelImpl: equalImplCPU2 });\nvar equalConfig4 = {\n kernelName: Equal,\n backendName: \"webgpu\",\n kernelFunc: equal5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Exp.js\nvar exp5 = unaryKernelFunc3({\n opType: UnaryOpType.EXP,\n cpuKernelImpl: expImplCPU2,\n dtype: \"float32\"\n});\nvar expConfig4 = {\n kernelName: Exp,\n backendName: \"webgpu\",\n kernelFunc: exp5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ExpandDims.js\nfunction expandDims6(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { dim } = attrs;\n const { input: input2 } = inputs;\n const inputRank = input2.shape.length;\n const newShape = input2.shape.slice();\n let $dim = dim;\n if (dim < 0) {\n util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`);\n $dim = inputRank + dim + 1;\n }\n newShape.splice($dim, 0, 1);\n return reshape6({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } });\n}\nvar expandDimsConfig4 = {\n kernelName: ExpandDims,\n backendName: \"webgpu\",\n kernelFunc: expandDims6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Expm1.js\nvar expm15 = unaryKernelFunc3({ opType: UnaryOpType.EXPM1, cpuKernelImpl: expm1ImplCPU2 });\nvar expm1Config3 = {\n kernelName: Expm1,\n backendName: \"webgpu\",\n kernelFunc: expm15\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/flip_left_right_webgpu.js\nvar FlipLeftRightProgram2 = class {\n constructor(imageShape) {\n this.outputShape = [];\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = imageShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"flipLeftRight\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let coordX = uniforms.xShape[2] - coords[2] - 1;\n let outputValue = getX(coords[0], coords[1], coordX, coords[3]);\n setOutputAtIndex(index, outputValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FlipLeftRight.js\nvar flipLeftRightConfig4 = {\n kernelName: FlipLeftRight,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const webgpuBackend = backend2;\n const program = new FlipLeftRightProgram2(image2.shape);\n const output = webgpuBackend.runWebGPUProgram(program, [image2], image2.dtype);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Floor.js\nvar floor5 = unaryKernelFunc3({ opType: UnaryOpType.FLOOR, cpuKernelImpl: floorImplCPU2 });\nvar floorConfig4 = {\n kernelName: Floor,\n backendName: \"webgpu\",\n kernelFunc: floor5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FloorDiv.js\nvar floorDiv4 = binaryKernelFunc3({ opType: BinaryOpType.INT_DIV, dtype: \"int32\" });\nvar floorDivConfig4 = {\n kernelName: FloorDiv,\n backendName: \"webgpu\",\n kernelFunc: floorDiv4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/from_pixels_webgpu.js\nvar FromPixelsProgram2 = class {\n constructor(outputShape, numChannels, importVideo = false) {\n this.isFromPixels = true;\n this.outputShape = [0];\n this.variableNames = [];\n this.workGroupSize = [256, 1, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [numChannels, 1, 1]);\n this.importVideo = importVideo;\n this.shaderKey = `fromPixels_${this.importVideo}`;\n }\n getUserCode() {\n const textureLoad = this.importVideo ? \"textureLoad(src, vec2(coords.yx));\" : \"textureLoad(src, vec2(coords.yx), 0)\";\n const textureType = this.importVideo ? \"texture_external\" : \"texture_2d\";\n return `\n @binding(1) @group(0) var src: ${textureType};\n ${getMainHeaderAndGlobalIndexString()}\n let flatIndex = index * uniforms.numChannels;\n if (flatIndex < uniforms.size) {\n let coords = getCoordsFromIndex(flatIndex);\n let values = ${textureLoad};\n for (var i = 0; i < uniforms.numChannels; i = i + 1) {\n result[flatIndex + i] = i32(floor(255.0 * values[i]));\n }\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FromPixels.js\nvar fromPixelsConfig2 = {\n kernelName: FromPixels,\n backendName: \"webgpu\",\n kernelFunc: fromPixels3\n};\nvar fromPixels2DContext3;\nvar videoToTextureMap = /* @__PURE__ */ new Map();\nfunction fromPixels3(args) {\n const { inputs, backend: backend2, attrs } = args;\n let { pixels } = inputs;\n const { numChannels } = attrs;\n if (pixels == null) {\n throw new Error(\"pixels passed to tf.browser.fromPixels() can not be null\");\n }\n const isVideo = typeof HTMLVideoElement !== \"undefined\" && pixels instanceof HTMLVideoElement;\n const isImage = typeof HTMLImageElement !== \"undefined\" && pixels instanceof HTMLImageElement;\n const isCanvas = typeof HTMLCanvasElement !== \"undefined\" && pixels instanceof HTMLCanvasElement || typeof OffscreenCanvas !== \"undefined\" && pixels instanceof OffscreenCanvas;\n const isImageBitmap = typeof ImageBitmap !== \"undefined\" && pixels instanceof ImageBitmap;\n const [width, height] = isVideo ? [\n pixels.videoWidth,\n pixels.videoHeight\n ] : [pixels.width, pixels.height];\n const outputShape = [height, width, numChannels];\n const importVideo = env().getBool(\"WEBGPU_IMPORT_EXTERNAL_TEXTURE\") && isVideo;\n const isVideoOrImage = isVideo || isImage;\n if (isImageBitmap || isCanvas || isVideoOrImage) {\n let textureInfo;\n if (importVideo) {\n const videoElement = pixels;\n if (!videoToTextureMap.has(videoElement) || videoToTextureMap.get(videoElement).expired) {\n const externalTextureDescriptor = { source: videoElement };\n videoToTextureMap.set(videoElement, backend2.device.importExternalTexture(externalTextureDescriptor));\n }\n textureInfo = {\n width,\n height,\n format: null,\n usage: null,\n texture: videoToTextureMap.get(videoElement)\n };\n } else {\n if (isVideoOrImage) {\n if (fromPixels2DContext3 == null) {\n fromPixels2DContext3 = document.createElement(\"canvas\").getContext(\"2d\");\n }\n fromPixels2DContext3.canvas.width = width;\n fromPixels2DContext3.canvas.height = height;\n fromPixels2DContext3.drawImage(pixels, 0, 0, width, height);\n pixels = fromPixels2DContext3.canvas;\n }\n const usage = GPUTextureUsage.COPY_DST | GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING;\n const format = \"rgba8unorm\";\n const texture = backend2.textureManager.acquireTexture(outputShape[1], outputShape[0], format, usage);\n backend2.queue.copyExternalImageToTexture({ source: pixels }, { texture }, [outputShape[1], outputShape[0]]);\n textureInfo = { width, height, format, usage, texture };\n }\n const size = util_exports.sizeFromShape(outputShape);\n const strides = util_exports.computeStrides(outputShape);\n const program = new FromPixelsProgram2(outputShape, numChannels, importVideo);\n const uniformData = [\n { type: \"uint32\", data: [size] },\n { type: \"uint32\", data: [numChannels] },\n { type: \"uint32\", data: [...strides] }\n ];\n const input2 = backend2.makeTensorInfo([height, width], \"int32\");\n const info = backend2.tensorMap.get(input2.dataId);\n info.resourceInfo = textureInfo;\n const result = backend2.runWebGPUProgram(program, [input2], \"int32\", uniformData);\n backend2.disposeData(input2.dataId);\n return result;\n }\n const imageData = pixels.data;\n let pixelArray = imageData;\n if (numChannels != null && numChannels !== 4) {\n pixelArray = new Uint8Array(pixels.width * pixels.height * numChannels);\n const dataLength = imageData.length;\n let j = 0;\n for (let i2 = 0; i2 < dataLength; i2++) {\n if (i2 % 4 < numChannels) {\n pixelArray[j++] = imageData[i2];\n }\n }\n }\n const output = backend2.makeTensorInfo(outputShape, \"int32\", new Int32Array(pixelArray));\n backend2.uploadToGPU(output.dataId);\n return output;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/batchnorm_webgpu.js\nvar BatchNormProgram2 = class {\n constructor(xShape, meanShape, varianceShape, offsetShape, scaleShape) {\n this.uniforms = \"varianceEpsilon : f32,\";\n this.workGroupSize = [128, 1, 1];\n this.size = true;\n this.variableNames = [\"x\", \"mean\", \"variance\"];\n backend_util_exports.assertAndGetBroadcastShape(xShape, meanShape);\n backend_util_exports.assertAndGetBroadcastShape(xShape, varianceShape);\n this.outputShape = xShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n if (offsetShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, offsetShape);\n this.variableNames.push(\"offset\");\n }\n if (scaleShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, scaleShape);\n this.variableNames.push(\"scale\");\n }\n this.offsetShape = offsetShape;\n this.scaleShape = scaleShape;\n this.shaderKey = \"batchNorm\";\n }\n getUserCode() {\n let offsetSnippet = \"0.0\";\n if (this.offsetShape != null) {\n offsetSnippet = \"getOffsetByOutputIndex(index)\";\n }\n let scaleSnippet = \"1.0\";\n if (this.scaleShape != null) {\n scaleSnippet = \"getScaleByOutputIndex(index)\";\n }\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size)\n {\n let xValue = getXByOutputIndex(index);\n let meanValue = getMeanByOutputIndex(index);\n let varianValue = getVarianceByOutputIndex(index);\n let offsetValue = ${offsetSnippet};\n let scaleValue = ${scaleSnippet};\n let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));\n setOutputAtIndex(index,dot(vec3(xValue, -meanValue, offsetValue), vec3(inv, inv, 1.0)));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedBatchNorm.js\nvar fusedBatchNormConfig2 = {\n kernelName: FusedBatchNorm,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x, scale: scale2, offset, mean: mean5, variance } = inputs;\n const { varianceEpsilon } = attrs;\n const webGPUBackend = backend2;\n const batchNormInputs = [x, mean5, variance];\n let offsetShape = null;\n if (offset != null) {\n offsetShape = offset.shape;\n batchNormInputs.push(offset);\n }\n let scaleShape = null;\n if (scale2 != null) {\n scaleShape = scale2.shape;\n batchNormInputs.push(scale2);\n }\n const program = new BatchNormProgram2(x.shape, mean5.shape, variance.shape, offsetShape, scaleShape);\n const uniformData = [{ type: \"float32\", data: [varianceEpsilon] }];\n return webGPUBackend.runWebGPUProgram(program, batchNormInputs, x.dtype, uniformData);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedConv2D.js\nfunction fusedConv2d3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n return conv2DImpl({\n x,\n filter,\n convInfo,\n backend: backend2,\n bias,\n preluActivationWeights,\n leakyreluAlpha,\n activation: activation2\n });\n}\nvar fusedConv2DConfig4 = {\n kernelName: FusedConv2D,\n backendName: \"webgpu\",\n kernelFunc: fusedConv2d3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedDepthwiseConv2D.js\nfunction fusedDepthwiseConv2D3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n const programInputs = [x, filter];\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n if (hasBias) {\n programInputs.push(bias);\n }\n if (hasPreluActivationWeights) {\n programInputs.push(preluActivationWeights);\n }\n const dimensions = [\n { type: \"int32\", data: [convInfo.padInfo.top, convInfo.padInfo.left] },\n { type: \"int32\", data: [convInfo.inHeight, convInfo.inWidth] }\n ];\n let program;\n if (convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) {\n program = new DepthwiseConv2DVec4Program(convInfo, hasBias, activation2, hasPreluActivationWeights);\n } else {\n program = new DepthwiseConv2DProgram2(convInfo, hasBias, activation2, hasPreluActivationWeights);\n dimensions.push({ type: \"int32\", data: [convInfo.filterHeight] }, { type: \"int32\", data: [convInfo.filterWidth] }, { type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] }, {\n type: \"int32\",\n data: [convInfo.dilationHeight, convInfo.dilationWidth]\n });\n }\n if (activation2 === \"leakyrelu\") {\n dimensions.push({ type: \"float32\", data: [leakyreluAlpha] });\n program.uniforms += \" alpha : f32,\";\n }\n const result = backend2.runWebGPUProgram(program, programInputs, \"float32\", dimensions);\n return result;\n}\nvar fusedDepthwiseConv2DConfig4 = {\n kernelName: FusedDepthwiseConv2D,\n backendName: \"webgpu\",\n kernelFunc: fusedDepthwiseConv2D3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/gather_nd_webgpu.js\nvar GatherNDProgram2 = class {\n constructor(sliceDim, shape) {\n this.variableNames = [\"A\", \"indices\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `gathernd_${sliceDim}`;\n this.sliceDim = sliceDim;\n this.uniforms = `sliceDim : i32, strides : ${getCoordsDataType2(sliceDim)},`;\n }\n getUserCode() {\n let strideString;\n if (this.sliceDim > 1) {\n strideString = \"uniforms.strides[j]\";\n } else {\n strideString = \"uniforms.strides\";\n }\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n var flattenIndex = 0;\n for (var j = 0; j < uniforms.sliceDim; j = j + 1) {\n let indexTemp = i32(round(getIndices(coords[0], j)));\n let strideNum = ${strideString};\n flattenIndex = flattenIndex + indexTemp * strideNum;\n }\n\n setOutputAtIndex(index, getA(flattenIndex, coords[1]));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GatherNd.js\nfunction gatherNd4(args) {\n const { inputs, backend: backend2 } = args;\n const { params, indices } = inputs;\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n const paramsSize = util_exports.sizeFromShape(params.shape);\n const [resultShape, numSlices, sliceSize, strides] = backend_util_exports.prepareAndValidate(params, indices);\n const flattenIndices = reshape6({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numSlices, sliceRank] } });\n const flattenX = reshape6({\n inputs: { x: params },\n backend: backend2,\n attrs: { shape: [util_exports.sizeFromShape(params.shape) / sliceSize, sliceSize] }\n });\n if (backend2.shouldExecuteOnCPU([params, indices]) || params.dtype === \"string\") {\n const indicesData = backend2.readSync(indices.dataId);\n const paramsBuf = backend2.bufferSync(params);\n const outValue = gatherNdImplCPU2(indicesData, paramsBuf, params.dtype, numSlices, sliceRank, sliceSize, strides, params.shape, paramsSize);\n return backend2.makeTensorInfo(resultShape, params.dtype, outValue.values);\n }\n const program = new GatherNDProgram2(sliceRank, [numSlices, sliceSize]);\n const uniformData = [{ type: \"int32\", data: [sliceRank] }, { type: \"int32\", data: strides }];\n const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndices], flattenX.dtype, uniformData);\n const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: resultShape } });\n backend2.disposeData(flattenIndices.dataId);\n backend2.disposeData(flattenX.dataId);\n backend2.disposeData(res.dataId);\n return reshaped;\n}\nvar gatherNdConfig4 = {\n kernelName: GatherNd,\n backendName: \"webgpu\",\n kernelFunc: gatherNd4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/gather_webgpu.js\nvar GatherProgram2 = class {\n constructor(aShape, outputShape) {\n this.variableNames = [\"A\", \"indices\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = aShape.slice();\n this.aShape = aShape;\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `gather`;\n }\n getUserCode() {\n const sourceCoords = getSourceCoords4(this.aShape);\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let resRC = getCoordsFromIndex(index);\n let indexZ = i32(getIndices(resRC.x, resRC.z));\n let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);\n setOutputAtIndex(index, inBounds * getA(${sourceCoords}));\n }\n }\n `;\n return userCode;\n }\n};\nfunction getSourceCoords4(aShape) {\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const sourceCoords = [];\n for (let i2 = 0; i2 < aShape.length; i2++) {\n if (i2 === 2) {\n sourceCoords.push(\"indexZ\");\n } else {\n sourceCoords.push(`${currentCoords[i2]}`);\n }\n }\n return sourceCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GatherV2.js\nfunction gatherV24(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, indices } = inputs;\n const { axis, batchDims } = attrs;\n const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0];\n const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, batchDims);\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const toDispose = [];\n const flattenX = reshape6({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n shapeInfo.dimSize,\n shapeInfo.sliceSize\n ]\n }\n });\n const flattenIndex = reshape6({\n inputs: { x: indices },\n backend: backend2,\n attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] }\n });\n toDispose.push(flattenX);\n toDispose.push(flattenIndex);\n const flattenOutputShape = [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n indicesSize / shapeInfo.batchSize,\n shapeInfo.sliceSize\n ];\n if (backend2.shouldExecuteOnCPU([x, indices])) {\n const indicesBufferInfo = backend2.tensorMap.get(flattenIndex.dataId);\n const indicesValues = indicesBufferInfo.values;\n const indicesBuf = buffer(flattenIndex.shape, flattenIndex.dtype, indicesValues);\n const xBufferInfo = backend2.tensorMap.get(flattenX.dataId);\n const xValues = xBufferInfo.values;\n const xBuf = buffer(flattenX.shape, flattenX.dtype, xValues);\n const outBuf = gatherV2ImplCPU2(xBuf, indicesBuf, flattenOutputShape);\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return backend2.makeTensorInfo(shapeInfo.outputShape, outBuf.dtype, outBuf.values);\n }\n const program = new GatherProgram2(flattenX.shape, flattenOutputShape);\n const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndex], flattenX.dtype);\n toDispose.push(res);\n const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: shapeInfo.outputShape } });\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return reshaped;\n}\nvar gatherV2Config4 = {\n kernelName: GatherV2,\n backendName: \"webgpu\",\n kernelFunc: gatherV24\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Greater.js\nvar greater6 = binaryKernelFunc3({\n opType: BinaryOpType.GREATER,\n cpuKernelImpl: greaterImplCPU2,\n dtype: \"bool\"\n});\nvar greaterConfig4 = {\n kernelName: Greater,\n backendName: \"webgpu\",\n kernelFunc: greater6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GreaterEqual.js\nvar greaterEqual5 = binaryKernelFunc3({\n opType: BinaryOpType.GREATER_EQUAL,\n dtype: \"bool\",\n cpuKernelImpl: greaterEqualImplCPU2\n});\nvar greaterEqualConfig4 = {\n kernelName: GreaterEqual,\n backendName: \"webgpu\",\n kernelFunc: greaterEqual5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LeakyRelu.js\nfunction leakyRelu5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { alpha } = attrs;\n const uniformData = [{ type: \"float32\", data: [alpha] }];\n const program = new UnaryOpProgram2(x.shape, UnaryOpType.LEAKYRELU);\n program.uniforms = \"alpha : f32,\";\n return backend2.runWebGPUProgram(program, [x], \"float32\", uniformData);\n}\nvar leakyReluConfig4 = {\n kernelName: LeakyRelu,\n backendName: \"webgpu\",\n kernelFunc: leakyRelu5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Less.js\nvar less6 = binaryKernelFunc3({ opType: BinaryOpType.LESS, dtype: \"bool\", cpuKernelImpl: lessImplCPU2 });\nvar lessConfig4 = {\n kernelName: Less,\n backendName: \"webgpu\",\n kernelFunc: less6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LessEqual.js\nvar lessEqual5 = binaryKernelFunc3({\n opType: BinaryOpType.LESS_EQUAL,\n dtype: \"bool\",\n cpuKernelImpl: lessEqualImplCPU2\n});\nvar lessEqualConfig4 = {\n kernelName: LessEqual,\n backendName: \"webgpu\",\n kernelFunc: lessEqual5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Log.js\nvar log6 = unaryKernelFunc3({ opType: UnaryOpType.LOG, cpuKernelImpl: logImplCPU2 });\nvar logConfig4 = {\n kernelName: Log,\n backendName: \"webgpu\",\n kernelFunc: log6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LogicalAnd.js\nvar logicalAnd4 = binaryKernelFunc3({ opType: BinaryOpType.LOGICAL_AND, dtype: \"bool\" });\nvar logicalAndConfig4 = {\n kernelName: LogicalAnd,\n backendName: \"webgpu\",\n kernelFunc: logicalAnd4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LogicalNot.js\nvar logicalNot4 = unaryKernelFunc3({ opType: UnaryOpType.LOGICAL_NOT });\nvar logicalNotConfig4 = {\n kernelName: LogicalNot,\n backendName: \"webgpu\",\n kernelFunc: logicalNot4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Max.js\nfunction max6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { reductionIndices, keepDims } = attrs;\n return reduce2(x, reductionIndices, keepDims, \"max\", backend2);\n}\nvar maxConfig4 = {\n kernelName: Max,\n backendName: \"webgpu\",\n kernelFunc: max6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Maximum.js\nvar maximum6 = binaryKernelFunc3({\n opType: BinaryOpType.MAX,\n cpuKernelImpl: maximumImplCPU2\n});\nvar maximumConfig4 = {\n kernelName: Maximum,\n backendName: \"webgpu\",\n kernelFunc: maximum6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/MaxPool.js\nfunction maxPool5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n let program;\n const dimensions = [];\n if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1) {\n if (util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n return identity5({ inputs: { x }, backend: backend2 });\n }\n program = new PoolWithFilterSizeEqualsOneProgram(convInfo);\n dimensions.push({ type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] });\n } else {\n program = new Pool2DProgram2(convInfo, \"max\");\n dimensions.push({ type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] }, { type: \"int32\", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, {\n type: \"int32\",\n data: [convInfo.dilationHeight, convInfo.dilationWidth]\n }, { type: \"int32\", data: [convInfo.inHeight, convInfo.inWidth] }, {\n type: \"int32\",\n data: [convInfo.effectiveFilterHeight, convInfo.effectiveFilterWidth]\n });\n }\n return backend2.runWebGPUProgram(program, [x], x.dtype, dimensions);\n}\nvar maxPoolConfig4 = {\n kernelName: MaxPool,\n backendName: \"webgpu\",\n kernelFunc: maxPool5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Mean.js\nfunction mean4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { keepDims, axis } = attrs;\n return reduce2(x, axis, keepDims, \"mean\", backend2);\n}\nvar meanConfig4 = {\n kernelName: Mean,\n backendName: \"webgpu\",\n kernelFunc: mean4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Min.js\nfunction min6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n return reduce2(x, axis, keepDims, \"min\", backend2);\n}\nvar minConfig4 = {\n kernelName: Min,\n backendName: \"webgpu\",\n kernelFunc: min6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Minimum.js\nvar minimum6 = binaryKernelFunc3({\n opType: BinaryOpType.MIN,\n cpuKernelImpl: minimumImplCPU2\n});\nvar minimumConfig4 = {\n kernelName: Minimum,\n backendName: \"webgpu\",\n kernelFunc: minimum6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/mirror_pad_webgpu.js\nvar MirrorPadProgram2 = class {\n constructor(xShape, paddings, mode) {\n this.uniforms = \"\";\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.xShape = xShape;\n paddings.map((_, i2) => {\n this.uniforms += ` pad${i2} : vec2,`;\n });\n this.offset = mode === \"reflect\" ? 0 : 1;\n this.shaderKey = `mirrorPad_${mode}`;\n }\n getUserCode() {\n const rank = this.xShape.length;\n const start = this.xShape.map((_, i2) => `uniforms.pad${i2}[0]`).join(\",\");\n const end = this.xShape.map((_, i2) => `uniforms.pad${i2}[0] + uniforms.xShape${rank > 1 ? `[${i2}]` : \"\"}`).join(\",\");\n const shaderStart = rank === 1 ? \"start\" : \"start[i]\";\n const shaderEnd = rank === 1 ? \"end\" : \"end[i]\";\n const shaderOutC = rank === 1 ? \"outC\" : \"outC[i]\";\n const dtype = getCoordsDataType2(rank);\n const unpackedCoords = rank > 1 ? [\"coords[0]\", \"coords[1]\", \"coords[2]\", \"coords[3]\"].slice(0, rank) : \"coords\";\n return `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let start = ${dtype}(${start});\n let end = ${dtype}(${end});\n var outC = getCoordsFromIndex(index);\n for (var i = 0; i < ${rank}; i = i + 1) {\n if (${shaderOutC} < ${shaderStart}) {\n ${shaderOutC} = ${shaderStart} * 2 - ${shaderOutC} - ${this.offset};\n } else if(${shaderOutC} >= ${shaderEnd}) {\n ${shaderOutC} = (${shaderEnd} - 1) * 2 - ${shaderOutC} + ${this.offset};\n }\n }\n let coords = outC - start;\n setOutputAtIndex(index, getX(${unpackedCoords}));\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/MirrorPad.js\nvar mirrorPadConfig4 = {\n kernelName: MirrorPad,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n const { paddings, mode } = attrs;\n const webGPUBackend = backend2;\n const uniformData = paddings.map((p2) => {\n return { type: \"int32\", data: [p2[0], p2[1]] };\n });\n const program = new MirrorPadProgram2(x.shape, paddings, mode);\n const output = webGPUBackend.runWebGPUProgram(program, [x], x.dtype, uniformData);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Neg.js\nfunction neg4(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (backend2.shouldExecuteOnCPU([x])) {\n const xData = backend2.tensorMap.get(x.dataId);\n const [outValues, newShape] = negImplCPU2(xData.values, x.shape, x.dtype);\n return backend2.makeTensorInfo(newShape, x.dtype, outValues);\n }\n const program = new UnaryOpProgram2(x.shape, UnaryOpType.NEG);\n return backend2.runWebGPUProgram(program, [x], x.dtype);\n}\nvar negConfig4 = {\n kernelName: Neg,\n backendName: \"webgpu\",\n kernelFunc: neg4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NonMaxSuppressionV3.js\nfunction nonMaxSuppressionV33(args) {\n console.warn(\"tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const { selectedIndices } = kernel_impls_exports.nonMaxSuppressionV3Impl(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold);\n return backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices));\n}\nvar nonMaxSuppressionV3Config4 = {\n kernelName: NonMaxSuppressionV3,\n backendName: \"webgpu\",\n kernelFunc: nonMaxSuppressionV33\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NonMaxSuppressionV5.js\nfunction nonMaxSuppressionV53(args) {\n console.warn(\"tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const maxOutputSizeVal = maxOutputSize;\n const iouThresholdVal = iouThreshold;\n const scoreThresholdVal = scoreThreshold;\n const softNmsSigmaVal = softNmsSigma;\n const { selectedIndices, selectedScores } = kernel_impls_exports.nonMaxSuppressionV5Impl(boxesVals, scoresVals, maxOutputSizeVal, iouThresholdVal, scoreThresholdVal, softNmsSigmaVal);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([selectedScores.length], \"float32\", new Float32Array(selectedScores))\n ];\n}\nvar nonMaxSuppressionV5Config4 = {\n kernelName: NonMaxSuppressionV5,\n backendName: \"webgpu\",\n kernelFunc: nonMaxSuppressionV53\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ZerosLike.js\nfunction zerosLike5(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"complex64\") {\n const realPart = real5({ inputs: { input: x }, backend: backend2 });\n const r2 = zerosLike5({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag4({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex4({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeData(realPart.dataId);\n backend2.disposeData(r2.dataId);\n backend2.disposeData(imagPart.dataId);\n backend2.disposeData(i2.dataId);\n return result;\n } else {\n return fill5({\n attrs: {\n shape: x.shape,\n dtype: x.dtype,\n value: x.dtype === \"string\" ? \"\" : 0\n },\n backend: backend2\n });\n }\n}\nvar zerosLikeConfig4 = {\n kernelName: ZerosLike,\n backendName: \"webgpu\",\n kernelFunc: zerosLike5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/OnesLike.js\nfunction onesLike5(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"string\") {\n throw new Error(\"onesLike is not supported under string dtype\");\n } else if (x.dtype === \"complex64\") {\n const realPart = real5({ inputs: { input: x }, backend: backend2 });\n const r2 = onesLike5({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag4({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex4({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeData(realPart.dataId);\n backend2.disposeData(r2.dataId);\n backend2.disposeData(imagPart.dataId);\n backend2.disposeData(i2.dataId);\n return result;\n } else {\n return fill5({ attrs: { shape: x.shape, dtype: x.dtype, value: 1 }, backend: backend2 });\n }\n}\nvar onesLikeConfig4 = {\n kernelName: OnesLike,\n backendName: \"webgpu\",\n kernelFunc: onesLike5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pack.js\nfunction pack4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n if (inputs.length === 1) {\n return expandDims6({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } });\n }\n const shape = inputs[0].shape;\n const dtype = inputs[0].dtype;\n inputs.forEach((t2) => {\n util_exports.assertShapesMatch(shape, t2.shape, \"All tensors passed to stack must have matching shapes\");\n util_exports.assert(dtype === t2.dtype, () => \"All tensors passed to stack must have matching dtypes\");\n });\n const intermediateTensorInfos = [];\n const expandedTensors = inputs.map((t2) => {\n const expandedT = expandDims6({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } });\n intermediateTensorInfos.push(expandedT);\n return expandedT;\n });\n const result = concat5({ inputs: expandedTensors, backend: backend2, attrs: { axis } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId));\n return result;\n}\nvar packConfig4 = {\n kernelName: Pack,\n backendName: \"webgpu\",\n kernelFunc: pack4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pad_webgpu.js\nvar PadProgram2 = class {\n constructor(xShape, paddings) {\n this.variableNames = [\"x\"];\n this.uniforms = \"constantValue : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n paddings.map((_, i2) => {\n this.uniforms += ` pad${i2} : vec2,`;\n });\n this.xShape = xShape;\n this.shaderKey = \"pad\";\n }\n getUserCode() {\n const rank = this.xShape.length;\n const type = getCoordsDataType2(rank);\n const start = this.xShape.map((_, i2) => `uniforms.pad${i2}[0]`).join(\",\");\n const end = this.xShape.map((_, i2) => `uniforms.pad${i2}[0] + uniforms.xShape${rank > 1 ? `[${i2}]` : \"\"}`).join(\",\");\n const startValue = rank > 1 ? `${type}(${start})` : `${start}`;\n const endValue = rank > 1 ? `${type}(${end})` : `${end}`;\n const leftPadCondition = rank > 1 ? `any(outC < start)` : `outC < start`;\n const rightPadCondition = rank > 1 ? `any(outC >= end)` : `outC >= end`;\n const unpackedCoords = rank > 1 ? [\"coords[0]\", \"coords[1]\", \"coords[2]\", \"coords[3]\"].slice(0, rank) : \"coords\";\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let start = ${startValue};\n let end = ${endValue};\n let outC = getCoordsFromIndex(index);\n\n if (${leftPadCondition} || ${rightPadCondition}) {\n setOutputAtIndex(index, uniforms.constantValue);\n } else {\n let coords = outC - start;\n setOutputAtIndex(index, getX(${unpackedCoords}));\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/PadV2.js\nvar padV23 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { paddings, constantValue } = attrs;\n if (paddings.every((p2) => util_exports.arraysEqual(p2, [0, 0]))) {\n return identity5({ inputs: { x }, backend: backend2 });\n }\n if (util_exports.sizeFromShape(x.shape) === 0) {\n const outputShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n return fill5({\n backend: backend2,\n attrs: { shape: outputShape, value: constantValue, dtype: x.dtype }\n });\n }\n const uniformData = [{ type: \"float32\", data: [constantValue] }];\n paddings.map((p2) => uniformData.push({ type: \"int32\", data: [p2[0], p2[1]] }));\n const program = new PadProgram2(x.shape, paddings);\n return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n};\nvar padV2Config4 = {\n kernelName: PadV2,\n backendName: \"webgpu\",\n kernelFunc: padV23\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pow.js\nvar pow4 = binaryKernelFunc3({\n opType: BinaryOpType.POW\n});\nvar powConfig4 = {\n kernelName: Pow,\n backendName: \"webgpu\",\n kernelFunc: pow4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Prelu.js\nfunction prelu6(args) {\n const { inputs, backend: backend2 } = args;\n const { x, alpha } = inputs;\n const program = new BinaryOpProgram2(BinaryOpType.PRELU, x.shape, alpha.shape);\n return backend2.runWebGPUProgram(program, [x, alpha], \"float32\");\n}\nvar preluConfig4 = {\n kernelName: Prelu,\n backendName: \"webgpu\",\n kernelFunc: prelu6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Prod.js\nfunction prod5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n return reduce2(x, axis, keepDims, \"prod\", backend2);\n}\nvar prodConfig4 = {\n kernelName: Prod,\n backendName: \"webgpu\",\n kernelFunc: prod5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Range.js\nvar range6 = (args) => {\n const { backend: backend2, attrs } = args;\n const { start, stop, step: step5, dtype } = attrs;\n const values = rangeImplCPU2(start, stop, step5, dtype);\n return backend2.makeTensorInfo([values.length], dtype, values);\n};\nvar rangeConfig4 = {\n kernelName: Range,\n backendName: \"webgpu\",\n kernelFunc: range6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/RealDiv.js\nvar realDiv2 = binaryKernelFunc3({ opType: BinaryOpType.DIV });\nvar realDivConfig4 = {\n kernelName: RealDiv,\n backendName: \"webgpu\",\n kernelFunc: realDiv2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Relu.js\nvar relu4 = unaryKernelFunc3({ opType: UnaryOpType.RELU });\nvar reluConfig4 = {\n kernelName: Relu,\n backendName: \"webgpu\",\n kernelFunc: relu4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Relu6.js\nvar relu64 = unaryKernelFunc3({ opType: UnaryOpType.RELU6 });\nvar relu6Config4 = {\n kernelName: Relu6,\n backendName: \"webgpu\",\n kernelFunc: relu64\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/resize_bilinear_webgpu.js\nvar ResizeBilinearProgram2 = class {\n constructor(inputShape, newHeight, newWidth) {\n this.variableNames = [\"x\"];\n this.uniforms = \"adjustHeightWidth : vec2, halfPixelCenters : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = [inputShape[0], newHeight, newWidth, inputShape[3]];\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `resizeBilinear`;\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let b = coords[0];\n let d = coords[3];\n let rc = coords.yz;\n\n let effectiveInSize = vec2(\n f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],\n f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);\n\n let effectiveOutSize = vec2(\n f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],\n f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);\n\n let effectiveInputOverOutputRatioRC =\n effectiveInSize / effectiveOutSize;\n\n // Fractional source index\n let sourceFracIndexRC =\n (vec2(rc) + vec2(uniforms.halfPixelCenters)) *\n effectiveInputOverOutputRatioRC - vec2(uniforms.halfPixelCenters);\n\n // Compute the four integer indices.\n let sourceFloorRC = vec2(sourceFracIndexRC);\n let sourceCeilRC = vec2(\n min(vec2(uniforms.xShape.yz) - vec2(1.0), ceil(sourceFracIndexRC)));\n\n let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);\n let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);\n let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);\n let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);\n\n let fracRC = sourceFracIndexRC - vec2(sourceFloorRC);\n\n let top = topLeft + (topRight - topLeft) * fracRC.y;\n let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;\n let newValue = top + (bottom - top) * fracRC.x;\n\n setOutputAtIndex(index, newValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ResizeBilinear.js\nfunction resizeBilinear5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, size, halfPixelCenters } = attrs;\n const [newHeight, newWidth] = size;\n const adjustHeight = alignCorners && newHeight > 1 ? 1 : 0;\n const adjustWidth = alignCorners && newWidth > 1 ? 1 : 0;\n const halfPixelCentersValue = halfPixelCenters ? 0.5 : 0;\n const uniformData = [\n { type: \"float32\", data: [adjustHeight, adjustWidth] },\n { type: \"float32\", data: [halfPixelCentersValue] }\n ];\n const program = new ResizeBilinearProgram2(images.shape, newHeight, newWidth);\n return backend2.runWebGPUProgram(program, [images], \"float32\", uniformData);\n}\nvar resizeBilinearConfig4 = {\n kernelName: ResizeBilinear,\n backendName: \"webgpu\",\n kernelFunc: resizeBilinear5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/resize_nearest_neighbor_webgpu.js\nvar ResizeNearestNeighborProgram2 = class {\n constructor(inputShape, newHeight, newWidth, halfPixelCenters) {\n this.variableNames = [\"x\"];\n this.uniforms = \"adjustHeightWidth : vec2, roundBase : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = [inputShape[0], newHeight, newWidth, inputShape[3]];\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.halfPixelCenters = halfPixelCenters;\n this.shaderKey = `resizeNearest_${halfPixelCenters}`;\n }\n getUserCode() {\n let sourceFracIndexRC;\n if (this.halfPixelCenters) {\n sourceFracIndexRC = `max((vec2(rc) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))`;\n } else {\n sourceFracIndexRC = `vec2(rc) * effectiveInputOverOutputRatioRC`;\n }\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let b = coords[0];\n let d = coords[3];\n let rc = coords.yz;\n\n let effectiveInSize = vec2(\n f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],\n f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);\n\n let effectiveOutSize = vec2(\n f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],\n f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);\n\n let effectiveInputOverOutputRatioRC =\n effectiveInSize / effectiveOutSize;\n\n // Fractional source index\n let sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the coordinators of nearest neighbor point.\n let inputShapeRC = vec2(f32(uniforms.xShape.y), f32(uniforms.xShape.z));\n let sourceNearestRC = vec2(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));\n let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);\n\n setOutputAtIndex(index, newValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ResizeNearestNeighbor.js\nfunction resizeNearestNeighbor5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const adjustHeight = alignCorners && newHeight > 1 ? 1 : 0;\n const adjustWidth = alignCorners && newWidth > 1 ? 1 : 0;\n const roundBase = alignCorners ? 0.5 : 0;\n const uniformData = [\n { type: \"float32\", data: [adjustHeight, adjustWidth] },\n { type: \"float32\", data: [roundBase] }\n ];\n const program = new ResizeNearestNeighborProgram2(images.shape, newHeight, newWidth, halfPixelCenters);\n return backend2.runWebGPUProgram(program, [images], images.dtype, uniformData);\n}\nvar resizeNearestNeighborConfig4 = {\n kernelName: ResizeNearestNeighbor,\n backendName: \"webgpu\",\n kernelFunc: resizeNearestNeighbor5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/rotate_webgpu.js\nvar RotateProgram2 = class {\n constructor(imageShape, fillValue) {\n this.outputShape = [];\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = imageShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.uniforms = `centerX : f32, centerY : f32, sinRadians : f32,\n cosRadians : f32,`;\n this.shaderKey = \"rotate\";\n this.outputShape = imageShape;\n if (typeof fillValue === \"number\") {\n this.uniforms += ` fillValue : f32,`;\n this.fillSnippet = `var outputValue = uniforms.fillValue;`;\n this.shaderKey += \"_float\";\n } else {\n this.uniforms += ` fillValue : vec3,`;\n this.fillSnippet = `var outputValue = uniforms.fillValue[coords[3]];`;\n this.shaderKey += \"_vec3\";\n }\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let coordXFloat = (f32(coords[2]) - uniforms.centerX) *\n uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *\n uniforms.sinRadians;\n let coordYFloat = (f32(coords[2]) - uniforms.centerX) *\n uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *\n uniforms.cosRadians;\n let coordX = i32(round(coordXFloat + uniforms.centerX));\n let coordY = i32(round(coordYFloat + uniforms.centerY));\n ${this.fillSnippet}\n if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&\n coordY < uniforms.xShape[1]) {\n outputValue = getX(coords[0], coordY, coordX, coords[3]);\n }\n setOutputAtIndex(index, outputValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/RotateWithOffset.js\nvar rotateWithOffsetConfig4 = {\n kernelName: RotateWithOffset,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const { radians, fillValue, center } = attrs;\n const webgpuBackend = backend2;\n const program = new RotateProgram2(image2.shape, fillValue);\n const [centerX, centerY] = backend_util_exports.getImageCenter(center, image2.shape[1], image2.shape[2]);\n const uniformData = [\n { type: \"float32\", data: [centerX] },\n { type: \"float32\", data: [centerY] },\n { type: \"float32\", data: [Math.sin(radians)] },\n { type: \"float32\", data: [Math.cos(radians)] }\n ];\n if (typeof fillValue === \"number\") {\n uniformData.push({ type: \"float32\", data: [Number.parseFloat(fillValue.toFixed(2))] });\n } else {\n uniformData.push({ type: \"float32\", data: fillValue });\n }\n const output = webgpuBackend.runWebGPUProgram(program, [image2], image2.dtype, uniformData);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Rsqrt.js\nvar rsqrt5 = unaryKernelFunc3({ opType: UnaryOpType.RSQRT, cpuKernelImpl: rsqrtImplCPU2 });\nvar rsqrtConfig4 = {\n kernelName: Rsqrt,\n backendName: \"webgpu\",\n kernelFunc: rsqrt5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/scatter_optimized_webgpu.js\nvar ScatterOptimizedProgram = class {\n constructor(flattenXShape, sliceDim, indicesRank, updatesRank, strides, shape, outputDtype, sumDupeIndices = true) {\n this.variableNames = [\"updates\", \"indices\"];\n this.workGroupSize = [64, 1, 1];\n this.atomic = true;\n this.outputShape = shape;\n this.type = outputDtype;\n this.sumDupeIndices = sumDupeIndices;\n this.dispatchLayout = flatDispatchLayout(flattenXShape);\n this.dispatch = computeDispatch(this.dispatchLayout, flattenXShape, this.workGroupSize);\n this.sliceDimGreaterThanOne = sliceDim > 1;\n this.shaderKey = `scatter_${indicesRank}_${updatesRank}_${this.sliceDimGreaterThanOne}_${outputDtype}_${sumDupeIndices}`;\n const stridesType = getCoordsDataType2(strides.length);\n this.uniforms = `sliceDim : i32, strides: ${stridesType}, size: i32,`;\n this.updatesRank = updatesRank;\n this.indicesRank = indicesRank;\n }\n getUserCode() {\n let indicesString = \"\";\n if (this.indicesRank === 1) {\n indicesString = \"coords[0]\";\n } else if (this.indicesRank === 2) {\n indicesString = \"coords[0], j\";\n }\n const indicesSnippet = `getIndices(${indicesString})`;\n const strideString = this.sliceDimGreaterThanOne ? \"uniforms.strides[j]\" : \"uniforms.strides\";\n let outCoordsString = \"\";\n let getUpdatesCoordsFromFlatIndex = \"\";\n if (this.dispatchLayout.x.length === 1) {\n outCoordsString = \"flattenedIndex\";\n getUpdatesCoordsFromFlatIndex = `\n fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {\n return index;\n }\n `;\n } else if (this.dispatchLayout.x.length === 2) {\n outCoordsString = \"vec2(flattenedIndex, coords[1])\";\n getUpdatesCoordsFromFlatIndex = `\n fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2 {\n // N.B. |updates| could be a scalar tensor, conceptually representing a\n // 2D tensor with all values equal to that. By design, its size must be\n // the same as |outShape[1]| in one dimension, and |indicesShape[0]|\n // gives the other.\n let sliceSize = uniforms.outShape[1];\n let d0 = index / sliceSize;\n let d1 = index - d0 * sliceSize;\n return vec2(d0, d1);\n }\n `;\n }\n const updatesString = Array.from({ length: this.updatesRank }, (_, idx) => `coords[${idx}]`);\n const updatesSnippet = `getUpdates(${updatesString.join(\", \")})`;\n const atomicRMW = (ptr, val) => {\n let atomicAddSnippet = `atomicAdd(${ptr}, bitcast(${val}))`;\n if (this.type === \"float32\") {\n atomicAddSnippet = `\n {\n var oldBits = 0;\n var newBits = bitcast(${val});\n loop {\n let info = atomicCompareExchangeWeak(${ptr}, oldBits, newBits);\n if (info.exchanged) {\n break;\n }\n oldBits = info.old_value;\n let oldValue = bitcast(oldBits);\n let newValue = oldValue + (${val});\n newBits = bitcast(newValue);\n }\n }\n `;\n }\n const atomicStoreSnippet = `atomicStore(${ptr}, bitcast(${val}));`;\n return this.sumDupeIndices ? atomicAddSnippet : atomicStoreSnippet;\n };\n const userCode = `\n ${getUpdatesCoordsFromFlatIndex}\n\n ${getMainHeaderAndGlobalIndexString()}\n\n if (index < uniforms.size) {\n let coords = getUpdatesCoordsFromFlatIndex(index);\n var flattenedIndex = 0;\n for (var j = 0; j < uniforms.sliceDim; j = j + 1) {\n let indexInside = i32(round(${indicesSnippet}));\n flattenedIndex = flattenedIndex + indexInside * ${strideString};\n }\n let updateValue =\n ${mapToWgslTypes(this.type, false)}(${updatesSnippet});\n let flatIndex = getOutputIndexFromCoords(${outCoordsString});\n\n ${atomicRMW(\"&result[flatIndex]\", \"updateValue\")};\n }\n }`;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ScatterNd.js\nfunction scatterNd4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices, updates } = inputs;\n const { shape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(updates, indices, shape);\n const flattenShape = [outputSize / sliceSize, sliceSize];\n if (outputSize === 0) {\n return backend2.makeTensorInfo(shape, indices.dtype);\n }\n const flattenIndices = reshape6({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numUpdates, sliceRank] } });\n const flattenX = reshape6({ inputs: { x: updates }, backend: backend2, attrs: { shape: [numUpdates, sliceSize] } });\n const type = flattenX.dtype;\n const output = fill5({ backend: backend2, attrs: { shape: flattenShape, value: 0, dtype: type } });\n const size = util_exports.sizeFromShape(flattenX.shape);\n const uniformData = [\n { type: \"int32\", data: [sliceRank] },\n { type: \"int32\", data: strides },\n { type: \"int32\", data: [size] }\n ];\n const program = new ScatterOptimizedProgram(flattenX.shape, sliceRank, flattenIndices.shape.length, flattenX.shape.length, strides, flattenShape, type);\n const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndices], type, uniformData, output);\n const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape } });\n backend2.disposeData(flattenIndices.dataId);\n backend2.disposeData(flattenX.dataId);\n backend2.disposeData(res.dataId);\n return reshaped;\n}\nvar scatterNdConfig4 = {\n kernelName: ScatterNd,\n backendName: \"webgpu\",\n kernelFunc: scatterNd4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/select_webgpu.js\nvar SelectProgram2 = class {\n constructor(cRank, shape, rank) {\n this.variableNames = [\"c\", \"a\", \"b\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.cRank = cRank;\n this.rank = rank;\n this.shaderKey = \"select\";\n }\n getUserCode() {\n let cCoords;\n let abCoords;\n if (this.rank > 4) {\n throw Error(`Where for rank ${this.rank} is not yet supported`);\n }\n if (this.rank === 1) {\n abCoords = `resRC`;\n cCoords = `resRC`;\n } else {\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const cCoordVars = [];\n const abCoordVars = [];\n for (let i2 = 0; i2 < this.outputShape.length; i2++) {\n abCoordVars.push(`${currentCoords[i2]}`);\n if (i2 < this.cRank) {\n cCoordVars.push(`${currentCoords[i2]}`);\n }\n }\n cCoords = cCoordVars.join();\n abCoords = abCoordVars.join();\n }\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let resRC = getCoordsFromIndex(index);\n let cVal = getC(${cCoords});\n if (cVal >= 1.0) {\n setOutputAtIndex(index, getA(${abCoords}));\n } else {\n setOutputAtIndex(index, getB(${abCoords}));\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Select.js\nfunction select6(args) {\n const { inputs, backend: backend2 } = args;\n const { condition, t: t2, e: e2 } = inputs;\n const program = new SelectProgram2(condition.shape.length, t2.shape, t2.shape.length);\n return backend2.runWebGPUProgram(program, [condition, t2, e2], upcastType(t2.dtype, e2.dtype));\n}\nvar selectConfig4 = {\n kernelName: Select,\n backendName: \"webgpu\",\n kernelFunc: select6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sigmoid.js\nvar sigmoid6 = unaryKernelFunc3({ opType: UnaryOpType.SIGMOID });\nvar sigmoidConfig4 = {\n kernelName: Sigmoid,\n backendName: \"webgpu\",\n kernelFunc: sigmoid6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sin.js\nvar sin4 = unaryKernelFunc3({ opType: UnaryOpType.SIN });\nvar sinConfig4 = {\n kernelName: Sin,\n backendName: \"webgpu\",\n kernelFunc: sin4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sinh.js\nvar sinh4 = unaryKernelFunc3({ opType: UnaryOpType.SINH });\nvar sinhConfig3 = {\n kernelName: Sinh,\n backendName: \"webgpu\",\n kernelFunc: sinh4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sub.js\nvar sub5 = binaryKernelFunc3({ opType: BinaryOpType.SUB, cpuKernelImpl: subImplCPU2, supportsComplex: true });\nvar subConfig4 = {\n kernelName: Sub,\n backendName: \"webgpu\",\n kernelFunc: sub5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Softmax.js\nfunction softmax6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { dim } = attrs;\n const axes = util_exports.parseAxisParam([dim], logits.shape);\n const maxLogit = max6({\n inputs: { x: logits },\n backend: backend2,\n attrs: { reductionIndices: axes, keepDims: false }\n });\n const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes);\n const maxLogitsReshaped = reshape6({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } });\n const a = sub5({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 });\n const b = exp5({ inputs: { x: a }, backend: backend2 });\n const sumExp = sum6({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } });\n const sumExpReshaped = reshape6({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } });\n const res = realDiv2({ inputs: { a: b, b: sumExpReshaped }, backend: backend2 });\n backend2.disposeData(maxLogit.dataId);\n backend2.disposeData(maxLogitsReshaped.dataId);\n backend2.disposeData(a.dataId);\n backend2.disposeData(b.dataId);\n backend2.disposeData(sumExp.dataId);\n backend2.disposeData(sumExpReshaped.dataId);\n return res;\n}\nvar softmaxConfig4 = {\n kernelName: Softmax,\n backendName: \"webgpu\",\n kernelFunc: softmax6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SpaceToBatchND.js\nvar spaceToBatchND5 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, paddings } = attrs;\n util_exports.assert(x.shape.length <= 4, () => \"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const completePaddings = [[0, 0]];\n completePaddings.push(...paddings);\n for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) {\n completePaddings.push([0, 0]);\n }\n const toDispose = [];\n const paddedX = padV23({\n inputs: { x },\n backend: backend2,\n attrs: { paddings: completePaddings, constantValue: 0 }\n });\n const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false);\n const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false);\n const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false);\n const reshapedPaddedX = reshape6({ inputs: { x: paddedX }, backend: backend2, attrs: { shape: reshapedPaddedShape } });\n const paddedXT = transpose6({\n inputs: { x: reshapedPaddedX },\n backend: backend2,\n attrs: { perm: permutedReshapedPaddedPermutation }\n });\n const result = reshape6({ inputs: { x: paddedXT }, backend: backend2, attrs: { shape: flattenShape } });\n toDispose.push(paddedX);\n toDispose.push(reshapedPaddedX);\n toDispose.push(paddedXT);\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return result;\n};\nvar spaceToBatchNDConfig4 = {\n kernelName: SpaceToBatchND,\n backendName: \"webgpu\",\n kernelFunc: spaceToBatchND5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/tile_webgpu.js\nvar TileProgram2 = class {\n constructor(aShape, reps) {\n this.variableNames = [\"A\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[i2] * reps[i2];\n }\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.rank = this.outputShape.length;\n this.shaderKey = \"tile\";\n }\n getUserCode() {\n const sourceCoords = getSourceCoords5(this.rank, \"uniforms.\");\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let resRC = getCoordsFromIndex(index);\n setOutputAtIndex(index, getA(${sourceCoords}));\n }\n }\n `;\n return userCode;\n }\n};\nfunction getSourceCoords5(rank, uniformPrefix = \"\") {\n if (rank >= 5) {\n throw Error(`Tile for rank ${rank} is not yet supported`);\n }\n if (rank === 1) {\n return `(resRC % ${uniformPrefix}aShape)`;\n }\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const sourceCoords = [];\n for (let i2 = 0; i2 < rank; i2++) {\n sourceCoords.push(`(${currentCoords[i2]} % ${uniformPrefix}aShape[${i2}])`);\n }\n return sourceCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Tile.js\nfunction tile6(params) {\n const { inputs, backend: backend2, attrs } = params;\n const { x } = inputs;\n const { reps } = attrs;\n if (backend2.shouldExecuteOnCPU([x]) || x.dtype === \"string\" || x.shape.length >= 5) {\n const data = backend2.readSync(x.dataId);\n const value = x.dtype === \"string\" ? data.map((d) => util_exports.decodeString(d)) : data;\n const buf = buffer(x.shape, x.dtype, value);\n const outBuf = tileImplCPU2(buf, reps);\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n }\n const program = new TileProgram2(x.shape, reps);\n const output = backend2.runWebGPUProgram(program, [x], x.dtype);\n return output;\n}\nvar tileConfig4 = {\n kernelName: Tile,\n backendName: \"webgpu\",\n kernelFunc: tile6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SparseToDense.js\nfunction sparseToDense4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sparseIndices, sparseValues, defaultValue } = inputs;\n const { outputShape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(sparseValues, sparseIndices, outputShape);\n const sumDupeIndices = false;\n if (sparseValues.dtype === \"string\") {\n const indicesBuf = backend2.bufferSync(sparseIndices);\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue2 = util_exports.decodeString(backend2.readSync(defaultValue.dataId)[0]);\n const outBuf = scatterImplCPU2(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue2, sumDupeIndices);\n return backend2.makeTensorInfo(outputShape, outBuf.dtype, outBuf.values);\n }\n const flattenShape = [outputSize / sliceSize, sliceSize];\n const $sparseIndices = reshape6({\n inputs: { x: sparseIndices },\n backend: backend2,\n attrs: { shape: [numUpdates, sliceRank] }\n });\n const $sparseValues = sparseValues.shape.length ? reshape6({\n inputs: { x: sparseValues },\n backend: backend2,\n attrs: { shape: [numUpdates, sliceSize] }\n }) : identity5({ inputs: { x: sparseValues }, backend: backend2 });\n const type = $sparseValues.dtype;\n const zero = backend2.makeTensorInfo([], type, util_exports.makeZerosTypedArray(1, type));\n const $defaultValue = reshape6({\n inputs: { x: defaultValue },\n backend: backend2,\n attrs: { shape: Array(flattenShape.length).fill(1) }\n });\n const $denseValues = tile6({ inputs: { x: $defaultValue }, backend: backend2, attrs: { reps: flattenShape } });\n const size = util_exports.sizeFromShape([numUpdates, sliceSize]);\n const uniformData = [\n { type: \"int32\", data: [sliceRank] },\n { type: \"int32\", data: strides },\n { type: \"int32\", data: [size] }\n ];\n switch (numUpdates) {\n case 0:\n break;\n case 1:\n if (true) {\n const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides, flattenShape, type, sumDupeIndices);\n backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues);\n }\n break;\n default:\n if (true) {\n const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, zero.shape.length, strides, flattenShape, type, sumDupeIndices);\n backend2.runWebGPUProgram(program, [zero, $sparseIndices], type, uniformData, $denseValues);\n }\n {\n const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides, flattenShape, type);\n backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues);\n }\n }\n const denseValues = reshape6({ inputs: { x: $denseValues }, backend: backend2, attrs: { shape: outputShape } });\n backend2.disposeData($sparseIndices.dataId);\n backend2.disposeData($sparseValues.dataId);\n backend2.disposeData($defaultValue.dataId);\n backend2.disposeData(zero.dataId);\n backend2.disposeData($denseValues.dataId);\n return denseValues;\n}\nvar sparseToDenseConfig3 = {\n kernelName: SparseToDense,\n backendName: \"webgpu\",\n kernelFunc: sparseToDense4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SplitV.js\nfunction splitV4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { numOrSizeSplits, axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, x.shape)[0];\n const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis);\n const xRank = x.shape.length;\n const begin = new Array(xRank).fill(0);\n const size = x.shape.slice();\n return splitSizes.map((s2) => {\n const sliceSize = [...size];\n sliceSize[$axis] = s2;\n const sliceT = slice5({ inputs: { x }, backend: backend2, attrs: { begin, size: sliceSize } });\n begin[$axis] += s2;\n return sliceT;\n });\n}\nvar splitVConfig4 = {\n kernelName: SplitV,\n backendName: \"webgpu\",\n kernelFunc: splitV4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sqrt.js\nvar sqrt5 = unaryKernelFunc3({ opType: UnaryOpType.SQRT });\nvar sqrtConfig4 = {\n kernelName: Sqrt,\n backendName: \"webgpu\",\n kernelFunc: sqrt5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Square.js\nvar squareConfig4 = {\n kernelName: Square,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, backend: backend2 }) => {\n const { x } = inputs;\n const webGPUBackend = backend2;\n const program = new UnaryOpProgram2(x.shape, UnaryOpType.SQUARE);\n return webGPUBackend.runWebGPUProgram(program, [x], x.dtype);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SquaredDifference.js\nvar squaredDifference5 = binaryKernelFunc3({\n opType: BinaryOpType.SQUARED_DIFFERENCE\n});\nvar squaredDifferenceConfig4 = {\n kernelName: SquaredDifference,\n backendName: \"webgpu\",\n kernelFunc: squaredDifference5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/strided_slice_webgpu.js\nvar StridedSliceProgram2 = class {\n constructor(destSize) {\n this.variableNames = [\"x\"];\n this.workPerThread = 1;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = destSize;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n const dtype = getCoordsDataType2(this.outputShape.length);\n this.uniforms = `begin : ${dtype}, strides : ${dtype}, `;\n this.shaderKey = \"stridedSlice\";\n }\n getUserCode() {\n const rank = this.outputShape.length;\n let newCoords = \"\";\n if (rank === 1) {\n newCoords = \"coords * uniforms.strides + uniforms.begin\";\n } else {\n let outputAxis = 0;\n newCoords = this.outputShape.map((_, i2) => {\n outputAxis++;\n return this.outputShape.length === 1 ? `coords * uniforms.strides[${i2}] + uniforms.begin[${i2}]` : `coords[${outputAxis - 1}] * uniforms.strides[${i2}] + uniforms.begin[${i2}]`;\n }).join(\",\");\n }\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n setOutputAtIndex(index, getX(${newCoords}));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/StridedSlice.js\nfunction stridedSlice5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs;\n const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n let result;\n if (isIdentity) {\n result = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } });\n } else if (sliceDim0 || isSimpleSlice) {\n util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`);\n const size = slice_util_exports.computeOutShape($begin, $end, $strides);\n const sliced = slice5({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } });\n result = reshape6({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeData(sliced.dataId);\n } else {\n const shouldExecuteOnCPU = backend2.shouldExecuteOnCPU([x]);\n if (shouldExecuteOnCPU) {\n const values = backend2.readSync(x.dataId);\n const xBuf = buffer(x.shape, x.dtype, values);\n const resultValues = stridedSliceImplCPU2(finalShapeSparse, xBuf, $strides, $begin);\n result = backend2.makeTensorInfo(finalShape, x.dtype, resultValues.values);\n } else {\n const program = new StridedSliceProgram2(finalShapeSparse);\n const uniformData = [{ type: \"int32\", data: $begin }, { type: \"int32\", data: $strides }];\n const resultValues = backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n result = reshape6({ inputs: { x: resultValues }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeData(resultValues.dataId);\n }\n }\n return result;\n}\nvar stridedSliceConfig4 = {\n kernelName: StridedSlice,\n backendName: \"webgpu\",\n kernelFunc: stridedSlice5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/StringNGrams.js\nfunction stringNGrams5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs;\n const { data, dataSplits } = inputs;\n const $data = backend2.readSync(data.dataId);\n const $dataSplits = backend2.readSync(dataSplits.dataId);\n const [nGrams, nGramsSplits] = stringNGramsImplCPU2($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences);\n return [\n backend2.makeTensorInfo([nGrams.length], \"string\", nGrams),\n backend2.makeTensorInfo(dataSplits.shape, \"int32\", nGramsSplits)\n ];\n}\nvar stringNGramsConfig4 = {\n kernelName: StringNGrams,\n backendName: \"webgpu\",\n kernelFunc: stringNGrams5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Tanh.js\nvar tanh5 = unaryKernelFunc3({ opType: UnaryOpType.TANH });\nvar tanhConfig4 = {\n kernelName: Tanh,\n backendName: \"webgpu\",\n kernelFunc: tanh5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/top_k_webgpu.js\nvar SwapProgram2 = class {\n constructor(shape) {\n this.variableNames = [\"x\", \"indices\"];\n this.workGroupSize = [256, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.uniforms = `inputSize : i32, firstPass : i32, negativeInf : f32,\n dir : i32, inc : i32,`;\n this.shaderKey = \"swap\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let outC = getCoordsFromIndex(index);\n let batch = outC[0];\n let elemIdx = outC[1];\n // We compare elements pair-wise within a group of size 2 * inc.\n // The comparing rule for each group alternates between ascending\n // and descending. Within each group, we compare each pair at\n // positions i and i+inc. To decide whether an element at position i\n // is x0 or x1, we mod it by 2 * inc, if the result is smaller than\n // inc, it is in the first half of the group, we denote it as x0,\n // otherwise we denote it as x1.\n // For example, as shown in the Bitonic top K paper referenced\n // above, Figure5(a) shows that element[1] is in the second half of\n // the group when group size is 2, but it is in the first half of\n // the group when group size is 4.\n let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;\n var i = 0;\n if (isFirstInPair) {\n i = elemIdx;\n } else {\n i = elemIdx - uniforms.inc;\n }\n\n var i0 = 0;\n if (uniforms.firstPass == 1) {\n i0 = i;\n } else {\n i0 = i32(getIndices(batch, i));\n }\n\n var i1 = 0;\n if (uniforms.firstPass == 1) {\n i1 = i + uniforms.inc;\n } else {\n i1 = i32(getIndices(batch, i + uniforms.inc));\n }\n\n var x0 = f32(0.0);\n var x1 = f32(0.0);\n if (i0 < uniforms.inputSize) {\n x0 = getX(batch, i0);\n } else {\n x0 = uniforms.negativeInf;\n }\n if (i1 < uniforms.inputSize) {\n x1 = getX(batch, i1);\n } else {\n x1 = uniforms.negativeInf;\n }\n\n let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;\n let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);\n if (reverse == isGreater) {\n // Elements in opposite order of direction\n let iTemp = i0;\n i0 = i1;\n i1 = iTemp;\n }\n if (isFirstInPair) {\n setOutputAtIndex(index, f32(i0));\n } else {\n setOutputAtIndex(index, f32(i1));\n }\n }\n }\n `;\n return userCode;\n }\n};\nvar MergeProgram2 = class {\n constructor(shape) {\n this.variableNames = [\"x\", \"indices\"];\n this.workGroupSize = [256, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.uniforms = `inputSize : i32, firstPass : i32, k : i32,`;\n this.shaderKey = \"merge\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let outC = getCoordsFromIndex(index);\n let batch = outC[0];\n let elemIdx = outC[1];\n // The output size is half of the previous size.\n // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _\n // (k=4), we only need to output the indices at positions |, the\n // indices at positions _ can be thrown away, see Figure5(b) After\n // Phase 2 (Merge phase) in the Bitonic Top K paper referenced\n // above.\n // For example, the paper shows we only need to output the orange\n // bars. The output sequence should look like this | | | | | | | |.\n // Because the sequence is halved, to map the output index back to\n // the previous sequence to find the corresponding value, we need\n // to double the index. When we double the index, we basically\n // interpolate a position, so 2i looks like\n // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k\n // position of each 2k positions by - elemIdx % k. E.g. for output\n // at index 4,5,6,7, we want to get the corresponding element at\n // original index 8,9,10,11, for output at index 8,9,10,11,\n // we want to get the corresponding element at original index\n // 16,17,18,19, so on and so forth.\n\n var i = 0;\n if (elemIdx < uniforms.k) {\n i = elemIdx;\n } else {\n i = elemIdx * 2 - elemIdx % uniforms.k;\n }\n var i0 = 0;\n if (uniforms.firstPass == 1) {\n i0 = i;\n } else {\n i0 = i32(getIndices(batch, i));\n }\n var i1 = 0;\n if (uniforms.firstPass == 1) {\n i1 = i + uniforms.k;\n } else {\n i1 = i32(getIndices(batch, i + uniforms.k));\n }\n\n let x0 = getX(batch, i0);\n var x1 = f32(0.0);\n if (i1 < uniforms.inputSize) {\n x1 = getX(batch, i1);\n } else {\n x1 = x0;\n }\n\n if (x0 >= x1) {\n setOutputAtIndex(index, f32(i0));\n } else {\n setOutputAtIndex(index, f32(i1));\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/TopK.js\nfunction disposeIntermediateTensorInfoOrNull2(backend2, tensorInfo) {\n if (tensorInfo !== null) {\n backend2.disposeData(tensorInfo.dataId);\n }\n}\nfunction roundUpToPow22(num) {\n let pow22 = 1;\n while (pow22 < num) {\n pow22 *= 2;\n }\n return pow22;\n}\nfunction topK3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { k, sorted } = attrs;\n const xShape = x.shape;\n const lastDim = xShape[xShape.length - 1];\n if (backend2.shouldExecuteOnCPU([x])) {\n const xVals = backend2.readSync(x.dataId);\n const [allTopKVals, allTopKIndices] = topKImplCPU2(xVals, xShape, x.dtype, k, sorted);\n return [\n backend2.makeTensorInfo(allTopKVals.shape, allTopKVals.dtype, allTopKVals.values),\n backend2.makeTensorInfo(allTopKIndices.shape, allTopKIndices.dtype, allTopKIndices.values)\n ];\n }\n if (k === 0) {\n xShape[xShape.length - 1] = 0;\n return [\n backend2.makeTensorInfo(xShape, x.dtype, []),\n backend2.makeTensorInfo(xShape, \"int32\", [])\n ];\n }\n if (lastDim === 1) {\n return [\n x,\n fill5({ attrs: { shape: xShape, dtype: \"int32\", value: 0 }, backend: backend2 })\n ];\n }\n const xSize = util_exports.sizeFromShape(xShape);\n const batch = xSize / lastDim;\n const x2D = reshape6({ inputs: { x }, attrs: { shape: [batch, lastDim] }, backend: backend2 });\n const kPow2 = roundUpToPow22(k);\n const lastDimPow2 = roundUpToPow22(lastDim);\n let indices = null;\n const getInputs = () => indices === null ? [x2D, x2D] : [x2D, indices];\n const runSwap = (dir, inc, shape) => {\n const inputs2 = getInputs();\n const program = new SwapProgram2(shape);\n const firstPass = indices === null ? 1 : 0;\n const uniformDataSwap = [\n { type: \"int32\", data: [lastDim] },\n { type: \"int32\", data: [firstPass] },\n { type: \"float32\", data: [Number.NEGATIVE_INFINITY] },\n { type: \"int32\", data: [dir] },\n { type: \"int32\", data: [inc] }\n ];\n const prevIndices2 = indices;\n indices = backend2.runWebGPUProgram(program, inputs2, \"int32\", uniformDataSwap);\n disposeIntermediateTensorInfoOrNull2(backend2, prevIndices2);\n };\n for (let len = 1; len < kPow2; len *= 2) {\n const dir = len * 2;\n for (let inc = len; inc >= 1; inc /= 2) {\n runSwap(dir, inc, [batch, lastDimPow2]);\n }\n }\n for (let indicesSize = lastDimPow2; indicesSize > kPow2; indicesSize /= 2) {\n const inputs2 = getInputs();\n const mergeProgram = new MergeProgram2([batch, indicesSize / 2]);\n const firstPass = indices === null ? 1 : 0;\n const uniformDataMerge = [\n { type: \"int32\", data: [lastDim] },\n { type: \"int32\", data: [firstPass] },\n { type: \"int32\", data: [kPow2] }\n ];\n const prevIndices2 = indices;\n indices = backend2.runWebGPUProgram(mergeProgram, inputs2, \"int32\", uniformDataMerge);\n disposeIntermediateTensorInfoOrNull2(backend2, prevIndices2);\n const len = kPow2 / 2;\n const dir = len * 2;\n for (let inc = len; inc >= 1; inc /= 2) {\n runSwap(dir, inc, indices.shape);\n }\n }\n let prevIndices = indices;\n indices = slice5({ inputs: { x: indices }, backend: backend2, attrs: { begin: 0, size: [batch, k] } });\n disposeIntermediateTensorInfoOrNull2(backend2, prevIndices);\n let values = gatherV24({ inputs: { x: x2D, indices }, backend: backend2, attrs: { axis: 1, batchDims: 1 } });\n disposeIntermediateTensorInfoOrNull2(backend2, x2D);\n const newShape = xShape.slice(0, -1);\n newShape.push(k);\n prevIndices = indices;\n indices = reshape6({ inputs: { x: indices }, attrs: { shape: newShape }, backend: backend2 });\n disposeIntermediateTensorInfoOrNull2(backend2, prevIndices);\n const prevValues = values;\n values = reshape6({ inputs: { x: values }, attrs: { shape: newShape }, backend: backend2 });\n disposeIntermediateTensorInfoOrNull2(backend2, prevValues);\n return [values, indices];\n}\nvar topKConfig4 = {\n kernelName: TopK,\n backendName: \"webgpu\",\n kernelFunc: topK3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transform_webgpu.js\nvar TransformProgram2 = class {\n constructor(outShape) {\n this.variableNames = [\"Image\", \"Transforms\"];\n this.uniforms = \"interpolationModeId : i32, fillModeId : i32, fillValue : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = outShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"transform\";\n }\n getUserCode() {\n const userCode = `\n fn mapCoord(outCoord : f32, len : f32) -> f32{\n var inCoord = outCoord;\n if(uniforms.fillModeId == 2) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n let sz2 = 2.0 * len;\n if (inCoord < sz2) {\n inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +\n inCoord;\n }\n if (inCoord < -len) {\n inCoord = inCoord + sz2;\n } else {\n inCoord = -inCoord - 1.0;\n }\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n let sz2 = 2.0 * len;\n inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));\n if (inCoord >= len) {\n inCoord = sz2 - inCoord - 1.0;\n }\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (uniforms.fillModeId == 3) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n let sz = len - 1.0;\n inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n let sz = len - 1.0;\n inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (uniforms.fillModeId == 4) {\n return clamp(outCoord, 0.0, len - 1.0);\n }\n return outCoord;\n }\n fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,\n channel : i32) -> f32 {\n var outputValue : f32;\n if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {\n outputValue = getImage(batch, coordY, coordX, channel);\n } else {\n outputValue = uniforms.fillValue;\n }\n return outputValue;\n }\n\n ${getMainHeaderAndGlobalIndexString()}\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n var outputValue : f32;\n let batch = coords[0];\n let x = coords[2];\n let y = coords[1];\n let channel = coords[3];\n let xf = f32(x);\n let yf = f32(y);\n let a1 = getTransforms(batch, 0);\n let a2 = getTransforms(batch, 1);\n let a3 = getTransforms(batch, 2);\n let b1 = getTransforms(batch, 3);\n let b2 = getTransforms(batch, 4);\n let b3 = getTransforms(batch, 5);\n let c1 = getTransforms(batch, 6);\n let c2 = getTransforms(batch, 7);\n let projection = c1 * xf + c2 * yf + 1.0;\n if (projection == 0.0) {\n outputValue = uniforms.fillValue;\n } else {\n let inX = (a1 * xf + a2 * yf + a3) / projection;\n let inY = (b1 * xf + b2 * yf + b3) / projection;\n let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));\n let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));\n\n if (uniforms.interpolationModeId == 1) {\n let coordY = i32(round(mapY));\n let coordX = i32(round(mapX));\n outputValue = readWithFillValue(batch, coordY, coordX,\n channel);\n } else {\n let yFloor = floor(mapY);\n let xFloor = floor(mapX);\n let yCeil = yFloor + 1.0;\n let xCeil = xFloor + 1.0;\n let valueYFloor = (xCeil - mapX) *\n readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);\n let valueYCeil = (xCeil - mapX) *\n readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);\n outputValue = (yCeil - mapY) * valueYFloor +\n (mapY - yFloor) * valueYCeil;\n }\n }\n setOutputAtIndex(index, outputValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Transform.js\nfunction transform5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, transforms } = inputs;\n const { interpolation, fillMode, fillValue, outputShape } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth];\n const outShape = [\n batch,\n outHeight,\n outWidth,\n numChannels\n ];\n const program = new TransformProgram2(outShape);\n const interpolationModeId = interpolation === \"nearest\" ? 1 : 2;\n let fillModeId;\n switch (fillMode) {\n case \"constant\":\n fillModeId = 1;\n break;\n case \"reflect\":\n fillModeId = 2;\n break;\n case \"wrap\":\n fillModeId = 3;\n break;\n case \"nearest\":\n fillModeId = 4;\n break;\n default:\n fillModeId = 1;\n break;\n }\n const uniformData = [\n { type: \"int32\", data: [interpolationModeId] },\n { type: \"int32\", data: [fillModeId] },\n { type: \"float32\", data: [fillValue] }\n ];\n return backend2.runWebGPUProgram(program, [image2, transforms], \"float32\", uniformData);\n}\nvar transformConfig4 = {\n kernelName: Transform,\n backendName: \"webgpu\",\n kernelFunc: transform5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Unpack.js\nfunction unpack4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { value } = inputs;\n let { axis } = attrs;\n if (axis < 0) {\n axis += value.shape.length;\n }\n const x = value;\n const xRank = x.shape.length;\n const num = value.shape[axis];\n const outShape = new Array(xRank - 1);\n let outIndex = 0;\n for (let i2 = 0; i2 < xRank; i2++) {\n if (i2 !== axis) {\n outShape[outIndex++] = x.shape[i2];\n }\n }\n const toDispose = [];\n const begin = new Array(xRank).fill(0);\n const size = x.shape.slice();\n size[axis] = 1;\n const res = new Array(num);\n for (let i2 = 0; i2 < res.length; i2++) {\n begin[axis] = i2;\n const sliced = slice5({ inputs: { x }, backend: backend2, attrs: { begin, size } });\n const reshaped = reshape6({ inputs: { x: sliced }, backend: backend2, attrs: { shape: outShape } });\n res[i2] = reshaped;\n toDispose.push(sliced);\n }\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return res;\n}\nvar unpackConfig4 = {\n kernelName: Unpack,\n backendName: \"webgpu\",\n kernelFunc: unpack4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/register_all_kernels.js\nvar kernelConfigs4 = [\n _fusedMatMulConfig4,\n absConfig4,\n addConfig4,\n addNConfig4,\n argMaxConfig4,\n argMinConfig3,\n avgPoolConfig4,\n batchMatMulConfig4,\n batchToSpaceNDConfig4,\n castConfig4,\n ceilConfig4,\n clipByValueConfig4,\n complexConfig3,\n concatConfig4,\n conv2DConfig4,\n conv2DBackpropInputConfig4,\n cosConfig4,\n coshConfig4,\n cropAndResizeConfig4,\n cumprodConfig4,\n cumsumConfig4,\n depthToSpaceConfig4,\n depthwiseConv2dNativeConfig4,\n einsumConfig3,\n eluConfig4,\n equalConfig4,\n expConfig4,\n expandDimsConfig4,\n expm1Config3,\n fillConfig4,\n flipLeftRightConfig4,\n fromPixelsConfig2,\n floorConfig4,\n floorDivConfig4,\n fusedBatchNormConfig2,\n fusedConv2DConfig4,\n fusedDepthwiseConv2DConfig4,\n gatherNdConfig4,\n gatherV2Config4,\n greaterConfig4,\n greaterEqualConfig4,\n identityConfig4,\n imagConfig3,\n leakyReluConfig4,\n lessConfig4,\n lessEqualConfig4,\n logConfig4,\n logicalAndConfig4,\n logicalNotConfig4,\n maxConfig4,\n maximumConfig4,\n maxPoolConfig4,\n meanConfig4,\n minConfig4,\n minimumConfig4,\n mirrorPadConfig4,\n multiplyConfig4,\n negConfig4,\n nonMaxSuppressionV3Config4,\n nonMaxSuppressionV5Config4,\n notEqualConfig4,\n onesLikeConfig4,\n packConfig4,\n padV2Config4,\n powConfig4,\n preluConfig4,\n prodConfig4,\n rangeConfig4,\n realConfig3,\n realDivConfig4,\n reluConfig4,\n relu6Config4,\n reshapeConfig4,\n resizeBilinearConfig4,\n resizeNearestNeighborConfig4,\n rotateWithOffsetConfig4,\n rsqrtConfig4,\n scatterNdConfig4,\n selectConfig4,\n sigmoidConfig4,\n sinConfig4,\n sinhConfig3,\n sliceConfig4,\n stridedSliceConfig4,\n stringNGramsConfig4,\n softmaxConfig4,\n spaceToBatchNDConfig4,\n sparseToDenseConfig3,\n splitVConfig4,\n sqrtConfig4,\n squareConfig4,\n squaredDifferenceConfig4,\n subConfig4,\n sumConfig4,\n tanhConfig4,\n tileConfig4,\n topKConfig4,\n transformConfig4,\n transposeConfig4,\n unpackConfig4,\n zerosLikeConfig4\n];\nfor (const kernelConfig of kernelConfigs4) {\n registerKernel(kernelConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/buffer_manager.js\nvar BufferManager = class {\n constructor(device) {\n this.device = device;\n this.numUsedBuffers = 0;\n this.numFreeBuffers = 0;\n this.freeBuffers = /* @__PURE__ */ new Map();\n this.usedBuffers = /* @__PURE__ */ new Map();\n this.numBytesUsed = 0;\n this.numBytesAllocated = 0;\n }\n acquireUploadBuffer(size, usage) {\n return this.acquireBuffer(size, usage, true);\n }\n acquireBuffer(size, usage, mappedAtCreation = false) {\n const key = getBufferKey(size, usage);\n if (!this.freeBuffers.has(key)) {\n this.freeBuffers.set(key, []);\n }\n if (!this.usedBuffers.has(key)) {\n this.usedBuffers.set(key, []);\n }\n this.numBytesUsed += size;\n this.numUsedBuffers++;\n if (this.freeBuffers.get(key).length > 0) {\n this.numFreeBuffers--;\n const newBuffer2 = this.freeBuffers.get(key).shift();\n this.usedBuffers.get(key).push(newBuffer2);\n return newBuffer2;\n }\n this.numBytesAllocated += size;\n const newBuffer = this.device.createBuffer({ size, usage, mappedAtCreation });\n this.usedBuffers.get(key).push(newBuffer);\n return newBuffer;\n }\n releaseBuffer(buffer2, size, usage) {\n if (this.freeBuffers.size === 0) {\n return;\n }\n const key = getBufferKey(size, usage);\n if (!this.freeBuffers.has(key)) {\n this.freeBuffers.set(key, []);\n }\n this.freeBuffers.get(key).push(buffer2);\n this.numFreeBuffers++;\n this.numUsedBuffers--;\n const bufferList = this.usedBuffers.get(key);\n const bufferIndex = bufferList.indexOf(buffer2);\n if (bufferIndex < 0) {\n throw new Error(\"Cannot release a buffer that was never provided by this buffer manager\");\n }\n bufferList.splice(bufferIndex, 1);\n this.numBytesUsed -= size;\n }\n releaseUploadBuffer(buffer2, size, usage) {\n buffer2.mapAsync(GPUMapMode.WRITE).then(() => {\n this.releaseBuffer(buffer2, size, usage);\n }, (err) => {\n });\n }\n getNumUsedBuffers() {\n return this.numUsedBuffers;\n }\n getNumFreeBuffers() {\n return this.numFreeBuffers;\n }\n dispose() {\n this.freeBuffers.forEach((buffers, key) => {\n buffers.forEach((buffer2) => {\n buffer2.destroy();\n });\n });\n this.usedBuffers.forEach((buffers, key) => {\n buffers.forEach((buffer2) => {\n buffer2.destroy();\n });\n });\n this.freeBuffers = /* @__PURE__ */ new Map();\n this.usedBuffers = /* @__PURE__ */ new Map();\n this.numUsedBuffers = 0;\n this.numFreeBuffers = 0;\n this.numBytesUsed = 0;\n this.numBytesAllocated = 0;\n }\n};\nfunction getBufferKey(size, usage) {\n return `${size}_${usage}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/texture_manager.js\nvar TextureManager2 = class {\n constructor(device) {\n this.device = device;\n this.numUsedTextures = 0;\n this.numFreeTextures = 0;\n this.freeTextures = /* @__PURE__ */ new Map();\n this.usedTextures = /* @__PURE__ */ new Map();\n this.numBytesUsed = 0;\n this.numBytesAllocated = 0;\n }\n acquireTexture(width, height, format, usage) {\n const bytesPerElement2 = getBytesPerElement(format);\n const byteSize = width * height * bytesPerElement2;\n const key = getTextureKey(width, height, format, usage);\n if (!this.freeTextures.has(key)) {\n this.freeTextures.set(key, []);\n }\n if (!this.usedTextures.has(key)) {\n this.usedTextures.set(key, []);\n }\n this.numBytesUsed += byteSize;\n this.numUsedTextures++;\n if (this.freeTextures.get(key).length > 0) {\n this.numFreeTextures--;\n const newTexture2 = this.freeTextures.get(key).shift();\n this.usedTextures.get(key).push(newTexture2);\n return newTexture2;\n }\n this.numBytesAllocated += byteSize;\n const newTexture = this.device.createTexture({\n size: [width, height],\n format,\n usage\n });\n this.usedTextures.get(key).push(newTexture);\n return newTexture;\n }\n releaseTexture(texture, width, height, format, usage) {\n if (this.freeTextures.size === 0) {\n return;\n }\n const key = getTextureKey(width, height, format, usage);\n if (!this.freeTextures.has(key)) {\n this.freeTextures.set(key, []);\n }\n this.freeTextures.get(key).push(texture);\n this.numFreeTextures++;\n this.numUsedTextures--;\n const textureList = this.usedTextures.get(key);\n const textureIndex = textureList.indexOf(texture);\n if (textureIndex < 0) {\n throw new Error(\"Cannot release a texture that was never provided by this texture manager\");\n }\n textureList.splice(textureIndex, 1);\n const bytesPerElement2 = getBytesPerElement(format);\n const byteSize = width * height * bytesPerElement2;\n this.numBytesUsed -= byteSize;\n }\n getNumUsedTextures() {\n return this.numUsedTextures;\n }\n getNumFreeTextures() {\n return this.numFreeTextures;\n }\n dispose() {\n this.freeTextures.forEach((textures, key) => {\n textures.forEach((texture) => {\n texture.destroy();\n });\n });\n this.usedTextures.forEach((textures, key) => {\n textures.forEach((texture) => {\n texture.destroy();\n });\n });\n this.freeTextures = /* @__PURE__ */ new Map();\n this.usedTextures = /* @__PURE__ */ new Map();\n this.numUsedTextures = 0;\n this.numFreeTextures = 0;\n this.numBytesUsed = 0;\n this.numBytesAllocated = 0;\n }\n};\nfunction getTextureKey(width, height, format, usage) {\n return `${width}_${height}_${format}_${usage}`;\n}\nfunction getBytesPerElement(format) {\n if (format === \"rgba8unorm\") {\n return 16;\n } else {\n throw new Error(`${format} is not supported!`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/backend_webgpu.js\nvar CPU_HANDOFF_SIZE_THRESHOLD2 = env().getNumber(\"WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD\");\nvar reshapeDispatch = (device, program) => {\n const MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE = device.limits.maxComputeWorkgroupsPerDimension;\n const layout = program[\"dispatchLayout\"];\n const dispatch = program[\"dispatch\"];\n if (dispatch.every((d) => d <= MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE)) {\n return dispatch;\n }\n util_exports.assert(dispatch[0] > MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE && layout.y === void 0 && layout.z === void 0, () => \"Dispatch size exceeds WebGPU limits in Y or Z dimension.\");\n let dispatchAverage = Math.ceil(Math.sqrt(dispatch[0]));\n if (dispatchAverage > MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE) {\n dispatchAverage = Math.ceil(Math.cbrt(dispatch[0]));\n util_exports.assert(dispatchAverage <= MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE, () => \"Total dispatch size exceeds WebGPU maximum.\");\n return [dispatchAverage, dispatchAverage, dispatchAverage];\n } else {\n return [dispatchAverage, dispatchAverage, 1];\n }\n};\nvar WebGPUBackend = class extends KernelBackend {\n constructor(device, supportTimeQuery = false) {\n super();\n this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet();\n this.dispatchNumberInEncoder = 0;\n this.disposed = false;\n this.downloadWaitMs = 0;\n this.tensorDataPendingDisposal = [];\n this.stagingPendingDisposal = [];\n this.uniformPendingDisposal = [];\n this.uploadWaitMs = 0;\n if (!isWebGPUSupported()) {\n throw new Error(\"WebGPU is not supported on this device\");\n }\n this.pipelineCache = {};\n this.device = device;\n this.queue = device.queue;\n this.currentCommandEncoder = null;\n this.currentComputePass = null;\n this.supportTimeQuery = supportTimeQuery;\n this.bufferManager = new BufferManager(this.device);\n this.textureManager = new TextureManager2(this.device);\n this.tensorMap = new DataStorage(this, engine());\n if (this.supportTimeQuery) {\n this.querySet = this.device.createQuerySet({\n type: \"timestamp\",\n count: 2\n });\n }\n if (env().getBool(\"WEBGPU_USE_PROFILE_TOOL\")) {\n this.dummyCanvas = document.createElement(\"canvas\");\n this.dummyCanvas.width = 1;\n this.dummyCanvas.height = 1;\n this.dummyContext = this.dummyCanvas.getContext(\"webgpu\");\n this.dummyContext.configure({\n device,\n format: \"bgra8unorm\"\n });\n document.body.appendChild(this.dummyCanvas);\n }\n }\n nextDataId() {\n return WebGPUBackend.nextDataId++;\n }\n floatPrecision() {\n return 32;\n }\n defaultGpuBufferUsage() {\n return GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST;\n }\n disposeData(dataId, force = false) {\n if (this.tensorDataPendingDisposal.indexOf(dataId) >= 0) {\n return false;\n }\n if (!this.tensorMap.has(dataId)) {\n return true;\n }\n const tensorData = this.tensorMap.get(dataId);\n this.decRef(dataId);\n if (!force && tensorData.refCount > 0) {\n return false;\n }\n if (this.commandQueueOwnedIds.has(dataId)) {\n this.tensorDataPendingDisposal.push(dataId);\n return false;\n }\n const { complexTensorInfos } = this.tensorMap.get(dataId);\n if (complexTensorInfos != null) {\n this.disposeData(complexTensorInfos.real.dataId, force);\n this.disposeData(complexTensorInfos.imag.dataId, force);\n }\n this.releaseResource(dataId);\n this.tensorMap.delete(dataId);\n return true;\n }\n memory() {\n return {\n numBytesInGPU: this.bufferManager.numBytesUsed,\n numBytesAllocatedInGPU: this.bufferManager.numBytesAllocated,\n unreliable: false\n };\n }\n releaseResource(dataId) {\n const tensorData = this.tensorMap.get(dataId);\n if (!tensorData || !tensorData.resourceInfo) {\n return;\n }\n if (\"texture\" in tensorData.resourceInfo) {\n const textureInfo = tensorData.resourceInfo;\n if (textureInfo.texture instanceof GPUTexture) {\n this.textureManager.releaseTexture(textureInfo.texture, textureInfo.width, textureInfo.height, textureInfo.format, textureInfo.usage);\n }\n textureInfo.texture = null;\n } else {\n const bufferInfo = tensorData.resourceInfo;\n this.bufferManager.releaseBuffer(bufferInfo.buffer, bufferInfo.size, bufferInfo.usage);\n bufferInfo.buffer = null;\n }\n tensorData.resourceInfo = null;\n }\n refCount(dataId) {\n if (this.tensorMap.has(dataId)) {\n const tensorData = this.tensorMap.get(dataId);\n return tensorData.refCount;\n }\n return 0;\n }\n incRef(dataId) {\n const tensorData = this.tensorMap.get(dataId);\n tensorData.refCount++;\n }\n decRef(dataId) {\n if (this.tensorMap.has(dataId)) {\n const tensorData = this.tensorMap.get(dataId);\n tensorData.refCount--;\n }\n }\n write(values, shape, dtype) {\n if (dtype === \"complex64\" && values != null) {\n throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`);\n }\n const dataId = { id: this.nextDataId() };\n this.tensorMap.set(dataId, { dtype, shape, values, refCount: 1 });\n return dataId;\n }\n move(dataId, values, shape, dtype, refCount) {\n if (dtype === \"complex64\") {\n throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`);\n }\n this.tensorMap.set(dataId, { dtype, shape, values, refCount });\n }\n submitQueue() {\n this.ensureComputePassEnded();\n this.queue.submit([this.currentCommandEncoder.finish()]);\n this.currentCommandEncoder = null;\n this.dispatchNumberInEncoder = 0;\n this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet();\n this.tensorDataPendingDisposal.forEach((d) => {\n this.releaseResource(d);\n this.tensorMap.delete(d);\n });\n this.uniformPendingDisposal.forEach((d) => this.bufferManager.releaseBuffer(d.buffer, d.size, d.usage));\n this.stagingPendingDisposal.forEach((d) => this.bufferManager.releaseUploadBuffer(d.buffer, d.size, d.usage));\n this.tensorDataPendingDisposal = [];\n this.uniformPendingDisposal = [];\n this.stagingPendingDisposal = [];\n }\n ensureCommandEncoderReady() {\n if (!this.currentCommandEncoder) {\n this.currentCommandEncoder = this.device.createCommandEncoder();\n }\n }\n ensureComputePassEnded() {\n if (this.currentComputePass) {\n this.currentComputePass.end();\n this.currentComputePass = null;\n }\n }\n getComputePass() {\n if (!this.currentComputePass) {\n this.currentComputePass = this.currentCommandEncoder.beginComputePass();\n }\n return this.currentComputePass;\n }\n async getBufferData(buffer2, size) {\n const staging = this.bufferManager.acquireBuffer(size, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ);\n this.ensureCommandEncoderReady();\n this.ensureComputePassEnded();\n this.currentCommandEncoder.copyBufferToBuffer(buffer2, 0, staging, 0, size);\n this.submitQueue();\n await staging.mapAsync(GPUMapMode.READ);\n const values = staging.getMappedRange().slice(0);\n staging.unmap();\n if (staging != null) {\n this.bufferManager.releaseBuffer(staging, size, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ);\n }\n if (env().getBool(\"WEBGPU_USE_PROFILE_TOOL\")) {\n util_exports.assert(this.dummyContext !== void 0, () => `Fail to get context for profiling tool`);\n this.dummyContext.getCurrentTexture();\n }\n return values;\n }\n convertAndCacheOnCPU(dataId, data) {\n const tensorData = this.tensorMap.get(dataId);\n this.releaseResource(dataId);\n tensorData.values = data;\n return tensorData.values;\n }\n readSync(dataId) {\n const tensorData = this.tensorMap.get(dataId);\n const { values } = tensorData;\n if (values == null) {\n throw new Error(\"WebGPU readSync is only available for CPU-resident tensors.\");\n }\n return values;\n }\n async read(dataId) {\n if (!this.tensorMap.has(dataId)) {\n throw new Error(`Tensor ${dataId} was not registered!`);\n }\n const tensorData = this.tensorMap.get(dataId);\n const { values } = tensorData;\n if (values != null) {\n return this.convertAndCacheOnCPU(dataId, values);\n }\n let vals;\n if (tensorData.dtype === \"complex64\") {\n const ps = await Promise.all([\n this.read(tensorData.complexTensorInfos.real.dataId),\n this.read(tensorData.complexTensorInfos.imag.dataId)\n ]);\n const realValues = ps[0];\n const imagValues = ps[1];\n vals = backend_util_exports.mergeRealAndImagArrays(realValues, imagValues);\n } else {\n const bufferInfo = tensorData.resourceInfo;\n const data = await this.getBufferData(bufferInfo.buffer, bufferInfo.size);\n vals = ArrayBufferToTypedArray(data, tensorData.dtype);\n }\n this.convertAndCacheOnCPU(dataId, vals);\n return vals;\n }\n readToGPU(dataId) {\n const srcTensorData = this.tensorMap.get(dataId);\n const { values, dtype, shape, resourceInfo } = srcTensorData;\n if (dtype === \"complex64\") {\n throw new Error(\"Does not support reading buffer for complex64 dtype.\");\n }\n if (resourceInfo == null) {\n if (values != null) {\n throw new Error(\"Data is not on GPU but on CPU.\");\n } else {\n throw new Error(\"There is no data on GPU or CPU.\");\n }\n }\n const size = resourceInfo.size;\n const buffer2 = this.bufferManager.acquireBuffer(size, resourceInfo.usage);\n this.ensureCommandEncoderReady();\n this.ensureComputePassEnded();\n this.currentCommandEncoder.copyBufferToBuffer(resourceInfo.buffer, 0, buffer2, 0, size);\n this.submitQueue();\n const tensorInfo = this.makeTensorInfo(shape, dtype);\n const tensorRef = engine().makeTensorFromTensorInfo(tensorInfo);\n const tensorData = this.tensorMap.get(tensorInfo.dataId);\n tensorData.resourceInfo = { size, usage: this.defaultGpuBufferUsage(), buffer: buffer2 };\n return { tensorRef, buffer: buffer2, bufSize: size };\n }\n bufferSync(t2) {\n const data = this.readSync(t2.dataId);\n if (t2.dtype === \"string\") {\n try {\n const strings = data.map((d) => util_exports.decodeString(d));\n return buffer(t2.shape, t2.dtype, strings);\n } catch (_a) {\n throw new Error(\"Failed to decode encoded string bytes into utf-8\");\n }\n }\n return buffer(t2.shape, t2.dtype, data);\n }\n async time(f) {\n const oldActiveTimers = this.activeTimers;\n const newActiveTimers = [];\n let outerMostTime = false;\n if (this.programTimersStack == null) {\n this.programTimersStack = newActiveTimers;\n outerMostTime = true;\n } else {\n this.activeTimers.push(newActiveTimers);\n }\n this.activeTimers = newActiveTimers;\n f();\n const flattenedActiveTimerQueries = util_exports.flatten(this.activeTimers.map((d) => d.query)).filter((d) => d != null);\n const flattenedActiveTimerNames = util_exports.flatten(this.activeTimers.map((d) => d.name)).filter((d) => d != null);\n this.activeTimers = oldActiveTimers;\n if (outerMostTime) {\n this.programTimersStack = null;\n }\n const res = {\n uploadWaitMs: this.uploadWaitMs,\n downloadWaitMs: this.downloadWaitMs,\n kernelMs: null,\n wallMs: null\n };\n const kernelMs = await Promise.all(flattenedActiveTimerQueries);\n res[\"kernelMs\"] = util_exports.sum(kernelMs);\n res[\"getExtraProfileInfo\"] = () => kernelMs.map((d, i2) => ({ name: flattenedActiveTimerNames[i2], ms: d })).map((d) => `${d.name}: ${d.ms}`).join(\", \");\n this.uploadWaitMs = 0;\n this.downloadWaitMs = 0;\n return res;\n }\n makeTensorInfo(shape, dtype, values) {\n if (dtype === \"string\" && values != null && values.length > 0 && util_exports.isString(values[0])) {\n values = values.map((d) => util_exports.encodeString(d));\n }\n const dataId = this.write(values, shape, dtype);\n return { dataId, shape, dtype };\n }\n tensorToBinding(tensor2) {\n if (!tensor2) {\n return null;\n }\n const tensorData = this.tensorMap.get(tensor2.dataId);\n if (\"texture\" in tensorData.resourceInfo) {\n const info = tensorData.resourceInfo;\n if (info.texture instanceof GPUExternalTexture) {\n return info.texture;\n } else {\n return info.texture.createView();\n }\n }\n const bufferInfo = tensorData.resourceInfo;\n return { offset: 0, size: bufferInfo.size, buffer: bufferInfo.buffer };\n }\n async getQueryTime(query) {\n if (this.supportTimeQuery) {\n return this.getTimeFromQuerySet(query);\n } else {\n return 0;\n }\n }\n uploadToGPU(dataId) {\n const tensorData = this.tensorMap.get(dataId);\n if (tensorData.resourceInfo) {\n return;\n }\n const size = GPUBytesPerElement(tensorData.dtype) * util_exports.sizeFromShape(tensorData.shape);\n const buffer2 = this.bufferManager.acquireBuffer(size, this.defaultGpuBufferUsage());\n tensorData.resourceInfo = { size, usage: this.defaultGpuBufferUsage(), buffer: buffer2 };\n if (tensorData.values) {\n const stagingBuffer = this.bufferManager.acquireUploadBuffer(size, GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC);\n const arrayBuffer = stagingBuffer.getMappedRange();\n if (tensorData.dtype === \"int32\" || tensorData.dtype === \"bool\") {\n new Int32Array(arrayBuffer).set(tensorData.values);\n } else {\n new Float32Array(arrayBuffer).set(tensorData.values);\n }\n stagingBuffer.unmap();\n this.ensureCommandEncoderReady();\n this.ensureComputePassEnded();\n this.currentCommandEncoder.copyBufferToBuffer(stagingBuffer, 0, buffer2, 0, size);\n const stagingInfo = {\n size,\n usage: GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC,\n buffer: stagingBuffer\n };\n this.stagingPendingDisposal.push(stagingInfo);\n }\n }\n makeUniforms(programUniform) {\n let currentOffset = 0;\n let preLength = 0;\n const offsets = [];\n programUniform.forEach((d) => {\n if (d.data.length === 0) {\n d.data = [1];\n }\n let baseAlignment;\n switch (d.data.length) {\n case 1:\n baseAlignment = 4;\n break;\n case 2:\n baseAlignment = 8;\n break;\n case 3:\n baseAlignment = 16;\n break;\n case 4:\n baseAlignment = 16;\n break;\n case 5:\n baseAlignment = 16;\n break;\n case 6:\n baseAlignment = 16;\n break;\n default:\n util_exports.assert(false, () => `Unsupported ${d.data.length}D shape`);\n }\n if (preLength === 5 || preLength === 6) {\n baseAlignment = 16;\n }\n currentOffset = Math.ceil(currentOffset / baseAlignment) * baseAlignment;\n preLength = d.data.length;\n offsets.push(currentOffset);\n currentOffset += d.data.length * 4;\n });\n const arrayBuffer = new ArrayBuffer(currentOffset);\n programUniform.forEach((d, i2) => {\n const offset = offsets[i2];\n if (d.type === \"int32\") {\n new Int32Array(arrayBuffer, offset, d.data.length).set(d.data);\n } else if (d.type === \"uint32\") {\n new Uint32Array(arrayBuffer, offset, d.data.length).set(d.data);\n } else {\n new Float32Array(arrayBuffer, offset, d.data.length).set(d.data);\n }\n });\n const uniformBuffer = this.bufferManager.acquireBuffer(currentOffset, GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM);\n this.queue.writeBuffer(uniformBuffer, 0, arrayBuffer, 0, currentOffset);\n const uniformInfo = {\n size: currentOffset,\n usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM,\n buffer: uniformBuffer\n };\n this.uniformPendingDisposal.push(uniformInfo);\n return { offset: 0, size: currentOffset, buffer: uniformBuffer };\n }\n runWebGPUProgram(program, inputs, outputDtype, programDefinedUniform, output) {\n if (!output) {\n output = this.makeTensorInfo(program.outputShape, outputDtype);\n }\n if (util_exports.sizeFromShape(output.shape) === 0) {\n this.tensorMap.get(output.dataId).values = util_exports.getTypedArrayFromDType(output.dtype, 0);\n return output;\n }\n this.uploadToGPU(output.dataId);\n program.dispatch = reshapeDispatch(this.device, program);\n let programUniform = [];\n let bufferShapes = [];\n if (!program.isFromPixels) {\n programUniform.push({ type: \"float32\", data: [NaN] });\n bufferShapes = inputs.concat(output).map((d) => d.shape);\n const uniformsType = \"int32\";\n bufferShapes.map((d) => {\n programUniform.push({ type: uniformsType, data: d });\n });\n const strides = util_exports.computeStrides(output.shape);\n programUniform.push({ type: uniformsType, data: strides });\n if (program.size) {\n const size = util_exports.sizeFromShape(program.outputShape);\n programUniform.push({ type: uniformsType, data: [program.isVec4 ? size / 4 : size] });\n }\n }\n const inputsData = inputs.map((input2, i2) => {\n if (input2.dtype === \"complex64\") {\n throw new Error(`GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.`);\n }\n this.uploadToGPU(input2.dataId);\n return {\n dtype: this.tensorMap.get(input2.dataId).dtype,\n shape: input2.shape,\n name: program.variableNames[i2]\n };\n });\n const key = makeShaderKey2(program, bufferShapes, inputsData, output);\n let pipeline;\n if (key in this.pipelineCache) {\n pipeline = this.pipelineCache[key];\n } else {\n pipeline = compileProgram2(this.device, program, inputsData, output);\n this.pipelineCache[key] = pipeline;\n }\n if (programDefinedUniform) {\n programUniform = [...programUniform, ...programDefinedUniform];\n }\n const bindings = [\n this.tensorToBinding(output),\n ...inputs.map((t2) => this.tensorToBinding(t2)),\n this.makeUniforms(programUniform)\n ];\n const bindGroup = this.device.createBindGroup({\n layout: pipeline.getBindGroupLayout(0),\n entries: bindings.map((b, i2) => ({ binding: i2, resource: b }))\n });\n this.ensureCommandEncoderReady();\n const pass = this.getComputePass();\n const shouldTimeProgram = this.activeTimers != null;\n if (shouldTimeProgram) {\n if (this.supportTimeQuery) {\n pass.writeTimestamp(this.querySet, 0);\n }\n }\n pass.setPipeline(pipeline);\n pass.setBindGroup(0, bindGroup);\n pass.dispatchWorkgroups(program.dispatch[0], program.dispatch[1], program.dispatch[2]);\n if (shouldTimeProgram) {\n if (this.supportTimeQuery) {\n pass.writeTimestamp(this.querySet, 1);\n }\n }\n this.dispatchNumberInEncoder++;\n inputs.forEach((input2) => {\n this.commandQueueOwnedIds.add(input2.dataId);\n });\n this.commandQueueOwnedIds.add(output.dataId);\n if (env().get(\"WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE\") <= this.dispatchNumberInEncoder) {\n this.submitQueue();\n }\n if (shouldTimeProgram) {\n this.activeTimers.push({\n name: program.constructor.name,\n query: this.getQueryTime(this.querySet)\n });\n }\n return output;\n }\n async getTimeFromQuerySet(querySet) {\n const queryBuffer = this.bufferManager.acquireBuffer(16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE);\n const dst = this.bufferManager.acquireBuffer(16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST);\n this.ensureCommandEncoderReady();\n this.ensureComputePassEnded();\n this.currentCommandEncoder.resolveQuerySet(querySet, 0, 2, queryBuffer, 0);\n this.currentCommandEncoder.copyBufferToBuffer(queryBuffer, 0, dst, 0, 16);\n this.submitQueue();\n await dst.mapAsync(GPUMapMode.READ);\n const arrayBuf = new BigUint64Array(dst.getMappedRange());\n const timeElapsedNanos = Number(arrayBuf[1] - arrayBuf[0]);\n dst.unmap();\n this.bufferManager.releaseBuffer(dst, 16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST);\n this.bufferManager.releaseBuffer(queryBuffer, 16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE);\n return timeElapsedNanos / 1e6;\n }\n shouldExecuteOnCPU(inputs, sizeThreshold = CPU_HANDOFF_SIZE_THRESHOLD2) {\n return env().getBool(\"WEBGPU_CPU_FORWARD\") && inputs.every((input2) => this.tensorMap.get(input2.dataId).resourceInfo == null && util_exports.sizeFromShape(input2.shape) < sizeThreshold);\n }\n numDataIds() {\n return this.tensorMap.numDataIds() - this.tensorDataPendingDisposal.length;\n }\n dispose() {\n if (this.disposed) {\n return;\n }\n this.bufferManager.dispose();\n this.textureManager.dispose();\n this.disposed = true;\n }\n};\nWebGPUBackend.nextDataId = 0;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu.js\nvar webgpu_exports = {};\n__export(webgpu_exports, {\n WebGPUBackend: () => WebGPUBackend,\n webgpu_util: () => webgpu_util_exports\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/index.js\nif (isWebGPUSupported()) {\n registerBackend(\"webgpu\", async () => {\n env().set(\"CHECK_COMPUTATION_FOR_ERRORS\", false);\n const gpuDescriptor = {\n powerPreference: env().get(\"WEBGPU_USE_LOW_POWER_GPU\") ? \"low-power\" : \"high-performance\"\n };\n const adapter = await navigator.gpu.requestAdapter(gpuDescriptor);\n const adapterLimits = adapter.limits;\n const deviceDescriptor = {};\n const supportTimeQuery = adapter.features.has(\"timestamp-query\");\n deviceDescriptor.requiredLimits = {\n \"maxComputeWorkgroupStorageSize\": adapterLimits.maxComputeWorkgroupStorageSize,\n \"maxComputeWorkgroupsPerDimension\": adapterLimits.maxComputeWorkgroupsPerDimension,\n \"maxStorageBufferBindingSize\": adapterLimits.maxStorageBufferBindingSize\n };\n if (supportTimeQuery) {\n deviceDescriptor.requiredFeatures = [\"timestamp-query\"];\n } else {\n console.warn(`This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.`);\n }\n const device = await adapter.requestDevice(deviceDescriptor);\n return new WebGPUBackend(device, supportTimeQuery);\n }, 3);\n}\n\n// dist/tfjs.version.js\nvar e = \"3.20.0\";\nvar s = \"3.20.0\";\nvar t = \"3.20.0\";\nvar i = \"3.20.0\";\nvar n = \"3.20.0\";\nvar r = \"3.20.0\";\nvar l = \"3.20.0\";\nvar V = { tfjs: e, \"tfjs-core\": s, \"tfjs-data\": t, \"tfjs-layers\": i, \"tfjs-converter\": n, \"tfjs-backend-webgl\": r, \"tfjs-backend-wasm\": l };\nexport {\n Abs,\n Acos,\n Acosh,\n AdadeltaOptimizer,\n AdagradOptimizer,\n AdamOptimizer,\n AdamaxOptimizer,\n Add,\n AddN,\n All,\n Any,\n ArgMax,\n ArgMin,\n Asin,\n Asinh,\n Atan,\n Atan2,\n Atanh,\n AvgPool,\n AvgPool3D,\n AvgPool3DGrad,\n AvgPoolGrad,\n BackendWasm,\n BatchMatMul,\n BatchToSpaceND,\n Bincount,\n BroadcastArgs,\n BroadcastTo,\n Callback,\n CallbackList,\n Cast,\n Ceil,\n ClipByValue,\n Complex,\n ComplexAbs,\n Concat,\n Conv2D,\n Conv2DBackpropFilter,\n Conv2DBackpropInput,\n Conv3D,\n Conv3DBackpropFilterV2,\n Conv3DBackpropInputV2,\n Cos,\n Cosh,\n CropAndResize,\n Cumprod,\n Cumsum,\n CustomCallback,\n DataStorage,\n DenseBincount,\n DepthToSpace,\n DepthwiseConv2dNative,\n DepthwiseConv2dNativeBackpropFilter,\n DepthwiseConv2dNativeBackpropInput,\n Diag,\n Dilation2D,\n Dilation2DBackpropFilter,\n Dilation2DBackpropInput,\n ENV,\n EarlyStopping,\n Einsum,\n Elu,\n EluGrad,\n Environment,\n Equal,\n Erf,\n Exp,\n ExpandDims,\n Expm1,\n FFT,\n Fill,\n FlipLeftRight,\n Floor,\n FloorDiv,\n FromPixels,\n FusedBatchNorm,\n FusedConv2D,\n FusedDepthwiseConv2D,\n GPGPUContext,\n GatherNd,\n GatherV2,\n GraphModel,\n Greater,\n GreaterEqual,\n History,\n IFFT,\n Identity,\n Imag,\n InputSpec,\n IsFinite,\n IsInf,\n IsNan,\n KernelBackend,\n LRN,\n LRNGrad,\n LayerVariable,\n LayersModel,\n LeakyRelu,\n Less,\n LessEqual,\n LinSpace,\n Log,\n Log1p,\n LogSoftmax,\n LogicalAnd,\n LogicalNot,\n LogicalOr,\n LogicalXor,\n LowerBound,\n MathBackendWebGL,\n Max,\n MaxPool,\n MaxPool3D,\n MaxPool3DGrad,\n MaxPoolGrad,\n MaxPoolWithArgmax,\n Maximum,\n Mean,\n Min,\n Minimum,\n MirrorPad,\n Mod,\n MomentumOptimizer,\n Multinomial,\n Multiply,\n Neg,\n NonMaxSuppressionV3,\n NonMaxSuppressionV4,\n NonMaxSuppressionV5,\n NotEqual,\n OP_SCOPE_SUFFIX,\n OneHot,\n OnesLike,\n Optimizer,\n OptimizerConstructors,\n Pack,\n PadV2,\n Pool,\n Pow,\n Prelu,\n Prod,\n RMSPropOptimizer,\n RNN,\n RaggedTensorToTensor,\n Range,\n Rank,\n Real,\n RealDiv,\n Reciprocal,\n Reduction,\n Relu,\n Relu6,\n Reshape,\n ResizeBilinear,\n ResizeBilinearGrad,\n ResizeNearestNeighbor,\n ResizeNearestNeighborGrad,\n Reverse,\n RotateWithOffset,\n Round,\n Rsqrt,\n SGDOptimizer,\n ScatterNd,\n SearchSorted,\n Select,\n Selu,\n Sequential,\n Sigmoid,\n Sign,\n Sin,\n Sinh,\n Slice,\n Softmax,\n Softplus,\n SpaceToBatchND,\n SparseFillEmptyRows,\n SparseReshape,\n SparseSegmentMean,\n SparseSegmentSum,\n SparseToDense,\n SplitV,\n Sqrt,\n Square,\n SquaredDifference,\n Step,\n StridedSlice,\n StringNGrams,\n StringSplit,\n StringToHashBucketFast,\n Sub,\n Sum,\n SymbolicTensor,\n Tan,\n Tanh,\n Tensor,\n TensorBuffer,\n Tile,\n TopK,\n Transform,\n Transpose,\n Unique,\n Unpack,\n UnsortedSegmentSum,\n UpperBound,\n Variable,\n ZerosLike,\n _FusedMatMul,\n abs,\n acos,\n acosh,\n add2 as add,\n addN,\n all,\n any,\n argMax,\n argMin,\n asin,\n asinh,\n atan,\n atan2,\n atanh,\n avgPool,\n avgPool3d,\n backend,\n backend_util_exports as backend_util,\n basicLSTMCell,\n batchNorm,\n batchNorm2d,\n batchNorm3d,\n batchNorm4d,\n batchToSpaceND,\n bincount,\n booleanMaskAsync,\n broadcastArgs,\n broadcastTo,\n broadcast_util_exports as broadcast_util,\n browser_exports as browser,\n buffer,\n callbacks,\n cast,\n ceil,\n clipByValue,\n clone,\n complex,\n concat,\n concat1d,\n concat2d,\n concat3d,\n concat4d,\n exports_constraints_exports as constraints,\n conv1d,\n conv2d,\n conv2dTranspose,\n conv3d,\n conv3dTranspose,\n copyRegisteredKernels,\n cos,\n cosh,\n cosineWindow,\n cumprod,\n cumsum,\n customGrad,\n dist_exports2 as data,\n denseBincount,\n deprecationWarn,\n depthToSpace,\n depthwiseConv2d,\n deregisterOp,\n device_util_exports as device_util,\n diag,\n dilation2d,\n disableDeprecationWarnings,\n dispose,\n disposeVariables,\n div,\n divNoNan,\n dot,\n dropout,\n einsum,\n elu,\n enableDebugMode,\n enableProdMode,\n enclosingPowerOfTwo,\n engine,\n env,\n equal,\n erf,\n euclideanNorm,\n exp,\n expandDims,\n expm1,\n eye,\n fft,\n fill,\n findBackend,\n findBackendFactory,\n floor,\n floorDiv,\n forceHalfFloat,\n fused_ops_exports as fused,\n gather,\n gatherND,\n gather_nd_util_exports as gather_util,\n getBackend,\n getGradient,\n getKernel,\n getKernelsForBackend,\n getThreadsCount,\n gpgpu_util_exports as gpgpu_util,\n grad,\n grads,\n greater,\n greaterEqual,\n ifft,\n imag,\n image,\n inTopKAsync,\n exports_initializers_exports as initializers,\n input,\n io_exports as io,\n irfft,\n isFinite2 as isFinite,\n isInf,\n isNaN2 as isNaN,\n keep,\n kernel_impls_exports as kernel_impls,\n exports_layers_exports as layers,\n leakyRelu,\n less,\n lessEqual,\n linalg,\n linspace,\n loadGraphModel,\n loadGraphModelSync,\n loadLayersModel,\n localResponseNormalization,\n log2 as log,\n log1p,\n logSigmoid,\n logSoftmax,\n logSumExp,\n logicalAnd,\n logicalNot,\n logicalOr,\n logicalXor,\n losses,\n lowerBound,\n matMul,\n math_exports as math,\n max,\n maxPool,\n maxPool3d,\n maxPoolWithArgmax,\n maximum,\n mean,\n memory,\n meshgrid,\n exports_metrics_exports as metrics,\n min,\n minimum,\n mirrorPad,\n mod,\n model,\n exports_models_exports as models,\n moments,\n movingAverage,\n mul,\n multiRNNCell,\n multinomial,\n neg,\n nextFrame,\n norm,\n notEqual,\n oneHot,\n ones2 as ones,\n onesLike,\n op,\n outerProduct,\n pad,\n pad1d,\n pad2d,\n pad3d,\n pad4d,\n pool,\n pow,\n prelu,\n print,\n prod,\n profile,\n raggedTensorToTensor,\n rand,\n randomGamma,\n randomNormal,\n randomStandardNormal,\n randomUniform,\n range,\n ready,\n real,\n reciprocal,\n registerBackend,\n registerCallbackConstructor,\n registerGradient,\n registerKernel,\n registerOp,\n exports_regularizers_exports as regularizers,\n relu,\n relu6,\n removeBackend,\n reshape,\n reverse,\n reverse1d,\n reverse2d,\n reverse3d,\n reverse4d,\n rfft,\n round2 as round,\n rsqrt,\n scalar,\n scatterND,\n scatter_nd_util_exports as scatter_util,\n searchSorted,\n selu,\n separableConv2d,\n sequential,\n serialization_exports as serialization,\n setBackend,\n setPlatform,\n setThreadsCount,\n setWasmPath,\n setWasmPaths,\n setWebGLContext,\n setdiff1dAsync,\n sigmoid,\n sign,\n signal,\n sin,\n sinh,\n slice,\n slice1d,\n slice2d,\n slice3d,\n slice4d,\n slice_util_exports as slice_util,\n softmax,\n softplus,\n spaceToBatchND,\n sparse,\n sparseToDense,\n spectral,\n split,\n sqrt,\n square,\n squaredDifference,\n squeeze,\n stack,\n step,\n stridedSlice,\n string,\n sub,\n sum2 as sum,\n sumOutType,\n tan,\n tanh2 as tanh,\n tensor,\n tensor1d,\n tensor2d,\n tensor3d,\n tensor4d,\n tensor5d,\n tensor6d,\n tensor_util_exports as tensor_util,\n test_util_exports as test_util,\n tidy,\n tile,\n time,\n topk,\n train,\n transpose,\n truncatedNormal,\n unique,\n unregisterGradient,\n unregisterKernel,\n unsortedSegmentSum,\n unstack,\n upcastType,\n upperBound,\n util_exports as util,\n valueAndGrad,\n valueAndGrads,\n variable,\n variableGrads,\n V as version,\n version3 as version_converter,\n version as version_core,\n version2 as version_layers,\n version8 as version_wasm,\n version6 as version_webgl,\n webgl,\n webgl_util_exports as webgl_util,\n webgpu_exports as webgpu,\n where,\n whereAsync,\n zeros,\n zerosLike\n};\n", "export const vertexIdentity = `\n precision highp float;\n attribute vec2 pos;\n attribute vec2 uv;\n varying vec2 vUv;\n uniform float flipY;\n void main(void) {\n vUv = uv;\n gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);\n }\n`;\n\nexport const fragmentIdentity = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n void main(void) {\n gl_FragColor = texture2D(texture, vUv);\n }\n`;\n\nexport const colorMatrixWithAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];\n gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];\n }\n`;\n\nexport const colorMatrixWithoutAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];\n gl_FragColor.a = c.a;\n }\n`;\n\nexport const pixelate = `\n precision highp float;\n varying vec2 vUv;\n uniform vec2 size;\n uniform sampler2D texture;\n vec2 pixelate(vec2 coord, vec2 size) {\n return floor( coord / size ) * size;\n }\n void main(void) {\n gl_FragColor = vec4(0.0);\n vec2 coord = pixelate(vUv, size);\n gl_FragColor += texture2D(texture, coord);\n }\n`;\n\nexport const blur = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n void main(void) {\n gl_FragColor = vec4(0.0);\n gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;\n gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv )*0.159576912161;\n gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;\n }\n`;\n\nexport const convolution = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n uniform float m[9];\n void main(void) {\n vec4 c11 = texture2D(texture, vUv - px); // top left\n vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center\n vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right\n vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left\n vec4 c22 = texture2D(texture, vUv); // mid center\n vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right\n vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left\n vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center\n vec4 c33 = texture2D(texture, vUv + px ); // bottom right\n gl_FragColor = \n c11 * m[0] + c12 * m[1] + c22 * m[2] +\n c21 * m[3] + c22 * m[4] + c23 * m[5] +\n c31 * m[6] + c32 * m[7] + c33 * m[8];\n gl_FragColor.a = c22.a;\n }\n`;\n", "/**\n * Image Filters in WebGL algoritm implementation\n * Based on: [WebGLImageFilter](https://github.com/phoboslab/WebGLImageFilter)\n */\n\n/* eslint-disable func-names */\n\nimport * as shaders from './imagefxshaders';\nimport { canvas } from './image';\nimport { log } from '../util/util';\n\nconst collect = (source, prefix: string, collection) => {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n};\n\nclass GLProgram {\n uniform = {};\n attribute = {};\n gl: WebGLRenderingContext;\n id: WebGLProgram;\n\n constructor(gl, vertexSource, fragmentSource) {\n this.gl = gl;\n const vertexShader = this.compile(vertexSource, this.gl.VERTEX_SHADER);\n const fragmentShader = this.compile(fragmentSource, this.gl.FRAGMENT_SHADER);\n this.id = this.gl.createProgram() as WebGLProgram;\n if (!vertexShader || !fragmentShader) return;\n if (!this.id) {\n log('filter: could not create webgl program');\n return;\n }\n this.gl.attachShader(this.id, vertexShader);\n this.gl.attachShader(this.id, fragmentShader);\n this.gl.linkProgram(this.id);\n if (!this.gl.getProgramParameter(this.id, this.gl.LINK_STATUS)) {\n log(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id) || 'unknown'}`);\n return;\n }\n this.gl.useProgram(this.id);\n collect(vertexSource, 'attribute', this.attribute); // Collect attributes\n for (const a in this.attribute) this.attribute[a] = this.gl.getAttribLocation(this.id, a);\n collect(vertexSource, 'uniform', this.uniform); // Collect uniforms\n collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = this.gl.getUniformLocation(this.id, u);\n }\n\n compile = (source, type): WebGLShader | null => {\n const shader = this.gl.createShader(type);\n if (!shader) {\n log('filter: could not create shader');\n return null;\n }\n this.gl.shaderSource(shader, source);\n this.gl.compileShader(shader);\n if (!this.gl.getShaderParameter(shader, this.gl.COMPILE_STATUS)) {\n log(`filter: gl compile failed: ${this.gl.getShaderInfoLog(shader) || 'unknown'}`);\n return null;\n }\n return shader;\n };\n}\n\n// function that is instantiated as class so it has private this members\n/**\n * @class GLImageFilter\n * @property {function} reset reset current filter chain\n * @property {function} add add specified filter to filter chain\n * @property {function} apply execute filter chain and draw result\n * @property {function} draw just draw input to result\n */\n\nexport function GLImageFilter() {\n let drawCount = 0;\n let sourceTexture: WebGLTexture | null = null;\n let lastInChain = false;\n let currentFramebufferIndex = -1;\n let tempFramebuffers: [null, null] | [{ fbo: WebGLFramebuffer | null, texture: WebGLTexture | null }] = [null, null];\n let filterChain: Record[] = [];\n let vertexBuffer: WebGLBuffer | null = null;\n let currentProgram: GLProgram | null = null;\n const fxcanvas = canvas(100, 100);\n const shaderProgramCache = { }; // key is the shader program source, value is the compiled program\n const DRAW = { INTERMEDIATE: 1 };\n const gl = fxcanvas.getContext('webgl') as WebGLRenderingContext;\n if (!gl) {\n log('filter: cannot get webgl context');\n return;\n }\n // @ts-ignore used for sanity checks outside of imagefx\n this.gl = gl;\n\n function resize(width, height) {\n if (width === fxcanvas.width && height === fxcanvas.height) return; // Same width/height? Nothing to do here\n fxcanvas.width = width;\n fxcanvas.height = height;\n if (!vertexBuffer) { // Create the context if we don't have it yet\n const vertices = new Float32Array([-1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0]); // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n vertexBuffer = gl.createBuffer();\n gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, fxcanvas.width, fxcanvas.height);\n tempFramebuffers = [null, null]; // Delete old temp framebuffers\n }\n\n function createFramebufferTexture(width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n }\n\n function getTempFramebuffer(index): { fbo: WebGLFramebuffer | null, texture: WebGLTexture | null } {\n tempFramebuffers[index] = tempFramebuffers[index] || createFramebufferTexture(fxcanvas.width, fxcanvas.height);\n return tempFramebuffers[index] as { fbo: WebGLFramebuffer, texture: WebGLTexture };\n }\n\n function draw(flags = 0) {\n if (!currentProgram) return;\n let source: WebGLTexture | null = null;\n let target: WebGLFramebuffer | null = null;\n let flipY = false;\n if (drawCount === 0) source = sourceTexture; // First draw call - use the source texture\n else source = getTempFramebuffer(currentFramebufferIndex).texture || null; // All following draw calls use the temp buffer last drawn to\n drawCount++;\n if (lastInChain && !(flags & DRAW.INTERMEDIATE)) { // Last filter in our chain - draw directly to the WebGL Canvas. We may also have to flip the image vertically now\n target = null;\n flipY = drawCount % 2 === 0;\n } else {\n currentFramebufferIndex = (currentFramebufferIndex + 1) % 2;\n target = getTempFramebuffer(currentFramebufferIndex).fbo || null; // Intermediate draw call - get a temp buffer to draw to\n }\n gl.bindTexture(gl.TEXTURE_2D, source); // Bind the source and target and draw the two triangles\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(currentProgram.uniform['flipY'], (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n }\n\n function compileShader(fragmentSource): GLProgram | null {\n if (shaderProgramCache[fragmentSource]) {\n currentProgram = shaderProgramCache[fragmentSource];\n gl.useProgram((currentProgram ? currentProgram.id : null) || null);\n return currentProgram;\n }\n currentProgram = new GLProgram(gl, shaders.vertexIdentity, fragmentSource);\n if (!currentProgram) {\n log('filter: could not get webgl program');\n return null;\n }\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(currentProgram.attribute['pos']);\n gl.vertexAttribPointer(currentProgram.attribute['pos'], 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(currentProgram.attribute['uv']);\n gl.vertexAttribPointer(currentProgram.attribute['uv'], 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n shaderProgramCache[fragmentSource] = currentProgram;\n return currentProgram;\n }\n\n const filter = {\n colorMatrix: (matrix: number[]) => { // general color matrix filter\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0) // Can we ignore the alpha value? Makes things a bit faster.\n ? shaders.colorMatrixWithoutAlpha\n : shaders.colorMatrixWithAlpha;\n const program = compileShader(shader);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n draw();\n },\n\n brightness: (brightness: number) => {\n const b = (brightness || 0) + 1;\n filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n saturation: (amount: number) => {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturate: () => {\n filter.saturation(-1);\n },\n\n contrast: (amount: number) => {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n negative: () => {\n filter.contrast(-2);\n },\n\n hue: (rotation: number) => {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturateLuminance: () => {\n filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n sepia: () => {\n filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n brownie: () => {\n filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n vintagePinhole: () => {\n filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n kodachrome: () => {\n filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n technicolor: () => {\n filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n polaroid: () => {\n filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n shiftToBGR: () => {\n filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n convolution: (matrix: number[]) => { // general convolution Filter\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / fxcanvas.width;\n const pixelSizeY = 1 / fxcanvas.height;\n const program = compileShader(shaders.convolution);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n gl.uniform2f(program.uniform['px'], pixelSizeX, pixelSizeY);\n draw();\n },\n\n detectEdges: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n },\n\n sobelX: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n },\n\n sobelY: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n },\n\n sharpen: (amount) => {\n const a = amount || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n },\n\n emboss: (size: number) => {\n const s = size || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n },\n\n blur: (size: number) => {\n const blurSizeX = (size / 7) / fxcanvas.width;\n const blurSizeY = (size / 7) / fxcanvas.height;\n const program = compileShader(shaders.blur);\n if (!program) return;\n // Vertical\n gl.uniform2f(program.uniform['px'], 0, blurSizeY);\n draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform['px'], blurSizeX, 0);\n draw();\n },\n\n pixelate: (size: number) => {\n const blurSizeX = (size) / fxcanvas.width;\n const blurSizeY = (size) / fxcanvas.height;\n const program = compileShader(shaders.pixelate);\n if (!program) return;\n gl.uniform2f(program.uniform['size'], blurSizeX, blurSizeY);\n draw();\n },\n };\n\n // @ts-ignore this\n this.add = function (name) {\n const args = Array.prototype.slice.call(arguments, 1); // eslint-disable-line prefer-rest-params\n const func = filter[name];\n filterChain.push({ func, args });\n };\n\n // @ts-ignore this\n this.reset = function () {\n filterChain = [];\n };\n\n // @ts-ignore this\n this.get = function () {\n return filterChain;\n };\n\n // @ts-ignore this\n this.apply = function (image) {\n resize(image.width, image.height);\n drawCount = 0;\n if (!sourceTexture) sourceTexture = gl.createTexture(); // Create the texture for the input image if we haven't yet\n gl.bindTexture(gl.TEXTURE_2D, sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n for (let i = 0; i < filterChain.length; i++) {\n lastInChain = (i === filterChain.length - 1);\n const f = filterChain[i];\n // @ts-ignore function assigment\n f.func.apply(this, f.args || []);\n }\n return fxcanvas;\n };\n\n // @ts-ignore this\n this.draw = function (image) {\n this.add('brightness', 0);\n return this.apply(image);\n };\n}\n", "/**\n * Image enhancements\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../exports';\n\nexport async function histogramEqualization(inputImage: Tensor): Promise {\n // const maxValue = 254; // using 255 results in values slightly larger than 1 due to math rounding errors\n const squeeze = inputImage.shape.length === 4 ? tf.squeeze(inputImage) : inputImage;\n const channels = tf.split(squeeze, 3, 2);\n const min: Tensor[] = [tf.min(channels[0]), tf.min(channels[1]), tf.min(channels[2])];\n const max: Tensor[] = [tf.max(channels[0]), tf.max(channels[1]), tf.max(channels[2])];\n const absMax = await Promise.all(max.map((channel) => channel.data()));\n const maxValue = 0.99 * Math.max(absMax[0][0], absMax[1][0], absMax[2][0]);\n const sub = [tf.sub(channels[0], min[0]), tf.sub(channels[1], min[1]), tf.sub(channels[2], min[2])];\n const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])];\n const fact = [tf.div(maxValue, range[0]), tf.div(maxValue, range[1]), tf.div(maxValue, range[2])];\n const enh = [tf.mul(sub[0], fact[0]), tf.mul(sub[1], fact[1]), tf.mul(sub[2], fact[2])];\n const rgb = tf.stack([enh[0], enh[1], enh[2]], 2);\n const reshape = tf.reshape(rgb, [1, squeeze.shape[0], squeeze.shape[1], 3]);\n tf.dispose([...channels, ...min, ...max, ...sub, ...range, ...fact, ...enh, rgb, squeeze]);\n return reshape as Tensor; // output shape is [1, height, width, 3]\n}\n", "/**\n * Image Processing algorithm implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport type { Input, AnyCanvas, Tensor, Config } from '../exports';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport * as enhance from './enhance';\n\nconst maxSize = 3840;\n// internal temp canvases\nlet inCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet outCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet tmpCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\n// @ts-ignore // imagefx is js module that should be converted to a class\nlet fx: fxImage.GLImageFilter | null; // instance of imagefx\n\nconst last: { inputSum: number, cacheDiff: number, sumMethod: number, inputTensor: undefined | Tensor } = {\n inputSum: 0,\n cacheDiff: 1,\n sumMethod: 0,\n inputTensor: undefined,\n};\n\nexport function canvas(width: number, height: number): AnyCanvas {\n let c: AnyCanvas;\n if (env.browser) { // browser defines canvas object\n if (env.worker) { // if runing in web worker use OffscreenCanvas\n if (typeof OffscreenCanvas === 'undefined') throw new Error('canvas error: attempted to run in web worker but OffscreenCanvas is not supported');\n c = new OffscreenCanvas(width, height);\n } else { // otherwise use DOM canvas\n if (typeof document === 'undefined') throw new Error('canvas error: attempted to run in browser but DOM is not defined');\n c = document.createElement('canvas');\n c.width = width;\n c.height = height;\n }\n } else { // if not running in browser, there is no \"default\" canvas object, so we need monkey patch or fail\n // @ts-ignore // env.canvas is an external monkey-patch\n if (typeof env.Canvas !== 'undefined') c = new env.Canvas(width, height);\n else if (typeof globalThis.Canvas !== 'undefined') c = new globalThis.Canvas(width, height);\n // else throw new Error('canvas error: attempted to use canvas in nodejs without canvas support installed');\n }\n // @ts-ignore its either defined or we already threw an error\n return c;\n}\n\n// helper function to copy canvas from input to output\nexport function copy(input: AnyCanvas, output?: AnyCanvas) {\n const outputCanvas = output || canvas(input.width, input.height);\n const ctx = outputCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctx.drawImage(input, 0, 0);\n return outputCanvas;\n}\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport async function process(input: Input, config: Config, getTensor: boolean = true): Promise<{ tensor: Tensor | null, canvas: AnyCanvas | null }> {\n if (!input) {\n // throw new Error('input is missing');\n if (config.debug) log('input error: input is missing');\n return { tensor: null, canvas: null }; // video may become temporarily unavailable due to onresize\n }\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof env.Canvas !== 'undefined' && input instanceof env.Canvas)\n && !(typeof globalThis.Canvas !== 'undefined' && input instanceof globalThis.Canvas)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('input error: type is not recognized');\n }\n if (input instanceof tf.Tensor) { // if input is tensor use as-is without filters but correct shape as needed\n let tensor: Tensor | null = null;\n if ((input as Tensor)['isDisposedInternal']) throw new Error('input error: attempted to use tensor but it is disposed');\n if (!(input as Tensor).shape) throw new Error('input error: attempted to use tensor without a shape');\n if ((input as Tensor).shape.length === 3) { // [height, width, 3 || 4]\n if ((input as Tensor).shape[2] === 3) { // [height, width, 3] so add batch\n tensor = tf.expandDims(input, 0);\n } else if ((input as Tensor).shape[2] === 4) { // [height, width, 4] so strip alpha and add batch\n const rgb = tf.slice3d(input, [0, 0, 0], [-1, -1, 3]);\n tensor = tf.expandDims(rgb, 0);\n tf.dispose(rgb);\n }\n } else if ((input as Tensor).shape.length === 4) { // [1, width, height, 3 || 4]\n if ((input as Tensor).shape[3] === 3) { // [1, width, height, 3] just clone\n tensor = tf.clone(input);\n } else if ((input as Tensor).shape[3] === 4) { // [1, width, height, 4] so strip alpha\n tensor = tf.slice4d(input, [0, 0, 0, 0], [-1, -1, -1, 3]);\n }\n }\n // at the end shape must be [1, height, width, 3]\n if (tensor == null || tensor.shape.length !== 4 || tensor.shape[0] !== 1 || tensor.shape[3] !== 3) throw new Error(`input error: attempted to use tensor with unrecognized shape: ${((input as Tensor).shape).toString()}`);\n if ((tensor).dtype === 'int32') {\n const cast = tf.cast(tensor, 'float32');\n tf.dispose(tensor);\n tensor = cast;\n }\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n }\n // check if resizing will be needed\n if (typeof input['readyState'] !== 'undefined' && (input as HTMLMediaElement).readyState <= 2) {\n if (config.debug) log('input stream is not ready');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n const originalWidth: number = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight: number = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) {\n if (config.debug) log('cannot determine input dimensions');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n let targetWidth: number = originalWidth;\n let targetHeight: number = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = Math.trunc(targetWidth * originalHeight / originalWidth);\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = Math.trunc(targetHeight * originalWidth / originalHeight);\n }\n\n // create our canvas and resize it if needed\n if ((config.filter?.width || 0) > 0) targetWidth = config.filter.width as number;\n else if ((config.filter?.height || 0) > 0) targetWidth = originalWidth * ((config.filter.height || 0) / originalHeight);\n if ((config.filter.height || 0) > 0) targetHeight = config.filter.height as number;\n else if ((config.filter.width || 0) > 0) targetHeight = originalHeight * ((config.filter.width || 0) / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('input error: cannot determine dimension');\n if (!inCanvas || (inCanvas.width !== targetWidth) || (inCanvas.height !== targetHeight)) inCanvas = canvas(targetWidth, targetHeight);\n\n // draw input to our canvas\n const inCtx = inCanvas.getContext('2d') as CanvasRenderingContext2D;\n if ((typeof ImageData !== 'undefined') && (input instanceof ImageData)) {\n inCtx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof inCtx.translate !== 'undefined') {\n inCtx.translate(originalWidth, 0);\n inCtx.scale(-1, 1);\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas.width, inCanvas.height);\n inCtx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas.width, inCanvas.height);\n }\n }\n\n if (!outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas.height !== outCanvas.height)) outCanvas = canvas(inCanvas.width, inCanvas.height); // init output canvas\n\n // imagefx transforms using gl from input canvas to output canvas\n if (config.filter.enabled && env.webgl.supported) {\n if (!fx) fx = env.browser ? new fxImage.GLImageFilter() : null; // && (typeof document !== 'undefined')\n env.filter = !!fx;\n if (!fx?.add) {\n if (config.debug) log('input process error: cannot initialize filters');\n env.webgl.supported = false;\n config.filter.enabled = false;\n copy(inCanvas, outCanvas); // filter failed to initialize\n // return { tensor: null, canvas: inCanvas };\n } else {\n fx.reset();\n if (config.filter.brightness !== 0) fx.add('brightness', config.filter.brightness);\n if (config.filter.contrast !== 0) fx.add('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.add('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.add('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.add('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.add('hue', config.filter.hue);\n if (config.filter.negative) fx.add('negative');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.vintage) fx.add('brownie');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.kodachrome) fx.add('kodachrome');\n if (config.filter.technicolor) fx.add('technicolor');\n if (config.filter.polaroid) fx.add('polaroid');\n if (config.filter.pixelate !== 0) fx.add('pixelate', config.filter.pixelate);\n if (fx.get() > 0) outCanvas = fx.apply(inCanvas);\n else outCanvas = fx.draw(inCanvas);\n }\n } else {\n copy(inCanvas, outCanvas); // if no filters applied, output canvas is input canvas\n if (fx) fx = null;\n env.filter = !!fx;\n }\n\n if (!getTensor) return { tensor: null, canvas: outCanvas }; // just canvas was requested\n if (!outCanvas) throw new Error('canvas error: cannot create output');\n\n // create tensor from image unless input was a tensor already\n let pixels;\n let depth = 3;\n if ((typeof ImageData !== 'undefined' && input instanceof ImageData) || ((input as ImageData).data && (input as ImageData).width && (input as ImageData).height)) { // if input is imagedata, just use it\n if (env.browser && tf.browser) {\n pixels = tf.browser ? tf.browser.fromPixels(input) : null;\n } else {\n depth = (input as ImageData).data.length / (input as ImageData).height / (input as ImageData).width;\n // const arr = Uint8Array.from(input['data']);\n const arr = new Uint8Array((input as ImageData).data.buffer);\n pixels = tf.tensor(arr, [(input as ImageData).height, (input as ImageData).width, depth], 'int32');\n }\n } else {\n if (!tmpCanvas || (outCanvas.width !== tmpCanvas.width) || (outCanvas.height !== tmpCanvas.height)) tmpCanvas = canvas(outCanvas.width, outCanvas.height); // init output canvas\n if (tf.browser && env.browser) {\n if (config.backend === 'webgl' || config.backend === 'humangl' || config.backend === 'webgpu') {\n pixels = tf.browser.fromPixels(outCanvas); // safe to reuse since both backend and context are gl based\n } else {\n tmpCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n pixels = tf.browser.fromPixels(tmpCanvas);\n }\n } else {\n const tempCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n const tempCtx = tempCanvas.getContext('2d') as CanvasRenderingContext2D;\n const tempData = tempCtx.getImageData(0, 0, targetWidth, targetHeight);\n depth = tempData.data.length / targetWidth / targetHeight;\n const arr = new Uint8Array(tempData.data.buffer);\n pixels = tf.tensor(arr, [targetWidth, targetHeight, depth]);\n }\n }\n if (depth === 4) { // rgba to rgb\n const rgb = tf.slice3d(pixels, [0, 0, 0], [-1, -1, 3]); // strip alpha channel\n tf.dispose(pixels);\n pixels = rgb;\n }\n if (!pixels) throw new Error('input error: cannot create tensor');\n const casted: Tensor = tf.cast(pixels, 'float32');\n const tensor: Tensor = config.filter.equalization ? await enhance.histogramEqualization(casted) : tf.expandDims(casted, 0);\n tf.dispose([pixels, casted]);\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n}\n\n/*\nconst checksum = async (input: Tensor): Promise => { // use tf sum or js based sum loop depending on which is faster\n const resizeFact = 48;\n const reduced: Tensor = tf.image.resizeBilinear(input, [Math.trunc((input.shape[1] || 1) / resizeFact), Math.trunc((input.shape[2] || 1) / resizeFact)]);\n const tfSum = async (): Promise => {\n const sumT = tf.sum(reduced);\n const sum0 = await sumT.data();\n tf.dispose(sumT);\n return sum0[0];\n };\n const jsSum = async (): Promise => {\n const reducedData = await reduced.data(); // raw image rgb array\n let sum0 = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum0 += reducedData[3 * i + 2]; // look only at green value of each pixel\n return sum0;\n };\n if (last.sumMethod === 0) {\n const t0 = now();\n await jsSum();\n const t1 = now();\n await tfSum();\n const t2 = now();\n last.sumMethod = t1 - t0 < t2 - t1 ? 1 : 2;\n }\n const res = last.sumMethod === 1 ? await jsSum() : await tfSum();\n tf.dispose(reduced);\n return res;\n};\n*/\n\nexport async function skip(config: Partial, input: Tensor) {\n let skipFrame = false;\n if (config.cacheSensitivity === 0 || !input.shape || input.shape.length !== 4 || input.shape[1] > 2048 || input.shape[2] > 2048) return skipFrame; // cache disabled or input is invalid or too large for cache analysis\n\n /*\n const checkSum = await checksum(input);\n const diff = 100 * (Math.max(checkSum, last.inputSum) / Math.min(checkSum, last.inputSum) - 1);\n last.inputSum = checkSum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n let skipFrame = diff < Math.max(config.cacheSensitivity, last.cacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n last.cacheDiff = diff > 10 * config.cacheSensitivity ? 0 : diff;\n skipFrame = skipFrame && (last.cacheDiff > 0); // if no cached diff value then force no skip\n */\n\n if (!last.inputTensor) {\n last.inputTensor = tf.clone(input);\n } else if (last.inputTensor.shape[1] !== input.shape[1] || last.inputTensor.shape[2] !== input.shape[2]) { // input resolution changed\n tf.dispose(last.inputTensor);\n last.inputTensor = tf.clone(input);\n } else {\n const t: Record = {};\n t.diff = tf.sub(input, last.inputTensor);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input.shape[1] || 1) / (input.shape[2] || 1) / 255 / 3; // squared difference relative to input resolution and averaged per channel\n tf.dispose([last.inputTensor, t.diff, t.squared, t.sum]);\n last.inputTensor = tf.clone(input);\n skipFrame = diffRelative <= (config.cacheSensitivity || 0);\n }\n return skipFrame;\n}\n\nexport async function compare(config: Partial, input1: Tensor, input2: Tensor): Promise {\n const t: Record = {};\n if (!input1 || !input2 || input1.shape.length !== 4 || input1.shape.length !== input2.shape.length) {\n if (!config.debug) log('invalid input tensor or tensor shapes do not match:', input1.shape, input2.shape);\n return 0;\n }\n if (input1.shape[0] !== 1 || input2.shape[0] !== 1 || input1.shape[3] !== 3 || input2.shape[3] !== 3) {\n if (!config.debug) log('input tensors must be of shape [1, height, width, 3]:', input1.shape, input2.shape);\n return 0;\n }\n t.input1 = tf.clone(input1);\n t.input2 = (input1.shape[1] !== input2.shape[1] || input1.shape[2] !== input2.shape[2]) ? tf.image.resizeBilinear(input2, [input1.shape[1], input1.shape[2]]) : tf.clone(input2);\n t.diff = tf.sub(t.input1, t.input2);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input1.shape[1] || 1) / (input1.shape[2] || 1) / 255 / 3;\n tf.dispose([t.input1, t.input2, t.diff, t.squared, t.sum]);\n return diffRelative;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\n\n/** Env class that holds detected capabilities */\nexport class Env {\n /** Running in Browser */\n browser: boolean;\n /** Running in NodeJS */\n node: boolean;\n /** Running in WebWorker thread */\n worker: boolean;\n /** Detected platform */\n platform: string = '';\n /** Detected agent */\n agent: string = '';\n /** List of supported backends */\n backends: string[] = [];\n /** Has any work been performed so far */\n initial: boolean;\n /** Are image filters supported? */\n filter: boolean | undefined;\n /** TFJS instance details */\n tfjs: {\n version: undefined | string,\n };\n /** Is offscreenCanvas supported? */\n offscreen: undefined | boolean;\n /** Are performance counter instant values or additive */\n perfadd: boolean = false;\n /** If using tfjs-node get version of underlying tensorflow shared library and if gpu acceleration is enabled */\n tensorflow: {\n version: undefined | string,\n gpu: undefined | boolean,\n } = {\n version: undefined,\n gpu: undefined,\n };\n /** WASM detected capabilities */\n wasm: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n simd: undefined | boolean,\n multithread: undefined | boolean,\n } = {\n supported: undefined,\n backend: undefined,\n simd: undefined,\n multithread: undefined,\n };\n /** WebGL detected capabilities */\n webgl: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n version: undefined | string,\n renderer: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n version: undefined,\n renderer: undefined,\n };\n /** WebGPU detected capabilities */\n webgpu: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n adapter: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n adapter: undefined,\n };\n /** CPU info */\n cpu: {\n model: undefined | string,\n flags: string[],\n } = {\n model: undefined,\n flags: [],\n };\n /** List of supported kernels for current backend */\n kernels: string[] = [];\n /** MonkeyPatch for Canvas */\n Canvas: undefined;\n /** MonkeyPatch for Image */\n Image: undefined;\n /** MonkeyPatch for ImageData */\n ImageData: undefined;\n\n constructor() {\n this.browser = typeof navigator !== 'undefined';\n this.node = (typeof process !== 'undefined') && (typeof process.versions !== 'undefined') && (typeof process.versions.node !== 'undefined');\n this.tfjs = { version: tf.version['tfjs-core'] };\n this.offscreen = typeof OffscreenCanvas !== 'undefined';\n this.initial = true;\n\n // @ts-ignore WorkerGlobalScope evaluated in browser only\n this.worker = this.browser && this.offscreen ? (typeof WorkerGlobalScope !== 'undefined') : undefined;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw?.[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n this.platform = (platformMatch?.[0]) ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n this.agent = navigator.userAgent.replace(raw[0], '');\n if (this.platform[1]) this.agent = this.agent.replace(raw[1], '');\n this.agent = this.agent.replace(/ /g, ' ');\n // chrome offscreencanvas gpu memory leak\n /*\n const isChrome = env.agent.match(/Chrome\\/.[0-9]/g);\n const verChrome = isChrome && isChrome[0] ? isChrome[0].split('/')[1] : 0;\n if (verChrome > 92 && verChrome < 96) {\n log('disabling offscreenCanvas due to browser error:', isChrome ? isChrome[0] : 'unknown');\n this.offscreen = false;\n }\n */\n }\n } else if (typeof process !== 'undefined') {\n this.platform = `${process.platform} ${process.arch}`;\n this.agent = `NodeJS ${process.version}`;\n }\n }\n\n /** update backend information */\n async updateBackend() {\n // analyze backends\n this.backends = Object.keys(tf.engine().registryFactory);\n this.tensorflow = {\n version: (tf.backend().binding ? tf.backend().binding.TF_Version : undefined),\n gpu: (tf.backend().binding ? tf.backend().binding.isUsingGpuDevice() : undefined),\n };\n this.wasm.supported = typeof WebAssembly !== 'undefined';\n this.wasm.backend = this.backends.includes('wasm');\n if (this.wasm.supported && this.wasm.backend && tf.getBackend() === 'wasm') {\n this.wasm.simd = tf.env().get('WASM_HAS_SIMD_SUPPORT');\n this.wasm.multithread = tf.env().get('WASM_HAS_MULTITHREAD_SUPPORT');\n }\n const c = image.canvas(100, 100);\n const ctx = c ? c.getContext('webgl2') : undefined; // causes too many gl contexts\n // const ctx = typeof tf.backend().getGPGPUContext !== undefined ? tf.backend().getGPGPUContext : null;\n this.webgl.supported = typeof ctx !== 'undefined';\n this.webgl.backend = this.backends.includes('webgl');\n if (this.webgl.supported && this.webgl.backend && (tf.getBackend() === 'webgl' || tf.getBackend() === 'humangl')) {\n const gl = tf.backend().gpgpu !== 'undefined' ? await tf.backend().getGPGPUContext().gl : null;\n if (gl) {\n this.webgl.version = gl.getParameter(gl.VERSION);\n this.webgl.renderer = gl.getParameter(gl.RENDERER);\n }\n }\n this.webgpu.supported = this.browser && typeof navigator.gpu !== 'undefined';\n this.webgpu.backend = this.backends.includes('webgpu');\n try {\n if (this.webgpu.supported) {\n const adapter = await navigator.gpu.requestAdapter();\n this.webgpu.adapter = adapter ? adapter.name : undefined;\n }\n } catch {\n this.webgpu.supported = false;\n }\n try {\n this.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => (kernel.kernelName as string).toLowerCase());\n } catch { /**/ }\n }\n\n /** update cpu information */\n updateCPU() {\n const cpu = { model: '', flags: [] };\n if (this.node && this.platform.startsWith('linux')) {\n /*\n const fs = require('fs');\n try {\n const data = fs.readFileSync('/proc/cpuinfo').toString();\n for (const line of data.split('\\n')) {\n if (line.startsWith('model name')) cpu.model = line.match(/:(.*)/g)[0].replace(':', '').trim();\n if (line.startsWith('flags')) cpu.flags = line.match(/:(.*)/g)[0].replace(':', '').trim().split(' ').sort();\n }\n } catch { }\n */\n }\n if (!this.cpu) Object.defineProperty(this, 'cpu', { value: cpu });\n else this.cpu = cpu;\n }\n}\n\nexport const env = new Env();\n", "/**\n * Loader and Validator for all models used by Human\n */\n\nimport { env } from './util/env';\nimport { log } from './util/util';\nimport * as gear from './gear/gear';\nimport * as ssrnetAge from './gear/ssrnet-age';\nimport * as ssrnetGender from './gear/ssrnet-gender';\nimport * as antispoof from './face/antispoof';\nimport * as blazeface from './face/blazeface';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as efficientpose from './body/efficientpose';\nimport * as emotion from './gear/emotion';\nimport * as mobilefacenet from './face/mobilefacenet';\nimport * as insightface from './face/insightface';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as iris from './face/iris';\nimport * as liveness from './face/liveness';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport { modelStats, ModelInfo } from './tfjs/load';\nimport type { GraphModel } from './tfjs/types';\nimport type { Human } from './human';\n\n/** Instances of all possible TFJS Graph Models used by Human\n * - loaded as needed based on configuration\n * - initialized explictly with `human.load()` method\n * - initialized implicity on first call to `human.detect()`\n * - each model can be `null` if not loaded, instance of `GraphModel` if loaded or `Promise` if loading\n */\nexport class Models {\n ssrnetage: null | GraphModel | Promise = null;\n gear: null | GraphModel | Promise = null;\n blazeposedetect: null | GraphModel | Promise = null;\n blazepose: null | GraphModel | Promise = null;\n centernet: null | GraphModel | Promise = null;\n efficientpose: null | GraphModel | Promise = null;\n mobilefacenet: null | GraphModel | Promise = null;\n insightface: null | GraphModel | Promise = null;\n emotion: null | GraphModel | Promise = null;\n facedetect: null | GraphModel | Promise = null;\n faceiris: null | GraphModel | Promise = null;\n facemesh: null | GraphModel | Promise = null;\n faceres: null | GraphModel | Promise = null;\n ssrnetgender: null | GraphModel | Promise = null;\n handpose: null | GraphModel | Promise = null;\n handskeleton: null | GraphModel | Promise = null;\n handtrack: null | GraphModel | Promise = null;\n liveness: null | GraphModel | Promise = null;\n movenet: null | GraphModel | Promise = null;\n nanodet: null | GraphModel | Promise = null;\n posenet: null | GraphModel | Promise = null;\n segmentation: null | GraphModel | Promise = null;\n antispoof: null | GraphModel | Promise = null;\n}\n\nexport interface ModelStats {\n numLoadedModels: number,\n numEnabledModels: undefined,\n numDefinedModels: number,\n percentageLoaded: number,\n totalSizeFromManifest: number,\n totalSizeWeights: number,\n totalSizeLoading: number,\n totalSizeEnabled: undefined,\n modelStats: ModelInfo[],\n}\n\nexport const getModelStats = (instance: Human): ModelStats => {\n let totalSizeFromManifest = 0;\n let totalSizeWeights = 0;\n let totalSizeLoading = 0;\n for (const m of Object.values(modelStats)) {\n totalSizeFromManifest += m.sizeFromManifest;\n totalSizeWeights += m.sizeLoadedWeights;\n totalSizeLoading += m.sizeDesired;\n }\n const percentageLoaded = totalSizeLoading > 0 ? totalSizeWeights / totalSizeLoading : 0;\n return {\n numLoadedModels: Object.values(modelStats).length,\n numEnabledModels: undefined,\n numDefinedModels: Object.keys(instance.models).length,\n percentageLoaded,\n totalSizeFromManifest,\n totalSizeWeights,\n totalSizeLoading,\n totalSizeEnabled: undefined,\n modelStats: Object.values(modelStats),\n };\n};\n\nexport function reset(instance: Human): void {\n // if (instance.config.debug) log('resetting loaded models');\n for (const model of Object.keys(instance.models)) instance.models[model as keyof Models] = null;\n}\n\n/** Load method preloads all instance.configured models on-demand */\nexport async function load(instance: Human): Promise {\n if (env.initial) reset(instance);\n if (instance.config.hand.enabled) { // handpose model is a combo that must be loaded as a whole\n if (!instance.models.handpose && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n if (!instance.models.handskeleton && instance.config.hand.landmarks && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n }\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body.modelPath?.includes('blazepose')) instance.models.blazepose = blazepose.loadPose(instance.config);\n if (instance.config.body.enabled && !instance.models.blazeposedetect && instance.config.body['detector'] && instance.config.body['detector'].modelPath) instance.models.blazeposedetect = blazepose.loadDetect(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body.modelPath?.includes('efficientpose')) instance.models.efficientpose = efficientpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body.modelPath?.includes('movenet')) instance.models.movenet = movenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body.modelPath?.includes('posenet')) instance.models.posenet = posenet.load(instance.config);\n if (instance.config.face.enabled && !instance.models.facedetect) instance.models.facedetect = blazeface.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.antispoof?.enabled && !instance.models.antispoof) instance.models.antispoof = antispoof.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.liveness?.enabled && !instance.models.liveness) instance.models.liveness = liveness.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description?.enabled && !instance.models.faceres) instance.models.faceres = faceres.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion?.enabled && !instance.models.emotion) instance.models.emotion = emotion.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.iris?.enabled && !instance.config.face.attention?.enabled && !instance.models.faceiris) instance.models.faceiris = iris.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.mesh?.enabled && !instance.models.facemesh) instance.models.facemesh = facemesh.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['gear']?.enabled && !instance.models.gear) instance.models.gear = gear.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetage) instance.models.ssrnetage = ssrnetAge.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetgender) instance.models.ssrnetgender = ssrnetGender.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['mobilefacenet']?.enabled && !instance.models.mobilefacenet) instance.models.mobilefacenet = mobilefacenet.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['insightface']?.enabled && !instance.models.insightface) instance.models.insightface = insightface.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handtrack && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handtrack = handtrack.loadDetect(instance.config);\n if (instance.config.hand.enabled && instance.config.hand.landmarks && !instance.models.handskeleton && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handskeleton = handtrack.loadSkeleton(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object.modelPath?.includes('centernet')) instance.models.centernet = centernet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object.modelPath?.includes('nanodet')) instance.models.nanodet = nanodet.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = segmentation.load(instance.config);\n\n // models are loaded in parallel asynchronously so lets wait until they are actually loaded\n for await (const model of Object.keys(instance.models)) {\n if (instance.models[model as keyof Models] && typeof instance.models[model as keyof Models] !== 'undefined') {\n instance.models[model as keyof Models] = await instance.models[model as keyof Models];\n }\n }\n}\n\nlet instance: Human;\nexport interface KernelOps { name: string, url: string, missing: string[], ops: string[] }\n\nexport function validateModel(newInstance: Human | null, model: GraphModel | null, name: string): KernelOps | null {\n if (newInstance) instance = newInstance;\n if (!model) return null;\n if (!instance) log('instance not registred');\n if (!instance.config.validateModels) return null;\n const simpleOps = ['const', 'placeholder', 'noop', 'pad', 'squeeze', 'add', 'sub', 'mul', 'div'];\n const ignoreOps = ['biasadd', 'fusedbatchnormv3', 'matmul'];\n const ops: string[] = [];\n const missing: string[] = [];\n interface Op { name: string, category: string, op: string }\n const url = model['modelUrl'] as string;\n const executor = model['executor'];\n if (executor?.graph?.nodes) {\n for (const kernel of Object.values(executor.graph.nodes)) {\n const op = (kernel as Op).op.toLowerCase();\n if (!ops.includes(op)) ops.push(op);\n }\n } else {\n if (!executor && instance.config.debug) {\n log('model not loaded', name);\n }\n }\n for (const op of ops) {\n if (!simpleOps.includes(op) // exclude simple ops\n && !ignoreOps.includes(op) // exclude specific ops\n && !instance.env.kernels.includes(op) // check actual kernel ops\n && !instance.env.kernels.includes(op.replace('_', '')) // check variation without _\n && !instance.env.kernels.includes(op.replace('native', '')) // check standard variation\n && !instance.env.kernels.includes(op.replace('v2', ''))) { // check non-versioned variation\n missing.push(op);\n }\n }\n if (instance.config.debug && missing.length > 0) log('model validation failed:', name, missing);\n return missing.length > 0 ? { name, missing, ops, url } : null;\n}\n\nexport function validate(newInstance: Human): { name: string, missing: string[] }[] {\n instance = newInstance;\n const missing: KernelOps[] = [];\n for (const defined of Object.keys(instance.models)) {\n const model: GraphModel | null = instance.models[defined as keyof Models] as GraphModel | null;\n if (!model) continue;\n const res = validateModel(instance, model, defined);\n if (res) missing.push(res);\n }\n return missing;\n}\n", "/**\n * GEAR [gender/emotion/age/race] model implementation\n *\n * Based on: [**GEAR Predictor**](https://github.com/Udolf15/GEAR-Predictor)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Gender, Race } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nexport interface GearType { age: number, gender: Gender, genderScore: number, race: { score: number, race: Race }[] }\nlet model: GraphModel | null;\nconst last: GearType[] = [];\nconst raceNames = ['white', 'black', 'asian', 'indian', 'other'];\nconst ageWeights = [15, 23, 28, 35.5, 45.5, 55.5, 65];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.gear?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n const skipFrame = skipped < (config.face.gear?.skipFrames || 0);\n const skipTime = (config.face.gear?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n // t.resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape[2], model?.inputs[0].shape[1]], false);\n const box = [[0.0, 0.10, 0.90, 0.90]]; // empyrical values for top, left, bottom, right\n t.resize = tf.image.cropAndResize(image, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const obj: GearType = { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n if (config.face.gear?.enabled) [t.age, t.gender, t.race] = model.execute(t.resize, ['age_output', 'gender_output', 'race_output']) as Tensor[];\n const gender = await t.gender.data();\n obj.gender = gender[0] > gender[1] ? 'male' : 'female';\n obj.genderScore = Math.round(100 * (gender[0] > gender[1] ? gender[0] : gender[1])) / 100;\n const race = await t.race.data();\n for (let i = 0; i < race.length; i++) {\n if (race[i] > (config.face.gear?.minConfidence || 0.2)) obj.race.push({ score: Math.round(100 * race[i]) / 100, race: raceNames[i] as Race });\n }\n obj.race.sort((a, b) => b.score - a.score);\n // {0: 'Below20', 1: '21-25', 2: '26-30', 3: '31-40',4: '41-50', 5: '51-60', 6: 'Above60'}\n const ageDistribution = Array.from(await t.age.data());\n const ageSorted = ageDistribution.map((a, i) => [ageWeights[i], a]).sort((a, b) => b[1] - a[1]);\n let age = ageSorted[0][0]; // pick best starting point\n for (let i = 1; i < ageSorted.length; i++) age += ageSorted[i][1] * (ageSorted[i][0] - age); // adjust with each other choice by weight\n obj.age = Math.round(10 * age) / 10;\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from './types';\n\nexport const constants: Record = {\n tf255: 255,\n tf1: 1,\n tf2: 2,\n tf05: 0.5,\n tf127: 127.5,\n rgb: [0.2989, 0.5870, 0.1140],\n};\n\nexport function init() {\n constants.tf255 = tf.scalar(255, 'float32');\n constants.tf1 = tf.scalar(1, 'float32');\n constants.tf2 = tf.scalar(2, 'float32');\n constants.tf05 = tf.scalar(0.5, 'float32');\n constants.tf127 = tf.scalar(127.5, 'float32');\n constants.rgb = tf.tensor1d([0.2989, 0.5870, 0.1140], 'float32'); // factors for red/green/blue colors when converting to grayscale\n}\n", "/**\n * Age model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\n\nlet model: GraphModel | null;\nconst last: { age: number }[] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet'].modelPathAge);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ age: number }> {\n if (!model) return { age: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs || !model.inputs[0] || !model.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.mul(t.resize, constants.tf255);\n const obj = { age: 0 };\n if (config.face['ssrnet']?.enabled) t.age = model.execute(t.enhance) as Tensor;\n if (t.age) {\n const data = await t.age.data();\n obj.age = Math.trunc(10 * data[0]) / 10;\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Gender model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Gender } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: { gender: Gender, genderScore: number }[] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet']?.modelPathGender);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count): Promise<{ gender: Gender, genderScore: number }> {\n if (!model) return { gender: 'unknown', genderScore: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.gender && (last[idx]?.genderScore > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.tidy(() => {\n const [red, green, blue] = tf.split(t.resize, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const normalize = tf.mul(tf.sub(grayscale, constants.tf05), 2); // range grayscale:-1..1\n return normalize;\n });\n const obj: { gender: Gender, genderScore: number } = { gender: 'unknown', genderScore: 0 };\n if (config.face['ssrnet']?.enabled) t.gender = model.execute(t.enhance) as Tensor;\n const data = await t.gender.data();\n obj.gender = data[0] > data[1] ? 'female' : 'male'; // returns two values 0..1, bigger one is prediction\n obj.genderScore = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: number[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.antispoof?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model || !model?.['executor']) return 0;\n const skipTime = (config.face.antispoof?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.antispoof?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nexport const meshAnnotations: Record = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n // lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291], // 11\n // lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291], // 10\n // lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308], // 11\n // lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308], // 11\n lipsUpperOuter: [185, 40, 39, 37, 0, 267, 269, 270, 409],\n lipsLowerOuter: [61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [191, 80, 81, 82, 13, 312, 311, 310, 415],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n lipsLowerSemiOuter: [76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306],\n lipsUpperSemiOuter: [184, 74, 73, 72, 11, 302, 303, 304, 408],\n lipsLowerSemiInner: [62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292],\n lipsUpperSemiInner: [183, 42, 41, 38, 12, 268, 271, 272, 407],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173], // 7\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133], // 9\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190], // 7\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243], // 9\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189], // 7\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244], // 9\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245], // 9\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193], // 8\n rightEyebrowLower: [35, 124, 46, 53, 52, 65], // 6\n rightEyeIris: [473, 474, 475, 476, 477], // 5\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const meshLandmarks: Record = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, meshAnnotations.midwayBetweenEyes[0]],\n};\n\nexport const blazeFaceLandmarks: Record = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nexport const irisIndices: { key: string, indices: number[] }[] = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] }, // 7 x 3d\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] }, // 7 x 3d\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] }, // 7 x 3d\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] }, // 7 x 3d\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] }, // 9 x 3d\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] }, // 9 x 3d\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] }, // 9 x 3d\n { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] }, // 8 x 3d\n { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] }, // 6 x 3d\n];\n\nexport const UV468: [number, number][] = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468: number[] = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68: number[] = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33: number[] = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7: number[] = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68: number[] = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33: number[] = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7: number[] = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n\n// https://github.com/tensorflow/tfjs-models/blob/master/face-landmarks-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = [number, number][];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const pairsLips: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nexport const pairsLeftEye: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nexport const pairsLeftEyebrow: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nexport const pairsLeftIris: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nexport const pairsRightEye: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nexport const pairsRightEyebrow: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nexport const pairsRightIris: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nexport const pairsFaceContour: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389],\n [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397],\n [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172],\n [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162],\n [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const contourKeypoints = {\n lips: connectionsToIndices(pairsLips),\n leftEye: connectionsToIndices(pairsLeftEye),\n leftEyebrow: connectionsToIndices(pairsLeftEyebrow),\n leftIris: connectionsToIndices(pairsLeftIris),\n rightEye: connectionsToIndices(pairsRightEye),\n rightEyebrow: connectionsToIndices(pairsRightEyebrow),\n rightIris: connectionsToIndices(pairsRightIris),\n faceOval: connectionsToIndices(pairsFaceContour),\n};\n\nexport const pairsFaceMesh: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11],\n [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72],\n [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175],\n [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73],\n [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74],\n [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40],\n [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76],\n [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56],\n [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21],\n [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144],\n [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91],\n [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85],\n [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193],\n [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247],\n [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117],\n [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98],\n [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209],\n [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47],\n [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67],\n [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230],\n [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46],\n [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46],\n [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236],\n [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154],\n [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57],\n [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28],\n [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113],\n [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62],\n [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64],\n [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41],\n [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170],\n [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122],\n [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89],\n [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63],\n [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14],\n [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100],\n [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88],\n [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215],\n [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43],\n [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81],\n [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229],\n [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107],\n [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129],\n [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117],\n [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3],\n [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220],\n [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71],\n [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188],\n [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164],\n [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38],\n [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206],\n [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165],\n [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214],\n [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171],\n [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84],\n [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201],\n [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57],\n [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214],\n [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44],\n [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64],\n [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2],\n [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24],\n [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26],\n [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189],\n [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29],\n [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247],\n [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147],\n [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187],\n [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114],\n [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217],\n [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110],\n [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356],\n [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357],\n [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333],\n [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9],\n [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418],\n [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450],\n [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313],\n [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335],\n [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423],\n [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307],\n [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421],\n [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426],\n [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322],\n [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456],\n [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417],\n [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355],\n [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382],\n [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443],\n [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431],\n [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446],\n [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458],\n [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372],\n [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274],\n [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269],\n [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266],\n [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265],\n [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424],\n [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366],\n [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423],\n [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432],\n [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394],\n [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352],\n [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295],\n [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323],\n [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358],\n [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374],\n [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6],\n [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344],\n [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195],\n [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283],\n [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282],\n [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338],\n [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292],\n [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442],\n [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441],\n [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300],\n [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263],\n [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436],\n [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370],\n [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293],\n [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330],\n [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440],\n [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459],\n [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354],\n [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315],\n [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366],\n [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291],\n [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264],\n [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352],\n [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433],\n [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462],\n [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255],\n [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252],\n [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441],\n [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257],\n [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459],\n [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290],\n [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341],\n [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357],\n [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420],\n [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372],\n [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133],\n [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33],\n [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263],\n [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466],\n [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72],\n [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73],\n [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152],\n [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74],\n [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184],\n [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185],\n [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77],\n [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190],\n [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54],\n [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145],\n [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181],\n [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16],\n [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245],\n [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30],\n [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111],\n [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240],\n [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198],\n [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114],\n [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109],\n [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231],\n [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124],\n [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70],\n [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3],\n [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26],\n [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43],\n [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56],\n [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124],\n [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96],\n [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235],\n [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42],\n [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140],\n [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193],\n [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179],\n [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68],\n [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15],\n [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120],\n [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89],\n [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138],\n [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57],\n [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41],\n [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118],\n [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66],\n [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142],\n [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118],\n [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196],\n [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156],\n [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122],\n [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164],\n [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12],\n [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31],\n [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98],\n [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237],\n [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179],\n [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181],\n [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184],\n [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186],\n [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218],\n [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45],\n [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235],\n [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97],\n [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230],\n [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232],\n [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222],\n [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224],\n [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213],\n [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192],\n [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188],\n [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174],\n [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25],\n [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264],\n [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350],\n [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299],\n [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151],\n [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424],\n [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449],\n [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18],\n [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434],\n [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301],\n [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280],\n [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335],\n [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396],\n [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413],\n [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168],\n [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417],\n [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381],\n [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365],\n [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395],\n [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335],\n [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250],\n [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292],\n [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354],\n [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426],\n [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371],\n [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290],\n [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422],\n [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422],\n [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358],\n [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331],\n [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395],\n [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296],\n [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285],\n [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329],\n [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331],\n [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8],\n [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351],\n [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397],\n [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248],\n [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175],\n [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295],\n [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356],\n [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308],\n [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265],\n [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285],\n [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457],\n [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394],\n [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410],\n [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268],\n [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298],\n [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420],\n [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344],\n [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274],\n [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316],\n [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323],\n [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306],\n [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372],\n [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366],\n [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435],\n [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328],\n [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359],\n [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253],\n [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286],\n [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258],\n [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309],\n [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305],\n [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453],\n [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343],\n [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360],\n [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265],\n [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './facemeshcoords';\nimport { constants } from '../tfjs/constants';\nimport type { Box, Point } from '../result';\nimport { env } from '../util/env';\n\nexport const createBox = (startEndTensor) => ({ startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]), endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]) });\n\nexport const disposeBox = (t) => tf.dispose([t.startPoint, t.endPoint]);\n\nexport const getBoxSize = (box): [number, number] => [Math.abs(box.endPoint[0] - box.startPoint[0]), Math.abs(box.endPoint[1] - box.startPoint[1])];\n\nexport const getBoxCenter = (box): [number, number, number] => [box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2, box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2, 1];\n\nexport const clampBox = (box, input): Box => (box ? [\n Math.trunc(Math.max(0, box.startPoint[0])),\n Math.trunc(Math.max(0, box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), box.endPoint[0]) - Math.max(0, box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), box.endPoint[1]) - Math.max(0, box.startPoint[1])),\n] : [0, 0, 0, 0]);\n\nexport const getRawBox = (box, input): Box => (box ? [\n box.startPoint[0] / (input.shape[2] || 0),\n box.startPoint[1] / (input.shape[1] || 0),\n (box.endPoint[0] - box.startPoint[0]) / (input.shape[2] || 0),\n (box.endPoint[1] - box.startPoint[1]) / (input.shape[1] || 0),\n] : [0, 0, 0, 0]);\n\nexport const scaleBoxCoordinates = (box, factor) => {\n const startPoint: Point = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint: Point = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const cutAndResize = (box, image, cropSize) => {\n const h = image.shape[1];\n const w = image.shape[2];\n const cutBox = [box.startPoint[1] / h, box.startPoint[0] / w, box.endPoint[1] / h, box.endPoint[0] / w];\n const crop = tf.image.cropAndResize(image, [cutBox], [0], cropSize);\n const norm = tf.div(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n};\n\nexport const enlargeBox = (box, factor) => {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize: [number, number] = [factor * size[0] / 2, factor * size[1] / 2];\n return { startPoint: [center[0] - halfSize[0], center[1] - halfSize[1]] as Point, endPoint: [center[0] + halfSize[0], center[1] + halfSize[1]] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const squarifyBox = (box) => {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize = Math.max(...size) / 2;\n return { startPoint: [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)] as Point, endPoint: [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const calculateLandmarksBoundingBox = (landmarks) => {\n const x = landmarks.map((d) => d[0]);\n const y = landmarks.map((d) => d[1]);\n return { startPoint: [Math.min(...x), Math.min(...y)] as Point, endPoint: [Math.max(...x), Math.max(...y)] as Point, landmarks };\n};\n\nexport const fixedRotationMatrix = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n\nexport const normalizeRadians = (angle: number) => angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n\nexport const computeRotation = (point1, point2) => normalizeRadians(Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]));\n\nexport const radToDegrees = (rad) => rad * 180 / Math.PI;\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport const dot = (v1: number[], v2: number[]) => {\n let product = 0;\n for (let i = 0; i < v1.length; i++) product += v1[i] * v2[i];\n return product;\n};\n\nexport const getColumnFrom2DArr = (arr, columnIndex) => {\n const column: number[] = [];\n for (let i = 0; i < arr.length; i++) column.push(arr[i][columnIndex]);\n return column;\n};\n\nexport const multiplyTransformMatrices = (mat1, mat2) => {\n const product: number[][] = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n return product;\n};\n\nexport const buildRotationMatrix = (rotation, center) => {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n};\n\nexport const invertTransformMatrix = (matrix) => {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [-dot(rotationComponent[0], translationComponent), -dot(rotationComponent[1], translationComponent)];\n return [rotationComponent[0].concat(invertedTranslation[0]), rotationComponent[1].concat(invertedTranslation[1]), [0, 0, 1]];\n};\n\nexport const rotatePoint = (homogeneousCoordinate, rotationMatrix) => [dot(homogeneousCoordinate, rotationMatrix[0]), dot(homogeneousCoordinate, rotationMatrix[1])];\n\nexport const xyDistanceBetweenPoints = (a, b) => Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n\nexport function generateAnchors(inputSize: number) {\n const spec = inputSize === 192\n ? { strides: [4], anchors: [1] } // facemesh-detector\n : { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] }; // blazeface\n const anchors: [number, number][] = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) anchors.push([anchorX, anchorY]);\n }\n }\n }\n return anchors;\n}\n\nexport function transformRawCoords(coordsRaw, box, angle, rotationMatrix, inputSize) {\n const boxSize = getBoxSize(box);\n const coordsScaled = coordsRaw.map((coord) => ([ // scaled around zero-point\n (boxSize[0] / inputSize) * (coord[0] - (inputSize / 2)),\n (boxSize[1] / inputSize) * (coord[1] - (inputSize / 2)),\n (coord[2] || 0),\n ]));\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n const coordsRotationMatrix = largeAngle ? buildRotationMatrix(angle, [0, 0]) : fixedRotationMatrix;\n const coordsRotated = largeAngle ? coordsScaled.map((coord) => ([...rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = largeAngle ? invertTransformMatrix(rotationMatrix) : fixedRotationMatrix;\n const boxCenter = getBoxCenter(box);\n const offsets = [dot(boxCenter, inverseRotationMatrix[0]), dot(boxCenter, inverseRotationMatrix[1])];\n return coordsRotated.map((coord) => ([\n Math.trunc(coord[0] + offsets[0]),\n Math.trunc(coord[1] + offsets[1]),\n Math.trunc(coord[2] || 0),\n ]));\n}\n\nexport function correctFaceRotation(rotate, box, input, inputSize) {\n const symmetryLine = (box.landmarks.length >= coords.meshLandmarks.count)\n ? coords.meshLandmarks.symmetryLine\n : coords.blazeFaceLandmarks.symmetryLine;\n let angle = 0; // default\n let rotationMatrix = fixedRotationMatrix; // default\n let face; // default\n\n if (rotate && env.kernels.includes('rotatewithoffset')) {\n angle = computeRotation(box.landmarks[symmetryLine[0]], box.landmarks[symmetryLine[1]]);\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n if (largeAngle) { // perform rotation only if angle is sufficiently high\n const center: Point = getBoxCenter(box);\n const centerRaw: Point = [center[0] / input.shape[2], center[1] / input.shape[1]];\n const rotated = tf.image.rotateWithOffset(input, angle, 0, centerRaw);\n rotationMatrix = buildRotationMatrix(-angle, center);\n face = cutAndResize(box, rotated, [inputSize, inputSize]);\n tf.dispose(rotated);\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n return [angle, rotationMatrix, face];\n}\n\nexport const findFaceCenter = (mesh) => {\n const x = mesh.map((m) => m[0]);\n const y = mesh.map((m) => m[1]);\n // weighted center\n /*\n const sum = (arr: number[]) => arr.reduce((prev, curr) => prev + curr, 0);\n return [sum(x) / mesh.length, sum(y) / mesh.length];\n */\n // absolute center\n return [Math.min(...x) + (Math.max(...x) - Math.min(...x)) / 2, Math.min(...y) + (Math.max(...y) - Math.min(...y)) / 2];\n};\n\nexport const calculateFaceBox = (mesh, previousBox) => {\n const center = findFaceCenter(mesh);\n const boxSize = getBoxSize(previousBox);\n const calculatedBox = {\n startPoint: [center[0] - boxSize[0] / 2, center[1] - boxSize[1] / 2] as Point,\n endPoint: [center[0] + boxSize[0] / 2, center[1] + boxSize[1] / 2] as Point,\n };\n return calculatedBox;\n};\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './facemeshutil';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport type { Point } from '../result';\n\nconst keypointsCount = 6;\nconst faceBoxScaleFactor = 1.4;\nlet model: GraphModel | null;\nlet anchors: Tensor | null = null;\nlet inputSize = 0;\nlet inputSizeT: Tensor | null = null;\n\ninterface DetectBox { startPoint: Point, endPoint: Point, landmarks: Point[], confidence: number }\n\nexport const size = () => inputSize;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.detector?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model['executor'] && model.inputs[0].shape) ? model.inputs[0].shape[2] : 256;\n inputSizeT = tf.scalar(inputSize, 'int32') as Tensor;\n anchors = tf.tensor2d(util.generateAnchors(inputSize)) as Tensor;\n return model;\n}\n\nfunction decodeBoxes(boxOutputs: Tensor) {\n const t: Record = {};\n t.boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n t.centers = tf.add(t.boxStarts, anchors);\n t.boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n t.boxSizesNormalized = tf.div(t.boxSizes, inputSizeT);\n t.centersNormalized = tf.div(t.centers, inputSizeT);\n t.halfBoxSize = tf.div(t.boxSizesNormalized, constants.tf2);\n t.starts = tf.sub(t.centersNormalized, t.halfBoxSize);\n t.ends = tf.add(t.centersNormalized, t.halfBoxSize);\n t.startNormalized = tf.mul(t.starts, inputSizeT);\n t.endNormalized = tf.mul(t.ends, inputSizeT);\n const boxes = tf.concat2d([t.startNormalized, t.endNormalized], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n\nexport async function getBoxes(inputImage: Tensor, config: Config) {\n // sanity check on input\n if ((!inputImage) || (inputImage['isDisposedInternal']) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return [];\n const t: Record = {};\n t.resized = tf.image.resizeBilinear(inputImage, [inputSize, inputSize]);\n t.div = tf.div(t.resized, constants.tf127);\n t.normalized = tf.sub(t.div, constants.tf05);\n const res = model?.execute(t.normalized) as Tensor[];\n if (Array.isArray(res) && res.length > 2) { // pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n t.concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n t.concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n t.concat = tf.concat([t.concat512, t.concat384], 1);\n t.batch = tf.squeeze(t.concat, 0);\n } else if (Array.isArray(res)) { // new facemesh-detection tfhub model\n t.batch = tf.squeeze(res[0]);\n } else { // original blazeface tfhub model\n t.batch = tf.squeeze(res);\n }\n tf.dispose(res);\n t.boxes = decodeBoxes(t.batch);\n t.logits = tf.slice(t.batch, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.logits);\n t.scores = tf.squeeze(t.sigmoid);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0));\n const nms = await t.nms.array() as number[];\n const boxes: DetectBox[] = [];\n const scores = await t.scores.data();\n for (let i = 0; i < nms.length; i++) {\n const confidence = scores[nms[i]];\n if (confidence > (config.face.detector?.minConfidence || 0)) {\n const b: Record = {};\n b.bbox = tf.slice(t.boxes, [nms[i], 0], [1, -1]);\n b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]);\n b.squeeze = tf.squeeze(b.slice);\n b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]);\n const points = await b.bbox.data();\n const rawBox = {\n startPoint: [points[0], points[1]] as Point,\n endPoint: [points[2], points[3]] as Point,\n landmarks: (await b.landmarks.array()) as Point[],\n confidence,\n };\n const scaledBox = util.scaleBoxCoordinates(rawBox, [(inputImage.shape[2] || 0) / inputSize, (inputImage.shape[1] || 0) / inputSize]);\n const enlargedBox = util.enlargeBox(scaledBox, config.face['scale'] || faceBoxScaleFactor);\n const squaredBox = util.squarifyBox(enlargedBox);\n boxes.push(squaredBox);\n Object.keys(b).forEach((tensor) => tf.dispose(b[tensor]));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n", "/* eslint-disable no-multi-spaces */\n\nexport const kpt: string[] = [\n 'nose', // 0\n 'leftEyeInside', // 1\n 'leftEye', // 2\n 'leftEyeOutside', // 3\n 'rightEyeInside', // 4\n 'rightEye', // 5\n 'rightEyeOutside', // 6\n 'leftEar', // 7\n 'rightEar', // 8\n 'leftMouth', // 9\n 'rightMouth', // 10\n 'leftShoulder', // 11\n 'rightShoulder', // 12\n 'leftElbow', // 13\n 'rightElbow', // 14\n 'leftWrist', // 15\n 'rightWrist', // 16\n 'leftPinky', // 17\n 'rightPinky', // 18\n 'leftIndex', // 19\n 'rightIndex', // 20\n 'leftThumb', // 21\n 'rightThumb', // 22\n 'leftHip', // 23\n 'rightHip', // 24\n 'leftKnee', // 25\n 'rightKnee', // 26\n 'leftAnkle', // 27\n 'rightAnkle', // 28\n 'leftHeel', // 29\n 'rightHeel', // 30\n 'leftFoot', // 31\n 'rightFoot', // 32\n 'bodyCenter', // 33\n 'bodyTop', // 34\n 'leftPalm', // 35 // z-coord not ok\n 'leftHand', // 36 // similar to wrist but z-coord not ok\n 'rightPalm', // 37 // z-coord not ok\n 'rightHand', // 38 // similar to wrist but z-coord not ok\n];\n\nexport const connected: Record = {\n shoulders: ['leftShoulder', 'rightShoulder'],\n hips: ['rightHip', 'leftHip'],\n mouth: ['leftMouth', 'rightMouth'],\n leftLegUpper: ['leftHip', 'leftKnee'],\n leftLegLower: ['leftKnee', 'leftAnkle'],\n leftFoot: ['leftAnkle', 'leftHeel', 'leftFoot'],\n leftTorso: ['leftShoulder', 'leftHip'],\n leftArmUpper: ['leftShoulder', 'leftElbow'],\n leftArmLower: ['leftElbow', 'leftWrist'],\n leftHand: ['leftWrist', 'leftPalm'],\n leftHandPinky: ['leftPalm', 'leftPinky'],\n leftHandIndex: ['leftPalm', 'leftIndex'],\n leftHandThumb: ['leftPalm', 'leftThumb'],\n leftEyeOutline: ['leftEyeInside', 'leftEyeOutside'],\n rightLegUpper: ['rightHip', 'rightKnee'],\n rightLegLower: ['rightKnee', 'rightAnkle'],\n rightFoot: ['rightAnkle', 'rightHeel', 'rightFoot'],\n rightTorso: ['rightShoulder', 'rightHip'],\n rightArmUpper: ['rightShoulder', 'rightElbow'],\n rightArmLower: ['rightElbow', 'rightWrist'],\n rightHand: ['rightWrist', 'rightPalm'],\n rightHandPinky: ['rightPalm', 'rightPinky'],\n rightHandIndex: ['rightPalm', 'rightIndex'],\n rightHandThumb: ['rightPalm', 'rightThumb'],\n rightEyeOutline: ['rightEyeInside', 'rightEyeOutside'],\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\nimport type { Box } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nconst inputSize = 224;\nlet anchorTensor: { x, y };\nconst numLayers = 5;\nconst strides = [8, 16, 32, 32, 32];\n\nexport function createAnchors() {\n const anchors: { x: number, y: number }[] = [];\n let layerId = 0;\n while (layerId < numLayers) {\n let anchorCount = 0;\n let lastSameStrideLayer = layerId;\n while (lastSameStrideLayer < strides.length && strides[lastSameStrideLayer] === strides[layerId]) {\n anchorCount += 2;\n lastSameStrideLayer++;\n }\n const stride = strides[layerId];\n const featureMapHeight = Math.ceil(inputSize / stride);\n const featureMapWidth = Math.ceil(inputSize / stride);\n for (let y = 0; y < featureMapHeight; ++y) {\n for (let x = 0; x < featureMapWidth; ++x) {\n for (let anchorId = 0; anchorId < anchorCount; ++anchorId) {\n anchors.push({ x: (x + 0.5) / featureMapWidth, y: (y + 0.5) / featureMapHeight });\n }\n }\n }\n layerId = lastSameStrideLayer;\n }\n anchorTensor = { x: tf.tensor1d(anchors.map((a) => a.x)), y: tf.tensor1d(anchors.map((a) => a.y)) };\n}\n\nconst cropFactor = [5.0, 5.0];\nfunction decodeBoxes(boxesTensor, anchor): Tensor {\n return tf.tidy(() => {\n const split = tf.split(boxesTensor, 12, 1); // first 4 are box data [x,y,w,h] and 4 are keypoints data [x,y] for total of 12\n let xCenter = tf.squeeze(split[0]);\n let yCenter = tf.squeeze(split[1]);\n let width = tf.squeeze(split[2]);\n let height = tf.squeeze(split[3]);\n xCenter = tf.add(tf.div(xCenter, inputSize), anchor.x);\n yCenter = tf.add(tf.div(yCenter, inputSize), anchor.y);\n width = tf.mul(tf.div(width, inputSize), cropFactor[0]);\n height = tf.mul(tf.div(height, inputSize), cropFactor[1]);\n const xMin = tf.sub(xCenter, tf.div(width, 2));\n const yMin = tf.sub(yCenter, tf.div(height, 2));\n const boxes = tf.stack([xMin, yMin, width, height], 1);\n return boxes;\n });\n}\n\nexport async function decode(boxesTensor: Tensor, logitsTensor: Tensor, config: Config, outputSize: [number, number]): Promise {\n const t: Record = {};\n t.boxes = decodeBoxes(boxesTensor, anchorTensor);\n t.scores = tf.sigmoid(logitsTensor);\n t.argmax = tf.argMax(t.scores);\n const i = (await t.argmax.data())[0];\n const scores = await t.scores.data();\n const detected: { box: Box, boxRaw: Box, score: number }[] = [];\n const minScore = config.body?.['detector']?.minConfidence || 0;\n if (scores[i] >= minScore) {\n const boxes = await t.boxes.array();\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[1] * outputSize[1], boxRaw[2] * outputSize[0], boxRaw[3] * outputSize[1]];\n // console.log(box);\n detected.push({ box, boxRaw, score: scores[i] });\n }\n /*\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, 1, config.body.detector?.minConfidence || 0.1, config.body.detector?.iouThreshold || 0.1);\n const boxes = t.boxes.arraySync();\n const scores = t.scores.dataSync();\n const nms = t.nms.dataSync();\n const detected: Array = [];\n for (const i of Array.from(nms)) {\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[0] * outputSize[1], boxRaw[3] * outputSize[0], boxRaw[2] * outputSize[1]];\n detected.push({ box, boxRaw, score: scores[i] });\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return detected;\n}\n", "import type { Point, Box } from '../result';\n\nexport function calc(keypoints: Point[], outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const box: Box = [min[0], min[1], max[0] - min[0], max[1] - min[1]];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function square(keypoints: Point[], outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const center = [(min[0] + max[0]) / 2, (min[1] + max[1]) / 2]; // find center x and y coord of all fingers\n const dist = Math.max(center[0] - min[0], center[1] - min[1], -center[0] + max[0], -center[1] + max[1]); // largest distance from center in any direction\n const box: Box = [Math.trunc(center[0] - dist), Math.trunc(center[1] - dist), Math.trunc(2 * dist), Math.trunc(2 * dist)];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function scale(box: Box, scaleFact: number) {\n const dist = [box[2] * scaleFact, box[3] * scaleFact];\n const newBox: Box = [\n box[0] - (dist[0] - box[2]) / 2,\n box[1] - (dist[1] - box[3]) / 2,\n dist[0],\n dist[1],\n ];\n return newBox;\n}\n\nexport function crop(box: Box) { // [y1, x1, y2, x2] clamped to 0..1\n const yxBox: Box = [Math.max(0, box[1]), Math.max(0, box[0]), Math.min(1, box[3] + box[1]), Math.min(1, box[2] + box[0])];\n return yxBox;\n}\n", "/**\n * BlazePose model implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { log, now } from '../util/util';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, Box, Point, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport * as coords from './blazeposecoords';\nimport * as detect from './blazeposedetector';\nimport * as box from '../util/box';\n\nconst env = { initial: true };\n// const models: [GraphModel | null, GraphModel | null] = [null, null];\nconst models: { detector: GraphModel | null, landmarks: GraphModel | null } = { detector: null, landmarks: null };\nconst inputSize: { detector: [number, number], landmarks: [number, number] } = { detector: [224, 224], landmarks: [256, 256] };\nlet skipped = Number.MAX_SAFE_INTEGER;\nconst outputNodes: { detector: string[], landmarks: string[] } = {\n landmarks: ['ld_3d', 'activation_segmentation', 'activation_heatmap', 'world_3d', 'output_poseflag'],\n detector: [],\n};\n\nlet cache: BodyResult | null = null;\nlet cropBox: Box | undefined;\nlet padding: [number, number][] = [[0, 0], [0, 0], [0, 0], [0, 0]];\nlet lastTime = 0;\n\nconst sigmoid = (x) => (1 - (1 / (1 + Math.exp(x))));\n\nexport async function loadDetect(config: Config): Promise {\n if (env.initial) models.detector = null;\n if (!models.detector && config.body['detector'] && config.body['detector'].modelPath || '') {\n models.detector = await loadModel(config.body['detector'].modelPath);\n const inputs = models.detector?.['executor'] ? Object.values(models.detector.modelSignature['inputs']) : undefined;\n inputSize.detector[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.detector[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug && models.detector) log('cached model:', models.detector['modelUrl']);\n detect.createAnchors();\n return models.detector as GraphModel;\n}\n\nexport async function loadPose(config: Config): Promise {\n if (env.initial) models.landmarks = null;\n if (!models.landmarks) {\n models.landmarks = await loadModel(config.body.modelPath);\n const inputs = models.landmarks?.['executor'] ? Object.values(models.landmarks.modelSignature['inputs']) : undefined;\n inputSize.landmarks[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.landmarks[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models.landmarks['modelUrl']);\n return models.landmarks;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models.detector) await loadDetect(config);\n if (!models.landmarks) await loadPose(config);\n return [models.detector, models.landmarks];\n}\n\nfunction prepareImage(input: Tensor, size: number): Tensor {\n const t: Record = {};\n if (!input?.shape?.[1] || !input?.shape?.[2]) return input;\n let final: Tensor;\n if (cropBox) {\n t.cropped = tf.image.cropAndResize(input, [cropBox], [0], [input.shape[1], input.shape[2]]); // if we have cached box use it to crop input\n }\n if (input.shape[1] !== input.shape[2]) { // only pad if width different than height\n const height: [number, number] = [\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n ];\n const width: [number, number] = [\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n ];\n padding = [\n [0, 0], // dont touch batch\n height, // height before&after\n width, // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(t.cropped || input, padding); // use cropped box if it exists\n t.resize = tf.image.resizeBilinear(t.pad, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else if (input.shape[1] !== size) { // if input needs resizing\n t.resize = tf.image.resizeBilinear(t.cropped || input, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else { // if input is already in a correct resolution just normalize it\n final = tf.div(t.cropped || input, constants.tf255);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nfunction rescaleKeypoints(keypoints: BodyKeypoint[], outputSize: [number, number]): BodyKeypoint[] {\n for (const kpt of keypoints) { // first rescale due to padding\n kpt.position = [\n Math.trunc(kpt.position[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0] - padding[2][0]),\n Math.trunc(kpt.position[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1] - padding[1][0]),\n kpt.position[2] as number,\n ];\n kpt.positionRaw = [kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1], 2 * (kpt.position[2] as number) / (outputSize[0] + outputSize[1])];\n }\n if (cropBox) { // second rescale due to cropping\n for (const kpt of keypoints) {\n kpt.positionRaw = [\n kpt.positionRaw[0] + cropBox[1], // correct offset due to crop\n kpt.positionRaw[1] + cropBox[0], // correct offset due to crop\n kpt.positionRaw[2] as number,\n ];\n kpt.position = [\n Math.trunc(kpt.positionRaw[0] * outputSize[0]),\n Math.trunc(kpt.positionRaw[1] * outputSize[1]),\n kpt.positionRaw[2] as number,\n ];\n }\n }\n return keypoints;\n}\n\nfunction fixKeypoints(keypoints: BodyKeypoint[]) {\n // palm z-coord is incorrect around near-zero so we approximate it\n const leftPalm = keypoints.find((k) => k.part === 'leftPalm') as BodyKeypoint;\n const leftWrist = keypoints.find((k) => k.part === 'leftWrist') as BodyKeypoint;\n const leftIndex = keypoints.find((k) => k.part === 'leftIndex') as BodyKeypoint;\n leftPalm.position[2] = ((leftWrist.position[2] || 0) + (leftIndex.position[2] || 0)) / 2;\n const rightPalm = keypoints.find((k) => k.part === 'rightPalm') as BodyKeypoint;\n const rightWrist = keypoints.find((k) => k.part === 'rightWrist') as BodyKeypoint;\n const rightIndex = keypoints.find((k) => k.part === 'rightIndex') as BodyKeypoint;\n rightPalm.position[2] = ((rightWrist.position[2] || 0) + (rightIndex.position[2] || 0)) / 2;\n}\n\nasync function detectLandmarks(input: Tensor, config: Config, outputSize: [number, number]): Promise {\n /**\n * t.ld: 39 keypoints [x,y,z,score,presence] normalized to input size\n * t.segmentation:\n * t.heatmap:\n * t.world: 39 keypoints [x,y,z] normalized to -1..1\n * t.poseflag: body score\n */\n if (!models.landmarks?.['executor']) return null;\n const t: Record = {};\n [t.ld/* 1,195(39*5) */, t.segmentation/* 1,256,256,1 */, t.heatmap/* 1,64,64,39 */, t.world/* 1,117(39*3) */, t.poseflag/* 1,1 */] = models.landmarks?.execute(input, outputNodes.landmarks) as Tensor[]; // run model\n const poseScore = (await t.poseflag.data())[0];\n const points = await t.ld.data();\n const distances = await t.world.data();\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); // dont need tensors after this\n const keypointsRelative: BodyKeypoint[] = [];\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n const score = sigmoid(points[depth * i + 3]);\n const presence = sigmoid(points[depth * i + 4]);\n const adjScore = Math.trunc(100 * score * presence * poseScore) / 100;\n const positionRaw: Point = [points[depth * i + 0] / inputSize.landmarks[0], points[depth * i + 1] / inputSize.landmarks[1], points[depth * i + 2] + 0];\n const position: Point = [Math.trunc(outputSize[0] * positionRaw[0]), Math.trunc(outputSize[1] * positionRaw[1]), positionRaw[2] as number];\n const distance: Point = [distances[depth * i + 0], distances[depth * i + 1], distances[depth * i + 2] + 0];\n keypointsRelative.push({ part: coords.kpt[i] as BodyLandmark, positionRaw, position, distance, score: adjScore });\n }\n if (poseScore < (config.body.minConfidence || 0)) return null;\n fixKeypoints(keypointsRelative);\n const keypoints: BodyKeypoint[] = rescaleKeypoints(keypointsRelative, outputSize); // keypoints were relative to input image which is padded\n const kpts = keypoints.map((k) => k.position);\n const boxes = box.calc(kpts, [outputSize[0], outputSize[1]]); // now find boxes based on rescaled keypoints\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body = { id: 0, score: Math.trunc(100 * poseScore) / 100, box: boxes.box, boxRaw: boxes.boxRaw, keypoints, annotations };\n return body;\n}\n\n/*\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nfunction rescaleBoxes(boxes: Array, outputSize: [number, number]): Array {\n for (const b of boxes) {\n b.box = [\n Math.trunc(b.box[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n Math.trunc(b.box[2] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[3] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n ];\n b.boxRaw = [b.box[0] / outputSize[0], b.box[1] / outputSize[1], b.box[2] / outputSize[0], b.box[3] / outputSize[1]];\n }\n return boxes;\n}\n\nasync function detectBoxes(input: Tensor, config: Config, outputSize: [number, number]) {\n const t: Record = {};\n t.res = models.detector?.execute(input, ['Identity']) as Tensor; //\n t.logitsRaw = tf.slice(t.res, [0, 0, 0], [1, -1, 1]);\n t.boxesRaw = tf.slice(t.res, [0, 0, 1], [1, -1, -1]);\n t.logits = tf.squeeze(t.logitsRaw);\n t.boxes = tf.squeeze(t.boxesRaw);\n const boxes = await detect.decode(t.boxes, t.logits, config, outputSize);\n rescaleBoxes(boxes, outputSize);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n*/\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const outputSize: [number, number] = [input.shape[2] || 0, input.shape[1] || 0];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && cache !== null) {\n skipped++;\n } else {\n const t: Record = {};\n /*\n if (config.body['detector'] && config.body['detector']['enabled']) {\n t.detector = await prepareImage(input, 224);\n const boxes = await detectBoxes(t.detector, config, outputSize);\n }\n */\n t.landmarks = prepareImage(input, 256); // padded and resized\n cache = await detectLandmarks(t.landmarks, config, outputSize);\n /*\n cropBox = [0, 0, 1, 1]; // reset crop coordinates\n if (cache?.boxRaw && config.skipAllowed) {\n const cx = (2.0 * cache.boxRaw[0] + cache.boxRaw[2]) / 2;\n const cy = (2.0 * cache.boxRaw[1] + cache.boxRaw[3]) / 2;\n let size = cache.boxRaw[2] > cache.boxRaw[3] ? cache.boxRaw[2] : cache.boxRaw[3];\n size = (size * 1.0) / 2; // enlarge and half it\n if (cx > 0.1 && cx < 0.9 && cy > 0.1 && cy < 0.9 && size > 0.1) { // only update if box is sane\n const y = 0; // cy - size;\n const x = cx - size;\n cropBox = [y, x, y + 1, x + 1]; // [y0,x0,y1,x1] used for cropping but width/height are not yet implemented so we only reposition image to center of body\n }\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n lastTime = now();\n skipped = 0;\n }\n return cache ? [cache] : [];\n}\n", "/**\n * CoCo Labels used by object detection implementations\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * CenterNet object detection model implementation\n *\n * Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n // fakeOps(['floormod'], config);\n model = await loadModel(config.object.modelPath);\n const inputs = model?.['executor'] ? Object.values(model.modelSignature['inputs']) : undefined;\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor | null, outputShape: [number, number], config: Config) {\n if (!res) return [];\n const t: Record = {};\n const results: ObjectResult[] = [];\n const detections = await res.array() as number[][][];\n t.squeeze = tf.squeeze(res);\n const arr = tf.split(t.squeeze, 6, 1) as Tensor[]; // x1, y1, x2, y2, score, class\n t.stack = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n t.boxes = tf.squeeze(t.stack);\n t.scores = tf.squeeze(arr[4]);\n t.classes = tf.squeeze(arr[5]);\n tf.dispose([res, ...arr]);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, config.object.maxDetected, config.object.iouThreshold, (config.object.minConfidence || 0));\n const nms = await t.nms.data();\n let i = 0;\n for (const id of Array.from(nms)) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n const label = labels[classVal].label as ObjectType;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw: Box = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ];\n const box: Box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2] || 0, input.shape[1] || 0] as [number, number];\n const resize = tf.image.resizeBilinear(input, [inputSize, inputSize]);\n const objectT = config.object.enabled ? model?.execute(resize, ['tower_0/detections']) as Tensor : null;\n lastTime = now();\n tf.dispose(resize);\n\n const obj = await process(objectT, outputSize, config);\n last = obj;\n\n resolve(obj);\n });\n}\n", "export const kpt: string[] = [\n 'head',\n 'neck',\n 'rightShoulder',\n 'rightElbow',\n 'rightWrist',\n 'chest',\n 'leftShoulder',\n 'leftElbow',\n 'leftWrist',\n 'bodyCenter',\n 'rightHip',\n 'rightKnee',\n 'rightAnkle',\n 'leftHip',\n 'leftKnee',\n 'leftAnkle',\n];\n\nexport const connected: Record = {\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "/**\n * EfficientPose model implementation\n *\n * Based on: [**EfficientPose**](https://github.com/daniegr/EfficientPose)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as coords from './efficientposecoords';\nimport { constants } from '../tfjs/constants';\nimport type { BodyResult, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet lastTime = 0;\nconst cache: BodyResult = { id: 0, keypoints: [], box: [0, 0, 0, 0], boxRaw: [0, 0, 0, 0], score: 0, annotations: {} as Record };\n\n// const keypoints: Array = [];\n// let box: Box = [0, 0, 0, 0];\n// let boxRaw: Box = [0, 0, 0, 0];\n// let score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nasync function max2d(inputs, minScore): Promise<[number, number, number]> {\n const [width, height] = inputs.shape;\n const reshaped = tf.reshape(inputs, [height * width]); // combine all data\n const max = tf.max(reshaped, 0);\n const newScore: number = (await max.data())[0]; // get highest score\n if (newScore > minScore) { // skip coordinate calculation is score is too low\n const coordinates = tf.argMax(reshaped, 0);\n const mod = tf.mod(coordinates, width);\n const x = (await mod.data())[0];\n const div = tf.div(coordinates, width);\n const y: number = (await div.data())[0];\n tf.dispose([reshaped, max, coordinates, mod, div]);\n return [x, y, newScore];\n }\n tf.dispose([reshaped, max]);\n return [0, 0, newScore];\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && Object.keys(cache.keypoints).length > 0) {\n skipped++;\n return [cache];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model?.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, constants.tf2);\n const norm = tf.sub(enhance, constants.tf1);\n return norm;\n });\n let resT;\n if (config.body.enabled) resT = model?.execute(tensor);\n lastTime = now();\n tf.dispose(tensor);\n\n if (resT) {\n cache.keypoints.length = 0;\n const squeeze = tf.squeeze(resT);\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = tf.unstack(squeeze, 2);\n tf.dispose(squeeze);\n\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = await max2d(stack[id], config.body.minConfidence);\n if (partScore > (config.body.minConfidence || 0)) {\n cache.keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n cache.score = cache.keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = cache.keypoints.map((a) => a.position[0]);\n const y = cache.keypoints.map((a) => a.position[1]);\n cache.box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = cache.keypoints.map((a) => a.positionRaw[0]);\n const yRaw = cache.keypoints.map((a) => a.positionRaw[1]);\n cache.boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = cache.keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = cache.keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n cache.annotations[name] = pt;\n }\n resolve([cache]);\n });\n}\n", "/**\n * Emotion model implementation\n *\n * [**Oarriaga**](https://github.com/oarriaga/face_classification)\n */\n\nimport type { Emotion } from '../result';\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model: GraphModel | null;\nconst last: { score: number, emotion: Emotion }[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.emotion?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ score: number, emotion: Emotion }[]> {\n if (!model) return [];\n const skipFrame = skipped < (config.face.emotion?.skipFrames || 0);\n const skipTime = (config.face.emotion?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj: { score: number, emotion: Emotion }[] = [];\n if (config.face.emotion?.enabled) {\n const t: Record = {};\n const inputSize = model?.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n t.resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n // const box = [[0.15, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const resize = tf.image.cropAndResize(image, box, [0], [inputSize, inputSize]);\n // [t.red, t.green, t.blue] = tf.split(t.resize, 3, 3);\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n // t.redNorm = tf.mul(t.red, rgb[0]);\n // t.greenNorm = tf.mul(t.green, rgb[1]);\n // t.blueNorm = tf.mul(t.blue, rgb[2]);\n // t.grayscale = tf.addN([t.redNorm, t.greenNorm, t.blueNorm]);\n t.channels = tf.mul(t.resize, constants.rgb);\n t.grayscale = tf.sum(t.channels, 3, true);\n t.grayscaleSub = tf.sub(t.grayscale, constants.tf05);\n t.grayscaleMul = tf.mul(t.grayscaleSub, constants.tf2);\n t.emotion = model?.execute(t.grayscaleMul) as Tensor; // result is already in range 0..1, no need for additional activation\n lastTime = now();\n const data = await t.emotion.data();\n for (let i = 0; i < data.length; i++) {\n if (data[i] > (config.face.emotion.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] as Emotion });\n }\n obj.sort((a, b) => b.score - a.score);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * MobileFaceNet model implementation\n *\n * Based on: [**BecauseofAI MobileFace**](https://github.com/becauseofAI/MobileFace)\n *\n * Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: number[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['mobilefacenet']?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n/*\n// convert to black&white to avoid colorization impact\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\nconst [red, green, blue] = tf.split(crop, 3, 3);\nconst redNorm = tf.mul(red, rgb[0]);\nconst greenNorm = tf.mul(green, rgb[1]);\nconst blueNorm = tf.mul(blue, rgb[2]);\nconst grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\nconst merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n\n// optional increase image contrast\n// or do it per-channel so mean is done on each channel\n// or do it based on histogram\nconst mean = merge.mean();\nconst factor = 5;\nconst contrast = merge.sub(mean).mul(factor).add(mean);\n*/\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model?.['executor']) return [];\n const skipFrame = skipped < (config.face['mobilefacenet']?.skipFrames || 0);\n const skipTime = (config.face['mobilefacenet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: number[] = [];\n if (config.face['mobilefacenet']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model.execute(t.crop) as Tensor;\n /*\n // optional normalize outputs with l2 normalization\n const scaled = tf.tidy(() => {\n const l2 = res.norm('euclidean');\n const scale = res.div(l2);\n return scale;\n });\n\n // optional reduce feature vector complexity\n const reshape = tf.reshape(res, [128, 2]); // split 256 vectors into 128 x 2\n const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n */\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "/**\n * InsightFace model implementation\n *\n * Based on: [**DeepInsight InsightFace**](https://github.com/deepinsight/insightface)\n *\n * Alternative face embedding detection\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: number[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['insightface'].modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model?.['executor']) return [];\n const skipFrame = skipped < (config.face['insightface']?.skipFrames || 0);\n const skipTime = (config.face['insightface']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: number[] = [];\n if (config.face['insightface']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model.execute(t.crop) as Tensor;\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "import * as coords from './facemeshcoords';\nimport * as util from './facemeshutil';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { Point } from '../result';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\n\nconst irisEnlarge = 2.3;\n\nconst leftOutline = coords.meshAnnotations.leftEyeLower0;\nconst rightOutline = coords.meshAnnotations.rightEyeLower0;\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.iris?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model?.['executor'] && model.inputs?.[0].shape) ? model.inputs[0].shape[2] : 0;\n if (inputSize === -1) inputSize = 64;\n return model;\n}\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates and update the z coordinate to be an average of the original and the new.\nexport function replaceIrisCoords(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.irisIndices.length; i++) {\n const { key, indices } = coords.irisIndices[i];\n const originalIndices = coords.meshAnnotations[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0],\n newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n\nexport const getLeftToRightEyeDepthDifference = (rawCoords) => {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n};\n\n// Returns a box describing a cropped region around the eye fit for passing to the iris model.\nexport const getEyeBox = (rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, meshSize, flip = false) => {\n const box = util.squarifyBox(util.enlargeBox(util.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), irisEnlarge));\n const boxSize = util.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / meshSize,\n box.startPoint[0] / meshSize, box.endPoint[1] / meshSize,\n box.endPoint[0] / meshSize,\n ]], [0], [inputSize, inputSize]);\n if (flip && env.kernels.includes('flipleftright')) {\n const flipped = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n tf.dispose(crop);\n crop = flipped;\n }\n return { box, boxSize, crop };\n};\n\n// Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\nexport const getEyeCoords = (eyeData, eyeBox, eyeBoxSize, flip = false) => {\n const eyeRawCoords: Point[] = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / inputSize)) : (x / inputSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / inputSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n};\n\n// The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\nexport const getAdjustedIrisCoords = (rawCoords, irisCoords, direction) => {\n const upperCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n};\n\nexport async function augmentIris(rawCoords, face, meshSize) {\n if (!model?.['executor']) return rawCoords;\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], meshSize, true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1], meshSize, true);\n const combined = tf.concat([leftEyeCrop, rightEyeCrop]);\n tf.dispose(leftEyeCrop);\n tf.dispose(rightEyeCrop);\n const eyePredictions = model.execute(combined) as Tensor;\n tf.dispose(combined);\n const eyePredictionsData = await eyePredictions.data();\n tf.dispose(eyePredictions);\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize, false);\n const leftToRightEyeDepthDifference = getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', null);\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged so we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n const newCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n return newCoords;\n}\n", "// @tensorflow/tfjs-models/face-landmark-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = [number, number][];\n\nconst LIPS_CONNECTIONS: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nconst LEFT_EYE_CONNECTIONS: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nconst LEFT_EYEBROW_CONNECTIONS: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nconst LEFT_IRIS_CONNECTIONS: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nconst RIGHT_EYE_CONNECTIONS: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nconst RIGHT_EYEBROW_CONNECTIONS: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nconst RIGHT_IRIS_CONNECTIONS: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nconst FACE_OVAL_CONNECTIONS: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389], [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397], [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172], [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162], [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const MEDIAPIPE_FACE_MESH_CONNECTED_KEYPOINTS_PAIRS: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11], [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72], [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175], [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73], [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74], [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40], [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76], [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56], [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21], [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144], [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91], [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85], [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193], [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247], [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117], [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98], [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209], [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47], [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67], [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230], [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46], [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46], [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236], [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154], [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57], [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28], [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113], [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62], [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64], [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41], [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170], [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122], [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89], [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63], [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14], [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100], [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88], [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215], [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43], [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81], [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229], [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107], [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129], [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117], [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3], [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220], [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71], [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188], [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164], [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38], [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206], [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165], [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214], [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171], [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84], [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201], [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57], [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214], [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44], [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64], [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2], [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24], [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26], [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189], [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29], [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247], [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147], [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187], [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114], [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217], [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110], [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356], [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357], [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333], [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9], [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418], [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450], [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313], [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335], [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423], [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307], [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421], [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426], [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322], [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456], [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417], [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355], [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382], [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443], [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431], [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446], [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458], [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372], [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274], [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269], [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266], [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265], [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424], [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366], [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423], [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432], [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394], [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352], [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295], [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323], [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358], [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374], [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6], [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344], [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195], [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283], [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282], [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338], [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292], [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442], [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441], [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300], [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263], [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436], [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370], [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293], [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330], [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440], [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459], [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354], [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315], [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366], [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291], [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264], [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352], [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433], [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462], [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255], [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252], [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441], [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257], [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459], [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290], [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341], [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357], [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420], [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372], [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133], [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33], [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263], [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466], [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72], [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73], [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152], [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74], [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184], [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185], [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77], [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190], [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54], [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145], [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181], [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16], [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245], [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30], [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111], [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240], [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198], [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114], [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109], [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231], [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124], [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70], [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3], [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26], [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43], [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56], [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124], [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96], [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235], [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42], [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140], [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193], [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179], [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68], [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15], [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120], [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89], [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138], [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57], [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41], [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118], [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66], [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142], [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118], [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196], [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156], [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122], [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164], [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12], [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31], [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98], [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237], [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179], [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181], [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184], [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186], [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218], [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45], [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235], [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97], [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230], [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232], [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222], [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224], [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213], [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192], [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188], [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174], [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25], [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264], [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350], [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299], [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151], [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424], [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449], [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18], [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434], [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301], [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280], [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335], [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396], [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413], [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168], [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417], [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381], [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365], [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395], [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335], [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250], [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292], [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354], [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426], [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371], [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290], [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422], [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422], [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358], [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331], [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395], [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296], [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285], [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329], [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331], [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8], [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351], [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397], [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248], [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175], [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295], [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356], [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308], [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265], [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285], [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457], [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394], [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410], [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268], [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298], [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420], [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344], [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274], [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316], [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323], [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306], [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372], [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366], [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435], [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328], [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359], [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253], [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286], [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258], [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309], [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305], [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453], [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343], [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360], [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265], [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR = {\n lips: connectionsToIndices(LIPS_CONNECTIONS),\n leftEye: connectionsToIndices(LEFT_EYE_CONNECTIONS),\n leftEyebrow: connectionsToIndices(LEFT_EYEBROW_CONNECTIONS),\n leftIris: connectionsToIndices(LEFT_IRIS_CONNECTIONS),\n rightEye: connectionsToIndices(RIGHT_EYE_CONNECTIONS),\n rightEyebrow: connectionsToIndices(RIGHT_EYEBROW_CONNECTIONS),\n rightIris: connectionsToIndices(RIGHT_IRIS_CONNECTIONS),\n faceOval: connectionsToIndices(FACE_OVAL_CONNECTIONS),\n};\n\nconst indexLabelPairs: [number, string][] = Object.entries(MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR)\n .map(([label, indices]) => indices.map((index) => [index, label] as [number, string]))\n .flat();\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS = new Map(indexLabelPairs);\n\ntype AssignAverage = number[];\nexport interface LandmarksRefinementConfig {\n indexesMapping: number[]; // Maps indexes of the given set of landmarks to indexes of the resulting set of landmarks. Should be non empty and contain the same amount of indexes as landmarks in the corresponding input\n zRefinement: 'none'|'copy'|AssignAverage; // Z refinement instructions.\n}\n\nexport const LANDMARKS_REFINEMENT_LIPS_CONFIG = [\n 61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291, // Lower outer.\n 185, 40, 39, 37, 0, 267, 269, 270, 409, // Upper outer(excluding corners).\n 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, // Lower inner.\n 191, 80, 81, 82, 13, 312, 311, 310, 415, // Upper inner(excluding corners).\n 76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306, // Lower semi - outer.\n 184, 74, 73, 72, 11, 302, 303, 304, 408, // Upper semi - outer(excluding corners).\n 62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292, // Lower semi - inner.\n 183, 42, 41, 38, 12, 268, 271, 272, 407, // Upper semi - inner(excluding corners).\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG = [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // upper contour (excluding corners).\n 130, 25, 110, 24, 23, 22, 26, 112, 243, // Halo x2 lower contour.\n 247, 30, 29, 27, 28, 56, 190, // Halo x2 upper contour (excluding corners).\n 226, 31, 228, 229, 230, 231, 232, 233, 244, // Halo x3 lower contour.\n 113, 225, 224, 223, 222, 221, 189, // Halo x3 upper contour (excluding corners).\n 35, 124, 46, 53, 52, 65, // Halo x4 upper contour (no lower because of mesh structure) or eyebrow inner contour.\n 143, 111, 117, 118, 119, 120, 121, 128, 245, // Halo x5 lower contour.\n 156, 70, 63, 105, 66, 107, 55, 193, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG = [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n 359, 255, 339, 254, 253, 252, 256, 341, 463, // Halo x2 lower contour.\n 467, 260, 259, 257, 258, 286, 414, // Halo x2 upper contour (excluding corners).\n 446, 261, 448, 449, 450, 451, 452, 453, 464, // Halo x3 lower contour.\n 342, 445, 444, 443, 442, 441, 413, // Halo x3 upper contour (excluding corners).\n 265, 353, 276, 283, 282, 295, // Halo x4 upper contour (no lower because of mesh structure) or/ eyebrow inner contour.\n 372, 340, 346, 347, 348, 349, 350, 357, 465, // Halo x5 lower contour.\n 383, 300, 293, 334, 296, 336, 285, 417, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_IRIS_CONFIG = [\n 468, // Center.\n 469, // Iris right edge.\n 470, // Iris top edge.\n 471, // Iris left edge.\n 472, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // Upper contour (excluding corners).\n];\n*/\n\nexport const LANDMARKS_REFINEMENT_RIGHT_IRIS_CONFIG = [\n 473, // Center.\n 474, // Iris right edge.\n 475, // Iris top edge.\n 476, // Iris left edge.\n 477, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n];\n*/\n", "import * as constants from './constants';\nimport type { Tensor } from '../tfjs/types';\n\nexport async function augment(rawCoords, results: Tensor[]) {\n const t: Record = { // all attention models produce 2d results so it needs to be later augmented with correct z-coords\n // mesh: results[0], // already have it in rawCoords // output_mesh_identity\n // flag: results[1], // already processed in parent // conv_faceflag\n lips: await results.filter((r) => r.size === 160)[0].data() as Float32Array, // 80 x 2d = 160 // output_lips\n irisL: await results.filter((r) => r.size === 10)[0].data() as Float32Array, // 5 x 2d = 10 // output_right_iris\n eyeL: await results.filter((r) => r.size === 142)[0].data() as Float32Array, // 71 x 2d = 142 // output_right_eye\n irisR: await results.filter((r) => r.size === 10)[1].data() as Float32Array, // 5 x 2d = 10 // output_left_iris\n eyeR: await results.filter((r) => r.size === 142)[1].data() as Float32Array, // 71 x 2d = 142// output_left_eye\n };\n\n // augment iris: adds additional 5 keypoints per eye\n const irisLDepth = constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisL.length / 2; i++) rawCoords.push([t.irisL[2 * i + 0], t.irisL[2 * i + 1], irisLDepth]);\n const irisRDepth = constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisR.length / 2; i++) rawCoords.push([t.irisR[2 * i + 0], t.irisR[2 * i + 1], irisRDepth]);\n\n // augment eyes: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.eyeL.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]] = [t.eyeL[2 * i + 0], t.eyeL[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]][2]];\n for (let i = 0; i < t.eyeR.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]] = [t.eyeR[2 * i + 0], t.eyeR[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]][2]];\n\n // augment lips: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.lips.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]] = [t.lips[2 * i + 0], t.lips[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]][2]];\n\n return rawCoords;\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n *\n * Based on:\n * - [**MediaPipe BlazeFace**](https://drive.google.com/file/d/1f39lSzU5Oq-j_OXgS67KfN5wNsoeAZ4V/view)\n * - Facial Spacial Geometry: [**MediaPipe FaceMesh**](https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view)\n * - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view)\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as util from './facemeshutil';\nimport * as coords from './facemeshcoords';\nimport * as iris from './iris';\nimport * as attention from './attention';\nimport { histogramEqualization } from '../image/enhance';\nimport { env } from '../util/env';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { FaceResult, FaceLandmark, Point } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectBox { startPoint: Point, endPoint: Point, landmarks: Point[], confidence: number }\n\nconst cache = {\n boxes: [] as DetectBox[],\n skipped: Number.MAX_SAFE_INTEGER,\n timestamp: 0,\n};\n\nlet model: GraphModel | null = null;\nlet inputSize = 0;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n // reset cached boxes\n const skipTime = (config.face.detector?.skipTime || 0) > (now() - cache.timestamp);\n const skipFrame = cache.skipped < (config.face.detector?.skipFrames || 0);\n if (!config.skipAllowed || !skipTime || !skipFrame || cache.boxes.length === 0) {\n cache.boxes = await blazeface.getBoxes(input, config); // get results from blazeface detector\n cache.timestamp = now();\n cache.skipped = 0;\n } else {\n cache.skipped++;\n }\n const faces: FaceResult[] = [];\n const newCache: DetectBox[] = [];\n let id = 0;\n const size = inputSize;\n for (let i = 0; i < cache.boxes.length; i++) {\n const box = cache.boxes[i];\n let angle = 0;\n let rotationMatrix;\n const face: FaceResult = { // init face result\n id: id++,\n mesh: [],\n meshRaw: [],\n box: [0, 0, 0, 0],\n boxRaw: [0, 0, 0, 0],\n score: 0,\n boxScore: 0,\n faceScore: 0,\n // contoursRaw: [],\n // contours: [],\n annotations: {} as Record,\n };\n\n // optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop\n [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size());\n if (config.filter.equalization) {\n const equilized = face.tensor ? await histogramEqualization(face.tensor) : undefined;\n tf.dispose(face.tensor);\n if (equilized) face.tensor = equilized;\n }\n face.boxScore = Math.round(100 * box.confidence) / 100;\n if (!config.face.mesh?.enabled) { // mesh not enabled, return resuts from detector only\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n } else if (!model) { // mesh enabled, but not loaded\n if (config.debug) log('face mesh detection requested, but model is not loaded');\n } else { // mesh enabled\n if (config.face.attention?.enabled && !env.kernels.includes('atan2')) {\n tf.dispose(face.tensor);\n return faces;\n }\n const results = model.execute(face.tensor as Tensor) as Tensor[];\n const confidenceT = results.find((t) => t.shape[t.shape.length - 1] === 1) as Tensor;\n const faceConfidence = await confidenceT.data();\n face.faceScore = Math.round(100 * faceConfidence[0]) / 100;\n\n if (face.faceScore < (config.face.detector?.minConfidence || 1)) { // low confidence in detected mesh\n box.confidence = face.faceScore; // reset confidence of cached box\n if (config.face.mesh.keepInvalid) {\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 1), pt[1] / (input.shape[1] || 1), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n }\n } else {\n const meshT = results.find((t) => t.shape[t.shape.length - 1] === 1404) as Tensor;\n const coordsReshaped = tf.reshape(meshT, [-1, 3]);\n let rawCoords = await coordsReshaped.array();\n tf.dispose(coordsReshaped);\n if (config.face.attention?.enabled) {\n rawCoords = await attention.augment(rawCoords, results); // augment iris results using attention model results\n } else if (config.face.iris?.enabled) {\n rawCoords = await iris.augmentIris(rawCoords, face.tensor, inputSize); // run iris model and augment results\n }\n face.mesh = util.transformRawCoords(rawCoords, box, angle, rotationMatrix, inputSize); // get processed mesh\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.meshAnnotations)) face.annotations[key] = coords.meshAnnotations[key].map((index) => face.mesh[index]); // add annotations\n face.score = face.faceScore;\n const calculatedBox = { ...util.calculateFaceBox(face.mesh, box), confidence: box.confidence, landmarks: box.landmarks };\n face.box = util.clampBox(calculatedBox, input);\n face.boxRaw = util.getRawBox(calculatedBox, input);\n /*\n const contoursT = results.find((t) => t.shape[t.shape.length - 1] === 266) as Tensor;\n const contoursData = contoursT && await contoursT.data(); // 133 x 2d points\n face.contoursRaw = [];\n for (let j = 0; j < contoursData.length / 2; j++) face.contoursRaw.push([contoursData[2 * j + 0] / inputSize, contoursData[2 * j + 1] / inputSize]);\n face.contours = face.contoursRaw.map((c) => [Math.trunc((input.shape[2] || 1) * c[0]), Math.trunc((input.shape[1] || 1) * c[1])]);\n */\n newCache.push(calculatedBox);\n }\n tf.dispose(results);\n }\n if (face.score > (config.face.detector?.minConfidence || 1)) faces.push(face);\n else tf.dispose(face.tensor);\n }\n cache.boxes = newCache; // reset cache\n return faces;\n}\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (config.face.attention?.enabled && model?.['signature']) {\n if (Object.keys(model?.['signature']?.outputs || {}).length < 6) model = null;\n }\n if (!model) {\n if (config.face.attention?.enabled) model = await loadModel(config.face.attention.modelPath);\n else model = await loadModel(config.face.mesh?.modelPath);\n } else if (config.debug) {\n log('cached model:', model['modelUrl']);\n }\n inputSize = (model['executor'] && model?.inputs?.[0].shape) ? model?.inputs?.[0].shape[2] : 256;\n return model;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * FaceRes model implementation\n *\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n *\n * Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport type { Gender, Race } from '../result';\n\nexport interface FaceRes { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] }\n\nlet model: GraphModel | null;\nconst last: {\n age: number,\n gender: Gender,\n genderScore: number,\n descriptor: number[],\n}[] = [];\n\nlet lastTime = 0;\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.description?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport function enhance(input): Tensor {\n const tensor = (input.image || input.tensor || input) as Tensor; // input received from detector is already normalized to 0..1, input is also assumed to be straightened\n if (!model?.inputs[0].shape) return tensor; // model has no shape so no point continuing\n const crop: Tensor = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const norm: Tensor = tf.mul(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n /*\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n */\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model?.['executor']) return { age: 0, gender: 'unknown', genderScore: 0, descriptor: [] };\n const skipFrame = skipped < (config.face.description?.skipFrames || 0);\n const skipTime = (config.face.description?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj = {\n age: 0 as number,\n gender: 'unknown' as Gender,\n genderScore: 0 as number,\n descriptor: [] as number[],\n };\n\n if (config.face.description?.enabled) {\n const enhanced = enhance(image);\n const resT = model?.execute(enhanced) as Tensor[];\n lastTime = now();\n tf.dispose(enhanced);\n const genderT = resT.find((t) => t.shape[1] === 1) as Tensor;\n const gender = await genderT.data();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > (config.face.description.minConfidence || 0)) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);\n const age: number = (await argmax.data())[0];\n tf.dispose(argmax);\n const ageT = resT.find((t) => t.shape[1] === 100) as Tensor;\n const all = await ageT.data();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n const descriptor = desc ? await desc.data() : [] as number[];\n obj.descriptor = Array.from(descriptor);\n resT.forEach((t) => tf.dispose(t));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Point } from '../result';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]] as Point;\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]] as Point;\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]] as Point;\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize] as Point;\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]] as Point;\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: number[] = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: number[][] = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "/**\n * HandPose model implementation constants\n * See `handpose.ts` for entry point\n */\n\nexport const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport * as anchors from './handposeanchors';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Point } from '../result';\nimport type { Config } from '../config';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model: GraphModel) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = this?.model?.inputs?.[0]?.shape?.[2] || 0;\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n const t: Record = {};\n t.boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n t.boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n t.div = tf.div(t.boxOffsets, this.inputSizeTensor);\n t.boxCenterPoints = tf.add(t.div, this.anchorsTensor);\n t.halfBoxSizes = tf.div(t.boxSizes, this.doubleInputSizeTensor);\n t.sub = tf.sub(t.boxCenterPoints, t.halfBoxSizes);\n t.startPoints = tf.mul(t.sub, this.inputSizeTensor);\n t.add = tf.add(t.boxCenterPoints, t.halfBoxSizes);\n t.endPoints = tf.mul(t.add, this.inputSizeTensor);\n const res = tf.concat2d([t.startPoints, t.endPoints], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res as Tensor;\n }\n\n normalizeLandmarks(rawPalmLandmarks, index: number) {\n const t: Record = {};\n t.reshape = tf.reshape(rawPalmLandmarks, [-1, 7, 2]);\n t.div = tf.div(t.reshape, this.inputSizeTensor);\n t.landmarks = tf.add(t.div, this.anchors[index] ? this.anchors[index] : 0);\n const res = tf.mul(t.landmarks, this.inputSizeTensor);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res as Tensor;\n }\n\n async predict(input: Tensor, config: Config): Promise<{ startPoint: Point; endPoint: Point, palmLandmarks: Point[]; confidence: number }[]> {\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(input, [this.inputSize, this.inputSize]);\n t.div = tf.div(t.resize, constants.tf127);\n t.image = tf.sub(t.div, constants.tf1);\n t.batched = this.model.execute(t.image) as Tensor;\n t.predictions = tf.squeeze(t.batched);\n t.slice = tf.slice(t.predictions, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.slice);\n t.scores = tf.squeeze(t.sigmoid);\n const scores = await t.scores.data();\n t.boxes = tf.slice(t.predictions, [0, 1], [-1, 4]);\n t.norm = this.normalizeBoxes(t.boxes);\n // box detection is flaky so we look for 3x boxes than we need results\n t.nms = await tf.image.nonMaxSuppressionAsync(t.norm, t.scores, 3 * (config.hand?.maxDetected || 1), config.hand.iouThreshold, config.hand.minConfidence);\n const nms = await t.nms.array() as number[];\n const hands: { startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number }[] = [];\n for (const index of nms) {\n const p: Record = {};\n p.box = tf.slice(t.norm, [index, 0], [1, -1]);\n p.slice = tf.slice(t.predictions, [index, 5], [1, 14]);\n p.norm = this.normalizeLandmarks(p.slice, index);\n p.palmLandmarks = tf.reshape(p.norm, [-1, 2]);\n const box = await p.box.data();\n const startPoint = box.slice(0, 2) as unknown as Point;\n const endPoint = box.slice(2, 4) as unknown as Point;\n const palmLandmarks = await p.palmLandmarks.array();\n const hand = { startPoint, endPoint, palmLandmarks, confidence: scores[index] };\n const scaled = util.scaleBoxCoordinates(hand, [(input.shape[2] || 1) / this.inputSize, (input.shape[1] || 0) / this.inputSize]);\n hands.push(scaled);\n Object.keys(p).forEach((tensor) => tf.dispose(p[tensor]));\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return hands;\n }\n}\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport type * as detector from './handposedetector';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { now } from '../util/util';\nimport type { Point } from '../result';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\nlet lastTime = 0;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: ({ startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number } | null)[];\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n this.inputSize = this.handPoseModel?.inputs?.[0].shape?.[2] || 0;\n this.storedBoxes = [];\n this.skipped = Number.MAX_SAFE_INTEGER;\n this.detectedHands = 0;\n }\n\n calculateLandmarksBoundingBox(landmarks) { // eslint-disable-line class-methods-use-this\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return util.enlargeBox(util.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = util.enlargeBox(util.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = util.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...util.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames\n let boxes;\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = this.skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n boxes = await this.handDetector.predict(image, config);\n this.skipped = 0;\n }\n if (config.skipAllowed) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: { landmarks: Point[], confidence: number, boxConfidence: number, fingerConfidence: number, box: { topLeft: Point, bottomRight: Point } }[] = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = util.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && env.kernels.includes('rotatewithoffset') ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = util.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = tf.div(croppedInput, constants.tf255);\n tf.dispose(croppedInput);\n tf.dispose(rotatedImage);\n const [confidenceT, keypoints] = this.handPoseModel.execute(handImage) as Tensor[];\n lastTime = now();\n tf.dispose(handImage);\n const confidence = (await confidenceT.data())[0];\n tf.dispose(confidenceT);\n if (confidence >= config.hand.minConfidence / 4) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = await keypointsReshaped.array();\n tf.dispose(keypoints);\n tf.dispose(keypointsReshaped);\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n tf.dispose(keypoints);\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = util.enlargeBox(util.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: 0,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n landmarks: [],\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n if (hands.length > config.hand.maxDetected) hands.length = config.hand.maxDetected;\n return hands;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nexport const Finger = {\n thumb: 0,\n index: 1,\n middle: 2,\n ring: 3,\n pinky: 4,\n all: [0, 1, 2, 3, 4], // just for convenience\n nameMapping: { 0: 'thumb', 1: 'index', 2: 'middle', 3: 'ring', 4: 'pinky' },\n // Describes mapping of joints based on the 21 points returned by handpose.\n // [0] Palm\n // [1-4] Thumb\n // [5-8] Index\n // [9-12] Middle\n // [13-16] Ring\n // [17-20] Pinky\n pointsMapping: {\n 0: [[0, 1], [1, 2], [2, 3], [3, 4]],\n 1: [[0, 5], [5, 6], [6, 7], [7, 8]],\n 2: [[0, 9], [9, 10], [10, 11], [11, 12]],\n 3: [[0, 13], [13, 14], [14, 15], [15, 16]],\n 4: [[0, 17], [17, 18], [18, 19], [19, 20]],\n },\n getName: (value) => Finger.nameMapping[value],\n getPoints: (value) => Finger.pointsMapping[value],\n};\n\nexport const FingerCurl = {\n none: 0,\n half: 1,\n full: 2,\n nameMapping: { 0: 'none', 1: 'half', 2: 'full' },\n getName: (value) => FingerCurl.nameMapping[value],\n};\n\nexport const FingerDirection = {\n verticalUp: 0,\n verticalDown: 1,\n horizontalLeft: 2,\n horizontalRight: 3,\n diagonalUpRight: 4,\n diagonalUpLeft: 5,\n diagonalDownRight: 6,\n diagonalDownLeft: 7,\n nameMapping: { 0: 'verticalUp', 1: 'verticalDown', 2: 'horizontalLeft', 3: 'horizontalRight', 4: 'diagonalUpRight', 5: 'diagonalUpLeft', 6: 'diagonalDownRight', 7: 'diagonalDownLeft' },\n getName: (value) => FingerDirection.nameMapping[value],\n};\n\nexport class FingerGesture {\n name;\n curls;\n directions;\n weights;\n weightsRelative;\n\n constructor(name) {\n // name (should be unique)\n this.name = name;\n this.curls = {};\n this.directions = {};\n this.weights = [1.0, 1.0, 1.0, 1.0, 1.0];\n this.weightsRelative = [1.0, 1.0, 1.0, 1.0, 1.0];\n }\n\n curl(finger, curl, confidence) {\n if (typeof this.curls[finger] === 'undefined') this.curls[finger] = [];\n this.curls[finger].push([curl, confidence]);\n }\n\n direction(finger, position, confidence) {\n if (!this.directions[finger]) this.directions[finger] = [];\n this.directions[finger].push([position, confidence]);\n }\n\n weight(finger, weight) {\n this.weights[finger] = weight;\n // recalculate relative weights\n const total = this.weights.reduce((a, b) => a + b, 0);\n this.weightsRelative = this.weights.map((el) => el * 5 / total);\n }\n\n matchAgainst(detectedCurls, detectedDirections) {\n let confidence = 0.0;\n // look at the detected curl of each finger and compare with\n // the expected curl of this finger inside current gesture\n for (const fingerIdx in detectedCurls) {\n const detectedCurl = detectedCurls[fingerIdx];\n const expectedCurls = this.curls[fingerIdx];\n if (typeof expectedCurls === 'undefined') {\n // no curl description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible curl of this specific finger\n for (const [expectedCurl, score] of expectedCurls) {\n if (detectedCurl === expectedCurl) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n // same for detected direction of each finger\n for (const fingerIdx in detectedDirections) {\n const detectedDirection = detectedDirections[fingerIdx];\n const expectedDirections = this.directions[fingerIdx];\n if (typeof expectedDirections === 'undefined') {\n // no direction description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible direction of this specific finger\n for (const [expectedDirection, score] of expectedDirections) {\n if (detectedDirection === expectedDirection) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n return confidence / 10;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nimport { Finger, FingerCurl, FingerDirection, FingerGesture } from './fingerdef';\n\nexport const { thumb, index, middle, ring, pinky } = Finger;\nexport const { none, half, full } = FingerCurl;\nexport const { verticalUp, verticalDown, horizontalLeft, horizontalRight, diagonalUpRight, diagonalUpLeft, diagonalDownRight, diagonalDownLeft } = FingerDirection;\n\n// describe thumbs up gesture \uD83D\uDC4D\nconst ThumbsUp = new FingerGesture('thumbs up');\nThumbsUp.curl(thumb, none, 1.0);\nThumbsUp.direction(thumb, verticalUp, 1.0);\nThumbsUp.direction(thumb, diagonalUpLeft, 0.25);\nThumbsUp.direction(thumb, diagonalUpRight, 0.25);\nfor (const finger of [Finger.index, Finger.middle, Finger.ring, Finger.pinky]) {\n ThumbsUp.curl(finger, full, 1.0);\n ThumbsUp.direction(finger, horizontalLeft, 1.0);\n ThumbsUp.direction(finger, horizontalRight, 1.0);\n}\n\n// describe Victory gesture \u270C\uFE0F\nconst Victory = new FingerGesture('victory');\nVictory.curl(thumb, half, 0.5);\nVictory.curl(thumb, none, 0.5);\nVictory.direction(thumb, verticalUp, 1.0);\nVictory.direction(thumb, diagonalUpLeft, 1.0);\nVictory.curl(index, none, 1.0);\nVictory.direction(index, verticalUp, 0.75);\nVictory.direction(index, diagonalUpLeft, 1.0);\nVictory.curl(middle, none, 1.0);\nVictory.direction(middle, verticalUp, 1.0);\nVictory.direction(middle, diagonalUpLeft, 0.75);\nVictory.curl(ring, full, 1.0);\nVictory.direction(ring, verticalUp, 0.2);\nVictory.direction(ring, diagonalUpLeft, 1.0);\nVictory.direction(ring, horizontalLeft, 0.2);\nVictory.curl(pinky, full, 1.0);\nVictory.direction(pinky, verticalUp, 0.2);\nVictory.direction(pinky, diagonalUpLeft, 1.0);\nVictory.direction(pinky, horizontalLeft, 0.2);\nVictory.weight(index, 2);\nVictory.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst Point = new FingerGesture('point');\nPoint.curl(thumb, full, 1.0);\nPoint.curl(index, none, 0.5);\nPoint.curl(middle, full, 0.5);\nPoint.curl(ring, full, 0.5);\nPoint.curl(pinky, full, 0.5);\nPoint.weight(index, 2);\nPoint.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst MiddleFinger = new FingerGesture('middle finger');\nMiddleFinger.curl(thumb, none, 1.0);\nMiddleFinger.curl(index, full, 0.5);\nMiddleFinger.curl(middle, full, 0.5);\nMiddleFinger.curl(ring, full, 0.5);\nMiddleFinger.curl(pinky, full, 0.5);\nMiddleFinger.weight(index, 2);\nMiddleFinger.weight(middle, 2);\n\n// describe Open Palm gesture \u270C\uFE0F\nconst OpenPalm = new FingerGesture('open palm');\nOpenPalm.curl(thumb, none, 0.75);\nOpenPalm.curl(index, none, 0.75);\nOpenPalm.curl(middle, none, 0.75);\nOpenPalm.curl(ring, none, 0.75);\nOpenPalm.curl(pinky, none, 0.75);\n\nexport default [ThumbsUp, Victory, Point, MiddleFinger, OpenPalm];\n", "/**\n * FingerPose algorithm implementation constants\n *\n * Based on: [**FingerPose***](https://github.com/andypotato/fingerpose)\n */\n\n/* eslint-disable camelcase */\n\nimport { Finger, FingerCurl, FingerDirection } from './fingerdef';\nimport Gestures from '../hand/fingergesture';\n\nconst minConfidence = 0.7;\nconst options = {\n // curl estimation\n HALF_CURL_START_LIMIT: 60.0,\n NO_CURL_START_LIMIT: 130.0,\n // direction estimation\n DISTANCE_VOTE_POWER: 1.1,\n SINGLE_ANGLE_VOTE_POWER: 0.9,\n TOTAL_ANGLE_VOTE_POWER: 1.6,\n};\n\nfunction calculateSlope(point1x, point1y, point2x, point2y) {\n const value = (point1y - point2y) / (point1x - point2x);\n let slope = Math.atan(value) * 180 / Math.PI;\n if (slope <= 0) slope = -slope;\n else if (slope > 0) slope = 180 - slope;\n return slope;\n}\n\n// point1, point2 are 2d or 3d point arrays (xy[z])\n// returns either a single scalar (2d) or array of two slopes (3d)\nfunction getSlopes(point1, point2) {\n if (!point1 || !point2) return [0, 0];\n const slopeXY = calculateSlope(point1[0], point1[1], point2[0], point2[1]);\n if (point1.length === 2) return slopeXY;\n const slopeYZ = calculateSlope(point1[1], point1[2], point2[1], point2[2]);\n return [slopeXY, slopeYZ];\n}\n\nfunction angleOrientationAt(angle, weightageAt = 1.0) {\n let isVertical = 0;\n let isDiagonal = 0;\n let isHorizontal = 0;\n if (angle >= 75.0 && angle <= 105.0) isVertical = 1 * weightageAt;\n else if (angle >= 25.0 && angle <= 155.0) isDiagonal = 1 * weightageAt;\n else isHorizontal = 1 * weightageAt;\n return [isVertical, isDiagonal, isHorizontal];\n}\n\nfunction estimateFingerCurl(startPoint, midPoint, endPoint) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const start_mid_z_dist = startPoint[2] - midPoint[2];\n const start_end_z_dist = startPoint[2] - endPoint[2];\n const mid_end_z_dist = midPoint[2] - endPoint[2];\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist + start_mid_z_dist * start_mid_z_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist + start_end_z_dist * start_end_z_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist + mid_end_z_dist * mid_end_z_dist);\n let cos_in = (mid_end_dist * mid_end_dist + start_mid_dist * start_mid_dist - start_end_dist * start_end_dist) / (2 * mid_end_dist * start_mid_dist);\n if (cos_in > 1.0) cos_in = 1.0;\n else if (cos_in < -1.0) cos_in = -1.0;\n let angleOfCurve = Math.acos(cos_in);\n angleOfCurve = (57.2958 * angleOfCurve) % 180;\n let fingerCurl;\n if (angleOfCurve > options.NO_CURL_START_LIMIT) fingerCurl = FingerCurl.none;\n else if (angleOfCurve > options.HALF_CURL_START_LIMIT) fingerCurl = FingerCurl.half;\n else fingerCurl = FingerCurl.full;\n return fingerCurl;\n}\n\nfunction estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n if (max_dist_x === Math.abs(start_end_x_dist)) {\n if (start_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else if (max_dist_x === Math.abs(start_mid_x_dist)) {\n if (start_mid_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else {\n if (mid_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n }\n return estimatedDirection;\n}\n\nfunction estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y) {\n let estimatedDirection;\n if (max_dist_y === Math.abs(start_end_y_dist)) {\n if (start_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else if (max_dist_y === Math.abs(start_mid_y_dist)) {\n if (start_mid_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else {\n if (mid_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n }\n return estimatedDirection;\n}\n\nfunction estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n const reqd_vertical_direction = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n const reqd_horizontal_direction = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n if (reqd_vertical_direction === FingerDirection.verticalUp) {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalUpLeft;\n else estimatedDirection = FingerDirection.diagonalUpRight;\n } else {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalDownLeft;\n else estimatedDirection = FingerDirection.diagonalDownRight;\n }\n return estimatedDirection;\n}\n\nfunction calculateFingerDirection(startPoint, midPoint, endPoint, fingerSlopes) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const max_dist_x = Math.max(Math.abs(start_mid_x_dist), Math.abs(start_end_x_dist), Math.abs(mid_end_x_dist));\n const max_dist_y = Math.max(Math.abs(start_mid_y_dist), Math.abs(start_end_y_dist), Math.abs(mid_end_y_dist));\n let voteVertical = 0.0;\n let voteDiagonal = 0.0;\n let voteHorizontal = 0.0;\n const start_end_x_y_dist_ratio = max_dist_y / (max_dist_x + 0.00001);\n if (start_end_x_y_dist_ratio > 1.5) voteVertical += options.DISTANCE_VOTE_POWER;\n else if (start_end_x_y_dist_ratio > 0.66) voteDiagonal += options.DISTANCE_VOTE_POWER;\n else voteHorizontal += options.DISTANCE_VOTE_POWER;\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist);\n const max_dist = Math.max(start_mid_dist, start_end_dist, mid_end_dist);\n let calc_start_point_x = startPoint[0];\n let calc_start_point_y = startPoint[1];\n let calc_end_point_x = endPoint[0];\n let calc_end_point_y = endPoint[1];\n if (max_dist === start_mid_dist) {\n calc_end_point_x = endPoint[0];\n calc_end_point_y = endPoint[1];\n } else if (max_dist === mid_end_dist) {\n calc_start_point_x = midPoint[0];\n calc_start_point_y = midPoint[1];\n }\n const calcStartPoint = [calc_start_point_x, calc_start_point_y];\n const calcEndPoint = [calc_end_point_x, calc_end_point_y];\n const totalAngle = getSlopes(calcStartPoint, calcEndPoint);\n const votes = angleOrientationAt(totalAngle, options.TOTAL_ANGLE_VOTE_POWER);\n voteVertical += votes[0];\n voteDiagonal += votes[1];\n voteHorizontal += votes[2];\n for (const fingerSlope of fingerSlopes) {\n const fingerVotes = angleOrientationAt(fingerSlope, options.SINGLE_ANGLE_VOTE_POWER);\n voteVertical += fingerVotes[0];\n voteDiagonal += fingerVotes[1];\n voteHorizontal += fingerVotes[2];\n }\n // in case of tie, highest preference goes to Vertical,\n // followed by horizontal and then diagonal\n let estimatedDirection;\n if (voteVertical === Math.max(voteVertical, voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n } else if (voteHorizontal === Math.max(voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n } else {\n estimatedDirection = estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n }\n return estimatedDirection;\n}\n\nfunction estimate(landmarks) {\n // step 1: calculate slopes\n const slopesXY: number[][] = [];\n const slopesYZ: number[][] = [];\n const fingerCurls: number[] = [];\n const fingerDirections: number[] = [];\n if (!landmarks) return { curls: fingerCurls, directions: fingerDirections };\n\n // step 1: calculate slopes\n for (const finger of Finger.all) {\n const points = Finger.getPoints(finger);\n const slopeAtXY: number[] = [];\n const slopeAtYZ: number[] = [];\n for (const point of points) {\n const point1 = landmarks[point[0]];\n const point2 = landmarks[point[1]];\n // calculate single slope\n const slopes = getSlopes(point1, point2);\n const slopeXY = slopes[0];\n const slopeYZ = slopes[1];\n slopeAtXY.push(slopeXY);\n slopeAtYZ.push(slopeYZ);\n }\n slopesXY.push(slopeAtXY);\n slopesYZ.push(slopeAtYZ);\n }\n\n // step 2: calculate orientations\n for (const finger of Finger.all) {\n // start finger predictions from palm - except for thumb\n const pointIndexAt = (finger === Finger.thumb) ? 1 : 0;\n const fingerPointsAt = Finger.getPoints(finger);\n const startPoint = landmarks[fingerPointsAt[pointIndexAt][0]];\n const midPoint = landmarks[fingerPointsAt[pointIndexAt + 1][1]];\n const endPoint = landmarks[fingerPointsAt[3][1]];\n // check if finger is curled\n const fingerCurled = estimateFingerCurl(startPoint, midPoint, endPoint);\n const fingerPosition = calculateFingerDirection(startPoint, midPoint, endPoint, slopesXY[finger].slice(pointIndexAt));\n fingerCurls[finger] = fingerCurled;\n fingerDirections[finger] = fingerPosition;\n }\n return { curls: fingerCurls, directions: fingerDirections };\n}\n\nexport function analyze(keypoints) { // get estimations of curl / direction for each finger\n if (!keypoints || keypoints.length === 0) return null;\n const estimatorRes = estimate(keypoints);\n const landmarks = {};\n for (const fingerIdx of Finger.all) {\n landmarks[Finger.getName(fingerIdx)] = {\n curl: FingerCurl.getName(estimatorRes.curls[fingerIdx]),\n direction: FingerDirection.getName(estimatorRes.directions[fingerIdx]),\n };\n }\n return landmarks;\n}\n\nexport function match(keypoints) { // compare gesture description to each known gesture\n const poses: { name: string, confidence: number }[] = [];\n if (!keypoints || keypoints.length === 0) return poses;\n const estimatorRes = estimate(keypoints);\n for (const gesture of Gestures) {\n const confidence = gesture.matchAgainst(estimatorRes.curls, estimatorRes.directions);\n if (confidence >= minConfidence) poses.push({ name: gesture.name, confidence });\n }\n return poses;\n}\n", "/**\n * HandPose model implementation\n *\n * Based on: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n */\n\nimport { log } from '../util/util';\nimport * as handdetector from './handposedetector';\nimport * as handpipeline from './handposepipeline';\nimport * as fingerPose from './fingerpose';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, Box, Point } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palm: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: HandResult[] = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n const keypoints = predictions[i].landmarks as unknown as Point[];\n let box: Box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: Box = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n const landmarks = fingerPose.analyze(keypoints);\n hands.push({\n id: i,\n score: Math.round(100 * predictions[i].confidence) / 100,\n boxScore: Math.round(100 * predictions[i].boxConfidence) / 100,\n fingerScore: Math.round(100 * predictions[i].fingerConfidence) / 100,\n label: 'hand',\n box,\n boxRaw,\n keypoints,\n annotations: annotations as HandResult['annotations'],\n landmarks: landmarks as HandResult['landmarks'],\n });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (env.initial) {\n handDetectorModel = null;\n handPoseModel = null;\n }\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? loadModel(config.hand.detector?.modelPath) : null,\n config.hand.landmarks ? loadModel(config.hand.skeleton?.modelPath) : null,\n ]);\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = handDetectorModel ? new handdetector.HandDetector(handDetectorModel) : undefined;\n if (handDetector && handPoseModel) handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "/** TFJS custom backend registration */\n\nimport type { Human } from '../human';\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport * as models from '../models';\nimport type { AnyCanvas } from '../exports';\n// import { env } from '../env';\n\nexport const config = {\n name: 'humangl',\n priority: 999,\n canvas: null as null | AnyCanvas,\n gl: null as null | WebGL2RenderingContext,\n extensions: [] as string[] | null,\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions();\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport function register(instance: Human): void {\n // force backend reload if gl context is not valid\n if (instance.config.backend !== 'humangl') return;\n if ((config.name in tf.engine().registry) && !config?.gl?.getParameter(config.gl.VERSION)) {\n log('error: humangl backend invalid context');\n models.reset(instance);\n /*\n log('resetting humangl backend');\n await tf.removeBackend(config.name);\n await register(instance); // re-register\n */\n }\n if (!tf.findBackend(config.name)) {\n try {\n config.canvas = image.canvas(100, 100);\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr);\n if (!config.gl) {\n log('error: cannot get WebGL context');\n return;\n }\n const glv2 = config.gl.getParameter(config.gl.VERSION).includes('2.0');\n if (!glv2) {\n log('override: using fallback webgl backend as webgl 2.0 is not detected');\n instance.config.backend = 'webgl';\n return;\n }\n if (config.canvas) {\n config.canvas.addEventListener('webglcontextlost', (e) => {\n log('error: humangl:', e.type);\n log('possible browser memory leak using webgl or conflict with multiple backend registrations');\n instance.emit('error');\n throw new Error('backend error: webgl context lost');\n // log('resetting humangl backend');\n // env.initial = true;\n // models.reset(instance);\n // await tf.removeBackend(config.name);\n // await register(instance); // re-register\n });\n config.canvas.addEventListener('webglcontextrestored', (e) => {\n log('error: humangl context restored:', e);\n });\n config.canvas.addEventListener('webglcontextcreationerror', (e) => {\n log('error: humangl context create:', e);\n });\n }\n } catch (err) {\n log('error: cannot get WebGL context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n const current = tf.backend().getGPGPUContext ? tf.backend().getGPGPUContext().gl : null;\n if (current) {\n log(`humangl webgl version:${current.getParameter(current.VERSION) as string} renderer:${current.getParameter(current.RENDERER) as string}`);\n } else {\n log('error: no current gl context:', current, config.gl);\n return;\n }\n try {\n if (tf.env().flagRegistry.WEBGL_VERSION) tf.env().set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "/** TFJS backend initialization and customization */\n\nimport type { Human, Config } from '../human';\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as humangl from './humangl';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as constants from './constants';\n\nfunction registerCustomOps(config: Config) {\n if (!env.kernels.includes('mod')) {\n const kernelMod = {\n kernelName: 'Mod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.sub(op.inputs.a, tf.mul(tf.div(op.inputs.a, op.inputs.b), op.inputs.b))),\n };\n if (config.debug) log('registered kernel:', 'Mod');\n tf.registerKernel(kernelMod);\n env.kernels.push('mod');\n }\n if (!env.kernels.includes('floormod')) {\n const kernelFloorMod = {\n kernelName: 'FloorMod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.add(tf.mul(tf.floorDiv(op.inputs.a / op.inputs.b), op.inputs.b), tf.mod(op.inputs.a, op.inputs.b))),\n };\n if (config.debug) log('registered kernel:', 'FloorMod');\n tf.registerKernel(kernelFloorMod);\n env.kernels.push('floormod');\n }\n /*\n if (!env.kernels.includes('atan2') && config.softwareKernels) {\n const kernelAtan2 = {\n kernelName: 'Atan2',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => {\n const backend = tf.getBackend();\n tf.setBackend('cpu');\n const t = tf.atan2(op.inputs.a, op.inputs.b);\n tf.setBackend(backend);\n return t;\n }),\n };\n if (config.debug) log('registered kernel:', 'atan2');\n log('registered kernel:', 'atan2');\n tf.registerKernel(kernelAtan2);\n env.kernels.push('atan2');\n }\n */\n if (!env.kernels.includes('rotatewithoffset') && config.softwareKernels) {\n const kernelRotateWithOffset = {\n kernelName: 'RotateWithOffset',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => {\n const backend = tf.getBackend();\n tf.setBackend('cpu');\n const t = tf.image.rotateWithOffset(op.inputs.image, op.attrs.radians, op.attrs.fillValue, op.attrs.center);\n tf.setBackend(backend);\n return t;\n }),\n };\n if (config.debug) log('registered kernel:', 'RotateWithOffset');\n tf.registerKernel(kernelRotateWithOffset);\n env.kernels.push('rotatewithoffset');\n }\n}\n\nexport async function check(instance: Human, force = false) {\n instance.state = 'backend';\n if (force || env.initial || (instance.config.backend && (instance.config.backend.length > 0) && (tf.getBackend() !== instance.config.backend))) {\n const timeStamp = now();\n\n if (instance.config.backend && instance.config.backend.length > 0) {\n // detect web worker\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && instance.config.debug) {\n if (instance.config.debug) log('running inside web worker');\n }\n\n // force browser vs node backend\n if (env.browser && instance.config.backend === 'tensorflow') {\n if (instance.config.debug) log('override: backend set to tensorflow while running in browser');\n instance.config.backend = 'humangl';\n }\n if (env.node && (instance.config.backend === 'webgl' || instance.config.backend === 'humangl')) {\n if (instance.config.debug) log(`override: backend set to ${instance.config.backend} while running in nodejs`);\n instance.config.backend = 'tensorflow';\n }\n\n // handle webgpu\n if (env.browser && instance.config.backend === 'webgpu') {\n if (typeof navigator === 'undefined' || typeof navigator.gpu === 'undefined') {\n log('override: backend set to webgpu but browser does not support webgpu');\n instance.config.backend = 'humangl';\n } else {\n const adapter = await navigator.gpu.requestAdapter();\n if (instance.config.debug) log('enumerated webgpu adapter:', adapter);\n if (!adapter) {\n log('override: backend set to webgpu but browser reports no available gpu');\n instance.config.backend = 'humangl';\n } else {\n // @ts-ignore requestAdapterInfo is not in tslib\n const adapterInfo = 'requestAdapterInfo' in adapter ? await (adapter as GPUAdapter).requestAdapterInfo() : undefined;\n // if (adapter.features) adapter.features.forEach((feature) => log('webgpu features:', feature));\n log('webgpu adapter info:', adapterInfo);\n }\n }\n }\n\n // check available backends\n if (instance.config.backend === 'humangl') humangl.register(instance);\n const available = Object.keys(tf.engine().registryFactory as Record);\n if (instance.config.debug) log('available backends:', available);\n\n if (!available.includes(instance.config.backend)) {\n log(`error: backend ${instance.config.backend} not found in registry`);\n instance.config.backend = env.node ? 'tensorflow' : 'webgl';\n if (instance.config.debug) log(`override: setting backend ${instance.config.backend}`);\n }\n\n if (instance.config.debug) log('setting backend:', instance.config.backend);\n\n // customize wasm\n if (instance.config.backend === 'wasm') {\n if (tf.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY) tf.env().set('CANVAS2D_WILL_READ_FREQUENTLY', true);\n if (instance.config.debug) log('wasm path:', instance.config.wasmPath);\n if (typeof tf.setWasmPaths !== 'undefined') tf.setWasmPaths(instance.config.wasmPath, instance.config.wasmPlatformFetch);\n else throw new Error('backend error: attempting to use wasm backend but wasm path is not set');\n let mt = false;\n let simd = false;\n try {\n mt = await tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n simd = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n if (instance.config.debug) log(`wasm execution: ${simd ? 'simd' : 'no simd'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (instance.config.debug && !simd) log('warning: wasm simd support is not enabled');\n } catch {\n log('wasm detection failed');\n }\n }\n\n try {\n await tf.setBackend(instance.config.backend);\n await tf.ready();\n constants.init();\n } catch (err) {\n log('error: cannot set backend:', instance.config.backend, err);\n return false;\n }\n }\n\n // customize humangl\n if (tf.getBackend() === 'humangl') {\n if (tf.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS) tf.env().set('CHECK_COMPUTATION_FOR_ERRORS', false);\n if (tf.env().flagRegistry.WEBGL_CPU_FORWARD) tf.env().set('WEBGL_CPU_FORWARD', true);\n if (tf.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS) tf.env().set('WEBGL_USE_SHAPES_UNIFORMS', true);\n if (tf.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD) tf.env().set('CPU_HANDOFF_SIZE_THRESHOLD', 256);\n if (tf.env().flagRegistry.WEBGL_EXP_CONV) tf.env().set('WEBGL_EXP_CONV', true); // \n if (tf.env().flagRegistry.USE_SETTIMEOUTCUSTOM) tf.env().set('USE_SETTIMEOUTCUSTOM', true); // \n // if (tf.env().flagRegistry['WEBGL_PACK_DEPTHWISECONV']) tf.env().set('WEBGL_PACK_DEPTHWISECONV', false);\n // if (if (tf.env().flagRegistry['WEBGL_FORCE_F16_TEXTURES']) && !instance.config.object.enabled) tf.env().set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof instance.config.deallocate !== 'undefined' && instance.config.deallocate) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n tf.env().set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n if (tf.backend().getGPGPUContext) {\n const gl = await tf.backend().getGPGPUContext().gl;\n if (instance.config.debug) log(`gl version:${gl.getParameter(gl.VERSION) as string} renderer:${gl.getParameter(gl.RENDERER) as string}`);\n }\n }\n\n // customize webgpu\n if (tf.getBackend() === 'webgpu') {\n // if (tf.env().flagRegistry['WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD']) tf.env().set('WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD', 512);\n // if (tf.env().flagRegistry['WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE']) tf.env().set('WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE', 0);\n // if (tf.env().flagRegistry['WEBGPU_CPU_FORWARD']) tf.env().set('WEBGPU_CPU_FORWARD', true);\n }\n\n // wait for ready\n tf.enableProdMode();\n await tf.ready();\n\n instance.performance.initBackend = Math.trunc(now() - timeStamp);\n instance.config.backend = tf.getBackend();\n\n await env.updateBackend(); // update env on backend init\n registerCustomOps(instance.config);\n // await env.updateBackend(); // update env on backend init\n }\n return true;\n}\n\n// register fake missing tfjs ops\nexport function fakeOps(kernelNames: string[], config) {\n // if (config.debug) log('registerKernel:', kernelNames);\n for (const kernelName of kernelNames) {\n const kernelConfig = {\n kernelName,\n backendName: config.backend,\n kernelFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // setupFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // disposeFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n };\n tf.registerKernel(kernelConfig);\n }\n env.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => (kernel.kernelName as string).toLowerCase()); // re-scan registered ops\n}\n", "/**\n * HandTrack model implementation\n *\n * Based on:\n * - Hand Detection & Skeleton: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n * - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, HandType, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as fingerPose from './fingerpose';\nimport { fakeOps } from '../tfjs/backend';\nimport { constants } from '../tfjs/constants';\n\nconst models: [GraphModel | null, GraphModel | null] = [null, null];\nconst modelOutputNodes = ['StatefulPartitionedCall/Postprocessor/Slice', 'StatefulPartitionedCall/Postprocessor/ExpandDims_1'];\n\nconst inputSize = [[0, 0], [0, 0]];\n\nconst classes = ['hand', 'fist', 'pinch', 'point', 'face', 'tip', 'pinchtip'];\nconst faceIndex = 4;\n\nconst boxExpandFact = 1.6;\nconst maxDetectorResolution = 512;\nconst detectorExpandFact = 1.4;\n\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastTime = 0;\nlet outputSize: [number, number] = [0, 0];\n\ninterface HandDetectResult {\n id: number,\n score: number,\n box: Box,\n boxRaw: Box,\n label: HandType,\n}\n\nconst cache: {\n boxes: HandDetectResult[],\n hands: HandResult[];\n} = {\n boxes: [],\n hands: [],\n};\n\nconst fingerMap = {\n /*\n thumb: [0, 1, 2, 3, 4],\n index: [0, 5, 6, 7, 8],\n middle: [0, 9, 10, 11, 12],\n ring: [0, 13, 14, 15, 16],\n pinky: [0, 17, 18, 19, 20],\n palm: [0],\n */\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n base: [0],\n palm: [0, 17, 13, 9, 5, 1, 0],\n};\n\nexport async function loadDetect(config: Config): Promise {\n // HandTrack Model: Original: TFJS Port: \n if (env.initial) models[0] = null;\n if (!models[0]) {\n // handtrack model has some kernel ops defined in model but those are never referenced and non-existent in tfjs\n // ideally need to prune the model itself\n fakeOps(['tensorlistreserve', 'enter', 'tensorlistfromtensor', 'merge', 'loopcond', 'switch', 'exit', 'tensorliststack', 'nextiteration', 'tensorlistsetitem', 'tensorlistgetitem', 'reciprocal', 'shape', 'split', 'where'], config);\n models[0] = await loadModel(config.hand.detector?.modelPath);\n const inputs = models[0]['executor'] ? Object.values(models[0].modelSignature['inputs']) : undefined;\n inputSize[0][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[0][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[0]['modelUrl']);\n return models[0];\n}\n\nexport async function loadSkeleton(config: Config): Promise {\n if (env.initial) models[1] = null;\n if (!models[1]) {\n models[1] = await loadModel(config.hand.skeleton?.modelPath);\n const inputs = models[1]['executor'] ? Object.values(models[1].modelSignature['inputs']) : undefined;\n inputSize[1][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[1][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[1]['modelUrl']);\n return models[1];\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models[0]) await loadDetect(config);\n if (!models[1]) await loadSkeleton(config);\n return models;\n}\n\nasync function detectHands(input: Tensor, config: Config): Promise {\n const hands: HandDetectResult[] = [];\n if (!input || !models[0]) return hands;\n const t: Record = {};\n const ratio = (input.shape[2] || 1) / (input.shape[1] || 1);\n const height = Math.min(Math.round((input.shape[1] || 0) / 8) * 8, maxDetectorResolution); // use dynamic input size but cap at 512\n const width = Math.round(height * ratio / 8) * 8;\n t.resize = tf.image.resizeBilinear(input, [height, width]); // todo: resize with padding\n t.cast = tf.cast(t.resize, 'int32');\n [t.rawScores, t.rawBoxes] = await models[0].executeAsync(t.cast, modelOutputNodes) as Tensor[];\n t.boxes = tf.squeeze(t.rawBoxes, [0, 2]);\n t.scores = tf.squeeze(t.rawScores, [0]);\n const classScores: Tensor[] = tf.unstack(t.scores, 1); // unstack scores based on classes\n tf.dispose(classScores[faceIndex]);\n classScores.splice(faceIndex, 1); // remove faces\n t.filtered = tf.stack(classScores, 1); // restack\n tf.dispose(classScores);\n // t.filtered = t.scores;\n t.max = tf.max(t.filtered, 1); // max overall score\n t.argmax = tf.argMax(t.filtered, 1); // class index of max overall score\n let id = 0;\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, (config.hand.maxDetected || 0) + 1, config.hand.iouThreshold || 0, config.hand.minConfidence || 1);\n const nms = await t.nms.data();\n const scores = await t.max.data();\n const classNum = await t.argmax.data();\n for (const nmsIndex of Array.from(nms)) { // generates results for each class\n const boxSlice = tf.slice(t.boxes, nmsIndex, 1);\n const boxYX = await boxSlice.data();\n tf.dispose(boxSlice);\n const boxData: Box = [boxYX[1], boxYX[0], boxYX[3] - boxYX[1], boxYX[2] - boxYX[0]]; // yx box reshaped to standard box\n const boxRaw: Box = box.scale(boxData, detectorExpandFact);\n const boxFull: Box = [Math.trunc(boxData[0] * outputSize[0]), Math.trunc(boxData[1] * outputSize[1]), Math.trunc(boxData[2] * outputSize[0]), Math.trunc(boxData[3] * outputSize[1])];\n const score = scores[nmsIndex];\n const label = classes[classNum[nmsIndex]] as HandType;\n const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, label };\n hands.push(hand);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n hands.sort((a, b) => b.score - a.score);\n if (hands.length > (config.hand.maxDetected || 1)) hands.length = (config.hand.maxDetected || 1);\n return hands;\n}\n\nasync function detectFingers(input: Tensor, h: HandDetectResult, config: Config): Promise {\n const hand: HandResult = { // initial values inherited from hand detect\n id: h.id,\n score: Math.round(100 * h.score) / 100,\n boxScore: Math.round(100 * h.score) / 100,\n fingerScore: 0,\n box: h.box,\n boxRaw: h.boxRaw,\n label: h.label,\n keypoints: [],\n landmarks: {} as HandResult['landmarks'],\n annotations: {} as HandResult['annotations'],\n };\n if (input && models[1] && config.hand.landmarks && h.score > (config.hand.minConfidence || 0)) {\n const t: Record = {};\n const boxCrop = [h.boxRaw[1], h.boxRaw[0], h.boxRaw[3] + h.boxRaw[1], h.boxRaw[2] + h.boxRaw[0]] as Box;\n t.crop = tf.image.cropAndResize(input, [boxCrop], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');\n t.div = tf.div(t.crop, constants.tf255);\n [t.score, t.keypoints] = models[1].execute(t.div, ['Identity_1', 'Identity']) as Tensor[];\n const rawScore = (await t.score.data())[0];\n const score = (100 - Math.trunc(100 / (1 + Math.exp(rawScore)))) / 100; // reverse sigmoid value\n if (score >= (config.hand.minConfidence || 0)) {\n hand.fingerScore = score;\n t.reshaped = tf.reshape(t.keypoints, [-1, 3]);\n const coordsData: Point[] = await t.reshaped.array() as Point[];\n const coordsRaw: Point[] = coordsData.map((kpt) => [kpt[0] / inputSize[1][1], kpt[1] / inputSize[1][0], (kpt[2] || 0)]);\n const coordsNorm: Point[] = coordsRaw.map((kpt) => [kpt[0] * h.boxRaw[2], kpt[1] * h.boxRaw[3], (kpt[2] || 0)]);\n hand.keypoints = (coordsNorm).map((kpt) => [outputSize[0] * (kpt[0] + h.boxRaw[0]), outputSize[1] * (kpt[1] + h.boxRaw[1]), (kpt[2] || 0)]);\n hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger gestures\n for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations\n hand.annotations[key] = fingerMap[key].map((index: number) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n return hand;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!models[0]?.['executor'] || !models[1]?.['executor'] || !models[0].inputs[0].shape || !models[1].inputs[0].shape) return []; // something is wrong with the model\n outputSize = [input.shape[2] || 0, input.shape[1] || 0];\n skipped++; // increment skip frames\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.hands; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const skipTimeExtended = 3 * (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrameExtended = skipped < 3 * (config.hand.skipFrames || 0);\n if (config.skipAllowed && cache.hands.length === config.hand.maxDetected) { // we have all detected hands so we're definitely skipping\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else if (config.skipAllowed && skipTimeExtended && skipFrameExtended && cache.hands.length > 0) { // we have some cached results: maybe not enough but anyhow continue for bit longer\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else { // finally rerun detector\n cache.boxes = await detectHands(input, config);\n lastTime = now();\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n skipped = 0;\n }\n\n const oldCache = [...cache.boxes];\n cache.boxes.length = 0; // reset cache\n if (config.cacheSensitivity > 0) {\n for (let i = 0; i < cache.hands.length; i++) {\n const boxKpt = box.square(cache.hands[i].keypoints, outputSize);\n if (boxKpt.box[2] / (input.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config.hand.minConfidence || 0)) {\n const boxScale = box.scale(boxKpt.box, boxExpandFact);\n const boxScaleRaw = box.scale(boxKpt.boxRaw, boxExpandFact);\n // const boxCrop = box.crop(boxScaleRaw);\n cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw });\n }\n }\n }\n for (let i = 0; i < cache.hands.length; i++) { // replace detected boxes with calculated boxes in final output\n const bbox = box.calc(cache.hands[i].keypoints, outputSize);\n cache.hands[i].box = bbox.box;\n cache.hands[i].boxRaw = bbox.boxRaw;\n }\n resolve(cache.hands);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: number[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.liveness?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model?.['executor']) return 0;\n const skipTime = (config.face.liveness?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.liveness?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "export const kpt: string[] = [ // used to create part labels\n 'nose',\n 'leftEye',\n 'rightEye',\n 'leftEar',\n 'rightEar',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n];\n\nexport const horizontal: string[][] = [ // used to fix left vs right\n ['leftEye', 'rightEye'],\n ['leftEar', 'rightEar'],\n ['leftShoulder', 'rightShoulder'],\n ['leftElbow', 'rightElbow'],\n ['leftWrist', 'rightWrist'],\n ['leftHip', 'rightHip'],\n ['leftKnee', 'rightKnee'],\n ['leftAnkle', 'rightAnkle'],\n];\n\nexport const vertical: string[][] = [ // used to remove unlikely keypoint positions\n ['leftKnee', 'leftShoulder'],\n ['rightKnee', 'rightShoulder'],\n ['leftAnkle', 'leftKnee'],\n ['rightAnkle', 'rightKnee'],\n];\n\nexport const relative: string[][][] = [ // used to match relative body parts\n [['leftHip', 'rightHip'], ['leftShoulder', 'rightShoulder']],\n [['leftElbow', 'rightElbow'], ['leftShoulder', 'rightShoulder']],\n];\n\nexport const connected: Record = { // used to create body outline in annotations\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "import type { BodyKeypoint, BodyResult } from '../result';\nimport * as box from '../util/box';\nimport * as coords from './movenetcoords';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\n\nconst maxJitter = 0.005; // default allowed jitter is within 0.5%\n\nconst cache: {\n keypoints: BodyKeypoint[],\n padding: [number, number][];\n} = {\n keypoints: [],\n padding: [[0, 0], [0, 0], [0, 0], [0, 0]],\n};\n\nexport function bodyParts(body: BodyResult) { // model sometimes mixes up left vs right keypoints so we fix them\n for (const pair of coords.horizontal) { // fix body parts left vs right\n const left = body.keypoints.findIndex((kp) => kp.part === pair[0]);\n const right = body.keypoints.findIndex((kp) => kp.part === pair[1]);\n if (body.keypoints[left] && body.keypoints[right]) {\n if (body.keypoints[left].position[0] < body.keypoints[right].position[0]) {\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n }\n for (const pair of coords.vertical) { // remove body parts with improbable vertical position\n const lower = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const higher = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n if (body.keypoints[lower] && body.keypoints[higher]) {\n if (body.keypoints[lower].position[1] < body.keypoints[higher].position[1]) {\n body.keypoints.splice(lower, 1);\n }\n }\n }\n for (const [pair, compare] of coords.relative) { // rearrange body parts according to their relative position\n const left = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const right = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n const leftTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[0]));\n const rightTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[1]));\n if (!body.keypoints[leftTo] || !body.keypoints[rightTo]) continue; // only if we have both compare points\n const distanceLeft = body.keypoints[left] ? [\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[left].position[0]),\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[left].position[0]),\n ] : [0, 0];\n const distanceRight = body.keypoints[right] ? [\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[right].position[0]),\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[right].position[0]),\n ] : [0, 0];\n if (distanceLeft[0] > distanceLeft[1] || distanceRight[0] > distanceRight[1]) { // should flip keypoints\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n}\n\nexport function jitter(keypoints: BodyKeypoint[]): BodyKeypoint[] {\n for (let i = 0; i < keypoints.length; i++) {\n if (keypoints[i] && cache.keypoints[i]) {\n const diff = [Math.abs(keypoints[i].positionRaw[0] - cache.keypoints[i].positionRaw[0]), Math.abs(keypoints[i].positionRaw[1] - cache.keypoints[i].positionRaw[1])];\n if (diff[0] < maxJitter && diff[1] < maxJitter) {\n keypoints[i] = cache.keypoints[i]; // below jitter so replace keypoint\n } else {\n cache.keypoints[i] = keypoints[i]; // above jitter so update cache\n }\n } else {\n cache.keypoints[i] = keypoints[i]; // cache for keypoint doesnt exist so create it here\n }\n }\n return keypoints;\n}\n\nexport function padInput(input: Tensor, inputSize: number): Tensor {\n const t: Record = {};\n if (!input?.shape?.[1] || !input?.shape?.[2]) return input;\n cache.padding = [\n [0, 0], // dont touch batch\n [input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0, input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0], // height before&after\n [input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0, input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0], // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(input, cache.padding);\n t.resize = tf.image.resizeBilinear(t.pad, [inputSize, inputSize]);\n const final = tf.cast(t.resize, 'int32');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nexport function rescaleBody(body: BodyResult, outputSize: [number, number]): BodyResult {\n body.keypoints = body.keypoints.filter((kpt) => kpt?.position); // filter invalid keypoints\n for (const kpt of body.keypoints) {\n kpt.position = [\n kpt.position[0] * (outputSize[0] + cache.padding[2][0] + cache.padding[2][1]) / outputSize[0] - cache.padding[2][0],\n kpt.position[1] * (outputSize[1] + cache.padding[1][0] + cache.padding[1][1]) / outputSize[1] - cache.padding[1][0],\n ];\n kpt.positionRaw = [\n kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1],\n ];\n }\n const rescaledBoxes = box.calc(body.keypoints.map((pt) => pt.position), outputSize);\n body.box = rescaledBoxes.box;\n body.boxRaw = rescaledBoxes.boxRaw;\n return body;\n}\n", "/**\n * MoveNet model implementation\n *\n * Based on: [**MoveNet**](https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './movenetcoords';\nimport * as fix from './movenetfix';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, BodyAnnotation, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { fakeOps } from '../tfjs/backend';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n// const boxExpandFact = 1.5; // increase to 150%\n\nconst cache: {\n boxes: Box[], // unused\n bodies: BodyResult[];\n last: number,\n} = {\n boxes: [],\n bodies: [],\n last: 0,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n fakeOps(['size'], config);\n model = await loadModel(config.body.modelPath);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model?.['executor'] && model?.inputs?.[0].shape) ? model.inputs[0].shape[2] : 0;\n if (inputSize < 64) inputSize = 256;\n return model;\n}\n\nfunction parseSinglePose(res, config, image) {\n const kpt = res[0][0];\n const keypoints: BodyKeypoint[] = [];\n let score = 0;\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[id][1], kpt[id][0]];\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw,\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * positionRaw[0]),\n Math.round((image.shape[1] || 0) * positionRaw[1]),\n ],\n });\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const bodies: BodyResult[] = [];\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n const annotations: Record = {};\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id: 0, score, box: newBox.box, boxRaw: newBox.boxRaw, keypoints, annotations };\n fix.bodyParts(body);\n bodies.push(body);\n return bodies;\n}\n\nfunction parseMultiPose(res, config, image) {\n const bodies: BodyResult[] = [];\n for (let id = 0; id < res[0].length; id++) {\n const kpt = res[0][id];\n const totalScore = Math.round(100 * kpt[51 + 4]) / 100;\n if (totalScore > config.body.minConfidence) {\n const keypoints: BodyKeypoint[] = [];\n for (let i = 0; i < 17; i++) {\n const score = kpt[3 * i + 2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[3 * i + 1], kpt[3 * i + 0]];\n keypoints.push({\n part: coords.kpt[i] as BodyLandmark,\n score: Math.round(100 * score) / 100,\n positionRaw,\n position: [Math.round((image.shape[2] || 0) * positionRaw[0]), Math.round((image.shape[1] || 0) * positionRaw[1])],\n });\n }\n }\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n // movenet-multipose has built-in box details\n // const boxRaw: Box = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];\n // const box: Box = [Math.trunc(boxRaw[0] * (image.shape[2] || 0)), Math.trunc(boxRaw[1] * (image.shape[1] || 0)), Math.trunc(boxRaw[2] * (image.shape[2] || 0)), Math.trunc(boxRaw[3] * (image.shape[1] || 0))];\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id, score: totalScore, box: newBox.box, boxRaw: newBox.boxRaw, keypoints: [...keypoints], annotations };\n fix.bodyParts(body);\n bodies.push(body);\n }\n }\n bodies.sort((a, b) => b.score - a.score);\n if (bodies.length > config.body.maxDetected) bodies.length = config.body.maxDetected;\n return bodies;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor'] || !model?.inputs?.[0].shape) return []; // something is wrong with the model\n if (!config.skipAllowed) cache.boxes.length = 0; // allowed to use cache or not\n skipped++; // increment skip frames\n const skipTime = (config.body.skipTime || 0) > (now() - cache.last);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.bodies; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const t: Record = {};\n skipped = 0;\n // run detection on squared input and cached boxes\n /*\n cache.bodies = []; // reset bodies result\n if (cache.boxes.length >= (config.body.maxDetected || 0)) { // if we have enough cached boxes run detection using cache\n for (let i = 0; i < cache.boxes.length; i++) { // run detection based on cached boxes\n t.crop = tf.image.cropAndResize(input, [cache.boxes[i]], [0], [inputSize, inputSize], 'bilinear');\n t.cast = tf.cast(t.crop, 'int32');\n // t.input = prepareImage(input);\n t.res = model?.execute(t.cast) as Tensor;\n const res = await t.res.array();\n const newBodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, cache.boxes[i]) : await parseMultiPose(res, config, input, cache.boxes[i]);\n cache.bodies = cache.bodies.concat(newBodies);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n }\n if (cache.bodies.length !== config.body.maxDetected) { // did not find enough bodies based on cached boxes so run detection on full frame\n t.input = prepareImage(input);\n t.res = model?.execute(t.input) as Tensor;\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, [0, 0, 1, 1]) : await parseMultiPose(res, config, input, [0, 0, 1, 1]);\n for (const body of cache.bodies) rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n cache.boxes.length = 0; // reset cache\n for (let i = 0; i < cache.bodies.length; i++) {\n if (cache.bodies[i].keypoints.length > (coords.kpt.length / 2)) { // only update cache if we detected at least half keypoints\n const scaledBox = box.scale(cache.bodies[i].boxRaw, boxExpandFact);\n const cropBox = box.crop(scaledBox);\n cache.boxes.push(cropBox);\n }\n }\n */\n\n // run detection on squared input and no cached boxes\n t.input = fix.padInput(input, inputSize);\n t.res = model?.execute(t.input) as Tensor;\n cache.last = now();\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17)\n ? parseSinglePose(res, config, input)\n : parseMultiPose(res, config, input);\n for (const body of cache.bodies) {\n fix.rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n fix.jitter(body.keypoints);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n\n resolve(cache.bodies);\n });\n}\n", "/**\n * NanoDet object detection model implementation\n *\n * Based on: [**MB3-CenterNet**](https://github.com/610265158/mobilenetv3_centernet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet inputSize = 0;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) {\n model = await loadModel(config.object.modelPath);\n const inputs = model?.['executor'] ? Object.values(model.modelSignature['inputs']) : undefined;\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 416;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor[], outputShape: [number, number], config: Config) {\n let id = 0;\n let results: ObjectResult[] = [];\n const size = inputSize;\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) === labels.length)));\n const scores = await scoresT.array(); // optionally use exponential scores or just as-is\n const featuresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) < labels.length)));\n const boxesMaxT = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdxT = boxesMaxT.argMax(2); // what we need is indexes of features with highest scores, not values itself\n const boxIdx = await boxIdxT.array(); // what we need is indexes of features with highest scores, not values itself\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > (config.object.minConfidence || 0) && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a: number) => a * (baseSize / strideSize / (size))); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw: Box = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))) as Box; // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label as ObjectType,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)) as Box,\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n tf.dispose([scoresT, featuresT, boxesMaxT, boxIdxT]);\n }\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: number[] = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = await nms.data();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n if (!env.kernels.includes('mod') || !env.kernels.includes('sparsetodense')) return last;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2] || 0, image.shape[1] || 0];\n const resizeT = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n const normT = tf.div(resizeT, constants.tf255);\n const transposeT = tf.transpose(normT, [0, 3, 1, 2]);\n\n let objectT;\n if (config.object.enabled) objectT = model.execute(transposeT);\n lastTime = now();\n\n const obj = await process(objectT as Tensor[], outputSize as [number, number], config);\n last = obj;\n tf.dispose([resizeT, normT, transposeT, ...objectT]);\n resolve(obj);\n });\n}\n", "/**\n * PoseNet body detection model implementation constants\n * See `posenet.ts` for entry point\n */\n\nimport type { Point, BodyResult, BodyAnnotation, BodyLandmark } from '../result';\n\nexport const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n\nexport function eitherPointDoesntMeetConfidence(a: number, b: number, minConfidence: number) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence: number) {\n return connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): BodyResult[] {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i): BodyResult => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score: score as number,\n part: part as BodyLandmark,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)] as Point,\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight] as Point,\n })),\n annotations: {} as Record,\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: unknown[]; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint: number, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + count),\n };\n}\n\nexport function getImageCoords(part, outputStride: number, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a: { x: number, y: number }, b: { x: number, y: number }) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "/**\n * PoseNet body detection model implementation\n *\n * Based on: [**PoseNet**](https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyResult, BodyLandmark, Box } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as utils from './posenetutils';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId: number, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: utils.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = utils.poseChain.map(([parentJoinName, childJoinName]) => ([utils.partIds[parentJoinName], utils.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: utils.partNames[root.part.id] as BodyLandmark,\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score: number, heatmapY: number, heatmapX: number, scores) {\n const [height, width]: [number, number] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: { keypoints, box: Box, score: number }[] = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n /** posenet is mostly obsolete\n * caching is not implemented\n */\n if (!model?.['executor']) return [];\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = tf.sub(tf.div(tf.cast(resized, 'float32'), 127.5), 1.0);\n const results: Tensor[] = model.execute(normalized, poseNetOutputs) as Tensor[];\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = tf.sigmoid(results3d[1]); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor: Tensor) => tensor.buffer()));\n for (const t of res) tf.dispose(t);\n\n const decoded = decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = utils.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "/**\n * Image segmentation for body detection model\n *\n * Based on:\n * - [**MediaPipe Meet**](https://drive.google.com/file/d/1lnP1bRi9CSqQQXUHa13159vLELYDgDu0/preview)\n * - [**MediaPipe Selfie**](https://drive.google.com/file/d/1dCfozqknMa068vVsO2j_1FgZkW_e3VWv/preview)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as image from '../image/image';\nimport { constants } from '../tfjs/constants';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport type { Input, AnyCanvas } from '../exports';\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.segmentation.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config)\n: Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n if (busy) return { data: [], canvas: null, alpha: null };\n busy = true;\n if (!model) await load(config);\n const inputImage = await image.process(input, config);\n const width = inputImage.tensor?.shape[2] || 0;\n const height = inputImage.tensor?.shape[1] || 0;\n if (!inputImage.tensor) return { data: [], canvas: null, alpha: null };\n const t: Record = {};\n\n t.resize = tf.image.resizeBilinear(inputImage.tensor, [model.inputs[0].shape ? model.inputs[0].shape[1] : 0, model.inputs[0].shape ? model.inputs[0].shape[2] : 0], false);\n tf.dispose(inputImage.tensor);\n t.norm = tf.div(t.resize, constants.tf255);\n t.res = model.execute(t.norm) as Tensor;\n\n t.squeeze = tf.squeeze(t.res, 0); // meet.shape:[1,256,256,1], selfie.shape:[1,144,256,2]\n if (t.squeeze.shape[2] === 2) {\n t.softmax = tf.softmax(t.squeeze); // model meet has two channels for fg and bg\n [t.bg, t.fg] = tf.unstack(t.softmax, 2);\n t.expand = tf.expandDims(t.fg, 2);\n t.pad = tf.expandDims(t.expand, 0);\n t.crop = tf.image.cropAndResize(t.pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n t.data = tf.squeeze(t.crop, 0);\n } else {\n t.data = tf.image.resizeBilinear(t.squeeze, [height, width]); // model selfie has a single channel that we can use directly\n }\n const data = Array.from(await t.data.data());\n\n if (env.node && !env.Canvas && (typeof ImageData === 'undefined')) {\n if (config.debug) log('canvas support missing');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return { data, canvas: null, alpha: null }; // running in nodejs so return alpha array as-is\n }\n\n const alphaCanvas = image.canvas(width, height);\n if (tf.browser) await tf.browser.toPixels(t.data, alphaCanvas);\n const alphaCtx = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (config.segmentation.blur && config.segmentation.blur > 0) alphaCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n const alphaData = alphaCtx.getImageData(0, 0, width, height);\n\n const compositeCanvas = image.canvas(width, height);\n const compositeCtx = compositeCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (inputImage.canvas) compositeCtx.drawImage(inputImage.canvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'darken'; // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n if (config.segmentation.blur && config.segmentation.blur > 0) compositeCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n compositeCtx.drawImage(alphaCanvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'source-over'; // reset composite operation\n compositeCtx.filter = 'none'; // reset css filter\n const compositeData = compositeCtx.getImageData(0, 0, width, height);\n for (let i = 0; i < width * height; i++) compositeData.data[4 * i + 3] = alphaData.data[4 * i + 0]; // copy original alpha value to new composite canvas\n compositeCtx.putImageData(compositeData, 0, 0);\n\n let mergedCanvas: AnyCanvas | null = null;\n if (background && compositeCanvas) { // draw background with segmentation as overlay if background is present\n mergedCanvas = image.canvas(width, height);\n const bgImage = await image.process(background, config);\n tf.dispose(bgImage.tensor);\n const ctxMerge = mergedCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxMerge.drawImage(bgImage.canvas as HTMLCanvasElement, 0, 0, mergedCanvas.width, mergedCanvas.height);\n ctxMerge.drawImage(compositeCanvas, 0, 0);\n }\n\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n busy = false;\n // return { data, canvas: mergedCanvas || compositeCanvas, alpha: alphaCanvas };\n return { data, canvas: compositeCanvas, alpha: alphaCanvas };\n}\n", "import { log, join } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { GraphModel } from './types';\nimport type { Config } from '../config';\nimport * as modelsDefs from '../../models/models.json';\nimport { validateModel } from '../models';\n\nconst options = {\n cacheModels: true,\n cacheSupported: true,\n verbose: true,\n debug: false,\n modelBasePath: '',\n};\n\nexport interface ModelInfo {\n name: string,\n inCache: boolean,\n sizeDesired: number,\n sizeFromManifest: number,\n sizeLoadedWeights: number,\n}\n\nexport const modelStats: Record = {};\n\nasync function httpHandler(url: string, init?: RequestInit): Promise {\n if (options.debug) log('load model fetch:', url, init);\n return fetch(url, init);\n}\n\nexport function setModelLoadOptions(config: Config) {\n options.cacheModels = config.cacheModels;\n options.verbose = config.debug;\n options.modelBasePath = config.modelBasePath;\n}\n\nexport async function loadModel(modelPath: string | undefined): Promise {\n let modelUrl = join(options.modelBasePath, modelPath || '');\n if (!modelUrl.toLowerCase().endsWith('.json')) modelUrl += '.json';\n const modelPathSegments = modelUrl.includes('/') ? modelUrl.split('/') : modelUrl.split('\\\\');\n const shortModelName = modelPathSegments[modelPathSegments.length - 1].replace('.json', '');\n const cachedModelName = 'indexeddb://' + shortModelName; // generate short model name for cache\n modelStats[shortModelName] = {\n name: shortModelName,\n sizeFromManifest: 0,\n sizeLoadedWeights: 0,\n sizeDesired: modelsDefs[shortModelName],\n inCache: false,\n };\n options.cacheSupported = (typeof window !== 'undefined') && (typeof window.localStorage !== 'undefined') && (typeof window.indexedDB !== 'undefined'); // check if running in browser and if indexedb is available\n let cachedModels = {};\n try {\n cachedModels = (options.cacheSupported && options.cacheModels) ? await tf.io.listModels() : {}; // list all models already in cache // this fails for webview although localStorage is defined\n } catch {\n options.cacheSupported = false;\n }\n modelStats[shortModelName].inCache = (options.cacheSupported && options.cacheModels) && Object.keys(cachedModels).includes(cachedModelName); // is model found in cache\n const tfLoadOptions = typeof fetch === 'undefined' ? {} : { fetchFunc: (url: string, init?: RequestInit) => httpHandler(url, init) };\n const model: GraphModel = new tf.GraphModel(modelStats[shortModelName].inCache ? cachedModelName : modelUrl, tfLoadOptions) as unknown as GraphModel; // create model prototype and decide if load from cache or from original modelurl\n let loaded = false;\n try {\n // @ts-ignore private function\n model.findIOHandler(); // decide how to actually load a model\n if (options.debug) log('model load handler:', model['handler']);\n // @ts-ignore private property\n const artifacts = await model.handler.load(); // load manifest\n modelStats[shortModelName].sizeFromManifest = artifacts?.weightData?.byteLength || 0;\n model.loadSync(artifacts); // load weights\n // @ts-ignore private property\n modelStats[shortModelName].sizeLoadedWeights = model.artifacts?.weightData?.byteLength || 0;\n if (options.verbose) log('load model:', model['modelUrl'], { bytes: modelStats[shortModelName].sizeLoadedWeights }, options);\n loaded = true;\n } catch (err) {\n log('error loading model:', modelUrl, err);\n }\n if (loaded && options.cacheModels && options.cacheSupported && !modelStats[shortModelName].inCache) { // save model to cache\n try {\n const saveResult = await model.save(cachedModelName);\n log('model saved:', cachedModelName, saveResult);\n } catch (err) {\n log('error saving model:', modelUrl, err);\n }\n }\n validateModel(null, model, `${modelPath || ''}`);\n return model;\n}\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { mergeDeep, now } from '../util/util';\nimport { env } from '../util/env';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport { face } from './face';\nimport { body } from './body';\nimport { hand } from './hand';\nimport { object } from './object';\nimport { gesture } from './gesture';\nimport type { Result, PersonResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet drawTime = 0;\n\nexport { options } from './options';\nexport { face } from './face';\nexport { body } from './body';\nexport { hand } from './hand';\nexport { object } from './object';\nexport { gesture } from './gesture';\n\n/** draw combined person results instead of individual detection result objects */\nexport function person(inCanvas: AnyCanvas, result: PersonResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\n/** draw processed canvas */\nexport function canvas(input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) {\n if (!input || !output) return;\n const ctx = getCanvasContext(output);\n if (!ctx) return;\n ctx.drawImage(input, 0, 0);\n}\n\n/** meta-function that performs draw for: canvas, face, body, hand */\nexport async function all(inCanvas: AnyCanvas, result: Result, drawOptions?: Partial) {\n if (!result?.performance || !inCanvas) return null;\n const timeStamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n const promise = Promise.all([\n face(inCanvas, result.face, localOptions),\n body(inCanvas, result.body, localOptions),\n hand(inCanvas, result.hand, localOptions),\n object(inCanvas, result.object, localOptions),\n gesture(inCanvas, result.gesture, localOptions), // gestures do not have buffering\n // person(inCanvas, result.persons, localOptions); // already included above\n ]);\n drawTime = env.perfadd ? drawTime + Math.round(now() - timeStamp) : Math.round(now() - timeStamp);\n result.performance.draw = drawTime;\n return promise;\n}\n", "import { log } from '../util/util';\nimport type { AnyCanvas } from '../exports';\nimport type { Point } from '../result';\nimport type { DrawOptions } from './options';\n\nexport const getCanvasContext = (input: AnyCanvas) => {\n if (!input) log('draw error: invalid canvas');\n else if (!input.getContext) log('draw error: canvas context not defined');\n else {\n const ctx = input.getContext('2d');\n if (!ctx) log('draw error: cannot get canvas context');\n else return ctx;\n }\n return null;\n};\n\nexport const rad2deg = (theta: number) => Math.round((theta * 180) / Math.PI);\n\nexport const colorDepth = (z: number | undefined, opt: DrawOptions): string => { // performance optimization needed\n if (!opt.useDepth || typeof z === 'undefined') return opt.color;\n const rgb = Uint8ClampedArray.from([127 + (2 * z), 127 - (2 * z), 255]);\n return `rgba(${rgb[0]}, ${rgb[1]}, ${rgb[2]}, ${opt.alpha})`;\n};\n\nexport function point(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, z: number | undefined, localOptions: DrawOptions) {\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nexport function rect(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, width: number, height: number, localOptions: DrawOptions) {\n ctx.beginPath();\n ctx.lineWidth = localOptions.lineWidth;\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nexport function lines(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = colorDepth(pt[2] || 0, localOptions);\n ctx.lineTo(Math.trunc(pt[0]), Math.trunc(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function curves(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.lineWidth = localOptions.lineWidth;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function arrow(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, from: Point, to: Point, radius = 5) {\n let angle;\n let x;\n let y;\n ctx.beginPath();\n ctx.moveTo(from[0], from[1]);\n ctx.lineTo(to[0], to[1]);\n angle = Math.atan2(to[1] - from[1], to[0] - from[0]);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.moveTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n ctx.closePath();\n ctx.stroke();\n ctx.fill();\n}\n", "/** Draw Options\n * - Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n */\nexport interface DrawOptions {\n /** draw line color */\n color: string,\n /** alpha value used for lines */\n alpha: number,\n /** label color */\n labelColor: string,\n /** label shadow color */\n shadowColor: string,\n /** label font */\n font: string,\n /** line spacing between labels */\n lineHeight: number,\n /** line width for drawn lines */\n lineWidth: number,\n /** size of drawn points */\n pointSize: number,\n /** draw rounded boxes by n pixels */\n roundRect: number,\n /** should points be drawn? */\n drawPoints: boolean,\n /** should labels be drawn? */\n drawLabels: boolean,\n /** should face attention keypoints be highlighted */\n drawAttention: boolean;\n /** should detected gestures be drawn? */\n drawGestures: boolean,\n /** should draw boxes around detection results? */\n drawBoxes: boolean,\n /** should draw polygons from detection points? */\n drawPolygons: boolean,\n /** should draw gaze arrows? */\n drawGaze: boolean,\n /** should fill polygons? */\n fillPolygons: boolean,\n /** use z-coordinate when available */\n useDepth: boolean,\n /** should lines be curved? */\n useCurves: boolean,\n}\n\n/** currently set draw options {@link DrawOptions} */\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)' as string, // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)' as string, // 'lightblue' with dark alpha channel\n shadowColor: 'black' as string,\n alpha: 0.5 as number,\n font: 'small-caps 16px \"Segoe UI\"' as string,\n lineHeight: 18 as number,\n lineWidth: 4 as number,\n pointSize: 2 as number,\n roundRect: 8 as number,\n drawPoints: false as boolean,\n drawLabels: true as boolean,\n drawBoxes: true as boolean,\n drawAttention: true as boolean,\n drawGestures: true as boolean,\n drawPolygons: true as boolean,\n drawGaze: true as boolean,\n fillPolygons: false as boolean,\n useDepth: true as boolean,\n useCurves: false as boolean,\n};\n", "import { TRI468 as triangulation } from '../face/facemeshcoords';\nimport { mergeDeep } from '../util/util';\nimport { getCanvasContext, rad2deg, rect, point, lines, arrow } from './primitives';\nimport { options } from './options';\nimport * as facemeshConstants from '../face/constants';\nimport type { FaceResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet opt: DrawOptions;\n\nfunction drawLabels(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawLabels) {\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.real) labels.push(`real: ${Math.trunc(100 * f.real)}%`);\n if (f.live) labels.push(`live: ${Math.trunc(100 * f.live)}%`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation?.angle && f.rotation?.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = opt.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * opt.lineHeight + f.box[1];\n if (opt.shadowColor && opt.shadowColor !== '') {\n ctx.fillStyle = opt.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = opt.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n }\n}\n\nfunction drawIrisElipse(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n // iris: array[center, left, top, right, bottom]\n if (f.annotations?.leftEyeIris && f.annotations?.leftEyeIris[0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.leftEyeIris[3][0] - f.annotations.leftEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.leftEyeIris[4][1] - f.annotations.leftEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n if (f.annotations?.rightEyeIris && f.annotations?.rightEyeIris[0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.rightEyeIris[3][0] - f.annotations.rightEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.rightEyeIris[4][1] - f.annotations.rightEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n}\n\nfunction drawGazeSpheres(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.angle && typeof Path2D !== 'undefined') {\n ctx.strokeStyle = 'pink';\n const valX = (f.box[0] + f.box[2] / 2) - (f.box[3] * rad2deg(f.rotation.angle.yaw) / 90);\n const valY = (f.box[1] + f.box[3] / 2) + (f.box[2] * rad2deg(f.rotation.angle.pitch) / 90);\n const pathV = new Path2D(`\n M ${f.box[0] + f.box[2] / 2} ${f.box[1]}\n C\n ${valX} ${f.box[1]},\n ${valX} ${f.box[1] + f.box[3]},\n ${f.box[0] + f.box[2] / 2} ${f.box[1] + f.box[3]}\n `);\n const pathH = new Path2D(`\n M ${f.box[0]} ${f.box[1] + f.box[3] / 2}\n C \n ${f.box[0]} ${valY},\n ${f.box[0] + f.box[2]} ${valY},\n ${f.box[0] + f.box[2]} ${f.box[1] + f.box[3] / 2}\n `);\n ctx.stroke(pathH);\n ctx.stroke(pathV);\n }\n}\n\nfunction drawGazeArrows(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.gaze.strength && f.rotation.gaze.bearing && f.annotations.leftEyeIris && f.annotations.rightEyeIris && f.annotations.leftEyeIris[0] && f.annotations.rightEyeIris[0]) {\n ctx.strokeStyle = 'pink';\n ctx.fillStyle = 'pink';\n const leftGaze = [\n f.annotations.leftEyeIris[0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations.leftEyeIris[0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1]], [leftGaze[0], leftGaze[1]], 4);\n const rightGaze = [\n f.annotations.rightEyeIris[0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations.rightEyeIris[0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1]], [rightGaze[0], rightGaze[1]], 4);\n }\n}\n\nfunction drawFacePolygons(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPolygons && f.mesh.length >= 468) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [triangulation[i * 3 + 0], triangulation[i * 3 + 1], triangulation[i * 3 + 2]].map((index) => f.mesh[index]);\n lines(ctx, points, opt);\n }\n drawIrisElipse(f, ctx);\n }\n /*\n if (opt.drawPolygons && f.contours.length > 1) {\n ctx.lineWidth = 5;\n lines(ctx, f.contours, opt);\n }\n ctx.lineWidth = 1;\n */\n}\n\nfunction drawFacePoints(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPoints && f.mesh.length >= 468) {\n for (let i = 0; i < f.mesh.length; i++) {\n point(ctx, f.mesh[i][0], f.mesh[i][1], f.mesh[i][2], opt);\n if (opt.drawAttention) {\n if (facemeshConstants.LANDMARKS_REFINEMENT_LIPS_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) + 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n }\n }\n }\n}\n\nfunction drawFaceBoxes(f: FaceResult, ctx) {\n if (opt.drawBoxes) {\n rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], opt);\n }\n}\n\n/** draw detected faces */\nexport function face(inCanvas: AnyCanvas, result: FaceResult[], drawOptions?: Partial) {\n opt = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = opt.font;\n ctx.strokeStyle = opt.color;\n ctx.fillStyle = opt.color;\n for (const f of result) {\n drawFaceBoxes(f, ctx);\n drawLabels(f, ctx);\n if (f.mesh && f.mesh.length > 0) {\n drawFacePoints(f, ctx);\n drawFacePolygons(f, ctx);\n drawGazeSpheres(f, ctx);\n drawGazeArrows(f, ctx);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, curves, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { BodyResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected bodies */\nexport function body(inCanvas: AnyCanvas, result: BodyResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box.length === 4) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints && result[i].keypoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n if (!result[i].keypoints[pt].score || (result[i].keypoints[pt].score === 0)) continue;\n ctx.fillStyle = colorDepth(result[i].keypoints[pt].position[2], localOptions);\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels && result[i].keypoints) {\n ctx.font = localOptions.font;\n for (const pt of result[i].keypoints) {\n if (!pt.score || (pt.score === 0)) continue;\n ctx.fillStyle = colorDepth(pt.position[2], localOptions);\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints && result[i].annotations) {\n for (const part of Object.values(result[i].annotations)) {\n for (const connected of part) curves(ctx, connected, localOptions);\n }\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { HandResult } from '../result';\nimport type { AnyCanvas, DrawOptions, Point } from '../exports';\n\n/** draw detected hands */\nexport function hand(inCanvas: AnyCanvas, result: HandResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = colorDepth(pt[2], localOptions);\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels && h.annotations) {\n const addHandLabel = (part: Point[], title: string) => {\n if (!part || part.length === 0 || !part[0]) return;\n const z = part[part.length - 1][2] || -256;\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations.index, 'index');\n addHandLabel(h.annotations.middle, 'middle');\n addHandLabel(h.annotations.ring, 'ring');\n addHandLabel(h.annotations.pinky, 'pinky');\n addHandLabel(h.annotations.thumb, 'thumb');\n addHandLabel(h.annotations.palm, 'palm');\n }\n if (localOptions.drawPolygons && h.annotations) {\n const addHandLine = (part: Point[]) => {\n if (!part || part.length === 0 || !part[0]) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n const z = part[i][2] || 0;\n ctx.strokeStyle = colorDepth(i * z, localOptions);\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations.index);\n addHandLine(h.annotations.middle);\n addHandLine(h.annotations.ring);\n addHandLine(h.annotations.pinky);\n addHandLine(h.annotations.thumb);\n // addPart(h.annotations.palm);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport type { ObjectResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected objects */\nexport function object(inCanvas: AnyCanvas, result: ObjectResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext } from './primitives';\nimport { options } from './options';\nimport type { GestureResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected gestures */\nexport function gesture(inCanvas: AnyCanvas, result: GestureResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (localOptions.drawGestures) {\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n }\n}\n", "import type { Tensor } from '../tfjs/types';\nimport type { FaceResult } from '../result';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { meshAnnotations } from './facemeshcoords';\n\nconst expandFact = 0.1;\nconst alpha = 0.5;\n\n// point inclusion in polygon based on https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html\nfunction insidePoly(x: number, y: number, polygon: { x: number, y: number }[]): boolean {\n let inside = false;\n let j = polygon.length - 1;\n for (let i = 0; i < polygon.length; j = i++) {\n if (((polygon[i].y > y) !== (polygon[j].y > y)) && (x < (polygon[j].x - polygon[i].x) * (y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x)) inside = !inside;\n }\n return inside;\n}\n\nexport async function mask(face: FaceResult): Promise {\n if (!face.tensor) return face.tensor;\n if (!face.mesh || face.mesh.length < 100) return face.tensor;\n const width = face.tensor.shape[2] || 0;\n const height = face.tensor.shape[1] || 0;\n const buffer = await face.tensor.buffer();\n let silhouette: { x: number, y: number }[] = [];\n for (const pt of meshAnnotations.silhouette) silhouette.push({ x: (face.mesh[pt][0] - face.box[0]) / face.box[2], y: (face.mesh[pt][1] - face.box[1]) / face.box[3] }); // add all silhouette points scaled to local box\n if (expandFact && expandFact > 0) silhouette = silhouette.map((pt) => ({ x: pt.x > 0.5 ? pt.x + expandFact : pt.x - expandFact, y: pt.y > 0.5 ? pt.y + expandFact : pt.y - expandFact })); // expand silhouette\n for (let x = 0; x < width; x++) {\n for (let y = 0; y < height; y++) {\n const inside = insidePoly(x / width, y / width, silhouette);\n if (!inside) {\n buffer.set(alpha * buffer.get(0, y, x, 0), 0, y, x, 0);\n buffer.set(alpha * buffer.get(0, y, x, 1), 0, y, x, 1);\n buffer.set(alpha * buffer.get(0, y, x, 2), 0, y, x, 2);\n }\n }\n }\n const output = buffer.toTensor();\n tf.dispose(buffer);\n return output;\n}\n", "import type { Point, FaceResult } from '../result';\n\ntype Vector = [number, number, number];\n\nconst calculateGaze = (face: FaceResult): { bearing: number, strength: number } => {\n const radians = (pt1: Point, pt2: Point) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations.rightEyeIris || !face.annotations.leftEyeIris) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = (face.mesh[33][2] || 0) > (face.mesh[263][2] || 0); // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n const eyeDiff: Point = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] * eyeDiff[0]) + (eyeDiff[1] * eyeDiff[1])); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n return { bearing, strength };\n};\n\nexport const calculateFaceAngle = (face: FaceResult, imageSize: [number, number]): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v: Vector): Vector => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a: Vector, b: Vector): Vector => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a: Vector, b: Vector): Vector => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r: number[]): { pitch: number, yaw: number, roll: number } => {\n const [r00, _r01, _r02, r10, r11, r12, r20, r21, r22] = r; // eslint-disable-line @typescript-eslint/no-unused-vars\n let thetaX: number;\n let thetaY: number;\n let thetaZ: number;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n if (Number.isNaN(thetaX)) thetaX = 0;\n if (Number.isNaN(thetaY)) thetaY = 0;\n if (Number.isNaN(thetaZ)) thetaZ = 0;\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n\n /*\n const meshToEulerAngle = (mesh) => { // simple Euler angle calculation based existing 3D mesh\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n return { // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face // pitch is face move up/down\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye // yaw is face turn left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye // roll is face lean left/right\n };\n };\n */\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts: Point[] = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [pt[0] * imageSize[0] / size, pt[1] * imageSize[1] / size, pt[2]] as Point); // make the xyz coordinates proportional, independent of the image/box size\n\n const yAxis = normalize(subVectors(pts[1] as Vector, pts[0] as Vector));\n let xAxis = normalize(subVectors(pts[3] as Vector, pts[2] as Vector));\n const zAxis = normalize(crossVectors(xAxis, yAxis));\n // adjust xAxis to make sure that all axes are perpendicular to each other\n xAxis = crossVectors(yAxis, zAxis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n xAxis[0], xAxis[1], xAxis[2],\n yAxis[0], yAxis[1], yAxis[2],\n zAxis[0], zAxis[1], zAxis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n", "/**\n * Face algorithm implementation\n * Uses FaceMesh, Emotion and FaceRes models to create a unified pipeline\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as facemesh from './facemesh';\nimport * as emotion from '../gear/emotion';\nimport * as faceres from './faceres';\nimport * as mask from './mask';\nimport * as antispoof from './antispoof';\nimport * as liveness from './liveness';\nimport * as gear from '../gear/gear';\nimport * as ssrnetAge from '../gear/ssrnet-age';\nimport * as ssrnetGender from '../gear/ssrnet-gender';\nimport * as mobilefacenet from './mobilefacenet';\nimport * as insightface from './insightface';\nimport type { FaceResult, Emotion, Gender, Race } from '../result';\nimport type { Tensor } from '../tfjs/types';\nimport type { Human } from '../human';\nimport { calculateFaceAngle } from './angles';\n\ninterface DescRes { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] }\n\nexport const detectFace = async (instance: Human /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n let timeStamp: number = now();\n let ageRes: { age: number } | Promise<{ age: number }> | null;\n let gearRes: gear.GearType | Promise | null;\n let genderRes: { gender: string, genderScore: number } | Promise<{ gender: string, genderScore: number }> | null;\n let emotionRes: { score: number, emotion: Emotion }[] | Promise<{ score: number, emotion: Emotion }[]>;\n let mobilefacenetRes: number[] | Promise | null;\n let insightfaceRes: number[] | Promise | null;\n let antispoofRes: number | Promise | null;\n let livenessRes: number | Promise | null;\n let descRes: DescRes | Promise | null;\n\n const faceRes: FaceResult[] = [];\n instance.state = 'run:face';\n\n const faces = await facemesh.predict(input, instance.config);\n instance.performance.face = env.perfadd ? (instance.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n instance.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefied\n if (!faces[i].tensor || faces[i].tensor.isDisposedInternal) {\n log('Face object is disposed:', faces[i].tensor);\n continue;\n }\n\n // optional face mask\n if (instance.config.face.detector?.mask) {\n const masked = await mask.mask(faces[i]);\n tf.dispose(faces[i].tensor);\n if (masked) faces[i].tensor = masked;\n }\n\n // calculate face angles\n const rotation = faces[i].mesh && (faces[i].mesh.length > 200) ? calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]) : null;\n\n // run emotion, inherits face from blazeface\n instance.analyze('Start Emotion:');\n if (instance.config.async) {\n emotionRes = instance.config.face.emotion?.enabled ? emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n } else {\n instance.state = 'run:emotion';\n timeStamp = now();\n emotionRes = instance.config.face.emotion?.enabled ? await emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n instance.performance.emotion = env.perfadd ? (instance.performance.emotion || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Emotion:');\n\n // run antispoof, inherits face from blazeface\n instance.analyze('Start AntiSpoof:');\n if (instance.config.async) {\n antispoofRes = instance.config.face.antispoof?.enabled ? antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:antispoof';\n timeStamp = now();\n antispoofRes = instance.config.face.antispoof?.enabled ? await antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.antispoof = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End AntiSpoof:');\n\n // run liveness, inherits face from blazeface\n instance.analyze('Start Liveness:');\n if (instance.config.async) {\n livenessRes = instance.config.face.liveness?.enabled ? liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:liveness';\n timeStamp = now();\n livenessRes = instance.config.face.liveness?.enabled ? await liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.liveness = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Liveness:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start GEAR:');\n if (instance.config.async) {\n gearRes = instance.config.face.gear?.enabled ? gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:gear';\n timeStamp = now();\n gearRes = instance.config.face.gear?.enabled ? await gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.gear = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End GEAR:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start SSRNet:');\n if (instance.config.async) {\n ageRes = instance.config.face['ssrnet']?.enabled ? ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:ssrnet';\n timeStamp = now();\n ageRes = instance.config.face['ssrnet']?.enabled ? await ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? await ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.ssrnet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End SSRNet:');\n\n // run mobilefacenet alternative, inherits face from blazeface\n instance.analyze('Start MobileFaceNet:');\n if (instance.config.async) {\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? await mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End MobileFaceNet:');\n\n // run insightface alternative, inherits face from blazeface\n instance.analyze('Start InsightFace:');\n if (instance.config.async) {\n insightfaceRes = instance.config.face['insightface']?.enabled ? insightface.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n insightfaceRes = instance.config.face['insightface']?.enabled ? await insightface.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End InsightFace:');\n\n // run faceres, inherits face from blazeface\n instance.analyze('Start Description:');\n if (instance.config.async) {\n descRes = faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length);\n } else {\n instance.state = 'run:description';\n timeStamp = now();\n descRes = await faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length);\n instance.performance.description = env.perfadd ? (instance.performance.description || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Description:');\n\n // if async wait for results\n if (instance.config.async) {\n [ageRes, genderRes, emotionRes, mobilefacenetRes, insightfaceRes, descRes, gearRes, antispoofRes, livenessRes] = await Promise.all([ageRes, genderRes, emotionRes, mobilefacenetRes, insightfaceRes, descRes, gearRes, antispoofRes, livenessRes]);\n }\n instance.analyze('Finish Face:');\n\n if (instance.config.face['ssrnet']?.enabled && ageRes && genderRes) { // override age/gender if ssrnet model is used\n descRes = {\n ...(descRes as DescRes),\n age: (ageRes as { age: number}).age,\n gender: (genderRes as { gender: Gender, genderScore: number }).gender,\n genderScore: (genderRes as { gender: Gender, genderScore: number }).genderScore,\n };\n }\n if (instance.config.face.gear?.enabled && gearRes) { // override age/gender/race if gear model is used\n descRes = {\n ...(descRes as DescRes),\n age: (gearRes as gear.GearType).age,\n gender: (gearRes as gear.GearType).gender,\n genderScore: (gearRes as gear.GearType).genderScore,\n race: (gearRes as gear.GearType).race,\n };\n }\n if (instance.config.face['mobilefacenet']?.enabled && mobilefacenetRes) { // override descriptor if mobilefacenet model is used\n (descRes as DescRes).descriptor = mobilefacenetRes as number[];\n }\n\n if (instance.config.face['insightface']?.enabled && insightfaceRes) { // override descriptor if insightface model is used\n (descRes as DescRes).descriptor = insightfaceRes as number[];\n }\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!instance.config.face.iris?.enabled) {\n // if (faces[i]?.annotations?.leftEyeIris) delete faces[i].annotations.leftEyeIris;\n // if (faces[i]?.annotations?.rightEyeIris) delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i]?.annotations?.leftEyeIris?.[0] && faces[i]?.annotations?.rightEyeIris?.[0]\n && (faces[i].annotations.leftEyeIris.length > 0) && (faces[i].annotations.rightEyeIris.length > 0)\n && (faces[i].annotations.leftEyeIris[0] !== null) && (faces[i].annotations.rightEyeIris[0] !== null))\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0; // note: average human iris size is 11.7mm\n\n // optionally return tensor\n const tensor = instance.config.face.detector?.return ? tf.squeeze(faces[i].tensor) : null;\n // dispose original face tensor\n tf.dispose(faces[i].tensor);\n // delete temp face image\n if (faces[i].tensor) delete faces[i].tensor;\n // combine results\n const res: FaceResult = {\n ...faces[i],\n id: i,\n };\n if ((descRes as DescRes).age) res.age = (descRes as DescRes).age;\n if ((descRes as DescRes).gender) res.gender = (descRes as DescRes).gender;\n if ((descRes as DescRes).genderScore) res.genderScore = (descRes as DescRes).genderScore;\n if ((descRes as DescRes).descriptor) res.embedding = (descRes as DescRes).descriptor;\n if ((descRes as DescRes).race) res.race = (descRes as DescRes).race as { score: number, race: Race }[];\n if (emotionRes) res.emotion = emotionRes as { score: number, emotion: Emotion }[];\n if (antispoofRes) res.real = antispoofRes as number;\n if (livenessRes) res.live = livenessRes as number;\n if (irisSize && irisSize !== 0) res.iris = Math.trunc(500 / irisSize / 11.7) / 100;\n if (rotation) res.rotation = rotation;\n if (tensor) res.tensor = tensor;\n faceRes.push(res);\n instance.analyze('End Face');\n }\n instance.analyze('End FaceMesh:');\n if (instance.config.async) {\n if (instance.performance.face) delete instance.performance.face;\n if (instance.performance.age) delete instance.performance.age;\n if (instance.performance.gender) delete instance.performance.gender;\n if (instance.performance.emotion) delete instance.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection algorithm\n */\n\nimport type { GestureResult, BodyResult, FaceResult, HandResult, Point } from '../result';\nimport * as fingerPose from '../hand/fingerpose';\n\n/** face gesture type */\nexport type FaceGesture =\n `facing ${'left' | 'center' | 'right'}`\n | `blink ${'left' | 'right'} eye`\n | `mouth ${number}% open`\n | `head ${'up' | 'down'}`;\n\n/** iris gesture type */\nexport type IrisGesture =\n 'facing center'\n | `looking ${'left' | 'right' | 'up' | 'down'}`\n | 'looking center';\n\n/** body gesture type */\nexport type BodyGesture =\n `leaning ${'left' | 'right'}`\n | `raise ${'left' | 'right'} hand`\n | 'i give up';\n\n/** hand gesture type */\nexport type HandGesture =\n `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} forward`\n | `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} up`\n | 'victory'\n | 'thumbs up';\n\nexport const body = (res: BodyResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { body: number, gesture: BodyGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position[1] < nose.position[1]) && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder && Math.abs(leftShoulder.positionRaw[1] - rightShoulder.positionRaw[1]) > 0.1) {\n gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position[1] > rightShoulder.position[1]) ? 'left' : 'right'}` });\n }\n }\n return gestures;\n};\n\nexport const face = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { face: number, gesture: FaceGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 450) {\n const zDiff = (res[i].mesh[33][2] || 0) - (res[i].mesh[263][2] || 0);\n const xDiff = res[i].mesh[33][0] - res[i].mesh[263][0];\n if (Math.abs(zDiff / xDiff) <= 0.15) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${zDiff < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2] || 0;\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { iris: number, gesture: IrisGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations?.leftEyeIris?.[0] || !res[i].annotations?.rightEyeIris?.[0]) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > rightIrisCenterX) { // check eye with bigger offset\n if (leftIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking right' });\n } else {\n if (rightIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking left' });\n }\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res: HandResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { hand: number, gesture: HandGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: { name: string, position: Point }[] = [];\n if (res[i].annotations) {\n for (const [finger, pos] of Object.entries(res[i].annotations)) {\n if (finger !== 'palmBase' && Array.isArray(pos) && pos[0]) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => ((best.position[2] || 0) < (a.position[2] || 0) ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward` as HandGesture });\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${highest.name} up` as HandGesture });\n }\n if (res[i].keypoints) {\n const poses = fingerPose.match(res[i].keypoints);\n for (const pose of poses) gestures.push({ hand: i, gesture: pose.name as HandGesture });\n }\n }\n return gestures;\n};\n", "/**\n * Results interpolation for smoothening of video detection results inbetween detected frames\n */\n\nimport type { Result, FaceResult, BodyResult, HandResult, ObjectResult, PersonResult, Box, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { Config } from '../config';\n\nimport * as moveNetCoords from '../body/movenetcoords';\nimport * as blazePoseCoords from '../body/blazeposecoords';\nimport * as efficientPoseCoords from '../body/efficientposecoords';\nimport { now } from './util';\nimport { env } from './env';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\nlet interpolateTime = 0;\n\nexport function calc(newResult: Result, config: Config): Result {\n const t0 = now();\n if (!newResult) return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed + 1) : 1;\n\n if (newResult.canvas) bufferedResult.canvas = newResult.canvas;\n if (newResult.error) bufferedResult.error = newResult.error;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body)) as BodyResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + newBoxCoord) / bufferedFactor) as Box;\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + newBoxCoord) / bufferedFactor) as Box;\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((newKpt, j) => ({\n score: newKpt.score,\n part: newKpt.part,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[0] || 0) + (newKpt.position[0] || 0)) / bufferedFactor : newKpt.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[1] || 0) + (newKpt.position[1] || 0)) / bufferedFactor : newKpt.position[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[2] || 0) + (newKpt.position[2] || 0)) / bufferedFactor : newKpt.position[2],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[0] || 0) + (newKpt.positionRaw[0] || 0)) / bufferedFactor : newKpt.positionRaw[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[1] || 0) + (newKpt.positionRaw[1] || 0)) / bufferedFactor : newKpt.positionRaw[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[2] || 0) + (newKpt.positionRaw[2] || 0)) / bufferedFactor : newKpt.positionRaw[2],\n ],\n distance: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[0] || 0) + (newKpt.distance?.[0] || 0)) / bufferedFactor : newKpt.distance?.[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[1] || 0) + (newKpt.distance?.[1] || 0)) / bufferedFactor : newKpt.distance?.[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[2] || 0) + (newKpt.distance?.[2] || 0)) / bufferedFactor : newKpt.distance?.[2],\n ],\n }))) as { score: number, part: BodyLandmark, position: [number, number, number?], positionRaw: [number, number, number?] }[];\n\n const annotations: Record = {} as Record; // recreate annotations\n let coords = { connected: {} };\n if (config.body.modelPath?.includes('efficientpose')) coords = efficientPoseCoords;\n else if (config.body.modelPath?.includes('blazepose')) coords = blazePoseCoords;\n else if (config.body.modelPath?.includes('movenet')) coords = moveNetCoords;\n for (const [name, indexes] of Object.entries(coords.connected as Record)) {\n const pt: Point[][] = [];\n for (let j = 0; j < indexes.length - 1; j++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[j]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[j + 1]);\n // if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints, annotations }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand)); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (bufferedResult.hand[i].keypoints.length !== newResult.hand[i].keypoints.length) bufferedResult.hand[i].keypoints = newResult.hand[i].keypoints; // reset keypoints as previous frame did not have them\n const keypoints = newResult.hand[i].keypoints && newResult.hand[i].keypoints.length > 0 ? newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * (bufferedResult.hand[i].keypoints[j][k] || 1) + (coord || 0)) / bufferedFactor)) as Point)\n : [];\n let annotations = {};\n if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length) {\n bufferedResult.hand[i].annotations = newResult.hand[i].annotations; // reset annotations as previous frame did not have them\n annotations = bufferedResult.hand[i].annotations;\n } else if (newResult.hand[i].annotations) {\n for (const key of Object.keys(newResult.hand[i].annotations)) { // update annotations\n annotations[key] = newResult.hand[i]?.annotations?.[key]?.[0]\n ? newResult.hand[i].annotations[key]\n .map((val, j: number) => val\n .map((coord: number, k: number) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor))\n : null;\n }\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations: annotations as HandResult['annotations'] }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face)) as FaceResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (newResult.face[i].rotation) {\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.roll || 0) + (newResult.face[i].rotation?.angle.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.yaw || 0) + (newResult.face[i].rotation?.angle.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.pitch || 0) + (newResult.face[i].rotation?.angle.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze.bearing || 0) + (newResult.face[i].rotation?.gaze.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze.strength || 0) + (newResult.face[i].rotation?.gaze.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n bufferedResult.face[i] = { ...newResult.face[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object)) as ObjectResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons)) as PersonResult[];\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as Box;\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture;\n\n // append interpolation performance data\n const t1 = now();\n interpolateTime = env.perfadd ? interpolateTime + Math.round(t1 - t0) : Math.round(t1 - t0);\n if (newResult.performance) bufferedResult.performance = { ...newResult.performance, interpolate: interpolateTime };\n\n return bufferedResult;\n}\n", "/** Face descriptor type as number array */\nexport type Descriptor = number[]\nexport type MatchOptions = { order?: number, threshold?: number, multiplier?: number, min?: number, max?: number } | undefined;\n\n/** Calculates distance between two descriptors\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n */\nexport function distance(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25 }) {\n // general minkowski distance, euclidean distance is limited case where order is 2\n if (!descriptor1 || !descriptor1) return Number.MAX_SAFE_INTEGER;\n let sum = 0;\n for (let i = 0; i < descriptor1.length; i++) {\n const diff = (!options.order || options.order === 2) ? (descriptor1[i] - descriptor2[i]) : (Math.abs(descriptor1[i] - descriptor2[i]));\n sum += (!options.order || options.order === 2) ? (diff * diff) : (diff ** options.order);\n }\n return (options.multiplier || 20) * sum;\n}\n\n// invert distance to similarity, normalize to given range and clamp\nconst normalizeDistance = (dist, order, min, max) => {\n if (dist === 0) return 1; // short circuit for identical inputs\n const root = order === 2 ? Math.sqrt(dist) : dist ** (1 / order); // take root of distance\n const norm = (1 - (root / 100) - min) / (max - min); // normalize to range\n const clamp = Math.max(Math.min(norm, 1), 0); // clamp to 0..1\n return clamp;\n};\n\n/** Calculates normalized similarity between two face descriptors based on their `distance`\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n * - min - normalize similarity result to a given range\n * - max - normalzie similarity resutl to a given range\n * default is 0.2...0.8\n * Returns similarity between two face descriptors normalized to 0..1 range where 0 is no similarity and 1 is perfect similarity\n */\nexport function similarity(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25, min: 0.2, max: 0.8 }) {\n const dist = distance(descriptor1, descriptor2, options);\n return normalizeDistance(dist, options.order || 2, options.min || 0, options.max || 1);\n}\n\n/** Matches given descriptor to a closest entry in array of descriptors\n * @param descriptor - face descriptor\n * @param descriptors - array of face descriptors to commpare given descriptor to\n * @param options - see `similarity` method for options description\n * Returns\n * - `index` index array index where best match was found or -1 if no matches\n * - `distance` calculated `distance` of given descriptor to the best match\n * - `similarity` calculated normalized `similarity` of given descriptor to the best match\n*/\nexport function match(descriptor: Descriptor, descriptors: Descriptor[], options: MatchOptions = { order: 2, multiplier: 25, threshold: 0, min: 0.2, max: 0.8 }) {\n if (!Array.isArray(descriptor) || !Array.isArray(descriptors) || descriptor.length < 64 || descriptors.length === 0) { // validate input\n return { index: -1, distance: Number.POSITIVE_INFINITY, similarity: 0 };\n }\n let lowestDistance = Number.MAX_SAFE_INTEGER;\n let index = -1;\n for (let i = 0; i < descriptors.length; i++) {\n const res = descriptors[i].length === descriptor.length ? distance(descriptor, descriptors[i], options) : Number.MAX_SAFE_INTEGER;\n if (res < lowestDistance) {\n lowestDistance = res;\n index = i;\n }\n if (lowestDistance < (options.threshold || 0)) break;\n }\n const normalizedSimilarity = normalizeDistance(lowestDistance, options.order || 2, options.min || 0, options.max || 1);\n return { index, distance: lowestDistance, similarity: normalizedSimilarity };\n}\n", "/**\n * Analyze detection Results and sort&combine them into per-person view\n */\n\nimport type { FaceResult, BodyResult, HandResult, GestureResult, PersonResult, Box } from '../result';\n\nexport function join(faces: FaceResult[], bodies: BodyResult[], hands: HandResult[], gestures: GestureResult[], shape: number[] | undefined): PersonResult[] {\n let id = 0;\n const persons: PersonResult[] = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: PersonResult = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands.left?.id) person.gestures.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands.right?.id) person.gestures.push(gesture);\n }\n\n // create new overarching box from all boxes belonging to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box: Box | undefined) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face.box);\n extractXY(person.body?.box);\n extractXY(person.hands.left?.box);\n extractXY(person.hands.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape?.[1] && shape?.[2]) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Warmup algorithm that uses embedded images to exercise loaded models for faster future inference\n */\n\nimport { log, now, mergeDeep } from './util/util';\nimport * as sample from './sample';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as image from './image/image';\nimport { env } from './util/env';\nimport type { Config } from './config';\nimport type { Result } from './result';\nimport type { Human, Models } from './human';\nimport type { Tensor } from './exports';\n\nasync function warmupBitmap(instance: Human): Promise {\n const b64toBlob = (base64: string, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob: Blob | null;\n let res: Result | undefined;\n switch (instance.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'body':\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await instance.detect(bitmap, instance.config);\n bitmap.close();\n }\n return res;\n}\n\nasync function warmupCanvas(instance: Human): Promise {\n return new Promise((resolve) => {\n let src: string;\n // let size = 0;\n switch (instance.config.warmup) {\n case 'face':\n // size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n // size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = '';\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n let img: HTMLImageElement;\n if (typeof Image !== 'undefined') img = new Image();\n // @ts-ignore env.image is an external monkey-patch\n else if (env.Image) img = new env.Image();\n else return;\n img.onload = async () => {\n const canvas = image.canvas(img.naturalWidth, img.naturalHeight);\n if (!canvas) {\n log('Warmup: Canvas not found');\n resolve(undefined);\n } else {\n const ctx = canvas.getContext('2d');\n if (ctx) ctx.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const tensor = await instance.image(canvas);\n const res = tensor.tensor ? await instance.detect(tensor.tensor, instance.config) : undefined;\n resolve(res);\n }\n };\n if (src) img.src = src;\n else resolve(undefined);\n });\n}\n\nasync function warmupNode(instance: Human): Promise {\n const atob = (str: string) => Buffer.from(str, 'base64');\n let img;\n if (instance.config.warmup === 'face') img = atob(sample.face);\n else img = atob(sample.body);\n let res: Result;\n if (('node' in tf) && (tf.getBackend() === 'tensorflow')) {\n const data: Tensor = tf['node'].decodeJpeg(img); // eslint-disable-line import/namespace\n const expanded: Tensor = tf.expandDims(data, 0);\n instance.tf.dispose(data);\n // log('Input:', expanded);\n res = await instance.detect(expanded, instance.config);\n instance.tf.dispose(expanded);\n } else {\n if (instance.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await instance.detect(input, instance.config);\n */\n }\n // @ts-ignore\n return res;\n}\n\nasync function runInference(instance: Human) {\n let res: Result | undefined;\n if (typeof createImageBitmap === 'function') res = await warmupBitmap(instance);\n else if (typeof Image !== 'undefined' || env.Canvas !== undefined) res = await warmupCanvas(instance);\n else res = await warmupNode(instance);\n return res;\n}\n\n/** Runs pre-compile on all loaded models */\nexport async function runCompile(allModels: Models) {\n if (!tf.env().flagRegistry.ENGINE_COMPILE_ONLY) return; // tfjs does not support compile-only inference\n const backendType = tf.getBackend();\n const webGLBackend = tf.backend();\n if ((backendType !== 'webgl' && backendType !== 'humangl') || !webGLBackend?.checkCompileCompletion) {\n // log('compile pass: skip');\n return;\n }\n tf.env().set('ENGINE_COMPILE_ONLY', true);\n const numTensorsStart = tf.engine().state.numTensors;\n const compiledModels: string[] = [];\n for (const [modelName, model] of Object.entries(allModels).filter(([key, val]) => (key !== null && val !== null))) {\n const shape = (model.inputs?.[0]?.shape) ? [...model.inputs[0].shape] : [1, 64, 64, 3];\n const dtype: string = (model.inputs?.[0]?.dtype) ? model.inputs[0].dtype : 'float32';\n for (let dim = 0; dim < shape.length; dim++) {\n if (shape[dim] === -1) shape[dim] = dim === 0 ? 1 : 64; // override batch number and any dynamic dimensions\n }\n const tensor = tf.zeros(shape, dtype);\n try {\n const res = model.execute(tensor);\n compiledModels.push(modelName);\n if (Array.isArray(res)) res.forEach((t) => tf.dispose(t));\n else tf.dispose(res);\n } catch {\n log('compile fail model:', modelName);\n }\n tf.dispose(tensor);\n }\n const kernels = await webGLBackend.checkCompileCompletionAsync();\n webGLBackend.getUniformLocations();\n log('compile pass models:', compiledModels);\n log('compile pass kernels:', kernels.length);\n tf.env().set('ENGINE_COMPILE_ONLY', false);\n const numTensorsEnd = tf.engine().state.numTensors;\n if ((numTensorsEnd - numTensorsStart) > 0) log('tensor leak:', numTensorsEnd - numTensorsStart);\n}\n\n/** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used in browser environments for `webgl` and `humangl` backends\n * @param userConfig?: Config\n*/\nexport async function warmup(instance: Human, userConfig?: Partial): Promise {\n const t0 = now();\n instance.state = 'warmup';\n if (userConfig) instance.config = mergeDeep(instance.config, userConfig) as Config;\n if (!instance.config.warmup || instance.config.warmup.length === 0 || instance.config.warmup === 'none') {\n return { face: [], body: [], hand: [], gesture: [], object: [], performance: instance.performance, timestamp: now(), persons: [], error: null };\n }\n return new Promise(async (resolve) => {\n await runCompile(instance.models);\n const res = await runInference(instance);\n const t1 = now();\n if (instance.config.debug) log('warmup', instance.config.warmup, Math.round(t1 - t0), 'ms');\n instance.emit('warmup');\n resolve(res);\n });\n}\n", "/**\n * Human main module\n * @default Human Library\n * @summary \n * @author \n * @copyright \n * @license MIT\n */\n\n// module imports\nimport { log, now, mergeDeep, validate } from './util/util';\nimport { defaults } from './config';\nimport { env, Env } from './util/env';\nimport { setModelLoadOptions } from './tfjs/load';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as app from '../package.json';\nimport * as backend from './tfjs/backend';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as draw from './draw/draw';\nimport * as efficientpose from './body/efficientpose';\nimport * as face from './face/face';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as gesture from './gesture/gesture';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as humangl from './tfjs/humangl';\nimport * as image from './image/image';\nimport * as interpolate from './util/interpolate';\nimport * as match from './face/match';\nimport * as models from './models';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as persons from './util/persons';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as warmups from './warmup';\n// type definitions\nimport type { Input, Tensor, DrawOptions, Config, Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult, AnyCanvas, ModelStats } from './exports';\n// type exports\nexport * from './exports';\n\n/** **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig - {@link Config}\n * @returns instance of {@link Human}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n\n /** Current configuration\n * - Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\n config: Config;\n\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n\n /** currenty processed image tensor and canvas */\n process: { tensor: Tensor | null, canvas: AnyCanvas | null };\n\n /** Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n * [TFJS API](https://js.tensorflow.org/api/latest/)\n */\n tf;\n\n /** Object containing environment information used for diagnostics */\n env: Env;\n\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - canvas: draws input to canvas\n * - options: are global settings for all draw operations, can be overriden for each draw method {@link DrawOptions}\n * - face, body, hand, gesture, object, person: draws detected results as overlays on canvas\n */\n draw: { canvas: typeof draw.canvas, face: typeof draw.face, body: typeof draw.body, hand: typeof draw.hand, gesture: typeof draw.gesture, object: typeof draw.object, person: typeof draw.person, all: typeof draw.all, options: DrawOptions };\n\n /** Currently loaded models\n * @internal\n * {@link Models}\n */\n models: models.Models;\n\n /** Container for events dispatched by Human\n * Possible events:\n * - `create`: triggered when Human object is instantiated\n * - `load`: triggered when models are loaded (explicitly or on-demand)\n * - `image`: triggered when input image is processed\n * - `result`: triggered when detection is complete\n * - `warmup`: triggered when warmup is complete\n * - `error`: triggered on some errors\n */\n events: EventTarget | undefined;\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: number[];\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: [number, number][];\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n /** WebGL debug info */\n gl: Record;\n // definition end\n\n /** Constructor for **Human** library that is futher used for all operations\n * @param userConfig - user configuration object {@link Config}\n */\n constructor(userConfig?: Partial) {\n this.env = env;\n /*\n defaults.wasmPath = tf.version['tfjs-core'].includes('-') // custom build or official build\n ? 'https://vladmandic.github.io/tfjs/dist/'\n : `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tf.version_core}/dist/`;\n */\n const tfVersion = (tf.version.tfjs || tf.version_core).replace(/-(.*)/, '');\n defaults.wasmPath = `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tfVersion}/dist/`;\n defaults.modelBasePath = env.browser ? '../models/' : 'file://models/';\n defaults.backend = env.browser ? 'humangl' : 'tensorflow';\n this.version = app.version; // expose version property on instance of class\n Object.defineProperty(this, 'version', { value: app.version }); // expose version property directly on class itself\n this.config = JSON.parse(JSON.stringify(defaults));\n Object.seal(this.config);\n this.config.cacheModels = typeof indexedDB !== 'undefined';\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n setModelLoadOptions(this.config);\n this.tf = tf;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.performance = {};\n this.events = (typeof EventTarget !== 'undefined') ? new EventTarget() : undefined;\n // object that contains all initialized models\n this.models = new models.Models();\n // reexport draw methods\n this.draw = {\n options: draw.options,\n canvas: (input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) => draw.canvas(input, output),\n face: (output: AnyCanvas, result: FaceResult[], options?: Partial) => draw.face(output, result, options),\n body: (output: AnyCanvas, result: BodyResult[], options?: Partial) => draw.body(output, result, options),\n hand: (output: AnyCanvas, result: HandResult[], options?: Partial) => draw.hand(output, result, options),\n gesture: (output: AnyCanvas, result: GestureResult[], options?: Partial) => draw.gesture(output, result, options),\n object: (output: AnyCanvas, result: ObjectResult[], options?: Partial) => draw.object(output, result, options),\n person: (output: AnyCanvas, result: PersonResult[], options?: Partial) => draw.person(output, result, options),\n all: (output: AnyCanvas, result: Result, options?: Partial) => draw.all(output, result, options),\n };\n this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [], error: null };\n // export access to image processing\n this.process = { tensor: null, canvas: null };\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // set gl info\n this.gl = humangl.config;\n // init model validation\n models.validateModel(this, null, '');\n // include platform info\n this.emit('create');\n }\n\n /** internal function to measure tensor leaks */\n analyze = (...msg: string[]) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n };\n\n /** internal function for quick sanity check on inputs @hidden */\n #sanity = (input: Input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.env.node && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n };\n\n /** Reset configuration to default values */\n reset(): void {\n const currentBackend = this.config.backend; // save backend;\n this.config = JSON.parse(JSON.stringify(defaults));\n this.config.backend = currentBackend;\n }\n\n /** Validate current configuration schema */\n validate(userConfig?: Partial) {\n return validate(defaults, userConfig || this.config);\n }\n\n /** Check model for invalid kernel ops for current backend */\n check() {\n return models.validate(this);\n }\n\n /** Exports face matching methods {@link match#similarity} */\n public similarity = match.similarity;\n /** Exports face matching methods {@link match#distance} */\n public distance = match.distance;\n /** Exports face matching methods {@link match#match} */\n public match = match.match;\n\n /** Utility wrapper for performance.now() */\n now(): number { // eslint-disable-line class-methods-use-this\n return now();\n }\n\n /** Process input as return canvas and tensor\n *\n * @param input - any input {@link Input}\n * @param getTensor - should image processing also return tensor or just canvas\n * Returns object with `tensor` and `canvas`\n */\n image(input: Input, getTensor: boolean = true) {\n return image.process(input, this.config, getTensor);\n }\n\n /** Segmentation method takes any input and returns processed canvas with body segmentation\n * - Segmentation is not triggered as part of detect process\n * @param input - {@link Input}\n * @param background - {@link Input}\n * - Optional parameter background is used to fill the background with specific input\n * Returns:\n * - `data` as raw data array with per-pixel segmentation values\n * - `canvas` as canvas which is input image filtered with segementation data and optionally merged with background image. canvas alpha values are set to segmentation values for easy merging\n * - `alpha` as grayscale canvas that represents segmentation alpha values\n */\n async segmentation(input: Input, background?: Input): Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n *\n * @param input - Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n enhance(input: Tensor): Tensor | null { // eslint-disable-line class-methods-use-this\n return faceres.enhance(input);\n }\n\n /** Compare two input tensors for pixel simmilarity\n * - use `human.image` to process any valid input and get a tensor that can be used for compare\n * - when passing manually generated tensors:\n * - both input tensors must be in format [1, height, width, 3]\n * - if resolution of tensors does not match, second tensor will be resized to match resolution of the first tensor\n * - return value is pixel similarity score normalized by input resolution and rgb channels\n */\n compare(firstImageTensor: Tensor, secondImageTensor: Tensor): Promise {\n return image.compare(this.config, firstImageTensor, secondImageTensor);\n }\n\n /** Explicit backend initialization\n * - Normally done implicitly during initial load phase\n * - Call to explictly register and initialize TFJS backend without any other operations\n * - Use when changing backend during runtime\n */\n async init(): Promise {\n await backend.check(this, true);\n await this.tf.ready();\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n *\n * @param userConfig - {@link Config}\n */\n async load(userConfig?: Partial): Promise {\n this.state = 'load';\n const timeStamp = now();\n const count = Object.values(this.models).filter((model) => model).length;\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.env.initial) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version['tfjs-core'] as string}`);\n if (!await backend.check(this)) log('error: backend check failed');\n await tf.ready();\n if (this.env.browser) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('environment:', this.env);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n\n await models.load(this); // actually loads models\n if (this.env.initial && this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors'); // print memory stats on first run\n this.env.initial = false;\n\n const loaded = Object.values(this.models).filter((model) => model).length;\n if (loaded !== count) { // number of loaded models changed\n models.validate(this); // validate kernel ops used by model against current backend\n this.emit('load');\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.loadModels || 0)) this.performance.loadModels = this.env.perfadd ? (this.performance.loadModels || 0) + current : current;\n }\n\n /** emit event */\n emit = (event: string) => {\n if (this.events?.dispatchEvent) this.events.dispatchEvent(new Event(event));\n };\n\n /** Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result - {@link Result} optional use specific result set to run interpolation on\n * @returns result - {@link Result}\n */\n next(result: Result = this.result): Result {\n return interpolate.calc(result, this.config);\n }\n\n /** get model loading/loaded stats */\n getModelStats(): ModelStats { return models.getModelStats(this); }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async warmup(userConfig?: Partial) {\n const t0 = now();\n const res = await warmups.warmup(this, userConfig);\n const t1 = now();\n this.performance.warmup = Math.trunc(t1 - t0);\n return res;\n }\n\n /** Run detect with tensorflow profiling\n * - result object will contain total exeuction time information for top-20 kernels\n * - actual detection object can be accessed via `human.result`\n */\n async profile(input: Input, userConfig?: Partial): Promise<{ kernel: string, time: number, perc: number }[]> {\n const profile = await this.tf.profile(() => this.detect(input, userConfig));\n const kernels: Record = {};\n let total = 0;\n for (const kernel of profile.kernels) { // sum kernel time values per kernel\n if (kernels[kernel.name]) kernels[kernel.name] += kernel.kernelTimeMs;\n else kernels[kernel.name] = kernel.kernelTimeMs;\n total += kernel.kernelTimeMs;\n }\n const kernelArr: { kernel: string, time: number, perc: number }[] = [];\n Object.entries(kernels).forEach((key) => kernelArr.push({ kernel: key[0], time: key[1] as unknown as number, perc: 0 })); // convert to array\n for (const kernel of kernelArr) {\n kernel.perc = Math.round(1000 * kernel.time / total) / 1000;\n kernel.time = Math.round(1000 * kernel.time) / 1000;\n }\n kernelArr.sort((a, b) => b.time - a.time); // sort\n kernelArr.length = 20; // crop\n return kernelArr;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input - {@link Input}\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async detect(input: Input, userConfig?: Partial): Promise {\n // detection happens inside a promise\n this.state = 'detect';\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error });\n }\n\n const timeStart = now();\n\n // configure backend if needed\n await backend.check(this);\n\n // load models if enabled\n await this.load();\n\n timeStamp = now();\n this.state = 'image';\n const img = await image.process(input, this.config) as { canvas: AnyCanvas, tensor: Tensor };\n this.process = img;\n this.performance.inputProcess = this.env.perfadd ? (this.performance.inputProcess || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n if (!img.tensor) {\n if (this.config.debug) log('could not convert input to tensor');\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error: 'could not convert input to tensor' });\n return;\n }\n this.emit('image');\n\n timeStamp = now();\n this.config.skipAllowed = await image.skip(this.config, img.tensor);\n if (!this.performance.totalFrames) this.performance.totalFrames = 0;\n if (!this.performance.cachedFrames) this.performance.cachedFrames = 0;\n (this.performance.totalFrames)++;\n if (this.config.skipAllowed) this.performance.cachedFrames++;\n this.performance.cacheCheck = this.env.perfadd ? (this.performance.cacheCheck || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes: FaceResult[] | Promise | never[] = [];\n let bodyRes: BodyResult[] | Promise | never[] = [];\n let handRes: HandResult[] | Promise | never[] = [];\n let objectRes: ObjectResult[] | Promise | never[] = [];\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n this.state = 'detect:face';\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, img.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, img.tensor) : [];\n this.performance.face = this.env.perfadd ? (this.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n\n if (this.config.async && (this.config.body.maxDetected === -1 || this.config.hand.maxDetected === -1)) faceRes = await faceRes; // need face result for auto-detect number of hands or bodies\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n this.state = 'detect:body';\n const bodyConfig = this.config.body.maxDetected === -1 ? mergeDeep(this.config, { body: { maxDetected: this.config.face.enabled ? 1 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of bodies\n if (this.config.async) {\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(img.tensor, bodyConfig) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n timeStamp = now();\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(img.tensor, bodyConfig) : [];\n this.performance.body = this.env.perfadd ? (this.performance.body || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n this.state = 'detect:hand';\n const handConfig = this.config.hand.maxDetected === -1 ? mergeDeep(this.config, { hand: { maxDetected: this.config.face.enabled ? 2 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of hands\n if (this.config.async) {\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? handtrack.predict(img.tensor, handConfig) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n timeStamp = now();\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? await handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? await handtrack.predict(img.tensor, handConfig) : [];\n this.performance.hand = this.env.perfadd ? (this.performance.hand || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Hand:');\n\n // run object detection\n this.analyze('Start Object:');\n this.state = 'detect:object';\n if (this.config.async) {\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(img.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n timeStamp = now();\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(img.tensor, this.config) : [];\n this.performance.object = this.env.perfadd ? (this.performance.object || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Object:');\n\n // if async wait for results\n this.state = 'detect:await';\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n this.state = 'detect:gesture';\n let gestureRes: GestureResult[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes as FaceResult[]), ...gesture.body(bodyRes as BodyResult[]), ...gesture.hand(handRes as HandResult[]), ...gesture.iris(faceRes as FaceResult[])];\n if (!this.config.async) this.performance.gesture = this.env.perfadd ? (this.performance.gesture || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = this.env.perfadd ? (this.performance.total || 0) + Math.trunc(now() - timeStart) : Math.trunc(now() - timeStart);\n const shape = this.process.tensor?.shape || [];\n this.result = {\n face: faceRes as FaceResult[],\n body: bodyRes as BodyResult[],\n hand: handRes as HandResult[],\n gesture: gestureRes,\n object: objectRes as ObjectResult[],\n performance: this.performance,\n canvas: this.process.canvas,\n timestamp: Date.now(),\n error: null,\n get persons() { return persons.join(faceRes as FaceResult[], bodyRes as BodyResult[], handRes as HandResult[], gestureRes, shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(img.tensor);\n\n // log('Result:', result);\n this.emit('detect');\n this.state = 'idle';\n resolve(this.result);\n });\n }\n}\n\n/** Class Human as default export */\n/* eslint no-restricted-exports: [\"off\", { \"restrictedNamedExports\": [\"default\"] }] */\nexport { Human as default, match, draw, models };\n"], - "mappings": ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAOO,SAAS,OAAO,KAAW;AAChC,QAAM,KAAK,IAAI,KAAK;AACpB,QAAM,KAAK,GAAG,GAAG,SAAS,EAAE,SAAS,EAAE,SAAS,GAAG,GAAG,KAAK,GAAG,WAAW,EAAE,SAAS,EAAE,SAAS,GAAG,GAAG,KAAK,GAAG,WAAW,EAAE,SAAS,EAAE,SAAS,GAAG,GAAG,KAAK,GAAG,gBAAgB,EAAE,SAAS,EAAE,SAAS,GAAG,GAAG;AACxM,MAAI;AAAK,YAAQ,IAAI,IAAI,UAAU,GAAG,GAAG;AAC3C;AAGO,SAAS,KAAK,QAAgB,MAAsB;AACzD,QAAM,YAAY,OAAO,SAAS,GAAG,IAAI,KAAK;AAC9C,QAAM,WAAW,KAAK,WAAW,GAAG,KAAK,KAAK,WAAW,GAAG,KAAK,KAAK,WAAW,OAAO,KAAK,KAAK,WAAW,QAAQ,KAAK,KAAK,WAAW,OAAO;AACjJ,QAAM,OAAO,WAAW,GAAG,SAAS,GAAG,SAAS,YAAY;AAC5D,MAAI,CAAC,KAAK,kBAAkB,EAAE,SAAS,OAAO;AAAG,UAAM,IAAI,MAAM,yCAAyC,MAAM;AAChH,SAAO;AACT;AAGO,IAAM,MAAM,MAAM;AACvB,MAAI,OAAO,gBAAgB;AAAa,WAAO,YAAY,IAAI;AAC/D,SAAO,UAAU,OAAO,QAAQ,OAAO,OAAO,CAAC,IAAI,MAAO,KAAM,SAAS,CAAC;AAC5E;AAGO,SAAS,SAAS,UAA2BA,SAAyB,SAAS,UAAU,OAA+D,CAAC,GAAG;AACjK,aAAW,OAAO,OAAO,KAAKA,OAAM,GAAG;AACrC,QAAI,OAAOA,QAAO,SAAS,UAAU;AACnC,eAAS,SAAS,MAAMA,QAAO,MAAM,KAAK,IAAI;AAAA,IAChD,OAAO;AACL,YAAM,UAAU,YAAa,OAAO,SAAS,SAAS;AACtD,UAAI,CAAC;AAAS,aAAK,KAAK,EAAE,QAAQ,oBAAoB,OAAO,GAAG,UAAU,SAASA,QAAO,OAAO,CAAC;AAClG,YAAM,OAAO,YAAY,OAAO,SAAS,SAAS,OAAOA,QAAO;AAChE,UAAI,WAAW,CAAC;AAAM,aAAK,KAAK,EAAE,QAAQ,0BAA0B,OAAO,GAAG,UAAU,SAASA,QAAO,QAAQ,UAAU,OAAO,SAAS,KAAK,CAAC;AAAA,IAClJ;AAAA,EAEF;AACA,MAAIA,QAAO,SAAS,WAAW,YAAY,KAAK,SAAS;AAAG,QAAI,yBAAyB,IAAI;AAC7F,SAAO;AACT;AAGO,SAAS,aAAa,SAAS;AACpC,QAAM,WAAW,CAAC,QAAQ,OAAO,OAAO,QAAQ;AAChD,SAAO,QAAQ,OAAO,CAAC,MAAM,QAAQ;AACnC,WAAO,KAAK,OAAO,CAAC,CAAC,EAAE,QAAQ,CAAC,QAAQ;AACtC,YAAM,OAAO,KAAK;AAClB,YAAM,OAAO,IAAI;AACjB,UAAI,MAAM,QAAQ,IAAI,KAAK,MAAM,QAAQ,IAAI;AAAG,aAAK,OAAO,KAAK,OAAO,GAAG,IAAI;AAAA,eACtE,SAAS,IAAI,KAAK,SAAS,IAAI;AAAG,aAAK,OAAO,UAAU,MAAM,IAAI;AAAA;AACtE,aAAK,OAAO;AAAA,IACnB,CAAC;AACD,WAAO;AAAA,EACT,GAAG,CAAC,CAAC;AACP;;;ACwQA,IAAM,SAAiB;AAAA,EACrB,SAAS;AAAA,EACT,eAAe;AAAA,EACf,aAAa;AAAA,EACb,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,OAAO;AAAA,EACP,OAAO;AAAA,EACP,QAAQ;AAAA,EACR,kBAAkB;AAAA,EAClB,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,iBAAiB;AAAA,EACjB,QAAQ;AAAA,IACN,SAAS;AAAA,IACT,cAAc;AAAA,IACd,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,MAAM;AAAA,IACN,QAAQ;AAAA,IACR,YAAY;AAAA,IACZ,UAAU;AAAA,IACV,WAAW;AAAA,IACX,MAAM;AAAA,IACN,YAAY;AAAA,IACZ,KAAK;AAAA,IACL,UAAU;AAAA,IACV,OAAO;AAAA,IACP,SAAS;AAAA,IACT,YAAY;AAAA,IACZ,aAAa;AAAA,IACb,UAAU;AAAA,IACV,UAAU;AAAA,EACZ;AAAA,EACA,SAAS;AAAA,IACP,SAAS;AAAA,EACX;AAAA,EACA,MAAM;AAAA,IACJ,SAAS;AAAA,IACT,UAAU;AAAA,MACR,WAAW;AAAA,MACX,UAAU;AAAA,MACV,aAAa;AAAA,MACb,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,eAAe;AAAA,MACf,cAAc;AAAA,MACd,MAAM;AAAA,MACN,QAAQ;AAAA,IACV;AAAA,IACA,MAAM;AAAA,MACJ,SAAS;AAAA,MACT,WAAW;AAAA,MACX,aAAa;AAAA,IACf;AAAA,IACA,WAAW;AAAA,MACT,SAAS;AAAA,MACT,WAAW;AAAA,IACb;AAAA,IACA,MAAM;AAAA,MACJ,SAAS;AAAA,MACT,WAAW;AAAA,IACb;AAAA,IACA,SAAS;AAAA,MACP,SAAS;AAAA,MACT,eAAe;AAAA,MACf,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,WAAW;AAAA,IACb;AAAA,IACA,aAAa;AAAA,MACX,SAAS;AAAA,MACT,WAAW;AAAA,MACX,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,eAAe;AAAA,IACjB;AAAA,IACA,WAAW;AAAA,MACT,SAAS;AAAA,MACT,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,WAAW;AAAA,IACb;AAAA,IACA,UAAU;AAAA,MACR,SAAS;AAAA,MACT,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,WAAW;AAAA,IACb;AAAA,EACF;AAAA,EACA,MAAM;AAAA,IACJ,SAAS;AAAA,IACT,WAAW;AAAA,IACX,aAAa;AAAA,IACb,eAAe;AAAA,IACf,YAAY;AAAA,IACZ,UAAU;AAAA,EACZ;AAAA,EACA,MAAM;AAAA,IACJ,SAAS;AAAA,IACT,UAAU;AAAA,IACV,YAAY;AAAA,IACZ,UAAU;AAAA,IACV,eAAe;AAAA,IACf,cAAc;AAAA,IACd,aAAa;AAAA,IACb,WAAW;AAAA,IACX,UAAU;AAAA,MACR,WAAW;AAAA,IACb;AAAA,IACA,UAAU;AAAA,MACR,WAAW;AAAA,IACb;AAAA,EACF;AAAA,EACA,QAAQ;AAAA,IACN,SAAS;AAAA,IACT,WAAW;AAAA,IACX,eAAe;AAAA,IACf,cAAc;AAAA,IACd,aAAa;AAAA,IACb,YAAY;AAAA,IACZ,UAAU;AAAA,EACZ;AAAA,EACA,cAAc;AAAA,IACZ,SAAS;AAAA,IACT,WAAW;AAAA,IACX,MAAM;AAAA,EACR;AACF;;;ACncA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,aAAAC;AAAA,EAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAMA,IAAI,WAAW,OAAO;AACtB,IAAIC,aAAY,OAAO;AACvB,IAAI,mBAAmB,OAAO;AAC9B,IAAI,oBAAoB,OAAO;AAC/B,IAAI,eAAe,OAAO;AAC1B,IAAI,eAAe,OAAO,UAAU;AACpC,IAAI,aAAa,CAAC,IAAI,SAAS,SAAS,YAAY;AAClD,SAAO,SAAS,GAAG,GAAG,kBAAkB,EAAE,EAAE,MAAM,OAAO,EAAE,SAAS,CAAC,EAAE,GAAG,SAAS,IAAI,GAAG,KAAK;AACjG;AACA,IAAIC,YAAW,CAAC,QAAQC,UAAS;AAC/B,WAAS,QAAQA;AACf,IAAAF,WAAU,QAAQ,MAAM,EAAE,KAAKE,MAAK,OAAO,YAAY,KAAK,CAAC;AACjE;AACA,IAAI,cAAc,CAAC,IAAI,MAAM,QAAQ,SAAS;AAC5C,MAAI,QAAQ,OAAO,SAAS,YAAY,OAAO,SAAS,YAAY;AAClE,aAAS,OAAO,kBAAkB,IAAI;AACpC,UAAI,CAAC,aAAa,KAAK,IAAI,GAAG,KAAK,QAAQ;AACzC,QAAAF,WAAU,IAAI,KAAK,EAAE,KAAK,MAAM,KAAK,MAAM,YAAY,EAAE,OAAO,iBAAiB,MAAM,GAAG,MAAM,KAAK,WAAW,CAAC;AAAA,EACvH;AACA,SAAO;AACT;AACA,IAAI,UAAU,CAAC,MAAM,YAAY,YAAY,SAAS,QAAQ,OAAO,SAAS,aAAa,IAAI,CAAC,IAAI,CAAC,GAAG;AAAA,EACtG,cAAc,CAAC,QAAQ,CAAC,KAAK,aAAaA,WAAU,QAAQ,WAAW,EAAE,OAAO,MAAM,YAAY,KAAK,CAAC,IAAI;AAAA,EAC5G;AACF;AAGA,IAAI,eAAe,WAAW;AAAA,EAC5B,8DAA8D,SAAS,QAAQ;AAC7E,WAAO,UAAU;AACjB,QAAI,OAAO;AACX,QAAI;AACF,aAAO,IAAI,YAAY,SAAS,IAAI,YAAY,OAAO,IAAI,WAAW;AAAA,QACpE;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,MACF,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE;AAAA,IACX,SAAS,IAAP;AAAA,IACF;AACA,aAAS,MAAM,KAAK,MAAM,UAAU;AAClC,WAAK,MAAM,MAAM;AACjB,WAAK,OAAO,OAAO;AACnB,WAAK,WAAW,CAAC,CAAC;AAAA,IACpB;AACA,UAAM,UAAU;AAChB,WAAO,eAAe,MAAM,WAAW,cAAc,EAAE,OAAO,KAAK,CAAC;AACpE,aAAS,OAAO,KAAK;AACnB,cAAQ,OAAO,IAAI,mBAAmB;AAAA,IACxC;AACA,UAAM,SAAS;AACf,QAAI,YAAY,CAAC;AACjB,QAAI,aAAa,CAAC;AAClB,aAAS,QAAQ,OAAO,UAAU;AAChC,UAAI,KAAK,WAAWG;AACpB,UAAI,UAAU;AACZ,mBAAW;AACX,YAAIA,SAAQ,KAAK,SAAS,QAAQ,KAAK;AACrC,sBAAY,WAAW;AACvB,cAAI;AACF,mBAAO;AAAA,QACX;AACA,cAAM,SAAS,QAAQ,QAAQ,KAAK,IAAI,KAAK,GAAG,IAAI;AACpD,YAAIA;AACF,qBAAW,SAAS;AACtB,eAAO;AAAA,MACT,OAAO;AACL,iBAAS;AACT,YAAIA,SAAQ,QAAQ,SAAS,QAAQ,KAAK;AACxC,sBAAY,UAAU;AACtB,cAAI;AACF,mBAAO;AAAA,QACX;AACA,cAAM,SAAS,OAAO,QAAQ,IAAI,KAAK,GAAG,KAAK;AAC/C,YAAIA;AACF,oBAAU,SAAS;AACrB,eAAO;AAAA,MACT;AAAA,IACF;AACA,UAAM,UAAU;AAChB,aAAS,WAAW,OAAO,UAAU;AACnC,UAAI,MAAM,KAAK;AACb,eAAO,WAAW,QAAQ;AAC5B,UAAI,UAAU;AACZ,YAAI,QAAQ;AACV,iBAAO;AACT,YAAI,SAAS;AACX,iBAAO;AAAA,MACX,OAAO;AACL,YAAI,SAAS,CAAC;AACZ,iBAAO;AACT,YAAI,QAAQ,KAAK;AACf,iBAAO;AAAA,MACX;AACA,UAAI,QAAQ;AACV,eAAO,WAAW,CAAC,OAAO,QAAQ,EAAE,IAAI;AAC1C,aAAO,SAAS,QAAQ,iBAAiB,GAAG,QAAQ,iBAAiB,GAAG,QAAQ;AAAA,IAClF;AACA,UAAM,aAAa;AACnB,aAAS,SAAS,SAAS,UAAU,UAAU;AAC7C,aAAO,IAAI,MAAM,SAAS,UAAU,QAAQ;AAAA,IAC9C;AACA,UAAM,WAAW;AACjB,QAAI,UAAU,KAAK;AACnB,aAAS,WAAW,KAAK,UAAU,OAAO;AACxC,UAAI,IAAI,WAAW;AACjB,cAAM,MAAM,cAAc;AAC5B,UAAI,QAAQ,SAAS,QAAQ,cAAc,QAAQ,eAAe,QAAQ;AACxE,eAAO;AACT,UAAI,OAAO,aAAa,UAAU;AAChC,gBAAQ,UAAU,WAAW;AAAA,MAC/B,OAAO;AACL,mBAAW,CAAC,CAAC;AAAA,MACf;AACA,cAAQ,SAAS;AACjB,UAAI,QAAQ,KAAK,KAAK;AACpB,cAAM,WAAW,OAAO;AAC1B,UAAI;AACJ,WAAK,KAAK,IAAI,QAAQ,GAAG,KAAK;AAC5B,cAAM,MAAM,iBAAiB;AAAA,eACtB,OAAO,GAAG;AACjB,eAAO,WAAW,IAAI,UAAU,CAAC,GAAG,UAAU,KAAK,EAAE,IAAI;AAAA,MAC3D;AACA,UAAI,eAAe,WAAW,QAAQ,OAAO,CAAC,CAAC;AAC/C,UAAI,SAAS;AACb,eAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM,GAAG;AACzC,YAAIC,QAAO,KAAK,IAAI,GAAG,IAAI,SAAS,EAAE,GAAG,QAAQ,SAAS,IAAI,UAAU,IAAI,KAAKA,KAAI,GAAG,KAAK;AAC7F,YAAIA,QAAO,GAAG;AACZ,cAAI,QAAQ,WAAW,QAAQ,OAAOA,KAAI,CAAC;AAC3C,mBAAS,OAAO,IAAI,KAAK,EAAE,IAAI,WAAW,KAAK,CAAC;AAAA,QAClD,OAAO;AACL,mBAAS,OAAO,IAAI,YAAY;AAChC,mBAAS,OAAO,IAAI,WAAW,KAAK,CAAC;AAAA,QACvC;AAAA,MACF;AACA,aAAO,WAAW;AAClB,aAAO;AAAA,IACT;AACA,UAAM,aAAa;AACnB,aAAS,UAAU,KAAK,UAAU;AAChC,UAAI,OAAO,QAAQ;AACjB,eAAO,WAAW,KAAK,QAAQ;AACjC,UAAI,OAAO,QAAQ;AACjB,eAAO,WAAW,KAAK,QAAQ;AACjC,aAAO,SAAS,IAAI,KAAK,IAAI,MAAM,OAAO,aAAa,YAAY,WAAW,IAAI,QAAQ;AAAA,IAC5F;AACA,UAAM,YAAY;AAClB,QAAI,iBAAiB,KAAK;AAC1B,QAAI,iBAAiB,KAAK;AAC1B,QAAI,iBAAiB,iBAAiB;AACtC,QAAI,iBAAiB,iBAAiB;AACtC,QAAI,iBAAiB,iBAAiB;AACtC,QAAI,aAAa,QAAQ,cAAc;AACvC,QAAI,OAAO,QAAQ,CAAC;AACpB,UAAM,OAAO;AACb,QAAI,QAAQ,QAAQ,GAAG,IAAI;AAC3B,UAAM,QAAQ;AACd,QAAI,MAAM,QAAQ,CAAC;AACnB,UAAM,MAAM;AACZ,QAAI,OAAO,QAAQ,GAAG,IAAI;AAC1B,UAAM,OAAO;AACb,QAAI,UAAU,QAAQ,EAAE;AACxB,UAAM,UAAU;AAChB,QAAI,YAAY,SAAS,aAAa,GAAG,aAAa,GAAG,KAAK;AAC9D,UAAM,YAAY;AAClB,QAAI,qBAAqB,SAAS,aAAa,GAAG,aAAa,GAAG,IAAI;AACtE,UAAM,qBAAqB;AAC3B,QAAI,YAAY,SAAS,GAAG,aAAa,GAAG,KAAK;AACjD,UAAM,YAAY;AAClB,QAAI,gBAAgB,MAAM;AAC1B,kBAAc,QAAQ,SAAS,QAAQ;AACrC,aAAO,KAAK,WAAW,KAAK,QAAQ,IAAI,KAAK;AAAA,IAC/C;AACA,kBAAc,WAAW,SAAS,WAAW;AAC3C,UAAI,KAAK;AACP,gBAAQ,KAAK,SAAS,KAAK,kBAAkB,KAAK,QAAQ;AAC5D,aAAO,KAAK,OAAO,kBAAkB,KAAK,QAAQ;AAAA,IACpD;AACA,kBAAc,WAAW,SAAS,SAAS,OAAO;AAChD,cAAQ,SAAS;AACjB,UAAI,QAAQ,KAAK,KAAK;AACpB,cAAM,WAAW,OAAO;AAC1B,UAAI,KAAK,OAAO;AACd,eAAO;AACT,UAAI,KAAK,WAAW,GAAG;AACrB,YAAI,KAAK,GAAG,SAAS,GAAG;AACtB,cAAI,YAAY,WAAW,KAAK,GAAG,OAAO,KAAK,IAAI,SAAS,GAAG,OAAO,KAAK,IAAI,SAAS,EAAE,IAAI,IAAI;AAClG,iBAAO,KAAK,SAAS,KAAK,IAAI,KAAK,MAAM,EAAE,SAAS,KAAK;AAAA,QAC3D;AACE,iBAAO,MAAM,KAAK,IAAI,EAAE,SAAS,KAAK;AAAA,MAC1C;AACA,UAAI,eAAe,WAAW,QAAQ,OAAO,CAAC,GAAG,KAAK,QAAQ,GAAG,MAAM;AACvE,UAAI,SAAS;AACb,aAAO,MAAM;AACX,YAAI,SAAS,IAAI,IAAI,YAAY,GAAG,SAAS,IAAI,IAAI,OAAO,IAAI,YAAY,CAAC,EAAE,MAAM,MAAM,GAAG,SAAS,OAAO,SAAS,KAAK;AAC5H,cAAM;AACN,YAAI,IAAI,OAAO;AACb,iBAAO,SAAS;AAAA,aACb;AACH,iBAAO,OAAO,SAAS;AACrB,qBAAS,MAAM;AACjB,mBAAS,KAAK,SAAS;AAAA,QACzB;AAAA,MACF;AAAA,IACF;AACA,kBAAc,cAAc,SAAS,cAAc;AACjD,aAAO,KAAK;AAAA,IACd;AACA,kBAAc,sBAAsB,SAAS,sBAAsB;AACjE,aAAO,KAAK,SAAS;AAAA,IACvB;AACA,kBAAc,aAAa,SAAS,aAAa;AAC/C,aAAO,KAAK;AAAA,IACd;AACA,kBAAc,qBAAqB,SAAS,qBAAqB;AAC/D,aAAO,KAAK,QAAQ;AAAA,IACtB;AACA,kBAAc,gBAAgB,SAAS,gBAAgB;AACrD,UAAI,KAAK,WAAW;AAClB,eAAO,KAAK,GAAG,SAAS,IAAI,KAAK,KAAK,IAAI,EAAE,cAAc;AAC5D,UAAI,MAAM,KAAK,QAAQ,IAAI,KAAK,OAAO,KAAK;AAC5C,eAAS,MAAM,IAAI,MAAM,GAAG;AAC1B,aAAK,MAAM,KAAK,QAAQ;AACtB;AACJ,aAAO,KAAK,QAAQ,IAAI,MAAM,KAAK,MAAM;AAAA,IAC3C;AACA,kBAAc,SAAS,SAAS,SAAS;AACvC,aAAO,KAAK,SAAS,KAAK,KAAK,QAAQ;AAAA,IACzC;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,aAAa,SAAS,aAAa;AAC/C,aAAO,CAAC,KAAK,YAAY,KAAK,OAAO;AAAA,IACvC;AACA,kBAAc,aAAa,SAAS,aAAa;AAC/C,aAAO,KAAK,YAAY,KAAK,QAAQ;AAAA,IACvC;AACA,kBAAc,QAAQ,SAAS,QAAQ;AACrC,cAAQ,KAAK,MAAM,OAAO;AAAA,IAC5B;AACA,kBAAc,SAAS,SAAS,UAAU;AACxC,cAAQ,KAAK,MAAM,OAAO;AAAA,IAC5B;AACA,kBAAc,SAAS,SAAS,OAAO,OAAO;AAC5C,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,UAAI,KAAK,aAAa,MAAM,YAAY,KAAK,SAAS,OAAO,KAAK,MAAM,SAAS,OAAO;AACtF,eAAO;AACT,aAAO,KAAK,SAAS,MAAM,QAAQ,KAAK,QAAQ,MAAM;AAAA,IACxD;AACA,kBAAc,KAAK,cAAc;AACjC,kBAAc,YAAY,SAAS,UAAU,OAAO;AAClD,aAAO,CAAC,KAAK,GAAG,KAAK;AAAA,IACvB;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,KAAK,cAAc;AACjC,kBAAc,WAAW,SAAS,SAAS,OAAO;AAChD,aAAO,KAAK,KAAK,KAAK,IAAI;AAAA,IAC5B;AACA,kBAAc,KAAK,cAAc;AACjC,kBAAc,kBAAkB,SAAS,gBAAgB,OAAO;AAC9D,aAAO,KAAK,KAAK,KAAK,KAAK;AAAA,IAC7B;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,KAAK,cAAc;AACjC,kBAAc,cAAc,SAAS,YAAY,OAAO;AACtD,aAAO,KAAK,KAAK,KAAK,IAAI;AAAA,IAC5B;AACA,kBAAc,KAAK,cAAc;AACjC,kBAAc,qBAAqB,SAAS,mBAAmB,OAAO;AACpE,aAAO,KAAK,KAAK,KAAK,KAAK;AAAA,IAC7B;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,KAAK,cAAc;AACjC,kBAAc,UAAU,SAASC,SAAQ,OAAO;AAC9C,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,UAAI,KAAK,GAAG,KAAK;AACf,eAAO;AACT,UAAI,UAAU,KAAK,WAAW,GAAG,WAAW,MAAM,WAAW;AAC7D,UAAI,WAAW,CAAC;AACd,eAAO;AACT,UAAI,CAAC,WAAW;AACd,eAAO;AACT,UAAI,CAAC,KAAK;AACR,eAAO,KAAK,IAAI,KAAK,EAAE,WAAW,IAAI,KAAK;AAC7C,aAAO,MAAM,SAAS,IAAI,KAAK,SAAS,KAAK,MAAM,SAAS,KAAK,QAAQ,MAAM,QAAQ,IAAI,KAAK,QAAQ,IAAI,KAAK;AAAA,IACnH;AACA,kBAAc,OAAO,cAAc;AACnC,kBAAc,SAAS,SAAS,SAAS;AACvC,UAAI,CAAC,KAAK,YAAY,KAAK,GAAG,SAAS;AACrC,eAAO;AACT,aAAO,KAAK,IAAI,EAAE,IAAI,GAAG;AAAA,IAC3B;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,MAAM,SAAS,KAAK,QAAQ;AACxC,UAAI,CAAC,OAAO,MAAM;AAChB,iBAAS,UAAU,MAAM;AAC3B,UAAI,MAAM,KAAK,SAAS;AACxB,UAAI,MAAM,KAAK,OAAO;AACtB,UAAI,MAAM,KAAK,QAAQ;AACvB,UAAI,MAAM,KAAK,MAAM;AACrB,UAAI,MAAM,OAAO,SAAS;AAC1B,UAAI,MAAM,OAAO,OAAO;AACxB,UAAI,MAAM,OAAO,QAAQ;AACzB,UAAI,MAAM,OAAO,MAAM;AACvB,UAAI,MAAM,GAAG,MAAM,GAAG,MAAM,GAAG,MAAM;AACrC,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO;AACP,aAAO,SAAS,OAAO,KAAK,KAAK,OAAO,KAAK,KAAK,KAAK,QAAQ;AAAA,IACjE;AACA,kBAAc,WAAW,SAAS,SAAS,YAAY;AACrD,UAAI,CAAC,OAAO,UAAU;AACpB,qBAAa,UAAU,UAAU;AACnC,aAAO,KAAK,IAAI,WAAW,IAAI,CAAC;AAAA,IAClC;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,WAAW,SAAS,UAAU,YAAY;AACtD,UAAI,KAAK,OAAO;AACd,eAAO;AACT,UAAI,CAAC,OAAO,UAAU;AACpB,qBAAa,UAAU,UAAU;AACnC,UAAI,MAAM;AACR,YAAI,MAAM,KAAK;AAAA,UACb,KAAK;AAAA,UACL,KAAK;AAAA,UACL,WAAW;AAAA,UACX,WAAW;AAAA,QACb;AACA,eAAO,SAAS,KAAK,KAAK,SAAS,GAAG,KAAK,QAAQ;AAAA,MACrD;AACA,UAAI,WAAW,OAAO;AACpB,eAAO;AACT,UAAI,KAAK,GAAG,SAAS;AACnB,eAAO,WAAW,MAAM,IAAI,YAAY;AAC1C,UAAI,WAAW,GAAG,SAAS;AACzB,eAAO,KAAK,MAAM,IAAI,YAAY;AACpC,UAAI,KAAK,WAAW,GAAG;AACrB,YAAI,WAAW,WAAW;AACxB,iBAAO,KAAK,IAAI,EAAE,IAAI,WAAW,IAAI,CAAC;AAAA;AAEtC,iBAAO,KAAK,IAAI,EAAE,IAAI,UAAU,EAAE,IAAI;AAAA,MAC1C,WAAW,WAAW,WAAW;AAC/B,eAAO,KAAK,IAAI,WAAW,IAAI,CAAC,EAAE,IAAI;AACxC,UAAI,KAAK,GAAG,UAAU,KAAK,WAAW,GAAG,UAAU;AACjD,eAAO,WAAW,KAAK,SAAS,IAAI,WAAW,SAAS,GAAG,KAAK,QAAQ;AAC1E,UAAI,MAAM,KAAK,SAAS;AACxB,UAAI,MAAM,KAAK,OAAO;AACtB,UAAI,MAAM,KAAK,QAAQ;AACvB,UAAI,MAAM,KAAK,MAAM;AACrB,UAAI,MAAM,WAAW,SAAS;AAC9B,UAAI,MAAM,WAAW,OAAO;AAC5B,UAAI,MAAM,WAAW,QAAQ;AAC7B,UAAI,MAAM,WAAW,MAAM;AAC3B,UAAI,MAAM,GAAG,MAAM,GAAG,MAAM,GAAG,MAAM;AACrC,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM,MAAM,MAAM,MAAM,MAAM,MAAM,MAAM;AACjD,aAAO;AACP,aAAO,SAAS,OAAO,KAAK,KAAK,OAAO,KAAK,KAAK,KAAK,QAAQ;AAAA,IACjE;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,SAAS,SAAS,OAAO,SAAS;AAC9C,UAAI,CAAC,OAAO,OAAO;AACjB,kBAAU,UAAU,OAAO;AAC7B,UAAI,QAAQ,OAAO;AACjB,cAAM,MAAM,kBAAkB;AAChC,UAAI,MAAM;AACR,YAAI,CAAC,KAAK,YAAY,KAAK,SAAS,eAAe,QAAQ,QAAQ,MAAM,QAAQ,SAAS,IAAI;AAC5F,iBAAO;AAAA,QACT;AACA,YAAI,OAAO,KAAK,WAAW,KAAK,QAAQ,KAAK;AAAA,UAC3C,KAAK;AAAA,UACL,KAAK;AAAA,UACL,QAAQ;AAAA,UACR,QAAQ;AAAA,QACV;AACA,eAAO,SAAS,KAAK,KAAK,SAAS,GAAG,KAAK,QAAQ;AAAA,MACrD;AACA,UAAI,KAAK,OAAO;AACd,eAAO,KAAK,WAAW,QAAQ;AACjC,UAAI,QAAQ,KAAK;AACjB,UAAI,CAAC,KAAK,UAAU;AAClB,YAAI,KAAK,GAAG,SAAS,GAAG;AACtB,cAAI,QAAQ,GAAG,GAAG,KAAK,QAAQ,GAAG,OAAO;AACvC,mBAAO;AAAA,mBACA,QAAQ,GAAG,SAAS;AAC3B,mBAAO;AAAA,eACJ;AACH,gBAAI,WAAW,KAAK,IAAI,CAAC;AACzB,qBAAS,SAAS,IAAI,OAAO,EAAE,IAAI,CAAC;AACpC,gBAAI,OAAO,GAAG,IAAI,GAAG;AACnB,qBAAO,QAAQ,WAAW,IAAI,MAAM;AAAA,YACtC,OAAO;AACL,oBAAM,KAAK,IAAI,QAAQ,IAAI,MAAM,CAAC;AAClC,oBAAM,OAAO,IAAI,IAAI,IAAI,OAAO,CAAC;AACjC,qBAAO;AAAA,YACT;AAAA,UACF;AAAA,QACF,WAAW,QAAQ,GAAG,SAAS;AAC7B,iBAAO,KAAK,WAAW,QAAQ;AACjC,YAAI,KAAK,WAAW,GAAG;AACrB,cAAI,QAAQ,WAAW;AACrB,mBAAO,KAAK,IAAI,EAAE,IAAI,QAAQ,IAAI,CAAC;AACrC,iBAAO,KAAK,IAAI,EAAE,IAAI,OAAO,EAAE,IAAI;AAAA,QACrC,WAAW,QAAQ,WAAW;AAC5B,iBAAO,KAAK,IAAI,QAAQ,IAAI,CAAC,EAAE,IAAI;AACrC,cAAM;AAAA,MACR,OAAO;AACL,YAAI,CAAC,QAAQ;AACX,oBAAU,QAAQ,WAAW;AAC/B,YAAI,QAAQ,GAAG,IAAI;AACjB,iBAAO;AACT,YAAI,QAAQ,GAAG,KAAK,KAAK,CAAC,CAAC;AACzB,iBAAO;AACT,cAAM;AAAA,MACR;AACA,YAAM;AACN,aAAO,IAAI,IAAI,OAAO,GAAG;AACvB,iBAAS,KAAK,IAAI,GAAG,KAAK,MAAM,IAAI,SAAS,IAAI,QAAQ,SAAS,CAAC,CAAC;AACpE,YAAIC,SAAQ,KAAK,KAAK,KAAK,IAAI,MAAM,IAAI,KAAK,GAAG,GAAG,QAAQA,UAAS,KAAK,IAAI,QAAQ,GAAGA,SAAQ,EAAE,GAAG,YAAY,WAAW,MAAM,GAAG,YAAY,UAAU,IAAI,OAAO;AACvK,eAAO,UAAU,WAAW,KAAK,UAAU,GAAG,GAAG,GAAG;AAClD,oBAAU;AACV,sBAAY,WAAW,QAAQ,KAAK,QAAQ;AAC5C,sBAAY,UAAU,IAAI,OAAO;AAAA,QACnC;AACA,YAAI,UAAU,OAAO;AACnB,sBAAY;AACd,cAAM,IAAI,IAAI,SAAS;AACvB,cAAM,IAAI,IAAI,SAAS;AAAA,MACzB;AACA,aAAO;AAAA,IACT;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,SAAS,SAAS,OAAO,SAAS;AAC9C,UAAI,CAAC,OAAO,OAAO;AACjB,kBAAU,UAAU,OAAO;AAC7B,UAAI,MAAM;AACR,YAAI,OAAO,KAAK,WAAW,KAAK,QAAQ,KAAK;AAAA,UAC3C,KAAK;AAAA,UACL,KAAK;AAAA,UACL,QAAQ;AAAA,UACR,QAAQ;AAAA,QACV;AACA,eAAO,SAAS,KAAK,KAAK,SAAS,GAAG,KAAK,QAAQ;AAAA,MACrD;AACA,aAAO,KAAK,IAAI,KAAK,IAAI,OAAO,EAAE,IAAI,OAAO,CAAC;AAAA,IAChD;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,MAAM,cAAc;AAClC,kBAAc,MAAM,SAAS,MAAM;AACjC,aAAO,SAAS,CAAC,KAAK,KAAK,CAAC,KAAK,MAAM,KAAK,QAAQ;AAAA,IACtD;AACA,kBAAc,MAAM,SAAS,IAAI,OAAO;AACtC,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,aAAO,SAAS,KAAK,MAAM,MAAM,KAAK,KAAK,OAAO,MAAM,MAAM,KAAK,QAAQ;AAAA,IAC7E;AACA,kBAAc,KAAK,SAAS,GAAG,OAAO;AACpC,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,aAAO,SAAS,KAAK,MAAM,MAAM,KAAK,KAAK,OAAO,MAAM,MAAM,KAAK,QAAQ;AAAA,IAC7E;AACA,kBAAc,MAAM,SAAS,IAAI,OAAO;AACtC,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,aAAO,SAAS,KAAK,MAAM,MAAM,KAAK,KAAK,OAAO,MAAM,MAAM,KAAK,QAAQ;AAAA,IAC7E;AACA,kBAAc,YAAY,SAAS,UAAU,SAAS;AACpD,UAAI,OAAO,OAAO;AAChB,kBAAU,QAAQ,MAAM;AAC1B,WAAK,WAAW,QAAQ;AACtB,eAAO;AAAA,eACA,UAAU;AACjB,eAAO,SAAS,KAAK,OAAO,SAAS,KAAK,QAAQ,UAAU,KAAK,QAAQ,KAAK,SAAS,KAAK,QAAQ;AAAA;AAEpG,eAAO,SAAS,GAAG,KAAK,OAAO,UAAU,IAAI,KAAK,QAAQ;AAAA,IAC9D;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,aAAa,SAAS,WAAW,SAAS;AACtD,UAAI,OAAO,OAAO;AAChB,kBAAU,QAAQ,MAAM;AAC1B,WAAK,WAAW,QAAQ;AACtB,eAAO;AAAA,eACA,UAAU;AACjB,eAAO,SAAS,KAAK,QAAQ,UAAU,KAAK,QAAQ,KAAK,SAAS,KAAK,QAAQ,SAAS,KAAK,QAAQ;AAAA;AAErG,eAAO,SAAS,KAAK,QAAQ,UAAU,IAAI,KAAK,QAAQ,IAAI,IAAI,IAAI,KAAK,QAAQ;AAAA,IACrF;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,qBAAqB,SAAS,mBAAmB,SAAS;AACtE,UAAI,OAAO,OAAO;AAChB,kBAAU,QAAQ,MAAM;AAC1B,iBAAW;AACX,UAAI,YAAY;AACd,eAAO;AAAA,WACJ;AACH,YAAI,OAAO,KAAK;AAChB,YAAI,UAAU,IAAI;AAChB,cAAI,MAAM,KAAK;AACf,iBAAO,SAAS,QAAQ,UAAU,QAAQ,KAAK,SAAS,SAAS,SAAS,KAAK,QAAQ;AAAA,QACzF,WAAW,YAAY;AACrB,iBAAO,SAAS,MAAM,GAAG,KAAK,QAAQ;AAAA;AAEtC,iBAAO,SAAS,SAAS,UAAU,IAAI,GAAG,KAAK,QAAQ;AAAA,MAC3D;AAAA,IACF;AACA,kBAAc,OAAO,cAAc;AACnC,kBAAc,QAAQ,cAAc;AACpC,kBAAc,WAAW,SAAS,WAAW;AAC3C,UAAI,CAAC,KAAK;AACR,eAAO;AACT,aAAO,SAAS,KAAK,KAAK,KAAK,MAAM,KAAK;AAAA,IAC5C;AACA,kBAAc,aAAa,SAAS,aAAa;AAC/C,UAAI,KAAK;AACP,eAAO;AACT,aAAO,SAAS,KAAK,KAAK,KAAK,MAAM,IAAI;AAAA,IAC3C;AACA,kBAAc,UAAU,SAAS,QAAQ,IAAI;AAC3C,aAAO,KAAK,KAAK,UAAU,IAAI,KAAK,UAAU;AAAA,IAChD;AACA,kBAAc,YAAY,SAAS,YAAY;AAC7C,UAAI,KAAK,KAAK,MAAM,KAAK,KAAK;AAC9B,aAAO;AAAA,QACL,KAAK;AAAA,QACL,OAAO,IAAI;AAAA,QACX,OAAO,KAAK;AAAA,QACZ,OAAO;AAAA,QACP,KAAK;AAAA,QACL,OAAO,IAAI;AAAA,QACX,OAAO,KAAK;AAAA,QACZ,OAAO;AAAA,MACT;AAAA,IACF;AACA,kBAAc,YAAY,SAAS,YAAY;AAC7C,UAAI,KAAK,KAAK,MAAM,KAAK,KAAK;AAC9B,aAAO;AAAA,QACL,OAAO;AAAA,QACP,OAAO,KAAK;AAAA,QACZ,OAAO,IAAI;AAAA,QACX,KAAK;AAAA,QACL,OAAO;AAAA,QACP,OAAO,KAAK;AAAA,QACZ,OAAO,IAAI;AAAA,QACX,KAAK;AAAA,MACP;AAAA,IACF;AACA,UAAM,YAAY,SAAS,UAAU,OAAO,UAAU,IAAI;AACxD,aAAO,KAAK,MAAM,YAAY,OAAO,QAAQ,IAAI,MAAM,YAAY,OAAO,QAAQ;AAAA,IACpF;AACA,UAAM,cAAc,SAAS,YAAY,OAAO,UAAU;AACxD,aAAO,IAAI;AAAA,QACT,MAAM,KAAK,MAAM,MAAM,IAAI,MAAM,MAAM,KAAK,MAAM,MAAM;AAAA,QACxD,MAAM,KAAK,MAAM,MAAM,IAAI,MAAM,MAAM,KAAK,MAAM,MAAM;AAAA,QACxD;AAAA,MACF;AAAA,IACF;AACA,UAAM,cAAc,SAAS,YAAY,OAAO,UAAU;AACxD,aAAO,IAAI;AAAA,QACT,MAAM,MAAM,KAAK,MAAM,MAAM,KAAK,MAAM,MAAM,IAAI,MAAM;AAAA,QACxD,MAAM,MAAM,KAAK,MAAM,MAAM,KAAK,MAAM,MAAM,IAAI,MAAM;AAAA,QACxD;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF,CAAC;AAGD,IAAI,kBAAkB,WAAW;AAAA,EAC/B,sFAAsF;AAAA,EACtF;AACF,CAAC;AAGD,IAAI,eAAe,WAAW;AAAA,EAC5B,oBAAoB;AAAA,EACpB;AACF,CAAC;AAGD,IAAI,eAAe,WAAW;AAAA,EAC5B,0EAA0E,SAAS,QAAQ;AACzF,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,KAAK,MAAM;AAClB,YAAI,KAAK,MAAM,OAAO,KAAK;AAC3B,WAAG,OAAO,WAAW;AACnB,cAAI,KAAK,UAAU,GAAG,KAAK,GAAG,IAAI;AAClC,aAAG,KAAK,GAAG;AACX,aAAG,KAAK,GAAG;AACX,iBAAO,GAAG,KAAK,MAAM,GAAG,IAAI,KAAK;AAAA,QACnC;AACA,WAAG,IAAI;AACP,WAAG,KAAK,KAAK,GAAG;AAChB,WAAG,KAAK,KAAK,GAAG;AAChB,WAAG,KAAK,KAAK,GAAG;AAChB,WAAG,MAAM,KAAK,IAAI;AAClB,YAAI,GAAG,KAAK,GAAG;AACb,aAAG,MAAM;AAAA,QACX;AACA,WAAG,MAAM,KAAK,IAAI;AAClB,YAAI,GAAG,KAAK,GAAG;AACb,aAAG,MAAM;AAAA,QACX;AACA,WAAG,MAAM,KAAK,IAAI;AAClB,YAAI,GAAG,KAAK,GAAG;AACb,aAAG,MAAM;AAAA,QACX;AACA,eAAO;AAAA,MACT;AACA,eAASC,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,KAAK,EAAE;AACV,WAAG,KAAK,EAAE;AACV,WAAG,KAAK,EAAE;AACV,eAAO;AAAA,MACT;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,KAAK,IAAI,KAAK,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,GAAG;AAC/D,aAAK,QAAQ,WAAW;AACtB,iBAAO,GAAG,KAAK,IAAI,aAAa;AAAA,QAClC;AACA,aAAK,SAAS,WAAW;AACvB,iBAAO,KAAK,KAAK,KAAK,IAAI,UAAU,KAAK;AAAA,QAC3C;AACA,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,OAAO,SAAS;AAClB,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,eAAS,OAAO;AACd,YAAI,KAAK;AACT,YAAI,OAAO,SAAS,MAAM;AACxB,iBAAO,OAAO,IAAI;AAClB,mBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,kBAAM,KAAK,WAAW,EAAE;AACxB,gBAAI,IAAI,sBAAsB;AAC9B,iBAAK,MAAM;AACX,iBAAK;AACL,iBAAK;AACL,iBAAK,MAAM;AACX,iBAAK;AACL,kBAAM,IAAI;AAAA,UACZ;AACA,kBAAQ,OAAO,KAAK;AAAA,QACtB;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,OAAO;AAAA,MACd;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,iBAAiB,WAAW;AAAA,EAC9B,4EAA4E,SAAS,QAAQ;AAC3F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK,MAAM,UAAU;AACzB,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,OAAO,WAAW;AACnB,cAAI,KAAK,GAAG,IAAI,GAAG,KAAK;AACxB,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,iBAAO,GAAG,KAAK,GAAG,MAAM,KAAK,KAAK,OAAO;AAAA,QAC3C;AACA,YAAI,UAAU,OAAO,IAAI;AACvB,aAAG,IAAI;AAAA,QACT,OAAO;AACL,qBAAW;AAAA,QACb;AACA,iBAAS,IAAI,GAAG,IAAI,QAAQ,SAAS,IAAI,KAAK;AAC5C,aAAG,KAAK,QAAQ,WAAW,CAAC,IAAI;AAChC,aAAG,KAAK;AAAA,QACV;AAAA,MACF;AACA,eAASA,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,eAAO;AAAA,MACT;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,OAAO,SAAS;AAClB,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,SAAS;AAAA,MAChB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,iBAAiB,WAAW;AAAA,EAC9B,4EAA4E,SAAS,QAAQ;AAC3F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK,MAAM,UAAU;AACzB,WAAG,OAAO,WAAW;AACnB,cAAI,KAAK,GAAG,IAAI,GAAG,MAAM;AACzB,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,kBAAQ,GAAG,IAAI,GAAG,IAAI,SAAS,MAAM,GAAG,IAAI,GAAG,IAAI,GAAG,KAAK,KAAK,KAAK,MAAM,MAAM;AAAA,QACnF;AACA,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,YAAI,UAAU,OAAO,IAAI;AACvB,aAAG,IAAI;AAAA,QACT,OAAO;AACL,qBAAW;AAAA,QACb;AACA,iBAAS,IAAI,GAAG,IAAI,QAAQ,SAAS,IAAI,KAAK;AAC5C,aAAG,KAAK,QAAQ,WAAW,CAAC,IAAI;AAChC,cAAI,KAAK,QAAQ,QAAQ;AACvB,eAAG,IAAI,GAAG,KAAK,KAAK,GAAG,MAAM;AAAA,UAC/B;AACA,aAAG,KAAK;AAAA,QACV;AAAA,MACF;AACA,eAASA,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,eAAO;AAAA,MACT;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,OAAO,SAAS;AAClB,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,SAAS;AAAA,MAChB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,oBAAoB,WAAW;AAAA,EACjC,+EAA+E,SAAS,QAAQ;AAC9F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK;AACT,WAAG,OAAO,WAAW;AACnB,cAAI,IAAI,GAAG,GAAG,KAAK,GAAG,GAAG,IAAI,GAAG;AAChC,eAAK,EAAE;AACP,gBAAM,OAAO;AACb,cAAI,KAAK,MAAM;AACf,eAAK,EAAE,KAAK,IAAI;AAChB,eAAK,KAAK,OAAO;AACjB,eAAK,EAAE,KAAK,IAAI;AAChB,eAAK,KAAK,OAAO;AACjB,eAAK,EAAE,KAAK,IAAI;AAChB,eAAK,KAAK,MAAM;AAChB,eAAK,EAAE,KAAK,IAAI;AAChB,eAAK,KAAK,MAAM;AAChB,eAAK,KAAK,MAAM;AAChB,YAAE,MAAM;AACR,aAAG,IAAI,KAAK,IAAI;AAChB,iBAAO;AAAA,QACT;AACA,iBAASC,OAAM,KAAK,OAAO;AACzB,cAAI,GAAG,GAAG,IAAI,CAAC;AACf,cAAI,WAAW,QAAQ,IAAI;AACzB,gBAAI,EAAE,KAAK;AAAA,UACb,OAAO;AACL,oBAAQ,KAAK;AACb,iBAAK,IAAI,GAAG,IAAI,MAAM,QAAQ,EAAE,GAAG;AACjC,gBAAE,IAAI,KAAK,EAAE,IAAI,MAAM,KAAK,MAAM,WAAW,CAAC,IAAI,EAAE,IAAI,IAAI,MAAM;AAAA,YACpE;AAAA,UACF;AACA,iBAAO,EAAE,SAAS;AAChB,cAAE,KAAK,CAAC;AACV,eAAK,IAAI,GAAG,IAAI,KAAK,EAAE,OAAO,GAAG,EAAE;AACjC;AACF,cAAI,KAAK;AACP,gBAAI,EAAE,KAAK;AAAA;AAEX,gBAAI,EAAE;AACR,cAAI,IAAI;AACR,cAAI,IAAI;AACR,eAAK,IAAI,KAAK,IAAI,GAAG,EAAE,GAAG;AACxB,gBAAI,KAAK;AAAA,UACX;AAAA,QACF;AACA,QAAAA,OAAM,IAAI,IAAI;AAAA,MAChB;AACA,eAASD,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE,EAAE,MAAM;AACjB,WAAG,IAAI,EAAE;AACT,eAAO;AAAA,MACT;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,QAAQ;AACV,iBAAO,CAAC,IAAI,KAAK;AACnB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,MAAM;AACR,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,YAAY;AAAA,MACnB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,kBAAkB,WAAW;AAAA,EAC/B,6EAA6E,SAAS,QAAQ;AAC5F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK;AACT,WAAG,OAAO,WAAW;AACnB,cAAI,IAAI,GAAG,GAAG,IAAI,GAAG,GAAG,KAAK,GAAG,GAAG,IAAI;AACvC,aAAG,IAAI,IAAI,IAAI,aAAa;AAC5B,cAAI,EAAE,KAAK,KAAK;AAChB,eAAK,EAAE,KAAK,KAAK,IAAI;AACrB,eAAK,KAAK;AACV,gBAAM,MAAM;AACZ,eAAK,MAAM;AACX,gBAAM,OAAO;AACb,cAAI,EAAE,MAAM,IAAI;AAChB,aAAG,IAAI;AACP,iBAAO,KAAK,IAAI,MAAM,MAAM;AAAA,QAC9B;AACA,iBAASC,OAAM,KAAK,OAAO;AACzB,cAAI,IAAI,GAAG,IAAI,GAAG,GAAG,IAAI,CAAC,GAAG,QAAQ;AACrC,cAAI,WAAW,QAAQ,IAAI;AACzB,gBAAI;AACJ,oBAAQ;AAAA,UACV,OAAO;AACL,oBAAQ,QAAQ;AAChB,gBAAI;AACJ,oBAAQ,KAAK,IAAI,OAAO,MAAM,MAAM;AAAA,UACtC;AACA,eAAK,KAAK,GAAG,IAAI,KAAK,IAAI,OAAO,EAAE,GAAG;AACpC,gBAAI;AACF,mBAAK,MAAM,YAAY,IAAI,MAAM,MAAM,MAAM;AAC/C,gBAAI,MAAM;AACR,kBAAI;AACN,iBAAK,KAAK;AACV,iBAAK,MAAM;AACX,iBAAK,KAAK;AACV,iBAAK,MAAM;AACX,gBAAI,KAAK,GAAG;AACV,kBAAI,IAAI,aAAa;AACrB,mBAAK,EAAE,IAAI,QAAQ,IAAI;AACvB,mBAAK,KAAK,KAAK,KAAK,IAAI;AAAA,YAC1B;AAAA,UACF;AACA,cAAI,MAAM,KAAK;AACb,eAAG,SAAS,MAAM,UAAU,KAAK,OAAO;AAAA,UAC1C;AACA,eAAK;AACL,eAAK,IAAI,IAAI,KAAK,IAAI,GAAG,EAAE,GAAG;AAC5B,gBAAI,EAAE,KAAK,KAAK;AAChB,iBAAK,EAAE,KAAK,KAAK,IAAI;AACrB,iBAAK,KAAK;AACV,kBAAM,MAAM;AACZ,iBAAK,MAAM;AACX,kBAAM,OAAO;AACb,cAAE,MAAM,IAAI;AAAA,UACd;AACA,cAAI,IAAI;AACR,cAAI,IAAI;AACR,cAAI,IAAI;AAAA,QACV;AACA,QAAAA,OAAM,IAAI,IAAI;AAAA,MAChB;AACA,eAASD,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE,EAAE,MAAM;AACjB,eAAO;AAAA,MACT;AACA;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,QAAQ;AACV,iBAAO,CAAC,IAAI,KAAK;AACnB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,MAAM;AACR,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,UAAU;AAAA,MACjB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,iBAAiB,WAAW;AAAA,EAC9B,4EAA4E,SAAS,QAAQ;AAC3F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK,MAAM,UAAU;AACzB,WAAG,OAAO,WAAW;AACnB,cAAI,IAAI,GAAG,GAAG,IAAI,GAAG,GAAG,IAAI,GAAG,GAAG,IAAI,GAAG;AACzC,cAAI,KAAK,KAAK,MAAM,IAAI;AACxB,cAAI,IAAI,IAAI;AACZ,cAAI,KAAK,KAAK,MAAM,IAAI;AACxB,cAAI,IAAI,IAAI;AACZ,aAAG,IAAI,IAAI,KAAK,KAAK,MAAM,KAAK;AAChC,aAAG,IAAI,IAAI,IAAI,IAAI;AACnB,aAAG,IAAI,KAAK,KAAK,MAAM,KAAK;AAC5B,iBAAO,GAAG,IAAI,IAAI,IAAI;AAAA,QACxB;AACA,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI,aAAa;AACpB,WAAG,IAAI;AACP,YAAI,SAAS,KAAK,MAAM,IAAI,GAAG;AAC7B,aAAG,IAAI,OAAO,aAAa;AAC3B,aAAG,IAAI,OAAO;AAAA,QAChB,OAAO;AACL,qBAAW;AAAA,QACb;AACA,iBAAS,IAAI,GAAG,IAAI,QAAQ,SAAS,IAAI,KAAK;AAC5C,aAAG,KAAK,QAAQ,WAAW,CAAC,IAAI;AAChC,aAAG,KAAK;AAAA,QACV;AAAA,MACF;AACA,eAASA,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,eAAO;AAAA,MACT;AACA;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,OAAO,SAAS;AAClB,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,SAAS;AAAA,MAChB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,iBAAiB,WAAW;AAAA,EAC9B,sBAAsB;AAAA,EACtB;AACF,CAAC;AAGD,IAAI,qBAAqB,WAAW;AAAA,EAClC,4EAA4E,SAAS,QAAQ;AAC3F,KAAC,SAAS,SAAS,OAAO,MAAM;AAC9B,UAAI,QAAQ,KAAK,SAAS,GAAG,SAAS,IAAI,UAAU,UAAU,aAAa,KAAK,IAAI,OAAO,MAAM,GAAG,eAAe,KAAK,IAAI,GAAG,MAAM,GAAG,WAAW,eAAe,GAAGE,QAAO,QAAQ,GAAG;AACvL,eAAS,YAAY,MAAMC,UAAS,UAAU;AAC5C,YAAI,MAAM,CAAC;AACX,QAAAA,WAAUA,YAAW,OAAO,EAAE,SAAS,KAAK,IAAIA,YAAW,CAAC;AAC5D,YAAI,YAAY,OAAO;AAAA,UACrBA,SAAQ,UAAU,CAAC,MAAM,SAAS,KAAK,CAAC,IAAI,QAAQ,OAAO,SAAS,IAAI;AAAA,UACxE;AAAA,QACF,GAAG,GAAG;AACN,YAAI,OAAO,IAAI,KAAK,GAAG;AACvB,YAAI,OAAO,WAAW;AACpB,cAAI,KAAK,KAAK,EAAE,MAAM,GAAG,IAAI,YAAY,IAAI;AAC7C,iBAAO,KAAK,cAAc;AACxB,kBAAM,KAAK,KAAK;AAChB,iBAAK;AACL,gBAAI,KAAK,EAAE,CAAC;AAAA,UACd;AACA,iBAAO,MAAM,UAAU;AACrB,kBAAM;AACN,iBAAK;AACL,mBAAO;AAAA,UACT;AACA,kBAAQ,KAAK,KAAK;AAAA,QACpB;AACA,aAAK,QAAQ,WAAW;AACtB,iBAAO,KAAK,EAAE,CAAC,IAAI;AAAA,QACrB;AACA,aAAK,QAAQ,WAAW;AACtB,iBAAO,KAAK,EAAE,CAAC,IAAI;AAAA,QACrB;AACA,aAAK,SAAS;AACd,eAAO,SAAS,KAAK,CAAC,GAAG,KAAK;AAC9B,gBAAQA,SAAQ,QAAQ,YAAY,SAAS,OAAO,OAAO,cAAc,OAAO;AAC9E,cAAI,OAAO;AACT,gBAAI,MAAM,GAAG;AACX,cAAAH,MAAK,OAAO,IAAI;AAAA,YAClB;AACA,kBAAM,QAAQ,WAAW;AACvB,qBAAOA,MAAK,MAAM,CAAC,CAAC;AAAA,YACtB;AAAA,UACF;AACA,cAAI,cAAc;AAChB,iBAAK,WAAW;AAChB,mBAAO;AAAA,UACT;AACE,mBAAO;AAAA,QACX;AAAA,UACE;AAAA,UACA;AAAA,UACA,YAAYG,WAAUA,SAAQ,SAAS,QAAQ;AAAA,UAC/CA,SAAQ;AAAA,QACV;AAAA,MACF;AACA,eAAS,KAAK,KAAK;AACjB,YAAI,IAAI,SAAS,IAAI,QAAQ,KAAK,MAAM,KAAK,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,KAAK,GAAG,IAAI,CAAC;AAClF,YAAI,CAAC,QAAQ;AACX,gBAAM,CAAC,QAAQ;AAAA,QACjB;AACA,eAAO,KAAK,OAAO;AACjB,aAAG,MAAM;AAAA,QACX;AACA,aAAK,KAAK,GAAG,KAAK,OAAO,MAAM;AAC7B,aAAG,MAAM,GAAG,IAAID,QAAO,IAAI,IAAI,KAAK,WAAW,KAAK,GAAG;AACvD,aAAG,KAAK;AAAA,QACV;AACA,SAAC,GAAG,IAAI,SAASE,SAAQ;AACvB,cAAI,IAAI,KAAK,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG;AAC9C,iBAAOA,WAAU;AACf,iBAAK,GAAG,KAAKF,QAAO,KAAK;AACzB,iBAAK,KAAK,QAAQ,GAAGA,SAAQ,GAAG,MAAM,GAAG,KAAKA,QAAO,KAAK,QAAQ,GAAG,MAAM;AAAA,UAC7E;AACA,aAAG,IAAI;AACP,aAAG,IAAI;AACP,iBAAO;AAAA,QACT,GAAG,KAAK;AAAA,MACV;AACA,eAASF,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE,EAAE,MAAM;AACjB,eAAO;AAAA,MACT;AACA;AACA,eAAS,SAAS,KAAK,OAAO;AAC5B,YAAI,SAAS,CAAC,GAAG,MAAM,OAAO,KAAK;AACnC,YAAI,SAAS,OAAO,UAAU;AAC5B,eAAK,QAAQ,KAAK;AAChB,gBAAI;AACF,qBAAO,KAAK,SAAS,IAAI,OAAO,QAAQ,CAAC,CAAC;AAAA,YAC5C,SAAS,IAAP;AAAA,YACF;AAAA,UACF;AAAA,QACF;AACA,eAAO,OAAO,SAAS,SAAS,OAAO,WAAW,MAAM,MAAM;AAAA,MAChE;AACA,eAAS,OAAO,MAAM,KAAK;AACzB,YAAI,aAAa,OAAO,IAAI,OAAO,IAAI;AACvC,eAAO,IAAI,WAAW,QAAQ;AAC5B,cAAIE,QAAO,KAAKA,SAAQ,SAAS,IAAIA,QAAO,KAAK,MAAM,WAAW,WAAW,GAAG;AAAA,QAClF;AACA,eAAO,SAAS,GAAG;AAAA,MACrB;AACA,eAAS,WAAW;AAClB,YAAI;AACF,cAAI;AACJ,cAAI,eAAe,MAAM,WAAW,cAAc;AAChD,kBAAM,IAAI,KAAK;AAAA,UACjB,OAAO;AACL,kBAAM,IAAI,WAAW,KAAK;AAC1B,aAAC,QAAQ,UAAU,QAAQ,UAAU,gBAAgB,GAAG;AAAA,UAC1D;AACA,iBAAO,SAAS,GAAG;AAAA,QACrB,SAAS,IAAP;AACA,cAAI,UAAU,QAAQ,WAAW,UAAU,WAAW,QAAQ;AAC9D,iBAAO,CAAC,CAAC,IAAI,KAAK,GAAG,SAAS,SAAS,QAAQ,QAAQ,SAAS,KAAK,CAAC;AAAA,QACxE;AAAA,MACF;AACA,eAAS,SAAS,GAAG;AACnB,eAAO,OAAO,aAAa,MAAM,GAAG,CAAC;AAAA,MACvC;AACA,aAAO,KAAK,OAAO,GAAG,KAAK;AAC3B,UAAI,OAAO,UAAU,YAAY,OAAO,SAAS;AAC/C,eAAO,UAAU;AACjB,YAAI;AACF,uBAAa,eAAe;AAAA,QAC9B,SAAS,IAAP;AAAA,QACF;AAAA,MACF,WAAW,OAAO,UAAU,cAAc,OAAO,KAAK;AACpD,eAAO,WAAW;AAChB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,SAAS,WAAW;AAAA,MAC3B;AAAA,IACF;AAAA,MACE,OAAO,SAAS,cAAc,OAAO;AAAA,MACrC,CAAC;AAAA,MACD;AAAA,IACF;AAAA,EACF;AACF,CAAC;AAGD,IAAI,sBAAsB,WAAW;AAAA,EACnC,uEAAuE,SAAS,QAAQ;AACtF,QAAI,QAAQ,aAAa;AACzB,QAAI,SAAS,eAAe;AAC5B,QAAI,SAAS,eAAe;AAC5B,QAAI,YAAY,kBAAkB;AAClC,QAAI,UAAU,gBAAgB;AAC9B,QAAI,SAAS,eAAe;AAC5B,QAAI,KAAK,mBAAmB;AAC5B,OAAG,OAAO;AACV,OAAG,SAAS;AACZ,OAAG,SAAS;AACZ,OAAG,YAAY;AACf,OAAG,UAAU;AACb,OAAG,SAAS;AACZ,WAAO,UAAU;AAAA,EACnB;AACF,CAAC;AAGD,IAAI,yBAAyB,WAAW;AAAA,EACtC,yGAAyG;AAAA,EACzG;AACF,CAAC;AAGD,IAAI,aAAa,WAAW;AAAA,EAC1B,kBAAkB;AAAA,EAClB;AACF,CAAC;AAGD,IAAI,eAAe,WAAW;AAAA,EAC5B,oBAAoB;AAAA,EACpB;AACF,CAAC;AAGD,IAAI,yBAAyB,WAAW;AAAA,EACtC,8BAA8B;AAAA,EAC9B;AACF,CAAC;AAGD,IAAI,qBAAqB,WAAW;AAAA,EAClC,0BAA0B;AAAA,EAC1B;AACF,CAAC;AAGD,IAAI,aAAa,WAAW;AAAA,EAC1B,kBAAkB;AAAA,EAClB;AACF,CAAC;AAGD,IAAI,0CAA0C,WAAW;AAAA,EACvD,4KAA4K,SAAS,QAAQ;AAC3L,QAAI,kCAAkC,MAAM;AAC1C,UAAI,aAAa,OAAO,aAAa,eAAe,SAAS,gBAAgB,SAAS,cAAc,MAAM;AAC1G,UAAI,OAAO,eAAe;AACxB,qBAAa,cAAc;AAC7B,aAAO,SAAS,gCAAgC;AAC9C,yCAAiC,kCAAkC,CAAC;AACpE,iBAAS,mBAAmB;AAC1B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,mBAAmB;AAC1B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,YAAI,SAAS,OAAO,mCAAmC,cAAc,iCAAiC,CAAC;AACvG,YAAI,qBAAqB;AACzB,eAAO,WAAW,IAAI,QAAQ,SAAS,SAAS,QAAQ;AACtD,gCAAsB;AACtB,+BAAqB;AAAA,QACvB,CAAC;AACD,YAAI;AACJ,YAAI,OAAO,YAAY,eAAe,QAAQ,WAAW;AACvD,4BAAkB,EAAE,mBAAmB,QAAQ,UAAU,mBAAmB,GAAG,oBAAoB,QAAQ,UAAU,oBAAoB,EAAE;AAAA,QAC7I;AACA,YAAI,kBAAkB,OAAO,OAAO,CAAC,GAAG,MAAM;AAC9C,YAAI,aAAa,CAAC;AAClB,YAAI,cAAc;AAClB,YAAI,QAAQ,CAAC,QAAQ,YAAY;AAC/B,gBAAM;AAAA,QACR;AACA,YAAI,qBAAqB,OAAO,WAAW;AAC3C,YAAI,wBAAwB,OAAO,kBAAkB;AACrD,YAAI,sBAAsB,OAAO,YAAY,YAAY,OAAO,QAAQ,aAAa,YAAY,OAAO,QAAQ,SAAS,SAAS;AAClI,YAAI,yBAAyB,OAAO,6BAA6B;AACjE,YAAI,kBAAkB;AACtB,iBAAS,WAAW,MAAM;AACxB,cAAI,OAAO,eAAe;AACxB,mBAAO,OAAO,cAAc,MAAM,eAAe;AAAA,UACnD;AACA,iBAAO,kBAAkB;AAAA,QAC3B;AACA,YAAI,OAAO,WAAW,YAAY;AAClC,iBAAS,mBAAmB,IAAI;AAC9B,cAAI,cAAc;AAChB;AACF,cAAI,QAAQ;AACZ,cAAI,+BAA+B,KAAK;AAAA,QAC1C;AACA,YAAI;AACJ,YAAI;AACJ,YAAI;AACJ,YAAI,qBAAqB;AACvB,cAAI,uBAAuB;AACzB,8BAAkB,aAAa,EAAE,QAAQ,eAAe,IAAI;AAAA,UAC9D,OAAO;AACL,8BAAkB,YAAY;AAAA,UAChC;AACA,0BAAgB,MAAM;AACpB,gBAAI,CAAC,UAAU;AACb,mBAAK,WAAW;AAChB,yBAAW,aAAa;AAAA,YAC1B;AAAA,UACF;AACA,kBAAQ,SAAS,WAAW,UAAU,QAAQ;AAC5C,0BAAc;AACd,uBAAW,SAAS,aAAa,QAAQ;AACzC,mBAAO,GAAG,aAAa,UAAU,SAAS,SAAS,MAAM;AAAA,UAC3D;AACA,uBAAa,CAAC,aAAa;AACzB,gBAAI,MAAM,MAAM,UAAU,IAAI;AAC9B,gBAAI,CAAC,IAAI,QAAQ;AACf,oBAAM,IAAI,WAAW,GAAG;AAAA,YAC1B;AACA,mBAAO;AAAA,UACT;AACA,sBAAY,CAAC,UAAU,QAAQ,YAAY;AACzC,0BAAc;AACd,uBAAW,SAAS,aAAa,QAAQ;AACzC,eAAG,SAAS,UAAU,SAAS,MAAM,MAAM;AACzC,kBAAI;AACF,wBAAQ,IAAI;AAAA;AAEZ,uBAAO,KAAK,MAAM;AAAA,YACtB,CAAC;AAAA,UACH;AACA,cAAI,QAAQ,QAAQ,SAAS,GAAG;AAC9B,0BAAc,QAAQ,QAAQ,GAAG,QAAQ,OAAO,GAAG;AAAA,UACrD;AACA,uBAAa,QAAQ,QAAQ,MAAM,CAAC;AACpC,kBAAQ,MAAM,qBAAqB,SAAS,IAAI;AAC9C,gBAAI,EAAE,cAAc,aAAa;AAC/B,oBAAM;AAAA,YACR;AAAA,UACF,CAAC;AACD,kBAAQ,MAAM,sBAAsB,SAAS,QAAQ;AACnD,kBAAM;AAAA,UACR,CAAC;AACD,kBAAQ,CAAC,QAAQ,YAAY;AAC3B,gBAAI,iBAAiB,GAAG;AACtB,sBAAQ,cAAc;AACtB,oBAAM;AAAA,YACR;AACA,+BAAmB,OAAO;AAC1B,oBAAQ,QAAQ,MAAM;AAAA,UACxB;AACA,iBAAO,aAAa,WAAW;AAC7B,mBAAO;AAAA,UACT;AACA,cAAI;AACJ,cAAI;AACF,gCAAoB,uBAAuB;AAAA,UAC7C,SAAS,IAAP;AACA,oBAAQ,MAAM,yGAAyG;AACvH,kBAAM;AAAA,UACR;AACA,iBAAO,SAAS,kBAAkB;AAAA,QACpC,WAAW,sBAAsB,uBAAuB;AACtD,cAAI,uBAAuB;AACzB,8BAAkB,KAAK,SAAS;AAAA,UAClC,WAAW,OAAO,aAAa,eAAe,SAAS,eAAe;AACpE,8BAAkB,SAAS,cAAc;AAAA,UAC3C;AACA,cAAI,OAAO,eAAe,eAAe,YAAY;AACnD,8BAAkB;AAAA,UACpB;AACA,cAAI,gBAAgB,QAAQ,OAAO,MAAM,GAAG;AAC1C,8BAAkB,gBAAgB,OAAO,GAAG,gBAAgB,QAAQ,UAAU,EAAE,EAAE,YAAY,GAAG,IAAI,CAAC;AAAA,UACxG,OAAO;AACL,8BAAkB;AAAA,UACpB;AACA,cAAI,CAAC,qBAAqB;AACxB,oBAAQ,CAAC,QAAQ;AACf,kBAAI,MAAM,IAAI,eAAe;AAC7B,kBAAI,KAAK,OAAO,KAAK,KAAK;AAC1B,kBAAI,KAAK,IAAI;AACb,qBAAO,IAAI;AAAA,YACb;AACA,gBAAI,uBAAuB;AACzB,2BAAa,CAAC,QAAQ;AACpB,oBAAI,MAAM,IAAI,eAAe;AAC7B,oBAAI,KAAK,OAAO,KAAK,KAAK;AAC1B,oBAAI,eAAe;AACnB,oBAAI,KAAK,IAAI;AACb,uBAAO,IAAI,WAAW,IAAI,QAAQ;AAAA,cACpC;AAAA,YACF;AACA,wBAAY,CAAC,KAAK,QAAQ,YAAY;AACpC,kBAAI,MAAM,IAAI,eAAe;AAC7B,kBAAI,KAAK,OAAO,KAAK,IAAI;AACzB,kBAAI,eAAe;AACnB,kBAAI,SAAS,MAAM;AACjB,oBAAI,IAAI,UAAU,OAAO,IAAI,UAAU,KAAK,IAAI,UAAU;AACxD,yBAAO,IAAI,QAAQ;AACnB;AAAA,gBACF;AACA,wBAAQ;AAAA,cACV;AACA,kBAAI,UAAU;AACd,kBAAI,KAAK,IAAI;AAAA,YACf;AAAA,UACF;AACA,2BAAiB,CAAC,UAAU,SAAS,QAAQ;AAAA,QAC/C,OAAO;AAAA,QACP;AACA,YAAI,qBAAqB;AACvB,cAAI,OAAO,gBAAgB,aAAa;AACtC,mBAAO,cAAc,mBAAmB,EAAE;AAAA,UAC5C;AAAA,QACF;AACA,YAAI,eAAe,QAAQ,IAAI,KAAK,OAAO;AAC3C,YAAI,kBAAkB,QAAQ,KAAK,KAAK,OAAO;AAC/C,YAAI,qBAAqB;AACvB,wBAAc;AACd,yBAAe,CAAC,QAAQ,GAAG,UAAU,GAAG,MAAM,IAAI;AAClD,4BAAkB,CAAC,QAAQ,GAAG,UAAU,GAAG,MAAM,IAAI;AAAA,QACvD;AACA,YAAI,MAAM,OAAO,YAAY;AAC7B,YAAI,MAAM,OAAO,eAAe;AAChC,eAAO,OAAO,QAAQ,eAAe;AACrC,0BAAkB;AAClB,YAAI,OAAO;AACT,uBAAa,OAAO;AACtB,YAAI,OAAO;AACT,wBAAc,OAAO;AACvB,YAAI,OAAO;AACT,kBAAQ,OAAO;AACjB,YAAI,eAAe;AACnB,iBAAS,SAAS,MAAM;AACtB,cAAI,CAAC,SAAS;AACZ,qBAAS,QAAQ,CAAC;AACpB,cAAI,CAAC,SAAS,MAAM,OAAO;AACzB,qBAAS,MAAM,QAAQ;AACvB,gBAAI,IAAI;AAAA,UACV;AAAA,QACF;AACA,iBAAS,wBAAwB,OAAO,KAAK;AAC3C,cAAI,OAAO,YAAY,aAAa,YAAY;AAC9C,gBAAI,YAAY,EAAE,KAAK,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,MAAM;AACjE,gBAAI,OAAO,EAAE,YAAY,CAAC,GAAG,SAAS,IAAI,MAAM,MAAM,CAAC,IAAI,CAAC,UAAU,IAAI,GAAG,EAAE;AAC/E,qBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,mBAAK,WAAW,KAAK,UAAU,IAAI,IAAI;AAAA,YACzC;AACA,mBAAO,IAAI,YAAY,SAAS,MAAM,KAAK;AAAA,UAC7C;AACA,cAAI,cAAc,CAAC,GAAG,GAAG,GAAG,EAAE;AAC9B,cAAI,SAAS,IAAI,MAAM,GAAG,CAAC;AAC3B,cAAI,WAAW,IAAI,MAAM,CAAC;AAC1B,cAAI,YAAY,EAAE,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,IAAI;AACzD,sBAAY,KAAK,SAAS,MAAM;AAChC,mBAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,EAAE,IAAI;AAC3C,wBAAY,KAAK,UAAU,SAAS,IAAI;AAAA,UAC1C;AACA,cAAI,UAAU,KAAK;AACjB,wBAAY,KAAK,CAAC;AAAA,UACpB,OAAO;AACL,0BAAc,YAAY,OAAO,CAAC,GAAG,UAAU,OAAO,CAAC;AAAA,UACzD;AACA,sBAAY,KAAK,YAAY,SAAS;AACtC,cAAI,QAAQ,IAAI,WAAW,CAAC,GAAG,IAAI,KAAK,KAAK,GAAG,GAAG,GAAG,CAAC,EAAE,OAAO,aAAa,CAAC,GAAG,GAAG,GAAG,GAAG,KAAK,GAAG,KAAK,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC;AACpI,cAAI,UAAU,IAAI,YAAY,OAAO,KAAK;AAC1C,cAAIG,YAAW,IAAI,YAAY,SAAS,SAAS,EAAE,KAAK,EAAE,KAAK,MAAM,EAAE,CAAC;AACxE,cAAI,cAAcA,UAAS,QAAQ;AACnC,iBAAO;AAAA,QACT;AACA,YAAI,mBAAmB,CAAC;AACxB,YAAI;AACJ,iBAAS,oBAAoB;AAC3B,cAAI,iBAAiB,QAAQ;AAC3B,mBAAO,iBAAiB,IAAI;AAAA,UAC9B;AACA,cAAI;AACF,sBAAU,KAAK,CAAC;AAAA,UAClB,SAAS,MAAP;AACA,gBAAI,EAAE,gBAAgB,aAAa;AACjC,oBAAM;AAAA,YACR;AACA,kBAAM;AAAA,UACR;AACA,iBAAO,UAAU,SAAS;AAAA,QAC5B;AACA,iBAAS,eAAe,QAAQD,SAAQ;AACtC,mBAAS,KAAK,QAAQ,KAAK,SAASA,SAAQ,MAAM;AAChD,gBAAI,OAAO,kBAAkB,EAAE;AAC/B,gBAAI,MAAM;AACR,kCAAoB,IAAI,MAAM,EAAE;AAAA,YAClC;AAAA,UACF;AAAA,QACF;AACA,YAAI,WAAW;AACf,YAAI,cAAc,CAAC,UAAU;AAC3B,qBAAW;AAAA,QACb;AACA,YAAI,eAAe,QAAQ;AAC3B,YAAI,gBAAgB,QAAQ;AAC5B,YAAI,0BAA0B,QAAQ;AACtC,YAAI;AACJ,YAAI,OAAO;AACT,uBAAa,OAAO;AACtB,YAAI,gBAAgB,OAAO,oBAAoB;AAC/C,YAAI,OAAO,gBAAgB,UAAU;AACnC,gBAAM,iCAAiC;AAAA,QACzC;AACA,YAAI;AACJ,YAAI;AACJ,YAAI,QAAQ;AACZ,YAAI;AACJ,iBAAS,QAAQ,WAAW,MAAM;AAChC,cAAI,CAAC,WAAW;AACd,kBAAM,IAAI;AAAA,UACZ;AAAA,QACF;AACA,iBAAS,SAAS,OAAO;AACvB,cAAI,QAAQ,OAAO,MAAM;AACzB,iBAAO;AAAA,QACT;AACA,iBAAS,MAAM,OAAO,YAAY,UAAU,MAAM,MAAM;AACtD,cAAI,MAAM,EAAE,UAAU,SAAS,KAAK;AAClC,gBAAI,OAAO;AACX,gBAAI,QAAQ,QAAQ,QAAQ,UAAU,QAAQ,GAAG;AAC/C,kBAAI,OAAO,IAAI,UAAU,KAAK;AAC9B,qBAAO,WAAW,GAAG;AACrB,2BAAa,KAAK,MAAM,GAAG;AAAA,YAC7B;AACA,mBAAO;AAAA,UACT,GAAG,SAAS,SAAS,KAAK;AACxB,gBAAI,OAAO,WAAW,IAAI,MAAM;AAChC,+BAAmB,KAAK,IAAI;AAC5B,mBAAO;AAAA,UACT,EAAE;AACF,mBAAS,mBAAmB,MAAM;AAChC,gBAAI,eAAe;AACjB,qBAAO,aAAa,IAAI;AAC1B,gBAAI,eAAe;AACjB,qBAAO,QAAQ,IAAI;AACrB,mBAAO;AAAA,UACT;AACA,cAAI,QAAQ,SAAS,KAAK;AAC1B,cAAI,QAAQ,CAAC;AACb,cAAI,SAAS;AACb,cAAI,MAAM;AACR,qBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,kBAAI,YAAY,IAAI,SAAS;AAC7B,kBAAI,WAAW;AACb,oBAAI,WAAW;AACb,2BAAS,UAAU;AACrB,sBAAM,MAAM,UAAU,KAAK,GAAG;AAAA,cAChC,OAAO;AACL,sBAAM,MAAM,KAAK;AAAA,cACnB;AAAA,YACF;AAAA,UACF;AACA,cAAI,MAAM,MAAM,MAAM,MAAM,KAAK;AACjC,mBAAS,OAAO,MAAM;AACpB,gBAAI,WAAW;AACb,2BAAa,MAAM;AACrB,mBAAO,mBAAmB,IAAI;AAAA,UAChC;AACA,gBAAM,OAAO,GAAG;AAChB,iBAAO;AAAA,QACT;AACA,iBAAS,MAAM,OAAO,YAAY,UAAU,MAAM;AAChD,qBAAW,YAAY,CAAC;AACxB,cAAI,cAAc,SAAS,MAAM,SAAS,MAAM;AAC9C,mBAAO,SAAS;AAAA,UAClB,CAAC;AACD,cAAI,aAAa,eAAe;AAChC,cAAI,cAAc,eAAe,CAAC,MAAM;AACtC,mBAAO,SAAS,KAAK;AAAA,UACvB;AACA,iBAAO,WAAW;AAChB,mBAAO,MAAM,OAAO,YAAY,UAAU,WAAW,IAAI;AAAA,UAC3D;AAAA,QACF;AACA,YAAI,cAAc;AAClB,iBAAS,mBAAmB,UAAU;AACpC,cAAI,cAAc,IAAI,YAAY,QAAQ;AAC1C,eAAK,SAAS,CAAC,SAAS;AACtB,gBAAI,KAAK,kBAAkB,mBAAmB;AAC5C,qBAAO,IAAI,WAAW,IAAI;AAAA,YAC5B;AACA,mBAAO,YAAY,OAAO,KAAK,aAAa,IAAI;AAAA,UAClD;AAAA,QACF;AACA,YAAI,cAAc,OAAO,gBAAgB,cAAc,IAAI,mBAAmB,MAAM,IAAI;AACxF,iBAAS,kBAAkB,MAAM,KAAK,gBAAgB;AACpD,cAAI,SAAS,MAAM;AACnB,cAAI,SAAS;AACb,iBAAO,KAAK,WAAW,EAAE,UAAU;AACjC,cAAE;AACJ,cAAI,SAAS,MAAM,MAAM,KAAK,YAAY,aAAa;AACrD,mBAAO,YAAY,OAAO,KAAK,SAAS,KAAK,MAAM,CAAC;AAAA,UACtD,OAAO;AACL,gBAAI,MAAM;AACV,mBAAO,MAAM,QAAQ;AACnB,kBAAI,KAAK,KAAK;AACd,kBAAI,EAAE,KAAK,MAAM;AACf,uBAAO,OAAO,aAAa,EAAE;AAC7B;AAAA,cACF;AACA,kBAAI,KAAK,KAAK,SAAS;AACvB,mBAAK,KAAK,QAAQ,KAAK;AACrB,uBAAO,OAAO,cAAc,KAAK,OAAO,IAAI,EAAE;AAC9C;AAAA,cACF;AACA,kBAAI,KAAK,KAAK,SAAS;AACvB,mBAAK,KAAK,QAAQ,KAAK;AACrB,sBAAM,KAAK,OAAO,KAAK,MAAM,IAAI;AAAA,cACnC,OAAO;AACL,sBAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,KAAK,SAAS;AAAA,cAC3D;AACA,kBAAI,KAAK,OAAO;AACd,uBAAO,OAAO,aAAa,EAAE;AAAA,cAC/B,OAAO;AACL,oBAAI,KAAK,KAAK;AACd,uBAAO,OAAO,aAAa,QAAQ,MAAM,IAAI,QAAQ,KAAK,IAAI;AAAA,cAChE;AAAA,YACF;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,aAAa,KAAK,gBAAgB;AACzC,iBAAO,MAAM,kBAAkB,iBAAiB,GAAG,KAAK,cAAc,IAAI;AAAA,QAC5E;AACA,iBAAS,kBAAkB,KAAK,MAAM,QAAQ,iBAAiB;AAC7D,cAAI,EAAE,kBAAkB;AACtB,mBAAO;AACT,cAAI,WAAW;AACf,cAAI,SAAS,SAAS,kBAAkB;AACxC,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,gBAAI,IAAI,IAAI,WAAW,EAAE;AACzB,gBAAI,KAAK,SAAS,KAAK,OAAO;AAC5B,kBAAI,KAAK,IAAI,WAAW,EAAE,EAAE;AAC5B,kBAAI,UAAU,IAAI,SAAS,MAAM,KAAK;AAAA,YACxC;AACA,gBAAI,KAAK,KAAK;AACZ,kBAAI,UAAU;AACZ;AACF,mBAAK,YAAY;AAAA,YACnB,WAAW,KAAK,MAAM;AACpB,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B,WAAW,KAAK,OAAO;AACrB,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,KAAK,IAAI;AAChC,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B,OAAO;AACL,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,KAAK,KAAK;AACjC,mBAAK,YAAY,MAAM,KAAK,IAAI;AAChC,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B;AAAA,UACF;AACA,eAAK,UAAU;AACf,iBAAO,SAAS;AAAA,QAClB;AACA,iBAAS,aAAa,KAAK,QAAQ,iBAAiB;AAClD,iBAAO,kBAAkB,KAAK,iBAAiB,GAAG,QAAQ,eAAe;AAAA,QAC3E;AACA,iBAAS,gBAAgB,KAAK;AAC5B,cAAI,MAAM;AACV,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,gBAAI,IAAI,IAAI,WAAW,EAAE;AACzB,gBAAI,KAAK,SAAS,KAAK;AACrB,kBAAI,UAAU,IAAI,SAAS,MAAM,IAAI,WAAW,EAAE,EAAE,IAAI;AAC1D,gBAAI,KAAK;AACP,gBAAE;AAAA,qBACK,KAAK;AACZ,qBAAO;AAAA,qBACA,KAAK;AACZ,qBAAO;AAAA;AAEP,qBAAO;AAAA,UACX;AACA,iBAAO;AAAA,QACT;AACA,YAAI,eAAe,OAAO,gBAAgB,cAAc,IAAI,mBAAmB,UAAU,IAAI;AAC7F,iBAAS,mBAAmB,QAAQ,SAAS;AAC3C,2BAAiB,EAAE,IAAI,QAAQ,OAAO;AAAA,QACxC;AACA,iBAAS,mBAAmB,KAAK,SAAS,aAAa;AACrD,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,6BAAiB,EAAE,aAAa,KAAK,IAAI,WAAW,EAAE;AAAA,UACxD;AACA,cAAI,CAAC;AACH,6BAAiB,EAAE,WAAW,KAAK;AAAA,QACvC;AACA,iBAAS,QAAQ,GAAG,UAAU;AAC5B,cAAI,IAAI,WAAW,GAAG;AACpB,iBAAK,WAAW,IAAI;AAAA,UACtB;AACA,iBAAO;AAAA,QACT;AACA,YAAI,SAAS,OAAO,QAAQ,QAAQ,SAAS,QAAQ,SAAS,SAAS;AACvE,YAAI,wBAAwB;AAC1B,oBAAU,OAAO;AAAA,QACnB;AACA,iBAAS,2BAA2B,KAAK;AACvC,oBAAU;AACV,iBAAO,WAAW,QAAQ,IAAI,UAAU,GAAG;AAC3C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,aAAa,UAAU,IAAI,YAAY,GAAG;AACjD,iBAAO,aAAa,UAAU,IAAI,YAAY,GAAG;AACjD,iBAAO,aAAa,UAAU,IAAI,aAAa,GAAG;AAClD,iBAAO,aAAa,UAAU,IAAI,aAAa,GAAG;AAAA,QACpD;AACA,YAAI,iBAAiB,OAAO,qBAAqB;AACjD,YAAI,wBAAwB;AAC1B,uBAAa,OAAO;AACpB,oBAAU,OAAO;AAAA,QACnB,OAAO;AACL,cAAI,OAAO,eAAe;AACxB,yBAAa,OAAO;AAAA,UACtB,OAAO;AACL,yBAAa,IAAI,YAAY,OAAO,EAAE,WAAW,iBAAiB,OAAO,WAAW,aAAa,OAAO,UAAU,KAAK,CAAC;AACxH,gBAAI,EAAE,WAAW,kBAAkB,oBAAoB;AACrD,kBAAI,6NAA6N;AACjO,kBAAI,qBAAqB;AACvB,wBAAQ,IAAI,mHAAmH;AAAA,cACjI;AACA,oBAAM,MAAM,YAAY;AAAA,YAC1B;AAAA,UACF;AAAA,QACF;AACA,YAAI,YAAY;AACd,oBAAU,WAAW;AAAA,QACvB;AACA,yBAAiB,QAAQ;AACzB,mCAA2B,OAAO;AAClC,YAAI;AACJ,YAAI,eAAe,CAAC;AACpB,YAAI,aAAa,CAAC;AAClB,YAAI,aAAa,CAAC;AAClB,YAAI,gBAAgB,CAAC;AACrB,YAAI,qBAAqB;AACzB,YAAI,gBAAgB;AACpB,YAAI,0BAA0B;AAC9B,iBAAS,mBAAmB;AAC1B,iBAAO,iBAAiB,0BAA0B;AAAA,QACpD;AACA,iBAAS,SAAS;AAChB,cAAI,OAAO,WAAW;AACpB,gBAAI,OAAO,OAAO,aAAa;AAC7B,qBAAO,YAAY,CAAC,OAAO,SAAS;AACtC,mBAAO,OAAO,UAAU,QAAQ;AAC9B,0BAAY,OAAO,UAAU,MAAM,CAAC;AAAA,YACtC;AAAA,UACF;AACA,+BAAqB,YAAY;AAAA,QACnC;AACA,iBAAS,cAAc;AACrB,+BAAqB;AACrB,cAAI;AACF;AACF,+BAAqB,UAAU;AAAA,QACjC;AACA,iBAAS,cAAc;AACrB,cAAI;AACF;AACF,kBAAQ,oBAAoB;AAC5B,0BAAgB;AAAA,QAClB;AACA,iBAAS,UAAU;AACjB,cAAI;AACF;AACF,cAAI,OAAO,YAAY;AACrB,gBAAI,OAAO,OAAO,cAAc;AAC9B,qBAAO,aAAa,CAAC,OAAO,UAAU;AACxC,mBAAO,OAAO,WAAW,QAAQ;AAC/B,2BAAa,OAAO,WAAW,MAAM,CAAC;AAAA,YACxC;AAAA,UACF;AACA,+BAAqB,aAAa;AAAA,QACpC;AACA,iBAAS,YAAY,IAAI;AACvB,uBAAa,QAAQ,EAAE;AAAA,QACzB;AACA,iBAAS,UAAU,IAAI;AACrB,qBAAW,QAAQ,EAAE;AAAA,QACvB;AACA,iBAAS,aAAa,IAAI;AACxB,wBAAc,QAAQ,EAAE;AAAA,QAC1B;AACA,YAAI,kBAAkB;AACtB,YAAI,uBAAuB;AAC3B,YAAI,wBAAwB;AAC5B,iBAAS,iBAAiB,IAAI;AAC5B;AACA,cAAI,OAAO,2BAA2B;AACpC,mBAAO,0BAA0B,eAAe;AAAA,UAClD;AAAA,QACF;AACA,iBAAS,oBAAoB,IAAI;AAC/B;AACA,cAAI,OAAO,2BAA2B;AACpC,mBAAO,0BAA0B,eAAe;AAAA,UAClD;AACA,cAAI,mBAAmB,GAAG;AACxB,gBAAI,yBAAyB,MAAM;AACjC,4BAAc,oBAAoB;AAClC,qCAAuB;AAAA,YACzB;AACA,gBAAI,uBAAuB;AACzB,kBAAI,WAAW;AACf,sCAAwB;AACxB,uBAAS;AAAA,YACX;AAAA,UACF;AAAA,QACF;AACA,eAAO,qBAAqB,CAAC;AAC7B,eAAO,qBAAqB,CAAC;AAC7B,iBAAS,MAAM,MAAM;AACnB,cAAI,wBAAwB;AAC1B,wBAAY,EAAE,OAAO,WAAW,OAAO,KAAK,CAAC;AAAA,UAC/C,OAAO;AACL,gBAAI,OAAO,YAAY;AACrB,qBAAO,WAAW,IAAI;AAAA,YACxB;AAAA,UACF;AACA,iBAAO,aAAa,OAAO;AAC3B,cAAI,IAAI;AACR,kBAAQ;AACR,uBAAa;AACb,kBAAQ;AACR,cAAI,KAAK,IAAI,YAAY,aAAa,IAAI;AAC1C,6BAAmB,EAAE;AACrB,gBAAM;AAAA,QACR;AACA,YAAI,gBAAgB;AACpB,iBAAS,UAAU,UAAU;AAC3B,iBAAO,SAAS,WAAW,aAAa;AAAA,QAC1C;AACA,iBAAS,UAAU,UAAU;AAC3B,iBAAO,SAAS,WAAW,SAAS;AAAA,QACtC;AACA,YAAI;AACJ,yBAAiB;AACjB,YAAI,CAAC,UAAU,cAAc,GAAG;AAC9B,2BAAiB,WAAW,cAAc;AAAA,QAC5C;AACA,iBAAS,UAAU,MAAM;AACvB,cAAI;AACF,gBAAI,QAAQ,kBAAkB,YAAY;AACxC,qBAAO,IAAI,WAAW,UAAU;AAAA,YAClC;AACA,gBAAI,YAAY;AACd,qBAAO,WAAW,IAAI;AAAA,YACxB,OAAO;AACL,oBAAM;AAAA,YACR;AAAA,UACF,SAAS,MAAP;AACA,kBAAM,IAAI;AAAA,UACZ;AAAA,QACF;AACA,iBAAS,mBAAmB;AAC1B,cAAI,CAAC,eAAe,sBAAsB,wBAAwB;AAChE,gBAAI,OAAO,UAAU,cAAc,CAAC,UAAU,cAAc,GAAG;AAC7D,qBAAO,MAAM,gBAAgB,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,SAAS,UAAU;AACnF,oBAAI,CAAC,SAAS,OAAO;AACnB,wBAAM,yCAAyC,iBAAiB;AAAA,gBAClE;AACA,uBAAO,SAAS,eAAe;AAAA,cACjC,CAAC,EAAE,MAAM,WAAW;AAClB,uBAAO,UAAU,cAAc;AAAA,cACjC,CAAC;AAAA,YACH,OAAO;AACL,kBAAI,WAAW;AACb,uBAAO,IAAI,QAAQ,SAAS,SAAS,QAAQ;AAC3C,4BAAU,gBAAgB,SAAS,UAAU;AAC3C,4BAAQ,IAAI,WAAW,QAAQ,CAAC;AAAA,kBAClC,GAAG,MAAM;AAAA,gBACX,CAAC;AAAA,cACH;AAAA,YACF;AAAA,UACF;AACA,iBAAO,QAAQ,QAAQ,EAAE,KAAK,WAAW;AACvC,mBAAO,UAAU,cAAc;AAAA,UACjC,CAAC;AAAA,QACH;AACA,iBAAS,aAAa;AACpB,cAAI,OAAO,EAAE,OAAO,eAAe,0BAA0B,cAAc;AAC3E,mBAAS,gBAAgBC,WAAU,SAAS;AAC1C,gBAAI,WAAWA,UAAS;AACxB,mBAAO,SAAS;AAChB,4BAAgB,OAAO,OAAO,sBAAsB;AACpD,wBAAY,OAAO,OAAO;AAC1B,sBAAU,OAAO,OAAO,oBAAoB;AAC5C,yBAAa;AACb,gBAAI,CAAC,wBAAwB;AAC3B,kBAAI,mBAAmB,QAAQ,cAAc;AAC7C,sBAAQ,cAAc,QAAQ,SAAS,GAAG;AACxC,wBAAQ,uBAAuB,GAAG,WAAW;AAC3C,sBAAI,CAAC,EAAE;AACL,wCAAoB,kBAAkB;AAAA,gBAC1C,CAAC;AAAA,cACH,CAAC;AAAA,YACH;AAAA,UACF;AACA,cAAI,CAAC,wBAAwB;AAC3B,6BAAiB,kBAAkB;AAAA,UACrC;AACA,mBAAS,2BAA2B,QAAQ;AAC1C,4BAAgB,OAAO,aAAa,OAAO,SAAS;AAAA,UACtD;AACA,mBAAS,uBAAuB,UAAU;AACxC,mBAAO,iBAAiB,EAAE,KAAK,SAAS,QAAQ;AAC9C,qBAAO,YAAY,YAAY,QAAQ,IAAI;AAAA,YAC7C,CAAC,EAAE,KAAK,SAASA,WAAU;AACzB,qBAAOA;AAAA,YACT,CAAC,EAAE,KAAK,UAAU,SAAS,QAAQ;AACjC,kBAAI,4CAA4C,MAAM;AACtD,oBAAM,MAAM;AAAA,YACd,CAAC;AAAA,UACH;AACA,mBAAS,mBAAmB;AAC1B,gBAAI,CAAC,cAAc,OAAO,YAAY,yBAAyB,cAAc,CAAC,UAAU,cAAc,KAAK,CAAC,UAAU,cAAc,KAAK,OAAO,UAAU,YAAY;AACpK,qBAAO,MAAM,gBAAgB,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,SAAS,UAAU;AACnF,oBAAI,SAAS,YAAY,qBAAqB,UAAU,IAAI;AAC5D,uBAAO,OAAO,KAAK,4BAA4B,SAAS,QAAQ;AAC9D,sBAAI,oCAAoC,MAAM;AAC9C,sBAAI,2CAA2C;AAC/C,yBAAO,uBAAuB,0BAA0B;AAAA,gBAC1D,CAAC;AAAA,cACH,CAAC;AAAA,YACH,OAAO;AACL,qBAAO,uBAAuB,0BAA0B;AAAA,YAC1D;AAAA,UACF;AACA,cAAI,OAAO,oBAAoB;AAC7B,gBAAI;AACF,kBAAI,WAAW,OAAO,mBAAmB,MAAM,eAAe;AAC9D,qBAAO;AAAA,YACT,SAAS,IAAP;AACA,kBAAI,wDAAwD,EAAE;AAC9D,qBAAO;AAAA,YACT;AAAA,UACF;AACA,2BAAiB,EAAE,MAAM,kBAAkB;AAC3C,iBAAO,CAAC;AAAA,QACV;AACA,YAAI;AACJ,YAAI;AACJ,YAAI,aAAa,CAAC;AAClB,iBAAS,qBAAqB,YAAY;AACxC,iBAAO,WAAW,SAAS,GAAG;AAC5B,gBAAI,WAAW,WAAW,MAAM;AAChC,gBAAI,OAAO,YAAY,YAAY;AACjC,uBAAS,MAAM;AACf;AAAA,YACF;AACA,gBAAI,QAAQ,SAAS;AACrB,gBAAI,OAAO,UAAU,UAAU;AAC7B,kBAAI,SAAS,QAAQ,QAAQ;AAC3B,kCAAkB,KAAK,EAAE;AAAA,cAC3B,OAAO;AACL,kCAAkB,KAAK,EAAE,SAAS,GAAG;AAAA,cACvC;AAAA,YACF,OAAO;AACL,oBAAM,SAAS,QAAQ,SAAS,OAAO,SAAS,GAAG;AAAA,YACrD;AAAA,UACF;AAAA,QACF;AACA,iBAAS,cAAc,GAAG;AACxB,cAAI,SAAS,UAAU;AACvB,cAAI,MAAM,EAAE;AACZ,uBAAa,MAAM;AACnB,iBAAO;AAAA,QACT;AACA,iBAAS,SAAS,OAAO;AACvB,iBAAO;AAAA,QACT;AACA,iBAAS,YAAY,MAAM;AACzB,cAAI,QAAQ;AACZ,iBAAO,KAAK,QAAQ,OAAO,SAAS,GAAG;AACrC,gBAAI,IAAI,SAAS,CAAC;AAClB,mBAAO,MAAM,IAAI,IAAI,IAAI,OAAO,IAAI;AAAA,UACtC,CAAC;AAAA,QACH;AACA,iBAAS,WAAW,aAAa;AAC/B,4BAAkB,EAAE,eAAe,KAAK;AACxC,cAAI,UAAU,QAAQ,SAAS;AAC/B,iBAAO,QAAQ,SAAS;AACxB,kBAAQ,OAAO,UAAU;AACzB,wCAA8B,WAAW;AACzC,kBAAQ,eAAe,OAAO,QAAQ,eAAe,QAAQ,QAAQ,MAAM,GAAG,CAAC;AAC/E,kBAAQ,OAAO,UAAU;AAAA,QAC3B;AACA,iBAAS,aAAa,aAAa;AACjC,cAAI,UAAU,QAAQ,SAAS;AAC/B,kBAAQ,OAAO,YAAY,EAAE,OAAO,SAAS,CAAC;AAAA,QAChD;AACA,iBAAS,cAAc,aAAa;AAClC,cAAI,UAAU,QAAQ,SAAS;AAC/B,cAAI,SAAS;AACX,8BAAkB,EAAE,eAAe,KAAK;AACxC,gBAAI,SAAS,QAAQ;AACrB,oBAAQ,mBAAmB,MAAM;AAAA,UACnC;AAAA,QACF;AACA,iBAAS,MAAM,QAAQ;AACrB,eAAK,MAAM;AAAA,QACb;AACA,iBAAS,gBAAgB,IAAI;AAC3B,cAAI,cAAc,cAAc,MAAM,UAAU;AAC9C,mBAAO;AAAA,UACT;AACA,gBAAM,GAAG,EAAE;AAAA,QACb;AACA,YAAI,UAAU,EAAE,eAAe,CAAC,GAAG,gBAAgB,CAAC,GAAG,kBAAkB,CAAC,GAAG,MAAM,WAAW;AAC5F,cAAI,wBAAwB;AAC1B,oBAAQ,WAAW;AAAA,UACrB,OAAO;AACL,oBAAQ,eAAe;AAAA,UACzB;AAAA,QACF,GAAG,gBAAgB,WAAW;AAC5B,cAAI,kBAAkB;AACtB,mBAAS,KAAK,GAAG,KAAK,iBAAiB,EAAE,IAAI;AAC3C,oBAAQ,qBAAqB;AAAA,UAC/B;AAAA,QACF,GAAG,YAAY,WAAW;AACxB,0BAAgB;AAAA,QAClB,GAAG,UAAU,CAAC,GAAG,eAAe,SAAS,QAAQ;AAC/C,uBAAa;AAAA,QACf,GAAG,qBAAqB,WAAW;AACjC,mBAAS,MAAM,QAAQ,UAAU;AAC/B,gBAAI,UAAU,QAAQ,SAAS;AAC/B,gBAAI,WAAW,QAAQ,QAAQ;AAC7B,sBAAQ,mBAAmB,QAAQ,MAAM;AAAA,YAC3C;AAAA,UACF;AACA,mBAAS,KAAK,GAAG,KAAK,QAAQ,cAAc,QAAQ,EAAE,IAAI;AACxD,gBAAI,SAAS,QAAQ,cAAc;AACnC,mBAAO,UAAU;AAAA,UACnB;AACA,kBAAQ,gBAAgB,CAAC;AAAA,QAC3B,GAAG,oBAAoB,SAAS,QAAQ;AACtC,kBAAQ,gCAAgC,WAAW;AACjD,mBAAO,QAAQ,SAAS,OAAO,QAAQ;AACvC,oBAAQ,cAAc,KAAK,MAAM;AACjC,oBAAQ,eAAe,OAAO,QAAQ,eAAe,QAAQ,MAAM,GAAG,CAAC;AACvE,0CAA8B,OAAO,QAAQ,gBAAgB;AAC7D,mBAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH,GAAG,iCAAiC,SAAS,OAAO;AAClD,4BAAkB,EAAE,gDAAgD,KAAK;AACzE,cAAI;AACF,kBAAM;AAAA,UACR,UAAE;AACA,8BAAkB,EAAE,gDAAgD,KAAK;AAAA,UAC3E;AAAA,QACF,GAAG,uBAAuB,SAAS,MAAM;AAAA,QACzC,GAAG,YAAY,WAAW;AACxB,mBAAS,MAAM,QAAQ,kBAAkB;AACvC,oBAAQ,iBAAiB,IAAI;AAAA,UAC/B;AAAA,QACF,GAAG,wBAAwB,SAAS,QAAQ,mBAAmB;AAC7D,iBAAO,YAAY,CAAC,OAAO;AACzB,gBAAI,IAAI,GAAG;AACX,gBAAI,MAAM,EAAE;AACZ,gBAAI,OAAO;AACT,sBAAQ,sCAAsC,OAAO,QAAQ;AAC/D,gBAAI,EAAE,mBAAmB,EAAE,mBAAmB,cAAc,GAAG;AAC7D,kBAAI,SAAS,QAAQ,SAAS,EAAE;AAChC,kBAAI,QAAQ;AACV,uBAAO,OAAO,YAAY,GAAG,EAAE,eAAe;AAAA,cAChD,OAAO;AACL,oBAAI,4CAA4C,MAAM,yBAAyB,EAAE,kBAAkB,qCAAqC;AAAA,cAC1I;AACA,sBAAQ,sCAAsC;AAC9C;AAAA,YACF;AACA,gBAAI,QAAQ,+BAA+B;AACzC,2DAA6C;AAAA,YAC/C,WAAW,QAAQ,eAAe;AAChC,0BAAY,CAAC;AAAA,YACf,WAAW,QAAQ,iBAAiB;AAClC,4BAAc,EAAE,SAAS;AAAA,YAC3B,WAAW,QAAQ,cAAc;AAC/B,yBAAW,EAAE,SAAS;AAAA,YACxB,WAAW,QAAQ,gBAAgB;AACjC,2BAAa,EAAE,SAAS;AAAA,YAC1B,WAAW,QAAQ,UAAU;AAC3B,qBAAO,SAAS;AAChB,kBAAI;AACF,kCAAkB,MAAM;AAC1B,kBAAI,OAAO,YAAY;AACrB,uBAAO,WAAW;AAClB,uBAAO,OAAO;AAAA,cAChB;AAAA,YACF,WAAW,QAAQ,SAAS;AAC1B,kBAAI,YAAY,EAAE,cAAc,OAAO,EAAE,OAAO;AAAA,YAClD,WAAW,QAAQ,YAAY;AAC7B,kBAAI,YAAY,EAAE,cAAc,OAAO,EAAE,OAAO;AAAA,YAClD,WAAW,QAAQ,SAAS;AAC1B,oBAAM,YAAY,EAAE,cAAc,OAAO,EAAE,OAAO;AAAA,YACpD,WAAW,EAAE,WAAW,gBAAgB;AACtC,qBAAO,YAAY,CAAC;AAAA,YACtB,WAAW,QAAQ,WAAW;AAC5B,kBAAI,OAAO,YAAY;AACrB,uBAAO,WAAW,EAAE,MAAM;AAAA,cAC5B;AAAA,YACF,OAAO;AACL,kBAAI,oCAAoC,GAAG;AAAA,YAC7C;AACA,oBAAQ,sCAAsC;AAAA,UAChD;AACA,iBAAO,UAAU,CAAC,OAAO;AACvB,gBAAI,UAAU;AACd,gBAAI,UAAU,MAAM,GAAG,WAAW,MAAM,GAAG,SAAS,OAAO,GAAG,OAAO;AACrE,kBAAM;AAAA,UACR;AACA,cAAI,qBAAqB;AACvB,mBAAO,GAAG,WAAW,SAAS,MAAM;AAClC,qBAAO,UAAU,EAAE,KAAK,CAAC;AAAA,YAC3B,CAAC;AACD,mBAAO,GAAG,SAAS,SAAS,IAAI;AAC9B,qBAAO,QAAQ,EAAE;AAAA,YACnB,CAAC;AACD,mBAAO,GAAG,gBAAgB,WAAW;AAAA,YACrC,CAAC;AAAA,UACH;AACA,iBAAO,YAAY,EAAE,OAAO,QAAQ,aAAa,OAAO,0BAA0B,YAAY,cAAc,YAAY,cAAc,WAAW,CAAC;AAAA,QACpJ,GAAG,sBAAsB,WAAW;AAClC,cAAI,gBAAgB,WAAW,2CAA2C;AAC1E,kBAAQ,cAAc,KAAK,IAAI,OAAO,aAAa,CAAC;AAAA,QACtD,GAAG,cAAc,WAAW;AAC1B,cAAI,QAAQ,cAAc,UAAU,GAAG;AACrC,oBAAQ,qBAAqB;AAC7B,oBAAQ,uBAAuB,QAAQ,cAAc,EAAE;AAAA,UACzD;AACA,iBAAO,QAAQ,cAAc,IAAI;AAAA,QACnC,EAAE;AACF,iBAAS,sBAAsB;AAC7B,cAAI,cAAc,cAAc;AAChC,cAAI,WAAW,kBAAkB,EAAE,cAAc,MAAM;AACvD,cAAI,YAAY,kBAAkB,EAAE,cAAc,MAAM;AACxD,cAAI,WAAW,WAAW;AAC1B,uCAA6B,UAAU,QAAQ;AAC/C,uBAAa,QAAQ;AAAA,QACvB;AACA,eAAO,yBAAyB;AAChC,iBAAS,iBAAiB,YAAY;AACpC,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,UAAU;AAC7D,cAAI;AACF,kBAAM,UAAU;AAAA,UAClB,SAAS,IAAP;AACA,4BAAgB,EAAE;AAAA,UACpB;AAAA,QACF;AACA,YAAI,kBAAkB,CAAC;AACvB,iBAAS,kBAAkB,SAAS;AAClC,cAAI,QAAQ,gBAAgB;AAC5B,cAAI,CAAC,OAAO;AACV,gBAAI,WAAW,gBAAgB;AAC7B,8BAAgB,SAAS,UAAU;AACrC,4BAAgB,WAAW,QAAQ,UAAU,IAAI,OAAO;AAAA,UAC1D;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,iBAAiB,KAAK,KAAK;AAClC,iBAAO,kBAAkB,GAAG,EAAE,GAAG;AAAA,QACnC;AACA,eAAO,sBAAsB;AAC7B,iBAAS,eAAe;AACtB,cAAI,QAAQ,IAAI,MAAM;AACtB,cAAI,CAAC,MAAM,OAAO;AAChB,gBAAI;AACF,oBAAM,IAAI,MAAM;AAAA,YAClB,SAAS,IAAP;AACA,sBAAQ;AAAA,YACV;AACA,gBAAI,CAAC,MAAM,OAAO;AAChB,qBAAO;AAAA,YACT;AAAA,UACF;AACA,iBAAO,MAAM,MAAM,SAAS;AAAA,QAC9B;AACA,iBAAS,gBAAgB,aAAa,eAAe,UAAU;AAC7D,kBAAQ,iBAAiB,KAAK,WAAW;AAAA,QAC3C;AACA,iBAAS,kBAAkB,KAAK,OAAO;AACrC,oBAAU,IAAI,KAAK,KAAK;AACxB,0BAAgB,OAAO;AAAA,QACzB;AACA,YAAI;AACJ,YAAI,qBAAqB;AACvB,gCAAsB,MAAM;AAC1B,gBAAI,KAAK,QAAQ,UAAU;AAC3B,mBAAO,GAAG,KAAK,MAAM,GAAG,KAAK;AAAA,UAC/B;AAAA,QACF,WAAW,wBAAwB;AACjC,gCAAsB,MAAM,YAAY,IAAI,IAAI,OAAO;AAAA,QACzD;AACE,gCAAsB,MAAM,YAAY,IAAI;AAC9C,YAAI,mCAAmC;AACvC,iBAAS,SAAS,OAAO;AACvB,4BAAkB,EAAE,kBAAkB,KAAK,KAAK;AAChD,iBAAO;AAAA,QACT;AACA,iBAAS,eAAe,QAAQ,IAAI;AAClC,cAAIC;AACJ,cAAI,WAAW,GAAG;AAChB,YAAAA,QAAO,KAAK,IAAI;AAAA,UAClB,YAAY,WAAW,KAAK,WAAW,MAAM,kCAAkC;AAC7E,YAAAA,QAAO,oBAAoB;AAAA,UAC7B,OAAO;AACL,qBAAS,EAAE;AACX,mBAAO;AAAA,UACT;AACA,4BAAkB,EAAE,MAAM,KAAKA,QAAO,MAAM;AAC5C,4BAAkB,EAAE,KAAK,KAAK,KAAKA,QAAO,MAAM,MAAM,MAAM;AAC5D,iBAAO;AAAA,QACT;AACA,iBAAS,iBAAiB,IAAI,KAAK;AACjC,iBAAO,eAAe,IAAI,GAAG;AAAA,QAC/B;AACA,iBAAS,kCAAkC,IAAI;AAC7C,mCAAyB,IAAI,CAAC,uBAAuB,GAAG,CAAC,kBAAkB;AAC3E,kBAAQ,WAAW;AAAA,QACrB;AACA,iBAAS,6BAA6B,QAAQ;AAC5C,cAAI,CAAC;AACH,0BAAc,MAAM;AAAA;AAEpB,wBAAY,EAAE,OAAO,iBAAiB,UAAU,OAAO,CAAC;AAAA,QAC5D;AACA,iBAAS,YAAY,cAAc;AACjC,cAAI,SAAS,QAAQ,aAAa;AAClC,cAAI,CAAC,QAAQ;AACX,mBAAO;AAAA,UACT;AACA,kBAAQ,eAAe,KAAK,MAAM;AAClC,cAAI,UAAU,QAAQ,SAAS,aAAa,eAAe,EAAE,QAAQ,kBAAkB,aAAa,YAAY;AAChH,iBAAO,UAAU;AACjB,cAAI,MAAM,EAAE,OAAO,OAAO,iBAAiB,aAAa,cAAc,OAAO,aAAa,KAAK,oBAAoB,aAAa,YAAY;AAC5I,iBAAO,aAAa,MAAM;AACxB,gBAAI,OAAO,YAAY,IAAI;AAC3B,mBAAO,YAAY,KAAK,aAAa,YAAY;AAAA,UACnD;AACA,cAAI,OAAO,QAAQ;AACjB,mBAAO,WAAW;AAClB,mBAAO,OAAO;AAAA,UAChB;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,qBAAqB,aAAa,MAAM,eAAe,KAAK;AACnE,cAAI,OAAO,sBAAsB,aAAa;AAC5C,gBAAI,qFAAqF;AACzF,mBAAO;AAAA,UACT;AACA,cAAI,eAAe,CAAC;AACpB,cAAI,QAAQ;AACZ,cAAI,2BAA2B,aAAa,WAAW,KAAK,QAAQ;AAClE,mBAAO,sCAAsC,WAAW,aAAa,MAAM,eAAe,GAAG;AAAA,UAC/F;AACA,cAAI;AACF,mBAAO;AACT,cAAI,eAAe,EAAE,cAAc,eAAe,aAAa,KAAK,aAAa;AACjF,cAAI,wBAAwB;AAC1B,yBAAa,MAAM;AACnB,wBAAY,cAAc,YAAY;AACtC,mBAAO;AAAA,UACT;AACA,iBAAO,YAAY,YAAY;AAAA,QACjC;AACA,iBAAS,0CAA0C;AACjD,iBAAO;AAAA,QACT;AACA,iBAAS,iCAAiC,gBAAgB,cAAc;AACtE,cAAI,kBAAkB,cAAc;AAClC,wBAAY,EAAE,OAAO,8BAA8B,CAAC;AAAA,UACtD,WAAW,wBAAwB;AACjC,wBAAY,EAAE,gBAAgB,gBAAgB,OAAO,qBAAqB,CAAC;AAAA,UAC7E,OAAO;AACL,gBAAI,UAAU,QAAQ,SAAS;AAC/B,gBAAI,SAAS,WAAW,QAAQ;AAChC,gBAAI,CAAC,QAAQ;AACX;AAAA,YACF;AACA,mBAAO,YAAY,EAAE,OAAO,qBAAqB,CAAC;AAAA,UACpD;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,SAAS;AAChB,gBAAM,EAAE;AAAA,QACV;AACA,iBAAS,qCAAqC;AAC5C,cAAI;AACF;AACF,cAAI;AACF;AACF,mBAAS,0IAA0I;AAAA,QACrJ;AACA,iBAAS,2BAA2B;AAClC,iBAAO;AAAA,QACT;AACA,iBAAS,uBAAuB,MAAM,KAAK,KAAK;AAC9C,2BAAiB,EAAE,WAAW,MAAM,KAAK,MAAM,GAAG;AAAA,QACpD;AACA,iBAAS,gCAAgC;AACvC,cAAI;AACF,mBAAO,WAAW,EAAE,KAAK,EAAE;AAC7B,iBAAO,UAAU;AAAA,QACnB;AACA,iBAAS,oCAAoCC,QAAO,MAAM;AACxD,cAAI,cAAc,UAAU,SAAS;AACrC,cAAI,YAAY;AAChB,iBAAO,cAAc,WAAW;AAC9B,gBAAI,wBAAwB;AAC5B,gBAAI,OAAO,WAAW,wBAAwB,CAAC;AAC/C,gBAAI,IAAI,QAAQ;AAChB,qBAAS,KAAK,GAAG,KAAK,aAAa,MAAM;AACvC,kBAAI,MAAM,UAAU,IAAI;AACxB,gCAAkB,EAAE,IAAI,MAAM;AAAA,YAChC;AACA,mBAAO,0CAA0CA,QAAO,uBAAuB,MAAM,IAAI;AAAA,UAC3F,CAAC;AAAA,QACH;AACA,YAAI,iDAAiD,CAAC;AACtD,iBAAS,sCAAsCA,QAAO,aAAa,MAAM;AACvE,yDAA+C,SAAS;AACxD,cAAI,IAAI,QAAQ;AAChB,mBAAS,KAAK,GAAG,KAAK,aAAa,MAAM;AACvC,2DAA+C,MAAM,kBAAkB,EAAE,IAAI;AAAA,UAC/E;AACA,cAAI,eAAeA,SAAQ;AAC3B,cAAI,QAAQ,CAAC,eAAe,qBAAqBA,UAAS,WAAW,CAACA,SAAQ;AAC9E,iBAAO,MAAM,MAAM,MAAM,8CAA8C;AAAA,QACzE;AACA,iBAAS,0BAA0BV,OAAM;AACvC,cAAI;AACF,uBAAW,KAAKA,QAAO,QAAQ,aAAa,UAAU,EAAE;AACxD,uCAA2B,WAAW,MAAM;AAC5C,mBAAO;AAAA,UACT,SAAS,IAAP;AAAA,UACF;AAAA,QACF;AACA,iBAAS,wBAAwB,eAAe;AAC9C,cAAI,UAAU,iBAAiB,EAAE;AACjC,0BAAgB,kBAAkB;AAClC,cAAI,iBAAiB,SAAS;AAC5B,mBAAO;AAAA,UACT;AACA,cAAI,cAAc,yBAAyB;AAC3C,cAAI,gBAAgB,aAAa;AAC/B,mBAAO;AAAA,UACT;AACA,mBAAS,UAAU,GAAG,WAAW,GAAG,WAAW,GAAG;AAChD,gBAAI,oBAAoB,WAAW,IAAI,MAAM;AAC7C,gCAAoB,KAAK,IAAI,mBAAmB,gBAAgB,SAAS;AACzE,gBAAI,UAAU,KAAK,IAAI,aAAa,QAAQ,KAAK,IAAI,eAAe,iBAAiB,GAAG,KAAK,CAAC;AAC9F,gBAAI,cAAc,0BAA0B,OAAO;AACnD,gBAAI,aAAa;AACf,qBAAO;AAAA,YACT;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AACA,YAAI,WAAW,EAAE,gBAAgB,GAAG,yBAAyB,WAAW;AACtE,mBAAS,KAAK,SAAS,cAAc,SAAS,GAAG,MAAM,GAAG,EAAE,IAAI;AAC9D,qBAAS,eAAe,EAAE;AAAA,UAC5B;AACA,mBAAS,gBAAgB,CAAC;AAC1B,mBAAS,gBAAgB,CAAC;AAAA,QAC5B,GAAG,8BAA8B,WAAW;AAC1C,cAAI,CAAC,SAAS,gCAAgC;AAC5C,uBAAW,KAAK,SAAS,uBAAuB;AAChD,qBAAS,iCAAiC;AAAA,UAC5C;AAAA,QACF,GAAG,eAAe,CAAC,GAAG,WAAW,SAAS,gBAAgB,YAAY,UAAU;AAC9E,mBAAS,uBAAuB,MAAM,MAAM;AAC1C,gBAAI,KAAK,UAAU,KAAK;AACtB,qBAAO;AACT,qBAAS,MAAM,MAAM;AACnB,kBAAI,KAAK,OAAO,KAAK;AACnB,uBAAO;AAAA,YACX;AACA,mBAAO;AAAA,UACT;AACA,mBAAS,MAAM,SAAS,eAAe;AACrC,gBAAI,OAAO,SAAS,cAAc;AAClC,gBAAI,KAAK,kBAAkB,kBAAkB,uBAAuB,KAAK,UAAU,QAAQ,GAAG;AAC5F;AAAA,YACF;AAAA,UACF;AACA,mBAAS,cAAc,KAAK,EAAE,gBAAgB,YAAY,SAAS,CAAC;AACpE,mBAAS,cAAc,KAAK,SAAS,GAAG,GAAG;AACzC,mBAAO,EAAE,aAAa,EAAE;AAAA,UAC1B,CAAC;AAAA,QACH,GAAG,qBAAqB,SAAS,gBAAgB;AAC/C,mBAAS,KAAK,GAAG,KAAK,SAAS,cAAc,QAAQ,EAAE,IAAI;AACzD,gBAAI,SAAS,cAAc,IAAI,kBAAkB,gBAAgB;AAC/D,uBAAS,cAAc,OAAO,IAAI,CAAC;AACnC,gBAAE;AAAA,YACJ;AAAA,UACF;AAAA,QACF,GAAG,gCAAgC,WAAW;AAC5C,iBAAO,SAAS,kBAAkB,SAAS,oBAAoB;AAAA,QACjE,GAAG,kBAAkB,WAAW;AAC9B,cAAI,CAAC,SAAS,+BAA+B,GAAG;AAC9C;AAAA,UACF;AACA,mBAAS,KAAK,GAAG,KAAK,SAAS,cAAc,QAAQ,EAAE,IAAI;AACzD,gBAAI,OAAO,SAAS,cAAc;AAClC,qBAAS,cAAc,OAAO,IAAI,CAAC;AACnC,cAAE;AACF,iBAAK,eAAe,MAAM,MAAM,KAAK,QAAQ;AAAA,UAC/C;AAAA,QACF,GAAG,eAAe,CAAC,GAAG,2BAA2B,SAAS,QAAQ,iBAAiB;AACjF,mBAAS,KAAK,GAAG,KAAK,SAAS,cAAc,QAAQ,EAAE,IAAI;AACzD,gBAAI,SAAS,cAAc,IAAI,UAAU,WAAW,CAAC,mBAAmB,mBAAmB,SAAS,cAAc,IAAI,kBAAkB;AACtI,uBAAS,eAAe,IAAI;AAAA,YAC9B;AAAA,UACF;AAAA,QACF,GAAG,gBAAgB,SAAS,IAAI;AAC9B,cAAI,IAAI,SAAS,cAAc;AAC/B,YAAE,OAAO,oBAAoB,EAAE,iBAAiB,EAAE,mBAAmB,EAAE,UAAU;AACjF,mBAAS,cAAc,OAAO,IAAI,CAAC;AAAA,QACrC,GAAG,yBAAyB,SAAS,cAAc;AACjD,cAAI,iBAAiB,SAAS,gBAAgB,OAAO;AACnD,cAAE,SAAS;AACX,qBAAS,sBAAsB;AAC/B,qBAAS,iBAAiB;AAC1B,yBAAa,YAAY,KAAK;AAC9B,qBAAS,iBAAiB;AAC1B,cAAE,SAAS;AAAA,UACb;AACA,cAAI,aAAa,cAAc;AAC7B,yBAAa,oBAAoB;AACjC,yBAAa,OAAO,iBAAiB,aAAa,iBAAiB,gBAAgB,aAAa,UAAU;AAC1G,qBAAS,cAAc,KAAK,YAAY;AACxC,qBAAS,6BAA6B;AAAA,UACxC,OAAO;AACL,qBAAS,KAAK,GAAG,KAAK,SAAS,cAAc,QAAQ,EAAE,IAAI;AACzD,kBAAI,SAAS,cAAc,IAAI,UAAU,aAAa,UAAU,SAAS,cAAc,IAAI,mBAAmB,aAAa,iBAAiB;AAC1I,yBAAS,eAAe,IAAI;AAAA,cAC9B;AAAA,YACF;AAAA,UACF;AAAA,QACF,GAAG,gCAAgC,SAAS,cAAc,kBAAkB,aAAa,WAAW,UAAU;AAC5G,wBAAc,WAAW;AACvB,gBAAI,UAAU,WAAW,EAAE;AAC3B,8BAAkB,EAAE,WAAW,KAAK;AACpC,8BAAkB,EAAE,UAAU,KAAK,KAAK;AACxC,8BAAkB,EAAE,UAAU,KAAK,KAAK;AACxC,4CAAgC,cAAc,WAAW,kBAAkB,WAAW,OAAO;AAAA,UAC/F,CAAC;AAAA,QACH,GAAG,iCAAiC,SAAS,cAAc;AACzD,kBAAQ;AAAA,iBACD;AACH,qBAAO;AAAA,iBACJ;AACH,qBAAO,QAAQ;AAAA;AAEf,qBAAO;AAAA;AAAA,QAEb,GAAG,sBAAsB,SAAS,QAAQ;AACxC,cAAI,CAAC;AACH,mBAAO;AACT,cAAI,UAAU;AACZ,mBAAO;AACT,cAAI,UAAU;AACZ,mBAAO;AACT,iBAAO,UAAU,OAAO,WAAW,OAAO,WAAW;AAAA,QACvD,GAAG,mBAAmB,WAAW;AAC/B,iBAAO,SAAS,qBAAqB,SAAS;AAAA,QAChD,EAAE;AACF,iBAAS,gBAAgB,UAAU;AACjC,cAAI,SAAS,gBAAgB,QAAQ,IAAI;AACzC,cAAI,UAAU,QAAQ,MAAM;AAC5B,uBAAa,UAAU,SAAS,MAAM;AACtC,iBAAO;AAAA,QACT;AACA,iBAAS,yDAAyD,cAAc,cAAc,OAAO,QAAQ;AAC3G,wBAAc,WAAW;AACvB,gBAAI,UAAU,WAAW,EAAE;AAC3B,gBAAI,kBAAkB;AACtB,gBAAI,cAAc;AAChB,gCAAkB,gBAAgB,YAAY;AAAA,YAChD;AACA,8BAAkB,EAAE,WAAW,KAAK;AACpC,8BAAkB,EAAE,UAAU,KAAK,KAAK;AACxC,8BAAkB,EAAE,UAAU,KAAK,KAAK;AACxC,4CAAgC,cAAc,WAAW,GAAG,iBAAiB,OAAO;AAAA,UACtF,CAAC;AAAA,QACH;AACA,iBAAS,sDAAsD,cAAc,cAAc,OAAO,QAAQ;AACxG,yBAAe,eAAe,aAAa,YAAY,IAAI;AAC3D,mEAAyD,cAAc,cAAc,OAAO,MAAM;AAAA,QACpG;AACA,iBAAS,uBAAuB,SAAS;AACvC,iBAAO,UAAU,IAAI,aAAa,OAAO,IAAI;AAAA,QAC/C;AACA,YAAI,qBAAqB,CAAC,GAAG,OAAO,aAAa,cAAc,WAAW,GAAG,OAAO,WAAW,cAAc,SAAS,CAAC;AACvH,iBAAS,gBAAgB,QAAQ;AAC/B,mBAAS,uBAAuB,MAAM;AACtC,cAAI,aAAa,mBAAmB,YAAY,OAAO,aAAa,cAAc,SAAS,cAAc,MAAM,IAAI;AACnH,iBAAO;AAAA,QACT;AACA,iBAAS,sBAAsB,QAAQ;AACrC,iBAAO,gBAAgB,MAAM;AAAA,QAC/B;AACA,iBAAS,mDAAmD,QAAQ,OAAO,QAAQ;AACjF,cAAIW,UAAS,sBAAsB,MAAM;AACzC,cAAI,CAACA;AACH,mBAAO;AACT,cAAIA,QAAO,iBAAiB;AAC1B,8BAAkB,EAAEA,QAAO,mBAAmB,KAAK;AACnD,8BAAkB,EAAEA,QAAO,kBAAkB,KAAK,KAAK;AAAA,UACzD;AACA,cAAIA,QAAO,mBAAmB,CAACA,QAAO,6BAA6B;AACjE,gBAAIA,QAAO;AACT,cAAAA,UAASA,QAAO;AAClB,gBAAI,qBAAqB;AACzB,gBAAIA,QAAO,eAAeA,QAAO,YAAY,OAAO;AAClD,kBAAI,eAAeA,QAAO,YAAY,MAAM,aAAa,IAAI;AAC7D,mCAAqB,aAAa,OAAO,KAAK,aAAa,OAAO,KAAK,aAAa,OAAOA,QAAO,SAAS,aAAa,OAAOA,QAAO;AAAA,YACxI;AACA,YAAAA,QAAO,QAAQ;AACf,YAAAA,QAAO,SAAS;AAChB,gBAAI,oBAAoB;AACtB,cAAAA,QAAO,YAAY,MAAM,SAAS,GAAG,GAAG,OAAO,MAAM;AAAA,YACvD;AAAA,UACF,WAAWA,QAAO,iBAAiB;AACjC,gBAAI,eAAe,kBAAkB,EAAEA,QAAO,kBAAkB,KAAK;AACrE,kEAAsD,cAAc,QAAQ,OAAO,MAAM;AACzF,mBAAO;AAAA,UACT,OAAO;AACL,mBAAO;AAAA,UACT;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,gDAAgD,QAAQ,OAAO,QAAQ;AAC9E,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,QAAQ,OAAO,MAAM;AACxE,iBAAO,mDAAmD,QAAQ,OAAO,MAAM;AAAA,QACjF;AACA,iBAAS,oCAAoC,QAAQ,OAAO,QAAQ;AAClE,cAAIA,UAAS,sBAAsB,MAAM;AACzC,cAAIA,SAAQ;AACV,mBAAO,mDAAmD,QAAQ,OAAO,MAAM;AAAA,UACjF,OAAO;AACL,mBAAO,gDAAgD,QAAQ,OAAO,MAAM;AAAA,UAC9E;AAAA,QACF;AACA,iBAAS,sCAAsC;AAC7C,gBAAM;AAAA,QACR;AACA,iBAAS,sCAAsC,KAAK;AAClD,cAAI,MAAM,IAAI,aAAa,wBAAwB;AACnD,cAAI,KAAK;AACP,gBAAI,yBAAyB,SAASD,QAAO,SAAS;AACpD,kBAAI,4BAA4BA,QAAO,OAAO;AAAA,YAChD;AACA,gBAAI,yBAAyB,SAAS,MAAM,OAAOH,SAAQ,WAAW;AACpE,kBAAI,4BAA4B,MAAM,OAAOA,SAAQ,SAAS;AAAA,YAChE;AACA,gBAAI,2BAA2B,SAAS,MAAMA,SAAQ,MAAM,SAAS,WAAW;AAC9E,kBAAI,8BAA8B,MAAMA,SAAQ,MAAM,SAAS,SAAS;AAAA,YAC1E;AACA,mBAAO;AAAA,UACT;AAAA,QACF;AACA,iBAAS,uCAAuC,KAAK;AACnD,cAAI,MAAM,IAAI,aAAa,yBAAyB;AACpD,cAAI,KAAK;AACP,gBAAI,uBAAuB,WAAW;AACpC,qBAAO,IAAI,wBAAwB;AAAA,YACrC;AACA,gBAAI,uBAAuB,SAAS,KAAK;AACvC,kBAAI,wBAAwB,GAAG;AAAA,YACjC;AACA,gBAAI,qBAAqB,SAAS,KAAK;AACrC,kBAAI,sBAAsB,GAAG;AAAA,YAC/B;AACA,gBAAI,mBAAmB,SAAS,KAAK;AACnC,qBAAO,IAAI,oBAAoB,GAAG;AAAA,YACpC;AACA,mBAAO;AAAA,UACT;AAAA,QACF;AACA,iBAAS,kCAAkC,KAAK;AAC9C,cAAI,MAAM,IAAI,aAAa,oBAAoB;AAC/C,cAAI,KAAK;AACP,gBAAI,iBAAiB,SAAS,IAAI,MAAM;AACtC,kBAAI,oBAAoB,IAAI,IAAI;AAAA,YAClC;AACA,mBAAO;AAAA,UACT;AAAA,QACF;AACA,iBAAS,gCAAgC,KAAK;AAC5C,iBAAO,CAAC,EAAE,IAAI,iBAAiB,IAAI,aAAa,kBAAkB;AAAA,QACpE;AACA,YAAI,KAAK,EAAE,SAAS,GAAG,SAAS,CAAC,GAAG,UAAU,CAAC,GAAG,cAAc,CAAC,GAAG,eAAe,CAAC,GAAG,UAAU,CAAC,GAAG,SAAS,CAAC,GAAG,MAAM,CAAC,GAAG,UAAU,CAAC,GAAG,mBAAmB,CAAC,GAAG,SAAS,CAAC,GAAG,aAAa,CAAC,GAAG,iBAAiB,GAAG,aAAa,SAAS,YAAY,WAAW;AAC9P,cAAI,CAAC,GAAG,WAAW;AACjB,eAAG,YAAY;AAAA,UACjB;AAAA,QACF,GAAG,UAAU,SAAS,OAAO;AAC3B,cAAI,MAAM,GAAG;AACb,mBAAS,KAAK,MAAM,QAAQ,KAAK,KAAK,MAAM;AAC1C,kBAAM,MAAM;AAAA,UACd;AACA,iBAAO;AAAA,QACT,GAAG,WAAW,SAAS,QAAQA,SAAQ,SAAS,QAAQ;AACtD,cAAI,SAAS;AACb,mBAAS,KAAK,GAAG,KAAKA,SAAQ,EAAE,IAAI;AAClC,gBAAI,MAAM,SAAS,kBAAkB,EAAE,SAAS,KAAK,KAAK,KAAK;AAC/D,sBAAU,aAAa,kBAAkB,EAAE,UAAU,KAAK,KAAK,IAAI,MAAM,IAAI,SAAS,GAAG;AAAA,UAC3F;AACA,iBAAO;AAAA,QACT,GAAG,eAAe,SAASI,SAAQ,wBAAwB;AACzD,cAAI,CAACA,QAAO,6BAA6B;AACvC,YAAAA,QAAO,8BAA8BA,QAAO;AAC5C,YAAAA,QAAO,aAAa,SAAS,KAAK,OAAO;AACvC,kBAAI,KAAKA,QAAO,4BAA4B,KAAK,KAAK;AACtD,qBAAO,OAAO,WAAW,cAAc,wBAAwB,KAAK;AAAA,YACtE;AAAA,UACF;AACA,cAAI,MAAMA,QAAO,WAAW,SAAS,sBAAsB;AAC3D,cAAI,CAAC;AACH,mBAAO;AACT,cAAI,SAAS,GAAG,gBAAgB,KAAK,sBAAsB;AAC3D,iBAAO;AAAA,QACT,GAAG,iBAAiB,SAAS,KAAK,wBAAwB;AACxD,cAAI,SAAS,QAAQ,CAAC;AACtB,4BAAkB,EAAE,SAAS,KAAK,KAAK,cAAc;AACrD,cAAI,UAAU,EAAE,QAAQ,YAAY,wBAAwB,SAAS,uBAAuB,cAAc,OAAO,IAAI;AACrH,cAAI,IAAI;AACN,gBAAI,OAAO,cAAc;AAC3B,aAAG,SAAS,UAAU;AACtB,cAAI,OAAO,uBAAuB,8BAA8B,eAAe,uBAAuB,2BAA2B;AAC/H,eAAG,eAAe,OAAO;AAAA,UAC3B;AACA,iBAAO;AAAA,QACT,GAAG,oBAAoB,SAAS,eAAe;AAC7C,aAAG,iBAAiB,GAAG,SAAS;AAChC,iBAAO,MAAM,QAAQ,GAAG,kBAAkB,GAAG,eAAe;AAC5D,iBAAO,EAAE,iBAAiB,CAAC;AAAA,QAC7B,GAAG,YAAY,SAAS,eAAe;AACrC,iBAAO,GAAG,SAAS;AAAA,QACrB,GAAG,eAAe,SAAS,eAAe;AACxC,cAAI,GAAG,mBAAmB,GAAG,SAAS;AACpC,eAAG,iBAAiB;AACtB,cAAI,OAAO,aAAa;AACtB,qBAAS,0BAA0B,GAAG,SAAS,eAAe,MAAM,MAAM;AAC5E,cAAI,GAAG,SAAS,kBAAkB,GAAG,SAAS,eAAe,MAAM;AACjE,eAAG,SAAS,eAAe,MAAM,OAAO,cAAc;AACxD,gBAAM,GAAG,SAAS,eAAe,MAAM;AACvC,aAAG,SAAS,iBAAiB;AAAA,QAC/B,GAAG,gBAAgB,SAAS,SAAS;AACnC,cAAI,CAAC;AACH,sBAAU,GAAG;AACf,cAAI,QAAQ;AACV;AACF,kBAAQ,qBAAqB;AAC7B,cAAI,SAAS,QAAQ;AACrB,gDAAsC,MAAM;AAC5C,iDAAuC,MAAM;AAC7C,4CAAkC,MAAM;AACxC;AACE,mBAAO,wBAAwB,OAAO,aAAa,0BAA0B;AAAA,UAC/E;AACA,0CAAgC,MAAM;AACtC,cAAI,OAAO,OAAO,uBAAuB,KAAK,CAAC;AAC/C,eAAK,QAAQ,SAAS,KAAK;AACzB,gBAAI,CAAC,IAAI,SAAS,cAAc,KAAK,CAAC,IAAI,SAAS,OAAO,GAAG;AAC3D,qBAAO,aAAa,GAAG;AAAA,YACzB;AAAA,UACF,CAAC;AAAA,QACH,EAAE;AACF,YAAI,uCAAuC,CAAC,WAAW,aAAa,kBAAkB;AACtF,iBAAS,oCAAoC,QAAQ,YAAY;AAC/D,cAAI,IAAI,cAAc;AACtB,cAAI,kBAAkB,kBAAkB,EAAE,KAAK,MAAM;AACrD,cAAI,oBAAoB,EAAE,SAAS,CAAC,CAAC,kBAAkB,EAAE,KAAK,KAAK,KAAK,SAAS,CAAC,CAAC,kBAAkB,EAAE,KAAK,KAAK,KAAK,WAAW,CAAC,CAAC,kBAAkB,EAAE,KAAK,KAAK,KAAK,aAAa,CAAC,CAAC,kBAAkB,EAAE,KAAK,MAAM,KAAK,sBAAsB,CAAC,CAAC,kBAAkB,EAAE,KAAK,MAAM,KAAK,yBAAyB,CAAC,CAAC,kBAAkB,EAAE,KAAK,MAAM,KAAK,mBAAmB,qCAAqC,kBAAkB,gCAAgC,CAAC,CAAC,kBAAkB,EAAE,KAAK,MAAM,KAAK,cAAc,kBAAkB,EAAE,KAAK,MAAM,KAAK,cAAc,kBAAkB,EAAE,KAAK,MAAM,KAAK,2BAA2B,kBAAkB,EAAE,KAAK,MAAM,KAAK,qBAAqB,kBAAkB,EAAE,KAAK,MAAM,KAAK,0BAA0B,kBAAkB,EAAE,KAAK,MAAM,KAAK,8BAA8B,kBAAkB,EAAE,KAAK,MAAM,IAAI;AAC/zB,cAAIA,UAAS,sBAAsB,MAAM;AACzC,cAAI,CAACA,SAAQ;AACX,mBAAO;AAAA,UACT;AACA,cAAI,kBAAkB,qBAAqB;AACzC,mBAAO;AAAA,UACT;AACA,cAAI,gBAAgB,GAAG,cAAcA,SAAQ,iBAAiB;AAC9D,iBAAO;AAAA,QACT;AACA,iBAAS,iCAAiC,IAAI,KAAK;AACjD,iBAAO,oCAAoC,IAAI,GAAG;AAAA,QACpD;AACA,YAAI,WAAW,EAAE,UAAU,CAAC,GAAG,SAAS,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,GAAG,WAAW,SAAS,QAAQ,MAAM;AACxF,cAAI,UAAU,SAAS,QAAQ;AAC/B,cAAI,SAAS,KAAK,SAAS,IAAI;AAC7B,aAAC,WAAW,IAAI,MAAM,KAAK,kBAAkB,SAAS,CAAC,CAAC;AACxD,oBAAQ,SAAS;AAAA,UACnB,OAAO;AACL,oBAAQ,KAAK,IAAI;AAAA,UACnB;AAAA,QACF,GAAG,SAAS,QAAQ,KAAK,WAAW;AAClC,mBAAS,WAAW;AACpB,cAAI,MAAM,kBAAkB,EAAE,SAAS,UAAU,KAAK;AACtD,iBAAO;AAAA,QACT,GAAG,QAAQ,SAAS,KAAK;AACvB,cAAI,MAAM,aAAa,GAAG;AAC1B,iBAAO;AAAA,QACT,GAAG,OAAO,SAAS,KAAK,MAAM;AAC5B,iBAAO;AAAA,QACT,EAAE;AACF,iBAAS,UAAU,IAAI;AACrB,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,EAAE;AACrD,iBAAO;AAAA,QACT;AACA,iBAAS,SAAS,IAAI,YAAY,aAAa,QAAQ,WAAW;AAChE,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,IAAI,YAAY,aAAa,QAAQ,SAAS;AAAA,QACnG;AACA,iBAAS,UAAU,IAAI,KAAK,QAAQ,MAAM;AACxC,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,IAAI,KAAK,QAAQ,IAAI;AACxE,cAAI,MAAM;AACV,mBAAS,KAAK,GAAG,KAAK,QAAQ,MAAM;AAClC,gBAAI,MAAM,kBAAkB,EAAE,OAAO;AACrC,gBAAI,MAAM,kBAAkB,EAAE,MAAM,KAAK;AACzC,mBAAO;AACP,qBAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC5B,uBAAS,UAAU,IAAI,iBAAiB,EAAE,MAAM,EAAE;AAAA,YACpD;AACA,mBAAO;AAAA,UACT;AACA,4BAAkB,EAAE,QAAQ,KAAK;AACjC,iBAAO;AAAA,QACT;AACA,iBAAS,aAAa,KAAK;AACzB,sBAAY,GAAG;AAAA,QACjB;AACA,gBAAQ,KAAK;AACb,YAAI;AACJ,YAAI,uBAAuB,CAAC,MAAM,kBAAkB,iDAAiD,WAAW,UAAU,SAAS;AACnI,YAAI,aAAa;AACjB,YAAI,gBAAgB,EAAE,mBAAmB,kBAAkB,oCAAoC,mCAAmC,+BAA+B,8BAA8B,uBAAuB,sBAAsB,0CAA0C,yCAAyC,mCAAmC,kCAAkC,SAAS,QAAQ,qCAAqC,oCAAoC,2BAA2B,0BAA0B,sBAAsB,qBAAqB,yBAAyB,wBAAwB,gCAAgC,+BAA+B,wCAAwC,uCAAuC,0BAA0B,yBAAyB,sCAAsC,qCAAqC,sCAAsC,qCAAqC,mCAAmC,kCAAkC,QAAQ,OAAO,YAAY,WAAW,WAAW,UAAU,YAAY,WAAW,UAAU,cAAc,OAAO,eAAe,eAAe,aAAa;AACvqC,YAAI,MAAM,WAAW;AACrB,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,2BAA2B,OAAO,8BAA8B,WAAW;AAC7E,kBAAQ,2BAA2B,OAAO,8BAA8B,OAAO,OAAO,4BAA4B,MAAM,MAAM,SAAS;AAAA,QACzI;AACA,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,mBAAmB,OAAO,sBAAsB,WAAW;AAC7D,kBAAQ,mBAAmB,OAAO,sBAAsB,OAAO,OAAO,oBAAoB,MAAM,MAAM,SAAS;AAAA,QACjH;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,yBAAyB,OAAO,4BAA4B,WAAW;AACzE,kBAAQ,yBAAyB,OAAO,4BAA4B,OAAO,OAAO,0BAA0B,MAAM,MAAM,SAAS;AAAA,QACnI;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,kBAAkB,OAAO,qBAAqB,WAAW;AAC3D,kBAAQ,kBAAkB,OAAO,qBAAqB,OAAO,OAAO,mBAAmB,MAAM,MAAM,SAAS;AAAA,QAC9G;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,wBAAwB,OAAO,2BAA2B,WAAW;AACvE,kBAAQ,wBAAwB,OAAO,2BAA2B,OAAO,OAAO,yBAAyB,MAAM,MAAM,SAAS;AAAA,QAChI;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,kBAAkB,OAAO,qBAAqB,WAAW;AAC3D,kBAAQ,kBAAkB,OAAO,qBAAqB,OAAO,OAAO,mBAAmB,MAAM,MAAM,SAAS;AAAA,QAC9G;AACA,YAAI,yBAAyB,OAAO,4BAA4B,WAAW;AACzE,kBAAQ,yBAAyB,OAAO,4BAA4B,OAAO,OAAO,0BAA0B,MAAM,MAAM,SAAS;AAAA,QACnI;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,oBAAoB,OAAO,uBAAuB,WAAW;AAC/D,kBAAQ,oBAAoB,OAAO,uBAAuB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QACpH;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,0BAA0B,OAAO,6BAA6B,WAAW;AAC3E,kBAAQ,0BAA0B,OAAO,6BAA6B,OAAO,OAAO,2BAA2B,MAAM,MAAM,SAAS;AAAA,QACtI;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,oBAAoB,OAAO,uBAAuB,WAAW;AAC/D,kBAAQ,oBAAoB,OAAO,uBAAuB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QACpH;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,+CAA+C,OAAO,kDAAkD,WAAW;AACrH,kBAAQ,+CAA+C,OAAO,kDAAkD,OAAO,OAAO,gDAAgD,MAAM,MAAM,SAAS;AAAA,QACrM;AACA,YAAI,8BAA8B,OAAO,iCAAiC,WAAW;AACnF,kBAAQ,8BAA8B,OAAO,iCAAiC,OAAO,OAAO,+BAA+B,MAAM,MAAM,SAAS;AAAA,QAClJ;AACA,YAAI,2BAA2B,OAAO,8BAA8B,WAAW;AAC7E,kBAAQ,2BAA2B,OAAO,8BAA8B,OAAO,OAAO,4BAA4B,MAAM,MAAM,SAAS;AAAA,QACzI;AACA,YAAI,kDAAkD,OAAO,qDAAqD,WAAW;AAC3H,kBAAQ,kDAAkD,OAAO,qDAAqD,OAAO,OAAO,mDAAmD,MAAM,MAAM,SAAS;AAAA,QAC9M;AACA,YAAI,qCAAqC,OAAO,wCAAwC,WAAW;AACjG,kBAAQ,qCAAqC,OAAO,wCAAwC,OAAO,OAAO,sCAAsC,MAAM,MAAM,SAAS;AAAA,QACvK;AACA,YAAI,wCAAwC,OAAO,2CAA2C,WAAW;AACvG,kBAAQ,wCAAwC,OAAO,2CAA2C,OAAO,OAAO,yCAAyC,MAAM,MAAM,SAAS;AAAA,QAChL;AACA,YAAI,wCAAwC,OAAO,2CAA2C,WAAW;AACvG,kBAAQ,wCAAwC,OAAO,2CAA2C,OAAO,OAAO,yCAAyC,MAAM,MAAM,SAAS;AAAA,QAChL;AACA,YAAI,4CAA4C,OAAO,+CAA+C,WAAW;AAC/G,kBAAQ,4CAA4C,OAAO,+CAA+C,OAAO,OAAO,6CAA6C,MAAM,MAAM,SAAS;AAAA,QAC5L;AACA,YAAI,kCAAkC,OAAO,qCAAqC,WAAW;AAC3F,kBAAQ,kCAAkC,OAAO,qCAAqC,OAAO,OAAO,mCAAmC,MAAM,MAAM,SAAS;AAAA,QAC9J;AACA,YAAI,gCAAgC,OAAO,mCAAmC,WAAW;AACvF,kBAAQ,gCAAgC,OAAO,mCAAmC,OAAO,OAAO,iCAAiC,MAAM,MAAM,SAAS;AAAA,QACxJ;AACA,YAAI,2BAA2B,OAAO,8BAA8B,WAAW;AAC7E,kBAAQ,2BAA2B,OAAO,8BAA8B,OAAO,OAAO,4BAA4B,MAAM,MAAM,SAAS;AAAA,QACzI;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,+BAA+B,OAAO,kCAAkC,WAAW;AACrF,kBAAQ,+BAA+B,OAAO,kCAAkC,OAAO,OAAO,gCAAgC,MAAM,MAAM,SAAS;AAAA,QACrJ;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC7F;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACtG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAChG;AACA,YAAI,mBAAmB,OAAO,sBAAsB,WAAW;AAC7D,kBAAQ,mBAAmB,OAAO,sBAAsB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QAClH;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACtG;AACA,YAAI,+CAA+C,OAAO,kDAAkD;AAC5G,eAAO,WAAW;AAClB,eAAO,sBAAsB;AAC7B,eAAO,aAAa;AACpB,eAAO,aAAa;AACpB,eAAO,gBAAgB;AACvB,eAAO,gBAAgB;AACvB,YAAI;AACJ,iBAAS,WAAW,QAAQ;AAC1B,eAAK,OAAO;AACZ,eAAK,UAAU,kCAAkC,SAAS;AAC1D,eAAK,SAAS;AAAA,QAChB;AACA,gCAAwB,SAAS,YAAY;AAC3C,cAAI,CAAC;AACH,gBAAI;AACN,cAAI,CAAC;AACH,oCAAwB;AAAA,QAC5B;AACA,iBAAS,IAAI,MAAM;AACjB,iBAAO,QAAQ;AACf,cAAI,kBAAkB,GAAG;AACvB;AAAA,UACF;AACA,cAAI,wBAAwB;AAC1B,gCAAoB,MAAM;AAC1B,wBAAY;AACZ,wBAAY,EAAE,OAAO,SAAS,CAAC;AAC/B;AAAA,UACF;AACA,iBAAO;AACP,cAAI,kBAAkB,GAAG;AACvB;AAAA,UACF;AACA,mBAAS,QAAQ;AACf,gBAAI;AACF;AACF,wBAAY;AACZ,mBAAO,eAAe;AACtB,gBAAI;AACF;AACF,wBAAY;AACZ,gCAAoB,MAAM;AAC1B,gBAAI,OAAO;AACT,qBAAO,wBAAwB;AACjC,oBAAQ;AAAA,UACV;AACA,cAAI,OAAO,cAAc;AACvB,mBAAO,aAAa,YAAY;AAChC,uBAAW,WAAW;AACpB,yBAAW,WAAW;AACpB,uBAAO,aAAa,EAAE;AAAA,cACxB,GAAG,CAAC;AACJ,oBAAM;AAAA,YACR,GAAG,CAAC;AAAA,UACN,OAAO;AACL,kBAAM;AAAA,UACR;AAAA,QACF;AACA,eAAO,SAAS;AAChB,iBAAS,KAAK,QAAQ,UAAU;AAC9B,uBAAa;AACb,cAAI,CAAC,UAAU;AACb,gBAAI,wBAAwB;AAC1B,+BAAiB,MAAM;AACvB,oBAAM;AAAA,YACR,OAAO;AAAA,YACP;AAAA,UACF;AACA,cAAI,iBAAiB,GAAG;AAAA,UACxB,OAAO;AACL,wBAAY;AAAA,UACd;AACA,mBAAS,MAAM;AAAA,QACjB;AACA,iBAAS,SAAS,MAAM;AACtB,uBAAa;AACb,cAAI,CAAC,iBAAiB,GAAG;AACvB,oBAAQ,oBAAoB;AAC5B,gBAAI,OAAO;AACT,qBAAO,UAAU,IAAI;AACvB,oBAAQ;AAAA,UACV;AACA,gBAAM,MAAM,IAAI,WAAW,IAAI,CAAC;AAAA,QAClC;AACA,YAAI,OAAO,YAAY;AACrB,cAAI,OAAO,OAAO,cAAc;AAC9B,mBAAO,aAAa,CAAC,OAAO,UAAU;AACxC,iBAAO,OAAO,WAAW,SAAS,GAAG;AACnC,mBAAO,WAAW,IAAI,EAAE;AAAA,UAC1B;AAAA,QACF;AACA,YAAI;AACJ,YAAI;AACJ,YAAI,iBAAiB;AACnB,2BAAiB,EAAE,mBAAmB,QAAQ,UAAU,mBAAmB,EAAE,OAAO,SAAS,UAAU;AACrG,mBAAO,CAAC,gBAAgB,kBAAkB,QAAQ,QAAQ,IAAI;AAAA,UAChE,CAAC,GAAG,oBAAoB,QAAQ,UAAU,oBAAoB,EAAE,OAAO,SAAS,UAAU;AACxF,mBAAO,CAAC,gBAAgB,mBAAmB,QAAQ,QAAQ,IAAI;AAAA,UACjE,CAAC,EAAE;AAAA,QACL;AACA,YAAI;AACJ,YAAI,OAAO,sBAAsB,aAAa;AAC5C,yBAAe;AAAA,QACjB,WAAW,OAAO,mCAAmC,aAAa;AAChE,yBAAe;AAAA,QACjB,OAAO;AACL,gBAAM,IAAI,MAAM,uCAAuC;AAAA,QACzD;AACA,YAAI,gBAAgB;AAClB,cAAI,aAAa,aAAa;AAC9B,uBAAa,cAAc,WAAW;AACpC,uBAAW;AACX,2BAAe,kBAAkB,QAAQ,SAAS,UAAU;AAC1D,sBAAQ,eAAe,qBAAqB,QAAQ;AAAA,YACtD,CAAC;AACD,2BAAe,mBAAmB,QAAQ,SAAS,UAAU;AAC3D,sBAAQ,eAAe,sBAAsB,QAAQ;AAAA,YACvD,CAAC;AAAA,UACH;AAAA,QACF;AACA,eAAO,+BAA+B;AAAA,MACxC;AAAA,IACF,GAAG;AACH,QAAI,OAAO,YAAY,YAAY,OAAO,WAAW;AACnD,aAAO,UAAU;AAAA,aACV,OAAO,WAAW,cAAc,OAAO;AAC9C,aAAO,CAAC,GAAG,WAAW;AACpB,eAAO;AAAA,MACT,CAAC;AAAA,aACM,OAAO,YAAY;AAC1B,cAAQ,mCAAmC;AAAA,EAC/C;AACF,CAAC;AAGD,IAAI,iDAAiD,WAAW;AAAA,EAC9D,mLAAmL,SAAS,QAAQ;AAClM,WAAO,QAAQ,qBAAqB;AAAA;AAAA,EAEtC;AACF,CAAC;AAGD,IAAI,4BAA4B,WAAW;AAAA,EACzC,8JAA8J,SAAS,QAAQ;AAC7K,QAAI,sBAAsB,MAAM;AAC9B,UAAI,aAAa,OAAO,aAAa,eAAe,SAAS,gBAAgB,SAAS,cAAc,MAAM;AAC1G,UAAI,OAAO,eAAe;AACxB,qBAAa,cAAc;AAC7B,aAAO,SAAS,oBAAoB;AAClC,6BAAqB,sBAAsB,CAAC;AAC5C,YAAI,SAAS,OAAO,uBAAuB,cAAc,qBAAqB,CAAC;AAC/E,YAAI,qBAAqB;AACzB,eAAO,WAAW,IAAI,QAAQ,SAAS,SAAS,QAAQ;AACtD,gCAAsB;AACtB,+BAAqB;AAAA,QACvB,CAAC;AACD,YAAI;AACJ,YAAI,OAAO,YAAY,eAAe,QAAQ,WAAW;AACvD,4BAAkB,EAAE,mBAAmB,QAAQ,UAAU,mBAAmB,GAAG,oBAAoB,QAAQ,UAAU,oBAAoB,EAAE;AAAA,QAC7I;AACA,YAAI,kBAAkB,OAAO,OAAO,CAAC,GAAG,MAAM;AAC9C,YAAI,aAAa,CAAC;AAClB,YAAI,cAAc;AAClB,YAAI,QAAQ,CAAC,QAAQ,YAAY;AAC/B,gBAAM;AAAA,QACR;AACA,YAAI,qBAAqB,OAAO,WAAW;AAC3C,YAAI,wBAAwB,OAAO,kBAAkB;AACrD,YAAI,sBAAsB,OAAO,YAAY,YAAY,OAAO,QAAQ,aAAa,YAAY,OAAO,QAAQ,SAAS,SAAS;AAClI,YAAI,kBAAkB;AACtB,iBAAS,WAAW,MAAM;AACxB,cAAI,OAAO,eAAe;AACxB,mBAAO,OAAO,cAAc,MAAM,eAAe;AAAA,UACnD;AACA,iBAAO,kBAAkB;AAAA,QAC3B;AACA,YAAI,OAAO,WAAW,YAAY;AAClC,iBAAS,mBAAmB,IAAI;AAC9B,cAAI,cAAc;AAChB;AACF,cAAI,QAAQ;AACZ,cAAI,+BAA+B,KAAK;AAAA,QAC1C;AACA,YAAI;AACJ,YAAI;AACJ,YAAI;AACJ,YAAI,qBAAqB;AACvB,cAAI,uBAAuB;AACzB,8BAAkB,aAAa,EAAE,QAAQ,eAAe,IAAI;AAAA,UAC9D,OAAO;AACL,8BAAkB,YAAY;AAAA,UAChC;AACA,0BAAgB,MAAM;AACpB,gBAAI,CAAC,UAAU;AACb,mBAAK,WAAW;AAChB,yBAAW,aAAa;AAAA,YAC1B;AAAA,UACF;AACA,kBAAQ,SAAS,WAAW,UAAU,QAAQ;AAC5C,0BAAc;AACd,uBAAW,SAAS,aAAa,QAAQ;AACzC,mBAAO,GAAG,aAAa,UAAU,SAAS,SAAS,MAAM;AAAA,UAC3D;AACA,uBAAa,CAAC,aAAa;AACzB,gBAAI,MAAM,MAAM,UAAU,IAAI;AAC9B,gBAAI,CAAC,IAAI,QAAQ;AACf,oBAAM,IAAI,WAAW,GAAG;AAAA,YAC1B;AACA,mBAAO;AAAA,UACT;AACA,sBAAY,CAAC,UAAU,QAAQ,YAAY;AACzC,0BAAc;AACd,uBAAW,SAAS,aAAa,QAAQ;AACzC,eAAG,SAAS,UAAU,SAAS,MAAM,MAAM;AACzC,kBAAI;AACF,wBAAQ,IAAI;AAAA;AAEZ,uBAAO,KAAK,MAAM;AAAA,YACtB,CAAC;AAAA,UACH;AACA,cAAI,QAAQ,QAAQ,SAAS,GAAG;AAC9B,0BAAc,QAAQ,QAAQ,GAAG,QAAQ,OAAO,GAAG;AAAA,UACrD;AACA,uBAAa,QAAQ,QAAQ,MAAM,CAAC;AACpC,kBAAQ,MAAM,qBAAqB,SAAS,IAAI;AAC9C,gBAAI,EAAE,cAAc,aAAa;AAC/B,oBAAM;AAAA,YACR;AAAA,UACF,CAAC;AACD,kBAAQ,MAAM,sBAAsB,SAAS,QAAQ;AACnD,kBAAM;AAAA,UACR,CAAC;AACD,kBAAQ,CAAC,QAAQ,YAAY;AAC3B,gBAAI,iBAAiB,GAAG;AACtB,sBAAQ,cAAc;AACtB,oBAAM;AAAA,YACR;AACA,+BAAmB,OAAO;AAC1B,oBAAQ,QAAQ,MAAM;AAAA,UACxB;AACA,iBAAO,aAAa,WAAW;AAC7B,mBAAO;AAAA,UACT;AAAA,QACF,WAAW,sBAAsB,uBAAuB;AACtD,cAAI,uBAAuB;AACzB,8BAAkB,KAAK,SAAS;AAAA,UAClC,WAAW,OAAO,aAAa,eAAe,SAAS,eAAe;AACpE,8BAAkB,SAAS,cAAc;AAAA,UAC3C;AACA,cAAI,YAAY;AACd,8BAAkB;AAAA,UACpB;AACA,cAAI,gBAAgB,QAAQ,OAAO,MAAM,GAAG;AAC1C,8BAAkB,gBAAgB,OAAO,GAAG,gBAAgB,QAAQ,UAAU,EAAE,EAAE,YAAY,GAAG,IAAI,CAAC;AAAA,UACxG,OAAO;AACL,8BAAkB;AAAA,UACpB;AACA;AACE,oBAAQ,CAAC,QAAQ;AACf,kBAAI,MAAM,IAAI,eAAe;AAC7B,kBAAI,KAAK,OAAO,KAAK,KAAK;AAC1B,kBAAI,KAAK,IAAI;AACb,qBAAO,IAAI;AAAA,YACb;AACA,gBAAI,uBAAuB;AACzB,2BAAa,CAAC,QAAQ;AACpB,oBAAI,MAAM,IAAI,eAAe;AAC7B,oBAAI,KAAK,OAAO,KAAK,KAAK;AAC1B,oBAAI,eAAe;AACnB,oBAAI,KAAK,IAAI;AACb,uBAAO,IAAI,WAAW,IAAI,QAAQ;AAAA,cACpC;AAAA,YACF;AACA,wBAAY,CAAC,KAAK,QAAQ,YAAY;AACpC,kBAAI,MAAM,IAAI,eAAe;AAC7B,kBAAI,KAAK,OAAO,KAAK,IAAI;AACzB,kBAAI,eAAe;AACnB,kBAAI,SAAS,MAAM;AACjB,oBAAI,IAAI,UAAU,OAAO,IAAI,UAAU,KAAK,IAAI,UAAU;AACxD,yBAAO,IAAI,QAAQ;AACnB;AAAA,gBACF;AACA,wBAAQ;AAAA,cACV;AACA,kBAAI,UAAU;AACd,kBAAI,KAAK,IAAI;AAAA,YACf;AAAA,UACF;AACA,2BAAiB,CAAC,UAAU,SAAS,QAAQ;AAAA,QAC/C,OAAO;AAAA,QACP;AACA,YAAI,MAAM,OAAO,YAAY,QAAQ,IAAI,KAAK,OAAO;AACrD,YAAI,MAAM,OAAO,eAAe,QAAQ,KAAK,KAAK,OAAO;AACzD,eAAO,OAAO,QAAQ,eAAe;AACrC,0BAAkB;AAClB,YAAI,OAAO;AACT,uBAAa,OAAO;AACtB,YAAI,OAAO;AACT,wBAAc,OAAO;AACvB,YAAI,OAAO;AACT,kBAAQ,OAAO;AACjB,YAAI,eAAe;AACnB,iBAAS,SAAS,MAAM;AACtB,cAAI,CAAC,SAAS;AACZ,qBAAS,QAAQ,CAAC;AACpB,cAAI,CAAC,SAAS,MAAM,OAAO;AACzB,qBAAS,MAAM,QAAQ;AACvB,gBAAI,IAAI;AAAA,UACV;AAAA,QACF;AACA,iBAAS,wBAAwB,OAAO,KAAK;AAC3C,cAAI,OAAO,YAAY,aAAa,YAAY;AAC9C,gBAAI,YAAY,EAAE,KAAK,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,MAAM;AACjE,gBAAI,OAAO,EAAE,YAAY,CAAC,GAAG,SAAS,IAAI,MAAM,MAAM,CAAC,IAAI,CAAC,UAAU,IAAI,GAAG,EAAE;AAC/E,qBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,mBAAK,WAAW,KAAK,UAAU,IAAI,IAAI;AAAA,YACzC;AACA,mBAAO,IAAI,YAAY,SAAS,MAAM,KAAK;AAAA,UAC7C;AACA,cAAI,cAAc,CAAC,GAAG,GAAG,GAAG,EAAE;AAC9B,cAAI,SAAS,IAAI,MAAM,GAAG,CAAC;AAC3B,cAAI,WAAW,IAAI,MAAM,CAAC;AAC1B,cAAI,YAAY,EAAE,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,IAAI;AACzD,sBAAY,KAAK,SAAS,MAAM;AAChC,mBAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,EAAE,IAAI;AAC3C,wBAAY,KAAK,UAAU,SAAS,IAAI;AAAA,UAC1C;AACA,cAAI,UAAU,KAAK;AACjB,wBAAY,KAAK,CAAC;AAAA,UACpB,OAAO;AACL,0BAAc,YAAY,OAAO,CAAC,GAAG,UAAU,OAAO,CAAC;AAAA,UACzD;AACA,sBAAY,KAAK,YAAY,SAAS;AACtC,cAAI,QAAQ,IAAI,WAAW,CAAC,GAAG,IAAI,KAAK,KAAK,GAAG,GAAG,GAAG,CAAC,EAAE,OAAO,aAAa,CAAC,GAAG,GAAG,GAAG,GAAG,KAAK,GAAG,KAAK,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC;AACpI,cAAI,UAAU,IAAI,YAAY,OAAO,KAAK;AAC1C,cAAIH,YAAW,IAAI,YAAY,SAAS,SAAS,EAAE,KAAK,EAAE,KAAK,MAAM,EAAE,CAAC;AACxE,cAAI,cAAcA,UAAS,QAAQ;AACnC,iBAAO;AAAA,QACT;AACA,YAAI,mBAAmB,CAAC;AACxB,YAAI;AACJ,iBAAS,oBAAoB;AAC3B,cAAI,iBAAiB,QAAQ;AAC3B,mBAAO,iBAAiB,IAAI;AAAA,UAC9B;AACA,cAAI;AACF,sBAAU,KAAK,CAAC;AAAA,UAClB,SAAS,MAAP;AACA,gBAAI,EAAE,gBAAgB,aAAa;AACjC,oBAAM;AAAA,YACR;AACA,kBAAM;AAAA,UACR;AACA,iBAAO,UAAU,SAAS;AAAA,QAC5B;AACA,iBAAS,eAAe,QAAQD,SAAQ;AACtC,mBAAS,KAAK,QAAQ,KAAK,SAASA,SAAQ,MAAM;AAChD,gBAAI,OAAO,kBAAkB,EAAE;AAC/B,gBAAI,MAAM;AACR,kCAAoB,IAAI,MAAM,EAAE;AAAA,YAClC;AAAA,UACF;AAAA,QACF;AACA,YAAI,WAAW;AACf,YAAI,cAAc,CAAC,UAAU;AAC3B,qBAAW;AAAA,QACb;AACA,YAAI;AACJ,YAAI,OAAO;AACT,uBAAa,OAAO;AACtB,YAAI,gBAAgB,OAAO,oBAAoB;AAC/C,YAAI,OAAO,gBAAgB,UAAU;AACnC,gBAAM,iCAAiC;AAAA,QACzC;AACA,YAAI;AACJ,YAAI,QAAQ;AACZ,YAAI;AACJ,iBAAS,QAAQ,WAAW,MAAM;AAChC,cAAI,CAAC,WAAW;AACd,kBAAM,IAAI;AAAA,UACZ;AAAA,QACF;AACA,iBAAS,SAAS,OAAO;AACvB,cAAI,QAAQ,OAAO,MAAM;AACzB,iBAAO;AAAA,QACT;AACA,iBAAS,MAAM,OAAO,YAAY,UAAU,MAAM,MAAM;AACtD,cAAI,MAAM,EAAE,UAAU,SAAS,KAAK;AAClC,gBAAI,OAAO;AACX,gBAAI,QAAQ,QAAQ,QAAQ,UAAU,QAAQ,GAAG;AAC/C,kBAAI,OAAO,IAAI,UAAU,KAAK;AAC9B,qBAAO,WAAW,GAAG;AACrB,2BAAa,KAAK,MAAM,GAAG;AAAA,YAC7B;AACA,mBAAO;AAAA,UACT,GAAG,SAAS,SAAS,KAAK;AACxB,gBAAI,OAAO,WAAW,IAAI,MAAM;AAChC,+BAAmB,KAAK,IAAI;AAC5B,mBAAO;AAAA,UACT,EAAE;AACF,mBAAS,mBAAmB,MAAM;AAChC,gBAAI,eAAe;AACjB,qBAAO,aAAa,IAAI;AAC1B,gBAAI,eAAe;AACjB,qBAAO,QAAQ,IAAI;AACrB,mBAAO;AAAA,UACT;AACA,cAAI,QAAQ,SAAS,KAAK;AAC1B,cAAI,QAAQ,CAAC;AACb,cAAI,SAAS;AACb,cAAI,MAAM;AACR,qBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,kBAAI,YAAY,IAAI,SAAS;AAC7B,kBAAI,WAAW;AACb,oBAAI,WAAW;AACb,2BAAS,UAAU;AACrB,sBAAM,MAAM,UAAU,KAAK,GAAG;AAAA,cAChC,OAAO;AACL,sBAAM,MAAM,KAAK;AAAA,cACnB;AAAA,YACF;AAAA,UACF;AACA,cAAI,MAAM,MAAM,MAAM,MAAM,KAAK;AACjC,mBAAS,OAAO,MAAM;AACpB,gBAAI,WAAW;AACb,2BAAa,MAAM;AACrB,mBAAO,mBAAmB,IAAI;AAAA,UAChC;AACA,gBAAM,OAAO,GAAG;AAChB,iBAAO;AAAA,QACT;AACA,iBAAS,MAAM,OAAO,YAAY,UAAU,MAAM;AAChD,qBAAW,YAAY,CAAC;AACxB,cAAI,cAAc,SAAS,MAAM,SAAS,MAAM;AAC9C,mBAAO,SAAS;AAAA,UAClB,CAAC;AACD,cAAI,aAAa,eAAe;AAChC,cAAI,cAAc,eAAe,CAAC,MAAM;AACtC,mBAAO,SAAS,KAAK;AAAA,UACvB;AACA,iBAAO,WAAW;AAChB,mBAAO,MAAM,OAAO,YAAY,UAAU,WAAW,IAAI;AAAA,UAC3D;AAAA,QACF;AACA,YAAI,cAAc;AAClB,YAAI,cAAc,OAAO,gBAAgB,cAAc,IAAI,YAAY,MAAM,IAAI;AACjF,iBAAS,kBAAkB,MAAM,KAAK,gBAAgB;AACpD,cAAI,SAAS,MAAM;AACnB,cAAI,SAAS;AACb,iBAAO,KAAK,WAAW,EAAE,UAAU;AACjC,cAAE;AACJ,cAAI,SAAS,MAAM,MAAM,KAAK,YAAY,aAAa;AACrD,mBAAO,YAAY,OAAO,KAAK,SAAS,KAAK,MAAM,CAAC;AAAA,UACtD,OAAO;AACL,gBAAI,MAAM;AACV,mBAAO,MAAM,QAAQ;AACnB,kBAAI,KAAK,KAAK;AACd,kBAAI,EAAE,KAAK,MAAM;AACf,uBAAO,OAAO,aAAa,EAAE;AAC7B;AAAA,cACF;AACA,kBAAI,KAAK,KAAK,SAAS;AACvB,mBAAK,KAAK,QAAQ,KAAK;AACrB,uBAAO,OAAO,cAAc,KAAK,OAAO,IAAI,EAAE;AAC9C;AAAA,cACF;AACA,kBAAI,KAAK,KAAK,SAAS;AACvB,mBAAK,KAAK,QAAQ,KAAK;AACrB,sBAAM,KAAK,OAAO,KAAK,MAAM,IAAI;AAAA,cACnC,OAAO;AACL,sBAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,KAAK,SAAS;AAAA,cAC3D;AACA,kBAAI,KAAK,OAAO;AACd,uBAAO,OAAO,aAAa,EAAE;AAAA,cAC/B,OAAO;AACL,oBAAI,KAAK,KAAK;AACd,uBAAO,OAAO,aAAa,QAAQ,MAAM,IAAI,QAAQ,KAAK,IAAI;AAAA,cAChE;AAAA,YACF;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,aAAa,KAAK,gBAAgB;AACzC,iBAAO,MAAM,kBAAkB,QAAQ,KAAK,cAAc,IAAI;AAAA,QAChE;AACA,iBAAS,kBAAkB,KAAK,MAAM,QAAQ,iBAAiB;AAC7D,cAAI,EAAE,kBAAkB;AACtB,mBAAO;AACT,cAAI,WAAW;AACf,cAAI,SAAS,SAAS,kBAAkB;AACxC,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,gBAAI,IAAI,IAAI,WAAW,EAAE;AACzB,gBAAI,KAAK,SAAS,KAAK,OAAO;AAC5B,kBAAI,KAAK,IAAI,WAAW,EAAE,EAAE;AAC5B,kBAAI,UAAU,IAAI,SAAS,MAAM,KAAK;AAAA,YACxC;AACA,gBAAI,KAAK,KAAK;AACZ,kBAAI,UAAU;AACZ;AACF,mBAAK,YAAY;AAAA,YACnB,WAAW,KAAK,MAAM;AACpB,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B,WAAW,KAAK,OAAO;AACrB,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,KAAK,IAAI;AAChC,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B,OAAO;AACL,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,KAAK,KAAK;AACjC,mBAAK,YAAY,MAAM,KAAK,IAAI;AAChC,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B;AAAA,UACF;AACA,eAAK,UAAU;AACf,iBAAO,SAAS;AAAA,QAClB;AACA,iBAAS,aAAa,KAAK,QAAQ,iBAAiB;AAClD,iBAAO,kBAAkB,KAAK,QAAQ,QAAQ,eAAe;AAAA,QAC/D;AACA,iBAAS,gBAAgB,KAAK;AAC5B,cAAI,MAAM;AACV,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,gBAAI,IAAI,IAAI,WAAW,EAAE;AACzB,gBAAI,KAAK,SAAS,KAAK;AACrB,kBAAI,UAAU,IAAI,SAAS,MAAM,IAAI,WAAW,EAAE,EAAE,IAAI;AAC1D,gBAAI,KAAK;AACP,gBAAE;AAAA,qBACK,KAAK;AACZ,qBAAO;AAAA,qBACA,KAAK;AACZ,qBAAO;AAAA;AAEP,qBAAO;AAAA,UACX;AACA,iBAAO;AAAA,QACT;AACA,YAAI,eAAe,OAAO,gBAAgB,cAAc,IAAI,YAAY,UAAU,IAAI;AACtF,iBAAS,mBAAmB,QAAQ,SAAS;AAC3C,gBAAM,IAAI,QAAQ,OAAO;AAAA,QAC3B;AACA,iBAAS,mBAAmB,KAAK,SAAS,aAAa;AACrD,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,kBAAM,aAAa,KAAK,IAAI,WAAW,EAAE;AAAA,UAC3C;AACA,cAAI,CAAC;AACH,kBAAM,WAAW,KAAK;AAAA,QAC1B;AACA,iBAAS,QAAQ,GAAG,UAAU;AAC5B,cAAI,IAAI,WAAW,GAAG;AACpB,iBAAK,WAAW,IAAI;AAAA,UACtB;AACA,iBAAO;AAAA,QACT;AACA,YAAI,SAAS,OAAO,QAAQ,QAAQ,SAAS,QAAQ,SAAS,SAAS;AACvE,iBAAS,2BAA2B,KAAK;AACvC,oBAAU;AACV,iBAAO,WAAW,QAAQ,IAAI,UAAU,GAAG;AAC3C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,aAAa,UAAU,IAAI,YAAY,GAAG;AACjD,iBAAO,aAAa,UAAU,IAAI,YAAY,GAAG;AACjD,iBAAO,aAAa,UAAU,IAAI,aAAa,GAAG;AAClD,iBAAO,aAAa,UAAU,IAAI,aAAa,GAAG;AAAA,QACpD;AACA,YAAI,iBAAiB,OAAO,qBAAqB;AACjD,YAAI;AACJ,YAAI,eAAe,CAAC;AACpB,YAAI,aAAa,CAAC;AAClB,YAAI,gBAAgB,CAAC;AACrB,YAAI,qBAAqB;AACzB,YAAI,gBAAgB;AACpB,YAAI,0BAA0B;AAC9B,iBAAS,mBAAmB;AAC1B,iBAAO,iBAAiB,0BAA0B;AAAA,QACpD;AACA,iBAAS,SAAS;AAChB,cAAI,OAAO,WAAW;AACpB,gBAAI,OAAO,OAAO,aAAa;AAC7B,qBAAO,YAAY,CAAC,OAAO,SAAS;AACtC,mBAAO,OAAO,UAAU,QAAQ;AAC9B,0BAAY,OAAO,UAAU,MAAM,CAAC;AAAA,YACtC;AAAA,UACF;AACA,+BAAqB,YAAY;AAAA,QACnC;AACA,iBAAS,cAAc;AACrB,+BAAqB;AACrB,+BAAqB,UAAU;AAAA,QACjC;AACA,iBAAS,cAAc;AACrB,0BAAgB;AAAA,QAClB;AACA,iBAAS,UAAU;AACjB,cAAI,OAAO,YAAY;AACrB,gBAAI,OAAO,OAAO,cAAc;AAC9B,qBAAO,aAAa,CAAC,OAAO,UAAU;AACxC,mBAAO,OAAO,WAAW,QAAQ;AAC/B,2BAAa,OAAO,WAAW,MAAM,CAAC;AAAA,YACxC;AAAA,UACF;AACA,+BAAqB,aAAa;AAAA,QACpC;AACA,iBAAS,YAAY,IAAI;AACvB,uBAAa,QAAQ,EAAE;AAAA,QACzB;AACA,iBAAS,UAAU,IAAI;AACrB,qBAAW,QAAQ,EAAE;AAAA,QACvB;AACA,iBAAS,aAAa,IAAI;AACxB,wBAAc,QAAQ,EAAE;AAAA,QAC1B;AACA,YAAI,kBAAkB;AACtB,YAAI,uBAAuB;AAC3B,YAAI,wBAAwB;AAC5B,iBAAS,iBAAiB,IAAI;AAC5B;AACA,cAAI,OAAO,2BAA2B;AACpC,mBAAO,0BAA0B,eAAe;AAAA,UAClD;AAAA,QACF;AACA,iBAAS,oBAAoB,IAAI;AAC/B;AACA,cAAI,OAAO,2BAA2B;AACpC,mBAAO,0BAA0B,eAAe;AAAA,UAClD;AACA,cAAI,mBAAmB,GAAG;AACxB,gBAAI,yBAAyB,MAAM;AACjC,4BAAc,oBAAoB;AAClC,qCAAuB;AAAA,YACzB;AACA,gBAAI,uBAAuB;AACzB,kBAAI,WAAW;AACf,sCAAwB;AACxB,uBAAS;AAAA,YACX;AAAA,UACF;AAAA,QACF;AACA,eAAO,qBAAqB,CAAC;AAC7B,eAAO,qBAAqB,CAAC;AAC7B,iBAAS,MAAM,MAAM;AACnB;AACE,gBAAI,OAAO,YAAY;AACrB,qBAAO,WAAW,IAAI;AAAA,YACxB;AAAA,UACF;AACA,iBAAO,aAAa,OAAO;AAC3B,cAAI,IAAI;AACR,kBAAQ;AACR,uBAAa;AACb,kBAAQ;AACR,cAAI,KAAK,IAAI,YAAY,aAAa,IAAI;AAC1C,6BAAmB,EAAE;AACrB,gBAAM;AAAA,QACR;AACA,YAAI,gBAAgB;AACpB,iBAAS,UAAU,UAAU;AAC3B,iBAAO,SAAS,WAAW,aAAa;AAAA,QAC1C;AACA,iBAAS,UAAU,UAAU;AAC3B,iBAAO,SAAS,WAAW,SAAS;AAAA,QACtC;AACA,YAAI;AACJ,yBAAiB;AACjB,YAAI,CAAC,UAAU,cAAc,GAAG;AAC9B,2BAAiB,WAAW,cAAc;AAAA,QAC5C;AACA,iBAAS,UAAU,MAAM;AACvB,cAAI;AACF,gBAAI,QAAQ,kBAAkB,YAAY;AACxC,qBAAO,IAAI,WAAW,UAAU;AAAA,YAClC;AACA,gBAAI,YAAY;AACd,qBAAO,WAAW,IAAI;AAAA,YACxB,OAAO;AACL,oBAAM;AAAA,YACR;AAAA,UACF,SAAS,MAAP;AACA,kBAAM,IAAI;AAAA,UACZ;AAAA,QACF;AACA,iBAAS,mBAAmB;AAC1B,cAAI,CAAC,eAAe,sBAAsB,wBAAwB;AAChE,gBAAI,OAAO,UAAU,cAAc,CAAC,UAAU,cAAc,GAAG;AAC7D,qBAAO,MAAM,gBAAgB,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,SAAS,UAAU;AACnF,oBAAI,CAAC,SAAS,OAAO;AACnB,wBAAM,yCAAyC,iBAAiB;AAAA,gBAClE;AACA,uBAAO,SAAS,eAAe;AAAA,cACjC,CAAC,EAAE,MAAM,WAAW;AAClB,uBAAO,UAAU,cAAc;AAAA,cACjC,CAAC;AAAA,YACH,OAAO;AACL,kBAAI,WAAW;AACb,uBAAO,IAAI,QAAQ,SAAS,SAAS,QAAQ;AAC3C,4BAAU,gBAAgB,SAAS,UAAU;AAC3C,4BAAQ,IAAI,WAAW,QAAQ,CAAC;AAAA,kBAClC,GAAG,MAAM;AAAA,gBACX,CAAC;AAAA,cACH;AAAA,YACF;AAAA,UACF;AACA,iBAAO,QAAQ,QAAQ,EAAE,KAAK,WAAW;AACvC,mBAAO,UAAU,cAAc;AAAA,UACjC,CAAC;AAAA,QACH;AACA,iBAAS,aAAa;AACpB,cAAI,OAAO,EAAE,OAAO,eAAe,0BAA0B,cAAc;AAC3E,mBAAS,gBAAgBC,WAAU,SAAS;AAC1C,gBAAI,WAAWA,UAAS;AACxB,mBAAO,SAAS;AAChB,yBAAa,OAAO,OAAO;AAC3B,uCAA2B,WAAW,MAAM;AAC5C,wBAAY,OAAO,OAAO;AAC1B,sBAAU,OAAO,OAAO,oBAAoB;AAC5C,gCAAoB,kBAAkB;AAAA,UACxC;AACA,2BAAiB,kBAAkB;AACnC,mBAAS,2BAA2B,QAAQ;AAC1C,4BAAgB,OAAO,WAAW;AAAA,UACpC;AACA,mBAAS,uBAAuB,UAAU;AACxC,mBAAO,iBAAiB,EAAE,KAAK,SAAS,QAAQ;AAC9C,qBAAO,YAAY,YAAY,QAAQ,IAAI;AAAA,YAC7C,CAAC,EAAE,KAAK,SAASA,WAAU;AACzB,qBAAOA;AAAA,YACT,CAAC,EAAE,KAAK,UAAU,SAAS,QAAQ;AACjC,kBAAI,4CAA4C,MAAM;AACtD,oBAAM,MAAM;AAAA,YACd,CAAC;AAAA,UACH;AACA,mBAAS,mBAAmB;AAC1B,gBAAI,CAAC,cAAc,OAAO,YAAY,yBAAyB,cAAc,CAAC,UAAU,cAAc,KAAK,CAAC,UAAU,cAAc,KAAK,OAAO,UAAU,YAAY;AACpK,qBAAO,MAAM,gBAAgB,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,SAAS,UAAU;AACnF,oBAAI,SAAS,YAAY,qBAAqB,UAAU,IAAI;AAC5D,uBAAO,OAAO,KAAK,4BAA4B,SAAS,QAAQ;AAC9D,sBAAI,oCAAoC,MAAM;AAC9C,sBAAI,2CAA2C;AAC/C,yBAAO,uBAAuB,0BAA0B;AAAA,gBAC1D,CAAC;AAAA,cACH,CAAC;AAAA,YACH,OAAO;AACL,qBAAO,uBAAuB,0BAA0B;AAAA,YAC1D;AAAA,UACF;AACA,cAAI,OAAO,oBAAoB;AAC7B,gBAAI;AACF,kBAAI,WAAW,OAAO,mBAAmB,MAAM,eAAe;AAC9D,qBAAO;AAAA,YACT,SAAS,IAAP;AACA,kBAAI,wDAAwD,EAAE;AAC9D,qBAAO;AAAA,YACT;AAAA,UACF;AACA,2BAAiB,EAAE,MAAM,kBAAkB;AAC3C,iBAAO,CAAC;AAAA,QACV;AACA,YAAI;AACJ,YAAI;AACJ,iBAAS,qBAAqB,YAAY;AACxC,iBAAO,WAAW,SAAS,GAAG;AAC5B,gBAAI,WAAW,WAAW,MAAM;AAChC,gBAAI,OAAO,YAAY,YAAY;AACjC,uBAAS,MAAM;AACf;AAAA,YACF;AACA,gBAAI,QAAQ,SAAS;AACrB,gBAAI,OAAO,UAAU,UAAU;AAC7B,kBAAI,SAAS,QAAQ,QAAQ;AAC3B,kCAAkB,KAAK,EAAE;AAAA,cAC3B,OAAO;AACL,kCAAkB,KAAK,EAAE,SAAS,GAAG;AAAA,cACvC;AAAA,YACF,OAAO;AACL,oBAAM,SAAS,QAAQ,SAAS,OAAO,SAAS,GAAG;AAAA,YACrD;AAAA,UACF;AAAA,QACF;AACA,iBAAS,SAAS,OAAO;AACvB,iBAAO;AAAA,QACT;AACA,iBAAS,YAAY,MAAM;AACzB,cAAI,QAAQ;AACZ,iBAAO,KAAK,QAAQ,OAAO,SAAS,GAAG;AACrC,gBAAI,IAAI,SAAS,CAAC;AAClB,mBAAO,MAAM,IAAI,IAAI,IAAI,OAAO,IAAI;AAAA,UACtC,CAAC;AAAA,QACH;AACA,YAAI,kBAAkB,CAAC;AACvB,iBAAS,kBAAkB,SAAS;AAClC,cAAI,QAAQ,gBAAgB;AAC5B,cAAI,CAAC,OAAO;AACV,gBAAI,WAAW,gBAAgB;AAC7B,8BAAgB,SAAS,UAAU;AACrC,4BAAgB,WAAW,QAAQ,UAAU,IAAI,OAAO;AAAA,UAC1D;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,eAAe;AACtB,cAAI,QAAQ,IAAI,MAAM;AACtB,cAAI,CAAC,MAAM,OAAO;AAChB,gBAAI;AACF,oBAAM,IAAI,MAAM;AAAA,YAClB,SAAS,IAAP;AACA,sBAAQ;AAAA,YACV;AACA,gBAAI,CAAC,MAAM,OAAO;AAChB,qBAAO;AAAA,YACT;AAAA,UACF;AACA,iBAAO,MAAM,MAAM,SAAS;AAAA,QAC9B;AACA,iBAAS,kBAAkB,KAAK,OAAO;AACrC,oBAAU,IAAI,KAAK,KAAK;AACxB,0BAAgB,OAAO;AAAA,QACzB;AACA,iBAAS,SAAS;AAChB,gBAAM,EAAE;AAAA,QACV;AACA,iBAAS,2BAA2B;AAClC,iBAAO;AAAA,QACT;AACA,iBAAS,uBAAuB,MAAM,KAAK,KAAK;AAC9C,iBAAO,WAAW,MAAM,KAAK,MAAM,GAAG;AAAA,QACxC;AACA,iBAAS,0BAA0BR,OAAM;AACvC,cAAI;AACF,uBAAW,KAAKA,QAAO,QAAQ,aAAa,UAAU,EAAE;AACxD,uCAA2B,WAAW,MAAM;AAC5C,mBAAO;AAAA,UACT,SAAS,IAAP;AAAA,UACF;AAAA,QACF;AACA,iBAAS,wBAAwB,eAAe;AAC9C,cAAI,UAAU,OAAO;AACrB,0BAAgB,kBAAkB;AAClC,cAAI,cAAc,yBAAyB;AAC3C,cAAI,gBAAgB,aAAa;AAC/B,mBAAO;AAAA,UACT;AACA,mBAAS,UAAU,GAAG,WAAW,GAAG,WAAW,GAAG;AAChD,gBAAI,oBAAoB,WAAW,IAAI,MAAM;AAC7C,gCAAoB,KAAK,IAAI,mBAAmB,gBAAgB,SAAS;AACzE,gBAAI,UAAU,KAAK,IAAI,aAAa,QAAQ,KAAK,IAAI,eAAe,iBAAiB,GAAG,KAAK,CAAC;AAC9F,gBAAI,cAAc,0BAA0B,OAAO;AACnD,gBAAI,aAAa;AACf,qBAAO;AAAA,YACT;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AACA,YAAI,WAAW,EAAE,UAAU,CAAC,GAAG,SAAS,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,GAAG,WAAW,SAAS,QAAQ,MAAM;AACxF,cAAI,UAAU,SAAS,QAAQ;AAC/B,cAAI,SAAS,KAAK,SAAS,IAAI;AAC7B,aAAC,WAAW,IAAI,MAAM,KAAK,kBAAkB,SAAS,CAAC,CAAC;AACxD,oBAAQ,SAAS;AAAA,UACnB,OAAO;AACL,oBAAQ,KAAK,IAAI;AAAA,UACnB;AAAA,QACF,GAAG,SAAS,QAAQ,KAAK,WAAW;AAClC,mBAAS,WAAW;AACpB,cAAI,MAAM,OAAO,SAAS,UAAU,KAAK;AACzC,iBAAO;AAAA,QACT,GAAG,QAAQ,SAAS,KAAK;AACvB,cAAI,MAAM,aAAa,GAAG;AAC1B,iBAAO;AAAA,QACT,GAAG,OAAO,SAAS,KAAK,MAAM;AAC5B,iBAAO;AAAA,QACT,EAAE;AACF,iBAAS,UAAU,IAAI;AACrB,iBAAO;AAAA,QACT;AACA,iBAAS,SAAS,IAAI,YAAY,aAAa,QAAQ,WAAW;AAAA,QAClE;AACA,iBAAS,UAAU,IAAI,KAAK,QAAQ,MAAM;AACxC,cAAI,MAAM;AACV,mBAAS,KAAK,GAAG,KAAK,QAAQ,MAAM;AAClC,gBAAI,MAAM,OAAO,OAAO;AACxB,gBAAI,MAAM,OAAO,MAAM,KAAK;AAC5B,mBAAO;AACP,qBAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC5B,uBAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AAAA,YACxC;AACA,mBAAO;AAAA,UACT;AACA,iBAAO,QAAQ,KAAK;AACpB,iBAAO;AAAA,QACT;AACA,iBAAS,aAAa,KAAK;AACzB,sBAAY,GAAG;AAAA,QACjB;AACA,YAAI,aAAa;AACjB,YAAI,gBAAgB,EAAE,SAAS,QAAQ,2BAA2B,0BAA0B,yBAAyB,wBAAwB,0BAA0B,yBAAyB,YAAY,WAAW,WAAW,UAAU,YAAY,WAAW,eAAe,aAAa;AAC/R,YAAI,MAAM,WAAW;AACrB,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,2BAA2B,OAAO,8BAA8B,WAAW;AAC7E,kBAAQ,2BAA2B,OAAO,8BAA8B,OAAO,OAAO,4BAA4B,MAAM,MAAM,SAAS;AAAA,QACzI;AACA,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,mBAAmB,OAAO,sBAAsB,WAAW;AAC7D,kBAAQ,mBAAmB,OAAO,sBAAsB,OAAO,OAAO,oBAAoB,MAAM,MAAM,SAAS;AAAA,QACjH;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,yBAAyB,OAAO,4BAA4B,WAAW;AACzE,kBAAQ,yBAAyB,OAAO,4BAA4B,OAAO,OAAO,0BAA0B,MAAM,MAAM,SAAS;AAAA,QACnI;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,kBAAkB,OAAO,qBAAqB,WAAW;AAC3D,kBAAQ,kBAAkB,OAAO,qBAAqB,OAAO,OAAO,mBAAmB,MAAM,MAAM,SAAS;AAAA,QAC9G;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,wBAAwB,OAAO,2BAA2B,WAAW;AACvE,kBAAQ,wBAAwB,OAAO,2BAA2B,OAAO,OAAO,yBAAyB,MAAM,MAAM,SAAS;AAAA,QAChI;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,kBAAkB,OAAO,qBAAqB,WAAW;AAC3D,kBAAQ,kBAAkB,OAAO,qBAAqB,OAAO,OAAO,mBAAmB,MAAM,MAAM,SAAS;AAAA,QAC9G;AACA,YAAI,yBAAyB,OAAO,4BAA4B,WAAW;AACzE,kBAAQ,yBAAyB,OAAO,4BAA4B,OAAO,OAAO,0BAA0B,MAAM,MAAM,SAAS;AAAA,QACnI;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,oBAAoB,OAAO,uBAAuB,WAAW;AAC/D,kBAAQ,oBAAoB,OAAO,uBAAuB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QACpH;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,0BAA0B,OAAO,6BAA6B,WAAW;AAC3E,kBAAQ,0BAA0B,OAAO,6BAA6B,OAAO,OAAO,2BAA2B,MAAM,MAAM,SAAS;AAAA,QACtI;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,oBAAoB,OAAO,uBAAuB,WAAW;AAC/D,kBAAQ,oBAAoB,OAAO,uBAAuB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QACpH;AACA,YAAI,+CAA+C,OAAO,kDAAkD,WAAW;AACrH,kBAAQ,+CAA+C,OAAO,kDAAkD,OAAO,OAAO,gDAAgD,MAAM,MAAM,SAAS;AAAA,QACrM;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC7F;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACtG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAChG;AACA,YAAI,mBAAmB,OAAO,sBAAsB,WAAW;AAC7D,kBAAQ,mBAAmB,OAAO,sBAAsB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QAClH;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACtG;AACA,eAAO,WAAW;AAClB,YAAI;AACJ,iBAAS,WAAW,QAAQ;AAC1B,eAAK,OAAO;AACZ,eAAK,UAAU,kCAAkC,SAAS;AAC1D,eAAK,SAAS;AAAA,QAChB;AACA,gCAAwB,SAAS,YAAY;AAC3C,cAAI,CAAC;AACH,gBAAI;AACN,cAAI,CAAC;AACH,oCAAwB;AAAA,QAC5B;AACA,iBAAS,IAAI,MAAM;AACjB,iBAAO,QAAQ;AACf,cAAI,kBAAkB,GAAG;AACvB;AAAA,UACF;AACA,iBAAO;AACP,cAAI,kBAAkB,GAAG;AACvB;AAAA,UACF;AACA,mBAAS,QAAQ;AACf,gBAAI;AACF;AACF,wBAAY;AACZ,mBAAO,eAAe;AACtB,gBAAI;AACF;AACF,wBAAY;AACZ,gCAAoB,MAAM;AAC1B,gBAAI,OAAO;AACT,qBAAO,wBAAwB;AACjC,oBAAQ;AAAA,UACV;AACA,cAAI,OAAO,cAAc;AACvB,mBAAO,aAAa,YAAY;AAChC,uBAAW,WAAW;AACpB,yBAAW,WAAW;AACpB,uBAAO,aAAa,EAAE;AAAA,cACxB,GAAG,CAAC;AACJ,oBAAM;AAAA,YACR,GAAG,CAAC;AAAA,UACN,OAAO;AACL,kBAAM;AAAA,UACR;AAAA,QACF;AACA,eAAO,SAAS;AAChB,iBAAS,SAAS,MAAM;AACtB,uBAAa;AACb,cAAI,CAAC,iBAAiB,GAAG;AACvB,gBAAI,OAAO;AACT,qBAAO,UAAU,IAAI;AACvB,oBAAQ;AAAA,UACV;AACA,gBAAM,MAAM,IAAI,WAAW,IAAI,CAAC;AAAA,QAClC;AACA,YAAI,OAAO,YAAY;AACrB,cAAI,OAAO,OAAO,cAAc;AAC9B,mBAAO,aAAa,CAAC,OAAO,UAAU;AACxC,iBAAO,OAAO,WAAW,SAAS,GAAG;AACnC,mBAAO,WAAW,IAAI,EAAE;AAAA,UAC1B;AAAA,QACF;AACA,YAAI;AACJ,YAAI;AACJ,YAAI,iBAAiB;AACnB,2BAAiB,EAAE,mBAAmB,QAAQ,UAAU,mBAAmB,EAAE,OAAO,SAAS,UAAU;AACrG,mBAAO,CAAC,gBAAgB,kBAAkB,QAAQ,QAAQ,IAAI;AAAA,UAChE,CAAC,GAAG,oBAAoB,QAAQ,UAAU,oBAAoB,EAAE,OAAO,SAAS,UAAU;AACxF,mBAAO,CAAC,gBAAgB,mBAAmB,QAAQ,QAAQ,IAAI;AAAA,UACjE,CAAC,EAAE;AAAA,QACL;AACA,YAAI;AACJ,YAAI,OAAO,uBAAuB,aAAa;AAC7C,yBAAe;AAAA,QACjB,WAAW,OAAO,kCAAkC,aAAa;AAC/D,yBAAe;AAAA,QACjB,OAAO;AACL,gBAAM,IAAI,MAAM,uCAAuC;AAAA,QACzD;AACA,YAAI,gBAAgB;AAClB,cAAI,aAAa,aAAa;AAC9B,uBAAa,cAAc,WAAW;AACpC,uBAAW;AACX,2BAAe,kBAAkB,QAAQ,SAAS,UAAU;AAC1D,sBAAQ,eAAe,qBAAqB,QAAQ;AAAA,YACtD,CAAC;AACD,2BAAe,mBAAmB,QAAQ,SAAS,UAAU;AAC3D,sBAAQ,eAAe,sBAAsB,QAAQ;AAAA,YACvD,CAAC;AAAA,UACH;AAAA,QACF;AACA,eAAO,mBAAmB;AAAA,MAC5B;AAAA,IACF,GAAG;AACH,QAAI,OAAO,YAAY,YAAY,OAAO,WAAW;AACnD,aAAO,UAAU;AAAA,aACV,OAAO,WAAW,cAAc,OAAO;AAC9C,aAAO,CAAC,GAAG,WAAW;AACpB,eAAO;AAAA,MACT,CAAC;AAAA,aACM,OAAO,YAAY;AAC1B,cAAQ,uBAAuB;AAAA,EACnC;AACF,CAAC;AAGD,IAAI,kBAAkB;AACtB,IAAI,kBAAkB;AACtB,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,UAAU,WAAW;AAC/B,SAAK,UAAU;AACf,SAAK,YAAY;AACjB,SAAK,OAAuB,oBAAI,QAAQ;AACxC,SAAK,eAAe;AAAA,EACtB;AAAA,EACA,IAAI,QAAQ;AACV,QAAI,CAAC,KAAK,KAAK,IAAI,MAAM,GAAG;AAC1B,WAAK,UAAU,SAAS,KAAK,SAAS,MAAM;AAAA,IAC9C;AACA,WAAO,KAAK,KAAK,IAAI,MAAM;AAAA,EAC7B;AAAA,EACA,IAAI,QAAQ,OAAO;AACjB,SAAK;AACL,SAAK,KAAK,IAAI,QAAQ,KAAK;AAAA,EAC7B;AAAA,EACA,IAAI,QAAQ;AACV,WAAO,KAAK,KAAK,IAAI,MAAM;AAAA,EAC7B;AAAA,EACA,OAAO,QAAQ;AACb,SAAK;AACL,WAAO,KAAK,KAAK,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,aAAa;AACX,WAAO,KAAK;AAAA,EACd;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,SAAS,QAAQ;AACf,WAAO,kBAAkB,UAAU;AAAA,EACrC;AAAA,EACA,OAAO,QAAQ;AACb,WAAO,kBAAkB,QAAQ;AAAA,EACnC;AAAA,EACA,iBAAiB;AACf,WAAO;AAAA,EACT;AAAA,EACA,KAAK,GAAG;AACN,WAAO,kBAAkB,MAAM;AAAA,EACjC;AAAA,EACA,KAAK,QAAQ;AACX,WAAO,kBAAkB,MAAM;AAAA,EACjC;AAAA,EACA,SAAS,QAAQ;AACf,WAAO,kBAAkB,UAAU;AAAA,EACrC;AAAA,EACA,UAAU,QAAQM,UAAS;AACzB,WAAO,kBAAkB,WAAW;AAAA,EACtC;AAAA,EACA,aAAa;AACX,WAAO,kBAAkB,YAAY;AAAA,EACvC;AAAA,EACA,YAAY,QAAQ,OAAO;AACzB,WAAO,kBAAkB,aAAa;AAAA,EACxC;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,WAAO,kBAAkB,OAAO;AAAA,EAClC;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,WAAO,kBAAkB,MAAM;AAAA,EACjC;AAAA,EACA,SAAS;AACP,WAAO,kBAAkB,QAAQ;AAAA,EACnC;AAAA,EACA,iBAAiB;AACf,WAAO,kBAAkB,gBAAgB;AAAA,EAC3C;AAAA,EACA,UAAU;AACR,WAAO,KAAK,eAAe,MAAM,KAAK,kBAAkB;AAAA,EAC1D;AAAA,EACA,UAAU;AACR,WAAO,kBAAkB,SAAS;AAAA,EACpC;AACF;AACA,SAAS,kBAAkB,YAAY;AACrC,QAAM,IAAI,MAAM,IAAI,oIAAoI;AAC1J;AAGA,SAAS,QAAQ,QAAQ;AACvB,MAAI,UAAU,OAAO;AACrB,MAAII,SAAQ;AACZ,SAAO,UAAU,GAAG;AAClB,IAAAA,SAAQ,KAAK,OAAO,IAAI,UAAU;AAClC;AACA,SAAK,QAAQ,SAASA,MAAK;AAAA,EAC7B;AACF;AACA,SAAS,aAAa,QAAQ,SAAS;AACrC,MAAI,OAAO,WAAW,QAAQ,QAAQ;AACpC,UAAM,IAAI,MAAM,yEAAyE,OAAO,iCAAiC,QAAQ,QAAQ;AAAA,EACnJ;AACA,MAAI,UAAU,OAAO;AACrB,MAAIA,SAAQ;AACZ,SAAO,UAAU,GAAG;AAClB,IAAAA,SAAQ,KAAK,OAAO,IAAI,UAAU;AAClC;AACA,SAAK,QAAQ,SAASA,MAAK;AAC3B,SAAK,SAAS,SAASA,MAAK;AAAA,EAC9B;AACF;AACA,SAAS,MAAM,MAAM,GAAG,MAAM;AAC5B,SAAO,KAAK,IAAI,MAAM,KAAK,IAAI,GAAG,IAAI,CAAC;AACzC;AACA,SAAS,kBAAkB,KAAK;AAC9B,SAAO,MAAM,MAAM,IAAI,MAAM,MAAM;AACrC;AACA,SAAS,KAAKE,SAAQ,MAAM,OAAO;AACjC,QAAM,OAAOA,QAAO;AACpB,EAAAA,QAAO,QAAQA,QAAO;AACtB,EAAAA,QAAO,SAAS;AAClB;AACA,SAAS,IAAI,KAAK;AAChB,MAAI,OAAO;AACX,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,YAAQ,IAAI;AAAA,EACd;AACA,SAAO;AACT;AACA,SAAS,YAAY,GAAG,GAAG;AACzB,QAAM,KAAK,KAAK,OAAO;AACvB,SAAO,IAAI,MAAM,IAAI,MAAM;AAC7B;AACA,SAAS,YAAY,GAAG,GAAG;AACzB,MAAI,SAAS;AACb,WAAS,KAAK,GAAG,KAAK,EAAE,QAAQ,MAAM;AACpC,UAAM,OAAO,OAAO,EAAE,GAAG,IAAI,OAAO,EAAE,GAAG;AACzC,cAAU,OAAO;AAAA,EACnB;AACA,SAAO;AACT;AACA,SAAS,OAAO,MAAM,KAAK;AACzB,MAAI,CAAC,MAAM;AACT,UAAM,IAAI,MAAM,OAAO,QAAQ,WAAW,MAAM,IAAI,CAAC;AAAA,EACvD;AACF;AACA,SAAS,kBAAkB,QAAQ,QAAQ,qBAAqB,IAAI;AAClE,SAAO,YAAY,QAAQ,MAAM,GAAG,MAAM,qBAAqB,WAAW,cAAc,mBAAmB;AAC7G;AACA,SAAS,cAAc,GAAG;AACxB,SAAO,KAAK,MAAM,MAAM,+DAA+D;AACzF;AACA,SAAS,QAAQ,KAAK,SAAS,CAAC,GAAG,iBAAiB,OAAO;AACzD,MAAI,UAAU,MAAM;AAClB,aAAS,CAAC;AAAA,EACZ;AACA,MAAI,MAAM,QAAQ,GAAG,KAAK,aAAa,GAAG,KAAK,CAAC,gBAAgB;AAC9D,aAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,cAAQ,IAAI,KAAK,QAAQ,cAAc;AAAA,IACzC;AAAA,EACF,OAAO;AACL,WAAO,KAAK,GAAG;AAAA,EACjB;AACA,SAAO;AACT;AACA,SAAS,cAAc,OAAO;AAC5B,MAAI,MAAM,WAAW,GAAG;AACtB,WAAO;AAAA,EACT;AACA,MAAIZ,QAAO,MAAM;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,IAAAA,SAAQ,MAAM;AAAA,EAChB;AACA,SAAOA;AACT;AACA,SAAS,cAAc,OAAO;AAC5B,SAAO,MAAM,WAAW;AAC1B;AACA,SAAS,YAAY,IAAI,IAAI;AAC3B,MAAI,OAAO,IAAI;AACb,WAAO;AAAA,EACT;AACA,MAAI,MAAM,QAAQ,MAAM,MAAM;AAC5B,WAAO;AAAA,EACT;AACA,MAAI,GAAG,WAAW,GAAG,QAAQ;AAC3B,WAAO;AAAA,EACT;AACA,WAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,MAAM;AACrC,QAAI,GAAG,QAAQ,GAAG,KAAK;AACrB,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,MAAM,GAAG;AAChB,SAAO,IAAI,MAAM;AACnB;AACA,SAAS,KAAK,GAAG;AACf,MAAI,KAAK,QAAQ,MAAM;AACrB,WAAO,KAAK,KAAK,CAAC;AAAA,EACpB;AACA,MAAI,MAAM,UAAU;AAClB,WAAO;AAAA,EACT,WAAW,MAAM,WAAW;AAC1B,WAAO;AAAA,EACT,OAAO;AACL,UAAM,MAAM,KAAK,IAAI,IAAI,CAAC;AAC1B,YAAQ,MAAM,MAAM,MAAM;AAAA,EAC5B;AACF;AACA,SAAS,oBAAoBA,OAAM;AACjC,QAAM,QAAQ,KAAK,KAAK,KAAK,KAAKA,KAAI,CAAC;AACvC,SAAO,CAAC,OAAO,KAAK,KAAKA,QAAO,KAAK,CAAC;AACxC;AACA,SAAS,sBAAsB,IAAI;AACjC,QAAM,kBAAkB,IAAI,YAAY,EAAE;AAC1C,WAAS,KAAK,GAAG,KAAK,IAAI,EAAE,IAAI;AAC9B,oBAAgB,MAAM;AAAA,EACxB;AACA,UAAQ,eAAe;AACvB,SAAO;AACT;AACA,SAAS,SAAS,GAAGA,OAAM;AACzB,MAAIA,SAAQ,EAAE,QAAQ;AACpB,WAAO;AAAA,EACT;AACA,SAAO,IAAI,IAAI,OAAOA,QAAO,EAAE,MAAM;AACvC;AACA,SAAS,YAAY,SAAS,UAAU,CAAC,YAAY,GAAG,YAAY;AAClE,SAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,QAAI,WAAW;AACf,UAAM,QAAQ,MAAM;AAClB,UAAI,QAAQ,GAAG;AACb,gBAAQ;AACR;AAAA,MACF;AACA;AACA,YAAM,cAAc,QAAQ,QAAQ;AACpC,UAAI,cAAc,QAAQ,YAAY,YAAY;AAChD,eAAO;AACP;AAAA,MACF;AACA,iBAAW,OAAO,WAAW;AAAA,IAC/B;AACA,UAAM;AAAA,EACR,CAAC;AACH;AACA,SAAS,uBAAuB,OAAOA,OAAM;AAC3C,MAAI,YAAY;AAChB,MAAI,cAAc;AAClB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,QAAI,MAAM,OAAO,GAAG;AAClB,mBAAa,MAAM;AAAA,IACrB,WAAW,MAAM,QAAQ,IAAI;AAC3B,UAAI,gBAAgB,IAAI;AACtB,cAAM,MAAM,yDAAyD,uBAAuB,IAAI;AAAA,MAClG;AACA,oBAAc;AAAA,IAChB,WAAW,MAAM,MAAM,GAAG;AACxB,YAAM,MAAM,gCAAgC,MAAM,cAAc,IAAI;AAAA,IACtE;AAAA,EACF;AACA,MAAI,gBAAgB,IAAI;AACtB,QAAIA,QAAO,KAAKA,UAAS,WAAW;AAClC,YAAM,MAAM,QAAQA,0CAAyC,OAAO;AAAA,IACtE;AACA,WAAO;AAAA,EACT;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,MAAM,qCAAqC,kCAAkC;AAAA,EACrF;AACA,MAAIA,QAAO,cAAc,GAAG;AAC1B,UAAM,MAAM,wDAAwDA,WAAU,WAAW;AAAA,EAC3F;AACA,QAAM,WAAW,MAAM,MAAM;AAC7B,WAAS,eAAeA,QAAO;AAC/B,SAAO;AACT;AACA,SAAS,eAAe,MAAM,OAAO;AACnC,QAAM,OAAO,MAAM;AACnB,SAAO,QAAQ,OAAO,MAAM,IAAI,CAAC,IAAI,OAAO,EAAE,IAAI,CAAC,EAAE,OAAO,IAAI;AAChE,SAAO,KAAK,MAAM,CAAC,OAAO,MAAM,CAAC,QAAQ,KAAK,IAAI,GAAG,MAAM,+CAA+C,SAAS,sBAAsB,MAAM;AAC/I,SAAO,KAAK,MAAM,CAAC,OAAO,MAAM,EAAE,CAAC,GAAG,MAAM,0DAA0D,MAAM;AAC5G,SAAO,KAAK,IAAI,CAAC,MAAM,IAAI,IAAI,OAAO,IAAI,CAAC;AAC7C;AACA,SAAS,aAAa,OAAO,MAAM;AACjC,QAAM,WAAW,CAAC;AAClB,QAAM,WAAW,CAAC;AAClB,QAAM,eAAe,QAAQ,QAAQ,MAAM,QAAQ,IAAI,KAAK,KAAK,WAAW;AAC5E,QAAM,OAAO,QAAQ,QAAQ,eAAe,OAAO,eAAe,MAAM,KAAK,EAAE,KAAK;AACpF,MAAI,IAAI;AACR,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,QAAI,QAAQ,MAAM;AAChB,UAAI,KAAK,OAAO,MAAM,MAAM,QAAQ,GAAG;AACrC,cAAM,IAAI,MAAM,sBAAsB,qBAAqB,MAAM,eAAe;AAAA,MAClF;AACA,WAAK,KAAK,MAAM,QAAQ,KAAK,KAAK,OAAO,MAAM,QAAQ,GAAG;AACxD,iBAAS,KAAK,MAAM,GAAG;AACvB,iBAAS,KAAK,EAAE;AAAA,MAClB;AACA,UAAI,KAAK,MAAM,IAAI;AACjB;AAAA,MACF;AAAA,IACF;AACA,QAAI,MAAM,QAAQ,GAAG;AACnB,eAAS,KAAK,MAAM,GAAG;AACvB,eAAS,KAAK,EAAE;AAAA,IAClB;AAAA,EACF;AACA,SAAO,EAAE,UAAU,SAAS;AAC9B;AACA,SAAS,uBAAuB,OAAOA,OAAM;AAC3C,MAAI,SAAS;AACb,MAAI,SAAS,QAAQ,UAAU,WAAW;AACxC,aAAS,IAAI,aAAaA,KAAI;AAAA,EAChC,WAAW,UAAU,SAAS;AAC5B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,WAAW,UAAU,QAAQ;AAC3B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,OAAOA,OAAM;AACtC,MAAI,SAAS;AACb,MAAI,SAAS,QAAQ,UAAU,WAAW;AACxC,aAAS,IAAI,aAAaA,KAAI;AAAA,EAChC,WAAW,UAAU,SAAS;AAC5B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,WAAW,UAAU,QAAQ;AAC3B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,WAAW,UAAU,UAAU;AAC7B,aAAS,IAAI,MAAMA,KAAI;AAAA,EACzB,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACA,SAAO;AACT;AACA,SAAS,yBAAyB,MAAM,OAAO;AAC7C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAM,MAAM,KAAK;AACjB,QAAI,MAAM,GAAG,KAAK,CAAC,SAAS,GAAG,GAAG;AAChC,YAAM,MAAM,oBAAoB,iCAAiC,MAAM;AAAA,IACzE;AAAA,EACF;AACF;AACA,SAAS,aAAa,OAAO;AAC3B,SAAO,UAAU,UAAU,UAAU,eAAe,UAAU,aAAa,UAAU,WAAW,UAAU;AAC5G;AACA,SAAS,gBAAgB,SAAS,SAAS;AACzC,MAAI,YAAY,aAAa;AAC3B,WAAO;AAAA,EACT;AACA,MAAI,YAAY,aAAa,YAAY,aAAa;AACpD,WAAO;AAAA,EACT;AACA,MAAI,YAAY,WAAW,YAAY,aAAa,YAAY,aAAa;AAC3E,WAAO;AAAA,EACT;AACA,MAAI,YAAY,UAAU,YAAY,QAAQ;AAC5C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,aAAa,GAAG;AACvB,SAAO,aAAa,gBAAgB,aAAa,cAAc,aAAa,cAAc,aAAa;AACzG;AACA,SAAS,gBAAgB,OAAO;AAC9B,MAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,WAAO;AAAA,EACT,WAAW,UAAU,aAAa;AAChC,WAAO;AAAA,EACT,WAAW,UAAU,QAAQ;AAC3B,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA,EAC1C;AACF;AACA,SAAS,qBAAqB,KAAK;AACjC,MAAI,OAAO,MAAM;AACf,WAAO;AAAA,EACT;AACA,MAAI,QAAQ;AACZ,MAAI,QAAQ,CAAC,MAAM,SAAS,EAAE,MAAM;AACpC,SAAO;AACT;AACA,SAAS,SAAS,OAAO;AACvB,SAAO,OAAO,UAAU,YAAY,iBAAiB;AACvD;AACA,SAAS,UAAU,OAAO;AACxB,SAAO,OAAO,UAAU;AAC1B;AACA,SAAS,SAAS,OAAO;AACvB,SAAO,OAAO,UAAU;AAC1B;AACA,SAAS,WAAW,QAAQ;AAC1B,MAAI,MAAM,QAAQ,MAAM,GAAG;AACzB,WAAO,WAAW,OAAO,EAAE;AAAA,EAC7B;AACA,MAAI,kBAAkB,cAAc;AAClC,WAAO;AAAA,EACT,WAAW,kBAAkB,cAAc,kBAAkB,cAAc,kBAAkB,mBAAmB;AAC9G,WAAO;AAAA,EACT,WAAW,SAAS,MAAM,GAAG;AAC3B,WAAO;AAAA,EACT,WAAW,SAAS,MAAM,GAAG;AAC3B,WAAO;AAAA,EACT,WAAW,UAAU,MAAM,GAAG;AAC5B,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,WAAW,GAAG;AACrB,SAAO,CAAC,EAAE,KAAK,EAAE,eAAe,EAAE,QAAQ,EAAE;AAC9C;AACA,SAAS,eAAeA,OAAM,OAAO;AACnC,WAAS,KAAK,OAAO,KAAKA,OAAM,EAAE,IAAI;AACpC,QAAIA,QAAO,OAAO,GAAG;AACnB,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAOA;AACT;AACA,SAAS,eAAe,OAAO;AAC7B,QAAM,OAAO,MAAM;AACnB,MAAI,OAAO,GAAG;AACZ,WAAO,CAAC;AAAA,EACV;AACA,QAAMa,WAAU,IAAI,MAAM,OAAO,CAAC;AAClC,EAAAA,SAAQ,OAAO,KAAK,MAAM,OAAO;AACjC,WAAS,KAAK,OAAO,GAAG,MAAM,GAAG,EAAE,IAAI;AACrC,IAAAA,SAAQ,MAAMA,SAAQ,KAAK,KAAK,MAAM,KAAK;AAAA,EAC7C;AACA,SAAOA;AACT;AACA,SAAS,kBAAkB,QAAQ,OAAO,GAAG,YAAY,OAAO;AAC9D,QAAM,MAAM,IAAI,MAAM;AACtB,MAAI,MAAM,WAAW,GAAG;AACtB,UAAM,IAAI,MAAM,MAAM,YAAY,IAAI;AACtC,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,UAAI,MAAM,EAAE,SAAS;AAAA,IACvB;AAAA,EACF,OAAO;AACL,UAAM,IAAI,MAAM;AAChB,UAAM,OAAO,MAAM,MAAM,CAAC;AAC1B,UAAM,MAAM,KAAK,OAAO,CAAC,KAAK,MAAM,MAAM,CAAC,KAAK,YAAY,IAAI;AAChE,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,UAAI,MAAM,kBAAkB,SAAS,KAAK,KAAK,MAAM,GAAG,SAAS;AAAA,IACnE;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,cAAc,OAAO,GAAG,YAAY,OAAO;AAClD,MAAI,MAAM,WAAW,GAAG;AACtB,WAAO,EAAE;AAAA,EACX;AACA,QAAMb,QAAO,MAAM,OAAO,CAAC,KAAK,MAAM,MAAM,CAAC,KAAK,YAAY,IAAI;AAClE,MAAIA,UAAS,GAAG;AACd,WAAO,CAAC;AAAA,EACV;AACA,MAAIA,UAAS,EAAE,QAAQ;AACrB,UAAM,IAAI,MAAM,IAAI,wCAAwC,EAAE,SAAS,YAAY,0BAA0B,KAAK;AAAA,EACpH;AACA,SAAO,kBAAkB,GAAG,OAAO,GAAG,SAAS;AACjD;AACA,SAAS,mBAAmBA,OAAM,OAAO;AACvC,QAAM,SAAS,oBAAoBA,OAAM,KAAK;AAC9C,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,WAAO,MAAM;AAAA,EACf;AACA,SAAO;AACT;AACA,SAAS,oBAAoBA,OAAM,OAAO;AACxC,MAAI,SAAS,QAAQ,UAAU,aAAa,UAAU,aAAa;AACjE,WAAO,IAAI,aAAaA,KAAI;AAAA,EAC9B,WAAW,UAAU,SAAS;AAC5B,WAAO,IAAI,WAAWA,KAAI;AAAA,EAC5B,WAAW,UAAU,QAAQ;AAC3B,WAAO,IAAI,WAAWA,KAAI;AAAA,EAC5B,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACF;AACA,SAAS,0BAA0B,OAAO,OAAO;AAC/C,QAAMA,QAAO,MAAM,OAAO,CAAC,MAAM,SAAS,OAAO,MAAM,CAAC;AACxD,MAAI,SAAS,QAAQ,UAAU,WAAW;AACxC,WAAO,cAAc,OAAO,IAAI,aAAaA,KAAI,CAAC;AAAA,EACpD,WAAW,UAAU,SAAS;AAC5B,WAAO,cAAc,OAAO,IAAI,WAAWA,KAAI,CAAC;AAAA,EAClD,WAAW,UAAU,QAAQ;AAC3B,WAAO,cAAc,OAAO,IAAI,WAAWA,KAAI,CAAC;AAAA,EAClD,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACF;AACA,SAAS,mCAAmC,OAAO;AACjD,QAAM,QAAQ,CAAC,YAAY;AACzB,WAAO,OAAO,UAAU,OAAO,KAAK,WAAW,GAAG,MAAM,0EAA0E,SAAS;AAAA,EAC7I,CAAC;AACH;AACA,SAAS,WAAW,MAAM,MAAMa,UAAS;AACvC,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO,KAAK;AAAA,EACd;AACA,MAAIH,SAAQ,KAAK,KAAK,SAAS;AAC/B,WAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,IAAAA,UAASG,SAAQ,MAAM,KAAK;AAAA,EAC9B;AACA,SAAOH;AACT;AACA,SAAS,WAAWA,QAAO,MAAMG,UAAS;AACxC,MAAI,SAAS,GAAG;AACd,WAAO,CAAC;AAAA,EACV,WAAW,SAAS,GAAG;AACrB,WAAO,CAACH,MAAK;AAAA,EACf;AACA,QAAM,OAAO,IAAI,MAAM,IAAI;AAC3B,WAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,SAAK,MAAM,KAAK,MAAMA,SAAQG,SAAQ,GAAG;AACzC,IAAAH,UAAS,KAAK,MAAMG,SAAQ;AAAA,EAC9B;AACA,OAAK,KAAK,SAAS,KAAKH;AACxB,SAAO;AACT;AACA,SAAS,UAAUE,SAAQ;AACzB,SAAOA,WAAUA,QAAO,QAAQ,OAAOA,QAAO,SAAS;AACzD;AAGA,IAAI,4BAA4B;AAChC,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,SAAS;AACnB,SAAK,SAAS;AACd,SAAK,QAAQ,CAAC;AACd,SAAK,eAAe,CAAC;AACrB,SAAK,WAAW,CAAC;AACjB,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,YAAY,cAAc,UAAU;AAClC,QAAI,KAAK,YAAY,MAAM;AACzB,UAAI,EAAE,IAAI,EAAE,QAAQ,SAAS,KAAK,IAAI,EAAE,QAAQ,MAAM,IAAI;AACxD,gBAAQ,KAAK,YAAY,KAAK,oEAAoE,eAAe;AAAA,MACnH;AAAA,IACF;AACA,SAAK,eAAe;AACpB,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,aAAa,UAAU,cAAc,SAAS;AAC5C,SAAK,aAAa,YAAY,EAAE,cAAc,QAAQ;AACtD,QAAI,KAAK,SAAS,aAAa,MAAM;AACnC,YAAM,YAAY,KAAK,SAAS;AAChC,UAAI,EAAE,IAAI,EAAE,QAAQ,SAAS,KAAK,IAAI,EAAE,QAAQ,MAAM,IAAI;AACxD,gBAAQ,KAAK,qCAAqC,aAAa,YAAY;AAAA,MAC7E;AACA,WAAK,IAAI,UAAU,SAAS;AAAA,IAC9B;AAAA,EACF;AAAA,EACA,MAAM,SAAS,UAAU;AACvB,QAAI,YAAY,KAAK,OAAO;AAC1B,aAAO,KAAK,MAAM;AAAA,IACpB;AACA,SAAK,MAAM,YAAY,MAAM,KAAK,aAAa,QAAQ;AACvD,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,IAAI,UAAU;AACZ,QAAI,YAAY,KAAK,OAAO;AAC1B,aAAO,KAAK,MAAM;AAAA,IACpB;AACA,UAAM,YAAY,KAAK,aAAa,QAAQ;AAC5C,QAAI,UAAU,SAAS,GAAG;AACxB,YAAM,IAAI,MAAM,QAAQ,4EAA4E;AAAA,IACtG;AACA,SAAK,MAAM,YAAY;AACvB,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,UAAU,UAAU;AAClB,WAAO,KAAK,IAAI,QAAQ;AAAA,EAC1B;AAAA,EACA,QAAQ,UAAU;AAChB,WAAO,KAAK,IAAI,QAAQ;AAAA,EAC1B;AAAA,EACA,WAAW;AACT,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,WAAW;AACb,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,OAAO;AACnB,QAAI,KAAK,aAAa,aAAa,MAAM;AACvC,YAAM,IAAI,MAAM,mBAAmB,yCAAyC;AAAA,IAC9E;AACA,SAAK,MAAM,YAAY;AACvB,QAAI,KAAK,aAAa,UAAU,WAAW,MAAM;AAC/C,WAAK,aAAa,UAAU,QAAQ,KAAK;AAAA,IAC3C;AAAA,EACF;AAAA,EACA,aAAa,UAAU;AACrB,QAAI,KAAK,aAAa,aAAa,MAAM;AACvC,YAAM,IAAI,MAAM,yBAAyB,0CAA0C;AAAA,IACrF;AACA,WAAO,KAAK,aAAa,UAAU,aAAa;AAAA,EAClD;AAAA,EACA,SAAS,OAAO;AACd,SAAK,QAAQ,OAAO,OAAO,CAAC,GAAG,KAAK;AAAA,EACtC;AAAA,EACA,QAAQ;AACN,SAAK,QAAQ,CAAC;AACd,SAAK,WAAW,CAAC;AACjB,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,mBAAmB;AACjB,QAAI,OAAO,KAAK,WAAW,eAAe,OAAO,KAAK,OAAO,aAAa,eAAe,OAAO,KAAK,OAAO,SAAS,WAAW,aAAa;AAC3I;AAAA,IACF;AACA,UAAM,YAAY,KAAK,eAAe,KAAK,OAAO,SAAS,MAAM;AACjE,QAAI,6BAA6B,WAAW;AAC1C,YAAM,YAAY,UAAU,2BAA2B,MAAM,GAAG;AAChE,gBAAU,QAAQ,CAAC,aAAa;AAC9B,cAAM,CAAC,KAAK,KAAK,IAAI,SAAS,MAAM,GAAG;AACvC,aAAK,SAAS,OAAO,WAAW,KAAK,KAAK;AAAA,MAC5C,CAAC;AAAA,IACH;AAAA,EACF;AACF;AACA,SAAS,eAAe,aAAa;AACnC,QAAM,SAAS,CAAC;AAChB,cAAY,QAAQ,+BAA+B,CAAC,OAAO,OAAO;AAChE,gBAAY,QAAQ,GAAG,IAAI,GAAG,EAAE;AAChC,WAAO,GAAG,KAAK,GAAG;AAAA,EACpB,CAAC;AACD,SAAO;AACT;AACA,SAAS,YAAY,QAAQ,MAAM,OAAO;AACxC,SAAO,mBAAmB,IAAI,KAAK,mBAAmB,SAAS,EAAE;AACnE;AACA,SAAS,WAAW,UAAU,OAAO;AACnC,UAAQ,MAAM,YAAY;AAC1B,MAAI,UAAU,UAAU,UAAU,SAAS;AACzC,WAAO,UAAU;AAAA,EACnB,WAAW,GAAG,CAAC,YAAY,OAAO;AAChC,WAAO,CAAC;AAAA,EACV;AACA,QAAM,IAAI,MAAM,oCAAoC,kBAAkB,WAAW;AACnF;AACA,SAAS,MAAM;AACb,SAAO;AACT;AACA,IAAI,MAAM;AACV,SAAS,qBAAqB,aAAa;AACzC,QAAM;AACR;AAGA,IAAI;AACJ,SAAS,qBAAqB;AAC5B,MAAI,mBAAmB,MAAM;AAC3B,QAAI;AACJ,QAAI,OAAO,WAAW,aAAa;AACjC,WAAK;AAAA,IACP,WAAW,OAAO,WAAW,aAAa;AACxC,WAAK;AAAA,IACP,WAAW,OAAO,YAAY,aAAa;AACzC,WAAK;AAAA,IACP,WAAW,OAAO,SAAS,aAAa;AACtC,WAAK;AAAA,IACP,OAAO;AACL,YAAM,IAAI,MAAM,gCAAgC;AAAA,IAClD;AACA,sBAAkB;AAAA,EACpB;AACA,SAAO;AACT;AACA,SAAS,eAAe;AACtB,QAAM,KAAK,mBAAmB;AAC9B,MAAI,GAAG,cAAc,MAAM;AACzB,OAAG,aAA6B,oBAAI,IAAI;AAAA,EAC1C;AACA,SAAO,GAAG;AACZ;AACA,SAAS,UAAU,KAAKR,QAAO;AAC7B,QAAM,YAAY,aAAa;AAC/B,MAAI,UAAU,IAAI,GAAG,GAAG;AACtB,WAAO,UAAU,IAAI,GAAG;AAAA,EAC1B,OAAO;AACL,UAAM,YAAYA,OAAM;AACxB,cAAU,IAAI,KAAK,SAAS;AAC5B,WAAO,UAAU,IAAI,GAAG;AAAA,EAC1B;AACF;AAGA,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,QAAQ;AACZ,IAAI,UAAU;AACd,IAAI,cAAc;AAClB,IAAI,YAAY;AAChB,IAAI,gBAAgB;AACpB,IAAI,cAAc;AAClB,IAAI,iBAAiB;AACrB,IAAI,WAAW;AACf,IAAI,cAAc;AAClB,IAAI,gBAAgB;AACpB,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,cAAc;AAClB,IAAI,UAAU;AACd,IAAI,aAAa;AACjB,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,uBAAuB;AAC3B,IAAI,sBAAsB;AAC1B,IAAI,SAAS;AACb,IAAI,yBAAyB;AAC7B,IAAI,wBAAwB;AAC5B,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,UAAU;AACd,IAAI,SAAS;AACb,IAAI,gBAAgB;AACpB,IAAI,gBAAgB;AACpB,IAAI,eAAe;AACnB,IAAI,wBAAwB;AAC5B,IAAI,sCAAsC;AAC1C,IAAI,qCAAqC;AACzC,IAAI,OAAO;AACX,IAAI,aAAa;AACjB,IAAI,0BAA0B;AAC9B,IAAI,2BAA2B;AAC/B,IAAI,UAAU;AACd,IAAI,SAAS;AACb,IAAI,MAAM;AACV,IAAI,UAAU;AACd,IAAI,MAAM;AACV,IAAI,QAAQ;AACZ,IAAI,MAAM;AACV,IAAI,aAAa;AACjB,IAAI,QAAQ;AACZ,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,gBAAgB;AACpB,IAAI,QAAQ;AACZ,IAAI,WAAW;AACf,IAAI,iBAAiB;AACrB,IAAI,WAAW;AACf,IAAI,WAAW;AACf,IAAI,UAAU;AACd,IAAI,eAAe;AACnB,IAAI,WAAW;AACf,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,WAAW;AACf,IAAI,QAAQ;AACZ,IAAI,QAAQ;AACZ,IAAI,YAAY;AAChB,IAAI,OAAO;AACX,IAAI,YAAY;AAChB,IAAI,WAAW;AACf,IAAI,MAAM;AACV,IAAI,QAAQ;AACZ,IAAI,aAAa;AACjB,IAAI,aAAa;AACjB,IAAI,YAAY;AAChB,IAAI,aAAa;AACjB,IAAI,aAAa;AACjB,IAAI,aAAa;AACjB,IAAI,MAAM;AACV,IAAI,UAAU;AACd,IAAI,MAAM;AACV,IAAI,UAAU;AACd,IAAI,UAAU;AACd,IAAI,cAAc;AAClB,IAAI,YAAY;AAChB,IAAI,gBAAgB;AACpB,IAAI,oBAAoB;AACxB,IAAI,OAAO;AACX,IAAI,MAAM;AACV,IAAI,UAAU;AACd,IAAI,YAAY;AAChB,IAAI,MAAM;AACV,IAAI,cAAc;AAClB,IAAI,WAAW;AACf,IAAI,MAAM;AACV,IAAI,WAAW;AACf,IAAI,sBAAsB;AAC1B,IAAI,sBAAsB;AAC1B,IAAI,sBAAsB;AAC1B,IAAI,WAAW;AACf,IAAI,SAAS;AACb,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,MAAM;AACV,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,uBAAuB;AAC3B,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,aAAa;AACjB,IAAI,OAAO;AACX,IAAI,UAAU;AACd,IAAI,wBAAwB;AAC5B,IAAI,4BAA4B;AAChC,IAAI,iBAAiB;AACrB,IAAI,qBAAqB;AACzB,IAAI,QAAQ;AACZ,IAAI,UAAU;AACd,IAAI,QAAQ;AACZ,IAAI,QAAQ;AACZ,IAAI,YAAY;AAChB,IAAI,eAAe;AACnB,IAAI,SAAS;AACb,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,UAAU;AACd,IAAI,WAAW;AACf,IAAI,OAAO;AACX,IAAI,MAAM;AACV,IAAI,iBAAiB;AACrB,IAAI,SAAS;AACb,IAAI,UAAU;AACd,IAAI,sBAAsB;AAC1B,IAAI,gBAAgB;AACpB,IAAI,oBAAoB;AACxB,IAAI,mBAAmB;AACvB,IAAI,gBAAgB;AACpB,IAAI,oBAAoB;AACxB,IAAI,SAAS;AACb,IAAI,eAAe;AACnB,IAAI,eAAe;AACnB,IAAI,cAAc;AAClB,IAAI,yBAAyB;AAC7B,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,YAAY;AAChB,IAAI,YAAY;AAChB,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,qBAAqB;AACzB,IAAI,aAAa;AACjB,IAAI,YAAY;AAChB,IAAI,OAAO;AACX,IAAI,aAAa;AACjB,IAAI,mBAAmB;AACvB,IAAI,eAAe;AACnB,IAAI,cAAc;AAClB,IAAI,uBAAuB;AAG3B,SAAS,QAAQ,KAAK;AACpB,MAAI,EAAE,IAAI,EAAE,QAAQ,SAAS,KAAK,IAAI,EAAE,QAAQ,MAAM,IAAI;AACxD,YAAQ,KAAK,GAAG,GAAG;AAAA,EACrB;AACF;AACA,SAASU,QAAO,KAAK;AACnB,MAAI,EAAE,IAAI,EAAE,QAAQ,SAAS,KAAK,IAAI,EAAE,QAAQ,MAAM,IAAI;AACxD,YAAQ,IAAI,GAAG,GAAG;AAAA,EACpB;AACF;AAGA,IAAI,iBAAiB,UAAU,kBAAkB,MAAsB,oBAAI,IAAI,CAAC;AAChF,IAAI,eAAe,UAAU,gBAAgB,MAAsB,oBAAI,IAAI,CAAC;AAC5E,SAAS,UAAU,YAAY,aAAa;AAC1C,QAAM,MAAM,QAAQ,YAAY,WAAW;AAC3C,SAAO,eAAe,IAAI,GAAG;AAC/B;AACA,SAAS,YAAY,YAAY;AAC/B,SAAO,aAAa,IAAI,UAAU;AACpC;AACA,SAAS,qBAAqB,aAAa;AACzC,QAAM,KAAK,eAAe,QAAQ;AAClC,QAAM,SAAS,CAAC;AAChB,SAAO,MAAM;AACX,UAAM,EAAE,MAAM,MAAM,IAAI,GAAG,KAAK;AAChC,QAAI,MAAM;AACR;AAAA,IACF;AACA,UAAM,CAAC,KAAKC,OAAM,IAAI;AACtB,UAAM,CAAC,QAAQ,IAAI,IAAI,MAAM,GAAG;AAChC,QAAI,aAAa,aAAa;AAC5B,aAAO,KAAKA,OAAM;AAAA,IACpB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,eAAeA,SAAQ;AAC9B,QAAM,EAAE,YAAY,YAAY,IAAIA;AACpC,QAAM,MAAM,QAAQ,YAAY,WAAW;AAC3C,MAAI,eAAe,IAAI,GAAG,GAAG;AAC3B,SAAK,eAAe,4BAA4B,oCAAoC;AAAA,EACtF;AACA,iBAAe,IAAI,KAAKA,OAAM;AAChC;AACA,SAAS,iBAAiBA,SAAQ;AAChC,QAAM,EAAE,WAAW,IAAIA;AACvB,MAAI,aAAa,IAAI,UAAU,GAAG;AAChC,QAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,WAAK,gCAAgC,aAAa;AAAA,IACpD;AAAA,EACF;AACA,eAAa,IAAI,YAAYA,OAAM;AACrC;AACA,SAAS,iBAAiB,YAAY,aAAa;AACjD,QAAM,MAAM,QAAQ,YAAY,WAAW;AAC3C,MAAI,CAAC,eAAe,IAAI,GAAG,GAAG;AAC5B,UAAM,IAAI,MAAM,eAAe,4BAA4B,gCAAgC;AAAA,EAC7F;AACA,iBAAe,OAAO,GAAG;AAC3B;AACA,SAAS,mBAAmB,YAAY;AACtC,MAAI,CAAC,aAAa,IAAI,UAAU,GAAG;AACjC,UAAM,IAAI,MAAM,iBAAiB,2CAA2C;AAAA,EAC9E;AACA,eAAa,OAAO,UAAU;AAChC;AACA,SAAS,sBAAsB,uBAAuB,gBAAgB;AACpE,QAAM,UAAU,qBAAqB,qBAAqB;AAC1D,UAAQ,QAAQ,CAAC,iBAAiB;AAChC,UAAM,kBAAkB,OAAO,OAAO,CAAC,GAAG,cAAc,EAAE,aAAa,eAAe,CAAC;AACvF,mBAAe,eAAe;AAAA,EAChC,CAAC;AACH;AACA,SAAS,QAAQ,YAAY,aAAa;AACxC,SAAO,GAAG,eAAe;AAC3B;AAGA,IAAI,eAAe,CAAC;AACpBlB,UAAS,cAAc;AAAA,EACrB,aAAa,MAAM;AAAA,EACnB,QAAQ,MAAM;AAAA,EACd,oCAAoC,MAAM;AAAA,EAC1C,eAAe,MAAM;AAAA,EACrB,mBAAmB,MAAM;AAAA,EACzB,sBAAsB,MAAM;AAAA,EAC5B,iBAAiB,MAAM;AAAA,EACvB,0BAA0B,MAAM;AAAA,EAChC,OAAO,MAAM;AAAA,EACb,gBAAgB,MAAM;AAAA,EACtB,mBAAmB,MAAM;AAAA,EACzB,uBAAuB,MAAM;AAAA,EAC7B,cAAc,MAAM;AAAA,EACpB,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,OAAO,MAAM;AAAA,EACb,eAAe,MAAM;AAAA,EACrB,SAAS,MAAM;AAAA,EACf,mBAAmB,MAAM;AAAA,EACzB,wBAAwB,MAAM;AAAA,EAC9B,iBAAiB,MAAM;AAAA,EACvB,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,YAAY,MAAM;AAAA,EAClB,wBAAwB,MAAM;AAAA,EAC9B,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,OAAO,MAAM;AAAA,EACb,UAAU,MAAM;AAAA,EAChB,WAAW,MAAM;AAAA,EACjB,eAAe,MAAM;AAAA,EACrB,UAAU,MAAM;AAAA,EAChB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,YAAY,MAAM;AAAA,EAClB,oBAAoB,MAAM;AAAA,EAC1B,2BAA2B,MAAM;AAAA,EACjC,qBAAqB,MAAM;AAAA,EAC3B,gBAAgB,MAAM;AAAA,EACtB,mBAAmB,MAAM;AAAA,EACzB,KAAK,MAAMmB;AAAA,EACX,gBAAgB,MAAM;AAAA,EACtB,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,UAAU,MAAM;AAAA,EAChB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,eAAe,MAAM;AAAA,EACrB,qBAAqB,MAAM;AAAA,EAC3B,cAAc,MAAM;AAAA,EACpB,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,MAAM,MAAM;AAAA,EACZ,eAAe,MAAM;AAAA,EACrB,cAAc,MAAM;AACtB,CAAC;AAGD,IAAI,cAAc,QAAQ,aAAa,CAAC;AACxC,IAAI,OAAO,YAAY,WAAW;AAClC,SAAS,UAAU,KAAK;AACtB,SAAO,KAAK,WAAW,KAAK,MAAM,EAAE;AACtC;AACA,IAAI,KAAK,UAAU,kBAAkB;AACrC,IAAI,KAAK,UAAU,kBAAkB;AACrC,IAAI,KAAK,UAAU,kBAAkB;AACrC,SAAS,SAAS,KAAK;AACrB,SAAO,IAAI,IAAI,IAAI,KAAK,EAAE,CAAC;AAC7B;AACA,SAAS,OAAO,IAAI,QAAQ,UAAU;AACpC,QAAM,QAAQ,GAAG,MAAM,QAAQ,SAAS,QAAQ;AAChD,SAAO,KAAK,UAAU,MAAM,KAAK,KAAK,GAAG,MAAM,IAAI;AACrD;AACA,SAAS,QAAQ,IAAI,QAAQ;AAC3B,SAAO,OAAO,IAAI,QAAQ,CAAC;AAC7B;AACA,SAAS,QAAQ,IAAI,QAAQ;AAC3B,SAAO,OAAO,IAAI,QAAQ,CAAC;AAC7B;AACA,SAAS,SAAS,KAAK,OAAO;AAC5B,SAAO,UAAU,IAAI,MAAM,IAAI,KAAK,KAAK,EAAE,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AACnE;AACA,SAAS,UAAU,GAAG,GAAG,OAAO,UAAU,kBAAkB,GAAG;AAC7D,MAAI,IAAI,EAAE,IAAI,CAAC,EAAE,IAAI,IAAI;AACzB,MAAI,EAAE,IAAI,EAAE,KAAK,EAAE,CAAC;AACpB,MAAI,IAAI,EAAE,IAAI,CAAC,EAAE,IAAI,IAAI;AACzB,MAAI,EAAE,IAAI,EAAE,KAAK,EAAE,CAAC;AACpB,MAAI,EAAE,IAAI,IAAI;AACd,SAAO;AACT;AACA,SAAS,uBAAuB,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG;AAChD,MAAI,EAAE,IAAI,CAAC;AACX,MAAI,SAAS,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE;AAChC,QAAM,IAAI;AACV,MAAI,EAAE,IAAI,CAAC;AACX,MAAI,EAAE,IAAI,CAAC;AACX,MAAI,EAAE,IAAI,SAAS,GAAG,EAAE,CAAC;AACzB,SAAO,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE,IAAI,CAAC,CAAC;AAC5B;AACA,SAAS,0BAA0B,IAAI,QAAQ,GAAG,GAAG;AACnD,SAAO,uBAAuB,QAAQ,IAAI,MAAM,GAAG,QAAQ,IAAI,SAAS,CAAC,GAAG,QAAQ,IAAI,SAAS,EAAE,GAAG,QAAQ,IAAI,SAAS,EAAE,GAAG,GAAG,CAAC;AACtI;AACA,SAAS,aAAa,IAAI,MAAM,GAAG,QAAQ;AACzC,MAAI,OAAO,GAAG;AACZ,UAAM,OAAO,GAAG,IAAI,MAAM,CAAC;AAC3B,UAAM,IAAI,QAAQ,IAAI,CAAC,EAAE,IAAI,EAAE;AAC/B,UAAM,IAAI,QAAQ,IAAI,MAAM,CAAC;AAC7B,UAAM,IAAI,SAAS,GAAG,EAAE,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AACzC,UAAM,IAAI,SAAS,GAAG,EAAE,EAAE,IAAI,CAAC,EAAE,IAAI,IAAI;AACzC,WAAO,UAAU,GAAG,GAAG,IAAI;AAAA,EAC7B;AACA,MAAI,OAAO,GAAG;AACZ,UAAM,OAAO,GAAG,IAAI,MAAM,CAAC;AAC3B,UAAM,IAAI,QAAQ,IAAI,CAAC;AACvB,WAAO,UAAU,EAAE,IAAI,CAAC,EAAE,IAAI,GAAG,GAAG,QAAQ,IAAI,MAAM,CAAC,GAAG,IAAI;AAAA,EAChE;AACA,MAAI,MAAM,GAAG;AACX,UAAM,IAAI,GAAG;AACb,UAAM,IAAI,GAAG,OAAO;AACpB,UAAM,IAAI,GAAG,MAAM;AACnB,UAAM,IAAI,KAAK,KAAK;AACpB,UAAM,IAAI,OAAO,KAAK;AACtB,WAAO,SAAS,GAAG,IAAI,CAAC,EAAE,IAAI,GAAG,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,EAAE;AAAA,EAClD;AACA,SAAO;AACT;AACA,SAAS,cAAc,IAAI,MAAM,GAAG,QAAQ;AAC1C,QAAM,OAAO,GAAG,IAAI,MAAM,CAAC;AAC3B,QAAM,IAAI,QAAQ,IAAI,CAAC,EAAE,IAAI,EAAE;AAC/B,QAAM,IAAI,QAAQ,IAAI,CAAC;AACvB,QAAM,IAAI,QAAQ,IAAI,MAAM,CAAC,EAAE,IAAI,IAAI;AACvC,QAAM,IAAI,QAAQ,IAAI,MAAM,EAAE,EAAE,IAAI,EAAE;AACtC,SAAO,UAAU,SAAS,EAAE,IAAI,CAAC,GAAG,EAAE,EAAE,IAAI,SAAS,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE,IAAI,SAAS,EAAE,IAAI,EAAE,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,IAAI;AAClH;AACA,SAAS,cAAc,IAAI,MAAM,GAAG,QAAQ;AAC1C,QAAM,OAAO,GAAG,IAAI,MAAM,CAAC;AAC3B,QAAM,IAAI,QAAQ,IAAI,CAAC,EAAE,IAAI,EAAE;AAC/B,QAAM,IAAI,QAAQ,IAAI,CAAC;AACvB,QAAM,IAAI,QAAQ,IAAI,MAAM,CAAC,EAAE,IAAI,IAAI;AACvC,QAAM,IAAI,QAAQ,IAAI,MAAM,EAAE,EAAE,IAAI,EAAE;AACtC,QAAM,IAAI,SAAS,EAAE,IAAI,CAAC,GAAG,EAAE,EAAE,IAAI,SAAS,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC;AAC3D,QAAM,IAAI,UAAU,GAAG,EAAE,IAAI,SAAS,EAAE,IAAI,EAAE,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,IAAI;AAClE,QAAM,KAAK,QAAQ,IAAI,EAAE,EAAE,IAAI,IAAI;AACnC,QAAM,IAAI,QAAQ,IAAI,EAAE;AACxB,QAAM,IAAI,EAAE,IAAI,QAAQ,IAAI,MAAM,EAAE,CAAC,EAAE,IAAI,IAAI;AAC/C,QAAM,IAAI,EAAE,IAAI,QAAQ,IAAI,MAAM,EAAE,CAAC,EAAE,IAAI,IAAI;AAC/C,SAAO,UAAU,SAAS,GAAG,IAAI,CAAC,GAAG,EAAE,EAAE,IAAI,SAAS,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,GAAG,IAAI,SAAS,EAAE,IAAI,CAAC,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,IAAI;AACnH;AACA,SAAS,cAAc,IAAI,MAAM,GAAG,QAAQ;AAC1C,QAAM,OAAO,KAAK,WAAW,IAAI,IAAI;AACrC,MAAI,OAAO,IAAI;AACb,QAAI,OAAO,IAAI;AACb,aAAO,aAAa,IAAI,GAAG;AAAA,IAC7B,OAAO;AACL,aAAO,cAAc,IAAI,GAAG;AAAA,IAC9B;AAAA,EACF,WAAW,OAAO,IAAI;AACpB,WAAO,cAAc,IAAI,GAAG;AAAA,EAC9B;AACA,MAAI,IAAI;AACR,MAAI,IAAI,KAAK,IAAI,EAAE,EAAE,IAAI,GAAG;AAC5B,MAAI,IAAI,SAAS,EAAE,IAAI,EAAE,EAAE,IAAI,GAAG,CAAC,EAAE,IAAI,EAAE;AAC3C,MAAI,IAAI,CAAC,KAAK,OAAO,KAAK,KAAK;AAC/B,MAAI,IAAI,CAAC,KAAK,OAAO,KAAK,KAAK;AAC/B,MAAI,EAAE,IAAI,EAAE,EAAE,IAAI,QAAQ,IAAI,CAAC,CAAC;AAChC,MAAI,SAAS;AACb,QAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,QAAM,SAAS,OAAO,MAAM,IAAI,MAAM;AACtC,KAAG;AACD,QAAI,SAAS,EAAE,IAAI,CAAC,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,CAAC,CAAC,GAAG,EAAE,EAAE,IAAI,EAAE;AACxE,QAAI,SAAS,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,GAAG,EAAE,EAAE,IAAI,EAAE;AAClE,QAAI,EAAE,IAAI,EAAE,EAAE;AACd,QAAI,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC;AAC5C,QAAI,SAAS,EAAE,IAAI,EAAE,EAAE,GAAG,EAAE,EAAE,IAAI,EAAE;AACpC,QAAI,0BAA0B,IAAI,QAAQ,EAAE,GAAG,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,EAAE,CAAC;AACnE,QAAI,0BAA0B,IAAI,SAAS,IAAI,EAAE,IAAI,EAAE,EAAE,GAAG,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,CAAC;AAC3F,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AACd,cAAU;AAAA,EACZ,SAAS,WAAW;AACpB,QAAM,OAAO,GAAG,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC,CAAC;AACrC,WAAS;AACT,IAAE,KAAK,EAAE,GAAG,IAAI,MAAM,IAAI,EAAE;AAC5B,IAAE,KAAK,EAAE,GAAG,IAAI,EAAE,EAAE;AACpB,IAAE,KAAK,EAAE,GAAG,IAAI,EAAE,EAAE;AACpB,MAAI,SAAS,EAAE,IAAI,CAAC,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,CAAC,CAAC,GAAG,EAAE,EAAE,IAAI,IAAI;AAC1E,MAAI,SAAS,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,GAAG,EAAE,EAAE,IAAI,IAAI;AACpE,MAAI,EAAE,IAAI,EAAE,GAAG,IAAI,CAAC,CAAC;AACrB,MAAI,EAAE,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,CAAC;AACnD,MAAI,SAAS,EAAE,IAAI,EAAE,EAAE,GAAG,EAAE,EAAE,IAAI,IAAI;AACtC,MAAI,0BAA0B,IAAI,QAAQ,EAAE,GAAG,IAAI,IAAI,GAAG,EAAE,IAAI,EAAE,EAAE,CAAC;AACrE,MAAI,0BAA0B,IAAI,SAAS,IAAI,EAAE,IAAI,EAAE,EAAE,GAAG,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,CAAC;AAC3F,GAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AACd,SAAO,UAAU,UAAU,EAAE,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,SAAS,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,UAAU,EAAE,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC,GAAG,IAAI;AACxH;AAGA,SAAS,kBAAkB,OAAO,OAAO;AACvC,MAAI,UAAU,UAAU;AACtB,WAAO,aAAa,KAAK;AAAA,EAC3B;AACA,SAAO,aAAa,CAAC,KAAK,GAAG,KAAK;AACpC;AACA,SAAS,mBAAmB,GAAG,OAAO;AACpC,SAAO,aAAa,gBAAgB,UAAU,aAAa,aAAa,cAAc,UAAU,WAAW,aAAa,cAAc,UAAU;AAClJ;AACA,SAAS,aAAa,GAAG,OAAO;AAC9B,MAAI,UAAU,UAAU;AACtB,UAAM,IAAI,MAAM,2CAA2C;AAAA,EAC7D;AACA,MAAI,MAAM,QAAQ,CAAC,GAAG;AACpB,QAAI,QAAQ,CAAC;AAAA,EACf;AACA,MAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,6BAAyB,GAAG,KAAK;AAAA,EACnC;AACA,MAAI,mBAAmB,GAAG,KAAK,GAAG;AAChC,WAAO;AAAA,EACT;AACA,MAAI,SAAS,QAAQ,UAAU,aAAa,UAAU,aAAa;AACjE,WAAO,IAAI,aAAa,CAAC;AAAA,EAC3B,WAAW,UAAU,SAAS;AAC5B,WAAO,IAAI,WAAW,CAAC;AAAA,EACzB,WAAW,UAAU,QAAQ;AAC3B,UAAM,OAAO,IAAI,WAAW,EAAE,MAAM;AACpC,aAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAI,KAAK,MAAM,EAAE,GAAG,MAAM,GAAG;AAC3B,aAAK,MAAM;AAAA,MACb;AAAA,IACF;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACF;AACA,SAASA,OAAM;AACb,SAAO,IAAI,EAAE,SAAS,IAAI;AAC5B;AACA,SAAS,OAAO,MAAM,cAAc;AAClC,SAAO,IAAI,EAAE,SAAS,MAAM,MAAM,YAAY;AAChD;AACA,SAAS,aAAa,IAAI,WAAW,SAAS;AAC5C,aAAW,YAAY;AACvB,SAAO,IAAI,EAAE,SAAS,OAAO,IAAI,QAAQ;AAC3C;AACA,SAAS,aAAa,OAAO,WAAW,SAAS;AAC/C,aAAW,YAAY;AACvB,SAAO,IAAI,EAAE,SAAS,OAAO,OAAO,QAAQ;AAC9C;AAGA,IAAI,WAAW,MAAM;AAAA,EACnB,YAAY,cAAc,QAAQ;AAChC,SAAK,eAAe;AACpB,SAAK,SAAS;AACd,QAAI,UAAU,MAAM;AAClB,WAAK,SAAS,IAAI,OAAO;AAAA,IAC3B;AAAA,EACF;AAAA,EACA,cAAc,YAAY,QAAQ,GAAG;AACnC,QAAI;AACJ,UAAM,sBAAsB,MAAM;AAChC,gBAAU,EAAE;AAAA,IACd;AACA,QAAI;AACJ,UAAM,QAAQA,KAAI;AAClB,QAAI,KAAK,aAAa,eAAe,GAAG;AACtC,cAAQ,KAAK,aAAa,KAAK,mBAAmB;AAAA,IACpD,OAAO;AACL,0BAAoB;AACpB,iBAAW,UAAU,SAAS;AAC5B,eAAO,SAAS;AAAA,MAClB;AACA,cAAQ,QAAQ,QAAQ,EAAE,UAAUA,KAAI,IAAI,MAAM,CAAC;AAAA,IACrD;AACA,QAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,eAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,cAAM,SAAS,QAAQ;AACvB,eAAO,KAAK,EAAE,KAAK,CAAC,eAAe;AACjC,oCAA0B,YAAY,OAAO,OAAO,UAAU;AAAA,QAChE,CAAC;AAAA,MACH;AAAA,IACF;AACA,UAAM,gBAAgB;AAAA,MACpB;AAAA,MACA;AAAA,MACA;AAAA,MACA,QAAQ,MAAM,KAAK,CAAC,WAAW,OAAO,QAAQ;AAAA,MAC9C,WAAW,MAAM,KAAK,CAAC,WAAW,OAAO,uBAAuB,OAAO,OAAO,oBAAoB,IAAI,EAAE;AAAA,IAC1G;AACA,WAAO;AAAA,EACT;AAAA,EACA,iBAAiB,eAAe;AAC9B,UAAM,EAAE,YAAY,SAAS,QAAQ,QAAQ,UAAU,IAAI;AAC3D,YAAQ,QAAQ,CAAC,WAAW;AAC1B,cAAQ,IAAI,CAAC,OAAO,KAAK,GAAG,QAAQ,SAAS,CAAC,EAAE,KAAK,CAAC,mBAAmB;AACvE,aAAK,OAAO,iBAAiB,YAAY,QAAQ,eAAe,IAAI,eAAe,IAAI,QAAQ,eAAe,EAAE;AAAA,MAClH,CAAC;AAAA,IACH,CAAC;AAAA,EACH;AACF;AACA,SAAS,0BAA0B,MAAM,OAAO,YAAY;AAC1D,MAAI,UAAU,WAAW;AACvB,WAAO;AAAA,EACT;AACA,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAM,MAAM,KAAK;AACjB,QAAI,MAAM,GAAG,KAAK,CAAC,SAAS,GAAG,GAAG;AAChC,cAAQ,KAAK,SAAS,yBAAyB,aAAa;AAC5D,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,IAAI,SAAS,MAAM;AAAA,EACjB,iBAAiB,MAAM,QAAQ,MAAM,QAAQ,QAAQ,WAAW;AAC9D,UAAM,QAAQ,OAAO,WAAW,WAAW,SAAS,GAAG,YAAY,CAAC,IAAI,OAAO;AAC/E,UAAM,aAAa,SAAS,MAAM,EAAE;AACpC,UAAM,OAAO,OAAO;AACpB,UAAMhB,QAAO,OAAO;AACpB,UAAM,QAAQ,SAAS,OAAO,MAAM,SAAS,GAAG,EAAE;AAClD,QAAI,yBAAyB;AAC7B,eAAW,SAAS,QAAQ;AAC1B,YAAM,SAAS,OAAO;AACtB,UAAI,UAAU,MAAM;AAClB,cAAM,aAAa,OAAO,SAAS,OAAO;AAC1C,cAAM,YAAY,WAAW;AAC7B,kCAA0B,GAAG,UAAU,cAAc,YAAY,IAAI,aAAa;AAAA,MACpF;AAAA,IACF;AACA,YAAQ,IAAI,KAAK,gBAAgB,WAAW,SAAS,WAAWA,WAAU,4BAA4B,aAAa,oBAAoB,aAAa,cAAc,iBAAiB,gBAAgB,kBAAkB;AAAA,EACvN;AACF;AAGA,SAAS,qBAAqB,MAAM,IAAI,GAAG;AACzC,QAAM,eAAe,CAAC;AACtB,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,MAAM;AACrC,iBAAa,GAAG,IAAI,MAAM;AAAA,EAC5B;AACA,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAMiB,QAAO,KAAK;AAClB,UAAM,aAAaA,MAAK;AACxB,eAAW,aAAa,YAAY;AAClC,YAAM,SAAS,WAAW;AAC1B,UAAI,gBAAgB;AACpB,eAAS,IAAI,GAAG,IAAI,GAAG,QAAQ,KAAK;AAClC,YAAI,aAAa,OAAO,KAAK;AAC3B,UAAAA,MAAK,QAAQ,QAAQ,CAAC,WAAW,aAAa,OAAO,MAAM,IAAI;AAC/D,0BAAgB;AAChB,qBAAWA,MAAK,MAAM;AACtB;AAAA,QACF;AAAA,MACF;AACA,UAAI,eAAe;AACjB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,QAAM,iBAAiB,CAAC;AACxB,iBAAe,EAAE,MAAM;AACvB,QAAM,WAAW,CAAC;AAClB,WAAS,KAAK,KAAK,SAAS,GAAG,MAAM,GAAG,MAAM;AAC5C,UAAMA,QAAO,KAAK;AAClB,UAAM,aAAaA,MAAK;AACxB,aAAS,IAAI,GAAG,IAAIA,MAAK,QAAQ,QAAQ,KAAK;AAC5C,UAAI,eAAeA,MAAK,QAAQ,GAAG,KAAK;AACtC,mBAAW,aAAa,YAAY;AAClC,yBAAe,WAAW,WAAW,MAAM;AAC3C,mBAASA,MAAK,MAAM;AAAA,QACtB;AACA;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAMA,QAAO,KAAK;AAClB,QAAI,WAAWA,MAAK,OAAO,SAASA,MAAK,KAAK;AAC5C,YAAM,eAAe,CAAC;AACtB,iBAAW,aAAaA,MAAK,QAAQ;AACnC,cAAM,YAAYA,MAAK,OAAO;AAC9B,YAAI,aAAa,UAAU,KAAK;AAC9B,uBAAa,aAAa;AAAA,QAC5B;AAAA,MACF;AACA,YAAM,aAAa,OAAO,OAAO,CAAC,GAAGA,KAAI;AACzC,iBAAW,SAAS;AACpB,iBAAW,UAAUA,MAAK;AAC1B,mBAAa,KAAK,UAAU;AAAA,IAC9B;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,uBAAuB,8BAA8B,cAAc,OAAO,MAAM;AACvF,WAAS,KAAK,aAAa,SAAS,GAAG,MAAM,GAAG,MAAM;AACpD,UAAMA,QAAO,aAAa;AAC1B,UAAM,MAAM,CAAC;AACb,IAAAA,MAAK,QAAQ,QAAQ,CAAC,MAAM;AAC1B,YAAM,aAAa,6BAA6B,EAAE;AAClD,UAAI,cAAc,MAAM;AACtB,YAAI,KAAK,UAAU;AAAA,MACrB,OAAO;AACL,YAAI,KAAK,IAAI;AAAA,MACf;AAAA,IACF,CAAC;AACD,QAAIA,MAAK,YAAY,MAAM;AACzB,YAAM,IAAI,MAAM,4DAA4DA,MAAK,aAAa;AAAA,IAChG;AACA,UAAM,iBAAiBA,MAAK,SAAS,GAAG;AACxC,eAAW,aAAaA,MAAK,QAAQ;AACnC,UAAI,EAAE,aAAa,iBAAiB;AAClC,cAAM,IAAI,MAAM,iCAAiC,yCAAyC,OAAO,KAAK,cAAc,IAAI;AAAA,MAC1H;AACA,YAAM,KAAK,MAAM,MAAM,eAAe,WAAW,CAAC;AAClD,UAAI,GAAG,UAAU,WAAW;AAC1B,cAAM,IAAI,MAAM,4BAA4BA,MAAK,qCAAqC,iDAAiD,GAAG,QAAQ;AAAA,MACpJ;AACA,YAAM,IAAIA,MAAK,OAAO;AACtB,UAAI,CAAC,YAAY,GAAG,OAAO,EAAE,KAAK,GAAG;AACnC,cAAM,IAAI,MAAM,4BAA4BA,MAAK,sCAAsC,yBAAyB,GAAG,wDAAwD,EAAE,QAAQ;AAAA,MACvL;AACA,UAAI,6BAA6B,EAAE,OAAO,MAAM;AAC9C,qCAA6B,EAAE,MAAM;AAAA,MACvC,OAAO;AACL,cAAM,cAAc,6BAA6B,EAAE;AACnD,qCAA6B,EAAE,MAAM,KAAK,aAAa,EAAE;AACzD,oBAAY,QAAQ;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,wBAAwB;AAC5B,IAAI,6BAA6B;AACjC,IAAI,wBAAwB;AAC5B,SAAS,eAAe,MAAM,OAAO,OAAO,SAAS;AACnD,QAAMJ,WAAU,eAAe,KAAK;AACpC,QAAM,YAAY,wBAAwB,MAAM,OAAO,OAAOA,QAAO;AACrE,QAAM,OAAO,MAAM;AACnB,QAAM,YAAY,kBAAkB,MAAM,OAAO,OAAOA,UAAS,SAAS;AAC1E,QAAMK,SAAQ,CAAC,QAAQ;AACvB,MAAI,SAAS;AACX,IAAAA,OAAM,KAAK,YAAY,OAAO;AAC9B,IAAAA,OAAM,KAAK,WAAW,MAAM;AAC5B,IAAAA,OAAM,KAAK,aAAa,QAAQ;AAChC,IAAAA,OAAM,KAAK,WAAW;AAAA,EACxB;AACA,EAAAA,OAAM,KAAK,UAAU,IAAI,CAAC,OAAO,SAAS,EAAE,EAAE,KAAK,IAAI,CAAC;AACxD,SAAOA,OAAM,KAAK,IAAI;AACxB;AACA,SAAS,wBAAwB,MAAM,OAAO,OAAOL,UAAS;AAC5D,QAAM,KAAK,cAAc,KAAK;AAC9B,QAAM,UAAUA,SAAQA,SAAQ,SAAS;AACzC,QAAM,YAAY,IAAI,MAAM,OAAO,EAAE,KAAK,CAAC;AAC3C,QAAM,OAAO,MAAM;AACnB,QAAM,iBAAiB,UAAU,cAAc,oBAAoB,IAAI,IAAI;AAC3E,MAAI,OAAO,GAAG;AACZ,aAAS,MAAM,GAAG,MAAM,KAAK,SAAS,OAAO;AAC3C,YAAM,SAAS,MAAM;AACrB,eAAS,IAAI,GAAG,IAAI,SAAS,KAAK;AAChC,kBAAU,KAAK,KAAK,IAAI,UAAU,IAAI,YAAY,eAAe,SAAS,IAAI,GAAG,KAAK,EAAE,MAAM;AAAA,MAChG;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,YAAY,KAAK,MAAM,OAAO;AACrC,MAAI;AACJ,MAAI,MAAM,QAAQ,GAAG,GAAG;AACtB,aAAS,GAAG,WAAW,IAAI,GAAG,QAAQ,qBAAqB,CAAC,OAAO,WAAW,IAAI,GAAG,QAAQ,qBAAqB,CAAC;AAAA,EACrH,WAAW,SAAS,GAAG,GAAG;AACxB,aAAS,IAAI;AAAA,EACf,WAAW,UAAU,QAAQ;AAC3B,aAAS,gBAAgB,GAAG;AAAA,EAC9B,OAAO;AACL,aAAS,WAAW,IAAI,QAAQ,qBAAqB,CAAC,EAAE,SAAS;AAAA,EACnE;AACA,SAAO,SAAS,QAAQ,IAAI;AAC9B;AACA,SAAS,gBAAgB,GAAG;AAC1B,SAAO,MAAM,IAAI,UAAU;AAC7B;AACA,SAAS,kBAAkB,MAAM,OAAO,OAAOA,UAAS,WAAW,SAAS,MAAM;AAChF,QAAM,oBAAoB,UAAU,cAAc,IAAI;AACtD,QAAMb,QAAO,MAAM;AACnB,QAAM,OAAO,MAAM;AACnB,MAAI,SAAS,GAAG;AACd,QAAI,UAAU,aAAa;AACzB,YAAM,eAAe,oBAAoB,IAAI;AAC7C,aAAO,CAAC,YAAY,aAAa,IAAI,GAAG,KAAK,CAAC;AAAA,IAChD;AACA,QAAI,UAAU,QAAQ;AACpB,aAAO,CAAC,gBAAgB,KAAK,EAAE,CAAC;AAAA,IAClC;AACA,WAAO,CAAC,KAAK,GAAG,SAAS,CAAC;AAAA,EAC5B;AACA,MAAI,SAAS,GAAG;AACd,QAAIA,QAAO,uBAAuB;AAChC,YAAM,gBAAgB,6BAA6B;AACnD,UAAI,YAAY,MAAM,KAAK,KAAK,MAAM,GAAG,aAAa,CAAC;AACvD,UAAI,WAAW,MAAM,KAAK,KAAK,OAAOA,QAAO,8BAA8B,mBAAmBA,QAAO,iBAAiB,CAAC;AACvH,UAAI,UAAU,aAAa;AACzB,oBAAY,oBAAoB,SAAS;AACzC,mBAAW,oBAAoB,QAAQ;AAAA,MACzC;AACA,aAAO;AAAA,QACL,MAAM,UAAU,IAAI,CAAC,GAAG,OAAO,YAAY,GAAG,UAAU,KAAK,KAAK,CAAC,EAAE,KAAK,IAAI,IAAI,YAAY,SAAS,IAAI,CAAC,GAAG,OAAO,YAAY,GAAG,UAAUA,QAAO,6BAA6B,KAAK,KAAK,CAAC,EAAE,KAAK,IAAI,IAAI;AAAA,MAC/M;AAAA,IACF;AACA,UAAM,cAAc,UAAU,cAAc,oBAAoB,IAAI,IAAI,MAAM,KAAK,IAAI;AACvF,WAAO;AAAA,MACL,MAAM,YAAY,IAAI,CAAC,GAAG,OAAO,YAAY,GAAG,UAAU,KAAK,KAAK,CAAC,EAAE,KAAK,IAAI,IAAI;AAAA,IACtF;AAAA,EACF;AACA,QAAM,WAAW,MAAM,MAAM,CAAC;AAC9B,QAAM,aAAaa,SAAQ,MAAM,CAAC;AAClC,QAAM,SAASA,SAAQ,KAAK;AAC5B,QAAMK,SAAQ,CAAC;AACf,MAAIlB,QAAO,uBAAuB;AAChC,aAAS,KAAK,GAAG,KAAK,4BAA4B,MAAM;AACtD,YAAM,QAAQ,KAAK;AACnB,YAAM,MAAM,QAAQ;AACpB,MAAAkB,OAAM,KAAK,GAAG,kBAAkB,KAAK,MAAM,OAAO,GAAG,GAAG,UAAU,OAAO,YAAY,WAAW,KAAK,CAAC;AAAA,IACxG;AACA,IAAAA,OAAM,KAAK,KAAK;AAChB,aAAS,KAAKlB,QAAO,4BAA4B,KAAKA,OAAM,MAAM;AAChE,YAAM,QAAQ,KAAK;AACnB,YAAM,MAAM,QAAQ;AACpB,MAAAkB,OAAM,KAAK,GAAG,kBAAkB,KAAK,MAAM,OAAO,GAAG,GAAG,UAAU,OAAO,YAAY,WAAW,OAAOlB,QAAO,CAAC,CAAC;AAAA,IAClH;AAAA,EACF,OAAO;AACL,aAAS,KAAK,GAAG,KAAKA,OAAM,MAAM;AAChC,YAAM,QAAQ,KAAK;AACnB,YAAM,MAAM,QAAQ;AACpB,MAAAkB,OAAM,KAAK,GAAG,kBAAkB,KAAK,MAAM,OAAO,GAAG,GAAG,UAAU,OAAO,YAAY,WAAW,OAAOlB,QAAO,CAAC,CAAC;AAAA,IAClH;AAAA,EACF;AACA,QAAM,MAAM,SAAS,IAAI,MAAM;AAC/B,EAAAkB,OAAM,KAAK,MAAMA,OAAM,KAAK;AAC5B,WAAS,KAAK,GAAG,KAAKA,OAAM,SAAS,GAAG,MAAM;AAC5C,IAAAA,OAAM,MAAM,MAAMA,OAAM,MAAM;AAAA,EAChC;AACA,MAAI,aAAa;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,kBAAc;AAAA,EAChB;AACA,EAAAA,OAAMA,OAAM,SAAS,KAAK,MAAMA,OAAMA,OAAM,SAAS,KAAK,OAAO,SAAS,KAAK;AAC/E,SAAOA;AACT;AACA,SAAS,oBAAoB,MAAM;AACjC,QAAM,gBAAgB,CAAC;AACvB,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM,GAAG;AAC1C,kBAAc,KAAK,CAAC,KAAK,KAAK,KAAK,KAAK,EAAE,CAAC;AAAA,EAC7C;AACA,SAAO;AACT;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO,OAAO,QAAQ;AAChC,SAAK,QAAQ;AACb,SAAK,QAAQ,MAAM,MAAM;AACzB,SAAK,OAAO,cAAc,KAAK;AAC/B,QAAI,UAAU,MAAM;AAClB,YAAM,KAAK,OAAO;AAClB,aAAO,OAAO,KAAK,MAAM,MAAM,qBAAqB,sDAAsD,KAAK,QAAQ;AAAA,IACzH;AACA,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,4JAA4J;AAAA,IAC9K;AACA,SAAK,SAAS,UAAU,kBAAkB,OAAO,KAAK,IAAI;AAC1D,SAAK,UAAU,eAAe,KAAK;AAAA,EACrC;AAAA,EACA,IAAI,UAAU,MAAM;AAClB,QAAI,KAAK,WAAW,GAAG;AACrB,aAAO,CAAC,CAAC;AAAA,IACX;AACA,WAAO,KAAK,WAAW,KAAK,MAAM,MAAM,uCAAuC,KAAK,gCAAgC,KAAK,OAAO;AAChI,UAAMR,SAAQ,KAAK,WAAW,IAAI;AAClC,SAAK,OAAOA,UAAS;AAAA,EACvB;AAAA,EACA,OAAO,MAAM;AACX,QAAI,KAAK,WAAW,GAAG;AACrB,aAAO,CAAC,CAAC;AAAA,IACX;AACA,QAAI,KAAK;AACT,eAAW,OAAO,MAAM;AACtB,UAAI,MAAM,KAAK,OAAO,KAAK,MAAM,KAAK;AACpC,cAAM,MAAM,qCAAqC,wBAAwB,KAAK;AAC9E,cAAM,IAAI,MAAM,GAAG;AAAA,MACrB;AACA;AAAA,IACF;AACA,QAAIA,SAAQ,KAAK,KAAK,SAAS;AAC/B,aAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,MAAAA,UAAS,KAAK,QAAQ,MAAM,KAAK;AAAA,IACnC;AACA,WAAO,KAAK,OAAOA;AAAA,EACrB;AAAA,EACA,WAAW,MAAM;AACf,QAAI,KAAK,SAAS,GAAG;AACnB,aAAO;AAAA,IACT,WAAW,KAAK,SAAS,GAAG;AAC1B,aAAO,KAAK;AAAA,IACd;AACA,QAAIA,SAAQ,KAAK,KAAK,SAAS;AAC/B,aAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,MAAAA,UAAS,KAAK,QAAQ,MAAM,KAAK;AAAA,IACnC;AACA,WAAOA;AAAA,EACT;AAAA,EACA,WAAWA,QAAO;AAChB,QAAI,KAAK,SAAS,GAAG;AACnB,aAAO,CAAC;AAAA,IACV,WAAW,KAAK,SAAS,GAAG;AAC1B,aAAO,CAACA,MAAK;AAAA,IACf;AACA,UAAM,OAAO,IAAI,MAAM,KAAK,MAAM,MAAM;AACxC,aAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,WAAK,MAAM,KAAK,MAAMA,SAAQ,KAAK,QAAQ,GAAG;AAC9C,MAAAA,UAAS,KAAK,MAAM,KAAK,QAAQ;AAAA,IACnC;AACA,SAAK,KAAK,SAAS,KAAKA;AACxB,WAAO;AAAA,EACT;AAAA,EACA,IAAI,OAAO;AACT,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,WAAW;AACT,WAAO,UAAU,EAAE,WAAW,KAAK,QAAQ,KAAK,OAAO,KAAK,KAAK;AAAA,EACnE;AACF;AACA,IAAI,YAAY;AAChB,IAAI,YAAY;AAChB,IAAI,uBAAuB;AAC3B,SAAS,iBAAiB,IAAI;AAC5B,cAAY;AACd;AACA,SAAS,aAAa,SAAS;AAC7B,cAAY;AACd;AACA,SAAS,wBAAwB,IAAI;AACnC,yBAAuB;AACzB;AACA,IAAI,SAAS,MAAM;AAAA,EACjB,YAAY,OAAO,OAAO,QAAQ,IAAI;AACpC,SAAK,OAAO;AACZ,SAAK,qBAAqB;AAC1B,SAAK,QAAQ,MAAM,MAAM;AACzB,SAAK,QAAQ,SAAS;AACtB,SAAK,OAAO,cAAc,KAAK;AAC/B,SAAK,UAAU,eAAe,KAAK;AACnC,SAAK,SAAS;AACd,SAAK,KAAK;AACV,SAAK,WAAW,KAAK,OAAO,IAAI,KAAK,KAAK,SAAS,IAAI;AAAA,EACzD;AAAA,EACA,IAAI,OAAO;AACT,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,MAAM,SAAS;AACb,UAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,WAAO,UAAU,OAAO,KAAK,OAAO,KAAK,OAAO,IAAI;AAAA,EACtD;AAAA,EACA,aAAa;AACX,WAAO,UAAU,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,SAAS,CAAC;AAAA,EACjE;AAAA,EACA,MAAM,QAAQ;AACZ,UAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,WAAO,cAAc,KAAK,OAAO,MAAM,KAAK,UAAU,WAAW;AAAA,EACnE;AAAA,EACA,YAAY;AACV,WAAO,cAAc,KAAK,OAAO,KAAK,SAAS,GAAG,KAAK,UAAU,WAAW;AAAA,EAC9E;AAAA,EACA,MAAM,OAAO;AACX,SAAK,gBAAgB;AACrB,UAAM,OAAO,UAAU,EAAE,KAAK,KAAK,MAAM;AACzC,QAAI,KAAK,UAAU,UAAU;AAC3B,YAAM,QAAQ,MAAM;AACpB,UAAI;AACF,eAAO,MAAM,IAAI,CAAC,MAAM,aAAa,CAAC,CAAC;AAAA,MACzC,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,+FAA+F;AAAA,MACjH;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,UAAUJ,UAAS;AACjB,SAAK,gBAAgB;AACrB,WAAO,UAAU,EAAE,UAAU,KAAK,QAAQA,QAAO;AAAA,EACnD;AAAA,EACA,WAAW;AACT,SAAK,gBAAgB;AACrB,UAAM,OAAO,UAAU,EAAE,SAAS,KAAK,MAAM;AAC7C,QAAI,KAAK,UAAU,UAAU;AAC3B,UAAI;AACF,eAAO,KAAK,IAAI,CAAC,MAAM,aAAa,CAAC,CAAC;AAAA,MACxC,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,+FAA+F;AAAA,MACjH;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ;AACZ,SAAK,gBAAgB;AACrB,UAAM,OAAO,MAAM,UAAU,EAAE,KAAK,KAAK,MAAM;AAC/C,QAAI,KAAK,UAAU,UAAU;AAC3B,aAAO;AAAA,IACT,OAAO;AACL,aAAO,IAAI,WAAW,KAAK,MAAM;AAAA,IACnC;AAAA,EACF;AAAA,EACA,UAAU;AACR,QAAI,KAAK,YAAY;AACnB;AAAA,IACF;AACA,cAAU,EAAE,cAAc,IAAI;AAC9B,SAAK,qBAAqB;AAAA,EAC5B;AAAA,EACA,IAAI,aAAa;AACf,WAAO,KAAK;AAAA,EACd;AAAA,EACA,kBAAkB;AAChB,QAAI,KAAK,YAAY;AACnB,YAAM,IAAI,MAAM,qBAAqB;AAAA,IACvC;AAAA,EACF;AAAA,EACA,MAAM,UAAU,OAAO;AACrB,WAAO,UAAU,MAAM,MAAM,OAAO;AAAA,EACtC;AAAA,EACA,QAAQ;AACN,SAAK,gBAAgB;AACrB,WAAO,UAAU,MAAM,IAAI;AAAA,EAC7B;AAAA,EACA,SAAS,UAAU,OAAO;AACxB,UAAM,OAAO,KAAK,SAAS;AAC3B,WAAO,eAAe,MAAM,KAAK,OAAO,KAAK,OAAO,OAAO;AAAA,EAC7D;AAAA,EACA,KAAK,OAAO;AACV,SAAK,gBAAgB;AACrB,WAAO,UAAU,KAAK,MAAM,KAAK;AAAA,EACnC;AAAA,EACA,SAAS,YAAY,MAAM,MAAM,OAAO;AACtC,SAAK,gBAAgB;AACrB,WAAO,UAAU,EAAE,aAAa,MAAM,WAAW,MAAM,KAAK;AAAA,EAC9D;AACF;AACA,OAAO,eAAe,QAAQ,OAAO,aAAa;AAAA,EAChD,OAAO,CAACE,cAAa;AACnB,WAAO,CAAC,CAACA,aAAYA,UAAS,QAAQ,QAAQA,UAAS,YAAY,QAAQA,UAAS,mBAAmB;AAAA,EACzG;AACF,CAAC;AACD,SAAS,uBAAuB;AAC9B,SAAO,UAAU,UAAU,MAAM;AAC/B,WAAO;AAAA,EACT,CAAC;AACH;AACA,qBAAqB;AACrB,IAAI,WAAW,cAAc,OAAO;AAAA,EAClC,YAAY,cAAc,WAAW,MAAM,UAAU;AACnD,UAAM,aAAa,OAAO,aAAa,OAAO,aAAa,QAAQ,QAAQ;AAC3E,SAAK,YAAY;AACjB,SAAK,OAAO;AAAA,EACd;AAAA,EACA,OAAO,UAAU;AACf,QAAI,SAAS,UAAU,KAAK,OAAO;AACjC,YAAM,IAAI,MAAM,2BAA2B,SAAS,8BAA8B,KAAK,mBAAmB;AAAA,IAC5G;AACA,QAAI,CAAC,YAAY,SAAS,OAAO,KAAK,KAAK,GAAG;AAC5C,YAAM,IAAI,MAAM,2BAA2B,SAAS,8BAA8B,KAAK,mBAAmB;AAAA,IAC5G;AACA,cAAU,EAAE,cAAc,IAAI;AAC9B,SAAK,SAAS,SAAS;AACvB,cAAU,EAAE,OAAO,MAAM,IAAI;AAAA,EAC/B;AAAA,EACA,UAAU;AACR,cAAU,EAAE,gBAAgB,IAAI;AAChC,SAAK,qBAAqB;AAAA,EAC5B;AACF;AACA,OAAO,eAAe,UAAU,OAAO,aAAa;AAAA,EAClD,OAAO,CAACA,cAAa;AACnB,WAAOA,qBAAoB,UAAUA,UAAS,UAAU,QAAQA,UAAS,kBAAkB;AAAA,EAC7F;AACF,CAAC;AAGD,IAAI,sBAAsB,CAAC;AAC3BX,UAAS,qBAAqB;AAAA,EAC5B,kBAAkB,MAAM;AAAA,EACxB,uBAAuB,MAAM;AAAA,EAC7B,gBAAgB,MAAM;AAAA,EACtB,gBAAgB,MAAM;AACxB,CAAC;AAGD,IAAI;AAAA,CACH,SAAS,OAAO;AACf,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AAChB,GAAG,SAAS,OAAO,CAAC,EAAE;AACtB,IAAI;AAAA,CACH,SAAS,oBAAoB;AAC5B,qBAAmB,aAAa;AAChC,qBAAmB,WAAW;AAC9B,qBAAmB,UAAU;AAC7B,qBAAmB,eAAe;AACpC,GAAG,sBAAsB,oBAAoB,CAAC,EAAE;AAChD,IAAI;AAAA,CACH,SAAS,mBAAmB;AAC3B,oBAAkB,aAAa;AAC/B,oBAAkB,WAAW;AAC7B,oBAAkB,UAAU;AAC5B,oBAAkB,eAAe;AACnC,GAAG,qBAAqB,mBAAmB,CAAC,EAAE;AAC9C,IAAI;AAAA,CACH,SAAS,sBAAsB;AAC9B,uBAAqB,aAAa;AAClC,uBAAqB,WAAW;AAChC,uBAAqB,UAAU;AAC/B,uBAAqB,eAAe;AACtC,GAAG,wBAAwB,sBAAsB,CAAC,EAAE;AACpD,IAAI;AAAA,CACH,SAAS,wBAAwB;AAChC,yBAAuB,aAAa;AACpC,yBAAuB,WAAW;AAClC,yBAAuB,UAAU;AACjC,yBAAuB,eAAe;AACxC,GAAG,0BAA0B,wBAAwB,CAAC,EAAE;AACxD,IAAI,gBAAgB;AAAA,EAClB,WAAW;AAAA,EACX,SAAS;AAAA,EACT,QAAQ;AAAA,EACR,aAAa;AACf;AACA,SAAS,WAAW,OAAO,OAAO;AAChC,MAAI,UAAU,YAAY,UAAU,UAAU;AAC5C,QAAI,UAAU,YAAY,UAAU,UAAU;AAC5C,aAAO;AAAA,IACT;AACA,UAAM,IAAI,MAAM,kBAAkB,cAAc,OAAO;AAAA,EACzD;AACA,SAAO,cAAc,OAAO;AAC9B;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,WAAW,MAAM,OAAO;AACjC;AAGA,SAAS,eAAe,GAAG,GAAG;AAC5B,MAAI,EAAE,UAAU,EAAE,OAAO;AACvB,WAAO,CAAC,GAAG,CAAC;AAAA,EACd;AACA,QAAM,QAAQ,WAAW,EAAE,OAAO,EAAE,KAAK;AACzC,SAAO,CAAC,EAAE,KAAK,KAAK,GAAG,EAAE,KAAK,KAAK,CAAC;AACtC;AACA,SAAS,iBAAiB,GAAG,GAAG;AAC9B,SAAO,EAAE,UAAU,EAAE,OAAO,MAAM,2BAA2B,EAAE,qBAAqB,EAAE,yBAAyB;AACjH;AACA,SAAS,eAAe,SAAS,YAAY;AAC3C,SAAO,WAAW,KAAK,CAAC,MAAM,EAAE,OAAO,QAAQ,EAAE;AACnD;AACA,SAAS,sBAAsB,QAAQ;AACrC,QAAM,OAAO,CAAC;AACd,QAAM,OAAuB,oBAAI,IAAI;AACrC,sBAAoB,QAAQ,MAAM,IAAI;AACtC,SAAO;AACT;AACA,SAAS,oBAAoB,WAAW,MAAM,MAAM;AAClD,MAAI,aAAa,MAAM;AACrB;AAAA,EACF;AACA,MAAI,qBAAqB,QAAQ;AAC/B,SAAK,KAAK,SAAS;AACnB;AAAA,EACF;AACA,MAAI,CAAC,WAAW,SAAS,GAAG;AAC1B;AAAA,EACF;AACA,QAAM,WAAW;AACjB,aAAW,KAAK,UAAU;AACxB,UAAM,MAAM,SAAS;AACrB,QAAI,CAAC,KAAK,IAAI,GAAG,GAAG;AAClB,WAAK,IAAI,GAAG;AACZ,0BAAoB,KAAK,MAAM,IAAI;AAAA,IACrC;AAAA,EACF;AACF;AACA,SAAS,WAAW,KAAK;AACvB,SAAO,MAAM,QAAQ,GAAG,KAAK,OAAO,QAAQ;AAC9C;AAGA,SAAS,6BAA6B,kBAAkB;AACtD,SAAO,iBAAiB,cAAc;AACxC;AACA,IAAI,cAAc,MAAM;AAAA,EACtB,cAAc;AACZ,SAAK,sBAAsB,CAAC;AAC5B,SAAK,iBAAiB;AACtB,SAAK,WAAW;AAChB,SAAK,aAAa;AAClB,SAAK,mBAAmB;AACxB,SAAK,iBAAiB;AACtB,SAAK,gBAAgB;AACrB,SAAK,cAAc;AACnB,SAAK,aAAa,CAAC;AACnB,SAAK,oBAAoB,CAAC;AAC1B,SAAK,cAAc;AACnB,SAAK,aAA6B,oBAAI,QAAQ;AAC9C,SAAK,YAAY;AACjB,SAAK,gBAAgB;AAAA,MACnB,UAAU;AAAA,MACV,YAAY;AAAA,MACZ,WAAW;AAAA,MACX,SAAS,CAAC;AAAA,MACV,QAAQ;AAAA,MACR,IAAI,cAAc;AAChB,eAAO,MAAM,KAAK,IAAI,IAAI,KAAK,QAAQ,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC;AAAA,MAC5D;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU;AACR,eAAW,gBAAgB,KAAK,qBAAqB;AACnD,WAAK,oBAAoB,cAAc,QAAQ;AAAA,IACjD;AAAA,EACF;AACF;AACA,IAAI,SAAS,MAAM;AAAA,EACjB,YAAY,MAAM;AAChB,SAAK,MAAM;AACX,SAAK,WAAW,CAAC;AACjB,SAAK,kBAAkB,CAAC;AACxB,SAAK,uBAAuB;AAC5B,SAAK,QAAQ,IAAI,YAAY;AAAA,EAC/B;AAAA,EACA,MAAM,QAAQ;AACZ,QAAI,KAAK,sBAAsB,MAAM;AACnC,aAAO,KAAK,mBAAmB,KAAK,MAAM;AAAA,MAC1C,CAAC;AAAA,IACH;AACA,QAAI,KAAK,mBAAmB,MAAM;AAChC;AAAA,IACF;AACA,UAAM,iBAAiB,KAAK,kBAAkB;AAC9C,aAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,YAAM,cAAc,eAAe;AACnC,YAAM,UAAU,MAAM,KAAK,kBAAkB,WAAW,EAAE;AAC1D,UAAI,SAAS;AACX,cAAM,KAAK,WAAW,WAAW;AACjC;AAAA,MACF;AAAA,IACF;AACA,UAAM,IAAI,MAAM,wEAAwE;AAAA,EAC1F;AAAA,EACA,IAAI,UAAU;AACZ,QAAI,KAAK,sBAAsB,MAAM;AACnC,YAAM,IAAI,MAAM,YAAY,KAAK,gIAAgI;AAAA,IACnK;AACA,QAAI,KAAK,mBAAmB,MAAM;AAChC,YAAM,EAAE,MAAM,UAAU,IAAI,KAAK,gCAAgC;AACjE,UAAI,WAAW;AACb,cAAM,IAAI,MAAM,iCAAiC,yHAAyH;AAAA,MAC5K;AACA,WAAK,WAAW,IAAI;AAAA,IACtB;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,eAAe;AACb,WAAO,OAAO,KAAK,KAAK,eAAe;AAAA,EACzC;AAAA,EACA,YAAY,aAAa;AACvB,QAAI,EAAE,eAAe,KAAK,WAAW;AACnC,UAAI,eAAe,KAAK,iBAAiB;AACvC,cAAM,EAAE,UAAU,IAAI,KAAK,kBAAkB,WAAW;AACxD,YAAI,WAAW;AACb,iBAAO;AAAA,QACT;AAAA,MACF,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF;AACA,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,mBAAmB,aAAa;AAC9B,QAAI,EAAE,eAAe,KAAK,kBAAkB;AAC1C,aAAO;AAAA,IACT;AACA,WAAO,KAAK,gBAAgB,aAAa;AAAA,EAC3C;AAAA,EACA,gBAAgB,aAAa,SAAS,WAAW,GAAG;AAClD,QAAI,eAAe,KAAK,iBAAiB;AACvC,WAAK,GAAG,+EAA+E;AACvF,aAAO;AAAA,IACT;AACA,SAAK,gBAAgB,eAAe,EAAE,SAAS,SAAS;AACxD,WAAO;AAAA,EACT;AAAA,EACA,MAAM,WAAW,aAAa;AAC5B,QAAI,KAAK,gBAAgB,gBAAgB,MAAM;AAC7C,YAAM,IAAI,MAAM,iBAAiB,oCAAoC;AAAA,IACvE;AACA,SAAK,cAAc;AACnB,QAAI,KAAK,SAAS,gBAAgB,MAAM;AACtC,WAAK,kBAAkB;AACvB,YAAM,EAAE,SAAS,UAAU,IAAI,KAAK,kBAAkB,WAAW;AACjE,YAAM,SAAS,YAAY,MAAM,UAAU;AAC3C,UAAI,CAAC,QAAQ;AACX,eAAO;AAAA,MACT;AAAA,IACF;AACA,SAAK,kBAAkB,KAAK,SAAS;AACrC,SAAK,uBAAuB;AAC5B,SAAK,WAAW,IAAI,SAAS,KAAK,eAAe;AACjD,WAAO;AAAA,EACT;AAAA,EACA,yBAAyB;AACvB,UAAM,UAAU,qBAAqB,KAAK,WAAW;AACrD,YAAQ,QAAQ,CAAC,WAAW;AAC1B,UAAI,OAAO,aAAa,MAAM;AAC5B,eAAO,UAAU,KAAK,eAAe;AAAA,MACvC;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB,aAAa;AACpC,UAAM,UAAU,qBAAqB,WAAW;AAChD,YAAQ,QAAQ,CAAC,WAAW;AAC1B,UAAI,OAAO,eAAe,MAAM;AAC9B,eAAO,YAAY,KAAK,SAAS,YAAY;AAAA,MAC/C;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,kBAAkB,aAAa;AAC7B,UAAM,uBAAuB,KAAK,gBAAgB;AAClD,QAAI,wBAAwB,MAAM;AAChC,YAAM,IAAI,MAAM,6BAA6B,qCAAqC;AAAA,IACpF;AACA,QAAI;AACF,YAAM,WAAW,qBAAqB,QAAQ;AAC9C,UAAI,YAAY,EAAE,oBAAoB,kBAAkB,OAAO,SAAS,SAAS,YAAY;AAC3F,cAAM,YAAY,EAAE,KAAK;AACzB,cAAM,UAAU,SAAS,KAAK,CAAC,oBAAoB;AACjD,cAAI,YAAY,KAAK,sBAAsB;AACzC,mBAAO;AAAA,UACT;AACA,eAAK,SAAS,eAAe;AAC7B,eAAK,qBAAqB;AAC1B,iBAAO;AAAA,QACT,CAAC,EAAE,MAAM,CAAC,QAAQ;AAChB,cAAI,YAAY,KAAK,sBAAsB;AACzC,mBAAO;AAAA,UACT;AACA,eAAK,qBAAqB;AAC1B,eAAK,6BAA6B,oBAAoB;AACtD,eAAK,IAAI,SAAS,IAAI,OAAO;AAC7B,iBAAO;AAAA,QACT,CAAC;AACD,aAAK,qBAAqB;AAC1B,eAAO,EAAE,SAAS,WAAW,KAAK;AAAA,MACpC,OAAO;AACL,aAAK,SAAS,eAAe;AAC7B,eAAO,EAAE,SAAS,MAAM,WAAW,MAAM;AAAA,MAC3C;AAAA,IACF,SAAS,KAAP;AACA,WAAK,6BAA6B,oBAAoB;AACtD,WAAK,IAAI,SAAS,IAAI,OAAO;AAC7B,aAAO,EAAE,SAAS,OAAO,WAAW,MAAM;AAAA,IAC5C;AAAA,EACF;AAAA,EACA,cAAc,aAAa;AACzB,QAAI,EAAE,eAAe,KAAK,kBAAkB;AAC1C,YAAM,IAAI,MAAM,GAAG,2CAA2C;AAAA,IAChE;AACA,QAAI,KAAK,gBAAgB,eAAe,KAAK,sBAAsB,MAAM;AACvE,WAAK;AAAA,IACP;AACA,QAAI,eAAe,KAAK,UAAU;AAChC,WAAK,yBAAyB,WAAW;AACzC,WAAK,SAAS,aAAa,QAAQ;AACnC,aAAO,KAAK,SAAS;AAAA,IACvB;AACA,WAAO,KAAK,gBAAgB;AAC5B,QAAI,KAAK,gBAAgB,aAAa;AACpC,WAAK,qBAAqB;AAC1B,WAAK,cAAc;AACnB,WAAK,kBAAkB;AAAA,IACzB;AAAA,EACF;AAAA,EACA,oBAAoB;AAClB,QAAI,OAAO,KAAK,KAAK,eAAe,EAAE,WAAW,GAAG;AAClD,YAAM,IAAI,MAAM,+BAA+B;AAAA,IACjD;AACA,WAAO,OAAO,KAAK,KAAK,eAAe,EAAE,KAAK,CAAC,GAAG,MAAM;AACtD,aAAO,KAAK,gBAAgB,GAAG,WAAW,KAAK,gBAAgB,GAAG;AAAA,IACpE,CAAC;AAAA,EACH;AAAA,EACA,kCAAkC;AAChC,UAAM,iBAAiB,KAAK,kBAAkB;AAC9C,aAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,YAAM,cAAc,eAAe;AACnC,YAAM,EAAE,SAAS,UAAU,IAAI,KAAK,kBAAkB,WAAW;AACjE,UAAI,aAAa,SAAS;AACxB,eAAO,EAAE,MAAM,aAAa,UAAU;AAAA,MACxC;AAAA,IACF;AACA,UAAM,IAAI,MAAM,wEAAwE;AAAA,EAC1F;AAAA,EACA,SAAS,UAAU,QAAQ;AACzB,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,UAAM,aAAa,KAAK;AACxB,UAAM,SAAS,KAAK,SAAS,MAAM;AACnC,UAAM,WAAW,WAAW,SAAS,MAAM;AAC3C,eAAW,YAAY,QAAQ,IAAI;AACnC,SAAK,UAAU;AACf,aAAS,KAAK,QAAQ,QAAQ,KAAK,OAAO,KAAK,OAAO,QAAQ;AAC9D,QAAI,KAAK,uBAAuB,GAAG;AACjC,WAAK,MAAM,kBAAkB,KAAK,MAAM,kBAAkB,SAAS;AAAA,IACrE;AAAA,EACF;AAAA,EACA,KAAK,UAAU,IAAI;AACjB,QAAI,OAAO;AACX,QAAI,MAAM,MAAM;AACd,UAAI,OAAO,aAAa,YAAY;AAClC,cAAM,IAAI,MAAM,qCAAqC;AAAA,MACvD;AACA,WAAK;AAAA,IACP,OAAO;AACL,UAAI,OAAO,aAAa,YAAY,EAAE,oBAAoB,SAAS;AACjE,cAAM,IAAI,MAAM,gFAAgF;AAAA,MAClG;AACA,UAAI,OAAO,OAAO,YAAY;AAC5B,cAAM,IAAI,MAAM,gFAAgF;AAAA,MAClG;AACA,aAAO;AAAA,IACT;AACA,QAAI;AACJ,WAAO,KAAK,UAAU,MAAM,KAAK,WAAW,IAAI,GAAG,MAAM,KAAK,SAAS,MAAM,GAAG,MAAM;AACpF,eAAS,GAAG;AACZ,UAAI,kBAAkB,SAAS;AAC7B,gBAAQ,MAAM,yCAAyC;AAAA,MACzD;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,UAAU,OAAO,KAAK,GAAG;AACvB,UAAM;AACN,QAAI;AACF,YAAM,MAAM,EAAE;AACd,UAAI;AACJ,aAAO;AAAA,IACT,SAAS,IAAP;AACA,UAAI;AACJ,YAAM;AAAA,IACR;AAAA,EACF;AAAA,EACA,eAAe;AACb,WAAO,OAAO;AAAA,EAChB;AAAA,EACA,iBAAiB;AACf,WAAO,OAAO;AAAA,EAChB;AAAA,EACA,MAAM,GAAG;AACP,UAAM,IAAI,OAAO,UAAU,UAAU,EAAE,EAAE,CAAC;AAC1C,UAAM,SAAS,EAAE,EAAE;AACnB,UAAM,QAAQ,CAAC,QAAQ;AAAA,MACrB,GAAG,MAAM;AACP,cAAM,QAAQ;AACd,cAAM,aAAa,EAAE,GAAG,GAAG;AAC3B,cAAM,QAAQ,EAAE,MAAM;AACtB,eAAO,OAAO;AAAA,UACZ;AAAA,UACA;AAAA,UACA;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,QAAQ,CAAC;AACf,SAAK,YAAY,KAAK,MAAM,YAAY,MAAM,QAAQ,CAAC,CAAC,GAAG,OAAO,OAAO,CAAC,CAAC;AAC3E,WAAO;AAAA,EACT;AAAA,EACA,UAAU,YAAY,QAAQ,OAAO;AACnC,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK;AAAA,IACP;AACA,UAAM,YAAY,UAAU,YAAY,KAAK,WAAW,KAAK;AAC7D,QAAI,CAAC,WAAW;AACd,YAAM,IAAI,MAAM,WAAW,2CAA2C,KAAK,cAAc;AAAA,IAC3F;AACA,WAAO,KAAK,cAAc,EAAE,YAAY,QAAQ,MAAM,CAAC;AAAA,EACzD;AAAA,EACA,yBAAyB;AACvB,WAAO,KAAK,IAAI,QAAQ,SAAS;AAAA,EACnC;AAAA,EACA,sBAAsB,YAAY,kBAAkB,UAAU;AAC5D,UAAM,kBAAkB,KAAK,QAAQ,WAAW;AAChD,QAAI,mBAAmB;AACvB,aAAS,QAAQ,CAAC,SAAS;AACzB,0BAAoB,KAAK,UAAU,cAAc,IAAI;AAAA,IACvD,CAAC;AACD,UAAM,WAAW,KAAK,MAAM,kBAAkB,KAAK,MAAM,kBAAkB,SAAS;AACpF,UAAM,gBAAgB,kBAAkB,mBAAmB,mBAAmB;AAC9E,QAAI,gBAAgB,GAAG;AACrB,YAAM,IAAI,MAAM,YAAY,KAAK,6CAA6C,0CAA0C,aAAa;AAAA,IACvI;AAAA,EACF;AAAA,EACA,cAAc,cAAc;AAC1B,QAAI;AACJ,QAAI,QAAQ,CAAC;AACb,UAAM,WAAW,KAAK,SAAS;AAC/B,UAAM,oBAAoB,KAAK,MAAM;AACrC,UAAM,qBAAqB,KAAK,MAAM;AACtC,QAAI,KAAK,uBAAuB,GAAG;AACjC,WAAK,MAAM,kBAAkB,KAAK,CAAC;AAAA,IACrC;AACA,QAAI;AACJ,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK;AAAA,IACP;AACA,QAAI;AACJ,UAAM,oBAAoB,6BAA6B,YAAY,IAAI,aAAa,aAAa,KAAK,MAAM,eAAe,OAAO,KAAK,MAAM,YAAY,OAAO;AAChK,QAAI,6BAA6B,YAAY,GAAG;AAC9C,YAAM,EAAE,YAAY,QAAQ,SAAS,OAAO,OAAO,IAAI;AACvD,UAAI,KAAK,eAAe,MAAM;AAC5B,aAAK;AAAA,MACP;AACA,YAAM,SAAS,UAAU,YAAY,KAAK,WAAW;AACrD,aAAO,UAAU,MAAM,MAAM,kCAAkC,4BAA4B,KAAK,cAAc;AAC9G,oBAAc,MAAM;AAClB,cAAM,mBAAmB,KAAK,QAAQ,WAAW;AACjD,cAAM,OAAO,WAAW,EAAE,QAAQ,SAAS,OAAO,QAAQ,SAAS,KAAK,QAAQ,CAAC;AACjF,cAAM,WAAW,MAAM,QAAQ,GAAG,IAAI,MAAM,CAAC,GAAG;AAChD,YAAI,KAAK,uBAAuB,GAAG;AACjC,eAAK,sBAAsB,YAAY,kBAAkB,QAAQ;AAAA,QACnE;AACA,cAAM,aAAa,SAAS,IAAI,CAAC,YAAY;AAC3C,cAAI,QAAQ,QAAQ,MAAM;AACxB,mBAAO;AAAA,UACT;AACA,iBAAO,KAAK,yBAAyB,OAAO;AAAA,QAC9C,CAAC;AACD,YAAI,UAAU;AACZ,gBAAM,gBAAgB,KAAK,sBAAsB,YAAY,SAAS,UAAU;AAChF,kBAAQ,KAAK,2BAA2B,aAAa;AAAA,QACvD;AACA,eAAO;AAAA,MACT;AAAA,IACF,OAAO;AACL,YAAM,EAAE,YAAY,IAAI;AACxB,YAAM,WAAW,CAAC,YAAY;AAC5B,YAAI,CAAC,UAAU;AACb;AAAA,QACF;AACA,gBAAQ,QAAQ,IAAI,CAAC,YAAY,KAAK,KAAK,KAAK,MAAM,OAAO,CAAC,CAAC;AAAA,MACjE;AACA,oBAAc,MAAM;AAClB,cAAM,mBAAmB,KAAK,QAAQ,WAAW;AACjD,cAAM,KAAK,KAAK,MAAM,YAAY,KAAK,SAAS,QAAQ,CAAC;AACzD,cAAM,OAAO,MAAM,QAAQ,GAAG,IAAI,MAAM,CAAC,GAAG;AAC5C,YAAI,KAAK,uBAAuB,GAAG;AACjC,eAAK,sBAAsB,mBAAmB,kBAAkB,IAAI;AAAA,QACtE;AACA,eAAO;AAAA,MACT;AAAA,IACF;AACA,UAAM,EAAE,QAAQ,MAAM,IAAI;AAC1B,UAAM,gBAAgB,6BAA6B,YAAY,IAAI,OAAO,aAAa;AACvF,QAAI;AACJ,SAAK;AAAA,MACH,MAAM,KAAK,MAAM;AAAA,MACjB,MAAM,KAAK,MAAM;AAAA,MACjB,MAAM;AACJ,YAAI,CAAC,KAAK,IAAI,QAAQ,OAAO,KAAK,CAAC,KAAK,MAAM,WAAW;AACvD,oBAAU,YAAY;AAAA,QACxB,OAAO;AACL,0BAAgB,KAAK,SAAS,cAAc,mBAAmB,QAAQ,MAAM,YAAY,CAAC;AAC1F,cAAI,KAAK,IAAI,QAAQ,OAAO,GAAG;AAC7B,iBAAK,SAAS,iBAAiB,aAAa;AAAA,UAC9C;AACA,oBAAU,cAAc;AAAA,QAC1B;AAAA,MACF;AAAA,IACF;AACA,QAAI,UAAU;AACZ,WAAK,YAAY,mBAAmB,QAAQ,SAAS,eAAe,OAAO,KAAK;AAAA,IAClF;AACA,QAAI,KAAK,MAAM,WAAW;AACxB,WAAK,MAAM,cAAc,QAAQ,KAAK;AAAA,QACpC,MAAM;AAAA,QACN,YAAY,KAAK,MAAM,WAAW;AAAA,QAClC,oBAAoB,KAAK,MAAM;AAAA,QAC/B,cAAc,KAAK,MAAM,aAAa;AAAA,QACtC,sBAAsB,KAAK,MAAM;AAAA,QACjC,aAAa,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,QAAQ,OAAO,QAAQ,OAAO,OAAO,KAAK,QAAQ,IAAI;AAAA,QAC5F,cAAc,QAAQ,IAAI,CAAC,SAAS,KAAK,KAAK;AAAA,QAC9C,cAAc,cAAc;AAAA,QAC5B,WAAW,cAAc;AAAA,MAC3B,CAAC;AAAA,IACH;AACA,WAAO,MAAM,QAAQ,GAAG,IAAI,UAAU,QAAQ;AAAA,EAChD;AAAA,EACA,2BAA2B,SAAS;AAClC,UAAM,QAAQ,QAAQ,IAAI,CAAC,YAAY,KAAK,KAAK,KAAK,MAAM,OAAO,CAAC,CAAC;AACrE,WAAO;AAAA,EACT;AAAA,EACA,sBAAsB,YAAY,QAAQ,SAAS;AACjD,UAAM,aAAa,YAAY,UAAU;AACzC,QAAI,cAAc,MAAM;AACtB,YAAM,eAAe,WAAW,gBAAgB,CAAC;AACjD,YAAM,gBAAgB,WAAW,iBAAiB,CAAC;AACnD,UAAI;AACJ,UAAI,WAAW,eAAe;AAC5B,eAAO,MAAM,QAAQ,MAAM,GAAG,MAAM,wDAAwD;AAC5F,6BAAqB,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,QAAQ,OAAO,IAAI;AAAA,MACnE,OAAO;AACL,6BAAqB,aAAa,IAAI,CAAC,cAAc,OAAO,UAAU;AAAA,MACxE;AACA,YAAM,sBAAsB,QAAQ,OAAO,CAAC,GAAG,OAAO,cAAc,GAAG;AACvE,aAAO,mBAAmB,OAAO,mBAAmB;AAAA,IACtD;AACA,WAAO,CAAC;AAAA,EACV;AAAA,EACA,WAAW,QAAQ,OAAO,OAAO,UAAU;AACzC,QAAI,UAAU,MAAM;AAClB,YAAM,IAAI,MAAM,+CAA+C;AAAA,IACjE;AACA,YAAQ,SAAS;AACjB,eAAW,YAAY,KAAK;AAC5B,QAAI,cAAc;AAClB,QAAI,UAAU,YAAY,SAAS,OAAO,EAAE,GAAG;AAC7C,oBAAc,OAAO,IAAI,CAAC,MAAM,aAAa,CAAC,CAAC;AAAA,IACjD;AACA,UAAM,SAAS,SAAS,MAAM,aAAa,OAAO,KAAK;AACvD,UAAM,KAAK,IAAI,OAAO,OAAO,OAAO,QAAQ,KAAK,aAAa,CAAC;AAC/D,SAAK,YAAY,IAAI,QAAQ;AAC7B,QAAI,UAAU,UAAU;AACtB,YAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,YAAM,WAAW,qBAAqB,WAAW;AACjD,WAAK,MAAM,YAAY,WAAW,KAAK;AACvC,WAAK,QAAQ;AAAA,IACf;AACA,WAAO;AAAA,EACT;AAAA,EACA,qBAAqB,QAAQ,OAAO,OAAO,UAAU;AACnD,YAAQ,SAAS;AACjB,UAAM,aAAa,EAAE,QAAQ,OAAO,MAAM;AAC1C,WAAO,KAAK,yBAAyB,YAAY,QAAQ;AAAA,EAC3D;AAAA,EACA,yBAAyB,YAAY,UAAU;AAC7C,UAAM,EAAE,QAAQ,OAAO,MAAM,IAAI;AACjC,UAAM,KAAK,IAAI,OAAO,OAAO,OAAO,QAAQ,KAAK,aAAa,CAAC;AAC/D,SAAK,YAAY,IAAI,QAAQ;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,aAAa,cAAc,YAAY,MAAM,MAAM,OAAO;AACxD,WAAO,QAAQ,KAAK,eAAe,EAAE,SAAS;AAC9C,QAAI,SAAS,QAAQ,UAAU,aAAa,OAAO;AACjD,qBAAe,aAAa,KAAK,KAAK;AAAA,IACxC;AACA,UAAM,IAAI,IAAI,SAAS,cAAc,WAAW,MAAM,KAAK,aAAa,CAAC;AACzE,QAAI,KAAK,MAAM,oBAAoB,EAAE,SAAS,MAAM;AAClD,YAAM,IAAI,MAAM,sBAAsB,EAAE,6BAA6B;AAAA,IACvE;AACA,SAAK,MAAM,oBAAoB,EAAE,QAAQ;AACzC,SAAK,OAAO,GAAG,KAAK,OAAO;AAC3B,WAAO;AAAA,EACT;AAAA,EACA,YAAY,GAAG,UAAU;AACvB,SAAK,MAAM;AACX,QAAI,EAAE,UAAU,UAAU;AACxB,WAAK,MAAM;AAAA,IACb;AACA,QAAI,QAAQ;AACZ,QAAI,EAAE,UAAU,eAAe,EAAE,UAAU,UAAU;AACnD,cAAQ,EAAE,OAAO,gBAAgB,EAAE,KAAK;AAAA,IAC1C;AACA,SAAK,MAAM,YAAY;AACvB,QAAI,CAAC,KAAK,MAAM,WAAW,IAAI,EAAE,MAAM,GAAG;AACxC,WAAK,MAAM;AACX,WAAK,MAAM,WAAW,IAAI,EAAE,QAAQ;AAAA,QAClC,SAAS,YAAY,KAAK;AAAA,QAC1B,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,QACT;AAAA,MACF,CAAC;AAAA,IACH;AACA,QAAI,EAAE,aAAa,WAAW;AAC5B,WAAK,MAAM,CAAC;AAAA,IACd;AAAA,EACF;AAAA,EACA,OAAO,GAAG,UAAU;AAClB,SAAK,YAAY,GAAG,QAAQ;AAC5B,SAAK,QAAQ,OAAO,EAAE,MAAM;AAAA,EAC9B;AAAA,EACA,aAAa,QAAQ,UAAU;AAC7B,QAAI,KAAK,MAAM,WAAW,IAAI,MAAM,KAAK,KAAK,MAAM,WAAW,IAAI,MAAM,EAAE,YAAY,UAAU;AAC/F,WAAK,MAAM,WAAW,OAAO,MAAM;AACnC,WAAK,MAAM;AAAA,IACb;AAAA,EACF;AAAA,EACA,cAAc,GAAG;AACf,QAAI,CAAC,KAAK,MAAM,WAAW,IAAI,EAAE,MAAM,GAAG;AACxC;AAAA,IACF;AACA,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,EAAE,MAAM;AAC/C,SAAK,MAAM;AACX,QAAI,EAAE,UAAU,UAAU;AACxB,WAAK,MAAM;AACX,WAAK,MAAM,YAAY,KAAK;AAAA,IAC9B;AACA,QAAI,EAAE,UAAU,eAAe,EAAE,UAAU,UAAU;AACnD,YAAM,QAAQ,EAAE,OAAO,gBAAgB,EAAE,KAAK;AAC9C,WAAK,MAAM,YAAY;AAAA,IACzB;AACA,QAAI,KAAK,QAAQ,YAAY,EAAE,MAAM,GAAG;AACtC,WAAK,aAAa,EAAE,QAAQ,KAAK,OAAO;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,mBAAmB;AACjB,eAAW,WAAW,KAAK,MAAM,qBAAqB;AACpD,YAAM,IAAI,KAAK,MAAM,oBAAoB;AACzC,WAAK,gBAAgB,CAAC;AAAA,IACxB;AAAA,EACF;AAAA,EACA,gBAAgB,GAAG;AACjB,SAAK,cAAc,CAAC;AACpB,QAAI,KAAK,MAAM,oBAAoB,EAAE,SAAS,MAAM;AAClD,aAAO,KAAK,MAAM,oBAAoB,EAAE;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,SAAS;AACP,UAAM,OAAO,KAAK,QAAQ,OAAO;AACjC,SAAK,aAAa,KAAK,MAAM;AAC7B,SAAK,iBAAiB,KAAK,MAAM;AACjC,SAAK,WAAW,KAAK,MAAM;AAC3B,QAAI,KAAK,MAAM,mBAAmB,GAAG;AACnC,WAAK,aAAa;AAClB,UAAI,KAAK,WAAW,MAAM;AACxB,aAAK,UAAU,CAAC;AAAA,MAClB;AACA,WAAK,QAAQ,KAAK,uEAAuE;AAAA,IAC3F;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ,OAAO;AACnB,SAAK,MAAM,YAAY;AACvB,UAAM,aAAa,KAAK,MAAM;AAC9B,UAAM,kBAAkB,KAAK,MAAM;AACnC,SAAK,MAAM,cAAc,UAAU,CAAC;AACpC,SAAK,MAAM,cAAc,SAAS,MAAM,MAAM;AAC9C,SAAK,MAAM,YAAY;AACvB,SAAK,MAAM,cAAc,YAAY,KAAK,IAAI,GAAG,KAAK,MAAM,cAAc,QAAQ,IAAI,CAAC,MAAM,EAAE,kBAAkB,CAAC;AAClH,SAAK,MAAM,cAAc,WAAW,KAAK,MAAM,WAAW;AAC1D,SAAK,MAAM,cAAc,aAAa,KAAK,MAAM,aAAa;AAC9D,eAAW,UAAU,KAAK,MAAM,cAAc,SAAS;AACrD,aAAO,eAAe,MAAM,OAAO;AACnC,aAAO,YAAY,MAAM,OAAO;AAAA,IAClC;AACA,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,WAAW;AACT,WAAO,KAAK,MAAM,gBAAgB,KAAK,KAAK,MAAM,gBAAgB;AAAA,EACpE;AAAA,EACA,YAAY,YAAY,QAAQ,SAAS,eAAe,OAAO,OAAO;AACpE,UAAM,WAAW,EAAE,IAAI,KAAK,MAAM,kBAAkB,YAAY,QAAQ,SAAS,MAAM;AACvF,UAAM,aAAa,YAAY,UAAU;AACzC,QAAI,cAAc,MAAM;AACtB,sBAAgB,WAAW;AAAA,IAC7B;AACA,QAAI,iBAAiB,MAAM;AACzB,eAAS,WAAW,CAAC,QAAQ;AAC3B,cAAM,IAAI,IAAI,CAAC,IAAI,OAAO;AACxB,cAAI,MAAM,MAAM;AACd,kBAAM,SAAS,QAAQ;AACvB,kBAAM,OAAO,oBAAoB,OAAO,MAAM,OAAO,KAAK;AAC1D,mBAAO,KAAK,WAAW,MAAM,OAAO,OAAO,OAAO,KAAK;AAAA,UACzD;AACA,iBAAO;AAAA,QACT,CAAC;AACD,eAAO,cAAc,IAAI,SAAS,IAAI,MAAM,IAAI,IAAI,OAAO,KAAK;AAAA,MAClE;AAAA,IACF;AACA,SAAK,MAAM,WAAW,KAAK,QAAQ;AAAA,EACrC;AAAA,EACA,KAAK,QAAQ;AACX,WAAO,OAAO;AACd,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,QAAI,KAAK,MAAM,kBAAkB,GAAG;AAClC,WAAK,MAAM,aAAa,CAAC;AAAA,IAC3B;AACA,SAAK,MAAM;AAAA,EACb;AAAA,EACA,UAAU;AACR,SAAK,MAAM;AAAA,EACb;AAAA,EACA,WAAW,MAAM;AACf,UAAM,YAAY;AAAA,MAChB,OAAO,CAAC;AAAA,MACR,MAAM;AAAA,MACN,IAAI,KAAK,MAAM;AAAA,IACjB;AACA,QAAI,MAAM;AACR,gBAAU,OAAO;AAAA,IACnB;AACA,SAAK,MAAM,WAAW,KAAK,SAAS;AACpC,SAAK,MAAM,cAAc;AAAA,EAC3B;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,yBAAyB,sBAAsB,MAAM;AAC3D,UAAM,4BAA4B,IAAI,IAAI,uBAAuB,IAAI,CAAC,OAAO,GAAG,EAAE,CAAC;AACnF,aAAS,KAAK,GAAG,KAAK,KAAK,MAAM,YAAY,MAAM,QAAQ,MAAM;AAC/D,YAAM,UAAU,KAAK,MAAM,YAAY,MAAM;AAC7C,UAAI,CAAC,QAAQ,QAAQ,CAAC,0BAA0B,IAAI,QAAQ,EAAE,GAAG;AAC/D,gBAAQ,QAAQ;AAAA,MAClB;AAAA,IACF;AACA,UAAM,WAAW,KAAK,MAAM,WAAW,IAAI;AAC3C,SAAK,MAAM,cAAc,KAAK,MAAM,WAAW,WAAW,IAAI,OAAO,KAAK,MAAM,WAAW,KAAK,MAAM,WAAW,SAAS;AAC1H,2BAAuB,QAAQ,CAAC,YAAY;AAC1C,UAAI,CAAC,QAAQ,QAAQ,QAAQ,YAAY,SAAS,IAAI;AACpD,aAAK,MAAM,OAAO;AAAA,MACpB;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,UAAU,GAAG,IAAI,IAAI,mBAAmB,OAAO;AAC7C,WAAO,GAAG,SAAS,GAAG,MAAM,2CAA2C;AACvE,QAAI,MAAM,QAAQ,GAAG,UAAU,WAAW;AACxC,YAAM,IAAI,MAAM,0CAA0C,GAAG,QAAQ;AAAA,IACvE;AACA,UAAM,IAAI,KAAK,UAAU,MAAM,KAAK,UAAU,GAAG,MAAM,KAAK,QAAQ,GAAG,MAAM,KAAK,KAAK,WAAW,CAAC,CAAC;AACpG,WAAO,aAAa,QAAQ,MAAM,gDAAgD;AAClF,UAAM,eAAe,qBAAqB,KAAK,MAAM,YAAY,IAAI,CAAC;AACtE,QAAI,CAAC,oBAAoB,aAAa,WAAW,KAAK,GAAG,SAAS,GAAG;AACnE,YAAM,IAAI,MAAM,qIAAqI;AAAA,IACvJ;AACA,WAAO,KAAK,KAAK,YAAY,MAAM;AACjC,YAAM,yBAAyB,CAAC;AAChC,6BAAuB,EAAE,MAAM,MAAM,OAAO,KAAK,EAAE,KAAK,IAAI;AAC5D;AAAA,QACE;AAAA,QACA;AAAA,QACA,CAAC,OAAO,KAAK,KAAK,EAAE;AAAA,QACpB;AAAA,MACF;AACA,YAAM,SAAS,GAAG,IAAI,CAAC,MAAM,uBAAuB,EAAE,GAAG;AACzD,UAAI,KAAK,MAAM,kBAAkB,GAAG;AAClC,aAAK,MAAM,WAAW,QAAQ,CAACoB,UAAS;AACtC,qBAAW,WAAWA,MAAK,OAAO;AAChC,oBAAQ,QAAQ;AAAA,UAClB;AAAA,QACF,CAAC;AACD,aAAK,MAAM,aAAa;AAAA,MAC1B;AACA,aAAO,EAAE,OAAO,GAAG,OAAO,OAAO;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,WAAW,GAAG;AACZ,WAAO,WAAW,CAAC,GAAG,MAAM,mDAAmD;AAC/E,WAAO,IAAI,WAAW;AACpB,aAAO,OAAO,MAAM,CAAC,OAAO,cAAc,MAAM,GAAG,MAAM,kEAAkE;AAC3H,UAAI;AACJ,YAAM,WAAW,CAAC;AAClB,aAAO,QAAQ,CAAC,QAAQ,OAAO;AAC7B,iBAAS,MAAM;AAAA,MACjB,CAAC;AACD,YAAM,cAAc,CAAC,GAAG,SAAS;AAC/B,cAAM,EAAE,GAAG,CAAC,GAAG,QAAQ,IAAI,CAAC;AAC5B,eAAO,IAAI,iBAAiB,QAAQ,MAAM,4FAA4F;AACtI,eAAO,WAAW,IAAI,QAAQ,GAAG,MAAM,kGAAkG;AACzI,eAAO,IAAI;AAAA,MACb;AACA,YAAM,gBAAgB,CAAC,IAAI,UAAU;AACnC,cAAM,UAAU,IAAI,SAAS,IAAI,KAAK;AACtC,cAAM,SAAS,MAAM,QAAQ,OAAO,IAAI,UAAU,CAAC,OAAO;AAC1D,eAAO,OAAO,WAAW,OAAO,QAAQ,MAAM,qKAAqK;AACnN,eAAO,OAAO,MAAM,CAAC,OAAO,cAAc,MAAM,GAAG,MAAM,sIAAsI;AAC/L,cAAM,UAAU,CAAC;AACjB,eAAO,QAAQ,CAAC,OAAO,OAAO;AAC5B,kBAAQ,MAAM,MAAM;AAAA,QACtB,CAAC;AACD,eAAO;AAAA,MACT;AACA,aAAO,KAAK,cAAc;AAAA,QACxB;AAAA,QACA;AAAA,QACA,QAAQ;AAAA,MACV,CAAC;AAAA,IACH;AAAA,EACF;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,WAAO,KAAK,QAAQ,SAAS,MAAM;AAAA,EACrC;AAAA,EACA,KAAK,QAAQ;AACX,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,WAAO,KAAK,QAAQ,KAAK,MAAM;AAAA,EACjC;AAAA,EACA,UAAU,QAAQX,UAAS;AACzB,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,WAAO,KAAK,QAAQ,UAAU,QAAQA,QAAO;AAAA,EAC/C;AAAA,EACA,MAAM,KAAK,OAAO;AAChB,UAAM,QAAQU,KAAI;AAClB,UAAM,aAAa,MAAM,KAAK,QAAQ,KAAK,KAAK;AAChD,eAAW,SAASA,KAAI,IAAI;AAC5B,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ;AACZ,QAAI,KAAK,MAAM,eAAe,MAAM;AAClC,aAAO,UAAU,KAAK,MAAM,YAAY;AACxC,WAAK,MAAM,YAAY,MAAM,KAAK,MAAM;AAAA,IAC1C;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,sBAAsB;AACxB,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,QAAQ;AACN,SAAK;AACL,SAAK,MAAM,QAAQ;AACnB,SAAK,IAAI,MAAM;AACf,SAAK,QAAQ,IAAI,YAAY;AAC7B,eAAW,eAAe,KAAK,UAAU;AACvC,WAAK,yBAAyB,WAAW;AACzC,WAAK,SAAS,aAAa,QAAQ;AACnC,aAAO,KAAK,SAAS;AAAA,IACvB;AACA,SAAK,cAAc;AACnB,SAAK,kBAAkB;AACvB,SAAK,qBAAqB;AAAA,EAC5B;AACF;AACA,OAAO,eAAe;AACtB,OAAO,iBAAiB;AACxB,SAAS,KAAK,OAAO;AACnB,QAAM,SAAS,mBAAmB,cAAc,KAAK,GAAG,SAAS;AACjE,SAAO,OAAO,WAAW,QAAQ,OAAO,SAAS;AACnD;AACA,SAAS,kBAAkB;AACzB,QAAM,KAAK,mBAAmB;AAC9B,MAAI,GAAG,aAAa,MAAM;AACxB,UAAM,cAAc,IAAI,YAAY,EAAE;AACtC,OAAG,YAAY,IAAI,OAAO,WAAW;AAAA,EACvC;AACA,uBAAqB,GAAG,UAAU,GAAG;AACrC,mBAAiB,MAAM,GAAG,SAAS;AACnC,SAAO,GAAG;AACZ;AACA,IAAI,SAAS,gBAAgB;AAC7B,SAAS,IAAI,GAAG,GAAG;AACjB,QAAM,SAAS,EAAE,GAAG,EAAE;AACtB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AAGA,IAAI,sBAAsB,CAAC;AAC3BnB,UAAS,qBAAqB;AAAA,EAC5B,WAAW,MAAM;AAAA,EACjB,UAAU,MAAM;AAAA,EAChB,cAAc,MAAM;AACtB,CAAC;AACD,SAAS,sBAAsB;AAC7B,SAAO,OAAO,cAAc,eAAe,aAAa;AAC1D;AACA,IAAI;AACJ,SAAS,aAAa,OAAO;AAC3B,sBAAoB;AACtB;AACA,SAAS,SAAS,KAAK;AACrB,MAAI,sBAAsB,QAAQ;AAChC,WAAO;AAAA,EACT;AACA,MAAI,OAAO,oBAAoB,GAAG;AAChC,QAAI,CAAC,KAAK;AACR,YAAM;AAAA,IACR;AACA,QAAI,IAAI,YAAY,eAAe;AACjC,aAAO;AAAA,IACT;AACA,UAAM,IAAI,IAAI,aAAa,IAAI,WAAW,OAAO,WAAW,cAAc,OAAO,QAAQ;AACzF,QAAI,CAAC,GAAG;AACN,YAAM,SAAS;AACf,aAAO,OAAO,iBAAiB,OAAO,cAAc;AAAA,IACtD;AACA,WAAO,2TAA2T,KAAK,CAAC,KAAK,0kDAA0kD,KAAK,EAAE,OAAO,GAAG,CAAC,CAAC;AAAA,EAC56D;AACA,SAAO;AACT;AACA,SAAS,YAAY;AACnB,SAAO,OAAO,WAAW,eAAe,OAAO,YAAY,QAAQ,OAAO,sBAAsB;AAClG;AAGA,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,SAAS,MAAM,OAAO,CAAC,eAAe;AACtD,MAAI,YAAY;AACd,YAAQ,KAAK,6IAA6I;AAAA,EAC5J;AACF,CAAC;AACD,KAAK,aAAa,cAAc,MAAM,UAAU,CAAC;AACjD,KAAK,aAAa,WAAW,MAAM,OAAO,YAAY,eAAe,OAAO,QAAQ,aAAa,eAAe,OAAO,QAAQ,SAAS,SAAS,WAAW;AAC5J,KAAK,aAAa,aAAa,MAAM,OAAO,cAAc,eAAe,aAAa,QAAQ,UAAU,aAAa,QAAQ,SAAS,KAAK,UAAU,SAAS,KAAK,aAAa,KAAK,UAAU,MAAM,CAAC;AACtM,KAAK,aAAa,QAAQ,MAAM,KAAK;AACrC,KAAK,aAAa,sCAAsC,MAAM,KAAK,QAAQ,OAAO,CAAC;AACnF,KAAK,aAAa,gCAAgC,MAAM,IAAI;AAC5D,KAAK,aAAa,WAAW,MAAM,KAAK;AACxC,KAAK,aAAa,gCAAgC,MAAM,IAAI;AAC5D,KAAK,aAAa,uBAAuB,MAAM,KAAK;AACpD,KAAK,aAAa,uBAAuB,MAAM,KAAK;AACpD,KAAK,aAAa,yCAAyC,MAAM,KAAK;AAGtE,SAAS,WAAW,KAAK,OAAO;AAC9B,MAAI,YAAY;AAChB,MAAI,aAAa,GAAG,GAAG;AACrB,WAAO,UAAU,WAAW,CAAC,IAAI,CAAC,IAAI,MAAM;AAAA,EAC9C;AACA,MAAI,CAAC,MAAM,QAAQ,GAAG,GAAG;AACvB,WAAO,CAAC;AAAA,EACV;AACA,QAAM,QAAQ,CAAC;AACf,SAAO,MAAM,QAAQ,SAAS,KAAK,aAAa,SAAS,KAAK,UAAU,UAAU;AAChF,UAAM,KAAK,UAAU,MAAM;AAC3B,gBAAY,UAAU;AAAA,EACxB;AACA,MAAI,MAAM,QAAQ,GAAG,KAAK,IAAI,EAAE,QAAQ,oCAAoC,GAAG;AAC7E,+BAA2B,KAAK,OAAO,CAAC,CAAC;AAAA,EAC3C;AACA,SAAO;AACT;AACA,SAAS,2BAA2B,KAAK,OAAO,SAAS;AACvD,YAAU,WAAW,CAAC;AACtB,MAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,CAAC,aAAa,GAAG,GAAG;AAC7C,WAAO,MAAM,WAAW,GAAG,MAAM,eAAe,QAAQ,KAAK,IAAI,2DAA2D,MAAM,aAAa;AAC/I;AAAA,EACF;AACA,SAAO,MAAM,SAAS,GAAG,MAAM,eAAe,QAAQ,KAAK,IAAI,gDAAgD,IAAI,iBAAiB;AACpI,SAAO,IAAI,WAAW,MAAM,IAAI,MAAM,eAAe,QAAQ,KAAK,IAAI,kBAAkB,MAAM,wBAAwB,IAAI,iBAAiB;AAC3I,QAAM,WAAW,MAAM,MAAM,CAAC;AAC9B,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,+BAA2B,IAAI,KAAK,UAAU,QAAQ,OAAO,EAAE,CAAC;AAAA,EAClE;AACF;AACA,SAAS,YAAY,eAAe,aAAa,SAAS,cAAc;AACtE,MAAI,kBAAkB,qBAAqB;AACzC;AAAA,EACF;AACA,MAAI,iBAAiB,MAAM;AACzB,UAAM,IAAI,MAAM,gCAAgC;AAAA,EAClD;AACA,MAAI,kBAAkB,aAAa,kBAAkB,eAAe,kBAAkB,aAAa,gBAAgB,UAAU;AAC3H,UAAM,IAAI,MAAM,aAAa,uBAAuB,yBAAyB,iCAAiC,oBAAoB;AAAA,EACpI;AACF;AACA,SAAS,gBAAgB,GAAG,SAAS,cAAc,eAAe,WAAW;AAC3E,MAAI,aAAa,QAAQ;AACvB,gBAAY,cAAc,EAAE,OAAO,SAAS,YAAY;AACxD,WAAO;AAAA,EACT;AACA,MAAI,gBAAgB,WAAW,CAAC;AAChC,MAAI,kBAAkB,YAAY,CAAC,QAAQ,SAAS,SAAS,EAAE,QAAQ,YAAY,KAAK,GAAG;AACzF,oBAAgB;AAAA,EAClB;AACA,cAAY,cAAc,eAAe,SAAS,YAAY;AAC9D,MAAI,KAAK,QAAQ,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,QAAQ,CAAC,KAAK,OAAO,MAAM,YAAY,OAAO,MAAM,aAAa,OAAO,MAAM,UAAU;AAClI,UAAM,OAAO,KAAK,OAAO,SAAS,EAAE,YAAY;AAChD,UAAM,IAAI,MAAM,aAAa,uBAAuB,0DAA0D,OAAO;AAAA,EACvH;AACA,QAAM,gBAAgB,WAAW,GAAG,aAAa;AACjD,MAAI,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,QAAQ,CAAC,GAAG;AACzC,QAAI,CAAC,CAAC;AAAA,EACR;AACA,QAAM,iBAAiB;AACvB,QAAM,SAAS,kBAAkB,WAAW,aAAa,GAAG,aAAa,IAAI,QAAQ,GAAG,CAAC,GAAG,cAAc;AAC1G,SAAO,OAAO,WAAW,QAAQ,eAAe,aAAa;AAC/D;AACA,SAAS,qBAAqB,KAAK,SAAS,cAAc,eAAe,WAAW;AAClF,MAAI,CAAC,MAAM,QAAQ,GAAG,GAAG;AACvB,UAAM,IAAI,MAAM,YAAY,qBAAqB,yDAAyD;AAAA,EAC5G;AACA,QAAM,UAAU;AAChB,SAAO,QAAQ,IAAI,CAAC,IAAI,OAAO,gBAAgB,IAAI,GAAG,WAAW,OAAO,cAAc,YAAY,CAAC;AACrG;AAGA,IAAI,kBAAkB;AACtB,SAAS,GAAG,GAAG;AACb,QAAM,OAAO,OAAO,KAAK,CAAC;AAC1B,MAAI,KAAK,WAAW,GAAG;AACrB,UAAM,IAAI,MAAM,yGAAyG,KAAK,cAAc;AAAA,EAC9I;AACA,MAAI,SAAS,KAAK;AAClB,QAAM,KAAK,EAAE;AACb,MAAI,OAAO,SAAS,GAAG,GAAG;AACxB,aAAS,OAAO,UAAU,GAAG,OAAO,SAAS,CAAC;AAAA,EAChD;AACA,WAAS,SAAS;AAClB,QAAM,KAAK,IAAI,SAAS;AACtB,WAAO,WAAW,MAAM;AACxB,QAAI;AACF,YAAM,SAAS,GAAG,GAAG,IAAI;AACzB,UAAI,UAAU,MAAM,GAAG;AACrB,gBAAQ,MAAM,yCAAyC;AAAA,MACzD;AACA,aAAO,SAAS,MAAM;AACtB,aAAO;AAAA,IACT,SAAS,IAAP;AACA,aAAO,SAAS,IAAI;AACpB,YAAM;AAAA,IACR;AAAA,EACF;AACA,SAAO,eAAe,IAAI,QAAQ,EAAE,OAAO,QAAQ,cAAc,KAAK,CAAC;AACvE,SAAO;AACT;AAGA,SAAS,SAAS,OAAO,OAAO;AAC9B,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,SAAS;AACtD,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,SAAS;AACtD,oBAAkB,MAAM,OAAO,MAAM,OAAO,yBAAyB,MAAM,aAAa,MAAM,4CAA4C;AAC1I,QAAM,SAAS,EAAE,MAAM,OAAO,MAAM,MAAM;AAC1C,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,QAAQ,OAAO,eAAe,OAAO;AACvD,MAAI,SAAS,MAAM;AACjB,YAAQ,WAAW,MAAM;AAAA,EAC3B;AACA,MAAI,UAAU,aAAa;AACzB,UAAM,IAAI,MAAM,kFAAkF;AAAA,EACpG;AACA,MAAI,CAAC,aAAa,MAAM,KAAK,CAAC,MAAM,QAAQ,MAAM,KAAK,OAAO,WAAW,YAAY,OAAO,WAAW,aAAa,OAAO,WAAW,UAAU;AAC9I,UAAM,IAAI,MAAM,0HAA0H;AAAA,EAC5I;AACA,MAAI,SAAS,MAAM;AACjB,uCAAmC,KAAK;AACxC,UAAM,eAAe,cAAc,KAAK;AACxC,UAAM,eAAe,cAAc,aAAa;AAChD,WAAO,iBAAiB,cAAc,MAAM,iCAAiC,kCAAkC,+BAA+B,cAAc;AAC5J,aAAS,KAAK,GAAG,KAAK,cAAc,QAAQ,EAAE,IAAI;AAChD,YAAM,WAAW,cAAc;AAC/B,YAAM,oBAAoB,OAAO,cAAc,SAAS,IAAI,aAAa,cAAc,MAAM,MAAM,EAAE,CAAC,IAAI;AAC1G,aAAO,cAAc,QAAQ,MAAM,OAAO,CAAC,mBAAmB,MAAM,gDAAgD,qDAAqD,UAAU;AAAA,IACrL;AAAA,EACF;AACA,MAAI,CAAC,aAAa,MAAM,KAAK,CAAC,MAAM,QAAQ,MAAM,GAAG;AACnD,aAAS,CAAC,MAAM;AAAA,EAClB;AACA,UAAQ,SAAS;AACjB,WAAS,UAAU,WAAW,aAAa,QAAQ,KAAK,IAAI,QAAQ,QAAQ,CAAC,GAAG,IAAI;AACpF,SAAO,OAAO,WAAW,QAAQ,OAAO,KAAK;AAC/C;AAGA,SAAS,OAAO,QAAQ,OAAO,OAAO;AACpC,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,IAAI,uBAAuB;AAAA,EACzB,WAAW;AAAA,EACX,WAAW;AAAA,EACX,SAAS;AAAA,EACT,UAAU;AAAA,EACV,SAAS;AAAA,EACT,QAAQ;AAAA,EACR,aAAa;AACf;AAGA,IAAI,0BAA0B;AAC9B,eAAe,cAAc,SAAS,OAAO;AAC3C,QAAM,QAAQ,CAAC;AACf,QAAM,eAAe,CAAC;AACtB,QAAM,QAAQ,MAAM,QAAQ,OAAO,IAAI,QAAQ,IAAI,CAAC,YAAY,QAAQ,IAAI,IAAI,OAAO,KAAK,OAAO;AACnG,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,UAAM,OAAO,MAAM;AACnB,UAAM,KAAK,MAAM,QAAQ,OAAO,IAAI,QAAQ,IAAI,SAAS,QAAQ;AACjE,QAAI,GAAG,UAAU,aAAa,GAAG,UAAU,WAAW,GAAG,UAAU,UAAU,GAAG,UAAU,YAAY,GAAG,UAAU,aAAa;AAC9H,YAAM,IAAI,MAAM,gCAAgC,UAAU,GAAG,OAAO;AAAA,IACtE;AACA,UAAM,OAAO,EAAE,MAAM,OAAO,GAAG,OAAO,OAAO,GAAG,MAAM;AACtD,QAAI,GAAG,UAAU,UAAU;AACzB,YAAM,YAAY,IAAI,QAAQ,OAAO,YAAY;AAC/C,cAAM,OAAO,MAAM,GAAG,MAAM;AAC5B,cAAM,gBAAgB,KAAK,OAAO,CAAC,IAAI,MAAM,KAAK,EAAE,QAAQ,CAAC,IAAI,0BAA0B,KAAK;AAChG,cAAM,QAAQ,IAAI,WAAW,aAAa;AAC1C,YAAI,SAAS;AACb,iBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,gBAAM,MAAM,KAAK;AACjB,gBAAM,gBAAgB,IAAI,WAAW,IAAI,YAAY,CAAC,IAAI,MAAM,CAAC,EAAE,MAAM;AACzE,gBAAM,IAAI,eAAe,MAAM;AAC/B,oBAAU;AACV,gBAAM,IAAI,KAAK,MAAM;AACrB,oBAAU,IAAI;AAAA,QAChB;AACA,gBAAQ,KAAK;AAAA,MACf,CAAC;AACD,mBAAa,KAAK,SAAS;AAAA,IAC7B,OAAO;AACL,mBAAa,KAAK,GAAG,KAAK,CAAC;AAAA,IAC7B;AACA,QAAI,SAAS,MAAM;AACjB,WAAK,QAAQ;AAAA,IACf;AACA,UAAM,KAAK,IAAI;AAAA,EACjB;AACA,QAAM,eAAe,MAAM,QAAQ,IAAI,YAAY;AACnD,SAAO,EAAE,MAAM,uBAAuB,YAAY,GAAG,MAAM;AAC7D;AACA,SAAS,cAAc,SAAS,OAAO;AACrC,QAAM,MAAM,CAAC;AACb,MAAI;AACJ,MAAI,SAAS;AACb,aAAW,QAAQ,OAAO;AACxB,UAAM,OAAO,KAAK;AAClB,UAAM,QAAQ,KAAK;AACnB,UAAM,QAAQ,KAAK;AACnB,UAAMG,QAAO,cAAc,KAAK;AAChC,QAAI;AACJ,QAAI,kBAAkB,MAAM;AAC1B,YAAM,eAAe,KAAK;AAC1B,UAAI,aAAa,UAAU,WAAW,aAAa,UAAU,UAAU;AACrE,YAAI,EAAE,SAAS,gBAAgB,WAAW,eAAe;AACvD,gBAAM,IAAI,MAAM,UAAU,KAAK,0BAA0B,aAAa,0DAA0D;AAAA,QAClI;AAAA,MACF,WAAW,aAAa,UAAU,WAAW;AAC3C,YAAI,UAAU,WAAW;AACvB,gBAAM,IAAI,MAAM,UAAU,KAAK,0BAA0B,aAAa,yDAAyD,QAAQ;AAAA,QACzI;AAAA,MACF,OAAO;AACL,cAAM,IAAI,MAAM,UAAU,KAAK,uCAAuC,aAAa,6EAA6E;AAAA,MAClK;AACA,YAAM,yBAAyB,qBAAqB,aAAa;AACjE,YAAM,aAAa,QAAQ,MAAM,QAAQ,SAASA,QAAO,sBAAsB;AAC/E,YAAM,iBAAiB,aAAa,UAAU,UAAU,IAAI,WAAW,UAAU,IAAI,IAAI,YAAY,UAAU;AAC/G,UAAI,UAAU,WAAW;AACvB,YAAI,aAAa,UAAU,WAAW,aAAa,UAAU,UAAU;AACrE,mBAAS,IAAI,aAAa,eAAe,MAAM;AAC/C,mBAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,kBAAM,IAAI,eAAe;AACzB,mBAAO,MAAM,IAAI,aAAa,QAAQ,aAAa;AAAA,UACrD;AAAA,QACF,WAAW,aAAa,UAAU,WAAW;AAC3C,cAAI,kBAAkB,QAAQ;AAC5B,4BAAgB,kBAAkB;AAAA,UACpC;AACA,mBAAS,cAAc,cAAc;AAAA,QACvC,OAAO;AACL,gBAAM,IAAI,MAAM,iCAAiC,aAAa,gCAAgC;AAAA,QAChG;AAAA,MACF,WAAW,UAAU,SAAS;AAC5B,YAAI,aAAa,UAAU,WAAW,aAAa,UAAU,UAAU;AACrE,gBAAM,IAAI,MAAM,iCAAiC,aAAa,8BAA8B;AAAA,QAC9F;AACA,iBAAS,IAAI,WAAW,eAAe,MAAM;AAC7C,iBAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,gBAAM,IAAI,eAAe;AACzB,iBAAO,MAAM,KAAK,MAAM,IAAI,aAAa,QAAQ,aAAa,GAAG;AAAA,QACnE;AAAA,MACF,OAAO;AACL,cAAM,IAAI,MAAM,gCAAgC,UAAU,OAAO;AAAA,MACnE;AACA,gBAAUA,QAAO;AAAA,IACnB,WAAW,UAAU,UAAU;AAC7B,YAAMmB,SAAQ,cAAc,KAAK,KAAK;AACtC,eAAS,CAAC;AACV,eAAS,KAAK,GAAG,KAAKA,QAAO,MAAM;AACjC,cAAM,aAAa,IAAI,YAAY,QAAQ,MAAM,QAAQ,SAAS,uBAAuB,CAAC,EAAE;AAC5F,kBAAU;AACV,cAAM,QAAQ,IAAI,WAAW,QAAQ,MAAM,QAAQ,SAAS,UAAU,CAAC;AACvE,eAAO,KAAK,KAAK;AACjB,kBAAU;AAAA,MACZ;AAAA,IACF,OAAO;AACL,YAAM,cAAc,qBAAqB;AACzC,YAAM,aAAa,QAAQ,MAAM,QAAQ,SAASnB,QAAO,WAAW;AACpE,UAAI,UAAU,WAAW;AACvB,iBAAS,IAAI,aAAa,UAAU;AAAA,MACtC,WAAW,UAAU,SAAS;AAC5B,iBAAS,IAAI,WAAW,UAAU;AAAA,MACpC,WAAW,UAAU,QAAQ;AAC3B,iBAAS,IAAI,WAAW,UAAU;AAAA,MACpC,WAAW,UAAU,aAAa;AAChC,iBAAS,IAAI,aAAa,UAAU;AACpC,cAAM,QAAQ,IAAI,aAAa,OAAO,SAAS,CAAC;AAChD,cAAM,SAAS,IAAI,aAAa,OAAO,SAAS,CAAC;AACjD,iBAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,gBAAM,MAAM,OAAO,KAAK;AACxB,iBAAO,MAAM,OAAO,KAAK,IAAI;AAAA,QAC/B;AACA,cAAM,aAAa,OAAO,OAAO,OAAO,SAAS;AACjD,cAAM,cAAc,OAAO,QAAQ,OAAO,SAAS;AACnD,YAAI,QAAQ,QAAQ,YAAY,WAAW;AAC3C,mBAAW,QAAQ;AACnB,oBAAY,QAAQ;AAAA,MACtB,OAAO;AACL,cAAM,IAAI,MAAM,gCAAgC,UAAU,OAAO;AAAA,MACnE;AACA,gBAAUA,QAAO;AAAA,IACnB;AACA,QAAI,UAAU,aAAa;AACzB,UAAI,QAAQ,OAAO,QAAQ,OAAO,KAAK;AAAA,IACzC;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,uBAAuB,IAAI;AAClC,MAAI,OAAO,MAAM;AACf,UAAM,IAAI,MAAM,wBAAwB,KAAK,UAAU,EAAE,GAAG;AAAA,EAC9D;AACA,MAAI,kBAAkB;AACtB,QAAM,eAAe,CAAC;AACtB,KAAG,QAAQ,CAAC,MAAM;AAChB,uBAAmB,EAAE;AACrB,iBAAa,KAAK,EAAE,eAAe,EAAE,OAAO,aAAa,IAAI,IAAI,EAAE,YAAY,CAAC,CAAC;AACjF,QAAI,EAAE,aAAa,gBAAgB,aAAa,cAAc,aAAa,aAAa;AACtF,YAAM,IAAI,MAAM,mCAAmC,EAAE,YAAY,MAAM;AAAA,IACzE;AAAA,EACF,CAAC;AACD,QAAM,IAAI,IAAI,WAAW,eAAe;AACxC,MAAI,SAAS;AACb,eAAa,QAAQ,CAAC,MAAM;AAC1B,MAAE,IAAI,IAAI,WAAW,EAAE,MAAM,GAAG,MAAM;AACtC,cAAU,EAAE;AAAA,EACd,CAAC;AACD,SAAO,EAAE;AACX;AACA,IAAI,gBAAgB,OAAO,WAAW,gBAAgB,OAAO,SAAS,eAAe,OAAO,SAAS,eAAe,OAAO,SAAS;AACpI,SAAS,iBAAiB,KAAK;AAC7B,MAAI,eAAe;AACjB,WAAO,OAAO,WAAW,GAAG;AAAA,EAC9B;AACA,SAAO,IAAI,KAAK,CAAC,GAAG,CAAC,EAAE;AACzB;AACA,SAAS,0BAA0B,SAAS;AAC1C,MAAI,eAAe;AACjB,WAAO,OAAO,KAAK,OAAO,EAAE,SAAS,QAAQ;AAAA,EAC/C;AACA,QAAM,MAAM,IAAI,WAAW,OAAO;AAClC,MAAI,KAAK;AACT,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,KAAK,IAAI,MAAM;AAC/C,UAAM,OAAO,aAAa,IAAI,GAAG;AAAA,EACnC;AACA,SAAO,KAAK,EAAE;AAChB;AACA,SAAS,0BAA0B,KAAK;AACtC,MAAI,eAAe;AACjB,UAAM,MAAM,OAAO,KAAK,KAAK,QAAQ;AACrC,WAAO,IAAI,OAAO,MAAM,IAAI,YAAY,IAAI,aAAa,IAAI,UAAU;AAAA,EACzE;AACA,QAAM,KAAK,KAAK,GAAG;AACnB,QAAM,UAAU,IAAI,WAAW,GAAG,MAAM;AACxC,WAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,EAAE,IAAI;AACrC,YAAQ,IAAI,CAAC,GAAG,WAAW,EAAE,CAAC,GAAG,EAAE;AAAA,EACrC;AACA,SAAO,QAAQ;AACjB;AACA,SAAS,wBAAwB,SAAS;AACxC,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,QAAQ;AAAA,EACjB;AACA,MAAI,kBAAkB;AACtB,UAAQ,QAAQ,CAAC,YAAY;AAC3B,uBAAmB,QAAQ;AAAA,EAC7B,CAAC;AACD,QAAM,OAAO,IAAI,WAAW,eAAe;AAC3C,MAAI,SAAS;AACb,UAAQ,QAAQ,CAAC,YAAY;AAC3B,SAAK,IAAI,IAAI,WAAW,OAAO,GAAG,MAAM;AACxC,cAAU,QAAQ;AAAA,EACpB,CAAC;AACD,SAAO,KAAK;AACd;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,YAAY;AAClB,SAAO,KAAK,KAAK;AACjB,SAAO,KAAK,SAAS,SAAS,GAAG;AAC/B,WAAO,KAAK,MAAM,GAAG,KAAK,SAAS,CAAC;AAAA,EACtC;AACA,QAAM,QAAQ,KAAK,MAAM,SAAS;AAClC,SAAO,MAAM,MAAM,SAAS;AAC9B;AACA,SAAS,8BAA8B,WAAW,UAAU;AAC1D,QAAM,SAAS;AAAA,IACb,eAAe,UAAU;AAAA,IACzB,QAAQ,UAAU;AAAA,IAClB,aAAa,UAAU;AAAA,IACvB,aAAa,UAAU;AAAA,IACvB,iBAAiB;AAAA,EACnB;AACA,MAAI,UAAU,aAAa,MAAM;AAC/B,WAAO,YAAY,UAAU;AAAA,EAC/B;AACA,MAAI,UAAU,uBAAuB,MAAM;AACzC,WAAO,sBAAsB,UAAU;AAAA,EACzC;AACA,MAAI,UAAU,oBAAoB,MAAM;AACtC,WAAO,mBAAmB,UAAU;AAAA,EACtC;AACA,MAAI,UAAU,kBAAkB,MAAM;AACpC,WAAO,iBAAiB,UAAU;AAAA,EACpC;AACA,SAAO;AACT;AACA,eAAe,yBAAyB,WAAW,cAAc;AAC/D,QAAM,iBAAiB;AAAA,IACrB,eAAe,UAAU;AAAA,IACzB,QAAQ,UAAU;AAAA,IAClB,aAAa,UAAU;AAAA,IACvB,aAAa,UAAU;AAAA,EACzB;AACA,MAAI,UAAU,kBAAkB,MAAM;AACpC,mBAAe,iBAAiB,UAAU;AAAA,EAC5C;AACA,MAAI,UAAU,mBAAmB,MAAM;AACrC,UAAM,CAAC,aAAa,UAAU,IAAI,MAAM,aAAa,UAAU,eAAe;AAC9E,mBAAe,cAAc;AAC7B,mBAAe,aAAa;AAAA,EAC9B;AACA,MAAI,UAAU,aAAa,MAAM;AAC/B,mBAAe,YAAY,UAAU;AAAA,EACvC;AACA,MAAI,UAAU,uBAAuB,MAAM;AACzC,mBAAe,sBAAsB,UAAU;AAAA,EACjD;AACA,MAAI,UAAU,oBAAoB,MAAM;AACtC,mBAAe,mBAAmB,UAAU;AAAA,EAC9C;AACA,SAAO;AACT;AACA,SAAS,6BAA6B,gBAAgB;AACpD,MAAI,eAAe,yBAAyB,aAAa;AACvD,UAAM,IAAI,MAAM,qDAAqD;AAAA,EACvE;AACA,SAAO;AAAA,IACL,WAAW,IAAI,KAAK;AAAA,IACpB,mBAAmB;AAAA,IACnB,oBAAoB,eAAe,iBAAiB,OAAO,IAAI,iBAAiB,KAAK,UAAU,eAAe,aAAa,CAAC;AAAA,IAC5H,kBAAkB,eAAe,eAAe,OAAO,IAAI,iBAAiB,KAAK,UAAU,eAAe,WAAW,CAAC;AAAA,IACtH,iBAAiB,eAAe,cAAc,OAAO,IAAI,eAAe,WAAW;AAAA,EACrF;AACF;AACA,SAAS,6BAA6B;AACpC,QAAM,kBAAkB,CAAC,OAAO;AAC9B,QAAI,IAAI,MAAM;AACd,QAAI,KAAK;AACT,YAAQ,IAAI,aAAa,GAAG;AAC1B,YAAM;AACN,YAAM;AAAA,IACR;AACA,SAAK,CAAC;AACN,UAAM;AACN,WAAO,IAAI;AAAA,EACb;AACA,QAAM,eAAe,IAAI,YAAY,IAAI;AACzC,eAAa,KAAK;AAClB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,iBAAa,MAAM,gBAAgB,EAAE;AAAA,EACvC;AACA,WAAS,KAAK,MAAM,KAAK,MAAM,MAAM;AACnC,iBAAa,MAAM,aAAa,KAAK,QAAQ;AAAA,EAC/C;AACA,SAAO;AACT;AACA,SAAS,8BAA8B;AACrC,QAAM,gBAAgB,IAAI,YAAY,EAAE;AACxC,gBAAc,KAAK;AACnB,gBAAc,MAAM;AACpB,gBAAc,MAAM;AACpB,gBAAc,MAAM;AACpB,WAAS,KAAK,GAAG,KAAK,IAAI,MAAM;AAC9B,kBAAc,MAAM,MAAM;AAAA,EAC5B;AACA,WAAS,KAAK,IAAI,KAAK,IAAI,MAAM;AAC/B,kBAAc,MAAM,cAAc,KAAK,MAAM;AAAA,EAC/C;AACA,SAAO;AACT;AACA,SAAS,4BAA4B;AACnC,QAAM,cAAc,IAAI,YAAY,EAAE;AACtC,WAAS,KAAK,GAAG,KAAK,IAAI,MAAM;AAC9B,gBAAY,MAAM;AAAA,EACpB;AACA,cAAY,KAAK,YAAY,MAAM;AACnC,SAAO;AACT;AACA,SAAS,oBAAoB;AAC3B,QAAM,eAAe,2BAA2B;AAChD,QAAM,gBAAgB,4BAA4B;AAClD,QAAM,cAAc,0BAA0B;AAC9C,SAAO,CAAC,mBAAmB;AACzB,UAAM,UAAU,IAAI,YAAY,IAAI,eAAe,MAAM;AACzD,UAAM,mBAAmB,IAAI,YAAY,OAAO;AAChD,aAASU,SAAQ,GAAGA,SAAQ,eAAe,QAAQA,UAAS;AAC1D,YAAM,cAAc,eAAeA;AACnC,YAAM,cAAc,aAAa,YAAY,eAAe,OAAO,cAAc,SAAS,cAAc,eAAe;AACvH,uBAAiBA,UAAS;AAAA,IAC5B;AACA,WAAO,IAAI,aAAa,OAAO;AAAA,EACjC;AACF;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,cAAc;AACZ,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc,CAAC;AAAA,EACtB;AAAA,EACA,OAAO,cAAc;AACnB,QAAI,iBAAiB,YAAY,MAAM;AACrC,uBAAiB,WAAW,IAAI,iBAAiB;AAAA,IACnD;AACA,WAAO,iBAAiB;AAAA,EAC1B;AAAA,EACA,OAAO,mBAAmB,YAAY;AACpC,qBAAiB,YAAY,EAAE,YAAY,KAAK,UAAU;AAAA,EAC5D;AAAA,EACA,OAAO,mBAAmB,YAAY;AACpC,qBAAiB,YAAY,EAAE,YAAY,KAAK,UAAU;AAAA,EAC5D;AAAA,EACA,OAAO,gBAAgB,KAAK;AAC1B,WAAO,iBAAiB,YAAY,KAAK,MAAM;AAAA,EACjD;AAAA,EACA,OAAO,gBAAgB,KAAK,aAAa;AACvC,WAAO,iBAAiB,YAAY,KAAK,QAAQ,WAAW;AAAA,EAC9D;AAAA,EACA,OAAO,YAAY,KAAK,aAAa,aAAa;AAChD,UAAM,gBAAgB,CAAC;AACvB,UAAM,UAAU,gBAAgB,SAAS,iBAAiB,YAAY,EAAE,cAAc,iBAAiB,YAAY,EAAE;AACrH,YAAQ,QAAQ,CAAC,WAAW;AAC1B,YAAM,UAAU,OAAO,KAAK,WAAW;AACvC,UAAI,YAAY,MAAM;AACpB,sBAAc,KAAK,OAAO;AAAA,MAC5B;AAAA,IACF,CAAC;AACD,WAAO;AAAA,EACT;AACF;AACA,IAAI,qBAAqB,CAAC,eAAe,iBAAiB,mBAAmB,UAAU;AACvF,IAAI,qBAAqB,CAAC,eAAe,iBAAiB,mBAAmB,UAAU;AACvF,IAAI,kBAAkB,CAAC,QAAQ,iBAAiB,gBAAgB,GAAG;AACnE,IAAI,kBAAkB,CAAC,KAAK,gBAAgB,iBAAiB,gBAAgB,KAAK,WAAW;AAG7F,IAAI,gBAAgB;AACpB,IAAI,mBAAmB;AACvB,IAAI,mBAAmB;AACvB,IAAI,kBAAkB;AACtB,SAAS,sBAAsB;AAC7B,MAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,UAAM,IAAI,MAAM,yFAAyF;AAAA,EAC3G;AACA,QAAM,YAAY,OAAO,WAAW,cAAc,OAAO;AACzD,QAAM,UAAU,UAAU,aAAa,UAAU,gBAAgB,UAAU,mBAAmB,UAAU,eAAe,UAAU;AACjI,MAAI,WAAW,MAAM;AACnB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,SAAO;AACT;AACA,SAAS,cAAc,aAAa;AAClC,QAAM,KAAK,YAAY;AACvB,KAAG,kBAAkB,kBAAkB,EAAE,SAAS,YAAY,CAAC;AAC/D,KAAG,kBAAkB,iBAAiB,EAAE,SAAS,YAAY,CAAC;AAChE;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,WAAW;AACrB,SAAK,YAAY,oBAAoB;AACrC,QAAI,aAAa,QAAQ,CAAC,WAAW;AACnC,YAAM,IAAI,MAAM,gEAAgE;AAAA,IAClF;AACA,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,MAAM,KAAK,gBAAgB;AACzB,QAAI,eAAe,yBAAyB,aAAa;AACvD,YAAM,IAAI,MAAM,0FAA0F;AAAA,IAC5G;AACA,WAAO,KAAK,eAAe,KAAK,WAAW,cAAc;AAAA,EAC3D;AAAA,EACA,MAAM,OAAO;AACX,WAAO,KAAK,eAAe,KAAK,SAAS;AAAA,EAC3C;AAAA,EACA,eAAe,WAAW,gBAAgB;AACxC,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,cAAc,KAAK,UAAU,KAAK,eAAe,gBAAgB;AACvE,kBAAY,kBAAkB,MAAM,cAAc,WAAW;AAC7D,kBAAY,YAAY,MAAM;AAC5B,cAAM,KAAK,YAAY;AACvB,YAAI,kBAAkB,MAAM;AAC1B,gBAAM,UAAU,GAAG,YAAY,kBAAkB,UAAU;AAC3D,gBAAM,aAAa,QAAQ,YAAY,gBAAgB;AACvD,gBAAM,aAAa,WAAW,IAAI,KAAK,SAAS;AAChD,qBAAW,YAAY,MAAM;AAC3B,gBAAI,WAAW,UAAU,MAAM;AAC7B,iBAAG,MAAM;AACT,qBAAO,OAAO,IAAI,MAAM,gCAAgC,KAAK,0BAA0B,CAAC;AAAA,YAC1F,OAAO;AACL,sBAAQ,WAAW,OAAO,cAAc;AAAA,YAC1C;AAAA,UACF;AACA,qBAAW,UAAU,CAAC,UAAU;AAC9B,eAAG,MAAM;AACT,mBAAO,OAAO,WAAW,KAAK;AAAA,UAChC;AACA,kBAAQ,aAAa,MAAM,GAAG,MAAM;AAAA,QACtC,OAAO;AACL,gBAAM,qBAAqB,6BAA6B,cAAc;AACtE,gBAAM,SAAS,GAAG,YAAY,iBAAiB,WAAW;AAC1D,cAAI,YAAY,OAAO,YAAY,eAAe;AAClD,gBAAM,iBAAiB,UAAU,IAAI,EAAE,WAAW,KAAK,WAAW,mBAAmB,CAAC;AACtF,cAAI;AACJ,yBAAe,YAAY,MAAM;AAC/B,sBAAU,GAAG,YAAY,kBAAkB,WAAW;AACtD,kBAAM,aAAa,QAAQ,YAAY,gBAAgB;AACvD,kBAAM,kBAAkB,WAAW,IAAI;AAAA,cACrC,WAAW,KAAK;AAAA,cAChB;AAAA,cACA;AAAA,YACF,CAAC;AACD,4BAAgB,YAAY,MAAM,QAAQ,EAAE,mBAAmB,CAAC;AAChE,4BAAgB,UAAU,CAAC,UAAU;AACnC,0BAAY,OAAO,YAAY,eAAe;AAC9C,oBAAM,oBAAoB,UAAU,OAAO,KAAK,SAAS;AACzD,gCAAkB,YAAY,MAAM;AAClC,mBAAG,MAAM;AACT,uBAAO,OAAO,gBAAgB,KAAK;AAAA,cACrC;AACA,gCAAkB,UAAU,CAAC,WAAW;AACtC,mBAAG,MAAM;AACT,uBAAO,OAAO,gBAAgB,KAAK;AAAA,cACrC;AAAA,YACF;AAAA,UACF;AACA,yBAAe,UAAU,CAAC,UAAU;AAClC,eAAG,MAAM;AACT,mBAAO,OAAO,eAAe,KAAK;AAAA,UACpC;AACA,iBAAO,aAAa,MAAM;AACxB,gBAAI,WAAW,MAAM;AACnB,iBAAG,MAAM;AAAA,YACX,OAAO;AACL,sBAAQ,aAAa,MAAM,GAAG,MAAM;AAAA,YACtC;AAAA,UACF;AAAA,QACF;AAAA,MACF;AACA,kBAAY,UAAU,CAAC,UAAU,OAAO,YAAY,KAAK;AAAA,IAC3D,CAAC;AAAA,EACH;AACF;AACA,iBAAiB,aAAa;AAC9B,IAAI,kBAAkB,CAAC,QAAQ;AAC7B,MAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,WAAO;AAAA,EACT,OAAO;AACL,QAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,IAAI,WAAW,iBAAiB,UAAU,GAAG;AACtE,aAAO,iBAAiB,IAAI,MAAM,iBAAiB,WAAW,MAAM,CAAC;AAAA,IACvE,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AACA,iBAAiB,mBAAmB,eAAe;AACnD,iBAAiB,mBAAmB,eAAe;AACnD,SAAS,iBAAiB,WAAW;AACnC,SAAO,IAAI,iBAAiB,SAAS;AACvC;AACA,SAAS,iBAAiB,KAAK;AAC7B,SAAO,IAAI,WAAW,iBAAiB,UAAU,IAAI,IAAI,MAAM,iBAAiB,WAAW,MAAM,IAAI;AACvG;AACA,IAAI,0BAA0B,MAAM;AAAA,EAClC,cAAc;AACZ,SAAK,YAAY,oBAAoB;AAAA,EACvC;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,cAAc,KAAK,UAAU,KAAK,eAAe,gBAAgB;AACvE,kBAAY,kBAAkB,MAAM,cAAc,WAAW;AAC7D,kBAAY,YAAY,MAAM;AAC5B,cAAM,KAAK,YAAY;AACvB,cAAM,KAAK,GAAG,YAAY,iBAAiB,UAAU;AACrD,cAAM,QAAQ,GAAG,YAAY,eAAe;AAC5C,cAAM,oBAAoB,MAAM,OAAO;AACvC,0BAAkB,YAAY,MAAM;AAClC,gBAAM,MAAM,CAAC;AACb,qBAAW,QAAQ,kBAAkB,QAAQ;AAC3C,gBAAI,KAAK,aAAa,KAAK;AAAA,UAC7B;AACA,kBAAQ,GAAG;AAAA,QACb;AACA,0BAAkB,UAAU,CAAC,UAAU;AACrC,aAAG,MAAM;AACT,iBAAO,OAAO,kBAAkB,KAAK;AAAA,QACvC;AACA,WAAG,aAAa,MAAM,GAAG,MAAM;AAAA,MACjC;AACA,kBAAY,UAAU,CAAC,UAAU,OAAO,YAAY,KAAK;AAAA,IAC3D,CAAC;AAAA,EACH;AAAA,EACA,MAAM,YAAY,MAAM;AACtB,WAAO,iBAAiB,IAAI;AAC5B,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,cAAc,KAAK,UAAU,KAAK,eAAe,gBAAgB;AACvE,kBAAY,kBAAkB,MAAM,cAAc,WAAW;AAC7D,kBAAY,YAAY,MAAM;AAC5B,cAAM,KAAK,YAAY;AACvB,cAAM,SAAS,GAAG,YAAY,iBAAiB,WAAW;AAC1D,cAAM,YAAY,OAAO,YAAY,eAAe;AACpD,cAAM,iBAAiB,UAAU,IAAI,IAAI;AACzC,YAAI;AACJ,uBAAe,YAAY,MAAM;AAC/B,cAAI,eAAe,UAAU,MAAM;AACjC,eAAG,MAAM;AACT,mBAAO,OAAO,IAAI,MAAM,gCAAgC,qBAAqB,CAAC;AAAA,UAChF,OAAO;AACL,kBAAM,oBAAoB,UAAU,OAAO,IAAI;AAC/C,kBAAM,kBAAkB,MAAM;AAC5B,wBAAU,GAAG,YAAY,kBAAkB,WAAW;AACtD,oBAAM,aAAa,QAAQ,YAAY,gBAAgB;AACvD,oBAAM,qBAAqB,WAAW,OAAO,IAAI;AACjD,iCAAmB,YAAY,MAAM,QAAQ,eAAe,OAAO,kBAAkB;AACrF,iCAAmB,UAAU,CAAC,UAAU,OAAO,eAAe,KAAK;AAAA,YACrE;AACA,8BAAkB,YAAY;AAC9B,8BAAkB,UAAU,CAAC,UAAU;AACrC,8BAAgB;AAChB,iBAAG,MAAM;AACT,qBAAO,OAAO,eAAe,KAAK;AAAA,YACpC;AAAA,UACF;AAAA,QACF;AACA,uBAAe,UAAU,CAAC,UAAU;AAClC,aAAG,MAAM;AACT,iBAAO,OAAO,eAAe,KAAK;AAAA,QACpC;AACA,eAAO,aAAa,MAAM;AACxB,cAAI,WAAW,MAAM;AACnB,eAAG,MAAM;AAAA,UACX,OAAO;AACL,oBAAQ,aAAa,MAAM,GAAG,MAAM;AAAA,UACtC;AAAA,QACF;AAAA,MACF;AACA,kBAAY,UAAU,CAAC,UAAU,OAAO,YAAY,KAAK;AAAA,IAC3D,CAAC;AAAA,EACH;AACF;AAGA,IAAI,iBAAiB;AACrB,IAAI,cAAc;AAClB,IAAI,cAAc;AAClB,IAAI,wBAAwB;AAC5B,IAAI,sBAAsB;AAC1B,IAAI,qBAAqB;AACzB,IAAI,wBAAwB;AAC5B,SAAS,aAAa,MAAM;AAC1B,SAAO;AAAA,IACL,MAAM,CAAC,aAAa,MAAM,WAAW,EAAE,KAAK,cAAc;AAAA,IAC1D,UAAU,CAAC,aAAa,MAAM,qBAAqB,EAAE,KAAK,cAAc;AAAA,IACxE,aAAa,CAAC,aAAa,MAAM,mBAAmB,EAAE,KAAK,cAAc;AAAA,IACzE,YAAY,CAAC,aAAa,MAAM,kBAAkB,EAAE,KAAK,cAAc;AAAA,IACvE,eAAe,CAAC,aAAa,MAAM,qBAAqB,EAAE,KAAK,cAAc;AAAA,EAC/E;AACF;AACA,SAAS,YAAY,MAAM;AACzB,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,WAAO,aAAa,WAAW,GAAG;AAAA,EACpC;AACF;AACA,SAAS,oBAAoB,KAAK;AAChC,QAAM,QAAQ,IAAI,MAAM,cAAc;AACtC,MAAI,MAAM,SAAS,GAAG;AACpB,UAAM,IAAI,MAAM,uBAAuB,KAAK;AAAA,EAC9C;AACA,SAAO,MAAM,MAAM,GAAG,MAAM,SAAS,CAAC,EAAE,KAAK,cAAc;AAC7D;AACA,SAAS,kBAAkB,KAAK;AAC9B,SAAO,IAAI,WAAW,oBAAoB,UAAU,IAAI,IAAI,MAAM,oBAAoB,WAAW,MAAM,IAAI;AAC7G;AACA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,WAAW;AACrB,QAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,KAAK,OAAO,WAAW,eAAe,OAAO,OAAO,iBAAiB,aAAa;AAC/G,YAAM,IAAI,MAAM,yDAAyD;AAAA,IAC3E;AACA,SAAK,KAAK,OAAO;AACjB,QAAI,aAAa,QAAQ,CAAC,WAAW;AACnC,YAAM,IAAI,MAAM,oEAAoE;AAAA,IACtF;AACA,SAAK,YAAY;AACjB,SAAK,OAAO,aAAa,KAAK,SAAS;AAAA,EACzC;AAAA,EACA,MAAM,KAAK,gBAAgB;AACzB,QAAI,eAAe,yBAAyB,aAAa;AACvD,YAAM,IAAI,MAAM,0FAA0F;AAAA,IAC5G,OAAO;AACL,YAAM,WAAW,KAAK,UAAU,eAAe,aAAa;AAC5D,YAAM,cAAc,KAAK,UAAU,eAAe,WAAW;AAC7D,YAAM,qBAAqB,6BAA6B,cAAc;AACtE,UAAI;AACF,aAAK,GAAG,QAAQ,KAAK,KAAK,MAAM,KAAK,UAAU,kBAAkB,CAAC;AAClE,aAAK,GAAG,QAAQ,KAAK,KAAK,UAAU,QAAQ;AAC5C,aAAK,GAAG,QAAQ,KAAK,KAAK,aAAa,WAAW;AAClD,aAAK,GAAG,QAAQ,KAAK,KAAK,YAAY,0BAA0B,eAAe,UAAU,CAAC;AAC1F,cAAM,WAAW;AAAA,UACf,QAAQ,eAAe;AAAA,UACvB,aAAa,eAAe;AAAA,UAC5B,aAAa,eAAe;AAAA,UAC5B,WAAW,eAAe,aAAa,OAAO,eAAe,YAAY;AAAA,UACzE,qBAAqB,eAAe,uBAAuB,OAAO,eAAe,sBAAsB;AAAA,UACvG,kBAAkB,eAAe,oBAAoB,OAAO,eAAe,mBAAmB;AAAA,UAC9F,gBAAgB,eAAe,kBAAkB,OAAO,eAAe,iBAAiB;AAAA,QAC1F;AACA,aAAK,GAAG,QAAQ,KAAK,KAAK,eAAe,KAAK,UAAU,QAAQ,CAAC;AACjE,eAAO,EAAE,mBAAmB;AAAA,MAC9B,SAAS,KAAP;AACA,oBAAY,KAAK,IAAI;AACrB,cAAM,IAAI,MAAM,yBAAyB,KAAK,kHAAkH,mBAAmB,wCAAwC,mBAAmB,qCAAqC,mBAAmB,kBAAkB;AAAA,MAC1T;AAAA,IACF;AAAA,EACF;AAAA,EACA,MAAM,OAAO;AACX,UAAM,OAAO,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,KAAK,IAAI,CAAC;AACvD,QAAI,QAAQ,MAAM;AAChB,YAAM,IAAI,MAAM,kDAAkD,KAAK,YAAY;AAAA,IACrF;AACA,QAAI,KAAK,sBAAsB,QAAQ;AACrC,YAAM,IAAI,MAAM,2EAA2E;AAAA,IAC7F;AACA,UAAM,MAAM,CAAC;AACb,UAAM,WAAW,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,KAAK,QAAQ,CAAC;AAC/D,QAAI,YAAY,MAAM;AACpB,YAAM,IAAI,MAAM,4CAA4C,KAAK,wBAAwB;AAAA,IAC3F;AACA,QAAI,gBAAgB;AACpB,UAAM,cAAc,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,KAAK,WAAW,CAAC;AACrE,QAAI,eAAe,MAAM;AACvB,YAAM,IAAI,MAAM,gDAAgD,KAAK,yBAAyB;AAAA,IAChG;AACA,QAAI,cAAc;AAClB,UAAM,iBAAiB,KAAK,GAAG,QAAQ,KAAK,KAAK,aAAa;AAC9D,QAAI,kBAAkB,MAAM;AAC1B,YAAM,WAAW,KAAK,MAAM,cAAc;AAC1C,UAAI,SAAS,SAAS;AACtB,UAAI,cAAc,SAAS;AAC3B,UAAI,cAAc,SAAS;AAC3B,UAAI,SAAS,aAAa,MAAM;AAC9B,YAAI,YAAY,SAAS;AAAA,MAC3B;AACA,UAAI,SAAS,uBAAuB,MAAM;AACxC,YAAI,sBAAsB,SAAS;AAAA,MACrC;AACA,UAAI,SAAS,oBAAoB,MAAM;AACrC,YAAI,mBAAmB,SAAS;AAAA,MAClC;AACA,UAAI,SAAS,kBAAkB,MAAM;AACnC,YAAI,iBAAiB,SAAS;AAAA,MAChC;AAAA,IACF;AACA,UAAM,mBAAmB,KAAK,GAAG,QAAQ,KAAK,KAAK,UAAU;AAC7D,QAAI,oBAAoB,MAAM;AAC5B,YAAM,IAAI,MAAM,wDAAwD,KAAK,yBAAyB;AAAA,IACxG;AACA,QAAI,aAAa,0BAA0B,gBAAgB;AAC3D,WAAO;AAAA,EACT;AACF;AACA,oBAAoB,aAAa;AACjC,IAAI,qBAAqB,CAAC,QAAQ;AAChC,MAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,WAAO;AAAA,EACT,OAAO;AACL,QAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,IAAI,WAAW,oBAAoB,UAAU,GAAG;AACzE,aAAO,oBAAoB,IAAI,MAAM,oBAAoB,WAAW,MAAM,CAAC;AAAA,IAC7E,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AACA,iBAAiB,mBAAmB,kBAAkB;AACtD,iBAAiB,mBAAmB,kBAAkB;AACtD,SAAS,oBAAoB,WAAW;AACtC,SAAO,IAAI,oBAAoB,SAAS;AAC1C;AACA,IAAI,6BAA6B,MAAM;AAAA,EACrC,cAAc;AACZ,WAAO,IAAI,EAAE,QAAQ,YAAY,GAAG,MAAM,0CAA0C;AACpF,WAAO,OAAO,WAAW,eAAe,OAAO,OAAO,iBAAiB,aAAa,MAAM,yDAAyD;AACnJ,SAAK,KAAK,OAAO;AAAA,EACnB;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,MAAM,CAAC;AACb,UAAM,SAAS,cAAc;AAC7B,UAAM,SAAS,iBAAiB;AAChC,aAAS,KAAK,GAAG,KAAK,KAAK,GAAG,QAAQ,EAAE,IAAI;AAC1C,YAAM,MAAM,KAAK,GAAG,IAAI,EAAE;AAC1B,UAAI,IAAI,WAAW,MAAM,KAAK,IAAI,SAAS,MAAM,GAAG;AAClD,cAAM,YAAY,oBAAoB,GAAG;AACzC,YAAI,aAAa,KAAK,MAAM,KAAK,GAAG,QAAQ,GAAG,CAAC;AAAA,MAClD;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,YAAY,MAAM;AACtB,WAAO,kBAAkB,IAAI;AAC7B,UAAM,OAAO,aAAa,IAAI;AAC9B,QAAI,KAAK,GAAG,QAAQ,KAAK,IAAI,KAAK,MAAM;AACtC,YAAM,IAAI,MAAM,8BAA8B,OAAO;AAAA,IACvD;AACA,UAAM,OAAO,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,IAAI,CAAC;AAClD,gBAAY,IAAI;AAChB,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB;AACxB,IAAI,4BAA4B,MAAM;AAAA,EACpC,cAAc;AACZ,SAAK,WAAW,CAAC;AAAA,EACnB;AAAA,EACA,OAAO,cAAc;AACnB,QAAI,0BAA0B,YAAY,MAAM;AAC9C,gCAA0B,WAAW,IAAI,0BAA0B;AAAA,IACrE;AACA,WAAO,0BAA0B;AAAA,EACnC;AAAA,EACA,OAAO,gBAAgB,QAAQ,SAAS;AACtC,WAAO,UAAU,MAAM,MAAM,uCAAuC;AACpE,QAAI,OAAO,SAAS,iBAAiB,GAAG;AACtC,eAAS,OAAO,MAAM,GAAG,OAAO,QAAQ,iBAAiB,CAAC;AAAA,IAC5D;AACA,WAAO,OAAO,SAAS,GAAG,MAAM,qCAAqC;AACrE,UAAM,WAAW,0BAA0B,YAAY;AACvD,WAAO,SAAS,SAAS,WAAW,MAAM,MAAM,2DAA2D,UAAU;AACrH,aAAS,SAAS,UAAU;AAAA,EAC9B;AAAA,EACA,OAAO,WAAW,QAAQ;AACxB,UAAM,UAAU,0BAA0B,YAAY,EAAE,SAAS;AACjE,QAAI,WAAW,MAAM;AACnB,YAAM,IAAI,MAAM,yCAAyC,SAAS;AAAA,IACpE;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,aAAa;AAClB,WAAO,OAAO,KAAK,0BAA0B,YAAY,EAAE,QAAQ;AAAA,EACrE;AACF;AACA,SAAS,SAAS,KAAK;AACrB,MAAI,IAAI,QAAQ,iBAAiB,MAAM,IAAI;AACzC,UAAM,IAAI,MAAM,6EAA6E,0BAA0B,WAAW,EAAE,KAAK,GAAG,GAAG;AAAA,EACjJ;AACA,SAAO;AAAA,IACL,QAAQ,IAAI,MAAM,iBAAiB,EAAE;AAAA,IACrC,MAAM,IAAI,MAAM,iBAAiB,EAAE;AAAA,EACrC;AACF;AACA,eAAe,mBAAmB,WAAW,SAAS,eAAe,OAAO;AAC1E,SAAO,cAAc,SAAS,MAAM,wCAAwC,YAAY;AACxF,QAAM,eAAe,iBAAiB,gBAAgB,SAAS;AAC/D,SAAO,aAAa,SAAS,GAAG,MAAM,kEAAkE,YAAY;AACpH,SAAO,aAAa,SAAS,GAAG,MAAM,yCAAyC,aAAa,wCAAwC,YAAY;AAChJ,QAAM,cAAc,aAAa;AACjC,QAAM,eAAe,iBAAiB,gBAAgB,OAAO;AAC7D,SAAO,aAAa,SAAS,GAAG,MAAM,uEAAuE,UAAU;AACvH,SAAO,aAAa,SAAS,GAAG,MAAM,yCAAyC,aAAa,6CAA6C,UAAU;AACnJ,QAAM,cAAc,aAAa;AACjC,QAAM,eAAe,SAAS,SAAS,EAAE;AACzC,QAAM,aAAa,SAAS,SAAS,EAAE;AACvC,QAAM,aAAa,iBAAiB,SAAS,SAAS,EAAE;AACxD,QAAM,iBAAiB,MAAM,YAAY,KAAK;AAC9C,MAAI,gBAAgB,YAAY;AAC9B,UAAM,0BAA0B,WAAW,YAAY,EAAE,YAAY,UAAU;AAAA,EACjF;AACA,QAAM,aAAa,MAAM,YAAY,KAAK,cAAc;AACxD,MAAI,gBAAgB,CAAC,YAAY;AAC/B,UAAM,0BAA0B,WAAW,YAAY,EAAE,YAAY,UAAU;AAAA,EACjF;AACA,SAAO,WAAW;AACpB;AACA,eAAe,aAAa;AAC1B,QAAM,UAAU,0BAA0B,WAAW;AACrD,QAAM,MAAM,CAAC;AACb,aAAW,UAAU,SAAS;AAC5B,UAAM,YAAY,MAAM,0BAA0B,WAAW,MAAM,EAAE,WAAW;AAChF,eAAW,QAAQ,WAAW;AAC5B,YAAM,MAAM,SAAS,oBAAoB;AACzC,UAAI,OAAO,UAAU;AAAA,IACvB;AAAA,EACF;AACA,SAAO;AACT;AACA,eAAe,YAAY,KAAK;AAC9B,QAAM,gBAAgB,SAAS,GAAG;AAClC,QAAM,UAAU,0BAA0B,WAAW,cAAc,MAAM;AACzE,SAAO,QAAQ,YAAY,cAAc,IAAI;AAC/C;AACA,eAAe,UAAU,WAAW,SAAS;AAC3C,QAAM,eAAe;AACrB,SAAO,mBAAmB,WAAW,SAAS,YAAY;AAC5D;AACA,eAAe,UAAU,WAAW,SAAS;AAC3C,QAAM,eAAe;AACrB,SAAO,mBAAmB,WAAW,SAAS,YAAY;AAC5D;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,MAAM,MAAMN,QAAO;AACjB,WAAO,MAAM,MAAMA,MAAK;AAAA,EAC1B;AAAA,EACA,MAAM;AACJ,WAAO,YAAY,IAAI;AAAA,EACzB;AAAA,EACA,OAAO,MAAM,UAAU;AACrB,QAAI,aAAa,WAAW,aAAa,QAAQ;AAC/C,YAAM,IAAI,MAAM,kDAAkD,UAAU;AAAA,IAC9E;AACA,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK,cAAc,IAAI,YAAY;AAAA,IACrC;AACA,WAAO,KAAK,YAAY,OAAO,IAAI;AAAA,EACrC;AAAA,EACA,OAAO,OAAO,UAAU;AACtB,WAAO,IAAI,YAAY,QAAQ,EAAE,OAAO,KAAK;AAAA,EAC/C;AACF;AACA,IAAI,IAAI,EAAE,IAAI,YAAY,GAAG;AAC3B,MAAI,EAAE,YAAY,WAAW,IAAI,gBAAgB,CAAC;AAClD,MAAI;AACF,8BAA0B,gBAAgB,oBAAoB,YAAY,IAAI,2BAA2B,CAAC;AAAA,EAC5G,SAAS,KAAP;AAAA,EACF;AACA,MAAI;AACF,8BAA0B,gBAAgB,iBAAiB,YAAY,IAAI,wBAAwB,CAAC;AAAA,EACtG,SAAS,KAAP;AAAA,EACF;AACF;AAGA,IAAI,eAAe;AAAA,EACjB,aAAa,MAAM,gBAAgB;AACrC;AACA,IAAI;AACJ,IAAI,eAAe,MAAM;AAAA,EACvB,cAAc;AACZ,SAAK,OAAO,aAAa;AACzB,SAAK,cAAc,IAAI,KAAK,KAAK,YAAY;AAAA,EAC/C;AAAA,EACA,MAAM,MAAM,cAAc;AACxB,QAAI,IAAI,EAAE,OAAO,SAAS,MAAM;AAC9B,aAAO,IAAI,EAAE,OAAO,MAAM,MAAM,YAAY;AAAA,IAC9C;AACA,QAAI,eAAe,MAAM;AACvB,oBAAc,aAAa,YAAY;AAAA,IACzC;AACA,WAAO,YAAY,MAAM,YAAY;AAAA,EACvC;AAAA,EACA,MAAM;AACJ,UAAM,QAAQ,QAAQ,OAAO;AAC7B,WAAO,MAAM,KAAK,MAAM,MAAM,KAAK;AAAA,EACrC;AAAA,EACA,OAAO,MAAM,UAAU;AACrB,QAAI,aAAa,WAAW,aAAa,QAAQ;AAC/C,YAAM,IAAI,MAAM,sDAAsD,UAAU;AAAA,IAClF;AACA,WAAO,KAAK,YAAY,OAAO,IAAI;AAAA,EACrC;AAAA,EACA,OAAO,OAAO,UAAU;AACtB,QAAI,MAAM,WAAW,GAAG;AACtB,aAAO;AAAA,IACT;AACA,WAAO,IAAI,KAAK,KAAK,YAAY,QAAQ,EAAE,OAAO,KAAK;AAAA,EACzD;AACF;AACA,IAAI,IAAI,EAAE,IAAI,SAAS,KAAK,CAAC,IAAI,EAAE,IAAI,YAAY,GAAG;AACpD,MAAI,EAAE,YAAY,QAAQ,IAAI,aAAa,CAAC;AAC9C;AAGA,SAAS,OAAO,OAAO,QAAQ,WAAW,QAAQ;AAChD,UAAQ,SAAS;AACjB,qCAAmC,KAAK;AACxC,SAAO,IAAI,aAAa,OAAO,OAAO,MAAM;AAC9C;AAGA,SAAS,MAAM,GAAG,OAAO;AACvB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,MAAI,CAAC,aAAa,KAAK,GAAG;AACxB,UAAM,IAAI,MAAM,mCAAmC,OAAO;AAAA,EAC5D;AACA,MAAI,UAAU,YAAY,GAAG,UAAU,YAAY,UAAU,YAAY,GAAG,UAAU,UAAU;AAC9F,UAAM,IAAI,MAAM,uCAAuC;AAAA,EACzD;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM;AACtB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS,mBAAmB;AAC/D,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG,UAAU,OAAO;AACjC,UAAQ,IAAI,EAAE,SAAS,OAAO,CAAC;AACjC;AAGA,gBAAgB;AAChB,IAAI,aAAa;AAAA,EACf;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,aAAa,UAAU;AAGvB,IAAI,aAAa,CAAC;AAClBP,UAAS,YAAY;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,oBAAoB,MAAM;AAAA,EAC1B,yBAAyB,MAAM;AAAA,EAC/B,WAAW,MAAM;AAAA,EACjB,eAAe,MAAM;AAAA,EACrB,eAAe,MAAM;AAAA,EACrB,YAAY,MAAM;AAAA,EAClB,gBAAgB,MAAM;AAAA,EACtB,iBAAiB,MAAM;AAAA,EACvB,0BAA0B,MAAM;AAAA,EAChC,8BAA8B,MAAM;AAAA,EACpC,iBAAiB,MAAM;AAAA,EACvB,MAAM,MAAM;AAAA,EACZ,cAAc,MAAM;AAAA,EACpB,YAAY,MAAM;AAAA,EAClB,aAAa,MAAM;AAAA,EACnB,WAAW,MAAM;AAAA,EACjB,oBAAoB,MAAM;AAAA,EAC1B,oBAAoB,MAAM;AAAA,EAC1B,aAAa,MAAM;AAAA,EACnB,sBAAsB,MAAM;AAAA,EAC5B,iBAAiB,MAAM;AAAA,EACvB,qBAAqB,MAAM;AAC7B,CAAC;AAGD,IAAI,2BAA2B;AAC/B,IAAI,8BAA8B;AAClC,IAAI,qCAAqC;AACzC,SAAS,MAAM,GAAG;AAChB,SAAO,IAAI,QAAQ,CAAC,YAAY,WAAW,OAAO,CAAC,EAAE,KAAK,CAAC;AAC7D;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,gBAAgB;AAC1B,QAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,YAAM,IAAI,MAAM,qFAAqF;AAAA,IACvG;AACA,QAAI,eAAe,WAAW,iBAAiB,UAAU,GAAG;AAC1D,uBAAiB,eAAe,MAAM,iBAAiB,WAAW,MAAM;AAAA,IAC1E;AACA,QAAI,kBAAkB,QAAQ,eAAe,WAAW,GAAG;AACzD,uBAAiB;AAAA,IACnB;AACA,SAAK,oBAAoB,iBAAiB;AAC1C,SAAK,qBAAqB,iBAAiB;AAAA,EAC7C;AAAA,EACA,MAAM,KAAK,gBAAgB;AACzB,QAAI,OAAO,aAAa,aAAa;AACnC,YAAM,IAAI,MAAM,yFAAyF;AAAA,IAC3G;AACA,UAAM,aAAa,OAAO,IAAI,gBAAgB,IAAI,KAAK,CAAC,eAAe,UAAU,GAAG,EAAE,MAAM,2BAA2B,CAAC,CAAC;AACzH,QAAI,eAAe,yBAAyB,aAAa;AACvD,YAAM,IAAI,MAAM,uFAAuF;AAAA,IACzG,OAAO;AACL,YAAM,kBAAkB,CAAC;AAAA,QACvB,OAAO,CAAC,OAAO,KAAK,kBAAkB;AAAA,QACtC,SAAS,eAAe;AAAA,MAC1B,CAAC;AACD,YAAM,YAAY,8BAA8B,gBAAgB,eAAe;AAC/E,YAAM,eAAe,OAAO,IAAI,gBAAgB,IAAI,KAAK,CAAC,KAAK,UAAU,SAAS,CAAC,GAAG,EAAE,MAAM,mBAAmB,CAAC,CAAC;AACnH,YAAM,aAAa,KAAK,mBAAmB,OAAO,SAAS,cAAc,GAAG,IAAI,KAAK;AACrF,iBAAW,WAAW,KAAK;AAC3B,iBAAW,OAAO;AAClB,YAAM,MAAM,MAAM,WAAW,cAAc,IAAI,WAAW,OAAO,CAAC,CAAC;AACnE,UAAI,eAAe,cAAc,MAAM;AACrC,cAAM,mBAAmB,KAAK,oBAAoB,OAAO,SAAS,cAAc,GAAG,IAAI,KAAK;AAC5F,yBAAiB,WAAW,KAAK;AACjC,yBAAiB,OAAO;AACxB,cAAM,MAAM,MAAM,iBAAiB,cAAc,IAAI,WAAW,OAAO,CAAC,CAAC;AAAA,MAC3E;AACA,aAAO,EAAE,oBAAoB,6BAA6B,cAAc,EAAE;AAAA,IAC5E;AAAA,EACF;AACF;AACA,iBAAiB,aAAa;AAC9B,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO;AACjB,QAAI,SAAS,QAAQ,MAAM,SAAS,GAAG;AACrC,YAAM,IAAI,MAAM,wEAAwE,OAAO;AAAA,IACjG;AACA,SAAK,WAAW,MAAM;AACtB,SAAK,eAAe,MAAM,MAAM,CAAC;AAAA,EACnC;AAAA,EACA,MAAM,OAAO;AACX,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,aAAa,IAAI,WAAW;AAClC,iBAAW,SAAS,CAAC,UAAU;AAC7B,cAAM,YAAY,KAAK,MAAM,MAAM,OAAO,MAAM;AAChD,cAAM,gBAAgB,UAAU;AAChC,YAAI,iBAAiB,MAAM;AACzB,iBAAO,IAAI,MAAM,4CAA4C,KAAK,SAAS,MAAM,CAAC;AAClF;AAAA,QACF;AACA,cAAM,kBAAkB,UAAU;AAClC,YAAI,mBAAmB,MAAM;AAC3B,iBAAO,IAAI,MAAM,6CAA6C,KAAK,SAAS,MAAM,CAAC;AACnF;AAAA,QACF;AACA,YAAI,KAAK,aAAa,WAAW,GAAG;AAClC,kBAAQ,EAAE,cAAc,CAAC;AACzB;AAAA,QACF;AACA,cAAM,wBAAwB,yBAAyB,WAAW,CAAC,qBAAqB,KAAK,YAAY,gBAAgB,CAAC;AAC1H,gBAAQ,qBAAqB;AAAA,MAC/B;AACA,iBAAW,UAAU,CAAC,UAAU,OAAO,sEAAsE,KAAK,SAAS,2EAA2E;AACtM,iBAAW,WAAW,KAAK,QAAQ;AAAA,IACrC,CAAC;AAAA,EACH;AAAA,EACA,YAAY,iBAAiB;AAC3B,UAAM,cAAc,CAAC;AACrB,UAAM,QAAQ,CAAC;AACf,eAAW,SAAS,iBAAiB;AACnC,kBAAY,KAAK,GAAG,MAAM,OAAO;AACjC,YAAM,KAAK,GAAG,MAAM,KAAK;AAAA,IAC3B;AACA,UAAM,aAAa,KAAK,4BAA4B,eAAe;AACnE,UAAM,WAAW,MAAM,IAAI,CAAC,SAAS,KAAK,gBAAgB,MAAM,WAAW,KAAK,CAAC;AACjF,WAAO,QAAQ,IAAI,QAAQ,EAAE,KAAK,CAAC,YAAY,CAAC,aAAa,wBAAwB,OAAO,CAAC,CAAC;AAAA,EAChG;AAAA,EACA,gBAAgB,MAAM,MAAM;AAC1B,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,mBAAmB,IAAI,WAAW;AACxC,uBAAiB,SAAS,CAAC,UAAU;AACnC,cAAM,aAAa,MAAM,OAAO;AAChC,gBAAQ,UAAU;AAAA,MACpB;AACA,uBAAiB,UAAU,CAAC,UAAU,OAAO,6CAA6C,QAAQ;AAClG,uBAAiB,kBAAkB,IAAI;AAAA,IACzC,CAAC;AAAA,EACH;AAAA,EACA,4BAA4B,UAAU;AACpC,UAAM,YAAY,CAAC;AACnB,UAAM,YAAY,KAAK,aAAa,IAAI,CAAC,SAAS,SAAS,KAAK,IAAI,CAAC;AACrE,UAAM,aAAa,CAAC;AACpB,eAAW,SAAS,UAAU;AAC5B,YAAM,MAAM,QAAQ,CAAC,SAAS;AAC5B,cAAM,eAAe,SAAS,IAAI;AAClC,YAAI,UAAU,QAAQ,YAAY,MAAM,IAAI;AAC1C,gBAAM,IAAI,MAAM,uDAAuD,eAAe;AAAA,QACxF;AACA,kBAAU,KAAK,YAAY;AAC3B,YAAI,UAAU,QAAQ,YAAY,MAAM,IAAI;AAC1C,gBAAM,IAAI,MAAM,8BAA8B,gCAAgC;AAAA,QAChF,OAAO;AACL,qBAAW,QAAQ,KAAK,aAAa,UAAU,QAAQ,YAAY;AAAA,QACrE;AAAA,MACF,CAAC;AAAA,IACH;AACA,QAAI,UAAU,WAAW,KAAK,aAAa,QAAQ;AACjD,YAAM,IAAI,MAAM,wDAAwD,UAAU,oDAAoD,KAAK,aAAa,UAAU;AAAA,IACpK;AACA,WAAO;AAAA,EACT;AACF;AACA,IAAI,yBAAyB,CAAC,QAAQ;AACpC,MAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,WAAO;AAAA,EACT,OAAO;AACL,QAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,IAAI,WAAW,iBAAiB,UAAU,GAAG;AACtE,aAAO,iBAAiB,IAAI,MAAM,iBAAiB,WAAW,MAAM,CAAC;AAAA,IACvE,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AACA,iBAAiB,mBAAmB,sBAAsB;AAC1D,SAAS,iBAAiB,iBAAiB,SAAS;AAClD,SAAO,IAAI,iBAAiB,cAAc;AAC5C;AACA,SAAS,aAAa,OAAO;AAC3B,SAAO,IAAI,aAAa,KAAK;AAC/B;AAGA,SAAS,wBAAwB,UAAU,YAAY,eAAe,aAAa;AACjF,gBAAc,QAAQ;AACtB,kBAAgB,iBAAiB,OAAO,IAAI;AAC5C,gBAAc,eAAe,OAAO,IAAI;AACxC,gBAAc,eAAe,WAAW;AACxC,MAAI,kBAAkB;AACtB,QAAM,kBAAkB,CAAC,YAAY;AACnC,YAAQ,KAAK,CAAC,UAAU;AACtB,YAAM,WAAW,gBAAgB,EAAE,kBAAkB,SAAS,UAAU,cAAc;AACtF,iBAAW,QAAQ;AACnB,aAAO;AAAA,IACT,CAAC;AACD,WAAO;AAAA,EACT;AACA,WAAS,cAAc,WAAW;AAChC,WAAO,aAAa,QAAQ,MAAM,QAAQ,SAAS,KAAK,UAAU,SAAS,GAAG,MAAM,qCAAqC;AAAA,EAC3H;AACA,WAAS,cAAc,gBAAgB,cAAc;AACnD,WAAO,kBAAkB,KAAK,kBAAkB,GAAG,MAAM,oEAAoE,gBAAgB;AAC7I,WAAO,gBAAgB,KAAK,gBAAgB,GAAG,MAAM,kEAAkE,cAAc;AACrI,WAAO,gBAAgB,gBAAgB,MAAM,yEAAyE,kCAAkC,cAAc;AAAA,EACxK;AACA,SAAO,QAAQ,IAAI,SAAS,IAAI,eAAe,CAAC;AAClD;AAGA,eAAe,yBAAyB,WAAW,aAAa;AAC9D,MAAI,eAAe,MAAM;AACvB,kBAAc,CAAC;AAAA,EACjB;AACA,QAAM,YAAY,YAAY,aAAa,OAAO,IAAI,EAAE,SAAS,QAAQ,YAAY;AACrF,QAAM,WAAW,UAAU,IAAI,CAAC,aAAa,UAAU,UAAU,YAAY,aAAa,EAAE,UAAU,KAAK,CAAC,CAAC;AAC7G,QAAM,qBAAqB;AAC3B,QAAM,mBAAmB;AACzB,QAAM,YAAY,YAAY,cAAc,OAAO,MAAM,QAAQ,IAAI,QAAQ,IAAI,MAAM,wBAAwB,UAAU,YAAY,YAAY,oBAAoB,gBAAgB;AACrL,QAAM,iBAAiB,UAAU,IAAI,CAAC,aAAa,SAAS,YAAY,CAAC;AACzE,QAAM,sBAAsB;AAC5B,QAAM,oBAAoB;AAC1B,QAAM,UAAU,YAAY,cAAc,OAAO,MAAM,QAAQ,IAAI,cAAc,IAAI,MAAM,wBAAwB,gBAAgB,YAAY,YAAY,qBAAqB,iBAAiB;AACjM,SAAO;AACT;AACA,eAAe,YAAY,UAAU,iBAAiB,IAAI,aAAa,aAAa;AAClF,QAAM,eAAe,CAAC,cAAc,yBAAyB,WAAW,EAAE,YAAY,CAAC;AACvF,QAAM,eAAe,qBAAqB,YAAY;AACtD,SAAO,aAAa,UAAU,gBAAgB,WAAW;AAC3D;AACA,SAAS,qBAAqB,sBAAsB;AAClD,SAAO,OAAO,UAAU,iBAAiB,IAAI,gBAAgB;AAC3D,UAAM,yBAAyB,SAAS,IAAI,MAAM,KAAK;AACvD,UAAM,sBAAsB,CAAC;AAC7B,UAAM,eAAe,eAAe,OAAO,YAAY,IAAI,MAAM,KAAK,IAAI,CAAC;AAC3E,UAAM,yBAAyB,CAAC;AAChC,aAAS,QAAQ,CAAC,qBAAqB,eAAe;AACpD,UAAI,cAAc;AAClB,0BAAoB,QAAQ,QAAQ,CAAC,iBAAiB;AACpD,cAAM,WAAW,kBAAkB,eAAe,aAAa,aAAa,QAAQ,aAAa;AACjG,cAAM,eAAe,qBAAqB,YAAY,cAAc,aAAa,KAAK;AACtF,cAAM,8BAA8B,MAAM;AACxC,iCAAuB,cAAc;AACrC,cAAI,oBAAoB,eAAe,MAAM;AAC3C,gCAAoB,cAAc,CAAC;AAAA,UACrC;AACA,8BAAoB,YAAY,KAAK;AAAA,YACnC,eAAe;AAAA,YACf;AAAA,YACA,WAAW;AAAA,UACb,CAAC;AAAA,QACH;AACA,YAAI,eAAe,MAAM;AACvB,sBAAY,QAAQ,CAAC,YAAY,gBAAgB;AAC/C,gBAAI,eAAe,aAAa,MAAM;AACpC,0CAA4B;AAC5B,2BAAa,eAAe;AAAA,YAC9B;AAAA,UACF,CAAC;AAAA,QACH,OAAO;AACL,sCAA4B;AAAA,QAC9B;AACA,+BAAuB,KAAK,aAAa,IAAI;AAC7C,uBAAe;AAAA,MACjB,CAAC;AAAA,IACH,CAAC;AACD,QAAI,CAAC,aAAa,MAAM,CAAC,UAAU,KAAK,GAAG;AACzC,YAAM,kBAAkB,YAAY,OAAO,CAAC,GAAG,OAAO,CAAC,aAAa,GAAG;AACvE,YAAM,IAAI,MAAM,kDAAkD,gBAAgB,KAAK,IAAI;AAAA,wCACzD,uBAAuB,KAAK,IAAI,IAAI;AAAA,IACxE;AACA,UAAM,sBAAsB,uBAAuB,OAAO,CAAC,aAAa,aAAa,OAAO;AAC1F,UAAI,aAAa;AACf,oBAAY,KAAK,EAAE;AAAA,MACrB;AACA,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AACL,UAAM,YAAY,CAAC;AACnB,wBAAoB,QAAQ,CAAC,OAAO;AAClC,eAAS,IAAI,MAAM,QAAQ,CAAC,aAAa;AACvC,cAAM,WAAW,kBAAkB,CAAC,eAAe,SAAS,GAAG,IAAI,MAAM,MAAM;AAC/E,kBAAU,KAAK,QAAQ;AAAA,MACzB,CAAC;AAAA,IACH,CAAC;AACD,UAAM,UAAU,MAAM,qBAAqB,SAAS;AACpD,UAAM,mBAAmB,CAAC;AAC1B,QAAI,oBAAoB;AACxB,wBAAoB,QAAQ,CAAC,OAAO;AAClC,YAAM,aAAa,SAAS,IAAI,MAAM;AACtC,UAAI,aAAa;AACjB,eAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,sBAAc,QAAQ,oBAAoB,IAAI;AAAA,MAChD;AACA,YAAM,cAAc,IAAI,YAAY,UAAU;AAC9C,YAAM,kBAAkB,IAAI,WAAW,WAAW;AAClD,UAAI,oBAAoB;AACxB,eAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,cAAM,UAAU,IAAI,WAAW,QAAQ,oBAAoB,GAAG;AAC9D,wBAAgB,IAAI,SAAS,iBAAiB;AAC9C,6BAAqB,QAAQ;AAAA,MAC/B;AACA,YAAM,iBAAiB,oBAAoB;AAC3C,qBAAe,QAAQ,CAAC,iBAAiB;AACvC,cAAM,aAAa,YAAY,MAAM,aAAa,aAAa,aAAa,cAAc,aAAa,SAAS;AAChH,cAAM,kBAAkB,cAAc,YAAY,CAAC,aAAa,aAAa,CAAC;AAC9E,mBAAW,QAAQ,iBAAiB;AAClC,2BAAiB,QAAQ,gBAAgB;AAAA,QAC3C;AAAA,MACF,CAAC;AACD,2BAAqB;AAAA,IACvB,CAAC;AACD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,yBAAyB;AAC7B,IAAI,YAAY;AAChB,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,MAAM,aAAa;AAC7B,SAAK,iBAAiB;AACtB,QAAI,eAAe,MAAM;AACvB,oBAAc,CAAC;AAAA,IACjB;AACA,SAAK,mBAAmB,YAAY;AACpC,SAAK,aAAa,YAAY;AAC9B,SAAK,qBAAqB,YAAY;AACtC,QAAI,YAAY,aAAa,MAAM;AACjC,aAAO,OAAO,YAAY,cAAc,YAAY,MAAM,6HAA6H;AACvL,WAAK,QAAQ,YAAY;AAAA,IAC3B,OAAO;AACL,WAAK,QAAQ,IAAI,EAAE,SAAS;AAAA,IAC9B;AACA,WAAO,QAAQ,QAAQ,KAAK,SAAS,GAAG,MAAM,yDAAyD;AACvG,QAAI,MAAM,QAAQ,IAAI,GAAG;AACvB,aAAO,KAAK,WAAW,GAAG,MAAM,iEAAiE,KAAK,UAAU;AAAA,IAClH;AACA,SAAK,OAAO;AACZ,QAAI,YAAY,eAAe,QAAQ,YAAY,YAAY,QAAQ,MAAM;AAC3E,YAAM,IAAI,MAAM,oEAAoE;AAAA,IACtF;AACA,SAAK,cAAc,YAAY,eAAe,CAAC;AAAA,EACjD;AAAA,EACA,MAAM,KAAK,gBAAgB;AACzB,QAAI,eAAe,yBAAyB,aAAa;AACvD,YAAM,IAAI,MAAM,yFAAyF;AAAA,IAC3G;AACA,UAAMO,SAAQ,OAAO,OAAO,EAAE,QAAQ,KAAK,eAAe,GAAG,KAAK,WAAW;AAC7E,IAAAA,OAAM,OAAO,IAAI,SAAS;AAC1B,UAAM,kBAAkB,CAAC;AAAA,MACvB,OAAO,CAAC,qBAAqB;AAAA,MAC7B,SAAS,eAAe;AAAA,IAC1B,CAAC;AACD,UAAM,iCAAiC,8BAA8B,gBAAgB,eAAe;AACpG,IAAAA,OAAM,KAAK,OAAO,cAAc,IAAI,KAAK,CAAC,KAAK,UAAU,8BAA8B,CAAC,GAAG,EAAE,MAAM,UAAU,CAAC,GAAG,YAAY;AAC7H,QAAI,eAAe,cAAc,MAAM;AACrC,MAAAA,OAAM,KAAK,OAAO,qBAAqB,IAAI,KAAK,CAAC,eAAe,UAAU,GAAG,EAAE,MAAM,uBAAuB,CAAC,GAAG,mBAAmB;AAAA,IACrI;AACA,UAAM,WAAW,MAAM,KAAK,MAAM,KAAK,MAAMA,MAAK;AAClD,QAAI,SAAS,IAAI;AACf,aAAO;AAAA,QACL,oBAAoB,6BAA6B,cAAc;AAAA,QAC/D,WAAW,CAAC,QAAQ;AAAA,MACtB;AAAA,IACF,OAAO;AACL,YAAM,IAAI,MAAM,gEAAgE,SAAS,SAAS;AAAA,IACpG;AAAA,EACF;AAAA,EACA,MAAM,OAAO;AACX,UAAM,qBAAqB,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,WAAW;AACvE,QAAI,CAAC,mBAAmB,IAAI;AAC1B,YAAM,IAAI,MAAM,cAAc,KAAK,gCAAgC,mBAAmB,+EAA+E;AAAA,IACvK;AACA,QAAI;AACJ,QAAI;AACF,kBAAY,MAAM,mBAAmB,KAAK;AAAA,IAC5C,SAAS,IAAP;AACA,UAAI,UAAU,+CAA+C,KAAK;AAClE,UAAI,KAAK,KAAK,SAAS,KAAK,GAAG;AAC7B,mBAAW;AAAA,MACb,OAAO;AACL,mBAAW;AAAA,MACb;AACA,YAAM,IAAI,MAAM,OAAO;AAAA,IACzB;AACA,UAAM,gBAAgB,UAAU;AAChC,UAAM,kBAAkB,UAAU;AAClC,QAAI,iBAAiB,QAAQ,mBAAmB,MAAM;AACpD,YAAM,IAAI,MAAM,2BAA2B,KAAK,+DAA+D;AAAA,IACjH;AACA,WAAO,yBAAyB,WAAW,CAAC,qBAAqB,KAAK,YAAY,gBAAgB,CAAC;AAAA,EACrG;AAAA,EACA,MAAM,YAAY,iBAAiB;AACjC,UAAM,aAAa,MAAM,QAAQ,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK;AAClE,UAAM,CAAC,QAAQ,MAAM,IAAI,SAAS,UAAU;AAC5C,UAAM,aAAa,KAAK,oBAAoB;AAC5C,UAAM,cAAc,CAAC;AACrB,eAAW,SAAS,iBAAiB;AACnC,kBAAY,KAAK,GAAG,MAAM,OAAO;AAAA,IACnC;AACA,UAAM,YAAY,CAAC;AACnB,UAAM,cAAc,CAAC;AACrB,eAAW,gBAAgB,iBAAiB;AAC1C,iBAAW,QAAQ,aAAa,OAAO;AACrC,YAAI,KAAK,sBAAsB,MAAM;AACnC,sBAAY,KAAK,KAAK,mBAAmB,IAAI,CAAC;AAAA,QAChD,OAAO;AACL,oBAAU,KAAK,aAAa,OAAO,MAAM;AAAA,QAC3C;AAAA,MACF;AAAA,IACF;AACA,QAAI,KAAK,oBAAoB;AAC3B,gBAAU,KAAK,GAAG,MAAM,QAAQ,IAAI,WAAW,CAAC;AAAA,IAClD;AACA,UAAM,UAAU,MAAM,yBAAyB,WAAW;AAAA,MACxD,aAAa,KAAK;AAAA,MAClB,WAAW,KAAK;AAAA,MAChB,YAAY,KAAK;AAAA,IACnB,CAAC;AACD,WAAO,CAAC,aAAa,wBAAwB,OAAO,CAAC;AAAA,EACvD;AACF;AACA,YAAY,mBAAmB;AAC/B,SAAS,SAAS,KAAK;AACrB,QAAM,YAAY,IAAI,YAAY,GAAG;AACrC,QAAM,kBAAkB,IAAI,YAAY,GAAG;AAC3C,QAAM,SAAS,IAAI,UAAU,GAAG,SAAS;AACzC,QAAM,SAAS,kBAAkB,YAAY,IAAI,UAAU,eAAe,IAAI;AAC9E,SAAO,CAAC,SAAS,KAAK,MAAM;AAC9B;AACA,SAAS,aAAa,KAAK;AACzB,SAAO,IAAI,MAAM,YAAY,gBAAgB,KAAK;AACpD;AACA,IAAI,aAAa,CAAC,KAAK,gBAAgB;AACrC,MAAI,OAAO,UAAU,gBAAgB,eAAe,QAAQ,YAAY,aAAa,OAAO;AAC1F,WAAO;AAAA,EACT,OAAO;AACL,QAAI,SAAS;AACb,QAAI,MAAM,QAAQ,GAAG,GAAG;AACtB,eAAS,IAAI,MAAM,CAAC,YAAY,aAAa,OAAO,CAAC;AAAA,IACvD,OAAO;AACL,eAAS,aAAa,GAAG;AAAA,IAC3B;AACA,QAAI,QAAQ;AACV,aAAO,KAAK,KAAK,WAAW;AAAA,IAC9B;AAAA,EACF;AACA,SAAO;AACT;AACA,iBAAiB,mBAAmB,UAAU;AAC9C,iBAAiB,mBAAmB,UAAU;AAC9C,SAAS,KAAK,MAAM,aAAa;AAC/B,SAAO,IAAI,YAAY,MAAM,WAAW;AAC1C;AACA,SAAS,mBAAmB,MAAM,aAAa;AAC7C,SAAO,KAAK,MAAM,WAAW;AAC/B;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,gBAAgB;AAC1B,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,OAAO;AACL,WAAO,KAAK;AAAA,EACd;AACF;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,aAAa;AACvB,SAAK,cAAc;AAAA,EACrB;AAAA,EACA,KAAK,gBAAgB;AACnB,WAAO,KAAK,YAAY,cAAc;AAAA,EACxC;AACF;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,SAAS;AACnB,QAAI,QAAQ,MAAM;AAChB,WAAK,OAAO,MAAM,QAAQ,QAAQ,QAAQ,KAAK,CAAC;AAAA,IAClD;AACA,QAAI,QAAQ,MAAM;AAChB,WAAK,OAAO,CAAC,mBAAmB,QAAQ,QAAQ,QAAQ,KAAK,cAAc,CAAC;AAAA,IAC9E;AAAA,EACF;AACF;AACA,SAAS,WAAW,gBAAgB,aAAa,YAAY,gBAAgB;AAC3E,QAAM,OAAO;AACb,SAAO,IAAI,iBAAiB,eAAe,GAAG,IAAI,CAAC;AACrD;AACA,SAAS,eAAe,gBAAgB,aAAa,YAAY,gBAAgB;AAC/E,MAAI,UAAU,WAAW,GAAG;AAC1B,UAAM,mBAAmB,eAAe,iBAAiB,QAAQ,eAAe,eAAe;AAC/F,QAAI,kBAAkB;AACpB,aAAO,IAAI,kBAAkB,cAAc;AAAA,IAC7C,OAAO;AACL,cAAQ,KAAK,uNAAuN;AACpO,aAAO,IAAI,kBAAkB,EAAE,eAAe,eAAe,CAAC;AAAA,IAChE;AAAA,EACF,OAAO;AACL,YAAQ,KAAK,uNAAuN;AACpO,WAAO,IAAI,kBAAkB;AAAA,MAC3B,eAAe;AAAA,MACf;AAAA,MACA;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH;AACF;AACA,SAAS,gBAAgB,aAAa;AACpC,SAAO,IAAI,iBAAiB,WAAW;AACzC;AACA,SAAS,oBAAoB,aAAa;AACxC,SAAO,IAAI,iBAAiB,WAAW;AACzC;AAGA,IAAI,eAAe,CAAC;AACpBP,UAAS,cAAc;AAAA,EACrB,iBAAiB,MAAM;AACzB,CAAC;AAGD,SAAS,QAAQ,GAAG,GAAG,aAAa,OAAO,aAAa,OAAO;AAC7D,MAAI,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AACzC,MAAI,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AACzC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,QAAM,QAAQ,EAAE,YAAY,WAAW;AACvC,SAAO,OAAO,UAAU,aAAa,QAAQ,KAAK;AACpD;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,QAAQ,SAAS,OAAO,UAAU,GAAG,WAAW,GAAG,QAAQ,SAAS;AAC3E,MAAI,QAAQ,GAAG;AACb,UAAM,IAAI,MAAM,iDAAiD,OAAO;AAAA,EAC1E;AACA,QAAM,WAAW,gBAAgB,SAAS,WAAW,UAAU,OAAO;AACtE,QAAM,SAAS,EAAE,SAAS,SAAS;AACnC,QAAM,QAAQ,EAAE,OAAO,OAAO,SAAS,SAAS;AAChD,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,iBAAiB;AACxB,MAAI,EAAE,IAAI,QAAQ,IAAI;AACxB;AACA,SAAS,kBAAkB;AACzB,MAAI,EAAE,IAAI,SAAS,IAAI;AACzB;AACA,SAAS,6BAA6B;AACpC,MAAI,EAAE,IAAI,gCAAgC,KAAK;AAC/C,UAAQ,KAAK,wDAAwD;AACvE;AACA,SAAS,gBAAgB,KAAK;AAC5B,MAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,YAAQ,KAAK,MAAM,6EAA6E;AAAA,EAClG;AACF;AACA,wBAAwB,eAAe;AACvC,SAAS,mBAAmB;AAC1B,SAAO,iBAAiB;AAC1B;AACA,SAAS,SAAS;AAChB,SAAO;AACT;AACA,SAAS,SAAS;AAChB,SAAO,OAAO,OAAO;AACvB;AACA,SAAS,QAAQ,GAAG;AAClB,SAAO,OAAO,QAAQ,CAAC;AACzB;AACA,SAAS,KAAK,UAAU,IAAI;AAC1B,SAAO,OAAO,KAAK,UAAU,EAAE;AACjC;AACA,SAAS,QAAQ,WAAW;AAC1B,QAAM,UAAU,sBAAsB,SAAS;AAC/C,UAAQ,QAAQ,CAAC,YAAY,QAAQ,QAAQ,CAAC;AAChD;AACA,SAAS,KAAK,QAAQ;AACpB,SAAO,OAAO,KAAK,MAAM;AAC3B;AACA,SAAS,KAAK,GAAG;AACf,SAAO,OAAO,KAAK,CAAC;AACtB;AACA,SAAS,WAAW,aAAa;AAC/B,SAAO,OAAO,WAAW,WAAW;AACtC;AACA,SAAS,QAAQ;AACf,SAAO,OAAO,MAAM;AACtB;AACA,SAAS,aAAa;AACpB,SAAO,OAAO;AAChB;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,cAAc,IAAI;AAC3B;AACA,SAAS,YAAY,MAAM;AACzB,SAAO,OAAO,YAAY,IAAI;AAChC;AACA,SAAS,mBAAmB,MAAM;AAChC,SAAO,OAAO,mBAAmB,IAAI;AACvC;AACA,SAAS,gBAAgB,MAAM,SAAS,WAAW,GAAG;AACpD,SAAO,OAAO,gBAAgB,MAAM,SAAS,QAAQ;AACvD;AACA,SAAS,UAAU;AACjB,SAAO,OAAO;AAChB;AACA,SAAS,YAAY,cAAc,UAAU;AAC3C,MAAI,EAAE,YAAY,cAAc,QAAQ;AAC1C;AAGA,SAAS,MAAM,QAAQ;AACrB,QAAM,SAAS,gBAAgB,QAAQ,SAAS,MAAM;AACtD,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,QAAQ;AACrB,QAAM,SAAS,gBAAgB,QAAQ,SAAS,MAAM;AACtD,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,WAAW,GAAG,MAAM,WAAW;AACtC,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,MAAI,QAAQ,MAAM;AAChB,WAAO,GAAG,MAAM,IAAI,CAAC,IAAI,OAAO,EAAE,EAAE,QAAQ;AAAA,EAC9C;AACA,SAAO,GAAG,SAAS,KAAK,QAAQ,MAAM,qCAAqC,GAAG,kCAAkC,OAAO;AACvH,OAAK,QAAQ,CAAC,SAAS;AACrB,WAAO,QAAQ,KAAK,OAAO,GAAG,MAAM,MAAM,+CAA+C,GAAG,OAAO,aAAa,MAAM;AAAA,EACxH,CAAC;AACD,MAAI,GAAG,QAAQ,GAAG;AAChB,WAAO,GAAG,MAAM;AAAA,EAClB;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,MAAI,GAAG,UAAU,aAAa;AAC5B,WAAO,KAAK,MAAM;AAChB,UAAI,QAAQ,KAAK,EAAE;AACnB,UAAI,QAAQ,KAAK,EAAE;AACnB,cAAQ,OAAO,UAAU,WAAW,EAAE,GAAG,MAAM,GAAG,KAAK;AACvD,cAAQ,OAAO,UAAU,WAAW,EAAE,GAAG,MAAM,GAAG,KAAK;AACvD,UAAI,WAAW;AACb,gBAAQ,IAAI,KAAK;AAAA,MACnB;AACA,aAAO,QAAQ,OAAO,KAAK;AAAA,IAC7B,CAAC;AAAA,EACH;AACA,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,iBAAiBuB,SAAQ,aAAa,YAAY;AACzD,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,iBAAiB;AACnE,QAAM,eAAe,gBAAgB,aAAa,eAAe,iBAAiB;AAClF,SAAO,cAAc,QAAQ,aAAa,KAAK,OAAO,UAAU,UAAU,GAAG,MAAM,+DAA+D,YAAY;AAC9J,SAAO,QAAQ,SAAS,GAAG,MAAM,gDAAgD,QAAQ,MAAM;AAC/F,SAAO,aAAa,SAAS,GAAG,MAAM,qDAAqD,aAAa,MAAM;AAC9G,SAAO,QAAQ,MAAM,OAAO,aAAa,MAAM,IAAI,MAAM,uCAAuC,QAAQ,MAAM,UAAU,aAAa,MAAM,qEAAqE;AAChN,SAAO,aAAa,KAAK,OAAO,UAAU,UAAU,GAAG,MAAM,4DAA4D,YAAY;AACrI,QAAM,eAAe,OAAO,KAAK,SAAS,OAAO,GAAG,UAAU;AAC9D,QAAM,oBAAoB,OAAO,KAAK,cAAc,OAAO,GAAG,UAAU;AACxE,QAAM,gBAAgB,UAAU,YAAY;AAC5C,QAAM,UAAU,OAAO,eAAe,iBAAiB;AACvD,SAAO,KAAK,SAAS,OAAO;AAC9B;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,IAAI,yBAAyB,CAAC;AAC9BvB,UAAS,wBAAwB;AAAA,EAC/B,4BAA4B,MAAM;AAAA,EAClC,kBAAkB,MAAM;AAAA,EACxB,kBAAkB,MAAM;AAC1B,CAAC;AACD,SAAS,iBAAiB,SAAS,UAAU;AAC3C,QAAM,SAAS,QAAQ;AACvB,QAAM,OAAO,CAAC;AACd,WAAS,KAAK,GAAG,KAAK,QAAQ,MAAM;AAClC,UAAM,MAAM,SAAS,IAAI;AACzB,UAAM,IAAI,QAAQ,QAAQ;AAC1B,UAAM,IAAI,SAAS,SAAS,SAAS,IAAI,OAAO;AAChD,QAAI,IAAI,KAAK,MAAM,GAAG;AACpB,WAAK,QAAQ,GAAG;AAAA,IAClB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,SAAS,UAAU;AAC3C,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,UAAM,QAAQ,QAAQ,QAAQ,SAAS,KAAK;AAC5C,UAAM,UAAU,SAAS,SAAS,KAAK;AACvC,UAAM,SAAS,SAAS;AACxB,QAAI,SAAS,QAAQ,UAAU,KAAK,SAAS,GAAG;AAC9C,aAAO,QAAQ,OAAO;AAAA,IACxB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,2BAA2B,QAAQ,QAAQ;AAClD,QAAM,SAAS,CAAC;AAChB,QAAM,KAAK,KAAK,IAAI,OAAO,QAAQ,OAAO,MAAM;AAChD,WAAS,KAAK,GAAG,KAAK,IAAI,MAAM;AAC9B,QAAI,IAAI,OAAO,OAAO,SAAS,KAAK;AACpC,QAAI,KAAK,MAAM;AACb,UAAI;AAAA,IACN;AACA,QAAI,IAAI,OAAO,OAAO,SAAS,KAAK;AACpC,QAAI,KAAK,MAAM;AACb,UAAI;AAAA,IACN;AACA,QAAI,MAAM,GAAG;AACX,aAAO,QAAQ,CAAC;AAAA,IAClB,WAAW,MAAM,GAAG;AAClB,aAAO,QAAQ,CAAC;AAAA,IAClB,WAAW,MAAM,GAAG;AAClB,YAAM,SAAS,wDAAwD,cAAc;AACrF,YAAM,MAAM,MAAM;AAAA,IACpB,OAAO;AACL,aAAO,QAAQ,CAAC;AAAA,IAClB;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,kBAAkB,CAAC;AACvBA,UAAS,iBAAiB;AAAA,EACxB,YAAY,MAAM;AAAA,EAClB,iBAAiB,MAAM;AAAA,EACvB,UAAU,MAAM;AAClB,CAAC;AAGD,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,kEAAkE;AAAA,EACpF;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,yEAAyE;AAAA,EAC3F;AACA,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,IAAI;AACJ,SAAS,YAAY,QAAQ,cAAc,GAAG;AAC5C,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,gEAAgE;AAAA,EAClF;AACA,MAAI,UAAU,MAAM;AAClB,UAAM,IAAI,MAAM,0DAA0D;AAAA,EAC5E;AACA,MAAI,eAAe;AACnB,MAAI,cAAc;AAClB,MAAI,UAAU;AACd,MAAI,UAAU;AACd,MAAI,eAAe;AACnB,MAAI,gBAAgB;AACpB,MAAI,OAAO,gBAAgB,YAAY;AACrC,mBAAe;AAAA,EACjB,WAAW,OAAO,cAAc,eAAe,kBAAkB,WAAW;AAC1E,kBAAc;AAAA,EAChB,WAAW,OAAO,qBAAqB,eAAe,kBAAkB,kBAAkB;AACxF,cAAU;AAAA,EACZ,WAAW,OAAO,qBAAqB,eAAe,kBAAkB,kBAAkB;AACxF,cAAU;AAAA,EACZ,WAAW,OAAO,cAAc,MAAM;AACpC,mBAAe;AAAA,EACjB,WAAW,OAAO,gBAAgB,eAAe,kBAAkB,aAAa;AAC9E,oBAAgB;AAAA,EAClB,OAAO;AACL,UAAM,IAAI,MAAM,qPAAqP,OAAO,YAAY,MAAM;AAAA,EAChS;AACA,QAAM,SAAS,UAAU,YAAY,OAAO,WAAW;AACvD,MAAI,UAAU,MAAM;AAClB,UAAM,SAAS,EAAE,OAAO;AACxB,UAAM,QAAQ,EAAE,YAAY;AAC5B,WAAO,OAAO,UAAU,YAAY,QAAQ,KAAK;AAAA,EACnD;AACA,QAAM,CAAC,OAAO,MAAM,IAAI,UAAU;AAAA,IAChC,OAAO;AAAA,IACP,OAAO;AAAA,EACT,IAAI,CAAC,OAAO,OAAO,OAAO,MAAM;AAChC,MAAI;AACJ,MAAI,cAAc;AAChB,WAAO,OAAO,WAAW,IAAI,EAAE,aAAa,GAAG,GAAG,OAAO,MAAM,EAAE;AAAA,EACnE,WAAW,eAAe,cAAc;AACtC,WAAO,OAAO;AAAA,EAChB,WAAW,WAAW,WAAW,eAAe;AAC9C,QAAI,uBAAuB,MAAM;AAC/B,UAAI,OAAO,aAAa,aAAa;AACnC,YAAI,OAAO,oBAAoB,eAAe,OAAO,sCAAsC,aAAa;AACtG,gCAAsB,IAAI,gBAAgB,GAAG,CAAC,EAAE,WAAW,IAAI;AAAA,QACjE,OAAO;AACL,gBAAM,IAAI,MAAM,sGAAsG;AAAA,QACxH;AAAA,MACF,OAAO;AACL,8BAAsB,SAAS,cAAc,QAAQ,EAAE,WAAW,MAAM,EAAE,oBAAoB,KAAK,CAAC;AAAA,MACtG;AAAA,IACF;AACA,wBAAoB,OAAO,QAAQ;AACnC,wBAAoB,OAAO,SAAS;AACpC,wBAAoB,UAAU,QAAQ,GAAG,GAAG,OAAO,MAAM;AACzD,WAAO,oBAAoB,aAAa,GAAG,GAAG,OAAO,MAAM,EAAE;AAAA,EAC/D;AACA,MAAI;AACJ,MAAI,gBAAgB,GAAG;AACrB,aAAS,IAAI,WAAW,IAAI;AAAA,EAC9B,OAAO;AACL,UAAM,YAAY,QAAQ;AAC1B,aAAS,IAAI,WAAW,YAAY,WAAW;AAC/C,aAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,eAAS,UAAU,GAAG,UAAU,aAAa,EAAE,SAAS;AACtD,eAAO,KAAK,cAAc,WAAW,KAAK,KAAK,IAAI;AAAA,MACrD;AAAA,IACF;AAAA,EACF;AACA,QAAM,WAAW,CAAC,QAAQ,OAAO,WAAW;AAC5C,SAAO,SAAS,QAAQ,UAAU,OAAO;AAC3C;AACA,SAAS,YAAY,QAAQ;AAC3B,SAAO,UAAU,QAAQ,OAAO,gBAAgB;AAClD;AACA,SAAS,8BAA8B;AACrC,SAAO,OAAO,WAAW,eAAe,OAAO,gBAAgB,eAAe,OAAO,eAAe,mBAAmB;AACzH;AACA,SAAS,iBAAiB,QAAQ;AAChC,SAAO,UAAU,QAAQ,OAAO,UAAU,KAAK,OAAO,WAAW;AACnE;AACA,SAAS,2BAA2B,QAAQ;AAC1C,SAAO,4BAA4B,KAAK,EAAE,kBAAkB,gBAAgB,iBAAiB,MAAM,KAAK,CAAC,YAAY,MAAM;AAC7H;AACA,eAAe,gBAAgB,QAAQ,cAAc,GAAG;AACtD,MAAI,SAAS;AACb,MAAI,IAAI,EAAE,QAAQ,qBAAqB,KAAK,2BAA2B,MAAM,GAAG;AAC9E,QAAI;AACJ,QAAI;AACF,oBAAc,MAAM,kBAAkB,QAAQ,EAAE,kBAAkB,OAAO,CAAC;AAAA,IAC5E,SAAS,IAAP;AACA,oBAAc;AAAA,IAChB;AACA,QAAI,eAAe,QAAQ,YAAY,UAAU,OAAO,SAAS,YAAY,WAAW,OAAO,QAAQ;AACrG,eAAS;AAAA,IACX,OAAO;AACL,eAAS;AAAA,IACX;AAAA,EACF,OAAO;AACL,aAAS;AAAA,EACX;AACA,SAAO,YAAY,QAAQ,WAAW;AACxC;AACA,eAAe,SAAS,KAAKc,SAAQ;AACnC,MAAI,OAAO,gBAAgB,KAAK,OAAO,UAAU;AACjD,MAAI,EAAE,eAAe,SAAS;AAC5B,UAAM,oBAAoB;AAC1B,WAAO,KAAK,mBAAmB,OAAO;AACtC,sBAAkB,QAAQ;AAAA,EAC5B;AACA,MAAI,KAAK,SAAS,KAAK,KAAK,SAAS,GAAG;AACtC,UAAM,IAAI,MAAM,wDAAwD,KAAK,OAAO;AAAA,EACtF;AACA,QAAM,CAAC,QAAQ,KAAK,IAAI,KAAK,MAAM,MAAM,GAAG,CAAC;AAC7C,QAAM,QAAQ,KAAK,SAAS,IAAI,IAAI,KAAK,MAAM;AAC/C,MAAI,QAAQ,KAAK,UAAU,GAAG;AAC5B,UAAM,IAAI,MAAM,0DAA0D,OAAO;AAAA,EACnF;AACA,MAAI,KAAK,UAAU,aAAa,KAAK,UAAU,SAAS;AACtD,UAAM,IAAI,MAAM,kCAAkC,KAAK,6CAA6C;AAAA,EACtG;AACA,QAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,QAAM,aAAa,KAAK,UAAU,YAAY,MAAM;AACpD,QAAM,QAAQ,IAAI,kBAAkB,QAAQ,SAAS,CAAC;AACtD,WAAS,KAAK,GAAG,KAAK,SAAS,OAAO,EAAE,IAAI;AAC1C,UAAM,OAAO,CAAC,GAAG,GAAG,GAAG,GAAG;AAC1B,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,YAAM,QAAQ,KAAK,KAAK,QAAQ;AAChC,UAAI,KAAK,UAAU,WAAW;AAC5B,YAAI,QAAQ,KAAK,QAAQ,GAAG;AAC1B,gBAAM,IAAI,MAAM,mFAAmF,QAAQ;AAAA,QAC7G;AAAA,MACF,WAAW,KAAK,UAAU,SAAS;AACjC,YAAI,QAAQ,KAAK,QAAQ,KAAK;AAC5B,gBAAM,IAAI,MAAM,mFAAmF,QAAQ;AAAA,QAC7G;AAAA,MACF;AACA,UAAI,UAAU,GAAG;AACf,aAAK,KAAK,QAAQ;AAClB,aAAK,KAAK,QAAQ;AAClB,aAAK,KAAK,QAAQ;AAAA,MACpB,OAAO;AACL,aAAK,KAAK,QAAQ;AAAA,MACpB;AAAA,IACF;AACA,UAAM,IAAI,KAAK;AACf,UAAM,IAAI,KAAK,KAAK,MAAM,KAAK,EAAE;AACjC,UAAM,IAAI,KAAK,KAAK,MAAM,KAAK,EAAE;AACjC,UAAM,IAAI,KAAK,KAAK,MAAM,KAAK,EAAE;AACjC,UAAM,IAAI,KAAK,KAAK,MAAM,KAAK,EAAE;AAAA,EACnC;AACA,MAAIA,WAAU,MAAM;AAClB,IAAAA,QAAO,QAAQ;AACf,IAAAA,QAAO,SAAS;AAChB,UAAM,MAAMA,QAAO,WAAW,IAAI;AAClC,UAAM,YAAY,IAAI,UAAU,OAAO,OAAO,MAAM;AACpD,QAAI,aAAa,WAAW,GAAG,CAAC;AAAA,EAClC;AACA,MAAI,SAAS,KAAK;AAChB,SAAK,QAAQ;AAAA,EACf;AACA,SAAO;AACT;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,IAAI,yBAAyB,CAAC;AAC9Bd,UAAS,wBAAwB;AAAA,EAC/B,oBAAoB,MAAM;AAC5B,CAAC;AACD,SAAS,mBAAmB,SAAS,SAAS;AAC5C,QAAM,aAAa,QAAQ,MAAM;AACjC,QAAM,cAAc,QAAQ,MAAM;AAClC,MAAI,aAAa,GAAG;AAClB,UAAM,IAAI,MAAM,4EAA4E,aAAa;AAAA,EAC3G;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,8EAA8E,cAAc;AAAA,EAC9G;AACA,MAAI,QAAQ,UAAU,SAAS;AAC7B,UAAM,IAAI,MAAM,yEAAyE,QAAQ,QAAQ;AAAA,EAC3G;AACA,MAAI,QAAQ,MAAM,cAAc,KAAK,YAAY;AAC/C,UAAM,IAAI,MAAM,iEAAiE,QAAQ,MAAM,cAAc,UAAU,YAAY;AAAA,EACrI;AACA,MAAI,cAAc,QAAQ,KAAK,MAAM,GAAG;AACtC,UAAM,IAAI,MAAM,mEAAmE,QAAQ,QAAQ;AAAA,EACrG;AACA,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,MAAI,UAAU;AACd,WAAS,KAAK,GAAG,KAAK,aAAa,SAAS,GAAG,EAAE,IAAI;AACnD,eAAW,aAAa;AAAA,EAC1B;AACA,QAAM,aAAa,QAAQ;AAC3B,QAAM,cAAc,aAAa,MAAM;AACvC,cAAY,IAAI;AAChB,MAAI,YAAY;AAChB,WAAS,KAAK,WAAW,KAAK,YAAY,EAAE,IAAI;AAC9C,iBAAa,WAAW;AACxB,gBAAY,KAAK,WAAW,GAAG;AAAA,EACjC;AACA,QAAMgB,WAAU;AAAA,IACd,GAAG,eAAe,QAAQ,KAAK,EAAE,IAAI,CAAC,WAAW,SAAS,SAAS;AAAA,IACnE;AAAA,EACF,EAAE,MAAM,GAAG,SAAS;AACpB,SAAO,CAAC,aAAa,SAAS,WAAWA,QAAO;AAClD;AAGA,IAAI,0BAA0B,CAAC;AAC/BhB,UAAS,yBAAyB;AAAA,EAChC,iBAAiB,MAAM;AAAA,EACvB,eAAe,MAAM;AAAA,EACrB,qBAAqB,MAAM;AAC7B,CAAC;AACD,SAAS,oBAAoB,OAAO,SAAS,SAAS;AACpD,QAAM,WAAW,QAAQ,OAAO,IAAI,QAAQ,MAAM,QAAQ,OAAO,KAAK;AACtE,QAAM,WAAW,QAAQ,OAAO,IAAI,QAAQ,OAAO,IAAI;AACvD,QAAM,aAAa,6FAA6F,QAAQ,yBAAyB,QAAQ,iBAAiB,oBAAoB,2BAA2B;AACzN,MAAI,QAAQ,OAAO,UAAU;AAC3B,UAAM,IAAI,MAAM,aAAa,kBAAkB,YAAY;AAAA,EAC7D;AACA,MAAI,MAAM,SAAS,YAAY,QAAQ,OAAO,WAAW;AACvD,UAAM,IAAI,MAAM,aAAa,0BAA0B,YAAY,QAAQ,OAAO,WAAW;AAAA,EAC/F;AACA,MAAI,QAAQ,SAAS,WAAW,MAAM,SAAS,UAAU;AACvD,UAAM,IAAI,MAAM,aAAa,mBAAmB,WAAW,MAAM,SAAS,UAAU;AAAA,EACtF;AACA,WAAS,IAAI,GAAG,IAAI,UAAU,EAAE,GAAG;AACjC,QAAI,QAAQ,MAAM,OAAO,QAAQ,MAAM,IAAI;AACzC,YAAM,IAAI,MAAM,aAAa,kBAAkB,OAAO,QAAQ,MAAM,wBAAwB,OAAO,QAAQ,MAAM,MAAM;AAAA,IACzH;AAAA,EACF;AACA,WAAS,IAAI,GAAG,IAAI,QAAQ,OAAO,UAAU,EAAE,GAAG;AAChD,QAAI,QAAQ,MAAM,IAAI,cAAc,MAAM,IAAI,WAAW;AACvD,YAAM,IAAI,MAAM,aAAa,kBAAkB,IAAI,cAAc,QAAQ,MAAM,IAAI,uBAAuB,IAAI,cAAc,MAAM,IAAI,YAAY;AAAA,IACpJ;AAAA,EACF;AACF;AACA,SAAS,cAAc,SAAS,SAAS,OAAO;AAC9C,MAAI,QAAQ,OAAO,GAAG;AACpB,UAAM,IAAI,MAAM,+EAA+E,QAAQ,OAAO;AAAA,EAChH;AACA,MAAI,QAAQ,OAAO,GAAG;AACpB,UAAM,IAAI,MAAM,+EAA+E,QAAQ,OAAO;AAAA,EAChH;AACA,MAAI,QAAQ,UAAU,SAAS;AAC7B,UAAM,IAAI,MAAM,0DAA0D,QAAQ,OAAO;AAAA,EAC3F;AACA,MAAI,MAAM,SAAS,GAAG;AACpB,UAAM,IAAI,MAAM,6DAA6D,OAAO;AAAA,EACtF;AACA,MAAI,MAAM,WAAW,GAAG;AACtB,QAAI,QAAQ,SAAS,GAAG;AACtB,YAAM,IAAI,MAAM,sDAAsD,QAAQ,OAAO;AAAA,IACvF;AACA,QAAI,QAAQ,SAAS,GAAG;AACtB,YAAM,IAAI,MAAM,sDAAsD,QAAQ,OAAO;AAAA,IACvF;AAAA,EACF;AACA,sBAAoB,OAAO,SAAS,OAAO;AAC7C;AACA,SAAS,gBAAgB,SAAS,SAAS,OAAO;AAChD,QAAM,cAAc,QAAQ,MAAM;AAClC,QAAM,YAAY,cAAc,IAAI,QAAQ,MAAM,cAAc,KAAK;AACrE,QAAM,UAAU,MAAM;AACtB,MAAI,YAAY;AAChB,WAAS,KAAK,WAAW,KAAK,SAAS,EAAE,IAAI;AAC3C,iBAAa,MAAM;AAAA,EACrB;AACA,QAAM,eAAe,YAAY,IAAI,IAAI;AACzC,QAAM,aAAa,cAAc,QAAQ,KAAK,IAAI;AAClD,QAAMgB,WAAU,CAAC,GAAG,eAAe,MAAM,MAAM,GAAG,SAAS,CAAC,GAAG,CAAC;AAChE,QAAMQ,cAAa,cAAc,KAAK;AACtC,SAAO,EAAE,WAAW,YAAY,WAAW,SAAAR,UAAS,YAAAQ,YAAW;AACjE;AAGA,IAAI,qBAAqB,CAAC;AAC1BxB,UAAS,oBAAoB;AAAA,EAC3B,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,iBAAiB,MAAM;AAAA,EACvB,mBAAmB,MAAM;AAAA,EACzB,kBAAkB,MAAM;AAAA,EACxB,YAAY,MAAM;AAAA,EAClB,kBAAkB,MAAM;AAAA,EACxB,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,4BAA4B,MAAM;AAAA,EAClC,aAAa,MAAM;AAAA,EACnB,2BAA2B,MAAM;AAAA,EACjC,gBAAgB,MAAM;AAAA,EACtB,uBAAuB,MAAM;AAC/B,CAAC;AACD,IAAI,WAAW;AACf,IAAI,cAAc;AAClB,SAAS,kBAAkB,QAAQ,OAAOG,OAAM;AAC9C,QAAM,YAAY,OAAO,MAAM;AAC/B,SAAO,cAAc,MAAM,QAAQ,MAAM,iBAAiB,+BAA+B,2CAA2C,aAAa;AACjJ,SAAO,cAAcA,MAAK,QAAQ,MAAM,iBAAiB,8BAA8BA,2CAA0C,aAAa;AAC9I,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,WAAO,MAAM,MAAMA,MAAK,OAAO,OAAO,MAAM,KAAK,MAAM,iBAAiB,qBAAqB,cAAc,QAAQ,MAAM,MAAMA,MAAK,mCAAmC,QAAQ,OAAO,MAAM,MAAM;AAAA,EACpM;AACF;AACA,SAAS,WAAWK,OAAM;AACxB,QAAM,OAAO,CAAC;AACd,MAAI,OAAO;AACX,SAAOA,QAAO,GAAG;AACf,QAAIA,QAAO,GAAG;AACZ,WAAK,KAAK,IAAI;AAAA,IAChB;AACA,IAAAA,SAAQ;AACR;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,OAAO,KAAKQ,UAAS;AAC5C,QAAMb,QAAO,CAAC;AACd,WAAS,OAAO,GAAG,OAAO,MAAM,QAAQ,QAAQ;AAC9C,IAAAA,MAAK,QAAQ,KAAK,MAAM,IAAI,QAAQ,MAAM,SAASa,SAAQ,KAAK;AAAA,EAClE;AACA,SAAOb;AACT;AACA,SAAS,sBAAsBa,UAAS,wBAAwB,eAAe,YAAY;AACzF,QAAM,aAAa,CAAC,GAAGA,QAAO;AAC9B,WAAS,KAAK,WAAW,QAAQ,KAAK,WAAW,QAAQ,MAAM;AAC7D,eAAW,KAAK,CAAC;AAAA,EACnB;AACA,WAAS,KAAK,GAAG,KAAK,eAAe,MAAM;AACzC,QAAI,OAAO,GAAG;AACZ,iBAAW,0BAA0B;AAAA,IACvC,OAAO;AACL,iBAAW,OAAO,wBAAwB,GAAG,CAAC;AAC9C,iBAAW,IAAI;AAAA,IACjB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,wBAAwB,eAAe,gBAAgB;AAC9E,MAAI,kBAAkB,wBAAwB;AAC5C,WAAO;AAAA,EACT;AACA,SAAO,kBAAkB,gBAAgB;AAC3C;AACA,SAAS,cAAc,eAAe,wBAAwB;AAC5D,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,eAAe,MAAM;AACzC,eAAW,KAAK,yBAAyB,EAAE;AAAA,EAC7C;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,YAAY,cAAc,qBAAqB,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc;AAC/H,QAAM,YAAY,WAAW;AAC7B,MAAI,kBAAkB,IAAI,MAAM,SAAS,GAAG,gBAAgB,IAAI,MAAM,SAAS,GAAG,oBAAoB,IAAI,MAAM,SAAS;AACzH,MAAI,aAAa,UAAU,sBAAsB,GAAG;AAClD,UAAM,YAAY,aAAa;AAC/B,UAAM,gBAAgB,sBAAsB;AAC5C,sBAAkB,2BAA2B,WAAW,WAAW,eAAe,OAAO,UAAU;AACnG,oBAAgB,0BAA0B,SAAS,WAAW,eAAe,KAAK,UAAU;AAC5F,wBAAoB,sBAAsBA,UAAS,WAAW,eAAe,UAAU;AAAA,EACzF,OAAO;AACL,aAAS,OAAO,GAAG,OAAO,WAAW,QAAQ;AAC3C,sBAAgB,QAAQ,aAAa,WAAW,OAAOA,UAAS,YAAY,MAAM,YAAY;AAC9F,oBAAc,QAAQ,YAAY,SAAS,KAAKA,UAAS,YAAY,MAAM,YAAY;AACvF,wBAAkB,QAAQ,eAAeA,UAAS,MAAM,YAAY;AAAA,IACtE;AAAA,EACF;AACA,SAAO;AAAA,IACL,OAAO;AAAA,IACP,KAAK;AAAA,IACL,SAAS;AAAA,EACX;AACF;AACA,SAAS,2BAA2B,WAAW,wBAAwB,eAAe,eAAe,YAAY;AAC/G,QAAM,aAAa,CAAC,GAAG,UAAU;AACjC,QAAM,aAAa,cAAc,eAAe,sBAAsB;AACtE,WAAS,OAAO,GAAG,OAAO,WAAW,QAAQ,QAAQ;AACnD,QAAI,WAAW,QAAQ,IAAI,IAAI,IAAI;AACjC,iBAAW,QAAQ;AAAA,IACrB,OAAO;AACL,YAAM,eAAe,gBAAgB,wBAAwB,eAAe,IAAI;AAChF,UAAI,gBAAgB,cAAc;AAClC,UAAI,YAAY,KAAK,cAAc;AACjC,wBAAgB;AAAA,MAClB;AACA,iBAAW,QAAQ;AAAA,IACrB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,0BAA0B,SAAS,wBAAwB,eAAe,aAAa,YAAY;AAC1G,QAAM,aAAa,CAAC,GAAG,UAAU;AACjC,QAAM,aAAa,cAAc,eAAe,sBAAsB;AACtE,WAAS,OAAO,GAAG,OAAO,WAAW,QAAQ,QAAQ;AACnD,QAAI,WAAW,QAAQ,IAAI,IAAI,IAAI;AACjC,iBAAW,QAAQ,OAAO;AAAA,IAC5B,OAAO;AACL,YAAM,eAAe,gBAAgB,wBAAwB,eAAe,IAAI;AAChF,UAAI,gBAAgB,YAAY;AAChC,UAAI,UAAU,KAAK,cAAc;AAC/B,wBAAgB,OAAO;AAAA,MACzB;AACA,iBAAW,QAAQ;AAAA,IACrB;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,MAAM;AAC7C,UAAM,WAAW,WAAW;AAC5B,QAAI,WAAW,MAAM,GAAG;AACtB,iBAAW,OAAO;AAAA,IACpB;AACA,eAAW,MAAM,MAAM,GAAG,WAAW,KAAK,WAAW,GAAG;AAAA,EAC1D;AACA,SAAO;AACT;AACA,SAAS,eAAeA,UAAS,MAAM,cAAc;AACnD,MAAI,SAASA,SAAQ;AACrB,MAAI,eAAe,KAAK,QAAQ,UAAU,MAAM;AAC9C,aAAS;AAAA,EACX;AACA,SAAO;AACT;AACA,SAAS,aAAa,WAAW,cAAcA,UAAS,YAAY,MAAM,cAAc;AACtF,MAAI,QAAQ,aAAa;AACzB,QAAM,SAASA,SAAQ,SAAS;AAChC,MAAI,YAAY,KAAK,QAAQ,eAAe,KAAK,QAAQ,SAAS,MAAM;AACtE,QAAI,SAAS,GAAG;AACd,cAAQ,OAAO;AAAA,IACjB,OAAO;AACL,cAAQ,OAAO;AAAA,IACjB;AAAA,EACF;AACA,QAAM,WAAW,WAAW;AAC5B,MAAI,QAAQ,GAAG;AACb,aAAS;AAAA,EACX;AACA,UAAQ,MAAM,GAAG,OAAO,WAAW,CAAC;AACpC,SAAO;AACT;AACA,SAAS,YAAY,SAAS,aAAaA,UAAS,YAAY,MAAM,cAAc;AAClF,MAAI,OAAO,YAAY;AACvB,QAAM,SAASA,SAAQ,SAAS;AAChC,MAAI,UAAU,KAAK,QAAQ,eAAe,KAAK,QAAQ,QAAQ,MAAM;AACnE,QAAI,SAAS,GAAG;AACd,aAAO,OAAO;AAAA,IAChB,OAAO;AACL,aAAO,OAAO;AAAA,IAChB;AAAA,EACF;AACA,QAAM,WAAW,WAAW;AAC5B,MAAI,OAAO,GAAG;AACZ,YAAQ;AAAA,EACV;AACA,MAAI,SAAS,GAAG;AACd,WAAO,MAAM,GAAG,MAAM,QAAQ;AAAA,EAChC,OAAO;AACL,WAAO,MAAM,IAAI,MAAM,WAAW,CAAC;AAAA,EACrC;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,OAAO,OAAOb,OAAM;AAC5C,MAAI,kBAAkBA,MAAK;AAC3B,WAAS,KAAK,GAAG,KAAKA,MAAK,QAAQ,MAAM;AACvC,QAAIA,MAAK,MAAM,GAAG;AAChB,wBAAkB;AAClB;AAAA,IACF;AAAA,EACF;AACA,WAAS,KAAK,kBAAkB,GAAG,KAAKA,MAAK,QAAQ,MAAM;AACzD,QAAI,MAAM,MAAM,KAAKA,MAAK,QAAQ,MAAM,KAAK;AAC3C,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,OAAOa,UAAS;AACzC,MAAI,aAAa,MAAM,SAAS,IAAI,MAAM,MAAM,SAAS,KAAK;AAC9D,WAAS,KAAK,GAAG,KAAK,MAAM,SAAS,GAAG,MAAM;AAC5C,kBAAc,MAAM,MAAMA,SAAQ;AAAA,EACpC;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,GAAG,OAAOb,OAAM;AACxC,MAAI;AACJ,QAAM,QAAQ,EAAE,MAAM;AACtB,MAAI,OAAO,UAAU,UAAU;AAC7B,aAAS,CAAC,OAAO,GAAG,IAAI,MAAM,QAAQ,CAAC,EAAE,KAAK,CAAC,CAAC;AAAA,EAClD,WAAW,MAAM,SAAS,OAAO;AAC/B,aAAS,MAAM,OAAO,IAAI,MAAM,QAAQ,MAAM,MAAM,EAAE,KAAK,CAAC,CAAC;AAAA,EAC/D,OAAO;AACL,aAAS,MAAM,MAAM;AAAA,EACvB;AACA,SAAO,QAAQ,CAAC,MAAM;AACpB,WAAO,MAAM,IAAI,MAAM,mDAAmD;AAAA,EAC5E,CAAC;AACD,MAAI;AACJ,MAAIA,SAAQ,MAAM;AAChB,YAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,EAAE;AAAA,EAClC,WAAW,OAAOA,UAAS,UAAU;AACnC,YAAQ,CAACA,OAAM,GAAG,IAAI,MAAM,QAAQ,CAAC,EAAE,KAAK,EAAE,CAAC;AAAA,EACjD,WAAWA,MAAK,SAAS,OAAO;AAC9B,YAAQA,MAAK,OAAO,IAAI,MAAM,QAAQA,MAAK,MAAM,EAAE,KAAK,EAAE,CAAC;AAAA,EAC7D,OAAO;AACL,YAAQA;AAAA,EACV;AACA,UAAQ,MAAM,IAAI,CAAC,GAAG,OAAO;AAC3B,QAAI,KAAK,GAAG;AACV,aAAO;AAAA,IACT,OAAO;AACL,aAAO,MAAM,IAAI,MAAM,qDAAqD,mCAAmC,KAAK;AACpH,aAAO,EAAE,MAAM,MAAM,OAAO;AAAA,IAC9B;AAAA,EACF,CAAC;AACD,SAAO,CAAC,QAAQ,KAAK;AACvB;AACA,SAAS,UAAU,QAAQ,OAAO,KAAKa,UAAS,WAAW,SAAS,cAAc,aAAa,gBAAgB;AAC7G,MAAI;AACJ,MAAIA,YAAW,MAAM;AACnB,qBAAiB,IAAI,MAAM,MAAM,MAAM;AACvC,mBAAe,KAAK,CAAC;AAAA,EACvB,OAAO;AACL,qBAAiBA;AAAA,EACnB;AACA,MAAI,gBAAgB,SAAS,eAAe,eAAe,OAAO,GAAG;AACnE,UAAM,IAAI,MAAM,4CAA4C;AAAA,EAC9D;AACA,MAAI,eAAe;AACnB,QAAM,aAAa;AAAA,IACjB,MAAM,eAAe;AAAA,IACrB,yBAAyB;AAAA,IACzB,OAAO,MAAM,MAAM;AAAA,IACnB,KAAK,IAAI,MAAM;AAAA,IACf,SAAS,eAAe,MAAM;AAAA,IAC9B;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,MAAM,MAAM;AAC3C,QAAI,iBAAiB,KAAK,KAAK,iBAAiB,GAAG;AACjD,iBAAW;AAAA,IACb;AACA,QAAI,KAAK,KAAK,cAAc;AAC1B,qBAAe;AAAA,IACjB;AAAA,EACF;AACA,MAAI,CAAC,cAAc;AACjB,eAAW,gBAAgB,KAAK,WAAW;AAC3C,eAAW;AAAA,EACb;AACA,QAAM,YAAY;AAAA,IAChB,MAAM,OAAO;AAAA,IACb,WAAW;AAAA,IACX,SAAS;AAAA,IACT,YAAY;AAAA,IACZ,UAAU;AAAA,EACZ;AACA,iBAAe,YAAY,SAAS;AACpC,MAAI,aAAa;AACjB,MAAI,YAAY;AAChB,MAAI,gBAAgB;AACpB,QAAM,kBAAkB,CAAC;AACzB,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,UAAU,QAAQ,QAAQ,GAAG;AAC/B,YAAM,MAAM,WAAW,sBAAsB;AAAA,IAC/C;AACA,UAAM,UAAU,CAAC,EAAE,UAAU,iBAAiB,KAAK;AACnD,UAAM,OAAO,OAAO;AACpB,QAAI,SAAS,IAAI;AACf,sBAAgB,KAAK,UAAU,IAAI,EAAE;AACrC;AAAA,IACF;AACA,UAAM,QAAQ,CAAC,UAAU,YAAY,KAAK,IAAI,UAAU,UAAU,KAAK,EAAE;AACzE,UAAM,aAAa;AAAA,MACjB,UAAU,QAAQ,MAAM,IAAI,IAAI;AAAA,MAChC,UAAU,QAAQ,MAAM,IAAI,OAAO,OAAO;AAAA,IAC5C;AACA,QAAI,WAAW,UAAU,QAAQ,OAAO,GAAG;AACzC,YAAM,MAAM,8CAA8C;AAAA,IAC5D;AACA,oBAAgB,iBAAiB,UAAU,QAAQ,QAAQ;AAC3D,UAAM,oBAAoB,CAAC,EAAE,UAAU,YAAY,KAAK,MAAM,UAAU,UAAU,KAAK;AACvF,QAAI,UAAU,cAAc,UAAU,UAAU;AAC9C,UAAI,SAAS;AACX,cAAM,OAAO,UAAU,MAAM,MAAM,IAAI,OAAO,UAAU,MAAM,MAAM,UAAU,MAAM;AACpF,kBAAU,MAAM,MAAM;AACtB,kBAAU,IAAI,MAAM,UAAU,MAAM,MAAM;AAC1C,YAAI,OAAO,KAAK,QAAQ,MAAM;AAC5B,gBAAM,MAAM,eAAe,UAAU,MAAM,oBAAoB,mBAAmB;AAAA,QACpF;AAAA,MACF,OAAO;AACL,kBAAU,MAAM,MAAM,UAAU,UAAU,MAAM,KAAK,GAAG,UAAU,QAAQ,KAAK,MAAM,OAAO,UAAU;AACtG,kBAAU,IAAI,MAAM,UAAU,UAAU,IAAI,KAAK,GAAG,UAAU,QAAQ,KAAK,MAAM,OAAO,UAAU;AAAA,MACpG;AACA,YAAM,qBAAqB,UAAU,QAAQ,QAAQ,KAAK,UAAU,MAAM,QAAQ,KAAK,UAAU,IAAI,QAAQ;AAC7G,mBAAa,cAAc;AAC3B,kBAAY,cAAc,OAAO,KAAK,UAAU,QAAQ,QAAQ,KAAK;AAAA,IACvE,OAAO;AACL,mBAAa,eAAe,UAAU,QAAQ,QAAQ,KAAK;AAC3D,kBAAY,cAAc,OAAO,KAAK,UAAU,QAAQ,QAAQ,KAAK;AAAA,IACvE;AACA,QAAI;AACJ,QAAI,gBAAgB;AACpB,QAAI,UAAU,cAAc,UAAU,UAAU;AAC9C,uBAAiB,UAAU,IAAI,MAAM,UAAU,MAAM;AACrD,sBAAgB;AAAA,IAClB,WAAW,SAAS;AAClB,uBAAiB;AACjB,sBAAgB;AAAA,IAClB,WAAW,mBAAmB;AAC5B,UAAI,QAAQ,GAAG;AACb,YAAI,UAAU,QAAQ,MAAM,GAAG;AAC7B,2BAAiB,CAAC;AAAA,QACpB,OAAO;AACL,2BAAiB;AAAA,QACnB;AACA,wBAAgB;AAAA,MAClB;AAAA,IACF;AACA,QAAI,eAAe;AACjB,UAAI;AACJ,UAAI,mBAAmB,KAAK,iBAAiB,MAAM,UAAU,QAAQ,MAAM,GAAG;AAC5E,gBAAQ;AAAA,MACV,OAAO;AACL,gBAAQ,KAAK,MAAM,iBAAiB,UAAU,QAAQ,GAAG,KAAK,iBAAiB,UAAU,QAAQ,QAAQ,IAAI,IAAI;AAAA,MACnH;AACA,sBAAgB,KAAK,KAAK;AAAA,IAC5B,OAAO;AACL,sBAAgB,KAAK,EAAE;AAAA,IACzB;AAAA,EACF;AACA,WAAS,WAAW,GAAG,WAAW,UAAU,wBAAwB,QAAQ,EAAE,UAAU;AACtF,UAAM,cAAc,UAAU,wBAAwB;AACtD,QAAI,eAAe,GAAG;AACpB,iBAAW,KAAK,gBAAgB,YAAY;AAAA,IAC9C,WAAW,gBAAgB,UAAU;AACnC,iBAAW,KAAK,CAAC;AAAA,IACnB;AAAA,EACF;AACA,QAAM,mBAAmB,WAAW,OAAO,CAAC,KAAK,OAAO,UAAU,wBAAwB,QAAQ,QAAQ;AAC1G,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,OAAO,UAAU;AAAA,IACjB,KAAK,UAAU;AAAA,IACf,SAAS,UAAU;AAAA,EACrB;AACF;AACA,SAAS,eAAe,SAAS,QAAQ;AACvC,SAAO,YAAY;AACnB,SAAO,UAAU;AACjB,SAAO,iBAAiB;AACxB,MAAI,YAAY;AAChB,SAAO,aAAa,QAAQ,SAAS;AACrC,SAAO,WAAW,QAAQ,OAAO;AACjC,SAAO,QAAQ,IAAI,MAAM,OAAO,IAAI;AACpC,SAAO,MAAM,IAAI,MAAM,OAAO,IAAI;AAClC,SAAO,UAAU,IAAI,MAAM,OAAO,IAAI;AACtC,SAAO,0BAA0B,CAAC;AAClC,SAAO,gCAAgC,CAAC;AACxC,SAAO,gCAAgC,IAAI,MAAM,OAAO,IAAI;AAC5D,WAAS,KAAK,GAAG,KAAK,QAAQ,MAAM,MAAM;AACxC,QAAI,KAAK,KAAK,QAAQ,cAAc;AAClC,YAAM,YAAY,KAAK,IAAI,OAAO,QAAQ,QAAQ,OAAO,MAAM,IAAI,QAAQ,yBAAyB,OAAO,IAAI;AAC/G,aAAO,YAAY,WAAW,aAAa;AACzC,eAAO,MAAM,aAAa;AAC1B,eAAO,IAAI,aAAa;AACxB,eAAO,QAAQ,aAAa;AAC5B,eAAO,aAAa,KAAK;AACzB,eAAO,WAAW,KAAK;AACvB,eAAO,wBAAwB,KAAK,SAAS;AAC7C,eAAO,8BAA8B,KAAK,EAAE;AAC5C,eAAO,8BAA8B,aAAa;AAAA,MACpD;AAAA,IACF,WAAW,KAAK,KAAK,QAAQ,aAAa;AACxC,aAAO,wBAAwB,KAAK,QAAQ;AAC5C,aAAO,8BAA8B,KAAK,EAAE;AAAA,IAC9C,OAAO;AACL,UAAI,cAAc,OAAO,MAAM,QAAQ;AACrC,cAAM,MAAM,sCAAsC,6BAA6B,OAAO,cAAc,OAAO,MAAM,SAAS;AAAA,MAC5H;AACA,UAAI,QAAQ,SAAS,MAAM;AACzB,eAAO,MAAM,aAAa,QAAQ,MAAM;AAAA,MAC1C;AACA,UAAI,QAAQ,OAAO,MAAM;AACvB,eAAO,IAAI,aAAa,QAAQ,IAAI;AAAA,MACtC;AACA,aAAO,QAAQ,aAAa,QAAQ,QAAQ;AAC5C,UAAI,QAAQ,YAAY,KAAK,IAAI;AAC/B,eAAO,aAAa,KAAK;AAAA,MAC3B;AACA,UAAI,QAAQ,UAAU,KAAK,IAAI;AAC7B,eAAO,WAAW,KAAK;AAAA,MACzB;AACA,UAAI,QAAQ,iBAAiB,KAAK,IAAI;AACpC,eAAO,wBAAwB,KAAK,WAAW;AAC/C,eAAO,8BAA8B,KAAK,EAAE;AAC5C,eAAO,kBAAkB,KAAK;AAAA,MAChC,OAAO;AACL,eAAO,wBAAwB,KAAK,SAAS;AAC7C,eAAO,8BAA8B,KAAK,EAAE;AAAA,MAC9C;AACA,aAAO,8BAA8B,aAAa;AAClD;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,UAAU,GAAG,GAAG,SAAS,MAAM,OAAO,YAAY;AACzD,MAAI,MAAM,IAAI;AACZ,WAAO,UAAU,IAAI,WAAW,KAAK,WAAW,IAAI,IAAI;AAAA,EAC1D,OAAO;AACL,UAAM,OAAO,IAAI,IAAI,OAAO,IAAI;AAChC,WAAO,OAAO,WAAW,KAAK,WAAW,KAAK,OAAO,WAAW,KAAK,WAAW,KAAK;AAAA,EACvF;AACF;AAGA,IAAI,wBAAwB,CAAC;AAC7BhB,UAAS,uBAAuB;AAAA,EAC9B,cAAc,MAAM;AAAA,EACpB,kBAAkB,MAAM;AAAA,EACxB,eAAe,MAAM;AACvB,CAAC;AACD,IAAI,eAAe,MAAM;AAAA,EACvB,eAAe;AACb,WAAO,KAAK,YAAY;AAAA,EAC1B;AAAA,EACA,OAAO,WAAW,KAAKkB,SAAQ;AAC7B,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,cAAc;AACZ,SAAK,eAAe,CAAC;AAAA,EACvB;AAAA,EACA,OAAO,SAAS;AACd,QAAI,iBAAiB,YAAY,MAAM;AACrC,uBAAiB,WAAW,IAAI,iBAAiB;AAAA,IACnD;AACA,WAAO,iBAAiB;AAAA,EAC1B;AAAA,EACA,OAAO,SAAS,KAAK;AACnB,qBAAiB,OAAO,EAAE,aAAa,IAAI,aAAa,CAAC,KAAK,IAAI,UAAU;AAAA,EAC9E;AACF;AACA,SAAS,cAAc,KAAK;AAC1B,SAAO,IAAI,aAAa,MAAM,MAAM,6EAA6E;AACjH,SAAO,OAAO,IAAI,cAAc,UAAU,MAAM,wDAAwD,OAAO,IAAI,SAAS;AAC5H,SAAO,IAAI,UAAU,SAAS,GAAG,MAAM,mFAAmF;AAC1H,mBAAiB,SAAS,GAAG;AAC/B;AAGA,IAAI,oBAAoB,CAAC;AACzBlB,UAAS,mBAAmB;AAAA,EAC1B,sBAAsB,MAAM;AAAA,EAC5B,oBAAoB,MAAM;AAAA,EAC1B,eAAe,MAAM;AAAA,EACrB,yBAAyB,MAAM;AAAA,EAC/B,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,oBAAoB,MAAM;AAAA,EAC1B,qBAAqB,MAAM;AAAA,EAC3B,qBAAqB,MAAM;AAAA,EAC3B,MAAM,MAAM;AAAA,EACZ,aAAa,MAAM;AACrB,CAAC;AACD,IAAI,uBAAuB;AAC3B,IAAI,uBAAuB;AAC3B,SAAS,kBAAkB,QAAQ,UAAU,UAAU;AACrD,MAAI,YAAY,MAAM;AACpB,eAAW,YAAY;AAAA,EACzB;AACA,SAAO,sBAAsB,QAAQ,UAAU,CAAC,GAAG,MAAM,SAAS,GAAG,GAAG,QAAQ,CAAC;AACnF;AACA,SAAS,cAAc;AACrB,SAAO,OAAO,QAAQ,eAAe,MAAM,KAAK,uBAAuB;AACzE;AACA,SAAS,sBAAsB,QAAQ,UAAU,WAAW;AAC1D,MAAI,iBAAiB;AACrB,MAAI,aAAa,MAAM,KAAK,aAAa,QAAQ,GAAG;AAClD,qBAAiB;AAAA,EACnB;AACA,MAAI,aAAa,MAAM,KAAK,aAAa,QAAQ,GAAG;AAClD,qBAAiB;AAAA,EACnB;AACA,MAAI,gBAAgB;AAClB,UAAM,QAAQ,OAAO,YAAY;AACjC,UAAM,QAAQ,SAAS,YAAY;AACnC,QAAI,UAAU,OAAO;AACnB,YAAM,IAAI,MAAM,yCAAyC,oBAAoB,OAAO;AAAA,IACtF;AAAA,EACF;AACA,MAAI,MAAM,QAAQ,MAAM,KAAK,MAAM,QAAQ,QAAQ,GAAG;AACpD,UAAM,cAAc,WAAW,MAAM;AACrC,UAAM,gBAAgB,WAAW,QAAQ;AACzC,QAAI,CAAC,YAAY,aAAa,aAAa,GAAG;AAC5C,YAAM,IAAI,MAAM,0CAA0C,4BAA4B,gBAAgB;AAAA,IACxG;AAAA,EACF;AACA,QAAM,aAAa,aAAa,MAAM,IAAI,SAAS,QAAQ,MAAM;AACjE,QAAM,eAAe,aAAa,QAAQ,IAAI,WAAW,QAAQ,QAAQ;AACzE,MAAI,WAAW,WAAW,aAAa,QAAQ;AAC7C,UAAM,IAAI,MAAM,yCAAyC,WAAW,uBAAuB,aAAa;AAAA,YAChG;AAAA,YACA,eAAe;AAAA,EACzB;AACA,WAAS,KAAK,GAAG,KAAK,aAAa,QAAQ,EAAE,IAAI;AAC/C,UAAM,IAAI,WAAW;AACrB,UAAM,KAAK,aAAa;AACxB,QAAI,CAAC,UAAU,GAAG,EAAE,GAAG;AACrB,YAAM,IAAI,MAAM,yBAAyB,SAAS,eAAe,SAAS;AAAA,YACpE;AAAA,YACA,eAAe;AAAA,IACvB;AAAA,EACF;AACA,MAAI,OAAO,WAAW,aAAa;AACjC,WAAO,EAAE,QAAQ;AAAA,EACnB;AACF;AACA,SAAS,oBAAoB,IAAI,MAAM;AACrC,KAAG,EAAE,KAAK,MAAM,KAAK,KAAK,GAAG,MAAM,KAAK,CAAC;AACzC,MAAI,OAAO,WAAW,aAAa;AACjC,WAAO,EAAE,QAAQ;AAAA,EACnB;AACF;AACA,SAAS,kBAAkB,QAAQ,UAAU;AAC3C,QAAM,OAAO,OAAO,aAAa,YAAY,OAAO,aAAa,YAAY,OAAO,aAAa,YAAY,CAAC,QAAQ,IAAI;AAC1H,MAAI,SAAS,MAAM,KAAK,SAAS,OAAO,EAAE,KAAK,SAAS,QAAQ,KAAK,SAAS,SAAS,EAAE,GAAG;AAC1F,WAAO,sBAAsB,QAAQ,MAAM,CAAC,GAAG,MAAM,KAAK,CAAC;AAAA,EAC7D;AACA,SAAO,sBAAsB,QAAQ,UAAU,CAAC,GAAG,MAAM,SAAS,GAAG,GAAG,CAAC,CAAC;AAC5E;AACA,SAAS,mBAAmB,GAAG,IAAI,UAAU;AAC3C,MAAI,YAAY,MAAM;AACpB,eAAW,YAAY;AAAA,EACzB;AACA,MAAI,CAAC,SAAS,GAAG,IAAI,QAAQ,GAAG;AAC9B,UAAM,IAAI,MAAM,8BAA8B,mBAAmB,IAAI;AAAA,EACvE;AACA,MAAI,OAAO,WAAW,aAAa;AACjC,WAAO,EAAE,QAAQ;AAAA,EACnB;AACF;AACA,SAAS,SAAS,GAAG,IAAI,UAAU;AACjC,MAAI,CAAC,SAAS,CAAC,KAAK,CAAC,SAAS,EAAE,GAAG;AACjC,WAAO;AAAA,EACT;AACA,MAAI,MAAM,CAAC,KAAK,MAAM,EAAE,KAAK,KAAK,IAAI,IAAI,EAAE,IAAI,UAAU;AACxD,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,QAAQ,KAAK,MAAM;AAC9C,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,QAAI,OAAO,MAAM,OAAO,OAAO,MAAM,MAAM;AACzC,YAAM,IAAI,MAAM,sBAAsB,OAAO,YAAY,cAAc,MAAM;AAAA,IAC/E;AAAA,EACF;AACF;AACA,SAAS,wBAAwB,QAAQ,UAAU;AACjD,QAAM,cAAc,IAAI,aAAa,MAAM;AAC3C,QAAM,gBAAgB,IAAI,aAAa,QAAQ;AAC/C,MAAI,YAAY,WAAW,cAAc,QAAQ;AAC/C,UAAM,IAAI,MAAM,wCAAwC,cAAc,sBAAsB,YAAY,QAAQ;AAAA,EAClH;AACA,WAAS,KAAK,GAAG,KAAK,cAAc,QAAQ,MAAM;AAChD,QAAI,YAAY,QAAQ,cAAc,KAAK;AACzC,YAAM,IAAI,MAAM,iCAAiC,YAAY,cAAc,eAAe,YAAY,aAAa;AAAA,IACrH;AAAA,EACF;AACF;AACA,SAAS,cAAc,GAAG;AACxB,WAAS,KAAK,GAAG,KAAK,EAAE,QAAQ,MAAM;AACpC,UAAM,MAAM,EAAE;AACd,QAAI,MAAM,QAAQ,GAAG,GAAG;AACtB,oBAAc,GAAG;AAAA,IACnB,OAAO;AACL,QAAE,MAAM,aAAa,GAAG;AAAA,IAC1B;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,QAAQ;AAClC,QAAM,QAAQ,SAAS,cAAc,OAAO;AAC5C,MAAI,iBAAiB,OAAO;AAC1B,UAAM,cAAc;AAAA,EACtB;AACA,QAAM,QAAQ;AACd,QAAM,OAAO;AACb,QAAM,MAAM,WAAW;AACvB,QAAM,MAAM,OAAO;AACnB,QAAM,MAAM,MAAM;AAClB,QAAM,UAAU;AAChB,QAAM,YAAY,MAAM;AACxB,SAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,UAAM,iBAAiB,cAAc,CAAC,MAAM,QAAQ,KAAK,CAAC;AAC1D,UAAM,KAAK;AAAA,EACb,CAAC;AACH;AACA,eAAe,KAAK,OAAO;AACzB,QAAM,MAAM,KAAK;AACjB,MAAI,+BAA+B,OAAO;AACxC,UAAM,IAAI,QAAQ,CAAC,YAAY;AAC7B,YAAM,0BAA0B,OAAO;AAAA,IACzC,CAAC;AAAA,EACH;AACF;AAGA,IAAI,UAAU;AAGd,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,OAAO,GAAG,EAAE,KAAK,CAAC;AAGtB,SAAS,UAAU,GAAG,GAAG;AACvB,MAAI,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC3C,MAAI,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC3C,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,MAAI,GAAG,UAAU,WAAW,GAAG,UAAU,SAAS;AAChD,WAAO,SAAS,IAAI,EAAE;AAAA,EACxB;AACA,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,QAAM,QAAQ,CAAC;AACf,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,MAAI,GAAG,UAAU,aAAa;AAC5B,UAAM,SAAS,EAAE,GAAG,GAAG;AACvB,WAAO,OAAO,UAAU,YAAY,MAAM;AAAA,EAC5C,OAAO;AACL,UAAM,SAAS,EAAE,GAAG,GAAG;AACvB,WAAO,OAAO,UAAU,KAAK,MAAM;AAAA,EACrC;AACF;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,SAAS;AACtB,SAAO,MAAM,QAAQ,OAAO,GAAG,MAAM,4DAA4D;AACjG,SAAO,QAAQ,UAAU,GAAG,MAAM,uDAAuD,QAAQ,QAAQ;AACzG,QAAM,WAAW,QAAQ,IAAI,CAAC,IAAI,OAAO,gBAAgB,IAAI,UAAU,MAAM,MAAM,CAAC;AACpF,QAAM,cAAc,SAAS;AAC7B,WAAS,QAAQ,CAAC,OAAO;AACvB,QAAI,GAAG,UAAU,YAAY,OAAO;AAClC,YAAM,IAAI,MAAM,0DAA0D;AAAA,IAC5E;AAAA,EACF,CAAC;AACD,WAAS,QAAQ,CAAC,OAAO;AACvB,QAAI,CAAC,YAAY,GAAG,OAAO,YAAY,KAAK,GAAG;AAC7C,YAAM,IAAI,MAAM,0DAA0D;AAAA,IAC5E;AAAA,EACF,CAAC;AACD,QAAM,SAAS;AACf,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,MAAM;AAChD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,MAAM;AAChD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,QAAQ,GAAG,OAAO,GAAG;AAC5B,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,QAAQ,GAAG,OAAO,GAAG;AAC5B,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG,GAAG;AACpB,MAAI,KAAK,gBAAgB,GAAG,KAAK,OAAO;AACxC,MAAI,KAAK,gBAAgB,GAAG,KAAK,OAAO;AACxC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,sBAAsB,YAAY,aAAagB,UAAS,MAAM,aAAa,QAAQ,WAAW;AACrG,QAAM,gBAAgB,WAAW;AACjC,QAAM,eAAe,CAAC,GAAG,aAAa,aAAa;AACnD,QAAM,cAAc,wBAAwB,UAAU;AACtD,SAAO,kBAAkB,YAAY,cAAcA,UAAS,WAAW,MAAM,MAAM,MAAM,WAAW;AACtG;AACA,SAAS,kBAAkB,SAAS,YAAYA,UAAS,WAAW,MAAM,cAAc,aAAa,gBAAgB;AACnH,QAAM,CAAC,cAAc,WAAW,IAAI,gBAAgB,UAAU;AAC9D,MAAI;AACJ,MAAI,eAAe,gBAAgB;AACjC,kBAAc,CAAC,cAAc,aAAa,QAAQ,IAAI,QAAQ,EAAE;AAAA,EAClE,WAAW,eAAe,iBAAiB;AACzC,kBAAc,CAAC,cAAc,aAAa,QAAQ,IAAI,QAAQ,EAAE;AAAA,EAClE,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACA,SAAO,kBAAkB,SAAS,aAAaA,UAAS,WAAW,MAAM,cAAc,OAAO,UAAU;AAC1G;AACA,SAAS,kBAAkB,SAAS,YAAYA,UAAS,WAAW,MAAM,cAAc,aAAa,SAAS;AAC5G,QAAM,CAAC,aAAa,cAAc,WAAW,IAAI,iBAAiB,UAAU;AAC5E,MAAI;AACJ,MAAI;AACJ,MAAI,eAAe,SAAS;AAC1B,kBAAc;AACd,kBAAc,CAAC,aAAa,cAAc,aAAa,QAAQ,IAAI,QAAQ,EAAE;AAAA,EAC/E,WAAW,eAAe,SAAS;AACjC,kBAAc;AACd,kBAAc,CAAC,aAAa,cAAc,aAAa,QAAQ,IAAI,QAAQ,EAAE;AAAA,EAC/E,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACA,SAAO,kBAAkB,SAAS,aAAaA,UAAS,WAAW,MAAM,OAAO,aAAa,YAAY;AAC3G;AACA,SAAS,kBAAkB,SAAS,aAAaA,UAAS,WAAW,MAAM,cAAc,YAAY,OAAO,aAAa,gBAAgB;AACvI,MAAI,CAAC,WAAW,UAAU,SAAS,UAAU,IAAI,CAAC,IAAI,IAAI,IAAI,EAAE;AAChE,MAAI,eAAe,gBAAgB;AACjC,KAAC,WAAW,UAAU,SAAS,UAAU,IAAI;AAAA,EAC/C,WAAW,eAAe,iBAAiB;AACzC,KAAC,WAAW,YAAY,UAAU,OAAO,IAAI;AAAA,EAC/C,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACA,QAAM,CAAC,cAAc,aAAa,EAAE,cAAc,IAAI;AACtD,QAAM,CAAC,cAAc,WAAW,IAAI,gBAAgBA,QAAO;AAC3D,QAAM,CAAC,gBAAgB,aAAa,IAAI,gBAAgB,SAAS;AACjE,QAAM,wBAAwB,uBAAuB,cAAc,cAAc;AACjF,QAAM,uBAAuB,uBAAuB,aAAa,aAAa;AAC9E,QAAM,EAAE,SAAS,WAAW,SAAS,IAAI,iBAAiB,MAAM,UAAU,SAAS,cAAc,aAAa,uBAAuB,sBAAsB,cAAc,UAAU;AACnL,QAAM,cAAc,YAAY,iBAAiB,aAAa;AAC9D,MAAI;AACJ,MAAI,eAAe,iBAAiB;AAClC,eAAW,CAAC,WAAW,aAAa,WAAW,QAAQ;AAAA,EACzD,WAAW,eAAe,gBAAgB;AACxC,eAAW,CAAC,WAAW,WAAW,UAAU,WAAW;AAAA,EACzD;AACA,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,kBAAkB,SAAS,aAAaA,UAAS,WAAW,MAAM,YAAY,OAAO,aAAa,gBAAgB,cAAc;AACvI,MAAI,CAAC,WAAW,SAAS,UAAU,SAAS,UAAU,IAAI,CAAC,IAAI,IAAI,IAAI,IAAI,EAAE;AAC7E,MAAI,eAAe,gBAAgB;AACjC,KAAC,WAAW,SAAS,UAAU,SAAS,UAAU,IAAI;AAAA,EACxD,WAAW,eAAe,iBAAiB;AACzC,KAAC,WAAW,YAAY,SAAS,UAAU,OAAO,IAAI;AAAA,EACxD,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACA,QAAM,CAAC,aAAa,cAAc,aAAa,EAAE,cAAc,IAAI;AACnE,QAAM,CAAC,aAAa,cAAc,WAAW,IAAI,iBAAiBA,QAAO;AACzE,QAAM,CAAC,eAAe,gBAAgB,aAAa,IAAI,iBAAiB,SAAS;AACjF,QAAM,uBAAuB,uBAAuB,aAAa,aAAa;AAC9E,QAAM,wBAAwB,uBAAuB,cAAc,cAAc;AACjF,QAAM,uBAAuB,uBAAuB,aAAa,aAAa;AAC9E,QAAM,EAAE,SAAS,UAAU,WAAW,SAAS,IAAI,mBAAmB,MAAM,SAAS,UAAU,SAAS,aAAa,cAAc,aAAa,sBAAsB,uBAAuB,sBAAsB,YAAY;AAC/N,QAAM,cAAc,YAAY,iBAAiB,aAAa;AAC9D,MAAI;AACJ,MAAI,eAAe,iBAAiB;AAClC,eAAW,CAAC,WAAW,aAAa,UAAU,WAAW,QAAQ;AAAA,EACnE,WAAW,eAAe,gBAAgB;AACxC,eAAW,CAAC,WAAW,UAAU,WAAW,UAAU,WAAW;AAAA,EACnE;AACA,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,SAAS,WAAW,QAAQ,SAAS,cAAc;AAC/E,MAAI,WAAW,MAAM;AACnB,cAAU,kBAAkB,SAAS,WAAW,MAAM;AAAA,EACxD;AACA,QAAM,YAAY,QAAQ;AAC1B,QAAM,YAAY,QAAQ;AAC1B,QAAM,aAAa,OAAO,YAAY,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AACzF,QAAM,aAAa,OAAO,YAAY,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AACzF,SAAO,CAAC,YAAY,UAAU;AAChC;AACA,SAAS,qBAAqB,SAAS,WAAW,aAAa,QAAQ,SAAS,cAAc;AAC5F,MAAI,WAAW,MAAM;AACnB,cAAU,kBAAkB,SAAS,WAAW,MAAM;AAAA,EACxD;AACA,QAAM,aAAa,QAAQ;AAC3B,QAAM,YAAY,QAAQ;AAC1B,QAAM,YAAY,QAAQ;AAC1B,QAAM,eAAe,OAAO,aAAa,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AAC5F,QAAM,aAAa,OAAO,YAAY,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AACzF,QAAM,aAAa,OAAO,YAAY,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AACzF,SAAO,CAAC,cAAc,YAAY,YAAY,WAAW;AAC3D;AACA,SAAS,kBAAkB,YAAY,WAAW,QAAQ,WAAW,GAAG;AACtE,QAAM,qBAAqB,uBAAuB,WAAW,QAAQ;AACrE,SAAO,KAAK,OAAO,WAAW,MAAM,SAAS,KAAK,SAAS,sBAAsB,CAAC;AACpF;AACA,SAAS,gBAAgB,OAAO;AAC9B,MAAI,OAAO,UAAU,UAAU;AAC7B,WAAO,CAAC,OAAO,OAAO,KAAK;AAAA,EAC7B;AACA,MAAI,MAAM,WAAW,GAAG;AACtB,WAAO,CAAC,MAAM,IAAI,MAAM,IAAI,CAAC;AAAA,EAC/B;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,OAAO;AAC/B,SAAO,OAAO,UAAU,WAAW,CAAC,OAAO,OAAO,KAAK,IAAI;AAC7D;AACA,SAAS,uBAAuB,YAAY,UAAU;AACpD,MAAI,YAAY,GAAG;AACjB,WAAO;AAAA,EACT;AACA,SAAO,cAAc,aAAa,MAAM,WAAW;AACrD;AACA,SAAS,iBAAiB,MAAM,UAAU,SAAS,cAAc,aAAa,cAAc,aAAa,cAAc,YAAY;AACjI,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,OAAO,SAAS,UAAU;AAC5B,UAAM,UAAU,SAAS,IAAI,UAAU;AACvC,cAAU,EAAE,KAAK,MAAM,QAAQ,MAAM,MAAM,MAAM,OAAO,MAAM,MAAM,QAAQ;AAC5E,UAAM,WAAW,qBAAqB,CAAC,UAAU,OAAO,GAAG,cAAc,cAAc,MAAM,YAAY;AACzG,gBAAY,SAAS;AACrB,eAAW,SAAS;AAAA,EACtB,WAAW,SAAS,QAAQ;AAC1B,gBAAY,KAAK,KAAK,WAAW,YAAY;AAC7C,eAAW,KAAK,KAAK,UAAU,WAAW;AAC1C,UAAM,iBAAiB,KAAK,IAAI,IAAI,YAAY,KAAK,eAAe,eAAe,QAAQ;AAC3F,UAAM,gBAAgB,KAAK,IAAI,IAAI,WAAW,KAAK,cAAc,cAAc,OAAO;AACtF,UAAM,MAAM,KAAK,MAAM,iBAAiB,CAAC;AACzC,UAAM,SAAS,iBAAiB;AAChC,UAAM,OAAO,KAAK,MAAM,gBAAgB,CAAC;AACzC,UAAM,QAAQ,gBAAgB;AAC9B,cAAU,EAAE,KAAK,QAAQ,MAAM,OAAO,MAAM,OAAO;AAAA,EACrD,WAAW,SAAS,SAAS;AAC3B,cAAU,EAAE,KAAK,GAAG,QAAQ,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM,QAAQ;AAChE,gBAAY,KAAK,MAAM,WAAW,eAAe,KAAK,YAAY;AAClE,eAAW,KAAK,MAAM,UAAU,cAAc,KAAK,WAAW;AAAA,EAChE,WAAW,OAAO,SAAS,UAAU;AACnC,UAAM,MAAM,eAAe,iBAAiB,KAAK,GAAG,KAAK,KAAK,GAAG;AACjE,UAAM,SAAS,eAAe,iBAAiB,KAAK,GAAG,KAAK,KAAK,GAAG;AACpE,UAAM,OAAO,eAAe,iBAAiB,KAAK,GAAG,KAAK,KAAK,GAAG;AAClE,UAAM,QAAQ,eAAe,iBAAiB,KAAK,GAAG,KAAK,KAAK,GAAG;AACnE,UAAM,UAAU,QAAQ,KAAK,WAAW,KAAK,SAAS,KAAK,UAAU,IAAI,UAAU;AACnF,cAAU,EAAE,KAAK,QAAQ,MAAM,OAAO,MAAM,QAAQ;AACpD,gBAAY,OAAO,WAAW,eAAe,MAAM,UAAU,eAAe,GAAG,YAAY;AAC3F,eAAW,OAAO,UAAU,cAAc,OAAO,SAAS,cAAc,GAAG,YAAY;AAAA,EACzF,OAAO;AACL,UAAM,MAAM,8BAA8B,MAAM;AAAA,EAClD;AACA,SAAO,EAAE,SAAS,WAAW,SAAS;AACxC;AACA,SAAS,mBAAmB,MAAM,SAAS,UAAU,SAAS,aAAa,cAAc,aAAa,aAAa,cAAc,aAAa,cAAc;AAC1J,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,OAAO,SAAS,UAAU;AAC5B,UAAM,UAAU,SAAS,IAAI,UAAU;AACvC,cAAU;AAAA,MACR,KAAK;AAAA,MACL,QAAQ;AAAA,MACR,MAAM;AAAA,MACN,OAAO;AAAA,MACP,OAAO;AAAA,MACP,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AACA,UAAM,WAAW,qBAAqB,CAAC,SAAS,UAAU,SAAS,CAAC,GAAG,aAAa,GAAG,aAAa,MAAM,YAAY;AACtH,eAAW,SAAS;AACpB,gBAAY,SAAS;AACrB,eAAW,SAAS;AAAA,EACtB,WAAW,SAAS,QAAQ;AAC1B,eAAW,KAAK,KAAK,UAAU,WAAW;AAC1C,gBAAY,KAAK,KAAK,WAAW,YAAY;AAC7C,eAAW,KAAK,KAAK,UAAU,WAAW;AAC1C,UAAM,iBAAiB,WAAW,KAAK,cAAc,cAAc;AACnE,UAAM,kBAAkB,YAAY,KAAK,eAAe,eAAe;AACvE,UAAM,iBAAiB,WAAW,KAAK,cAAc,cAAc;AACnE,UAAM,QAAQ,KAAK,MAAM,gBAAgB,CAAC;AAC1C,UAAM,OAAO,gBAAgB;AAC7B,UAAM,MAAM,KAAK,MAAM,iBAAiB,CAAC;AACzC,UAAM,SAAS,iBAAiB;AAChC,UAAM,OAAO,KAAK,MAAM,gBAAgB,CAAC;AACzC,UAAM,QAAQ,gBAAgB;AAC9B,cAAU,EAAE,KAAK,QAAQ,MAAM,OAAO,OAAO,MAAM,MAAM,OAAO;AAAA,EAClE,WAAW,SAAS,SAAS;AAC3B,cAAU;AAAA,MACR,KAAK;AAAA,MACL,QAAQ;AAAA,MACR,MAAM;AAAA,MACN,OAAO;AAAA,MACP,OAAO;AAAA,MACP,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AACA,eAAW,KAAK,MAAM,UAAU,cAAc,KAAK,WAAW;AAC9D,gBAAY,KAAK,MAAM,WAAW,eAAe,KAAK,YAAY;AAClE,eAAW,KAAK,MAAM,UAAU,cAAc,KAAK,WAAW;AAAA,EAChE,OAAO;AACL,UAAM,MAAM,8BAA8B,MAAM;AAAA,EAClD;AACA,SAAO,EAAE,SAAS,UAAU,WAAW,SAAS;AAClD;AACA,SAAS,MAAM,OAAO,cAAc;AAClC,MAAI,CAAC,cAAc;AACjB,WAAO,KAAK,MAAM,KAAK;AAAA,EACzB;AACA,UAAQ;AAAA,SACD;AACH,aAAO,KAAK,MAAM,KAAK;AAAA,SACpB;AACH,aAAO,KAAK,KAAK,KAAK;AAAA,SACnB;AACH,aAAO,KAAK,MAAM,KAAK;AAAA;AAEvB,YAAM,IAAI,MAAM,wBAAwB,cAAc;AAAA;AAE5D;AACA,SAAS,kBAAkB,OAAO;AAChC,QAAM,CAAC,MAAM,MAAM,IAAI,IAAI,gBAAgB,KAAK;AAChD,SAAO,SAAS,KAAK,SAAS,KAAK,SAAS;AAC9C;AACA,SAAS,+BAA+BA,UAAS,WAAW;AAC1D,SAAO,kBAAkBA,QAAO,KAAK,kBAAkB,SAAS;AAClE;AACA,SAAS,wBAAwB,YAAY;AAC3C,MAAI,eAAe,QAAQ;AACzB,WAAO;AAAA,EACT,WAAW,eAAe,QAAQ;AAChC,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACF;AACA,SAAS,0BAA0B,QAAQ,MAAM,iBAAiB;AAChE,MAAI,mBAAmB,MAAM;AAC3B,QAAI,OAAO,SAAS,UAAU;AAC5B,YAAM,MAAM,YAAY,6DAA6D,+BAA+B,OAAO;AAAA,IAC7H,WAAW,OAAO,SAAS,UAAU;AACnC,aAAO,MAAM,IAAI,GAAG,MAAM,YAAY,6DAA6D,+BAA+B,OAAO;AAAA,IAC3I,WAAW,OAAO,SAAS,UAAU;AACnC,WAAK,QAAQ,CAAC,OAAO;AACnB,WAAG,QAAQ,CAAC,MAAM;AAChB,iBAAO,MAAM,CAAC,GAAG,MAAM,YAAY,6DAA6D,+BAA+B,IAAI;AAAA,QACrI,CAAC;AAAA,MACH,CAAC;AAAA,IACH,OAAO;AACL,YAAM,MAAM,YAAY,sCAAsC,MAAM;AAAA,IACtE;AAAA,EACF;AACF;AAGA,SAAS,SAAS,GAAG,OAAO;AAC1B,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AACjE,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM;AACtB,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,GAAG,YAAYA,UAAS,MAAM,iBAAiB;AAC/D,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,SAAS;AACvD,QAAM,YAAY;AAClB,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AAC/K,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,mDAAmD,IAAI,OAAO;AAC3F,4BAA0B,WAAW,MAAM,eAAe;AAC1D,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,MAAI,MAAM,OAAO,UAAU,SAAS,QAAQ,KAAK;AACjD,QAAM,KAAK,KAAK,GAAG,KAAK;AACxB,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,GAAG,YAAYA,UAAS,MAAM,iBAAiB,aAAa,SAAS;AACvF,QAAM,KAAK,gBAAgB,GAAG,KAAK,aAAa,SAAS;AACzD,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC3E;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,qDAAqD,IAAI,OAAO;AAC7F,SAAO,eAAe,SAAS,MAAM,gFAAgF,YAAY;AACjI,4BAA0B,aAAa,MAAM,eAAe;AAC5D,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW;AAC5E,MAAI,MAAM,OAAO,UAAU,WAAW,QAAQ,KAAK;AACnD,QAAM,KAAK,KAAK,IAAI,KAAK;AACzB,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,QAAQ,SAAS,OAAO,GAAG;AAClC,SAAO,QAAQ,UAAU,GAAG,MAAM,oCAAoC;AACtE,QAAM,WAAW,qBAAqB,SAAS,WAAW,UAAU,mBAAmB;AACvF,MAAI,SAAS,GAAG,UAAU,aAAa;AACrC,aAAS,QAAQ,CAAC,YAAY;AAC5B,UAAI,QAAQ,UAAU,aAAa;AACjC,cAAM,IAAI,MAAM;AAAA,uBACD,QAAQ,SAAS;AAAA,MAClC;AAAA,IACF,CAAC;AAAA,EACH;AACA,MAAI,SAAS,WAAW,GAAG;AACzB,WAAO,MAAM,SAAS,EAAE;AAAA,EAC1B;AACA,QAAM,SAAS;AACf,QAAM,OAAO,EAAE,KAAK;AACpB,SAAO,OAAO,UAAU,QAAQ,QAAQ,IAAI;AAC9C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,SAAS,GAAG;AACnB,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,SAAS;AACvD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,OAAO,GAAG,OAAOb,OAAM;AAC9B,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS,mBAAmB;AAC/D,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,IAAI,MAAM,gCAAgC;AAAA,EAClD;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,OAAO,MAAAA,MAAK;AAC5B,SAAO,OAAO,UAAU,OAAO,QAAQ,KAAK;AAC9C;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,SAAS;AACpD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,QAAQ,GAAG,EAAE,MAAM,CAAC;AAGxB,SAAS,eAAe,YAAY,YAAY,UAAU,MAAM,GAAG,GAAG;AACpE,QAAM,cAAc,gBAAgB,YAAY,cAAc,eAAe;AAC7E,QAAM,cAAc,gBAAgB,YAAY,cAAc,eAAe;AAC7E,QAAM,YAAY,gBAAgB,UAAU,YAAY,eAAe;AACvE,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,eAAe;AAC3D,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,WAAW,OAAO,CAAC,OAAO,EAAE,GAAG,CAAC;AACtC,QAAM,WAAW,OAAO,UAAU,WAAW;AAC7C,QAAM,MAAM,KAAK,UAAU,SAAS;AACpC,QAAM,YAAY,IAAI,MAAM;AAC5B,QAAM,YAAY,IAAI,MAAM,KAAK;AACjC,QAAM,YAAY,CAAC,WAAW,SAAS;AACvC,QAAM,KAAK,MAAM,KAAK,CAAC,GAAG,CAAC,GAAG,SAAS;AACvC,QAAM,IAAI,MAAM,KAAK,CAAC,GAAG,SAAS,GAAG,SAAS;AAC9C,QAAM,IAAI,MAAM,KAAK,CAAC,GAAG,YAAY,CAAC,GAAG,SAAS;AAClD,QAAM,IAAI,MAAM,KAAK,CAAC,GAAG,YAAY,CAAC,GAAG,SAAS;AAClD,QAAM,OAAO,KAAK,IAAI,QAAQ,EAAE,GAAG,MAAM,CAAC,CAAC,GAAG,IAAI,IAAI,QAAQ,KAAK,aAAa,CAAC,CAAC,CAAC,CAAC;AACpF,QAAM,OAAO,IAAI,MAAM,IAAI,GAAG,QAAQ,CAAC,CAAC;AACxC,SAAO,CAAC,MAAM,IAAI;AACpB;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,gBAAgB,GAAG,YAAY,OAAO;AAC7C,QAAM,KAAK,gBAAgB,GAAG,KAAK,gBAAgB;AACnD,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,SAAO,GAAG,QAAQ,IAAI,WAAW,QAAQ,MAAM,iBAAiB,GAAG,+CAA+C,WAAW,QAAQ;AACrI,SAAO,MAAM,WAAW,WAAW,QAAQ,MAAM,mBAAmB,MAAM,oDAAoD,WAAW,QAAQ;AACjJ,SAAO,GAAG,MAAM,KAAK,UAAU,GAAG,MAAM,yBAAyB,GAAG,MAAM,wEAAwE,WAAW,KAAK,KAAK,SAAS,OAAO;AACvL,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,YAAY,MAAM;AAClC,SAAO,OAAO,UAAU,gBAAgB,QAAQ,KAAK;AACvD;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,MAAM,GAAG;AAChB,MAAI;AACJ,MAAI,EAAE,SAAS,KAAK,EAAE,SAAS,GAAG;AAChC,UAAM,QAAQ,GAAG,CAAC,GAAG,GAAG,GAAG,EAAE,IAAI,CAAC;AAAA,EACpC,WAAW,EAAE,SAAS,GAAG;AACvB,UAAM,QAAQ,GAAG,CAAC,GAAG,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EACjD,WAAW,EAAE,SAAS,GAAG;AACvB,UAAM,QAAQ,GAAG,CAAC,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EAC1D,OAAO;AACL,UAAM;AAAA,EACR;AACA,SAAO;AACT;AAGA,SAAS,WAAW,GAAG,OAAO,UAAU,QAAQsB,SAAQ,iBAAiB;AACvE,MAAI,mBAAmB,MAAM;AAC3B,sBAAkB;AAAA,EACpB;AACA,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,WAAW;AACxD,QAAM,YAAY,gBAAgB,UAAU,YAAY,WAAW;AACnE,MAAI;AACJ,MAAIA,WAAU,MAAM;AAClB,aAAS,gBAAgBA,SAAQ,SAAS,WAAW;AAAA,EACvD;AACA,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,cAAU,gBAAgB,QAAQ,UAAU,WAAW;AAAA,EACzD;AACA,SAAO,MAAM,SAAS,UAAU,MAAM,MAAM,8EAA8E;AAC1H,SAAO,WAAW,QAAQ,MAAM,SAAS,QAAQ,MAAM,MAAM,4EAA4E;AACzI,SAAO,UAAU,QAAQ,MAAM,SAAS,OAAO,MAAM,MAAM,2EAA2E;AACtI,QAAM,MAAM,MAAM,EAAE;AACpB,QAAM,SAAS;AAAA,IACb,GAAG;AAAA,IACH,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,MAAM;AAAA,IACN,UAAU;AAAA,EACZ;AACA,QAAM,QAAQ,EAAE,gBAAgB;AAChC,QAAM,MAAM,OAAO,UAAU,gBAAgB,QAAQ,KAAK;AAC1D,SAAO,QAAQ,KAAK,GAAG,KAAK;AAC9B;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,aAAa,GAAG,OAAO,UAAU,QAAQA,SAAQ,iBAAiB;AACzE,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,WAAW;AACxD,QAAM,YAAY,gBAAgB,UAAU,YAAY,WAAW;AACnE,MAAI;AACJ,MAAIA,WAAU,MAAM;AAClB,aAAS,gBAAgBA,SAAQ,SAAS,WAAW;AAAA,EACvD;AACA,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,cAAU,gBAAgB,QAAQ,UAAU,WAAW;AAAA,EACzD;AACA,SAAO,GAAG,SAAS,GAAG,MAAM,uDAAuD,GAAG,OAAO;AAC7F,SAAO,MAAM,SAAS,KAAK,MAAM,SAAS,GAAG,MAAM,oEAAoE,MAAM,OAAO;AACpI,SAAO,UAAU,SAAS,KAAK,UAAU,SAAS,GAAG,MAAM,wEAAwE,UAAU,OAAO;AACpJ,MAAI,UAAU,MAAM;AAClB,WAAO,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG,MAAM,qEAAqE,OAAO,OAAO;AAAA,EAC1I;AACA,MAAI,WAAW,MAAM;AACnB,WAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,sEAAsE,QAAQ,OAAO;AAAA,EAC9I;AACA,SAAO,UAAU,IAAI,OAAO,WAAW,SAAS,QAAQ,eAAe;AACzE;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,aAAa,GAAG,OAAO,UAAU,QAAQA,SAAQ,iBAAiB;AACzE,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,WAAW;AACxD,QAAM,YAAY,gBAAgB,UAAU,YAAY,WAAW;AACnE,MAAI;AACJ,MAAIA,WAAU,MAAM;AAClB,aAAS,gBAAgBA,SAAQ,SAAS,WAAW;AAAA,EACvD;AACA,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,cAAU,gBAAgB,QAAQ,UAAU,WAAW;AAAA,EACzD;AACA,SAAO,GAAG,SAAS,GAAG,MAAM,uDAAuD,GAAG,OAAO;AAC7F,SAAO,MAAM,SAAS,KAAK,MAAM,SAAS,GAAG,MAAM,oEAAoE,MAAM,OAAO;AACpI,SAAO,UAAU,SAAS,KAAK,UAAU,SAAS,GAAG,MAAM,wEAAwE,UAAU,OAAO;AACpJ,MAAI,UAAU,MAAM;AAClB,WAAO,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG,MAAM,qEAAqE,OAAO,OAAO;AAAA,EAC1I;AACA,MAAI,WAAW,MAAM;AACnB,WAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,sEAAsE,QAAQ,OAAO;AAAA,EAC9I;AACA,SAAO,UAAU,IAAI,OAAO,WAAW,SAAS,QAAQ,eAAe;AACzE;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,aAAa,GAAG,OAAO,UAAU,QAAQA,SAAQ,iBAAiB;AACzE,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,WAAW;AACxD,QAAM,YAAY,gBAAgB,UAAU,YAAY,WAAW;AACnE,MAAI;AACJ,MAAIA,WAAU,MAAM;AAClB,aAAS,gBAAgBA,SAAQ,SAAS,WAAW;AAAA,EACvD;AACA,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,cAAU,gBAAgB,QAAQ,UAAU,WAAW;AAAA,EACzD;AACA,SAAO,GAAG,SAAS,GAAG,MAAM,uDAAuD,GAAG,OAAO;AAC7F,SAAO,MAAM,SAAS,KAAK,MAAM,SAAS,GAAG,MAAM,oEAAoE,MAAM,OAAO;AACpI,SAAO,UAAU,SAAS,KAAK,UAAU,SAAS,GAAG,MAAM,wEAAwE,UAAU,OAAO;AACpJ,MAAI,UAAU,MAAM;AAClB,WAAO,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG,MAAM,qEAAqE,OAAO,OAAO;AAAA,EAC1I;AACA,MAAI,WAAW,MAAM;AACnB,WAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,sEAAsE,QAAQ,OAAO;AAAA,EAC9I;AACA,SAAO,UAAU,IAAI,OAAO,WAAW,SAAS,QAAQ,eAAe;AACzE;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,UAAU,GAAG,SAAStB,OAAM;AACnC,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,QAAM,WAAW,gBAAgB,SAAS,WAAW,UAAU;AAC/D,SAAO,GAAG,UAAU,SAAS,MAAM,yDAAyD,GAAG,OAAO;AACtG,SAAOA,SAAQ,GAAG,MAAM,sCAAsCA,QAAO;AACrE,SAAO,SAAS,SAAS,GAAG,QAAQ,SAAS,SAAS,GAAG,MAAM,gGAAgG,GAAG,yBAAyB,SAAS,QAAQ;AAC5M,QAAM,SAAS,EAAE,GAAG,IAAI,SAAS,SAAS;AAC1C,QAAM,QAAQ,EAAE,MAAAA,MAAK;AACrB,SAAO,OAAO,UAAU,UAAU,QAAQ,KAAK;AACjD;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,eAAe,IAAI,IAAI;AAC9B,QAAM,cAAc,gBAAgB,IAAI,MAAM,iBAAiB,OAAO;AACtE,QAAM,cAAc,gBAAgB,IAAI,MAAM,iBAAiB,OAAO;AACtE,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM,oEAAoE,YAAY,MAAM;AAAA,EACxG;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM,qEAAqE,YAAY,MAAM;AAAA,EACzG;AACA,QAAM,SAAS,EAAE,IAAI,aAAa,IAAI,YAAY;AAClD,SAAO,OAAO,UAAU,eAAe,MAAM;AAC/C;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,aAAa,GAAG,OAAO;AAC9B,MAAI,SAAS,gBAAgB,GAAG,eAAe,GAAG;AAClD,QAAM,SAAS,OAAO;AACtB,MAAI,MAAM,KAAK,CAAC,MAAM,EAAE,IAAI,MAAM,IAAI,MAAM,CAAC,GAAG;AAC9C,UAAM,IAAI,MAAM,2CAA2C,SAAS;AAAA,EACtE;AACA,MAAI,MAAM,SAAS,OAAO,MAAM;AAC9B,UAAM,IAAI,MAAM,+BAA+B,MAAM,uBAAuB,OAAO,OAAO;AAAA,EAC5F;AACA,MAAI,MAAM,SAAS,OAAO,MAAM;AAC9B,UAAM,WAAW,OAAO,MAAM,MAAM;AACpC,WAAO,SAAS,SAAS,MAAM,QAAQ;AACrC,eAAS,QAAQ,CAAC;AAAA,IACpB;AACA,aAAS,QAAQ,QAAQ,QAAQ;AAAA,EACnC;AACA,QAAM,aAAa,OAAO;AAC1B,QAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,WAAS,KAAK,MAAM,SAAS,GAAG,MAAM,GAAG,MAAM;AAC7C,QAAI,WAAW,QAAQ,MAAM,KAAK;AAChC,WAAK,MAAM;AAAA,IACb,WAAW,OAAO,MAAM,QAAQ,GAAG;AACjC,YAAM,IAAI,MAAM,mBAAmB,mCAAmC,SAAS;AAAA,IACjF;AAAA,EACF;AACA,QAAM,OAAO,KAAK,IAAI,CAAC,IAAI,OAAO,KAAK,IAAI,KAAK,EAAE,EAAE,OAAO,CAAC,OAAO,MAAM,CAAC;AAC1E,MAAI,KAAK,WAAW,GAAG;AACrB,WAAO,MAAM,MAAM;AAAA,EACrB;AACA,QAAM,SAAS,EAAE,GAAG,OAAO;AAC3B,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,SAAS;AACpD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,aAAa,GAAG,cAAc,cAAc;AACnD,QAAM,KAAK,gBAAgB,GAAG,KAAK,aAAa;AAChD,SAAO,gBAAgB,cAAc,MAAM,uBAAuB,oDAAoD,gBAAgB;AACtI,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,cAAc,aAAa;AAC3C,SAAO,OAAO,UAAU,aAAa,QAAQ,KAAK;AACpD;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,UAAU,SAAS;AAC1B,SAAO,OAAO,SAAS,CAAC;AAC1B;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,UAAU,SAAS,MAAM;AAChC,SAAO,OAAO,SAAS,IAAI;AAC7B;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,UAAU,SAAS,MAAM;AAChC,SAAO,OAAO,SAAS,IAAI;AAC7B;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,UAAU,SAAS,MAAM;AAChC,SAAO,OAAO,SAAS,IAAI;AAC7B;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,QAAQ,GAAG,QAAQa,UAAS,MAAM,aAAa,QAAQ,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB;AACnG,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU,SAAS;AACtD,QAAM,UAAU,gBAAgB,QAAQ,UAAU,UAAU,SAAS;AACrE,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,uDAAuD,IAAI,OAAO;AAC/F,SAAO,QAAQ,SAAS,GAAG,MAAM,wDAAwD,QAAQ,OAAO;AACxG,4BAA0B,UAAU,MAAM,eAAe;AACzD,QAAM,UAAU,eAAe,SAAS,IAAI,MAAM,KAAK,IAAI,MAAM;AACjE,SAAO,YAAY,QAAQ,MAAM,IAAI,MAAM,oCAAoC,8CAA8C,QAAQ,MAAM,KAAK;AAChJ,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,uEAAuEA,2BAA0B,YAAY;AAC9K,QAAM,SAAS,EAAE,GAAG,KAAK,QAAQ,QAAQ;AACzC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB;AAC3E,QAAM,MAAM,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAClD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,QAAQ,GAAG,QAAQ,QAAQ,MAAM,aAAa,OAAO,WAAW,GAAG,iBAAiB;AAC3F,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,UAAU,gBAAgB,QAAQ,UAAU,QAAQ;AAC1D,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EACjD;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,uDAAuD,IAAI,OAAO;AAC/F,SAAO,QAAQ,SAAS,GAAG,MAAM,wDAAwD,QAAQ,OAAO;AACxG,4BAA0B,UAAU,MAAM,eAAe;AACzD,SAAO,IAAI,MAAM,OAAO,QAAQ,MAAM,IAAI,MAAM,oCAAoC,IAAI,MAAM,yCAAyC,QAAQ,MAAM,KAAK;AAC1J,SAAO,+BAA+B,QAAQ,QAAQ,GAAG,MAAM,oEAAoE,wBAAwB,WAAW;AACtK,SAAO,eAAe,OAAO,MAAM,sCAAsC,iDAAiD;AAC1H,QAAM,WAAW,QAAQ,SAAS,CAAC,GAAG,QAAQ,MAAM,IAAI,QAAQ,MAAM,IAAI,QAAQ,MAAM,EAAE,CAAC;AAC3F,QAAM,UAAU,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,GAAG,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAC1E,QAAMA,WAAU,CAAC,GAAG,MAAM;AAC1B,QAAM,YAAY,CAAC,GAAG,QAAQ;AAC9B,QAAM,mBAAmB;AACzB,QAAM,MAAM,OAAO,SAAS,UAAUA,UAAS,MAAM,kBAAkB,WAAW,eAAe;AACjG,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAClD;AACA,SAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAChE;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,qBAAqB,QAAQ,IAAI,QAAQA,UAAS,MAAM,aAAa,QAAQ,iBAAiB;AACrG,SAAO,OAAO,WAAW,GAAG,MAAM,MAAM,sBAAsB,OAAO,2BAA2B,GAAG,kBAAkB;AACrH,MAAI,WAAW;AACf,MAAI,OAAO;AACX,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAC7D,eAAW,CAAC,GAAG,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE;AAAA,EAChD;AACA,SAAO,SAAS,WAAW,GAAG,MAAM,qEAAqE,SAAS,SAAS;AAC3H,SAAO,KAAK,SAAS,GAAG,MAAM,4DAA4D,KAAK,MAAM;AACrG,SAAO,OAAO,SAAS,GAAG,MAAM,gEAAgE,OAAO,MAAM;AAC7G,QAAM,UAAU,eAAe,SAAS,SAAS,KAAK,SAAS;AAC/D,QAAM,WAAW,eAAe,SAAS,KAAK,MAAM,KAAK,KAAK,MAAM;AACpE,SAAO,YAAY,OAAO,MAAM,IAAI,MAAM,4CAA4C,8CAA8C,OAAO,MAAM,KAAK;AACtJ,SAAO,aAAa,OAAO,MAAM,IAAI,MAAM,6CAA6C,gDAAgD,OAAO,MAAM,KAAK;AAC1J,4BAA0B,kBAAkB,MAAM,eAAe;AACjE,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,YAAY,SAAS;AACtF,QAAM,MAAM,OAAO,UAAU,qBAAqB,QAAQ,KAAK;AAC/D,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,iBAAiB,GAAG,QAAQ,aAAaA,UAAS,MAAM,iBAAiB;AAChF,QAAM,KAAK,gBAAgB,GAAG,KAAK,iBAAiB;AACpD,QAAM,UAAU,gBAAgB,QAAQ,UAAU,iBAAiB;AACnE,SAAO,oBAAoB,aAAa,IAAI,SAASA,UAAS,MAAM,QAAQ,eAAe;AAC7F;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,SAAS,QAAQ,GAAG,QAAQA,UAAS,MAAM,aAAa,SAAS,YAAY,CAAC,GAAG,GAAG,CAAC,GAAG;AACtF,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,UAAU,gBAAgB,QAAQ,UAAU,QAAQ;AAC1D,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC3E;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,uDAAuD,IAAI,OAAO;AAC/F,SAAO,QAAQ,SAAS,GAAG,MAAM,wDAAwD,QAAQ,OAAO;AACxG,SAAO,IAAI,MAAM,OAAO,QAAQ,MAAM,IAAI,MAAM,oCAAoC,IAAI,MAAM,yCAAyC,QAAQ,MAAM,KAAK;AAC1J,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,uEAAuEA,2BAA0B,YAAY;AAC9K,SAAO,eAAe,SAAS,MAAM,sCAAsC,mDAAmD;AAC9H,QAAM,SAAS,EAAE,GAAG,KAAK,QAAQ,QAAQ;AACzC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,UAAU;AAC1D,QAAM,MAAM,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAClD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,qBAAqB,QAAQ,IAAI,QAAQA,UAAS,MAAM;AAC/D,SAAO,OAAO,WAAW,GAAG,MAAM,MAAM,sBAAsB,OAAO,2BAA2B,GAAG,kBAAkB;AACrH,MAAI,WAAW;AACf,MAAI,OAAO;AACX,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAC1E,eAAW,CAAC,GAAG,OAAO,IAAI,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE;AAAA,EAC3D;AACA,QAAM,UAAU,SAAS;AACzB,QAAM,WAAW,KAAK,MAAM;AAC5B,SAAO,SAAS,WAAW,GAAG,MAAM,qEAAqE,SAAS,SAAS;AAC3H,SAAO,KAAK,SAAS,GAAG,MAAM,4DAA4D,KAAK,MAAM;AACrG,SAAO,OAAO,SAAS,GAAG,MAAM,gEAAgE,OAAO,MAAM;AAC7G,SAAO,YAAY,OAAO,MAAM,IAAI,MAAM,4CAA4C,8CAA8C,OAAO,MAAM,KAAK;AACtJ,SAAO,aAAa,OAAO,MAAM,IAAI,MAAM,6CAA6C,gDAAgD,OAAO,MAAM,KAAK;AAC1J,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO;AAClC,QAAM,QAAQ,EAAE,KAAK,MAAM,SAAAA,UAAS,YAAY,SAAS;AACzD,QAAM,MAAM,OAAO,UAAU,uBAAuB,QAAQ,KAAK;AACjE,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,iBAAiB,GAAG,QAAQ,aAAaA,UAAS,MAAM;AAC/D,QAAM,KAAK,gBAAgB,GAAG,KAAK,iBAAiB;AACpD,QAAM,UAAU,gBAAgB,QAAQ,UAAU,iBAAiB;AACnE,SAAO,oBAAoB,aAAa,IAAI,SAASA,UAAS,IAAI;AACpE;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,SAAS;AACpD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,SAAS,GAAG,OAAO,GAAG,YAAY,OAAO,WAAW,OAAO;AAClE,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,WAAW,SAAS,SAAS;AACnD,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,QAAQ,GAAG,OAAO,GAAG,YAAY,OAAO,WAAW,OAAO;AACjE,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,WAAW,SAAS,SAAS;AACnD,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,eAAe,GAAG,SAASb,OAAM,eAAe,OAAO;AAC9D,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,WAAW,gBAAgB,SAAS,WAAW,eAAe;AACpE,SAAO,GAAG,UAAU,SAAS,MAAM,8DAA8D,GAAG,OAAO;AAC3G,SAAO,GAAG,QAAQ,GAAG,MAAM,sEAAsE,GAAG,OAAO;AAC3G,SAAOA,SAAQ,GAAG,MAAM,sCAAsCA,QAAO;AACrE,SAAO,SAAS,SAAS,GAAG,QAAQ,SAAS,SAAS,GAAG,MAAM,+FAA+F,GAAG,yBAAyB,SAAS,QAAQ;AAC3M,QAAM,SAAS,EAAE,GAAG,IAAI,SAAS,SAAS;AAC1C,QAAM,QAAQ,EAAE,MAAAA,OAAM,aAAa;AACnC,SAAO,OAAO,UAAU,eAAe,QAAQ,KAAK;AACtD;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,cAAc,GAAG,WAAW,aAAa,QAAQ;AACxD,QAAM,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,SAAS;AAC5D,QAAM,cAAc,eAAe,SAAS,GAAG,MAAM,KAAK,GAAG,MAAM;AACnE,QAAM,aAAa,eAAe,SAAS,GAAG,MAAM,KAAK,GAAG,MAAM;AAClE,QAAM,aAAa,eAAe,SAAS,GAAG,MAAM,KAAK,GAAG,MAAM;AAClE,SAAO,YAAY,GAAG,MAAM,sDAAsD,WAAW;AAC7F,SAAO,cAAc,aAAa,GAAG,MAAM;AAAA,MACvC,mBAAmB;AAAA,MACnB,GAAG,OAAO;AACd,SAAO,aAAa,aAAa,GAAG,MAAM;AAAA,MACtC,kBAAkB;AAAA,UACd,GAAG,OAAO;AAClB,SAAO,cAAc,YAAY,eAAe,GAAG,MAAM,8CAA8C,YAAY,oBAAoB,gDAAgD,GAAG,OAAO;AACjM,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,WAAW,WAAW;AACtC,SAAO,OAAO,UAAU,cAAc,QAAQ,KAAK;AACrD;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,iBAAiB,GAAG,QAAQa,UAAS,MAAM,aAAa,QAAQ,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB;AAC5G,QAAM,KAAK,gBAAgB,GAAG,KAAK,mBAAmB,SAAS;AAC/D,QAAM,UAAU,gBAAgB,QAAQ,UAAU,mBAAmB,SAAS;AAC9E,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,gEAAgE,IAAI,OAAO;AACxG,SAAO,QAAQ,SAAS,GAAG,MAAM,iEAAiE,QAAQ,OAAO;AACjH,QAAM,aAAa,eAAe,SAAS,IAAI,MAAM,KAAK,IAAI,MAAM;AACpE,SAAO,eAAe,QAAQ,MAAM,IAAI,MAAM,uDAAuD,6DAA6D,QAAQ,MAAM,KAAK;AACrL,4BAA0B,mBAAmB,MAAM,eAAe;AAClE,QAAM,SAAS,EAAE,GAAG,KAAK,QAAQ,QAAQ;AACzC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB;AAC3E,QAAM,MAAM,OAAO,UAAU,uBAAuB,QAAQ,KAAK;AACjE,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,YAAY,GAAG,QAAQA,UAAS,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,aAAa,QAAQ;AACtF,QAAM,KAAK,gBAAgB,GAAG,KAAK,YAAY;AAC/C,QAAM,UAAU,gBAAgB,QAAQ,UAAU,YAAY;AAC9D,SAAO,GAAG,SAAS,KAAK,GAAG,SAAS,GAAG,MAAM,gEAAgE,GAAG,OAAO;AACvH,SAAO,QAAQ,SAAS,GAAG,MAAM,4DAA4D,QAAQ,OAAO;AAC5G,SAAO,eAAe,QAAQ,MAAM,gFAAgF,YAAY;AAChI,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAC5D,mBAAe;AAAA,EACjB;AACA,QAAM,SAAS,EAAE,GAAG,KAAK,QAAQ,QAAQ;AACzC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU;AAC9C,QAAM,MAAM,OAAO,UAAU,YAAY,QAAQ,KAAK;AACtD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,OAAO,GAAG,GAAG;AACpB,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS,mBAAmB;AAC7D,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS,mBAAmB;AAC7D,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,WAAW,GAAG,GAAG;AAC/B,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,aAAa,gBAAgB,WAAW,aAAa,SAAS,MAAM;AAC1E,QAAM,iBAAiB,2BAA2B,2BAA2B,WAAW,OAAO,GAAG,KAAK,GAAG,GAAG,KAAK;AAClH,QAAM,wBAAwB,YAAY,YAAY,cAAc;AACpE,QAAM,gBAAgB,YAAY,IAAI,cAAc;AACpD,QAAM,gBAAgB,YAAY,IAAI,cAAc;AACpD,QAAM,SAAS;AAAA,IACb,WAAW;AAAA,IACX,GAAG;AAAA,IACH,GAAG;AAAA,EACL;AACA,SAAO,OAAO,UAAU,QAAQ,MAAM;AACxC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,WAAW,GAAG;AACrB,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,WAAW,MAAM;AAC3C;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,UAAU,GAAG,GAAG;AACvB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,YAAY,IAAI,IAAI,EAAE;AAC5B,QAAM,SAAS,UAAU,SAAS;AAClC,QAAM,cAAc,MAAM,IAAI,MAAM;AACpC,SAAO,MAAM,aAAa,QAAQ,SAAS;AAC7C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,KAAK,IAAI,IAAI;AACpB,QAAM,MAAM,gBAAgB,IAAI,MAAM,KAAK;AAC3C,QAAM,MAAM,gBAAgB,IAAI,MAAM,KAAK;AAC3C,UAAQ,IAAI,SAAS,KAAK,IAAI,SAAS,OAAO,IAAI,SAAS,KAAK,IAAI,SAAS,IAAI,MAAM,+DAA+D,IAAI,YAAY,IAAI,OAAO;AACjL,QAAM,UAAU,IAAI,SAAS,IAAI,IAAI,OAAO,IAAI,MAAM;AACtD,QAAM,UAAU,IAAI,SAAS,IAAI,IAAI,OAAO,IAAI,MAAM;AACtD,SAAO,YAAY,SAAS,MAAM,gEAAgE,eAAe,UAAU;AAC3H,MAAI,IAAI,SAAS,KAAK,IAAI,SAAS,GAAG;AACpC,UAAM,OAAO,QAAQ,KAAK,CAAC,GAAG,EAAE,CAAC;AACjC,UAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,CAAC,CAAC;AACjC,UAAM,OAAO,OAAO,MAAM,IAAI;AAC9B,WAAO,QAAQ,MAAM,CAAC,CAAC;AAAA,EACzB,WAAW,IAAI,SAAS,KAAK,IAAI,SAAS,GAAG;AAC3C,UAAM,OAAO,QAAQ,KAAK,CAAC,GAAG,EAAE,CAAC;AACjC,UAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AACtD,UAAM,OAAO,OAAO,MAAM,IAAI;AAC9B,WAAO,QAAQ,MAAM,CAAC,KAAK,IAAI,CAAC;AAAA,EAClC,WAAW,IAAI,SAAS,KAAK,IAAI,SAAS,GAAG;AAC3C,UAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,CAAC,CAAC;AACjC,UAAM,OAAO,OAAO,KAAK,IAAI;AAC7B,WAAO,QAAQ,MAAM,CAAC,KAAK,IAAI,CAAC;AAAA,EAClC,OAAO;AACL,UAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AACtD,UAAM,OAAO,OAAO,KAAK,IAAI;AAC7B,WAAO;AAAA,EACT;AACF;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,QAAQ,aAAa,SAAS;AACrC,QAAM,WAAW,QAAQ,IAAI,CAAC,IAAI,OAAO,gBAAgB,IAAI,UAAU,MAAM,QAAQ,CAAC;AACtF,QAAM,QAAQ,EAAE,SAAS;AACzB,SAAO,OAAO,UAAU,QAAQ,UAAU,KAAK;AACjD;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG;AACf,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,SAAO,GAAG,UAAU,WAAW,GAAG,UAAU,WAAW,MAAM,2CAA2C;AACxG,MAAI,GAAG,UAAU,SAAS;AACxB,SAAK,KAAK,IAAI,SAAS;AAAA,EACzB;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,qBAAqB,MAAM,MAAM;AACxC,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,QAAI,KAAK,KAAK,SAAS,KAAK,OAAO,OAAO,IAAI,IAAI;AAChD,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,WAAW,WAAW,MAAM;AACpD,QAAM,OAAO,UAAU,SAAS,UAAU;AAC1C,QAAM,MAAM,CAAC;AACb,MAAI,SAAS;AACb,MAAI,YAAY;AAChB,WAAS,MAAM,GAAG,MAAM,MAAM,OAAO;AACnC,QAAI,KAAK,QAAQ,GAAG,MAAM,IAAI;AAC5B,UAAI,KAAK,UAAU,SAAS;AAAA,IAC9B,OAAO;AACL,UAAI,KAAK,UAAU,YAAY;AAAA,IACjC;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,0BAA0B,QAAQ,MAAM;AAC/C,QAAM,WAAW,CAAC;AAClB,QAAM,OAAO,OAAO;AACpB,WAAS,MAAM,GAAG,MAAM,MAAM,OAAO;AACnC,QAAI,KAAK,QAAQ,GAAG,MAAM,IAAI;AAC5B,eAAS,KAAK,OAAO,IAAI;AAAA,IAC3B;AAAA,EACF;AACA,QAAM,cAAc,KAAK,IAAI,CAAC,QAAQ,OAAO,IAAI;AACjD,SAAO,CAAC,UAAU,WAAW;AAC/B;AACA,SAAS,qBAAqB,OAAO,MAAM;AACzC,QAAM,iBAAiB,KAAK,IAAI,CAAC,MAAM,CAAC;AACxC,SAAO,iBAAiB,OAAO,gBAAgB,IAAI;AACrD;AACA,SAAS,2BAA2B,KAAK,MAAM,MAAM;AACnD,SAAO,qBAAqB,MAAM,IAAI,GAAG,MAAM,GAAG,uDAAuD,iBAAiB,aAAa;AACzI;AACA,SAAS,mBAAmB,MAAM,MAAM;AACtC,MAAI,qBAAqB,MAAM,IAAI,GAAG;AACpC,WAAO;AAAA,EACT;AACA,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,GAAG,KAAK,MAAM,EAAE,IAAI;AAChC,QAAI,KAAK,QAAQ,EAAE,MAAM,IAAI;AAC3B,aAAO,KAAK,EAAE;AAAA,IAChB;AAAA,EACF;AACA,OAAK,QAAQ,CAAC,SAAS,OAAO,KAAK,IAAI,CAAC;AACxC,SAAO;AACT;AACA,SAAS,uBAAuB,MAAM;AACpC,SAAO,KAAK,IAAI,CAAC,MAAM,OAAO,CAAC,IAAI,IAAI,CAAC,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,KAAK,EAAE,EAAE,EAAE,IAAI,CAAC,MAAM,EAAE,EAAE;AACvF;AACA,SAAS,iBAAiB,SAAS,MAAM;AACvC,QAAM,MAAM,CAAC;AACb,WAAS,KAAK,OAAO,SAAS,KAAK,MAAM,EAAE,IAAI;AAC7C,QAAI,KAAK,EAAE;AAAA,EACb;AACA,SAAO;AACT;AAGA,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,kBAAkB,MAAM,SAAS;AACjD,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,MAAM,MAAM;AACxB,MAAI,QAAQ,gBAAgB,MAAM,QAAQ,KAAK;AAC/C,MAAI,OAAO,gBAAgB,MAAM,OAAO,KAAK;AAC7C,GAAC,OAAO,IAAI,IAAI,eAAe,OAAO,IAAI;AAC1C,QAAM,SAAS,EAAE,GAAG,OAAO,GAAG,KAAK;AACnC,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,OAAO,OAAO,OAAO;AAC5B,OAAK,aAAa,KAAK,KAAK,UAAU,YAAY,MAAM,QAAQ,KAAK,MAAM,UAAU,aAAa;AAChG,UAAM,IAAI,MAAM,gFAAgF;AAAA,EAClG;AACA,MAAI,UAAU,YAAY,aAAa,KAAK,KAAK,EAAE,iBAAiB,aAAa;AAC/E,UAAM,IAAI,MAAM,2EAA2E;AAAA,EAC7F;AACA,QAAM,QAAQ,CAAC;AACf,QAAM,gBAAgB,CAAC;AACvB,SAAO,WAAW,OAAO,OAAO,eAAe,KAAK;AACtD;AAGA,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,SAAS;AACpD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,QAAQ,GAAG;AAClB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,QAAQ,CAAC;AACf,SAAO,OAAO,UAAU,UAAU,EAAE,GAAG,GAAG,GAAG,KAAK;AACpD;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,GAAG,UAAU,QAAQ;AACvB,SAAK,KAAK,IAAI,OAAO;AAAA,EACvB;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,OAAO,GAAG,EAAE,KAAK,CAAC;AAGtB,SAAS,MAAM,GAAG,MAAM,aAAa,OAAO,MAAM,WAAW,OAAO;AAClE,MAAI,gBAAgB,GAAG,KAAK,MAAM;AAClC,QAAM,QAAQ,SAAS,GAAG,KAAK,IAAI;AACnC,MAAI,gBAAgB,MAAM;AAC1B,MAAI,UAAU;AACZ,UAAM,OAAO,eAAe,MAAM,EAAE,KAAK;AACzC,oBAAgB,qBAAqB,MAAM,OAAO,IAAI;AAAA,EACxD;AACA,SAAO,QAAQ,OAAO,aAAa;AACrC;AACA,SAAS,SAAS,GAAG,IAAI,OAAO,MAAM;AACpC,MAAI,EAAE,SAAS,GAAG;AAChB,WAAO,IAAI,CAAC;AAAA,EACd;AACA,MAAI,EAAE,SAAS,KAAK,SAAS,MAAM;AACjC,WAAO,SAAS,QAAQ,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,IAAI;AAAA,EAC5C;AACA,MAAI,EAAE,SAAS,KAAK,OAAO,SAAS,YAAY,MAAM,QAAQ,IAAI,KAAK,KAAK,WAAW,GAAG;AACxF,QAAI,OAAO,GAAG;AACZ,aAAO,KAAK,IAAI,CAAC,GAAG,IAAI;AAAA,IAC1B;AACA,QAAI,OAAO,UAAU;AACnB,aAAO,IAAI,IAAI,CAAC,GAAG,IAAI;AAAA,IACzB;AACA,QAAI,OAAO,WAAW;AACpB,aAAO,IAAI,IAAI,CAAC,GAAG,IAAI;AAAA,IACzB;AACA,QAAI,OAAO,eAAe,OAAO,GAAG;AAClC,aAAO,KAAK,KAAK,IAAI,IAAI,CAAC,GAAG,OAAO,GAAG,OAAO,CAAC,GAAG,IAAI,CAAC;AAAA,IACzD;AACA,UAAM,IAAI,MAAM,qCAAqC,IAAI;AAAA,EAC3D;AACA,MAAI,MAAM,QAAQ,IAAI,KAAK,KAAK,WAAW,GAAG;AAC5C,QAAI,OAAO,GAAG;AACZ,aAAO,IAAI,KAAK,IAAI,CAAC,GAAG,KAAK,EAAE,GAAG,KAAK,KAAK,CAAC;AAAA,IAC/C;AACA,QAAI,OAAO,UAAU;AACnB,aAAO,IAAI,KAAK,IAAI,CAAC,GAAG,KAAK,EAAE,GAAG,KAAK,EAAE;AAAA,IAC3C;AACA,QAAI,OAAO,WAAW;AACpB,aAAO,IAAI,KAAK,IAAI,CAAC,GAAG,KAAK,EAAE,GAAG,KAAK,EAAE;AAAA,IAC3C;AACA,QAAI,OAAO,SAAS,OAAO,aAAa;AACtC,aAAO,KAAK,KAAK,OAAO,CAAC,GAAG,IAAI,CAAC;AAAA,IACnC;AACA,UAAM,IAAI,MAAM,qCAAqC,IAAI;AAAA,EAC3D;AACA,QAAM,IAAI,MAAM,gCAAgC,MAAM;AACxD;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,eAAe,GAAG,OAAO,MAAM,WAAW,OAAO;AACxD,SAAO,KAAK,GAAG,aAAa,MAAM,QAAQ;AAC5C;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,YAAY,GAAG,OAAO,GAAG;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,mBAAmB;AACpE,SAAO,QAAQ,GAAG,MAAM,MAAM,oCAAoC;AAClE,QAAM,SAAS,EAAE,OAAO,GAAG;AAC3B,QAAM,QAAQ,EAAE,KAAK,KAAK;AAC1B,SAAO,OAAO,UAAU,YAAY,QAAQ,KAAK;AACnD;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG,MAAM;AACtB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,mBAAmB;AAC9D,SAAO,GAAG,SAAS,KAAK,QAAQ,MAAM,qCAAqC,GAAG,kCAAkC,OAAO;AACvH,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,KAAK,SAAS,YAAY,YAAY,QAAQ,WAAW;AAChE,MAAI,cAAc,MAAM;AACtB,iBAAa;AAAA,EACf;AACA,QAAM,OAAO,OAAO,CAAC,SAAS,UAAU,GAAG,KAAK;AAChD,QAAM,KAAK,WAAW,aAAa,UAAU;AAC7C,WAAS,KAAK,GAAG,KAAK,IAAI,EAAE,IAAI;AAC9B,SAAK,IAAI,GAAG,IAAI,EAAE;AAAA,EACpB;AACA,QAAM,MAAM,QAAQ,KAAK,SAAS,GAAG,CAAC,SAAS,UAAU,CAAC;AAC1D,MAAI,cAAc,MAAM;AACtB,WAAO;AAAA,EACT,OAAO;AACL,QAAI,WAAW,WAAW,GAAG;AAC3B,aAAO,KAAK,WAAW,KAAK,CAAC,GAAG,CAAC,WAAW,IAAI,GAAG,CAAC,CAAC;AAAA,IACvD,WAAW,WAAW,WAAW,GAAG;AAClC,aAAO,KAAK,WAAW,WAAW,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,WAAW,IAAI,WAAW,IAAI,GAAG,CAAC,CAAC;AAAA,IACrF,WAAW,WAAW,WAAW,GAAG;AAClC,aAAO,KAAK,WAAW,WAAW,WAAW,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG;AAAA,QAC5D,WAAW;AAAA,QACX,WAAW;AAAA,QACX,WAAW;AAAA,QACX;AAAA,QACA;AAAA,MACF,CAAC;AAAA,IACH,OAAO;AACL,YAAM,IAAI,MAAM,qEAAqE,WAAW,UAAU;AAAA,IAC5G;AAAA,EACF;AACF;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,OAAO,OAAO,OAAO;AACjC,QAAM,QAAQ,EAAE,OAAO,OAAO,MAAM;AACpC,SAAO,OAAO,UAAU,MAAM,CAAC,GAAG,KAAK;AACzC;AAGA,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS,SAAS;AACrD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,QAAQ,GAAG,SAAS,OAAO,GAAG,YAAY,GAAG;AACpD,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,WAAW,gBAAgB,SAAS,WAAW,UAAU,OAAO;AACtE,QAAM,SAAS,EAAE,GAAG,IAAI,SAAS,SAAS;AAC1C,QAAM,QAAQ,EAAE,MAAM,UAAU;AAChC,SAAO,OAAO,UAAU,UAAU,QAAQ,KAAK;AACjD;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,SAAS,GAAG,GAAG;AACtB,MAAI,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AAC/D,MAAI,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AAC/D,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,cAAc,GAAG,GAAG;AAC3B,MAAI,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,mBAAmB;AACpE,MAAI,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,mBAAmB;AACpE,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,cAAc,MAAM;AAC9C;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,UAAU,GAAG;AACpB,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,YAAY,GAAG,EAAE,UAAU,CAAC;AAGhC,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,SAAS,GAAG,EAAE,OAAO,CAAC;AAG1B,SAAS,WAAW,GAAGU,SAAQ,KAAK;AAClC,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,OAAAA,OAAM;AACtB,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,MAAM,GAAG,GAAG;AACnB,MAAI,KAAK,gBAAgB,GAAG,KAAK,QAAQ,mBAAmB;AAC5D,MAAI,KAAK,gBAAgB,GAAG,KAAK,QAAQ,mBAAmB;AAC5D,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,WAAW,GAAG,GAAG;AACxB,MAAI,KAAK,gBAAgB,GAAG,KAAK,aAAa,mBAAmB;AACjE,MAAI,KAAK,gBAAgB,GAAG,KAAK,aAAa,mBAAmB;AACjE,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,WAAW,MAAM;AAC3C;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,SAAS,OAAO,MAAM,KAAK;AAClC,MAAI,OAAO,GAAG;AACZ,UAAM,IAAI,MAAM,0CAA0C;AAAA,EAC5D;AACA,QAAM,QAAQ,EAAE,OAAO,MAAM,IAAI;AACjC,SAAO,OAAO,UAAU,UAAU,CAAC,GAAG,KAAK;AAC7C;AAGA,SAAS,4BAA4B,GAAG,cAAc,GAAG,OAAO,GAAGA,SAAQ,GAAG,OAAO,KAAK;AACxF,QAAM,KAAK,gBAAgB,GAAG,KAAK,4BAA4B;AAC/D,SAAO,GAAG,SAAS,KAAK,GAAG,SAAS,GAAG,MAAM;AAAA,sBACzB,GAAG,OAAO;AAC9B,SAAO,MAAM,WAAW,GAAG,MAAM,2FAA2F,cAAc;AAC1I,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK;AAC/C,QAAM,MAAM,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC/C,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,IAAI,6BAA6B,GAAG,EAAE,4BAA4B,CAAC;AAGnE,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI5B,QAAO,GAAG,EAAE,KAAK,CAAC;AAGtB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,KAAK,GAAG;AACf,SAAO,WAAW,CAAC,GAAG,MAAM,4CAA4C;AACxE,SAAO,CAAC,GAAG,OAAO;AAChB,UAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AACjE,UAAM,MAAM,MAAM,OAAO,gBAAgB,IAAI,MAAM,SAAS,IAAI;AAChE,WAAO,OAAO,KAAK,MAAM;AACvB,YAAM,EAAE,OAAO,OAAO,OAAO,IAAI,OAAO,UAAU,MAAM,EAAE,EAAE,GAAG,CAAC,EAAE,GAAG,GAAG;AACxE,UAAI,OAAO,MAAM;AACf,0BAAkB,MAAM,OAAO,IAAI,OAAO,gFAAgF;AAAA,MAC5H;AACA,iBAAW,MAAM;AACjB,aAAO,OAAO;AAAA,IAChB,CAAC;AAAA,EACH;AACF;AACA,SAAS,MAAM,GAAG;AAChB,SAAO,WAAW,CAAC,GAAG,MAAM,6CAA6C;AACzE,SAAO,CAAC,MAAM,OAAO;AACnB,WAAO,MAAM,QAAQ,IAAI,GAAG,MAAM,kFAAkF;AACpH,UAAM,QAAQ,qBAAqB,MAAM,QAAQ,YAAY,mBAAmB;AAChF,UAAM,MAAM,MAAM,OAAO,gBAAgB,IAAI,MAAM,UAAU,IAAI;AACjE,WAAO,OAAO,KAAK,MAAM;AACvB,YAAM,EAAE,OAAO,OAAO,OAAO,IAAI,OAAO,UAAU,MAAM,EAAE,GAAG,KAAK,GAAG,OAAO,GAAG;AAC/E,UAAI,OAAO,MAAM;AACf,0BAAkB,MAAM,OAAO,IAAI,OAAO,+FAA+F;AAAA,MAC3I;AACA,iBAAW,MAAM;AACjB,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,SAAS,aAAa,GAAG;AACvB,SAAO,WAAW,CAAC,GAAG,MAAM,oDAAoD;AAChF,SAAO,CAAC,GAAG,OAAO;AAChB,WAAO,aAAa,QAAQ,MAAM,qDAAqD;AACvF,WAAO,MAAM,QAAQ,cAAc,QAAQ,MAAM,0DAA0D;AAC3G,UAAM,EAAE,OAAO,QAAQ,MAAM,IAAI,OAAO,UAAU,MAAM,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE;AACrE,eAAW,MAAM;AACjB,WAAO,EAAE,MAAM,OAAO,IAAI,MAAM;AAAA,EAClC;AACF;AACA,SAAS,cAAc,GAAG;AACxB,SAAO,WAAW,CAAC,GAAG,MAAM,qDAAqD;AACjF,SAAO,CAAC,MAAM,OAAO;AACnB,WAAO,MAAM,QAAQ,IAAI,KAAK,KAAK,MAAM,CAAC,QAAQ,eAAe,MAAM,GAAG,MAAM,oEAAoE;AACpJ,WAAO,MAAM,QAAQ,cAAc,QAAQ,MAAM,8DAA8D;AAC/G,UAAM,MAAM,OAAO,UAAU,MAAM,EAAE,GAAG,IAAI,GAAG,MAAM,EAAE;AACvD,QAAI,MAAM,MAAM;AACd,wBAAkB,IAAI,MAAM,OAAO,GAAG,OAAO,uGAAuG;AAAA,IACtJ;AACA,eAAW,IAAI,KAAK;AACpB,WAAO;AAAA,EACT;AACF;AACA,SAAS,cAAc,GAAG,SAAS;AACjC,SAAO,WAAW,CAAC,GAAG,MAAM,qDAAqD;AACjF,SAAO,WAAW,QAAQ,MAAM,QAAQ,OAAO,KAAK,QAAQ,MAAM,CAAC,MAAM,aAAa,QAAQ,GAAG,MAAM,+EAA+E;AACtL,QAAM,mBAAmB,WAAW;AACpC,MAAI,CAAC,kBAAkB;AACrB,cAAU,CAAC;AACX,eAAW,WAAW,OAAO,qBAAqB;AAChD,cAAQ,KAAK,OAAO,oBAAoB,QAAQ;AAAA,IAClD;AAAA,EACF;AACA,QAAM,wBAAwB,mBAAmB,QAAQ,OAAO,CAAC,cAAc,CAAC,UAAU,SAAS,IAAI;AACvG,QAAM,mBAAmB,QAAQ;AACjC,YAAU,QAAQ,OAAO,CAAC,cAAc,UAAU,SAAS;AAC3D,SAAO,QAAQ,SAAS,GAAG,MAAM,gGAAgG,0CAA0C;AAC3K,QAAM,mBAAmB;AACzB,QAAM,EAAE,OAAO,OAAO,OAAO,IAAI,OAAO,UAAU,GAAG,SAAS,MAAM,gBAAgB;AACpF,SAAO,OAAO,KAAK,CAAC,MAAM,KAAK,IAAI,GAAG,MAAM,8LAA8L;AAC1O,SAAO,MAAM,SAAS,GAAG,MAAM,iFAAiF,MAAM,aAAa;AACnI,QAAM,aAAa,CAAC;AACpB,UAAQ,QAAQ,CAAC,GAAG,OAAO;AACzB,QAAI,OAAO,OAAO,MAAM;AACtB,iBAAW,EAAE,QAAQ,OAAO;AAAA,IAC9B;AAAA,EACF,CAAC;AACD,MAAI,yBAAyB,MAAM;AACjC,0BAAsB,QAAQ,CAAC,MAAM,WAAW,EAAE,QAAQ,IAAI;AAAA,EAChE;AACA,SAAO,EAAE,OAAO,OAAO,WAAW;AACpC;AACA,SAAS,WAAW,GAAG;AACrB,SAAO,OAAO,WAAW,CAAC;AAC5B;AACA,SAAS,WAAW,QAAQ;AAC1B,QAAM,mBAAmB,OAAO,OAAO,CAAC,MAAM,KAAK,IAAI,EAAE;AACzD,MAAI,mBAAmB,GAAG;AACxB,UAAM,IAAI,MAAM;AAAA,oEACgD;AAAA,EAClE;AACF;AAGA,SAAS,UAAU,GAAG;AACpB,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,YAAY,GAAG;AACtB,QAAM,KAAK,gBAAgB,GAAG,KAAK,YAAY;AAC/C,QAAM,WAAW,WAAW,CAAC,OAAO;AAClC,UAAM,QAAQ,IAAI,SAAS,IAAI,EAAE,CAAC,CAAC;AACnC,UAAM,WAAW,CAAC,OAAO;AACvB,YAAM,OAAO,IAAI,IAAI,QAAQ,IAAI,EAAE,CAAC,CAAC;AACrC,aAAO;AAAA,IACT;AACA,WAAO,EAAE,OAAO,SAAS;AAAA,EAC3B,CAAC;AACD,SAAO,SAAS,EAAE;AACpB;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,YAAY,QAAQ,OAAO,IAAI;AACtC,QAAM,UAAU,gBAAgB,QAAQ,UAAU,YAAY;AAC9D,MAAI,SAAS,IAAI;AACf,WAAO,QAAQ,OAAO;AAAA,EACxB;AACA,MAAI,SAAS,QAAQ,OAAO,GAAG;AAC7B,UAAM,MAAM,gFAAgF,QAAQ,qBAAqB,MAAM;AAAA,EACjI;AACA,QAAM,WAAW,WAAW,CAAC,SAAS,SAAS;AAC7C,UAAM,WAAW;AACjB,UAAM,OAAO,IAAI,SAAS,MAAM,IAAI;AACpC,UAAM,UAAU,IAAI,SAAS,IAAI;AACjC,UAAM,QAAQ,IAAI,KAAK,SAAS,SAAS,GAAGA,MAAK,KAAK,IAAI,OAAO,GAAG,MAAM,QAAQ,CAAC,CAAC;AACpF,SAAK,CAAC,KAAK,CAAC;AACZ,UAAM,WAAW,CAAC,IAAI,UAAU;AAC9B,YAAM,CAAC,MAAM,IAAI;AACjB,YAAM,YAAY;AAClB,YAAM,WAAW,IAAI,MAAM;AAC3B,aAAO,IAAI,IAAI,IAAI,KAAK,IAAI,MAAM,SAAS,GAAG,QAAQ,CAAC;AAAA,IACzD;AACA,WAAO,EAAE,OAAO,SAAS;AAAA,EAC3B,CAAC;AACD,SAAO,SAAS,OAAO;AACzB;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,WAAW,GAAG,OAAO,MAAM,WAAW,OAAO;AACpD,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,OAAO,eAAe,MAAM,GAAG,KAAK;AAC1C,QAAM,OAAO,IAAI,IAAI,MAAM,IAAI;AAC/B,QAAM,IAAI,IAAI,IAAI,IAAI;AACtB,QAAM,IAAI,IAAI,CAAC;AACf,QAAM,IAAI,KAAK,GAAG,IAAI;AACtB,QAAM,IAAIA,MAAK,CAAC;AAChB,QAAM,MAAM,KAAK,QAAQ,MAAM,EAAE,KAAK,GAAG,CAAC;AAC1C,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,IAAI,OAAO,IAAI;AACrD,WAAO,QAAQ,KAAK,QAAQ;AAAA,EAC9B;AACA,SAAO;AACT;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,YAAY,GAAG,GAAG;AACzB,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,YAAY,MAAM;AAC5C;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,YAAY,GAAG;AACtB,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,YAAY,MAAM;AAC5C;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,WAAW,GAAG,GAAG;AACxB,QAAM,KAAK,gBAAgB,GAAG,KAAK,aAAa,MAAM;AACtD,QAAM,KAAK,gBAAgB,GAAG,KAAK,aAAa,MAAM;AACtD,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,WAAW,MAAM;AAC3C;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,YAAY,GAAG,GAAG;AACzB,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,SAAO,WAAW,UAAU,GAAG,CAAC,GAAG,WAAW,WAAW,GAAG,CAAC,CAAC,CAAC;AACjE;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,IAAI,YAAY;AAChB,SAAS,cAAc,gBAAgB,QAAQ,OAAO,QAAQ;AAC5D,QAAM,kBAAkB,gBAAgB,gBAAgB,kBAAkB,cAAc;AACxF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,cAAc;AAChE,QAAM,eAAe,gBAAgB,MAAM,gBAAgB,MAAM,SAAS;AAC1E,QAAM,aAAa,QAAQ,MAAM,QAAQ,MAAM,SAAS;AACxD,QAAM,oBAAoB,QAAQ,iBAAiB,CAAC,IAAI,YAAY,CAAC;AACrE,QAAM,YAAY,QAAQ,SAAS,CAAC,IAAI,UAAU,CAAC;AACnD,MAAI,kBAAkB,OAAO,GAAG;AAC9B,UAAM,IAAI,MAAM,sDAAsD;AAAA,EACxE;AACA,MAAI,kBAAkB,MAAM,OAAO,UAAU,MAAM,IAAI;AACrD,UAAM,IAAI,MAAM,gEAAgE;AAAA,EAClF;AACA,MAAI,cAAc,UAAU,KAAK,KAAK,WAAW;AAC/C,UAAM,IAAI,MAAM,qCAAqC,WAAW;AAAA,EAClE;AACA,MAAI,kBAAkB,MAAM,MAAM,WAAW;AAC3C,UAAM,IAAI,MAAM,oCAAoC,wCAAwC,kBAAkB,MAAM,IAAI;AAAA,EAC1H;AACA,QAAM,SAAS;AAAA,IACb,gBAAgB;AAAA,IAChB,QAAQ;AAAA,EACV;AACA,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,cAAc,QAAQ,KAAK;AACrD;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,WAAW,gBAAgB,QAAQ;AAC1C,SAAO,aAAa,gBAAgB,QAAQ,MAAM;AACpD;AAGA,SAAS,SAAS,GAAG,YAAYkB,UAAS,MAAM,iBAAiB;AAC/D,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,QAAM,YAAY;AAClB,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,uDAAuD,IAAI,OAAO;AAC/F,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AAC/K,4BAA0B,WAAW,MAAM,eAAe;AAC1D,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,QAAM,MAAM,OAAO,UAAU,SAAS,QAAQ,KAAK;AACnD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,GAAG,aAAa,CAAC,GAAG,GAAG,CAAC,GAAGA,UAAS,MAAM,iBAAiB,aAAa,SAAS;AACnG,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC3E;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,qDAAqD,IAAI,OAAO;AAC7F,SAAO,eAAe,SAAS,MAAM,gFAAgF,YAAY;AACjI,4BAA0B,aAAa,MAAM,eAAe;AAC5D,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW;AAC5E,QAAM,MAAM,OAAO,UAAU,WAAW,QAAQ,KAAK;AACrD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,mBAAmB,GAAG,YAAYA,UAAS,MAAM,sBAAsB,OAAO;AACrF,QAAM,KAAK,gBAAgB,GAAG,KAAK,mBAAmB;AACtD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,oBAAoB;AACpE,QAAM,SAAS,OAAO,UAAU,mBAAmB,QAAQ,KAAK;AAChE,SAAO,EAAE,QAAQ,OAAO,IAAI,SAAS,OAAO,GAAG;AACjD;AACA,IAAI,oBAAoB,GAAG,EAAE,mBAAmB,CAAC;AAGjD,SAAS,SAAS,GAAG,GAAG;AACtB,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC1C,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC1C,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,MAAI,GAAG,UAAU,QAAQ;AACvB,SAAK,KAAK,IAAI,OAAO;AACrB,SAAK,KAAK,IAAI,OAAO;AAAA,EACvB;AACA,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,MAAM,GAAG,OAAO,MAAM,WAAW,OAAO;AAC/C,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,MAAM,OAAO,QAAQ,WAAW;AACvC,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,MAAM,OAAO,SAAS;AACpC,UAAM,QAAQ,MAAM,OAAO,SAAS;AACpC,WAAO,QAAQ,OAAO,KAAK;AAAA,EAC7B;AACA,QAAM,SAAS,oBAAoB,cAAc,KAAK,GAAG,KAAK;AAC9D,SAAO,OAAO,WAAW,QAAQ,OAAO,KAAK;AAC/C;AAGA,SAAS,MAAM,OAAO,QAAQ,WAAW;AACvC,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,MAAM,OAAO,SAAS;AACpC,UAAM,QAAQ,MAAM,OAAO,SAAS;AACpC,WAAO,QAAQ,OAAO,KAAK;AAAA,EAC7B;AACA,QAAM,SAAS,mBAAmB,cAAc,KAAK,GAAG,KAAK;AAC7D,SAAO,OAAO,WAAW,QAAQ,OAAO,KAAK;AAC/C;AAGA,SAAS,SAAS,GAAG,GAAG,EAAE,WAAW,KAAK,IAAI,CAAC,GAAG;AAChD,MAAI,aAAa,QAAQ,aAAa,MAAM;AAC1C,UAAM,IAAI,UAAU,GAAG,oDAAoD;AAAA,EAC7E;AACA,MAAI,MAAM,QAAQ;AAChB,WAAO,CAAC;AAAA,EACV;AACA,MAAI,KAAK,gBAAgB,GAAG,KAAK,YAAY,aAAa,SAAS,EAAE,QAAQ,SAAS;AACtF,MAAI,MAAM,QAAQ;AAChB,WAAO,CAAC,EAAE;AAAA,EACZ;AACA,MAAI,KAAK,gBAAgB,GAAG,KAAK,YAAY,aAAa,SAAS,EAAE,QAAQ,SAAS;AACtF,QAAM,IAAI,cAAc,GAAG,KAAK;AAChC,QAAM,IAAI,cAAc,GAAG,KAAK;AAChC,MAAI,aAAa,MAAM;AACrB,SAAK,QAAQ,IAAI,CAAC,GAAG,EAAE,CAAC;AACxB,SAAK,QAAQ,IAAI,CAAC,IAAI,CAAC,CAAC;AACxB,WAAO;AAAA,MACL,OAAO,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK,GAAG,EAAE;AAAA,MAClC,OAAO,IAAI,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK,CAAC;AAAA,IACpC;AAAA,EACF;AACA,OAAK,QAAQ,IAAI,CAAC,IAAI,CAAC,CAAC;AACxB,OAAK,QAAQ,IAAI,CAAC,GAAG,EAAE,CAAC;AACxB,SAAO;AAAA,IACL,OAAO,IAAI,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK,CAAC;AAAA,IAClC,OAAO,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK,GAAG,EAAE;AAAA,EACpC;AACF;AAGA,SAAS,SAAS,GAAG,GAAG;AACtB,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC1C,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC1C,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,MAAI,GAAG,UAAU,QAAQ;AACvB,SAAK,KAAK,IAAI,OAAO;AACrB,SAAK,KAAK,IAAI,OAAO;AAAA,EACvB;AACA,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,GAAG,UAAU,MAAM;AACrC,SAAO,SAAS,aAAa,SAAS,aAAa,MAAM,+DAA+D,OAAO;AAC/H,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,IAAI,MAAM,gEAAgE;AAAA,EAClF;AACA,SAAO,SAAS,WAAW,GAAG,MAAM,MAAM,wCAAwC,GAAG,aAAa,SAAS,SAAS;AACpH,QAAM,cAAc,SAAS,YAAY,IAAI;AAC7C,WAAS,KAAK,GAAG,KAAK,GAAG,MAAM,MAAM;AACnC,WAAO,SAAS,IAAI,WAAW,GAAG,MAAM,uDAAuD;AAC/F,WAAO,SAAS,IAAI,MAAM,KAAK,SAAS,IAAI,MAAM,GAAG,MAAM,MAAM,eAAe,SAAS,IAAI,MAAM,KAAK,SAAS,IAAI,MAAM,GAAG,MAAM,MAAM,aAAa,MAAM,wBAAwB,yCAAyC,GAAG,MAAM,MAAM,iDAAiD,GAAG,OAAO;AAAA,EAC1S;AACA,QAAM,QAAQ,EAAE,UAAU,KAAK;AAC/B,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,SAAS,GAAG,OAAO,MAAM,WAAW,OAAO;AAClD,MAAI,gBAAgB,GAAG,KAAK,SAAS;AACrC,QAAM,OAAO,eAAe,MAAM,EAAE,KAAK;AACzC,QAAM,QAAQ,KAAK,GAAG,MAAM,QAAQ;AACpC,MAAI,gBAAgB,MAAM;AAC1B,MAAI,CAAC,UAAU;AACb,oBAAgB,qBAAqB,MAAM,OAAO,IAAI;AAAA,EACxD;AACA,QAAM,aAAa,OAAO,IAAI,KAAK,GAAG,SAAS,GAAG,QAAQ,OAAO,aAAa,CAAC,CAAC;AAChF,QAAM,WAAW,KAAK,YAAY,MAAM,QAAQ;AAChD,SAAO,EAAE,MAAM,OAAO,SAAS;AACjC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,cAAc,WAAW,MAAM,GAAG,GAAG;AAC5C,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,cAAc;AAC1D,QAAM,KAAK,qBAAqB,GAAG,KAAK,cAAc;AACtD,QAAM,KAAK,qBAAqB,GAAG,KAAK,cAAc;AACtD,MAAI,SAAS;AACb,QAAM,YAAY,CAAC;AACnB,WAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,MAAM;AAC5C,UAAM,SAAS,UAAU,IAAI,QAAQ,GAAG,KAAK,GAAG,GAAG;AACnD,cAAU,KAAK,OAAO,EAAE;AACxB,cAAU,KAAK,OAAO,EAAE;AACxB,aAAS,OAAO;AAAA,EAClB;AACA,QAAM,OAAO,CAAC;AACd,QAAM,OAAO,CAAC;AACd,WAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,MAAM,GAAG;AAC/C,SAAK,KAAK,UAAU,GAAG;AACvB,SAAK,KAAK,UAAU,KAAK,EAAE;AAAA,EAC7B;AACA,SAAO,CAAC,MAAM,IAAI;AACpB;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,aAAa,QAAQ,YAAY,MAAM,aAAa,OAAO;AAClE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,aAAa;AAC/D,QAAM,cAAc,QAAQ;AAC5B,QAAM,WAAW,QAAQ;AACzB,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,+DAA+D,cAAc;AAAA,EAC/F;AACA,MAAI,WAAW,GAAG;AAChB,UAAM,IAAI,MAAM,gDAAgD,UAAU;AAAA,EAC5E;AACA,SAAO,QAAQ,KAAK,OAAO;AAC3B,QAAM,WAAW,aAAa,IAAI,QAAQ,SAAS,CAAC,GAAG,EAAE,CAAC,IAAI;AAC9D,QAAM,SAAS,EAAE,QAAQ,SAAS;AAClC,QAAM,QAAQ,EAAE,YAAY,MAAM,WAAW;AAC7C,QAAM,MAAM,OAAO,UAAU,aAAa,QAAQ,KAAK;AACvD,SAAO,aAAa,IAAI,QAAQ,KAAK,CAAC,IAAI,IAAI,CAAC,IAAI;AACrD;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,UAAU,GAAG,GAAG;AACvB,MAAI,KAAK,gBAAgB,GAAG,KAAK,YAAY,mBAAmB;AAChE,MAAI,KAAK,gBAAgB,GAAG,KAAK,YAAY,mBAAmB;AAChE,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,UAAU,GAAG;AACpB,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,cAAc,IAAI,IAAI;AAC7B,QAAM,MAAM,gBAAgB,IAAI,MAAM,cAAc;AACpD,QAAM,MAAM,gBAAgB,IAAI,MAAM,cAAc;AACpD,SAAO,IAAI,SAAS,KAAK,IAAI,SAAS,GAAG,MAAM,+DAA+D,IAAI,YAAY,IAAI,OAAO;AACzI,QAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,CAAC,CAAC;AACjC,QAAM,OAAO,QAAQ,KAAK,CAAC,GAAG,EAAE,CAAC;AACjC,SAAO,OAAO,MAAM,IAAI;AAC1B;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,KAAK,GAAG,UAAU,gBAAgB,GAAG;AAC5C,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,IAAI,MAAM,oDAAoD;AAAA,EACtE;AACA,QAAM,QAAQ,EAAE,UAAU,cAAc;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,QAAQ,KAAK;AAC9C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,OAAO,GAAG,UAAU,gBAAgB,GAAG;AAC9C,SAAO,SAAS,WAAW,GAAG,MAAM,kDAAkD;AACtF,SAAO,IAAI,GAAG,CAAC,QAAQ,GAAG,aAAa;AACzC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG,UAAU,gBAAgB,GAAG;AAC9C,SAAO,SAAS,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,GAAG,MAAM,uDAAuD;AACnJ,SAAO,IAAI,GAAG,UAAU,aAAa;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG,UAAU,gBAAgB,GAAG;AAC9C,SAAO,SAAS,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,GAAG,MAAM,uDAAuD;AAC/K,SAAO,IAAI,GAAG,UAAU,aAAa;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG,UAAU,gBAAgB,GAAG;AAC9C,SAAO,SAAS,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,GAAG,MAAM,uDAAuD;AAC3M,SAAO,IAAI,GAAG,UAAU,aAAa;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,gBAAgB,GAAG,YAAY,UAAU;AAChD,QAAM,KAAK,gBAAgB,GAAG,KAAK,gBAAgB;AACnD,SAAO,GAAG,QAAQ,IAAI,WAAW,QAAQ,MAAM,cAAc,GAAG,sCAAsC,WAAW,QAAQ;AACzH,SAAO,SAAS,WAAW,WAAW,QAAQ,MAAM,qBAAqB,SAAS,wCAAwC,WAAW,QAAQ;AAC7I,SAAO,GAAG,MAAM,OAAO,CAAC,GAAG,GAAG,OAAO;AACnC,QAAI,KAAK,KAAK,MAAM,WAAW,QAAQ;AACrC,aAAO,MAAM,IAAI,SAAS,KAAK,GAAG,KAAK,SAAS,KAAK,GAAG,MAAM,WAAW,KAAK,OAAO;AAAA,IACvF;AACA,WAAO;AAAA,EACT,GAAG,IAAI,GAAG,MAAM,4BAA4B,GAAG,MAAM,MAAM,CAAC,mBAAmB,SAAS,SAAS,sCAAsC,WAAW,SAAS,GAAG;AAC9J,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,YAAY,SAAS;AACrC,SAAO,OAAO,UAAU,gBAAgB,QAAQ,KAAK;AACvD;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,MAAM,QAAQ,aAAa,aAAa,MAAM,WAAWA,UAAS,iBAAiB;AAC1F,MAAI,aAAa,MAAM;AACrB,gBAAY,CAAC,GAAG,CAAC;AAAA,EACnB;AACA,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU;AAAA,EACZ;AACA,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT;AACA,QAAM,KAAK,gBAAgB,QAAQ,KAAK,SAAS;AACjD,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,qEAAqEA,2BAA0B,YAAY;AAC5K,QAAM,WAAW,kBAAkB,IAAI,OAAO,aAAaA,UAAS,WAAW,IAAI;AACnF,QAAM,WAAW,CAAC,SAAS,gBAAgB,SAAS,aAAa;AACjE,MAAI;AACJ,MAAI,SAAS,QAAQ;AACnB,kBAAc,6BAA6B,CAAC,SAAS,cAAc,SAAS,WAAW,GAAG,QAAQ;AAAA,EACpG,OAAO;AACL,kBAAc,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,EAC/B;AACA,QAAM,gBAAgB,SAAS,OAAO,KAAK,SAAS,OAAO;AAC3D,QAAM,CAAC,iBAAiB,aAAa,IAAI,6BAA6B,CAAC,SAAS,UAAU,SAAS,OAAO,GAAG,UAAU,WAAW;AAClI,QAAM,eAAe,gBAAgB,OAAO;AAC5C,QAAM,aAAa,gBAAgB,MAAM,eAAe,KAAK,UAAU,eAAe;AACtF,QAAM,YAAY,gBAAgB,QAAQ,MAAM,QAAQ,YAAY,aAAaA,UAAS,cAAc,eAAe,IAAI,MAAM,QAAQ,YAAY,aAAaA,UAAS,cAAc,eAAe;AACxM,QAAM,IAAI,UAAU;AACpB,QAAM,MAAM,gBAAgB,IAAI,eAAe,GAAG,UAAU,aAAa;AACzE,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,SAAS,6BAA6B,YAAY,YAAY,aAAa;AACzE,QAAM,WAAW,YAAY,IAAI,CAAC,MAAM,EAAE,EAAE;AAC5C,QAAM,aAAa,YAAY,IAAI,CAAC,MAAM,EAAE,EAAE;AAC9C,QAAM,iBAAiB,WAAW,OAAO,UAAU,UAAU;AAC7D,QAAM,cAAc,WAAW,IAAI,CAAC,GAAG,QAAQ,IAAI,eAAe,MAAM,KAAK,CAAC;AAC9E,QAAM,SAAS,WAAW,IAAI,CAAC,IAAI,OAAO,KAAK,YAAY,GAAG;AAC9D,QAAM,WAAW,WAAW,IAAI,CAAC,GAAG,OAAO,CAAC,SAAS,KAAK,OAAO,GAAG,CAAC;AACrE,QAAM,QAAQ,WAAW,IAAI,CAAC,GAAG,OAAO,CAAC,GAAG,YAAY,GAAG,CAAC;AAC5D,SAAO,CAAC,UAAU,KAAK;AACzB;AACA,SAAS,6BAA6B,aAAa,UAAU;AAC3D,QAAM,qBAAqB,YAAY,IAAI,CAAC,IAAI,OAAO;AACrD,WAAO,MAAM,KAAK,MAAM,SAAS,MAAM;AAAA,EACzC,CAAC;AACD,QAAM,gBAAgB,mBAAmB,IAAI,CAAC,OAAO,KAAK,CAAC;AAC3D,QAAM,gBAAgB,cAAc,IAAI,CAAC,OAAO,KAAK,MAAM,KAAK,CAAC,CAAC;AAClE,QAAM,cAAc,cAAc,IAAI,CAAC,IAAI,OAAO,KAAK,cAAc,GAAG;AACxE,SAAO,cAAc,IAAI,CAAC,GAAG,OAAO;AAClC,WAAO,CAAC,cAAc,KAAK,YAAY,GAAG;AAAA,EAC5C,CAAC;AACH;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAGU,QAAO;AACxB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,gBAAgBA,QAAO,SAAS,OAAO;AACtD,QAAM,SAAS,EAAE,GAAG,IAAI,OAAO,OAAO;AACtC,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG,OAAO,MAAM,WAAW,OAAO;AAC/C,MAAI,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACvC,MAAI,GAAG,UAAU,QAAQ;AACvB,SAAK,KAAK,IAAI,OAAO;AAAA,EACvB;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,sBAAsB,OAAO,QAAQ,cAAc,qBAAqB,mBAAmB;AAClG,QAAM,SAAS,gBAAgB,OAAO,SAAS,wBAAwB,OAAO;AAC9E,QAAM,UAAU,gBAAgB,QAAQ,UAAU,sBAAsB;AACxE,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,wBAAwB,QAAQ,KAAK;AACzG,QAAM,uBAAuB,oBAAoB,IAAI,CAAC,IAAI,OAAO,gBAAgB,IAAI,UAAU,MAAM,wBAAwB,OAAO,CAAC;AACrI,QAAM,SAAS;AAAA,IACb,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,cAAc;AAAA,IACd,qBAAqB;AAAA,EACvB;AACA,QAAM,QAAQ,EAAE,kBAAkB;AAClC,SAAO,OAAO,UAAU,sBAAsB,QAAQ,KAAK;AAC7D;AACA,IAAI,uBAAuB,GAAG,EAAE,sBAAsB,CAAC;AAGvD,SAAS,MAAM,OAAO,cAAc,OAAO;AACzC,QAAMvB,QAAO,cAAc,KAAK;AAChC,MAAI,SAAS;AACb,MAAI,SAAS,QAAQ,UAAU,WAAW;AACxC,aAAS,IAAI,aAAaA,KAAI;AAAA,EAChC,WAAW,UAAU,SAAS;AAC5B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,WAAW,UAAU,QAAQ;AAC3B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACA,WAAS,KAAK,GAAG,KAAKA,OAAM,MAAM;AAChC,WAAO,MAAM,aAAa;AAAA,EAC5B;AACA,SAAO,OAAO,WAAW,QAAQ,OAAO,KAAK;AAC/C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,IAAI,aAAa,QAAQ,oBAAoB,CAAC;AAC9C,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,OAAO,cAAc,OAAO,WAAW,MAAM;AACvD,SAAK,OAAO;AACZ,SAAK,SAAS;AACd,SAAK,QAAQ;AACb,SAAK,UAAU;AACf,SAAK,YAAY;AACjB,QAAI,KAAK,WAAW;AAClB,WAAK,QAAQ,KAAK,OAAO,KAAK,SAAS;AACvC,WAAK,QAAQ,KAAK,OAAO,KAAK,SAAS;AAAA,IACzC;AACA,UAAM,YAAY,OAAO,OAAO,KAAK,OAAO;AAC5C,SAAK,SAAS,WAAW,KAAK,UAAU,SAAS,CAAC;AAAA,EACpD;AAAA,EACA,YAAY;AACV,QAAI,CAAC,MAAM,KAAK,OAAO,GAAG;AACxB,YAAM,QAAQ,KAAK;AACnB,WAAK,UAAU;AACf,aAAO;AAAA,IACT;AACA,QAAI,SAAS;AACb,QAAI,UAAU;AACd,WAAO,CAAC,SAAS;AACf,UAAI,IAAI,IAAI;AACZ,SAAG;AACD,aAAK,IAAI,KAAK,OAAO,IAAI;AACzB,aAAK,IAAI,KAAK,OAAO,IAAI;AACzB,aAAK,KAAK,KAAK,KAAK;AAAA,MACtB,SAAS,MAAM,KAAK,OAAO;AAC3B,YAAM,OAAO,KAAK,KAAK,KAAK,KAAK,IAAI,EAAE,IAAI,EAAE;AAC7C,gBAAU,KAAK,OAAO,KAAK,SAAS,KAAK;AACzC,gBAAU,KAAK,OAAO,KAAK,SAAS,KAAK;AACzC,UAAI,CAAC,KAAK,aAAa,KAAK,iBAAiB,OAAO,GAAG;AACrD,kBAAU;AAAA,MACZ;AAAA,IACF;AACA,QAAI,CAAC,KAAK,aAAa,KAAK,iBAAiB,OAAO,GAAG;AACrD,WAAK,UAAU,KAAK,aAAa,OAAO;AAAA,IAC1C;AACA,WAAO,KAAK,aAAa,OAAO;AAAA,EAClC;AAAA,EACA,aAAa,OAAO;AAClB,QAAI,KAAK,SAAS,QAAQ,KAAK,UAAU,WAAW;AAClD,aAAO;AAAA,IACT;AACA,WAAO,KAAK,MAAM,KAAK;AAAA,EACzB;AAAA,EACA,iBAAiB,OAAO;AACtB,WAAO,SAAS,KAAK,SAAS,SAAS,KAAK;AAAA,EAC9C;AACF;AACA,IAAI,YAAY,MAAM;AAAA,EACpB,YAAYuB,QAAO,MAAM,OAAO,MAAM;AACpC,SAAK,QAAQA;AACb,SAAK,OAAO,IAAI;AAChB,SAAK,QAAQ;AACb,UAAM,YAAY,OAAO,OAAO,KAAK,OAAO;AAC5C,SAAK,QAAQ,WAAW,KAAK,UAAU,SAAS,CAAC;AACjD,SAAK,QAAQ,IAAI,YAAY,GAAG,GAAG,OAAO,OAAO,KAAK,MAAM,CAAC;AAC7D,QAAIA,SAAQ,GAAG;AACb,WAAK,IAAIA,SAAQ,IAAI;AAAA,IACvB,OAAO;AACL,WAAK,IAAIA,SAAQ,IAAI;AAAA,IACvB;AACA,SAAK,IAAI,IAAI,KAAK,KAAK,IAAI,KAAK,CAAC;AAAA,EACnC;AAAA,EACA,YAAY;AACV,QAAI,IAAI,IAAI,IAAI,GAAG,GAAG;AACtB,WAAO,MAAM;AACX,SAAG;AACD,YAAI,KAAK,MAAM,UAAU;AACzB,YAAI,IAAI,KAAK,IAAI;AAAA,MACnB,SAAS,KAAK;AACd,WAAK,IAAI;AACT,WAAK,IAAI;AACT,WAAK,IAAI,QAAQ,KAAK;AACtB,WAAK,MAAM,KAAK,KAAK,KAAK,IAAI,IAAI,KAAK,IAAI,CAAC;AAC5C,UAAI,KAAK,MAAM;AACf,UAAI,IAAI,MAAM,KAAK,IAAI,CAAC,IAAI,IAAI;AAC9B;AAAA,MACF;AAAA,IACF;AACA,QAAI,IAAI,KAAK,OAAO,KAAK,IAAI;AAC7B,QAAI,KAAK,QAAQ,GAAG;AAClB,WAAK,KAAK,IAAI,KAAK,MAAM,GAAG,IAAI,KAAK,KAAK;AAAA,IAC5C;AACA,WAAO,KAAK,aAAa,CAAC;AAAA,EAC5B;AAAA,EACA,aAAa,OAAO;AAClB,QAAI,KAAK,UAAU,WAAW;AAC5B,aAAO;AAAA,IACT;AACA,WAAO,KAAK,MAAM,KAAK;AAAA,EACzB;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO,GAAG,OAAO,GAAG,OAAO,MAAM;AAC3C,SAAK,iBAAiB,MAAM,KAAK,SAAS,QAAQ,KAAK,UAAU;AACjE,SAAK,MAAM;AACX,SAAK,QAAQ,OAAO;AACpB,SAAK,QAAQ;AACb,QAAI,QAAQ,MAAM;AAChB,aAAO,KAAK,OAAO;AAAA,IACrB;AACA,QAAI,OAAO,SAAS,UAAU;AAC5B,aAAO,KAAK,SAAS;AAAA,IACvB;AACA,QAAI,CAAC,KAAK,eAAe,KAAK,KAAK,SAAS,GAAG;AAC7C,YAAM,IAAI,MAAM,0BAA0B,UAAU,kCAAkC;AAAA,IACxF;AACA,SAAK,SAAS,WAAW,KAAK,IAAI;AAAA,EACpC;AAAA,EACA,aAAa,OAAO;AAClB,QAAI,KAAK,eAAe,GAAG;AACzB,aAAO;AAAA,IACT;AACA,WAAO,KAAK,MAAM,KAAK;AAAA,EACzB;AAAA,EACA,YAAY;AACV,WAAO,KAAK,aAAa,KAAK,MAAM,KAAK,QAAQ,KAAK,OAAO,CAAC;AAAA,EAChE;AACF;AAGA,SAAS,aAAa,OAAOA,QAAO,OAAO,GAAG,QAAQ,WAAW,MAAM;AACrE,MAAI,QAAQ,MAAM;AAChB,WAAO;AAAA,EACT;AACA,MAAI,SAAS,MAAM;AACjB,YAAQ;AAAA,EACV;AACA,MAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,UAAM,IAAI,MAAM,yBAAyB,OAAO;AAAA,EAClD;AACA,QAAM,SAAS,IAAI,UAAUA,QAAO,MAAM,OAAO,IAAI;AACrD,QAAM,MAAM,OAAO,OAAO,KAAK;AAC/B,WAAS,KAAK,GAAG,KAAK,IAAI,OAAO,QAAQ,MAAM;AAC7C,QAAI,OAAO,MAAM,OAAO,UAAU;AAAA,EACpC;AACA,SAAO,IAAI,SAAS;AACtB;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,cAAc,OAAO,QAAQ,GAAG,SAAS,GAAG,OAAO,MAAM;AAChE,MAAI,SAAS,QAAQ,UAAU,QAAQ;AACrC,UAAM,IAAI,MAAM,yBAAyB,OAAO;AAAA,EAClD;AACA,QAAM,YAAY,IAAI,YAAY,OAAO,QAAQ,OAAO,OAAO,IAAI;AACnE,QAAM,MAAM,OAAO,OAAO,KAAK;AAC/B,WAAS,KAAK,GAAG,KAAK,IAAI,OAAO,QAAQ,MAAM;AAC7C,QAAI,OAAO,MAAM,UAAU,UAAU;AAAA,EACvC;AACA,SAAO,IAAI,SAAS;AACtB;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,sBAAsB,OAAO,OAAO,MAAM;AACjD,MAAI,SAAS,QAAQ,UAAU,QAAQ;AACrC,UAAM,IAAI,MAAM,yBAAyB,OAAO;AAAA,EAClD;AACA,SAAO,aAAa,OAAO,GAAG,GAAG,OAAO,IAAI;AAC9C;AACA,IAAI,uBAAuB,GAAG,EAAE,sBAAsB,CAAC;AAGvD,SAAS,eAAe,OAAO,SAAS,GAAG,SAAS,GAAG,QAAQ,WAAW,MAAM;AAC9E,QAAM,MAAM,OAAO,OAAO,KAAK;AAC/B,QAAM,SAAS,IAAI,cAAc,QAAQ,QAAQ,MAAM,IAAI;AAC3D,WAAS,KAAK,GAAG,KAAK,IAAI,OAAO,QAAQ,MAAM;AAC7C,QAAI,OAAO,MAAM,OAAO,UAAU;AAAA,EACpC;AACA,SAAO,IAAI,SAAS;AACtB;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,MAAM,OAAO,MAAM,QAAQ,GAAG,QAAQ,WAAW;AACxD,MAAI,UAAU,GAAG;AACf,UAAM,IAAI,MAAM,4BAA4B;AAAA,EAC9C;AACA,QAAM,QAAQ,EAAE,OAAO,MAAM,MAAM,OAAO,MAAM;AAChD,SAAO,OAAO,UAAU,OAAO,CAAC,GAAG,KAAK;AAC1C;AAGA,SAAS,YAAY,GAAG;AACtB,QAAM,KAAK,gBAAgB,GAAG,KAAK,YAAY;AAC/C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,YAAY,MAAM;AAC5C;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,SAAS,GAAG,MAAM;AACzB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,KAAK;AAC3B,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,GAAG;AACrB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,qDAAqD,GAAG,OAAO;AAC3F,SAAO,QAAQ,IAAI,CAAC;AACtB;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAW,GAAG,MAAM;AAC3B,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,qDAAqD,GAAG,OAAO;AAC3F,SAAO,QAAQ,IAAI,IAAI;AACzB;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAW,GAAG,MAAM;AAC3B,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,qDAAqD,GAAG,OAAO;AAC3F,SAAO,QAAQ,IAAI,IAAI;AACzB;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAW,GAAG,MAAM;AAC3B,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,qDAAqD,GAAG,OAAO;AAC3F,SAAO,QAAQ,IAAI,IAAI;AACzB;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,SAAS,GAAG,EAAE,OAAO,CAAC;AAG1B,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS,SAAS;AACrD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,iBAAiB,GAAG,iBAAiB,iBAAiBV,UAAS,MAAM,WAAW,CAAC,GAAG,CAAC,GAAG,aAAa,QAAQ;AACpH,QAAM,KAAK,gBAAgB,GAAG,KAAK,iBAAiB;AACpD,QAAM,mBAAmB,gBAAgB,iBAAiB,mBAAmB,iBAAiB;AAC9F,QAAM,mBAAmB,gBAAgB,iBAAiB,mBAAmB,iBAAiB;AAC9F,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,MAAI,eAAe,QAAQ;AACzB,UAAM,IAAI,MAAM,oFAAoF;AAAA,EACtG;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,gEAAgE,IAAI,OAAO;AACxG,SAAO,iBAAiB,SAAS,GAAG,MAAM,2EAA2E,iBAAiB,OAAO;AAC7I,SAAO,iBAAiB,SAAS,GAAG,MAAM,2EAA2E,iBAAiB,OAAO;AAC7I,SAAO,iBAAiB,MAAM,OAAO,GAAG,MAAM,yFAAyF,iBAAiB,MAAM,KAAK;AACnK,SAAO,iBAAiB,MAAM,OAAO,GAAG,MAAM,yFAAyF,iBAAiB,MAAM,KAAK;AACnK,QAAM,aAAa,iBAAiB,MAAM;AAC1C,QAAM,oBAAoB,iBAAiB,MAAM;AACjD,SAAO,iBAAiB,MAAM,OAAO,aAAa,mBAAmB,MAAM,6EAA6E,aAAa,8BAA8B,iBAAiB,MAAM,KAAK;AAC/N,QAAM,YAAY,gBAAgB,KAAK,kBAAkBA,UAAS,MAAM,YAAY,QAAQ;AAC5F,QAAM,kBAAkB;AACxB,QAAM,MAAM,OAAO,WAAW,kBAAkB,iBAAiB,SAAS,UAAU;AACpF,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,eAAe,gBAAgB,GAAG,GAAG;AACnC,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,SAAO,GAAG,UAAU,GAAG,OAAO,MAAM,kDAAkD,GAAG,iBAAiB,GAAG,SAAS;AACtH,SAAO,GAAG,SAAS,GAAG,MAAM,qCAAqC,GAAG,SAAS;AAC7E,SAAO,GAAG,SAAS,GAAG,MAAM,qCAAqC,GAAG,SAAS;AAC7E,QAAM,QAAQ,MAAM,GAAG,KAAK;AAC5B,QAAM,QAAQ,MAAM,GAAG,KAAK;AAC5B,QAAM,OAAO,IAAI,IAAI,KAAK;AAC1B,MAAIQ,cAAa;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,QAAI,CAAC,KAAK,IAAI,MAAM,GAAG,GAAG;AACxB,MAAAA;AAAA,IACF;AAAA,EACF;AACA,QAAM,UAAU,IAAI,aAAa,CAACA,WAAU,GAAG,GAAG,KAAK;AACvD,QAAM,UAAU,IAAI,aAAa,CAACA,WAAU,GAAG,OAAO;AACtD,WAAS,KAAK,GAAG,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AAChD,QAAI,CAAC,KAAK,IAAI,MAAM,GAAG,GAAG;AACxB,cAAQ,OAAO,MAAM,MAAM;AAC3B,cAAQ,OAAO,MAAM;AACrB;AAAA,IACF;AAAA,EACF;AACA,SAAO,CAAC,QAAQ,SAAS,GAAG,QAAQ,SAAS,CAAC;AAChD;AACA,IAAI,iBAAiB;AAGrB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,SAAS,GAAG,OAAOrB,OAAM;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,mDAAmD,GAAG,aAAa;AAC/F,SAAO,MAAM,IAAI,CAAC,KAAK,GAAG,CAACA,KAAI,CAAC;AAClC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,GAAG,OAAOA,OAAM;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,mDAAmD,GAAG,aAAa;AAC/F,SAAO,MAAM,IAAI,OAAOA,KAAI;AAC9B;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,GAAG,OAAOA,OAAM;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,mDAAmD,GAAG,aAAa;AAC/F,SAAO,MAAM,IAAI,OAAOA,KAAI;AAC9B;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,GAAG,OAAOA,OAAM;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,mDAAmD,GAAG,aAAa;AAC/F,SAAO,MAAM,IAAI,OAAOA,KAAI;AAC9B;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,QAAQ,MAAM,IAAI;AAClC,QAAM,UAAU,gBAAgB,QAAQ,UAAU,WAAW,SAAS;AACtE,MAAI,QAAQ,IAAI;AACd,UAAM,QAAQ,OAAO;AAAA,EACvB;AACA,MAAI,QAAQ,QAAQ,OAAO,GAAG;AAC5B,UAAM,MAAM,4EAA4E,QAAQ,oBAAoB,KAAK;AAAA,EAC3H;AACA,QAAM,SAAS,EAAE,QAAQ,QAAQ;AACjC,QAAM,QAAQ,EAAE,IAAI;AACpB,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,KAAK,QAAQ;AACpB,SAAO,OAAO,UAAU,aAAa,MAAM,6DAA6D,OAAO,QAAQ;AACvH,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,QAAQ;AACrB,SAAO,OAAO,UAAU,aAAa,MAAM,8DAA8D,OAAO,QAAQ;AACxH,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,QAAQ;AACtB,QAAM,qBAAqB,OAAO,MAAM,OAAO,MAAM,SAAS;AAC9D,QAAM,QAAQ,OAAO,OAAO;AAC5B,MAAI;AACJ,MAAI,sBAAsB,GAAG;AAC3B,UAAM,eAAe,QAAQ,QAAQ,CAAC,OAAO,kBAAkB,CAAC;AAChE,UAAM,KAAK,YAAY;AAAA,EACzB,OAAO;AACL,UAAM,cAAc,CAAC,OAAO,KAAK,qBAAqB,EAAE;AACxD,UAAM,YAAY,QAAQ,KAAK,MAAM,GAAG,CAAC,OAAO,kBAAkB,CAAC;AACnE,UAAM,YAAY,QAAQ,KAAK,MAAM,GAAG,CAAC,OAAO,kBAAkB,CAAC;AACnE,UAAM,gBAAgB,QAAQ,MAAM,WAAW,CAAC,GAAG,CAAC,GAAG,CAAC,OAAO,qBAAqB,CAAC,CAAC,GAAG,CAAC;AAC1F,UAAM,gBAAgB,IAAI,QAAQ,MAAM,WAAW,CAAC,GAAG,CAAC,GAAG,CAAC,OAAO,qBAAqB,CAAC,CAAC,GAAG,CAAC,GAAG,OAAO,EAAE,CAAC;AAC3G,UAAM,KAAK,OAAO,CAAC,WAAW,aAAa,GAAG,CAAC;AAC/C,UAAM,KAAK,OAAO,CAAC,WAAW,aAAa,GAAG,CAAC;AAC/C,UAAM,eAAe,QAAQ,QAAQ,IAAI,EAAE,GAAG,CAAC,YAAY,IAAI,YAAY,EAAE,CAAC;AAC9E,UAAM,KAAK,YAAY;AAAA,EACzB;AACA,QAAM,KAAK,GAAG;AACd,MAAI,OAAO,SAAS,KAAK,OAAO,MAAM,OAAO,GAAG;AAC9C,UAAM,OAAO;AACb,UAAM,SAAS,OAAO,MAAM;AAC5B,UAAM,QAAQ,KAAK,CAAC,QAAQ,IAAI,MAAM,KAAK,QAAQ,IAAI,MAAM,EAAE,CAAC;AAChE,SAAK,QAAQ;AAAA,EACf;AACA,SAAO;AACT;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG,iBAAiB,OAAO,GAAG;AAC5C,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,OAAO,EAAE,iBAAiB,KAAK;AACrC,SAAO,OAAO,UAAU,QAAQ,QAAQ,IAAI;AAC9C;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,QAAQ,WAAW;AAChC,SAAO,OAAO,UAAU,WAAW,MAAM,mDAAmD,OAAO,OAAO;AAC1G,MAAI,qBAAqB,OAAO,MAAM,OAAO,MAAM,SAAS;AAC5D,QAAM,QAAQ,OAAO,OAAO;AAC5B,MAAI;AACJ,MAAI,aAAa,QAAQ,YAAY,oBAAoB;AACvD,UAAM,QAAQ,OAAO,MAAM,IAAI,CAAC,MAAM,CAAC;AACvC,UAAMA,QAAO,OAAO,MAAM,IAAI,CAAC,MAAM,CAAC;AACtC,IAAAA,MAAK,OAAO,MAAM,SAAS,KAAK;AAChC,oBAAgB,MAAM,QAAQ,OAAOA,KAAI;AACzC,yBAAqB;AAAA,EACvB,WAAW,aAAa,QAAQ,YAAY,oBAAoB;AAC9D,UAAM,aAAa,OAAO,MAAM,IAAI,CAAC,MAAM,CAAC;AAC5C,eAAW,OAAO,MAAM,SAAS,KAAK,YAAY;AAClD,oBAAgB,OAAO,CAAC,QAAQ,MAAM,UAAU,CAAC,GAAG,OAAO,MAAM,SAAS,CAAC;AAC3E,yBAAqB;AAAA,EACvB,OAAO;AACL,oBAAgB;AAAA,EAClB;AACA,QAAM,aAAa,UAAU,aAAa;AAC1C,QAAM,eAAe,QAAQ,QAAQ,eAAe,UAAU,GAAG,CAAC,OAAO,kBAAkB,CAAC;AAC5F,QAAM,MAAM,IAAI,YAAY;AAC5B,QAAMwB,QAAO,KAAK,MAAM,qBAAqB,CAAC,IAAI;AAClD,QAAM,aAAa,KAAK,GAAG;AAC3B,QAAM,aAAa,KAAK,GAAG;AAC3B,QAAM,uBAAuB,MAAM,YAAY,CAACA,OAAM,qBAAqBA,KAAI,GAAG,WAAW,MAAM,SAAS,CAAC;AAC7G,QAAM,uBAAuB,MAAM,YAAY,CAACA,OAAM,qBAAqBA,KAAI,GAAG,WAAW,MAAM,SAAS,CAAC;AAC7G,QAAM,cAAc,cAAc,MAAM,MAAM;AAC9C,cAAY,cAAc,MAAM,SAAS,KAAKA;AAC9C,SAAO,QAAQ,QAAQ,qBAAqB,IAAI,qBAAqB,EAAE,GAAG,WAAW;AACvF;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,mBAAmB,GAAG,GAAG;AAChC,MAAI,KAAK,gBAAgB,GAAG,KAAK,mBAAmB;AACpD,MAAI,KAAK,gBAAgB,GAAG,KAAK,mBAAmB;AACpD,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,QAAM,QAAQ,CAAC;AACf,SAAO,OAAO,UAAU,mBAAmB,QAAQ,KAAK;AAC1D;AACA,IAAI,oBAAoB,GAAG,EAAE,mBAAmB,CAAC;AAGjD,SAAS,SAAS,GAAG,MAAM;AACzB,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AACjE,SAAO,QAAQ,IAAI,aAAa,GAAG,OAAO,IAAI,EAAE,QAAQ;AAC1D;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,OAAO,SAAS,OAAO,GAAG;AACjC,QAAM,WAAW,qBAAqB,SAAS,WAAW,SAAS,mBAAmB;AACtF,SAAO,SAAS,UAAU,GAAG,MAAM,sCAAsC;AACzE,MAAI,SAAS,SAAS,GAAG;AACvB,WAAO,QAAQ,SAAS,GAAG,MAAM,MAAM,oCAAoC;AAAA,EAC7E;AACA,QAAM,SAAS;AACf,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAGD,SAAQ,GAAG;AAC3B,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,OAAAA,OAAM;AACtB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,cAAc,GAAG,OAAO,KAAKV,UAAS,YAAY,GAAG,UAAU,GAAG,eAAe,GAAG,cAAc,GAAG,iBAAiB,GAAG;AAChI,QAAM,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,mBAAmB;AACtE,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ;AAAA,IACZ;AAAA,IACA;AAAA,IACA,SAAAA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,SAAO,OAAO,UAAU,cAAc,QAAQ,KAAK;AACrD;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,SAAS,QAAQ,OAAO;AAC/B,gBAAc,MAAM;AACpB,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM,oDAAoD;AAAA,EACtE;AACA,QAAM,QAAQ;AACd,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,gEAAgE;AAAA,EAClF;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,8EAA8E;AAAA,EAChG;AACA,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,gDAAgD;AAAA,EAClE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,oEAAoE;AAAA,EACtF;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,yEAAyE;AAAA,EAC3F;AACA,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,gDAAgD;AAAA,EAClE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,sEAAsE;AAAA,EACxF;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,yEAAyE;AAAA,EAC3F;AACA,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,wEAAwE;AAAA,EAC1F;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,yEAAyE;AAAA,EAC3F;AACA,UAAQ,SAAS;AACjB,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,MAAM,GAAG,IAAI,GAAG,SAAS,MAAM;AACtC,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,IAAI,MAAM,oDAAoD;AAAA,EACtE;AACA,QAAM,UAAU,GAAG,MAAM,GAAG,MAAM,SAAS;AAC3C,MAAI,IAAI,GAAG;AACT,UAAM,IAAI,MAAM,6CAA6C,GAAG;AAAA,EAClE;AACA,MAAI,IAAI,SAAS;AACf,UAAM,IAAI,MAAM,uDAAuD,oBAAoB,GAAG;AAAA,EAChG;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,GAAG,OAAO;AAC1B,QAAM,CAAC,QAAQ,OAAO,IAAI,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC9D,SAAO,EAAE,QAAQ,QAAQ;AAC3B;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,iBAAiB,OAAO,QAAQ,GAAG,SAAS,GAAG,OAAO,MAAM;AACnE,MAAI,SAAS,QAAQ,UAAU,QAAQ;AACrC,UAAM,IAAI,MAAM,mCAAmC;AAAA,EACrD;AACA,QAAM,YAAY,IAAI,YAAY,OAAO,QAAQ,OAAO,MAAM,IAAI;AAClE,QAAM,MAAM,OAAO,OAAO,KAAK;AAC/B,WAAS,KAAK,GAAG,KAAK,IAAI,OAAO,QAAQ,MAAM;AAC7C,QAAI,OAAO,MAAM,UAAU,UAAU;AAAA,EACvC;AACA,SAAO,IAAI,SAAS;AACtB;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,SAAS,QAAQ,GAAG,OAAO,GAAG;AAC5B,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU,mBAAmB;AAChE,SAAO,GAAG,OAAO,GAAG,MAAM,sCAAsC;AAChE,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,QAAM,CAAC,QAAQ,OAAO,IAAI,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAChE,SAAO,EAAE,QAAQ,QAAQ;AAC3B;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,oBAAoB,GAAG,YAAY,aAAa;AACvD,QAAM,KAAK,gBAAgB,GAAG,KAAK,oBAAoB;AACvD,QAAM,cAAc,gBAAgB,YAAY,cAAc,sBAAsB,OAAO;AAC3F,SAAO,MAAM,WAAW,GAAG,MAAM,kCAAkC;AACnE,QAAM,SAAS,EAAE,GAAG,IAAI,YAAY,YAAY;AAChD,QAAM,QAAQ,EAAE,YAAY;AAC5B,SAAO,OAAO,UAAU,oBAAoB,QAAQ,KAAK;AAC3D;AACA,IAAI,qBAAqB,GAAG,EAAE,oBAAoB,CAAC;AAGnD,SAAS,SAAS,GAAG,OAAO,GAAG;AAC7B,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AACjE,SAAO,QAAQ,CAAC,GAAG,MAAM,UAAU,OAAO,GAAG,MAAM,QAAQ,MAAM,UAAU,oBAAoB,GAAG,MAAM,WAAW,GAAG,MAAM,SAAS;AACrI,QAAM,SAAS,EAAE,OAAO,GAAG;AAC3B,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,gBAAgB,QAAQ;AAC1C,SAAO,aAAa,gBAAgB,QAAQ,OAAO;AACrD;AAGA,SAAS,SAAS,cAAc,YAAY,MAAM,MAAM,OAAO;AAC7D,SAAO,OAAO,aAAa,cAAc,WAAW,MAAM,KAAK;AACjE;AAGA,SAAS,UAAU,WAAW,UAAU;AACtC,QAAM,UAAU,CAAC;AACjB,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,QAAI,SAAS,KAAK;AAChB,cAAQ,KAAK,EAAE;AAAA,IACjB;AAAA,EACF;AACA,QAAM,WAAW,OAAO,WAAW,OAAO;AAC1C,QAAM,MAAM,OAAO,CAAC,QAAQ,QAAQ,UAAU,MAAM,GAAG,OAAO;AAC9D,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,UAAM,MAAM,SAAS,WAAW,QAAQ,GAAG;AAC3C,UAAM,SAAS,KAAK,UAAU;AAC9B,QAAI,OAAO,IAAI,KAAK,MAAM;AAAA,EAC5B;AACA,SAAO,IAAI,SAAS;AACtB;AAGA,eAAe,YAAY,WAAW;AACpC,QAAM,aAAa,gBAAgB,WAAW,aAAa,cAAc,MAAM;AAC/E,QAAM,OAAO,MAAM,WAAW,KAAK;AACnC,QAAM,MAAM,UAAU,WAAW,OAAO,IAAI;AAC5C,MAAI,cAAc,YAAY;AAC5B,eAAW,QAAQ;AAAA,EACrB;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAGjB,eAAe,kBAAkB,SAASR,OAAM,MAAM;AACpD,QAAM,UAAU,gBAAgB,SAAS,UAAU,UAAU;AAC7D,QAAM,QAAQ,gBAAgBA,OAAM,QAAQ,YAAY,MAAM;AAC9D,QAAM,WAAW,QAAQ,OAAO,IAAI;AACpC,QAAM,UAAU,MAAM;AACtB,QAAM,cAAc,QAAQ;AAC5B,SAAO,UAAU,GAAG,MAAM,uBAAuB;AACjD,oBAAkB,YAAY,MAAM,UAAU,WAAW,OAAO,GAAG,MAAM,OAAO,mEAAmE;AACnJ,MAAI,cAAc;AAClB,WAAS,KAAK,UAAU,KAAK,WAAW,SAAS,MAAM;AACrD,mBAAe,YAAY;AAAA,EAC7B;AACA,QAAM,oBAAoB,YAAY,MAAM,GAAG,QAAQ,EAAE,OAAO,CAAC,WAAW,GAAG,YAAY,MAAM,WAAW,OAAO,CAAC;AACpH,QAAM,iBAAiB,QAAQ,SAAS,iBAAiB;AACzD,QAAM,eAAe,QAAQ,OAAO,CAAC,EAAE,CAAC;AACxC,QAAM,oBAAoB,MAAM,WAAW,YAAY;AACvD,QAAM,UAAU,QAAQ,mBAAmB,CAAC,CAAC,CAAC;AAC9C,QAAM,MAAM,OAAO,gBAAgB,SAAS,QAAQ;AACpD,MAAI,YAAY,SAAS;AACvB,YAAQ,QAAQ;AAAA,EAClB;AACA,MAAIA,UAAS,OAAO;AAClB,UAAM,QAAQ;AAAA,EAChB;AACA,UAAQ,QAAQ;AAChB,iBAAe,QAAQ;AACvB,eAAa,QAAQ;AACrB,oBAAkB,QAAQ;AAC1B,SAAO;AACT;AACA,IAAI,mBAAmB;AAGvB,SAAS,eAAe,GAAG,GAAG,OAAO,OAAO,aAAa,MAAM;AAC7D,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,SAAS,gBAAgB,OAAO,SAAS,eAAe;AAC9D,mBAAiB,IAAI,EAAE;AACvB,SAAO,YAAY,GAAG,OAAO,GAAG,KAAK,GAAG,MAAM,2BAA2B;AACzE,QAAM,MAAM,OAAO,CAAC;AACpB,QAAM,gBAAgB,IAAI,KAAK,MAAM;AACrC,MAAI,SAAS,IAAI,IAAI,IAAI,EAAE,GAAG,aAAa;AAC3C,MAAI,YAAY;AACd,WAAO,SAAS,MAAM,MAAM,gDAAgD;AAC5E,UAAM,QAAQ,gBAAgB,OAAO,QAAQ,eAAe;AAC5D,aAAS,IAAI,QAAQ,IAAI,KAAK,IAAI,QAAQ,KAAK,CAAC,CAAC;AAAA,EACnD;AACA,SAAO,KAAK,IAAI,MAAM;AACxB;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,WAAW,SAAS,SAAS,OAAO;AAC3C,QAAM,WAAW,gBAAgB,SAAS,WAAW,aAAa,OAAO;AACzE,QAAM,WAAW,gBAAgB,SAAS,WAAW,WAAW;AAChE,gBAAc,UAAU,UAAU,KAAK;AACvC,QAAM,SAAS,EAAE,SAAS,UAAU,SAAS,SAAS;AACtD,QAAM,QAAQ,EAAE,MAAM;AACtB,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,eAAe,eAAe,cAAc,aAAa,eAAe;AAC/E,MAAI,cAAc,UAAU,SAAS;AACnC,UAAM,IAAI,MAAM,8EAA8E,cAAc,QAAQ;AAAA,EACtH;AACA,MAAI,cAAc,OAAO,GAAG;AAC1B,UAAM,IAAI,MAAM,sEAAsE,cAAc,QAAQ;AAAA,EAC9G;AACA,QAAM,WAAW,cAAc,OAAO,IAAI,cAAc,MAAM,KAAK;AACnE,QAAM,UAAU,cAAc,OAAO,IAAI,cAAc,MAAM,KAAK;AAClE,MAAI,YAAY,WAAW,SAAS;AAClC,UAAM,IAAI,MAAM,kDAAkD,YAAY,sBAAsB,UAAU;AAAA,EAChH;AACA,QAAM,YAAY,aAAa;AAC/B,MAAI,EAAE,aAAa,SAAS,KAAK,aAAa,SAAS,KAAK,cAAc,WAAW;AACnF,UAAM,IAAI,MAAM,oCAAoC,aAAa,2BAA2B,WAAW;AAAA,EACzG;AACA,MAAI,aAAa,UAAU,cAAc,OAAO;AAC9C,UAAM,IAAI,MAAM,mDAAmD;AAAA,EACrE;AACF;AAGA,SAAS,eAAe,eAAe,cAAc,aAAa,eAAe,GAAG;AAClF,QAAM,iBAAiB,gBAAgB,eAAe,iBAAiB,iBAAiB,OAAO;AAC/F,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,iBAAiB,mBAAmB;AACxG,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,iBAAiB,cAAc,KAAK;AACxG,iBAAe,gBAAgB,eAAe,aAAa,aAAa;AACxE,QAAM,SAAS;AAAA,IACb,eAAe;AAAA,IACf,cAAc;AAAA,IACd,cAAc;AAAA,EAChB;AACA,QAAM,QAAQ,EAAE,YAAY;AAC5B,SAAO,OAAO,UAAU,eAAe,QAAQ,KAAK;AACtD;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,UAAU,GAAG,SAAS;AAC7B,QAAM,WAAW,gBAAgB,SAAS,WAAW,YAAY,OAAO;AACxE,QAAM,KAAK,gBAAgB,GAAG,KAAK,YAAY,mBAAmB;AAClE,QAAM,SAAS,EAAE,QAAQ,IAAI,SAAS,SAAS;AAC/C,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,cAAc,GAAG,YAAY;AACpC,MAAI,cAAc,MAAM;AACtB,WAAO,EAAE,MAAM,MAAM;AAAA,EACvB;AACA,MAAI,YAAY,EAAE,OAAO,UAAU,GAAG;AACpC,WAAO;AAAA,EACT;AACA,MAAI,EAAE,MAAM,WAAW,WAAW,QAAQ;AACxC,UAAM,eAAe,CAAC;AACtB,aAAS,KAAK,GAAG,KAAK,EAAE,MAAM,QAAQ,MAAM;AAC1C,UAAI,WAAW,OAAO,QAAQ,EAAE,MAAM,OAAO,MAAM;AACjD,qBAAa,KAAK,EAAE,MAAM,GAAG;AAAA,MAC/B,OAAO;AACL,qBAAa,KAAK,WAAW,GAAG;AAAA,MAClC;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACA,SAAO;AACT;AAGA,SAAS,SAAS,GAAG,MAAM,YAAY,MAAM;AAC3C,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,UAAU,WAAW,MAAM,gFAAgF,GAAG,uBAAuB;AAC/I,SAAO,QAAQ,KAAK,OAAO,GAAG,MAAM,qDAAqD,OAAO;AAChG,MAAI,SAAS,GAAG;AACd,WAAO,aAAa,SAAS,GAAG,MAAM,IAAI;AAAA,EAC5C;AACA,QAAM,cAAc,cAAc,IAAI,UAAU;AAChD,QAAM,WAAW,IAAI;AACrB,QAAM,aAAa,IAAI,MAAM,KAAK,cAAc,aAAa,GAAG,GAAG,WAAW,IAAI,GAAG,QAAQ,CAAC,GAAG,QAAQ;AACzG,SAAO,IAAI,IAAI,UAAU;AAC3B;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,oBAAoB,OAAO;AAClC,SAAO,KAAK,MAAM,KAAK,IAAI,GAAG,KAAK,KAAK,KAAK,IAAI,KAAK,IAAI,KAAK,IAAI,CAAC,CAAC,CAAC,CAAC;AACzE;AACA,SAAS,aAAa,cAAc,GAAG,GAAG;AACxC,QAAM,OAAO,IAAI,eAAe;AAChC,QAAM,YAAY,IAAI,aAAa,YAAY;AAC/C,WAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAM,SAAS,IAAI,KAAK,KAAK,MAAM,eAAe,OAAO;AACzD,cAAU,MAAM,IAAI,IAAI,KAAK,IAAI,MAAM;AAAA,EACzC;AACA,SAAO,SAAS,WAAW,SAAS;AACtC;AAGA,eAAe,aAAa,aAAa,SAAS,IAAI,GAAG;AACvD,QAAM,eAAe,gBAAgB,aAAa,eAAe,QAAQ;AACzE,QAAM,WAAW,gBAAgB,SAAS,WAAW,QAAQ;AAC7D,SAAO,aAAa,OAAO,GAAG,MAAM,uEAAuE,aAAa,MAAM;AAC9H,SAAO,aAAa,OAAO,MAAM,SAAS,MAAM,MAAM,mFAAmF,aAAa,yBAAyB,SAAS,MAAM;AAC9L,oBAAkB,aAAa,MAAM,MAAM,GAAG,aAAa,MAAM,SAAS,CAAC,GAAG,SAAS,OAAO,yFAAyF;AACvL,QAAM,UAAU,aAAa,MAAM,aAAa,MAAM,SAAS;AAC/D,SAAO,IAAI,KAAK,KAAK,SAAS,MAAM,4EAA4E,qBAAqB,GAAG;AACxI,QAAM,kBAAkB,MAAM,aAAa,KAAK;AAChD,QAAM,cAAc,MAAM,SAAS,KAAK;AACxC,QAAM,CAAC,OAAOL,KAAI,IAAI,CAAC,gBAAgB,SAAS,SAAS,OAAO;AAChE,QAAM,aAAa,uBAAuB,QAAQ,KAAK;AACvD,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,SAAS,IAAIA;AACnB,UAAM,OAAO,gBAAgB,SAAS,QAAQ,SAASA,KAAI;AAC3D,UAAM,YAAY,CAAC;AACnB,aAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,gBAAU,KAAK,EAAE,OAAO,KAAK,KAAK,OAAO,GAAG,CAAC;AAAA,IAC/C;AACA,cAAU,KAAK,CAAC,GAAG,OAAO,GAAG,QAAQ,EAAE,KAAK;AAC5C,eAAW,KAAK;AAChB,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,UAAI,UAAU,IAAI,UAAU,YAAY,IAAI;AAC1C,mBAAW,KAAK;AAChB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,MAAI,gBAAgB,cAAc;AAChC,iBAAa,QAAQ;AAAA,EACvB;AACA,MAAI,YAAY,UAAU;AACxB,aAAS,QAAQ;AAAA,EACnB;AACA,SAAO,OAAO,YAAY,SAAS,OAAO,MAAM;AAClD;AACA,IAAI,cAAc;AAGlB,IAAI,oBAAoB,CAAC;AACzBH,UAAS,mBAAmB;AAAA,EAC1B,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,QAAQ,MAAM;AAChB,CAAC;AAGD,SAAS,sBAAsB,GAAG,IAAI,aAAagB,UAAS,MAAM,aAAa,QAAQ,iBAAiB;AACtG,MAAI,MAAM;AACV,MAAI,EAAE,SAAS,GAAG;AAChB,UAAM,QAAQ,GAAG,CAAC,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EAC1D;AACA,MAAI,OAAO;AACX,MAAI,KAAK,SAAS,GAAG;AACnB,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC/D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,iEAAiE,IAAI,QAAQ;AAC1G,SAAO,KAAK,SAAS,GAAG,MAAM,8DAA8D,KAAK,QAAQ;AACzG,SAAO,YAAY,WAAW,GAAG,MAAM,mEAAmE,cAAc;AACxH,QAAM,UAAU,eAAe,SAAS,IAAI,MAAM,KAAK,IAAI,MAAM;AACjE,QAAM,WAAW,eAAe,SAAS,KAAK,MAAM,KAAK,KAAK,MAAM;AACpE,SAAO,YAAY,YAAY,IAAI,MAAM,4CAA4C,8CAA8C,YAAY,KAAK;AACpJ,SAAO,aAAa,YAAY,IAAI,MAAM,0CAA0C,iDAAiD,YAAY,MAAM;AACvJ,4BAA0B,mBAAmB,MAAM,eAAe;AAClE,QAAM,SAAS,EAAE,GAAG,KAAK,IAAI,KAAK;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,YAAY;AAC7E,SAAO,OAAO,UAAU,sBAAsB,QAAQ,KAAK;AAC7D;AACA,IAAI,uBAAuB,GAAG,EAAE,sBAAsB,CAAC;AAGvD,SAAS,qBAAqB,IAAI,GAAG,aAAa;AAChD,MAAI,eAAe,QAAQ,gBAAgB,UAAU;AACnD,WAAO;AAAA,EACT;AACA,MAAI,gBAAgB,QAAQ;AAC1B,WAAO,IAAI,IAAI,KAAK,CAAC,CAAC;AAAA,EACxB;AACA,QAAM,IAAI,MAAM,gDAAgD,cAAc;AAChF;AACA,SAAS,qBAAqB,MAAM,cAAc;AAChD,MAAI,MAAM;AACV,QAAM,aAAa,iBAAiB,KAAK,OAAO,aAAa,KAAK;AAClE,MAAI,WAAW,SAAS,GAAG;AACzB,UAAM,KAAK,KAAK,UAAU;AAAA,EAC5B;AACA,SAAO,QAAQ,KAAK,KAAK,KAAK;AAChC;AACA,SAAS,gBAAgB,GAAG,aAAa,wBAAwB,gBAAgB;AAC/E,MAAI,gBAAgB,UAAU;AAC5B,WAAO;AAAA,EACT,WAAW,gBAAgB,QAAQ;AACjC,WAAO,KAAK,CAAC;AAAA,EACf,WAAW,gBAAgB,OAAO;AAChC,WAAO,IAAI,CAAC;AAAA,EACd,WAAW,gBAAgB,SAAS;AAClC,WAAO,MAAM,CAAC;AAAA,EAChB,WAAW,gBAAgB,SAAS;AAClC,WAAO,MAAM,GAAG,sBAAsB;AAAA,EACxC,WAAW,gBAAgB,aAAa;AACtC,WAAO,UAAU,GAAG,cAAc;AAAA,EACpC,WAAW,gBAAgB,WAAW;AACpC,WAAO,QAAQ,CAAC;AAAA,EAClB;AACA,QAAM,IAAI,MAAM,4BAA4B,cAAc;AAC5D;AACA,IAAI,aAAa,CAAC,eAAe,gBAAgB;AAC/C,QAAM,eAAe,gBAAgB;AACrC,SAAO,CAAC,gBAAgB,gBAAgB;AAC1C;AAGA,SAAS,aAAa,EAAE,GAAG,QAAQ,SAAAA,UAAS,KAAK,MAAM,aAAa,QAAQ,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB,MAAM,YAAY,cAAc,UAAU,wBAAwB,eAAe,GAAG;AACnM,gBAAc,eAAe;AAC7B,MAAI,WAAW,OAAO,MAAM,eAAe,WAAW,MAAM,OAAO;AACjE,WAAO,eAAe,QAAQ,MAAM,4CAA4C,uHAAuH;AACvM,QAAI,SAAS,OAAO,GAAG,QAAQA,UAAS,MAAM,YAAY,WAAW,eAAe;AACpF,QAAI,QAAQ,MAAM;AAChB,eAAS,KAAK,QAAQ,IAAI;AAAA,IAC5B;AACA,WAAO,gBAAgB,QAAQ,aAAa,wBAAwB,cAAc;AAAA,EACpF;AACA,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU,SAAS;AACtD,QAAM,UAAU,gBAAgB,QAAQ,UAAU,UAAU,SAAS;AACrE,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,6DAA6D,IAAI,OAAO;AACrG,SAAO,QAAQ,SAAS,GAAG,MAAM,8DAA8D,QAAQ,OAAO;AAC9G,4BAA0B,gBAAgB,MAAM,eAAe;AAC/D,QAAM,gBAAgB,eAAe,SAAS,IAAI,MAAM,KAAK,IAAI,MAAM;AACvE,SAAO,QAAQ,MAAM,OAAO,eAAe,MAAM,oCAAoC,oDAAoD,QAAQ,MAAM,KAAK;AAC5J,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,uEAAuEA,2BAA0B,YAAY;AAC9K,QAAM,WAAW,kBAAkB,IAAI,OAAO,QAAQ,OAAOA,UAAS,WAAW,MAAM,eAAe;AACtG,MAAI;AACJ,MAAI,QAAQ,MAAM;AAChB,YAAQ,gBAAgB,MAAM,QAAQ,cAAc;AACpD,KAAC,KAAK,IAAI,eAAe,OAAO,EAAE;AAClC,QAAI,eAAe,QAAQ;AACzB,iCAA2B,SAAS,UAAU,MAAM,KAAK;AAAA,IAC3D,OAAO;AACL,aAAO,MAAM,MAAM,UAAU,GAAG,MAAM,2GAA2G,MAAM,MAAM,SAAS;AACtK,aAAO,MAAM,MAAM,WAAW,KAAK,MAAM,MAAM,OAAO,SAAS,eAAe,MAAM,MAAM,OAAO,GAAG,MAAM,sCAAsC,MAAM,gEAAgE,SAAS,cAAc;AAAA,IAC/O;AAAA,EACF;AACA,MAAI;AACJ,MAAI,0BAA0B,MAAM;AAClC,UAAM,aAAa,uBAAuB;AAC1C,WAAO,WAAW,UAAU,KAAK,WAAW,WAAW,GAAG,MAAM,2HAA2H,WAAW,SAAS;AAC/M,QAAI,WAAW,WAAW,GAAG;AAC3B,aAAO,WAAW,OAAO,KAAK,WAAW,OAAO,SAAS,aAAa,MAAM,oDAAoD,qEAAqE,SAAS,eAAe;AAAA,IAC/N,WAAW,WAAW,WAAW,GAAG;AAClC,UAAI;AACF,mCAA2B,YAAY,SAAS,QAAQ;AAAA,MAC1D,SAAS,IAAP;AACA,cAAM,SAAS,oDAAoD,sEAAsE,SAAS;AAClJ,cAAM,MAAM,MAAM;AAAA,MACpB;AAAA,IACF;AACA,8BAA0B,gBAAgB,wBAAwB,iBAAiB,cAAc;AAAA,EACnG;AACA,QAAM,QAAQ,CAAC,IAAI,UAAU;AAC3B,WAAO,eAAe,QAAQ,MAAM,wDAAwD,kDAAkD;AAC9I,UAAM,CAAC,UAAU,MAAM,GAAG,MAAM,IAAI;AACpC,UAAM,eAAe,qBAAqB,IAAI,GAAG,WAAW;AAC5D,WAAO,kBAAkB,SAAS,GAAG,MAAM,uHAAuH,YAAY;AAC9K,UAAM,OAAO,oBAAoB,KAAK,OAAO,cAAc,UAAUA,UAAS,IAAI;AAClF,UAAM,YAAY,qBAAqB,MAAM,cAAc,SAAS,OAAOA,UAAS,IAAI;AACxF,UAAM,MAAM,CAAC,MAAM,SAAS;AAC5B,QAAI,UAAU,MAAM;AAClB,YAAM,UAAU,qBAAqB,QAAQ,YAAY;AACzD,UAAI,KAAK,OAAO;AAAA,IAClB;AACA,WAAO;AAAA,EACT;AACA,QAAM,SAAS;AAAA,IACb,GAAG;AAAA,IACH,QAAQ;AAAA,IACR,MAAM;AAAA,IACN,wBAAwB;AAAA,EAC1B;AACA,QAAM,QAAQ;AAAA,IACZ,SAAAA;AAAA,IACA,KAAK;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,IACZ;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,WAAW,CAAC,MAAM,SAAS,SAAS;AACnD,UAAI,MAAM,OAAO,UAAU,aAAa,QAAQ,KAAK;AACrD,WAAK,CAAC,SAAS,MAAM,GAAG,CAAC;AACzB,UAAI,cAAc;AAChB,cAAM,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,MAC/D;AACA,aAAO,EAAE,OAAO,KAAK,UAAU,MAAM;AAAA,IACvC,CAAC;AACD,WAAO,SAAS,KAAK,OAAO;AAAA,EAC9B,OAAO;AACL,UAAM,mBAAmB,WAAW,CAAC,MAAM,SAAS,OAAO,SAAS;AAClE,UAAI,MAAM,OAAO,UAAU,aAAa,QAAQ,KAAK;AACrD,WAAK,CAAC,SAAS,MAAM,KAAK,KAAK,CAAC;AAChC,UAAI,cAAc;AAChB,cAAM,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,MAC/D;AACA,aAAO,EAAE,OAAO,KAAK,UAAU,MAAM;AAAA,IACvC,CAAC;AACD,WAAO,iBAAiB,KAAK,SAAS,KAAK;AAAA,EAC7C;AACF;AACA,IAAI,UAAU,GAAG,EAAE,aAAa,CAAC;AAGjC,SAAS,qCAAqC,GAAG,IAAI,aAAaA,UAAS,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB;AACpH,MAAI,MAAM;AACV,MAAI,EAAE,SAAS,GAAG;AAChB,UAAM,QAAQ,GAAG,CAAC,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EAC1D;AACA,MAAI,OAAO;AACX,MAAI,KAAK,SAAS,GAAG;AACnB,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC/D;AACA,QAAM,SAAS,EAAE,GAAG,KAAK,IAAI,KAAK;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW,YAAY;AAC5E,SAAO,OAAO,UAAU,qCAAqC,QAAQ,KAAK;AAC5E;AACA,IAAI,sCAAsC,GAAG,EAAE,qCAAqC,CAAC;AAGrF,SAAS,oCAAoC,QAAQ,IAAI,QAAQA,UAAS,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB;AACnH,MAAI,OAAO;AACX,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC/D;AACA,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW,YAAY,OAAO;AACnF,QAAM,MAAM,OAAO,UAAU,oCAAoC,QAAQ,KAAK;AAC9E,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,qCAAqC,GAAG,EAAE,oCAAoC,CAAC;AAGnF,SAAS,sBAAsB,EAAE,GAAG,QAAQ,SAAAA,UAAS,KAAK,MAAM,aAAa,QAAQ,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB,MAAM,YAAY,cAAc,UAAU,wBAAwB,eAAe,GAAG;AAC5M,MAAI,WAAW,OAAO,MAAM,eAAe,WAAW,MAAM,OAAO;AACjE,QAAI,SAAS,gBAAgB,GAAG,QAAQA,UAAS,MAAM,YAAY,WAAW,eAAe;AAC7F,QAAI,QAAQ,MAAM;AAChB,eAAS,KAAK,QAAQ,IAAI;AAAA,IAC5B;AACA,WAAO,gBAAgB,QAAQ,aAAa,wBAAwB,cAAc;AAAA,EACpF;AACA,QAAM,KAAK,gBAAgB,GAAG,KAAK,mBAAmB,SAAS;AAC/D,QAAM,UAAU,gBAAgB,QAAQ,UAAU,mBAAmB,SAAS;AAC9E,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,sEAAsE,IAAI,OAAO;AAC9G,SAAO,QAAQ,SAAS,GAAG,MAAM,uEAAuE,QAAQ,OAAO;AACvH,SAAO,IAAI,MAAM,OAAO,QAAQ,MAAM,IAAI,MAAM,6DAA6D,IAAI,MAAM,qDAAqD,QAAQ,MAAM,KAAK;AAC/L,MAAI,aAAa,MAAM;AACrB,gBAAY,CAAC,GAAG,CAAC;AAAA,EACnB;AACA,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,sFAAsFA,2BAA0B,YAAY;AAC7L,4BAA0B,yBAAyB,MAAM,eAAe;AACxE,QAAM,WAAW,kBAAkB,IAAI,OAAO,QAAQ,OAAOA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AAC5G,MAAI;AACJ,MAAI,QAAQ,MAAM;AAChB,YAAQ,gBAAgB,MAAM,QAAQ,cAAc;AACpD,KAAC,KAAK,IAAI,eAAe,OAAO,EAAE;AAClC,+BAA2B,SAAS,UAAU,MAAM,KAAK;AAAA,EAC3D;AACA,MAAI;AACJ,MAAI,0BAA0B,MAAM;AAClC,8BAA0B,gBAAgB,wBAAwB,iBAAiB,uBAAuB;AAAA,EAC5G;AACA,QAAM,QAAQ,CAAC,IAAI,UAAU;AAC3B,WAAO,kBAAkB,SAAS,GAAG,MAAM,mHAAmH,YAAY;AAC1K,UAAM,CAAC,UAAU,MAAM,GAAG,KAAK,IAAI;AACnC,UAAM,eAAe,qBAAqB,IAAI,GAAG,WAAW;AAC5D,UAAM,OAAO,mCAAmC,KAAK,OAAO,cAAc,UAAUA,UAAS,MAAM,WAAW,eAAe;AAC7H,UAAM,YAAY,oCAAoC,MAAM,cAAc,SAAS,OAAOA,UAAS,MAAM,WAAW,eAAe;AACnI,QAAI,SAAS,MAAM;AACjB,YAAM,UAAU,qBAAqB,OAAO,YAAY;AACxD,aAAO,CAAC,MAAM,WAAW,OAAO;AAAA,IAClC;AACA,WAAO,CAAC,MAAM,SAAS;AAAA,EACzB;AACA,QAAM,SAAS;AAAA,IACb,GAAG;AAAA,IACH,QAAQ;AAAA,IACR,MAAM;AAAA,IACN,wBAAwB;AAAA,EAC1B;AACA,QAAM,QAAQ;AAAA,IACZ,SAAAA;AAAA,IACA,KAAK;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,IACZ;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,WAAW,CAAC,MAAM,SAAS,SAAS;AACnD,UAAI,MAAM,OAAO,UAAU,sBAAsB,QAAQ,KAAK;AAC9D,WAAK,CAAC,SAAS,MAAM,GAAG,CAAC;AACzB,UAAI,cAAc;AAChB,cAAM,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,MAC/D;AACA,aAAO,EAAE,OAAO,KAAK,UAAU,MAAM;AAAA,IACvC,CAAC;AACD,WAAO,SAAS,KAAK,OAAO;AAAA,EAC9B,OAAO;AACL,UAAM,mBAAmB,WAAW,CAAC,MAAM,SAAS,OAAO,SAAS;AAClE,UAAI,MAAM,OAAO,UAAU,sBAAsB,QAAQ,KAAK;AAC9D,WAAK,CAAC,SAAS,MAAM,KAAK,KAAK,CAAC;AAChC,UAAI,cAAc;AAChB,cAAM,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,MAC/D;AACA,aAAO,EAAE,OAAO,KAAK,UAAU,MAAM;AAAA,IACvC,CAAC;AACD,WAAO,iBAAiB,KAAK,SAAS,KAAK;AAAA,EAC7C;AACF;AACA,IAAI,mBAAmB,GAAG,EAAE,sBAAsB,CAAC;AAGnD,SAAS,aAAa,EAAE,GAAG,GAAG,aAAa,OAAO,aAAa,OAAO,MAAM,YAAY,cAAc,UAAU,wBAAwB,iBAAiB,IAAI,GAAG;AAC9J,MAAI,WAAW,OAAO,MAAM,eAAe,WAAW,MAAM,OAAO;AACjE,QAAI,SAAS,OAAO,GAAG,GAAG,YAAY,UAAU;AAChD,QAAI,QAAQ,MAAM;AAChB,eAAS,KAAK,QAAQ,IAAI;AAAA,IAC5B;AACA,WAAO,gBAAgB,QAAQ,aAAa,wBAAwB,cAAc;AAAA,EACpF;AACA,MAAI,KAAK,gBAAgB,GAAG,KAAK,cAAc;AAC/C,MAAI,KAAK,gBAAgB,GAAG,KAAK,cAAc;AAC/C,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,cAAc,aAAa,GAAG,MAAM,GAAG,OAAO,KAAK,GAAG,MAAM,GAAG,OAAO;AAC5E,QAAM,cAAc,aAAa,GAAG,MAAM,GAAG,OAAO,KAAK,GAAG,MAAM,GAAG,OAAO;AAC5E,QAAM,cAAc,aAAa,GAAG,MAAM,GAAG,OAAO,KAAK,GAAG,MAAM,GAAG,OAAO;AAC5E,QAAM,cAAc,aAAa,GAAG,MAAM,GAAG,OAAO,KAAK,GAAG,MAAM,GAAG,OAAO;AAC5E,QAAM,aAAa,GAAG,MAAM,MAAM,GAAG,EAAE;AACvC,QAAM,aAAa,GAAG,MAAM,MAAM,GAAG,EAAE;AACvC,QAAM,YAAY,cAAc,UAAU;AAC1C,QAAM,YAAY,cAAc,UAAU;AAC1C,SAAO,gBAAgB,aAAa,MAAM,wCAAwC,qBAAqB,uCAAuC,GAAG,aAAa,GAAG,wBAAwB,6BAA6B,wBAAwB;AAC9O,QAAM,oBAAoB,2BAA2B,GAAG,MAAM,MAAM,GAAG,EAAE,GAAG,GAAG,MAAM,MAAM,GAAG,EAAE,CAAC;AACjG,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,QAAM,MAAM,aAAa,QAAQ,IAAI,CAAC,WAAW,aAAa,WAAW,CAAC,IAAI,QAAQ,IAAI,CAAC,WAAW,aAAa,WAAW,CAAC;AAC/H,QAAM,MAAM,aAAa,QAAQ,IAAI,CAAC,WAAW,aAAa,WAAW,CAAC,IAAI,QAAQ,IAAI,CAAC,WAAW,aAAa,WAAW,CAAC;AAC/H,MAAI;AACJ,MAAI,QAAQ,MAAM;AAChB,YAAQ,gBAAgB,MAAM,QAAQ,cAAc;AACpD,KAAC,KAAK,IAAI,eAAe,OAAO,EAAE;AAClC,+BAA2B,UAAU,MAAM,KAAK;AAAA,EAClD;AACA,MAAI;AACJ,MAAI,0BAA0B,MAAM;AAClC,8BAA0B,gBAAgB,wBAAwB,iBAAiB,cAAc;AAAA,EACnG;AACA,QAAM,QAAQ,CAAC,IAAI,UAAU;AAC3B,UAAM,CAAC,MAAM,MAAM,GAAG,MAAM,IAAI;AAChC,UAAM,eAAe,qBAAqB,QAAQ,IAAI,EAAE,KAAK,GAAG,GAAG,WAAW;AAC9E,QAAI;AACJ,QAAI;AACJ,QAAI,CAAC,cAAc,CAAC,YAAY;AAC9B,aAAO,OAAO,cAAc,MAAM,OAAO,IAAI;AAC7C,aAAO,OAAO,MAAM,cAAc,MAAM,KAAK;AAAA,IAC/C,WAAW,CAAC,cAAc,YAAY;AACpC,aAAO,OAAO,cAAc,MAAM,OAAO,KAAK;AAC9C,aAAO,OAAO,cAAc,MAAM,MAAM,KAAK;AAAA,IAC/C,WAAW,cAAc,CAAC,YAAY;AACpC,aAAO,OAAO,MAAM,cAAc,OAAO,IAAI;AAC7C,aAAO,OAAO,MAAM,cAAc,OAAO,KAAK;AAAA,IAChD,OAAO;AACL,aAAO,OAAO,MAAM,cAAc,MAAM,IAAI;AAC5C,aAAO,OAAO,cAAc,MAAM,MAAM,IAAI;AAAA,IAC9C;AACA,QAAI,QAAQ,MAAM;AAChB,YAAM,UAAU,qBAAqB,QAAQ,YAAY;AACzD,aAAO,CAAC,MAAM,MAAM,OAAO;AAAA,IAC7B,OAAO;AACL,aAAO,CAAC,MAAM,IAAI;AAAA,IACpB;AAAA,EACF;AACA,QAAM,SAAS;AAAA,IACb,GAAG;AAAA,IACH,GAAG;AAAA,IACH,MAAM;AAAA,IACN,wBAAwB;AAAA,EAC1B;AACA,QAAM,QAAQ,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe;AAChF,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,WAAW,CAAC,MAAM,MAAM,SAAS;AAChD,YAAM,MAAM,OAAO,UAAU,cAAc,QAAQ,KAAK;AACxD,WAAK,CAAC,MAAM,MAAM,GAAG,CAAC;AACtB,aAAO,EAAE,OAAO,QAAQ,KAAK,QAAQ,GAAG,UAAU,MAAM;AAAA,IAC1D,CAAC;AACD,WAAO,SAAS,KAAK,GAAG;AAAA,EAC1B,OAAO;AACL,UAAM,mBAAmB,WAAW,CAAC,MAAM,MAAM,QAAQ,SAAS;AAChE,YAAM,MAAM,OAAO,UAAU,cAAc,QAAQ,KAAK;AACxD,WAAK,CAAC,MAAM,MAAM,KAAK,MAAM,CAAC;AAC9B,aAAO,EAAE,OAAO,QAAQ,KAAK,QAAQ,GAAG,UAAU,MAAM;AAAA,IAC1D,CAAC;AACD,WAAO,iBAAiB,KAAK,KAAK,KAAK;AAAA,EACzC;AACF;AACA,IAAI,UAAU,GAAG,EAAE,aAAa,CAAC;AAGjC,SAAS,eAAe,cAAc;AACpC,SAAO,aAAa,cAAc,MAAM,IAAI;AAC9C;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,YAAY,cAAc;AACjC,SAAO,aAAa,cAAc,KAAK,GAAG;AAC5C;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,OAAO,SAAS,aAAa,WAAW,SAAS,OAAO,WAAW,GAAG;AAC7E,MAAI,QAAQ;AACZ,QAAM,SAAS,CAAC;AAChB,SAAO,QAAQ,eAAe,QAAQ,MAAM;AAC1C,WAAO,KAAK,MAAM,SAAS,OAAO,WAAW,CAAC;AAC9C,aAAS;AAAA,EACX;AACA,MAAI,QAAQ;AACV,WAAO,QAAQ,QAAQ,MAAM;AAC3B,YAAM,SAAS,QAAQ,cAAc,QAAQ;AAC7C,YAAM,OAAO,OAAO;AAAA,QAClB,MAAM,SAAS,OAAO,cAAc,MAAM;AAAA,QAC1C,KAAK,CAAC,MAAM,GAAG,QAAQ;AAAA,MACzB,CAAC;AACD,aAAO,KAAK,IAAI;AAChB,eAAS;AAAA,IACX;AAAA,EACF;AACA,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,SAAS,CAAC,GAAG,CAAC,GAAG,WAAW,CAAC;AAAA,EACtC;AACA,SAAO,QAAQ,OAAO,MAAM,GAAG,CAAC,OAAO,QAAQ,WAAW,CAAC;AAC7D;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,SAAS,aAAa,WAAW,WAAW,WAAW,YAAY;AAChF,MAAI,aAAa,MAAM;AACrB,gBAAY,oBAAoB,WAAW;AAAA,EAC7C;AACA,QAAM,eAAe,MAAM,SAAS,aAAa,SAAS;AAC1D,QAAM,iBAAiB,IAAI,cAAc,SAAS,WAAW,CAAC;AAC9D,SAAO,KAAK,gBAAgB,SAAS;AACvC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,eAAe,QAAQ,OAAO,QAAQ,UAAU,SAAS,YAAY,qBAAqB,GAAG;AACpG,QAAM,SAAS,gBAAgB,QAAQ,SAAS,eAAe;AAC/D,QAAM,SAAS,gBAAgB,OAAO,SAAS,iBAAiB,SAAS;AACzE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,iBAAiB,OAAO;AAC1E,QAAM,WAAW,OAAO,MAAM;AAC9B,SAAO,OAAO,SAAS,GAAG,MAAM,6DAA6D,OAAO,OAAO;AAC3G,SAAO,OAAO,SAAS,KAAK,OAAO,MAAM,OAAO,GAAG,MAAM,oDAAoD,6BAA6B,OAAO,QAAQ;AACzJ,SAAO,QAAQ,SAAS,KAAK,QAAQ,MAAM,OAAO,UAAU,MAAM,qDAAqD,2BAA2B,OAAO,QAAQ;AACjK,SAAO,SAAS,WAAW,GAAG,MAAM,wEAAwE,SAAS,SAAS;AAC9H,SAAO,SAAS,MAAM,KAAK,SAAS,MAAM,GAAG,MAAM,2CAA2C,UAAU;AACxG,SAAO,WAAW,cAAc,WAAW,WAAW,MAAM,+CAA+C,QAAQ;AACnH,QAAM,SAAS,EAAE,OAAO,QAAQ,OAAO,QAAQ,QAAQ,QAAQ;AAC/D,QAAM,QAAQ,EAAE,QAAQ,oBAAoB,SAAS;AACrD,QAAM,MAAM,OAAO,UAAU,eAAe,QAAQ,KAAK;AACzD,SAAO;AACT;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,eAAe,QAAQ;AAC9B,QAAM,SAAS,gBAAgB,QAAQ,SAAS,iBAAiB,SAAS;AAC1E,SAAO,OAAO,SAAS,GAAG,MAAM,6DAA6D,OAAO,OAAO;AAC3G,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,QAAM,MAAM,OAAO,UAAU,eAAe,QAAQ,CAAC,CAAC;AACtD,SAAO;AACT;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,gBAAgB,QAAQ;AAC/B,QAAM,SAAS,gBAAgB,QAAQ,SAAS,gBAAgB;AAChE,QAAM,cAAc,OAAO,OAAO;AAClC,QAAM,WAAW,OAAO,MAAM;AAC9B,SAAO,OAAO,QAAQ,GAAG,MAAM,yEAAyE,OAAO,OAAO;AACtH,SAAO,aAAa,GAAG,MAAM,+FAA+F,WAAW;AACvI,QAAM,OAAO,IAAI,MAAM,OAAO,IAAI;AAClC,OAAK,KAAK,GAAG,GAAG,WAAW;AAC3B,OAAK,eAAe;AACpB,SAAO,KAAK,QAAQ,IAAI;AAC1B;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,kBAAkB,QAAQ,SAAS,YAAY,GAAG,SAAS,KAAK;AACvE,QAAM,SAAS,gBAAgB,QAAQ,SAAS,oBAAoB,SAAS;AAC7E,SAAO,OAAO,SAAS,GAAG,MAAM,gEAAgE,OAAO,OAAO;AAC9G,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,QAAM,QAAQ,EAAE,SAAS,WAAW,OAAO;AAC3C,QAAM,MAAM,OAAO,UAAU,kBAAkB,QAAQ,KAAK;AAC5D,SAAO;AACT;AACA,IAAI,mBAAmB,GAAG,EAAE,kBAAkB,CAAC;AAG/C,SAAS,sBAAsB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,cAAc;AACvG,MAAI,gBAAgB,MAAM;AACxB,mBAAe;AAAA,EACjB;AACA,MAAI,kBAAkB,MAAM;AAC1B,qBAAiB,OAAO;AAAA,EAC1B;AACA,MAAI,gBAAgB,MAAM;AACxB,mBAAe;AAAA,EACjB;AACA,QAAM,WAAW,MAAM,MAAM;AAC7B,kBAAgB,KAAK,IAAI,eAAe,QAAQ;AAChD,SAAO,KAAK,gBAAgB,gBAAgB,GAAG,MAAM,4CAA4C,eAAe;AAChH,SAAO,MAAM,SAAS,GAAG,MAAM,+CAA+C,MAAM,OAAO;AAC3F,SAAO,MAAM,MAAM,OAAO,GAAG,MAAM,oDAAoD,MAAM,MAAM,IAAI;AACvG,SAAO,OAAO,SAAS,GAAG,MAAM,4BAA4B;AAC5D,SAAO,OAAO,MAAM,OAAO,UAAU,MAAM,sDAAsD,qBAAqB,OAAO,MAAM,IAAI;AACvI,SAAO,KAAK,gBAAgB,gBAAgB,GAAG,MAAM,4CAA4C,eAAe;AAChH,SAAO,EAAE,eAAe,cAAc,gBAAgB,aAAa;AACrE;AAGA,SAAS,mBAAmB,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB;AACvH,QAAM,SAAS,gBAAgB,OAAO,SAAS,qBAAqB,SAAS;AAC7E,QAAM,UAAU,gBAAgB,QAAQ,UAAU,qBAAqB,SAAS;AAChF,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,cAAc;AACjG,kBAAgB,OAAO;AACvB,iBAAe,OAAO;AACtB,mBAAiB,OAAO;AACxB,QAAM,QAAQ,EAAE,eAAe,cAAc,eAAe;AAC5D,SAAO,OAAO,UAAU,qBAAqB,EAAE,OAAO,QAAQ,QAAQ,QAAQ,GAAG,KAAK;AACxF;AACA,IAAI,oBAAoB,GAAG,EAAE,mBAAmB,CAAC;AAGjD,SAAS,aAAa,KAAK,SAAS,YAAY;AAC9C,QAAMH,SAAQ,aAAa,KAAK,SAAS,UAAU;AACnD,QAAM,iBAAiBA,SAAQ,IAAI,EAAEA,SAAQ,KAAKA;AAClD,MAAI,OAAO,gBAAgB,GAAG,OAAO;AACvC;AACA,SAAS,aAAa,KAAK,QAAQ,YAAY;AAC7C,SAAO,cAAc,KAAK,QAAQ,cAAc,iBAAiB;AACnE;AACA,SAAS,kBAAkB,GAAG,GAAG;AAC/B,SAAO,IAAI,IAAI,IAAI,IAAI,IAAI,KAAK;AAClC;AACA,SAAS,cAAc,KAAK,QAAQ,YAAY;AAC9C,MAAI,OAAO;AACX,MAAI,QAAQ,IAAI;AAChB,MAAIe,UAAS;AACb,MAAI,QAAQ;AACZ,SAAO,OAAO,OAAO;AACnB,IAAAA,UAAS,QAAQ,QAAQ,SAAS;AAClC,UAAM,gBAAgB,WAAW,QAAQ,IAAIA,QAAO;AACpD,QAAI,gBAAgB,GAAG;AACrB,aAAOA,UAAS;AAAA,IAClB,OAAO;AACL,cAAQA;AACR,cAAQ,CAAC;AAAA,IACX;AAAA,EACF;AACA,SAAO,QAAQ,OAAO,CAAC,OAAO;AAChC;AAGA,SAAS,wBAAwB,OAAO,QAAQ,eAAe,cAAc,gBAAgB;AAC3F,SAAO,uBAAuB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,CAAC;AAC7F;AACA,SAAS,wBAAwB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,oBAAoB;AAC/G,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,wBAAwB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,cAAc;AACzG,SAAO,uBAAuB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,cAAc,IAAI;AAC9G;AACA,SAAS,uBAAuB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,cAAc,qBAAqB,OAAO,qBAAqB,OAAO,qBAAqB,OAAO;AAC5L,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,QAAI,OAAO,MAAM,gBAAgB;AAC/B,iBAAW,KAAK,EAAE,OAAO,OAAO,KAAK,UAAU,IAAI,oBAAoB,EAAE,CAAC;AAAA,IAC5E;AAAA,EACF;AACA,aAAW,KAAK,mBAAmB;AACnC,QAAMH,UAAS,eAAe,IAAI,OAAO,eAAe;AACxD,QAAM,kBAAkB,CAAC;AACzB,QAAM,iBAAiB,CAAC;AACxB,SAAO,gBAAgB,SAAS,iBAAiB,WAAW,SAAS,GAAG;AACtE,UAAM,YAAY,WAAW,IAAI;AACjC,UAAM,EAAE,OAAO,eAAe,UAAU,mBAAmB,IAAI;AAC/D,QAAI,gBAAgB,gBAAgB;AAClC;AAAA,IACF;AACA,QAAI,kBAAkB;AACtB,aAAS,IAAI,gBAAgB,SAAS,GAAG,KAAK,oBAAoB,EAAE,GAAG;AACrE,YAAM,MAAM,sBAAsB,OAAO,UAAU,gBAAgB,EAAE;AACrE,UAAI,OAAO,cAAc;AACvB,0BAAkB;AAClB;AAAA,MACF;AACA,gBAAU,QAAQ,UAAU,QAAQ,eAAe,cAAcA,SAAQ,GAAG;AAC5E,UAAI,UAAU,SAAS,gBAAgB;AACrC;AAAA,MACF;AAAA,IACF;AACA,cAAU,qBAAqB,gBAAgB;AAC/C,QAAI,CAAC,iBAAiB;AACpB,UAAI,UAAU,UAAU,eAAe;AACrC,wBAAgB,KAAK,QAAQ;AAC7B,uBAAe,KAAK,UAAU,KAAK;AAAA,MACrC,WAAW,UAAU,QAAQ,gBAAgB;AAC3C,qBAAa,YAAY,WAAW,mBAAmB;AAAA,MACzD;AAAA,IACF;AAAA,EACF;AACA,QAAM,eAAe,gBAAgB;AACrC,QAAM,aAAa,gBAAgB;AACnC,MAAI,sBAAsB,aAAa,GAAG;AACxC,oBAAgB,KAAK,GAAG,IAAI,MAAM,UAAU,EAAE,KAAK,CAAC,CAAC;AACrD,mBAAe,KAAK,GAAG,IAAI,MAAM,UAAU,EAAE,KAAK,CAAC,CAAC;AAAA,EACtD;AACA,QAAM,SAAS,EAAE,gBAAgB;AACjC,MAAI,oBAAoB;AACtB,WAAO,oBAAoB;AAAA,EAC7B;AACA,MAAI,oBAAoB;AACtB,WAAO,kBAAkB;AAAA,EAC3B;AACA,SAAO;AACT;AACA,SAAS,sBAAsB,OAAO,IAAI,GAAG;AAC3C,QAAM,SAAS,MAAM,SAAS,KAAK,GAAG,KAAK,IAAI,CAAC;AAChD,QAAM,SAAS,MAAM,SAAS,IAAI,GAAG,IAAI,IAAI,CAAC;AAC9C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,SAAS,QAAQ,UAAU,QAAQ;AACzC,QAAM,SAAS,QAAQ,UAAU,QAAQ;AACzC,MAAI,SAAS,KAAK,SAAS,GAAG;AAC5B,WAAO;AAAA,EACT;AACA,QAAM,mBAAmB,KAAK,IAAI,OAAO,KAAK;AAC9C,QAAM,mBAAmB,KAAK,IAAI,OAAO,KAAK;AAC9C,QAAM,mBAAmB,KAAK,IAAI,OAAO,KAAK;AAC9C,QAAM,mBAAmB,KAAK,IAAI,OAAO,KAAK;AAC9C,QAAM,mBAAmB,KAAK,IAAI,mBAAmB,kBAAkB,CAAC,IAAI,KAAK,IAAI,mBAAmB,kBAAkB,CAAC;AAC3H,SAAO,oBAAoB,QAAQ,QAAQ;AAC7C;AACA,SAAS,eAAe,cAAcA,SAAQ,KAAK;AACjD,QAAM,SAAS,KAAK,IAAIA,UAAS,MAAM,GAAG;AAC1C,SAAO,OAAO,eAAe,SAAS;AACxC;AACA,SAAS,oBAAoB,IAAI,IAAI;AACnC,SAAO,GAAG,QAAQ,GAAG,SAAS,GAAG,UAAU,GAAG,SAAS,GAAG,WAAW,GAAG;AAC1E;AAGA,eAAe,wBAAwB,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB;AAClI,QAAM,SAAS,gBAAgB,OAAO,SAAS,wBAAwB;AACvE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,wBAAwB;AAC1E,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,cAAc;AACjG,kBAAgB,OAAO;AACvB,iBAAe,OAAO;AACtB,mBAAiB,OAAO;AACxB,QAAM,iBAAiB,MAAM,QAAQ,IAAI,CAAC,OAAO,KAAK,GAAG,QAAQ,KAAK,CAAC,CAAC;AACxE,QAAM,YAAY,eAAe;AACjC,QAAM,aAAa,eAAe;AAClC,QAAM,EAAE,gBAAgB,IAAI,wBAAwB,WAAW,YAAY,eAAe,cAAc,cAAc;AACtH,MAAI,WAAW,OAAO;AACpB,WAAO,QAAQ;AAAA,EACjB;AACA,MAAI,YAAY,QAAQ;AACtB,YAAQ,QAAQ;AAAA,EAClB;AACA,SAAO,SAAS,iBAAiB,OAAO;AAC1C;AACA,IAAI,yBAAyB;AAG7B,SAAS,4BAA4B,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB,eAAe,GAAG;AAClJ,QAAM,SAAS,gBAAgB,OAAO,SAAS,mBAAmB;AAClE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,mBAAmB;AACrE,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,gBAAgB,YAAY;AAC/G,kBAAgB,OAAO;AACvB,iBAAe,OAAO;AACtB,mBAAiB,OAAO;AACxB,iBAAe,OAAO;AACtB,QAAM,SAAS,EAAE,OAAO,QAAQ,QAAQ,QAAQ;AAChD,QAAM,QAAQ,EAAE,eAAe,cAAc,gBAAgB,aAAa;AAC1E,QAAM,SAAS,OAAO,UAAU,qBAAqB,QAAQ,KAAK;AAClE,SAAO,EAAE,iBAAiB,OAAO,IAAI,gBAAgB,OAAO,GAAG;AACjE;AACA,IAAI,6BAA6B,GAAG,EAAE,4BAA4B,CAAC;AAGnE,eAAe,iCAAiC,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB,eAAe,GAAG;AAC7J,QAAM,SAAS,gBAAgB,OAAO,SAAS,wBAAwB;AACvE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,wBAAwB;AAC1E,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,gBAAgB,YAAY;AAC/G,kBAAgB,OAAO;AACvB,iBAAe,OAAO;AACtB,mBAAiB,OAAO;AACxB,iBAAe,OAAO;AACtB,QAAM,iBAAiB,MAAM,QAAQ,IAAI,CAAC,OAAO,KAAK,GAAG,QAAQ,KAAK,CAAC,CAAC;AACxE,QAAM,YAAY,eAAe;AACjC,QAAM,aAAa,eAAe;AAClC,QAAM,EAAE,iBAAiB,eAAe,IAAI,wBAAwB,WAAW,YAAY,eAAe,cAAc,gBAAgB,YAAY;AACpJ,MAAI,WAAW,OAAO;AACpB,WAAO,QAAQ;AAAA,EACjB;AACA,MAAI,YAAY,QAAQ;AACtB,YAAQ,QAAQ;AAAA,EAClB;AACA,SAAO;AAAA,IACL,iBAAiB,SAAS,iBAAiB,OAAO;AAAA,IAClD,gBAAgB,SAAS,cAAc;AAAA,EACzC;AACF;AACA,IAAI,kCAAkC;AAGtC,SAAS,yBAAyB,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB,qBAAqB,OAAO;AACzJ,QAAM,SAAS,gBAAgB,OAAO,SAAS,mBAAmB;AAClE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,mBAAmB;AACrE,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,gBAAgB,IAAI;AACvG,QAAM,iBAAiB,OAAO;AAC9B,QAAM,gBAAgB,OAAO;AAC7B,QAAM,kBAAkB,OAAO;AAC/B,QAAM,SAAS,EAAE,OAAO,QAAQ,QAAQ,QAAQ;AAChD,QAAM,QAAQ;AAAA,IACZ,eAAe;AAAA,IACf,cAAc;AAAA,IACd,gBAAgB;AAAA,IAChB;AAAA,EACF;AACA,QAAM,SAAS,OAAO,UAAU,qBAAqB,QAAQ,KAAK;AAClE,SAAO,EAAE,iBAAiB,OAAO,IAAI,cAAc,OAAO,GAAG;AAC/D;AACA,IAAI,0BAA0B,GAAG,EAAE,yBAAyB,CAAC;AAG7D,eAAe,8BAA8B,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB,qBAAqB,OAAO;AACpK,QAAM,SAAS,gBAAgB,OAAO,SAAS,wBAAwB;AACvE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,wBAAwB;AAC1E,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,gBAAgB,IAAI;AACvG,QAAM,iBAAiB,OAAO;AAC9B,QAAM,gBAAgB,OAAO;AAC7B,QAAM,kBAAkB,OAAO;AAC/B,QAAM,CAAC,WAAW,UAAU,IAAI,MAAM,QAAQ,IAAI,CAAC,OAAO,KAAK,GAAG,QAAQ,KAAK,CAAC,CAAC;AACjF,QAAM,EAAE,iBAAiB,aAAa,IAAI,wBAAwB,WAAW,YAAY,gBAAgB,eAAe,iBAAiB,kBAAkB;AAC3J,MAAI,WAAW,OAAO;AACpB,WAAO,QAAQ;AAAA,EACjB;AACA,MAAI,YAAY,QAAQ;AACtB,YAAQ,QAAQ;AAAA,EAClB;AACA,SAAO;AAAA,IACL,iBAAiB,SAAS,iBAAiB,OAAO;AAAA,IAClD,cAAc,OAAO,cAAc,OAAO;AAAA,EAC5C;AACF;AACA,IAAI,+BAA+B;AAGnC,SAAS,gBAAgB,QAAQtB,OAAM,eAAe,OAAO,mBAAmB,OAAO;AACrF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,gBAAgB;AAClE,SAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,gEAAgE,QAAQ,OAAO;AACtI,SAAOA,MAAK,WAAW,GAAG,MAAM,6DAA6DA,QAAO;AACpG,SAAO,qBAAqB,SAAS,iBAAiB,OAAO,MAAM,mFAAmF;AACtJ,MAAI,cAAc;AAClB,MAAI,eAAe;AACnB,MAAI,QAAQ,SAAS,GAAG;AACtB,mBAAe;AACf,kBAAc,QAAQ,SAAS,CAAC,GAAG,QAAQ,MAAM,IAAI,QAAQ,MAAM,IAAI,QAAQ,MAAM,EAAE,CAAC;AAAA,EAC1F;AACA,QAAM,CAAC,IAAIA;AACX,QAAM,SAAS,EAAE,QAAQ,YAAY;AACrC,QAAM,QAAQ,EAAE,cAAc,kBAAkB,MAAAA,MAAK;AACrD,QAAM,MAAM,OAAO,UAAU,gBAAgB,QAAQ,KAAK;AAC1D,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,uBAAuB,QAAQA,OAAM,eAAe,OAAO,mBAAmB,OAAO;AAC5F,QAAM,UAAU,gBAAgB,QAAQ,UAAU,uBAAuB;AACzE,SAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,uEAAuE,QAAQ,OAAO;AAC7I,SAAOA,MAAK,WAAW,GAAG,MAAM,oEAAoEA,QAAO;AAC3G,SAAO,QAAQ,UAAU,aAAa,QAAQ,UAAU,SAAS,MAAM,kDAAkD;AACzH,SAAO,qBAAqB,SAAS,iBAAiB,OAAO,MAAM,0FAA0F;AAC7J,MAAI,cAAc;AAClB,MAAI,eAAe;AACnB,MAAI,QAAQ,SAAS,GAAG;AACtB,mBAAe;AACf,kBAAc,QAAQ,SAAS,CAAC,GAAG,QAAQ,MAAM,IAAI,QAAQ,MAAM,IAAI,QAAQ,MAAM,EAAE,CAAC;AAAA,EAC1F;AACA,QAAM,CAAC,IAAIA;AACX,QAAM,SAAS,EAAE,QAAQ,YAAY;AACrC,QAAM,QAAQ,EAAE,cAAc,kBAAkB,MAAAA,MAAK;AACrD,QAAM,MAAM,OAAO,UAAU,uBAAuB,QAAQ,KAAK;AACjE,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,wBAAwB,GAAG,EAAE,uBAAuB,CAAC;AAGzD,SAAS,WAAW,QAAQ,SAAS,UAAU,WAAW,OAAO,cAAc,KAAK;AAClF,QAAM,SAAS,gBAAgB,QAAQ,SAAS,WAAW;AAC3D,QAAM,qBAAqB;AAC3B,QAAM,uBAAuB;AAC7B,QAAM,sBAAsB;AAC5B,QAAM,qBAAqB,OAAO,MAAM,KAAK,OAAO,MAAM;AAC1D,MAAI,aAAa,IAAI,SAAS,CAAC,WAAW,CAAC,GAAG,GAAG;AACjD,MAAI,IAAI,GAAG,GAAG;AACd,SAAO,OAAO,SAAS,GAAG,MAAM,yDAAyD,OAAO,OAAO;AACvG,SAAO,OAAO,MAAM,OAAO,KAAK,OAAO,MAAM,OAAO,GAAG,MAAM,0EAA0E,OAAO,MAAM,KAAK;AACzJ,SAAO,OAAO,UAAU,WAAW,OAAO,UAAU,WAAW,MAAM,sEAAsE,OAAO,QAAQ;AAC1J,SAAO,WAAW,UAAU,WAAW,UAAU,MAAM,0CAA0C,QAAQ;AACzG,MAAI,OAAO,MAAM,OAAO,GAAG;AACzB,KAAC,IAAI,GAAG,CAAC,IAAI,MAAM,QAAQ,CAAC,GAAG,GAAG,CAAC,GAAG,EAAE;AACxC,UAAM,KAAK,IAAI,IAAI,kBAAkB;AACrC,UAAM,KAAK,IAAI,GAAG,oBAAoB;AACtC,UAAM,KAAK,IAAI,GAAG,mBAAmB;AACrC,gBAAY,KAAK,KAAK,IAAI,EAAE,GAAG,EAAE;AAAA,EACnC,OAAO;AACL,gBAAY;AAAA,EACd;AACA,MAAI,WAAW,QAAQ;AACrB,UAAM,aAAa,SAAS,KAAK,OAAO,SAAS,GAAG,OAAO,GAAG,OAAO,CAAC,CAAC,GAAG,GAAG;AAC7E,iBAAa,KAAK,YAAY,kBAAkB;AAAA,EAClD;AACA,QAAM,eAAe,WAAW,UAAU,WAAW,UAAU,IAAI,QAAQ,WAAW,UAAU;AAChG,QAAM,SAAS,KAAK,IAAI,cAAc,GAAG,GAAG,OAAO;AACnD,SAAO;AACT;AACA,SAAS,KAAK,WAAW,OAAO;AAC9B,MAAI,aAAa,SAAS,CAAC,EAAE,CAAC;AAC9B,MAAI,eAAe,SAAS,CAAC,CAAC,CAAC;AAC/B,MAAI,YAAY,SAAS,CAAC,CAAC,CAAC;AAC5B,MAAI,YAAY,aAAa,WAAW,SAAS,kBAAkB;AACnE,WAASU,SAAQ,GAAGA,SAAQ,UAAU,OAAO,GAAGA,UAAS;AACvD,iBAAa,MAAM,WAAW,GAAGA,SAAQ,CAAC;AAC1C,kBAAc,MAAM,WAAWA,SAAQ,CAAC;AACxC,uBAAmB,IAAI,KAAK,UAAU,GAAG,KAAK;AAC9C,iBAAa,IAAI,KAAK,WAAW,GAAG,KAAK;AACzC,UAAM,gBAAgB,KAAK,IAAI,YAAY,MAAM,GAAG,WAAW,IAAI,CAAC,CAAC;AACrE,gBAAY,IAAI,eAAe,KAAK,UAAU,CAAC;AAC/C,UAAM,cAAc,KAAK,YAAY,OAAO,WAAW,IAAI;AAC3D,UAAM,aAAa,KAAK,MAAM,GAAG,YAAY,IAAI,GAAG,WAAW;AAC/D,UAAM,aAAa,IAAI,aAAa,UAAU;AAC9C,cAAU,IAAI,KAAK,UAAU,GAAG,KAAK,WAAW,CAAC;AACjD,UAAM,gBAAgB,IAAI,WAAW,OAAO;AAC5C,UAAM,gBAAgB,IAAI,WAAW,OAAO;AAC5C,UAAM,eAAe,IAAI,kBAAkB,UAAU;AACrD,gBAAY,IAAI,IAAI,cAAc,aAAa,GAAG,aAAa;AAC/D,UAAM,YAAY,QAAQ,WAAW,YAAY;AACjD,mBAAe,MAAM,WAAW,WAAW,YAAY;AACvD,iBAAa,MAAM,WAAW,SAAS,CAACA,MAAK,CAAC,GAAG,UAAU;AAAA,EAC7D;AACA,SAAO;AACT;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAW,QAAQ,YAAY,gBAAgB,WAAW,WAAW,YAAY,YAAY,GAAG,aAAa;AACpH,QAAM,SAAS,gBAAgB,QAAQ,SAAS,aAAa,SAAS;AACtE,QAAM,cAAc,gBAAgB,YAAY,cAAc,aAAa,SAAS;AACpF,SAAO,OAAO,SAAS,GAAG,MAAM,yDAAyD,OAAO,OAAO;AACvG,SAAO,YAAY,SAAS,MAAM,YAAY,MAAM,OAAO,OAAO,MAAM,MAAM,YAAY,MAAM,OAAO,MAAM,YAAY,MAAM,OAAO,GAAG,MAAM,kEAAkE;AACjN,SAAO,eAAe,QAAQ,YAAY,WAAW,GAAG,MAAM,4EAA4E,cAAc;AACxJ,QAAM,SAAS,EAAE,OAAO,QAAQ,YAAY,YAAY;AACxD,QAAM,QAAQ,EAAE,eAAe,UAAU,WAAW,YAAY;AAChE,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,UAAU,GAAG,UAAU,UAAU;AACxC,SAAO,WAAW,MAAM,GAAG,MAAM,gDAAgD,WAAW;AAC5F,SAAO,WAAW,MAAM,GAAG,MAAM,gDAAgD,WAAW;AAC5F,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,SAAO,GAAG,QAAQ,GAAG,MAAM,4CAA4C,GAAG,OAAO;AACjF,QAAM,QAAQ,GAAG;AACjB,QAAM,CAAC,GAAG,CAAC,IAAI,GAAG,MAAM,MAAM,EAAE;AAChC,MAAI,EAAE,YAAY,IAAI;AACpB,UAAM,IAAI,MAAM,yBAAyB,0DAA0D,KAAK;AAAA,EAC1G;AACA,MAAI,EAAE,YAAY,IAAI;AACpB,UAAM,IAAI,MAAM,yBAAyB,6DAA6D,KAAK;AAAA,EAC7G;AACA,MAAI,WAAW,GAAG;AAChB,eAAW;AAAA,EACb;AACA,MAAI,WAAW,GAAG;AAChB,eAAW;AAAA,EACb;AACA,QAAM,KAAK,QAAQ,MAAM,GAAG,GAAG,GAAG,OAAO,GAAG,CAAC,IAAI,CAAC,CAAC;AACnD,QAAM,IAAI,MAAM,GAAG,GAAG,GAAG,OAAO;AAChC,QAAM,KAAK,IAAI,IAAI,CAAC;AACpB,QAAM,SAAS,WAAW,UAAU,IAAI,OAAO,CAAC,UAAU,OAAO,CAAC,GAAG,aAAa,IAAI,OAAO,CAAC,UAAU,OAAO,CAAC,CAAC;AACjH,QAAM,OAAO,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK;AACnC,SAAO,QAAQ,MAAM,QAAQ,QAAQ,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,QAAQ,MAAM,QAAQ,KAAK,IAAI,CAAC,CAAC,GAAG,KAAK;AACtG;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,aAAa,IAAI;AACxB,MAAI;AACJ,MAAI,MAAM,QAAQ,EAAE,GAAG;AACrB,sBAAkB;AAClB,WAAO,MAAM,QAAQ,GAAG,SAAS,GAAG,MAAM,mEAAmE;AAC7G,UAAM,MAAM,GAAG,GAAG,MAAM;AACxB,aAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,EAAE,IAAI;AACrC,aAAO,GAAG,IAAI,MAAM,OAAO,KAAK,MAAM,iEAAiE,GAAG,IAAI,MAAM,UAAU,MAAM;AAAA,IACtI;AAAA,EACF,OAAO;AACL,sBAAkB;AAClB,SAAK,MAAM,IAAI,GAAG,MAAM,IAAI,CAAC,EAAE,IAAI,CAAC,MAAM,QAAQ,GAAG,CAAC,CAAC,CAAC,CAAC;AAAA,EAC3D;AACA,SAAO,GAAG,UAAU,GAAG,GAAG,MAAM,IAAI,MAAM,oCAAoC,GAAG,yCAAyC,GAAG,GAAG,MAAM,MAAM;AAC5I,QAAM,KAAK,CAAC;AACZ,QAAM,OAAO;AACb,WAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,EAAE,IAAI;AACrC,OAAG,KAAK,OAAO,KAAK,MAAM;AACxB,UAAI,IAAI,KAAK;AACb,UAAI,KAAK,GAAG;AACV,iBAAS,IAAI,GAAG,IAAI,IAAI,EAAE,GAAG;AAC3B,gBAAM,OAAO,IAAI,KAAK,IAAI,GAAG,IAAI,CAAC,CAAC,GAAG,GAAG,EAAE;AAC3C,cAAI,IAAI,GAAG,IAAI;AAAA,QACjB;AAAA,MACF;AACA,aAAO,IAAI,GAAG,KAAK,GAAG,WAAW,CAAC;AAAA,IACpC,CAAC,CAAC;AAAA,EACJ;AACA,MAAI,iBAAiB;AACnB,WAAO,MAAM,IAAI,CAAC;AAAA,EACpB,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,IAAI,GAAG,eAAe,OAAO;AACpC,SAAO,EAAE,QAAQ,GAAG,MAAM,gEAAgE,EAAE,MAAM;AAClG,MAAI,EAAE,SAAS,GAAG;AAChB,WAAO,KAAK,GAAG,YAAY;AAAA,EAC7B,OAAO;AACL,UAAM,gBAAgB,EAAE,MAAM,MAAM,GAAG,EAAE,MAAM,SAAS,CAAC,EAAE,OAAO,CAAC,OAAO,SAAS,QAAQ,IAAI;AAC/F,UAAM,OAAO,QAAQ,QAAQ,GAAG;AAAA,MAC9B;AAAA,MACA,EAAE,MAAM,EAAE,MAAM,SAAS;AAAA,MACzB,EAAE,MAAM,EAAE,MAAM,SAAS;AAAA,IAC3B,CAAC,GAAG,CAAC;AACL,UAAM,OAAO,CAAC;AACd,UAAM,OAAO,CAAC;AACd,SAAK,QAAQ,CAAC,QAAQ;AACpB,YAAM,CAAC,KAAK,GAAG,IAAI,KAAK,KAAK,YAAY;AACzC,WAAK,KAAK,GAAG;AACb,WAAK,KAAK,GAAG;AAAA,IACf,CAAC;AACD,UAAM,IAAI,QAAQ,MAAM,MAAM,CAAC,GAAG,EAAE,KAAK;AACzC,UAAM,KAAK,QAAQ,MAAM,MAAM,CAAC,GAAG,EAAE,KAAK;AAC1C,WAAO,CAAC,GAAG,EAAE;AAAA,EACf;AACF;AACA,SAAS,KAAK,GAAG,eAAe,OAAO;AACrC,SAAO,OAAO,KAAK,MAAM;AACvB,WAAO,EAAE,MAAM,WAAW,GAAG,MAAM,0CAA0C,EAAE,MAAM,iBAAiB;AACtG,UAAM,IAAI,EAAE,MAAM;AAClB,UAAM,KAAK,EAAE,MAAM;AACnB,QAAI,IAAI,IAAI,CAAC;AACb,QAAI,KAAK,MAAM,CAAC;AAChB,UAAM,QAAQ,SAAS,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACpC,QAAI,IAAI,MAAM,KAAK;AACnB,UAAM,QAAQ,KAAK,KAAK,KAAK;AAC7B,aAAS,IAAI,GAAG,IAAI,OAAO,EAAE,GAAG;AAC9B,YAAM,QAAQ;AACd,YAAM,QAAQ;AACd,YAAM,QAAQ;AACd,OAAC,GAAG,IAAI,CAAC,IAAI,OAAO,KAAK,MAAM;AAC7B,cAAM,SAAS,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC;AAC3C,cAAM,QAAQ,KAAK,MAAM;AACzB,cAAM,MAAM,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACpC,cAAM,KAAK,MAAM,QAAQ,KAAK,CAAC,GAAG,SAAS,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;AACnE,cAAM,KAAK,IAAI,KAAK,IAAI,IAAI,KAAK,CAAC;AAClC,cAAM,OAAO,IAAI,QAAQ,EAAE;AAC3B,YAAI,KAAK,MAAM,OAAO,GAAG;AACvB,cAAI,MAAM,KAAK;AAAA,QACjB,OAAO;AACL,cAAI,OAAO;AAAA,YACT;AAAA,YACA,MAAM,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,KAAK,MAAM,KAAK,GAAG,KAAK,MAAM,EAAE,CAAC;AAAA,UACxD,GAAG,CAAC;AAAA,QACN;AACA,cAAM,MAAM,IAAI,IAAI,OAAO,IAAI,EAAE,GAAG,KAAK,CAAC;AAC1C,cAAM,WAAW,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,GAAG,EAAE,CAAC;AAC9C,cAAM,YAAY,IAAI,KAAK,CAAC;AAC5B,cAAM,KAAK,UAAU,CAAC;AACtB,YAAI,MAAM,GAAG;AACX,eAAK,IAAI,UAAU,OAAO,WAAW,OAAO,IAAI,QAAQ,CAAC,CAAC;AAAA,QAC5D,OAAO;AACL,gBAAM,YAAY,IAAI,UAAU,OAAO,WAAW,OAAO,IAAI,QAAQ,CAAC,CAAC;AACvE,eAAK,OAAO,CAAC,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC,GAAG,SAAS,GAAG,CAAC;AAAA,QACxD;AACA,cAAM,aAAa,UAAU,SAAS;AACtC,cAAM,WAAW,MAAM,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,EAAE,MAAM,KAAK,CAAC,CAAC;AACrD,YAAI,MAAM,GAAG;AACX,cAAI,IAAI,UAAU,OAAO,OAAO,UAAU,CAAC,GAAG,UAAU,CAAC;AAAA,QAC3D,OAAO;AACL,gBAAM,YAAY,IAAI,UAAU,OAAO,OAAO,UAAU,CAAC,GAAG,UAAU,CAAC;AACvE,cAAI,OAAO,CAAC,MAAM,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,SAAS,GAAG,CAAC;AAAA,QACrD;AACA,eAAO,CAAC,GAAG,IAAI,CAAC;AAAA,MAClB,CAAC;AACD,cAAQ,CAAC,OAAO,OAAO,KAAK,CAAC;AAAA,IAC/B;AACA,QAAI,CAAC,gBAAgB,IAAI,IAAI;AAC3B,UAAI,MAAM,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AAC5B,WAAK,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,EAAE,CAAC;AAAA,IACjC;AACA,WAAO,CAAC,GAAG,EAAE;AAAA,EACf,CAAC;AACH;AACA,IAAI,KAAK,GAAG,EAAE,IAAI,CAAC;AAGnB,IAAI;AAAA,CACH,SAAS,YAAY;AACpB,aAAW,WAAW,UAAU,KAAK;AACrC,aAAW,WAAW,UAAU,KAAK;AACrC,aAAW,WAAW,SAAS,KAAK;AACpC,aAAW,WAAW,4BAA4B,KAAK;AACzD,GAAG,cAAc,YAAY,CAAC,EAAE;AAGhC,SAAS,qBAAqB,SAAS,SAAS,YAAY,UAAU,wBAAwB;AAC5F,QAAM,UAAU,gBAAgB,SAAS,UAAU,qBAAqB;AACxE,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,qBAAqB;AAAA,EACtE;AACA,QAAM,eAAe,YAAY,OAAO,UAAU,IAAI,SAAS,QAAQ;AACvE,MAAI,cAAc,UAAU,MAAM;AAChC,WAAO;AAAA,EACT;AACA,MAAI,cAAc,UAAU,KAAK;AAC/B,WAAO,KAAK,YAAY;AAAA,EAC1B;AACA,MAAI,cAAc,UAAU,MAAM;AAChC,QAAI,YAAY,MAAM;AACpB,aAAO,KAAK,YAAY;AAAA,IAC1B,OAAO;AACL,YAAM,kBAAkB,QAAQ,OAAO,SAAS;AAChD,YAAM,SAAS,IAAI,KAAK,YAAY,GAAG,KAAK,QAAQ,CAAC;AACrD,aAAO,kBAAkB,IAAI,IAAI,QAAQ,OAAO,eAAe,CAAC,IAAI;AAAA,IACtE;AAAA,EACF;AACA,MAAI,cAAc,UAAU,wBAAwB;AAClD,QAAI,YAAY,MAAM;AACpB,aAAO,IAAI,KAAK,YAAY,GAAG,OAAO,QAAQ,IAAI,CAAC;AAAA,IACrD,OAAO;AACL,YAAM,qBAAqB,IAAI,UAAU,MAAM,QAAQ,KAAK,CAAC;AAC7D,YAAM,cAAc,KAAK,KAAK,SAAS,oBAAoB,OAAO,CAAC,CAAC,CAAC,GAAG,SAAS;AACjF,aAAO,IAAI,KAAK,YAAY,GAAG,WAAW;AAAA,IAC5C;AAAA,EACF;AACA,QAAM,MAAM,sBAAsB,WAAW;AAC/C;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,oBAAoBU,SAAQ,aAAa,SAAS,YAAY,UAAU,wBAAwB;AACvG,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,oBAAoB;AACtE,QAAM,eAAe,gBAAgB,aAAa,eAAe,oBAAoB;AACrF,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,oBAAoB;AAAA,EACrE;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,+BAA+B;AACpF,QAAM,UAAU,IAAI,IAAI,SAAS,YAAY,CAAC;AAC9C,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,qBAAqB,GAAG,EAAE,oBAAoB,CAAC;AAGnD,SAAS,gBAAgBA,SAAQ,aAAa,MAAM,SAAS,YAAY,UAAU,wBAAwB;AACzG,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,gBAAgB;AAClE,QAAM,eAAe,gBAAgB,aAAa,eAAe,gBAAgB;AACjF,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,gBAAgB;AAAA,EACjE;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,2BAA2B;AAChF,QAAM,MAAM,OAAO,CAAC;AACpB,QAAM,UAAU,IAAI,KAAK,KAAK,IAAI,SAAS,YAAY,GAAG,MAAM,IAAI,CAAC;AACrE,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,WAAWA,SAAQ,aAAa,SAAS,YAAY,UAAU,wBAAwB;AAC9F,MAAI,UAAU,gBAAgBA,SAAQ,UAAU,WAAW;AAC3D,QAAM,eAAe,gBAAgB,aAAa,eAAe,WAAW;AAC5E,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,WAAW;AAAA,EAC5D;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,sBAAsB;AAC3E,QAAM,MAAM,OAAO,CAAC;AACpB,YAAU,IAAI,IAAI,OAAO,CAAC,GAAG,OAAO,GAAG,GAAG;AAC1C,QAAM,UAAU,KAAK,IAAI,KAAK,IAAI,SAAS,YAAY,CAAC,CAAC;AACzD,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAWA,SAAQ,aAAa,SAAS,QAAQ,GAAG,YAAY,UAAU,wBAAwB;AACzG,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,WAAW;AAC7D,QAAM,eAAe,gBAAgB,aAAa,eAAe,WAAW;AAC5E,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,WAAW;AAAA,EAC5D;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,sBAAsB;AAC3E,QAAM,cAAc,OAAO,KAAK;AAChC,QAAM,QAAQ,IAAI,IAAI,cAAc,OAAO,CAAC;AAC5C,QAAM,YAAY,QAAQ,OAAO,WAAW;AAC5C,QAAM,SAAS,IAAI,OAAO,SAAS;AACnC,QAAM,UAAU,KAAK,IAAI,OAAO,GAAG,GAAG,OAAO,SAAS,CAAC,GAAG,IAAI,aAAa,MAAM,CAAC;AAClF,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,SAASA,SAAQ,aAAa,SAAS,WAAW,MAAM,YAAY,UAAU,wBAAwB;AAC7G,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,SAAS;AAC3D,QAAM,eAAe,gBAAgB,aAAa,eAAe,SAAS;AAC1E,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,SAAS;AAAA,EAC1D;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,oBAAoB;AACzE,QAAM,MAAM,OAAO,CAAC;AACpB,QAAM,gBAAgB,OAAO,QAAQ;AACrC,QAAM,MAAM,IAAI,IAAI,SAASzB,MAAK,KAAK,cAAc,aAAa,CAAC,CAAC,CAAC;AACrE,QAAM,MAAM,IAAI,IAAI,KAAK,OAAO,GAAGA,MAAK,KAAK,IAAI,KAAK,YAAY,GAAG,aAAa,CAAC,CAAC;AACpF,QAAM,UAAU,IAAI,KAAK,GAAG;AAC5B,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,kBAAkByB,SAAQ,aAAa,SAAS,YAAY,UAAU,wBAAwB;AACrG,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,kBAAkB;AACpE,QAAM,eAAe,gBAAgB,aAAa,eAAe,kBAAkB;AACnF,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,kBAAkB;AAAA,EACnE;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,6BAA6B;AAClF,QAAM,UAAU,kBAAkB,SAAS,YAAY;AACvD,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,mBAAmB,GAAG,EAAE,kBAAkB,CAAC;AAG/C,SAAS,+BAA+BA,SAAQ,QAAQ;AACtD,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,+BAA+B;AACjF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,+BAA+B;AACjF,oBAAkB,QAAQ,OAAO,QAAQ,OAAO,0CAA0C;AAC1F,QAAM,YAAY,KAAK,OAAO;AAC9B,QAAM,gBAAgB,IAAI,SAAS,OAAO;AAC1C,QAAM,gBAAgB,MAAM,IAAI,IAAI,IAAI,OAAO,CAAC,CAAC,CAAC;AAClD,SAAO,KAAK,IAAI,WAAW,aAAa,GAAG,aAAa;AAC1D;AACA,SAAS,qBAAqB,kBAAkB,QAAQ,SAAS,iBAAiB,GAAG,YAAY,UAAU,wBAAwB;AACjI,MAAI,oBAAoB,gBAAgB,kBAAkB,oBAAoB,qBAAqB;AACnG,QAAM,UAAU,gBAAgB,QAAQ,UAAU,qBAAqB;AACvE,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,qBAAqB;AAAA,EACtE;AACA,oBAAkB,kBAAkB,OAAO,QAAQ,OAAO,gCAAgC;AAC1F,MAAI,iBAAiB,GAAG;AACtB,UAAM,uBAAuB,OAAO,cAAc;AAClD,UAAM,MAAM,OAAO,CAAC;AACpB,UAAMI,QAAO,OAAO,GAAG;AACvB,wBAAoB,KAAK,IAAI,mBAAmB,IAAI,KAAK,oBAAoB,CAAC,GAAG,IAAIA,OAAM,oBAAoB,CAAC;AAAA,EAClH;AACA,QAAM,UAAU,+BAA+B,mBAAmB,OAAO;AACzE,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,+BAA+BJ,SAAQ,QAAQ,MAAM,IAAI;AAChE,MAAI,QAAQ,IAAI;AACd,UAAM,OAAO,OAAO;AAAA,EACtB;AACA,MAAI,QAAQ,OAAO,OAAO,GAAG;AAC3B,UAAM,MAAM,mGAAmG,OAAO,oBAAoB,KAAK;AAAA,EACjJ;AACA,QAAM,WAAW,WAAW,CAACM,UAAS,SAAS,SAAS;AACtD,UAAM,WAAW;AACjB,UAAM,MAAM,UAAU,SAAS,CAAC,GAAG,GAAG,QAAQ;AAC9C,UAAM,YAAY,IAAI,KAAK,SAAS,SAAS,GAAG,GAAG;AACnD,SAAK,CAACA,UAAS,SAAS,CAAC;AACzB,UAAM,aAAa,IAAI,IAAI,WAAWA,QAAO,CAAC;AAC9C,UAAM,QAAQ,KAAK,YAAY,CAAC,GAAG,CAAC;AACpC,UAAM,WAAW,CAAC,IAAI,UAAU;AAC9B,YAAM,CAAC,SAAS,UAAU,IAAI;AAC9B,YAAM,UAAU,qBAAqB,GAAG,OAAO,CAAC,GAAG,CAAC;AACpD,aAAO;AAAA,QACL,IAAI,QAAQ,IAAI,OAAO,GAAG,IAAI,KAAK,SAAS,SAAS,GAAG,IAAI,UAAU,CAAC,CAAC;AAAA,QACxE,IAAI,QAAQ,IAAI,OAAO,GAAG,IAAI,IAAI,UAAU,GAAG,KAAK,SAAS,SAAS,CAAC,CAAC;AAAA,MAC1E;AAAA,IACF;AACA,WAAO,EAAE,OAAO,SAAS;AAAA,EAC3B,CAAC;AACD,SAAO,SAASN,SAAQ,MAAM;AAChC;AACA,SAAS,qBAAqB,cAAc,QAAQ,SAAS,iBAAiB,GAAG,YAAY,UAAU,wBAAwB;AAC7H,MAAI,gBAAgB,gBAAgB,cAAc,gBAAgB,qBAAqB;AACvF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,qBAAqB;AACvE,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,qBAAqB;AAAA,EACtE;AACA,oBAAkB,cAAc,OAAO,QAAQ,OAAO,gCAAgC;AACtF,MAAI,iBAAiB,GAAG;AACtB,UAAM,uBAAuB,OAAO,cAAc;AAClD,UAAM,MAAM,OAAO,CAAC;AACpB,UAAM,aAAa,OAAO,cAAc,MAAM,EAAE;AAChD,oBAAgB,KAAK,IAAI,eAAe,IAAI,KAAK,oBAAoB,CAAC,GAAG,IAAI,sBAAsB,UAAU,CAAC;AAAA,EAChH;AACA,QAAM,UAAU,+BAA+B,eAAe,OAAO;AACrE,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,qBAAqB,SAAS,QAAQ,YAAY,cAAc;AACvE,QAAM,WAAW,gBAAgB,SAAS,WAAW,uBAAuB,OAAO;AACnF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,qBAAqB;AACvE,QAAM,cAAc,gBAAgB,YAAY,cAAc,uBAAuB,OAAO;AAC5F,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,uBAAuB,QAAQ,KAAK;AACxG,MAAI,SAAS,SAAS,GAAG;AACvB,UAAM,IAAI,MAAM;AAAA,UACV,SAAS,OAAO;AAAA,EACxB;AACA,MAAI,QAAQ,SAAS,GAAG;AACtB,UAAM,IAAI,MAAM,gDAAgD,QAAQ,OAAO;AAAA,EACjF;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM,qDAAqD,YAAY,OAAO;AAAA,EAC1F;AACA,MAAI,cAAc,SAAS,GAAG;AAC5B,UAAM,IAAI,MAAM,uDAAuD,cAAc,OAAO;AAAA,EAC9F;AACA,QAAM,SAAS;AAAA,IACb,SAAS;AAAA,IACT,QAAQ;AAAA,IACR,YAAY;AAAA,IACZ,cAAc;AAAA,EAChB;AACA,QAAM,SAAS,OAAO,UAAU,qBAAqB,MAAM;AAC3D,SAAO;AAAA,IACL,eAAe,OAAO;AAAA,IACtB,cAAc,OAAO;AAAA,IACrB,mBAAmB,OAAO;AAAA,IAC1B,iBAAiB,OAAO;AAAA,EAC1B;AACF;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,eAAe,cAAc,YAAY,UAAU;AAC1D,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,iBAAiB,OAAO;AAC5F,QAAM,cAAc,gBAAgB,YAAY,cAAc,iBAAiB,OAAO;AACtF,QAAM,YAAY,gBAAgB,UAAU,YAAY,iBAAiB,OAAO;AAChF,MAAI,cAAc,SAAS,GAAG;AAC5B,UAAM,IAAI,MAAM;AAAA,UACV,cAAc,OAAO;AAAA,EAC7B;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM,qDAAqD,YAAY,OAAO;AAAA,EAC1F;AACA,MAAI,UAAU,SAAS,GAAG;AACxB,UAAM,IAAI,MAAM,mDAAmD,UAAU,OAAO;AAAA,EACtF;AACA,QAAM,SAAS;AAAA,IACb,cAAc;AAAA,IACd,YAAY;AAAA,IACZ,UAAU;AAAA,EACZ;AACA,QAAM,SAAS,OAAO,UAAU,eAAe,MAAM;AACrD,SAAO,EAAE,eAAe,OAAO,IAAI,aAAa,OAAO,GAAG;AAC5D;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,mBAAmB,MAAM,SAAS,YAAY;AACrD,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,mBAAmB;AAC/D,QAAM,WAAW,gBAAgB,SAAS,WAAW,qBAAqB,OAAO;AACjF,QAAM,cAAc,gBAAgB,YAAY,cAAc,qBAAqB,OAAO;AAC1F,MAAI,MAAM,OAAO,GAAG;AAClB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,SAAS,SAAS,GAAG;AACvB,UAAM,IAAI,MAAM;AAAA,YACR,SAAS,OAAO;AAAA,EAC1B;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM;AAAA,YACR,YAAY,OAAO;AAAA,EAC7B;AACA,QAAM,SAAS;AAAA,IACb,MAAM;AAAA,IACN,SAAS;AAAA,IACT,YAAY;AAAA,EACd;AACA,SAAO,OAAO,UAAU,mBAAmB,MAAM;AACnD;AACA,IAAI,oBAAoB,GAAG,EAAE,mBAAmB,CAAC;AAGjD,SAAS,kBAAkB,MAAM,SAAS,YAAY;AACpD,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,kBAAkB;AAC9D,QAAM,WAAW,gBAAgB,SAAS,WAAW,oBAAoB,OAAO;AAChF,QAAM,cAAc,gBAAgB,YAAY,cAAc,oBAAoB,OAAO;AACzF,MAAI,MAAM,OAAO,GAAG;AAClB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,SAAS,SAAS,GAAG;AACvB,UAAM,IAAI,MAAM;AAAA,WACT,SAAS,OAAO;AAAA,EACzB;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM;AAAA,WACT,YAAY,OAAO;AAAA,EAC5B;AACA,QAAM,SAAS;AAAA,IACb,MAAM;AAAA,IACN,SAAS;AAAA,IACT,YAAY;AAAA,EACd;AACA,SAAO,OAAO,UAAU,kBAAkB,MAAM;AAClD;AACA,IAAI,mBAAmB,GAAG,EAAE,kBAAkB,CAAC;AAG/C,SAAS,cAAc,MAAM,YAAY,WAAW,aAAa,SAAS,WAAW,UAAU,wBAAwB;AACrH,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,gBAAgB,QAAQ;AACpE,MAAI,MAAM,UAAU,UAAU;AAC5B,UAAM,IAAI,MAAM,iCAAiC;AAAA,EACnD;AACA,MAAI,MAAM,MAAM,WAAW,GAAG;AAC5B,UAAM,IAAI,MAAM,+BAA+B,MAAM,OAAO;AAAA,EAC9D;AACA,QAAM,cAAc,gBAAgB,YAAY,cAAc,cAAc;AAC5E,MAAI,YAAY,UAAU,SAAS;AACjC,UAAM,IAAI,MAAM,uCAAuC;AAAA,EACzD;AACA,QAAM,QAAQ;AAAA,IACZ;AAAA,IACA;AAAA,IACA;AAAA,IACA,UAAU;AAAA,IACV;AAAA,IACA;AAAA,EACF;AACA,QAAM,SAAS,EAAE,MAAM,OAAO,YAAY,YAAY;AACtD,QAAM,SAAS,OAAO,UAAU,cAAc,QAAQ,KAAK;AAC3D,SAAO,EAAE,QAAQ,OAAO,IAAI,cAAc,OAAO,GAAG;AACtD;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,aAAa,QAAQ,WAAW,YAAY,MAAM;AACzD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,eAAe,QAAQ;AACvE,QAAM,aAAa,gBAAgB,WAAW,aAAa,eAAe,QAAQ;AAClF,MAAI,OAAO,SAAS,GAAG;AACrB,UAAM,IAAI,MAAM,+CAA+C,OAAO,OAAO;AAAA,EAC/E;AACA,MAAI,WAAW,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,mDAAmD,WAAW,OAAO;AAAA,EACvF;AACA,QAAM,QAAQ,EAAE,UAAU;AAC1B,QAAM,SAAS,EAAE,OAAO,QAAQ,WAAW,WAAW;AACtD,QAAM,SAAS,OAAO,UAAU,aAAa,QAAQ,KAAK;AAC1D,SAAO,EAAE,SAAS,OAAO,IAAI,QAAQ,OAAO,IAAI,OAAO,OAAO,GAAG;AACnE;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,wBAAwB,QAAQ,YAAY;AACnD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,0BAA0B,QAAQ;AAClF,QAAM,QAAQ,EAAE,WAAW;AAC3B,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AACA,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,wBAAwB,QAAQ,KAAK;AAC/D;AACA,IAAI,yBAAyB,GAAG,EAAE,wBAAwB,CAAC;AAG3D,IAAI,WAAW;AAAA,EACb;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,QAAQ;AAAA,EACV;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AACF;AAGA,IAAI,YAAY,cAAc,aAAa;AAAA,EACzC,SAAS,GAAG,aAAa,OAAO,SAAS;AACvC,UAAM,EAAE,OAAO,OAAO,OAAO,IAAI,KAAK,iBAAiB,GAAG,OAAO;AACjE,QAAI,WAAW,MAAM;AACnB,YAAM,YAAY,QAAQ,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,MAAM,QAAQ,OAAO,EAAE,MAAM,EAAE;AAC/E,WAAK,eAAe,SAAS;AAAA,IAC/B,OAAO;AACL,WAAK,eAAe,MAAM;AAAA,IAC5B;AACA,YAAQ,MAAM;AACd,QAAI,YAAY;AACd,aAAO;AAAA,IACT,OAAO;AACL,YAAM,QAAQ;AACd,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,IAAI,aAAa;AACf,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK,cAAc;AAAA,IACrB;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,sBAAsB;AACpB,SAAK,cAAc,KAAK,aAAa;AAAA,EACvC;AAAA,EACA,iBAAiB,GAAG,SAAS;AAC3B,WAAO,cAAc,GAAG,OAAO;AAAA,EACjC;AAAA,EACA,UAAU;AACR,QAAI,KAAK,eAAe,MAAM;AAC5B,cAAQ,KAAK,WAAW;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,MAAM,iBAAiB;AACrB,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK,cAAc;AAAA,IACrB;AACA,WAAO;AAAA,MACL,MAAM;AAAA,MACN,QAAQ,OAAO,KAAK,aAAa,OAAO;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,IAAI,MAAM,yDAAyD;AAAA,EAC3E;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,UAAM,IAAI,MAAM,4DAA4D,KAAK,aAAa,GAAG;AAAA,EACnG;AAAA,EACA,MAAM,kBAAkB,cAAc;AACpC,SAAK,eAAe,MAAM,aAAa,GAAG,OAAO,KAAK,GAAG;AACzD,WAAO,aAAa,MAAM,CAAC;AAAA,EAC7B;AACF;AACA,OAAO,eAAe,WAAW,OAAO,aAAa;AAAA,EACnD,OAAO,CAACZ,cAAa;AACnB,WAAOA,UAAS,YAAY,QAAQA,UAAS,oBAAoB,QAAQA,UAAS,kBAAkB;AAAA,EACtG;AACF,CAAC;AAGD,IAAI,oBAAoB,cAAc,UAAU;AAAA,EAC9C,YAAY,cAAc,KAAK,WAAW,MAAM;AAC9C,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,MAAM;AACX,SAAK,UAAU;AACf,SAAK,mBAAmB,CAAC;AACzB,SAAK,qBAAqB,CAAC;AAC3B,QAAI,YAAY,MAAM;AACpB,WAAK,UAAU,OAAO,QAAQ,QAAQ;AAAA,IACxC;AAAA,EACF;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,kBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,YAAM,QAAQ,OAAO,oBAAoB;AACzC,YAAM,YAAY;AAClB,UAAI,KAAK,iBAAiB,OAAO,MAAM;AACrC,aAAK,iBAAiB,MAAM;AAAA,UAC1B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,UAAI,KAAK,mBAAmB,OAAO,MAAM;AACvC,aAAK,mBAAmB,MAAM;AAAA,UAC5B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,YAAM,kBAAkB,KAAK,iBAAiB,IAAI;AAClD,YAAM,oBAAoB,KAAK,mBAAmB,IAAI;AACtD,WAAK,MAAM;AACT,cAAM,qBAAqB,KAAK,IAAI,iBAAiB,KAAK,GAAG,GAAG,IAAI,OAAO,QAAQ,GAAG,IAAI,KAAK,GAAG,CAAC;AACnG,cAAM,UAAU,IAAI,IAAI,KAAK,KAAK,mBAAmB,KAAK,OAAO,CAAC,GAAG,KAAK,KAAK,iBAAiB,KAAK,OAAO,CAAC,CAAC,GAAG,QAAQ;AACzH,cAAM,uBAAuB,KAAK,IAAI,mBAAmB,KAAK,GAAG,GAAG,IAAI,OAAO,OAAO,GAAG,IAAI,KAAK,GAAG,CAAC;AACtG,wBAAgB,OAAO,kBAAkB;AACzC,0BAAkB,OAAO,oBAAoB;AAC7C,cAAM,WAAW,KAAK,IAAI,SAAS,CAAC,KAAK,YAAY,GAAG,KAAK;AAC7D,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,QAAI,KAAK,sBAAsB,MAAM;AACnC,cAAQ,KAAK,iBAAiB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AACpD,cAAQ,KAAK,mBAAmB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IACxD;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,YAAY,CAAC,GAAG,KAAK,kBAAkB,GAAG,KAAK,kBAAkB;AACvE,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAClH;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,UAAM,gBAAgB,aAAa,SAAS;AAC5C,UAAM,YAAY;AAClB,SAAK,mBAAmB,aAAa,MAAM,GAAG,aAAa,EAAE,IAAI,CAAC,OAAO;AAAA,MACvE,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AACF,SAAK,qBAAqB,aAAa,MAAM,eAAe,gBAAgB,CAAC,EAAE,IAAI,CAAC,OAAO;AAAA,MACzF,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AAAA,EACJ;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,OAAO,KAAK;AAAA,MACZ,WAAW,KAAK;AAAA,IAClB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKO,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,QAAQA,QAAO,UAAU;AAAA,EACzE;AACF;AACA,kBAAkB,YAAY;AAC9B,cAAc,iBAAiB;AAG/B,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,cAAc,0BAA0B,KAAK;AACvD,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,0BAA0B;AAC/B,SAAK,mBAAmB,CAAC;AAAA,EAC3B;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,kBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,YAAM,QAAQ,OAAO,oBAAoB;AACzC,UAAI,KAAK,iBAAiB,OAAO,MAAM;AACrC,cAAM,YAAY;AAClB,aAAK,iBAAiB,MAAM;AAAA,UAC1B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,KAAK,MAAM,OAAO,KAAK,uBAAuB,EAAE,SAAS,SAAS,CAAC;AAAA,QAC1F;AAAA,MACF;AACA,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,YAAM,kBAAkB,KAAK,iBAAiB,IAAI;AAClD,WAAK,MAAM;AACT,cAAM,qBAAqB,KAAK,iBAAiB,OAAO,QAAQ,CAAC;AACjE,wBAAgB,OAAO,kBAAkB;AACzC,cAAM,WAAW,KAAK,IAAI,IAAI,UAAU,KAAK,KAAK,oBAAoB,OAAO,QAAQ,QAAQ,CAAC,CAAC,CAAC,GAAG,CAAC,KAAK,YAAY,GAAG,KAAK;AAC7H,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,QAAI,KAAK,oBAAoB,MAAM;AACjC,cAAQ,KAAK,iBAAiB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IACtD;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,KAAK,iBAAiB,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAC9H;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,UAAM,YAAY;AAClB,SAAK,mBAAmB,aAAa,IAAI,CAAC,OAAO,EAAE,cAAc,EAAE,MAAM,UAAU,EAAE,OAAO,SAAS,SAAS,EAAE,EAAE;AAAA,EACpH;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,2BAA2B,KAAK;AAAA,IAClC;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,0BAA0B;AAAA,EAC1E;AACF;AACA,iBAAiB,YAAY;AAC7B,cAAc,gBAAgB;AAG9B,IAAI,gBAAgB,cAAc,UAAU;AAAA,EAC1C,YAAY,cAAc,OAAO,OAAO,WAAW,MAAM;AACvD,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,QAAQ;AACb,SAAK,QAAQ;AACb,SAAK,UAAU;AACf,SAAK,yBAAyB,CAAC;AAC/B,SAAK,0BAA0B,CAAC;AAChC,SAAK,MAAM;AACT,WAAK,WAAW,OAAO,KAAK,EAAE,SAAS;AACvC,WAAK,WAAW,OAAO,KAAK,EAAE,SAAS;AAAA,IACzC,CAAC;AACD,QAAI,YAAY,MAAM;AACpB,WAAK,UAAU,OAAO,QAAQ,QAAQ;AAAA,IACxC;AAAA,EACF;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,MAAM,EAAE,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACxH,SAAK,MAAM;AACT,YAAM,mBAAmB,IAAI,GAAG,KAAK,QAAQ;AAC7C,YAAM,mBAAmB,IAAI,GAAG,KAAK,QAAQ;AAC7C,eAAS,QAAQ,CAAC,MAAM,OAAO;AAC7B,cAAM,QAAQ,OAAO,oBAAoB;AACzC,cAAM,YAAY;AAClB,YAAI,KAAK,uBAAuB,OAAO,MAAM;AAC3C,eAAK,uBAAuB,MAAM;AAAA,YAChC,cAAc,GAAG;AAAA,YACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,UAC3D;AAAA,QACF;AACA,YAAI,KAAK,wBAAwB,OAAO,MAAM;AAC5C,eAAK,wBAAwB,MAAM;AAAA,YACjC,cAAc,GAAG;AAAA,YACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,UAC3D;AAAA,QACF;AACA,cAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,YAAI,YAAY,MAAM;AACpB;AAAA,QACF;AACA,cAAM,cAAc,KAAK,uBAAuB,IAAI;AACpD,cAAM,eAAe,KAAK,wBAAwB,IAAI;AACtD,cAAM,iBAAiB,KAAK,IAAI,aAAa,KAAK,KAAK,GAAG,IAAI,UAAU,IAAI,KAAK,KAAK,CAAC;AACvF,cAAM,kBAAkB,KAAK,IAAI,cAAc,KAAK,KAAK,GAAG,IAAI,OAAO,QAAQ,GAAG,IAAI,KAAK,KAAK,CAAC;AACjG,cAAM,2BAA2B,IAAI,gBAAgB,gBAAgB;AACrE,cAAM,4BAA4B,IAAI,iBAAiB,gBAAgB;AACvE,oBAAY,OAAO,cAAc;AACjC,qBAAa,OAAO,eAAe;AACnC,cAAM,WAAW,KAAK,IAAI,IAAI,0BAA0B,KAAK,KAAK,yBAAyB,GAAG,KAAK,OAAO,CAAC,GAAG,CAAC,KAAK,YAAY,GAAG,KAAK;AACxI,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AACD,WAAK,SAAS,OAAO,IAAI,KAAK,UAAU,KAAK,KAAK,CAAC;AACnD,WAAK,SAAS,OAAO,IAAI,KAAK,UAAU,KAAK,KAAK,CAAC;AAAA,IACrD,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,SAAK,SAAS,QAAQ;AACtB,SAAK,SAAS,QAAQ;AACtB,QAAI,KAAK,0BAA0B,MAAM;AACvC,cAAQ,KAAK,uBAAuB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC5D;AACA,QAAI,KAAK,2BAA2B,MAAM;AACxC,cAAQ,KAAK,wBAAwB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC7D;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,YAAY,CAAC,GAAG,KAAK,wBAAwB,GAAG,KAAK,uBAAuB;AAClF,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAClH;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,SAAK,MAAM;AACT,WAAK,SAAS,OAAO,IAAI,KAAK,OAAO,KAAK,cAAc,CAAC,CAAC;AAC1D,WAAK,SAAS,OAAO,IAAI,KAAK,OAAO,KAAK,cAAc,CAAC,CAAC;AAAA,IAC5D,CAAC;AACD,UAAM,gBAAgB,aAAa,SAAS;AAC5C,UAAM,YAAY;AAClB,SAAK,yBAAyB,aAAa,MAAM,GAAG,aAAa,EAAE,IAAI,CAAC,OAAO;AAAA,MAC7E,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AACF,SAAK,0BAA0B,aAAa,MAAM,eAAe,gBAAgB,CAAC,EAAE,IAAI,CAAC,OAAO;AAAA,MAC9F,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AAAA,EACJ;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,WAAW,KAAK;AAAA,IAClB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,UAAUA,QAAO,UAAUA,QAAO,UAAU;AAAA,EAC5F;AACF;AACA,cAAc,YAAY;AAC1B,cAAc,aAAa;AAG3B,IAAI,kBAAkB,cAAc,UAAU;AAAA,EAC5C,YAAY,cAAc,OAAO,OAAO,WAAW,MAAM,QAAQ,GAAG;AAClE,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,QAAQ;AACb,SAAK,QAAQ;AACb,SAAK,UAAU;AACf,SAAK,QAAQ;AACb,SAAK,yBAAyB,CAAC;AAC/B,SAAK,6BAA6B,CAAC;AACnC,SAAK,MAAM;AACT,WAAK,YAAY,OAAO,CAAC,EAAE,SAAS;AACpC,WAAK,WAAW,OAAO,KAAK,EAAE,SAAS;AAAA,IACzC,CAAC;AACD,QAAI,YAAY,MAAM;AACpB,WAAK,UAAU,OAAO,QAAQ,QAAQ;AAAA,IACxC;AAAA,EACF;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,SAAK,MAAM;AACT,YAAM,mBAAmB,IAAI,GAAG,KAAK,QAAQ;AAC7C,YAAM,KAAK,IAAI,CAAC,KAAK,cAAc,KAAK,IAAI,KAAK,WAAW,KAAK,KAAK,GAAG,CAAC,CAAC;AAC3E,oBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,cAAM,QAAQ,OAAO,oBAAoB;AACzC,cAAM,YAAY;AAClB,YAAI,KAAK,uBAAuB,OAAO,MAAM;AAC3C,eAAK,uBAAuB,MAAM;AAAA,YAChC,cAAc,GAAG;AAAA,YACjB,UAAU,UAAU,KAAK,EAAE,SAAS,SAAS;AAAA,UAC/C;AAAA,QACF;AACA,YAAI,KAAK,2BAA2B,OAAO,MAAM;AAC/C,eAAK,2BAA2B,MAAM;AAAA,YACpC,cAAc,GAAG;AAAA,YACjB,UAAU,UAAU,KAAK,EAAE,SAAS,SAAS;AAAA,UAC/C;AAAA,QACF;AACA,cAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,YAAI,YAAY,MAAM;AACpB;AAAA,QACF;AACA,cAAM,cAAc,KAAK,uBAAuB,IAAI;AACpD,cAAM,kBAAkB,KAAK,2BAA2B,IAAI;AAC5D,cAAM,iBAAiB,KAAK,IAAI,aAAa,KAAK,KAAK,GAAG,IAAI,UAAU,IAAI,KAAK,KAAK,CAAC;AACvF,cAAM,MAAM,IAAI,iBAAiB,KAAK,KAAK;AAC3C,cAAM,MAAM,IAAI,QAAQ;AACxB,cAAM,qBAAqB,QAAQ,KAAK,GAAG;AAC3C,oBAAY,OAAO,cAAc;AACjC,wBAAgB,OAAO,kBAAkB;AACzC,cAAM,WAAW,KAAK,IAAI,IAAI,IAAI,gBAAgB,GAAG,IAAI,gBAAgB,KAAK,oBAAoB,KAAK,OAAO,CAAC,CAAC,GAAG,KAAK;AACxH,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AACD,WAAK,UAAU,OAAO,KAAK,KAAK,WAAW,CAAC,CAAC;AAC7C,WAAK,SAAS,OAAO,IAAI,KAAK,UAAU,KAAK,KAAK,CAAC;AAAA,IACrD,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,SAAK,SAAS,QAAQ;AACtB,SAAK,UAAU,QAAQ;AACvB,QAAI,KAAK,0BAA0B,MAAM;AACvC,cAAQ,KAAK,uBAAuB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC5D;AACA,QAAI,KAAK,8BAA8B,MAAM;AAC3C,cAAQ,KAAK,2BAA2B,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAChE;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,WAAW,KAAK;AAAA,MAChB,SAAS,KAAK;AAAA,IAChB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,UAAUA,QAAO,UAAUA,QAAO,YAAYA,QAAO,QAAQ;AAAA,EAC7G;AACF;AACA,gBAAgB,YAAY;AAC5B,cAAc,eAAe;AAG7B,IAAI,eAAe,cAAc,UAAU;AAAA,EACzC,YAAY,cAAc;AACxB,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,gBAAgB,YAAY;AAAA,EACnC;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,MAAM,EAAE,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACxH,aAAS,QAAQ,CAAC,MAAM,OAAO;AAC7B,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,YAAM,QAAQ,OAAO,oBAAoB;AACzC,WAAK,MAAM;AACT,cAAM,WAAW,KAAK,IAAI,KAAK,GAAG,QAAQ,GAAG,KAAK;AAClD,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,gBAAgB,cAAc;AAC5B,SAAK,eAAe;AACpB,QAAI,KAAK,KAAK,MAAM;AAClB,WAAK,EAAE,QAAQ;AAAA,IACjB;AACA,SAAK,IAAI,KAAK,OAAO,CAAC,YAAY,CAAC;AAAA,EACrC;AAAA,EACA,UAAU;AACR,SAAK,EAAE,QAAQ;AAAA,EACjB;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC;AAAA,EACrC;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,QAAI,aAAa,WAAW,GAAG;AAC7B,YAAM,IAAI,MAAM,+CAA+C;AAAA,IACjE;AAAA,EACF;AAAA,EACA,YAAY;AACV,WAAO,EAAE,gBAAgB,KAAK,aAAa;AAAA,EAC7C;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,eAAe;AAAA,EACvC;AACF;AACA,aAAa,YAAY;AACzB,cAAc,YAAY;AAG1B,IAAI,oBAAoB,cAAc,aAAa;AAAA,EACjD,YAAY,cAAc,UAAU,cAAc,OAAO;AACvD,UAAM,YAAY;AAClB,SAAK,eAAe;AACpB,SAAK,WAAW;AAChB,SAAK,cAAc;AACnB,SAAK,gBAAgB,CAAC;AACtB,SAAK,IAAI,OAAO,KAAK,QAAQ;AAAA,EAC/B;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,kBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,YAAM,QAAQ,OAAO,oBAAoB;AACzC,UAAI,KAAK,cAAc,OAAO,MAAM;AAClC,cAAM,YAAY;AAClB,aAAK,cAAc,MAAM;AAAA,UACvB,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,YAAM,eAAe,KAAK,cAAc,IAAI;AAC5C,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,WAAK,MAAM;AACT,YAAI;AACJ,cAAM,kBAAkB,KAAK,IAAI,KAAK,GAAG,YAAY,GAAG,QAAQ;AAChE,YAAI,KAAK,aAAa;AACpB,qBAAW,KAAK,IAAI,KAAK,GAAG,KAAK,UAAU,IAAI,iBAAiB,KAAK,CAAC,CAAC,CAAC,GAAG,KAAK;AAAA,QAClF,OAAO;AACL,qBAAW,KAAK,IAAI,KAAK,GAAG,eAAe,GAAG,KAAK;AAAA,QACrD;AACA,qBAAa,OAAO,eAAe;AACnC,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,SAAK,EAAE,QAAQ;AACf,QAAI,KAAK,iBAAiB,MAAM;AAC9B,cAAQ,KAAK,cAAc,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IACnD;AAAA,EACF;AAAA,EACA,YAAY,UAAU;AACpB,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,KAAK,cAAc,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAC3H;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,UAAM,YAAY;AAClB,SAAK,gBAAgB,aAAa,IAAI,CAAC,OAAO,EAAE,cAAc,EAAE,MAAM,UAAU,EAAE,OAAO,SAAS,SAAS,EAAE,EAAE;AAAA,EACjH;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,YAAY,KAAK;AAAA,MACjB,eAAe,KAAK;AAAA,IACtB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,aAAaA,QAAO,cAAc;AAAA,EAClF;AACF;AACA,kBAAkB,YAAY;AAC9B,cAAc,iBAAiB;AAG/B,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,cAAc,QAAQ,KAAK,WAAW,GAAG,WAAW,MAAM,WAAW,OAAO;AACtF,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,QAAQ;AACb,SAAK,WAAW;AAChB,SAAK,UAAU;AACf,SAAK,yBAAyB,CAAC;AAC/B,SAAK,qBAAqB,CAAC;AAC3B,SAAK,uBAAuB,CAAC;AAC7B,SAAK,WAAW;AAChB,QAAI,YAAY,MAAM;AACpB,WAAK,UAAU,OAAO,QAAQ,QAAQ;AAAA,IACxC;AACA,QAAI,gBAAgB,MAAM;AACxB,YAAM,IAAI,MAAM,oDAAoD;AAAA,IACtE;AAAA,EACF;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,kBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,YAAM,QAAQ,OAAO,oBAAoB;AACzC,YAAM,YAAY;AAClB,UAAI,KAAK,uBAAuB,OAAO,MAAM;AAC3C,aAAK,uBAAuB,MAAM;AAAA,UAChC,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,UAAI,KAAK,mBAAmB,OAAO,MAAM;AACvC,aAAK,mBAAmB,MAAM;AAAA,UAC5B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,UAAI,KAAK,qBAAqB,OAAO,QAAQ,KAAK,UAAU;AAC1D,aAAK,qBAAqB,MAAM;AAAA,UAC9B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,YAAM,wBAAwB,KAAK,uBAAuB,IAAI;AAC9D,YAAM,qBAAqB,KAAK,mBAAmB,IAAI;AACvD,WAAK,MAAM;AACT,cAAM,2BAA2B,KAAK,IAAI,uBAAuB,KAAK,KAAK,GAAG,IAAI,OAAO,QAAQ,GAAG,IAAI,KAAK,KAAK,CAAC;AACnH,YAAI,KAAK,UAAU;AACjB,gBAAM,sBAAsB,KAAK,qBAAqB,IAAI;AAC1D,gBAAM,yBAAyB,KAAK,IAAI,qBAAqB,KAAK,KAAK,GAAG,IAAI,UAAU,IAAI,KAAK,KAAK,CAAC;AACvG,gBAAM,mBAAmB,IAAI,IAAI,UAAU,KAAK,YAAY,GAAG,KAAK,IAAI,0BAA0B,KAAK,OAAO,sBAAsB,GAAG,KAAK,OAAO,CAAC,CAAC,CAAC;AACtJ,gBAAM,wBAAwB,KAAK,IAAI,oBAAoB,KAAK,QAAQ,GAAG,gBAAgB;AAC3F,gCAAsB,OAAO,wBAAwB;AACrD,8BAAoB,OAAO,sBAAsB;AACjD,6BAAmB,OAAO,qBAAqB;AAC/C,gBAAM,WAAW,IAAI,OAAO,qBAAqB;AACjD,gBAAM,OAAO,QAAQ;AAAA,QACvB,OAAO;AACL,gBAAM,4BAA4B,KAAK,IAAI,uBAAuB,KAAK,KAAK,GAAG,IAAI,OAAO,QAAQ,GAAG,IAAI,KAAK,KAAK,CAAC;AACpH,gBAAM,wBAAwB,KAAK,IAAI,oBAAoB,KAAK,QAAQ,GAAG,IAAI,IAAI,UAAU,KAAK,YAAY,GAAG,KAAK,KAAK,2BAA2B,KAAK,OAAO,CAAC,CAAC,CAAC;AACrK,gCAAsB,OAAO,yBAAyB;AACtD,6BAAmB,OAAO,qBAAqB;AAC/C,gBAAM,WAAW,IAAI,OAAO,qBAAqB;AACjD,gBAAM,OAAO,QAAQ;AAAA,QACvB;AAAA,MACF,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,QAAI,KAAK,0BAA0B,MAAM;AACvC,cAAQ,KAAK,uBAAuB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC5D;AACA,QAAI,KAAK,wBAAwB,QAAQ,KAAK,UAAU;AACtD,cAAQ,KAAK,qBAAqB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC1D;AACA,QAAI,KAAK,sBAAsB,MAAM;AACnC,cAAQ,KAAK,mBAAmB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IACxD;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,YAAY,CAAC,GAAG,KAAK,wBAAwB,GAAG,KAAK,kBAAkB;AAC7E,QAAI,KAAK,UAAU;AACjB,gBAAU,KAAK,GAAG,KAAK,oBAAoB;AAAA,IAC7C;AACA,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAClH;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,UAAM,gBAAgB,KAAK,WAAW,aAAa,SAAS,IAAI,aAAa,SAAS;AACtF,UAAM,YAAY;AAClB,SAAK,yBAAyB,aAAa,MAAM,GAAG,aAAa,EAAE,IAAI,CAAC,OAAO;AAAA,MAC7E,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AACF,SAAK,qBAAqB,aAAa,MAAM,eAAe,gBAAgB,CAAC,EAAE,IAAI,CAAC,OAAO;AAAA,MACzF,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AACF,QAAI,KAAK,UAAU;AACjB,WAAK,uBAAuB,aAAa,MAAM,gBAAgB,GAAG,gBAAgB,CAAC,EAAE,IAAI,CAAC,OAAO;AAAA,QAC/F,cAAc,EAAE;AAAA,QAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,MACvC,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,WAAW,KAAK;AAAA,MAChB,YAAY,KAAK;AAAA,IACnB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,UAAUA,QAAO,aAAaA,QAAO,YAAYA,QAAO,WAAW;AAAA,EACnH;AACF;AACA,iBAAiB,YAAY;AAC7B,cAAc,gBAAgB;AAG9B,IAAI,wBAAwB,MAAM;AAAA,EAChC,OAAO,IAAI,cAAc;AACvB,WAAO,IAAI,aAAa,YAAY;AAAA,EACtC;AAAA,EACA,OAAO,SAAS,cAAc,UAAU,cAAc,OAAO;AAC3D,WAAO,IAAI,kBAAkB,cAAc,UAAU,WAAW;AAAA,EAClE;AAAA,EACA,OAAO,QAAQ,cAAc,QAAQ,KAAK,WAAW,GAAG,WAAW,MAAM,WAAW,OAAO;AACzF,WAAO,IAAI,iBAAiB,cAAc,OAAO,UAAU,UAAU,QAAQ;AAAA,EAC/E;AAAA,EACA,OAAO,KAAK,eAAe,MAAM,QAAQ,KAAK,QAAQ,OAAO,WAAW,MAAM;AAC5E,WAAO,IAAI,cAAc,cAAc,OAAO,OAAO,QAAQ;AAAA,EAC/D;AAAA,EACA,OAAO,SAAS,eAAe,MAAM,MAAM,MAAM,WAAW,MAAM;AAChE,WAAO,IAAI,kBAAkB,cAAc,KAAK,QAAQ;AAAA,EAC1D;AAAA,EACA,OAAO,OAAO,eAAe,MAAM,QAAQ,KAAK,QAAQ,OAAO,WAAW,MAAM,QAAQ,GAAG;AACzF,WAAO,IAAI,gBAAgB,cAAc,OAAO,OAAO,UAAU,KAAK;AAAA,EACxE;AAAA,EACA,OAAO,QAAQ,cAAc,0BAA0B,KAAK;AAC1D,WAAO,IAAI,iBAAiB,cAAc,uBAAuB;AAAA,EACnE;AACF;AAGA,IAAI,QAAQ;AAAA,EACV,KAAK,sBAAsB;AAAA,EAC3B,UAAU,sBAAsB;AAAA,EAChC,UAAU,sBAAsB;AAAA,EAChC,SAAS,sBAAsB;AAAA,EAC/B,SAAS,sBAAsB;AAAA,EAC/B,QAAQ,sBAAsB;AAAA,EAC9B,MAAM,sBAAsB;AAC9B;AAGA,IAAI,iBAAiB,MAAM;AACzB,MAAI,OAAO,0BAA0B,aAAa;AAChD,WAAO;AAAA,EACT,WAAW,OAAO,iBAAiB,aAAa;AAC9C,WAAO;AAAA,EACT;AACA,SAAO,CAAC,MAAM,EAAE;AAClB,GAAG;AACH,SAAS,YAAY;AACnB,SAAO,IAAI,QAAQ,CAAC,YAAY,cAAc,MAAM,QAAQ,CAAC,CAAC;AAChE;AAGA,IAAI,uBAAuB,CAAC;AAC5BlB,UAAS,sBAAsB;AAAA,EAC7B,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,OAAO,MAAM;AAAA,EACb,uBAAuB,MAAM;AAAA,EAC7B,kBAAkB,MAAM;AAAA,EACxB,YAAY,MAAM;AAAA,EAClB,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,4BAA4B,MAAM;AAAA,EAClC,4BAA4B,MAAM;AAAA,EAClC,wBAAwB,MAAM;AAAA,EAC9B,oBAAoB,MAAM;AAAA,EAC1B,sBAAsB,MAAM;AAAA,EAC5B,iBAAiB,MAAM;AAAA,EACvB,qBAAqB,MAAM;AAAA,EAC3B,2BAA2B,MAAM;AAAA,EACjC,kBAAkB,MAAM;AAAA,EACxB,mCAAmC,MAAM;AAAA,EACzC,sBAAsB,MAAM;AAAA,EAC5B,qBAAqB,MAAM;AAAA,EAC3B,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,uBAAuB,MAAM;AAAA,EAC7B,0BAA0B,MAAM;AAAA,EAChC,2BAA2B,MAAM;AAAA,EACjC,iBAAiB,MAAM;AAAA,EACvB,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,yBAAyB,MAAM;AAAA,EAC/B,sBAAsB,MAAM;AAAA,EAC5B,gCAAgC,MAAM;AAAA,EACtC,sBAAsB,MAAM;AAAA,EAC5B,UAAU,MAAM;AAAA,EAChB,WAAW,MAAM;AAAA,EACjB,wBAAwB,MAAM;AAAA,EAC9B,wBAAwB,MAAM;AAAA,EAC9B,oBAAoB,MAAM;AAAA,EAC1B,kBAAkB,MAAM;AAAA,EACxB,qBAAqB,MAAM;AAAA,EAC3B,sBAAsB,MAAM;AAAA,EAC5B,sBAAsB,MAAM;AAAA,EAC5B,sBAAsB,MAAM;AAAA,EAC5B,sBAAsB,MAAM;AAAA,EAC5B,gBAAgB,MAAM;AAAA,EACtB,kBAAkB,MAAM;AAAA,EACxB,aAAa,MAAM;AAAA,EACnB,eAAe,MAAM;AAAA,EACrB,kBAAkB,MAAM;AAAA,EACxB,aAAa,MAAM;AAAA,EACnB,qBAAqB,MAAM;AAAA,EAC3B,4BAA4B,MAAM;AAAA,EAClC,qBAAqB,MAAM;AAAA,EAC3B,cAAc,MAAM;AAAA,EACpB,iDAAiD,MAAM;AAAA,EACvD,iDAAiD,MAAM;AAAA,EACvD,mDAAmD,MAAM;AAAA,EACzD,sDAAsD,MAAM;AAAA,EAC5D,iDAAiD,MAAM;AAAA,EACvD,iDAAiD,MAAM;AAAA,EACvD,0DAA0D,MAAM;AAAA,EAChE,+CAA+C,MAAM;AAAA,EACrD,wDAAwD,MAAM;AAAA,EAC9D,yDAAyD,MAAM;AAAA,EAC/D,8DAA8D,MAAM;AAAA,EACpE,0DAA0D,MAAM;AAAA,EAChE,wBAAwB,MAAM;AAAA,EAC9B,uBAAuB,MAAM;AAAA,EAC7B,KAAK,MAAMiB;AAAA,EACX,wBAAwB,MAAM;AAAA,EAC9B,oBAAoB,MAAM;AAAA,EAC1B,kBAAkB,MAAM;AAAA,EACxB,cAAc,MAAM;AAAA,EACpB,YAAY,MAAM;AAAA,EAClB,YAAY,MAAM;AAAA,EAClB,wBAAwB,MAAM;AAAA,EAC9B,mBAAmB,MAAM;AAAA,EACzB,YAAY,MAAM;AAAA,EAClB,2BAA2B,MAAM;AAAA,EACjC,eAAe,MAAM;AAAA,EACrB,qBAAqB,MAAM;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AAGD,SAAS,uBAAuB,QAAQ,MAAM;AAC5C,QAAM,OAAO,OAAO,GAAG;AACvB,SAAO,QAAQ,CAAC,OAAO,OAAO;AAC5B,WAAO,MAAM,WAAW,MAAM,MAAM,kBAAkB,0BAA0B,iDAAiD,OAAO;AAAA,EAC1I,CAAC;AACD,SAAO,QAAQ,KAAK,OAAO,MAAM,MAAM,kBAAkB,qCAAqC,OAAO,IAAI;AACzG,QAAM,aAAa,OAAO;AAC1B,SAAO,QAAQ,CAAC,OAAO,OAAO;AAC5B,aAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,aAAO,OAAO,QAAQ,MAAM,QAAQ,WAAW,KAAK,MAAM,kBAAkB,2BAA2B,QAAQ,gDAAgD,+CAA+C,KAAK;AAAA,IACrN;AAAA,EACF,CAAC;AACH;AACA,SAAS,iBAAiB,QAAQ,MAAM;AACtC,QAAM,cAAc,OAAO,GAAG,MAAM;AACpC,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,gBAAY,SAAS,OAAO,IAAI;AAAA,EAClC;AACA,SAAO;AACT;AAGA,IAAI;AAAA,CACH,SAAS,mBAAmB;AAC3B,oBAAkB,kBAAkB,oBAAoB,KAAK;AAC7D,oBAAkB,kBAAkB,kBAAkB,KAAK;AAC3D,oBAAkB,kBAAkB,iBAAiB,KAAK;AAC1D,oBAAkB,kBAAkB,gBAAgB,KAAK;AACzD,oBAAkB,kBAAkB,gBAAgB,KAAK;AACzD,oBAAkB,kBAAkB,gBAAgB,KAAK;AAC3D,GAAG,qBAAqB,mBAAmB,CAAC,EAAE;AAC9C,SAAS,kCAAkC,YAAY,OAAO,YAAY;AACxE,MAAI,cAAc,IAAI,MAAM;AAC5B,MAAI,cAAc,QAAQ,SAAS,MAAM;AACvC,WAAO;AAAA,EACT;AACA,MAAI,SAAS,MAAM;AACjB,WAAO,YAAY,SAAS,aAAa,WAAW,QAAQ;AAC1D,kBAAY,KAAK,EAAE;AAAA,IACrB;AAAA,EACF,OAAO;AACL,kBAAc,MAAM,MAAM;AAAA,EAC5B;AACA,MAAI,cAAc,MAAM;AACtB,WAAO;AAAA,EACT;AACA,MAAI,aAAa,WAAW,WAAW,YAAY,QAAQ;AACzD,UAAM,IAAI,MAAM,4BAA4B,2CAA2C,aAAa,WAAW,4BAA4B,YAAY,QAAQ;AAAA,EACjK;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,UAAM,WAAW,WAAW;AAC5B,UAAM,sBAAsB,YAAY,YAAY,SAAS,WAAW,SAAS;AACjF,UAAM,iBAAiB,YAAY;AACnC,QAAI,YAAY,GAAG;AACjB,UAAI,kBAAkB,GAAG;AACvB,YAAI,mBAAmB,UAAU;AAC/B,gBAAM,IAAI,MAAM,4BAA4B,0CAA0C,KAAK,iBAAiB,sBAAsB,KAAK,iBAAiB,gBAAgB;AAAA,QAC1K;AAAA,MACF,OAAO;AACL,oBAAY,uBAAuB;AAAA,MACrC;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,2BAA2B,yBAAyB;AAC3D,QAAM,eAAe;AAAA,IACnB,kBAAkB,iBAAiB;AAAA,IACnC,gBAAgB,iBAAiB;AAAA,IACjC,eAAe,iBAAiB;AAAA,IAChC,cAAc,iBAAiB;AAAA,IAC/B,cAAc,iBAAiB;AAAA,IAC/B,cAAc,iBAAiB;AAAA,EACjC;AACA,QAAM,SAAS,CAAC;AAChB,aAAW,WAAW,yBAAyB;AAC7C,QAAI,WAAW,cAAc;AAC3B,aAAO,KAAK,aAAa,QAAQ;AAAA,IACnC,OAAO;AACL;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,cAAc,mBAAmB;AACxC,MAAI,kBAAkB,WAAW,GAAG;AAClC,WAAO;AAAA,EACT;AACA,MAAI,kBAAkB,OAAO,iBAAiB,gBAAgB;AAC5D,WAAO,kBAAkB,SAAS;AAAA,EACpC;AACA,SAAO,kBAAkB;AAC3B;AACA,SAAS,0BAA0B,mBAAmB,YAAY;AAChE,MAAI,qBAAqB,QAAQ,cAAc,MAAM;AACnD;AAAA,EACF;AACA,QAAM,eAAe,kBAAkB;AACvC,QAAM,cAAc,WAAW;AAC/B,MAAI,gBAAgB,aAAa;AAC/B,UAAM,IAAI,MAAM,sBAAsB,wDAAwD,qDAAqD,wEAAwE,cAAc;AAAA,EAC3O;AACA,WAAS,KAAK,GAAG,KAAK,KAAK,IAAI,cAAc,cAAc,CAAC,GAAG,EAAE,IAAI;AACnE,UAAM,aAAa,kBAAkB;AACrC,UAAM,WAAW,WAAW,KAAK;AACjC,QAAI,cAAc,KAAK,YAAY,KAAK,eAAe,KAAK,eAAe,UAAU;AACnF,YAAM,IAAI,MAAM,sBAAsB,+DAA+D,mDAAmD,KAAK,kBAAkB,aAAa,uDAAuD,KAAK,kBAAkB,aAAa,UAAU;AAAA,IACnS;AAAA,EACF;AACF;AAGA,IAAI,wBAAwB;AAC5B,SAAS,yBAAyB,QAAQ;AACxC,MAAI,UAAU,uBAAuB;AACnC,WAAO;AAAA,EACT;AACA,SAAO,eAAe,QAAQ,KAAK,MAAM,KAAK,KAAK,MAAM,CAAC,CAAC;AAC7D;AAGA,SAAS,eAAe,QAAQ,aAAa,YAAY;AACvD,QAAM,UAAU,cAAc,OAAO,WAAW,WAAW,SAAS,OAAO;AAC3E,QAAM,UAAU,eAAe,OAAO,WAAW,WAAW,SAAS,OAAO;AAC5E,SAAO,CAAC,SAAS,OAAO;AAC1B;AAGA,SAAS,YAAY,YAAY,YAAY,OAAO,eAAe,MAAM;AACvE,MAAI,WAAW,CAAC;AAChB,MAAI,cAAc;AAChB,eAAW,SAAS,OAAO,WAAW,MAAM,CAAC,CAAC;AAC9C,aAAS,KAAK,WAAW,KAAK,KAAK;AACnC,eAAW,SAAS,OAAO,WAAW,MAAM,CAAC,CAAC;AAAA,EAChD,OAAO;AACL,eAAW,SAAS,OAAO,WAAW,EAAE;AACxC,UAAM,gBAAgB,WAAW;AACjC,aAAS,KAAK,GAAG,KAAK,eAAe,EAAE,IAAI;AACzC,iBAAW,SAAS,OAAO,CAAC,WAAW,KAAK,KAAK,WAAW,KAAK,WAAW,GAAG,CAAC;AAAA,IAClF;AACA,eAAW,SAAS,OAAO,WAAW,MAAM,gBAAgB,CAAC,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,SAAS,YAAY,cAAc,gBAAgB,eAAe,MAAM;AACtE,QAAM,WAAW,CAAC;AAClB,MAAI,cAAc;AAChB,aAAS,KAAK,cAAc;AAC5B,aAAS,KAAK,iBAAiB,GAAG,KAAK,cAAc,EAAE,IAAI;AACzD,UAAI,MAAM,IAAI,gBAAgB;AAC5B,iBAAS,KAAK,EAAE;AAChB,iBAAS,KAAK,MAAM,iBAAiB,EAAE;AAAA,MACzC,OAAO;AACL,iBAAS,KAAK,EAAE;AAAA,MAClB;AAAA,IACF;AAAA,EACF,OAAO;AACL,UAAM,sBAAsB,CAAC;AAC7B,UAAM,qBAAqB,CAAC;AAC5B,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAI,MAAM,iBAAiB,IAAI,KAAK,KAAK,MAAM,GAAG;AAChD,2BAAmB,KAAK,EAAE;AAAA,MAC5B,OAAO;AACL,4BAAoB,KAAK,EAAE;AAAA,MAC7B;AAAA,IACF;AACA,aAAS,KAAK,GAAG,mBAAmB;AACpC,aAAS,KAAK,CAAC;AACf,aAAS,KAAK,GAAG,kBAAkB;AAAA,EACrC;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,YAAY,YAAY,OAAO,eAAe,MAAM;AAC/E,QAAM,mBAAmB,CAAC;AAC1B,MAAI,cAAc;AAChB,qBAAiB,KAAK,WAAW,KAAK,KAAK;AAAA,EAC7C,OAAO;AACL,qBAAiB,KAAK,WAAW,KAAK,KAAK;AAAA,EAC7C;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,QAAI,MAAM,WAAW,QAAQ;AAC3B,UAAI,cAAc;AAChB,yBAAiB,KAAK,WAAW,KAAK,KAAK,WAAW,GAAG;AAAA,MAC3D,OAAO;AACL,yBAAiB,KAAK,WAAW,MAAM,WAAW,KAAK,EAAE;AAAA,MAC3D;AAAA,IACF,OAAO;AACL,uBAAiB,KAAK,WAAW,GAAG;AAAA,IACtC;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,OAAO,YAAY;AAC9C,QAAM,mBAAmB,CAAC,CAAC;AAC3B,WAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,qBAAiB,KAAK,MAAM,IAAI,EAAE;AAAA,EACpC;AACA,SAAO;AACT;AACA,SAAS,aAAa,gBAAgB,OAAO,YAAY;AACvD,QAAM,YAAY,eAAe,MAAM,GAAG,CAAC;AAC3C,WAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,cAAU,KAAK,eAAe,KAAK,KAAK,MAAM,IAAI,KAAK,MAAM,IAAI,EAAE;AAAA,EACrE;AACA,SAAO;AACT;AAGA,IAAI,kBAAkB;AACtB,IAAI,aAAa;AAGjB,IAAI,QAAQ;AACZ,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,SAAS;AAGb,SAAS,uBAAuB,OAAO,OAAO;AAC5C,MAAI,MAAM,WAAW,MAAM,QAAQ;AACjC,UAAM,IAAI,MAAM,gEAAgE,MAAM,iBAAiB,MAAM,SAAS;AAAA,EACxH;AACA,QAAM,SAAS,IAAI,aAAa,MAAM,SAAS,CAAC;AAChD,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM,GAAG;AAC5C,WAAO,MAAM,MAAM,KAAK;AACxB,WAAO,KAAK,KAAK,MAAM,KAAK;AAAA,EAC9B;AACA,SAAO;AACT;AACA,SAAS,uBAAuB,UAAU;AACxC,QAAM,QAAQ,IAAI,aAAa,SAAS,SAAS,CAAC;AAClD,QAAM,QAAQ,IAAI,aAAa,SAAS,SAAS,CAAC;AAClD,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM,GAAG;AAC9C,UAAM,KAAK,KAAK,SAAS;AACzB,UAAM,KAAK,KAAK,SAAS,KAAK;AAAA,EAChC;AACA,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,qBAAqB,UAAU;AACtC,QAAM,MAAM,KAAK,KAAK,SAAS,SAAS,CAAC;AACzC,QAAM,QAAQ,IAAI,aAAa,GAAG;AAClC,QAAM,QAAQ,IAAI,aAAa,GAAG;AAClC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM,GAAG;AAC9C,UAAM,KAAK,MAAM,KAAK,CAAC,KAAK,SAAS;AACrC,UAAM,KAAK,MAAM,KAAK,CAAC,KAAK,SAAS,KAAK;AAAA,EAC5C;AACA,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,oBAAoB,UAAU;AACrC,QAAM,MAAM,KAAK,MAAM,SAAS,SAAS,CAAC;AAC1C,QAAM,QAAQ,IAAI,aAAa,GAAG;AAClC,QAAM,QAAQ,IAAI,aAAa,GAAG;AAClC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM,GAAG;AAC9C,UAAM,KAAK,MAAM,KAAK,CAAC,KAAK,SAAS;AACrC,UAAM,KAAK,MAAM,KAAK,CAAC,KAAK,SAAS,KAAK;AAAA,EAC5C;AACA,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,oBAAoB,UAAUJ,QAAO;AAC5C,QAAM,QAAQ,SAASA,SAAQ;AAC/B,QAAM,QAAQ,SAASA,SAAQ,IAAI;AACnC,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,mBAAmB,MAAM,OAAO,OAAOA,QAAO;AACrD,OAAKA,SAAQ,KAAK;AAClB,OAAKA,SAAQ,IAAI,KAAK;AACxB;AACA,SAAS,UAAU,IAAI,SAAS;AAC9B,QAAM,QAAQ,IAAI,aAAa,KAAK,CAAC;AACrC,QAAM,QAAQ,IAAI,aAAa,KAAK,CAAC;AACrC,WAAS,KAAK,GAAG,KAAK,KAAK,KAAK,KAAK,CAAC,GAAG,MAAM;AAC7C,UAAM,KAAK,UAAU,IAAI,MAAM,KAAK,MAAM,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,CAAC;AACtB,UAAM,MAAM,KAAK,IAAI,CAAC;AAAA,EACxB;AACA,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,SAAS,GAAG,IAAI,SAAS;AAChC,QAAM,KAAK,UAAU,IAAI,MAAM,KAAK,MAAM,IAAI;AAC9C,QAAM,QAAQ,KAAK,IAAI,CAAC;AACxB,QAAM,QAAQ,KAAK,IAAI,CAAC;AACxB,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AAGA,IAAI,QAAQ;AACZ,IAAI,cAAc;AAClB,IAAI,QAAQ;AACZ,IAAI,WAAW;AACf,SAAS,qBAAqB,UAAU,YAAY;AAClD,aAAW,SAAS,QAAQ,OAAO,EAAE;AACrC,QAAM,aAAa,SAAS,SAAS,SAAS,QAAQ,aAAa,EAAE,EAAE,UAAU,MAAM;AACvF,MAAI,YAAY,GAAG;AACjB,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE,WAAW,YAAY,GAAG;AACxB,UAAM,IAAI,MAAM,6CAA6C,UAAU;AAAA,EACzE;AACA,QAAM,CAAC,aAAa,YAAY,IAAI,SAAS,MAAM,KAAK;AACxD,SAAO,YAAY,QAAQ,QAAQ,MAAM,IAAI,MAAM,2BAA2B,kCAAkC;AAChH,QAAM,aAAa,YAAY,MAAM,KAAK;AAC1C,QAAM,YAAY,WAAW;AAC7B,MAAI,eAAe,WAAW;AAC5B,UAAM,IAAI,MAAM,YAAY,qCAAqC,YAAY;AAAA,EAC/E;AACA,MAAI,YAAY,GAAG;AACjB,UAAM,IAAI,MAAM,+DAA+D;AAAA,EACjF;AACA,QAAM,UAAU,CAAC;AACjB,WAAS,KAAK,GAAG,KAAK,aAAa,QAAQ,EAAE,IAAI;AAC/C,UAAM,UAAU,aAAa;AAC7B,QAAI,CAAC,WAAW,KAAK,CAAC,cAAc,UAAU,QAAQ,OAAO,MAAM,EAAE,GAAG;AACtE,YAAM,IAAI,MAAM,uCAAuC,8CAA8C;AAAA,IACvG;AACA,QAAI,QAAQ,QAAQ,OAAO,MAAM,IAAI;AACnC,cAAQ,KAAK,OAAO;AAAA,IACtB;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,UAAM,UAAU,YAAY;AAC5B,QAAI,QAAQ,QAAQ,OAAO,MAAM,MAAM,YAAY,OAAO;AACxD,cAAQ,KAAK,OAAO;AAAA,IACtB;AAAA,EACF;AACA,QAAM,SAAS,IAAI,MAAM,WAAW,MAAM;AAC1C,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,QAAI,IAAI,IAAI,WAAW,IAAI,MAAM,EAAE,CAAC,EAAE,SAAS,WAAW,IAAI,QAAQ;AACpE,YAAM,IAAI,MAAM,2CAA2C,WAAW,kEAAkE;AAAA,IAC1I;AACA,WAAO,MAAM,CAAC;AACd,aAAS,IAAI,GAAG,IAAI,WAAW,IAAI,QAAQ,EAAE,GAAG;AAC9C,aAAO,IAAI,KAAK,QAAQ,QAAQ,WAAW,IAAI,EAAE,CAAC;AAAA,IACpD;AAAA,EACF;AACA,QAAM,UAAU,QAAQ;AACxB,QAAM,aAAa,aAAa;AAChC,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,YAAY,KAAK,SAAS,EAAE,IAAI;AAC5C,eAAW,KAAK,EAAE;AAAA,EACpB;AACA,SAAO,EAAE,SAAS,YAAY,OAAO;AACvC;AACA,SAAS,qBAAqB,OAAO,QAAQ;AAC3C,MAAI,qBAAqB,IAAI,MAAM,KAAK;AACxC,qBAAmB,KAAK,EAAE;AAC1B,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,uBAAmB,OAAO,OAAO;AAAA,EACnC;AACA,QAAM,cAAc,CAAC;AACrB,WAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,QAAI,mBAAmB,QAAQ,IAAI;AACjC,kBAAY,KAAK,EAAE;AAAA,IACrB;AAAA,EACF;AACA,uBAAqB,mBAAmB,OAAO,CAAC,MAAM,MAAM,EAAE;AAC9D,SAAO,EAAE,oBAAoB,YAAY,YAAY;AACvD;AACA,SAAS,oBAAoB,OAAO,QAAQ,SAAS;AACnD,QAAM,WAAW,IAAI,MAAM,KAAK;AAChC,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAM,QAAQ,QAAQ,IAAI;AAC1B,aAAS,IAAI,GAAG,IAAI,OAAO,IAAI,QAAQ,EAAE,GAAG;AAC1C,UAAI,SAAS,OAAO,IAAI,QAAQ,QAAQ;AACtC,iBAAS,OAAO,IAAI,MAAM,MAAM;AAAA,MAClC,OAAO;AACL,eAAO,SAAS,OAAO,IAAI,QAAQ,MAAM,IAAI,MAAM,sBAAsB,SAAS,OAAO,IAAI,eAAe,qBAAqB,KAAK,UAAU,KAAK,wBAAwB,MAAM,IAAI;AAAA,MACzL;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,YAAY,QAAQ;AAChD,QAAM,OAAO;AACb,QAAM,QAAQ,CAAC;AACf,MAAI,SAAS;AACb,MAAI,WAAW,WAAW,GAAG;AAC3B,SAAK,KAAK,EAAE;AAAA,EACd;AACA,WAAS,WAAW,SAAS;AAC7B,WAAS,KAAK,GAAG,KAAK,QAAQ,EAAE,IAAI;AAClC,UAAM,KAAK,CAAC,CAAC;AAAA,EACf;AACA,QAAM,sBAAsB,CAAC;AAC7B,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,YAAY,KAAK;AACvB,UAAM,cAAc,iBAAiB,QAAQ,SAAS;AACtD,eAAW,aAAa,aAAa;AACnC,UAAI,oBAAoB,QAAQ,SAAS,MAAM,IAAI;AACjD,cAAM,IAAI,KAAK,SAAS;AACxB,4BAAoB,KAAK,SAAS;AAAA,MACpC;AAAA,IACF;AAAA,EACF;AACA,SAAO,EAAE,MAAM,MAAM;AACvB;AACA,SAAS,sBAAsB,MAAM;AACnC,SAAO,KAAK,MAAM,CAAC,KAAKA,WAAU,QAAQA,MAAK;AACjD;AACA,SAAS,iBAAiB,QAAQ,KAAK;AACrC,QAAM,cAAc,CAAC;AACrB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,OAAO,IAAI,WAAW,KAAK,OAAO,IAAI,QAAQ,GAAG,MAAM,MAAM,QAAQ,IAAI;AAC3E,kBAAY,KAAK,EAAE;AAAA,IACrB;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,iBAAiB,GAAG,iBAAiB,OAAO,GAAG;AACtD,MAAI,aAAa,CAAC;AAClB,MAAI,OAAO,oBAAoB,UAAU;AACvC,WAAO,EAAE,MAAM,QAAQ,oBAAoB,GAAG,MAAM,+CAA+C;AACnG,iBAAa,IAAI,MAAM,eAAe,EAAE,KAAK,EAAE,MAAM,QAAQ,eAAe;AAAA,EAC9E,OAAO;AACL,UAAM,YAAY,gBAAgB,OAAO,CAACH,SAAQ,UAAU;AAC1D,UAAI,UAAU,IAAI;AAChB,QAAAA,WAAU;AAAA,MACZ;AACA,aAAOA;AAAA,IACT,GAAG,CAAC;AACJ,WAAO,aAAa,GAAG,MAAM,yDAAyD;AACtF,UAAM,WAAW,gBAAgB,QAAQ,EAAE;AAC3C,QAAI,aAAa,IAAI;AACnB,YAAM,QAAQ,gBAAgB,OAAO,CAAC,GAAG,MAAM,IAAI,IAAI,IAAI,IAAI,CAAC;AAChE,sBAAgB,YAAY,EAAE,MAAM,QAAQ;AAAA,IAC9C;AACA,WAAO,EAAE,MAAM,UAAU,gBAAgB,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC,GAAG,MAAM,6DAA6D;AACrI,iBAAa;AAAA,EACf;AACA,SAAO;AACT;AAGA,SAAS,gDAAgD,eAAe;AACtE,SAAO;AAAA,uBACc;AACvB;AACA,SAAS,gDAAgDG,QAAO,OAAO;AACrE,SAAO,WAAWA,0BAAyB;AAC7C;AACA,SAAS,kDAAkDA,QAAO,OAAO,OAAO;AAC9E,SAAO,WAAWA,0BAAyB,YAAY;AACzD;AAGA,SAAS,yDAAyD,MAAM,MAAM;AAC5E,SAAO,iDAAiD,YAAY;AACtE;AACA,SAAS,8CAA8C,KAAK,OAAO;AACjE,SAAO,QAAQ,iCAAiC;AAClD;AACA,SAAS,uDAAuD;AAC9D,SAAO;AACT;AACA,SAAS,gDAAgD,YAAY,aAAa;AAChF,QAAMiB,cAAY,cAAc,UAAU;AAC1C,QAAMN,cAAa,cAAc,WAAW;AAC5C,SAAO,2CAA2CM;AAAA,iEACaN,2BAA0B,2BAA2B;AACtH;AACA,SAAS,gDAAgD,YAAY,aAAa;AAChF,QAAMM,cAAY,cAAc,UAAU;AAC1C,QAAMN,cAAa,cAAc,WAAW;AAC5C,SAAO,qCAAqCM,yDAAuDN,2BAA0B,0BAA0B;AACzJ;AAGA,SAAS,0DAA0D;AACjE,SAAO;AACT;AACA,SAAS,+DAA+D;AACtE,SAAO;AACT;AACA,SAAS,yDAAyD,WAAW,YAAY;AACvF,SAAO,cAAc,8BAA8B;AACrD;AACA,SAAS,uDAAuDX,QAAO,YAAY,WAAW;AAC5F,SAAO,gBAAgBA,cAAa,+BAA+B;AACrE;AAGA,IAAI,uBAAuB,CAAC;AAC5Bb,UAAS,sBAAsB;AAAA,EAC7B,0BAA0B,MAAM;AAAA,EAChC,iBAAiB,MAAM;AAAA,EACvB,+BAA+B,MAAM;AACvC,CAAC;AACD,SAAS,8BAA8B,QAAQ,aAAa;AAC1D,MAAI,OAAO;AACX,MAAI;AACJ,MAAI,UAAU,uBAAuB;AACnC,UAAM;AACN,WAAO;AAAA,EACT,OAAO;AACL,UAAM,eAAe,QAAQ,KAAK,MAAM,KAAK,KAAK,MAAM,CAAC,CAAC;AAAA,EAC5D;AACA,SAAO,CAAC,MAAM;AACZ,QAAI,MAAM,eAAe,QAAQ,QAAQ;AACvC,aAAO;AAAA,IACT,OAAO;AACL,YAAM,eAAe,QAAQ,MAAM,CAAC;AAAA,IACtC;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,QAAQ,MAAM,aAAa;AACnD,QAAM,WAAW,CAAC;AAClB,QAAM,OAAO,OAAO;AACpB,WAAS,MAAM,GAAG,MAAM,MAAM,OAAO;AACnC,QAAI,QAAQ,MAAM;AAChB,eAAS,KAAK,OAAO,IAAI;AAAA,IAC3B,OAAO;AACL,eAAS,KAAK,WAAW;AAAA,IAC3B;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,yBAAyB,GAAG,SAAS,MAAM,WAAW;AAC7D,QAAM,cAAc,QAAQ,MAAM;AAClC,QAAM,QAAQ,EAAE,MAAM;AACtB,MAAI,cAAc,GAAG;AACnB,QAAI,YAAY,CAAC,eAAe,YAAY,aAAa;AACvD,YAAM,IAAI,MAAM,sCAAsC,gBAAgB,yBAAyB,WAAW;AAAA,IAC5G;AAAA,EACF;AACA,MAAI,YAAY,GAAG;AACjB,iBAAa;AAAA,EACf;AACA,MAAI,YAAY,OAAO;AACrB,UAAM,IAAI,MAAM,cAAc;AAAA,MAC5B,SAAS;AAAA,EACb;AACA,MAAI,OAAO,WAAW;AACpB,UAAM,IAAI,MAAM,cAAc,kDAAkD,QAAQ;AAAA,EAC1F;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,QAAI,EAAE,MAAM,QAAQ,QAAQ,MAAM,KAAK;AACrC,YAAM,IAAI,MAAM,WAAW,QAAQ,EAAE,MAAM,wCAAwC,QAAQ,QAAQ,MAAM,MAAM;AAAA,IACjH;AAAA,EACF;AACA,QAAM,UAAU,EAAE,MAAM;AACxB,QAAM,cAAc,CAAC;AACrB,MAAI,YAAY;AAChB,MAAI,YAAY;AAChB,MAAI,YAAY;AAChB,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,gBAAY,KAAK,EAAE,MAAM,GAAG;AAC5B,iBAAa,EAAE,MAAM;AAAA,EACvB;AACA,WAAS,KAAK,WAAW,KAAK,MAAM,MAAM;AACxC,gBAAY,KAAK,EAAE,MAAM,GAAG;AAC5B,iBAAa,EAAE,MAAM;AAAA,EACvB;AACA,WAAS,KAAK,WAAW,KAAK,aAAa,MAAM;AAC/C,gBAAY,KAAK,QAAQ,MAAM,GAAG;AAAA,EACpC;AACA,WAAS,KAAK,OAAO,GAAG,KAAK,OAAO,MAAM;AACxC,gBAAY,KAAK,EAAE,MAAM,GAAG;AAC5B,iBAAa,EAAE,MAAM;AAAA,EACvB;AACA,SAAO,EAAE,WAAW,WAAW,WAAW,SAAS,YAAY;AACjE;AAGA,SAAS,uBAAuB,MAAM;AACpC,MAAI;AACF,WAAO,KAAK,IAAI,CAAC,QAAQ,aAAa,GAAG,CAAC;AAAA,EAC5C,SAAS,KAAP;AACA,UAAM,IAAI,MAAM,4DAA4D,KAAK;AAAA,EACnF;AACF;AACA,SAAS,uBAAuB,SAAS;AACvC,SAAO,QAAQ,IAAI,CAAC,OAAO,aAAa,EAAE,CAAC;AAC7C;AAGA,IAAI,uBAAuB,CAAC;AAC5BA,UAAS,sBAAsB;AAAA,EAC7B,yBAAyB,MAAM;AAAA,EAC/B,yBAAyB,MAAM;AAAA,EAC/B,yBAAyB,MAAM;AAAA,EAC/B,WAAW,MAAM;AACnB,CAAC;AAGD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,KAAK,GAAG,SAAS,GAAG,EAAE,CAAC,EAAE;AAAA,EAC1D;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAM,IAAI,OAAO,KAAK,GAAG,SAAS,CAAC;AACnC,cAAM,IAAI,KAAK,IAAI,OAAO,CAAC,GAAG,CAAC,CAAC;AAChC,eAAO,IAAI,IAAI,IAAI,CAAC,CAAC;AAAA,MACvB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAM,IAAI,KAAK,IAAI,OAAO,KAAK,GAAG,SAAS,CAAC,GAAG,CAAC,CAAC;AACjD,eAAO,IAAI,IAAI,CAAC;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM;AACV,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM;AACV,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,eAAe;AAAA,EACf,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,OAAO,CAAC;AACd,UAAM,QAAQ,CAAC,GAAG,OAAO;AACvB,WAAK,MAAM,MAAM,GAAG,MAAM;AAAA,IAC5B,CAAC;AACD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,UAAU,CAAC,EAAE;AAAA,EACjC;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,UAAU,CAAC,EAAE;AAAA,EACjC;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,IAAI,OAAO,CAAC,GAAG,OAAO,KAAK,GAAG,SAAS,CAAC,CAAC,CAAC,CAAC,EAAE;AAAA,EAC9E;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAM,IAAI,KAAK,KAAK,OAAO,CAAC,GAAG,OAAO,KAAK,GAAG,SAAS,CAAC,CAAC,CAAC;AAC1D,eAAO,IAAI,IAAI,CAAC;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,IAAI,KAAK,OAAO,CAAC,GAAG,OAAO,CAAC,CAAC;AACnC,UAAI,MAAM,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAC3B,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,UAAM,OAAO,MAAM;AACjB,YAAM,IAAI,KAAK,OAAO,CAAC,GAAG,OAAO,CAAC,CAAC;AACnC,UAAI,MAAM,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC,CAAC;AAChC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,OAAO,KAAK,GAAG,SAAS,CAAC,GAAG,CAAC,CAAC,EAAE;AAAA,EACjE;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,OAAO,CAAC,GAAG,OAAO,KAAK,GAAG,SAAS,CAAC,CAAC,CAAC,EAAE;AAAA,EACxE;AACF;AAGA,SAAS,eAAe,IAAI,QAAQ,YAAYgB,UAAS,MAAM,iBAAiB;AAC9E,QAAM,MAAM,gBAAgB,IAAI,MAAM,eAAe;AACrD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,eAAe;AAC/D,MAAI,OAAO;AACX,MAAI,UAAU;AACd,MAAI,eAAe;AACnB,MAAI,OAAO,SAAS,GAAG;AACrB,mBAAe;AACf,WAAO,QAAQ,KAAK,CAAC,GAAG,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAC/E,cAAU,QAAQ,QAAQ;AAAA,MACxB;AAAA,MACA,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,IACf,CAAC;AAAA,EACH;AACA,SAAO,KAAK,SAAS,GAAG,MAAM,0DAA0D,KAAK,OAAO;AACpG,SAAO,QAAQ,SAAS,GAAG,MAAM,6DAA6D,QAAQ,OAAO;AAC7G,4BAA0B,iBAAiB,MAAM,eAAe;AAChE,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO,QAAQ;AAC1C,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,QAAM,MAAM,OAAO,UAAU,eAAe,QAAQ,KAAK;AACzD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,WAAO;AAAA,MACL,GAAG,MAAM,cAAc,IAAI,GAAG,YAAYA,UAAS,MAAM,eAAe;AAAA,IAC1E;AAAA,EACF;AACF;AAGA,SAAS,aAAa,IAAI,QAAQ,YAAYA,UAAS,MAAM;AAC3D,QAAM,MAAM,gBAAgB,IAAI,MAAM,aAAa;AACnD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,aAAa;AAC7D,SAAO,OAAO,SAAS,IAAI,MAAM,MAAM,kBAAkB,OAAO,oCAAoC,IAAI,OAAO;AAC/G,MAAI,UAAU;AACd,MAAI,OAAO;AACX,MAAI,eAAe;AACnB,MAAI,OAAO,SAAS,GAAG;AACrB,mBAAe;AACf,cAAU,QAAQ,QAAQ,CAAC,GAAG,OAAO,MAAM,IAAI,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC;AAChF,WAAO,QAAQ,KAAK,CAAC,GAAG,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EACnE;AACA,SAAO,KAAK,SAAS,GAAG,MAAM,wDAAwD,KAAK,OAAO;AAClG,SAAO,QAAQ,SAAS,GAAG,MAAM,2DAA2D,QAAQ,OAAO;AAC3G,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO,QAAQ;AAC1C,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK;AAC/C,QAAM,MAAM,OAAO,UAAU,aAAa,QAAQ,KAAK;AACvD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC3C,WAAO,EAAE,GAAG,MAAM,YAAY,IAAI,GAAG,YAAYA,UAAS,IAAI,EAAE;AAAA,EAClE;AACF;AAGA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,EAAE,YAAY,WAAW,IAAI;AACnC,QAAI,CAAC,cAAc,CAAC,YAAY;AAC9B,aAAO;AAAA,QACL,GAAG,MAAM,OAAO,IAAI,GAAG,OAAO,IAAI;AAAA,QAClC,GAAG,MAAM,OAAO,GAAG,IAAI,MAAM,KAAK;AAAA,MACpC;AAAA,IACF,WAAW,CAAC,cAAc,YAAY;AACpC,aAAO;AAAA,QACL,GAAG,MAAM,OAAO,IAAI,GAAG,OAAO,KAAK;AAAA,QACnC,GAAG,MAAM,OAAO,IAAI,GAAG,MAAM,KAAK;AAAA,MACpC;AAAA,IACF,WAAW,cAAc,CAAC,YAAY;AACpC,aAAO;AAAA,QACL,GAAG,MAAM,OAAO,GAAG,IAAI,OAAO,IAAI;AAAA,QAClC,GAAG,MAAM,OAAO,GAAG,IAAI,OAAO,KAAK;AAAA,MACrC;AAAA,IACF,OAAO;AACL,aAAO;AAAA,QACL,GAAG,MAAM,OAAO,GAAG,IAAI,MAAM,IAAI;AAAA,QACjC,GAAG,MAAM,OAAO,IAAI,GAAG,MAAM,IAAI;AAAA,MACnC;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,WAAO,EAAE,GAAG,MAAM,eAAe,IAAI,YAAY,KAAK,EAAE;AAAA,EAC1D;AACF;AAGA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,mBAAmB;AACzB,UAAM,aAAa,iBAAiB;AACpC,UAAM,cAAc,iBAAiB;AACrC,UAAM,OAAO,MAAM,KAAK,WAAW;AACnC,aAAS,KAAK,WAAW,SAAS,GAAG,MAAM,GAAG,MAAM;AAClD,UAAI,WAAW,QAAQ,YAAY,KAAK;AACtC,aAAK,MAAM;AAAA,MACb,WAAW,WAAW,QAAQ,GAAG;AAC/B,cAAM,IAAI,MAAM,mBAAmB,uCAAuC,eAAe;AAAA,MAC3F;AAAA,IACF;AACA,UAAM,OAAO,CAAC;AACd,aAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAI,KAAK,MAAM,GAAG;AAChB,aAAK,KAAK,EAAE;AAAA,MACd;AAAA,IACF;AACA,WAAO,EAAE,GAAG,MAAM,KAAK,IAAI,MAAM,IAAI,EAAE;AAAA,EACzC;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,GAAG,MAAM,EAAE;AAAA,EAC/B;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,cAAc,aAAa,IAAI;AACvC,WAAO;AAAA,MACL,GAAG,MAAM,MAAM,WAAW,aAAa,GAAG,YAAY,GAAG,UAAU,GAAG,YAAY,CAAC,GAAG,IAAI,UAAU,EAAE,CAAC;AAAA,IACzG;AAAA,EACF;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,cAAc;AAC1B;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,eAAe;AAAA,EACf,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,SAAS,MAAM,IAAI,CAAC,OAAO,GAAG,KAAK;AACzC,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,QAAQ,eAAe,MAAM,MAAM,GAAG,KAAK,EAAE;AACnD,UAAM,aAAa,OAAO,IAAI,CAAC,OAAO,GAAG,MAAM;AAC/C,UAAM,aAAa,MAAM,IAAI,YAAY,KAAK;AAC9C,WAAO,WAAW,IAAI,CAAC,OAAO,MAAM,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ;AAAA,EAC5B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,KAAK,OAAO,IAAI;AACvB,UAAM,EAAE,WAAW,SAAAA,UAAS,KAAK,MAAM,WAAW,IAAI;AACtD,WAAO,kBAAkB,SAAS,GAAG,MAAM,iHAAiH,YAAY;AACxK,WAAO;AAAA,MACL,GAAG,MAAM,oBAAoB,IAAI,OAAO,IAAI,SAASA,UAAS,MAAM,UAAU;AAAA,MAC9E,QAAQ,MAAM,qBAAqB,KAAK,IAAI,QAAQ,OAAOA,UAAS,MAAM,UAAU;AAAA,IACtF;AAAA,EACF;AACF;AAGA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,cAAc,CAAC,MAAM,QAAQ;AAAA,EAC7B,UAAU,CAAC,KAAK,OAAO,UAAU;AAC/B,UAAM,CAAC,IAAI,MAAM,IAAI;AACrB,UAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AAC5D,WAAO;AAAA,MACL,IAAI,MAAM,OAAO,KAAK,QAAQA,UAAS,MAAM,YAAY,GAAG,eAAe;AAAA,MAC3E,QAAQ,MAAM,qBAAqB,KAAK,IAAI,OAAO,OAAOA,UAAS,MAAM,YAAY,eAAe;AAAA,IACtG;AAAA,EACF;AACF;AAGA,SAAS,sBAAsB,GAAG,IAAI,aAAaA,UAAS,MAAM;AAChE,MAAI,MAAM;AACV,MAAI,EAAE,SAAS,GAAG;AAChB,UAAM,QAAQ,GAAG,CAAC,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EACtE;AACA,MAAI,OAAO;AACX,MAAI,KAAK,SAAS,GAAG;AACnB,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC5E;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,iEAAiE,IAAI,QAAQ;AAC1G,SAAO,KAAK,SAAS,GAAG,MAAM,8DAA8D,KAAK,QAAQ;AACzG,SAAO,YAAY,WAAW,GAAG,MAAM,mEAAmE,cAAc;AACxH,SAAO,IAAI,MAAM,OAAO,YAAY,IAAI,MAAM,4CAA4C,IAAI,MAAM,yCAAyC,YAAY,KAAK;AAC9J,SAAO,KAAK,MAAM,OAAO,YAAY,IAAI,MAAM,0CAA0C,KAAK,MAAM,2CAA2C,YAAY,MAAM;AACjK,QAAM,SAAS,EAAE,GAAG,KAAK,IAAI,KAAK;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY;AAChD,SAAO,OAAO,UAAU,wBAAwB,QAAQ,KAAK;AAC/D;AACA,IAAI,uBAAuB,GAAG,EAAE,sBAAsB,CAAC;AAGvD,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ;AAAA,EAC5B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,WAAW,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC1C,WAAO,kBAAkB,SAAS,GAAG,MAAM,iHAAiH,YAAY;AACxK,UAAM,CAAC,KAAK,OAAO,IAAI;AACvB,WAAO;AAAA,MACL,GAAG,MAAM,oBAAoB,IAAI,OAAO,IAAI,SAASA,UAAS,IAAI;AAAA,MAClE,QAAQ,MAAM,qBAAqB,KAAK,IAAI,QAAQ,OAAOA,UAAS,IAAI;AAAA,IAC1E;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC,CAAC,GAAG,EAAE,EAAE;AAAA,EAC1D;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,KAAK,KAAK,GAAG,SAAS,CAAC,GAAG,EAAE,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAM,cAAc,mBAAmB,CAAC,IAAI,GAAG,EAAE,IAAI;AACrD,YAAI,MAAM,OAAO,IAAI,MAAM,WAAW,CAAC,QAAQ;AAC/C,YAAI,eAAe,MAAM;AACvB,gBAAM,UAAU,KAAK,WAAW;AAAA,QAClC;AACA,eAAO;AAAA,MACT;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kCAAkC;AAAA,EACpC,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ;AAAA,EAC5B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,WAAW,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC3D,UAAM,aAAa,aAAa,OAAO,CAAC,GAAG,CAAC,IAAI;AAChD,WAAO,kBAAkB,UAAU,GAAG,MAAM,mHAAmH,aAAa;AAC5K,UAAM,CAAC,GAAG,MAAM,IAAI;AACpB,WAAO,EAAE,SAAS,GAAG,MAAM,kFAAkF,EAAE,OAAO;AACtH,WAAO,OAAO,SAAS,GAAG,MAAM,mFAAmF,OAAO,OAAO;AACjI,WAAO,EAAE,MAAM,OAAO,OAAO,MAAM,IAAI,MAAM,mEAAmE,EAAE,MAAM,qDAAqD,OAAO,MAAM,KAAK;AAC/L,WAAO,+BAA+BA,UAAS,UAAU,GAAG,MAAM,6FAA6FA,2BAA0B,cAAc;AACvM,8BAA0B,mBAAmB,MAAM,eAAe;AAClE,WAAO;AAAA,MACL,GAAG,MAAM,mCAAmC,EAAE,OAAO,IAAI,QAAQA,UAAS,MAAM,YAAY,eAAe;AAAA,MAC3G,QAAQ,MAAM,oCAAoC,GAAG,IAAI,OAAO,OAAOA,UAAS,MAAM,YAAY,eAAe;AAAA,IACnH;AAAA,EACF;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ;AAAA,EAC5B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,MAAM,IAAI;AACpB,UAAM,cAAc,EAAE,GAAG,QAAQ,GAAG;AACpC,UAAM,eAAe,EAAE,GAAG,QAAQ,GAAG;AACrC,WAAO;AAAA,MACL,GAAG,MAAM,OAAO,UAAU,yBAAyB,aAAa,KAAK;AAAA,MACrE,QAAQ,MAAM,OAAO,UAAU,0BAA0B,cAAc,KAAK;AAAA,IAC9E;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,SAAS,EAAE,IAAI,EAAE;AACvB,WAAO,EAAE,GAAG,MAAM,OAAO,UAAU,SAAS,MAAM,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,IAAI,IAAI,IAAI,IAAI,OAAO,CAAC,CAAC,CAAC,GAAG,IAAI,KAAK,KAAK,KAAK,EAAE,CAAC;AACzD,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,CAAC,EAAE;AAAA,EAC/B;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,CAAC,EAAE;AAAA,EAC/B;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC,OAAO;AAAA,EACtB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,MAAM,IAAI;AACjB,WAAO,EAAE,OAAO,MAAM,QAAQ,IAAI,OAAO,KAAK,EAAE;AAAA,EAClD;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,CAAC,CAAC,EAAE;AAAA,EACpC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACtC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACpC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC9C;AACA,YAAM,MAAM,OAAO,CAAC;AACpB,aAAO,IAAI,IAAI,KAAK,KAAK,KAAK,SAAS,CAAC,CAAC;AAAA,IAC3C;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ,YAAY,OAAO;AAAA,EAC/C,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,gBAAgB,IAAI;AAC5B,UAAM,CAAC,GAAG,OAAO,UAAUS,OAAM,IAAI;AACrC,UAAM,aAAaA,WAAU,OAAO,OAAO,CAAC,IAAIA;AAChD,UAAM,gBAAgB,iBAAiB,MAAM,OAAO,EAAE,KAAK;AAC3D,UAAM,YAAY,CAAC;AACnB,QAAI,MAAM,SAAS,GAAG;AACpB,eAAS,KAAK,GAAG,KAAK,EAAE,MAAM,SAAS,GAAG,EAAE,IAAI;AAC9C,kBAAU,KAAK,EAAE,MAAM,GAAG;AAAA,MAC5B;AACA,gBAAU,KAAK,CAAC;AAAA,IAClB;AACA,UAAM,aAAa,IAAI,GAAG,KAAK;AAC/B,UAAM,oBAAoB,IAAI,IAAI,UAAU;AAC5C,UAAM,sBAAsB,MAAM,KAAK,UAAU,OAAO,eAAe,CAAC,CAAC;AACzE,UAAM,iBAAiB,IAAI,IAAI,IAAI,qBAAqB,mBAAmB,GAAG,mBAAmB,GAAG,OAAO,IAAI,CAAC;AAChH,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM,SAAS,GAAG;AACpB,eAAO,QAAQ,IAAI,IAAI,IAAI,KAAK,QAAQ,qBAAqB,CAAC,GAAG,GAAG,GAAG,MAAM,MAAM,EAAE,CAAC,GAAG,SAAS,CAAC,GAAG,UAAU,GAAG,EAAE,KAAK;AAAA,MAC5H,OAAO;AACL,eAAO,QAAQ,IAAI,IAAI,IAAI,mBAAmB,GAAG,UAAU,GAAG,EAAE,KAAK;AAAA,MACvE;AAAA,IACF;AACA,UAAM,UAAU,MAAM;AACpB,UAAI,UAAU,IAAI,IAAI,qBAAqB,OAAO,EAAE,CAAC,GAAG,iBAAiB;AACzE,UAAI,MAAM,SAAS,GAAG;AACpB,kBAAU,KAAK,SAAS,aAAa;AAAA,MACvC;AACA,aAAO,QAAQ,SAAS,MAAM,KAAK;AAAA,IACrC;AACA,UAAM,cAAc,MAAM;AACxB,UAAI,cAAc,IAAI,IAAI,gBAAgB,UAAU,GAAG,iBAAiB;AACxE,UAAI,MAAM,SAAS,GAAG;AACpB,sBAAc,KAAK,aAAa,aAAa;AAAA,MAC/C;AACA,aAAO,QAAQ,aAAa,MAAM,KAAK;AAAA,IACzC;AACA,UAAM,WAAW,MAAM;AACrB,YAAM,wBAAwB,IAAI,YAAY,mBAAmB;AACjE,UAAI,WAAW,IAAI,IAAI,qBAAqB;AAC5C,UAAI,MAAM,SAAS,GAAG;AACpB,mBAAW,KAAK,UAAU,aAAa;AAAA,MACzC;AACA,aAAO,QAAQ,UAAU,MAAM,KAAK;AAAA,IACtC;AACA,UAAM,YAAY,MAAM;AACtB,UAAI,YAAY;AAChB,UAAI,MAAM,SAAS,GAAG;AACpB,oBAAY,KAAK,WAAW,aAAa;AAAA,MAC3C;AACA,aAAO,QAAQ,WAAW,MAAM,KAAK;AAAA,IACvC;AACA,WAAO;AAAA,MACL,GAAG;AAAA,MACH,MAAM;AAAA,MACN,UAAU;AAAA,MACV,OAAO;AAAA,MACP,QAAQ;AAAA,IACV;AAAA,EACF;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,SAAS;AAAA,EAC7B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,OAAO,IAAI;AACrB,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACjD,UAAM,OAAO,MAAM;AACjB,YAAM,cAAc,EAAE;AACtB,YAAM,cAAc,QAAQ;AAC5B,YAAM,aAAa,YAAY,MAAM,GAAG,UAAU;AAClD,YAAM,YAAY,WAAW;AAC7B,YAAM,aAAa,YAAY,MAAM,MAAM,YAAY,MAAM,EAAE,MAAM,CAAC;AACtE,YAAM,YAAY,WAAW;AAC7B,YAAM,mBAAmB,WAAW,GAAG,SAAS;AAChD,YAAM,mBAAmB,WAAW,YAAY,GAAG,YAAY,IAAI,SAAS;AAC5E,YAAM,cAAc,YAAY,CAAC,YAAY,CAAC,WAAW,GAAG,UAAU,CAAC;AACvE,YAAM,SAAS,QAAQ,IAAI,WAAW;AACtC,YAAM,kBAAkB,QAAQ,SAAS,CAAC,WAAW,CAAC;AACtD,YAAM,gBAAgB,YAAY,CAAC,CAAC,SAAS,GAAG,kBAAkB,gBAAgB,CAAC;AACnF,YAAM,kBAAkB,UAAU,QAAQ,aAAa;AACvD,UAAI,aAAa,mBAAmB,iBAAiB,iBAAiB,EAAE,MAAM,WAAW;AACzF,YAAM,sBAAsB,uBAAuB,aAAa;AAChE,mBAAa,UAAU,YAAY,mBAAmB;AACtD,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,MAAM,SAAS,MAAM,QAAQ;AAAA,EAC3C;AACF;AACA,SAAS,WAAW,OAAO,MAAM;AAC/B,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,OAAO,KAAK,MAAM,EAAE,IAAI;AACpC,WAAO,KAAK,EAAE;AAAA,EAChB;AACA,SAAO;AACT;AACA,SAAS,YAAY,QAAQ;AAC3B,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,aAAS,IAAI,GAAG,IAAI,OAAO,IAAI,QAAQ,EAAE,GAAG;AAC1C,aAAO,KAAK,OAAO,IAAI,EAAE;AAAA,IAC3B;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,yBAAyB;AAAA,EAC3B,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,WAAO,EAAE,GAAG,MAAM,UAAU,CAAC,GAAG,GAAG,MAAM,UAAU,CAAC,EAAE;AAAA,EACxD;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,KAAK,IAAI,SAAS,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,OAAAC,OAAM,IAAI;AAClB,UAAMlB,QAAO,QAAQ,GAAG,CAAC;AACzB,WAAO,EAAE,GAAG,MAAM,MAAMA,OAAM,IAAI,IAAI,IAAIkB,MAAK,CAAC,EAAE;AAAA,EACpD;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,GAAG,CAAC,CAAC,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC,EAAE;AAAA,EAChD;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC;AAAA,EACf,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,KAAK,IAAI;AAChB,UAAM,EAAE,KAAK,IAAI;AACjB,WAAO;AAAA,MACL,QAAQ,MAAM;AACZ,cAAM,WAAW;AACjB,cAAM,WAAW,IAAI,KAAK;AAC1B,eAAO,IAAI,IAAI,IAAI,KAAK,IAAI,MAAM,QAAQ,GAAG,QAAQ,CAAC;AAAA,MACxD;AAAA,IACF;AAAA,EACF;AACF;AAGA,SAAS,oCAAoC,GAAG,GAAG,IAAI,cAAc,GAAG,OAAO,GAAGA,SAAQ,GAAG,OAAO,KAAK;AACvG,QAAM,SAAS,EAAE,GAAG,GAAG,GAAG;AAC1B,QAAM,QAAQ,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK;AAC/C,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,qCAAqC,GAAG,EAAE,oCAAoC,CAAC;AAGnF,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK,IAAI;AAC3C,WAAO;AAAA,MACL,GAAG,MAAM,mCAAmC,GAAG,GAAG,IAAI,aAAa,MAAMA,QAAO,IAAI;AAAA,IACtF;AAAA,EACF;AACF;AAGA,SAAS,iBAAiB,IAAI,GAAG,OAAO,UAAU;AAChD,MAAI,EAAE,OAAO,MAAM,MAAM;AACvB,QAAI,QAAQ,GAAG,qBAAqB,EAAE,OAAO,QAAQ,CAAC;AAAA,EACxD;AACA,MAAI,GAAG,OAAO,MAAM,MAAM;AACxB,SAAK,QAAQ,IAAI,qBAAqB,GAAG,OAAO,QAAQ,CAAC;AAAA,EAC3D;AACA,SAAO;AAAA,IACL,GAAG,MAAM;AACP,YAAM,KAAK,IAAI,IAAI,KAAK,MAAM,OAAO,CAAC,GAAG,GAAG,KAAK,CAAC;AAClD,aAAO;AAAA,IACT;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,WAAW;AACjB,UAAM,EAAE,iBAAiB,IAAI;AAC7B,UAAM,IAAI,MAAM;AAChB,UAAM,IAAI,MAAM;AAChB,UAAM,WAAW,eAAe,kBAAkB,EAAE,KAAK;AACzD,UAAM,UAAU,iBAAiB,IAAI,GAAG,GAAG,QAAQ;AACnD,WAAO;AAAA,MACL,GAAG,MAAM;AACP,eAAO,QAAQ,KAAK;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,OAAO,MAAM,IAAI,IAAI,KAAK,aAAa,GAAG,CAAC,GAAG,SAAS,CAAC;AAC9D,UAAM,OAAO,MAAM,IAAI,IAAI,KAAK,KAAK,GAAG,CAAC,GAAG,SAAS,CAAC;AACtD,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,SAAS,eAAe,IAAI,QAAQ,QAAQ,YAAYV,UAAS,MAAM,iBAAiB;AACtF,QAAM,MAAM,gBAAgB,IAAI,MAAM,eAAe;AACrD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,eAAe;AAC/D,QAAM,UAAU,gBAAgB,QAAQ,UAAU,eAAe;AACjE,MAAI,OAAO;AACX,MAAI,UAAU;AACd,MAAI,WAAW;AACf,MAAI,eAAe;AACnB,MAAI,OAAO,SAAS,GAAG;AACrB,mBAAe;AACf,WAAO,QAAQ,KAAK,CAAC,GAAG,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAC/E,cAAU,QAAQ,QAAQ;AAAA,MACxB;AAAA,MACA,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,IACf,CAAC;AACD,eAAW,QAAQ,SAAS;AAAA,MAC1B;AAAA,MACA,QAAQ,MAAM;AAAA,MACd,QAAQ,MAAM;AAAA,MACd,QAAQ,MAAM;AAAA,MACd,QAAQ,MAAM;AAAA,IAChB,CAAC;AAAA,EACH;AACA,SAAO,KAAK,SAAS,GAAG,MAAM,0DAA0D,KAAK,OAAO;AACpG,SAAO,QAAQ,SAAS,GAAG,MAAM,6DAA6D,QAAQ,OAAO;AAC7G,SAAO,SAAS,SAAS,GAAG,MAAM,8DAA8D,SAAS,OAAO;AAChH,4BAA0B,iBAAiB,MAAM,eAAe;AAChE,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO,SAAS,QAAQ,SAAS;AAC5D,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,QAAM,MAAM,OAAO,UAAU,eAAe,QAAQ,KAAK;AACzD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,WAAO;AAAA,MACL,GAAG,MAAM,cAAc,IAAI,GAAG,GAAG,YAAYA,UAAS,MAAM,eAAe;AAAA,IAC7E;AAAA,EACF;AACF;AAGA,SAAS,aAAa,IAAI,QAAQ,QAAQ,YAAYA,UAAS,MAAM,iBAAiB;AACpF,QAAM,MAAM,gBAAgB,IAAI,MAAM,aAAa;AACnD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,aAAa;AAC7D,QAAM,UAAU,gBAAgB,QAAQ,UAAU,aAAa;AAC/D,SAAO,OAAO,SAAS,IAAI,MAAM,MAAM,kBAAkB,OAAO,oCAAoC,IAAI,OAAO;AAC/G,SAAO,IAAI,SAAS,GAAG,MAAM,wDAAwD,IAAI,OAAO;AAChG,SAAO,OAAO,SAAS,GAAG,MAAM,2DAA2D,OAAO,OAAO;AACzG,4BAA0B,eAAe,MAAM,eAAe;AAC9D,QAAM,SAAS,EAAE,IAAI,KAAK,OAAO,QAAQ,QAAQ,QAAQ;AACzD,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,SAAO,OAAO,UAAU,aAAa,QAAQ,KAAK;AACpD;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC3C,WAAO;AAAA,MACL,GAAG,MAAM,YAAY,IAAI,GAAG,GAAG,YAAYA,UAAS,IAAI;AAAA,IAC1D;AAAA,EACF;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,OAAO,eAAe,MAAM,EAAE,KAAK;AACzC,UAAM,SAAS,0BAA0B,EAAE,OAAO,IAAI;AACtD,UAAM,cAAc,OAAO;AAC3B,UAAM,aAAa,cAAc,WAAW;AAC5C,UAAM,OAAO,MAAM;AACjB,YAAM,kBAAkB,EAAE,MAAM,MAAM;AACtC,WAAK,QAAQ,CAAC,UAAU;AACtB,wBAAgB,SAAS;AAAA,MAC3B,CAAC;AACD,YAAM,aAAa,QAAQ,IAAI,eAAe;AAC9C,YAAM,MAAM,IAAI,IAAI,YAAY,MAAM,EAAE,OAAO,SAAS,CAAC,GAAG,UAAU;AACtE,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,KAAK;AAAA,EACnB;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,WAAW;AACjB,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,eAAe,MAAM,EAAE,KAAK;AAC7C,UAAM,UAAU,iBAAiB,IAAI,GAAG,GAAG,QAAQ;AACnD,WAAO;AAAA,MACL,GAAG,MAAM;AACP,eAAO,QAAQ,KAAK;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,OAAO,MAAM,IAAI,IAAI,KAAK,UAAU,GAAG,CAAC,GAAG,SAAS,CAAC;AAC3D,UAAM,OAAO,MAAM,IAAI,IAAI,KAAK,QAAQ,GAAG,CAAC,GAAG,SAAS,CAAC;AACzD,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,IAAI,MAAM;AAChB,UAAM,EAAE,SAAS,IAAI;AACrB,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE;AACxC,WAAO,EAAE,GAAG,MAAM,MAAM,IAAI,OAAO,EAAE,KAAK,EAAE;AAAA,EAC9C;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,IAAI,UAAU,GAAG,EAAE,KAAK;AAAA,MAC9C;AACA,aAAO;AAAA,IACT;AACA,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,CAAC;AACzC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACtC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACtC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,IAAI,EAAE,EAAE;AAAA,EAC5B;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,SAAS;AAAA,EACxB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,UAAU,MAAM;AACtB,WAAO,EAAE,SAAS,MAAM,MAAM,QAAQ,OAAO,SAAS,EAAE;AAAA,EAC1D;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,eAAe;AAAA,EACf,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,aAAa,QAAQ,IAAI,IAAI;AACnC,WAAO,WAAW,IAAI,CAAC,OAAO,MAAM,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,IAAI,MAAM;AAChB,UAAM,EAAE,SAAS,IAAI;AACrB,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE;AACxC,WAAO,EAAE,GAAG,MAAM,MAAM,IAAI,OAAO,EAAE,KAAK,EAAE;AAAA,EAC9C;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,GAAG,CAAC,IAAI;AAClB,UAAM,OAAO;AACb,UAAM,OAAO;AACb,UAAM,WAAW,2BAA2B,KAAK,OAAO,KAAK,KAAK;AAClE,UAAM,UAAU,MAAM;AACpB,YAAM,WAAW,KAAK,MAAM,SAAS;AACrC,UAAI,MAAM,IAAI,IAAI,IAAI,UAAU,IAAI,MAAM,IAAI,UAAU,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC;AACpE,YAAM,aAAa,iBAAiB,KAAK,OAAO,QAAQ;AACxD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,KAAK,KAAK;AAAA,IAChC;AACA,UAAM,SAAS,MAAM;AACnB,YAAM,YAAY,QAAQ,MAAM,CAAC;AACjC,YAAM,UAAU,MAAM,WAAWlB,MAAK,IAAI,GAAG,UAAU,IAAI,CAAC;AAC5D,UAAI,MAAM,IAAI,IAAI,IAAI,GAAG,OAAO,CAAC;AACjC,YAAM,aAAa,iBAAiB,KAAK,OAAO,QAAQ;AACxD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,KAAK,KAAK;AAAA,IAChC;AACA,WAAO,EAAE,GAAG,SAAS,GAAG,OAAO;AAAA,EACjC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,OAAO;AAAA,EAC3B,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG4B,MAAK,IAAI;AACnB,UAAMlB,QAAO,QAAQ,GAAG,CAAC;AACzB,WAAO;AAAA,MACL,GAAG,MAAM,MAAMA,OAAM,IAAI,IAAI,IAAIkB,MAAK,CAAC;AAAA,MACvC,OAAO,MAAM;AACX,YAAI,MAAM,MAAMlB,OAAM,UAAU,EAAE,GAAG,IAAI,IAAI,CAAC,CAAC;AAC/C,cAAM,aAAa,iBAAiBkB,OAAM,OAAO,GAAG,KAAK;AACzD,YAAI,WAAW,SAAS,GAAG;AACzB,gBAAM,KAAK,KAAK,UAAU;AAAA,QAC5B;AACA,eAAO,QAAQ,KAAKA,OAAM,KAAK;AAAA,MACjC;AAAA,IACF;AAAA,EACF;AACF;AAGA,SAAS,YAAY,GAAG,IAAI,MAAM;AAChC,QAAM,iBAAiB,EAAE,MAAM,MAAM;AACrC,iBAAe,QAAQ;AACvB,QAAM,aAAa,QAAQ,IAAI,cAAc;AAC7C,QAAM,WAAW,QAAQ,GAAG,MAAM,MAAM,KAAK;AAC7C,QAAM,cAAc,QAAQ,GAAG,MAAM,MAAM,IAAI;AAC/C,QAAM,KAAK,IAAI,UAAU,WAAW;AACpC,SAAO,IAAI,YAAY,EAAE;AAC3B;AACA,SAAS,aAAa,GAAG,IAAI,MAAM;AACjC,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,gBAAgB,QAAQ,KAAK;AACnC,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,UAAU,GAAG,YAAY;AAAA,EACvC;AACA,QAAM,WAAW,UAAU,MAAM,MAAM;AACvC,QAAM,eAAe,SAAS,OAAO,QAAQ,KAAK,QAAQ,KAAK,MAAM;AACrE,QAAM,eAAe,aAAa,OAAO,CAAC,IAAI,MAAM,KAAK,GAAG,CAAC;AAC7D,WAAS,KAAK,YAAY;AAC1B,QAAM,oBAAoB,UAAU,QAAQ,QAAQ;AACpD,MAAI,WAAW,YAAY,mBAAmB,IAAI,aAAa;AAC/D,aAAW,SAAS,QAAQ,UAAU,KAAK;AAC3C,MAAI,gBAAgB,MAAM;AACxB,UAAM,kBAAkB,qBAAqB,uBAAuB,YAAY;AAChF,eAAW,UAAU,UAAU,eAAe;AAAA,EAChD;AACA,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,KAAK,IAAI;AACjB,QAAI,UAAU,CAAC;AACf,QAAI,SAAS,UAAU,SAAS,MAAM;AACpC,gBAAU,EAAE,MAAM,IAAI,CAAC,GAAG,OAAO,EAAE;AAAA,IACrC,WAAW,OAAO,SAAS,UAAU;AACnC,gBAAU,CAAC,IAAI;AAAA,IACjB,OAAO;AACL,gBAAU;AAAA,IACZ;AACA,WAAO,EAAE,GAAG,MAAM,aAAa,GAAG,IAAI,OAAO,EAAE;AAAA,EACjD;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACtC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACpC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC9C;AACA,YAAM,MAAM,OAAO,CAAC;AACpB,aAAO,IAAI,IAAI,KAAK,KAAK,KAAK,SAAS,CAAC,CAAC;AAAA,IAC3C;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,OAAO,CAAC,CAAC,CAAC,EAAE;AAAA,EAC5C;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,UAAMlB,QAAO,IAAI,UAAU,GAAG,CAAC,GAAG,KAAK,CAAC,CAAC;AACzC,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAKA,OAAM,SAAS,CAAC,EAAE;AAAA,EACnD;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,KAAK,CAAC,GAAG,SAAS,CAAC,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,QAAQ,IAAI,EAAE,KAAK,EAAE;AAAA,EACzC;AACF;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,cAAc,CAAC,QAAQ;AAAA,EACvB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,MAAM,IAAI;AACjB,UAAM,SAAS,EAAE,IAAI,OAAO;AAC5B,UAAM,YAAY,MAAM,OAAO,UAAU,oBAAoB,QAAQ,KAAK;AAC1E,WAAO,EAAE,QAAQ,UAAU;AAAA,EAC7B;AACF;AAGA,IAAI,kCAAkC;AAAA,EACpC,YAAY;AAAA,EACZ,cAAc,CAAC,QAAQ;AAAA,EACvB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,MAAM,IAAI;AACjB,UAAM,SAAS,EAAE,IAAI,OAAO;AAC5B,UAAM,YAAY,MAAM,OAAO,UAAU,2BAA2B,QAAQ,KAAK;AACjF,WAAO,EAAE,QAAQ,UAAU;AAAA,EAC7B;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,OAAO,eAAe,MAAM,GAAG,KAAK;AAC1C,WAAO,EAAE,GAAG,MAAM,QAAQ,IAAI,IAAI,EAAE;AAAA,EACtC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,WAAW;AAAA,EAC1B,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,SAAS,IAAI;AACpB,WAAO;AAAA,MACL,WAAW,MAAM,KAAK,UAAU,SAAS,GAAG,SAAS;AAAA,MACrD,GAAG,MAAM,IAAI,IAAI,KAAK,WAAW,GAAG,KAAK,CAAC;AAAA,MAC1C,GAAG,MAAM,IAAI,IAAI,KAAK,WAAW,SAAS,GAAG,GAAG,KAAK,CAAC;AAAA,IACxD;AAAA,EACF;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAMA,QAAO,QAAQ,GAAG,OAAO,CAAC,CAAC;AACjC,cAAM,cAAc,OAAO,eAAe;AAC1C,cAAMiB,UAAS,OAAO,UAAU;AAChC,cAAM,qBAAqB,IAAI,IAAIA,OAAM;AACzC,cAAM,mBAAmB,IAAI,IAAI,IAAI,WAAW,GAAG,IAAI,KAAK,GAAG,SAAS,CAAC,CAAC;AAC1E,eAAO,MAAMjB,OAAM,oBAAoB,gBAAgB;AAAA,MACzD;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,GAAG,IAAI,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE;AAAA,EACvD;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC,GAAG,EAAE,EAAE;AAAA,EACrD;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,KAAK,KAAK,GAAG,SAAS,CAAC,GAAG,EAAE,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,OAAO,MAAAL,MAAK,IAAI;AACxB,UAAM,aAAa,EAAE;AACrB,UAAM,CAAC,QAAQ,KAAK,IAAI,iBAAiB,GAAG,OAAOA,KAAI;AACvD,UAAM,WAAW,CAAC;AAClB,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM,MAAM;AACnC,eAAS,KAAK,CAAC,OAAO,KAAK,WAAW,MAAM,OAAO,MAAM,MAAM,GAAG,CAAC;AAAA,IACrE;AACA,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,QAAQ,EAAE;AAAA,EACtC;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,IAAI,IAAI;AAChB,UAAM,WAAW;AACjB,UAAM,WAAW,IAAI,IAAI,CAAC;AAC1B,WAAO;AAAA,MACL,QAAQ,MAAM,IAAI,UAAU,IAAI,KAAK,UAAU,CAAC,GAAG,GAAG,QAAQ,GAAG,CAAC,CAAC;AAAA,IACrE;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,QAAQ,CAAC,CAAC,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,YAAY,SAAS,IAAI;AACjC,WAAO,EAAE,GAAG,MAAM,eAAe,IAAI,YAAY,QAAQ,EAAE;AAAA,EAC7D;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,KAAK,IAAI;AACjB,WAAO,EAAE,GAAG,MAAM,OAAO,IAAI,IAAI,EAAE;AAAA,EACrC;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,KAAK,KAAK,GAAG,SAAS,CAAC,GAAG,CAAC,CAAC,EAAE;AAAA,EAC9D;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,KAAK,GAAG,SAAS,GAAG,CAAC,CAAC,EAAE;AAAA,EACxD;AACF;AAGA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,MAAM,OAAO,CAAC;AACpB,UAAM,OAAO,MAAM,IAAI,IAAI,IAAI,KAAK,IAAI,GAAG,CAAC,CAAC,CAAC;AAC9C,UAAM,OAAO,MAAM,IAAI,IAAI,IAAI,KAAK,IAAI,GAAG,CAAC,CAAC,CAAC;AAC9C,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM;AACV,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM;AACV,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,IAAI,GAAG,GAAG,EAAE,KAAK;AAAA,IAClC;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,kBAAkB,EAAE,MAAM,MAAM;AACtC,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,OAAO,eAAe,MAAM,EAAE,KAAK;AACzC,SAAK,QAAQ,CAAC,UAAU;AACtB,sBAAgB,SAAS;AAAA,IAC3B,CAAC;AACD,UAAM,aAAa,QAAQ,IAAI,eAAe;AAC9C,UAAM,OAAO,IAAI,YAAY,MAAM,EAAE,OAAO,SAAS,CAAC;AACtD,WAAO,EAAE,GAAG,MAAM,KAAK;AAAA,EACzB;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,OAAO,IAAI,CAAC,CAAC,CAAC,EAAE;AAAA,EAC5C;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,OAAO,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,EAAE,EAAE;AAAA,EACvD;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,OAAO,MAAM;AACjB,UAAI,QAAQ,UAAU,CAAC;AACvB,UAAI,EAAE,SAAS,GAAG;AAChB,iBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,kBAAQ,KAAK,OAAO,MAAM,IAAI,CAAC,KAAK,EAAE,MAAM,EAAE,GAAG,CAAC,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,QAChE;AAAA,MACF,WAAW,EAAE,SAAS,GAAG;AACvB,iBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,mBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,oBAAQ,KAAK,OAAO,MAAM,IAAI,CAAC,KAAK,EAAE,MAAM,IAAI,IAAI,EAAE,MAAM,EAAE,GAAG;AAAA,cAC/D,EAAE,MAAM;AAAA,cACR,EAAE,MAAM;AAAA,YACV,CAAC,CAAC;AAAA,UACJ;AAAA,QACF;AAAA,MACF,WAAW,EAAE,SAAS,GAAG;AACvB,iBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,mBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,qBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,sBAAQ,KAAK,OAAO,MAAM,IAAI,CAAC,KAAK,EAAE,MAAM,IAAI,IAAI,EAAE,MAAM,IAAI,IAAI,EAAE,MAAM,EAAE,GAAG,CAAC,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,YACxH;AAAA,UACF;AAAA,QACF;AAAA,MACF,WAAW,EAAE,SAAS,GAAG;AACvB,iBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,mBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,qBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,uBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,wBAAQ,KAAK,OAAO,MAAM,IAAI;AAAA,kBAC5B,KAAK,EAAE,MAAM;AAAA,kBACb,IAAI,EAAE,MAAM;AAAA,kBACZ,IAAI,EAAE,MAAM;AAAA,kBACZ,KAAK,EAAE,MAAM;AAAA,gBACf,GAAG,CAAC,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,cACtD;AAAA,YACF;AAAA,UACF;AAAA,QACF;AAAA,MACF,OAAO;AACL,cAAM,IAAI,MAAM,2DAA2D,EAAE,mBAAmB;AAAA,MAClG;AACA,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,KAAK;AAAA,EACnB;AACF;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,iBAAiB;AACvB,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,WAAW,uBAAuB,IAAI;AAC5C,WAAO,EAAE,GAAG,MAAM,UAAU,IAAI,QAAQ,EAAE;AAAA,EAC5C;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,cAAc;AACpB,UAAM,EAAE,KAAK,IAAI;AACjB,WAAO,EAAE,OAAO,MAAM,MAAM,IAAI,IAAI,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,cAAc,CAAC,YAAY;AAAA,EAC3B,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,UAAU,IAAI;AACrB,UAAM,OAAO,MAAM;AACjB,aAAO,oBAAoB,IAAI,UAAU;AAAA,IAC3C;AACA,WAAO,EAAE,GAAG,KAAK;AAAA,EACnB;AACF;AACA,SAAS,oBAAoB,GAAG,SAAS;AACvC,QAAM,qBAAqB,QAAQ,SAAS,UAAU,OAAO,CAAC;AAC9D,QAAM,WAAW,OAAO,GAAG,kBAAkB;AAC7C,MAAI,aAAa,aAAa,SAAS,OAAO,GAAG,OAAO,CAAC;AACzD,QAAM,WAAW,SAAS,OAAO,WAAW;AAC5C,WAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,iBAAa,WAAW,YAAY,KAAK,CAAC;AAAA,EAC5C;AACA,eAAa,WAAW,YAAY,MAAM,SAAS,OAAO,MAAM,CAAC;AACjE,QAAM,YAAY,UAAU,QAAQ;AACpC,SAAO,MAAM,YAAY,UAAU,SAAS;AAC9C;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,cAAc;AAAA,EAChB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,kBAAkB,aAAa;AACxC,mBAAiB,cAAc;AACjC;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,CAAC;AACrB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,MAAM,QAAQ;AACjC;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,MAAM,QAAQ;AACjC;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,MAAM;AACvD,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,IAAI;AAC1B;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,MAAM;AACvD,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,IAAI;AAC1B;AAGA,qBAAqB,EAAE,UAAU,WAAW,WAAW;AACrD,OAAK,gBAAgB;AACrB,SAAO,KAAK,SAAS,GAAG,MAAM,qCAAqC;AACnE,SAAO,QAAQ,MAAM,CAAC,CAAC;AACzB;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,OAAO;AACxD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,KAAK;AACzB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,KAAK,IAAI,CAAC;AAClC;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,SAAS;AAC9D,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,MAAM,OAAO,CAAC;AACtC;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,SAAS,OAAO;AACrE,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,MAAM,SAAS,KAAK,CAAC;AAC7C;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,SAAS,OAAO,QAAQ;AAC7E,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,MAAM,SAAS,OAAO,MAAM,CAAC;AACrD;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,SAAS,OAAO,QAAQ,QAAQ;AACrF,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,MAAM,SAAS,OAAO,QAAQ,MAAM,CAAC;AAC7D;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,GAAG;AACnD,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAM,CAAC;AACtB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,YAAYa,UAAS,MAAM,iBAAiB;AAC9F,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,YAAYA,UAAS,MAAM,eAAe;AACjE;AAGA,qBAAqB,EAAE,UAAU,iBAAiB,SAAS,YAAY,OAAO;AAC5E,OAAK,gBAAgB;AACrB,SAAO,eAAe,MAAM,YAAY,KAAK;AAC/C;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,OAAO,UAAU,QAAQS,SAAQ,iBAAiB;AACtG,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,OAAO,UAAU,QAAQA,SAAQ,eAAe;AACzE;AAGA,qBAAqB,EAAE,UAAU,cAAc,SAAS,OAAO;AAC7D,OAAK,gBAAgB;AACrB,SAAO,YAAY,MAAM,KAAK;AAChC;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,OAAO;AACtD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,KAAK;AACzB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,cAAc,SAAS,MAAM,MAAM;AAClE,OAAK,gBAAgB;AACrB,SAAO,YAAY,MAAM,MAAM,IAAI;AACrC;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,GAAG,MAAM;AAC1D,OAAK,gBAAgB;AACrB,MAAI,aAAa,QAAQ;AACvB,QAAI,CAAC,CAAC;AAAA,EACR;AACA,SAAO,OAAO,CAAC,MAAM,GAAG,CAAC,GAAG,IAAI;AAClC;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,QAAQ,QAAQ,MAAM,YAAY,UAAU,iBAAiB;AAC9G,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,QAAQ,QAAQ,MAAM,YAAY,UAAU,eAAe;AACjF;AAGA,qBAAqB,EAAE,UAAU,kBAAkB,SAAS,QAAQ,aAAaT,UAAS,MAAM,iBAAiB;AAC/G,OAAK,gBAAgB;AACrB,SAAO,gBAAgB,MAAM,QAAQ,aAAaA,UAAS,MAAM,eAAe;AAClF;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,QAAQA,UAAS,MAAM,YAAY,WAAW,iBAAiB;AAChH,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,QAAQA,UAAS,MAAM,YAAY,WAAW,eAAe;AACnF;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,MAAM,WAAW,UAAU;AAC7E,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,MAAM,WAAW,QAAQ;AAChD;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,MAAM,WAAW,UAAU;AAC5E,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,MAAM,WAAW,QAAQ;AAC/C;AAGA,qBAAqB,EAAE,UAAU,eAAe,SAAS,WAAW,YAAY;AAC9E,OAAK,gBAAgB;AACrB,SAAO,aAAa,MAAM,WAAW,UAAU;AACjD;AAGA,qBAAqB,EAAE,UAAU,kBAAkB,SAAS,QAAQA,UAAS,MAAM,YAAY,WAAW,iBAAiB;AACzH,OAAK,gBAAgB;AACrB,SAAO,gBAAgB,MAAM,QAAQA,UAAS,MAAM,YAAY,WAAW,eAAe;AAC5F;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,QAAQA,UAAS,MAAM,WAAW,YAAY;AACnG,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,QAAQA,UAAS,MAAM,WAAW,UAAU;AACtE;AAGA,qBAAqB,EAAE,UAAU,WAAW,SAAS,GAAG;AACtD,OAAK,gBAAgB;AACrB,SAAO,SAAS,MAAM,CAAC;AACzB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,GAAG;AACnD,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAM,CAAC;AACtB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,gBAAgB,SAAS,MAAM,UAAU;AACxE,OAAK,gBAAgB;AACrB,SAAO,cAAc,MAAM,MAAM,QAAQ;AAC3C;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,MAAM;AAC3D,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,IAAI;AAC9B;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,UAAU,WAAW;AACpD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,KAAK,IAAI,CAAC;AAClC;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,WAAW,SAAS,GAAG;AACtD,OAAK,gBAAgB;AACrB,SAAO,SAAS,MAAM,CAAC;AACzB;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,SAAS,MAAM;AAChE,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,SAAS,IAAI;AACnC;AAGA,qBAAqB,EAAE,UAAU,eAAe,SAAS,GAAG;AAC1D,OAAK,gBAAgB;AACrB,SAAO,aAAa,MAAM,CAAC;AAC7B;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,GAAG;AACrD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC;AACxB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,WAAW,WAAW;AACrD,OAAK,gBAAgB;AACrB,SAAO,UAAU,IAAI;AACvB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,OAAO,IAAI;AACpB;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAASU,QAAO;AAC3D,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAMA,MAAK;AAC9B;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,GAAG;AACvD,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,CAAC;AAC1B;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,GAAG;AAClD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,CAAC;AACrB;AAGA,qBAAqB,EAAE,UAAU,6BAA6B,SAAS,aAAa,MAAMA,QAAO,MAAM;AACrG,OAAK,gBAAgB;AACrB,SAAO,2BAA2B,MAAM,aAAa,MAAMA,QAAO,IAAI;AACxE;AAGA,qBAAqB,EAAE,UAAU,aAAa,WAAW;AACvD,OAAK,gBAAgB;AACrB,SAAO,WAAW,IAAI;AACxB;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,MAAM;AAC3D,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,IAAI;AAC9B;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,MAAM,UAAU;AACpE,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,MAAM,QAAQ;AACvC;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO5B,MAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,GAAG;AACxD,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,CAAC;AAC3B;AAGA,qBAAqB,EAAE,UAAU,aAAa,WAAW;AACvD,OAAK,gBAAgB;AACrB,SAAO,WAAW,IAAI;AACxB;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,GAAG;AACvD,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,CAAC;AAC1B;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,GAAG;AACxD,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,CAAC;AAC3B;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,GAAG,YAAY,YAAY;AAC5E,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,GAAG,YAAY,UAAU;AAC/C;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,YAAYkB,UAAS,MAAM,iBAAiB;AAC9F,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,YAAYA,UAAS,MAAM,eAAe;AACjE;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,MAAM,QAAQ;AACjC;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,GAAG;AACrD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC;AACxB;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,UAAU;AAC/D,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,MAAM,QAAQ;AAClC;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,MAAM,QAAQ;AACjC;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,GAAG;AACrD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC;AACxB;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,UAAU,MAAM;AACpE,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,UAAU,IAAI;AACvC;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,KAAK,MAAM,UAAU;AACpE,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,KAAK,MAAM,QAAQ;AACvC;AAGA,qBAAqB,EAAE,UAAU,WAAW,SAAS,GAAG;AACtD,OAAK,gBAAgB;AACrB,SAAO,SAAS,MAAM,CAAC;AACzB;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,OAAO,UAAU,GAAG,WAAW,GAAG;AACnF,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,OAAO,SAAS,QAAQ;AAC9C;AAGA,qBAAqB,EAAE,UAAU,WAAW,WAAW;AACrD,OAAK,gBAAgB;AACrB,SAAO,SAAS,IAAI;AACtB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,UAAU,eAAe;AACvE,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,UAAU,aAAa;AAC1C;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,aAAa,aAAae,UAAS,cAAcf,UAAS,iBAAiB;AAC1H,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,aAAa,aAAae,UAAS,cAAcf,UAAS,eAAe;AAC7F;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM;AACpD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,IAAI;AACvB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAASU,QAAO;AACvD,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAMA,MAAK;AAC1B;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,UAAU;AAC/D,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,MAAM,QAAQ;AAClC;AAGA,qBAAqB,EAAE,UAAU,aAAa,WAAW;AACvD,OAAK,gBAAgB;AACrB,SAAO,WAAW,IAAI;AACxB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,GAAG;AACvD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,EAAE,KAAK;AAC9B;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,OAAO;AACzD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,KAAK;AAC5B;AAGA,qBAAqB,EAAE,UAAU,iBAAiB,SAAS,YAAY,cAAc,kBAAkB;AACrG,OAAK,gBAAgB;AACrB,SAAO,eAAe,MAAM,YAAY,cAAc,gBAAgB;AACxE;AAGA,qBAAqB,EAAE,UAAU,wBAAwB,SAAS,YAAY,cAAc,kBAAkB;AAC5G,OAAK,gBAAgB;AACrB,SAAO,sBAAsB,MAAM,YAAY,cAAc,gBAAgB;AAC/E;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,MAAM;AACxD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,IAAI;AAC3B;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,OAAO,IAAI;AACpB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,kBAAkB,SAAS,iBAAiB,iBAAiBV,UAAS,MAAM,UAAU,YAAY;AACjI,OAAK,gBAAgB;AACrB,SAAO,gBAAgB,MAAM,iBAAiB,iBAAiBA,UAAS,MAAM,UAAU,UAAU;AACpG;AAGA,qBAAqB,EAAE,UAAU,UAAU,WAAW;AACpD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,IAAI;AACrB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,OAAOb,OAAM;AAC7D,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAM,OAAOA,KAAI;AAChC;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,KAAK;AACvD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,GAAG;AAC1B;AAGA,qBAAqB,EAAE,UAAU,WAAW,WAAW;AACrD,OAAK,gBAAgB;AACrB,SAAO,SAAS,IAAI;AACtB;AAGA,qBAAqB,EAAE,UAAU,iBAAiB,SAAS,YAAY,UAAU;AAC/E,OAAK,gBAAgB;AACrB,SAAO,eAAe,MAAM,YAAY,QAAQ;AAClD;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,iBAAiB,MAAM;AACvE,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAM,iBAAiB,IAAI;AAC1C;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,SAAS,WAAW;AACnD,OAAK,gBAAgB;AACrB,SAAO,OAAO,IAAI;AACpB;AAGA,qBAAqB,EAAE,UAAU,oBAAoB,SAAS,GAAG;AAC/D,OAAK,gBAAgB;AACrB,SAAO,kBAAkB,MAAM,CAAC;AAClC;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,MAAM;AACxD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,IAAI;AAC3B;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,GAAG,MAAM;AACzD,OAAK,gBAAgB;AACrB,QAAM,qBAAqB,aAAa,SAAS,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC;AACxE,SAAO,MAAM,oBAAoB,IAAI;AACvC;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAASuB,QAAO;AACtD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAMA,MAAK;AACzB;AAGA,qBAAqB,EAAE,UAAU,eAAe,SAAS,OAAO,KAAKV,UAAS,WAAW,SAAS,cAAc,aAAa,gBAAgB;AAC3I,OAAK,gBAAgB;AACrB,SAAO,aAAa,MAAM,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AAC9G;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,MAAM,QAAQ;AAClC;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM;AACrD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,IAAI;AACxB;AAGA,qBAAqB,EAAE,UAAU,SAAS,WAAW;AACnD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,MAAM;AAC1B;AAGA,qBAAqB,EAAE,UAAU,UAAU,WAAW;AACpD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,SAAS;AAC7B;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,OAAO;AAC3B;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,GAAG,QAAQ;AAC1D,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,GAAG,MAAM;AAC7B;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,MAAM;AAC1D,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,IAAI;AAC7B;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,MAAM;AACvD,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,IAAI;AAC1B;AAGA,qBAAqB,EAAE,UAAU,qBAAqB,SAAS,YAAY,aAAa;AACtF,OAAK,gBAAgB;AACrB,SAAO,mBAAmB,MAAM,YAAY,WAAW;AACzD;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,MAAM;AACxD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,IAAI;AAC3B;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,WAAW,GAAG;AAC9D,OAAK,gBAAgB;AACrB,SAAO,MAAM,WAAW,MAAM,CAAC;AACjC;AAGA,qBAAqB,EAAE,UAAU,YAAY,WAAW;AACtD,OAAK,gBAAgB;AACrB,SAAO,UAAU,IAAI;AACvB;AAGA,IAAI,iBAAiB,cAAc,MAAM;AAAA,EACvC,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,eAAe,SAAS;AAAA,EACtD;AACF;AACA,IAAI,eAAe,cAAc,MAAM;AAAA,EACrC,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,aAAa,SAAS;AAAA,EACpD;AACF;AACA,IAAI,aAAa,cAAc,MAAM;AAAA,EACnC,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,WAAW,SAAS;AAAA,EAClD;AACF;AACA,IAAI,sBAAsB,cAAc,MAAM;AAAA,EAC5C,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,oBAAoB,SAAS;AAAA,EAC3D;AACF;AACA,IAAI,iBAAiB,cAAc,MAAM;AAAA,EACvC,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,eAAe,SAAS;AAAA,EACtD;AACF;AAGA,IAAI,WAAW,MAAM;AAAA,EACnB,YAAY,YAAY;AACtB,SAAK,aAAa,cAAc;AAChC,SAAK,QAAwB,oBAAI,IAAI;AAAA,EACvC;AAAA,EACA,IAAI,KAAK;AACP,QAAI;AACJ,QAAI,KAAK,MAAM,IAAI,GAAG,GAAG;AACvB,cAAQ,KAAK,MAAM,IAAI,GAAG;AAC1B,WAAK,MAAM,OAAO,GAAG;AACrB,WAAK,MAAM,IAAI,KAAK,KAAK;AAAA,IAC3B;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,KAAK,OAAO;AACd,QAAI,KAAK,MAAM,IAAI,GAAG,GAAG;AACvB,WAAK,MAAM,OAAO,GAAG;AAAA,IACvB,WAAW,KAAK,MAAM,QAAQ,KAAK,YAAY;AAC7C,YAAM,cAAc,KAAK,MAAM,KAAK,EAAE,KAAK,EAAE;AAC7C,WAAK,MAAM,OAAO,WAAW;AAAA,IAC/B;AACA,SAAK,MAAM,IAAI,KAAK,KAAK;AAAA,EAC3B;AAAA,EACA,gBAAgB;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,cAAc,YAAY;AACxB,QAAI,aAAa,GAAG;AAClB,YAAM,IAAI,MAAM,4DAA4D,aAAa;AAAA,IAC3F;AACA,QAAI,KAAK,aAAa,YAAY;AAChC,eAAS,KAAK,GAAG,KAAK,KAAK,aAAa,YAAY,MAAM;AACxD,cAAM,cAAc,KAAK,MAAM,KAAK,EAAE,KAAK,EAAE;AAC7C,aAAK,MAAM,OAAO,WAAW;AAAA,MAC/B;AAAA,IACF;AACA,SAAK,aAAa;AAAA,EACpB;AACF;AAGA,SAAS,aAAa,OAAO,WAAW;AACtC,MAAI,MAAM,QAAQ,KAAK,GAAG;AACxB,QAAI,WAAW,CAAC;AAChB,aAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,iBAAW,SAAS,OAAO,KAAK;AAAA,IAClC;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,WAAW,IAAI,MAAM,SAAS;AACpC,aAAS,KAAK,KAAK;AACnB,WAAO;AAAA,EACT;AACF;AACA,SAAS,QAAQ,KAAK,SAAS;AAC7B,MAAI,CAAC,KAAK;AACR,UAAM,IAAI,eAAe,OAAO;AAAA,EAClC;AACF;AACA,SAAS,MAAM,QAAQ,UAAU;AAC/B,MAAI,UAAU;AACd,aAAW,QAAQ,QAAQ;AACzB,QAAI,SAAS,UAAU;AACrB;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,IAAI;AAC5B,MAAI,GAAG,WAAW,GAAG;AACnB,WAAO,GAAG;AAAA,EACZ;AACA,SAAO;AACT;AACA,SAAS,OAAO,GAAG;AACjB,MAAI,MAAM,QAAQ,CAAC,GAAG;AACpB,WAAO;AAAA,EACT;AACA,SAAO,CAAC,CAAC;AACX;AACA,SAAS,YAAY,MAAM;AACzB,QAAM,eAAe,KAAK,QAAQ,wBAAwB,OAAO;AACjE,QAAM,WAAW,aAAa,QAAQ,mBAAmB,OAAO,EAAE,YAAY;AAC9E,MAAI,SAAS,OAAO,KAAK;AACvB,WAAO;AAAA,EACT;AACA,SAAO,YAAY;AACrB;AACA,SAAS,YAAY,YAAY;AAC/B,MAAI,WAAW,UAAU,GAAG;AAC1B,WAAO;AAAA,EACT;AACA,MAAI,WAAW,QAAQ,GAAG,MAAM,IAAI;AAClC,WAAO;AAAA,EACT;AACA,SAAO,WAAW,QAAQ,eAAe,CAAC,GAAG,OAAO,GAAG,YAAY,CAAC;AACtE;AACA,IAAI,yBAAyB,CAAC;AAC9B,SAAS,qBAAqBL,WAAU;AACtC,MAAIA,cAAa,QAAQA,cAAa,QAAQ;AAC5C,WAAO;AAAA,EACT;AACA,QAAM,OAAO,CAAC;AACd,OAAK,eAAeA,UAAS,aAAa;AAC1C,OAAK,YAAYA,UAAS,UAAU;AACpC,SAAO;AACT;AACA,SAAS,8BAA8BO,SAAQ;AAC7C,MAAIA,WAAU,QAAQ,OAAOA,YAAW,UAAU;AAChD;AAAA,EACF,WAAW,MAAM,QAAQA,OAAM,GAAG;AAChC,IAAAA,QAAO,QAAQ,CAAC,eAAe,8BAA8B,UAAU,CAAC;AAAA,EAC1E,OAAO;AACL,UAAM,SAAS,OAAO,KAAKA,OAAM;AACjC,eAAW,SAAS,QAAQ;AAC1B,YAAM,QAAQA,QAAO;AACrB,UAAI,SAAS,QAAQ,OAAO,UAAU,UAAU;AAC9C,YAAI,CAAC,MAAM,QAAQ,KAAK,KAAK,MAAM,YAAY,aAAa,OAAO,MAAM,aAAa,UAAU;AAC9F,UAAAA,QAAO,SAAS,MAAM;AAAA,QACxB,OAAO;AACL,wCAA8B,KAAK;AAAA,QACrC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,uBAAuB,YAAY,gBAAgB,CAAC,GAAG,gBAAgB,CAAC,GAAG,sBAAsB,UAAU,iBAAiB,OAAO;AAC1I,MAAI,OAAO,eAAe,UAAU;AAClC,UAAM,eAAe;AACrB,QAAI;AACJ,QAAI,gBAAgB,eAAe;AACjC,WAAK,cAAc;AAAA,IACrB,WAAW,gBAAgB,wBAAwB;AACjD,WAAK,uBAAuB;AAAA,IAC9B,OAAO;AACL,WAAK,cAAc;AACnB,UAAI,MAAM,MAAM;AACd,cAAM,IAAI,WAAW,WAAW,wBAAwB;AAAA,SACvD;AAAA,gBACO,qHAAqH;AAAA,MAC/H;AAAA,IACF;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAMA,UAAS;AACf,QAAIA,QAAO,gBAAgB,QAAQA,QAAO,aAAa,MAAM;AAC3D,YAAM,IAAI,WAAW,GAAG,gDAAgD,KAAK,UAAUA,OAAM;AAAA,mCAChE;AAAA,IAC/B;AACA,UAAM,YAAYA,QAAO;AACzB,QAAI,KAAK;AACT,QAAI,aAAa,eAAe;AAC9B,OAAC,KAAK,UAAU,IAAI,cAAc;AAAA,IACpC,WAAW,aAAa,wBAAwB;AAC9C,OAAC,KAAK,UAAU,IAAI,uBAAuB;AAAA,IAC7C,WAAW,aAAa,eAAe;AACrC,OAAC,KAAK,UAAU,IAAI,cAAc;AAAA,IACpC;AACA,QAAI,OAAO,MAAM;AACf,YAAM,IAAI,WAAW,WAAW,wBAAwB;AAAA,SACrD;AAAA,gBACO,qHAAqH;AAAA,IACjI;AACA,QAAI,cAAc,MAAM;AACtB,YAAM,wBAAwB,CAAC;AAC/B,iBAAW,OAAO,OAAO,KAAK,sBAAsB,GAAG;AACrD,8BAAsB,OAAO,uBAAuB;AAAA,MACtD;AACA,iBAAW,OAAO,OAAO,KAAK,aAAa,GAAG;AAC5C,8BAAsB,OAAO,cAAc;AAAA,MAC7C;AACA,YAAM,eAAeA,QAAO;AAC5B,mBAAa,mBAAmB;AAChC,YAAM,sBAAsB,OAAO,OAAO,CAAC,GAAG,sBAAsB;AACpE,iBAAW,OAAO,OAAO,KAAK,aAAa,GAAG;AAC5C,+BAAuB,OAAO,cAAc;AAAA,MAC9C;AACA,oCAA8BA,QAAO,SAAS;AAC9C,YAAM,YAAY,WAAW,KAAKA,QAAO,WAAW,eAAe,cAAc;AACjF,+BAAyB,OAAO,OAAO,CAAC,GAAG,mBAAmB;AAC9D,aAAO;AAAA,IACT,OAAO;AACL,YAAM,sBAAsB,OAAO,OAAO,CAAC,GAAG,sBAAsB;AACpE,iBAAW,OAAO,OAAO,KAAK,aAAa,GAAG;AAC5C,+BAAuB,OAAO,cAAc;AAAA,MAC9C;AACA,YAAM,YAAY,IAAI,IAAIA,QAAO,SAAS;AAC1C,+BAAyB,OAAO,OAAO,CAAC,GAAG,mBAAmB;AAC9D,aAAO;AAAA,IACT;AAAA,EACF;AACF;AACA,SAAS,cAAc,GAAG,GAAG;AAC3B,SAAO,IAAI,IAAI,KAAK,IAAI,IAAI,IAAI;AAClC;AACA,SAAS,qBAAqB,GAAG,GAAG;AAClC,SAAO,KAAK,cAAc,GAAG,CAAC;AAChC;AACA,SAAS,QAAQ,IAAI;AACnB,MAAI,MAAM,MAAM;AACd,WAAO;AAAA,EACT;AACA,QAAM,MAAM,CAAC;AACb,aAAW,KAAK,IAAI;AAClB,QAAI,IAAI,QAAQ,CAAC,MAAM,IAAI;AACzB,UAAI,KAAK,CAAC;AAAA,IACZ;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,cAAc,KAAK;AAC1B,MAAI,OAAO,MAAM;AACf,UAAM,IAAI,WAAW,yBAAyB,KAAK,UAAU,GAAG,GAAG;AAAA,EACrE;AACA,aAAW,OAAO,KAAK;AACrB,QAAI,IAAI,eAAe,GAAG,GAAG;AAC3B,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,0BAA0B,QAAQ,OAAO,OAAO;AACvD,MAAI,SAAS,MAAM;AACjB;AAAA,EACF;AACA,MAAI,OAAO,QAAQ,KAAK,IAAI,GAAG;AAC7B,UAAM,IAAI,WAAW,GAAG,wBAAwB,4BAA4B,2BAA2B;AAAA,EACzG;AACF;AACA,SAAS,wBAAwB,GAAG,cAAc,YAAY,GAAG,YAAY,UAAU;AACrF,UAAQ,aAAa,CAAC;AACtB,UAAQ,aAAa,SAAS;AAC9B,SAAO,MAAM,QAAQ,CAAC,KAAK,EAAE,UAAU,aAAa,EAAE,UAAU,aAAa,EAAE,MAAM,CAAC,OAAO,OAAO,OAAO,YAAY;AACzH;AACA,SAAS,sBAAsB,OAAO,MAAM;AAC1C,MAAI,MAAM,QAAQ,KAAK,GAAG;AACxB,iBAAa,OAAO,MAAM,SAAS,GAAG,MAAM,GAAG,sCAAsC;AACrF,UAAM,QAAQ,CAAC,GAAG,OAAO,sBAAsB,GAAG,WAAW,KAAK,QAAQ,MAAM,CAAC;AAAA,EACnF,OAAO;AACL,iBAAa,OAAO,OAAO,UAAU,KAAK,KAAK,QAAQ,GAAG,MAAM,YAAY,0CAA0C,uBAAuB,KAAK,IAAI;AAAA,EACxJ;AACF;AACA,SAAS,uBAAuB,OAAO;AACrC,MAAI,UAAU,MAAM;AAClB,WAAO;AAAA,EACT,WAAW,MAAM,QAAQ,KAAK,GAAG;AAC/B,WAAO,MAAM,MAAM,IAAI,CAAC,MAAM,uBAAuB,CAAC,CAAC,EAAE,KAAK,GAAG,IAAI;AAAA,EACvE,WAAW,OAAO,UAAU,UAAU;AACpC,WAAO,IAAI;AAAA,EACb,OAAO;AACL,WAAO,GAAG;AAAA,EACZ;AACF;AACA,SAAS,SAAS,GAAG,QAAQ,SAAS;AACpC,MAAIc,aAAW,WAAW,OAAO,QAAQ,IAAI,aAAa,IAAI;AAC9D,MAAI;AACJ,QAAM,KAAK,IAAI,SAAS;AACtB,UAAMpB,QAAO,WAAW,OAAO,QAAQ,IAAI,aAAa,IAAI;AAC5D,QAAIA,QAAOoB,aAAW,QAAQ;AAC5B,aAAO;AAAA,IACT;AACA,IAAAA,aAAWpB;AACX,iBAAa,EAAE,GAAG,IAAI;AACtB,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,2BAA2B,gBAAgB;AAClD,MAAI,mBAAmB,QAAQ;AAC7B,WAAO;AAAA,EACT;AACA,MAAI,mBAAmB,UAAU;AAC/B,WAAO;AAAA,EACT;AACA,MAAI,mBAAmB,OAAO;AAC5B,WAAO;AAAA,EACT;AACA,SAAO;AACT;AAGA,IAAI,sBAAsB;AAC1B,SAAS,wBAAwB;AAC/B,SAAO;AACT;AACA,IAAI,eAAe,CAAC;AACpB,SAAS,OAAO,SAAS,IAAI;AAC3B,MAAI,EAAE,UAAU,eAAe;AAC7B,iBAAa,UAAU;AAAA,EACzB;AACA,eAAa,WAAW;AACxB,SAAO,SAAS,aAAa,QAAQ,SAAS;AAChD;AAGA,IAAI,2BAA2B,CAAC,iBAAiB,cAAc;AAC/D,IAAI,oCAAoC,CAAC,WAAW,UAAU;AAC9D,IAAI,4BAA4B,CAAC,SAAS,QAAQ,QAAQ;AAC1D,IAAI,yBAAyB,CAAC,OAAO,KAAK;AAC1C,IAAI,kCAAkC,CAAC,OAAO,OAAO,UAAU,KAAK;AAGpE,IAAI,UAA0B,oBAAI,IAAI;AACtC,SAAS,gBAAgB,OAAO;AAC9B,4BAA0B,0BAA0B,cAAc,KAAK;AACzE;AACA,SAAS,yBAAyB,OAAO;AACvC,4BAA0B,mCAAmC,uBAAuB,KAAK;AAC3F;AACA,SAAS,iBAAiB,OAAO;AAC/B,4BAA0B,2BAA2B,eAAe,KAAK;AAC3E;AACA,SAAS,cAAc,OAAO;AAC5B,4BAA0B,wBAAwB,YAAY,KAAK;AACrE;AACA,IAAI,kBAAkB,CAAC;AACvB,IAAI,oBAAoB;AACxB,SAAS,UAAU,MAAM,IAAI;AAC3B,kBAAgB,KAAK,IAAI;AACzB,MAAI;AACF,UAAM,MAAM,GAAG;AACf,oBAAgB,IAAI;AACpB,WAAO;AAAA,EACT,SAAS,IAAP;AACA,oBAAgB,IAAI;AACpB,UAAM;AAAA,EACR;AACF;AACA,SAAS,yBAAyB;AAChC,MAAI,gBAAgB,WAAW,GAAG;AAChC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,gBAAgB,KAAK,iBAAiB,IAAI;AAAA,EACnD;AACF;AACA,SAAS,oBAAoB,YAAY;AACvC,MAAI,CAAC,kBAAkB,UAAU,GAAG;AAClC,UAAM,IAAI,MAAM,+BAA+B,aAAa,GAAG;AAAA,EACjE;AACA,SAAO,uBAAuB,IAAI;AACpC;AACA,SAAS,oBAAoB,YAAY;AACvC,MAAI,CAAC,kBAAkB,UAAU,GAAG;AAClC,UAAM,IAAI,MAAM,+BAA+B,aAAa,GAAG;AAAA,EACjE;AACA,MAAI,CAAC,QAAQ,IAAI,UAAU,GAAG;AAC5B,YAAQ,IAAI,YAAY,CAAC;AAAA,EAC3B;AACA,QAAMC,SAAQ,QAAQ,IAAI,UAAU;AACpC,UAAQ,IAAI,YAAY,QAAQ,IAAI,UAAU,IAAI,CAAC;AACnD,MAAIA,SAAQ,GAAG;AACb,UAAM,SAAS,GAAG,cAAcA;AAChC,YAAQ,IAAI,QAAQ,CAAC;AACrB,WAAO;AAAA,EACT,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,IAAI,kBAAkB,IAAI,OAAO,iCAAiC;AAClE,SAAS,kBAAkB,MAAM;AAC/B,SAAO,CAAC,CAAC,KAAK,MAAM,eAAe;AACrC;AAGA,SAAS,UAAU,GAAG;AACpB,SAAO,MAAM,SAAS,EAAE,SAAS,GAAG,EAAE;AACxC;AACA,SAAS,UAAU,QAAQ,OAAO,KAAK;AACrC,MAAI,SAAS,MAAM;AACjB,YAAQ;AAAA,EACV;AACA,MAAI,OAAO,MAAM;AACf,UAAM,OAAO;AAAA,EACf;AACA,MAAI,QAAQ;AACZ,WAAS,KAAK,OAAO,KAAK,KAAK,EAAE,IAAI;AACnC,aAAS,OAAO;AAAA,EAClB;AACA,SAAO;AACT;AACA,SAAS,KAAK,QAAQ;AACpB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,OAAO;AAAA,EAChB;AACA,MAAI,OAAO,OAAO;AAClB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,UAAM,QAAQ,OAAO;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,KAAK,QAAQ;AACpB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,OAAO;AAAA,EAChB;AACA,MAAI,OAAO,OAAO;AAClB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,UAAM,QAAQ,OAAO;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,OAAO,OAAO,KAAK;AAC1B,MAAI,MAAM,OAAO;AACf,UAAM,IAAI,WAAW,QAAQ,iBAAiB,sBAAsB;AAAA,EACtE;AACA,QAAM,MAAM,CAAC;AACb,WAAS,KAAK,OAAO,KAAK,KAAK,EAAE,IAAI;AACnC,QAAI,KAAK,EAAE;AAAA,EACb;AACA,SAAO;AACT;AAGA,IAAI;AACJ,SAAS,UAAU;AACjB,MAAI,YAAY,MAAM;AACpB,eAAW,QAAQ,EAAE,QAAQ;AAAA,EAC/B;AACA,SAAO;AACT;AACA,SAAS,kBAAkB;AACzB,SAAO;AACT;AAGA,SAAS,MAAM,GAAG,OAAO;AACvB,SAAO,KAAK,GAAG,KAAK;AACtB;AACA,SAAS,YAAY,GAAG,OAAO,IAAI;AACjC,QAAM,WAAW,EAAE,MAAM,MAAM;AAC/B,MAAI,OAAO,GAAG;AACZ,WAAO,SAAS,SAAS,OAAO;AAAA,EAClC;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,QAAQ,GAAG,QAAQ;AAC5B;AACA,SAAS,OAAO,GAAG,IAAI;AACrB,SAAO,KAAK,MAAM;AAChB,QAAI,EAAE,MAAM,WAAW,GAAG;AACxB,YAAM,IAAI,WAAW,yDAAyD,EAAE,MAAM,gBAAgB;AAAA,IACxG;AACA,UAAM,IAAI,YAAY,GAAG,CAAC;AAC1B,WAAO,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,CAAC;AAAA,EAC5B,CAAC;AACH;AACA,SAAS,SAAS,GAAG;AACnB,QAAM,WAAW,CAAC,UAAU,EAAE,KAAK,CAAC;AACpC,SAAO,QAAQ,GAAG,QAAQ;AAC5B;AACA,SAAS,aAAa,GAAG;AACvB,MAAI,EAAE,QAAQ,GAAG;AACf,UAAM,IAAI,WAAW,wDAAwD,EAAE,OAAO;AAAA,EACxF;AACA,QAAM,WAAW,CAAC,EAAE,MAAM,IAAI,UAAU,EAAE,OAAO,CAAC,CAAC;AACnD,SAAO,QAAQ,GAAG,QAAQ;AAC5B;AACA,SAAS,oBAAoB,QAAQ,OAAOV,OAAM;AAChD,SAAO,KAAK,MAAM;AAChB,YAAQ,OAAO;AAAA,WACR;AACH,eAAO,QAAQ,QAAQ,OAAOA,KAAI;AAAA,WAC/B;AACH,eAAO,QAAQ,QAAQ,CAAC,OAAO,CAAC,GAAG,CAACA,OAAM,OAAO,MAAM,EAAE,CAAC;AAAA,WACvD;AACH,eAAO,QAAQ,QAAQ,CAAC,OAAO,GAAG,CAAC,GAAG,CAACA,OAAM,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC;AAAA,WAC3E;AACH,eAAO,QAAQ,QAAQ,CAAC,OAAO,GAAG,GAAG,CAAC,GAAG,CAACA,OAAM,OAAO,MAAM,IAAI,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC;AAAA,WAC/F;AACH,eAAO,MAAM,QAAQ,CAAC,OAAO,GAAG,GAAG,GAAG,CAAC,GAAG;AAAA,UACxCA;AAAA,UACA,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,QACf,CAAC;AAAA,WACE;AACH,eAAO,MAAM,QAAQ,CAAC,OAAO,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG;AAAA,UAC3CA;AAAA,UACA,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,QACf,CAAC;AAAA;AAED,cAAM,IAAI,WAAW,8DAA8D,OAAO,MAAM;AAAA;AAAA,EAEtG,CAAC;AACH;AACA,SAAS,mBAAmB,QAAQ,OAAOA,OAAM;AAC/C,SAAO,KAAK,MAAM;AAChB,YAAQ,OAAO;AAAA,WACR;AACH,eAAO,QAAQ,QAAQ,OAAOA,KAAI;AAAA,WAC/B;AACH,eAAO,QAAQ,QAAQ,CAAC,GAAG,KAAK,GAAG,CAAC,OAAO,MAAM,IAAIA,KAAI,CAAC;AAAA,WACvD;AACH,eAAO,QAAQ,QAAQ,CAAC,GAAG,GAAG,KAAK,GAAG,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,IAAIA,KAAI,CAAC;AAAA,WAC3E;AACH,eAAO,QAAQ,QAAQ,CAAC,GAAG,GAAG,GAAG,KAAK,GAAG,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,IAAI,OAAO,MAAM,IAAIA,KAAI,CAAC;AAAA;AAElG,cAAM,IAAI,WAAW,6DAA6D,OAAO,MAAM;AAAA;AAAA,EAErG,CAAC;AACH;AACA,SAAS,eAAe,QAAQ,OAAOA,OAAM,MAAM;AACjD,SAAO,KAAK,MAAM;AAChB,YAAQ,OAAO;AAAA,WACR;AACH,eAAO,QAAQ,QAAQ,OAAOA,KAAI;AAAA,WAC/B;AACH,gBAAQ;AAAA,eACD;AACH,mBAAO,oBAAoB,QAAQ,OAAOA,KAAI;AAAA,eAC3C;AACH,mBAAO,mBAAmB,QAAQ,OAAOA,KAAI;AAAA;AAE7C,kBAAM,IAAI,WAAW,iDAAiD,MAAM;AAAA;AAAA,WAE7E;AACH,gBAAQ;AAAA,eACD;AACH,mBAAO,oBAAoB,QAAQ,OAAOA,KAAI;AAAA,eAC3C;AACH,mBAAO,QAAQ,QAAQ,CAAC,GAAG,OAAO,CAAC,GAAG,CAAC,OAAO,MAAM,IAAIA,OAAM,OAAO,MAAM,EAAE,CAAC;AAAA,eAC3E;AACH,mBAAO,mBAAmB,QAAQ,OAAOA,KAAI;AAAA;AAE7C,kBAAM,IAAI,WAAW,iDAAiD,MAAM;AAAA;AAAA,WAE7E;AACH,gBAAQ;AAAA,eACD;AACH,mBAAO,oBAAoB,QAAQ,OAAOA,KAAI;AAAA,eAC3C;AACH,mBAAO,QAAQ,QAAQ,CAAC,GAAG,OAAO,GAAG,CAAC,GAAG,CAAC,OAAO,MAAM,IAAIA,OAAM,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC;AAAA,eAC/F;AACH,mBAAO,QAAQ,QAAQ,CAAC,GAAG,GAAG,OAAO,CAAC,GAAG,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,IAAIA,OAAM,OAAO,MAAM,EAAE,CAAC;AAAA,eAC/F;AACH,mBAAO,mBAAmB,QAAQ,OAAOA,KAAI;AAAA;AAE7C,kBAAM,IAAI,WAAW,iDAAiD,MAAM;AAAA;AAAA;AAGhF,cAAM,IAAI,WAAW,6DAA6D,OAAO,MAAM;AAAA;AAAA,EAErG,CAAC;AACH;AACA,SAAS,YAAY,SAAS,OAAO,IAAI;AACvC,MAAI;AACJ,MAAI,OAAO,GAAG;AACZ,WAAO,QAAQ,GAAG;AAClB,QAAI,SAAS,GAAG;AACd,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACA,MAAI,SAAS,QAAQ,GAAG,MAAM;AAC5B,WAAO;AAAA,EACT;AACA,SAAO,OAAO,SAAS,IAAI;AAC7B;AACA,SAAS,qBAAqB,GAAG,GAAG;AAClC,UAAQ,EAAE;AAAA,SACH;AACH,aAAO,SAAS,CAAC,GAAG,CAAC,CAAC;AAAA,SACnB;AACH,aAAO,SAAS,CAAC,GAAG,CAAC,GAAG,CAAC;AAAA,SACtB;AACH,aAAO,SAAS,CAAC,GAAG,CAAC,GAAG,CAAC;AAAA,SACtB;AACH,aAAO,SAAS,CAAC,GAAG,CAAC,GAAG,CAAC;AAAA;AAEzB,YAAM,IAAI,WAAW,+DAA+D,EAAE,MAAM;AAAA;AAElG;AACA,SAAS,MAAM,GAAG,IAAI;AACpB,MAAI,CAAC,MAAM,QAAQ,EAAE,GAAG;AACtB,SAAK,CAAC,EAAE;AAAA,EACV;AACA,MAAI,EAAE,SAAS,GAAG,QAAQ;AACxB,UAAM,IAAI,WAAW,0BAA0B,GAAG,+DAA+D,EAAE,OAAO;AAAA,EAC5H;AACA,SAAO,KAAK,GAAG,EAAE;AACnB;AACA,SAAS,cAAc,OAAO,QAAQ,GAAG,SAAS,GAAG,OAAO,MAAM;AAChE,SAAO,aAAa,OAAO,OAAO,QAAQ,OAAO,IAAI;AACvD;AACA,SAAS,KAAK,GAAG,GAAG,aAAa,MAAM;AACrC,MAAI,EAAE,OAAO,KAAK,EAAE,OAAO,GAAG;AAC5B,UAAM,IAAI,oBAAoB,8DAA8D,EAAE,uBAAuB,EAAE,OAAO;AAAA,EAChI;AACA,MAAI,EAAE,QAAQ,GAAG;AACf,UAAM,WAAW,EAAE,MAAM,MAAM,EAAE,EAAE;AACnC,UAAM,iBAAiB,EAAE,MAAM,MAAM,EAAE,EAAE;AACzC,QAAI,aAAa,gBAAgB;AAC/B,YAAM,IAAI,oBAAoB,gGAAgG,EAAE,wBAAwB,EAAE,OAAO;AAAA,IACnK;AAAA,EACF;AACA,MAAI,EAAE,SAAS,KAAK,EAAE,SAAS,GAAG;AAChC,UAAM,aAAa;AACnB,UAAM,aAAa;AACnB,WAAO,kBAAkB,OAAO;AAAA,MAC9B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,MAAM,OAAO,YAAY,EAAE,MAAM,MAAM,gBAAgB,CAAC,IAAI;AAAA,MAC5D,YAAY;AAAA,IACd,CAAC;AAAA,EACH,OAAO;AACL,UAAM,aAAa,EAAE,MAAM,MAAM;AACjC,UAAM,WAAW,WAAW,IAAI;AAChC,QAAI,QAAQ,GAAG,CAAC,IAAI,QAAQ,CAAC;AAC7B,UAAM,SAAS,EAAE,MAAM,MAAM;AAC7B,UAAM,WAAW,OAAO,IAAI;AAC5B,UAAM,iBAAiB,OAAO,IAAI;AAClC,UAAM,aAAa,CAAC,GAAG,QAAQ,QAAQ;AACvC,UAAM,OAAO,MAAM,KAAK,EAAE,QAAQ,EAAE,KAAK,GAAG,CAAC,GAAG,OAAO;AACrD,UAAI,OAAO,GAAG;AACZ,eAAO,EAAE,OAAO;AAAA,MAClB,WAAW,MAAM,EAAE,OAAO,GAAG;AAC3B,eAAO,KAAK;AAAA,MACd;AACA,aAAO;AAAA,IACT,CAAC;AACD,QAAI,QAAQ,UAAU,GAAG,IAAI,GAAG,CAAC,gBAAgB,EAAE,CAAC;AACpD,UAAM,cAAc,CAAC,GAAG,YAAY,GAAG,UAAU;AACjD,UAAM,aAAa;AACnB,UAAM,aAAa;AACnB,WAAO,QAAQ,kBAAkB,OAAO;AAAA,MACtC;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,MAAM,OAAO,YAAY,EAAE,MAAM,MAAM,gBAAgB,CAAC,IAAI;AAAA,MAC5D,YAAY;AAAA,IACd,CAAC,GAAG,WAAW;AAAA,EACjB;AACF;AACA,SAAS,QAAQ,WAAW,SAAS,MAAM;AACzC,SAAO,KAAK,MAAM;AAChB,QAAI,MAAM,QAAQ,OAAO,GAAG;AAC1B,gBAAU,SAAS,SAAS,OAAO;AAAA,IACrC,OAAO;AACL,gBAAU,KAAK,SAAS,OAAO;AAAA,IACjC;AACA,WAAO,OAAO,WAAW,SAAS,IAAI;AAAA,EACxC,CAAC;AACH;AACA,SAAS,QAAQ,GAAG;AAClB,SAAO,IAAI,GAAG,CAAC;AACjB;AACA,SAAS,YAAY,OAAO,MAAM,YAAY;AAC5C,QAAM,YAAY,KAAK;AACvB,MAAI,KAAK,SAAS,KAAK,KAAK,SAAS,OAAO;AAC1C,UAAM,IAAI,WAAW,+BAA+B,KAAK,gCAAgC,OAAO;AAAA,EAClG;AACA,MAAI,UAAU,GAAG;AACf,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,GAAG,GAAG,CAAC,CAAC;AAAA,MACjD,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,UAAU,IAAI,UAAU,IAAI,UAAU,EAAE,CAAC;AAAA,MAClF;AAAA,IACF,WAAW,eAAe,gBAAgB;AACxC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,GAAG,GAAG,GAAG,UAAU,EAAE,CAAC;AAAA,MACjD,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,CAAC,EAAE,OAAO,SAAS,CAAC;AAAA,MAC5C;AAAA,IACF;AAAA,EACF,WAAW,UAAU,GAAG;AACtB,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,GAAG,CAAC,CAAC;AAAA,MAC9C,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,UAAU,IAAI,UAAU,EAAE,CAAC;AAAA,MACpE;AAAA,IACF,WAAW,eAAe,gBAAgB;AACxC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,GAAG,GAAG,UAAU,EAAE,CAAC;AAAA,MAC9C,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,CAAC,EAAE,OAAO,SAAS,CAAC;AAAA,MAC5C;AAAA,IACF;AAAA,EACF,WAAW,UAAU,GAAG;AACtB,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,CAAC,CAAC;AAAA,MAC3C,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,UAAU,EAAE,CAAC;AAAA,MACtD;AAAA,IACF,WAAW,eAAe,gBAAgB;AACxC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,GAAG,UAAU,EAAE,CAAC;AAAA,MAC3C,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,CAAC,EAAE,OAAO,SAAS,CAAC;AAAA,MAC5C;AAAA,IACF;AAAA,EACF,WAAW,QAAQ,GAAG;AACpB,WAAO;AAAA,EACT;AACA,QAAM,IAAI,WAAW,sCAAsC,KAAK,MAAM;AACxE;AACA,SAAS,QAAQ,GAAG,MAAM,YAAY;AACpC,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,WAAO,KAAK,GAAG,YAAY,EAAE,MAAM,MAAM,UAAU,CAAC;AAAA,EACtD,CAAC;AACH;AACA,SAAS,KAAK,GAAGuB,SAAQ,GAAG;AAC1B,MAAIA,WAAU,GAAG;AACf,UAAM,IAAI,oBAAoB,0CAA0CA,iCAAgC;AAAA,EAC1G;AACA,SAAO,IAAI,CAAC;AACd;AACA,SAAS,SAAS,GAAG;AACnB,SAAO,KAAK,MAAM,IAAI,GAAG,KAAK,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;AAC3C;AACA,SAAS,SAAS,GAAG,OAAO,YAAY,MAAM;AAC5C,SAAO,KAAK,MAAM,QAAQ,GAAG,OAAO,YAAY,IAAI,CAAC;AACvD;AACA,SAAS,YAAY,GAAG;AACtB,SAAO,KAAK,MAAM;AAChB,UAAM,IAAI,KAAK,KAAK,IAAI,KAAK,CAAC,CAAC;AAC/B,WAAO,YAAY,GAAG,GAAG,CAAC;AAAA,EAC5B,CAAC;AACH;AACA,SAAS,aAAa,GAAG,KAAK,WAAW,OAAO;AAC9C,SAAO,WAAW,EAAE,IAAI,IAAI;AAC9B;AAGA,IAAI,wBAAwB,CAAC,SAAS,UAAU,QAAQ;AACxD,IAAI,4BAA4B,CAAC,UAAU,WAAW,iBAAiB;AAGvE,SAAS,aAAa,OAAO;AAC3B,4BAA0B,uBAAuB,WAAW,KAAK;AACnE;AACA,SAAS,kBAAkB,OAAO;AAChC,4BAA0B,2BAA2B,gBAAgB,KAAK;AAC5E;AACA,IAAI,cAAc,cAAc,sBAAsB,aAAa;AAAA,EACjE,8BAA8B;AAC5B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,WAAO,CAAC;AAAA,EACV;AACF;AACA,IAAI,QAAQ,cAAc,YAAY;AAAA,EACpC,MAAM,OAAO,OAAO;AAClB,WAAO,MAAM,OAAO,KAAK;AAAA,EAC3B;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,OAAO,cAAc,YAAY;AAAA,EACnC,MAAM,OAAO,OAAO;AAClB,WAAO,MAAM,OAAO,KAAK;AAAA,EAC3B;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,WAAW,cAAc,YAAY;AAAA,EACvC,YAAY,MAAM;AAChB,UAAM;AACN,QAAI,OAAO,SAAS,UAAU;AAC5B,YAAM,IAAI,WAAW,oDAAoD,MAAM;AAAA,IACjF;AACA,QAAI,KAAK,UAAU,QAAQ;AACzB,YAAM,IAAI,WAAW,sCAAsC,MAAM;AAAA,IACnE;AACA,SAAK,QAAQ,KAAK;AAAA,EACpB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,WAAO,KAAK,MAAM,IAAI,OAAO,KAAK,KAAK,GAAG,MAAM,OAAO,KAAK,CAAC,CAAC;AAAA,EAChE;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,OAAO,KAAK;AAAA,IACd;AAAA,EACF;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,gBAAgB,cAAc,YAAY;AAAA,EAC5C,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,SAAS,KAAK,UAAU,KAAK;AAClC,SAAK,SAAS,KAAK,UAAU,KAAK;AAClC,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,WAAO,cAAc,OAAO,KAAK,QAAQ,KAAK,QAAQ,KAAK;AAAA,EAC7D;AAAA,EACA,YAAY;AACV,WAAO,EAAE,QAAQ,KAAK,QAAQ,QAAQ,KAAK,QAAQ,MAAM,KAAK,KAAK;AAAA,EACrE;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AACjD,IAAI,eAAe,cAAc,YAAY;AAAA,EAC3C,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,iBAAiB;AACtB,SAAK,OAAO,KAAK,QAAQ,KAAK;AAC9B,SAAK,SAAS,KAAK,UAAU,KAAK;AAClC,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,YAAQ,SAAS;AACjB,QAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,YAAM,IAAI,oBAAoB,uCAAuC,QAAQ;AAAA,IAC/E;AACA,WAAO,cAAc,OAAO,KAAK,MAAM,KAAK,QAAQ,OAAO,KAAK,IAAI;AAAA,EACtE;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,MAAM,QAAQ,KAAK,QAAQ,MAAM,KAAK,KAAK;AAAA,EACjE;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,kBAAkB,cAAc,YAAY;AAAA,EAC9C,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,iBAAiB;AACtB,SAAK,OAAO,KAAK,QAAQ,KAAK;AAC9B,SAAK,SAAS,KAAK,UAAU,KAAK;AAClC,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,YAAQ,SAAS;AACjB,QAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,YAAM,IAAI,oBAAoB,0CAA0C,QAAQ;AAAA,IAClF;AACA,WAAO,gBAAgB,OAAO,KAAK,MAAM,KAAK,QAAQ,OAAO,KAAK,IAAI;AAAA,EACxE;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,MAAM,QAAQ,KAAK,QAAQ,MAAM,KAAK,KAAK;AAAA,EACjE;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,YAAY,cAAc,YAAY;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO;AAAA,EAC9C;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,WAAO,KAAK,MAAM;AAChB,UAAI,MAAM,WAAW,KAAK,MAAM,OAAO,MAAM,IAAI;AAC/C,cAAM,IAAI,WAAW,sEAAsE;AAAA,MAC7F,OAAO;AACL,eAAO,IAAI,KAAK,MAAM,IAAI,MAAM,EAAE,CAAC;AAAA,MACrC;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,KAAK;AAAA,EAC3B;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,SAAS,YAAY,OAAO,aAAa,gBAAgB;AACvD,MAAI;AACJ,MAAI;AACJ,kBAAgB,UAAU;AAC1B,MAAI,MAAM,WAAW,GAAG;AACtB,YAAQ,MAAM;AACd,aAAS,MAAM;AAAA,EACjB,WAAW,CAAC,GAAG,GAAG,CAAC,EAAE,QAAQ,MAAM,MAAM,MAAM,IAAI;AACjD,QAAI,eAAe,iBAAiB;AAClC,YAAM,qBAAqB,UAAU,OAAO,CAAC;AAC7C,cAAQ,MAAM,KAAK;AACnB,eAAS,MAAM,KAAK;AAAA,IACtB,WAAW,eAAe,gBAAgB;AACxC,YAAM,qBAAqB,UAAU,OAAO,GAAG,MAAM,SAAS,CAAC;AAC/D,cAAQ,MAAM,MAAM,SAAS,KAAK;AAClC,eAAS,MAAM,MAAM,SAAS,KAAK;AAAA,IACrC;AAAA,EACF,OAAO;AACL,UAAM,YAAY,UAAU,KAAK;AACjC,YAAQ,KAAK,KAAK,SAAS;AAC3B,aAAS,KAAK,KAAK,SAAS;AAAA,EAC9B;AACA,SAAO,CAAC,OAAO,MAAM;AACvB;AACA,IAAI,kBAAkB,cAAc,YAAY;AAAA,EAC9C,YAAY,MAAM;AAChB,UAAM;AACN,QAAI,KAAK,QAAQ,GAAG;AAClB,YAAM,IAAI,WAAW,wCAAwC,KAAK,OAAO;AAAA,IAC3E;AACA,SAAK,QAAQ,KAAK,SAAS,OAAO,IAAI,KAAK;AAC3C,SAAK,OAAO,KAAK,QAAQ,OAAO,UAAU,KAAK;AAC/C,iBAAa,KAAK,IAAI;AACtB,SAAK,eAAe,KAAK,gBAAgB,OAAO,WAAW,KAAK;AAChE,sBAAkB,KAAK,YAAY;AACnC,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,UAAM,OAAO,YAAY,KAAK;AAC9B,UAAM,QAAQ,KAAK;AACnB,UAAM,SAAS,KAAK;AACpB,QAAID,UAAS,KAAK;AAClB,QAAI,KAAK,SAAS,SAAS;AACzB,MAAAA,WAAU,KAAK,IAAI,GAAG,KAAK;AAAA,IAC7B,WAAW,KAAK,SAAS,UAAU;AACjC,MAAAA,WAAU,KAAK,IAAI,GAAG,MAAM;AAAA,IAC9B,OAAO;AACL,MAAAA,WAAU,KAAK,IAAI,IAAI,QAAQ,UAAU,CAAC;AAAA,IAC5C;AACA,QAAI,KAAK,iBAAiB,UAAU;AAClC,YAAM,SAAS,KAAK,KAAKA,OAAM;AAC/B,cAAQ,SAAS;AACjB,UAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,cAAM,IAAI,oBAAoB,GAAG,KAAK,aAAa,4BAA4B,QAAQ;AAAA,MACzF;AACA,aAAO,gBAAgB,OAAO,GAAG,QAAQ,OAAO,KAAK,IAAI;AAAA,IAC3D,OAAO;AACL,YAAM,QAAQ,KAAK,KAAK,IAAIA,OAAM;AAClC,aAAO,cAAc,OAAO,CAAC,OAAO,OAAO,KAAK;AAAA,IAClD;AAAA,EACF;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,OAAO,KAAK;AAAA,MACZ,MAAM,KAAK;AAAA,MACX,cAAc,KAAK;AAAA,MACnB,MAAM,KAAK;AAAA,IACb;AAAA,EACF;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,gBAAgB,cAAc,gBAAgB;AAAA,EAChD,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AACjD,IAAI,eAAe,cAAc,gBAAgB;AAAA,EAC/C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,WAAW,cAAc,gBAAgB;AAAA,EAC3C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,YAAY,cAAc,gBAAgB;AAAA,EAC5C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,cAAc,cAAc,gBAAgB;AAAA,EAC9C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,eAAe,cAAc,gBAAgB;AAAA,EAC/C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,aAAa,cAAc,YAAY;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,eAAe,KAAK;AACzD,SAAK,OAAO,KAAK;AACjB,QAAI,KAAK,QAAQ,MAAM;AACrB,YAAM,IAAI,oBAAoB,gEAAgE;AAAA,IAChG;AAAA,EACF;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,WAAO,KAAK,MAAM;AAChB,UAAI,MAAM,SAAS,GAAG;AACpB,cAAM,IAAI,oBAAoB,4BAA4B;AAAA,MAC5D;AACA,UAAI,MAAM,KAAK,MAAM,KAAK,KAAK;AAC7B,gBAAQ,KAAK,2EAA2E,MAAM,KAAK,MAAM,oCAAoC;AAAA,MAC/I;AACA,YAAM,kBAAkB,MAAM,KAAK,MAAM,KAAK,CAAC,MAAM,IAAI,MAAM,EAAE,IAAI;AACrE,YAAM,IAAI,cAAc,iBAAiB,GAAG,GAAG,SAAS;AACxD,UAAI,IAAI,OAAO,YAAY,CAAC;AAC5B,UAAI,MAAM,KAAK,MAAM,IAAI;AACvB,YAAI,UAAU,CAAC;AAAA,MACjB;AACA,aAAO,IAAI,KAAK,MAAM,CAAC;AAAA,IACzB,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,MAAM,KAAK;AAAA,MACX,MAAM,KAAK;AAAA,IACb;AAAA,EACF;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAC9C,IAAI,6CAA6C;AAAA,EAC/C,YAAY;AAAA,EACZ,gBAAgB;AAAA,EAChB,iBAAiB;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,eAAe;AAAA,EACf,gBAAgB;AAAA,EAChB,QAAQ;AAAA,EACR,cAAc;AAAA,EACd,gBAAgB;AAAA,EAChB,iBAAiB;AAAA,EACjB,mBAAmB;AAAA,EACnB,mBAAmB;AAAA,EACnB,SAAS;AACX;AACA,SAAS,uBAAuBP,SAAQ,gBAAgB,CAAC,GAAG;AAC1D,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,aAAa;AAClI;AACA,SAAS,qBAAqB,aAAa;AACzC,SAAO,qBAAqB,WAAW;AACzC;AACA,SAAS,eAAe,YAAY;AAClC,MAAI,OAAO,eAAe,UAAU;AAClC,UAAM,YAAY,cAAc,6CAA6C,2CAA2C,cAAc;AACtI,QAAI,cAAc,gBAAgB;AAChC,aAAO,IAAI,aAAa;AAAA,IAC1B,WAAW,cAAc,iBAAiB;AACxC,aAAO,IAAI,cAAc;AAAA,IAC3B,WAAW,cAAc,YAAY;AACnC,aAAO,IAAI,SAAS;AAAA,IACtB,WAAW,cAAc,aAAa;AACpC,aAAO,IAAI,UAAU;AAAA,IACvB,WAAW,cAAc,eAAe;AACtC,aAAO,IAAI,YAAY;AAAA,IACzB,WAAW,cAAc,gBAAgB;AACvC,aAAO,IAAI,aAAa;AAAA,IAC1B,OAAO;AACL,YAAMA,UAAS,CAAC;AAChB,MAAAA,QAAO,eAAe;AACtB,MAAAA,QAAO,YAAY,CAAC;AACpB,aAAO,uBAAuBA,OAAM;AAAA,IACtC;AAAA,EACF,WAAW,sBAAsB,aAAa;AAC5C,WAAO;AAAA,EACT,OAAO;AACL,WAAO,uBAAuB,UAAU;AAAA,EAC1C;AACF;AAGA,SAAS,gBAAgB,GAAG;AAC1B,SAAO,MAAM,QAAQ,CAAC,KAAK,MAAM,QAAQ,EAAE,EAAE;AAC/C;AACA,SAAS,mBAAmB,GAAG;AAC7B,MAAI,EAAE,WAAW,GAAG;AAClB,WAAO,CAAC;AAAA,EACV;AACA,MAAI,CAAC,MAAM,QAAQ,EAAE,EAAE,GAAG;AACxB,WAAO,CAAC,CAAC;AAAA,EACX;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,IAAI;AAC/B,MAAI;AACJ,MAAI,MAAM,QAAQ,EAAE,GAAG;AACrB,QAAI,GAAG,WAAW,GAAG;AACnB,YAAM,IAAI,WAAW,uCAAuC,GAAG,QAAQ;AAAA,IACzE;AACA,QAAI,GAAG;AAAA,EACT,OAAO;AACL,QAAI;AAAA,EACN;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,QAAQ;AAClC,MAAI,MAAM,QAAQ,MAAM,KAAK,MAAM,QAAQ,OAAO,EAAE,GAAG;AACrD,QAAI,OAAO,WAAW,GAAG;AACvB,eAAS;AACT,aAAO,OAAO;AAAA,IAChB,OAAO;AACL,YAAM,IAAI,WAAW,iCAAiC,OAAO,QAAQ;AAAA,IACvE;AAAA,EACF,OAAO;AACL,WAAO;AAAA,EACT;AACF;AAGA,SAAS,qBAAqB,SAAS;AACrC,MAAIR,UAAS;AACb,aAAW,UAAU,SAAS;AAC5B,QAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,MAAAA,WAAU;AAAA,IACZ,OAAO;AACL,MAAAA,WAAU,OAAO,MAAM,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAAA,IAC/C;AAAA,EACF;AACA,SAAOA;AACT;AAGA,IAAI,+BAA+B;AACnC,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,KAAK,QAAQ,WAAW,OAAO,8BAA8B,YAAY,MAAM,aAAa,MAAM;AAC5G,SAAK,QAAQ,SAAS,OAAO,YAAY;AACzC,SAAK,QAAQ,IAAI;AACjB,SAAK,KAAK,sBAAsB;AAChC,WAAO,QAAQ,OAAO,+BAA+B;AACrD,SAAK,eAAe,oBAAoB,IAAI;AAC5C,SAAK,OAAO,oBAAoB,KAAK,YAAY;AACjD,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,MAAM,SAAS,KAAK,KAAK,YAAY,KAAK,MAAM,KAAK,KAAK;AAAA,EACjE;AAAA,EACA,OAAO;AACL,SAAK,kBAAkB;AACvB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,QAAQ;AACZ,SAAK,kBAAkB;AACvB,qBAAiB,KAAK,KAAK,MAAM;AACjC,QAAI,KAAK,IAAI,OAAO,OAAO,IAAI;AAC7B,WAAK,IAAI,OAAO,MAAM;AACtB,UAAI,KAAK,cAAc,MAAM;AAC3B,aAAK,IAAI,OAAO,KAAK,WAAW,MAAM,KAAK,GAAG,CAAC;AAAA,MACjD;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,UAAU;AACR,SAAK,kBAAkB;AACvB,SAAK,IAAI,QAAQ;AAAA,EACnB;AAAA,EACA,oBAAoB;AAClB,QAAI,KAAK,IAAI,YAAY;AACvB,YAAM,IAAI,MAAM,kBAAkB,KAAK,2BAA2B;AAAA,IACpE;AAAA,EACF;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,SAAK,aAAa;AAClB,SAAK,IAAI,YAAY;AAAA,EACvB;AACF;AACA,SAAS,iBAAiB,GAAG,GAAG;AAC9B,MAAI,EAAE,MAAM,SAAS,MAAM,EAAE,MAAM,SAAS,GAAG;AAC7C,UAAM,IAAI,MAAM,qBAAqB,KAAK,UAAU,EAAE,KAAK,IAAI,UAAU,KAAK,UAAU,EAAE,KAAK,CAAC;AAAA,EAClG;AACF;AACA,SAAS,cAAc,IAAI;AACzB,SAAO,GAAG,IAAI,CAAC,MAAM,EAAE,KAAK,CAAC;AAC/B;AACA,SAAS,cAAc,oBAAoB;AACzC,qBAAmB,QAAQ,CAAC,qBAAqB;AAC/C,UAAM,YAAY,iBAAiB;AACnC,cAAU,MAAM,iBAAiB,EAAE;AAAA,EACrC,CAAC;AACH;AAGA,IAAI,YAAY,MAAM;AAAA,EACpB,YAAY,MAAM;AAChB,SAAK,QAAQ,KAAK;AAClB,SAAK,QAAQ,KAAK;AAClB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,OAAO,KAAK,MAAM;AAAA,IACzB,OAAO;AACL,WAAK,OAAO,KAAK;AAAA,IACnB;AACA,SAAK,UAAU,KAAK;AACpB,SAAK,UAAU,KAAK;AACpB,SAAK,OAAO,KAAK,QAAQ,CAAC;AAAA,EAC5B;AACF;AACA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,OAAO,OAAO,aAAa,QAAQ,UAAU,MAAM,mBAAmB;AAChF,SAAK,QAAQ;AACb,SAAK,QAAQ;AACb,SAAK,cAAc;AACnB,SAAK,SAAS;AACd,SAAK,WAAW;AAChB,SAAK,oBAAoB;AACzB,SAAK,KAAK,sBAAsB;AAChC,QAAI,QAAQ,MAAM;AAChB,WAAK,eAAe,oBAAoB,IAAI;AAC5C,WAAK,OAAO,oBAAoB,KAAK,YAAY;AAAA,IACnD;AACA,SAAK,OAAO,MAAM;AAAA,EACpB;AACF;AACA,IAAI,cAAc;AAClB,IAAI,OAAO,MAAM;AAAA,EACf,YAAY,MAAM,UAAU;AAC1B,SAAK,WAAW;AAChB,SAAK,KAAK;AACV,SAAK,gBAAgB,KAAK;AAC1B,SAAK,gBAAgB,KAAK;AAC1B,SAAK,cAAc,KAAK;AACxB,SAAK,gBAAgB,KAAK;AAC1B,SAAK,eAAe,KAAK;AACzB,SAAK,gBAAgB,KAAK;AAC1B,SAAK,aAAa,KAAK;AACvB,SAAK,cAAc,KAAK;AACxB,SAAK,cAAc,KAAK;AACxB,SAAK,eAAe,KAAK;AACzB,eAAW,SAAS,KAAK,eAAe;AACtC,UAAI,SAAS,MAAM;AACjB,cAAM,cAAc,KAAK,IAAI;AAAA,MAC/B;AAAA,IACF;AACA,SAAK,cAAc,aAAa,KAAK,IAAI;AAAA,EAC3C;AAAA,EACA,YAAY;AACV,UAAM,eAAe,CAAC;AACtB,eAAW,SAAS,KAAK,eAAe;AACtC,UAAI,SAAS,MAAM;AACjB,qBAAa,KAAK,MAAM,IAAI;AAAA,MAC9B,OAAO;AACL,qBAAa,KAAK,IAAI;AAAA,MACxB;AAAA,IACF;AACA,WAAO;AAAA,MACL,eAAe,KAAK,gBAAgB,KAAK,cAAc,OAAO;AAAA,MAC9D,eAAe;AAAA,MACf,aAAa,KAAK;AAAA,MAClB,eAAe,KAAK;AAAA,IACtB;AAAA,EACF;AACF;AACA,IAAI,eAAe;AACnB,IAAI,QAAQ,cAAc,sBAAsB,aAAa;AAAA,EAC3D,YAAY,OAAO,CAAC,GAAG;AACrB,UAAM;AACN,SAAK,YAAY;AACjB,SAAK,oBAAoB,CAAC;AAC1B,SAAK,YAAY;AACjB,SAAK,KAAK;AACV,SAAK,sBAAsB;AAC3B,SAAK,YAAY;AACjB,SAAK,kBAAkB;AACvB,SAAK,oBAAoB,CAAC;AAC1B,SAAK,uBAAuB,CAAC;AAC7B,SAAK,UAAU,CAAC;AAChB,SAAK,WAAW,CAAC;AACjB,SAAK,SAAS;AACd,SAAK,eAAe,CAAC;AACrB,SAAK,gBAAgB,CAAC;AACtB,QAAI,OAAO,KAAK;AAChB,QAAI,CAAC,MAAM;AACT,YAAM,SAAS,KAAK,aAAa;AACjC,aAAO,YAAY,MAAM,IAAI,MAAM,OAAO,MAAM;AAAA,IAClD;AACA,SAAK,OAAO;AACZ,SAAK,aAAa,KAAK,aAAa,OAAO,OAAO,KAAK;AACvD,QAAI,KAAK,cAAc,QAAQ,KAAK,mBAAmB,MAAM;AAC3D,UAAI;AACJ,UAAI,KAAK,mBAAmB,MAAM;AAChC,0BAAkB,KAAK;AAAA,MACzB,WAAW,KAAK,cAAc,MAAM;AAClC,YAAI,YAAY;AAChB,YAAI,KAAK,aAAa,MAAM;AAC1B,sBAAY,KAAK;AAAA,QACnB;AACA,0BAAkB,CAAC,SAAS,EAAE,OAAO,KAAK,UAAU;AAAA,MACtD;AACA,WAAK,kBAAkB;AACvB,UAAI,QAAQ,KAAK;AACjB,UAAI,SAAS,MAAM;AACjB,gBAAQ,KAAK;AAAA,MACf;AACA,UAAI,SAAS,MAAM;AACjB,gBAAQ;AAAA,MACV;AACA,WAAK,QAAQ;AAAA,IACf;AACA,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,iBAAiB,KAAK;AAAA,IAC7B,OAAO;AACL,WAAK,iBAAiB;AAAA,IACxB;AACA,SAAK,YAAY;AACjB,SAAK,4BAA4B;AAAA,EACnC;AAAA,EACA,OAAO,QAAQ,OAAO,WAAW;AAC/B,WAAO,MAAM,OAAO,SAAS,UAAU,SAAS;AAAA,EAClD;AAAA,EACA,eAAe,WAAW,UAAU;AAClC,QAAI,KAAK,aAAa,WAAW,GAAG;AAClC,YAAM,IAAI,aAAa,2DAA2D,WAAW;AAAA,IAC/F;AACA,QAAI,KAAK,aAAa,UAAU,WAAW;AACzC,YAAM,IAAI,WAAW,gBAAgB,oBAAoB,qCAAqC,KAAK,aAAa,uBAAuB;AAAA,IACzI;AACA,WAAO,KAAK,aAAa;AAAA,EAC3B;AAAA,EACA,WAAW,WAAW;AACpB,WAAO,iBAAiB,KAAK,eAAe,WAAW,OAAO,EAAE,YAAY;AAAA,EAC9E;AAAA,EACA,YAAY,WAAW;AACrB,WAAO,iBAAiB,KAAK,eAAe,WAAW,QAAQ,EAAE,aAAa;AAAA,EAChF;AAAA,EACA,IAAI,QAAQ;AACV,QAAI,KAAK,aAAa,SAAS,GAAG;AAChC,YAAM,IAAI,eAAe,SAAS,KAAK,2HAA2H;AAAA,IACpK,WAAW,KAAK,aAAa,WAAW,GAAG;AACzC,YAAM,IAAI,eAAe,SAAS,KAAK,4CAA4C;AAAA,IACrF;AACA,WAAO,iBAAiB,KAAK,eAAe,GAAG,OAAO,EAAE,YAAY;AAAA,EACtE;AAAA,EACA,IAAI,SAAS;AACX,QAAI,KAAK,aAAa,WAAW,GAAG;AAClC,YAAM,IAAI,eAAe,SAAS,KAAK,4BAA4B;AAAA,IACrE;AACA,QAAI,KAAK,aAAa,SAAS,GAAG;AAChC,YAAM,IAAI,eAAe,SAAS,KAAK,6HAA6H;AAAA,IACtK;AACA,WAAO,iBAAiB,KAAK,eAAe,GAAG,QAAQ,EAAE,aAAa;AAAA,EACxE;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK;AAAA,EACd;AAAA,EACA,kBAAkB;AAChB,WAAO,KAAK,OAAO,IAAI,CAAC,WAAW,OAAO,CAAC;AAAA,EAC7C;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,QAAQ;AACV,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,MAAM,OAAO;AACf,SAAK,SAAS;AAAA,EAChB;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,SAAK,kBAAkB,QAAQ,CAAC,MAAM,EAAE,YAAY,SAAS;AAC7D,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,IAAI,mBAAmB;AACrB,QAAI,KAAK,YAAY;AACnB,aAAO,KAAK,kBAAkB,OAAO,CAAC,MAAM,EAAE,SAAS;AAAA,IACzD,OAAO;AACL,aAAO,CAAC;AAAA,IACV;AAAA,EACF;AAAA,EACA,IAAI,iBAAiB,SAAS;AAC5B,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,IAAI,sBAAsB;AACxB,QAAI,KAAK,WAAW;AAClB,aAAO,KAAK,kBAAkB,OAAO,CAAC,MAAM,CAAC,EAAE,SAAS,EAAE,OAAO,KAAK,oBAAoB;AAAA,IAC5F,OAAO;AACL,aAAO,KAAK,kBAAkB,OAAO,KAAK,oBAAoB;AAAA,IAChE;AAAA,EACF;AAAA,EACA,IAAI,oBAAoB,SAAS;AAC/B,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,iBAAiB,OAAO,KAAK,mBAAmB;AAAA,EAC9D;AAAA,EACA,IAAI,WAAW;AACb,WAAO,KAAK;AAAA,EACd;AAAA,EACA,cAAc;AACZ,QAAI,CAAC,KAAK,UAAU;AAClB,YAAM,IAAI,MAAM,sEAAsE;AAAA,IACxF;AAAA,EACF;AAAA,EACA,yBAAyB,QAAQ;AAC/B,aAAS,OAAO,MAAM;AACtB,QAAI,KAAK,aAAa,QAAQ,KAAK,UAAU,WAAW,GAAG;AACzD;AAAA,IACF;AACA,UAAM,YAAY,OAAO,KAAK,SAAS;AACvC,QAAI,OAAO,WAAW,UAAU,QAAQ;AACtC,YAAM,IAAI,WAAW,SAAS,KAAK,gBAAgB,UAAU,kCAAkC,OAAO,yCAAyC,QAAQ;AAAA,IACzJ;AACA,aAAS,aAAa,GAAG,aAAa,OAAO,QAAQ,cAAc;AACjE,YAAM,IAAI,OAAO;AACjB,YAAM,OAAO,UAAU;AACvB,UAAI,QAAQ,MAAM;AAChB;AAAA,MACF;AACA,YAAM,OAAO,EAAE;AACf,UAAI,KAAK,QAAQ,MAAM;AACrB,YAAI,SAAS,KAAK,MAAM;AACtB,gBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,uBAAuB,KAAK,oBAAoB,MAAM;AAAA,QACpI;AAAA,MACF;AACA,UAAI,KAAK,WAAW,MAAM;AACxB,YAAI,OAAO,KAAK,SAAS;AACvB,gBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,2BAA2B,KAAK,uBAAuB,MAAM;AAAA,QAC3I;AAAA,MACF;AACA,UAAI,KAAK,WAAW,MAAM;AACxB,YAAI,OAAO,KAAK,SAAS;AACvB,gBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,2BAA2B,KAAK,uBAAuB,OAAO;AAAA,QAC5I;AAAA,MACF;AACA,UAAI,KAAK,SAAS,MAAM;AACtB,YAAI,EAAE,UAAU,KAAK,OAAO;AAC1B,gBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,yBAAyB,KAAK,sBAAsB,EAAE,QAAQ;AAAA,QAC5I;AAAA,MACF;AACA,UAAI,KAAK,MAAM;AACb,cAAM,SAAS,EAAE;AACjB,mBAAW,OAAO,KAAK,MAAM;AAC3B,gBAAM,OAAO,OAAO,GAAG;AACvB,gBAAM,QAAQ,KAAK,KAAK;AACxB,gBAAM,eAAe,QAAQ,IAAI,OAAO,QAAQ,OAAO,OAAO,SAAS;AACvE,cAAI,SAAS,QAAQ,CAAC,OAAO,IAAI,EAAE,QAAQ,YAAY,MAAM,IAAI;AAC/D,kBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,uBAAuB,qCAAqC,uBAAuB,SAAS;AAAA,UAC1K;AAAA,QACF;AAAA,MACF;AACA,UAAI,KAAK,SAAS,MAAM;AACtB,iBAAS,KAAK,GAAG,KAAK,KAAK,MAAM,QAAQ,EAAE,IAAI;AAC7C,gBAAM,UAAU,KAAK,MAAM;AAC3B,gBAAM,MAAM,EAAE,MAAM;AACpB,cAAI,WAAW,QAAQ,OAAO,MAAM;AAClC,gBAAI,YAAY,KAAK;AACnB,oBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,wBAAwB,KAAK,sBAAsB,EAAE,QAAQ;AAAA,YAC3I;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO;AAAA,EACT;AAAA,EACA,eAAe,QAAQ,QAAQ;AAC7B,QAAI,KAAK,aAAa,MAAM;AAC1B,WAAK,UAAU,QAAQ,MAAM;AAAA,IAC/B;AAAA,EACF;AAAA,EACA,YAAY,UAAU;AACpB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,gBAAgB;AACd,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,MAAM,QAAQ,QAAQ;AACpB,aAAS,UAAU,CAAC;AACpB,SAAK,kBAAkB;AACvB,UAAM,aAAa,OAAO,MAAM;AAChC,QAAI,iBAAiB;AACrB,eAAW,UAAU,YAAY;AAC/B,UAAI,EAAE,kBAAkB,iBAAiB;AACvC,yBAAiB;AACjB;AAAA,MACF;AAAA,IACF;AACA,QAAI,kBAAkB;AACtB,eAAW,UAAU,YAAY;AAC/B,UAAI,kBAAkB,gBAAgB;AACpC,0BAAkB;AAClB;AAAA,MACF;AAAA,IACF;AACA,QAAI,mBAAmB,iBAAiB;AACtC,YAAM,IAAI,WAAW,iEAAiE;AAAA,IACxF;AACA,WAAO,UAAU,KAAK,MAAM,MAAM;AAChC,UAAI,CAAC,KAAK,OAAO;AACf,aAAK,yBAAyB,MAAM;AACpC,cAAM,cAAc,CAAC;AACrB,mBAAW,SAAS,OAAO,MAAM,GAAG;AAClC,sBAAY,KAAK,MAAM,KAAK;AAAA,QAC9B;AACA,aAAK,MAAM,iBAAiB,WAAW,CAAC;AACxC,aAAK,QAAQ;AACb,YAAI,KAAK,gBAAgB;AACvB,eAAK,WAAW,KAAK,cAAc;AAAA,QACrC;AACA,YAAI,KAAK,cAAc,QAAQ,iBAAiB;AAC9C,eAAK,YAAY;AAAA,QACnB;AAAA,MACF;AACA,WAAK,yBAAyB,MAAM;AACpC,UAAI,iBAAiB;AACnB,YAAI,SAAS,KAAK,KAAK,QAAQ,MAAM;AACrC,cAAM,aAAa,OAAO,MAAM;AAChC,cAAM,iBAAiB,CAAC;AACxB,iBAAS,KAAK,YAAY;AACxB,cAAI,WAAW,QAAQ,CAAC,MAAM,IAAI;AAChC,gBAAI,EAAE,MAAM;AAAA,UACd;AACA,yBAAe,KAAK,CAAC;AAAA,QACvB;AACA,iBAAS,iBAAiB,cAAc;AACxC,YAAI,KAAK,uBAAuB,MAAM;AACpC,gBAAM,IAAI,oBAAoB,mFAAmF;AAAA,QACnH;AACA,eAAO;AAAA,MACT,OAAO;AACL,cAAM,aAAa,kBAAkB,MAAM;AAC3C,cAAM,cAAc,KAAK,mBAAmB,UAAU;AACtD,YAAI;AACJ,cAAM,cAAc,iBAAiB,MAAM;AAC3C,aAAK,6BAA6B,MAAM,QAAQ,MAAM,IAAI,WAAW,KAAK,UAAU;AACpF,YAAI,eAAe,QAAQ,YAAY,SAAS,KAAK,MAAM,QAAQ,YAAY,EAAE,GAAG;AAClF,mBAAS,YAAY,IAAI,CAAC,OAAOG,WAAU,IAAI,eAAe,aAAa,OAAO,MAAM,OAAO,MAAM,GAAG,QAAQ,KAAK,MAAMA,MAAK,CAAC;AAAA,QACnI,OAAO;AACL,mBAAS,IAAI,eAAe,aAAa,aAAa,MAAM,OAAO,MAAM,GAAG,QAAQ,KAAK,IAAI;AAAA,QAC/F;AACA,aAAK,eAAe,QAAQ,QAAQ,MAAM,MAAM,YAAY,aAAa,MAAM;AAC/E,aAAK;AACL,YAAI,KAAK,uBAAuB,MAAM;AACpC,gBAAM,IAAI,oBAAoB,mFAAmF;AAAA,QACnH;AACA,eAAO;AAAA,MACT;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,6BAA6B,YAAY;AACvC,QAAI,KAAK,mBAAmB,MAAM;AAChC;AAAA,IACF,WAAW,WAAW,WAAW,KAAK,gBAAgB,QAAQ;AAC5D,cAAQ,KAAK,iDAAiD,KAAK,UAAU,UAAU,kDAAkD,KAAK,UAAU,KAAK,eAAe,mBAAmB,KAAK,MAAM;AAAA,IAC5M,OAAO;AACL,UAAI,cAAc;AAClB,WAAK,gBAAgB,QAAQ,CAAC,WAAW,OAAO;AAC9C,YAAI,aAAa,QAAQ,WAAW,OAAO,QAAQ,WAAW,QAAQ,WAAW;AAC/E,wBAAc;AAAA,QAChB;AAAA,MACF,CAAC;AACD,UAAI,aAAa;AACf,gBAAQ,KAAK,kCAAkC,KAAK,UAAU,UAAU,8CAA8C,KAAK,SAAS,KAAK,UAAU,KAAK,eAAe,GAAG;AAAA,MAC5K;AAAA,IACF;AAAA,EACF;AAAA,EACA,IAAI,cAAc;AAChB,QAAI,KAAK,gBAAgB,QAAQ,KAAK,aAAa,WAAW,GAAG;AAC/D,YAAM,IAAI,eAAe,aAAa,KAAK,kEAAkE;AAAA,IAC/G;AACA,UAAM,kBAAkB,CAAC;AACzB,eAAWO,SAAQ,KAAK,cAAc;AACpC,YAAM,cAAc,KAAK,UAAUA,MAAK,YAAY;AACpD,UAAI,gBAAgB,QAAQ,WAAW,MAAM,IAAI;AAC/C,wBAAgB,KAAK,WAAW;AAAA,MAClC;AAAA,IACF;AACA,QAAI,gBAAgB,WAAW,GAAG;AAChC,YAAM,eAAe,KAAK,aAAa,GAAG;AAC1C,UAAI,MAAM,QAAQ,YAAY,KAAK,MAAM,QAAQ,aAAa,EAAE,KAAK,aAAa,WAAW,GAAG;AAC9F,eAAO,aAAa;AAAA,MACtB,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF,OAAO;AACL,YAAM,IAAI,eAAe,aAAa,KAAK,gIAAgI;AAAA,IAC7K;AAAA,EACF;AAAA,EACA,cAAc;AACZ,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,sCAAsC,KAAK,yFAAyF;AAAA,IAC7J;AACA,WAAO,qBAAqB,KAAK,OAAO;AAAA,EAC1C;AAAA,EACA,MAAM,YAAY;AAChB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,WAAW,gBAAgB,OAAO;AAChC,WAAO,cAAc,gBAAgB,KAAK,mBAAmB,KAAK,OAAO;AAAA,EAC3E;AAAA,EACA,WAAW,SAAS;AAClB,SAAK,MAAM;AACT,YAAM,SAAS,KAAK;AACpB,UAAI,OAAO,WAAW,QAAQ,QAAQ;AACpC,cAAM,IAAI,WAAW,4CAA4C,KAAK,sCAAsC,QAAQ,uCAAuC,OAAO,qCAAqC,YAAY;AAAA,MACrN;AACA,UAAI,OAAO,WAAW,GAAG;AACvB;AAAA,MACF;AACA,YAAM,oBAAoB,CAAC;AAC3B,YAAM,cAAc,cAAc,MAAM;AACxC,eAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,cAAM,KAAK,YAAY;AACvB,cAAM,KAAK,OAAO;AAClB,cAAM,IAAI,QAAQ;AAClB,YAAI,CAAC,aAAa,YAAY,GAAG,OAAO,EAAE,KAAK,GAAG;AAChD,gBAAM,IAAI,WAAW,sBAAsB,GAAG,mDAAmD,EAAE,OAAO;AAAA,QAC5G;AACA,0BAAkB,KAAK,CAAC,IAAI,CAAC,CAAC;AAAA,MAChC;AACA,oBAAc,iBAAiB;AAAA,IACjC,CAAC;AAAA,EACH;AAAA,EACA,UAAU,MAAM,OAAO,OAAO,aAAa,aAAa,WAAW,YAAY,oBAAoB;AACjG,QAAI,KAAK,kBAAkB,QAAQ,IAAI,MAAM,IAAI;AAC/C,YAAM,IAAI,WAAW,yBAAyB,kBAAkB,KAAK,MAAM;AAAA,IAC7E;AACA,SAAK,kBAAkB,KAAK,IAAI;AAChC,QAAI,SAAS,MAAM;AACjB,cAAQ;AAAA,IACV;AACA,QAAI,KAAK,2BAA2B;AAClC,oBAAc,sBAAsB,OAAO,mBAAmB,IAAI,eAAe,OAAO;AAAA,IAC1F;AACA,UAAM,YAAY,YAAY,MAAM,OAAO,KAAK;AAChD,UAAM,SAAS,IAAI,cAAc,WAAW,OAAO,MAAM,WAAW,UAAU;AAC9E,cAAU,QAAQ;AAClB,QAAI,eAAe,MAAM;AACvB,WAAK,QAAQ,MAAM,YAAY,MAAM,OAAO,KAAK,CAAC,CAAC;AAAA,IACrD;AACA,QAAI,aAAa,MAAM;AACrB,kBAAY;AAAA,IACd;AACA,QAAI,WAAW;AACb,WAAK,kBAAkB,KAAK,MAAM;AAAA,IACpC,OAAO;AACL,WAAK,qBAAqB,KAAK,MAAM;AAAA,IACvC;AACA,WAAO;AAAA,EACT;AAAA,EACA,6BAA6B,OAAO;AAClC,SAAK,4BAA4B;AAAA,EACnC;AAAA,EACA,QAAQ,SAAS;AACf,QAAI,WAAW,QAAQ,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AACrE;AAAA,IACF;AACA,cAAU,OAAO,OAAO;AACxB,QAAI,KAAK,YAAY,UAAU,KAAK,YAAY,MAAM;AACpD,WAAK,OAAO,KAAK,GAAG,OAAO;AAAA,IAC7B;AAAA,EACF;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQZ,OAAM;AACxB,QAAI,CAAC,KAAK,iBAAiB;AACzB,UAAIA,SAAQ,MAAM;AAChB,YAAI,MAAM,QAAQA,KAAI,GAAG;AACvB,UAAAA,MAAK,QAAQ,CAAC,gBAAgB;AAC5B,gBAAI,eAAe,MAAM;AACvB,oBAAM,IAAI,UAAU,SAAS,KAAK,6DAA6D;AAAA,YACjG;AAAA,UACF,CAAC;AAAA,QACH,OAAO;AACL,gBAAM,IAAI,UAAU,SAAS,KAAK,6DAA6D;AAAA,QACjG;AAAA,MACF;AACA,aAAO;AAAA,IACT;AACA,WAAOA;AAAA,EACT;AAAA,EACA,eAAe,cAAc,eAAe,YAAY,aAAa,aAAa,cAAc,SAAS,MAAM;AAC7G,UAAM,kBAAkB,OAAO,YAAY;AAC3C,oBAAgB,OAAO,aAAa;AACpC,iBAAa,OAAO,UAAU;AAC9B,kBAAc,OAAO,WAAW;AAChC,kBAAc,mBAAmB,WAAW;AAC5C,mBAAe,mBAAmB,YAAY;AAC9C,UAAM,gBAAgB,CAAC;AACvB,UAAM,cAAc,CAAC;AACrB,UAAM,gBAAgB,CAAC;AACvB,eAAW,KAAK,iBAAiB;AAC/B,oBAAc,KAAK,EAAE,WAAW;AAChC,kBAAY,KAAK,EAAE,SAAS;AAC5B,oBAAc,KAAK,EAAE,WAAW;AAAA,IAClC;AACA,QAAI,KAAK;AAAA,MACP,eAAe;AAAA,MACf;AAAA,MACA;AAAA,MACA;AAAA,MACA,cAAc;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF,GAAG,MAAM;AACT,aAAS,KAAK,GAAG,KAAK,cAAc,QAAQ,MAAM;AAChD,oBAAc,IAAI,cAAc;AAChC,oBAAc,IAAI,YAAY,KAAK,aAAa,SAAS;AACzD,oBAAc,IAAI,cAAc;AAAA,IAClC;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAMU,UAAS,EAAE,MAAM,KAAK,MAAM,WAAW,KAAK,UAAU;AAC5D,QAAI,KAAK,mBAAmB,MAAM;AAChC,MAAAA,QAAO,qBAAqB,KAAK;AAAA,IACnC;AACA,QAAI,KAAK,SAAS,MAAM;AACtB,MAAAA,QAAO,WAAW,KAAK;AAAA,IACzB;AACA,WAAOA;AAAA,EACT;AAAA,EACA,iBAAiB;AACf,SAAK,QAAQ,QAAQ,CAAC,WAAW,OAAO,QAAQ,CAAC;AACjD,WAAO,KAAK,QAAQ;AAAA,EACtB;AAAA,EACA,oBAAoB;AAClB,QAAI,KAAK,cAAc,GAAG;AACxB,YAAM,IAAI,MAAM,UAAU,KAAK,4BAA4B;AAAA,IAC7D;AAAA,EACF;AAAA,EACA,UAAU;AACR,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,MAAM,wBAAwB,KAAK,yCAAyC;AAAA,IACxF;AACA,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,IAAI,MAAM,wBAAwB,KAAK,wCAAwC;AAAA,IACvF;AACA,SAAK,kBAAkB;AACvB,QAAI,uBAAuB;AAC3B,QAAI,EAAE,KAAK,cAAc,GAAG;AAC1B,6BAAuB,KAAK,eAAe;AAAA,IAC7C;AACA,WAAO,EAAE,sBAAsB,KAAK,WAAW,qBAAqB;AAAA,EACtE;AACF;AACA,SAAS,kBAAkB,cAAc;AACvC,iBAAe,OAAO,YAAY;AAClC,QAAM,SAAS,CAAC;AAChB,aAAW,KAAK,cAAc;AAC5B,WAAO,KAAK,EAAE,KAAK;AAAA,EACrB;AACA,SAAO,iBAAiB,MAAM;AAChC;AACA,SAAS,iBAAiB,cAAc;AACtC,SAAO;AACT;AACA,SAAS,gBAAgB,SAAS,OAAO,WAAW;AAClD,MAAI,SAAS,QAAQ,aAAa,QAAQ,YAAY,GAAG;AACvD,YAAQ,QAAQ;AAChB,gBAAY,QAAQ;AAAA,EACtB;AACA,MAAI,MAAM,aAAa,WAAW,GAAG;AACnC,WAAO,CAAC,OAAO;AAAA,EACjB,OAAO;AACL,UAAME,QAAO,MAAM,aAAa;AAChC,QAAIA,MAAK,cAAc,WAAW,GAAG;AACnC,aAAOA,MAAK;AAAA,IACd,OAAO;AACL,YAAM,gBAAgB,CAAC;AACvB,eAAS,KAAK,GAAG,KAAKA,MAAK,cAAc,QAAQ,MAAM;AACrD,cAAM,IAAIA,MAAK,aAAa;AAC5B,cAAM,SAASA,MAAK,cAAc;AAClC,cAAM,aAAaA,MAAK,YAAY;AACpC,cAAM,kBAAkB,gBAAgB,GAAG,QAAQ,UAAU;AAC7D,mBAAW,MAAM,iBAAiB;AAChC,cAAI,cAAc,QAAQ,EAAE,MAAM,IAAI;AACpC,0BAAc,KAAK,EAAE;AAAA,UACvB;AAAA,QACF;AAAA,MACF;AACA,aAAO;AAAA,IACT;AAAA,EACF;AACF;AAGA,IAAI,aAAa,cAAc,MAAM;AAAA,EACnC,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO,KAAK;AAAA,MACZ,MAAM,KAAK,QAAQ,OAAO,KAAK,OAAO,OAAO,OAAO,EAAE,SAAS;AAAA,IACjE,CAAC;AACD,QAAI,KAAK,aAAa,MAAM;AAC1B,WAAK,YAAY;AAAA,IACnB;AACA,QAAI,KAAK,UAAU,MAAM;AACvB,WAAK,SAAS;AAAA,IAChB;AACA,SAAK,YAAY;AACjB,SAAK,QAAQ;AACb,SAAK,SAAS,KAAK;AACnB,QAAI,KAAK,cAAc,QAAQ,KAAK,mBAAmB,MAAM;AAC3D,YAAM,IAAI,WAAW,mGAAmG;AAAA,IAC1H;AACA,QAAI,kBAAkB,KAAK;AAC3B,QAAI,mBAAmB,MAAM;AAC3B,UAAI,KAAK,cAAc,MAAM;AAC3B,cAAM,IAAI,WAAW,+EAA+E;AAAA,MACtG,OAAO;AACL,0BAAkB,CAAC,KAAK,SAAS,EAAE,OAAO,KAAK,UAAU;AAAA,MAC3D;AAAA,IACF,OAAO;AACL,UAAI,KAAK,aAAa,MAAM;AAC1B,cAAM,IAAI,WAAW,uFAAuF;AAAA,MAC9G;AAAA,IACF;AACA,UAAM,QAAQ,KAAK,SAAS;AAC5B,SAAK,kBAAkB;AACvB,SAAK,QAAQ;AACb,SAAK,YAAY,CAAC,EAAE,OAAO,gBAAgB,CAAC;AAC5C,UAAM,cAAc,IAAI,eAAe,KAAK,OAAO,KAAK,iBAAiB,MAAM,CAAC,GAAG,CAAC,GAAG,KAAK,IAAI;AAChG,gBAAY,YAAY;AACxB,gBAAY,cAAc;AAC1B,QAAI,KAAK;AAAA,MACP,eAAe;AAAA,MACf,eAAe,CAAC;AAAA,MAChB,aAAa,CAAC;AAAA,MACd,eAAe,CAAC;AAAA,MAChB,cAAc,CAAC,WAAW;AAAA,MAC1B,eAAe,CAAC,WAAW;AAAA,MAC3B,YAAY,CAAC,IAAI;AAAA,MACjB,aAAa,CAAC,IAAI;AAAA,MAClB,aAAa,CAAC,eAAe;AAAA,MAC7B,cAAc,CAAC,eAAe;AAAA,IAChC,CAAC;AAAA,EACH;AAAA,EACA,MAAM,QAAQ,QAAQ;AACpB,UAAM,IAAI,WAAW,6EAA6E,KAAK,MAAM;AAAA,EAC/G;AAAA,EACA,UAAU;AACR,WAAO,EAAE,sBAAsB,KAAK,WAAW,sBAAsB,EAAE;AAAA,EACzE;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,iBAAiB,KAAK;AAAA,MACtB,OAAO,KAAK;AAAA,MACZ,QAAQ,KAAK;AAAA,MACb,MAAM,KAAK;AAAA,IACb;AAAA,EACF;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAC9C,SAAS,MAAMF,SAAQ;AACrB,MAAIA,QAAO,cAAc,QAAQA,QAAO,SAAS,MAAM;AACrD,UAAM,IAAI,MAAM,8HAA8H;AAAA,EAChJ;AACA,MAAIA,QAAO,cAAc,QAAQA,QAAO,SAAS,MAAM;AACrD,UAAM,IAAI,WAAW,kFAAkF;AAAA,EACzG;AACA,MAAI,aAAaA,QAAO;AACxB,MAAIA,QAAO,SAAS,QAAQ,cAAc,MAAM;AAC9C,iBAAa,CAAC,IAAI,EAAE,OAAOA,QAAO,KAAK;AAAA,EACzC;AACA,MAAI,QAAQA,QAAO;AACnB,MAAI,SAAS,MAAM;AACjB,YAAQ;AAAA,EACV;AACA,QAAM,cAAc,IAAI,WAAW;AAAA,IACjC,iBAAiB;AAAA,IACjB,MAAMA,QAAO;AAAA,IACb;AAAA,IACA,QAAQA,QAAO;AAAA,EACjB,CAAC;AACD,QAAM,UAAU,YAAY,aAAa,GAAG;AAC5C,SAAO,QAAQ;AACjB;AAGA,SAAS,wBAAwB,KAAK,KAAK;AACzC,MAAI,IAAI,SAAS,QAAQ,IAAI,UAAU,IAAI,OAAO;AAChD,WAAO;AAAA,EACT;AACA,MAAI;AACF,WAAO,KAAK,KAAK,IAAI,KAAK;AAAA,EAC5B,SAAS,KAAP;AACA,UAAM,IAAI,WAAW,0BAA0B,IAAI,mDAAmD,IAAI,UAAU,IAAI,SAAS;AAAA,EACnI;AACF;AACA,IAAI,WAAW,MAAM;AAAA,EACnB,YAAY,OAAO;AACjB,SAAK,WAAW,CAAC;AACjB,SAAK,UAAU,CAAC;AAChB,SAAK,UAAU,CAAC;AAChB,QAAI,iBAAiB,UAAU;AAC7B,iBAAW,MAAM,MAAM,UAAU;AAC/B,aAAK,SAAS,MAAM,MAAM,SAAS;AACnC,YAAI,MAAM,MAAM,SAAS;AACvB,eAAK,QAAQ,MAAM,MAAM,QAAQ;AAAA,QACnC;AAAA,MACF;AAAA,IACF,OAAO;AACL,UAAI,SAAS,MAAM;AACjB;AAAA,MACF;AACA,iBAAW,QAAQ,OAAO;AACxB,aAAK,IAAI,KAAK,KAAK,KAAK,KAAK;AAAA,MAC/B;AAAA,IACF;AAAA,EACF;AAAA,EACA,IAAI,KAAK,OAAOV,OAAM;AACpB,QAAI,KAAK,SAAS,IAAI,OAAO,MAAM;AACjC,WAAK,SAAS,IAAI,MAAM,wBAAwB,KAAK,KAAK;AAC1D,WAAK,QAAQ,IAAI,QAAQ,IAAI;AAC7B,UAAIA,SAAQ,MAAM;AAChB,aAAK,QAAQ,IAAI,MAAMA;AAAA,MACzB;AAAA,IACF,OAAO;AACL,YAAM,IAAI,WAAW,uBAAuB,IAAI,YAAY,IAAI,IAAI;AAAA,IACtE;AACA,WAAO;AAAA,EACT;AAAA,EACA,QAAQ,MAAM;AACZ,SAAK,IAAI,KAAK,KAAK,KAAK,KAAK;AAAA,EAC/B;AAAA,EACA,OAAO,KAAK;AACV,WAAO,KAAK,SAAS,IAAI,OAAO;AAAA,EAClC;AAAA,EACA,QAAQ;AACN,WAAO,OAAO,KAAK,KAAK,OAAO;AAAA,EACjC;AAAA,EACA,SAAS,KAAK;AACZ,QAAI,eAAe,gBAAgB;AACjC,UAAI,KAAK,SAAS,IAAI,OAAO,MAAM;AACjC,cAAM,IAAI,WAAW,oBAAoB,IAAI,MAAM;AAAA,MACrD,OAAO;AACL,eAAO,KAAK,SAAS,IAAI;AAAA,MAC3B;AAAA,IACF,OAAO;AACL,YAAM,KAAK,KAAK,QAAQ;AACxB,UAAI,MAAM,MAAM;AACd,cAAM,IAAI,WAAW,yCAAyC,KAAK;AAAA,MACrE;AACA,aAAO,KAAK,SAAS;AAAA,IACvB;AAAA,EACF;AAAA,EACA,QAAQ,KAAK;AACX,QAAI,eAAe,gBAAgB;AACjC,UAAI,KAAK,SAAS,IAAI,OAAO,MAAM;AACjC,cAAM,IAAI,WAAW,oBAAoB,IAAI,MAAM;AAAA,MACrD,OAAO;AACL,eAAO,KAAK,QAAQ,IAAI;AAAA,MAC1B;AAAA,IACF,OAAO;AACL,YAAM,KAAK,KAAK,QAAQ;AACxB,UAAI,MAAM,MAAM;AACd,cAAM,IAAI,WAAW,yCAAyC,KAAK;AAAA,MACrE;AACA,aAAO,KAAK,QAAQ;AAAA,IACtB;AAAA,EACF;AAAA,EACA,eAAe;AACb,QAAI,KAAK,WAAW,MAAM;AACxB,cAAQ,KAAK,OAAO;AAAA,IACtB;AAAA,EACF;AACF;AACA,IAAI,eAAe,IAAI,SAAS;AAChC,IAAI,wBAAwB,IAAI,SAAS;AACzC,SAAS,sBAAsB,YAAY;AACzC,MAAI,gBAAgB,MAAM;AACxB,iBAAa,cAAc,UAAU;AAAA,EACvC;AACA,MAAI,yBAAyB,MAAM;AACjC,0BAAsB,cAAc,UAAU;AAAA,EAChD;AACF;AACA,SAAS,QAAQ,SAAS,UAAU,QAAQ,OAAO;AACjD,QAAM,WAAW,UAAU,OAAO,QAAQ,OAAO;AACjD,QAAM,eAAe,MAAM,QAAQ,OAAO;AAC1C,QAAM,aAAa,eAAe,UAAU,CAAC,OAAO;AACpD,QAAM,cAAc,WAAW,IAAI,CAAC,OAAO,GAAG,IAAI;AAClD,QAAM,eAAe,CAAC;AACtB,QAAM,YAAY,SAAS,MAAM;AACjC,aAAW,cAAc,aAAa;AACpC,QAAI,UAAU,QAAQ,UAAU,MAAM,IAAI;AACxC,mBAAa,KAAK,SAAS,SAAS,UAAU,CAAC;AAAA,IACjD,OAAO;AACL,mBAAa,KAAK,IAAI;AAAA,IACxB;AAAA,EACF;AACA,MAAI,SAAS,MAAM;AACjB,UAAM,gBAAgB;AACtB,UAAM,gBAAgB;AAAA,EACxB;AACA,QAAM,kBAAkB,YAAY,KAAK,GAAG,IAAI,MAAM,SAAS,MAAM,EAAE,KAAK,EAAE,KAAK,GAAG;AACtF,MAAI,SAAS,aAAa,IAAI,eAAe;AAC7C,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,UAAM,MAAM,qCAAqC,YAAY,QAAQ;AACrE,aAAS,IAAI;AACb,sBAAkB,IAAI;AACtB,iBAAa,IAAI,iBAAiB,MAAM;AACxC,0BAAsB,IAAI,iBAAiB,eAAe;AAAA,EAC5D;AACA,oBAAkB,CAAC;AACnB,MAAI,CAAC,UAAU;AACb,WAAO,OAAO,iBAAiB,sBAAsB,IAAI,eAAe,CAAC;AAAA,EAC3E;AACA,QAAM,mBAAmB,IAAI,SAAS,QAAQ;AAC9C,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,SAAS,MAAM;AACjB,YAAM,aAAa,OAAO,EAAE;AAC5B,UAAI,aAAa,MAAM,eAAe;AACpC,cAAM,gBAAgB;AAAA,MACxB;AACA,UAAI,aAAa,MAAM,eAAe;AACpC,cAAM,gBAAgB;AAAA,MACxB;AAAA,IACF;AACA,UAAM,WAAW,OAAO;AACxB,UAAM,WAAW,SAAS;AAC1B,QAAI,oBAAoB,YAAY;AAClC;AAAA,IACF;AACA,UAAM,cAAc,CAAC;AACrB,UAAM,aAAa,CAAC;AACpB,UAAM,mBAAmB,CAAC;AAC1B,QAAI,aAAa;AACjB,eAAW,UAAU,SAAS,QAAQ;AACpC,YAAM,QAAQ,iBAAiB,SAAS,MAAM;AAC9C,YAAMA,QAAO,iBAAiB,QAAQ,MAAM;AAC5C,kBAAY,KAAK,KAAK;AACtB,iBAAW,KAAKA,KAAI;AACpB,UAAIA,SAAQ,MAAM;AAChB,qBAAa;AAAA,MACf;AACA,UAAI,CAAC,UAAU;AACb,wBAAgB,OAAO;AACvB,YAAI,gBAAgB,OAAO,UAAU,KAAK,CAAC,SAAS,OAAO,MAAM,KAAK,YAAY,QAAQ,OAAO,IAAI,MAAM,MAAM,CAAC,MAAM,cAAc,OAAO,YAAY,aAAa,MAAM;AAC1K,2BAAiB,KAAK,KAAK;AAAA,QAC7B;AAAA,MACF;AAAA,IACF;AACA,QAAI,YAAY;AACd,eAAS,UAAU,CAAC;AACpB,aAAO,UAAU,WAAW;AAAA,IAC9B;AACA,UAAM,gBAAgB,OAAO,SAAS,MAAM,aAAa,MAAM,CAAC;AAChE,QAAI,aAAa;AACjB,QAAI,SAAS,iBAAiB;AAC5B,mBAAa,SAAS,YAAY,aAAa,UAAU;AAAA,IAC3D;AACA,UAAM,eAAe,eAAe,QAAQ;AAC5C,UAAM,wBAAwB,MAAM,QAAQ,YAAY,IAAI,eAAe,CAAC,YAAY;AACxF,aAAS,KAAK,GAAG,KAAK,sBAAsB,QAAQ,EAAE,IAAI;AACxD,UAAI,CAAC,iBAAiB,OAAO,sBAAsB,GAAG,GAAG;AACvD,yBAAiB,IAAI,sBAAsB,KAAK,cAAc,KAAK,MAAM,QAAQ,UAAU,IAAI,WAAW,KAAK,UAAU;AAAA,MAC3H;AACA,YAAMK,SAAQ,YAAY,QAAQ,sBAAsB,IAAI,IAAI;AAChE,UAAIA,WAAU,IAAI;AAChB,qBAAaA,UAAS,cAAc;AAAA,MACtC;AAAA,IACF;AACA,QAAI,CAAC,UAAU;AACb,cAAQ,gBAAgB;AAAA,IAC1B;AAAA,EACF;AACA,mBAAiB,aAAa;AAC9B,SAAO,eAAe,eAAe,aAAa;AACpD;AACA,SAAS,qCAAqC,SAAS,UAAU;AAC/D,eAAa,OAAO,WAAW,QAAQ,QAAQ,SAAS,GAAG,MAAM,uCAAuC;AACxG,MAAI,cAAc,CAAC;AACnB,MAAI,oBAAoB,CAAC;AACzB,MAAI,QAAQ,WAAW,GAAG;AACxB,UAAM,MAAM,gDAAgD,QAAQ,IAAI,QAAQ;AAChF,kBAAc,IAAI;AAClB,wBAAoB,IAAI;AAAA,EAC1B,OAAO;AACL,UAAM,UAA0B,oBAAI,IAAI;AACxC,eAAW,UAAU,SAAS;AAC5B,YAAM,EAAE,QAAQ,aAAa,IAAI,gDAAgD,QAAQ,QAAQ;AACjG,iBAAW,kBAAkB,QAAQ;AACnC,YAAI,CAAC,QAAQ,IAAI,eAAe,IAAI,GAAG;AACrC,sBAAY,KAAK,cAAc;AAC/B,kBAAQ,IAAI,eAAe,IAAI;AAAA,QACjC;AAAA,MACF;AACA,iBAAW,QAAQ,cAAc;AAC/B,YAAI,kBAAkB,SAAS,MAAM;AACnC,4BAAkB,QAAwB,oBAAI,IAAI;AAAA,QACpD;AACA,qBAAa,MAAM,QAAQ,CAAC,cAAc,kBAAkB,MAAM,IAAI,SAAS,CAAC;AAAA,MAClF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AAAA,IACL,QAAQ;AAAA,IACR,iBAAiB,oBAAoB,iBAAiB;AAAA,EACxD;AACF;AACA,SAAS,oBAAoB,cAAc;AACzC,QAAM,kBAAkB,CAAC;AACzB,aAAW,QAAQ,cAAc;AAC/B,oBAAgB,QAAQ,aAAa,MAAM;AAAA,EAC7C;AACA,SAAO;AACT;AACA,SAAS,gDAAgD,QAAQ,UAAU;AACzE,QAAM,UAA0B,oBAAI,IAAI;AACxC,QAAM,SAAS,CAAC;AAChB,QAAM,eAAe,CAAC;AACtB,aAAW,OAAO,SAAS,MAAM,GAAG;AAClC,YAAQ,IAAI,GAAG;AAAA,EACjB;AACA,QAAM,SAAS,CAAC;AAChB,QAAM,QAAQ,CAAC;AACf,SAAO,KAAK,MAAM;AAClB,SAAO,OAAO,SAAS,GAAG;AACxB,UAAM,MAAM,OAAO,OAAO,SAAS;AACnC,QAAI,QAAQ,IAAI,IAAI,IAAI,GAAG;AACzB,aAAO,IAAI;AACX;AAAA,IACF;AACA,UAAM,cAAc,MAAM,MAAM,SAAS,OAAO,OAAO,SAAS;AAChE,QAAI,IAAI,OAAO,WAAW,KAAK,aAAa;AAC1C,aAAO,IAAI;AACX,aAAO,KAAK,GAAG;AACf,cAAQ,IAAI,IAAI,IAAI;AACpB,UAAI,aAAa;AACf,cAAM,IAAI;AAAA,MACZ;AAAA,IACF,OAAO;AACL,YAAM,KAAK,OAAO,SAAS,CAAC;AAC5B,iBAAW,UAAU,IAAI,QAAQ;AAC/B,YAAI,aAAa,OAAO,SAAS,MAAM;AACrC,uBAAa,OAAO,QAAwB,oBAAI,IAAI;AAAA,QACtD;AACA,qBAAa,OAAO,MAAM,IAAI,IAAI,IAAI;AACtC,YAAI,QAAQ,IAAI,OAAO,IAAI,GAAG;AAC5B;AAAA,QACF;AACA,eAAO,KAAK,MAAM;AAAA,MACpB;AAAA,IACF;AAAA,EACF;AACA,SAAO,EAAE,QAAQ,aAAa;AAChC;AACA,SAAS,eAAe,QAAQ;AAC9B,MAAI;AACJ,MAAI,OAAO,YAAY,aAAa,WAAW,GAAG;AAChD,mBAAe,OAAO,YAAY;AAAA,EACpC,OAAO;AACL,QAAI,YAAY;AAChB,aAAS,KAAK,GAAG,KAAK,OAAO,YAAY,aAAa,QAAQ,EAAE,IAAI;AAClE,iBAAW,gBAAgB,OAAO,YAAY,aAAa,IAAI,eAAe;AAC5E,YAAI,aAAa,OAAO,OAAO,IAAI;AACjC,sBAAY;AACZ;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,mBAAe,OAAO,YAAY,YAAY,SAAS;AAAA,EACzD;AACA,SAAO;AACT;AAGA,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,sCAAsC,MAAM,KAAK,qBAAqB;AAGxF,IAAI,8BAA8B,CAAC;AACnCb,UAAS,6BAA6B;AAAA,EACpC,SAAS,MAAM;AAAA,EACf,YAAY,MAAM;AAAA,EAClB,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAClB,CAAC;AAGD,SAAS,YAAY,GAAG,MAAM;AAC5B,SAAO,KAAK,MAAM,KAAK,KAAK,IAAI,GAAG,CAAC,GAAG,MAAM,IAAI,CAAC,CAAC;AACrD;AACA,IAAI,aAAa,cAAc,sBAAsB,aAAa;AAAA,EAChE,YAAY;AACV,WAAO,CAAC;AAAA,EACV;AACF;AACA,IAAI,UAAU,cAAc,WAAW;AAAA,EACrC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,kBAAkB;AACvB,SAAK,cAAc;AACnB,SAAK,WAAW,KAAK,YAAY,OAAO,KAAK,WAAW,KAAK;AAC7D,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,KAAK;AAAA,EACnD;AAAA,EACA,MAAM,GAAG;AACP,WAAO,KAAK,MAAM;AAChB,YAAM,QAAQ,YAAY,GAAG,KAAK,IAAI;AACtC,YAAM,UAAU,YAAY,OAAO,GAAG,KAAK,QAAQ;AACnD,aAAO,IAAI,GAAG,IAAI,SAAS,KAAK,QAAQ,GAAG,KAAK,CAAC,CAAC;AAAA,IACpD,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO,EAAE,UAAU,KAAK,UAAU,MAAM,KAAK,KAAK;AAAA,EACpD;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,WAAW,cAAc,WAAW;AAAA,EACtC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,cAAc;AACnB,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,KAAK;AAAA,EACnD;AAAA,EACA,MAAM,GAAG;AACP,WAAO,KAAK,MAAM,IAAI,GAAG,KAAK,QAAQ,GAAG,YAAY,GAAG,KAAK,IAAI,CAAC,CAAC,CAAC;AAAA,EACtE;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,KAAK;AAAA,EAC3B;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,SAAS,cAAc,WAAW;AAAA,EACpC,MAAM,GAAG;AACP,WAAO,KAAK,CAAC;AAAA,EACf;AACF;AACA,OAAO,YAAY;AACnB,sBAAsB,cAAc,MAAM;AAC1C,IAAI,aAAa,cAAc,WAAW;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,cAAc;AACnB,SAAK,cAAc;AACnB,SAAK,WAAW,KAAK,YAAY,OAAO,KAAK,WAAW,KAAK;AAC7D,SAAK,WAAW,KAAK,YAAY,OAAO,KAAK,WAAW,KAAK;AAC7D,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,KAAK;AACjD,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,KAAK;AAAA,EACnD;AAAA,EACA,MAAM,GAAG;AACP,WAAO,KAAK,MAAM;AAChB,YAAM,QAAQ,YAAY,GAAG,KAAK,IAAI;AACtC,YAAM,UAAU,KAAK,IAAI,KAAK,MAAM,YAAY,OAAO,KAAK,UAAU,KAAK,QAAQ,CAAC,GAAG,IAAI,IAAI,KAAK,MAAM,KAAK,CAAC;AAChH,aAAO,IAAI,GAAG,IAAI,SAAS,KAAK,QAAQ,GAAG,KAAK,CAAC,CAAC;AAAA,IACpD,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,UAAU,KAAK;AAAA,MACf,UAAU,KAAK;AAAA,MACf,MAAM,KAAK;AAAA,MACX,MAAM,KAAK;AAAA,IACb;AAAA,EACF;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAC9C,IAAI,4CAA4C;AAAA,EAC9C,WAAW;AAAA,EACX,cAAc;AAAA,EACd,UAAU;AAAA,EACV,YAAY;AACd;AACA,SAAS,oBAAoB,YAAY;AACvC,SAAO,qBAAqB,UAAU;AACxC;AACA,SAAS,sBAAsBkB,SAAQ,gBAAgB,CAAC,GAAG;AACzD,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,YAAY;AACjI;AACA,SAAS,cAAc,YAAY;AACjC,MAAI,cAAc,MAAM;AACtB,WAAO;AAAA,EACT;AACA,MAAI,OAAO,eAAe,UAAU;AAClC,UAAM,YAAY,cAAc,4CAA4C,0CAA0C,cAAc;AACpI,UAAMA,UAAS,EAAE,WAAW,QAAQ,CAAC,EAAE;AACvC,WAAO,sBAAsBA,OAAM;AAAA,EACrC,WAAW,sBAAsB,YAAY;AAC3C,WAAO;AAAA,EACT,OAAO;AACL,WAAO,sBAAsB,UAAU;AAAA,EACzC;AACF;AAGA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,SAAS;AAChB,SAAO,IAAI,OAAO;AACpB;AACA,SAAS,WAAWA,SAAQ;AAC1B,SAAO,IAAI,WAAWA,OAAM;AAC9B;AAGA,IAAI,+BAA+B,CAAC;AACpClB,UAAS,8BAA8B;AAAA,EACrC,UAAU,MAAM;AAAA,EAChB,cAAc,MAAM;AAAA,EACpB,eAAe,MAAM;AAAA,EACrB,UAAU,MAAM;AAAA,EAChB,WAAW,MAAM;AAAA,EACjB,UAAU,MAAM;AAAA,EAChB,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,MAAM,MAAM;AAAA,EACZ,YAAY,MAAM;AAAA,EAClB,cAAc,MAAM;AAAA,EACpB,eAAe,MAAM;AAAA,EACrB,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,OAAO,MAAM;AACf,CAAC;AACD,SAAS,SAAS;AAChB,SAAO,IAAI,MAAM;AACnB;AACA,SAAS,QAAQ;AACf,SAAO,IAAI,KAAK;AAClB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,eAAe,MAAM;AAC5B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,gBAAgBkB,SAAQ;AAC/B,SAAO,IAAI,gBAAgBA,OAAM;AACnC;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,YAAY,MAAM;AACzB,SAAO,IAAI,YAAY,IAAI;AAC7B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,WAAW,IAAI;AAC5B;AAGA,IAAI,yBAAyB,CAAC;AAC9BlB,UAAS,wBAAwB;AAAA,EAC/B,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,YAAY,MAAM;AAAA,EAClB,KAAK,MAAM;AAAA,EACX,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,kBAAkB,MAAM;AAAA,EACxB,kBAAkB,MAAM;AAAA,EACxB,kBAAkB,MAAM;AAAA,EACxB,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,oBAAoB,MAAM;AAAA,EAC1B,eAAe,MAAM;AAAA,EACrB,aAAa,MAAM;AAAA,EACnB,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,YAAY,MAAM;AAAA,EAClB,gBAAgB,MAAM;AAAA,EACtB,YAAY,MAAM;AAAA,EAClB,OAAO,MAAM;AAAA,EACb,iBAAiB,MAAM;AAAA,EACvB,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,KAAK,MAAM;AAAA,EACX,WAAW,MAAM;AAAA,EACjB,SAAS,MAAM;AAAA,EACf,iBAAiB,MAAM;AAAA,EACvB,eAAe,MAAM;AAAA,EACrB,wBAAwB,MAAM;AAAA,EAC9B,wBAAwB,MAAM;AAAA,EAC9B,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,oBAAoB,MAAM;AAAA,EAC1B,oBAAoB,MAAM;AAAA,EAC1B,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,OAAO,MAAM;AAAA,EACb,YAAY,MAAM;AAAA,EAClB,oBAAoB,MAAM;AAAA,EAC1B,WAAW,MAAM;AAAA,EACjB,MAAM,MAAM;AAAA,EACZ,UAAU,MAAM;AAAA,EAChB,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,UAAU,MAAM;AAAA,EAChB,SAAS,MAAM;AAAA,EACf,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,KAAK,MAAM;AAAA,EACX,iBAAiB,MAAM;AAAA,EACvB,WAAW,MAAM;AAAA,EACjB,eAAe,MAAM;AAAA,EACrB,SAAS,MAAM;AAAA,EACf,kBAAkB,MAAM;AAAA,EACxB,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,cAAc,MAAM;AAAA,EACpB,eAAe,MAAM;AACvB,CAAC;AAGD,eAAe,qBAAqB,MAAM;AACxC,MAAI,QAAQ,MAAM;AAChB;AAAA,EACF;AACA,QAAM,WAAW,CAAC;AAClB,QAAM,OAAO,CAAC;AACd,QAAM,mBAAmB,CAAC;AAC1B,aAAW,OAAO,MAAM;AACtB,UAAM,QAAQ,KAAK;AACnB,QAAI,OAAO,UAAU,UAAU;AAC7B,YAAM,cAAc;AACpB,eAAS,KAAK,YAAY,KAAK,CAAC;AAChC,WAAK,KAAK,GAAG;AACb,uBAAiB,KAAK,WAAW;AAAA,IACnC;AAAA,EACF;AACA,MAAI,SAAS,SAAS,GAAG;AACvB,UAAM,SAAS,MAAM,QAAQ,IAAI,QAAQ;AACzC,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,WAAK,KAAK,OAAO,OAAO,IAAI;AAAA,IAC9B;AACA,YAAQ,gBAAgB;AAAA,EAC1B;AACF;AACA,SAAS,qBAAqB,MAAM;AAClC,MAAI,QAAQ,MAAM;AAChB;AAAA,EACF;AACA,aAAW,OAAO,MAAM;AACtB,UAAM,QAAQ,KAAK;AACnB,QAAI,OAAO,UAAU,UAAU;AAC7B,YAAM,QAAQ;AAAA,IAChB;AAAA,EACF;AACF;AAGA,IAAI;AAAA,CACH,SAAS,wBAAwB;AAChC,yBAAuB,uBAAuB,YAAY,KAAK;AAC/D,yBAAuB,uBAAuB,aAAa,KAAK;AAClE,GAAG,0BAA0B,wBAAwB,CAAC,EAAE;AACxD,IAAI,yBAAyB;AAC7B,IAAI,eAAe,MAAM;AAAA,EACvB,cAAc;AACZ,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,UAAU,QAAQ;AAChB,SAAK,SAAS;AAAA,EAChB;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAAA,EAC9B;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAAA,EAC9B;AAAA,EACA,MAAM,aAAa,MAAM;AAAA,EACzB;AAAA,EACA,MAAM,WAAW,MAAM;AAAA,EACvB;AAAA,EACA,SAASiC,SAAQ;AAAA,EACjB;AACF;AACA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,YAAY,cAAc,IAAI;AACxC,QAAI,cAAc,MAAM;AACtB,mBAAa,CAAC;AAAA,IAChB;AACA,SAAK,YAAY;AACjB,SAAK,cAAc;AAAA,EACrB;AAAA,EACA,OAAO,UAAU;AACf,SAAK,UAAU,KAAK,QAAQ;AAAA,EAC9B;AAAA,EACA,UAAU,QAAQ;AAChB,eAAW,YAAY,KAAK,WAAW;AACrC,eAAS,UAAU,MAAM;AAAA,IAC3B;AAAA,EACF;AAAA,EACA,SAASA,SAAQ;AACf,eAAW,YAAY,KAAK,WAAW;AACrC,eAAS,SAASA,OAAM;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAC9B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,aAAa,OAAO,IAAI;AAAA,IACzC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,WAAW,OAAO,IAAI;AAAA,IACvC;AAAA,EACF;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAC9B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,aAAa,OAAO,IAAI;AAAA,IACzC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,WAAW,OAAO,IAAI;AAAA,IACvC;AAAA,EACF;AAAA,EACA,MAAM,aAAa,MAAM;AACvB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,aAAa,IAAI;AAAA,IAClC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,MAAM;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,WAAW,IAAI;AAAA,IAChC;AAAA,EACF;AACF;AACA,IAAI,aAAa,cAAc,aAAa;AAAA,EAC1C,cAAc;AACZ,UAAM;AAAA,EACR;AAAA,EACA,MAAM,aAAa,OAAO;AACxB,SAAK,OAAO;AACZ,SAAK,SAAS,CAAC;AAAA,EACjB;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,YAAY,KAAK,WAAW,OAAO,IAAI,KAAK;AAClD,SAAK,QAAQ;AACb,eAAW,OAAO,MAAM;AACtB,YAAM,QAAQ,KAAK;AACnB,UAAI,OAAO,UAAU,UAAU;AAC7B,YAAI,CAAC,KAAK,OAAO,eAAe,GAAG,GAAG;AACpC,eAAK,OAAO,OAAO;AAAA,QACrB;AACA,aAAK,OAAO,OAAO,KAAK,OAAO,OAAO,QAAQ;AAAA,MAChD,OAAO;AACL,YAAI;AACJ,YAAI,OAAO,KAAK,QAAQ;AACtB,+BAAqB,KAAK,OAAO;AAAA,QACnC,OAAO;AACL,eAAK,OAAO,OAAO;AAAA,QACrB;AACA,cAAM,QAAQ,KAAK,MAAM,KAAK,KAAK,OAAO,MAAM,IAAI,OAAO,SAAS,CAAC,CAAC;AACtE,aAAK,OAAO,OAAO;AACnB,YAAI,sBAAsB,MAAM;AAC9B,6BAAmB,QAAQ;AAAA,QAC7B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,iBAAW,OAAO,KAAK,OAAO,YAAY;AACxC,YAAI,KAAK,OAAO,QAAQ,MAAM;AAC5B;AAAA,QACF;AACA,YAAI,OAAO,KAAK,OAAO,SAAS,UAAU;AACxC,eAAK,OAAO,KAAK,OAAO,OAAO,KAAK;AAAA,QACtC,OAAO;AACL,eAAK,MAAM;AACT,kBAAM,OAAO,IAAI,IAAI,GAAG,KAAK,IAAI,GAAG,KAAK,OAAO,IAAI;AACpD,iBAAK,OAAO;AACZ,iBAAK,OAAO,KAAK,QAAQ;AACzB,iBAAK,KAAK,IAAI;AAAA,UAChB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,IAAI,UAAU,cAAc,aAAa;AAAA,EACvC,MAAM,aAAa,MAAM;AACvB,SAAK,QAAQ,CAAC;AACd,SAAK,UAAU,CAAC;AAAA,EAClB;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,MAAM,KAAK,KAAK;AACrB,eAAW,OAAO,MAAM;AACtB,UAAI,KAAK,QAAQ,QAAQ,MAAM;AAC7B,aAAK,QAAQ,OAAO,CAAC;AAAA,MACvB;AACA,WAAK,QAAQ,KAAK,KAAK,KAAK,IAAI;AAAA,IAClC;AAAA,EACF;AAAA,EACA,MAAM,WAAW;AACf,UAAM,WAAW,CAAC;AAClB,UAAM,OAAO,CAAC;AACd,UAAM,UAAU,CAAC;AACjB,eAAW,OAAO,KAAK,SAAS;AAC9B,YAAM,aAAa,KAAK,QAAQ;AAChC,eAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAI,OAAO,WAAW,QAAQ,UAAU;AACtC,gBAAM,cAAc,WAAW;AAC/B,mBAAS,KAAK,YAAY,KAAK,CAAC;AAChC,eAAK,KAAK,GAAG;AACb,kBAAQ,KAAK,EAAE;AAAA,QACjB;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,MAAM,QAAQ,IAAI,QAAQ;AACzC,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,YAAM,kBAAkB,KAAK,QAAQ,KAAK,KAAK,QAAQ;AACvD,sBAAgB,QAAQ;AACxB,WAAK,QAAQ,KAAK,KAAK,QAAQ,OAAO,OAAO,IAAI;AAAA,IACnD;AAAA,EACF;AACF;AACA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,YAAY,MAAM,YAAY;AAC5B,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,UAAU,KAAK;AACpB,SAAK,gBAAgB,KAAK,iBAAiB;AAC3C,SAAK,aAAa,cAAc;AAChC,QAAI,KAAK,eAAe,QAAQ;AAC9B,WAAK,aAAa;AAAA,IACpB;AACA,QAAI,KAAK,eAAe,WAAW,KAAK,WAAW,MAAM;AACvD,YAAM,IAAI,MAAM,iHAAiH;AAAA,IACnI;AACA,QAAI,aAAa,SAAS,KAAK,UAAU,GAAG;AAC1C,WAAK,YAAY,SAAS,KAAK,UAAU,KAAK,IAAI,GAAG,KAAK,YAAY,KAAK,OAAO;AAAA,IACpF;AACA,SAAK,aAAa,KAAK;AACvB,SAAK,WAAW,KAAK;AACrB,SAAK,aAAa,KAAK;AACvB,SAAK,WAAW,KAAK;AACrB,SAAK,aAAa,KAAK;AACvB,SAAK,WAAW,KAAK;AACrB,SAAK,QAAQ,KAAK;AAAA,EACpB;AAAA,EACA,MAAM,UAAU,OAAO,OAAO,MAAM;AAClC,UAAM,KAAK,CAAC;AACZ,QAAI,KAAK,SAAS,MAAM;AACtB,YAAM,qBAAqB,IAAI;AAC/B,SAAG,KAAK,KAAK,MAAM,OAAO,OAAO,IAAI,CAAC;AAAA,IACxC;AACA,OAAG,KAAK,KAAK,cAAc,CAAC;AAC5B,UAAM,QAAQ,IAAI,EAAE;AAAA,EACtB;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAC9B,SAAK,eAAe;AACpB,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,qBAAqB,IAAI;AAC/B,YAAM,KAAK,WAAW,OAAO,IAAI;AAAA,IACnC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,UAAM,KAAK,CAAC;AACZ,QAAI,KAAK,YAAY,MAAM;AACzB,YAAM,qBAAqB,IAAI;AAC/B,SAAG,KAAK,KAAK,SAAS,OAAO,IAAI,CAAC;AAAA,IACpC;AACA,QAAI,KAAK,eAAe,SAAS;AAC/B,SAAG,KAAK,KAAK,cAAc,CAAC;AAAA,IAC9B;AACA,UAAM,QAAQ,IAAI,EAAE;AAAA,EACtB;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAC9B,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,qBAAqB,IAAI;AAC/B,YAAM,KAAK,WAAW,OAAO,IAAI;AAAA,IACnC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,UAAM,KAAK,CAAC;AACZ,QAAI,KAAK,YAAY,MAAM;AACzB,YAAM,qBAAqB,IAAI;AAC/B,SAAG,KAAK,KAAK,SAAS,OAAO,IAAI,CAAC;AAAA,IACpC;AACA,QAAI,KAAK,eAAe,SAAS;AAC/B,SAAG,KAAK,KAAK,cAAc,CAAC;AAAA,IAC9B,WAAW,aAAa,SAAS,KAAK,UAAU,GAAG;AACjD,SAAG,KAAK,KAAK,UAAU,KAAK,cAAc,OAAO,IAAI,CAAC;AAAA,IACxD;AACA,UAAM,QAAQ,IAAI,EAAE;AAAA,EACtB;AAAA,EACA,MAAM,aAAa,MAAM;AACvB,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,qBAAqB,IAAI;AAC/B,YAAM,KAAK,WAAW,IAAI;AAAA,IAC5B;AAAA,EACF;AAAA,EACA,MAAM,WAAW,MAAM;AACrB,QAAI,KAAK,YAAY,MAAM;AACzB,YAAM,qBAAqB,IAAI;AAC/B,YAAM,KAAK,SAAS,IAAI;AAAA,IAC1B;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,YAAY,YAAY;AACpD,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC;AAAA,EAChB;AACA,MAAI,sBAAsB,cAAc;AACtC,WAAO,CAAC,UAAU;AAAA,EACpB;AACA,MAAI,MAAM,QAAQ,UAAU,KAAK,WAAW,cAAc,cAAc;AACtE,WAAO;AAAA,EACT;AACA,QAAM,kBAAkB,OAAO,UAAU;AACzC,SAAO,gBAAgB,IAAI,CAAC,mBAAmB,IAAI,eAAe,gBAAgB,UAAU,CAAC;AAC/F;AACA,IAAI,8BAA8B,MAAM;AAAA,EACtC,cAAc;AAAA,EACd;AAAA,EACA,OAAO,4BAA4B,gBAAgB,qBAAqB;AACtE,iBAAa,OAAO,kBAAkB,KAAK,OAAO,UAAU,cAAc,GAAG,MAAM,8DAA8D,gBAAgB;AACjK,gCAA4B,kBAAkB,mBAAmB;AACjE,QAAI,4BAA4B,aAAa,mBAAmB,MAAM;AACpE,kCAA4B,aAAa,kBAAkB,CAAC;AAAA,IAC9D;AACA,gCAA4B,aAAa,gBAAgB,KAAK,mBAAmB;AAAA,EACnF;AAAA,EACA,OAAO,kBAAkB,qBAAqB;AAC5C,eAAW,aAAa,4BAA4B,cAAc;AAChE,YAAM,eAAe,4BAA4B,aAAa,CAAC;AAC/D,mBAAa,QAAQ,CAAC,SAAS;AAC7B,YAAI,SAAS,qBAAqB;AAChC,gBAAM,IAAI,WAAW,iCAAiC;AAAA,QACxD;AAAA,MACF,CAAC;AAAA,IACH;AAAA,EACF;AAAA,EACA,OAAO,QAAQ;AACb,gCAA4B,eAAe,CAAC;AAAA,EAC9C;AAAA,EACA,OAAO,gBAAgB,gBAAgB;AACrC,UAAM,eAAe,CAAC;AACtB,eAAW,aAAa,4BAA4B,cAAc;AAChE,YAAM,QAAQ,CAAC;AACf,UAAI,kBAAkB,OAAO;AAC3B,qBAAa,KAAK,GAAG,4BAA4B,aAAa,MAAM;AAAA,MACtE;AAAA,IACF;AACA,WAAO,aAAa,IAAI,CAAC,SAAS,IAAI,KAAK,CAAC;AAAA,EAC9C;AACF;AACA,4BAA4B,eAAe,CAAC;AAC5C,SAAS,mBAAmB,YAAY,SAAS,QAAQ,cAAc,iBAAiB,eAAe,WAAW,cAAc,iBAAiB;AAC/I,QAAM,UAAU,IAAI,QAAQ;AAC5B,QAAM,kBAAkB;AAAA,IACtB,IAAI,WAAW;AAAA,IACf,GAAG,4BAA4B,gBAAgB,OAAO;AAAA,EACxD;AACA,MAAI,cAAc,MAAM;AACtB,oBAAgB,KAAK,GAAG,UAAU;AAAA,EACpC;AACA,kBAAgB,KAAK,OAAO;AAC5B,QAAM,eAAe,IAAI,aAAa,eAAe;AACrD,eAAa,UAAU;AAAA,IACrB;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT,OAAO;AAAA,IACP;AAAA,IACA;AAAA,IACA;AAAA,IACA,SAAS;AAAA,EACX,CAAC;AACD,SAAO,EAAE,cAAc,QAAQ;AACjC;AAGA,SAAS,YAAYf,SAAQ,gBAAgB,CAAC,GAAG,iBAAiB,OAAO;AACvE,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,SAAS,cAAc;AAC5I;AAGA,SAAS,YAAY,GAAG,MAAM;AAC5B,SAAO,KAAK,MAAM;AAChB,QAAI,EAAE,UAAU,WAAW;AACzB,UAAI,KAAK,GAAG,SAAS;AAAA,IACvB;AACA,UAAM,YAAY,KAAK,QAAQ,CAAC,GAAG,MAAM,IAAI;AAC7C,UAAM,gBAAgB,KAAK,UAAU,OAAO,QAAQ,CAAC;AACrD,UAAM,QAAQ,KAAK,QAAQ,WAAW,aAAa,CAAC;AACpD,WAAO,IAAI,GAAG,KAAK;AAAA,EACrB,CAAC;AACH;AACA,SAAS,kBAAkB,OAAO,OAAO;AACvC,SAAO,KAAK,MAAM,KAAK,QAAQ,IAAI,OAAO,KAAK,CAAC,GAAG,EAAE,CAAC;AACxD;AACA,SAAS,kBAAkB,OAAO,OAAO;AACvC,SAAO,KAAK,MAAM,KAAK,IAAI,IAAI,OAAO,KAAK,CAAC,GAAG,EAAE,CAAC;AACpD;AACA,SAAS,4BAA4B,OAAO,OAAO;AACjD,SAAO,KAAK,MAAM;AAChB,UAAM,OAAO,IAAI,OAAO,KAAK;AAC7B,UAAM,cAAc,YAAY,IAAI,KAAK,GAAG,QAAQ,GAAG,OAAO,SAAS;AACvE,UAAM,YAAY,IAAI,IAAI,MAAM,WAAW,CAAC;AAC5C,WAAO,IAAI,KAAK,KAAK,WAAW,EAAE,CAAC;AAAA,EACrC,CAAC;AACH;AACA,SAAS,4BAA4B,OAAO,OAAO;AACjD,SAAO,KAAK,MAAM;AAChB,UAAM,cAAc,YAAY,OAAO,QAAQ,GAAG,OAAO,SAAS;AAClE,UAAM,WAAWpB,MAAK,KAAK,GAAG,WAAW,CAAC;AAC1C,UAAM,cAAc,YAAY,OAAO,QAAQ,GAAG,OAAO,SAAS;AAClE,UAAM,YAAYA,MAAK,KAAK,GAAG,WAAW,CAAC;AAC3C,WAAO,KAAK,QAAQ,IAAI,UAAU,SAAS,CAAC,GAAG,EAAE;AAAA,EACnD,CAAC;AACH;AACA,SAAS,aAAa,OAAO,OAAO;AAClC,SAAO,KAAK,MAAM;AAChB,UAAM,YAAY,QAAQ,GAAG,IAAI,GAAG,IAAI,OAAO,KAAK,CAAC,CAAC;AACtD,WAAO,KAAK,QAAQ,SAAS,GAAG,EAAE;AAAA,EACpC,CAAC;AACH;AACA,SAAS,MAAM,OAAO,OAAO;AAC3B,SAAO,KAAK,MAAM;AAChB,UAAM,YAAY,QAAQ,GAAG,IAAI,GAAG,IAAI,OAAO,KAAK,CAAC,CAAC;AACtD,WAAO,KAAK,WAAW,EAAE;AAAA,EAC3B,CAAC;AACH;AACA,SAAS,iBAAiB,OAAO,OAAO;AACtC,SAAO,KAAK,MAAM;AAChB,UAAM,MAAM,KAAK,IAAI,OAAO,KAAK,GAAG,EAAE;AACtC,UAAM,OAAO,IAAI,IAAI,IAAI,GAAG,KAAK,GAAG,KAAK,GAAG,EAAE;AAC9C,WAAO,QAAQ,GAAG,KAAK,GAAG,IAAI,MAAM,GAAG,CAAC,CAAC;AAAA,EAC3C,CAAC;AACH;AACA,SAAS,QAAQ,OAAO,OAAO;AAC7B,SAAO,KAAK,MAAM;AAChB,UAAMO,SAAQ,KAAK,IAAI,CAAC;AACxB,UAAM,iBAAiB,IAAI,OAAO,KAAK;AACvC,UAAM,gBAAgB,IAAI,KAAK,gBAAgB,SAAS,IAAI,IAAI,cAAc,CAAC,CAAC,GAAGA,MAAK;AACxF,WAAO,KAAK,eAAe,EAAE;AAAA,EAC/B,CAAC;AACH;AACA,SAAS,wBAAwB,QAAQ,QAAQ,aAAa,OAAO;AACnE,SAAO,KAAK,MAAM;AAChB,QAAI,YAAY;AACd,eAAS,QAAQ,MAAM;AAAA,IACzB,OAAO;AACL,YAAM,YAAY,KAAK,QAAQ,OAAO,MAAM,SAAS,GAAG,IAAI;AAC5D,eAAS,IAAI,QAAQ,SAAS;AAAA,IAChC;AACA,aAAS,YAAY,QAAQ,QAAQ,GAAG,IAAI,QAAQ,CAAC;AACrD,WAAO,IAAI,KAAK,IAAI,KAAK,QAAQ,SAAS,GAAGP,MAAK,MAAM,CAAC,GAAG,OAAO,MAAM,SAAS,CAAC,CAAC;AAAA,EACtF,CAAC;AACH;AACA,SAAS,8BAA8B,QAAQ,QAAQ,aAAa,OAAO;AACzE,SAAO,KAAK,MAAM;AAChB,UAAM,aAAa,KAAK,MAAM,SAAS,MAAM,CAAC,GAAG,OAAO;AACxD,aAAS,YAAY,QAAQ,QAAQ,GAAG,IAAI,QAAQ,CAAC;AACrD,UAAM,cAAc,OAAO;AAC3B,UAAM,eAAe,QAAQ,OAAO,YAAY,YAAY,YAAY,SAAS,EAAE,GAAG,WAAW;AACjG,WAAO,wBAAwB,cAAc,QAAQ,UAAU;AAAA,EACjE,CAAC;AACH;AACA,SAAS,8BAA8ByB,SAAQ,QAAQ;AACrD,MAAI,CAAC,aAAa,YAAYA,QAAO,OAAO,OAAO,KAAK,GAAG;AACzD,UAAM,IAAI,WAAW,8DAA8D,KAAK,UAAUA,QAAO,KAAK,SAAS,KAAK,UAAU,OAAO,KAAK,GAAG;AAAA,EACvJ;AACA,SAAO,KAAK,MAAM;AAChB,UAAM,aAAa,KAAK,MAAM;AAC9B,UAAM,eAAe,IAAI,IAAI,MAAM,CAAC;AACpC,WAAO,KAAK,IAAI,YAAY,IAAI,QAAQA,OAAM,CAAC,GAAG,MAAM,IAAI,YAAY,CAAC,CAAC;AAAA,EAC5E,CAAC;AACH;AACA,SAAS,mBAAmB,OAAO,OAAO;AACxC,SAAO,KAAK,MAAM;AAChB,QAAI;AACJ,QAAI,YAAY,OAAO,QAAQ,GAAG,IAAI,QAAQ,CAAC;AAC/C,QAAIzB,MAAK,IAAI,GAAG,IAAI,GAAG,CAAC,CAAC,CAAC;AAC1B,WAAO,KAAK,8BAA8B,OAAO,CAAC,GAAG,EAAE;AAAA,EACzD,CAAC;AACH;AACA,SAAS,0BAA0B,OAAO,OAAO;AAC/C,SAAO,KAAK,MAAM;AAChB,UAAM,cAAc,YAAY,OAAO,QAAQ,GAAG,CAAC;AACnD,UAAM,cAAc,YAAY,OAAO,QAAQ,GAAG,CAAC;AACnD,WAAO,KAAK,IAAI,OAAOA,MAAK,IAAI,aAAa,WAAW,CAAC,CAAC,GAAG,EAAE;AAAA,EACjE,CAAC;AACH;AACA,SAAS,QAAQ,OAAO,OAAO;AAC7B,SAAO,KAAK,MAAM;AAChB,UAAM,UAAUA,MAAK,KAAK,QAAQ,GAAG,KAAK,CAAC;AAC3C,WAAO,KAAK,IAAI,OAAO,IAAI,OAAO,OAAO,CAAC,GAAG,EAAE;AAAA,EACjD,CAAC;AACH;AACA,SAAS,gBAAgB,OAAO,OAAO;AACrC,SAAO,KAAK,MAAM;AAChB,UAAM,iBAAiB,YAAY,OAAO,EAAE;AAC5C,UAAM,iBAAiB,YAAY,OAAO,EAAE;AAC5C,UAAM,YAAY,IAAI,gBAAgB,cAAc;AACpD,WAAO,IAAI,KAAK,WAAW,EAAE,CAAC;AAAA,EAChC,CAAC;AACH;AACA,IAAI,YAAY;AAAA,EACd,kBAAkB;AAAA,EAClB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,SAAS,IAAI,gBAAgB;AAC3B,MAAI,OAAO,mBAAmB,UAAU;AACtC,QAAI,kBAAkB,WAAW;AAC/B,aAAO,UAAU;AAAA,IACnB;AACA,QAAI,SAAS,gBAAgB;AAC7B,QAAI,eAAe,YAAY,EAAE,SAAS,qBAAqB,GAAG;AAChE,eAAS,gBAAgB;AAAA,IAC3B;AACA,UAAM,IAAI,WAAW,MAAM;AAAA,EAC7B,OAAO;AACL,WAAO;AAAA,EACT;AACF;AAGA,SAAS,eAAe,OAAO,OAAO;AACpC,SAAO,KAAK,MAAM;AAChB,UAAM,aAAa,IAAI,KAAK,SAAS,KAAK,CAAC;AAC3C,UAAM,mBAAmB,MAAM,QAAQ,OAAO,UAAU,GAAG,MAAM,KAAK;AACtE,WAAO,KAAK,MAAM,OAAO,gBAAgB,GAAG,EAAE;AAAA,EAChD,CAAC;AACH;AACA,SAAS,oBAAoB,OAAO,OAAO;AACzC,SAAO,KAAK,MAAM,MAAM,MAAM,OAAO,OAAO,EAAE,GAAG,OAAO,OAAO,EAAE,CAAC,GAAG,SAAS,CAAC;AACjF;AACA,SAAS,cAAc,OAAO,OAAO;AACnC,SAAO,KAAK,MAAM;AAChB,WAAO,KAAK,KAAK,WAAW,MAAM,OAAO,CAAC,GAAG,MAAM,OAAO,CAAC,CAAC,CAAC,GAAG,SAAS;AAAA,EAC3E,CAAC;AACH;AACA,SAAS,eAAe,OAAO,OAAO;AACpC,SAAO,KAAK,MAAM;AAChB,WAAO,KAAK,KAAK,WAAW,MAAM,OAAO,CAAC,GAAG,MAAM,OAAO,CAAC,CAAC,CAAC,GAAG,SAAS;AAAA,EAC3E,CAAC;AACH;AACA,SAAS,eAAe,OAAO,OAAO;AACpC,SAAO,KAAK,MAAM;AAChB,WAAO,KAAK,KAAK,WAAW,MAAM,OAAO,CAAC,GAAG,MAAM,OAAO,CAAC,CAAC,CAAC,GAAG,SAAS;AAAA,EAC3E,CAAC;AACH;AACA,SAAS,UAAU,OAAO,OAAO;AAC/B,SAAO,KAAK,MAAM;AAChB,UAAM,KAAK,cAAc,OAAO,KAAK;AACrC,UAAM,KAAK,eAAe,OAAO,KAAK;AACtC,UAAM,cAAc,KAAK,IAAI,EAAE;AAC/B,WAAO,KAAK,MAAM,QAAQ,aAAa,CAAC,GAAG,IAAI,IAAI,WAAW,GAAG,CAAC,GAAG,SAAS;AAAA,EAChF,CAAC;AACH;AACA,SAAS,OAAO,OAAO,OAAO;AAC5B,SAAO,KAAK,MAAM;AAChB,UAAM,KAAK,cAAc,OAAO,KAAK;AACrC,UAAM,KAAK,eAAe,OAAO,KAAK;AACtC,UAAM,cAAc,KAAK,IAAI,EAAE;AAC/B,WAAO,KAAK,MAAM,QAAQ,aAAa,CAAC,GAAG,IAAI,IAAI,WAAW,GAAG,CAAC,GAAG,SAAS;AAAA,EAChF,CAAC;AACH;AACA,SAAS,oBAAoB,OAAO,OAAO;AACzC,SAAO,mBAAmB,OAAO,KAAK;AACxC;AACA,SAAS,0BAA0B,OAAO,OAAO;AAC/C,MAAI,MAAM,SAAS,MAAM,MAAM;AAC7B,YAAQ,QAAQ,OAAO,CAAC,MAAM,OAAO,CAAC,CAAC;AAAA,EACzC;AACA,UAAQ,OAAO,OAAO,EAAE;AACxB,MAAI,MAAM,UAAU,MAAM,OAAO;AAC/B,YAAQ,KAAK,OAAO,MAAM,KAAK;AAAA,EACjC;AACA,SAAO,KAAK,MAAM,OAAO,KAAK,GAAG,SAAS;AAC5C;AACA,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,2BAA2B;AAC/B,IAAI,SAAS;AACb,IAAI,iCAAiC;AACrC,IAAI,aAAa;AAAA,EACf;AAAA,EACA;AAAA,EACA;AAAA,EACA,yBAAyB;AAAA,EACzB,+BAA+B;AAAA,EAC/B;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,SAAS,KAAK,YAAY;AACxB,MAAI,OAAO,eAAe,YAAY,cAAc,YAAY;AAC9D,WAAO,WAAW;AAAA,EACpB,WAAW,OAAO,eAAe,YAAY,cAAc,MAAM;AAC/D,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,WAAW,kBAAkB,YAAY;AAAA,EACrD;AACF;AACA,SAAS,oBAAoB,IAAI;AAC/B,UAAQ,OAAO,MAAM,0BAA0B,IAAI;AACnD,MAAI,OAAO,OAAO,UAAU;AAC1B,WAAO;AAAA,EACT,OAAO;AACL,QAAI;AACJ,eAAW,OAAO,OAAO,KAAK,SAAS,GAAG;AACxC,UAAI,UAAU,SAAS,IAAI;AACzB,iBAAS;AACT;AAAA,MACF;AAAA,IACF;AACA,QAAI,WAAW,QAAQ;AACrB,aAAO;AAAA,IACT;AACA,eAAW,OAAO,OAAO,KAAK,UAAU,GAAG;AACzC,UAAI,WAAW,SAAS,IAAI;AAC1B,iBAAS;AACT;AAAA,MACF;AAAA,IACF;AACA,QAAI,WAAW,QAAQ;AACrB,aAAO;AAAA,IACT;AACA,WAAO,GAAG;AAAA,EACZ;AACF;AAGA,SAAS,aAAa,YAAY;AAChC,QAAM,eAAe;AAAA,IACnB,WAAW,MAAM,MAAM,QAAQ,IAAI;AAAA,IACnC,YAAY,MAAM,MAAM,SAAS,GAAG,MAAM,QAAQ,CAAC;AAAA,IACnD,QAAQ,MAAM,MAAM,KAAK,MAAM,KAAK,OAAO,QAAQ,CAAC;AAAA,IACpD,UAAU,MAAM,MAAM,OAAO,MAAM,KAAK,OAAO,QAAQ,GAAG,CAAC;AAAA,IAC3D,WAAW,MAAM,MAAM,QAAQ,MAAM,KAAK,GAAG,QAAQ,CAAC;AAAA,IACtD,OAAO,MAAM,MAAM,IAAI,IAAI;AAAA,EAC7B;AACA,eAAa,aAAa,aAAa;AACvC,eAAa,cAAc,aAAa;AACxC,eAAa,UAAU,aAAa;AACpC,eAAa,YAAY,aAAa;AACtC,eAAa,aAAa,aAAa;AACvC,eAAa,SAAS,aAAa;AACnC,MAAI,cAAc,cAAc;AAC9B,WAAO,aAAa,YAAY;AAAA,EAClC;AACA,QAAM,IAAI,WAAW,qBAAqB,YAAY;AACxD;AAGA,IAAI,8CAA8C,IAAI,OAAO;AAC7D,SAAS,yBAAyB,qBAAqB,WAAW,YAAY,OAAO;AACnF,MAAI,uBAAuB,QAAQ,OAAO,wBAAwB,YAAY,OAAO,eAAe,mBAAmB,MAAM,OAAO,aAAa,CAAC,iBAAiB,mBAAmB,GAAG;AACvL,UAAM,IAAI,MAAM,oEAAoE;AAAA,EACtF;AACA,MAAI,WAAW;AACb,UAAM,MAAM,KAAK,UAAU,mBAAmB;AAC9C,QAAI,IAAI,SAAS,6CAA6C;AAC5D,cAAQ,KAAK,mCAAmC,2CAA2C,IAAI,qJAAqJ,8CAA8C;AAAA,IACpS;AAAA,EACF;AACF;AACA,SAAS,iBAAiB,GAAG;AAC3B,MAAI,MAAM,MAAM;AACd,WAAO;AAAA,EACT,WAAW,OAAO,MAAM,UAAU;AAChC,QAAI,OAAO,eAAe,CAAC,MAAM,OAAO,WAAW;AACjD,YAAM,OAAO,OAAO,KAAK,CAAC;AAC1B,iBAAW,OAAO,MAAM;AACtB,YAAI,OAAO,QAAQ,UAAU;AAC3B,iBAAO;AAAA,QACT;AACA,YAAI,CAAC,iBAAiB,EAAE,IAAI,GAAG;AAC7B,iBAAO;AAAA,QACT;AAAA,MACF;AACA,aAAO;AAAA,IACT,OAAO;AACL,UAAI,MAAM,QAAQ,CAAC,GAAG;AACpB,mBAAW,QAAQ,GAAG;AACpB,cAAI,CAAC,iBAAiB,IAAI,GAAG;AAC3B,mBAAO;AAAA,UACT;AAAA,QACF;AACA,eAAO;AAAA,MACT,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF;AAAA,EACF,OAAO;AACL,UAAM,QAAQ,OAAO;AACrB,WAAO,UAAU,YAAY,UAAU,YAAY,UAAU;AAAA,EAC/D;AACF;AAGA,SAAS,aAAamC,SAAQ,YAAY,WAAW,UAAU,QAAQ,KAAK;AAC1E,QAAM,iBAAiB,sBAAsBA,OAAM;AACnD,QAAM,YAAY,CAAC,gBAAgB,eAAe,gBAAgB,SAAS;AAC3E,MAAI,gBAAgB;AAClB,iBAAa,cAAc;AAC3B,gBAAY,aAAa,CAAC,MAAM,MAAM,MAAM,CAAC;AAAA,EAC/C,OAAO;AACL,iBAAa,cAAc;AAC3B,gBAAY,aAAa,CAAC,MAAM,MAAM,KAAK,KAAK,CAAC;AAAA,EACnD;AACA,MAAI,UAAU,UAAU,SAAS,MAAM,GAAG;AACxC,gBAAY,UAAU,IAAI,CAAC,OAAO,KAAK,MAAM,aAAa,EAAE,CAAC;AAAA,EAC/D;AACA,MAAI;AACJ,MAAI,CAAC,gBAAgB;AACnB,cAAU,KAAK,iBAAiB;AAChC,oBAAgB,CAAC;AACjB,eAAW,SAASA,QAAO,cAAc;AACvC,oBAAc,KAAK,GAAGA,QAAO,aAAa,MAAM;AAAA,IAClD;AAAA,EACF;AACA,UAAQ,IAAI,OAAO,UAAU,CAAC;AAC9B,WAAS,WAAW,WAAW,OAAO;AACtC,UAAQ,IAAI,OAAO,UAAU,CAAC;AAC9B,QAAM,SAASA,QAAO;AACtB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,gBAAgB;AAClB,wBAAkB,OAAO,KAAK,WAAW,OAAO;AAAA,IAClD,OAAO;AACL,uCAAiC,OAAO,KAAK,WAAW,eAAe,OAAO;AAAA,IAChF;AACA,aAAS,OAAO,OAAO,SAAS,IAAI,MAAM,KAAK,OAAO,UAAU,CAAC;AAAA,EACnE;AACA,EAAAA,QAAO,iCAAiC;AACxC,QAAM,iBAAiB,qBAAqBA,OAAM;AAClD,QAAM,oBAAoB,qBAAqBA,QAAO,mBAAmB;AACzE,UAAQ,iBAAiB,iBAAiB,mBAAmB;AAC7D,UAAQ,qBAAqB,gBAAgB;AAC7C,UAAQ,yBAAyB,mBAAmB;AACpD,UAAQ,IAAI,OAAO,UAAU,CAAC;AAChC;AACA,SAAS,qBAAqBA,SAAQ;AACpC,MAAI;AACJ,MAAIA,QAAO,6BAA6B,MAAM;AAC5C,qBAAiB,qBAAqBA,QAAO,yBAAyB;AAAA,EACxE,OAAO;AACL,qBAAiB,qBAAqBA,QAAO,gBAAgB;AAAA,EAC/D;AACA,SAAO;AACT;AACA,SAAS,sBAAsBA,SAAQ;AACrC,MAAI,iBAAiB;AACrB,QAAM,eAAe,CAAC;AACtB,QAAM,QAAQ,CAAC;AACf,aAAW,SAASA,QAAO,cAAc;AACvC,iBAAa,KAAKA,QAAO,aAAa,MAAM;AAAA,EAC9C;AACA,aAAW,cAAc,cAAc;AACrC,QAAI,WAAW,SAAS,KAAK,WAAW,WAAW,KAAK,WAAW,GAAG,cAAc,SAAS,GAAG;AAC9F,uBAAiB;AACjB;AAAA,IACF;AACA,UAAM,KAAK,GAAG,UAAU;AAAA,EAC1B;AACA,MAAI,gBAAgB;AAClB,eAAW,SAASA,QAAO,QAAQ;AACjC,UAAI,OAAO;AACX,iBAAWb,SAAQ,MAAM,cAAc;AACrC,YAAI,MAAM,QAAQA,KAAI,MAAM,IAAI;AAC9B,cAAI,MAAM;AACR,6BAAiB;AACjB;AAAA,UACF,OAAO;AACL,mBAAO;AAAA,UACT;AAAA,QACF;AAAA,MACF;AACA,UAAI,CAAC,gBAAgB;AACnB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,SAAS,QAAQ,WAAW,UAAU,QAAQ,KAAK;AAC1D,MAAI,OAAO;AACX,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,KAAK,GAAG;AACV,aAAO,KAAK,MAAM,GAAG,KAAK,SAAS,CAAC,IAAI;AAAA,IAC1C;AACA,YAAQ,OAAO;AACf,WAAO,KAAK,MAAM,GAAG,UAAU,GAAG;AAClC,YAAQ,IAAI,OAAO,UAAU,MAAM,KAAK,MAAM;AAAA,EAChD;AACA,UAAQ,IAAI;AACd;AACA,SAAS,kBAAkB,OAAO,WAAW,SAAS;AACpD,MAAI;AACJ,MAAI;AACJ,MAAI;AACF,iBAAa,MAAM,aAAa,IAAI,CAAC,MAAM,KAAK,UAAU,EAAE,WAAW,CAAC,EAAE,KAAK,GAAG;AAAA,EACpF,SAAS,KAAP;AACA,iBAAa;AAAA,EACf;AACA,MAAI;AACF,kBAAc,KAAK,UAAU,MAAM,WAAW;AAAA,EAChD,SAAS,KAAP;AACA,kBAAc;AAAA,EAChB;AACA,QAAM,OAAO,MAAM;AACnB,QAAM,YAAY,MAAM,aAAa;AACrC,QAAM,SAAS;AAAA,IACb,GAAG,SAAS;AAAA,IACZ;AAAA,IACA;AAAA,IACA,MAAM,YAAY,EAAE,SAAS;AAAA,EAC/B;AACA,WAAS,QAAQ,WAAW,OAAO;AACrC;AACA,SAAS,iCAAiC,OAAO,WAAW,eAAe,SAAS;AAClF,MAAI;AACJ,MAAI;AACJ,MAAI;AACF,iBAAa,MAAM,aAAa,IAAI,CAAC,MAAM,KAAK,UAAU,EAAE,WAAW,CAAC,EAAE,KAAK,GAAG;AAAA,EACpF,SAAS,KAAP;AACA,iBAAa;AAAA,EACf;AACA,MAAI;AACF,kBAAc,KAAK,UAAU,MAAM,WAAW;AAAA,EAChD,SAAS,KAAP;AACA,kBAAc;AAAA,EAChB;AACA,QAAM,cAAc,CAAC;AACrB,aAAWA,SAAQ,MAAM,cAAc;AACrC,QAAI,iBAAiB,QAAQ,cAAc,SAAS,KAAK,cAAc,QAAQA,KAAI,MAAM,IAAI;AAC3F;AAAA,IACF;AACA,aAAS,KAAK,GAAG,KAAKA,MAAK,cAAc,QAAQ,EAAE,IAAI;AACrD,YAAM,eAAeA,MAAK,cAAc,IAAI;AAC5C,YAAM,oBAAoBA,MAAK,YAAY;AAC3C,YAAM,qBAAqBA,MAAK,cAAc;AAC9C,kBAAY,KAAK,GAAG,gBAAgB,sBAAsB,qBAAqB;AAAA,IACjF;AAAA,EACF;AACA,QAAM,OAAO,MAAM;AACnB,QAAM,YAAY,MAAM,aAAa;AACrC,QAAM,kBAAkB,YAAY,WAAW,IAAI,KAAK,YAAY;AACpE,QAAM,SAAS;AAAA,IACb,GAAG,SAAS;AAAA,IACZ;AAAA,IACA;AAAA,IACA,MAAM,YAAY,EAAE,SAAS;AAAA,IAC7B;AAAA,EACF;AACA,WAAS,QAAQ,WAAW,OAAO;AACnC,WAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,aAAS,CAAC,IAAI,IAAI,IAAI,IAAI,YAAY,GAAG,GAAG,WAAW,OAAO;AAAA,EAChE;AACF;AAGA,SAAS,6BAA6B,KAAKP,QAAO,OAAO;AACvD,UAAQ,QAAQ,kBAAkB,QAAQ,kBAAkB,QAAQ,kBAAkBA,WAAU,KAAK,OAAO,UAAU;AACxH;AACA,SAAS,oBAAoB,gBAAgB,KAAK;AAChD,MAAI,mBAAmB,MAAM;AAC3B,WAAO;AAAA,EACT,WAAW,OAAO,mBAAmB,UAAU;AAC7C,WAAO,YAAY,cAAc;AAAA,EACnC,WAAW,OAAO,mBAAmB,YAAY,OAAO,mBAAmB,WAAW;AACpF,WAAO;AAAA,EACT,WAAW,0BAA0B,OAAO;AAC1C,UAAM,UAAU,CAAC;AACjB,UAAM,cAAc,eAAe;AACnC,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,OAAO,eAAe;AAC5B,UAAI,6BAA6B,KAAK,IAAI,IAAI,GAAG;AAC/C,gBAAQ,KAAK,IAAI;AAAA,MACnB,OAAO;AACL,gBAAQ,KAAK,oBAAoB,MAAM,GAAG,CAAC;AAAA,MAC7C;AAAA,IACF;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,SAAS,CAAC;AAChB,eAAW,eAAe,OAAO,KAAK,cAAc,GAAG;AACrD,YAAM,gBAAgB,eAAe;AACrC,UAAI,gBAAgB,UAAU,OAAO,kBAAkB,UAAU;AAC/D,eAAO,eAAe;AAAA,MACxB,OAAO;AACL,cAAM,QAAQ,YAAY,WAAW;AACrC,eAAO,SAAS,oBAAoB,eAAe,KAAK;AAAA,MAC1D;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AACA,SAAS,oBAAoB,UAAU,KAAK;AAC1C,MAAI,aAAa,QAAQ,aAAa,QAAQ;AAC5C,WAAO;AAAA,EACT,WAAW,OAAO,aAAa,UAAU;AACvC,WAAO,YAAY,QAAQ;AAAA,EAC7B,WAAW,OAAO,aAAa,YAAY,OAAO,aAAa,WAAW;AACxE,WAAO;AAAA,EACT,WAAW,oBAAoB,OAAO;AACpC,UAAM,UAAU,CAAC;AACjB,UAAM,cAAc,SAAS;AAC7B,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,OAAO,SAAS;AACtB,UAAI,6BAA6B,KAAK,IAAI,IAAI,GAAG;AAC/C,gBAAQ,KAAK,IAAI;AAAA,MACnB,OAAO;AACL,gBAAQ,KAAK,oBAAoB,MAAM,GAAG,CAAC;AAAA,MAC7C;AAAA,IACF;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,SAAS,CAAC;AAChB,eAAW,SAAS,OAAO,KAAK,QAAQ,GAAG;AACzC,YAAM,UAAU,SAAS;AACzB,YAAM,QAAQ,YAAY,KAAK;AAC/B,WAAK,UAAU,UAAU,UAAU,gBAAgB,OAAO,YAAY,UAAU;AAC9E,eAAO,SAAS;AAAA,MAClB,OAAO;AACL,eAAO,SAAS,oBAAoB,SAAS,KAAK;AAAA,MACpD;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AAGA,IAAI,WAAW;AAGf,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,CAAC,CAAC;AACR,SAAK,iBAAiC,oBAAI,IAAI;AAC9C,SAAK,OAAO,KAAK;AACjB,QAAI,KAAK,QAAQ,MAAM;AACrB,YAAM,SAAS,KAAK,aAAa,EAAE,YAAY;AAC/C,WAAK,OAAO,OAAO,MAAM;AAAA,IAC3B;AACA,SAAK,kBAAkB;AACvB,SAAK,aAAa;AAClB,QAAI,MAAM,QAAQ,KAAK,MAAM,GAAG;AAC9B,WAAK,SAAS,KAAK,OAAO,MAAM;AAAA,IAClC,OAAO;AACL,WAAK,SAAS,CAAC,KAAK,MAAM;AAAA,IAC5B;AACA,QAAI,MAAM,QAAQ,KAAK,OAAO,GAAG;AAC/B,WAAK,UAAU,KAAK,QAAQ,MAAM;AAAA,IACpC,OAAO;AACL,WAAK,UAAU,CAAC,KAAK,OAAO;AAAA,IAC9B;AACA,QAAI,QAAQ,KAAK,MAAM,EAAE,WAAW,KAAK,OAAO,QAAQ;AACtD,YAAM,IAAI,WAAW,mGAAmG,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,IAAI,GAAG;AAAA,IAC1J;AACA,QAAI,QAAQ,KAAK,OAAO,EAAE,WAAW,KAAK,QAAQ,QAAQ;AACxD,cAAQ,KAAK,qGAAqG,KAAK,QAAQ,IAAI,CAAC,MAAM,EAAE,IAAI,GAAG;AAAA,IACrJ;AACA,SAAK,cAAc,CAAC;AACpB,SAAK,yBAAyB,CAAC;AAC/B,SAAK,2BAA2B,CAAC;AACjC,SAAK,eAAe,CAAC;AACrB,SAAK,0BAA0B,CAAC;AAChC,SAAK,4BAA4B,CAAC;AAClC,SAAK,SAAS,CAAC;AACf,SAAK,wBAAwB,CAAC;AAC9B,eAAW,KAAK,KAAK,SAAS;AAC5B,YAAM,QAAQ,EAAE;AAChB,YAAM,YAAY,EAAE;AACpB,YAAM,cAAc,EAAE;AACtB,WAAK,aAAa,KAAK,KAAK;AAC5B,WAAK,wBAAwB,KAAK,SAAS;AAC3C,WAAK,0BAA0B,KAAK,WAAW;AAAA,IACjD;AACA,eAAW,KAAK,KAAK,QAAQ;AAC3B,YAAM,QAAQ,EAAE;AAChB,YAAM,YAAY,EAAE;AACpB,YAAM,cAAc,EAAE;AACtB,cAAQ,cAAc,GAAG,0BAA0B;AACnD,cAAQ,gBAAgB,GAAG,4BAA4B;AACvD,WAAK,YAAY,KAAK,KAAK;AAC3B,WAAK,uBAAuB,KAAK,SAAS;AAC1C,WAAK,yBAAyB,KAAK,WAAW;AAAA,IAChD;AACA,SAAK,aAAa,CAAC;AACnB,SAAK,cAAc,CAAC;AACpB,SAAK,kBAAkB,CAAC;AACxB,SAAK,iBAAiB,CAAC;AACvB,SAAK,kBAAkB,CAAC;AACxB,aAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,MAAM;AACnD,YAAM,QAAQ,KAAK,YAAY;AAC/B,UAAI,EAAE,iBAAiB,aAAa;AAClC,cAAM,IAAI,UAAU,8EAA8E,KAAK,iBAAiB,2CAA2C,MAAM,aAAa,IAAI;AAAA,MAC5L;AACA,WAAK,WAAW,KAAK,MAAM,IAAI;AAC/B,WAAK,gBAAgB,KAAK,MAAM,eAAe;AAC/C,WAAK,eAAe,KAAK,MAAM,IAAI;AAAA,IACrC;AACA,eAAW,SAAS,KAAK,cAAc;AACrC,WAAK,YAAY,KAAK,MAAM,IAAI;AAAA,IAClC;AACA,SAAK,sBAAsB,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,KAAK;AACzD,SAAK,uBAAuB,KAAK,QAAQ,IAAI,CAAC,MAAM,EAAE,KAAK;AAC3D,UAAM,cAAc,CAAC;AACrB,UAAM,eAAe,CAAC;AACtB,UAAM,eAAe,CAAC;AACtB,UAAM,iBAAiB,CAAC;AACxB,UAAM,eAAe,CAAC;AACtB,UAAM,yBAAyB,CAAC;AAChC,UAAM,kBAAkB,CAAC,SAAS,gBAAgB,kBAAkB,OAAO,WAAW,gBAAgB;AACpG,UAAI,SAAS,QAAQ,aAAa,QAAQ,eAAe,MAAM;AAC7D,gBAAQ,QAAQ;AAChB,oBAAY,QAAQ;AACpB,sBAAc,QAAQ;AAAA,MACxB;AACA,YAAMO,QAAO,MAAM,aAAa;AAChC,UAAI,iBAAiB,QAAQA,KAAI,MAAM,IAAI;AACzC,cAAM,IAAI,aAAa,cAAc,QAAQ,kBAAkB,MAAM,2BAA2B;AAAA,MAClG;AACA,UAAI,eAAe,QAAQA,KAAI,MAAM,IAAI;AACvC;AAAA,MACF;AACA,WAAK,eAAe,IAAI,UAAU,QAAQ,OAAO,SAAS,CAAC;AAC3D,UAAI,EAAE,MAAM,MAAM,eAAe;AAC/B,qBAAa,MAAM,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,MACrD;AACA,UAAI,iBAAiB,QAAQA,KAAI,MAAM,IAAI;AACzC,yBAAiB,KAAKA,KAAI;AAAA,MAC5B;AACA,YAAM,mBAAmBA,MAAK,cAAc;AAC5C,eAAS,KAAK,GAAG,KAAK,kBAAkB,MAAM;AAC5C,cAAM,IAAIA,MAAK,aAAa;AAC5B,cAAM,SAASA,MAAK,cAAc;AAClC,cAAM,aAAaA,MAAK,YAAY;AACpC,cAAM,eAAeA,MAAK,cAAc;AACxC,wBAAgB,GAAG,gBAAgB,kBAAkB,QAAQ,YAAY,YAAY;AAAA,MACvF;AACA,qBAAe,KAAKA,KAAI;AACxB,aAAO,iBAAiB,QAAQA,KAAI,KAAK,GAAG;AAC1C,yBAAiB,OAAO,iBAAiB,QAAQA,KAAI,GAAG,CAAC;AAAA,MAC3D;AACA,6BAAuB,KAAKA,KAAI;AAAA,IAClC;AACA,UAAM,gBAAgB,CAAC;AACvB,UAAM,kBAAkB,CAAC;AACzB,eAAW,KAAK,KAAK,SAAS;AAC5B,sBAAgB,GAAG,eAAe,eAAe;AAAA,IACnD;AACA,UAAM,iCAAiC,uBAAuB,MAAM,EAAE,QAAQ;AAC9E,eAAWA,SAAQ,gCAAgC;AACjD,mBAAaA,MAAK,MAAMA;AACxB,UAAI,EAAEA,MAAK,MAAM,cAAc;AAC7B,oBAAYA,MAAK,MAAM;AAAA,MACzB;AACA,UAAI,QAAQ,YAAYA,MAAK;AAC7B,YAAM,gBAAgB,aAAaA,MAAK,cAAc,OAAO,OAAO,IAAI,aAAaA,MAAK,cAAc;AACxG,cAAQ,KAAK,IAAI,OAAO,aAAa;AACrC,mBAAaA,MAAK,cAAc,MAAM;AACtC,qBAAeA,MAAK,cAAc,MAAMA,MAAK;AAC7C,kBAAYA,MAAK,MAAM;AACvB,eAAS,KAAK,GAAG,KAAKA,MAAK,cAAc,QAAQ,MAAM;AACrD,cAAM,eAAeA,MAAK,cAAc;AACxC,cAAM,YAAYA,MAAK,YAAY;AACnC,cAAM,cAAc,aAAa,aAAa;AAC9C,cAAM,iBAAiB,YAAY,YAAY,OAAO,OAAO,IAAI,YAAY,YAAY;AACzF,oBAAY,YAAY,MAAM,KAAK,IAAI,QAAQ,GAAG,cAAc;AAChE,qBAAa,YAAY,MAAM;AAAA,MACjC;AAAA,IACF;AACA,UAAM,eAAe,CAAC;AACtB,eAAW,UAAU,aAAa;AAChC,YAAM,QAAQ,YAAY;AAC1B,UAAI,EAAE,SAAS,eAAe;AAC5B,qBAAa,SAAS,CAAC;AAAA,MACzB;AACA,mBAAa,OAAO,KAAK,aAAa,OAAO;AAAA,IAC/C;AACA,UAAM,gBAAgB,CAAC;AACvB,eAAW,WAAW,cAAc;AAClC,YAAM,QAAQ,aAAa;AAC3B,UAAI,EAAE,SAAS,gBAAgB;AAC7B,sBAAc,SAAS,CAAC;AAAA,MAC1B;AACA,oBAAc,OAAO,KAAK,eAAe,QAAQ;AAAA,IACnD;AACA,QAAI,YAAY,OAAO,KAAK,aAAa,EAAE,IAAI,CAAC,MAAM,SAAS,GAAG,EAAE,CAAC,EAAE,KAAK,oBAAoB;AAChG,SAAK,SAAS,CAAC;AACf,eAAW,SAAS,WAAW;AAC7B,YAAM,iBAAiB,cAAc;AACrC,qBAAe,KAAK,CAAC,GAAG,MAAM;AAC5B,cAAM,SAAS,aAAa,EAAE;AAC9B,cAAM,SAAS,aAAa,EAAE;AAC9B,YAAI,SAAS,QAAQ;AACnB,iBAAO;AAAA,QACT;AACA,YAAI,SAAS,QAAQ;AACnB,iBAAO;AAAA,QACT;AACA,eAAO;AAAA,MACT,CAAC;AACD,iBAAW,SAAS,gBAAgB;AAClC,YAAI,iBAAiB,WAAW;AAC9B,eAAK,sBAAsB,KAAK,KAAK;AAAA,QACvC;AACA,aAAK,OAAO,KAAK,KAAK;AAAA,MACxB;AAAA,IACF;AACA,SAAK,gBAAgB;AACrB,gBAAY,OAAO,KAAK,YAAY,EAAE,IAAI,CAAC,MAAM,SAAS,GAAG,EAAE,CAAC,EAAE,KAAK,oBAAoB;AAC3F,UAAM,oBAAoB,KAAK,OAAO,MAAM;AAC5C,UAAM,0BAA0B,CAAC;AACjC,eAAW,SAAS,WAAW;AAC7B,iBAAWA,SAAQ,aAAa,QAAQ;AACtC,cAAM,QAAQA,MAAK;AACnB,YAAI,SAAS,MAAM;AACjB,qBAAW,KAAKA,MAAK,cAAc;AACjC,gBAAI,kBAAkB,QAAQ,CAAC,MAAM,IAAI;AACvC,oBAAM,IAAI,aAAa,sDAAsD,eAAe,MAAM,qEAAqE,yBAAyB;AAAA,YAClM;AAAA,UACF;AACA,qBAAW,KAAKA,MAAK,eAAe;AAClC,8BAAkB,KAAK,CAAC;AAAA,UAC1B;AACA,kCAAwB,KAAK,MAAM,IAAI;AAAA,QACzC;AAAA,MACF;AAAA,IACF;AACA,SAAK,eAAe;AACpB,UAAM,WAAW,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,IAAI;AAC9C,eAAW,QAAQ,UAAU;AAC3B,YAAM,iBAAiB,SAAS,OAAO,CAAC,MAAM,MAAM,IAAI,EAAE;AAC1D,UAAI,mBAAmB,GAAG;AACxB,cAAM,IAAI,aAAa,aAAa,iBAAiB,uFAAuF,KAAK,UAAU,QAAQ,CAAC;AAAA,MACtK;AAAA,IACF;AACA,SAAK,gBAAgB,CAAC;AACtB,SAAK,eAAe,CAAC;AACrB,QAAI,KAAK;AAAA,MACP,eAAe;AAAA,MACf,eAAe,CAAC;AAAA,MAChB,aAAa,CAAC;AAAA,MACd,eAAe,CAAC;AAAA,MAChB,cAAc,KAAK;AAAA,MACnB,eAAe,KAAK;AAAA,MACpB,YAAY,KAAK,OAAO,IAAI,CAAC,MAAM,IAAI;AAAA,MACvC,aAAa,KAAK,QAAQ,IAAI,CAAC,MAAM,IAAI;AAAA,MACzC,aAAa,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,KAAK;AAAA,MAC3C,cAAc,KAAK,QAAQ,IAAI,CAAC,MAAM,EAAE,KAAK;AAAA,IAC/C,CAAC;AACD,SAAK,QAAQ;AACb,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,oBAAoB;AAClB,QAAI,KAAK,cAAc,GAAG;AACxB,YAAM,IAAI,MAAM,cAAc,KAAK,4BAA4B;AAAA,IACjE;AAAA,EACF;AAAA,EACA,UAAU;AACR,SAAK,kBAAkB;AACvB,UAAM,SAAS,EAAE,sBAAsB,MAAM,sBAAsB,EAAE;AACrE,QAAI,EAAE,KAAK,cAAc,GAAG;AAC1B,iBAAW,SAAS,KAAK,QAAQ;AAC/B,eAAO,wBAAwB,MAAM,QAAQ,EAAE;AAAA,MACjD;AACA,iBAAW,aAAa,KAAK,uBAAuB;AAClD,eAAO,wBAAwB,UAAU,QAAQ,EAAE;AAAA,MACrD;AAAA,IACF;AACA,WAAO,uBAAuB,KAAK;AACnC,WAAO;AAAA,EACT;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,SAAK,OAAO,QAAQ,CAAC,UAAU;AAC7B,YAAM,kBAAkB,QAAQ,CAAC,MAAM,EAAE,YAAY,SAAS;AAAA,IAChE,CAAC;AACD,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,IAAI,mBAAmB;AACrB,QAAI,KAAK,kBAAkB,SAAS,GAAG;AACrC,YAAM,IAAI,WAAW,sNAAsN;AAAA,IAC7O;AACA,QAAI,CAAC,KAAK,WAAW;AACnB,aAAO,CAAC;AAAA,IACV;AACA,QAAI,UAAU,CAAC;AACf,eAAW,SAAS,KAAK,QAAQ;AAC/B,gBAAU,QAAQ,OAAO,MAAM,gBAAgB;AAAA,IACjD;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,sBAAsB;AACxB,UAAM,UAAU,CAAC;AACjB,eAAW,SAAS,KAAK,QAAQ;AAC/B,cAAQ,KAAK,GAAG,MAAM,mBAAmB;AAAA,IAC3C;AACA,QAAI,CAAC,KAAK,WAAW;AACnB,YAAM,mBAAmB,CAAC;AAC1B,iBAAW,SAAS,KAAK,QAAQ;AAC/B,yBAAiB,KAAK,GAAG,MAAM,gBAAgB;AAAA,MACjD;AACA,aAAO,iBAAiB,OAAO,OAAO;AAAA,IACxC;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,iBAAiB,OAAO,KAAK,mBAAmB;AAAA,EAC9D;AAAA,EACA,YAAY,SAAS,SAAS,MAAM;AAClC,UAAM,eAAe,CAAC;AACtB,QAAI,oBAAoB;AACxB,eAAW,SAAS,KAAK,QAAQ;AAC/B,iBAAW,UAAU,MAAM,SAAS;AAClC,YAAI,aAAa,OAAO,iBAAiB,MAAM;AAC7C,gBAAM,IAAI,WAAW,0BAA0B,OAAO,cAAc;AAAA,QACtE;AACA,qBAAa,OAAO,gBAAgB;AACpC;AAAA,MACF;AAAA,IACF;AACA,UAAM,oBAAoB,CAAC;AAC3B,eAAW,QAAQ,SAAS;AAC1B,UAAI,gBAAgB;AACpB,UAAI,aAAa,SAAS,MAAM;AAC9B,cAAM,SAAS,KAAK,MAAM,GAAG;AAC7B,cAAM,mBAAmB,OAAO,MAAM,GAAG,EAAE,EAAE,OAAO,CAAC,OAAO,OAAO,SAAS,EAAE,CAAC;AAC/E,wBAAgB,iBAAiB,KAAK,GAAG;AAAA,MAC3C;AACA,UAAI,aAAa,kBAAkB,MAAM;AACvC,0BAAkB,KAAK,CAAC,aAAa,gBAAgB,QAAQ,KAAK,CAAC;AAAA,MACrE,WAAW,QAAQ;AACjB,cAAM,IAAI,WAAW,gDAAgD,MAAM;AAAA,MAC7E;AACA,aAAO,aAAa;AAAA,IACtB;AACA,QAAI,QAAQ;AACV,YAAM,aAAa,CAAC;AACpB,iBAAW,QAAQ,cAAc;AAC/B,mBAAW,KAAK,IAAI;AAAA,MACtB;AACA,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,IAAI,WAAW,GAAG,WAAW,aAAa,0CAA0C,YAAY;AAAA,MACxG;AAAA,IACF;AACA,kBAAc,iBAAiB;AAAA,EACjC;AAAA,EACA,gBAAgB;AACd,UAAM,YAAY,KAAK,UAAU;AACjC,UAAM,cAAc,CAAC;AACrB,gBAAY,eAAe,KAAK,aAAa;AAC7C,gBAAY,YAAY;AACxB,gBAAY,kBAAkB,eAAe;AAC7C,gBAAY,aAAa;AACzB,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ,eAAe,MAAM;AAClC,UAAM,cAAc,oBAAoB,KAAK,cAAc,CAAC;AAC5D,WAAO,eAAe,KAAK,UAAU,WAAW,IAAI;AAAA,EACtD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,OAAO,MAAM;AACtB,YAAM,WAAW,IAAI,SAAS;AAC9B,eAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,iBAAS,IAAI,KAAK,OAAO,KAAK,OAAO,GAAG;AAAA,MAC1C;AACA,aAAO,QAAQ,KAAK,SAAS,UAAU,MAAM;AAAA,IAC/C,CAAC;AAAA,EACH;AAAA,EACA,YAAY,QAAQZ,OAAM;AACxB,WAAO,KAAK,MAAM;AAChB,eAAS,OAAO,MAAM;AACtB,UAAI;AACJ,UAAIA,SAAQ,MAAM;AAChB,gBAAQ,aAAa,MAAM,OAAO,MAAM;AAAA,MAC1C,OAAO;AACL,gBAAQ,OAAOA,KAAI;AAAA,MACrB;AACA,aAAO,KAAK,iBAAiB,QAAQ,KAAK,EAAE;AAAA,IAC9C,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,UAAM,cAAc,mBAAmB,UAAU;AACjD,QAAI,YAAY,WAAW,KAAK,YAAY,QAAQ;AAClD,YAAM,IAAI,WAAW,+BAA+B,yBAAyB,KAAK,YAAY,uBAAuB;AAAA,IACvH;AACA,UAAM,uBAAuB,CAAC;AAC9B,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,YAAM,QAAQ,KAAK,YAAY;AAC/B,YAAM,cAAc,YAAY;AAChC,YAAM,WAAW,MAAM,OAAO;AAC9B,2BAAqB,YAAY;AAAA,IACnC;AACA,UAAM,YAAY,OAAO,KAAK,KAAK,YAAY,EAAE,IAAI,CAAC,MAAM,SAAS,GAAG,EAAE,CAAC,EAAE,KAAK,oBAAoB;AACtG,QAAI,UAAU,SAAS,GAAG;AACxB,iBAAW,SAAS,WAAW;AAC7B,cAAM,QAAQ,KAAK,aAAa;AAChC,mBAAWY,SAAQ,OAAO;AACxB,gBAAM,QAAQA,MAAK;AACnB,cAAI,KAAK,YAAY,IAAI,CAAC,MAAM,EAAE,EAAE,EAAE,QAAQ,MAAM,EAAE,MAAM,IAAI;AAC9D;AAAA,UACF;AACA,gBAAM,eAAe,CAAC;AACtB,mBAAS,IAAI,GAAG,IAAIA,MAAK,cAAc,QAAQ,KAAK;AAClD,kBAAM,eAAeA,MAAK,cAAc;AACxC,kBAAM,aAAaA,MAAK,YAAY;AACpC,kBAAM,cAAcA,MAAK,cAAc;AACvC,kBAAM,WAAW,GAAG,aAAa,QAAQ,cAAc;AACvD,kBAAM,cAAc,qBAAqB;AACzC,yBAAa,KAAK,WAAW;AAAA,UAC/B;AACA,gBAAM,cAAc,MAAM,mBAAmB,iBAAiB,YAAY,CAAC;AAC3E,gBAAM,gBAAgB,mBAAmB,WAAW;AACpD,gBAAM,YAAY,MAAM,aAAa,QAAQA,KAAI;AACjD,mBAAS,IAAI,GAAG,IAAI,cAAc,QAAQ,KAAK;AAC7C,kBAAM,WAAW,GAAG,MAAM,QAAQ,aAAa;AAC/C,iCAAqB,YAAY,cAAc;AAAA,UACjD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,eAAe,CAAC;AACtB,UAAM,kBAAkB,CAAC;AACzB,aAAS,KAAK,GAAG,KAAK,KAAK,aAAa,QAAQ,MAAM;AACpD,YAAM,QAAQ,KAAK,aAAa;AAChC,YAAM,YAAY,KAAK,wBAAwB;AAC/C,YAAM,cAAc,KAAK,0BAA0B;AACnD,YAAM,WAAW,GAAG,MAAM,QAAQ,aAAa;AAC/C,sBAAgB,KAAK,QAAQ;AAAA,IAC/B;AACA,aAAS,KAAK,GAAG,KAAK,gBAAgB,QAAQ,MAAM;AAClD,YAAM,MAAM,gBAAgB;AAC5B,cAAQ,OAAO,oBAAoB;AACnC,mBAAa,KAAK,qBAAqB,IAAI;AAAA,IAC7C;AACA,WAAO,iBAAiB,YAAY;AAAA,EACtC;AAAA,EACA,iBAAiB,QAAQ,OAAO;AAC9B,QAAI,SAAS,MAAM;AACjB,cAAQ,aAAa,MAAM,OAAO,MAAM;AAAA,IAC1C;AACA,UAAM,YAAY,CAAC;AACnB,aAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,YAAM,IAAI,KAAK,OAAO;AACtB,YAAM,IAAI,OAAO;AACjB,YAAMZ,QAAO,MAAM;AACnB,gBAAU,EAAE,MAAM,CAAC,GAAGA,KAAI;AAAA,IAC5B;AACA,UAAM,YAAY,OAAO,KAAK,KAAK,YAAY,EAAE,IAAI,CAAC,MAAM,SAAS,GAAG,EAAE,CAAC,EAAE,KAAK,oBAAoB;AACtG,eAAW,SAAS,WAAW;AAC7B,YAAM,QAAQ,KAAK,aAAa;AAChC,iBAAWY,SAAQ,OAAO;AACxB,cAAM,QAAQA,MAAK;AACnB,cAAM,wBAAwBA,MAAK;AACnC,cAAM,yBAAyBA,MAAK;AACpC,cAAM,eAAe,IAAI,MAAM;AAC/B,mBAAW,KAAK,uBAAuB;AACrC,cAAI,EAAE,MAAM,WAAW;AACrB,yBAAa,KAAK,UAAU,EAAE,GAAG;AAAA,UACnC;AAAA,QACF;AACA,YAAI,aAAa,WAAW,sBAAsB,QAAQ;AACxD,cAAI,SAAS,CAAC;AACd,cAAI;AACJ,cAAI;AACJ,cAAI;AACJ,cAAI;AACJ,cAAIA,MAAK,YAAY,MAAM;AACzB,qBAASA,MAAK;AAAA,UAChB;AACA,cAAI,aAAa,WAAW,GAAG;AAC7B,kBAAM,CAAC,gBAAgB,YAAY,IAAI,aAAa;AACpD,gBAAI,OAAO,WAAW,MAAM;AAC1B,qBAAO,UAAU;AAAA,YACnB;AACA,6BAAiB,OAAO,MAAM,KAAK,gBAAgB,MAAM,CAAC;AAC1D,2BAAe,OAAO,MAAM,YAAY,gBAAgB,YAAY,CAAC;AACrE,8BAAkB,CAAC,cAAc;AACjC,4BAAgB,CAAC,YAAY;AAAA,UAC/B,OAAO;AACL,8BAAkB,aAAa,IAAI,CAAC,MAAM,EAAE,EAAE;AAC9C,4BAAgB,aAAa,IAAI,CAAC,MAAM,EAAE,EAAE;AAC5C,gBAAI,OAAO,WAAW,MAAM;AAC1B,qBAAO,UAAU;AAAA,YACnB;AACA,6BAAiB,OAAO,MAAM,KAAK,iBAAiB,MAAM,CAAC;AAC3D,2BAAe,OAAO,MAAM,YAAY,iBAAiB,aAAa,CAAC;AAAA,UACzE;AACA,cAAI,MAAM,qBAAqB;AAC7B,kBAAM,IAAI,oBAAoB,uHAAuH;AAAA,UACvJ;AACA,mBAAS,KAAK,GAAG,KAAK,uBAAuB,QAAQ,EAAE,IAAI;AACzD,kBAAM,IAAI,uBAAuB;AACjC,kBAAM,IAAI,eAAe;AACzB,kBAAMZ,QAAO,aAAa;AAC1B,sBAAU,EAAE,MAAM,CAAC,GAAGA,KAAI;AAAA,UAC5B;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,gBAAgB,CAAC;AACvB,UAAM,cAAc,CAAC;AACrB,UAAM,eAAe,CAAC;AACtB,eAAW,KAAK,KAAK,SAAS;AAC5B,cAAQ,EAAE,MAAM,WAAW,4BAA4B,EAAE,UAAU,EAAE,IAAI;AACzE,YAAM,CAAC,SAASA,KAAI,IAAI,UAAU,EAAE;AACpC,mBAAa,KAAK,QAAQ,KAAK;AAC/B,oBAAc,KAAK,OAAO;AAC1B,kBAAY,KAAKA,KAAI;AAAA,IACvB;AACA,WAAO,CAAC,eAAe,aAAa,YAAY;AAAA,EAClD;AAAA,EACA,uBAAuB,QAAQ;AAC7B,UAAM,oBAAoB,CAAC;AAC3B,QAAI;AACJ,eAAW,SAAS,KAAK,QAAQ;AAC/B,kBAAY,iBAAiB,YAAY,IAAI;AAC7C,eAAS,oBAAoB,GAAG,oBAAoB,MAAM,aAAa,QAAQ,qBAAqB;AAClG,cAAM,UAAU,UAAU,QAAQ,OAAO,iBAAiB;AAC1D,YAAI,KAAK,eAAe,IAAI,OAAO,GAAG;AACpC,4BAAkB,WAAW;AAC7B,uBAAa;AAAA,QACf;AAAA,MACF;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,SAAS,MAAMK,QAAO;AACpB,QAAIA,UAAS,MAAM;AACjB,UAAI,KAAK,OAAO,UAAUA,QAAO;AAC/B,cAAM,IAAI,WAAW,wCAAwCA,8BAA6B,KAAK,OAAO,kBAAkB;AAAA,MAC1H,OAAO;AACL,eAAO,KAAK,OAAOA;AAAA,MACrB;AAAA,IACF,OAAO;AACL,UAAI,QAAQ,MAAM;AAChB,cAAM,IAAI,WAAW,4CAA4C;AAAA,MACnE;AAAA,IACF;AACA,eAAW,SAAS,KAAK,QAAQ;AAC/B,UAAI,MAAM,SAAS,MAAM;AACvB,eAAO;AAAA,MACT;AAAA,IACF;AACA,UAAM,IAAI,WAAW,kBAAkB,MAAM;AAAA,EAC/C;AAAA,EACA,kBAAkB;AAChB,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,CAAC;AACjB,iBAAW,SAAS,KAAK,QAAQ;AAC/B,iBAAS,YAAY,GAAG,YAAY,MAAM,aAAa,QAAQ,EAAE,WAAW;AAC1E,gBAAM,UAAU,UAAU,QAAQ,OAAO,SAAS;AAClD,cAAI,KAAK,eAAe,IAAI,OAAO,GAAG;AACpC,oBAAQ,KAAK,GAAG,MAAM,gBAAgB,CAAC;AAAA,UACzC;AAAA,QACF;AAAA,MACF;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMK,UAAS,EAAE,MAAM,KAAK,KAAK;AACjC,UAAM,oBAAoB,KAAK,uBAAuB,KAAK,MAAM;AACjE,UAAM,eAAe,CAAC;AACtB,eAAW,SAAS,KAAK,QAAQ;AAC/B,YAAM,iBAAiB,MAAM,aAAa;AAC1C,YAAM,cAAc,MAAM,UAAU;AACpC,YAAM,uBAAuB,CAAC;AAC9B,eAAS,oBAAoB,GAAG,oBAAoB,MAAM,aAAa,QAAQ,qBAAqB;AAClG,cAAME,QAAO,MAAM,aAAa;AAChC,cAAM,UAAU,UAAU,QAAQ,OAAO,iBAAiB;AAC1D,YAAI,SAAS,CAAC;AACd,YAAI,KAAK,eAAe,IAAI,OAAO,GAAG;AACpC,cAAIA,MAAK,UAAU;AACjB,gBAAI;AACF,mBAAK,UAAUA,MAAK,QAAQ;AAC5B,uBAASA,MAAK;AAAA,YAChB,SAAS,KAAP;AACA,sBAAQ,KAAK,SAAS,MAAM,uDAAuDA,MAAK,iHAAiH;AACzM,uBAAS,CAAC;AAAA,YACZ;AAAA,UACF;AACA,cAAIA,MAAK,cAAc,SAAS,GAAG;AACjC,kBAAM,WAAW,CAAC;AAClB,qBAAS,KAAK,GAAG,KAAKA,MAAK,cAAc,QAAQ,MAAM;AACrD,oBAAM,eAAeA,MAAK,cAAc;AACxC,oBAAM,YAAYA,MAAK,YAAY;AACnC,oBAAM,cAAcA,MAAK,cAAc;AACvC,oBAAM,WAAW,UAAU,QAAQ,cAAc,SAAS;AAC1D,kBAAI,eAAe,kBAAkB;AACrC,kBAAI,gBAAgB,MAAM;AACxB,+BAAe;AAAA,cACjB;AACA,uBAAS,KAAK,CAAC,aAAa,MAAM,cAAc,aAAa,MAAM,CAAC;AAAA,YACtE;AACA,iCAAqB,KAAK,QAAQ;AAAA,UACpC;AAAA,QACF;AAAA,MACF;AACA,YAAM,OAAO,CAAC;AACd,WAAK,UAAU,MAAM;AACrB,WAAK,eAAe;AACpB,WAAK,YAAY;AACjB,WAAK,kBAAkB;AACvB,mBAAa,KAAK,IAAI;AAAA,IACxB;AACA,IAAAF,QAAO,YAAY;AACnB,UAAM,cAAc,CAAC;AACrB,aAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,MAAM;AACnD,YAAM,QAAQ,KAAK,YAAY;AAC/B,YAAM,YAAY,KAAK,uBAAuB;AAC9C,YAAM,UAAU,UAAU,QAAQ,OAAO,SAAS;AAClD,UAAI,CAAC,KAAK,eAAe,IAAI,OAAO,GAAG;AACrC;AAAA,MACF;AACA,UAAI,eAAe,kBAAkB;AACrC,UAAI,iBAAiB,QAAQ,iBAAiB,QAAQ;AACpD,uBAAe;AAAA,MACjB;AACA,YAAM,cAAc,KAAK,yBAAyB;AAClD,kBAAY,KAAK,CAAC,MAAM,MAAM,cAAc,WAAW,CAAC;AAAA,IAC1D;AACA,IAAAA,QAAO,iBAAiB;AACxB,UAAM,eAAe,CAAC;AACtB,aAAS,KAAK,GAAG,KAAK,KAAK,aAAa,QAAQ,MAAM;AACpD,YAAM,QAAQ,KAAK,aAAa;AAChC,YAAM,YAAY,KAAK,wBAAwB;AAC/C,YAAM,UAAU,UAAU,QAAQ,OAAO,SAAS;AAClD,UAAI,CAAC,KAAK,eAAe,IAAI,OAAO,GAAG;AACrC;AAAA,MACF;AACA,UAAI,eAAe,kBAAkB;AACrC,UAAI,iBAAiB,QAAQ,iBAAiB,QAAQ;AACpD,uBAAe;AAAA,MACjB;AACA,YAAM,cAAc,KAAK,0BAA0B;AACnD,mBAAa,KAAK,CAAC,MAAM,MAAM,cAAc,WAAW,CAAC;AAAA,IAC3D;AACA,IAAAA,QAAO,kBAAkB;AACzB,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ,gBAAgB,CAAC,GAAG,iBAAiB,OAAO;AACzE,UAAM,gBAAgB,CAAC;AACvB,UAAM,mBAAmB,CAAC;AAC1B,aAAS,mBAAmB,OAAO,UAAU;AAC3C,UAAI,EAAE,MAAM,QAAQ,mBAAmB;AACrC,yBAAiB,MAAM,QAAQ,CAAC,QAAQ;AAAA,MAC1C,OAAO;AACL,yBAAiB,MAAM,MAAM,KAAK,QAAQ;AAAA,MAC5C;AAAA,IACF;AACA,aAAS,YAAY,OAAO,UAAU;AACpC,YAAM,gBAAgB,CAAC;AACvB,UAAI;AACJ,iBAAW,aAAa,UAAU;AAChC,cAAM,mBAAmB,UAAU;AACnC,cAAM,mBAAmB,UAAU;AACnC,cAAM,qBAAqB,UAAU;AACrC,iBAAS,UAAU,MAAM,OAAO,CAAC,IAAI,UAAU;AAC/C,YAAI,EAAE,oBAAoB,gBAAgB;AACxC,6BAAmB,OAAO,QAAQ;AAClC;AAAA,QACF;AACA,cAAM,eAAe,cAAc;AACnC,YAAI,aAAa,aAAa,UAAU,kBAAkB;AACxD,6BAAmB,OAAO,QAAQ;AAClC;AAAA,QACF;AACA,cAAM,cAAc,aAAa,aAAa;AAC9C,sBAAc,KAAK,YAAY,cAAc,mBAAmB;AAAA,MAClE;AACA,UAAI,cAAc,SAAS,GAAG;AAC5B,cAAM,MAAM,iBAAiB,aAAa,GAAG,MAAM;AAAA,MACrD;AAAA,IACF;AACA,aAAS,aAAa,WAAW;AAC/B,YAAM,YAAY,UAAU;AAC5B,YAAM,QAAQ,YAAY,WAAWA,QAAO,oBAAoB,OAAOA,QAAO,mBAAmB,CAAC,CAAC;AACnG,YAAM,6BAA6B,cAAc;AACjD,oBAAc,aAAa;AAC3B,YAAM,mBAAmB,UAAU;AACnC,uBAAiB,QAAQ,CAAC,aAAa;AACrC,YAAI,EAAE,oBAAoB,QAAQ;AAChC,gBAAM,IAAI,WAAW,yDAAyD,UAAU;AAAA,QAC1F;AACA,2BAAmB,OAAO,QAAQ;AAAA,MACpC,CAAC;AAAA,IACH;AACA,UAAM,OAAOA,QAAO;AACpB,UAAM,mBAAmBA,QAAO;AAChC,eAAW,aAAa,kBAAkB;AACxC,mBAAa,SAAS;AAAA,IACxB;AACA,WAAO,CAAC,cAAc,gBAAgB,GAAG;AACvC,iBAAW,aAAa,kBAAkB;AACxC,cAAM,QAAQ,cAAc,UAAU;AACtC,YAAI,MAAM,QAAQ,kBAAkB;AAClC,gBAAM,kCAAkC,iBAAiB,MAAM;AAC/D,iBAAO,iBAAiB,MAAM;AAC9B,qBAAW,YAAY,iCAAiC;AACtD,wBAAY,OAAO,QAAQ;AAAA,UAC7B;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,eAAe,CAAC;AACtB,UAAM,gBAAgB,CAAC;AACvB,UAAM,wBAAwBA,QAAO;AACrC,eAAW,aAAa,uBAAuB;AAC7C,YAAM,YAAY,UAAU;AAC5B,YAAM,YAAY,UAAU;AAC5B,YAAM,cAAc,UAAU;AAC9B,cAAQ,aAAa,aAAa;AAClC,YAAM,QAAQ,cAAc;AAC5B,YAAM,qBAAqB,MAAM,aAAa,WAAW;AACzD,mBAAa,KAAK,mBAAmB,YAAY;AAAA,IACnD;AACA,UAAM,yBAAyBA,QAAO;AACtC,eAAW,aAAa,wBAAwB;AAC9C,YAAM,YAAY,UAAU;AAC5B,YAAM,YAAY,UAAU;AAC5B,YAAM,cAAc,UAAU;AAC9B,cAAQ,aAAa,aAAa;AAClC,YAAM,QAAQ,cAAc;AAC5B,YAAM,qBAAqB,MAAM,aAAa,WAAW;AACzD,oBAAc,KAAK,mBAAmB,YAAY;AAAA,IACpD;AACA,WAAO,IAAI,IAAI,EAAE,QAAQ,cAAc,SAAS,eAAe,KAAK,CAAC;AAAA,EACvE;AAAA,EACA,IAAI,WAAW;AACb,QAAI,KAAK,WAAW;AAClB,YAAM,IAAI,WAAW,sLAAsL;AAAA,IAC7M;AACA,eAAW,SAAS,KAAK,QAAQ;AAC/B,UAAI,MAAM,UAAU;AAClB,eAAO;AAAA,MACT;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,cAAc;AACZ,SAAK,MAAM;AACT,WAAK,OAAO,QAAQ,CAAC,UAAU;AAC7B,YAAI,MAAM,UAAU;AAClB,gBAAM,YAAY;AAAA,QACpB;AAAA,MACF,CAAC;AAAA,IACH,CAAC;AAAA,EACH;AACF;AAGA,SAAS,gCAAgC,SAAS,aAAa,YAAY;AACzE,QAAM,aAAa,YAAY;AAC/B,MAAI,WAAW,QAAQ,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AACrE,WAAO,YAAY,IAAI,CAAC,SAAS,IAAI;AAAA,EACvC;AACA,MAAI,eAAe,GAAG;AACpB,QAAI,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AAClD,aAAO;AAAA,IACT,WAAW,OAAO,YAAY,YAAY,YAAY,MAAM,SAAS;AACnE,aAAO,CAAC,QAAQ,YAAY,GAAG;AAAA,IACjC,OAAO;AACL,aAAO,CAAC,OAAO;AAAA,IACjB;AAAA,EACF;AACA,MAAI,MAAM,QAAQ,OAAO,GAAG;AAC1B,QAAI,QAAQ,WAAW,YAAY;AACjC,YAAM,IAAI,MAAM,YAAY,6BAA6B,QAAQ,wCAAwC,mFAAmF;AAAA,IAC9L;AACA,WAAO;AAAA,EACT,WAAW,OAAO,YAAY,YAAY,OAAO,KAAK,OAAO,EAAE,SAAS,KAAK,OAAO,QAAQ,OAAO,KAAK,OAAO,EAAE,QAAQ,UAAU;AACjI,UAAM,SAAS,CAAC;AAChB,gBAAY,QAAQ,CAAC,eAAe;AAClC,UAAI,cAAc,SAAS;AACzB,eAAO,KAAK,QAAQ,WAAW;AAAA,MACjC,OAAO;AACL,eAAO,KAAK,IAAI;AAAA,MAClB;AAAA,IACF,CAAC;AACD,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,2BAA2B,2BAA2B,2CAA2C,yCAAyC,8BAA8B,8BAA8B,KAAK,UAAU,OAAO,GAAG;AAAA,EACjP;AACF;AACA,SAAS,wBAAwB,aAAa,aAAa;AACzD,SAAO,gCAAgC,aAAa,aAAa,aAAa;AAChF;AACA,eAAe,mBAAmB,GAAG,cAAc,aAAa,kBAAkB;AAChF,MAAI,gBAAgB,QAAQ,oBAAoB,MAAM;AACpD,UAAM,IAAI,MAAM,6CAA6C;AAAA,EAC/D;AACA,MAAI,eAAe,MAAM;AACvB,UAAM,WAAW,KAAK,MAAM;AAC1B,UAAI,EAAE,MAAM,WAAW,GAAG;AACxB,eAAO,MAAM,CAAC;AAAA,MAChB,WAAW,EAAE,MAAM,WAAW,GAAG;AAC/B,YAAI,EAAE,MAAM,KAAK,GAAG;AAClB,gBAAM,OAAO;AACb,iBAAO,OAAO,GAAG,IAAI;AAAA,QACvB,WAAW,EAAE,MAAM,OAAO,GAAG;AAC3B,iBAAO,QAAQ,GAAG,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,QAChC,OAAO;AACL,gBAAM,IAAI,MAAM,+CAA+C,EAAE,MAAM,wEAAwE;AAAA,QACjJ;AAAA,MACF,OAAO;AACL,cAAM,IAAI,MAAM,yCAAyC,EAAE,4EAA4E;AAAA,MACzI;AAAA,IACF,CAAC;AACD,UAAM,gBAAgB,MAAM,KAAK,MAAM,SAAS,KAAK,CAAC;AACtD,YAAQ,QAAQ;AAChB,UAAM,oBAAoB,CAAC;AAC3B,kBAAc,QAAQ,CAAC,eAAe;AACpC,UAAI,YAAY,eAAe,MAAM;AACnC,cAAM,IAAI,MAAM,wEAAwE,sDAAsD;AAAA,MAChJ,OAAO;AACL,0BAAkB,KAAK,YAAY,WAAW;AAAA,MAChD;AAAA,IACF,CAAC;AACD,WAAO,SAAS,mBAAmB,SAAS;AAAA,EAC9C,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,SAAS,qBAAqB,SAAS,eAAe;AACpD,SAAO,IAAI,SAAS,aAAa;AACnC;AAGA,IAAI,gCAAgC;AACpC,SAAS,8BAA8Be,SAAQ,aAAa;AAC1D,MAAI;AACJ,MAAI;AACJ,QAAM,iBAAiB;AACvB,OAAK,eAAe;AACpB,OAAK,eAAe;AACpB,eAAa,OAAO,MAAM,QAAQ,MAAM,MAAM,MAAM,mPAAmP,aAAa;AACpT,QAAM,cAAc,0BAA0B,SAASA,QAAO,YAAY,EAAE;AAC5E,QAAM,cAAc,0BAA0B,UAAUA,QAAO,aAAa,EAAE;AAC9E,QAAM,YAAY,YAAY,GAAG,MAAM;AACvC,eAAa,OAAO,YAAY,WAAWA,QAAO,OAAO,QAAQ,MAAM,mBAAmBA,QAAO,OAAO,2CAA2C,YAAY,yCAAyC,KAAK,UAAUA,QAAO,UAAU,IAAI;AAC5O,eAAa,OAAO,YAAY,WAAWA,QAAO,QAAQ,QAAQ,MAAM,mBAAmBA,QAAO,QAAQ,4CAA4C,YAAY,2CAA2C,KAAK,UAAUA,QAAO,WAAW,IAAI;AAClP,WAAS,SAAS,GAAG,SAAS,YAAY,QAAQ,UAAU;AAC1D,iBAAa,OAAO,YAAY,QAAQ,MAAM,OAAO,WAAW,MAAM,8BAA8BA,QAAO,WAAW,eAAe,YAAY,QAAQ,MAAM,iBAAiB,4BAA4BA,QAAO,WAAW,KAAK;AAAA,EACrO;AACA,WAAS,SAAS,GAAG,SAAS,YAAY,QAAQ,UAAU;AAC1D,iBAAa,OAAO,YAAY,QAAQ,MAAM,OAAO,WAAW,MAAM,+BAA+BA,QAAO,YAAY,eAAe,YAAY,QAAQ,MAAM,iBAAiB,4BAA4BA,QAAO,WAAW,KAAK;AAAA,EACvO;AACA,SAAO,EAAE,IAAI,aAAa,IAAI,YAAY;AAC5C;AACA,SAAS,0BAA0B,eAAe,OAAO,QAAQ;AAC/D,MAAI,kBAAkB,QAAQ;AAC5B,WAAO,CAAC,MAAM;AAAA,EAChB,WAAW,MAAM,QAAQ,MAAM,GAAG;AAChC,iBAAa,OAAO,OAAO,WAAW,MAAM,QAAQ,MAAM,wBAAwB,OAAO,gCAAgC,MAAM,uBAAuB,sBAAsB,QAAQ;AACpL,WAAO;AAAA,EACT,OAAO;AACL,UAAM,SAAS,CAAC;AAChB,eAAW,QAAQ,OAAO;AACxB,UAAI,OAAO,SAAS,MAAM;AACxB,cAAM,IAAI,WAAW,gEAAgE,sBAAsB,QAAQ;AAAA,MACrH;AACA,aAAO,KAAK,OAAO,KAAK;AAAA,IAC1B;AACA,WAAO;AAAA,EACT;AACF;AACA,SAAS,gCAAgC,MAAM;AAC7C,MAAI,KAAK,WAAW,GAAG;AACrB,UAAM,IAAI,oBAAoB,wDAAwD;AAAA,EACxF;AACA,SAAO,EAAE,IAAI,KAAK,IAAI,IAAI,KAAK,GAAG;AACpC;AACA,eAAe,WAAWA,SAAQ,SAAS,MAAM;AAC/C,QAAM,qBAAqB,KAAK,mBAAmB;AACnD,eAAa,OAAOA,QAAO,aAAa,MAAM,MAAM,gGAAgG;AACpJ,eAAa,OAAO,QAAQ,MAAM,MAAM,+FAA+F;AACvI,eAAa,OAAO,KAAK,UAAU,QAAQ,KAAK,SAAS,KAAK,OAAO,UAAU,KAAK,MAAM,GAAG,MAAM,iFAAiF,KAAK,QAAQ;AACjM,eAAa,OAAO,CAAC,sBAAsB,KAAK,kBAAkB,KAAK,OAAO,UAAU,KAAK,eAAe,GAAG,MAAM,uGAAuG,KAAK,iBAAiB;AAClP,eAAa;AAAA,IACX,KAAK,sBAAsB;AAAA,IAC3B,MAAM;AAAA,EACR;AACA,MAAIA,QAAO,YAAY;AACrB,UAAM,IAAI,MAAM,8DAA8D;AAAA,EAChF;AACA,EAAAA,QAAO,aAAa;AACpB,MAAI;AACF,UAAM,eAAe,KAAK,kBAAkB;AAC5C,QAAI;AACJ,QAAI;AACJ,QAAI,cAAc;AAChB,UAAI,gBAAgB,KAAK,cAAc,GAAG;AACxC,qBAAa,OAAO,KAAK,qBAAqB,QAAQ,KAAK,oBAAoB,KAAK,OAAO,UAAU,KAAK,iBAAiB,GAAG,MAAM,iJAAiJ,KAAK,mBAAmB;AAAA,MAC/S,OAAO;AACL,cAAM,iBAAiB,gCAAgC,KAAK,cAAc;AAC1E,gBAAQ,eAAe;AACvB,gBAAQ,eAAe;AAAA,MACzB;AAAA,IACF;AACA,UAAM,gBAAgBA,QAAO,kBAAkB;AAC/C,UAAM,YAAYA,QAAO,uBAAuB;AAChD,QAAI;AACJ,QAAI,cAAc;AAChB,wBAAkB,UAAU,MAAM,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,SAAS,EAAE,CAAC;AAAA,IAC/E,OAAO;AACL,wBAAkB,UAAU,MAAM;AAAA,IACpC;AACA,UAAM,aAAa,qBAAqB,KAAK,WAAW,KAAK,UAAU;AACvE,UAAM,UAAU,KAAK,WAAW,OAAO,IAAI,KAAK;AAChD,UAAM,EAAE,cAAc,QAAQ,IAAI;AAAA,MAChC;AAAA,MACA;AAAA,MACA,KAAK;AAAA,MACL;AAAA,MACA;AAAA,MACA,iBAAiB,SAAS,IAAI;AAAA,MAC9B;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,iBAAa,SAASA,OAAM;AAC5B,IAAAA,QAAO,UAAU;AACjB,UAAM,aAAa,aAAa;AAChC,IAAAA,QAAO,gBAAgB;AACvB,QAAI,QAAQ,KAAK,gBAAgB,OAAO,IAAI,KAAK;AACjD,QAAI,eAAe,MAAM,QAAQ,SAAS;AAC1C,WAAO,QAAQ,KAAK,QAAQ;AAC1B,YAAM,YAAY,CAAC;AACnB,YAAM,aAAa,aAAa,KAAK;AACrC,UAAI,YAAY;AAChB,UAAI,aAAa;AACjB,UAAI,CAAC,oBAAoB;AACvB,uBAAe,MAAM,QAAQ,SAAS;AAAA,MACxC;AACA,aAAO,qBAAqB,YAAY,KAAK,kBAAkB,MAAM;AACnE,cAAM,cAAc,MAAM,aAAa,KAAK;AAC5C,YAAI,sBAAsB,YAAY,MAAM;AAC1C,kBAAQ,KAAK,uCAAuC,KAAK,oEAAoE,mJAAmJ,KAAK,kBAAkB,KAAK,wFAAwF;AACpY;AAAA,QACF;AACA,YAAI,YAAY,SAAS,MAAM;AAC7B,gBAAM,EAAE,IAAI,GAAG,IAAI,8BAA8BA,SAAQ,YAAY,KAAK;AAC1E,gBAAM,YAAY,CAAC;AACnB,oBAAU,WAAW;AACrB,oBAAU,UAAU,GAAG,GAAG,MAAM;AAChC,gBAAM,aAAa,aAAa,YAAY,SAAS;AACrD,gBAAM,gBAAgB,CAAC;AACvB,cAAI,KAAK,eAAe,MAAM;AAC5B,kBAAM,uBAAuB,wBAAwB,KAAK,aAAaA,QAAO,WAAW;AACzF,qBAAS,KAAK,GAAG,KAAK,qBAAqB,QAAQ,EAAE,IAAI;AACvD,4BAAc,KAAK,MAAM,mBAAmB,GAAG,KAAK,MAAM,qBAAqB,GAAG,CAAC;AAAA,YACrF;AAAA,UACF;AACA,gBAAM,MAAM,GAAG,OAAO,EAAE,EAAE,OAAO,aAAa;AAC9C,gBAAM,OAAO,cAAc,GAAG;AAC9B,kBAAQ,GAAG;AACX,mBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,kBAAM,QAAQ,UAAU;AACxB,kBAAM,MAAM,KAAK;AACjB,sBAAU,SAAS;AACnB,iBAAK,GAAG;AAAA,UACV;AACA,gBAAM,aAAa,WAAW,YAAY,SAAS;AACnD,+BAAqB,SAAS;AAC9B;AACA;AAAA,QACF;AACA,YAAI,qBAAqB,aAAa,KAAK,kBAAkB,YAAY,MAAM;AAC7E,cAAI,cAAc;AAChB,gBAAI;AACJ,gBAAI,gBAAgB,KAAK,cAAc,GAAG;AACxC,wBAAU,OAAO,MAAMA,QAAO,gBAAgB,KAAK,gBAAgB,EAAE,SAAS,KAAK,kBAAkB,CAAC,CAAC;AAAA,YACzG,OAAO;AACL,wBAAU,OAAOA,QAAO,SAAS,OAAO,OAAO;AAAA,gBAC7C,WAAW,KAAK,uBAAuB,OAAO,gCAAgC,KAAK;AAAA,gBACnF,SAAS;AAAA,cACX,CAAC,CAAC;AAAA,YACJ;AACA,qBAAS,KAAK,GAAG,KAAKA,QAAO,aAAa,QAAQ,EAAE,IAAI;AACtD,wBAAU,OAAOA,QAAO,aAAa,SAAS,QAAQ;AAAA,YACxD;AAAA,UACF;AACA;AAAA,QACF;AACA,YAAIA,QAAO,eAAe;AACxB;AAAA,QACF;AAAA,MACF;AACA,YAAM,aAAa,WAAW,OAAO,SAAS;AAC9C;AACA,UAAIA,QAAO,eAAe;AACxB;AAAA,MACF;AAAA,IACF;AACA,UAAM,aAAa,WAAW;AAC9B,UAAMA,QAAO,QAAQ,SAAS;AAC9B,WAAOA,QAAO;AAAA,EAChB,UAAE;AACA,IAAAA,QAAO,aAAa;AAAA,EACtB;AACF;AACA,SAAS,iBAAiB,SAAS,MAAM;AACvC,MAAI,gBAAgB;AACpB,MAAI,KAAK,mBAAmB,MAAM;AAChC,oBAAgB,KAAK;AAAA,EACvB,WAAW,OAAO,SAAS,QAAQ,IAAI,GAAG;AACxC,oBAAgB,QAAQ;AAAA,EAC1B;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,SAAS;AAChC,SAAO,OAAO,QAAQ,aAAa;AACrC;AACA,SAAS,qBAAqB,UAAU;AACtC,SAAO,OAAO,SAAS,SAAS;AAClC;AACA,eAAe,gBAAgBA,SAAQ,SAAS,MAAM;AACpD,SAAO,QAAQ,CAAC;AAChB,QAAM,aAAa,KAAK,WAAW;AACnC,QAAM,IAAIA,QAAO;AACjB,MAAI,OAAO,CAAC;AACZ,MAAI,KAAK,UAAU,GAAG;AACpB,UAAM,IAAI,oBAAoB,sCAAsC;AAAA,EACtE;AACA,eAAa,OAAO,CAAC,cAAc,KAAK,UAAU,KAAK,OAAO,UAAU,KAAK,OAAO,GAAG,MAAM,wEAAwE,KAAK,UAAU,KAAK,OAAO,GAAG;AACnM,QAAM,eAAe,qBAAqB,OAAO,IAAI,UAAU,MAAM,QAAQ,SAAS;AACtF,MAAI,cAAc;AAClB,MAAI,QAAQ;AACZ,SAAO,aAAa,QAAQ,KAAK,UAAU,MAAM;AAC/C,UAAM,cAAc,MAAM,aAAa,KAAK;AAC5C,WAAO,KAAK,MAAM;AAChB,UAAI,YAAY,OAAO;AACrB,cAAM,EAAE,IAAI,GAAG,IAAI,8BAA8BA,SAAQ,YAAY,KAAK;AAC1E,cAAM,UAAU,GAAG,OAAO,EAAE;AAC5B,cAAM,YAAY,KAAK,MAAM,EAAE,OAAO,CAAC;AACvC,gBAAQ,OAAO;AACf,YAAI,UAAU,GAAG;AACf,mBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,iBAAK,KAAK,OAAO,CAAC,CAAC;AAAA,UACrB;AAAA,QACF;AACA,cAAM,YAAY,QAAQ,GAAG,MAAM;AACnC,iBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,gBAAM,WAAW,UAAU;AAC3B,gBAAM,YAAY,KAAK;AACvB,eAAK,MAAM,KAAK,MAAM,KAAK,KAAK,KAAK,IAAI,WAAW,QAAQ,CAAC,CAAC;AAC9D,cAAI,QAAQ,GAAG;AACb,oBAAQ,SAAS;AAAA,UACnB;AAAA,QACF;AACA,gBAAQ,SAAS;AACjB,uBAAe;AACf,UAAE;AAAA,MACJ;AACA,aAAO;AAAA,IACT,CAAC;AACD,QAAI,YAAY,MAAM;AACpB,UAAI,YAAY;AACd,gBAAQ,KAAK,gLAAgL,KAAK,yFAAyF;AAAA,MAC7R;AACA;AAAA,IACF;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,YAAY,KAAK;AACvB,SAAK,MAAM,IAAI,KAAK,KAAK,WAAW;AACpC,YAAQ,SAAS;AAAA,EACnB;AACA,SAAO,iBAAiB,IAAI;AAC9B;AAGA,SAAS,eAAe,WAAW;AACjC,eAAa,OAAO,YAAY,KAAK,OAAO,UAAU,SAAS,GAAG,MAAM,2DAA2D,WAAW;AAChJ;AACA,SAAS,YAAY,QAAQ,OAAO,MAAM;AACxC,MAAI,UAAU,MAAM;AAClB,WAAO,CAAC,IAAI;AAAA,EACd,WAAW,MAAM,QAAQ,MAAM,GAAG;AAChC,WAAO,OAAO,IAAI,CAAC,WAAW,oBAAoB,QAAQ,OAAO,OAAO,KAAK,CAAC;AAAA,EAChF,OAAO;AACL,WAAO,oBAAoB,QAAQ,OAAO,OAAO,KAAK;AAAA,EACxD;AACF;AACA,SAAS,qBAAqB,QAAQ,SAAS;AAC7C,SAAO,KAAK,MAAM;AAChB,QAAI,UAAU,MAAM;AAClB,aAAO;AAAA,IACT,WAAW,MAAM,QAAQ,MAAM,GAAG;AAChC,aAAO,OAAO,IAAI,CAAC,WAAW,qBAAqB,QAAQ,OAAO,CAAC;AAAA,IACrE,OAAO;AACL,aAAO,QAAQ,QAAQ,QAAQ,UAAU,UAAU,UAAU,KAAK,SAAS,OAAO,CAAC;AAAA,IACrF;AAAA,EACF,CAAC;AACH;AACA,SAAS,YAAY9B,OAAM,WAAW;AACpC,QAAM,SAAS,CAAC;AAChB,MAAI,aAAa;AACjB,MAAI,WAAW;AACf,SAAO,aAAaA,OAAM;AACxB,eAAW,aAAa;AACxB,QAAI,YAAYA,OAAM;AACpB,iBAAWA;AAAA,IACb;AACA,WAAO,KAAK,CAAC,YAAY,QAAQ,CAAC;AAClC,iBAAa;AAAA,EACf;AACA,SAAO;AACT;AACA,eAAe,QAAQ8B,SAAQ,GAAG,KAAK,WAAW,WAAW,QAAQ,SAAS,YAAY,MAAM,QAAQ,UAAU,iBAAiB,cAAc,eAAe,iBAAiB;AAC/K,MAAI,aAAa,MAAM;AACrB,gBAAY;AAAA,EACd;AACA,MAAI,UAAU,MAAM;AAClB,aAAS;AAAA,EACX;AACA,MAAI,YAAY,MAAM;AACpB,eAAW;AAAA,EACb;AACA,MAAI,gBAAgB,MAAM;AACxB,mBAAe;AAAA,EACjB;AACA,MAAI,eAAe;AACnB,MAAI,QAAQ,QAAQ,UAAU,MAAM;AAClC,mBAAe;AAAA,EACjB;AACA,MAAI,mBAAmB,MAAM;AAC3B,mBAAe;AACf,QAAI,iBAAiB,MAAM;AACzB,YAAM,IAAI,WAAW,kGAAkG;AAAA,IACzH;AAAA,EACF;AACA,QAAM,kBAAkBA,QAAO,gBAAgB,KAAK,WAAW,eAAe,iBAAiB;AAC/F,MAAI;AACJ,MAAI,mBAAmB,MAAM;AAC3B,iBAAa,OAAO,GAAG,eAAe;AAAA,EACxC;AACA,MAAI,WAAW,MAAM;AACnB,cAAU;AAAA,EACZ;AACA,QAAM,EAAE,cAAc,QAAQ,IAAI,mBAAmB,YAAY,SAAS,QAAQ,cAAc,iBAAiB,eAAe,WAAW,cAAc,eAAe;AACxK,eAAa,SAASA,OAAM;AAC5B,EAAAA,QAAO,UAAU;AACjB,QAAM,aAAa,aAAa;AAChC,EAAAA,QAAO,gBAAgB;AACvB,WAAS,QAAQ,cAAc,QAAQ,QAAQ,EAAE,OAAO;AACtD,UAAM,aAAa,aAAa,KAAK;AACrC,UAAM,YAAY,CAAC;AACnB,QAAI,iBAAiB,MAAM;AACzB,YAAM,IAAI,oBAAoB,4CAA4C;AAAA,IAC5E,OAAO;AACL,UAAI,aAAa,SAAS;AACxB,cAAM,IAAI,oBAAoB,wCAAwC;AAAA,MACxE,WAAW,UAAU;AACnB,qBAAa,QAAQ,UAAU;AAAA,MACjC;AACA,YAAM,oBAAoB,SAAS,UAAU;AAC7C,YAAM,UAAU,YAAY,iBAAiB,SAAS;AACtD,eAAS,aAAa,GAAG,aAAa,QAAQ,QAAQ,EAAE,YAAY;AAClE,cAAM,YAAY,CAAC;AACnB,cAAM,aAAa,aAAa,YAAY,SAAS;AACrD,aAAK,MAAM;AACT,gBAAM,aAAa,QAAQ,YAAY;AACvC,gBAAM,WAAW,QAAQ,YAAY;AACrC,gBAAM,WAAW,oBAAoB,mBAAmB,YAAY,WAAW,UAAU;AACzF,oBAAU,WAAW;AACrB,oBAAU,UAAU,WAAW;AAC/B,gBAAM,WAAW,qBAAqB,KAAK,QAAQ;AACnD,gBAAM,OAAO,EAAE,QAAQ;AACvB,mBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,kBAAM,QAAQ,UAAU;AACxB,kBAAM,MAAM,KAAK;AACjB,sBAAU,SAAS;AACnB,iBAAK,GAAG;AAAA,UACV;AACA,cAAI,eAAe,QAAQ,SAAS,GAAG;AACrC,gBAAI,cAAc;AAChB,oBAAM,UAAUA,QAAO,SAAS,MAAM,QAAQ,SAAS;AACvD,uBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,sBAAM,QAAQ,UAAU;AACxB,sBAAM,MAAM,QAAQ;AACpB,qBAAK,GAAG;AACR,0BAAU,SAAS,SAAS;AAAA,cAC9B;AAAA,YACF;AAAA,UACF;AAAA,QACF,CAAC;AACD,cAAM,aAAa,WAAW,YAAY,SAAS;AACnD,6BAAqB,SAAS;AAC9B,YAAIA,QAAO,eAAe;AACxB;AAAA,QACF;AAAA,MACF;AACA,wBAAkB,QAAQ;AAAA,IAC5B;AACA,UAAM,aAAa,WAAW,OAAO,SAAS;AAC9C,QAAIA,QAAO,eAAe;AACxB;AAAA,IACF;AAAA,EACF;AACA,QAAM,aAAa,WAAW;AAC9B,QAAMA,QAAO,QAAQ,SAAS;AAC9B,SAAOA,QAAO;AAChB;AACA,eAAe,WAAWA,SAAQ,GAAG,GAAG,OAAO,CAAC,GAAG;AACjD,MAAIA,QAAO,YAAY;AACrB,UAAM,IAAI,MAAM,8DAA8D;AAAA,EAChF;AACA,EAAAA,QAAO,aAAa;AACpB,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACF,UAAM,YAAY,KAAK,aAAa,OAAO,KAAK,KAAK;AACrD,mBAAe,SAAS;AACxB,UAAM,iBAAiB;AACvB,UAAM,mBAAmB,MAAMA,QAAO,oBAAoB,GAAG,GAAG,KAAK,cAAc,KAAK,aAAa,gBAAgB,SAAS;AAC9H,aAAS,iBAAiB;AAC1B,cAAU,iBAAiB;AAC3B,oBAAgB,iBAAiB;AACjC,QAAI,eAAe;AACnB,QAAI;AACJ,QAAI,KAAK,kBAAkB,QAAQ,KAAK,eAAe,SAAS,GAAG;AACjE,qBAAe;AACf,UAAI,KAAK,eAAe,WAAW,GAAG;AACpC,oBAAY,KAAK,eAAe;AAChC,oBAAY,KAAK,eAAe;AAAA,MAClC,WAAW,KAAK,eAAe,WAAW,GAAG;AAC3C,cAAM,IAAI,oBAAoB,+DAA+D;AAAA,MAC/F,OAAO;AACL,cAAM,IAAI,WAAW,0GAA0G,KAAK,4BAA4B;AAAA,MAClK;AACA,YAAM,kBAAkB;AACxB,YAAM,kBAAkB,MAAMA,QAAO,oBAAoB,WAAW,WAAW,MAAM,MAAM,iBAAiB,SAAS;AACrH,aAAO,gBAAgB;AACvB,aAAO,gBAAgB;AACvB,eAAS,KAAK,OAAO,IAAI;AAAA,IAC3B,WAAW,KAAK,mBAAmB,QAAQ,KAAK,kBAAkB,KAAK,KAAK,kBAAkB,GAAG;AAC/F,qBAAe;AACf,YAAM,UAAU,KAAK,MAAM,OAAO,GAAG,MAAM,MAAM,IAAI,KAAK,gBAAgB;AAC1E,YAAM,oBAAoB,OAAO,GAAG,MAAM;AAC1C,aAAO,YAAY,QAAQ,SAAS,iBAAiB;AACrD,uBAAiB;AACjB,eAAS,YAAY,QAAQ,GAAG,OAAO;AACvC,aAAO,YAAY,SAAS,SAAS,iBAAiB;AACtD,wBAAkB;AAClB,gBAAU,YAAY,SAAS,GAAG,OAAO;AACzC,eAAS,KAAK,OAAO,IAAI;AAAA,IAC3B,WAAW,KAAK,mBAAmB,MAAM;AACvC,qBAAe;AAAA,IACjB;AACA,UAAM,MAAM,OAAO,OAAO,OAAO,EAAE,OAAO,aAAa;AACvD,IAAAA,QAAO,iCAAiC;AACxC,UAAM,gBAAgBA,QAAO,kBAAkB;AAC/C,UAAM,YAAYA,QAAO,uBAAuB;AAChD,QAAI;AACJ,QAAI;AACJ,QAAI,cAAc;AAChB,MAAAA,QAAO,iBAAiB;AACxB,oBAAcA,QAAO;AACrB,wBAAkB,UAAU,MAAM,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,SAAS,EAAE,CAAC;AAAA,IAC/E,OAAO;AACL,oBAAc;AACd,eAAS,CAAC;AACV,wBAAkB,UAAU,MAAM;AAAA,IACpC;AACA,UAAM,aAAa,qBAAqB,KAAK,WAAW,KAAK,UAAU;AACvE,UAAM,MAAM,MAAM,QAAQA,SAAQ,eAAe,KAAK,WAAW,WAAW,KAAK,QAAQ,KAAK,SAAS,YAAY,aAAa,QAAQ,KAAK,SAAS,iBAAiB,KAAK,cAAc,MAAM,IAAI;AACpM,WAAO;AAAA,EACT,UAAE;AACA,IAAAA,QAAO,aAAa;AACpB,sBAAkB,QAAQ,CAAC;AAC3B,sBAAkB,SAAS,CAAC;AAC5B,sBAAkB,gBAAgB,CAAC;AACnC,sBAAkB,iBAAiB,CAAC;AACpC,sBAAkB,MAAM,SAAS;AACjC,sBAAkB,MAAM,SAAS;AACjC,QAAI,iBAAiB,MAAM;AACzB,cAAQ,aAAa;AAAA,IACvB;AAAA,EACF;AACF;AACA,SAAS,2BAA2B,SAAS;AAC3C,QAAM,OAAO,CAAC;AACd,MAAI,mBAAmB,QAAQ;AAC7B,cAAU,CAAC,OAAO;AAAA,EACpB;AACA,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAM,UAAU,QAAQ;AACxB,QAAI,QAAQ,SAAS,GAAG;AACtB,WAAK,KAAK,YAAY,SAAS,CAAC,CAAC;AAAA,IACnC,WAAW,QAAQ,SAAS,GAAG;AAC7B,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF,OAAO;AACL,WAAK,KAAK,OAAO;AAAA,IACnB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,SAAS,YAAY;AAC9C,MAAI,WAAW,MAAM;AACnB;AAAA,EACF;AACA,QAAM,eAAe,CAAC;AACtB,MAAI,sBAAsB,QAAQ;AAChC,iBAAa,KAAK,WAAW,EAAE;AAAA,EACjC,WAAW,MAAM,QAAQ,UAAU,GAAG;AACpC,eAAW,QAAQ,CAAC,OAAO,aAAa,KAAK,GAAG,EAAE,CAAC;AAAA,EACrD,WAAW,cAAc,MAAM;AAC7B,eAAW,QAAQ,YAAY;AAC7B,YAAM,YAAY,WAAW;AAC7B,mBAAa,KAAK,UAAU,EAAE;AAAA,IAChC;AAAA,EACF;AACA,QAAM,mBAAmB,CAAC;AAC1B,MAAI,mBAAmB,QAAQ;AAC7B,QAAI,aAAa,QAAQ,QAAQ,EAAE,MAAM,IAAI;AAC3C,uBAAiB,KAAK,OAAO;AAAA,IAC/B;AAAA,EACF,WAAW,MAAM,QAAQ,OAAO,GAAG;AACjC,YAAQ,QAAQ,CAAC,OAAO;AACtB,UAAI,aAAa,QAAQ,GAAG,EAAE,MAAM,IAAI;AACtC,yBAAiB,KAAK,EAAE;AAAA,MAC1B;AAAA,IACF,CAAC;AAAA,EACH,WAAW,WAAW,MAAM;AAC1B,eAAW,QAAQ,SAAS;AAC1B,YAAM,UAAU,QAAQ;AACxB,UAAI,aAAa,QAAQ,QAAQ,EAAE,MAAM,IAAI;AAC3C,yBAAiB,KAAK,OAAO;AAAA,MAC/B;AAAA,IACF;AAAA,EACF;AACA,mBAAiB,QAAQ,CAAC,OAAO;AAC/B,QAAI,CAAC,GAAG,YAAY;AAClB,SAAG,QAAQ;AAAA,IACb;AAAA,EACF,CAAC;AACH;AAGA,SAAS,aAAa,GAAG;AACvB,SAAO,aAAa;AACtB;AACA,SAAS,YAAY,GAAG;AACtB,SAAO,MAAM,QAAQ,CAAC;AACxB;AACA,SAAS,WAAW,GAAG;AACrB,SAAO,CAAC,aAAa,CAAC,KAAK,CAAC,YAAY,CAAC;AAC3C;AACA,SAAS,qBAAqB,MAAM,OAAO,QAAQ,iBAAiB,MAAM,kBAAkB,IAAI;AAC9F,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,QAAI,QAAQ,MAAM;AAChB,UAAI,oBAAoB;AACxB,UAAI,YAAY,IAAI,KAAK,KAAK,SAAS,GAAG;AACxC,4BAAoB;AAAA,MACtB,WAAW,WAAW,IAAI,GAAG;AAC3B,mBAAW,OAAO,MAAM;AACtB,cAAI,KAAK,eAAe,GAAG,GAAG;AAC5B,gCAAoB;AACpB;AAAA,UACF;AAAA,QACF;AAAA,MACF,OAAO;AACL,4BAAoB;AAAA,MACtB;AACA,UAAI,mBAAmB;AACrB,cAAM,IAAI,WAAW,6BAA6B,6CAA6C,MAAM;AAAA,MACvG;AAAA,IACF;AACA,WAAO,CAAC;AAAA,EACV;AACA,MAAI,QAAQ,MAAM;AAChB,WAAO,MAAM,IAAI,CAAC,SAAS,IAAI;AAAA,EACjC;AACA,MAAI;AACJ,MAAI,WAAW,IAAI,GAAG;AACpB,WAAO;AACP,aAAS,CAAC;AACV,eAAW,QAAQ,OAAO;AACxB,UAAI,KAAK,SAAS,MAAM;AACtB,cAAM,IAAI,WAAW,yBAAyB,qCAAqC,OAAO;AAAA,MAC5F;AACA,aAAO,KAAK,KAAK,KAAK;AAAA,IACxB;AAAA,EACF,WAAW,YAAY,IAAI,GAAG;AAC5B,WAAO;AACP,QAAI,KAAK,WAAW,MAAM,QAAQ;AAChC,YAAM,IAAI,WAAW,6BAA6B,gIAAgI,MAAM,sEAAsE,MAAM;AAAA,IACtQ;AACA,aAAS;AAAA,EACX,OAAO;AACL,WAAO;AACP,QAAI,MAAM,SAAS,GAAG;AACpB,YAAM,IAAI,WAAW,aAAa,2BAA2B,MAAM,4EAA4E,KAAK,OAAO;AAAA,IAC7J;AACA,aAAS,CAAC,IAAI;AAAA,EAChB;AACA,WAAS,2BAA2B,MAAM;AAC1C,MAAI,UAAU,MAAM;AAClB,aAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,UAAI,OAAO,OAAO,MAAM;AACtB;AAAA,MACF;AACA,YAAM,SAAS,OAAO;AACtB,UAAI,OAAO,MAAM,WAAW,OAAO,IAAI,QAAQ;AAC7C,cAAM,IAAI,WAAW,uBAAuB,6BAA6B,MAAM,eAAe,OAAO,IAAI,iDAAiD,OAAO,OAAO;AAAA,MAC1K;AACA,eAAS,IAAI,GAAG,IAAI,OAAO,IAAI,QAAQ,EAAE,GAAG;AAC1C,YAAI,MAAM,KAAK,CAAC,gBAAgB;AAC9B;AAAA,QACF;AACA,cAAM,MAAM,OAAO,MAAM;AACzB,cAAM,SAAS,OAAO,IAAI;AAC1B,YAAI,UAAU,QAAQ,UAAU,KAAK,QAAQ,QAAQ;AACnD,gBAAM,IAAI,WAAW,GAAG,8EAA8E,OAAO,IAAI,MAAM,GAAG,OAAO,IAAI,MAAM,4BAA4B,OAAO,IAAI,MAAM,GAAG,OAAO,IAAI,MAAM,eAAe,0CAA0C,OAAO,MAAM,iCAAiC,OAAO,MAAM,MAAM,GAAG,OAAO,MAAM,MAAM,qBAAqB,OAAO,SAAS;AAAA,QACnY;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,QAAQ,SAAS,SAAS;AACnD,QAAM,OAAO,QAAQ,OAAO,IAAI,CAAC,WAAW,OAAO,MAAM,EAAE,CAAC;AAC5D,OAAK,KAAK;AACV,QAAM,OAAO,QAAQ,QAAQ,IAAI,CAAC,WAAW,OAAO,MAAM,EAAE,CAAC;AAC7D,OAAK,KAAK;AACV,MAAI,KAAK,SAAS,GAAG;AACnB,UAAM,IAAI,WAAW,mFAAmF,KAAK,UAAU,OAAO,IAAI,CAAC,WAAW,OAAO,KAAK,CAAC,GAAG;AAAA,EAChK;AACA,MAAI,KAAK,SAAS,GAAG;AACnB,UAAM,IAAI,WAAW,oFAAoF,KAAK,UAAU,QAAQ,IAAI,CAAC,WAAW,OAAO,KAAK,CAAC,GAAG;AAAA,EAClK;AACA,MAAI,KAAK,SAAS,KAAK,KAAK,SAAS,KAAK,CAAC,aAAa,YAAY,MAAM,IAAI,GAAG;AAC/E,UAAM,IAAI,WAAW,iFAAiF,KAAK,0BAA0B,KAAK,sBAAsB;AAAA,EAClK;AACF;AACA,SAAS,gCAAgC,SAAS,SAAS,cAAc;AACvE,QAAM,YAAY;AAAA,IAChB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAM,IAAI,QAAQ;AAClB,UAAM,OAAO,QAAQ;AACrB,UAAM,QAAQ,aAAa;AAC3B,QAAI,QAAQ,MAAM;AAChB;AAAA,IACF;AACA,QAAI,SAAS,yBAAyB;AACpC,UAAI,EAAE,MAAM,EAAE,MAAM,SAAS,OAAO,GAAG;AACrC,cAAM,IAAI,WAAW,2CAA2C,EAAE,+JAA+J;AAAA,MACnO;AAAA,IACF;AACA,QAAI,UAAU,QAAQ,IAAI,MAAM,IAAI;AAClC,YAAM,eAAe,EAAE,MAAM,MAAM,CAAC;AACpC,YAAM,cAAc,MAAM,MAAM,CAAC;AACjC,eAAS,IAAI,GAAG,IAAI,aAAa,QAAQ,EAAE,GAAG;AAC5C,cAAM,YAAY,aAAa;AAC/B,cAAM,SAAS,YAAY;AAC3B,YAAI,UAAU,QAAQ,cAAc,QAAQ;AAC1C,gBAAM,IAAI,WAAW,8BAA8B,EAAE,2CAA2C,+FAA+F;AAAA,QACjM;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,eAAe,MAAM,OAAO,QAAQ,iBAAiB,MAAM,kBAAkB,IAAI;AACxF,MAAI;AACJ,MAAI,MAAM,QAAQ,IAAI,GAAG;AACvB,QAAI,KAAK,WAAW,MAAM,QAAQ;AAChC,YAAM,IAAI,WAAW,6BAA6B,oIAAoI,MAAM,qCAAqC,KAAK,oBAAoB;AAAA,IAC5P;AACA,aAAS;AAAA,EACX,OAAO;AACL,QAAI,MAAM,SAAS,GAAG;AACpB,YAAM,IAAI,WAAW,qBAAqB,MAAM,UAAU,kFAAkF,KAAK,UAAU,KAAK,KAAK,IAAI;AAAA,IAC3K;AACA,aAAS,CAAC,IAAI;AAAA,EAChB;AACA,MAAI,UAAU,MAAM;AAClB,aAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,UAAI,OAAO,OAAO,MAAM;AACtB;AAAA,MACF;AACA,YAAM,SAAS,OAAO;AACtB,UAAI,OAAO,MAAM,WAAW,OAAO,IAAI,QAAQ;AAC7C,cAAM,IAAI,WAAW,uBAAuB,6BAA6B,MAAM,eAAe,OAAO,IAAI,iDAAiD,KAAK,UAAU,OAAO,KAAK,GAAG;AAAA,MAC1L;AACA,eAAS,IAAI,GAAG,IAAI,OAAO,IAAI,QAAQ,EAAE,GAAG;AAC1C,YAAI,MAAM,KAAK,CAAC,gBAAgB;AAC9B;AAAA,QACF;AACA,cAAM,MAAM,OAAO,MAAM;AACzB,cAAM,SAAS,OAAO,IAAI;AAC1B,YAAI,UAAU,MAAM;AAClB,cAAI,WAAW,KAAK;AAClB,kBAAM,IAAI,WAAW,uBAAuB,6BAA6B,MAAM,qBAAqB,KAAK,UAAU,OAAO,GAAG,8BAA8B,KAAK,UAAU,OAAO,KAAK,IAAI;AAAA,UAC5L;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,eAAe,SAAS,aAAa;AAC5C,MAAI,WAAW,QAAQ,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AACrE,WAAO,YAAY,IAAI,CAAC,SAAS,CAAC,CAAC;AAAA,EACrC;AACA,MAAI;AACJ,MAAI,OAAO,YAAY,YAAY,OAAO,YAAY,YAAY;AAChE,qBAAiB,CAAC,OAAO;AAAA,EAC3B,WAAW,MAAM,QAAQ,OAAO,KAAK,OAAO,YAAY,UAAU;AAChE,qBAAiB;AAAA,EACnB,OAAO;AACL,UAAM,IAAI,UAAU,kGAAkG,SAAS;AAAA,EACjI;AACA,MAAI,MAAM,QAAQ,cAAc,GAAG;AACjC,WAAO,YAAY,IAAI,CAAC,SAAS,cAAc;AAAA,EACjD,OAAO;AACL,UAAM,gBAAgB,CAAC;AACvB,eAAW,QAAQ,aAAa;AAC9B,UAAI,gBAAgB,eAAe,eAAe,IAAI,IAAI,eAAe,QAAQ,CAAC;AAClF,UAAI,CAAC,MAAM,QAAQ,aAAa,GAAG;AACjC,wBAAgB,CAAC,aAAa;AAAA,MAChC;AACA,oBAAc,KAAK,aAAa;AAAA,IAClC;AACA,WAAO;AAAA,EACT;AACF;AACA,IAAI,2BAA2B;AAC/B,IAAI,cAAc,cAAc,UAAU;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,QAAQ,YAAY,WAAW,UAAU,QAAQ,KAAK;AACpD,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,WAAW,8KAA8K;AAAA,IACrM;AACA,iBAAa,MAAM,YAAY,WAAW,OAAO;AAAA,EACnD;AAAA,EACA,QAAQ,MAAM;AACZ,QAAI,KAAK,QAAQ,MAAM;AACrB,WAAK,OAAO,CAAC;AAAA,IACf;AACA,SAAK,OAAO,KAAK;AACjB,QAAI,OAAO,KAAK,cAAc,UAAU;AACtC,WAAK,aAAa,aAAa,KAAK,SAAS;AAC7C,WAAK,mBAAmB;AAAA,IAC1B,OAAO;AACL,UAAI,EAAE,KAAK,qBAAqB,YAAY;AAC1C,cAAM,IAAI,WAAW,6DAA6D;AAAA,MACpF;AACA,WAAK,aAAa,KAAK;AACvB,WAAK,mBAAmB;AAAA,IAC1B;AACA,QAAI,gBAAgB,CAAC;AACrB,QAAI,CAAC,MAAM,QAAQ,KAAK,IAAI,KAAK,OAAO,KAAK,SAAS,YAAY,OAAO,KAAK,SAAS,YAAY;AACjG,WAAK,OAAO,KAAK;AACjB,iBAAW,QAAQ,KAAK,MAAM;AAC5B,YAAI,KAAK,YAAY,QAAQ,IAAI,MAAM,IAAI;AACzC,gBAAM,IAAI,WAAW,sCAAsC,4CAA4C,KAAK,aAAa;AAAA,QAC3H;AAAA,MACF;AACA,iBAAW,QAAQ,KAAK,aAAa;AACnC,YAAI,KAAK,KAAK,SAAS,MAAM;AAC3B,kBAAQ,KAAK,WAAW,gIAAgI,sBAAsB;AAAA,QAChL;AACA,sBAAc,KAAK,IAAI,KAAK,KAAK,KAAK,CAAC;AAAA,MACzC;AAAA,IACF,WAAW,MAAM,QAAQ,KAAK,IAAI,GAAG;AACnC,UAAI,KAAK,KAAK,WAAW,KAAK,QAAQ,QAAQ;AAC5C,cAAM,IAAI,WAAW,2FAA2F,KAAK,QAAQ,yCAAyC,KAAK,OAAO;AAAA,MACpL;AACA,YAAM,YAAY,KAAK;AACvB,sBAAgB,UAAU,IAAI,CAAC,OAAO,IAAI,EAAE,CAAC;AAAA,IAC/C,OAAO;AACL,YAAM,eAAe,IAAI,KAAK,IAAI;AAClC,WAAK,QAAQ,QAAQ,CAAC,MAAM;AAC1B,sBAAc,KAAK,YAAY;AAAA,MACjC,CAAC;AAAA,IACH;AACA,SAAK,gBAAgB;AACrB,SAAK,kBAAkB,CAAC;AACxB,SAAK,mBAAmB,CAAC;AACzB,SAAK,cAAc,CAAC;AACpB,aAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC/C,YAAM,QAAQ,KAAK,qBAAqB;AACxC,YAAM,OAAO,KAAK,YAAY;AAC9B,WAAK,gBAAgB,KAAK,IAAI;AAC9B,WAAK,iBAAiB,KAAK,KAAK;AAChC,WAAK,YAAY,KAAK,KAAK,cAAc,GAAG;AAAA,IAC9C;AACA,UAAM,oBAAoB,CAAC;AAC3B,SAAK,UAAU,KAAK;AACpB,SAAK,eAAe,CAAC,MAAM;AAC3B,SAAK,iBAAiB,CAAC;AACvB,cAAU,QAAQ,MAAM;AACtB,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC/C,YAAI,kBAAkB,QAAQ,EAAE,MAAM,IAAI;AACxC;AAAA,QACF;AACA,cAAM,eAAe,KAAK,cAAc;AACxC,YAAI,KAAK,QAAQ,SAAS,GAAG;AAC3B,eAAK,eAAe,KAAK,CAAC,cAAc,EAAE,CAAC;AAC3C,eAAK,aAAa,KAAK,KAAK,YAAY,MAAM,OAAO;AAAA,QACvD;AAAA,MACF;AAAA,IACF,CAAC;AACD,UAAM,gBAAgB,eAAe,KAAK,SAAS,KAAK,WAAW;AACnE,UAAM,eAAe,CAAC,aAAa,YAAY,iBAAiB;AAC9D,UAAI,KAAK,YAAY,SAAS,GAAG;AAC/B,qBAAa,KAAK,YAAY,eAAe,MAAM;AAAA,MACrD;AACA,WAAK,aAAa,KAAK,UAAU;AACjC,WAAK,eAAe,KAAK,CAAC,cAAc,WAAW,CAAC;AAAA,IACtD;AACA,cAAU,UAAU,MAAM;AACxB,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC/C,YAAI,kBAAkB,QAAQ,EAAE,MAAM,IAAI;AACxC;AAAA,QACF;AACA,cAAM,gBAAgB,cAAc;AACpC,cAAM,gBAAgB,CAAC,YAAY;AACjC,gBAAM,mBAAmB;AACzB,cAAI;AACJ,cAAI;AACJ,cAAI;AACJ,qBAAW,UAAU,SAAS;AAC5B,gBAAI,OAAO,WAAW,YAAY,CAAC,YAAY,OAAO,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AAClG,oBAAM,cAAc,KAAK,qBAAqB;AAC9C,kBAAI,YAAY,YAAY,SAAS,OAAO,KAAK,KAAK,cAAc,QAAQ,oBAAoB;AAC9F,oBAAI,CAAC,YAAY,KAAK,EAAE,QAAQ,MAAM,MAAM,IAAI;AAC9C,0BAAQ;AAAA,gBACV,WAAW,CAAC,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AACxD,0BAAQ;AAAA,gBACV;AAAA,cACF,WAAW,KAAK,cAAc,QAAQ,+BAA+B;AACnE,oBAAI,CAAC,YAAY,KAAK,EAAE,QAAQ,MAAM,MAAM,IAAI;AAC9C,0BAAQ;AAAA,gBACV,WAAW,CAAC,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AACxD,0BAAQ;AAAA,gBACV;AAAA,cACF,OAAO;AACL,oBAAI,CAAC,YAAY,KAAK,EAAE,QAAQ,MAAM,MAAM,IAAI;AAC9C,0BAAQ;AAAA,gBACV,WAAW,CAAC,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AACxD,0BAAQ;AAAA,gBACV;AAAA,cACF;AACA,kBAAI;AACJ,kBAAI,CAAC,YAAY,KAAK,EAAE,QAAQ,MAAM,MAAM,IAAI;AAC9C,yBAAS;AAAA,cACX,WAAW,CAAC,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AACxD,yBAAS;AAAA,cACX;AACA,iCAAmB;AACnB,2BAAa,mBAAmB;AAAA,YAClC,OAAO;AACL,oBAAM,WAAW,KAAK,MAAM;AAC5B,iCAAmB;AACnB,2BAAa,mBAAmB,oBAAoB,MAAM;AAAA,YAC5D;AACA,gBAAI;AACJ,sBAAU,YAAY,MAAM;AAC1B,6BAAe;AAAA,YACjB,CAAC;AACD,yBAAa,IAAI,YAAY,YAAY;AAAA,UAC3C;AAAA,QACF;AACA,sBAAc,aAAa;AAAA,MAC7B;AAAA,IACF,CAAC;AACD,SAAK,4BAA4B,KAAK;AAAA,EACxC;AAAA,EACA,mCAAmC;AACjC,QAAI,KAAK,6BAA6B,MAAM;AAC1C;AAAA,IACF;AACA,QAAI,KAAK,iBAAiB,WAAW,KAAK,0BAA0B,QAAQ;AAC1E,cAAQ,KAAK,mJAAmJ;AAAA,IAClK;AAAA,EACF;AAAA,EACA,SAAS,GAAG,GAAG,OAAO,CAAC,GAAG;AACxB,UAAM,YAAY,KAAK,aAAa,OAAO,KAAK,KAAK;AACrD,mBAAe,SAAS;AACxB,UAAM,iBAAiB;AACvB,UAAM,mBAAmB,KAAK,sBAAsB,GAAG,GAAG,gBAAgB,SAAS;AACnF,QAAI;AACF,YAAM,MAAM,iBAAiB,GAAG,OAAO,iBAAiB,EAAE;AAC1D,WAAK,iBAAiB;AACtB,YAAM,IAAI,KAAK;AACf,YAAM,WAAW,KAAK,SAAS,GAAG,KAAK,WAAW,KAAK,SAAS,KAAK,KAAK;AAC1E,aAAO,iBAAiB,QAAQ;AAAA,IAClC,UAAE;AACA,wBAAkB,iBAAiB,IAAI,CAAC;AACxC,wBAAkB,iBAAiB,IAAI,CAAC;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,MAAM,gBAAgB,SAAS,MAAM;AACnC,SAAK,iBAAiB;AACtB,WAAO,gBAAgB,MAAM,SAAS,IAAI;AAAA,EAC5C;AAAA,EACA,gBAAgB,KAAK,WAAW,OAAO,YAAY,SAAS;AAC1D,QAAI;AACJ,QAAI,SAAS,MAAM;AACjB,mBAAa;AACb,UAAI,aAAa,MAAM;AACrB,cAAM,IAAI,WAAW,MAAM,yEAAyE,WAAW;AAAA,MACjH;AAAA,IACF,WAAW,OAAO,MAAM;AACtB,UAAI,MAAM,QAAQ,GAAG,GAAG;AACtB,qBAAa,IAAI,GAAG,MAAM;AAAA,MAC5B,OAAO;AACL,qBAAa,IAAI,MAAM;AAAA,MACzB;AAAA,IACF,OAAO;AACL,YAAM,IAAI,WAAW,yDAAyD,+BAA+B;AAAA,IAC/G;AACA,WAAO;AAAA,EACT;AAAA,EACA,QAAQ,QAAQ,SAAS;AACvB,QAAI,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AAClD,YAAM,IAAI,WAAW,oDAAoD;AAAA,IAC3E;AACA,UAAM,iBAAiB,MAAM,QAAQ,OAAO;AAC5C,UAAM,cAAc,iBAAiB,UAAU,CAAC,OAAO;AACvD,UAAM,wBAAwB,KAAK,wBAAwB,WAAW;AACtE,UAAM,WAAW,IAAI,SAAS;AAC9B,QAAI,kBAAkB,QAAQ;AAC5B,eAAS,CAAC,MAAM;AAAA,IAClB;AACA,QAAI,MAAM,QAAQ,MAAM,GAAG;AACzB,UAAI,OAAO,WAAW,KAAK,OAAO,QAAQ;AACxC,cAAM,IAAI,WAAW,kCAAkC,OAAO,8DAA8D,KAAK,OAAO,UAAU;AAAA,MACpJ;AACA,eAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,iBAAS,IAAI,KAAK,OAAO,KAAK,OAAO,GAAG;AAAA,MAC1C;AAAA,IACF,OAAO;AACL,iBAAW,UAAU,KAAK,QAAQ;AAChC,cAAM,cAAc,OAAO,OAAO;AAClC,YAAI,eAAe,MAAM;AACvB,gBAAM,IAAI,WAAW,8CAA8C,OAAO,MAAM;AAAA,QAClF;AACA,iBAAS,IAAI,QAAQ,WAAW;AAAA,MAClC;AAAA,IACF;AACA,UAAM,iBAAiB,QAAQ,uBAAuB,QAAQ;AAC9D,WAAO,iBAAiB,iBAAiB,eAAe;AAAA,EAC1D;AAAA,EACA,wBAAwB,qBAAqB;AAC3C,UAAM,wBAAwB,aAAa,MAAM,oBAAoB,MAAM;AAC3E,QAAI,mBAAmB,oBAAoB;AAC3C,eAAW,SAAS,KAAK,QAAQ;AAC/B,YAAM,eAAe,MAAM,QAAQ,MAAM,MAAM,IAAI,MAAM,SAAS,CAAC,MAAM,MAAM;AAC/E,YAAM,mBAAmB,aAAa,IAAI,CAAC,WAAW,OAAO,IAAI;AACjE,eAAS,KAAK,GAAG,KAAK,oBAAoB,QAAQ,EAAE,IAAI;AACtD,cAAMpB,SAAQ,iBAAiB,QAAQ,oBAAoB,GAAG;AAC9D,YAAIA,WAAU,IAAI;AAChB,gCAAsB,MAAM,aAAaA;AACzC;AAAA,QACF;AACA,YAAI,qBAAqB,GAAG;AAC1B;AAAA,QACF;AAAA,MACF;AACA,UAAI,qBAAqB,GAAG;AAC1B;AAAA,MACF;AAAA,IACF;AACA,QAAI,mBAAmB,GAAG;AACxB,YAAM,iBAAiB,CAAC;AACxB,4BAAsB,QAAQ,CAAC,SAAS,OAAO;AAC7C,YAAI,WAAW,MAAM;AACnB,yBAAe,KAAK,oBAAoB,GAAG;AAAA,QAC7C;AAAA,MACF,CAAC;AACD,YAAM,IAAI,WAAW,mDAAmD,KAAK,UAAU,cAAc,GAAG;AAAA,IAC1G;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,KAAK,YAAY,IAAI,UAAU,OAAO;AAChD,WAAO,KAAK,MAAM;AAChB,YAAM,aAAa,KAAK,gBAAgB,GAAG;AAC3C,UAAI,SAAS;AACX,cAAM,IAAI,oBAAoB,+CAA+C;AAAA,MAC/E;AACA,YAAM,UAAU,YAAY,YAAY,SAAS;AACjD,YAAM,cAAc,KAAK,QAAQ,IAAI,CAAC,WAAW,CAAC,CAAC;AACnD,eAAS,aAAa,GAAG,aAAa,QAAQ,QAAQ,EAAE,YAAY;AAClE,cAAM,YAAY,KAAK,MAAM;AAC3B,gBAAM,aAAa,QAAQ,YAAY;AACvC,gBAAM,WAAW,QAAQ,YAAY;AACrC,gBAAM,WAAW,YAAY,KAAK,YAAY,QAAQ;AACtD,gBAAM,QAAQ,CAAC;AACf,cAAI,MAAM,QAAQ,QAAQ,GAAG;AAC3B,qBAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,EAAE,IAAI;AAC3C,oBAAM,KAAK,EAAE,KAAK,KAAK,OAAO,KAAK,OAAO,SAAS,IAAI,CAAC;AAAA,YAC1D;AAAA,UACF,OAAO;AACL,kBAAM,KAAK,EAAE,KAAK,KAAK,OAAO,IAAI,OAAO,SAAS,CAAC;AAAA,UACrD;AACA,gBAAM,WAAW,IAAI,SAAS,KAAK;AACnC,iBAAO,QAAQ,KAAK,SAAS,QAAQ;AAAA,QACvC,CAAC;AACD,kBAAU,QAAQ,CAAC,UAAU,OAAO,YAAY,IAAI,KAAK,QAAQ,CAAC;AAAA,MACpE;AACA,aAAO,iBAAiB,YAAY,IAAI,CAAC,aAAa,OAAO,UAAU,CAAC,CAAC,CAAC;AAAA,IAC5E,CAAC;AAAA,EACH;AAAA,EACA,QAAQ,GAAG,OAAO,CAAC,GAAG;AACpB,UAAM,kBAAkB,2BAA2B,CAAC;AACpD,mBAAe,iBAAiB,KAAK,YAAY,KAAK,iBAAiB,KAAK;AAC5E,QAAI;AACF,YAAM,YAAY,KAAK,aAAa,OAAO,KAAK,KAAK;AACrD,qBAAe,SAAS;AACxB,aAAO,KAAK,YAAY,iBAAiB,SAAS;AAAA,IACpD,UAAE;AACA,wBAAkB,iBAAiB,CAAC;AAAA,IACtC;AAAA,EACF;AAAA,EACA,eAAe,GAAG;AAChB,mBAAe,GAAG,KAAK,YAAY,KAAK,iBAAiB,IAAI;AAC7D,UAAM,aAAa,MAAM,QAAQ,CAAC,IAAI,EAAE,KAAK,GAAG,MAAM;AACtD,WAAO,KAAK,YAAY,GAAG,SAAS;AAAA,EACtC;AAAA,EACA,sBAAsB,GAAG,GAAG,iBAAiB,MAAM,WAAW;AAC5D,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,IAAI,aAAa,8FAA8F;AAAA,IACvH;AACA,UAAM,eAAe,CAAC;AACtB,aAAS,KAAK,GAAG,KAAK,KAAK,iBAAiB,QAAQ,EAAE,IAAI;AACxD,YAAM,cAAc,KAAK,iBAAiB;AAC1C,YAAM,SAAS,KAAK,YAAY;AAChC,UAAI,WAAW,+BAA+B;AAC5C,qBAAa,KAAK,YAAY,MAAM,GAAG,YAAY,SAAS,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC;AAAA,MAC5E,OAAO;AACL,qBAAa,KAAK,WAAW;AAAA,MAC/B;AAAA,IACF;AACA,QAAI,qBAAqB,GAAG,KAAK,gBAAgB,KAAK,iBAAiB,OAAO,OAAO;AACrF,QAAI,qBAAqB,GAAG,KAAK,iBAAiB,cAAc,OAAO,QAAQ;AAC/E,sBAAkB,GAAG,GAAG,IAAI;AAC5B,oCAAgC,GAAG,KAAK,aAAa,KAAK,gBAAgB;AAC1E,QAAI,KAAK,YAAY,aAAa,QAAQ,YAAY,GAAG;AACvD,UAAI,EAAE,GAAG,MAAM,KAAK,cAAc,GAAG;AACnC,cAAM,IAAI,WAAW,mHAAmH,qBAAqB,EAAE,GAAG,MAAM,eAAe;AAAA,MACzL;AAAA,IACF;AACA,WAAO,CAAC,GAAG,CAAC;AAAA,EACd;AAAA,EACA,MAAM,oBAAoB,GAAG,GAAG,cAAc,aAAa,iBAAiB,MAAM,WAAW;AAC3F,UAAM,CAAC,YAAY,UAAU,IAAI,KAAK,sBAAsB,GAAG,GAAG,gBAAgB,SAAS;AAC3F,QAAI,gBAAgB,MAAM;AACxB,YAAM,IAAI,MAAM,qCAAqC;AAAA,IACvD;AACA,QAAI,wBAAwB;AAC5B,QAAI,eAAe,MAAM;AACvB,YAAM,eAAe,wBAAwB,aAAa,KAAK,WAAW;AAC1E,8BAAwB,CAAC;AACzB,eAAS,KAAK,GAAG,KAAK,aAAa,QAAQ,EAAE,IAAI;AAC/C,8BAAsB,KAAK,MAAM,mBAAmB,WAAW,KAAK,MAAM,aAAa,GAAG,CAAC;AAAA,MAC7F;AAAA,IACF;AACA,WAAO,CAAC,YAAY,YAAY,qBAAqB;AAAA,EACvD;AAAA,EACA,SAAS,GAAG,KAAK,WAAW,UAAU,GAAG,OAAO;AAC9C,WAAO,KAAK,MAAM;AAChB,YAAM,aAAa,KAAK,gBAAgB,KAAK,WAAW,OAAO,OAAO;AACtE,YAAM,OAAO,CAAC;AACd,UAAI,UAAU,GAAG;AACf,cAAM,IAAI,oBAAoB,sCAAsC;AAAA,MACtE;AACA,UAAI,SAAS,MAAM;AACjB,cAAM,IAAI,oBAAoB,iDAAiD;AAAA,MACjF,OAAO;AACL,cAAM,UAAU,YAAY,YAAY,SAAS;AACjD,cAAM,aAAa,SAAS,OAAO,GAAG,UAAU,CAAC;AACjD,iBAAS,aAAa,GAAG,aAAa,QAAQ,QAAQ,EAAE,YAAY;AAClE,gBAAM,aAAa,QAAQ,YAAY;AACvC,gBAAM,WAAW,QAAQ,YAAY;AACrC,gBAAM,WAAW,oBAAoB,YAAY,YAAY,WAAW,UAAU;AAClF,gBAAM,WAAW,qBAAqB,KAAK,QAAQ;AACnD,gBAAM,YAAY,EAAE,QAAQ;AAC5B,cAAI,eAAe,GAAG;AACpB,qBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,mBAAK,KAAK,OAAO,CAAC,CAAC;AAAA,YACrB;AAAA,UACF;AACA,mBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,kBAAM,WAAW,UAAU;AAC3B,iBAAK,MAAM,KAAK,KAAK,KAAK,IAAI,WAAW,YAAY,QAAQ,CAAC;AAAA,UAChE;AAAA,QACF;AACA,iBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,eAAK,MAAM,IAAI,KAAK,KAAK,UAAU;AAAA,QACrC;AAAA,MACF;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB;AACvB,UAAM,YAAY,KAAK;AACvB,UAAM,mBAAmB,CAAC;AAC1B,aAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,YAAM,QAAQ,UAAU;AACxB,UAAI,WAAW;AACf,UAAI,MAAM,WAAW,KAAK,IAAI,GAAG;AAC/B,cAAM,WAAW,MAAM,UAAU,MAAM,GAAG,EAAE,GAAG,KAAK;AACpD,oBAAY,IAAI;AAAA,MAClB;AACA,uBAAiB,KAAK,QAAQ;AAAA,IAChC;AACA,WAAO;AAAA,EACT;AAAA,EACA,oBAAoB;AAClB,WAAO,CAAC,SAAS;AACf,YAAM,aAAa,CAAC;AACpB,YAAM,SAAS,KAAK,MAAM,GAAG,KAAK,OAAO,MAAM;AAC/C,YAAM,UAAU,KAAK,MAAM,KAAK,OAAO,QAAQ,KAAK,OAAO,SAAS,KAAK,QAAQ,MAAM;AACvF,YAAM,gBAAgB,KAAK,MAAM,KAAK,OAAO,SAAS,KAAK,QAAQ,QAAQ,KAAK,OAAO,SAAS,KAAK,QAAQ,SAAS,CAAC;AACvH,YAAM,gBAAgB,CAAC;AACvB,YAAM,oBAAoB,MAAM;AAC9B,cAAM,QAAQ,CAAC;AACf,iBAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,gBAAM,KAAK,EAAE,KAAK,KAAK,OAAO,KAAK,OAAO,OAAO,IAAI,CAAC;AAAA,QACxD;AACA,cAAM,WAAW,IAAI,SAAS,KAAK;AACnC,cAAM,UAAU,QAAQ,KAAK,SAAS,UAAU,EAAE,YAAY,KAAK,CAAC;AACpE,YAAI;AACJ,iBAAS,KAAK,GAAG,KAAK,KAAK,cAAc,QAAQ,EAAE,IAAI;AACrD,gBAAM,eAAe,KAAK,cAAc;AACxC,cAAI,OAAO,aAAa,QAAQ,KAAK,QAAQ,GAAG;AAChD,cAAI,cAAc,OAAO,MAAM;AAC7B,mBAAO,qBAAqB,MAAM,cAAc,GAAG;AAAA,UACrD;AACA,gBAAM,WAAW,KAAK,IAAI;AAC1B,qBAAW,KAAK,QAAQ;AACxB,cAAI,OAAO,GAAG;AACZ,wBAAY;AAAA,UACd,OAAO;AACL,wBAAY,KAAK,WAAW,IAAI;AAAA,UAClC;AAAA,QACF;AACA,iBAAS,KAAK,GAAG,KAAK,KAAK,eAAe,QAAQ,EAAE,IAAI;AACtD,cAAI;AACJ,cAAI,KAAK,QAAQ,SAAS,KAAK,KAAK,KAAK,QAAQ,QAAQ;AACvD,6BAAiB,WAAW;AAAA,UAC9B,OAAO;AACL,kBAAM,SAAS,KAAK,eAAe,IAAI;AACvC,kBAAM,cAAc,KAAK,eAAe,IAAI;AAC5C,6BAAiB,KAAK,OAAO,QAAQ,cAAc,QAAQ,YAAY,CAAC;AAAA,UAC1E;AACA,eAAK,cAAc;AACnB,wBAAc,KAAK,cAAc;AAAA,QACnC;AACA,oBAAY,KAAK,SAAS;AAC1B,aAAK,gBAAgB,EAAE,QAAQ,CAAC,oBAAoB;AAClD,sBAAY,KAAK,WAAW,eAAe;AAAA,QAC7C,CAAC;AACD,eAAO;AAAA,MACT;AACA,YAAM,YAAY,KAAK,0BAA0B,IAAI,CAAC,UAAU,MAAM,KAAK,CAAC;AAC5E,YAAM,aAAa;AACnB,YAAM,iBAAiB,KAAK,WAAW,SAAS,mBAAmB,YAAY,SAAS;AACxF,aAAO,CAAC,cAAc,EAAE,OAAO,aAAa;AAAA,IAC9C;AAAA,EACF;AAAA,EACA,mBAAmB;AACjB,SAAK,eAAe,CAAC,SAAS;AAC5B,aAAO,KAAK,MAAM;AAChB,cAAM,aAAa,CAAC;AACpB,YAAI;AACJ,cAAM,SAAS,KAAK,MAAM,GAAG,KAAK,OAAO,MAAM;AAC/C,cAAM,UAAU,KAAK,MAAM,KAAK,OAAO,QAAQ,KAAK,OAAO,SAAS,KAAK,QAAQ,MAAM;AACvF,cAAM,QAAQ,CAAC;AACf,iBAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,gBAAM,KAAK,EAAE,KAAK,KAAK,OAAO,KAAK,OAAO,OAAO,IAAI,CAAC;AAAA,QACxD;AACA,cAAM,WAAW,IAAI,SAAS,KAAK;AACnC,cAAM,UAAU,QAAQ,KAAK,SAAS,QAAQ;AAC9C,iBAAS,KAAK,GAAG,KAAK,KAAK,cAAc,QAAQ,EAAE,IAAI;AACrD,gBAAM,eAAe,KAAK,cAAc;AACxC,gBAAM,OAAO,KAAK,aAAa,QAAQ,KAAK,QAAQ,GAAG,CAAC;AACxD,cAAI,OAAO,GAAG;AACZ,wBAAY;AAAA,UACd,OAAO;AACL,wBAAY,KAAK,WAAW,IAAI;AAAA,UAClC;AACA,qBAAW,KAAK,SAAS;AAAA,QAC3B;AACA,iBAAS,KAAK,GAAG,KAAK,KAAK,eAAe,QAAQ,EAAE,IAAI;AACtD,gBAAM,SAAS,KAAK,eAAe,IAAI;AACvC,gBAAM,cAAc,KAAK,eAAe,IAAI;AAC5C,gBAAM,aAAa,KAAK,OAAO,QAAQ,cAAc,QAAQ,YAAY,CAAC;AAC1E,qBAAW,KAAK,UAAU;AAAA,QAC5B;AACA,eAAO;AAAA,MACT,CAAC;AAAA,IACH;AAAA,EACF;AAAA,EACA,MAAM,IAAI,GAAG,GAAG,OAAO,CAAC,GAAG;AACzB,WAAO,WAAW,MAAM,GAAG,GAAG,IAAI;AAAA,EACpC;AAAA,EACA,MAAM,WAAW,SAAS,MAAM;AAC9B,WAAO,WAAW,MAAM,SAAS,IAAI;AAAA,EACvC;AAAA,EACA,MAAM,aAAa,GAAG,GAAG;AACvB,UAAM,iBAAiB,MAAM,KAAK,oBAAoB,GAAG,CAAC;AAC1D,UAAM,SAAS,eAAe;AAC9B,UAAM,UAAU,eAAe;AAC/B,UAAM,gBAAgB,KAAK,kBAAkB;AAC7C,UAAM,UAAU,cAAc,OAAO,OAAO,OAAO,CAAC;AACpD,UAAM,aAAa,CAAC;AACpB,eAAW,QAAQ,SAAS;AAC1B,YAAM,IAAI,MAAM,KAAK,KAAK;AAC1B,iBAAW,KAAK,EAAE,EAAE;AAAA,IACtB;AACA,YAAQ,OAAO;AACf,sBAAkB,eAAe,IAAI,CAAC;AACtC,sBAAkB,eAAe,IAAI,CAAC;AACtC,WAAO,iBAAiB,UAAU;AAAA,EACpC;AAAA,EACA,gBAAgBK,SAAQ;AACtB,UAAM,eAAe,CAAC;AACtB,UAAM,gBAAgBA,WAAU,QAAQA,QAAO;AAC/C,UAAM,UAAU,gBAAgB,KAAK,mBAAmB,KAAK;AAC7D,UAAM,eAAe,KAAK,WAAW,aAAa;AAClD,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAI,iBAAiB,CAAC,QAAQ,IAAI,WAAW;AAC3C;AAAA,MACF;AACA,mBAAa,KAAK,EAAE,MAAM,QAAQ,IAAI,cAAc,QAAQ,aAAa,IAAI,CAAC;AAAA,IAChF;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,aAAa,MAAM;AACrB,SAAK,gBAAgB;AAAA,EACvB;AAAA,EACA,IAAI,eAAe;AACjB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,QAAI,KAAK,eAAe,WAAW;AACjC,WAAK,aAAa;AAClB,WAAK,mBAAmB;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,UAAU;AACR,UAAM,SAAS,MAAM,QAAQ;AAC7B,QAAI,OAAO,yBAAyB,KAAK,KAAK,aAAa,QAAQ,KAAK,kBAAkB;AACxF,YAAM,mCAAmC,OAAO,EAAE;AAClD,WAAK,WAAW,QAAQ;AACxB,aAAO,wBAAwB,mCAAmC,OAAO,EAAE;AAAA,IAC7E;AACA,WAAO;AAAA,EACT;AAAA,EACA,qBAAqB;AACnB,QAAI;AACJ,QAAI,OAAO,KAAK,SAAS,UAAU;AACjC,kBAAY,YAAY,KAAK,IAAI;AAAA,IACnC,WAAW,MAAM,QAAQ,KAAK,IAAI,GAAG;AACnC,iBAAW,QAAQ,KAAK,MAAM;AAC5B,YAAI,OAAO,SAAS,UAAU;AAC5B,gBAAM,IAAI,MAAM,oDAAoD;AAAA,QACtE;AAAA,MACF;AACA,kBAAY,KAAK,KAAK,IAAI,CAAC,SAAS,YAAY,IAAI,CAAC;AAAA,IACvD,OAAO;AACL,YAAM,cAAc,OAAO,KAAK,KAAK,IAAI;AACzC,kBAAY,CAAC;AACb,YAAM,UAAU,KAAK;AACrB,iBAAW,cAAc,aAAa;AACpC,YAAI,OAAO,QAAQ,gBAAgB,UAAU;AAC3C,oBAAU,cAAc,YAAY,QAAQ,WAAW;AAAA,QACzD,OAAO;AACL,gBAAM,IAAI,MAAM,oDAAoD;AAAA,QACtE;AAAA,MACF;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,uBAAuB;AACrB,QAAI,OAAO,KAAK,YAAY,YAAY,OAAO,KAAK,YAAY,YAAY;AAC1E,aAAO,CAAC,YAAY,oBAAoB,KAAK,OAAO,CAAC,CAAC;AAAA,IACxD,WAAW,MAAM,QAAQ,KAAK,OAAO,GAAG;AACtC,aAAO,KAAK,QAAQ,IAAI,CAAC,WAAW,YAAY,oBAAoB,MAAM,CAAC,CAAC;AAAA,IAC9E,OAAO;AACL,YAAM,qBAAqB,CAAC;AAC5B,iBAAW,OAAO,KAAK,SAAS;AAC9B,2BAAmB,OAAO,YAAY,oBAAoB,KAAK,QAAQ,IAAI,CAAC;AAAA,MAC9E;AACA,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,oBAAoB;AAClB,WAAO;AAAA,MACL,MAAM,KAAK,mBAAmB;AAAA,MAC9B,SAAS,KAAK,qBAAqB;AAAA,MACnC,kBAAkB;AAAA,QAChB,YAAY,KAAK,UAAU,aAAa;AAAA,QACxC,QAAQ,KAAK,UAAU,UAAU;AAAA,MACnC;AAAA,IACF;AAAA,EACF;AAAA,EACA,mBAAmB,gBAAgB;AACjC,QAAI,eAAe,oBAAoB,MAAM;AAC3C,YAAM,IAAI,MAAM,8CAA8C;AAAA,IAChE;AACA,QAAI,eAAe,gBAAgB,MAAM;AACvC,YAAM,IAAI,MAAM,4CAA4C;AAAA,IAC9D;AACA,QAAI,eAAe,sBAAsB,MAAM;AAC7C,YAAM,IAAI,MAAM,kDAAkD;AAAA,IACpE;AACA,UAAM,WAAW,oBAAoB,eAAe,gBAAgB;AACpE,UAAM,YAAY,YAAY,QAAQ;AACtC,QAAI;AACJ,QAAI,OAAO,eAAe,SAAS,UAAU;AAC3C,aAAO,YAAY,eAAe,IAAI;AAAA,IACxC,WAAW,MAAM,QAAQ,eAAe,IAAI,GAAG;AAC7C,aAAO,eAAe,KAAK,IAAI,CAAC,cAAc,YAAY,SAAS,CAAC;AAAA,IACtE,WAAW,eAAe,QAAQ,MAAM;AACtC,aAAO,CAAC;AACR,iBAAW,OAAO,eAAe,MAAM;AACrC,aAAK,OAAO,YAAY,eAAe,KAAK,IAAI;AAAA,MAClD;AAAA,IACF;AACA,QAAI;AACJ,QAAI,MAAM,QAAQ,eAAe,OAAO,GAAG;AACzC,gBAAU,eAAe,QAAQ,IAAI,CAAC,WAAW,YAAY,MAAM,CAAC;AAAA,IACtE,WAAW,eAAe,WAAW,MAAM;AACzC,gBAAU,CAAC;AACX,iBAAW,OAAO,eAAe,SAAS;AACxC,gBAAQ,OAAO,YAAY,eAAe,QAAQ,IAAI;AAAA,MACxD;AAAA,IACF;AACA,SAAK,QAAQ,EAAE,MAAM,SAAS,UAAU,CAAC;AAAA,EAC3C;AAAA,EACA,MAAM,KAAK,cAAcA,SAAQ;AAC/B,QAAI,OAAO,iBAAiB,UAAU;AACpC,YAAM,WAAW,WAAW,gBAAgB,YAAY;AACxD,UAAI,SAAS,WAAW,GAAG;AACzB,cAAM,IAAI,WAAW,0CAA0C,eAAe;AAAA,MAChF,WAAW,SAAS,SAAS,GAAG;AAC9B,cAAM,IAAI,WAAW,wBAAwB,SAAS,kCAAkC,eAAe;AAAA,MACzG;AACA,qBAAe,SAAS;AAAA,IAC1B;AACA,QAAI,aAAa,QAAQ,MAAM;AAC7B,YAAM,IAAI,WAAW,8GAA8G;AAAA,IACrI;AACA,UAAM,qBAAqB,MAAM,WAAW,cAAc,KAAK,gBAAgBA,OAAM,CAAC;AACtF,UAAM,eAAe;AACrB,UAAM,YAAY;AAClB,UAAM,cAAc,KAAK,OAAO,WAAW,YAAY;AACvD,UAAM,iBAAiB;AAAA,MACrB,eAAe;AAAA,MACf,QAAQ;AAAA,MACR,aAAa,8BAA8B;AAAA,MAC3C,aAAa;AAAA,IACf;AACA,UAAM,mBAAmBA,WAAU,OAAO,QAAQA,QAAO;AACzD,QAAI,oBAAoB,KAAK,aAAa,MAAM;AAC9C,qBAAe,iBAAiB,KAAK,kBAAkB;AACvD,YAAM,aAAa;AACnB,YAAM,EAAE,MAAM,qBAAqB,OAAO,qBAAqB,IAAI,MAAM,WAAW,cAAc,MAAM,KAAK,UAAU,WAAW,GAAG,UAAU;AAC/I,yBAAmB,MAAM,KAAK,GAAG,oBAAoB;AACrD,yBAAmB,OAAO,WAAW,wBAAwB,CAAC,mBAAmB,MAAM,mBAAmB,CAAC;AAAA,IAC7G;AACA,QAAI,KAAK,uBAAuB,MAAM;AACpC,YAAM,YAAY;AAClB,+BAAyB,KAAK,qBAAqB,KAAK,MAAM,SAAS;AACvE,qBAAe,sBAAsB,KAAK;AAAA,IAC5C;AACA,mBAAe,aAAa,mBAAmB;AAC/C,mBAAe,cAAc,mBAAmB;AAChD,WAAO,aAAa,KAAK,cAAc;AAAA,EACzC;AAAA,EACA,uBAAuB,qBAAqB;AAC1C,6BAAyB,qBAAqB,KAAK,IAAI;AACvD,SAAK,sBAAsB;AAAA,EAC7B;AAAA,EACA,yBAAyB;AACvB,WAAO,KAAK;AAAA,EACd;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,aAAa,cAAc,YAAY;AAC3C;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAG9C,eAAe,cAAc,uBAAuB,eAAe;AACjE,MAAI,EAAE,mBAAmB,wBAAwB;AAC/C,4BAAwB,EAAE,eAAe,sBAAsB;AAAA,EACjE;AACA,0BAAwB;AACxB,MAAI,gBAAgB,sBAAsB;AAC1C,MAAI,cAAc,mBAAmB,MAAM;AACzC,oBAAgB,cAAc;AAAA,EAChC;AACA,QAAM,WAAW,oBAAoB,aAAa;AAClD,QAAMe,UAAS,YAAY,UAAU,aAAa;AAClD,MAAI,sBAAsB,mBAAmB,MAAM;AACjD,UAAM,eAAe,MAAM,WAAW,YAAY,sBAAsB,iBAAiB,sBAAsB,YAAYA,QAAO,QAAQ,IAAI,CAAC,WAAW,OAAO,YAAY,CAAC;AAC9K,UAAM,qBAAqB,CAAC;AAC5B,eAAW,UAAUA,QAAO,SAAS;AACnC,yBAAmB,OAAO,gBAAgB,aAAa,OAAO;AAAA,IAChE;AACA,IAAAA,QAAO,YAAY,kBAAkB;AACrC,YAAQ,YAAY;AAAA,EACtB;AACA,SAAOA;AACT;AACA,eAAe,wBAAwB,iBAAiBxB,UAAS;AAC/D,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU,CAAC;AAAA,EACb;AACA,MAAI,OAAO,oBAAoB,UAAU;AACvC,UAAM,WAAW,WAAW,gBAAgB,iBAAiBA,QAAO;AACpE,QAAI,SAAS,WAAW,GAAG;AACzB,eAAS,KAAK,WAAW,mBAAmB,iBAAiBA,QAAO,CAAC;AAAA,IACvE,WAAW,SAAS,SAAS,GAAG;AAC9B,YAAM,IAAI,WAAW,wBAAwB,SAAS,kCAAkC,kBAAkB;AAAA,IAC5G;AACA,sBAAkB,SAAS;AAAA,EAC7B;AACA,SAAO,6BAA6B,iBAAiB,QAAQA,QAAO;AACtE;AACA,eAAe,6BAA6B,SAAS,eAAeA,UAAS;AAC3E,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU,CAAC;AAAA,EACb;AACA,MAAI,QAAQ,QAAQ,MAAM;AACxB,UAAM,IAAI,WAAW,+GAA+G;AAAA,EACtI;AACA,QAAM,YAAY,MAAM,QAAQ,KAAK;AACrC,MAAI,gBAAgB,UAAU;AAC9B,MAAI,cAAc,mBAAmB,MAAM;AACzC,oBAAgB,cAAc;AAAA,EAChC;AACA,QAAM,SAASA,SAAQ,UAAU,OAAO,OAAOA,SAAQ;AACvD,QAAM,iBAAiB,UAAU,cAAc,QAAQ,UAAU,eAAe,QAAQ;AACxF,QAAMwB,UAAS,YAAY,oBAAoB,aAAa,GAAG,eAAe,cAAc;AAC5F,QAAM,iBAAiB,UAAU;AACjC,MAAI,kBAAkB,MAAM;AAC1B,IAAAA,QAAO,mBAAmB,cAAc;AAAA,EAC1C;AACA,MAAI,UAAU,uBAAuB,MAAM;AACzC,IAAAA,QAAO,uBAAuB,UAAU,mBAAmB;AAAA,EAC7D;AACA,MAAI,UAAU,cAAc,MAAM;AAChC,QAAI,UAAU,eAAe,MAAM;AACjC,YAAM,IAAI,WAAW,gHAAgH;AAAA,IACvI;AACA,UAAM,EAAE,cAAc,iBAAiB,IAAI,+BAA+B,UAAU,YAAY,UAAU,WAAW;AACrH,IAAAA,QAAO,YAAY,cAAc,MAAM;AACvC,QAAIA,QAAO,aAAa,QAAQ,iBAAiB,SAAS,GAAG;AAC3D,YAAMA,QAAO,UAAU,WAAW,gBAAgB;AAAA,IACpD;AACA,YAAQ,YAAY;AACpB,YAAQ,iBAAiB,IAAI,CAAC,MAAM,EAAE,MAAM,CAAC;AAAA,EAC/C;AACA,SAAOA;AACT;AACA,SAAS,+BAA+B,SAAS,OAAO;AACtD,QAAM,cAAc,WAAW,cAAc,SAAS,KAAK;AAC3D,QAAM,eAAe,CAAC;AACtB,QAAM,mBAAmB,CAAC;AAC1B,QAAM,QAAQ,CAAC,SAAS;AACtB,QAAI,KAAK,UAAU,aAAa;AAC9B,uBAAiB,KAAK,EAAE,MAAM,KAAK,MAAM,QAAQ,YAAY,KAAK,MAAM,CAAC;AAAA,IAC3E,OAAO;AACL,mBAAa,KAAK,QAAQ,YAAY,KAAK;AAAA,IAC7C;AAAA,EACF,CAAC;AACD,SAAO,EAAE,cAAc,iBAAiB;AAC1C;AACA,IAAI,aAAa,cAAc,YAAY;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM,EAAE,QAAQ,CAAC,GAAG,SAAS,CAAC,EAAE,CAAC;AACjC,WAAO,QAAQ,CAAC;AAChB,SAAK,YAAY;AACjB,SAAK,QAAQ;AACb,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,OAAO,aAAa;AAChE,QAAI,KAAK,UAAU,MAAM;AACvB,iBAAW,SAAS,KAAK,QAAQ;AAC/B,aAAK,IAAI,KAAK;AAAA,MAChB;AAAA,IACF;AAAA,EACF;AAAA,EACA,WAAW,OAAO;AAChB,UAAM,QAAQ,MAAM,aAAa,GAAG,cAAc,GAAG;AACrD,QAAI,MAAM,KAAK,CAAC,MAAM,IAAI,CAAC,GAAG;AAC5B,YAAM,IAAI,WAAW,kDAAkD,MAAM,0BAA0B,MAAM,aAAa,GAAG,aAAa,GAAG,QAAQ;AAAA,IACvJ;AAAA,EACF;AAAA,EACA,IAAI,OAAO;AACT,UAAM,uBAAuB,iBAAiB,cAAc,iBAAiB;AAC7E,QAAI;AACJ,QAAI,sBAAsB;AACxB,mBAAa;AACb,UAAI,WAAW,QAAQ,WAAW,GAAG;AACnC,cAAM,IAAI,WAAW,uHAAuH;AAAA,MAC9I;AACA,UAAI,WAAW,OAAO,WAAW,GAAG;AAClC,cAAM,IAAI,WAAW,qHAAqH;AAAA,MAC5I;AAAA,IACF;AACA,QAAI,KAAK,QAAQ,WAAW,GAAG;AAC7B,UAAI,MAAM,aAAa,WAAW,GAAG;AACnC,YAAI,MAAM,mBAAmB,MAAM;AACjC,gBAAM,IAAI,WAAW,+FAA+F;AAAA,QACtH;AACA,cAAM,IAAI,MAAM;AAAA,UACd,YAAY,MAAM;AAAA,UAClB,OAAO,MAAM;AAAA,UACb,MAAM,MAAM,OAAO;AAAA,QACrB,CAAC;AACD,cAAM,MAAM,CAAC;AAAA,MACf;AACA,UAAI,sBAAsB;AACxB,aAAK,UAAU,WAAW;AAC1B,aAAK,SAAS,WAAW;AAAA,MAC3B,OAAO;AACL,YAAI,MAAM,aAAa,WAAW,GAAG;AACnC,gBAAM,IAAI,WAAW,gHAAgH,MAAM,kBAAkB,MAAM,aAAa,0CAA0C;AAAA,QAC5N;AACA,YAAI,MAAM,aAAa,GAAG,cAAc,WAAW,GAAG;AACpD,gBAAM,IAAI,WAAW,uHAAuH;AAAA,QAC9I;AACA,aAAK,WAAW,KAAK;AACrB,aAAK,UAAU,CAAC,MAAM,aAAa,GAAG,cAAc,EAAE;AACtD,aAAK,SAAS,gBAAgB,KAAK,QAAQ,EAAE;AAAA,MAC/C;AACA,WAAK,eAAe,CAAC;AACrB,UAAI,KAAK;AAAA,QACP,eAAe;AAAA,QACf,eAAe,CAAC;AAAA,QAChB,aAAa,CAAC;AAAA,QACd,eAAe,CAAC;AAAA,QAChB,cAAc,KAAK;AAAA,QACnB,eAAe,KAAK;AAAA,QACpB,YAAY,aAAa,MAAM,KAAK,OAAO,MAAM;AAAA,QACjD,aAAa,CAAC,IAAI;AAAA,QAClB,aAAa,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,KAAK;AAAA,QAC3C,cAAc,KAAK,QAAQ,GAAG;AAAA,MAChC,CAAC;AAAA,IACH,OAAO;AACL,YAAM,eAAe,MAAM,MAAM,KAAK,QAAQ,EAAE;AAChD,UAAI,MAAM,QAAQ,YAAY,GAAG;AAC/B,cAAM,IAAI,UAAU,uHAAuH;AAAA,MAC7I;AACA,WAAK,WAAW,KAAK;AACrB,WAAK,UAAU,CAAC,YAAY;AAC5B,WAAK,aAAa,GAAG,gBAAgB,KAAK;AAC1C,WAAK,aAAa,GAAG,eAAe,CAAC,KAAK,QAAQ,GAAG,KAAK;AAAA,IAC5D;AACA,SAAK,OAAO,KAAK,KAAK;AACtB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,MAAM;AACJ,QAAI,KAAK,OAAO,WAAW,GAAG;AAC5B,YAAM,IAAI,UAAU,mCAAmC;AAAA,IACzD;AACA,SAAK,OAAO,IAAI;AAChB,QAAI,KAAK,OAAO,WAAW,GAAG;AAC5B,WAAK,UAAU,CAAC;AAChB,WAAK,eAAe,CAAC;AACrB,WAAK,gBAAgB,CAAC;AAAA,IACxB,OAAO;AACL,YAAM,iBAAiB,KAAK,OAAO,SAAS;AAC5C,WAAK,OAAO,gBAAgB,gBAAgB,CAAC;AAC7C,WAAK,UAAU,CAAC,KAAK,OAAO,gBAAgB,MAAM;AAClD,WAAK,aAAa,GAAG,gBAAgB,KAAK;AAC1C,WAAK,aAAa,GAAG,eAAe,CAAC,KAAK,QAAQ,GAAG,KAAK;AAAA,IAC5D;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM;AAAA,IACb;AACA,WAAO,KAAK,MAAM,KAAK,QAAQ,MAAM;AAAA,EACvC;AAAA,EACA,MAAM,YAAY;AAChB,uBAAmB,UAAU;AAC7B,QAAI,KAAK,OAAO,WAAW,KAAK,KAAK,QAAQ,WAAW,GAAG;AACzD,YAAM,IAAI,UAAU,0EAA0E;AAAA,IAChG;AACA,SAAK,QAAQ,IAAI,YAAY;AAAA,MAC3B,QAAQ,KAAK;AAAA,MACb,SAAS,KAAK,QAAQ;AAAA,MACtB,MAAM,KAAK,OAAO;AAAA,IACpB,CAAC;AACD,SAAK,MAAM,YAAY,KAAK;AAC5B,SAAK,kBAAkB,KAAK,MAAM;AAClC,SAAK,cAAc,KAAK,MAAM;AAC9B,SAAK,yBAAyB,KAAK,MAAM;AACzC,SAAK,2BAA2B,KAAK,MAAM;AAC3C,SAAK,eAAe,KAAK,MAAM;AAC/B,SAAK,0BAA0B,KAAK,MAAM;AAC1C,SAAK,4BAA4B,KAAK,MAAM;AAC5C,SAAK,eAAe,KAAK,MAAM;AAC/B,SAAK,iBAAiB,KAAK,MAAM;AACjC,SAAK,cAAc,KAAK,MAAM;AAC9B,SAAK,aAAa,KAAK,MAAM;AAC7B,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,cAAc;AACZ,QAAI,CAAC,KAAK,OAAO;AACf,WAAK,MAAM;AAAA,IACb;AACA,WAAO,MAAM,YAAY;AAAA,EAC3B;AAAA,EACA,QAAQ,YAAY,WAAW,UAAU,QAAQ,KAAK;AACpD,QAAI,CAAC,KAAK,OAAO;AACf,WAAK,MAAM;AAAA,IACb;AACA,UAAM,QAAQ,YAAY,WAAW,OAAO;AAAA,EAC9C;AAAA,EACA,WAAW,SAAS;AAClB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM;AAAA,IACb;AACA,SAAK,MAAM,WAAW,OAAO;AAAA,EAC/B;AAAA,EACA,SAAS,GAAG,GAAG,OAAO,CAAC,GAAG;AACxB,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,mDAAmD;AAAA,IAC5E;AACA,WAAO,KAAK,MAAM,SAAS,GAAG,GAAG,IAAI;AAAA,EACvC;AAAA,EACA,MAAM,gBAAgB,SAAS,MAAM;AACnC,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,mDAAmD;AAAA,IAC5E;AACA,WAAO,KAAK,MAAM,gBAAgB,SAAS,IAAI;AAAA,EACjD;AAAA,EACA,QAAQ,GAAG,OAAO,CAAC,GAAG;AACpB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM;AAAA,IACb;AACA,WAAO,KAAK,MAAM,QAAQ,GAAG,IAAI;AAAA,EACnC;AAAA,EACA,eAAe,GAAG;AAChB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM;AAAA,IACb;AACA,WAAO,KAAK,MAAM,eAAe,CAAC;AAAA,EACpC;AAAA,EACA,QAAQ,MAAM;AACZ,SAAK,MAAM;AACX,SAAK,MAAM,QAAQ,IAAI;AACvB,SAAK,aAAa,KAAK,MAAM;AAC7B,SAAK,mBAAmB,KAAK,MAAM;AACnC,SAAK,OAAO,KAAK,MAAM;AACvB,SAAK,UAAU,KAAK,MAAM;AAC1B,SAAK,iBAAiB,KAAK,MAAM;AACjC,SAAK,eAAe,KAAK,MAAM;AAAA,EACjC;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK,SAAS,OAAO,SAAS,KAAK,MAAM;AAAA,EAClD;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,SAAK,MAAM,YAAY;AAAA,EACzB;AAAA,EACA,MAAM,IAAI,GAAG,GAAG,OAAO,CAAC,GAAG;AACzB,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,mDAAmD;AAAA,IAC5E;AACA,WAAO,KAAK,MAAM,IAAI,GAAG,GAAG,IAAI;AAAA,EAClC;AAAA,EACA,MAAM,WAAW,SAAS,MAAM;AAC9B,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,mDAAmD;AAAA,IAC5E;AACA,WAAO,KAAK,MAAM,WAAW,SAAS,IAAI;AAAA,EAC5C;AAAA,EACA,MAAM,aAAa,GAAG,GAAG;AACvB,WAAO,KAAK,MAAM,aAAa,GAAG,CAAC;AAAA,EACrC;AAAA,EACA,OAAO,WAAW,KAAKf,SAAQ,gBAAgB,CAAC,GAAG,iBAAiB,OAAO;AACzE,QAAI;AACJ,QAAI,mBAAmB,CAAC;AACxB,QAAIA,mBAAkB,OAAO;AAC3B,UAAI,EAAEA,QAAO,GAAG,aAAa,SAASA,QAAO,GAAG,iBAAiB,SAAS;AACxE,cAAM,IAAI,WAAW,gDAAgD;AAAA,MACvE;AACA,oBAAcA;AAAA,IAChB,OAAO;AACL,mBAAa,OAAOA,QAAO,aAAa,MAAM,MAAM,qHAAqH;AACzK,oBAAcA,QAAO;AACrB,aAAOA,QAAO;AACd,yBAAmBA;AAAA,IACrB;AACA,UAAMe,UAAS,IAAI,IAAI,gBAAgB;AACvC,QAAI,EAAEA,mBAAkB,aAAa;AACnC,YAAM,IAAI,oBAAoB,yDAAyDA,SAAQ;AAAA,IACjG;AACA,eAAW,QAAQ,aAAa;AAC9B,YAAM,iBAAiB;AACvB,YAAM,QAAQ,YAAY,MAAM,gBAAgB,cAAc;AAC9D,UAAI,gBAAgB;AAClB,cAAM,6BAA6B,IAAI;AAAA,MACzC;AACA,MAAAA,QAAO,IAAI,KAAK;AAAA,IAClB;AACA,WAAOA;AAAA,EACT;AAAA,EACA,IAAI,aAAa,MAAM;AACrB,QAAI,KAAK,SAAS,MAAM;AACtB,YAAM,IAAI,WAAW,mFAAmF;AAAA,IAC1G;AACA,SAAK,MAAM,eAAe;AAAA,EAC5B;AAAA,EACA,IAAI,eAAe;AACjB,QAAI,KAAK,SAAS,MAAM;AACtB,YAAM,IAAI,WAAW,mFAAmF;AAAA,IAC1G;AACA,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,YAAY;AACV,UAAM,SAAS,CAAC;AAChB,eAAW,SAAS,KAAK,QAAQ;AAC/B,YAAM,OAAO,CAAC;AACd,WAAK,eAAe,MAAM,aAAa;AACvC,WAAK,YAAY,MAAM,UAAU;AACjC,aAAO,KAAK,IAAI;AAAA,IAClB;AACA,WAAO,EAAE,MAAM,KAAK,MAAM,OAAO;AAAA,EACnC;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAG9C,SAAS,MAAM,MAAM;AACnB,SAAO,IAAI,YAAY,IAAI;AAC7B;AACA,SAAS,WAAWf,SAAQ;AAC1B,SAAO,IAAI,WAAWA,OAAM;AAC9B;AACA,SAAS,gBAAgB,iBAAiBT,UAAS;AACjD,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU,CAAC;AAAA,EACb;AACA,SAAO,wBAAwB,iBAAiBA,QAAO;AACzD;AACA,SAAS,MAAMS,SAAQ;AACrB,SAAO,MAAMA,OAAM;AACrB;AACA,SAAS,4BAA4B,gBAAgB,qBAAqB;AACxE,8BAA4B,4BAA4B,gBAAgB,mBAAmB;AAC7F;AAGA,IAAI,aAAa,cAAc,sBAAsB,aAAa;AAAA,EAChE,YAAY;AACV,WAAO,CAAC;AAAA,EACV;AACF;AACA,IAAI,OAAO,cAAc,WAAW;AAAA,EAClC,MAAM,GAAGQ,SAAQ,GAAG;AAClB,WAAO,KAAK,GAAGA,MAAK;AAAA,EACtB;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,QAAQ,cAAc,WAAW;AAAA,EACnC,MAAM,GAAG;AACP,WAAO,KAAK,CAAC;AAAA,EACf;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,QAAQ,cAAc,WAAW;AAAA,EACnC,MAAM,GAAG;AACP,WAAO,KAAK,CAAC;AAAA,EACf;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,SAAS,cAAc,WAAW;AAAA,EACpC,MAAM,GAAG;AACP,WAAO,KAAK,MAAM,QAAQ,GAAG,KAAK,CAAC,CAAC,CAAC;AAAA,EACvC;AACF;AACA,OAAO,YAAY;AACnB,sBAAsB,cAAc,MAAM;AAC1C,IAAI,SAAS,cAAc,WAAW;AAAA,EACpC,MAAM,GAAG;AACP,WAAO;AAAA,EACT;AACF;AACA,OAAO,YAAY;AACnB,sBAAsB,cAAc,MAAM;AAC1C,IAAI,WAAW,cAAc,WAAW;AAAA,EACtC,MAAM,GAAG;AACP,WAAO,QAAQ,CAAC;AAAA,EAClB;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,cAAc,cAAc,WAAW;AAAA,EACzC,MAAM,GAAG;AACP,WAAO,YAAY,CAAC;AAAA,EACtB;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,YAAY,cAAc,WAAW;AAAA,EACvC,MAAM,GAAG;AACP,WAAO,SAAS,CAAC;AAAA,EACnB;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,WAAW,cAAc,WAAW;AAAA,EACtC,MAAM,GAAG;AACP,WAAO,SAAS,CAAC;AAAA,EACnB;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,QAAQ,cAAc,WAAW;AAAA,EACnC,MAAM,GAAG;AACP,WAAO,MAAM,CAAC;AAAA,EAChB;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,WAAW,cAAc,WAAW;AAAA,EACtC,MAAM,GAAG,OAAO,IAAI;AAClB,WAAO,QAAQ,GAAG,IAAI;AAAA,EACxB;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,cAAc,cAAc,WAAW;AAAA,EACzC,MAAM,GAAG,OAAO,IAAI;AAClB,WAAO,WAAW,GAAG,IAAI;AAAA,EAC3B;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,QAAQ,cAAc,WAAW;AAAA,EACnC,MAAM,GAAGA,SAAQ,GAAG;AAClB,WAAO,KAAK,MAAM,IAAI,QAAQ,IAAI,GAAGA,MAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAClD;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,OAAO,cAAc,WAAW;AAAA,EAClC,MAAM,GAAG;AACP,WAAO,KAAK,MAAM,IAAI,GAAG,MAAM,SAAS,CAAC,CAAC,CAAC,CAAC;AAAA,EAC9C;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,SAAS,oBAAoB,aAAa;AACxC,SAAO,YAAY,aAAa;AAClC;AACA,SAAS,sBAAsBR,SAAQ,gBAAgB,CAAC,GAAG;AACzD,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,YAAY;AACjI;AACA,SAAS,cAAc,YAAY;AACjC,MAAI,cAAc,MAAM;AACtB,UAAMA,UAAS,CAAC;AAChB,IAAAA,QAAO,eAAe;AACtB,IAAAA,QAAO,YAAY,CAAC;AACpB,WAAO,sBAAsBA,OAAM;AAAA,EACrC;AACA,MAAI,OAAO,eAAe,UAAU;AAClC,UAAMA,UAAS,CAAC;AAChB,IAAAA,QAAO,eAAe;AACtB,IAAAA,QAAO,YAAY,CAAC;AACpB,WAAO,sBAAsBA,OAAM;AAAA,EACrC,WAAW,sBAAsB,YAAY;AAC3C,WAAO;AAAA,EACT,OAAO;AACL,WAAO,sBAAsB,UAAU;AAAA,EACzC;AACF;AAGA,SAAS,iBAAiB,MAAM;AAC9B,MAAI,QAAQ,QAAQ,OAAO,SAAS,UAAU;AAC5C,UAAM,IAAI,MAAM,yFAAyF,MAAM;AAAA,EACjH;AACF;AACA,IAAI,cAAc,cAAc,sBAAsB,aAAa;AACnE;AACA,IAAI,OAAO,cAAc,YAAY;AAAA,EACnC,YAAY,MAAM;AAChB,UAAM;AACN,qBAAiB,IAAI;AACrB,SAAK,KAAK,QAAQ,QAAQ,KAAK,MAAM,OAAO,OAAO,KAAK;AACxD,SAAK,KAAK,QAAQ,QAAQ,KAAK,MAAM,OAAO,OAAO,KAAK;AACxD,SAAK,QAAQ,KAAK,OAAO;AACzB,SAAK,QAAQ,KAAK,OAAO;AAAA,EAC3B;AAAA,EACA,MAAM,GAAG;AACP,WAAO,KAAK,MAAM;AAChB,UAAI,iBAAiB,MAAM,CAAC,CAAC,CAAC;AAC9B,UAAI,KAAK,OAAO;AACd,yBAAiB,KAAK,gBAAgB,KAAK,IAAI,KAAK,IAAI,IAAI,CAAC,CAAC,CAAC,CAAC;AAAA,MAClE;AACA,UAAI,KAAK,OAAO;AACd,yBAAiB,KAAK,gBAAgB,KAAK,IAAI,KAAK,IAAI,QAAQ,CAAC,CAAC,CAAC,CAAC;AAAA,MACtE;AACA,aAAO,QAAQ,gBAAgB,CAAC,CAAC;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,IAAI,MAAM,KAAK,GAAG;AAAA,EACxC;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAI,EAAE,IAAIA,QAAO,OAAO,IAAIA,QAAO,MAAM,CAAC;AAAA,EACvD;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,SAAS,GAAG,MAAM;AAChB,mBAAiB,IAAI;AACrB,SAAO,IAAI,KAAK,EAAE,IAAI,QAAQ,OAAO,KAAK,KAAK,MAAM,IAAI,EAAE,CAAC;AAC9D;AACA,SAAS,GAAG,MAAM;AAChB,mBAAiB,IAAI;AACrB,SAAO,IAAI,KAAK,EAAE,IAAI,QAAQ,OAAO,KAAK,KAAK,MAAM,IAAI,EAAE,CAAC;AAC9D;AACA,IAAI,6CAA6C;AAAA,EAC/C,QAAQ;AACV;AACA,SAAS,qBAAqB,YAAY;AACxC,SAAO,qBAAqB,UAAU;AACxC;AACA,SAAS,uBAAuBA,SAAQ,gBAAgB,CAAC,GAAG;AAC1D,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,aAAa;AAClI;AACA,SAAS,eAAe,YAAY;AAClC,MAAI,cAAc,MAAM;AACtB,WAAO;AAAA,EACT;AACA,MAAI,OAAO,eAAe,UAAU;AAClC,UAAM,YAAY,cAAc,6CAA6C,2CAA2C,cAAc;AACtI,UAAMA,UAAS,EAAE,WAAW,QAAQ,CAAC,EAAE;AACvC,WAAO,uBAAuBA,OAAM;AAAA,EACtC,WAAW,sBAAsB,aAAa;AAC5C,WAAO;AAAA,EACT,OAAO;AACL,WAAO,uBAAuB,UAAU;AAAA,EAC1C;AACF;AAGA,IAAI,OAAO,cAAc,MAAM;AAAA,EAC7B,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,kBAAkB;AACvB,QAAI,QAAQ,MAAM;AAChB,WAAK,WAAW,KAAK;AAAA,IACvB;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,aAAS,oBAAoB,MAAM;AACnC,QAAI,SAAS,KAAK,MAAM;AACxB,QAAI,KAAK,YAAY,MAAM;AACzB,eAAS,YAAY,QAAQ,GAAG,KAAK,QAAQ;AAAA,IAC/C;AACA,WAAO;AAAA,EACT;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,UAAU,KAAK,SAAS;AACzC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,gBAAgB;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,QAAQ,KAAK,SAAS,OAAO,KAAK,gBAAgB,KAAK;AAAA,EAC9D;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB,MAAM;AACpC,WAAO,UAAU,GAAG,KAAK,KAAK;AAAA,EAChC;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,OAAO,KAAK,MAAM;AACnC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,QAAQ,cAAc,MAAM;AAAA,EAC9B,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,4BAA4B;AACjC,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,kBAAkB;AACvB,SAAK,mBAAmB,eAAe,KAAK,oBAAoB,KAAK,yBAAyB;AAC9F,SAAK,mBAAmB,eAAe,KAAK,gBAAgB;AAC5D,SAAK,kBAAkB,cAAc,KAAK,eAAe;AACzD,QAAI,KAAK,cAAc,MAAM;AAC3B,WAAK,aAAa;AAAA,IACpB,WAAW,MAAM,QAAQ,KAAK,UAAU,GAAG;AACzC,WAAK,aAAa,KAAK;AAAA,IACzB,WAAW,OAAO,KAAK,eAAe,UAAU;AAC9C,WAAK,aAAa,CAAC,KAAK,UAAU;AAAA,IACpC,OAAO;AACL,YAAM,IAAI,WAAW,sEAAsE,KAAK,YAAY;AAAA,IAC9G;AAAA,EACF;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,aAAa,WAAW,MAAM,CAAC;AACrC,QAAI,KAAK,cAAc,MAAM;AAC3B,iBAAW,MAAM,KAAK,YAAY;AAChC,mBAAW,KAAK,KAAK;AAAA,MACvB;AAAA,IACF;AACA,SAAK,QAAQ,KAAK,UAAU,SAAS,YAAY,WAAW,KAAK,kBAAkB,KAAK,kBAAkB,MAAM,KAAK,eAAe;AACpI,UAAM,OAAO,CAAC;AACd,QAAI,KAAK,cAAc,MAAM;AAC3B,eAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,aAAK,MAAM,WAAW;AAAA,MACxB;AAAA,IACF;AACA,SAAK,YAAY,CAAC,IAAI,UAAU;AAAA,MAC9B,MAAM,WAAW;AAAA,MACjB;AAAA,IACF,CAAC,CAAC;AACF,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,aAAS,oBAAoB,MAAM;AACnC,WAAO,MAAM,QAAQ,KAAK,MAAM,KAAK,CAAC;AAAA,EACxC;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,iBAAiB,oBAAoB,KAAK,eAAe;AAAA,MACzD,YAAY,KAAK;AAAA,IACnB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,MAAM,cAAc,MAAM;AAAA,EAC5B,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,gBAAgB;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,QAAI,KAAK,SAAS,QAAQ,KAAK,UAAU,KAAK,eAAe;AAC3D,YAAM,IAAI,oBAAoB,4BAA4B,KAAK,+CAA+C;AAAA,IAChH;AACA,SAAK,QAAQ,KAAK,SAAS,OAAO,KAAK,gBAAgB,KAAK;AAAA,EAC9D;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB,MAAM;AACpC,WAAO,IAAI,CAAC;AAAA,EACd;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,OAAO,KAAK,MAAM;AACnC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,YAAY;AAChB,sBAAsB,cAAc,GAAG;AACvC,IAAI,kBAAkB,cAAc,MAAM;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,gBAAgB;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,QAAQ,KAAK,SAAS,OAAO,KAAK,gBAAgB,KAAK;AAAA,EAC9D;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB,MAAM;AACpC,WAAO,IAAI,GAAG,KAAK,QAAQ,GAAG,KAAK,KAAK,GAAG,SAAS,CAAC;AAAA,EACvD;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,OAAO,KAAK,MAAM;AACnC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,eAAe;AACpB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,UAAU,IAAI,SAAS,EAAE;AAC9B,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,eAAe,KAAK;AAAA,EAC3D;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB,MAAM;AACpC,WAAO,KAAK,QAAQ,GAAG,KAAK,IAAI;AAAA,EAClC;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,MAAM,KAAK,KAAK;AACjC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAG5C,SAAS,eAAe,OAAO,IAAI,MAAM;AACvC,MAAI,OAAO,UAAU,UAAU;AAC7B,WAAO,aAAa,OAAO,EAAE;AAAA,EAC/B,OAAO;AACL,QAAI,MAAM,WAAW,IAAI;AACvB,YAAM,IAAI,WAAW,OAAO,gDAAgD,0BAA0B,MAAM,kBAAkB;AAAA,IAChI;AACA,aAAS,KAAK,GAAG,KAAK,IAAI,EAAE,IAAI;AAC9B,YAAM,cAAc,MAAM;AAC1B,UAAI,CAAC,UAAU,WAAW,GAAG;AAC3B,cAAM,IAAI,WAAW,OAAO,gDAAgD,0BAA0B,KAAK,UAAU,KAAK,oCAAoC,aAAa;AAAA,MAC7K;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AACA,SAAS,iBAAiB,aAAa,YAAYa,UAAS,QAAQ,WAAW,GAAG;AAChF,MAAI,eAAe,MAAM;AACvB,WAAO;AAAA,EACT;AACA,QAAM,oBAAoB,cAAc,aAAa,MAAM,WAAW;AACtE,MAAI;AACJ,MAAIA,aAAY,QAAQ;AACtB,mBAAe;AAAA,EACjB,OAAO;AACL,mBAAe,cAAc,oBAAoB;AAAA,EACnD;AACA,SAAO,KAAK,OAAO,eAAe,SAAS,KAAK,MAAM;AACxD;AACA,SAAS,aAAa,SAAS,YAAY,YAAYA,UAAS;AAC9D,MAAI,WAAW,MAAM;AACnB,WAAO;AAAA,EACT;AACA,MAAIA,aAAY,SAAS;AACvB,cAAU,UAAU,aAAa,KAAK,CAAC,aAAa,YAAY,CAAC,CAAC;AAAA,EACpE,WAAWA,aAAY,QAAQ;AAC7B,cAAU,UAAU;AAAA,EACtB,OAAO;AACL,UAAM,IAAI,WAAW,2BAA2BA,WAAU;AAAA,EAC5D;AACA,SAAO;AACT;AAGA,SAAS,sBAAsB,GAAG,YAAY;AAC5C,SAAO,KAAK,MAAM;AAChB,oBAAgB,UAAU;AAC1B,QAAI,eAAe,iBAAiB;AAClC,aAAO,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAClC,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF,CAAC;AACH;AACA,SAAS,sBAAsB,GAAG,YAAY;AAC5C,SAAO,KAAK,MAAM;AAChB,oBAAgB,UAAU;AAC1B,QAAI,eAAe,iBAAiB;AAClC,aAAO,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IACrC,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF,CAAC;AACH;AACA,SAAS,eAAe,GAAG,QAAQ,MAAMf,WAAU,GAAGe,WAAU,SAAS,YAAY,eAAe,GAAG;AACrG,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,QAAI,EAAE,MAAM,WAAW,GAAG;AACxB,YAAM,IAAI,WAAW,+DAA+D,EAAE,MAAM,iBAAiB;AAAA,IAC/G;AACA,QAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,YAAM,IAAI,WAAW,iEAAiE,OAAO,MAAM,gBAAgB;AAAA,IACrH;AACA,QAAI,QAAQ,QAAQ,KAAK,MAAM,WAAW,GAAG;AAC3C,YAAM,IAAI,WAAW,+DAA+D,OAAO,MAAM,gBAAgB;AAAA,IACnH;AACA,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAAA,IAC5B;AACA,QAAIA,aAAY,UAAU;AACxB,YAAM,IAAI,oBAAoB,+EAA+E;AAAA,IAC/G;AACA,QAAI,IAAI,OAAO,GAAG,QAAQf,UAASe,aAAY,SAAS,SAAS,SAAS,OAAO,YAAY;AAC7F,QAAI,QAAQ,MAAM;AAChB,UAAI,QAAQ,GAAG,IAAI;AAAA,IACrB;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,SAAS,yBAAyB,GAAG,QAAQ,MAAMf,WAAU,CAAC,GAAG,CAAC,GAAGe,WAAU,SAAS,YAAY,cAAc,cAAc,MAAM;AACpI,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,QAAI,EAAE,SAAS,KAAK,EAAE,SAAS,GAAG;AAChC,YAAM,IAAI,WAAW,6EAA6E,EAAE,OAAO;AAAA,IAC7G;AACA,QAAI,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG;AAC1C,YAAM,IAAI,WAAW,8EAA8E,EAAE,OAAO;AAAA,IAC9G;AACA,QAAI,IAAI,sBAAsB,GAAG,UAAU;AAC3C,QAAIA,aAAY,UAAU;AACxB,YAAM,IAAI,oBAAoB,+EAA+E;AAAA,IAC/G;AACA,QAAI,kBAAkB,OAAO;AAAA,MAC3B,GAAG;AAAA,MACH,QAAQ;AAAA,MACR,SAAAf;AAAA,MACA,KAAKe,aAAY,SAAS,SAAS;AAAA,MACnC,WAAW;AAAA,MACX,YAAY;AAAA,MACZ;AAAA,MACA,YAAY;AAAA,IACd,CAAC;AACD,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAC/B;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,SAAS,eAAe,GAAG,QAAQ,MAAMf,WAAU,CAAC,GAAG,GAAG,CAAC,GAAGe,WAAU,SAAS,YAAY,cAAc;AACzG,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,QAAI,EAAE,SAAS,KAAK,EAAE,SAAS,GAAG;AAChC,YAAM,IAAI,WAAW,mEAAmE,EAAE,OAAO;AAAA,IACnG;AACA,QAAI,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG;AAC1C,YAAM,IAAI,WAAW,oEAAoE,EAAE,OAAO;AAAA,IACpG;AACA,QAAI,IAAI,sBAAsB,GAAG,UAAU;AAC3C,QAAIA,aAAY,UAAU;AACxB,YAAM,IAAI,oBAAoB,+EAA+E;AAAA,IAC/G;AACA,QAAI,OAAO,GAAG,QAAQf,UAASe,aAAY,SAAS,SAAS,SAAS,SAAS,YAAY;AAC3F,QAAI,QAAQ,MAAM;AAChB,UAAI,QAAQ,GAAG,IAAI;AAAA,IACrB;AACA,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAClC;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM,MAAM;AACtB,UAAM,IAAI;AACV,SAAK,OAAO;AACZ,SAAK,6BAA6B;AAClC,SAAK,2BAA2B;AAChC,aAAS,WAAW,IAAI;AACxB,SAAK,OAAO;AACZ,0BAAsB,KAAK,MAAM,MAAM;AACvC,QAAI,KAAK,SAAS,KAAK,KAAK,SAAS,KAAK,KAAK,SAAS,GAAG;AACzD,YAAM,IAAI,oBAAoB,qDAAqD,KAAK,+BAA+B;AAAA,IACzH;AACA,SAAK,aAAa,eAAe,KAAK,YAAY,MAAM,YAAY;AACpE,SAAK,UAAU,eAAe,KAAK,WAAW,OAAO,IAAI,KAAK,SAAS,MAAM,SAAS;AACtF,SAAK,UAAU,KAAK,WAAW,OAAO,UAAU,KAAK;AACrD,qBAAiB,KAAK,OAAO;AAC7B,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,SAAK,aAAa,cAAc,KAAK,UAAU;AAC/C,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,sBAAsB,eAAe,KAAK,mBAAmB;AAClE,SAAK,eAAe,eAAe,KAAK,gBAAgB,OAAO,IAAI,KAAK,cAAc,MAAM,cAAc;AAC1G,QAAI,KAAK,SAAS,MAAM,MAAM,QAAQ,KAAK,YAAY,KAAK,KAAK,aAAa,WAAW,IAAI;AAC3F,YAAM,IAAI,WAAW,iGAAiG,KAAK,UAAU,KAAK,YAAY,GAAG;AAAA,IAC3J,WAAW,KAAK,SAAS,GAAG;AAC1B,UAAI,OAAO,KAAK,iBAAiB,UAAU;AACzC,aAAK,eAAe,CAAC,KAAK,cAAc,KAAK,YAAY;AAAA,MAC3D,WAAW,KAAK,aAAa,WAAW,GAAG;AACzC,cAAM,IAAI,WAAW,0FAA0F,KAAK,UAAU,KAAK,YAAY,GAAG;AAAA,MACpJ;AAAA,IACF,WAAW,KAAK,SAAS,GAAG;AAC1B,UAAI,OAAO,KAAK,iBAAiB,UAAU;AACzC,aAAK,eAAe,CAAC,KAAK,cAAc,KAAK,cAAc,KAAK,YAAY;AAAA,MAC9E,WAAW,KAAK,aAAa,WAAW,GAAG;AACzC,cAAM,IAAI,WAAW,4FAA4F,KAAK,UAAU,KAAK,YAAY,GAAG;AAAA,MACtJ;AAAA,IACF;AAAA,EACF;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,YAAQ,gBAAgB,MAAM,yCAAyC;AACvE,QAAI,OAAO,KAAK,eAAe,YAAY,CAAC,wBAAwB,KAAK,YAAY,UAAU,GAAG,CAAC,GAAG;AACpG,YAAM,IAAI,WAAW,oGAAoG,KAAK,UAAU,KAAK,UAAU,IAAI;AAAA,IAC7J;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAMb,UAAS;AAAA,MACb,YAAY,KAAK;AAAA,MACjB,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,cAAc,KAAK;AAAA,MACnB,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,SAAS,KAAK;AAAA,MACd,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,IACzD;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,OAAO,cAAc,SAAS;AAAA,EAChC,YAAY,MAAM,MAAM;AACtB,UAAM,MAAM,IAAI;AAChB,SAAK,SAAS;AACd,SAAK,WAAW,IAAI;AACpB,SAAK,UAAU,KAAK;AACpB,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAAA,EAChE;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,MAAM;AACnC,YAAM,IAAI,WAAW,+DAA+D,WAAW,cAAc;AAAA,IAC/G;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,cAAc,KAAK,WAAW,OAAO,CAAC,UAAU,KAAK,OAAO,CAAC;AACnE,SAAK,SAAS,KAAK,UAAU,UAAU,aAAa,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACrI,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,OAAO,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAChI;AACA,SAAK,YAAY,CAAC,EAAE,MAAM,KAAK,OAAO,GAAG,MAAM,EAAE,CAAC,cAAc,SAAS,EAAE,CAAC;AAC5E,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,UAAI;AACJ,YAAM,YAAY,KAAK,QAAQ,OAAO,OAAO,KAAK,KAAK,KAAK;AAC5D,YAAM,sBAAsB,2BAA2B,KAAK,WAAW,aAAa,CAAC;AACrF,UAAI,uBAAuB,QAAQ,KAAK,SAAS,GAAG;AAClD,kBAAU,yBAAyB,QAAQ,KAAK,OAAO,KAAK,GAAG,WAAW,KAAK,SAAS,KAAK,SAAS,KAAK,YAAY,KAAK,cAAc,mBAAmB;AAAA,MAC/J,OAAO;AACL,YAAI,KAAK,SAAS,GAAG;AACnB,oBAAU,eAAe,QAAQ,KAAK,OAAO,KAAK,GAAG,WAAW,KAAK,QAAQ,IAAI,KAAK,SAAS,KAAK,YAAY,KAAK,aAAa,EAAE;AAAA,QACtI,WAAW,KAAK,SAAS,GAAG;AAC1B,oBAAU,yBAAyB,QAAQ,KAAK,OAAO,KAAK,GAAG,WAAW,KAAK,SAAS,KAAK,SAAS,KAAK,YAAY,KAAK,YAAY;AAAA,QAC1I,WAAW,KAAK,SAAS,GAAG;AAC1B,oBAAU,eAAe,QAAQ,KAAK,OAAO,KAAK,GAAG,WAAW,KAAK,SAAS,KAAK,SAAS,KAAK,YAAY,KAAK,YAAY;AAAA,QAChI,OAAO;AACL,gBAAM,IAAI,oBAAoB,uDAAuD;AAAA,QACvF;AACA,YAAI,KAAK,cAAc,MAAM;AAC3B,oBAAU,KAAK,WAAW,MAAM,OAAO;AAAA,QACzC;AAAA,MACF;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,WAAW,CAAC;AAClB,UAAM,QAAQ,KAAK,eAAe,iBAAiB,WAAW,MAAM,GAAG,WAAW,SAAS,CAAC,IAAI,WAAW,MAAM,CAAC;AAClH,aAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,YAAM,SAAS,iBAAiB,MAAM,KAAK,KAAK,WAAW,KAAK,KAAK,SAAS,KAAK,QAAQ,KAAK,OAAO,KAAK,iBAAiB,WAAW,KAAK,eAAe,KAAK,aAAa,GAAG;AACjL,eAAS,KAAK,MAAM;AAAA,IACtB;AACA,QAAI,cAAc,CAAC,WAAW,EAAE;AAChC,QAAI,KAAK,eAAe,gBAAgB;AACtC,oBAAc,YAAY,OAAO,QAAQ;AACzC,kBAAY,KAAK,KAAK,OAAO;AAAA,IAC/B,OAAO;AACL,kBAAY,KAAK,KAAK,OAAO;AAC7B,oBAAc,YAAY,OAAO,QAAQ;AAAA,IAC3C;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,IAC7D;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,QAAI,EAAE,aAAa,SAAS,OAAO,KAAK,YAAY,YAAY,KAAK,UAAU,GAAG;AAChF,YAAM,IAAI,WAAW,0EAA0E,KAAK,UAAU,KAAK,OAAO,GAAG;AAAA,IAC/H;AAAA,EACF;AACF;AACA,IAAI,UAAU,cAAc,KAAK;AAAA,EAC/B,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AACb,YAAQ,WAAW,IAAI;AAAA,EACzB;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,QAAI,OAAO,KAAK,eAAe,YAAY,CAAC,wBAAwB,KAAK,YAAY,UAAU,GAAG,CAAC,GAAG;AACpG,YAAM,IAAI,WAAW,8FAA8F,KAAK,UAAU,KAAK,UAAU,IAAI;AAAA,IACvJ;AAAA,EACF;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,UAAU,cAAc,KAAK;AAAA,EAC/B,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AACb,YAAQ,WAAW,IAAI;AAAA,EACzB;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,QAAI,OAAO,KAAK,eAAe,UAAU;AACvC,UAAI,EAAE,MAAM,QAAQ,KAAK,UAAU,MAAM,KAAK,WAAW,WAAW,KAAK,KAAK,WAAW,WAAW,KAAK;AACvG,cAAM,IAAI,WAAW,2FAA2F,KAAK,UAAU,KAAK,UAAU,IAAI;AAAA,MACpJ;AAAA,IACF;AAAA,EACF;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAC5C,QAAI,KAAK,YAAY,UAAU,KAAK,YAAY,SAAS;AACvD,YAAM,IAAI,WAAW,uGAAuG,KAAK,SAAS;AAAA,IAC5I;AAAA,EACF;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,WAAW,GAAG;AAC3B,YAAM,IAAI,WAAW,qDAAqD,KAAK,UAAU,UAAU,CAAC;AAAA,IACtG;AACA,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,MAAM;AACnC,YAAM,IAAI,WAAW,sEAAsE;AAAA,IAC7F;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,cAAc,KAAK,WAAW,OAAO,CAAC,KAAK,SAAS,QAAQ,CAAC;AACnE,SAAK,SAAS,KAAK,UAAU,UAAU,aAAa,WAAW,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AAC1I,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,OAAO,GAAG,WAAW,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IACrI;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,GAAG,MAAM,EAAE,CAAC,cAAc,SAAS,EAAE,CAAC,CAAC;AAC/E,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,oBAAoB,MAAM;AACvC,UAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,2FAA2F,OAAO,MAAM,QAAQ;AAAA,MACvI;AACA,YAAM,aAAa,OAAO;AAC1B,YAAM,YAAY,WAAW;AAC7B,UAAI;AACJ,UAAI;AACJ,UAAI,KAAK,eAAe,iBAAiB;AACvC,gBAAQ;AACR,gBAAQ;AAAA,MACV,OAAO;AACL,gBAAQ;AACR,gBAAQ;AAAA,MACV;AACA,YAAM,SAAS,WAAW;AAC1B,YAAM,QAAQ,WAAW;AACzB,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,YAAY,aAAa,QAAQ,SAAS,SAAS,KAAK,OAAO;AACrE,YAAM,WAAW,aAAa,OAAO,SAAS,SAAS,KAAK,OAAO;AACnE,YAAM,cAAc,CAAC,WAAW,WAAW,UAAU,KAAK,OAAO;AACjE,UAAI,KAAK,eAAe,gBAAgB;AACtC,iBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MACzC;AACA,UAAI,UAAU,gBAAgB,QAAQ,KAAK,OAAO,KAAK,GAAG,aAAa,KAAK,SAAS,KAAK,OAAO;AACjG,UAAI,KAAK,eAAe,gBAAgB;AACtC,kBAAU,UAAU,SAAS,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MAC3C;AACA,UAAI,KAAK,QAAQ,MAAM;AACrB,kBAAU,QAAQ,SAAS,KAAK,KAAK,KAAK,GAAG,KAAK,UAAU;AAAA,MAC9D;AACA,UAAI,KAAK,cAAc,MAAM;AAC3B,kBAAU,KAAK,WAAW,MAAM,OAAO;AAAA,MACzC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,WAAW,MAAM;AACrC,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,eAAe,iBAAiB;AACvC,oBAAc;AACd,mBAAa;AACb,kBAAY;AAAA,IACd,OAAO;AACL,oBAAc;AACd,mBAAa;AACb,kBAAY;AAAA,IACd;AACA,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,QAAQ;AAC7B,UAAM,UAAU,KAAK,QAAQ;AAC7B,gBAAY,eAAe,KAAK;AAChC,gBAAY,cAAc,aAAa,YAAY,aAAa,SAAS,SAAS,KAAK,OAAO;AAC9F,gBAAY,aAAa,aAAa,YAAY,YAAY,SAAS,SAAS,KAAK,OAAO;AAC5F,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAC5C,QAAI,KAAK,YAAY,UAAU,KAAK,YAAY,SAAS;AACvD,YAAM,IAAI,WAAW,uGAAuG,KAAK,SAAS;AAAA,IAC5I;AAAA,EACF;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,WAAW,GAAG;AAC3B,YAAM,IAAI,WAAW,qDAAqD,KAAK,UAAU,UAAU,CAAC;AAAA,IACtG;AACA,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,MAAM;AACnC,YAAM,IAAI,WAAW,sEAAsE;AAAA,IAC7F;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,cAAc,KAAK,WAAW,OAAO,CAAC,KAAK,SAAS,QAAQ,CAAC;AACnE,SAAK,SAAS,KAAK,UAAU,UAAU,aAAa,WAAW,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AAC1I,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,OAAO,GAAG,WAAW,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IACrI;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,GAAG,MAAM,EAAE,CAAC,cAAc,SAAS,EAAE,CAAC,CAAC;AAC/E,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,oBAAoB,MAAM;AACvC,UAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,2FAA2F,OAAO,MAAM,QAAQ;AAAA,MACvI;AACA,YAAM,aAAa,OAAO;AAC1B,YAAM,YAAY,WAAW;AAC7B,UAAI;AACJ,UAAI;AACJ,UAAI;AACJ,UAAI,KAAK,eAAe,iBAAiB;AACvC,gBAAQ;AACR,gBAAQ;AACR,gBAAQ;AAAA,MACV,OAAO;AACL,gBAAQ;AACR,gBAAQ;AACR,gBAAQ;AAAA,MACV;AACA,YAAM,QAAQ,WAAW;AACzB,YAAM,SAAS,WAAW;AAC1B,YAAM,QAAQ,WAAW;AACzB,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,WAAW,aAAa,OAAO,SAAS,SAAS,KAAK,OAAO;AACnE,YAAM,YAAY,aAAa,QAAQ,SAAS,SAAS,KAAK,OAAO;AACrE,YAAM,WAAW,aAAa,OAAO,SAAS,SAAS,KAAK,OAAO;AACnE,YAAM,cAAc,CAAC,WAAW,UAAU,WAAW,UAAU,KAAK,OAAO;AAC3E,UAAI,KAAK,eAAe,gBAAgB;AACtC,iBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MAC5C;AACA,UAAI,UAAU,gBAAgB,QAAQ,KAAK,OAAO,KAAK,GAAG,aAAa,KAAK,SAAS,KAAK,OAAO;AACjG,UAAI,KAAK,eAAe,gBAAgB;AACtC,kBAAU,UAAU,SAAS,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MAC9C;AACA,UAAI,KAAK,SAAS,MAAM;AACtB,kBAAU,QAAQ,SAAS,KAAK,KAAK,KAAK,GAAG,KAAK,UAAU;AAAA,MAC9D;AACA,UAAI,KAAK,eAAe,MAAM;AAC5B,kBAAU,KAAK,WAAW,MAAM,OAAO;AAAA,MACzC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,WAAW,MAAM;AACrC,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,eAAe,iBAAiB;AACvC,oBAAc;AACd,kBAAY;AACZ,mBAAa;AACb,kBAAY;AAAA,IACd,OAAO;AACL,oBAAc;AACd,kBAAY;AACZ,mBAAa;AACb,kBAAY;AAAA,IACd;AACA,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,QAAQ;AAC7B,UAAM,UAAU,KAAK,QAAQ;AAC7B,UAAM,UAAU,KAAK,QAAQ;AAC7B,gBAAY,eAAe,KAAK;AAChC,gBAAY,aAAa,aAAa,YAAY,YAAY,SAAS,SAAS,KAAK,OAAO;AAC5F,gBAAY,cAAc,aAAa,YAAY,aAAa,SAAS,SAAS,KAAK,OAAO;AAC9F,gBAAY,aAAa,aAAa,YAAY,YAAY,SAAS,SAAS,KAAK,OAAO;AAC5F,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,gBAAgB,cAAc,KAAK;AAAA,EACrC,YAAY,MAAMA,SAAQ;AACxB,UAAM,MAAMA,OAAM;AAClB,SAAK,gCAAgC;AACrC,SAAK,gCAAgC;AACrC,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,QAAIA,QAAO,WAAW,MAAM;AAC1B,YAAM,IAAI,WAAW,qFAAqF;AAAA,IAC5G;AACA,QAAIA,QAAO,qBAAqB,QAAQA,QAAO,qBAAqB,QAAQA,QAAO,oBAAoB,MAAM;AAC3G,YAAM,IAAI,WAAW,oPAAoP;AAAA,IAC3Q;AACA,QAAIA,QAAO,WAAW,QAAQA,QAAO,YAAY,UAAUA,QAAO,YAAY,SAAS;AACrF,YAAM,IAAI,WAAW,gBAAgB,KAAK,uEAAuE,KAAK,UAAUA,QAAO,OAAO,GAAG;AAAA,IACnJ;AACA,SAAK,kBAAkBA,QAAO,mBAAmB,OAAO,IAAIA,QAAO;AACnE,SAAK,uBAAuB,eAAeA,QAAO,wBAAwB,KAAK,6BAA6B;AAC5G,SAAK,uBAAuB,eAAeA,QAAO,oBAAoB;AACtE,SAAK,sBAAsB,cAAcA,QAAO,mBAAmB;AACnE,SAAK,uBAAuB,eAAeA,QAAO,wBAAwB,KAAK,6BAA6B;AAC5G,SAAK,uBAAuB,eAAeA,QAAO,oBAAoB;AACtE,SAAK,sBAAsB,cAAcA,QAAO,mBAAmB;AAAA,EACrE;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,SAAS,KAAK,OAAO,GAAG;AACrC,YAAM,IAAI,WAAW,0BAA0B,KAAK,0BAA0B,KAAK,OAAO,gCAAgC,KAAK,UAAU,UAAU,GAAG;AAAA,IACxJ;AACA,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,QAAQ,WAAW,eAAe,GAAG;AAClE,YAAM,IAAI,WAAW,oEAAoE,KAAK,UAAU,WAAW,YAAY,GAAG;AAAA,IACpI;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,uBAAuB,KAAK,WAAW,OAAO,CAAC,UAAU,KAAK,eAAe,CAAC;AACpF,UAAM,uBAAuB,CAAC;AAC9B,aAAS,KAAK,GAAG,KAAK,KAAK,MAAM,EAAE,IAAI;AACrC,2BAAqB,KAAK,CAAC;AAAA,IAC7B;AACA,yBAAqB,KAAK,WAAW,KAAK,iBAAiB,KAAK,OAAO;AACvE,UAAM,YAAY;AAClB,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,sBAAsB,WAAW,KAAK,sBAAsB,KAAK,sBAAsB,WAAW,KAAK,mBAAmB;AACpL,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,sBAAsB,WAAW,KAAK,sBAAsB,KAAK,sBAAsB,WAAW,KAAK,mBAAmB;AACpL,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,OAAO,GAAG,WAAW,KAAK,iBAAiB,KAAK,iBAAiB,WAAW,KAAK,cAAc;AAAA,IAC1I,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,KAAK,OAAO,GAAG,MAAM,EAAE,CAAC,cAAc,SAAS,EAAE,CAAC,CAAC;AAC3F,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,UAAI;AACJ,UAAI,KAAK,SAAS,GAAG;AACnB,cAAM,IAAI,oBAAoB,kDAAkD;AAAA,MAClF,WAAW,KAAK,SAAS,GAAG;AAC1B,YAAI,KAAK,eAAe,iBAAiB;AACvC,mBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,QACzC;AACA,iBAAS,gBAAgB,QAAQ,KAAK,gBAAgB,KAAK,GAAG,KAAK,gBAAgB,KAAK,GAAG,KAAK,SAAS,KAAK,SAAS,KAAK,cAAc,MAAM;AAAA,MAClJ;AACA,UAAI,KAAK,SAAS;AAChB,iBAAS,QAAQ,QAAQ,KAAK,KAAK,KAAK,GAAG,KAAK,UAAU;AAAA,MAC5D;AACA,UAAI,KAAK,cAAc,MAAM;AAC3B,iBAAS,KAAK,WAAW,MAAM,MAAM;AAAA,MACvC;AACA,UAAI,KAAK,eAAe,iBAAiB;AACvC,iBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MACzC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA,QAAO;AACd,WAAOA,QAAO;AACd,WAAOA,QAAO;AACd,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,yBAAyB,oBAAoB,KAAK,mBAAmB;AAC5E,IAAAA,QAAO,yBAAyB,oBAAoB,KAAK,mBAAmB;AAC5E,WAAOA;AAAA,EACT;AACF;AACA,cAAc,YAAY;AAC1B,IAAI,kBAAkB,cAAc,cAAc;AAAA,EAChD,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AAAA,EACf;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,SAAS,cAAc,KAAK;AAAA,EAC9B,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AACb,WAAO,WAAW,IAAI;AACtB,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,QAAI,OAAO,KAAK,eAAe,YAAY,CAAC,wBAAwB,KAAK,YAAY,UAAU,GAAG,CAAC,GAAG;AACpG,YAAM,IAAI,WAAW,yFAAyF,KAAK,UAAU,KAAK,UAAU,IAAI;AAAA,IAClJ;AAAA,EACF;AACF;AACA,OAAO,YAAY;AACnB,sBAAsB,cAAc,MAAM;AAC1C,IAAI,aAAa,cAAc,MAAM;AAAA,EACnC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,QAAI,OAAO,KAAK,aAAa,UAAU;AACrC,WAAK,WAAW,CAAC,CAAC,KAAK,UAAU,KAAK,QAAQ,GAAG,CAAC,KAAK,UAAU,KAAK,QAAQ,CAAC;AAAA,IACjF,WAAW,OAAO,KAAK,SAAS,OAAO,UAAU;AAC/C,WAAK,WAAW;AAAA,QACd,CAAC,KAAK,SAAS,IAAI,KAAK,SAAS,EAAE;AAAA,QACnC,CAAC,KAAK,SAAS,IAAI,KAAK,SAAS,EAAE;AAAA,MACrC;AAAA,IACF,OAAO;AACL,WAAK,WAAW,KAAK;AAAA,IACvB;AACA,SAAK,aAAa,KAAK,eAAe,SAAS,iBAAiB,KAAK;AACrE,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,KAAK,eAAe,iBAAiB;AACvC,aAAO;AAAA,QACL,WAAW;AAAA,QACX,WAAW;AAAA,QACX,WAAW,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG;AAAA,QACvD,WAAW,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG;AAAA,MACzD;AAAA,IACF,OAAO;AACL,aAAO;AAAA,QACL,WAAW;AAAA,QACX,WAAW,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG;AAAA,QACvD,WAAW,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG;AAAA,QACvD,WAAW;AAAA,MACb;AAAA,IACF;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,UAAI,KAAK,eAAe,gBAAgB;AACtC,cAAM,UAAU,eAAe,QAAQ,KAAK,SAAS,GAAG,IAAI,OAAO,MAAM,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG,IAAI,CAAC;AAC1H,eAAO,eAAe,SAAS,KAAK,SAAS,GAAG,IAAI,OAAO,MAAM,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG,IAAI,CAAC;AAAA,MACpH,OAAO;AACL,cAAM,UAAU,eAAe,QAAQ,KAAK,SAAS,GAAG,IAAI,OAAO,MAAM,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG,IAAI,CAAC;AAC1H,eAAO,eAAe,SAAS,KAAK,SAAS,GAAG,IAAI,OAAO,MAAM,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG,IAAI,CAAC;AAAA,MACpH;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,UAAU,KAAK,UAAU,YAAY,KAAK,WAAW;AACtE,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAC9C,IAAI,eAAe,cAAc,MAAM;AAAA,EACrC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,eAAe,CAAC,GAAG,CAAC;AACzB,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAC7B,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,eAAe,KAAK;AACzD,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,SAAK,gBAAgB,KAAK,iBAAiB,OAAO,YAAY,KAAK;AACnE,6BAAyB,KAAK,aAAa;AAAA,EAC7C;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,KAAK,eAAe,iBAAiB;AACvC,YAAM,SAAS,WAAW,MAAM,OAAO,OAAO,KAAK,KAAK,KAAK,WAAW;AACxE,YAAM,QAAQ,WAAW,MAAM,OAAO,OAAO,KAAK,KAAK,KAAK,WAAW;AACvE,aAAO,CAAC,WAAW,IAAI,WAAW,IAAI,QAAQ,KAAK;AAAA,IACrD,OAAO;AACL,YAAM,SAAS,WAAW,MAAM,OAAO,OAAO,KAAK,KAAK,KAAK,WAAW;AACxE,YAAM,QAAQ,WAAW,MAAM,OAAO,OAAO,KAAK,KAAK,KAAK,WAAW;AACvE,aAAO,CAAC,WAAW,IAAI,QAAQ,OAAO,WAAW,EAAE;AAAA,IACrD;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,oBAAoB,MAAM;AACvC,YAAM,aAAa,OAAO;AAC1B,UAAI,KAAK,eAAe,iBAAiB;AACvC,iBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AACvC,cAAM,SAAS,KAAK,KAAK,KAAK,WAAW;AACzC,cAAM,QAAQ,KAAK,KAAK,KAAK,WAAW;AACxC,cAAM,UAAU,KAAK,kBAAkB,YAAY,MAAM,sBAAsB,QAAQ,CAAC,QAAQ,KAAK,CAAC,IAAI,MAAM,eAAe,QAAQ,CAAC,QAAQ,KAAK,CAAC;AACtJ,eAAO,UAAU,SAAS,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MACxC,OAAO;AACL,cAAM,SAAS,KAAK,KAAK,KAAK,WAAW;AACzC,cAAM,QAAQ,KAAK,KAAK,KAAK,WAAW;AACxC,eAAO,KAAK,kBAAkB,YAAY,MAAM,sBAAsB,QAAQ,CAAC,QAAQ,KAAK,CAAC,IAAI,MAAM,eAAe,QAAQ,CAAC,QAAQ,KAAK,CAAC;AAAA,MAC/I;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,MACX,YAAY,KAAK;AAAA,MACjB,eAAe,KAAK;AAAA,IACtB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAGhD,SAAS,iBAAiB,GAAG,iBAAiBF,WAAU,CAAC,GAAG,CAAC,GAAGe,WAAU,SAAS,YAAY,cAAc;AAC3G,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,QAAI,IAAI,sBAAsB,GAAG,UAAU;AAC3C,QAAI,EAAE,SAAS,GAAG;AAChB,YAAM,IAAI,WAAW,mEAAmE,EAAE,QAAQ;AAAA,IACpG;AACA,QAAI,gBAAgB,SAAS,GAAG;AAC9B,YAAM,IAAI,WAAW,yDAAyD,gBAAgB,QAAQ;AAAA,IACxG;AACA,QAAI,gBAAgB,GAAG,iBAAiBf,UAASe,aAAY,SAAS,SAAS,SAAS,QAAQ,YAAY;AAC5G,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAC/B;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,kBAAkB,cAAc,SAAS;AAAA,EAC3C,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AACb,SAAK,kBAAkB;AACvB,SAAK,kBAAkB,KAAK,mBAAmB,OAAO,IAAI,KAAK;AAC/D,SAAK,uBAAuB,eAAe,KAAK,wBAAwB,KAAK,0BAA0B;AACvG,SAAK,sBAAsB,cAAc,KAAK,mBAAmB;AACjE,SAAK,uBAAuB,eAAe,KAAK,oBAAoB;AAAA,EACtE;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,WAAW,uEAAuE,KAAK,UAAU,UAAU,IAAI;AAAA,IAC3H;AACA,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI;AAC9D,QAAI,WAAW,gBAAgB,QAAQ,WAAW,eAAe,GAAG;AAClE,YAAM,IAAI,WAAW,yFAAyF,WAAW,gBAAgB;AAAA,IAC3I;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,uBAAuB;AAAA,MAC3B,KAAK,WAAW;AAAA,MAChB,KAAK,WAAW;AAAA,MAChB;AAAA,MACA,KAAK;AAAA,IACP;AACA,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,sBAAsB,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAC1K,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,WAAW,KAAK,eAAe,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IACnJ,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,UAAI,UAAU,iBAAiB,QAAQ,KAAK,gBAAgB,KAAK,GAAG,KAAK,SAAS,KAAK,SAAS,KAAK,YAAY,IAAI;AACrH,UAAI,KAAK,SAAS;AAChB,kBAAU,QAAQ,SAAS,KAAK,KAAK,KAAK,GAAG,KAAK,UAAU;AAAA,MAC9D;AACA,UAAI,KAAK,cAAc,MAAM;AAC3B,kBAAU,KAAK,WAAW,MAAM,OAAO;AAAA,MACzC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC9E,UAAM,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC9E,UAAM,aAAa,KAAK,eAAe,kBAAkB,WAAW,KAAK,KAAK,kBAAkB,WAAW,KAAK,KAAK;AACrH,UAAM,UAAU,iBAAiB,MAAM,KAAK,WAAW,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AACxF,UAAM,UAAU,iBAAiB,MAAM,KAAK,WAAW,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AACxF,QAAI,KAAK,eAAe,iBAAiB;AACvC,aAAO,CAAC,WAAW,IAAI,YAAY,SAAS,OAAO;AAAA,IACrD,OAAO;AACL,aAAO,CAAC,WAAW,IAAI,SAAS,SAAS,UAAU;AAAA,IACrD;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAMb,UAAS,MAAM,UAAU;AAC/B,IAAAA,QAAO,qBAAqB,KAAK;AACjC,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,yBAAyB,oBAAoB,KAAK,oBAAoB;AAC7E,WAAOA;AAAA,EACT;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AAGnD,SAAS,gBAAgB,QAAQ,cAAcgB,YAAW,cAAc;AACtE,MAAI,MAAM,QAAQ,MAAM,GAAG;AACzB,QAAI,gBAAgB,QAAQA,cAAa,MAAM;AAC7C,YAAM,IAAI,WAAW,+EAA+E;AAAA,IACtG;AACA,QAAI,gBAAgB,MAAM;AACxB,MAAAA,aAAY,OAAO,MAAM,OAAO,SAAS,cAAc,OAAO,MAAM;AACpE,eAAS,OAAO,MAAM,GAAG,OAAO,SAAS,YAAY;AAAA,IACvD;AACA,QAAI,OAAO,SAAS,GAAG;AACrB,qBAAe,OAAO,MAAM,GAAG,OAAO,MAAM;AAAA,IAC9C;AACA,aAAS,OAAO;AAAA,EAClB;AACA,WAAS,aAAa,GAAG;AACvB,QAAI,KAAK,QAAQ,MAAM,QAAQ,CAAC,GAAG;AACjC,aAAO;AAAA,IACT,OAAO;AACL,aAAO,CAAC,CAAC;AAAA,IACX;AAAA,EACF;AACA,iBAAe,aAAa,YAAY;AACxC,EAAAA,aAAY,aAAaA,UAAS;AAClC,SAAO,EAAE,QAAQ,cAAc,WAAAA,WAAU;AAC3C;AACA,SAAS,IAAI,cAAc,QAAQ,eAAe,cAAc,OAAO1B,OAAM0B,YAAW,SAAS,OAAO,qBAAqB,OAAO;AAClI,SAAO,KAAK,MAAM;AAChB,UAAM,OAAO,OAAO,MAAM;AAC1B,QAAI,OAAO,GAAG;AACZ,YAAM,IAAI,WAAW,uCAAuC,QAAQ;AAAA,IACtE;AACA,UAAM,OAAO,CAAC,GAAG,CAAC,EAAE,OAAO,OAAO,GAAG,IAAI,CAAC;AAC1C,aAAS,UAAU,QAAQ,IAAI;AAC/B,QAAIA,cAAa,MAAM;AACrB,YAAM,IAAI,oBAAoB,gFAAgF;AAAA,IAChH;AACA,QAAI,QAAQ;AACV,cAAQ,KAAK,mGAAmG;AAAA,IAClH;AACA,QAAI1B,SAAQ,MAAM;AAChB,MAAAA,QAAO,KAAK,KAAKA,OAAM,MAAM,GAAG,SAAS;AACzC,UAAIA,MAAK,SAAS,OAAO,GAAG;AAC1B,QAAAA,QAAO,WAAWA,OAAM,EAAE;AAAA,MAC5B;AACA,MAAAA,QAAO,UAAUA,OAAM,IAAI;AAAA,IAC7B;AACA,QAAI,aAAa;AACf,eAAS,QAAQ,QAAQ,CAAC;AAC1B,UAAIA,SAAQ,MAAM;AAChB,QAAAA,QAAO,QAAQA,OAAM,CAAC;AAAA,MACxB;AAAA,IACF;AACA,UAAM,iBAAiB,CAAC;AACxB,QAAI;AACJ,QAAI,SAAS;AACb,UAAM,YAAY,OAAO,MAAM;AAC/B,UAAM,gBAAgB,QAAQ,MAAM;AACpC,QAAI;AACJ,QAAIA,SAAQ,MAAM;AAChB,qBAAe,QAAQA,KAAI;AAAA,IAC7B;AACA,aAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,YAAM,eAAe,cAAc;AACnC,YAAM,cAAc,KAAK,MAAM,aAAa,cAAc,MAAM,CAAC;AACjE,UAAIA,SAAQ,MAAM;AAChB,qBAAa,YAAY;AACzB,iBAAS,YAAY;AAAA,MACvB,OAAO;AACL,cAAM,gBAAgB,KAAK,MAAM;AAC/B,gBAAM,WAAW,aAAa;AAC9B,gBAAM,cAAc,IAAI,SAAS,QAAQ,GAAG,QAAQ;AACpD,gBAAM,SAAS,KAAK,IAAI,YAAY,IAAI,QAAQ,GAAG,IAAI,OAAO,IAAI,WAAW,CAAC;AAC9E,gBAAM,YAAY,OAAO,IAAI,CAAC,OAAO,OAAO;AAC1C,mBAAO,KAAK,IAAI,YAAY,GAAG,KAAK,QAAQ,GAAG,IAAI,OAAO,WAAW,CAAC;AAAA,UACxE,CAAC;AACD,iBAAO,EAAE,QAAQ,UAAU;AAAA,QAC7B,CAAC;AACD,qBAAa,cAAc;AAC3B,iBAAS,cAAc;AAAA,MACzB;AACA,UAAI,oBAAoB;AACtB,uBAAe,KAAK,UAAU;AAAA,MAChC;AAAA,IACF;AACA,QAAI;AACJ,QAAI,oBAAoB;AACtB,YAAM,OAAO;AACb,gBAAU,MAAM,gBAAgB,IAAI;AAAA,IACtC;AACA,WAAO,CAAC,YAAY,SAAS,MAAM;AAAA,EACrC,CAAC;AACH;AACA,IAAI,MAAM,cAAc,MAAM;AAAA,EAC5B,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,QAAI;AACJ,QAAI,KAAK,QAAQ,MAAM;AACrB,YAAM,IAAI,WAAW,sDAAsD;AAAA,IAC7E,WAAW,MAAM,QAAQ,KAAK,IAAI,GAAG;AACnC,aAAO,IAAI,gBAAgB,EAAE,OAAO,KAAK,KAAK,CAAC;AAAA,IACjD,OAAO;AACL,aAAO,KAAK;AAAA,IACd;AACA,QAAI,KAAK,aAAa,MAAM;AAC1B,YAAM,IAAI,WAAW,mGAAmG;AAAA,IAC1H;AACA,SAAK,OAAO;AACZ,SAAK,kBAAkB,KAAK,mBAAmB,OAAO,QAAQ,KAAK;AACnE,SAAK,cAAc,KAAK,eAAe,OAAO,QAAQ,KAAK;AAC3D,SAAK,cAAc,KAAK,eAAe,OAAO,QAAQ,KAAK;AAC3D,SAAK,YAAY,KAAK,YAAY,OAAO,QAAQ,KAAK;AACtD,SAAK,SAAS,KAAK,UAAU,OAAO,QAAQ,KAAK;AACjD,SAAK,kBAAkB;AACvB,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAC5C,SAAK,YAAY;AACjB,SAAK,UAAU;AACf,SAAK,eAAe;AACpB,SAAK,aAAa,CAAC;AAAA,EACrB;AAAA,EACA,YAAY;AACV,QAAI,KAAK,WAAW,MAAM;AACxB,YAAM,YAAY,MAAM,QAAQ,KAAK,KAAK,SAAS,IAAI,KAAK,KAAK,UAAU,SAAS;AACpF,aAAO,OAAO,GAAG,SAAS,EAAE,IAAI,CAAC,MAAM,IAAI;AAAA,IAC7C,OAAO;AACL,aAAO,KAAK;AAAA,IACd;AAAA,EACF;AAAA,EACA,UAAU,QAAQ;AAChB,SAAK,UAAU;AAAA,EACjB;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,gBAAgB,UAAU,GAAG;AAC/B,mBAAa,WAAW;AAAA,IAC1B;AACA,iBAAa;AACb,QAAI,YAAY,KAAK,KAAK;AAC1B,QAAI,CAAC,MAAM,QAAQ,SAAS,GAAG;AAC7B,kBAAY,CAAC,SAAS;AAAA,IACxB;AACA,UAAM,YAAY,UAAU;AAC5B,QAAI;AACJ,QAAI,KAAK,iBAAiB;AACxB,oBAAc,CAAC,WAAW,IAAI,WAAW,IAAI,SAAS;AAAA,IACxD,OAAO;AACL,oBAAc,CAAC,WAAW,IAAI,SAAS;AAAA,IACzC;AACA,QAAI,KAAK,aAAa;AACpB,YAAM,aAAa,CAAC;AACpB,iBAAW,OAAO,WAAW;AAC3B,mBAAW,KAAK,CAAC,WAAW,IAAI,GAAG,CAAC;AAAA,MACtC;AACA,aAAO,CAAC,WAAW,EAAE,OAAO,UAAU;AAAA,IACxC,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,YAAY,QAAQA,OAAM;AACxB,WAAO,KAAK,MAAM;AAChB,UAAI,MAAM,QAAQA,KAAI,GAAG;AACvB,QAAAA,QAAOA,MAAK;AAAA,MACd;AACA,YAAM,aAAa,KAAK,kBAAkBA,QAAO;AACjD,UAAI,KAAK,aAAa;AACpB,cAAM,YAAY,KAAK,OAAO,IAAI,CAAC,OAAO,IAAI;AAC9C,eAAO,CAAC,UAAU,EAAE,OAAO,SAAS;AAAA,MACtC,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,IAAI,SAAS;AACX,QAAI,KAAK,WAAW,MAAM;AACxB,YAAM,YAAY,MAAM,QAAQ,KAAK,KAAK,SAAS,IAAI,KAAK,KAAK,UAAU,SAAS;AACpF,YAAM,SAAS,CAAC;AAChB,eAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,eAAO,KAAK,IAAI;AAAA,MAClB;AACA,aAAO;AAAA,IACT,OAAO;AACL,aAAO,KAAK;AAAA,IACd;AAAA,EACF;AAAA,EACA,IAAI,OAAO,IAAI;AACb,SAAK,UAAU;AAAA,EACjB;AAAA,EACA,MAAM,YAAY;AAChB,UAAM,gBAAgB;AACtB,QAAI,KAAK,gBAAgB,MAAM;AAC7B,YAAM,IAAI,oBAAoB,kDAAkD;AAAA,IAClF;AACA,QAAI,gBAAgB,UAAU,GAAG;AAC/B,mBAAa,WAAW;AAAA,IAC1B;AACA,iBAAa;AACb,UAAM,YAAY,KAAK,WAAW,WAAW,KAAK;AAClD,UAAM,WAAW,WAAW,MAAM,CAAC;AACnC,SAAK,UAAU,KAAK,IAAI,UAAU,EAAE,OAAO,CAAC,WAAW,MAAM,GAAG,QAAQ,EAAE,CAAC;AAC3E,UAAM,iBAAiB,CAAC,WAAW,EAAE,EAAE,OAAO,WAAW,MAAM,CAAC,CAAC;AACjE,QAAI,iBAAiB,MAAM;AACzB,YAAM,IAAI,oBAAoB,kDAAkD;AAAA,IAClF,OAAO;AACL,WAAK,KAAK,MAAM,cAAc;AAAA,IAChC;AACA,QAAI;AACJ,QAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,kBAAY,KAAK,KAAK;AAAA,IACxB,OAAO;AACL,kBAAY,CAAC,KAAK,KAAK,SAAS;AAAA,IAClC;AACA,QAAI,KAAK,aAAa,MAAM;AAC1B,UAAI,CAAC,aAAa,YAAY,KAAK,UAAU,IAAI,CAAC,SAAS,KAAK,MAAM,KAAK,MAAM,SAAS,EAAE,GAAG,SAAS,GAAG;AACzG,cAAM,IAAI,WAAW,6FAA6F,KAAK,wCAAwC,KAAK,KAAK,WAAW;AAAA,MACtL;AAAA,IACF,OAAO;AACL,WAAK,YAAY,UAAU,IAAI,CAAC,QAAQ,IAAI,UAAU,EAAE,OAAO,CAAC,MAAM,GAAG,EAAE,CAAC,CAAC;AAAA,IAC/E;AACA,QAAI,KAAK,UAAU;AACjB,WAAK,YAAY;AAAA,IACnB;AAAA,EACF;AAAA,EACA,YAAY,QAAQ,WAAW,OAAO;AACpC,SAAK,MAAM;AACT,UAAI,CAAC,KAAK,UAAU;AAClB,cAAM,IAAI,eAAe,iEAAiE;AAAA,MAC5F;AACA,YAAM,YAAY,KAAK,UAAU,GAAG,MAAM;AAC1C,UAAI,aAAa,MAAM;AACrB,cAAM,IAAI,WAAW,uUAAuU;AAAA,MAC9V;AACA,UAAI,KAAK,WAAW,MAAM;AACxB,YAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAK,UAAU,KAAK,KAAK,UAAU,IAAI,CAAC,QAAQ,MAAM,CAAC,WAAW,GAAG,CAAC,CAAC;AAAA,QACzE,OAAO;AACL,eAAK,UAAU,CAAC,MAAM,CAAC,WAAW,KAAK,KAAK,SAAS,CAAC,CAAC;AAAA,QACzD;AAAA,MACF,WAAW,UAAU,MAAM;AACzB,gBAAQ,KAAK,OAAO;AACpB,YAAI,KAAK,cAAc,MAAM;AAC3B,kBAAQ,KAAK,UAAU;AACvB,eAAK,aAAa,CAAC;AAAA,QACrB;AACA,YAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAK,UAAU,KAAK,KAAK,UAAU,IAAI,CAAC,QAAQ,MAAM,CAAC,WAAW,GAAG,CAAC,CAAC;AAAA,QACzE,OAAO;AACL,eAAK,QAAQ,KAAK,MAAM,CAAC,WAAW,KAAK,KAAK,SAAS,CAAC;AAAA,QAC1D;AAAA,MACF,OAAO;AACL,YAAI,CAAC,MAAM,QAAQ,MAAM,GAAG;AAC1B,mBAAS,CAAC,MAAM;AAAA,QAClB;AACA,YAAI,OAAO,WAAW,KAAK,QAAQ,QAAQ;AACzC,gBAAM,IAAI,WAAW,SAAS,KAAK,gBAAgB,KAAK,QAAQ,oCAAoC,OAAO,0CAA0C,QAAQ;AAAA,QAC/J;AACA,YAAI,aAAa,MAAM;AACrB,eAAK,WAAW,KAAK,KAAK,QAAQ,MAAM,CAAC;AAAA,QAC3C,OAAO;AACL,kBAAQ,KAAK,OAAO;AAAA,QACtB;AACA,iBAASK,SAAQ,GAAGA,SAAQ,KAAK,QAAQ,QAAQ,EAAEA,QAAO;AACxD,gBAAM,QAAQ,OAAOA;AACrB,gBAAM,MAAM,MAAM,QAAQ,KAAK,KAAK,SAAS,IAAI,KAAK,KAAK,UAAUA,UAAS,KAAK,KAAK;AACxF,gBAAM,gBAAgB,CAAC,WAAW,GAAG;AACrC,cAAI,CAAC,aAAa,YAAY,MAAM,OAAO,aAAa,GAAG;AACzD,kBAAM,IAAI,WAAW,SAASA,qCAAoC,KAAK,wBAAwB,iCAAiC,MAAM,OAAO;AAAA,UAC/I;AACA,eAAK,QAAQA,UAAS;AAAA,QACxB;AAAA,MACF;AACA,WAAK,UAAU,KAAK,QAAQ,IAAI,CAAC,UAAU,KAAK,MAAM,MAAM,CAAC,CAAC;AAAA,IAChE,CAAC;AAAA,EACH;AAAA,EACA,MAAM,QAAQ,QAAQ;AACpB,QAAI,eAAe,UAAU,OAAO,OAAO,OAAO;AAClD,QAAIqB,aAAY,UAAU,OAAO,OAAO,OAAO;AAC/C,QAAI,UAAU,MAAM;AAClB,eAAS,CAAC;AAAA,IACZ;AACA,UAAM,eAAe,gBAAgB,QAAQ,cAAcA,YAAW,KAAK,YAAY;AACvF,aAAS,aAAa;AACtB,mBAAe,aAAa;AAC5B,IAAAA,aAAY,aAAa;AACzB,QAAI,mBAAmB,CAAC;AACxB,QAAI,kBAAkB,CAAC;AACvB,QAAI,gBAAgB,MAAM;AACxB,aAAO,kBAAkB;AACzB,yBAAmB,iBAAiB,OAAO,YAAY;AACvD,WAAK,YAAY,CAAC;AAClB,iBAAW,SAAS,cAAc;AAChC,aAAK,UAAU,KAAK,IAAI,UAAU,EAAE,OAAO,MAAM,MAAM,CAAC,CAAC;AAAA,MAC3D;AACA,wBAAkB,gBAAgB,OAAO,KAAK,SAAS;AAAA,IACzD;AACA,QAAIA,cAAa,MAAM;AACrB,aAAO,eAAeA;AACtB,yBAAmB,iBAAiB,OAAOA,UAAS;AACpD,WAAK,eAAeA,WAAU;AAAA,IAChC;AACA,UAAM,WAAW,iBAAiB,cAAc;AAChD,QAAI,UAAU;AACZ,YAAM,YAAY,CAAC,MAAM,EAAE,OAAO,gBAAgB;AAClD,YAAM,gBAAgB,KAAK,UAAU,OAAO,eAAe;AAC3D,YAAM,oBAAoB,KAAK;AAC/B,WAAK,YAAY;AACjB,YAAM,SAAS,MAAM,MAAM,WAAW,MAAM;AAC5C,WAAK,YAAY;AACjB,aAAO;AAAA,IACT,OAAO;AACL,aAAO,MAAM,MAAM,QAAQ,MAAM;AAAA,IACnC;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM1B,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,UAAI,eAAe,UAAU,OAAO,OAAO,OAAO;AAClD,eAAS,oBAAoB,MAAM;AACnC,UAAI,gBAAgB,MAAM;AACxB,YAAI,KAAK,UAAU;AACjB,yBAAe,KAAK;AAAA,QACtB,OAAO;AACL,yBAAe,KAAK,gBAAgB,MAAM;AAAA,QAC5C;AAAA,MACF;AACA,YAAM,YAAY,MAAM,QAAQ,KAAK,KAAK,SAAS,IAAI,KAAK,KAAK,UAAU,SAAS;AACpF,UAAI,aAAa,WAAW,WAAW;AACrC,cAAM,IAAI,WAAW,iBAAiB,qCAAqC,aAAa,0BAA0B;AAAA,MACpH;AACA,UAAI,KAAK,QAAQ;AACf,gBAAQ,KAAK,kEAAkE;AAAA,MACjF;AACA,YAAM,iBAAiB,EAAE,SAAS;AAClC,YAAM,QAAQ,CAAC,SAAS,YAAY;AAClC,cAAM,WAAW,KAAK,KAAK,KAAK,CAAC,OAAO,EAAE,OAAO,OAAO,GAAG,cAAc;AACzE,eAAO,CAAC,SAAS,IAAI,SAAS,MAAM,CAAC,CAAC;AAAA,MACxC;AACA,YAAM,aAAa,IAAI,OAAO,QAAQ,cAAc,KAAK,aAAaA,OAAM,MAAM,KAAK,QAAQ,KAAK,eAAe;AACnH,YAAM,aAAa,WAAW;AAC9B,YAAM,UAAU,WAAW;AAC3B,YAAM,SAAS,WAAW;AAC1B,UAAI,KAAK,UAAU;AACjB,aAAK,YAAY,QAAQ,QAAQ;AAAA,MACnC;AACA,YAAM,SAAS,KAAK,kBAAkB,UAAU;AAChD,UAAI,KAAK,aAAa;AACpB,eAAO,CAAC,MAAM,EAAE,OAAO,MAAM;AAAA,MAC/B,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,gBAAgB,QAAQ;AACtB,WAAO,KAAK,MAAM;AAChB,UAAI,eAAe,MAAM,OAAO,KAAK;AACrC,qBAAe,KAAK,cAAc,CAAC,GAAG,CAAC,CAAC;AACxC,qBAAe,YAAY,YAAY;AACvC,UAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAO,KAAK,KAAK,UAAU,IAAI,CAAC,QAAQ,MAAM,IAAI,MAAM,cAAc,CAAC,GAAG,GAAG,CAAC,IAAI,YAAY;AAAA,MAChG,OAAO;AACL,eAAO,KAAK,KAAK,YAAY,IAAI,CAAC,MAAM,cAAc,CAAC,GAAG,KAAK,KAAK,SAAS,CAAC,CAAC,IAAI,CAAC,YAAY;AAAA,MAClG;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,IAAI,mBAAmB;AACrB,QAAI,CAAC,KAAK,WAAW;AACnB,aAAO,CAAC;AAAA,IACV;AACA,WAAO,KAAK,KAAK;AAAA,EACnB;AAAA,EACA,IAAI,sBAAsB;AACxB,QAAI,CAAC,KAAK,WAAW;AACnB,aAAO,KAAK,KAAK;AAAA,IACnB;AACA,WAAO,KAAK,KAAK;AAAA,EACnB;AAAA,EACA,6BAA6B,OAAO;AAClC,UAAM,6BAA6B,KAAK;AACxC,QAAI,KAAK,QAAQ,MAAM;AACrB,WAAK,KAAK,6BAA6B,KAAK;AAAA,IAC9C;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMU,UAAS;AAAA,MACb,iBAAiB,KAAK;AAAA,MACtB,aAAa,KAAK;AAAA,MAClB,aAAa,KAAK;AAAA,MAClB,UAAU,KAAK;AAAA,MACf,QAAQ,KAAK;AAAA,IACf;AACA,QAAI,KAAK,gBAAgB,MAAM;AAC7B,MAAAA,QAAO,kBAAkB,KAAK;AAAA,IAChC;AACA,UAAM,aAAa,KAAK,KAAK,UAAU;AACvC,QAAI,KAAK,aAAa,MAAM,IAAI,WAAW;AACzC,MAAAA,QAAO,UAAU;AAAA,QACf,aAAa,KAAK,KAAK,aAAa;AAAA,QACpC,UAAU;AAAA,MACZ;AAAA,IACF;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAY,YAAYA,OAAM;AAAA,EACzD;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ,gBAAgB,CAAC,GAAG;AACjD,UAAM,aAAaA,QAAO;AAC1B,UAAM,OAAO,YAAY,YAAY,aAAa;AAClD,WAAO,IAAI,IAAI,OAAO,OAAOA,SAAQ,EAAE,KAAK,CAAC,CAAC;AAAA,EAChD;AACF;AACA,IAAI,YAAY;AAChB,sBAAsB,cAAc,GAAG;AACvC,IAAI,UAAU,cAAc,MAAM;AAClC;AACA,IAAI,gBAAgB,cAAc,QAAQ;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,qBAAqB;AAC1B,SAAK,6BAA6B;AAClC,SAAK,gCAAgC;AACrC,SAAK,2BAA2B;AAChC,SAAK,QAAQ,KAAK;AAClB,0BAAsB,KAAK,OAAO,OAAO;AACzC,SAAK,aAAa,cAAc,KAAK,cAAc,OAAO,KAAK,qBAAqB,KAAK,UAAU;AACnG,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,uBAAuB,eAAe,KAAK,wBAAwB,KAAK,6BAA6B;AAC1G,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAC9D,SAAK,uBAAuB,eAAe,KAAK,oBAAoB;AACpE,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,sBAAsB,cAAc,KAAK,mBAAmB;AACjE,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,UAAU,KAAK,CAAC,GAAG,KAAK,CAAC,GAAG,KAAK,WAAW,OAAO,IAAI,KAAK,OAAO,CAAC,CAAC,CAAC;AAC3E,SAAK,mBAAmB,KAAK;AAAA,MAC3B;AAAA,MACA,KAAK,CAAC,GAAG,KAAK,oBAAoB,OAAO,IAAI,KAAK,gBAAgB,CAAC;AAAA,IACrE,CAAC;AACD,SAAK,cAAc,KAAK;AACxB,SAAK,YAAY,KAAK;AACtB,SAAK,cAAc;AACnB,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,SAAK,SAAS,KAAK,UAAU,UAAU,CAAC,WAAW,WAAW,SAAS,IAAI,KAAK,KAAK,GAAG,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACzK,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,CAAC,KAAK,OAAO,KAAK,KAAK,GAAG,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAC9K,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,KAAK,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAC9H,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS;AACT,UAAI,OAAO,WAAW,GAAG;AACvB,cAAM,IAAI,WAAW,8CAA8C,OAAO,SAAS;AAAA,MACrF;AACA,UAAI,aAAa,OAAO;AACxB,eAAS,OAAO;AAChB,YAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,KAAK,KAAK,eAAe,MAAM;AACpE,aAAK,cAAc,oBAAoB;AAAA,UACrC,MAAM,MAAM,SAAS,MAAM;AAAA,UAC3B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,KAAK,KAAK,wBAAwB,MAAM;AAC/F,aAAK,uBAAuB,oBAAoB;AAAA,UAC9C,MAAM,MAAM,SAAS,UAAU;AAAA,UAC/B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,UAAI;AACJ,YAAM,SAAS,KAAK;AACpB,YAAM,YAAY,KAAK;AACvB,UAAI,UAAU,MAAM;AAClB,YAAI,KAAK,IAAI,QAAQ,MAAM,GAAG,KAAK,OAAO,KAAK,CAAC;AAAA,MAClD,OAAO;AACL,YAAI,KAAK,QAAQ,KAAK,OAAO,KAAK,CAAC;AAAA,MACrC;AACA,UAAI,KAAK,QAAQ,MAAM;AACrB,YAAI,QAAQ,GAAG,KAAK,KAAK,KAAK,CAAC;AAAA,MACjC;AACA,UAAI,aAAa,MAAM;AACrB,qBAAa,IAAI,YAAY,SAAS;AAAA,MACxC;AACA,UAAI,SAAS,KAAK,GAAG,KAAK,YAAY,KAAK,gBAAgB,KAAK,CAAC,CAAC;AAClE,UAAI,KAAK,cAAc,MAAM;AAC3B,iBAAS,KAAK,WAAW,MAAM,MAAM;AAAA,MACvC;AACA,aAAO,CAAC,QAAQ,MAAM;AAAA,IACxB,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,MAC3D,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,MACvD,SAAS,KAAK;AAAA,MACd,kBAAkB,KAAK;AAAA,IACzB;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AACjD,IAAI,YAAY,cAAc,IAAI;AAAA,EAChC,YAAY,MAAM;AAChB,SAAK,OAAO,IAAI,cAAc,IAAI;AAClC,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,KAAK,eAAe,MAAM;AACjC,gBAAQ,KAAK,KAAK,WAAW;AAC7B,aAAK,KAAK,cAAc;AAAA,MAC1B;AACA,UAAI,KAAK,KAAK,wBAAwB,MAAM;AAC1C,gBAAQ,KAAK,KAAK,oBAAoB;AACtC,aAAK,KAAK,uBAAuB;AAAA,MACnC;AACA,YAAMV,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,YAAM,eAAe,UAAU,OAAO,OAAO,OAAO;AACpD,aAAO,MAAM,KAAK,QAAQ,EAAE,MAAAA,OAAM,UAAU,aAAa,CAAC;AAAA,IAC5D,CAAC;AAAA,EACH;AAAA,EACA,OAAO,WAAW,KAAKU,SAAQ;AAC7B,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,UAAU,cAAc,QAAQ;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,qBAAqB;AAC1B,SAAK,+BAA+B;AACpC,SAAK,6BAA6B;AAClC,SAAK,gCAAgC;AACrC,SAAK,2BAA2B;AAChC,QAAI,KAAK,YAAY;AACnB,YAAM,IAAI,WAAW,6DAA6D;AAAA,IACpF;AACA,SAAK,QAAQ,KAAK;AAClB,0BAAsB,KAAK,OAAO,OAAO;AACzC,SAAK,aAAa,cAAc,KAAK,eAAe,SAAS,KAAK,qBAAqB,KAAK,UAAU;AACtG,SAAK,sBAAsB,cAAc,KAAK,wBAAwB,SAAS,KAAK,+BAA+B,KAAK,mBAAmB;AAC3I,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,uBAAuB,eAAe,KAAK,wBAAwB,KAAK,6BAA6B;AAC1G,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAC9D,SAAK,uBAAuB,eAAe,KAAK,oBAAoB;AACpE,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,sBAAsB,cAAc,KAAK,mBAAmB;AACjE,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,UAAU,KAAK,CAAC,GAAG,KAAK,CAAC,GAAG,KAAK,WAAW,OAAO,IAAI,KAAK,OAAO,CAAC,CAAC,CAAC;AAC3E,SAAK,mBAAmB,KAAK;AAAA,MAC3B;AAAA,MACA,KAAK,CAAC,GAAG,KAAK,oBAAoB,OAAO,IAAI,KAAK,gBAAgB,CAAC;AAAA,IACrE,CAAC;AACD,SAAK,cAAc,KAAK;AACxB,SAAK,iBAAiB,KAAK;AAC3B,SAAK,YAAY,KAAK;AACtB,SAAK,cAAc;AACnB,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,WAAW,WAAW,WAAW,SAAS;AAChD,SAAK,SAAS,KAAK,UAAU,UAAU,CAAC,UAAU,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACpJ,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,CAAC,KAAK,OAAO,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAClL,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAClI,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS;AACT,UAAI,OAAO,WAAW,GAAG;AACvB,cAAM,IAAI,WAAW,uDAAuD,OAAO,SAAS;AAAA,MAC9F;AACA,YAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,UAAI,WAAW,OAAO;AACtB,eAAS,OAAO;AAChB,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,KAAK,KAAK,eAAe,MAAM;AACpE,aAAK,cAAc,oBAAoB;AAAA,UACrC,MAAM,MAAM,SAAS,MAAM;AAAA,UAC3B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,KAAK,KAAK,wBAAwB,MAAM;AAC/F,aAAK,uBAAuB,oBAAoB;AAAA,UAC9C,MAAM,MAAM,SAAS,QAAQ;AAAA,UAC7B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,YAAM,SAAS,KAAK;AACpB,YAAM,YAAY,KAAK;AACvB,UAAI;AACJ,UAAI;AACJ,UAAI;AACJ,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,GAAG;AACxC,iBAAS,IAAI,QAAQ,OAAO,EAAE;AAAA,MAChC;AACA,UAAI,UAAU,KAAK,QAAQ,KAAK,OAAO,KAAK,CAAC;AAC7C,UAAI,KAAK,SAAS;AAChB,kBAAU,QAAQ,SAAS,KAAK,KAAK,KAAK,CAAC;AAAA,MAC7C;AACA,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,GAAG;AAC1D,mBAAW,IAAI,UAAU,UAAU,EAAE;AAAA,MACvC;AACA,YAAM,uBAAuB,KAAK,gBAAgB,KAAK;AACvD,YAAM,CAAC,KAAK,GAAG,IAAI,MAAM,sBAAsB,CAAC,IAAI,KAAK,OAAO,KAAK,KAAK,GAAG,qBAAqB,OAAO,CAAC;AAC1G,YAAM,cAAc,KAAK,UAAU,GAAG;AACtC,YAAM,CAAC,IAAI,IAAI,EAAE,IAAI,MAAM,SAAS,GAAG,QAAQ,OAAO,CAAC;AACvD,YAAM,CAAC,YAAY,UAAU,IAAI,MAAM,aAAa,GAAG,YAAY,OAAO,CAAC;AAC3E,UAAI,KAAK,oBAAoB,MAAM,KAAK,IAAI,UAAU,CAAC;AACvD,WAAK,KAAK,oBAAoB,MAAM,KAAK,IAAI,UAAU,CAAC;AACxD,YAAM,aAAa,KAAK,IAAI,IAAI,QAAQ,GAAG,GAAG;AAC9C,WAAK,KAAK,WAAW,MAAM,KAAK,IAAI,UAAU,CAAC;AAC/C,YAAM,IAAI,KAAK,IAAI,GAAG,QAAQ,GAAG,IAAI,KAAK,GAAG,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC;AACzD,aAAO,CAAC,GAAG,CAAC;AAAA,IACd,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,MAC3D,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,MACvD,SAAS,KAAK;AAAA,MACd,kBAAkB,KAAK;AAAA,MACvB,gBAAgB,KAAK;AAAA,MACrB,YAAY;AAAA,IACd;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,MAAM,cAAc,IAAI;AAAA,EAC1B,YAAY,MAAM;AAChB,QAAI,KAAK,mBAAmB,GAAG;AAC7B,cAAQ,KAAK,gHAAgH;AAAA,IAC/H;AACA,SAAK,OAAO,IAAI,QAAQ,IAAI;AAC5B,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,KAAK,eAAe,MAAM;AACjC,gBAAQ,KAAK,KAAK,WAAW;AAC7B,aAAK,KAAK,cAAc;AAAA,MAC1B;AACA,UAAI,KAAK,KAAK,wBAAwB,MAAM;AAC1C,gBAAQ,KAAK,KAAK,oBAAoB;AACtC,aAAK,KAAK,uBAAuB;AAAA,MACnC;AACA,YAAMV,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,YAAM,eAAe,UAAU,OAAO,OAAO,OAAO;AACpD,aAAO,MAAM,KAAK,QAAQ,EAAE,MAAAA,OAAM,UAAU,aAAa,CAAC;AAAA,IAC5D,CAAC;AAAA,EACH;AAAA,EACA,OAAO,WAAW,KAAKU,SAAQ;AAC7B,QAAIA,QAAO,qBAAqB,GAAG;AACjC,MAAAA,QAAO,oBAAoB;AAAA,IAC7B;AACA,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,IAAI,YAAY;AAChB,sBAAsB,cAAc,GAAG;AACvC,IAAI,WAAW,cAAc,QAAQ;AAAA,EACnC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,qBAAqB;AAC1B,SAAK,+BAA+B;AACpC,SAAK,6BAA6B;AAClC,SAAK,gCAAgC;AACrC,SAAK,2BAA2B;AAChC,SAAK,QAAQ,KAAK;AAClB,0BAAsB,KAAK,OAAO,OAAO;AACzC,SAAK,aAAa,cAAc,KAAK,eAAe,SAAS,KAAK,qBAAqB,KAAK,UAAU;AACtG,SAAK,sBAAsB,cAAc,KAAK,wBAAwB,SAAS,KAAK,+BAA+B,KAAK,mBAAmB;AAC3I,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,uBAAuB,eAAe,KAAK,wBAAwB,KAAK,6BAA6B;AAC1G,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,iBAAiB,KAAK;AAC3B,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAC9D,SAAK,uBAAuB,eAAe,KAAK,oBAAoB;AACpE,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,sBAAsB,cAAc,KAAK,mBAAmB;AACjE,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,UAAU,KAAK,CAAC,GAAG,KAAK,CAAC,GAAG,KAAK,WAAW,OAAO,IAAI,KAAK,OAAO,CAAC,CAAC,CAAC;AAC3E,SAAK,mBAAmB,KAAK;AAAA,MAC3B;AAAA,MACA,KAAK,CAAC,GAAG,KAAK,oBAAoB,OAAO,IAAI,KAAK,gBAAgB,CAAC;AAAA,IACrE,CAAC;AACD,SAAK,cAAc,KAAK;AACxB,SAAK,iBAAiB,KAAK;AAC3B,SAAK,YAAY,CAAC,KAAK,OAAO,KAAK,KAAK;AACxC,SAAK,cAAc;AACnB,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,MAAM,YAAY;AAChB,QAAI;AACJ,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,WAAW,WAAW,WAAW,SAAS;AAChD,SAAK,SAAS,KAAK,UAAU,UAAU,CAAC,UAAU,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACpJ,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,CAAC,KAAK,OAAO,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAClL,QAAI;AACJ,QAAI,KAAK,SAAS;AAChB,UAAI,KAAK,gBAAgB;AACvB,cAAM,mBAAmB,KAAK;AAC9B,cAAM,gBAAgB,KAAK;AAC3B,0BAAkB,KAAK,KAAK,MAAM,mBAAmB,YAAY;AAAA,UAC/D,MAAM,OAAO,OAAO;AAClB,kBAAM,KAAK,iBAAiB,MAAM,CAAC,aAAa,CAAC;AACjD,kBAAM,KAAK,IAAI,KAAK,EAAE,MAAM,CAAC,aAAa,CAAC;AAC3C,kBAAM,SAAS,iBAAiB,MAAM,CAAC,gBAAgB,CAAC,CAAC;AACzD,mBAAO,qBAAqB,qBAAqB,IAAI,EAAE,GAAG,MAAM;AAAA,UAClE;AAAA,QACF,GAAG,GAAG,YAAY,cAAc,IAAI;AAAA,MACtC,OAAO;AACL,0BAAkB,KAAK;AAAA,MACzB;AACA,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,QAAQ,CAAC,GAAG,MAAM,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAC7H,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,eAAS;AACT,UAAI,OAAO,WAAW,GAAG;AACvB,cAAM,IAAI,WAAW,wDAAwD,OAAO,SAAS;AAAA,MAC/F;AACA,UAAI,WAAW,OAAO;AACtB,YAAM,WAAW,OAAO;AACxB,eAAS,OAAO;AAChB,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,KAAK,KAAK,eAAe,MAAM;AACpE,aAAK,cAAc,oBAAoB;AAAA,UACrC,MAAM,MAAM,SAAS,MAAM;AAAA,UAC3B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,KAAK,KAAK,wBAAwB,MAAM;AAC/F,aAAK,uBAAuB,oBAAoB;AAAA,UAC9C,MAAM,MAAM,SAAS,QAAQ;AAAA,UAC7B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,YAAM,SAAS,KAAK;AACpB,YAAM,YAAY,KAAK;AACvB,UAAI;AACJ,UAAI;AACJ,UAAI;AACJ,UAAI;AACJ,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,GAAG;AACxC,iBAAS,IAAI,QAAQ,OAAO,EAAE;AAAA,MAChC;AACA,UAAI,IAAI,KAAK,QAAQ,KAAK,OAAO,KAAK,CAAC;AACvC,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,GAAG;AAC1D,mBAAW,IAAI,UAAU,UAAU,EAAE;AAAA,MACvC;AACA,UAAI,KAAK,GAAG,KAAK,UAAU,KAAK,gBAAgB,KAAK,CAAC,CAAC;AACvD,UAAI,KAAK,SAAS;AAChB,YAAI,QAAQ,GAAG,KAAK,KAAK,KAAK,CAAC;AAAA,MACjC;AACA,YAAM,CAAC,IAAI,IAAI,IAAI,EAAE,IAAI,MAAM,GAAG,GAAG,EAAE,OAAO,CAAC;AAC/C,WAAK,KAAK,oBAAoB,MAAM,EAAE;AACtC,UAAI,KAAK,oBAAoB,MAAM,EAAE;AACrC,UAAI,KAAK,IAAI,GAAG,QAAQ,GAAG,IAAI,IAAI,KAAK,WAAW,MAAM,EAAE,CAAC,CAAC;AAC7D,UAAI,KAAK,oBAAoB,MAAM,EAAE;AACrC,YAAM,IAAI,IAAI,GAAG,KAAK,WAAW,MAAM,CAAC,CAAC;AACzC,aAAO,CAAC,GAAG,GAAG,CAAC;AAAA,IACjB,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,gBAAgB,KAAK;AAAA,MACrB,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,MAC3D,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,MACvD,SAAS,KAAK;AAAA,MACd,kBAAkB,KAAK;AAAA,MACvB,gBAAgB,KAAK;AAAA,IACvB;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,OAAO,cAAc,IAAI;AAAA,EAC3B,YAAY,MAAM;AAChB,QAAI,KAAK,mBAAmB,GAAG;AAC7B,cAAQ,KAAK,gHAAgH;AAAA,IAC/H;AACA,SAAK,OAAO,IAAI,SAAS,IAAI;AAC7B,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,KAAK,eAAe,MAAM;AACjC,gBAAQ,KAAK,KAAK,WAAW;AAC7B,aAAK,KAAK,cAAc;AAAA,MAC1B;AACA,UAAI,KAAK,KAAK,wBAAwB,MAAM;AAC1C,gBAAQ,KAAK,KAAK,oBAAoB;AACtC,aAAK,KAAK,uBAAuB;AAAA,MACnC;AACA,YAAMV,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,YAAM,eAAe,UAAU,OAAO,OAAO,OAAO;AACpD,aAAO,MAAM,KAAK,QAAQ,EAAE,MAAAA,OAAM,UAAU,aAAa,CAAC;AAAA,IAC5D,CAAC;AAAA,EACH;AAAA,EACA,OAAO,WAAW,KAAKU,SAAQ;AAC7B,QAAIA,QAAO,qBAAqB,GAAG;AACjC,MAAAA,QAAO,oBAAoB;AAAA,IAC7B;AACA,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,QAAQ,KAAK;AAAA,EACpB;AAAA,EACA,IAAI,YAAY;AACd,UAAM,YAAY,CAAC;AACnB,eAAW,QAAQ,KAAK,MAAM,MAAM,EAAE,QAAQ,GAAG;AAC/C,UAAI,MAAM,QAAQ,KAAK,SAAS,GAAG;AACjC,kBAAU,KAAK,GAAG,KAAK,SAAS;AAAA,MAClC,OAAO;AACL,kBAAU,KAAK,KAAK,SAAS;AAAA,MAC/B;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS;AACT,UAAI,SAAS,OAAO,MAAM,CAAC;AAC3B,YAAM,eAAe,CAAC;AACtB,iBAAW,QAAQ,KAAK,MAAM,MAAM,EAAE,QAAQ,GAAG;AAC/C,YAAI,MAAM,QAAQ,KAAK,SAAS,GAAG;AACjC,uBAAa,KAAK,OAAO,OAAO,GAAG,KAAK,UAAU,MAAM,CAAC;AAAA,QAC3D,OAAO;AACL,uBAAa,KAAK,OAAO,OAAO,GAAG,CAAC,CAAC;AAAA,QACvC;AAAA,MACF;AACA,mBAAa,QAAQ;AACrB,YAAM,kBAAkB,CAAC;AACzB,UAAI;AACJ,eAAS,KAAK,GAAG,KAAK,KAAK,MAAM,QAAQ,EAAE,IAAI;AAC7C,cAAM,OAAO,KAAK,MAAM;AACxB,iBAAS,aAAa;AACtB,YAAI,OAAO,GAAG;AACZ,uBAAa,CAAC,OAAO,EAAE,EAAE,OAAO,MAAM;AAAA,QACxC,OAAO;AACL,uBAAa,CAAC,WAAW,EAAE,EAAE,OAAO,MAAM;AAAA,QAC5C;AACA,qBAAa,KAAK,KAAK,YAAY,MAAM;AACzC,wBAAgB,KAAK,WAAW,MAAM,CAAC,CAAC;AAAA,MAC1C;AACA,eAAS,CAAC;AACV,iBAAW,cAAc,gBAAgB,MAAM,EAAE,QAAQ,GAAG;AAC1D,eAAO,KAAK,GAAG,UAAU;AAAA,MAC3B;AACA,aAAO,CAAC,WAAW,EAAE,EAAE,OAAO,MAAM;AAAA,IACtC,CAAC;AAAA,EACH;AAAA,EACA,MAAM,YAAY;AAChB,QAAI,gBAAgB,UAAU,GAAG;AAC/B,mBAAa,WAAW;AAAA,IAC1B;AACA,iBAAa;AACb,QAAI;AACJ,SAAK,MAAM,QAAQ,CAAC,MAAM,OAAO;AAC/B,gBAAU,WAAW,MAAM,MAAM;AAC/B,aAAK,MAAM,UAAU;AACrB,YAAI,MAAM,QAAQ,KAAK,SAAS,GAAG;AACjC,sBAAY,KAAK,UAAU;AAAA,QAC7B,OAAO;AACL,sBAAY,KAAK;AAAA,QACnB;AACA,qBAAa,CAAC,WAAW,IAAI,SAAS;AAAA,MACxC,CAAC;AAAA,IACH,CAAC;AACD,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAM,gBAAgB,CAAC,SAAS;AAC9B,aAAO;AAAA,QACL,aAAa,KAAK,aAAa;AAAA,QAC/B,UAAU,KAAK,UAAU;AAAA,MAC3B;AAAA,IACF;AACA,UAAM,cAAc,KAAK,MAAM,IAAI,aAAa;AAChD,UAAMA,UAAS,EAAE,SAAS,YAAY;AACtC,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ,gBAAgB,CAAC,GAAG;AACjD,UAAM,QAAQ,CAAC;AACf,eAAW,cAAcA,QAAO,UAAU;AACxC,YAAM,KAAK,YAAY,YAAY,aAAa,CAAC;AAAA,IACnD;AACA,WAAO,IAAI,IAAI,EAAE,MAAM,CAAC;AAAA,EAC1B;AAAA,EACA,IAAI,mBAAmB;AACrB,QAAI,CAAC,KAAK,WAAW;AACnB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,UAAU,CAAC;AACjB,eAAW,QAAQ,KAAK,OAAO;AAC7B,cAAQ,KAAK,GAAG,KAAK,gBAAgB;AAAA,IACvC;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,sBAAsB;AACxB,UAAM,UAAU,CAAC;AACjB,eAAW,QAAQ,KAAK,OAAO;AAC7B,cAAQ,KAAK,GAAG,KAAK,mBAAmB;AAAA,IAC1C;AACA,QAAI,CAAC,KAAK,WAAW;AACnB,YAAM,mBAAmB,CAAC;AAC1B,iBAAW,QAAQ,KAAK,OAAO;AAC7B,yBAAiB,KAAK,GAAG,KAAK,gBAAgB;AAAA,MAChD;AACA,aAAO,iBAAiB,OAAO,OAAO;AAAA,IACxC;AACA,WAAO;AAAA,EACT;AAAA,EACA,aAAa;AACX,UAAM,UAAU,CAAC;AACjB,eAAW,QAAQ,KAAK,OAAO;AAC7B,cAAQ,KAAK,GAAG,KAAK,OAAO;AAAA,IAC9B;AACA,WAAO,cAAc,OAAO;AAAA,EAC9B;AAAA,EACA,WAAW,SAAS;AAClB,UAAM,SAAS,CAAC;AAChB,eAAW,QAAQ,KAAK,OAAO;AAC7B,YAAM,YAAY,KAAK,QAAQ;AAC/B,YAAM,eAAe,QAAQ,OAAO,SAAS;AAC7C,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC/C,eAAO,KAAK,CAAC,KAAK,QAAQ,KAAK,aAAa,GAAG,CAAC;AAAA,MAClD;AAAA,IACF;AACA,kBAAc,MAAM;AAAA,EACtB;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,MAAM,OAAO,MAAM,WAAW,OAAO,OAAOR,UAAS,GAAG,YAAY,IAAI;AAChF,QAAM,gBAAgB,MAAM,eAAe,OAAO,YAAY,MAAM,GAAG,IAAI,IAAI,SAAS,MAAM,GAAG,IAAI;AACrG,QAAM,aAAa,MAAM,aAAa,eAAe,OAAO,QAAQ;AACpE,MAAI,CAACA,WAAUA,WAAU,GAAG;AAC1B,WAAO,KAAK,WAAW,EAAE,MAAM,CAAC;AAAA,EAClC;AACA,QAAM,QAAQ,MAAMA,OAAM,EAAE,KAAK,MAAM,EAAE,IAAI,UAAU;AACvD,SAAO,MAAM,IAAI,CAAC,MAAM,KAAK,EAAE,MAAM,CAAC,CAAC;AACzC;AAGA,IAAI,SAAS,SAAS,IAAI,IAAI;AAC5B,MAAI,KAAK,CAAC;AACV,WAAS,MAAM;AACb,QAAI,OAAO,UAAU,eAAe,KAAK,IAAI,EAAE,KAAK,GAAG,QAAQ,EAAE,IAAI;AACnE,SAAG,MAAM,GAAG;AAChB,MAAI,MAAM,QAAQ,OAAO,OAAO,0BAA0B;AACxD,aAAS,KAAK,GAAG,KAAK,OAAO,sBAAsB,EAAE,GAAG,KAAK,GAAG,QAAQ,MAAM;AAC5E,UAAI,GAAG,QAAQ,GAAG,GAAG,IAAI,KAAK,OAAO,UAAU,qBAAqB,KAAK,IAAI,GAAG,GAAG;AACjF,WAAG,GAAG,OAAO,GAAG,GAAG;AAAA,IACvB;AACF,SAAO;AACT;AACA,IAAI,YAAY,cAAc,IAAI;AAAA,EAChC,YAAY,MAAM;AAChB,QAAI,KAAK,QAAQ;AACf,YAAM,IAAI,oBAAoB,oDAAoD;AAAA,IACpF;AACA,QAAI,MAAM,QAAQ,KAAK,IAAI,GAAG;AAC5B,YAAM,IAAI,oBAAoB,gEAAgE;AAAA,IAChG;AACA,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,KAAK,eAAe,MAAM;AACjC,gBAAQ,KAAK,KAAK,WAAW;AAC7B,aAAK,KAAK,cAAc;AAAA,MAC1B;AACA,UAAI,KAAK,KAAK,wBAAwB,MAAM;AAC1C,gBAAQ,KAAK,KAAK,oBAAoB;AACtC,aAAK,KAAK,uBAAuB;AAAA,MACnC;AACA,UAAI,UAAU,OAAO,cAAc;AACjC,cAAM,IAAI,WAAW,2CAA2C;AAAA,MAClE;AACA,YAAMF,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,YAAM,eAAe,UAAU,OAAO,OAAO,OAAO;AACpD,aAAO,MAAM,KAAK,QAAQ,EAAE,MAAAA,OAAM,UAAU,aAAa,CAAC;AAAA,IAC5D,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,WAAW,KAAK,yBAAyB,UAAU;AACvD,QAAI,CAAC,KAAK,iBAAiB;AACzB,iBAAW,CAAC,SAAS,IAAI,GAAG,SAAS,MAAM,CAAC,CAAC;AAAA,IAC/C;AACA,QAAI,KAAK,aAAa;AACpB,iBAAW,CAAC,UAAU,GAAG,MAAM,CAAC,EAAE,KAAK,CAAC,WAAW,IAAI,GAAG,SAAS,MAAM,EAAE,CAAC,CAAC,CAAC;AAAA,IAChF;AACA,WAAO;AAAA,EACT;AAAA,EACA,gBAAgB,QAAQ;AACtB,WAAO,KAAK,MAAM;AAChB,YAAM,EAAE,UAAU,IAAI,KAAK;AAC3B,YAAM,aAAa,OAAO;AAC1B,YAAM,cAAc,KAAK,yBAAyB,UAAU;AAC5D,YAAM,aAAa,CAAC,YAAY,IAAI,GAAG,YAAY,MAAM,CAAC,CAAC;AAC3D,YAAM,eAAe,MAAM,UAAU;AACrC,UAAI,MAAM,QAAQ,SAAS,GAAG;AAC5B,eAAO,MAAM,UAAU,MAAM,EAAE,KAAK,YAAY;AAAA,MAClD;AACA,aAAO,CAAC,YAAY;AAAA,IACtB,CAAC;AAAA,EACH;AAAA,EACA,YAAY,QAAQ,WAAW,OAAO;AACpC,SAAK,MAAM;AACT,UAAI,CAAC,KAAK,UAAU;AAClB,cAAM,IAAI,eAAe,iEAAiE;AAAA,MAC5F;AACA,YAAM,aAAa,KAAK,UAAU,GAAG;AACrC,YAAM,cAAc,KAAK,yBAAyB,UAAU;AAC5D,YAAM,aAAa,CAAC,YAAY,IAAI,GAAG,YAAY,MAAM,CAAC,CAAC;AAC3D,YAAM,YAAY,WAAW;AAC7B,UAAI,aAAa,MAAM;AACrB,cAAM,IAAI,WAAW,uUAAuU;AAAA,MAC9V;AACA,UAAI,KAAK,UAAU,KAAK,MAAM;AAC5B,YAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAK,UAAU,KAAK,KAAK,UAAU,IAAI,MAAM,MAAM,UAAU,CAAC;AAAA,QAChE,OAAO;AACL,eAAK,UAAU,CAAC,MAAM,UAAU,CAAC;AAAA,QACnC;AAAA,MACF,WAAW,UAAU,MAAM;AACzB,gBAAQ,KAAK,OAAO;AACpB,YAAI,KAAK,cAAc,MAAM;AAC3B,kBAAQ,KAAK,UAAU;AACvB,eAAK,aAAa,CAAC;AAAA,QACrB;AACA,YAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAK,UAAU,KAAK,KAAK,UAAU,IAAI,MAAM,MAAM,UAAU,CAAC;AAAA,QAChE,OAAO;AACL,eAAK,QAAQ,KAAK,MAAM,UAAU;AAAA,QACpC;AAAA,MACF,OAAO;AACL,YAAI,CAAC,MAAM,QAAQ,MAAM,GAAG;AAC1B,mBAAS,CAAC,MAAM;AAAA,QAClB;AACA,YAAI,OAAO,WAAW,KAAK,QAAQ,QAAQ;AACzC,gBAAM,IAAI,WAAW,SAAS,KAAK,gBAAgB,KAAK,QAAQ,oCAAoC,OAAO,0CAA0C,QAAQ;AAAA,QAC/J;AACA,YAAI,UAAU;AACZ,eAAK,WAAW,KAAK,KAAK,QAAQ,MAAM,CAAC;AAAA,QAC3C,OAAO;AACL,kBAAQ,KAAK,OAAO;AAAA,QACtB;AACA,iBAASK,SAAQ,GAAGA,SAAQ,KAAK,QAAQ,QAAQ,EAAEA,QAAO;AACxD,gBAAM,QAAQ,OAAOA;AACrB,gBAAM,gBAAgB;AACtB,cAAI,CAAC,aAAa,YAAY,MAAM,OAAO,aAAa,GAAG;AACzD,kBAAM,IAAI,WAAW,SAASA,qCAAoC,KAAK,wBAAwB,iCAAiC,MAAM,OAAO;AAAA,UAC/I;AACA,eAAK,QAAQA,UAAS;AAAA,QACxB;AAAA,MACF;AACA,WAAK,UAAU,KAAK,QAAQ,IAAI,CAAC,UAAU,KAAK,MAAM,MAAM,CAAC,CAAC;AAAA,IAChE,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB,YAAY;AACnC,UAAM,EAAE,YAAY,SAAS,YAAY,SAAAkB,UAAS,SAAAf,UAAS,aAAa,IAAI,KAAK;AACjF,UAAM,kBAAkB,eAAe;AACvC,UAAM,IAAI,WAAW,kBAAkB,IAAI;AAC3C,UAAM,IAAI,WAAW,kBAAkB,IAAI;AAC3C,UAAM,OAAO,iBAAiB,GAAG,WAAW,IAAIe,UAASf,SAAQ,IAAI,aAAa,EAAE;AACpF,UAAM,OAAO,iBAAiB,GAAG,WAAW,IAAIe,UAASf,SAAQ,IAAI,aAAa,EAAE;AACpF,UAAM,WAAW;AAAA,MACf,GAAG,WAAW,MAAM,GAAG,CAAC;AAAA,MACxB,GAAG,kBAAkB,CAAC,SAAS,MAAM,IAAI,IAAI,CAAC,MAAM,MAAM,OAAO;AAAA,IACnE;AACA,WAAO;AAAA,EACT;AACF;AACA,UAAU,YAAY;AACtB,IAAI,iBAAiB,cAAc,SAAS;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,EAAE,SAAS,YAAY,SAAAA,UAAS,SAAAe,UAAS,YAAY,aAAa,IAAI;AAC5E,UAAM,OAAO,OAAO,CAAC,GAAG,MAAM,EAAE,OAAO,QAAQ,CAAC,CAAC;AACjD,SAAK,UAAU;AACf,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,aAAa,eAAe,YAAY,GAAG,YAAY;AAC5D,SAAK,WAAW,QAAQ,CAAC5B,UAAS,sBAAsBA,OAAM,YAAY,CAAC;AAC3E,SAAK,UAAU,eAAea,YAAW,GAAG,GAAG,SAAS;AACxD,SAAK,QAAQ,QAAQ,CAAC,WAAW,sBAAsB,QAAQ,SAAS,CAAC;AACzE,SAAK,UAAUe,YAAW;AAC1B,qBAAiB,KAAK,OAAO;AAC7B,SAAK,aAAa,cAAc;AAChC,oBAAgB,KAAK,UAAU;AAC/B,SAAK,eAAe,eAAe,gBAAgB,GAAG,GAAG,cAAc;AACvE,SAAK,aAAa,QAAQ,CAAC,SAAS,sBAAsB,MAAM,cAAc,CAAC;AAAA,EACjF;AAAA,EACA,MAAM,YAAY;AAChB,QAAI;AACJ,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,MAAM;AACnC,YAAM,IAAI,WAAW,+DAA+D,WAAW,cAAc;AAAA,IAC/G;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,eAAe;AACrB,UAAM,cAAc,KAAK,WAAW,OAAO,CAAC,UAAU,KAAK,UAAU,YAAY,CAAC;AAClF,SAAK,SAAS,KAAK,UAAU,UAAU,aAAa,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACrI,UAAM,uBAAuB,KAAK,WAAW,OAAO,CAAC,KAAK,SAAS,KAAK,UAAU,YAAY,CAAC;AAC/F,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,sBAAsB,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAC1K,QAAI,KAAK,SAAS;AAChB,UAAI;AACJ,UAAI,KAAK,gBAAgB;AACvB,cAAMxB,SAAQ,KAAK;AACnB,cAAM,UAAU,KAAK;AACrB,0BAAkB,KAAK,KAAK,MAAM,mBAAmB,YAAY;AAAA,UAC/D,MAAM,OAAO,OAAO;AAClB,kBAAM,QAAQA,OAAM,MAAM,CAAC,OAAO,CAAC;AACnC,kBAAM,QAAQ,MAAM,CAAC,OAAO,CAAC;AAC7B,kBAAM,YAAYA,OAAM,MAAM,CAAC,UAAU,CAAC,CAAC;AAC3C,mBAAO,YAAY,CAAC,OAAO,OAAO,SAAS,CAAC;AAAA,UAC9C;AAAA,QACF,GAAG,GAAG,YAAY,cAAc,IAAI;AAAA,MACtC,OAAO;AACL,0BAAkB,KAAK;AAAA,MACzB;AACA,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,UAAU,YAAY,GAAG,MAAM,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAC1I;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,OAAO,WAAW,GAAG;AACvB,cAAM,IAAI,WAAW,8DAA8D,OAAO,SAAS;AAAA,MACrG;AACA,YAAM,WAAW,OAAO,eAAe;AACvC,YAAM,IAAI,OAAO;AACjB,YAAM,WAAW,OAAO;AACxB,YAAM,WAAW,OAAO;AACxB,YAAM,eAAe;AACrB,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,KAAK,KAAK,eAAe,MAAM;AACpE,aAAK,cAAc,oBAAoB;AAAA,UACrC,MAAM,MAAM,SAAS,CAAC;AAAA,UACtB,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,YAAM,cAAc,KAAK;AACzB,YAAM,eAAe,CAAC,IAAIC,OAAMK,WAAU;AACxC,YAAI,CAACL,SAAQ,CAACA,MAAKK,SAAQ;AACzB,iBAAO;AAAA,QACT;AACA,eAAO,IAAIL,MAAKK,SAAQ,EAAE;AAAA,MAC5B;AACA,UAAI,KAAK,aAAa,GAAG,aAAa,CAAC;AACvC,UAAI,KAAK,aAAa,GAAG,aAAa,CAAC;AACvC,UAAI,KAAK,aAAa,GAAG,aAAa,CAAC;AACvC,UAAI,KAAK,aAAa,GAAG,aAAa,CAAC;AACvC,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,KAAK,KAAK,wBAAwB,MAAM;AAC/F,aAAK,uBAAuB,oBAAoB;AAAA,UAC9C,MAAM,MAAM,SAAS,QAAQ;AAAA,UAC7B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,YAAM,iBAAiB,KAAK;AAC5B,UAAI,KAAK,aAAa,UAAU,gBAAgB,CAAC;AACjD,UAAI,KAAK,aAAa,UAAU,gBAAgB,CAAC;AACjD,UAAI,KAAK,aAAa,UAAU,gBAAgB,CAAC;AACjD,UAAI,KAAK,aAAa,UAAU,gBAAgB,CAAC;AACjD,YAAM,oBAAoB;AAC1B,YAAM,CAAC,SAAS,SAAS,SAAS,OAAO,IAAI,MAAM,KAAK,OAAO,KAAK,GAAG,cAAc,iBAAiB;AACtG,YAAM,CAAC,OAAO,OAAO,OAAO,KAAK,IAAI,KAAK,UAAU,MAAM,KAAK,KAAK,KAAK,GAAG,YAAY,IAAI,CAAC,MAAM,MAAM,MAAM,IAAI;AACnH,WAAK,KAAK,UAAU,IAAI,SAAS,OAAO,KAAK,OAAO;AACpD,WAAK,KAAK,UAAU,IAAI,SAAS,OAAO,KAAK,OAAO;AACpD,WAAK,KAAK,UAAU,IAAI,SAAS,OAAO,KAAK,OAAO;AACpD,WAAK,KAAK,UAAU,IAAI,SAAS,OAAO,KAAK,OAAO;AACpD,YAAM,CAAC,YAAY,YAAY,YAAY,UAAU,IAAI,MAAM,KAAK,gBAAgB,KAAK,GAAG,cAAc,iBAAiB;AAC3H,WAAK,KAAK,cAAc,IAAI,UAAU;AACtC,WAAK,KAAK,cAAc,IAAI,UAAU;AACtC,WAAK,KAAK,cAAc,IAAI,UAAU;AACtC,WAAK,KAAK,cAAc,IAAI,UAAU;AACtC,YAAM,KAAK,KAAK,oBAAoB,MAAM,KAAK,IAAI,EAAE,CAAC;AACtD,YAAM,IAAI,KAAK,oBAAoB,MAAM,KAAK,IAAI,EAAE,CAAC;AACrD,YAAM,IAAI,KAAK,IAAI,GAAG,QAAQ,GAAG,IAAI,IAAI,KAAK,WAAW,MAAM,KAAK,IAAI,EAAE,CAAC,CAAC,CAAC;AAC7E,YAAM,IAAI,IAAI,KAAK,oBAAoB,MAAM,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,WAAW,MAAM,CAAC,CAAC;AACpF,aAAO,CAAC,GAAG,GAAG,CAAC;AAAA,IACjB,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAM,KAAK,MAAM,UAAU,GAAG,EAAE,SAAS,EAAE,IAAI,IAAI,aAAa,OAAO,IAAI,CAAC,OAAO,CAAC;AACpF,UAAMK,UAAS;AAAA,MACb,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,cAAc,KAAK;AAAA,MACnB,SAAS,KAAK;AAAA,IAChB;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AAAA,EACA,UAAU,GAAG,GAAG,GAAGa,UAAS;AAC1B,UAAM,MAAM,OAAO,GAAG,GAAG,KAAK,SAASA,YAAW,SAAS,KAAK,eAAe,kBAAkB,SAAS,QAAQ,KAAK,YAAY;AACnI,QAAI,GAAG;AACL,aAAO,QAAQ,KAAK,GAAG,KAAK,UAAU;AAAA,IACxC;AACA,WAAO;AAAA,EACT;AAAA,EACA,cAAc,GAAG,GAAG;AAClB,UAAMf,WAAU;AAChB,WAAO,OAAO,GAAG,GAAGA,UAAS,QAAQ,KAAK,eAAe,kBAAkB,SAAS,MAAM;AAAA,EAC5F;AACF;AACA,eAAe,YAAY;AAC3B,sBAAsB,cAAc,cAAc;AAClD,IAAI,aAAa,cAAc,UAAU;AAAA,EACvC,YAAY,MAAM;AAChB,UAAM,OAAO,IAAI,eAAe,IAAI;AACpC,UAAM,OAAO,OAAO,CAAC,GAAG,MAAM,EAAE,KAAK,CAAC,CAAC;AAAA,EACzC;AAAA,EACA,OAAO,WAAW,KAAKE,SAAQ;AAC7B,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAG9C,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,MAAM,CAAC,GAAG,CAAC;AAC9C,SAAK,aAAa,KAAK;AACvB,SAAK,OAAO,KAAK;AACjB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,cAAc,QAAQ;AACpB,QAAI,KAAK,cAAc,MAAM;AAC3B,aAAO,KAAK;AAAA,IACd;AACA,UAAM,aAAa,OAAO;AAC1B,UAAM,aAAa,CAAC;AACpB,aAAS,KAAK,GAAG,KAAK,KAAK,WAAW,QAAQ,EAAE,IAAI;AAClD,iBAAW,KAAK,KAAK,WAAW,OAAO,OAAO,WAAW,MAAM,KAAK,WAAW,GAAG;AAAA,IACpF;AACA,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,UAAI,IAAI,KAAK,QAAQ,KAAK,OAAO,GAAG;AAClC,cAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,cAAM,aAAa,KAAK,cAAc,MAAM;AAC5C,cAAM,SAAS,aAAa,MAAM,SAAS,QAAQ,KAAK,MAAM,YAAY,KAAK,IAAI,GAAG,MAAM,QAAQ,QAAQ;AAC5G,eAAO;AAAA,MACT;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,MACX,YAAY,KAAK;AAAA,MACjB,MAAM,KAAK;AAAA,IACb;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,UAAU;AACR,WAAO,MAAM,QAAQ;AAAA,EACvB;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,mBAAmB,cAAc,QAAQ;AAAA,EAC3C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EACA,cAAc,QAAQ;AACpB,UAAM,aAAa,OAAO;AAC1B,WAAO,CAAC,WAAW,IAAI,GAAG,WAAW,EAAE;AAAA,EACzC;AACF;AACA,iBAAiB,YAAY;AAC7B,sBAAsB,cAAc,gBAAgB;AACpD,IAAI,QAAQ,cAAc,MAAM;AAAA,EAC9B,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,aAAa;AAClB,SAAK,UAAU;AACf,SAAK,SAAS;AACd,SAAK,OAAO;AACZ,SAAK,6BAA6B;AAClC,SAAK,2BAA2B;AAChC,QAAI,KAAK,mBAAmB,QAAQ,KAAK,cAAc,QAAQ,KAAK,YAAY,MAAM;AACpF,UAAI,YAAY;AAChB,UAAI,KAAK,aAAa,MAAM;AAC1B,oBAAY,KAAK;AAAA,MACnB;AACA,WAAK,kBAAkB,CAAC,WAAW,KAAK,QAAQ;AAAA,IAClD;AACA,SAAK,QAAQ,KAAK;AAClB,0BAAsB,KAAK,OAAO,OAAO;AACzC,SAAK,aAAa,cAAc,KAAK,UAAU;AAC/C,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,KAAK;AAAA,IACtB;AACA,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAC9D,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,sBAAsB,eAAe,KAAK,mBAAmB;AAClE,SAAK,kBAAkB;AACvB,SAAK,YAAY,CAAC,EAAE,SAAS,EAAE,CAAC;AAAA,EAClC;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,eAAe,WAAW,WAAW,SAAS;AACpD,QAAI,KAAK,UAAU,MAAM;AACvB,WAAK,SAAS,KAAK,UAAU,UAAU,CAAC,cAAc,KAAK,KAAK,GAAG,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACpJ,UAAI,KAAK,SAAS;AAChB,aAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,KAAK,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,MAC9H;AAAA,IACF;AACA,SAAK,YAAY,CAAC,EAAE,SAAS,GAAG,MAAM,EAAE,CAAC,KAAK,aAAa,EAAE,CAAC;AAC9D,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,WAAW,MAAM;AACrC,gBAAY,YAAY,SAAS,KAAK,KAAK;AAC3C,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,sBAAsB,2BAA2B,KAAK,WAAW,aAAa,CAAC;AACrF,UAAI;AACJ,UAAI,uBAAuB,MAAM;AAC/B,iBAAS,KAAK,QAAQ,KAAK,OAAO,KAAK,GAAG,qBAAqB,KAAK,OAAO,KAAK,KAAK,KAAK,IAAI,IAAI;AAAA,MACpG,OAAO;AACL,iBAAS,KAAK,QAAQ,KAAK,OAAO,KAAK,CAAC;AACxC,YAAI,KAAK,QAAQ,MAAM;AACrB,mBAAS,QAAQ,QAAQ,KAAK,KAAK,KAAK,CAAC;AAAA,QAC3C;AACA,YAAI,KAAK,cAAc,MAAM;AAC3B,mBAAS,KAAK,WAAW,MAAM,MAAM;AAAA,QACvC;AAAA,MACF;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,MAC3D,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,IACzD;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,WAAO,QAAQ,CAAC;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,EAAE,SAAS,EAAE,CAAC;AAChC,SAAK,aAAa,KAAK;AAAA,EACzB;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,eAAW,OAAO,WAAW,MAAM,CAAC,GAAG;AACrC,UAAI,OAAO,MAAM;AACf,cAAM,IAAI,WAAW,iEAAiE,WAAW,MAAM,CAAC,kHAAkH;AAAA,MAC5N;AAAA,IACF;AACA,WAAO,CAAC,WAAW,IAAI,UAAU,YAAY,CAAC,CAAC;AAAA,EACjD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,UAAI,SAAS,oBAAoB,MAAM;AACvC,UAAI,KAAK,eAAe,mBAAmB,OAAO,OAAO,GAAG;AAC1D,cAAM,cAAc,CAAC,CAAC;AACtB,iBAAS,KAAK,GAAG,KAAK,OAAO,MAAM,EAAE,IAAI;AACvC,sBAAY,KAAK,EAAE;AAAA,QACrB;AACA,oBAAY,KAAK,CAAC;AAClB,iBAAS,UAAU,QAAQ,WAAW;AAAA,MACxC;AACA,aAAO,aAAa,MAAM;AAAA,IAC5B,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,CAAC;AAChB,QAAI,KAAK,cAAc,MAAM;AAC3B,MAAAA,QAAO,gBAAgB,KAAK;AAAA,IAC9B;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,cAAc,cAAc,MAAM;AAAA,EACpC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,aAAa,cAAc,KAAK,UAAU;AAAA,EACjD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,aAAO,KAAK,WAAW,MAAM,MAAM;AAAA,IACrC,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,YAAY,oBAAoB,KAAK,UAAU,EAAE;AAClE,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,eAAe,cAAc,MAAM;AAAA,EACrC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,IAAI,KAAK;AACd,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO,CAAC,WAAW,IAAI,KAAK,GAAG,WAAW,EAAE;AAAA,EAC9C;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,aAAO,OAAO,QAAQ,KAAK,CAAC;AAAA,IAC9B,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,GAAG,KAAK;AAAA,IACV;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,cAAc,KAAK;AACxB,aAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,EAAE,IAAI;AACnD,UAAI,KAAK,UAAU,KAAK,YAAY,GAAG,GAAG;AACxC,aAAK,YAAY,MAAM;AAAA,MACzB;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU,KAAK;AACb,WAAO,MAAM,KAAK,OAAO;AAAA,EAC3B;AAAA,EACA,oBAAoB,YAAY,aAAa;AAC3C,UAAM,WAAW;AACjB,UAAM,aAAa,YAAY,MAAM;AACrC,QAAI,QAAQ;AACZ,QAAI,UAAU;AACd,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAM,MAAM,WAAW;AACvB,UAAI,KAAK,UAAU,GAAG,GAAG;AACvB,YAAI,YAAY,MAAM;AACpB,oBAAU;AAAA,QACZ,OAAO;AACL,gBAAM,IAAI,WAAW,0CAA0C;AAAA,QACjE;AAAA,MACF,OAAO;AACL,iBAAS;AAAA,MACX;AAAA,IACF;AACA,UAAM,eAAe,UAAU,UAAU;AACzC,QAAI,YAAY,MAAM;AACpB,UAAI,UAAU,KAAK,eAAe,UAAU,GAAG;AAC7C,cAAM,IAAI,WAAW,QAAQ;AAAA,MAC/B;AACA,iBAAW,WAAW,eAAe;AAAA,IACvC,WAAW,iBAAiB,OAAO;AACjC,YAAM,IAAI,WAAW,QAAQ;AAAA,IAC/B;AACA,WAAO;AAAA,EACT;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,iBAAiB;AACrB,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,UAAI,KAAK,UAAU,WAAW,GAAG,GAAG;AAClC,yBAAiB;AACjB;AAAA,MACF;AAAA,IACF;AACA,QAAI,gBAAgB;AAClB,aAAO,WAAW,MAAM,GAAG,CAAC,EAAE,OAAO,KAAK,WAAW;AAAA,IACvD,OAAO;AACL,aAAO,WAAW,MAAM,GAAG,CAAC,EAAE,OAAO,KAAK,oBAAoB,WAAW,MAAM,CAAC,GAAG,KAAK,WAAW,CAAC;AAAA,IACtG;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,aAAa,OAAO;AAC1B,YAAM,cAAc,WAAW,MAAM,GAAG,CAAC,EAAE,OAAO,KAAK,oBAAoB,WAAW,MAAM,CAAC,GAAG,KAAK,WAAW,CAAC;AACjH,aAAO,QAAQ,QAAQ,WAAW;AAAA,IACpC,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,aAAa,KAAK;AAAA,IACpB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,QAAI,KAAK,QAAQ,MAAM;AACrB,YAAM,IAAI,MAAM,iFAAiF;AAAA,IACnG;AACA,QAAI,CAAC,MAAM,QAAQ,KAAK,IAAI,GAAG;AAC7B,YAAM,IAAI,MAAM,sEAAsE,KAAK,eAAe;AAAA,IAC5G;AACA,UAAM,wBAAwB,OAAO,GAAG,KAAK,KAAK,SAAS,CAAC;AAC5D,QAAI,CAAC,aAAa,YAAY,KAAK,KAAK,MAAM,EAAE,KAAK,GAAG,qBAAqB,GAAG;AAC9E,YAAM,IAAI,MAAM,iCAAiC,KAAK,UAAU,KAAK,IAAI,IAAI,4DAA4D;AAAA,IAC3I;AACA,SAAK,OAAO,KAAK;AACjB,SAAK,qBAAqB,CAAC,CAAC,EAAE,OAAO,KAAK,IAAI;AAC9C,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,KAAK,KAAK,SAAS,EAAE,CAAC,CAAC;AAAA,EACjE;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,WAAW,MAAM;AACrC,SAAK,KAAK,QAAQ,CAAC,KAAK,OAAO;AAC7B,kBAAY,KAAK,KAAK,WAAW;AAAA,IACnC,CAAC;AACD,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,UAAU,oBAAoB,MAAM,GAAG,KAAK,kBAAkB;AAAA,EACvE;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,IACb;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,kBAAkB;AACvB,QAAI,QAAQ,MAAM;AAChB,WAAK,YAAY,KAAK,aAAa,OAAO,IAAI,KAAK;AAAA,IACrD,OAAO;AACL,WAAK,YAAY;AAAA,IACnB;AAAA,EACF;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS,EAAE,WAAW,KAAK,UAAU;AAC3C,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,YAAY,QAAQV,OAAM;AACxB,UAAM,SAAS,oBAAoB,MAAM;AACzC,UAAM,OAAO;AACb,WAAO,IAAI,SAAS,QAAQ,KAAK,SAAS,GAAG,IAAI;AAAA,EACnD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,OAAO;AACb,YAAM,WAAW;AACjB,YAAM,cAAc,IAAI,SAAS,QAAQ,KAAK,SAAS,GAAG,MAAM,QAAQ;AACxE,YAAM,SAAS,IAAI,QAAQ,KAAK,aAAa,OAAO,KAAK,CAAC;AAC1D,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAG3C,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,aAAa;AAClB,SAAK,iCAAiC;AACtC,QAAI,KAAK,mBAAmB,QAAQ,KAAK,cAAc,MAAM;AAC3D,UAAI,YAAY;AAChB,UAAI,KAAK,aAAa,MAAM;AAC1B,oBAAY,KAAK;AAAA,MACnB;AACA,UAAI,KAAK,eAAe,MAAM;AAC5B,aAAK,kBAAkB,CAAC,WAAW,IAAI;AAAA,MACzC,OAAO;AACL,aAAK,kBAAkB,CAAC,SAAS,EAAE,OAAO,OAAO,KAAK,WAAW,CAAC;AAAA,MACpE;AAAA,IACF;AACA,SAAK,WAAW,KAAK;AACrB,0BAAsB,KAAK,UAAU,UAAU;AAC/C,SAAK,YAAY,KAAK;AACtB,0BAAsB,KAAK,WAAW,WAAW;AACjD,SAAK,wBAAwB,eAAe,KAAK,yBAAyB,KAAK,8BAA8B;AAC7G,SAAK,wBAAwB,eAAe,KAAK,qBAAqB;AACtE,SAAK,sBAAsB,eAAe,KAAK,mBAAmB;AAClE,SAAK,uBAAuB,cAAc,KAAK,oBAAoB;AACnE,SAAK,WAAW,KAAK;AACrB,SAAK,kBAAkB,KAAK;AAC5B,SAAK,cAAc,KAAK;AAAA,EAC1B;AAAA,EACA,MAAM,YAAY;AAChB,SAAK,aAAa,KAAK,UAAU,cAAc,CAAC,KAAK,UAAU,KAAK,SAAS,GAAG,KAAK,OAAO,KAAK,uBAAuB,KAAK,uBAAuB,MAAM,KAAK,oBAAoB;AACnL,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,6BAA6B,YAAY;AAAA,EACzC;AAAA,EACA,YAAY,QAAQA,OAAM;AACxB,WAAO,KAAK,MAAM;AAChB,UAAI,CAAC,KAAK,UAAU;AAClB,eAAO;AAAA,MACT,OAAO;AACL,iBAAS,oBAAoB,MAAM;AACnC,eAAO,SAAS,QAAQ,UAAU,MAAM,CAAC;AAAA,MAC3C;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,KAAK,eAAe,MAAM;AAC5B,aAAO,CAAC,GAAG,YAAY,KAAK,SAAS;AAAA,IACvC;AACA,UAAM,SAAS,OAAO,KAAK,WAAW;AACtC,QAAI,OAAO,WAAW,WAAW,SAAS,GAAG;AAC3C,YAAM,IAAI,WAAW,oBAAoB,KAAK,mDAAmD,YAAY;AAAA,IAC/G,OAAO;AACL,UAAI,KAAK;AACT,eAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,EAAE,GAAG;AACtC,cAAM,KAAK,OAAO;AAClB,cAAM,KAAK,WAAW,IAAI;AAC1B,YAAI,MAAM,QAAQ,MAAM,QAAQ,OAAO,IAAI;AACzC,gBAAM,IAAI,WAAW,oBAAoB,KAAK,mDAAmD,YAAY;AAAA,QAC/G,WAAW,MAAM,MAAM;AACrB,iBAAO,MAAM;AAAA,QACf;AACA;AAAA,MACF;AAAA,IACF;AACA,WAAO,CAAC,WAAW,IAAI,GAAG,QAAQ,KAAK,SAAS;AAAA,EAClD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,UAAI,SAAS,oBAAoB,MAAM;AACvC,UAAI,OAAO,UAAU,SAAS;AAC5B,iBAAS,MAAM,QAAQ,OAAO;AAAA,MAChC;AACA,YAAM,SAAS,QAAQ,KAAK,WAAW,KAAK,GAAG,QAAQ,QAAQ,CAAC,OAAO,IAAI,CAAC,CAAC;AAC7E,aAAO,QAAQ,QAAQ,mBAAmB,KAAK,mBAAmB,OAAO,KAAK,CAAC,CAAC;AAAA,IAClF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMU,UAAS;AAAA,MACb,UAAU,KAAK;AAAA,MACf,WAAW,KAAK;AAAA,MAChB,uBAAuB,qBAAqB,KAAK,qBAAqB;AAAA,MACtE,uBAAuB,qBAAqB,KAAK,qBAAqB;AAAA,MACtE,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,sBAAsB,oBAAoB,KAAK,oBAAoB;AAAA,MACnE,UAAU,KAAK;AAAA,MACf,aAAa,KAAK;AAAA,IACpB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAG7C,IAAI,QAAQ,cAAc,MAAM;AAAA,EAC9B,YAAY,MAAM;AAChB,UAAM,QAAQ,CAAC,CAAC;AAChB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,cAAc,QAAQ;AACpB,UAAM,IAAI,oBAAoB;AAAA,EAChC;AAAA,EACA,gCAAgC,QAAQ,QAAQ;AAC9C,QAAI,UAAU,QAAQ,UAAU,MAAM;AACpC,aAAO;AAAA,IACT,WAAW,OAAO,SAAS,OAAO,QAAQ;AACxC,aAAO,KAAK,gCAAgC,QAAQ,MAAM;AAAA,IAC5D,WAAW,OAAO,WAAW,GAAG;AAC9B,aAAO;AAAA,IACT;AACA,UAAM,cAAc,OAAO,MAAM,GAAG,OAAO,SAAS,OAAO,MAAM;AACjE,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,EAAE,GAAG;AACtC,YAAM,KAAK,OAAO,OAAO,SAAS,OAAO,SAAS;AAClD,YAAM,IAAI,OAAO;AACjB,UAAI,MAAM,QAAQ,KAAK,QAAQ,KAAK,KAAK,IAAI,GAAG;AAC9C,oBAAY,KAAK,IAAI;AAAA,MACvB,WAAW,OAAO,GAAG;AACnB,oBAAY,KAAK,CAAC;AAAA,MACpB,WAAW,MAAM,GAAG;AAClB,oBAAY,KAAK,EAAE;AAAA,MACrB,OAAO;AACL,YAAI,OAAO,GAAG;AACZ,gBAAM,IAAI,WAAW,0DAA0D,KAAK,UAAU,MAAM,IAAI,MAAM,KAAK,UAAU,MAAM,CAAC;AAAA,QACtI;AACA,oBAAY,KAAK,EAAE;AAAA,MACrB;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,YAAY;AAChB,QAAI,MAAM,QAAQ,UAAU,KAAK,CAAC,MAAM,QAAQ,WAAW,EAAE,GAAG;AAC9D,mBAAa,CAAC,mBAAmB,UAAU,CAAC;AAAA,IAC9C;AACA,iBAAa;AACb,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,WAAW,wEAAwE,WAAW,kBAAkB;AAAA,IAC5H;AACA,QAAI,aAAa,CAAC;AAClB,eAAW,SAAS,YAAY;AAC9B,UAAI,SAAS,QAAQ,MAAM,OAAO,MAAM;AACtC,mBAAW,KAAK,MAAM,EAAE;AAAA,MAC1B;AAAA,IACF;AACA,iBAAa,QAAQ,UAAU;AAC/B,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,WAAW,8EAA8E,KAAK,UAAU,UAAU,IAAI;AAAA,IAClI;AACA,QAAI,cAAc,WAAW,MAAM,OAAO,OAAO,WAAW,GAAG,MAAM,CAAC;AACtE,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAM,QAAQ,WAAW,OAAO,OAAO,OAAO,WAAW,IAAI,MAAM,CAAC;AACpE,oBAAc,KAAK,gCAAgC,aAAa,KAAK;AAAA,IACvE;AACA,UAAM,WAAW,WAAW,IAAI,CAAC,UAAU,MAAM,MAAM;AACvD,QAAI,WAAW,QAAQ,IAAI,MAAM,MAAM,QAAQ,QAAQ,EAAE,WAAW,GAAG;AACrE,WAAK,kBAAkB;AAAA,IACzB,OAAO;AACL,WAAK,kBAAkB;AAAA,IACzB;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS;AACT,UAAI,KAAK,iBAAiB;AACxB,cAAM,iBAAiB,CAAC;AACxB,cAAM,YAAY,OAAO,IAAI,CAAC,WAAW,OAAO,IAAI;AACpD,YAAI,UAAU,QAAQ,IAAI,MAAM,IAAI;AAClC,gBAAM,UAAU,KAAK,SAAS;AAC9B,mBAAS,KAAK,QAAQ;AACpB,kBAAM,QAAQ,EAAE;AAChB,qBAAS,IAAI,GAAG,IAAI,UAAU,OAAO,EAAE,GAAG;AACxC,kBAAI,YAAY,GAAG,CAAC;AAAA,YACtB;AACA,2BAAe,KAAK,CAAC;AAAA,UACvB;AACA,iBAAO,KAAK,cAAc,cAAc;AAAA,QAC1C,OAAO;AACL,cAAI,aAAa;AACjB,qBAAW,KAAK,QAAQ;AACtB,kBAAM,QAAQ,EAAE;AAChB,gBAAI,SAAS,MAAM;AACjB,oBAAM,SAAS,EAAE;AACjB,oBAAM,YAAY,OAAO;AACzB,oBAAM,WAAW,OAAO,MAAM,CAAC,EAAE,OAAO,CAAC,SAAS,CAAC;AACnD,kBAAI,cAAc,QAAQ,GAAG,CAAC,SAAS,EAAE,OAAO,UAAU,OAAO,MAAM,CAAC,CAAC,CAAC,CAAC;AAC3E,4BAAc,UAAU,aAAa,CAAC,GAAG,CAAC,CAAC;AAC3C,4BAAc,QAAQ,aAAa,QAAQ;AAC3C,6BAAe,KAAK,WAAW;AAC/B,2BAAa;AAAA,YACf,WAAW,QAAQ,GAAG;AACpB,oBAAM,OAAO,OAAO,GAAG,KAAK,EAAE,OAAO,CAAC,CAAC,CAAC;AACxC,6BAAe,KAAK,UAAU,GAAG,IAAI,CAAC;AACtC,2BAAa;AAAA,YACf,OAAO;AACL,6BAAe,KAAK,CAAC;AAAA,YACvB;AAAA,UACF;AACA,cAAI,IAAI,KAAK,cAAc,cAAc;AACzC,gBAAM,QAAQ,EAAE;AAChB,cAAI,YAAY;AACd,gBAAI,SAAS,MAAM;AACjB,oBAAM,SAAS,EAAE;AACjB,oBAAM,SAAS,OAAO;AACtB,oBAAM,YAAY,OAAO,SAAS;AAClC,oBAAM,WAAW,CAAC,SAAS,EAAE,OAAO,OAAO,MAAM,GAAG,OAAO,SAAS,CAAC,CAAC;AACtE,kBAAI,QAAQ,UAAU,QAAQ,GAAG,CAAC,IAAI,SAAS,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,QAAQ;AAAA,YACtE,WAAW,QAAQ,GAAG;AACpB,oBAAM,OAAO,CAAC,QAAQ,CAAC,EAAE,OAAO,OAAO,GAAG,QAAQ,CAAC,CAAC;AACpD,kBAAI,UAAU,GAAG,IAAI;AAAA,YACvB;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AAAA,MACF,OAAO;AACL,eAAO,KAAK,cAAc,MAAM;AAAA,MAClC;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa;AACb,QAAI;AACJ,QAAI,WAAW,MAAM,MAAM;AACzB,oBAAc;AAAA,IAChB,OAAO;AACL,oBAAc,WAAW,GAAG,MAAM,CAAC;AAAA,IACrC;AACA,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAM,QAAQ,WAAW,OAAO,OAAO,OAAO,WAAW,IAAI,MAAM,CAAC;AACpE,oBAAc,KAAK,gCAAgC,aAAa,KAAK;AAAA,IACvE;AACA,QAAI,aAAa,CAAC;AAClB,eAAW,SAAS,YAAY;AAC9B,UAAI,SAAS,QAAQ,MAAM,OAAO,MAAM;AACtC,mBAAW,KAAK,MAAM,EAAE;AAAA,MAC1B;AAAA,IACF;AACA,iBAAa,QAAQ,UAAU;AAC/B,QAAI,WAAW,WAAW,GAAG;AAC3B,oBAAc,WAAW,OAAO,WAAW;AAAA,IAC7C,OAAO;AACL,oBAAc,CAAC,IAAI,EAAE,OAAO,WAAW;AAAA,IACzC;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQV,OAAM;AACxB,WAAO,KAAK,MAAM;AAChB,UAAIA,SAAQ,MAAM;AAChB,eAAO;AAAA,MACT;AACA,UAAI,CAAC,MAAM,QAAQA,KAAI,GAAG;AACxB,cAAM,IAAI,WAAW,2BAA2B;AAAA,MAClD;AACA,UAAI,CAAC,MAAM,QAAQ,MAAM,GAAG;AAC1B,cAAM,IAAI,WAAW,6BAA6B;AAAA,MACpD;AACA,UAAIA,MAAK,WAAW,OAAO,QAAQ;AACjC,cAAM,IAAI,WAAW,mGAAmG,OAAO,aAAaA,MAAK,SAAS;AAAA,MAC5J;AACA,UAAIA,MAAK,MAAM,CAAC,MAAM,KAAK,IAAI,GAAG;AAChC,eAAO;AAAA,MACT;AACA,MAAAA,QAAOA,MAAK,IAAI,CAAC,MAAM,KAAK,OAAO,IAAI,WAAW,GAAG,CAAC,CAAC;AACvD,UAAI,SAASA,MAAK;AAClB,eAAS,KAAK,GAAG,KAAKA,MAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,iBAAS,WAAW,QAAQA,MAAK,GAAG;AAAA,MACtC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,IAAI,OAAO,cAAc,MAAM;AAAA,EAC7B,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO,GAAG,MAAM;AAC7B,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,KAAK,QAAQ,OAAO,GAAG;AAAA,MAClC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO,GAAG,MAAM;AAC7B,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,IAAI,QAAQ,OAAO,GAAG;AAAA,MACjC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO,GAAG,MAAM;AAC7B,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,KAAK,QAAQ,OAAO,GAAG;AAAA,MAClC;AACA,aAAO,IAAI,IAAI,OAAO,QAAQ,MAAM;AAAA,IACtC,CAAC;AAAA,EACH;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO;AACpB,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,QAAQ,QAAQ,OAAO,GAAG;AAAA,MACrC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO;AACpB,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,QAAQ,QAAQ,OAAO,GAAG;AAAA,MACrC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,cAAc,cAAc,MAAM;AAAA,EACpC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,eAAe;AACpB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,eAAe,KAAK;AACzD,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,MAAM,YAAY;AAChB,QAAI,EAAE,MAAM,QAAQ,UAAU,KAAK,MAAM,QAAQ,WAAW,EAAE,MAAM,WAAW,WAAW,GAAG;AAC3F,YAAM,IAAI,WAAW,uEAAuE;AAAA,IAC9F;AACA,iBAAa;AACb,QAAI,eAAe;AACnB,eAAW,SAAS,YAAY;AAC9B,UAAI,SAAS,MAAM;AACjB,uBAAe;AACf;AAAA,MACF;AAAA,IACF;AACA,QAAI,cAAc;AAChB;AAAA,IACF;AACA,UAAM,WAAW,CAAC;AAClB,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAM,yBAAyB,WAAW,IAAI,MAAM;AACpD,6BAAuB,OAAO,KAAK,MAAM,CAAC;AAC1C,UAAI,SAAS;AACb,iBAAW,SAAS,UAAU;AAC5B,YAAI,aAAa,YAAY,OAAO,sBAAsB,GAAG;AAC3D,mBAAS;AACT;AAAA,QACF;AAAA,MACF;AACA,UAAI,CAAC,QAAQ;AACX,iBAAS,KAAK,sBAAsB;AAAA,MACtC;AAAA,IACF;AACA,QAAI,SAAS,SAAS,GAAG;AACvB,YAAM,IAAI,WAAW,8GAA8G,KAAK,UAAU,UAAU,CAAC;AAAA,IAC/J;AAAA,EACF;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,aAAO,YAAY,QAAQ,KAAK,IAAI;AAAA,IACtC,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,EAAE,MAAM,QAAQ,UAAU,KAAK,MAAM,QAAQ,WAAW,EAAE,IAAI;AAChE,YAAM,IAAI,WAAW,6DAA6D;AAAA,IACpF;AACA,UAAM,cAAc;AACpB,UAAM,cAAc,YAAY,GAAG,MAAM;AACzC,UAAM,OAAO,KAAK,OAAO,IAAI,YAAY,SAAS,KAAK,OAAO,KAAK;AACnE,eAAW,SAAS,YAAY,MAAM,CAAC,GAAG;AACxC,UAAI,YAAY,SAAS,QAAQ,MAAM,SAAS,MAAM;AACpD,oBAAY,QAAQ;AACpB;AAAA,MACF;AACA,kBAAY,SAAS,MAAM;AAAA,IAC7B;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQA,OAAM;AACxB,QAAIA,SAAQ,MAAM;AAChB,aAAO;AAAA,IACT;AACA,QAAI,CAAC,MAAM,QAAQA,KAAI,GAAG;AACxB,YAAM,IAAI,WAAW,2CAA2C;AAAA,IAClE;AACA,QAAI,CAAC,MAAM,QAAQ,MAAM,GAAG;AAC1B,YAAM,IAAI,WAAW,6CAA6C;AAAA,IACpE;AACA,QAAIA,MAAK,WAAW,OAAO,QAAQ;AACjC,YAAM,IAAI,WAAW,mCAAmCA,MAAK,qCAAqC,OAAO,SAAS;AAAA,IACpH;AACA,WAAO,KAAK,MAAM;AAChB,UAAI,eAAe;AACnB,MAAAA,MAAK,QAAQ,CAAC,MAAM;AAClB,YAAI,KAAK,MAAM;AACb,yBAAe;AACf;AAAA,QACF;AAAA,MACF,CAAC;AACD,UAAI,cAAc;AAChB,eAAO;AAAA,MACT;AACA,YAAM,cAAc,CAAC;AACrB,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,YAAIA,MAAK,OAAO,MAAM;AACpB,sBAAY,KAAK,KAAK,SAAS,OAAO,GAAG,GAAG,MAAM,CAAC;AAAA,QACrD,WAAWA,MAAK,IAAI,OAAO,OAAO,IAAI,MAAM;AAC1C,sBAAY,KAAK,WAAWA,MAAK,KAAK,EAAE,CAAC;AAAA,QAC3C,OAAO;AACL,sBAAY,KAAKA,MAAK,GAAG;AAAA,QAC3B;AAAA,MACF;AACA,YAAM,oBAAoB,OAAO,aAAa,KAAK,IAAI;AACvD,aAAO,IAAI,mBAAmB,IAAI,KAAK;AAAA,IACzC,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMU,UAAS;AAAA,MACb,QAAQ,KAAK;AAAA,IACf;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,SAAS,cAAc,MAAM,KAAK;AAChC,SAAO,OAAO,GAAG;AACf,YAAQ;AAAA,EACV;AACA,SAAO;AACT;AACA,SAAS,SAAS,GAAG,GAAG,MAAM;AAC5B,MAAI,EAAE,MAAM,SAAS,KAAK,EAAE,MAAM,SAAS,GAAG;AAC5C,UAAM,IAAI,oBAAoB,kEAAkE;AAAA,EAClG;AACA,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,uDAAuD,EAAE,MAAM,QAAQ;AACtH,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,uDAAuD,EAAE,MAAM,QAAQ;AACtH,MAAI,OAAO,SAAS,UAAU;AAC5B,WAAO,CAAC,MAAM,IAAI;AAAA,EACpB;AACA,MAAI,EAAE,UAAU,eAAe,EAAE,UAAU,aAAa;AACtD,UAAM,IAAI,oBAAoB,6DAA6D;AAAA,EAC7F;AACA,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,MAAI,QAAQ,MAAM;AAChB,WAAO,CAAC,QAAQ,GAAG,QAAQ,CAAC;AAAA,EAC9B;AACA,QAAM,YAAY;AAClB,SAAO,KAAK,MAAM;AAChB,QAAI;AACJ,QAAI,QAAQ,OAAO;AACjB,aAAO,QAAQ;AACf,YAAM,YAAY,CAAC;AACnB,eAAS,KAAK,GAAG,KAAK,MAAM,EAAE,IAAI;AAChC,kBAAU,KAAK,CAAC;AAAA,MAClB;AACA,UAAI,QAAQ,GAAG,EAAE,MAAM,OAAO,SAAS,CAAC;AAAA,IAC1C,WAAW,QAAQ,OAAO;AACxB,aAAO,QAAQ;AACf,YAAM,YAAY,CAAC;AACnB,eAAS,KAAK,GAAG,KAAK,MAAM,EAAE,IAAI;AAChC,kBAAU,KAAK,CAAC;AAAA,MAClB;AACA,UAAI,QAAQ,GAAG,EAAE,MAAM,OAAO,SAAS,CAAC;AAAA,IAC1C,OAAO;AACL,aAAO;AAAA,IACT;AACA,QAAI;AACJ,QAAI,EAAE,MAAM,WAAW,KAAK,EAAE,MAAM,WAAW,GAAG;AAChD,UAAI,UAAU,OAAO,UAAU,IAAI;AACjC,cAAM,KAAK,IAAI,GAAG,CAAC,GAAG,UAAU,EAAE;AAAA,MACpC,OAAO;AACL,cAAM,KAAK,IAAI,UAAU,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,UAAU,EAAE;AAAA,MACvD;AAAA,IACF,OAAO;AACL,YAAM,OAAO,UAAU,OAAO,EAAE,MAAM,SAAS;AAC/C,YAAM,OAAO,UAAU,OAAO,EAAE,MAAM,SAAS;AAC/C,YAAM,OAAO,GAAG,GAAG,MAAM,IAAI;AAAA,IAC/B;AACA,QAAI,OAAO,GAAG;AACZ,UAAI;AACJ,UAAI,QAAQ,OAAO;AACjB,cAAM,QAAQ,QAAQ;AAAA,MACxB,OAAO;AACL,cAAM,QAAQ;AAAA,MAChB;AACA,YAAM,cAAc,CAAC;AACrB,eAAS,KAAK,KAAK,KAAK,MAAM,MAAM,EAAE,IAAI;AACxC,oBAAY,KAAK,EAAE;AAAA,MACrB;AACA,YAAM,QAAQ,KAAK,WAAW;AAAA,IAChC;AACA,QAAI,IAAI,MAAM,WAAW,GAAG;AAC1B,YAAM,WAAW,KAAK,CAAC;AAAA,IACzB;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,MAAM,cAAc,MAAM;AAAA,EAC5B,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,OAAO,KAAK;AACjB,SAAK,YAAY,KAAK,aAAa,OAAO,QAAQ,KAAK;AACvD,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,OAAO,MAAM,QAAQ,UAAU,KAAK,WAAW,WAAW,KAAK,MAAM,QAAQ,WAAW,EAAE,KAAK,MAAM,QAAQ,WAAW,EAAE,GAAG,MAAM,+DAA+D;AAC/M,UAAM,SAAS,WAAW;AAC1B,UAAM,SAAS,WAAW;AAC1B,QAAI,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG;AAC1C,YAAM,IAAI,oBAAoB,8DAA8D;AAAA,IAC9F;AACA,UAAM,OAAO,KAAK,cAAc,QAAQ,MAAM;AAC9C,QAAI,OAAO,KAAK,QAAQ,OAAO,KAAK,KAAK;AACvC,YAAM,IAAI,WAAW,8BAA8B,OAAO,KAAK,WAAW,OAAO,KAAK,KAAK;AAAA,IAC7F;AAAA,EACF;AAAA,EACA,cAAc,QAAQ;AACpB,QAAI,OAAO,WAAW,GAAG;AACvB,YAAM,IAAI,WAAW,oEAAoE,OAAO,kBAAkB;AAAA,IACpH;AACA,QAAI,KAAK,OAAO;AAChB,QAAI,KAAK,OAAO;AAChB,QAAI;AACJ,QAAI,CAAC,MAAM,QAAQ,KAAK,IAAI,GAAG;AAC7B,aAAO;AAAA,QACL,cAAc,KAAK,MAAM,GAAG,MAAM,MAAM;AAAA,QACxC,cAAc,KAAK,MAAM,GAAG,MAAM,MAAM;AAAA,MAC1C;AAAA,IACF,OAAO;AACL,aAAO,KAAK,KAAK,IAAI,CAAC,MAAM,OAAO,cAAc,MAAM,OAAO,IAAI,MAAM,MAAM,CAAC;AAAA,IACjF;AACA,QAAI,KAAK,WAAW;AAClB,WAAK,YAAY,IAAI,KAAK,EAAE;AAC5B,WAAK,YAAY,IAAI,KAAK,EAAE;AAAA,IAC9B;AACA,WAAO,SAAS,IAAI,IAAI,IAAI;AAAA,EAC9B;AAAA,EACA,cAAc,QAAQ,QAAQ;AAC5B,QAAI;AACJ,QAAI,CAAC,MAAM,QAAQ,KAAK,IAAI,GAAG;AAC7B,aAAO;AAAA,QACL,cAAc,KAAK,MAAM,OAAO,MAAM;AAAA,QACtC,cAAc,KAAK,MAAM,OAAO,MAAM;AAAA,MACxC;AAAA,IACF,OAAO;AACL,aAAO,KAAK;AAAA,IACd;AACA,WAAO;AAAA,EACT;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,OAAO,MAAM,QAAQ,UAAU,KAAK,WAAW,WAAW,KAAK,MAAM,QAAQ,WAAW,EAAE,KAAK,MAAM,QAAQ,WAAW,EAAE,GAAG,MAAM,+DAA+D;AAC/M,UAAM,SAAS,WAAW,GAAG,MAAM;AACnC,UAAM,SAAS,WAAW,GAAG,MAAM;AACnC,QAAI,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG;AAC1C,YAAM,IAAI,oBAAoB,8DAA8D;AAAA,IAC9F;AACA,UAAM,OAAO,KAAK,cAAc,QAAQ,MAAM;AAC9C,WAAO,OAAO,KAAK,IAAI,CAAC;AACxB,WAAO,OAAO,KAAK,IAAI,CAAC;AACxB,WAAO,OAAO,GAAG,CAAC;AAClB,UAAM,cAAc,OAAO,OAAO,MAAM;AACxC,QAAI,YAAY,WAAW,GAAG;AAC5B,kBAAY,KAAK,CAAC;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQV,OAAM;AACxB,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMU,UAAS;AAAA,MACb,QAAQ,KAAK;AAAA,MACb,aAAa,KAAK;AAAA,IACpB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,YAAY;AAChB,sBAAsB,cAAc,GAAG;AAGvC,IAAI,gBAAgB,cAAc,MAAM;AAAA,EACtC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,SAAS,KAAK;AAAA,EACrB;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS,EAAE,QAAQ,KAAK,OAAO;AACrC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,SAAS,MAAM,KAAK,cAAc,OAAO,OAAO,GAAG,KAAK,MAAM,GAAG,MAAM;AAC7E,YAAM,SAAS,aAAa,QAAQ,MAAM,QAAQ,OAAO,eAAe,KAAK;AAC7E,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AACjD,IAAI,kBAAkB,cAAc,MAAM;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS,EAAE,MAAM,KAAK,KAAK;AACjC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,UAAI,KAAK,OAAO,KAAK,KAAK,OAAO,GAAG;AAClC,cAAM,SAAS,MAAM;AACnB,gBAAM,SAAS,KAAK,KAAK,KAAK,QAAQ,IAAI,KAAK,KAAK;AACpD,iBAAO,IAAI,QAAQ,cAAc,OAAO,OAAO,GAAG,MAAM,CAAC;AAAA,QAC3D;AACA,eAAO,aAAa,QAAQ,MAAM,QAAQ,OAAO,eAAe,KAAK;AAAA,MACvE;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,eAAe,cAAc,MAAM;AAAA,EACrC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,OAAO,KAAK;AACjB,SAAK,aAAa,KAAK;AAAA,EACzB;AAAA,EACA,eAAe,QAAQ;AACrB,WAAO,KAAK,cAAc,oBAAoB,MAAM,EAAE;AAAA,EACxD;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS,EAAE,MAAM,KAAK,KAAK;AACjC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,OAAO,KAAK,KAAK,OAAO,GAAG;AAClC,cAAM,aAAa,KAAK,eAAe,MAAM;AAC7C,cAAM,gBAAgB,MAAM;AAC1B,gBAAM,SAAS,oBAAoB,MAAM;AACzC,gBAAMQ,SAAQ;AACd,gBAAMD,UAAS;AACf,gBAAM,SAAS,CAACC,SAAQD;AACxB,cAAI,UAAU,aAAa,cAAc,UAAU,GAAG,KAAK,IAAI;AAC/D,oBAAU,MAAM,SAAS,SAAS;AAClC,gBAAM,MAAM,IAAI,KAAK,SAAS,IAAI,KAAK,OAAO,UAAU,OAAO;AAC/D,gBAAM,IAAI,CAAC,IAAI,SAAS,KAAK;AAC7B,gBAAM,IAAI,KAAK,IAAI,QAAQ,OAAO,GAAG,IAAI,KAAK,SAAS,EAAE,GAAG,MAAM,CAAC;AACnE,iBAAO,KAAK,IAAI,GAAG,CAAC,GAAG,CAAC;AAAA,QAC1B;AACA,eAAO,aAAa,eAAe,MAAM,oBAAoB,MAAM,GAAG,OAAO,eAAe,KAAK;AAAA,MACnG;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAGhD,SAAS,mBAAmB,GAAG,OAAO,UAAU,MAAM,OAAO,WAAW,MAAM;AAC5E,MAAI;AACJ,MAAI,EAAE,SAAS,GAAG;AAChB,UAAM,YAAY,GAAG,OAAO,UAAU,MAAM,OAAO,QAAQ;AAAA,EAC7D,WAAW,EAAE,SAAS,GAAG;AACvB,UAAM,YAAY,GAAG,OAAO,UAAU,MAAM,OAAO,QAAQ;AAAA,EAC7D,WAAW,EAAE,SAAS,GAAG;AACvB,UAAM,YAAY,GAAG,OAAO,UAAU,MAAM,OAAO,QAAQ;AAAA,EAC7D,OAAO;AACL,UAAM,IAAI,oBAAoB,2DAA2D,EAAE,UAAU;AAAA,EACvG;AACA,SAAO;AACT;AACA,SAAS,gCAAgC,GAAG,OAAO,MAAM,eAAe,WAAW,MAAM;AACvF,SAAO,KAAK,MAAM;AAChB,UAAM,kBAAkB,QAAQ,GAAG,aAAa;AAChD,UAAM,QAAQ,gBAAgB;AAC9B,UAAM,WAAW,gBAAgB;AACjC,UAAM,SAAS,mBAAmB,GAAG,OAAO,UAAU,MAAM,OAAO,QAAQ;AAC3E,WAAO,CAAC,QAAQ,OAAO,QAAQ;AAAA,EACjC,CAAC;AACH;AACA,SAAS,kCAAkC,GAAG,OAAO,MAAM,eAAe,WAAW,MAAM;AACzF,SAAO,KAAK,MAAM;AAChB,UAAM,kBAAkB,QAAQ,GAAG,aAAa;AAChD,UAAM,QAAQ,gBAAgB;AAC9B,UAAM,WAAW,gBAAgB;AACjC,UAAM,cAAc,CAAC;AACrB,eAAW,QAAQ,OAAO,GAAG,EAAE,IAAI,GAAG;AACpC,UAAI,cAAc,QAAQ,IAAI,MAAM,IAAI;AACtC,oBAAY,KAAK,CAAC;AAAA,MACpB,OAAO;AACL,oBAAY,KAAK,EAAE,MAAM,KAAK;AAAA,MAChC;AAAA,IACF;AACA,UAAM,gBAAgB,QAAQ,OAAO,WAAW;AAChD,UAAM,oBAAoB,QAAQ,UAAU,WAAW;AACvD,UAAM,iBAAiB,SAAS,OAAO,OAAO,QAAQ,OAAO,WAAW;AACxE,UAAM,gBAAgB,QAAQ,OAAO,OAAO,QAAQ,MAAM,WAAW;AACrE,UAAM,SAAS,mBAAmB,GAAG,eAAe,mBAAmB,eAAe,gBAAgB,QAAQ;AAC9G,WAAO,CAAC,QAAQ,OAAO,QAAQ;AAAA,EACjC,CAAC;AACH;AACA,SAAS,yBAAyB,GAAG,OAAO,MAAM,eAAe,WAAW,MAAM;AAChF,MAAI,aAAa,YAAY,cAAc,MAAM,EAAE,KAAK,GAAG,OAAO,GAAG,EAAE,OAAO,CAAC,CAAC,GAAG;AACjF,WAAO,gCAAgC,GAAG,OAAO,MAAM,eAAe,QAAQ;AAAA,EAChF,OAAO;AACL,WAAO,kCAAkC,GAAG,OAAO,MAAM,eAAe,QAAQ;AAAA,EAClF;AACF;AACA,IAAI,qBAAqB,cAAc,MAAM;AAAA,EAC3C,YAAY,MAAM;AAChB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,KAAK;AAC1C,SAAK,WAAW,KAAK,YAAY,OAAO,OAAO,KAAK;AACpD,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,SAAS,KAAK,UAAU,OAAO,OAAO,KAAK;AAChD,SAAK,QAAQ,KAAK,SAAS,OAAO,OAAO,KAAK;AAC9C,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,OAAO;AACrE,SAAK,mBAAmB,eAAe,KAAK,oBAAoB,MAAM;AACtE,SAAK,wBAAwB,eAAe,KAAK,yBAAyB,OAAO;AACjF,SAAK,4BAA4B,eAAe,KAAK,6BAA6B,MAAM;AACxF,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,kBAAkB,cAAc,KAAK,eAAe;AACzD,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,eAAe,KAAK,gBAAgB;AAAA,EAC9D;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,OAAO,KAAK,QAAQ,IAAI,KAAK,OAAO,KAAK,OAAO,WAAW;AACjE,UAAM,MAAM,WAAW;AACvB,QAAI,OAAO,MAAM;AACf,YAAM,IAAI,WAAW,QAAQ,mGAAmG,KAAK,UAAU,UAAU,IAAI;AAAA,IAC/J;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,WAAW,QAAQ,MAAM,EAAE,CAAC,OAAO,IAAI,EAAE,CAAC,CAAC;AACnF,UAAM,QAAQ,CAAC,GAAG;AAClB,QAAI,KAAK,OAAO;AACd,WAAK,QAAQ,KAAK,UAAU,SAAS,OAAO,MAAM,KAAK,kBAAkB,KAAK,kBAAkB,MAAM,KAAK,eAAe;AAAA,IAC5H;AACA,QAAI,KAAK,QAAQ;AACf,WAAK,OAAO,KAAK,UAAU,QAAQ,OAAO,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IACvH;AACA,SAAK,aAAa,KAAK,UAAU,eAAe,OAAO,MAAM,KAAK,uBAAuB,MAAM,KAAK;AACpG,SAAK,iBAAiB,KAAK,UAAU,mBAAmB,OAAO,MAAM,KAAK,2BAA2B,MAAM,KAAK;AAChH,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,aAAa,OAAO;AAC1B,YAAM,OAAO,WAAW;AACxB,YAAM,gBAAgB,OAAO,GAAG,IAAI;AACpC,YAAM,OAAO,KAAK,QAAQ,IAAI,KAAK,OAAO,KAAK,OAAO;AACtD,oBAAc,OAAO,MAAM,CAAC;AAC5B,YAAM,iBAAiB,aAAa,GAAG,IAAI;AAC3C,qBAAe,QAAQ,WAAW;AAClC,YAAM,sBAAsB,cAAc,MAAM;AAChD,0BAAoB,KAAK;AACzB,YAAM,oBAAoB,CAAC,aAAa,YAAY,qBAAqB,OAAO,GAAG,IAAI,EAAE,MAAM,GAAG,OAAO,CAAC,CAAC;AAC3G,YAAM,qBAAqB,MAAM;AAC/B,YAAI,mBAAmB;AACrB,gBAAM,sBAAsB,QAAQ,KAAK,WAAW,KAAK,GAAG,cAAc;AAC1E,gBAAM,0BAA0B,QAAQ,KAAK,eAAe,KAAK,GAAG,cAAc;AAClF,gBAAM,gBAAgB,KAAK,SAAS,QAAQ,KAAK,KAAK,KAAK,GAAG,cAAc,IAAI;AAChF,gBAAM,iBAAiB,KAAK,QAAQ,QAAQ,KAAK,MAAM,KAAK,GAAG,cAAc,IAAI;AACjF,iBAAO,mBAAmB,QAAQ,qBAAqB,yBAAyB,eAAe,gBAAgB,KAAK,OAAO;AAAA,QAC7H,OAAO;AACL,iBAAO,mBAAmB,QAAQ,KAAK,WAAW,KAAK,GAAG,KAAK,eAAe,KAAK,GAAG,KAAK,QAAQ,OAAO,OAAO,KAAK,KAAK,KAAK,GAAG,KAAK,SAAS,OAAO,OAAO,KAAK,MAAM,KAAK,GAAG,KAAK,OAAO;AAAA,QAChM;AAAA,MACF;AACA,UAAI,CAAC,UAAU;AACb,eAAO,mBAAmB;AAAA,MAC5B;AACA,YAAM,CAAC,gBAAgB,OAAO,QAAQ,IAAI,yBAAyB,QAAQ,KAAK,MAAM,KAAK,GAAG,KAAK,KAAK,KAAK,GAAG,eAAe,KAAK,OAAO;AAC3I,YAAM,kBAAkB,CAAC,WAAW,OAAO,aAAa;AACtD,aAAK,MAAM;AACT,gBAAM,QAAQ,IAAI;AAClB,gBAAM,YAAY,UAAU,KAAK;AACjC,gBAAM,cAAc,IAAI,IAAI,WAAW,KAAK,GAAG,KAAK;AACpD,oBAAU,MAAM,IAAI,WAAW,WAAW,CAAC;AAAA,QAC7C,CAAC;AAAA,MACH;AACA,YAAM,8BAA8B,MAAM;AACxC,wBAAgB,KAAK,YAAY,OAAO,KAAK,QAAQ;AACrD,wBAAgB,KAAK,gBAAgB,UAAU,KAAK,QAAQ;AAAA,MAC9D;AACA,kCAA4B;AAC5B,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMP,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,MACX,UAAU,KAAK;AAAA,MACf,SAAS,KAAK;AAAA,MACd,QAAQ,KAAK;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,uBAAuB,qBAAqB,KAAK,qBAAqB;AAAA,MACtE,2BAA2B,qBAAqB,KAAK,yBAAyB;AAAA,MAC9E,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,MACvD,iBAAiB,oBAAoB,KAAK,eAAe;AAAA,IAC3D;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,mBAAmB,YAAY;AAC/B,sBAAsB,cAAc,kBAAkB;AACtD,IAAI,qBAAqB,cAAc,MAAM;AAAA,EAC3C,YAAY,MAAM;AAChB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,IAAI;AACV,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,KAAK;AAC1C,QAAI,OAAO,KAAK,SAAS,UAAU;AACjC,UAAI,CAAC,OAAO,UAAU,KAAK,IAAI,GAAG;AAChC,cAAM,IAAI,MAAM,gDAAgD,KAAK,MAAM;AAAA,MAC7E;AAAA,IACF,WAAW,MAAM,QAAQ,KAAK,IAAI,GAAG;AACnC,iBAAW,QAAQ,KAAK,MAAM;AAC5B,YAAI,CAAC,OAAO,UAAU,IAAI,GAAG;AAC3B,gBAAM,IAAI,MAAM,0DAA0D,KAAK,UAAU,KAAK,IAAI,GAAG;AAAA,QACvG;AAAA,MACF;AAAA,IACF,OAAO;AACL,YAAM,IAAI,MAAM,wEAAwE,KAAK,UAAU,KAAK,IAAI,GAAG;AAAA,IACrH;AACA,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,SAAS,KAAK,UAAU,OAAO,OAAO,KAAK;AAChD,SAAK,QAAQ,KAAK,SAAS,OAAO,OAAO,KAAK;AAC9C,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,OAAO;AACrE,SAAK,mBAAmB,eAAe,KAAK,oBAAoB,MAAM;AACtE,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,eAAe,KAAK,gBAAgB;AAC5D,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,QAAQ,WAAW;AACzB,QAAI,OAAO,KAAK,SAAS,UAAU;AACjC,WAAK,OAAO,CAAC,KAAK,IAAI;AAAA,IACxB;AACA,aAAS,KAAK,GAAG,KAAK,KAAK,KAAK,QAAQ,EAAE,IAAI;AAC5C,UAAI,KAAK,KAAK,MAAM,GAAG;AACrB,aAAK,KAAK,OAAO;AAAA,MACnB;AAAA,IACF;AACA,eAAW,QAAQ,KAAK,MAAM;AAC5B,UAAI,OAAO,KAAK,QAAQ,OAAO;AAC7B,cAAM,IAAI,MAAM,iBAAiB,MAAM;AAAA,MACzC;AAAA,IACF;AACA,QAAI,KAAK,KAAK,WAAW,QAAQ,KAAK,IAAI,EAAE,QAAQ;AAClD,YAAM,IAAI,MAAM,4BAA4B,KAAK,MAAM;AAAA,IACzD;AACA,UAAM,aAAa,KAAK,KAAK,IAAI,CAAC,SAAS,WAAW,KAAK;AAC3D,UAAM,YAAY;AAClB,QAAI,KAAK,OAAO;AACd,WAAK,QAAQ,KAAK,UAAU,SAAS,YAAY,WAAW,KAAK,kBAAkB,KAAK,kBAAkB,SAAS;AAAA,IACrH,OAAO;AACL,WAAK,QAAQ;AAAA,IACf;AACA,QAAI,KAAK,QAAQ;AACf,WAAK,OAAO,KAAK,UAAU,QAAQ,YAAY,WAAW,KAAK,iBAAiB,KAAK,iBAAiB,SAAS;AAAA,IACjH,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,SAAS,oBAAoB,MAAM;AACzC,UAAM,aAAa,OAAO;AAC1B,UAAM,QAAQ,WAAW;AACzB,WAAO,KAAK,MAAM;AAChB,YAAM,WAAW;AACjB,UAAI,EAAE,MAAM,OAAO,SAAS,IAAI,QAAQ,QAAQ,KAAK,MAAM,QAAQ;AACnE,YAAM,iBAAiB,aAAa,GAAG,KAAK;AAC5C,iBAAW,OAAO,KAAK,MAAM;AAC3B,uBAAe,OAAO,WAAW;AAAA,MACnC;AACA,YAAM,YAAY,CAAC,MAAM;AACvB,YAAI,KAAK,QAAQ,EAAE,MAAM,WAAW,OAAO;AACzC,iBAAO,QAAQ,GAAG,cAAc;AAAA,QAClC,OAAO;AACL,iBAAO;AAAA,QACT;AAAA,MACF;AACA,UAAIO,UAAS,KAAK,QAAQ,UAAU,KAAK,MAAM,KAAK,CAAC,IAAI;AACzD,UAAI,SAAS,KAAK,SAAS,UAAU,KAAK,KAAK,KAAK,CAAC,IAAI;AACzD,YAAM,gBAAgB,CAAC;AACvB,YAAM,oBAAoB,CAAC;AAC3B,eAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,YAAI,KAAK,KAAK,QAAQ,EAAE,MAAM,IAAI;AAChC,wBAAc,KAAK,WAAW,GAAG;AACjC,4BAAkB,KAAK,CAAC;AAAA,QAC1B,OAAO;AACL,wBAAc,KAAK,CAAC;AACpB,4BAAkB,KAAK,WAAW,GAAG;AAAA,QACvC;AAAA,MACF;AACA,cAAQ,KAAK,OAAO,aAAa;AACjC,iBAAW,KAAK,UAAU,aAAa;AACvC,UAAIA,WAAU,MAAM;AAClB,QAAAA,UAAS,KAAKA,SAAQ,iBAAiB;AAAA,MACzC;AACA,UAAI,UAAU,MAAM;AAClB,iBAAS,KAAK,QAAQ,iBAAiB;AAAA,MACzC;AACA,aAAO,mBAAmB,QAAQ,OAAO,UAAU,QAAQA,SAAQ,KAAK,OAAO;AAAA,IACjF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMP,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,MACX,SAAS,KAAK;AAAA,MACd,QAAQ,KAAK;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,IAC9D;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,mBAAmB,YAAY;AAC/B,sBAAsB,cAAc,kBAAkB;AAGtD,SAAS,iBAAiB,GAAGa,UAAS,YAAY;AAChD,SAAO,KAAK,MAAM;AAChB,QAAI,EAAE,SAAS,GAAG;AAChB,YAAM,IAAI,WAAW,kEAAkE,EAAE,gBAAgB;AAAA,IAC3G;AACA,QAAIA,YAAW,MAAM;AACnB,MAAAA,WAAU,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,IAC3B;AACA,QAAIA,SAAQ,WAAW,KAAKA,SAAQ,GAAG,WAAW,KAAKA,SAAQ,GAAG,WAAW,GAAG;AAC9E,YAAM,IAAI,WAAW,6GAA6G;AAAA,IACpI;AACA,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,QAAI,eAAe,kBAAkB,eAAe,iBAAiB;AACnE,YAAM,IAAI,WAAW,wBAAwB,2EAA2E;AAAA,IAC1H;AACA,QAAI;AACJ,QAAI,eAAe,iBAAiB;AAClC,gBAAU,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAGA,SAAQ,IAAIA,SAAQ,EAAE;AAAA,IACnD,OAAO;AACL,gBAAU,CAAC,CAAC,GAAG,CAAC,GAAGA,SAAQ,IAAIA,SAAQ,IAAI,CAAC,GAAG,CAAC,CAAC;AAAA,IACnD;AACA,WAAO,IAAI,GAAG,OAAO;AAAA,EACvB,CAAC;AACH;AACA,IAAI,gBAAgB,cAAc,MAAM;AAAA,EACtC,YAAY,MAAM;AAChB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,IAAI;AACV,SAAK,aAAa,KAAK,cAAc,OAAO,gBAAgB,IAAI,KAAK;AACrE,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,IAChC,WAAW,OAAO,KAAK,YAAY,UAAU;AAC3C,WAAK,UAAU,CAAC,CAAC,KAAK,SAAS,KAAK,OAAO,GAAG,CAAC,KAAK,SAAS,KAAK,OAAO,CAAC;AAAA,IAC5E,OAAO;AACL,WAAK,UAAU,KAAK;AACpB,UAAI,KAAK,QAAQ,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,+EAA+E,KAAK,QAAQ,eAAe;AAAA,MAClI;AACA,UAAI;AACJ,UAAI;AACJ,UAAI,OAAO,KAAK,QAAQ,OAAO,UAAU;AACvC,wBAAgB,CAAC,KAAK,QAAQ,IAAI,KAAK,QAAQ,EAAE;AACjD,uBAAe,CAAC,KAAK,QAAQ,IAAI,KAAK,QAAQ,EAAE;AAAA,MAClD,OAAO;AACL,aAAK,UAAU,KAAK;AACpB,YAAI,KAAK,QAAQ,GAAG,WAAW,GAAG;AAChC,gBAAM,IAAI,WAAW,sFAAsF,KAAK,QAAQ,GAAG,eAAe;AAAA,QAC5I;AACA,wBAAgB,KAAK,QAAQ;AAC7B,YAAI,KAAK,QAAQ,GAAG,WAAW,GAAG;AAChC,gBAAM,IAAI,WAAW,qFAAqF,KAAK,QAAQ,GAAG,eAAe;AAAA,QAC3I;AACA,uBAAe,KAAK,QAAQ;AAAA,MAC9B;AACA,WAAK,UAAU,CAAC,eAAe,YAAY;AAAA,IAC7C;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,eAAe,iBAAiB;AACvC,UAAI,WAAW,MAAM,QAAQ,WAAW,MAAM,GAAG;AAC/C,eAAO,WAAW,KAAK,KAAK,QAAQ,GAAG,KAAK,KAAK,QAAQ,GAAG;AAAA,MAC9D,OAAO;AACL,eAAO;AAAA,MACT;AACA,UAAI,WAAW,MAAM,QAAQ,WAAW,MAAM,GAAG;AAC/C,eAAO,WAAW,KAAK,KAAK,QAAQ,GAAG,KAAK,KAAK,QAAQ,GAAG;AAAA,MAC9D,OAAO;AACL,eAAO;AAAA,MACT;AACA,aAAO,CAAC,WAAW,IAAI,WAAW,IAAI,MAAM,IAAI;AAAA,IAClD,OAAO;AACL,UAAI,WAAW,MAAM,QAAQ,WAAW,MAAM,GAAG;AAC/C,eAAO,WAAW,KAAK,KAAK,QAAQ,GAAG,KAAK,KAAK,QAAQ,GAAG;AAAA,MAC9D,OAAO;AACL,eAAO;AAAA,MACT;AACA,UAAI,WAAW,MAAM,QAAQ,WAAW,MAAM,GAAG;AAC/C,eAAO,WAAW,KAAK,KAAK,QAAQ,GAAG,KAAK,KAAK,QAAQ,GAAG;AAAA,MAC9D,OAAO;AACL,eAAO;AAAA,MACT;AACA,aAAO,CAAC,WAAW,IAAI,MAAM,MAAM,WAAW,EAAE;AAAA,IAClD;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM,iBAAiB,oBAAoB,MAAM,GAAG,KAAK,SAAS,KAAK,UAAU,CAAC;AAAA,EAChG;AAAA,EACA,YAAY;AACV,UAAMb,UAAS;AAAA,MACb,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,IACnB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AAGjD,SAAS,OAAO,GAAG,UAAUF,UAASe,UAAS,YAAY,UAAU;AACnE,SAAO,KAAK,MAAM;AAChB,oBAAgB,UAAU;AAC1B,kBAAc,QAAQ;AACtB,qBAAiBA,QAAO;AACxB,QAAIf,YAAW,MAAM;AACnB,MAAAA,WAAU,CAAC,GAAG,CAAC;AAAA,IACjB;AACA,QAAIe,YAAW,MAAM;AACnB,MAAAA,WAAU;AAAA,IACZ;AACA,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,QAAI,YAAY,MAAM;AACpB,iBAAW;AAAA,IACb;AACA,QAAI,sBAAsB,GAAG,UAAU;AACvC,QAAI;AACJ,UAAM,gBAAgBA,aAAY,SAAS,SAAS;AACpD,QAAI,aAAa,OAAO;AACtB,UAAI,QAAQ,GAAG,UAAUf,UAAS,aAAa;AAAA,IACjD,OAAO;AACL,UAAI;AAAA,QACF;AAAA,QACA;AAAA,QACAA;AAAA,QACA;AAAA,MACF;AAAA,IACF;AACA,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAC/B;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,SAAS,OAAO,GAAG,UAAUA,UAASe,UAAS,YAAY,UAAU;AACnE,SAAO,KAAK,MAAM;AAChB,oBAAgB,UAAU;AAC1B,kBAAc,QAAQ;AACtB,qBAAiBA,QAAO;AACxB,QAAIf,YAAW,MAAM;AACnB,MAAAA,WAAU,CAAC,GAAG,GAAG,CAAC;AAAA,IACpB;AACA,QAAIe,YAAW,MAAM;AACnB,MAAAA,WAAU;AAAA,IACZ;AACA,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,QAAI,YAAY,MAAM;AACpB,iBAAW;AAAA,IACb;AACA,QAAI,sBAAsB,GAAG,UAAU;AACvC,QAAI;AACJ,UAAM,gBAAgBA,aAAY,SAAS,SAAS;AACpD,QAAI,aAAa,OAAO;AACtB,UAAI,UAAU,GAAG,UAAUf,UAAS,aAAa;AAAA,IACnD,OAAO;AACL,UAAI,UAAU,GAAG,UAAUA,UAAS,aAAa;AAAA,IACnD;AACA,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAClC;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,QAAI,KAAK,YAAY,MAAM;AACzB,WAAK,WAAW;AAAA,IAClB;AACA,UAAM,IAAI;AACV,QAAI,OAAO,KAAK,aAAa,UAAU;AACrC,WAAK,WAAW,CAAC,KAAK,QAAQ;AAAA,IAChC,WAAW,MAAM,QAAQ,KAAK,QAAQ,KAAK,KAAK,SAAS,WAAW,KAAK,OAAO,KAAK,SAAS,OAAO,UAAU;AAC7G,WAAK,WAAW,KAAK;AAAA,IACvB,OAAO;AACL,YAAM,IAAI,WAAW,qGAAqG,KAAK,UAAU,KAAK,QAAQ,GAAG;AAAA,IAC3J;AACA,0BAAsB,KAAK,UAAU,UAAU;AAC/C,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,KAAK;AAAA,IACtB,OAAO;AACL,UAAI,OAAO,KAAK,YAAY,UAAU;AACpC,aAAK,UAAU,CAAC,KAAK,OAAO;AAAA,MAC9B,WAAW,MAAM,QAAQ,KAAK,OAAO,KAAK,KAAK,QAAQ,WAAW,KAAK,OAAO,KAAK,QAAQ,OAAO,UAAU;AAC1G,aAAK,UAAU,KAAK;AAAA,MACtB,OAAO;AACL,cAAM,IAAI,WAAW,oGAAoG,KAAK,UAAU,KAAK,OAAO,GAAG;AAAA,MACzJ;AAAA,IACF;AACA,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,UAAU,KAAK,WAAW,OAAO,UAAU,KAAK;AACrD,qBAAiB,KAAK,OAAO;AAC7B,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,SAAS,iBAAiB,WAAW,IAAI,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC9F,WAAO,CAAC,WAAW,IAAI,QAAQ,WAAW,EAAE;AAAA,EAC9C;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,eAAS,YAAY,oBAAoB,MAAM,GAAG,CAAC;AACnD,YAAM,SAAS,KAAK,gBAAgB,oBAAoB,MAAM,GAAG,CAAC,KAAK,SAAS,IAAI,CAAC,GAAG,CAAC,KAAK,QAAQ,IAAI,CAAC,GAAG,KAAK,SAAS,cAAc;AAC1I,aAAO,QAAQ,QAAQ,CAAC,CAAC,CAAC;AAAA,IAC5B,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAME,UAAS;AAAA,MACb,UAAU,KAAK;AAAA,MACf,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,IAChB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,eAAe,cAAc,UAAU;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUF,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUf,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,iBAAiB,YAAY;AAC7B,sBAAsB,cAAc,gBAAgB;AACpD,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,QAAI,KAAK,YAAY,MAAM;AACzB,WAAK,WAAW,CAAC,GAAG,CAAC;AAAA,IACvB;AACA,UAAM,IAAI;AACV,SAAK,WAAW,MAAM,QAAQ,KAAK,QAAQ,IAAI,KAAK,WAAW,CAAC,KAAK,UAAU,KAAK,QAAQ;AAC5F,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,KAAK;AAAA,IACtB,WAAW,MAAM,QAAQ,KAAK,OAAO,GAAG;AACtC,UAAI,KAAK,QAAQ,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,wHAAwH,KAAK,QAAQ,SAAS;AAAA,MACrK;AACA,WAAK,UAAU,KAAK;AAAA,IACtB,OAAO;AACL,WAAK,UAAU,CAAC,KAAK,SAAS,KAAK,OAAO;AAAA,IAC5C;AACA,0BAAsB,KAAK,UAAU,UAAU;AAC/C,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,UAAU,KAAK,WAAW,OAAO,UAAU,KAAK;AACrD,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,qBAAiB,KAAK,OAAO;AAC7B,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC5E,QAAI,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC5E,WAAO,iBAAiB,MAAM,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC7E,WAAO,iBAAiB,MAAM,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC7E,QAAI,KAAK,eAAe,iBAAiB;AACvC,aAAO,CAAC,WAAW,IAAI,WAAW,IAAI,MAAM,IAAI;AAAA,IAClD,OAAO;AACL,aAAO,CAAC,WAAW,IAAI,MAAM,MAAM,WAAW,EAAE;AAAA,IAClD;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,aAAO,KAAK,gBAAgB,oBAAoB,MAAM,GAAG,KAAK,UAAU,KAAK,SAAS,KAAK,SAAS,KAAK,UAAU;AAAA,IACrH,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMb,UAAS;AAAA,MACb,UAAU,KAAK;AAAA,MACf,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,IACnB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,eAAe,cAAc,UAAU;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUF,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUf,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,iBAAiB,YAAY;AAC7B,sBAAsB,cAAc,gBAAgB;AACpD,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,QAAI,KAAK,YAAY,MAAM;AACzB,WAAK,WAAW,CAAC,GAAG,GAAG,CAAC;AAAA,IAC1B;AACA,UAAM,IAAI;AACV,SAAK,WAAW,MAAM,QAAQ,KAAK,QAAQ,IAAI,KAAK,WAAW,CAAC,KAAK,UAAU,KAAK,UAAU,KAAK,QAAQ;AAC3G,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,KAAK;AAAA,IACtB,WAAW,MAAM,QAAQ,KAAK,OAAO,GAAG;AACtC,UAAI,KAAK,QAAQ,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,wHAAwH,KAAK,QAAQ,SAAS;AAAA,MACrK;AACA,WAAK,UAAU,KAAK;AAAA,IACtB,OAAO;AACL,WAAK,UAAU,CAAC,KAAK,SAAS,KAAK,SAAS,KAAK,OAAO;AAAA,IAC1D;AACA,0BAAsB,KAAK,UAAU,UAAU;AAC/C,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,UAAU,KAAK,WAAW,OAAO,UAAU,KAAK;AACrD,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,qBAAiB,KAAK,OAAO;AAC7B,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,SAAS,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC9E,QAAI,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC5E,QAAI,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC5E,aAAS,iBAAiB,QAAQ,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AACjF,WAAO,iBAAiB,MAAM,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC7E,WAAO,iBAAiB,MAAM,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC7E,QAAI,KAAK,eAAe,iBAAiB;AACvC,aAAO,CAAC,WAAW,IAAI,WAAW,IAAI,QAAQ,MAAM,IAAI;AAAA,IAC1D,OAAO;AACL,aAAO,CAAC,WAAW,IAAI,QAAQ,MAAM,MAAM,WAAW,EAAE;AAAA,IAC1D;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,aAAO,KAAK,gBAAgB,oBAAoB,MAAM,GAAG,KAAK,UAAU,KAAK,SAAS,KAAK,SAAS,KAAK,UAAU;AAAA,IACrH,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMb,UAAS;AAAA,MACb,UAAU,KAAK;AAAA,MACf,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,IACnB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,eAAe,cAAc,UAAU;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUF,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUf,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,iBAAiB,YAAY;AAC7B,sBAAsB,cAAc,gBAAgB;AACpD,IAAI,kBAAkB,cAAc,MAAM;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO,CAAC,WAAW,IAAI,WAAW,EAAE;AAAA,EACtC;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB;AAAA,EAChC;AACF;AACA,IAAI,yBAAyB,cAAc,gBAAgB;AAAA,EACzD,YAAY,MAAM;AAChB,UAAM,QAAQ,CAAC,CAAC;AAAA,EAClB;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,oBAAoB,MAAM;AACzC,aAAO,KAAK,QAAQ,CAAC;AAAA,IACvB,CAAC;AAAA,EACH;AACF;AACA,uBAAuB,YAAY;AACnC,sBAAsB,cAAc,sBAAsB;AAC1D,IAAI,qBAAqB,cAAc,gBAAgB;AAAA,EACrD,YAAY,MAAM;AAChB,UAAM,QAAQ,CAAC,CAAC;AAAA,EAClB;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,oBAAoB,MAAM;AACzC,aAAO,IAAI,QAAQ,CAAC;AAAA,IACtB,CAAC;AAAA,EACH;AACF;AACA,mBAAmB,YAAY;AAC/B,sBAAsB,cAAc,kBAAkB;AACtD,IAAI,kBAAkB,cAAc,MAAM;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa;AACb,QAAI,KAAK,eAAe,gBAAgB;AACtC,aAAO,CAAC,WAAW,IAAI,WAAW,EAAE;AAAA,IACtC,OAAO;AACL,aAAO,CAAC,WAAW,IAAI,WAAW,EAAE;AAAA,IACtC;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB;AAAA,EAChC;AAAA,EACA,YAAY;AACV,UAAMb,UAAS,EAAE,YAAY,KAAK,WAAW;AAC7C,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,yBAAyB,cAAc,gBAAgB;AAAA,EACzD,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,oBAAoB,MAAM;AACzC,UAAI,KAAK,eAAe,gBAAgB;AACtC,eAAO,KAAK,QAAQ,CAAC,GAAG,CAAC,CAAC;AAAA,MAC5B,OAAO;AACL,eAAO,KAAK,QAAQ,CAAC,GAAG,CAAC,CAAC;AAAA,MAC5B;AAAA,IACF,CAAC;AAAA,EACH;AACF;AACA,uBAAuB,YAAY;AACnC,sBAAsB,cAAc,sBAAsB;AAC1D,IAAI,qBAAqB,cAAc,gBAAgB;AAAA,EACrD,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,oBAAoB,MAAM;AACzC,UAAI,KAAK,eAAe,gBAAgB;AACtC,eAAO,IAAI,QAAQ,CAAC,GAAG,CAAC,CAAC;AAAA,MAC3B,OAAO;AACL,eAAO,IAAI,QAAQ,CAAC,GAAG,CAAC,CAAC;AAAA,MAC3B;AAAA,IACF,CAAC;AAAA,EACH;AACF;AACA,mBAAmB,YAAY;AAC/B,sBAAsB,cAAc,kBAAkB;AAGtD,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,QAAQ,KAAK;AAAA,EACpB;AAAA,EACA,MAAM,YAAY;AAChB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,IAAI,YAAY;AACd,QAAI,KAAK,SAAS,MAAM;AACtB,aAAO,KAAK,MAAM;AAAA,IACpB,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,IAAI,UAAU,OAAO;AACnB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM,YAAY;AAAA,IACzB;AAAA,EACF;AAAA,EACA,IAAI,mBAAmB;AACrB,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,IAAI,sBAAsB;AACxB,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,aAAa;AACX,WAAO,KAAK,MAAM,WAAW;AAAA,EAC/B;AAAA,EACA,WAAW,SAAS;AAClB,SAAK,MAAM,WAAW,OAAO;AAAA,EAC/B;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,SAAS;AAAA,QACP,aAAa,KAAK,MAAM,aAAa;AAAA,QACrC,UAAU,KAAK,MAAM,UAAU;AAAA,MACjC;AAAA,IACF;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,6BAA6B,OAAO;AAClC,UAAM,6BAA6B,KAAK;AACxC,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM,6BAA6B,KAAK;AAAA,IAC/C;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ,gBAAgB,CAAC,GAAG;AACjD,UAAM,cAAcA,QAAO;AAC3B,UAAM,QAAQ,YAAY,aAAa,aAAa;AACpD,WAAOA,QAAO;AACd,UAAM,YAAY,EAAE,MAAM;AAC1B,WAAO,OAAO,WAAWA,OAAM;AAC/B,WAAO,IAAI,IAAI,SAAS;AAAA,EAC1B;AACF;AACA,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,WAAW,gFAAgF,KAAK,UAAU,UAAU,GAAG;AAAA,IACnI;AACA,SAAK,YAAY,CAAC,EAAE,OAAO,WAAW,CAAC;AACvC,UAAM,kBAAkB,CAAC,WAAW,EAAE,EAAE,OAAO,WAAW,MAAM,CAAC,CAAC;AAClE,QAAI,CAAC,KAAK,MAAM,OAAO;AACrB,WAAK,MAAM,MAAM,eAAe;AAChC,WAAK,MAAM,QAAQ;AAAA,IACrB;AACA,UAAM,MAAM,UAAU;AAAA,EACxB;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,kBAAkB,CAAC,WAAW,EAAE,EAAE,OAAO,WAAW,MAAM,CAAC,CAAC;AAClE,UAAM,mBAAmB,KAAK,MAAM,mBAAmB,eAAe;AACtE,UAAM,YAAY,WAAW;AAC7B,WAAO,CAAC,iBAAiB,IAAI,SAAS,EAAE,OAAO,iBAAiB,MAAM,CAAC,CAAC;AAAA,EAC1E;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,YAAM,QAAQ,CAAC,SAAS,WAAW;AACjC,cAAM,SAAS,oBAAoB,KAAK,MAAM,KAAK,SAAS,MAAM,CAAC;AACnE,eAAO,CAAC,QAAQ,CAAC,CAAC;AAAA,MACpB;AACA,YAAM,aAAa,IAAI,OAAO,QAAQ,CAAC,GAAG,OAAO,MAAM,MAAM,OAAO,IAAI;AACxE,YAAM,IAAI,WAAW;AACrB,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,SAAS,4BAA4B,OAAO;AAC1C,4BAA0B,iCAAiC,0BAA0B,KAAK;AAC5F;AACA,IAAI,mCAAmC;AACvC,IAAI,gBAAgB,cAAc,QAAQ;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,UAAM,cAAc,KAAK,MAAM,UAAU;AACzC,UAAM,WAAW,CAAC;AAClB,aAAS,eAAe,KAAK,MAAM,aAAa;AAChD,aAAS,YAAY;AACrB,SAAK,eAAe,YAAY,QAAQ;AACxC,gBAAY,iBAAiB,YAAY,mBAAmB,OAAO,QAAQ;AAC3E,UAAM,WAAW,CAAC;AAClB,aAAS,eAAe,KAAK,MAAM,aAAa;AAChD,aAAS,YAAY;AACrB,SAAK,gBAAgB,YAAY,QAAQ;AACzC,SAAK,aAAa,OAAO,aAAa,KAAK,aAAa;AACxD,SAAK,cAAc,OAAO,cAAc,KAAK,cAAc;AAC3D,SAAK,YAAY,KAAK,cAAc,SAAS,mCAAmC,KAAK;AACrF,gCAA4B,KAAK,SAAS;AAC1C,QAAI,KAAK,SAAS;AAChB,YAAM,IAAI,oBAAoB,iEAAiE;AAAA,IACjG;AACA,SAAK,YAAY,KAAK,MAAM;AAC5B,SAAK,kBAAkB,KAAK,MAAM;AAClC,SAAK,cAAc,KAAK,MAAM;AAC9B,SAAK,kBAAkB;AACvB,SAAK,aAAa;AAClB,SAAK,YAAY,KAAK,MAAM;AAC5B,SAAK,eAAe;AAAA,EACtB;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,OAAO;AACnB,SAAK,aAAa;AAClB,QAAI,KAAK,gBAAgB,MAAM;AAC7B,WAAK,aAAa,YAAY;AAAA,IAChC;AACA,QAAI,KAAK,iBAAiB,MAAM;AAC9B,WAAK,cAAc,YAAY;AAAA,IACjC;AAAA,EACF;AAAA,EACA,aAAa;AACX,WAAO,KAAK,aAAa,WAAW,EAAE,OAAO,KAAK,cAAc,WAAW,CAAC;AAAA,EAC9E;AAAA,EACA,WAAW,SAAS;AAClB,UAAM,aAAa,QAAQ;AAC3B,UAAM,iBAAiB,KAAK,MAAM,aAAa,CAAC;AAChD,SAAK,aAAa,WAAW,QAAQ,MAAM,GAAG,cAAc,CAAC;AAC7D,SAAK,cAAc,WAAW,QAAQ,MAAM,cAAc,CAAC;AAAA,EAC7D;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,cAAc,KAAK,aAAa,mBAAmB,UAAU;AACjE,QAAI,EAAE,MAAM,QAAQ,WAAW,KAAK,MAAM,QAAQ,YAAY,EAAE,IAAI;AAClE,oBAAc,CAAC,WAAW;AAAA,IAC5B;AACA,kBAAc;AACd,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,aAAa;AACpB,mBAAa,YAAY,MAAM,CAAC;AAChC,oBAAc,YAAY;AAAA,IAC5B,OAAO;AACL,oBAAc,YAAY;AAAA,IAC5B;AACA,kBAAc;AACd,QAAI,KAAK,cAAc,UAAU;AAC/B,kBAAY,YAAY,SAAS,MAAM;AACvC,qBAAe,CAAC,WAAW;AAAA,IAC7B,WAAW,KAAK,aAAa,MAAM;AACjC,qBAAe,CAAC,aAAa,YAAY,MAAM,CAAC;AAAA,IAClD,OAAO;AACL,qBAAe,CAAC,WAAW;AAAA,IAC7B;AACA,QAAI,KAAK,aAAa;AACpB,UAAI,KAAK,aAAa,MAAM;AAC1B,eAAO,aAAa,OAAO,UAAU,EAAE,OAAO,WAAW,MAAM,CAAC;AAAA,MAClE;AACA,aAAO,CAAC,WAAW,EAAE,OAAO,UAAU,EAAE,OAAO,WAAW,MAAM,CAAC;AAAA,IACnE;AACA,WAAO,iBAAiB,YAAY;AAAA,EACtC;AAAA,EACA,MAAM,QAAQ,QAAQ;AACpB,QAAI,eAAe,UAAU,OAAO,OAAO,OAAO;AAClD,QAAIgB,aAAY,UAAU,OAAO,OAAO,OAAO;AAC/C,QAAI,UAAU,MAAM;AAClB,eAAS,CAAC;AAAA,IACZ;AACA,UAAM,eAAe,gBAAgB,QAAQ,cAAcA,YAAW,KAAK,YAAY;AACvF,aAAS,aAAa;AACtB,mBAAe,aAAa;AAC5B,IAAAA,aAAY,aAAa;AACzB,QAAI,MAAM,QAAQ,MAAM,GAAG;AACzB,qBAAe,OAAO,MAAM,CAAC;AAC7B,eAAS,OAAO;AAAA,IAClB;AACA,SAAK,gBAAgB,QAAQ,aAAa,WAAW,MAAMA,cAAa,MAAM;AAC5E,aAAO,MAAM,MAAM,QAAQ,MAAM;AAAA,IACnC;AACA,UAAM,mBAAmB,CAAC;AAC1B,UAAM,kBAAkB,CAAC;AACzB,QAAI,gBAAgB,MAAM;AACxB,YAAM,YAAY,aAAa;AAC/B,UAAI,YAAY,IAAI,GAAG;AACrB,cAAM,IAAI,WAAW,+HAA+H;AAAA,MACtJ;AACA,aAAO,kBAAkB;AACzB,uBAAiB,KAAK,GAAG,YAAY;AACrC,YAAM,aAAa,aAAa,IAAI,CAAC,UAAU,IAAI,UAAU,EAAE,OAAO,MAAM,MAAM,CAAC,CAAC;AACpF,WAAK,aAAa,YAAY,WAAW,MAAM,GAAG,YAAY,CAAC;AAC/D,WAAK,cAAc,YAAY,WAAW,MAAM,YAAY,CAAC;AAC7D,sBAAgB,KAAK,GAAG,UAAU;AAAA,IACpC;AACA,QAAIA,cAAa,MAAM;AACrB,YAAM,IAAI,oBAAoB,uEAAuE;AAAA,IACvG;AACA,UAAM,mBAAmB,iBAAiB,cAAc;AACxD,eAAW,WAAW,kBAAkB;AACtC,UAAI,mBAAmB,mBAAmB,kBAAkB;AAC1D,cAAM,IAAI,WAAW,8GAA8G;AAAA,MACrI;AAAA,IACF;AACA,QAAI,kBAAkB;AACpB,YAAM,YAAY,CAAC,MAAM,EAAE,OAAO,gBAAgB;AAClD,YAAM,gBAAgB,KAAK,UAAU,OAAO,eAAe;AAC3D,YAAM,oBAAoB,KAAK;AAC/B,WAAK,YAAY;AACjB,YAAM,SAAS,MAAM,MAAM,WAAW,MAAM;AAC5C,WAAK,YAAY;AACjB,aAAO;AAAA,IACT,OAAO;AACL,aAAO,MAAM,MAAM,QAAQ,MAAM;AAAA,IACnC;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,eAAe,OAAO;AAC5B,UAAI;AACJ,UAAI;AACJ,UAAI,gBAAgB,MAAM;AACxB,YAAI,KAAK,aAAa,KAAK,QAAQ,MAAM;AACzC,eAAO,KAAK,cAAc,KAAK,QAAQ,MAAM;AAAA,MAC/C,OAAO;AACL,cAAM,eAAe,aAAa,MAAM,GAAG,aAAa,SAAS,CAAC;AAClE,cAAM,gBAAgB,aAAa,MAAM,aAAa,SAAS,CAAC;AAChE,YAAI,KAAK,aAAa,KAAK,QAAQ,OAAO,OAAO,QAAQ,EAAE,cAAc,aAAa,CAAC,CAAC;AACxF,eAAO,KAAK,cAAc,KAAK,QAAQ,OAAO,OAAO,QAAQ,EAAE,cAAc,cAAc,CAAC,CAAC;AAAA,MAC/F;AACA,UAAI;AACJ,UAAI,KAAK,aAAa;AACpB,YAAI,MAAM,QAAQ,CAAC,GAAG;AACpB,mBAAS,EAAE,MAAM,CAAC,EAAE,OAAO,KAAK,MAAM,CAAC,CAAC;AAAA,QAC1C,OAAO;AAAA,QACP;AACA,YAAI,EAAE;AACN,eAAO,KAAK;AAAA,MACd;AACA,UAAI,KAAK,iBAAiB;AACxB,eAAO,QAAQ,MAAM,CAAC;AAAA,MACxB;AACA,UAAI;AACJ,UAAI,KAAK,cAAc,UAAU;AAC/B,iBAAS,YAAY,CAAC,GAAG,IAAI,CAAC;AAAA,MAChC,WAAW,KAAK,cAAc,OAAO;AACnC,iBAAS,KAAK,GAAG,IAAI;AAAA,MACvB,WAAW,KAAK,cAAc,OAAO;AACnC,iBAAS,IAAI,KAAK,KAAK,GAAG,IAAI,CAAC;AAAA,MACjC,WAAW,KAAK,cAAc,OAAO;AACnC,iBAAS,IAAI,GAAG,IAAI;AAAA,MACtB,WAAW,KAAK,aAAa,MAAM;AACjC,iBAAS,CAAC,GAAG,IAAI;AAAA,MACnB;AACA,UAAI,KAAK,aAAa;AACpB,YAAI,KAAK,aAAa,MAAM;AAC1B,iBAAO,OAAO,OAAO,MAAM;AAAA,QAC7B;AACA,eAAO,CAAC,MAAM,EAAE,OAAO,MAAM;AAAA,MAC/B;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY,QAAQ;AAClB,SAAK,aAAa,YAAY;AAC9B,SAAK,cAAc,YAAY;AAAA,EACjC;AAAA,EACA,MAAM,YAAY;AAChB,cAAU,KAAK,aAAa,MAAM,MAAM;AACtC,WAAK,aAAa,MAAM,UAAU;AAAA,IACpC,CAAC;AACD,cAAU,KAAK,cAAc,MAAM,MAAM;AACvC,WAAK,cAAc,MAAM,UAAU;AAAA,IACrC,CAAC;AACD,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,YAAY,QAAQ1B,OAAM;AACxB,QAAI,MAAM,QAAQA,KAAI,GAAG;AACvB,MAAAA,QAAOA,MAAK;AAAA,IACd;AACA,QAAI;AACJ,QAAI,KAAK,iBAAiB;AACxB,UAAI,KAAK,aAAa,MAAM;AAC1B,qBAAa,CAACA,OAAMA,KAAI;AAAA,MAC1B,OAAO;AACL,qBAAaA;AAAA,MACf;AAAA,IACF,OAAO;AACL,UAAI,KAAK,aAAa,MAAM;AAC1B,qBAAa,CAAC,MAAM,IAAI;AAAA,MAC1B,OAAO;AACL,qBAAa;AAAA,MACf;AAAA,IACF;AACA,QAAI,KAAK,aAAa;AACpB,YAAM,SAAS,KAAK,aAAa;AACjC,YAAM,YAAY,OAAO,IAAI,CAAC,UAAU,IAAI;AAC5C,UAAI,MAAM,QAAQ,UAAU,GAAG;AAC7B,eAAO,WAAW,OAAO,SAAS,EAAE,OAAO,SAAS;AAAA,MACtD,OAAO;AACL,eAAO,CAAC,UAAU,EAAE,OAAO,SAAS,EAAE,OAAO,SAAS;AAAA,MACxD;AAAA,IACF,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,IAAI,mBAAmB;AACrB,WAAO,KAAK,aAAa,iBAAiB,OAAO,KAAK,cAAc,gBAAgB;AAAA,EACtF;AAAA,EACA,IAAI,sBAAsB;AACxB,WAAO,KAAK,aAAa,oBAAoB,OAAO,KAAK,cAAc,mBAAmB;AAAA,EAC5F;AAAA,EACA,6BAA6B,OAAO;AAClC,UAAM,6BAA6B,KAAK;AACxC,QAAI,KAAK,gBAAgB,MAAM;AAC7B,WAAK,aAAa,6BAA6B,KAAK;AAAA,IACtD;AACA,QAAI,KAAK,iBAAiB,MAAM;AAC9B,WAAK,cAAc,6BAA6B,KAAK;AAAA,IACvD;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAMU,UAAS;AAAA,MACb,aAAa,KAAK;AAAA,IACpB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,UAAM,WAAW,YAAYA,QAAO,QAAQ;AAC5C,WAAOA,QAAO;AACd,QAAIA,QAAO,mBAAmB,MAAM;AAClC,YAAM,IAAI,oBAAoB,0FAA0F;AAAA,IAC1H;AACA,UAAM,YAAYA;AAClB,cAAU,WAAW;AACrB,WAAO,IAAI,IAAI,SAAS;AAAA,EAC1B;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AAGjD,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,WAAW,IAAI;AAC5B;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,IAAI,IAAI;AACrB;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,KAAK,IAAI;AACtB;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,OAAO,MAAM;AACpB,SAAO,IAAI,MAAM,IAAI;AACvB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,OAAO,IAAI;AACxB;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,WAAW,IAAI;AAC5B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,YAAY,IAAI;AAC7B;AACA,SAAS,MAAM,MAAM;AACnB,SAAO,IAAI,MAAM,IAAI;AACvB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,iBAAiB,IAAI;AAClC;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,KAAK,IAAI;AACtB;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,YAAY,IAAI;AAC7B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,IAAI,IAAI;AACrB;AACA,SAAS,oBAAoB,MAAM;AACjC,SAAO,IAAI,mBAAmB,IAAI;AACpC;AACA,SAAS,mBAAmB,MAAM;AAChC,SAAO,IAAI,mBAAmB,IAAI;AACpC;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,iBAAiB,IAAI;AAClC;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,iBAAiB,IAAI;AAClC;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,iBAAiB,IAAI;AAClC;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,uBAAuB,MAAM;AACpC,SAAO,IAAI,uBAAuB,IAAI;AACxC;AACA,SAAS,uBAAuB,MAAM;AACpC,SAAO,IAAI,uBAAuB,IAAI;AACxC;AACA,SAAS,mBAAmB,MAAM;AAChC,SAAO,IAAI,mBAAmB,IAAI;AACpC;AACA,SAAS,mBAAmB,MAAM;AAChC,SAAO,IAAI,mBAAmB,IAAI;AACpC;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,IAAI,MAAM;AACjB,SAAO,IAAI,IAAI,IAAI;AACrB;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,KAAK,IAAI;AACtB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,WAAW,IAAI;AAC5B;AACA,SAAS,eAAe,MAAM;AAC5B,SAAO,IAAI,eAAe,IAAI;AAChC;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,IAAI,IAAI;AACrB;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,IAAI,kBAAkB;AACtB,IAAI,kBAAkB;AACtB,IAAI,YAAY;AAChB,IAAI,YAAY;AAChB,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AAGA,IAAI,0BAA0B,CAAC;AAC/BlB,UAAS,yBAAyB;AAAA,EAChC,MAAM,MAAM;AAAA,EACZ,KAAK,MAAM;AAAA,EACX,gBAAgB,MAAM;AAAA,EACtB,oBAAoB,MAAM;AAAA,EAC1B,qBAAqB,MAAM;AAAA,EAC3B,yBAAyB,MAAM;AAAA,EAC/B,iBAAiB,MAAM;AAAA,EACvB,MAAM,MAAM;AAAA,EACZ,mBAAmB,MAAM;AAAA,EACzB,6BAA6B,MAAM;AAAA,EACnC,kBAAkB,MAAM;AAAA,EACxB,KAAK,MAAM;AAAA,EACX,WAAW,MAAM;AAAA,EACjB,QAAQ,MAAM;AAAA,EACd,2BAA2B,MAAM;AACnC,CAAC;AACD,SAAS,gBAAgB,OAAO,OAAO;AACrC,SAAO,eAAe,OAAO,KAAK;AACpC;AACA,SAAS,oBAAoB,OAAO,OAAO;AACzC,SAAO,oBAAoB,OAAO,KAAK;AACzC;AACA,SAAS,2BAA2B,OAAO,OAAO;AAChD,SAAO,0BAA0B,OAAO,KAAK;AAC/C;AACA,SAAS,qBAAqB,OAAO,OAAO;AAC1C,SAAO,oBAAoB,OAAO,KAAK;AACzC;AACA,SAAS,yBAAyB,OAAO,OAAO;AAC9C,SAAO,yBAAyB,OAAO,KAAK;AAC9C;AACA,SAAS,WAAW,OAAO,OAAO;AAChC,SAAO,UAAU,OAAO,KAAK;AAC/B;AACA,SAAS,QAAQ,OAAO,OAAO;AAC7B,SAAO,OAAO,OAAO,KAAK;AAC5B;AACA,SAAS,iBAAiB,OAAO,OAAO;AACtC,SAAO,gBAAgB,OAAO,KAAK;AACrC;AACA,SAAS,mBAAmB,OAAO,OAAO;AACxC,SAAO,kBAAkB,OAAO,KAAK;AACvC;AACA,SAAS,6BAA6B,OAAO,OAAO;AAClD,SAAO,4BAA4B,OAAO,KAAK;AACjD;AACA,SAAS,MAAM,OAAO,OAAO;AAC3B,SAAO,4BAA4B,OAAO,KAAK;AACjD;AACA,SAAS,MAAM,OAAO,OAAO;AAC3B,SAAO,4BAA4B,OAAO,KAAK;AACjD;AACA,SAAS,kBAAkB,OAAO,OAAO;AACvC,SAAO,kBAAkB,OAAO,KAAK;AACvC;AACA,SAAS,KAAK,OAAO,OAAO;AAC1B,SAAO,kBAAkB,OAAO,KAAK;AACvC;AACA,SAAS,KAAK,OAAO,OAAO;AAC1B,SAAO,kBAAkB,OAAO,KAAK;AACvC;AAGA,IAAI,yBAAyB,CAAC;AAC9BA,UAAS,wBAAwB;AAAA,EAC/B,eAAe,MAAM;AACvB,CAAC;AAGD,IAAI,+BAA+B,CAAC;AACpCA,UAAS,8BAA8B;AAAA,EACrC,IAAI,MAAM;AAAA,EACV,MAAM,MAAM;AAAA,EACZ,IAAI,MAAM;AACZ,CAAC;AACD,SAAS,KAAKkB,SAAQ;AACpB,SAAO,IAAI,KAAKA,OAAM;AACxB;AACA,SAAS,IAAIA,SAAQ;AACnB,SAAO,GAAGA,OAAM;AAClB;AACA,SAAS,IAAIA,SAAQ;AACnB,SAAO,GAAGA,OAAM;AAClB;AAGA,IAAI,WAAW,cAAc,aAAa;AAAA,EACxC,cAAc;AACZ,UAAM,GAAG,SAAS;AAClB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,SAASe,SAAQ;AACf,QAAI,EAAEA,mBAAkB,cAAc;AACpC,YAAM,IAAI,MAAM,uDAAuD;AAAA,IACzE;AACA,SAAK,QAAQA;AAAA,EACf;AACF;AACA,SAAS,MAAM,SAAS,SAAS;AAC/B,SAAO,UAAU;AACnB;AACA,SAAS,SAAS,SAAS,SAAS;AAClC,SAAO,UAAU;AACnB;AACA,IAAI,gBAAgB,cAAc,SAAS;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM;AACN,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,QAAI,KAAK,oBAAoB;AAC3B,YAAM,IAAI,oBAAoB,oEAAoE;AAAA,IACpG;AACA,SAAK,UAAU,KAAK,WAAW;AAC/B,SAAK,WAAW,KAAK,IAAI,KAAK,YAAY,CAAC;AAC3C,SAAK,WAAW,KAAK,YAAY;AACjC,SAAK,UAAU,KAAK,WAAW;AAC/B,SAAK,OAAO,KAAK,QAAQ;AACzB,SAAK,WAAW,KAAK;AACrB,QAAI,CAAC,QAAQ,OAAO,KAAK,EAAE,QAAQ,KAAK,IAAI,MAAM,IAAI;AACpD,cAAQ,KAAK,uBAAuB,KAAK,gDAAgD;AACzF,WAAK,OAAO;AAAA,IACd;AACA,QAAI,KAAK,SAAS,OAAO;AACvB,WAAK,cAAc;AAAA,IACrB,WAAW,KAAK,SAAS,OAAO;AAC9B,WAAK,cAAc;AAAA,IACrB,OAAO;AACL,UAAI,KAAK,QAAQ,QAAQ,KAAK,MAAM,IAAI;AACtC,aAAK,cAAc;AAAA,MACrB,OAAO;AACL,aAAK,cAAc;AAAA,MACrB;AAAA,IACF;AACA,QAAI,KAAK,gBAAgB,OAAO;AAC9B,WAAK,YAAY;AAAA,IACnB;AAAA,EACF;AAAA,EACA,MAAM,aAAa,MAAM;AACvB,SAAK,OAAO;AACZ,SAAK,eAAe;AACpB,QAAI,KAAK,YAAY,MAAM;AACzB,WAAK,OAAO,KAAK;AAAA,IACnB,OAAO;AACL,WAAK,OAAO,KAAK,gBAAgB,QAAQ,WAAW;AAAA,IACtD;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,UAAM,qBAAqB,IAAI;AAC/B,UAAM,UAAU,KAAK,gBAAgB,IAAI;AACzC,QAAI,WAAW,MAAM;AACnB;AAAA,IACF;AACA,QAAI,KAAK,YAAY,UAAU,KAAK,UAAU,KAAK,IAAI,GAAG;AACxD,WAAK,OAAO;AACZ,WAAK,OAAO;AAAA,IACd,OAAO;AACL,WAAK;AACL,UAAI,KAAK,QAAQ,KAAK,UAAU;AAC9B,aAAK,eAAe;AACpB,aAAK,MAAM,eAAe;AAAA,MAC5B;AAAA,IACF;AAAA,EACF;AAAA,EACA,MAAM,WAAW,MAAM;AACrB,QAAI,KAAK,eAAe,KAAK,KAAK,SAAS;AACzC,cAAQ,IAAI,SAAS,KAAK,+BAA+B;AAAA,IAC3D;AAAA,EACF;AAAA,EACA,gBAAgB,MAAM;AACpB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,eAAe,KAAK,KAAK;AAC/B,QAAI,gBAAgB,MAAM;AACxB,cAAQ,KAAK,4BAA4B,KAAK,oDAAoD,OAAO,KAAK,IAAI,GAAG;AAAA,IACvH;AACA,WAAO;AAAA,EACT;AACF;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,IAAI,YAAY,EAAE,cAAc;AAGhC,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,6BAA6B,MAAM,OAAO,CAAC,eAAe;AAC1E,MAAI,YAAY;AACd,YAAQ,KAAK,+OAA+O;AAAA,EAC9P;AACF,CAAC;AAGD,IAAI;AAAA,CACH,SAAS,WAAW;AACnB,YAAU,UAAU,gBAAgB,KAAK;AACzC,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,eAAe,KAAK;AACxC,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,aAAa,KAAK;AACtC,YAAU,UAAU,eAAe,KAAK;AACxC,YAAU,UAAU,kBAAkB,KAAK;AAC3C,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,aAAa,MAAM;AACvC,YAAU,UAAU,cAAc,MAAM;AACxC,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,iBAAiB,MAAM;AAC3C,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,gBAAgB,MAAM;AAC1C,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,mBAAmB,MAAM;AAC7C,YAAU,UAAU,aAAa,MAAM;AACvC,YAAU,UAAU,iBAAiB,MAAM;AAC3C,YAAU,UAAU,gBAAgB,MAAM;AAC1C,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,iBAAiB,OAAO;AAC5C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,sBAAsB,OAAO;AACjD,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,iBAAiB,OAAO;AAC5C,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,qBAAqB,OAAO;AAChD,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,oBAAoB,OAAO;AAC/C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,uBAAuB,OAAO;AAClD,YAAU,UAAU,iBAAiB,OAAO;AAC5C,YAAU,UAAU,qBAAqB,OAAO;AAChD,YAAU,UAAU,oBAAoB,OAAO;AAC/C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,mBAAmB,OAAO;AAChD,GAAG,aAAa,WAAW,CAAC,EAAE;AAC9B,IAAI;AAAA,CACH,SAAS,WAAW;AACnB,MAAI;AACJ,GAAC,SAAS,0BAA0B;AAClC,6BAAyB,yBAAyB,YAAY,KAAK;AACnE,6BAAyB,yBAAyB,QAAQ,KAAK;AAC/D,6BAAyB,yBAAyB,QAAQ,KAAK;AAAA,EACjE,GAAG,0BAA0B,UAAU,4BAA4B,UAAU,0BAA0B,CAAC,EAAE;AAC5G,GAAG,aAAa,WAAW,CAAC,EAAE;AAG9B,IAAI,aAAa,CAAC;AAClB,SAAS,WAAW,MAAM,QAAQ;AAChC,QAAM,WAAW;AAAA,IACf,UAAU;AAAA,IACV,UAAU;AAAA,IACV,QAAQ,CAAC;AAAA,IACT,OAAO,CAAC;AAAA,IACR,gBAAgB;AAAA,EAClB;AACA,aAAW,QAAQ;AACrB;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,WAAW;AACpB;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,WAAW;AACpB;AAGA,SAAS,cAAc,WAAWb,OAAM,WAAW,SAAS,iBAAiB;AAC3E,QAAM,aAAaA,MAAK,YAAY;AACpC,MAAI,cAAc,WAAW,oBAAoB,QAAQ;AACvD,UAAM,QAAQ,WAAW;AACzB,UAAM,MAAM,WAAW,kBAAkB,IAAI,SAAS,WAAW,kBAAkB,SAAS,QAAQ,IAAI,WAAW;AACnH,QAAI,WAAW,SAAS,UAAU;AAChC,aAAO,UAAUA,MAAK,WAAW,WAAW,kBAAkB,WAAW,SAAS,eAAe;AAAA,IACnG;AACA,QAAI,WAAW,SAAS,WAAW;AACjC,YAAM,SAASA,MAAK,WAAW,MAAM,OAAO,GAAG;AAC/C,aAAO,OAAO,IAAI,CAAC,SAAS,UAAU,MAAM,WAAW,SAAS,eAAe,CAAC;AAAA,IAClF;AACA,UAAM,UAAU,UAAUA,MAAK,WAAW,MAAM,KAAK,EAAE,IAAI,WAAW,SAAS,eAAe;AAC9F,UAAM,OAAO,QAAQ,SAAS;AAC9B,WAAO,WAAW,SAAS,WAAW,KAAK,KAAK,aAAa,cAAc,QAAQ,OAAO,IAAI;AAAA,EAChG;AACA,QAAM,YAAYA,MAAK,WAAW;AAClC,SAAO,aAAa,UAAU;AAChC;AACA,SAAS,UAAU,MAAM,YAAY,SAAS,iBAAiB;AAC7D,QAAM,CAAC,UAAUP,MAAK,IAAI,cAAc,IAAI;AAC5C,MAAI,mBAAmB,MAAM;AAC3B,UAAM,UAAU,gBAAgB,yBAAyB,QAAQ;AACjE,QAAI,WAAW,MAAM;AACnB,aAAO;AAAA,IACT;AAAA,EACF;AACA,QAAM,YAAY,QAAQ,kBAAkB,KAAK,CAAC,eAAe;AAC/D,WAAO,CAAC,CAAC,WAAW,yBAAyB,UAAU,UAAU;AAAA,EACnE,CAAC;AACD,SAAO,cAAc,SAAS,WAAW,yBAAyB,UAAU,SAAS,GAAGA,UAAS;AACnG;AACA,SAAS,6BAA6B,MAAM,YAAY,SAAS;AAC/D,SAAO,WAAW,yBAAyB,MAAM,QAAQ,gBAAgB;AAC3E;AACA,SAAS,oBAAoB,WAAW,SAAS;AAC/C,QAAM,CAAC,UAAUA,QAAO,UAAU,IAAI,cAAc,SAAS;AAC7D,SAAO;AAAA,IACL,yBAAyB,UAAU,WAAW,QAAQ,gBAAgB;AAAA,IACtEA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,yBAAyB,MAAM,WAAW;AACjD,SAAO,CAAC,CAAC,YAAY,GAAG,QAAQ,cAAc;AAChD;AACA,SAAS,cAAc,MAAM;AAC3B,QAAM,QAAQ,KAAK,MAAM,GAAG;AAC5B,MAAI,MAAM,WAAW,GAAG;AACtB,WAAO,CAAC,MAAM,GAAG,MAAM;AAAA,EACzB;AACA,QAAM,WAAW,MAAM;AACvB,QAAM,aAAa,MAAM,WAAW,IAAI,MAAM,KAAK;AACnD,QAAMA,SAAQ,OAAO,MAAM,MAAM,SAAS,EAAE;AAC5C,SAAO,CAAC,UAAUA,QAAO,UAAU;AACrC;AACA,SAAS,WAAWO,OAAM,WAAW,SAAS;AAC5C,MAAI,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AACxD,MAAI,SAAS,YAAY;AACvB,WAAO,cAAc,oBAAoBA,OAAM,WAAW,OAAO;AACjE,UAAM,kBAAkB,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACvD,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,sBAAgB,IAAI,KAAK,KAAK,KAAK;AACnC,sBAAgB,IAAI,KAAK,KAAK,KAAK,IAAI;AAAA,IACzC;AACA,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,YAAY,SAAS;AAC5B,SAAO,QAAQ,OAAO,UAAU,MAAM,OAAO;AAC/C;AAGA,IAAI,qBAAqB,CAAC;AAC1BpB,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,OAAO;AAAA,EACT;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BA,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB,CAAC;AACvBA,UAAS,iBAAiB;AAAA,EACxB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,sBAAsB,CAAC;AAC3BA,UAAS,qBAAqB;AAAA,EAC5B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,QACjB,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,UACd;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,QACF;AAAA,MACF;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,UACd;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,QACF;AAAA,MACF;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,mBAAmB,CAAC;AACxBA,UAAS,kBAAkB;AAAA,EACzB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB,CAAC;AACvBA,UAAS,iBAAiB;AAAA,EACxB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BA,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB,CAAC;AACrBA,UAAS,eAAe;AAAA,EACtB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,EACd;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU,CAAC;AAAA,EACb;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BA,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU,CAAC;AAAA,IACX,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU,CAAC;AAAA,IACX,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB,CAAC;AACrBA,UAAS,eAAe;AAAA,EACtB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB,CAAC;AACvBA,UAAS,iBAAiB;AAAA,EACxB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,mBAAmB,CAAC;AACxBA,UAAS,kBAAkB;AAAA,EACzB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,wBAAwB,CAAC;AAC7BA,UAAS,uBAAuB;AAAA,EAC9B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,oBAAoB,CAAC;AACzBA,UAAS,mBAAmB;AAAA,EAC1B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BA,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,iBAAiB,CAAC;AACtBA,UAAS,gBAAgB;AAAA,EACvB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,mBAAmB,CAAC;AACxBA,UAAS,kBAAkB;AAAA,EACzB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,iBAAiB,CAAC;AACtBA,UAAS,gBAAgB;AAAA,EACvB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,WAAW;AAAA,MACT;AAAA,MACA;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,WAAW;AAAA,MACT;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,yBAAyB,CAAC;AAC9BA,UAAS,wBAAwB;AAAA,EAC/B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,oBAAoB;AAAA,QACpB,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS,CAAC;AAAA,EACZ;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS,CAAC;AAAA,EACZ;AACF;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,WAAW,WAAW;AACpB,WAAO,KAAK,cAAc,KAAK,YAAY,IAAI,KAAK;AAAA,EACtD;AAAA,EACA,cAAc;AACZ,UAAM,MAAM;AAAA,MACV;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,UAAM,cAAc,CAAC,EAAE,OAAO,GAAG,IAAI,IAAI,CAAC,QAAQ,IAAI,IAAI,CAAC;AAC3D,SAAK,YAAY,YAAY,OAAO,CAAC,KAAK,WAAW;AACnD,UAAI,OAAO,YAAY;AACvB,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,eAAe,OAAO,YAAY,CAAC,GAAG;AACpC,UAAM,UAAU,MAAM;AACtB,UAAM,eAAe,CAAC;AACtB,UAAM,UAAU,CAAC;AACjB,UAAM,YAAY,CAAC;AACnB,UAAM,QAAQ,QAAQ,OAAO,CAAC,KAAKoB,UAAS;AAC1C,UAAIA,MAAK,QAAQ,KAAK,QAAQA,KAAI;AAClC,UAAIA,MAAK,GAAG,WAAW,aAAa,GAAG;AACrC,qBAAa,KAAK,IAAIA,MAAK,KAAK;AAAA,MAClC,WAAWA,MAAK,OAAO,SAAS;AAC9B,gBAAQ,KAAK,IAAIA,MAAK,KAAK;AAAA,MAC7B,WAAWA,MAAK,SAAS,QAAQA,MAAK,MAAM,WAAW,GAAG;AACxD,kBAAU,KAAK,IAAIA,MAAK,KAAK;AAAA,MAC/B;AACA,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AACL,QAAI,SAAS,CAAC;AACd,UAAM,UAAU,CAAC;AACjB,QAAI,qBAAqB,CAAC;AAC1B,QAAI,sBAAsB,CAAC;AAC3B,QAAI,aAAa,MAAM;AACrB,2BAAqB,KAAK,oBAAoB,UAAU,MAAM;AAC9D,4BAAsB,KAAK,oBAAoB,UAAU,OAAO;AAAA,IAClE;AACA,UAAM,WAAW,OAAO,KAAK,KAAK;AAClC,aAAS,QAAQ,CAAC,QAAQ;AACxB,YAAMA,QAAO,MAAM;AACnB,MAAAA,MAAK,WAAW,QAAQ,CAAC,MAAMP,WAAU;AACvC,cAAM,CAAC,UAAU,EAAE,UAAU,IAAI,oBAAoB,IAAI;AACzD,cAAM,YAAY,MAAM;AACxB,YAAI,UAAU,WAAW,MAAM;AAC7B,gBAAM,cAAc,UAAU,QAAQ,QAAQ,UAAU;AACxD,cAAI,gBAAgB,IAAI;AACtB,kBAAM,YAAY,GAAG,YAAY;AACjC,YAAAO,MAAK,WAAWP,UAAS;AAAA,UAC3B;AAAA,QACF;AACA,QAAAO,MAAK,OAAO,KAAK,SAAS;AAC1B,kBAAU,SAAS,KAAKA,KAAI;AAAA,MAC9B,CAAC;AAAA,IACH,CAAC;AACD,QAAI,OAAO,KAAK,mBAAmB,EAAE,WAAW,GAAG;AACjD,eAAS,QAAQ,CAAC,QAAQ;AACxB,cAAMA,QAAO,MAAM;AACnB,YAAIA,MAAK,SAAS,WAAW,GAAG;AAC9B,kBAAQ,KAAKA,KAAI;AAAA,QACnB;AAAA,MACF,CAAC;AAAA,IACH,OAAO;AACL,aAAO,KAAK,mBAAmB,EAAE,QAAQ,CAAC,SAAS;AACjD,cAAM,CAAC,QAAQ,IAAI,oBAAoB,IAAI;AAC3C,cAAMA,QAAO,MAAM;AACnB,YAAIA,SAAQ,MAAM;AAChB,UAAAA,MAAK,eAAe,oBAAoB;AACxC,kBAAQ,KAAKA,KAAI;AAAA,QACnB;AAAA,MACF,CAAC;AAAA,IACH;AACA,QAAI,OAAO,KAAK,kBAAkB,EAAE,SAAS,GAAG;AAC9C,aAAO,KAAK,kBAAkB,EAAE,QAAQ,CAAC,SAAS;AAChD,cAAM,CAAC,QAAQ,IAAI,oBAAoB,IAAI;AAC3C,cAAMA,QAAO,MAAM;AACnB,YAAIA,OAAM;AACR,UAAAA,MAAK,eAAe,mBAAmB;AACvC,iBAAO,KAAKA,KAAI;AAAA,QAClB;AAAA,MACF,CAAC;AAAA,IACH,OAAO;AACL,eAAS;AAAA,IACX;AACA,QAAI,YAAY,CAAC;AACjB,QAAI,MAAM,WAAW,QAAQ,MAAM,QAAQ,YAAY,MAAM;AAC3D,kBAAY,MAAM,QAAQ,SAAS,OAAO,CAAC,YAAY,UAAU;AAC/D,mBAAW,MAAM,UAAU,QAAQ,KAAK,YAAY,KAAK;AACzD,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AACA,UAAM,SAAS,EAAE,OAAO,QAAQ,SAAS,SAAS,cAAc,WAAW,UAAU;AACrF,QAAI,UAAU,SAAS,GAAG;AACxB,aAAO,YAAY;AAAA,IACrB;AACA,WAAO;AAAA,EACT;AAAA,EACA,oBAAoB,SAAS;AAC3B,WAAO,OAAO,KAAK,WAAW,CAAC,CAAC,EAAE,OAAO,CAAC,MAAM,SAAS;AACvD,WAAK,QAAQ,MAAM,QAAQ;AAC3B,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,QAAQA,OAAM;AACZ,UAAM,SAAS,gBAAgBA,MAAK,EAAE,KAAK,KAAK,UAAUA,MAAK,OAAO,CAAC;AACvE,QAAIA,MAAK,QAAQ,MAAM;AACrB,MAAAA,MAAK,OAAO,CAAC;AAAA,IACf;AACA,UAAM,UAAU;AAAA,MACd,MAAMA,MAAK;AAAA,MACX,IAAIA,MAAK;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,aAAaA,MAAK,SAAS,CAAC,GAAG,IAAI,CAAC,WAAW,OAAO,WAAW,GAAG,IAAI,OAAO,MAAM,CAAC,IAAI,MAAM;AAAA,MAChG,QAAQ,CAAC;AAAA,MACT,UAAU,CAAC;AAAA,MACX,aAAa,CAAC;AAAA,MACd,YAAY,CAAC;AAAA,MACb,UAAUA,MAAK;AAAA,MACf,SAAS,OAAO;AAAA,IAClB;AACA,QAAI,OAAO,UAAU,MAAM;AACzB,cAAQ,cAAc,OAAO,OAAO,OAAO,CAAC,KAAK,UAAU;AACzD,YAAI,MAAM,QAAQ;AAAA,UAChB,MAAM,MAAM;AAAA,UACZ,iBAAiB,MAAM;AAAA,UACvB,eAAe,MAAM;AAAA,QACvB;AACA,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AACA,QAAI,OAAO,SAAS,MAAM;AACxB,cAAQ,aAAa,OAAO,MAAM,OAAO,CAAC,KAAK,UAAU;AACvD,cAAM,OAAO,MAAM;AACnB,YAAI,QAAQ;AACZ,gBAAQ,MAAM;AAAA,eACP;AACH,oBAAQ,eAAeA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AAClE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,eAAeA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC9E;AACA;AAAA,eACG;AACH,oBAAQ,oBAAoBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACvE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,oBAAoBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACnF;AACA;AAAA,eACG;AACH,oBAAQ,eAAeA,MAAK,MAAM,MAAM,QAAQ,MAAM,gBAAgB,CAAC;AACvE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,eAAeA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC9E;AACA;AAAA,eACG;AACH,oBAAQ,qBAAqBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACxE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,qBAAqBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACpF;AACA;AAAA,eACG;AACH,oBAAQ,aAAaA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AAChE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,aAAaA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC5E;AACA;AAAA,eACG;AACH,oBAAQ,kBAAkBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACrE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,kBAAkBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACjF;AACA;AAAA,eACG;AACH,oBAAQ,oBAAoBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACvE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,oBAAoBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACnF;AACA;AAAA,eACG;AACH,oBAAQ,yBAAyBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AAC5E,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,yBAAyBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACxF;AACA;AAAA,eACG;AACH,oBAAQ,cAAcA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACjE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,cAAcA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC7E;AACA;AAAA,eACG;AACH,oBAAQ,mBAAmBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACtE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,mBAAmBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAClF;AACA;AAAA,eACG;AACH,oBAAQ,aAAaA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AAChE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,aAAaA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC5E;AACA;AAAA,eACG;AAAA,eACA;AACH;AAAA;AAEA,kBAAM,IAAI,MAAM,2BAA2B,MAAM,gBAAgBA,MAAK,IAAI;AAAA;AAE9E,YAAI,MAAM,QAAQ,EAAE,OAAO,KAAK;AAChC,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,aAAa;AACvB,UAAM,UAAU,YAAY;AAC5B,UAAM,eAAe,CAAC;AACtB,UAAM,UAAU,CAAC;AACjB,QAAI,QAAQ,CAAC;AACb,QAAI,WAAW,MAAM;AACnB,cAAQ,QAAQ,OAAO,CAAC,KAAKA,UAAS;AACpC,YAAIA,MAAK,QAAQ,KAAK,QAAQA,KAAI;AAClC,YAAIA,MAAK,OAAO,SAAS;AACvB,kBAAQ,KAAK,IAAIA,MAAK,KAAK;AAAA,QAC7B;AACA,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AACA,UAAM,SAAS,CAAC;AAChB,UAAM,UAAU,CAAC;AACjB,gBAAY,UAAU,SAAS,QAAQ,CAAC,QAAQ;AAC9C,YAAM,CAAC,QAAQ,IAAI,oBAAoB,IAAI,IAAI;AAC/C,YAAMA,QAAO;AAAA,QACX,MAAM;AAAA,QACN,IAAI;AAAA,QACJ,QAAQ,CAAC;AAAA,QACT,YAAY,CAAC;AAAA,QACb,UAAU;AAAA,QACV,aAAa,CAAC;AAAA,QACd,YAAY,EAAE,OAAO,EAAE,OAAO,gBAAgB,IAAI,IAAI,GAAG,MAAM,QAAQ,EAAE;AAAA,QACzE,UAAU,CAAC;AAAA,MACb;AACA,MAAAA,MAAK,eAAe,IAAI;AACxB,aAAO,KAAKA,KAAI;AAChB,YAAM,YAAYA;AAAA,IACpB,CAAC;AACD,UAAM,WAAW,OAAO,KAAK,KAAK;AAClC,aAAS,QAAQ,CAAC,QAAQ;AACxB,YAAMA,QAAO,MAAM;AACnB,MAAAA,MAAK,WAAW,QAAQ,CAAC,MAAMP,WAAU;AACvC,cAAM,CAAC,UAAU,EAAE,UAAU,IAAI,oBAAoB,IAAI;AACzD,cAAM,YAAY,MAAM;AACxB,YAAI,UAAU,WAAW,MAAM;AAC7B,gBAAM,cAAc,UAAU,QAAQ,QAAQ,UAAU;AACxD,cAAI,gBAAgB,IAAI;AACtB,kBAAM,YAAY,GAAG,YAAY;AACjC,YAAAO,MAAK,WAAWP,UAAS;AAAA,UAC3B;AAAA,QACF;AACA,QAAAO,MAAK,OAAO,KAAK,SAAS;AAC1B,kBAAU,SAAS,KAAKA,KAAI;AAAA,MAC9B,CAAC;AAAA,IACH,CAAC;AACD,UAAM,gBAAgB,YAAY;AAClC,gBAAY,UAAU,UAAU,QAAQ,CAAC,WAAW;AAClD,YAAM,CAAC,UAAUP,MAAK,IAAI,oBAAoB,cAAc,OAAO,KAAK;AACxE,YAAMO,QAAO,MAAM;AACnB,UAAIA,SAAQ,MAAM;AAChB,QAAAA,MAAK,gBAAgBP;AACrB,gBAAQ,KAAKO,KAAI;AAAA,MACnB;AAAA,IACF,CAAC;AACD,UAAM,YAAY,KAAK,mBAAmB,WAAW;AACrD,WAAO,EAAE,OAAO,QAAQ,SAAS,SAAS,cAAc,UAAU;AAAA,EACpE;AAAA,EACA,mBAAmB,aAAa;AAC9B,WAAO;AAAA,MACL,YAAY,YAAY,UAAU;AAAA,MAClC,QAAQ,YAAY,UAAU,SAAS,OAAO,CAAC,KAAK,QAAQ;AAC1D,YAAI,IAAI,QAAQ,KAAK,mBAAmB,GAAG;AAC3C,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,MACL,SAAS,YAAY,UAAU,UAAU,OAAO,CAAC,KAAK,QAAQ;AAC5D,YAAI,IAAI,QAAQ,KAAK,mBAAmB,KAAK,YAAY,GAAG;AAC5D,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AAAA,EACF;AAAA,EACA,mBAAmB,KAAK,UAAU;AAChC,QAAI,OAAO,IAAI;AACf,QAAI,YAAY,MAAM;AACpB,aAAO,SAAS;AAAA,IAClB;AACA,WAAO,EAAE,MAAM,OAAO,IAAI,KAAK;AAAA,EACjC;AACF;AACA,SAAS,aAAa,MAAM;AAC1B,QAAM,UAAU,IAAI,EAAE;AACtB,MAAI,OAAO,QAAQ,SAAS,aAAa;AACvC,WAAO,QAAQ,KAAK,IAAI;AAAA,EAC1B,WAAW,OAAO,WAAW,aAAa;AACxC,WAAO,IAAI,OAAO,MAAM,QAAQ,EAAE,SAAS;AAAA,EAC7C,OAAO;AACL,UAAM,IAAI,MAAM,kFAAkF;AAAA,EACpG;AACF;AACA,SAAS,iBAAiB,IAAI,UAAU;AACtC,QAAM,QAAQ,MAAM,QAAQ,EAAE,IAAI,OAAO,aAAa,MAAM,MAAM,EAAE,IAAI,aAAa,EAAE;AACvF,SAAO,WAAW,QAAQ,MAAM,YAAY;AAC9C;AACA,SAAS,eAAe,OAAO,MAAM,KAAK,WAAW,OAAO;AAC1D,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM;AACjB,WAAO,iBAAiB,MAAM,GAAG,QAAQ;AAAA,EAC3C;AACA,SAAO;AACT;AACA,SAAS,aAAa,OAAO,MAAM,KAAK;AACtC,QAAM,QAAQ,MAAM;AACpB,SAAO,QAAQ,MAAM,IAAI;AAC3B;AACA,SAAS,eAAe,OAAO,MAAM,KAAK;AACxC,QAAM,QAAQ,MAAM,SAAS,CAAC;AAC9B,QAAM,QAAQ,MAAM,QAAQ,OAAO,MAAM,OAAO,MAAM,QAAQ,OAAO,MAAM,OAAO;AAClF,SAAO,OAAO,UAAU,WAAW,QAAQ,SAAS,OAAO,EAAE;AAC/D;AACA,SAAS,gBAAgB,OAAO;AAC9B,MAAI,OAAO,UAAU,UAAU;AAC7B,YAAQ,SAAS;AAAA,EACnB;AACA,UAAQ;AAAA,SACD,SAAS;AAAA,SACT,SAAS;AACZ,aAAO;AAAA,SACJ,SAAS;AAAA,SACT,SAAS;AAAA,SACT,SAAS;AAAA,SACT,SAAS;AACZ,aAAO;AAAA,SACJ,SAAS;AACZ,aAAO;AAAA,SACJ,SAAS;AACZ,aAAO;AAAA,SACJ,SAAS;AACZ,aAAO;AAAA;AAEP,aAAO;AAAA;AAEb;AACA,SAAS,aAAa,OAAO,MAAM,KAAK;AACtC,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,MAAM;AACvB,WAAO,MAAM,KAAK;AAAA,EACpB;AACA,SAAO;AACT;AACA,SAAS,cAAc,OAAO,MAAM,KAAK;AACvC,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,MAAM;AACvB,WAAO,gBAAgB,MAAM,IAAI;AAAA,EACnC;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,OAAO,MAAM,KAAK;AAC5C,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,QAAQ,MAAM,KAAK,MAAM;AAC1C,WAAO,MAAM,KAAK,KAAK,IAAI,CAAC,MAAM,gBAAgB,CAAC,CAAC;AAAA,EACtD;AACA,SAAO;AACT;AACA,SAAS,sBAAsB,OAAO;AACpC,MAAI,MAAM,aAAa;AACrB,WAAO;AAAA,EACT;AACA,MAAI,MAAM,OAAO,MAAM;AACrB,WAAO,MAAM,IAAI,IAAI,CAAC,QAAQ,OAAO,IAAI,SAAS,WAAW,IAAI,OAAO,SAAS,IAAI,MAAM,EAAE,CAAC;AAAA,EAChG;AACA,SAAO,CAAC;AACV;AACA,SAAS,oBAAoB,OAAO,MAAM,KAAK;AAC7C,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,OAAO;AACxB,WAAO,sBAAsB,MAAM,KAAK;AAAA,EAC1C;AACA,SAAO;AACT;AACA,SAAS,qBAAqB,OAAO,MAAM,KAAK;AAC9C,QAAM,QAAQ,MAAM;AACpB,MAAI,OAAO;AACT,aAAS,MAAM,KAAK,KAAK,MAAM,KAAK,EAAE,SAAS,MAAM,KAAK,IAAI,MAAM,KAAK,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,OAAO,MAAM,WAAW,IAAI,SAAS,GAAG,EAAE,CAAC;AAAA,EAC3I;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,OAAO,MAAM,KAAK,WAAW,OAAO;AAC/D,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,QAAQ,MAAM,KAAK,GAAG;AACvC,WAAO,MAAM,KAAK,EAAE,IAAI,CAAC,MAAM;AAC7B,aAAO,iBAAiB,GAAG,QAAQ;AAAA,IACrC,CAAC;AAAA,EACH;AACA,SAAO;AACT;AACA,SAAS,yBAAyB,OAAO,MAAM,KAAK;AAClD,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,QAAQ,MAAM,KAAK,OAAO;AAC3C,WAAO,MAAM,KAAK,MAAM,IAAI,CAAC,MAAM;AACjC,aAAO,sBAAsB,CAAC;AAAA,IAChC,CAAC;AAAA,EACH;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,OAAO,MAAM,KAAK;AAC3C,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,QAAQ,MAAM,KAAK,GAAG;AACvC,WAAO,MAAM,KAAK;AAAA,EACpB;AACA,SAAO;AACT;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAYA,OAAM,WAAW,SAAS;AACpC,SAAK,OAAOA;AACZ,SAAK,YAAY;AACjB,SAAK,UAAU;AACf,SAAK,SAAS,CAAC;AACf,SAAK,QAAQ,CAAC;AACd,SAAK,SAASA,MAAK,WAAW,IAAI,CAAC,SAAS,KAAK,SAAS,IAAI,CAAC;AAC/D,QAAIA,MAAK,YAAY,MAAM;AACzB,WAAK,QAAQ,OAAO,KAAKA,MAAK,QAAQ,EAAE,OAAO,CAAC,OAAO,QAAQ;AAC7D,cAAM,OAAO,KAAK,QAAQ,GAAG;AAC7B,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AAAA,EACF;AAAA,EACA,SAAS,MAAM;AACb,WAAO,UAAU,MAAM,KAAK,WAAW,KAAK,OAAO;AAAA,EACrD;AAAA,EACA,QAAQ,MAAM,cAAc;AAC1B,UAAM,QAAQ,KAAK,KAAK,SAAS;AACjC,QAAI,MAAM,UAAU,MAAM;AACxB,aAAO,UAAU,MAAM,KAAK,WAAW,KAAK,OAAO;AAAA,IACrD;AACA,QAAI,MAAM,KAAK,QAAQ,MAAM,KAAK,MAAM;AACtC,aAAO,eAAe,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IAC9D;AACA,QAAI,MAAM,KAAK,MAAM;AACnB,aAAO,eAAe,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IAC9D;AACA,QAAI,MAAM,KAAK,MAAM;AACnB,aAAO,aAAa,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IAC5D;AACA,QAAI,MAAM,SAAS,MAAM;AACvB,aAAO,oBAAoB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IACnE;AACA,QAAI,MAAM,QAAQ,MAAM;AACtB,aAAO,cAAc,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IAC7D;AACA,QAAI,MAAM,QAAQ,MAAM;AACtB,UAAI,MAAM,KAAK,KAAK,QAAQ,MAAM,KAAK,KAAK,MAAM;AAChD,eAAO,qBAAqB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MACpE;AACA,UAAI,MAAM,KAAK,KAAK,MAAM;AACxB,eAAO,oBAAoB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MACnE;AACA,UAAI,MAAM,KAAK,SAAS,MAAM;AAC5B,eAAO,yBAAyB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MACxE;AACA,UAAI,MAAM,KAAK,KAAK,MAAM;AACxB,eAAO,kBAAkB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MACjE;AACA,UAAI,MAAM,KAAK,QAAQ,MAAM;AAC3B,eAAO,mBAAmB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MAClE;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AAGA,IAAI,4BAA4B,CAAC;AACjCpB,UAAS,2BAA2B;AAAA,EAClC,iBAAiB,MAAM;AAAA,EACvB,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,KAAK,MAAM;AAAA,EACX,KAAK,MAAM;AAAA,EACX,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,eAAe,MAAM;AAAA,EACrB,WAAW,MAAM;AAAA,EACjB,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,gBAAgB,MAAM;AAAA,EACtB,UAAU,MAAM;AAAA,EAChB,kBAAkB,MAAM;AAAA,EACxB,eAAe,MAAM;AAAA,EACrB,aAAa,MAAM;AAAA,EACnB,QAAQ,MAAM;AAAA,EACd,MAAM,MAAM;AAAA,EACZ,MAAM,MAAM;AAAA,EACZ,aAAa,MAAM;AAAA,EACnB,OAAO,MAAM;AAAA,EACb,SAAS,MAAM;AAAA,EACf,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,QAAQ,MAAM;AAAA,EACd,eAAe,MAAM;AAAA,EACrB,cAAc,MAAM;AAAA,EACpB,iBAAiB,MAAM;AAAA,EACvB,MAAM,MAAM;AAAA,EACZ,YAAY,MAAM;AAAA,EAClB,KAAK,MAAM;AAAA,EACX,UAAU,MAAM;AAAA,EAChB,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AAAA,EACX,qBAAqB,MAAM;AAAA,EAC3B,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,eAAe,MAAM;AAAA,EACrB,KAAK,MAAM;AAAA,EACX,YAAY,MAAM;AAAA,EAClB,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,UAAU,MAAM;AAAA,EAChB,OAAO,MAAM;AAAA,EACb,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAAA,EAChB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,MAAM,MAAM;AAAA,EACZ,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,aAAa,MAAM;AAAA,EACnB,OAAO,MAAM;AAAA,EACb,UAAU,MAAM;AAAA,EAChB,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,WAAW,MAAM;AAAA,EACjB,MAAM,MAAM;AAAA,EACZ,WAAW,MAAM;AAAA,EACjB,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAAA,EAChB,4BAA4B,MAAM;AAAA,EAClC,KAAK,MAAMF;AAAA,EACX,OAAO,MAAM;AAAA,EACb,YAAY,MAAM;AAAA,EAClB,YAAY,MAAM;AAAA,EAClB,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,YAAY,MAAM;AAAA,EAClB,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,QAAQ,MAAM;AAAA,EACd,YAAY,MAAM;AAAA,EAClB,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,mBAAmB,MAAM;AAAA,EACzB,SAAS,MAAM;AAAA,EACf,MAAM,MAAM;AAAA,EACZ,UAAU,MAAM;AAAA,EAChB,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,eAAe,MAAM;AAAA,EACrB,KAAK,MAAM;AAAA,EACX,cAAc,MAAM;AAAA,EACpB,aAAa,MAAM;AAAA,EACnB,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,UAAU,MAAM;AAAA,EAChB,QAAQ,MAAM;AAAA,EACd,MAAM,MAAM;AAAA,EACZ,UAAU,MAAM;AAAA,EAChB,IAAI,MAAM;AAAA,EACV,cAAc,MAAM;AAAA,EACpB,KAAK,MAAM;AAAA,EACX,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,KAAK,MAAM;AAAA,EACX,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,sBAAsB,MAAM;AAAA,EAC5B,MAAM,MAAM;AAAA,EACZ,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,sBAAsB,MAAM;AAAA,EAC5B,eAAe,MAAM;AAAA,EACrB,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,YAAY,MAAM;AAAA,EAClB,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,QAAQ,MAAM;AAAA,EACd,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,MAAM,MAAM;AAAA,EACZ,iBAAiB,MAAM;AAAA,EACvB,gBAAgB,MAAM;AAAA,EACtB,SAAS,MAAM;AAAA,EACf,MAAM,MAAM;AAAA,EACZ,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,UAAU,MAAM;AAAA,EAChB,gBAAgB,MAAM;AAAA,EACtB,QAAQ,MAAM;AAAA,EACd,eAAe,MAAM;AAAA,EACrB,UAAU,MAAM;AAAA,EAChB,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,QAAQ,MAAM;AAAA,EACd,mBAAmB,MAAM;AAAA,EACzB,SAAS,MAAM;AAAA,EACf,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,cAAc,MAAM;AAAA,EACpB,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AAAA,EACX,KAAK,MAAM;AAAA,EACX,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,MAAM,MAAM;AAAA,EACZ,MAAM,MAAM;AAAA,EACZ,WAAW,MAAM;AAAA,EACjB,iBAAiB,MAAM;AAAA,EACvB,QAAQ,MAAM;AAAA,EACd,oBAAoB,MAAM;AAAA,EAC1B,SAAS,MAAM;AAAA,EACf,YAAY,MAAM;AAAA,EAClB,UAAU,MAAM;AAAA,EAChB,OAAO,MAAM;AAAA,EACb,YAAY,MAAM;AAAA,EAClB,OAAO,MAAM;AAAA,EACb,WAAW,MAAM;AACnB,CAAC;AAGD,IAAI,YAAY,CAACsB,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC7E,UAAQA,MAAK;AAAA,SACN;AAAA,SACA;AAAA,SACA,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7G;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,WAAWA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtE;AAAA,SACK;AAAA,SACA;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACxG;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACxG;AAAA,SACA,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7G;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClH;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClH;AAAA,SACK,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7G;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjH;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjH;AAAA,SACK,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7G;AAAA,SACK,qBAAqB;AACxB,aAAO,CAAC,IAAI,kBAAkB,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC3H;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN;AAAA,SACA;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1G;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,QAAQ,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAClH;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D,cAAc;AACjB,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC9D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpE;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,UAAU;AACb,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClE;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,YAAY,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACpL;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,MAAM,UAAUA,MAAK,WAAW,IAAI,WAAW,OAAO,CAAC,CAAC;AAAA,SACjE;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5G;AACH,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAClH;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC9G;AACH,aAAO,CAAC,IAAI,MAAM,UAAUA,MAAK,WAAW,IAAI,WAAW,OAAO,CAAC,CAAC;AAAA;AAEpE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,SAAS,oCAAoC,QAAQ,QAAQ,qBAAqB,IAAI;AACpF,MAAI,OAAO,WAAW,YAAY,OAAO,WAAW,UAAU;AAC5D;AAAA,EACF;AACA,eAAa,OAAO,OAAO,WAAW,OAAO,QAAQ,MAAM,qBAAqB,WAAW,cAAc,mBAAmB;AAC5H,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,UAAM,OAAO,OAAO;AACpB,UAAM,OAAO,OAAO;AACpB,iBAAa,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,MAAM,MAAM,qBAAqB,WAAW,cAAc,mBAAmB;AAAA,EACpI;AACF;AACA,SAAS,iBAAiB,cAAc;AACtC,MAAI,OAAO,iBAAiB,YAAY,aAAa,KAAK,CAAC,QAAQ,MAAM,CAAC,GAAG;AAC3E,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,kBAAkB,SAAS,cAAc;AAClE,MAAI,eAAe,kBAAkB,kBAAkB,YAAY;AACnE,QAAM,sBAAsB,CAAC,iBAAiB,YAAY;AAC1D,MAAI,uBAAuB,QAAQ,WAAW,GAAG;AAC/C,UAAM,IAAI,MAAM,qFAAqF,cAAc;AAAA,EACrH;AACA,MAAI,qBAAqB;AACvB,YAAQ,QAAQ,CAAC,YAAY;AAC3B,qBAAe,kBAAkB,QAAQ,OAAO,YAAY;AAAA,IAC9D,CAAC;AAAA,EACH;AACA,MAAI,CAAC,iBAAiB,YAAY,GAAG;AACnC,UAAM,IAAI,MAAM,mCAAmC,cAAc;AAAA,EACnE;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,eAAe,eAAe;AACvD,MAAI,OAAO,kBAAkB,UAAU;AACrC,WAAO;AAAA,EACT;AACA,MAAI,OAAO,kBAAkB,UAAU;AACrC,WAAO;AAAA,EACT;AACA,MAAI,cAAc,WAAW,cAAc,QAAQ;AACjD,UAAM,IAAI,MAAM,oCAAoC,qBAAqB,eAAe;AAAA,EAC1F;AACA,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,GAAG,KAAK,cAAc,QAAQ,EAAE,IAAI;AAChD,UAAM,OAAO,cAAc;AAC3B,UAAM,OAAO,cAAc;AAC3B,QAAI,QAAQ,KAAK,QAAQ,KAAK,SAAS,MAAM;AAC3C,YAAM,IAAI,MAAM,oCAAoC,qBAAqB,eAAe;AAAA,IAC1F;AACA,WAAO,MAAM,QAAQ,IAAI,OAAO;AAAA,EAClC;AACA,SAAO;AACT;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,MAAM,OAAOe,UAAS,cAAc,wBAAwB,aAAa,gBAAgB;AACnG,SAAK,OAAO;AACZ,SAAK,QAAQ;AACb,SAAK,UAAUA;AACf,SAAK,eAAe;AACpB,SAAK,yBAAyB;AAC9B,SAAK,cAAc;AACnB,SAAK,iBAAiB;AACtB,SAAK,UAAU,CAAC;AAChB,SAAK,UAAU;AACf,SAAK,WAAW,OAAO,CAAC;AACxB,SAAK,KAAK,QAAQ;AAAA,EACpB;AAAA,EACA,IAAI,KAAK;AACP,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK;AAAA,EACd;AAAA,EACA,cAAc,SAAS;AACrB,SAAK,QAAQ,QAAQ,CAAC,YAAY;AAChC,UAAI,WAAW,QAAQ,CAAC,QAAQ,IAAI,QAAQ,OAAO,EAAE,GAAG;AACtD,gBAAQ,OAAO,QAAQ;AAAA,MACzB;AAAA,IACF,CAAC;AACD,SAAK,UAAU,CAAC;AAChB,SAAK,UAAU;AACf,SAAK,SAAS,QAAQ;AAAA,EACxB;AAAA,EACA,OAAO;AACL,WAAO,KAAK,QAAQ;AAAA,EACtB;AAAA,EACA,KAAKtB,QAAO;AACV,QAAI,KAAK,SAAS;AAChB,YAAM,IAAI,MAAM,eAAe,KAAK,+BAA+B;AAAA,IACrE;AACA,QAAIA,SAAQ,KAAKA,UAAS,KAAK,KAAK,GAAG;AACrC,YAAM,IAAI,MAAM,4BAA4BA,8BAA6B,KAAK,KAAK,GAAG;AAAA,IACxF;AACA,UAAM,kBAAkB,KAAK,QAAQA;AACrC,QAAI,gBAAgB,SAAS;AAC3B,YAAM,IAAI,MAAM,eAAe,KAAK,8BAA8BA,4GAA2G;AAAA,IAC/K;AACA,QAAI,KAAK,gBAAgB;AACvB,sBAAgB,UAAU;AAAA,IAC5B;AACA,oBAAgB,OAAO;AACvB,WAAO,gBAAgB;AAAA,EACzB;AAAA,EACA,SAAS,SAAS;AAChB,WAAO,QAAQ,IAAI,CAACA,WAAU,KAAK,KAAKA,MAAK,CAAC;AAAA,EAChD;AAAA,EACA,MAAMA,QAAO,SAAS;AACpB,QAAI,KAAK,SAAS;AAChB,YAAM,IAAI,MAAM,eAAe,KAAK,+BAA+B;AAAA,IACrE;AACA,QAAIA,SAAQ,KAAK,CAAC,KAAK,eAAeA,UAAS,KAAK,SAAS;AAC3D,YAAM,IAAI,MAAM,2BAA2BA,oDAAmD,KAAK,SAAS;AAAA,IAC9G;AACA,UAAM,KAAK,KAAK,QAAQA,WAAU,CAAC;AACnC,QAAI,QAAQ,UAAU,KAAK,OAAO;AAChC,YAAM,IAAI,MAAM,eAAe,KAAK,8CAA8CA;AAAA,uCACjD,QAAQ,mCAAmC,KAAK,QAAQ;AAAA,IAC3F;AACA,QAAI,KAAK,KAAK,MAAM,MAAM,KAAK,gBAAgB,QAAQ,KAAK,aAAa,WAAW,IAAI;AACtF,WAAK,eAAe,QAAQ;AAAA,IAC9B;AACA,wCAAoC,KAAK,cAAc,QAAQ,OAAO,eAAe,KAAK,8CAA8CA,SAAQ;AAChJ,QAAI,GAAG,MAAM;AACX,YAAM,IAAI,MAAM,eAAe,KAAK,8CAA8CA,2CAA0C;AAAA,IAC9H;AACA,QAAI,GAAG,SAAS;AACd,YAAM,IAAI,MAAM,eAAe,KAAK,8CAA8CA,8CAA6C;AAAA,IACjI;AACA,OAAG,SAAS;AACZ,SAAK,OAAO;AACZ,OAAG,UAAU;AACb,SAAK,QAAQA,UAAS;AAAA,EACxB;AAAA,EACA,UAAU,SAAS,SAAS;AAC1B,QAAI,QAAQ,WAAW,QAAQ,QAAQ;AACrC,YAAM,IAAI,MAAM,eAAe,KAAK,kEAAkE,QAAQ,2CAA2C,QAAQ,SAAS;AAAA,IAC5K;AACA,YAAQ,QAAQ,CAAC,IAAIA,WAAU,KAAK,MAAM,IAAI,QAAQA,OAAM,CAAC;AAAA,EAC/D;AAAA,EACA,OAAO,SAAS,OAAO;AACrB,QAAI,CAAC,CAAC,SAAS,UAAU,KAAK,OAAO;AACnC,YAAM,IAAI,MAAM,wBAAwB,KAAK,oCAAoC,OAAO;AAAA,IAC1F;AACA,QAAI,CAAC,SAAS;AACZ,gBAAU,CAAC;AACX,eAAS,KAAK,GAAG,KAAK,KAAK,KAAK,GAAG,MAAM;AACvC,gBAAQ,KAAK,EAAE;AAAA,MACjB;AAAA,IACF,OAAO;AACL,gBAAU,QAAQ,MAAM,GAAG,KAAK,KAAK,CAAC;AAAA,IACxC;AACA,QAAI,QAAQ,WAAW,GAAG;AACxB,aAAO,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,OAAO,KAAK,YAAY,CAAC;AAAA,IACjD;AACA,UAAM,UAAU,KAAK,SAAS,OAAO;AACrC,wCAAoC,KAAK,cAAc,QAAQ,GAAG,OAAO,8BAA8B;AACvG,WAAO,MAAM,SAAS,CAAC;AAAA,EACzB;AAAA,EACA,OAAO,OAAO;AACZ,QAAI,CAAC,CAAC,SAAS,UAAU,KAAK,OAAO;AACnC,YAAM,IAAI,MAAM,wBAAwB,KAAK,oCAAoC,OAAO;AAAA,IAC1F;AACA,QAAI,KAAK,KAAK,MAAM,GAAG;AACrB,aAAO,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,OAAO,KAAK,YAAY,CAAC;AAAA,IACjD;AACA,UAAM,UAAU,CAAC;AACjB,aAAS,KAAK,GAAG,KAAK,KAAK,KAAK,GAAG,MAAM;AACvC,cAAQ,KAAK,EAAE;AAAA,IACjB;AACA,UAAM,UAAU,KAAK,SAAS,OAAO;AACrC,wCAAoC,KAAK,cAAc,QAAQ,GAAG,OAAO,mDAAmD,KAAK,wCAAwC,QAAQ,GAAG,QAAQ;AAC5L,WAAO,OAAO,SAAS,CAAC;AAAA,EAC1B;AAAA,EACA,QAAQ,SAAS,SAAS;AACxB,QAAI,QAAQ,UAAU,KAAK,OAAO;AAChC,YAAM,IAAI,MAAM,wBAAwB,KAAK,8BAA8B,QAAQ,OAAO;AAAA,IAC5F;AACA,QAAI,QAAQ,WAAW,QAAQ,MAAM,IAAI;AACvC,YAAM,IAAI,MAAM,sDAAsD,QAAQ,cAAc,QAAQ,MAAM,IAAI;AAAA,IAChH;AACA,UAAM,WAAW,KAAK,IAAI,GAAG,OAAO;AACpC,QAAI,CAAC,KAAK,eAAe,YAAY,KAAK,SAAS;AACjD,YAAM,IAAI,MAAM,mCAAmC,iBAAiB,KAAK,UAAU;AAAA,IACrF;AACA,SAAK,UAAU,SAAS,QAAQ,SAAS,CAAC,CAAC;AAAA,EAC7C;AAAA,EACA,MAAM,QAAQ,SAAS;AACrB,QAAI,QAAQ,UAAU,KAAK,OAAO;AAChC,YAAM,IAAI,MAAM,wBAAwB,KAAK,8BAA8B,QAAQ,OAAO;AAAA,IAC5F;AACA,QAAI,cAAc;AAClB,UAAM,oBAAoB,OAAO,IAAI,CAAC,QAAQ;AAC5C,qBAAe;AACf,aAAO;AAAA,IACT,CAAC;AACD,QAAI,gBAAgB,QAAQ,MAAM,IAAI;AACpC,YAAM,IAAI,MAAM;AAAA;AAAA,UAEZ,uCAAuC,QAAQ,OAAO;AAAA,IAC5D;AACA,QAAI,CAAC,KAAK,eAAe,OAAO,WAAW,KAAK,SAAS;AACvD,YAAM,IAAI,MAAM,2DAA2D,KAAK,eAAe,OAAO,sEAAsE;AAAA,IAC9K;AACA,UAAM,gBAAgB,gBAAgB,IAAI,IAAI,QAAQ,OAAO;AAC7D,UAAM,UAAU,CAAC;AACjB,SAAK,MAAM;AACT,gBAAU,QAAQ,SAAS,CAAC,GAAG,aAAa,aAAa,CAAC;AAC1D,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,cAAM,iBAAiB,OAAO,IAAI,IAAI,kBAAkB,KAAK;AAC7D,cAAM,WAAW,CAAC,GAAG,gBAAgB,CAAC;AACtC,cAAM,QAAQ,CAAC,GAAG,OAAO,KAAK,aAAa;AAC3C,gBAAQ,MAAM,QAAQ,MAAM,SAAS,UAAU,KAAK,GAAG,KAAK,YAAY;AAAA,MAC1E;AACA,aAAO;AAAA,IACT,CAAC;AACD,UAAM,UAAU,CAAC;AACjB,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,cAAQ,MAAM;AAAA,IAChB;AACA,SAAK,UAAU,SAAS,OAAO;AAAA,EACjC;AACF;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,SAAS,cAAc,cAAc,iBAAiB,IAAI;AACpE,SAAK,UAAU;AACf,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,QAAI,WAAW,MAAM;AACnB,cAAQ,QAAQ,CAAC,YAAY;AAC3B,YAAI,iBAAiB,QAAQ,OAAO;AAClC,gBAAM,IAAI,MAAM,mCAAmC,mCAAmC,QAAQ,OAAO;AAAA,QACvG;AACA,4CAAoC,cAAc,QAAQ,OAAO,6BAA6B;AAC9F,aAAK,OAAO;AAAA,MACd,CAAC;AAAA,IACH;AACA,SAAK,WAAW,OAAO,CAAC;AACxB,SAAK,iBAAiB;AACtB,SAAK,KAAK,QAAQ;AAAA,EACpB;AAAA,EACA,IAAI,KAAK;AACP,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,OAAO;AACL,WAAO,IAAI,WAAW,CAAC,GAAG,KAAK,OAAO,GAAG,KAAK,cAAc,KAAK,YAAY;AAAA,EAC/E;AAAA,EACA,cAAc,SAAS;AACrB,SAAK,QAAQ,QAAQ,CAAC,YAAY;AAChC,UAAI,WAAW,QAAQ,CAAC,QAAQ,IAAI,QAAQ,EAAE,GAAG;AAC/C,gBAAQ,QAAQ;AAAA,MAClB;AAAA,IACF,CAAC;AACD,SAAK,QAAQ,SAAS;AACtB,SAAK,SAAS,QAAQ;AAAA,EACxB;AAAA,EACA,OAAO;AACL,WAAO,KAAK,QAAQ;AAAA,EACtB;AAAA,EACA,MAAM,cAAc,cAAc,cAAc,IAAI;AAClD,QAAI,iBAAiB,KAAK,cAAc;AACtC,YAAM,IAAI,MAAM,mCAAmC,mCAAmC,KAAK,cAAc;AAAA,IAC3G;AACA,QAAI,gBAAgB,MAAM,KAAK,QAAQ,WAAW,aAAa;AAC7D,YAAM,IAAI,MAAM,kCAAkC,4CAA4C,KAAK,QAAQ,kBAAkB;AAAA,IAC/H;AACA,wCAAoC,cAAc,KAAK,cAAc,6BAA6B;AAClG,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,WAAO,KAAK,MAAM;AAChB,YAAM,kBAAkB,KAAK,QAAQ,IAAI,CAAC,YAAY,QAAQ,SAAS,kBAAkB,CAAC;AAC1F,aAAO,MAAM,iBAAiB,CAAC;AAAA,IACjC,CAAC;AAAA,EACH;AAAA,EACA,QAAQ,cAAc,cAAc;AAClC,QAAI,iBAAiB,KAAK,cAAc;AACtC,YAAM,IAAI,MAAM,mCAAmC,mCAAmC,KAAK,cAAc;AAAA,IAC3G;AACA,QAAI,KAAK,KAAK,MAAM,GAAG;AACrB,YAAM,IAAI,MAAM,mCAAmC;AAAA,IACrD;AACA,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,UAAM,UAAU,KAAK,QAAQ,IAAI;AACjC,YAAQ,OAAO;AACf,wCAAoC,QAAQ,OAAO,cAAc,6BAA6B;AAC9F,WAAO,QAAQ,SAAS,kBAAkB;AAAA,EAC5C;AAAA,EACA,SAAS,SAAS;AAChB,QAAI,QAAQ,UAAU,KAAK,cAAc;AACvC,YAAM,IAAI,MAAM,mCAAmC,QAAQ,4BAA4B,KAAK,cAAc;AAAA,IAC5G;AACA,wCAAoC,QAAQ,OAAO,KAAK,cAAc,6BAA6B;AACnG,QAAI,KAAK,mBAAmB,KAAK,KAAK,GAAG;AACvC,YAAM,IAAI,MAAM,0CAA0C;AAAA,IAC5D;AACA,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,OAAO;AAAA,EAC3B;AAAA,EACA,OAAOV,OAAM;AACX,QAAIA,QAAO,GAAG;AACZ,YAAM,IAAI,MAAM,0DAA0DA,OAAM;AAAA,IAClF;AACA,QAAI,KAAK,mBAAmB,MAAMA,QAAO,KAAK,gBAAgB;AAC5D,YAAM,IAAI,MAAM,+BAA+BA,kCAAiC,KAAK,iBAAiB;AAAA,IACxG;AACA,UAAM,iBAAiB,IAAI,WAAW,CAAC,GAAG,KAAK,cAAc,KAAK,cAAc,KAAK,cAAc;AACnG,mBAAe,QAAQ,SAASA;AAChC,aAAS,KAAK,GAAG,KAAK,KAAK,IAAI,KAAK,QAAQ,QAAQA,KAAI,GAAG,EAAE,IAAI;AAC/D,qBAAe,QAAQ,MAAM,KAAK,QAAQ;AAAA,IAC5C;AACA,WAAO;AAAA,EACT;AAAA,EACA,QAAQ,cAAc,cAAc,cAAc;AAChD,QAAI,iBAAiB,KAAK,cAAc;AACtC,YAAM,IAAI,MAAM,mCAAmC,mCAAmC,KAAK,cAAc;AAAA,IAC3G;AACA,QAAI,eAAe,KAAK,eAAe,KAAK,QAAQ,QAAQ;AAC1D,YAAM,IAAI,MAAM,4BAA4B,+BAA+B,KAAK,QAAQ,kBAAkB;AAAA,IAC5G;AACA,QAAI,KAAK,QAAQ,iBAAiB,MAAM;AACtC,YAAM,IAAI,MAAM,oBAAoB,uBAAuB;AAAA,IAC7D;AACA,wCAAoC,KAAK,QAAQ,cAAc,OAAO,cAAc,6BAA6B;AACjH,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,WAAO,QAAQ,KAAK,QAAQ,eAAe,kBAAkB;AAAA,EAC/D;AAAA,EACA,QAAQ,cAAc,SAAS;AAC7B,QAAI,QAAQ,UAAU,KAAK,cAAc;AACvC,YAAM,IAAI,MAAM,mCAAmC,QAAQ,4BAA4B,KAAK,cAAc;AAAA,IAC5G;AACA,QAAI,eAAe,KAAK,KAAK,mBAAmB,MAAM,gBAAgB,KAAK,gBAAgB;AACzF,YAAM,IAAI,MAAM,yBAAyB,mCAAmC,KAAK,0BAA0B;AAAA,IAC7G;AACA,wCAAoC,KAAK,cAAc,QAAQ,OAAO,6BAA6B;AACnG,SAAK,OAAO;AACZ,QAAI,KAAK,QAAQ,iBAAiB,MAAM;AACtC,WAAK,QAAQ,cAAc,OAAO;AAAA,IACpC;AACA,SAAK,QAAQ,gBAAgB;AAAA,EAC/B;AAAA,EACA,OAAO,SAAS,cAAc,cAAc;AAC1C,QAAI,iBAAiB,KAAK,cAAc;AACtC,YAAM,IAAI,MAAM,mCAAmC,mCAAmC,KAAK,cAAc;AAAA,IAC3G;AACA,wCAAoC,KAAK,cAAc,cAAc,6BAA6B;AAClG,cAAU,QAAQ,MAAM,GAAG,KAAK,KAAK,CAAC;AACtC,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,QAAI,QAAQ,WAAW,GAAG;AACxB,aAAO,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,OAAO,kBAAkB,CAAC;AAAA,IAClD;AACA,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,QAAQ,IAAI,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,kBAAkB,CAAC;AACjF,aAAO,MAAM,SAAS,CAAC;AAAA,IACzB,CAAC;AAAA,EACH;AAAA,EACA,OAAO,cAAc,cAAc;AACjC,QAAI,CAAC,CAAC,gBAAgB,iBAAiB,KAAK,cAAc;AACxD,YAAM,IAAI,MAAM,uBAAuB,KAAK,2CAA2C,cAAc;AAAA,IACvG;AACA,wCAAoC,KAAK,cAAc,cAAc,6BAA6B;AAClG,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,QAAI,KAAK,KAAK,MAAM,GAAG;AACrB,aAAO,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,OAAO,kBAAkB,CAAC;AAAA,IAClD;AACA,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,KAAK,QAAQ,IAAI,CAAC,OAAO,QAAQ,IAAI,kBAAkB,CAAC;AACxE,aAAO,OAAO,SAAS,CAAC;AAAA,IAC1B,CAAC;AAAA,EACH;AACF;AACA,SAAS,WAAW,SAAS,cAAc,cAAc;AACvD,QAAM,QAAQ,QAAQ;AACtB,MAAI,QAAQ,MAAM,SAAS,GAAG;AAC5B,UAAM,IAAI,MAAM,oDAAoD,QAAQ,OAAO;AAAA,EACrF;AACA,MAAI,QAAQ,UAAU,cAAc;AAClC,UAAM,IAAI,MAAM,mCAAmC,QAAQ,4BAA4B,cAAc;AAAA,EACvG;AACA,QAAM,qBAAqB,QAAQ,MAAM,MAAM,CAAC;AAChD,sCAAoC,oBAAoB,cAAc,6BAA6B;AACnG,QAAM,aAAa,QAAQ,OAAO;AAClC,SAAO,IAAI,WAAW,YAAY,cAAc,KAAK;AACvD;AACA,SAAS,QAAQ,cAAc,cAAc,aAAa,gBAAgB;AACxE,SAAO,IAAI,WAAW,CAAC,GAAG,cAAc,cAAc,cAAc;AACtE;AACA,SAAS,QAAQ,SAAS,SAAS,cAAc,aAAa;AAC5D,MAAI,QAAQ,WAAW,QAAQ,MAAM,IAAI;AACvC,UAAM,IAAI,MAAM,sDAAsD,QAAQ,cAAc,QAAQ,MAAM,IAAI;AAAA,EAChH;AACA,QAAM,WAAW,KAAK,IAAI,GAAG,OAAO;AACpC,MAAI,eAAe,QAAQ,gBAAgB,MAAM,YAAY,aAAa;AACxE,UAAM,IAAI,MAAM,mCAAmC,iBAAiB,cAAc;AAAA,EACpF;AACA,QAAM,OAAO,IAAI,WAAW,CAAC,GAAG,cAAc,QAAQ,OAAO,WAAW;AACxE,QAAM,UAAU,QAAQ,SAAS,CAAC;AAClC,UAAQ,QAAQ,CAAC,OAAOU,WAAU;AAChC,SAAK,QAAQ,OAAO,QAAQA,OAAM;AAAA,EACpC,CAAC;AACD,SAAO;AACT;AACA,SAAS,OAAO,SAAS,QAAQ,cAAc;AAC7C,MAAI,cAAc;AAClB,QAAM,oBAAoB,OAAO,IAAI,CAAC,QAAQ;AAC5C,mBAAe;AACf,WAAO;AAAA,EACT,CAAC;AACD,MAAI,gBAAgB,QAAQ,MAAM,IAAI;AACpC,UAAM,IAAI,MAAM;AAAA;AAAA,UAEV,uCAAuC,QAAQ,OAAO;AAAA,EAC9D;AACA,QAAM,uBAAuB,QAAQ,MAAM,MAAM,CAAC;AAClD,QAAM,qBAAqB,kBAAkB,sBAAsB,YAAY;AAC/E,QAAM,gBAAgB,gBAAgB,IAAI,IAAI,QAAQ,OAAO;AAC7D,QAAM,UAAU,KAAK,MAAM;AACzB,UAAM,WAAW,CAAC;AAClB,cAAU,QAAQ,SAAS,CAAC,GAAG,aAAa,aAAa,CAAC;AAC1D,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,YAAM,iBAAiB,OAAO,IAAI,IAAI,kBAAkB,KAAK;AAC7D,YAAM,UAAU,CAAC,GAAG,gBAAgB,CAAC;AACrC,YAAM,QAAQ,CAAC,GAAG,OAAO,KAAK,aAAa;AAC3C,eAAS,MAAM,QAAQ,MAAM,SAAS,SAAS,KAAK,GAAG,kBAAkB;AAAA,IAC3E;AACA,YAAQ,QAAQ;AAChB,WAAO;AAAA,EACT,CAAC;AACD,QAAM,OAAO,IAAI,WAAW,CAAC,GAAG,cAAc,QAAQ,OAAO,OAAO,MAAM;AAC1E,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,SAAK,QAAQ,IAAI,QAAQ,GAAG;AAAA,EAC9B;AACA,SAAO;AACT;AAGA,IAAI,aAAa,OAAOO,OAAM,WAAW,YAAY;AACnD,UAAQA,MAAK;AAAA,SACN;AAAA,SACA,eAAe;AAClB,YAAM,WAAW,cAAc,cAAcA,OAAM,WAAW,OAAO;AACrE,YAAM,WAAW,cAAc,cAAcA,OAAM,WAAW,OAAO;AACrE,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,YAAY,MAAM,KAAK,KAAK;AAClC,UAAI,UAAU,IAAI;AAChB,eAAO,QAAQ,YAAY,UAAU,qBAAqB,MAAM,QAAQ,gBAAgB,QAAQ,aAAa;AAAA,MAC/G,OAAO;AACL,eAAO,QAAQ,YAAY,UAAU,qBAAqB,MAAM,QAAQ,gBAAgB,QAAQ,aAAa;AAAA,MAC/G;AAAA,IACF;AAAA,SACK;AAAA,SACA,kBAAkB;AACrB,YAAM,WAAW,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC/D,YAAM,WAAW,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC/D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,aAAa,MAAM,QAAQ,YAAY,UAAU,qBAAqB,MAAM,QAAQ,gBAAgB,QAAQ,aAAa;AAC/H,YAAM,SAAS,KAAK,IAAI,CAAC,YAAY,QAAQ,EAAE;AAC/C,UAAI,YAAY,MAAM,WAAW,GAAG,KAAK;AACzC,iBAAW,QAAQ,CAAC,YAAY;AAC9B,YAAI,CAAC,QAAQ,QAAQ,OAAO,QAAQ,QAAQ,EAAE,MAAM,IAAI;AACtD,kBAAQ,QAAQ;AAAA,QAClB;AAAA,MACF,CAAC;AACD,UAAI,SAAS;AACb,aAAO,UAAU,IAAI;AACnB,cAAM,aAAa;AACnB,iBAAS,MAAM,QAAQ,YAAY,UAAU,qBAAqB,QAAQ,QAAQ,gBAAgB,QAAQ,aAAa;AACvH,cAAM,YAAY,OAAO,IAAI,CAAC,YAAY,QAAQ,EAAE;AACpD,mBAAW,QAAQ,CAAC,YAAY;AAC9B,cAAI,CAAC,QAAQ,QAAQ,OAAO,QAAQ,QAAQ,EAAE,MAAM,MAAM,UAAU,QAAQ,QAAQ,EAAE,MAAM,IAAI;AAC9F,oBAAQ,QAAQ;AAAA,UAClB;AAAA,QACF,CAAC;AACD,cAAM,cAAc,MAAM,QAAQ,YAAY,UAAU,qBAAqB,QAAQ,QAAQ,gBAAgB,QAAQ,aAAa;AAClI,oBAAY,MAAM,YAAY,GAAG,KAAK;AACtC,oBAAY,QAAQ,CAAC,YAAY;AAC/B,cAAI,CAAC,QAAQ,QAAQ,OAAO,QAAQ,QAAQ,EAAE,MAAM,MAAM,UAAU,QAAQ,QAAQ,EAAE,MAAM,IAAI;AAC9F,oBAAQ,QAAQ;AAAA,UAClB;AAAA,QACF,CAAC;AAAA,MACH;AACA,aAAO;AAAA,IACT;AAAA,SACK,YAAY;AACf,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,YAAY,IAAI,CAAC;AAAA,IAC3B;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,UAAI,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AACzD,UAAI,CAAC,KAAK,MAAM;AACd,eAAO,YAAY,IAAI;AAAA,MACzB;AACA,cAAQ,MAAM,KAAK,KAAK,GAAG,KAAK,CAAC,QAAQ,IAAI,IAAI,CAAC,MAAM,MAAM;AAAA,IAChE;AAAA,SACK,SAAS;AACZ,YAAM,YAAYA,MAAK,WAAW,KAAK,CAAC,SAAS,UAAU,MAAM,WAAW,OAAO,MAAM,MAAM;AAC/F,UAAI,WAAW;AACb,cAAM,OAAO,UAAU,WAAW,WAAW,OAAO;AACpD,eAAO,CAAC,YAAY,IAAI,CAAC;AAAA,MAC3B;AACA,aAAO;AAAA,IACT;AAAA,SACK,SAAS;AACZ,YAAM,UAAU,cAAc,aAAaA,OAAM,WAAW,OAAO;AACnE,YAAM,OAAO,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC7D,cAAQ,WAAW,OAAO;AAC1B,aAAO,CAAC,YAAY,IAAI,CAAC;AAAA,IAC3B;AAAA,SACK,QAAQ;AACX,YAAM,OAAO,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC7D,cAAQ,UAAU;AAClB,aAAO,CAAC,YAAY,IAAI,CAAC;AAAA,IAC3B;AAAA,SACK,iBAAiB;AACpB,YAAM,OAAO,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC7D,cAAQ,cAAc;AACtB,aAAO,CAAC,YAAY,IAAI,CAAC;AAAA,IAC3B;AAAA,SACK,iBAAiB;AACpB,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,YAAM,yBAAyB,cAAc,0BAA0BA,OAAM,WAAW,OAAO;AAC/F,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,cAAc,IAAI,YAAY,MAAM,OAAOjB,OAAM,cAAc,wBAAwB,aAAa,cAAc;AACxH,cAAQ,eAAe,WAAW;AAClC,aAAO,CAAC,YAAY,UAAU,OAAO,CAAC,CAAC;AAAA,IACzC;AAAA,SACK,sBAAsB;AACzB,YAAM,KAAK,cAAc,iBAAiBiB,OAAM,WAAW,OAAO;AAClE,YAAMP,SAAQ,cAAc,SAASO,OAAM,WAAW,OAAO;AAC7D,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,mBAAmB,QAAQ,eAAe,GAAG,EAAE;AACrD,uBAAiB,MAAMP,QAAO,WAAW;AACzC,aAAO,CAAC,iBAAiB,QAAQ;AAAA,IACnC;AAAA,SACK,qBAAqB;AACxB,YAAM,SAAS,cAAc,iBAAiBO,OAAM,WAAW,OAAO;AACtE,YAAM,YAAY,cAAc,SAASA,OAAM,WAAW,OAAO;AACjE,YAAM,kBAAkB,QAAQ,eAAe,OAAO,EAAE;AACxD,aAAO,CAAC,gBAAgB,KAAK,SAAS,CAAC;AAAA,IACzC;AAAA,SACK,uBAAuB;AAC1B,YAAM,WAAW,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACxE,YAAM,gBAAgB,cAAc,WAAWA,OAAM,WAAW,OAAO;AACvE,YAAM,cAAc,cAAc,SAASA,OAAM,WAAW,OAAO;AACnE,YAAM,oBAAoB,QAAQ,eAAe,SAAS,EAAE;AAC5D,aAAO,CAAC,kBAAkB,OAAO,eAAe,WAAW,CAAC;AAAA,IAC9D;AAAA,SACK,wBAAwB;AAC3B,YAAM,YAAY,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACzE,YAAM,iBAAiB,cAAc,WAAWA,OAAM,WAAW,OAAO;AACxE,YAAM,gBAAgB,cAAc,UAAUA,OAAM,WAAW,OAAO;AACtE,YAAM,qBAAqB,QAAQ,eAAe,UAAU,EAAE;AAC9D,yBAAmB,QAAQ,gBAAgB,aAAa;AACxD,aAAO,CAAC,mBAAmB,QAAQ;AAAA,IACrC;AAAA,SACK,uBAAuB;AAC1B,YAAM,WAAW,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACxE,YAAM,oBAAoB,QAAQ,eAAe,SAAS,EAAE;AAC5D,YAAM,cAAc,cAAc,SAASA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,kBAAkB,OAAO,WAAW,CAAC;AAAA,IAC/C;AAAA,SACK,sBAAsB;AACzB,YAAM,UAAU,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACvE,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,mBAAmB,QAAQ,eAAe,QAAQ,EAAE;AAC1D,uBAAiB,MAAM,SAAS,WAAW;AAC3C,aAAO,CAAC,iBAAiB,QAAQ;AAAA,IACnC;AAAA,SACK,qBAAqB;AACxB,YAAM,SAAS,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACtE,YAAM,kBAAkB,QAAQ,eAAe,OAAO,EAAE;AACxD,aAAO,CAAC,OAAO,gBAAgB,KAAK,GAAG,OAAO,CAAC;AAAA,IACjD;AAAA,SACK,sBAAsB;AACzB,YAAM,UAAU,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACvE,YAAM,mBAAmB,QAAQ,eAAe,QAAQ,EAAE;AAC1D,uBAAiB,cAAc;AAC/B,aAAO,CAAC,iBAAiB,QAAQ;AAAA,IACnC;AAAA,SACK,qBAAqB;AACxB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAMP,SAAQ,cAAc,SAASO,OAAM,WAAW,OAAO;AAC7D,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,iBAAW,QAAQP,QAAO,WAAW;AACrC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK,qBAAqB;AACxB,YAAM,WAAW,cAAc,gBAAgBO,OAAM,WAAW,OAAO;AACvE,YAAM,YAAY,cAAc,SAASA,OAAM,WAAW,OAAO;AACjE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,WAAW,QAAQ,WAAW,cAAc,YAAY,CAAC;AAAA,IACnE;AAAA,SACK;AAAA,SACA,qBAAqB;AACxB,YAAM,iBAAiB,cAAc,WAAWA,OAAM,WAAW,OAAO;AACxE,YAAM,gBAAgB,cAAc,UAAUA,OAAM,WAAW,OAAO;AACtE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,aAAa,QAAQ,eAAe,gBAAgB,cAAc,WAAW;AACnF,cAAQ,cAAc,UAAU;AAChC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK;AAAA,SACA,mBAAmB;AACtB,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,UAAI;AACJ,UAAIA,MAAK,OAAO,qBAAqB;AACnC,2BAAmB;AAAA,MACrB,OAAO;AACL,2BAAmB;AAAA,MACrB;AACA,YAAM,cAAc,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC5E,YAAM,iBAAiBA,MAAK,OAAO,sBAAsB,KAAK;AAC9D,YAAM,aAAa,QAAQ,cAAc,cAAc,aAAa,cAAc;AAClF,cAAQ,cAAc,UAAU;AAChC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK,oBAAoB;AACvB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,gBAAgB,cAAc,WAAWA,OAAM,WAAW,OAAO;AACvE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,WAAW,OAAO,eAAe,cAAc,YAAY,CAAC;AAAA,IACtE;AAAA,SACK,mBAAmB;AACtB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,WAAW,MAAM,cAAc,cAAc,WAAW,CAAC;AAAA,IACnE;AAAA,SACK,wBAAwB;AAC3B,YAAM,UAAU,cAAc,UAAUA,OAAM,WAAW,OAAO;AAChE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,aAAa,WAAW,SAAS,cAAc,YAAY;AACjE,cAAQ,cAAc,UAAU;AAChC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK;AAAA,SACA,sBAAsB;AACzB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,YAAM,cAAc,cAAc,SAASA,OAAM,WAAW,OAAO;AACnE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,aAAO,CAAC,WAAW,OAAO,aAAa,YAAY,CAAC;AAAA,IACtD;AAAA,SACK,sBAAsB;AACzB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,iBAAW,SAAS,WAAW;AAC/B,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK,qBAAqB;AACxB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,WAAW,QAAQ,cAAc,YAAY,CAAC;AAAA,IACxD;AAAA,SACK,mBAAmB;AACtB,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,aAAa,OAAO,aAAa,SAAS,YAAY;AAC5D,cAAQ,cAAc,UAAU;AAChC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK,oBAAoB;AACvB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,OAAO,WAAW,KAAK,GAAG,OAAO,CAAC;AAAA,IAC5C;AAAA,SACK,oBAAoB;AACvB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,YAAM,gBAAgB,QAAQ,cAAc,SAAS,EAAE;AACvD,YAAM,iBAAiB,cAAc,OAAOjB,KAAI;AAChD,cAAQ,cAAc,cAAc;AACpC,aAAO,CAAC,eAAe,QAAQ;AAAA,IACjC;AAAA;AAEE,YAAM,UAAU,aAAaiB,MAAK,uBAAuB;AAAA;AAE/D;AAGA,SAAS,4BAA4BA,OAAM,WAAW,SAAS;AAC7D,QAAM,CAAC,SAAS,cAAc,IAAI,cAAc,YAAYA,OAAM,WAAW,OAAO;AACpF,QAAM,YAAY,YAAY;AAC9B,QAAM,YAAY,CAAC;AACnB,QAAM,UAAU,mBAAmB;AACnC,QAAM,cAAc,YAAY;AAChC,QAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,MAAI,WAAW;AACb,QAAI,WAAW,YAAY,GAAG;AAC5B,YAAM,IAAI,MAAM,uGAAuG;AAAA,IACzH;AACA,QAAI,CAAC,WAAW,aAAa,YAAY,GAAG;AAC1C,YAAM,IAAI,MAAM,kFAAkF;AAAA,IACpG;AAAA,EACF;AACA,MAAI,aAAa;AACf,UAAM,IAAI,MAAM,sEAAsE;AAAA,EACxF;AACA,QAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,QAAM,OAAO,WAAWA,OAAM,WAAW,OAAO;AAChD,QAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,QAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,MAAI,CAAC,SAAS,QAAQ,IAAI,cAAc,QAAQA,OAAM,WAAW,OAAO;AACxE,MAAI,WAAW;AACb,eAAW;AACX,cAAU;AAAA,EACZ;AACA,QAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,SAAO;AAAA,IACL;AAAA,IACA,KAAK;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN,UAAU;AACb,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,QAAQ,MAAM,YAAY,QAAQ,CAAC;AAAA,IACzJ;AAAA,SACK,UAAU;AACb,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,WAAWA,OAAM,WAAW,OAAO;AAChD,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,MAAM,YAAY,CAAC,UAAU,IAAI,UAAU,EAAE,CAAC,CAAC;AAAA,IAC7L;AAAA,SACK,gBAAgB;AACnB,YAAM,EAAE,QAAQ,KAAK,MAAM,YAAY,WAAW,SAAS,UAAU,gBAAgB,eAAe,IAAI,4BAA4BA,OAAM,WAAW,OAAO;AAC5J,aAAO,CAAC,IAAI,MAAM,OAAO;AAAA,QACvB,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO;AAAA,QAC9C,QAAQ,cAAc,UAAUA,OAAM,WAAW,OAAO;AAAA,QACxD,SAAS,CAAC,OAAO,IAAI,OAAO,EAAE;AAAA,QAC9B,KAAK;AAAA,QACL;AAAA,QACA,WAAW,CAAC,UAAU,IAAI,UAAU,EAAE;AAAA,QACtC,MAAM;AAAA,QACN,YAAY;AAAA,QACZ,wBAAwB;AAAA,QACxB;AAAA,MACF,CAAC,CAAC;AAAA,IACJ;AAAA,SACK,8BAA8B;AACjC,YAAM,EAAE,QAAQ,KAAK,MAAM,YAAY,WAAW,SAAS,UAAU,gBAAgB,eAAe,IAAI,4BAA4BA,OAAM,WAAW,OAAO;AAC5J,aAAO,CAAC,IAAI,MAAM,gBAAgB;AAAA,QAChC,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO;AAAA,QAC9C,QAAQ,cAAc,UAAUA,OAAM,WAAW,OAAO;AAAA,QACxD,SAAS,CAAC,OAAO,IAAI,OAAO,EAAE;AAAA,QAC9B,KAAK;AAAA,QACL;AAAA,QACA,WAAW,CAAC,UAAU,IAAI,UAAU,EAAE;AAAA,QACtC,MAAM;AAAA,QACN,YAAY;AAAA,QACZ,wBAAwB;AAAA,QACxB;AAAA,MACF,CAAC,CAAC;AAAA,IACJ;AAAA,SACK;AAAA,SACA,mBAAmB;AACtB,YAAM,QAAQ,cAAc,eAAeA,OAAM,WAAW,OAAO;AACnE,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,WAAWA,OAAM,WAAW,OAAO;AAChD,aAAO,CAAC,IAAI,gBAAgB,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,OAAO,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IACnK;AAAA,SACK;AAAA,SACA,mBAAmB;AACtB,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,WAAWA,OAAM,WAAW,OAAO;AAChD,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,aAAO,CAAC,IAAI,gBAAgB,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,MAAM,YAAY,CAAC,UAAU,IAAI,UAAU,EAAE,CAAC,CAAC;AAAA,IAC1M;AAAA,SACK,UAAU;AACb,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,CAAC,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE,GAAG,MAAM,YAAY,CAAC,UAAU,IAAI,UAAU,IAAI,UAAU,EAAE,CAAC,CAAC;AAAA,IACtN;AAAA,SACK,WAAW;AACd,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IACjI;AAAA,SACK,WAAW;AACd,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IACjI;AAAA,SACK,qBAAqB;AACxB,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,sBAAsB,cAAc,uBAAuBA,OAAM,WAAW,OAAO;AACzF,YAAM,EAAE,QAAQ,QAAQ,IAAI,IAAI,kBAAkB,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,MAAM,mBAAmB;AACjL,aAAO,CAAC,QAAQ,OAAO;AAAA,IACzB;AAAA,SACK,aAAa;AAChB,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IAC7J;AAAA,SACK,aAAa;AAChB,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IAC7J;AAAA,SACK,cAAc;AACjB,YAAMJ,WAAU,cAAc,WAAWI,OAAM,WAAW,OAAO;AACjE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,eAAeJ,SAAQ;AAC7B,YAAM,cAAcA,SAAQ;AAC5B,YAAM,iBAAiB,UAAU;AACjC,YAAM,gBAAgB,UAAU;AAChC,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKI,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,CAAC,cAAc,WAAW,GAAG,MAAM,CAAC,gBAAgB,aAAa,GAAG,MAAM,CAAC;AAAA,IACrM;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN,QAAQ;AACX,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,IAAI,KAAK,OAAO,OAAO,KAAK,CAAC;AAAA,IACvC;AAAA,SACK,YAAY;AACf,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,MAAM,cAAc,OAAOA,OAAM,WAAW,OAAO;AACzD,aAAO,CAAC,IAAI,SAAS,OAAO,MAAM,GAAG,CAAC;AAAA,IACxC;AAAA,SACK,eAAe;AAClB,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,YAAY,QAAQ,YAAY,IAAI,CAAC;AAAA,IACnD;AAAA,SACK,UAAU;AACb,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,IAAI,OAAO,SAAS,OAAO,SAAS,UAAU,KAAK,CAAC;AAAA,IAC9D;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtH;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpE;AAAA,SACK,wBAAwB;AAC3B,aAAO,CAAC,IAAI,qBAAqB,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACvL;AAAA,SACK,iBAAiB;AACpB,aAAO,CAAC,IAAI;AAAA,QACV,cAAc,SAASA,OAAM,WAAW,OAAO;AAAA,QAC/C,cAAc,UAAUA,OAAM,WAAW,OAAO;AAAA,QAChD,cAAc,UAAUA,OAAM,WAAW,OAAO;AAAA,QAChD,cAAc,SAASA,OAAM,WAAW,OAAO;AAAA,MACjD,CAAC;AAAA,IACH;AAAA,SACK,SAAS;AACZ,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,QAAQ,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC5D,aAAO,CAAC,IAAI,MAAM,OAAO,MAAM,OAAO,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACzF;AAAA,SACK,mBAAmB;AACtB,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,QAAQ,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC5D,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,gBAAgB,OAAO,OAAO,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IAC3G;AAAA,SACK,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACvH;AAAA,SACK,aAAa;AAChB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACrE;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,SAAS,UAAUA,OAAM,WAAW,SAAS;AAC3C,QAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,QAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,QAAM,gBAAgB,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AAC7E,QAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,QAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,QAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,IAAI,aAAa,OAAOA,OAAM,WAAW,SAAS,iBAAiB,MAAM,8BAA8B;AACrG,UAAQA,MAAK;AAAA,SACN,uBAAuB;AAC1B,YAAM,EAAE,OAAO,QAAQ,eAAe,cAAc,gBAAgB,aAAa,IAAI,UAAUA,OAAM,WAAW,OAAO;AACvH,YAAM,SAAS,MAAM,IAAI,MAAM,gCAAgC,OAAO,QAAQ,eAAe,cAAc,gBAAgB,YAAY;AACvI,aAAO,CAAC,OAAO,iBAAiB,OAAO,cAAc;AAAA,IACvD;AAAA,SACK,uBAAuB;AAC1B,YAAM,EAAE,OAAO,QAAQ,eAAe,cAAc,eAAe,IAAI,UAAUA,OAAM,WAAW,OAAO;AACzG,YAAM,qBAAqB,cAAc,sBAAsBA,OAAM,WAAW,OAAO;AACvF,YAAM,SAAS,MAAM,IAAI,MAAM,6BAA6B,OAAO,QAAQ,eAAe,cAAc,gBAAgB,kBAAkB;AAC1I,aAAO,CAAC,OAAO,iBAAiB,OAAO,YAAY;AAAA,IACrD;AAAA,SACK;AAAA,SACA,uBAAuB;AAC1B,YAAM,EAAE,OAAO,QAAQ,eAAe,cAAc,eAAe,IAAI,UAAUA,OAAM,WAAW,OAAO;AACzG,aAAO,CAAC,MAAM,IAAI,MAAM,uBAAuB,OAAO,QAAQ,eAAe,cAAc,cAAc,CAAC;AAAA,IAC5G;AAAA,SACK,SAAS;AACZ,YAAM,YAAY,IAAI,KAAK,cAAc,aAAaA,OAAM,WAAW,OAAO,GAAG,MAAM;AACvF,YAAM,SAAS,CAAC,MAAM,IAAI,WAAW,SAAS,CAAC;AAC/C,gBAAU,QAAQ;AAClB,aAAO;AAAA,IACT;AAAA,SACK,YAAY;AACf,aAAO,IAAI,eAAe,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC;AAAA,IACtH;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN,cAAc;AACjB,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,aAAO,CAAC,IAAI,WAAW,gBAAgB,MAAM,CAAC;AAAA,IAChD;AAAA,SACK,UAAU;AACb,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,SAAS,IAAI,KAAK,GAAG,GAAG,MAAM;AACpC,aAAO,CAAC,OAAO,QAAQ,OAAO,OAAO;AAAA,IACvC;AAAA,SACK,cAAc;AACjB,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,aAAO,CAAC,IAAI,WAAW,gBAAgB,MAAM,CAAC;AAAA,IAChD;AAAA,SACK,UAAU;AACb,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,SAAS,IAAI,OAAO,CAAC;AAC3B,aAAO,CAAC,OAAO,QAAQ,OAAO,OAAO;AAAA,IACvC;AAAA,SACK,YAAY;AACf,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,SAAS,IAAI,OAAO,GAAG,IAAI;AACjC,aAAO,CAAC,OAAO,QAAQ,OAAO,OAAO;AAAA,IACvC;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN,SAAS;AACZ,aAAO,UAAUA,MAAK;AAAA,IACxB;AAAA,SACK;AACH,YAAM,MAAM,cAAc,WAAWA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,UAAUA,MAAK,MAAM,WAAW,OAAO,KAAK,GAAG;AAAA,SACpD;AACH,aAAO,CAAC,UAAUA,MAAK,MAAM,WAAW,OAAO,CAAC;AAAA,SAC7C;AAAA,SACA;AAAA,SACA,2BAA2B;AAC9B,YAAM,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO;AACzD,aAAO,CAAC,YAAY,KAAK,CAAC;AAAA,IAC5B;AAAA,SACK;AACH,aAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,IAAI,CAAC,OAAO,YAAY,EAAE,CAAC;AAAA,SAC5E;AACH,YAAM,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC5D,aAAO,CAAC,YAAY,QAAQ,CAAC;AAAA,SAC1B;AACH,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,OAAO,OAAO,CAAC;AAAA,SAC9E;AACH,aAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,IAAI,CAAC,OAAO,IAAI,SAAS,GAAG,KAAK,CAAC;AAAA,SACnF;AACH,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,MAAM,OAAO,CAAC;AAAA,SAC3E;AACH,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,MAAM,OAAO,CAAC;AAAA,SAC3E;AACH,aAAO,CAAC,IAAI,OAAO,CAAC,CAAC;AAAA,SAClB;AACH,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,cAAQ,KAAK,gGAAgG;AAC7G,cAAQ,IAAI,OAAO;AACnB,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,gBAAQ,IAAI,MAAM,UAAU,MAAM,KAAK,KAAK,IAAI,SAAS,CAAC,EAAE,MAAM,GAAG,SAAS,CAAC;AAAA,MACjF;AACA,aAAO,CAAC,MAAM;AAAA;AAEd,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,YAAY,MAAM;AAAA,EACpB,YAAY,UAAU,YAAY;AAChC,SAAK,WAAW;AAChB,SAAK,aAAa;AAClB,SAAK,SAAS,OAAO,CAAC;AACtB,SAAK,YAA4B,oBAAI,IAAI;AACzC,SAAK,KAAK,MAAM;AAAA,EAClB;AAAA,EACA,IAAI,KAAK;AACP,WAAO,KAAK,OAAO;AAAA,EACrB;AAAA,EACA,gBAAgB;AACd,SAAK,UAAU,QAAQ,CAAC,UAAU,MAAM,QAAQ,CAAC;AACjD,SAAK,UAAU,MAAM;AACrB,SAAK,OAAO,QAAQ;AAAA,EACtB;AAAA,EACA,OAAO;AACL,WAAO,KAAK,UAAU;AAAA,EACxB;AAAA,EACA,aAAa;AACX,WAAO,OAAO,KAAK,KAAK,GAAG,OAAO;AAAA,EACpC;AAAA,EACA,MAAM,OAAO,MAAM,QAAQ;AACzB,SAAK,uBAAuB,MAAM,MAAM;AACxC,UAAM,QAAQ,MAAM,KAAK,KAAK;AAC9B,SAAK,UAAU,QAAQ,CAAC,UAAU,MAAM,QAAQ,CAAC;AACjD,SAAK,UAAU,MAAM;AACrB,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,QAAQ,MAAM;AAC9B,YAAM,aAAa,MAAM;AACzB,YAAM,eAAe,QAAQ;AAC7B,mBAAa,OAAO,eAAe,cAAc,MAAM,kDAAkD,uCAAuC,wBAAwB;AACxK,eAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,cAAM,MAAM,MAAM;AAClB,cAAM,QAAQ,QAAQ;AACtB,aAAK,KAAK;AACV,aAAK,UAAU,IAAI,KAAK,KAAK;AAAA,MAC/B;AACA,aAAO,KAAK;AAAA,IACd,CAAC;AAAA,EACH;AAAA,EACA,MAAM,KAAK,MAAM,cAAc;AAC7B,SAAK,uBAAuB,MAAM,YAAY;AAC9C,UAAM,QAAQ,MAAM,KAAK,KAAK;AAC9B,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,CAAC;AAChB,eAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,cAAM,MAAM,MAAM;AAClB,cAAM,QAAQ,KAAK,gBAAgB,KAAK,YAAY;AACpD,eAAO,KAAK,KAAK;AAAA,MACnB;AACA,aAAO,MAAM,MAAM;AAAA,IACrB,CAAC;AAAA,EACH;AAAA,EACA,gBAAgB,KAAK,cAAc;AACjC,UAAM,SAAS,KAAK,UAAU,IAAI,GAAG;AACrC,WAAO,UAAU,OAAO,SAAS;AAAA,EACnC;AAAA,EACA,uBAAuB,KAAK,OAAO;AACjC,QAAI,IAAI,UAAU,KAAK,UAAU;AAC/B,YAAM,IAAI,MAAM,oBAAoB,KAAK,qBAAqB,IAAI,OAAO;AAAA,IAC3E;AACA,QAAI,MAAM,UAAU,KAAK,YAAY;AACnC,YAAM,IAAI,MAAM,sBAAsB,KAAK,uBAAuB,MAAM,OAAO;AAAA,IACjF;AAAA,EACF;AACF;AAGA,IAAI,aAAa,OAAOA,OAAM,WAAW,SAAS,oBAAoB;AACpE,UAAQA,MAAK;AAAA,SACN;AAAA,SACA,eAAe;AAClB,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,YAAY,IAAI,UAAU,UAAU,UAAU;AACpD,sBAAgB,aAAaA,MAAK,MAAM,SAAS;AACjD,aAAO,CAAC,UAAU,MAAM;AAAA,IAC1B;AAAA,SACK;AAAA,SACA,uBAAuB;AAC1B,YAAM,SAAS,cAAc,eAAeA,OAAM,WAAW,SAAS,eAAe;AACrF,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,YAAY,gBAAgB,iBAAiB,OAAO,EAAE;AAC5D,aAAO,CAAC,MAAM,UAAU,OAAO,MAAM,MAAM,CAAC;AAAA,IAC9C;AAAA,SACK;AAAA,SACA,qBAAqB;AACxB,YAAM,SAAS,cAAc,eAAeA,OAAM,WAAW,SAAS,eAAe;AACrF,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,YAAY,gBAAgB,iBAAiB,OAAO,EAAE;AAC5D,aAAO,CAAC,MAAM,UAAU,KAAK,MAAM,YAAY,CAAC;AAAA,IAClD;AAAA,SACK;AAAA,SACA,qBAAqB;AACxB,YAAM,SAAS,cAAc,eAAeA,OAAM,WAAW,SAAS,eAAe;AACrF,YAAM,YAAY,gBAAgB,iBAAiB,OAAO,EAAE;AAC5D,aAAO,CAAC,UAAU,WAAW,CAAC;AAAA,IAChC;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,kBAAkB;AACrB,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,mBAAmB,cAAc,oBAAoBA,OAAM,WAAW,OAAO;AACnF,aAAO,CAAC,IAAI,MAAM,eAAe,QAAQ,CAACjB,MAAK,IAAIA,MAAK,EAAE,GAAG,cAAc,gBAAgB,CAAC;AAAA,IAC9F;AAAA,SACK,yBAAyB;AAC5B,YAAM,SAAS,cAAc,UAAUiB,OAAM,WAAW,OAAO;AAC/D,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,mBAAmB,cAAc,oBAAoBA,OAAM,WAAW,OAAO;AACnF,aAAO,CAAC,IAAI,MAAM,sBAAsB,QAAQ,CAACjB,MAAK,IAAIA,MAAK,EAAE,GAAG,cAAc,gBAAgB,CAAC;AAAA,IACrG;AAAA,SACK,iBAAiB;AACpB,YAAM,SAAS,cAAc,SAASiB,OAAM,WAAW,OAAO;AAC9D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,qBAAqB,cAAc,sBAAsBA,OAAM,WAAW,OAAO;AACvF,aAAO,CAAC,IAAI,MAAM,cAAc,QAAQ,OAAO,QAAQ,UAAU,QAAQ,kBAAkB,CAAC;AAAA,IAC9F;AAAA,SACK,8BAA8B;AACjC,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,gBAAgB,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AAC7E,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,MAAM,UAAU,QAAQ,YAAY,cAAc,YAAY,GAAG,SAAS,YAAY,GAAG,WAAW,WAAW,CAAC;AAAA,IAC9H;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC/G;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClH;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjH;AAAA,SACK,gBAAgB;AACnB,aAAO,CAAC,IAAI,aAAa,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtH;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC9G;AAAA,SACK,aAAa;AAChB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACnH;AAAA,SACK,cAAc;AACjB,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpH;AAAA,SACK,cAAc;AACjB,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtE;AAAA,SACK,aAAa;AAChB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACnH;AAAA,SACK;AAAA,SACA,YAAY;AACf,aAAO,CAAC,IAAI,MAAM,cAAc,aAAaA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACrK;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN;AAAA,SACA;AAAA,SACA;AACH,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACzN;AACH,aAAO,CAAC,IAAI,OAAO,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3H;AACH,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACjH;AACH,YAAM,CAAC,SAAS,cAAc,IAAI,cAAc,YAAYA,OAAM,WAAW,OAAO;AACpF,YAAM,YAAY,YAAY;AAC9B,YAAM,UAAU,mBAAmB;AACnC,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,UAAI,WAAW;AACb,YAAI,WAAW,YAAY,GAAG;AAC5B,gBAAM,IAAI,MAAM,oFAAoF;AAAA,QACtG;AACA,YAAI,CAAC,WAAW,YAAY,GAAG;AAC7B,gBAAM,IAAI,MAAM,+DAA+D;AAAA,QACjF;AAAA,MACF;AACA,YAAM,CAAC,SAAS,QAAQ,IAAI,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC1E,aAAO,CAAC,IAAI,MAAM,OAAO;AAAA,QACvB,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO;AAAA,QAC9C,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO;AAAA,QAC9C,YAAY,cAAc,cAAcA,OAAM,WAAW,OAAO;AAAA,QAChE,YAAY,cAAc,cAAcA,OAAM,WAAW,OAAO;AAAA,QAChE,MAAM;AAAA,QACN,YAAY;AAAA,QACZ,wBAAwB;AAAA,QACxB;AAAA,MACF,CAAC,CAAC;AAAA;AAEF,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN;AACH,aAAO,CAAC,IAAI,cAAc,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1K;AAAA,SACA,oBAAoB;AACvB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpU;AAAA,SACK,oBAAoB;AACvB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpU;AAAA,SACK,OAAO;AACV,aAAO,CAAC,IAAI,2BAA2B,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7R;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACnE;AAAA,SACK,cAAc;AACjB,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtE;AAAA,SACK,iBAAiB;AACpB,aAAO,CAAC,IAAI,cAAc,cAAc,iBAAiBA,OAAM,WAAW,OAAO,GAAG,cAAc,eAAeA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC/P;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,QAAQ;AACX,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAChF;AAAA,SACK,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IACxE;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IACxE;AAAA,SACK,QAAQ;AACX,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAChF;AAAA,SACK,WAAW;AACd,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,WAAW,cAAc,WAAWA,OAAM,WAAW,OAAO;AAClE,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,WAAW,QAAQ,CAAC;AAAA,IAC9F;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,WAAW,cAAc,WAAWA,OAAM,WAAW,OAAO;AAClE,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,WAAW,QAAQ,CAAC;AAAA,IAC7F;AAAA,SACK;AACH,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,SAAS,GAAG,SAASjB,KAAI,CAAC;AAAA,SACnC,iBAAiB;AACpB,YAAM,KAAK,cAAc,KAAKiB,OAAM,WAAW,OAAO;AACtD,YAAM,WAAW,cAAc,WAAWA,OAAM,WAAW,OAAO;AAClE,YAAME,SAAQ,cAAc,QAAQF,OAAM,WAAW,OAAO;AAC5D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,aAAO,CAAC,IAAI,cAAc,IAAI,UAAUE,QAAO,YAAY,CAAC;AAAA,IAC9D;AAAA;AAEE,YAAM,UAAU,aAAaF,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN;AAAA,SACA,UAAU;AACb,YAAM,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO;AACtD,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,UAAI,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAC9D,eAAS,OAAO,MAAM,GAAG,EAAE;AAC3B,aAAO,CAAC,IAAI,OAAO,QAAQ,IAAI,CAAC;AAAA,IAClC;AAAA,SACK,UAAU;AACb,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,aAAO,CAAC,IAAI,OAAO,QAAQ,IAAI,KAAK,SAAS,OAAO,GAAG,CAAC,CAAC;AAAA,IAC3D;AAAA,SACK,YAAY;AACf,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,aAAO,CAAC,IAAI,OAAO,QAAQ,IAAI,KAAK,SAAS,OAAO,GAAG,MAAM,SAAS,CAAC;AAAA,IACzE;AAAA,SACK,WAAW;AACd,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,OAAO,CAAC;AACd,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,YAAI,KAAK,KAAK;AACZ,eAAK,KAAK,EAAE;AAAA,QACd;AAAA,MACF;AACA,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,aAAO,CAAC,IAAI,QAAQ,QAAQ,IAAI,CAAC;AAAA,IACnC;AAAA,SACK,aAAa;AAChB,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,aAAO,CAAC,IAAI,QAAQ,QAAQ,IAAI,CAAC;AAAA,IACnC;AAAA,SACK,SAAS;AACZ,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,OAAOjB,KAAI,CAAC;AAAA,IAC9E;AAAA,SACK,gBAAgB;AACnB,YAAM,QAAQ,cAAc,SAASiB,OAAM,WAAW,OAAO;AAC7D,YAAM,MAAM,cAAc,OAAOA,OAAM,WAAW,OAAO;AACzD,YAAMJ,WAAU,cAAc,WAAWI,OAAM,WAAW,OAAO;AACjE,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,YAAM,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,aAAa,SAAS,OAAO,KAAKJ,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc,CAAC;AAAA,IACvH;AAAA,SACK,QAAQ;AACX,aAAO,KAAK,MAAM;AAChB,cAAM,OAAO,cAAc,QAAQI,OAAM,WAAW,OAAO;AAC3D,cAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,cAAM,QAAQ,QAAQ,GAAG;AACzB,cAAM,gBAAgB,IAAI,QAAQ,QAAQ,EAAE,EAAE;AAC9C,cAAM,SAAS,QAAQ,IAAI,CAAC,YAAY;AACtC,gBAAM,YAAY,aAAa,YAAY,QAAQ,OAAO,KAAK;AAC/D,cAAI,CAAC,aAAa,CAAC,aAAa,YAAY,IAAI,QAAQ,OAAO,EAAE,OAAO,aAAa,GAAG;AACtF,kBAAM,IAAI,MAAM,wCAAwC;AAAA,UAC1D;AACA,iBAAO,YAAY,UAAU,IAAI,QAAQ,SAAS,KAAK;AAAA,QACzD,CAAC;AACD,eAAO,CAAC,IAAI,MAAM,QAAQ,IAAI,CAAC;AAAA,MACjC,CAAC;AAAA,IACH;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,UAAU,cAAc,UAAUA,OAAM,WAAW,OAAO;AAChE,aAAO,IAAI,QAAQ,SAAS,IAAI;AAAA,IAClC;AAAA,SACK,QAAQ;AACX,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IACtE;AAAA,SACK;AAAA,SACA,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,kBAAkB,cAAc,mBAAmBA,OAAM,WAAW,OAAO;AACjF,YAAM,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC3D,aAAO,IAAI,MAAM,SAAS,iBAAiB,IAAI;AAAA,IACjD;AAAA,SACK,aAAa;AAChB,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,IAAI,UAAU,SAAS,QAAQ,KAAK,CAAC;AAAA,IAC/C;AAAA,SACK,YAAY;AACf,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,aAAO,CAAC,IAAI,SAAS,GAAG,OAAO,CAAC;AAAA,IAClC;AAAA,SACK,iBAAiB;AACpB,YAAM,UAAU,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACvE,YAAM,QAAQ,cAAc,eAAeA,OAAM,WAAW,OAAO;AACnE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,aAAO,CAAC,IAAI,cAAc,SAAS,cAAc,OAAO,aAAa,UAAU,aAAa,QAAQ,eAAe,IAAI,KAAK,cAAc,aAAa,KAAK,CAAC,CAAC;AAAA,IAChK;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,uBAAuB;AAC1B,YAAM,EAAE,eAAe,cAAc,mBAAmB,gBAAgB,IAAI,IAAI,OAAO,oBAAoB,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,CAAC;AAChU,aAAO;AAAA,QACL;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,MACF;AAAA,IACF;AAAA,SACK,iBAAiB;AACpB,YAAM,EAAE,eAAe,YAAY,IAAI,IAAI,OAAO,cAAc,cAAc,gBAAgBA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,CAAC;AACnO,aAAO,CAAC,eAAe,WAAW;AAAA,IACpC;AAAA,SACK,qBAAqB;AACxB,YAAM,aAAa,IAAI,OAAO,kBAAkB,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,CAAC;AAC1M,aAAO,CAAC,UAAU;AAAA,IACpB;AAAA,SACK,oBAAoB;AACvB,YAAM,aAAa,IAAI,OAAO,iBAAiB,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,CAAC;AACzM,aAAO,CAAC,UAAU;AAAA,IACpB;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC/D;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjE;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,gBAAgB;AACnB,YAAM,EAAE,QAAQ,aAAa,IAAI,IAAI,OAAO,aAAa,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,GAAG,cAAc,aAAaA,OAAM,WAAW,OAAO,GAAG,cAAc,eAAeA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,cAAc,0BAA0BA,OAAM,WAAW,OAAO,CAAC;AAC9e,aAAO,CAAC,QAAQ,YAAY;AAAA,IAC9B;AAAA,SACK,eAAe;AAClB,YAAM,EAAE,SAAS,QAAQ,MAAM,IAAI,IAAI,OAAO,YAAY,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,aAAaA,OAAM,WAAW,OAAO,GAAG,cAAc,aAAaA,OAAM,WAAW,OAAO,CAAC;AACtN,aAAO,CAAC,SAAS,QAAQ,KAAK;AAAA,IAChC;AAAA,SACK,0BAA0B;AAC7B,YAAM,SAAS,IAAI,OAAO,uBAAuB,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,CAAC;AACxJ,aAAO,CAAC,MAAM;AAAA,IAChB;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClH;AAAA,SACK,cAAc;AACjB,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IAC5E;AAAA,SACK,WAAW;AACd,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IACzE;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACrH;AAAA,SACK,aAAa;AAChB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC1K;AAAA,SACK;AAAA,SACA,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,iBAAiBA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7K;AAAA,SACK,kBAAkB;AACrB,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,eAAe,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,YAAY,QAAQ,CAAC;AAAA,IAChG;AAAA,SACK,kBAAkB;AACrB,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,IAAI,eAAe,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,YAAY,KAAK,CAAC;AAAA,IAC7F;AAAA,SACK,gBAAgB;AACnB,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,aAAO,CAAC,IAAI,aAAa,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,WAAW,UAAU,CAAC;AAAA,IAC/F;AAAA,SACK,eAAe;AAClB,aAAO,CAAC,IAAI,YAAY,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACzH;AAAA,SACK,iBAAiB;AACpB,aAAO,CAAC,IAAI,cAAc,cAAc,MAAMA,OAAM,WAAW,OAAO,GAAG,cAAc,MAAMA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACzH;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,SAAS,YAAYA,OAAM,WAAW,SAAS,iBAAiB,QAAQ,MAAM;AAC5E,QAAM,SAAS,CAACgB,QAAO,YAAY,aAAa;AAC9C,YAAQA,OAAM;AAAA,WACP;AACH,eAAO,MAAM,MAAM,UAAUA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACtD;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,WAAWA,QAAO,YAAY,QAAQ;AAAA,WAC1C;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,WAAWA,QAAO,YAAY,QAAQ;AAAA,WAC1C;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,WAAWA,QAAO,YAAY,UAAU,eAAe;AAAA,WAC3D;AACH,cAAM,WAAW,gBAAgBA,OAAM,EAAE;AACzC,YAAI,YAAY,SAAS,gBAAgB;AACvC,iBAAO,SAAS,eAAe,IAAI,cAAcA,QAAO,YAAY,QAAQ,CAAC;AAAA,QAC/E,OAAO;AACL,gBAAM,UAAU,aAAaA,OAAM,uBAAuB;AAAA,QAC5D;AAAA;AAEA,cAAM,UAAU,eAAeA,OAAM,uIAAuI;AAAA;AAAA,EAElL,GAAGhB,OAAM,WAAW,OAAO;AAC3B,MAAI,aAAa,UAAU,KAAK,GAAG;AACjC,WAAO,MAAM,KAAK,CAAC,SAAS,CAAC,EAAE,OAAO,IAAI,CAAC;AAAA,EAC7C;AACA,SAAO,CAAC,EAAE,OAAO,KAAK;AACxB;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,YAAY,CAAC,GAAG,iBAAiB,CAAC,GAAG,gBAAgB,CAAC,GAAG,cAAc,CAAC,GAAG;AACrF,SAAK,YAAY;AACjB,SAAK,iBAAiB;AACtB,SAAK,gBAAgB;AACrB,SAAK,cAAc;AACnB,SAAK,cAAc,EAAE,IAAI,GAAG,WAAW,IAAI,aAAa,EAAE;AAC1D,SAAK,WAAW,CAAC,KAAK,WAAW;AACjC,SAAK,SAAS;AACd,SAAK,0BAA0B;AAAA,EACjC;AAAA,EACA,SAAS,IAAI,WAAW;AACtB,WAAO,EAAE,IAAI,WAAW,aAAa,EAAE;AAAA,EACzC;AAAA,EACA,IAAI,eAAe,WAAW;AAC5B,QAAI,KAAK,aAAa,WAAW;AAC/B,WAAK,WAAW;AAChB,WAAK,0BAA0B;AAAA,IACjC;AAAA,EACF;AAAA,EACA,IAAI,iBAAiB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,mBAAmB;AACrB,WAAO,KAAK,mBAAmB;AAAA,EACjC;AAAA,EACA,IAAI,oBAAoB;AACtB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,4BAA4B;AAC1B,UAAM,QAAQ,CAAC;AACf,aAAS,KAAK,GAAG,KAAK,KAAK,SAAS,SAAS,GAAG,MAAM;AACpD,YAAM,YAAY,KAAK,SAAS,MAAM,GAAG,KAAK,SAAS,SAAS,EAAE;AAClE,YAAM,KAAK,KAAK,qBAAqB,SAAS,CAAC;AAAA,IACjD;AACA,UAAM,KAAK,EAAE;AACb,SAAK,qBAAqB;AAAA,EAC5B;AAAA,EACA,qBAAqB,WAAW;AAC9B,WAAO,YAAY,UAAU,IAAI,CAAC,YAAY,QAAQ,OAAO,KAAK,QAAQ,gBAAgB,IAAI,KAAK,GAAG,QAAQ,aAAa,QAAQ,aAAa,EAAE,KAAK,GAAG,IAAI;AAAA,EAChK;AAAA,EACA,WAAW,SAAS;AAClB,QAAI,KAAK,UAAU;AACjB,WAAK;AACL,WAAK,WAAW,KAAK,SAAS,MAAM;AACpC,WAAK,SAAS,KAAK,KAAK,SAAS,KAAK,QAAQ,OAAO,CAAC;AACtD,WAAK,mBAAmB,QAAQ,KAAK,qBAAqB,KAAK,QAAQ,CAAC;AAAA,IAC1E;AAAA,EACF;AAAA,EACA,YAAY;AACV,QAAI,KAAK,YAAY,KAAK,SAAS,SAAS,GAAG;AAC7C,WAAK,WAAW,KAAK,SAAS,MAAM;AACpC,WAAK,SAAS,OAAO,EAAE;AACvB,WAAK,kBAAkB,MAAM;AAAA,IAC/B,OAAO;AACL,YAAM,IAAI,MAAM,yCAAyC;AAAA,IAC3D;AAAA,EACF;AAAA,EACA,gBAAgB;AACd,QAAI,KAAK,YAAY,KAAK,SAAS,SAAS,GAAG;AAC7C,WAAK,WAAW,KAAK,SAAS,MAAM;AACpC,WAAK;AACL,YAAM,UAAU,OAAO,OAAO,CAAC,GAAG,KAAK,SAAS,KAAK,SAAS,SAAS,EAAE;AACzE,cAAQ,eAAe;AACvB,cAAQ,KAAK,KAAK;AAClB,WAAK,SAAS,OAAO,IAAI,GAAG,OAAO;AACnC,WAAK,mBAAmB,OAAO,GAAG,GAAG,KAAK,qBAAqB,KAAK,QAAQ,CAAC;AAAA,IAC/E,OAAO;AACL,YAAM,IAAI,MAAM,uDAAuD;AAAA,IACzE;AAAA,EACF;AAAA,EACA,UAAU,MAAM;AACd,WAAO,KAAK,UAAU;AAAA,EACxB;AAAA,EACA,eAAe,aAAa;AAC1B,SAAK,eAAe,YAAY,MAAM;AAAA,EACxC;AAAA,EACA,eAAe,IAAI;AACjB,WAAO,KAAK,eAAe;AAAA,EAC7B;AAAA,EACA,cAAc,YAAY;AACxB,SAAK,cAAc,WAAW,MAAM;AAAA,EACtC;AAAA,EACA,cAAc,IAAI;AAChB,WAAO,KAAK,cAAc;AAAA,EAC5B;AAAA,EACA,QAAQ,SAAS;AACf,eAAW,OAAO,KAAK,gBAAgB;AACrC,WAAK,eAAe,KAAK,cAAc,OAAO;AAAA,IAChD;AACA,eAAW,OAAO,KAAK,eAAe;AACpC,WAAK,cAAc,KAAK,cAAc,OAAO;AAAA,IAC/C;AAAA,EACF;AACF;AAGA,SAAS,qBAAqB,QAAQ,SAAS,WAAW,WAAW;AACnE,QAAM,YAA4B,oBAAI,IAAI;AAC1C,QAAM,gBAAgB,CAAC;AACvB,MAAI,cAAc;AAClB,MAAI,aAAa;AACjB,QAAM,OAAuB,oBAAI,IAAI;AACrC,QAAM,iBAAiB,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,SAAS,cAAc,IAAI,EAAE,EAAE;AAC/E,MAAI,gBAAgB,CAAC;AACrB,MAAI,aAAa,MAAM;AACrB,oBAAgB,UAAU,IAAI,CAACA,UAAS,cAAcA,MAAK,IAAI,EAAE,EAAE;AAAA,EACrE;AACA,QAAM,WAAW,CAAC,GAAG,OAAO;AAC5B,SAAO,SAAS,SAAS,GAAG;AAC1B,UAAMA,QAAO,SAAS,IAAI;AAC1B,QAAI,cAAcA,KAAI,KAAK,eAAeA,KAAI,KAAK,YAAYA,KAAI,GAAG;AACpE,UAAI,eAAe,MAAM;AACvB,sBAAcA;AACd,qBAAa,YAAY,SAAS,IAAI,CAAC,UAAU,MAAM,IAAI,EAAE,OAAO,CAAC,SAAS,UAAU,IAAI,IAAI,CAAC;AAAA,MACnG;AAAA,IACF;AACA,cAAU,IAAIA,MAAK,IAAI;AACvB,QAAI,UAAUA,MAAK,SAAS,MAAM;AAChC;AAAA,IACF;AACA,QAAI,eAAe,QAAQA,MAAK,IAAI,MAAM,IAAI;AAC5C;AAAA,IACF;AACA,QAAI,cAAc,QAAQA,MAAK,IAAI,MAAM,IAAI;AAC3C;AAAA,IACF;AACA,QAAIA,MAAK,OAAO,WAAW,GAAG;AAC5B,oBAAc,KAAKA,MAAK,IAAI;AAC5B;AAAA,IACF;AACA,IAAAA,MAAK,OAAO,QAAQ,CAAC,WAAW;AAC9B,UAAI,KAAK,IAAI,OAAO,IAAI,GAAG;AACzB;AAAA,MACF;AACA,WAAK,IAAI,OAAO,IAAI;AACpB,eAAS,KAAK,MAAM;AAAA,IACtB,CAAC;AAAA,EACH;AACA,SAAO,EAAE,QAAQ,SAAS,WAAW,eAAe,aAAa,WAAW;AAC9E;AACA,SAAS,2BAA2B,OAAO,WAAW,eAAe;AACnE,QAAM,EAAE,WAAW,OAAO,IAAI;AAC9B,QAAM,WAAW,CAAC;AAClB,QAAM,aAAa,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,SAAS,cAAc,IAAI,EAAE,EAAE,EAAE,IAAI,CAAC,SAAS,MAAM,MAAM,KAAK;AAC5G,QAAM,YAAY,MAAM;AACxB,aAAW,QAAQ,CAAC,WAAW;AAC7B,QAAI,UAAU,IAAI,OAAO,IAAI,GAAG;AAC9B,eAAS,KAAK,MAAM;AAAA,IACtB;AAAA,EACF,CAAC;AACD,QAAM,QAAQ,QAAQ,CAAC,WAAW;AAChC,QAAI,UAAU,IAAI,OAAO,IAAI,GAAG;AAC9B,eAAS,KAAK,MAAM;AAAA,IACtB;AAAA,EACF,CAAC;AACD,MAAI,aAAa,MAAM;AACrB,cAAU,QAAQ,CAACA,UAAS;AAC1B,UAAI,UAAU,IAAIA,MAAK,IAAI,GAAG;AAC5B,iBAAS,KAAKA,KAAI;AAAA,MACpB;AAAA,IACF,CAAC;AAAA,EACH;AACA,QAAM,OAAuB,oBAAI,IAAI;AACrC,QAAM,eAAe,CAAC;AACtB,SAAO,SAAS,SAAS,GAAG;AAC1B,UAAMA,QAAO,SAAS,IAAI;AAC1B,SAAK,IAAIA,MAAK,IAAI;AAClB,QAAI,CAAC,UAAUA,MAAK,OAAO;AACzB,mBAAa,KAAKA,KAAI;AAAA,IACxB;AACA,IAAAA,MAAK,SAAS,QAAQ,CAAC,UAAU;AAC/B,UAAI,CAAC,KAAK,IAAI,MAAM,IAAI,KAAK,UAAU,IAAI,MAAM,IAAI,KAAK,MAAM,OAAO,MAAM,CAAC,WAAW,KAAK,IAAI,OAAO,IAAI,CAAC,GAAG;AAC/G,iBAAS,KAAK,KAAK;AAAA,MACrB;AAAA,IACF,CAAC;AAAA,EACH;AACA,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,oBAAoB;AAAA,EACtB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,iBAAiB;AAAA,EACnB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,SAAS,cAAcA,OAAM;AAC3B,SAAO,iBAAiB,QAAQA,MAAK,EAAE,KAAK;AAC9C;AACA,SAAS,eAAeA,OAAM;AAC5B,SAAO,kBAAkB,QAAQA,MAAK,EAAE,KAAK;AAC/C;AACA,SAAS,YAAYA,OAAM;AACzB,SAAO,eAAe,QAAQA,MAAK,EAAE,KAAK;AAC5C;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO,QAAQ;AACzB,SAAK,QAAQ;AACb,SAAK,SAAS;AACd,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,aAAa,CAAC;AACnB,SAAK,YAAY;AACjB,SAAK,aAAa,CAAC;AACnB,SAAK,uBAAuB,CAAC;AAC7B,SAAK,sBAAsB,CAAC;AAC5B,SAAK,qBAAqB;AAC1B,SAAK,WAAW,MAAM;AACtB,SAAK,UAAU,MAAM;AACrB,SAAK,aAAa,MAAM;AACxB,SAAK,aAAa,MAAM;AACxB,SAAK,aAAa,MAAM;AACxB,QAAI,MAAM,aAAa,MAAM;AAC3B,aAAO,KAAK,MAAM,SAAS,EAAE,QAAQ,CAAC,SAAS;AAC7C,aAAK,qBAAqB,QAAQ,IAAI,cAAc,MAAM,UAAU,OAAO,IAAI;AAAA,MACjF,CAAC;AAAA,IACH;AAAA,EACF;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK,SAAS,KAAK,OAAO,YAAY,KAAK;AAAA,EACpD;AAAA,EACA,IAAI,sBAAsB;AACxB,WAAO,KAAK,SAAS,KAAK,OAAO,sBAAsB,KAAK;AAAA,EAC9D;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK,SAAS,KAAK,OAAO,YAAY,KAAK;AAAA,EACpD;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,UAAM,YAAY,OAAO,KAAK,SAAS,EAAE,IAAI,CAAC,QAAQ,UAAU,KAAK,IAAI,CAAC,YAAY,QAAQ,EAAE,CAAC;AACjG,SAAK,aAAa,CAAC,EAAE,OAAO,GAAG,SAAS;AACxC,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,IAAI,gBAAgB,iBAAiB;AACnC,SAAK,mBAAmB;AAAA,EAC1B;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK,QAAQ,IAAI,CAACA,UAAS;AAChC,aAAO;AAAA,QACL,MAAMA,MAAK;AAAA,QACX,OAAOA,MAAK,WAAW,WAAWA,MAAK,WAAW,SAAS,QAAQ;AAAA,QACnE,OAAOA,MAAK,WAAW,WAAWA,MAAK,WAAW,SAAS,QAAQ;AAAA,MACrE;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,SAAS,IAAI,CAACA,UAAS;AACjC,aAAO;AAAA,QACL,MAAMA,MAAK;AAAA,QACX,OAAOA,MAAK,WAAW,WAAWA,MAAK,WAAW,SAAS,QAAQ;AAAA,QACnE,OAAOA,MAAK,WAAW,WAAWA,MAAK,WAAW,SAAS,QAAQ;AAAA,MACrE;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,IAAI,aAAa;AACf,WAAO,KAAK,QAAQ,IAAI,CAACA,UAASA,MAAK,gBAAgBA,MAAK,IAAI;AAAA,EAClE;AAAA,EACA,IAAI,cAAc;AAChB,WAAO,KAAK,SAAS,IAAI,CAACA,UAAS;AACjC,YAAM,OAAOA,MAAK,gBAAgBA,MAAK;AACvC,aAAOA,MAAK,gBAAgB,GAAG,QAAQA,MAAK,kBAAkB;AAAA,IAChE,CAAC;AAAA,EACH;AAAA,EACA,IAAI,YAAY;AACd,WAAO,OAAO,KAAK,KAAK,UAAU,EAAE,OAAO,CAAC,KAAK,QAAQ;AACvD,UAAI,OAAO,KAAK,WAAW,KAAK;AAChC,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,kBAAkB,QAAQ,SAAS;AACjC,UAAM,eAAe,OAAO,IAAI,CAACA,UAASA,MAAK,IAAI,EAAE,KAAK;AAC1D,UAAM,gBAAgB,QAAQ,IAAI,CAACA,UAASA,MAAK,IAAI,EAAE,KAAK;AAC5D,WAAO,aAAa,KAAK,KAAK,SAAS,IAAI,OAAO,cAAc,KAAK,KAAK,SAAS;AAAA,EACrF;AAAA,EACA,QAAQ,QAAQ,SAAS;AACvB,UAAM,gBAAgB,qBAAqB,QAAQ,SAAS,KAAK,WAAW,KAAK,UAAU;AAC3F,UAAM,EAAE,eAAe,aAAa,WAAW,IAAI;AACnD,QAAI,eAAe,MAAM;AACvB,YAAM,IAAI,MAAM,qCAAqC,YAAY,oCAAoC,YAAY,8GAA8G,aAAa;AAAA,IAC9O;AACA,QAAI,cAAc,SAAS,GAAG;AAC5B,YAAM,WAAW,QAAQ,IAAI,CAAC,OAAO,GAAG,IAAI;AAC5C,YAAM,UAAU,OAAO,KAAK,MAAM;AAClC,YAAM,IAAI,MAAM,+BAA+B,uCAAuC,4CAA4C,gBAAgB;AAAA,IACpJ;AACA,WAAO,2BAA2B,KAAK,OAAO,KAAK,WAAW,aAAa;AAAA,EAC7E;AAAA,EACA,QAAQ,QAAQ,SAAS;AACvB,aAAS,KAAK,UAAU,MAAM;AAC9B,UAAM,QAAQ,OAAO,KAAK,MAAM,EAAE,KAAK;AACvC,SAAK,YAAY,MAAM;AACvB,SAAK,uBAAuB,MAAM;AAClC,cAAU,KAAK,WAAW,OAAO;AACjC,SAAK,aAAa,OAAO;AACzB,UAAM,aAAa,MAAM,IAAI,CAAC,SAAS,KAAK,MAAM,MAAM,cAAc,IAAI,EAAE,GAAG;AAC/E,UAAM,kBAAkB,QAAQ,IAAI,CAAC,SAAS,cAAc,IAAI,EAAE,EAAE;AACpE,QAAIiB,eAAc,gBAAgB,IAAI,CAAC,SAAS,KAAK,MAAM,MAAM,KAAK;AACtE,SAAK,yBAAyB;AAC9B,QAAIA,aAAY,WAAW,GAAG;AAC5B,MAAAA,eAAc,KAAK;AAAA,IACrB;AACA,UAAM,iBAAiB,KAAK,kBAAkB,YAAYA,YAAW;AACrE,QAAI,eAAe,KAAK,YAAY,IAAI,cAAc;AACtD,QAAI,gBAAgB,MAAM;AACxB,qBAAe,KAAK,QAAQ,QAAQA,YAAW;AAC/C,WAAK,YAAY,IAAI,gBAAgB,YAAY;AAAA,IACnD;AACA,UAAM,iBAAiB,CAAC;AACxB,UAAM,gBAAgB,CAAC;AACvB,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,IAAI,iBAAiB,KAAK,WAAW,gBAAgB,eAAe,KAAK,mBAAmB;AAC5G,YAAM,aAAa,OAAO,OAAO,CAAC,GAAG,KAAK,SAAS;AACnD,aAAO,KAAK,MAAM,EAAE,QAAQ,CAAC,SAAS;AACpC,cAAM,CAAC,UAAUxB,MAAK,IAAI,cAAc,IAAI;AAC5C,cAAM,UAAU,CAAC;AACjB,gBAAQA,UAAS,OAAO;AACxB,mBAAW,YAAY;AAAA,MACzB,CAAC;AACD,YAAM,gBAAgB,KAAK,mBAAmB,UAAU;AACxD,YAAM,kCAAkC,CAAC;AACzC,eAAS,KAAK,GAAG,KAAK,aAAa,QAAQ,MAAM;AAC/C,cAAMO,QAAO,aAAa;AAC1B,YAAI,CAAC,WAAWA,MAAK,OAAO;AAC1B,gBAAM,UAAU,YAAYA,OAAM,YAAY,SAAS,KAAK,gBAAgB;AAC5E,cAAI,aAAa,UAAU,OAAO,GAAG;AACnC,kBAAM,IAAI,MAAM,4BAA4BA,MAAK,kEAAkE;AAAA,UACrH;AACA,qBAAWA,MAAK,QAAQ;AACxB,eAAK,uBAAuBA,MAAK,MAAMA,OAAM,YAAY,SAAS,eAAe,iBAAiB,+BAA+B;AAAA,QACnI;AAAA,MACF;AACA,UAAI,KAAK,UAAU,MAAM;AACvB,gBAAQ,QAAQ,aAAa;AAAA,MAC/B;AACA,aAAO,QAAQ,IAAI,CAAC,SAAS,UAAU,MAAM,YAAY,OAAO,CAAC;AAAA,IACnE,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,WAAW;AAC5B,UAAM,MAAM,CAAC,EAAE,OAAO,MAAM,CAAC,GAAG,OAAO,KAAK,SAAS,EAAE,IAAI,CAAC,QAAQ,UAAU,IAAI,EAAE,IAAI,CAAC,YAAY,QAAQ,IAAI,CAAC,YAAY,QAAQ,EAAE,CAAC,CAAC;AAC1I,WAAO,IAAI,IAAI,GAAG;AAAA,EACpB;AAAA,EACA,uBAAuB,UAAUA,OAAM,WAAW,SAAS,eAAe,aAAa,iCAAiC;AACtH,QAAIA,MAAK,aAAa,aAAa,YAAY,QAAQ,QAAQ,MAAM,IAAI;AACvE;AAAA,IACF;AACA,cAAU,UAAU,QAAQ,CAAC,YAAY;AACvC,UAAI,WAAW,MAAM;AACnB,wCAAgC,QAAQ,OAAO,gCAAgC,QAAQ,OAAO,KAAKA,MAAK,SAAS;AAAA,MACnH;AAAA,IACF,CAAC;AACD,IAAAA,MAAK,OAAO,QAAQ,CAAC,WAAW;AAC9B,UAAI,OAAO,aAAa,WAAW;AACjC,cAAM,UAAU,6BAA6B,OAAO,MAAM,WAAW,OAAO;AAC5E,YAAI,WAAW,MAAM;AACnB,kBAAQ,QAAQ,CAAC,YAAY;AAC3B,gBAAI,WAAW,CAAC,QAAQ,QAAQ,CAAC,cAAc,IAAI,QAAQ,EAAE,GAAG;AAC9D,oBAAMV,UAAS,gCAAgC,QAAQ;AACvD,kBAAIA,YAAW,GAAG;AAChB,oBAAI,CAAC,KAAK,oBAAoB;AAC5B,0BAAQ,QAAQ;AAAA,gBAClB,OAAO;AACL,wBAAM,CAAC,WAAWG,MAAK,IAAI,oBAAoBO,MAAK,MAAM,OAAO;AACjE,sBAAI,KAAK,oBAAoB,YAAY;AACvC,yBAAK,oBAAoB,WAAWP,UAAS;AAAA,kBAC/C,OAAO;AACL,yBAAK,oBAAoB,aAAa,CAAC;AACvC,yBAAK,oBAAoB,WAAWA,UAAS;AAAA,kBAC/C;AAAA,gBACF;AACA,uBAAO,gCAAgC,QAAQ;AAAA,cACjD,WAAWH,WAAU,MAAM;AACzB,gDAAgC,QAAQ;AAAA,cAC1C;AAAA,YACF;AAAA,UACF,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,MAAM,aAAa,QAAQ,SAAS;AAClC,WAAO,KAAK,cAAc,QAAQ,OAAO;AAAA,EAC3C;AAAA,EACA,6BAA6B;AAC3B,QAAI,CAAC,KAAK,qBAAqB;AAC7B;AAAA,IACF;AACA,WAAO,KAAK,KAAK,mBAAmB,EAAE,QAAQ,CAAC,QAAQ,KAAK,oBAAoB,KAAK,QAAQ,CAAC,YAAY,QAAQ,QAAQ,CAAC,CAAC;AAC5H,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,oBAAoB;AAClB,QAAI,CAAC,KAAK,YAAY;AACpB;AAAA,IACF;AACA,WAAO,KAAK,KAAK,UAAU,EAAE,QAAQ,CAAC,QAAQ;AAC5C,YAAM,cAAc,KAAK,WAAW;AACpC,kBAAY,QAAQ,CAAC,YAAY;AAC/B,YAAI,WAAW,CAAC,QAAQ,QAAQ,CAAC,QAAQ,cAAc,CAAC,KAAK,QAAQ,IAAI,QAAQ,EAAE,GAAG;AACpF,kBAAQ,QAAQ;AAAA,QAClB;AAAA,MACF,CAAC;AAAA,IACH,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB;AACvB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,2BAA2B;AACzB,eAAW,OAAO,KAAK,qBAAqB;AAC1C,WAAK,oBAAoB,KAAK,QAAQ,CAAC,YAAY,QAAQ,QAAQ,CAAC;AACpE,aAAO,KAAK,oBAAoB;AAAA,IAClC;AAAA,EACF;AAAA,EACA,MAAM,cAAc,QAAQ,SAAS,sBAAsB,OAAO,iBAAiB,CAAC,GAAG,gBAAgB,CAAC,GAAG;AACzG,QAAI,CAAC,qBAAqB;AACxB,eAAS,KAAK,UAAU,MAAM;AAC9B,WAAK,YAAY,MAAM;AACvB,WAAK,uBAAuB,MAAM;AAClC,gBAAU,KAAK,WAAW,OAAO;AACjC,WAAK,aAAa,OAAO;AAAA,IAC3B;AACA,QAAI;AACF,WAAK,qBAAqB,IAAI,EAAE,QAAQ,2BAA2B;AAAA,IACrE,SAAS,IAAP;AACA,cAAQ,KAAK,GAAG,OAAO;AAAA,IACzB;AACA,SAAK,yBAAyB;AAC9B,UAAM,UAAU,IAAI,iBAAiB,KAAK,WAAW,gBAAgB,eAAe,KAAK,mBAAmB;AAC5G,SAAK,aAAa,MAAM,KAAK,uBAAuB,QAAQ,SAAS,SAAS,mBAAmB;AACjG,UAAM,UAAU,QAAQ,IAAI,CAAC,SAAS,UAAU,MAAM,KAAK,YAAY,OAAO,CAAC;AAC/E,UAAM,YAAY,QAAQ,IAAI,CAAC,OAAO,GAAG,EAAE;AAC3C,UAAM,WAAW,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,SAAS,OAAO,MAAM,EAAE;AAClE,SAAK,UAA0B,oBAAI,IAAI,CAAC,GAAG,WAAW,GAAG,UAAU,GAAG,KAAK,SAAS,CAAC;AACrF,QAAI,CAAC,KAAK,oBAAoB;AAC5B,WAAK,kBAAkB;AAAA,IACzB;AACA,QAAI,KAAK,UAAU,MAAM;AACvB,cAAQ,QAAQ,KAAK,OAAO;AAAA,IAC9B;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,qBAAqB,QAAQ,gBAAgB,eAAe;AAChE,UAAM,eAAe,OAAO,OAAO,CAAC,KAAK,SAASG,WAAU;AAC1D,UAAI,KAAK,OAAOA,QAAO,QAAQ;AAC/B,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AACL,WAAO,KAAK,cAAc,cAAc,KAAK,aAAa,MAAM,gBAAgB,aAAa;AAAA,EAC/F;AAAA,EACA,MAAM,uBAAuB,QAAQ,SAAS,aAAa,qBAAqB;AAC9E,UAAM,QAAQ,OAAO,KAAK,MAAM;AAChC,UAAM,aAAa,MAAM,IAAI,CAAC,SAAS,KAAK,MAAM,MAAM,cAAc,IAAI,EAAE,GAAG;AAC/E,UAAM,kBAAkB,YAAY,IAAI,CAAC,SAAS,cAAc,IAAI,EAAE,EAAE;AACxE,QAAIwB,eAAc,gBAAgB,IAAI,CAAC,SAAS,KAAK,MAAM,MAAM,KAAK;AACtE,QAAIA,aAAY,WAAW,GAAG;AAC5B,MAAAA,eAAc,KAAK;AAAA,IACrB;AACA,UAAM,EAAE,WAAW,eAAe,aAAa,WAAW,IAAI,qBAAqB,QAAQA,cAAa,KAAK,WAAW,KAAK,UAAU;AACvI,UAAM,SAAS;AAAA,MACb,GAAG;AAAA,MACH,GAAG,KAAK,MAAM;AAAA,MACd,GAAG,KAAK,cAAc,CAAC;AAAA,IACzB,EAAE,IAAI,CAACjB,UAAS;AACd,aAAO,EAAE,MAAAA,OAAM,UAAU,QAAQ,eAAe;AAAA,IAClD,CAAC;AACD,UAAM,aAAa,OAAO,OAAO,CAAC,GAAG,KAAK,SAAS;AACnD,WAAO,KAAK,MAAM,EAAE,QAAQ,CAAC,SAAS;AACpC,YAAM,CAAC,UAAUP,MAAK,IAAI,cAAc,IAAI;AAC5C,YAAM,UAAU,CAAC;AACjB,cAAQA,UAAS,OAAO;AACxB,iBAAW,YAAY;AAAA,IACzB,CAAC;AACD,UAAM,kCAAkC,CAAC;AACzC,UAAM,gBAAgB,KAAK,mBAAmB,UAAU;AACxD,UAAM,QAAQ,CAAC;AACf,WAAO,OAAO,SAAS,GAAG;AACxB,YAAM,WAAW,KAAK,aAAa,YAAY,QAAQ,SAAS,YAAY,OAAO,eAAe,iBAAiB,iCAAiC,SAAS;AAC7J,YAAM,QAAQ,IAAI,QAAQ;AAAA,IAC5B;AACA,QAAI,eAAe,QAAQ,CAAC,qBAAqB;AAC/C,cAAQ,KAAK,iIAAiI;AAAA,IAChJ;AACA,UAAM,iBAAiBwB,aAAY,OAAO,CAACjB,UAAS,CAAC,cAAcA,KAAI,KAAK,CAAC,UAAUA,MAAK,MAAM,YAAY,OAAO,CAAC,EAAE,IAAI,CAACA,UAASA,MAAK,IAAI;AAC/I,QAAI,eAAe,SAAS,GAAG;AAC7B,UAAI,iBAAiB;AACrB,UAAI,eAAe,MAAM;AACvB,yBAAiB,wFAAwF;AAAA,MAC3G;AACA,YAAM,IAAI,MAAM,+BAA+B,6CAA6C,qDAAqD,mBAAmB,gBAAgB;AAAA,IACtL;AACA,WAAO;AAAA,EACT;AAAA,EACA,aAAa,YAAY,QAAQ,SAAS,WAAW,OAAO,eAAe,aAAa,iCAAiC,WAAW;AAClI,UAAM,WAAW,CAAC;AAClB,WAAO,OAAO,SAAS,GAAG;AACxB,YAAM,OAAO,OAAO,IAAI;AACxB,cAAQ,iBAAiB,KAAK;AAC9B,UAAI,WAAW;AACf,UAAI,KAAK,KAAK,OAAO,WAAW,cAAc,cAAc,KAAK,MAAM,WAAW,OAAO,GAAG;AAC1F,SAAC,QAAQ,IAAI,oBAAoB,KAAK,KAAK,MAAM,OAAO;AAAA,MAC1D;AACA,UAAI,UAAU,KAAK,KAAK,SAAS,MAAM;AACrC,cAAM,UAAU,YAAY,KAAK,MAAM,WAAW,SAAS,KAAK,gBAAgB;AAChF,YAAI,CAAC,UAAU;AACb,WAAC,QAAQ,IAAI,oBAAoB,KAAK,KAAK,MAAM,OAAO;AAAA,QAC1D;AACA,cAAM,iBAAiB,QAAQ;AAC/B,YAAI,aAAa,UAAU,OAAO,GAAG;AACnC,mBAAS,KAAK,QAAQ,KAAK,CAAC,OAAO;AACjC,sBAAU,YAAY;AACtB,oBAAQ,iBAAiB;AACzB,iBAAK,uBAAuB,UAAU,KAAK,MAAM,WAAW,SAAS,eAAe,aAAa,+BAA+B;AAChI,iBAAK,kBAAkB,KAAK,MAAM,QAAQ,SAAS,WAAW,OAAO,SAAS;AAC9E,mBAAO;AAAA,UACT,CAAC,CAAC;AAAA,QACJ,OAAO;AACL,oBAAU,YAAY;AACtB,eAAK,uBAAuB,UAAU,KAAK,MAAM,WAAW,SAAS,eAAe,aAAa,+BAA+B;AAChI,eAAK,kBAAkB,KAAK,MAAM,QAAQ,SAAS,WAAW,OAAO,SAAS;AAAA,QAChF;AAAA,MACF,OAAO;AACL,aAAK,kBAAkB,KAAK,MAAM,QAAQ,SAAS,WAAW,OAAO,SAAS;AAAA,MAChF;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,kBAAkBA,OAAM,QAAQ,SAAS,WAAW,OAAO,WAAW;AACpE,IAAAA,MAAK,SAAS,QAAQ,CAAC,cAAc;AACnC,YAAM,CAAC,QAAQ,IAAI,oBAAoB,UAAU,MAAM,OAAO;AAC9D,UAAI,MAAM,aAAa,CAAC,UAAU,IAAI,UAAU,IAAI,GAAG;AACrD;AAAA,MACF;AACA,UAAI,UAAU,OAAO,SAAS;AAC5B,YAAI,UAAU,WAAW,KAAK,CAAC,SAAS;AACtC,iBAAO,CAAC,CAAC,UAAU,MAAM,WAAW,OAAO;AAAA,QAC7C,CAAC,GAAG;AACF,gBAAM,YAAY;AAClB,iBAAO,KAAK,EAAE,UAAU,QAAQ,gBAAgB,MAAM,UAAU,CAAC;AAAA,QACnE;AAAA,MACF,WAAW,UAAU,WAAW,MAAM,CAAC,SAAS;AAC9C,eAAO,CAAC,CAAC,UAAU,MAAM,WAAW,OAAO;AAAA,MAC7C,CAAC,GAAG;AACF,cAAM,YAAY;AAClB,eAAO,KAAK,EAAE,UAAU,QAAQ,gBAAgB,MAAM,UAAU,CAAC;AAAA,MACnE;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,UAAU;AACR,WAAO,KAAK,KAAK,SAAS,EAAE,QAAQ,CAAC,QAAQ,KAAK,UAAU,KAAK,QAAQ,CAAC,YAAY,QAAQ,QAAQ,CAAC,CAAC;AAAA,EAC1G;AAAA,EACA,uBAAuB,QAAQ;AAC7B,WAAO,KAAK,MAAM,EAAE,QAAQ,CAAC,SAAS;AACpC,YAAM,SAAS,OAAO;AACtB,YAAM,CAAC,QAAQ,IAAI,cAAc,IAAI;AACrC,YAAMA,QAAO,KAAK,MAAM,MAAM;AAC9B,UAAIA,MAAK,WAAW,YAAYA,MAAK,WAAW,SAAS,OAAO;AAC9D,cAAM,QAAQA,MAAK,WAAW,SAAS;AACvC,cAAMkB,SAAQ,MAAM,WAAW,OAAO,MAAM,UAAU,OAAO,MAAM,MAAM,CAAC,KAAKzB,WAAU,MAAMA,YAAW,MAAM,MAAMA,YAAW,GAAG;AACpI,qBAAa,OAAOyB,QAAO,MAAM,sBAAsBlB,MAAK,mDAAmD,oBAAoB,OAAO,QAAQ;AAAA,MACpJ;AACA,UAAIA,MAAK,WAAW,YAAYA,MAAK,WAAW,SAAS,OAAO;AAC9D,qBAAa,OAAO,OAAO,UAAUA,MAAK,WAAW,SAAS,OAAO,MAAM,sBAAsBA,MAAK,kDAAkDA,MAAK,WAAW,SAAS,kBAAkB,OAAO,OAAO;AAAA,MACnN;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,UAAU,QAAQ;AAChB,UAAM,SAAS,CAAC;AAChB,eAAW,aAAa,QAAQ;AAC9B,UAAI,KAAK,cAAc,QAAQ,KAAK,WAAW,UAAU,QAAQ,KAAK,WAAW,OAAO,cAAc,MAAM;AAC1G,cAAM,UAAU,KAAK,WAAW,OAAO;AACvC,eAAO,QAAQ,QAAQ,OAAO;AAAA,MAChC,OAAO;AACL,eAAO,aAAa,OAAO;AAAA,MAC7B;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQ;AAClB,UAAM,aAAa,OAAO,KAAK,MAAM,EAAE,OAAO,CAAC,SAAS;AACtD,YAAM,CAAC,QAAQ,IAAI,cAAc,IAAI;AACrC,aAAO,KAAK,MAAM,MAAM,aAAa;AAAA,IACvC,CAAC;AACD,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,MAAM,uDAAuD,wCAAwC;AAAA,IACjH;AAAA,EACF;AAAA,EACA,WAAW,SAAS;AAClB,WAAO,QAAQ,IAAI,CAAC,SAAS;AAC3B,UAAI,KAAK,cAAc,QAAQ,KAAK,WAAW,WAAW,QAAQ,KAAK,WAAW,QAAQ,SAAS,MAAM;AACvG,cAAM,UAAU,KAAK,WAAW,QAAQ;AACxC,eAAO,QAAQ;AAAA,MACjB;AACA,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,aAAa,SAAS;AACpB,YAAQ,QAAQ,CAAC,SAAS;AACxB,YAAM,CAAC,cAAc,IAAI,cAAc,IAAI;AAC3C,UAAI,CAAC,KAAK,MAAM,MAAM,iBAAiB;AACrC,cAAM,IAAI,MAAM,eAAe,iCAAiC;AAAA,MAClE;AAAA,IACF,CAAC;AAAA,EACH;AACF;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,wBAAwB,CAAC,GAAG,eAAe,CAAC,GAAG;AACzD,SAAK,wBAAwB;AAC7B,SAAK,eAAe;AAAA,EACtB;AAAA,EACA,aAAa,MAAM,WAAW;AAC5B,SAAK,sBAAsB,QAAQ,UAAU;AAC7C,SAAK,aAAa,UAAU,MAAM;AAAA,EACpC;AAAA,EACA,yBAAyB,MAAM;AAC7B,WAAO,KAAK,sBAAsB;AAAA,EACpC;AAAA,EACA,iBAAiB,IAAI;AACnB,WAAO,KAAK,aAAa;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,eAAW,OAAO,KAAK,cAAc;AACnC,WAAK,aAAa,KAAK,cAAc;AACrC,aAAO,KAAK,aAAa;AAAA,IAC3B;AACA,eAAW,QAAQ,KAAK,uBAAuB;AAC7C,WAAK,sBAAsB,MAAM,QAAQ;AACzC,aAAO,KAAK,sBAAsB;AAAA,IACpC;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB;AACzB,IAAI,qBAAqB;AACzB,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,UAAU,cAAc,CAAC,GAAG,OAAO,YAAY;AACzD,SAAK,WAAW;AAChB,SAAK,cAAc;AACnB,SAAK,UAAU;AACf,SAAK,KAAK;AACV,QAAI,eAAe,MAAM;AACvB,WAAK,cAAc,CAAC;AAAA,IACtB;AACA,SAAK,kBAAkB,IAAI,gBAAgB;AAAA,EAC7C;AAAA,EACA,IAAI,eAAe;AACjB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,aAAa;AACf,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,cAAc;AAChB,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,WAAW;AACb,WAAO,KAAK,UAAU;AAAA,EACxB;AAAA,EACA,IAAI,iBAAiB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,4BAA4B;AAC9B,WAAO,KAAK;AAAA,EACd;AAAA,EACA,gBAAgB;AACd,UAAM,OAAO,KAAK;AAClB,QAAI,KAAK,QAAQ,MAAM;AACrB,WAAK,UAAU;AAAA,IACjB,WAAW,KAAK,YAAY,eAAe,MAAM;AAC/C,WAAK,UAAU,KAAK,GAAG,mBAAmB,MAAM,KAAK,WAAW;AAAA,IAClE,OAAO;AACL,YAAM,WAAW,KAAK,GAAG,gBAAgB,MAAM,KAAK,WAAW;AAC/D,UAAI,SAAS,WAAW,GAAG;AACzB,iBAAS,KAAK,KAAK,GAAG,mBAAmB,MAAM,KAAK,WAAW,CAAC;AAAA,MAClE,WAAW,SAAS,SAAS,GAAG;AAC9B,cAAM,IAAI,MAAM,wBAAwB,SAAS,kCAAkC,CAAC,IAAI,IAAI;AAAA,MAC9F;AACA,WAAK,UAAU,SAAS;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,OAAO;AACL,SAAK,cAAc;AACnB,QAAI,KAAK,QAAQ,QAAQ,MAAM;AAC7B,YAAM,IAAI,MAAM,+GAA+G;AAAA,IACjI;AACA,UAAM,aAAa,KAAK,QAAQ,KAAK;AACrC,QAAI,aAAa,UAAU,UAAU,GAAG;AACtC,aAAO,WAAW,KAAK,CAAC,cAAc,KAAK,SAAS,SAAS,CAAC;AAAA,IAChE;AACA,WAAO,KAAK,SAAS,UAAU;AAAA,EACjC;AAAA,EACA,SAAS,WAAW;AAClB,SAAK,YAAY;AACjB,UAAM,QAAQ,KAAK,UAAU;AAC7B,QAAI,YAAY,KAAK,UAAU;AAC/B,QAAI,KAAK,UAAU,uBAAuB,MAAM;AAC9C,YAAM,WAAW,KAAK,UAAU;AAChC,UAAI,SAAS,aAAa,MAAM;AAC9B,oBAAY,SAAS;AAAA,MACvB;AACA,UAAI,SAAS,wBAAwB,MAAM;AACzC,aAAK,uBAAuB,SAAS;AAAA,MACvC;AAAA,IACF;AACA,SAAK,YAAY;AACjB,SAAK,UAAU,GAAG,MAAM,SAAS,YAAY,MAAM,SAAS;AAC5D,UAAM,YAAY,KAAK,GAAG,cAAc,KAAK,UAAU,YAAY,KAAK,UAAU,WAAW;AAC7F,SAAK,WAAW,IAAI,cAAc,gBAAgB,SAAS,eAAe,OAAO,KAAK,SAAS,CAAC;AAChG,SAAK,SAAS,YAAY,KAAK,6BAA6B,SAAS;AACrE,SAAK,SAAS,kBAAkB,KAAK;AACrC,QAAI,UAAU,oBAAoB,QAAQ,UAAU,iBAAiB,QAAQ,MAAM;AACjF,YAAM,cAAc,gBAAgB,SAAS,eAAe,UAAU,gBAAgB;AACtF,WAAK,cAAc,IAAI,cAAc,WAAW;AAChD,WAAK,YAAY,YAAY,KAAK,SAAS;AAC3C,WAAK,YAAY,kBAAkB,KAAK;AACxC,WAAK,YAAY,aAAa,CAAC,GAAG,CAAC,CAAC;AAAA,IACtC;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,KAAK,cAAcF,SAAQ;AAC/B,QAAI,OAAO,iBAAiB,UAAU;AACpC,YAAM,WAAW,KAAK,GAAG,gBAAgB,YAAY;AACrD,UAAI,SAAS,WAAW,GAAG;AACzB,cAAM,IAAI,MAAM,0CAA0C,eAAe;AAAA,MAC3E,WAAW,SAAS,SAAS,GAAG;AAC9B,cAAM,IAAI,MAAM,wBAAwB,SAAS,kCAAkC,eAAe;AAAA,MACpG;AACA,qBAAe,SAAS;AAAA,IAC1B;AACA,QAAI,aAAa,QAAQ,MAAM;AAC7B,YAAM,IAAI,MAAM,6GAA6G;AAAA,IAC/H;AACA,WAAO,aAAa,KAAK,KAAK,SAAS;AAAA,EACzC;AAAA,EACA,QAAQ,QAAQA,SAAQ;AACtB,UAAM,gBAAgB,KAAK,QAAQ,QAAQ,KAAK,WAAW;AAC3D,QAAI,KAAK,sBAAsB;AAC7B,YAAM,qBAAqB,yBAAyB,SAAS,CAAC,aAAa,IAAI;AAC/E,YAAM,kBAAkB,CAAC;AACzB,yBAAmB,QAAQ,CAAC,cAAc,OAAO,gBAAgB,KAAK,qBAAqB,OAAO,YAAY;AAC9G,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA,EACA,gBAAgB,QAAQ;AACtB,QAAI,EAAE,kBAAkB,WAAW,CAAC,MAAM,QAAQ,MAAM,GAAG;AACzD,aAAO;AAAA,IACT;AACA,aAAS,MAAM,QAAQ,MAAM,IAAI,SAAS,CAAC,MAAM;AACjD,QAAI,OAAO,WAAW,KAAK,WAAW,QAAQ;AAC5C,YAAM,IAAI,MAAM,mDAAmD,KAAK,WAAW,wCAAwC,OAAO,uBAAuB;AAAA,IAC3J;AACA,WAAO,KAAK,WAAW,OAAO,CAAC,KAAK,WAAW,OAAO;AACpD,UAAI,aAAa,OAAO;AACxB,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,iBAAiB,SAAS;AACxB,cAAU,WAAW,KAAK;AAC1B,WAAO,CAAC,MAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,IAAI;AAAA,EAC/C;AAAA,EACA,QAAQ,QAAQ,SAAS;AACvB,aAAS,KAAK,gBAAgB,MAAM;AACpC,cAAU,KAAK,iBAAiB,OAAO;AACvC,UAAM,SAAS,KAAK,SAAS,QAAQ,QAAQ,OAAO;AACpD,WAAO,OAAO,SAAS,IAAI,SAAS,OAAO;AAAA,EAC7C;AAAA,EACA,MAAM,aAAa,QAAQ,SAAS;AAClC,aAAS,KAAK,gBAAgB,MAAM;AACpC,cAAU,KAAK,iBAAiB,OAAO;AACvC,UAAM,SAAS,MAAM,KAAK,SAAS,aAAa,QAAQ,OAAO;AAC/D,WAAO,OAAO,SAAS,IAAI,SAAS,OAAO;AAAA,EAC7C;AAAA,EACA,yBAAyB;AACvB,WAAO,KAAK,SAAS,uBAAuB;AAAA,EAC9C;AAAA,EACA,6BAA6B;AAC3B,SAAK,SAAS,2BAA2B;AAAA,EAC3C;AAAA,EACA,6BAA6B,KAAK;AAChC,WAAO,OAAO,KAAK,GAAG,EAAE,OAAO,CAAC,QAAQ,QAAQ;AAC9C,aAAO,OAAO,CAAC,IAAI,IAAI;AACvB,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,UAAU;AACR,SAAK,SAAS,QAAQ;AACtB,QAAI,KAAK,aAAa;AACpB,WAAK,YAAY,QAAQ;AAAA,IAC3B;AACA,SAAK,gBAAgB,QAAQ;AAAA,EAC/B;AACF;AACA,eAAe,eAAe,UAAUT,WAAU,CAAC,GAAG,OAAO,YAAY;AACvE,MAAI,YAAY,MAAM;AACpB,UAAM,IAAI,MAAM,wGAAwG;AAAA,EAC1H;AACA,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU,CAAC;AAAA,EACb;AACA,MAAIA,SAAQ,aAAa,OAAO,aAAa,UAAU;AACrD,eAAW,YAAY,QAAQ;AAAA,EACjC;AACA,QAAMwB,UAAS,IAAI,WAAW,UAAUxB,UAAS,IAAI;AACrD,QAAMwB,QAAO,KAAK;AAClB,SAAOA;AACT;AACA,SAAS,mBAAmB,aAAa;AACvC,MAAI,eAAe,MAAM;AACvB,UAAM,IAAI,MAAM,4GAA4G;AAAA,EAC9H;AACA,MAAI,CAAC,YAAY,MAAM;AACrB,UAAM,IAAI,MAAM,uBAAuB,kCAAkC;AAAA,EAC3E;AACA,QAAMA,UAAS,IAAI,WAAW,WAAW;AACzC,EAAAA,QAAO,KAAK;AACZ,SAAOA;AACT;AACA,SAAS,YAAY,UAAU;AAC7B,MAAI,CAAC,SAAS,SAAS,GAAG,GAAG;AAC3B,eAAW,WAAW;AAAA,EACxB;AACA,SAAO,GAAG,WAAW,qBAAqB;AAC5C;AAGA,IAAI,WAAW;AAGf,IAAI,gBAAgB,CAAC;AACrBjC,UAAS,eAAe;AAAA,EACtB,YAAY,MAAM;AAAA,EAClB,SAAS,MAAM;AAAA,EACf,gBAAgB,MAAM;AAAA,EACtB,iBAAiB,MAAM;AAAA,EACvB,eAAe,MAAM;AAAA,EACrB,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,cAAc,MAAM;AAAA,EACpB,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AACb,CAAC;AAGD,IAAI,cAAc,QAAQ,oBAAoB,CAAC;AAG/C,IAAI,cAAc,QAAQ,oBAAoB,CAAC;AAG/C,SAAS,QAAQ,QAAQ,OAAO;AAC9B,SAAO,gBAAgB,QAAQ,KAAK;AACtC;AACA,SAAS,gBAAgB,QAAQ,OAAO,OAAuB,oBAAI,IAAI,GAAG,cAA8B,oBAAI,IAAI,GAAG;AACjH,MAAI,UAAU,MAAM;AAClB,WAAO;AAAA,EACT;AACA,MAAI,OAAO,SAAS,cAAc,kBAAkB,MAAM;AACxD,WAAO,OAAO,MAAM;AAAA,EACtB;AACA,MAAI,YAAY,IAAI,MAAM,GAAG;AAC3B,UAAM,IAAI,MAAM,wCAAwC;AAAA,EAC1D;AACA,MAAI,KAAK,IAAI,MAAM,GAAG;AACpB,WAAO,KAAK,IAAI,MAAM;AAAA,EACxB;AACA,QAAM,SAAS,MAAM,MAAM;AAC3B,MAAI,OAAO,WAAW,OAAO,UAAU,MAAM;AAC3C,UAAM,IAAI,MAAM,mEAAmE;AAAA,EACrF;AACA,MAAI,CAAC,OAAO,SAAS;AACnB,SAAK,IAAI,QAAQ,OAAO,KAAK;AAC7B,WAAO,OAAO;AAAA,EAChB,WAAW,YAAY,MAAM,GAAG;AAC9B,UAAM,iBAAiB,MAAM,QAAQ,MAAM,IAAI,CAAC,IAAI,CAAC;AACrD,gBAAY,IAAI,MAAM;AACtB,eAAW,KAAK,QAAQ;AACtB,YAAM,QAAQ,OAAO;AACrB,YAAM,cAAc,gBAAgB,OAAO,OAAO,MAAM,WAAW;AACnE,qBAAe,KAAK;AAAA,IACtB;AACA,gBAAY,OAAO,MAAM;AACzB,QAAI,OAAO,WAAW;AACpB,qBAAe,YAAY,OAAO;AAAA,IACpC;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,yCAAyC,QAAQ;AAAA,EACnE;AACF;AACA,SAAS,QAAQ,QAAQ,QAAQ,WAAW;AAC1C,SAAO,gBAAgB,QAAQ,KAAK;AACtC;AACA,SAAS,gBAAgB,QAAQ,OAAO,cAA8B,oBAAI,IAAI,GAAG;AAC/E,QAAM,SAAS,OAAO;AACtB,MAAI,YAAY,IAAI,MAAM,GAAG;AAC3B,UAAM,IAAI,MAAM,wCAAwC;AAAA,EAC1D;AACA,QAAM,SAAS,MAAM,MAAM;AAC3B,MAAI,OAAO,WAAW,OAAO,UAAU,MAAM;AAC3C,UAAM,IAAI,MAAM,mEAAmE;AAAA,EACrF;AACA,MAAI,CAAC,OAAO,SAAS;AACnB,WAAO,OAAO;AAAA,EAChB,WAAW,YAAY,MAAM,GAAG;AAC9B,UAAM,iBAAiB,MAAM,QAAQ,MAAM,IAAI,CAAC,IAAI,CAAC;AACrD,gBAAY,IAAI,MAAM;AACtB,eAAW,KAAK,QAAQ;AACtB,YAAM,WAAW,OAAO,IAAI,CAAC,MAAM,EAAE,EAAE;AACvC,YAAM,cAAc,gBAAgB,UAAU,OAAO,WAAW;AAChE,qBAAe,KAAK;AAAA,IACtB;AACA,gBAAY,OAAO,MAAM;AACzB,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,yCAAyC,QAAQ;AAAA,EACnE;AACF;AACA,SAAS,UAAU,GAAG;AACpB,MAAI,MAAM,MAAM;AACd,WAAO;AAAA,EACT;AACA,MAAI,YAAY,EAAE,EAAE,GAAG;AACrB,WAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AAAA,EACtC,OAAO;AACL,WAAO,EAAE,OAAO,GAAG,SAAS,MAAM;AAAA,EACpC;AACF;AACA,eAAe,mBAAmB,QAAQ,OAAO;AAC/C,QAAM,OAAuB,oBAAI,IAAI;AACrC,kBAAgB,QAAQ,OAAO,IAAI;AACnC,aAAW,OAAO,MAAM,KAAK,KAAK,KAAK,CAAC,GAAG;AACzC,UAAM,QAAQ,KAAK,IAAI,GAAG;AAC1B,QAAI,aAAa,UAAU,KAAK,GAAG;AACjC,YAAM,cAAc,MAAM;AAC1B,WAAK,IAAI,KAAK,WAAW;AAAA,IAC3B;AAAA,EACF;AACA,QAAM,SAAS,gBAAgB,QAAQ,OAAO,IAAI;AAClD,SAAO;AACT;AACA,SAAS,YAAY,KAAK;AACxB,MAAI,gBAAgB;AACpB,MAAI,IAAI,EAAE,IAAI,YAAY,GAAG;AAC3B,oBAAgB,eAAe;AAAA,EACjC,OAAO;AACL,UAAM,EAAE,cAAc,IAAI,uBAAuB;AACjD,oBAAgB,eAAe;AAAA,EACjC;AACA,SAAO,OAAO,QAAQ,CAAC,YAAY,OAAO,GAAG,MAAM,MAAM,QAAQ,GAAG,KAAK,OAAO,QAAQ,YAAY,EAAE,eAAe,WAAW,EAAE,eAAe,YAAY,CAAC;AAChK;AACA,SAAS,aAAa,KAAK;AACzB,SAAO,OAAO,QAAQ,YAAY,GAAG,KAAK,MAAM,QAAQ,GAAG,KAAK,OAAO,QAAQ,YAAY,eAAe,UAAU,aAAa,aAAa,GAAG;AACnJ;AACA,SAAS,YAAY,OAAO;AAC1B,SAAO,UAAU,QAAQ,OAAO,UAAU,YAAY,OAAO,UAAU;AACzE;AAGA,SAAS,UAAU,WAAW;AAC5B,SAAO,QAAQ,WAAW,aAAa;AACzC;AACA,SAAS,cAAc,MAAM;AAC3B,MAAI,gBAAgB,QAAQ;AAC1B,WAAO,EAAE,OAAO,KAAK,MAAM,GAAG,SAAS,MAAM;AAAA,EAC/C,WAAW,YAAY,IAAI,GAAG;AAC5B,WAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AAAA,EACtC,OAAO;AACL,WAAO,EAAE,OAAO,MAAM,SAAS,MAAM;AAAA,EACvC;AACF;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,UAAU;AACpB,SAAK,WAAW;AAChB,SAAK,QAAQ;AACb,SAAK,MAAM;AACX,QAAI,YAAY,MAAM;AACpB,YAAM,IAAI,WAAW,iDAAiD;AAAA,IACxE;AACA,QAAI,WAAW,GAAG;AAChB,YAAM,IAAI,WAAW,2CAA2C;AAAA,IAClE;AACA,SAAK,OAAO,IAAI,MAAM,QAAQ;AAC9B,SAAK,kBAAkB,IAAI;AAAA,EAC7B;AAAA,EACA,KAAKa,QAAO;AACV,WAAOA,SAAQ,GAAG;AAChB,MAAAA,UAAS,KAAK;AAAA,IAChB;AACA,WAAOA,SAAQ,KAAK;AAAA,EACtB;AAAA,EACA,IAAIA,QAAO;AACT,QAAIA,SAAQ,GAAG;AACb,YAAM,IAAI,WAAW,qCAAqC;AAAA,IAC5D;AACA,WAAO,KAAK,KAAKA,SAAQ,KAAK;AAAA,EAChC;AAAA,EACA,IAAIA,QAAO,OAAO;AAChB,QAAIA,SAAQ,GAAG;AACb,YAAM,IAAI,WAAW,qCAAqC;AAAA,IAC5D;AACA,SAAK,KAAKA,SAAQ,KAAK,YAAY;AAAA,EACrC;AAAA,EACA,SAAS;AACP,QAAI,SAAS,KAAK,MAAM,KAAK;AAC7B,QAAI,SAAS,GAAG;AACd,eAAS,KAAK,kBAAkB;AAAA,IAClC;AACA,WAAO;AAAA,EACT;AAAA,EACA,SAAS;AACP,WAAO,KAAK,OAAO,MAAM,KAAK;AAAA,EAChC;AAAA,EACA,UAAU;AACR,WAAO,KAAK,OAAO,MAAM;AAAA,EAC3B;AAAA,EACA,KAAK,OAAO;AACV,QAAI,KAAK,OAAO,GAAG;AACjB,YAAM,IAAI,WAAW,sBAAsB;AAAA,IAC7C;AACA,SAAK,IAAI,KAAK,KAAK,KAAK;AACxB,SAAK,MAAM,KAAK,KAAK,KAAK,MAAM,CAAC;AAAA,EACnC;AAAA,EACA,QAAQ,QAAQ;AACd,eAAW,SAAS,QAAQ;AAC1B,WAAK,KAAK,KAAK;AAAA,IACjB;AAAA,EACF;AAAA,EACA,MAAM;AACJ,QAAI,KAAK,QAAQ,GAAG;AAClB,YAAM,IAAI,WAAW,uBAAuB;AAAA,IAC9C;AACA,SAAK,MAAM,KAAK,KAAK,KAAK,MAAM,CAAC;AACjC,UAAM,SAAS,KAAK,IAAI,KAAK,GAAG;AAChC,SAAK,IAAI,KAAK,KAAK,MAAM;AACzB,WAAO;AAAA,EACT;AAAA,EACA,QAAQ,OAAO;AACb,QAAI,KAAK,OAAO,GAAG;AACjB,YAAM,IAAI,WAAW,sBAAsB;AAAA,IAC7C;AACA,SAAK,QAAQ,KAAK,KAAK,KAAK,QAAQ,CAAC;AACrC,SAAK,IAAI,KAAK,OAAO,KAAK;AAAA,EAC5B;AAAA,EACA,QAAQ;AACN,QAAI,KAAK,QAAQ,GAAG;AAClB,YAAM,IAAI,WAAW,uBAAuB;AAAA,IAC9C;AACA,UAAM,SAAS,KAAK,IAAI,KAAK,KAAK;AAClC,SAAK,IAAI,KAAK,OAAO,MAAM;AAC3B,SAAK,QAAQ,KAAK,KAAK,KAAK,QAAQ,CAAC;AACrC,WAAO;AAAA,EACT;AAAA,EACA,cAAc,eAAe;AAC3B,QAAI,KAAK,QAAQ,GAAG;AAClB,YAAM,IAAI,WAAW,uBAAuB;AAAA,IAC9C;AACA,UAAMA,SAAQ,KAAK,KAAK,KAAK,QAAQ,aAAa;AAClD,UAAM,SAAS,KAAK,IAAIA,MAAK;AAC7B,SAAK,IAAIA,QAAO,KAAK,IAAI,CAAC;AAC1B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB,cAAc,WAAW;AAAA,EAC/C,cAAc;AACZ,UAAM,kBAAkB,gBAAgB;AAAA,EAC1C;AAAA,EACA,SAAS;AACP,WAAO;AAAA,EACT;AAAA,EACA,KAAK,OAAO;AACV,QAAI,MAAM,OAAO,GAAG;AAClB,WAAK,OAAO;AAAA,IACd;AACA,UAAM,KAAK,KAAK;AAAA,EAClB;AAAA,EACA,QAAQ,OAAO;AACb,QAAI,MAAM,OAAO,GAAG;AAClB,WAAK,OAAO;AAAA,IACd;AACA,UAAM,QAAQ,KAAK;AAAA,EACrB;AAAA,EACA,SAAS;AACP,UAAM,cAAc,KAAK,WAAW;AACpC,UAAM,UAAU,IAAI,MAAM,WAAW;AACrC,UAAM,MAAM,KAAK,OAAO;AACxB,aAAS,KAAK,GAAG,KAAK,KAAK,MAAM;AAC/B,cAAQ,MAAM,KAAK,IAAI,KAAK,KAAK,KAAK,QAAQ,EAAE,CAAC;AAAA,IACnD;AACA,SAAK,OAAO;AACZ,SAAK,WAAW;AAChB,SAAK,kBAAkB,IAAI,KAAK;AAChC,SAAK,QAAQ;AACb,SAAK,MAAM;AAAA,EACb;AACF;AACA,kBAAkB,mBAAmB;AAGrC,SAAS,kBAAkB,OAAO;AAChC,SAAO,IAAI,cAAc,KAAK;AAChC;AACA,SAAS,qBAAqB,OAAO;AACnC,SAAO,IAAI,qBAAqB,KAAK;AACvC;AACA,SAAS,yBAAyB,eAAe,kBAAkB;AACjE,SAAO,IAAI,gBAAgB,eAAe,gBAAgB;AAC5D;AACA,SAAS,mBAAmB,WAAW,eAAe,gBAAgB,MAAM;AAC1E,SAAO,IAAI,YAAY,WAAW,YAAY;AAChD;AACA,IAAI,eAAe,MAAM;AAAA,EACvB,MAAM,UAAU;AACd,UAAM,SAAS,CAAC;AAChB,QAAI,IAAI,MAAM,KAAK,KAAK;AACxB,WAAO,CAAC,EAAE,MAAM;AACd,aAAO,KAAK,EAAE,KAAK;AACnB,UAAI,MAAM,KAAK,KAAK;AAAA,IACtB;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,iBAAiB;AACrB,UAAM,SAAS,KAAK,SAAS,GAAG;AAChC,UAAM,SAAS,CAAC;AAChB,QAAI,IAAI,MAAM,OAAO,KAAK;AAC1B,WAAO,CAAC,EAAE,MAAM;AACd,aAAO,KAAK,EAAE,KAAK;AACnB,UAAI,MAAM,OAAO,KAAK;AAAA,IACxB;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,eAAe;AACnB,QAAI,IAAI,MAAM,KAAK,KAAK;AACxB,WAAO,CAAC,EAAE,MAAM;AACd,UAAI,MAAM,KAAK,KAAK;AAAA,IACtB;AAAA,EACF;AAAA,EACA,MAAM,aAAa,WAAW;AAC5B,QAAI,IAAI,MAAM,KAAK,KAAK;AACxB,QAAI,iBAAiB,UAAU,EAAE,KAAK;AACtC,WAAO,CAAC,EAAE,QAAQ,gBAAgB;AAChC,UAAI,MAAM,KAAK,KAAK;AACpB,uBAAiB,UAAU,EAAE,KAAK;AAAA,IACpC;AAAA,EACF;AAAA,EACA,aAAa,SAAS;AACpB,WAAO,IAAI,0BAA0B,MAAM,OAAO;AAAA,EACpD;AAAA,EACA,OAAO,WAAW;AAChB,WAAO,IAAI,eAAe,MAAM,SAAS;AAAA,EAC3C;AAAA,EACA,IAAI,YAAY;AACd,WAAO,IAAI,YAAY,MAAM,UAAU;AAAA,EACzC;AAAA,EACA,SAAS,YAAY;AACnB,WAAO,IAAI,iBAAiB,MAAM,UAAU;AAAA,EAC9C;AAAA,EACA,eAAe,YAAY;AACzB,WAAO,IAAI,iBAAiB,MAAM,UAAU,EAAE,OAAO;AAAA,EACvD;AAAA,EACA,QAAQ,YAAY;AAClB,WAAO,IAAI,gBAAgB,MAAM,UAAU;AAAA,EAC7C;AAAA,EACA,MAAM,aAAa,GAAG;AACpB,WAAO,KAAK,IAAI,CAAC,EAAE,aAAa;AAAA,EAClC;AAAA,EACA,MAAM,cAAc,GAAG;AACrB,WAAO,KAAK,eAAe,CAAC,EAAE,aAAa,CAAC,MAAM,MAAM,IAAI;AAAA,EAC9D;AAAA,EACA,cAAc,WAAW,iBAAiB,MAAM;AAC9C,WAAO,IAAI,sBAAsB,MAAM,WAAW,cAAc;AAAA,EAClE;AAAA,EACA,iBAAiB,WAAW,iBAAiB,MAAM,QAAQ,WAAW;AACpE,UAAM,aAAa,KAAK,cAAc,WAAW,cAAc;AAC/D,WAAO,WAAW,IAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,CAAC;AAAA,EAChD;AAAA,EACA,YAAY,UAAU,kBAAkB;AACtC,WAAO,IAAI,gBAAgB,kBAAkB,CAAC,MAAM,QAAQ,CAAC,GAAG,gBAAgB;AAAA,EAClF;AAAA,EACA,KAAKH,SAAQ;AACX,QAAIA,UAAS,KAAKA,WAAU,MAAM;AAChC,aAAO;AAAA,IACT;AACA,WAAO,IAAI,aAAa,MAAMA,OAAM;AAAA,EACtC;AAAA,EACA,KAAKA,SAAQ;AACX,QAAIA,UAAS,KAAKA,WAAU,MAAM;AAChC,aAAO;AAAA,IACT;AACA,WAAO,IAAI,aAAa,MAAMA,OAAM;AAAA,EACtC;AAAA,EACA,SAAS,YAAY;AACnB,WAAO,IAAI,iBAAiB,MAAM,UAAU;AAAA,EAC9C;AAAA,EACA,QAAQ,YAAY,MAAM;AACxB,WAAO,IAAI,gBAAgB,MAAM,YAAY,IAAI;AAAA,EACnD;AAAA,EACA,SAAS;AACP,WAAO,IAAI,eAAe,IAAI;AAAA,EAChC;AACF;AACA,IAAI,gBAAgB,cAAc,aAAa;AAAA,EAC7C,YAAY,OAAO;AACjB,UAAM;AACN,SAAK,QAAQ;AACb,SAAK,OAAO;AAAA,EACd;AAAA,EACA,UAAU;AACR,WAAO,YAAY,KAAK,MAAM;AAAA,EAChC;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,QAAQ,KAAK,MAAM,QAAQ;AAClC,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,UAAM,OAAO,KAAK,MAAM,KAAK;AAC7B,SAAK;AACL,WAAO,EAAE,OAAO,UAAU,IAAI,GAAG,MAAM,MAAM;AAAA,EAC/C;AACF;AACA,IAAI,uBAAuB,cAAc,aAAa;AAAA,EACpD,YAAY,QAAQ;AAClB,UAAM;AACN,SAAK,SAAS;AAAA,EAChB;AAAA,EACA,UAAU;AACR,WAAO;AAAA,EACT;AAAA,EACA,MAAM,OAAO;AACX,QAAI;AACF,aAAO,KAAK,OAAO;AAAA,IACrB,SAAS,IAAP;AACA,SAAG,UAAU,mDAAmD,GAAG;AACnE,YAAM;AAAA,IACR;AAAA,EACF;AACF;AACA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,YAAY,UAAU;AACpB,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,KAAK,SAAS,KAAK;AAAA,EAC5B;AACF;AACA,IAAI,eAAe,cAAc,aAAa;AAAA,EAC5C,YAAY,UAAU,UAAU;AAC9B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,WAAW;AAChB,SAAK,QAAQ;AACb,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,KAAK,UAAU,KAAK,UAAU;AACnC,YAAM6B,YAAU,MAAM,KAAK,SAAS,KAAK;AACzC,UAAIA,UAAQ,MAAM;AAChB,eAAOA;AAAA,MACT;AACA,cAAQA,UAAQ,KAAK;AAAA,IACvB;AACA,WAAO,KAAK,SAAS,KAAK;AAAA,EAC5B;AACF;AACA,IAAI,eAAe,cAAc,aAAa;AAAA,EAC5C,YAAY,UAAU,UAAU;AAC9B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,WAAW;AAChB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,WAAW,KAAK,UAAU;AACjC,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,WAAO,KAAK,SAAS,KAAK;AAAA,EAC5B;AACF;AACA,IAAI,wBAAwB,cAAc,aAAa;AAAA,EACrD,YAAY,UAAU,WAAW,uBAAuB,MAAM;AAC5D,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AACjB,SAAK,uBAAuB;AAC5B,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,QAAQ,CAAC;AACf,WAAO,MAAM,SAAS,KAAK,WAAW;AACpC,YAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,UAAI,KAAK,MAAM;AACb,YAAI,KAAK,wBAAwB,MAAM,SAAS,GAAG;AACjD,iBAAO,EAAE,OAAO,OAAO,MAAM,MAAM;AAAA,QACrC;AACA,eAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,MACnC;AACA,YAAM,KAAK,KAAK,KAAK;AAAA,IACvB;AACA,WAAO,EAAE,OAAO,OAAO,MAAM,MAAM;AAAA,EACrC;AACF;AACA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,YAAY,UAAU,WAAW;AAC/B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AACjB,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,MAAM;AACX,YAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,UAAI,KAAK,QAAQ,KAAK,UAAU,KAAK,KAAK,GAAG;AAC3C,eAAO;AAAA,MACT;AACA,cAAQ,KAAK,KAAK;AAAA,IACpB;AAAA,EACF;AACF;AACA,IAAI,cAAc,cAAc,aAAa;AAAA,EAC3C,YAAY,UAAU,YAAY;AAChC,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,UAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,QAAI,KAAK,MAAM;AACb,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,UAAM,eAAe,oBAAoB,sBAAsB,KAAK,KAAK;AACzE,UAAM,SAAS,KAAK,UAAU,KAAK,KAAK;AACxC,UAAM,gBAAgB,oBAAoB,sBAAsB,MAAM;AACtE,eAAW,MAAM,cAAc;AAC7B,UAAI,CAAC,oBAAoB,eAAe,IAAI,aAAa,GAAG;AAC1D,WAAG,QAAQ;AAAA,MACb;AAAA,IACF;AACA,WAAO,EAAE,OAAO,QAAQ,MAAM,MAAM;AAAA,EACtC;AACF;AACA,IAAI,4BAA4B,cAAc,aAAa;AAAA,EACzD,YAAY,UAAU,SAAS;AAC7B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,UAAU;AACf,SAAK,QAAQ;AACb,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,MAAM;AACX,UAAI;AACF,eAAO,MAAM,KAAK,SAAS,KAAK;AAAA,MAClC,SAAS,IAAP;AACA,YAAI,CAAC,KAAK,QAAQ,EAAE,GAAG;AACrB,iBAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,QACnC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,IAAI,mBAAmB,cAAc,aAAa;AAAA,EAChD,YAAY,UAAU,YAAY;AAChC,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,UAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,QAAI,KAAK,MAAM;AACb,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,UAAM,eAAe,oBAAoB,sBAAsB,KAAK,KAAK;AACzE,UAAM,SAAS,MAAM,KAAK,UAAU,KAAK,KAAK;AAC9C,UAAM,gBAAgB,oBAAoB,sBAAsB,MAAM;AACtE,eAAW,MAAM,cAAc;AAC7B,UAAI,CAAC,oBAAoB,eAAe,IAAI,aAAa,GAAG;AAC1D,WAAG,QAAQ;AAAA,MACb;AAAA,IACF;AACA,WAAO,EAAE,OAAO,QAAQ,MAAM,MAAM;AAAA,EACtC;AACF;AACA,IAAI,oBAAoB,cAAc,aAAa;AAAA,EACjD,cAAc;AACZ,UAAM;AACN,SAAK,cAAc,IAAI,kBAAkB;AACzC,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,KAAK,YAAY,OAAO,MAAM,GAAG;AACtC,UAAI,CAAC,MAAM,KAAK,KAAK,GAAG;AACtB,eAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,MACnC;AAAA,IACF;AACA,WAAO,EAAE,OAAO,KAAK,YAAY,MAAM,GAAG,MAAM,MAAM;AAAA,EACxD;AACF;AACA,IAAI,kBAAkB,cAAc,kBAAkB;AAAA,EACpD,YAAY,UAAU,YAAY;AAChC,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,UAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,QAAI,KAAK,MAAM;AACb,aAAO;AAAA,IACT;AACA,UAAM,eAAe,oBAAoB,sBAAsB,KAAK,KAAK;AACzE,UAAM,cAAc,KAAK,UAAU,KAAK,KAAK;AAC7C,UAAM,gBAAgB,oBAAoB,sBAAsB,WAAW;AAC3E,SAAK,YAAY,QAAQ,WAAW;AACpC,eAAW,MAAM,cAAc;AAC7B,UAAI,CAAC,oBAAoB,eAAe,IAAI,aAAa,GAAG;AAC1D,WAAG,QAAQ;AAAA,MACb;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AACA,IAAI,kBAAkB,cAAc,aAAa;AAAA,EAC/C,YAAY,WAAW,kBAAkB;AACvC,UAAM;AACN,SAAK,mBAAmB;AACxB,SAAK,WAAW;AAChB,SAAK,WAAW;AAChB,SAAK,gBAAgB;AAAA,EACvB;AAAA,EACA,UAAU;AACR,UAAM,oBAAoB;AAC1B,WAAO,GAAG;AAAA,EACZ;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,cAAc,KAAK,QAAQ;AAChD,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,cAAc,UAAU;AAC5B,UAAM;AACN,QAAI,KAAK,YAAY,MAAM;AACzB,YAAM,iBAAiB,MAAM,KAAK,cAAc,KAAK;AACrD,UAAI,eAAe,MAAM;AACvB,eAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,MACnC;AACA,WAAK,WAAW,eAAe;AAC/B,UAAI,KAAK,oBAAoB,MAAM;AACjC,aAAK,WAAW,KAAK,SAAS,aAAa,KAAK,gBAAgB;AAAA,MAClE;AAAA,IACF;AACA,UAAM,aAAa,MAAM,KAAK,SAAS,KAAK;AAC5C,QAAI,WAAW,MAAM;AACnB,WAAK,WAAW;AAChB,aAAO,KAAK,cAAc,QAAQ;AAAA,IACpC;AACA,WAAO;AAAA,EACT;AACF;AACA,IAAI;AAAA,CACH,SAAS,kBAAkB;AAC1B,mBAAiB,iBAAiB,UAAU,KAAK;AACjD,mBAAiB,iBAAiB,cAAc,KAAK;AACrD,mBAAiB,iBAAiB,aAAa,KAAK;AACtD,GAAG,oBAAoB,kBAAkB,CAAC,EAAE;AAC5C,IAAI,cAAc,cAAc,aAAa;AAAA,EAC3C,YAAY,WAAW,eAAe,gBAAgB,MAAM;AAC1D,UAAM;AACN,SAAK,YAAY;AACjB,SAAK,eAAe;AACpB,SAAK,QAAQ;AACb,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,UAAU;AACR,UAAM,oBAAoB;AAC1B,WAAO,IAAI;AAAA,EACb;AAAA,EACA,MAAM,UAAU,YAAY;AAC1B,UAAM;AACN,QAAI,eAAe;AACnB,QAAI,gBAAgB;AACpB,aAAS,QAAQ,WAAW;AAC1B,UAAI,qBAAqB,cAAc;AACrC,cAAM,SAAS,UAAU,KAAK;AAC9B,eAAO;AAAA,UACL,OAAO,OAAO,KAAK,CAAC,MAAM;AACxB;AACA,gBAAI,EAAE,MAAM;AACV;AAAA,YACF;AACA,mBAAO,EAAE;AAAA,UACX,CAAC;AAAA,UACD,SAAS;AAAA,QACX;AAAA,MACF,OAAO;AACL,eAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AAAA,MACtC;AAAA,IACF;AACA,UAAM,SAAS,MAAM,mBAAmB,KAAK,WAAW,OAAO;AAC/D,QAAI,iBAAiB,eAAe;AAClC,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,QAAI,gBAAgB,GAAG;AACrB,cAAQ,KAAK;AAAA,aACN,gBAAgB;AACnB,gBAAM,IAAI,MAAM,qEAAqE,KAAK,QAAQ;AAAA,aAC/F,gBAAgB;AACnB,iBAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,aAC9B,gBAAgB;AAAA;AAAA;AAAA,IAGzB;AACA,SAAK;AACL,WAAO,EAAE,OAAO,QAAQ,MAAM,MAAM;AAAA,EACtC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,iBAAiB,KAAK,UAAU,KAAK,cAAc;AACxD,WAAO,KAAK;AAAA,EACd;AACF;AACA,IAAI,mBAAmB,cAAc,aAAa;AAAA,EAChD,YAAY,UAAU,YAAY;AAChC,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,aAAa;AAClB,SAAK,SAAS,IAAI,WAAW,UAAU;AAAA,EACzC;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,SAAS;AACP,WAAO,CAAC,KAAK,OAAO,OAAO,GAAG;AAC5B,YAAM,IAAI,KAAK,SAAS,KAAK;AAC7B,WAAK,OAAO,KAAK,CAAC;AAAA,IACpB;AAAA,EACF;AAAA,EACA,OAAO;AACL,SAAK,OAAO;AACZ,WAAO,KAAK,OAAO,MAAM;AAAA,EAC3B;AACF;AACA,IAAI,kBAAkB,cAAc,iBAAiB;AAAA,EACnD,YAAY,UAAU,YAAY,MAAM;AACtC,UAAM,UAAU,UAAU;AAC1B,SAAK,WAAW;AAChB,SAAK,aAAa;AAClB,SAAK,oBAAoB;AACzB,SAAK,SAAS,YAAY,KAAK,QAAQ,aAAa,IAAI,EAAE,SAAS,CAAC;AACpE,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU,MAAM;AACd,WAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAAA,EACxC;AAAA,EACA,cAAc;AACZ,WAAO,KAAK,UAAU,KAAK,OAAO,OAAO,CAAC;AAAA,EAC5C;AAAA,EACA,MAAM,aAAa;AACjB,QAAI,CAAC,KAAK,mBAAmB;AAC3B,WAAK,OAAO;AAAA,IACd;AACA,WAAO,CAAC,KAAK,OAAO,QAAQ,GAAG;AAC7B,YAAM,cAAc,KAAK,YAAY;AACrC,YAAM,SAAS,MAAM,KAAK,OAAO,cAAc,WAAW;AAC1D,UAAI,OAAO,MAAM;AACf,aAAK,oBAAoB;AAAA,MAC3B,OAAO;AACL,aAAK,OAAO;AACZ,eAAO;AAAA,MACT;AAAA,IACF;AACA,WAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,EACnC;AACF;AAGA,IAAI,UAAU,MAAM;AAAA,EAClB,cAAc;AACZ,SAAK,OAAO;AAAA,EACd;AAAA,EACA,MAAM,WAAW,iBAAiB,MAAM;AACtC,UAAM,OAAO;AACb,iBAAa,OAAO,YAAY,GAAG,MAAM;AAAA,QACrC,WAAW;AACf,QAAIpC;AACJ,QAAI,KAAK,SAAS,YAAY,KAAK,QAAQ,MAAM;AAC/C,MAAAA,QAAO,KAAK;AAAA,IACd,WAAW,gBAAgB;AACzB,MAAAA,QAAO,KAAK,KAAK,KAAK,OAAO,SAAS;AAAA,IACxC,OAAO;AACL,MAAAA,QAAO,KAAK,MAAM,KAAK,OAAO,SAAS;AAAA,IACzC;AACA,WAAO,sBAAsB,YAAY;AACvC,cAAQ,MAAM,KAAK,SAAS,GAAG,iBAAiB,WAAW,gBAAgB,eAAe;AAAA,IAC5F,GAAGA,KAAI;AAAA,EACT;AAAA,EACA,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,QAAIA;AACJ,QAAI,KAAK,SAAS,YAAY,QAAQ,SAAS,UAAU;AACvD,MAAAA,QAAO;AAAA,IACT,WAAW,KAAK,QAAQ,QAAQ,QAAQ,QAAQ,MAAM;AACpD,MAAAA,QAAO,KAAK,OAAO,QAAQ;AAAA,IAC7B,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,aAAa,MAAM,KAAK,SAAS,GAAG,YAAY,MAAM,QAAQ,SAAS,CAAC,GAAGA,KAAI;AAAA,EAC9G;AAAA,EACA,OAAO,WAAW;AAChB,UAAM,OAAO;AACb,QAAIA;AACJ,QAAI,KAAK,SAAS,UAAU;AAC1B,MAAAA,QAAO;AAAA,IACT,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,YAAY;AACvC,cAAQ,MAAM,KAAK,SAAS,GAAG,OAAO,CAAC,MAAM,KAAK,MAAM,UAAU,CAAC,CAAC,CAAC;AAAA,IACvE,GAAGA,KAAI;AAAA,EACT;AAAA,EACA,MAAM,aAAa,GAAG;AACpB,YAAQ,MAAM,KAAK,SAAS,GAAG,aAAa,CAAC;AAAA,EAC/C;AAAA,EACA,IAAI,YAAY;AACd,UAAM,OAAO;AACb,WAAO,sBAAsB,YAAY;AACvC,cAAQ,MAAM,KAAK,SAAS,GAAG,IAAI,CAAC,MAAM,KAAK,MAAM,WAAW,CAAC,CAAC,CAAC;AAAA,IACrE,GAAG,KAAK,IAAI;AAAA,EACd;AAAA,EACA,SAAS,YAAY;AACnB,UAAM,OAAO;AACb,WAAO,sBAAsB,YAAY;AACvC,cAAQ,MAAM,KAAK,SAAS,GAAG,SAAS,UAAU;AAAA,IACpD,GAAG,KAAK,IAAI;AAAA,EACd;AAAA,EACA,SAAS,YAAY;AACnB,QAAI,cAAc,MAAM;AACtB,YAAM,IAAI,WAAW,2DAA2D;AAAA,IAClF;AACA,UAAM,OAAO;AACb,WAAO,sBAAsB,aAAa,MAAM,KAAK,SAAS,GAAG,SAAS,UAAU,GAAG,KAAK,IAAI;AAAA,EAClG;AAAA,EACA,OAAOO,SAAQ;AACb,UAAM,OAAO;AACb,QAAIP;AACJ,QAAI,KAAK,QAAQ,QAAQO,UAAS,GAAG;AACnC,MAAAP,QAAO,KAAK,OAAOO;AAAA,IACrB,WAAWA,YAAW,GAAG;AACvB,MAAAP,QAAO;AAAA,IACT,WAAW,KAAK,QAAQ,SAASO,YAAW,UAAUA,UAAS,IAAI;AACjE,MAAAP,QAAO;AAAA,IACT,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,YAAY;AACvC,YAAM,mBAAmB,qBAAqB,aAAa,EAAE,OAAO,MAAM,KAAK,SAAS,GAAG,MAAM,MAAM,EAAE;AACzG,aAAO,yBAAyB,iBAAiB,KAAKO,OAAM,CAAC;AAAA,IAC/D,GAAGP,KAAI;AAAA,EACT;AAAA,EACA,KAAKO,SAAQ;AACX,UAAM,OAAO;AACb,QAAIP;AACJ,QAAI,KAAK,QAAQ,QAAQO,WAAU,KAAK,KAAK,QAAQA,SAAQ;AAC3D,MAAAP,QAAO,KAAK,OAAOO;AAAA,IACrB,WAAW,KAAK,QAAQ,SAAS,KAAK,OAAOA,WAAUA,YAAW,UAAUA,UAAS,IAAI;AACvF,MAAAP,QAAO;AAAA,IACT,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,aAAa,MAAM,KAAK,SAAS,GAAG,KAAKO,OAAM,GAAGP,KAAI;AAAA,EACrF;AAAA,EACA,QAAQ,YAAY,MAAM,yBAAyB,MAAM;AACvD,QAAI,cAAc,QAAQ,aAAa,GAAG;AACxC,UAAI,KAAK,QAAQ,MAAM;AACrB,cAAM,IAAI,WAAW,0DAA0D;AAAA,MACjF,OAAO;AACL,cAAM,IAAI,WAAW,mNAAmN,KAAK,gBAAgB;AAAA,MAC/P;AAAA,IACF;AACA,UAAM,OAAO;AACb,UAAM,SAAS,YAAY,KAAK,QAAQ,aAAa,IAAI,EAAE,SAAS,CAAC;AACrE,WAAO,sBAAsB,YAAY;AACvC,UAAI,QAAQ,OAAO,MAAM;AACzB,UAAI,wBAAwB;AAC1B,iBAAS,OAAO,MAAM;AAAA,MACxB;AACA,cAAQ,MAAM,KAAK,SAAS,GAAG,QAAQ,YAAY,MAAM,SAAS,CAAC;AAAA,IACrE,GAAG,KAAK,IAAI;AAAA,EACd;AAAA,EACA,KAAKO,SAAQ;AACX,UAAM,OAAO;AACb,QAAIP;AACJ,QAAI,KAAK,QAAQ,QAAQ,KAAK,OAAOO,SAAQ;AAC3C,MAAAP,QAAOO;AAAA,IACT,WAAW,KAAK,QAAQ,QAAQ,KAAK,QAAQA,SAAQ;AACnD,MAAAP,QAAO,KAAK;AAAA,IACd,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,aAAa,MAAM,KAAK,SAAS,GAAG,KAAKO,OAAM,GAAGP,KAAI;AAAA,EACrF;AAAA,EACA,MAAM,UAAU;AACd,QAAI,KAAK,SAAS,UAAU;AAC1B,YAAM,IAAI,MAAM,gDAAgD;AAAA,IAClE;AACA,YAAQ,MAAM,KAAK,SAAS,GAAG,QAAQ;AAAA,EACzC;AAAA,EACA,MAAM,iBAAiB;AACrB,QAAI,KAAK,SAAS,UAAU;AAC1B,YAAM,IAAI,MAAM,gDAAgD;AAAA,IAClE;AACA,YAAQ,MAAM,KAAK,SAAS,GAAG,eAAe;AAAA,EAChD;AACF;AACA,QAAQ,kBAAkB;AAC1B,SAAS,sBAAsB,YAAYA,QAAO,MAAM;AACtD,SAAO,IAAI,cAAc,QAAQ;AAAA,IAC/B,cAAc;AACZ,YAAM,GAAG,SAAS;AAClB,WAAK,OAAOA;AAAA,IACd;AAAA,IACA,MAAM,WAAW;AACf,aAAO,WAAW;AAAA,IACpB;AAAA,EACF,EAAE;AACJ;AACA,SAAS,MAAM,OAAO;AACpB,SAAO,sBAAsB,YAAY,kBAAkB,KAAK,GAAG,MAAM,MAAM;AACjF;AACA,SAAS,IAAI,UAAU;AACrB,MAAI,CAAC,YAAY,QAAQ,GAAG;AAC1B,UAAM,IAAI,MAAM,mDAAmD;AAAA,EACrE;AACA,MAAIA;AACJ,MAAI,MAAM,QAAQ,QAAQ,GAAG;AAC3B,aAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,MAAAA,QAAOA,SAAQ,OAAO,SAAS,IAAI,OAAO,KAAK,IAAIA,OAAM,SAAS,IAAI,IAAI;AAAA,IAC5E;AAAA,EACF,WAAW,oBAAoB,QAAQ;AACrC,eAAW,MAAM,UAAU;AACzB,MAAAA,QAAOA,SAAQ,OAAO,SAAS,IAAI,OAAO,KAAK,IAAIA,OAAM,SAAS,IAAI,IAAI;AAAA,IAC5E;AAAA,EACF;AACA,SAAO,sBAAsB,YAAY;AACvC,UAAM,UAAU,MAAM,mBAAmB,UAAU,CAAC,MAAM;AACxD,UAAI,aAAa,SAAS;AACxB,eAAO,EAAE,OAAO,EAAE,SAAS,GAAG,SAAS,MAAM;AAAA,MAC/C,WAAW,YAAY,CAAC,GAAG;AACzB,eAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AAAA,MACtC,OAAO;AACL,cAAM,IAAI,MAAM,2EAA2E;AAAA,MAC7F;AAAA,IACF,CAAC;AACD,WAAO,mBAAmB,SAAS,gBAAgB,QAAQ;AAAA,EAC7D,GAAGA,KAAI;AACT;AACA,SAAS,gBAAgB,MAAM;AAC7B,MAAI,SAAS,MAAM;AACjB,WAAO;AAAA,EACT;AACA,QAAM,aAAa,KAAK;AACxB,MAAI,aAAa,UAAU,GAAG;AAC5B,UAAM,QAAQ,YAAY,IAAI;AAC9B,WAAO,EAAE,OAAO,SAAS,MAAM;AAAA,EACjC;AACA,SAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AACtC;AACA,SAAS,YAAY,QAAQ;AAC3B,MAAI,OAAO,WAAW,GAAG;AACvB,UAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AACA,MAAI,OAAO,cAAc,QAAQ;AAC/B,WAAO,MAAM,MAAM;AAAA,EACrB,OAAO;AACL,WAAO,OAAO,MAAM;AAAA,EACtB;AACF;AAGA,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,QAAQ;AAClB,UAAM;AACN,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,MAAM,WAAW;AACf,UAAM,gBAAgB,MAAM,KAAK,MAAM,SAAS;AAChD,UAAM,eAAe,cAAc,WAAW;AAC9C,UAAM,eAAe,aAAa,MAAM,IAAI,EAAE,IAAI,CAAC,SAAS;AAC1D,UAAI,KAAK,SAAS,IAAI,GAAG;AACvB,eAAO,KAAK,MAAM,GAAG,EAAE;AAAA,MACzB;AACA,aAAO;AAAA,IACT,CAAC;AACD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,aAAa;AACjB,IAAI,YAAY,OAAO,KAAK;AAC5B,IAAI,cAAc,OAAO,OAAO;AAChC,IAAI,cAAc,OAAO,OAAO;AAChC,IAAI,0BAA0B,OAAO,iBAAiB;AACtD,IAAI,8BAA8B,OAAO,cAAc;AACvD,IAAI,aAAa,cAAc,QAAQ;AAAA,EACrC,YAAY,QAAQ,WAAW;AAC7B,UAAM;AACN,SAAK,QAAQ;AACb,SAAK,YAAY;AACjB,SAAK,kBAAkB;AACvB,SAAK,uBAAuB;AAC5B,SAAK,gBAAgB;AACrB,SAAK,wBAAwB;AAC7B,SAAK,YAAY;AACjB,SAAK,kBAAkB;AACvB,SAAK,OAAO,IAAI,gBAAgB,MAAM;AACtC,QAAI,CAAC,WAAW;AACd,kBAAY,CAAC;AAAA,IACf;AACA,SAAK,YAAY,UAAU,cAAc,QAAQ,QAAQ;AACzD,SAAK,kBAAkB,UAAU;AACjC,SAAK,gBAAgB,UAAU;AAC/B,SAAK,wBAAwB,UAAU;AACvC,QAAI,UAAU,iBAAiB;AAC7B,mBAAa,OAAO,UAAU,aAAa,MAAM,MAAM,gEAAgE;AACvH,WAAK,kBAAkB;AACvB,WAAK,YAAY;AAAA,IACnB,OAAO;AACL,WAAK,YAAY,UAAU,YAAY,UAAU,YAAY;AAAA,IAC/D;AAAA,EACF;AAAA,EACA,MAAM,cAAc;AAClB,QAAI,CAAC,KAAK,sBAAsB;AAC9B,YAAM,KAAK,eAAe;AAAA,IAC5B;AACA,WAAO,KAAK,wBAAwB,OAAO,KAAK,KAAK,aAAa,IAAI,KAAK;AAAA,EAC7E;AAAA,EACA,MAAM,iBAAiB;AACrB,UAAM,sBAAsB,MAAM,KAAK,oBAAoB;AAC3D,QAAI,CAAC,KAAK,mBAAmB,CAAC,qBAAqB;AACjD,YAAM,IAAI,MAAM,2DAA2D;AAAA,IAC7E,WAAW,KAAK,mBAAmB,qBAAqB;AACtD,mBAAa,OAAO,oBAAoB,WAAW,KAAK,gBAAgB,QAAQ,MAAM,yCAAyC,KAAK,gBAAgB,OAAO,SAAS,IAAI,oEAAoE,oBAAoB,OAAO,SAAS,IAAI,IAAI;AAAA,IAC1R;AACA,QAAI,CAAC,KAAK,iBAAiB;AACzB,WAAK,kBAAkB;AAAA,IACzB;AACA,UAAM,SAAS,KAAK,gBAAgB,OAAO,CAAC,UAAU,SAAS;AAC7D,eAAS,QAAQ,SAAS,QAAQ,KAAK;AACvC,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AACL,UAAM,iBAAiB,OAAO,KAAK,MAAM,EAAE,OAAO,CAAC,SAAS,OAAO,QAAQ,CAAC;AAC5E,iBAAa,OAAO,eAAe,WAAW,GAAG,MAAM,mCAAmC,eAAe,SAAS,CAAC;AACnH,QAAI,KAAK,eAAe;AACtB,iBAAW,OAAO,OAAO,KAAK,KAAK,aAAa,GAAG;AACjD,cAAMU,SAAQ,KAAK,gBAAgB,QAAQ,GAAG;AAC9C,YAAIA,WAAU,IAAI;AAChB,gBAAM,IAAI,MAAM,cAAc,MAAM,yEAAyE,KAAK,gBAAgB,SAAS,IAAI,IAAI;AAAA,QACrJ;AAAA,MACF;AAAA,IACF;AACA,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,MAAM,sBAAsB;AAC1B,QAAI,KAAK,WAAW;AAClB,YAAM,OAAO,MAAM,KAAK,KAAK,SAAS;AACtC,YAAM,eAAe,MAAM,KAAK,KAAK;AACrC,UAAI,aAAa,MAAM;AACrB,cAAM,IAAI,MAAM,oCAAoC;AAAA,MACtD;AACA,YAAM,YAAY,aAAa;AAC/B,YAAM,UAAU,KAAK,SAAS,WAAW,KAAK;AAC9C,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,MAAM,WAAW;AACf,QAAI,CAAC,KAAK,sBAAsB;AAC9B,YAAM,KAAK,eAAe;AAAA,IAC5B;AACA,QAAIQ,SAAQ,MAAM,KAAK,KAAK,SAAS;AACrC,QAAI,KAAK,WAAW;AAClB,MAAAA,SAAQA,OAAM,KAAK,CAAC;AAAA,IACtB;AACA,WAAOA,OAAM,IAAI,CAAC,MAAM,KAAK,gBAAgB,CAAC,CAAC;AAAA,EACjD;AAAA,EACA,gBAAgB,MAAM;AACpB,UAAM,SAAS,KAAK,SAAS,IAAI;AACjC,UAAM,WAAW,CAAC;AAClB,UAAME,UAAS,CAAC;AAChB,aAAS,KAAK,GAAG,KAAK,KAAK,gBAAgB,QAAQ,MAAM;AACvD,YAAM,MAAM,KAAK,gBAAgB;AACjC,YAAML,UAAS,KAAK,gBAAgB,KAAK,cAAc,OAAO;AAC9D,UAAI,KAAK,yBAAyB,CAACA,SAAQ;AACzC;AAAA,MACF,OAAO;AACL,cAAM,QAAQ,OAAO;AACrB,YAAI,cAAc;AAClB,YAAI,UAAU,IAAI;AAChB,cAAIA,WAAUA,QAAO,YAAY,QAAQ;AACvC,0BAAcA,QAAO;AAAA,UACvB,WAAWA,YAAWA,QAAO,YAAYA,QAAO,UAAU;AACxD,kBAAM,IAAI,MAAM,mBAAmB,8BAA8B,MAAM;AAAA,UACzE,OAAO;AACL,0BAAc;AAAA,UAChB;AAAA,QACF,OAAO;AACL,gBAAM,aAAa,OAAO,KAAK;AAC/B,cAAI,MAAM,UAAU,GAAG;AACrB,gBAAIA,WAAUA,QAAO,UAAU,QAAQ;AACrC,4BAAc,KAAK,WAAW,KAAK;AAAA,YACrC,OAAO;AACL,4BAAc;AAAA,YAChB;AAAA,UACF,WAAW,CAACA,WAAU,CAACA,QAAO,OAAO;AACnC,0BAAc;AAAA,UAChB,OAAO;AACL,oBAAQA,QAAO;AAAA,mBACR;AACH,8BAAc;AACd;AAAA,mBACG;AACH,8BAAc,KAAK,MAAM,UAAU;AACnC;AAAA,mBACG;AACH,8BAAc,KAAK,WAAW,KAAK;AACnC;AAAA;AAEA,8BAAc;AAAA;AAAA,UAEpB;AAAA,QACF;AACA,QAAAA,WAAUA,QAAO,UAAUK,QAAO,OAAO,cAAc,SAAS,OAAO;AAAA,MACzE;AAAA,IACF;AACA,QAAI,OAAO,KAAKA,OAAM,EAAE,WAAW,GAAG;AACpC,aAAO;AAAA,IACT,OAAO;AACL,aAAO,EAAE,IAAI,UAAU,IAAIA,QAAO;AAAA,IACpC;AAAA,EACF;AAAA,EACA,WAAW,OAAO;AAChB,QAAI,UAAU,OAAO,MAAM,YAAY,MAAM,QAAQ;AACnD,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,SAAS,MAAM,uBAAuB,MAAM;AAC1C,UAAM,SAAS,CAAC;AAChB,QAAI,aAAa;AACjB,UAAM,aAAa,KAAK;AACxB,QAAI,eAAe;AACnB,aAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,cAAQ;AAAA,aACD;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf;AACH,2BAAa,KAAK;AAClB,6BAAe;AACf;AAAA,iBACG,KAAK;AACR,2BAAa,KAAK;AAClB,kBAAI,KAAK,cAAc,OAAO,KAAK,iBAAiB;AAClD;AAAA,cACF;AACA,qBAAO,KAAK,EAAE;AACd,6BAAe;AACf;AAAA;AAEA,6BAAe;AACf,2BAAa;AACb;AAAA;AAEJ;AAAA,aACG;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf,KAAK;AACR,qBAAO,KAAK,KAAK,UAAU,YAAY,EAAE,CAAC;AAC1C,6BAAe;AACf,2BAAa,KAAK;AAClB;AAAA;AAAA;AAGJ;AAAA,aACG;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf;AACH,6BAAe;AACf;AAAA;AAAA;AAGJ;AAAA,aACG;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf,KAAK;AACR,qBAAO,KAAK,KAAK,UAAU,YAAY,KAAK,CAAC,CAAC;AAC9C,6BAAe;AACf,2BAAa,KAAK;AAClB;AAAA,iBACG;AACH,6BAAe;AACf;AAAA;AAEA,6BAAe;AACf;AAAA;AAEJ;AAAA,aACG;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf;AACH,6BAAe;AACf;AAAA;AAAA;AAGJ;AAAA;AAAA;AAAA,IAGN;AACA,QAAI,iBAAiB,yBAAyB;AAC5C,aAAO,KAAK,KAAK,UAAU,YAAY,aAAa,CAAC,CAAC;AAAA,IACxD,OAAO;AACL,aAAO,KAAK,KAAK,UAAU,UAAU,CAAC;AAAA,IACxC;AACA,QAAI,wBAAwB,OAAO,WAAW,KAAK,gBAAgB,QAAQ;AACzE,YAAM,IAAI,MAAM,wCAAwC,KAAK,gBAAgB,qCAAqC,QAAQ;AAAA,IAC5H;AACA,WAAO;AAAA,EACT;AACF;AAGA,IAAI,qBAAqB,cAAc,aAAa;AAAA,EAClD,YAAY,kBAAkB;AAC5B,UAAM;AACN,SAAK,mBAAmB;AACxB,SAAK,WAAW;AAChB,SAAK,UAAU,iBAAiB,WAAW;AAC3C,UAAM,cAAc,KAAK,KAAK,KAAK,OAAO;AAC1C,QAAI,KAAK,UAAU,KAAK,cAAc,KAAK,cAAc,MAAM,CAAC,OAAO,UAAU,WAAW,GAAG;AAC7F,YAAM,IAAI,MAAM,gFAAgF,KAAK,SAAS;AAAA,IAChH;AACA,SAAK,YAAY,iBAAiB,2BAA2B;AAC7D,SAAK,eAAe,iBAAiB;AACrC,SAAK,uBAAuB,iBAAiB,wBAAwB,KAAK;AAC1E,SAAK,wBAAwB,iBAAiB;AAC9C,SAAK,wBAAwB,iBAAiB,yBAAyB;AACvE,SAAK,qBAAqB,iBAAiB,uBAAuB,QAAQ,QAAQ;AAClF,SAAK,kBAAkB,iBAAiB,oBAAoB,OAAO,OAAO;AAC1E,QAAI,CAAC,KAAK,sBAAsB,CAAC,KAAK,iBAAiB;AACrD,YAAM,IAAI,MAAM,sGAAsG;AAAA,IACxH;AAAA,EACF;AAAA,EACA,UAAU;AACR,WAAO;AAAA,EACT;AAAA,EACA,aAAa,OAAO,mBAAmB,CAAC,GAAG;AACzC,QAAI,CAAC,IAAI,EAAE,IAAI,YAAY,GAAG;AAC5B,YAAM,IAAI,MAAM,0DAA0D;AAAA,IAC5E;AACA,UAAM,qBAAqB,IAAI,mBAAmB,gBAAgB;AAClE,UAAM,mBAAmB,MAAM;AAC/B,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ;AACZ,QAAI;AACF,WAAK,SAAS,MAAM,UAAU,aAAa,aAAa;AAAA,QACtD,OAAO,KAAK,yBAAyB,OAAO,OAAO,KAAK;AAAA,QACxD,OAAO;AAAA,MACT,CAAC;AAAA,IACH,SAAS,IAAP;AACA,YAAM,IAAI,MAAM,iDAAiD,GAAG,SAAS;AAAA,IAC/E;AACA,QAAI,CAAC,KAAK,QAAQ;AAChB,YAAM,IAAI,MAAM,yCAAyC;AAAA,IAC3D;AACA,UAAM,iBAAiB,OAAO,gBAAgB,OAAO;AACrD,SAAK,eAAe,IAAI,eAAe;AACvC,QAAI,CAAC,KAAK,cAAc;AACtB,WAAK,eAAe,KAAK,aAAa;AAAA,IACxC,WAAW,KAAK,aAAa,eAAe,KAAK,cAAc;AAC7D,YAAM,IAAI,MAAM,wCAAwC,KAAK,yBAAyB,KAAK,aAAa,YAAY;AAAA,IACtH;AACA,UAAM,eAAe,KAAK,aAAa,wBAAwB,KAAK,MAAM;AAC1E,SAAK,WAAW,KAAK,aAAa,eAAe;AACjD,SAAK,SAAS,UAAU,KAAK,UAAU;AACvC,SAAK,SAAS,wBAAwB,KAAK;AAC3C,iBAAa,QAAQ,KAAK,QAAQ;AAClC,SAAK,WAAW,IAAI,aAAa,KAAK,OAAO;AAC7C,SAAK,WAAW,IAAI,aAAa,KAAK,OAAO;AAC7C;AAAA,EACF;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,UAAU;AACjB,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,QAAI;AACJ,QAAI;AACJ,UAAM,iBAAiB,MAAM,KAAK,aAAa;AAC/C,QAAI,KAAK,oBAAoB;AAC3B,YAAM,WAAW,KAAK,aAAa,eAAe,aAAa;AAC/D,0BAAoB,KAAK,4BAA4B,UAAU,CAAC,KAAK,WAAW,KAAK,sBAAsB,CAAC,CAAC;AAAA,IAC/G;AACA,QAAI,KAAK,iBAAiB;AACxB,YAAM,WAAW,KAAK,aAAa,eAAe,aAAa;AAC/D,uBAAiB,KAAK,4BAA4B,UAAU,CAAC,KAAK,YAAY,KAAK,SAAS,CAAC,CAAC;AAAA,IAChG;AACA,WAAO;AAAA,MACL,OAAO,EAAE,eAAe,mBAAmB,YAAY,eAAe;AAAA,MACtE,MAAM;AAAA,IACR;AAAA,EACF;AAAA,EACA,MAAM,UAAU;AACd,YAAQ,MAAM,KAAK,KAAK,GAAG;AAAA,EAC7B;AAAA,EACA,MAAM,eAAe;AACnB,UAAM,gBAAgB,CAAC;AACvB,UAAM,gBAAgB,CAAC;AACvB,QAAI,gBAAgB;AACpB,WAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,YAAM,aAAa,YAAY,MAAM;AACnC,YAAI,KAAK,oBAAoB;AAC3B,eAAK,SAAS,sBAAsB,KAAK,QAAQ;AACjD,cAAI,KAAK,SAAS,OAAO,WAAW;AAClC,oBAAQ,EAAE,eAAe,cAAc,CAAC;AAAA,UAC1C;AACA,wBAAc,KAAK,KAAK,SAAS,MAAM,GAAG,KAAK,oBAAoB,CAAC;AAAA,QACtE;AACA,YAAI,KAAK,iBAAiB;AACxB,eAAK,SAAS,uBAAuB,KAAK,QAAQ;AAClD,wBAAc,KAAK,KAAK,SAAS,MAAM,CAAC;AAAA,QAC1C;AACA,YAAI,EAAE,kBAAkB,KAAK,WAAW;AACtC,wBAAc,UAAU;AACxB,kBAAQ,EAAE,eAAe,cAAc,CAAC;AAAA,QAC1C;AAAA,MACF,GAAG,KAAK,UAAU,KAAK,eAAe,GAAG;AAAA,IAC3C,CAAC;AAAA,EACH;AAAA,EACA,OAAO;AACL,QAAI,CAAC,KAAK,UAAU;AAClB,WAAK,WAAW;AAChB,WAAK,SAAS,WAAW;AACzB,WAAK,aAAa,MAAM;AACxB,UAAI,KAAK,UAAU,QAAQ,KAAK,OAAO,UAAU,EAAE,SAAS,GAAG;AAC7D,aAAK,OAAO,UAAU,EAAE,GAAG,KAAK;AAAA,MAClC;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU;AACR,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AAAA,EACA,gBAAgB;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,aAAa,OAAO;AAClB,UAAM,YAAY,MAAM,GAAG;AAC3B,UAAM,WAAW,IAAI,aAAa,MAAM,SAAS,SAAS;AAC1D,UAAM,QAAQ,CAAC,MAAM,OAAO,SAAS,IAAI,MAAM,KAAK,SAAS,CAAC;AAC9D,WAAO;AAAA,EACT;AAAA,EACA,4BAA4B,UAAU,OAAO;AAC3C,UAAM,OAAO,IAAI,aAAa,aAAa,cAAc,KAAK,CAAC;AAC/D,SAAK,IAAI,UAAU,KAAK,SAAS,SAAS,MAAM;AAChD,WAAO,OAAO,MAAM,KAAK;AAAA,EAC3B;AACF;AAGA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,YAAY,oBAAoB,cAAc;AAC5C,UAAM;AACN,SAAK,qBAAqB;AAC1B,SAAK,eAAe;AACpB,SAAK,WAAW;AAChB,SAAK,SAAS;AACd,QAAI,KAAK,aAAa,GAAG;AACvB,WAAK,SAAS;AACd,WAAK,WAAW,CAAC,KAAK,aAAa,cAAc,KAAK,aAAa,WAAW;AAC9E,WAAK,aAAa,SAAS,CAAC,CAAC,GAAG,OAAO;AACvC,UAAI,KAAK,aAAa,YAAY;AAChC,cAAM,qBAAqB,KAAK,aAAa,cAAc,IAAI,KAAK,mBAAmB;AACvF,cAAM,sBAAsB,KAAK,aAAa,eAAe,IAAI,KAAK,mBAAmB;AACzF,cAAM,kBAAkB,IAAI,sBAAsB;AAClD,cAAM,mBAAmB,IAAI,uBAAuB;AACpD,cAAM,eAAe,iBAAiB;AACtC,cAAM,gBAAgB,sBAAsB;AAC5C,aAAK,UAAU,SAAS,CAAC,iBAAiB,gBAAgB,eAAe,YAAY,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,MAChG,OAAO;AACL,aAAK,UAAU,SAAS,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,MAC9C;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU;AACR,WAAO;AAAA,EACT;AAAA,EACA,aAAa,OAAO,oBAAoB,eAAe,CAAC,GAAG;AACzD,QAAI,CAAC,IAAI,EAAE,IAAI,YAAY,GAAG;AAC5B,YAAM,IAAI,MAAM,0DAA0D;AAAA,IAC5E;AACA,QAAI,CAAC,oBAAoB;AACvB,2BAAqB,SAAS,cAAc,OAAO;AACnD,UAAI,CAAC,aAAa,eAAe,CAAC,aAAa,cAAc;AAC3D,cAAM,IAAI,MAAM,wGAAwG;AAAA,MAC1H;AACA,yBAAmB,QAAQ,aAAa;AACxC,yBAAmB,SAAS,aAAa;AAAA,IAC3C;AACA,UAAM,iBAAiB,IAAI,eAAe,oBAAoB,YAAY;AAC1E,UAAM,eAAe,MAAM;AAC3B,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ;AACZ,QAAI,KAAK,aAAa,YAAY;AAChC,mBAAa,OAAO,KAAK,aAAa,eAAe,UAAU,KAAK,aAAa,eAAe,eAAe,MAAM,+BAA+B,KAAK,aAAa,oDAAoD;AAAA,IAC5N;AACA,QAAI;AACF,WAAK,SAAS,MAAM,UAAU,aAAa,aAAa;AAAA,QACtD,OAAO;AAAA,UACL,UAAU,KAAK,aAAa;AAAA,UAC5B,YAAY,KAAK,aAAa,aAAa,KAAK,aAAa,aAAa;AAAA,UAC1E,OAAO,KAAK,mBAAmB;AAAA,UAC/B,QAAQ,KAAK,mBAAmB;AAAA,QAClC;AAAA,MACF,CAAC;AAAA,IACH,SAAS,IAAP;AACA,SAAG,UAAU,iDAAiD,GAAG;AACjE,YAAM;AAAA,IACR;AACA,QAAI,CAAC,KAAK,QAAQ;AAChB,YAAM,IAAI,MAAM,qCAAqC;AAAA,IACvD;AACA,QAAI;AACF,WAAK,mBAAmB,YAAY,KAAK;AAAA,IAC3C,SAAS,OAAP;AACA,cAAQ,IAAI,KAAK;AACjB,WAAK,mBAAmB,MAAM,OAAO,IAAI,gBAAgB,KAAK,MAAM;AAAA,IACtE;AACA,SAAK,mBAAmB,KAAK;AAC7B,SAAK,WAAW;AAChB,WAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,WAAK,mBAAmB,mBAAmB,MAAM;AAC/C,gBAAQ;AAAA,MACV;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,UAAU;AACjB,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,QAAI;AACJ,QAAI;AACF,YAAM,gBAAgB,WAAW,KAAK,kBAAkB;AAAA,IAC1D,SAAS,IAAP;AACA,YAAM,IAAI,MAAM,4CAA4C,KAAK,UAAU,EAAE,GAAG;AAAA,IAClF;AACA,QAAI,KAAK,QAAQ;AACf,UAAI;AACF,eAAO,EAAE,OAAO,KAAK,mBAAmB,GAAG,GAAG,MAAM,MAAM;AAAA,MAC5D,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,oCAAoC,GAAG,SAAS;AAAA,MAClE,UAAE;AACA,YAAI,QAAQ;AAAA,MACd;AAAA,IACF,OAAO;AACL,aAAO,EAAE,OAAO,KAAK,MAAM,MAAM;AAAA,IACnC;AAAA,EACF;AAAA,EACA,eAAe;AACb,QAAI,KAAK,aAAa,eAAe,KAAK,aAAa,iBAAiB,KAAK,mBAAmB,UAAU,KAAK,aAAa,eAAe,KAAK,mBAAmB,WAAW,KAAK,aAAa,eAAe;AAC7M,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA,EACA,mBAAmB,KAAK;AACtB,WAAO,KAAK,MAAM;AAChB,YAAM,gBAAgB,WAAW,KAAK,KAAK,SAAS,GAAG,CAAC;AACxD,UAAI;AACJ,qBAAe,MAAM,cAAc,eAAe,KAAK,SAAS,KAAK,YAAY,KAAK,UAAU,UAAU;AAC1G,YAAM,QAAQ,aAAa;AAC3B,aAAO,QAAQ,cAAc,MAAM,MAAM,CAAC,CAAC;AAAA,IAC7C,CAAC;AAAA,EACH;AAAA,EACA,MAAM,UAAU;AACd,YAAQ,MAAM,KAAK,KAAK,GAAG;AAAA,EAC7B;AAAA,EACA,OAAO;AACL,UAAM,SAAS,KAAK,OAAO,UAAU;AACrC,WAAO,QAAQ,CAAC,UAAU,MAAM,KAAK,CAAC;AACtC,QAAI;AACF,WAAK,mBAAmB,YAAY;AAAA,IACtC,SAAS,OAAP;AACA,cAAQ,IAAI,KAAK;AACjB,WAAK,mBAAmB,MAAM;AAAA,IAChC;AACA,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,UAAU;AACR,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AACF;AAGA,IAAI,aAAa,MAAM;AACvB;AAGA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,MAAM,WAAW;AACf,WAAO,IAAI,cAAc,MAAM,SAAS;AAAA,EAC1C;AACF;AACA,IAAI,gBAAgB,cAAc,eAAe;AAAA,EAC/C,YAAY,UAAU,WAAW;AAC/B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,OAAO,IAAI,kBAAkB,UAAU,SAAS;AAAA,EACvD;AAAA,EACA,UAAU;AACR,WAAO,KAAK,KAAK,QAAQ;AAAA,EAC3B;AAAA,EACA,MAAM,OAAO;AACX,WAAO,KAAK,KAAK,KAAK;AAAA,EACxB;AACF;AACA,IAAI,oBAAoB,cAAc,kBAAkB;AAAA,EACtD,YAAY,UAAU,WAAW;AAC/B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AACjB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ,eAAe,KAAK;AAAA,EACtD;AAAA,EACA,MAAM,OAAO;AACX,UAAM,cAAc,MAAM,KAAK,SAAS,KAAK;AAC7C,QAAI,YAAY,MAAM;AACpB,UAAI,KAAK,cAAc,IAAI;AACzB,eAAO;AAAA,MACT;AACA,WAAK,YAAY,KAAK,KAAK,SAAS;AACpC,WAAK,YAAY;AACjB,aAAO;AAAA,IACT;AACA,UAAMF,SAAQ,YAAY,MAAM,MAAM,KAAK,SAAS;AACpD,IAAAA,OAAM,KAAK,KAAK,YAAYA,OAAM;AAClC,eAAW,QAAQA,OAAM,MAAM,GAAG,EAAE,GAAG;AACrC,WAAK,YAAY,KAAK,IAAI;AAAA,IAC5B;AACA,SAAK,YAAYA,OAAMA,OAAM,SAAS;AACtC,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB,cAAc,aAAa;AAAA,EACjD,aAAa;AACX,WAAO,IAAI,aAAa,IAAI;AAAA,EAC9B;AACF;AACA,IAAI,eAAe,cAAc,eAAe;AAAA,EAC9C,YAAY,UAAU;AACpB,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,OAAO,IAAI,iBAAiB,QAAQ;AAAA,EAC3C;AAAA,EACA,UAAU;AACR,WAAO,KAAK,KAAK,QAAQ;AAAA,EAC3B;AAAA,EACA,MAAM,OAAO;AACX,WAAO,KAAK,KAAK,KAAK;AAAA,EACxB;AACF;AACA,IAAI,mBAAmB,cAAc,kBAAkB;AAAA,EACrD,YAAY,UAAU;AACpB,UAAM;AACN,SAAK,WAAW;AAChB,QAAI,IAAI,EAAE,IAAI,YAAY,GAAG;AAC3B,WAAK,UAAU,IAAI,YAAY,OAAO;AAAA,IACxC,OAAO;AACL,YAAM,EAAE,cAAc,IAAI,uBAAuB;AACjD,WAAK,UAAU,IAAI,cAAc,MAAM;AAAA,IACzC;AAAA,EACF;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,UAAM,cAAc,MAAM,KAAK,SAAS,KAAK;AAC7C,QAAI;AACJ,QAAI,YAAY,MAAM;AACpB,aAAO;AAAA,IACT,OAAO;AACL,cAAQ,YAAY;AAAA,IACtB;AACA,QAAI;AACJ,QAAI,IAAI,EAAE,IAAI,YAAY,GAAG;AAC3B,aAAO,KAAK,QAAQ,OAAO,OAAO,EAAE,QAAQ,KAAK,CAAC;AAAA,IACpD,OAAO;AACL,aAAO,KAAK,QAAQ,MAAM,OAAO,KAAK,MAAM,MAAM,CAAC;AAAA,IACrD;AACA,SAAK,YAAY,KAAK,IAAI;AAC1B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB,cAAc,kBAAkB;AAAA,EACtD,YAAY,MAAMZ,WAAU,CAAC,GAAG;AAC9B,UAAM;AACN,SAAK,OAAO;AACZ,SAAK,UAAUA;AACf,iBAAa,OAAO,gBAAgB,eAAe,IAAI,EAAE,IAAI,YAAY,IAAI,gBAAgB,QAAQ,gBAAgB,OAAO,QAAQ,MAAM,sEAAsE;AAChN,SAAK,SAASA,SAAQ,UAAU;AAChC,SAAK,YAAYA,SAAQ,aAAa,OAAO;AAAA,EAC/C;AAAA,EACA,UAAU;AACR,WAAO,cAAc,KAAK;AAAA,EAC5B;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,WAAW,KAAK,gBAAgB,aAAa,KAAK,KAAK,aAAa,KAAK,KAAK,OAAO;AAC5F,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,UAAM,QAAQ,IAAI,QAAQ,CAAC,SAAS,WAAW;AAC7C,YAAM,MAAM,KAAK,SAAS,KAAK;AAC/B,UAAI,KAAK,gBAAgB,YAAY;AACnC,gBAAQ,IAAI,WAAW,KAAK,KAAK,MAAM,KAAK,QAAQ,GAAG,CAAC,CAAC;AAAA,MAC3D,OAAO;AACL,cAAM,aAAa,IAAI,WAAW;AAClC,mBAAW,SAAS,CAAC,UAAU;AAC7B,cAAI,OAAO,WAAW;AACtB,cAAI,gBAAgB,aAAa;AAC/B,mBAAO,IAAI,WAAW,IAAI;AAAA,UAC5B;AACA,cAAI,EAAE,gBAAgB,aAAa;AACjC,mBAAO,OAAO,IAAI,UAAU,mCAAmC,CAAC;AAAA,UAClE;AACA,kBAAQ,IAAI;AAAA,QACd;AACA,mBAAW,UAAU,CAAC,UAAU;AAC9B,iBAAO,OAAO,IAAI,MAAM,SAAS,CAAC;AAAA,QACpC;AACA,mBAAW,UAAU,CAAC,UAAU;AAC9B,iBAAO,OAAO,IAAI,MAAM,MAAM,IAAI,CAAC;AAAA,QACrC;AACA,cAAM,SAAS,KAAK,KAAK,MAAM,KAAK,QAAQ,GAAG;AAC/C,mBAAW,kBAAkB,MAAM;AAAA,MACrC;AACA,WAAK,SAAS;AAAA,IAChB,CAAC;AACD,WAAO,EAAE,OAAO,MAAM,OAAO,MAAM,MAAM;AAAA,EAC3C;AACF;AAGA,eAAe,iBAAiB,KAAKA,WAAU,CAAC,GAAG,WAAW;AAC5D,MAAI;AACJ,MAAI;AACJ,MAAI,OAAO,QAAQ,UAAU;AAC3B,gBAAY;AAAA,EACd,OAAO;AACL,gBAAY,IAAI;AAChB,kBAAc,0BAA0B,GAAG;AAAA,EAC7C;AACA,QAAM,WAAW,OAAO,aAAa,aAAa,OAAO,WAAW,WAAW;AAC/E,MAAI,SAAS,IAAI;AACf,UAAM,aAAa,IAAI,WAAW,MAAM,SAAS,YAAY,CAAC;AAC9D,WAAO,IAAI,kBAAkB,YAAYA,QAAO;AAAA,EAClD,OAAO;AACL,UAAM,IAAI,MAAM,SAAS,UAAU;AAAA,EACrC;AACF;AACA,IAAI,4BAA4B,CAAC,YAAY;AAC3C,QAAMF,SAAQ;AAAA,IACZ,QAAQ,QAAQ;AAAA,IAChB,SAAS,QAAQ;AAAA,IACjB,MAAM,QAAQ;AAAA,IACd,MAAM,QAAQ;AAAA,IACd,aAAa,QAAQ;AAAA,IACrB,OAAO,QAAQ;AAAA,IACf,UAAU,QAAQ;AAAA,IAClB,UAAU,QAAQ;AAAA,IAClB,WAAW,QAAQ;AAAA,EACrB;AACA,SAAOA;AACT;AAGA,SAAS,YAAY,QAAQ;AAC3B,SAAO,OAAO,WAAW,YAAY,OAAO,MAAM,GAAG,CAAC,MAAM;AAC9D;AAGA,IAAI,iBAAiB,cAAc,WAAW;AAAA,EAC5C,YAAY,QAAQE,WAAU,CAAC,GAAG;AAChC,UAAM;AACN,SAAK,QAAQ;AACb,SAAK,UAAUA;AAAA,EACjB;AAAA,EACA,MAAM,WAAW;AACf,QAAI,YAAY,KAAK,KAAK,KAAK,IAAI,EAAE,IAAI,SAAS,GAAG;AACnD,YAAM,KAAK,WAAW;AACtB,WAAK,QAAQ,GAAG,aAAa,KAAK,MAAM,MAAM,CAAC,CAAC;AAAA,IAClD;AACA,WAAO,IAAI,kBAAkB,KAAK,OAAO,KAAK,OAAO;AAAA,EACvD;AACF;AAGA,IAAI,gBAAgB,cAAc,WAAW;AAAA,EAC3C,YAAY,KAAK,cAAc,CAAC,GAAG;AACjC,UAAM;AACN,SAAK,MAAM;AACX,SAAK,cAAc;AAAA,EACrB;AAAA,EACA,MAAM,WAAW;AACf,QAAI,YAAY,KAAK,GAAG,GAAG;AACzB,aAAO,IAAI,eAAe,KAAK,KAAK,KAAK,WAAW,EAAE,SAAS;AAAA,IACjE,OAAO;AACL,aAAO,iBAAiB,KAAK,KAAK,KAAK,WAAW;AAAA,IACpD;AAAA,EACF;AACF;AAGA,SAAS,IAAI,QAAQ,YAAY,CAAC,GAAG;AACnC,SAAO,IAAI,WAAW,IAAI,cAAc,MAAM,GAAG,SAAS;AAC5D;AACA,SAAS,KAAK,GAAG;AACf,QAAM,OAAO,qBAAqB,CAAC;AACnC,SAAO,sBAAsB,YAAY,IAAI;AAC/C;AACA,SAAS,UAAU,YAAY;AAC7B,SAAO,sBAAsB,YAAY;AACvC,UAAM,MAAM,MAAM,WAAW;AAC7B,WAAO,qBAAqB,MAAM,IAAI,KAAK,CAAC;AAAA,EAC9C,CAAC;AACH;AACA,eAAe,OAAO,oBAAoB,cAAc;AACtD,SAAO,eAAe,OAAO,oBAAoB,YAAY;AAC/D;AACA,eAAe,WAAW,kBAAkB;AAC1C,SAAO,mBAAmB,OAAO,gBAAgB;AACnD;AAGA,IAAI,WAAW;AAGf,SAAS,iBAAiB,SAAS,QAAQ;AACzC,MAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAC3B,cAAU,CAAC,OAAO;AAAA,EACpB;AACA,UAAQ,QAAQ,CAAC,OAAO;AACtB,QAAI,MAAM,MAAM;AACd,mBAAa,OAAO,GAAG,UAAU,aAAa,MAAM,GAAG,+DAA+D;AAAA,IACxH;AAAA,EACF,CAAC;AACH;AAGA,IAAI,aAAa,qBAAqB;AACtC,IAAI,iBAAiB,cAAc,cAAc;AAAA,EAC/C,cAAc;AACZ,UAAM;AACN,SAAK,YAAY;AACjB,SAAK,WAAW;AAChB,SAAK,OAAO,IAAI,YAAY,MAAM,OAAO,CAAC;AAAA,EAC5C;AAAA,EACA,aAAa;AACX,WAAO,eAAe;AAAA,EACxB;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,QAAI,KAAK,UAAU;AACjB,WAAK,WAAW;AAChB,UAAI,IAAI,EAAE,IAAI,SAAS,GAAG;AACxB,6BAAqB,KAAK,oPAAoP;AAAA,MAChR;AAAA,IACF;AACA,UAAM,SAAS,EAAE,IAAI,KAAK,WAAW,EAAE;AACvC,SAAK,KAAK,IAAI,QAAQ,EAAE,QAAQ,OAAO,UAAU,EAAE,CAAC;AACpD,WAAO;AAAA,EACT;AAAA,EACA,eAAe,OAAO,OAAO,QAAQ;AACnC,QAAI;AACJ,QAAI,UAAU,YAAY,UAAU,QAAQ,OAAO,SAAS,KAAK,aAAa,SAAS,OAAO,EAAE,GAAG;AACjG,YAAM,gBAAgB,OAAO,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AACpE,cAAQ,KAAK,MAAM,eAAe,OAAO,KAAK;AAAA,IAChD,OAAO;AACL,cAAQ,KAAK,MAAM,QAAQ,OAAO,KAAK;AAAA,IACzC;AACA,WAAO,EAAE,QAAQ,OAAO,OAAO,MAAM;AAAA,EACvC;AAAA,EACA,SAAS,QAAQ;AACf,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG;AACzB,YAAM,aAAa,KAAK,KAAK,IAAI,MAAM;AACvC,aAAO,WAAW;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ;AACb,UAAM,aAAa,KAAK,KAAK,IAAI,MAAM;AACvC,eAAW;AAAA,EACb;AAAA,EACA,OAAO,QAAQ;AACb,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG;AACzB,YAAM,aAAa,KAAK,KAAK,IAAI,MAAM;AACvC,iBAAW;AAAA,IACb;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,SAAK,KAAK,IAAI,QAAQ,EAAE,QAAQ,OAAO,SAAS,CAAC;AAAA,EACnD;AAAA,EACA,aAAa;AACX,WAAO,KAAK,KAAK,WAAW;AAAA,EAC9B;AAAA,EACA,MAAM,KAAK,QAAQ;AACjB,WAAO,KAAK,SAAS,MAAM;AAAA,EAC7B;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,EAAE,OAAO,mBAAmB,IAAI,KAAK,KAAK,IAAI,MAAM;AAC1D,QAAI,UAAU,aAAa;AACzB,YAAM,aAAa,KAAK,SAAS,mBAAmB,KAAK,MAAM;AAC/D,YAAM,aAAa,KAAK,SAAS,mBAAmB,KAAK,MAAM;AAC/D,aAAO,qBAAqB,uBAAuB,YAAY,UAAU;AAAA,IAC3E;AACA,WAAO,KAAK,KAAK,IAAI,MAAM,EAAE;AAAA,EAC/B;AAAA,EACA,WAAW,IAAI;AACb,UAAM,OAAO,KAAK,SAAS,GAAG,MAAM;AACpC,QAAI,GAAG,UAAU,UAAU;AACzB,UAAI;AACF,cAAM,UAAU,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AAC5D,eAAO,OAAO,GAAG,OAAO,GAAG,OAAO,OAAO;AAAA,MAC3C,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,kDAAkD;AAAA,MACpE;AAAA,IACF;AACA,WAAO,OAAO,GAAG,OAAO,GAAG,OAAO,IAAI;AAAA,EACxC;AAAA,EACA,WAAW,QAAQ,OAAO,OAAO;AAC/B,WAAO,OAAO,EAAE,yBAAyB,KAAK,eAAe,OAAO,OAAO,MAAM,GAAG,IAAI;AAAA,EAC1F;AAAA,EACA,YAAY,QAAQ,QAAQ,OAAO;AACjC,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG;AACzB,WAAK,KAAK,IAAI,MAAM,EAAE;AACtB,UAAI,CAAC,SAAS,KAAK,KAAK,IAAI,MAAM,EAAE,WAAW,GAAG;AAChD,eAAO;AAAA,MACT;AACA,YAAM,EAAE,mBAAmB,IAAI,KAAK,KAAK,IAAI,MAAM;AACnD,UAAI,sBAAsB,MAAM;AAC9B,aAAK,YAAY,mBAAmB,KAAK,QAAQ,IAAI;AACrD,aAAK,YAAY,mBAAmB,KAAK,QAAQ,IAAI;AAAA,MACvD;AACA,WAAK,KAAK,OAAO,MAAM;AAAA,IACzB;AACA,WAAO;AAAA,EACT;AAAA,EACA,8BAA8B,YAAY;AACxC,SAAK,YAAY,WAAW,MAAM;AAAA,EACpC;AAAA,EACA,MAAM,KAAK,GAAG;AACZ,UAAM,QAAQ,aAAa,IAAI;AAC/B,MAAE;AACF,UAAM,WAAW,aAAa,IAAI,IAAI;AACtC,WAAO,EAAE,SAAS;AAAA,EACpB;AAAA,EACA,SAAS;AACP,WAAO;AAAA,MACL,YAAY;AAAA,MACZ,SAAS,CAAC,oHAAoH;AAAA,IAChI;AAAA,EACF;AAAA,EACA,MAAM,WAAW;AACf,qBAAiB,CAAC,SAAS,GAAG,OAAO;AACrC,UAAM,WAAW,KAAK,SAAS,UAAU,MAAM;AAC/C,WAAO,WAAW,UAAU,OAAO,QAAQ;AAAA,EAC7C;AAAA,EACA,UAAU;AAAA,EACV;AAAA,EACA,iBAAiB;AACf,WAAO;AAAA,EACT;AAAA,EACA,UAAU;AACR,WAAO,MAAM,QAAQ;AAAA,EACvB;AACF;AACA,eAAe,aAAa;AAG5B,IAAI,iBAAiB,CAAC;AACtBT,UAAS,gBAAgB;AAAA,EACvB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,oBAAoB,MAAM;AAAA,EAC1B,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,YAAY,MAAM;AAAA,EAClB,WAAW,MAAM;AAAA,EACjB,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,kBAAkB,MAAM;AAAA,EACxB,aAAa,MAAM;AAAA,EACnB,eAAe,MAAM;AAAA,EACrB,UAAU,MAAM;AAAA,EAChB,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,UAAU,MAAM;AAAA,EAChB,0BAA0B,MAAM;AAAA,EAChC,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,eAAe,MAAM;AAAA,EACrB,WAAW,MAAM;AAAA,EACjB,yBAAyB,MAAM;AAAA,EAC/B,mBAAmB,MAAM;AAAA,EACzB,4BAA4B,MAAM;AAAA,EAClC,UAAU,MAAM;AAAA,EAChB,uBAAuB,MAAM;AAAA,EAC7B,kBAAkB,MAAM;AAAA,EACxB,kBAAkB,MAAM;AAAA,EACxB,iBAAiB,MAAM;AAAA,EACvB,4BAA4B,MAAM;AAAA,EAClC,SAAS,MAAM;AAAA,EACf,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,eAAe,MAAM;AAAA,EACrB,YAAY,MAAM;AACpB,CAAC;AAGD,SAAS,cAAc,MAAM;AAC3B,QAAM,eAAe,IAAI,aAAa,KAAK,MAAM;AACjD,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,iBAAa,MAAM,KAAK,IAAI,KAAK,GAAG;AAAA,EACtC;AACA,SAAO;AACT;AACA,IAAI,OAAO,CAAC,SAAS;AACnB,QAAM,EAAE,EAAE,IAAI,KAAK;AACnB,QAAM,aAAa,KAAK;AACxB,mBAAiB,GAAG,KAAK;AACzB,MAAI,eAAe,IAAI,aAAa,aAAa,cAAc,EAAE,KAAK,CAAC;AACvE,QAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,iBAAe,cAAc,MAAM;AACnC,SAAO,WAAW,WAAW,cAAc,EAAE,OAAO,EAAE,KAAK;AAC7D;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,6BAA6B,KAAK;AACzC,SAAO,CAAC,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC9C,UAAM,WAAW,qBAAqB,2BAA2B,QAAQ,MAAM;AAC/E,UAAM,aAAa,SAAS;AAC5B,UAAM,gBAAgB,aAAa,eAAe,QAAQ;AAC1D,UAAM,aAAa,aAAa,cAAc,QAAQ;AACtD,UAAM,SAAS,aAAa,uBAAuB,OAAO,UAAU;AACpE,UAAM,QAAQ,OAAO;AACrB,UAAM,QAAQ,OAAO;AACrB,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,QAAQ;AAC7E,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,QAAQ;AAC7E,QAAI,eAAe,SAAS,eAAe,WAAW,GAAG;AACvD,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,eAAO,MAAM,IAAI,MAAM,KAAK,MAAM,SAAS,MAAM,KAAK,MAAM,OAAO;AAAA,MACrE;AAAA,IACF,OAAO;AACL,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,cAAM,MAAM,aAAa,WAAW,IAAI,YAAY,aAAa;AACjE,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,eAAO,MAAM,IAAI,MAAM,SAAS,MAAM,OAAO;AAAA,MAC/C;AAAA,IACF;AACA,WAAO,CAAC,QAAQ,QAAQ;AAAA,EAC1B;AACF;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,OAAO,MAAM,MAAM,IAAI;AACrC,QAAM,WAAW,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AACjD,QAAM,WAAW,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AACjD,QAAM,cAAc,SAAS,eAAe,MAAM,OAAO,WAAW;AACpE,QAAM,WAAW,SAAS,KAAK,IAAI,YAAY,MAAM;AACrD,WAAS,qBAAqB;AAAA,IAC5B,MAAM,SAAS,eAAe,MAAM,OAAO,WAAW,QAAQ;AAAA,IAC9D,MAAM,SAAS,eAAe,MAAM,OAAO,WAAW,QAAQ;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,UAAU,OAAO,QAAQ,WAAW;AAClD,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,OAAO,UAAU,OAAO,SAAS;AAC/C,UAAM,QAAQ,OAAO,UAAU,OAAO,SAAS;AAC/C,WAAO,SAAS,EAAE,QAAQ,EAAE,MAAM,OAAO,MAAM,MAAM,GAAG,SAAS,SAAS,CAAC;AAAA,EAC7E;AACA,QAAM,SAAS,aAAa,oBAAoB,aAAa,cAAc,KAAK,GAAG,KAAK;AACxF,SAAO,SAAS,eAAe,OAAO,OAAO,MAAM;AACrD;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,WAAS,OAAO,EAAE,MAAM;AACxB,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAC5D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE,mBAAmB;AAClE,QAAM,UAAU,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAChD,SAAO,SAAS,eAAe,MAAM,OAAO,MAAM,OAAO,OAAO;AAClE;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,QAAQ,OAAO,WAAW,OAAO;AACjD,MAAI,UAAU,SAAS;AACrB,UAAM,eAAe,WAAW,KAAK,MAAM;AAC3C,WAAO,CAAC,OAAO,SAAS,YAAY;AAAA,EACtC;AACA,MAAI,UAAU,QAAQ;AACpB,UAAM,OAAO,aAAa,aAAa,CAAC,CAAC,GAAG,SAAS;AACrD,UAAM,CAAC,YAAY,WAAW,IAAI,6BAA6B,CAAC,GAAG,MAAM,MAAM,IAAI,IAAI,CAAC,EAAE,OAAO,CAAC,GAAG,QAAQ,MAAM,MAAM;AACzH,WAAO,CAAC,aAAa,QAAQ,UAAU;AAAA,EACzC;AACA,QAAM,IAAI,MAAM,iCAAiC,gBAAgB,OAAO;AAC1E;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,UAAU,aAAa;AACzB,QAAI,EAAE,UAAU,aAAa;AAC3B,aAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACvD;AACA,UAAM,kBAAkB,OAAO,UAAU,EAAE,OAAO,EAAE,KAAK;AACzD,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AACtF,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,QAAQ,MAAM,gBAAgB,GAAG,SAAS,SAAS,CAAC;AAC9F,aAAS,8BAA8B,eAAe;AACtD,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,aAAS,8BAA8B,QAAQ;AAC/C,WAAO;AAAA,EACT;AACA,MAAI,CAAC,aAAa,gBAAgB,EAAE,OAAO,KAAK,GAAG;AACjD,UAAM,SAAS,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7D,WAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,MAAM;AAAA,EAC7D;AACA,QAAM,SAAS,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC3C,QAAM,CAAC,aAAa,YAAY,UAAU,IAAI,SAAS,QAAQ,EAAE,OAAO,EAAE,OAAO,KAAK;AACtF,SAAO,SAAS,eAAe,aAAa,YAAY,UAAU;AACpE;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,iBAAiB,MAAM,YAAY,aAAa,OAAO;AAC9D,MAAI,eAAe,MAAM;AACvB,WAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,YAAM,EAAE,GAAG,EAAE,IAAI;AACjB,YAAM,aAAa;AACnB,uBAAiB,CAAC,GAAG,CAAC,GAAG,IAAI;AAC7B,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,SAAS,SAAS,EAAE;AAC1B,YAAM,CAAC,YAAY,WAAW,IAAI,WAAW,EAAE,OAAO,EAAE,OAAO,cAAc,cAAc,MAAM;AACjG,aAAO,WAAW,eAAe,aAAa,QAAQ,UAAU;AAAA,IAClE;AAAA,EACF;AACA,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,aAAa;AACnB,QAAI,EAAE,UAAU,eAAe,EAAE,UAAU,aAAa;AACtD,YAAM,YAAY,MAAM,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,YAAY,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChG,YAAM,gBAAgB,WAAW,KAAK,IAAI,UAAU,MAAM;AAC1D,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,YAAY,MAAM,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,YAAY,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChG,YAAM,gBAAgB,WAAW,KAAK,IAAI,UAAU,MAAM;AAC1D,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,CAAC,gBAAgB,gBAAgB,WAAW,IAAI,YAAY,EAAE,OAAO,EAAE,OAAO,WAAW,WAAW,WAAW,SAAS;AAC9H,YAAM,aAAa,WAAW,eAAe,aAAa,WAAW,cAAc;AACnF,YAAM,aAAa,WAAW,eAAe,aAAa,WAAW,cAAc;AACnF,YAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,YAAY,MAAM,WAAW,GAAG,SAAS,WAAW,CAAC;AAC/F,iBAAW,8BAA8B,SAAS;AAClD,iBAAW,8BAA8B,SAAS;AAClD,iBAAW,8BAA8B,UAAU;AACnD,iBAAW,8BAA8B,UAAU;AACnD,aAAO;AAAA,IACT,OAAO;AACL,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,SAAS,SAAS,EAAE;AAC1B,YAAM,CAAC,YAAY,WAAW,IAAI,WAAW,EAAE,OAAO,EAAE,OAAO,OAAO,OAAO,MAAM;AACnF,aAAO,WAAW,eAAe,aAAa,QAAQ,UAAU;AAAA,IAClE;AAAA,EACF;AACF;AACA,SAAS,8BAA8B,KAAK;AAC1C,SAAO,CAAC,QAAQ,QAAQ,WAAW,WAAW,WAAW,cAAc;AACrE,UAAM,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AAClF,UAAM,aAAa,aAAa,cAAc,WAAW;AACzD,UAAM,aAAa,YAAY;AAC/B,UAAM,gBAAgB,aAAa,eAAe,WAAW;AAC7D,UAAM,iBAAiB,aAAa,uBAAuB,WAAW,UAAU;AAChF,UAAM,iBAAiB,aAAa,uBAAuB,WAAW,UAAU;AAChF,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,WAAW;AAChF,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,WAAW;AAChF,UAAM,QAAQ,qBAAqB,uBAAuB,WAAW,SAAS;AAC9E,UAAM,QAAQ,qBAAqB,uBAAuB,WAAW,SAAS;AAC9E,UAAM,QAAQ,OAAO;AACrB,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,UAAM,QAAQ,OAAO;AACrB,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,QAAI,eAAe,SAAS,eAAe,WAAW,GAAG;AACvD,eAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,cAAM,OAAO,KAAK,MAAM;AACxB,cAAM,OAAO,KAAK,MAAM;AACxB,cAAM,SAAS,IAAI,MAAM,OAAO,IAAI,MAAM,OAAO,IAAI,IAAI,MAAM,OAAO,IAAI,MAAM,OAAO,IAAI,EAAE;AAC7F,uBAAe,MAAM,OAAO;AAC5B,uBAAe,MAAM,OAAO;AAAA,MAC9B;AAAA,IACF,OAAO;AACL,eAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,cAAM,MAAM,aAAa,WAAW,IAAI,YAAY,aAAa;AACjE,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,cAAM,WAAW,IAAI,MAAM,SAAS,IAAI,MAAM,SAAS,IAAI,IAAI,MAAM,SAAS,IAAI,MAAM,SAAS,IAAI,EAAE;AACvG,uBAAe,MAAM,SAAS;AAC9B,uBAAe,MAAM,SAAS;AAAA,MAChC;AAAA,IACF;AACA,WAAO,CAAC,gBAAgB,gBAAgB,WAAW;AAAA,EACrD;AACF;AAGA,IAAI,UAAU,6BAA6B,CAAC,GAAG,MAAM,IAAI,CAAC;AAC1D,IAAI,iBAAiB,8BAA8B,CAAC,OAAO,OAAO,OAAO,UAAU;AACjF,SAAO,EAAE,MAAM,QAAQ,OAAO,MAAM,QAAQ,MAAM;AACpD,CAAC;AACD,IAAI,OAAO,iBAAiB,KAAK,SAAS,cAAc;AACxD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,OAAO,aAAa,cAAc,cAAcG,OAAM;AAC1E,QAAM,cAAc,aAAa,cAAc,YAAY;AAC3D,QAAM,UAAU,aAAa,oBAAoBA,OAAM,YAAY;AACnE,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,UAAM,QAAQ,MAAM;AACpB,QAAI,QAAQ,GAAG;AACb,YAAM,IAAI,MAAM,+BAA+B;AAAA,IACjD;AACA,QAAI,SAASA,OAAM;AACjB;AAAA,IACF;AACA,QAAI,cAAc,GAAG;AACnB,cAAQ,UAAU,YAAY;AAAA,IAChC,OAAO;AACL,cAAQ,UAAU;AAAA,IACpB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,MAAM,YAAYA,OAAM,eAAe,OAAO;AACxE,QAAM,UAAU,KAAK,MAAM;AAC3B,QAAM,UAAU,KAAK,MAAM;AAC3B,QAAM,SAAS,OAAO,CAAC,SAASA,KAAI,GAAG,WAAW,KAAK;AACvD,WAAS,KAAK,GAAG,KAAK,SAAS,MAAM;AACnC,aAAS,IAAI,GAAG,IAAI,SAAS,KAAK;AAChC,YAAM,QAAQ,KAAK,IAAI,IAAI,CAAC;AAC5B,UAAI,QAAQ,GAAG;AACb,cAAM,IAAI,MAAM,+BAA+B;AAAA,MACjD;AACA,UAAI,SAASA,OAAM;AACjB;AAAA,MACF;AACA,UAAI,cAAc;AAChB,eAAO,IAAI,GAAG,IAAI,KAAK;AAAA,MACzB,OAAO;AACL,YAAI,WAAW,OAAO,GAAG;AACvB,iBAAO,IAAI,OAAO,IAAI,IAAI,KAAK,IAAI,WAAW,IAAI,IAAI,CAAC,GAAG,IAAI,KAAK;AAAA,QACrE,OAAO;AACL,iBAAO,IAAI,OAAO,IAAI,IAAI,KAAK,IAAI,GAAG,IAAI,KAAK;AAAA,QACjD;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,sBAAsB,KAAK;AAClC,SAAO,CAAC,QAAQ,OAAO,UAAU;AAC/B,UAAM,YAAY,aAAa,uBAAuB,OAAO,OAAO,MAAM;AAC1E,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,gBAAU,MAAM,IAAI,OAAO,KAAK,KAAK;AAAA,IACvC;AACA,WAAO;AAAA,EACT;AACF;AAGA,SAAS,gBAAgB,MAAM,KAAK,OAAO;AACzC,SAAO,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AAC/C,UAAM,EAAE,EAAE,IAAI;AACd,qBAAiB,GAAG,IAAI;AACxB,QAAI,EAAE,UAAU,YAAY,UAAU,UAAU;AAC9C,YAAM,IAAI,MAAM,sDAAsD;AAAA,IACxE;AACA,UAAM,aAAa;AACnB,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,UAAM,SAAS,SAAS,EAAE;AAC1B,UAAM,YAAY,aAAa,kBAAkB,QAAQ,KAAK;AAC9D,aAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,gBAAU,MAAM,IAAI,OAAO,KAAK,KAAK;AAAA,IACvC;AACA,WAAO,WAAW,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,EAC7D;AACF;AACA,SAAS,wBAAwB,MAAM,WAAW,OAAO;AACvD,SAAO,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AAC/C,UAAM,EAAE,EAAE,IAAI;AACd,qBAAiB,GAAG,IAAI;AACxB,QAAI,EAAE,UAAU,YAAY,UAAU,UAAU;AAC9C,YAAM,IAAI,MAAM,sDAAsD;AAAA,IACxE;AACA,UAAM,aAAa;AACnB,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,SAAS,SAAS,EAAE;AAC1B,UAAM,YAAY,UAAU,QAAQ,QAAQ,KAAK;AACjD,WAAO,WAAW,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,EAC7D;AACF;AAGA,IAAI,WAAW,sBAAsB,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AAC1D,IAAI,QAAQ,wBAAwB,MAAM,QAAQ;AAClD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,QAAQ,UAAU,OAAO,cAAc;AACzD,QAAM,UAAU,aAAa,kBAAkB,OAAO,aAAa,cAAc,QAAQ,CAAC;AAC1F,MAAI,gBAAgB,UAAU,UAAU;AACtC,QAAI,SAAS;AACb,WAAO,QAAQ,CAAC,WAAW;AACzB,YAAMA,QAAO,aAAa,cAAc,OAAO,KAAK;AACpD,cAAQ,IAAI,OAAO,MAAM,MAAM;AAC/B,gBAAUA;AAAA,IACZ,CAAC;AAAA,EACH,OAAO;AACL,QAAI,YAAY;AAChB,WAAO,QAAQ,CAAC,WAAW;AACzB,YAAM,cAAc,UAAU,WAAW,qBAAqB,uBAAuB,OAAO,IAAI,IAAI,OAAO;AAC3G,UAAI,OAAO;AACX,eAAS,MAAM,GAAG,MAAM,OAAO,MAAM,IAAI,EAAE,KAAK;AAC9C,cAAM,SAAS,MAAM,SAAS,KAAK;AACnC,iBAAS,MAAM,GAAG,MAAM,OAAO,MAAM,IAAI,EAAE,KAAK;AAC9C,kBAAQ,SAAS,OAAO,YAAY;AAAA,QACtC;AAAA,MACF;AACA,mBAAa,OAAO,MAAM;AAAA,IAC5B,CAAC;AAAA,EACH;AACA,SAAO;AACT;AAGA,IAAI,YAAY,6BAA6B,CAAC,GAAG,MAAM,MAAM,IAAI,IAAI,CAAC;AACtE,IAAI,SAAS,iBAAiB,OAAO,WAAW,MAAM,MAAM;AAC5D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,sBAAsB,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACxD,IAAI,OAAO,wBAAwB,KAAK,SAAS,SAAS;AAC1D,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,sBAAsB,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC5D,IAAI,SAAS,wBAAwB,OAAO,SAAS;AACrD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,sBAAsB,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC5D,IAAI,SAAS,wBAAwB,OAAO,SAAS;AACrD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,aAAa,WAAW,OAAO,WAAW,WAAW,WAAWa,UAAS,aAAa,YAAY;AACtH,QAAM,SAAS,OAAO,CAAC,WAAW,SAAS,GAAG,KAAK;AACnD,WAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,UAAMH,SAAQ,CAAC;AACf,QAAI,eAAe;AACnB,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,YAAM,MAAM,YAAY,KAAK,YAAY;AACzC,sBAAgB,MAAMG,SAAQ;AAC9B,MAAAH,OAAM,KAAK,GAAG;AAAA,IAChB;AACA,QAAI,eAAe,KAAK,gBAAgB,aAAa,WAAW;AAC9D,YAAM,IAAI,MAAM,oBAAoBA,8BAA6B,aAAa;AAAA,IAChF;AACA,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,aAAO,OAAO,KAAK,YAAY,KAAK,UAAU,IAAI,GAAG,UAAU,WAAW,eAAe,YAAY,CAAC,CAAC;AAAA,IACzG;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,aAAa,MAAM,YAAY,oBAAoB;AAC1D,QAAM,SAAS,OAAO,oBAAoB,KAAK,KAAK;AACpD,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,EAAE,IAAI;AACvC,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,cAAc,OAAO,MAAM;AACjC,UAAM,WAAW,YAAY;AAC7B,UAAM,aAAa,YAAY;AAC/B,UAAM,eAAe,WAAW,WAAW,CAAC,UAAU,UAAU,CAAC;AACjE,gBAAY,KAAK,WAAW,OAAO;AACnC,UAAM,gBAAgB,KAAK,WAAW,WAAW;AACjD,QAAI,KAAK,iBAAiB,gBAAgB,KAAK,OAAO,QAAQ;AAC5D,aAAO,OAAO,MAAM,KAAK,OAAO;AAAA,IAClC;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,cAAc,6BAA6B,CAAC,GAAG,MAAM,IAAI,IAAI,IAAI,CAAC;AACtE,IAAI,WAAW,iBAAiB,SAAS,aAAa,MAAM,MAAM;AAClE,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,6BAA6B,CAAC,GAAG,MAAM,KAAK,IAAI,IAAI,CAAC;AAC5E,IAAI,gBAAgB,iBAAiB,cAAc,kBAAkB,MAAM,MAAM;AACjF,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,6BAA6B,CAAC,GAAG,MAAM,IAAI,IAAI,IAAI,CAAC;AACnE,IAAI,QAAQ,iBAAiB,MAAM,UAAU,MAAM,MAAM;AACzD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,6BAA6B,CAAC,GAAG,MAAM,KAAK,IAAI,IAAI,CAAC;AACzE,IAAI,aAAa,iBAAiB,WAAW,eAAe,MAAM,MAAM;AACxE,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,OAAO,MAAM,KAAK;AACtC,QAAM,SAAS,OAAO,UAAU,MAAM;AACtC,QAAM,SAAS,aAAa,oBAAoB,KAAK,SAAS;AAC9D,SAAO,KAAK;AACZ,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,WAAO,MAAM,OAAO,KAAK,KAAK;AAAA,EAChC;AACA,SAAO;AACT;AAGA,IAAI,UAAU,sBAAsB,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACxD,IAAI,OAAO,wBAAwB,KAAK,OAAO;AAC/C,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,OAAO,YAAY,UAAU,OAAO;AACnD,QAAM,OAAO,aAAa,uBAAuB,OAAO,aAAa,cAAc,QAAQ,CAAC;AAC5F,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO,MAAM;AACjB,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,UAAI,OAAO,MAAM,KAAK,KAAK,QAAQ,MAAM;AACvC,eAAO;AAAA,MACT;AAAA,IACF;AACA,SAAK,MAAM;AAAA,EACb;AACA,SAAO;AACT;AAGA,IAAI,cAAc,6BAA6B,CAAC,QAAQ,WAAW,KAAK,IAAI,QAAQ,MAAM,CAAC;AAC3F,IAAI,WAAW,iBAAiB,SAAS,WAAW;AACpD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,6BAA6B,CAAC,QAAQ,WAAW,KAAK,IAAI,QAAQ,MAAM,CAAC;AAC3F,IAAI,WAAW,iBAAiB,SAAS,WAAW;AACpD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,6BAA6B,CAAC,QAAQ,WAAW,SAAS,MAAM;AACnF,IAAI,sBAAsB,8BAA8B,CAAC,OAAO,OAAO,OAAO,UAAU;AACtF,SAAO;AAAA,IACL,MAAM,QAAQ,QAAQ,QAAQ;AAAA,IAC9B,MAAM,QAAQ,QAAQ,QAAQ;AAAA,EAChC;AACF,CAAC;AACD,IAAI,YAAY,iBAAiB,UAAU,cAAc,mBAAmB;AAC5E,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,OAAO,QAAQ,QAAQ;AACtC,QAAM,WAAW,aAAa,kBAAkB,IAAI,MAAM;AAC1D,SAAO,aAAa,CAAC,GAAG,QAAQ,UAAU,OAAO,MAAM;AACzD;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,mBAAiB,GAAG,KAAK;AACzB,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,CAAC,KAAK,QAAQ,IAAI,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AACvD,SAAO,SAAS,eAAe,UAAU,EAAE,OAAO,GAAG;AACvD;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,6BAA6B,CAAC,GAAG,MAAM,MAAM,IAAI,IAAI,CAAC;AACzE,IAAI,YAAY,iBAAiB,UAAU,cAAc,MAAM,MAAM;AACrE,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,OAAO,QAAQ,OAAO,MAAM,UAAU;AAC3D,QAAM,QAAQ,OAAO;AACrB,QAAM,QAAQ,aAAa,cAAc,MAAM;AAC/C,QAAM,WAAW,aAAa,eAAe,MAAM;AACnD,QAAM,aAAa,aAAa,eAAe,QAAQ;AACvD,QAAM,SAAS,aAAa,uBAAuB,OAAO,aAAa,cAAc,QAAQ,CAAC;AAC9F,WAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,UAAM,MAAM,aAAa,WAAW,IAAI,OAAO,QAAQ;AACvD,UAAM,SAAS,IAAI,MAAM,IAAI,MAAM;AACnC,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,aAAO,MAAM,IAAI,KAAK;AAAA,IACxB;AACA,UAAM,WAAW,aAAa,WAAW,QAAQ,OAAO,UAAU;AAClE,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,SAAO;AACT;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,WAAW;AAC/B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,IAAI,MAAM,KAAK;AAChC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,EAAE,MAAM,KAAK;AAAA,EAC9B;AACA,QAAM,SAAS,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC3C,QAAM,SAAS,cAAc,QAAQ,EAAE,OAAO,EAAE,OAAO,MAAM,QAAQ;AACrE,QAAM,SAAS,SAAS,MAAM,QAAQ,UAAU,EAAE,KAAK;AACvD,SAAO,EAAE,QAAQ,OAAO,UAAU,OAAO,EAAE,MAAM;AACnD;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,QAAQ,QAAQ,OAAO,eAAe;AACtD,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,QAAQ,aAAa;AACpG,QAAM,WAAW,WAAW,QAAQ,OAAO;AAC3C,QAAM,UAAU,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,QAAQ;AAC/F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAM,SAAS,KAAK;AACpB,QAAI,QAAQ;AACZ,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,eAAS,MAAM,SAAS;AAAA,IAC1B;AACA,YAAQ,MAAM;AAAA,EAChB;AACA,SAAO,EAAE,SAAS,UAAU,SAAS;AACvC;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,MAAM;AAC1B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACtD,QAAM,cAAc,qBAAqB,mBAAmB,MAAM,KAAK;AACvE,MAAI,gBAAgB;AACpB,MAAI,YAAY;AAChB,QAAM,0BAA0B,CAAC;AACjC,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AACzF,4BAAwB,KAAK,SAAS;AACtC,oBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,KAAK;AAAA,EACnF;AACA,QAAM,QAAQ,SAAS,KAAK,IAAI,UAAU,MAAM,EAAE;AAClD,QAAM,EAAE,SAAS,UAAU,SAAS,IAAI,SAAS,UAAU,OAAO,UAAU,OAAO,OAAO,aAAa;AACvG,MAAI,cAAc;AAClB,MAAI,UAAU;AACZ,kBAAc,qBAAqB,qBAAqB,UAAU,IAAI;AAAA,EACxE;AACA,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO,SAAS,eAAe,aAAa,UAAU,OAAO;AAC/D;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,qBAAqB;AAC7C,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,OAAO,YAAY,QAAQ,aAAa,aAAa,cAAc,mBAAmB,oBAAoB,0BAA0B,yBAAyB;AACvK,SAAK,QAAQ;AACb,SAAK,aAAa;AAClB,SAAK,SAAS;AACd,SAAK,cAAc;AACnB,SAAK,cAAc;AACnB,SAAK,eAAe;AACpB,SAAK,oBAAoB;AACzB,SAAK,qBAAqB;AAC1B,SAAK,2BAA2B;AAChC,SAAK,oBAAoB,qBAAqB,2BAA2B,uBAAuB;AAChG,SAAK,aAAa,qBAAqB,cAAc,KAAK,iBAAiB;AAAA,EAC7E;AAAA,EACA,+BAA+B,WAAW;AACxC,QAAI,KAAK,kBAAkB,OAAO,kBAAkB,gBAAgB;AAClE,aAAO,KAAK,kBAAkB,YAAY;AAAA,IAC5C,OAAO;AACL,aAAO,KAAK,kBAAkB;AAAA,IAChC;AAAA,EACF;AAAA,EACA,sBAAsB,WAAW;AAC/B,QAAI,KAAK,kBAAkB,OAAO,kBAAkB,gBAAgB;AAClE,aAAO,KAAK,mBAAmB,YAAY;AAAA,IAC7C,OAAO;AACL,aAAO,KAAK,mBAAmB;AAAA,IACjC;AAAA,EACF;AAAA,EACA,YAAY,WAAW;AACrB,UAAM,qBAAqB,KAAK,sBAAsB,YAAY,CAAC;AACnE,YAAQ,KAAK,+BAA+B,YAAY,CAAC;AAAA,WAClD,kBAAkB;AACrB,eAAO,uBAAuB,sBAAsB,kBAAkB;AAAA,WACnE,kBAAkB;AACrB,eAAO,uBAAuB,oBAAoB,kBAAkB;AAAA;AAEpE,cAAM,IAAI,MAAM,gCAAgC,kBAAkB,KAAK,+BAA+B,YAAY,CAAC,IAAI;AAAA;AAAA,EAE7H;AAAA,EACA,OAAO,oBAAoB,UAAU;AACnC,UAAM,eAAe,SAAS;AAC9B,QAAI,iBAAiB,KAAK,iBAAiB,GAAG;AAC5C,aAAO;AAAA,IACT;AACA,QAAI,WAAW;AACf,aAAS,KAAK,GAAG,KAAK,eAAe,GAAG,EAAE,IAAI;AAC5C,YAAM,eAAe,SAAS,KAAK,KAAK,SAAS;AACjD,UAAI,eAAe,UAAU;AAC3B,mBAAW;AAAA,MACb;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,sBAAsB,aAAa;AACxC,UAAM,cAAc,YAAY;AAChC,QAAI,gBAAgB,GAAG;AACrB,aAAO;AAAA,IACT;AACA,QAAI,kBAAkB;AACtB,QAAI,uBAAuB,YAAY;AACvC,QAAI,WAAW;AACf,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,QAAQ,YAAY;AAC1B,UAAI,UAAU,sBAAsB;AAClC,+BAAuB;AACvB,mBAAW,KAAK,IAAI,KAAK,iBAAiB,QAAQ;AAClD,0BAAkB;AAAA,MACpB;AAAA,IACF;AACA,WAAO,KAAK,IAAI,cAAc,iBAAiB,QAAQ;AAAA,EACzD;AAAA,EACA,sBAAsB,IAAI,QAAQ,YAAY,MAAM;AAClD,QAAI,OAAO,WAAW,GAAG;AACvB,UAAI,GAAG,OAAO,IAAI;AAChB,eAAO,CAAC;AAAA,MACV;AACA,YAAM,IAAI,MAAM,gFAAgF;AAAA,IAClG;AACA,WAAO,UAAU,IAAI,SAAS;AAAA,EAChC;AAAA,EACA,oBAAoB,UAAU;AAC5B,UAAM,aAAa,KAAK;AACxB,UAAM,oBAAoB,KAAK;AAC/B,yBAAqB,0BAA0B,mBAAmB,UAAU;AAC5E,UAAM,QAAQ,KAAK,sBAAsB,KAAK,OAAO,KAAK,UAAU;AACpE,UAAM,cAAc,qBAAqB,kCAAkC,KAAK,YAAY,OAAO,UAAU;AAC7G,UAAM,SAAS;AACf,QAAI,OAAO,KAAK,GAAG;AACjB,aAAO,KAAK;AAAA,IACd;AACA,aAAS,KAAK,GAAG,MAAM,KAAK,YAAY,EAAE,IAAI;AAC5C,UAAI,OAAO,MAAM,GAAG;AAClB,eAAO,MAAM,KAAK,YAAY,EAAE;AAAA,MAClC;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,gCAAgC,gBAAgB,uBAAuB,sBAAsB;AAC3F,UAAM,eAAe,KAAK,IAAI,gBAAgB,oBAAoB;AAClE,UAAM,SAAS,CAAC;AAChB,QAAI,qBAAqB;AACzB,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI,sBAAsB,uBAAuB;AACrF,aAAO,KAAK,kBAAkB;AAAA,IAChC;AACA,aAAS,KAAK,cAAc,KAAK,gBAAgB,EAAE,IAAI;AACrD,aAAO,KAAK,EAAE;AAAA,IAChB;AACA,iBAAa,OAAO,OAAO,WAAW,gBAAgB,MAAM,yDAAyD;AACrH,WAAO;AAAA,EACT;AAAA,EACA,6BAA6B,UAAU,mBAAmB,uBAAuBW,aAAY;AAC3F,UAAM,eAAe,SAAS;AAC9B,UAAM,SAAS,CAAC;AAChB,aAAS,KAAK,GAAG,KAAK,eAAe,GAAG,EAAE,IAAI;AAC5C,YAAM,YAAY,SAAS,KAAK,KAAK,SAAS;AAC9C,UAAI,aAAa,KAAK,IAAIA,aAAY,SAAS;AAC/C,UAAI,2BAA2B,kBAAkB;AACjD,UAAI,6BAA6B,IAAI;AACnC,qBAAa;AAAA,MACf;AACA,eAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,eAAO,KAAK,wBAAwB;AACpC,oCAA4B;AAAA,MAC9B;AACA,eAAS,IAAI,GAAG,IAAI,YAAY,YAAY,EAAE,GAAG;AAC/C,eAAO,KAAK,EAAE;AAAA,MAChB;AAAA,IACF;AACA,QAAI,eAAe,KAAK,OAAO,WAAW,SAAS,eAAe,IAAI;AACpE,YAAM,IAAI,MAAM,yBAAyB;AAAA,IAC3C;AACA,WAAO;AAAA,EACT;AAAA,EACA,+BAA+B,aAAa,mBAAmB,uBAAuBA,aAAY;AAChG,UAAM,YAAY,YAAY;AAC9B,UAAM,SAAS,CAAC;AAChB,QAAI,cAAc,GAAG;AACnB,aAAO,CAAC;AAAA,IACV;AACA,QAAI,sBAAsB;AAC1B,QAAI,oBAAoB,YAAY;AACpC,QAAI,qBAAqB,kBAAkB,QAAQ;AACjD,YAAM,IAAI,MAAM,yBAAyB,6CAA6C,kBAAkB,QAAQ;AAAA,IAClH;AACA,QAAI,qBAAqB,kBAAkB;AAC3C,WAAO,KAAK,kBAAkB;AAC9B,aAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,YAAM,iBAAiB,YAAY;AACnC,UAAI,mBAAmB,mBAAmB;AACxC,YAAI,sBAAsB,GAAG;AAC3B,YAAE;AACF,cAAI,sBAAsBA,aAAY;AACpC,kCAAsB;AAAA,UACxB,OAAO;AACL,iCAAqB;AAAA,UACvB;AAAA,QACF;AAAA,MACF,OAAO;AACL,8BAAsB;AACtB,4BAAoB;AACpB,YAAI,kBAAkB,kBAAkB,QAAQ;AAC9C,gBAAM,IAAI,MAAM,sBAAsB,yCAAyC,kBAAkB,QAAQ;AAAA,QAC3G;AACA,6BAAqB,kBAAkB;AAAA,MACzC;AACA,aAAO,KAAK,kBAAkB;AAAA,IAChC;AACA,QAAI,OAAO,WAAW,YAAY,QAAQ;AACxC,YAAM,IAAI,MAAM,kBAAkB;AAAA,IACpC;AACA,WAAO;AAAA,EACT;AAAA,EACA,qBAAqB,WAAW,mBAAmB,uBAAuBA,aAAY;AACpF,UAAM,qBAAqB,KAAK,sBAAsB,SAAS;AAC/D,UAAM,gBAAgB,KAAK,+BAA+B,SAAS;AACnE,YAAQ;AAAA,WACD,kBAAkB;AACrB,eAAO,KAAK,+BAA+B,oBAAoB,mBAAmB,uBAAuBA,WAAU;AAAA,WAChH,kBAAkB;AACrB,YAAI,mBAAmB,SAAS,IAAI,kBAAkB,QAAQ;AAC5D,gBAAM,IAAI,MAAM,mDAAmD,mBAAmB,SAAS,OAAO,kBAAkB,QAAQ;AAAA,QAClI;AACA,eAAO,KAAK,6BAA6B,oBAAoB,mBAAmB,uBAAuBA,WAAU;AAAA;AAEjH,cAAM,IAAI,MAAM,+BAA+B,kBAAkB,gBAAgB;AAAA;AAAA,EAEvF;AAAA,EACA,wBAAwB;AACtB,UAAM,uBAAuB,KAAK,mBAAmB;AACrD,QAAI,KAAK,kBAAkB,WAAW,GAAG;AACvC,YAAM,IAAI,MAAM,+BAA+B;AAAA,IACjD;AACA,UAAM,qBAAqB,KAAK,kBAAkB;AAClD,YAAQ;AAAA,WACD,kBAAkB;AACrB,eAAO,qBAAqB;AAAA,WACzB,kBAAkB;AACrB,cAAM,IAAI,MAAM,gDAAgD;AAAA,WAC7D,kBAAkB;AACrB,eAAO,KAAK,yBAAyB,GAAG,KAAK;AAAA;AAE7C,cAAM,IAAI,MAAM,sBAAsB,kBAAkB,qBAAqB;AAAA;AAAA,EAEnF;AAAA,EACA,UAAU;AACR,UAAM,uBAAuB,KAAK,mBAAmB;AACrD,QAAI,qBAAqB,UAAU,GAAG;AACpC,YAAM,IAAI,MAAM,sEAAsE;AAAA,IACxF;AACA,UAAM,iBAAiB,KAAK,sBAAsB;AAClD,UAAMA,cAAa,KAAK,oBAAoB,cAAc;AAC1D,UAAM,aAAa,IAAI,MAAM,KAAK,aAAa,CAAC;AAChD,eAAW,WAAW,SAAS,KAAK;AACpC,aAAS,KAAK,WAAW,SAAS,GAAG,MAAM,GAAG,EAAE,IAAI;AAClD,iBAAW,MAAM,WAAW,KAAK,KAAKA,YAAW,KAAK;AAAA,IACxD;AACA,UAAM,cAAc,UAAUA,aAAY,KAAK;AAC/C,UAAM,eAAe,aAAa,kBAAkB,KAAK,aAAa,aAAa,cAAc,WAAW,CAAC;AAC7G,UAAM,WAAW,WAAW,KAAKA,YAAW;AAC5C,QAAI,WAAW,GAAG;AAChB,UAAI,cAAc,KAAK,gCAAgC,gBAAgB,WAAW,IAAIA,YAAW,EAAE;AACnG,eAAS,KAAK,GAAG,MAAM,KAAK,YAAY,EAAE,IAAI;AAC5C,cAAM,iBAAiB,KAAK,qBAAqB,KAAK,GAAG,aAAa,WAAW,KAAKA,YAAW,GAAG;AACpG,sBAAc;AAAA,MAChB;AACA,WAAK,UAAU,KAAK,YAAY,aAAa,cAAc,WAAW;AAAA,IACxE;AACA,WAAO,CAAC,aAAa,YAAY;AAAA,EACnC;AAAA,EACA,UAAU,YAAY,aAAa,cAAc,aAAa;AAC5D,QAAI,aAAa,WAAW,GAAG;AAC7B;AAAA,IACF;AACA,UAAM,aAAa,KAAK;AACxB,UAAM,aAAa;AACnB,QAAI,eAAe,YAAY,MAAM;AACrC,mBAAe,aAAa,MAAM,aAAa,CAAC;AAChD,UAAM,mBAAmB,aAAa,cAAc,YAAY;AAChE,UAAM,kBAAkB,YAAY;AACpC,QAAI,eAAe,KAAK;AACxB,QAAI,aAAa,WAAW,oBAAoB,aAAa,WAAW,GAAG;AACzE,YAAM,WAAW,KAAK;AACtB,WAAK,MAAM;AACT,cAAM,qBAAqB,QAAQ,cAAc,QAAQ;AACzD,cAAM,eAAe,YAAY,oBAAoB,YAAY;AACjE,uBAAe,aAAa,SAAS;AAAA,MACvC,CAAC;AAAA,IACH;AACA,QAAI,WAAW;AACf,QAAI,WAAW;AACf,QAAI,SAAS;AACb,aAAS,OAAO,GAAG,QAAQ,iBAAiB,EAAE,MAAM;AAClD,UAAI,OAAO,OAAO,kBAAkB,YAAY,QAAQ;AACxD,UAAI,SAAS,QAAQ;AACnB,UAAE;AACF;AAAA,MACF;AACA,UAAI,WAAW,QAAQ;AACrB,cAAM,MAAM,WAAW,SAAS,WAAW,gBAAgB;AAC3D,cAAM,MAAM,WAAW,SAAS,WAAW,gBAAgB;AAC3D,cAAM,SAAS,SAAS,YAAY;AACpC,kBAAU,KAAK,KAAK,KAAK;AAAA,MAC3B;AACA,UAAI,QAAQ,iBAAiB;AAC3B,cAAMA,cAAa,aAAa;AAChC,eAAO,KAAK,MAAMA,cAAa,gBAAgB;AAAA,MACjD;AACA,UAAI,OAAO,QAAQ;AACjB,YAAI,KAAK,aAAa,WAAW,GAAG;AAClC,qBAAW,SAAS,SAAS,kBAAkB,OAAO,gBAAgB,EAAE,KAAK,KAAK,aAAa,EAAE;AACjG,mBAAS;AAAA,QACX,OAAO;AACL,iBAAO,OAAO,QAAQ;AACpB,kBAAM,MAAM,WAAW,MAAM,SAAS,gBAAgB;AACtD,sBAAU,KAAK,cAAc,gBAAgB;AAC7C,cAAE;AAAA,UACJ;AAAA,QACF;AAAA,MACF;AACA,UAAI,OAAO,GAAG;AACZ,mBAAW,OAAO;AAClB,mBAAW;AAAA,MACb,OAAO;AACL,mBAAW;AACX,mBAAW;AACX,iBAAS,WAAW;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,UAAU,KAAK,KAAKrB,OAAM;AACjC,WAAS,KAAK,GAAG,KAAKA,OAAM,MAAM;AAChC,QAAI,MAAM,IAAI;AAAA,EAChB;AACF;AACA,SAAS,UAAU,OAAO,WAAW;AACnC,QAAM,MAAM,CAAC;AACb,WAAS,OAAO,OAAO;AACrB,QAAI,MAAM,GAAG;AACX,UAAI,CAAC,WAAW;AACd,cAAM,IAAI,MAAM,aAAa,kBAAkB;AAAA,MACjD;AACA,UAAI,MAAM,IAAI;AACZ,cAAM,IAAI,MAAM,aAAa,mBAAmB;AAAA,MAClD;AACA,YAAM;AAAA,IACR;AACA,QAAI,KAAK,GAAG;AAAA,EACd;AACA,SAAO;AACT;AACA,SAAS,yBAAyB,OAAO,aAAa,QAAQ,aAAa,aAAa,cAAc,mBAAmB,oBAAoB,0BAA0B,mBAAmB;AACxL,SAAO,IAAI,uBAAuB,OAAO,aAAa,QAAQ,aAAa,aAAa,cAAc,mBAAmB,oBAAoB,0BAA0B,iBAAiB,EAAE,QAAQ;AACpM;AAGA,SAAS,UAAU,OAAO,MAAM,OAAO,OAAO;AAC5C,QAAM,gBAAgB,UAAU;AAChC,QAAM,8BAA8B,QAAQ,QAAQ,QAAQ;AAC5D,QAAM,8BAA8B,OAAO,SAAS,QAAQ;AAC5D,MAAI,iBAAiB,+BAA+B,6BAA6B;AAC/E,WAAO,aAAa,oBAAoB,GAAG,KAAK;AAAA,EAClD;AACA,QAAM,cAAc,KAAK,IAAI,KAAK,MAAM,OAAO,SAAS,KAAK,CAAC;AAC9D,QAAM,SAAS,aAAa,oBAAoB,aAAa,KAAK;AAClE,MAAI,OAAO,SAAS,UAAU,GAAG;AAC/B,YAAQ;AAAA,EACV;AACA,SAAO,KAAK;AACZ,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,WAAO,MAAM,OAAO,KAAK,KAAK;AAAA,EAChC;AACA,SAAO;AACT;AAGA,IAAI,YAAY,sBAAsB,CAAC,OAAO,IAAI,KAAK,KAAK,EAAE,CAAC;AAC/D,IAAI,SAAS,wBAAwB,OAAO,SAAS;AACrD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,SAAS,SAAS,OAAOqB,aAAY,WAAW,YAAY,WAAWR,UAAS,cAAc,gBAAgB;AACjI,QAAM,eAAe,CAACQ,cAAa,WAAW,SAAS;AACvD,QAAM,cAAc,QAAQ;AAC5B,QAAM,cAAc,QAAQ;AAC5B,MAAIA,gBAAe,GAAG;AACpB,WAAO,OAAO,OAAO,QAAQ,KAAK;AAAA,EACpC;AACA,QAAM,SAAS,OAAO,cAAc,QAAQ,KAAK;AACjD,MAAI,OAAO,iBAAiB,UAAU;AACpC,WAAO,OAAO,KAAK,YAAY;AAAA,EACjC,WAAW,OAAO,iBAAiB,UAAU;AAC3C,WAAO,OAAO,KAAK,YAAY;AAAA,EACjC,WAAW,OAAO,iBAAiB,WAAW;AAC5C,WAAO,OAAO,KAAK,CAAC,YAAY;AAAA,EAClC;AACA,WAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,UAAMX,SAAQ,CAAC;AACf,QAAI,eAAe;AACnB,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,YAAM,MAAM,YAAY,KAAK,YAAY;AACzC,MAAAA,OAAM,KAAK,GAAG;AACd,sBAAgB,MAAMG,SAAQ;AAAA,IAChC;AACA,QAAI,eAAe,KAAK,gBAAgBQ,cAAa,WAAW;AAC9D,YAAM,IAAI,MAAM,oBAAoBX,8BAA6B,OAAO;AAAA,IAC1E;AACA,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,UAAI,gBAAgB;AAClB,eAAO,OAAO,eAAe,YAAY,MAAM,YAAY,KAAK,YAAY;AAAA,MAC9E,OAAO;AACL,eAAO,OAAO,eAAe,YAAY,KAAK,QAAQ,SAAS,IAAI,YAAY,KAAK,YAAY,KAAK,YAAY;AAAA,MACnH;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,cAAc,sBAAsB,CAAC,OAAO,KAAK,IAAI,KAAK,IAAI,CAAC,EAAE,EAAE;AACvE,IAAI,WAAW,gBAAgB,SAAS,CAAC,OAAO,KAAK,IAAI,KAAK,IAAI,CAAC,EAAE,EAAE;AACvE,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM,OAAOV,OAAM,OAAO,OAAO;AAClD,QAAM,cAAc,mBAAmB,iBAAiB,OAAO,OAAOA,KAAI;AAC1E,QAAM,SAAS,aAAa,cAAcA,KAAI;AAC9C,QAAM,WAAW,aAAa,eAAe,KAAK;AAClD,MAAI,aAAa;AACf,UAAM,aAAa,mBAAmB,kBAAkB,OAAO,QAAQ;AACvE,QAAI,UAAU,UAAU;AACtB,aAAO,KAAK,MAAM,YAAY,aAAa,MAAM;AAAA,IACnD;AACA,WAAO,KAAK,SAAS,YAAY,aAAa,MAAM;AAAA,EACtD;AACA,QAAM,cAAc,UAAU,WAAW,qBAAqB,uBAAuB,IAAI,IAAI;AAC7F,QAAM,QAAQ,OAAO,OAAO,OAAO,WAAW;AAC9C,QAAM,SAAS,OAAOA,OAAM,KAAK;AACjC,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,EAAE,IAAI;AACvC,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,QAAQ,OAAO,IAAI,CAAC,KAAK,MAAM,MAAM,MAAM,EAAE;AACnD,WAAO,IAAI,MAAM,IAAI,GAAG,KAAK,GAAG,GAAG,MAAM;AAAA,EAC3C;AACA,MAAI,UAAU,UAAU;AACtB,WAAO,qBAAqB,uBAAuB,OAAO,MAAM;AAAA,EAClE;AACA,SAAO,OAAO;AAChB;AACA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,MAAAA,MAAK,IAAI;AACxB,mBAAiB,GAAG,OAAO;AAC3B,QAAM,CAAC,QAAQ,KAAK,IAAI,mBAAmB,iBAAiB,GAAG,OAAOA,KAAI;AAC1E,qBAAmB,kBAAkB,GAAG,QAAQ,KAAK;AACrD,QAAM,OAAO,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AACzC,QAAM,UAAU,UAAU,MAAM,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AAC/D,SAAO,SAAS,eAAe,OAAO,EAAE,OAAO,OAAO;AACxD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,SAAS,cAAc,cAAc,QAAQ,aAAa,YAAY,cAAc;AACnH,QAAM,eAAe,aAAa;AAClC,QAAM,YAAY,WAAW;AAC7B,QAAM,oBAAoB,IAAI,MAAM,SAAS;AAC7C,QAAM,kBAAkB,IAAI,MAAM,YAAY;AAC9C,QAAM,OAAO,aAAa;AAC1B,MAAI,cAAc,GAAG;AACnB,QAAI,iBAAiB,GAAG;AACtB,YAAM,IAAI,MAAM,qBAAqB,gDAAgD,YAAY,CAAC;AAAA,IACpG;AACA,UAAM,gBAAgB,aAAa,kBAAkB,cAAc,CAAC;AACpE,UAAM,eAAe,aAAa,kBAAkB,aAAa,CAAC;AAClE,WAAO;AAAA,MACL;AAAA,MACA,CAAC,GAAG,IAAI;AAAA,MACR;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACA,MAAI,iBAAiB;AACrB,MAAI,iBAAiB;AACrB,QAAM,YAAY,IAAI,MAAM,SAAS,EAAE,KAAK,CAAC;AAC7C,WAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAM,MAAM,QAAQ,KAAK;AACzB,QAAI,MAAM,GAAG;AACX,YAAM,IAAI,MAAM,qBAAqB,gDAAgD,IAAI,GAAG,CAAC;AAAA,IAC/F;AACA,QAAI,OAAO,WAAW;AACpB,YAAM,IAAI,MAAM,qBAAqB,kDAAkD,IAAI,KAAK,SAAS,CAAC;AAAA,IAC5G;AACA,MAAE,UAAU;AACZ,qBAAiB,kBAAkB,OAAO;AAC1C,qBAAiB;AAAA,EACnB;AACA,MAAI,cAAc;AAClB,WAAS,MAAM,GAAG,MAAM,WAAW,EAAE,KAAK;AACxC,UAAM,WAAW,UAAU,SAAS;AACpC,sBAAkB,OAAO;AACzB,kBAAc,eAAe,CAAC;AAC9B,cAAU,OAAO,KAAK,IAAI,UAAU,MAAM,CAAC;AAC3C,QAAI,MAAM,GAAG;AACX,gBAAU,QAAQ,UAAU,MAAM;AAAA,IACpC;AAAA,EACF;AACA,MAAI,eAAe,gBAAgB;AACjC,UAAM,gBAAgB;AACtB,UAAM,eAAe;AACrB,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,sBAAgB,MAAM;AAAA,IACxB;AACA,WAAO;AAAA,MACL;AAAA,MACA,CAAC,cAAc,IAAI;AAAA,MACnB;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF,OAAO;AACL,UAAM,mBAAmB,UAAU,YAAY;AAC/C,UAAM,gBAAgB,aAAa,kBAAkB,cAAc,mBAAmB,IAAI;AAC1F,UAAM,eAAe,aAAa,kBAAkB,aAAa,gBAAgB;AACjF,UAAM,cAAc,IAAI,MAAM,SAAS,EAAE,KAAK,CAAC;AAC/C,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,YAAM,MAAM,QAAQ,KAAK;AACzB,YAAM,SAAS,YAAY;AAC3B,YAAM,WAAW,QAAQ,IAAI,IAAI,UAAU,MAAM,MAAM;AACvD,kBAAY;AACZ,eAAS,IAAI,GAAG,IAAI,MAAM,EAAE,GAAG;AAC7B,sBAAc,UAAU,OAAO,KAAK,QAAQ,KAAK,OAAO;AAAA,MAC1D;AACA,mBAAa,WAAW,OAAO;AAC/B,sBAAgB,MAAM;AAAA,IACxB;AACA,aAAS,MAAM,GAAG,MAAM,WAAW,EAAE,KAAK;AACxC,YAAM,WAAW,YAAY;AAC7B,UAAI,aAAa,GAAG;AAClB,cAAM,gBAAgB,QAAQ,IAAI,IAAI,UAAU,MAAM;AACtD,sBAAc,gBAAgB,OAAO,KAAK;AAC1C,iBAAS,MAAM,GAAG,MAAM,MAAM,EAAE,KAAK;AACnC,wBAAc,gBAAgB,OAAO,OAAO;AAAA,QAC9C;AACA,qBAAa,iBAAiB;AAAA,MAChC;AAAA,IACF;AACA,WAAO;AAAA,MACL;AAAA,MACA,CAAC,kBAAkB,IAAI;AAAA,MACvB;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AAGA,SAAS,kBAAkB,cAAc,mBAAmB,YAAY,YAAY,aAAa;AAC/F,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,MAAM,kBAAkB;AAC9B,QAAM,aAAa,YAAY;AAC/B,QAAM,cAAc,CAAC;AACrB,MAAI,UAAU;AACd,MAAI,eAAe;AACnB,WAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,UAAMA,QAAO,YAAY;AACzB,QAAIA,UAAS,IAAI;AACf,UAAI,iBAAiB,IAAI;AACvB,cAAM,IAAI,MAAM,qBAAqB,yDAAyD,cAAc,CAAC,CAAC;AAAA,MAChH;AACA,qBAAe;AACf,kBAAY,KAAK,CAAC;AAAA,IACpB,OAAO;AACL,UAAIA,QAAO,GAAG;AACZ,cAAM,IAAI,MAAM,qBAAqB,8CAA8C,GAAGA,KAAI,CAAC;AAAA,MAC7F;AACA,iBAAWA;AACX,kBAAY,KAAKA,KAAI;AAAA,IACvB;AAAA,EACF;AACA,MAAI,iBAAiB,IAAI;AACvB,QAAI,WAAW,GAAG;AAChB,YAAM,IAAI,MAAM,qBAAqB,qDAAqD,CAAC;AAAA,IAC7F;AACA,UAAM,UAAU,KAAK,MAAM,YAAY,OAAO;AAC9C,QAAI,UAAU,YAAY,WAAW;AACnC,YAAM,IAAI,MAAM,qBAAqB,gDAAgD,YAAY,WAAW,CAAC;AAAA,IAC/G;AACA,gBAAY,gBAAgB;AAAA,EAC9B;AACA,QAAMqB,cAAa,aAAa,cAAc,WAAW;AACzD,MAAIA,gBAAe,WAAW;AAC5B,UAAM,IAAI,MAAM,qBAAqB,gDAAgD,YAAY,WAAW,CAAC;AAAA,EAC/G;AACA,QAAM,YAAY,WAAW;AAC7B,QAAM,eAAe,CAAC;AACtB,MAAI,YAAY,GAAG;AACjB,iBAAa,YAAY,KAAK;AAC9B,aAAS,IAAI,YAAY,GAAG,KAAK,GAAG,EAAE,GAAG;AACvC,mBAAa,KAAK,aAAa,IAAI,KAAK,WAAW,IAAI;AAAA,IACzD;AAAA,EACF;AACA,QAAM,gBAAgB,CAAC;AACvB,MAAI,aAAa,GAAG;AAClB,kBAAc,aAAa,KAAK;AAChC,aAAS,IAAI,aAAa,GAAG,KAAK,GAAG,EAAE,GAAG;AACxC,oBAAc,KAAK,cAAc,IAAI,KAAK,YAAY,IAAI;AAAA,IAC5D;AAAA,EACF;AACA,QAAM,aAAa,aAAa,kBAAkB,YAAY,MAAM,UAAU;AAC9E,WAAS,KAAK,GAAG,KAAK,KAAK,EAAE,IAAI;AAC/B,QAAI,KAAK;AACT,aAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,YAAM,aAAa,KAAK,YAAY,KAAK,aAAa;AAAA,IACxD;AACA,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,iBAAW,KAAK,aAAa,KAAK,KAAK,MAAM,KAAK,cAAc,EAAE;AAClE,YAAM,cAAc;AAAA,IACtB;AAAA,EACF;AACA,SAAO,CAAC,YAAY,CAAC,KAAK,UAAU,GAAG,WAAW;AACpD;AAGA,SAAS,2BAA2B,QAAQ,YAAY,YAAY,SAAS,YAAY,SAAS,OAAO,eAAe,GAAG;AACzH,QAAM,aAAa,QAAQ;AAC3B,QAAM,YAAY,CAAC,WAAW,IAAI,OAAO,SAAS,WAAW,EAAE;AAC/D,QAAM,SAAS,UAAU;AACzB,QAAM,uBAAuB,aAAa,IAAI,WAAW,aAAa,KAAK,IAAI;AAC/E,QAAM,aAAa;AACnB,MAAI,aAAa,GAAG;AAClB,UAAM,IAAI,MAAM,qBAAqB,wDAAwD,CAAC;AAAA,EAChG;AACA,QAAM,cAAc,WAAW,MAAM;AACrC,cAAY,KAAK;AACjB,QAAM,eAAe,YAAY,OAAO,CAAC,SAAS,UAAU,UAAU,OAAO,CAAC;AAC9E,QAAM,SAAS,aAAa,kBAAkB,YAAY,YAAY;AACtE,MAAI,eAAe,GAAG;AACpB,QAAI,aAAa,GAAG;AAClB,aAAO,KAAK,YAAY;AAAA,IAC1B;AACA,WAAO,CAAC,QAAQ,WAAW;AAAA,EAC7B;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,qBAAqB,wDAAwD,CAAC;AAAA,EAChG;AACA,MAAI,QAAQ,GAAG,MAAM;AACrB,MAAI,qBAAqB;AACzB,MAAI,WAAW,WAAW;AAC1B,SAAO,MAAM;AACX,QAAI,YAAY;AAChB,QAAI,MAAM,YAAY;AACpB,kBAAY,WAAW;AACvB,UAAI,aAAa,WAAW;AAC1B,UAAE;AACF;AAAA,MACF;AACA,UAAI,YAAY,WAAW;AACzB,cAAM,IAAI,MAAM,qBAAqB,6DAA6D,CAAC;AAAA,MACrG;AAAA,IACF;AACA,QAAI,WAAW,KAAK,YAAY,YAAY;AAC1C,YAAM,IAAI,MAAM,qBAAqB,yDAAyD,UAAU,UAAU,CAAC;AAAA,IACrH;AACA,QAAI,WAAW,oBAAoB;AACjC,aAAO,KAAK,cAAc,qBAAqB,QAAQ,WAAW,MAAM;AAAA,IAC1E;AACA,aAAS,KAAK,OAAO,KAAK,KAAK,EAAE,IAAI;AACnC,YAAMX,SAAQ,QAAQ;AACtB,UAAIA,SAAQ,KAAKA,UAAS,UAAU,IAAI;AACtC,cAAM,IAAI,MAAM,qBAAqB,uDAAuD,IAAI,QAAQ,KAAK,UAAU,EAAE,CAAC;AAAA,MAC5H;AACA,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,eAAO,WAAW,SAAS,MAAM,OAAOA,SAAQ,SAAS;AAAA,MAC3D;AAAA,IACF;AACA,QAAI,QAAQ;AACV,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,eAAO,WAAW,SAAS,MAAM,MAAM;AAAA,MACzC;AAAA,IACF;AACA,YAAQ;AACR,MAAE;AACF,yBAAqB,WAAW;AAChC,eAAW;AACX,QAAI,MAAM,YAAY;AACpB;AAAA,IACF;AAAA,EACF;AACA,MAAI,qBAAqB,YAAY;AACnC,WAAO,KAAK,cAAc,qBAAqB,QAAQ,aAAa,MAAM;AAAA,EAC5E;AACA,SAAO,CAAC,QAAQ,WAAW;AAC7B;AAGA,IAAI,WAAW,sBAAsB,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AAC1D,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,wBAAwB,6BAA6B,CAAC,GAAG,MAAM;AACjE,QAAM,OAAO,IAAI;AACjB,SAAO,OAAO;AAChB,CAAC;AACD,IAAI,qBAAqB,iBAAiB,mBAAmB,qBAAqB;AAClF,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,iBAAiB,UAAU,MAAMG,UAAS,OAAO;AACxD,QAAM,SAAS,OAAO,UAAU,KAAK,KAAK;AAC1C,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,MAAM;AACvC,UAAM,MAAM,OAAO,WAAW,EAAE;AAChC,UAAM,SAAS,IAAI,MAAM,IAAI,MAAM;AACnC,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,KAAK;AACtC,aAAO,KAAK,IAAI,KAAKA,SAAQ,KAAK,MAAM;AAAA,IAC1C;AACA,WAAO,IAAI,KAAK,IAAI,GAAG,MAAM,GAAG,GAAG,GAAG;AAAA,EACxC;AACA,SAAO;AACT;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,WAAW,aAAa,SAAS,WAAW,UAAU,wBAAwB;AACxF,SAAK,YAAY,aAAa,aAAa,SAAS;AACpD,SAAK,cAAc;AACnB,SAAK,UAAU,aAAa,aAAa,OAAO;AAChD,SAAK,WAAW,aAAa,aAAa,SAAS;AACnD,SAAK,WAAW;AAChB,SAAK,gBAAgB;AAAA,EACvB;AAAA,EACA,YAAY,YAAY;AACtB,WAAO,KAAK,IAAI,KAAK,WAAW,IAAI,aAAa,IAAI,KAAK,UAAU,aAAa,CAAC;AAAA,EACpF;AAAA,EACA,aAAa,QAAQ,YAAY;AAC/B,UAAM,WAAW,KAAK,YAAY,UAAU;AAC5C,WAAO,KAAK,IAAI,GAAG,SAAS,IAAI,WAAW,aAAa,CAAC;AAAA,EAC3D;AAAA,EACA,aAAa,MAAM,YAAY,QAAQ,kBAAkB,WAAW,YAAY;AAC9E,aAAS,aAAa,GAAG,aAAa,WAAW,EAAE,YAAY;AAC7D,YAAM,WAAW,KAAK,YAAY,UAAU;AAC5C,YAAM,cAAc,KAAK,IAAI,GAAG,WAAW,UAAU;AACrD,YAAM,eAAe,KAAK,IAAI,GAAG,YAAY,aAAa,aAAa,GAAG;AAC1E,YAAM,YAAY,cAAc,cAAc;AAC9C,YAAM,iBAAiB,cAAc,cAAc,IAAI,IAAI,aAAa;AACxE,UAAI,YAAY;AAChB,mBAAa,cAAc,KAAK,QAAQ;AACxC,eAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,qBAAa,KAAK,iBAAiB,IAAI;AAAA,MACzC;AACA,mBAAa,eAAe,KAAK,SAAS;AAC1C,YAAM,gBAAgB,cAAc,eAAe,YAAY;AAC/D,mBAAa,gBAAgB,KAAK,UAAU;AAC5C,aAAO,mBAAmB,cAAc,IAAI,WAAW,SAAS;AAChE,YAAM,QAAQ,OAAO,mBAAmB;AACxC,UAAI,iBAAiB;AACrB,YAAM,gBAAgB,CAAC,QAAQ,IAAI,QAAQ,CAAC,UAAU,MAAM,oBAAoB,KAAK;AACrF,eAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,sBAAc,KAAK,OAAO;AAC1B,sBAAc,KAAK,SAAS;AAAA,MAC9B;AACA,eAAS,KAAK,GAAG,KAAK,YAAY,GAAG,EAAE,IAAI;AACzC,sBAAc,KAAK,iBAAiB,GAAG;AACvC,sBAAc,KAAK,SAAS;AAAA,MAC9B;AACA,UAAI,YAAY,GAAG;AACjB,sBAAc,KAAK,iBAAiB,YAAY,EAAE;AAClD,iBAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,wBAAc,KAAK,SAAS;AAC5B,wBAAc,KAAK,QAAQ;AAAA,QAC7B;AAAA,MACF,OAAO;AACL,iBAAS,KAAK,GAAG,KAAK,eAAe,GAAG,EAAE,IAAI;AAC5C,wBAAc,KAAK,QAAQ;AAC3B,wBAAc,KAAK,SAAS;AAAA,QAC9B;AACA,sBAAc,KAAK,QAAQ;AAAA,MAC7B;AAAA,IACF;AAAA,EACF;AAAA,EACA,QAAQ,MAAM,QAAQ;AACpB,UAAM,gBAAgB,KAAK;AAC3B,UAAM,aAAa,OAAO;AAC1B,QAAI,aAAa,GAAG;AAClB,UAAI,YAAY,OAAO;AACvB,UAAI,cAAc,GAAG;AACnB,cAAM,IAAI,MAAM,oCAAoC,WAAW;AAAA,MACjE;AACA,eAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,YAAI,cAAc,OAAO,OAAO;AAChC,sBAAc,eAAe,OAAO,OAAO;AAC3C,YAAI,CAAC,aAAa;AAChB,gBAAM,IAAI,MAAM,uBAAuB,OAAO,oBAAoB,cAAc,gBAAgB;AAAA,QAClG;AACA,oBAAY,OAAO;AAAA,MACrB;AACA,UAAI,cAAc,eAAe;AAC/B,cAAM,IAAI,MAAM,gDAAgD,sBAAsB,WAAW;AAAA,MACnG;AAAA,IACF;AACA,UAAM,gBAAgB,aAAa;AACnC,UAAM,eAAe,aAAa,kBAAkB,SAAS,UAAU;AACvE,QAAI,kBAAkB,KAAK,eAAe,GAAG;AAC3C,YAAM,QAAQ,IAAI,MAAM,aAAa;AACrC,eAAS,KAAK,GAAG,MAAM,eAAe,EAAE,IAAI;AAC1C,qBAAa,MAAM;AAAA,MACrB;AACA,aAAO,CAAC,OAAO,YAAY;AAAA,IAC7B;AACA,iBAAa,KAAK;AAClB,aAAS,KAAK,GAAG,MAAM,eAAe,EAAE,IAAI;AAC1C,YAAM,SAAS,OAAO,MAAM,OAAO,KAAK;AACxC,UAAI,YAAY;AAChB,WAAK,YAAY,QAAQ,CAAC,eAAe;AACvC,qBAAa,KAAK,aAAa,QAAQ,UAAU;AAAA,MACnD,CAAC;AACD,UAAI,KAAK,iBAAiB,SAAS,KAAK,cAAc,GAAG;AACvD,oBAAY;AAAA,MACd;AACA,mBAAa,MAAM,aAAa,KAAK,KAAK;AAAA,IAC5C;AACA,UAAM,SAAS,IAAI,MAAM,aAAa,cAAc;AACpD,aAAS,KAAK,GAAG,KAAK,eAAe,EAAE,IAAI;AACzC,YAAM,aAAa,OAAO;AAC1B,UAAI,iBAAiB,aAAa;AAClC,WAAK,YAAY,QAAQ,CAAC,eAAe;AACvC,cAAM,SAAS,OAAO,KAAK,KAAK,OAAO;AACvC,cAAM,YAAY,KAAK,aAAa,QAAQ,UAAU;AACtD,aAAK,aAAa,MAAM,YAAY,QAAQ,gBAAgB,WAAW,UAAU;AACjF,0BAAkB;AAAA,MACpB,CAAC;AACD,UAAI,KAAK,iBAAiB,mBAAmB,aAAa,KAAK;AAC7D,cAAM,aAAa,OAAO,KAAK,KAAK,OAAO;AAC3C,YAAI,eAAe,GAAG;AACpB;AAAA,QACF;AACA,cAAM,aAAa,aAAa,IAAI,KAAK;AACzC,cAAM,YAAY;AAClB,aAAK,aAAa,MAAM,YAAY,QAAQ,gBAAgB,WAAW,UAAU;AAAA,MACnF;AAAA,IACF;AACA,WAAO,CAAC,QAAQ,YAAY;AAAA,EAC9B;AACF;AACA,SAAS,iBAAiB,MAAM,YAAY,WAAW,aAAa,SAAS,WAAW,UAAU,wBAAwB;AACxH,SAAO,IAAI,eAAe,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB,EAAE,QAAQ,MAAM,UAAU;AAClI;AAGA,SAAS,OAAO,KAAK,YAAY,WAAW,QAAQ;AAClD,MAAI,CAAC,IAAI,QAAQ;AACf;AAAA,EACF;AACA,MAAI,WAAW,WAAW,GAAG;AAC3B,aAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,aAAO,KAAK,IAAI,SAAS,IAAI,KAAK,CAAC,CAAC;AAAA,IACtC;AACA;AAAA,EACF;AACA,MAAI,WAAW,WAAW,GAAG;AAC3B,UAAM,YAAY,WAAW;AAC7B,QAAI,IAAI,IAAI,QAAQ,SAAS;AAC7B,WAAO,MAAM,IAAI;AACf,YAAM,QAAQ,IAAI,SAAS,GAAG,CAAC;AAC/B,UAAI,CAAC,aAAa,MAAM,WAAW,GAAG;AACpC,eAAO,KAAK,KAAK;AAAA,MACnB;AACA,YAAM,IAAI,SAAS,IAAI,CAAC;AACxB,UAAI,IAAI,QAAQ,SAAS;AAAA,IAC3B;AACA,QAAI,CAAC,aAAa,IAAI,WAAW,GAAG;AAClC,aAAO,KAAK,GAAG;AAAA,IACjB;AACA;AAAA,EACF;AACA,MAAI,aAAa;AACjB,WAAS,KAAK,GAAG,KAAK,IAAI,SAAS,GAAG,MAAM;AAC1C,QAAI,OAAO,IAAI,UAAU,WAAW,QAAQ,IAAI,GAAG,MAAM,IAAI;AAC3D,YAAM,QAAQ,IAAI,SAAS,YAAY,EAAE;AACzC,UAAI,CAAC,aAAa,MAAM,WAAW,GAAG;AACpC,eAAO,KAAK,KAAK;AAAA,MACnB;AACA,mBAAa,KAAK;AAAA,IACpB;AAAA,EACF;AACF;AACA,SAAS,gBAAgB,QAAQ,WAAW,WAAW;AACrD,QAAM,YAAY,OAAO;AACzB,QAAM,SAAS,CAAC;AAChB,MAAIQ,cAAa;AACjB,MAAI,gBAAgB;AACpB,QAAM,aAAa,IAAI,MAAM,SAAS;AACtC,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,UAAM,mBAAmB,OAAO;AAChC,WAAO,OAAO,KAAK,WAAW,WAAW,MAAM;AAC/C,UAAM,WAAW,OAAO,SAAS;AACjC,eAAW,MAAM;AACjB,IAAAA,eAAc;AACd,oBAAgB,KAAK,IAAI,eAAe,QAAQ;AAAA,EAClD;AACA,QAAM,UAAU,aAAa,kBAAkB,SAASA,cAAa,CAAC;AACtE,QAAM,SAAS,IAAI,MAAMA,WAAU;AACnC,QAAM,QAAQ,CAAC,WAAW,aAAa;AACvC,MAAI,IAAI;AACR,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK,EAAE,GAAG;AACvC,cAAQ,IAAI,KAAK;AACjB,cAAQ,IAAI,IAAI,KAAK;AACrB,aAAO,KAAK,OAAO;AACnB,QAAE;AAAA,IACJ;AAAA,EACF;AACA,SAAO,CAAC,SAAS,QAAQ,KAAK;AAChC;AAGA,SAAS,2BAA2B,QAAQ,YAAY;AACtD,QAAM,SAAS,aAAa,kBAAkB,SAAS,OAAO,MAAM;AACpE,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,WAAO,MAAM,aAAa,cAAc,OAAO,GAAG,EAAE,OAAO,UAAU,EAAE,mBAAmB;AAAA,EAC5F;AACA,SAAO;AACT;AAGA,IAAI,UAAU,6BAA6B,CAAC,QAAQ,WAAW,SAAS,MAAM;AAC9E,IAAI,iBAAiB,8BAA8B,CAAC,OAAO,OAAO,OAAO,UAAU;AACjF,SAAO,EAAE,MAAM,QAAQ,OAAO,MAAM,QAAQ,MAAM;AACpD,CAAC;AACD,IAAI,OAAO,iBAAiB,KAAK,SAAS,cAAc;AACxD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM,MAAM;AAC5B,QAAM,WAAW,IAAI,MAAM,KAAK,IAAI;AACpC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,KAAK,MAAM,MAAM,KAAK;AAAA,EACvC;AACA,QAAM,SAAS,OAAO,UAAU,KAAK,KAAK;AAC1C,WAAS,KAAK,GAAG,KAAK,OAAO,OAAO,QAAQ,EAAE,IAAI;AAChD,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,cAAc,IAAI,MAAM,KAAK,IAAI;AACvC,aAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,kBAAY,KAAK,OAAO,KAAK,KAAK,MAAM;AAAA,IAC1C;AACA,UAAM,gBAAgB,KAAK,WAAW,WAAW;AACjD,WAAO,OAAO,MAAM,KAAK,OAAO;AAAA,EAClC;AACA,SAAO;AACT;AAGA,IAAI,cAAc,CAAC,GAAG,MAAM;AAC1B,QAAM,YAAY,EAAE,QAAQ,EAAE;AAC9B,SAAO,cAAc,IAAI,EAAE,QAAQ,EAAE,QAAQ;AAC/C;AACA,SAAS,OAAO,QAAQ,GAAG,OAAO,GAAG,QAAQ,OAAO,SAAS,GAAG;AAC9D,SAAO,QAAQ,MAAM;AACnB,QAAI,QAAQ,OAAO,KAAK;AACtB,YAAM,KAAK,QAAQ,OAAO;AAC1B,YAAM,KAAK,IAAI,OAAO;AACtB,YAAM,IAAI,KAAK,IAAI,EAAE;AACrB,YAAM,KAAK,MAAM,KAAK,IAAI,IAAI,IAAI,CAAC;AACnC,YAAM,KAAK,MAAM,KAAK,KAAK,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,KAAK,KAAK,KAAK,KAAK,CAAC;AAC3E,YAAM,UAAU,KAAK,IAAI,MAAM,KAAK,MAAM,IAAI,KAAK,KAAK,KAAK,EAAE,CAAC;AAChE,YAAM,WAAW,KAAK,IAAI,OAAO,KAAK,MAAM,KAAK,KAAK,MAAM,KAAK,KAAK,EAAE,CAAC;AACzE,aAAO,QAAQ,GAAG,SAAS,QAAQ;AAAA,IACrC;AACA,UAAM,KAAK,OAAO;AAClB,QAAI,KAAK;AACT,QAAI,IAAI;AACR,iBAAa,KAAK,QAAQ,MAAM,CAAC;AACjC,QAAI,YAAY,OAAO,QAAQ,EAAE,IAAI,GAAG;AACtC,mBAAa,KAAK,QAAQ,MAAM,KAAK;AAAA,IACvC;AACA,WAAO,KAAK,GAAG;AACb,mBAAa,KAAK,QAAQ,IAAI,CAAC;AAC/B;AACA;AACA,aAAO,YAAY,OAAO,KAAK,EAAE,IAAI,GAAG;AACtC,aAAK,KAAK;AAAA,MACZ;AACA,aAAO,YAAY,OAAO,IAAI,EAAE,IAAI,GAAG;AACrC,YAAI,IAAI;AAAA,MACV;AAAA,IACF;AACA,QAAI,YAAY,OAAO,OAAO,EAAE,MAAM,GAAG;AACvC,mBAAa,KAAK,QAAQ,MAAM,CAAC;AAAA,IACnC,OAAO;AACL,UAAI,IAAI;AACR,mBAAa,KAAK,QAAQ,GAAG,KAAK;AAAA,IACpC;AACA,QAAI,KAAK,GAAG;AACV,aAAO,IAAI;AAAA,IACb;AACA,QAAI,KAAK,GAAG;AACV,cAAQ,IAAI;AAAA,IACd;AAAA,EACF;AACF;AACA,SAAS,SAAS,GAAG,QAAQ,QAAQ,GAAG,QAAQ;AAC9C,QAAM,UAAU,OAAO,OAAO,SAAS;AACvC,QAAM,CAAC,OAAOrB,KAAI,IAAI,CAAC,EAAE,SAAS,SAAS,OAAO;AAClD,QAAM,cAAc,aAAa,uBAAuB,QAAQ,QAAQ,CAAC;AACzE,QAAM,iBAAiB,aAAa,uBAAuB,SAAS,QAAQ,CAAC;AAC7E,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,SAAS,IAAIA;AACnB,UAAM,OAAO,EAAE,SAAS,QAAQ,SAASA,KAAI;AAC7C,QAAI,YAAY,IAAI,MAAM,KAAK,MAAM;AACrC,SAAK,QAAQ,CAAC,OAAOU,WAAU,UAAUA,UAAS,EAAE,OAAO,OAAAA,OAAM,CAAC;AAClE,QAAI,IAAI,UAAU,QAAQ;AACxB,aAAO,WAAW,CAAC;AACnB,kBAAY,UAAU,MAAM,GAAG,CAAC;AAAA,IAClC;AACA,QAAI,QAAQ;AACV,gBAAU,KAAK,WAAW;AAAA,IAC5B;AACA,UAAM,YAAY,IAAI;AACtB,UAAM,WAAW,YAAY,SAAS,WAAW,YAAY,CAAC;AAC9D,UAAM,cAAc,eAAe,SAAS,WAAW,YAAY,CAAC;AACpE,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,eAAS,MAAM,UAAU,IAAI;AAC7B,kBAAY,MAAM,UAAU,IAAI;AAAA,IAClC;AAAA,EACF;AACA,QAAM,cAAc,OAAO,MAAM;AACjC,cAAY,YAAY,SAAS,KAAK;AACtC,SAAO;AAAA,IACL,OAAO,aAAa,QAAQ,WAAW;AAAA,IACvC,OAAO,aAAa,SAAS,cAAc;AAAA,EAC7C;AACF;AAGA,SAAS,WAAW,QAAQ,MAAM,OAAO,OAAO;AAC9C,QAAM,QAAQ,aAAa,eAAe,MAAM,KAAK,EAAE;AACvD,QAAM,WAAW,CAAC,GAAG,MAAM,IAAI,CAAC;AAChC,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM;AACjC,aAAS,MAAM,MAAM;AAAA,EACvB;AACA,WAAS,KAAK,MAAM;AACpB,WAAS,KAAK,QAAQ,GAAG,KAAK,MAAM,QAAQ,MAAM;AAChD,aAAS,MAAM,MAAM;AAAA,EACvB;AACA,QAAM,iBAAiB,CAAC;AACxB,QAAM,UAAU,IAAI,WAAW,MAAM,MAAM;AAC3C,QAAM,cAAc,IAAI,aAAa,UAAU,OAAO,MAAM;AAC5D,QAAM,gBAAgB,CAAC;AACvB,QAAM,aAAa,SAAS,OAAO,KAAK,SAAS,OAAO;AACxD,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,QAAI;AACJ,QAAI,YAAY;AACd,gBAAU,OAAO,IAAI,SAAS;AAAA,IAChC,OAAO;AACL,YAAM,aAAa,CAAC;AACpB,eAAS,IAAI,GAAG,IAAI,SAAS,IAAI,KAAK;AACpC,iBAAS,KAAK,GAAG,KAAK,SAAS,IAAI,MAAM;AACvC,qBAAW,KAAK,YAAY,IAAI,GAAG,IAAI,EAAE,CAAC;AAAA,QAC5C;AAAA,MACF;AACA,gBAAU,WAAW,KAAK,GAAG;AAAA,IAC/B;AACA,QAAI,eAAe,aAAa,QAAQ;AACtC,cAAQ,MAAM,eAAe;AAAA,IAC/B,OAAO;AACL,YAAM,cAAc,OAAO,KAAK,cAAc,EAAE;AAChD,qBAAe,WAAW;AAC1B,cAAQ,MAAM;AACd,oBAAc,KAAK,EAAE;AAAA,IACvB;AAAA,EACF;AACA,QAAM,iBAAiB,SAAS,MAAM;AACtC,iBAAe,KAAK,OAAO,KAAK,cAAc,EAAE;AAChD,QAAM,eAAe,IAAI,aAAa,gBAAgB,KAAK;AAC3D,gBAAc,QAAQ,CAAC,oBAAoB,OAAO;AAChD,aAAS,IAAI,GAAG,IAAI,SAAS,IAAI,KAAK;AACpC,eAAS,KAAK,GAAG,KAAK,SAAS,IAAI,MAAM;AACvC,qBAAa,IAAI,YAAY,IAAI,GAAG,oBAAoB,EAAE,GAAG,GAAG,IAAI,EAAE;AAAA,MACxE;AAAA,IACF;AAAA,EACF,CAAC;AACD,QAAM,cAAc,MAAM,MAAM;AAChC,cAAY,SAAS,eAAe;AACpC,SAAO;AAAA,IACL,cAAc,aAAa;AAAA,IAC3B;AAAA,IACA;AAAA,EACF;AACF;AAGA,gBAAgB,OAAO,MAAM,IAAI,eAAe,GAAG,CAAC;AAGpD,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO,MAAM,IAAI,KAAK,KAAK,IAAI,EAAE,IAAI,CAAC;AACvE,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAAa,OAAM,IAAI;AAClB,mBAAiB,CAAC,CAAC,GAAG,WAAW;AACjC,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,UAAU,aAAa,uBAAuB,WAAW,KAAK;AACpE,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,YAAQ,MAAM,MAAM,MAAM,IAAIA,SAAQ,MAAM,MAAM,MAAM;AAAA,EAC1D;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,WAAW,OAAO;AAC5D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,6BAA6B,CAAC,QAAQ,WAAW,SAAS,IAAI,SAAS,SAAS,MAAM;AACtG,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,OAAAA,OAAM,IAAI;AACrB,mBAAiB,CAAC,GAAGA,MAAK,GAAG,OAAO;AACpC,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAIA,OAAM,MAAM,EAAE;AAC9C,QAAM,CAAC,YAAY,WAAW,IAAI,UAAU,EAAE,OAAOA,OAAM,OAAO,OAAO,OAAO,SAAS;AACzF,SAAO,SAAS,eAAe,aAAa,WAAW,UAAU;AACnE;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,IAAI,GAAG,EAAE,CAAC;AACzD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,IAAI,KAAK,IAAI,GAAG,EAAE,GAAG,CAAC,CAAC;AACxE,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,iBAAiB,UAAU,GAAG,aAAa,wBAAwB,gBAAgB;AAC1F,MAAI,gBAAgB,UAAU;AAC5B,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD,WAAW,gBAAgB,QAAQ;AACjC,WAAO,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACnD,WAAW,gBAAgB,OAAO;AAChC,WAAO,KAAK,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EAClD,WAAW,gBAAgB,SAAS;AAClC,WAAO,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACpD,WAAW,gBAAgB,SAAS;AAClC,WAAO,OAAO,EAAE,QAAQ,EAAE,GAAG,OAAO,uBAAuB,GAAG,SAAS,SAAS,CAAC;AAAA,EACnF,WAAW,gBAAgB,aAAa;AACtC,WAAO,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,eAAe,EAAE,CAAC;AAAA,EAC1F,WAAW,gBAAgB,WAAW;AACpC,WAAO,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACtD;AACA,QAAM,IAAI,MAAM,cAAc,2DAA2D;AAC3F;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,SAAS,aAAa,uBAAuB,OAAO,KAAK;AAC/D,QAAM,SAAS,aAAa,cAAc,MAAM;AAChD,eAAa,OAAO,UAAU,QAAQ,MAAM,kBAAkB,eAAe,sCAAsC,EAAE,cAAc,oFAAoF;AACvN,WAAS,OAAO,EAAE,MAAM;AACxB,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM;AACxC,MAAI,MAAM,sBAAsB,MAAM;AACpC,UAAM,QAAQ,MAAM,mBAAmB;AACvC,UAAM,QAAQ,MAAM,mBAAmB;AACvC,UAAM,QAAQ;AACd,UAAM,QAAQ;AAAA,EAChB;AACA,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,QAAQ,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,EAAE,YAAY,WAAW,IAAI;AACnC,mBAAiB,CAAC,GAAG,CAAC,GAAG,QAAQ;AACjC,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,oBAAoB,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AACtH,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,eAAa,OAAO,gBAAgB,aAAa,MAAM,kCAAkC,qBAAqB,uCAAuC,EAAE,aAAa,EAAE,wBAAwB,6BAA6B,wBAAwB;AACnP,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,YAAY,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACxD,QAAM,UAAU,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACtD,QAAM,WAAW,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACvD,QAAM,WAAW,KAAK,IAAI,WAAW,SAAS;AAC9C,QAAM,YAAY,SAAS,KAAK,IAAI,IAAI,MAAM,EAAE;AAChD,QAAM,YAAY,SAAS,KAAK,IAAI,IAAI,MAAM,EAAE;AAChD,QAAM,aAAa,aAAa,eAAe,IAAI,KAAK;AACxD,QAAM,aAAa,aAAa,eAAe,IAAI,KAAK;AACxD,QAAM,CAAC,QAAQ,YAAY,UAAU,IAAI,aAAa,CAAC,WAAW,IAAI,GAAG,WAAW,EAAE,IAAI,CAAC,WAAW,IAAI,WAAW,IAAI,CAAC;AAC1H,QAAM,CAAC,YAAY,YAAY,MAAM,IAAI,aAAa,CAAC,GAAG,WAAW,IAAI,WAAW,EAAE,IAAI,CAAC,WAAW,IAAI,GAAG,WAAW,EAAE;AAC1H,QAAMvB,QAAO,UAAU;AACvB,QAAM,SAAS,OAAO,CAAC,UAAU,SAAS,QAAQ,GAAG,IAAI,KAAK;AAC9D,QAAM,UAAU,OAAO;AACvB,QAAM,YAAY,SAAS;AAC3B,WAAS,KAAK,GAAG,KAAK,UAAU,MAAM;AACpC,aAAS,KAAK,GAAG,KAAK,SAAS,MAAM,WAAW;AAC9C,eAAS,KAAK,GAAG,KAAK,UAAU,MAAM,WAAW;AAC/C,iBAAS,MAAM,GAAG,MAAM,WAAW,OAAO,WAAW;AACnD,gBAAM,SAAS,KAAK,IAAI,KAAK,WAAW,OAAO;AAC/C,gBAAM,SAAS,KAAK,IAAI,KAAK,WAAW,QAAQ;AAChD,gBAAM,SAAS,KAAK,IAAI,MAAM,WAAW,SAAS;AAClD,mBAAS,KAAK,IAAI,KAAK,QAAQ,MAAM;AACnC,qBAAS,IAAI,IAAI,IAAI,QAAQ,KAAK;AAChC,kBAAI,OAAO;AACX,uBAAS,IAAI,KAAK,IAAI,QAAQ,KAAK;AACjC,sBAAM,eAAe,KAAK,IAAI,IAAI,YAAY,CAAC,IAAI;AACnD,sBAAM,eAAe,KAAK,IAAI,IAAI,YAAY,CAAC,IAAI;AACnD,sBAAM,OAAO,UAAU,eAAe,KAAK,aAAa,IAAI;AAC5D,sBAAM,OAAO,UAAU,IAAI,aAAa,IAAI,aAAa;AACzD,wBAAQ,OAAO;AAAA,cACjB;AACA,sBAAQ,KAAKA,SAAQ,KAAK,WAAW,OAAO;AAAA,YAC9C;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,GAAG;AAC1C,SAAO,SAAS,eAAe,UAAU,OAAO,OAAO,OAAO,MAAM;AACtE;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,MAAM,uBAAuB,IAAI;AAC/C,QAAM,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe,IAAI;AAC5E,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,QAAM,gBAAgB,CAAC;AACvB,QAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,OAAO,EAAE,YAAY,WAAW,GAAG,SAAS,SAAS,CAAC;AACxG,YAAU;AACV,MAAI,MAAM;AACR,aAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,KAAK,GAAG,SAAS,SAAS,CAAC;AACpE,kBAAc,KAAK,OAAO;AAC1B,cAAU;AAAA,EACZ;AACA,MAAI,aAAa;AACf,oBAAgB,iBAAiB,UAAU,SAAS,aAAa,wBAAwB,cAAc;AACvG,kBAAc,KAAK,OAAO;AAC1B,cAAU;AAAA,EACZ;AACA,aAAW,MAAM,eAAe;AAC9B,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC1D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,UAAU;AAChB,mBAAiB,QAAQ,MAAM;AAC/B,QAAM,OAAO,QAAQ,IAAI,CAAC,OAAO,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE,MAAM;AACpE,QAAM,SAAS,OAAO,QAAQ,GAAG,OAAO,QAAQ,GAAG,KAAK;AACxD,QAAM,UAAU,OAAO;AACvB,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,UAAM,WAAW,KAAK;AACtB,aAAS,IAAI,GAAG,IAAI,QAAQ,QAAQ,KAAK;AACvC,cAAQ,MAAM,SAAS;AAAA,IACzB;AAAA,EACF;AACA,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC1E;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,EAAE,MAAM,MAAM;AAAA,EAC1E;AACA,uBAAqB,2BAA2B,OAAO,MAAM,GAAG,MAAM,MAAM;AAC5E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,OAAO,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,GAAG,KAAK;AAC5F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAIF,QAAO,MAAM;AACjB,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,MAAAA,QAAOA,SAAQ;AAAA,IACjB;AACA,SAAK,MAAMA;AAAA,EACb;AACA,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,QAAM,SAAS,SAAS,eAAe,UAAU,GAAG,OAAO,IAAI;AAC/D,MAAI,UAAU;AACZ,UAAM,gBAAgB,qBAAqB,qBAAqB,UAAU,QAAQ;AAClF,UAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,EAAE,MAAM,MAAM;AAAA,EAC1E;AACA,uBAAqB,2BAA2B,OAAO,MAAM,GAAG,MAAM,MAAM;AAC5E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,OAAO,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,GAAG,KAAK;AAC5F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,SAAS,MAAM;AACnB,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,eAAS,UAAU;AAAA,IACrB;AACA,SAAK,MAAM;AAAA,EACb;AACA,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,QAAM,SAAS,SAAS,eAAe,UAAU,GAAG,OAAO,IAAI;AAC/D,MAAI,UAAU;AACZ,UAAM,gBAAgB,qBAAqB,qBAAqB,UAAU,QAAQ;AAClF,UAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,QAAQ;AAC5B,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,SAAO,CAAC,KAAK,EAAE;AACf,uBAAqB,2BAA2B,UAAU,MAAM,GAAG,MAAM,MAAM;AAC/E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,UAAU,aAAa,cAAc,QAAQ;AACnD,QAAM,OAAO,aAAa,oBAAoB,SAAS,OAAO;AAC9D,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO,MAAM;AACjB,QAAI,WAAW;AACf,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,UAAI,QAAQ,MAAM;AAChB,eAAO;AACP,mBAAW;AAAA,MACb;AAAA,IACF;AACA,SAAK,MAAM;AAAA,EACb;AACA,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO,SAAS,eAAe,UAAU,SAAS,IAAI;AACxD;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,QAAQ;AAC5B,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,SAAO,CAAC,KAAK,EAAE;AACf,uBAAqB,2BAA2B,UAAU,MAAM,GAAG,MAAM,MAAM;AAC/E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,UAAU,aAAa,cAAc,QAAQ;AACnD,QAAM,OAAO,aAAa,oBAAoB,SAAS,OAAO;AAC9D,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO,MAAM;AACjB,QAAI,WAAW;AACf,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,UAAI,QAAQ,MAAM;AAChB,eAAO;AACP,mBAAW;AAAA,MACb;AAAA,IACF;AACA,SAAK,MAAM;AAAA,EACb;AACA,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO,SAAS,eAAe,UAAU,SAAS,IAAI;AACxD;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC1D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,6BAA6B,CAAC,QAAQ,WAAW,KAAK,MAAM,QAAQ,MAAM,CAAC;AAC3F,IAAI,SAAS,iBAAiB,OAAO,SAAS;AAC9C,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC1D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,SAAS,QAAQ,OAAOe,UAAS,UAAU,UAAU;AAClE,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,eAAe,aAAa,QAAQ,OAAO,oBAAoB,OAAO;AAC5E,QAAM,SAAS,OAAO,SAAS,UAAU,KAAK;AAC9C,QAAM,aAAa,OAAO;AAC1B,QAAM,qBAAqB,SAAS,SAAS,KAAK,SAAS,SAAS,KAAK,SAAS,SAAS;AAC3F,QAAM,mBAAmB,SAAS,SAAS,KAAK,SAAS,SAAS;AAClE,QAAM,mBAAmB,SAAS,SAAS;AAC3C,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,UAAM,oBAAoB,IAAI;AAC9B,UAAM,mBAAmB,IAAIA,SAAQ;AACrC,aAAS,IAAI,GAAG,IAAI,SAAS,YAAY,EAAE,GAAG;AAC5C,eAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,cAAM,WAAW,KAAK,eAAe;AACrC,cAAM,QAAQ,KAAK,IAAI,GAAG,QAAQ;AAClC,cAAM,QAAQ,KAAK,IAAI,SAAS,UAAU,wBAAwB,QAAQ;AAC1E,cAAM,kBAAkB,oBAAoB,KAAK;AACjD,iBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,gBAAM,WAAW,KAAK,cAAc;AACpC,gBAAM,QAAQ,KAAK,IAAI,GAAG,QAAQ;AAClC,gBAAM,QAAQ,KAAK,IAAI,SAAS,SAAS,uBAAuB,QAAQ;AACxE,cAAI,cAAc;AAClB,cAAI,WAAW;AACf,cAAIN,UAAS;AACb,mBAAS,KAAK,OAAO,KAAK,OAAO,MAAM,gBAAgB;AACrD,kBAAM,WAAW,mBAAmB,KAAKM,SAAQ;AACjD,qBAAS,KAAK,OAAO,KAAK,OAAO,MAAM,eAAe;AACpD,oBAAM,WAAW,WAAW,KAAKA,SAAQ;AACzC,oBAAM,QAAQ,QAAQ,WAAW;AACjC,kBAAI,aAAa,SAAS,QAAQ,aAAa;AAC7C,8BAAc;AAAA,cAChB,WAAW,aAAa,OAAO;AAC7B,4BAAY;AACZ,gBAAAN;AAAA,cACF;AAAA,YACF;AACA,gBAAI,MAAM,WAAW,GAAG;AACtB;AAAA,YACF;AAAA,UACF;AACA,gBAAM,eAAe,kBAAkB,KAAK,mBAAmB;AAC/D,qBAAW,gBAAgB,aAAa,QAAQ,WAAWA,UAAS;AAAA,QACtE;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,SAAS,QAAQ,OAAO,UAAU,mBAAmB,OAAO,sBAAsB,OAAO;AACjH,QAAM,eAAe,OAAO,SAAS,UAAU,OAAO;AACtD,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,OAAO,OAAO,QAAQ,OAAO,OAAO;AAC1C,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,aAAS,IAAI,GAAG,IAAI,SAAS,YAAY,EAAE,GAAG;AAC5C,eAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,cAAM,WAAW,KAAK,eAAe;AACrC,YAAI,QAAQ;AACZ,eAAO,QAAQ,GAAG;AAChB,mBAAS;AAAA,QACX;AACA,cAAM,QAAQ,KAAK,IAAI,SAAS,UAAU,wBAAwB,QAAQ;AAC1E,iBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,gBAAM,WAAW,KAAK,cAAc;AACpC,cAAI,QAAQ;AACZ,iBAAO,QAAQ,GAAG;AAChB,qBAAS;AAAA,UACX;AACA,gBAAM,QAAQ,KAAK,IAAI,SAAS,SAAS,uBAAuB,QAAQ;AACxE,cAAI,WAAW,OAAO;AACtB,cAAI,cAAc;AAClB,mBAAS,KAAK,OAAO,KAAK,OAAO,MAAM,gBAAgB;AACrD,kBAAM,KAAK,KAAK;AAChB,qBAAS,KAAK,OAAO,KAAK,OAAO,MAAM,eAAe;AACpD,oBAAM,KAAK,KAAK;AAChB,oBAAM,QAAQ,KAAK,IAAI,GAAG,IAAI,IAAI,CAAC;AACnC,kBAAI,QAAQ,UAAU;AACpB,2BAAW;AACX,oBAAI,kBAAkB;AACpB,gCAAc,wBAAwB,IAAI,SAAS,WAAW,MAAM,SAAS,UAAU,MAAM,SAAS,aAAa,KAAK,KAAK,SAAS,UAAU,MAAM,SAAS,aAAa;AAAA,gBAC9K,OAAO;AACL,gCAAc,KAAK,uBAAuB;AAAA,gBAC5C;AAAA,cACF;AAAA,YACF;AAAA,UACF;AACA,uBAAa,IAAI,aAAa,GAAG,IAAI,IAAI,CAAC;AAAA,QAC5C;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,QAAQ,SAAS,QAAQ,OAAOM,UAAS,UAAU,UAAU;AACpE,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,uBAAuB,SAAS;AACtC,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,eAAe,aAAa,QAAQ,OAAO,oBAAoB,OAAO;AAC5E,QAAM,SAAS,OAAO,SAAS,UAAU,KAAK;AAC9C,QAAM,aAAa,OAAO;AAC1B,QAAM,qBAAqB,SAAS,SAAS,KAAK,SAAS,SAAS,KAAK,SAAS,SAAS,KAAK,SAAS,SAAS;AAClH,QAAM,qBAAqB,SAAS,SAAS,KAAK,SAAS,SAAS,KAAK,SAAS,SAAS;AAC3F,QAAM,mBAAmB,SAAS,SAAS,KAAK,SAAS,SAAS;AAClE,QAAM,mBAAmB,SAAS,SAAS;AAC3C,WAAS,QAAQ,GAAG,QAAQ,SAAS,WAAW,EAAE,OAAO;AACvD,UAAM,oBAAoB,QAAQ;AAClC,UAAM,mBAAmB,QAAQA,SAAQ;AACzC,aAAS,UAAU,GAAG,UAAU,SAAS,YAAY,EAAE,SAAS;AAC9D,eAAS,SAAS,GAAG,SAAS,SAAS,UAAU,EAAE,QAAQ;AACzD,cAAM,eAAe,SAAS,cAAc;AAC5C,YAAI,YAAY;AAChB,eAAO,YAAY,GAAG;AACpB,uBAAa;AAAA,QACf;AACA,cAAM,YAAY,KAAK,IAAI,SAAS,SAAS,uBAAuB,YAAY;AAChF,cAAM,oBAAoB,oBAAoB,SAAS;AACvD,iBAAS,OAAO,GAAG,OAAO,SAAS,WAAW,EAAE,MAAM;AACpD,gBAAM,aAAa,OAAO,eAAe;AACzC,cAAI,UAAU;AACd,iBAAO,UAAU,GAAG;AAClB,uBAAW;AAAA,UACb;AACA,gBAAM,UAAU,KAAK,IAAI,SAAS,UAAU,wBAAwB,UAAU;AAC9E,gBAAM,kBAAkB,oBAAoB,OAAO;AACnD,mBAAS,OAAO,GAAG,OAAO,SAAS,UAAU,EAAE,MAAM;AACnD,kBAAM,aAAa,OAAO,cAAc;AACxC,gBAAI,UAAU;AACd,mBAAO,UAAU,GAAG;AAClB,yBAAW;AAAA,YACb;AACA,kBAAM,UAAU,KAAK,IAAI,SAAS,SAAS,uBAAuB,UAAU;AAC5E,kBAAM,kBAAkB,kBAAkB,OAAO;AACjD,gBAAI,cAAc;AAClB,gBAAI,WAAW;AACf,gBAAIN,UAAS;AACb,qBAAS,SAAS,WAAW,SAAS,WAAW,UAAU,eAAe;AACxE,oBAAM,eAAe,mBAAmB,SAASM,SAAQ;AACzD,uBAAS,OAAO,SAAS,OAAO,SAAS,QAAQ,gBAAgB;AAC/D,sBAAM,aAAa,eAAe,OAAOA,SAAQ;AACjD,yBAAS,OAAO,SAAS,OAAO,SAAS,QAAQ,eAAe;AAC9D,wBAAM,aAAa,aAAa,OAAOA,SAAQ;AAC/C,wBAAM,QAAQ,QAAQ,aAAa;AACnC,sBAAI,aAAa,SAAS,QAAQ,aAAa;AAC7C,kCAAc;AAAA,kBAChB,WAAW,aAAa,OAAO;AAC7B,gCAAY;AACZ,oBAAAN;AAAA,kBACF;AACA,sBAAI,MAAM,WAAW,GAAG;AACtB;AAAA,kBACF;AAAA,gBACF;AACA,oBAAI,MAAM,WAAW,GAAG;AACtB;AAAA,gBACF;AAAA,cACF;AACA,kBAAI,MAAM,WAAW,GAAG;AACtB;AAAA,cACF;AAAA,YACF;AACA,kBAAM,eAAe,kBAAkB;AACvC,uBAAW,gBAAgB,aAAa,QAAQ,WAAWA,UAAS;AAAA,UACtE;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,MAAM,UAAU;AAC1C,QAAM,eAAe,OAAO,SAAS,UAAU,OAAO;AACtD,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,uBAAuB,SAAS;AACtC,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,UAAU,SAAS,QAAQ;AACjC,WAAS,QAAQ,GAAG,QAAQ,SAAS,WAAW,EAAE,OAAO;AACvD,aAAS,UAAU,GAAG,UAAU,SAAS,YAAY,EAAE,SAAS;AAC9D,eAAS,SAAS,GAAG,SAAS,SAAS,UAAU,EAAE,QAAQ;AACzD,cAAM,eAAe,SAAS,cAAc;AAC5C,YAAI,YAAY;AAChB,eAAO,YAAY,GAAG;AACpB,uBAAa;AAAA,QACf;AACA,cAAM,YAAY,KAAK,IAAI,SAAS,SAAS,uBAAuB,YAAY;AAChF,iBAAS,OAAO,GAAG,OAAO,SAAS,WAAW,EAAE,MAAM;AACpD,gBAAM,aAAa,OAAO,eAAe;AACzC,cAAI,UAAU;AACd,iBAAO,UAAU,GAAG;AAClB,uBAAW;AAAA,UACb;AACA,gBAAM,UAAU,KAAK,IAAI,SAAS,UAAU,wBAAwB,UAAU;AAC9E,mBAAS,OAAO,GAAG,OAAO,SAAS,UAAU,EAAE,MAAM;AACnD,kBAAM,aAAa,OAAO,cAAc;AACxC,gBAAI,UAAU;AACd,mBAAO,UAAU,GAAG;AAClB,yBAAW;AAAA,YACb;AACA,kBAAM,UAAU,KAAK,IAAI,SAAS,SAAS,uBAAuB,UAAU;AAC5E,gBAAI,WAAW,OAAO;AACtB,gBAAI,cAAc;AAClB,qBAAS,SAAS,WAAW,SAAS,WAAW,UAAU,eAAe;AACxE,oBAAM,SAAS,SAAS;AACxB,uBAAS,OAAO,SAAS,OAAO,SAAS,QAAQ,gBAAgB;AAC/D,sBAAM,OAAO,OAAO;AACpB,yBAAS,OAAO,SAAS,OAAO,SAAS,QAAQ,eAAe;AAC9D,wBAAM,OAAO,OAAO;AACpB,wBAAM,QAAQ,KAAK,IAAI,OAAO,QAAQ,MAAM,MAAM,OAAO;AACzD,sBAAI,SAAS,UAAU;AACrB,+BAAW;AACX,kCAAc,SAAS,wBAAwB,uBAAuB,OAAO,wBAAwB;AAAA,kBACvG;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,yBAAa,IAAI,aAAa,OAAO,QAAQ,MAAM,MAAM,OAAO;AAAA,UAClE;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,mBAAiB,GAAG,SAAS;AAC7B,QAAM,EAAE,YAAY,SAAAM,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI;AACJ,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,UAAM,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACtD,OAAO;AACL,UAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,UAAMwB,YAAW,aAAa,eAAe,EAAE,KAAK;AACpD,UAAM,UAAU,MAAM,SAAS,EAAE,OAAO,EAAE,OAAOA,WAAU,UAAU,KAAK;AAC1E,UAAM,SAAS,eAAe,SAAS,UAAU,EAAE,OAAO,QAAQ,MAAM;AAAA,EAC1E;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAxB,UAAS,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACxE,mBAAiB,GAAG,WAAW;AAC/B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,iBAAiB,UAAU;AAC1H,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,SAAS,QAAQ,SAAS,EAAE,OAAO,EAAE,OAAO,aAAa,eAAe,EAAE,KAAK,GAAG,UAAU,KAAK;AACvG,SAAO,SAAS,eAAe,OAAO,OAAO,WAAW,OAAO,MAAM;AACvE;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,mBAAiB,CAAC,IAAI,MAAM,GAAG,eAAe;AAC9C,QAAM,WAAW,qBAAqB,kBAAkB,OAAO,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AACnH,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,uBAAuB,SAAS;AACtC,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,WAAW,uBAAuB,IAAI,SAAS,QAAQ;AAC7D,QAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,QAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,QAAM,KAAK,OAAO,OAAO,OAAO,SAAS;AACzC,QAAM,gBAAgB,KAAK,cAAc,eAAe;AACxD,QAAM,QAAQ,SAAS,WAAW,EAAE;AACpC,WAAS,QAAQ,GAAG,QAAQ,SAAS,WAAW,EAAE,OAAO;AACvD,aAAS,UAAU,GAAG,UAAU,SAAS,YAAY,EAAE,SAAS;AAC9D,eAAS,UAAU,GAAG,UAAU,SAAS,SAAS,EAAE,SAAS;AAC3D,iBAAS,QAAQ,GAAG,QAAQ,SAAS,UAAU,EAAE,OAAO;AACtD,mBAAS,QAAQ,GAAG,QAAQ,SAAS,SAAS,EAAE,OAAO;AACrD,kBAAM,gBAAgB,UAAU;AAChC,kBAAM,cAAc,QAAQ;AAC5B,kBAAM,cAAc,QAAQ;AAC5B,gBAAI,UAAU;AACd,qBAAS,SAAS,GAAG,SAAS,sBAAsB,UAAU,eAAe;AAC3E,oBAAM,WAAW,gBAAgB,UAAU;AAC3C,kBAAI,UAAU,KAAK,WAAW,SAAS,YAAY,KAAK,MAAM,OAAO,MAAM,SAAS;AAClF;AAAA,cACF;AACA,uBAAS,OAAO,GAAG,OAAO,uBAAuB,QAAQ,gBAAgB;AACvE,sBAAM,SAAS,cAAc,QAAQ;AACrC,oBAAI,QAAQ,KAAK,SAAS,SAAS,aAAa,KAAK,MAAM,KAAK,MAAM,OAAO;AAC3E;AAAA,gBACF;AACA,yBAAS,OAAO,GAAG,OAAO,sBAAsB,QAAQ,eAAe;AACrE,wBAAM,SAAS,cAAc,QAAQ;AACrC,sBAAI,QAAQ,KAAK,SAAS,SAAS,YAAY,KAAK,MAAM,KAAK,MAAM,OAAO;AAC1E;AAAA,kBACF;AACA,wBAAM,QAAQ,MAAM,IAAI,OAAO,SAAS,OAAO,OAAO,OAAO;AAC7D,6BAAW;AAAA,gBACb;AAAA,cACF;AAAA,YACF;AACA,eAAG,IAAI,UAAU,eAAe,OAAO,SAAS,OAAO,OAAO,OAAO;AAAA,UACvE;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,IAAI;AACV,mBAAiB,CAAC,IAAI,MAAM,GAAG,aAAa;AAC5C,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC3C,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,IAAI;AAC7F,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,QAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,QAAM,KAAK,OAAO,EAAE,OAAO,SAAS;AACpC,QAAM,gBAAgB,KAAK,eAAe;AAC1C,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,QAAQ,OAAO,GAAG,OAAO,WAAW,MAAM;AAChD,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,aAAS,IAAI,GAAG,IAAI,SAAS,YAAY,EAAE,GAAG;AAC5C,eAAS,MAAM,GAAG,MAAM,SAAS,UAAU,EAAE,KAAK;AAChD,iBAAS,MAAM,GAAG,MAAM,SAAS,SAAS,EAAE,KAAK;AAC/C,gBAAM,YAAY,MAAM;AACxB,gBAAM,YAAY,MAAM;AACxB,cAAI,UAAU;AACd,mBAAS,KAAK,GAAG,KAAK,uBAAuB,MAAM,gBAAgB;AACjE,kBAAM,OAAO,YAAY,MAAM;AAC/B,gBAAI,MAAM,KAAK,OAAO,SAAS,aAAa,KAAK,MAAM,GAAG,MAAM,KAAK;AACnE;AAAA,YACF;AACA,qBAAS,KAAK,GAAG,KAAK,sBAAsB,MAAM,eAAe;AAC/D,oBAAM,OAAO,YAAY,MAAM;AAC/B,kBAAI,MAAM,KAAK,OAAO,SAAS,YAAY,KAAK,MAAM,GAAG,MAAM,KAAK;AAClE;AAAA,cACF;AACA,oBAAM,QAAQ,MAAM,IAAI,GAAG,KAAK,KAAK,CAAC;AACtC,yBAAW;AAAA,YACb;AAAA,UACF;AACA,aAAG,IAAI,UAAU,eAAe,GAAG,KAAK,KAAK,CAAC;AAAA,QAChD;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAOS,SAAQ,QAAQ,MAAM,OAAO,SAAS,IAAI;AAC5D,eAAa,OAAO,MAAM,MAAM,WAAW,SAAS,MAAM,QAAQ,MAAM,8EAA8E;AACtJ,eAAa,OAAO,UAAU,QAAQ,MAAM,MAAM,WAAW,OAAO,MAAM,QAAQ,MAAM,4EAA4E;AACpK,eAAa,OAAOA,WAAU,QAAQ,MAAM,MAAM,WAAWA,QAAO,MAAM,QAAQ,MAAM,2EAA2E;AACnK,mBAAiB,CAAC,GAAG,OAAO,UAAUA,SAAQ,MAAM,GAAG,WAAW;AAClE,MAAI,EAAE,gBAAgB,IAAI;AAC1B,MAAI,mBAAmB,MAAM;AAC3B,sBAAkB;AAAA,EACpB;AACA,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAC9C,QAAM,UAAU,SAAS,KAAK,IAAI,SAAS,MAAM,EAAE;AACnD,QAAM,QAAQA,UAAS,SAAS,KAAK,IAAIA,QAAO,MAAM,EAAE,SAAS,IAAI,aAAa,CAAC,CAAC,CAAC;AACrF,QAAM,UAAU,SAAS,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE,SAAS,IAAI,aAAa,CAAC,CAAC,CAAC;AACvF,QAAM,UAAU,IAAI,aAAa,MAAM,MAAM;AAC7C,QAAM,gBAAgB,QAAQ;AAC9B,QAAM,cAAc,MAAM;AAC1B,QAAM,gBAAgB,QAAQ;AAC9B,QAAM,cAAc,MAAM;AAC1B,MAAI,OAAO;AACX,MAAI,KAAK;AACT,MAAI,KAAK;AACT,MAAI,KAAK;AACT,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,YAAQ,MAAM,QAAQ,WAAW,MAAM,MAAM,MAAM,SAAS,MAAM,QAAQ,KAAK,KAAK,QAAQ,QAAQ,eAAe;AACnH,QAAI,QAAQ,eAAe;AACzB,aAAO;AAAA,IACT;AACA,QAAI,MAAM,aAAa;AACrB,WAAK;AAAA,IACP;AACA,QAAI,MAAM,aAAa;AACrB,WAAK;AAAA,IACP;AACA,QAAI,MAAM,eAAe;AACvB,WAAK;AAAA,IACP;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,OAAO;AAC1D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,mBAAiB,CAAC,CAAC,GAAG,gBAAgB;AACtC,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,WAAW,qBAAqB,YAAY,EAAE,OAAO,YAAY,KAAK;AAC5E,QAAM,WAAW,qBAAqB,YAAY,SAAS,QAAQ,WAAW,MAAM;AACpF,QAAM,mBAAmB,qBAAqB,oBAAoB,EAAE,OAAO,YAAY,KAAK;AAC5F,QAAM,mBAAmB,qBAAqB,oBAAoB,OAAO,WAAW,MAAM;AAC1F,QAAM,YAAY,qBAAqB,aAAa,kBAAkB,OAAO,WAAW,MAAM;AAC9F,QAAM,YAAY,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC3F,QAAM,cAAc,WAAW,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AACzG,QAAM,sBAAsB,SAAS,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,iBAAiB,EAAE,CAAC;AAC1H,QAAM,SAAS,OAAO;AAAA,IACpB,QAAQ,EAAE,GAAG,oBAAoB;AAAA,IACjC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,kBAAkB,MAAM,UAAU;AAAA,EACpD,CAAC;AACD,WAAS,8BAA8B,SAAS;AAChD,WAAS,8BAA8B,WAAW;AAClD,WAAS,8BAA8B,mBAAmB;AAC1D,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAAtB,MAAK,IAAI;AACjB,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,cAAc,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACtD,QAAM,UAAU,aAAa,OAAO,aAAa,QAAQ,OAAO,QAAQ,OAAOA,KAAI;AACnF,SAAO,SAAS,eAAe,CAACA,KAAI,GAAG,QAAQ,OAAO,OAAO;AAC/D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,IAAI,GAAG,IAAI;AACnB,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,iBAAiB,qBAAqB,2BAA2B,MAAM,KAAK,MAAM,GAAG,MAAM,KAAK,MAAM,CAAC;AAC7G,SAAO,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,SAAS,WAAW,KAAK,cAAc,CAAC;AAClG;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,gBAAgB,aAAa,CAAC,IAAI,UAAU;AAC7D,QAAM,YAAY;AAClB,MAAI,KAAK,UAAU,cAAc;AAC/B,WAAO,UAAU;AAAA,EACnB;AACA,SAAO,KAAK,UAAU,eAAe,UAAU,eAAe;AAChE,CAAC;AACD,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,CAAC,SAAS;AACzB,QAAM,EAAE,EAAE,IAAI,KAAK;AACnB,QAAM,aAAa,KAAK;AACxB,QAAM,eAAe,IAAI,aAAa,aAAa,cAAc,EAAE,KAAK,CAAC;AACzE,QAAM,cAAc,WAAW,KAAK,IAAI,EAAE,MAAM;AAChD,QAAM,QAAQ,YAAY,mBAAmB;AAC7C,QAAM,QAAQ,YAAY,mBAAmB;AAC7C,QAAM,WAAW,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACnD,QAAM,WAAW,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACnD,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AACvB,iBAAa,MAAM,KAAK,MAAM,OAAO,KAAK;AAAA,EAC5C;AACA,SAAO,WAAW,WAAW,cAAc,EAAE,OAAO,SAAS;AAC/D;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE,mBAAmB;AAClE,QAAM,UAAU,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAChD,SAAO,SAAS,eAAe,MAAM,OAAO,MAAM,OAAO,OAAO;AAClE;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,QAAQ,aAAa,eAAe,MAAM,OAAO,GAAG,KAAK,EAAE;AACjE,MAAI,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,KAAK;AACvF,MAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,WAAO,SAAS,eAAe,UAAU,OAAO,GAAG,OAAO,CAAC,CAAC;AAAA,EAC9D;AACA,QAAM,UAAU,OAAO,OAAO,CAAC,OAAO,aAAa,cAAc,GAAG,KAAK,IAAI,CAAC;AAC9E,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,uBAAqB,uBAAuB,QAAQ,KAAK;AACzD,MAAI,QAAQ,GAAG,UAAU,aAAa;AACpC,UAAM,QAAQ,QAAQ,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACrF,UAAM,QAAQ,QAAQ,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACrF,UAAM,eAAe,QAAQ,EAAE,QAAQ,OAAO,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,EAAE,CAAC;AACzF,UAAM,eAAe,QAAQ,EAAE,QAAQ,OAAO,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,EAAE,CAAC;AACzF,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AACjG,UAAM,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAChE,UAAM,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAChE,aAAS,8BAA8B,YAAY;AACnD,aAAS,8BAA8B,YAAY;AACnD,WAAO;AAAA,EACT;AACA,QAAM,WAAW,QAAQ,IAAI,CAAC,OAAO;AACnC,UAAM,YAAY,aAAa,cAAc,GAAG,MAAM,MAAM,KAAK,CAAC;AAClE,UAAM,QAAQ,CAAC,IAAI,SAAS;AAC5B,WAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,EAC5E,CAAC;AACD,QAAM,kBAAkB,SAAS,IAAI,CAAC,OAAO;AAC3C,WAAO,EAAE,MAAM,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE,QAAQ,OAAO,GAAG,MAAM;AAAA,EACtE,CAAC;AACD,aAAW,qBAAqB,gBAAgB,SAAS,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,CAAC;AACjF,QAAM,eAAe,SAAS,GAAG,MAAM,OAAO;AAC9C,QAAM,UAAU,WAAW,iBAAiB,UAAU,OAAO,GAAG,OAAO,YAAY;AACnF,QAAM,gBAAgB,qBAAqB,gBAAgB,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,KAAK;AAC/F,QAAM,UAAU,SAAS,eAAe,eAAe,OAAO,GAAG,OAAO,OAAO;AAC/E,WAAS,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACnE,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB,IAAI;AACvE,mBAAiB,CAAC,GAAG,MAAM,GAAG,QAAQ;AACtC,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,IAAI,IAAI,aAAa,SAAS,UAAU,EAAE,KAAK;AACrD,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,eAAe,SAAS;AAC9B,QAAM,aAAa,iBAAiB,SAAS,KAAK,SAAS;AAC3D,QAAM,aAAa,iBAAiB,SAAS,KAAK;AAClD,QAAM,iBAAiB,iBAAiB,IAAI,SAAS;AACrD,QAAM,eAAe,EAAE,QAAQ;AAC/B,QAAM,aAAa,iBAAiB,EAAE,QAAQ,KAAK,EAAE,QAAQ;AAC7D,QAAM,aAAa,iBAAiB,EAAE,QAAQ,KAAK;AACnD,QAAM,iBAAiB,iBAAiB,IAAI,EAAE,QAAQ;AACtD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAC/C,QAAM,QAAQ,EAAE;AAChB,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,UAAM,WAAW,IAAI;AACrB,UAAM,WAAW,IAAI;AACrB,aAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,YAAM,WAAW,WAAW,KAAK;AACjC,YAAM,WAAW,KAAK,SAAS,eAAe;AAC9C,eAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,cAAM,KAAK,WAAW,KAAK;AAC3B,YAAI,KAAK,KAAK,MAAM,SAAS,UAAU;AACrC;AAAA,QACF;AACA,cAAM,WAAW,KAAK,cAAc;AACpC,cAAM,WAAW,WAAW,KAAK;AACjC,iBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,gBAAM,WAAW,WAAW,KAAK;AACjC,gBAAM,WAAW,KAAK,SAAS,cAAc;AAC7C,mBAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,kBAAM,KAAK,WAAW,KAAK;AAC3B,gBAAI,KAAK,KAAK,MAAM,SAAS,SAAS;AACpC;AAAA,YACF;AACA,kBAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,kBAAM,WAAW,WAAW,KAAK;AACjC,gBAAI,WAAW;AACf,qBAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,oBAAM,OAAO,MAAM,WAAW,KAAK;AACnC,uBAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,sBAAM,WAAW,KAAK,mBAAmB,OAAO,MAAM,WAAW;AAAA,cACnE;AACA,0BAAY,SAAS;AAAA,YACvB;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,KAAK;AACxD;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,YAAY,IAAI;AACzE,mBAAiB,CAAC,GAAG,EAAE,GAAG,sBAAsB;AAChD,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACnI,QAAM,EAAE,cAAc,aAAa,cAAc,YAAY,IAAI;AACjE,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,KAAK,IAAI,aAAa,SAAS,aAAa,SAAS;AAC3D,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,OAAO,IAAI,aAAa,EAAE,OAAO,EAAE,OAAO,KAAK;AACrD,QAAM,QAAQ,IAAI,aAAa,GAAG,OAAO,GAAG,OAAO,MAAM;AACzD,WAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,SAAS,MAAM,YAAY,CAAC;AACjE,UAAM,QAAQ,KAAK,IAAI,SAAS,YAAY,SAAS,WAAW,SAAS,MAAM,YAAY;AAC3F,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,UAAU,MAAM,WAAW,CAAC;AACjE,YAAM,QAAQ,KAAK,IAAI,SAAS,WAAW,SAAS,UAAU,UAAU,MAAM,WAAW;AACzF,eAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,iBAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,cAAI,UAAU;AACd,mBAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,KAAK,eAAe;AACpC,uBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,sBAAM,KAAK,KAAK,KAAK,cAAc;AACnC,oBAAI,gBAAgB;AAClB,6BAAW,KAAK,IAAI,GAAG,IAAI,IAAI,EAAE,IAAI,MAAM,IAAI,GAAG,IAAI,IAAI,EAAE;AAAA,gBAC9D,OAAO;AACL,6BAAW,KAAK,IAAI,GAAG,IAAI,IAAI,EAAE,IAAI,MAAM,IAAI,GAAG,IAAI,IAAI,EAAE;AAAA,gBAC9D;AAAA,cACF;AAAA,YACF;AAAA,UACF;AACA,aAAG,IAAI,SAAS,IAAI,IAAI,IAAI,EAAE;AAAA,QAChC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AACxE,mBAAiB,CAAC,IAAI,MAAM,GAAG,qBAAqB;AACpD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,MAAI,cAAc,qBAAqB,wBAAwB,UAAU;AACzE,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACvI,QAAM,KAAK,IAAI,aAAa,SAAS,SAAS,SAAS;AACvD,QAAM,WAAW,GAAG;AACpB,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,CAAC,OAAO,OAAO,KAAK,IAAI;AAC9B,QAAM,EAAE,WAAW,cAAc,aAAa,YAAY,UAAU,SAAS,aAAa,WAAW,UAAU,cAAc,YAAY,IAAI;AAC7I,gBAAc,SAAS;AACvB,QAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,QAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,QAAM,iBAAiB,gBAAgB;AACvC,QAAM,eAAe,GAAG,QAAQ;AAChC,QAAM,aAAa,iBAAiB,GAAG,QAAQ,KAAK,GAAG,QAAQ;AAC/D,QAAM,aAAa,iBAAiB,GAAG,QAAQ,KAAK;AACpD,QAAM,iBAAiB,iBAAiB,IAAI,GAAG,QAAQ;AACvD,QAAM,eAAe,UAAU;AAC/B,QAAM,aAAa,iBAAiB,UAAU,KAAK,UAAU;AAC7D,QAAM,aAAa,iBAAiB,UAAU,KAAK;AACnD,QAAM,iBAAiB,iBAAiB,IAAI,UAAU;AACtD,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,aAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,eAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,cAAM,WAAW,KAAK;AACtB,cAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,YAAY,CAAC;AAC5D,cAAM,QAAQ,KAAK,IAAI,YAAY,eAAe,YAAY,YAAY;AAC1E,iBAAS,KAAK,GAAG,KAAK,SAAS,EAAE,IAAI;AACnC,gBAAM,WAAW,KAAK;AACtB,gBAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,WAAW,CAAC;AAC3D,gBAAM,QAAQ,KAAK,IAAI,WAAW,cAAc,YAAY,WAAW;AACvE,cAAI,UAAU;AACd,mBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,kBAAM,KAAK,KAAK,eAAe;AAC/B,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,cAAc;AAC9B,oBAAM,WAAW,eAAe,IAAI,aAAa,KAAK,aAAa;AACnE,oBAAM,YAAY,SAAS,eAAe,IAAI,MAAM,SAAS,cAAc,IAAI,MAAM,QAAQ;AAC7F,uBAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,sBAAM,QAAQ,SAAS,WAAW,iBAAiB;AACnD,sBAAM,SAAS,UAAU,YAAY;AACrC,2BAAW,QAAQ;AAAA,cACrB;AAAA,YACF;AAAA,UACF;AACA,gBAAM,WAAW,eAAe,IAAI,aAAa,KAAK,aAAa,KAAK,iBAAiB;AACzF,mBAAS,YAAY;AAAA,QACvB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,mBAAiB,CAAC,GAAG,MAAM,GAAG,QAAQ;AACtC,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,IAAI;AACvG,QAAM,EAAE,aAAa,cAAc,aAAa,eAAe,gBAAgB,eAAe,QAAQ,IAAI;AAC1G,QAAM,WAAW,QAAQ;AACzB,QAAM,UAAU,QAAQ;AACxB,QAAM,SAAS,QAAQ;AACvB,QAAM,IAAI,IAAI,aAAa,SAAS,UAAU,EAAE,KAAK;AACrD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAC/C,QAAM,QAAQ,EAAE;AAChB,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,UAAM,WAAW,IAAI,SAAS;AAC9B,UAAM,WAAW,IAAI,EAAE,QAAQ;AAC/B,aAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,YAAM,WAAW,WAAW,KAAK,EAAE,QAAQ;AAC3C,YAAM,WAAW,KAAK,SAAS,cAAc;AAC7C,eAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,cAAM,KAAK,WAAW,KAAK;AAC3B,YAAI,KAAK,KAAK,MAAM,SAAS,SAAS;AACpC;AAAA,QACF;AACA,cAAM,WAAW,KAAK,cAAc;AACpC,cAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,iBAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,gBAAM,WAAW,WAAW,KAAK,EAAE,QAAQ;AAC3C,gBAAM,WAAW,KAAK,SAAS,eAAe;AAC9C,mBAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,kBAAM,KAAK,WAAW,KAAK;AAC3B,gBAAI,KAAK,KAAK,MAAM,SAAS,UAAU;AACrC;AAAA,YACF;AACA,kBAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,kBAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,qBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,oBAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,oBAAM,WAAW,KAAK,SAAS,cAAc;AAC7C,uBAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,sBAAM,KAAK,WAAW,KAAK;AAC3B,oBAAI,KAAK,KAAK,MAAM,SAAS,SAAS;AACpC;AAAA,gBACF;AACA,sBAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,sBAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,oBAAI,WAAW;AACf,yBAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,wBAAM,OAAO,MAAM,WAAW;AAC9B,2BAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,0BAAM,WAAW,OAAO,OAAO,MAAM,WAAW;AAAA,kBAClD;AACA,8BAAY,SAAS;AAAA,gBACvB;AAAA,cACF;AAAA,YACF;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,IAAI;AAC5C,mBAAiB,CAAC,GAAG,EAAE,GAAG,wBAAwB;AAClD,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,GAAG,IAAI;AAC9F,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,KAAK,IAAI,aAAa,SAAS,aAAa,SAAS;AAC3D,QAAM,WAAW,GAAG;AACpB,QAAM,CAAC,MAAM,MAAM,MAAM,IAAI,IAAI,GAAG;AACpC,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,CAAC,MAAM,MAAM,MAAM,IAAI,IAAI;AACjC,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,CAAC,KAAK,KAAK,KAAK,GAAG,IAAI;AAC7B,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,SAAS,SAAS,QAAQ;AAChC,WAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,UAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,WAAW,MAAM,WAAW,CAAC;AAClE,UAAM,QAAQ,KAAK,IAAI,SAAS,WAAW,SAAS,UAAU,WAAW,MAAM,WAAW;AAC1F,UAAM,WAAW,KAAK;AACtB,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,YAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,SAAS,MAAM,YAAY,CAAC;AACjE,YAAM,QAAQ,KAAK,IAAI,SAAS,YAAY,SAAS,WAAW,SAAS,MAAM,YAAY;AAC3F,YAAM,WAAW,KAAK,OAAO;AAC7B,eAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,cAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,UAAU,MAAM,WAAW,CAAC;AACjE,cAAM,QAAQ,KAAK,IAAI,SAAS,WAAW,SAAS,UAAU,UAAU,MAAM,WAAW;AACzF,cAAM,WAAW,KAAK,OAAO;AAC7B,iBAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,gBAAM,WAAW,KAAK,OAAO;AAC7B,mBAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,gBAAI,UAAU;AACd,qBAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,oBAAM,WAAW,IAAI;AACrB,oBAAM,WAAW,IAAI;AACrB,uBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,sBAAM,KAAK,KAAK,KAAK,cAAc;AACnC,sBAAM,WAAW,KAAK,MAAM;AAC5B,sBAAM,WAAW,KAAK,OAAO;AAC7B,yBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,wBAAM,KAAK,KAAK,KAAK,eAAe;AACpC,wBAAM,WAAW,KAAK,MAAM;AAC5B,wBAAM,WAAW,KAAK,OAAO;AAC7B,2BAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,0BAAM,KAAK,KAAK,KAAK,cAAc;AACnC,0BAAM,WAAW,KAAK,MAAM;AAC5B,0BAAM,WAAW,KAAK,OAAO;AAC7B,+BAAW,QAAQ,WAAW,MAAM,SAAS,WAAW;AAAA,kBAC1D;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,qBAAS,WAAW,MAAM;AAAA,UAC5B;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,KAAK,MAAM,SAAAA,UAAS,WAAW,IAAI;AAC3C,mBAAiB,CAAC,EAAE,GAAG,uBAAuB;AAC9C,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,IAAI;AAClG,QAAM,KAAK,IAAI,aAAa,SAAS,SAAS,SAAS;AACvD,QAAM,WAAW,GAAG;AACpB,QAAM,CAAC,MAAM,MAAM,MAAM,IAAI,IAAI,GAAG;AACpC,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,CAAC,MAAM,MAAM,MAAM,IAAI,IAAI;AACjC,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,CAAC,OAAO,OAAO,OAAO,KAAK,IAAI;AACrC,QAAM,EAAE,WAAW,aAAa,cAAc,aAAa,YAAY,SAAS,UAAU,SAAS,aAAa,UAAU,WAAW,UAAU,aAAa,cAAc,YAAY,IAAI;AAC1L,QAAM,WAAW,cAAc,IAAI,SAAS,QAAQ;AACpD,QAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,QAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,aAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,eAAS,KAAK,GAAG,KAAK,SAAS,EAAE,IAAI;AACnC,cAAM,WAAW,KAAK;AACtB,cAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,WAAW,CAAC;AAC3D,cAAM,QAAQ,KAAK,IAAI,WAAW,cAAc,YAAY,WAAW;AACvE,iBAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,gBAAM,WAAW,KAAK;AACtB,gBAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,YAAY,CAAC;AAC5D,gBAAM,QAAQ,KAAK,IAAI,YAAY,eAAe,YAAY,YAAY;AAC1E,mBAAS,KAAK,GAAG,KAAK,SAAS,EAAE,IAAI;AACnC,kBAAM,WAAW,KAAK;AACtB,kBAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,WAAW,CAAC;AAC3D,kBAAM,QAAQ,KAAK,IAAI,WAAW,cAAc,YAAY,WAAW;AACvE,gBAAI,UAAU;AACd,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,cAAc;AAC9B,uBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,sBAAM,KAAK,KAAK,eAAe;AAC/B,yBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,wBAAM,KAAK,KAAK,cAAc;AAC9B,wBAAM,WAAW,OAAO,IAAI,OAAO,KAAK,OAAO,KAAK,OAAO;AAC3D,wBAAM,YAAY,SAAS,cAAc,IAAI,MAAM,SAAS,eAAe,IAAI,MAAM,SAAS,cAAc,IAAI,MAAM,QAAQ;AAC9H,2BAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,0BAAM,QAAQ,SAAS,WAAW;AAClC,0BAAM,SAAS,UAAU,YAAY;AACrC,+BAAW,QAAQ;AAAA,kBACrB;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,qBAAS,OAAO,IAAI,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,MAAM;AAAA,UAChE;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACpD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,OAAO,OAAO,IAAI;AACzC,QAAM,EAAE,UAAU,QAAQ,mBAAmB,IAAI;AACjD,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,WAAW,MAAM,MAAM;AAC7B,QAAM,CAAC,YAAY,SAAS,IAAI;AAChC,QAAM,SAAS,OAAO,CAAC,UAAU,YAAY,WAAW,WAAW,GAAG,SAAS;AAC/E,QAAM,UAAU,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAChD,QAAM,aAAa,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACpD,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,WAAW,aAAa,eAAe,OAAO,KAAK;AACzD,QAAM,YAAY,aAAa,eAAe,OAAO,KAAK;AAC1D,WAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,UAAM,WAAW,IAAI;AACrB,UAAM,KAAK,QAAQ;AACnB,UAAM,KAAK,QAAQ,WAAW;AAC9B,UAAM,KAAK,QAAQ,WAAW;AAC9B,UAAM,KAAK,QAAQ,WAAW;AAC9B,UAAM,OAAO,WAAW;AACxB,QAAI,QAAQ,OAAO;AACjB;AAAA,IACF;AACA,UAAM,cAAc,aAAa,KAAK,KAAK,OAAO,cAAc,MAAM,aAAa,KAAK;AACxF,UAAM,aAAa,YAAY,KAAK,KAAK,OAAO,aAAa,MAAM,YAAY,KAAK;AACpF,aAAS,IAAI,GAAG,IAAI,YAAY,KAAK;AACnC,YAAM,OAAO,aAAa,IAAI,MAAM,cAAc,KAAK,IAAI,cAAc,OAAO,KAAK,OAAO,cAAc;AAC1G,UAAI,OAAO,KAAK,OAAO,cAAc,GAAG;AACtC,iBAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,mBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAM,MAAM,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AACpE,mBAAO,OAAO,OAAO;AAAA,UACvB;AAAA,QACF;AACA;AAAA,MACF;AACA,UAAI,WAAW,YAAY;AACzB,cAAM,SAAS,KAAK,MAAM,IAAI;AAC9B,cAAM,YAAY,KAAK,KAAK,IAAI;AAChC,cAAM,QAAQ,OAAO;AACrB,iBAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,gBAAM,OAAO,YAAY,IAAI,MAAM,aAAa,KAAK,IAAI,aAAa,OAAO,KAAK,OAAO,aAAa;AACtG,cAAI,OAAO,KAAK,OAAO,aAAa,GAAG;AACrC,qBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,oBAAM,MAAM,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AACpE,qBAAO,OAAO,OAAO;AAAA,YACvB;AACA;AAAA,UACF;AACA,gBAAM,UAAU,KAAK,MAAM,IAAI;AAC/B,gBAAM,WAAW,KAAK,KAAK,IAAI;AAC/B,gBAAM,QAAQ,OAAO;AACrB,mBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,gBAAI,MAAM,IAAI,UAAU,SAAS,KAAK,SAAS,SAAS,KAAK,OAAO,SAAS;AAC7E,kBAAM,UAAU,UAAU;AAC1B,kBAAM,IAAI,WAAW,SAAS,KAAK,SAAS,SAAS,KAAK,OAAO,SAAS;AAC1E,kBAAM,WAAW,UAAU;AAC3B,kBAAM,IAAI,UAAU,SAAS,KAAK,YAAY,SAAS,KAAK,OAAO,SAAS;AAC5E,kBAAM,aAAa,UAAU;AAC7B,kBAAM,IAAI,WAAW,SAAS,KAAK,YAAY,SAAS,KAAK,OAAO,SAAS;AAC7E,kBAAM,cAAc,UAAU;AAC9B,kBAAM,MAAM,WAAW,WAAW,WAAW;AAC7C,kBAAM,SAAS,cAAc,cAAc,cAAc;AACzD,kBAAM,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AAC9D,mBAAO,OAAO,OAAO,OAAO,SAAS,OAAO;AAAA,UAC9C;AAAA,QACF;AAAA,MACF,OAAO;AACL,iBAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,gBAAM,OAAO,YAAY,IAAI,MAAM,aAAa,KAAK,IAAI,aAAa,OAAO,KAAK,OAAO,aAAa;AACtG,cAAI,OAAO,KAAK,OAAO,aAAa,GAAG;AACrC,qBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,oBAAM,MAAM,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AACpE,qBAAO,OAAO,OAAO;AAAA,YACvB;AACA;AAAA,UACF;AACA,gBAAM,WAAW,KAAK,MAAM,IAAI;AAChC,gBAAM,WAAW,KAAK,MAAM,IAAI;AAChC,mBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAM,QAAQ,IAAI,WAAW,SAAS,KAAK,WAAW,SAAS,KAAK,OAAO,SAAS;AACpF,kBAAM,SAAS,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AACvE,mBAAO,OAAO,UAAU,UAAU;AAAA,UACpC;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC1E;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,mBAAiB,GAAG,SAAS;AAC7B,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,EAAE,MAAM,MAAM;AAClF,MAAI,KAAK;AACT,MAAI,eAAe,MAAM;AACvB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAAA,EACpF;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,EAAE,MAAM,MAAM,EAAE;AAC9E,MAAI,iBAAiB,GAAG,MAAM,SAAS,GAAG;AACxC,UAAM,IAAI,MAAM,qDAAqD,GAAG,MAAM,SAAS,kBAAkB,cAAc;AAAA,EACzH;AACA,QAAM,cAAc,WAAW,GAAG,OAAO,OAAO;AAChD,QAAM,OAAO,aAAa,mBAAmB,aAAa,cAAc,GAAG,KAAK,GAAG,WAAW;AAC9F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,QAAM,WAAW,GAAG,MAAM,GAAG,MAAM,SAAS;AAC5C,QAAM,gBAAgB,WAAW,CAAC,IAAI,MAAM,KAAK,WAAW,IAAI,IAAI,CAAC,IAAI,MAAM,KAAK;AACpF,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM,UAAU;AAClD,aAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,YAAM,MAAM,cAAc,IAAI,CAAC;AAC/B,UAAI,MAAM,GAAG;AACX,aAAK,OAAO,YAAY,IAAI,MAAM;AAAA,MACpC,OAAO;AACL,cAAM,UAAU,cAAc,IAAI,IAAI,CAAC;AACvC,aAAK,OAAO,YAAY,MAAM,WAAW,KAAK,WAAW,MAAM,OAAO,KAAK;AAAA,MAC7E;AAAA,IACF;AAAA,EACF;AACA,QAAM,SAAS,SAAS,eAAe,GAAG,OAAO,aAAa,IAAI;AAClE,MAAI,eAAe,MAAM;AACvB,UAAM,qBAAqB,qBAAqB,uBAAuB,WAAW;AAClF,UAAM,0BAA0B,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,mBAAmB,EAAE,CAAC;AAC5H,aAAS,8BAA8B,MAAM;AAC7C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,mBAAiB,GAAG,QAAQ;AAC5B,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,EAAE,MAAM,MAAM;AAClF,MAAI,KAAK;AACT,MAAI,eAAe,MAAM;AACvB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAAA,EACpF;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,EAAE,MAAM,MAAM,EAAE;AAC9E,MAAI,iBAAiB,GAAG,MAAM,SAAS,GAAG;AACxC,UAAM,IAAI,MAAM,oDAAoD,GAAG,MAAM,SAAS,kBAAkB,cAAc;AAAA,EACxH;AACA,QAAM,cAAc,WAAW,GAAG,OAAO,OAAO;AAChD,QAAM,OAAO,aAAa,oBAAoB,aAAa,cAAc,GAAG,KAAK,GAAG,WAAW;AAC/F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,QAAM,WAAW,GAAG,MAAM,GAAG,MAAM,SAAS;AAC5C,QAAM,gBAAgB,WAAW,CAAC,IAAI,MAAM,KAAK,WAAW,IAAI,IAAI,CAAC,IAAI,MAAM,KAAK;AACpF,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM,UAAU;AAClD,aAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,YAAM,MAAM,cAAc,IAAI,CAAC;AAC/B,UAAI,MAAM,GAAG;AACX,aAAK,OAAO,YAAY,IAAI,MAAM;AAAA,MACpC,OAAO;AACL,cAAM,UAAU,cAAc,IAAI,IAAI,CAAC;AACvC,aAAK,OAAO,YAAY,MAAM,WAAW,KAAK,WAAW,MAAM,OAAO,KAAK;AAAA,MAC7E;AAAA,IACF;AAAA,EACF;AACA,QAAM,SAAS,SAAS,eAAe,GAAG,OAAO,aAAa,IAAI;AAClE,MAAI,eAAe,MAAM;AACvB,UAAM,qBAAqB,qBAAqB,uBAAuB,WAAW;AAClF,UAAM,0BAA0B,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,mBAAmB,EAAE,CAAC;AAC5H,aAAS,8BAA8B,MAAM;AAC7C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAAb,OAAM,aAAa,IAAI;AAC/B,MAAI,EAAE,MAAM,WAAW,GAAG;AACxB,UAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,UAAM,cAAc,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACtD,UAAM,UAAU,aAAa,OAAO,aAAa,QAAQ,OAAO,QAAQ,OAAOA,KAAI;AACnF,WAAO,SAAS,eAAe,CAACA,KAAI,GAAG,QAAQ,OAAO,OAAO;AAAA,EAC/D,WAAW,EAAE,MAAM,WAAW,GAAG;AAC/B,UAAM,OAAO,SAAS,WAAW,CAAC;AAClC,UAAM,aAAa,SAAS,WAAW,OAAO;AAC9C,UAAM,SAAS,mBAAmB,MAAM,YAAYA,OAAM,YAAY;AACtE,WAAO,SAAS,eAAe,OAAO,OAAO,QAAQ,OAAO,OAAO,MAAM;AAAA,EAC3E;AACA,QAAM,IAAI,MAAM,qEAAqE,EAAE,MAAM,SAAS;AACxG;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,WAAW,WAAW,IAAI;AAClC,eAAa,OAAO,eAAe,QAAQ,MAAM,+DAA+D,YAAY;AAC5H,QAAM,YAAY,EAAE,MAAM;AAC1B,QAAM,cAAc,EAAE,MAAM;AAC5B,QAAM,aAAa,EAAE,MAAM;AAC3B,QAAM,aAAa,EAAE,MAAM;AAC3B,QAAM,eAAe,cAAc;AACnC,QAAM,cAAc,aAAa;AACjC,QAAM,cAAc,cAAc,YAAY;AAC9C,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,SAAS,IAAI,aAAa,YAAY,eAAe,cAAc,WAAW;AACpF,MAAI,YAAY;AAChB,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,aAAS,IAAI,GAAG,IAAI,cAAc,EAAE,GAAG;AACrC,YAAM,MAAM,KAAK,MAAM,IAAI,SAAS;AACpC,YAAM,UAAU,IAAI;AACpB,eAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,cAAM,MAAM,KAAK,MAAM,IAAI,SAAS;AACpC,cAAM,UAAU,IAAI;AACpB,cAAM,WAAW,UAAU,YAAY,WAAW;AAClD,iBAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,gBAAM,MAAM,IAAI;AAChB,gBAAM,WAAW,MAAM,cAAc,MAAM,cAAc,MAAM,cAAc;AAC7E,iBAAO,eAAe,QAAQ;AAAA,QAChC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,WAAW,cAAc,aAAa,WAAW,GAAG,EAAE,OAAO,MAAM;AACrG;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,WAAW,gBAAgB,IAAI;AAC3D,mBAAiB,CAAC,GAAG,MAAM,GAAG,uBAAuB;AACrD,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,UAAU,GAAG,MAAM,gFAAgFA,2BAA0B,aAAa;AAC3N,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,QAAM,EAAE,cAAc,aAAa,gBAAgB,eAAe,QAAQ,IAAI;AAC9E,QAAM,UAAU,QAAQ;AACxB,QAAM,SAAS,QAAQ;AACvB,QAAM,QAAQ,SAAS,cAAc,SAAS;AAC9C,QAAM,IAAI,IAAI,aAAa,SAAS,UAAU,EAAE,KAAK;AACrD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAC/C,QAAM,QAAQ,EAAE;AAChB,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,UAAM,WAAW,IAAI,SAAS;AAC9B,UAAM,WAAW,IAAI,EAAE,QAAQ;AAC/B,aAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,YAAM,WAAW,WAAW,KAAK,EAAE,QAAQ;AAC3C,YAAM,WAAW,KAAK,SAAS,eAAe;AAC9C,eAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,cAAM,KAAK,WAAW,KAAK;AAC3B,YAAI,KAAK,KAAK,MAAM,SAAS,UAAU;AACrC;AAAA,QACF;AACA,cAAM,WAAW,KAAK,cAAc;AACpC,cAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,iBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,gBAAM,WAAW,WAAW,KAAK,EAAE,QAAQ;AAC3C,gBAAM,WAAW,KAAK,SAAS,cAAc;AAC7C,mBAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,kBAAM,KAAK,WAAW,KAAK;AAC3B,gBAAI,KAAK,KAAK,MAAM,SAAS,SAAS;AACpC;AAAA,YACF;AACA,kBAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,kBAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,gBAAI,WAAW;AACf,gBAAI,WAAW;AACf,qBAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,oBAAM,OAAO,MAAM,WAAW;AAC9B,uBAAS,IAAI,GAAG,IAAI,OAAO,EAAE,GAAG;AAC9B,sBAAM,WAAW,MAAM,OAAO,MAAM,WAAW;AAAA,cACjD;AACA,0BAAY;AACZ,0BAAY;AAAA,YACd;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qCAAqC,MAAM;AAClD,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,iBAAiB,YAAY,IAAI;AACxE,mBAAiB,CAAC,GAAG,EAAE,GAAG,qCAAqC;AAC/D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AAC7H,QAAM,EAAE,cAAc,aAAa,cAAc,YAAY,IAAI;AACjE,QAAM,KAAK,IAAI,aAAa,SAAS,aAAa,SAAS;AAC3D,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,QAAQ,SAAS,cAAc,SAAS;AAC9C,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,OAAO,IAAI,aAAa,EAAE,OAAO,EAAE,OAAO,KAAK;AACrD,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,QAAQ,IAAI,aAAa,GAAG,OAAO,GAAG,OAAO,MAAM;AACzD,WAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,SAAS,MAAM,YAAY,CAAC;AACjE,UAAM,QAAQ,KAAK,IAAI,SAAS,YAAY,SAAS,WAAW,SAAS,MAAM,YAAY;AAC3F,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,UAAU,MAAM,WAAW,CAAC;AACjE,YAAM,QAAQ,KAAK,IAAI,SAAS,WAAW,SAAS,UAAU,UAAU,MAAM,WAAW;AACzF,eAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,cAAM,KAAK,KAAK,MAAM,KAAK,KAAK;AAChC,cAAM,KAAK,KAAK;AAChB,YAAI,UAAU;AACd,iBAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,mBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,kBAAM,KAAK,KAAK,KAAK,eAAe;AACpC,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,KAAK,cAAc;AACnC,yBAAW,KAAK,IAAI,GAAG,IAAI,IAAI,EAAE,IAAI,MAAM,IAAI,GAAG,IAAI,IAAI,EAAE;AAAA,YAC9D;AAAA,UACF;AAAA,QACF;AACA,WAAG,IAAI,SAAS,IAAI,IAAI,IAAI,EAAE;AAAA,MAChC;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,4CAA4C;AAAA,EAC9C,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,oCAAoC,MAAM;AACjD,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACvE,mBAAiB,CAAC,IAAI,MAAM,GAAG,oCAAoC;AACnE,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AACjI,QAAM,KAAK,IAAI,aAAa,SAAS,SAAS,SAAS;AACvD,QAAM,WAAW,GAAG;AACpB,QAAM,CAAC,MAAM,MAAM,IAAI,IAAI,GAAG;AAC9B,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,CAAC,MAAM,MAAM,IAAI,IAAI;AAC3B,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,CAAC,OAAO,OAAO,KAAK,IAAI;AAC9B,QAAM,EAAE,WAAW,cAAc,aAAa,YAAY,UAAU,SAAS,aAAa,WAAW,UAAU,cAAc,YAAY,IAAI;AAC7I,QAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,QAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,QAAM,QAAQ,cAAc;AAC5B,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,aAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,eAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,cAAM,WAAW,KAAK;AACtB,cAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,YAAY,CAAC;AAC5D,cAAM,QAAQ,KAAK,IAAI,YAAY,eAAe,YAAY,YAAY;AAC1E,iBAAS,KAAK,GAAG,KAAK,SAAS,EAAE,IAAI;AACnC,gBAAM,WAAW,KAAK;AACtB,gBAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,WAAW,CAAC;AAC3D,gBAAM,QAAQ,KAAK,IAAI,WAAW,cAAc,YAAY,WAAW;AACvE,cAAI,UAAU;AACd,mBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,kBAAM,KAAK,KAAK,eAAe;AAC/B,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,cAAc;AAC9B,oBAAM,WAAW,OAAO,IAAI,OAAO,KAAK,OAAO;AAC/C,oBAAM,YAAY,SAAS,eAAe,IAAI,MAAM,SAAS,cAAc,IAAI,MAAM,QAAQ;AAC7F,uBAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,sBAAM,KAAK,KAAK,QAAQ;AACxB,sBAAM,QAAQ,SAAS,WAAW;AAClC,sBAAM,SAAS,UAAU,YAAY;AACrC,2BAAW,QAAQ;AAAA,cACrB;AAAA,YACF;AAAA,UACF;AACA,mBAAS,OAAO,IAAI,OAAO,KAAK,OAAO,KAAK,MAAM;AAAA,QACpD;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,2CAA2C;AAAA,EAC7C,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,SAAS,OAAO,CAAC,OAAO,KAAK,GAAG,EAAE,KAAK;AAC7C,QAAM,OAAO,OAAO;AACpB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,SAAK,KAAK,QAAQ,MAAM,MAAM;AAAA,EAChC;AACA,QAAM,WAAW,CAAC,GAAG,EAAE,OAAO,GAAG,EAAE,KAAK;AACxC,SAAO,SAAS,eAAe,UAAU,OAAO,OAAO,OAAO,MAAM;AACtE;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACpD,UAAM,EAAE,GAAG,OAAO,IAAI;AACtB,UAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,UAAM,aAAa;AACnB,UAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,UAAM,QAAQ,EAAE,MAAM;AACtB,UAAM,aAAa,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE;AACtD,UAAM,aAAa,OAAO,MAAM;AAChC,UAAM,EAAE,WAAW,UAAU,SAAS,YAAY,WAAW,UAAU,SAAS,cAAc,aAAa,cAAc,aAAa,gBAAgB,eAAe,SAAS,IAAI,qBAAqB,sBAAsB,EAAE,OAAO,OAAO,OAAOA,UAAS,MAAM,QAAQ,SAAS;AACpR,UAAM,UAAU,aAAa,cAAc,QAAQ;AACnD,UAAM,UAAU,SAAS;AACzB,UAAM,aAAa,aAAa,kBAAkB,EAAE,OAAO,OAAO;AAClE,aAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,eAAS,OAAO,GAAG,OAAO,WAAW,EAAE,MAAM;AAC3C,cAAM,OAAO,OAAO,eAAe,QAAQ;AAC3C,iBAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,gBAAM,OAAO,OAAO,cAAc,QAAQ;AAC1C,mBAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,gBAAI,SAAS,OAAO;AACpB,qBAAS,IAAI,GAAG,IAAI,cAAc,EAAE,GAAG;AACrC,oBAAM,MAAM,OAAO,IAAI;AACvB,kBAAI,OAAO,KAAK,MAAM,UAAU;AAC9B,yBAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,wBAAM,MAAM,OAAO,IAAI;AACvB,sBAAI,OAAO,KAAK,MAAM,SAAS;AAC7B,0BAAM,SAAS,aAAa,WAAW,CAAC,GAAG,KAAK,KAAK,CAAC,GAAG,OAAO,aAAa,eAAe,EAAE,KAAK,CAAC;AACpG,0BAAM,cAAc,aAAa,WAAW,CAAC,GAAG,GAAG,CAAC,GAAG,YAAY,aAAa,eAAe,OAAO,KAAK,CAAC;AAC5G,0BAAM,MAAM,MAAM,UAAU,WAAW;AACvC,wBAAI,MAAM,QAAQ;AAChB,+BAAS;AAAA,oBACX;AAAA,kBACF;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,kBAAM,cAAc,aAAa,WAAW,CAAC,GAAG,MAAM,MAAM,CAAC,GAAG,SAAS,aAAa,eAAe,QAAQ,CAAC;AAC9G,uBAAW,eAAe;AAAA,UAC5B;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,aAAa,aAAa,YAAY,EAAE,KAAK,GAAG,UAAU,EAAE,KAAK;AACjG,WAAO,EAAE,QAAQ,OAAO,UAAU,OAAO,EAAE,MAAM;AAAA,EACnD;AACF;AAGA,IAAI,iCAAiC;AAAA,EACnC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACpD,UAAM,EAAE,GAAG,QAAQ,GAAG,IAAI;AAC1B,UAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,UAAM,aAAa;AACnB,UAAM,KAAK,aAAa,cAAc,EAAE,OAAO,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE,MAAM;AACnF,UAAM,UAAU,aAAa,cAAc,OAAO,OAAO,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE,MAAM;AAClG,UAAM,EAAE,WAAW,UAAU,SAAS,YAAY,WAAW,UAAU,SAAS,cAAc,aAAa,cAAc,aAAa,gBAAgB,eAAe,SAAS,IAAI,qBAAqB,sBAAsB,EAAE,OAAO,OAAO,OAAOA,UAAS,MAAM,QAAQ,SAAS;AACpR,iBAAa,OAAO,GAAG,SAAS,SAAS,QAAQ,MAAM,YAAY,kEAAkE,SAAS,mBAAmB,GAAG,MAAM;AAC1K,UAAM,MAAM,aAAa,cAAc,UAAU,WAAW,KAAK,IAAI,GAAG,MAAM,EAAE,MAAM;AACtF,UAAM,YAAY,aAAa,0BAA0B,OAAO,OAAO,OAAO,KAAK;AACnF,aAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,eAAS,OAAO,GAAG,OAAO,WAAW,EAAE,MAAM;AAC3C,cAAM,OAAO,OAAO,eAAe,QAAQ;AAC3C,iBAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,gBAAM,OAAO,OAAO,cAAc,QAAQ;AAC1C,mBAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,gBAAI,SAAS,OAAO;AACpB,gBAAI,OAAO;AACX,gBAAI,OAAO;AACX,qBAAS,IAAI,GAAG,IAAI,cAAc,EAAE,GAAG;AACrC,oBAAM,MAAM,OAAO,IAAI;AACvB,kBAAI,OAAO,KAAK,MAAM,UAAU;AAC9B,yBAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,wBAAM,MAAM,OAAO,IAAI;AACvB,sBAAI,OAAO,KAAK,MAAM,SAAS;AAC7B,0BAAM,MAAM,GAAG,GAAG,KAAK,KAAK,KAAK,QAAQ,GAAG,GAAG;AAC/C,wBAAI,MAAM,QAAQ;AAChB,+BAAS;AACT,6BAAO;AACP,6BAAO;AAAA,oBACT;AAAA,kBACF;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,sBAAU,MAAM,MAAM,MAAM,IAAI,GAAG,MAAM,MAAM;AAAA,UACjD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,aAAa,aAAa,WAAW,EAAE,KAAK,GAAG,OAAO,OAAO,OAAO,KAAK;AACzG,WAAO,EAAE,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC5D;AACF;AAGA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACpD,UAAM,EAAE,GAAG,QAAQ,GAAG,IAAI;AAC1B,UAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,UAAM,aAAa;AACnB,UAAM,KAAK,aAAa,cAAc,EAAE,OAAO,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE,MAAM;AACnF,UAAM,UAAU,aAAa,cAAc,OAAO,OAAO,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE,MAAM;AAClG,UAAM,EAAE,WAAW,UAAU,SAAS,YAAY,WAAW,UAAU,SAAS,cAAc,aAAa,cAAc,aAAa,gBAAgB,eAAe,SAAS,IAAI,qBAAqB,sBAAsB,EAAE,OAAO,OAAO,OAAOA,UAAS,MAAM,QAAQ,SAAS;AACpR,iBAAa,OAAO,GAAG,SAAS,SAAS,QAAQ,MAAM,YAAY,iEAAiE,SAAS,mBAAmB,GAAG,MAAM;AACzK,UAAM,MAAM,aAAa,cAAc,UAAU,WAAW,KAAK,IAAI,GAAG,MAAM,EAAE,MAAM;AACtF,UAAM,YAAY,aAAa,0BAA0B,EAAE,OAAO,EAAE,KAAK;AACzE,aAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,eAAS,OAAO,GAAG,OAAO,WAAW,EAAE,MAAM;AAC3C,cAAM,OAAO,OAAO,eAAe,QAAQ;AAC3C,iBAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,gBAAM,OAAO,OAAO,cAAc,QAAQ;AAC1C,mBAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,gBAAI,SAAS,OAAO;AACpB,gBAAI,SAAS,OAAO,IAAI,IAAI;AAC5B,gBAAI,SAAS,OAAO,IAAI,IAAI;AAC5B,qBAAS,IAAI,GAAG,IAAI,cAAc,EAAE,GAAG;AACrC,oBAAM,MAAM,OAAO,IAAI;AACvB,kBAAI,OAAO,KAAK,MAAM,UAAU;AAC9B,yBAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,wBAAM,MAAM,OAAO,IAAI;AACvB,sBAAI,OAAO,KAAK,MAAM,SAAS;AAC7B,0BAAM,MAAM,GAAG,GAAG,KAAK,KAAK,KAAK,QAAQ,GAAG,GAAG;AAC/C,wBAAI,MAAM,QAAQ;AAChB,+BAAS;AACT,+BAAS;AACT,+BAAS;AAAA,oBACX;AAAA,kBACF;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,sBAAU,GAAG,QAAQ,QAAQ,MAAM,IAAI,GAAG,MAAM,MAAM;AAAA,UACxD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,aAAa,aAAa,WAAW,EAAE,KAAK,GAAG,EAAE,OAAO,EAAE,KAAK;AAC/F,WAAO,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAAA,EAClD;AACF;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,KAAK;AACzB,MAAI;AACJ,MAAI,EAAE,UAAU,QAAQ;AACtB,SAAK,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,EAAE,CAAC;AAAA,EAC5E,OAAO;AACL,SAAK,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACrD;AACA,QAAM,QAAQ,GAAG,MAAM;AACvB,QAAM,OAAO,aAAa,eAAe,MAAM,GAAG,KAAK;AACvD,QAAM,cAAc,qBAAqB,mBAAmB,MAAM,KAAK;AACvE,MAAI,gBAAgB;AACpB,MAAI,YAAY;AAChB,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAC7F,oBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,KAAK;AAAA,EACnF;AACA,uBAAqB,2BAA2B,OAAO,eAAe,UAAU,MAAM,MAAM;AAC5F,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,aAAa;AAC7G,QAAM,cAAc,qBAAqB,WAAW,UAAU,OAAO,OAAO;AAC5E,MAAI,SAAS,OAAO,UAAU,UAAU,WAAW;AACnD,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,OAAO,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAC9C,QAAM,QAAQ,SAAS,KAAK,IAAI,UAAU,MAAM,EAAE;AAClD,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO;AACX,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,cAAQ,MAAM,SAAS;AAAA,IACzB;AACA,SAAK,MAAM;AAAA,EACb;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,OAAO,OAAO,IAAI;AAC7E,UAAM,YAAY;AAClB,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,WAAS,8BAA8B,EAAE;AACzC,MAAI,eAAe,MAAM;AACvB,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,IAAI;AACrB,QAAM,UAAU;AAChB,QAAM,EAAE,SAAS,YAAY,OAAO,IAAI,qBAAqB,qBAAqB,UAAU,QAAQ,MAAM;AAC1G,uBAAqB,oBAAoB,QAAQ,QAAQ,QAAQ,OAAO;AACxE,QAAM,EAAE,MAAM,MAAM,IAAI,qBAAqB,qBAAqB,YAAY,MAAM;AACpF,QAAM,SAAS,MAAM;AACrB,MAAI,MAAM;AACV,MAAI,mBAAmB,QAAQ;AAC/B,QAAM,mBAAmB,CAAC;AAC1B,WAAS,KAAK,GAAG,KAAK,QAAQ,EAAE,IAAI;AAClC,eAAW,UAAU,MAAM,KAAK;AAC9B,YAAM,EAAE,oBAAoB,MAAM,YAAY,aAAa,IAAI,qBAAqB,qBAAqB,kBAAkB,OAAO,OAAO;AACzI,UAAI;AACJ,UAAI,qBAAqB,sBAAsB,IAAI,GAAG;AACpD,YAAI,QAAQ;AAAA,MACd,OAAO;AACL,YAAI,WAAW,EAAE,QAAQ,EAAE,GAAG,QAAQ,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACrF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,YAAM,cAAc,EAAE,MAAM,MAAM;AAClC,eAAS,IAAI,GAAG,IAAI,aAAa,QAAQ,EAAE,GAAG;AAC5C,oBAAY,OAAO,aAAa,IAAI,GAAG,CAAC;AAAA,MAC1C;AACA,UAAI,CAAC,aAAa,YAAY,EAAE,OAAO,WAAW,GAAG;AACnD,YAAI,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,UAAI,QAAQ,MAAM;AAChB,cAAM;AAAA,MACR,OAAO;AACL,cAAM,UAAU,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,IAAI,GAAG,SAAS,SAAS,CAAC;AAC/D,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AAAA,IACF;AACA,QAAI,KAAK,SAAS,GAAG;AACnB,UAAI,KAAK,OAAO,GAAG;AACjB,cAAM,KAAK;AAAA,UACT,QAAQ,EAAE,GAAG,IAAI;AAAA,UACjB,SAAS;AAAA,UACT,OAAO;AAAA,YACL,MAAM,KAAK,OAAO,QAAQ,SAAS;AAAA,YACnC,UAAU;AAAA,UACZ;AAAA,QACF,CAAC;AACD,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AACA;AAAA,IACF;AAAA,EACF;AACA,aAAW,cAAc,kBAAkB;AACzC,QAAI,eAAe,KAAK;AACtB;AAAA,IACF;AACA,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACA,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,IAAI,EAAE,IAAI;AAClB,mBAAiB,CAAC,IAAI,CAAC,GAAG,SAAS;AACnC,QAAM,eAAe,IAAI,aAAa,aAAa,cAAc,EAAE,KAAK,CAAC;AACzE,QAAM,SAAS,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC3C,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,UAAM,IAAI,OAAO;AACjB,QAAI,KAAK,GAAG;AACV,mBAAa,MAAM,SAAS;AAAA,IAC9B,OAAO;AACL,mBAAa,MAAM,SAAS,OAAO,IAAI;AAAA,IACzC;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,WAAW,YAAY;AACjE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,IAAI,qBAAqB;AAC7B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO;AACtC,QAAM,QAAQ,KAAK,KAAK,EAAE;AAC1B,QAAM,IAAI,KAAK,IAAI,EAAE;AACrB,QAAM,KAAK,KAAK,IAAI,IAAI;AACxB,SAAO,SAAS,QAAQ,KAAK,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,KAAK,IAAI,CAAC,IAAI,CAAC;AAC/F,CAAC;AACD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,YAAY,OAAO,MAAM;AAC/B,QAAM,WAAW,OAAO,MAAM,MAAM;AACpC,MAAI,OAAO;AACX,MAAI,MAAM,GAAG;AACX,iBAAa,OAAO,EAAE,YAAY,MAAM,KAAK,MAAM,iCAAiC,EAAE,YAAY,OAAO,YAAY;AACrH,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,6BAA6B,CAAC,GAAG,MAAM,IAAI,CAAC;AAC9D,IAAI,OAAO,iBAAiB,SAAS,WAAW;AAChD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,QAAQ,SAAS,YAAY;AAC7C,QAAM,aAAa,OAAO;AAC1B,QAAM,QAAQ,WAAW;AACzB,QAAM,WAAW,WAAW;AAC5B,QAAM,YAAY,WAAW,KAAK,IAAI,OAAO,MAAM;AACnD,QAAM,SAAS,UAAU,mBAAmB;AAC5C,QAAM,SAAS,UAAU,mBAAmB;AAC5C,QAAM,cAAc,CAAC,OAAO,QAAQ;AACpC,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,aAAa,aAAa,uBAAuB,WAAW,UAAU;AAC5E,QAAM,aAAa,aAAa,uBAAuB,WAAW,UAAU;AAC5E,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,KAAK,OAAO;AAAA,MAChB,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,CAAC,GAAG,MAAM,CAAC,GAAG,QAAQ,EAAE;AAAA,IAC9C,CAAC;AACD,UAAM,KAAK,OAAO;AAAA,MAChB,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,CAAC,GAAG,MAAM,CAAC,GAAG,QAAQ,EAAE;AAAA,IAC9C,CAAC;AACD,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,WAAW,CAAC;AAC/E,UAAM,EAAE,MAAM,OAAO,MAAM,MAAM,IAAI,QAAQ,QAAQ,SAAS,UAAU;AACxE,UAAM,MAAM,qBAAqB,uBAAuB,OAAO,KAAK;AACpE,aAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,YAAM,IAAI,qBAAqB,oBAAoB,KAAK,CAAC;AACzD,iBAAW,IAAI,WAAW,KAAK,EAAE;AACjC,iBAAW,IAAI,WAAW,KAAK,EAAE;AAAA,IACnC;AACA,eAAW,8BAA8B,EAAE;AAC3C,eAAW,8BAA8B,EAAE;AAC3C,eAAW,8BAA8B,MAAM;AAAA,EACjD;AACA,QAAM,YAAY,WAAW,eAAe,aAAa,WAAW,UAAU;AAC9E,QAAM,YAAY,WAAW,eAAe,aAAa,WAAW,UAAU;AAC9E,QAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,WAAW,MAAM,UAAU,GAAG,SAAS,WAAW,CAAC;AAC7F,aAAW,8BAA8B,SAAS;AAClD,aAAW,8BAA8B,SAAS;AAClD,SAAO;AACT;AACA,SAAS,QAAQ,QAAQ,SAAS,YAAY;AAC5C,QAAMc,cAAY,aAAa,cAAc,OAAO,KAAK;AACzD,QAAM,YAAY,WAAW,KAAK,IAAI,OAAO,MAAM;AACnD,QAAM,WAAW,WAAW,KAAK,IAAI,UAAU,mBAAmB,KAAK,MAAM,EAAE;AAC/E,QAAM,WAAW,WAAW,KAAK,IAAI,UAAU,mBAAmB,KAAK,MAAM,EAAE;AAC/E,MAAI,cAAcA,WAAS,GAAG;AAC5B,UAAM,SAAS,UAAU,UAAU,UAAUA,aAAW,SAAS,UAAU;AAC3E,UAAM,cAAc,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE;AACrD,QAAI,SAAS;AACX,YAAM,WAAW,WAAW,eAAe,aAAa,WAAW,OAAO,IAAI;AAC9E,YAAM,WAAW,WAAW,eAAe,aAAa,WAAW,OAAO,IAAI;AAC9E,YAAM,WAAW,WAAW,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkBA,aAAW,SAAS,CAAC;AAC9G,YAAM,eAAe,UAAU,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,WAAW,CAAC;AAC/E,YAAM,cAAc,cAAc,WAAW,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,GAAG,SAAS,WAAW,CAAC;AAC1G,YAAM,cAAc,cAAc,WAAW,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,aAAa,GAAG,SAAS,WAAW,CAAC;AAC9G,YAAM,cAAc,WAAW,KAAK,IAAI,YAAY,MAAM,EAAE;AAC5D,YAAM,cAAc,WAAW,KAAK,IAAI,YAAY,MAAM,EAAE;AAC5D,iBAAW,8BAA8B,QAAQ;AACjD,iBAAW,8BAA8B,QAAQ;AACjD,iBAAW,8BAA8B,QAAQ;AACjD,iBAAW,8BAA8B,YAAY;AACrD,iBAAW,8BAA8B,WAAW;AACpD,iBAAW,8BAA8B,WAAW;AACpD,aAAO,EAAE,MAAM,aAAa,MAAM,YAAY;AAAA,IAChD;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,OAAO,qBAAqB,uBAAuB,UAAU,QAAQ;AAC3E,UAAM,YAAY,yBAAyB,MAAMA,aAAW,OAAO;AACnE,WAAO,qBAAqB,uBAAuB,SAAS;AAAA,EAC9D;AACF;AACA,SAAS,cAAc3B,OAAM;AAC3B,UAAQA,QAAOA,QAAO,OAAO;AAC/B;AACA,SAAS,UAAU,UAAU,UAAUA,OAAM,SAAS,YAAY;AAChE,MAAIA,UAAS,GAAG;AACd,WAAO,EAAE,MAAM,UAAU,MAAM,SAAS;AAAA,EAC1C;AACA,QAAM,OAAO,qBAAqB,uBAAuB,UAAU,QAAQ;AAC3E,QAAMwB,QAAOxB,QAAO;AACpB,QAAM,cAAc,qBAAqB,qBAAqB,IAAI;AAClE,QAAM,eAAe,YAAY;AACjC,QAAM,eAAe,YAAY;AACjC,QAAM,YAAY,CAAC,aAAa,MAAM;AACtC,QAAM,eAAe,WAAW,eAAe,WAAW,WAAW,YAAY;AACjF,QAAM,eAAe,WAAW,eAAe,WAAW,WAAW,YAAY;AACjF,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,WAAW,CAAC;AAC3G,QAAM,aAAa,qBAAqB,oBAAoB,IAAI;AAChE,QAAM,cAAc,WAAW;AAC/B,QAAM,cAAc,WAAW;AAC/B,QAAM,WAAW,CAAC,YAAY,MAAM;AACpC,QAAM,cAAc,WAAW,eAAe,UAAU,WAAW,WAAW;AAC9E,QAAM,cAAc,WAAW,eAAe,UAAU,WAAW,WAAW;AAC9E,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,aAAa,MAAM,YAAY,GAAG,SAAS,WAAW,CAAC;AACxG,QAAM,eAAe,UAAU,cAAc,cAAcwB,OAAM,SAAS,UAAU;AACpF,QAAM,gBAAgB,aAAa;AACnC,QAAM,gBAAgB,aAAa;AACnC,QAAM,aAAa,CAAC,cAAc,MAAM;AACxC,QAAM,gBAAgB,WAAW,eAAe,YAAY,WAAW,aAAa;AACpF,QAAM,gBAAgB,WAAW,eAAe,YAAY,WAAW,aAAa;AACpF,QAAM,kBAAkB,SAAS;AAAA,IAC/B,QAAQ,EAAE,MAAM,eAAe,MAAM,cAAc;AAAA,IACnD,SAAS;AAAA,EACX,CAAC;AACD,QAAM,cAAc,UAAU,aAAa,aAAaA,OAAM,SAAS,UAAU;AACjF,QAAM,eAAe,YAAY;AACjC,QAAM,eAAe,YAAY;AACjC,QAAM,YAAY,CAAC,aAAa,MAAM;AACtC,QAAM,eAAe,WAAW,eAAe,WAAW,WAAW,YAAY;AACjF,QAAM,eAAe,WAAW,eAAe,WAAW,WAAW,YAAY;AACjF,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,WAAW,CAAC;AAC3G,QAAM,KAAK,qBAAqB,UAAUxB,OAAM,OAAO;AACvD,QAAM,SAAS,CAAC,GAAG,KAAK,MAAM;AAC9B,QAAM,YAAY,WAAW,eAAe,QAAQ,WAAW,GAAG,IAAI;AACtE,QAAM,YAAY,WAAW,eAAe,QAAQ,WAAW,GAAG,IAAI;AACtE,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,MAAM,WAAW,MAAM,UAAU,GAAG,SAAS,WAAW,CAAC;AAClG,QAAM,eAAe,UAAU,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,eAAe,GAAG,SAAS,WAAW,CAAC;AACrG,QAAM,UAAU,KAAK;AAAA,IACnB,QAAQ,EAAE,GAAG,iBAAiB,GAAG,aAAa;AAAA,IAC9C,SAAS;AAAA,EACX,CAAC;AACD,QAAM,UAAU,KAAK;AAAA,IACnB,QAAQ,EAAE,GAAG,iBAAiB,GAAG,aAAa;AAAA,IAC9C,SAAS;AAAA,EACX,CAAC;AACD,QAAM,cAAc,MAAM,EAAE,QAAQ,EAAE,OAAO,QAAQ,GAAG,SAAS,WAAW,CAAC;AAC7E,QAAM,cAAc,MAAM,EAAE,QAAQ,EAAE,OAAO,QAAQ,GAAG,SAAS,WAAW,CAAC;AAC7E,QAAM,cAAc,MAAM,EAAE,QAAQ,EAAE,OAAO,QAAQ,GAAG,SAAS,WAAW,CAAC;AAC7E,QAAM,cAAc,MAAM,EAAE,QAAQ,EAAE,OAAO,QAAQ,GAAG,SAAS,WAAW,CAAC;AAC7E,QAAM,QAAQ,QAAQ;AAAA,IACpB,QAAQ,CAAC,aAAa,WAAW;AAAA,IACjC,SAAS;AAAA,IACT,OAAO,EAAE,MAAM,EAAE;AAAA,EACnB,CAAC;AACD,QAAM,QAAQ,QAAQ;AAAA,IACpB,QAAQ,CAAC,aAAa,WAAW;AAAA,IACjC,SAAS;AAAA,IACT,OAAO,EAAE,MAAM,EAAE;AAAA,EACnB,CAAC;AACD,QAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,QAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,cAAc;AACvD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,aAAa;AACtD,aAAW,8BAA8B,aAAa;AACtD,aAAW,8BAA8B,aAAa;AACtD,aAAW,8BAA8B,eAAe;AACxD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,cAAc;AACvD,aAAW,8BAA8B,SAAS;AAClD,aAAW,8BAA8B,SAAS;AAClD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,OAAO;AAChD,aAAW,8BAA8B,OAAO;AAChD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,KAAK;AAC9C,aAAW,8BAA8B,KAAK;AAC9C,SAAO,EAAE,MAAM,WAAW,MAAM,UAAU;AAC5C;AACA,SAAS,yBAAyB,MAAMA,OAAM,SAAS;AACrD,QAAM,MAAM,IAAI,aAAaA,QAAO,CAAC;AACrC,WAAS,KAAK,GAAG,KAAKA,OAAM,MAAM;AAChC,QAAI,QAAQ;AACZ,QAAI,QAAQ;AACZ,aAAS,IAAI,GAAG,IAAIA,OAAM,KAAK;AAC7B,YAAM,KAAK,qBAAqB,SAAS,KAAK,GAAGA,OAAM,OAAO;AAC9D,YAAM,OAAO,qBAAqB,oBAAoB,MAAM,CAAC;AAC7D,eAAS,KAAK,OAAO,GAAG,OAAO,KAAK,OAAO,GAAG;AAC9C,eAAS,KAAK,OAAO,GAAG,OAAO,KAAK,OAAO,GAAG;AAAA,IAChD;AACA,QAAI,SAAS;AACX,eAASA;AACT,eAASA;AAAA,IACX;AACA,yBAAqB,mBAAmB,KAAK,OAAO,OAAO,EAAE;AAAA,EAC/D;AACA,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM2B,cAAY,aAAa,cAAc,OAAO,KAAK;AACzD,QAAM,qBAAqB,OAAO,MAAM,OAAO,MAAM,SAAS;AAC9D,QAAM,QAAQA,cAAY;AAC1B,QAAM,UAAU,SAAS;AAAA,IACvB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,OAAO,kBAAkB,EAAE;AAAA,EAC9C,CAAC;AACD,QAAM,SAAS,SAAS,SAAS,OAAO,QAAQ;AAChD,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,OAAO,MAAM,EAAE,CAAC;AAC5G,WAAS,8BAA8B,OAAO;AAC9C,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,OAAO,MAAM,IAAI;AAChC,QAAM,SAAS,SAAS,aAAa,WAAW,KAAK;AACrD,QAAM,SAAS,aAAa,kBAAkB,QAAQ,aAAa,cAAc,KAAK,CAAC;AACvF,aAAW,QAAQ,OAAO,MAAM;AAChC,SAAO,SAAS,eAAe,OAAO,QAAQ,MAAM;AACtD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AACA,SAAS,WAAW,QAAQ,OAAO,OAAO;AACxC,MAAI,UAAU,UAAU;AACtB,WAAO,KAAK,KAAK;AAAA,EACnB,OAAO;AACL,WAAO,KAAK,KAAK;AAAA,EACnB;AACF;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,aAAa;AACnB,UAAM,SAAS,aAAa,uBAAuB,OAAO,OAAO,aAAa,cAAc,OAAO,KAAK,CAAC;AACzG,UAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,UAAM,YAAY,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE;AACrD,aAAS,WAAW,GAAG,WAAW,OAAO,YAAY;AACnD,YAAM,cAAc,WAAW,aAAa,cAAc;AAC1D,eAAS,MAAM,GAAG,MAAM,aAAa,OAAO;AAC1C,cAAM,YAAY,OAAO,aAAa;AACtC,iBAAS,MAAM,GAAG,MAAM,YAAY,OAAO;AACzC,gBAAM,YAAY,MAAM;AACxB,mBAAS,UAAU,GAAG,UAAU,aAAa,WAAW;AACtD,kBAAM,SAAS,KAAK,MAAM,aAAa,MAAM,CAAC;AAC9C,kBAAM,SAAS,cAAc,YAAY,YAAY;AACrD,gBAAI,cAAc,UAAU;AAC5B,gBAAI,UAAU,KAAK,SAAS,YAAY;AACtC,oBAAM,mBAAmB,SAAS;AAClC,oBAAM,WAAW,cAAc,YAAY,mBAAmB;AAC9D,4BAAc,UAAU;AAAA,YAC1B;AACA,mBAAO,UAAU;AAAA,UACnB;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,QAAQ,OAAO,OAAO,OAAO,KAAK;AAClE,WAAO,EAAE,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC5D;AACF;AAGA,IAAI,eAAe,6BAA6B,CAAC,GAAG,MAAM,KAAK,MAAM,IAAI,CAAC,CAAC;AAC3E,IAAI,YAAY,iBAAiB,UAAU,cAAc,MAAM,OAAO;AACtE,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAd,UAAS,KAAK,MAAM,YAAY,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,MAAI,SAAS,OAAO;AAAA,IAClB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB;AAAA,EACtE,CAAC;AACD,MAAI,MAAM;AACR,UAAM,YAAY;AAClB,QAAI,eAAe,UAAU,KAAK,MAAM,WAAW,KAAK,KAAK,MAAM,OAAO,GAAG;AAC3E,YAAM,eAAe,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,KAAK,MAAM,IAAI,GAAG,CAAC,EAAE,EAAE,CAAC;AACjH,eAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,aAAa,GAAG,SAAS,SAAS,CAAC;AAC3E,eAAS,8BAA8B,YAAY;AAAA,IACrD,OAAO;AACL,eAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,KAAK,GAAG,SAAS,SAAS,CAAC;AAAA,IACrE;AACA,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,MAAI,aAAa;AACf,UAAM,YAAY;AAClB,QAAI,eAAe,UAAU,gBAAgB,WAAW,uBAAuB,MAAM,WAAW,KAAK,uBAAuB,MAAM,OAAO,GAAG;AAC1I,YAAM,gBAAgB,SAAS;AAAA,QAC7B,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,CAAC,uBAAuB,MAAM,IAAI,GAAG,CAAC,EAAE;AAAA,MAC1D,CAAC;AACD,eAAS,iBAAiB,UAAU,QAAQ,aAAa,eAAe,cAAc;AACtF,eAAS,8BAA8B,aAAa;AAAA,IACtD,OAAO;AACL,eAAS,iBAAiB,UAAU,QAAQ,aAAa,wBAAwB,cAAc;AAAA,IACjG;AACA,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,MAAI,SAAS,sBAAsB;AAAA,IACjC,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB;AAAA,EACtE,CAAC;AACD,MAAI,MAAM;AACR,UAAM,YAAY;AAClB,aAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,KAAK,GAAG,SAAS,SAAS,CAAC;AACnE,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,MAAI,aAAa;AACf,UAAM,YAAY;AAClB,aAAS,iBAAiB,UAAU,QAAQ,aAAa,wBAAwB,cAAc;AAC/F,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,QAAQ,QAAQ,IAAI;AAC5B,QAAM,aAAa,aAAa,cAAc,OAAO,KAAK;AAC1D,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,QAAM,CAAC,aAAa,WAAW,WAAWA,QAAO,IAAI,qBAAqB,mBAAmB,QAAQ,OAAO;AAC5G,MAAI,cAAc,GAAG;AACnB,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,CAAC,CAAC;AAAA,EAC9D;AACA,QAAM,cAAc,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACtD,QAAM,YAAY,SAAS,WAAW,MAAM;AAC5C,QAAM,SAAS,aAAa,aAAa,WAAW,OAAO,OAAO,WAAW,WAAW,WAAWA,UAAS,OAAO,OAAO,UAAU;AACpI,SAAO,SAAS,eAAe,aAAa,OAAO,OAAO,OAAO,MAAM;AACzE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAM,UAAU,IAAI;AAC5B,mBAAiB,CAAC,GAAG,OAAO,GAAG,UAAU;AACzC,QAAM,aAAa,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AAC9D,QAAM,cAAc,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACtD,QAAM,UAAU,EAAE,MAAM;AACxB,WAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,UAAMH,SAAQ,YAAY;AAC1B,iBAAa,OAAOA,UAAS,UAAU,KAAKA,UAAS,GAAG,MAAM,6BAA6BA,wBAAuB,UAAU,IAAI;AAAA,EAClI;AACA,MAAI,aAAa;AACjB,MAAI,aAAa,MAAM;AACrB,iBAAa;AAAA,EACf;AACA,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,YAAY,qBAAqB,aAAa,yBAAyB,GAAG,SAAS,YAAY,UAAU;AAC/G,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO;AAAA,MACL,OAAO;AAAA,QACL,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,MACZ;AAAA,IACF;AAAA,EACF,CAAC;AACD,QAAM,eAAe,SAAS;AAAA,IAC5B,QAAQ,EAAE,GAAG,QAAQ;AAAA,IACrB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,cAAc,UAAU,SAAS,EAAE;AAAA,EAC3E,CAAC;AACD,QAAM,qBAAqB;AAAA,IACzB,UAAU;AAAA,IACV,UAAU;AAAA,IACV,cAAc,UAAU;AAAA,IACxB,UAAU;AAAA,EACZ;AACA,QAAM,aAAa,SAAS,WAAW,YAAY;AACnD,QAAM,OAAO,SAAS,WAAW,QAAQ;AACzC,QAAM,SAAS,aAAa,MAAM,YAAY,kBAAkB;AAChE,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,YAAY;AACnD,SAAO,SAAS,eAAe,UAAU,aAAa,OAAO,OAAO,OAAO,MAAM;AACnF;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAMiB,cAAY,aAAa,cAAc,OAAO,KAAK;AACzD,QAAM,qBAAqB,OAAO,MAAM,OAAO,MAAM,SAAS;AAC9D,QAAM,QAAQA,cAAY;AAC1B,QAAM,UAAU,SAAS;AAAA,IACvB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,OAAO,kBAAkB,EAAE;AAAA,EAC9C,CAAC;AACD,QAAM,SAAS,SAAS,SAAS,MAAM,QAAQ;AAC/C,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,OAAO,MAAM,EAAE,CAAC;AAC5G,WAAS,8BAA8B,OAAO;AAC9C,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,gBAAgB,UAAU,CAAC,OAAO,OAAO,SAAS,EAAE,IAAI,IAAI,GAAG,MAAM;AACrF,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,IAAI,EAAE,MAAM,WAAW,IAAI,GAAG,MAAM;AACrF,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,OAAO,MAAM,EAAE,IAAI,IAAI,GAAG,MAAM;AAC5E,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,IAAI,IAAI;AAC7B,QAAM,UAAU,aAAa,OAAO,MAAM,GAAG;AAC7C,SAAO,SAAS,eAAe,CAAC,QAAQ,MAAM,GAAG,WAAW,OAAO;AACrE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC1D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,6BAA6B,CAAC,GAAG,MAAM,KAAK,CAAC;AAClE,IAAI,cAAc,iBAAiB,YAAY,gBAAgB,MAAM,MAAM;AAC3E,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,gBAAgB,YAAY,CAAC,OAAO,KAAK,IAAI,GAAG,MAAM;AACxE,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,6BAA6B,CAAC,GAAG,MAAM,KAAK,CAAC;AACjE,IAAI,aAAa,iBAAiB,WAAW,eAAe,MAAM,MAAM;AACxE,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,IAAI,MAAM;AACjB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,aAAa,MAAM,OAAAJ,QAAO,KAAK,IAAI;AAC3C,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,EAAE,MAAM;AACzB,QAAM,OAAO,WAAW;AACxB,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAMvB,QAAO,aAAa,cAAc,EAAE,KAAK;AAC/C,QAAM,SAAS,IAAI,aAAaA,KAAI;AACpC,WAAS,kBAAkB,QAAQ;AACjC,UAAM,iBAAiB,SAAS;AAChC,QAAI,iBAAiB,SAAS,iBAAiB,KAAK,IAAI,GAAG,iBAAiB,WAAW;AACvF,UAAM,eAAe,SAAS,iBAAiB,KAAK,IAAI,iBAAiB,aAAa,IAAI;AAC1F,QAAI,OAAO;AACX,WAAO,kBAAkB,cAAc,kBAAkB;AACvD,YAAM,IAAI,QAAQ;AAClB,cAAQ,IAAI;AAAA,IACd;AACA,WAAO;AAAA,EACT;AACA,WAAS,SAAS,GAAG,SAASA,OAAM,UAAU;AAC5C,UAAM,OAAO,kBAAkB,MAAM;AACrC,UAAM,MAAM,QAAQ,UAAU,KAAK,IAAI,OAAOuB,SAAQ,MAAM,CAAC,IAAI;AACjE,WAAO,UAAU;AAAA,EACnB;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,MAAM;AACzD;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,GAAG,IAAI;AACrB,QAAM,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK,IAAI;AAC3C,mBAAiB,IAAI,SAAS;AAC9B,QAAM,SAAS,aAAa,cAAc,GAAG,KAAK;AAClD,QAAM,WAAW,GAAG,MAAM;AAC1B,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,SAAS,IAAI,aAAa,MAAM;AACtC,QAAMvB,QAAO;AACb,WAAS,SAAS,GAAG,SAASA,OAAM,UAAU;AAC5C,UAAM,iBAAiB,SAAS;AAChC,UAAM,aAAa,SAAS,iBAAiB,KAAK,IAAI,GAAG,iBAAiB,WAAW;AACrF,UAAM,WAAW,SAAS,iBAAiB,KAAK,IAAI,UAAU,iBAAiB,cAAc,CAAC;AAC9F,QAAI,QAAQ;AACZ,aAAS,IAAI,YAAY,IAAI,UAAU,KAAK;AAC1C,eAAS,KAAK,IAAI,QAAQ,IAAI,CAAC;AAAA,IACjC;AACA,YAAQuB,SAAQ,QAAQ;AACxB,aAAS,IAAI,YAAY,IAAI,UAAU,KAAK;AAC1C,UAAI,MAAM,KAAKA,SAAQ,OAAO,QAAQ,KAAK,QAAQ,UAAU;AAC7D,UAAI,WAAW,GAAG;AAChB,eAAO,KAAK,IAAI,OAAO,CAAC,IAAI;AAAA,MAC9B;AACA,aAAO,SAAS;AAChB,aAAO,MAAM;AAAA,IACf;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,EAAE,OAAO,MAAM;AAC1D;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,kBAAkB,SAAS,IAAI;AACvC,QAAM,aAAa;AACnB,MAAI,SAAS,EAAE;AACf,QAAM,QAAQ,OAAO;AACrB,QAAM,WAAW,aAAa,eAAe,kBAAkB,MAAM;AACrE,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,MAAI,gBAAgB,MAAM;AACxB,UAAM,WAAW,IAAI,MAAM,KAAK;AAChC,aAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,eAAS,MAAM,OAAO,aAAa;AAAA,IACrC;AACA,YAAQ,cAAc,OAAO,QAAQ,EAAE,OAAO,cAAc,QAAQ;AACpE,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAC/D,aAAS;AAAA,EACX;AACA,mBAAiB,GAAG,KAAK;AACzB,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,aAAa,WAAW,IAAI,qBAAqB,0BAA0B,QAAQ,IAAI;AAC9F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,SAAS,QAAQ,OAAO,YAAY,aAAa,EAAE,KAAK;AAC9D,QAAM,SAAS,WAAW,MAAM,QAAQ,aAAa,EAAE,KAAK;AAC5D,MAAI,WAAW;AACf,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,aAAa,QAAQ;AAChF,eAAW;AAAA,EACb;AACA,SAAO,EAAE,QAAQ,OAAO,UAAU,OAAO,EAAE,MAAM;AACnD;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,mBAAiB,GAAG,SAAS;AAC7B,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI;AACJ,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,UAAM,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACtD,OAAO;AACL,UAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,UAAMwB,YAAW,aAAa,eAAe,EAAE,KAAK;AACpD,UAAM,UAAU,MAAM,SAAS,EAAE,OAAO,EAAE,OAAOA,WAAU,UAAU,KAAK;AAC1E,UAAM,SAAS,eAAe,SAAS,UAAU,EAAE,OAAO,QAAQ,MAAM;AAAA,EAC1E;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAxB,UAAS,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACxE,mBAAiB,GAAG,WAAW;AAC/B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,iBAAiB,UAAU;AAC1H,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,SAAS,QAAQ,SAAS,EAAE,OAAO,EAAE,OAAO,aAAa,eAAe,EAAE,KAAK,GAAG,UAAU,KAAK;AACvG,SAAO,SAAS,eAAe,OAAO,OAAO,WAAW,OAAO,MAAM;AACvE;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,mBAAiB,CAAC,IAAI,MAAM,GAAG,eAAe;AAC9C,QAAM,WAAW,qBAAqB,kBAAkB,OAAO,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AACnH,QAAM,WAAW,SAAS,WAAW,MAAM;AAC3C,QAAM,YAAY,mBAAmB,UAAU,QAAQ;AACvD,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,uBAAuB,SAAS;AACtC,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,WAAW,uBAAuB,IAAI,SAAS,QAAQ;AAC7D,QAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,QAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,QAAM,KAAK,OAAO,OAAO,OAAO,SAAS;AACzC,QAAM,QAAQ,SAAS,WAAW,EAAE;AACpC,WAAS,QAAQ,GAAG,QAAQ,SAAS,WAAW,EAAE,OAAO;AACvD,aAAS,UAAU,GAAG,UAAU,SAAS,YAAY,EAAE,SAAS;AAC9D,eAAS,UAAU,GAAG,UAAU,SAAS,SAAS,EAAE,SAAS;AAC3D,iBAAS,QAAQ,GAAG,QAAQ,SAAS,UAAU,EAAE,OAAO;AACtD,mBAAS,QAAQ,GAAG,QAAQ,SAAS,SAAS,EAAE,OAAO;AACrD,kBAAM,gBAAgB,UAAU;AAChC,kBAAM,cAAc,QAAQ;AAC5B,kBAAM,cAAc,QAAQ;AAC5B,gBAAI,UAAU;AACd,qBAAS,SAAS,GAAG,SAAS,sBAAsB,UAAU,eAAe;AAC3E,oBAAM,WAAW,gBAAgB,UAAU;AAC3C,kBAAI,UAAU,KAAK,WAAW,SAAS,YAAY,KAAK,MAAM,OAAO,MAAM,SAAS;AAClF;AAAA,cACF;AACA,uBAAS,OAAO,GAAG,OAAO,uBAAuB,QAAQ,gBAAgB;AACvE,sBAAM,SAAS,cAAc,QAAQ;AACrC,oBAAI,QAAQ,KAAK,SAAS,SAAS,aAAa,KAAK,MAAM,KAAK,MAAM,OAAO;AAC3E;AAAA,gBACF;AACA,yBAAS,OAAO,GAAG,OAAO,sBAAsB,QAAQ,eAAe;AACrE,wBAAM,SAAS,cAAc,QAAQ;AACrC,sBAAI,QAAQ,KAAK,SAAS,SAAS,YAAY,KAAK,MAAM,KAAK,MAAM,OAAO;AAC1E;AAAA,kBACF;AACA,wBAAM,SAAS,uBAAuB,wBAAwB,uBAAuB,IAAI,UAAU,IAAI,OAAO,SAAS,OAAO,OAAO,OAAO;AAC5I,wBAAM,SAAS,SAAS,wBAAwB,uBAAuB,OAAO,uBAAuB;AACrG,wBAAMR,QAAO,WAAW,SAAS,IAAI;AACrC,sBAAIA,UAAS,GAAG;AACd;AAAA,kBACF;AACA,wBAAM,QAAQ,MAAM,IAAI,OAAO,SAAS,OAAO,OAAO,OAAO;AAC7D,6BAAW,QAAQA;AAAA,gBACrB;AAAA,cACF;AAAA,YACF;AACA,eAAG,IAAI,SAAS,OAAO,SAAS,OAAO,OAAO,OAAO;AAAA,UACvD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,QAAQ,OAAO,IAAI;AACtC,QAAM,IAAI;AACV,mBAAiB,CAAC,QAAQ,MAAM,GAAG,aAAa;AAChD,QAAM,EAAE,YAAY,SAAAQ,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AAC9G,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,YAAY,OAAO,SAAS,UAAU,EAAE,OAAO,iBAAiB,SAAS,EAAE,OAAO,EAAE,OAAO,QAAQ,EAAE,MAAM;AACjH,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,QAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,QAAM,KAAK,OAAO,EAAE,OAAO,SAAS;AACpC,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,QAAQ,OAAO,GAAG,OAAO,WAAW,MAAM;AAChD,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,aAAS,IAAI,GAAG,IAAI,SAAS,YAAY,EAAE,GAAG;AAC5C,eAAS,MAAM,GAAG,MAAM,SAAS,UAAU,EAAE,KAAK;AAChD,iBAAS,MAAM,GAAG,MAAM,SAAS,SAAS,EAAE,KAAK;AAC/C,gBAAM,YAAY,MAAM;AACxB,gBAAM,YAAY,MAAM;AACxB,cAAI,UAAU;AACd,mBAAS,KAAK,GAAG,KAAK,uBAAuB,MAAM,gBAAgB;AACjE,kBAAM,OAAO,YAAY,MAAM;AAC/B,gBAAI,MAAM,KAAK,OAAO,SAAS,aAAa,KAAK,MAAM,GAAG,MAAM,KAAK;AACnE;AAAA,YACF;AACA,qBAAS,KAAK,GAAG,KAAK,sBAAsB,MAAM,eAAe;AAC/D,oBAAM,OAAO,YAAY,MAAM;AAC/B,kBAAI,MAAM,KAAK,OAAO,SAAS,YAAY,KAAK,MAAM,GAAG,MAAM,KAAK;AAClE;AAAA,cACF;AACA,oBAAM,SAAS,wBAAwB,uBAAuB,IAAI,UAAU,IAAI,GAAG,KAAK,KAAK,CAAC;AAC9F,oBAAM,SAAS,KAAK,uBAAuB;AAC3C,oBAAMR,QAAO,WAAW,SAAS,IAAI;AACrC,kBAAIA,UAAS,GAAG;AACd;AAAA,cACF;AACA,oBAAM,QAAQ,MAAM,IAAI,GAAG,KAAK,KAAK,CAAC;AACtC,yBAAW,QAAQA;AAAA,YACrB;AAAA,UACF;AACA,aAAG,IAAI,SAAS,GAAG,KAAK,KAAK,CAAC;AAAA,QAChC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,SAAS,QAAQ,OAAO,qBAAqB,UAAU;AACpF,QAAMQ,WAAU,aAAa,eAAe,MAAM;AAClD,QAAM,WAAW,MAAM,SAAS,QAAQ,OAAOA,UAAS,UAAU,KAAK;AACvE,QAAM,eAAe,iBAAiB,SAAS,QAAQ,OAAO,UAAU,MAAM,mBAAmB;AACjG,SAAO,CAAC,SAAS,QAAQ,aAAa,MAAM;AAC9C;AAGA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,oBAAoB,IAAI;AAChE,UAAM,aAAa;AACnB,qBAAiB,GAAG,mBAAmB;AACvC,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,CAAC,GAAG,CAAC,GAAG,IAAI;AAClG,UAAM,CAAC,QAAQ,OAAO,IAAI,sBAAsB,QAAQ,EAAE,OAAO,EAAE,OAAO,qBAAqB,QAAQ;AACvG,UAAM,eAAe,WAAW,MAAM,QAAQ,SAAS,UAAU,EAAE,KAAK;AACxE,UAAM,gBAAgB,WAAW,MAAM,SAAS,SAAS,UAAU,EAAE,KAAK;AAC1E,WAAO;AAAA,MACL,EAAE,QAAQ,cAAc,OAAO,SAAS,UAAU,OAAO,EAAE,MAAM;AAAA,MACjE,EAAE,QAAQ,eAAe,OAAO,SAAS,UAAU,OAAO,QAAQ;AAAA,IACpE;AAAA,EACF;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACtD,QAAM,SAAS,qBAAqB,0BAA0B,EAAE,OAAO,IAAI;AAC3E,QAAM,cAAc,OAAO;AAC3B,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,YAAY,CAAC;AACnB,QAAM,mBAAmB,SAAS,eAAe,CAAC,GAAG,WAAW,IAAI,aAAa,CAAC,UAAU,CAAC,CAAC;AAC9F,YAAU,KAAK,gBAAgB;AAC/B,QAAM,KAAK,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAClF,YAAU,KAAK,EAAE;AACjB,QAAM,MAAM,KAAK,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,iBAAiB,GAAG,SAAS,SAAS,CAAC;AAC9E,YAAU,KAAK,GAAG;AAClB,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AACxF,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,EAAE,MAAM,MAAM;AAAA,EAC1E;AACA,uBAAqB,2BAA2B,OAAO,MAAM,GAAG,MAAM,MAAM;AAC5E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,OAAO,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,GAAG,KAAK;AAC5F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO,MAAM;AACjB,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,UAAI,OAAO,MAAM,KAAK,KAAK,QAAQ,MAAM;AACvC,eAAO;AAAA,MACT;AAAA,IACF;AACA,SAAK,MAAM;AAAA,EACb;AACA,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,QAAM,SAAS,SAAS,eAAe,UAAU,GAAG,OAAO,IAAI;AAC/D,MAAI,UAAU;AACZ,UAAM,gBAAgB,qBAAqB,qBAAqB,UAAU,QAAQ;AAClF,UAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,mBAAiB,GAAG,WAAW;AAC/B,QAAM,WAAW,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACrE,QAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE;AACxC,QAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,GAAG;AACxD,QAAM,SAAS,SAAS,YAAY,IAAI;AACxC,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,aAAa,aAAa,cAAc,QAAQ;AACtD,QAAM,aAAa,SAAS;AAC5B,QAAM,gBAAgB,aAAa,eAAe,QAAQ;AAC1D,QAAM,UAAU,aAAa,uBAAuB,EAAE,OAAO,UAAU;AACvE,WAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,QAAI,UAAU,aAAa,WAAW,IAAI,YAAY,aAAa;AACnE,aAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,UAAI,QAAQ,MAAM,MAAM,KAAK;AAC3B,gBAAQ,MAAM,MAAM,MAAM,IAAI,QAAQ,MAAM;AAAA,MAC9C,WAAW,QAAQ,OAAO,IAAI,KAAK;AACjC,gBAAQ,OAAO,IAAI,MAAM,KAAK,IAAI,QAAQ,MAAM;AAAA,MAClD;AAAA,IACF;AACA,cAAU,QAAQ,IAAI,CAAC,GAAG,OAAO,IAAI,MAAM,GAAG;AAC9C,UAAM,UAAU,aAAa,WAAW,SAAS,OAAO,QAAQ;AAChE,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,QAAQ,SAAS,MAAM,SAAS,UAAU,EAAE,KAAK;AACvD,SAAO,EAAE,QAAQ,OAAO,OAAO,UAAU,OAAO,EAAE,MAAM;AAC1D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,6BAA6B,CAAC,QAAQ,WAAW;AAC7D,QAAM,MAAM,SAAS;AACrB,MAAI,SAAS,KAAK,SAAS,KAAK,UAAU,KAAK,UAAU,GAAG;AAC1D,WAAO;AAAA,EACT,OAAO;AACL,YAAQ,MAAM,UAAU;AAAA,EAC1B;AACF,CAAC;AACD,IAAI,OAAO,iBAAiB,KAAK,OAAO;AACxC,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,QAAQ,oBAAoB,CAAC;AAG/C,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,aAAa,OAAO,MAAM;AAChC,MAAI,OAAO;AACX,MAAI,SAAS,IAAI;AACf,WAAO,aAAa;AAAA,EACtB;AACA,MAAI,SAAS,aAAa,GAAG;AAC3B,UAAM,MAAM,4EAA4E,0BAA0B,MAAM;AAAA,EAC1H;AACA,QAAM,OAAO,aAAa,eAAe,CAAC,IAAI,GAAG,OAAO,KAAK;AAC7D,QAAM,WAAW,KAAK;AAAA,IACpB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,kBAAkB,MAAM,UAAU,MAAM;AAAA,EACnD,CAAC;AACD,QAAM,gBAAgB,qBAAqB,qBAAqB,SAAS,OAAO,IAAI;AACpF,QAAM,mBAAmB,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AACjH,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,iBAAiB,GAAG,SAAS,SAAS,CAAC;AAChF,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,SAAS,CAAC;AACtD,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,UAAU,MAAM,EAAE,CAAC;AACnG,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC1G,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,YAAY,GAAG,SAAS,SAAS,CAAC;AAC3E,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,gBAAgB;AACvD,WAAS,8BAA8B,CAAC;AACxC,WAAS,8BAA8B,CAAC;AACxC,WAAS,8BAA8B,MAAM;AAC7C,WAAS,8BAA8B,WAAW;AAClD,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,YAAY,MAAM,WAAW,IAAI;AACzC,mBAAiB,QAAQ,aAAa;AACtC,QAAM,gBAAgB,aAAa,SAAS,SAAS,EAAE,QAAQ,EAAE,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,GAAG,EAAE,CAAC;AAClH,QAAM,YAAY,cAAc,MAAM;AACtC,QAAM,YAAY,cAAc,MAAM;AACtC,QAAM,WAAW,SAAS,KAAK,IAAI,cAAc,MAAM,EAAE;AACzD,QAAM,WAAW,CAAC,WAAW,UAAU;AACvC,QAAM,UAAU,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,OAAO;AAC9F,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,UAAM,SAAS,IAAI;AACnB,UAAM,MAAM,IAAI,aAAa,YAAY,CAAC;AAC1C,QAAI,KAAK,SAAS;AAClB,aAAS,QAAQ,GAAG,QAAQ,IAAI,QAAQ,EAAE,OAAO;AAC/C,UAAI,SAAS,IAAI,QAAQ,KAAK,SAAS,SAAS;AAAA,IAClD;AACA,UAAM,SAAS,YAAY,KAAK,KAAK,SAAS,CAAC;AAC/C,UAAM,YAAY,IAAI;AACtB,aAAS,WAAW,GAAG,WAAW,YAAY,EAAE,UAAU;AACxD,YAAM,KAAK,OAAO;AAClB,cAAQ,YAAY,YAAY,IAAI;AACpC,eAAS,QAAQ,GAAG,QAAQ,IAAI,QAAQ,SAAS;AAC/C,YAAI,KAAK,IAAI,QAAQ;AACnB,kBAAQ,YAAY,YAAY;AAChC;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,MAAI,CAAC,YAAY;AACf,aAAS,8BAA8B,aAAa;AAAA,EACtD;AACA,SAAO,SAAS,eAAe,UAAU,SAAS,OAAO;AAC3D;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,eAAe,IAAI;AACxD,mBAAiB,OAAO,mBAAmB;AAC3C,QAAM,YAAY,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAClD,QAAM,aAAa,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACpD,QAAM,EAAE,gBAAgB,IAAI,yBAAyB,WAAW,YAAY,eAAe,cAAc,cAAc;AACvH,SAAO,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AACnG;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,mBAAmB,IAAI;AAC5E,mBAAiB,OAAO,yBAAyB;AACjD,QAAM,YAAY,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAClD,QAAM,aAAa,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACpD,QAAM,EAAE,iBAAiB,aAAa,IAAI,yBAAyB,WAAW,YAAY,eAAe,cAAc,gBAAgB,kBAAkB;AACzJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,GAAG,SAAS,IAAI,WAAW,CAAC,YAAY,CAAC,CAAC;AAAA,EACrE;AACF;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,aAAa,IAAI;AACtE,mBAAiB,OAAO,4BAA4B;AACpD,QAAM,YAAY,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAClD,QAAM,aAAa,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACpD,QAAM,mBAAmB;AACzB,QAAM,kBAAkB;AACxB,QAAM,oBAAoB;AAC1B,QAAM,kBAAkB;AACxB,QAAM,EAAE,iBAAiB,eAAe,IAAI,yBAAyB,WAAW,YAAY,kBAAkB,iBAAiB,mBAAmB,eAAe;AACjK,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,WAAW,IAAI,aAAa,cAAc,CAAC;AAAA,EAC9F;AACF;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,IAAI;AACpB,QAAM,EAAE,OAAO,OAAO,SAAS,SAAS,IAAI;AAC5C,mBAAiB,SAAS,QAAQ;AAClC,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,MAAM,IAAI,aAAa,cAAc,KAAK;AAChD,MAAI,KAAK,QAAQ;AACjB,QAAM,aAAa,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACrD,WAAS,QAAQ,GAAG,QAAQ,aAAa,EAAE,OAAO;AAChD,QAAI,WAAW,UAAU,KAAK,WAAW,SAAS,OAAO;AACvD,UAAI,QAAQ,QAAQ,WAAW,UAAU;AAAA,IAC3C;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,GAAG,QAAQ,OAAO,KAAK,GAAG,OAAO,GAAG;AACtE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE,WAAW,EAAE,UAAU,aAAa;AAClC,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM,EAAE,SAAS,UAAU,OAAO,EAAE,OAAO,EAAE,OAAO,OAAO,GAAG,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,EACzF;AACF;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE,WAAW,EAAE,UAAU,aAAa;AAClC,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,UAAU,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACnE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM,EAAE,SAAS,UAAU,OAAO,EAAE,OAAO,EAAE,OAAO,OAAO,GAAG,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,EACzF;AACF;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,YAAY,EAAE,QAAQ,EAAE,OAAO,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAAA,EAC9F;AACA,QAAM,QAAQ,OAAO,GAAG;AACxB,QAAM,QAAQ,OAAO,GAAG;AACxB,SAAO,QAAQ,CAAC,OAAO;AACrB,iBAAa,kBAAkB,OAAO,GAAG,OAAO,uDAAuD;AACvG,iBAAa,OAAO,UAAU,GAAG,OAAO,MAAM,uDAAuD;AAAA,EACvG,CAAC;AACD,QAAM,0BAA0B,CAAC;AACjC,QAAM,kBAAkB,OAAO,IAAI,CAAC,OAAO;AACzC,UAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAChG,4BAAwB,KAAK,SAAS;AACtC,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACtF,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,cAAc,IAAI;AACpC,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACrE,QAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE;AACxC,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,aAAa,aAAa,cAAc,QAAQ;AACtD,QAAM,aAAa,SAAS;AAC5B,QAAM,gBAAgB,aAAa,eAAe,QAAQ;AAC1D,QAAM,UAAU,aAAa,uBAAuB,EAAE,OAAO,UAAU;AACvE,MAAI,kBAAkB,GAAG;AACvB,YAAQ,KAAK,aAAa;AAAA,EAC5B;AACA,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM;AACjC,UAAM,UAAU,aAAa,WAAW,IAAI,OAAO,QAAQ;AAC3D,UAAM,YAAY,QAAQ,IAAI,CAAC,GAAG,OAAO,IAAI,MAAM,GAAG;AACtD,UAAM,WAAW,aAAa,WAAW,WAAW,YAAY,aAAa;AAC7E,YAAQ,YAAY,MAAM;AAAA,EAC5B;AACA,QAAM,QAAQ,SAAS,MAAM,SAAS,UAAU,EAAE,KAAK;AACvD,SAAO,EAAE,QAAQ,OAAO,OAAO,UAAU,OAAO,EAAE,MAAM;AAC1D;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,6BAA6B,CAAC,GAAG,MAAM,KAAK,IAAI,GAAG,CAAC,CAAC;AACnE,IAAI,OAAO,iBAAiB,KAAK,OAAO;AACxC,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,cAAc,oBAAoB,IAAI;AAC7D,QAAM,EAAE,kBAAkB,IAAI;AAC9B,QAAM,SAAS,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAC/C,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE;AAC7D,QAAM,sBAAsB,oBAAoB,IAAI,CAAC,OAAO,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE,MAAM;AAC/F,QAAM,2BAA2B,oBAAoB,IAAI,CAAC,OAAO,GAAG,KAAK;AACzE,QAAM,CAAC,aAAa,MAAM,IAAI,yBAAyB,QAAQ,MAAM,OAAO,SAAS,OAAO,OAAO,OAAO,OAAO,eAAe,aAAa,OAAO,qBAAqB,0BAA0B,iBAAiB;AACpN,SAAO,SAAS,eAAe,aAAa,OAAO,OAAO,MAAM;AAClE;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,OAAO,MAAM,MAAM,IAAI;AAC5C,QAAM,SAAS,UAAU,OAAO,MAAM,OAAO,KAAK;AAClD,SAAO,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,OAAO,MAAM;AAC/D;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,gBAAgB,YAAY,CAAC,OAAO,IAAI,EAAE;AAC5D,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAb,MAAK,IAAI;AACjD,mBAAiB,QAAQ,gBAAgB;AACzC,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,CAAC,OAAO,WAAW,UAAU,WAAW,IAAI,OAAO;AACzD,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,SAAS,IAAI,aAAa,aAAa,cAAc,CAAC,OAAO,WAAW,UAAU,WAAW,CAAC,CAAC;AACrG,QAAM,qBAAqB;AAAA,IACzB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,IAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,EAChD;AACA,QAAM,sBAAsB;AAAA,IAC1B,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,IAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,EAChD;AACA,MAAI,YAAY;AAChB,QAAM,wBAAwB,mBAAmB,KAAK,oBAAoB;AAC1E,QAAM,wBAAwB,mBAAmB,KAAK,oBAAoB;AAC1E,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,aAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,UAAI;AACJ,UAAI,kBAAkB;AACpB,wBAAgB,yBAAyB,KAAK,OAAO;AAAA,MACvD,OAAO;AACL,wBAAgB,wBAAwB;AAAA,MAC1C;AACA,YAAM,iBAAiB,KAAK,IAAI,GAAG,KAAK,MAAM,aAAa,CAAC;AAC5D,YAAM,UAAU,gBAAgB;AAChC,YAAM,gBAAgB,KAAK,IAAI,YAAY,GAAG,KAAK,KAAK,aAAa,CAAC;AACtE,YAAM,eAAe,IAAI,cAAc,KAAK,iBAAiB,cAAc;AAC3E,YAAM,eAAe,IAAI,cAAc,KAAK,gBAAgB,cAAc;AAC1E,eAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,YAAI;AACJ,YAAI,kBAAkB;AACpB,0BAAgB,yBAAyB,IAAI,OAAO;AAAA,QACtD,OAAO;AACL,0BAAgB,wBAAwB;AAAA,QAC1C;AACA,cAAM,iBAAiB,KAAK,IAAI,GAAG,KAAK,MAAM,aAAa,CAAC;AAC5D,cAAM,UAAU,gBAAgB;AAChC,cAAM,gBAAgB,KAAK,IAAI,WAAW,GAAG,KAAK,KAAK,aAAa,CAAC;AACrE,cAAM,gBAAgB,eAAe,iBAAiB,cAAc;AACpE,cAAM,gBAAgB,eAAe,iBAAiB,cAAc;AACpE,cAAM,iBAAiB,eAAe,gBAAgB,cAAc;AACpE,cAAM,iBAAiB,eAAe,gBAAgB,cAAc;AACpE,iBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,gBAAM,UAAU,QAAQ,gBAAgB;AACxC,gBAAM,aAAa,QAAQ,gBAAgB;AAC3C,gBAAM,WAAW,QAAQ,iBAAiB;AAC1C,gBAAM,cAAc,QAAQ,iBAAiB;AAC7C,gBAAM,MAAM,WAAW,WAAW,WAAW;AAC7C,gBAAM,SAAS,cAAc,cAAc,cAAc;AACzD,gBAAM,WAAW,OAAO,SAAS,OAAO;AACxC,iBAAO,eAAe;AAAA,QACxB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,OAAO,WAAW,UAAU,WAAW,GAAG,WAAW,MAAM;AAC7F;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,mBAAmB,MAAM;AAChC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,GAAG,IAAI;AACvB,QAAM,EAAE,aAAa,IAAI;AACzB,mBAAiB,CAAC,IAAI,MAAM,GAAG,oBAAoB;AACnD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,CAAC,OAAO,SAAS,QAAQ,KAAK,IAAI,OAAO;AAC/C,QAAM,CAAC,EAAE,SAAS,MAAM,IAAI,GAAG;AAC/B,QAAM,SAAS,IAAI,aAAa,QAAQ,UAAU,SAAS,KAAK;AAChE,QAAM,iBAAiB;AAAA,IACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,IAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,EAC5C;AACA,QAAM,iBAAiB;AAAA,IACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,IAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,EAC5C;AACA,QAAM,cAAc,eAAe,KAAK,eAAe;AACvD,QAAM,aAAa,eAAe,KAAK,eAAe;AACtD,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,MAAI,SAAS;AACb,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,UAAU,IAAI,cAAc;AAClC,aAAS,KAAK,GAAG,KAAK,SAAS,MAAM;AACnC,YAAM,MAAM,KAAK;AACjB,YAAM,cAAc,KAAK,MAAM,GAAG;AAClC,YAAM,iBAAiB,KAAK,IAAI,KAAK,KAAK,GAAG,GAAG,UAAU,CAAC;AAC3D,YAAM,eAAe,UAAU,cAAc,cAAc;AAC3D,YAAM,kBAAkB,UAAU,iBAAiB,cAAc;AACjE,YAAM,UAAU,MAAM;AACtB,YAAM,iBAAiB,IAAI;AAC3B,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,cAAM,MAAM,IAAI;AAChB,cAAM,eAAe,KAAK,MAAM,GAAG;AACnC,cAAM,gBAAgB,KAAK,IAAI,KAAK,KAAK,GAAG,GAAG,SAAS,CAAC;AACzD,cAAM,UAAU,MAAM;AACtB,cAAM,iBAAiB,IAAI;AAC3B,cAAM,kBAAkB,eAAe,eAAe,cAAc;AACpE,cAAM,mBAAmB,eAAe,gBAAgB,cAAc;AACtE,cAAM,qBAAqB,kBAAkB,eAAe,cAAc;AAC1E,cAAM,sBAAsB,kBAAkB,gBAAgB,cAAc;AAC5E,cAAM,oCAAoC,iBAAiB;AAC3D,cAAM,6BAA6B,iBAAiB;AACpD,cAAM,6BAA6B,UAAU;AAC7C,cAAM,sBAAsB,UAAU;AACtC,iBAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,gBAAM,QAAQ,SAAS;AACvB,iBAAO,kBAAkB,MAAM,QAAQ;AACvC,iBAAO,mBAAmB,MAAM,QAAQ;AACxC,iBAAO,qBAAqB,MAAM,QAAQ;AAC1C,iBAAO,sBAAsB,MAAM,QAAQ;AAAA,QAC7C;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,OAAO,QAAQ,SAAS,KAAK,GAAG,WAAW,MAAM;AACnF;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAA,MAAK,IAAI;AACjD,mBAAiB,QAAQ,uBAAuB;AAChD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,CAAC,OAAO,WAAW,UAAU,WAAW,IAAI,OAAO;AACzD,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,SAAS,IAAI,aAAa,QAAQ,YAAY,WAAW,WAAW;AAC1E,QAAM,qBAAqB;AAAA,IACzB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,IAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,EAChD;AACA,QAAM,sBAAsB;AAAA,IAC1B,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,IAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,EAChD;AACA,QAAM,wBAAwB,mBAAmB,KAAK,oBAAoB;AAC1E,QAAM,wBAAwB,mBAAmB,KAAK,oBAAoB;AAC1E,MAAI,eAAe;AACnB,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,cAAc,IAAI,cAAc;AACtC,aAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,YAAM,gBAAgB,mBAAmB,yBAAyB,KAAK,OAAO,wBAAwB;AACtG,UAAI,mBAAmB,KAAK,IAAI,YAAY,GAAG,eAAe,KAAK,MAAM,aAAa,IAAI,KAAK,MAAM,aAAa,CAAC;AACnH,UAAI,kBAAkB;AACpB,2BAAmB,KAAK,IAAI,GAAG,gBAAgB;AAAA,MACjD;AACA,YAAM,YAAY,cAAc,mBAAmB,cAAc;AACjE,eAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,cAAM,gBAAgB,mBAAmB,yBAAyB,IAAI,OAAO,wBAAwB;AACrG,YAAI,mBAAmB,KAAK,IAAI,WAAW,GAAG,eAAe,KAAK,MAAM,aAAa,IAAI,KAAK,MAAM,aAAa,CAAC;AAClH,YAAI,kBAAkB;AACpB,6BAAmB,KAAK,IAAI,GAAG,gBAAgB;AAAA,QACjD;AACA,cAAM,YAAY,YAAY,mBAAmB,cAAc;AAC/D,iBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,gBAAM,SAAS,QAAQ,YAAY;AACnC,iBAAO,kBAAkB;AAAA,QAC3B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,OAAO,WAAW,UAAU,WAAW,GAAG,OAAO,OAAO,MAAM;AAChG;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,0BAA0B,MAAM;AACvC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,GAAG,IAAI;AACvB,QAAM,EAAE,aAAa,IAAI;AACzB,mBAAiB,CAAC,IAAI,MAAM,GAAG,2BAA2B;AAC1D,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,CAAC,OAAO,SAAS,QAAQ,KAAK,IAAI,OAAO;AAC/C,QAAM,CAAC,EAAE,SAAS,MAAM,IAAI,GAAG;AAC/B,QAAM,SAAS,IAAI,aAAa,QAAQ,UAAU,SAAS,KAAK;AAChE,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,iBAAiB;AAAA,IACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,IAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,EAC5C;AACA,QAAM,iBAAiB;AAAA,IACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,IAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,EAC5C;AACA,QAAM,cAAc,eAAe,KAAK,eAAe;AACvD,QAAM,aAAa,eAAe,KAAK,eAAe;AACtD,QAAM,iBAAiB,IAAI;AAC3B,QAAM,gBAAgB,IAAI;AAC1B,QAAM,YAAY,KAAK,KAAK,cAAc,IAAI,IAAI;AAClD,QAAM,WAAW,KAAK,KAAK,aAAa,IAAI,IAAI;AAChD,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,cAAc,IAAI,cAAc;AACtC,aAAS,KAAK,GAAG,KAAK,SAAS,MAAM;AACnC,YAAM,YAAY,cAAc,KAAK,cAAc;AACnD,YAAM,aAAa,KAAK,MAAM,KAAK,cAAc;AACjD,YAAM,WAAW,KAAK,MAAM,aAAa,YAAY,CAAC;AACtD,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,cAAM,YAAY,YAAY,IAAI,cAAc;AAChD,cAAM,aAAa,KAAK,MAAM,IAAI,aAAa;AAC/C,cAAM,WAAW,KAAK,MAAM,aAAa,WAAW,CAAC;AACrD,iBAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,cAAI,QAAQ;AACZ,mBAAS,WAAW,GAAG,WAAW,WAAW,YAAY;AACvD,kBAAM,MAAM,WAAW;AACvB,gBAAI,MAAM,KAAK,OAAO,SAAS;AAC7B;AAAA,YACF;AACA,kBAAM,YAAY,cAAc,MAAM,UAAU;AAChD,kBAAM,gBAAgB,MAAM;AAC5B,kBAAM,mBAAmB,KAAK,IAAI,UAAU,GAAG,eAAe,KAAK,MAAM,aAAa,IAAI,KAAK,MAAM,aAAa,CAAC;AACnH,gBAAI,OAAO,kBAAkB;AAC3B;AAAA,YACF;AACA,qBAAS,WAAW,GAAG,WAAW,UAAU,YAAY;AACtD,oBAAM,MAAM,WAAW;AACvB,kBAAI,MAAM,KAAK,OAAO,QAAQ;AAC5B;AAAA,cACF;AACA,oBAAM,YAAY,YAAY,MAAM,UAAU;AAC9C,oBAAM,gBAAgB,MAAM;AAC5B,oBAAM,mBAAmB,KAAK,IAAI,SAAS,GAAG,eAAe,KAAK,MAAM,aAAa,IAAI,KAAK,MAAM,aAAa,CAAC;AAClH,kBAAI,MAAM,kBAAkB;AAC1B,yBAAS,SAAS,YAAY;AAAA,cAChC;AAAA,YACF;AAAA,UACF;AACA,iBAAO,YAAY,KAAK;AAAA,QAC1B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,MAAM;AACnE;AACA,IAAI,mCAAmC;AAAA,EACrC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,SAAS;AAC7B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK;AACvD,MAAI,UAAU,GAAG;AACf,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,SAAS,IAAI,aAAa,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,OAAO,SAAS,WAAW,CAAC;AAClC,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,MAAM;AACvC,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,QAAQ,OAAO,MAAM;AAC3B,UAAM,QAAQ,CAAC,MAAM,MAAM,KAAK,EAAE,MAAM,KAAK,IAAI,MAAM,EAAE;AACzD,WAAO,IAAI,KAAK,IAAI,GAAG,KAAK,GAAG,GAAG,MAAM;AAAA,EAC1C;AACA,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC1E;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,yBAAyB;AAAA,EAC3B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,EAAE,SAAS,WAAW,OAAO,IAAI;AACvC,UAAM,aAAa;AACnB,UAAM,SAAS,aAAa,uBAAuB,OAAO,OAAO,aAAa,cAAc,OAAO,KAAK,CAAC;AACzG,UAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,UAAM,CAAC,SAAS,OAAO,IAAI,qBAAqB,eAAe,QAAQ,aAAa,UAAU;AAC9F,UAAM,mBAAmB;AACzB,UAAM,YAAY,KAAK,IAAI,OAAO;AAClC,UAAM,YAAY,KAAK,IAAI,OAAO;AAClC,UAAM,YAAY,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE;AACrD,aAAS,WAAW,GAAG,WAAW,OAAO,YAAY;AACnD,YAAM,cAAc,WAAW,aAAa,cAAc;AAC1D,eAAS,MAAM,GAAG,MAAM,aAAa,OAAO;AAC1C,cAAM,YAAY,OAAO,aAAa;AACtC,iBAAS,MAAM,GAAG,MAAM,YAAY,OAAO;AACzC,gBAAM,YAAY,MAAM;AACxB,mBAAS,UAAU,GAAG,UAAU,aAAa,WAAW;AACtD,kBAAM,UAAU,CAAC,OAAO,KAAK,KAAK,OAAO;AACzC,kBAAM,IAAI,QAAQ;AAClB,kBAAM,IAAI,QAAQ;AAClB,gBAAI,UAAU,IAAI,WAAW,aAAa,IAAI,WAAW;AACzD,gBAAI,UAAU,IAAI,WAAW,aAAa,IAAI,WAAW;AACzD,qBAAS,KAAK,MAAM,SAAS,OAAO;AACpC,qBAAS,KAAK,MAAM,SAAS,OAAO;AACpC,gBAAI,cAAc;AAClB,gBAAI,OAAO,cAAc,UAAU;AACjC,kBAAI,YAAY,GAAG;AACjB,8BAAc;AAAA,cAChB,OAAO;AACL,8BAAc,UAAU;AAAA,cAC1B;AAAA,YACF;AACA,gBAAI,UAAU,KAAK,SAAS,cAAc,UAAU,KAAK,SAAS,aAAa;AAC7E,oBAAM,mBAAmB,UAAU,aAAa;AAChD,oBAAM,mBAAmB,SAAS;AAClC,oBAAM,WAAW,cAAc,mBAAmB,mBAAmB;AACrE,4BAAc,UAAU;AAAA,YAC1B;AACA,kBAAM,SAAS,cAAc,YAAY,YAAY;AACrD,mBAAO,UAAU;AAAA,UACnB;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,QAAQ,OAAO,OAAO,OAAO,KAAK;AAClE,WAAO,EAAE,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC5D;AACF;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO;AAC1C,QAAM,OAAO,KAAK,MAAM,EAAE;AAC1B,MAAI,KAAK,OAAO,KAAK;AACnB,WAAO,KAAK,MAAM,EAAE;AAAA,EACtB,WAAW,KAAK,OAAO,KAAK;AAC1B,WAAO,KAAK,KAAK,EAAE;AAAA,EACrB,OAAO;AACL,QAAI,OAAO,MAAM,GAAG;AAClB,aAAO;AAAA,IACT,OAAO;AACL,aAAO,OAAO;AAAA,IAChB;AAAA,EACF;AACF,CAAC;AACD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,QAAQ,IAAI;AAC7B,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAa,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,SAAS,SAAS,KAAK;AAC9H,QAAM,iBAAiB;AACvB,QAAM,aAAa,SAAS,WAAW,OAAO;AAC9C,QAAM,aAAa,SAAS,WAAW,OAAO;AAC9C,QAAM,SAAS,YAAY,YAAY,YAAY,OAAOA,aAAY,WAAW,YAAY,WAAWR,UAAS,GAAG,cAAc;AAClI,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,MAAM;AACnE;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,QAAQ,OAAO;AAClC,MAAI,OAAO;AACX,MAAI,QAAQ,OAAO;AACnB,MAAI,MAAM;AACV,SAAO,OAAO,OAAO;AACnB,UAAM,KAAK,OAAO,OAAO,SAAS,CAAC;AACnC,QAAI,OAAO,OAAO,OAAO;AACvB,aAAO,MAAM;AAAA,IACf,OAAO;AACL,cAAQ;AAAA,IACV;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,YAAY,QAAQ,OAAO;AAClC,MAAI,OAAO;AACX,MAAI,QAAQ,OAAO;AACnB,MAAI,MAAM;AACV,SAAO,OAAO,OAAO;AACnB,UAAM,KAAK,OAAO,OAAO,SAAS,CAAC;AACnC,QAAI,OAAO,QAAQ,OAAO;AACxB,aAAO,MAAM;AAAA,IACf,OAAO;AACL,cAAQ;AAAA,IACV;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,cAAc,QAAQ,WAAW,WAAW,WAAW,MAAM;AACrF,QAAM,SAAS,aAAa,kBAAkB,SAAS,YAAY,SAAS;AAC5E,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,UAAM,oBAAoB,aAAa,MAAM,IAAI,YAAY,IAAI,KAAK,SAAS;AAC/E,UAAM,eAAe,IAAI;AACzB,aAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,aAAO,eAAe,MAAM,SAAS,SAAS,YAAY,mBAAmB,OAAO,KAAK,aAAa,IAAI,YAAY,mBAAmB,OAAO,KAAK,aAAa;AAAA,IACpK;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,gBAAgB,OAAO,IAAI;AACnC,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,kBAAkB,SAAS,KAAK,IAAI,eAAe,MAAM,EAAE;AACjE,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,SAAS,iBAAiB,iBAAiB,SAAS,eAAe,MAAM,IAAI,eAAe,MAAM,IAAI,OAAO,MAAM,IAAI,IAAI;AACjI,SAAO,SAAS,eAAe,OAAO,OAAO,SAAS,MAAM;AAC9D;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,WAAW,GAAG,IAAI,GAAG,GAAG,IAAI;AACpC,mBAAiB,CAAC,WAAW,IAAI,EAAE,GAAG,QAAQ;AAC9C,QAAM,gBAAgB,UAAU,MAAM;AACtC,QAAM,SAAS,SAAS,KAAK,IAAI,UAAU,MAAM,EAAE;AACnD,QAAM,UAAU,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC7C,QAAM,UAAU,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC7C,QAAM,cAAc,WAAW,GAAG,OAAO,GAAG,KAAK;AACjD,QAAM,YAAY,aAAa,oBAAoB,aAAa,cAAc,GAAG,KAAK,GAAG,WAAW;AACpG,MAAIH,SAAQ;AACZ,QAAM,SAAS,kBAAkB,KAAK,gBAAgB,KAAK,GAAG,MAAM,WAAW,IAAI,IAAI,aAAa,cAAc,GAAG,MAAM,MAAM,CAAC,CAAC;AACnI,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,aAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,UAAI,OAAO,QAAQ,GAAG;AACpB,kBAAUA,YAAW,QAAQ;AAAA,MAC/B,OAAO;AACL,kBAAUA,YAAW,QAAQ;AAAA,MAC/B;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,aAAa,SAAS;AACjE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,qBAAqB;AACtC,IAAI,QAAQ,qBAAqB;AACjC,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO;AACxC,MAAI,MAAM,GAAG;AACX,WAAO,QAAQ;AAAA,EACjB,OAAO;AACL,WAAO,cAAc,KAAK,IAAI,EAAE,IAAI;AAAA,EACtC;AACF,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO;AACxC,MAAI,KAAK,GAAG;AACV,WAAO;AAAA,EACT,WAAW,KAAK,GAAG;AACjB,WAAO;AAAA,EACT,OAAO;AACL,WAAO;AAAA,EACT;AACF,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACpD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW;AACf,IAAI,aAAa,KAAK,IAAI,QAAQ,IAAI;AACtC,IAAI,YAAY,gBAAgB,UAAU,CAAC,OAAO;AAChD,QAAM,WAAW,KAAK,CAAC;AACvB,QAAM,WAAW,KAAK;AACtB,QAAM,OAAO,KAAK,IAAI,EAAE;AACxB,MAAI;AACJ,MAAI,UAAU;AACZ,aAAS;AAAA,EACX,WAAW,UAAU;AACnB,aAAS;AAAA,EACX,OAAO;AACL,aAAS,KAAK,IAAI,IAAI,IAAI;AAAA,EAC5B;AACA,SAAO;AACT,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAS,IAAI;AACjC,mBAAiB,CAAC,CAAC,GAAG,gBAAgB;AACtC,QAAM,QAAQ,aAAa,cAAc,UAAU;AACnD,QAAM,mBAAmB,CAAC,CAAC,GAAG,CAAC,CAAC;AAChC,mBAAiB,KAAK,GAAG,QAAQ;AACjC,WAAS,KAAK,IAAI,WAAW,QAAQ,KAAK,EAAE,MAAM,QAAQ,EAAE,IAAI;AAC9D,qBAAiB,KAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAC9B;AACA,QAAM,UAAU,YAAY,WAAW;AAAA,IACrC,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO,EAAE,UAAU,kBAAkB,eAAe,EAAE;AAAA,EACxD,CAAC;AACD,QAAM,sBAAsB,qBAAqB,YAAY,QAAQ,OAAO,YAAY,OAAO,KAAK;AACpG,QAAM,oCAAoC,qBAAqB,YAAY,oBAAoB,QAAQ,WAAW,QAAQ,KAAK;AAC/H,QAAM,eAAe,qBAAqB,oBAAoB,QAAQ,OAAO,YAAY,OAAO,KAAK;AACrG,QAAM,gBAAgB,EAAE,GAAG,QAAQ;AACnC,QAAM,eAAe,EAAE,OAAO,oBAAoB;AAClD,QAAM,kBAAkB,SAAS,EAAE,QAAQ,eAAe,SAAS,UAAU,OAAO,aAAa,CAAC;AAClG,QAAM,kBAAkB,EAAE,GAAG,gBAAgB;AAC7C,QAAM,iBAAiB,EAAE,MAAM,kCAAkC;AACjE,QAAM,WAAW,WAAW,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,eAAe,CAAC;AACjG,QAAM,sBAAsB,EAAE,GAAG,SAAS;AAC1C,QAAM,qBAAqB,EAAE,OAAO,aAAa;AACjD,QAAM,SAAS,SAAS,EAAE,QAAQ,qBAAqB,SAAS,UAAU,OAAO,mBAAmB,CAAC;AACrG,WAAS,8BAA8B,OAAO;AAC9C,WAAS,8BAA8B,eAAe;AACtD,WAAS,8BAA8B,QAAQ;AAC/C,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,SAAS,QAAQ,YAAY,aAAa,IAAI;AACtD,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,UACV,WAAW,OAAO;AAAA,EAC1B;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,UACV,QAAQ,OAAO;AAAA,EACvB;AACA,MAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,UAAM,IAAI,MAAM;AAAA,UACV,OAAO,OAAO;AAAA,EACtB;AACA,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM;AAAA,UACV,aAAa,OAAO;AAAA,EAC5B;AACA,QAAM,WAAW,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACnD,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,cAAc,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AACzD,QAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO;AACpE,QAAM,CAAC,eAAe,oBAAoB,cAAc,mBAAmB,eAAe,IAAI,wBAAwB,UAAU,QAAQ,OAAO,QAAQ,OAAO,SAAS,OAAO,OAAO,aAAa,aAAa;AAC/M,SAAO;AAAA,IACL,SAAS,eAAe,oBAAoB,QAAQ,OAAO,aAAa;AAAA,IACxE,SAAS,eAAe,CAAC,mBAAmB,EAAE,GAAG,OAAO,OAAO,YAAY;AAAA,IAC3E,SAAS,eAAe,CAAC,kBAAkB,MAAM,GAAG,QAAQ,IAAI,WAAW,kBAAkB,IAAI,CAAC,UAAU,OAAO,KAAK,CAAC,CAAC,CAAC;AAAA,IAC3H,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,QAAQ,OAAO,IAAI,WAAW,eAAe,CAAC;AAAA,EAClG;AACF;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,cAAc,YAAY,SAAS,IAAI;AAC/C,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM;AAAA,UACV,aAAa,OAAO;AAAA,EAC5B;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,UACV,WAAW,OAAO;AAAA,EAC1B;AACA,MAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,UAAM,IAAI,MAAM,sDAAsD,SAAS,OAAO;AAAA,EACxF;AACA,QAAM,cAAc,MAAM,KAAK,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE,MAAM;AAC1E,QAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE;AAC7D,QAAM,cAAc,MAAM,KAAK,SAAS,KAAK,IAAI,SAAS,MAAM,EAAE,MAAM;AACxE,QAAM,CAAC,YAAY,cAAc,WAAW,IAAI,kBAAkB,eAAe,aAAa,OAAO,aAAa,OAAO,aAAa,WAAW;AACjJ,SAAO;AAAA,IACL,SAAS,eAAe,cAAc,aAAa,OAAO,UAAU;AAAA,IACpE,SAAS,eAAe,CAAC,YAAY,MAAM,GAAG,SAAS,OAAO,IAAI,WAAW,WAAW,CAAC;AAAA,EAC3F;AACF;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,mBAAmB,MAAM;AAChC,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,MAAI,KAAK,MAAM,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,YACR,QAAQ,OAAO;AAAA,EACzB;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,YACR,WAAW,OAAO;AAAA,EAC5B;AACA,MAAI,QAAQ,MAAM,OAAO,WAAW,MAAM,IAAI;AAC5C,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE;AACA,QAAM,QAAQ,SAAS,KAAK,IAAI,KAAK,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACnD,QAAM,cAAc,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AACzD,QAAM,CAAC,YAAY,eAAe,IAAI,2BAA2B,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,aAAa,IAAI;AAC3H,SAAO,SAAS,eAAe,iBAAiB,KAAK,OAAO,UAAU;AACxE;AACA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,kBAAkB,MAAM;AAC/B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,MAAI,KAAK,MAAM,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,WACT,QAAQ,OAAO;AAAA,EACxB;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,WACT,WAAW,OAAO;AAAA,EAC3B;AACA,MAAI,QAAQ,MAAM,OAAO,WAAW,MAAM,IAAI;AAC5C,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE;AACA,QAAM,QAAQ,SAAS,KAAK,IAAI,KAAK,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACnD,QAAM,cAAc,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AACzD,QAAM,CAAC,YAAY,eAAe,IAAI,2BAA2B,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,WAAW;AACrH,SAAO,SAAS,eAAe,iBAAiB,KAAK,OAAO,UAAU;AACxE;AACA,IAAI,yBAAyB;AAAA,EAC3B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,eAAe,cAAc,aAAa,IAAI;AACtD,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAG,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,cAAc,eAAe,WAAW;AAC/I,QAAM,iBAAiB;AACvB,QAAM,aAAa,SAAS,WAAW,aAAa;AACpD,MAAI;AACJ,UAAQ,aAAa;AAAA,SACd,QAAQ;AACX,YAAM,aAAa,SAAS,WAAW,YAAY;AACnD,YAAM,gBAAgB,QAAQ,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO,EAAE;AAC9E,eAAS,YAAY,YAAY,YAAY,aAAaA,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AAC9I;AAAA,IACF;AAAA,SACK,WAAW;AACd,YAAM,aAAa,SAAS,WAAW,YAAY;AACnD,YAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO;AACpE,eAAS,YAAY,YAAY,YAAY,aAAaQ,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AAC9I;AAAA,IACF;AAAA,SACK,SAAS;AACZ,YAAM,aAAa,SAAS,WAAW,YAAY;AACnD,YAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO;AACpE,eAAS,YAAY,YAAY,YAAY,aAAaQ,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AAC9I;AAAA,IACF;AAAA,SACK,UAAU;AACb,YAAM,aAAa,SAAS,WAAW,YAAY;AACnD,YAAM,gBAAgB,aAAa,aAAa,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO,EAAE;AAChG,eAAS,YAAY,YAAY,YAAY,aAAaQ,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AAC9I;AAAA,IACF;AAAA;AAEE,YAAM,IAAI,MAAM,oBAAoB,aAAa,OAAO;AAAA;AAE5D,SAAO,SAAS,eAAe,aAAa,OAAO,OAAO,OAAO,MAAM;AACzE;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,iBAAiB,KAAK,IAAI;AAClC,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACzD,QAAM,aAAa,qBAAqB,iBAAiB,GAAG,iBAAiB,KAAK;AAClF,QAAM,QAAQ,IAAI,MAAM,EAAE,MAAM,MAAM,EAAE,KAAK,CAAC;AAC9C,QAAMb,QAAO,EAAE,MAAM,MAAM;AAC3B,SAAO,WAAW,IAAI,CAAC,OAAO;AAC5B,UAAM,YAAY,CAAC,GAAGA,KAAI;AAC1B,cAAU,SAAS;AACnB,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAM,UAAU,EAAE,CAAC;AAC7F,UAAM,UAAU;AAChB,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AAC7C,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,aAAa;AACnB,qBAAiB,GAAG,QAAQ;AAC5B,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,YAAY,IAAI,aAAa,OAAO,MAAM;AAChD,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,YAAM,QAAQ,OAAO;AACrB,gBAAU,MAAM,QAAQ;AAAA,IAC1B;AACA,UAAM,SAAS,WAAW,MAAM,WAAW,EAAE,OAAO,EAAE,KAAK;AAC3D,WAAO,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAAA,EAClD;AACF;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,IAAI,UAAU;AAC/C,QAAM,YAAY;AAClB,MAAI,MAAM,EAAE,GAAG;AACb,WAAO;AAAA,EACT,OAAO;AACL,WAAO,KAAK,IAAI,IAAI,UAAU;AAAA,EAChC;AACF,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,KAAK,SAAAa,UAAS,WAAW,SAAS,cAAc,aAAa,eAAe,IAAI;AAC/F,mBAAiB,GAAG,cAAc;AAClC,QAAM,EAAE,kBAAkB,YAAY,YAAY,WAAW,eAAe,OAAO,QAAQ,KAAK,MAAM,SAAS,SAAS,IAAI,mBAAmB,UAAU,EAAE,OAAO,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AACpP,MAAI;AACJ,MAAI,YAAY;AACd,aAAS,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAAA,EACtF,WAAW,aAAa,eAAe;AACrC,iBAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,yCAAyC,EAAE,MAAM,QAAQ;AACxG,UAAMb,QAAO,mBAAmB,gBAAgB,QAAQ,MAAM,QAAQ;AACtE,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,MAAAA,MAAK,EAAE,CAAC;AAC1F,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC5F,aAAS,8BAA8B,MAAM;AAAA,EAC/C,OAAO;AACL,UAAM,OAAO,SAAS,WAAW,CAAC;AAClC,UAAM,SAAS,iBAAiB,kBAAkB,MAAM,UAAU,MAAM;AACxE,aAAS,SAAS,eAAe,YAAY,OAAO,OAAO,OAAO,MAAM;AAAA,EAC1E;AACA,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,aAAa,SAAS,UAAU,WAAW,UAAU,uBAAuB,IAAI;AACnG,QAAM,EAAE,MAAM,WAAW,IAAI;AAC7B,QAAM,QAAQ,SAAS,KAAK,IAAI,KAAK,MAAM,EAAE;AAC7C,QAAM,cAAc,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AACzD,QAAM,CAAC,QAAQ,YAAY,IAAI,iBAAiB,OAAO,aAAa,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB;AAChJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,UAAU,MAAM;AAAA,IACzD,SAAS,eAAe,WAAW,OAAO,SAAS,YAAY;AAAA,EACjE;AACF;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,UAAU,IAAI;AACtB,QAAM,EAAE,OAAO,QAAQ,UAAU,IAAI;AACrC,MAAI,OAAO,UAAU,UAAU;AAC7B,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,MAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,UAAM,IAAI,MAAM,sCAAsC,OAAO,OAAO;AAAA,EACtE;AACA,MAAI,UAAU,MAAM,WAAW,GAAG;AAChC,UAAM,IAAI,MAAM,0CAA0C,UAAU,OAAO;AAAA,EAC7E;AACA,QAAM,SAAS,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAChD,QAAM,aAAa,SAAS,KAAK,IAAI,UAAU,MAAM,EAAE,OAAO;AAC9D,QAAM,CAAC,SAAS,QAAQ,KAAK,IAAI,gBAAgB,QAAQ,YAAY,SAAS;AAC9E,QAAMqB,cAAa,OAAO;AAC1B,SAAO;AAAA,IACL,SAAS,eAAe,CAACA,aAAY,CAAC,GAAG,SAAS,OAAO;AAAA,IACzD,SAAS,eAAe,CAACA,WAAU,GAAG,UAAU,MAAM;AAAA,IACtD,SAAS,eAAe,CAAC,CAAC,GAAG,SAAS,IAAI,WAAW,KAAK,CAAC;AAAA,EAC7D;AACF;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,MAAM;AACrC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,IAAI;AACvB,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,MAAI,OAAO,UAAU,UAAU;AAC7B,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AACA,QAAM,SAAS,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAChD,QAAM,SAAS,2BAA2B,QAAQ,UAAU;AAC5D,SAAO,SAAS,eAAe,OAAO,OAAO,SAAS,MAAM;AAC9D;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACpD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,MAAM;AAC1B,QAAM,SAAS,SAAS,SAAS,WAAW,CAAC,GAAG,IAAI;AACpD,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC1E;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,mBAAiB,GAAG,MAAM;AAC1B,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,CAAC,aAAa,cAAc,IAAI,SAAS,OAAO,EAAE,OAAO,EAAE,OAAO,GAAG,MAAM;AACjF,SAAO;AAAA,IACL,SAAS,eAAe,YAAY,OAAO,YAAY,OAAO,YAAY,MAAM;AAAA,IAChF,SAAS,eAAe,eAAe,OAAO,eAAe,OAAO,eAAe,MAAM;AAAA,EAC3F;AACF;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,WAAW,IAAI;AACtC,QAAM,EAAE,eAAe,UAAU,WAAW,YAAY,IAAI;AAC5D,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,WAAW,QAAQ,IAAI,eAAe,OAAO,cAAc,CAAC,aAAa,UAAU;AAC1F,QAAM,WAAW,CAAC,OAAO,WAAW,UAAU,WAAW;AACzD,QAAM,YAAY,aAAa,eAAe,OAAO,KAAK;AAC1D,QAAM,gBAAgB,UAAU;AAChC,QAAM,cAAc,UAAU;AAC9B,QAAM,cAAc,UAAU;AAC9B,QAAM,aAAa,aAAa,eAAe,QAAQ;AACvD,QAAM,iBAAiB,WAAW;AAClC,QAAM,eAAe,WAAW;AAChC,QAAM,eAAe,WAAW;AAChC,QAAM,UAAU,aAAa,uBAAuB,OAAO,OAAO,aAAa,cAAc,QAAQ,CAAC;AACtG,UAAQ,KAAK,SAAS;AACtB,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,gBAAgB,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AAC3D,WAAS,IAAI,GAAG,IAAI,OAAO,EAAE,GAAG;AAC9B,UAAM,aAAa,WAAW,MAAM,OAAO,IAAI,gBAAgB,cAAc,SAAS,IAAI,GAAG,IAAI,IAAI,CAAC;AACtG,aAAS,OAAO,GAAG,OAAO,WAAW,EAAE,MAAM;AAC3C,eAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,iBAAS,UAAU,GAAG,UAAU,aAAa,EAAE,SAAS;AACtD,cAAI;AACJ,gBAAM,aAAa,WAAW,KAAK,OAAO,WAAW,KAAK,OAAO;AACjE,cAAI,eAAe,GAAG;AACpB;AAAA,UACF;AACA,gBAAM,OAAO,WAAW,KAAK,OAAO,WAAW,KAAK,OAAO,WAAW,MAAM;AAC5E,gBAAM,OAAO,WAAW,KAAK,OAAO,WAAW,KAAK,OAAO,WAAW,MAAM;AAC5E,gBAAM,IAAI,SAAS,KAAK,YAAY,QAAQ;AAC5C,gBAAM,IAAI,SAAS,KAAK,aAAa,QAAQ;AAC7C,kBAAQ;AAAA,iBACD;AACH,oBAAM,qBAAqB,WAAW,aAAa,YAAY,eAAe,aAAa,aAAa,GAAG,GAAG,GAAG,SAAS,SAAS;AACnI;AAAA,iBACG;AACH,oBAAM,sBAAsB,WAAW,aAAa,YAAY,eAAe,aAAa,aAAa,GAAG,GAAG,GAAG,SAAS,SAAS;AACpI;AAAA;AAEA,oBAAM,IAAI,MAAM,+DAA+D,eAAe;AAAA;AAElG,gBAAM,MAAM,IAAI,iBAAiB,OAAO,eAAe,OAAO,eAAe;AAC7E,kBAAQ,OAAO;AAAA,QACjB;AAAA,MACF;AAAA,IACF;AACA,WAAO,SAAS,eAAe,UAAU,OAAO,OAAO,OAAO;AAAA,EAChE;AACA,QAAM,SAAS,SAAS,MAAM,SAAS,UAAU,OAAO,KAAK;AAC7D,SAAO,EAAE,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC5D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AACA,SAAS,SAAS,UAAU,KAAK,MAAM;AACrC,UAAQ;AAAA,SACD;AACH,aAAO,gBAAgB,UAAU,GAAG;AAAA,SACjC;AACH,aAAO,aAAa,UAAU,GAAG;AAAA,SAC9B;AACH,aAAO,gBAAgB,UAAU,GAAG;AAAA,SACjC;AAAA;AAEH,aAAO,iBAAiB,UAAU,GAAG;AAAA;AAE3C;AACA,SAAS,gBAAgB,UAAU,KAAK;AACtC,MAAI,UAAU;AACd,MAAI,UAAU,GAAG;AACf,QAAI,OAAO,GAAG;AACZ,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,MAAM,IAAI;AAChB,UAAI,UAAU,KAAK;AACjB,kBAAU,MAAM,KAAK,MAAM,CAAC,UAAU,GAAG,IAAI;AAAA,MAC/C;AACA,gBAAU,UAAU,CAAC,MAAM,UAAU,MAAM,CAAC,UAAU;AAAA,IACxD;AAAA,EACF,WAAW,UAAU,MAAM,GAAG;AAC5B,QAAI,OAAO,GAAG;AACZ,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,MAAM,IAAI;AAChB,iBAAW,MAAM,KAAK,MAAM,UAAU,GAAG;AACzC,UAAI,WAAW,KAAK;AAClB,kBAAU,MAAM,UAAU;AAAA,MAC5B;AAAA,IACF;AAAA,EACF;AACA,SAAO,aAAa,MAAM,GAAG,SAAS,MAAM,CAAC;AAC/C;AACA,SAAS,aAAa,UAAU,KAAK;AACnC,MAAI,UAAU;AACd,MAAI,UAAU,GAAG;AACf,QAAI,OAAO,GAAG;AACZ,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,KAAK,MAAM;AACjB,iBAAW,OAAO,KAAK,MAAM,CAAC,UAAU,EAAE,IAAI;AAAA,IAChD;AAAA,EACF,WAAW,UAAU,MAAM,GAAG;AAC5B,QAAI,OAAO,GAAG;AACZ,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,KAAK,MAAM;AACjB,iBAAW,MAAM,KAAK,MAAM,UAAU,EAAE;AAAA,IAC1C;AAAA,EACF;AACA,SAAO,aAAa,MAAM,GAAG,SAAS,MAAM,CAAC;AAC/C;AACA,SAAS,iBAAiB,UAAU,KAAK;AACvC,SAAO;AACT;AACA,SAAS,gBAAgB,UAAU,KAAK;AACtC,SAAO,aAAa,MAAM,GAAG,UAAU,MAAM,CAAC;AAChD;AACA,SAAS,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,GAAG,GAAG,SAAS,WAAW;AACjI,QAAM,MAAM,QAAQ,cAAc,IAAI,YAAY,IAAI,YAAY;AAClE,MAAI,KAAK,KAAK,IAAI,eAAe,KAAK,KAAK,IAAI,YAAY;AACzD,WAAO,UAAU;AAAA,EACnB,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,SAAS,qBAAqB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,GAAG,GAAG,SAAS,WAAW;AACpI,QAAM,KAAK,KAAK,MAAM,CAAC;AACvB,QAAM,KAAK,KAAK,MAAM,CAAC;AACvB,SAAO,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,IAAI,IAAI,SAAS,SAAS;AACnI;AACA,SAAS,sBAAsB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,GAAG,GAAG,SAAS,WAAW;AACrI,QAAM,SAAS,KAAK,MAAM,CAAC;AAC3B,QAAM,SAAS,KAAK,MAAM,CAAC;AAC3B,QAAM,QAAQ,SAAS;AACvB,QAAM,QAAQ,SAAS;AACvB,QAAM,eAAe,QAAQ,KAAK,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,QAAQ,QAAQ,SAAS,SAAS,KAAK,IAAI,UAAU,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,QAAQ,OAAO,SAAS,SAAS;AACxT,QAAM,cAAc,QAAQ,KAAK,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,OAAO,QAAQ,SAAS,SAAS,KAAK,IAAI,UAAU,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,OAAO,OAAO,SAAS,SAAS;AACrT,UAAQ,QAAQ,KAAK,eAAe,IAAI,UAAU;AACpD;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,EAAE,EAAE,IAAI;AACd,mBAAiB,GAAG,QAAQ;AAC5B,QAAM,SAAS,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC3C,QAAM,EAAE,cAAc,aAAa,QAAQ,IAAI,WAAW,QAAQ,MAAM,EAAE,OAAO,EAAE,KAAK;AACxF,SAAO;AAAA,IACL,SAAS,eAAe,aAAa,EAAE,OAAO,YAAY;AAAA,IAC1D,SAAS,eAAe,CAAC,QAAQ,MAAM,GAAG,SAAS,OAAO;AAAA,EAC5D;AACF;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,EAAE,KAAK,IAAI;AACf,MAAI,OAAO,GAAG;AACZ,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,YAAY,MAAM,MAAM;AAC9B,QAAM,MAAM,MAAM,MAAM;AACxB,QAAM,WAAW,IAAI,MAAM,YAAY,CAAC;AACxC,MAAI,WAAW;AACf,WAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,QAAI,OAAO,MAAM;AACf,eAAS,cAAc,MAAM,MAAM;AAAA,IACrC;AAAA,EACF;AACA,QAAM,QAAQ,IAAI,MAAM,SAAS,EAAE,KAAK,CAAC;AACzC,QAAMrB,QAAO,MAAM,MAAM,MAAM;AAC/B,EAAAA,MAAK,QAAQ;AACb,QAAM,MAAM,IAAI,MAAM,GAAG;AACzB,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,UAAM,QAAQ;AACd,UAAM,UAAU,OAAO,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAAA,MAAK,EAAE,CAAC;AAC1F,QAAI,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC5F,aAAS,8BAA8B,OAAO;AAAA,EAChD;AACA,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,WAAW,IAAI;AAC1B,QAAM,EAAE,YAAY,IAAI;AACxB,mBAAiB,GAAG,oBAAoB;AACxC,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,iBAAiB,WAAW,MAAM;AACxC,QAAM,MAAM,CAAC;AACb,QAAM,gBAAgB,CAAC;AACvB,QAAM,WAAW,QAAQ;AACzB,MAAI,cAAc;AAClB,WAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,UAAM,WAAW,YAAY,EAAE,QAAQ,EAAE,OAAO,YAAY,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,EAAE,CAAC;AAC1G,kBAAc;AACd,kBAAc,KAAK,QAAQ;AAAA,EAC7B;AACA,WAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,UAAM,cAAc,aAAa,kBAAkB,IAAI,OAAO;AAC9D,UAAM,YAAY,SAAS,eAAe,CAAC,GAAG,SAAS,WAAW;AAClE,UAAMK,QAAO,OAAO,EAAE,QAAQ,EAAE,GAAG,WAAW,GAAG,YAAY,GAAG,SAAS,SAAS,CAAC;AACnF,UAAM,aAAa,MAAM,EAAE,QAAQ,EAAE,GAAGA,MAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAChG,UAAM,OAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7E,UAAM,gBAAgB,KAAK,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,GAAG,UAAU,MAAM,EAAE,CAAC;AAC1G,QAAI,KAAK,aAAa;AACtB,kBAAc,KAAK,SAAS;AAC5B,kBAAc,KAAKA,KAAI;AACvB,kBAAc,KAAK,UAAU;AAC7B,kBAAc,KAAK,IAAI;AACvB,kBAAc,KAAK,aAAa;AAAA,EAClC;AACA,QAAM,SAAS,KAAK,EAAE,QAAQ,KAAK,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,EAAE,CAAC;AAC1E,gBAAc,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACxE,SAAO;AACT;AACA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB;AAAA,EAClB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,gBAAgB,eAAe;AACxC,iBAAe,YAAY;AAC7B;AAGA,IAAI,qBAAqB,CAAC;AAC1BR,UAAS,oBAAoB;AAAA,EAC3B,kBAAkB,MAAM;AAAA,EACxB,yBAAyB,MAAM;AAAA,EAC/B,+BAA+B,MAAM;AAAA,EACrC,oCAAoC,MAAM;AAAA,EAC1C,iBAAiB,MAAM;AAAA,EACvB,oCAAoC,MAAM;AAAA,EAC1C,cAAc,MAAM;AAAA,EACpB,kBAAkB,MAAM;AAAA,EACxB,sBAAsB,MAAM;AAAA,EAC5B,mBAAmB,MAAM;AAAA,EACzB,eAAe,MAAM;AAAA,EACrB,yBAAyB,MAAM;AAAA,EAC/B,0BAA0B,MAAM;AAAA,EAChC,eAAe,MAAM;AAAA,EACrB,oBAAoB,MAAM;AAAA,EAC1B,aAAa,MAAM;AAAA,EACnB,qBAAqB,MAAM;AAAA,EAC3B,4BAA4B,MAAM;AAAA,EAClC,wBAAwB,MAAM;AAAA,EAC9B,gBAAgB,MAAM;AAAA,EACtB,2BAA2B,MAAM;AAAA,EACjC,kCAAkC,MAAM;AAAA,EACxC,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,iCAAiC,MAAM;AAAA,EACvC,mCAAmC,MAAM;AAAA,EACzC,sBAAsB,MAAM;AAAA,EAC5B,wBAAwB,MAAM;AAAA,EAC9B,cAAc,MAAM;AAAA,EACpB,oCAAoC,MAAM;AAAA,EAC1C,+BAA+B,MAAM;AAAA,EACrC,eAAe,MAAM;AAAA,EACrB,qBAAqB,MAAM;AAAA,EAC3B,uBAAuB,MAAM;AAAA,EAC7B,aAAa,MAAM;AAAA,EACnB,2BAA2B,MAAM;AAAA,EACjC,qBAAqB,MAAM;AAAA,EAC3B,0BAA0B,MAAM;AAAA,EAChC,mCAAmC,MAAM;AAAA,EACzC,mBAAmB,MAAM;AAAA,EACzB,qBAAqB,MAAM;AAAA,EAC3B,iBAAiB,MAAM;AAAA,EACvB,qBAAqB,MAAM;AAC7B,CAAC;AAGD,IAAI,WAAW,CAAC;AAChB,IAAI,mBAAmB;AAAA,EACrB,OAAO;AAAA,EACP,WAAW;AAAA,EACX,oBAAoB;AAAA,EACpB,uBAAuB;AAAA,EACvB,OAAO;AAAA,EACP,SAAS;AAAA,EACT,8BAA8B;AAChC;AACA,SAAS,gBAAgB,cAAc,IAAI;AACzC,WAAS,gBAAgB;AAC3B;AACA,SAAS,gBAAgB,cAAc,cAAc;AACnD,MAAI,EAAE,gBAAgB,aAAa,gBAAgB,MAAM;AACvD,UAAM,SAAS,yBAAyB,cAAc,YAAY;AAClE,QAAI,WAAW,MAAM;AACnB,eAAS,gBAAgB;AAAA,IAC3B,OAAO;AACL,cAAQ,IAAI,2CAA2C,YAAY;AACnE,aAAO;AAAA,IACT;AAAA,EACF;AACA,QAAM,KAAK,SAAS;AACpB,MAAI,MAAM,QAAQ,GAAG,cAAc,GAAG;AACpC,WAAO,SAAS;AAChB,WAAO,gBAAgB,YAAY;AAAA,EACrC;AACA,KAAG,QAAQ,GAAG,UAAU;AACxB,KAAG,QAAQ,GAAG,YAAY;AAC1B,KAAG,QAAQ,GAAG,KAAK;AACnB,KAAG,QAAQ,GAAG,MAAM;AACpB,KAAG,QAAQ,GAAG,mBAAmB;AACjC,KAAG,QAAQ,GAAG,eAAe;AAC7B,KAAG,OAAO,GAAG,YAAY;AACzB,KAAG,OAAO,GAAG,SAAS;AACtB,KAAG,SAAS,GAAG,IAAI;AACnB,SAAO,SAAS;AAClB;AACA,SAAS,aAAa,cAAc;AAClC,MAAI,OAAO,oBAAoB,eAAe,iBAAiB,GAAG;AAChE,WAAO,IAAI,gBAAgB,KAAK,GAAG;AAAA,EACrC,WAAW,OAAO,aAAa,aAAa;AAC1C,WAAO,SAAS,cAAc,QAAQ;AAAA,EACxC,OAAO;AACL,UAAM,IAAI,MAAM,wCAAwC;AAAA,EAC1D;AACF;AACA,SAAS,yBAAyB,cAAc,cAAc;AAC5D,MAAI,iBAAiB,KAAK,iBAAiB,GAAG;AAC5C,UAAM,IAAI,MAAM,wDAAwD;AAAA,EAC1E;AACA,QAAMc,UAAS,gBAAgB,OAAO,aAAa,YAAY,IAAI;AACnE,EAAAA,QAAO,iBAAiB,oBAAoB,CAAC,OAAO;AAClD,OAAG,eAAe;AAClB,WAAO,SAAS;AAAA,EAClB,GAAG,KAAK;AACR,MAAI,IAAI,EAAE,QAAQ,wBAAwB,GAAG;AAC3C,qBAAiB,+BAA+B;AAAA,EAClD;AACA,MAAI,iBAAiB,GAAG;AACtB,WAAOA,QAAO,WAAW,SAAS,gBAAgB,KAAKA,QAAO,WAAW,sBAAsB,gBAAgB;AAAA,EACjH;AACA,SAAOA,QAAO,WAAW,UAAU,gBAAgB;AACrD;AAGA,IAAI;AAAA,CACH,SAAS,gBAAgB;AACxB,iBAAe,eAAe,WAAW,KAAK;AAC9C,iBAAe,eAAe,kBAAkB,KAAK;AACvD,GAAG,kBAAkB,gBAAgB,CAAC,EAAE;AACxC,IAAI;AAAA,CACH,SAAS,eAAe;AACvB,gBAAc,cAAc,YAAY,KAAK;AAC7C,gBAAc,cAAc,YAAY,KAAK;AAC7C,gBAAc,cAAc,YAAY,KAAK;AAC7C,gBAAc,cAAc,cAAc,KAAK;AACjD,GAAG,iBAAiB,eAAe,CAAC,EAAE;AACtC,IAAI;AAAA,CACH,SAAS,sBAAsB;AAC9B,uBAAqB,qBAAqB,sBAAsB,KAAK;AACrE,uBAAqB,qBAAqB,sBAAsB,KAAK;AACrE,uBAAqB,qBAAqB,8BAA8B,KAAK;AAC7E,uBAAqB,qBAAqB,wBAAwB,KAAK;AACvE,uBAAqB,qBAAqB,wBAAwB,KAAK;AACzE,GAAG,wBAAwB,sBAAsB,CAAC,EAAE;AACpD,SAAS,yCAAyC,MAAM,SAAS;AAC/D,SAAO,CAAC,SAAS,IAAI;AACvB;AACA,SAAS,mCAAmC,YAAY,oBAAoB;AAC1E,SAAO,aAAa;AACtB;AACA,SAAS,iBAAiB,OAAO;AAC/B,QAAMX,QAAO,aAAa,cAAc,KAAK;AAC7C,QAAM,eAAe,KAAK,KAAKA,QAAO,CAAC;AACvC,SAAO,aAAa,oBAAoB,YAAY;AACtD;AACA,SAAS,uCAAuC,MAAM,SAAS;AAC7D,SAAO;AAAA,IACL,KAAK,IAAI,GAAG,KAAK,KAAK,UAAU,CAAC,CAAC;AAAA,IAClC,KAAK,IAAI,GAAG,KAAK,KAAK,OAAO,CAAC,CAAC;AAAA,EACjC;AACF;AACA,SAAS,sCAAsC,MAAM,SAAS;AAC5D,QAAM,CAAC,GAAG,CAAC,IAAI,uCAAuC,MAAM,OAAO;AACnE,SAAO,IAAI,IAAI;AACjB;AACA,SAAS,iBAAiB,IAAI,2BAA2B;AACvD,QAAM,QAAQ;AACd,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,0BAAsB,MAAM;AAC5B,8BAA0B,MAAM;AAChC,oCAAgC,MAAM;AACtC,gCAA4B,MAAM;AAClC,yBAAqB,MAAM;AAC3B,gCAA4B;AAC5B,yBAAqB;AACrB,2BAAuB,MAAM;AAC7B,uBAAmB,MAAM;AACzB,4BAAwB,MAAM;AAAA,EAChC,OAAO;AACL,0BAAsB,GAAG;AACzB,8BAA0B,GAAG;AAC7B,oCAAgC,GAAG;AACnC,gCAA4B,MAAM;AAClC,yBAAqB,GAAG;AACxB,gCAA4B;AAC5B,yBAAqB;AACrB,2BAAuB,6BAA6B,OAAO,0BAA0B,iBAAiB;AACtG,uBAAmB,GAAG;AACtB,4BAAwB,GAAG;AAAA,EAC7B;AACA,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AAGA,SAAS,aAAa,IAAI,OAAO;AAC/B,QAAM,cAAc,MAAM;AAC1B,MAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,oBAAgB,EAAE;AAAA,EACpB;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,IAAI;AAC3B,QAAM,QAAQ,GAAG,SAAS;AAC1B,MAAI,UAAU,GAAG,UAAU;AACzB,UAAM,IAAI,MAAM,kBAAkB,qBAAqB,IAAI,KAAK,CAAC;AAAA,EACnE;AACF;AACA,IAAI,cAAc;AAClB,IAAI,cAAc;AAClB,SAAS,iBAAiB,KAAK;AAC7B,MAAI,IAAI,EAAE,QAAQ,8BAA8B,KAAK,QAAQ,KAAK,cAAc,KAAK,IAAI,GAAG,KAAK,KAAK,IAAI,GAAG,IAAI,aAAa;AAC5H,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,qBAAqB,IAAI,QAAQ;AACxC,UAAQ;AAAA,SACD,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA;AAEP,aAAO,sBAAsB;AAAA;AAEnC;AACA,SAAS,oBAAoB,IAAI,eAAe;AAC9C,SAAO,YAAY,IAAI,MAAM,GAAG,aAAa,aAAa,GAAG,gBAAgB,gBAAgB,kCAAkC;AACjI;AACA,SAAS,mBAAmB,IAAI,oBAAoB;AAClD,QAAM,eAAe,YAAY,IAAI,MAAM,GAAG,aAAa,GAAG,aAAa,GAAG,sCAAsC;AACpH,eAAa,IAAI,MAAM,GAAG,aAAa,cAAc,kBAAkB,CAAC;AACxE,eAAa,IAAI,MAAM,GAAG,cAAc,YAAY,CAAC;AACrD,MAAI,GAAG,mBAAmB,cAAc,GAAG,cAAc,MAAM,OAAO;AACpE,YAAQ,IAAI,GAAG,iBAAiB,YAAY,CAAC;AAC7C,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,SAAO;AACT;AACA,SAAS,qBAAqB,IAAI,sBAAsB;AACtD,QAAM,iBAAiB,YAAY,IAAI,MAAM,GAAG,aAAa,GAAG,eAAe,GAAG,wCAAwC;AAC1H,eAAa,IAAI,MAAM,GAAG,aAAa,gBAAgB,oBAAoB,CAAC;AAC5E,eAAa,IAAI,MAAM,GAAG,cAAc,cAAc,CAAC;AACvD,MAAI,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACpC,WAAO;AAAA,EACT;AACA,MAAI,GAAG,mBAAmB,gBAAgB,GAAG,cAAc,MAAM,OAAO;AACtE,8BAA0B,sBAAsB,GAAG,iBAAiB,cAAc,CAAC;AACnF,UAAM,IAAI,MAAM,oCAAoC;AAAA,EACtD;AACA,SAAO;AACT;AACA,IAAI,kBAAkB;AACtB,SAAS,0BAA0B,cAAc,eAAe;AAC9D,QAAM,wBAAwB,gBAAgB,KAAK,aAAa;AAChE,MAAI,yBAAyB,MAAM;AACjC,YAAQ,IAAI,wCAAwC,eAAe;AACnE,YAAQ,IAAI,YAAY;AACxB;AAAA,EACF;AACA,QAAM,aAAa,CAAC,sBAAsB;AAC1C,QAAM,cAAc,aAAa,MAAM,IAAI;AAC3C,QAAM,OAAO,YAAY,OAAO,SAAS,EAAE,SAAS;AACpD,QAAM,uBAAuB,YAAY,IAAI,CAAC,MAAM,gBAAgB,aAAa,UAAU,cAAc,GAAG,SAAS,GAAG,IAAI,IAAI,IAAI;AACpI,MAAI,gBAAgB;AACpB,WAAS,KAAK,GAAG,KAAK,qBAAqB,QAAQ,MAAM;AACvD,oBAAgB,KAAK,IAAI,qBAAqB,IAAI,QAAQ,aAAa;AAAA,EACzE;AACA,QAAM,mBAAmB,qBAAqB,MAAM,GAAG,aAAa,CAAC;AACrE,QAAM,YAAY,qBAAqB,MAAM,aAAa,GAAG,UAAU;AACvE,QAAM,kBAAkB,qBAAqB,MAAM,UAAU;AAC7D,UAAQ,IAAI,iBAAiB,KAAK,IAAI,CAAC;AACvC,UAAQ,IAAI,cAAc,MAAM,IAAI,EAAE,EAAE;AACxC,UAAQ,IAAI,MAAM,aAAa,SAAS,UAAU,IAAI,aAAa,KAAK,+DAA+D;AACvI,UAAQ,IAAI,gBAAgB,KAAK,IAAI,CAAC;AACxC;AACA,SAAS,cAAc,IAAI;AACzB,SAAO,YAAY,IAAI,MAAM,GAAG,cAAc,GAAG,gCAAgC;AACnF;AACA,SAAS,YAAY,IAAI,SAAS;AAChC,eAAa,IAAI,MAAM,GAAG,YAAY,OAAO,CAAC;AAC9C,MAAI,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACpC;AAAA,EACF;AACA,MAAI,GAAG,oBAAoB,SAAS,GAAG,WAAW,MAAM,OAAO;AAC7D,YAAQ,IAAI,GAAG,kBAAkB,OAAO,CAAC;AACzC,UAAM,IAAI,MAAM,6CAA6C;AAAA,EAC/D;AACF;AACA,SAAS,gBAAgB,IAAI,SAAS;AACpC,eAAa,IAAI,MAAM,GAAG,gBAAgB,OAAO,CAAC;AAClD,MAAI,GAAG,oBAAoB,SAAS,GAAG,eAAe,MAAM,OAAO;AACjE,YAAQ,IAAI,GAAG,kBAAkB,OAAO,CAAC;AACzC,UAAM,IAAI,MAAM,mCAAmC;AAAA,EACrD;AACF;AACA,SAAS,yBAAyB,IAAI,MAAM;AAC1C,QAAM,UAAU,YAAY,IAAI,MAAM,GAAG,aAAa,GAAG,8BAA8B;AACvF,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,OAAO,CAAC;AAC9D,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,MAAM,GAAG,WAAW,CAAC;AAC3E,SAAO;AACT;AACA,SAAS,wBAAwB,IAAI,MAAM;AACzC,QAAM,UAAU,YAAY,IAAI,MAAM,GAAG,aAAa,GAAG,8BAA8B;AACvF,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,sBAAsB,OAAO,CAAC;AACtE,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,sBAAsB,MAAM,GAAG,WAAW,CAAC;AACnF,SAAO;AACT;AACA,SAAS,iBAAiB;AACxB,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,cAAc,IAAI;AACzB,SAAO,YAAY,IAAI,MAAM,GAAG,cAAc,GAAG,gCAAgC;AACnF;AACA,SAAS,oBAAoB,OAAO,QAAQ;AAC1C,QAAM,iBAAiB,IAAI,EAAE,UAAU,wBAAwB;AAC/D,MAAI,SAAS,KAAK,UAAU,GAAG;AAC7B,UAAM,YAAY,IAAI,SAAS;AAC/B,UAAM,IAAI,MAAM,4BAA4B,YAAY,cAAc;AAAA,EACxE;AACA,MAAI,QAAQ,kBAAkB,SAAS,gBAAgB;AACrD,UAAM,YAAY,IAAI,SAAS;AAC/B,UAAM,OAAO,IAAI,kBAAkB;AACnC,UAAM,IAAI,MAAM,4BAA4B,YAAY,uDAAuD,OAAO,GAAG;AAAA,EAC3H;AACF;AACA,SAAS,kBAAkB,IAAI;AAC7B,SAAO,YAAY,IAAI,MAAM,GAAG,kBAAkB,GAAG,oCAAoC;AAC3F;AACA,SAAS,mCAAmC,IAAI,SAAS,WAAW,SAAS,qBAAqB,mBAAmB,mBAAmB;AACtI,QAAM,MAAM,GAAG,kBAAkB,SAAS,SAAS;AACnD,MAAI,QAAQ,IAAI;AACd,WAAO;AAAA,EACT;AACA,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,OAAO,CAAC;AAC9D,eAAa,IAAI,MAAM,GAAG,oBAAoB,KAAK,qBAAqB,GAAG,OAAO,OAAO,mBAAmB,iBAAiB,CAAC;AAC9H,eAAa,IAAI,MAAM,GAAG,wBAAwB,GAAG,CAAC;AACtD,SAAO;AACT;AACA,SAAS,gBAAgB,IAAI,SAAS,aAAa;AACjD,sBAAoB,IAAI,WAAW;AACnC,eAAa,IAAI,MAAM,GAAG,cAAc,GAAG,WAAW,WAAW,CAAC;AAClE,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,OAAO,CAAC;AAC/D;AACA,SAAS,kBAAkB,IAAI,aAAa;AAC1C,sBAAoB,IAAI,WAAW;AACnC,eAAa,IAAI,MAAM,GAAG,cAAc,GAAG,WAAW,WAAW,CAAC;AAClE,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,IAAI,CAAC;AAC5D;AACA,SAAS,iCAAiC,IAAI,SAAS,aAAa;AAClE,SAAO,YAAY,IAAI,MAAM,GAAG,mBAAmB,SAAS,WAAW,GAAG,cAAc,cAAc,2BAA2B;AACnI;AACA,SAAS,0BAA0B,IAAI,SAAS,aAAa;AAC3D,SAAO,GAAG,mBAAmB,SAAS,WAAW;AACnD;AACA,SAAS,mCAAmC,IAAI,SAAS,wBAAwB,aAAa;AAC5F,eAAa,IAAI,MAAM,gBAAgB,IAAI,SAAS,WAAW,CAAC;AAChE,eAAa,IAAI,MAAM,GAAG,UAAU,wBAAwB,WAAW,CAAC;AAC1E;AACA,SAAS,wBAAwB,IAAI;AACnC,eAAa,IAAI,MAAM,GAAG,gBAAgB,GAAG,aAAa,IAAI,CAAC;AAC/D,eAAa,IAAI,MAAM,GAAG,SAAS,GAAG,GAAG,GAAG,OAAO,OAAO,GAAG,OAAO,MAAM,CAAC;AAC3E,eAAa,IAAI,MAAM,GAAG,QAAQ,GAAG,GAAG,GAAG,OAAO,OAAO,GAAG,OAAO,MAAM,CAAC;AAC5E;AACA,SAAS,8BAA8B,IAAI,SAAS,aAAa;AAC/D,eAAa,IAAI,MAAM,GAAG,gBAAgB,GAAG,aAAa,WAAW,CAAC;AACtE,eAAa,IAAI,MAAM,GAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,SAAS,CAAC,CAAC;AACjH;AACA,SAAS,kCAAkC,IAAI,aAAa;AAC1D,eAAa,IAAI,MAAM,GAAG,gBAAgB,GAAG,aAAa,WAAW,CAAC;AACtE,eAAa,IAAI,MAAM,GAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,MAAM,CAAC,CAAC;AAC9G;AACA,SAAS,oBAAoB,IAAI;AAC/B,QAAM,SAAS,GAAG,uBAAuB,GAAG,WAAW;AACvD,MAAI,WAAW,GAAG,sBAAsB;AACtC,UAAM,IAAI,MAAM,gCAAgC,2BAA2B,IAAI,MAAM,CAAC;AAAA,EACxF;AACF;AACA,SAAS,2BAA2B,IAAI,QAAQ;AAC9C,UAAQ;AAAA,SACD,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA;AAEP,aAAO,iBAAiB;AAAA;AAE9B;AACA,SAAS,YAAY,IAAI,eAAe,gBAAgB;AACtD,QAAM,UAAU,aAAa,IAAI,MAAM,cAAc,CAAC;AACtD,MAAI,WAAW,MAAM;AACnB,UAAM,IAAI,MAAM,cAAc;AAAA,EAChC;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,IAAI,aAAa;AAC5C,QAAM,iBAAiB,GAAG,mCAAmC;AAC7D,QAAM,gBAAgB,cAAc,GAAG;AACvC,MAAI,gBAAgB,GAAG,YAAY,gBAAgB,gBAAgB;AACjE,UAAM,mBAAmB,2BAA2B;AACpD,UAAM,IAAI,MAAM,0BAA0B,mBAAmB;AAAA,EAC/D;AACF;AACA,SAAS,YAAY,OAAO,aAAa,GAAG;AAC1C,SAAO,aAAa,cAAc,MAAM,MAAM,GAAG,MAAM,SAAS,UAAU,CAAC;AAC7E;AACA,SAAS,YAAY,OAAO;AAC1B,MAAI,MAAM,WAAW,GAAG;AACtB,UAAM,MAAM,sDAAsD;AAAA,EACpE;AACA,SAAO;AAAA,IACL,MAAM,SAAS,IAAI,MAAM,MAAM,SAAS,KAAK;AAAA,IAC7C,MAAM,MAAM,SAAS;AAAA,EACvB;AACF;AACA,SAAS,aAAa,OAAO;AAC3B,MAAI,YAAY,CAAC,GAAG,GAAG,CAAC;AACxB,QAAM,WAAW,MAAM,WAAW,KAAK,MAAM,WAAW,KAAK,MAAM,OAAO;AAC1E,MAAI,CAAC,UAAU;AACb,gBAAY,CAAC,YAAY,KAAK,GAAG,GAAG,YAAY,KAAK,CAAC;AAAA,EACxD;AACA,SAAO;AACT;AACA,SAAS,gCAAgC,UAAU,WAAW,OAAO;AACnE,MAAI,aAAa,IAAI,EAAE,UAAU,wBAAwB;AACzD,MAAI,UAAU;AACZ,iBAAa,aAAa;AAC1B,eAAW,SAAS,IAAI,CAAC,GAAG,OAAO,MAAM,SAAS,SAAS,IAAI,aAAa,kBAAkB,SAAS,GAAG,IAAI,SAAS,GAAG;AAC1H,QAAI,SAAS,WAAW,GAAG;AACzB,iBAAW,CAAC,GAAG,SAAS,EAAE;AAAA,IAC5B;AAAA,EACF;AACA,MAAI,SAAS,WAAW,GAAG;AACzB,UAAM,gBAAgB,aAAa,aAAa,QAAQ;AACxD,eAAW,cAAc;AAAA,EAC3B;AACA,MAAIA,QAAO,aAAa,cAAc,QAAQ;AAC9C,MAAI,SAAS,UAAU,KAAKA,SAAQ,YAAY;AAC9C,WAAO,CAAC,GAAGA,KAAI;AAAA,EACjB,WAAW,SAAS,WAAW,KAAK,SAAS,MAAM,cAAc,SAAS,MAAM,YAAY;AAC1F,WAAO;AAAA,EACT,WAAW,SAAS,WAAW,KAAK,SAAS,KAAK,SAAS,MAAM,cAAc,SAAS,MAAM,YAAY;AACxG,WAAO,CAAC,SAAS,KAAK,SAAS,IAAI,SAAS,EAAE;AAAA,EAChD,WAAW,SAAS,WAAW,KAAK,SAAS,MAAM,cAAc,SAAS,KAAK,SAAS,MAAM,YAAY;AACxG,WAAO,CAAC,SAAS,IAAI,SAAS,KAAK,SAAS,EAAE;AAAA,EAChD,WAAW,SAAS,WAAW,KAAK,SAAS,KAAK,SAAS,KAAK,SAAS,MAAM,cAAc,SAAS,MAAM,YAAY;AACtH,WAAO,CAAC,SAAS,KAAK,SAAS,KAAK,SAAS,IAAI,SAAS,EAAE;AAAA,EAC9D,WAAW,SAAS,WAAW,KAAK,SAAS,MAAM,cAAc,SAAS,KAAK,SAAS,KAAK,SAAS,MAAM,YAAY;AACtH,WAAO,CAAC,SAAS,IAAI,SAAS,KAAK,SAAS,KAAK,SAAS,EAAE;AAAA,EAC9D,OAAO;AACL,QAAI,UAAU;AACZ,YAAM,WAAW,YAAY,QAAQ;AACrC,UAAI,OAAO,GAAG,OAAO;AACrB,UAAI,SAAS,QAAQ;AACnB,SAAC,MAAM,IAAI,IAAI,YAAY,QAAQ;AAAA,MACrC;AACA,MAAAA,QAAO,YAAY,OAAO,MAAM,OAAO;AACvC,aAAO,aAAa,oBAAoBA,KAAI,EAAE,IAAI,CAAC,MAAM,IAAI,CAAC;AAAA,IAChE;AACA,WAAO,aAAa,oBAAoBA,KAAI;AAAA,EAC9C;AACF;AACA,SAAS,OAAO,IAAI;AAClB,SAAO,KAAK,MAAM;AACpB;AACA,SAAS,cAAc,QAAQ,QAAQ;AACrC,WAAS,OAAO,MAAM,EAAE;AACxB,WAAS,OAAO,MAAM,EAAE;AACxB,MAAI,aAAa,YAAY,QAAQ,MAAM,GAAG;AAC5C,WAAO;AAAA,EACT;AACA,MAAI,CAAC,OAAO,UAAU,CAAC,OAAO,QAAQ;AACpC,WAAO;AAAA,EACT;AACA,MAAI,OAAO,OAAO,KAAK,OAAO,OAAO,KAAK,OAAO,OAAO,KAAK,OAAO,OAAO,GAAG;AAC5E,WAAO;AAAA,EACT;AACA,MAAI,OAAO,WAAW,OAAO,QAAQ;AACnC,UAAM,aAAa,OAAO,MAAM,EAAE,EAAE;AACpC,UAAM,aAAa,OAAO,MAAM,EAAE,EAAE;AACpC,QAAI,eAAe,YAAY;AAC7B,aAAO;AAAA,IACT;AACA,QAAI,OAAO,UAAU,KAAK,OAAO,UAAU,MAAM,OAAO,OAAO,KAAK,OAAO,OAAO,IAAI;AACpF,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO,OAAO,OAAO,OAAO,MAAM,OAAO,OAAO,EAAE,KAAK,OAAO,OAAO,EAAE;AACzE;AACA,IAAI;AACJ,IAAI;AACJ,SAAS,uBAAuB,cAAc;AAC5C,MAAI,oBAAoB,MAAM;AAC5B,UAAM,KAAK,gBAAgB,YAAY;AACvC,uBAAmB,GAAG,aAAa,GAAG,gBAAgB;AAAA,EACxD;AACA,SAAO;AACT;AACA,SAAS,sBAAsB;AAC7B,qBAAmB;AACrB;AACA,SAAS,2BAA2B;AAClC,2BAAyB;AAC3B;AACA,SAAS,uBAAuB,cAAc;AAC5C,MAAI,0BAA0B,MAAM;AAClC,UAAM,KAAK,gBAAgB,YAAY;AACvC,6BAAyB,GAAG,aAAa,GAAG,uBAAuB;AAAA,EACrE;AACA,SAAO,KAAK,IAAI,IAAI,sBAAsB;AAC5C;AACA,SAAS,kCAAkC,cAAc;AACvD,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,MAAI;AACJ,QAAM,KAAK,gBAAgB,YAAY;AACvC,MAAI,aAAa,IAAI,iCAAiC,KAAK,iBAAiB,GAAG;AAC7E,wBAAoB;AAAA,EACtB,WAAW,aAAa,IAAI,0BAA0B,GAAG;AACvD,wBAAoB;AAAA,EACtB,OAAO;AACL,wBAAoB;AAAA,EACtB;AACA,SAAO;AACT;AACA,SAAS,aAAa,IAAI,eAAe;AACvC,QAAM,MAAM,GAAG,aAAa,aAAa;AACzC,SAAO,OAAO;AAChB;AACA,SAAS,sBAAsB,cAAc;AAC3C,MAAI;AACF,UAAM,KAAK,gBAAgB,YAAY;AACvC,QAAI,MAAM,MAAM;AACd,aAAO;AAAA,IACT;AAAA,EACF,SAAS,IAAP;AACA,YAAQ,IAAI,sCAAsC,EAAE;AACpD,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,mCAAmC,cAAc;AACxD,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,QAAM,KAAK,gBAAgB,YAAY;AACvC,MAAI,iBAAiB,GAAG;AACtB,QAAI,CAAC,aAAa,IAAI,mBAAmB,GAAG;AAC1C,aAAO;AAAA,IACT;AAAA,EACF,OAAO;AACL,QAAI,CAAC,aAAa,IAAI,wBAAwB,GAAG;AAC/C,aAAO;AAAA,IACT;AAAA,EACF;AACA,QAAM,wBAAwB,uCAAuC,EAAE;AACvE,SAAO;AACT;AACA,SAAS,8BAA8B,cAAc;AACnD,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,QAAM,KAAK,gBAAgB,YAAY;AACvC,MAAI,iBAAiB,GAAG;AACtB,QAAI,CAAC,aAAa,IAAI,mBAAmB,GAAG;AAC1C,aAAO;AAAA,IACT;AACA,QAAI,CAAC,aAAa,IAAI,0BAA0B,GAAG;AACjD,aAAO;AAAA,IACT;AAAA,EACF,OAAO;AACL,QAAI,aAAa,IAAI,wBAAwB,GAAG;AAC9C,aAAO,uCAAuC,EAAE;AAAA,IAClD;AACA,UAAM,0BAA0B;AAChC,QAAI,aAAa,IAAI,uBAAuB,GAAG;AAC7C,YAAM,4BAA4B,GAAG,aAAa,uBAAuB;AACzE,aAAO,2CAA2C,IAAI,yBAAyB;AAAA,IACjF;AACA,WAAO;AAAA,EACT;AACA,QAAM,wBAAwB,uCAAuC,EAAE;AACvE,SAAO;AACT;AACA,SAAS,uCAAuC,IAAI;AAClD,QAAM,YAAY,iBAAiB,EAAE;AACrC,QAAM,UAAU,GAAG,cAAc;AACjC,KAAG,YAAY,GAAG,YAAY,OAAO;AACrC,QAAM,QAAQ;AACd,QAAM,SAAS;AACf,KAAG,WAAW,GAAG,YAAY,GAAG,UAAU,qBAAqB,OAAO,QAAQ,GAAG,UAAU,oBAAoB,UAAU,kBAAkB,IAAI;AAC/I,QAAM,cAAc,GAAG,kBAAkB;AACzC,KAAG,gBAAgB,GAAG,aAAa,WAAW;AAC9C,KAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,SAAS,CAAC;AACvF,QAAM,wBAAwB,GAAG,uBAAuB,GAAG,WAAW,MAAM,GAAG;AAC/E,KAAG,YAAY,GAAG,YAAY,IAAI;AAClC,KAAG,gBAAgB,GAAG,aAAa,IAAI;AACvC,KAAG,cAAc,OAAO;AACxB,KAAG,kBAAkB,WAAW;AAChC,SAAO;AACT;AACA,SAAS,2CAA2C,IAAI,2BAA2B;AACjF,QAAM,YAAY,iBAAiB,IAAI,yBAAyB;AAChE,QAAM,UAAU,GAAG,cAAc;AACjC,KAAG,YAAY,GAAG,YAAY,OAAO;AACrC,QAAM,QAAQ;AACd,QAAM,SAAS;AACf,KAAG,WAAW,GAAG,YAAY,GAAG,UAAU,yBAAyB,OAAO,QAAQ,GAAG,UAAU,oBAAoB,UAAU,sBAAsB,IAAI;AACvJ,QAAM,cAAc,GAAG,kBAAkB;AACzC,KAAG,gBAAgB,GAAG,aAAa,WAAW;AAC9C,KAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,SAAS,CAAC;AACvF,QAAM,wBAAwB,GAAG,uBAAuB,GAAG,WAAW,MAAM,GAAG;AAC/E,KAAG,YAAY,GAAG,YAAY,IAAI;AAClC,KAAG,gBAAgB,GAAG,aAAa,IAAI;AACvC,KAAG,cAAc,OAAO;AACxB,KAAG,kBAAkB,WAAW;AAChC,SAAO;AACT;AACA,SAAS,oBAAoB,cAAc;AACzC,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,QAAM,KAAK,gBAAgB,YAAY;AACvC,QAAM,YAAY,GAAG,aAAa;AAClC,SAAO;AACT;AACA,SAAS,kBAAkB,SAAS,QAAQ;AAC1C,MAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAC3B,cAAU,CAAC,OAAO;AAAA,EACpB;AACA,UAAQ,QAAQ,CAAC,OAAO;AACtB,QAAI,MAAM,MAAM;AACd,mBAAa,OAAO,GAAG,UAAU,aAAa,MAAM,GAAG,iEAAiE;AAAA,IAC1H;AAAA,EACF,CAAC;AACH;AAGA,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,aAAa,MAAM,KAAK,UAAU,eAAe,IAAI,CAAC;AACxE,KAAK,aAAa,iBAAiB,MAAM;AACvC,MAAI,sBAAsB,CAAC,GAAG;AAC5B,WAAO;AAAA,EACT,WAAW,sBAAsB,CAAC,GAAG;AACnC,WAAO;AAAA,EACT;AACA,SAAO;AACT,CAAC;AACD,KAAK,aAAa,kCAAkC,MAAM,KAAK;AAC/D,KAAK,aAAa,0BAA0B,MAAM,KAAK,IAAI,eAAe,MAAM,CAAC;AACjF,KAAK,aAAa,qBAAqB,MAAM,IAAI;AACjD,KAAK,aAAa,4BAA4B,MAAM,KAAK;AACzD,KAAK,aAAa,cAAc,MAAM,KAAK,QAAQ,WAAW,CAAC;AAC/D,KAAK,aAAa,4BAA4B,MAAM,KAAK,QAAQ,YAAY,CAAC;AAC9E,KAAK,aAAa,mBAAmB,MAAM,KAAK,QAAQ,YAAY,CAAC;AACrE,KAAK,aAAa,4BAA4B,MAAM,KAAK,QAAQ,YAAY,CAAC;AAC9E,KAAK,aAAa,gCAAgC,MAAM,KAAK,QAAQ,YAAY,CAAC;AAClF,KAAK,aAAa,+BAA+B,MAAM,KAAK,QAAQ,YAAY,CAAC;AACjF,KAAK,aAAa,+BAA+B,MAAM,KAAK,QAAQ,YAAY,CAAC;AACjF,KAAK,aAAa,+BAA+B,MAAM,KAAK,QAAQ,YAAY,CAAC;AACjF,KAAK,aAAa,qBAAqB,MAAM,KAAK,QAAQ,YAAY,CAAC;AACvE,KAAK,aAAa,uBAAuB,MAAM,KAAK,QAAQ,YAAY,CAAC;AACzE,KAAK,aAAa,qBAAqB,MAAM,KAAK,QAAQ,YAAY,CAAC;AACvE,KAAK,aAAa,0BAA0B,MAAM,uBAAuB,KAAK,UAAU,eAAe,CAAC,CAAC;AACzG,KAAK,aAAa,gCAAgC,MAAM,uBAAuB,KAAK,UAAU,eAAe,CAAC,CAAC;AAC/G,KAAK,aAAa,gDAAgD,MAAM;AACtE,QAAM,eAAe,KAAK,UAAU,eAAe;AACnD,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,SAAO,kCAAkC,YAAY;AACvD,CAAC;AACD,KAAK,aAAa,iDAAiD,MAAM,KAAK,UAAU,8CAA8C,IAAI,KAAK,CAAC,oBAAoB,SAAS,CAAC;AAC9K,KAAK,aAAa,gCAAgC,MAAM,mCAAmC,KAAK,UAAU,eAAe,CAAC,CAAC;AAC3H,KAAK,aAAa,gCAAgC,MAAM;AACtD,SAAO,KAAK,QAAQ,0BAA0B,IAAI,QAAQ,KAAK,QAAQ,8BAA8B;AACvG,CAAC;AACD,KAAK,aAAa,gCAAgC,MAAM,8BAA8B,KAAK,UAAU,eAAe,CAAC,CAAC;AACtH,KAAK,aAAa,2BAA2B,MAAM,oBAAoB,KAAK,UAAU,eAAe,CAAC,CAAC;AACvG,KAAK,aAAa,6BAA6B,MAAM;AACnD,QAAM,cAAc,KAAK,QAAQ,8BAA8B;AAC/D,SAAO,cAAc,IAAI;AAC3B,CAAC;AACD,KAAK,aAAa,kCAAkC,MAAM;AACxD,SAAO;AACT,GAAG,CAAC,eAAe;AACjB,MAAI,aAAa,KAAK,eAAe,IAAI;AACvC,UAAM,IAAI,MAAM,8FAA8F,aAAa;AAAA,EAC7H;AACF,CAAC;AACD,KAAK,aAAa,yBAAyB,MAAM;AAC/C,SAAO,oBAAoB,SAAS,IAAI,IAAI;AAC9C,GAAG,CAAC,eAAe;AACjB,MAAI,aAAa,KAAK,eAAe,IAAI;AACvC,UAAM,IAAI,MAAM,2FAA2F,aAAa;AAAA,EAC1H;AACF,CAAC;AACD,KAAK,aAAa,8BAA8B,MAAM,GAAG;AACzD,KAAK,aAAa,6BAA6B,MAAM,KAAK;AAC1D,KAAK,aAAa,4CAA4C,MAAM,GAAG;AACvE,KAAK,aAAa,gCAAgC,MAAM,GAAG;AAC3D,KAAK,aAAa,kBAAkB,MAAM,KAAK;AAC/C,KAAK,aAAa,0BAA0B,MAAM,KAAK,QAAQ,SAAS,CAAC;AAGzE,SAAS,qBAAqB;AAC5B,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,eAAW;AACX,gBAAY;AACZ,gBAAY;AACZ,gBAAY;AACZ,gBAAY;AACZ,aAAS;AACT,mBAAe;AACf,uBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAanB,uBAAmB;AACnB,kBAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUhB,OAAO;AACL,eAAW;AACX,gBAAY;AACZ,gBAAY;AACZ,gBAAY;AACZ,gBAAY;AACZ,aAAS;AACT,mBAAe;AACf,uBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASnB,uBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUnB,kBAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAShB;AACA,SAAO;AAAA,IACL,SAAS;AAAA,IACT;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AAGA,SAAS,mCAAmC,SAAS,OAAOU,SAAQ,SAAS;AAC3E,QAAMG,WAAU,aAAa,eAAe,KAAK;AACjD,SAAOA,SAAQ,IAAI,CAAC,QAAQ,OAAO;AACjC,UAAM,QAAQ,OAAO,QAAQ,SAASH,YAAW;AACjD,UAAM,QAAQ,OAAOG,SAAQ,SAAS,IAAI,OAAO,QAAQ,KAAK,QAAQH,YAAW,QAAQ,SAAS,WAAW,YAAY,QAAQ,SAAS;AAC1I,WAAO,GAAG,UAAU;AAAA,EACtB,CAAC,EAAE,KAAK,EAAE;AACZ;AACA,SAAS,kDAAkD,SAAS,OAAOA,SAAQ,SAAS;AAC1F,QAAMG,WAAU,aAAa,eAAe,KAAK;AACjD,SAAOA,SAAQ,IAAI,CAAC,GAAG,OAAO;AAC5B,UAAM,QAAQ,OAAO,QAAQ,SAASH,4BAA2B;AACjE,UAAM,QAAQ,OAAOG,SAAQ,SAAS,IAAI,OAAO,QAAQ,KAAK,QAAQH,YAAW,QAAQ,yBAAyB,QAAQ,YAAY,QAAQ,yBAAyB;AACvK,WAAO,GAAG,UAAU;AAAA,EACtB,CAAC,EAAE,KAAK,EAAE;AACZ;AACA,SAAS,2BAA2B,YAAY,cAAc;AAC5D,QAAM,YAAY,WAAW;AAC7B,QAAM,QAAQ,WAAW,IAAI,CAAC,MAAM,GAAG,gBAAgB,IAAI;AAC3D,QAAMG,WAAU,IAAI,MAAM,YAAY,CAAC;AACvC,EAAAA,SAAQ,YAAY,KAAK,MAAM,YAAY;AAC3C,WAAS,KAAK,YAAY,GAAG,MAAM,GAAG,EAAE,IAAI;AAC1C,IAAAA,SAAQ,MAAM,IAAIA,SAAQ,KAAK,QAAQ,MAAM,KAAK;AAAA,EACpD;AACA,SAAOA;AACT;AACA,SAAS,4CAA4C,SAAS,cAAcH,SAAQ,SAAS;AAC3F,QAAM,eAAe,QAAQ,IAAI,CAAC,GAAG,OAAO,EAAE;AAC9C,QAAMG,WAAU,2BAA2B,cAAc,YAAY;AACrE,SAAOA,SAAQ,IAAI,CAAC,GAAG,OAAO;AAC5B,UAAM,QAAQ,OAAO,QAAQ,SAASH,YAAWG,SAAQ;AACzD,UAAM,QAAQ,OAAOA,SAAQ,SAAS,IAAI,OAAO,QAAQ,KAAK,QAAQH,YAAW,QAAQ,SAASG,SAAQ,QAAQ,YAAY,QAAQ,SAASA,SAAQ;AACvJ,WAAO,GAAG,UAAU;AAAA,EACtB,CAAC,EAAE,KAAK,EAAE;AACZ;AACA,SAAS,mBAAmB,OAAO;AACjC,QAAMA,WAAU,aAAa,eAAe,KAAK,EAAE,IAAI,CAAC,MAAM,EAAE,SAAS,CAAC;AAC1E,SAAO;AAAA;AAAA,wBAEeA,SAAQ,mBAAmBA,SAAQ;AAAA;AAAA;AAG3D;AACA,SAAS,2BAA2B;AAClC,SAAO;AAAA;AAAA;AAAA;AAAA;AAKT;AACA,IAAI,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA0C3B,IAAI,EAAE,kBAAkB,kBAAkB,IAAI;AAC9C,SAAS,WAAW,YAAY,aAAa,SAAS;AACpD,QAAM,iBAAiB,CAAC;AACxB,aAAW,QAAQ,CAAC,MAAM;AACxB,UAAMb,QAAO,aAAa,cAAc,EAAE,UAAU,YAAY;AAChE,QAAI,EAAE,UAAU,WAAW;AACzB,qBAAe,KAAK,iBAAiB,EAAE,OAAOA,QAAO,IAAI,IAAIA,WAAU,KAAK;AAAA,IAC9E,OAAO;AACL,qBAAe,KAAK,qBAAqB,EAAE,OAAO;AAClD,qBAAe,KAAK,qBAAqB,EAAE,OAAO;AAAA,IACpD;AACA,QAAI,QAAQ,qBAAqB;AAC/B,YAAM,EAAE,aAAa,IAAI,wBAAwB,QAAQ,cAAc,EAAE,UAAU,cAAc,EAAE,UAAU,QAAQ;AACrH,cAAQ,aAAa;AAAA,aACd;AACH,yBAAe,KAAK,eAAe,EAAE,YAAY;AACjD;AAAA,aACG;AACH,yBAAe,KAAK,iBAAiB,EAAE,YAAY;AACnD;AAAA,aACG;AACH,yBAAe,KAAK,iBAAiB,EAAE,YAAY;AACnD;AAAA,aACG;AACH,yBAAe,KAAK,iBAAiB,EAAE,YAAY;AACnD;AAAA;AAEA;AAAA;AAEJ,qBAAe,KAAK,iBAAiB,EAAE,eAAe;AAAA,IACxD;AAAA,EACF,CAAC;AACD,MAAI,QAAQ,qBAAqB;AAC/B,YAAQ,YAAY,aAAa;AAAA,WAC1B;AACH,uBAAe,KAAK,uBAAuB;AAC3C;AAAA,WACG;AACH,uBAAe,KAAK,yBAAyB;AAC7C,uBAAe,KAAK,8BAA8B;AAClD;AAAA,WACG;AACH,uBAAe,KAAK,yBAAyB;AAC7C,uBAAe,KAAK,gCAAgC;AACpD;AAAA,WACG;AACH,uBAAe,KAAK,yBAAyB;AAC7C,uBAAe,KAAK,gCAAgC;AACpD;AAAA;AAEA;AAAA;AAEJ,mBAAe,KAAK,4BAA4B;AAAA,EAClD;AACA,MAAI,QAAQ,gBAAgB;AAC1B,YAAQ,eAAe,QAAQ,CAAC,MAAM;AACpC,qBAAe,KAAK,WAAW,EAAE,QAAQ,EAAE,OAAO,EAAE,aAAa,IAAI,EAAE,gBAAgB,KAAK;AAAA,IAC9F,CAAC;AAAA,EACH;AACA,QAAM,qBAAqB,eAAe,KAAK,IAAI;AACnD,QAAM,uBAAuB,WAAW,IAAI,CAAC,MAAM,wBAAwB,GAAG,aAAa,QAAQ,cAAc,QAAQ,mBAAmB,CAAC,EAAE,KAAK,IAAI;AACxJ,QAAM,cAAc,YAAY;AAChC,QAAM,OAAO,mBAAmB;AAChC,QAAM,4BAA4B,6BAA6B,IAAI;AACnE,MAAI;AACJ,MAAI;AACJ,MAAI,eAAe,gBAAgB,IAAI;AACvC,MAAI,YAAY,UAAU;AACxB,4BAAwB,+BAA+B,YAAY,cAAc,aAAa,QAAQ,mBAAmB;AACzH,mCAA+B,8BAA8B,IAAI;AAAA,EACnE,OAAO;AACL,4BAAwB,yBAAyB,YAAY,cAAc,aAAa,QAAQ,mBAAmB;AACnH,mCAA+B,2BAA2B,IAAI;AAAA,EAChE;AACA,MAAI,QAAQ,cAAc;AACxB,oBAAgB;AAAA,EAClB;AACA,QAAM,SAAS;AAAA,IACb;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,QAAQ;AAAA,EACV,EAAE,KAAK,IAAI;AACX,SAAO;AACT;AACA,SAAS,qBAAqB,QAAQ,sBAAsB,OAAO;AACjE,QAAM,QAAQ,OAAO,UAAU;AAC/B,UAAQ,MAAM;AAAA,SACP;AACH,aAAO,iBAAiB,QAAQ,mBAAmB;AAAA,SAChD;AACH,aAAO,aAAa,QAAQ,mBAAmB;AAAA,SAC5C;AACH,aAAO,aAAa,QAAQ,mBAAmB;AAAA,SAC5C;AACH,aAAO,aAAa,QAAQ,mBAAmB;AAAA,SAC5C;AACH,aAAO,aAAa,QAAQ,mBAAmB;AAAA,SAC5C;AACH,aAAO,aAAa,MAAM;AAAA,SACvB;AACH,aAAO,aAAa,MAAM;AAAA;AAE1B,YAAM,IAAI,MAAM,GAAG,MAAM,8CAA8C;AAAA;AAE7E;AACA,SAAS,2BAA2B,QAAQ,qBAAqB;AAC/D,QAAM,QAAQ,OAAO,UAAU;AAC/B,UAAQ,MAAM;AAAA,SACP;AACH,aAAO,uBAAuB,MAAM;AAAA,SACjC;AACH,aAAO,mBAAmB,QAAQ,mBAAmB;AAAA,SAClD;AACH,aAAO,mBAAmB,QAAQ,mBAAmB;AAAA,SAClD;AACH,aAAO,mBAAmB,QAAQ,mBAAmB;AAAA;AAErD,aAAO,mBAAmB,QAAQ,mBAAmB;AAAA;AAE3D;AACA,SAAS,wBAAwB,QAAQ,cAAc,qBAAqB,OAAO,qBAAqB;AACtG,MAAI,MAAM;AACV,MAAI,oBAAoB;AACtB,WAAO,2BAA2B,QAAQ,mBAAmB;AAAA,EAC/D,OAAO;AACL,WAAO,qBAAqB,QAAQ,mBAAmB;AAAA,EACzD;AACA,QAAM,UAAU,OAAO,UAAU;AACjC,QAAM,WAAW,aAAa;AAC9B,MAAI,QAAQ,UAAU,SAAS,QAAQ;AACrC,QAAI,oBAAoB;AACtB,aAAO,+BAA+B,QAAQ,YAAY;AAAA,IAC5D,OAAO;AACL,aAAO,yBAAyB,QAAQ,YAAY;AAAA,IACtD;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,+BAA+B,UAAU,aAAa,qBAAqB;AAClF,UAAQ,SAAS;AAAA,SACV;AACH,aAAO,sBAAsB;AAAA,SAC1B;AACH,aAAO,wBAAwB,UAAU,aAAa,mBAAmB;AAAA,SACtE;AACH,aAAO,wBAAwB,UAAU,aAAa,mBAAmB;AAAA,SACtE;AACH,aAAO,wBAAwB,UAAU,aAAa,mBAAmB;AAAA;AAEzE,aAAO,wBAAwB,UAAU,aAAa,mBAAmB;AAAA;AAE/E;AACA,SAAS,yBAAyB,UAAU,aAAa,qBAAqB;AAC5E,UAAQ,SAAS;AAAA,SACV;AACH,aAAO,sBAAsB;AAAA,SAC1B;AACH,aAAO,kBAAkB,UAAU,aAAa,mBAAmB;AAAA,SAChE;AACH,aAAO,kBAAkB,UAAU,aAAa,mBAAmB;AAAA,SAChE;AACH,aAAO,kBAAkB,UAAU,aAAa,mBAAmB;AAAA,SAChE;AACH,aAAO,kBAAkB,UAAU,aAAa,mBAAmB;AAAA,SAChE;AACH,aAAO,kBAAkB,UAAU,WAAW;AAAA,SAC3C;AACH,aAAO,kBAAkB,UAAU,WAAW;AAAA;AAE9C,YAAM,IAAI,MAAM,GAAG,SAAS,+CAA+C;AAAA;AAEjF;AACA,SAAS,6BAA6B,MAAM;AAC1C,SAAO;AAAA;AAAA,eAEM,KAAK;AAAA;AAAA;AAGpB;AACA,SAAS,2BAA2B,MAAM;AACxC,SAAO;AAAA;AAAA,QAED,KAAK;AAAA;AAAA;AAGb;AACA,SAAS,8BAA8B,MAAM;AAC3C,SAAO;AAAA;AAAA,QAED,KAAK;AAAA;AAAA;AAGb;AACA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,gBAAgB,GAAG,KAAK;AAAA;AAAA;AAAA;AAAA,MAI1B,KAAK;AAAA,MACL,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAuBL,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAyBL;AAAA,MACA;AAAA,MACA;AAAA;AAEJ,SAAO;AACT;AACA,IAAI,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAaxB,IAAI,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASxB,IAAI,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUxB,IAAI,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAY3B,SAAS,wBAAwB;AAC/B,SAAO;AAAA;AAAA;AAAA;AAAA;AAKT;AACA,SAAS,wBAAwB,OAAO,UAAU,qBAAqB;AACrE,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,MAAI,eAAe,OAAO,GAAG;AAC3B,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,sCAE2B,eAAe;AAAA;AAAA;AAAA,EAGnD;AACA,MAAI,eAAe,OAAO,GAAG;AAC3B,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,sCAE2B,eAAe;AAAA;AAAA;AAAA,EAGnD;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQT;AACA,SAAO;AAAA;AAAA;AAAA,oCAG2B,eAAe,OAAO,eAAe;AAAA,iCACxC,eAAe;AAAA;AAAA;AAGhD;AACA,SAAS,kBAAkB,OAAO,UAAU,qBAAqB;AAC/D,MAAI,SAAS,OAAO,GAAG;AACrB,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,kCAEuB,SAAS;AAAA;AAAA;AAAA,EAGzC;AACA,MAAI,SAAS,OAAO,GAAG;AACrB,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,kCAEuB,SAAS;AAAA;AAAA;AAAA,EAGzC;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOT;AACA,SAAO;AAAA;AAAA;AAAA,oCAG2B,SAAS,OAAO,SAAS;AAAA,4BACjC,SAAS;AAAA;AAAA;AAGrC;AACA,SAAS,wBAAwB,OAAO,UAAU,qBAAqB;AACrE,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAkBT;AACA,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,QAAM,qBAAqB,KAAK,KAAK,MAAM,KAAK,CAAC;AACjD,QAAM,gBAAgB,qBAAqB,KAAK,KAAK,MAAM,KAAK,CAAC;AACjE,SAAO;AAAA;AAAA;AAAA,oCAG2B,eAAe,OAAO,eAAe;AAAA,iCACxC,eAAe;AAAA;AAAA,wBAExB;AAAA,qBACH;AAAA;AAAA,6BAEQ;AAAA,4BACD;AAAA;AAAA;AAAA;AAAA;AAK5B;AACA,SAAS,kBAAkB,OAAO,UAAU,qBAAqB;AAC/D,MAAI,qBAAqB;AACvB,UAAM,0BAA0B,kDAAkD,CAAC,KAAK,KAAK,GAAG,GAAG,KAAK;AACxG,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,MAKL;AAAA;AAAA;AAAA;AAAA,EAIJ;AACA,QAAM,yBAAyB,mCAAmC,CAAC,KAAK,KAAK,GAAG,GAAG,KAAK;AACxF,SAAO;AAAA;AAAA;AAAA,oCAG2B,SAAS,OAAO,SAAS;AAAA,iCAC5B,SAAS;AAAA,QAClC;AAAA;AAAA;AAAA;AAIR;AACA,SAAS,wBAAwB,OAAO,UAAU,qBAAqB;AACrE,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAuBT;AACA,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,QAAM,qBAAqB,KAAK,KAAK,MAAM,MAAM,SAAS,KAAK,CAAC;AAChE,QAAM,gBAAgB,qBAAqB,KAAK,KAAK,MAAM,MAAM,SAAS,KAAK,CAAC;AAChF,MAAI,iBAAiB;AACrB,MAAI,UAAU;AACd,MAAI,UAAU;AACd,WAAS,IAAI,GAAG,IAAI,MAAM,SAAS,GAAG,KAAK;AACzC,sBAAkB,MAAM,MAAM,SAAS,IAAI;AAC3C,cAAU;AAAA,aACD,eAAe;AAAA,kBACV,OAAO;AAAA,QACjB;AACJ,cAAU,IAAI,QAAQ;AAAA,EACxB;AACA,SAAO;AAAA,UACC,MAAM;AAAA;AAAA,oCAEoB,eAAe,OAAO,eAAe;AAAA,iCACxC,eAAe;AAAA;AAAA,QAExC;AAAA;AAAA,wBAEgB;AAAA,qBACH;AAAA;AAAA,6BAEQ;AAAA,4BACD;AAAA;AAAA,mBAET,MAAM,UAAU;AAAA;AAAA;AAGnC;AACA,SAAS,kBAAkB,OAAO,UAAU,qBAAqB;AAC/D,MAAI,qBAAqB;AACvB,UAAM,0BAA0B,kDAAkD,CAAC,KAAK,KAAK,KAAK,IAAI,GAAG,KAAK;AAC9G,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,QAKH;AAAA;AAAA;AAAA;AAAA,EAIN;AACA,QAAM,yBAAyB,mCAAmC,CAAC,KAAK,KAAK,KAAK,IAAI,GAAG,KAAK;AAC9F,SAAO;AAAA;AAAA;AAAA,eAGM,SAAS,OAAO,SAAS;AAAA,iCACP,SAAS;AAAA,QAClC;AAAA;AAAA;AAAA;AAIR;AACA,SAAS,kBAAkB,OAAO,UAAU;AAC1C,QAAM,yBAAyB,mCAAmC,CAAC,KAAK,KAAK,KAAK,MAAM,IAAI,GAAG,KAAK;AACpG,SAAO;AAAA;AAAA,kDAEyC,SAAS;AAAA,+BAC5B,SAAS;AAAA;AAAA,iCAEP,SAAS;AAAA;AAAA,QAElC;AAAA;AAAA;AAAA;AAAA;AAAA;AAMR;AACA,SAAS,kBAAkB,OAAO,UAAU;AAC1C,QAAM,yBAAyB,mCAAmC,CAAC,KAAK,KAAK,KAAK,MAAM,MAAM,IAAI,GAAG,KAAK;AAC1G,SAAO;AAAA;AAAA;AAAA,eAGM,SAAS,OAAO,SAAS;AAAA,iCACP,SAAS;AAAA;AAAA,QAElC;AAAA;AAAA;AAAA;AAAA;AAAA;AAMR;AACA,SAAS,wBAAwB,OAAO,UAAU,qBAAqB;AACrE,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,MAAI,aAAa,YAAY,OAAO,QAAQ,GAAG;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAMT;AACA,WAAO;AAAA;AAAA,8CAEmC,eAAe,OAAO,eAAe;AAAA;AAAA;AAAA,EAGjF;AACA,QAAM,qBAAqB,KAAK,KAAK,MAAM,KAAK,CAAC;AACjD,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAcT;AACA,SAAO;AAAA;AAAA;AAAA,oCAG2B,eAAe,OAAO,eAAe;AAAA;AAAA,iCAExC,eAAe;AAAA,6BACnB;AAAA,4BACD;AAAA;AAAA;AAAA;AAAA;AAK5B;AACA,SAAS,kBAAkB,OAAO,UAAU,qBAAqB;AAC/D,MAAI,aAAa,YAAY,OAAO,QAAQ,GAAG;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,0CAE+B,SAAS,OAAO,SAAS;AAAA;AAAA;AAAA,EAGjE;AACA,MAAI,MAAM,OAAO,GAAG;AAClB,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAQT;AACA,WAAO;AAAA;AAAA;AAAA,sCAG2B,SAAS,OAAO,SAAS;AAAA,mCAC5B,SAAS;AAAA;AAAA;AAAA;AAAA,EAI1C;AACA,MAAI,MAAM,OAAO,GAAG;AAClB,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAQT;AACA,WAAO;AAAA;AAAA;AAAA,sCAG2B,SAAS,OAAO,SAAS;AAAA,mCAC5B,SAAS;AAAA;AAAA;AAAA;AAAA,EAI1C;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUT;AACA,SAAO;AAAA;AAAA;AAAA,oCAG2B,SAAS,OAAO,SAAS;AAAA,iCAC5B,SAAS;AAAA,wBAClB,MAAM;AAAA,4BACF,MAAM;AAAA;AAAA;AAAA;AAIlC;AACA,SAAS,yBAAyB,SAAS;AACzC,SAAO,SAAS;AAClB;AACA,SAAS,uBAAuB,WAAW;AACzC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,OAAO,mBAAmB;AAChC,SAAO;AAAA,WACE;AAAA,eACI,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,iBAAiB,WAAW,qBAAqB;AACxD,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO,SAAS,sBAAsB;AAAA,EACxC;AACA,QAAM,CAAC,SAAS,OAAO,IAAI,UAAU,UAAU;AAC/C,MAAI,YAAY,KAAK,YAAY,GAAG;AAClC,WAAO;AAAA,cACG;AAAA,+BACiB;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,qBAAqB;AACvB,WAAO;AAAA,YACC;AAAA,6BACiB,uBAAuB,uBAAuB;AAAA,6BAC9C;AAAA;AAAA;AAAA,EAG3B;AACA,QAAM,CAAC,OAAO,KAAK,IAAI,UAAU,UAAU;AAC3C,SAAO;AAAA,YACG;AAAA,6BACiB,UAAU,UAAU;AAAA,6BACpB;AAAA;AAAA;AAG7B;AACA,SAAS,mBAAmB,WAAW,qBAAqB;AAC1D,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,OAAO,mBAAmB;AAChC,MAAI,qBAAqB;AACvB,WAAO;AAAA,WACA;AAAA,gDACqC,0CAA0C;AAAA;AAAA;AAAA,eAG3E,KAAK,aAAa;AAAA;AAAA;AAAA,EAG/B;AACA,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,SAAO;AAAA,WACE;AAAA;AAAA,UAED,eAAe,OAAO,eAAe;AAAA,eAChC,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,aAAa,WAAW,qBAAqB;AACpD,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA,UACJ,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,QAAQ,SAAS;AACvB,QAAM,QAAQ,SAAS;AACvB,MAAI,UAAU,KAAK,UAAU,GAAG;AAC9B,WAAO;AAAA,cACG;AAAA,+BACiB;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,UAAU,GAAG;AACf,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,6CAC+B,0BAA0B;AAAA,+BACxC;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,cACG;AAAA,6CAC+B,oBAAoB;AAAA,+BAClC;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,UAAU,GAAG;AACf,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,wCAC0B,0BAA0B;AAAA,+BACnC;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,cACG;AAAA,wCAC0B,oBAAoB;AAAA,+BAC7B;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA,YACC;AAAA,6BACiB,uBAAuB,+BAA+B;AAAA,6BACtD;AAAA;AAAA;AAAA,EAG3B;AACA,SAAO;AAAA,YACG;AAAA,6BACiB,UAAU,kBAAkB;AAAA,6BAC5B;AAAA;AAAA;AAG7B;AACA,SAAS,mBAAmB,WAAW,qBAAqB;AAC1D,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,QAAM,OAAO,mBAAmB;AAChC,MAAI,YAAY,QAAQ,aAAa,YAAY,OAAO,QAAQ,GAAG;AACjE,QAAI,qBAAqB;AACvB,aAAO;AAAA,aACA;AAAA,qDACwC,uBAAuB;AAAA;AAAA,iBAE3D,KAAK,aAAa;AAAA;AAAA;AAAA,IAG/B;AACA,WAAO;AAAA,aACE;AAAA,qDACwC,cAAc;AAAA;AAAA,iBAElD,KAAK,aAAa;AAAA;AAAA;AAAA,EAGjC;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA,WACA;AAAA,gDACqC,0CAA0C;AAAA,0CAChD;AAAA;AAAA,eAE3B,KAAK,aAAa;AAAA;AAAA;AAAA,EAG/B;AACA,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,QAAM,eAAe,KAAK,KAAK,MAAM,KAAK,CAAC;AAC3C,SAAO;AAAA,WACE;AAAA,iCACsB,iBAAiB,eAAe,OAAO,eAAe;AAAA,eACxE,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,aAAa,WAAW,qBAAqB;AACpD,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,WAAW,UAAU,UAAU;AACrC,MAAI,YAAY,QAAQ,aAAa,YAAY,OAAO,QAAQ,GAAG;AACjE,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,qDACuC,uBAAuB;AAAA,+BAC7C;AAAA;AAAA;AAAA,IAG3B;AACA,UAAM,WAAW,SAAS;AAC1B,UAAM,WAAW,SAAS;AAC1B,WAAO;AAAA,YACC;AAAA,mDACuC,eAAe;AAAA,6BACrC;AAAA;AAAA;AAAA,EAG3B;AACA,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,QAAM,gBAAgB;AACtB,MAAI,cAAc,SAAS,MAAM,QAAQ;AACvC,UAAM,eAAe,iBAAiB,WAAW,aAAa;AAC9D,UAAM,SAAS,CAAC,OAAO,KAAK;AAC5B,WAAO;AAAA,QACH,qBAAqB,cAAc,mBAAmB;AAAA,cAChD;AAAA,iBACG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG7D;AACA,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA,qDACuC,MAAM;AAAA,UACjD,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,YAAY,GAAG;AACjB,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,2CAC6B,iBAAiB;AAAA,oDACR;AAAA,+BACrB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,YACC;AAAA,yCAC6B,iBAAiB,MAAM;AAAA,4CACpB;AAAA,6BACf;AAAA;AAAA;AAAA,EAG3B;AACA,MAAI,YAAY,GAAG;AACjB,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,2CAC6B,iBAAiB;AAAA,+CACb;AAAA,+BAChB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,YACC;AAAA,yCAC6B,iBAAiB,MAAM;AAAA,uCACzB;AAAA,6BACV;AAAA;AAAA;AAAA,EAG3B;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA,cACG;AAAA;AAAA,4BAEc,2BAA2B;AAAA,+BACxB,uBAAuB;AAAA,+BACvB;AAAA;AAAA;AAAA,EAG7B;AACA,SAAO;AAAA,UACC;AAAA;AAAA,wBAEc,MAAM,cAAc;AAAA,2BACjB,YAAY;AAAA,2BACZ;AAAA;AAAA;AAG3B;AACA,SAAS,mBAAmB,WAAW,qBAAqB;AAC1D,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,MAAI,MAAM,OAAO,GAAG;AAClB,UAAM,gBAAgB,MAAM,MAAM,CAAC;AACnC,UAAM,WAAW,CAAC,GAAG,CAAC;AACtB,UAAM,eAAe,iBAAiB,WAAW,aAAa;AAC9D,UAAM,SAAS,CAAC,KAAK,OAAO,KAAK;AACjC,WAAO;AAAA,UACD,2BAA2B,cAAc,mBAAmB;AAAA,eACvD;AAAA,mBACI,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG/D;AACA,QAAM,OAAO,mBAAmB;AAChC,MAAI,qBAAqB;AACvB,WAAO;AAAA,WACA;AAAA,gDACqC,0CAA0C;AAAA,0CAChD;AAAA,0DACgB;AAAA;AAAA;AAAA,eAG3C,KAAK,aAAa;AAAA;AAAA;AAAA,EAG/B;AACA,QAAM,UAAU,eAAe;AAC/B,QAAM,UAAU,eAAe;AAC/B,QAAM,eAAe,KAAK,KAAK,MAAM,KAAK,CAAC;AAC3C,QAAM,gBAAgB,eAAe,KAAK,KAAK,MAAM,KAAK,CAAC;AAC3D,SAAO;AAAA,WACE;AAAA;AAAA,UAED,YAAY,YAAY,kBAAkB;AAAA,eACrC,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,aAAa,WAAW,qBAAqB;AACpD,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,UAAU,MAAM,KAAK,MAAM;AACjC,QAAM,UAAU,MAAM;AACtB,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,QAAM,gBAAgB;AACtB,MAAI,cAAc,SAAS,MAAM,QAAQ;AACvC,UAAM,eAAe,iBAAiB,WAAW,aAAa;AAC9D,UAAM,SAAS,CAAC,OAAO,OAAO,OAAO;AACrC,WAAO;AAAA,UACD,qBAAqB,cAAc,mBAAmB;AAAA,gBAChD;AAAA,mBACG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG/D;AACA,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA;AAAA,iCAEmB,YAAY;AAAA,UACnC,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,QAAM,aAAa,UAAU,UAAU;AACvC,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,wBACU;AAAA;AAAA;AAAA;AAAA,0BAIE,uBAAuB;AAAA,+BAClB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,gBACK;AAAA;AAAA,oDAEoC;AAAA;AAAA,4BAExB,cAAc;AAAA,iCACT;AAAA;AAAA;AAAA,EAG/B;AACA,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,gDACkC;AAAA;AAAA,uDAEO,uBAAuB;AAAA,+BAC/C;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,YACC;AAAA,8CACkC,MAAM;AAAA;AAAA,qDAEC,cAAc;AAAA,6BACtC;AAAA;AAAA;AAAA,EAG3B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,qBAAqB;AACvB,WAAO;AAAA,YACC;AAAA;AAAA,sBAEU,qBAAqB;AAAA,sBACrB;AAAA,0BACI,mBAAmB,qBAAqB;AAAA,6BACrC,uBAAuB;AAAA,6BACvB;AAAA;AAAA;AAAA,EAG3B;AACA,SAAO;AAAA,cACK;AAAA;AAAA,4BAEc,mBAAmB,qBAAqB;AAAA,+BACrC,YAAY;AAAA,+BACZ;AAAA;AAAA;AAG/B;AACA,SAAS,mBAAmB,WAAW,qBAAqB;AAC1D,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,OAAO,mBAAmB;AAChC,MAAI,qBAAqB;AACvB,WAAO;AAAA,WACA;AAAA,0CAC+B;AAAA,0DACgB;AAAA;AAAA,yBAEjC;AAAA;AAAA,gDAEuB,0CAA0C;AAAA;AAAA;AAAA,mGAGS,KAAK,aAAa;AAAA;AAAA;AAAA,EAGnH;AACA,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,OAAO,MAAM;AACnB,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,QAAM,UAAU,eAAe;AAC/B,QAAM,UAAU,eAAe;AAC/B,QAAM,eAAe,KAAK,KAAK,MAAM,OAAO,KAAK,CAAC;AAClD,MAAI,gBAAgB,eAAe,KAAK,KAAK,MAAM,OAAO,KAAK,CAAC;AAChE,MAAI,SAAS;AACb,MAAIU,SAAQ,OAAO,+BAA+B;AAClD,WAAS,IAAI,GAAG,IAAI,OAAO,GAAG,KAAK;AACjC,aAAS,QAAQ,QAAQ;AACzB,qBAAiB,MAAM,OAAO,IAAI;AAClC,IAAAA,SAAQ,IAAI,OAAO,qBAAqBA;AAAA,EAC1C;AACA,SAAO;AAAA,WACE,YAAY;AAAA,oBACHA;AAAA,2BACO;AAAA,kCACO;AAAA,qDACmB,YAAY;AAAA,eAClD,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,aAAa,WAAW,qBAAqB;AACpD,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,UAAU,MAAM;AACtB,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,MAAI,SAAS,SAAS,MAAM,QAAQ;AAClC,UAAM,eAAe,iBAAiB,WAAW,QAAQ;AACzD,UAAM,SAAS,CAAC,OAAO,OAAO,SAAS,QAAQ;AAC/C,WAAO;AAAA,QACH,qBAAqB,cAAc,mBAAmB;AAAA,cAChD;AAAA,iBACG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG7D;AACA,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA;AAAA,iCAEmB,YAAY,YAAY;AAAA,UAC/C,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,aAAa,UAAU,UAAU;AACvC,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,QAAM,aAAa,iBAAiB;AACpC,QAAM,aAAa,iBAAiB;AACpC,QAAM,aAAa,iBAAiB;AACpC,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,UACJ;AAAA,UACA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAMgB,uBAAuB;AAAA,+BAClB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,cACG;AAAA;AAAA;AAAA;AAAA,uBAIS,YAAY;AAAA;AAAA,0BAET,cAAc;AAAA,+BACT;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA;AAAA,gCAEkB,qBAAqB,oBAAoB;AAAA;AAAA;AAAA,yBAGhD,uBAAuB;AAAA,+BACjB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,cACG;AAAA;AAAA,gCAEkB,MAAM,KAAK,MAAM,OAAO,MAAM;AAAA;AAAA;AAAA,yBAGrC,cAAc;AAAA,+BACR;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,qBAAqB;AACvB,WAAO;AAAA,YACC;AAAA;AAAA,QAEJ;AAAA,QACA;AAAA,QACA;AAAA;AAAA;AAAA,6BAGqB,uBAAuB,+BAA+B;AAAA,6BACtD;AAAA;AAAA;AAAA,EAG3B;AACA,SAAO;AAAA,YACG;AAAA;AAAA,0BAEc,mBAAmB;AAAA,oBACzB;AAAA,6BACS,YAAY,oBAAoB;AAAA,6BAChC;AAAA;AAAA;AAG7B;AACA,SAAS,aAAa,WAAW;AAC/B,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,UAAU,MAAM;AACtB,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,MAAI,SAAS,SAAS,MAAM,QAAQ;AAClC,UAAM,eAAe,iBAAiB,WAAW,QAAQ;AACzD,UAAM,SAAS,CAAC,OAAO,OAAO,SAAS,UAAU,QAAQ;AACzD,WAAO;AAAA,QACH,qBAAqB,YAAY;AAAA,cAC3B;AAAA,iBACG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG7D;AACA,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA;AAAA;AAAA,iBAGG,YAAY,YAAY,YAAY;AAAA;AAAA,UAE3C,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,aAAa,UAAU,UAAU;AACvC,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,WAAO;AAAA,cACG;AAAA;AAAA;AAAA,gCAGkB,YAAY,YAAY;AAAA;AAAA,0BAE9B,cAAc;AAAA,+BACT;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,WAAO;AAAA,cACG;AAAA;AAAA;AAAA,iBAGG,MAAM,KAAK,MAAM,KAAK,MAAM;AAAA,iBAC5B,MAAM,KAAK,MAAM,OAAO,MAAM;AAAA;AAAA;AAAA,yBAGtB,cAAc;AAAA,+BACR;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,SAAO;AAAA,YACG;AAAA;AAAA,0BAEc,mBAAmB,qBAAqB;AAAA,qBAC7C,sBAAsB;AAAA,6BACd,YAAY;AAAA,6BACZ;AAAA;AAAA;AAG7B;AACA,SAAS,aAAa,WAAW;AAC/B,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,MAAI,SAAS,SAAS,MAAM,QAAQ;AAClC,UAAM,eAAe,iBAAiB,WAAW,QAAQ;AACzD,UAAM,SAAS,CAAC,OAAO,OAAO,SAAS,UAAU,UAAU,QAAQ;AACnE,WAAO;AAAA,QACH,qBAAqB,YAAY;AAAA,cAC3B;AAAA;AAAA,iBAEG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG7D;AACA,QAAM,UAAU,MAAM;AACtB,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA;AAAA;AAAA;AAAA,iBAIG,YAAY,YAAY,YAAY;AAAA;AAAA;AAAA,mBAGlC;AAAA,UACT,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,aAAa,UAAU,UAAU;AACvC,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,WAAO;AAAA,cACG;AAAA;AAAA;AAAA;AAAA,iBAIG,YAAY,YAAY,YAAY;AAAA;AAAA;AAAA,0BAG3B,cAAc;AAAA,+BACT;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,WAAO;AAAA,cACG;AAAA;AAAA;AAAA,iBAGG,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM;AAAA,iBACvC,MAAM,KAAK,MAAM,KAAK,MAAM;AAAA,iBAC5B,MAAM,KAAK,MAAM;AAAA,iBACjB,MAAM;AAAA;AAAA;AAAA,yBAGE,cAAc;AAAA,+BACR;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,SAAO;AAAA,YACG;AAAA;AAAA;AAAA,0BAGc,mBAAmB,qBAAqB;AAAA,qBAC7C,sBAAsB,sBAAsB;AAAA,6BACpC,YAAY;AAAA,6BACZ;AAAA;AAAA;AAG7B;AACA,SAAS,kBAAkB,WAAW;AACpC,QAAM,UAAU,UAAU;AAC1B,QAAM,SAAS,aAAa,cAAc,UAAU,UAAU,YAAY;AAC1E,MAAI,SAAS,GAAG;AACd,WAAO,UAAU;AAAA,EACnB;AACA,SAAO;AAAA,0BACiB;AAAA;AAAA,iBAET;AAAA;AAAA;AAAA;AAIjB;AACA,SAAS,+BAA+B,WAAW,cAAc;AAC/D,QAAM,UAAU,UAAU;AAC1B,QAAM,iBAAiB,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AACxE,QAAM,WAAW,QAAQ,iBAAiB;AAC1C,QAAM,SAAS,UAAU,UAAU,aAAa;AAChD,QAAM,UAAU,aAAa,aAAa;AAC1C,QAAM,gBAAgB,kBAAkB,UAAU,UAAU,cAAc,aAAa,YAAY;AACnG,QAAM,OAAO,kBAAkB,OAAO;AACtC,QAAM,WAAW,UAAU;AAC3B,MAAI;AACJ,QAAM,SAAS,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAC5C,MAAI,WAAW,GAAG;AAChB,oBAAgB;AAAA,EAClB,WAAW,UAAU,KAAK,cAAc,UAAU,GAAG;AACnD,oBAAgB;AAAA,EAClB,OAAO;AACL,oBAAgB,cAAc,IAAI,CAAC,MAAM,UAAU,OAAO,IAAI,gBAAgB,EAAE,KAAK,IAAI;AAAA,EAC3F;AACA,MAAI,wBAAwB;AAC5B,MAAI,UAAU,KAAK,SAAS,GAAG;AAC7B,4BAAwB;AAAA,EAC1B,OAAO;AACL,4BAAwB,UAAU,UAAU,aAAa,IAAI,CAAC,IAAI,OAAO,UAAU,OAAO,KAAK,WAAW,EAAE,KAAK,IAAI;AAAA,EACvH;AACA,MAAI,SAAS;AACb,QAAM,SAAS,aAAa,cAAc,UAAU,UAAU,YAAY;AAC1E,QAAM,gBAAgB,WAAW;AACjC,QAAM,UAAU,aAAa,cAAc,aAAa,YAAY;AACpE,QAAM,iBAAiB,YAAY;AACnC,MAAI,WAAW,KAAK,CAAC,iBAAiB,CAAC,gBAAgB;AACrD,aAAS;AAAA;AAAA;AAAA,EAGX,WAAW,iBAAiB,CAAC,gBAAgB;AAC3C,QAAI,YAAY,GAAG;AACjB,eAAS;AAAA;AAAA;AAAA,IAGX,OAAO;AACL,eAAS;AAAA;AAAA;AAAA,IAGX;AAAA,EACF,WAAW,cAAc,QAAQ;AAC/B,UAAM,OAAO,SAAS;AACtB,UAAM,OAAO,SAAS;AACtB,QAAI,cAAc,QAAQ,IAAI,IAAI,MAAM,cAAc,QAAQ,IAAI,IAAI,IAAI;AACxE,eAAS;AAAA,IACX,WAAW,cAAc,QAAQ,IAAI,IAAI,IAAI;AAC3C,eAAS;AAAA,IACX,WAAW,cAAc,QAAQ,IAAI,IAAI,IAAI;AAC3C,eAAS;AAAA,IACX;AAAA,EACF;AACA,SAAO;AAAA,WACE;AAAA,QACH;AAAA,QACA;AAAA,8BACsB,kBAAkB;AAAA,QACxC;AAAA;AAAA;AAGR;AACA,SAAS,yBAAyB,WAAW,cAAc;AACzD,QAAM,UAAU,UAAU;AAC1B,QAAM,iBAAiB,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AACxE,QAAM,WAAW,QAAQ,iBAAiB;AAC1C,QAAM,cAAc,aAAa;AACjC,QAAM,aAAa,UAAU,UAAU;AACvC,QAAM,SAAS,UAAU,UAAU,aAAa;AAChD,QAAM,UAAU,aAAa,aAAa;AAC1C,MAAI,CAAC,UAAU,UAAU,aAAa,WAAW,WAAW,UAAU,UAAU,cAAc,QAAQ,aAAa,YAAY,YAAY,WAAW,GAAG;AACvJ,WAAO;AAAA,cACG;AAAA,+BACiB;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,OAAO,kBAAkB,OAAO;AACtC,QAAM,gBAAgB,kBAAkB,UAAU,UAAU,cAAc,aAAa,YAAY;AACnG,QAAM,WAAW,UAAU;AAC3B,MAAI;AACJ,QAAM,SAAS,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAC5C,MAAI,WAAW,GAAG;AAChB,oBAAgB;AAAA,EAClB,WAAW,UAAU,KAAK,cAAc,UAAU,GAAG;AACnD,oBAAgB;AAAA,EAClB,OAAO;AACL,oBAAgB,cAAc,IAAI,CAAC,MAAM,UAAU,OAAO,IAAI,gBAAgB,EAAE,KAAK,IAAI;AAAA,EAC3F;AACA,MAAI,wBAAwB;AAC5B,MAAI,UAAU,KAAK,SAAS,GAAG;AAC7B,4BAAwB;AAAA,EAC1B,OAAO;AACL,4BAAwB,UAAU,UAAU,aAAa,IAAI,CAAC,IAAI,OAAO,UAAU,OAAO,KAAK,WAAW,EAAE,KAAK,IAAI;AAAA,EACvH;AACA,SAAO;AAAA,YACG;AAAA,QACJ;AAAA,QACA;AAAA,kBACU,kBAAkB;AAAA;AAAA;AAGpC;AACA,SAAS,kBAAkB,MAAM;AAC/B,MAAI,QAAQ,GAAG;AACb,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,OAAO;AACL,UAAM,MAAM,gBAAgB,2BAA2B;AAAA,EACzD;AACF;AACA,SAAS,wBAAwB,UAAU,OAAO,UAAU;AAC1D,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,QAAM,OAAO,MAAM;AACnB,QAAM,wBAAwB,YAAY,SAAS,KAAK,MAAM,OAAO;AACrE,QAAM,gBAAgB,wBAAwB,MAAM,MAAM,CAAC,IAAI;AAC/D,QAAM,kBAAkB,CAAC,YAAY,OAAO,KAAK,CAAC,aAAa,YAAY,OAAO,QAAQ,KAAK,SAAS,SAAS,QAAQ;AACzH,QAAM,eAAe,kBAAkB,gBAAgB;AACvD,SAAO,EAAE,iBAAiB,cAAc,SAAS;AACnD;AACA,SAAS,iBAAiB,QAAQ,eAAe;AAC/C,QAAM,eAAe,KAAK,MAAM,KAAK,UAAU,MAAM,CAAC;AACtD,eAAa,UAAU,eAAe;AACtC,SAAO;AACT;AACA,SAAS,kBAAkB,QAAQ,UAAU;AAC3C,SAAO,SAAS,IAAI,CAAC,MAAM,OAAO,EAAE,EAAE,KAAK,IAAI;AACjD;AAGA,SAAS,eAAe,OAAO,SAAS,QAAQ,QAAQ;AACtD,QAAM,aAAa,OAAO,IAAI,CAAC,QAAQ,OAAO;AAC5C,UAAM,YAAY;AAAA,MAChB,cAAc,OAAO;AAAA,MACrB,UAAU,OAAO,YAAY,OAAO,OAAO,QAAQ;AAAA,MACnD,WAAW,OAAO;AAAA,MAClB,UAAU,OAAO,YAAY,QAAQ,OAAO,QAAQ;AAAA,MACpD,YAAY;AAAA,IACd;AACA,QAAI,OAAO,WAAW,QAAQ,OAAO,QAAQ,SAAS,QAAQ,OAAO,QAAQ,MAAM,aAAa,GAAG;AACjG,gBAAU,aAAa,OAAO,QAAQ,MAAM;AAAA,IAC9C;AACA,WAAO,EAAE,MAAM,QAAQ,cAAc,KAAK,UAAU;AAAA,EACtD,CAAC;AACD,QAAM,eAAe,WAAW,IAAI,CAAC,MAAM,EAAE,SAAS;AACtD,QAAM,eAAe;AAAA,IACnB,cAAc,OAAO;AAAA,IACrB,UAAU,OAAO,QAAQ;AAAA,IACzB,WAAW;AAAA,IACX,UAAU,OAAO,QAAQ;AAAA,IACzB,YAAY;AAAA,EACd;AACA,QAAM,SAAS,WAAW,YAAY,cAAc,OAAO;AAC3D,QAAM,iBAAiB,qBAAqB,MAAM,IAAI,MAAM;AAC5D,QAAM,eAAe,MAAM,cAAc,cAAc;AACvD,MAAI,CAAC,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACrC,WAAO,OAAO,OAAO;AAAA,MACnB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF,GAAG,oBAAoB,OAAO,SAAS,YAAY,CAAC;AAAA,EACtD,OAAO;AACL,WAAO;AAAA,MACL;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,kBAAkB;AAAA,MAClB,wBAAwB;AAAA,MACxB,QAAQ;AAAA,MACR,QAAQ;AAAA,MACR,mBAAmB;AAAA,MACnB,sBAAsB;AAAA,MACtB,kBAAkB;AAAA,MAClB,yBAAyB;AAAA,MACzB,qBAAqB;AAAA,IACvB;AAAA,EACF;AACF;AACA,SAAS,oBAAoB,OAAO,SAAS,cAAc;AACzD,QAAM,mBAAmB,CAAC;AAC1B,QAAM,oBAAoB,CAAC;AAC3B,QAAM,uBAAuB,CAAC;AAC9B,QAAM,yBAAyB,CAAC;AAChC,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,SAAS;AACb,MAAI,SAAS;AACb,WAAS,MAAM,mBAAmB,cAAc,OAAO,KAAK;AAC5D,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,aAAS,MAAM,mBAAmB,cAAc,YAAY,KAAK;AAAA,EACnE;AACA,QAAM,cAAc;AACpB,WAAS,KAAK,GAAG,KAAK,QAAQ,cAAc,QAAQ,MAAM;AACxD,UAAM,UAAU,QAAQ,cAAc;AACtC,qBAAiB,WAAW,MAAM,mBAAmB,cAAc,SAAS,WAAW;AACvF,qBAAiB,SAAS,aAAa,MAAM,mBAAmB,cAAc,SAAS,WAAW,WAAW;AAC7G,QAAI,QAAQ,qBAAqB;AAC/B,wBAAkB,GAAG,kBAAkB,MAAM,mBAAmB,cAAc,GAAG,gBAAgB,WAAW;AAC5G,2BAAqB,GAAG,qBAAqB,MAAM,mBAAmB,cAAc,GAAG,mBAAmB,WAAW;AAAA,IACvH;AAAA,EACF;AACA,MAAI,QAAQ,qBAAqB;AAC/B,uBAAmB,MAAM,mBAAmB,cAAc,YAAY,WAAW;AACjF,8BAA0B,MAAM,mBAAmB,cAAc,mBAAmB,WAAW;AAC/F,0BAAsB,MAAM,mBAAmB,cAAc,eAAe,WAAW;AAAA,EACzF;AACA,MAAI,QAAQ,gBAAgB;AAC1B,YAAQ,eAAe,QAAQ,CAAC,GAAG,OAAO;AACxC,6BAAuB,MAAM,MAAM,mBAAmB,cAAc,EAAE,MAAM,WAAW;AAAA,IACzF,CAAC;AAAA,EACH;AACA,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,yBAAyB,YAAY,QAAQ;AACpD,MAAI,WAAW,WAAW,OAAO,QAAQ;AACvC,UAAM,MAAM,4BAA4B,WAAW,wCAAwC,OAAO,eAAe;AAAA,EACnH;AACA,aAAW,QAAQ,CAAC,IAAI,OAAO;AAC7B,UAAM,SAAS,GAAG;AAClB,UAAM,SAAS,OAAO;AACtB,UAAM,SAAS,OAAO;AACtB,QAAI,CAAC,aAAa,YAAY,QAAQ,MAAM,GAAG;AAC7C,YAAM,MAAM,2EAA2E,cAAc,mBAAmB;AAAA,IAC1H;AACA,QAAI,GAAG,aAAa,OAAO,WAAW;AACpC;AAAA,IACF;AACA,UAAM,YAAY,GAAG;AACrB,UAAM,YAAY,OAAO,YAAY,OAAO,OAAO,QAAQ;AAC3D,QAAI,CAAC,aAAa,YAAY,WAAW,SAAS,GAAG;AACnD,YAAM,MAAM,kFAAkF,iBAAiB,sBAAsB;AAAA,IACvI;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,OAAO,QAAQ,QAAQ,QAAQ,qBAAqB;AACtE,MAAI,CAAC,OAAO,QAAQ,qBAAqB;AACvC,6BAAyB,OAAO,cAAc,MAAM;AACpD,6BAAyB,CAAC,OAAO,YAAY,GAAG,CAAC,MAAM,CAAC;AAAA,EAC1D;AACA,QAAM,SAAS,OAAO,QAAQ;AAC9B,QAAM,cAAc,OAAO,QAAQ;AACnC,MAAI,OAAO,QAAQ,UAAU;AAC3B,UAAM,6BAA6B,OAAO,SAAS,YAAY,IAAI,YAAY,EAAE;AAAA,EACnF,OAAO;AACL,UAAM,uBAAuB,OAAO,SAAS,YAAY,IAAI,YAAY,EAAE;AAAA,EAC7E;AACA,QAAM,WAAW,OAAO,YAAY;AACpC,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,QAAI,OAAO,WAAW,MAAM;AAC1B,YAAM,GAAG,UAAU,OAAO,QAAQ,QAAQ;AAAA,IAC5C;AAAA,EACF;AACA,MAAI,OAAO,WAAW,MAAM;AAC1B,UAAM,GAAG,UAAU,OAAO,QAAQ,GAAG;AAAA,EACvC;AACA,SAAO,QAAQ,CAAC,QAAQ,OAAO;AAC7B,UAAM,UAAU,OAAO,QAAQ,cAAc;AAC7C,UAAM,SAAS,OAAO,iBAAiB;AACvC,UAAM,eAAe,OAAO,iBAAiB,SAAS;AACtD,UAAM,cAAc,OAAO,kBAAkB,GAAG;AAChD,UAAM,iBAAiB,OAAO,qBAAqB,GAAG;AACtD,QAAI,aAAa;AACf,YAAM,EAAE,aAAa,IAAI,wBAAwB,OAAO,QAAQ,cAAc,OAAO,OAAO,OAAO,QAAQ,QAAQ;AACnH,cAAQ,aAAa;AAAA,aACd;AACH,gBAAM,GAAG,WAAW,aAAa,IAAI,WAAW,YAAY,CAAC;AAC7D;AAAA,aACG;AACH,gBAAM,GAAG,WAAW,aAAa,IAAI,WAAW,YAAY,CAAC;AAC7D;AAAA,aACG;AACH,gBAAM,GAAG,WAAW,aAAa,IAAI,WAAW,YAAY,CAAC;AAC7D;AAAA,aACG;AACH,gBAAM,GAAG,WAAW,aAAa,IAAI,WAAW,YAAY,CAAC;AAC7D;AAAA;AAEA;AAAA;AAAA,IAEN;AACA,QAAI,gBAAgB;AAClB,YAAM,GAAG,UAAU,gBAAgB,OAAO,QAAQ,SAAS,IAAI,OAAO,QAAQ,SAAS,EAAE;AAAA,IAC3F;AACA,QAAI,UAAU,MAAM;AAClB;AAAA,IACF;AACA,QAAI,OAAO,WAAW;AACpB,UAAI,aAAa,cAAc,OAAO,KAAK,IAAI,GAAG;AAChD,cAAM,GAAG,UAAU,QAAQ,OAAO,cAAc,EAAE;AAAA,MACpD,OAAO;AACL,YAAI,OAAO,OAAO;AAClB,YAAI,EAAE,gBAAgB,eAAe;AACnC,iBAAO,IAAI,aAAa,IAAI;AAAA,QAC9B;AACA,cAAM,GAAG,WAAW,QAAQ,IAAI;AAAA,MAClC;AACA;AAAA,IACF;AACA,QAAI,OAAO,QAAQ,SAAS,QAAQ,gBAAgB,MAAM;AACxD,YAAM,GAAG,UAAU,cAAc,OAAO,QAAQ,MAAM,UAAU;AAAA,IAClE;AACA,UAAM,sBAAsB,OAAO,QAAQ,QAAQ,SAAS,QAAQ,EAAE;AAAA,EACxE,CAAC;AACD,QAAM,cAAc,OAAO;AAC3B,MAAI,aAAa;AACf,YAAQ,OAAO,MAAM;AAAA,WACd;AACH,cAAM,GAAG,WAAW,aAAa,IAAI,WAAW,OAAO,KAAK,CAAC;AAC7D;AAAA,WACG;AACH,cAAM,GAAG,WAAW,aAAa,IAAI,WAAW,OAAO,KAAK,CAAC;AAC7D;AAAA,WACG;AACH,cAAM,GAAG,WAAW,aAAa,IAAI,WAAW,OAAO,KAAK,CAAC;AAC7D;AAAA,WACG;AACH,cAAM,GAAG,WAAW,aAAa,IAAI,WAAW,OAAO,KAAK,CAAC;AAC7D;AAAA;AAEA;AAAA;AAAA,EAEN;AACA,MAAI,OAAO,yBAAyB;AAClC,UAAMG,WAAU,aAAa,eAAe,OAAO,KAAK;AACxD,YAAQ,OAAO,MAAM;AAAA,WACd;AACH,cAAM,GAAG,WAAW,OAAO,yBAAyB,IAAI,WAAWA,QAAO,CAAC;AAC3E;AAAA,WACG;AACH,cAAM,GAAG,WAAW,OAAO,yBAAyB,IAAI,WAAWA,QAAO,CAAC;AAC3E;AAAA,WACG;AACH,cAAM,GAAG,WAAW,OAAO,yBAAyB,IAAI,WAAWA,QAAO,CAAC;AAC3E;AAAA;AAEA;AAAA;AAAA,EAEN;AACA,MAAI,OAAO,qBAAqB;AAC9B,UAAM,GAAG,UAAU,OAAO,qBAAqB,OAAO,QAAQ,SAAS,IAAI,OAAO,QAAQ,SAAS,EAAE;AAAA,EACvG;AACA,MAAI,OAAO,QAAQ,kBAAkB,qBAAqB;AACxD,WAAO,QAAQ,eAAe,QAAQ,CAAC,GAAG,OAAO;AAC/C,YAAM,YAAY,OAAO,uBAAuB;AAChD,YAAM,cAAc,oBAAoB;AACxC,UAAI,EAAE,SAAS,SAAS;AACtB,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,QAAQ;AAC5B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,QAAQ;AAC5B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,QAAQ;AAC5B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,OAAO;AAC3B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,SAAS;AAC7B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,SAAS;AAC7B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,SAAS;AAC7B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,OAAO;AACL,cAAM,MAAM,gBAAgB,EAAE,4BAA4B;AAAA,MAC5D;AAAA,IACF,CAAC;AAAA,EACH;AACA,QAAM,eAAe;AACvB;AACA,SAAS,cAAc,SAAS,QAAQ,QAAQ;AAC9C,MAAI,YAAY;AAChB,SAAO,OAAO,MAAM,EAAE,QAAQ,CAAC,MAAM;AACnC,UAAM,YAAY,EAAE,WAAW,QAAQ,EAAE,QAAQ,SAAS,QAAQ,EAAE,QAAQ,MAAM,aAAa;AAC/F,QAAI,QAAQ,uBAAuB,CAAC,EAAE,WAAW;AAC/C,YAAM,YAAY,EAAE,QAAQ;AAC5B,YAAM,EAAE,iBAAiB,cAAc,SAAS,IAAI,wBAAwB,QAAQ,cAAc,EAAE,OAAO,SAAS;AACpH,UAAI,QAAQ,IAAI,QAAQ,IAAI,SAAS;AACrC,UAAI,aAAa,WAAW,KAAK,QAAQ,cAAc;AACrD,cAAM,iBAAiB,CAAC,KAAK,KAAK,UAAU,KAAK,CAAC,GAAG,KAAK,KAAK,UAAU,KAAK,CAAC,CAAC;AAChF,gBAAQ,GAAG,eAAe,KAAK,KAAK,eAAe,KAAK;AAAA,MAC1D,WAAW,aAAa,WAAW,KAAK,CAAC,QAAQ,cAAc;AAC7D,gBAAQ,GAAG,aAAa,KAAK,KAAK,aAAa,KAAK;AAAA,MACtD,WAAW,aAAa,SAAS,KAAK,CAAC,QAAQ,cAAc;AAC3D,cAAMA,WAAU,aAAa,eAAe,YAAY;AACxD,iBAAS,GAAGA,SAAQ,OAAO,UAAU,MAAMA,SAAQA,SAAQ,SAAS,OAAO,UAAU;AAAA,MACvF;AACA,YAAM,QAAQ,EAAE,MAAM;AACtB,YAAM,6BAA6B,aAAa,WAAW,KAAK,aAAa,YAAY,EAAE,OAAO,SAAS;AAC3G,YAAM,WAAW,aAAa,cAAc,EAAE,KAAK,MAAM;AACzD,YAAM,gBAAgB,qBAAqB,iBAAiB,EAAE,OAAO,OAAO,KAAK;AACjF,YAAM,uBAAuB,CAAC,QAAQ,gBAAgB,UAAU,OAAO,MAAM,UAAU,aAAa,YAAY,WAAW,OAAO,QAAQ,QAAQ;AAClJ,YAAM,2BAA2B,QAAQ,gBAAgB,aAAa,SAAS,IAAI,KAAK,GAAG,UAAU,KAAK,KAAK,UAAU,KAAK;AAC9H,mBAAa,GAAG,SAAS,wBAAwB,kBAAkB,WAAW,MAAM,aAAa,UAAU,YAAY,iBAAiB,8BAA8B,SAAS,SAAS,UAAU,4BAA4B;AAAA,IAChO,OAAO;AACL,YAAM,WAAW,EAAE,YAAY,YAAY,EAAE,QAAQ;AACrD,mBAAa,GAAG,EAAE,SAAS,YAAY;AAAA,IACzC;AAAA,EACF,CAAC;AACD,QAAM,cAAc,QAAQ;AAC5B,MAAI,MAAM,QAAQ,YAAY;AAC9B,SAAO,MAAM,YAAY,MAAM,cAAc,GAAG,IAAI,EAAE,UAAU,eAAe;AAC/E,SAAO;AACT;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,EAAE,QAAQ,2BAA2B,KAAK,QAAQ;AAC/D;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,mBAAmB,cAAc;AACtC,SAAK,iBAAiB,CAAC,EAAE,MAAM,YAAY,MAAM,QAAQ,CAAC;AAC1D,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV,KAAK,sBAAsB,kDAAkD,CAAC,KAAK,KAAK,GAAG,GAAG,WAAW,IAAI,mCAAmC,CAAC,KAAK,KAAK,GAAG,GAAG,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAgB5K,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,4BAA4B,MAAM;AAAA,EACpC,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,mBAAmB,cAAc;AACtC,SAAK,iBAAiB,CAAC,EAAE,MAAM,YAAY,MAAM,QAAQ,CAAC;AAC1D,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV,KAAK,sBAAsB,kDAAkD,CAAC,KAAK,KAAK,GAAG,GAAG,WAAW,IAAI,mCAAmC,CAAC,KAAK,KAAK,GAAG,GAAG,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAgB5K,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,aAAa;AAChC,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA;AAAA;AAAA,UAIE,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,aAAa;AAChC,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA;AAAA;AAAA;AAAA,UAKE,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,sBAAsB,OAAO;AACpD,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,iBAAiB,CAAC,EAAE,MAAM,YAAY,MAAM,QAAQ,CAAC;AAC1D,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,QAAI,SAAS;AACb,QAAI,qBAAqB;AACvB,eAAS;AAAA,IACX;AACA,SAAK,WAAW;AAAA,QACZ,KAAK,sBAAsB,yBAAyB,IAAI,mBAAmB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAatE,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAcnB,KAAK,iBAAiB;AAAA;AAAA;AAAA,EAG9B;AACF;AAGA,IAAI,4BAA4B,MAAM;AAAA,EACpC,YAAY,aAAa,sBAAsB,OAAO;AACpD,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,YAAY,MAAM,QAAQ,CAAC;AAC1D,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,QAAI,WAAW;AACf,QAAI,SAAS;AACb,QAAI,qBAAqB;AACvB,eAAS;AAAA,IACX;AACA,aAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,eAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,cAAM,UAAU,MAAM,IAAI;AAC1B,oBAAY;AAAA;AAAA,gCAEY,SAAS,KAAK,sBAAsB,gBAAgB,GAAG,YAAY;AAAA,8BACrE;AAAA,iCACG,SAAS,KAAK,sBAAsB,gBAAgB,GAAG,YAAY;AAAA,gCACpE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uBAUT,KAAK;AAAA;AAAA;AAAA,uBAGL;AAAA;AAAA,uBAEA;AAAA;AAAA,uBAEA;AAAA;AAAA,uBAEA;AAAA;AAAA;AAAA;AAAA;AAAA,MAKjB;AAAA,IACF;AACA,SAAK,WAAW;AAAA,UACV,KAAK,sBAAsB,yBAAyB,IAAI,mBAAmB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAWpF;AAAA;AAAA,YAEA,KAAK,YAAY;AAAA;AAAA;AAAA,EAG3B;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BhB,UAAS,oBAAoB;AAAA,EAC3B,mCAAmC,MAAM;AAAA,EACzC,+BAA+B,MAAM;AAAA,EACrC,4BAA4B,MAAM;AAAA,EAClC,kCAAkC,MAAM;AAAA,EACxC,4BAA4B,MAAM;AAAA,EAClC,mBAAmB,MAAM;AAAA,EACzB,2BAA2B,MAAM;AAAA,EACjC,kCAAkC,MAAM;AAAA,EACxC,oBAAoB,MAAM;AAAA,EAC1B,oBAAoB,MAAM;AAAA,EAC1B,iDAAiD,MAAM;AAAA,EACvD,iCAAiC,MAAM;AAAA,EACvC,uCAAuC,MAAM;AAAA,EAC7C,gCAAgC,MAAM;AAAA,EACtC,0CAA0C,MAAM;AAAA,EAChD,gDAAgD,MAAM;AAAA,EACtD,0CAA0C,MAAM;AAAA,EAChD,yCAAyC,MAAM;AAAA,EAC/C,gDAAgD,MAAM;AAAA,EACtD,4BAA4B,MAAM;AAAA,EAClC,0BAA0B,MAAM;AAClC,CAAC;AACD,SAAS,oBAAoB,IAAI;AAC/B,QAAM,OAAO,mBAAmB;AAChC,QAAM,qBAAqB,GAAG,KAAK;AAAA;AAAA,MAE/B,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAMT,SAAO,mBAAmB,IAAI,kBAAkB;AAClD;AACA,SAAS,mBAAmB,IAAI;AAC9B,QAAM,cAAc,IAAI,aAAa,CAAC,IAAI,GAAG,GAAG,GAAG,GAAG,IAAI,IAAI,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,CAAC,CAAC;AACrG,SAAO,yBAAyB,IAAI,WAAW;AACjD;AACA,SAAS,kBAAkB,IAAI;AAC7B,QAAM,wBAAwB,IAAI,YAAY,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAChE,SAAO,wBAAwB,IAAI,qBAAqB;AAC1D;AACA,SAAS,0BAA0B,IAAI,OAAO,QAAQ,gBAAgB,eAAe,aAAa;AAChG,sBAAoB,OAAO,MAAM;AACjC,QAAM,UAAU,cAAc,EAAE;AAChC,QAAM,QAAQ,GAAG;AACjB,eAAa,IAAI,MAAM,GAAG,YAAY,OAAO,OAAO,CAAC;AACrD,eAAa,IAAI,MAAM,GAAG,cAAc,OAAO,GAAG,gBAAgB,GAAG,aAAa,CAAC;AACnF,eAAa,IAAI,MAAM,GAAG,cAAc,OAAO,GAAG,gBAAgB,GAAG,aAAa,CAAC;AACnF,eAAa,IAAI,MAAM,GAAG,cAAc,OAAO,GAAG,oBAAoB,GAAG,OAAO,CAAC;AACjF,eAAa,IAAI,MAAM,GAAG,cAAc,OAAO,GAAG,oBAAoB,GAAG,OAAO,CAAC;AACjF,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,iBAAa,IAAI,MAAM,GAAG,WAAW,OAAO,GAAG,gBAAgB,OAAO,QAAQ,GAAG,eAAe,aAAa,IAAI,CAAC;AAAA,EACpH,OAAO;AACL,iBAAa,IAAI,MAAM,GAAG,aAAa,OAAO,GAAG,gBAAgB,OAAO,MAAM,CAAC;AAAA,EACjF;AACA,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,IAAI,CAAC;AAC1D,SAAO,EAAE,SAAS,UAAU,CAAC,QAAQ,KAAK,EAAE;AAC9C;AACA,SAAS,yCAAyC,eAAe;AAC/D,SAAO,cAAc;AACvB;AACA,SAAS,2BAA2B,IAAI,MAAM,SAAS,eAAe;AACpE,QAAM,CAAC,OAAO,MAAM,IAAI,yCAAyC,MAAM,OAAO;AAC9E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,yCAAyC,aAAa,GAAG,cAAc,oBAAoB,GAAG,KAAK;AACzJ;AACA,SAAS,yCAAyC,eAAe;AAC/D,SAAO,cAAc;AACvB;AACA,SAAS,2BAA2B,IAAI,MAAM,SAAS,eAAe;AACpE,QAAM,CAAC,OAAO,MAAM,IAAI,yCAAyC,MAAM,OAAO;AAC9E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,yCAAyC,aAAa,GAAG,cAAc,oBAAoB,cAAc,oBAAoB;AACnL;AACA,SAAS,+CAA+C,eAAe;AACrE,SAAO,cAAc;AACvB;AACA,SAAS,iCAAiC,IAAI,MAAM,SAAS,eAAe;AAC1E,QAAM,CAAC,OAAO,MAAM,IAAI,yCAAyC,MAAM,OAAO;AAC9E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,+CAA+C,aAAa,GAAG,GAAG,MAAM,GAAG,aAAa;AAC9I;AACA,SAAS,wCAAwC,eAAe;AAC9D,SAAO,cAAc;AACvB;AACA,SAAS,0BAA0B,IAAI,MAAM,SAAS,eAAe;AACnE,QAAM,CAAC,OAAO,MAAM,IAAI,uCAAuC,MAAM,OAAO;AAC5E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,wCAAwC,aAAa,GAAG,GAAG,MAAM,GAAG,KAAK;AAC/H;AACA,SAAS,+CAA+C,eAAe;AACrE,SAAO,cAAc;AACvB;AACA,SAAS,iCAAiC,IAAI,MAAM,SAAS,eAAe;AAC1E,QAAM,CAAC,OAAO,MAAM,IAAI,uCAAuC,MAAM,OAAO;AAC5E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,+CAA+C,aAAa,GAAG,GAAG,MAAM,cAAc,oBAAoB;AAChK;AACA,SAAS,kCAAkC,IAAI,SAAS,cAAc;AACpE,QAAM,YAAY;AAClB,QAAM,WAAW,IAAI;AACrB,QAAM,SAAS,IAAI,IAAI,IAAI;AAC3B,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,YAAY,CAAC;AACnE,QAAM,UAAU,mCAAmC,IAAI,SAAS,gBAAgB,cAAc,GAAG,QAAQ,SAAS;AAClH,SAAO,WAAW,mCAAmC,IAAI,SAAS,MAAM,cAAc,GAAG,QAAQ,QAAQ;AAC3G;AACA,SAAS,2BAA2B,IAAI,SAAS,OAAO,QAAQ,MAAM,eAAe;AACnF,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,OAAO,CAAC;AAC7D,MAAI,eAAe,eAAe;AAClC,MAAI,gBAAgB,YAAY;AAC9B,oBAAgB,IAAI,WAAW,QAAQ,SAAS,CAAC;AACjD,oBAAgB,GAAG;AACnB,qBAAiB,GAAG;AAAA,EACtB,OAAO;AACL,oBAAgB,IAAI,aAAa,QAAQ,SAAS,CAAC;AACnD,oBAAgB,GAAG;AACnB,qBAAiB,cAAc;AAAA,EACjC;AACA,gBAAc,IAAI,IAAI;AACtB,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,iBAAa,IAAI,MAAM,GAAG,cAAc,GAAG,YAAY,GAAG,GAAG,GAAG,OAAO,QAAQ,GAAG,MAAM,eAAe,aAAa,CAAC;AAAA,EACvH,OAAO;AACL,iBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,YAAY,GAAG,gBAAgB,OAAO,QAAQ,GAAG,GAAG,MAAM,eAAe,aAAa,CAAC;AAAA,EACjI;AACA,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,IAAI,CAAC;AAC5D;AACA,SAAS,yBAAyB,IAAI,SAAS,QAAQ;AACrD,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,OAAO,CAAC;AAC7D,MAAI,OAAO,gBAAgB,YAAY;AACrC,QAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,mBAAa,IAAI,MAAM,GAAG,cAAc,GAAG,YAAY,GAAG,GAAG,GAAG,OAAO,OAAO,OAAO,QAAQ,GAAG,MAAM,GAAG,eAAe,OAAO,IAAI,CAAC;AAAA,IACtI,OAAO;AACL,mBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,YAAY,GAAG,GAAG,MAAM,OAAO,OAAO,OAAO,QAAQ,GAAG,GAAG,MAAM,GAAG,eAAe,OAAO,IAAI,CAAC;AAAA,IACzI;AAAA,EACF,OAAO;AACL,QAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,mBAAa,IAAI,MAAM,GAAG,cAAc,GAAG,YAAY,GAAG,GAAG,GAAG,GAAG,MAAM,GAAG,eAAe,MAAM,CAAC;AAAA,IACpG,OAAO;AACL,mBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,YAAY,GAAG,GAAG,MAAM,GAAG,MAAM,GAAG,eAAe,MAAM,CAAC;AAAA,IACpG;AAAA,EACF;AACA,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,IAAI,CAAC;AAC5D;AACA,SAAS,8BAA8B,KAAK,MAAM,SAAS,eAAe;AACxE,QAAM,UAAU,IAAI,aAAa;AACjC,eAAa,KAAK,MAAM,IAAI,WAAW,IAAI,mBAAmB,OAAO,CAAC;AACtE,QAAM,gBAAgB;AACtB,QAAM,iBAAiB;AACvB,QAAM,kBAAkB,gBAAgB,iBAAiB,OAAO;AAChE,eAAa,KAAK,MAAM,IAAI,WAAW,IAAI,mBAAmB,iBAAiB,IAAI,WAAW,CAAC;AAC/F,eAAa,KAAK,MAAM,IAAI,WAAW,GAAG,GAAG,SAAS,MAAM,IAAI,MAAM,IAAI,OAAO,CAAC,CAAC;AACnF,eAAa,KAAK,MAAM,IAAI,WAAW,IAAI,mBAAmB,IAAI,CAAC;AACnE,SAAO;AACT;AACA,SAAS,gCAAgC,IAAI,SAASG,OAAM;AAC1D,QAAM,MAAM;AACZ,QAAM,iBAAiB,IAAI,aAAaA,KAAI;AAC5C,MAAI,WAAW,IAAI,mBAAmB,OAAO;AAC7C,MAAI,iBAAiB,IAAI,mBAAmB,GAAG,cAAc;AAC7D,MAAI,WAAW,IAAI,mBAAmB,IAAI;AAC1C,SAAO;AACT;AACA,SAAS,gDAAgD,IAAI,MAAM,SAAS,eAAe;AACzF,QAAM,CAAC,GAAG,CAAC,IAAI,yCAAyC,MAAM,OAAO;AACrE,QAAM,cAAc;AACpB,QAAM,iBAAiB,IAAI,WAAW,mCAAmC,OAAO,SAAS,WAAW,CAAC;AACrG,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,GAAG,GAAG,GAAG,cAAc,uBAAuB,GAAG,eAAe,cAAc,CAAC;AACvH,SAAO,IAAI,aAAa,eAAe,MAAM;AAC/C;AACA,SAAS,+BAA+B,IAAI,SAAS,OAAO,MAAM,MAAM,cAAc,cAAc,eAAe;AACjH,QAAM,MAAM;AACZ,QAAM,iBAAiB,IAAI,aAAa,sCAAsC,cAAc,YAAY,CAAC;AACzG,MAAI,WAAW,IAAI,mBAAmB,OAAO;AAC7C,MAAI,iBAAiB,IAAI,mBAAmB,GAAG,cAAc;AAC7D,MAAI,WAAW,IAAI,mBAAmB,IAAI;AAC1C,SAAO;AACT;AACA,SAAS,sCAAsC,IAAI,cAAc,cAAc;AAC7E,QAAM,aAAa,IAAI,aAAa,eAAe,eAAe,CAAC;AACnE,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,GAAG,cAAc,cAAc,GAAG,MAAM,GAAG,OAAO,UAAU,CAAC;AACrG,SAAO;AACT;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,IAAI;AACd,SAAK,gBAAgB;AACrB,SAAK,UAAU;AACf,SAAK,WAAW;AAChB,SAAK,sBAAsB;AAC3B,SAAK,cAAc,CAAC;AACpB,UAAM,YAAY,IAAI,EAAE,UAAU,eAAe;AACjD,QAAI,MAAM,MAAM;AACd,WAAK,KAAK;AACV,sBAAgB,WAAW,EAAE;AAAA,IAC/B,OAAO;AACL,WAAK,KAAK,gBAAgB,SAAS;AAAA,IACrC;AACA,QAAI,qBAAqB;AACzB,UAAM,0BAA0B;AAChC,SAAK,+BAA+B,KAAK,GAAG,aAAa,6BAA6B;AACtF,QAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,YAAM,gBAAgB;AACtB,YAAM,qBAAqB;AAC3B,WAAK,wBAAwB,oBAAoB,KAAK,IAAI,aAAa;AACvE,UAAI,aAAa,KAAK,IAAI,kBAAkB,GAAG;AAC7C,aAAK,4BAA4B,oBAAoB,KAAK,IAAI,kBAAkB;AAAA,MAClF,WAAW,IAAI,EAAE,IAAI,0BAA0B,GAAG;AAChD,cAAM,IAAI,MAAM,oHAAoH;AAAA,MACtI;AACA,WAAK,4BAA4B,KAAK,GAAG,aAAa,kBAAkB;AACxE,UAAI,aAAa,KAAK,IAAI,uBAAuB,GAAG;AAClD,aAAK,gCAAgC,oBAAoB,KAAK,IAAI,uBAAuB;AAAA,MAC3F,WAAW,IAAI,EAAE,IAAI,0BAA0B,GAAG;AAChD,cAAM,IAAI,MAAM,6HAA6H;AAAA,MAC/I;AAAA,IACF,OAAO;AACL,2BAAqB;AACrB,UAAI,aAAa,KAAK,IAAI,kBAAkB,GAAG;AAC7C,aAAK,4BAA4B,KAAK,GAAG,aAAa,kBAAkB;AAAA,MAC1E,WAAW,aAAa,KAAK,IAAI,uBAAuB,GAAG;AACzD,aAAK,gCAAgC,KAAK,GAAG,aAAa,uBAAuB;AAAA,MACnF,OAAO;AACL,cAAM,IAAI,MAAM,qDAAqD;AAAA,MACvE;AAAA,IACF;AACA,SAAK,eAAe,mBAAmB,KAAK,EAAE;AAC9C,SAAK,cAAc,kBAAkB,KAAK,EAAE;AAC5C,SAAK,cAAc,kBAAkB,KAAK,EAAE;AAC5C,SAAK,gBAAgB,iBAAiB,KAAK,IAAI,KAAK,yBAAyB;AAAA,EAC/E;AAAA,EACA,IAAI,QAAQ;AACV,WAAO,IAAI,EAAE,QAAQ,OAAO;AAAA,EAC9B;AAAA,EACA,UAAU;AACR,QAAI,KAAK,UAAU;AACjB;AAAA,IACF;AACA,QAAI,KAAK,WAAW,MAAM;AACxB,cAAQ,KAAK,sKAAsK;AAAA,IACrL;AACA,QAAI,KAAK,iBAAiB,MAAM;AAC9B,cAAQ,KAAK,oMAAoM;AAAA,IACnN;AACA,UAAM,KAAK,KAAK;AAChB,iBAAa,IAAI,MAAM,GAAG,OAAO,CAAC;AAClC,iBAAa,IAAI,MAAM,GAAG,gBAAgB,GAAG,aAAa,IAAI,CAAC;AAC/D,iBAAa,IAAI,MAAM,GAAG,kBAAkB,KAAK,WAAW,CAAC;AAC7D,iBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,IAAI,CAAC;AAC3D,iBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,sBAAsB,IAAI,CAAC;AACnE,iBAAa,IAAI,MAAM,GAAG,aAAa,KAAK,WAAW,CAAC;AACxD,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,2BAA2B,MAAM,SAAS;AACxC,SAAK,gBAAgB;AACrB,WAAO,2BAA2B,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EAC9E;AAAA,EACA,2BAA2B,MAAM,SAAS;AACxC,SAAK,gBAAgB;AACrB,WAAO,2BAA2B,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EAC9E;AAAA,EACA,iCAAiC,MAAM,SAAS;AAC9C,SAAK,gBAAgB;AACrB,WAAO,iCAAiC,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EACpF;AAAA,EACA,yBAAyB,SAAS,QAAQ;AACxC,SAAK,gBAAgB;AACrB,6BAAyB,KAAK,IAAI,SAAS,MAAM;AAAA,EACnD;AAAA,EACA,2BAA2B,SAAS,OAAO,QAAQ,MAAM;AACvD,SAAK,gBAAgB;AACrB,+BAA2B,KAAK,IAAI,SAAS,OAAO,QAAQ,MAAM,KAAK,aAAa;AAAA,EACtF;AAAA,EACA,iCAAiC,MAAM,SAAS;AAC9C,SAAK,gBAAgB;AACrB,WAAO,iCAAiC,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EACpF;AAAA,EACA,0BAA0B,MAAM,SAAS;AACvC,SAAK,gBAAgB;AACrB,WAAO,0BAA0B,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EAC7E;AAAA,EACA,oBAAoB,SAAS;AAC3B,SAAK,gBAAgB;AACrB,QAAI,KAAK,kBAAkB,SAAS;AAClC,wCAAkC,KAAK,IAAI,KAAK,WAAW;AAC3D,WAAK,gBAAgB;AAAA,IACvB;AACA,iBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,cAAc,OAAO,CAAC;AAAA,EAC5D;AAAA,EACA,gDAAgD,SAAS,MAAM,SAAS;AACtE,WAAO,KAAK,qBAAqB,SAAS,MAAM,gDAAgD,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa,CAAC;AAAA,EAC7I;AAAA,EACA,+BAA+B,SAAS,OAAO,MAAM,SAAS,cAAc,cAAc;AACxF,WAAO,+BAA+B,KAAK,IAAI,SAAS,OAAO,MAAM,SAAS,cAAc,cAAc,KAAK,aAAa;AAAA,EAC9H;AAAA,EACA,gCAAgC,SAASA,OAAM;AAC7C,WAAO,gCAAgC,KAAK,IAAI,SAASA,KAAI;AAAA,EAC/D;AAAA,EACA,wBAAwB,SAAS,MAAM,SAAS;AAC9C,SAAK,yBAAyB,OAAO;AACrC,UAAM,SAAS,8BAA8B,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AACvF,SAAK,2BAA2B;AAChC,WAAO;AAAA,EACT;AAAA,EACA,wBAAwB;AACtB,UAAM,eAAe,KAAK,YAAY,KAAK,EAAE;AAC7C,WAAO,KAAK,UAAU,YAAY;AAAA,EACpC;AAAA,EACA,YAAY,IAAI;AACd,QAAI;AACJ,QAAI;AACJ,QAAI,IAAI,EAAE,QAAQ,yBAAyB,GAAG;AAC5C,YAAM,MAAM;AACZ,YAAM,OAAO,IAAI,UAAU,IAAI,4BAA4B,CAAC;AAC5D,SAAG,MAAM;AACT,sBAAgB,MAAM;AACpB,cAAM,SAAS,IAAI,eAAe,MAAM,GAAG,CAAC;AAC5C,eAAO,WAAW,IAAI,oBAAoB,WAAW,IAAI;AAAA,MAC3D;AACA,cAAQ;AAAA,IACV,WAAW,IAAI,EAAE,UAAU,8CAA8C,IAAI,GAAG;AAC9E,cAAQ,KAAK,WAAW;AACxB,WAAK,SAAS;AACd,sBAAgB,MAAM,KAAK,iBAAiB,OAAO,IAAI,EAAE,UAAU,8CAA8C,CAAC;AAAA,IACpH,OAAO;AACL,sBAAgB,MAAM;AAAA,IACxB;AACA,WAAO,EAAE,OAAO,cAAc;AAAA,EAChC;AAAA,EACA,gCAAgC,SAAS,cAAc,cAAc;AACnE,WAAO,KAAK,qBAAqB,SAAS,MAAM,sCAAsC,KAAK,IAAI,cAAc,YAAY,CAAC;AAAA,EAC5H;AAAA,EACA,cAAc,gBAAgB;AAC5B,SAAK,gBAAgB;AACrB,UAAM,KAAK,KAAK;AAChB,QAAI,KAAK,gBAAgB,MAAM;AAC7B,WAAK,eAAe,oBAAoB,EAAE;AAAA,IAC5C;AACA,UAAM,UAAU,cAAc,EAAE;AAChC,iBAAa,IAAI,MAAM,GAAG,aAAa,SAAS,KAAK,YAAY,CAAC;AAClE,iBAAa,IAAI,MAAM,GAAG,aAAa,SAAS,cAAc,CAAC;AAC/D,gBAAY,IAAI,OAAO;AACvB,QAAI,KAAK,OAAO;AACd,sBAAgB,IAAI,OAAO;AAAA,IAC7B;AACA,QAAI,CAAC,KAAK,qBAAqB;AAC7B,WAAK,WAAW,OAAO;AACvB,WAAK,sBAAsB,kCAAkC,IAAI,KAAK,SAAS,KAAK,YAAY;AAAA,IAClG;AACA,WAAO;AAAA,EACT;AAAA,EACA,cAAc,SAAS;AACrB,SAAK,gBAAgB;AACrB,QAAI,YAAY,KAAK,SAAS;AAC5B,WAAK,UAAU;AAAA,IACjB;AACA,QAAI,WAAW,MAAM;AACnB,mBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,cAAc,OAAO,CAAC;AAAA,IAC5D;AAAA,EACF;AAAA,EACA,WAAW,SAAS;AAClB,SAAK,gBAAgB;AACrB,SAAK,UAAU;AACf,QAAI,KAAK,WAAW,QAAQ,KAAK,OAAO;AACtC,sBAAgB,KAAK,IAAI,KAAK,OAAO;AAAA,IACvC;AACA,iBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,WAAW,OAAO,CAAC;AAAA,EACzD;AAAA,EACA,mBAAmB,SAAS,aAAa,cAAc,MAAM;AAC3D,SAAK,gBAAgB;AACrB,QAAI,aAAa;AACf,aAAO,iCAAiC,KAAK,IAAI,SAAS,WAAW;AAAA,IACvE,OAAO;AACL,aAAO,0BAA0B,KAAK,IAAI,SAAS,WAAW;AAAA,IAChE;AAAA,EACF;AAAA,EACA,qBAAqB,SAAS,WAAW;AACvC,SAAK,gBAAgB;AACrB,WAAO,aAAa,KAAK,IAAI,MAAM,KAAK,GAAG,kBAAkB,SAAS,SAAS,CAAC;AAAA,EAClF;AAAA,EACA,0BAA0B,SAAS,aAAa;AAC9C,SAAK,gBAAgB;AACrB,WAAO,KAAK,GAAG,mBAAmB,SAAS,WAAW;AAAA,EACxD;AAAA,EACA,sBAAsB,oBAAoB,iBAAiB,aAAa;AACtE,SAAK,gBAAgB;AACrB,SAAK,iBAAiB;AACtB,uCAAmC,KAAK,IAAI,oBAAoB,iBAAiB,WAAW;AAAA,EAC9F;AAAA,EACA,uBAAuB,qBAAqB,MAAM,SAAS;AACzD,SAAK,6BAA6B,qBAAqB,SAAS,IAAI;AAAA,EACtE;AAAA,EACA,6BAA6B,2BAA2B,MAAM,SAAS;AACrE,SAAK,gBAAgB;AACrB,UAAM,CAAC,OAAO,MAAM,IAAI,uCAAuC,MAAM,OAAO;AAC5E,SAAK,6BAA6B,2BAA2B,OAAO,MAAM;AAAA,EAC5E;AAAA,EACA,2BAA2B,UAAU,SAAS,aAAa,YAAY;AACrE,SAAK,iCAAiC,aAAa,UAAU,YAAY,OAAO;AAAA,EAClF;AAAA,EACA,iCAAiC,UAAU,SAAS,aAAa,YAAY;AAC3E,UAAM,IAAI,MAAM,mDAAmD;AAAA,EACrE;AAAA,EACA,gBAAgB;AACd,QAAI,KAAK,WAAW,MAAM;AACxB,sBAAgB,KAAK,IAAI,KAAK,OAAO;AAAA,IACvC;AACA,wBAAoB,KAAK,EAAE;AAAA,EAC7B;AAAA,EACA,iBAAiB;AACf,SAAK,gBAAgB;AACrB,SAAK,iBAAiB;AACtB,UAAM,KAAK,KAAK;AAChB,QAAI,KAAK,OAAO;AACd,WAAK,cAAc;AAAA,IACrB;AACA,iBAAa,IAAI,MAAM,GAAG,aAAa,GAAG,WAAW,GAAG,GAAG,gBAAgB,CAAC,CAAC;AAAA,EAC/E;AAAA,EACA,iCAAiC;AAC/B,SAAK,gBAAgB;AACrB,iBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,OAAO,CAAC;AAAA,EAC9C;AAAA,EACA,yBAAyB;AACvB,QAAI,KAAK,+BAA+B,MAAM;AAC5C,WAAK,8BAA8B,oBAAoB,KAAK,IAAI,IAAI,EAAE,UAAU,8CAA8C,MAAM,IAAI,oCAAoC,0BAA0B;AAAA,IACxM;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,+BAA+B;AAC7B,WAAO,KAAK,uBAAuB;AAAA,EACrC;AAAA,EACA,+BAA+B;AAC7B,WAAO,KAAK,uBAAuB;AAAA,EACrC;AAAA,EACA,aAAa;AACX,QAAI,IAAI,EAAE,UAAU,8CAA8C,MAAM,GAAG;AACzE,YAAM,MAAM,KAAK;AACjB,YAAM,OAAO,KAAK,6BAA6B;AAC/C,YAAM,SAAS,IAAI,YAAY;AAC/B,UAAI,WAAW,KAAK,kBAAkB,MAAM;AAC5C,aAAO;AAAA,IACT;AACA,UAAM,MAAM,KAAK,6BAA6B;AAC9C,UAAM,QAAQ,IAAI,eAAe;AACjC,QAAI,cAAc,IAAI,kBAAkB,KAAK;AAC7C,WAAO;AAAA,EACT;AAAA,EACA,WAAW;AACT,QAAI,IAAI,EAAE,UAAU,8CAA8C,MAAM,GAAG;AACzE,YAAM,MAAM,KAAK;AACjB,YAAM,OAAO,KAAK,6BAA6B;AAC/C,UAAI,SAAS,KAAK,gBAAgB;AAClC;AAAA,IACF;AACA,UAAM,MAAM,KAAK,6BAA6B;AAC9C,QAAI,YAAY,IAAI,gBAAgB;AAAA,EACtC;AAAA,EACA,MAAM,uBAAuB,OAAO;AAClC,UAAM,aAAa,YAAY,MAAM,KAAK,YAAY,KAAK,iBAAiB,OAAO,IAAI,EAAE,UAAU,8CAA8C,CAAC,CAAC;AACnJ,WAAO,KAAK,aAAa,OAAO,IAAI,EAAE,UAAU,8CAA8C,CAAC;AAAA,EACjG;AAAA,EACA,aAAa,OAAO,mBAAmB;AACrC,QAAI,sBAAsB,GAAG;AAC3B,aAAO;AAAA,IACT;AACA,QAAI,sBAAsB,GAAG;AAC3B,YAAM,MAAM,KAAK;AACjB,YAAM,mBAAmB,IAAI,kBAAkB,OAAO,IAAI,YAAY;AACtE,aAAO,mBAAmB;AAAA,IAC5B,OAAO;AACL,YAAM,MAAM,KAAK,6BAA6B;AAC9C,YAAM,mBAAmB,IAAI,kBAAkB,OAAO,IAAI,gBAAgB;AAC1E,aAAO,mBAAmB;AAAA,IAC5B;AAAA,EACF;AAAA,EACA,iBAAiB,OAAO,mBAAmB;AACzC,QAAI,sBAAsB,GAAG;AAC3B,aAAO;AAAA,IACT;AACA,QAAI,sBAAsB,GAAG;AAC3B,YAAM,MAAM,KAAK;AACjB,YAAM,MAAM,KAAK,6BAA6B;AAC9C,YAAM,YAAY,IAAI,kBAAkB,OAAO,IAAI,sBAAsB;AACzE,UAAI,KAAK,YAAY,MAAM;AACzB,aAAK,WAAW,KAAK,GAAG,aAAa,IAAI,gBAAgB;AAAA,MAC3D;AACA,aAAO,aAAa,CAAC,KAAK;AAAA,IAC5B,OAAO;AACL,YAAM,MAAM,KAAK,6BAA6B;AAC9C,YAAM,YAAY,IAAI,kBAAkB,OAAO,IAAI,0BAA0B;AAC7E,UAAI,KAAK,YAAY,MAAM;AACzB,aAAK,WAAW,KAAK,GAAG,aAAa,IAAI,gBAAgB;AAAA,MAC3D;AACA,aAAO,aAAa,CAAC,KAAK;AAAA,IAC5B;AAAA,EACF;AAAA,EACA,UAAU,cAAc;AACtB,WAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,WAAK,cAAc,MAAM,aAAa,cAAc,GAAG,MAAM,QAAQ,CAAC;AAAA,IACxE,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMU,SAAQ,qBAAqB,KAAK,YAAY,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAC1E,aAAS,KAAK,GAAG,MAAMA,QAAO,EAAE,IAAI;AAClC,YAAM,EAAE,UAAU,IAAI,KAAK,YAAY;AACvC,gBAAU;AAAA,IACZ;AACA,SAAK,cAAc,KAAK,YAAY,MAAMA,SAAQ,CAAC;AAAA,EACrD;AAAA,EACA,cAAc,UAAU,WAAW;AACjC,SAAK,YAAY,KAAK,EAAE,UAAU,UAAU,CAAC;AAC7C,QAAI,KAAK,YAAY,SAAS,GAAG;AAC/B;AAAA,IACF;AACA,iBAAa,YAAY,MAAM;AAC7B,WAAK,UAAU;AACf,aAAO,KAAK,YAAY,WAAW;AAAA,IACrC,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB,SAAS;AAChC,SAAK,gBAAgB;AACrB,kCAA8B,KAAK,IAAI,SAAS,KAAK,WAAW;AAChE,QAAI,KAAK,OAAO;AACd,0BAAoB,KAAK,EAAE;AAAA,IAC7B;AAAA,EACF;AAAA,EACA,6BAA6B;AAC3B,QAAI,KAAK,iBAAiB,MAAM;AAC9B,oCAA8B,KAAK,IAAI,KAAK,eAAe,KAAK,WAAW;AAC3E,UAAI,KAAK,OAAO;AACd,4BAAoB,KAAK,EAAE;AAAA,MAC7B;AAAA,IACF,OAAO;AACL,wCAAkC,KAAK,IAAI,KAAK,WAAW;AAAA,IAC7D;AAAA,EACF;AAAA,EACA,qBAAqB,SAAS,mBAAmB;AAC/C,SAAK,yBAAyB,OAAO;AACrC,UAAM,SAAS,kBAAkB;AACjC,SAAK,2BAA2B;AAChC,WAAO;AAAA,EACT;AAAA,EACA,6BAA6B,gCAAgC,OAAO,QAAQ;AAC1E,SAAK,gBAAgB;AACrB,UAAM,KAAK,KAAK;AAChB,kCAA8B,IAAI,gCAAgC,KAAK,WAAW;AAClF,QAAI,KAAK,OAAO;AACd,0BAAoB,EAAE;AAAA,IACxB;AACA,SAAK,gBAAgB;AACrB,iBAAa,IAAI,MAAM,GAAG,SAAS,GAAG,GAAG,OAAO,MAAM,CAAC;AACvD,iBAAa,IAAI,MAAM,GAAG,QAAQ,GAAG,GAAG,OAAO,MAAM,CAAC;AAAA,EACxD;AAAA,EACA,iCAAiC,GAAG,GAAG,OAAO,QAAQ;AACpD,SAAK,gBAAgB;AACrB,iBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,QAAQ,GAAG,GAAG,OAAO,MAAM,CAAC;AAAA,EAClE;AAAA,EACA,kBAAkB;AAChB,QAAI,KAAK,UAAU;AACjB,YAAM,IAAI,MAAM,yCAAyC;AAAA,IAC3D;AAAA,EACF;AAAA,EACA,mBAAmB;AACjB,QAAI,KAAK,WAAW,MAAM;AACxB,YAAM,IAAI,MAAM,kCAAkC;AAAA,IACpD;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,KAAK;AACjC,MAAI,KAAK;AACT,SAAO,KAAK,IAAI,QAAQ,EAAE,IAAI;AAC5B,UAAM,SAAS,IAAI,IAAI;AACvB,QAAI,CAAC,QAAQ;AACX;AAAA,IACF;AAAA,EACF;AACA,SAAO,KAAK;AACd;AAGA,IAAI,EAAE,SAAS,YAAY,cAAc,iBAAiB,oBAAoB,uBAAuB,UAAU,aAAa,UAAU,aAAa,YAAY,eAAe,WAAW,cAAc,SAAS,YAAY,WAAW,cAAc,WAAW,cAAc,cAAc,iBAAiB,cAAc,iBAAiB,aAAa,gBAAgB,kBAAkB,qBAAqB,UAAU,aAAa,eAAe,kBAAkB,cAAc,iBAAiB,SAAS,YAAY,SAAS,YAAY,aAAa,gBAAgB,aAAa,gBAAgB,cAAc,iBAAiB,SAAS,YAAY,cAAc,iBAAiB,UAAU,aAAa,0BAA0B,6BAA6B,WAAW,cAAc,WAAW,cAAc,aAAa,gBAAgB,aAAa,gBAAgB,eAAe,kBAAkB,WAAW,cAAc,yBAAyB,4BAA4B,mBAAmB,sBAAsB,4BAA4B,+BAA+B,UAAU,aAAa,kBAAkB,qBAAqB,kBAAkB,qBAAqB,iBAAiB,oBAAoB,4BAA4B,+BAA+B,SAAS,YAAY,UAAU,aAAa,UAAU,aAAa,eAAe,kBAAkB,YAAY,cAAc,IAAI;AAGl3C,SAAS,eAAe,MAAM,MAAM;AAClC,SAAO,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,EAAE,MAAM,GAAG,IAAI,EAAE,IAAI,CAAC,MAAM,GAAG,QAAQ,GAAG;AAChF;AACA,SAAS,YAAY,MAAM,MAAM;AAC/B,MAAI,SAAS,GAAG;AACd,WAAO,CAAC,IAAI;AAAA,EACd;AACA,SAAO,eAAe,MAAM,IAAI;AAClC;AACA,SAAS,gBAAgB,MAAM,MAAM;AACnC,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT;AACA,MAAI,UAAU;AACd,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,eAAW,KAAK;AAChB,QAAI,KAAK,OAAO,GAAG;AACjB,iBAAW;AAAA,IACb;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,QAAI,KAAK,SAAS,GAAG;AACnB,WAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,IAKlB,OAAO;AACL,YAAM,WAAW,YAAY,MAAM,KAAK,IAAI;AAC5C,YAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,YAAM,uBAAuB,KAAK,wBAAwB,QAAQ;AAClE,YAAM,UAAU,KAAK,SAAS,QAAQ;AACtC,YAAM,SAAS,KAAK,UAAU,QAAQ;AACtC,WAAK,WAAW;AAAA;AAAA,YAEV;AAAA;AAAA,eAEG;AAAA;AAAA;AAAA,cAGD;AAAA;AAAA,6BAEe;AAAA;AAAA;AAAA;AAAA,IAIzB;AAAA,EACF;AAAA,EACA,mBAAmB,MAAM;AACvB,UAAM,UAAU,CAAC;AACjB,aAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,eAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,YAAI,QAAQ,GAAG,QAAQ,IAAI,MAAM,UAAU,QAAQ,IAAI,MAAM;AAC7D,iBAAS,IAAI,GAAG,IAAI,KAAK,MAAM,KAAK;AAClC,kBAAQ,GAAG,KAAK,KAAK,SAAS,IAAI,QAAQ;AAAA,QAC5C;AACA,gBAAQ,KAAK,KAAK;AAAA,MACpB;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,wBAAwB,MAAM;AAC5B,QAAI,KAAK,SAAS,GAAG;AACnB,aAAO,QAAQ,KAAK,sBAAsB,aAAa,KAAK,YAAY;AAAA,IAC1E;AACA,QAAI,OAAO;AACX,aAAS,KAAK,KAAK,OAAO,GAAG,KAAK,KAAK,MAAM,MAAM;AACjD,cAAQ,GAAG,KAAK,UAAU,KAAK,sBAAsB,YAAY,QAAQ,KAAK,YAAY;AAC1F,UAAI,KAAK,KAAK,OAAO,GAAG;AACtB,gBAAQ;AAAA,MACV;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,SAAS,MAAM;AACb,QAAI,KAAK,SAAS,GAAG;AACnB,aAAO;AAAA,IACT;AACA,UAAM,YAAY,KAAK,MAAM,EAAE;AAC/B,UAAM,MAAM,KAAK,sBAAsB,YAAY,KAAK,cAAc,KAAK,YAAY,KAAK,OAAO;AACnG,UAAM,MAAM,KAAK,sBAAsB,YAAY,KAAK,cAAc,KAAK,YAAY,KAAK,OAAO;AACnG,WAAO;AAAA,gBACK,UAAU;AAAA,gBACV,UAAU;AAAA;AAAA;AAAA;AAAA,4BAIE;AAAA,4BACA;AAAA;AAAA,EAE1B;AAAA,EACA,UAAU,MAAM;AACd,UAAM,eAAe,KAAK,mBAAmB,IAAI;AACjD,QAAI,KAAK,SAAS,GAAG;AACnB,YAAM,WAAW,KAAK,sBAAsB,aAAa,KAAK,YAAY;AAC1E,aAAO,wBAAwB;AAAA,IACjC;AACA,WAAO,QAAQ,aAAa;AAAA,gCACA,aAAa;AAAA,gCACb,aAAa;AAAA,yCACJ,aAAa;AAAA,EACpD;AACF;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,aAAa,YAAY;AACnC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,cAAc,MAAM,QAAQ,CAAC;AAC5D,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,QAAI,WAAW;AACf,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,UAAI,SAAS;AACb,UAAI,KAAK,MAAM,GAAG;AAChB,kBAAU;AAAA,MACZ;AACA,UAAI,KAAK,GAAG;AACV,kBAAU;AAAA,MACZ;AACA,kBAAY;AAAA,UACR;AAAA,UACA,KAAK,IAAI,4CAA4C;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mBAM5C;AAAA;AAAA,UAET,KAAK,IAAI,MAAM;AAAA;AAAA,IAErB;AACA,SAAK,WAAW;AAAA,QACZ,uBAAuB,YAAY,KAAK,mBAAmB;AAAA,QAC3D,KAAK,sBAAsB,yBAAyB,IAAI,mBAAmB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,qBAQzE,KAAK,sBAAsB,gBAAgB,YAAY;AAAA,qBACvD,KAAK,sBAAsB,gBAAgB,YAAY;AAAA;AAAA,UAElE;AAAA;AAAA;AAAA;AAAA;AAAA,EAKR;AACF;AACA,SAAS,uBAAuB,OAAO,qBAAqB;AAC1D,QAAM,yBAAyB,sBAAsB,4CAA4C,CAAC,KAAK,KAAK,GAAG,GAAG,YAAY,IAAI,mCAAmC,CAAC,KAAK,KAAK,GAAG,GAAG,KAAK;AAC3L,SAAO;AAAA;AAAA,QAED;AAAA;AAAA;AAAA;AAIR;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,OAAO;AACjB,SAAK,QAAQ;AACb,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,qBAAqB;AAC1B,SAAK,gBAAgB;AACrB,SAAK,eAAe,CAAC;AACrB,SAAK,aAAa;AAClB,SAAK,eAAe,CAAC;AAAA,EACvB;AAAA,EACA,eAAe,SAAS,OAAO,UAAU;AACvC,UAAM,kBAAkB,kCAAkC,OAAO,QAAQ;AACzE,UAAM,WAAW,uBAAuB,SAAS,iBAAiB,QAAQ;AAC1E,QAAI,EAAE,YAAY,KAAK,eAAe;AACpC,WAAK,aAAa,YAAY,CAAC;AAAA,IACjC;AACA,QAAI,EAAE,YAAY,KAAK,eAAe;AACpC,WAAK,aAAa,YAAY,CAAC;AAAA,IACjC;AACA,UAAM,WAAW,aAAa,SAAS,iBAAiB,KAAK,MAAM,IAAI,KAAK,MAAM,eAAe,QAAQ;AACzG,QAAI,KAAK,aAAa,UAAU,SAAS,GAAG;AAC1C,WAAK;AACL,WAAK;AACL,WAAK,iBAAiB;AACtB,WAAK,IAAI;AACT,YAAM,cAAc,KAAK,aAAa,UAAU,MAAM;AACtD,WAAK,aAAa,UAAU,KAAK,WAAW;AAC5C,aAAO;AAAA,IACT;AACA,QAAI;AACJ,QAAI,oBAAoB,oBAAoB,oBAAoB;AAC9D,mBAAa,KAAK,MAAM,0BAA0B,QAAQ,IAAI,QAAQ,EAAE;AAAA,IAC1E,WAAW,oBAAoB,oBAAoB,oBAAoB;AACrE,mBAAa,KAAK,MAAM,iCAAiC,QAAQ,IAAI,QAAQ,EAAE;AAAA,IACjF,WAAW,oBAAoB,oBAAoB,kBAAkB;AACnE,mBAAa,KAAK,MAAM,2BAA2B,QAAQ,IAAI,QAAQ,EAAE;AAAA,IAC3E,WAAW,oBAAoB,oBAAoB,kBAAkB;AACnE,mBAAa,KAAK,MAAM,2BAA2B,QAAQ,IAAI,QAAQ,EAAE;AAAA,IAC3E,WAAW,oBAAoB,oBAAoB,0BAA0B;AAC3E,mBAAa,KAAK,MAAM,iCAAiC,QAAQ,IAAI,QAAQ,EAAE;AAAA,IACjF;AACA,SAAK,aAAa,UAAU,KAAK,UAAU;AAC3C,SAAK;AACL,SAAK,sBAAsB;AAC3B,SAAK,IAAI;AACT,WAAO;AAAA,EACT;AAAA,EACA,eAAe,SAAS,OAAO,gBAAgB,UAAU;AACvD,QAAI,KAAK,gBAAgB,MAAM;AAC7B;AAAA,IACF;AACA,UAAM,kBAAkB,kCAAkC,gBAAgB,QAAQ;AAClF,UAAM,WAAW,uBAAuB,OAAO,iBAAiB,QAAQ;AACxE,QAAI,EAAE,YAAY,KAAK,eAAe;AACpC,WAAK,aAAa,YAAY,CAAC;AAAA,IACjC;AACA,UAAM,WAAW,aAAa,OAAO,iBAAiB,KAAK,MAAM,IAAI,KAAK,MAAM,eAAe,QAAQ;AACvG,UAAM,qBAAqB,IAAI,EAAE,IAAI,gCAAgC;AACrE,QAAI,uBAAuB,MAAM,KAAK,qBAAqB,oBAAoB;AAC7E,WAAK,MAAM,oBAAoB,QAAQ,OAAO;AAC9C,WAAK,sBAAsB;AAAA,IAC7B,OAAO;AACL,WAAK,aAAa,UAAU,KAAK,OAAO;AACxC,WAAK;AACL,WAAK,iBAAiB;AAAA,IACxB;AACA,SAAK;AACL,UAAM,UAAU,KAAK,aAAa;AAClC,UAAM,WAAW,QAAQ,QAAQ,OAAO;AACxC,QAAI,WAAW,GAAG;AAChB,YAAM,IAAI,MAAM,0EAA0E;AAAA,IAC5F;AACA,YAAQ,OAAO,UAAU,CAAC;AAC1B,SAAK,IAAI;AAAA,EACX;AAAA,EACA,MAAM;AACJ,QAAI,CAAC,KAAK,YAAY;AACpB;AAAA,IACF;AACA,UAAM,QAAQ,KAAK,kBAAkB,KAAK;AAC1C,YAAQ,IAAI,aAAa,GAAG,KAAK,qBAAqB,KAAK,mBAAmB,IAAI,QAAQ;AAC1F,UAAM,YAAY,KAAK,gBAAgB,KAAK;AAC5C,YAAQ,IAAI,oBAAoB,KAAK,oBAAoB;AACzD,YAAQ,IAAI,iBAAiB,KAAK,kBAAkB,KAAK,MAAM,MAAM,SAAS,KAAK;AAAA,EACrF;AAAA,EACA,IAAI,oBAAoB;AACtB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,eAAe;AACjB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,qBAAqB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,qBAAqB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,QAAI,KAAK,gBAAgB,MAAM;AAC7B;AAAA,IACF;AACA,eAAW,YAAY,KAAK,cAAc;AACxC,WAAK,aAAa,UAAU,QAAQ,CAAC,QAAQ;AAC3C,aAAK,MAAM,oBAAoB,IAAI,OAAO;AAAA,MAC5C,CAAC;AAAA,IACH;AACA,eAAW,YAAY,KAAK,cAAc;AACxC,WAAK,aAAa,UAAU,QAAQ,CAAC,QAAQ;AAC3C,aAAK,MAAM,oBAAoB,IAAI,OAAO;AAAA,MAC5C,CAAC;AAAA,IACH;AACA,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,qBAAqB;AAC1B,SAAK,gBAAgB;AAAA,EACvB;AACF;AACA,SAAS,0BAA0B,IAAI,gBAAgB;AACrD,QAAM,QAAQ;AACd,MAAI,mBAAmB,MAAM,MAAM;AACjC,WAAO;AAAA,EACT,WAAW,mBAAmB,MAAM,MAAM;AACxC,WAAO;AAAA,EACT,WAAW,mBAAmB,MAAM,SAAS;AAC3C,WAAO;AAAA,EACT,WAAW,mBAAmB,GAAG,MAAM;AACrC,WAAO;AAAA,EACT,WAAW,mBAAmB,MAAM,SAAS;AAC3C,WAAO;AAAA,EACT,WAAW,mBAAmB,MAAM,OAAO;AACzC,WAAO;AAAA,EACT;AACA,QAAM,IAAI,MAAM,2BAA2B,gBAAgB;AAC7D;AACA,SAAS,aAAa,OAAO,iBAAiB,IAAI,eAAe,UAAU;AACzE,QAAM,iBAAiB,iCAAiC,iBAAiB,aAAa;AACtF,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,CAAC,aAAa,YAAY,IAAI,uCAAuC,MAAM,IAAI,MAAM,EAAE;AAC7F,kBAAc,cAAc;AAAA,EAC9B,OAAO;AACL,UAAM,CAAC,OAAO,MAAM,IAAI,yCAAyC,MAAM,IAAI,MAAM,EAAE;AACnF,kBAAc,QAAQ;AAAA,EACxB;AACA,QAAM,mBAAmB,0BAA0B,IAAI,cAAc;AACrE,SAAO,cAAc;AACvB;AACA,SAAS,iCAAiC,iBAAiB,eAAe;AACxE,UAAQ;AAAA,SACD,oBAAoB;AACvB,aAAO,wCAAwC,aAAa;AAAA,SACzD,oBAAoB;AACvB,aAAO,+CAA+C,aAAa;AAAA,SAChE,oBAAoB;AACvB,aAAO,yCAAyC,aAAa;AAAA,SAC1D,oBAAoB;AACvB,aAAO,yCAAyC,aAAa;AAAA,SAC1D,oBAAoB;AACvB,aAAO,+CAA+C,aAAa;AAAA;AAEnE,YAAM,IAAI,MAAM,iCAAiC,iBAAiB;AAAA;AAExE;AACA,SAAS,+BAA+B,UAAU;AAChD,MAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,QAAI,UAAU;AACZ,aAAO,oBAAoB;AAAA,IAC7B;AACA,WAAO,oBAAoB;AAAA,EAC7B;AACA,MAAI,UAAU;AACZ,WAAO,oBAAoB;AAAA,EAC7B;AACA,SAAO,oBAAoB;AAC7B;AACA,SAAS,kCAAkC,gBAAgB,UAAU;AACnE,MAAI,mBAAmB,aAAa,QAAQ;AAC1C,WAAO,oBAAoB;AAAA,EAC7B,WAAW,mBAAmB,aAAa,UAAU,kBAAkB,MAAM;AAC3E,WAAO,+BAA+B,QAAQ;AAAA,EAChD,WAAW,mBAAmB,aAAa,YAAY,mBAAmB,aAAa,QAAQ;AAC7F,WAAO,oBAAoB;AAAA,EAC7B;AACA,QAAM,IAAI,MAAM,gCAAgC,gBAAgB;AAClE;AACA,SAAS,uBAAuB,cAAc,iBAAiB,UAAU;AACvE,SAAO,GAAG,aAAa,MAAM,aAAa,MAAM,mBAAmB;AACrE;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,QAAQ,WAAW;AAC7B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUR;AACF;AACA,IAAI,oBAAoB;AACxB,IAAI,SAAS;AACb,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,OAAO,oBAAoB;AAAA;AAAA;AAG/B,IAAI,QAAQ,oBAAoB;AAAA;AAAA;AAGhC,IAAI,QAAQ;AACZ,IAAI,UAAU;AAGd,IAAI,UAAU;AACd,IAAI,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUX,IAAI,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWZ,IAAI,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWb,IAAI,WAAW;AACf,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,QAAQ,WAAW;AAC7B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUR;AACF;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,OAAO,YAAY;AACzB,UAAM,WAAW,YAAY,MAAM,IAAI;AACvC,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,eAAe,gBAAgB,MAAM,QAAQ;AACnD,UAAM,YAAY,SAAS,MAAM,EAAE;AACnC,UAAM,UAAU,QAAQ,IAAI,OAAO,QAAQ,UAAU,KAAK,GAAG;AAC7D,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,kCACwB;AAAA;AAAA,4CAEU;AAAA;AAAA;AAAA,EAG1C;AACF;AAGA,IAAI,aAAa,qBAAqB;AACtC,IAAI,mBAAmB;AACvB,IAAI,mBAAmB;AACvB,IAAI,eAAe,CAAC;AACpB,SAAS,eAAe,cAAc;AACpC,MAAI,gBAAgB,cAAc;AAChC,WAAO,aAAa;AAAA,EACtB;AACA,eAAa,gBAAgB,CAAC;AAC9B,SAAO,aAAa;AACtB;AACA,IAAI,6BAA6B,IAAI,EAAE,UAAU,4BAA4B;AAC7E,IAAI,yBAAyB;AAC7B,SAAS,qBAAqB;AAC5B,MAAI,IAAI,EAAE,OAAO,UAAU,MAAM;AAC/B,WAAO;AAAA,EACT;AACA,SAAO,IAAI,EAAE,OAAO,OAAO,SAAS,IAAI,EAAE,OAAO,OAAO,QAAQ,OAAO,mBAAmB,yBAAyB,OAAO;AAC5H;AACA,IAAI,mBAAmB,cAAc,cAAc;AAAA,EACjD,YAAY,aAAa;AACvB,UAAM;AACN,SAAK,cAA8B,oBAAI,QAAQ;AAC/C,SAAK,kBAAkC,oBAAI,QAAQ;AACnD,SAAK,eAA+B,oBAAI,QAAQ;AAChD,SAAK,gBAAgB;AACrB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AACtB,SAAK,kBAAkB;AACvB,SAAK,oBAAoB;AACzB,SAAK,iBAAiB;AACtB,SAAK,WAAW;AAChB,QAAI,CAAC,IAAI,EAAE,QAAQ,WAAW,GAAG;AAC/B,YAAM,IAAI,MAAM,uCAAuC;AAAA,IACzD;AACA,QAAI;AACJ,QAAI,eAAe,MAAM;AACvB,UAAI,uBAAuB,cAAc;AACvC,mBAAW;AAAA,MACb,OAAO;AACL,cAAM,KAAK,gBAAgB,IAAI,EAAE,UAAU,eAAe,GAAG,WAAW;AACxE,mBAAW,IAAI,aAAa,EAAE;AAAA,MAChC;AACA,WAAK,cAAc,CAAC;AACpB,WAAK,sBAAsB;AAAA,IAC7B,OAAO;AACL,YAAM,KAAK,gBAAgB,IAAI,EAAE,UAAU,eAAe,CAAC;AAC3D,iBAAW,IAAI,aAAa,EAAE;AAC9B,WAAK,cAAc,eAAe,IAAI,EAAE,UAAU,eAAe,CAAC;AAClE,WAAK,sBAAsB;AAAA,IAC7B;AACA,SAAK,QAAQ;AACb,SAAK,SAAS,KAAK,MAAM,GAAG;AAC5B,SAAK,iBAAiB,IAAI,eAAe,KAAK,KAAK;AACnD,SAAK,qBAAqB,mBAAmB;AAC7C,SAAK,UAAU,IAAI,YAAY,MAAM,OAAO,CAAC;AAAA,EAC/C;AAAA,EACA,aAAa;AACX,WAAO,iBAAiB;AAAA,EAC1B;AAAA,EACA,aAAa;AACX,WAAO,KAAK,QAAQ,WAAW,IAAI,KAAK;AAAA,EAC1C;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,QAAI,IAAI,EAAE,QAAQ,gCAAgC,KAAK,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC7E,WAAK,uBAAuB,MAAM;AAAA,IACpC;AACA,QAAI,UAAU,eAAe,UAAU,MAAM;AAC3C,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF;AACA,UAAM,SAAS,EAAE,IAAI,KAAK,WAAW,EAAE;AACvC,SAAK,QAAQ,IAAI,QAAQ,EAAE,OAAO,OAAO,QAAQ,OAAO,aAAa,QAAQ,UAAU,EAAE,CAAC;AAC1F,WAAO;AAAA,EACT;AAAA,EACA,SAAS,QAAQ;AACf,QAAI,KAAK,QAAQ,IAAI,MAAM,GAAG;AAC5B,YAAM,aAAa,KAAK,QAAQ,IAAI,MAAM;AAC1C,aAAO,WAAW;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ;AACb,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,YAAQ;AAAA,EACV;AAAA,EACA,OAAO,QAAQ;AACb,QAAI,KAAK,QAAQ,IAAI,MAAM,GAAG;AAC5B,YAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,cAAQ;AAAA,IACV;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,QAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,WAAK,uBAAuB,MAAM;AAAA,IACpC;AACA,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF;AACA,SAAK,QAAQ,IAAI,QAAQ,EAAE,OAAO,OAAO,QAAQ,OAAO,aAAa,QAAQ,SAAS,CAAC;AAAA,EACzF;AAAA,EACA,8BAA8B,YAAY;AACxC,SAAK,YAAY,WAAW,MAAM;AAAA,EACpC;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,QAAQ,OAAO,oBAAoB,OAAO,QAAQ,OAAO,SAAS,IAAI;AAC9E,QAAI,UAAU,MAAM;AAClB,UAAI;AACJ,UAAI,UAAU;AACZ,kBAAU,IAAI,qBAAqB,OAAO,KAAK;AAAA,MACjD,OAAO;AACL,kBAAU,IAAI,eAAe,OAAO,KAAK;AAAA,MAC3C;AACA,YAAM,MAAM,KAAK,gBAAgB,SAAS,CAAC,EAAE,QAAQ,OAAO,MAAM,CAAC,GAAG,KAAK;AAC3E,YAAM,OAAO,KAAK,SAAS,IAAI,MAAM;AACrC,WAAK,8BAA8B,GAAG;AACtC,aAAO;AAAA,IACT;AACA,QAAI,UAAU,MAAM;AAClB,aAAO,KAAK,qBAAqB,MAAM;AAAA,IACzC;AACA,QAAI,UAAU,UAAU;AACtB,aAAO;AAAA,IACT;AACA,UAAM,oBAAoB,KAAK,gBAAgB;AAC/C,QAAI;AACJ,QAAI,mBAAmB;AACrB,cAAQ,aAAa,IAAI;AAAA,IAC3B;AACA,QAAI;AACJ,QAAI,UAAU,aAAa;AACzB,YAAM,aAAa,KAAK,SAAS,mBAAmB,KAAK,MAAM;AAC/D,YAAM,aAAa,KAAK,SAAS,mBAAmB,KAAK,MAAM;AAC/D,eAAS,qBAAqB,uBAAuB,YAAY,UAAU;AAAA,IAC7E,OAAO;AACL,eAAS,KAAK,qBAAqB,MAAM;AAAA,IAC3C;AACA,QAAI,mBAAmB;AACrB,WAAK,kBAAkB,aAAa,IAAI,IAAI;AAAA,IAC9C;AACA,WAAO,KAAK,qBAAqB,QAAQ,MAAM;AAAA,EACjD;AAAA,EACA,MAAM,KAAK,QAAQ;AACjB,QAAI,KAAK,YAAY,IAAI,MAAM,GAAG;AAChC,YAAM,eAAe,KAAK,YAAY,IAAI,MAAM;AAChD,aAAO,IAAI,QAAQ,CAAC,YAAY,aAAa,KAAK,OAAO,CAAC;AAAA,IAC5D;AACA,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,QAAQ,OAAO,OAAO,QAAQ,OAAO,oBAAoB,SAAS,IAAI;AAC9E,QAAI,UAAU,MAAM;AAClB,UAAI;AACJ,UAAI,UAAU;AACZ,kBAAU,IAAI,qBAAqB,OAAO,KAAK;AAAA,MACjD,OAAO;AACL,kBAAU,IAAI,eAAe,OAAO,KAAK;AAAA,MAC3C;AACA,YAAM,MAAM,KAAK,gBAAgB,SAAS,CAAC,EAAE,QAAQ,OAAO,MAAM,CAAC,GAAG,KAAK;AAC3E,YAAM,OAAO,KAAK,KAAK,IAAI,MAAM;AACjC,WAAK,8BAA8B,GAAG;AACtC,aAAO;AAAA,IACT;AACA,QAAI,UAAU,MAAM;AAClB,aAAO,KAAK,qBAAqB,MAAM;AAAA,IACzC;AACA,QAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,UAAI,CAAC,IAAI,EAAE,QAAQ,8BAA8B,KAAK,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC5F,cAAM,IAAI,MAAM,8FAA8F;AAAA,MAChH;AAAA,IACF;AACA,QAAI,UAAU;AACd,QAAI;AACJ,QAAI,UAAU,eAAe,IAAI,EAAE,IAAI,wBAAwB,GAAG;AAChE,0BAAoB,KAAK,OAAO,MAAM;AACtC,YAAM,UAAU,KAAK,QAAQ,IAAI,kBAAkB,MAAM;AACzD,gBAAU,KAAK,MAAM,wBAAwB,QAAQ,QAAQ,SAAS,GAAG,iBAAiB,KAAK,CAAC;AAAA,IAClG;AACA,SAAK,YAAY,IAAI,QAAQ,CAAC,CAAC;AAC/B,QAAI,UAAU,aAAa;AACzB,YAAM,KAAK,MAAM,sBAAsB;AAAA,IACzC;AACA,QAAI;AACJ,QAAI,UAAU,aAAa;AACzB,YAAM,KAAK,MAAM,QAAQ,IAAI;AAAA,QAC3B,KAAK,KAAK,mBAAmB,KAAK,MAAM;AAAA,QACxC,KAAK,KAAK,mBAAmB,KAAK,MAAM;AAAA,MAC1C,CAAC;AACD,YAAM,aAAa,GAAG;AACtB,YAAM,aAAa,GAAG;AACtB,aAAO,qBAAqB,uBAAuB,YAAY,UAAU;AAAA,IAC3E,WAAW,WAAW,MAAM;AAC1B,aAAO,KAAK,qBAAqB,MAAM;AAAA,IACzC,OAAO;AACL,YAAMV,QAAO,aAAa,cAAc,KAAK;AAC7C,aAAO,KAAK,MAAM,gCAAgC,SAASA,KAAI;AAAA,IACjE;AACA,QAAI,qBAAqB,MAAM;AAC7B,WAAK,8BAA8B,iBAAiB;AAAA,IACtD;AACA,QAAI,WAAW,MAAM;AACnB,YAAM,KAAK,KAAK,MAAM;AACtB,mBAAa,IAAI,MAAM,GAAG,aAAa,OAAO,CAAC;AAAA,IACjD;AACA,UAAM,YAAY,KAAK,qBAAqB,QAAQ,IAAI;AACxD,UAAM,cAAc,KAAK,YAAY,IAAI,MAAM;AAC/C,SAAK,YAAY,OAAO,MAAM;AAC9B,gBAAY,QAAQ,CAAC,YAAY,QAAQ,SAAS,CAAC;AACnD,QAAI,KAAK,gBAAgB,IAAI,MAAM,GAAG;AACpC,WAAK,gBAAgB,OAAO,MAAM;AAClC,UAAI,KAAK,YAAY,MAAM,GAAG;AAC5B,eAAO,EAAE,aAAa,QAAQ,IAAI;AAAA,MACpC;AACA,WAAK;AAAA,IACP;AACA,WAAO;AAAA,EACT;AAAA,EACA,UAAU,QAAQM,WAAU,CAAC,GAAG;AAC9B,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,QAAQ,OAAO,OAAO,QAAQ,OAAO,UAAU,QAAQ,IAAI;AACnE,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,uDAAuD;AAAA,IACzE;AACA,QAAI,UAAU,MAAM;AAClB,UAAI;AACJ,UAAI,UAAU;AACZ,kBAAU,IAAI,qBAAqB,OAAO,KAAK;AAAA,MACjD,OAAO;AACL,kBAAU,IAAI,eAAe,OAAO,KAAK;AAAA,MAC3C;AACA,YAAM,MAAM,KAAK,gBAAgB,SAAS,CAAC,EAAE,QAAQ,OAAO,MAAM,CAAC,GAAG,KAAK;AAC3E,YAAM,eAAe,KAAK,UAAU,KAAKA,QAAO;AAChD,WAAK,8BAA8B,GAAG;AACtC,aAAO;AAAA,IACT;AACA,QAAI,WAAW,MAAM;AACnB,UAAI,UAAU,MAAM;AAClB,cAAM,IAAI,MAAM,gCAAgC;AAAA,MAClD,OAAO;AACL,cAAM,IAAI,MAAM,iCAAiC;AAAA,MACnD;AAAA,IACF;AACA,UAAM,YAAY,KAAK,OAAO,QAAQA,SAAQ,cAAc;AAC5D,UAAM,YAAY,OAAO,EAAE,yBAAyB,SAAS;AAC7D,UAAM,UAAU,KAAK,QAAQ,IAAI,UAAU,MAAM;AACjD,WAAO,OAAO,OAAO,EAAE,UAAU,GAAG,QAAQ,OAAO;AAAA,EACrD;AAAA,EACA,WAAW,IAAI;AACb,UAAM,OAAO,KAAK,SAAS,GAAG,MAAM;AACpC,QAAI,GAAG,UAAU,UAAU;AACzB,UAAI;AACF,cAAM,UAAU,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AAC5D,eAAO,OAAO,GAAG,OAAO,GAAG,OAAO,OAAO;AAAA,MAC3C,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,kDAAkD;AAAA,MACpE;AAAA,IACF;AACA,WAAO,OAAO,GAAG,OAAO,GAAG,OAAO,IAAI;AAAA,EACxC;AAAA,EACA,uBAAuB,QAAQ;AAC7B,QAAI,UAAU,MAAM;AAClB;AAAA,IACF;AACA,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,YAAM,MAAM,OAAO;AACnB,UAAI,CAAC,iBAAiB,GAAG,GAAG;AAC1B,YAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,gBAAM,MAAM,aAAa,kJAAkJ;AAAA,QAC7K;AACA,cAAM,MAAM,aAAa,2CAA2C;AAAA,MACtE;AAAA,IACF;AAAA,EACF;AAAA,EACA,qBAAqB,QAAQ;AAC3B,UAAM,EAAE,OAAO,OAAO,SAAS,IAAI,KAAK,QAAQ,IAAI,MAAM;AAC1D,UAAMN,QAAO,aAAa,cAAc,KAAK;AAC7C,QAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,YAAM,YAAY,KAAK,OAAO,MAAM;AACpC,YAAM,WAAW,KAAK,QAAQ,IAAI,UAAU,MAAM;AAClD,YAAM,QAAQ,KAAK,MAAM,gCAAgC,SAAS,QAAQ,SAAS,GAAG,iBAAiB,KAAK,CAAC,EAAE,SAAS,GAAGA,KAAI;AAC/H,WAAK,8BAA8B,SAAS;AAC5C,aAAO;AAAA,IACT;AACA,UAAM,yBAAyB,IAAI,EAAE,QAAQ,YAAY,KAAK,aAAa;AAC3E,UAAM,cAAc,yBAAyB,aAAa,KAAK,IAAI;AACnE,UAAM,UAAU,yBAAyB,IAAI,yBAAyB,WAAW,IAAI,IAAI,mBAAmB,WAAW;AACvH,UAAM,SAAS,KAAK,gBAAgB,SAAS,CAAC,EAAE,OAAO,aAAa,OAAO,OAAO,CAAC,GAAG,SAAS;AAC/F,UAAM,UAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AAC9C,UAAM,OAAO,KAAK,MAAM,gDAAgD,QAAQ,QAAQ,SAAS,QAAQ,SAAS,IAAI,QAAQ,SAAS,EAAE,EAAE,SAAS,GAAGA,KAAI;AAC3J,SAAK,8BAA8B,MAAM;AACzC,WAAO;AAAA,EACT;AAAA,EACA,iBAAiB;AACf,WAAO,IAAI,EAAE,UAAU,+CAA+C,IAAI;AAAA,EAC5E;AAAA,EACA,KAAK,GAAG;AACN,UAAM,kBAAkB,KAAK;AAC7B,UAAM,kBAAkB,CAAC;AACzB,QAAI,gBAAgB;AACpB,QAAI,KAAK,sBAAsB,MAAM;AACnC,WAAK,qBAAqB;AAC1B,sBAAgB;AAAA,IAClB,OAAO;AACL,WAAK,aAAa,KAAK,eAAe;AAAA,IACxC;AACA,SAAK,eAAe;AACpB,MAAE;AACF,UAAM,8BAA8B,aAAa,QAAQ,KAAK,aAAa,IAAI,CAAC,MAAM,EAAE,KAAK,CAAC,EAAE,OAAO,CAAC,MAAM,KAAK,IAAI;AACvH,UAAM,4BAA4B,aAAa,QAAQ,KAAK,aAAa,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,EAAE,OAAO,CAAC,MAAM,KAAK,IAAI;AACpH,SAAK,eAAe;AACpB,QAAI,eAAe;AACjB,WAAK,qBAAqB;AAAA,IAC5B;AACA,UAAM,MAAM;AAAA,MACV,cAAc,KAAK;AAAA,MACnB,gBAAgB,KAAK;AAAA,MACrB,UAAU;AAAA,MACV,QAAQ;AAAA,IACV;AACA,YAAQ,YAAY;AAClB,UAAI,IAAI,EAAE,UAAU,+CAA+C,IAAI,GAAG;AACxE,cAAM,WAAW,MAAM,QAAQ,IAAI,2BAA2B;AAC9D,YAAI,cAAc,aAAa,IAAI,QAAQ;AAC3C,YAAI,yBAAyB,MAAM,SAAS,IAAI,CAAC,GAAG,QAAQ,EAAE,MAAM,0BAA0B,KAAK,IAAI,EAAE,EAAE,EAAE,IAAI,CAAC,MAAM,GAAG,EAAE,SAAS,EAAE,IAAI,EAAE,KAAK,IAAI;AAAA,MACzJ,OAAO;AACL,YAAI,cAAc;AAAA,UAChB,OAAO;AAAA,QACT;AAAA,MACF;AACA,WAAK,eAAe;AACpB,WAAK,iBAAiB;AACtB,aAAO;AAAA,IACT,GAAG;AAAA,EACL;AAAA,EACA,SAAS;AACP,WAAO;AAAA,MACL,YAAY;AAAA,MACZ,eAAe,KAAK;AAAA,MACpB,wBAAwB,KAAK,eAAe;AAAA,MAC5C,mBAAmB,KAAK,eAAe;AAAA,IACzC;AAAA,EACF;AAAA,EACA,aAAa;AACX,QAAI,IAAI,EAAE,UAAU,+CAA+C,IAAI,GAAG;AACxE,aAAO,KAAK,MAAM,WAAW;AAAA,IAC/B;AACA,WAAO,EAAE,SAAS,aAAa,IAAI,GAAG,OAAO,KAAK;AAAA,EACpD;AAAA,EACA,SAAS,OAAO;AACd,QAAI,IAAI,EAAE,UAAU,+CAA+C,IAAI,GAAG;AACxE,WAAK,MAAM,SAAS;AACpB,aAAO;AAAA,IACT;AACA,UAAM,QAAQ,aAAa,IAAI;AAC/B,WAAO;AAAA,EACT;AAAA,EACA,MAAM,aAAa,OAAO;AACxB,QAAI,IAAI,EAAE,UAAU,+CAA+C,IAAI,GAAG;AACxE,aAAO,KAAK,MAAM,uBAAuB,KAAK;AAAA,IAChD;AACA,UAAM,aAAa;AACnB,WAAO,WAAW,QAAQ,WAAW;AAAA,EACvC;AAAA,EACA,YAAY,QAAQ,QAAQ,OAAO;AACjC,QAAI,KAAK,gBAAgB,IAAI,MAAM,GAAG;AACpC,aAAO;AAAA,IACT;AACA,QAAI,CAAC,KAAK,QAAQ,IAAI,MAAM,GAAG;AAC7B,aAAO;AAAA,IACT;AACA,QAAI,OAAO;AACT,WAAK,QAAQ,IAAI,MAAM,EAAE,WAAW;AAAA,IACtC,OAAO;AACL,WAAK,QAAQ,IAAI,MAAM,EAAE;AAAA,IAC3B;AACA,QAAI,CAAC,SAAS,KAAK,QAAQ,IAAI,MAAM,EAAE,WAAW,GAAG;AACnD,aAAO;AAAA,IACT;AACA,QAAI,KAAK,YAAY,IAAI,MAAM,GAAG;AAChC,WAAK,gBAAgB,IAAI,MAAM;AAC/B,WAAK;AACL,aAAO;AAAA,IACT;AACA,SAAK,eAAe,MAAM;AAC1B,UAAM,EAAE,mBAAmB,IAAI,KAAK,QAAQ,IAAI,MAAM;AACtD,QAAI,sBAAsB,MAAM;AAC9B,WAAK,YAAY,mBAAmB,KAAK,QAAQ,KAAK;AACtD,WAAK,YAAY,mBAAmB,KAAK,QAAQ,KAAK;AAAA,IACxD;AACA,SAAK,QAAQ,OAAO,MAAM;AAC1B,WAAO;AAAA,EACT;AAAA,EACA,eAAe,QAAQ;AACrB,UAAM,EAAE,SAAS,OAAO,UAAU,OAAO,UAAU,OAAO,OAAO,IAAI,KAAK,QAAQ,IAAI,MAAM;AAC5F,UAAM,MAAM,UAAU,OAAO,cAAc;AAC3C,UAAM,WAAW,KAAK,aAAa,IAAI,GAAG;AAC1C,QAAI,WAAW,GAAG;AAChB,WAAK,aAAa,IAAI,KAAK,WAAW,CAAC;AAAA,IACzC,OAAO;AACL,WAAK,aAAa,OAAO,GAAG;AAC5B,UAAI,WAAW,MAAM;AACnB,aAAK,iBAAiB,KAAK,aAAa,UAAU,KAAK;AACvD,aAAK,eAAe,eAAe,SAAS,UAAU,OAAO,QAAQ;AAAA,MACvE;AAAA,IACF;AACA,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,YAAQ,UAAU;AAClB,YAAQ,WAAW;AACnB,YAAQ,WAAW;AACnB,YAAQ,QAAQ;AAAA,EAClB;AAAA,EACA,WAAW,QAAQ;AACjB,SAAK,YAAY,MAAM;AACvB,WAAO,KAAK,QAAQ,IAAI,MAAM,EAAE,QAAQ;AAAA,EAC1C;AAAA,EACA,YAAY,QAAQ;AAClB,WAAO,KAAK,QAAQ,IAAI,MAAM;AAAA,EAChC;AAAA,EACA,mBAAmB,QAAQ,gBAAgB,4BAA4B;AACrE,WAAO,IAAI,EAAE,QAAQ,mBAAmB,KAAK,OAAO,MAAM,CAAC,WAAW,KAAK,QAAQ,IAAI,OAAO,MAAM,EAAE,WAAW,QAAQ,aAAa,cAAc,OAAO,KAAK,IAAI,aAAa;AAAA,EACnL;AAAA,EACA,kBAAkB;AAChB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,WAAW;AACf,yBAAqB,KAAK,uEAAuE;AACjG,UAAM,WAAW,UAAU,SAAS;AACpC,WAAO,WAAW,UAAU,OAAO,QAAQ;AAAA,EAC7C;AAAA,EACA,cAAc,GAAG,KAAK,OAAO;AAC3B,UAAM,UAAU,IAAI,qBAAqB,EAAE,OAAO,GAAG;AACrD,UAAM,UAAU,KAAK,cAAc,SAAS,CAAC,CAAC,GAAG,KAAK;AACtD,WAAO,OAAO,EAAE,yBAAyB,OAAO;AAAA,EAClD;AAAA,EACA,IAAI,GAAG;AACL,QAAI,KAAK,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,aAAa;AAC3D,YAAM,YAAY,iBAAiB,KAAK,QAAQ,IAAI,EAAE,MAAM,EAAE,MAAM;AACpE,aAAO,KAAK,WAAW,EAAE,OAAO,EAAE,OAAO,SAAS;AAAA,IACpD;AACA,QAAI,IAAI,EAAE,QAAQ,6BAA6B,GAAG;AAChD,aAAO,KAAK,cAAc,GAAG,KAAK,EAAE,KAAK;AAAA,IAC3C;AACA,UAAM,UAAU,IAAI,eAAe,EAAE,OAAO,GAAG;AAC/C,UAAM,UAAU,KAAK,cAAc,SAAS,CAAC,CAAC,CAAC;AAC/C,WAAO,OAAO,EAAE,yBAAyB,OAAO;AAAA,EAClD;AAAA,EACA,eAAe,OAAO,OAAO,QAAQ;AACnC,QAAI;AACJ,QAAI,UAAU,YAAY,UAAU,QAAQ,OAAO,SAAS,KAAK,aAAa,SAAS,OAAO,EAAE,GAAG;AACjG,YAAM,gBAAgB,OAAO,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AACpE,eAAS,KAAK,MAAM,eAAe,OAAO,KAAK;AAAA,IACjD,OAAO;AACL,eAAS,KAAK,MAAM,QAAQ,OAAO,KAAK;AAAA,IAC1C;AACA,SAAK,QAAQ,IAAI,MAAM,EAAE,QAAQ;AACjC,WAAO,EAAE,QAAQ,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,WAAW,OAAO,OAAO,QAAQ;AAC/B,WAAO,OAAO,EAAE,yBAAyB,KAAK,eAAe,OAAO,OAAO,MAAM,GAAG,IAAI;AAAA,EAC1F;AAAA,EACA,aAAa,QAAQ;AACnB,UAAM,UAAU,IAAI,cAAc,OAAO,KAAK;AAC9C,WAAO,KAAK,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AAAA,EAC7D;AAAA,EACA,WAAW,QAAQ;AACjB,UAAM,UAAU,IAAI,YAAY,OAAO,KAAK;AAC5C,UAAM,8BAA8B;AACpC,WAAO,KAAK,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,MAAM,2BAA2B;AAAA,EAChG;AAAA,EACA,cAAc,QAAQ,YAAY;AAChC,UAAM,eAAe;AAAA,MACnB,YAAY,OAAO,KAAK;AAAA,MACxB,GAAG,YAAY,OAAO,KAAK;AAAA,IAC7B;AACA,UAAM,UAAU;AAAA,MACd,OAAO,OAAO;AAAA,MACd,OAAO;AAAA,MACP,QAAQ,OAAO;AAAA,IACjB;AACA,UAAM,iBAAiB;AAAA,MACrB,YAAY,UAAU;AAAA,MACtB,GAAG,YAAY,UAAU;AAAA,IAC3B;AACA,UAAM,UAAU,IAAI,qBAAqB,gBAAgB,YAAY;AACrE,UAAM,gCAAgC;AACtC,UAAM,eAAe,CAAC,YAAY;AAClC,UAAM,SAAS,KAAK,gBAAgB,SAAS,CAAC,OAAO,GAAG,OAAO,OAAO,cAAc,6BAA6B;AACjH,WAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,YAAY,OAAO,OAAO,MAAM;AAAA,EACzE;AAAA,EACA,OAAO,QAAQ,gBAAgB;AAC7B,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,UAAU,OAAO,MAAM,IAAI;AACnC,QAAI,kBAAkB,MAAM;AAC1B,YAAMA,QAAO,aAAa,cAAc,KAAK;AAC7C,YAAM,UAAU,eAAe,KAAK,eAAe,KAAK;AACxD,mBAAa,OAAOA,SAAQ,SAAS,MAAM,2GAA2G;AAAA,IACxJ;AACA,UAAM,YAAY,aAAa,KAAK;AACpC,QAAI;AACJ,QAAI,UAAU;AACZ,gBAAU,IAAI,0BAA0B,SAAS;AAAA,IACnD,OAAO;AACL,gBAAU,IAAI,oBAAoB,SAAS;AAAA,IAC7C;AACA,UAAM,gCAAgC;AACtC,UAAM,eAAe,CAAC,kBAAkB,OAAO,iBAAiB,iBAAiB,SAAS,CAAC;AAC3F,UAAM,MAAM,KAAK,gBAAgB,SAAS,CAAC,EAAE,OAAO,WAAW,OAAO,OAAO,CAAC,GAAG,OAAO,cAAc,+BAA+B,cAAc;AACnJ,WAAO,EAAE,OAAO,OAAO,QAAQ,IAAI,OAAO;AAAA,EAC5C;AAAA,EACA,gBAAgB,SAAS,QAAQ,aAAa,qBAAqB,gCAAgC,OAAO,gBAAgB;AACxH,UAAM,SAAS,KAAK,eAAe,QAAQ,aAAa,WAAW;AACnE,UAAM,UAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AAC9C,QAAI,QAAQ,cAAc;AACxB,cAAQ,WAAW;AAAA,IACrB;AACA,QAAI,QAAQ,qBAAqB,cAAc,OAAO;AACpD,YAAM,aAAa,kBAAkB,OAAO,iBAAiB,iBAAiB,QAAQ,WAAW;AACjG,cAAQ,WAAW,WAAW,IAAI,CAAC,MAAM,IAAI,CAAC;AAAA,IAChD;AACA,QAAI,QAAQ,eAAe,MAAM;AAC/B,cAAQ,QAAQ,QAAQ;AAAA,IAC1B;AACA,QAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,cAAQ,SAAS,aAAa,uBAAuB,OAAO,OAAO,CAAC;AACpE,aAAO;AAAA,IACT;AACA,UAAM,gBAAgB,CAAC;AACvB,UAAM,aAAa,OAAO,IAAI,CAAC,WAAW;AACxC,UAAI,OAAO,UAAU,aAAa;AAChC,cAAM,IAAI,MAAM,iIAAiI;AAAA,MACnJ;AACA,UAAI,UAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AAC5C,UAAI,QAAQ,WAAW,MAAM;AAC3B,YAAI,CAAC,QAAQ,gBAAgB,aAAa,cAAc,OAAO,KAAK,KAAK,IAAI,EAAE,UAAU,2BAA2B,GAAG;AACrH,iBAAO;AAAA,YACL,OAAO,OAAO;AAAA,YACd,SAAS;AAAA,YACT,WAAW;AAAA,YACX,eAAe,QAAQ;AAAA,UACzB;AAAA,QACF;AACA,YAAI,QAAQ,cAAc;AACxB,kBAAQ,WAAW;AACnB,kBAAQ,QAAQ,OAAO;AAAA,QACzB;AAAA,MACF;AACA,WAAK,YAAY,OAAO,MAAM;AAC9B,UAAI,CAAC,CAAC,QAAQ,aAAa,CAAC,CAAC,QAAQ,cAAc;AACjD,iBAAS,QAAQ,WAAW,KAAK,aAAa,MAAM,IAAI,KAAK,WAAW,MAAM;AAC9E,sBAAc,KAAK,MAAM;AACzB,kBAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AAAA,MAC1C,WAAW,QAAQ,YAAY,CAAC,cAAc,QAAQ,OAAO,OAAO,KAAK,GAAG;AAC1E,cAAM,aAAa;AACnB,cAAM,cAAc,OAAO;AAC3B,eAAO,QAAQ,QAAQ;AACvB,iBAAS,KAAK,cAAc,QAAQ,WAAW;AAC/C,sBAAc,KAAK,MAAM;AACzB,kBAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AACxC,mBAAW,QAAQ;AAAA,MACrB;AACA,aAAO,EAAE,OAAO,OAAO,OAAO,SAAS,WAAW,MAAM;AAAA,IAC1D,CAAC;AACD,SAAK,YAAY,OAAO,MAAM;AAC9B,UAAM,aAAa,EAAE,OAAO,OAAO,OAAO,SAAS,SAAS,WAAW,MAAM;AAC7E,UAAM,MAAM,cAAc,SAAS,YAAY,UAAU;AACzD,UAAM,SAAS,KAAK,iBAAiB,KAAK,MAAM;AAC9C,aAAO,eAAe,KAAK,OAAO,SAAS,YAAY,UAAU;AAAA,IACnE,CAAC;AACD,UAAM,oBAAoB,KAAK,gBAAgB;AAC/C,QAAI;AACJ,QAAI,mBAAmB;AACrB,cAAQ,KAAK,WAAW;AAAA,IAC1B;AACA,QAAI,CAAC,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACrC,iBAAW,KAAK,OAAO,QAAQ,YAAY,YAAY,mBAAmB;AAAA,IAC5E;AACA,kBAAc,QAAQ,CAAC,SAAS,KAAK,8BAA8B,IAAI,CAAC;AACxE,QAAI,mBAAmB;AACrB,cAAQ,KAAK,SAAS,KAAK;AAC3B,WAAK,aAAa,KAAK,EAAE,MAAM,QAAQ,YAAY,MAAM,OAAO,KAAK,aAAa,KAAK,EAAE,CAAC;AAAA,IAC5F;AACA,UAAM,mBAAmB,IAAI,EAAE,IAAI,uBAAuB;AAC1D,QAAI,mBAAmB,GAAG;AACxB,YAAM,QAAQ,aAAa,IAAI;AAC/B,UAAI,QAAQ,KAAK,kBAAkB,kBAAkB;AACnD,aAAK,MAAM,GAAG,MAAM;AACpB,aAAK,kBAAkB;AAAA,MACzB;AAAA,IACF;AACA,QAAI,CAAC,IAAI,EAAE,QAAQ,qBAAqB,KAAK,QAAQ,YAAY,kCAAkC,OAAO;AACxG,YAAM,WAAW,KAAK,aAAa,MAAM;AACzC,WAAK,8BAA8B,MAAM;AACzC,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA,EACA,cAAc,SAAS,QAAQ,aAAa,qBAAqB,gCAAgC,OAAO;AACtG,kBAAc,eAAe,OAAO,GAAG;AACvC,UAAM,UAAU,KAAK,gBAAgB,SAAS,QAAQ,aAAa,qBAAqB,6BAA6B;AACrH,WAAO;AAAA,EACT;AAAA,EACA,iBAAiB,KAAK,WAAW;AAC/B,QAAI,EAAE,OAAO,KAAK,cAAc;AAC9B,WAAK,YAAY,OAAO,UAAU;AAAA,IACpC;AACA,WAAO,KAAK,YAAY;AAAA,EAC1B;AAAA,EACA,oBAAoB;AAClB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,QAAI,KAAK,UAAU;AACjB;AAAA,IACF;AACA,QAAI,CAAC,IAAI,EAAE,QAAQ,SAAS,GAAG;AAC7B,YAAM,UAAU,OAAO,KAAK,KAAK,WAAW;AAC5C,cAAQ,QAAQ,CAAC,QAAQ;AACvB,aAAK,MAAM,cAAc,KAAK,YAAY,KAAK,YAAY;AAC3D,eAAO,KAAK,YAAY;AAAA,MAC1B,CAAC;AAAA,IACH;AACA,SAAK,eAAe,QAAQ;AAC5B,QAAI,KAAK,UAAU,SAAS,OAAO,sBAAsB,eAAe,KAAK,kBAAkB,oBAAoB;AACjH,WAAK,OAAO,OAAO;AAAA,IACrB,OAAO;AACL,WAAK,SAAS;AAAA,IAChB;AACA,QAAI,KAAK,qBAAqB;AAC5B,WAAK,MAAM,UAAU;AACrB,WAAK,MAAM,QAAQ;AAAA,IACrB;AACA,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,iBAAiB;AACf,QAAI,KAAK,uBAAuB,MAAM;AACpC,WAAK,sBAAsB,KAAK,MAAM;AACpC,YAAI,CAAC,IAAI,EAAE,IAAI,8BAA8B,GAAG;AAC9C,gBAAM,YAAY,IAAI,EAAE,QAAQ,OAAO;AACvC,cAAI,EAAE,IAAI,SAAS,KAAK;AACxB,gBAAM,sBAAsB,KAAK,IAAI,OAAO,IAAI,CAAC,EAAE,SAAS,EAAE;AAC9D,cAAI,EAAE,IAAI,SAAS,SAAS;AAC5B,cAAI,sBAAsB,GAAG;AAC3B,mBAAO;AAAA,UACT;AAAA,QACF;AACA,eAAO;AAAA,MACT,CAAC;AAAA,IACH;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,WAAO,KAAK,eAAe,MAAM,KAAK,mBAAmB;AAAA,EAC3D;AAAA,EACA,YAAY,QAAQ;AAClB,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,OAAO,OAAO,QAAQ,SAAS,OAAO,SAAS,IAAI;AAC3D,QAAI,WAAW,MAAM;AACnB;AAAA,IACF;AACA,UAAM,oBAAoB,KAAK,gBAAgB;AAC/C,QAAI;AACJ,QAAI,mBAAmB;AACrB,cAAQ,aAAa,IAAI;AAAA,IAC3B;AACA,QAAI,WAAW,QAAQ;AACvB,QAAI,YAAY,MAAM;AACpB,iBAAW,gCAAgC,OAAO,QAAQ;AAC1D,cAAQ,WAAW;AAAA,IACrB;AACA,QAAI,UAAU,MAAM;AAClB,YAAM,YAAY,aAAa,KAAK;AACpC,UAAI;AACJ,UAAI,QAAQ,SAAS,IAAI,SAAS,SAAS;AAC3C,YAAM,cAAc,kBAAkB,cAAc,kBAAkB;AACtE,UAAI,YAAY,CAAC,aAAa;AAC5B,SAAC,OAAO,MAAM,IAAI,uCAAuC,SAAS,IAAI,SAAS,EAAE;AAAA,MACnF;AACA,UAAI,UAAU;AACZ,kBAAU,IAAI,0BAA0B,WAAW,WAAW;AAAA,MAChE,OAAO;AACL,kBAAU,IAAI,oBAAoB,WAAW,WAAW;AAAA,MAC1D;AACA,YAAM,yBAAyB,cAAc,CAAC,QAAQ,KAAK,IAAI;AAC/D,YAAM,uBAAuB,KAAK,eAAe,wBAAwB,KAAK;AAC9E,YAAM,wBAAwB,KAAK,QAAQ,IAAI,qBAAqB,MAAM;AAC1E,UAAI,aAAa;AACf,8BAAsB,QAAQ,aAAa;AAAA,MAC7C,OAAO;AACL,8BAAsB,QAAQ,aAAa;AAAA,MAC7C;AACA,4BAAsB,WAAW;AACjC,WAAK,MAAM,2BAA2B,KAAK,WAAW,qBAAqB,MAAM,GAAG,OAAO,QAAQ,MAAM;AACzG,YAAM,eAAe,CAAC,CAAC,QAAQ,KAAK,CAAC;AACrC,YAAM,wBAAwB;AAC9B,YAAM,sBAAsB,KAAK,gBAAgB,SAAS,CAAC,oBAAoB,GAAG,OAAO,cAAc,qBAAqB;AAC5H,YAAM,gBAAgB,KAAK,QAAQ,IAAI,oBAAoB,MAAM;AACjE,cAAQ,WAAW,cAAc;AACjC,cAAQ,WAAW,cAAc;AACjC,cAAQ,QAAQ,cAAc;AAC9B,UAAI,CAAC,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACrC,gBAAQ,UAAU,cAAc;AAChC,gBAAQ,SAAS;AACjB,aAAK,QAAQ,OAAO,oBAAoB,MAAM;AAAA,MAChD,OAAO;AACL,aAAK,YAAY,oBAAoB,MAAM;AAAA,MAC7C;AACA,WAAK,8BAA8B,oBAAoB;AACvD,UAAI,mBAAmB;AACrB,aAAK,gBAAgB,aAAa,IAAI,IAAI;AAAA,MAC5C;AAAA,IACF,OAAO;AACL,YAAM,aAAa,KAAK,eAAe,UAAU,OAAO,OAAO,QAAQ;AACvE,cAAQ,UAAU;AAAA,IACpB;AAAA,EACF;AAAA,EACA,qBAAqB,QAAQ,eAAe;AAC1C,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,MAAM,IAAI;AAClB,SAAK,eAAe,MAAM;AAC1B,QAAI,iBAAiB,MAAM;AACzB,cAAQ,SAAS,oBAAoB,eAAe,KAAK;AAAA,IAC3D;AACA,WAAO,QAAQ;AAAA,EACjB;AAAA,EACA,eAAe,UAAU,SAAS,OAAO,UAAU;AACjD,SAAK,iBAAiB,KAAK,aAAa,UAAU,KAAK;AACvD,QAAI,CAAC,KAAK,qBAAqB,KAAK,gBAAgB,KAAK,qBAAqB,OAAO,MAAM;AACzF,YAAM,MAAM,KAAK,gBAAgB,OAAO,MAAM,QAAQ,CAAC;AACvD,WAAK,oBAAoB;AACzB,cAAQ,KAAK,6BAA6B,yCAAyC;AAAA,IACrF;AACA,WAAO,KAAK,eAAe,eAAe,UAAU,SAAS,QAAQ;AAAA,EACvE;AAAA,EACA,aAAa,OAAO,OAAO;AACzB,WAAO,MAAM,KAAK,MAAM,KAAK,aAAa,gBAAgB,KAAK;AAAA,EACjE;AAAA,EACA,yBAAyB;AACvB,eAAW,CAAC,EAAE,MAAM,KAAK,OAAO,QAAQ,KAAK,WAAW,GAAG;AACzD,WAAK,iBAAiB,MAAM;AAAA,IAC9B;AAAA,EACF;AAAA,EACA,MAAM,8BAA8B;AAClC,UAAM,KAAK,CAAC;AACZ,QAAI,KAAK,MAAM,8BAA8B;AAC3C,iBAAW,CAAC,EAAE,MAAM,KAAK,OAAO,QAAQ,KAAK,WAAW,GAAG;AACzD,WAAG,KAAK,KAAK,sBAAsB,MAAM,CAAC;AAAA,MAC5C;AACA,aAAO,QAAQ,IAAI,EAAE;AAAA,IACvB,OAAO;AACL,iBAAW,CAAC,EAAE,MAAM,KAAK,OAAO,QAAQ,KAAK,WAAW,GAAG;AACzD,cAAM,KAAK,IAAI,QAAQ,CAAC,YAAY;AAClC,cAAI;AACF,iBAAK,iBAAiB,MAAM;AAC5B,oBAAQ,IAAI;AAAA,UACd,SAAS,OAAP;AACA,kBAAM;AAAA,UACR;AAAA,QACF,CAAC;AACD,WAAG,KAAK,EAAE;AAAA,MACZ;AACA,aAAO,QAAQ,IAAI,EAAE;AAAA,IACvB;AAAA,EACF;AAAA,EACA,MAAM,sBAAsB,QAAQ;AAClC,QAAI,KAAK,MAAM,GAAG,oBAAoB,OAAO,cAAc,KAAK,MAAM,6BAA6B,qBAAqB,GAAG;AACzH,aAAO,KAAK,iBAAiB,MAAM;AAAA,IACrC,OAAO;AACL,YAAM,UAAU;AAChB,aAAO,KAAK,sBAAsB,MAAM;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,iBAAiB,QAAQ;AACvB,QAAI,KAAK,MAAM,GAAG,oBAAoB,OAAO,cAAc,KAAK,MAAM,GAAG,WAAW,MAAM,OAAO;AAC/F,cAAQ,IAAI,KAAK,MAAM,GAAG,kBAAkB,OAAO,YAAY,CAAC;AAChE,UAAI,KAAK,MAAM,GAAG,mBAAmB,OAAO,gBAAgB,KAAK,MAAM,GAAG,cAAc,MAAM,OAAO;AACnG,kCAA0B,OAAO,QAAQ,KAAK,MAAM,GAAG,iBAAiB,OAAO,cAAc,CAAC;AAC9F,cAAM,IAAI,MAAM,oCAAoC;AAAA,MACtD;AACA,YAAM,IAAI,MAAM,6CAA6C;AAAA,IAC/D;AACA,WAAO;AAAA,EACT;AAAA,EACA,sBAAsB;AACpB,eAAW,CAAC,EAAE,MAAM,KAAK,OAAO,QAAQ,KAAK,WAAW,GAAG;AACzD,YAAM,EAAE,kBAAkB,wBAAwB,QAAQ,QAAQ,mBAAmB,sBAAsB,kBAAkB,yBAAyB,oBAAoB,IAAI,oBAAoB,KAAK,OAAO,OAAO,SAAS,OAAO,YAAY;AACjP,aAAO,mBAAmB;AAC1B,aAAO,yBAAyB;AAChC,aAAO,SAAS;AAChB,aAAO,SAAS;AAChB,aAAO,oBAAoB;AAC3B,aAAO,uBAAuB;AAC9B,aAAO,mBAAmB;AAC1B,aAAO,0BAA0B;AACjC,aAAO,sBAAsB;AAAA,IAC/B;AAAA,EACF;AACF;AACA,iBAAiB,aAAa;AAC9B,SAAS,oBAAoB,GAAG,OAAO;AACrC,MAAI,UAAU,aAAa,UAAU,aAAa;AAChD,WAAO;AAAA,EACT,WAAW,UAAU,WAAW,UAAU,QAAQ;AAChD,UAAM,SAAS,UAAU,UAAU,IAAI,WAAW,EAAE,MAAM,IAAI,IAAI,WAAW,EAAE,MAAM;AACrF,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,aAAO,MAAM,KAAK,MAAM,EAAE,GAAG;AAAA,IAC/B;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA,EAC1C;AACF;AAGA,IAAI,WAAW;AAGf,SAAS,iBAAiB;AACxB,MAAI,EAAE,IAAI,4BAA4B,IAAI;AAC5C;AAGA,IAAI,oBAAoB,UAAU,GAAG;AACnC,kBAAgB,SAAS,MAAM,IAAI,iBAAiB,GAAG,CAAC;AAC1D;AACA,IAAI,QAAQ,EAAE,eAAe;AAG7B,IAAI,qBAAqB;AAAA;AAAA;AAAA;AAIzB,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,KAAK,QAAQ,QAAQ;AAC/B,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASR;AACF;AAGA,IAAI,qBAAqB;AAAA;AAAA;AAAA;AAAA;AAAA;AAMzB,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,KAAK,QAAQ,QAAQ,mBAAmB,OAAO;AACzD,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,uBAAuB;AAC5B,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,UAAM,OAAO,KAAK,YAAY;AAC9B,SAAK,sBAAsB,iBAAiB,IAAI;AAChD,QAAI,yBAAyB;AAC7B,QAAI,kBAAkB;AACpB,UAAI,SAAS,KAAK,aAAa,cAAc,KAAK,WAAW,MAAM,GAAG;AACpE,iCAAyB;AAAA;AAAA;AAAA;AAAA;AAAA,MAK3B,OAAO;AACL,cAAM,QAAQ,kBAAkB,IAAI;AACpC,iCAAyB;AAAA,YACrB;AAAA;AAEJ,YAAI,SAAS,GAAG;AACd,cAAI,KAAK,qBAAqB;AAC5B,sCAA0B;AAAA;AAAA;AAAA;AAAA;AAAA,UAK5B,OAAO;AACL,sCAA0B;AAAA,yCACG,KAAK,YAAY;AAAA;AAAA;AAAA;AAAA,UAIhD;AAAA,QACF,OAAO;AACL,gBAAM,WAAW,YAAY,UAAU,IAAI;AAC3C,cAAI,KAAK,qBAAqB;AAC5B,sCAA0B;AAAA;AAAA,iBAErB,SAAS,OAAO,uBAAuB;AAAA;AAAA,iBAEvC,SAAS,OAAO,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA,UAK9C,OAAO;AACL,sCAA0B;AAAA;AAAA,iBAErB,SAAS,OAAO,cAAc,KAAK,YAAY,OAAO;AAAA;AAAA,iBAEtD,SAAS,OAAO,cAAc,KAAK,YAAY,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA,UAK7D;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAQA;AAAA;AAAA;AAAA;AAAA;AAAA,EAKR;AACF;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,WAAS,OAAO,EAAE,MAAM;AACxB,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAC5D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,OAAO,MAAM,MAAM,IAAI;AACrC,QAAM,cAAc,SAAS,eAAe,MAAM,OAAO,WAAW;AACpE,QAAM,WAAW,SAAS,QAAQ,IAAI,YAAY,MAAM;AACxD,QAAM,iBAAiB,UAAU,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,SAAS,CAAC;AAC5E,QAAM,iBAAiB,UAAU,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,SAAS,CAAC;AAC5E,WAAS,qBAAqB,EAAE,MAAM,gBAAgB,MAAM,eAAe;AAC3E,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY;AAChB,IAAI,mBAAmB;AAAA;AAAA;AAAA;AAIvB,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAAuB,OAAM,IAAI;AAClB,QAAM,SAAS,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkBA,QAAO,SAAS,CAAC;AACtG,QAAM,UAAU,IAAI,EAAE,QAAQ,8BAA8B,IAAI,IAAI,sBAAsB,kBAAkB,EAAE,OAAO,OAAO,KAAK,IAAI,IAAI,gBAAgB,WAAW,EAAE,OAAO,OAAO,KAAK;AACzL,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,SAAS;AACvE,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ;AACZ,IAAI,eAAe;AAAA;AAAA;AAAA;AAInB,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,OAAAA,OAAM,IAAI;AACrB,QAAM,UAAU,IAAI,EAAE,QAAQ,8BAA8B,IAAI,IAAI,sBAAsB,cAAc,EAAE,OAAOA,OAAM,KAAK,IAAI,IAAI,gBAAgB,OAAO,EAAE,OAAOA,OAAM,KAAK;AAC/K,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAGA,MAAK,GAAG,SAAS;AAChE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,2BAA2B;AAAA;AAAA;AAAA;AAI/B,IAAI,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAMtC,SAAS,iBAAiB,EAAE,WAAW,iBAAiB,eAAe,MAAM,GAAG;AAC9E,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,eAAe;AACrB,UAAM,SAAS,SAAS,EAAE;AAC1B,QAAI,aAAa,mBAAmB,CAAC,CAAC,CAAC,KAAK,iBAAiB,MAAM;AACjE,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM;AAC/C,YAAM,YAAY,cAAc,MAAM,QAAQ,MAAM;AACpD,aAAO,aAAa,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,IAC/D;AACA,UAAM,yBAAyB,IAAI,EAAE,QAAQ,6BAA6B,KAAK,mBAAmB;AAClG,QAAI;AACJ,QAAI,wBAAwB;AAC1B,gBAAU,IAAI,qBAAqB,EAAE,OAAO,eAAe;AAAA,IAC7D,OAAO;AACL,gBAAU,IAAI,eAAe,EAAE,OAAO,SAAS;AAAA,IACjD;AACA,WAAO,aAAa,gBAAgB,SAAS,CAAC,CAAC,GAAG,MAAM;AAAA,EAC1D;AACF;AACA,SAAS,kBAAkB,EAAE,WAAW,iBAAiB,mBAAmB,OAAO,kBAAkB,OAAO,eAAe,MAAM,GAAG;AAClI,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,eAAe;AACrB,QAAI,mBAAmB,EAAE,UAAU,aAAa;AAC9C,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM;AAC/C,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM;AAC/C,YAAM,CAAC,OAAO,KAAK,IAAI;AAAA,QACrB,CAAC,MAAM,mBAAmB,MAAM,MAAM,mBAAmB,IAAI;AAAA,QAC7D,CAAC,MAAM,mBAAmB,MAAM,MAAM,mBAAmB,IAAI;AAAA,MAC/D,EAAE,IAAI,CAAC,iBAAiB;AACtB,cAAM,CAAC,OAAO,KAAK,IAAI;AACvB,cAAM,UAAU;AAAA,UACd,QAAQ,MAAM;AAAA,UACd,OAAO,MAAM;AAAA,UACb,OAAO,EAAE;AAAA,QACX;AACA,cAAM,UAAU;AAAA,UACd,QAAQ,MAAM;AAAA,UACd,OAAO,MAAM;AAAA,UACb,OAAO,EAAE;AAAA,QACX;AACA,cAAM,WAAW,IAAI,gBAAgB,WAAW,EAAE,OAAO,EAAE,KAAK;AAChE,eAAO,aAAa,gBAAgB,UAAU,CAAC,SAAS,OAAO,GAAG,WAAW,MAAM,OAAO,MAAM,KAAK,CAAC;AAAA,MACxG,CAAC;AACD,YAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,OAAO,MAAM,MAAM,GAAG,SAAS,aAAa,CAAC;AAC9F,mBAAa,8BAA8B,KAAK;AAChD,mBAAa,8BAA8B,KAAK;AAChD,aAAO;AAAA,IACT;AACA,UAAM,SAAS,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AACnD,SAAK,EAAE,UAAU,YAAY,EAAE,UAAU,YAAY,aAAa,mBAAmB,CAAC,GAAG,CAAC,CAAC,MAAM,iBAAiB,MAAM;AACtH,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM,EAAE;AACjD,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM,EAAE;AACjD,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,CAAC,WAAW,QAAQ,IAAI,cAAc,EAAE,OAAO,EAAE,OAAO,cAAc,cAAc,MAAM;AAChG,YAAM,MAAM,aAAa,eAAe,UAAU,MAAM;AACxD,YAAM,UAAU,aAAa,QAAQ,IAAI,IAAI,MAAM;AACnD,cAAQ,SAAS;AACjB,aAAO;AAAA,IACT;AACA,UAAM,yBAAyB,IAAI,EAAE,QAAQ,8BAA8B,KAAK,mBAAmB;AACnG,QAAI;AACJ,QAAI,wBAAwB;AAC1B,gBAAU,IAAI,sBAAsB,iBAAiB,EAAE,OAAO,EAAE,OAAO,gBAAgB;AAAA,IACzF,OAAO;AACL,gBAAU,IAAI,gBAAgB,WAAW,EAAE,OAAO,EAAE,KAAK;AAAA,IAC3D;AACA,WAAO,aAAa,gBAAgB,SAAS,CAAC,GAAG,CAAC,GAAG,MAAM;AAAA,EAC7D;AACF;AACA,SAAS,6BAA6B,aAAa,SAAS,OAAO;AACjE,MAAI,gBAAgB,UAAU;AAC5B,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,QAAQ;AACjC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,OAAO;AAChC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,SAAS;AAClC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,SAAS;AAClC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,aAAa;AACtC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,WAAW;AACpC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AACA,QAAM,IAAI,MAAM,cAAc,6DAA6D;AAC7F;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,QAAQ,QAAQ,aAAa,aAAa,OAAO,aAAa,OAAO,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO,yBAAyB,OAAO;AAChL,SAAK,gBAAgB,CAAC,WAAW,SAAS;AAC1C,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,YAAY,aAAa,OAAO,KAAK,OAAO;AAClD,UAAM,wBAAwB,KAAK,KAAK,YAAY,CAAC;AACrD,UAAM,UAAU,aAAa,gBAAgB;AAC7C,UAAM,UAAU,aAAa,gBAAgB;AAC7C,UAAM,WAAW,aAAa,CAAC,UAAU,QAAQ,IAAI,CAAC,UAAU,QAAQ;AACxE,UAAM,WAAW,aAAa,CAAC,UAAU,QAAQ,IAAI,CAAC,UAAU,QAAQ;AACxE,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,oBAAoB;AACtB,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,WAAW,wBAAwB;AACjC,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,OAAO;AACL,4BAAoB;AAAA,YAChB;AAAA;AAAA,MAEN;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,wBAAwB;AAC1B,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,QAAI,gBAAgB;AACpB,QAAI,gBAAgB;AACpB,QAAI,OAAO,KAAK,OAAO,IAAI;AACzB,sBAAgB,wBAAwB,OAAO,KAAK;AAAA,IACtD,WAAW,OAAO,KAAK,OAAO,IAAI;AAChC,sBAAgB,wBAAwB,OAAO,KAAK;AAAA,IACtD;AACA,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA,sCAE8B;AAAA;AAAA;AAAA;AAAA,8BAIR;AAAA,yBACL;AAAA,yBACA;AAAA,wCACe;AAAA,wCACA;AAAA;AAAA;AAAA;AAAA,uBAIjB,SAAS,QAAQ,SAAS;AAAA,uBAC1B,SAAS,QAAQ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UASvC;AAAA;AAAA,UAEA;AAAA;AAAA;AAAA;AAAA;AAAA,EAKR;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,MAAM;AAAA,EACN,MAAM;AACR;AACA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,KAAK,QAAQ,QAAQ;AAC/B,SAAK,gBAAgB,CAAC,SAAS,SAAS,SAAS,OAAO;AACxD,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,SAAK,WAAW;AAAA;AAAA;AAAA,UAGV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAWR;AACF;AAGA,IAAI,MAAM;AACV,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,QAAQ,qBAAqB,WAAW,EAAE,OAAO,EAAE,KAAK;AAC9D,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,cAAc,IAAI,uBAAuB,iBAAiB,MAAM,EAAE,OAAO,EAAE,KAAK;AACtF,UAAM,cAAc,IAAI,uBAAuB,iBAAiB,MAAM,EAAE,OAAO,EAAE,KAAK;AACtF,UAAM,UAAU;AAAA,MACd;AAAA,QACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,QACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,QACrC,OAAO,EAAE;AAAA,MACX;AAAA,MACA;AAAA,QACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,QACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,QACrC,OAAO,EAAE;AAAA,MACX;AAAA,MACA;AAAA,QACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,QACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,QACrC,OAAO,EAAE;AAAA,MACX;AAAA,MACA;AAAA,QACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,QACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,QACrC,OAAO,EAAE;AAAA,MACX;AAAA,IACF;AACA,UAAM,WAAW,SAAS,gBAAgB,aAAa,SAAS,SAAS;AACzE,UAAM,WAAW,SAAS,gBAAgB,aAAa,SAAS,SAAS;AACzE,UAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,UAAU,MAAM,SAAS,GAAG,SAAS,SAAS,CAAC;AAChG,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,QAAQ;AAC/C,WAAO;AAAA,EACT;AACA,MAAI,SAAS,mBAAmB,CAAC,GAAG,CAAC,CAAC,GAAG;AACvC,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,CAAC,WAAW,QAAQ,IAAI,gBAAgB,EAAE,OAAO,EAAE,OAAO,MAAM,QAAQ,MAAM,QAAQ,KAAK;AACjG,UAAM,MAAM,SAAS,eAAe,UAAU,KAAK;AACnD,UAAM,UAAU,SAAS,QAAQ,IAAI,IAAI,MAAM;AAC/C,YAAQ,SAAS;AACjB,WAAO;AAAA,EACT;AACA,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,cAAU,IAAI,sBAAsB,KAAK,EAAE,OAAO,EAAE,KAAK;AAAA,EAC3D,OAAO;AACL,cAAU,IAAI,gBAAgB,KAAK,EAAE,OAAO,EAAE,KAAK;AAAA,EACrD;AACA,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,CAAC,GAAG,KAAK;AACxD;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,QAAQ,YAAY,UAAU;AACnD,QAAM,eAAe;AAAA,IACnB,YAAY,OAAO,KAAK;AAAA,IACxB,GAAG,YAAY,OAAO,KAAK;AAAA,EAC7B;AACA,QAAM,UAAU;AAAA,IACd,OAAO,OAAO;AAAA,IACd,OAAO;AAAA,IACP,QAAQ,OAAO;AAAA,EACjB;AACA,QAAM,iBAAiB;AAAA,IACrB,YAAY,UAAU;AAAA,IACtB,GAAG,YAAY,UAAU;AAAA,EAC3B;AACA,QAAM,UAAU,IAAI,qBAAqB,gBAAgB,YAAY;AACrE,QAAM,gCAAgC;AACtC,QAAM,eAAe,CAAC,YAAY;AAClC,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,OAAO,GAAG,OAAO,OAAO,cAAc,6BAA6B;AACrH,SAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,YAAY,OAAO,OAAO,MAAM;AACzE;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,eAAe;AACrB,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,SAAS,aAAa,uBAAuB,OAAO,KAAK;AAC/D,QAAM,SAAS,aAAa,cAAc,MAAM;AAChD,eAAa,OAAO,UAAU,QAAQ,MAAM,kBAAkB,eAAe,sCAAsC,EAAE,cAAc,oFAAoF;AACvN,QAAM,WAAW,aAAa,QAAQ,IAAI,EAAE,MAAM;AAClD,MAAI,SAAS,YAAY,CAAC,cAAc,EAAE,OAAO,MAAM,KAAK,EAAE,SAAS,YAAY,QAAQ,cAAc,SAAS,OAAO,MAAM,IAAI;AACjI,WAAO,cAAc,GAAG,QAAQ,YAAY;AAAA,EAC9C;AACA,eAAa,OAAO,EAAE,MAAM;AAC5B,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,QAAQ,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,YAAY,SAAS;AAC/B,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,EAAE,YAAY,WAAW,QAAQ,QAAQ,IAAI;AACnD,SAAK,cAAc,CAAC,WAAW,OAAO;AACtC,UAAM,wBAAwB,KAAK,MAAM,aAAa,CAAC,IAAI;AAC3D,UAAM,0BAA0B,aAAa;AAC7C,QAAI,gBAAgB;AACpB,QAAI,WAAW,MAAM;AACnB,YAAM,cAAc,IAAI;AACxB,sBAAgB,4BAA4B,aAAa,MAAM,WAAW,IAAI,YAAY,YAAY,CAAC,IAAI;AAAA,IAC7G;AACA,QAAI,mBAAmB;AACvB,QAAI,SAAS,aAAa,GAAG;AAC3B,yBAAmB;AAAA,oCACW;AAAA;AAAA;AAAA;AAAA,IAIhC;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA,UAIV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAQwB;AAAA;AAAA;AAAA;AAAA,8BAIJ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YASlB;AAAA;AAAA;AAAA,iCAGqB;AAAA,cACnB,4BAA4B;AAAA;AAAA;AAAA,YAG9B;AAAA,qBACS,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA,YAKrC;AAAA,qBACS,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAMrC;AAAA;AAAA;AAAA;AAAA;AAAA,EAKV;AACF;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,YAAY,YAAY;AAClC,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,EAAE,YAAY,WAAW,QAAQ,QAAQ,IAAI;AACnD,SAAK,cAAc,CAAC,WAAW,OAAO;AACtC,QAAI,sBAAsB;AAC1B,QAAI,YAAY;AAChB,QAAI,eAAe,QAAQ;AACzB,4BAAsB;AAAA,IACxB,WAAW,eAAe,OAAO;AAC/B,4BAAsB;AACtB,kBAAY;AAAA,IACd,WAAW,eAAe,OAAO;AAC/B,4BAAsB;AACtB,kBAAY;AAAA,IACd;AACA,QAAI,cAAc,GAAG,cAAc,cAAc;AACjD,QAAI,eAAe,OAAO;AACxB,oBAAc;AAAA,IAChB,WAAW,eAAe,QAAQ;AAChC,oBAAc;AAAA,IAChB,WAAW,eAAe,OAAO;AAC/B,oBAAc;AAAA,IAChB,WAAW,eAAe,OAAO;AAC/B,oBAAc;AAAA,IAChB;AACA,UAAM,wBAAwB,KAAK,MAAM,aAAa,CAAC,IAAI;AAC3D,UAAM,0BAA0B,aAAa;AAC7C,QAAI,gBAAgB;AAAA,YACZ,eAAe;AAAA;AAAA,mBAER,eAAe;AAAA;AAAA;AAAA;AAAA,wBAIV;AAAA,cACV,eAAe,YAAY,eAAe;AAAA,0BAC9B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAQtB,QAAI,UAAU;AACd,QAAI,eAAe,OAAO;AACxB,4BAAsB;AACtB,sBAAgB;AAAA;AAAA;AAAA;AAAA;AAKhB,gBAAU;AAAA,IACZ,WAAW,eAAe,OAAO;AAC/B,4BAAsB;AACtB,sBAAgB;AAAA;AAAA;AAAA;AAAA;AAKhB,gBAAU;AAAA,IACZ;AACA,QAAI,mBAAmB;AACvB,QAAI,SAAS,aAAa,GAAG;AAC3B,yBAAmB;AAAA,oCACW;AAAA;AAAA;AAAA;AAAA,IAIhC;AACA,SAAK,WAAW;AAAA,0CACsB;AAAA;AAAA;AAAA;AAAA,UAIhC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAQwB;AAAA;AAAA,kCAEA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMJ;AAAA;AAAA,YAElB,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOpB;AAAA;AAAA;AAAA,iCAGqB;AAAA,cACnB,4BAA4B;AAAA,YAC9B,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOpB;AAAA,qBACS,4BAA4B;AAAA,YACrC,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOpB;AAAA,qBACS,4BAA4B;AAAA,YACrC,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOpB;AAAA;AAAA,oBAEQ;AAAA;AAAA;AAAA,EAGlB;AACF;AAGA,SAAS,mBAAmB,SAAS;AACnC,QAAM,SAAS,CAAC;AAChB,SAAO,OAAO,WAAW,KAAK,OAAO,OAAO,SAAS,GAAG,YAAY,GAAG;AACrE,UAAM,UAAU,OAAO,SAAS,OAAO,OAAO,SAAS,GAAG,UAAU,QAAQ;AAC5E,UAAM,aAAa,qBAAqB,yBAAyB,OAAO;AACxE,WAAO,KAAK;AAAA,MACV,QAAQ;AAAA,MACR;AAAA,MACA,SAAS,KAAK,KAAK,UAAU,UAAU;AAAA,IACzC,CAAC;AAAA,EACH;AACA,SAAO;AACT;AACA,SAAS,OAAO,GAAG,OAAO,eAAe,UAAU;AACjD,QAAM,kBAAkB,mBAAmB,EAAE,KAAK;AAClD,MAAI,SAAS;AACb,WAAS,KAAK,GAAG,KAAK,gBAAgB,QAAQ,MAAM;AAClD,UAAM,EAAE,QAAQ,YAAY,QAAQ,IAAI,gBAAgB;AACxD,QAAI;AACJ,QAAI;AACJ,QAAI,kBAAkB,QAAQ;AAC5B,gBAAU,OAAO,IAAI,IAAI,YAAY,EAAE,YAAY,QAAQ,WAAW,EAAE,MAAM,IAAI,QAAQ,GAAG,MAAM,IAAI,IAAI,YAAY,EAAE,YAAY,QAAQ,WAAW,EAAE,MAAM,IAAI,QAAQ,CAAC;AAAA,IAC/K,OAAO;AACL,gBAAU,IAAI,cAAc,EAAE,YAAY,QAAQ,WAAW,EAAE,MAAM,IAAI,QAAQ,GAAG,aAAa;AAAA,IACnG;AACA,qBAAiB;AACjB,aAAS,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,KAAK;AAC1D,QAAI,eAAe,WAAW,EAAE,QAAQ;AACtC,eAAS,8BAA8B,cAAc;AAAA,IACvD;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,QAAQ;AAC1B,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,OAAO;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,WAAW,kBAAkB,MAAM;AACzC,SAAK,WAAW;AAAA;AAAA,QAEZ;AAAA,uBACe;AAAA;AAAA;AAAA,EAGrB;AACF;AACA,SAAS,kBAAkB,QAAQ;AACjC,QAAM,OAAO,OAAO;AACpB,MAAI,OAAO,GAAG;AACZ,UAAM,MAAM,sBAAsB,2BAA2B;AAAA,EAC/D;AACA,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,WAAW,WAAW,SAAS;AACvF,QAAM,iBAAiB,IAAI,MAAM,IAAI;AACrC,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,mBAAe,OAAO,OAAO,cAAc;AAAA,EAC7C;AACA,SAAO,eAAe,KAAK;AAC7B;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,QAAQ,QAAQ;AAC1B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,OAAO;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,QAAI,KAAK,OAAO,GAAG;AACjB,YAAM,MAAM,6BAA6B,KAAK,4BAA4B;AAAA,IAC5E;AACA,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,cAAc,eAAe,MAAM,KAAK,IAAI;AAClD,UAAM,gBAAgB,IAAI,MAAM,KAAK,IAAI;AACzC,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,oBAAc,OAAO,OAAO,YAAY;AAAA,IAC1C;AACA,UAAM,YAAY,QAAQ,cAAc,MAAM,EAAE,EAAE,KAAK;AACvD,UAAM,aAAa,KAAK,YAAY,KAAK,OAAO,QAAQ,YAAY,KAAK,OAAO;AAChF,UAAM,OAAO,mBAAmB,cAAc,KAAK,OAAO;AAC1D,SAAK,WAAW;AAAA;AAAA,QAEZ;AAAA;AAAA,oBAEY;AAAA,WACT;AAAA,sBACW;AAAA;AAAA,UAEZ,YAAY,KAAK,OAAO;AAAA,aACrB,YAAY,KAAK,OAAO,QAAQ,YAAY,KAAK,OAAO;AAAA,sBAC/C;AAAA,aACT;AAAA,wBACW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAMtB;AACF;AAGA,SAAS,eAAe,GAAG,MAAM,UAAU;AACzC,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,uBAAuB,EAAE,OAAO,IAAI,IAAI,IAAI,iBAAiB,EAAE,OAAO,IAAI;AAC7I,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AAGA,SAAS,QAAQ,GAAG,MAAM,UAAU,UAAU;AAC5C,QAAM,mBAAmB;AACzB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,kBAAkB,EAAE,KAAK;AACtE,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,QAAM,uBAAuB,gBAAgB;AAC7C,MAAI,WAAW;AACf,MAAI,sBAAsB;AACxB,eAAW,eAAe,GAAG,cAAc,QAAQ;AACnD,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,EACjE;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,aAAa,WAAW,IAAI,qBAAqB,0BAA0B,SAAS,OAAO,IAAI;AACtG,MAAI,WAAW;AACf,MAAI,UAAU;AACZ,eAAW,qBAAqB,qBAAqB,aAAa,QAAQ;AAAA,EAC5E;AACA,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,YAAY,QAAQ;AAC1B,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,OAAO,EAAE,OAAO,CAAC,WAAW,MAAM,EAAE,GAAG,SAAS,SAAS,CAAC;AACpH,QAAM,UAAU,WAAW,EAAE,KAAK;AAClC,QAAM,UAAU,OAAO,eAAe,SAAS,OAAO,QAAQ;AAC9D,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC9F,WAAS,8BAA8B,aAAa;AACpD,WAAS,8BAA8B,OAAO;AAC9C,MAAI,sBAAsB;AACxB,aAAS,8BAA8B,QAAQ;AAAA,EACjD;AACA,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,QAAQ;AAC5C;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,eAAe;AACrB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,IAAI,MAAM,KAAK;AAChC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,EAAE,MAAM,KAAK;AAAA,EAC9B;AACA,MAAI;AACJ,MAAI,aAAa,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACxC,UAAM,WAAW,aAAa,QAAQ,IAAI,EAAE,MAAM;AAClD,UAAM,SAAS,SAAS;AACxB,UAAM,YAAY,iBAAiB,QAAQ,EAAE,OAAO,EAAE,OAAO,MAAM,QAAQ;AAC3E,UAAM,aAAa,eAAe,UAAU,EAAE,KAAK;AACnD,UAAM,UAAU,aAAa,QAAQ,IAAI,IAAI,MAAM;AACnD,YAAQ,SAAS;AAAA,EACnB,OAAO;AACL,UAAM,eAAe,GAAG,MAAM,YAAY;AAAA,EAC5C;AACA,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,8BAA8B;AAClC,SAAS,gBAAgB,EAAE,GAAG,GAAG,YAAY,YAAY,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AAC5K,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,oBAAoB,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AACtH,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,eAAa,OAAO,gBAAgB,aAAa,MAAM,kCAAkC,qBAAqB,uCAAuC,EAAE,aAAa,EAAE,wBAAwB,6BAA6B,wBAAwB;AACnP,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,gBAAgB,CAAC,KAAK,GAAG;AAC/B,QAAM,WAAW,KAAK,IAAI,WAAW,SAAS;AAC9C,QAAM,YAAY,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACxD,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,oBAAoB,gBAAgB;AAC1C,QAAM,kBAAkB,eAAe,OAAO,6BAA6B,aAAa,IAAI,IAAI;AAChG,QAAM,mBAAmB,WAAW,6BAA6B,qBAAqB,mBAAmB;AACzG,MAAI;AACJ,OAAK,gBAAgB,KAAK,gBAAgB,MAAM,YAAY,+BAA+B,qBAAqB,OAAO;AACrH,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,YAAY;AACd,aAAO,WAAW,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,CAAC,GAAG,GAAG,CAAC,EAAE,EAAE,CAAC;AACvF,oBAAc,KAAK,IAAI;AAAA,IACzB;AACA,QAAI,YAAY;AACd,aAAO,WAAW,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,CAAC,GAAG,GAAG,CAAC,EAAE,EAAE,CAAC;AACvF,oBAAc,KAAK,IAAI;AAAA,IACzB;AACA,UAAM,iBAAiB,gBAAgB;AACvC,UAAM,iBAAiB,gBAAgB;AACvC,QAAI,SAAS;AACb,QAAI,gBAAgB;AAClB,eAAS,SAAS;AAAA,QAChB,QAAQ,EAAE,GAAG,KAAK;AAAA,QAClB,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,CAAC,EAAE;AAAA,MAC3C,CAAC;AACD,oBAAc,KAAK,MAAM;AAAA,IAC3B;AACA,UAAM,OAAO,gBAAgB,IAAI,IAAI;AACrC,QAAI,SAAS;AACb,QAAI,gBAAgB;AAClB,eAAS,SAAS;AAAA,QAChB,QAAQ,EAAE,GAAG,KAAK;AAAA,QAClB,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,CAAC,UAAU,GAAG,SAAS,EAAE;AAAA,MAC3C,CAAC;AACD,oBAAc,KAAK,MAAM;AAAA,IAC3B;AACA,UAAM,UAAU,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,GAAG,SAAS,SAAS,CAAC;AACjF,UAAM,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,UAAU,KAAK,EAAE,CAAC;AACzF,kBAAc,KAAK,OAAO;AAAA,EAC5B,OAAO;AACL,UAAM,QAAQ,WAAW,EAAE,OAAO,EAAE,KAAK;AACzC,UAAM,UAAU,IAAI,oBAAoB,UAAU,UAAU,CAAC,UAAU,aAAa,WAAW,GAAG,YAAY,YAAY,SAAS,iBAAiB,2BAA2B,iBAAiB;AAChM,UAAM,SAAS,CAAC,KAAK,GAAG;AACxB,QAAI,QAAQ,MAAM;AAChB,aAAO,KAAK,IAAI;AAAA,IAClB;AACA,QAAI,2BAA2B;AAC7B,aAAO,KAAK,sBAAsB;AAAA,IACpC;AACA,QAAI,mBAAmB;AACrB,YAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkB,gBAAgB,SAAS,CAAC;AACxH,aAAO,KAAK,eAAe;AAC3B,oBAAc,KAAK,eAAe;AAAA,IACpC;AACA,UAAM,SAAS,gBAAgB,SAAS,QAAQ,KAAK;AAAA,EACvD;AACA,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAClG,gBAAc,KAAK,GAAG;AACtB,aAAW,MAAM,eAAe;AAC9B,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,SAAO;AACT;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,MAAM,uBAAuB,IAAI;AAC/C,QAAM,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe,IAAI;AAC5E,SAAO,gBAAgB;AAAA,IACrB;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,EACd,CAAC;AACH;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,aAAa;AAC/D,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,YAAY,iBAAiB,MAAM,MAAM;AAC/C,WAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,SAAS;AAAA,EAC5D;AACA,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,6BAA6B,GAAG;AAChD,cAAU,IAAI,qBAAqB,EAAE,OAAO,IAAI;AAAA,EAClD,OAAO;AACL,cAAU,IAAI,eAAe,EAAE,OAAO,IAAI;AAAA,EAC5C;AACA,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAM/B,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,oBAAoB;AAAA;AAAA;AAGhC,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AACV,IAAI,gBAAgB,kBAAkB;AAAA,EACpC,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,aAAa,QAAQ;AAC/B,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,UAAM,WAAW,CAAC;AAClB,SAAK,cAAc,QAAQ,CAAC,cAAc;AACxC,eAAS,KAAK,UAAU,kBAAkB,yBAAyB;AAAA,IACrE,CAAC;AACD,UAAM,YAAY,KAAK,cAAc,IAAI,CAAC,cAAc;AACtD,aAAO,IAAI;AAAA,IACb,CAAC,EAAE,KAAK,KAAK;AACb,SAAK,WAAW;AAAA;AAAA,UAEV,SAAS,KAAK,YAAY;AAAA;AAAA,yBAEX;AAAA;AAAA;AAAA;AAAA,EAIvB;AACF;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,aAAa,QAAQ;AAC/B,SAAK,cAAc,CAAC;AACpB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,UAAM,WAAW,CAAC;AAClB,SAAK,cAAc,QAAQ,CAAC,cAAc;AACxC,eAAS,KAAK,SAAS,kBAAkB,yBAAyB;AAAA,IACpE,CAAC;AACD,UAAM,YAAY,KAAK,cAAc,IAAI,CAAC,cAAc;AACtD,aAAO,IAAI;AAAA,IACb,CAAC,EAAE,KAAK,KAAK;AACb,SAAK,WAAW;AAAA;AAAA,UAEV,SAAS,KAAK,YAAY;AAAA;AAAA,wBAEZ;AAAA;AAAA;AAAA;AAAA,EAItB;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,UAAU;AAChB,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,MAAI,QAAQ,SAAS,IAAI,EAAE,IAAI,8BAA8B,GAAG;AAC9D,UAAM,WAAW,KAAK,MAAM,QAAQ,SAAS,CAAC;AAC9C,UAAM,WAAW,MAAM,EAAE,QAAQ,QAAQ,MAAM,GAAG,QAAQ,GAAG,SAAS,SAAS,CAAC;AAChF,UAAM,YAAY,MAAM,EAAE,QAAQ,QAAQ,MAAM,QAAQ,GAAG,SAAS,SAAS,CAAC;AAC9E,WAAO,MAAM,EAAE,QAAQ,CAAC,UAAU,SAAS,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,QAAQ,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK,EAAE,OAAO,CAAC,IAAI,OAAO,WAAW,IAAI,EAAE,CAAC;AACjF,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,QAAM,cAAc,IAAI,EAAE,QAAQ,YAAY;AAC9C,QAAM,UAAU,cAAc,IAAI,kBAAkB,QAAQ,GAAG,OAAO,MAAM,IAAI,IAAI,YAAY,QAAQ,GAAG,OAAO,MAAM;AACxH,SAAO,SAAS,gBAAgB,SAAS,SAAS,KAAK;AACzD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC1F,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,EACjE;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,QAAM,UAAU,OAAO,KAAK,IAAI,OAAO,OAAO,QAAQ;AACtD,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,UAAU,QAAQ;AAC7E,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F,OAAO;AACL,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F;AACA,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,OAAO;AAC9C,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC1F,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,EACjE;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,QAAM,UAAU,OAAO,KAAK,IAAI,OAAO,OAAO,QAAQ;AACtD,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,UAAU,QAAQ;AAC7E,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F,OAAO;AACL,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F;AACA,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,OAAO;AAC9C,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,YAAY,KAAK,WAAW;AACtC,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,EAAE,YAAY,WAAW,QAAQ,IAAI;AAC3C,QAAI,CAAC,WAAW;AACd,WAAK,cAAc,KAAK,cAAc;AAAA,IACxC;AACA,SAAK,cAAc,CAAC,WAAW,OAAO;AACtC,UAAM,SAAS,QAAQ,QAAQ,MAAM;AACrC,UAAM,eAAe,YAAY,kBAAkB;AACnD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKc;AAAA;AAAA;AAAA;AAAA;AAAA,8BAKJ;AAAA,wBACN;AAAA;AAAA,0BAEE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQxB;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,OAAO,YAAY,KAAK,WAAW;AAC7C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,iBAAa,OAAO,MAAM,SAAS,GAAG,MAAM,aAAa,IAAI,OAAO,CAAC,EAAE,YAAY,IAAI,IAAI,MAAM,CAAC,2CAA2C;AAC7I,UAAM,SAAS,MAAM,MAAM,SAAS;AACpC,UAAM,UAAU,KAAK,KAAK,SAAS,UAAU;AAC7C,SAAK,cAAc,MAAM,MAAM,GAAG,EAAE;AACpC,QAAI,UAAU,GAAG;AACf,WAAK,YAAY,KAAK,OAAO;AAAA,IAC/B;AACA,QAAI,CAAC,WAAW;AACd,WAAK,cAAc,KAAK,cAAc;AAAA,IACxC;AACA,UAAM,WAAW,KAAK;AACtB,UAAM,OAAO,SAAS;AACtB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,UAAU,YAAY,UAAU,IAAI;AAC1C,QAAI;AACJ,QAAI;AACJ,QAAI,YAAY,GAAG;AACjB,mBAAa,OAAO;AACpB,YAAM,iBAAiB,kBAAkB,UAAU;AACnD,uBAAiB;AAAA,UACb,+BAA+B,kBAAkB,QAAQ,KAAK;AAAA,YAC5D,QAAQ,OAAO;AAAA,UACjB,+BAA+B,kBAAkB,QAAQ,KAAK;AAAA,YAC5D,QAAQ,OAAO;AAAA,UACjB,+BAA+B,kBAAkB,QAAQ,KAAK;AAAA,YAC5D,QAAQ,OAAO;AAAA,UACjB,+BAA+B,kBAAkB,QAAQ,KAAK;AAAA,YAC5D,QAAQ,OAAO;AAAA,IACvB,OAAO;AACL,mBAAa;AACb,uBAAiB;AAAA,UACb;AAAA,YACE,QAAQ,OAAO;AAAA,UACjB;AAAA,YACE,QAAQ,OAAO;AAAA,UACjB;AAAA,YACE,QAAQ,OAAO;AAAA,UACjB;AAAA,YACE,QAAQ,OAAO;AAAA,IACvB;AACA,UAAM,WAAW,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,EAAE,MAAM,GAAG,UAAU;AACnE,UAAM,YAAY,MAAM,SAAS,aAAa;AAC9C,UAAM,cAAc,SAAS,IAAI,CAAC,MAAM,SAAS,CAAC;AAClD,UAAM,aAAa,YAAY,cAAc,aAAa,CAAC,EAAE,OAAO,SAAS;AAC7E,UAAM,aAAa,YAAY,cAAc,aAAa,CAAC,EAAE,OAAO,SAAS;AAC7E,UAAM,aAAa,YAAY,cAAc,aAAa,CAAC,EAAE,OAAO,SAAS;AAC7E,UAAM,aAAa,YAAY,cAAc,aAAa,CAAC,EAAE,OAAO,SAAS;AAC7E,UAAM,SAAS,QAAQ,QAAQ,gBAAgB;AAC/C,UAAM,oBAAoB,YAAY,KAAK;AAAA,sDACO,WAAW,KAAK;AAAA,sDAChB,WAAW,KAAK;AAAA,sDAChB,WAAW,KAAK;AAAA,sDAChB,WAAW,KAAK;AAClE,UAAM,aAAa;AAAA,0BACG,WAAW,KAAK;AAAA,uCACH,WAAW,KAAK;AAAA,uCAChB,WAAW,KAAK;AAAA,qDACF,WAAW,KAAK;AACjE,UAAM,gCAAgC,YAAY,KAAK;AAAA,qCACtB,YAAY,KAAK;AAAA,4CACV,SAAS,KAAK;AAAA,iDACT,SAAS,MAAM,EAAE,EAAE,KAAK;AAAA;AAErE,SAAK,WAAW;AAAA,0BACM,YAAY,KAAK;AAAA,iCACV,SAAS,KAAK;AAAA,sCACT,SAAS,MAAM,EAAE,EAAE,KAAK;AAAA;AAAA,QAEtD;AAAA;AAAA,UAEE;AAAA,4BACkB,QAAQ,OAAO,QAAQ,SAAS,OAAO,KAAK;AAAA,4BAC5C,QAAQ,OAAO,QAAQ,SAAS,OAAO,KAAK;AAAA,UAC9D;AAAA,yCAC+B,wBAAwB;AAAA,sBAC3C,wBAAwB,gBAAgB;AAAA;AAAA;AAAA,2BAGnC;AAAA;AAAA,8BAEG;AAAA;AAAA,YAElB;AAAA,6BACiB;AAAA;AAAA;AAAA,mBAGV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAYjB;AACF;AAGA,SAAS,UAAU,UAAU,GAAG,YAAY,eAAe,MAAM;AAC/D,MAAI,YAAY,EAAE,MAAM;AACxB,MAAI,SAAS,EAAE,MAAM;AACrB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,aAAa,MAAM;AAC/B,aAAS,aAAa,MAAM;AAAA,EAC9B;AACA,QAAM,aAAa,qBAAqB,yBAAyB,MAAM;AACvE,QAAM,aAAa,EAAE,YAAY,QAAQ,WAAW,SAAS,KAAK,KAAK,SAAS,UAAU,EAAE;AAC5F,QAAM,UAAU,IAAI,iBAAiB,YAAY,YAAY,gBAAgB,IAAI;AACjF,QAAM,SAAS,CAAC,CAAC;AACjB,MAAI,gBAAgB,MAAM;AACxB,WAAO,KAAK,YAAY;AAAA,EAC1B;AACA,QAAM,SAAS,SAAS,gBAAgB,SAAS,QAAQ,OAAO;AAChE,MAAI,OAAO,MAAM,OAAO,GAAG;AACzB,WAAO;AAAA,EACT;AACA,QAAM,SAAS,UAAU,UAAU,GAAG,YAAY,MAAM;AACxD,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,SAAS,gBAAgB,UAAU,GAAG,YAAY,eAAe,MAAM;AACrE,QAAM,UAAU,gBAAgB,OAAO,aAAa,QAAQ,EAAE;AAC9D,QAAM,SAAS,QAAQ,QAAQ,SAAS;AACxC,QAAM,aAAa,qBAAqB,yBAAyB,MAAM;AACvE,QAAM,UAAU,IAAI,uBAAuB,SAAS,YAAY,YAAY,gBAAgB,IAAI;AAChG,QAAM,SAAS,gBAAgB,OAAO,CAAC,CAAC,IAAI,CAAC,GAAG,YAAY;AAC5D,QAAM,SAAS,SAAS,gBAAgB,SAAS,QAAQ,OAAO;AAChE,MAAI,OAAO,MAAM,WAAW,EAAE,MAAM,QAAQ;AAC1C,UAAM,SAAS,gBAAgB,UAAU,GAAG,YAAY,MAAM;AAC9D,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,UAAU,GAAG,MAAM,YAAY;AACtD,QAAM,OAAO,CAAC,IAAI;AAClB,uBAAqB,2BAA2B,QAAQ,WAAW,OAAO,CAAC,EAAE,YAAY,IAAI,WAAW,MAAM,CAAC,GAAG,MAAM,EAAE,MAAM,MAAM;AACtI,MAAI,CAAC,IAAI,EAAE,QAAQ,mBAAmB,KAAK,EAAE,MAAM,UAAU,GAAG;AAC9D,UAAM,0BAA0B,CAAC;AACjC,UAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,UAAM,YAAY,aAAa,QAAQ,SAAS;AAChD,QAAI,YAAY;AAChB,QAAI,WAAW;AACb,kBAAY,SAAS,aAAa,CAAC;AACnC,8BAAwB,KAAK,SAAS;AAAA,IACxC;AACA,UAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,UAAM,SAAS,aAAa,cAAc,WAAW;AACrD,UAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,4BAAwB,KAAK,GAAG;AAChC,UAAM,UAAU,UAAU,UAAU,KAAK,UAAU;AACnD,4BAAwB,KAAK,OAAO;AACpC,UAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACnG,4BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,WAAO;AAAA,EACT;AACA,SAAO,gBAAgB,UAAU,GAAG,UAAU;AAChD;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,uBAAqB,2BAA2B,UAAU,CAAC,KAAK,EAAE,GAAG,GAAG,MAAM,MAAM;AACpF,QAAM,MAAM,gBAAgB,UAAU,IAAI,KAAK,IAAI,KAAK;AACxD,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,uBAAqB,2BAA2B,UAAU,CAAC,KAAK,EAAE,GAAG,GAAG,MAAM,MAAM;AACpF,QAAM,MAAM,gBAAgB,UAAU,IAAI,KAAK,IAAI,KAAK;AACxD,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAM/B,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,oBAAoB;AAChC,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,oBAAoB;AAAA;AAAA;AAG/B,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,2BAA2B;AAAA;AAAA;AAGvC,IAAI,eAAe;AAAA;AAAA;AAAA,MAGb,kCAAkC;AAAA;AAAA;AAGxC,IAAI,SAAS,kBAAkB,EAAE,WAAW,OAAO,iBAAiB,aAAa,CAAC;AAClF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,oBAAoB;AAAA;AAAA;AAGhC,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,UAAU,UAAU,kBAAkB,mBAAmB,OAAO,sBAAsB,OAAO;AACvG,SAAK,gBAAgB,CAAC,GAAG;AACzB,QAAI,aAAa,SAAS,kBAAkB;AAC1C,YAAM,IAAI,MAAM,4CAA4C;AAAA,IAC9D;AACA,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,SAAK,cAAc,SAAS;AAC5B,UAAM,YAAY,aAAa;AAC/B,UAAM,0BAA0B,cAAc,SAAS,oBAAoB,SAAS,mBAAmB,SAAS;AAChH,UAAM,qBAAqB,SAAS,SAAS,mBAAmB,SAAS;AACzE,QAAI,sBAAsB;AAC1B,QAAI,CAAC,WAAW;AACd,4BAAsB;AAAA,IACxB;AACA,QAAI,kBAAkB;AACpB,YAAM,aAAa;AACnB,WAAK,WAAW;AAAA,sCACgB,iBAAiB;AAAA,mCACpB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAkBZ;AAAA,sBACZ;AAAA;AAAA;AAAA,kCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA,wBACZ;AAAA;AAAA;AAAA,oCAGY,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAUnB;AAAA;AAAA;AAAA,mCAGS,mBAAmB,sBAAsB,0BAA0B,qBAAqB,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAO7H;AAAA,IACF;AACA,UAAM,YAAY;AAClB,QAAI,cAAc,GAAG,YAAY,YAAY;AAC7C,QAAI,aAAa,OAAO;AACtB,oBAAc;AAAA,IAChB;AACA,UAAM,yBAAyB,KAAK,MAAM,cAAc,CAAC,IAAI;AAC7D,UAAM,2BAA2B,cAAc;AAC/C,UAAM,gBAAgB;AAAA,YACd;AAAA;AAAA;AAAA,wBAGY;AAAA;AAAA;AAGpB,SAAK,WAAW;AAAA,oCACgB,iBAAiB;AAAA,iCACpB,WAAW;AAAA,0CACF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAkBL;AAAA;AAAA;AAAA;AAAA,gCAIF;AAAA,oBACZ;AAAA;AAAA;AAAA,gCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,kCAIP;AAAA,uCACK;AAAA;AAAA;AAAA;AAAA,yCAIE;AAAA,6CACI;AAAA,6CACA;AAAA;AAAA;AAAA,cAG/B;AAAA;AAAA;AAAA,gCAGkB;AAAA,gBAChB,6BAA6B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAQ/B;AAAA,uBACS,6BAA6B;AAAA;AAAA;AAAA,yCAGX;AAAA;AAAA;AAAA;AAAA;AAAA,cAK3B;AAAA,uBACS,6BAA6B;AAAA;AAAA;AAAA,yCAGX;AAAA,6CACI;AAAA;AAAA;AAAA;AAAA,cAI/B;AAAA;AAAA;AAAA,oBAGM;AAAA;AAAA;AAAA,EAGlB;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,UAAU,UAAU,kBAAkB,mBAAmB,OAAO,sBAAsB,OAAO;AACvG,SAAK,gBAAgB,CAAC,GAAG;AACzB,QAAI,aAAa,SAAS,kBAAkB;AAC1C,YAAM,IAAI,MAAM,4CAA4C;AAAA,IAC9D;AACA,UAAM,cAAc,SAAS;AAC7B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,uBAAuB,SAAS;AACtC,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,WAAW,SAAS,QAAQ;AAClC,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,SAAK,cAAc,SAAS;AAC5B,UAAM,YAAY,aAAa;AAC/B,QAAI,sBAAsB;AAC1B,QAAI,CAAC,WAAW;AACd,4BAAsB;AAAA,IACxB;AACA,QAAI,kBAAkB;AACpB,YAAM,aAAa;AACnB,WAAK,WAAW;AAAA;AAAA,oBAEF,gBAAgB,iBAAiB;AAAA,mCAClB,aAAa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAkBzB;AAAA,sBACZ;AAAA;AAAA;AAAA,kCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA,wBACZ;AAAA;AAAA;AAAA,oCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,sCAIP;AAAA,0BACZ;AAAA;AAAA;AAAA,sCAGY,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,4BAUnB;AAAA;AAAA;AAAA,qCAGS,mBAAmB,sBAAsB,cAAc,SAAS,mBAAmB,SAAS,oBAAoB,SAAS,mBAAmB,SAAS,oBAAoB,UAAU,SAAS,oBAAoB,SAAS,mBAAmB,SAAS,oBAAoB,QAAQ,2BAA2B;AAAA,6BACpT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAQvB;AAAA,IACF;AACA,UAAM,YAAY;AAClB,QAAI,cAAc,GAAG,YAAY,YAAY;AAC7C,QAAI,aAAa,OAAO;AACtB,oBAAc;AAAA,IAChB;AACA,UAAM,yBAAyB,KAAK,MAAM,cAAc,CAAC,IAAI;AAC7D,UAAM,2BAA2B,cAAc;AAC/C,UAAM,gBAAgB;AAAA,YACd;AAAA;AAAA;AAAA,wBAGY;AAAA;AAAA;AAGpB,SAAK,WAAW;AAAA;AAAA,gBAEJ,gBAAgB,iBAAiB;AAAA,iCAChB,aAAa,WAAW;AAAA,0CACf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAmBL;AAAA;AAAA;AAAA;AAAA,gCAIF;AAAA,oBACZ;AAAA;AAAA;AAAA,gCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,kCAIP;AAAA,oBACd;AAAA;AAAA;AAAA,kCAGc,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA,yCACK;AAAA;AAAA;AAAA;AAAA,+CAIM;AAAA,mDACI;AAAA,mDACA;AAAA;AAAA;AAAA,gBAGnC;AAAA;AAAA;AAAA,kCAGkB;AAAA,kBAChB,6BAA6B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gBAQ/B;AAAA,yBACS,6BAA6B;AAAA;AAAA;AAAA,+CAGP;AAAA;AAAA;AAAA;AAAA;AAAA,gBAK/B;AAAA,yBACS,6BAA6B;AAAA;AAAA;AAAA,+CAGP;AAAA,mDACI;AAAA;AAAA;AAAA;AAAA,gBAInC;AAAA;AAAA;AAAA,sBAGM;AAAA;AAAA;AAAA;AAAA,EAIpB;AACF;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,oBAAkB,GAAG,SAAS;AAC9B,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,iBAAiB,IAAI,cAAc,UAAU,OAAO,KAAK;AAC/D,SAAO,SAAS,gBAAgB,gBAAgB,CAAC,CAAC,GAAG,SAAS;AAChE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACxE,QAAM,YAAY,CAAC,GAAG,GAAG,CAAC;AAC1B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,iBAAiB,UAAU;AAClI,QAAM,iBAAiB,IAAI,cAAc,UAAU,OAAO,KAAK;AAC/D,SAAO,SAAS,gBAAgB,gBAAgB,CAAC,CAAC,GAAG,SAAS;AAChE;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,IAAI;AAC1B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,UAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,UAAM,gBAAgB,KAAK,eAAe;AAC1C,SAAK,WAAW;AAAA,iCACa,WAAW;AAAA,0CACF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAcV;AAAA,oBACZ;AAAA,gDAC4B;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKX;AAAA,mBACf;AAAA,kDAC+B;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAc7C;AACF;AACA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,IAAI;AAC1B,SAAK,cAAc,SAAS;AAC5B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,uBAAuB,SAAS;AACtC,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,WAAW,uBAAuB,IAAI,SAAS,QAAQ;AAC7D,UAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,UAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,UAAM,gBAAgB,KAAK,cAAc,eAAe;AACxD,SAAK,WAAW;AAAA,iCACa,aAAa,WAAW;AAAA,0CACf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAiBV;AAAA,oBACZ;AAAA,gDAC4B;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKX;AAAA,sBACZ;AAAA,kDAC4B;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAMX;AAAA,wBACZ;AAAA,oDAC4B;AAAA;AAAA,wCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAe/C;AACF;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,IAAI;AACV,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY,CAAC,GAAG,GAAG,CAAC;AAC1B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,QAAM,yBAAyB,IAAI,yBAAyB,QAAQ;AACpE,SAAO,SAAS,gBAAgB,wBAAwB,CAAC,EAAE,GAAG,EAAE,KAAK;AACvE;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,IAAI;AACV,oBAAkB,CAAC,IAAI,MAAM,GAAG,aAAa;AAC7C,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC3C,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,IAAI;AAC7F,QAAM,yBAAyB,IAAI,yBAAyB,QAAQ;AACpE,SAAO,SAAS,gBAAgB,wBAAwB,CAAC,EAAE,GAAG,EAAE,KAAK;AACvE;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,EAAE,YAAY,WAAW,IAAI;AACnC,SAAO,gBAAgB,EAAE,GAAG,GAAG,YAAY,YAAY,SAAS,SAAS,CAAC;AAC5E;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,WAAW,eAAe,aAAa,YAAY,iBAAiB;AACtF,SAAK,cAAc,CAAC;AACpB,SAAK,gBAAgB,CAAC,KAAK,QAAQ,UAAU;AAC7C,yBAAqB,2BAA2B,QAAQ,SAAS;AACjE,yBAAqB,2BAA2B,QAAQ,aAAa;AACrE,QAAI,gBAAgB;AACpB,QAAI,eAAe,MAAM;AACvB,2BAAqB,2BAA2B,QAAQ,WAAW;AACnE,WAAK,cAAc,KAAK,QAAQ;AAChC,sBAAgB;AAAA,IAClB;AACA,QAAI,eAAe;AACnB,QAAI,cAAc,MAAM;AACtB,2BAAqB,2BAA2B,QAAQ,UAAU;AAClE,WAAK,cAAc,KAAK,OAAO;AAC/B,qBAAe;AAAA,IACjB;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKK;AAAA,wBACD;AAAA,2DACmC;AAAA;AAAA;AAAA;AAAA,EAIzD;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,QAAQ,WAAW,eAAe,aAAa,YAAY,iBAAiB;AACtF,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,gBAAgB,CAAC,KAAK,QAAQ,UAAU;AAC7C,yBAAqB,2BAA2B,QAAQ,SAAS;AACjE,yBAAqB,2BAA2B,QAAQ,aAAa;AACrE,QAAI,gBAAgB;AACpB,QAAI,eAAe,MAAM;AACvB,2BAAqB,2BAA2B,QAAQ,WAAW;AACnE,WAAK,cAAc,KAAK,QAAQ;AAChC,sBAAgB;AAAA,IAClB;AACA,QAAI,eAAe;AACnB,QAAI,cAAc,MAAM;AACtB,2BAAqB,2BAA2B,QAAQ,UAAU;AAClE,WAAK,cAAc,KAAK,OAAO;AAC/B,qBAAe;AAAA,IACjB;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA,wBAEI;AAAA,uBACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yDAMkC;AAAA;AAAA;AAAA;AAAA;AAAA,EAKvD;AACF;AAGA,IAAI,aAAa,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACzD,QAAM,EAAE,GAAG,MAAM,OAAO,UAAU,QAAQ,OAAOS,QAAO,IAAI;AAC5D,eAAa,OAAO,MAAM,MAAM,WAAW,SAAS,MAAM,QAAQ,MAAM,8EAA8E;AACtJ,eAAa,OAAO,UAAU,QAAQ,MAAM,MAAM,WAAW,OAAO,MAAM,QAAQ,MAAM,4EAA4E;AACpK,eAAa,OAAOA,WAAU,QAAQ,MAAM,MAAM,WAAWA,QAAO,MAAM,QAAQ,MAAM,2EAA2E;AACnK,MAAI,EAAE,gBAAgB,IAAI;AAC1B,MAAI,mBAAmB,MAAM;AAC3B,sBAAkB;AAAA,EACpB;AACA,QAAM,cAAc,CAAC,GAAG,OAAO,QAAQ;AACvC,MAAI,cAAc;AAClB,MAAI,UAAU,MAAM;AAClB,kBAAc,OAAO;AACrB,gBAAY,KAAK,MAAM;AAAA,EACzB;AACA,MAAI,aAAa;AACjB,MAAIA,WAAU,MAAM;AAClB,iBAAaA,QAAO;AACpB,gBAAY,KAAKA,OAAM;AAAA,EACzB;AACA,QAAM,UAAU,IAAI,EAAE,QAAQ,0BAA0B,IAAI,IAAI,uBAAuB,EAAE,OAAO,MAAM,OAAO,SAAS,OAAO,aAAa,YAAY,eAAe,IAAI,IAAI,iBAAiB,EAAE,OAAO,MAAM,OAAO,SAAS,OAAO,aAAa,YAAY,eAAe;AAC5Q,QAAM,SAAS,SAAS,gBAAgB,SAAS,aAAa,YAAY,GAAG,KAAK;AAClF,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,QAAQ;AAC9B,SAAK,cAAc;AACnB,SAAK,OAAO,SAAS;AACrB,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,YAAY,KAAK,MAAM,MAAM,MAAM,CAAC;AAC5E,UAAM,eAAe,UAAU,KAAK,IAAI;AACxC,QAAIgB;AACJ,UAAM,WAAW,SAAS,IAAI,CAAC,GAAG,OAAO;AACvC,aAAO,aAAa,OAAO,eAAe,gBAAgB,OAAO;AAAA,IACnE,CAAC;AACD,IAAAA,QAAO;AAAA,UACD;AAAA,UACA;AAAA,UACA,SAAS,KAAK,IAAI;AAAA;AAExB,SAAK,WAAW;AAAA;AAAA,UAEVA;AAAA,8BACoB;AAAA;AAAA;AAAA,EAG5B;AACF;AACA,IAAI,SAAS,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAC1C,SAAS,UAAU,MAAM;AACvB,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT,WAAW,QAAQ,GAAG;AACpB,WAAO,OAAO,MAAM,GAAG,IAAI,EAAE,IAAI,CAAC,MAAM,eAAe,CAAC,EAAE,KAAK,GAAG;AAAA,EACpE,OAAO;AACL,UAAM,MAAM,oBAAoB,2BAA2B;AAAA,EAC7D;AACF;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,QAAQ;AAC9B,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,OAAO,SAAS;AACrB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,YAAY,KAAK,MAAM,MAAM,MAAM,CAAC;AAC5E,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,UAAU,YAAY,UAAU,KAAK,IAAI;AAC/C,UAAM,YAAY,YAAY,aAAa,KAAK,IAAI;AACpD,UAAM,YAAY,KAAK,SAAS,IAAI,cAAc,QAAQ,UAAU,MAAM,EAAE,EAAE,KAAK;AACnF,UAAM,aAAa,wBAAwB,UAAU,KAAK,OAAO;AACjE,UAAM,WAAW;AAAA,mBACF;AAAA,cACL,QAAQ,KAAK,OAAO,QAAQ,SAAS,KAAK,OAAO;AAAA,YACnD,UAAU,KAAK,OAAO;AAAA,qBACb;AAAA,YACT,UAAU,KAAK,OAAO;AAAA;AAAA;AAG9B,UAAM,WAAW,KAAK,SAAS,IAAI,KAAK;AAAA,UAClC,QAAQ,KAAK,OAAO;AAAA,cAChB,QAAQ,KAAK,OAAO,QAAQ,SAAS,KAAK,OAAO;AAAA,YACnD,UAAU,KAAK,OAAO;AAAA,qBACb;AAAA,gBACL,QAAQ,KAAK,OAAO,QAAQ,SAAS,KAAK,OAAO;AAAA,cACnD,UAAU,KAAK,OAAO;AAAA,uBACb;AAAA;AAAA;AAAA;AAInB,UAAM,iBAAiB,KAAK,QAAQ,IAAI;AAAA,cAC9B,SAAS,SAAS,IAAI,CAAC,GAAG,OAAO,SAAS,KAAK,EAAE,KAAK,QAAQ,SAAS,IAAI,CAAC,GAAG,OAAO,GAAG,UAAU,SAAS,QAAQ,eAAe,MAAM,EAAE,KAAK,IAAI;AAC9J,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,UACA;AAAA,UACA;AAAA;AAAA,UAEA;AAAA,UACA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,SAAS,aAAa,GAAG,OAAOtC,OAAM,UAAU;AAC9C,QAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,QAAM,KAAK,SAAS,eAAeA,OAAM,EAAE,KAAK;AAChD,QAAM,aAAa,SAAS,QAAQ,IAAI,GAAG,MAAM;AACjD,SAAO,OAAO,YAAY,QAAQ;AAClC,aAAW,WAAW;AACtB,aAAW,QAAQA;AACnB,aAAW,QAAQ,EAAE;AACrB,MAAI,aAAa,mBAAmB,kBAAkB,OAAO,aAAa,eAAe,EAAE,KAAK,CAAC;AACjG,MAAI,SAAS,OAAO;AAClB,kBAAc,SAAS,MAAM;AAAA,EAC/B;AACA,aAAW,QAAQ;AAAA,IACjB;AAAA,IACA,YAAY,SAAS,SAAS,SAAS,MAAM,cAAc,EAAE;AAAA,EAC/D;AACA,QAAM,WAAW,SAAS,aAAa,IAAI,WAAW,MAAM,UAAU,KAAK;AAC3E,WAAS,aAAa,IAAI,WAAW,MAAM,YAAY,WAAW,CAAC;AACnE,SAAO;AACT;AACA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,MAAAA,MAAK,IAAI;AACxB,QAAM,CAAC,QAAQ,KAAK,IAAI,mBAAmB,iBAAiB,GAAG,OAAOA,KAAI;AAC1E,qBAAmB,kBAAkB,GAAG,QAAQ,KAAK;AACrD,MAAI,aAAa,cAAc,KAAK,MAAM,GAAG;AAC3C,WAAO,SAAS,eAAe,OAAO,EAAE,OAAO,CAAC,CAAC;AAAA,EACnD;AACA,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,UAAU;AAC5D,UAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,UAAM,YAAY,aAAa,SAAS,QAAQ,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AAC/E,WAAO,SAAS,eAAe,OAAO,EAAE,OAAO,SAAS;AAAA,EAC1D;AACA,QAAM,EAAE,SAAS,IAAI,SAAS,QAAQ,IAAI,EAAE,MAAM;AAClD,QAAM,cAAc,mBAAmB,iBAAiB,EAAE,OAAO,QAAQ,KAAK;AAC9E,MAAI,YAAY,CAAC,aAAa;AAC5B,UAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,mBAAmB,KAAK,IAAI,IAAI,aAAa,KAAK;AACrH,UAAM,eAAe,CAAC,MAAM;AAC5B,WAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,YAAY;AAAA,EACrE;AACA,WAAS,YAAY,EAAE,MAAM;AAC7B,SAAO,aAAa,GAAG,QAAQ,OAAO,QAAQ;AAChD;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,CAAC,SAAS;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,sEAAsE;AACrH,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,WAAW,qBAAqB,YAAY,EAAE,OAAO,YAAY,KAAK;AAC5E,QAAM,WAAW,qBAAqB,YAAY,SAAS,QAAQ,WAAW,MAAM;AACpF,QAAM,mBAAmB,qBAAqB,oBAAoB,EAAE,OAAO,YAAY,KAAK;AAC5F,QAAM,mBAAmB,qBAAqB,oBAAoB,OAAO,WAAW,MAAM;AAC1F,QAAM,YAAY,qBAAqB,aAAa,kBAAkB,OAAO,WAAW,MAAM;AAC9F,QAAM,YAAY,CAAC;AACnB,QAAM,uBAAuB,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACtG,QAAM,yBAAyB,WAAW,EAAE,QAAQ,EAAE,GAAG,qBAAqB,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AAC/H,QAAM,wBAAwB,SAAS;AAAA,IACrC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,IACpC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,iBAAiB;AAAA,EACnC,CAAC;AACD,QAAM,SAAS,OAAO;AAAA,IACpB,QAAQ,EAAE,GAAG,sBAAsB;AAAA,IACnC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,kBAAkB,MAAM,UAAU;AAAA,EACpD,CAAC;AACD,YAAU,KAAK,oBAAoB;AACnC,YAAU,KAAK,sBAAsB;AACrC,YAAU,KAAK,qBAAqB;AACpC,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAAA,MAAK,IAAI;AACjB,QAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,QAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,QAAM,UAAU,gBAAgB,OAAO,aAAa,QAAQ,OAAO,QAAQ,OAAOA,KAAI;AACtF,SAAO,SAAS,eAAe,CAACA,KAAI,GAAG,QAAQ,OAAO,OAAO;AAC/D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,IAAI,GAAG,IAAI;AACnB,QAAM,SAAS,SAAS,SAAS,GAAG,MAAM;AAC1C,QAAM,SAAS,SAAS,SAAS,GAAG,MAAM;AAC1C,QAAM,iBAAiB,qBAAqB,2BAA2B,MAAM,KAAK,MAAM,GAAG,MAAM,KAAK,MAAM,CAAC;AAC7G,SAAO,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,SAAS,WAAW,KAAK,cAAc,CAAC;AAClG;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY;AAChB,IAAI,YAAY,kBAAkB,EAAE,WAAW,WAAW,eAAe,iBAAiB,OAAO,OAAO,CAAC;AACzG,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,SAAS,QAAQ,IAAI,OAAO,MAAM;AACpD,SAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,mBAAmB,KAAK,GAAG,SAAS,SAAS,CAAC;AAC1F;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS;AACb,SAAS,IAAI,QAAQ,UAAU;AAC7B,QAAM,UAAU,IAAI,eAAe,OAAO,OAAO,MAAM;AACvD,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO;AAClE,SAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC3E;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,UAAU,aAAa;AACzB,QAAI,EAAE,UAAU,aAAa;AAC3B,aAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACvD;AACA,UAAM,cAAc,MAAM,EAAE,KAAK;AACjC,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AACtF,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,QAAQ,MAAM,YAAY,GAAG,SAAS,SAAS,CAAC;AAC1F,gBAAY,QAAQ;AACpB,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,aAAS,8BAA8B,QAAQ;AAC/C,WAAO;AAAA,EACT;AACA,MAAI,CAAC,aAAa,gBAAgB,EAAE,OAAO,KAAK,GAAG;AACjD,UAAM,SAAS,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7D,WAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,MAAM;AAAA,EAC7D;AACA,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,SAAS,SAAS,QAAQ,IAAI,EAAE,MAAM,EAAE;AAC9C,UAAM,CAAC,aAAa,YAAY,UAAU,IAAI,YAAY,QAAQ,EAAE,OAAO,EAAE,OAAO,KAAK;AACzF,WAAO,SAAS,eAAe,aAAa,YAAY,UAAU;AAAA,EACpE;AACA,MAAI,UAAU,SAAS;AACrB,WAAO,IAAI,GAAG,QAAQ;AAAA,EACxB;AACA,MAAI,UAAU,QAAQ;AACpB,UAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,QAAQ,aAAa,uBAAuB,QAAQ,CAAC,CAAC;AAC1G,UAAM,eAAe,EAAE,GAAG,GAAG,GAAG,gBAAgB;AAChD,UAAM,SAAS,UAAU,EAAE,QAAQ,cAAc,SAAS,SAAS,CAAC;AACpE,aAAS,8BAA8B,eAAe;AACtD,WAAO;AAAA,EACT;AACA,QAAM,IAAI,MAAM,iCAAiC,EAAE,YAAY,OAAO;AACxE;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,MAAM,iBAAiB,MAAM,eAAe,YAAY,CAAC;AACnG,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,QAAQ;AAClB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,MAChC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAYlB;AACF;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,QAAQ;AAClB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,MAChC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAYlB;AACF;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,cAAc,aAAa,IAAI;AACvC,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,iBAAiB,GAAG;AACpC,cAAU,IAAI,kBAAkB,EAAE,KAAK;AAAA,EACzC,OAAO;AACL,cAAU,IAAI,YAAY,EAAE,KAAK;AAAA,EACnC;AACA,QAAM,eAAe,CAAC,CAAC,YAAY,GAAG,CAAC,YAAY,CAAC;AACpD,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,YAAY;AACrE;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,QAAQ,MAAM;AACpC,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAclB;AACF;AAGA,SAAS,+BAA+B,eAAe,aAAa;AAClE,SAAO;AAAA,IACL,QAAQ,YAAY;AAAA,IACpB,OAAO,YAAY;AAAA,IACnB,OAAO,cAAc;AAAA,EACvB;AACF;AACA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,QAAM,UAAU,IAAI,kBAAkB,EAAE,KAAK;AAC7C,QAAM,gBAAgB;AAAA,IACpB,+BAA+B,GAAG,MAAM,mBAAmB,IAAI;AAAA,IAC/D,+BAA+B,GAAG,MAAM,mBAAmB,IAAI;AAAA,EACjE;AACA,SAAO,SAAS,gBAAgB,SAAS,eAAe,cAAc,GAAG,KAAK;AAChF;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,QAAQ;AAClB,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc,qBAAqB,gBAAgB,QAAQ,CAAC;AACjE,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,UAAM,UAAU,IAAI,MAAM,OAAO,SAAS,CAAC;AAC3C,YAAQ,KAAK,OAAO,GAAG;AACvB,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,cAAQ,MAAM,QAAQ,KAAK,KAAK,OAAO,IAAI;AAAA,IAC7C;AACA,UAAM,WAAW,CAAC,YAAY,QAAQ,+BAA+B;AACrE,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,YAAM,QAAQ,QAAQ,KAAK;AAC3B,eAAS,KAAK,iBAAiB,QAAQ,sBAAsB,aAAa,UAAU;AAAA,IACtF;AACA,UAAM,YAAY,QAAQ;AAC1B,UAAM,YAAY,QAAQ,QAAQ,SAAS;AAC3C,aAAS,KAAK,sBAAsB,oBAAoB,cAAc;AACtE,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAMV,SAAS,KAAK,YAAY;AAAA;AAAA;AAAA,EAGlC;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,QAAQ,MAAM;AACxB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc,qBAAqB,gBAAgB,QAAQ,IAAI;AACpE,UAAM,QAAQ,KAAK;AACnB,UAAM,OAAO,MAAM;AACnB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,UAAU,YAAY,UAAU,IAAI;AAC1C,UAAM,WAAW,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,EAAE,MAAM,GAAG,IAAI;AAC7D,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,UAAM,UAAU,IAAI,MAAM,OAAO,SAAS,CAAC;AAC3C,YAAQ,KAAK,OAAO,GAAG;AACvB,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,cAAQ,MAAM,QAAQ,KAAK,KAAK,OAAO,IAAI;AAAA,IAC7C;AACA,UAAM,UAAU,SAAS;AACzB,UAAM,eAAe,SAAS,MAAM,EAAE;AACtC,UAAM,cAAc,SAAS,KAAK;AAClC,QAAI,kBAAkB,OAAO,aAAa,QAAQ;AAAA;AAAA,oBAElC,sBAAsB,aAAa,KAAK;AAAA;AAExD,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,YAAM,SAAS,QAAQ,KAAK;AAC5B,yBAAmB;AAAA,cACX,aAAa,QAAQ,WAAW,cAAc,QAAQ,KAAK;AAAA;AAAA,kBAEvD,MAAM,gBAAgB,UAAU,SAAS,MAAM;AAAA,mBAC9C,gBAAgB,cAAc,SAAS,MAAM;AAAA;AAAA,IAE5D;AACA,UAAM,YAAY,QAAQ;AAC1B,UAAM,QAAQ,QAAQ,QAAQ,SAAS;AACvC,uBAAmB;AAAA;AAAA,gBAEP,aAAa,gBAAgB,UAAU,SAAS,KAAK;AAAA,iBACpD,gBAAgB,cAAc,SAAS,KAAK;AACzD,SAAK,WAAW;AAAA,uBACG,SAAS,IAAI,CAAC,MAAM,SAAS,CAAC;AAAA,UAC3C;AAAA;AAAA;AAAA;AAAA,UAIA;AAAA,sCAC4B;AAAA;AAAA,UAE5B,QAAQ,OAAO,QAAQ,QAAQ,OAAO;AAAA,cAClC,QAAQ,OAAO,QAAQ,MAAM,OAAO;AAAA,gCAClB;AAAA;AAAA;AAAA,UAGtB,QAAQ,OAAO,QAAQ,QAAQ,OAAO;AAAA,cAClC,QAAQ,OAAO,QAAQ,MAAM,OAAO;AAAA,gCAClB;AAAA;AAAA;AAAA,UAGtB,QAAQ,OAAO,QAAQ,QAAQ,OAAO;AAAA,cAClC,QAAQ,OAAO,QAAQ,MAAM,OAAO;AAAA,cACpC,QAAQ,OAAO,QAAQ,MAAM,OAAO;AAAA,gCAClB;AAAA;AAAA;AAAA;AAAA;AAAA,EAK9B;AACF;AACA,SAAS,gBAAgB,UAAU,SAAS,OAAO;AACjD,QAAM,aAAa,SAAS,QAAQ,OAAO;AAC3C,QAAM,MAAM,SAAS,IAAI,CAAC,GAAG,QAAQ;AACnC,QAAI,QAAQ,YAAY;AACtB,aAAO,GAAG,OAAO;AAAA,IACnB,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF,CAAC;AACD,SAAO,IAAI,KAAK;AAClB;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,SAAS,QAAQ,IAAI,OAAO,MAAM;AACpD,SAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,mBAAmB,KAAK,GAAG,SAAS,SAAS,CAAC;AAC1F;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,QAAQ,MAAM,UAAU;AAC3C,QAAM,QAAQ,OAAO,GAAG;AACxB,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACpF,UAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACpF,UAAM,eAAe,YAAY,OAAO,MAAM,QAAQ;AACtD,UAAM,eAAe,YAAY,OAAO,MAAM,QAAQ;AACtD,UAAM,UAAU,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AAClG,UAAM,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAChE,UAAM,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAChE,aAAS,8BAA8B,YAAY;AACnD,aAAS,8BAA8B,YAAY;AACnD,WAAO;AAAA,EACT;AACA,MAAI,WAAW,SAAS,mBAAmB,MAAM;AACjD,MAAI,UAAU,UAAU;AACtB,eAAW;AAAA,EACb;AACA,MAAI,UAAU;AACZ,UAAM,aAAa,OAAO,IAAI,CAAC,OAAO;AACpC,YAAM,YAAY,aAAa,cAAc,GAAG,MAAM,MAAM,IAAI,CAAC;AACjE,YAAM,QAAQ,CAAC,IAAI,SAAS;AAC5B,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,IAC5E,CAAC;AACD,UAAM,kBAAkB,WAAW,IAAI,CAAC,OAAO;AAC7C,aAAO,EAAE,MAAM,SAAS,SAAS,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM;AAAA,IAC/D,CAAC;AACD,UAAM,YAAY,qBAAqB,gBAAgB,WAAW,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,CAAC;AAC1F,UAAM,eAAe,WAAW,GAAG,MAAM,OAAO;AAChD,UAAM,UAAU,cAAc,iBAAiB,WAAW,OAAO,YAAY;AAC7E,UAAM,gBAAgB,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AAC7F,UAAM,UAAU,SAAS,eAAe,eAAe,OAAO,OAAO;AACrE,eAAW,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACrE,WAAO;AAAA,EACT;AACA,QAAM,sBAAsB,IAAI,EAAE,UAAU,8BAA8B;AAC1E,MAAI,OAAO,SAAS,qBAAqB;AACvC,UAAM,gBAAgB,CAAC;AACvB,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM,qBAAqB;AAC9D,YAAM,WAAW,OAAO,MAAM,IAAI,KAAK,mBAAmB;AAC1D,oBAAc,KAAK,YAAY,UAAU,MAAM,QAAQ,CAAC;AAAA,IAC1D;AACA,UAAM,UAAU,YAAY,eAAe,MAAM,QAAQ;AACzD,eAAW,MAAM,eAAe;AAC9B,eAAS,8BAA8B,EAAE;AAAA,IAC3C;AACA,WAAO;AAAA,EACT;AACA,MAAI,IAAI,EAAE,QAAQ,6BAA6B,KAAK,OAAO,GAAG,MAAM,SAAS,GAAG;AAC9E,UAAM,WAAW,IAAI,oBAAoB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AAC3E,WAAO,SAAS,gBAAgB,UAAU,QAAQ,KAAK;AAAA,EACzD;AACA,QAAM,EAAE,WAAW,SAAS,IAAI,iBAAiB,QAAQ,MAAM,QAAQ;AACvE,QAAM,UAAU,IAAI,cAAc,UAAU,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;AACjE,QAAM,SAAS,SAAS,gBAAgB,SAAS,WAAW,KAAK;AACjE,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AACxG,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,SAAS,iBAAiB,QAAQ,MAAM,UAAU;AAChD,QAAM,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AACxF,QAAM,YAAY,OAAO,IAAI,CAAC,MAAM,SAAS;AAAA,IAC3C,QAAQ,EAAE,EAAE;AAAA,IACZ,OAAO,EAAE,OAAO,CAAC,IAAI,aAAa,cAAc,EAAE,MAAM,MAAM,IAAI,CAAC,CAAC,EAAE;AAAA,IACtE,SAAS;AAAA,EACX,CAAC,CAAC;AACF,SAAO,EAAE,WAAW,SAAS;AAC/B;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,QAAQ,aAAa,eAAe,MAAM,OAAO,GAAG,KAAK,EAAE;AACjE,QAAM,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,KAAK;AACzF,MAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,WAAO,SAAS,eAAe,UAAU,OAAO,GAAG,OAAO,CAAC,CAAC;AAAA,EAC9D;AACA,QAAM,UAAU,OAAO,OAAO,CAAC,OAAO,aAAa,cAAc,GAAG,KAAK,IAAI,CAAC;AAC9E,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,uBAAqB,uBAAuB,QAAQ,KAAK;AACzD,SAAO,YAAY,SAAS,OAAO,QAAQ;AAC7C;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,4BAA4B,OAAO,oBAAoB,OAAO;AACvH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,SAAS;AAC5B,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,wBAAwB,KAAK,MAAM,SAAS,aAAa,CAAC,IAAI;AACpE,UAAM,0BAA0B,SAAS,aAAa;AACtD,UAAM,iBAAiB,SAAS,eAAe;AAC/C,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,aAAa,iBAAiB,IAAI;AACxC,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,2BAA2B;AAC7B,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,WAAW,mBAAmB;AAC5B,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,OAAO;AACL,4BAAoB;AAAA;AAAA,cAEd;AAAA;AAAA;AAAA,MAGR;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,2BAA2B;AAC7B,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,mBAAmB;AACrB,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA,oCAE4B,iBAAiB;AAAA,iCACpB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,0BAKlB;AAAA;AAAA;AAAA,2BAGC,mBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAOd;AAAA,qCACK;AAAA;AAAA,gCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,kCAIP;AAAA,uCACK;AAAA;AAAA,kCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBAQhB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kBAmBF,4BAA4B;AAAA;AAAA,oBAE1B;AAAA;AAAA,0CAEsB;AAAA,mCACP;AAAA;AAAA;AAAA,kCAGD;AAAA,mCACC;AAAA;AAAA;AAAA,yBAGV,4BAA4B;AAAA;AAAA,+BAEtB;AAAA,+BACA;AAAA;AAAA;AAAA,oBAGX;AAAA;AAAA,wCAEoB;AAAA,wCACA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKR;AAAA,gCACA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKP,4BAA4B;AAAA;AAAA,+BAEtB;AAAA,+BACA;AAAA,+BACA;AAAA;AAAA;AAAA,oBAGX;AAAA;AAAA,wCAEoB;AAAA,wCACA;AAAA,wCACA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKR;AAAA,gCACA;AAAA,gCACA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAUtB;AAAA,UACA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,SAAS;AAC5B,UAAM,WAAW,SAAS,QAAQ;AAClC,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,wBAAwB,KAAK,MAAM,SAAS,aAAa,CAAC,IAAI;AACpE,UAAM,0BAA0B,SAAS,aAAa;AACtD,SAAK,WAAW;AAAA,oCACgB,gBAAgB,iBAAiB;AAAA,iCACpC,aAAa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAgBzB;AAAA,qCACK;AAAA;AAAA,gCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,kCAIP;AAAA,uCACK;AAAA;AAAA,kCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA,yCACK;AAAA;AAAA,oCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,sCAIP;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBAiBlB,4BAA4B;AAAA;AAAA,4CAEJ;AAAA,qCACP;AAAA,2BACV,4BAA4B;AAAA;AAAA,4CAEX;AAAA,4CACA;AAAA;AAAA;AAAA,qCAGP;AAAA,qCACA;AAAA;AAAA;AAAA,2BAGV,4BAA4B;AAAA;AAAA,4CAEX;AAAA,4CACA;AAAA,4CACA;AAAA;AAAA;AAAA,qCAGP;AAAA,qCACA;AAAA,qCACA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUnC;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO,oBAAoB,OAAO;AAChH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,QAAQ,MAAM,QAAQ;AAAA,MAC9B,EAAE,MAAM,WAAW,MAAM,QAAQ;AAAA,MACjC,EAAE,MAAM,aAAa,MAAM,QAAQ;AAAA,MACnC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc,SAAS;AAC5B,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe;AACrB,QAAI,WAAW;AAAA;AAAA;AAGf,aAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAY;AAAA,yBACO,IAAI;AAAA,wBACL,IAAI;AAAA,yBACH,IAAI,IAAI;AAAA,wBACT,IAAI,IAAI;AAAA,oBACZ;AAAA,IAChB;AACA,gBAAY;AAAA,2BACW;AAAA,8BACG,SAAS;AAAA;AAEnC,aAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAY;AAAA,oBACE,IAAI;AAAA,oBACJ,IAAI;AAAA,oBACJ,IAAI,IAAI;AAAA,oBACR,IAAI,IAAI;AAAA,eACb;AAAA,IACX;AACA,gBAAY;AAAA;AAAA;AAAA;AAIZ,aAAS,SAAS,GAAG,UAAU,eAAe,KAAK,GAAG,UAAU;AAC9D,YAAM,WAAW,SAAS;AAC1B,kBAAY;AAAA,6BACW,WAAW;AAAA;AAElC,UAAI,gBAAgB,GAAG;AACrB,YAAI,WAAW,aAAa;AAC1B,cAAI,UAAU,MAAM,GAAG;AACrB,wBAAY;AAAA;AAAA,uEAE+C;AAAA,4BAC3C;AAAA;AAAA;AAAA;AAAA;AAAA,8BAKE;AAAA;AAAA,4BAEF;AAAA;AAAA;AAGhB,gBAAI,kBAAkB,KAAK,WAAW,GAAG;AACvC,0BAAY;AAAA,qBACL,0BAA0B,WAAW,gBAAgB;AAAA;AAAA,YAE9D,OAAO;AACL,0BAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAYD,uCAAuC;AAAA;AAAA,yBAEvC,oCAAoC;AAAA;AAAA;AAAA,YAGjD;AAAA,UACF,OAAO;AACL,wBAAY;AAAA,2DACmC;AAAA,4BAC/B;AAAA;AAAA,8BAEE;AAAA;AAAA,4BAEF;AAAA;AAAA;AAAA,qBAGP,qBAAqB;AAAA;AAAA,UAEhC;AACA,cAAI,WAAW,IAAI,aAAa;AAC9B,kBAAM,kBAAkB,UAAU,MAAM,IAAI,aAAa,kBAAkB,aAAa,IAAI;AAC5F,gBAAI,gBAAgB,MAAM,KAAK,UAAU,MAAM,KAAK,gBAAgB,MAAM,KAAK,UAAU,MAAM,GAAG;AAChG,0BAAY;AAAA,wDAC8B;AAAA;AAAA,yEAEiB,WAAW;AAAA,8BACtD,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKT,WAAW;AAAA;AAAA,8BAEb,WAAW;AAAA;AAAA;AAG3B,kBAAI,gBAAgB,GAAG;AACrB,4BAAY;AAAA;AAAA;AAAA;AAAA,0BAIF,WAAW,gCAAgC,WAAW;AAAA;AAAA,0BAEtD,WAAW,6BAA6B,WAAW;AAAA;AAAA;AAAA,cAG/D,OAAO;AACL,4BAAY;AAAA,yBACH,WAAW,mBAAmB,uBAAuB,WAAW;AAAA;AAAA,cAE3E;AAAA,YACF,OAAO;AACL,kBAAI,oBAAoB,GAAG;AACzB,4BAAY;AAAA,yBACH,WAAW,cAAc;AAAA;AAAA,cAEpC,OAAO;AACL,4BAAY;AAAA,uCACW;AAAA;AAAA,2EAEoC,WAAW;AAAA,gCACtD,WAAW;AAAA;AAAA,kCAET,WAAW;AAAA;AAAA,gCAEb,WAAW;AAAA;AAAA;AAAA,yBAGlB,WAAW,cAAc,WAAW;AAAA;AAAA,cAE/C;AAAA,YACF;AAAA,UACF;AAAA,QACF;AAAA,MACF,OAAO;AACL,YAAI,WAAW,aAAa;AAC1B,cAAI,UAAU,MAAM,GAAG;AACrB,wBAAY;AAAA;AAAA,sEAE8C;AAAA,4BAC1C;AAAA;AAAA;AAAA;AAAA,8BAIE;AAAA;AAAA,4BAEF;AAAA;AAAA;AAAA,kEAGsC,WAAW;AAAA,4BACjD,WAAW;AAAA;AAAA;AAAA;AAAA,8BAIT,WAAW;AAAA;AAAA,4BAEb,WAAW;AAAA;AAAA;AAAA,qBAGlB,0BAA0B,uBAAuB,WAAW;AAAA;AAErE,gBAAI,WAAW,IAAI,aAAa;AAC9B,0BAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uBAMH,WAAW,mBAAmB,WAAW;AAAA;AAAA,YAEpD;AAAA,UACF,OAAO;AACL,wBAAY;AAAA,0DACkC;AAAA,4BAC9B;AAAA;AAAA,8BAEE;AAAA;AAAA,4BAEF;AAAA;AAAA;AAAA;AAAA,sEAI0C,WAAW;AAAA,4BACrD,WAAW;AAAA;AAAA,8BAET,WAAW;AAAA;AAAA,4BAEb,WAAW;AAAA;AAAA;AAAA,qBAGlB;AAAA,4BACO,uBAAuB,WAAW;AAAA;AAElD,gBAAI,WAAW,IAAI,aAAa;AAC9B,0BAAY;AAAA,uBACH,WAAW,mBAAmB,uBAAuB,WAAW;AAAA;AAAA,YAE3E;AAAA,UACF;AAAA,QACF;AAAA,MACF;AACA,UAAI,WAAW,aAAa;AAC1B,oBAAY;AAAA,gCACY;AAAA,4BACJ;AAAA,2BACD,SAAS;AAAA,8BACN;AAAA;AAAA;AAGtB,YAAI,WAAW,IAAI,aAAa;AAC9B,sBAAY;AAAA,kCACY,WAAW;AAAA,8BACf,WAAW;AAAA,6BACZ,SAAS;AAAA,gCACN,WAAW;AAAA;AAAA;AAAA,QAGnC;AAAA,MACF;AAAA,IACF;AACA,gBAAY;AAAA;AAAA;AAGZ,gBAAY;AAAA;AAAA;AAGZ,gBAAY;AAAA;AAAA;AAGZ,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,oBAAoB;AACtB,4BAAoB;AAAA;AAAA,aAEf;AAAA;AAAA,MAEP,WAAW,mBAAmB;AAC5B,4BAAoB;AAAA;AAAA,aAEf;AAAA;AAAA,MAEP,OAAO;AACL,4BAAoB;AAAA,aACf;AAAA;AAAA,MAEP;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,mBAAmB;AACrB,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,SAAK,WAAW;AAAA,SACX;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,WAaE;AAAA;AAAA;AAAA,WAGA;AAAA,WACA;AAAA;AAAA;AAAA;AAAA,EAIT;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,UAAU;AACjC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,cAAc,MAAM,QAAQ;AAAA,MACpC,EAAE,MAAM,OAAO,MAAM,QAAQ;AAAA,MAC7B,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,MAChC,EAAE,MAAM,YAAY,MAAM,QAAQ;AAAA,MAClC,EAAE,MAAM,cAAc,MAAM,MAAM;AAAA,MAClC,EAAE,MAAM,oBAAoB,MAAM,MAAM;AAAA,MACxC,EAAE,MAAM,YAAY,MAAM,MAAM;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,EAAE,WAAW,IAAI;AACvB,UAAM,OAAO,mBAAmB;AAChC,UAAM,iBAAiB,eAAe;AACtC,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,wBAAwB,KAAK,sBAAsB,wDAAwD,mBAAmB,YAAY,eAAe,YAAY;AAC3K,QAAI,WAAW;AACf,aAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,eAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,oBAAY;AAAA,gCACY;AAAA,yBACP;AAAA;AAAA,YAEb;AAAA;AAAA;AAAA;AAAA,iCAIqB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCAQE;AAAA;AAAA;AAAA;AAAA,sBAIb;AAAA;AAAA,2BAEK,MAAM,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA,2BAKV,MAAM,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAQ/B;AAAA,IACF;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UASV;AAAA;AAAA,UAEA,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,SAAS,uBAAuB,OAAO,gBAAgB;AACrD,QAAM,SAAS,MAAM;AACrB,MAAI,UAAU,GAAG;AACf,WAAO,iBAAiB;AAAA,MACtB,GAAG,MAAM,MAAM,GAAG,EAAE;AAAA,MACpB,MAAM,SAAS,KAAK,MAAM,SAAS;AAAA,MACnC,MAAM,SAAS;AAAA,IACjB,IAAI;AAAA,MACF,GAAG,MAAM,MAAM,GAAG,EAAE;AAAA,MACpB,MAAM,SAAS;AAAA,MACf,MAAM,SAAS,KAAK,MAAM,SAAS;AAAA,IACrC;AAAA,EACF,WAAW,CAAC,kBAAkB,WAAW,KAAK,MAAM,KAAK,GAAG;AAC1D,WAAO,CAAC,MAAM,IAAI,CAAC;AAAA,EACrB,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,SAAS,eAAe,EAAE,GAAG,QAAQ,UAAU,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AAClK,QAAM,SAAS,EAAE;AACjB,QAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,QAAM,kBAAkB,SAAS;AACjC,QAAM,cAAc,OAAO,KAAK,OAAO,KAAK,OAAO;AACnD,QAAM,mBAAmB,SAAS;AAClC,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,aAAa;AACnB,QAAM,aAAa;AACnB,MAAI;AACJ,QAAM,gBAAgB,CAAC;AACvB,MAAI,0BAA0B,MAAM;AAClC,UAAM,cAAc,uBAAuB,uBAAuB,OAAO,cAAc;AACvF,QAAI,eAAe,MAAM;AACvB,+BAAyB,SAAS;AAAA,QAChC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,YAAY;AAAA,MAC9B,CAAC;AACD,oBAAc,KAAK,sBAAsB;AAAA,IAC3C;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,cAAc,uBAAuB,KAAK,OAAO,cAAc;AACrE,QAAI,eAAe,MAAM;AACvB,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AACzF,oBAAc,KAAK,IAAI;AAAA,IACzB;AAAA,EACF;AACA,QAAM,6BAA6B,gBAAgB,KAAK,qBAAqB,MAAM,kBAAkB;AACrG,QAAM,cAAc,CAAC,6BAA6B,SAAS,YAAY,kBAAkB,SAAS,WAAW,QAAQ,OAAO,KAAK,MAAM,KAAK,aAAa,YAAY,SAAS,MAAM,MAAM,EAAE,GAAG,OAAO,MAAM,EAAE,CAAC;AAC/M,MAAI,aAAa;AACf,UAAM,cAAc,OAAO,KAAK,OAAO,MAAM,OAAO,KAAK;AACzD,UAAM,YAAY;AAAA,MAChB,QAAQ,EAAE;AAAA,MACV,OAAO,CAAC,GAAG,aAAa,SAAS,UAAU;AAAA,MAC3C,OAAO,EAAE;AAAA,IACX;AACA,UAAM,wBAAwB,SAAS;AACvC,aAAS,QAAQ,SAAS,MAAM,MAAM;AACtC,aAAS,MAAM,SAAS,MAAM,SAAS;AACvC,iBAAa,OAAO,cAAc,SAAS,OAAO,UAAU,KAAK,GAAG,MAAM,kBAAkB,SAAS,YAAY,UAAU,kBAAkB;AAC7I,UAAM,iBAAiB,SAAS;AAAA,MAC9B,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,SAAS,YAAY,SAAS,WAAW,EAAE;AAAA,IACjE,CAAC;AACD,kBAAc,KAAK,cAAc;AACjC,UAAM,gBAAgB,gBAAgB;AAAA,MACpC,GAAG;AAAA,MACH,GAAG;AAAA,MACH,SAAS;AAAA,MACT;AAAA,MACA;AAAA,MACA;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AACD,UAAM,uBAAuB,SAAS,QAAQ,IAAI,cAAc,MAAM;AACtE,iBAAa,OAAO,qBAAqB,UAAU,MAAM,6CAA6C;AACtG,aAAS,QAAQ;AACjB,yBAAqB,QAAQ,SAAS;AACtC,UAAM,UAAU,EAAE,QAAQ,EAAE,GAAG,cAAc,GAAG,SAAS,SAAS,CAAC;AACnE,QAAI,QAAQ,SAAS;AACrB,kBAAc,KAAK,aAAa;AAAA,EAClC,OAAO;AACL,UAAM,UAAU,SAAS,YAAY,SAAS;AAC9C,UAAM,YAAY,SAAS;AAAA,MACzB,QAAQ,EAAE,EAAE;AAAA,MACZ,SAAS;AAAA,MACT,OAAO;AAAA,QACL,OAAO,iBAAiB,CAAC,SAAS,WAAW,SAAS,SAAS,UAAU,IAAI,CAAC,SAAS,WAAW,SAAS,YAAY,OAAO;AAAA,MAChI;AAAA,IACF,CAAC;AACD,UAAM,iBAAiB,SAAS;AAAA,MAC9B,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,SAAS,YAAY,SAAS,WAAW,EAAE;AAAA,IACjE,CAAC;AACD,UAAM,SAAS,gBAAgB;AAAA,MAC7B,GAAG,iBAAiB,YAAY;AAAA,MAChC,GAAG,iBAAiB,iBAAiB;AAAA,MACrC,YAAY,CAAC;AAAA,MACb;AAAA,MACA,SAAS;AAAA,MACT;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AACD,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AAChG,kBAAc,KAAK,SAAS;AAC5B,kBAAc,KAAK,cAAc;AACjC,kBAAc,KAAK,MAAM;AAAA,EAC3B;AACA,aAAW,MAAM,eAAe;AAC9B,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,EAAE,GAAG,QAAQ,UAAU,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AACpK,QAAM,EAAE,aAAa,cAAc,YAAY,UAAU,WAAW,WAAW,IAAI;AACnF,QAAM,iBAAiB,eAAe;AACtC,QAAM,YAAY,cAAc,eAAe;AAC/C,QAAM,UAAU,YAAY;AAC5B,QAAM,aAAa,CAAC,SAAS,WAAW,WAAW,OAAO;AAC1D,QAAM,aAAa;AACnB,QAAM,aAAa;AACnB,QAAM,gBAAgB,CAAC;AACvB,MAAI,0BAA0B,MAAM;AAClC,UAAM,cAAc,uBAAuB,uBAAuB,OAAO,cAAc;AACvF,QAAI,eAAe,MAAM;AACvB,+BAAyB,SAAS;AAAA,QAChC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,YAAY;AAAA,MAC9B,CAAC;AACD,oBAAc,KAAK,sBAAsB;AAAA,IAC3C;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,cAAc,uBAAuB,KAAK,OAAO,cAAc;AACrE,QAAI,eAAe,MAAM;AACvB,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AACzF,oBAAc,KAAK,IAAI;AAAA,IACzB;AAAA,EACF;AACA,QAAM,QAAQ,SAAS;AAAA,IACrB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,GAAG,WAAW,aAAa,cAAc,OAAO,KAAK,IAAI,SAAS,EAAE;AAAA,EACvF,CAAC;AACD,gBAAc,KAAK,KAAK;AACxB,QAAM,gBAAgB,IAAI,oBAAoB,YAAY,QAAQ;AAClE,QAAM,eAAe;AAAA,IACnB,EAAE;AAAA,IACF,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,IAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,IAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IAChD,CAAC,SAAS,UAAU;AAAA,IACpB,CAAC,SAAS,cAAc,SAAS,UAAU;AAAA,IAC3C,CAAC,SAAS,QAAQ;AAAA,EACpB;AACA,QAAM,SAAS,SAAS,gBAAgB,eAAe,CAAC,CAAC,GAAG,WAAW,YAAY;AACnF,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC1G,gBAAc,KAAK,MAAM;AACzB,gBAAc,KAAK,cAAc;AACjC,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,oBAAoB,gBAAgB;AAC1C,QAAM,kBAAkB,cAAc,6BAA6B,aAAa,IAAI,IAAI;AACxF,QAAM,gBAAgB,IAAI,oBAAoB,iBAAiB,eAAe,QAAQ,MAAM,OAAO,iBAAiB,MAAM,QAAQ,eAAe,OAAO,iBAAiB,CAAC,SAAS,WAAW,SAAS,SAAS,WAAW,IAAI,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,GAAG,YAAY,YAAY,SAAS,iBAAiB,2BAA2B,iBAAiB;AAClX,QAAM,SAAS,iBAAiB,CAAC,gBAAgB,KAAK,IAAI,CAAC,OAAO,cAAc;AAChF,MAAI,MAAM;AACR,WAAO,KAAK,IAAI;AAAA,EAClB;AACA,MAAI,2BAA2B;AAC7B,WAAO,KAAK,sBAAsB;AAAA,EACpC;AACA,MAAI,mBAAmB;AACrB,UAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkB,gBAAgB,SAAS,CAAC;AACxH,WAAO,KAAK,eAAe;AAC3B,kBAAc,KAAK,eAAe;AAAA,EACpC;AACA,QAAM,UAAU,SAAS,gBAAgB,eAAe,QAAQ,SAAS;AACzE,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AACvG,gBAAc,KAAK,OAAO;AAC1B,aAAW,MAAM,eAAe;AAC9B,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,SAAO;AACT;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB,IAAI;AACvE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,MAAI;AACJ,MAAI,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,MAAM,SAAS,QAAQ,SAAS,UAAU,SAAS,QAAQ,SAAS,UAAU;AACtQ,UAAM,eAAe,EAAE,GAAG,QAAQ,UAAU,SAAS,SAAS,CAAC;AAAA,EACjE,WAAW,SAAS,eAAe,KAAK,gBAAgB,kBAAkB,IAAI,EAAE,QAAQ,gBAAgB,GAAG;AACzG,UAAM,UAAU,IAAI,oBAAoB,QAAQ;AAChD,UAAM,eAAe;AAAA,MACnB,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,MAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,MAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,MAChD,CAAC,SAAS,UAAU,SAAS,OAAO;AAAA,IACtC;AACA,UAAM,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,WAAW,YAAY;AAAA,EAC9E,WAAW,IAAI,EAAE,QAAQ,mBAAmB,GAAG;AAC7C,UAAM,iBAAiB,EAAE,GAAG,QAAQ,UAAU,SAAS,SAAS,CAAC;AAAA,EACnE,OAAO;AACL,UAAM,UAAU,IAAI,cAAc,QAAQ;AAC1C,UAAM,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,SAAS;AAAA,EAChE;AACA,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AAC3G,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,IAAI;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,iBAAiB,SAAS,eAAe;AAC/C,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAYU,SAAS;AAAA,kCACL,SAAS;AAAA,iCACV,kBAAkB;AAAA;AAAA,kCAEjB,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP,SAAS;AAAA,mCACV,iBAAiB;AAAA;AAAA,oCAEhB,SAAS;AAAA;AAAA;AAAA;AAAA,oBAIzB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAgBlB;AACF;AACA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,GAAG;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS,eAAe;AAC/C,UAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,UAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,aAAa,iBAAiB,IAAI;AACxC,SAAK,WAAW;AAAA,iCACa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,0BAKlB;AAAA;AAAA,wCAEc,mBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAO3B;AAAA,gDACgB;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKpB;AAAA;AAAA,kCAES;AAAA,kDACgB;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAMpB;AAAA;AAAA,oCAES,SAAS;AAAA;AAAA,oBAEzB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAgBlB;AACF;AACA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,IAAI;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,WAAW,SAAS,QAAQ;AAClC,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAWU,SAAS;AAAA,kCACL,SAAS;AAAA,iCACV,iBAAiB;AAAA;AAAA,kCAEhB,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP,SAAS;AAAA,mCACV,kBAAkB;AAAA;AAAA,oCAEjB,SAAS;AAAA;AAAA;AAAA;AAAA,sCAIP,SAAS;AAAA,qCACV,iBAAiB;AAAA;AAAA,sCAEhB,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAc7C;AACF;AACA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,GAAG;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,WAAW,cAAc,IAAI,SAAS,QAAQ;AACpD,UAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,UAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,SAAK,WAAW;AAAA,iCACa,aAAa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAczB;AAAA,gDACgB;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKpB;AAAA;AAAA,kCAES;AAAA,kDACgB;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAMpB;AAAA;AAAA,oCAES;AAAA,oDACgB;AAAA;AAAA,wCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,6BAMpB;AAAA;AAAA,sCAES,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAW7C;AACF;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,YAAY,IAAI;AACzE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACnI,QAAM,UAAU,IAAI,uBAAuB,QAAQ;AACnD,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,EAAE,GAAG,SAAS;AAC7D;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AACxE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACvI,QAAM,UAAU,IAAI,sBAAsB,QAAQ;AAClD,SAAO,SAAS,gBAAgB,SAAS,CAAC,IAAI,MAAM,GAAG,SAAS;AAClE;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,IAAI;AACvG,QAAM,UAAU,IAAI,cAAc,QAAQ;AAC1C,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,SAAS;AACjE;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,MAAM;AACrC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,IAAI;AAC5C,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,GAAG,IAAI;AAC9F,QAAM,UAAU,IAAI,uBAAuB,QAAQ;AACnD,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,EAAE,GAAG,SAAS;AAC7D;AACA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,KAAK,MAAM,SAAAA,UAAS,WAAW,IAAI;AAC3C,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,IAAI;AAClG,QAAM,UAAU,IAAI,sBAAsB,QAAQ;AAClD,SAAO,SAAS,gBAAgB,SAAS,CAAC,IAAI,MAAM,GAAG,SAAS;AAClE;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,0BAA0B;AAAA;AAAA;AAGpC,IAAI,OAAO,iBAAiB,EAAE,WAAW,IAAI,CAAC;AAC9C,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA;AAIX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,YAAY,UAAU,UAAU,QAAQ,oBAAoB;AACtE,SAAK,gBAAgB,CAAC,SAAS,SAAS,QAAQ;AAChD,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,aAAa,YAAY,KAAK,IAAI;AAChD,UAAM,CAAC,QAAQ,IAAI;AACnB,UAAM,CAAC,YAAY,SAAS,IAAI;AAChC,SAAK,cAAc,CAAC,UAAU,YAAY,WAAW,KAAK;AAC1D,UAAM,WAAW,WAAW,aAAa,IAAI;AAC7C,UAAM,CAAC,kBAAkB,eAAe,IAAI,CAAC,GAAG,cAAc,OAAO,GAAG,aAAa,KAAK;AAC1F,UAAM,CAAC,aAAa,aAAa,GAAG,IAAI,aAAa,IAAI;AAAA,MACvD,IAAI,cAAc,MAAM,aAAa;AAAA,MACrC;AAAA,MACA,MAAM;AAAA,IACR,IAAI;AAAA,MACF;AAAA,MACA;AAAA,MACA,mBAAmB;AAAA,IACrB;AACA,UAAM,CAAC,YAAY,YAAY,GAAG,IAAI,YAAY,IAAI;AAAA,MACpD,IAAI,aAAa,MAAM,YAAY;AAAA,MACnC;AAAA,MACA,MAAM;AAAA,IACR,IAAI;AAAA,MACF;AAAA,MACA;AAAA,MACA,mBAAmB;AAAA,IACrB;AACA,SAAK,WAAW;AAAA,yCACqB;AAAA,wCACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iCAgBP;AAAA;AAAA;AAAA;AAAA,+BAIF;AAAA,8BACD;AAAA;AAAA,uBAEP;AAAA,mCACY;AAAA,4BACP;AAAA;AAAA;AAAA,uBAGL;AAAA,mCACY;AAAA,4BACP;AAAA;AAAA;AAAA;AAAA;AAAA,aAKf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAyBX;AACF;AAGA,IAAI,iBAAiB,CAAC,SAAS;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,OAAO,OAAO,IAAI;AACzC,QAAM,EAAE,UAAU,QAAQ,mBAAmB,IAAI;AACjD,QAAM,UAAU,IAAI,qBAAqB,OAAO,OAAO,MAAM,OAAO,UAAU,QAAQ,kBAAkB;AACxG,SAAO,SAAS,gBAAgB,SAAS,CAAC,QAAQ,OAAO,MAAM,GAAG,SAAS;AAC7E;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AAAA,CACH,SAAS,YAAY;AACpB,aAAW,UAAU;AACrB,aAAW,SAAS;AACtB,GAAG,cAAc,YAAY,CAAC,EAAE;AAChC,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,KAAK,aAAa,WAAW,UAAU;AACjD,SAAK,KAAK;AACV,SAAK,cAAc;AACnB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,MAAM,QAAQ,CAAC;AACvD,UAAM,OAAO,KAAK,YAAY;AAC9B,UAAM,UAAU,KAAK,OAAO,UAAU,OAAO,QAAQ;AACrD,UAAM,MAAM,YAAY,UAAU,QAAQ,WAAW,MAAM,UAAU,KAAK,EAAE;AAC5E,UAAM,SAAS,KAAK,YAAY,KAAK,YAAY,SAAS;AAC1D,QAAI,YAAY;AAChB,QAAI,YAAY;AAChB,QAAI,WAAW;AACb,kBAAY,WAAW,UAAU,SAAS,MAAM;AAChD,kBAAY,WAAW,YAAY;AAAA,IACrC,OAAO;AACL,kBAAY,WAAW,gBAAgB,WAAW;AAClD,kBAAY,WAAW,eAAe;AAAA,IACxC;AACA,SAAK,WAAW;AAAA;AAAA,UAEV,kBAAkB,IAAI;AAAA,oBACZ,cAAc,MAAM,UAAU,KAAK,EAAE;AAAA,sBACnC;AAAA;AAAA,cAER;AAAA,sBACQ;AAAA,YACV,cAAc,MAAM,UAAU,KAAK,EAAE;AAAA,gBACjC,KAAK,YAAY,WAAW,MAAM,UAAU,KAAK,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA,EAKjE;AACF;AACA,SAAS,WAAW,MAAM,MAAM,KAAK;AACnC,MAAI,SAAS,GAAG;AACd,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW;AAAA,EACvB,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW,WAAW;AAAA,EAClC,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW,WAAW,WAAW;AAAA,EAC7C,OAAO;AACL,UAAM,IAAI,MAAM,cAAc,gBAAgB,2BAA2B;AAAA,EAC3E;AACF;AACA,SAAS,cAAc,MAAM,MAAM,KAAK;AACtC,MAAI,SAAS,GAAG;AACd,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,OAAO;AACL,UAAM,IAAI,MAAM,cAAc,gBAAgB,2BAA2B;AAAA,EAC3E;AACF;AAGA,SAAS,QAAQ,KAAK,GAAG,UAAU,MAAM,WAAW,UAAU;AAC5D,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAAA,EAC3F;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AACrE,MAAI,iBAAiB,QAAQ,GAAG;AAC9B,UAAM,IAAI,MAAM,mDAAmD,EAAE,MAAM,SAAS,kBAAkB,MAAM;AAAA,EAC9G;AACA,QAAMb,QAAO,UAAU,MAAM;AAC7B,MAAI,SAAS,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,SAAS,CAAC;AACtE,WAAS,KAAK,GAAG,MAAM,KAAK,KAAK,KAAK,KAAKA,KAAI,CAAC,IAAI,GAAG,MAAM;AAC3D,UAAM,UAAU,IAAI,WAAW,KAAK,UAAU,OAAO,OAAO,QAAQ;AACpE,UAAM,eAAe,CAAC,CAAC,EAAE,CAAC;AAC1B,UAAM,aAAa;AACnB,aAAS,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,YAAY;AAC/E,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACA,MAAI,WAAW;AACb,UAAM,UAAU,IAAI,WAAW,KAAK,UAAU,OAAO,WAAW,QAAQ;AACxE,UAAM,aAAa;AACnB,aAAS,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AACjE,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACA,MAAI,eAAe,MAAM;AACvB,UAAM,qBAAqB,qBAAqB,uBAAuB,WAAW;AAClF,UAAM,0BAA0B,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,mBAAmB,EAAE,CAAC;AAC5H,aAAS,8BAA8B,MAAM;AAC7C,aAAS,8BAA8B,SAAS;AAChD,WAAO;AAAA,EACT;AACA,SAAO;AACT;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,SAAO,QAAQ,UAAU,MAAM,GAAG,UAAU,MAAM,WAAW,QAAQ;AACvE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,SAAO,QAAQ,UAAU,KAAK,GAAG,UAAU,MAAM,WAAW,QAAQ;AACtE;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAAA,OAAM,aAAa,IAAI;AAC/B,MAAI,EAAE,MAAM,WAAW,GAAG;AACxB,UAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,UAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,UAAM,UAAU,gBAAgB,OAAO,aAAa,QAAQ,OAAO,QAAQ,OAAOA,KAAI;AACtF,WAAO,SAAS,eAAe,CAACA,KAAI,GAAG,QAAQ,OAAO,OAAO;AAAA,EAC/D,WAAW,EAAE,MAAM,WAAW,GAAG;AAC/B,UAAM,OAAO,SAAS,WAAW,CAAC;AAClC,UAAM,aAAa,SAAS,WAAW,OAAO;AAC9C,UAAM,SAAS,sBAAsB,MAAM,YAAYA,OAAM,YAAY;AACzE,WAAO,SAAS,eAAe,OAAO,OAAO,QAAQ,OAAO,OAAO,MAAM;AAAA,EAC3E;AACA,QAAM,IAAI,MAAM,qEAAqE,EAAE,MAAM,SAAS;AACxG;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,WAAW,YAAY;AAC9C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,SAAK,YAAY;AACjB,SAAK,aAAa;AAClB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA,gBAIJ,KAAK,qBAAqB;AAAA,gBAC1B,KAAK,oBAAoB;AAAA,gBACzB,KAAK,oBAAoB;AAAA;AAAA,uBAElB;AAAA,+BACQ;AAAA,uBACR;AAAA,+BACQ;AAAA,mCACI;AAAA,UACzB,KAAK,mBAAmB;AAAA;AAAA;AAAA,uBAGX,KAAK,uBAAuB;AAAA;AAAA;AAAA;AAAA,EAIjD;AAAA,EACA,uBAAuB;AACrB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,sBAAsB;AACpB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,sBAAsB;AACpB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,qBAAqB;AACnB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO,KAAK,YAAY;AAAA,IAC1B,OAAO;AACL,aAAO,KAAK,YAAY;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,yBAAyB;AACvB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,WAAW,WAAW,IAAI;AAClC,QAAM,YAAY,EAAE,MAAM;AAC1B,QAAM,cAAc,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AACjE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,eAAe,cAAc;AACnC,QAAM,cAAc,aAAa;AACjC,QAAM,cAAc,cAAc,YAAY;AAC9C,QAAM,cAAc,eAAe,SAAS,CAAC,WAAW,cAAc,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,cAAc,WAAW;AACpJ,QAAM,UAAU,IAAI,oBAAoB,aAAa,WAAW,UAAU;AAC1E,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO,oBAAoB,OAAO;AAChH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,QAAQ,MAAM,QAAQ;AAAA,MAC9B,EAAE,MAAM,WAAW,MAAM,QAAQ;AAAA,MACjC,EAAE,MAAM,aAAa,MAAM,QAAQ;AAAA,MACnC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc,SAAS;AAC5B,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,aAAa,SAAS,cAAc,SAAS;AACnD,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,oBAAoB;AACtB,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,WAAW,mBAAmB;AAC5B,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,OAAO;AACL,4BAAoB;AAAA;AAAA,cAEd;AAAA;AAAA;AAAA,MAGR;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,mBAAmB;AACrB,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAOgB;AAAA,4BACI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCASI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAOE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAcxB;AAAA,UACA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,IAAI,+BAA+B,MAAM;AAAA,EACvC,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO,oBAAoB,OAAO;AAChH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,QAAQ,MAAM,QAAQ;AAAA,MAC9B,EAAE,MAAM,WAAW,MAAM,QAAQ;AAAA,MACjC,EAAE,MAAM,aAAa,MAAM,QAAQ;AAAA,MACnC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc,SAAS;AAC5B,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,aAAa,SAAS,cAAc,SAAS;AACnD,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe;AACrB,QAAI,WAAW;AAAA;AAAA;AAGf,aAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAY;AAAA,wBACM,IAAI;AAAA,uBACL,IAAI;AAAA,wBACH,IAAI,IAAI;AAAA,uBACT,IAAI,IAAI;AAAA,mBACZ;AAAA,IACf;AACA,gBAAY;AAAA,0BACU;AAAA;AAEtB,aAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAY;AAAA,mBACC,IAAI;AAAA,mBACJ,IAAI;AAAA,mBACJ,IAAI,IAAI;AAAA,mBACR,IAAI,IAAI;AAAA,cACb;AAAA,IACV;AACA,gBAAY;AAAA;AAAA;AAAA;AAIZ,aAAS,SAAS,GAAG,UAAU,eAAe,KAAK,GAAG,UAAU;AAC9D,YAAM,WAAW,SAAS;AAC1B,kBAAY;AAAA,4BACU,WAAW;AAAA;AAEjC,UAAI,gBAAgB,GAAG;AACrB,YAAI,WAAW,aAAa;AAC1B,cAAI,UAAU,MAAM,GAAG;AACrB,wBAAY;AAAA;AAAA,sEAE8C;AAAA,2BAC3C;AAAA;AAAA;AAAA;AAAA;AAAA,6BAKE;AAAA;AAAA,2BAEF;AAAA;AAAA;AAGf,gBAAI,kBAAkB,KAAK,WAAW,GAAG;AACvC,0BAAY;AAAA,oBACN,0BAA0B,WAAW,gBAAgB;AAAA;AAAA,YAE7D,OAAO;AACL,0BAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAYF,uCAAuC;AAAA;AAAA,wBAEvC,oCAAoC;AAAA;AAAA;AAAA,YAGhD;AAAA,UACF,OAAO;AACL,wBAAY;AAAA,0DACkC;AAAA,2BAC/B;AAAA;AAAA,6BAEE;AAAA;AAAA,2BAEF;AAAA;AAAA;AAAA,oBAGP,qBAAqB;AAAA;AAAA,UAE/B;AACA,cAAI,WAAW,IAAI,aAAa;AAC9B,kBAAM,kBAAkB,UAAU,MAAM,IAAI,aAAa,kBAAkB,aAAa,IAAI;AAC5F,gBAAI,gBAAgB,MAAM,KAAK,UAAU,MAAM,KAAK,gBAAgB,MAAM,KAAK,UAAU,MAAM,GAAG;AAChG,0BAAY;AAAA,uDAC6B;AAAA;AAAA,wEAEiB,WAAW;AAAA,6BACtD,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,+BAKT,WAAW;AAAA;AAAA,6BAEb,WAAW;AAAA;AAAA;AAG1B,kBAAI,gBAAgB,GAAG;AACrB,4BAAY;AAAA;AAAA;AAAA;AAAA,yBAIH,WAAW,gCAAgC,WAAW;AAAA;AAAA,yBAEtD,WAAW,6BAA6B,WAAW;AAAA;AAAA;AAAA,cAG9D,OAAO;AACL,4BAAY;AAAA,wBACJ,WAAW,mBAAmB,uBAAuB,WAAW;AAAA;AAAA,cAE1E;AAAA,YACF,OAAO;AACL,kBAAI,oBAAoB,GAAG;AACzB,4BAAY;AAAA,wBACJ,WAAW,cAAc;AAAA;AAAA,cAEnC,OAAO;AACL,4BAAY;AAAA,sCACU;AAAA;AAAA,0EAEoC,WAAW;AAAA,+BACtD,WAAW;AAAA;AAAA,iCAET,WAAW;AAAA;AAAA,+BAEb,WAAW;AAAA;AAAA;AAAA,wBAGlB,WAAW,cAAc,WAAW;AAAA;AAAA,cAE9C;AAAA,YACF;AAAA,UACF;AAAA,QACF;AAAA,MACF,OAAO;AACL,YAAI,WAAW,aAAa;AAC1B,cAAI,UAAU,MAAM,GAAG;AACrB,wBAAY;AAAA;AAAA,qEAE6C;AAAA,2BAC1C;AAAA;AAAA;AAAA;AAAA,6BAIE;AAAA;AAAA,2BAEF;AAAA;AAAA;AAAA,iEAGsC,WAAW;AAAA,2BACjD,WAAW;AAAA;AAAA;AAAA;AAAA,6BAIT,WAAW;AAAA;AAAA,2BAEb,WAAW;AAAA;AAAA;AAAA,oBAGlB,0BAA0B,uBAAuB,WAAW;AAAA;AAEpE,gBAAI,WAAW,IAAI,aAAa;AAC9B,0BAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sBAMJ,WAAW,mBAAmB,WAAW;AAAA;AAAA,YAEnD;AAAA,UACF,OAAO;AACL,wBAAY;AAAA,yDACiC;AAAA,2BAC9B;AAAA;AAAA,6BAEE;AAAA;AAAA,2BAEF;AAAA;AAAA;AAAA;AAAA,qEAI0C,WAAW;AAAA,2BACrD,WAAW;AAAA;AAAA,6BAET,WAAW;AAAA;AAAA,2BAEb,WAAW;AAAA;AAAA;AAAA,oBAGlB;AAAA,2BACO,uBAAuB,WAAW;AAAA;AAEjD,gBAAI,WAAW,IAAI,aAAa;AAC9B,0BAAY;AAAA,sBACJ,WAAW,mBAAmB,uBAAuB,WAAW;AAAA;AAAA,YAE1E;AAAA,UACF;AAAA,QACF;AAAA,MACF;AACA,UAAI,WAAW,aAAa;AAC1B,oBAAY;AAAA,+BACW;AAAA,2BACJ;AAAA;AAEnB,YAAI,WAAW,IAAI,aAAa;AAC9B,sBAAY;AAAA,iCACW,WAAW;AAAA,6BACf,WAAW;AAAA;AAAA,QAEhC;AAAA,MACF;AAAA,IACF;AACA,gBAAY;AAAA;AAAA;AAGZ,gBAAY;AAAA;AAAA;AAGZ,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,oBAAoB;AACtB,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,WAAW,mBAAmB;AAC5B,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,OAAO;AACL,4BAAoB;AAAA,YAChB;AAAA;AAAA,MAEN;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,mBAAmB;AACrB,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAOgB;AAAA,4BACI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAOlB;AAAA;AAAA;AAAA,UAGA;AAAA,UACA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,WAAW,gBAAgB,IAAI;AAC3D,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,UAAU,GAAG,MAAM,gFAAgFA,2BAA0B,aAAa;AAC3N,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,0BAA0B,KAAK,SAAS,eAAe,KAAK,SAAS,cAAc,SAAS,eAAe,GAAG;AAC9H,cAAU,IAAI,6BAA6B,QAAQ;AAAA,EACrD,OAAO;AACL,cAAU,IAAI,uBAAuB,QAAQ;AAAA,EAC/C;AACA,QAAM,eAAe;AAAA,IACnB,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,IAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,IAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IAChD,CAAC,SAAS,UAAU,SAAS,OAAO;AAAA,EACtC;AACA,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,WAAW,YAAY;AAC/E;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kCAAkC,MAAM;AAAA,EAC1C,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,IAAI;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,aAAa,SAAS,cAAc,SAAS;AACnD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAOI;AAAA;AAAA;AAAA;AAAA;AAAA,8BAKM,SAAS;AAAA,kCACL,SAAS;AAAA,iCACV,kBAAkB;AAAA;AAAA,kCAEjB,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP,SAAS;AAAA,mCACV,iBAAiB;AAAA;AAAA,oCAEhB,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAa3C;AACF;AACA,IAAI,iCAAiC,MAAM;AAAA,EACzC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,GAAG;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,UAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,UAAM,aAAa,SAAS,cAAc,SAAS;AACnD,SAAK,WAAW;AAAA,iCACa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAYZ;AAAA,gDACgB;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKpB;AAAA;AAAA,kCAES;AAAA,kDACgB;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAMpB;AAAA;AAAA;AAAA,oCAGS;AAAA,8BACN;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAU5B;AACF;AAGA,SAAS,qCAAqC,MAAM;AAClD,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,iBAAiB,YAAY,IAAI;AACxE,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AAC7H,QAAM,UAAU,IAAI,gCAAgC,QAAQ;AAC5D,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,EAAE,GAAG,SAAS;AAC7D;AACA,IAAI,6CAA6C;AAAA,EAC/C,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,oCAAoC,MAAM;AACjD,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACvE,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AACjI,QAAM,UAAU,IAAI,+BAA+B,QAAQ;AAC3D,SAAO,SAAS,gBAAgB,SAAS,CAAC,IAAI,MAAM,GAAG,SAAS;AAClE;AACA,IAAI,4CAA4C;AAAA,EAC9C,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAYb,OAAM;AAChB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAACA,OAAMA,KAAI;AAC9B,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOlB;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,WAAW,CAAC,GAAG,EAAE,OAAO,GAAG,EAAE,KAAK;AACxC,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,OAAO,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,KAAK,EAAE,EAAE,CAAC;AACrF,QAAM,UAAU,IAAI,YAAY,KAAK;AACrC,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,IAAI,GAAG,KAAK,KAAK;AAChE,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F,WAAS,8BAA8B,IAAI;AAC3C,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,SAAS;AAC5B,UAAM,EAAE,UAAU,SAAS,SAAS,cAAc,aAAa,cAAc,aAAa,gBAAgB,cAAc,IAAI;AAC5H,UAAM,EAAE,KAAK,QAAQ,MAAM,QAAQ,IAAI;AACvC,SAAK,WAAW;AAAA,oCACgB,iBAAiB;AAAA,iCACpB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAad;AAAA,iCACG;AAAA;AAAA,kCAEC;AAAA,kCACA;AAAA,qCACG;AAAA;AAAA,sCAEC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAiBpC;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,QAAM,WAAW,qBAAqB,sBAAsB,EAAE,OAAO,OAAO,OAAOA,UAAS,MAAM,QAAQ,SAAS;AACnH,MAAI;AACJ,QAAM,UAAU,IAAI,kBAAkB,QAAQ;AAC9C,QAAM,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,SAAS;AAC9D,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AAC3G,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,IAAI;AACrB,QAAM,UAAU;AAChB,QAAM,EAAE,SAAS,YAAY,OAAO,IAAI,qBAAqB,qBAAqB,UAAU,QAAQ,MAAM;AAC1G,uBAAqB,oBAAoB,QAAQ,QAAQ,QAAQ,OAAO;AACxE,QAAM,EAAE,MAAM,MAAM,IAAI,qBAAqB,qBAAqB,YAAY,MAAM;AACpF,QAAM,SAAS,MAAM;AACrB,MAAI,MAAM;AACV,MAAI,mBAAmB,QAAQ;AAC/B,QAAM,mBAAmB,CAAC;AAC1B,WAAS,KAAK,GAAG,KAAK,QAAQ,EAAE,IAAI;AAClC,eAAW,UAAU,MAAM,KAAK;AAC9B,YAAM,EAAE,oBAAoB,MAAM,YAAY,aAAa,IAAI,qBAAqB,qBAAqB,kBAAkB,OAAO,OAAO;AACzI,UAAI;AACJ,UAAI,qBAAqB,sBAAsB,IAAI,GAAG;AACpD,YAAI,QAAQ;AAAA,MACd,OAAO;AACL,YAAI,WAAW,EAAE,QAAQ,EAAE,GAAG,QAAQ,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACrF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,YAAM,cAAc,EAAE,MAAM,MAAM;AAClC,eAAS,IAAI,GAAG,IAAI,aAAa,QAAQ,EAAE,GAAG;AAC5C,oBAAY,OAAO,aAAa,IAAI,GAAG,CAAC;AAAA,MAC1C;AACA,UAAI,CAAC,aAAa,YAAY,EAAE,OAAO,WAAW,GAAG;AACnD,YAAI,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,UAAI,QAAQ,MAAM;AAChB,cAAM;AAAA,MACR,OAAO;AACL,cAAM,UAAU,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,IAAI,GAAG,SAAS,SAAS,CAAC;AAC/D,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AAAA,IACF;AACA,QAAI,KAAK,SAAS,GAAG;AACnB,UAAI,KAAK,OAAO,GAAG;AACjB,cAAM,KAAK;AAAA,UACT,QAAQ,EAAE,GAAG,IAAI;AAAA,UACjB,SAAS;AAAA,UACT,OAAO;AAAA,YACL,MAAM,KAAK,OAAO,QAAQ,SAAS;AAAA,YACnC,UAAU;AAAA,UACZ;AAAA,QACF,CAAC;AACD,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AACA;AAAA,IACF;AAAA,EACF;AACA,aAAW,cAAc,kBAAkB;AACzC,QAAI,eAAe,KAAK;AACtB;AAAA,IACF;AACA,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUjB,IAAI,OAAO,iBAAiB,EAAE,WAAW,MAAM,iBAAiB,WAAW,CAAC;AAC5E,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU;AACd,IAAI,iBAAiB;AAAA;AAAA;AAAA;AAIrB,IAAI,WAAW,CAAC,SAAS;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,IAAI,EAAE,IAAI;AAClB,QAAM,UAAU,IAAI,EAAE,QAAQ,8BAA8B,IAAI,IAAI,sBAAsB,gBAAgB,GAAG,OAAO,EAAE,KAAK,IAAI,IAAI,gBAAgB,SAAS,GAAG,OAAO,EAAE,KAAK;AAC7K,SAAO,SAAS,gBAAgB,SAAS,CAAC,IAAI,CAAC,GAAG,GAAG,KAAK;AAC5D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe;AAAA;AAAA;AAGnB,IAAI,QAAQ;AACZ,IAAI,SAAS,kBAAkB;AAAA,EAC7B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AAAA;AAAA;AAAA;AAAA,cAII,qBAAqB;AAAA,eACpB,qBAAqB;AAAA,eACrB,qBAAqB;AAAA,eACrB,qBAAqB;AAAA,eACrB,qBAAqB;AAAA,eACrB,qBAAqB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAOpC,IAAI,OAAO,iBAAiB,EAAE,WAAW,IAAI,CAAC;AAC9C,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,0BAA0B;AAAA;AAAA;AAGpC,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUjB,IAAI,OAAO,iBAAiB;AAAA,EAC1B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,OAAO,MAAM;AAC/B,QAAM,WAAW,OAAO,MAAM,MAAM;AACpC,MAAI,OAAO;AACX,MAAI,MAAM,GAAG;AACX,iBAAa,OAAO,EAAE,YAAY,MAAM,KAAK,MAAM,iCAAiC,EAAE,YAAY,OAAO,YAAY;AACrH,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ;AACZ,IAAI,SAAS,iBAAiB,EAAE,WAAW,OAAO,iBAAiB,OAAO,eAAe,aAAa,CAAC;AACvG,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,WAAW,YAAY,SAAS;AAC1C,SAAK,gBAAgB,CAAC,QAAQ,MAAM;AACpC,UAAM,WAAW,WAAW;AAC5B,SAAK,cAAc;AACnB,UAAM,4BAA4B,UAAU,SAAS,KAAK,OAAO,UAAU,KAAK;AAChF,UAAM,oBAAoB,UAAU,GAAG,eAAe;AACtD,QAAI;AACJ,QAAI,cAAc,QAAQ;AACxB,iBAAW;AAAA,IACb,WAAW,cAAc,QAAQ;AAC/B,iBAAW;AAAA,IACb,OAAO;AACL,YAAM,IAAI,MAAM,sDAAsD,YAAY;AAAA,IACpF;AACA,SAAK,WAAW;AAAA,yCACqB;AAAA;AAAA;AAAA,UAG/B;AAAA;AAAA;AAAA;AAAA,kDAIwC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMpB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yDAS2B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAWvD;AACF;AAGA,SAAS,SAAS,GAAG,SAAS,UAAU;AACtC,QAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,QAAMc,cAAY,aAAa,cAAc,EAAE,KAAK;AACpD,QAAM,qBAAqB,EAAE,MAAM,EAAE,MAAM,SAAS;AACpD,QAAM,QAAQA,cAAY;AAC1B,QAAM,UAAU,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,OAAO,kBAAkB,EAAE,EAAE,CAAC;AAC5G,QAAM,SAAS,QAAQ;AACvB,QAAM,cAAc,IAAI,WAAW,QAAQ,QAAQ,OAAO;AAC1D,QAAM,cAAc,IAAI,WAAW,QAAQ,QAAQ,OAAO;AAC1D,QAAM,SAAS;AAAA,IACb;AAAA,MACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,MACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,MACrC,OAAO;AAAA,IACT;AAAA,IACA;AAAA,MACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,MACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,MACrC,OAAO;AAAA,IACT;AAAA,EACF;AACA,QAAM,WAAW,SAAS,gBAAgB,aAAa,QAAQ,SAAS;AACxE,QAAM,WAAW,SAAS,gBAAgB,aAAa,QAAQ,SAAS;AACxE,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,UAAU,MAAM,SAAS,GAAG,SAAS,SAAS,CAAC;AAChG,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,QAAQ;AAC/C,QAAM,wBAAwB,SAAS,EAAE,QAAQ,EAAE,GAAG,cAAc,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,EAAE,MAAM,EAAE,CAAC;AACrH,WAAS,8BAA8B,OAAO;AAC9C,WAAS,8BAA8B,aAAa;AACpD,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,SAAO,SAAS,QAAQ,OAAO,QAAQ;AACzC;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,OAAO,OAAO;AACxB,SAAK,cAAc,CAAC;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,MAAM,QAAQ,CAAC;AACvD,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAMlB;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,IAAI;AACzB,MAAI,EAAE,MAAM,IAAI;AAChB,UAAQ,SAAS,aAAa,WAAW,KAAK;AAC9C,MAAI,UAAU,UAAU;AACtB,UAAM,SAAS,aAAa,kBAAkB,OAAO,aAAa,cAAc,KAAK,CAAC;AACtF,WAAO,KAAK,KAAK;AACjB,WAAO,SAAS,eAAe,OAAO,OAAO,MAAM;AAAA,EACrD,OAAO;AACL,UAAM,UAAU,IAAI,YAAY,OAAO,KAAK;AAC5C,UAAM,eAAe,CAAC,CAAC,KAAK,CAAC;AAC7B,WAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,OAAO,YAAY;AAAA,EAClE;AACF;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,YAAY;AACtB,SAAK,gBAAgB,CAAC,OAAO;AAC7B,SAAK,cAAc,CAAC;AACpB,UAAM,aAAa,WAAW;AAC9B,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKK;AAAA;AAAA,uCAEc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQrC;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AAC7C,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,eAAe;AACrB,UAAM,UAAU,IAAI,qBAAqB,OAAO,KAAK;AACrD,UAAM,SAAS,aAAa,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AAC3E,WAAO;AAAA,EACT;AACF;AAGA,IAAI,QAAQ;AACZ,IAAI,SAAS,iBAAiB,EAAE,WAAW,OAAO,iBAAiB,OAAO,eAAe,aAAa,CAAC;AACvG,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWd,IAAI,iBAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAsBrB,IAAI,YAAY,kBAAkB,EAAE,WAAW,SAAS,iBAAiB,gBAAgB,OAAO,QAAQ,CAAC;AACzG,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,OAAO,mBAAmB;AAChC,UAAM,CAAC,QAAQ,KAAK,IAAI;AACxB,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uDAMmC,YAAY;AAAA;AAAA,wBAE3C,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAe3B;AACF;AAGA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,UAAM,OAAO,mBAAmB;AAChC,UAAM,CAAC,QAAQ,KAAK,IAAI;AACxB,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAeU,YAAY;AAAA,4BACd,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAgBvB,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AACA,IAAI;AACJ,IAAI,qBAAqB,IAAI,EAAE,QAAQ,uCAAuC;AAC9E,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,MAAI,EAAE,OAAO,IAAI;AACjB,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,UAAU,OAAO,qBAAqB,eAAe,kBAAkB;AAC7E,QAAM,UAAU,OAAO,qBAAqB,eAAe,kBAAkB;AAC7E,QAAM,CAAC,OAAO,MAAM,IAAI,UAAU;AAAA,IAChC,OAAO;AAAA,IACP,OAAO;AAAA,EACT,IAAI,CAAC,OAAO,OAAO,OAAO,MAAM;AAChC,QAAM,WAAW,CAAC,QAAQ,KAAK;AAC/B,QAAM,WAAW,CAAC,QAAQ,OAAO,WAAW;AAC5C,MAAI,WAAW,SAAS;AACtB,UAAM,wBAAwB,IAAI,EAAE,QAAQ,uCAAuC;AACnF,QAAI,wBAAwB,QAAQ,0BAA0B,oBAAoB;AAChF,2BAAqB;AACrB,6BAAuB,SAAS,cAAc,QAAQ,EAAE,WAAW,MAAM,EAAE,mBAAmB,CAAC;AAAA,IACjG;AACA,yBAAqB,OAAO,QAAQ;AACpC,yBAAqB,OAAO,SAAS;AACrC,yBAAqB,UAAU,QAAQ,GAAG,GAAG,OAAO,MAAM;AAC1D,aAAS,qBAAqB;AAAA,EAChC;AACA,QAAM,kBAAkB,SAAS,eAAe,UAAU,OAAO;AACjE,WAAS,QAAQ,IAAI,gBAAgB,MAAM,EAAE,QAAQ,aAAa;AAClE,WAAS,MAAM,yBAAyB,SAAS,WAAW,gBAAgB,MAAM,GAAG,MAAM;AAC3F,QAAM,UAAU,IAAI,EAAE,QAAQ,YAAY,IAAI,IAAI,wBAAwB,QAAQ,IAAI,IAAI,kBAAkB,QAAQ;AACpH,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,eAAe,GAAG,OAAO;AACxE,WAAS,YAAY,gBAAgB,MAAM;AAC3C,SAAO;AACT;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAd,UAAS,KAAK,MAAM,YAAY,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,MAAI;AACJ,QAAM,gBAAgB,CAAC;AACvB,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,oBAAoB,gBAAgB;AAC1C,QAAM,gBAAgB,MAAM;AAC1B,UAAM,UAAU,CAAC,GAAG,MAAM;AAC1B,UAAM,2BAA2B,CAAC,QAAQ,gBAAgB;AACxD,UAAI,gBAAgB,UAAU,OAAO,MAAM,WAAW,KAAK,OAAO,MAAM,OAAO,GAAG;AAChF,cAAM,eAAe,SAAS;AAAA,UAC5B,QAAQ,EAAE,GAAG,OAAO;AAAA,UACpB,SAAS;AAAA,UACT,OAAO,EAAE,OAAO,CAAC,OAAO,MAAM,IAAI,GAAG,CAAC,EAAE;AAAA,QAC1C,CAAC;AACD,sBAAc,KAAK,YAAY;AAC/B,eAAO;AAAA,MACT;AACA,aAAO;AAAA,IACT;AACA,QAAI,SAAS;AACX,cAAQ,KAAK,yBAAyB,MAAM,UAAU,CAAC;AAAA,IACzD;AACA,QAAI,2BAA2B;AAC7B,cAAQ,KAAK,yBAAyB,wBAAwB,UAAU,CAAC;AAAA,IAC3E;AACA,QAAI,mBAAmB;AACrB,YAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkB,gBAAgB,SAAS,CAAC;AACxH,cAAQ,KAAK,eAAe;AAC5B,oBAAc,KAAK,eAAe;AAAA,IACpC;AACA,WAAO;AAAA,EACT;AACA,MAAI,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,MAAM,SAAS,QAAQ,SAAS,UAAU,SAAS,QAAQ,SAAS,UAAU;AACtQ,UAAM,eAAe;AAAA,MACnB;AAAA,MACA;AAAA,MACA;AAAA,MACA,SAAS;AAAA,MACT;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH,WAAW,SAAS,eAAe,KAAK,gBAAgB,kBAAkB,IAAI,EAAE,QAAQ,gBAAgB,GAAG;AACzG,UAAM,kBAAkB,cAAc,6BAA6B,aAAa,IAAI,IAAI;AACxF,UAAM,UAAU,IAAI,oBAAoB,UAAU,SAAS,iBAAiB,2BAA2B,iBAAiB;AACxH,UAAM,eAAe;AAAA,MACnB,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,MAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,MAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,MAChD,CAAC,SAAS,UAAU,SAAS,OAAO;AAAA,IACtC;AACA,UAAM,UAAU,cAAc;AAC9B,UAAM,SAAS,gBAAgB,SAAS,SAAS,WAAW,YAAY;AAAA,EAC1E,WAAW,IAAI,EAAE,QAAQ,mBAAmB,GAAG;AAC7C,UAAM,iBAAiB;AAAA,MACrB;AAAA,MACA;AAAA,MACA;AAAA,MACA,SAAS;AAAA,MACT;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH,OAAO;AACL,UAAM,kBAAkB,cAAc,6BAA6B,aAAa,KAAK,IAAI;AACzF,UAAM,UAAU,IAAI,cAAc,UAAU,SAAS,iBAAiB,2BAA2B,iBAAiB;AAClH,UAAM,UAAU,cAAc;AAC9B,UAAM,SAAS,gBAAgB,SAAS,SAAS,SAAS;AAAA,EAC5D;AACA,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AAC3G,gBAAc,KAAK,GAAG;AACtB,gBAAc,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACxE,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AACpG,QAAM,gBAAgB,CAAC;AACvB,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,UAAU,GAAG,MAAM,gFAAgFA,2BAA0B,aAAa;AAC3N,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,QAAM,0BAA0B,IAAI,EAAE,QAAQ,0BAA0B,KAAK,SAAS,eAAe,KAAK,SAAS,cAAc,SAAS,eAAe;AACzJ,QAAM,kBAAkB,cAAc,6BAA6B,aAAa,uBAAuB,IAAI;AAC3G,QAAM,gBAAgB,CAAC,GAAG,MAAM;AAChC,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,oBAAoB,gBAAgB;AAC1C,MAAI,SAAS;AACX,kBAAc,KAAK,IAAI;AAAA,EACzB;AACA,MAAI,2BAA2B;AAC7B,kBAAc,KAAK,sBAAsB;AAAA,EAC3C;AACA,MAAI,mBAAmB;AACrB,UAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkB,gBAAgB,SAAS,CAAC;AACxH,kBAAc,KAAK,eAAe;AAClC,kBAAc,KAAK,eAAe;AAAA,EACpC;AACA,MAAI;AACJ,MAAI,yBAAyB;AAC3B,cAAU,IAAI,6BAA6B,UAAU,SAAS,iBAAiB,2BAA2B,iBAAiB;AAAA,EAC7H,OAAO;AACL,cAAU,IAAI,uBAAuB,UAAU,SAAS,iBAAiB,2BAA2B,iBAAiB;AAAA,EACvH;AACA,QAAM,eAAe;AAAA,IACnB,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,IAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,IAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IAChD,CAAC,SAAS,UAAU,SAAS,OAAO;AAAA,EACtC;AACA,QAAM,SAAS,SAAS,gBAAgB,SAAS,eAAe,WAAW,YAAY;AACvF,gBAAc,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACxE,SAAO;AACT;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,UAAUA,UAAS,OAAO,aAAa;AACjD,SAAK,WAAW;AAChB,SAAK,UAAUA;AACf,SAAK,cAAc;AACnB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,cAAc;AACnB,UAAM,cAAc,kBAAkBA,SAAQ,MAAM;AACpD,UAAM,QAAQ,kBAAkB,MAAM,MAAM;AAC5C,UAAM,eAAe,KAAK,WAAW,IAAI,eAAe;AACxD,UAAM,kBAAkB,kBAAkB,YAAY,MAAM;AAC5D,UAAM,oBAAoB,YAAY,SAAS,IAAI,mBAAmB;AACtE,SAAK,WAAW;AAAA,UACV,yBAAyB,eAAe,KAAK;AAAA,UAC7C,iCAAiC,mBAAmB,KAAK;AAAA;AAAA,YAEvD;AAAA;AAAA;AAAA,gCAGoB,KAAK;AAAA;AAAA;AAAA,wDAGmB;AAAA,sCAClB;AAAA;AAAA;AAAA;AAAA;AAAA,EAKpC;AACF;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,QAAQ,QAAQ,IAAI;AAC5B,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,QAAM,aAAa,aAAa,cAAc,OAAO,KAAK;AAC1D,QAAM,CAAC,aAAa,WAAW,WAAWA,QAAO,IAAI,qBAAqB,mBAAmB,QAAQ,OAAO;AAC5G,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,WAAW,SAAS,EAAE,EAAE,CAAC;AACvH,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,aAAa,cAAc,OAAO,KAAK,IAAI,WAAW,SAAS,EAAE;AAAA,EACpF,CAAC;AACD,MAAI,SAAS,mBAAmB,CAAC,QAAQ,OAAO,CAAC,KAAK,OAAO,UAAU,UAAU;AAC/E,UAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,UAAM,YAAY,SAAS,WAAW,MAAM;AAC5C,UAAM,WAAW,gBAAgB,aAAa,WAAW,OAAO,OAAO,WAAW,WAAW,WAAWA,UAAS,OAAO,OAAO,UAAU;AACzI,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,SAAS,MAAM;AAAA,EAC3E;AACA,QAAM,UAAU,IAAI,gBAAgB,WAAWA,UAAS,CAAC,WAAW,SAAS,GAAG,OAAO,KAAK;AAC5F,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,UAAU,cAAc,GAAG,SAAS,KAAK;AACxF,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAClG,WAAS,8BAA8B,cAAc;AACrD,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,QAAQ,aAAa;AAC/B,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,eAAe,iBAAiB,QAAQ,CAAC;AAC/C,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA,oDAE0C,OAAO;AAAA,oCACvB;AAAA;AAAA;AAAA,EAGlC;AACF;AACA,SAAS,iBAAiB,QAAQ,MAAM;AACtC,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,QAAI,OAAO,GAAG;AACZ,mBAAa,KAAK,OAAO;AAAA,IAC3B,OAAO;AACL,mBAAa,KAAK,GAAG,cAAc,KAAK;AAAA,IAC1C;AAAA,EACF;AACA,SAAO,aAAa,KAAK;AAC3B;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAM,UAAU,IAAI;AAC5B,QAAM,aAAa,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AAC9D,MAAI,IAAI,EAAE,IAAI,OAAO,GAAG;AACtB,UAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,UAAM,UAAU,EAAE,MAAM;AACxB,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,YAAMH,SAAQ,YAAY;AAC1B,mBAAa,OAAOA,UAAS,UAAU,KAAKA,UAAS,GAAG,MAAM,6BAA6BA,wBAAuB,UAAU,IAAI;AAAA,IAClI;AAAA,EACF;AACA,QAAM,YAAY,qBAAqB,aAAa,yBAAyB,GAAG,SAAS,YAAY,SAAS;AAC9G,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,YAAY,CAAC;AACnB,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO;AAAA,MACL,OAAO;AAAA,QACL,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,MACZ;AAAA,IACF;AAAA,EACF,CAAC;AACD,QAAM,eAAe,SAAS;AAAA,IAC5B,QAAQ,EAAE,GAAG,QAAQ;AAAA,IACrB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,cAAc,UAAU,SAAS,EAAE;AAAA,EAC3E,CAAC;AACD,YAAU,KAAK,QAAQ;AACvB,YAAU,KAAK,YAAY;AAC3B,QAAM,qBAAqB;AAAA,IACzB,UAAU;AAAA,IACV,UAAU;AAAA,IACV,cAAc,UAAU;AAAA,IACxB,UAAU;AAAA,EACZ;AACA,MAAI,SAAS,mBAAmB,CAAC,GAAG,OAAO,CAAC,KAAK,EAAE,UAAU,UAAU;AACrE,UAAM,aAAa,SAAS,WAAW,YAAY;AACnD,UAAM,OAAO,SAAS,WAAW,QAAQ;AACzC,UAAM,SAAS,gBAAgB,MAAM,YAAY,kBAAkB;AACnE,cAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,WAAO,SAAS,eAAe,UAAU,aAAa,OAAO,OAAO,OAAO,MAAM;AAAA,EACnF;AACA,QAAM,UAAU,IAAI,cAAc,SAAS,OAAO,kBAAkB;AACpE,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,UAAU,YAAY,GAAG,SAAS,KAAK;AACtF,YAAU,KAAK,GAAG;AAClB,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,YAAY,EAAE,CAAC;AAC5G,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU;AACd,IAAI,iBAAiB;AAAA;AAAA;AAGrB,IAAI,WAAW,kBAAkB;AAAA,EAC/B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB;AACpB,IAAI,uBAAuB;AAAA;AAAA;AAG3B,IAAI,gBAAgB,kBAAkB;AAAA,EACpC,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,SAAO,SAAS,QAAQ,MAAM,QAAQ;AACxC;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY;AAChB,IAAI,YAAY,iBAAiB,EAAE,WAAW,WAAW,OAAO,OAAO,CAAC;AACxE,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS;AACb,IAAI,SAAS,iBAAiB,EAAE,WAAW,QAAQ,OAAO,OAAO,CAAC;AAClE,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS;AACb,IAAI,SAAS,iBAAiB,EAAE,WAAW,QAAQ,OAAO,OAAO,CAAC;AAClE,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,IAAI,cAAc;AAAA;AAAA;AAGlB,IAAI,QAAQ,kBAAkB;AAAA,EAC5B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa;AACjB,IAAI,oBAAoB;AAAA;AAAA;AAGxB,IAAI,aAAa,kBAAkB;AAAA,EACjC,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,IAAI,IAAI;AAC7B,QAAM,UAAU,gBAAgB,OAAO,MAAM,GAAG;AAChD,SAAO,SAAS,eAAe,CAAC,QAAQ,MAAM,GAAG,WAAW,OAAO;AACrE;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,0BAA0B;AAAA;AAAA;AAGpC,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASjB,IAAI,OAAO,iBAAiB,EAAE,WAAW,KAAK,iBAAiB,YAAY,eAAe,WAAW,CAAC;AACtG,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,0BAA0B;AAAA;AAAA;AAGtC,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc;AAClB,IAAI,qBAAqB;AAAA;AAAA;AAAA;AAAA;AAKzB,IAAI,cAAc,kBAAkB;AAAA,EAClC,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,OAAO;AACT,CAAC;AACD,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc;AAClB,IAAI,cAAc,iBAAiB,EAAE,WAAW,YAAY,CAAC;AAC7D,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa;AACjB,IAAI,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAMxB,IAAI,aAAa,kBAAkB,EAAE,WAAW,YAAY,iBAAiB,mBAAmB,OAAO,OAAO,CAAC;AAC/G,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,QAAQ,QAAQ,MAAMa,QAAO,MAAM;AAC7C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,UAAM,MAAM;AACZ,UAAM,OAAO,OAAO,KAAK;AACzB,SAAK,cAAc;AACnB,QAAI;AACJ,UAAM,QAAQ,SAAS,iBAAiBA;AACxC,QAAI,SAAS,KAAK;AAChB,oBAAc,eAAe;AAAA,IAC/B,WAAW,SAAS,GAAG;AACrB,oBAAc,QAAQ;AAAA,IACxB,OAAO;AACL,oBAAc,WAAW,mBAAmB;AAAA,IAC9C;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBASI,aAAa;AAAA;AAAA,oCAED;AAAA;AAAA;AAAA;AAAA;AAAA,0BAKV;AAAA;AAAA;AAAA;AAAA,EAIxB;AACF;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,QAAQ,MAAMA,QAAO,MAAM;AAC7C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,UAAM,MAAM;AACZ,UAAM,OAAO,OAAO,KAAK;AACzB,SAAK,cAAc;AACnB,QAAI;AACJ,UAAM,QAAQ,SAAS,iBAAiBA;AACxC,QAAI,SAAS,KAAK;AAChB,oBAAc,eAAe;AAAA,IAC/B,WAAW,SAAS,GAAG;AACrB,oBAAc,QAAQ;AAAA,IACxB,OAAO;AACL,oBAAc,WAAW,mBAAmB;AAAA,IAC9C;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQY,KAAK,YAAY;AAAA,gCACjB,KAAK,YAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iCAehB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAWR,aAAa;AAAA;AAAA;AAAA,6DAGuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAqBnB;AAAA;AAAA;AAAA;AAAA,EAIxC;AACF;AAGA,IAAI,MAAM,CAAC,SAAS;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK,IAAI;AAC3C,QAAM,UAAU,IAAI,EAAE,QAAQ,0BAA0B,IAAI,IAAI,iBAAiB,EAAE,OAAO,aAAa,MAAMA,QAAO,IAAI,IAAI,IAAI,WAAW,EAAE,OAAO,aAAa,MAAMA,QAAO,IAAI;AAClL,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,YAAY,aAAa,MAAMA,QAAO,MAAM;AACtD,SAAK,gBAAgB,CAAC,cAAc,eAAe,IAAI;AACvD,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,SAAK,QAAQ,WAAW;AACxB,SAAK,cAAc;AACnB,SAAK,OAAO;AACZ,SAAK,QAAQA;AACb,SAAK,OAAO;AACZ,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAQU,KAAK;AAAA,oDACiB;AAAA,yCACX,KAAK;AAAA,0BACpB;AAAA;AAAA;AAAA,sCAGY,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAelBA,0BAAyB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yCAOTA;AAAA,0BACf;AAAA;AAAA;AAAA;AAAA,0CAIgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAexC;AACF;AAGA,IAAI,UAAU,CAAC,SAAS;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,GAAG,IAAI;AACrB,QAAM,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK,IAAI;AAC3C,QAAM,UAAU,IAAI,eAAe,EAAE,OAAO,aAAa,MAAMA,QAAO,IAAI;AAC1E,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,GAAG,EAAE,GAAG,EAAE,KAAK;AAC9D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,GAAG,aAAa,UAAU,UAAU;AACpD,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,YAAY,QAAQ;AAC1B,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,CAAC,WAAW,MAAM,EAAE,GAAG,SAAS,SAAS,CAAC;AAC1G,QAAM,UAAU,OAAO,eAAe,EAAE,OAAO,OAAO,QAAQ;AAC9D,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AACzG,WAAS,8BAA8B,aAAa;AACpD,WAAS,8BAA8B,OAAO;AAC9C,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,kBAAkB,SAAS,IAAI;AACvC,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,kBAAkB,EAAE,KAAK;AACtE,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,QAAM,uBAAuB,gBAAgB;AAC7C,QAAM,qBAAqB,SAAS,mBAAmB,CAAC,CAAC,CAAC;AAC1D,MAAI,WAAW;AACf,MAAI,sBAAsB;AACxB,QAAI,oBAAoB;AACtB,YAAM,WAAW,SAAS,QAAQ,IAAI,SAAS,MAAM;AACrD,YAAM,SAAS,SAAS;AACxB,YAAM,WAAW,IAAI,MAAM,KAAK;AAChC,eAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,iBAAS,MAAM,EAAE,MAAM,aAAa;AAAA,MACtC;AACA,YAAM,iBAAiB,iBAAiB,QAAQ,EAAE,OAAO,EAAE,OAAO,cAAc,QAAQ;AACxF,iBAAW,SAAS,eAAe,UAAU,EAAE,KAAK;AACpD,YAAM,eAAe,SAAS,QAAQ,IAAI,SAAS,MAAM;AACzD,mBAAa,SAAS;AAAA,IACxB,OAAO;AACL,iBAAW,eAAe,GAAG,cAAc,QAAQ;AAAA,IACrD;AACA,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,EACjE;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,aAAa,WAAW,IAAI,qBAAqB,0BAA0B,SAAS,OAAO,IAAI;AACtG,MAAI,WAAW;AACf,MAAI,UAAU;AACZ,eAAW,qBAAqB,qBAAqB,aAAa,QAAQ;AAAA,EAC5E;AACA,MAAI;AACJ,MAAI,oBAAoB;AACtB,UAAM,WAAW,SAAS,QAAQ,IAAI,SAAS,MAAM;AACrD,UAAM,SAAS,SAAS;AACxB,UAAM,YAAY,WAAW,QAAQ,aAAa,cAAc,WAAW,GAAG,UAAU,EAAE,KAAK;AAC/F,UAAM,SAAS,eAAe,UAAU,EAAE,KAAK;AAC/C,UAAM,UAAU,SAAS,QAAQ,IAAI,IAAI,MAAM;AAC/C,YAAQ,SAAS;AAAA,EACnB,OAAO;AACL,UAAM,SAAS,UAAU,aAAa,UAAU,QAAQ;AAAA,EAC1D;AACA,MAAI,sBAAsB;AACxB,aAAS,8BAA8B,QAAQ;AAAA,EACjD;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,qBAAqB;AAAA;AAAA;AAGnC,IAAI,iBAAiB;AAAA;AAAA;AAAA,MAGf,qBAAqB;AAAA;AAAA;AAG3B,IAAI,WAAW,kBAAkB;AAAA,EAC/B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,oBAAkB,GAAG,SAAS;AAC9B,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,iBAAiB,IAAI,cAAc,UAAU,OAAO,KAAK;AAC/D,SAAO,SAAS,gBAAgB,gBAAgB,CAAC,CAAC,GAAG,EAAE,KAAK;AAC9D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AACxE,QAAM,YAAY,CAAC,GAAG,GAAG,CAAC;AAC1B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,iBAAiB,UAAU;AAClI,QAAM,iBAAiB,IAAI,cAAc,UAAU,OAAO,KAAK;AAC/D,SAAO,SAAS,gBAAgB,gBAAgB,CAAC,CAAC,GAAG,EAAE,KAAK;AAC9D;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,QAAQ;AACpC,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS;AAChC,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,UAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,UAAM,YAAY,wBAAwB,uBAAuB;AACjE,SAAK,WAAW;AAAA,iCACa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAcZ;AAAA,kBACd;AAAA,gDAC8B;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKX;AAAA,kDACgB;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAOf;AAAA;AAAA;AAAA;AAAA,qCAIK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASnC;AACF;AACA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,QAAQ;AACpC,SAAK,cAAc,SAAS;AAC5B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,uBAAuB,SAAS;AACtC,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,WAAW,uBAAuB,IAAI,SAAS,QAAQ;AAC7D,UAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,UAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,UAAM,YAAY,uBAAuB,wBAAwB,uBAAuB;AACxF,SAAK,WAAW;AAAA,iCACa,aAAa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAiBzB;AAAA,mBACb;AAAA,gDAC6B;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKX;AAAA,sBACZ;AAAA,kDAC4B;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAMX;AAAA,wBACZ;AAAA,oDAC4B;AAAA;AAAA,wCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAOf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAMT,2BAA2B;AAAA,yBAC3B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUvB;AACF;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,IAAI;AACV,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY,CAAC,GAAG,GAAG,CAAC;AAC1B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,QAAM,4BAA4B,IAAI,cAAc,UAAU,OAAO,IAAI;AACzE,QAAM,sBAAsB,SAAS,gBAAgB,2BAA2B,CAAC,CAAC,GAAG,EAAE,KAAK;AAC5F,QAAM,yBAAyB,IAAI,yBAAyB,QAAQ;AACpE,QAAM,SAAS,SAAS,gBAAgB,wBAAwB,CAAC,IAAI,mBAAmB,GAAG,EAAE,KAAK;AAClG,WAAS,8BAA8B,mBAAmB;AAC1D,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,QAAQ,OAAO,IAAI;AACtC,QAAM,IAAI;AACV,oBAAkB,CAAC,QAAQ,MAAM,GAAG,aAAa;AACjD,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AAC9G,QAAM,eAAe;AACrB,QAAM,0BAA0B,IAAI,cAAc,UAAU,OAAO,YAAY;AAC/E,QAAM,oBAAoB,SAAS,gBAAgB,yBAAyB,CAAC,CAAC,GAAG,EAAE,KAAK;AACxF,QAAM,yBAAyB,IAAI,yBAAyB,QAAQ;AACpE,QAAM,SAAS,SAAS,gBAAgB,wBAAwB,CAAC,IAAI,iBAAiB,GAAG,EAAE,KAAK;AAChG,WAAS,8BAA8B,iBAAiB;AACxD,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,uBAAuB,GAAG,qBAAqB,UAAU,UAAU;AAC1E,MAAI,UAAU,IAAI,cAAc,UAAU,OAAO,KAAK;AACtD,QAAM,aAAa,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,SAAS;AACnE,YAAU,IAAI,cAAc,UAAU,OAAO,MAAM,MAAM,mBAAmB;AAC5E,QAAM,cAAc,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,SAAS;AACpE,SAAO,CAAC,YAAY,WAAW;AACjC;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,oBAAoB,IAAI;AAChE,UAAM,eAAe;AACrB,iBAAa,OAAO,EAAE,MAAM,WAAW,GAAG,MAAM,uDAAuD,EAAE,MAAM,SAAS;AACxH,UAAM,YAAY,CAAC,GAAG,CAAC;AACvB,iBAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,UAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,IAAI;AACrG,UAAM,CAAC,QAAQ,OAAO,IAAI,uBAAuB,GAAG,qBAAqB,UAAU,YAAY;AAC/F,WAAO,CAAC,QAAQ,OAAO;AAAA,EACzB;AACF;AAGA,SAAS,SAAS,GAAG,aAAa,UAAU,UAAU;AACpD,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,YAAY,QAAQ;AAC1B,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,CAAC,WAAW,MAAM,EAAE,GAAG,SAAS,SAAS,CAAC;AAC1G,QAAM,UAAU,OAAO,eAAe,WAAW,QAAQ,QAAQ;AACjE,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AACzG,WAAS,8BAA8B,aAAa;AACpD,WAAS,8BAA8B,OAAO;AAC9C,SAAO;AACT;AAGA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,UAAM,eAAe;AACrB,UAAM,QAAQ,EAAE,MAAM;AACtB,UAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,QAAI,OAAO;AACX,UAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,UAAM,wBAAwB,gBAAgB;AAC9C,UAAM,qBAAqB,aAAa,mBAAmB,CAAC,CAAC,CAAC;AAC9D,UAAM,gBAAgB,CAAC;AACvB,QAAI,YAAY;AAChB,QAAI,uBAAuB;AACzB,UAAI,oBAAoB;AACtB,cAAM,WAAW,aAAa,QAAQ,IAAI,UAAU,MAAM;AAC1D,cAAM,SAAS,SAAS;AACxB,cAAM,WAAW,IAAI,MAAM,KAAK;AAChC,iBAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,mBAAS,MAAM,EAAE,MAAM,aAAa;AAAA,QACtC;AACA,cAAM,kBAAkB,iBAAiB,QAAQ,EAAE,OAAO,EAAE,OAAO,cAAc,QAAQ;AACzF,oBAAY,aAAa,eAAe,UAAU,EAAE,KAAK;AACzD,cAAM,gBAAgB,aAAa,QAAQ,IAAI,UAAU,MAAM;AAC/D,sBAAc,SAAS;AAAA,MACzB,OAAO;AACL,oBAAY,eAAe,GAAG,cAAc,YAAY;AAAA,MAC1D;AACA,oBAAc,KAAK,SAAS;AAC5B,aAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,IACjE;AACA,yBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,UAAM,CAAC,cAAc,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACxG,QAAI,WAAW;AACf,QAAI,UAAU;AACZ,iBAAW,qBAAqB,qBAAqB,cAAc,QAAQ;AAAA,IAC7E;AACA,UAAM,MAAM,SAAS,WAAW,aAAa,UAAU,YAAY;AACnE,eAAW,MAAM,eAAe;AAC9B,mBAAa,8BAA8B,EAAE;AAAA,IAC/C;AACA,WAAO;AAAA,EACT;AACF;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC1F,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,EAAE,MAAM,MAAM;AAAA,EAC1E;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,QAAM,UAAU,OAAO,KAAK,IAAI,OAAO,OAAO,QAAQ;AACtD,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,UAAU,QAAQ;AAC7E,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F,OAAO;AACL,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F;AACA,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,OAAO;AAC9C,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,qBAAqB;AAAA;AAAA;AAGnC,IAAI,iBAAiB;AAAA;AAAA;AAAA,MAGf,qBAAqB;AAAA;AAAA;AAG3B,IAAI,WAAW,kBAAkB;AAAA,EAC/B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,UAAU,MAAM;AAClC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,UAAM,OAAO,OAAO;AACpB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE,EAAE,KAAK,GAAG;AAClD,UAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,GAAG,EAAE,KAAK,GAAG;AACjE,UAAM,iBAAiB,CAAC,aAAa,aAAa,aAAa,WAAW,EAAE,MAAM,GAAG,IAAI;AACzF,UAAM,SAAS,SAAS,YAAY,IAAI;AACxC,QAAI,SAAS,GAAG;AACd,WAAK,WAAW;AAAA,sBACA;AAAA,oBACF;AAAA;AAAA;AAAA;AAAA;AAAA,wCAKoB;AAAA;AAAA,4CAEI;AAAA;AAAA;AAAA;AAAA;AAKtC;AAAA,IACF;AACA,SAAK,WAAW;AAAA,QACZ,iBAAiB,SAAS;AAAA,QAC1B,eAAe,SAAS;AAAA;AAAA;AAAA,UAGtB;AAAA,8BACoB;AAAA;AAAA,iDAEmB;AAAA;AAAA,qDAEI;AAAA;AAAA;AAAA,UAG3C;AAAA,yBACe;AAAA;AAAA;AAAA,EAGvB;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,QAAQ,UAAU,MAAM;AAClC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,UAAM,OAAO,OAAO;AACpB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE,EAAE,KAAK,GAAG;AAClD,UAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,GAAG,EAAE,KAAK,GAAG;AACjE,UAAM,UAAU,YAAY,MAAM,IAAI;AACtC,UAAM,SAAS,YAAY,UAAU,IAAI;AACzC,UAAM,SAAS,GAAG,QAAQ,OAAO,QAAQ,KAAK,YAAY,OAAO;AACjE,UAAM,YAAY,SAAS,IAAI,WAAW,QAAQ,OAAO,MAAM,EAAE,EAAE,KAAK;AACxE,UAAM,SAAS,SAAS,YAAY,IAAI;AACxC,QAAI,WAAW;AACf,QAAI,SAAS,GAAG;AACd,YAAM,WAAW;AAAA,UACb;AAAA;AAAA,0CAEgC;AAAA;AAAA,8CAEI;AAAA;AAAA;AAAA;AAIxC,iBAAW;AAAA,UACP;AAAA,UACA;AAAA,sCAC4B,OAAO,KAAK,OAAO;AAAA,UAC/C,QAAQ,OAAO;AAAA,aACZ;AAAA,YACD;AAAA,wCAC4B,OAAO,KAAK,OAAO;AAAA;AAAA;AAAA,IAGvD,OAAO;AACL,YAAM,WAAW;AAAA,UACb;AAAA,UACA,cAAc;AAAA,UACd,eAAe;AAAA,UACf;AAAA;AAAA,6CAEmC;AAAA,kDACK;AAAA;AAAA;AAG5C,iBAAW;AAAA,UACP;AAAA,UACA;AAAA,sCAC4B,OAAO,KAAK,OAAO;AAAA,UAC/C,QAAQ,OAAO;AAAA,aACZ;AAAA,YACD;AAAA,wCAC4B,OAAO,KAAK,OAAO;AAAA;AAAA;AAAA,UAGjD,QAAQ,OAAO;AAAA,aACZ,QAAQ,OAAO,QAAQ,KAAK,YAAY,OAAO;AAAA,YAChD;AAAA,wCAC4B,OAAO,KAAK,OAAO;AAAA,YAC/C,QAAQ,OAAO;AAAA,eACZ;AAAA,cACD;AAAA,0CAC4B,OAAO,KAAK,OAAO;AAAA;AAAA;AAAA;AAAA,IAIzD;AACA,SAAK,WAAW;AAAA,cACN,iBAAiB,SAAS;AAAA,cAC1B,eAAe,SAAS;AAAA;AAAA;AAAA,UAG5B;AAAA;AAAA,UAEA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,IAAI,sBAAsB,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AAClE,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,uBAAuB,EAAE,OAAO,UAAU,IAAI,IAAI,IAAI,iBAAiB,EAAE,OAAO,UAAU,IAAI;AACjK,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAC7D,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AAAA;AAEV,IAAI,aAAa;AAAA;AAAA;AAAA,MAGX,qBAAqB;AAAA;AAAA;AAG3B,IAAI,OAAO,kBAAkB;AAAA,EAC3B,WAAW;AAAA,EACX,iBAAiB;AACnB,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,WAAW,aAAa,YAAY;AAC9C,SAAK,gBAAgB,CAAC,OAAO;AAC7B,SAAK,iBAAiB,CAAC,EAAE,MAAM,QAAQ,MAAM,QAAQ,CAAC;AACtD,SAAK,cAAc,CAAC,WAAW,UAAU;AACzC,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAQU,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAUlB,cAAc;AAAA;AAAA;AAAA,EAGtC;AACF;AAGA,IAAI,MAAM;AAAA;AAAA;AAAA;AAAA;AAKV,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAmBjB,IAAI,UAAU,kBAAkB,EAAE,WAAW,KAAK,iBAAiB,YAAY,kBAAkB,KAAK,CAAC;AACvG,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AACV,IAAI,OAAO,kBAAkB;AAAA,EAC3B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,OAAO,aAAa,eAAe,CAAC,GAAG,GAAG,OAAO,KAAK;AAC5D,QAAM,WAAW,KAAK;AAAA,IACpB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,kBAAkB,MAAM,UAAU,MAAM;AAAA,EACnD,CAAC;AACD,QAAM,gBAAgB,qBAAqB,qBAAqB,SAAS,OAAO,IAAI;AACpF,QAAM,oBAAoB,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAClH,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,kBAAkB,GAAG,SAAS,SAAS,CAAC;AACjF,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,SAAS,CAAC;AACtD,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,UAAU,MAAM,EAAE,CAAC;AACnG,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,QAAM,MAAM,QAAQ,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,eAAe,GAAG,SAAS,SAAS,CAAC;AAC9E,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,iBAAiB;AACxD,WAAS,8BAA8B,CAAC;AACxC,WAAS,8BAA8B,CAAC;AACxC,WAAS,8BAA8B,MAAM;AAC7C,WAAS,8BAA8B,cAAc;AACrD,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,YAAY,MAAM,WAAW,IAAI;AACzC,QAAM,QAAQ,aAAa,SAAS,SAAS,EAAE,QAAQ,EAAE,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,OAAO,MAAM,SAAS,EAAE,EAAE,CAAC;AAC/H,QAAM,YAAY,MAAM,MAAM;AAC9B,QAAM,cAAc,MAAM,MAAM;AAChC,QAAM,UAAU,IAAI,mBAAmB,WAAW,aAAa,UAAU;AACzE,QAAM,eAAe,CAAC,CAAC,IAAI,CAAC;AAC5B,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,KAAK,GAAG,SAAS,YAAY;AAC5E,MAAI,CAAC,YAAY;AACf,aAAS,8BAA8B,KAAK;AAAA,EAC9C;AACA,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,oBAAoB;AAAA;AAAA;AAG9B,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWjB,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,CAAC,WAAW,QAAQ,IAAI,WAAW,MAAM,QAAQ,EAAE,OAAO,EAAE,KAAK;AACvE,WAAO,SAAS,eAAe,UAAU,EAAE,OAAO,SAAS;AAAA,EAC7D;AACA,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,6BAA6B,GAAG;AAChD,cAAU,IAAI,qBAAqB,EAAE,OAAO,UAAU;AAAA,EACxD,OAAO;AACL,cAAU,IAAI,eAAe,EAAE,OAAO,GAAG;AAAA,EAC3C;AACA,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,qBAAqB,MAAM;AAClC,uBAAqB,KAAK,+FAA+F;AACzH,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,eAAe,IAAI;AACxD,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,EAAE,gBAAgB,IAAI,yBAAyB,WAAW,YAAY,eAAe,cAAc,cAAc;AACvH,SAAO,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AACnG;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,qBAAqB,MAAM;AAClC,uBAAqB,KAAK,+FAA+F;AACzH,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,mBAAmB,IAAI;AAC5E,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,EAAE,iBAAiB,aAAa,IAAI,yBAAyB,WAAW,YAAY,eAAe,cAAc,gBAAgB,kBAAkB;AACzJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,GAAG,SAAS,IAAI,WAAW,CAAC,YAAY,CAAC,CAAC;AAAA,EACrE;AACF;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,qBAAqB,MAAM;AAClC,uBAAqB,KAAK,+FAA+F;AACzH,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,aAAa,IAAI;AACtE,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,mBAAmB;AACzB,QAAM,kBAAkB;AACxB,QAAM,oBAAoB;AAC1B,QAAM,kBAAkB;AACxB,QAAM,EAAE,iBAAiB,eAAe,IAAI,yBAAyB,WAAW,YAAY,kBAAkB,iBAAiB,mBAAmB,eAAe;AACjK,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,WAAW,IAAI,aAAa,cAAc,CAAC;AAAA,EAC9F;AACF;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,YAAY,OAAO,SAAS,UAAU;AAChD,SAAK,gBAAgB,CAAC,SAAS;AAC/B,SAAK,cAAc,CAAC,YAAY,KAAK;AACrC,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA,8BAIU,oBAAoB;AAAA;AAAA;AAAA;AAAA,EAIhD;AACF;AAGA,IAAI,UAAU,CAAC,SAAS;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,IAAI;AACpB,QAAM,EAAE,OAAO,OAAO,SAAS,SAAS,IAAI;AAC5C,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,UAAU,IAAI,cAAc,aAAa,OAAO,SAAS,QAAQ;AACvE,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,WAAW,EAAE,EAAE,CAAC;AACxG,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,QAAQ,GAAG,KAAK;AAClE,WAAS,8BAA8B,QAAQ;AAC/C,QAAM,WAAW,CAAC,GAAG,QAAQ,OAAO,KAAK;AACzC,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC7F,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM;AAAA,MACX,OAAO;AAAA,QACL,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,QACT,OAAO,EAAE,UAAU,WAAW,KAAK;AAAA,MACrC;AAAA,MACA,SAAS;AAAA,IACX,CAAC;AAAA,EACH;AACF;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE,WAAW,EAAE,UAAU,aAAa;AAClC,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,UAAU,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACnE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,OAAO,EAAE,OAAO,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACzF;AACF;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,YAAY,EAAE,QAAQ,EAAE,OAAO,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAAA,EAC9F;AACA,QAAM,QAAQ,OAAO,GAAG;AACxB,QAAM,QAAQ,OAAO,GAAG;AACxB,SAAO,QAAQ,CAAC,OAAO;AACrB,iBAAa,kBAAkB,OAAO,GAAG,OAAO,uDAAuD;AACvG,iBAAa,OAAO,UAAU,GAAG,OAAO,MAAM,uDAAuD;AAAA,EACvG,CAAC;AACD,QAAM,0BAA0B,CAAC;AACjC,QAAM,kBAAkB,OAAO,IAAI,CAAC,OAAO;AACzC,UAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAChG,4BAAwB,KAAK,SAAS;AACtC,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACtF,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,QAAQ,UAAU,eAAe;AAC3C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,MAAM,QAAQ,CAAC;AACvD,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,UAAM,OAAO,OAAO;AACpB,UAAM,OAAO,kBAAkB,IAAI;AACnC,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE,EAAE,KAAK,GAAG;AAClD,UAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,GAAG,EAAE,KAAK,GAAG;AACjE,UAAM,iBAAiB,CAAC,aAAa,aAAa,aAAa,WAAW,EAAE,MAAM,GAAG,IAAI;AACzF,QAAI,SAAS,GAAG;AACd,WAAK,WAAW;AAAA,sBACA;AAAA,oBACF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWd;AAAA,IACF;AACA,SAAK,WAAW;AAAA,QACZ,gBAAgB,QAAQ;AAAA,QACxB,cAAc,QAAQ;AAAA;AAAA;AAAA,UAGpB;AAAA;AAAA;AAAA;AAAA,YAIE;AAAA,2BACe;AAAA;AAAA;AAAA;AAAA,EAIzB;AACF;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,UAAU,eAAe;AAC3C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,MAAM,QAAQ,CAAC;AACvD,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,UAAM,OAAO,OAAO;AACpB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE,EAAE,KAAK,GAAG;AAClD,UAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,GAAG,EAAE,KAAK,GAAG;AACjE,UAAM,UAAU,YAAY,MAAM,IAAI;AACtC,UAAM,SAAS,YAAY,UAAU,IAAI;AACzC,UAAM,SAAS,GAAG,QAAQ,OAAO,QAAQ,KAAK,YAAY,OAAO;AACjE,UAAM,YAAY,SAAS,IAAI,WAAW,QAAQ,OAAO,MAAM,EAAE,EAAE,KAAK;AACxE,UAAM,iBAAiB;AAAA,MACrB,GAAG;AAAA,MACH,GAAG,QAAQ,OAAO;AAAA,YACZ;AAAA;AAAA,MAEN,SAAS,IAAI,KAAK;AAAA;AAAA,SAEf,QAAQ,OAAO;AAAA,YACZ,QAAQ,OAAO,QAAQ,KAAK,YAAY,OAAO;AAAA,MACrD,SAAS,IAAI,KAAK,KAAK,QAAQ,OAAO;AAAA,cAC9B;AAAA,IACV;AACA,UAAM,cAAc,SAAS,IAAI,4BAA4B;AAC7D,QAAI,WAAW;AACf,aAAS,KAAK,GAAG,IAAI,SAAS,IAAI,IAAI,GAAG,KAAK,GAAG,MAAM;AACrD,kBAAY;AAAA,UACR,eAAe;AAAA,cACX;AAAA,mBACK;AAAA;AAAA,YAEP;AAAA,mBACO,yBAAyB,OAAO,KAAK,OAAO;AAAA;AAAA;AAAA,IAG3D;AACA,gBAAY,SAAS,IAAI,OAAO;AAChC,SAAK,WAAW;AAAA,cACN,iBAAiB,SAAS;AAAA,cAC1B,eAAe,SAAS;AAAA;AAAA;AAAA,UAG5B;AAAA;AAAA,UAEA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,cAAc,IAAI;AACpC,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,UAAM,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACxE,WAAO,MAAM;AAAA,MACX,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,aAAa,OAAO,eAAe,OAAO,EAAE,MAAM;AAAA,IACpE,CAAC;AAAA,EACH;AACA,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,iBAAiB,EAAE,OAAO,UAAU,aAAa,IAAI,IAAI,WAAW,EAAE,OAAO,UAAU,aAAa;AACvK,QAAM,eAAe,CAAC,CAAC,aAAa,CAAC;AACrC,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,YAAY;AACrE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUV,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAcX,qBAAqB;AAAA;AAAA;AAG3B,IAAI,OAAO,kBAAkB,EAAE,WAAW,KAAK,iBAAiB,WAAW,CAAC;AAC5E,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,YAAY,CAAC;AACnB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC1F,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAC/D,cAAU,KAAK,SAAS;AAAA,EAC1B;AACA,uBAAqB,2BAA2B,QAAQ,MAAM,KAAK;AACnE,MAAI;AACJ,MAAI,SAAS,mBAAmB,CAAC,SAAS,CAAC,GAAG;AAC5C,UAAM,QAAQ,SAAS,QAAQ,IAAI,UAAU,MAAM,EAAE;AACrD,UAAM,EAAE,SAAS,UAAU,SAAS,IAAI,YAAY,UAAU,OAAO,UAAU,OAAO,OAAO,IAAI;AACjG,UAAM,SAAS,eAAe,UAAU,UAAU,OAAO;AAAA,EAC3D,OAAO;AACL,UAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,UAAM,SAAS,aAAa,cAAc,WAAW;AACrD,UAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,UAAM,cAAc,WAAW,EAAE,KAAK;AACtC,UAAM,UAAU,OAAO,KAAK,aAAa,QAAQ,QAAQ;AACzD,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,cAAU,KAAK,GAAG;AAClB,cAAU,KAAK,OAAO;AAAA,EACxB;AACA,MAAI,UAAU;AACZ,cAAU,KAAK,GAAG;AAClB,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,QAAQ;AAC9E,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EACtF;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,cAAc,oBAAoB,IAAI;AAC7D,QAAM,EAAE,kBAAkB,IAAI;AAC9B,QAAM,SAAS,SAAS,SAAS,MAAM,MAAM;AAC7C,QAAM,UAAU,SAAS,SAAS,OAAO,MAAM;AAC/C,QAAM,gBAAgB,SAAS,SAAS,aAAa,MAAM;AAC3D,QAAM,sBAAsB,oBAAoB,IAAI,CAAC,OAAO,SAAS,SAAS,GAAG,MAAM,CAAC;AACxF,QAAM,2BAA2B,oBAAoB,IAAI,CAAC,OAAO,GAAG,KAAK;AACzE,QAAM,CAAC,aAAa,MAAM,IAAI,4BAA4B,QAAQ,MAAM,OAAO,SAAS,OAAO,OAAO,OAAO,OAAO,eAAe,aAAa,OAAO,qBAAqB,0BAA0B,iBAAiB;AACvN,SAAO,SAAS,eAAe,aAAa,OAAO,OAAO,MAAM;AAClE;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,MAAM,OAAO,MAAM,IAAI;AAC5C,QAAM,SAAS,aAAa,OAAO,MAAM,OAAO,KAAK;AACrD,SAAO,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,OAAO,MAAM;AAC/D;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa;AACjB,IAAI,cAAc,iBAAiB,EAAE,WAAW,WAAW,CAAC;AAC5D,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,oBAAoB;AAAA;AAAA;AAGhC,IAAI,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWlB,IAAI,QAAQ,iBAAiB,EAAE,WAAW,OAAO,iBAAiB,YAAY,CAAC;AAC/E,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,oBAAoB;AAAA;AAAA;AAGjC,IAAI,eAAe;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWnB,IAAI,SAAS,iBAAiB,EAAE,WAAW,QAAQ,iBAAiB,aAAa,CAAC;AAClF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,YAAY,WAAW,UAAU,cAAc,kBAAkB;AAC3E,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,WAAW,UAAU,KAAK,IAAI;AAC5C,SAAK,cAAc,CAAC,OAAO,WAAW,UAAU,KAAK;AACrD,UAAM,kBAAkB;AAAA,MACtB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,mBAAmB;AAAA,MACvB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,QAAI;AACJ,QAAI,kBAAkB;AACpB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,SAAK,WAAW;AAAA;AAAA,YAER,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,uCACX,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCASpB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAqBjC;AACF;AAGA,IAAI,8BAA8B,MAAM;AAAA,EACtC,YAAY,YAAY,WAAW,UAAU,cAAc,kBAAkB;AAC3E,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,WAAW,UAAU,KAAK,IAAI;AAC5C,SAAK,cAAc,CAAC,OAAO,WAAW,UAAU,KAAK;AACrD,UAAM,kBAAkB;AAAA,MACtB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,mBAAmB;AAAA,MACvB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,QAAI;AACJ,QAAI,kBAAkB;AACpB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,SAAK,WAAW;AAAA;AAAA,YAER,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,uCACX,gBAAgB;AAAA,uCAChB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCAcJ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQH,QAAQ;AAAA,uCACD,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAiDhD;AACF;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAb,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,4BAA4B,OAAO,OAAO,WAAW,UAAU,cAAc,gBAAgB,IAAI,IAAI,sBAAsB,OAAO,OAAO,WAAW,UAAU,cAAc,gBAAgB;AAC/P,SAAO,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,SAAS;AAC9D;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gCAAgC,MAAM;AAAA,EACxC,YAAY,SAAS,YAAY,cAAc;AAC7C,SAAK,gBAAgB,CAAC,IAAI;AAC1B,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,UAAM,CAAC,EAAE,SAAS,MAAM,IAAI;AAC5B,UAAM,CAAC,EAAE,SAAS,MAAM,IAAI;AAC5B,UAAM,iBAAiB;AAAA,MACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,MAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,IAC5C;AACA,UAAM,iBAAiB;AAAA,MACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,MAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,IAC5C;AACA,UAAM,cAAc,eAAe,KAAK,eAAe;AACvD,UAAM,aAAa,eAAe,KAAK,eAAe;AACtD,UAAM,iBAAiB,IAAI;AAC3B,UAAM,gBAAgB,IAAI;AAC1B,UAAM,YAAY,KAAK,KAAK,cAAc,IAAI,IAAI;AAClD,UAAM,WAAW,KAAK,KAAK,aAAa,IAAI,IAAI;AAChD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAUsB;AAAA,yCACD;AAAA;AAAA,6CAEI;AAAA,4CACD;AAAA;AAAA,oCAER;AAAA,mCACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAcD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAQE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sDAMkB,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,qDAMX,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EA+B5D;AACF;AAGA,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,GAAG,IAAI;AACvB,QAAM,EAAE,aAAa,IAAI;AACzB,QAAM,UAAU,IAAI,8BAA8B,GAAG,OAAO,OAAO,OAAO,YAAY;AACtF,SAAO,SAAS,gBAAgB,SAAS,CAAC,EAAE,GAAG,GAAG,KAAK;AACzD;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,+BAA+B,MAAM;AAAA,EACvC,YAAY,YAAY,WAAW,UAAU,cAAc,kBAAkB;AAC3E,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,WAAW,UAAU,KAAK,IAAI;AAC5C,SAAK,cAAc,CAAC,OAAO,WAAW,UAAU,KAAK;AACrD,UAAM,kBAAkB;AAAA,MACtB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,mBAAmB;AAAA,MACvB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,YAAY,eAAe,QAAQ;AACzC,QAAI;AACJ,QAAI,kBAAkB;AACpB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,SAAK,WAAW;AAAA;AAAA,YAER,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,uCACX,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCASpB;AAAA;AAAA;AAAA;AAAA,8DAI2B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAM5D;AACF;AAGA,IAAI,qCAAqC,MAAM;AAAA,EAC7C,YAAY,YAAY,WAAW,UAAU,cAAc,kBAAkB;AAC3E,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,WAAW,UAAU,KAAK,IAAI;AAC5C,SAAK,cAAc,CAAC,OAAO,WAAW,UAAU,KAAK;AACrD,UAAM,kBAAkB;AAAA,MACtB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,mBAAmB;AAAA,MACvB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,YAAY,eAAe,QAAQ;AACzC,QAAI;AACJ,QAAI,kBAAkB;AACpB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,SAAK,WAAW;AAAA;AAAA,YAER,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,uCACX,gBAAgB;AAAA,uCAChB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCAcJ;AAAA;AAAA;AAAA;AAAA,8DAI2B;AAAA;AAAA;AAAA,gCAG9B,QAAQ;AAAA,uCACD,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAchD;AACF;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAA,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,mCAAmC,OAAO,OAAO,WAAW,UAAU,cAAc,gBAAgB,IAAI,IAAI,6BAA6B,OAAO,OAAO,WAAW,UAAU,cAAc,gBAAgB;AAC7Q,SAAO,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AACjE;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,sCAAsC,MAAM;AAAA,EAC9C,YAAY,SAAS,YAAY,cAAc;AAC7C,SAAK,gBAAgB,CAAC,IAAI;AAC1B,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,UAAM,CAAC,EAAE,SAAS,MAAM,IAAI;AAC5B,UAAM,CAAC,EAAE,SAAS,MAAM,IAAI;AAC5B,UAAM,iBAAiB;AAAA,MACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,MAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,IAC5C;AACA,UAAM,iBAAiB;AAAA,MACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,MAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,IAC5C;AACA,UAAM,cAAc,eAAe,KAAK,eAAe;AACvD,UAAM,aAAa,eAAe,KAAK,eAAe;AACtD,UAAM,iBAAiB,IAAI;AAC3B,UAAM,gBAAgB,IAAI;AAC1B,UAAM,YAAY,KAAK,KAAK,cAAc,IAAI,IAAI;AAClD,UAAM,WAAW,KAAK,KAAK,aAAa,IAAI,IAAI;AAChD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAUsB;AAAA,yCACD;AAAA;AAAA,6CAEI;AAAA,4CACD;AAAA;AAAA,oCAER;AAAA,mCACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAcD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAQE;AAAA;AAAA;AAAA;AAAA;AAAA,sBAKd,eAAe;AAAA,sCACC,eAAe;AAAA;AAAA;AAAA,wBAG7B,eAAe;AAAA,wCACC,eAAe;AAAA;AAAA;AAAA,4BAG3B;AAAA,kBACV;AAAA;AAAA;AAAA;AAAA,4BAIU;AAAA,kBACV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAahB;AACF;AAGA,SAAS,2BAA2B,MAAM;AACxC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,GAAG,IAAI;AACvB,QAAM,EAAE,aAAa,IAAI;AACzB,QAAM,UAAU,IAAI,oCAAoC,GAAG,OAAO,OAAO,OAAO,YAAY;AAC5F,SAAO,SAAS,gBAAgB,SAAS,CAAC,EAAE,GAAG,GAAG,KAAK;AACzD;AACA,IAAI,mCAAmC;AAAA,EACrC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,QAAQ,MAAM;AACxB,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,OAAO,OAAO;AACpB,QAAI,OAAO,GAAG;AACZ,YAAM,IAAI,MAAM,kCAAkC,kCAAkC;AAAA,IACtF;AACA,SAAK,cAAc;AACnB,QAAI,SAAS,GAAG;AACd,WAAK,WAAW;AAAA;AAAA;AAAA,2BAGK,OAAO;AAAA;AAAA;AAG5B;AAAA,IACF;AACA,UAAM,aAAa,CAAC,OAAO;AACzB,UAAI,KAAK,QAAQ,EAAE,MAAM,MAAM,OAAO,QAAQ,GAAG;AAC/C,eAAO,GAAG,OAAO,gBAAgB;AAAA,MACnC;AACA,aAAO,UAAU;AAAA,IACnB;AACA,UAAM,WAAW,OAAO,IAAI,CAAC,GAAG,OAAO,WAAW,EAAE,CAAC,EAAE,KAAK,GAAG;AAC/D,UAAM,OAAO,kBAAkB,IAAI;AACnC,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,yBACe;AAAA;AAAA;AAAA,EAGvB;AACF;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,QAAQ,MAAM;AACxB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,UAAM,OAAO,OAAO;AACpB,QAAI,OAAO,GAAG;AACZ,YAAM,IAAI,MAAM,kCAAkC,kCAAkC;AAAA,IACtF;AACA,SAAK,cAAc;AACnB,UAAM,WAAW,YAAY,MAAM,IAAI;AACvC,UAAM,aAAa,GAAG,SAAS,OAAO,YAAY,KAAK,YAAY,OAAO;AAC1E,UAAM,UAAU,GAAG,SAAS,OAAO,YAAY,KAAK,YAAY,OAAO;AACvE,UAAM,OAAO,kBAAkB,IAAI;AACnC,QAAI,SAAS,GAAG;AACd,WAAK,WAAW;AAAA;AAAA;AAAA;AAAA,uCAIiB,OAAO;AAAA,cAChC,OAAO;AAAA,eACN;AAAA,2CAC4B,OAAO;AAAA,kBAChC,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKrB,OAAO;AACL,WAAK,WAAW;AAAA;AAAA,YAEV;AAAA;AAAA,uBAEW,KAAK,SAAS,MAAM,CAAC;AAAA,eAC7B;AAAA,yBACU,KAAK,SAAS,MAAM,CAAC;AAAA;AAAA,eAE/B;AAAA,yBACU,KAAK,SAAS,MAAM,CAAC;AAAA,iBAC7B;AAAA,2BACU,KAAK,SAAS,MAAM,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAM5C;AACA,aAAS,KAAK,WAAW;AACvB,aAAO,WAAW,SAAS;AAAA,IAC7B;AACA,aAAS,KAAK,WAAW;AACvB,gBAAU,OAAO,KAAK,MAAM,UAAU,OAAO,KAAK;AAClD,aAAO,WAAW,SAAS;AAAA,IAC7B;AACA,aAAS,KAAK,WAAW;AACvB,gBAAU,OAAO,KAAK,MAAM,UAAU,OAAO,KAAK;AAClD,aAAO,WAAW,SAAS;AAAA,IAC7B;AACA,aAAS,KAAK,WAAW;AACvB,gBAAU,OAAO,KAAK,MAAM,UAAU,OAAO,KAAK;AAClD,gBAAU,OAAO,KAAK,MAAM,UAAU,OAAO,KAAK;AAClD,aAAO,WAAW,SAAS;AAAA,IAC7B;AACA,aAAS,WAAW,WAAW;AAC7B,YAAM,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,WAAW,IAAI,SAAS,CAAC;AACrE,YAAM,WAAW,cAAc,KAAK,GAAG;AACvC,YAAM,YAAY,cAAc,MAAM,EAAE,EAAE,KAAK,GAAG;AAClD,aAAO,mBAAmB,mBAAmB;AAAA,IAC/C;AACA,aAAS,WAAW,IAAI,WAAW;AACjC,UAAI,KAAK,QAAQ,EAAE,MAAM,MAAM,OAAO,QAAQ,GAAG;AAC/C,eAAO,GAAG,OAAO,SAAS,UAAU;AAAA,MACtC,OAAO;AACL,eAAO,GAAG,UAAU;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK;AACvD,MAAI,UAAU,GAAG;AACf,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,qBAAqB,EAAE,OAAO,KAAK,IAAI,IAAI,eAAe,EAAE,OAAO,KAAK;AAC3I,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,YAAY,WAAW;AACjC,SAAK,gBAAgB,CAAC,OAAO;AAC7B,SAAK,cAAc,CAAC;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,UAAU,MAAM,OAAO,CAAC;AACvD,UAAM,cAAc,WAAW;AAC/B,UAAM,aAAa,WAAW;AAC9B,SAAK,cAAc;AACnB,QAAI,cAAc;AAClB,QAAI,OAAO,cAAc,UAAU;AACjC,oBAAc,uBAAuB,UAAU,QAAQ,CAAC;AAAA,IAC1D,OAAO;AACL,oBAAc;AAAA,2BACO,UAAU,KAAK,GAAG;AAAA;AAAA,IAEzC;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAWR;AAAA,uCAC2B,yCAAyC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAM9E;AACF;AAGA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,EAAE,SAAS,WAAW,OAAO,IAAI;AACvC,UAAM,eAAe;AACrB,UAAM,UAAU,IAAI,cAAc,OAAO,OAAO,SAAS;AACzD,UAAM,CAAC,SAAS,OAAO,IAAI,qBAAqB,eAAe,QAAQ,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE;AACvG,UAAM,eAAe,CAAC,CAAC,SAAS,SAAS,KAAK,IAAI,OAAO,GAAG,KAAK,IAAI,OAAO,CAAC,CAAC;AAC9E,UAAM,SAAS,aAAa,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,YAAY;AACzF,WAAO;AAAA,EACT;AACF;AAGA,IAAI,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAgBZ,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ;AACZ,IAAI,SAAS,iBAAiB,EAAE,WAAW,OAAO,eAAe,aAAa,CAAC;AAC/E,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,YAAY,UAAU,aAAa,aAAaa,UAAS,OAAO,mBAAmB,MAAM;AACnG,SAAK,gBAAgB,CAAC,WAAW,WAAW,cAAc;AAC1D,SAAK,cAAc;AACnB,UAAM,cAAc,kBAAkBA,SAAQ,MAAM;AACpD,UAAM,QAAQ,kBAAkB,MAAM,MAAM;AAC5C,QAAI,gBAAgB;AACpB,QAAI,gBAAgB,GAAG;AACrB,sBAAgB;AAAA,IAClB,WAAW,gBAAgB,GAAG;AAC5B,sBAAgB;AAAA,IAClB;AACA,UAAM,iBAAiB,cAAc;AACrC,QAAI,gBAAgB;AACpB,QAAI,gBAAgB,GAAG;AACrB,sBAAgB;AAAA,IAClB,WAAW,gBAAgB,GAAG;AAC5B,sBAAgB;AAAA,IAClB;AACA,UAAM,iBAAiB,cAAc;AACrC,UAAM,eAAe,WAAW,IAAI,eAAe;AACnD,SAAK,WAAW;AAAA,UACV,yBAAyB,eAAeA;AAAA;AAAA;AAAA,YAGtC;AAAA;AAAA;AAAA,gCAGoB;AAAA;AAAA,kCAEE;AAAA,kCACA;AAAA,0CACQ;AAAA;AAAA;AAAA,uBAGnB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOrB;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,QAAQ,IAAI;AAC7B,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAA,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,SAAS,SAAS,KAAK;AAC9H,QAAM,eAAe,CAACA,cAAa,WAAW,SAAS;AACvD,MAAIA,gBAAe,GAAG;AACpB,WAAO,SAAS,eAAe,OAAO,QAAQ,KAAK;AAAA,EACrD;AACA,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE,EAAE,CAAC;AACxH,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE,EAAE,CAAC;AAClH,QAAM,eAAe,SAAS,eAAe,CAAC,GAAG,WAAW,IAAI,aAAa,CAAC,CAAC,CAAC,CAAC;AACjF,QAAM,UAAU,IAAI,eAAe,YAAY,WAAW,eAAe,MAAM,QAAQ,SAAS,MAAM,QAAQR,UAAS,YAAY;AACnI,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,UAAU,gBAAgB,YAAY,GAAG,SAAS,KAAK;AACtG,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,WAAS,8BAA8B,cAAc;AACrD,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,YAAY;AACnD,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,WAAW,WAAW,WAAW,MAAM;AACjD,SAAK,gBAAgB,CAAC,kBAAkB,QAAQ;AAChD,SAAK,iBAAiB,CAAC,EAAE,MAAM,aAAa,MAAM,MAAM,CAAC;AACzD,SAAK,cAAc,CAAC,WAAW,SAAS;AACxC,UAAM,iBAAiB;AACvB,UAAM,iBAAiB,uBAAuB,KAAK,KAAK,KAAK,KAAK,YAAY,CAAC,CAAC;AAChF,UAAM,WAAW,IAAI,EAAE,UAAU,eAAe,MAAM,IAAI,iBAAiB;AAC3E,UAAM,kBAAkB,SAAS,SAAS,MAAM;AAChD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,WAKT;AAAA;AAAA,+CAEoC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAmB7C;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,gBAAgB,OAAO,IAAI;AACnC,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,UAAU,IAAI,oBAAoB,eAAe,MAAM,IAAI,eAAe,MAAM,IAAI,OAAO,MAAM,IAAI,IAAI;AAC/G,QAAM,eAAe,CAAC,CAAC,eAAe,MAAM,EAAE,CAAC;AAC/C,SAAO,SAAS,gBAAgB,SAAS,CAAC,gBAAgB,MAAM,GAAG,SAAS,YAAY;AAC1F;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO,OAAO,MAAM;AAC9B,SAAK,gBAAgB,CAAC,KAAK,KAAK,GAAG;AACnC,SAAK,cAAc;AACnB,QAAI;AACJ,QAAI;AACJ,QAAI,OAAO,GAAG;AACZ,YAAM,MAAM,kBAAkB,2BAA2B;AAAA,IAC3D;AACA,QAAI,SAAS,GAAG;AACd,iBAAW;AACX,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,YAAM,aAAa,CAAC;AACpB,YAAM,cAAc,CAAC;AACrB,eAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,oBAAY,KAAK,GAAG,cAAc,KAAK;AACvC,YAAI,KAAK,OAAO;AACd,qBAAW,KAAK,GAAG,cAAc,KAAK;AAAA,QACxC;AAAA,MACF;AACA,gBAAU,WAAW,KAAK;AAC1B,iBAAW,YAAY,KAAK;AAAA,IAC9B;AACA,UAAM,QAAQ,kBAAkB,IAAI;AACpC,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,4BACkB;AAAA;AAAA,2BAED;AAAA;AAAA,2BAEA;AAAA;AAAA;AAAA;AAAA,EAIzB;AACF;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,WAAW,GAAG,IAAI,GAAG,GAAG,IAAI;AACpC,QAAM,UAAU,IAAI,cAAc,UAAU,MAAM,QAAQ,GAAG,OAAO,GAAG,MAAM,MAAM;AACnF,SAAO,SAAS,gBAAgB,SAAS,CAAC,WAAW,IAAI,EAAE,GAAG,WAAW,GAAG,OAAO,GAAG,KAAK,CAAC;AAC9F;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA,uBAGY,qBAAqB;AAAA,kBAC1B,qBAAqB;AAAA;AAAA;AAGvC,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,0BAA0B;AAAA;AAAA;AAGzC,IAAI,iBAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWrB,IAAI,WAAW,iBAAiB;AAAA,EAC9B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA;AAIX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,0BAA0B;AAAA;AAAA;AAGpC,IAAI,OAAO,iBAAiB,EAAE,WAAW,IAAI,CAAC;AAC9C,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA;AAIX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAqBf,IAAI,YAAY,iBAAiB,EAAE,WAAW,SAAS,CAAC;AACxD,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,CAAC,SAAS;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAS,IAAI;AACjC,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,sEAAsE;AACrH,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,mBAAmB,CAAC,CAAC,GAAG,CAAC,CAAC;AAChC,mBAAiB,KAAK,GAAG,QAAQ;AACjC,WAAS,KAAK,IAAI,WAAW,QAAQ,KAAK,EAAE,MAAM,QAAQ,EAAE,IAAI;AAC9D,qBAAiB,KAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAC9B;AACA,QAAM,YAAY,CAAC;AACnB,QAAM,UAAU,OAAO;AAAA,IACrB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO,EAAE,UAAU,kBAAkB,eAAe,EAAE;AAAA,EACxD,CAAC;AACD,QAAM,sBAAsB,qBAAqB,YAAY,QAAQ,OAAO,YAAY,OAAO,KAAK;AACpG,QAAM,oCAAoC,qBAAqB,YAAY,oBAAoB,QAAQ,WAAW,QAAQ,KAAK;AAC/H,QAAM,eAAe,qBAAqB,oBAAoB,QAAQ,OAAO,YAAY,OAAO,KAAK;AACrG,QAAM,kBAAkB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,oBAAoB,EAAE,CAAC;AACrH,QAAM,WAAW,WAAW;AAAA,IAC1B,QAAQ,EAAE,GAAG,gBAAgB;AAAA,IAC7B,SAAS;AAAA,IACT,OAAO,EAAE,MAAM,kCAAkC;AAAA,EACnD,CAAC;AACD,QAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,aAAa,EAAE,CAAC;AACtG,YAAU,KAAK,OAAO;AACtB,YAAU,KAAK,eAAe;AAC9B,YAAU,KAAK,QAAQ;AACvB,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,SAAS,QAAQ,YAAY,aAAa,IAAI;AACtD,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,WACT,WAAW,OAAO;AAAA,EAC3B;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,WACT,QAAQ,OAAO;AAAA,EACxB;AACA,MAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,UAAM,IAAI,MAAM;AAAA,WACT,OAAO,OAAO;AAAA,EACvB;AACA,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM;AAAA,UACV,aAAa,OAAO;AAAA,EAC5B;AACA,QAAM,WAAW,SAAS,SAAS,QAAQ,MAAM;AACjD,QAAM,UAAU,SAAS,SAAS,OAAO,MAAM;AAC/C,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,gBAAgB,SAAS,SAAS,aAAa,MAAM,EAAE;AAC7D,QAAM,CAAC,eAAe,oBAAoB,cAAc,mBAAmB,eAAe,IAAI,2BAA2B,UAAU,QAAQ,OAAO,QAAQ,OAAO,SAAS,OAAO,OAAO,aAAa,aAAa;AAClN,SAAO;AAAA,IACL,SAAS,eAAe,oBAAoB,QAAQ,OAAO,aAAa;AAAA,IACxE,SAAS,eAAe,CAAC,mBAAmB,EAAE,GAAG,OAAO,OAAO,YAAY;AAAA,IAC3E,SAAS,eAAe,CAAC,kBAAkB,MAAM,GAAG,QAAQ,IAAI,WAAW,kBAAkB,IAAI,CAAC,UAAU,OAAO,KAAK,CAAC,CAAC,CAAC;AAAA,IAC3H,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,QAAQ,OAAO,IAAI,WAAW,eAAe,CAAC;AAAA,EAClG;AACF;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,cAAc,YAAY,SAAS,IAAI;AAC/C,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM,uDAAuD,aAAa,OAAO;AAAA,EAC7F;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM,qDAAqD,WAAW,OAAO;AAAA,EACzF;AACA,MAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,UAAM,IAAI,MAAM,sDAAsD,SAAS,OAAO;AAAA,EACxF;AACA,QAAM,cAAc,MAAM,KAAK,SAAS,SAAS,WAAW,MAAM,CAAC;AACnE,QAAM,gBAAgB,SAAS,SAAS,aAAa,MAAM;AAC3D,QAAM,cAAc,MAAM,KAAK,SAAS,SAAS,SAAS,MAAM,CAAC;AACjE,QAAM,CAAC,YAAY,cAAc,WAAW,IAAI,qBAAqB,eAAe,aAAa,OAAO,aAAa,OAAO,aAAa,WAAW;AACpJ,SAAO;AAAA,IACL,SAAS,eAAe,cAAc,aAAa,OAAO,UAAU;AAAA,IACpE,SAAS,eAAe,CAAC,YAAY,MAAM,GAAG,SAAS,OAAO,IAAI,WAAW,WAAW,CAAC;AAAA,EAC3F;AACF;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,mBAAmB,MAAM;AAChC,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,MAAI,KAAK,MAAM,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,gBACJ,QAAQ,OAAO;AAAA,EAC7B;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,gBACJ,WAAW,OAAO;AAAA,EAChC;AACA,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,WAAW,SAAS,SAAS,QAAQ,MAAM;AACjD,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,YAAY,eAAe,IAAI,8BAA8B,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,aAAa,IAAI;AAC9H,SAAO,SAAS,eAAe,iBAAiB,KAAK,OAAO,UAAU;AACxE;AACA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,kBAAkB,MAAM;AAC/B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,MAAI,KAAK,MAAM,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,eACL,QAAQ,OAAO;AAAA,EAC5B;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,eACL,WAAW,OAAO;AAAA,EAC/B;AACA,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,WAAW,SAAS,SAAS,QAAQ,MAAM;AACjD,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,YAAY,eAAe,IAAI,8BAA8B,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,WAAW;AACxH,SAAO,SAAS,eAAe,iBAAiB,KAAK,OAAO,UAAU;AACxE;AACA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,eAAe,cAAc,aAAa,IAAI;AACtD,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAA,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,cAAc,eAAe,WAAW;AAC/I,QAAM,iBAAiB;AACvB,MAAI,aAAa,UAAU,UAAU;AACnC,UAAM,aAAa,SAAS,WAAW,aAAa;AACpD,UAAM,aAAa,SAAS,WAAW,YAAY;AACnD,UAAM,gBAAgB,aAAa,aAAa,SAAS,SAAS,aAAa,MAAM,EAAE,EAAE;AACzF,UAAM,SAAS,eAAe,YAAY,YAAY,aAAaA,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AACvJ,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,OAAO,MAAM;AAAA,EACzE;AACA,QAAM,UAAU,IAAI,eAAe,YAAY,WAAW,cAAc,MAAM,QAAQ,aAAa,MAAM,QAAQA,UAAS,CAACQ,aAAY,CAAC,GAAG,cAAc;AACzJ,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,cAAc,eAAe,YAAY,GAAG,aAAa,KAAK;AAC7G,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAClG,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,iBAAiB,KAAK,IAAI;AAClC,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACzD,QAAM,aAAa,qBAAqB,iBAAiB,GAAG,iBAAiB,KAAK;AAClF,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,CAAC;AACrC,QAAMrB,QAAO,EAAE,MAAM,MAAM;AAC3B,SAAO,WAAW,IAAI,CAAC,OAAO;AAC5B,UAAM,YAAY,CAAC,GAAGA,KAAI;AAC1B,cAAU,SAAS;AACnB,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAM,UAAU,EAAE,CAAC;AAC7F,UAAM,UAAU;AAChB,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,MAAM,iBAAiB,MAAM,eAAe,YAAY,CAAC;AACnG,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS;AACb,IAAI,UAAU,iBAAiB,EAAE,WAAW,OAAO,CAAC;AACpD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB;AACzB,IAAI,qBAAqB,kBAAkB,EAAE,WAAW,oBAAoB,iBAAiB,mBAAmB,CAAC;AACjH,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,GAAG;AACnD,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,YAAY,oBAAoB;AAAA,mCACL,MAAM;AAAA;AAEvC,QAAM,UAAU,IAAI,eAAe,EAAE,OAAO,SAAS;AACrD,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,OAAOa,UAASb,OAAM;AAChC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAcA;AACnB,UAAM,OAAOA,MAAK;AAClB,UAAM,aAAa,kBAAkBA,MAAK,MAAM;AAChD,UAAM,QAAQ,kBAAkBA,MAAK,MAAM;AAC3C,QAAI,YAAY;AAChB,QAAI,SAAS,GAAG;AACd,kBAAY;AAAA,IACd,OAAO;AACL,UAAI,aAAa;AACjB,kBAAYA,MAAK,IAAI,CAAC,GAAG,OAAO;AAC9B;AACA,eAAOA,MAAK,WAAW,IAAI,oBAAoB,eAAe,QAAQ,UAAU,aAAa,gBAAgB,eAAe;AAAA,MAC9H,CAAC,EAAE,KAAK,GAAG;AAAA,IACb;AACA,SAAK,WAAW;AAAA,QACZ,sBAAsB,cAAc;AAAA,QACpC,wBAAwB,cAAca;AAAA;AAAA;AAAA,UAGpC;AAAA,yBACe;AAAA;AAAA;AAAA,EAGvB;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,KAAK,SAAAA,UAAS,WAAW,SAAS,cAAc,aAAa,eAAe,IAAI;AAC/F,QAAM,EAAE,kBAAkB,YAAY,YAAY,WAAW,eAAe,OAAO,QAAQ,KAAK,MAAM,SAAS,SAAS,IAAI,mBAAmB,UAAU,EAAE,OAAO,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AACpP,MAAI;AACJ,MAAI,YAAY;AACd,aAAS,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAAA,EACtF,WAAW,aAAa,eAAe;AACrC,iBAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,yCAAyC,EAAE,MAAM,QAAQ;AACxG,UAAMb,QAAO,mBAAmB,gBAAgB,QAAQ,MAAM,QAAQ;AACtE,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,MAAAA,MAAK,EAAE,CAAC;AAC1F,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC5F,aAAS,8BAA8B,MAAM;AAAA,EAC/C,OAAO;AACL,UAAM,qBAAqB,SAAS,mBAAmB,CAAC,CAAC,CAAC;AAC1D,QAAI,oBAAoB;AACtB,YAAM,SAAS,SAAS,SAAS,EAAE,MAAM;AACzC,YAAM,OAAO,OAAO,EAAE,OAAO,EAAE,OAAO,MAAM;AAC5C,YAAM,eAAe,oBAAoB,kBAAkB,MAAM,UAAU,MAAM;AACjF,eAAS,SAAS,eAAe,YAAY,EAAE,OAAO,aAAa,MAAM;AAAA,IAC3E,OAAO;AACL,YAAM,UAAU,IAAI,oBAAoB,QAAQ,UAAU,gBAAgB;AAC1E,eAAS,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAAA,IACzD;AAAA,EACF;AACA,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC1G,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,aAAa,SAAS,UAAU,WAAW,UAAU,uBAAuB,IAAI;AACnG,QAAM,EAAE,MAAM,WAAW,IAAI;AAC7B,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,QAAQ,YAAY,IAAI,oBAAoB,OAAO,aAAa,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB;AACnJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,UAAU,MAAM;AAAA,IACzD,SAAS,eAAe,WAAW,OAAO,SAAS,YAAY;AAAA,EACjE;AACF;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,UAAU,IAAI;AACtB,QAAM,EAAE,OAAO,QAAQ,UAAU,IAAI;AACrC,MAAI,OAAO,UAAU,UAAU;AAC7B,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,MAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,UAAM,IAAI,MAAM,sCAAsC,OAAO,OAAO;AAAA,EACtE;AACA,MAAI,UAAU,MAAM,WAAW,GAAG;AAChC,UAAM,IAAI,MAAM,0CAA0C,UAAU,OAAO;AAAA,EAC7E;AACA,QAAM,SAAS,SAAS,SAAS,OAAO,MAAM;AAC9C,QAAM,aAAa,SAAS,SAAS,UAAU,MAAM,EAAE;AACvD,QAAM,CAAC,SAAS,QAAQ,KAAK,IAAI,mBAAmB,QAAQ,YAAY,SAAS;AACjF,QAAMqB,cAAa,OAAO;AAC1B,SAAO;AAAA,IACL,SAAS,eAAe,CAACA,aAAY,CAAC,GAAG,SAAS,OAAO;AAAA,IACzD,SAAS,eAAe,CAACA,WAAU,GAAG,UAAU,MAAM;AAAA,IACtD,SAAS,eAAe,CAAC,CAAC,GAAG,SAAS,IAAI,WAAW,KAAK,CAAC;AAAA,EAC7D;AACF;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,MAAM;AACrC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,IAAI;AACvB,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,MAAI,OAAO,UAAU,UAAU;AAC7B,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AACA,QAAM,SAAS,SAAS,SAAS,OAAO,MAAM;AAC9C,QAAM,SAAS,8BAA8B,QAAQ,UAAU;AAC/D,SAAO,SAAS,eAAe,OAAO,OAAO,SAAS,MAAM;AAC9D;AACA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AACV,IAAI,OAAO,iBAAiB,EAAE,WAAW,IAAI,CAAC;AAC9C,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA;AAIX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,QAAQ,MAAM;AACxB,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,MAAM,KAAK;AAAA,IACtC;AACA,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,eAAe,iBAAiB,MAAM;AAC5C,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,yBACe;AAAA;AAAA;AAAA,EAGvB;AACF;AACA,SAAS,iBAAiB,QAAQ;AAChC,QAAM,OAAO,OAAO;AACpB,MAAI,OAAO,GAAG;AACZ,UAAM,MAAM,iBAAiB,2BAA2B;AAAA,EAC1D;AACA,MAAI,SAAS,GAAG;AACd,WAAO,eAAe,OAAO;AAAA,EAC/B;AACA,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,WAAW,SAAS;AAC5E,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,iBAAa,KAAK,QAAQ,cAAc,QAAQ,OAAO,MAAM;AAAA,EAC/D;AACA,SAAO,aAAa,KAAK;AAC3B;AAGA,SAAS,MAAM,QAAQ;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,EAAE,UAAU,YAAY,EAAE,MAAM,SAAS,GAAG;AAC9C,UAAM,OAAO,SAAS,SAAS,EAAE,MAAM;AACvC,UAAM,QAAQ,EAAE,UAAU,WAAW,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC,IAAI;AACrF,UAAM,MAAM,OAAO,EAAE,OAAO,EAAE,OAAO,KAAK;AAC1C,UAAM,SAAS,YAAY,KAAK,IAAI;AACpC,WAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC1E;AACA,QAAM,UAAU,IAAI,YAAY,EAAE,OAAO,IAAI;AAC7C,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAC7D,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,KAAK,MAAM,MAAM;AAAA,MACzB,EAAE,MAAM,aAAa,MAAM,MAAM;AAAA,MACjC,EAAE,MAAM,eAAe,MAAM,QAAQ;AAAA,MACrC,EAAE,MAAM,OAAO,MAAM,MAAM;AAAA,MAC3B,EAAE,MAAM,OAAO,MAAM,MAAM;AAAA,IAC7B;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAyClB;AACF;AACA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,KAAK,MAAM,MAAM;AAAA,MACzB,EAAE,MAAM,aAAa,MAAM,MAAM;AAAA,MACjC,EAAE,MAAM,KAAK,MAAM,MAAM;AAAA,IAC3B;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAmClB;AACF;AAGA,SAAS,oCAAoC,UAAU,YAAY;AACjE,MAAI,eAAe,MAAM;AACvB,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACF;AACA,SAAS,cAAc,KAAK;AAC1B,MAAI,QAAQ;AACZ,SAAO,QAAQ,KAAK;AAClB,aAAS;AAAA,EACX;AACA,SAAO;AACT;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,2CAA2C,IAAI,EAAE,UAAU,0CAA0C;AAC3G,QAAM,+BAA+B,IAAI,EAAE,UAAU,8BAA8B;AACnF,QAAM,SAAS,EAAE;AACjB,QAAM,UAAU,OAAO,OAAO,SAAS;AACvC,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,UAAU,4CAA4C,IAAI,8BAA8B;AAC9H,UAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,UAAM,CAAC,aAAa,cAAc,IAAI,YAAY,OAAO,QAAQ,EAAE,OAAO,GAAG,MAAM;AACnF,WAAO;AAAA,MACL,SAAS,eAAe,YAAY,OAAO,YAAY,OAAO,YAAY,MAAM;AAAA,MAChF,SAAS,eAAe,eAAe,OAAO,eAAe,OAAO,eAAe,MAAM;AAAA,IAC3F;AAAA,EACF;AACA,MAAI,MAAM,GAAG;AACX,WAAO,OAAO,SAAS,KAAK;AAC5B,WAAO;AAAA,MACL,SAAS,eAAe,QAAQ,EAAE,OAAO,CAAC,CAAC;AAAA,MAC3C,SAAS,eAAe,QAAQ,SAAS,CAAC,CAAC;AAAA,IAC7C;AAAA,EACF;AACA,MAAI,YAAY,GAAG;AACjB,WAAO;AAAA,MACL;AAAA,MACA,MAAM,EAAE,OAAO,EAAE,OAAO,QAAQ,OAAO,SAAS,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACjF;AAAA,EACF;AACA,QAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,QAAM,YAAY,aAAa,QAAQ,SAAS;AAChD,QAAM,YAAY,YAAY,SAAS,aAAa,CAAC,IAAI;AACzD,QAAM,QAAQ,aAAa,cAAc,MAAM;AAC/C,QAAM,QAAQ,QAAQ;AACtB,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,OAAO,EAAE,OAAO,CAAC,OAAO,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AACxG,MAAI,WAAW;AACb,wCAAoC,UAAU,SAAS;AAAA,EACzD;AACA,QAAM,QAAQ,cAAc,CAAC;AAC7B,QAAM,cAAc,cAAc,OAAO;AACzC,MAAI,UAAU;AACd,QAAM,YAAY,MAAM,YAAY,OAAO,CAAC,KAAK,GAAG,IAAI,CAAC,KAAK,OAAO;AACrE,QAAM,UAAU,CAAC,KAAK,KAAK,UAAU;AACnC,UAAM,UAAU,UAAU;AAC1B,UAAM,UAAU,IAAI,YAAY,KAAK;AACrC,UAAM,WAAW,YAAY,OAAO,IAAI;AACxC,UAAM,eAAe,CAAC,CAAC,OAAO,GAAG,CAAC,QAAQ,GAAG,CAAC,OAAO,iBAAiB,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC;AACrF,UAAM,eAAe;AACrB,cAAU,SAAS,gBAAgB,SAAS,SAAS,SAAS,YAAY;AAC1E,wCAAoC,UAAU,YAAY;AAAA,EAC5D;AACA,WAAS,MAAM,GAAG,MAAM,OAAO,OAAO,GAAG;AACvC,UAAM,MAAM,MAAM;AAClB,aAAS,MAAM,KAAK,OAAO,GAAG,OAAO,GAAG;AACtC,cAAQ,KAAK,KAAK,CAAC,OAAO,WAAW,CAAC;AAAA,IACxC;AAAA,EACF;AACA,WAAS,cAAc,aAAa,cAAc,OAAO,eAAe,GAAG;AACzE,UAAM,UAAU,UAAU;AAC1B,UAAM,eAAe,IAAI,aAAa,CAAC,OAAO,cAAc,CAAC,CAAC;AAC9D,UAAM,YAAY,YAAY,OAAO,IAAI;AACzC,UAAM,eAAe,CAAC,CAAC,OAAO,GAAG,CAAC,SAAS,GAAG,CAAC,KAAK,CAAC;AACrD,UAAM,eAAe;AACrB,cAAU,SAAS,gBAAgB,cAAc,SAAS,SAAS,YAAY;AAC/E,wCAAoC,UAAU,YAAY;AAC1D,UAAM,MAAM,QAAQ;AACpB,UAAM,MAAM,MAAM;AAClB,aAAS,MAAM,KAAK,OAAO,GAAG,OAAO,GAAG;AACtC,cAAQ,KAAK,KAAK,QAAQ,KAAK;AAAA,IACjC;AAAA,EACF;AACA,MAAI,cAAc;AAClB,YAAU,OAAO,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,GAAG,MAAM,CAAC,OAAO,CAAC,EAAE,EAAE,CAAC;AACrG,sCAAoC,UAAU,WAAW;AACzD,MAAI,SAAS,UAAU,EAAE,QAAQ,EAAE,GAAG,KAAK,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,GAAG,WAAW,EAAE,EAAE,CAAC;AAC3G,sCAAoC,UAAU,GAAG;AACjD,QAAM,WAAW,OAAO,MAAM,GAAG,EAAE;AACnC,WAAS,KAAK,CAAC;AACf,gBAAc;AACd,YAAU,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC5F,sCAAoC,UAAU,WAAW;AACzD,QAAM,aAAa;AACnB,WAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC1F,sCAAoC,UAAU,UAAU;AACxD,SAAO,CAAC,QAAQ,OAAO;AACzB;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,aAAa,YAAY,eAAe,UAAU,WAAW,UAAU;AACjF,SAAK,gBAAgB,CAAC,SAAS,YAAY;AAC3C,SAAK,cAAc;AACnB,UAAM,sBAAsB,kBAAkB,YAAY,IAAI;AAC9D,QAAI;AACJ,YAAQ;AAAA,WACD;AACH,qBAAa;AACb;AAAA,WACG;AACH,qBAAa;AACb;AAAA,WACG;AACH,qBAAa;AACb;AAAA,WACG;AACH,qBAAa;AACb;AAAA;AAEA,qBAAa;AACb;AAAA;AAEJ,SAAK,WAAW;AAAA;AAAA;AAAA,mBAGD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAwBQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAiBA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,4CAUiB,0CAA0C;AAAA;AAAA;AAAA,sCAGhD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sCAwBA;AAAA;AAAA;AAAA;AAAA,mDAIa;AAAA,mDACA;AAAA;AAAA,sBAE7B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAyBpB;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,WAAW,IAAI;AACtC,QAAM,EAAE,eAAe,UAAU,WAAW,YAAY,IAAI;AAC5D,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,WAAW,QAAQ,IAAI,eAAe,OAAO,cAAc,CAAC,aAAa,UAAU;AAC1F,QAAM,WAAW;AAAA,IACf;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,QAAM,UAAU,IAAI,iBAAiB,aAAa,YAAY,eAAe,UAAU,WAAW,QAAQ;AAC1G,SAAO,SAAS,gBAAgB,SAAS,CAAC,QAAQ,UAAU,GAAG,SAAS;AAC1E;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,EAAE,EAAE,IAAI;AACd,oBAAkB,GAAG,QAAQ;AAC7B,UAAQ,KAAK,aAAa,4DAA4D;AACtF,QAAM,SAAS,SAAS,SAAS,EAAE,MAAM;AACzC,QAAM,EAAE,cAAc,aAAa,QAAQ,IAAI,cAAc,QAAQ,MAAM,EAAE,OAAO,EAAE,KAAK;AAC3F,SAAO;AAAA,IACL,SAAS,eAAe,aAAa,EAAE,OAAO,YAAY;AAAA,IAC1D,SAAS,eAAe,CAAC,QAAQ,MAAM,GAAG,SAAS,OAAO;AAAA,EAC5D;AACF;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,EAAE,KAAK,IAAI;AACf,MAAI,OAAO,GAAG;AACZ,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,IAAI;AACV,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,MAAM,MAAM,MAAM;AACxB,QAAM,WAAW,IAAI,MAAM,QAAQ,CAAC;AACpC,MAAI,WAAW;AACf,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM;AACjC,QAAI,OAAO,MAAM;AACf,eAAS,cAAc,EAAE,MAAM;AAAA,IACjC;AAAA,EACF;AACA,QAAM,YAAY,CAAC;AACnB,QAAM,QAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,CAAC;AACrC,QAAMrB,QAAO,EAAE,MAAM,MAAM;AAC3B,EAAAA,MAAK,QAAQ;AACb,QAAM,MAAM,IAAI,MAAM,GAAG;AACzB,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,UAAM,QAAQ;AACd,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAAA,MAAK,EAAE,CAAC;AAClF,UAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAClG,QAAI,MAAM;AACV,cAAU,KAAK,MAAM;AAAA,EACvB;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,WAAW,WAAW;AAChC,SAAK,gBAAgB,CAAC,KAAK,YAAY;AACvC,UAAM,aAAa,UAAU;AAC7B,UAAM,YAAY,UAAU;AAC5B,UAAM,SAAS,UAAU;AACzB,UAAM,cAAc,UAAU;AAC9B,UAAM,UAAU,cAAc,KAAK,KAAK,SAAS,UAAU;AAC3D,SAAK,cAAc,CAAC,WAAW,OAAO;AACtC,UAAM,sBAAsB;AAC5B,UAAM,cAAc;AACpB,UAAM,wBAAwB,KAAK,MAAM,aAAa,CAAC,IAAI;AAC3D,UAAM,0BAA0B,aAAa;AAC7C,UAAM,gBAAgB;AAAA;AAAA;AAGtB,QAAI,wBAAwB;AAC5B,QAAI,SAAS,aAAa,GAAG;AAC3B,8BAAwB;AAAA,oCACM;AAAA;AAAA;AAAA;AAAA,IAIhC;AACA,QAAI,4BAA4B;AAChC,QAAI,SAAS,aAAa,GAAG;AAC3B,kCAA4B;AAAA,oCACE;AAAA;AAAA;AAAA;AAAA,IAIhC;AACA,SAAK,WAAW;AAAA,0CACsB;AAAA;AAAA;AAAA,UAGhC;AAAA;AAAA;AAAA;AAAA;AAAA,UAKA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YASE,yBAAyB;AAAA,wDACmB;AAAA;AAAA;AAAA;AAAA,8BAI1B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAgBlB;AAAA;AAAA;AAAA,iCAGqB;AAAA,cACnB,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAiB9B;AAAA,qBACS,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAerC;AAAA,qBACS,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAerC;AAAA;AAAA,oBAEQ;AAAA;AAAA;AAAA,EAGlB;AACF;AAGA,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,WAAW,IAAI;AAC1B,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,YAAY,CAAC;AACnB,MAAI,OAAO;AACX,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AACzF,cAAU,KAAK,SAAS;AACxB,WAAO,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AAAA,EACzD;AACA,QAAM,WAAW,qBAAqB,aAAa,gBAAgB,UAAU,OAAO,MAAM,WAAW;AACrG,QAAM,SAAS,aAAa,cAAc,CAAC,UAAU,MAAM,KAAK,CAAC;AACjE,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,YAAU,KAAK,GAAG;AAClB,QAAM,cAAc,WAAW,EAAE,KAAK;AACtC,QAAM,eAAe,CAAC,IAAI,WAAW,aAAa,OAAO,iBAAiB;AACxE,UAAM,YAAY,GAAG,MAAM;AAC3B,UAAM,UAAU,GAAG,MAAM;AACzB,UAAM,aAAa,qBAAqB,aAAa,8BAA8B,SAAS,YAAY;AACxG,UAAM,YAAY,EAAE,YAAY,QAAQ,SAAS,WAAW,aAAa,aAAa;AACtF,UAAM,UAAU,IAAI,iBAAiB,WAAW,SAAS;AACzD,UAAM,SAAS,SAAS,cAAc,SAAS,CAAC,IAAI,WAAW,GAAG,KAAK;AACvE,cAAU,KAAK,MAAM;AACrB,QAAI,OAAO,MAAM,OAAO,cAAc;AACpC,aAAO;AAAA,IACT;AACA,UAAM,YAAY,OAAO;AAAA,MACvB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,GAAG,MAAM,cAAc,MAAM,GAAG,OAAO,UAAU;AAAA,IACnE,CAAC;AACD,UAAM,WAAW,MAAM;AAAA,MACrB,QAAQ,EAAE,GAAG,UAAU;AAAA,MACvB,SAAS;AAAA,MACT,OAAO,EAAE,MAAM,CAAC,UAAU,UAAU,EAAE;AAAA,IACxC,CAAC;AACD,cAAU,KAAK,SAAS;AACxB,cAAU,KAAK,QAAQ;AACvB,UAAM,UAAU,aAAa,QAAQ,WAAW,UAAU,OAAO,YAAY;AAC7E,WAAO;AAAA,EACT;AACA,QAAM,cAAc,aAAa,KAAK,sBAAsB,YAAY,aAAa,WAAW;AAChG,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACvG,MAAI,SAAS;AACb,MAAI,eAAe,MAAM;AACvB,cAAU,KAAK,QAAQ;AACvB,UAAM,OAAO,qBAAqB,uBAAuB,WAAW;AACpE,aAAS,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AAAA,EACnF;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB;AAAA,EACnB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,gBAAgB,gBAAgB;AACzC,iBAAe,YAAY;AAC7B;AAGA,IAAI;AAAA,CACH,SAAS,WAAW;AACnB,YAAU,UAAU,aAAa,KAAK;AACtC,YAAU,UAAU,WAAW,KAAK;AACpC,YAAU,UAAU,UAAU,KAAK;AACnC,YAAU,UAAU,YAAY,KAAK;AACrC,YAAU,UAAU,eAAe,KAAK;AAC1C,GAAG,aAAa,WAAW,CAAC,EAAE;AAC9B,IAAI;AAAA,CACH,SAAS,oBAAoB;AAC5B,qBAAmB,mBAAmB,YAAY,KAAK;AACvD,qBAAmB,mBAAmB,UAAU,KAAK;AACrD,qBAAmB,mBAAmB,WAAW,KAAK;AACtD,qBAAmB,mBAAmB,WAAW,KAAK;AACtD,qBAAmB,mBAAmB,eAAe,KAAK;AAC1D,qBAAmB,mBAAmB,aAAa,KAAK;AACxD,qBAAmB,mBAAmB,SAAS,KAAK;AACtD,GAAG,sBAAsB,oBAAoB,CAAC,EAAE;AAGhD,IAAI;AACJ,SAAS,MAAM,UAAU;AACvB,oBAAkB,SAAS,KAAK,MAAM,cAAc,MAAM;AAAA,IACxD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,iBAAiB,MAAM;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,MAAM,uBAAuB,IAAI;AAC/C,MAAI,EAAE,UAAU,aAAa,EAAE,UAAU,WAAW;AAClD,UAAM,IAAI,MAAM,6DAA6D;AAAA,EAC/E;AACA,QAAM,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe,IAAI;AAC5E,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,SAAS;AACb,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,SAAS,UAAU,IAAI,KAAK,MAAM;AACnD,QAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,YAAM,IAAI,MAAM,uDAAuD,SAAS,MAAM,SAAS;AAAA,IACjG;AACA,aAAS,SAAS;AAAA,EACpB;AACA,QAAM,2BAA2B,0BAA0B,OAAO,IAAI,SAAS,UAAU,IAAI,uBAAuB,MAAM,EAAE;AAC5H,QAAM,kBAAkB,kBAAkB;AAC1C,MAAI,mBAAmB,MAAM;AAC3B,UAAM,IAAI,MAAM,GAAG,+EAA+E;AAAA,EACpG;AACA,QAAM,UAAU,aAAa,EAAE,MAAM,KAAK,EAAE,MAAM;AAClD,QAAM,WAAW,aAAa,EAAE,MAAM,KAAK,EAAE,MAAM;AACnD,QAAM,YAAY,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AAC9G,QAAM,MAAM,SAAS,WAAW,CAAC,GAAG,WAAW,SAAS,QAAQ,GAAG,EAAE,KAAK;AAC1E,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,kBAAgB,KAAK,aAAa,EAAE,MAAM,QAAQ,KAAK,aAAa,EAAE,MAAM,QAAQ,YAAY,YAAY,iBAAiB,QAAQ,0BAA0B,kBAAkB,GAAG,KAAK;AACzL,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,wBAAwB,YAAY,SAAS;AACpD,MAAI;AACJ,WAAS,WAAW,UAAU;AAC5B,gBAAY,SAAS,KAAK,MAAM,YAAY,MAAM;AAAA,MAChD;AAAA,MACA;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH;AACA,WAAS,YAAY,MAAM;AACzB,UAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,EAAE,EAAE,IAAI;AAC7C,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,MAAM,SAAS,WAAW,EAAE,OAAO,WAAW,EAAE,KAAK;AAC3D,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAI,aAAa,cAAc,IAAI,KAAK,MAAM,GAAG;AAC/C,aAAO;AAAA,IACT;AACA,cAAU,KAAK,SAAS,EAAE,QAAQ,KAAK;AACvC,WAAO;AAAA,EACT;AACA,SAAO,EAAE,YAAY,aAAa,QAAQ,WAAW,YAAY,YAAY,YAAY;AAC3F;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,SAAS,yBAAyB,YAAY,yBAAyB,OAAO;AAC5E,MAAI;AACJ,WAAS,WAAW,UAAU;AAC5B,gBAAY,SAAS,KAAK,MAAM,YAAY,MAAM;AAAA,MAChD;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH;AACA,WAAS,YAAY,MAAM;AACzB,UAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,aAAa,SAAS,OAAO,QAAQ,EAAE;AAC7C,UAAM,WAAW,qBAAqB,2BAA2B,EAAE,OAAO,EAAE,KAAK;AACjF,UAAM,MAAM,SAAS,WAAW,UAAU,UAAU;AACpD,QAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,aAAO;AAAA,IACT;AACA,UAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,UAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,UAAM,cAAc,MAAM,UAAU,KAAK,aAAa,EAAE,MAAM,QAAQ,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,KAAK;AAChI,gBAAY;AACZ,WAAO;AAAA,EACT;AACA,SAAO,EAAE,YAAY,aAAa,QAAQ,WAAW,YAAY,YAAY,YAAY;AAC3F;AAGA,IAAI,wBAAwB;AAC5B,IAAI,aAAa,yBAAyB,KAAK,qBAAqB;AAGpE,IAAI;AACJ,SAAS,UAAU,UAAU;AAC3B,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,MAAM,SAAS,WAAW,OAAO,GAAG,OAAO,OAAO,GAAG,KAAK;AAChE,MAAI,aAAa,cAAc,IAAI,KAAK,MAAM,GAAG;AAC/C,WAAO;AAAA,EACT;AACA,QAAM,WAAW,OAAO,IAAI,CAAC,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE,EAAE;AACtE,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,QAAQ,EAAE,MAAM;AACpE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,WAAS,eAAe,SAAS,QAAQ,SAAS,IAAI,QAAQ,KAAK;AACnE,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb;AAAA,EACA,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,IAAI;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,SAAS,SAAS,mBAAmB,CAAC;AAC5C,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,IAAI,MAAM;AAClB,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,kBAAgB,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IACnD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,CAAC,cAAc,IAAI,IAAI,kBAAkB,OAAO,EAAE,OAAO,MAAM,IAAI;AACzE,MAAI,aAAa;AACjB,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,QAAI,KAAK,QAAQ,IAAI;AACnB,mBAAa;AAAA,IACf;AAAA,EACF;AACA,QAAM,WAAW,iBAAiB,OAAO,EAAE,OAAO,MAAM,IAAI;AAC5D,QAAM,IAAI;AAAA,IACR,QAAQ,OAAO,EAAE;AAAA,IACjB,OAAO;AAAA,IACP,OAAO,OAAO,EAAE;AAAA,EAClB;AACA,MAAI,YAAY;AACd,UAAM,SAAS,UAAU,EAAE,QAAQ,SAAS,SAAS,CAAC;AACtD,WAAO,QAAQ;AACf,WAAO;AAAA,EACT;AACA,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,YAAY,IAAI,WAAW,IAAI,WAAW,IAAI,EAAE,MAAM;AAC5D,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,gBAAc,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,OAAO,WAAW,KAAK,MAAM;AAChG,SAAO;AACT;AACA,SAAS,iBAAiB,SAAS,MAAM;AACvC,QAAM,WAAW,IAAI,MAAM,QAAQ,MAAM;AACzC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,QAAQ,KAAK;AAAA,EAC9B;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,OAAO,MAAM;AACtC,QAAM,WAAW,CAAC;AAClB,QAAM,UAAU,CAAC;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,QAAI,MAAM,QAAQ,GAAG;AACnB,eAAS,KAAK,MAAM,GAAG;AAAA,IACzB;AACA,QAAI,MAAM,KAAK,SAAS,GAAG;AACzB,cAAQ,KAAK,KAAK,GAAG;AAAA,IACvB;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,QAAI,YAAY;AAChB,aAAS,IAAI,GAAG,IAAI,QAAQ,QAAQ,EAAE,GAAG;AACvC,UAAI,QAAQ,MAAM,OAAO,cAAc,MAAM,QAAQ,aAAa,QAAQ,KAAK;AAC7E,oBAAY;AAAA,MACd;AAAA,IACF;AACA,YAAQ,aAAa;AAAA,EACvB;AACA,SAAO,CAAC,UAAU,OAAO;AAC3B;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,SAAS,wBAAwB,GAAG,MAAM,UAAU;AAClD,QAAM,SAAS,EAAE;AACjB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,eAAe,aAAa,eAAe,MAAM,MAAM;AAC7D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,cAAc;AAClB,MAAI,qBAAqB;AACzB,MAAI,gBAAgB,MAAM;AACxB,UAAM,WAAW,IAAI,MAAM,KAAK;AAChC,aAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,eAAS,MAAM,OAAO,aAAa;AAAA,IACrC;AACA,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAC/D,kBAAc,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AAC5F,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,eAAe,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AAChE,QAAI,iBAAiB,KAAK;AACxB,2BAAqB;AAAA,IACvB;AAAA,EACF;AACA,SAAO,EAAE,YAAY,aAAa,cAAc,MAAM,mBAAmB;AAC3E;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM,CAAC,wBAAwB,CAAC;AACrE;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,aAAS;AACT,cAAU;AAAA,EACZ;AACA,QAAM,YAAY,OAAO,MAAM;AAC/B,uBAAqB,2BAA2B,OAAO,MAAM,SAAS;AACtE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACjG,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,YAAY,KAAK;AAAA,EACpC;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM,CAAC,wBAAwB,CAAC;AACrE;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,aAAS;AACT,cAAU;AAAA,EACZ;AACA,QAAM,YAAY,OAAO,MAAM;AAC/B,uBAAqB,2BAA2B,OAAO,MAAM,SAAS;AACtE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACjG,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,YAAY,KAAK;AAAA,EACpC;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,cAAY,SAAS,KAAK,MAAM,QAAQ,MAAM;AAAA,IAC5C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AAC1F,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AAAA,IACZ;AAAA,EACF;AACA,QAAM,WAAW,OAAO,MAAM,MAAM,GAAG,EAAE;AACzC,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO;AACjD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,YAAY,aAAa,cAAc,IAAI,KAAK;AACtD,QAAM,YAAY,OAAO,MAAM,KAAK;AACpC,YAAU,SAAS,SAAS,OAAO,QAAQ,WAAW,WAAW,KAAK;AACtE,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,gBAAc,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,IAAI,OAAO;AACjB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,EAAE,YAAY,SAAAa,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AAC9G,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,WAAW,SAAS;AAC1B,MAAI,SAAS,eAAe,gBAAgB;AAC1C,UAAM,IAAI,MAAM,6CAA6C,SAAS,yCAAyC;AAAA,EACjH;AACA,MAAI,SAAS,kBAAkB,KAAK,SAAS,mBAAmB,GAAG;AACjE,UAAM,IAAI,MAAM,0EAA0E,SAAS,mBAAmB,SAAS,iBAAiB;AAAA,EAClJ;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,cAAY,KAAK,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,cAAc,aAAa,QAAQ,UAAU,WAAW,SAAS,cAAc,aAAa,UAAU,KAAK;AAChK,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,MAAM,IAAI;AAC1B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,SAAS,aAAa,uBAAuB,OAAO,KAAK;AAC/D,eAAa,OAAO,UAAU,aAAa,cAAc,MAAM,GAAG,MAAM,cAAc,sBAAsB,EAAE,uEAAuE;AACrL,OAAK,QAAQ,OAAO,EAAE,MAAM;AAC5B,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,QAAQ,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,oBAAkB,SAAS,KAAK,MAAM,aAAa,MAAM;AAAA,IACvD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,EAAE,YAAY,WAAW,IAAI;AACnC,MAAI,EAAE,UAAU,aAAa,EAAE,UAAU,WAAW;AAClD,UAAM,IAAI,MAAM,4DAA4D;AAAA,EAC9E;AACA,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,oBAAoB,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AACtH,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,eAAa,OAAO,gBAAgB,aAAa,MAAM,kCAAkC,qBAAqB,uCAAuC,EAAE,aAAa,EAAE,wBAAwB,6BAA6B,wBAAwB;AACnP,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,UAAU,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACtD,QAAM,WAAW,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACvD,QAAM,WAAW,KAAK,IAAI,WAAW,SAAS;AAC9C,QAAM,MAAM,SAAS,WAAW,CAAC,UAAU,SAAS,QAAQ,GAAG,IAAI,KAAK;AACxE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,IAAI,KAAK,EAAE,MAAM;AACnE,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,IAAI,KAAK,EAAE,MAAM;AACnE,kBAAgB,OAAO,aAAa,IAAI,MAAM,QAAQ,OAAO,aAAa,IAAI,MAAM,QAAQ,YAAY,YAAY,KAAK;AACzH,WAAS,YAAY,IAAI,MAAM;AAC/B,WAAS,YAAY,IAAI,MAAM;AAC/B,MAAI,QAAQ;AACZ,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,MAAAb,MAAK,GAAG,SAAS,SAAS,IAAI;AACrE,QAAM,CAAC,QAAQ,KAAK,IAAI,mBAAmB,iBAAiB,GAAG,OAAOA,KAAI;AAC1E,QAAM,cAAc,mBAAmB,iBAAiB,EAAE,OAAO,QAAQ,KAAK;AAC9E,QAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,QAAM,MAAM,SAAS,WAAW,OAAO,EAAE,KAAK;AAC9C,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,UAAU,SAAS,UAAU,IAAI,IAAI,MAAM;AACjD,MAAI,aAAa;AACf,UAAM,aAAa,mBAAmB,kBAAkB,QAAQ,QAAQ;AACxE,QAAI,EAAE,UAAU,UAAU;AACxB,cAAQ,cAAc,MAAM,MAAM,YAAY,aAAa,aAAa,cAAc,KAAK,CAAC;AAAA,IAC9F,OAAO;AACL,YAAM,WAAW,SAAS,mBAAmB,GAAG;AAChD,eAAS,IAAI,MAAM,SAAS,YAAY,aAAa,aAAa,cAAc,KAAK,CAAC,CAAC;AAAA,IACzF;AACA,WAAO;AAAA,EACT;AACA,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,MAAM,UAAU,OAAO,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AAC5D,YAAQ,cAAc;AACtB,WAAO;AAAA,EACT;AACA,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,QAAM,OAAO,EAAE,MAAM;AACrB,MAAI,SAAS,GAAG;AACd,aAAS,OAAO,SAAS,IAAI,SAAS,QAAQ,KAAK;AAAA,EACrD,WAAW,SAAS,GAAG;AACrB,aAAS,OAAO,SAAS,IAAI,SAAS,IAAI,SAAS,QAAQ,KAAK;AAAA,EAClE,WAAW,SAAS,GAAG;AACrB,aAAS,OAAO,SAAS,IAAI,SAAS,IAAI,SAAS,IAAI,SAAS,QAAQ,KAAK;AAAA,EAC/E,OAAO;AACL,UAAM,MAAM,UAAU,OAAO,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AAC5D,YAAQ,IAAI,GAAG;AAAA,EACjB;AACA,SAAO;AACT;AACA,SAAS,SAAS,OAAO,SAAS,SAAS,OAAOA,OAAM;AACtD,MAAI,YAAY;AAChB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,OAAO,SAASA,MAAK;AAC3B,WAAS,KAAK,QAAQ,KAAK,MAAM,MAAM;AACrC,UAAM,UAAU,KAAK,UAAU;AAC/B,YAAQ,IAAI,MAAM,SAAS,SAAS,UAAUA,MAAK,EAAE,GAAG,SAAS;AACjE,iBAAaA,MAAK;AAAA,EACpB;AACF;AACA,SAAS,SAAS,OAAO,UAAU,UAAU,SAAS,OAAOA,OAAM;AACjE,MAAI,YAAY;AAChB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,OAAO,SAASA,MAAK;AAC3B,QAAM,OAAO,SAASA,MAAK;AAC3B,WAAS,KAAK,QAAQ,KAAK,MAAM,MAAM;AACrC,aAAS,IAAI,QAAQ,IAAI,MAAM,KAAK;AAClC,YAAM,UAAU,KAAK,WAAW,IAAI,WAAW;AAC/C,cAAQ,IAAI,MAAM,SAAS,SAAS,UAAUA,MAAK,EAAE,GAAG,SAAS;AACjE,mBAAaA,MAAK;AAAA,IACpB;AAAA,EACF;AACF;AACA,SAAS,SAAS,OAAO,UAAU,UAAU,UAAU,SAAS,OAAOA,OAAM;AAC3E,MAAI,YAAY;AAChB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,OAAO,SAASA,MAAK;AAC3B,QAAM,OAAO,SAASA,MAAK;AAC3B,QAAM,OAAO,SAASA,MAAK;AAC3B,QAAM,SAAS,MAAM;AACrB,WAAS,KAAK,QAAQ,KAAK,MAAM,MAAM;AACrC,aAAS,IAAI,QAAQ,IAAI,MAAM,KAAK;AAClC,eAAS,IAAI,QAAQ,IAAI,MAAM,KAAK;AAClC,cAAM,UAAU,KAAK,WAAW,IAAI,WAAW,IAAI,WAAW;AAC9D,gBAAQ,IAAI,MAAM,SAAS,SAAS,UAAUA,MAAK,EAAE,GAAG,SAAS;AACjE,qBAAaA,MAAK;AAAA,MACpB;AAAA,IACF;AAAA,EACF;AACF;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,WAAW,qBAAqB,YAAY,EAAE,OAAO,YAAY,KAAK;AAC5E,QAAM,WAAW,qBAAqB,YAAY,SAAS,QAAQ,WAAW,MAAM;AACpF,QAAM,mBAAmB,qBAAqB,oBAAoB,EAAE,OAAO,YAAY,KAAK;AAC5F,QAAM,mBAAmB,qBAAqB,oBAAoB,OAAO,WAAW,MAAM;AAC1F,QAAM,YAAY,qBAAqB,aAAa,kBAAkB,OAAO,WAAW,MAAM;AAC9F,QAAM,YAAY,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC3F,QAAM,cAAc,WAAW,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AACzG,QAAM,sBAAsB,SAAS,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,iBAAiB,EAAE,CAAC;AAC1H,QAAM,SAAS,OAAO;AAAA,IACpB,QAAQ,EAAE,GAAG,oBAAoB;AAAA,IACjC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,kBAAkB,MAAM,UAAU;AAAA,EACpD,CAAC;AACD,WAAS,YAAY,UAAU,MAAM;AACrC,WAAS,YAAY,YAAY,MAAM;AACvC,WAAS,YAAY,UAAU,MAAM;AACrC,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,GAAG,SAAS,SAAS,IAAI;AAC/D,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,KAAK;AAC9C,QAAM,SAAS,SAAS,mBAAmB,CAAC;AAC5C,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,IAAI,MAAM;AAClB,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,aAAW,SAAS,KAAK,MAAM,aAAa,MAAM;AAAA,IAChD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,cAAc,aAAa,IAAI;AACvC,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,WAAS,KAAK,cAAc,cAAc,KAAK;AAC/C,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,OAAO,aAAa,eAAe,KAAK,MAAM,MAAM,OAAO,GAAG,KAAK,EAAE;AAC3E,MAAI,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AACtF,QAAM,UAAU,OAAO,OAAO,CAAC,OAAO,aAAa,cAAc,GAAG,KAAK,IAAI,CAAC;AAC9E,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,GAAG,KAAK;AACzD,MAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,WAAO;AAAA,EACT;AACA,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,uBAAqB,uBAAuB,QAAQ,IAAI;AACxD,MAAI,QAAQ,GAAG,UAAU,UAAU;AACjC,UAAM,WAAW,QAAQ,IAAI,CAAC,OAAO;AACnC,YAAM,YAAY,aAAa,cAAc,GAAG,MAAM,MAAM,IAAI,CAAC;AACjE,YAAM,QAAQ,CAAC,IAAI,SAAS;AAC5B,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,IAC5E,CAAC;AACD,UAAM,kBAAkB,SAAS,IAAI,CAAC,OAAO;AAC3C,aAAO,EAAE,MAAM,SAAS,SAAS,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM;AAAA,IAC/D,CAAC;AACD,eAAW,qBAAqB,gBAAgB,SAAS,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,CAAC;AACjF,UAAM,eAAe,SAAS,GAAG,MAAM,OAAO;AAC9C,UAAM,WAAW,WAAW,iBAAiB,UAAU,OAAO,GAAG,OAAO,YAAY;AACpF,UAAM,gBAAgB,qBAAqB,gBAAgB,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AAC9F,QAAI,QAAQ;AACZ,UAAM,UAAU,SAAS,UAAU,IAAI,IAAI,MAAM;AACjD,YAAQ,cAAc,qBAAqB,uBAAuB,QAAQ;AAC1E,aAAS,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACxD,WAAO;AAAA,EACT;AACA,QAAM,WAAW,aAAa,cAAc,QAAQ,GAAG,MAAM,MAAM,GAAG,IAAI,CAAC;AAC3E,MAAI,eAAe;AACnB,QAAM,YAAY,QAAQ,IAAI,CAAC,WAAW;AACxC,UAAM,WAAW,aAAa,cAAc,OAAO,MAAM,MAAM,IAAI,CAAC;AACpE,oBAAgB;AAChB,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,IAAI,CAAC,WAAW,SAAS,mBAAmB,MAAM,CAAC;AAC1E,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,WAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,QAAI,YAAY,IAAI;AACpB,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,YAAM,WAAW,UAAU;AAC3B,YAAM,WAAW,IAAI;AACrB,YAAM,OAAO,OAAO,IAAI,SAAS,UAAU,WAAW,QAAQ;AAC9D,cAAQ,IAAI,MAAM,SAAS;AAC3B,mBAAa;AAAA,IACf;AAAA,EACF;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,eAAa,SAAS,KAAK,MAAM,QAAQ,MAAM;AAAA,IAC7C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,EAAE,SAAAa,UAAS,WAAW,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACvE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,YAAY,SAAS,QAAQ,SAAS,SAAS,IAAI;AACzD,MAAI,SAAS,eAAe,gBAAgB;AAC1C,UAAM,IAAI,MAAM,oDAAoD,SAAS,yCAAyC;AAAA,EACxH;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,aAAW,KAAK,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,UAAU,cAAc,aAAa,QAAQ,UAAU,WAAW,SAAS,WAAW,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,KAAK;AACxO,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,4BAA0B,SAAS,KAAK,MAAM,qBAAqB,MAAM;AAAA,IACvE;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,WAAW,IAAI;AACxE,QAAM,YAAY;AAClB,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC/I,QAAM,EAAE,WAAW,cAAc,aAAa,YAAY,UAAU,SAAS,aAAa,WAAW,UAAU,cAAc,YAAY,IAAI;AAC7I,QAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,QAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,YAAY,aAAa,eAAe,SAAS,OAAO;AAC9D,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,CAAC,OAAO,OAAO,KAAK,IAAI,aAAa,eAAe,OAAO,KAAK;AACtE,QAAM,eAAe,UAAU;AAC/B,QAAM,aAAa,iBAAiB,UAAU,KAAK,UAAU;AAC7D,QAAM,aAAa,iBAAiB,UAAU,KAAK;AACnD,QAAM,iBAAiB,iBAAiB,IAAI,UAAU;AACtD,QAAM,eAAe,UAAU;AAC/B,QAAM,aAAa,iBAAiB,UAAU,KAAK,UAAU;AAC7D,QAAM,aAAa,iBAAiB,UAAU,KAAK;AACnD,QAAM,iBAAiB,iBAAiB,IAAI,UAAU;AACtD,QAAM,MAAM,SAAS,WAAW,SAAS,SAAS,SAAS;AAC3D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,OAAO,SAAS,UAAU,IAAI,GAAG,MAAM,EAAE;AAC/C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,0BAAwB,MAAM,UAAU,WAAW,cAAc,aAAa,UAAU,SAAS,YAAY,WAAW,UAAU,aAAa,cAAc,aAAa,QAAQ,SAAS,OAAO,OAAO,OAAO,cAAc,YAAY,YAAY,gBAAgB,cAAc,YAAY,YAAY,gBAAgB,KAAK;AACjU,SAAO;AACT;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI;AAAA,CACH,SAAS,sBAAsB;AAC9B,uBAAqB,qBAAqB,cAAc,KAAK;AAC7D,uBAAqB,qBAAqB,aAAa,KAAK;AAC9D,GAAG,wBAAwB,sBAAsB,CAAC,EAAE;AACpD,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,sBAAoB,SAAS,KAAK,MAAM,eAAe,MAAM;AAAA,IAC3D;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,oBAAoB,SAAS,IAAI;AACjD,QAAM,EAAE,OAAO,QAAQ,OAAO,OAAO,IAAI;AACzC,QAAM,WAAW,MAAM,MAAM;AAC7B,QAAM,CAAC,YAAY,SAAS,IAAI;AAChC,QAAM,WAAW,CAAC,UAAU,YAAY,WAAW,OAAO,MAAM,EAAE;AAClE,MAAI,aAAa,SAAS,UAAU,IAAI,OAAO,MAAM;AACrD,MAAI;AACJ,MAAI,OAAO,UAAU,WAAW;AAC9B,iBAAa,MAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAC5F,iBAAa,SAAS,UAAU,IAAI,WAAW,MAAM;AAAA,EACvD;AACA,QAAM,WAAW,WAAW;AAC5B,QAAM,UAAU,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACrD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,MAAM,SAAS,WAAW,UAAU,SAAS;AACnD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,OAAO,KAAK,EAAE,MAAM;AAC3E,oBAAkB,UAAU,SAAS,UAAU,UAAU,kBAAkB,YAAY,WAAW,oBAAoB,SAAS,oBAAoB,KAAK;AACxJ,MAAI,cAAc,MAAM;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,gBAAc,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,QAAM,QAAQ,EAAE,MAAM;AACtB,eAAa,OAAO,EAAE,UAAU,aAAa,EAAE,UAAU,SAAS,MAAM,4BAA4B,EAAE,mCAAmC;AACzI,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,YAAY,GAAG,SAAS,SAAS,CAAC;AAAA,EAC3F;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AACrE,uBAAqB,2BAA2B,WAAW,CAAC,YAAY,GAAG,KAAK;AAChF,QAAM,cAAc,SAAS,WAAW,UAAU,OAAO,UAAU,KAAK;AACxE,QAAM,WAAW,UAAU,MAAM;AACjC,QAAM,cAAc,SAAS,UAAU,IAAI,UAAU,MAAM,EAAE;AAC7D,QAAM,gBAAgB,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AACjE,cAAY,aAAa,YAAY,IAAI,GAAG,WAAW,IAAI,GAAG,UAAU,eAAe,SAAS,EAAE,MAAM;AACxG,MAAI,MAAM;AACV,MAAI,gBAAgB,MAAM;AACxB,UAAM,kBAAkB,qBAAqB,uBAAuB,WAAW;AAC/E,UAAM,WAAW,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,OAAO,EAAE,MAAM,gBAAgB,GAAG,SAAS,SAAS,CAAC;AACpG,aAAS,YAAY,UAAU,MAAM;AACrC,aAAS,YAAY,YAAY,MAAM;AAAA,EACzC;AACA,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,QAAQ,MAAM;AAAA,IAC7C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,QAAM,QAAQ,EAAE,MAAM;AACtB,eAAa,OAAO,EAAE,UAAU,aAAa,EAAE,UAAU,SAAS,MAAM,2BAA2B,EAAE,mCAAmC;AACxI,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,YAAY,GAAG,SAAS,SAAS,CAAC;AAAA,EAC3F;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AACrE,uBAAqB,2BAA2B,UAAU,CAAC,YAAY,GAAG,KAAK;AAC/E,QAAM,cAAc,SAAS,WAAW,UAAU,OAAO,UAAU,KAAK;AACxE,QAAM,WAAW,UAAU,MAAM;AACjC,QAAM,cAAc,SAAS,UAAU,IAAI,UAAU,MAAM,EAAE;AAC7D,QAAM,gBAAgB,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AACjE,aAAW,aAAa,YAAY,IAAI,GAAG,WAAW,IAAI,GAAG,UAAU,eAAe,SAAS,EAAE,MAAM;AACvG,MAAI,MAAM;AACV,MAAI,gBAAgB,MAAM;AACxB,UAAM,kBAAkB,qBAAqB,uBAAuB,WAAW;AAC/E,UAAM,WAAW,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,OAAO,EAAE,MAAM,gBAAgB,GAAG,SAAS,SAAS,CAAC;AACpG,aAAS,YAAY,UAAU,MAAM;AACrC,aAAS,YAAY,YAAY,MAAM;AAAA,EACzC;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,qBAAmB,SAAS,KAAK,MAAM,cAAc,MAAM;AAAA,IACzD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,WAAW,WAAW,IAAI;AAClC,QAAM,YAAY,EAAE,MAAM;AAC1B,QAAM,cAAc,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AACjE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,eAAe,cAAc;AACnC,QAAM,cAAc,aAAa;AACjC,QAAM,cAAc,cAAc,YAAY;AAC9C,QAAM,cAAc,eAAe,SAAS,CAAC,WAAW,cAAc,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,cAAc,WAAW;AACpJ,QAAM,MAAM,SAAS,WAAW,aAAa,SAAS;AACtD,QAAM,QAAQ,SAAS,UAAU,IAAI,EAAE,MAAM;AAC7C,QAAM,MAAM,MAAM;AAClB,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,EAAE,KAAK,CAAC,EAAE,MAAM;AAChG,QAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,WAAW,EAAE,MAAM;AAC1E,QAAM,kBAAkB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,WAAW,CAAC,EAAE,MAAM;AACtG,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,eAAe,eAAe,SAAS,IAAI;AACjD,mBAAiB,KAAK,WAAW,cAAc,eAAe,EAAE,MAAM,SAAS,GAAG,kBAAkB,iBAAiB,YAAY,QAAQ,KAAK;AAC9I,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,wBAAsB,SAAS,KAAK,MAAM,uBAAuB,MAAM;AAAA,IACrE;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,iBAAiB,MAAM;AAC9B,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,gBAAgB,IAAI;AAC3D,QAAM,aAAa,aAAa,OAAO,CAAC,GAAG,CAAC,IAAI;AAChD,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,YAAY,SAAS,QAAQ,SAAS,SAAS,IAAI;AACzD,MAAI,SAAS,eAAe,gBAAgB;AAC1C,UAAM,IAAI,MAAM,mEAAmE,SAAS,yCAAyC;AAAA,EACvI;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,sBAAoB,KAAK,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,UAAU,cAAc,aAAa,QAAQ,UAAU,WAAW,SAAS,WAAW,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,KAAK;AACjP,SAAO;AACT;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI,yBAAyB;AAC7B,IAAI,eAAe,yBAAyB,OAAO,wBAAwB,MAAM;AAGjF,IAAI,aAAa,wBAAwB,KAAK,SAAS;AAGvD,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,YAAY,OAAO,MAAM;AAC/B,QAAM,WAAW,OAAO,MAAM,MAAM;AACpC,MAAI,OAAO;AACX,MAAI,MAAM,GAAG;AACX,iBAAa,OAAO,EAAE,YAAY,MAAM,KAAK,MAAM,iCAAiC,EAAE,YAAY,OAAO,YAAY;AACrH,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,OAAO,EAAE,OAAO,OAAO,MAAM,GAAG,SAAS,SAAS,IAAI;AAC9D,QAAM,MAAM,SAAS,WAAW,OAAO,KAAK;AAC5C,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,KAAK,KAAK;AAClB,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,sBAAoB,SAAS,KAAK,MAAM,eAAe,MAAM;AAAA,IAC3D;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,MAAM,SAAS,WAAW,OAAO,OAAO,OAAO,KAAK;AAC1D,QAAM,UAAU,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACtD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,oBAAkB,SAAS,OAAO,aAAa,YAAY,aAAa,KAAK;AAC7E,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI,eAAe,wBAAwB,KAAK;AAGhD,IAAI,yBAAyB;AAC7B,IAAI,kBAAkB,yBAAyB,UAAU,sBAAsB;AAG/E,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,kBAAgB,SAAS,KAAK,MAAM,gBAAgB,MAAM,CAAC,UAAU,UAAU,UAAU,UAAU,UAAU,UAAU,QAAQ,CAAC;AAClI;AACA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,gBAAgB,IAAI;AAC5B,QAAM,EAAE,GAAG,MAAM,OAAO,UAAU,QAAQ,OAAOS,QAAO,IAAI;AAC5D,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,SAAS,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACpD,QAAM,aAAa,SAAS,UAAU,IAAI,SAAS,MAAM,EAAE;AAC3D,QAAM,WAAW,UAAU,OAAO,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE,KAAK;AAC7E,QAAM,UAAUA,WAAU,OAAO,SAAS,UAAU,IAAIA,QAAO,MAAM,EAAE,KAAK;AAC5E,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,WAAO;AAAA,EACT;AACA,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,gBAAc,KAAK,QAAQ,YAAY,UAAU,SAAS,iBAAiB,KAAK;AAChF,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,oBAAkB,SAAS,KAAK,MAAM,aAAa,MAAM;AAAA,IACvD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAT,UAAS,KAAK,MAAM,WAAW,YAAY,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,eAAe;AACxH,QAAM,kBAAkB,kBAAkB;AAC1C,MAAI,mBAAmB,MAAM;AAC3B,UAAM,IAAI,MAAM,GAAG,+EAA+E;AAAA,EACpG;AACA,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,iBAAiB,SAAS;AAChC,MAAI,SAAS;AACb,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,SAAS,UAAU,IAAI,KAAK,MAAM;AACnD,QAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,YAAM,IAAI,MAAM,sDAAsD,SAAS,MAAM,SAAS;AAAA,IAChG;AACA,QAAI,SAAS,MAAM,OAAO,gBAAgB;AACxC,YAAM,IAAI,MAAM,2BAA2B,SAAS,wDAAwD,iBAAiB;AAAA,IAC/H;AACA,aAAS,SAAS;AAAA,EACpB;AACA,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,YAAY,SAAS,QAAQ,SAAS,SAAS,IAAI;AACzD,QAAM,YAAY,SAAS;AAC3B,QAAM,WAAW,SAAS;AAC1B,QAAM,UAAU,SAAS;AACzB,MAAI,eAAe,QAAQ;AACzB,UAAM,IAAI,MAAM,yDAAyD,iCAAiC;AAAA,EAC5G;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,2BAA2B,0BAA0B,OAAO,IAAI,SAAS,UAAU,IAAI,uBAAuB,MAAM,EAAE;AAC5H,kBAAgB,KAAK,WAAW,UAAU,SAAS,UAAU,cAAc,aAAa,QAAQ,QAAQ,UAAU,WAAW,SAAS,WAAW,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,iBAAiB,0BAA0B,kBAAkB,GAAG,KAAK;AAC/S,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,6BAA2B,SAAS,KAAK,MAAM,sBAAsB,MAAM;AAAA,IACzE;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,WAAW,YAAY,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AAC9H,QAAM,kBAAkB,kBAAkB;AAC1C,MAAI,mBAAmB,MAAM;AAC3B,UAAM,IAAI,MAAM,GAAG,wFAAwF;AAAA,EAC7G;AACA,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,iBAAiB,SAAS;AAChC,MAAI,SAAS;AACb,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,SAAS,UAAU,IAAI,KAAK,MAAM;AACnD,QAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,YAAM,IAAI,MAAM,+DAA+D,SAAS,MAAM,SAAS;AAAA,IACzG;AACA,QAAI,SAAS,MAAM,OAAO,gBAAgB;AACxC,YAAM,IAAI,MAAM,oCAAoC,SAAS,wDAAwD,iBAAiB;AAAA,IACxI;AACA,aAAS,SAAS;AAAA,EACpB;AACA,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,YAAY,SAAS,QAAQ,SAAS,SAAS,IAAI;AACzD,QAAM,YAAY,SAAS;AAC3B,QAAM,WAAW,SAAS;AAC1B,QAAM,UAAU,SAAS;AACzB,MAAI,eAAe,QAAQ;AACzB,UAAM,IAAI,MAAM,kEAAkE,iCAAiC;AAAA,EACrH;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,2BAA2B,0BAA0B,OAAO,IAAI,SAAS,UAAU,IAAI,uBAAuB,MAAM,EAAE;AAC5H,2BAAyB,KAAK,WAAW,UAAU,SAAS,UAAU,cAAc,aAAa,QAAQ,QAAQ,UAAU,WAAW,SAAS,WAAW,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,iBAAiB,0BAA0B,kBAAkB,GAAG,KAAK;AACxT,SAAO;AACT;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,iBAAe,SAAS,KAAK,MAAM,UAAU,MAAM;AAAA,IACjD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,QAAM,EAAE,QAAQ,QAAQ,IAAI;AAC5B,QAAM,CAAC,aAAa,WAAW,WAAWA,QAAO,IAAI,uBAAuB,mBAAmB,QAAQ,OAAO;AAC9G,QAAM,MAAM,SAAS,WAAW,aAAa,OAAO,KAAK;AACzD,MAAI,cAAc,GAAG;AACnB,WAAO;AAAA,EACT;AACA,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,QAAM,QAAQ,SAAS,UAAU,IAAI,OAAO,MAAM;AAClD,QAAM,MAAM,MAAM;AAClB,QAAM,cAAc,SAAS,UAAU,IAAI,QAAQ,MAAM;AACzD,QAAM,YAAY,YAAY;AAC9B,QAAM,eAAe,IAAI,WAAW,IAAI,WAAWA,QAAO,EAAE,MAAM;AAClE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,eAAa,KAAK,SAAS,OAAO,QAAQ,WAAW,WAAW,WAAW,WAAW,cAAc,KAAK;AACzG,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,UAAU,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAM,UAAU,IAAI;AAC5B,QAAM,aAAa,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AAC9D,QAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,QAAM,UAAU,EAAE,MAAM;AACxB,WAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,UAAMH,SAAQ,YAAY;AAC1B,iBAAa,OAAOA,UAAS,UAAU,KAAKA,UAAS,GAAG,MAAM,6BAA6BA,wBAAuB,UAAU,IAAI;AAAA,EAClI;AACA,QAAM,YAAY,qBAAqB,aAAa,yBAAyB,GAAG,SAAS,YAAY,SAAS;AAC9G,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,EAAE;AAAA,IACZ,OAAO;AAAA,MACL,OAAO;AAAA,QACL,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,MACZ;AAAA,IACF;AAAA,IACA,SAAS;AAAA,EACX,CAAC;AACD,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,eAAe,SAAS;AAAA,IAC5B,QAAQ,EAAE,GAAG,QAAQ;AAAA,IACrB,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,cAAc,UAAU,SAAS,EAAE;AAAA,IACzE,SAAS;AAAA,EACX,CAAC;AACD,QAAM,qBAAqB;AAAA,IACzB,UAAU;AAAA,IACV,UAAU;AAAA,IACV,cAAc,UAAU;AAAA,IACxB,UAAU;AAAA,EACZ;AACA,QAAM,MAAM,SAAS,WAAW,oBAAoB,EAAE,KAAK;AAC3D,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,WAAO;AAAA,EACT;AACA,QAAM,cAAc,SAAS,MAAM,SAAS;AAC5C,QAAM,QAAQ,SAAS,UAAU,IAAI,SAAS,MAAM;AACpD,QAAM,MAAM,MAAM;AAClB,QAAM,cAAc,SAAS,UAAU,IAAI,aAAa,MAAM;AAC9D,QAAM,YAAY,YAAY;AAC9B,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,SAAS,KAAK,CAAC,EAAE,MAAM;AACvG,QAAM,kBAAkB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,kBAAkB,CAAC,EAAE,MAAM;AAC7G,aAAW,KAAK,SAAS,EAAE,QAAQ,eAAe,aAAa,WAAW,UAAU,WAAW,iBAAiB,KAAK;AACrH,WAAS,YAAY,SAAS,MAAM;AACpC,WAAS,YAAY,aAAa,MAAM;AACxC,MAAI,QAAQ,UAAU;AACtB,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,yBAAyB;AAC7B,IAAI,iBAAiB,yBAAyB,SAAS,wBAAwB,MAAM;AAGrF,IAAI,yBAAyB;AAC7B,IAAI,sBAAsB,yBAAyB,cAAc,wBAAwB,MAAM;AAG/F,IAAI;AACJ,SAAS,WAAW,UAAU;AAC5B,cAAY,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAAa,OAAM,GAAG,SAAS,SAAS,IAAI;AAC/D,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,SAAS;AAClD,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,cAAU,KAAK,SAAS,EAAE,QAAQA,QAAO,KAAK;AAAA,EAChD;AACA,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,yBAAyB;AAC7B,IAAI,cAAc,yBAAyB,MAAM,wBAAwB,MAAM;AAG/E,IAAI,yBAAyB;AAC7B,IAAI,mBAAmB,yBAAyB,WAAW,wBAAwB,MAAM;AAGzF,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI,yBAAyB;AAC7B,IAAI,oBAAoB,yBAAyB,YAAY,wBAAwB,MAAM;AAG3F,IAAI,oBAAoB,wBAAwB,UAAU;AAG1D,IAAI,yBAAyB;AAC7B,IAAI,mBAAmB,yBAAyB,WAAW,wBAAwB,MAAM;AAGzF,IAAI,0BAA0B;AAC9B,IAAI,mBAAmB,yBAAyB,YAAY,yBAAyB,MAAM;AAG3F,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM;AAAA,IACvC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,kBAAkB,MAAM,SAAS,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,aAAS;AACT,cAAU;AAAA,EACZ;AACA,QAAM,YAAY,OAAO,MAAM;AAC/B,uBAAqB,2BAA2B,OAAO,MAAM,SAAS;AACtE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACjG,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,SAAS,EAAE,QAAQ,YAAY,KAAK;AAAA,EACvD;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,iBAAiB,yBAAyB,SAAS,uBAAuB;AAG9E,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,gBAAc,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,IAAI,OAAO;AACjB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,eAAa,OAAO,EAAE,UAAU,WAAW,MAAM,0DAA0D,EAAE,QAAQ;AACrH,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AAC9G,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,MAAI,SAAS,eAAe,gBAAgB;AAC1C,UAAM,IAAI,MAAM,6CAA6C,SAAS,yCAAyC;AAAA,EACjH;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,cAAY,KAAK,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,cAAc,aAAa,QAAQ,UAAU,WAAW,SAAS,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,KAAK;AACpN,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM,CAAC,wBAAwB,CAAC;AACvE;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,gBAAgB;AACpB,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AACV,sBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,OAAO,MAAM,MAAM;AAAA,IACjG;AAAA,EACF;AACA,uBAAqB,2BAA2B,QAAQ,eAAe,OAAO,MAAM,MAAM;AAC1F,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,aAAa;AAC1G,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,MAAI,cAAc;AAClB,MAAI,OAAO,UAAU,WAAW;AAC9B,kBAAc,MAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAC7F,cAAU,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AAAA,EACvD;AACA,QAAM,MAAM,SAAS,WAAW,UAAU,SAAS;AACnD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,aAAS,SAAS,YAAY,KAAK;AAAA,EACrC;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,MAAI,OAAO,UAAU,WAAW;AAC9B,aAAS,YAAY,YAAY,MAAM;AAAA,EACzC;AACA,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM;AAAA,IACvC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AAAA,IACZ;AAAA,EACF;AACA,QAAM,YAAY,OAAO,MAAM;AAC/B,uBAAqB,2BAA2B,OAAO,MAAM,SAAS;AACtE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACjG,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,KAAK;AACtD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,SAAS,EAAE,QAAQ,YAAY,KAAK;AAAA,EACvD;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,iBAAiB,yBAAyB,SAAS,uBAAuB;AAG9E,IAAI;AAAA,CACH,SAAS,oBAAoB;AAC5B,qBAAmB,mBAAmB,aAAa,KAAK;AACxD,qBAAmB,mBAAmB,eAAe,KAAK;AAC5D,GAAG,sBAAsB,oBAAoB,CAAC,EAAE;AAChD,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,kBAAgB,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IACnD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,UAAU,KAAK,EAAE,IAAI;AACxE,QAAM,WAAW,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACrE,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,kBAAkB,SAAS,IAAI,CAAC,aAAa,SAAS,EAAE;AAC9D,QAAM,mBAAmB,SAAS,IAAI,CAAC,aAAa,SAAS,EAAE;AAC/D,QAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,eAAe,EAAE,MAAM;AAC9E,QAAM,oBAAoB,IAAI,WAAW,IAAI,WAAW,gBAAgB,EAAE,MAAM;AAChF,gBAAc,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,kBAAkB,mBAAmB,kBAAkB,OAAO,KAAK;AACtI,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI,0BAA0B;AAC9B,IAAI,kBAAkB,yBAAyB,UAAU,uBAAuB;AAGhF,IAAI,aAAa,wBAAwB,GAAG;AAG5C,SAAS,kBAAkB,UAAU,WAAW;AAC9C,QAAM,SAAS,IAAI,WAAW,SAAS,KAAK,OAAO,QAAQ,WAAW,CAAC;AACvE,QAAM,mBAAmB,OAAO;AAChC,QAAM,eAAe,OAAO;AAC5B,QAAM,kBAAkB,OAAO;AAC/B,QAAM,gBAAgB,OAAO;AAC7B,WAAS,KAAK,MAAM,SAAS;AAC7B,SAAO,EAAE,kBAAkB,cAAc,iBAAiB,cAAc;AAC1E;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK;AAAA,IACxB;AAAA,IACA;AAAA,IACA;AAAA,MACE;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,cAAc,eAAe,eAAe,IAAI;AACxD,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,UAAU,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACrD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,YAAY,UAAU,SAAS,UAAU,eAAe,cAAc,cAAc;AAC1F,QAAM,EAAE,kBAAkB,cAAc,iBAAiB,cAAc,IAAI,kBAAkB,UAAU,SAAS;AAChH,WAAS,KAAK,MAAM,eAAe;AACnC,WAAS,KAAK,MAAM,aAAa;AACjC,QAAM,wBAAwB,SAAS,WAAW,CAAC,YAAY,GAAG,SAAS,gBAAgB;AAC3F,SAAO;AACT;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX;AACF;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK;AAAA,IACxB;AAAA,IACA;AAAA,IACA;AAAA,MACE;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,cAAc,eAAe,gBAAgB,mBAAmB,IAAI;AAC5E,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,UAAU,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACrD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,YAAY,UAAU,SAAS,UAAU,eAAe,cAAc,gBAAgB,kBAAkB;AAC9G,QAAM,EAAE,kBAAkB,cAAc,iBAAiB,cAAc,IAAI,kBAAkB,UAAU,SAAS;AAChH,WAAS,KAAK,MAAM,eAAe;AACnC,QAAM,wBAAwB,SAAS,WAAW,CAAC,YAAY,GAAG,SAAS,gBAAgB;AAC3F,QAAM,qBAAqB,SAAS,WAAW,CAAC,GAAG,SAAS,aAAa;AACzE,SAAO,CAAC,uBAAuB,kBAAkB;AACnD;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK;AAAA,IACxB;AAAA,IACA;AAAA,IACA;AAAA,MACE;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,cAAc,eAAe,gBAAgB,aAAa,IAAI;AACtE,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,UAAU,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACrD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,YAAY,UAAU,SAAS,UAAU,eAAe,cAAc,gBAAgB,YAAY;AACxG,QAAM,EAAE,kBAAkB,cAAc,iBAAiB,cAAc,IAAI,kBAAkB,UAAU,SAAS;AAChH,WAAS,KAAK,MAAM,aAAa;AACjC,QAAM,wBAAwB,SAAS,WAAW,CAAC,YAAY,GAAG,SAAS,gBAAgB;AAC3F,QAAM,uBAAuB,SAAS,WAAW,CAAC,YAAY,GAAG,WAAW,eAAe;AAC3F,SAAO,CAAC,uBAAuB,oBAAoB;AACrD;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,kBAAkB,yBAAyB,UAAU,yBAAyB,MAAM;AAGxF,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,QAAQ,MAAM;AAAA,IAC7C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,IAAI;AACpB,QAAM,EAAE,OAAO,OAAO,SAAS,SAAS,IAAI;AAC5C,QAAM,MAAM,SAAS,WAAW,CAAC,GAAG,QAAQ,OAAO,KAAK,GAAG,KAAK;AAChE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,cAAc,SAAS,UAAU,IAAI,QAAQ,MAAM;AACzD,QAAM,YAAY,YAAY;AAC9B,aAAW,WAAW,OAAO,SAAS,UAAU,KAAK;AACrD,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,IAAI;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,KAAK,CAAC;AACd,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,YAAY,EAAE,QAAQ,EAAE,OAAO,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAAA,EAC9F;AACA,QAAM,QAAQ,OAAO,GAAG;AACxB,QAAM,QAAQ,OAAO,GAAG;AACxB,SAAO,QAAQ,CAAC,OAAO;AACrB,iBAAa,kBAAkB,OAAO,GAAG,OAAO,uDAAuD;AACvG,iBAAa,OAAO,UAAU,GAAG,OAAO,MAAM,uDAAuD;AAAA,EACvG,CAAC;AACD,QAAM,0BAA0B,CAAC;AACjC,QAAM,kBAAkB,OAAO,IAAI,CAAC,OAAO;AACzC,UAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAChG,4BAAwB,KAAK,SAAS;AACtC,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACtF,0BAAwB,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACvE,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK,MAAM,OAAO,MAAM;AAAA,IAC3C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,UAAU,cAAc,EAAE,IAAI;AACjF,QAAM,WAAW,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACrE,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,WAAO,MAAM;AAAA,MACX,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,UAAU,OAAO,eAAe,OAAO,EAAE,MAAM;AAAA,IACjE,CAAC;AAAA,EACH;AACA,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,QAAM,gBAAgB,SAAS,UAAU,IAAI,IAAI,MAAM;AACvD,QAAM,QAAQ,cAAc;AAC5B,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,kBAAkB,SAAS,IAAI,CAAC,aAAa,SAAS,EAAE;AAC9D,QAAM,mBAAmB,SAAS,IAAI,CAAC,aAAa,SAAS,EAAE;AAC/D,QAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,eAAe,EAAE,MAAM;AAC9E,QAAM,oBAAoB,IAAI,WAAW,IAAI,WAAW,gBAAgB,EAAE,MAAM;AAChF,YAAU,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,kBAAkB,mBAAmB,eAAe,KAAK;AACxH,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI,0BAA0B;AAC9B,IAAI,aAAa,yBAAyB,KAAK,uBAAuB;AAGtE,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK,MAAM,OAAO,MAAM;AAAA,IAC3C;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,OAAAU,OAAM,IAAI;AACrB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,YAAY,SAAS,UAAU,IAAIA,OAAM,MAAM,EAAE;AACvD,MAAI,UAAU;AACd,QAAM,SAAS;AACf,MAAI,cAAc;AAClB,MAAI,OAAO,UAAU,WAAW;AAC9B,kBAAc,MAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AACrF,cAAU,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AAAA,EACvD;AACA,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,SAAS;AAClD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAU,SAAS,WAAW,KAAK;AACnC,MAAI,OAAO,UAAU,WAAW;AAC9B,aAAS,YAAY,YAAY,MAAM;AAAA,EACzC;AACA,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,gBAAgB;AACpB,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AACV,sBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,OAAO,MAAM,MAAM;AAAA,IACjG;AAAA,EACF;AACA,uBAAqB,2BAA2B,QAAQ,eAAe,OAAO,MAAM,MAAM;AAC1F,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,aAAa;AAC1G,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,KAAK;AACtD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,aAAS,SAAS,YAAY,SAAS,IAAI,QAAQ,KAAK;AAAA,EAC1D;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,MAAM,OAAO,MAAM,IAAI;AAC5C,QAAM,SAAS,UAAU,OAAO,MAAM,OAAO,KAAK;AAClD,QAAM,MAAM,SAAS,WAAW,CAAC,OAAO,MAAM,GAAG,KAAK;AACtD,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,IAAI,MAAM;AAClB,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,iBAAiB,yBAAyB,SAAS,uBAAuB;AAG9E,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI,eAAe,wBAAwB,KAAK;AAGhD,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,uBAAqB,SAAS,KAAK,MAAM,gBAAgB,MAAM;AAAA,IAC7D;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAvB,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,CAAC,OAAO,WAAW,UAAU,WAAW,IAAI,OAAO;AACzD,QAAM,WAAW,CAAC,OAAO,WAAW,UAAU,WAAW;AACzD,MAAI,QAAQ,SAAS,UAAU,IAAI,OAAO,MAAM;AAChD,MAAI;AACJ,MAAI,MAAM,UAAU,WAAW;AAC7B,iBAAa,MAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAC5F,YAAQ,SAAS,UAAU,IAAI,WAAW,MAAM;AAAA,EAClD;AACA,QAAM,MAAM,MAAM;AAClB,QAAM,MAAM,SAAS,WAAW,UAAU,SAAS;AACnD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,WAAO;AAAA,EACT;AACA,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,qBAAmB,KAAK,OAAO,WAAW,UAAU,aAAa,WAAW,UAAU,eAAe,IAAI,GAAG,mBAAmB,IAAI,GAAG,KAAK;AAC3I,MAAI,cAAc,MAAM;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,8BAA4B,SAAS,KAAK,MAAM,uBAAuB,MAAM;AAAA,IAC3E;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAA,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,CAAC,OAAO,WAAW,UAAU,WAAW,IAAI,OAAO;AACzD,QAAM,WAAW,CAAC,OAAO,WAAW,UAAU,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,SAAS;AACnD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,WAAO;AAAA,EACT;AACA,MAAI,QAAQ,SAAS,UAAU,IAAI,OAAO,MAAM;AAChD,MAAI;AACJ,MAAI,MAAM,UAAU,WAAW;AAC7B,iBAAa,MAAM;AAAA,MACjB,SAAS;AAAA,MACT,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,OAAO,EAAE,OAAO,UAAU;AAAA,IAC5B,CAAC;AACD,YAAQ,SAAS,UAAU,IAAI,WAAW,MAAM;AAAA,EAClD;AACA,QAAM,MAAM,MAAM;AAClB,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,4BAA0B,KAAK,OAAO,WAAW,UAAU,aAAa,WAAW,UAAU,eAAe,IAAI,GAAG,mBAAmB,IAAI,GAAG,KAAK;AAClJ,MAAI,cAAc,MAAM;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,gBAAc,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACtD,MAAI,EAAE,MAAM,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,YAAY,IAAI,WAAW,IAAI,WAAW,IAAI,EAAE,MAAM;AAC5D,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACnE,cAAY,KAAK,WAAW,KAAK,QAAQ,eAAe,EAAE,MAAM,QAAQ,KAAK;AAC7E,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,OAAO,EAAE,OAAO,EAAE,MAAM,GAAG,SAAS,SAAS,CAAC;AAC9F,WAAS,YAAY,IAAI,MAAM;AAC/B,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,kBAAkB,MAAM;AAAA,IACvD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,kBAAkB,MAAM;AAC/B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,SAAS,WAAW,OAAO,IAAI;AACvC,QAAM,MAAM,SAAS,WAAW,OAAO,OAAO,OAAO,KAAK;AAC1D,QAAM,UAAU,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACtD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,SAAS,OAAO,IAAI,qBAAqB,eAAe,QAAQ,aAAa,UAAU;AAC9F,QAAM,cAAc,cAAc;AAClC,QAAM,mBAAmB;AACzB,QAAM,cAAc,OAAO,cAAc,WAAW,CAAC,WAAW,WAAW,WAAW,cAAc,IAAI,gBAAgB,IAAI,CAAC,GAAG,WAAW,gBAAgB;AAC3J,QAAM,YAAY,IAAI,WAAW,IAAI,WAAW,WAAW,EAAE,MAAM;AACnE,aAAW,SAAS,OAAO,aAAa,YAAY,aAAa,SAAS,SAAS,SAAS,WAAW,YAAY,QAAQ,KAAK;AAChI,SAAO;AACT;AACA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI,eAAe,wBAAwB,KAAK;AAGhD,IAAI,eAAe,wBAAwB,KAAK;AAGhD,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,kBAAgB,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IACnD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,QAAQ,IAAI;AAC7B,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,MAAM,SAAS,WAAW,OAAO,QAAQ,KAAK;AACpD,MAAI,aAAa,cAAc,KAAK,MAAM,GAAG;AAC3C,WAAO;AAAA,EACT;AACA,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAa,UAAS,YAAAQ,YAAW,IAAI,wBAAwB,gBAAgB,SAAS,SAAS,KAAK;AACjI,QAAM,cAAc,SAAS,UAAU,IAAI,QAAQ,MAAM;AACzD,QAAM,YAAY,YAAY;AAC9B,QAAM,cAAc,SAAS,UAAU,IAAI,QAAQ,MAAM;AACzD,QAAM,YAAY,YAAY;AAC9B,QAAM,eAAe,IAAI,WAAW,IAAI,WAAWR,QAAO,EAAE,MAAM;AAClE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,gBAAc,WAAW,WAAW,SAAS,QAAQ,QAAQ,WAAW,YAAY,WAAW,cAAcQ,aAAY,KAAK;AAC9H,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,YAAY,MAAM;AAAA,IACjD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,WAAW,GAAG,IAAI,GAAG,GAAG,IAAI;AACpC,QAAM,cAAc,SAAS,UAAU,IAAI,UAAU,MAAM,EAAE;AAC7D,QAAM,MAAM,SAAS,UAAU,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,MAAM,SAAS,UAAU,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,MAAM,SAAS,WAAW,GAAG,OAAO,GAAG,KAAK;AAClD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,QAAQ,UAAU,MAAM;AAC9B,QAAM,QAAQ,GAAG,MAAM;AACvB,QAAM,SAAS,UAAU,KAAK,QAAQ,KAAK,UAAU,IAAI,IAAI,aAAa,cAAc,GAAG,MAAM,MAAM,CAAC,CAAC;AACzG,aAAW,aAAa,KAAK,KAAK,QAAQ,KAAK;AAC/C,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK,MAAM,SAAS,MAAM,CAAC,UAAU,QAAQ,CAAC;AACrE;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,EAAE,EAAE,IAAI;AAC7C,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,MAAI,aAAa,cAAc,IAAI,KAAK,MAAM,GAAG;AAC/C,WAAO;AAAA,EACT;AACA,YAAU,KAAK,KAAK;AACpB,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC7C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,OAAO,GAAG,OAAO,EAAE,IAAI,EAAE,IAAI;AAClE,QAAM,MAAM,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AAClD,QAAM,MAAM,SAAS,WAAW,OAAO,OAAO,OAAO,KAAK;AAC1D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,WAAW,OAAO,MAAM;AAC9B,QAAM,QAAQ,aAAa,cAAc,OAAO,KAAK,IAAI;AACzD,MAAI,aAAa,cAAc,IAAI,KAAK,MAAM,GAAG;AAC/C,WAAO;AAAA,EACT;AACA,YAAU,KAAK,OAAO,UAAU,KAAK;AACrC,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAS,IAAI;AACjC,QAAM,QAAQ,aAAa,cAAc,UAAU;AACnD,QAAM,mBAAmB,CAAC,CAAC,GAAG,CAAC,CAAC;AAChC,mBAAiB,KAAK,GAAG,QAAQ;AACjC,WAAS,KAAK,IAAI,WAAW,QAAQ,KAAK,EAAE,MAAM,QAAQ,EAAE,IAAI;AAC9D,qBAAiB,KAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAC9B;AACA,QAAM,UAAU,aAAa,WAAW;AAAA,IACtC,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO,EAAE,UAAU,kBAAkB,eAAe,EAAE;AAAA,EACxD,CAAC;AACD,QAAM,sBAAsB,qBAAqB,YAAY,QAAQ,OAAO,YAAY,OAAO,KAAK;AACpG,QAAM,oCAAoC,qBAAqB,YAAY,oBAAoB,QAAQ,WAAW,QAAQ,KAAK;AAC/H,QAAM,eAAe,qBAAqB,oBAAoB,QAAQ,OAAO,YAAY,OAAO,KAAK;AACrG,QAAM,gBAAgB,EAAE,GAAG,QAAQ;AACnC,QAAM,eAAe,EAAE,OAAO,oBAAoB;AAClD,QAAM,kBAAkB,SAAS,EAAE,QAAQ,eAAe,SAAS,UAAU,OAAO,aAAa,CAAC;AAClG,QAAM,kBAAkB,EAAE,GAAG,gBAAgB;AAC7C,QAAM,iBAAiB,EAAE,MAAM,kCAAkC;AACjE,QAAM,WAAW,WAAW,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,eAAe,CAAC;AACjG,QAAM,sBAAsB,EAAE,GAAG,SAAS;AAC1C,QAAM,qBAAqB,EAAE,OAAO,aAAa;AACjD,QAAM,SAAS,SAAS,EAAE,QAAQ,qBAAqB,SAAS,UAAU,OAAO,mBAAmB,CAAC;AACrG,WAAS,YAAY,QAAQ,MAAM;AACnC,WAAS,YAAY,gBAAgB,MAAM;AAC3C,WAAS,YAAY,SAAS,MAAM;AACpC,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,4BAA0B,SAAS,KAAK,MAAM,uBAAuB,UAAU;AAAA,IAC7E;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,QAAM,EAAE,SAAS,QAAQ,YAAY,aAAa,IAAI;AACtD,QAAM,eAAe,QAAQ,MAAM;AACnC,QAAM,OAAO,QAAQ,MAAM;AAC3B,QAAM,YAAY,SAAS,SAAS,WAAW,MAAM,EAAE;AACvD,QAAM,wBAAwB,CAAC,eAAe,WAAW,IAAI;AAC7D,QAAM,YAAY,SAAS,UAAU,IAAI,QAAQ,MAAM,EAAE;AACzD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,iBAAiB,SAAS,UAAU,IAAI,aAAa,MAAM,EAAE;AACnE,QAAM,gBAAgB,SAAS,WAAW,uBAAuB,QAAQ,KAAK;AAC9E,QAAM,kBAAkB,SAAS,UAAU,IAAI,cAAc,MAAM,EAAE;AACrE,QAAM,eAAe,SAAS,WAAW,sBAAsB,MAAM,GAAG,CAAC,GAAG,OAAO,KAAK;AACxF,QAAM,iBAAiB,SAAS,UAAU,IAAI,aAAa,MAAM,EAAE;AACnE,QAAM,oBAAoB,SAAS,WAAW,CAAC,SAAS,GAAG,MAAM;AACjE,QAAM,sBAAsB,SAAS,UAAU,IAAI,kBAAkB,MAAM,EAAE;AAC7E,QAAM,kBAAkB,SAAS,WAAW,CAAC,YAAY,GAAG,QAAQ,KAAK;AACzE,QAAM,oBAAoB,SAAS,UAAU,IAAI,gBAAgB,MAAM,EAAE;AACzE,QAAM,kBAAkB,SAAS,WAAW,CAAC,CAAC,GAAG,OAAO;AACxD,QAAM,oBAAoB,SAAS,UAAU,IAAI,gBAAgB,MAAM,EAAE;AACzE,QAAM,aAAa,wBAAwB,WAAW,UAAU,SAAS,OAAO,QAAQ,cAAc,WAAW,MAAM,gBAAgB,iBAAiB,gBAAgB,qBAAqB,mBAAmB,iBAAiB;AACjO,QAAM,uBAAuB,SAAS,SAAS,gBAAgB,MAAM;AACrE,MAAI;AACJ,UAAQ,qBAAqB;AAAA,SACtB,GAAG;AACN,yBAAmB,qBAAqB,gDAAgD,qBAAqB,EAAE;AAC/G;AAAA,IACF;AAAA,SACK,GAAG;AACN,yBAAmB,qBAAqB,gDAAgD,qBAAqB,IAAI,qBAAqB,EAAE;AACxI;AAAA,IACF;AAAA,SACK;AACH,yBAAmB,qBAAqB,kDAAkD,qBAAqB,IAAI,qBAAqB,IAAI,qBAAqB,EAAE;AACnK;AAAA;AAEA,yBAAmB;AAAA;AAEvB,WAAS,YAAY,gBAAgB,MAAM;AAC3C,MAAI,kBAAkB;AACpB,aAAS,YAAY,cAAc,MAAM;AACzC,aAAS,YAAY,aAAa,MAAM;AACxC,aAAS,YAAY,kBAAkB,MAAM;AAC7C,aAAS,YAAY,gBAAgB,MAAM;AAC3C,UAAM,IAAI,MAAM,gBAAgB;AAAA,EAClC;AACA,MAAI,iBAAiB;AACrB,MAAI,gBAAgB;AACpB,MAAI,eAAe,sBAAsB,IAAI;AAC3C,qBAAiB,OAAO;AAAA,MACtB,QAAQ,EAAE,GAAG,cAAc;AAAA,MAC3B,OAAO,EAAE,OAAO,GAAG,MAAM,CAAC,YAAY,IAAI,EAAE;AAAA,MAC5C,SAAS;AAAA,IACX,CAAC;AACD,oBAAgB,OAAO;AAAA,MACrB,QAAQ,EAAE,GAAG,aAAa;AAAA,MAC1B,OAAO,EAAE,OAAO,GAAG,MAAM,WAAW;AAAA,MACpC,SAAS;AAAA,IACX,CAAC;AACD,aAAS,YAAY,cAAc,MAAM;AACzC,aAAS,YAAY,aAAa,MAAM;AAAA,EAC1C;AACA,SAAO,CAAC,gBAAgB,eAAe,mBAAmB,eAAe;AAC3E;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,sBAAoB,SAAS,KAAK,MAAM,eAAe,MAAM;AAAA,IAC3D;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,QAAM,EAAE,cAAc,YAAY,SAAS,IAAI;AAC/C,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM;AAAA,UACV,aAAa,OAAO;AAAA,EAC5B;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,UACV,WAAW,OAAO;AAAA,EAC1B;AACA,MAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,UAAM,IAAI,MAAM,sDAAsD,SAAS,OAAO;AAAA,EACxF;AACA,QAAM,iBAAiB,SAAS,UAAU,IAAI,aAAa,MAAM,EAAE;AACnE,QAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAM,aAAa,SAAS,UAAU,IAAI,SAAS,MAAM,EAAE;AAC3D,QAAM,MAAM,aAAa,MAAM;AAC/B,QAAM,aAAa,aAAa,cAAc,SAAS,KAAK;AAC5D,QAAM,aAAa,SAAS,WAAW,CAAC,KAAK,UAAU,GAAG,aAAa,KAAK;AAC5E,QAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAM,cAAc,SAAS,WAAW,CAAC,UAAU,GAAG,SAAS,KAAK;AACpE,QAAM,gBAAgB,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AACjE,QAAM,kBAAkB,SAAS,WAAW,CAAC,CAAC,GAAG,OAAO;AACxD,QAAM,oBAAoB,SAAS,UAAU,IAAI,gBAAgB,MAAM,EAAE;AACzE,oBAAkB,gBAAgB,cAAc,YAAY,KAAK,cAAc,eAAe,iBAAiB;AAC/G,QAAM,uBAAuB,SAAS,SAAS,gBAAgB,MAAM;AACrE,MAAI;AACJ,UAAQ,qBAAqB;AAAA,SACtB,GAAG;AACN,yBAAmB,qBAAqB,yDAAyD,qBAAqB,IAAI,qBAAqB,EAAE;AACjJ;AAAA,IACF;AAAA,SACK,GAAG;AACN,yBAAmB,qBAAqB,8CAA8C,qBAAqB,IAAI,qBAAqB,EAAE;AACtI;AAAA,IACF;AAAA,SACK;AACH,yBAAmB,qBAAqB,qDAAqD;AAC7F;AAAA,SACG,GAAG;AACN,YAAM,mBAAmB,MAAM,KAAK,SAAS,SAAS,WAAW,MAAM,CAAC,GAAG,oBAAoB,MAAM,KAAK,SAAS,SAAS,YAAY,MAAM,CAAC;AAC/I,yBAAmB,qBAAqB,gDAAgD,kBAAkB,iBAAiB;AAC3H;AAAA,IACF;AAAA,SACK,GAAG;AACN,YAAM,mBAAmB,MAAM,KAAK,SAAS,SAAS,WAAW,MAAM,CAAC,GAAG,oBAAoB,MAAM,KAAK,SAAS,SAAS,YAAY,MAAM,CAAC;AAC/I,yBAAmB,qBAAqB,gDAAgD,kBAAkB,iBAAiB;AAC3H;AAAA,IACF;AAAA;AAEE,yBAAmB;AAAA;AAEvB,WAAS,YAAY,gBAAgB,MAAM;AAC3C,MAAI,kBAAkB;AACpB,aAAS,YAAY,WAAW,MAAM;AACtC,aAAS,YAAY,YAAY,MAAM;AACvC,UAAM,IAAI,MAAM,gBAAgB;AAAA,EAClC;AACA,SAAO,CAAC,YAAY,WAAW;AACjC;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,+BAA6B,SAAS,KAAK,MAAM,0BAA0B,MAAM;AAAA,IAC/E;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,uBAAuB,MAAM,QAAQ;AAC5C,QAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,QAAM,aAAa,QAAQ,MAAM;AACjC,QAAM,iBAAiB,SAAS,SAAS,WAAW,QAAQ,aAAa,GAAG,UAAU,EAAE;AACxF,QAAM,uBAAuB,aAAa,IAAI,iBAAiB,IAAI;AACnE,QAAM,aAAa;AACnB,MAAI,aAAa,GAAG;AAClB,UAAM,IAAI,MAAM,qBAAqB,wDAAwD,CAAC;AAAA,EAChG;AACA,QAAM,cAAc,KAAK,MAAM,MAAM;AACrC,cAAY,KAAK;AACjB,QAAM,SAAS,SAAS,UAAU,IAAI,KAAK,MAAM,EAAE;AACnD,QAAM,YAAY,SAAS,UAAU,IAAI,QAAQ,MAAM,EAAE;AACzD,QAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAM,SAAS,SAAS,WAAW,aAAa,KAAK,KAAK;AAC1D,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,kBAAkB,SAAS,WAAW,CAAC,CAAC,GAAG,OAAO;AACxD,QAAM,oBAAoB,SAAS,UAAU,IAAI,gBAAgB,MAAM,EAAE;AACzE,6BAA2B,QAAQ,SAAS,KAAK,QAAQ,KAAK,MAAM,IAAI,WAAW,cAAc,UAAU,mBAAmB,QAAQ,CAAC;AACvI,QAAM,uBAAuB,SAAS,SAAS,gBAAgB,MAAM;AACrE,MAAI;AACJ,UAAQ,qBAAqB;AAAA,SACtB,GAAG;AACN,yBAAmB,qBAAqB,wDAAwD;AAChG;AAAA,IACF;AAAA,SACK,GAAG;AACN,yBAAmB,qBAAqB,6DAA6D;AACrG;AAAA,IACF;AAAA,SACK;AACH,yBAAmB,qBAAqB,yDAAyD,qBAAqB,IAAI,qBAAqB,EAAE;AACjJ;AAAA,SACG;AACH,yBAAmB,qBAAqB,uDAAuD,qBAAqB,IAAI,qBAAqB,IAAI,qBAAqB,EAAE;AACxK;AAAA;AAEA,yBAAmB;AAAA;AAEvB,WAAS,YAAY,gBAAgB,MAAM;AAC3C,MAAI,kBAAkB;AACpB,aAAS,YAAY,OAAO,MAAM;AAClC,UAAM,IAAI,MAAM,gBAAgB;AAAA,EAClC;AACA,SAAO;AACT;AAGA,SAAS,mBAAmB,MAAM;AAChC,SAAO,uBAAuB,MAAM,IAAI;AAC1C;AACA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,kBAAkB,MAAM;AAC/B,SAAO,uBAAuB,MAAM,KAAK;AAC3C;AACA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,iBAAiB,KAAK,IAAI;AAClC,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACzD,QAAM,aAAa,qBAAqB,iBAAiB,GAAG,iBAAiB,KAAK;AAClF,QAAM,QAAQ,IAAI,MAAM,EAAE,MAAM,MAAM,EAAE,KAAK,CAAC;AAC9C,QAAMrB,QAAO,EAAE,MAAM,MAAM;AAC3B,SAAO,WAAW,IAAI,CAAC,OAAO;AAC5B,UAAM,aAAa,CAAC,GAAGA,KAAI;AAC3B,eAAW,SAAS;AACpB,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,MAAM,WAAW,GAAG,SAAS,SAAS,CAAC;AAC9F,UAAM,UAAU;AAChB,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI,gBAAgB,wBAAwB,MAAM;AAGlD,IAAI,0BAA0B;AAC9B,IAAI,2BAA2B,yBAAyB,mBAAmB,uBAAuB;AAGlG,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAAuB,OAAM,IAAI;AAClB,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,WAAS,KAAKA,QAAO,SAAS,EAAE,QAAQ,KAAK;AAC7C,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,qBAAmB,SAAS,KAAK,MAAM,cAAc,MAAM;AAAA,IACzD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,KAAK,SAAAV,UAAS,WAAW,SAAS,cAAc,aAAa,eAAe,IAAI;AAC/F,QAAM,EAAE,kBAAkB,YAAY,YAAY,WAAW,eAAe,OAAO,QAAQ,KAAK,MAAM,SAAS,SAAS,IAAI,mBAAmB,UAAU,EAAE,OAAO,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AACpP,MAAI;AACJ,MAAI,YAAY;AACd,aAAS,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAAA,EACtF,WAAW,aAAa,eAAe;AACrC,iBAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,yCAAyC,EAAE,MAAM,QAAQ;AACxG,UAAMb,QAAO,mBAAmB,gBAAgB,QAAQ,MAAM,QAAQ;AACtE,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,MAAAA,MAAK,EAAE,CAAC;AAC1F,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC5F,aAAS,YAAY,OAAO,MAAM;AAAA,EACpC,OAAO;AACL,UAAM,MAAM,SAAS,WAAW,kBAAkB,SAAS;AAC3D,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,EAAE,KAAK,CAAC,EAAE,MAAM;AAChG,UAAM,aAAa,IAAI,WAAW,IAAI,WAAW,MAAM,EAAE,MAAM;AAC/D,UAAM,WAAW,IAAI,WAAW,IAAI,WAAW,IAAI,EAAE,MAAM;AAC3D,UAAM,eAAe,IAAI,WAAW,IAAI,WAAW,QAAQ,EAAE,MAAM;AACnE,UAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,gBAAgB,EAAE,MAAM;AAC/E,UAAM,kBAAkB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,gBAAgB,CAAC,EAAE,MAAM;AAC3G,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,qBAAiB,KAAK,eAAe,EAAE,MAAM,QAAQ,YAAY,UAAU,cAAc,kBAAkB,iBAAiB,iBAAiB,QAAQ,KAAK;AAC1J,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AACzF,aAAS,YAAY,IAAI,MAAM;AAAA,EACjC;AACA,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,WAAW,IAAI;AAC7B,QAAM,EAAE,WAAW,aAAa,SAAS,UAAU,WAAW,UAAU,uBAAuB,IAAI;AACnG,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,QAAQ,YAAY,IAAI,iBAAiB,OAAO,aAAa,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB;AAChJ,QAAM,YAAY,SAAS,WAAW,CAAC,OAAO,MAAM,GAAG,QAAQ;AAC/D,QAAM,gBAAgB,SAAS,UAAU,IAAI,UAAU,MAAM;AAC7D,gBAAc,cAAc;AAC5B,QAAM,kBAAkB,SAAS,WAAW,WAAW,OAAO,OAAO;AACrE,QAAM,sBAAsB,SAAS,mBAAmB,eAAe;AACvE,sBAAoB,IAAI,YAAY;AACpC,SAAO,CAAC,WAAW,eAAe;AACpC;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,UAAU,IAAI;AACrC,QAAM,EAAE,UAAU,IAAI;AACtB,QAAM,YAAY,SAAS,SAAS,OAAO,MAAM;AACjD,QAAM,gBAAgB,SAAS,SAAS,UAAU,MAAM;AACxD,QAAM,CAAC,SAAS,QAAQ,KAAK,IAAI,gBAAgB,WAAW,cAAc,IAAI,SAAS;AACvF,QAAMqB,cAAa,OAAO;AAC1B,QAAM,aAAa,SAAS,WAAW,CAACA,aAAY,CAAC,GAAG,OAAO;AAC/D,QAAM,iBAAiB,SAAS,mBAAmB,UAAU;AAC7D,iBAAe,IAAI,OAAO;AAC1B,QAAM,YAAY,SAAS,WAAW,CAACA,WAAU,GAAG,QAAQ;AAC5D,QAAM,gBAAgB,SAAS,UAAU,IAAI,UAAU,MAAM;AAC7D,gBAAc,cAAc;AAC5B,QAAM,WAAW,SAAS,WAAW,CAAC,CAAC,GAAG,OAAO;AACjD,QAAM,eAAe,SAAS,mBAAmB,QAAQ;AACzD,eAAa,IAAI,KAAK;AACtB,SAAO,CAAC,YAAY,WAAW,QAAQ;AACzC;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,MAAM;AACrC,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,WAAW,IAAI;AACvB,QAAM,YAAY,SAAS,SAAS,OAAO,MAAM;AACjD,QAAM,SAAS,2BAA2B,WAAW,UAAU;AAC/D,QAAM,MAAM,SAAS,WAAW,OAAO,OAAO,OAAO;AACrD,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,IAAI,MAAM;AAClB,SAAO;AACT;AACA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,aAAa,yBAAyB,KAAK,uBAAuB;AAGtE,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM;AAAA,IACvC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,gBAAgB;AACpB,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AACV,sBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,OAAO,MAAM,MAAM;AAAA,IACjG;AAAA,EACF;AACA,uBAAqB,2BAA2B,OAAO,eAAe,OAAO,MAAM,MAAM;AACzF,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,aAAa;AAC1G,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,KAAK;AACtD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,YAAY,SAAS,IAAI,QAAQ,KAAK;AAAA,EACzD;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,WAAW,IAAI,MAAM,EAAE,MAAM,MAAM;AACzC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,EAAE,MAAM,MAAM,KAAK;AAAA,EACpC;AACA,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,QAAQ,EAAE,MAAM;AACpE,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,WAAS,KAAK,aAAa,EAAE,MAAM,QAAQ,eAAe,SAAS,QAAQ,SAAS,IAAI,QAAQ,KAAK;AACrG,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,IAAI,QAAQ,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACpD,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,cAAc,EAAE,MAAM,MAAM;AAClC,cAAY,YAAY,SAAS,KAAK;AACtC,QAAM,YAAY,SAAS,WAAW,aAAa,EAAE,KAAK;AAC1D,QAAM,cAAc,SAAS,UAAU,IAAI,UAAU,MAAM,EAAE;AAC7D,QAAM,aAAa,SAAS,WAAW,aAAa,OAAO;AAC3D,QAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,WAAS,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,GAAG,QAAQ,aAAa,YAAY;AAClG,SAAO,CAAC,WAAW,UAAU;AAC/B;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,kBAAgB,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IACnD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,WAAW,IAAI;AACtC,QAAM,EAAE,eAAe,UAAU,WAAW,YAAY,IAAI;AAC5D,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,WAAW,QAAQ,IAAI,eAAe,OAAO,cAAc,CAAC,aAAa,UAAU;AAC1F,QAAM,WAAW;AAAA,IACf;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,QAAM,eAAe,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,OAAO,KAAK,CAAC,EAAE,MAAM;AACpG,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,QAAQ,CAAC,EAAE,MAAM;AACjG,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,KAAK;AACtD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,YAAY,SAAS,UAAU,IAAI,OAAO,MAAM;AACtD,QAAM,UAAU,UAAU;AAC1B,QAAM,iBAAiB,SAAS,UAAU,IAAI,WAAW,MAAM;AAC/D,QAAM,eAAe,eAAe;AACpC,QAAM,sBAAsB,kBAAkB,YAAY,IAAI;AAC9D,MAAI;AACJ,UAAQ;AAAA,SACD;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA;AAEA,mBAAa;AACb;AAAA;AAEJ,gBAAc,SAAS,cAAc,WAAW,MAAM,KAAK,GAAG,OAAO,WAAW,UAAU,aAAa,YAAY,aAAa,cAAc,OAAO,MAAM,SAAS,GAAG,eAAe,SAAS,SAAS,GAAG,qBAAqB,YAAY,WAAW,KAAK;AAC5P,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,EAAE,KAAK,IAAI;AACf,MAAI,OAAO,GAAG;AACZ,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,aAAa,MAAM,MAAM;AAC/B,QAAM,OAAO,MAAM,MAAM;AACzB,QAAM,WAAW,IAAI,MAAM,OAAO,CAAC;AACnC,MAAI,WAAW;AACf,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,QAAI,OAAO,MAAM;AACf,eAAS,cAAc,MAAM,MAAM;AAAA,IACrC;AAAA,EACF;AACA,QAAM,OAAO,IAAI,MAAM,UAAU;AACjC,QAAM,QAAQ,IAAI,MAAM,IAAI,EAAE,KAAK,CAAC;AACpC,QAAMrB,QAAO,MAAM,MAAM,MAAM;AAC/B,EAAAA,MAAK,QAAQ;AACb,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAM,QAAQ;AACd,SAAK,MAAM,OAAO,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,OAAO,EAAE,OAAO,MAAAA,MAAK,GAAG,SAAS,SAAS,CAAC;AAAA,EACvF;AACA,SAAO,KAAK,IAAI,CAAC,EAAE,QAAQ,MAAM,OAAO,EAAE,QAAQ,OAAO,OAAO,SAAS,EAAE;AAC7E;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,IAAI;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,KAAK,CAAC;AACd,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB;AAAA,EACnB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,gBAAgB,gBAAgB;AACzC,iBAAe,YAAY;AAC7B;AAGA,IAAI,OAAO,IAAI;AACf,KAAK;AAAA,EACH;AAAA,EACA,YAAY,YAAY,SAAS,IAAI,WAAW;AAAA,IAC9C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC,CAAC;AACJ;AACA,KAAK,aAAa,gCAAgC,YAAY;AAC5D,MAAI,KAAK,IAAI,SAAS,GAAG;AACvB,WAAO;AAAA,EACT;AACA,MAAI;AACF,QAAI,eAAe,EAAE,MAAM,YAAY,IAAI,kBAAkB,CAAC,CAAC;AAC/D,WAAO,YAAY,SAAS,IAAI,WAAW;AAAA,MACzC;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF,CAAC,CAAC;AAAA,EACJ,SAAS,IAAP;AACA,WAAO;AAAA,EACT;AACF,CAAC;AAGD,IAAI,iCAAiC,QAAQ,wCAAwC,CAAC;AACtF,IAAI,gDAAgD,QAAQ,+CAA+C,CAAC;AAC5G,IAAI,qBAAqB,QAAQ,0BAA0B,CAAC;AAC5D,IAAI,0BAA0B,+BAA+B,WAAW;AACxE,IAAI,cAAc,mBAAmB,WAAW;AAChD,IAAI,cAAc,cAAc,cAAc;AAAA,EAC5C,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,OAAO;AACZ,SAAK,mBAAmB;AACxB,SAAK,KAAK,KAAK,qBAAqB,YAAY;AAChD,yBAAqB,KAAK,KAAK,KAAK,gBAAgB;AACpD,SAAK,YAAY,IAAI,YAAY,MAAM,OAAO,CAAC;AAAA,EACjD;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,UAAM,SAAS,EAAE,IAAI,KAAK,mBAAmB;AAC7C,SAAK,KAAK,QAAQ,QAAQ,OAAO,OAAO,CAAC;AACzC,WAAO;AAAA,EACT;AAAA,EACA,aAAa;AACX,WAAO,KAAK,UAAU,WAAW;AAAA,EACnC;AAAA,EACA,MAAM,KAAK,GAAG;AACZ,UAAM,QAAQ,aAAa,IAAI;AAC/B,MAAE;AACF,UAAM,WAAW,aAAa,IAAI,IAAI;AACtC,WAAO,EAAE,SAAS;AAAA,EACpB;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,UAAM,KAAK,KAAK;AAChB,QAAI,UAAU,UAAU;AACtB,YAAM,cAAc;AACpB,WAAK,UAAU,IAAI,QAAQ,EAAE,IAAI,aAAa,OAAO,OAAO,cAAc,MAAM,SAAS,CAAC;AAC1F;AAAA,IACF;AACA,UAAMA,QAAO,aAAa,cAAc,KAAK;AAC7C,UAAM,WAAWA,QAAO,aAAa,gBAAgB,KAAK;AAC1D,UAAM,eAAe,KAAK,KAAK,QAAQ,QAAQ;AAC/C,SAAK,UAAU,IAAI,QAAQ,EAAE,IAAI,cAAc,OAAO,OAAO,SAAS,CAAC;AACvE,SAAK,KAAK,KAAK,eAAe,IAAIA,OAAM,YAAY;AACpD,QAAI,UAAU,MAAM;AAClB,WAAK,KAAK,OAAO,IAAI,IAAI,WAAW,OAAO,QAAQ,OAAO,YAAY,QAAQ,GAAG,YAAY;AAAA,IAC/F;AAAA,EACF;AAAA,EACA,MAAM,KAAK,QAAQ;AACjB,WAAO,KAAK,SAAS,MAAM;AAAA,EAC7B;AAAA,EACA,SAAS,QAAQ,OAAO,KAAK;AAC3B,UAAM,EAAE,cAAc,OAAO,OAAO,YAAY,IAAI,KAAK,UAAU,IAAI,MAAM;AAC7E,QAAI,UAAU,UAAU;AACtB,WAAK,SAAS,QAAQ,UAAU,OAAO,OAAO,QAAQ,OAAO,YAAY,SAAS;AAChF,eAAO;AAAA,MACT;AACA,aAAO,YAAY,MAAM,OAAO,GAAG;AAAA,IACrC;AACA,YAAQ,SAAS;AACjB,UAAM,OAAO,aAAa,cAAc,KAAK;AAC7C,UAAM,mBAAmB,aAAa,gBAAgB,KAAK;AAC3D,UAAM,QAAQ,KAAK,KAAK,OAAO,MAAM,eAAe,QAAQ,kBAAkB,eAAe,MAAM,gBAAgB;AACnH,WAAO,qBAAqB,MAAM,QAAQ,KAAK;AAAA,EACjD;AAAA,EACA,YAAY,QAAQ,QAAQ,OAAO;AACjC,QAAI,KAAK,UAAU,IAAI,MAAM,GAAG;AAC9B,YAAM,OAAO,KAAK,UAAU,IAAI,MAAM;AACtC,WAAK;AACL,UAAI,CAAC,SAAS,KAAK,WAAW,GAAG;AAC/B,eAAO;AAAA,MACT;AACA,WAAK,KAAK,MAAM,KAAK,YAAY;AACjC,WAAK,KAAK,KAAK,YAAY,KAAK,EAAE;AAClC,WAAK,UAAU,OAAO,MAAM;AAAA,IAC9B;AACA,WAAO;AAAA,EACT;AAAA,EACA,SAAS,QAAQ;AACf,QAAI,KAAK,UAAU,IAAI,MAAM,GAAG;AAC9B,YAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,aAAO,WAAW;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ;AACb,UAAM,OAAO,KAAK,UAAU,IAAI,MAAM;AACtC,QAAI,QAAQ,MAAM;AAChB,WAAK;AAAA,IACP;AAAA,EACF;AAAA,EACA,iBAAiB;AACf,WAAO;AAAA,EACT;AAAA,EACA,gBAAgB,QAAQ;AACtB,WAAO,KAAK,UAAU,IAAI,MAAM,EAAE;AAAA,EACpC;AAAA,EACA,UAAU;AACR,SAAK,KAAK,KAAK,QAAQ;AACvB,QAAI,aAAa,KAAK,MAAM;AAC1B,WAAK,KAAK,QAAQ,oBAAoB;AAAA,IACxC;AACA,SAAK,OAAO;AAAA,EACd;AAAA,EACA,SAAS;AACP,WAAO,EAAE,YAAY,MAAM;AAAA,EAC7B;AAAA,EACA,WAAW,OAAO,OAAO,cAAc;AACrC,QAAI;AACJ,QAAI,gBAAgB,MAAM;AACxB,eAAS,KAAK,MAAM,MAAM,OAAO,KAAK;AAAA,IACxC,OAAO;AACL,YAAM,KAAK,KAAK;AAChB,eAAS,EAAE,GAAG;AACd,WAAK,UAAU,IAAI,QAAQ,EAAE,IAAI,cAAc,OAAO,OAAO,UAAU,EAAE,CAAC;AAC1E,YAAMA,QAAO,aAAa,cAAc,KAAK;AAC7C,WAAK,KAAK,KAAK,eAAe,IAAIA,OAAM,YAAY;AAAA,IACtD;AACA,WAAO,EAAE,QAAQ,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,mBAAmB,EAAE,OAAO,OAAO,OAAO,GAAG;AAC3C,UAAM,UAAU,KAAK,KAAK,OAAO;AACjC,UAAM,EAAE,aAAa,IAAI,KAAK,UAAU,IAAI,MAAM;AAClD,UAAMA,QAAO,aAAa,cAAc,KAAK;AAC7C,YAAQ;AAAA,WACD;AACH,eAAO,IAAI,aAAa,SAAS,cAAcA,KAAI;AAAA,WAChD;AACH,eAAO,IAAI,WAAW,SAAS,cAAcA,KAAI;AAAA,WAC9C;AACH,eAAO,IAAI,WAAW,SAAS,cAAcA,KAAI;AAAA;AAEjD,cAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA;AAAA,EAE9C;AACF;AACA,SAAS,0BAA0B,MAAM;AACvC,SAAO,CAAC,SAAS,aAAa;AAC5B,iBAAa,MAAM,MAAM,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,CAAC,aAAa;AAC1E,UAAI,CAAC,SAAS,OAAO;AACnB,gBAAQ,IAAI,EAAE,uCAAuC,OAAO;AAAA,MAC9D;AACA,eAAS,YAAY,EAAE,KAAK,CAAC,WAAW;AACtC,oBAAY,YAAY,QAAQ,OAAO,EAAE,KAAK,CAAC,WAAW;AACxD,mBAAS,OAAO,UAAU,OAAO,MAAM;AAAA,QACzC,CAAC;AAAA,MACH,CAAC;AAAA,IACH,CAAC;AACD,WAAO,CAAC;AAAA,EACV;AACF;AACA,SAAS,oBAAoB,eAAe,kBAAkB,kBAAkB;AAC9E,MAAI,YAAY,MAAM;AACpB,WAAO;AAAA,EACT;AACA,MAAI,OAAO;AACX,MAAI,iBAAiB,kBAAkB;AACrC,WAAO;AAAA,EACT,WAAW,eAAe;AACxB,WAAO;AAAA,EACT;AACA,MAAI,eAAe,MAAM;AACvB,QAAI,YAAY,SAAS,MAAM;AAC7B,aAAO,YAAY;AAAA,IACrB;AAAA,EACF;AACA,SAAO,mBAAmB;AAC5B;AACA,eAAe,OAAO;AACpB,QAAM,CAAC,eAAe,gBAAgB,IAAI,MAAM,QAAQ,IAAI;AAAA,IAC1D,IAAI,EAAE,SAAS,uBAAuB;AAAA,IACtC,IAAI,EAAE,SAAS,8BAA8B;AAAA,EAC/C,CAAC;AACD,SAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,UAAM,gBAAgB,CAAC;AACvB,kBAAc,aAAa,CAAC,MAAM,WAAW;AAC3C,UAAI,KAAK,SAAS,YAAY,GAAG;AAC/B,cAAM,WAAW,8CAA8C,mBAAmB,QAAQ,OAAO,KAAK;AACtG,cAAM,OAAO,IAAI,KAAK,CAAC,QAAQ,GAAG,EAAE,MAAM,yBAAyB,CAAC;AACpE,eAAO,IAAI,gBAAgB,IAAI;AAAA,MACjC;AACA,UAAI,KAAK,SAAS,OAAO,GAAG;AAC1B,eAAO,oBAAoB,eAAe,kBAAkB,kBAAkB,OAAO,iBAAiB,MAAM;AAAA,MAC9G;AACA,aAAO,SAAS;AAAA,IAClB;AACA,QAAI,aAAa;AACf,oBAAc,kBAAkB,0BAA0B,oBAAoB,eAAe,kBAAkB,kBAAkB,OAAO,iBAAiB,EAAE,CAAC;AAAA,IAC9J;AACA,QAAI,cAAc;AAClB,kBAAc,UAAU,MAAM;AAC5B,UAAI,aAAa;AACf;AAAA,MACF;AACA,UAAI,aAAa;AACf;AAAA,MACF;AACA,oBAAc;AACd,YAAM,YAAY;AAClB,aAAO,EAAE,SAAS,UAAU,CAAC;AAAA,IAC/B;AACA,QAAI;AACJ,QAAI,oBAAoB,iBAAiB,YAAY,MAAM;AACzD,oBAAc,sBAAsB,IAAI,KAAK,CAAC,yCAAyC,wBAAwB,SAAS,CAAC,GAAG,EAAE,MAAM,kBAAkB,CAAC;AACvJ,aAAO,wBAAwB,aAAa;AAAA,IAC9C,OAAO;AACL,aAAO,YAAY,aAAa;AAAA,IAClC;AACA,SAAK,KAAK,CAAC,WAAW;AACpB,oBAAc;AACd,oBAAc;AACd,YAAM,iBAAiB;AACvB,aAAO,OAAO;AAAA,QACZ,MAAM,OAAO,MAAM,QAAQ,MAAM,CAAC,CAAC;AAAA,QACnC,sBAAsB,OAAO,MAAM,2BAA2B,MAAM,CAAC,QAAQ,CAAC;AAAA,QAC9E,iBAAiB,OAAO,MAAM,qBAAqB,UAAU,CAAC,CAAC;AAAA,QAC/D,gBAAgB,OAAO,MAAM,mBAAmB,MAAM;AAAA,UACpD;AAAA,UACA;AAAA,UACA;AAAA,QACF,CAAC;AAAA,QACD,aAAa,OAAO,MAAM,gBAAgB,gBAAgB,CAAC,QAAQ,CAAC;AAAA,QACpE,SAAS,OAAO,MAAM,WAAW,gBAAgB,CAAC,CAAC;AAAA,MACrD;AACA,cAAQ,EAAE,MAAM,OAAO,CAAC;AAAA,IAC1B,CAAC,EAAE,MAAM,MAAM;AAAA,EACjB,CAAC;AACH;AACA,SAAS,qBAAqB,SAAS,OAAO;AAC5C,UAAQ;AAAA,SACD;AACH,aAAO,IAAI,aAAa,OAAO;AAAA,SAC5B;AACH,aAAO,IAAI,WAAW,OAAO;AAAA,SAC1B;AACH,aAAO,IAAI,WAAW,OAAO;AAAA;AAE7B,YAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA;AAE9C;AACA,IAAI,kBAAkB;AAAA,EACpB;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,WAAW;AACf,IAAI,iBAAiB;AACrB,IAAI,cAAc,CAAC;AACnB,IAAI,cAAc;AAClB,IAAI,cAAc;AAClB,SAAS,YAAY,MAAM,mBAAmB,OAAO;AACnD,kBAAgB,mGAAmG;AACnH,MAAI,aAAa;AACf,UAAM,IAAI,MAAM,gIAAgI;AAAA,EAClJ;AACA,aAAW;AACX,gBAAc;AAChB;AACA,SAAS,aAAa,iBAAiB,mBAAmB,OAAO;AAC/D,MAAI,aAAa;AACf,UAAM,IAAI,MAAM,iIAAiI;AAAA,EACnJ;AACA,MAAI,OAAO,oBAAoB,UAAU;AACvC,qBAAiB;AAAA,EACnB,OAAO;AACL,kBAAc;AACd,UAAM,eAAe,gBAAgB,OAAO,CAAC,SAAS,YAAY,SAAS,IAAI;AAC/E,QAAI,aAAa,SAAS,GAAG;AAC3B,YAAM,IAAI,MAAM,2DAA2D,aAAa,KAAK,GAAG,gKAAgK;AAAA,IAClQ;AAAA,EACF;AACA,gBAAc;AAChB;AACA,IAAI,eAAe;AACnB,IAAI,qBAAqB;AACzB,SAAS,gBAAgB,YAAY;AACnC,iBAAe;AACjB;AACA,SAAS,kBAAkB;AACzB,MAAI,uBAAuB,IAAI;AAC7B,UAAM,IAAI,MAAM,+BAA+B;AAAA,EACjD;AACA,SAAO;AACT;AAGA,IAAI,WAAW;AAGf,IAAI,gBAAgB;AACpB,gBAAgB,QAAQ,YAAY;AAClC,QAAM,EAAE,KAAK,IAAI,MAAM,KAAK;AAC5B,SAAO,IAAI,YAAY,IAAI;AAC7B,GAAG,aAAa;AAGhB,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,qCAAqC,MAAM,EAAE;AAC/D,KAAK,aAAa,sBAAsB,MAAM,IAAI;AAClD,KAAK,aAAa,iCAAiC,MAAM,CAAC;AAC1D,KAAK,aAAa,8BAA8B,MAAM,EAAE;AACxD,KAAK,aAAa,qCAAqC,MAAM,KAAK;AAClE,KAAK,aAAa,4BAA4B,MAAM,KAAK;AACzD,KAAK,aAAa,qCAAqC,MAAM,GAAG;AAChE,KAAK,aAAa,2BAA2B,MAAM,KAAK;AACxD,KAAK,aAAa,kCAAkC,MAAM,KAAK;AAG/D,IAAI;AAAA,CACH,SAAS,eAAe;AACvB,gBAAc,cAAc,SAAS,KAAK;AAC1C,gBAAc,cAAc,SAAS,KAAK;AAC1C,gBAAc,cAAc,SAAS,KAAK;AAC1C,gBAAc,cAAc,SAAS,KAAK;AAC1C,gBAAc,cAAc,WAAW,KAAK;AAC5C,gBAAc,cAAc,aAAa,KAAK;AAC9C,gBAAc,cAAc,mBAAmB,KAAK;AACpD,gBAAc,cAAc,UAAU,KAAK;AAC3C,gBAAc,cAAc,gBAAgB,KAAK;AACjD,gBAAc,cAAc,iBAAiB,KAAK;AAClD,gBAAc,cAAc,eAAe,MAAM;AACjD,gBAAc,cAAc,wBAAwB,MAAM;AAC1D,gBAAc,cAAc,aAAa,MAAM;AAC/C,gBAAc,cAAc,SAAS,MAAM;AAC3C,gBAAc,cAAc,WAAW,MAAM;AAC7C,gBAAc,cAAc,SAAS,MAAM;AAC3C,gBAAc,cAAc,SAAS,MAAM;AAC3C,gBAAc,cAAc,2BAA2B,MAAM;AAC7D,gBAAc,cAAc,2BAA2B,MAAM;AAC/D,GAAG,iBAAiB,eAAe,CAAC,EAAE;AACtC,IAAI,OAAO;AACX,IAAI,wBAAwB;AAC5B,IAAI,wBAAwB;AAC5B,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,sBAAsB;AAC1B,IAAI,OAAO;AACX,IAAI,SAAS;AACb,IAAI,aAAa;AACjB,IAAI,WAAW;AACf,IAAI,eAAe;AACnB,IAAI,iBAAiB;AACrB,IAAI,qBAAqB;AACzB,IAAI,QAAQ;AACZ,IAAI,YAAY;AAChB,IAAI,cAAc;AAClB,IAAI,kBAAkB;AACtB,IAAI,eAAe;AACnB,IAAI,mBAAmB;AAAA;AAEvB,IAAI,qBAAqB;AAAA;AAAA;AAAA;AAIzB,IAAI,yBAAyB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAc7B,IAAI,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAMf,IAAI,eAAe;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAsBnB,IAAI,aAAa;AACjB,IAAI,iBAAiB;AACrB,IAAI,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAYX,IAAI,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAqBX;AAAA;AAAA;AAGJ,IAAI,SAAS;AACb,IAAI,aAAa;AAAA;AAAA;AAAA;AAIjB,SAAS,gBAAgB,KAAK,SAAS;AACrC,QAAM,kBAAkB,UAAU,yBAAyB;AAC3D,SAAO,UAAU;AAAA,iCACc;AAAA;AAAA,QAEzB,kBAAkB;AAAA;AAAA,MAEpB,kBAAkB;AAAA,aACX;AAAA;AAEb;AACA,SAAS,kBAAkB,MAAM,SAAS;AACxC,UAAQ;AAAA,SACD,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO,UAAU,aAAa;AAAA,SAC3B,aAAa;AAChB,aAAO,UAAU,eAAe;AAAA,SAC7B,aAAa;AAChB,aAAO,UAAU,qBAAqB;AAAA,SACnC,aAAa;AAChB,aAAO,UAAU,YAAY;AAAA,SAC1B,aAAa;AAChB,aAAO,UAAU,kBAAkB;AAAA,SAChC,aAAa;AAChB,aAAO,UAAU,mBAAmB;AAAA,SACjC,aAAa;AAChB,aAAO,UAAU,iBAAiB;AAAA,SAC/B,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO,UAAU,eAAe;AAAA,SAC7B,aAAa;AAChB,aAAO,UAAU,aAAa;AAAA,SAC3B,aAAa;AAChB,aAAO,gBAAgB,OAAO,OAAO;AAAA,SAClC,aAAa;AAChB,aAAO,gBAAgB,OAAO,OAAO;AAAA,SAClC,aAAa;AAChB,aAAO,UAAU,WAAW;AAAA,SACzB,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO;AAAA;AAEP,YAAM,IAAI,MAAM,cAAc,0BAA0B;AAAA;AAE9D;AAGA,IAAI;AAAA,CACH,SAAS,cAAc;AACtB,eAAa,aAAa,SAAS,KAAK;AACxC,eAAa,aAAa,UAAU,KAAK;AACzC,eAAa,aAAa,SAAS,KAAK;AACxC,eAAa,aAAa,UAAU,KAAK;AACzC,eAAa,aAAa,SAAS,KAAK;AACxC,eAAa,aAAa,SAAS,KAAK;AACxC,eAAa,aAAa,WAAW,KAAK;AAC1C,eAAa,aAAa,WAAW,KAAK;AAC1C,eAAa,aAAa,YAAY,KAAK;AAC3C,eAAa,aAAa,SAAS,KAAK;AACxC,eAAa,aAAa,iBAAiB,MAAM;AACjD,eAAa,aAAa,SAAS,MAAM;AACzC,eAAa,aAAa,UAAU,MAAM;AAC1C,eAAa,aAAa,WAAW,MAAM;AAC3C,eAAa,aAAa,eAAe,MAAM;AAC/C,eAAa,aAAa,WAAW,MAAM;AAC3C,eAAa,aAAa,SAAS,MAAM;AACzC,eAAa,aAAa,UAAU,MAAM;AAC1C,eAAa,aAAa,aAAa,MAAM;AAC7C,eAAa,aAAa,UAAU,MAAM;AAC1C,eAAa,aAAa,YAAY,MAAM;AAC5C,eAAa,aAAa,UAAU,MAAM;AAC1C,eAAa,aAAa,YAAY,MAAM;AAC9C,GAAG,gBAAgB,cAAc,CAAC,EAAE;AACpC,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,QAAQ;AAAA;AAAA;AAAA;AAIZ,IAAI,SAAS;AACb,IAAI,OAAO;AACX,IAAI,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAgBf,IAAI,OAAO;AACX,IAAI,SAAS;AACb,IAAI,UAAU;AACd,IAAI,OAAO;AAAA;AAEX,IAAI,eAAe;AACnB,IAAI,OAAO;AACX,IAAI,aAAa;AACjB,IAAI,iBAAiB;AAAA;AAAA;AAAA;AAIrB,IAAI,QAAQ;AACZ,IAAI,SAAS;AACb,IAAI,aAAa;AACjB,IAAI,YAAY;AAAA;AAAA;AAGhB,IAAI,SAAS;AACb,IAAI,WAAW;AACf,IAAI,OAAO;AACX,IAAI,QAAQ;AAAA;AAAA;AAAA;AAIZ,IAAI,QAAQ;AACZ,IAAI,UAAU;AACd,IAAI,QAAQ;AAAA;AAAA;AAAA;AAIZ,IAAI,UAAU;AACd,SAAS,iBAAiB,MAAM,SAAS;AACvC,UAAQ;AAAA,SACD,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO,UAAU,WAAW;AAAA,SACzB,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO,UAAU,iBAAiB;AAAA,SAC/B,YAAY;AACf,aAAO,UAAU,YAAY;AAAA,SAC1B,YAAY;AACf,aAAO,UAAU,aAAa;AAAA,SAC3B,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA;AAEP,YAAM,IAAI,MAAM,cAAc,0BAA0B;AAAA;AAE9D;AAGA,IAAI,cAAc,CAAC,cAAc;AAC/B,UAAQ;AAAA,SACD;AACH,aAAO;AAAA,SACJ;AACH,aAAO;AAAA,SACJ;AACH,aAAO;AAAA,SACJ;AACH,aAAO;AAAA;AAEP,YAAM,IAAI,MAAM,GAAG,uCAAuC;AAAA;AAEhE;AACA,SAAS,oBAAoB,aAAa,4BAA4B,OAAO,SAAS,OAAO,eAAe,GAAG;AAC7G,MAAI,gBAAgB,MAAM;AACxB,WAAO;AAAA,EACT;AACA,MAAI,sBAAsB;AAC1B,MAAI,gBAAgB,UAAU;AAC5B,0BAAsB,iBAAiB,YAAY,MAAM;AAAA,EAC3D,WAAW,gBAAgB,QAAQ;AACjC,0BAAsB,iBAAiB,YAAY,MAAM,MAAM;AAAA,EACjE,WAAW,gBAAgB,OAAO;AAChC,0BAAsB,iBAAiB,YAAY,KAAK,MAAM;AAAA,EAChE,WAAW,gBAAgB,SAAS;AAClC,0BAAsB,iBAAiB,YAAY,OAAO,MAAM;AAAA,EAClE,WAAW,gBAAgB,SAAS;AAClC,0BAAsB,kBAAkB,aAAa,OAAO,MAAM;AAAA,EACpE,WAAW,gBAAgB,WAAW;AACpC,0BAAsB,iBAAiB,YAAY,SAAS,MAAM;AAAA,EACpE,WAAW,gBAAgB,aAAa;AACtC,0BAAsB,iBAAiB,YAAY,WAAW,MAAM;AAAA,EACtE,OAAO;AACL,UAAM,IAAI,MAAM,cAAc,8DAA8D;AAAA,EAC9F;AACA,QAAM,cAAc,SAAS,IAAI;AACjC,QAAM,WAAW,YAAY,WAAW;AACxC,MAAI,uBAAuB;AAC3B,MAAI,2BAA2B;AAC7B,2BAAuB;AAAA,0BACD,yBAAyB,yBAAyB;AAAA;AAAA,UAElE;AAAA;AAAA,EAER,OAAO;AACL,2BAAuB;AAAA,0BACD,yBAAyB,yBAAyB;AAAA,UAClE;AAAA;AAAA,EAER;AACA,SAAO;AACT;AACA,SAAS,sBAAsB,SAAS,aAAa;AACnD,SAAO;AAAA,QACD,UAAU,mDAAmD;AAAA,QAC7D,cAAc,uCAAuC;AAAA;AAE7D;AAGA,SAAS,4BAA4B,YAAY,cAAc;AAC7D,MAAI,KAAK,IAAI,GAAG,UAAU,IAAI,GAAG;AAC/B,UAAM,IAAI,MAAM,0DAA0D;AAAA,EAC5E;AACA,QAAM,YAAY,WAAW;AAC7B,QAAM,QAAQ,WAAW,IAAI,CAAC,MAAM,GAAG,gBAAgB,IAAI;AAC3D,QAAMa,WAAU,IAAI,MAAM,YAAY,CAAC;AACvC,EAAAA,SAAQ,YAAY,KAAK,MAAM,YAAY;AAC3C,WAAS,KAAK,YAAY,GAAG,MAAM,GAAG,EAAE,IAAI;AAC1C,IAAAA,SAAQ,MAAM,IAAIA,SAAQ,KAAK,QAAQ,MAAM,KAAK;AAAA,EACpD;AACA,SAAOA;AACT;AAGA,IAAI,kBAAkB,CAAC,QAAQ,SAAS,YAAY,WAAW;AAC7D,QAAM,aAAa,EAAE,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC9D,QAAM,SAAS,YAAY,YAAY,YAAY,OAAO;AAC1D,QAAM,SAAS,OAAO,mBAAmB,EAAE,MAAM,QAAQ,OAAO,QAAQ,YAAY,KAAK,CAAC;AAC1F,QAAM,WAAW,OAAO,sBAAsB;AAAA,IAC5C,SAAS,EAAE,QAAQ,YAAY,OAAO;AAAA,IACtC,OAAO,QAAQ,YAAY;AAAA,IAC3B,QAAQ;AAAA,EACV,CAAC;AACD,SAAO;AACT;AACA,SAAS,mBAAmB,MAAM;AAChC,MAAI,QAAQ,GAAG;AACb,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,OAAO;AACL,UAAM,MAAM,gBAAgB,2BAA2B;AAAA,EACzD;AACF;AACA,SAAS,aAAaH,QAAO;AAC3B,MAAIA,WAAU,GAAG;AACf,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,OAAO;AACL,UAAM,MAAM,SAASA,6BAA4B;AAAA,EACnD;AACF;AACA,SAAS,oCAAoC;AAC3C,SAAO;AAAA,MACH,oBAAoB;AAAA;AAAA;AAG1B;AACA,SAAS,sBAAsB;AAC7B,SAAO;AAAA,IACL,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAQ3B;AACA,SAAS,yBAAyB;AAChC,SAAO;AAAA;AAAA;AAGT;AACA,SAAS,YAAY,WAAW,YAAY,SAAS;AACnD,QAAM,iBAAiB,CAAC;AACxB,iBAAe,KAAK;AAAA,+BACS,QAAQ,cAAc;AAAA,+BACtB,QAAQ,cAAc;AAAA,+BACtB,QAAQ,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAQ3C,eAAe,OAAO,IAAI,8BAA8B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAW7D;AACH,MAAI,QAAQ,cAAc;AACxB,mBAAe,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uEAO+C,eAAe,WAAW,OAAO,QAAQ,MAAM;AAAA;AAAA,OAE/G;AACH,WAAO;AAAA,MACL;AAAA,MACA,eAAe,KAAK,IAAI;AAAA,MACxB,0BAA0B,WAAW,KAAK;AAAA,MAC1C,QAAQ,YAAY;AAAA,IACtB,EAAE,KAAK,IAAI;AAAA,EACb;AACA,MAAI,oBAAoB;AACxB,MAAI,wBAAwB;AAC5B,MAAI,qBAAqB;AACzB,UAAQ,cAAc,QAAQ,CAAC,GAAG,OAAO;AACvC,UAAM,cAAc,mBAAmB,UAAU,IAAI,MAAM,MAAM;AACjE,QAAI,gBAAgB,UAAU,gBAAgB,QAAQ;AACpD,8BAAwB;AAAA,IAC1B;AACA,QAAI,qBAAqB,uBAAuB;AAC9C,4BAAsB;AAAA,IACxB;AACA,wBAAoB;AACpB,0BAAsB,GAAG,EAAE,OAAO,CAAC,EAAE,YAAY,IAAI,EAAE,MAAM,CAAC,YAAY;AAAA,EAC5E,CAAC;AACD,QAAM,iBAAiB,mBAAmB,WAAW,MAAM,MAAM;AACjE,0BAAwB,mBAAmB,UAAU,mBAAmB;AACxE,MAAI,qBAAqB,uBAAuB;AAC9C,0BAAsB;AAAA,EACxB;AACA,sBAAoB;AACpB,wBAAsB,cAAc;AACpC,QAAM,gBAAgB,WAAW,MAAM,SAAS;AAChD,QAAM,kBAAkB,mBAAmB,aAAa;AACxD,0BAAwB,oBAAoB,UAAU,oBAAoB;AAC1E,MAAI,qBAAqB,uBAAuB;AAC9C,0BAAsB;AAAA,EACxB;AACA,sBAAoB;AACpB,wBAAsB;AAAA,4BACI;AAC1B,MAAI,QAAQ,MAAM;AAChB,QAAI,mBAAmB;AACrB,4BAAsB;AAAA,IACxB;AACA,wBAAoB;AACpB,0BAAsB;AAAA,EACxB;AACA,MAAI,QAAQ,UAAU;AACpB,QAAI,mBAAmB;AACrB,4BAAsB;AAAA,IACxB;AACA,0BAAsB,QAAQ;AAAA,EAChC;AACA,wBAAsB;AACtB,iBAAe,KAAK,kBAAkB;AACtC,MAAI,QAAQ,QAAQ;AAClB,mBAAe,KAAK;AAAA;AAAA,KAEnB;AAAA,EACH,OAAO;AACL,mBAAe,KAAK;AAAA,qEAC6C,eAAe,WAAW,OAAO,QAAQ,MAAM;AAAA,KAC/G;AAAA,EACH;AACA,UAAQ,cAAc,QAAQ,CAAC,GAAG,OAAO;AACvC,mBAAe,KAAK;AAAA,2BACG,IAAI,0BAA0B,YAAY,QAAQ,gBAAgB,QAAQ,cAAc,MAAM,eAAe,UAAU,IAAI,OAAO,QAAQ,MAAM;AAAA,SAClK;AAAA,EACP,CAAC;AACD,MAAI,uBAAuB,IAAI;AAC7B,mBAAe,KAAK;AAAA,2BACG,IAAI,QAAQ,cAAc;AAAA,OAC9C;AAAA,EACL;AACA,QAAM,gBAAgB,uBAAuB,WAAW,OAAO,QAAQ,cAAc;AACrF,QAAM,UAAU;AAAA,IACd;AAAA,IACA,eAAe,KAAK,IAAI;AAAA,IACxB,0BAA0B,WAAW,KAAK;AAAA,IAC1C;AAAA,IACA,gCAAgC,WAAW,MAAM,MAAM;AAAA,EACzD;AACA,MAAI,CAAC,QAAQ,QAAQ;AACnB,YAAQ,KAAK,iBAAiB,WAAW,OAAO,WAAW,OAAO,QAAQ,MAAM,CAAC;AAAA,EACnF;AACA,QAAM,eAAe,UAAU,IAAI,CAAC,GAAG,OAAO,gBAAgB,GAAG,WAAW,OAAO,QAAQ,gBAAgB,QAAQ,cAAc,QAAQ,cAAc,QAAQ,QAAQ,QAAQ,eAAe,EAAE,WAAW,WAAW,MAAM,MAAM,CAAC,EAAE,KAAK,IAAI;AAC9O,UAAQ,KAAK,YAAY;AACzB,UAAQ,KAAK,QAAQ,YAAY,CAAC;AAClC,QAAM,SAAS,QAAQ,KAAK,IAAI;AAChC,SAAO;AACT;AACA,SAAS,eAAe,SAAS,QAAQ,YAAY,QAAQ;AAC3D,MAAI,MAAM,QAAQ;AAClB,MAAI,QAAQ,cAAc;AACxB,WAAO;AAAA,EACT;AACA,QAAM,QAAQ,WAAW,IAAI,CAAC,MAAM,EAAE,KAAK,EAAE,OAAO,OAAO,KAAK;AAChE,QAAM,gBAAgB,WAAW,IAAI,CAAC,MAAM,qBAAqB,iBAAiB,EAAE,OAAO,OAAO,KAAK,CAAC;AACxG,QAAM,4BAA4B,WAAW,IAAI,CAAC,MAAM,aAAa,YAAY,EAAE,OAAO,OAAO,KAAK,CAAC,EAAE,KAAK,GAAG;AACjH,QAAM,mBAAmB,cAAc,IAAI,CAAC,MAAM,EAAE,KAAK,GAAG,CAAC,EAAE,KAAK,GAAG;AACvE,QAAM,qBAAqB,eAAe,OAAO,IAAI,iBAAiB;AACtE,SAAO,OAAO,QAAQ,gBAAgB,QAAQ,cAAc,KAAK,GAAG,IAAI,MAAM,OAAO,IAAI,CAAC,UAAU,MAAM,MAAM,EAAE,KAAK,GAAG,IAAI,MAAM,KAAK,GAAG,IAAI,QAAQ,cAAc,KAAK,GAAG,IAAI,mBAAmB,4BAA4B;AACjO,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA2DpB,SAAS,0BAA0B,OAAO;AACxC,QAAM,OAAO,MAAM;AACnB,MAAI,QAAQ,GAAG;AACb,WAAO;AAAA,EACT;AACA,QAAMG,WAAU,aAAa,eAAe,KAAK;AACjD,QAAM,QAAQ,mBAAmB,IAAI;AACrC,QAAM,UAAU,CAAC;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,YAAQ,KAAK,IAAI,IAAI;AAAA,EACvB;AACA,MAAIA,SAAQ,WAAW,GAAG;AACxB,WAAO;AAAA;AAAA;AAAA;AAAA,EAIT;AACA,MAAI;AACJ,YAAU,wBAAwBA,SAAQ,IAAI,CAAC,GAAG,OAAO;AACvD,UAAM,QAAQ,OAAO,QAAQ,2CAA2C,aAAa,EAAE;AACvF,UAAM,QAAQ,OAAOA,SAAQ,SAAS,IAAI,OAAO,QAAQ,KAAK,iBAAiB,QAAQ,kCAAkC,aAAa,EAAE,MAAM,qBAAqB,QAAQ,kCAAkC,aAAa,EAAE;AAC5N,WAAO,GAAG,UAAU;AAAA,EACtB,CAAC,EAAE,KAAK,EAAE;AACV,SAAO;AAAA,4CACmC;AAAA,QACpC;AAAA,eACO,SAAS,QAAQ,KAAK,GAAG;AAAA;AAAA;AAGxC;AACA,SAAS,wBAAwB,WAAW,QAAQ;AAClD,QAAM,UAAU,UAAU;AAC1B,QAAM,OAAO,UAAU,MAAM;AAC7B,QAAM,OAAO,mBAAmB,IAAI;AACpC,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,OAAO,CAAC,MAAM,MAAM,MAAM,MAAM,MAAM,IAAI,EAAE,MAAM,GAAG,IAAI;AAC/D,QAAM,SAAS,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AACtD,MAAI,OAAO,GAAG;AACZ,QAAI,QAAQ;AACV,aAAO;AAAA,aACA;AAAA,6BACgB;AAAA;AAAA;AAAA,IAGzB;AACA,WAAO;AAAA,WACA;AAAA,qBACU;AAAA;AAAA;AAAA,EAGnB;AACA,QAAM,WAAW,YAAY,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC9E,MAAI,UAAU,GAAG;AACjB,MAAI,SAAS,GAAG;AACd,cAAU;AAAA,EACZ;AACA,MAAI,QAAQ;AACV,WAAO;AAAA,WACA,YAAY;AAAA,2BACI,6BAA6B,WAAW,QAAQ,KAAK,KAAK,GAAG;AAAA,YAC5E;AAAA;AAAA;AAAA,EAGV;AACA,SAAO;AAAA,SACA,YAAY;AAAA,mBACF,6BAA6B,WAAW,QAAQ,KAAK,KAAK,GAAG;AAAA,UACtE;AAAA;AAAA;AAGV;AACA,SAAS,wBAAwB,WAAW,UAAU,QAAQ,sBAAsB;AAClF,QAAM,UAAU,UAAU;AAC1B,QAAM,iBAAiB,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AACxE,QAAM,WAAW,QAAQ,iBAAiB;AAC1C,QAAM,SAAS,UAAU,MAAM;AAC/B,QAAM,UAAU,SAAS;AACzB,QAAM,OAAO,mBAAmB,OAAO;AACvC,MAAI,aAAa,YAAY,UAAU,OAAO,QAAQ,KAAK,sBAAsB;AAC/E,QAAI,QAAQ;AACV,aAAO;AAAA,WACF;AAAA,2BACgB;AAAA;AAAA;AAAA,WAGhB,2BAA2B;AAAA,2BACX,WAAW,UAAU,IAAI,qCAAqC;AAAA;AAAA;AAAA,IAGrF,OAAO;AACL,aAAO;AAAA,SACJ;AAAA,mBACU;AAAA;AAAA;AAAA,SAGV,2BAA2B;AAAA,mBACjB,WAAW,UAAU,IAAI,qCAAqC;AAAA;AAAA;AAAA,IAG7E;AAAA,EACF;AACA,QAAM,gBAAgB,qBAAqB,iBAAiB,UAAU,OAAO,QAAQ;AACrF,QAAM,WAAW,UAAU;AAC3B,MAAI,gBAAgB;AACpB,MAAI,WAAW,GAAG;AAChB,QAAI,QAAQ;AACV,aAAO;AAAA,SACJ;AAAA,kBACS;AAAA;AAAA;AAAA,SAGT,2BAA2B;AAAA,kBAClB;AAAA;AAAA;AAAA,IAGd;AACA,WAAO;AAAA,SACF;AAAA,kBACS;AAAA;AAAA;AAAA,SAGT,2BAA2B;AAAA,kBAClB;AAAA;AAAA;AAAA,EAGhB,OAAO;AACL,QAAI,UAAU,KAAK,cAAc,UAAU,GAAG;AAC5C,sBAAgB;AAAA,IAClB,OAAO;AACL,sBAAgB,cAAc,IAAI,CAAC,MAAM,UAAU,aAAa,IAAI,QAAQ,QAAQ,EAAE,KAAK,IAAI;AAAA,IACjG;AAAA,EACF;AACA,MAAI,wBAAwB;AAC5B,MAAI,UAAU,KAAK,SAAS,GAAG;AAC7B,4BAAwB;AAAA,EAC1B,OAAO;AACL,QAAI,UAAU,GAAG;AACf,YAAM,aAAa,mBAAmB,MAAM;AAC5C,YAAM,eAAe,UAAU,MAAM,IAAI,CAAC,IAAI,OAAO,UAAU,aAAa,KAAK,QAAQ,GAAG,EAAE,KAAK,IAAI;AACvG,8BAAwB,GAAG,cAAc;AAAA,IAC3C,OAAO;AACL,8BAAwB;AAAA,IAC1B;AAAA,EACF;AACA,QAAM,WAAW,YAAY,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC9E,QAAM,UAAU,GAAG;AACnB,MAAI,QAAQ;AACV,WAAO;AAAA,SACF;AAAA;AAAA,QAED;AAAA,eACO,6BAA6B,WAAW,0BAA0B;AAAA;AAAA;AAAA,SAGxE,6BAA6B;AAAA;AAAA,QAE9B;AAAA,eACO,6BAA6B,WAAW,0BAA0B;AAAA;AAAA;AAAA,EAG/E;AACA,SAAO;AAAA,OACF;AAAA;AAAA,MAED;AAAA,iBACW,6BAA6B,WAAW,0BAA0B;AAAA;AAAA;AAAA,OAG5E,6BAA6B;AAAA;AAAA,MAE9B;AAAA,iBACW,6BAA6B,WAAW,0BAA0B;AAAA;AAAA;AAGnF;AACA,SAAS,gBAAgB,WAAW,UAAU,QAAQ,sBAAsB;AAC1E,MAAI,MAAM,wBAAwB,WAAW,MAAM;AACnD,QAAM,UAAU,UAAU;AAC1B,MAAI,QAAQ,UAAU,SAAS,QAAQ;AACrC,WAAO,wBAAwB,WAAW,UAAU,QAAQ,oBAAoB;AAAA,EAClF;AACA,SAAO;AACT;AACA,SAAS,uBAAuB,UAAU,gBAAgB;AACxD,QAAM,EAAE,GAAG,IAAI,CAAC,GAAG,IAAI,CAAC,EAAE,IAAI;AAC9B,QAAM,UAAU,SAAS;AACzB,MAAI,EAAE,WAAW,SAAS;AACxB,UAAM,SAAS,mBAAmB,OAAO;AACzC,UAAM,WAAW,2BAA2B;AAAA;AAAA;AAAA;AAAA;AAK5C,WAAO;AAAA,EACT;AACA,MAAI,sBAAsB;AAC1B,QAAM,OAAO,CAAC,GAAG,GAAG,CAAC;AACrB,MAAI,OAAO;AACX,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAM,MAAM,KAAK;AACjB,QAAI,IAAI,WAAW,GAAG;AACpB;AAAA,IACF;AACA,YAAQ,IAAI;AACZ,QAAI,IAAI,WAAW,GAAG;AACpB,6BAAuB,QAAQ,IAAI,qBAAqB;AAAA,IAC1D,OAAO;AACL,YAAMA,WAAU,4BAA4B,KAAK,mBAAmB;AACpE,6BAAuB,YAAY,qBAAqB;AACxD,eAAS,IAAI,GAAG,IAAIA,SAAQ,QAAQ,KAAK;AACvC,+BAAuB,QAAQ,IAAI,aAAa,QAAQA,SAAQ;AAChE,YAAI,MAAMA,SAAQ,SAAS,GAAG;AAC5B,iCAAuB,QAAQ,IAAI,IAAI,aAAa,SAAS,IAAI,QAAQA,SAAQ;AAAA,QACnF,OAAO;AACL,iCAAuB,QAAQ,aAAa,SAAS,IAAI,QAAQA,SAAQ;AAAA,QAC3E;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,eAAW,KAAK,IAAI,IAAI;AAAA,EAC1B;AACA,QAAM,QAAQ,mBAAmB,IAAI;AACrC,MAAI,UAAU,2BAA2B;AAAA,IACvC;AAAA;AAEF,MAAI,WAAW,WAAW,GAAG;AAC3B,eAAW,UAAU;AAAA,EACvB,OAAO;AACL,eAAW,UAAU,SAAS,WAAW,KAAK,GAAG;AAAA,EACnD;AACA,SAAO;AACT;AACA,SAAS,gCAAgC,SAAS;AAChD,MAAI,UAAU;AACd,UAAQ;AAAA,SACD;AAAA,SACA;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAKX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAKX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAKX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAMX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUX;AAAA;AAEA,mBAAa,OAAO,OAAO,MAAM,eAAe,gBAAgB;AAChE;AAAA;AAEJ,SAAO;AACT;AACA,SAAS,eAAe,SAAS;AAC/B,SAAO,QAAQ,SAAS,OAAO,KAAK,QAAQ,SAAS,OAAO;AAC9D;AACA,SAAS,eAAe,MAAM,QAAQ;AACpC,MAAI,SAAS,WAAW;AACtB,WAAO,SAAS,cAAc;AAAA,EAChC,WAAW,SAAS,SAAS;AAC3B,WAAO,SAAS,cAAc;AAAA,EAChC,WAAW,SAAS,QAAQ;AAC1B,WAAO,SAAS,cAAc;AAAA,EAChC;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,UAAU,eAAe,QAAQ;AACzD,QAAM,UAAU,SAAS;AACzB,QAAM,WAAW,eAAe,eAAe,MAAM;AACrD,MAAI;AACJ,MAAI,QAAQ;AACV,cAAU;AAAA,4BACc;AAAA;AAAA;AAAA,4BAGA;AAAA;AAAA,EAE1B,OAAO;AACL,cAAU;AAAA,4BACc;AAAA;AAAA;AAAA,4BAGA;AAAA;AAAA,EAE1B;AACA,MAAI,WAAW,GAAG;AAChB,UAAM,OAAO,CAAC,MAAM,MAAM,MAAM,MAAM,MAAM,IAAI,EAAE,MAAM,GAAG,OAAO;AAClE,UAAM,OAAO,mBAAmB,OAAO;AACvC,QAAI,QAAQ;AACV,iBAAW;AAAA,6BACY,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AAAA,mDACjB,QAAQ,KAAK,KAAK,IAAI;AAAA;AAAA;AAAA,gCAGzC,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AAAA,mDACpB,QAAQ,KAAK,KAAK,IAAI;AAAA;AAAA;AAAA;AAAA,IAIrE,OAAO;AACL,iBAAW;AAAA,6BACY,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AAAA,mDACjB,QAAQ,KAAK,KAAK,IAAI;AAAA;AAAA;AAAA,gCAGzC,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AAAA,mDACpB,QAAQ,KAAK,KAAK,IAAI;AAAA;AAAA;AAAA;AAAA,IAIrE;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,sBAAsB,CAAC;AAC3BhB,UAAS,qBAAqB;AAAA,EAC5B,yBAAyB,MAAM;AAAA,EAC/B,oBAAoB,MAAM;AAAA,EAC1B,mBAAmB,MAAM;AAAA,EACzB,iBAAiB,MAAM;AAAA,EACvB,+BAA+B,MAAM;AAAA,EACrC,+BAA+B,MAAM;AAAA,EACrC,+BAA+B,MAAM;AAAA,EACrC,oBAAoB,MAAM;AAAA,EAC1B,mBAAmB,MAAM;AAAA,EACzB,yBAAyB,MAAM;AACjC,CAAC;AACD,IAAI,eAAe,CAAC,QAAQ;AAC1B,MAAI,UAAU;AACd,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,eAAW,IAAI;AAAA,EACjB;AACA,SAAO;AACT;AACA,SAAS,wBAAwB,UAAU,OAAO;AAChD,MAAI,SAAS,WAAW,MAAM,QAAQ;AACpC,UAAM,IAAI,MAAM,+BAA+B,SAAS,qCAAqC,MAAM,kCAAkC;AAAA,EACvI;AACA,SAAO,MAAM,MAAM,CAAC,KAAK,WAAW,MAAM,SAAS,YAAY,CAAC;AAClE;AACA,SAAS,gBAAgB,QAAQ,aAAa,gBAAgB,CAAC,GAAG,GAAG,CAAC,GAAG,oBAAoB,CAAC,GAAG,GAAG,CAAC,GAAG;AACtG,QAAM,CAAC,WAAW,WAAW,SAAS,IAAI;AAAA,IACxC,KAAK,KAAK,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC,KAAK,cAAc,KAAK,kBAAkB,GAAG;AAAA,IACvG,OAAO,IAAI,KAAK,KAAK,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC,KAAK,cAAc,KAAK,kBAAkB,GAAG,IAAI;AAAA,IACtH,OAAO,IAAI,KAAK,KAAK,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC,KAAK,cAAc,KAAK,kBAAkB,GAAG,IAAI;AAAA,EACxH;AACA,SAAO,CAAC,WAAW,WAAW,SAAS;AACzC;AACA,SAAS,8BAA8B,QAAQ,aAAa,SAAS,OAAO;AAC1E,MAAI,QAAQ;AACV,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,QAAM,OAAO,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC;AAC7D,QAAM,OAAO,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC;AAC7D,MAAI,QAAQ,GAAG;AACb,WAAO,CAAC,GAAG,IAAI,CAAC;AAAA,EAClB;AACA,MAAI,QAAQ,GAAG;AACb,WAAO,CAAC,IAAI,GAAG,CAAC;AAAA,EAClB;AACA,SAAO,CAAC,IAAI,IAAI,CAAC;AACnB;AACA,SAAS,8BAA8B,WAAW,UAAU,WAAW;AACrE,MAAI,cAAc,GAAG;AACnB,WAAO,CAAC,IAAI,GAAG,CAAC;AAAA,EAClB,WAAW,cAAc,GAAG;AAC1B,WAAO,CAAC,GAAG,IAAI,CAAC;AAAA,EAClB;AACA,SAAO,CAAC,GAAG,GAAG,CAAC;AACjB;AACA,SAAS,8BAA8B,QAAQ,aAAa,SAAS,OAAO;AAC1E,MAAI,QAAQ;AACV,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,QAAM,OAAO,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC;AAC7D,QAAM,OAAO,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC;AAC7D,MAAI,QAAQ,GAAG;AACb,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,MAAI,QAAQ,GAAG;AACb,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,SAAO,CAAC,GAAG,GAAG,CAAC;AACjB;AACA,SAAS,mBAAmB,OAAO;AACjC,SAAO,EAAE,GAAG,MAAM,IAAI,CAAC,GAAG,OAAO,EAAE,EAAE;AACvC;AACA,SAAS,mBAAmB,OAAO;AACjC,MAAI,UAAU,aAAa,UAAU,WAAW,UAAU,UAAU,UAAU,UAAU;AACtF,WAAO;AAAA,EACT,WAAW,UAAU,aAAa;AAChC,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA,EAC1C;AACF;AACA,SAAS,wBAAwB,MAAM,OAAO;AAC5C,MAAI,UAAU,WAAW;AACvB,WAAO,IAAI,aAAa,IAAI;AAAA,EAC9B,WAAW,UAAU,SAAS;AAC5B,WAAO,IAAI,WAAW,IAAI;AAAA,EAC5B,WAAW,UAAU,UAAU,UAAU,UAAU;AACjD,WAAO,WAAW,KAAK,IAAI,WAAW,IAAI,CAAC;AAAA,EAC7C,OAAO;AACL,UAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA,EAC1C;AACF;AACA,SAAS,oBAAoB;AAC3B,UAAQ,OAAO,WAAW,eAAe,OAAO,sBAAsB,gBAAgB,CAAC,CAAC,UAAU;AACpG;AACA,IAAI;AAAA,CACH,SAAS,oBAAoB;AAC5B,qBAAmB,mBAAmB,6BAA6B,KAAK;AACxE,qBAAmB,mBAAmB,yBAAyB,KAAK;AACpE,qBAAmB,mBAAmB,yBAAyB,KAAK;AACpE,qBAAmB,mBAAmB,kCAAkC,KAAK;AAC7E,qBAAmB,mBAAmB,yBAAyB,KAAK;AACpE,qBAAmB,mBAAmB,eAAe,KAAK;AAC5D,GAAG,sBAAsB,oBAAoB,CAAC,EAAE;AAGhD,SAAS,mBAAmB,gBAAgB,gBAAgB,YAAY,YAAY,YAAY,OAAO,YAAY,OAAO,WAAW,OAAO,YAAY,GAAG;AACzJ,eAAa,OAAO,cAAc,cAAc,KAAK,CAAC,YAAY,MAAM,cAAc,oDAAoD,WAAW;AACrJ,QAAM,UAAU;AAAA,oBACE,iBAAiB,MAAM;AAAA;AAAA,QAEnC,aAAa,qEAAqE,gBAAgB,qEAAqE;AAAA;AAAA;AAG7K,MAAI;AACJ,MAAI,eAAe,OAAO;AACxB,cAAU,qEAAqE;AAAA,EACjF,OAAO;AACL,cAAU,qEAAqE;AAAA,EACjF;AACA,SAAO;AAAA,uDAC8C,YAAY,SAAS;AAAA,kBAC1D,YAAY,SAAS;AAAA,wBACf;AAAA,MAClB,aAAa,WAAW,UAAU;AAAA,MAClC,aAAa,4DAA4D;AAAA;AAAA,QAEvE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uDAM+C,YAAY,SAAS;AAAA,wBACpD;AAAA,kBACN,iBAAiB,MAAM;AAAA;AAAA,kBAEvB,YAAY,SAAS;AAAA,MACjC;AAAA;AAAA;AAAA;AAIN;AACA,SAAS,wBAAwB,SAAS,aAAa,gBAAgB,gBAAgB,YAAY,YAAY,YAAY,OAAO,YAAY,OAAO,WAAW,OAAO,YAAY,GAAG;AACpL,SAAO;AAAA,IACL,mBAAmB,gBAAgB,gBAAgB,YAAY,YAAY,WAAW,WAAW,UAAU,SAAS;AAAA,2DAC7D,YAAY,SAAS;AAAA,wBACxD;AAAA,MAClB,aAAa,YAAY,KAAK;AAAA;AAAA;AAAA;AAAA,QAI5B,sBAAsB,SAAS,WAAW;AAAA;AAAA;AAAA;AAAA;AAKlD;AACA,IAAI,yBAAyB,CAAC,eAAe;AAC3C,MAAI,YAAY;AACd,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,EAKT,OAAO;AACL,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,EAKT;AACF;AACA,IAAI,0BAA0B,CAAC,eAAe;AAC5C,SAAO,aAAa,kDAAkD;AACxE;AACA,SAAS,uBAAuB,eAAe,eAAe,aAAa,OAAO,YAAY,IAAI;AAChG,QAAM,aAAa,cAAc,KAAK,cAAc;AACpD,QAAM,aAAa,cAAc,KAAK,cAAc;AACpD,QAAM,aAAa,aAAa,aAAa;AAC7C,QAAM,aAAa,aAAa,YAAY;AAC5C,eAAa,OAAO,aAAa,cAAc,OAAO,KAAK,aAAa,cAAc,OAAO,KAAK,YAAY,cAAc,OAAO,GAAG,MAAM,cAAc,mDAAmD,cAAc,kBAAkB,mDAAmD,cAAc,iBAAiB,kDAAkD,cAAc,IAAI;AACnY,QAAM,gBAAgB,aAAa,cAAc;AACjD,QAAM,gBAAgB,aAAa,cAAc;AACjD,QAAM,gBAAgB,YAAY,cAAc;AAChD,SAAO;AAAA,gDACuC,gBAAgB;AAAA,gDAChB,gBAAgB;AAAA,2BACrC,cAAc;AAAA,2BACd,cAAc;AAAA,wBACjB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kDAiB0B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wCAaV;AAAA,wCACA;AAAA,wCACA;AAAA;AAAA;AAAA;AAAA,4CAII;AAAA,8CACE;AAAA;AAAA;AAAA,cAGhC,uBAAuB,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA,4CAKH;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAoB9B,wBAAwB,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAkBhD;AACA,IAAI,qBAAqB,CAAC,eAAe;AACvC,SAAO,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA,MAKhB;AAAA;AAAA;AAAA;AAAA;AAAA;AAMN;AACA,SAAS,8BAA8B,eAAe,aAAa,OAAO;AACxE,eAAa,OAAO,cAAc,OAAO,KAAK,cAAc,OAAO,GAAG,MAAM,iDAAiD,gBAAgB;AAC7I,SAAO;AAAA,uBACc,cAAc,KAAK;AAAA,gDACM,cAAc;AAAA;AAAA,MAExD,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uCAca,mBAAmB,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAqBpE;AACA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,QAAQ,aAAa,eAAe,gBAAgB,gBAAgB,aAAa,OAAO,aAAa,OAAO,OAAO,MAAM,cAAc,MAAM,yBAAyB,MAAM;AACtL,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,IAAI,CAAC;AAC/B,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AAC/C,UAAM,WAAW,aAAa,OAAO,KAAK,OAAO;AACjD,SAAK,gBAAgB,8BAA8B,YAAY,IAAI,UAAU,YAAY,EAAE;AAC3F,QAAI,YAAY,OAAO,KAAK,YAAY,OAAO,GAAG;AAChD,sBAAgB;AAAA,IAClB;AACA,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,eAAe,eAAe,CAAC,CAAC;AAC5H,QAAI,aAAa,YAAY,KAAK,UAAU,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG;AACtD,sBAAgB;AAChB,WAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,eAAe,eAAe,CAAC,CAAC;AAAA,IAC9H;AACA,UAAM,UAAU,QAAQ;AACxB,UAAM,4BAA4B,0BAA0B;AAC5D,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,2BAA2B;AAC7B,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,gBAAgB;AACrB,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,4BAA4B;AACjC,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,KAAC,KAAK,WAAW,KAAK,WAAW,KAAK,QAAQ,IAAI,KAAK,YAAY,YAAY,IAAI,YAAY,IAAI,QAAQ;AAC3G,SAAK,YAAY,gBAAgB,KAAK,iBAAiB,cAAc,cAAc,KAAK,cAAc,KAAK,aAAa,KAAK,aAAa,KAAK,YAAY,KAAK,YAAY,KAAK,KAAK,KAAK,kBAAkB,KAAK;AAAA,EACpN;AAAA,EACA,YAAY,WAAW,WAAW,UAAU;AAC1C,UAAM,aAAa,KAAK,cAAc,KAAK,KAAK;AAChD,UAAM,aAAa,KAAK,cAAc,KAAK,KAAK;AAChD,SAAK,YAAY;AACjB,QAAI,KAAK,YAAY,OAAO,GAAG;AAC7B,WAAK,YAAY,KAAK,cAAc,KAAK;AAAA,IAC3C;AACA,UAAM,YAAY,YAAY,eAAe;AAC7C,UAAM,YAAY,YAAY,eAAe;AAC7C,UAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,WAAO,CAAC,WAAW,WAAW,QAAQ;AAAA,EACxC;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,yBAAyB;AAAA,QACnE,wBAAwB,KAAK,SAAS,KAAK,YAAY,KAAK,gBAAgB,KAAK,gBAAgB,OAAO,KAAK,YAAY,KAAK,WAAW,KAAK,WAAW,KAAK,QAAQ;AAAA,QACtK,KAAK,YAAY,KAAK,IAAI,uBAAuB,CAAC,KAAK,eAAe,KAAK,eAAe,CAAC,GAAG,KAAK,eAAe,KAAK,YAAY,KAAK,SAAS,IAAI,8BAA8B,KAAK,eAAe,KAAK,UAAU;AAAA;AAE1N,WAAO;AAAA,EACT;AACF;AAGA,IAAI,0BAA0B,CAAC,YAAY,sBAAsB;AAC/D,MAAI,YAAY;AACd,WAAO;AAAA;AAAA;AAAA,6BAGkB;AAAA;AAAA,EAE3B,OAAO;AACL,WAAO;AAAA;AAAA;AAAA,4BAGiB;AAAA;AAAA,EAE1B;AACF;AACA,IAAI,yBAAyB,CAAC,YAAY,qBAAqB;AAC7D,MAAI,YAAY;AACd,WAAO;AAAA;AAAA;AAAA;AAAA,UAID,qBAAqB,IAAI,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA,YAK5B,qBAAqB,IAAI,KAAK;AAAA;AAAA,EAExC,OAAO;AACL,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAMC,qBAAqB,IAAI,KAAK;AAAA;AAAA,EAExC;AACF;AACA,SAAS,2BAA2B,eAAe,YAAY,YAAY,WAAW,mBAAmB,GAAG,aAAa,OAAO;AAC9H,QAAM,aAAa,aAAa,aAAa;AAC7C,QAAM,aAAa,aAAa,YAAY;AAC5C,QAAM,oBAAoB,aAAa,cAAc,KAAK;AAC1D,eAAa,QAAQ,cAAc,eAAe,eAAe,YAAY,MAAM,KAAK,YAAY,MAAM,OAAO,cAAc,OAAO,MAAM,qBAAqB,KAAK,qBAAqB,IAAI,MAAM,aAAa,oDAAoD,cAAc;AAAA,8BACxP,+BAA+B;AAC3D,SAAO;AAAA,4CACmC,2BAA2B,aAAa,uBAAuB;AAAA,oDACvD,aAAa,cAAc,QAAQ;AAAA;AAAA,yBAE9D,cAAc;AAAA,yBACd,cAAc;AAAA,6BACV;AAAA,sBACP;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBAYF,eAAe,IAAI,MAAM;AAAA;AAAA;AAAA,sBAGvB,eAAe,IAAI,MAAM;AAAA;AAAA;AAAA,gDAGC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAelC,wBAAwB,YAAY,iBAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAiBrD,qBAAqB,IAAI,KAAK;AAAA;AAAA,cAE9B,uBAAuB,YAAY,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUjE;AACA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,QAAQ,aAAa,gBAAgB,gBAAgB,aAAa,OAAO,OAAO,MAAM,cAAc,MAAM,yBAAyB,MAAM;AACnJ,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,GAAG,GAAG,CAAC;AAC7B,SAAK,SAAS;AACd,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AAC/C,QAAI,YAAY,OAAO,KAAK,CAAC,YAAY;AACvC,WAAK,oBAAoB,CAAC,GAAG,GAAG,CAAC;AAAA,IACnC,OAAO;AACL,WAAK,oBAAoB,CAAC,GAAG,GAAG,CAAC;AAAA,IACnC;AACA,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,KAAK,iBAAiB;AACjH,UAAM,UAAU,QAAQ;AACxB,UAAM,4BAA4B,0BAA0B;AAC5D,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,2BAA2B;AAC7B,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,aAAa,YAAY,OAAO,KAAK,CAAC,aAAa,IAAI,KAAK,cAAc,KAAK,KAAK,kBAAkB;AAC3G,SAAK,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AACjE,SAAK,YAAY,KAAK;AACtB,SAAK,SAAS;AACd,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,4BAA4B;AACjC,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,aAAa;AAClB,UAAM,WAAW,aAAa,OAAO,KAAK,OAAO;AACjD,SAAK,YAAY,YAAY,KAAK,KAAK,eAAe;AACtD,SAAK,YAAY,YAAY,KAAK,KAAK,eAAe;AACtD,SAAK,WAAW,WAAW,KAAK,cAAc;AAC9C,SAAK,YAAY,oBAAoB,KAAK,cAAc,KAAK,aAAa,KAAK,aAAa,KAAK,YAAY,KAAK,qBAAqB,KAAK,kBAAkB,KAAK,kBAAkB,KAAK;AAAA,EAC5L;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,2BAA2B,IAAI;AAAA,QACzE,wBAAwB,KAAK,SAAS,KAAK,YAAY,KAAK,gBAAgB,KAAK,gBAAgB,OAAO,OAAO,KAAK,WAAW,KAAK,WAAW,KAAK,UAAU,CAAC;AAAA,QAC/J,2BAA2B,KAAK,mBAAmB,KAAK,YAAY,KAAK,YAAY,KAAK,WAAW,GAAG,KAAK,UAAU;AAAA;AAE3H,WAAO;AAAA,EACT;AACF;AAGA,SAAS,yBAAyB;AAChC,SAAO;AAAA;AAAA,MAEH,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA8B1B;AACA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,gBAAgB,gBAAgB,aAAa,OAAO,aAAa,OAAO,OAAO,MAAM,cAAc,MAAM,yBAAyB,MAAM;AAC/J,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AACjD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,UAAM,UAAU,QAAQ;AACxB,UAAM,4BAA4B,0BAA0B;AAC5D,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,2BAA2B;AAC7B,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,4BAA4B;AACjC,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,YAAY,gBAAgB,KAAK,cAAc,cAAc,cAAc,KAAK,kBAAkB,KAAK;AAAA,EAC9G;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,yBAAyB;AAAA,QACnE,wBAAwB,KAAK,SAAS,KAAK,YAAY,KAAK,gBAAgB,KAAK,gBAAgB,KAAK,YAAY,KAAK,UAAU;AAAA,QACjI,uBAAuB;AAAA;AAE3B,WAAO;AAAA,EACT;AACF;AAGA,SAAS,gCAAgC,eAAe;AACtD,QAAM,aAAa,cAAc;AACjC,QAAM,aAAa,cAAc;AACjC,QAAM,YAAY,aAAa,aAAa,aAAa;AACzD,SAAO;AAAA,8CACqC,eAAe;AAAA,8CACf,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAQ1D,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,+CAQuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQf;AAAA,gCACA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAYE;AAAA,kCACA;AAAA;AAAA,4BAEN;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAS5B;AACA,IAAI,+BAA+B,MAAM;AAAA,EACvC,YAAY,QAAQ,QAAQ,aAAa,aAAa,OAAO,aAAa,OAAO,OAAO,MAAM,cAAc,MAAM,yBAAyB,MAAM;AAC/I,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AAC/C,SAAK,WAAW;AAAA,MACd,KAAK,KAAK,YAAY,KAAK,KAAK,cAAc,EAAE;AAAA,MAChD,KAAK,KAAK,YAAY,KAAK,KAAK,cAAc,EAAE;AAAA,MAChD,YAAY;AAAA,IACd;AACA,UAAM,UAAU,QAAQ;AACxB,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,UAAM,4BAA4B,0BAA0B;AAC5D,QAAI,2BAA2B;AAC7B,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,4BAA4B;AACjC,SAAK,iBAAiB,OAAO,OAAO;AACpC,SAAK,iBAAiB,OAAO,OAAO;AACpC,SAAK,YAAY,yBAAyB,KAAK,cAAc,cAAc,cAAc,KAAK,kBAAkB,KAAK;AAAA,EACvH;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,yBAAyB;AAAA,QACnE,wBAAwB,KAAK,SAAS,KAAK,YAAY,KAAK,gBAAgB,KAAK,gBAAgB,KAAK,YAAY,KAAK,UAAU;AAAA,QACjI,gCAAgC,KAAK,aAAa;AAAA;AAEtD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,UAAU,gBAAgB,gBAAgB,aAAa,OAAO,aAAa,OAAO;AACzG,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,GAAG,GAAG,CAAC;AAC7B,SAAK,SAAS;AACd,SAAK,YAAY;AACjB,iBAAa,OAAO,YAAY,OAAO,GAAG,MAAM,8CAA8C;AAC9F,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,EAAE;AAClD,SAAK,oBAAoB,CAAC,GAAG,GAAG,KAAK,SAAS;AAC9C,QAAI,KAAK,YAAY,KAAK,IAAI;AAC5B,WAAK,kBAAkB,KAAK;AAAA,IAC9B;AACA,QAAI,KAAK,YAAY,KAAK,IAAI;AAC5B,WAAK,kBAAkB,KAAK;AAAA,IAC9B;AACA,SAAK,WAAW,gBAAgB,KAAK,gBAAgB;AAAA,MACnD,KAAK,YAAY;AAAA,MACjB,KAAK,YAAY;AAAA,MACjB,KAAK,YAAY;AAAA,MACjB;AAAA,IACF,GAAG,KAAK,eAAe,KAAK,iBAAiB;AAC7C,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,YAAY,gBAAgB,cAAc,cAAc,kBAAkB,kBAAkB,KAAK;AAAA,EACxG;AAAA,EACA,cAAc;AACZ,UAAM,mBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWzB,UAAM,WAAW;AAAA,QACb,mBAAmB,KAAK,gBAAgB,KAAK,gBAAgB,KAAK,YAAY,KAAK,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAQzF;AAAA;AAAA;AAAA;AAAA,QAIJ,KAAK,uBAAuB;AAAA;AAEhC,WAAO;AAAA,EACT;AAAA,EACA,yBAAyB;AACvB,UAAM,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AAClE,UAAM,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AAClE,UAAM,eAAe,KAAK,kBAAkB;AAC5C,UAAM,eAAe,KAAK,kBAAkB;AAC5C,UAAM,gBAAgB,KAAK,YAAY,KAAK,cAAc;AAC1D,UAAM,gBAAgB,KAAK,YAAY,KAAK,cAAc;AAC1D,iBAAa,OAAO,KAAK,YAAY,KAAK,cAAc,OAAO,KAAK,KAAK,YAAY,KAAK,cAAc,OAAO,GAAG,MAAM,aAAa,KAAK,kDAAkD,KAAK,cAAc,0BAA0B,KAAK,cAAc,IAAI;AAChQ,WAAO;AAAA,kDACuC,KAAK,eAAe;AAAA,kDACpB,gBAAgB,KAAK;AAAA,QAC/D,oBAAoB;AAAA,yCACa;AAAA,yCACA;AAAA;AAAA,4CAEG;AAAA,4CACA;AAAA;AAAA,yCAEH,KAAK;AAAA;AAAA;AAAA,0CAGJ;AAAA,4CACE;AAAA,8CACE;AAAA;AAAA;AAAA,qDAGO,KAAK,iBAAiB,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAMrC;AAAA,4CACE;AAAA,8CACE;AAAA;AAAA;AAAA,qDAGO,KAAK,iBAAiB,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,qCAQ1C,kBAAkB;AAAA;AAAA,8BAEzB,KAAK;AAAA,qCACE;AAAA,wCACG;AAAA;AAAA;AAAA;AAAA,8CAIM;AAAA;AAAA,gDAEE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,4CAMJ;AAAA,8CACE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAM5C;AACF;AACA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,aAAa,OAAO,MAAM,cAAc,MAAM,yBAAyB,MAAM;AACvF,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,UAAU,QAAQ;AACvB,SAAK,4BAA4B,0BAA0B;AAC3D,SAAK,aAAa;AAClB,QAAI,KAAK,SAAS;AAChB,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,KAAK,2BAA2B;AAClC,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,YAAY,kBAAkB;AAAA,EACrC;AAAA,EACA,cAAc;AACZ,WAAO;AAAA,MACL,oBAAoB,KAAK,YAAY,KAAK,yBAAyB;AAAA,MACnE,kCAAkC;AAAA;AAAA;AAAA;AAAA,UAI9B,sBAAsB,KAAK,SAAS,KAAK,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA,EAK3D;AACF;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC;AACtB,SAAK,cAAc,CAAC;AACpB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,MACf,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAMpC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,IAAI;AACzB,MAAI,EAAE,MAAM,IAAI;AAChB,UAAQ,SAAS,aAAa,WAAW,KAAK;AAC9C,MAAI,UAAU,UAAU;AACtB,UAAM,SAAS,aAAa,kBAAkB,OAAO,aAAa,cAAc,KAAK,CAAC;AACtF,WAAO,KAAK,KAAK;AACjB,WAAO,SAAS,eAAe,OAAO,OAAO,MAAM;AAAA,EACrD,OAAO;AACL,UAAM,UAAU,IAAI,aAAa,KAAK;AACtC,UAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,KAAK,EAAE,CAAC;AACvD,WAAO,SAAS,iBAAiB,SAAS,CAAC,GAAG,OAAO,WAAW;AAAA,EAClE;AACF;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,MAAM,IAAI;AAC1B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,SAAS,aAAa,uBAAuB,OAAO,KAAK;AAC/D,QAAM,SAAS,aAAa,cAAc,MAAM;AAChD,eAAa,OAAO,UAAU,QAAQ,MAAM,kBAAkB,eAAe,sCAAsC,EAAE,cAAc,oFAAoF;AACvN,OAAK,QAAQ,OAAO,EAAE,MAAM;AAC5B,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,QAAQ,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,iBAAiB,EAAE,GAAG,GAAG,YAAY,YAAY,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AAC7K,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,oBAAoB,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AACtH,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,eAAa,OAAO,gBAAgB,aAAa,MAAM,kCAAkC,qBAAqB,uCAAuC,EAAE,aAAa,EAAE,wBAAwB,6BAA6B,wBAAwB;AACnP,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,gBAAgB,CAAC,KAAK,GAAG;AAC/B,QAAM,WAAW,KAAK,IAAI,WAAW,SAAS;AAC9C,QAAM,iBAAiB,cAAc;AACrC,QAAM,iBAAiB,cAAc;AACrC,QAAM,WAAW,cAAc,MAAM,KAAK,CAAC,cAAc,cAAc,MAAM,KAAK,eAAe,cAAc,MAAM,KAAK,CAAC;AAC3H,QAAM,SAAS,CAAC,KAAK,GAAG;AACxB,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,WAAW,EAAE;AAAA,IACrC,EAAE,MAAM,SAAS,MAAM,CAAC,WAAW,EAAE;AAAA,IACrC,EAAE,MAAM,SAAS,MAAM,CAAC,WAAW,EAAE;AAAA,EACvC;AACA,MAAI;AACJ,MAAI;AACJ,QAAM,cAAc,CAAC,UAAU,aAAa,WAAW;AACvD,MAAI,oBAAoB,IAAI,EAAE,IAAI,4BAA4B;AAC9D,MAAI,oBAAoB,GAAG;AACzB,QAAI,cAAc,eAAe,KAAK;AACpC,0BAAoB,kBAAkB;AAAA,IACxC,WAAW,aAAa,KAAK,eAAe,OAAO,eAAe,MAAM,eAAe,KAAK;AAC1F,0BAAoB,kBAAkB;AAAA,IACxC,WAAW,eAAe,OAAO,eAAe,OAAO,eAAe,IAAI,gBAAgB,eAAe,OAAO,eAAe,OAAO,eAAe,IAAI,cAAc;AACrK,0BAAoB,kBAAkB;AAAA,IACxC,WAAW,SAAS;AAClB,0BAAoB,kBAAkB;AAAA,IACxC,OAAO;AACL,0BAAoB,kBAAkB;AAAA,IACxC;AAAA,EACF;AACA,UAAQ;AAAA,SACD,kBAAkB;AACrB,gBAAU,IAAI,wBAAwB,UAAU,aAAa,gBAAgB,gBAAgB,YAAY,MAAM,aAAa,sBAAsB;AAClJ;AAAA,SACG,kBAAkB;AACrB,gBAAU,IAAI,oBAAoB,aAAa,gBAAgB,gBAAgB,YAAY,YAAY,MAAM,aAAa,sBAAsB;AAChJ;AAAA,SACG,kBAAkB,qBAAqB;AAC1C,YAAM,MAAM,EAAE,SAAS,UAAU,OAAO,EAAE,OAAO,aAAa,OAAO,GAAG,OAAO,EAAE,MAAM,EAAE,CAAC;AAC1F,gBAAU,IAAI,oBAAoB,aAAa,aAAa,gBAAgB,gBAAgB,YAAY,UAAU;AAClH,UAAI,QAAQ,aAAa;AACvB,cAAM,SAAS,iBAAiB,SAAS,QAAQ,EAAE,OAAO,YAAY,GAAG;AACzE,cAAM,wBAAwB,IAAI,sBAAsB,IAAI,OAAO,MAAM,aAAa,sBAAsB;AAC5G,YAAI,cAAc;AAClB,cAAM,mBAAmB,CAAC,GAAG;AAC7B,YAAI,MAAM;AACR,2BAAiB,KAAK,IAAI;AAAA,QAC5B;AACA,YAAI,wBAAwB;AAC1B,2BAAiB,KAAK,sBAAsB;AAAA,QAC9C;AACA,YAAI,gBAAgB,aAAa;AAC/B,wBAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,EAAE,CAAC;AAC1D,gCAAsB,YAAY;AAAA,QACpC;AACA,cAAM,eAAe,SAAS,iBAAiB,uBAAuB,kBAAkB,IAAI,OAAO,WAAW;AAC9G,sBAAc,KAAK,GAAG;AACtB,cAAM,eAAe,SAAS,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC5G,sBAAc,KAAK,YAAY;AAC/B,mBAAW,MAAM,eAAe;AAC9B,mBAAS,YAAY,GAAG,MAAM;AAAA,QAChC;AACA,eAAO;AAAA,MACT;AACA;AAAA,IACF;AAAA,SACK,kBAAkB;AACrB,gBAAU,IAAI,6BAA6B,UAAU,UAAU,aAAa,YAAY,YAAY,MAAM,aAAa,sBAAsB;AAC7I;AAAA,SACG,kBAAkB;AACrB,gBAAU,IAAI,qBAAqB,UAAU,aAAa,IAAI,EAAE,IAAI,+BAA+B,GAAG,gBAAgB,gBAAgB,YAAY,YAAY,MAAM,aAAa,sBAAsB;AACvM;AAAA;AAEA,YAAM,IAAI,MAAM,iCAAiC,oBAAoB;AAAA;AAEzE,MAAI,MAAM;AACR,WAAO,KAAK,IAAI;AAAA,EAClB;AACA,MAAI,wBAAwB;AAC1B,WAAO,KAAK,sBAAsB;AAAA,EACpC;AACA,MAAI,gBAAgB,aAAa;AAC/B,eAAW,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,EAAE,CAAC;AAC3D,YAAQ,YAAY;AAAA,EACtB;AACA,QAAM,SAAS,iBAAiB,SAAS,QAAQ,EAAE,OAAO,YAAY,GAAG;AACzE,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAClG,gBAAc,KAAK,GAAG;AACtB,aAAW,MAAM,eAAe;AAC9B,aAAS,YAAY,GAAG,MAAM;AAAA,EAChC;AACA,SAAO;AACT;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,MAAM,uBAAuB,IAAI;AAC/C,QAAM,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe,IAAI;AAC5E,SAAO,iBAAiB;AAAA,IACtB;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,EACd,CAAC;AACH;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,KAAK,QAAQ,QAAQ;AAC/B,SAAK,gBAAgB,CAAC,SAAS,SAAS,SAAS,OAAO;AACxD,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY,mBAAmB;AACpC,SAAK,KAAK;AAAA,EACZ;AAAA,EACA,cAAc;AACZ,UAAM,QAAQ,kBAAkB,KAAK,IAAI,KAAK;AAC9C,UAAM,WAAW;AAAA;AAAA;AAAA,UAGX;AAAA;AAAA;AAAA,QAGF,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUtC,WAAO;AAAA,EACT;AACF;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,KAAK,QAAQ,QAAQ;AAC/B,SAAK,OAAO;AACZ,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,KAAK;AACV,SAAK,uBAAuB,OAAO,WAAW,KAAK,OAAO,SAAS,KAAK,OAAO,KAAK;AACpF,SAAK,uBAAuB,OAAO,WAAW,KAAK,OAAO,SAAS,KAAK,OAAO,KAAK;AACpF,QAAI,KAAK,wBAAwB,KAAK,sBAAsB;AAC1D,WAAK,SAAS;AACd,WAAK,oBAAoB,KAAK,uBAAuB,OAAO,KAAK,OAAO;AACxE,WAAK,YAAY,UAAU,KAAK,QAAQ,OAAO,KAAK,qBAAqB,KAAK;AAC9E,WAAK,OAAO;AACZ,WAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,UAAI,KAAK,oBAAoB,KAAK;AAChC,aAAK,gBAAgB;AAAA,MACvB,WAAW,KAAK,oBAAoB,KAAK;AACvC,aAAK,gBAAgB;AAAA,MACvB,OAAO;AACL,aAAK,gBAAgB;AAAA,MACvB;AAAA,IACF,OAAO;AACL,UAAI,aAAa,YAAY,QAAQ,MAAM,KAAK,aAAa,cAAc,MAAM,IAAI,MAAM,GAAG;AAC5F,aAAK,SAAS;AACd,aAAK,OAAO;AACZ,aAAK,gBAAgB;AAAA,MACvB,OAAO;AACL,aAAK,SAAS;AACd,aAAK,OAAO;AACZ,aAAK,gBAAgB;AAAA,MACvB;AACA,WAAK,YAAY,UAAU,KAAK,QAAQ;AACxC,WAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAAA,IACjC;AACA,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AAAA,EACvH;AAAA,EACA,cAAc;AACZ,QAAI;AACJ,QAAI,KAAK,SAAS,UAAU;AAC1B,YAAM,qBAAqB,KAAK,oBAAoB,IAAI,UAAU,KAAK,YAAY,SAAS,OAAO;AACnG,YAAM,oBAAoB,KAAK,uBAAuB;AAAA,8BAC9B,yBAAyB,qBAAqB;AAAA;AAEtE,YAAM,QAAQ,kBAAkB,KAAK,IAAI,KAAK,MAAM;AACpD,iBAAW;AAAA;AAAA,YAEL;AAAA;AAAA,gDAEoC,KAAK;AAAA,UAC3C,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA,8DAKkB,KAAK,gDAAgD,KAAK,cAAc;AAAA,0CAC5F,KAAK,uBAAuB,MAAM;AAAA;AAAA;AAAA;AAAA,+BAI7C,KAAK;AAAA,sCACE,KAAK;AAAA;AAAA;AAAA;AAAA,gBAI3B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAMZ,OAAO;AACL,YAAM,QAAQ,KAAK,SAAS,SAAS,cAAc;AACnD,YAAM,QAAQ,kBAAkB,KAAK,IAAI,KAAK,MAAM;AACpD,iBAAW;AAAA,gCACe,cAAc,aAAa;AAAA,WAChD;AAAA;AAAA,SAEF,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAQvC;AACA,WAAO;AAAA,EACT;AACF;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,EAAE,IAAI;AACd,OAAK,QAAQ,OAAO,EAAE,MAAM;AAC5B,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAC5D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,OAAO,MAAM,MAAM,IAAI;AACrC,QAAM,cAAc,SAAS,eAAe,MAAM,OAAO,WAAW;AACpE,QAAM,WAAW,SAAS,UAAU,IAAI,YAAY,MAAM;AAC1D,QAAM,iBAAiB,UAAU,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,SAAS,CAAC;AAC5E,QAAM,iBAAiB,UAAU,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,SAAS,CAAC;AAC5E,WAAS,qBAAqB,EAAE,MAAM,gBAAgB,MAAM,eAAe;AAC3E,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,aAAa,KAAK;AAC5B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,OAAO;AACZ,UAAM,iBAAiB;AACvB,SAAK,gBAAgB,CAAC,gBAAgB,GAAG,CAAC;AAC1C,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,KAAK;AACV,SAAK,YAAY,SAAS;AAAA,EAC5B;AAAA,EACA,cAAc;AACZ,WAAO;AAAA;AAAA,UAED,iBAAiB,KAAK,IAAI,KAAK;AAAA;AAAA,QAEjC,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOxC;AACF;AAGA,SAAS,iBAAiB,EAAE,QAAQ,eAAe,MAAM,GAAG;AAC1D,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,gBAAgB;AACtB,UAAM,SAAS,SAAS,EAAE;AAC1B,QAAI,cAAc,mBAAmB,CAAC,CAAC,CAAC,KAAK,iBAAiB,MAAM;AAClE,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM;AAClD,YAAM,YAAY,cAAc,MAAM,QAAQ,MAAM;AACpD,aAAO,cAAc,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,IAChE;AACA,UAAM,UAAU,IAAI,gBAAgB,EAAE,OAAO,MAAM;AACnD,WAAO,cAAc,iBAAiB,SAAS,CAAC,CAAC,GAAG,MAAM;AAAA,EAC5D;AACF;AACA,SAAS,kBAAkB,EAAE,QAAQ,eAAe,kBAAkB,OAAO,MAAM,GAAG;AACpF,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,gBAAgB;AACtB,QAAI,mBAAmB,EAAE,UAAU,aAAa;AAC9C,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM;AAClD,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM;AAClD,UAAI,OAAO;AACX,UAAI,WAAW,aAAa,KAAK;AAC/B,SAAC,OAAO,KAAK,IAAI;AAAA,UACf,CAAC,MAAM,mBAAmB,MAAM,MAAM,mBAAmB,IAAI;AAAA,UAC7D,CAAC,MAAM,mBAAmB,MAAM,MAAM,mBAAmB,IAAI;AAAA,QAC/D,EAAE,IAAI,CAAC,iBAAiB;AACtB,gBAAM,CAAC,OAAO,KAAK,IAAI;AACvB,gBAAM,UAAU;AAAA,YACd,QAAQ,MAAM;AAAA,YACd,OAAO,MAAM;AAAA,YACb,OAAO,EAAE;AAAA,UACX;AACA,gBAAM,UAAU;AAAA,YACd,QAAQ,MAAM;AAAA,YACd,OAAO,MAAM;AAAA,YACb,OAAO,EAAE;AAAA,UACX;AACA,gBAAM,WAAW,IAAI,iBAAiB,QAAQ,EAAE,OAAO,EAAE,KAAK;AAC9D,iBAAO,cAAc,iBAAiB,UAAU,CAAC,SAAS,OAAO,GAAG,WAAW,MAAM,OAAO,MAAM,KAAK,CAAC;AAAA,QAC1G,CAAC;AAAA,MACH,OAAO;AACL,cAAM,cAAc,IAAI,wBAAwB,aAAa,uBAAuB,EAAE,OAAO,EAAE,KAAK;AACpG,cAAM,cAAc,IAAI,wBAAwB,aAAa,uBAAuB,EAAE,OAAO,EAAE,KAAK;AACpG,cAAM,UAAU;AAAA,UACd;AAAA,YACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,YACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,YACrC,OAAO,EAAE;AAAA,UACX;AAAA,UACA;AAAA,YACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,YACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,YACrC,OAAO,EAAE;AAAA,UACX;AAAA,UACA;AAAA,YACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,YACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,YACrC,OAAO,EAAE;AAAA,UACX;AAAA,UACA;AAAA,YACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,YACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,YACrC,OAAO,EAAE;AAAA,UACX;AAAA,QACF;AACA,gBAAQ,cAAc,iBAAiB,aAAa,SAAS,SAAS;AACtE,gBAAQ,cAAc,iBAAiB,aAAa,SAAS,SAAS;AAAA,MACxE;AACA,YAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,OAAO,MAAM,MAAM,GAAG,SAAS,cAAc,CAAC;AAC/F,oBAAc,YAAY,MAAM,MAAM;AACtC,oBAAc,YAAY,MAAM,MAAM;AACtC,aAAO;AAAA,IACT;AACA,UAAM,SAAS,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AACnD,SAAK,EAAE,UAAU,YAAY,EAAE,UAAU,YAAY,cAAc,mBAAmB,CAAC,GAAG,CAAC,CAAC,MAAM,iBAAiB,MAAM;AACvH,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM,EAAE;AACpD,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM,EAAE;AACpD,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,CAAC,WAAW,QAAQ,IAAI,cAAc,EAAE,OAAO,EAAE,OAAO,cAAc,cAAc,MAAM;AAChG,aAAO,cAAc,eAAe,UAAU,QAAQ,SAAS;AAAA,IACjE;AACA,UAAM,UAAU,IAAI,iBAAiB,QAAQ,EAAE,OAAO,EAAE,KAAK;AAC7D,WAAO,cAAc,iBAAiB,SAAS,CAAC,GAAG,CAAC,GAAG,MAAM;AAAA,EAC/D;AACF;AAGA,IAAI,kBAAkB,CAAC;AACvBA,UAAS,iBAAiB;AAAA,EACxB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,oBAAoB,MAAM;AAAA,EAC1B,UAAU,MAAM;AAAA,EAChB,YAAY,MAAM;AAAA,EAClB,WAAW,MAAM;AAAA,EACjB,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,kBAAkB,MAAM;AAAA,EACxB,aAAa,MAAM;AAAA,EACnB,eAAe,MAAM;AAAA,EACrB,UAAU,MAAM;AAAA,EAChB,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,UAAU,MAAM;AAAA,EAChB,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,eAAe,MAAM;AAAA,EACrB,WAAW,MAAM;AAAA,EACjB,yBAAyB,MAAM;AAAA,EAC/B,mBAAmB,MAAM;AAAA,EACzB,4BAA4B,MAAM;AAAA,EAClC,UAAU,MAAM;AAAA,EAChB,uBAAuB,MAAM;AAAA,EAC7B,kBAAkB,MAAM;AAAA,EACxB,kBAAkB,MAAM;AAAA,EACxB,iBAAiB,MAAM;AAAA,EACvB,4BAA4B,MAAM;AAAA,EAClC,SAAS,MAAM;AAAA,EACf,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,eAAe,MAAM;AAAA,EACrB,YAAY,MAAM;AACpB,CAAC;AAGD,SAAS,kBAAkB,SAAS,QAAQ;AAC1C,MAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAC3B,cAAU,CAAC,OAAO;AAAA,EACpB;AACA,UAAQ,QAAQ,CAAC,OAAO;AACtB,QAAI,MAAM,MAAM;AACd,mBAAa,OAAO,GAAG,UAAU,aAAa,MAAM,GAAG,+DAA+D;AAAA,IACxH;AAAA,EACF,CAAC;AACH;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,eAAe,IAAI,aAAa,KAAK,MAAM;AACjD,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,iBAAa,MAAM,KAAK,IAAI,KAAK,GAAG;AAAA,EACtC;AACA,SAAO;AACT;AAGA,SAAS,8BAA8B,KAAK;AAC1C,SAAO,CAAC,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC9C,UAAM,WAAW,qBAAqB,2BAA2B,QAAQ,MAAM;AAC/E,UAAM,aAAa,SAAS;AAC5B,UAAM,gBAAgB,aAAa,eAAe,QAAQ;AAC1D,UAAM,aAAa,aAAa,cAAc,QAAQ;AACtD,UAAM,SAAS,aAAa,uBAAuB,OAAO,UAAU;AACpE,UAAM,QAAQ,OAAO;AACrB,UAAM,QAAQ,OAAO;AACrB,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,QAAQ;AAC7E,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,QAAQ;AAC7E,QAAI,eAAe,SAAS,eAAe,WAAW,GAAG;AACvD,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,eAAO,MAAM,IAAI,MAAM,KAAK,MAAM,SAAS,MAAM,KAAK,MAAM,OAAO;AAAA,MACrE;AAAA,IACF,OAAO;AACL,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,cAAM,MAAM,aAAa,WAAW,IAAI,YAAY,aAAa;AACjE,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,eAAO,MAAM,IAAI,MAAM,SAAS,MAAM,OAAO;AAAA,MAC/C;AAAA,IACF;AACA,WAAO,CAAC,QAAQ,QAAQ;AAAA,EAC1B;AACF;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,OAAO,MAAM,MAAM,IAAI;AACrC,QAAM,WAAW,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AACjD,QAAM,WAAW,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AACjD,QAAM,cAAc,SAAS,eAAe,MAAM,OAAO,WAAW;AACpE,QAAM,WAAW,SAAS,KAAK,IAAI,YAAY,MAAM;AACrD,WAAS,qBAAqB;AAAA,IAC5B,MAAM,SAAS,eAAe,MAAM,OAAO,WAAW,QAAQ;AAAA,IAC9D,MAAM,SAAS,eAAe,MAAM,OAAO,WAAW,QAAQ;AAAA,EAChE;AACA,SAAO;AACT;AAGA,SAAS,OAAO,UAAU,OAAO,QAAQ,WAAW;AAClD,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,OAAO,UAAU,OAAO,SAAS;AAC/C,UAAM,QAAQ,OAAO,UAAU,OAAO,SAAS;AAC/C,WAAO,SAAS,EAAE,QAAQ,EAAE,MAAM,OAAO,MAAM,MAAM,GAAG,SAAS,SAAS,CAAC;AAAA,EAC7E;AACA,QAAM,SAAS,aAAa,oBAAoB,aAAa,cAAc,KAAK,GAAG,KAAK;AACxF,SAAO,SAAS,eAAe,OAAO,OAAO,MAAM;AACrD;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,WAAS,OAAO,EAAE,MAAM;AACxB,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAC5D;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE,mBAAmB;AAClE,QAAM,UAAU,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAChD,SAAO,SAAS,eAAe,MAAM,OAAO,MAAM,OAAO,OAAO;AAClE;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,UAAU,aAAa;AACzB,QAAI,EAAE,UAAU,aAAa;AAC3B,aAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACvD;AACA,UAAM,kBAAkB,OAAO,UAAU,EAAE,OAAO,EAAE,KAAK;AACzD,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AACtF,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,QAAQ,MAAM,gBAAgB,GAAG,SAAS,SAAS,CAAC;AAC9F,aAAS,8BAA8B,eAAe;AACtD,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,aAAS,8BAA8B,QAAQ;AAC/C,WAAO;AAAA,EACT;AACA,MAAI,CAAC,aAAa,gBAAgB,EAAE,OAAO,KAAK,GAAG;AACjD,UAAM,SAAS,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7D,WAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,MAAM;AAAA,EAC7D;AACA,MAAI,UAAU,SAAS;AACrB,UAAM,SAAS,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC3C,UAAM,eAAe,WAAW,KAAK,MAAM;AAC3C,WAAO,SAAS,eAAe,EAAE,OAAO,SAAS,YAAY;AAAA,EAC/D;AACA,MAAI,UAAU,QAAQ;AACpB,UAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,UAAM,OAAO,aAAa,aAAa,CAAC,CAAC,GAAG,EAAE,KAAK;AACnD,UAAM,CAAC,YAAY,WAAW,IAAI,8BAA8B,CAAC,GAAG,MAAM,MAAM,IAAI,IAAI,CAAC,EAAE,EAAE,OAAO,CAAC,GAAG,OAAO,MAAM,MAAM;AAC3H,WAAO,SAAS,eAAe,aAAa,QAAQ,UAAU;AAAA,EAChE;AACA,QAAM,IAAI,MAAM,iCAAiC,EAAE,YAAY,OAAO;AACxE;AAGA,SAAS,kBAAkB,MAAM,YAAY,aAAa,OAAO;AAC/D,MAAI,eAAe,MAAM;AACvB,WAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,YAAM,EAAE,GAAG,EAAE,IAAI;AACjB,YAAM,aAAa;AACnB,wBAAkB,CAAC,GAAG,CAAC,GAAG,IAAI;AAC9B,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,SAAS,SAAS,EAAE;AAC1B,YAAM,CAAC,YAAY,WAAW,IAAI,WAAW,EAAE,OAAO,EAAE,OAAO,cAAc,cAAc,MAAM;AACjG,aAAO,WAAW,eAAe,aAAa,QAAQ,UAAU;AAAA,IAClE;AAAA,EACF;AACA,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,aAAa;AACnB,QAAI,EAAE,UAAU,eAAe,EAAE,UAAU,aAAa;AACtD,YAAM,YAAY,MAAM,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,YAAY,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChG,YAAM,gBAAgB,WAAW,KAAK,IAAI,UAAU,MAAM;AAC1D,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,YAAY,MAAM,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,YAAY,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChG,YAAM,gBAAgB,WAAW,KAAK,IAAI,UAAU,MAAM;AAC1D,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,CAAC,gBAAgB,gBAAgB,WAAW,IAAI,YAAY,EAAE,OAAO,EAAE,OAAO,WAAW,WAAW,WAAW,SAAS;AAC9H,YAAM,aAAa,WAAW,eAAe,aAAa,WAAW,cAAc;AACnF,YAAM,aAAa,WAAW,eAAe,aAAa,WAAW,cAAc;AACnF,YAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,YAAY,MAAM,WAAW,GAAG,SAAS,WAAW,CAAC;AAC/F,iBAAW,8BAA8B,SAAS;AAClD,iBAAW,8BAA8B,SAAS;AAClD,iBAAW,8BAA8B,UAAU;AACnD,iBAAW,8BAA8B,UAAU;AACnD,aAAO;AAAA,IACT,OAAO;AACL,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,SAAS,SAAS,EAAE;AAC1B,YAAM,CAAC,YAAY,WAAW,IAAI,WAAW,EAAE,OAAO,EAAE,OAAO,OAAO,OAAO,MAAM;AACnF,aAAO,WAAW,eAAe,aAAa,QAAQ,UAAU;AAAA,IAClE;AAAA,EACF;AACF;AACA,SAAS,+BAA+B,KAAK;AAC3C,SAAO,CAAC,QAAQ,QAAQ,WAAW,WAAW,WAAW,cAAc;AACrE,UAAM,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AAClF,UAAM,aAAa,aAAa,cAAc,WAAW;AACzD,UAAM,aAAa,YAAY;AAC/B,UAAM,gBAAgB,aAAa,eAAe,WAAW;AAC7D,UAAM,iBAAiB,aAAa,uBAAuB,WAAW,UAAU;AAChF,UAAM,iBAAiB,aAAa,uBAAuB,WAAW,UAAU;AAChF,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,WAAW;AAChF,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,WAAW;AAChF,UAAM,QAAQ,qBAAqB,uBAAuB,WAAW,SAAS;AAC9E,UAAM,QAAQ,qBAAqB,uBAAuB,WAAW,SAAS;AAC9E,UAAM,QAAQ,OAAO;AACrB,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,UAAM,QAAQ,OAAO;AACrB,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,QAAI,eAAe,SAAS,eAAe,WAAW,GAAG;AACvD,eAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,cAAM,OAAO,KAAK,MAAM;AACxB,cAAM,OAAO,KAAK,MAAM;AACxB,cAAM,SAAS,IAAI,MAAM,OAAO,IAAI,MAAM,OAAO,IAAI,IAAI,MAAM,OAAO,IAAI,MAAM,OAAO,IAAI,EAAE;AAC7F,uBAAe,MAAM,OAAO;AAC5B,uBAAe,MAAM,OAAO;AAAA,MAC9B;AAAA,IACF,OAAO;AACL,eAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,cAAM,MAAM,aAAa,WAAW,IAAI,YAAY,aAAa;AACjE,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,cAAM,WAAW,IAAI,MAAM,SAAS,IAAI,MAAM,SAAS,IAAI,IAAI,MAAM,SAAS,IAAI,MAAM,SAAS,IAAI,EAAE;AACvG,uBAAe,MAAM,SAAS;AAC9B,uBAAe,MAAM,SAAS;AAAA,MAChC;AAAA,IACF;AACA,WAAO,CAAC,gBAAgB,gBAAgB,WAAW;AAAA,EACrD;AACF;AAGA,IAAI,WAAW,8BAA8B,CAAC,GAAG,MAAM,IAAI,CAAC;AAC5D,IAAI,kBAAkB,+BAA+B,CAAC,OAAO,OAAO,OAAO,UAAU;AACnF,SAAO,EAAE,MAAM,QAAQ,OAAO,MAAM,QAAQ,MAAM;AACpD,CAAC;AACD,IAAI,OAAO,kBAAkB,KAAK,UAAU,eAAe;AAG3D,SAAS,cAAc,OAAO,aAAa,cAAc,cAAcG,OAAM;AAC3E,QAAM,cAAc,aAAa,cAAc,YAAY;AAC3D,QAAM,UAAU,aAAa,oBAAoBA,OAAM,YAAY;AACnE,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,UAAM,QAAQ,MAAM;AACpB,QAAI,QAAQ,GAAG;AACb,YAAM,IAAI,MAAM,+BAA+B;AAAA,IACjD;AACA,QAAI,SAASA,OAAM;AACjB;AAAA,IACF;AACA,QAAI,cAAc,GAAG;AACnB,cAAQ,UAAU,YAAY;AAAA,IAChC,OAAO;AACL,cAAQ,UAAU;AAAA,IACpB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,MAAM,YAAYA,OAAM,eAAe,OAAO;AACzE,QAAM,UAAU,KAAK,MAAM;AAC3B,QAAM,UAAU,KAAK,MAAM;AAC3B,QAAM,SAAS,OAAO,CAAC,SAASA,KAAI,GAAG,WAAW,KAAK;AACvD,WAAS,KAAK,GAAG,KAAK,SAAS,MAAM;AACnC,aAAS,IAAI,GAAG,IAAI,SAAS,KAAK;AAChC,YAAM,QAAQ,KAAK,IAAI,IAAI,CAAC;AAC5B,UAAI,QAAQ,GAAG;AACb,cAAM,IAAI,MAAM,+BAA+B;AAAA,MACjD;AACA,UAAI,SAASA,OAAM;AACjB;AAAA,MACF;AACA,UAAI,cAAc;AAChB,eAAO,IAAI,GAAG,IAAI,KAAK;AAAA,MACzB,OAAO;AACL,YAAI,WAAW,OAAO,GAAG;AACvB,iBAAO,IAAI,OAAO,IAAI,IAAI,KAAK,IAAI,WAAW,IAAI,IAAI,CAAC,GAAG,IAAI,KAAK;AAAA,QACrE,OAAO;AACL,iBAAO,IAAI,OAAO,IAAI,IAAI,KAAK,IAAI,GAAG,IAAI,KAAK;AAAA,QACjD;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,uBAAuB,KAAK;AACnC,SAAO,CAAC,QAAQ,OAAO,UAAU;AAC/B,UAAM,YAAY,aAAa,uBAAuB,OAAO,OAAO,MAAM;AAC1E,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,gBAAU,MAAM,IAAI,OAAO,KAAK,KAAK;AAAA,IACvC;AACA,WAAO;AAAA,EACT;AACF;AAGA,SAAS,iBAAiB,MAAM,KAAK,OAAO;AAC1C,SAAO,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AAC/C,UAAM,EAAE,EAAE,IAAI;AACd,sBAAkB,GAAG,IAAI;AACzB,QAAI,EAAE,UAAU,YAAY,UAAU,UAAU;AAC9C,YAAM,IAAI,MAAM,sDAAsD;AAAA,IACxE;AACA,UAAM,aAAa;AACnB,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,UAAM,SAAS,SAAS,EAAE;AAC1B,UAAM,YAAY,aAAa,kBAAkB,QAAQ,KAAK;AAC9D,aAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,gBAAU,MAAM,IAAI,OAAO,KAAK,KAAK;AAAA,IACvC;AACA,WAAO,WAAW,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,EAC7D;AACF;AACA,SAAS,yBAAyB,MAAM,WAAW,OAAO;AACxD,SAAO,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AAC/C,UAAM,EAAE,EAAE,IAAI;AACd,sBAAkB,GAAG,IAAI;AACzB,QAAI,EAAE,UAAU,YAAY,UAAU,UAAU;AAC9C,YAAM,IAAI,MAAM,sDAAsD;AAAA,IACxE;AACA,UAAM,aAAa;AACnB,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,SAAS,SAAS,EAAE;AAC1B,UAAM,YAAY,UAAU,QAAQ,QAAQ,KAAK;AACjD,WAAO,WAAW,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,EAC7D;AACF;AAGA,IAAI,YAAY,uBAAuB,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AAC5D,IAAI,QAAQ,yBAAyB,MAAM,SAAS;AAGpD,SAAS,YAAY,QAAQ,UAAU,OAAO,cAAc;AAC1D,QAAM,UAAU,aAAa,kBAAkB,OAAO,aAAa,cAAc,QAAQ,CAAC;AAC1F,MAAI,gBAAgB,UAAU,UAAU;AACtC,QAAI,SAAS;AACb,WAAO,QAAQ,CAAC,WAAW;AACzB,YAAMA,QAAO,aAAa,cAAc,OAAO,KAAK;AACpD,cAAQ,IAAI,OAAO,MAAM,MAAM;AAC/B,gBAAUA;AAAA,IACZ,CAAC;AAAA,EACH,OAAO;AACL,QAAI,YAAY;AAChB,WAAO,QAAQ,CAAC,WAAW;AACzB,YAAM,cAAc,UAAU,WAAW,qBAAqB,uBAAuB,OAAO,IAAI,IAAI,OAAO;AAC3G,UAAI,OAAO;AACX,eAAS,MAAM,GAAG,MAAM,OAAO,MAAM,IAAI,EAAE,KAAK;AAC9C,cAAM,SAAS,MAAM,SAAS,KAAK;AACnC,iBAAS,MAAM,GAAG,MAAM,OAAO,MAAM,IAAI,EAAE,KAAK;AAC9C,kBAAQ,SAAS,OAAO,YAAY;AAAA,QACtC;AAAA,MACF;AACA,mBAAa,OAAO,MAAM;AAAA,IAC5B,CAAC;AAAA,EACH;AACA,SAAO;AACT;AAGA,IAAI,aAAa,8BAA8B,CAAC,GAAG,MAAM,MAAM,IAAI,IAAI,CAAC;AACxE,IAAI,SAAS,kBAAkB,OAAO,YAAY,MAAM,MAAM;AAG9D,IAAI,WAAW,uBAAuB,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AAC1D,IAAI,OAAO,yBAAyB,KAAK,UAAU,SAAS;AAG5D,IAAI,aAAa,uBAAuB,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC9D,IAAI,SAAS,yBAAyB,OAAO,UAAU;AAGvD,IAAI,aAAa,uBAAuB,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC9D,IAAI,SAAS,yBAAyB,OAAO,UAAU;AAGvD,SAAS,cAAc,aAAa,WAAW,OAAO,WAAW,WAAW,WAAWa,UAAS,aAAa,YAAY;AACvH,QAAM,SAAS,OAAO,CAAC,WAAW,SAAS,GAAG,KAAK;AACnD,WAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,UAAMH,SAAQ,CAAC;AACf,QAAI,eAAe;AACnB,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,YAAM,MAAM,YAAY,KAAK,YAAY;AACzC,sBAAgB,MAAMG,SAAQ;AAC9B,MAAAH,OAAM,KAAK,GAAG;AAAA,IAChB;AACA,QAAI,eAAe,KAAK,gBAAgB,aAAa,WAAW;AAC9D,YAAM,IAAI,MAAM,oBAAoBA,8BAA6B,aAAa;AAAA,IAChF;AACA,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,aAAO,OAAO,KAAK,YAAY,KAAK,UAAU,IAAI,GAAG,UAAU,WAAW,eAAe,YAAY,CAAC,CAAC;AAAA,IACzG;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,cAAc,MAAM,YAAY,oBAAoB;AAC3D,QAAM,SAAS,OAAO,oBAAoB,KAAK,KAAK;AACpD,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,EAAE,IAAI;AACvC,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,cAAc,OAAO,MAAM;AACjC,UAAM,WAAW,YAAY;AAC7B,UAAM,aAAa,YAAY;AAC/B,UAAM,eAAe,WAAW,WAAW,CAAC,UAAU,UAAU,CAAC;AACjE,gBAAY,KAAK,WAAW,OAAO;AACnC,UAAM,gBAAgB,KAAK,WAAW,WAAW;AACjD,QAAI,KAAK,iBAAiB,gBAAgB,KAAK,OAAO,QAAQ;AAC5D,aAAO,OAAO,MAAM,KAAK,OAAO;AAAA,IAClC;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,eAAe,8BAA8B,CAAC,GAAG,MAAM,IAAI,IAAI,IAAI,CAAC;AACxE,IAAI,WAAW,kBAAkB,SAAS,cAAc,MAAM,MAAM;AAGpE,IAAI,oBAAoB,8BAA8B,CAAC,GAAG,MAAM,KAAK,IAAI,IAAI,CAAC;AAC9E,IAAI,gBAAgB,kBAAkB,cAAc,mBAAmB,MAAM,MAAM;AAGnF,IAAI,YAAY,8BAA8B,CAAC,GAAG,MAAM,IAAI,IAAI,IAAI,CAAC;AACrE,IAAI,QAAQ,kBAAkB,MAAM,WAAW,MAAM,MAAM;AAG3D,IAAI,iBAAiB,8BAA8B,CAAC,GAAG,MAAM,KAAK,IAAI,IAAI,CAAC;AAC3E,IAAI,aAAa,kBAAkB,WAAW,gBAAgB,MAAM,MAAM;AAG1E,SAAS,cAAc,OAAO,MAAM,KAAK;AACvC,QAAM,SAAS,OAAO,UAAU,MAAM;AACtC,QAAM,SAAS,aAAa,oBAAoB,KAAK,SAAS;AAC9D,SAAO,KAAK;AACZ,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,WAAO,MAAM,OAAO,KAAK,KAAK;AAAA,EAChC;AACA,SAAO;AACT;AAGA,IAAI,WAAW,uBAAuB,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AAC1D,IAAI,OAAO,yBAAyB,KAAK,QAAQ;AAGjD,SAAS,SAAS,OAAO,YAAY,UAAU,OAAO;AACpD,QAAM,OAAO,aAAa,uBAAuB,OAAO,aAAa,cAAc,QAAQ,CAAC;AAC5F,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO,MAAM;AACjB,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,UAAI,OAAO,MAAM,KAAK,KAAK,QAAQ,MAAM;AACvC,eAAO;AAAA,MACT;AAAA,IACF;AACA,SAAK,MAAM;AAAA,EACb;AACA,SAAO;AACT;AAGA,IAAI,eAAe,8BAA8B,CAAC,QAAQ,WAAW,KAAK,IAAI,QAAQ,MAAM,CAAC;AAC7F,IAAI,WAAW,kBAAkB,SAAS,YAAY;AAGtD,IAAI,eAAe,8BAA8B,CAAC,QAAQ,WAAW,KAAK,IAAI,QAAQ,MAAM,CAAC;AAC7F,IAAI,WAAW,kBAAkB,SAAS,YAAY;AAGtD,IAAI,gBAAgB,8BAA8B,CAAC,QAAQ,WAAW,SAAS,MAAM;AACrF,IAAI,uBAAuB,+BAA+B,CAAC,OAAO,OAAO,OAAO,UAAU;AACxF,SAAO;AAAA,IACL,MAAM,QAAQ,QAAQ,QAAQ;AAAA,IAC9B,MAAM,QAAQ,QAAQ,QAAQ;AAAA,EAChC;AACF,CAAC;AACD,IAAI,YAAY,kBAAkB,UAAU,eAAe,oBAAoB;AAG/E,SAAS,SAAS,OAAO,QAAQ,QAAQ;AACvC,QAAM,WAAW,aAAa,kBAAkB,IAAI,MAAM;AAC1D,SAAO,cAAc,CAAC,GAAG,QAAQ,UAAU,OAAO,MAAM;AAC1D;AAGA,IAAI,gBAAgB,8BAA8B,CAAC,GAAG,MAAM,MAAM,IAAI,IAAI,CAAC;AAC3E,IAAI,YAAY,kBAAkB,UAAU,eAAe,MAAM,MAAM;AAGvE,SAAS,eAAe,OAAO,QAAQ,OAAO,MAAM,UAAU;AAC5D,QAAM,QAAQ,OAAO;AACrB,QAAM,QAAQ,aAAa,cAAc,MAAM;AAC/C,QAAM,WAAW,aAAa,eAAe,MAAM;AACnD,QAAM,aAAa,aAAa,eAAe,QAAQ;AACvD,QAAM,SAAS,aAAa,uBAAuB,OAAO,aAAa,cAAc,QAAQ,CAAC;AAC9F,WAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,UAAM,MAAM,aAAa,WAAW,IAAI,OAAO,QAAQ;AACvD,UAAM,SAAS,IAAI,MAAM,IAAI,MAAM;AACnC,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,aAAO,MAAM,IAAI,KAAK;AAAA,IACxB;AACA,UAAM,WAAW,aAAa,WAAW,QAAQ,OAAO,UAAU;AAClE,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,SAAO;AACT;AAGA,SAAS,UAAU,QAAQ,QAAQ,OAAO,eAAe;AACvD,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,QAAQ,aAAa;AACpG,QAAM,WAAW,WAAW,QAAQ,OAAO;AAC3C,QAAM,UAAU,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,QAAQ;AAC/F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAM,SAAS,KAAK;AACpB,QAAI,QAAQ;AACZ,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,eAAS,MAAM,SAAS;AAAA,IAC1B;AACA,YAAQ,MAAM;AAAA,EAChB;AACA,SAAO,EAAE,SAAS,UAAU,SAAS;AACvC;AAGA,SAAS,WAAW,OAAO,MAAM,OAAO,OAAO;AAC7C,QAAM,gBAAgB,UAAU;AAChC,QAAM,8BAA8B,QAAQ,QAAQ,QAAQ;AAC5D,QAAM,8BAA8B,OAAO,SAAS,QAAQ;AAC5D,MAAI,iBAAiB,+BAA+B,6BAA6B;AAC/E,WAAO,aAAa,oBAAoB,GAAG,KAAK;AAAA,EAClD;AACA,QAAM,cAAc,KAAK,IAAI,KAAK,MAAM,OAAO,SAAS,KAAK,CAAC;AAC9D,QAAM,SAAS,aAAa,oBAAoB,aAAa,KAAK;AAClE,MAAI,OAAO,SAAS,UAAU,GAAG;AAC/B,YAAQ;AAAA,EACV;AACA,SAAO,KAAK;AACZ,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,WAAO,MAAM,OAAO,KAAK,KAAK;AAAA,EAChC;AACA,SAAO;AACT;AAGA,IAAI,aAAa,uBAAuB,CAAC,OAAO,IAAI,KAAK,KAAK,EAAE,CAAC;AACjE,IAAI,SAAS,yBAAyB,OAAO,UAAU;AAGvD,SAAS,aAAa,SAAS,SAAS,OAAOW,aAAY,WAAW,YAAY,WAAWR,UAAS,cAAc,gBAAgB;AAClI,QAAM,eAAe,CAACQ,cAAa,WAAW,SAAS;AACvD,QAAM,cAAc,QAAQ;AAC5B,QAAM,cAAc,QAAQ;AAC5B,MAAIA,gBAAe,GAAG;AACpB,WAAO,OAAO,OAAO,QAAQ,KAAK;AAAA,EACpC;AACA,QAAM,SAAS,OAAO,cAAc,QAAQ,KAAK;AACjD,MAAI,OAAO,iBAAiB,UAAU;AACpC,WAAO,OAAO,KAAK,YAAY;AAAA,EACjC,WAAW,OAAO,iBAAiB,UAAU;AAC3C,WAAO,OAAO,KAAK,YAAY;AAAA,EACjC,WAAW,OAAO,iBAAiB,WAAW;AAC5C,WAAO,OAAO,KAAK,CAAC,YAAY;AAAA,EAClC;AACA,WAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,UAAMX,SAAQ,CAAC;AACf,QAAI,eAAe;AACnB,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,YAAM,MAAM,YAAY,KAAK,YAAY;AACzC,MAAAA,OAAM,KAAK,GAAG;AACd,sBAAgB,MAAMG,SAAQ;AAAA,IAChC;AACA,QAAI,eAAe,KAAK,gBAAgBQ,cAAa,WAAW;AAC9D,YAAM,IAAI,MAAM,oBAAoBX,8BAA6B,OAAO;AAAA,IAC1E;AACA,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,UAAI,gBAAgB;AAClB,eAAO,OAAO,eAAe,YAAY,MAAM,YAAY,KAAK,YAAY;AAAA,MAC9E,OAAO;AACL,eAAO,OAAO,eAAe,YAAY,KAAK,QAAQ,SAAS,IAAI,YAAY,KAAK,YAAY,KAAK,YAAY;AAAA,MACnH;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,eAAe,uBAAuB,CAAC,OAAO,KAAK,IAAI,KAAK,IAAI,CAAC,EAAE,EAAE;AACzE,IAAI,WAAW,iBAAiB,SAAS,CAAC,OAAO,KAAK,IAAI,KAAK,IAAI,CAAC,EAAE,EAAE;AAGxE,SAAS,WAAW,MAAM,OAAOV,OAAM,OAAO,OAAO;AACnD,QAAM,cAAc,mBAAmB,iBAAiB,OAAO,OAAOA,KAAI;AAC1E,QAAM,SAAS,aAAa,cAAcA,KAAI;AAC9C,QAAM,WAAW,aAAa,eAAe,KAAK;AAClD,MAAI,aAAa;AACf,UAAM,aAAa,mBAAmB,kBAAkB,OAAO,QAAQ;AACvE,QAAI,UAAU,UAAU;AACtB,aAAO,KAAK,MAAM,YAAY,aAAa,MAAM;AAAA,IACnD;AACA,WAAO,KAAK,SAAS,YAAY,aAAa,MAAM;AAAA,EACtD;AACA,QAAM,cAAc,UAAU,WAAW,qBAAqB,uBAAuB,IAAI,IAAI;AAC7F,QAAM,QAAQ,OAAO,OAAO,OAAO,WAAW;AAC9C,QAAM,SAAS,OAAOA,OAAM,KAAK;AACjC,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,EAAE,IAAI;AACvC,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,QAAQ,OAAO,IAAI,CAAC,KAAK,MAAM,MAAM,MAAM,EAAE;AACnD,WAAO,IAAI,MAAM,IAAI,GAAG,KAAK,GAAG,GAAG,MAAM;AAAA,EAC3C;AACA,MAAI,UAAU,UAAU;AACtB,WAAO,qBAAqB,uBAAuB,OAAO,MAAM;AAAA,EAClE;AACA,SAAO,OAAO;AAChB;AAGA,SAAS,yBAAyB,SAAS,cAAc,cAAc,QAAQ,aAAa,YAAY,cAAc;AACpH,QAAM,eAAe,aAAa;AAClC,QAAM,YAAY,WAAW;AAC7B,QAAM,oBAAoB,IAAI,MAAM,SAAS;AAC7C,QAAM,kBAAkB,IAAI,MAAM,YAAY;AAC9C,QAAM,OAAO,aAAa;AAC1B,MAAI,cAAc,GAAG;AACnB,QAAI,iBAAiB,GAAG;AACtB,YAAM,IAAI,MAAM,qBAAqB,gDAAgD,YAAY,CAAC;AAAA,IACpG;AACA,UAAM,gBAAgB,aAAa,kBAAkB,cAAc,CAAC;AACpE,UAAM,eAAe,aAAa,kBAAkB,aAAa,CAAC;AAClE,WAAO;AAAA,MACL;AAAA,MACA,CAAC,GAAG,IAAI;AAAA,MACR;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACA,MAAI,iBAAiB;AACrB,MAAI,iBAAiB;AACrB,QAAM,YAAY,IAAI,MAAM,SAAS,EAAE,KAAK,CAAC;AAC7C,WAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAM,MAAM,QAAQ,KAAK;AACzB,QAAI,MAAM,GAAG;AACX,YAAM,IAAI,MAAM,qBAAqB,gDAAgD,IAAI,GAAG,CAAC;AAAA,IAC/F;AACA,QAAI,OAAO,WAAW;AACpB,YAAM,IAAI,MAAM,qBAAqB,kDAAkD,IAAI,KAAK,SAAS,CAAC;AAAA,IAC5G;AACA,MAAE,UAAU;AACZ,qBAAiB,kBAAkB,OAAO;AAC1C,qBAAiB;AAAA,EACnB;AACA,MAAI,cAAc;AAClB,WAAS,MAAM,GAAG,MAAM,WAAW,EAAE,KAAK;AACxC,UAAM,WAAW,UAAU,SAAS;AACpC,sBAAkB,OAAO;AACzB,kBAAc,eAAe,CAAC;AAC9B,cAAU,OAAO,KAAK,IAAI,UAAU,MAAM,CAAC;AAC3C,QAAI,MAAM,GAAG;AACX,gBAAU,QAAQ,UAAU,MAAM;AAAA,IACpC;AAAA,EACF;AACA,MAAI,eAAe,gBAAgB;AACjC,UAAM,gBAAgB;AACtB,UAAM,eAAe;AACrB,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,sBAAgB,MAAM;AAAA,IACxB;AACA,WAAO;AAAA,MACL;AAAA,MACA,CAAC,cAAc,IAAI;AAAA,MACnB;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF,OAAO;AACL,UAAM,mBAAmB,UAAU,YAAY;AAC/C,UAAM,gBAAgB,aAAa,kBAAkB,cAAc,mBAAmB,IAAI;AAC1F,UAAM,eAAe,aAAa,kBAAkB,aAAa,gBAAgB;AACjF,UAAM,cAAc,IAAI,MAAM,SAAS,EAAE,KAAK,CAAC;AAC/C,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,YAAM,MAAM,QAAQ,KAAK;AACzB,YAAM,SAAS,YAAY;AAC3B,YAAM,WAAW,QAAQ,IAAI,IAAI,UAAU,MAAM,MAAM;AACvD,kBAAY;AACZ,eAAS,IAAI,GAAG,IAAI,MAAM,EAAE,GAAG;AAC7B,sBAAc,UAAU,OAAO,KAAK,QAAQ,KAAK,OAAO;AAAA,MAC1D;AACA,mBAAa,WAAW,OAAO;AAC/B,sBAAgB,MAAM;AAAA,IACxB;AACA,aAAS,MAAM,GAAG,MAAM,WAAW,EAAE,KAAK;AACxC,YAAM,WAAW,YAAY;AAC7B,UAAI,aAAa,GAAG;AAClB,cAAM,gBAAgB,QAAQ,IAAI,IAAI,UAAU,MAAM;AACtD,sBAAc,gBAAgB,OAAO,KAAK;AAC1C,iBAAS,MAAM,GAAG,MAAM,MAAM,EAAE,KAAK;AACnC,wBAAc,gBAAgB,OAAO,OAAO;AAAA,QAC9C;AACA,qBAAa,iBAAiB;AAAA,MAChC;AAAA,IACF;AACA,WAAO;AAAA,MACL;AAAA,MACA,CAAC,kBAAkB,IAAI;AAAA,MACvB;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AAGA,SAAS,mBAAmB,cAAc,mBAAmB,YAAY,YAAY,aAAa;AAChG,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,MAAM,kBAAkB;AAC9B,QAAM,aAAa,YAAY;AAC/B,QAAM,cAAc,CAAC;AACrB,MAAI,UAAU;AACd,MAAI,eAAe;AACnB,WAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,UAAMA,QAAO,YAAY;AACzB,QAAIA,UAAS,IAAI;AACf,UAAI,iBAAiB,IAAI;AACvB,cAAM,IAAI,MAAM,qBAAqB,yDAAyD,cAAc,CAAC,CAAC;AAAA,MAChH;AACA,qBAAe;AACf,kBAAY,KAAK,CAAC;AAAA,IACpB,OAAO;AACL,UAAIA,QAAO,GAAG;AACZ,cAAM,IAAI,MAAM,qBAAqB,8CAA8C,GAAGA,KAAI,CAAC;AAAA,MAC7F;AACA,iBAAWA;AACX,kBAAY,KAAKA,KAAI;AAAA,IACvB;AAAA,EACF;AACA,MAAI,iBAAiB,IAAI;AACvB,QAAI,WAAW,GAAG;AAChB,YAAM,IAAI,MAAM,qBAAqB,qDAAqD,CAAC;AAAA,IAC7F;AACA,UAAM,UAAU,KAAK,MAAM,YAAY,OAAO;AAC9C,QAAI,UAAU,YAAY,WAAW;AACnC,YAAM,IAAI,MAAM,qBAAqB,gDAAgD,YAAY,WAAW,CAAC;AAAA,IAC/G;AACA,gBAAY,gBAAgB;AAAA,EAC9B;AACA,QAAMqB,cAAa,aAAa,cAAc,WAAW;AACzD,MAAIA,gBAAe,WAAW;AAC5B,UAAM,IAAI,MAAM,qBAAqB,gDAAgD,YAAY,WAAW,CAAC;AAAA,EAC/G;AACA,QAAM,YAAY,WAAW;AAC7B,QAAM,eAAe,CAAC;AACtB,MAAI,YAAY,GAAG;AACjB,iBAAa,YAAY,KAAK;AAC9B,aAAS,IAAI,YAAY,GAAG,KAAK,GAAG,EAAE,GAAG;AACvC,mBAAa,KAAK,aAAa,IAAI,KAAK,WAAW,IAAI;AAAA,IACzD;AAAA,EACF;AACA,QAAM,gBAAgB,CAAC;AACvB,MAAI,aAAa,GAAG;AAClB,kBAAc,aAAa,KAAK;AAChC,aAAS,IAAI,aAAa,GAAG,KAAK,GAAG,EAAE,GAAG;AACxC,oBAAc,KAAK,cAAc,IAAI,KAAK,YAAY,IAAI;AAAA,IAC5D;AAAA,EACF;AACA,QAAM,aAAa,aAAa,kBAAkB,YAAY,MAAM,UAAU;AAC9E,WAAS,KAAK,GAAG,KAAK,KAAK,EAAE,IAAI;AAC/B,QAAI,KAAK;AACT,aAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,YAAM,aAAa,KAAK,YAAY,KAAK,aAAa;AAAA,IACxD;AACA,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,iBAAW,KAAK,aAAa,KAAK,KAAK,MAAM,KAAK,cAAc,EAAE;AAClE,YAAM,cAAc;AAAA,IACtB;AAAA,EACF;AACA,SAAO,CAAC,YAAY,CAAC,KAAK,UAAU,GAAG,WAAW;AACpD;AAGA,SAAS,4BAA4B,QAAQ,YAAY,YAAY,SAAS,YAAY,SAAS,OAAO,eAAe,GAAG;AAC1H,QAAM,aAAa,QAAQ;AAC3B,QAAM,YAAY,CAAC,WAAW,IAAI,OAAO,SAAS,WAAW,EAAE;AAC/D,QAAM,SAAS,UAAU;AACzB,QAAM,uBAAuB,aAAa,IAAI,WAAW,aAAa,KAAK,IAAI;AAC/E,QAAM,aAAa;AACnB,MAAI,aAAa,GAAG;AAClB,UAAM,IAAI,MAAM,qBAAqB,wDAAwD,CAAC;AAAA,EAChG;AACA,QAAM,cAAc,WAAW,MAAM;AACrC,cAAY,KAAK;AACjB,QAAM,eAAe,YAAY,OAAO,CAAC,SAAS,UAAU,UAAU,OAAO,CAAC;AAC9E,QAAM,SAAS,aAAa,kBAAkB,YAAY,YAAY;AACtE,MAAI,eAAe,GAAG;AACpB,QAAI,aAAa,GAAG;AAClB,aAAO,KAAK,YAAY;AAAA,IAC1B;AACA,WAAO,CAAC,QAAQ,WAAW;AAAA,EAC7B;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,qBAAqB,wDAAwD,CAAC;AAAA,EAChG;AACA,MAAI,QAAQ,GAAG,MAAM;AACrB,MAAI,qBAAqB;AACzB,MAAI,WAAW,WAAW;AAC1B,SAAO,MAAM;AACX,QAAI,YAAY;AAChB,QAAI,MAAM,YAAY;AACpB,kBAAY,WAAW;AACvB,UAAI,aAAa,WAAW;AAC1B,UAAE;AACF;AAAA,MACF;AACA,UAAI,YAAY,WAAW;AACzB,cAAM,IAAI,MAAM,qBAAqB,6DAA6D,CAAC;AAAA,MACrG;AAAA,IACF;AACA,QAAI,WAAW,KAAK,YAAY,YAAY;AAC1C,YAAM,IAAI,MAAM,qBAAqB,yDAAyD,UAAU,UAAU,CAAC;AAAA,IACrH;AACA,QAAI,WAAW,oBAAoB;AACjC,aAAO,KAAK,cAAc,qBAAqB,QAAQ,WAAW,MAAM;AAAA,IAC1E;AACA,aAAS,KAAK,OAAO,KAAK,KAAK,EAAE,IAAI;AACnC,YAAMX,SAAQ,QAAQ;AACtB,UAAIA,SAAQ,KAAKA,UAAS,UAAU,IAAI;AACtC,cAAM,IAAI,MAAM,qBAAqB,uDAAuD,IAAI,QAAQ,KAAK,UAAU,EAAE,CAAC;AAAA,MAC5H;AACA,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,eAAO,WAAW,SAAS,MAAM,OAAOA,SAAQ,SAAS;AAAA,MAC3D;AAAA,IACF;AACA,QAAI,QAAQ;AACV,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,eAAO,WAAW,SAAS,MAAM,MAAM;AAAA,MACzC;AAAA,IACF;AACA,YAAQ;AACR,MAAE;AACF,yBAAqB,WAAW;AAChC,eAAW;AACX,QAAI,MAAM,YAAY;AACpB;AAAA,IACF;AAAA,EACF;AACA,MAAI,qBAAqB,YAAY;AACnC,WAAO,KAAK,cAAc,qBAAqB,QAAQ,aAAa,MAAM;AAAA,EAC5E;AACA,SAAO,CAAC,QAAQ,WAAW;AAC7B;AAGA,IAAI,YAAY,uBAAuB,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AAC5D,IAAI,QAAQ,iBAAiB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AAGxD,IAAI,yBAAyB,8BAA8B,CAAC,GAAG,MAAM;AACnE,QAAM,OAAO,IAAI;AACjB,SAAO,OAAO;AAChB,CAAC;AACD,IAAI,qBAAqB,kBAAkB,mBAAmB,sBAAsB;AAGpF,SAAS,kBAAkB,UAAU,MAAMG,UAAS,OAAO;AACzD,QAAM,SAAS,OAAO,UAAU,KAAK,KAAK;AAC1C,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,MAAM;AACvC,UAAM,MAAM,OAAO,WAAW,EAAE;AAChC,UAAM,SAAS,IAAI,MAAM,IAAI,MAAM;AACnC,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,KAAK;AACtC,aAAO,KAAK,IAAI,KAAKA,SAAQ,KAAK,MAAM;AAAA,IAC1C;AACA,WAAO,IAAI,KAAK,IAAI,GAAG,MAAM,GAAG,GAAG,GAAG;AAAA,EACxC;AACA,SAAO;AACT;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,WAAW,aAAa,SAAS,WAAW,UAAU,wBAAwB;AACxF,SAAK,YAAY,aAAa,aAAa,SAAS;AACpD,SAAK,cAAc;AACnB,SAAK,UAAU,aAAa,aAAa,OAAO;AAChD,SAAK,WAAW,aAAa,aAAa,SAAS;AACnD,SAAK,WAAW;AAChB,SAAK,gBAAgB;AAAA,EACvB;AAAA,EACA,YAAY,YAAY;AACtB,WAAO,KAAK,IAAI,KAAK,WAAW,IAAI,aAAa,IAAI,KAAK,UAAU,aAAa,CAAC;AAAA,EACpF;AAAA,EACA,aAAa,QAAQ,YAAY;AAC/B,UAAM,WAAW,KAAK,YAAY,UAAU;AAC5C,WAAO,KAAK,IAAI,GAAG,SAAS,IAAI,WAAW,aAAa,CAAC;AAAA,EAC3D;AAAA,EACA,aAAa,MAAM,YAAY,QAAQ,kBAAkB,WAAW,YAAY;AAC9E,aAAS,aAAa,GAAG,aAAa,WAAW,EAAE,YAAY;AAC7D,YAAM,WAAW,KAAK,YAAY,UAAU;AAC5C,YAAM,cAAc,KAAK,IAAI,GAAG,WAAW,UAAU;AACrD,YAAM,eAAe,KAAK,IAAI,GAAG,YAAY,aAAa,aAAa,GAAG;AAC1E,YAAM,YAAY,cAAc,cAAc;AAC9C,YAAM,iBAAiB,cAAc,cAAc,IAAI,IAAI,aAAa;AACxE,UAAI,YAAY;AAChB,mBAAa,cAAc,KAAK,QAAQ;AACxC,eAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,qBAAa,KAAK,iBAAiB,IAAI;AAAA,MACzC;AACA,mBAAa,eAAe,KAAK,SAAS;AAC1C,YAAM,gBAAgB,cAAc,eAAe,YAAY;AAC/D,mBAAa,gBAAgB,KAAK,UAAU;AAC5C,aAAO,mBAAmB,cAAc,IAAI,WAAW,SAAS;AAChE,YAAM,QAAQ,OAAO,mBAAmB;AACxC,UAAI,iBAAiB;AACrB,YAAM,gBAAgB,CAAC,QAAQ,IAAI,QAAQ,CAAC,UAAU,MAAM,oBAAoB,KAAK;AACrF,eAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,sBAAc,KAAK,OAAO;AAC1B,sBAAc,KAAK,SAAS;AAAA,MAC9B;AACA,eAAS,KAAK,GAAG,KAAK,YAAY,GAAG,EAAE,IAAI;AACzC,sBAAc,KAAK,iBAAiB,GAAG;AACvC,sBAAc,KAAK,SAAS;AAAA,MAC9B;AACA,UAAI,YAAY,GAAG;AACjB,sBAAc,KAAK,iBAAiB,YAAY,EAAE;AAClD,iBAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,wBAAc,KAAK,SAAS;AAC5B,wBAAc,KAAK,QAAQ;AAAA,QAC7B;AAAA,MACF,OAAO;AACL,iBAAS,KAAK,GAAG,KAAK,eAAe,GAAG,EAAE,IAAI;AAC5C,wBAAc,KAAK,QAAQ;AAC3B,wBAAc,KAAK,SAAS;AAAA,QAC9B;AACA,sBAAc,KAAK,QAAQ;AAAA,MAC7B;AAAA,IACF;AAAA,EACF;AAAA,EACA,QAAQ,MAAM,QAAQ;AACpB,UAAM,gBAAgB,KAAK;AAC3B,UAAM,aAAa,OAAO;AAC1B,QAAI,aAAa,GAAG;AAClB,UAAI,YAAY,OAAO;AACvB,UAAI,cAAc,GAAG;AACnB,cAAM,IAAI,MAAM,oCAAoC,WAAW;AAAA,MACjE;AACA,eAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,YAAI,cAAc,OAAO,OAAO;AAChC,sBAAc,eAAe,OAAO,OAAO;AAC3C,YAAI,CAAC,aAAa;AAChB,gBAAM,IAAI,MAAM,uBAAuB,OAAO,oBAAoB,cAAc,gBAAgB;AAAA,QAClG;AACA,oBAAY,OAAO;AAAA,MACrB;AACA,UAAI,cAAc,eAAe;AAC/B,cAAM,IAAI,MAAM,gDAAgD,sBAAsB,WAAW;AAAA,MACnG;AAAA,IACF;AACA,UAAM,gBAAgB,aAAa;AACnC,UAAM,eAAe,aAAa,kBAAkB,SAAS,UAAU;AACvE,QAAI,kBAAkB,KAAK,eAAe,GAAG;AAC3C,YAAM,QAAQ,IAAI,MAAM,aAAa;AACrC,eAAS,KAAK,GAAG,MAAM,eAAe,EAAE,IAAI;AAC1C,qBAAa,MAAM;AAAA,MACrB;AACA,aAAO,CAAC,OAAO,YAAY;AAAA,IAC7B;AACA,iBAAa,KAAK;AAClB,aAAS,KAAK,GAAG,MAAM,eAAe,EAAE,IAAI;AAC1C,YAAM,SAAS,OAAO,MAAM,OAAO,KAAK;AACxC,UAAI,YAAY;AAChB,WAAK,YAAY,QAAQ,CAAC,eAAe;AACvC,qBAAa,KAAK,aAAa,QAAQ,UAAU;AAAA,MACnD,CAAC;AACD,UAAI,KAAK,iBAAiB,SAAS,KAAK,cAAc,GAAG;AACvD,oBAAY;AAAA,MACd;AACA,mBAAa,MAAM,aAAa,KAAK,KAAK;AAAA,IAC5C;AACA,UAAM,SAAS,IAAI,MAAM,aAAa,cAAc;AACpD,aAAS,KAAK,GAAG,KAAK,eAAe,EAAE,IAAI;AACzC,YAAM,aAAa,OAAO;AAC1B,UAAI,iBAAiB,aAAa;AAClC,WAAK,YAAY,QAAQ,CAAC,eAAe;AACvC,cAAM,SAAS,OAAO,KAAK,KAAK,OAAO;AACvC,cAAM,YAAY,KAAK,aAAa,QAAQ,UAAU;AACtD,aAAK,aAAa,MAAM,YAAY,QAAQ,gBAAgB,WAAW,UAAU;AACjF,0BAAkB;AAAA,MACpB,CAAC;AACD,UAAI,KAAK,iBAAiB,mBAAmB,aAAa,KAAK;AAC7D,cAAM,aAAa,OAAO,KAAK,KAAK,OAAO;AAC3C,YAAI,eAAe,GAAG;AACpB;AAAA,QACF;AACA,cAAM,aAAa,aAAa,IAAI,KAAK;AACzC,cAAM,YAAY;AAClB,aAAK,aAAa,MAAM,YAAY,QAAQ,gBAAgB,WAAW,UAAU;AAAA,MACnF;AAAA,IACF;AACA,WAAO,CAAC,QAAQ,YAAY;AAAA,EAC9B;AACF;AACA,SAAS,kBAAkB,MAAM,YAAY,WAAW,aAAa,SAAS,WAAW,UAAU,wBAAwB;AACzH,SAAO,IAAI,gBAAgB,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB,EAAE,QAAQ,MAAM,UAAU;AACnI;AAGA,SAAS,OAAO,KAAK,YAAY,WAAW,QAAQ;AAClD,MAAI,CAAC,IAAI,QAAQ;AACf;AAAA,EACF;AACA,MAAI,WAAW,WAAW,GAAG;AAC3B,aAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,aAAO,KAAK,IAAI,SAAS,IAAI,KAAK,CAAC,CAAC;AAAA,IACtC;AACA;AAAA,EACF;AACA,MAAI,WAAW,WAAW,GAAG;AAC3B,UAAM,YAAY,WAAW;AAC7B,QAAI,IAAI,IAAI,QAAQ,SAAS;AAC7B,WAAO,MAAM,IAAI;AACf,YAAM,QAAQ,IAAI,SAAS,GAAG,CAAC;AAC/B,UAAI,CAAC,aAAa,MAAM,WAAW,GAAG;AACpC,eAAO,KAAK,KAAK;AAAA,MACnB;AACA,YAAM,IAAI,SAAS,IAAI,CAAC;AACxB,UAAI,IAAI,QAAQ,SAAS;AAAA,IAC3B;AACA,QAAI,CAAC,aAAa,IAAI,WAAW,GAAG;AAClC,aAAO,KAAK,GAAG;AAAA,IACjB;AACA;AAAA,EACF;AACA,MAAI,aAAa;AACjB,WAAS,KAAK,GAAG,KAAK,IAAI,SAAS,GAAG,MAAM;AAC1C,QAAI,OAAO,IAAI,UAAU,WAAW,QAAQ,IAAI,GAAG,MAAM,IAAI;AAC3D,YAAM,QAAQ,IAAI,SAAS,YAAY,EAAE;AACzC,UAAI,CAAC,aAAa,MAAM,WAAW,GAAG;AACpC,eAAO,KAAK,KAAK;AAAA,MACnB;AACA,mBAAa,KAAK;AAAA,IACpB;AAAA,EACF;AACF;AACA,SAAS,iBAAiB,QAAQ,WAAW,WAAW;AACtD,QAAM,YAAY,OAAO;AACzB,QAAM,SAAS,CAAC;AAChB,MAAIQ,cAAa;AACjB,MAAI,gBAAgB;AACpB,QAAM,aAAa,IAAI,MAAM,SAAS;AACtC,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,UAAM,mBAAmB,OAAO;AAChC,WAAO,OAAO,KAAK,WAAW,WAAW,MAAM;AAC/C,UAAM,WAAW,OAAO,SAAS;AACjC,eAAW,MAAM;AACjB,IAAAA,eAAc;AACd,oBAAgB,KAAK,IAAI,eAAe,QAAQ;AAAA,EAClD;AACA,QAAM,UAAU,aAAa,kBAAkB,SAASA,cAAa,CAAC;AACtE,QAAM,SAAS,IAAI,MAAMA,WAAU;AACnC,QAAM,QAAQ,CAAC,WAAW,aAAa;AACvC,MAAI,IAAI;AACR,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK,EAAE,GAAG;AACvC,cAAQ,IAAI,KAAK;AACjB,cAAQ,IAAI,IAAI,KAAK;AACrB,aAAO,KAAK,OAAO;AACnB,QAAE;AAAA,IACJ;AAAA,EACF;AACA,SAAO,CAAC,SAAS,QAAQ,KAAK;AAChC;AAGA,SAAS,4BAA4B,QAAQ,YAAY;AACvD,QAAM,SAAS,aAAa,kBAAkB,SAAS,OAAO,MAAM;AACpE,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,WAAO,MAAM,aAAa,cAAc,OAAO,GAAG,EAAE,OAAO,UAAU,EAAE,mBAAmB;AAAA,EAC5F;AACA,SAAO;AACT;AAGA,IAAI,WAAW,8BAA8B,CAAC,QAAQ,WAAW,SAAS,MAAM;AAChF,IAAI,kBAAkB,+BAA+B,CAAC,OAAO,OAAO,OAAO,UAAU;AACnF,SAAO,EAAE,MAAM,QAAQ,OAAO,MAAM,QAAQ,MAAM;AACpD,CAAC;AACD,IAAI,OAAO,kBAAkB,KAAK,UAAU,eAAe;AAG3D,SAAS,UAAU,MAAM,MAAM;AAC7B,QAAM,WAAW,IAAI,MAAM,KAAK,IAAI;AACpC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,KAAK,MAAM,MAAM,KAAK;AAAA,EACvC;AACA,QAAM,SAAS,OAAO,UAAU,KAAK,KAAK;AAC1C,WAAS,KAAK,GAAG,KAAK,OAAO,OAAO,QAAQ,EAAE,IAAI;AAChD,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,cAAc,IAAI,MAAM,KAAK,IAAI;AACvC,aAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,kBAAY,KAAK,OAAO,KAAK,KAAK,MAAM;AAAA,IAC1C;AACA,UAAM,gBAAgB,KAAK,WAAW,WAAW;AACjD,WAAO,OAAO,MAAM,KAAK,OAAO;AAAA,EAClC;AACA,SAAO;AACT;AAGA,IAAI,eAAe,CAAC,GAAG,MAAM;AAC3B,QAAM,YAAY,EAAE,QAAQ,EAAE;AAC9B,SAAO,cAAc,IAAI,EAAE,QAAQ,EAAE,QAAQ;AAC/C;AACA,SAAS,QAAQ,QAAQ,GAAG,OAAO,GAAG,QAAQ,OAAO,SAAS,GAAG;AAC/D,SAAO,QAAQ,MAAM;AACnB,QAAI,QAAQ,OAAO,KAAK;AACtB,YAAM,KAAK,QAAQ,OAAO;AAC1B,YAAM,KAAK,IAAI,OAAO;AACtB,YAAM,IAAI,KAAK,IAAI,EAAE;AACrB,YAAM,KAAK,MAAM,KAAK,IAAI,IAAI,IAAI,CAAC;AACnC,YAAM,KAAK,MAAM,KAAK,KAAK,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,KAAK,KAAK,KAAK,KAAK,CAAC;AAC3E,YAAM,UAAU,KAAK,IAAI,MAAM,KAAK,MAAM,IAAI,KAAK,KAAK,KAAK,EAAE,CAAC;AAChE,YAAM,WAAW,KAAK,IAAI,OAAO,KAAK,MAAM,KAAK,KAAK,MAAM,KAAK,KAAK,EAAE,CAAC;AACzE,cAAQ,QAAQ,GAAG,SAAS,QAAQ;AAAA,IACtC;AACA,UAAM,KAAK,OAAO;AAClB,QAAI,KAAK;AACT,QAAI,IAAI;AACR,iBAAa,KAAK,QAAQ,MAAM,CAAC;AACjC,QAAI,aAAa,OAAO,QAAQ,EAAE,IAAI,GAAG;AACvC,mBAAa,KAAK,QAAQ,MAAM,KAAK;AAAA,IACvC;AACA,WAAO,KAAK,GAAG;AACb,mBAAa,KAAK,QAAQ,IAAI,CAAC;AAC/B;AACA;AACA,aAAO,aAAa,OAAO,KAAK,EAAE,IAAI,GAAG;AACvC,aAAK,KAAK;AAAA,MACZ;AACA,aAAO,aAAa,OAAO,IAAI,EAAE,IAAI,GAAG;AACtC,YAAI,IAAI;AAAA,MACV;AAAA,IACF;AACA,QAAI,aAAa,OAAO,OAAO,EAAE,MAAM,GAAG;AACxC,mBAAa,KAAK,QAAQ,MAAM,CAAC;AAAA,IACnC,OAAO;AACL,UAAI,IAAI;AACR,mBAAa,KAAK,QAAQ,GAAG,KAAK;AAAA,IACpC;AACA,QAAI,KAAK,GAAG;AACV,aAAO,IAAI;AAAA,IACb;AACA,QAAI,KAAK,GAAG;AACV,cAAQ,IAAI;AAAA,IACd;AAAA,EACF;AACF;AACA,SAAS,UAAU,GAAG,QAAQ,QAAQ,GAAG,QAAQ;AAC/C,QAAM,UAAU,OAAO,OAAO,SAAS;AACvC,QAAM,CAAC,OAAOrB,KAAI,IAAI,CAAC,EAAE,SAAS,SAAS,OAAO;AAClD,QAAM,cAAc,aAAa,uBAAuB,QAAQ,QAAQ,CAAC;AACzE,QAAM,iBAAiB,aAAa,uBAAuB,SAAS,QAAQ,CAAC;AAC7E,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,SAAS,IAAIA;AACnB,UAAM,OAAO,EAAE,SAAS,QAAQ,SAASA,KAAI;AAC7C,QAAI,YAAY,IAAI,MAAM,KAAK,MAAM;AACrC,SAAK,QAAQ,CAAC,OAAOU,WAAU,UAAUA,UAAS,EAAE,OAAO,OAAAA,OAAM,CAAC;AAClE,QAAI,IAAI,UAAU,QAAQ;AACxB,cAAQ,WAAW,CAAC;AACpB,kBAAY,UAAU,MAAM,GAAG,CAAC;AAAA,IAClC;AACA,QAAI,QAAQ;AACV,gBAAU,KAAK,YAAY;AAAA,IAC7B;AACA,UAAM,YAAY,IAAI;AACtB,UAAM,WAAW,YAAY,SAAS,WAAW,YAAY,CAAC;AAC9D,UAAM,cAAc,eAAe,SAAS,WAAW,YAAY,CAAC;AACpE,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,eAAS,MAAM,UAAU,IAAI;AAC7B,kBAAY,MAAM,UAAU,IAAI;AAAA,IAClC;AAAA,EACF;AACA,QAAM,cAAc,OAAO,MAAM;AACjC,cAAY,YAAY,SAAS,KAAK;AACtC,SAAO;AAAA,IACL,OAAO,aAAa,QAAQ,WAAW;AAAA,IACvC,OAAO,aAAa,SAAS,cAAc;AAAA,EAC7C;AACF;AAGA,SAAS,YAAY,QAAQ,MAAM,OAAO,OAAO;AAC/C,QAAM,QAAQ,aAAa,eAAe,MAAM,KAAK,EAAE;AACvD,QAAM,WAAW,CAAC,GAAG,MAAM,IAAI,CAAC;AAChC,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM;AACjC,aAAS,MAAM,MAAM;AAAA,EACvB;AACA,WAAS,KAAK,MAAM;AACpB,WAAS,KAAK,QAAQ,GAAG,KAAK,MAAM,QAAQ,MAAM;AAChD,aAAS,MAAM,MAAM;AAAA,EACvB;AACA,QAAM,iBAAiB,CAAC;AACxB,QAAM,UAAU,IAAI,WAAW,MAAM,MAAM;AAC3C,QAAM,cAAc,IAAI,aAAa,UAAU,OAAO,MAAM;AAC5D,QAAM,gBAAgB,CAAC;AACvB,QAAM,aAAa,SAAS,OAAO,KAAK,SAAS,OAAO;AACxD,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,QAAI;AACJ,QAAI,YAAY;AACd,gBAAU,OAAO,IAAI,SAAS;AAAA,IAChC,OAAO;AACL,YAAM,aAAa,CAAC;AACpB,eAAS,IAAI,GAAG,IAAI,SAAS,IAAI,KAAK;AACpC,iBAAS,KAAK,GAAG,KAAK,SAAS,IAAI,MAAM;AACvC,qBAAW,KAAK,YAAY,IAAI,GAAG,IAAI,EAAE,CAAC;AAAA,QAC5C;AAAA,MACF;AACA,gBAAU,WAAW,KAAK,GAAG;AAAA,IAC/B;AACA,QAAI,eAAe,aAAa,QAAQ;AACtC,cAAQ,MAAM,eAAe;AAAA,IAC/B,OAAO;AACL,YAAM,cAAc,OAAO,KAAK,cAAc,EAAE;AAChD,qBAAe,WAAW;AAC1B,cAAQ,MAAM;AACd,oBAAc,KAAK,EAAE;AAAA,IACvB;AAAA,EACF;AACA,QAAM,iBAAiB,SAAS,MAAM;AACtC,iBAAe,KAAK,OAAO,KAAK,cAAc,EAAE;AAChD,QAAM,eAAe,IAAI,aAAa,gBAAgB,KAAK;AAC3D,gBAAc,QAAQ,CAAC,oBAAoB,OAAO;AAChD,aAAS,IAAI,GAAG,IAAI,SAAS,IAAI,KAAK;AACpC,eAAS,KAAK,GAAG,KAAK,SAAS,IAAI,MAAM;AACvC,qBAAa,IAAI,YAAY,IAAI,GAAG,oBAAoB,EAAE,GAAG,GAAG,IAAI,EAAE;AAAA,MACxE;AAAA,IACF;AAAA,EACF,CAAC;AACD,QAAM,cAAc,MAAM,MAAM;AAChC,cAAY,SAAS,eAAe;AACpC,SAAO;AAAA,IACL,cAAc,aAAa;AAAA,IAC3B;AAAA,IACA;AAAA,EACF;AACF;AAGA,IAAI,EAAE,SAAS,aAAa,UAAU,cAAc,YAAY,gBAAgB,WAAW,eAAe,SAAS,aAAa,WAAW,eAAe,WAAW,eAAe,cAAc,kBAAkB,cAAc,kBAAkB,kBAAkB,sBAAsB,aAAa,iBAAiB,eAAe,mBAAmB,UAAU,cAAc,SAAS,aAAa,SAAS,aAAa,aAAa,iBAAiB,aAAa,iBAAiB,cAAc,kBAAkB,SAAS,aAAa,cAAc,kBAAkB,UAAU,cAAc,WAAW,eAAe,WAAW,eAAe,aAAa,iBAAiB,eAAe,mBAAmB,WAAW,eAAe,kBAAkB,sBAAsB,kBAAkB,sBAAsB,SAAS,aAAa,UAAU,cAAc,UAAU,cAAc,eAAe,mBAAmB,YAAY,eAAe,IAAI;AAG/6B,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,KAAK,eAAe,kBAAkB,CAAC;AACzF,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,kBAAkB,EAAE,QAAQ,aAAa,KAAK,eAAe,aAAa,iBAAiB,KAAK,CAAC;AACtH,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,QAAQ;AAClB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,OAAO;AAC1B,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW,CAAC;AAClB,SAAK,cAAc,QAAQ,CAAC,cAAc;AACxC,eAAS,KAAK,QAAQ,kBAAkB,kCAAkC;AAAA,IAC5E,CAAC;AACD,UAAM,YAAY,KAAK,cAAc,IAAI,CAAC,cAAc;AACtD,aAAO,IAAI;AAAA,IACb,CAAC,EAAE,KAAK,KAAK;AACb,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA,8BACZ,KAAK;AAAA,oCACC,KAAK;AAAA;AAAA;AAAA,cAG3B,SAAS,KAAK,YAAY;AAAA,0CACE;AAAA;AAAA;AAAA;AAAA;AAKtC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,UAAU;AAChB,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,QAAQ,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK,EAAE,OAAO,CAAC,IAAI,OAAO,WAAW,IAAI,EAAE,CAAC;AACjF,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,QAAM,UAAU,IAAI,mBAAmB,MAAM;AAC7C,SAAO,SAAS,iBAAiB,SAAS,SAAS,KAAK;AAC1D;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,YAAY,MAAM,YAAY;AACxC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,OAAO;AACZ,UAAM,OAAO,CAAC,IAAI;AAClB,yBAAqB,2BAA2B,QAAQ,WAAW,OAAO,CAAC,EAAE,YAAY,IAAI,WAAW,MAAM,CAAC,GAAG,MAAM,WAAW,MAAM;AACzI,SAAK,KAAK,eAAe,QAAQ,MAAM;AACvC,UAAM,CAAC,WAAW,IAAI,qBAAqB,0BAA0B,YAAY,IAAI;AACrF,SAAK,cAAc,YAAY,WAAW,IAAI,CAAC,CAAC,IAAI;AACpD,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,CAAC,GAAG,GAAG,CAAC,CAAC;AAChF,SAAK,aAAa;AAClB,SAAK,YAAY,YAAY,KAAK;AAAA,EACpC;AAAA,EACA,cAAc;AACZ,UAAM,sBAAsB;AAAA,iDACiB,KAAK,cAAc;AAAA,gDACpB,KAAK,cAAc;AAAA;AAE/D,UAAM,uBAAuB,MAAM;AACjC,UAAI,KAAK,WAAW,WAAW,GAAG;AAChC,eAAO;AAAA,MACT,OAAO;AACL,eAAO,mBAAmB,aAAa,KAAK,WAAW,SAAS,CAAC;AAAA,MACnE;AAAA,IACF;AACA,UAAM,oBAAoB,MAAM;AAC9B,UAAI,UAAU;AACd,UAAI,KAAK,YAAY,WAAW,GAAG;AACjC,YAAI,KAAK,WAAW,WAAW,GAAG;AAChC,qBAAW;AAAA,QACb;AAAA,MACF,OAAO;AACL,iBAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,MAAM;AACnD,qBAAW,gBAAgB,aAAa,EAAE;AAAA,QAC5C;AAAA,MACF;AACA,aAAO;AAAA,IACT;AACA,UAAM,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,QAKb;AAAA;AAAA,QAEA,kCAAkC;AAAA;AAAA,6BAEb,qBAAqB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iCAOjB,kBAAkB;AAAA,+CACJ,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,4BAexB,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAe7B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,QAAQ,QAAQ;AAC1B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,IAAI,CAAC;AAC/B,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,OAAO;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AACvC,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,GAAG,GAAG,CAAC,CAAC;AACpG,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,yBACI,KAAK,cAAc;AAAA,+CACG,KAAK,cAAc,KAAK,OAAO,KAAK,cAAc;AAAA,QACzF,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAoB3B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,QAAQ,QAAQ;AAC1B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,OAAO;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,SAAS;AACd,SAAK,YAAY,aAAa;AAAA,EAChC;AAAA,EACA,cAAc;AACZ,UAAM,QAAQ,mBAAmB,KAAK,YAAY,MAAM;AACxD,UAAM,WAAW,mBAAmB,KAAK,MAAM;AAC/C,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA,6BAEb,KAAK;AAAA,oCACE,KAAK;AAAA;AAAA;AAAA,8DAGqB,KAAK,YAAY;AAAA,gBAC/D,SAAS;AAAA;AAAA;AAAA;AAAA;AAKrB,WAAO;AAAA,EACT;AACF;AACA,SAAS,mBAAmB,QAAQ;AAClC,QAAM,OAAO,OAAO;AACpB,MAAI,OAAO,GAAG;AACZ,UAAM,MAAM,sBAAsB,2BAA2B;AAAA,EAC/D;AACA,QAAM,iBAAiB,IAAI,MAAM,IAAI;AACrC,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,mBAAe,OAAO,OAAO,SAAS,aAAa,EAAE;AAAA,EACvD;AACA,SAAO,eAAe,KAAK;AAC7B;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,gBAAgB;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,IAAI,MAAM,KAAK;AAChC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,EAAE,MAAM,KAAK;AAAA,EAC9B;AACA,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM;AAClD,UAAM,SAAS,MAAM;AACrB,UAAM,YAAY,kBAAkB,QAAQ,EAAE,OAAO,EAAE,OAAO,MAAM,QAAQ;AAC5E,WAAO,SAAS,eAAe,UAAU,EAAE,OAAO,SAAS;AAAA,EAC7D;AACA,MAAI,EAAE,MAAM,WAAW,KAAK,aAAa,YAAY,MAAM,CAAC,GAAG,CAAC,CAAC,GAAG;AAClE,UAAM,WAAW,IAAI,uBAAuB,EAAE,OAAO,IAAI;AACzD,WAAO,cAAc,iBAAiB,UAAU,CAAC,CAAC,GAAG,EAAE,KAAK;AAAA,EAC9D;AACA,QAAM,UAAU,IAAI,kBAAkB,EAAE,OAAO,IAAI;AACnD,SAAO,cAAc,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAC7D;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,uBAAqB,2BAA2B,UAAU,CAAC,KAAK,EAAE,GAAG,GAAG,MAAM,MAAM;AACpF,QAAM,UAAU,IAAI,kBAAkB,GAAG,OAAO,KAAK,IAAI,KAAK;AAC9D,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,iBAAiB,EAAE,CAAC;AAC1E,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,EAAE,GAAG,SAAS,WAAW;AACzE,0BAAwB,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACvE,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,uBAAqB,2BAA2B,UAAU,CAAC,KAAK,EAAE,GAAG,GAAG,MAAM,MAAM;AACpF,QAAM,UAAU,IAAI,kBAAkB,GAAG,OAAO,KAAK,IAAI,KAAK;AAC9D,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,iBAAiB,EAAE,CAAC;AAC1E,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,EAAE,GAAG,SAAS,WAAW;AACzE,0BAAwB,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACvE,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,UAAU,UAAU;AAC9B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY,UAAU;AAC3B,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,cAAc;AACZ,QAAI,gBAAgB;AACpB,QAAI,KAAK,aAAa,OAAO;AAC3B,sBAAgB;AAAA,IAClB;AACA,QAAI,cAAc;AAClB,QAAI,KAAK,aAAa,OAAO;AAC3B,oBAAc;AAAA,IAChB;AACA,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAQZ,KAAK,aAAa,QAAQ,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gBAiBhD;AAAA;AAAA;AAAA;AAAA,oCAIoB;AAAA;AAAA;AAAA;AAIhC,WAAO;AAAA,EACT;AACF;AAGA,IAAI,qCAAqC,MAAM;AAAA,EAC7C,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAetC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAG,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,MAAI;AACJ,QAAM,aAAa,CAAC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE,CAAC;AAC1F,MAAI,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,GAAG;AAC7D,cAAU,IAAI,mCAAmC,QAAQ;AAAA,EAC3D,OAAO;AACL,cAAU,IAAI,eAAe,UAAU,KAAK;AAC5C,eAAW,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI,EAAE,GAAG;AAAA,MACtF,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IACxD,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,UAAU,SAAS,OAAO,EAAE,GAAG;AAAA,MACjE,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,uBAAuB,SAAS,oBAAoB;AAAA,IACtE,CAAC;AAAA,EACH;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,UAAU;AACpE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,EAAE,YAAY,WAAW,IAAI;AACnC,SAAO,iBAAiB,EAAE,GAAG,GAAG,YAAY,YAAY,SAAS,SAAS,CAAC;AAC7E;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO,UAAU;AAC3B,SAAK,gBAAgB,CAAC,QAAQ;AAC9B,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,OAAO,SAAS;AACrB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,QAAQ;AACb,SAAK,WAAW,WAAW,mBAAmB,MAAM,MAAM;AAC1D,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,QAAQ,mBAAmB,KAAK,IAAI;AAC1C,UAAM,eAAe,WAAW,KAAK,IAAI;AACzC,QAAI;AACJ,QAAI,KAAK,MAAM,WAAW,GAAG;AAC3B,iBAAW,KAAK,YAAY,IAAI,CAAC,GAAG,OAAO;AACzC,eAAO;AAAA,MACT,CAAC;AAAA,IACH,OAAO;AACL,iBAAW,KAAK,YAAY,IAAI,CAAC,GAAG,OAAO;AACzC,eAAO,aAAa,QAAQ,wBAAwB,gBAAgB,QAAQ;AAAA,MAC9E,CAAC;AAAA,IACH;AACA,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA,4BAEd;AAAA;AAAA,YAEhB,SAAS,KAAK,IAAI;AAAA,8CACgB;AAAA;AAAA;AAAA;AAI1C,WAAO;AAAA,EACT;AACF;AACA,IAAI,UAAU,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAC3C,SAAS,WAAW,MAAM;AACxB,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT,WAAW,QAAQ,GAAG;AACpB,WAAO,QAAQ,MAAM,GAAG,IAAI,EAAE,IAAI,CAAC,UAAU,aAAa,OAAO,EAAE,KAAK,GAAG;AAAA,EAC7E,OAAO;AACL,UAAM,MAAM,oBAAoB,2BAA2B;AAAA,EAC7D;AACF;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,MAAAb,MAAK,IAAI;AACxB,QAAM,CAAC,QAAQ,KAAK,IAAI,mBAAmB,iBAAiB,GAAG,OAAOA,KAAI;AAC1E,qBAAmB,kBAAkB,GAAG,QAAQ,KAAK;AACrD,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,UAAU;AAC5D,UAAM,cAAc,SAAS,UAAU,IAAI,EAAE,MAAM;AACnD,UAAM,YAAY,cAAc,YAAY,QAAQ,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AACnF,WAAO,SAAS,eAAe,OAAO,EAAE,OAAO,SAAS;AAAA,EAC1D;AACA,MAAI,aAAa,cAAc,KAAK,MAAM,GAAG;AAC3C,WAAO,SAAS,eAAe,OAAO,EAAE,OAAO,CAAC,CAAC;AAAA,EACnD;AACA,QAAM,UAAU,IAAI,cAAc,QAAQ,KAAK;AAC/C,QAAM,cAAc,CAAC,EAAE,MAAM,SAAS,MAAM,OAAO,CAAC;AACpD,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACrE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,CAAC,SAAS;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,uEAAuE;AACtH,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,WAAW,qBAAqB,YAAY,EAAE,OAAO,YAAY,KAAK;AAC5E,QAAM,WAAW,qBAAqB,YAAY,SAAS,QAAQ,WAAW,MAAM;AACpF,QAAM,mBAAmB,qBAAqB,oBAAoB,EAAE,OAAO,YAAY,KAAK;AAC5F,QAAM,mBAAmB,qBAAqB,oBAAoB,OAAO,WAAW,MAAM;AAC1F,QAAM,YAAY,qBAAqB,aAAa,kBAAkB,OAAO,WAAW,MAAM;AAC9F,QAAM,YAAY,CAAC;AACnB,QAAM,uBAAuB,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACtG,QAAM,yBAAyB,WAAW,EAAE,QAAQ,EAAE,GAAG,qBAAqB,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AAC/H,QAAM,wBAAwB,SAAS;AAAA,IACrC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,IACpC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,iBAAiB;AAAA,EACnC,CAAC;AACD,QAAM,SAAS,OAAO;AAAA,IACpB,QAAQ,EAAE,GAAG,sBAAsB;AAAA,IACnC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,kBAAkB,MAAM,UAAU;AAAA,EACpD,CAAC;AACD,YAAU,KAAK,oBAAoB;AACnC,YAAU,KAAK,sBAAsB;AACrC,YAAU,KAAK,qBAAqB;AACpC,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,kBAAkB;AAAA,EAChC,QAAQ,aAAa;AAAA,EACrB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,SAAS,UAAU,IAAI,OAAO,MAAM;AACtD,SAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,mBAAmB,KAAK,GAAG,SAAS,SAAS,CAAC;AAC1F;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,QAAQ,UAAU;AAC9B,QAAM,UAAU,IAAI,gBAAgB,OAAO,OAAO,YAAY,MAAM;AACpE,QAAM,SAAS,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO;AACnE,SAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC3E;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,UAAU,aAAa;AACzB,QAAI,EAAE,UAAU,aAAa;AAC3B,aAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACvD;AACA,UAAM,cAAc,MAAM,EAAE,KAAK;AACjC,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AACtF,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,QAAQ,MAAM,YAAY,GAAG,SAAS,SAAS,CAAC;AAC1F,gBAAY,QAAQ;AACpB,aAAS,YAAY,OAAO,MAAM;AAClC,WAAO;AAAA,EACT;AACA,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,aAAS,YAAY,SAAS,MAAM;AACpC,WAAO;AAAA,EACT;AACA,MAAI,CAAC,aAAa,gBAAgB,EAAE,OAAO,KAAK,GAAG;AACjD,UAAM,SAAS,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7D,WAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,MAAM;AAAA,EAC7D;AACA,MAAI,UAAU,SAAS;AACrB,WAAO,KAAK,GAAG,QAAQ;AAAA,EACzB;AACA,MAAI,UAAU,QAAQ;AACpB,UAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,QAAQ,aAAa,uBAAuB,QAAQ,CAAC,CAAC;AAC1G,UAAM,eAAe,EAAE,GAAG,GAAG,GAAG,gBAAgB;AAChD,UAAM,SAAS,UAAU,EAAE,QAAQ,cAAc,SAAS,SAAS,CAAC;AACpE,aAAS,YAAY,gBAAgB,MAAM;AAC3C,WAAO;AAAA,EACT;AACA,QAAM,IAAI,MAAM,iCAAiC,EAAE,YAAY,OAAO;AACxE;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,MAAM,eAAe,aAAa,CAAC;AACtF,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,SAAS;AACd,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAgBtC,WAAO;AAAA,EACT;AACF;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWtC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,cAAc,aAAa,IAAI;AACvC,MAAI;AACJ,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,WAAW,MAAM,CAAC,YAAY,EAAE;AAAA,IACxC,EAAE,MAAM,WAAW,MAAM,CAAC,YAAY,EAAE;AAAA,EAC1C;AACA,MAAI,aAAa,cAAc,EAAE,KAAK,IAAI,MAAM,GAAG;AACjD,cAAU,IAAI,gBAAgB,EAAE,KAAK;AAAA,EACvC,OAAO;AACL,cAAU,IAAI,aAAa,EAAE,KAAK;AAAA,EACpC;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACrE;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,QAAQ;AAClB,SAAK,WAAW;AAChB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,qBAAqB,gBAAgB,QAAQ,CAAC;AACjE,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,eAAe,OAAO,SAAS;AACpC,aAAS,KAAK,GAAG,KAAK,KAAK,cAAc,MAAM;AAC7C,WAAK,YAAY,SAAS;AAAA,IAC5B;AACA,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW,CAAC;AAClB,QAAI,KAAK,eAAe,GAAG;AACzB,eAAS,KAAK,qFAAqF;AACnG,eAAS,KAAK,GAAG,KAAK,KAAK,cAAc,MAAM;AAC7C,iBAAS,KAAK,gCAAgC,CAAC,EAAE,iDAAiD,8BAA8B,KAAK,QAAQ;AAAA,MAC/I;AACA,YAAM,YAAY,KAAK;AACvB,YAAM,iBAAiB,KAAK,eAAe;AAC3C,eAAS,KAAK,oDAAoD,qCAAqC,qBAAqB;AAAA,IAC9H,OAAO;AACL,eAAS,KAAK,uDAAuD;AAAA,IACvE;AACA,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA,6BACb,KAAK;AAAA,oCACE,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAM3B,SAAS,KAAK,YAAY;AAAA;AAAA;AAAA;AAAA;AAKpC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,SAAS,UAAU,IAAI,OAAO,MAAM;AACtD,SAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,mBAAmB,KAAK,GAAG,SAAS,SAAS,CAAC;AAC1F;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,QAAQ,MAAM,UAAU;AAC3C,QAAM,QAAQ,OAAO,GAAG;AACxB,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACpF,UAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACpF,UAAM,eAAe,YAAY,OAAO,MAAM,QAAQ;AACtD,UAAM,eAAe,YAAY,OAAO,MAAM,QAAQ;AACtD,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AACjG,UAAM,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACrD,UAAM,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACrD,aAAS,YAAY,aAAa,MAAM;AACxC,aAAS,YAAY,aAAa,MAAM;AACxC,WAAO;AAAA,EACT;AACA,MAAI,WAAW,SAAS,mBAAmB,MAAM;AACjD,MAAI,UAAU,UAAU;AACtB,eAAW;AAAA,EACb;AACA,MAAI,UAAU;AACZ,UAAM,aAAa,OAAO,IAAI,CAAC,OAAO;AACpC,YAAM,YAAY,aAAa,cAAc,GAAG,MAAM,MAAM,IAAI,CAAC;AACjE,YAAM,QAAQ,CAAC,IAAI,SAAS;AAC5B,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,IAC5E,CAAC;AACD,UAAM,kBAAkB,WAAW,IAAI,CAAC,OAAO;AAC7C,aAAO,EAAE,MAAM,SAAS,SAAS,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM;AAAA,IAC/D,CAAC;AACD,UAAM,YAAY,qBAAqB,gBAAgB,WAAW,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,CAAC;AAC1F,UAAM,eAAe,WAAW,GAAG,MAAM,OAAO;AAChD,UAAM,UAAU,eAAe,iBAAiB,WAAW,OAAO,YAAY;AAC9E,UAAM,gBAAgB,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AAC7F,UAAM,UAAU,SAAS,eAAe,eAAe,OAAO,OAAO;AACrE,eAAW,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AAC1D,WAAO;AAAA,EACT;AACA,QAAM,cAAc,SAAS,OAAO,OAAO,kCAAkC;AAC7E,MAAI,OAAO,SAAS,aAAa;AAC/B,UAAM,gBAAgB,CAAC;AACvB,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM,aAAa;AACtD,YAAM,WAAW,OAAO,MAAM,IAAI,KAAK,WAAW;AAClD,oBAAc,KAAK,YAAY,UAAU,MAAM,QAAQ,CAAC;AAAA,IAC1D;AACA,UAAM,SAAS,YAAY,eAAe,MAAM,QAAQ;AACxD,eAAW,MAAM,eAAe;AAC9B,eAAS,YAAY,GAAG,MAAM;AAAA,IAChC;AACA,WAAO;AAAA,EACT;AACA,QAAM,EAAE,WAAW,SAAS,IAAI,kBAAkB,QAAQ,MAAM,QAAQ;AACxE,QAAM,SAAS,UAAU,IAAI,CAAC,OAAO,GAAG,KAAK;AAC7C,QAAM,UAAU,IAAI,eAAe,MAAM;AACzC,QAAM,cAAc,CAAC;AACrB,QAAM,UAAU,IAAI,MAAM,OAAO,SAAS,CAAC;AAC3C,MAAI,QAAQ,SAAS,GAAG;AACtB,YAAQ,KAAK,OAAO,GAAG;AACvB,gBAAY,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,QAAQ,EAAE,EAAE,CAAC;AACtD,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,cAAQ,MAAM,QAAQ,KAAK,KAAK,OAAO,IAAI;AAC3C,kBAAY,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,QAAQ,GAAG,EAAE,CAAC;AAAA,IACzD;AAAA,EACF;AACA,QAAM,MAAM,SAAS,iBAAiB,SAAS,WAAW,UAAU,GAAG,OAAO,WAAW;AACzF,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACrG,WAAS,YAAY,IAAI,MAAM;AAC/B,SAAO;AACT;AACA,SAAS,kBAAkB,QAAQ,MAAM,UAAU;AACjD,QAAM,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AACxF,QAAM,YAAY,OAAO,IAAI,CAAC,OAAO,SAAS;AAAA,IAC5C,QAAQ,EAAE,GAAG,GAAG;AAAA,IAChB,SAAS;AAAA,IACT,OAAO;AAAA,MACL,OAAO;AAAA,QACL,aAAa,cAAc,GAAG,MAAM,MAAM,GAAG,IAAI,CAAC;AAAA,QAClD,aAAa,cAAc,GAAG,MAAM,MAAM,IAAI,CAAC;AAAA,MACjD;AAAA,IACF;AAAA,EACF,CAAC,CAAC;AACF,SAAO,EAAE,WAAW,SAAS;AAC/B;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,QAAQ,aAAa,eAAe,MAAM,OAAO,GAAG,KAAK,EAAE;AACjE,QAAM,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,KAAK;AACzF,MAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,WAAO,SAAS,eAAe,UAAU,OAAO,GAAG,OAAO,CAAC,CAAC;AAAA,EAC9D;AACA,QAAM,UAAU,OAAO,OAAO,CAAC,OAAO,aAAa,cAAc,GAAG,KAAK,IAAI,CAAC;AAC9E,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,uBAAqB,uBAAuB,QAAQ,KAAK;AACzD,SAAO,YAAY,SAAS,OAAO,QAAQ;AAC7C;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,oBAAoB,gBAAgB,WAAW,WAAW,UAAU,UAAU,OAAO,cAAc,MAAM,4BAA4B,OAAO,oBAAoB,GAAG,oBAAoB,GAAG,mBAAmB,GAAG;AACvN,QAAM,cAAc,CAAC,sBAAsB;AACzC,YAAQ;AAAA,WACD;AACH,eAAO;AAAA,WACJ;AACH,eAAO;AAAA,WACJ;AACH,eAAO;AAAA;AAEP,cAAM,IAAI,MAAM,oBAAoB,qCAAqC;AAAA;AAAA,EAE/E;AACA,QAAM,cAAc,CAAC,sBAAsB;AACzC,YAAQ;AAAA,WACD;AACH,eAAO;AAAA,WACJ;AACH,eAAO;AAAA;AAEP,cAAM,IAAI,MAAM,oBAAoB,qCAAqC;AAAA;AAAA,EAE/E;AACA,QAAM,gBAAgB,iBAAiB;AAAA;AAAA,UAE/B;AAAA;AAAA;AAGR,QAAM,kBAAkB,iBAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAMjC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAOR,QAAM,SAAS,iBAAiB,uBAAuB;AACvD,QAAM,SAAS,iBAAiB,uBAAuB;AACvD,QAAM,MAAM,iBAAiB,QAAQ;AACrC,QAAM,MAAM,iBAAiB,QAAQ;AACrC,QAAM,eAAe;AAAA;AAAA,uBAEA,iBAAiB,yBAAyB;AAAA,qBAC5C;AAAA,qBACA;AAAA;AAAA,mBAEF;AAAA,mBACA;AAAA;AAAA;AAAA,kBAGD;AAAA,sBACI,YAAY,iBAAiB;AAAA;AAAA;AAAA,gCAGnB,iCAAiC;AAAA,UACvD;AAAA;AAAA,UAEA,YAAY,iBAAiB;AAAA;AAAA;AAGrC,QAAM,UAAU,iBAAiB,aAAa,WAAW;AAAA,0BACjC;AAAA,QAClB,iBAAiB;AAAA,0BACC;AAAA;AAAA,UAEhB;AAAA;AAAA,eAEK,YAAY,iBAAiB,YAAY,YAAY,YAAY;AAAA,0BACtD;AAAA,QAClB,iBAAiB;AAAA,0BACC;AAAA;AAAA,UAEhB;AAAA;AAAA,eAEK,YAAY,iBAAiB;AAC1C,QAAM,UAAU,GAAG,YAAY,iBAAiB;AAChD,QAAM,UAAU,YAAY,gBAAgB;AAC5C,QAAM,QAAQ,iBAAiB,YAAY,iBAAiB,IAAI,YAAY,iBAAiB;AAC7F,QAAM,QAAQ,iBAAiB,YAAY,iBAAiB,IAAI,YAAY,iBAAiB;AAC7F,QAAM,WAAW;AAAA,QACX,oBAAoB,aAAa,2BAA2B,qBAAqB,GAAG,CAAC;AAAA,2DAClC;AAAA,UACjD,iBAAiB,UAAU;AAAA;AAAA;AAAA,2DAGsB;AAAA,UACjD,iBAAiB,UAAU;AAAA;AAAA;AAAA,kEAG6B;AAAA,4BACtC;AAAA;AAAA;AAAA;AAAA,yBAIH,iBAAiB,yBAAyB;AAAA,UACzD;AAAA,UACA,sBAAsB,SAAS,WAAW;AAAA;AAAA;AAAA;AAIlD,SAAO;AACT;AACA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,UAAU,WAAW,WAAW,UAAU,UAAU,OAAO,cAAc,MAAM,4BAA4B,OAAO;AAC5H,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,SAAS,eAAe;AAC9C,SAAK,WAAW,SAAS,aAAa,MAAM,KAAK,SAAS,aAAa,MAAM,MAAM,KAAK,kBAAkB,SAAS,WAAW,MAAM,KAAK,CAAC,KAAK,mBAAmB,SAAS,cAAc,MAAM;AAC/L,SAAK,iBAAiB,KAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,IAAI,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AACxG,SAAK,gBAAgB,8BAA8B,KAAK,gBAAgB,KAAK,aAAa,KAAK,MAAM;AACrG,SAAK,oBAAoB,8BAA8B,KAAK,gBAAgB,KAAK,aAAa,KAAK,MAAM;AACzG,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,KAAK,iBAAiB;AACjH,QAAI,KAAK,QAAQ;AACf,UAAI,KAAK,kBAAkB,SAAS,aAAa,MAAM,GAAG;AACxD,aAAK,mBAAmB;AACxB,aAAK,gBAAgB,CAAC,OAAO,WAAW;AAAA,MAC1C,OAAO;AACL,aAAK,mBAAmB;AACxB,aAAK,gBAAgB,CAAC,aAAa,WAAW;AAAA,MAChD;AACA,UAAI,SAAS;AACX,aAAK,cAAc,KAAK,MAAM;AAC9B,aAAK,cAAc,KAAK,WAAW;AAAA,MACrC;AACA,UAAI,2BAA2B;AAC7B,aAAK,cAAc,KAAK,wBAAwB;AAChD,aAAK,cAAc,KAAK,WAAW;AAAA,MACrC;AAAA,IACF,OAAO;AACL,WAAK,mBAAmB,KAAK,kBAAkB;AAC/C,UAAI,SAAS;AACX,aAAK,cAAc,KAAK,MAAM;AAAA,MAChC;AACA,UAAI,2BAA2B;AAC7B,aAAK,cAAc,KAAK,wBAAwB;AAAA,MAClD;AAAA,IACF;AACA,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,4BAA4B;AACjC,SAAK,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AACjE,SAAK,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AACjE,SAAK,YAAY,KAAK,IAAI,KAAK,cAAc,KAAK,KAAK,kBAAkB,KAAK,cAAc,EAAE;AAC9F,SAAK,YAAY,YAAY,KAAK,eAAe;AACjD,SAAK,YAAY,YAAY,KAAK,eAAe;AACjD,SAAK,WAAW,WAAW,KAAK,cAAc;AAC9C,SAAK,YAAY,YAAY,KAAK,qBAAqB,KAAK,eAAe,KAAK,aAAa,KAAK,aAAa,KAAK,YAAY,KAAK,UAAU,KAAK,oBAAoB,KAAK;AAAA,EAC/K;AAAA,EACA,cAAc;AACZ,UAAM,eAAe,KAAK,SAAS,2BAA2B,KAAK,mBAAmB,KAAK,YAAY,KAAK,YAAY,KAAK,WAAW,KAAK,kBAAkB,CAAC,KAAK,cAAc,IAAI,uBAAuB,KAAK,mBAAmB,KAAK,eAAe,CAAC,KAAK,gBAAgB,KAAK,SAAS;AAC9R,UAAM,eAAe,KAAK,SAAS,CAAC,KAAK,iBAAiB,KAAK,mBAAmB,GAAG,GAAG,CAAC,IAAI,CAAC,GAAG,GAAG,CAAC;AACrG,UAAM,WAAW;AAAA,MACf,oBAAoB,KAAK,gBAAgB,KAAK,WAAW,KAAK,WAAW,KAAK,UAAU,KAAK,SAAS,KAAK,YAAY,KAAK,2BAA2B,aAAa,IAAI,aAAa,IAAI,aAAa,EAAE;AAAA,MACxM;AAAA;AAEF,WAAO;AAAA,EACT;AACF;AAGA,SAAS,wBAAwB,OAAO,gBAAgB;AACtD,QAAM,SAAS,MAAM;AACrB,MAAI,UAAU,GAAG;AACf,WAAO,iBAAiB;AAAA,MACtB,GAAG,MAAM,MAAM,GAAG,EAAE;AAAA,MACpB,MAAM,SAAS,KAAK,MAAM,SAAS;AAAA,MACnC,MAAM,SAAS;AAAA,IACjB,IAAI;AAAA,MACF,GAAG,MAAM,MAAM,GAAG,EAAE;AAAA,MACpB,MAAM,SAAS;AAAA,MACf,MAAM,SAAS,KAAK,MAAM,SAAS;AAAA,IACrC;AAAA,EACF,WAAW,CAAC,kBAAkB,WAAW,KAAK,MAAM,KAAK,GAAG;AAC1D,WAAO,CAAC,MAAM,IAAI,CAAC;AAAA,EACrB,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,SAAS,gBAAgB,EAAE,GAAG,QAAQ,UAAU,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AACnK,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,aAAa,iBAAiB,QAAQ;AAC5C,QAAM,aAAa;AACnB,QAAM,WAAW,kBAAkB,SAAS,iBAAiB,SAAS,YAAY,SAAS,gBAAgB,SAAS,WAAW,SAAS,QAAQ,SAAS;AACzJ,QAAM,gBAAgB,CAAC;AACvB,MAAI;AACJ,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,YAAY,SAAS,WAAW,SAAS,UAAU,SAAS;AAClE,gBAAY,SAAS;AAAA,MACnB,QAAQ,EAAE,EAAE;AAAA,MACZ,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,SAAS,WAAW,SAAS,EAAE;AAAA,IACrD,CAAC;AACD,qBAAiB,SAAS;AAAA,MACxB,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,WAAW,SAAS,WAAW,EAAE;AAAA,IACvD,CAAC;AAAA,EACH,OAAO;AACL,gBAAY,SAAS;AAAA,MACnB,QAAQ,EAAE,EAAE;AAAA,MACZ,SAAS;AAAA,MACT,OAAO;AAAA,QACL,OAAO,iBAAiB;AAAA,UACtB,SAAS;AAAA,UACT,SAAS,WAAW,SAAS;AAAA,UAC7B,SAAS;AAAA,QACX,IAAI;AAAA,UACF,SAAS;AAAA,UACT,SAAS;AAAA,UACT,SAAS,WAAW,SAAS;AAAA,QAC/B;AAAA,MACF;AAAA,IACF,CAAC;AACD,qBAAiB,SAAS;AAAA,MACxB,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,SAAS,YAAY,SAAS,WAAW,EAAE;AAAA,IACjE,CAAC;AAAA,EACH;AACA,gBAAc,KAAK,SAAS;AAC5B,gBAAc,KAAK,cAAc;AACjC,MAAI,0BAA0B,MAAM;AAClC,UAAM,cAAc,wBAAwB,uBAAuB,OAAO,cAAc;AACxF,QAAI,eAAe,MAAM;AACvB,+BAAyB,SAAS;AAAA,QAChC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,YAAY;AAAA,MAC9B,CAAC;AACD,oBAAc,KAAK,sBAAsB;AAAA,IAC3C;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,cAAc,wBAAwB,KAAK,OAAO,cAAc;AACtE,QAAI,eAAe,MAAM;AACvB,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AACzF,oBAAc,KAAK,IAAI;AAAA,IACzB;AAAA,EACF;AACA,QAAM,SAAS,iBAAiB;AAAA,IAC9B,GAAG,iBAAiB,YAAY;AAAA,IAChC,GAAG,iBAAiB,iBAAiB;AAAA,IACrC;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT;AAAA,IACA,YAAY;AAAA,IACZ;AAAA,IACA;AAAA,EACF,CAAC;AACD,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AACtG,gBAAc,KAAK,MAAM;AACzB,aAAW,MAAM,eAAe;AAC9B,aAAS,YAAY,GAAG,MAAM;AAAA,EAChC;AACA,SAAO;AACT;AACA,SAAS,WAAW,EAAE,GAAG,QAAQ,UAAU,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AAC9J,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,WAAW,kBAAkB,SAAS,iBAAiB,SAAS,YAAY,SAAS,gBAAgB,SAAS,WAAW,SAAS,QAAQ,SAAS;AACzJ,MAAI,YAAY,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,MAAM,SAAS,QAAQ,SAAS,UAAU,SAAS,QAAQ,SAAS,UAAU;AAClR,WAAO,gBAAgB;AAAA,MACrB;AAAA,MACA;AAAA,MACA;AAAA,MACA,SAAS;AAAA,MACT;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH;AACA,QAAM,YAAY,iBAAiB,SAAS,YAAY,SAAS,WAAW,SAAS;AACrF,QAAM,YAAY,iBAAiB,SAAS,cAAc,SAAS,YAAY,SAAS;AACxF,QAAM,WAAW,SAAS,eAAe,SAAS,cAAc,SAAS;AACzE,QAAM,UAAU,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAC5D,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE;AAAA,IACrE,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACpC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE;AAAA,IACrE,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,gBAAgB,SAAS,aAAa,EAAE;AAAA,IACzE,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,IACnC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,IACnC,EAAE,MAAM,SAAS,MAAM,CAAC,QAAQ,EAAE;AAAA,EACpC;AACA,QAAM,UAAU,IAAI,gBAAgB,UAAU,WAAW,WAAW,UAAU,SAAS,aAAa,yBAAyB;AAC7H,QAAM,gBAAgB,CAAC;AACvB,QAAM,WAAW,CAAC,GAAG,MAAM;AAC3B,MAAI,SAAS;AACX,QAAI,CAAC,kBAAkB,KAAK,MAAM,WAAW,GAAG;AAC9C,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,KAAK,MAAM,IAAI,GAAG,CAAC,EAAE,EAAE,CAAC;AACnG,oBAAc,KAAK,IAAI;AAAA,IACzB;AACA,aAAS,KAAK,IAAI;AAAA,EACpB;AACA,MAAI,2BAA2B;AAC7B,QAAI,CAAC,kBAAkB,uBAAuB,MAAM,WAAW,GAAG;AAChE,+BAAyB,SAAS;AAAA,QAChC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,CAAC,uBAAuB,MAAM,IAAI,GAAG,CAAC,EAAE;AAAA,MAC1D,CAAC;AACD,oBAAc,KAAK,sBAAsB;AAAA,IAC3C;AACA,aAAS,KAAK,sBAAsB;AAAA,EACtC;AACA,MAAI,gBAAgB,aAAa;AAC/B,eAAW,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,EAAE,CAAC;AAC3D,YAAQ,YAAY;AAAA,EACtB;AACA,QAAM,MAAM,SAAS,iBAAiB,SAAS,UAAU,EAAE,OAAO,UAAU;AAC5E,aAAW,MAAM,eAAe;AAC9B,aAAS,YAAY,GAAG,MAAM;AAAA,EAChC;AACA,SAAO;AACT;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB,IAAI;AACvE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,SAAO,WAAW,EAAE,GAAG,QAAQ,UAAU,SAAS,SAAS,CAAC;AAC9D;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,6BAA6B,mBAAmB,GAAG;AAC1D,QAAM,cAAc,CAAC,sBAAsB;AACzC,YAAQ;AAAA,WACD;AACH,eAAO;AAAA,WACJ;AACH,eAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWP,cAAM,IAAI,MAAM,oBAAoB,qCAAqC;AAAA;AAAA,EAE/E;AACA,QAAM,eAAe;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iBASN,YAAY,gBAAgB;AAAA;AAAA;AAAA,iBAG5B,YAAY,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8DAOiB;AAC5D,QAAM,UAAU;AAAA,UACR;AAAA;AAAA,eAEK,YAAY,gBAAgB;AACzC,QAAM,WAAW;AAAA,uDACoC,YAAY,gBAAgB;AAAA,wBAC3D;AAAA,MAClB;AAAA;AAAA;AAAA,uDAGiD,YAAY,gBAAgB;AAAA,wBAC3D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QAShB,YAAY,gBAAgB;AAAA;AAAA,aAEvB,YAAY,gBAAgB;AAAA;AAAA;AAAA,iEAGwB,YAAY,gBAAgB;AAAA,wBACrE;AAAA,6CACqB,mBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iEAOC;AAAA;AAAA;AAG/D,SAAO;AACT;AACA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,cAAc,SAAS;AAC5B,iBAAa,OAAO,SAAS,eAAe,gBAAgB,MAAM,6BAA6B;AAC/F,SAAK,SAAS,SAAS,aAAa,MAAM,KAAK,SAAS,cAAc,MAAM;AAC5E,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AAClD,SAAK,gBAAgB,8BAA8B,KAAK,gBAAgB,KAAK,aAAa,KAAK,MAAM;AACrG,SAAK,oBAAoB,8BAA8B,KAAK,gBAAgB,KAAK,aAAa,KAAK,MAAM;AACzG,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,KAAK,iBAAiB;AACjH,QAAI,KAAK,QAAQ;AACf,WAAK,mBAAmB;AACxB,WAAK,gBAAgB,CAAC,aAAa,KAAK;AAAA,IAC1C,OAAO;AACL,WAAK,mBAAmB,KAAK,kBAAkB;AAAA,IACjD;AACA,SAAK,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AACjE,SAAK,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AACjE,SAAK,YAAY,KAAK,IAAI,KAAK,cAAc,KAAK,KAAK,kBAAkB,KAAK,cAAc,EAAE;AAC9F,SAAK,YAAY,oBAAoB,KAAK,UAAU,KAAK,qBAAqB,KAAK;AAAA,EACrF;AAAA,EACA,cAAc;AACZ,UAAM,eAAe,KAAK,SAAS,2BAA2B,KAAK,mBAAmB,KAAK,YAAY,KAAK,YAAY,KAAK,WAAW,KAAK,gBAAgB,IAAI,uBAAuB,KAAK,mBAAmB,KAAK,aAAa;AAClO,UAAM,WAAW;AAAA,MACf,6BAA6B,KAAK,SAAS,IAAI,CAAC;AAAA,MAChD;AAAA;AAEF,WAAO;AAAA,EACT;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,GAAG;AAC/B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,iBAAiB,SAAS,eAAe;AAC9C,SAAK,YAAY,kBAAkB,KAAK;AAAA,EAC1C;AAAA,EACA,cAAc;AACZ,UAAM,SAAS,KAAK,iBAAiB,IAAI;AACzC,UAAM,SAAS,KAAK,iBAAiB,IAAI;AACzC,UAAM,aAAa,KAAK,iBAAiB,IAAI;AAC7C,WAAO;AAAA,MACL,kCAAkC;AAAA;AAAA;AAAA;AAAA,0BAId;AAAA;AAAA,0CAEgB,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBA0B1C,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAiBvB;AACF;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AACxE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACvI,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE;AAAA,IACrE;AAAA,MACE,MAAM;AAAA,MACN,MAAM;AAAA,QACJ,SAAS,eAAe,IAAI,SAAS,QAAQ;AAAA,QAC7C,SAAS,cAAc,IAAI,SAAS,QAAQ;AAAA,MAC9C;AAAA,IACF;AAAA,IACA,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE;AAAA,IACrE;AAAA,MACE,MAAM;AAAA,MACN,MAAM;AAAA,QACJ,SAAS;AAAA,QACT,SAAS;AAAA,QACT,SAAS;AAAA,QACT,SAAS;AAAA,MACX;AAAA,IACF;AAAA,EACF;AACA,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,mCAAmC,GAAG;AACtD,cAAU,IAAI,uBAAuB,QAAQ;AAAA,EAC/C,OAAO;AACL,cAAU,IAAI,wBAAwB,QAAQ;AAC9C,UAAM,YAAY,SAAS,QAAQ,KAAK,SAAS,QAAQ;AACzD,UAAM,YAAY,SAAS,QAAQ;AACnC,UAAM,WAAW,SAAS,eAAe,SAAS,cAAc,SAAS;AACzE,eAAW,KAAK,EAAE,MAAM,UAAU,MAAM,CAAC,SAAS,EAAE,GAAG,EAAE,MAAM,UAAU,MAAM,CAAC,SAAS,EAAE,GAAG,EAAE,MAAM,UAAU,MAAM,CAAC,QAAQ,EAAE,CAAC;AAAA,EACpI;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,IAAI,MAAM,GAAG,WAAW,UAAU;AAC/E;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,IAAI,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,UAAU,UAAU,UAAU,QAAQ;AAChD,SAAK,gBAAgB,CAAC,SAAS,SAAS,QAAQ;AAChD,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,UAAM,CAAC,QAAQ,IAAI;AACnB,SAAK,cAAc,CAAC,UAAU,SAAS,IAAI,SAAS,IAAI,QAAQ;AAChE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,WAAW,WAAW,aAAa,IAAI;AAC5C,SAAK,wBAAwB,KAAK,YAAY,KAAK;AACnD,SAAK,uBAAuB,KAAK,YAAY,KAAK;AAClD,SAAK,YAAY,iBAAiB,KAAK,YAAY,KAAK,yBAAyB,KAAK;AAAA,EACxF;AAAA,EACA,cAAc;AACZ,UAAM,CAAC,kBAAkB,eAAe,IAAI,CAAC,mCAAmC,iCAAiC;AACjH,UAAM,CAAC,aAAa,aAAa,GAAG,IAAI,KAAK,wBAAwB;AAAA,MACnE,IAAI;AAAA,MACJ;AAAA,MACA,MAAM;AAAA,IACR,IAAI;AAAA,MACF;AAAA,MACA;AAAA,MACA,mBAAmB;AAAA,IACrB;AACA,UAAM,CAAC,YAAY,YAAY,GAAG,IAAI,KAAK,uBAAuB;AAAA,MAChE,IAAI;AAAA,MACJ;AAAA,MACA,MAAM;AAAA,IACR,IAAI;AAAA,MACF;AAAA,MACA;AAAA,MACA,mBAAmB;AAAA,IACrB;AACA,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA,iCAGT;AAAA,gCACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,6BAeH;AAAA,4BACD;AAAA,qBACP;AAAA,mCACc;AAAA;AAAA;AAAA;AAAA,qBAId;AAAA,mCACc;AAAA;AAAA;AAAA;AAAA;AAAA,aAKtB,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAwBd,WAAO;AAAA,EACT;AACF;AAGA,IAAI,iBAAiB,CAAC,SAAS;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,OAAO,OAAO,IAAI;AACzC,QAAM,EAAE,UAAU,QAAQ,mBAAmB,IAAI;AACjD,QAAM,UAAU,IAAI,sBAAsB,OAAO,MAAM,IAAI,MAAM,OAAO,UAAU,MAAM;AACxF,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,kBAAkB,EAAE,CAAC;AACpE,SAAO,SAAS,iBAAiB,SAAS,CAAC,QAAQ,OAAO,MAAM,GAAG,WAAW,WAAW;AAC3F;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AAAA,CACH,SAAS,YAAY;AACpB,aAAW,UAAU;AACrB,aAAW,SAAS;AACtB,GAAG,eAAe,aAAa,CAAC,EAAE;AAClC,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,KAAK,OAAO,WAAW,UAAU;AAC3C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,OAAO;AACZ,UAAM,iBAAiB;AACvB,SAAK,gBAAgB,CAAC,gBAAgB,GAAG,CAAC;AAC1C,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AACjB,SAAK,UAAU;AACf,SAAK,KAAK;AACV,SAAK,YAAY,OAAO,KAAK,MAAM,KAAK,aAAa,KAAK;AAAA,EAC5D;AAAA,EACA,cAAc;AACZ,UAAM,OAAO,KAAK,YAAY;AAC9B,UAAM,UAAU,KAAK,OAAO,WAAW,OAAO,QAAQ;AACtD,UAAM,MAAM,KAAK,YAAY,UAAU,QAAQ,WAAW,MAAM,UAAU,KAAK,EAAE;AACjF,UAAM,SAAS,KAAK,YAAY,KAAK,YAAY,SAAS;AAC1D,QAAI,YAAY;AAChB,QAAI,YAAY;AAChB,QAAI,KAAK,WAAW;AAClB,kBAAY,KAAK,UAAU,UAAU,SAAS,MAAM;AACpD,kBAAY,KAAK,UAAU,YAAY;AAAA,IACzC,OAAO;AACL,kBAAY,KAAK,UAAU,gBAAgB,WAAW;AACtD,kBAAY,KAAK,UAAU,eAAe;AAAA,IAC5C;AACA,WAAO;AAAA,QACH,kCAAkC;AAAA;AAAA;AAAA;AAAA,qBAIrB,eAAe,MAAM,UAAU,KAAK,EAAE;AAAA,qBACtC;AAAA;AAAA,eAEN;AAAA,uBACQ;AAAA,aACV,eAAe,MAAM,UAAU,KAAK,EAAE;AAAA,iBAClC,KAAK,YAAY,WAAW,MAAM,UAAU,KAAK,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAMlE;AACF;AACA,SAAS,WAAW,MAAM,MAAM,KAAK;AACnC,MAAI,SAAS,GAAG;AACd,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW;AAAA,EACvB,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW,WAAW;AAAA,EAClC,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW,WAAW,WAAW;AAAA,EAC7C,OAAO;AACL,UAAM,MAAM,cAAc,gBAAgB,2BAA2B;AAAA,EACvE;AACF;AACA,SAAS,eAAe,MAAM,MAAM,KAAK;AACvC,MAAI,SAAS,GAAG;AACd,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,OAAO;AACL,UAAM,MAAM,cAAc,gBAAgB,2BAA2B;AAAA,EACvE;AACF;AAGA,SAAS,SAAS,KAAK,GAAG,UAAU,MAAM,WAAW,UAAU;AAC7D,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAAA,EAC3F;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AACrE,MAAI,iBAAiB,QAAQ,GAAG;AAC9B,UAAM,IAAI,MAAM,oDAAoD,EAAE,MAAM,SAAS,kBAAkB,MAAM;AAAA,EAC/G;AACA,QAAMb,QAAO,UAAU,MAAM;AAC7B,MAAI,SAAS,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,SAAS,CAAC;AACtE,WAAS,KAAK,GAAG,MAAM,KAAK,KAAK,KAAK,KAAKA,KAAI,CAAC,IAAI,GAAG,MAAM;AAC3D,UAAM,UAAU,IAAI,YAAY,KAAK,UAAU,OAAO,OAAO,QAAQ;AACrE,UAAM,aAAa;AACnB,UAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,EAAE,EAAE,CAAC;AACpD,aAAS,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,WAAW;AAC/E,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,WAAW;AACb,UAAM,UAAU,IAAI,YAAY,KAAK,UAAU,OAAO,WAAW,QAAQ;AACzE,UAAM,aAAa;AACnB,UAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,CAAC,EAAE,CAAC;AACnD,aAAS,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,WAAW;AAC/E,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,eAAe,MAAM;AACvB,UAAM,qBAAqB,qBAAqB,uBAAuB,WAAW;AAClF,UAAM,0BAA0B,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,mBAAmB,EAAE,CAAC;AAC5H,aAAS,YAAY,OAAO,MAAM;AAClC,aAAS,YAAY,UAAU,MAAM;AACrC,WAAO;AAAA,EACT;AACA,SAAO;AACT;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,SAAO,SAAS,WAAW,MAAM,GAAG,UAAU,MAAM,WAAW,QAAQ;AACzE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,SAAO,SAAS,WAAW,KAAK,GAAG,UAAU,MAAM,WAAW,QAAQ;AACxE;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,aAAa,YAAY;AACnC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,WAAW;AAChB,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY,gBAAgB;AACjC,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA,oBAItB,KAAK,qBAAqB;AAAA,oBAC1B,KAAK,oBAAoB;AAAA,oBACzB,KAAK,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAO/B,KAAK,mBAAmB;AAAA;AAAA;AAAA,sBAGhB,KAAK,uBAAuB;AAAA;AAAA;AAAA;AAI9C,WAAO;AAAA,EACT;AAAA,EACA,uBAAuB;AACrB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,sBAAsB;AACpB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,sBAAsB;AACpB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,qBAAqB;AACnB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,yBAAyB;AACvB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,WAAW,WAAW,IAAI;AAClC,QAAM,YAAY,EAAE,MAAM;AAC1B,QAAM,cAAc,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AACjE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,eAAe,cAAc;AACnC,QAAM,cAAc,aAAa;AACjC,QAAM,cAAc,cAAc,YAAY;AAC9C,QAAM,cAAc,eAAe,SAAS,CAAC,WAAW,cAAc,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,cAAc,WAAW;AACpJ,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,EACrC;AACA,QAAM,UAAU,IAAI,qBAAqB,aAAa,UAAU;AAChE,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACrE;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mCAAmC,MAAM;AAAA,EAC3C,YAAY,aAAa,cAAc,aAAa,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO;AACnH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,IAAI,CAAC;AAC/B,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,EAAE;AAClD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,qBAAqB;AAC1B,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,YAAY,iBAAiB,KAAK,cAAc,KAAK,gBAAgB,KAAK;AAAA,EACjF;AAAA,EACA,cAAc;AACZ,UAAM,aAAa,KAAK,cAAc,KAAK;AAC3C,UAAM,gBAAgB,KAAK,cAAc,KAAK,KAAK,cAAc,KAAK,KAAK,cAAc;AACzF,UAAM,cAAc,KAAK,cAAc,KAAK,KAAK,eAAe;AAChE,UAAM,aAAa,KAAK,cAAc,KAAK,KAAK,cAAc;AAC9D,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,oBAAoB,OAAO,CAAC;AAAA;AAAA,kDAE5B,gBAAgB;AAAA,kDAChB,KAAK,iBAAiB,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QAUrE,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mDAuBoB,sCAAsC,KAAK,cAAc;AAAA,qDACvD,qCAAqC,KAAK,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UASnG,aAAa,gBAAgB,gBAAgB,gBAAgB,kBAAkB,iCAAiC;AAAA;AAAA;AAAA,gCAG1F,KAAK;AAAA,gCACL,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAOL,KAAK;AAAA,kCACH,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAM7B,sBAAsB,KAAK,SAAS,KAAK,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAMzD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,6BAA6B,MAAM;AAAA,EACrC,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO;AACrF,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,GAAG,GAAG,CAAC;AAC7B,SAAK,SAAS;AACd,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,EAAE;AAClD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,GAAG,GAAG,CAAC,CAAC;AACpG,iBAAa,OAAO,SAAS,eAAe,gBAAgB,MAAM,6BAA6B;AAC/F,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,WAAW;AAChB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,qBAAqB;AAC1B,SAAK,YAAY,iBAAiB,eAAe,KAAK,SAAS,gBAAgB,KAAK,SAAS;AAAA,EAC/F;AAAA,EACA,cAAc;AACZ,UAAM,UAAU,IAAI,KAAK,SAAS,cAAc;AAChD,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,oBAAoB,MAAM,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QASrE,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uCAUQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQP,KAAK,SAAS;AAAA;AAAA,gCAEd;AAAA;AAAA;AAAA;AAAA,kCAIE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAalC,sBAAsB,KAAK,SAAS,KAAK,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAM7D,WAAO;AAAA,EACT;AACF;AAGA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO;AACrF,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAAA;AAEhB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,iBAAiB,SAAS,eAAe;AAC9C,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,WAAW;AAChB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,qBAAqB;AAC1B,SAAK,YAAY,aAAa,KAAK,cAAc,KAAK;AAAA,EACxD;AAAA,EACA,cAAc;AACZ,UAAM,cAAc,KAAK,iBAAiB,6BAA6B;AACvE,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,oBAAoB,OAAO,CAAC;AAAA;AAAA,QAEtE,oBAAoB;AAAA;AAAA;AAAA,2CAGe,KAAK,iBAAiB,OAAO;AAAA,0BAC9C,KAAK,iBAAiB,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,6BA4BvB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,6BAoBA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAMjB,sBAAsB,KAAK,SAAS,KAAK,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAM3D,WAAO;AAAA,EACT;AACF;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB,IAAI;AACvE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,MAAM,WAAW;AAC5I,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI,EAAE;AAAA,IACrE,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,UAAU,SAAS,OAAO,EAAE;AAAA,EAC/D;AACA,QAAM,iBAAiB,SAAS,eAAe;AAC/C,MAAI;AACJ,MAAI,CAAC,kBAAkB,SAAS,WAAW,MAAM,SAAS,UAAU,MAAM,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,kBAAkB,KAAK,SAAS,mBAAmB,KAAK,SAAS,eAAe,SAAS,aAAa;AACpP,cAAU,IAAI,iCAAiC,SAAS,UAAU,SAAS,cAAc,SAAS,WAAW;AAAA,EAC/G,WAAW,kBAAkB,SAAS,WAAW,KAAK,SAAS,UAAU,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,eAAe,SAAS,eAAe,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,aAAa,MAAM,GAAG;AACzR,cAAU,IAAI,2BAA2B,QAAQ;AAAA,EACnD,OAAO;AACL,cAAU,IAAI,wBAAwB,QAAQ;AAC9C,eAAW,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,YAAY,EAAE,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,WAAW,EAAE,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE,GAAG;AAAA,MACzL,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IACxD,CAAC;AAAA,EACH;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,GAAG,MAAM,GAAG,EAAE,OAAO,UAAU;AAC5E;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB,kBAAkB;AAAA,EACzC,QAAQ,aAAa;AAAA,EACrB,eAAe;AAAA,EACf,iBAAiB;AACnB,CAAC;AACD,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,YAAY,YAAY;AAClC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,OAAO;AACZ,SAAK,aAAa,CAAC,WAAW,WAAW,WAAW,MAAM;AAC1D,UAAM,CAAC,WAAW,IAAI,qBAAqB,0BAA0B,KAAK,YAAY,CAAC,CAAC,CAAC;AACzF,SAAK,cAAc,YAAY,WAAW,IAAI,CAAC,CAAC,IAAI;AACpD,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,CAAC,GAAG,GAAG,CAAC,CAAC;AAChF,SAAK,aAAa;AAClB,SAAK,YAAY,UAAU;AAAA,EAC7B;AAAA,EACA,cAAc;AACZ,QAAI,WAAW;AACf,QAAI,YAAY;AAChB,QAAI,KAAK,eAAe,SAAS,KAAK,eAAe,OAAO;AAC1D,iBAAW;AAAA;AAAA;AAAA,qDAGoC,KAAK,eAAe,QAAQ,MAAM;AAAA;AAEjF,kBAAY;AAAA,IACd,WAAW,KAAK,eAAe,SAAS,KAAK,eAAe,QAAQ;AAClE,iBAAW;AAAA,IACb,WAAW,KAAK,eAAe,QAAQ;AACrC,iBAAW;AACX,kBAAY;AAAA,IACd;AACA,UAAM,gBAAgB,KAAK,eAAe,SAAS,yEAAyE;AAC5H,UAAM,sBAAsB;AAAA,mDACmB,KAAK,cAAc;AAAA;AAElE,UAAM,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,SAKZ;AAAA;AAAA;AAAA,wBAGe,KAAK,YAAY,WAAW,IAAI,iBAAiB;AAAA;AAAA;AAAA,SAGhE,kCAAkC;AAAA;AAAA;AAAA,2BAGhB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,aAMd;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAWC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAQF;AAAA;AAAA;AAAA;AAIR,WAAO;AAAA,EACT;AACF;AAGA,SAAS,QAAQ,GAAG,MAAM,UAAU,YAAY,UAAU;AACxD,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,YAAY,CAAC;AACnB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,SAAS;AACb,MAAI,gBAAgB,MAAM;AACxB,aAAS,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AACvF,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAC/D,cAAU,KAAK,MAAM;AAAA,EACvB;AACA,uBAAqB,2BAA2B,YAAY,MAAM,KAAK;AACvE,QAAM,CAAC,gBAAgB,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACvG,MAAI,cAAc;AAClB,MAAI,UAAU;AACZ,kBAAc,qBAAqB,qBAAqB,gBAAgB,QAAQ;AAAA,EAClF;AACA,MAAI;AACJ,OAAK,eAAe,SAAS,eAAe,WAAW,SAAS,mBAAmB,CAAC,MAAM,CAAC,GAAG;AAC5F,UAAM,QAAQ,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACpD,YAAQ;AAAA,WACD;AACH,cAAM,YAAY,YAAY,OAAO,aAAa,cAAc,WAAW,GAAG,aAAa,EAAE,KAAK;AAClG,cAAM,SAAS,eAAe,aAAa,EAAE,OAAO,SAAS;AAC7D;AAAA,WACG;AACH,cAAM,EAAE,SAAS,UAAU,SAAS,IAAI,aAAa,OAAO,OAAO,OAAO,OAAO,OAAO,IAAI;AAC5F,cAAM,SAAS,eAAe,UAAU,UAAU,OAAO;AACzD;AAAA;AAEA,cAAM,IAAI,MAAM,GAAG,qDAAqD;AAAA;AAAA,EAE9E,OAAO;AACL,UAAM,SAAS,aAAa,cAAc,WAAW;AACrD,UAAM,QAAQ,aAAa,cAAc,OAAO,KAAK;AACrD,UAAM,YAAY,QAAQ;AAC1B,UAAM,aAAa,EAAE,YAAY,QAAQ,QAAQ,WAAW,SAAS,EAAE;AACvE,UAAM,QAAQ,eAAe,SAAS,YAAY,WAAW,EAAE,KAAK;AACpE,UAAM,cAAc;AAAA,MAClB,EAAE,MAAM,SAAS,MAAM,CAAC,MAAM,EAAE;AAAA,IAClC;AACA,UAAM,UAAU,IAAI,eAAe,YAAY,UAAU;AACzD,UAAM,UAAU,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,WAAW;AAC/E,cAAU,KAAK,OAAO;AACtB,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,YAAY,GAAG,SAAS,SAAS,CAAC;AAAA,EAC7F;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,OAAO,QAAQ;AACnD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,IAAI;AACrB,QAAM,UAAU;AAChB,QAAM,EAAE,SAAS,YAAY,OAAO,IAAI,qBAAqB,qBAAqB,UAAU,QAAQ,MAAM;AAC1G,uBAAqB,oBAAoB,QAAQ,QAAQ,QAAQ,OAAO;AACxE,QAAM,EAAE,MAAM,MAAM,IAAI,qBAAqB,qBAAqB,YAAY,MAAM;AACpF,QAAM,SAAS,MAAM;AACrB,MAAI,MAAM;AACV,MAAI,mBAAmB,QAAQ;AAC/B,QAAM,mBAAmB,CAAC;AAC1B,WAAS,KAAK,GAAG,KAAK,QAAQ,EAAE,IAAI;AAClC,eAAW,UAAU,MAAM,KAAK;AAC9B,YAAM,EAAE,oBAAoB,MAAM,YAAY,aAAa,IAAI,qBAAqB,qBAAqB,kBAAkB,OAAO,OAAO;AACzI,UAAI;AACJ,UAAI,qBAAqB,sBAAsB,IAAI,GAAG;AACpD,YAAI,QAAQ;AAAA,MACd,OAAO;AACL,YAAI,WAAW,EAAE,QAAQ,EAAE,GAAG,QAAQ,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACrF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,YAAM,cAAc,EAAE,MAAM,MAAM;AAClC,eAAS,IAAI,GAAG,IAAI,aAAa,QAAQ,EAAE,GAAG;AAC5C,oBAAY,OAAO,aAAa,IAAI,GAAG,CAAC;AAAA,MAC1C;AACA,UAAI,CAAC,aAAa,YAAY,EAAE,OAAO,WAAW,GAAG;AACnD,YAAI,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,UAAI,QAAQ,MAAM;AAChB,cAAM;AAAA,MACR,OAAO;AACL,cAAM,mBAAmB,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,IAAI,GAAG,SAAS,SAAS,CAAC;AACxE,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AAAA,IACF;AACA,QAAI,KAAK,SAAS,GAAG;AACnB,UAAI,KAAK,OAAO,GAAG;AACjB,cAAM,KAAK;AAAA,UACT,QAAQ,EAAE,GAAG,IAAI;AAAA,UACjB,SAAS;AAAA,UACT,OAAO;AAAA,YACL,MAAM,KAAK,OAAO,QAAQ,SAAS;AAAA,YACnC,UAAU;AAAA,UACZ;AAAA,QACF,CAAC;AACD,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AACA;AAAA,IACF;AAAA,EACF;AACA,aAAW,cAAc,kBAAkB;AACzC,QAAI,eAAe,KAAK;AACtB;AAAA,IACF;AACA,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,IAAI,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,kBAAkB,EAAE,QAAQ,aAAa,OAAO,OAAO,QAAQ,eAAe,cAAc,CAAC;AAC1G,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB;AAAA,EAC1B,QAAQ,YAAY;AAAA,EACpB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,OAAO,MAAM;AAC/B,QAAM,WAAW,OAAO,MAAM,MAAM;AACpC,MAAI,OAAO;AACX,MAAI,MAAM,GAAG;AACX,iBAAa,OAAO,EAAE,YAAY,MAAM,KAAK,MAAM,iCAAiC,EAAE,YAAY,OAAO,YAAY;AACrH,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,iBAAiB,EAAE,QAAQ,YAAY,OAAO,eAAe,cAAc,CAAC;AACzF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,YAAY;AACtB,SAAK,cAAc,CAAC;AACpB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAStC,WAAO;AAAA,EACT;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AAC7C,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,gBAAgB;AACtB,UAAM,UAAU,IAAI,sBAAsB,OAAO,KAAK;AACtD,UAAM,SAAS,cAAc,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AAC7E,WAAO;AAAA,EACT;AACF;AAGA,IAAI,SAAS,iBAAiB,EAAE,QAAQ,YAAY,OAAO,eAAe,cAAc,CAAC;AACzF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,kBAAkB,EAAE,QAAQ,aAAa,SAAS,OAAO,QAAQ,CAAC;AAClF,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,aAAa,aAAa,cAAc,OAAO;AACzD,SAAK,eAAe;AACpB,SAAK,cAAc,CAAC,CAAC;AACrB,SAAK,gBAAgB,CAAC;AACtB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,aAAa,GAAG,CAAC,CAAC;AAC9G,SAAK,cAAc;AACnB,SAAK,YAAY,cAAc,KAAK;AAAA,EACtC;AAAA,EACA,cAAc;AACZ,UAAM,cAAc,KAAK,cAAc,4CAA4C;AACnF,UAAM,cAAc,KAAK,cAAc,qBAAqB;AAC5D,WAAO;AAAA,uCAC4B;AAAA,QAC/B,kCAAkC;AAAA;AAAA;AAAA;AAAA,yBAIjB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOvB;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AACA,IAAI;AACJ,IAAI,oBAAoC,oBAAI,IAAI;AAChD,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,MAAI,EAAE,OAAO,IAAI;AACjB,QAAM,EAAE,YAAY,IAAI;AACxB,MAAI,UAAU,MAAM;AAClB,UAAM,IAAI,MAAM,0DAA0D;AAAA,EAC5E;AACA,QAAM,UAAU,OAAO,qBAAqB,eAAe,kBAAkB;AAC7E,QAAM,UAAU,OAAO,qBAAqB,eAAe,kBAAkB;AAC7E,QAAM,WAAW,OAAO,sBAAsB,eAAe,kBAAkB,qBAAqB,OAAO,oBAAoB,eAAe,kBAAkB;AAChK,QAAM,gBAAgB,OAAO,gBAAgB,eAAe,kBAAkB;AAC9E,QAAM,CAAC,OAAO,MAAM,IAAI,UAAU;AAAA,IAChC,OAAO;AAAA,IACP,OAAO;AAAA,EACT,IAAI,CAAC,OAAO,OAAO,OAAO,MAAM;AAChC,QAAM,cAAc,CAAC,QAAQ,OAAO,WAAW;AAC/C,QAAM,cAAc,IAAI,EAAE,QAAQ,gCAAgC,KAAK;AACvE,QAAM,iBAAiB,WAAW;AAClC,MAAI,iBAAiB,YAAY,gBAAgB;AAC/C,QAAI;AACJ,QAAI,aAAa;AACf,YAAM,eAAe;AACrB,UAAI,CAAC,kBAAkB,IAAI,YAAY,KAAK,kBAAkB,IAAI,YAAY,EAAE,SAAS;AACvF,cAAM,4BAA4B,EAAE,QAAQ,aAAa;AACzD,0BAAkB,IAAI,cAAc,SAAS,OAAO,sBAAsB,yBAAyB,CAAC;AAAA,MACtG;AACA,oBAAc;AAAA,QACZ;AAAA,QACA;AAAA,QACA,QAAQ;AAAA,QACR,OAAO;AAAA,QACP,SAAS,kBAAkB,IAAI,YAAY;AAAA,MAC7C;AAAA,IACF,OAAO;AACL,UAAI,gBAAgB;AAClB,YAAI,wBAAwB,MAAM;AAChC,iCAAuB,SAAS,cAAc,QAAQ,EAAE,WAAW,IAAI;AAAA,QACzE;AACA,6BAAqB,OAAO,QAAQ;AACpC,6BAAqB,OAAO,SAAS;AACrC,6BAAqB,UAAU,QAAQ,GAAG,GAAG,OAAO,MAAM;AAC1D,iBAAS,qBAAqB;AAAA,MAChC;AACA,YAAM,QAAQ,gBAAgB,WAAW,gBAAgB,oBAAoB,gBAAgB;AAC7F,YAAM,SAAS;AACf,YAAM,UAAU,SAAS,eAAe,eAAe,YAAY,IAAI,YAAY,IAAI,QAAQ,KAAK;AACpG,eAAS,MAAM,2BAA2B,EAAE,QAAQ,OAAO,GAAG,EAAE,QAAQ,GAAG,CAAC,YAAY,IAAI,YAAY,EAAE,CAAC;AAC3G,oBAAc,EAAE,OAAO,QAAQ,QAAQ,OAAO,QAAQ;AAAA,IACxD;AACA,UAAMb,QAAO,aAAa,cAAc,WAAW;AACnD,UAAMa,WAAU,aAAa,eAAe,WAAW;AACvD,UAAM,UAAU,IAAI,mBAAmB,aAAa,aAAa,WAAW;AAC5E,UAAM,cAAc;AAAA,MAClB,EAAE,MAAM,UAAU,MAAM,CAACb,KAAI,EAAE;AAAA,MAC/B,EAAE,MAAM,UAAU,MAAM,CAAC,WAAW,EAAE;AAAA,MACtC,EAAE,MAAM,UAAU,MAAM,CAAC,GAAGa,QAAO,EAAE;AAAA,IACvC;AACA,UAAM,SAAS,SAAS,eAAe,CAAC,QAAQ,KAAK,GAAG,OAAO;AAC/D,UAAM,OAAO,SAAS,UAAU,IAAI,OAAO,MAAM;AACjD,SAAK,eAAe;AACpB,UAAM,SAAS,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,SAAS,WAAW;AAChF,aAAS,YAAY,OAAO,MAAM;AAClC,WAAO;AAAA,EACT;AACA,QAAM,YAAY,OAAO;AACzB,MAAI,aAAa;AACjB,MAAI,eAAe,QAAQ,gBAAgB,GAAG;AAC5C,iBAAa,IAAI,WAAW,OAAO,QAAQ,OAAO,SAAS,WAAW;AACtE,UAAM,aAAa,UAAU;AAC7B,QAAI,IAAI;AACR,aAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,UAAI,KAAK,IAAI,aAAa;AACxB,mBAAW,OAAO,UAAU;AAAA,MAC9B;AAAA,IACF;AAAA,EACF;AACA,QAAM,SAAS,SAAS,eAAe,aAAa,SAAS,IAAI,WAAW,UAAU,CAAC;AACvF,WAAS,YAAY,OAAO,MAAM;AAClC,SAAO;AACT;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,QAAQ,WAAW,eAAe,aAAa,YAAY;AACrE,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,gBAAgB,CAAC,KAAK,QAAQ,UAAU;AAC7C,yBAAqB,2BAA2B,QAAQ,SAAS;AACjE,yBAAqB,2BAA2B,QAAQ,aAAa;AACrE,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,QAAI,eAAe,MAAM;AACvB,2BAAqB,2BAA2B,QAAQ,WAAW;AACnE,WAAK,cAAc,KAAK,QAAQ;AAAA,IAClC;AACA,QAAI,cAAc,MAAM;AACtB,2BAAqB,2BAA2B,QAAQ,UAAU;AAClE,WAAK,cAAc,KAAK,OAAO;AAAA,IACjC;AACA,SAAK,cAAc;AACnB,SAAK,aAAa;AAClB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,QAAI,gBAAgB;AACpB,QAAI,KAAK,eAAe,MAAM;AAC5B,sBAAgB;AAAA,IAClB;AACA,QAAI,eAAe;AACnB,QAAI,KAAK,cAAc,MAAM;AAC3B,qBAAe;AAAA,IACjB;AACA,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMZ;AAAA,6BACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAMzB,WAAO;AAAA,EACT;AACF;AAGA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,GAAG,OAAOS,SAAQ,QAAQ,MAAM,OAAO,SAAS,IAAI;AAC5D,UAAM,EAAE,gBAAgB,IAAI;AAC5B,UAAM,gBAAgB;AACtB,UAAM,kBAAkB,CAAC,GAAG,OAAO,QAAQ;AAC3C,QAAI,cAAc;AAClB,QAAI,UAAU,MAAM;AAClB,oBAAc,OAAO;AACrB,sBAAgB,KAAK,MAAM;AAAA,IAC7B;AACA,QAAI,aAAa;AACjB,QAAIA,WAAU,MAAM;AAClB,mBAAaA,QAAO;AACpB,sBAAgB,KAAKA,OAAM;AAAA,IAC7B;AACA,UAAM,UAAU,IAAI,kBAAkB,EAAE,OAAO,MAAM,OAAO,SAAS,OAAO,aAAa,UAAU;AACnG,UAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,eAAe,EAAE,CAAC;AACjE,WAAO,cAAc,iBAAiB,SAAS,iBAAiB,EAAE,OAAO,WAAW;AAAA,EACtF;AACF;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAT,UAAS,KAAK,MAAM,YAAY,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,SAAO,WAAW;AAAA,IAChB;AAAA,IACA;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,EACd,CAAC;AACH;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AACpG,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,UAAU,GAAG,MAAM,gFAAgFA,2BAA0B,aAAa;AAC3N,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,QAAM,gBAAgB,CAAC,GAAG,MAAM;AAChC,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,MAAI,SAAS;AACX,kBAAc,KAAK,IAAI;AAAA,EACzB;AACA,MAAI,2BAA2B;AAC7B,kBAAc,KAAK,sBAAsB;AAAA,EAC3C;AACA,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI,EAAE;AAAA,IACrE,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,UAAU,SAAS,OAAO,EAAE;AAAA,EAC/D;AACA,MAAI;AACJ,MAAI,SAAS,WAAW,KAAK,SAAS,UAAU,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,eAAe,SAAS,eAAe,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,aAAa,MAAM,GAAG;AAChQ,cAAU,IAAI,2BAA2B,UAAU,SAAS,aAAa,yBAAyB;AAAA,EACpG,OAAO;AACL,cAAU,IAAI,wBAAwB,UAAU,SAAS,aAAa,yBAAyB;AAC/F,eAAW,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,YAAY,EAAE,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,WAAW,EAAE,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE,GAAG;AAAA,MACzL,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IACxD,CAAC;AAAA,EACH;AACA,MAAI,gBAAgB,aAAa;AAC/B,eAAW,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,EAAE,CAAC;AAC3D,YAAQ,YAAY;AAAA,EACtB;AACA,QAAM,SAAS,SAAS,iBAAiB,SAAS,eAAe,WAAW,UAAU;AACtF,SAAO;AACT;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,UAAU,OAAO;AAC3B,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY,YAAY;AAC7B,SAAK,WAAW;AAChB,SAAK,WAAW,6BAA6B,mBAAmB,QAAQ;AAAA,EAC1E;AAAA,EACA,cAAc;AACZ,QAAI;AACJ,QAAI,KAAK,WAAW,GAAG;AACrB,qBAAe;AAAA,IACjB,OAAO;AACL,qBAAe;AAAA,IACjB;AACA,UAAM,WAAW;AAAA,UACX,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMd;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAQ1B,WAAO;AAAA,EACT;AACF;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,QAAQ,QAAQ,IAAI;AAC5B,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,QAAM,aAAa,aAAa,cAAc,OAAO,KAAK;AAC1D,QAAM,CAAC,aAAa,WAAW,WAAWA,QAAO,IAAI,qBAAqB,mBAAmB,QAAQ,OAAO;AAC5G,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,WAAW,SAAS,EAAE,EAAE,CAAC;AACvH,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,aAAa,cAAc,OAAO,KAAK,IAAI,WAAW,SAAS,EAAE;AAAA,EACpF,CAAC;AACD,MAAI,SAAS,mBAAmB,CAAC,QAAQ,OAAO,CAAC,KAAK,OAAO,UAAU,UAAU;AAC/E,UAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,UAAM,YAAY,SAAS,WAAW,MAAM;AAC5C,UAAM,WAAW,iBAAiB,aAAa,WAAW,OAAO,OAAO,WAAW,WAAW,WAAWA,UAAS,OAAO,OAAO,UAAU;AAC1I,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,SAAS,MAAM;AAAA,EAC3E;AACA,QAAM,UAAU,IAAI,iBAAiB,WAAW,CAAC,WAAW,SAAS,CAAC;AACtE,QAAM,cAAc,CAAC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE,GAAG,EAAE,MAAM,SAAS,MAAMA,SAAQ,CAAC;AAC3F,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,UAAU,cAAc,GAAG,SAAS,OAAO,WAAW;AACtG,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAClG,WAAS,YAAY,eAAe,MAAM;AAC1C,WAAS,YAAY,SAAS,MAAM;AACpC,WAAS,YAAY,IAAI,MAAM;AAC/B,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,QAAQ,aAAa;AAC/B,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,OAAO,MAAM;AAChC,SAAK,SAAS;AACd,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,eAAe,iBAAiB,KAAK,MAAM;AACjD,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA,oDAKU;AAAA;AAAA;AAAA;AAIhD,WAAO;AAAA,EACT;AACF;AACA,SAAS,iBAAiB,QAAQ;AAChC,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,QAAI,OAAO,GAAG;AACZ,mBAAa,KAAK,QAAQ;AAAA,IAC5B,OAAO;AACL,mBAAa,KAAK,GAAG,cAAc,KAAK;AAAA,IAC1C;AAAA,EACF;AACA,SAAO,aAAa,KAAK;AAC3B;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAM,UAAU,IAAI;AAC5B,QAAM,aAAa,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AAC9D,QAAM,YAAY,qBAAqB,aAAa,yBAAyB,GAAG,SAAS,YAAY,SAAS;AAC9G,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,YAAY,CAAC;AACnB,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO;AAAA,MACL,OAAO;AAAA,QACL,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,MACZ;AAAA,IACF;AAAA,EACF,CAAC;AACD,QAAM,eAAe,SAAS;AAAA,IAC5B,QAAQ,EAAE,GAAG,QAAQ;AAAA,IACrB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,cAAc,UAAU,SAAS,EAAE;AAAA,EAC3E,CAAC;AACD,YAAU,KAAK,QAAQ;AACvB,YAAU,KAAK,YAAY;AAC3B,QAAM,qBAAqB;AAAA,IACzB,UAAU;AAAA,IACV,UAAU;AAAA,IACV,cAAc,UAAU;AAAA,IACxB,UAAU;AAAA,EACZ;AACA,MAAI,SAAS,mBAAmB,CAAC,GAAG,OAAO,CAAC,GAAG;AAC7C,UAAM,oBAAoB,SAAS,UAAU,IAAI,aAAa,MAAM;AACpE,UAAM,gBAAgB,kBAAkB;AACxC,UAAM,aAAa,OAAO,aAAa,OAAO,aAAa,OAAO,aAAa;AAC/E,UAAM,cAAc,SAAS,UAAU,IAAI,SAAS,MAAM;AAC1D,UAAM,UAAU,YAAY;AAC5B,UAAM,OAAO,OAAO,SAAS,OAAO,SAAS,OAAO,OAAO;AAC3D,UAAM,SAAS,iBAAiB,MAAM,YAAY,kBAAkB;AACpE,cAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,WAAO,SAAS,eAAe,UAAU,aAAa,OAAO,OAAO,OAAO,MAAM;AAAA,EACnF;AACA,QAAM,UAAU,IAAI,eAAe,SAAS,OAAO,kBAAkB;AACrE,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,UAAU,YAAY,GAAG,SAAS,KAAK;AACvF,YAAU,KAAK,GAAG;AAClB,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,YAAY,EAAE,CAAC;AAC5G,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,kBAAkB;AAAA,EAC/B,QAAQ,aAAa;AAAA,EACrB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,kBAAkB;AAAA,EACpC,QAAQ,aAAa;AAAA,EACrB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAAU,OAAM,IAAI;AAClB,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAACA,MAAK,EAAE,CAAC;AACvD,QAAM,UAAU,IAAI,gBAAgB,EAAE,OAAO,YAAY,SAAS;AAClE,UAAQ,WAAW;AACnB,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,WAAW,WAAW;AACvE;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,kBAAkB,EAAE,QAAQ,aAAa,MAAM,OAAO,QAAQ,eAAe,aAAa,CAAC;AACvG,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,kBAAkB;AAAA,EACjC,QAAQ,aAAa;AAAA,EACrB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,KAAK,eAAe,YAAY,CAAC;AACnF,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,kBAAkB,EAAE,QAAQ,aAAa,aAAa,OAAO,OAAO,CAAC;AACvF,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,iBAAiB,EAAE,QAAQ,YAAY,YAAY,CAAC;AACtE,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,kBAAkB,SAAS,IAAI;AACvC,SAAO,QAAQ,GAAG,kBAAkB,UAAU,OAAO,QAAQ;AAC/D;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,kBAAkB;AAAA,EAC/B,QAAQ,aAAa;AAAA,EACrB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI;AACJ,QAAM,aAAa,CAAC;AACpB,MAAI,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,GAAG;AAC7D,QAAI,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AACjE,aAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACvD;AACA,cAAU,IAAI,mCAAmC,QAAQ;AACzD,eAAW,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE,CAAC;AAAA,EACxF,OAAO;AACL,cAAU,IAAI,eAAe,UAAU,KAAK;AAC5C,eAAW,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI,EAAE,GAAG;AAAA,MAC9J,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IACxD,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,UAAU,SAAS,OAAO,EAAE,GAAG;AAAA,MACjE,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,uBAAuB,SAAS,oBAAoB;AAAA,IACtE,CAAC;AAAA,EACH;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,UAAU;AACpE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,QAAQ,QAAQ;AACpD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,OAAO,QAAQ;AACnD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,kBAAkB;AAAA,EAC/B,QAAQ,aAAa;AAAA,EACrB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,QAAQ,UAAU,MAAM;AAClC,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,SAAS;AACd,aAAS,IAAI,CAAC,GAAG,OAAO;AACtB,WAAK,YAAY,OAAO;AAAA,IAC1B,CAAC;AACD,SAAK,SAAS,SAAS,YAAY,IAAI;AACvC,SAAK,YAAY,aAAa;AAAA,EAChC;AAAA,EACA,cAAc;AACZ,UAAM,OAAO,KAAK,OAAO;AACzB,UAAM,QAAQ,KAAK,OAAO,IAAI,CAAC,GAAG,OAAO,eAAe,OAAO,EAAE,KAAK,GAAG;AACzE,UAAM,MAAM,KAAK,OAAO,IAAI,CAAC,GAAG,OAAO,eAAe,0BAA0B,OAAO,IAAI,IAAI,QAAQ,IAAI,EAAE,KAAK,GAAG;AACrH,UAAM,cAAc,SAAS,IAAI,UAAU;AAC3C,UAAM,YAAY,SAAS,IAAI,QAAQ;AACvC,UAAM,aAAa,SAAS,IAAI,SAAS;AACzC,UAAM,QAAQ,mBAAmB,IAAI;AACrC,UAAM,iBAAiB,OAAO,IAAI,CAAC,aAAa,aAAa,aAAa,WAAW,EAAE,MAAM,GAAG,IAAI,IAAI;AACxG,WAAO;AAAA,QACH,kCAAkC;AAAA;AAAA,wBAElB,SAAS;AAAA,sBACX,SAAS;AAAA;AAAA,gCAEC;AAAA,kBACd,gBAAgB;AAAA,gBAClB,gBAAgB,qBAAqB,gBAAgB,KAAK;AAAA,wBAClD,iBAAiB;AAAA,gBACzB,iBAAiB,wBAAwB,gBAAgB,KAAK;AAAA;AAAA;AAAA;AAAA,yCAIrC;AAAA;AAAA;AAAA;AAAA,EAIvC;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,UAAM,gBAAgB;AACtB,UAAM,cAAc,SAAS,IAAI,CAAC,OAAO;AACvC,aAAO,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,IAAI,GAAG,EAAE,EAAE;AAAA,IAC/C,CAAC;AACD,UAAM,UAAU,IAAI,kBAAkB,EAAE,OAAO,UAAU,IAAI;AAC7D,UAAM,SAAS,cAAc,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AAChF,WAAO;AAAA,EACT;AACF;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,QAAQ,SAAS,UAAU,IAAI,EAAE,MAAM;AAC7C,UAAM,CAAC,WAAW,QAAQ,IAAI,YAAY,MAAM,QAAQ,EAAE,OAAO,EAAE,KAAK;AACxE,WAAO,SAAS,eAAe,UAAU,EAAE,OAAO,SAAS;AAAA,EAC7D;AACA,QAAM,UAAU,IAAI,gBAAgB,EAAE,OAAO,YAAY,GAAG;AAC5D,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACxD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,UAAQ,KAAK,gGAAgG;AAC7G,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,eAAe,IAAI;AACxD,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,EAAE,gBAAgB,IAAI,qBAAqB,wBAAwB,WAAW,YAAY,eAAe,cAAc,cAAc;AAC3I,SAAO,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AACnG;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,UAAQ,KAAK,gGAAgG;AAC7G,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,aAAa,IAAI;AACtE,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,mBAAmB;AACzB,QAAM,kBAAkB;AACxB,QAAM,oBAAoB;AAC1B,QAAM,kBAAkB;AACxB,QAAM,EAAE,iBAAiB,eAAe,IAAI,qBAAqB,wBAAwB,WAAW,YAAY,kBAAkB,iBAAiB,mBAAmB,eAAe;AACrL,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,WAAW,IAAI,aAAa,cAAc,CAAC;AAAA,EAC9F;AACF;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,YAAY,SAAS,MAAM;AACpC,aAAS,YAAY,GAAG,MAAM;AAC9B,aAAS,YAAY,SAAS,MAAM;AACpC,aAAS,YAAY,GAAG,MAAM;AAC9B,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM;AAAA,MACX,OAAO;AAAA,QACL,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,QACT,OAAO,EAAE,UAAU,WAAW,KAAK;AAAA,MACrC;AAAA,MACA,SAAS;AAAA,IACX,CAAC;AAAA,EACH;AACF;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE,WAAW,EAAE,UAAU,aAAa;AAClC,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,UAAU,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACnE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,YAAY,SAAS,MAAM;AACpC,aAAS,YAAY,GAAG,MAAM;AAC9B,aAAS,YAAY,SAAS,MAAM;AACpC,aAAS,YAAY,GAAG,MAAM;AAC9B,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,OAAO,EAAE,OAAO,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACzF;AACF;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,YAAY,EAAE,QAAQ,EAAE,OAAO,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAAA,EAC9F;AACA,QAAM,QAAQ,OAAO,GAAG;AACxB,QAAM,QAAQ,OAAO,GAAG;AACxB,SAAO,QAAQ,CAAC,OAAO;AACrB,iBAAa,kBAAkB,OAAO,GAAG,OAAO,uDAAuD;AACvG,iBAAa,OAAO,UAAU,GAAG,OAAO,MAAM,uDAAuD;AAAA,EACvG,CAAC;AACD,QAAM,0BAA0B,CAAC;AACjC,QAAM,kBAAkB,OAAO,IAAI,CAAC,OAAO;AACzC,UAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAChG,4BAAwB,KAAK,SAAS;AACtC,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACtF,0BAAwB,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACvE,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,QAAQ,UAAU;AAC5B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,aAAS,IAAI,CAAC,GAAG,OAAO;AACtB,WAAK,YAAY,OAAO;AAAA,IAC1B,CAAC;AACD,SAAK,SAAS;AACd,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,OAAO,KAAK,OAAO;AACzB,UAAM,OAAO,mBAAmB,IAAI;AACpC,UAAM,QAAQ,KAAK,OAAO,IAAI,CAAC,GAAG,OAAO,eAAe,OAAO,EAAE,KAAK,GAAG;AACzE,UAAM,MAAM,KAAK,OAAO,IAAI,CAAC,GAAG,OAAO,eAAe,0BAA0B,OAAO,IAAI,IAAI,QAAQ,IAAI,EAAE,KAAK,GAAG;AACrH,UAAM,aAAa,OAAO,IAAI,GAAG,QAAQ,WAAW,GAAG;AACvD,UAAM,WAAW,OAAO,IAAI,GAAG,QAAQ,SAAS,GAAG;AACnD,UAAM,mBAAmB,OAAO,IAAI,sBAAsB;AAC1D,UAAM,oBAAoB,OAAO,IAAI,qBAAqB;AAC1D,UAAM,iBAAiB,OAAO,IAAI,CAAC,aAAa,aAAa,aAAa,WAAW,EAAE,MAAM,GAAG,IAAI,IAAI;AACxG,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA,wBAElB;AAAA,sBACF;AAAA;AAAA;AAAA,gBAGN,uBAAuB;AAAA;AAAA;AAAA;AAAA,2CAII;AAAA;AAAA;AAAA;AAAA;AAKvC,WAAO;AAAA,EACT;AACF;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,cAAc,IAAI;AACpC,MAAI,SAAS,MAAM,CAAC,OAAO,aAAa,YAAY,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG;AAChE,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,UAAM,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACxE,WAAO,MAAM;AAAA,MACX,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,aAAa,OAAO,eAAe,OAAO,EAAE,MAAM;AAAA,IACpE,CAAC;AAAA,EACH;AACA,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,aAAa,EAAE,CAAC;AAC/D,WAAS,IAAI,CAAC,OAAO,YAAY,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,IAAI,GAAG,EAAE,EAAE,CAAC,CAAC;AAC9E,QAAM,UAAU,IAAI,YAAY,EAAE,OAAO,QAAQ;AACjD,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACrE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,kBAAkB;AAAA,EAC3B,QAAQ,aAAa;AACvB,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,OAAAU,OAAM,IAAI;AACrB,QAAM,UAAU,IAAI,iBAAiB,aAAa,OAAO,EAAE,OAAOA,OAAM,KAAK;AAC7E,SAAO,SAAS,iBAAiB,SAAS,CAAC,GAAGA,MAAK,GAAG,SAAS;AACjE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,QAAQ,QAAQ;AACpD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,MAAM,OAAO,MAAM,IAAI;AAC5C,QAAM,SAAS,cAAc,OAAO,MAAM,OAAO,KAAK;AACtD,SAAO,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,OAAO,MAAM;AAC/D;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,kBAAkB,EAAE,QAAQ,aAAa,IAAI,CAAC;AAC7D,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,iBAAiB,EAAE,QAAQ,YAAY,MAAM,CAAC;AAC3D,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,YAAY,WAAW,UAAU;AAC3C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,CAAC,WAAW,IAAI,WAAW,UAAU,WAAW,EAAE;AACrE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA2CtC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,MAAAvB,OAAM,iBAAiB,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,eAAe,gBAAgB,YAAY,IAAI,IAAI;AACzD,QAAM,cAAc,gBAAgB,WAAW,IAAI,IAAI;AACvD,QAAM,wBAAwB,mBAAmB,MAAM;AACvD,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,WAAW,EAAE;AAAA,IACrD,EAAE,MAAM,WAAW,MAAM,CAAC,qBAAqB,EAAE;AAAA,EACnD;AACA,QAAM,UAAU,IAAI,uBAAuB,OAAO,OAAO,WAAW,QAAQ;AAC5E,SAAO,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,WAAW,WAAW;AAC5E;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gCAAgC,MAAM;AAAA,EACxC,YAAY,YAAY,WAAW,UAAU,kBAAkB;AAC7D,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,CAAC,WAAW,IAAI,WAAW,UAAU,WAAW,EAAE;AACrE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,mBAAmB;AACxB,SAAK,YAAY,iBAAiB;AAAA,EACpC;AAAA,EACA,cAAc;AACZ,QAAI;AACJ,QAAI,KAAK,kBAAkB;AACzB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAmBN;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAYhC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAA,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,eAAe,gBAAgB,YAAY,IAAI,IAAI;AACzD,QAAM,cAAc,gBAAgB,WAAW,IAAI,IAAI;AACvD,QAAM,YAAY,eAAe,MAAM;AACvC,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,WAAW,EAAE;AAAA,IACrD,EAAE,MAAM,WAAW,MAAM,CAAC,SAAS,EAAE;AAAA,EACvC;AACA,QAAM,UAAU,IAAI,8BAA8B,OAAO,OAAO,WAAW,UAAU,gBAAgB;AACrG,SAAO,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,WAAW;AAC/E;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,YAAY,WAAW;AACjC,SAAK,cAAc,CAAC;AACpB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,WAAW;AAAA;AAEhB,SAAK,YAAY;AACjB,SAAK,cAAc;AACnB,QAAI,OAAO,cAAc,UAAU;AACjC,WAAK,YAAY;AACjB,WAAK,cAAc;AACnB,WAAK,aAAa;AAAA,IACpB,OAAO;AACL,WAAK,YAAY;AACjB,WAAK,cAAc;AACnB,WAAK,aAAa;AAAA,IACpB;AAAA,EACF;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,UACX,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAY9B,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASf,WAAO;AAAA,EACT;AACF;AAGA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,EAAE,SAAS,WAAW,OAAO,IAAI;AACvC,UAAM,gBAAgB;AACtB,UAAM,UAAU,IAAI,eAAe,OAAO,OAAO,SAAS;AAC1D,UAAM,CAAC,SAAS,OAAO,IAAI,qBAAqB,eAAe,QAAQ,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE;AACvG,UAAM,cAAc;AAAA,MAClB,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,EAAE;AAAA,MACnC,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,EAAE;AAAA,MACnC,EAAE,MAAM,WAAW,MAAM,CAAC,KAAK,IAAI,OAAO,CAAC,EAAE;AAAA,MAC7C,EAAE,MAAM,WAAW,MAAM,CAAC,KAAK,IAAI,OAAO,CAAC,EAAE;AAAA,IAC/C;AACA,QAAI,OAAO,cAAc,UAAU;AACjC,kBAAY,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,WAAW,UAAU,QAAQ,CAAC,CAAC,CAAC,EAAE,CAAC;AAAA,IACvF,OAAO;AACL,kBAAY,KAAK,EAAE,MAAM,WAAW,MAAM,UAAU,CAAC;AAAA,IACvD;AACA,UAAM,SAAS,cAAc,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,WAAW;AAC1F,WAAO;AAAA,EACT;AACF;AAGA,IAAI,SAAS,iBAAiB,EAAE,QAAQ,YAAY,OAAO,eAAe,cAAc,CAAC;AACzF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,eAAe,UAAU,aAAa,aAAaa,UAAS,OAAO,aAAa,iBAAiB,MAAM;AACjH,SAAK,gBAAgB,CAAC,WAAW,SAAS;AAC1C,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,SAAS;AACd,SAAK,cAAc;AACnB,SAAK,OAAO;AACZ,SAAK,iBAAiB;AACtB,SAAK,iBAAiB,mBAAmB,aAAa;AACtD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,eAAe,KAAK,aAAa;AACtF,SAAK,yBAAyB,WAAW;AACzC,SAAK,YAAY,WAAW,eAAe,eAAe,KAAK,0BAA0B,eAAe;AACxG,UAAM,cAAc,mBAAmBA,SAAQ,MAAM;AACrD,SAAK,WAAW,4BAA4B;AAC5C,SAAK,cAAc;AACnB,SAAK,cAAc;AAAA,EACrB;AAAA,EACA,cAAc;AACZ,QAAI,gBAAgB;AACpB,QAAI,KAAK,gBAAgB,GAAG;AAC1B,sBAAgB;AAAA,IAClB,WAAW,KAAK,gBAAgB,GAAG;AACjC,sBAAgB;AAAA,IAClB;AACA,UAAM,iBAAiB,cAAc;AACrC,UAAM,eAAe,KAAK,yBAAyB,wBAAwB;AAC3E,QAAI,kBAAkB;AACtB,QAAI,gCAAgC;AACpC,QAAI,KAAK,eAAe,EAAE,WAAW,GAAG;AACtC,wBAAkB;AAClB,sCAAgC;AAAA;AAAA;AAAA;AAAA;AAAA,IAKlC,WAAW,KAAK,eAAe,EAAE,WAAW,GAAG;AAC7C,wBAAkB;AAClB,sCAAgC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAYlC;AACA,UAAM,gBAAgB,MAAM,KAAK,EAAE,QAAQ,KAAK,YAAY,GAAG,CAAC,GAAG,QAAQ,UAAU,MAAM;AAC3F,UAAM,iBAAiB,cAAc,cAAc,KAAK,IAAI;AAC5D,UAAM,YAAY,CAAC,KAAK,QAAQ;AAC9B,UAAI,mBAAmB,aAAa,qBAAqB;AACzD,UAAI,KAAK,SAAS,WAAW;AAC3B,2BAAmB;AAAA;AAAA;AAAA,yCAGc;AAAA;AAAA,qDAEY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2CAMV;AAAA;AAAA;AAAA;AAAA;AAAA,MAKrC;AACA,YAAM,qBAAqB,eAAe,qBAAqB;AAC/D,aAAO,KAAK,iBAAiB,mBAAmB;AAAA,IAClD;AACA,UAAM,WAAW;AAAA,MACf;AAAA;AAAA,QAEE,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAMA;AAAA,8DACoB;AAAA;AAAA;AAAA,gBAG9C,eAAe,KAAK,MAAM,KAAK,KAAK;AAAA,qDACC;AAAA;AAAA,YAEzC,UAAU,sBAAsB,aAAa;AAAA;AAAA;AAGrD,WAAO;AAAA,EACT;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,QAAQ,IAAI;AAC7B,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAA,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,SAAS,SAAS,KAAK;AAC9H,QAAM,eAAe,CAACA,cAAa,WAAW,SAAS;AACvD,MAAIA,gBAAe,GAAG;AACpB,WAAO,SAAS,eAAe,OAAO,QAAQ,KAAK;AAAA,EACrD;AACA,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE,EAAE,CAAC;AACxH,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE,EAAE,CAAC;AAClH,QAAM,OAAO,SAAS;AACtB,QAAM,SAAS,MAAM,EAAE,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,OAAO,GAAG,OAAO,KAAK,EAAE,CAAC;AACjG,QAAMrB,QAAO,aAAa,cAAc,SAAS,KAAK;AACtD,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,IACnC,EAAE,MAAM,SAAS,MAAMa,SAAQ;AAAA,IAC/B,EAAE,MAAM,SAAS,MAAM,CAACb,KAAI,EAAE;AAAA,EAChC;AACA,QAAM,UAAU,IAAI,wBAAwB,SAAS,OAAO,WAAW,eAAe,MAAM,QAAQ,SAAS,MAAM,QAAQa,UAAS,cAAc,IAAI;AACtJ,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,UAAU,cAAc,GAAG,MAAM,aAAa,MAAM;AACpG,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,WAAS,YAAY,eAAe,MAAM;AAC1C,WAAS,YAAY,SAAS,MAAM;AACpC,WAAS,YAAY,IAAI,MAAM;AAC/B,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,OAAO,OAAO,MAAM;AAC9B,SAAK,gBAAgB,CAAC,KAAK,KAAK,GAAG;AACnC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,QAAQ;AACb,SAAK,OAAO;AACZ,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,OAAO,GAAG;AACjB,YAAM,MAAM,kBAAkB,KAAK,2BAA2B;AAAA,IAChE;AACA,QAAI,KAAK,SAAS,GAAG;AACnB,iBAAW;AACX,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,YAAM,aAAa,CAAC;AACpB,YAAM,cAAc,CAAC;AACrB,eAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,MAAM;AACnD,oBAAY,KAAK,GAAG,cAAc,KAAK;AACvC,YAAI,KAAK,KAAK,OAAO;AACnB,qBAAW,KAAK,GAAG,cAAc,KAAK;AAAA,QACxC;AAAA,MACF;AACA,gBAAU,WAAW,KAAK;AAC1B,iBAAW,YAAY,KAAK;AAAA,IAC9B;AACA,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA,4BAGd;AAAA;AAAA,2CAEe;AAAA;AAAA,2CAEA;AAAA;AAAA;AAAA;AAAA;AAKvC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,WAAW,GAAG,IAAI,GAAG,GAAG,IAAI;AACpC,QAAM,UAAU,IAAI,eAAe,UAAU,MAAM,QAAQ,GAAG,OAAO,GAAG,MAAM,MAAM;AACpF,SAAO,SAAS,iBAAiB,SAAS,CAAC,WAAW,IAAI,EAAE,GAAG,WAAW,GAAG,OAAO,GAAG,KAAK,CAAC;AAC/F;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,iBAAiB,EAAE,QAAQ,YAAY,QAAQ,CAAC;AAC/D,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,IAAI,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,kBAAkB,EAAE,QAAQ,aAAa,KAAK,eAAe,aAAa,iBAAiB,KAAK,CAAC;AAC5G,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,OAAO,aAAa,eAAe,CAAC,GAAG,GAAG,OAAO,KAAK;AAC5D,QAAM,WAAW,KAAK;AAAA,IACpB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,kBAAkB,MAAM,UAAU,MAAM;AAAA,EACnD,CAAC;AACD,QAAM,gBAAgB,qBAAqB,qBAAqB,SAAS,OAAO,IAAI;AACpF,QAAM,oBAAoB,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAClH,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,kBAAkB,GAAG,SAAS,SAAS,CAAC;AACjF,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,SAAS,CAAC;AACtD,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,UAAU,MAAM,EAAE,CAAC;AACnG,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,eAAe,GAAG,SAAS,SAAS,CAAC;AAC/E,WAAS,YAAY,SAAS,MAAM;AACpC,WAAS,YAAY,kBAAkB,MAAM;AAC7C,WAAS,YAAY,EAAE,MAAM;AAC7B,WAAS,YAAY,EAAE,MAAM;AAC7B,WAAS,YAAY,OAAO,MAAM;AAClC,WAAS,YAAY,eAAe,MAAM;AAC1C,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,CAAC,SAAS;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAS,IAAI;AACjC,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,uEAAuE;AACtH,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,mBAAmB,CAAC,CAAC,GAAG,CAAC,CAAC;AAChC,mBAAiB,KAAK,GAAG,QAAQ;AACjC,WAAS,KAAK,IAAI,WAAW,QAAQ,KAAK,EAAE,MAAM,QAAQ,EAAE,IAAI;AAC9D,qBAAiB,KAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAC9B;AACA,QAAM,YAAY,CAAC;AACnB,QAAM,UAAU,OAAO;AAAA,IACrB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO,EAAE,UAAU,kBAAkB,eAAe,EAAE;AAAA,EACxD,CAAC;AACD,QAAM,sBAAsB,qBAAqB,YAAY,QAAQ,OAAO,YAAY,OAAO,KAAK;AACpG,QAAM,oCAAoC,qBAAqB,YAAY,oBAAoB,QAAQ,WAAW,QAAQ,KAAK;AAC/H,QAAM,eAAe,qBAAqB,oBAAoB,QAAQ,OAAO,YAAY,OAAO,KAAK;AACrG,QAAM,kBAAkB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,oBAAoB,EAAE,CAAC;AACrH,QAAM,WAAW,WAAW;AAAA,IAC1B,QAAQ,EAAE,GAAG,gBAAgB;AAAA,IAC7B,SAAS;AAAA,IACT,OAAO,EAAE,MAAM,kCAAkC;AAAA,EACnD,CAAC;AACD,QAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,aAAa,EAAE,CAAC;AACtG,YAAU,KAAK,OAAO;AACtB,YAAU,KAAK,eAAe;AAC9B,YAAU,KAAK,QAAQ;AACvB,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,QAAQ,MAAM;AACxB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,MAAM,KAAK;AAAA,IACtC;AACA,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,OAAO,KAAK,YAAY;AAC7B,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,eAAe,iBAAiB,KAAK,MAAM,WAAW;AAC5D,UAAM,WAAW;AAAA,QACb,kCAAkC;AAAA;AAAA;AAAA,yCAGD;AAAA;AAAA;AAAA;AAIrC,WAAO;AAAA,EACT;AACF;AACA,SAAS,iBAAiB,MAAM,gBAAgB,IAAI;AAClD,MAAI,QAAQ,GAAG;AACb,UAAM,MAAM,iBAAiB,2BAA2B;AAAA,EAC1D;AACA,MAAI,SAAS,GAAG;AACd,WAAO,YAAY;AAAA,EACrB;AACA,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,iBAAa,KAAK,IAAI,cAAc,SAAS,uBAAuB,MAAM;AAAA,EAC5E;AACA,SAAO,aAAa,KAAK;AAC3B;AAGA,SAAS,MAAM,QAAQ;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,YAAY,EAAE,MAAM,UAAU,GAAG;AACnF,UAAM,OAAO,SAAS,SAAS,EAAE,MAAM;AACvC,UAAM,QAAQ,EAAE,UAAU,WAAW,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC,IAAI;AACrF,UAAM,MAAM,OAAO,EAAE,OAAO,EAAE,OAAO,KAAK;AAC1C,UAAM,SAAS,aAAa,KAAK,IAAI;AACrC,WAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC1E;AACA,QAAM,UAAU,IAAI,aAAa,EAAE,OAAO,IAAI;AAC9C,QAAM,SAAS,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAC9D,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,eAAe,cAAc,aAAa,IAAI;AACtD,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAA,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,cAAc,eAAe,WAAW;AAC/I,QAAM,iBAAiB;AACvB,MAAI,aAAa,UAAU,UAAU;AACnC,UAAM,aAAa,SAAS,WAAW,aAAa;AACpD,UAAM,aAAa,SAAS,WAAW,YAAY;AACnD,UAAM,iBAAiB,aAAa,aAAa,SAAS,SAAS,aAAa,MAAM,EAAE,EAAE;AAC1F,UAAM,SAAS,gBAAgB,YAAY,YAAY,aAAaA,aAAY,WAAW,YAAY,WAAWR,UAAS,gBAAgB,cAAc;AACzJ,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,OAAO,MAAM;AAAA,EACzE;AACA,QAAM,eAAe,CAACQ,cAAa,WAAW,SAAS;AACvD,QAAM,iBAAiB,SAAS;AAAA,IAC9B,QAAQ,EAAE,GAAG,cAAc;AAAA,IAC3B,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE;AAAA,EAC1C,CAAC;AACD,QAAM,gBAAgB,aAAa,MAAM,SAAS,SAAS;AAAA,IACzD,QAAQ,EAAE,GAAG,aAAa;AAAA,IAC1B,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE;AAAA,EAC1C,CAAC,IAAI,UAAU,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,SAAS,SAAS,CAAC;AACjE,QAAM,OAAO,cAAc;AAC3B,QAAM,OAAO,SAAS,eAAe,CAAC,GAAG,MAAM,aAAa,oBAAoB,GAAG,IAAI,CAAC;AACxF,QAAM,gBAAgB,SAAS;AAAA,IAC7B,QAAQ,EAAE,GAAG,aAAa;AAAA,IAC1B,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,MAAM,aAAa,MAAM,EAAE,KAAK,CAAC,EAAE;AAAA,EACrD,CAAC;AACD,QAAM,eAAe,MAAM,EAAE,QAAQ,EAAE,GAAG,cAAc,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC7G,QAAMrB,QAAO,aAAa,cAAc,CAAC,YAAY,SAAS,CAAC;AAC/D,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,IACnC,EAAE,MAAM,SAAS,MAAMa,SAAQ;AAAA,IAC/B,EAAE,MAAM,SAAS,MAAM,CAACb,KAAI,EAAE;AAAA,EAChC;AACA,UAAQ;AAAA,SACD;AACH;AAAA,SACG;AACH,UAAI,MAAM;AACR,cAAM,UAAU,IAAI,wBAAwB,CAAC,YAAY,SAAS,GAAG,WAAW,eAAe,MAAM,QAAQ,cAAc,MAAM,QAAQa,UAAS,cAAc,MAAM,cAAc;AACpL,iBAAS,iBAAiB,SAAS,CAAC,eAAe,cAAc,GAAG,MAAM,aAAa,YAAY;AAAA,MACrG;AACA;AAAA;AAEA,UAAI,MAAM;AACR,cAAM,UAAU,IAAI,wBAAwB,CAAC,YAAY,SAAS,GAAG,WAAW,eAAe,MAAM,QAAQ,KAAK,MAAM,QAAQA,UAAS,cAAc,MAAM,cAAc;AAC3K,iBAAS,iBAAiB,SAAS,CAAC,MAAM,cAAc,GAAG,MAAM,aAAa,YAAY;AAAA,MAC5F;AACA;AACE,cAAM,UAAU,IAAI,wBAAwB,CAAC,YAAY,SAAS,GAAG,WAAW,eAAe,MAAM,QAAQ,cAAc,MAAM,QAAQA,UAAS,cAAc,IAAI;AACpK,iBAAS,iBAAiB,SAAS,CAAC,eAAe,cAAc,GAAG,MAAM,aAAa,YAAY;AAAA,MACrG;AAAA;AAEJ,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAC9G,WAAS,YAAY,eAAe,MAAM;AAC1C,WAAS,YAAY,cAAc,MAAM;AACzC,WAAS,YAAY,cAAc,MAAM;AACzC,WAAS,YAAY,KAAK,MAAM;AAChC,WAAS,YAAY,aAAa,MAAM;AACxC,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,iBAAiB,KAAK,IAAI;AAClC,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACzD,QAAM,aAAa,qBAAqB,iBAAiB,GAAG,iBAAiB,KAAK;AAClF,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,CAAC;AACrC,QAAMb,QAAO,EAAE,MAAM,MAAM;AAC3B,SAAO,WAAW,IAAI,CAAC,OAAO;AAC5B,UAAM,YAAY,CAAC,GAAGA,KAAI;AAC1B,cAAU,SAAS;AACnB,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAM,UAAU,EAAE,CAAC;AAC7F,UAAM,UAAU;AAChB,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AAC7C,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,gBAAgB;AACtB,UAAM,UAAU,IAAI,gBAAgB,EAAE,OAAO,YAAY,MAAM;AAC/D,WAAO,cAAc,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAAA,EAC7D;AACF;AAGA,IAAI,qBAAqB,kBAAkB;AAAA,EACzC,QAAQ,aAAa;AACvB,CAAC;AACD,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,UAAM,QAAQ,mBAAmB,KAAK,YAAY,MAAM;AACxD,SAAK,WAAW,WAAW,qBAAqB;AAChD,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,OAAO,KAAK,YAAY;AAC9B,QAAI,YAAY;AAChB,QAAI,SAAS,GAAG;AACd,kBAAY;AAAA,IACd,OAAO;AACL,UAAI,aAAa;AACjB,kBAAY,KAAK,YAAY,IAAI,CAAC,GAAG,OAAO;AAC1C;AACA,eAAO,KAAK,YAAY,WAAW,IAAI,6BAA6B,wBAAwB,QAAQ,UAAU,aAAa,yBAAyB,wBAAwB;AAAA,MAC9K,CAAC,EAAE,KAAK,GAAG;AAAA,IACb;AACA,UAAM,WAAW;AAAA,SACZ,kCAAkC;AAAA;AAAA;AAAA,0CAGD;AAAA;AAAA;AAAA;AAItC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,KAAK,SAAAa,UAAS,WAAW,SAAS,cAAc,aAAa,eAAe,IAAI;AAC/F,QAAM,EAAE,kBAAkB,YAAY,YAAY,WAAW,eAAe,OAAO,QAAQ,KAAK,MAAM,SAAS,SAAS,IAAI,mBAAmB,UAAU,EAAE,OAAO,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AACpP,MAAI;AACJ,MAAI,YAAY;AACd,aAAS,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAAA,EACtF,WAAW,aAAa,eAAe;AACrC,iBAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,yCAAyC,EAAE,MAAM,QAAQ;AACxG,UAAMb,QAAO,mBAAmB,gBAAgB,QAAQ,MAAM,QAAQ;AACtE,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,MAAAA,MAAK,EAAE,CAAC;AAC1F,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC5F,aAAS,YAAY,OAAO,MAAM;AAAA,EACpC,OAAO;AACL,UAAM,qBAAqB,SAAS,mBAAmB,CAAC,CAAC,CAAC;AAC1D,QAAI,oBAAoB;AACtB,YAAM,SAAS,SAAS,SAAS,EAAE,MAAM;AACzC,YAAM,OAAO,OAAO,EAAE,OAAO,EAAE,OAAO,MAAM;AAC5C,YAAM,eAAe,qBAAqB,kBAAkB,MAAM,UAAU,MAAM;AAClF,eAAS,SAAS,eAAe,YAAY,EAAE,OAAO,aAAa,MAAM;AAAA,IAC3E,OAAO;AACL,YAAM,UAAU,IAAI,qBAAqB,gBAAgB;AACzD,YAAM,cAAc,CAAC,EAAE,MAAM,SAAS,MAAM,OAAO,GAAG,EAAE,MAAM,SAAS,MAAM,SAAS,CAAC;AACvF,YAAM,eAAe,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACjF,eAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAClG,eAAS,YAAY,aAAa,MAAM;AAAA,IAC1C;AAAA,EACF;AACA,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,aAAa,SAAS,UAAU,WAAW,UAAU,uBAAuB,IAAI;AACnG,QAAM,EAAE,MAAM,WAAW,IAAI;AAC7B,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,QAAQ,YAAY,IAAI,qBAAqB,OAAO,aAAa,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB;AACpJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,UAAU,MAAM;AAAA,IACzD,SAAS,eAAe,WAAW,OAAO,SAAS,YAAY;AAAA,EACjE;AACF;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,WAAW;AAAA;AAEhB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,UACX,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAmExC,WAAO;AAAA,EACT;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,WAAW;AAChB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,UACX,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA2DxC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,qCAAqC,UAAU,YAAY;AAClE,MAAI,eAAe,MAAM;AACvB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACF;AACA,SAAS,eAAe,KAAK;AAC3B,MAAI,QAAQ;AACZ,SAAO,QAAQ,KAAK;AAClB,aAAS;AAAA,EACX;AACA,SAAO;AACT;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,SAAS,EAAE;AACjB,QAAM,UAAU,OAAO,OAAO,SAAS;AACvC,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,UAAM,CAAC,aAAa,cAAc,IAAI,aAAa,OAAO,QAAQ,EAAE,OAAO,GAAG,MAAM;AACpF,WAAO;AAAA,MACL,SAAS,eAAe,YAAY,OAAO,YAAY,OAAO,YAAY,MAAM;AAAA,MAChF,SAAS,eAAe,eAAe,OAAO,eAAe,OAAO,eAAe,MAAM;AAAA,IAC3F;AAAA,EACF;AACA,MAAI,MAAM,GAAG;AACX,WAAO,OAAO,SAAS,KAAK;AAC5B,WAAO;AAAA,MACL,SAAS,eAAe,QAAQ,EAAE,OAAO,CAAC,CAAC;AAAA,MAC3C,SAAS,eAAe,QAAQ,SAAS,CAAC,CAAC;AAAA,IAC7C;AAAA,EACF;AACA,MAAI,YAAY,GAAG;AACjB,WAAO;AAAA,MACL;AAAA,MACA,MAAM,EAAE,OAAO,EAAE,OAAO,QAAQ,OAAO,SAAS,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACjF;AAAA,EACF;AACA,QAAM,QAAQ,aAAa,cAAc,MAAM;AAC/C,QAAM,QAAQ,QAAQ;AACtB,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,CAAC,OAAO,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7F,QAAM,QAAQ,eAAe,CAAC;AAC9B,QAAM,cAAc,eAAe,OAAO;AAC1C,MAAI,UAAU;AACd,QAAM,YAAY,MAAM,YAAY,OAAO,CAAC,KAAK,GAAG,IAAI,CAAC,KAAK,OAAO;AACrE,QAAM,UAAU,CAAC,KAAK,KAAK,UAAU;AACnC,UAAM,UAAU,UAAU;AAC1B,UAAM,UAAU,IAAI,aAAa,KAAK;AACtC,UAAM,YAAY,YAAY,OAAO,IAAI;AACzC,UAAM,kBAAkB;AAAA,MACtB,EAAE,MAAM,SAAS,MAAM,CAAC,OAAO,EAAE;AAAA,MACjC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,MACnC,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,iBAAiB,EAAE;AAAA,MACpD,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,EAAE;AAAA,MAC7B,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,EAAE;AAAA,IAC/B;AACA,UAAM,eAAe;AACrB,cAAU,SAAS,iBAAiB,SAAS,SAAS,SAAS,eAAe;AAC9E,yCAAqC,UAAU,YAAY;AAAA,EAC7D;AACA,WAAS,MAAM,GAAG,MAAM,OAAO,OAAO,GAAG;AACvC,UAAM,MAAM,MAAM;AAClB,aAAS,MAAM,KAAK,OAAO,GAAG,OAAO,GAAG;AACtC,cAAQ,KAAK,KAAK,CAAC,OAAO,WAAW,CAAC;AAAA,IACxC;AAAA,EACF;AACA,WAAS,cAAc,aAAa,cAAc,OAAO,eAAe,GAAG;AACzE,UAAM,UAAU,UAAU;AAC1B,UAAM,eAAe,IAAI,cAAc,CAAC,OAAO,cAAc,CAAC,CAAC;AAC/D,UAAM,YAAY,YAAY,OAAO,IAAI;AACzC,UAAM,mBAAmB;AAAA,MACvB,EAAE,MAAM,SAAS,MAAM,CAAC,OAAO,EAAE;AAAA,MACjC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,MACnC,EAAE,MAAM,SAAS,MAAM,CAAC,KAAK,EAAE;AAAA,IACjC;AACA,UAAM,eAAe;AACrB,cAAU,SAAS,iBAAiB,cAAc,SAAS,SAAS,gBAAgB;AACpF,yCAAqC,UAAU,YAAY;AAC3D,UAAM,MAAM,QAAQ;AACpB,UAAM,MAAM,MAAM;AAClB,aAAS,MAAM,KAAK,OAAO,GAAG,OAAO,GAAG;AACtC,cAAQ,KAAK,KAAK,QAAQ,KAAK;AAAA,IACjC;AAAA,EACF;AACA,MAAI,cAAc;AAClB,YAAU,OAAO,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,GAAG,MAAM,CAAC,OAAO,CAAC,EAAE,EAAE,CAAC;AACrG,uCAAqC,UAAU,WAAW;AAC1D,MAAI,SAAS,UAAU,EAAE,QAAQ,EAAE,GAAG,KAAK,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,GAAG,WAAW,EAAE,EAAE,CAAC;AAC3G,uCAAqC,UAAU,GAAG;AAClD,QAAM,WAAW,OAAO,MAAM,GAAG,EAAE;AACnC,WAAS,KAAK,CAAC;AACf,gBAAc;AACd,YAAU,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC5F,uCAAqC,UAAU,WAAW;AAC1D,QAAM,aAAa;AACnB,WAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC1F,uCAAqC,UAAU,UAAU;AACzD,SAAO,CAAC,QAAQ,OAAO;AACzB;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,SAAS,YAAY;AAC3C,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAgET,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAqD1C,WAAO;AAAA,EACT;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,WAAW,IAAI;AACtC,QAAM,EAAE,eAAe,UAAU,WAAW,YAAY,IAAI;AAC5D,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,WAAW,QAAQ,IAAI,eAAe,OAAO,cAAc,CAAC,aAAa,UAAU;AAC1F,QAAM,WAAW;AAAA,IACf;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,QAAM,UAAU,IAAI,kBAAkB,QAAQ;AAC9C,QAAM,sBAAsB,kBAAkB,YAAY,IAAI;AAC9D,MAAI;AACJ,UAAQ;AAAA,SACD;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA;AAEA,mBAAa;AACb;AAAA;AAEJ,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,SAAS,MAAM,CAAC,mBAAmB,EAAE;AAAA,IAC7C,EAAE,MAAM,SAAS,MAAM,CAAC,UAAU,EAAE;AAAA,IACpC,EAAE,MAAM,WAAW,MAAM,CAAC,SAAS,EAAE;AAAA,EACvC;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,QAAQ,UAAU,GAAG,WAAW,WAAW;AACxF;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,EAAE,KAAK,IAAI;AACf,MAAI,OAAO,GAAG;AACZ,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,IAAI;AACV,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,MAAM,MAAM,MAAM;AACxB,QAAM,WAAW,IAAI,MAAM,QAAQ,CAAC;AACpC,MAAI,WAAW;AACf,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM;AACjC,QAAI,OAAO,MAAM;AACf,eAAS,cAAc,EAAE,MAAM;AAAA,IACjC;AAAA,EACF;AACA,QAAM,YAAY,CAAC;AACnB,QAAM,QAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,CAAC;AACrC,QAAMA,QAAO,EAAE,MAAM,MAAM;AAC3B,EAAAA,MAAK,QAAQ;AACb,QAAM,MAAM,IAAI,MAAM,GAAG;AACzB,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,UAAM,QAAQ;AACd,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAAA,MAAK,EAAE,CAAC;AAClF,UAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAClG,QAAI,MAAM;AACV,cAAU,KAAK,MAAM;AAAA,EACvB;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB;AAAA,EACnB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,gBAAgB,gBAAgB;AACzC,iBAAe,YAAY;AAC7B;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,QAAQ;AAClB,SAAK,SAAS;AACd,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,eAAe;AACpB,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,oBAAoBA,OAAM,OAAO;AAC/B,WAAO,KAAK,cAAcA,OAAM,OAAO,IAAI;AAAA,EAC7C;AAAA,EACA,cAAcA,OAAM,OAAO,mBAAmB,OAAO;AACnD,UAAM,MAAM,aAAaA,OAAM,KAAK;AACpC,QAAI,CAAC,KAAK,YAAY,IAAI,GAAG,GAAG;AAC9B,WAAK,YAAY,IAAI,KAAK,CAAC,CAAC;AAAA,IAC9B;AACA,QAAI,CAAC,KAAK,YAAY,IAAI,GAAG,GAAG;AAC9B,WAAK,YAAY,IAAI,KAAK,CAAC,CAAC;AAAA,IAC9B;AACA,SAAK,gBAAgBA;AACrB,SAAK;AACL,QAAI,KAAK,YAAY,IAAI,GAAG,EAAE,SAAS,GAAG;AACxC,WAAK;AACL,YAAM,aAAa,KAAK,YAAY,IAAI,GAAG,EAAE,MAAM;AACnD,WAAK,YAAY,IAAI,GAAG,EAAE,KAAK,UAAU;AACzC,aAAO;AAAA,IACT;AACA,SAAK,qBAAqBA;AAC1B,UAAM,YAAY,KAAK,OAAO,aAAa,EAAE,MAAAA,OAAM,OAAO,iBAAiB,CAAC;AAC5E,SAAK,YAAY,IAAI,GAAG,EAAE,KAAK,SAAS;AACxC,WAAO;AAAA,EACT;AAAA,EACA,cAAc,SAASA,OAAM,OAAO;AAClC,QAAI,KAAK,YAAY,SAAS,GAAG;AAC/B;AAAA,IACF;AACA,UAAM,MAAM,aAAaA,OAAM,KAAK;AACpC,QAAI,CAAC,KAAK,YAAY,IAAI,GAAG,GAAG;AAC9B,WAAK,YAAY,IAAI,KAAK,CAAC,CAAC;AAAA,IAC9B;AACA,SAAK,YAAY,IAAI,GAAG,EAAE,KAAK,OAAO;AACtC,SAAK;AACL,SAAK;AACL,UAAM,aAAa,KAAK,YAAY,IAAI,GAAG;AAC3C,UAAM,cAAc,WAAW,QAAQ,OAAO;AAC9C,QAAI,cAAc,GAAG;AACnB,YAAM,IAAI,MAAM,wEAAwE;AAAA,IAC1F;AACA,eAAW,OAAO,aAAa,CAAC;AAChC,SAAK,gBAAgBA;AAAA,EACvB;AAAA,EACA,oBAAoB,SAASA,OAAM,OAAO;AACxC,YAAQ,SAAS,WAAW,KAAK,EAAE,KAAK,MAAM;AAC5C,WAAK,cAAc,SAASA,OAAM,KAAK;AAAA,IACzC,GAAG,CAAC,QAAQ;AAAA,IACZ,CAAC;AAAA,EACH;AAAA,EACA,oBAAoB;AAClB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,oBAAoB;AAClB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,SAAK,YAAY,QAAQ,CAAC,SAAS,QAAQ;AACzC,cAAQ,QAAQ,CAAC,YAAY;AAC3B,gBAAQ,QAAQ;AAAA,MAClB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,YAAY,QAAQ,CAAC,SAAS,QAAQ;AACzC,cAAQ,QAAQ,CAAC,YAAY;AAC3B,gBAAQ,QAAQ;AAAA,MAClB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,eAAe;AACpB,SAAK,oBAAoB;AAAA,EAC3B;AACF;AACA,SAAS,aAAaA,OAAM,OAAO;AACjC,SAAO,GAAGA,SAAQ;AACpB;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,QAAQ;AAClB,SAAK,SAAS;AACd,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,eAA+B,oBAAI,IAAI;AAC5C,SAAK,eAA+B,oBAAI,IAAI;AAC5C,SAAK,eAAe;AACpB,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,eAAe,OAAO,QAAQ,QAAQ,OAAO;AAC3C,UAAM,mBAAmB,mBAAmB,MAAM;AAClD,UAAM,WAAW,QAAQ,SAAS;AAClC,UAAM,MAAM,cAAc,OAAO,QAAQ,QAAQ,KAAK;AACtD,QAAI,CAAC,KAAK,aAAa,IAAI,GAAG,GAAG;AAC/B,WAAK,aAAa,IAAI,KAAK,CAAC,CAAC;AAAA,IAC/B;AACA,QAAI,CAAC,KAAK,aAAa,IAAI,GAAG,GAAG;AAC/B,WAAK,aAAa,IAAI,KAAK,CAAC,CAAC;AAAA,IAC/B;AACA,SAAK,gBAAgB;AACrB,SAAK;AACL,QAAI,KAAK,aAAa,IAAI,GAAG,EAAE,SAAS,GAAG;AACzC,WAAK;AACL,YAAM,cAAc,KAAK,aAAa,IAAI,GAAG,EAAE,MAAM;AACrD,WAAK,aAAa,IAAI,GAAG,EAAE,KAAK,WAAW;AAC3C,aAAO;AAAA,IACT;AACA,SAAK,qBAAqB;AAC1B,UAAM,aAAa,KAAK,OAAO,cAAc;AAAA,MAC3C,MAAM,CAAC,OAAO,MAAM;AAAA,MACpB;AAAA,MACA;AAAA,IACF,CAAC;AACD,SAAK,aAAa,IAAI,GAAG,EAAE,KAAK,UAAU;AAC1C,WAAO;AAAA,EACT;AAAA,EACA,eAAe,SAAS,OAAO,QAAQ,QAAQ,OAAO;AACpD,QAAI,KAAK,aAAa,SAAS,GAAG;AAChC;AAAA,IACF;AACA,UAAM,MAAM,cAAc,OAAO,QAAQ,QAAQ,KAAK;AACtD,QAAI,CAAC,KAAK,aAAa,IAAI,GAAG,GAAG;AAC/B,WAAK,aAAa,IAAI,KAAK,CAAC,CAAC;AAAA,IAC/B;AACA,SAAK,aAAa,IAAI,GAAG,EAAE,KAAK,OAAO;AACvC,SAAK;AACL,SAAK;AACL,UAAM,cAAc,KAAK,aAAa,IAAI,GAAG;AAC7C,UAAM,eAAe,YAAY,QAAQ,OAAO;AAChD,QAAI,eAAe,GAAG;AACpB,YAAM,IAAI,MAAM,0EAA0E;AAAA,IAC5F;AACA,gBAAY,OAAO,cAAc,CAAC;AAClC,UAAM,mBAAmB,mBAAmB,MAAM;AAClD,UAAM,WAAW,QAAQ,SAAS;AAClC,SAAK,gBAAgB;AAAA,EACvB;AAAA,EACA,qBAAqB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,qBAAqB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,SAAK,aAAa,QAAQ,CAAC,UAAU,QAAQ;AAC3C,eAAS,QAAQ,CAAC,YAAY;AAC5B,gBAAQ,QAAQ;AAAA,MAClB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,aAAa,QAAQ,CAAC,UAAU,QAAQ;AAC3C,eAAS,QAAQ,CAAC,YAAY;AAC5B,gBAAQ,QAAQ;AAAA,MAClB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,eAA+B,oBAAI,IAAI;AAC5C,SAAK,eAA+B,oBAAI,IAAI;AAC5C,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,eAAe;AACpB,SAAK,oBAAoB;AAAA,EAC3B;AACF;AACA,SAAS,cAAc,OAAO,QAAQ,QAAQ,OAAO;AACnD,SAAO,GAAG,SAAS,UAAU,UAAU;AACzC;AACA,SAAS,mBAAmB,QAAQ;AAClC,MAAI,WAAW,cAAc;AAC3B,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,GAAG,0BAA0B;AAAA,EAC/C;AACF;AAGA,IAAI,8BAA8B,IAAI,EAAE,UAAU,mCAAmC;AACrF,IAAI,kBAAkB,CAAC,QAAQ,YAAY;AACzC,QAAM,0CAA0C,OAAO,OAAO;AAC9D,QAAM,SAAS,QAAQ;AACvB,QAAM,WAAW,QAAQ;AACzB,MAAI,SAAS,MAAM,CAAC,MAAM,KAAK,uCAAuC,GAAG;AACvE,WAAO;AAAA,EACT;AACA,eAAa,OAAO,SAAS,KAAK,2CAA2C,OAAO,MAAM,UAAU,OAAO,MAAM,QAAQ,MAAM,0DAA0D;AACzL,MAAI,kBAAkB,KAAK,KAAK,KAAK,KAAK,SAAS,EAAE,CAAC;AACtD,MAAI,kBAAkB,yCAAyC;AAC7D,sBAAkB,KAAK,KAAK,KAAK,KAAK,SAAS,EAAE,CAAC;AAClD,iBAAa,OAAO,mBAAmB,yCAAyC,MAAM,6CAA6C;AACnI,WAAO,CAAC,iBAAiB,iBAAiB,eAAe;AAAA,EAC3D,OAAO;AACL,WAAO,CAAC,iBAAiB,iBAAiB,CAAC;AAAA,EAC7C;AACF;AACA,IAAI,gBAAgB,cAAc,cAAc;AAAA,EAC9C,YAAY,QAAQ,mBAAmB,OAAO;AAC5C,UAAM;AACN,SAAK,uBAAuC,oBAAI,QAAQ;AACxD,SAAK,0BAA0B;AAC/B,SAAK,WAAW;AAChB,SAAK,iBAAiB;AACtB,SAAK,4BAA4B,CAAC;AAClC,SAAK,yBAAyB,CAAC;AAC/B,SAAK,yBAAyB,CAAC;AAC/B,SAAK,eAAe;AACpB,QAAI,CAAC,kBAAkB,GAAG;AACxB,YAAM,IAAI,MAAM,wCAAwC;AAAA,IAC1D;AACA,SAAK,gBAAgB,CAAC;AACtB,SAAK,SAAS;AACd,SAAK,QAAQ,OAAO;AACpB,SAAK,wBAAwB;AAC7B,SAAK,qBAAqB;AAC1B,SAAK,mBAAmB;AACxB,SAAK,gBAAgB,IAAI,cAAc,KAAK,MAAM;AAClD,SAAK,iBAAiB,IAAI,gBAAgB,KAAK,MAAM;AACrD,SAAK,YAAY,IAAI,YAAY,MAAM,OAAO,CAAC;AAC/C,QAAI,KAAK,kBAAkB;AACzB,WAAK,WAAW,KAAK,OAAO,eAAe;AAAA,QACzC,MAAM;AAAA,QACN,OAAO;AAAA,MACT,CAAC;AAAA,IACH;AACA,QAAI,IAAI,EAAE,QAAQ,yBAAyB,GAAG;AAC5C,WAAK,cAAc,SAAS,cAAc,QAAQ;AAClD,WAAK,YAAY,QAAQ;AACzB,WAAK,YAAY,SAAS;AAC1B,WAAK,eAAe,KAAK,YAAY,WAAW,QAAQ;AACxD,WAAK,aAAa,UAAU;AAAA,QAC1B;AAAA,QACA,QAAQ;AAAA,MACV,CAAC;AACD,eAAS,KAAK,YAAY,KAAK,WAAW;AAAA,IAC5C;AAAA,EACF;AAAA,EACA,aAAa;AACX,WAAO,cAAc;AAAA,EACvB;AAAA,EACA,iBAAiB;AACf,WAAO;AAAA,EACT;AAAA,EACA,wBAAwB;AACtB,WAAO,eAAe,UAAU,eAAe,WAAW,eAAe;AAAA,EAC3E;AAAA,EACA,YAAY,QAAQ,QAAQ,OAAO;AACjC,QAAI,KAAK,0BAA0B,QAAQ,MAAM,KAAK,GAAG;AACvD,aAAO;AAAA,IACT;AACA,QAAI,CAAC,KAAK,UAAU,IAAI,MAAM,GAAG;AAC/B,aAAO;AAAA,IACT;AACA,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,SAAK,OAAO,MAAM;AAClB,QAAI,CAAC,SAAS,WAAW,WAAW,GAAG;AACrC,aAAO;AAAA,IACT;AACA,QAAI,KAAK,qBAAqB,IAAI,MAAM,GAAG;AACzC,WAAK,0BAA0B,KAAK,MAAM;AAC1C,aAAO;AAAA,IACT;AACA,UAAM,EAAE,mBAAmB,IAAI,KAAK,UAAU,IAAI,MAAM;AACxD,QAAI,sBAAsB,MAAM;AAC9B,WAAK,YAAY,mBAAmB,KAAK,QAAQ,KAAK;AACtD,WAAK,YAAY,mBAAmB,KAAK,QAAQ,KAAK;AAAA,IACxD;AACA,SAAK,gBAAgB,MAAM;AAC3B,SAAK,UAAU,OAAO,MAAM;AAC5B,WAAO;AAAA,EACT;AAAA,EACA,SAAS;AACP,WAAO;AAAA,MACL,eAAe,KAAK,cAAc;AAAA,MAClC,wBAAwB,KAAK,cAAc;AAAA,MAC3C,YAAY;AAAA,IACd;AAAA,EACF;AAAA,EACA,gBAAgB,QAAQ;AACtB,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,QAAI,CAAC,cAAc,CAAC,WAAW,cAAc;AAC3C;AAAA,IACF;AACA,QAAI,aAAa,WAAW,cAAc;AACxC,YAAM,cAAc,WAAW;AAC/B,UAAI,YAAY,mBAAmB,YAAY;AAC7C,aAAK,eAAe,eAAe,YAAY,SAAS,YAAY,OAAO,YAAY,QAAQ,YAAY,QAAQ,YAAY,KAAK;AAAA,MACtI;AACA,kBAAY,UAAU;AAAA,IACxB,OAAO;AACL,YAAM,aAAa,WAAW;AAC9B,WAAK,cAAc,cAAc,WAAW,QAAQ,WAAW,MAAM,WAAW,KAAK;AACrF,iBAAW,SAAS;AAAA,IACtB;AACA,eAAW,eAAe;AAAA,EAC5B;AAAA,EACA,SAAS,QAAQ;AACf,QAAI,KAAK,UAAU,IAAI,MAAM,GAAG;AAC9B,YAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,aAAO,WAAW;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ;AACb,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,eAAW;AAAA,EACb;AAAA,EACA,OAAO,QAAQ;AACb,QAAI,KAAK,UAAU,IAAI,MAAM,GAAG;AAC9B,YAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,iBAAW;AAAA,IACb;AAAA,EACF;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,QAAI,UAAU,eAAe,UAAU,MAAM;AAC3C,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF;AACA,UAAM,SAAS,EAAE,IAAI,KAAK,WAAW,EAAE;AACvC,SAAK,UAAU,IAAI,QAAQ,EAAE,OAAO,OAAO,QAAQ,UAAU,EAAE,CAAC;AAChE,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF;AACA,SAAK,UAAU,IAAI,QAAQ,EAAE,OAAO,OAAO,QAAQ,SAAS,CAAC;AAAA,EAC/D;AAAA,EACA,cAAc;AACZ,SAAK,uBAAuB;AAC5B,SAAK,MAAM,OAAO,CAAC,KAAK,sBAAsB,OAAO,CAAC,CAAC;AACvD,SAAK,wBAAwB;AAC7B,SAAK,0BAA0B;AAC/B,SAAK,uBAAuC,oBAAI,QAAQ;AACxD,SAAK,0BAA0B,QAAQ,CAAC,MAAM;AAC5C,WAAK,gBAAgB,CAAC;AACtB,WAAK,UAAU,OAAO,CAAC;AAAA,IACzB,CAAC;AACD,SAAK,uBAAuB,QAAQ,CAAC,MAAM,KAAK,cAAc,cAAc,EAAE,QAAQ,EAAE,MAAM,EAAE,KAAK,CAAC;AACtG,SAAK,uBAAuB,QAAQ,CAAC,MAAM,KAAK,cAAc,oBAAoB,EAAE,QAAQ,EAAE,MAAM,EAAE,KAAK,CAAC;AAC5G,SAAK,4BAA4B,CAAC;AAClC,SAAK,yBAAyB,CAAC;AAC/B,SAAK,yBAAyB,CAAC;AAAA,EACjC;AAAA,EACA,4BAA4B;AAC1B,QAAI,CAAC,KAAK,uBAAuB;AAC/B,WAAK,wBAAwB,KAAK,OAAO,qBAAqB;AAAA,IAChE;AAAA,EACF;AAAA,EACA,yBAAyB;AACvB,QAAI,KAAK,oBAAoB;AAC3B,WAAK,mBAAmB,IAAI;AAC5B,WAAK,qBAAqB;AAAA,IAC5B;AAAA,EACF;AAAA,EACA,iBAAiB;AACf,QAAI,CAAC,KAAK,oBAAoB;AAC5B,WAAK,qBAAqB,KAAK,sBAAsB,iBAAiB;AAAA,IACxE;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,cAAc,SAASA,OAAM;AACjC,UAAM,UAAU,KAAK,cAAc,cAAcA,OAAM,eAAe,WAAW,eAAe,QAAQ;AACxG,SAAK,0BAA0B;AAC/B,SAAK,uBAAuB;AAC5B,SAAK,sBAAsB,mBAAmB,SAAS,GAAG,SAAS,GAAGA,KAAI;AAC1E,SAAK,YAAY;AACjB,UAAM,QAAQ,SAAS,WAAW,IAAI;AACtC,UAAM,SAAS,QAAQ,eAAe,EAAE,MAAM,CAAC;AAC/C,YAAQ,MAAM;AACd,QAAI,WAAW,MAAM;AACnB,WAAK,cAAc,cAAc,SAASA,OAAM,eAAe,WAAW,eAAe,QAAQ;AAAA,IACnG;AACA,QAAI,IAAI,EAAE,QAAQ,yBAAyB,GAAG;AAC5C,mBAAa,OAAO,KAAK,iBAAiB,QAAQ,MAAM,wCAAwC;AAChG,WAAK,aAAa,kBAAkB;AAAA,IACtC;AACA,WAAO;AAAA,EACT;AAAA,EACA,qBAAqB,QAAQ,MAAM;AACjC,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,SAAK,gBAAgB,MAAM;AAC3B,eAAW,SAAS;AACpB,WAAO,WAAW;AAAA,EACpB;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,UAAM,EAAE,OAAO,IAAI;AACnB,QAAI,UAAU,MAAM;AAClB,YAAM,IAAI,MAAM,6DAA6D;AAAA,IAC/E;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,KAAK,QAAQ;AACjB,QAAI,CAAC,KAAK,UAAU,IAAI,MAAM,GAAG;AAC/B,YAAM,IAAI,MAAM,UAAU,4BAA4B;AAAA,IACxD;AACA,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,UAAM,EAAE,OAAO,IAAI;AACnB,QAAI,UAAU,MAAM;AAClB,aAAO,KAAK,qBAAqB,QAAQ,MAAM;AAAA,IACjD;AACA,QAAI;AACJ,QAAI,WAAW,UAAU,aAAa;AACpC,YAAM,KAAK,MAAM,QAAQ,IAAI;AAAA,QAC3B,KAAK,KAAK,WAAW,mBAAmB,KAAK,MAAM;AAAA,QACnD,KAAK,KAAK,WAAW,mBAAmB,KAAK,MAAM;AAAA,MACrD,CAAC;AACD,YAAM,aAAa,GAAG;AACtB,YAAM,aAAa,GAAG;AACtB,aAAO,qBAAqB,uBAAuB,YAAY,UAAU;AAAA,IAC3E,OAAO;AACL,YAAM,aAAa,WAAW;AAC9B,YAAM,OAAO,MAAM,KAAK,cAAc,WAAW,QAAQ,WAAW,IAAI;AACxE,aAAO,wBAAwB,MAAM,WAAW,KAAK;AAAA,IACvD;AACA,SAAK,qBAAqB,QAAQ,IAAI;AACtC,WAAO;AAAA,EACT;AAAA,EACA,UAAU,QAAQ;AAChB,UAAM,gBAAgB,KAAK,UAAU,IAAI,MAAM;AAC/C,UAAM,EAAE,QAAQ,OAAO,OAAO,aAAa,IAAI;AAC/C,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,sDAAsD;AAAA,IACxE;AACA,QAAI,gBAAgB,MAAM;AACxB,UAAI,UAAU,MAAM;AAClB,cAAM,IAAI,MAAM,gCAAgC;AAAA,MAClD,OAAO;AACL,cAAM,IAAI,MAAM,iCAAiC;AAAA,MACnD;AAAA,IACF;AACA,UAAMA,QAAO,aAAa;AAC1B,UAAM,UAAU,KAAK,cAAc,cAAcA,OAAM,aAAa,KAAK;AACzE,SAAK,0BAA0B;AAC/B,SAAK,uBAAuB;AAC5B,SAAK,sBAAsB,mBAAmB,aAAa,QAAQ,GAAG,SAAS,GAAGA,KAAI;AACtF,SAAK,YAAY;AACjB,UAAM,aAAa,KAAK,eAAe,OAAO,KAAK;AACnD,UAAM,YAAY,OAAO,EAAE,yBAAyB,UAAU;AAC9D,UAAM,aAAa,KAAK,UAAU,IAAI,WAAW,MAAM;AACvD,eAAW,eAAe,EAAE,MAAAA,OAAM,OAAO,KAAK,sBAAsB,GAAG,QAAQ,QAAQ;AACvF,WAAO,EAAE,WAAW,QAAQ,SAAS,SAASA,MAAK;AAAA,EACrD;AAAA,EACA,WAAW,IAAI;AACb,UAAM,OAAO,KAAK,SAAS,GAAG,MAAM;AACpC,QAAI,GAAG,UAAU,UAAU;AACzB,UAAI;AACF,cAAM,UAAU,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AAC5D,eAAO,OAAO,GAAG,OAAO,GAAG,OAAO,OAAO;AAAA,MAC3C,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,kDAAkD;AAAA,MACpE;AAAA,IACF;AACA,WAAO,OAAO,GAAG,OAAO,GAAG,OAAO,IAAI;AAAA,EACxC;AAAA,EACA,MAAM,KAAK,GAAG;AACZ,UAAM,kBAAkB,KAAK;AAC7B,UAAM,kBAAkB,CAAC;AACzB,QAAI,gBAAgB;AACpB,QAAI,KAAK,sBAAsB,MAAM;AACnC,WAAK,qBAAqB;AAC1B,sBAAgB;AAAA,IAClB,OAAO;AACL,WAAK,aAAa,KAAK,eAAe;AAAA,IACxC;AACA,SAAK,eAAe;AACpB,MAAE;AACF,UAAM,8BAA8B,aAAa,QAAQ,KAAK,aAAa,IAAI,CAAC,MAAM,EAAE,KAAK,CAAC,EAAE,OAAO,CAAC,MAAM,KAAK,IAAI;AACvH,UAAM,4BAA4B,aAAa,QAAQ,KAAK,aAAa,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,EAAE,OAAO,CAAC,MAAM,KAAK,IAAI;AACpH,SAAK,eAAe;AACpB,QAAI,eAAe;AACjB,WAAK,qBAAqB;AAAA,IAC5B;AACA,UAAM,MAAM;AAAA,MACV,cAAc,KAAK;AAAA,MACnB,gBAAgB,KAAK;AAAA,MACrB,UAAU;AAAA,MACV,QAAQ;AAAA,IACV;AACA,UAAM,WAAW,MAAM,QAAQ,IAAI,2BAA2B;AAC9D,QAAI,cAAc,aAAa,IAAI,QAAQ;AAC3C,QAAI,yBAAyB,MAAM,SAAS,IAAI,CAAC,GAAG,QAAQ,EAAE,MAAM,0BAA0B,KAAK,IAAI,EAAE,EAAE,EAAE,IAAI,CAAC,MAAM,GAAG,EAAE,SAAS,EAAE,IAAI,EAAE,KAAK,IAAI;AACvJ,SAAK,eAAe;AACpB,SAAK,iBAAiB;AACtB,WAAO;AAAA,EACT;AAAA,EACA,eAAe,OAAO,OAAO,QAAQ;AACnC,QAAI,UAAU,YAAY,UAAU,QAAQ,OAAO,SAAS,KAAK,aAAa,SAAS,OAAO,EAAE,GAAG;AACjG,eAAS,OAAO,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AAAA,IACzD;AACA,UAAM,SAAS,KAAK,MAAM,QAAQ,OAAO,KAAK;AAC9C,WAAO,EAAE,QAAQ,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,gBAAgB,SAAS;AACvB,QAAI,CAAC,SAAS;AACZ,aAAO;AAAA,IACT;AACA,UAAM,aAAa,KAAK,UAAU,IAAI,QAAQ,MAAM;AACpD,QAAI,aAAa,WAAW,cAAc;AACxC,YAAM,OAAO,WAAW;AACxB,UAAI,KAAK,mBAAmB,oBAAoB;AAC9C,eAAO,KAAK;AAAA,MACd,OAAO;AACL,eAAO,KAAK,QAAQ,WAAW;AAAA,MACjC;AAAA,IACF;AACA,UAAM,aAAa,WAAW;AAC9B,WAAO,EAAE,QAAQ,GAAG,MAAM,WAAW,MAAM,QAAQ,WAAW,OAAO;AAAA,EACvE;AAAA,EACA,MAAM,aAAa,OAAO;AACxB,QAAI,KAAK,kBAAkB;AACzB,aAAO,KAAK,oBAAoB,KAAK;AAAA,IACvC,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,YAAY,QAAQ;AAClB,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,QAAI,WAAW,cAAc;AAC3B;AAAA,IACF;AACA,UAAMA,QAAO,mBAAmB,WAAW,KAAK,IAAI,aAAa,cAAc,WAAW,KAAK;AAC/F,UAAM,UAAU,KAAK,cAAc,cAAcA,OAAM,KAAK,sBAAsB,CAAC;AACnF,eAAW,eAAe,EAAE,MAAAA,OAAM,OAAO,KAAK,sBAAsB,GAAG,QAAQ,QAAQ;AACvF,QAAI,WAAW,QAAQ;AACrB,YAAM,gBAAgB,KAAK,cAAc,oBAAoBA,OAAM,eAAe,YAAY,eAAe,QAAQ;AACrH,YAAM,cAAc,cAAc,eAAe;AACjD,UAAI,WAAW,UAAU,WAAW,WAAW,UAAU,QAAQ;AAC/D,YAAI,WAAW,WAAW,EAAE,IAAI,WAAW,MAAM;AAAA,MACnD,OAAO;AACL,YAAI,aAAa,WAAW,EAAE,IAAI,WAAW,MAAM;AAAA,MACrD;AACA,oBAAc,MAAM;AACpB,WAAK,0BAA0B;AAC/B,WAAK,uBAAuB;AAC5B,WAAK,sBAAsB,mBAAmB,eAAe,GAAG,SAAS,GAAGA,KAAI;AAChF,YAAM,cAAc;AAAA,QAClB,MAAAA;AAAA,QACA,OAAO,eAAe,YAAY,eAAe;AAAA,QACjD,QAAQ;AAAA,MACV;AACA,WAAK,uBAAuB,KAAK,WAAW;AAAA,IAC9C;AAAA,EACF;AAAA,EACA,aAAa,gBAAgB;AAC3B,QAAI,gBAAgB;AACpB,QAAI,YAAY;AAChB,UAAM,UAAU,CAAC;AACjB,mBAAe,QAAQ,CAAC,MAAM;AAC5B,UAAI,EAAE,KAAK,WAAW,GAAG;AACvB,UAAE,OAAO,CAAC,CAAC;AAAA,MACb;AACA,UAAI;AACJ,cAAQ,EAAE,KAAK;AAAA,aACR;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA;AAEA,uBAAa,OAAO,OAAO,MAAM,eAAe,EAAE,KAAK,eAAe;AAAA;AAE1E,UAAI,cAAc,KAAK,cAAc,GAAG;AACtC,wBAAgB;AAAA,MAClB;AACA,sBAAgB,KAAK,KAAK,gBAAgB,aAAa,IAAI;AAC3D,kBAAY,EAAE,KAAK;AACnB,cAAQ,KAAK,aAAa;AAC1B,uBAAiB,EAAE,KAAK,SAAS;AAAA,IACnC,CAAC;AACD,UAAM,cAAc,IAAI,YAAY,aAAa;AACjD,mBAAe,QAAQ,CAAC,GAAG,OAAO;AAChC,YAAM,SAAS,QAAQ;AACvB,UAAI,EAAE,SAAS,SAAS;AACtB,YAAI,WAAW,aAAa,QAAQ,EAAE,KAAK,MAAM,EAAE,IAAI,EAAE,IAAI;AAAA,MAC/D,WAAW,EAAE,SAAS,UAAU;AAC9B,YAAI,YAAY,aAAa,QAAQ,EAAE,KAAK,MAAM,EAAE,IAAI,EAAE,IAAI;AAAA,MAChE,OAAO;AACL,YAAI,aAAa,aAAa,QAAQ,EAAE,KAAK,MAAM,EAAE,IAAI,EAAE,IAAI;AAAA,MACjE;AAAA,IACF,CAAC;AACD,UAAM,gBAAgB,KAAK,cAAc,cAAc,eAAe,eAAe,WAAW,eAAe,OAAO;AACtH,SAAK,MAAM,YAAY,eAAe,GAAG,aAAa,GAAG,aAAa;AACtE,UAAM,cAAc;AAAA,MAClB,MAAM;AAAA,MACN,OAAO,eAAe,WAAW,eAAe;AAAA,MAChD,QAAQ;AAAA,IACV;AACA,SAAK,uBAAuB,KAAK,WAAW;AAC5C,WAAO,EAAE,QAAQ,GAAG,MAAM,eAAe,QAAQ,cAAc;AAAA,EACjE;AAAA,EACA,iBAAiB,SAAS,QAAQ,aAAa,uBAAuB,QAAQ;AAC5E,QAAI,CAAC,QAAQ;AACX,eAAS,KAAK,eAAe,QAAQ,aAAa,WAAW;AAAA,IAC/D;AACA,QAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,WAAK,UAAU,IAAI,OAAO,MAAM,EAAE,SAAS,aAAa,uBAAuB,OAAO,OAAO,CAAC;AAC9F,aAAO;AAAA,IACT;AACA,SAAK,YAAY,OAAO,MAAM;AAC9B,YAAQ,WAAW,gBAAgB,KAAK,QAAQ,OAAO;AACvD,QAAI,iBAAiB,CAAC;AACtB,QAAI,eAAe,CAAC;AACpB,QAAI,CAAC,QAAQ,cAAc;AACzB,qBAAe,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,GAAG,EAAE,CAAC;AACpD,qBAAe,OAAO,OAAO,MAAM,EAAE,IAAI,CAAC,MAAM,EAAE,KAAK;AACvD,YAAM,eAAe;AACrB,mBAAa,IAAI,CAAC,MAAM;AACtB,uBAAe,KAAK,EAAE,MAAM,cAAc,MAAM,EAAE,CAAC;AAAA,MACrD,CAAC;AACD,YAAMa,WAAU,aAAa,eAAe,OAAO,KAAK;AACxD,qBAAe,KAAK,EAAE,MAAM,cAAc,MAAMA,SAAQ,CAAC;AACzD,UAAI,QAAQ,MAAM;AAChB,cAAMb,QAAO,aAAa,cAAc,QAAQ,WAAW;AAC3D,uBAAe,KAAK,EAAE,MAAM,cAAc,MAAM,CAAC,QAAQ,SAASA,QAAO,IAAIA,KAAI,EAAE,CAAC;AAAA,MACtF;AAAA,IACF;AACA,UAAM,aAAa,OAAO,IAAI,CAAC,QAAQ,OAAO;AAC5C,UAAI,OAAO,UAAU,aAAa;AAChC,cAAM,IAAI,MAAM,iIAAiI;AAAA,MACnJ;AACA,WAAK,YAAY,OAAO,MAAM;AAC9B,aAAO;AAAA,QACL,OAAO,KAAK,UAAU,IAAI,OAAO,MAAM,EAAE;AAAA,QACzC,OAAO,OAAO;AAAA,QACd,MAAM,QAAQ,cAAc;AAAA,MAC9B;AAAA,IACF,CAAC;AACD,UAAM,MAAM,eAAe,SAAS,cAAc,YAAY,MAAM;AACpE,QAAI;AACJ,QAAI,OAAO,KAAK,eAAe;AAC7B,iBAAW,KAAK,cAAc;AAAA,IAChC,OAAO;AACL,iBAAW,gBAAgB,KAAK,QAAQ,SAAS,YAAY,MAAM;AACnE,WAAK,cAAc,OAAO;AAAA,IAC5B;AACA,QAAI,uBAAuB;AACzB,uBAAiB,CAAC,GAAG,gBAAgB,GAAG,qBAAqB;AAAA,IAC/D;AACA,UAAM,WAAW;AAAA,MACf,KAAK,gBAAgB,MAAM;AAAA,MAC3B,GAAG,OAAO,IAAI,CAAC,OAAO,KAAK,gBAAgB,EAAE,CAAC;AAAA,MAC9C,KAAK,aAAa,cAAc;AAAA,IAClC;AACA,UAAM,YAAY,KAAK,OAAO,gBAAgB;AAAA,MAC5C,QAAQ,SAAS,mBAAmB,CAAC;AAAA,MACrC,SAAS,SAAS,IAAI,CAAC,GAAG,QAAQ,EAAE,SAAS,IAAI,UAAU,EAAE,EAAE;AAAA,IACjE,CAAC;AACD,SAAK,0BAA0B;AAC/B,UAAM,OAAO,KAAK,eAAe;AACjC,UAAM,oBAAoB,KAAK,gBAAgB;AAC/C,QAAI,mBAAmB;AACrB,UAAI,KAAK,kBAAkB;AACzB,aAAK,eAAe,KAAK,UAAU,CAAC;AAAA,MACtC;AAAA,IACF;AACA,SAAK,YAAY,QAAQ;AACzB,SAAK,aAAa,GAAG,SAAS;AAC9B,SAAK,mBAAmB,QAAQ,SAAS,IAAI,QAAQ,SAAS,IAAI,QAAQ,SAAS,EAAE;AACrF,QAAI,mBAAmB;AACrB,UAAI,KAAK,kBAAkB;AACzB,aAAK,eAAe,KAAK,UAAU,CAAC;AAAA,MACtC;AAAA,IACF;AACA,SAAK;AACL,WAAO,QAAQ,CAAC,WAAW;AACzB,WAAK,qBAAqB,IAAI,OAAO,MAAM;AAAA,IAC7C,CAAC;AACD,SAAK,qBAAqB,IAAI,OAAO,MAAM;AAC3C,QAAI,IAAI,EAAE,IAAI,mCAAmC,KAAK,KAAK,yBAAyB;AAClF,WAAK,YAAY;AAAA,IACnB;AACA,QAAI,mBAAmB;AACrB,WAAK,aAAa,KAAK;AAAA,QACrB,MAAM,QAAQ,YAAY;AAAA,QAC1B,OAAO,KAAK,aAAa,KAAK,QAAQ;AAAA,MACxC,CAAC;AAAA,IACH;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,oBAAoB,UAAU;AAClC,UAAM,cAAc,KAAK,cAAc,cAAc,IAAI,eAAe,WAAW,eAAe,aAAa;AAC/G,UAAM,MAAM,KAAK,cAAc,cAAc,IAAI,eAAe,WAAW,eAAe,QAAQ;AAClG,SAAK,0BAA0B;AAC/B,SAAK,uBAAuB;AAC5B,SAAK,sBAAsB,gBAAgB,UAAU,GAAG,GAAG,aAAa,CAAC;AACzE,SAAK,sBAAsB,mBAAmB,aAAa,GAAG,KAAK,GAAG,EAAE;AACxE,SAAK,YAAY;AACjB,UAAM,IAAI,SAAS,WAAW,IAAI;AAClC,UAAM,WAAW,IAAI,eAAe,IAAI,eAAe,CAAC;AACxD,UAAM,mBAAmB,OAAO,SAAS,KAAK,SAAS,EAAE;AACzD,QAAI,MAAM;AACV,SAAK,cAAc,cAAc,KAAK,IAAI,eAAe,WAAW,eAAe,QAAQ;AAC3F,SAAK,cAAc,cAAc,aAAa,IAAI,eAAe,WAAW,eAAe,aAAa;AACxG,WAAO,mBAAmB;AAAA,EAC5B;AAAA,EACA,mBAAmB,QAAQ,gBAAgB,6BAA6B;AACtE,WAAO,IAAI,EAAE,QAAQ,oBAAoB,KAAK,OAAO,MAAM,CAAC,WAAW,KAAK,UAAU,IAAI,OAAO,MAAM,EAAE,gBAAgB,QAAQ,aAAa,cAAc,OAAO,KAAK,IAAI,aAAa;AAAA,EAC3L;AAAA,EACA,aAAa;AACX,WAAO,KAAK,UAAU,WAAW,IAAI,KAAK,0BAA0B;AAAA,EACtE;AAAA,EACA,UAAU;AACR,QAAI,KAAK,UAAU;AACjB;AAAA,IACF;AACA,SAAK,cAAc,QAAQ;AAC3B,SAAK,eAAe,QAAQ;AAC5B,SAAK,WAAW;AAAA,EAClB;AACF;AACA,cAAc,aAAa;AAG3B,IAAI,iBAAiB,CAAC;AACtBH,UAAS,gBAAgB;AAAA,EACvB,eAAe,MAAM;AAAA,EACrB,aAAa,MAAM;AACrB,CAAC;AAGD,IAAI,kBAAkB,GAAG;AACvB,kBAAgB,UAAU,YAAY;AACpC,QAAI,EAAE,IAAI,gCAAgC,KAAK;AAC/C,UAAM,gBAAgB;AAAA,MACpB,iBAAiB,IAAI,EAAE,IAAI,0BAA0B,IAAI,cAAc;AAAA,IACzE;AACA,UAAM,UAAU,MAAM,UAAU,IAAI,eAAe,aAAa;AAChE,UAAM,gBAAgB,QAAQ;AAC9B,UAAM,mBAAmB,CAAC;AAC1B,UAAM,mBAAmB,QAAQ,SAAS,IAAI,iBAAiB;AAC/D,qBAAiB,iBAAiB;AAAA,MAChC,kCAAkC,cAAc;AAAA,MAChD,oCAAoC,cAAc;AAAA,MAClD,+BAA+B,cAAc;AAAA,IAC/C;AACA,QAAI,kBAAkB;AACpB,uBAAiB,mBAAmB,CAAC,iBAAiB;AAAA,IACxD,OAAO;AACL,cAAQ,KAAK,wUAAwU;AAAA,IACvV;AACA,UAAM,SAAS,MAAM,QAAQ,cAAc,gBAAgB;AAC3D,WAAO,IAAI,cAAc,QAAQ,gBAAgB;AAAA,EACnD,GAAG,CAAC;AACN;AAGA,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI,EAAE,MAAM,GAAG,aAAa,GAAG,aAAa,GAAG,eAAe,GAAG,kBAAkB,GAAG,sBAAsB,GAAG,qBAAqB,EAAE;;;AC/k2EnI,IAAM,iBAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAqBvB,IAAM,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAc7B,IAAM,0BAA0B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAchC,IAAM,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAejB,IAAM,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAyBb,IAAM,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;;;AC9E3B,IAAM,UAAU,CAAC,QAAQ,QAAgB,eAAe;AACtD,QAAM0C,KAAI,IAAI,OAAO,QAAQ,SAAS,gBAAgB,IAAI;AAC1D,SAAO,QAAQA,IAAG,CAACC,QAAO,SAAS;AACjC,eAAW,QAAQ;AACnB,WAAOA;AAAA,EACT,CAAC;AACH;AAEA,IAAM,YAAN,MAAgB;AAAA,EAMd,YAAY,IAAI,cAAc,gBAAgB;AAL9C,mCAAU,CAAC;AACX,qCAAY,CAAC;AACb;AACA;AA2BA,mCAAU,CAAC,QAAQ,SAA6B;AAC9C,YAAM,SAAS,KAAK,GAAG,aAAa,IAAI;AACxC,UAAI,CAAC,QAAQ;AACX,YAAI,iCAAiC;AACrC,eAAO;AAAA,MACT;AACA,WAAK,GAAG,aAAa,QAAQ,MAAM;AACnC,WAAK,GAAG,cAAc,MAAM;AAC5B,UAAI,CAAC,KAAK,GAAG,mBAAmB,QAAQ,KAAK,GAAG,cAAc,GAAG;AAC/D,YAAI,8BAA8B,KAAK,GAAG,iBAAiB,MAAM,KAAK,WAAW;AACjF,eAAO;AAAA,MACT;AACA,aAAO;AAAA,IACT;AArCE,SAAK,KAAK;AACV,UAAM,eAAe,KAAK,QAAQ,cAAc,KAAK,GAAG,aAAa;AACrE,UAAM,iBAAiB,KAAK,QAAQ,gBAAgB,KAAK,GAAG,eAAe;AAC3E,SAAK,KAAK,KAAK,GAAG,cAAc;AAChC,QAAI,CAAC,gBAAgB,CAAC;AAAgB;AACtC,QAAI,CAAC,KAAK,IAAI;AACZ,UAAI,wCAAwC;AAC5C;AAAA,IACF;AACA,SAAK,GAAG,aAAa,KAAK,IAAI,YAAY;AAC1C,SAAK,GAAG,aAAa,KAAK,IAAI,cAAc;AAC5C,SAAK,GAAG,YAAY,KAAK,EAAE;AAC3B,QAAI,CAAC,KAAK,GAAG,oBAAoB,KAAK,IAAI,KAAK,GAAG,WAAW,GAAG;AAC9D,UAAI,2BAA2B,KAAK,GAAG,kBAAkB,KAAK,EAAE,KAAK,WAAW;AAChF;AAAA,IACF;AACA,SAAK,GAAG,WAAW,KAAK,EAAE;AAC1B,YAAQ,cAAc,aAAa,KAAK,SAAS;AACjD,eAAW,KAAK,KAAK;AAAW,WAAK,UAAU,KAAK,KAAK,GAAG,kBAAkB,KAAK,IAAI,CAAC;AACxF,YAAQ,cAAc,WAAW,KAAK,OAAO;AAC7C,YAAQ,gBAAgB,WAAW,KAAK,OAAO;AAC/C,eAAW,KAAK,KAAK;AAAS,WAAK,QAAQ,KAAK,KAAK,GAAG,mBAAmB,KAAK,IAAI,CAAC;AAAA,EACvF;AAgBF;AAWO,SAAS,gBAAgB;AAC9B,MAAI,YAAY;AAChB,MAAI,gBAAqC;AACzC,MAAI,cAAc;AAClB,MAAI,0BAA0B;AAC9B,MAAI,mBAAoG,CAAC,MAAM,IAAI;AACnH,MAAI,cAAyC,CAAC;AAC9C,MAAI,eAAmC;AACvC,MAAI,iBAAmC;AACvC,QAAM,WAAW,OAAO,KAAK,GAAG;AAChC,QAAM,qBAAqB,CAAE;AAC7B,QAAM,OAAO,EAAE,cAAc,EAAE;AAC/B,QAAM,KAAK,SAAS,WAAW,OAAO;AACtC,MAAI,CAAC,IAAI;AACP,QAAI,kCAAkC;AACtC;AAAA,EACF;AAEA,OAAK,KAAK;AAEV,WAAS,OAAO,OAAO,QAAQ;AAC7B,QAAI,UAAU,SAAS,SAAS,WAAW,SAAS;AAAQ;AAC5D,aAAS,QAAQ;AACjB,aAAS,SAAS;AAClB,QAAI,CAAC,cAAc;AACjB,YAAM,WAAW,IAAI,aAAa,CAAC,IAAI,IAAI,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAChH,qBAAe,GAAG,aAAa;AAC/B,SAAG,WAAW,GAAG,cAAc,YAAY;AAC3C,SAAG,WAAW,GAAG,cAAc,UAAU,GAAG,WAAW;AACvD,SAAG,YAAY,GAAG,gCAAgC,IAAI;AAAA,IACxD;AACA,OAAG,SAAS,GAAG,GAAG,SAAS,OAAO,SAAS,MAAM;AACjD,uBAAmB,CAAC,MAAM,IAAI;AAAA,EAChC;AAEA,WAAS,yBAAyB,OAAO,QAAQ;AAC/C,UAAM,MAAM,GAAG,kBAAkB;AACjC,OAAG,gBAAgB,GAAG,aAAa,GAAG;AACtC,UAAM,eAAe,GAAG,mBAAmB;AAC3C,OAAG,iBAAiB,GAAG,cAAc,YAAY;AACjD,UAAM,UAAU,GAAG,cAAc;AACjC,OAAG,YAAY,GAAG,YAAY,OAAO;AACrC,OAAG,WAAW,GAAG,YAAY,GAAG,GAAG,MAAM,OAAO,QAAQ,GAAG,GAAG,MAAM,GAAG,eAAe,IAAI;AAC1F,OAAG,cAAc,GAAG,YAAY,GAAG,oBAAoB,GAAG,MAAM;AAChE,OAAG,cAAc,GAAG,YAAY,GAAG,oBAAoB,GAAG,MAAM;AAChE,OAAG,cAAc,GAAG,YAAY,GAAG,gBAAgB,GAAG,aAAa;AACnE,OAAG,cAAc,GAAG,YAAY,GAAG,gBAAgB,GAAG,aAAa;AACnE,OAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,SAAS,CAAC;AACvF,OAAG,YAAY,GAAG,YAAY,IAAI;AAClC,OAAG,gBAAgB,GAAG,aAAa,IAAI;AACvC,WAAO,EAAE,KAAK,QAAQ;AAAA,EACxB;AAEA,WAAS,mBAAmBC,QAAuE;AACjG,qBAAiBA,UAAS,iBAAiBA,WAAU,yBAAyB,SAAS,OAAO,SAAS,MAAM;AAC7G,WAAO,iBAAiBA;AAAA,EAC1B;AAEA,WAAS,KAAK,QAAQ,GAAG;AACvB,QAAI,CAAC;AAAgB;AACrB,QAAI,SAA8B;AAClC,QAAI,SAAkC;AACtC,QAAI,QAAQ;AACZ,QAAI,cAAc;AAAG,eAAS;AAAA;AACzB,eAAS,mBAAmB,uBAAuB,EAAE,WAAW;AACrE;AACA,QAAI,eAAe,EAAE,QAAQ,KAAK,eAAe;AAC/C,eAAS;AACT,cAAQ,YAAY,MAAM;AAAA,IAC5B,OAAO;AACL,iCAA2B,0BAA0B,KAAK;AAC1D,eAAS,mBAAmB,uBAAuB,EAAE,OAAO;AAAA,IAC9D;AACA,OAAG,YAAY,GAAG,YAAY,MAAM;AACpC,OAAG,gBAAgB,GAAG,aAAa,MAAM;AACzC,OAAG,UAAU,eAAe,QAAQ,UAAW,QAAQ,KAAK,CAAE;AAC9D,OAAG,WAAW,GAAG,WAAW,GAAG,CAAC;AAAA,EAClC;AAEA,WAAS,cAAc,gBAAkC;AACvD,QAAI,mBAAmB,iBAAiB;AACtC,uBAAiB,mBAAmB;AACpC,SAAG,YAAY,iBAAiB,eAAe,KAAK,SAAS,IAAI;AACjE,aAAO;AAAA,IACT;AACA,qBAAiB,IAAI,UAAU,IAAY,gBAAgB,cAAc;AACzE,QAAI,CAAC,gBAAgB;AACnB,UAAI,qCAAqC;AACzC,aAAO;AAAA,IACT;AACA,UAAM,YAAY,aAAa;AAC/B,UAAM,WAAW,IAAI;AACrB,OAAG,wBAAwB,eAAe,UAAU,MAAM;AAC1D,OAAG,oBAAoB,eAAe,UAAU,QAAQ,GAAG,GAAG,OAAO,OAAO,UAAU,IAAI,SAAS;AACnG,OAAG,wBAAwB,eAAe,UAAU,KAAK;AACzD,OAAG,oBAAoB,eAAe,UAAU,OAAO,GAAG,GAAG,OAAO,OAAO,UAAU,IAAI,SAAS;AAClG,uBAAmB,kBAAkB;AACrC,WAAO;AAAA,EACT;AAEA,QAAM,SAAS;AAAA,IACb,aAAa,CAAC,WAAqB;AACjC,YAAM,IAAI,IAAI,aAAa,MAAM;AACjC,QAAE,MAAM;AACR,QAAE,MAAM;AACR,QAAE,OAAO;AACT,QAAE,OAAO;AACT,YAAM,SAAU,EAAE,QAAQ,KAAK,EAAE,OAAO,KAAK,EAAE,OAAO,KAAK,EAAE,QAAQ,KAAK,EAAE,QAAQ,KAAK,EAAE,QAAQ,KAAK,EAAE,QAAQ,KAAK,EAAE,QAAQ,IACrH,0BACA;AACZ,YAAM,UAAU,cAAc,MAAM;AACpC,UAAI,CAAC;AAAS;AACd,SAAG,WAAW,QAAQ,QAAQ,MAAM,CAAC;AACrC,WAAK;AAAA,IACP;AAAA,IAEA,YAAY,CAAC,eAAuB;AAClC,YAAM,KAAK,cAAc,KAAK;AAC9B,aAAO,YAAY;AAAA,QACjB;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,YAAY,CAAC,WAAmB;AAC9B,YAAM,KAAK,UAAU,KAAK,IAAI,IAAI;AAClC,YAAM,KAAM,IAAI,KAAK;AACrB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,YAAY,MAAM;AAChB,aAAO,WAAW,EAAE;AAAA,IACtB;AAAA,IAEA,UAAU,CAAC,WAAmB;AAC5B,YAAM,KAAK,UAAU,KAAK;AAC1B,YAAM,IAAI,QAAQ,IAAI;AACtB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,UAAU,MAAM;AACd,aAAO,SAAS,EAAE;AAAA,IACpB;AAAA,IAEA,KAAK,CAAC,aAAqB;AACzB,kBAAY,YAAY,KAAK,MAAM,KAAK;AACxC,YAAMC,OAAM,KAAK,IAAI,QAAQ;AAC7B,YAAMC,OAAM,KAAK,IAAI,QAAQ;AAC7B,YAAM,OAAO;AACb,YAAM,OAAO;AACb,YAAM,OAAO;AACb,aAAO,YAAY;AAAA,QACjB,OAAOD,QAAO,IAAI,QAAQC,OAAO,CAAC;AAAA,QAAO,OAAOD,OAAO,CAAC,OAAQC,OAAO,CAAC;AAAA,QAAO,OAAOD,OAAO,CAAC,OAAQC,QAAO,IAAI;AAAA,QAAO;AAAA,QAAG;AAAA,QAC3H,OAAOD,OAAO,CAAC,OAAQC,OAAO;AAAA,QAAQ,OAAOD,QAAO,IAAI,QAAQC,OAAO;AAAA,QAAQ,OAAOD,OAAO,CAAC,OAAQC,OAAO;AAAA,QAAS;AAAA,QAAG;AAAA,QACzH,OAAOD,OAAO,CAAC,OAAQC,OAAO,EAAE,IAAI;AAAA,QAAQ,OAAOD,OAAO,CAAC,OAAQC,OAAO;AAAA,QAAO,OAAOD,QAAO,IAAI,QAAQC,OAAO;AAAA,QAAO;AAAA,QAAG;AAAA,QAC5H;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,qBAAqB,MAAM;AACzB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAW;AAAA,QAAW;AAAA,QAAW;AAAA,QAAG;AAAA,QACpC;AAAA,QAAW;AAAA,QAAW;AAAA,QAAW;AAAA,QAAG;AAAA,QACpC;AAAA,QAAW;AAAA,QAAW;AAAA,QAAW;AAAA,QAAG;AAAA,QACpC;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,OAAO,MAAM;AACX,aAAO,YAAY;AAAA,QACjB;AAAA,QAAO;AAAA,QAAW;AAAA,QAAY;AAAA,QAAG;AAAA,QACjC;AAAA,QAAO;AAAA,QAAW;AAAA,QAAY;AAAA,QAAG;AAAA,QACjC;AAAA,QAAO;AAAA,QAAW;AAAA,QAAY;AAAA,QAAG;AAAA,QACjC;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,SAAS,MAAM;AACb,aAAO,YAAY;AAAA,QACjB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAqB;AAAA,QAAG;AAAA,QACjE;AAAA,QAAuB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAG;AAAA,QACnE;AAAA,QAAqB;AAAA,QAAsB;AAAA,QAAqB;AAAA,QAAG;AAAA,QACnE;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,gBAAgB,MAAM;AACpB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAoB;AAAA,QAAoB;AAAA,QAAsB;AAAA,QAAG;AAAA,QACjE;AAAA,QAAqB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAG;AAAA,QACjE;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAoB;AAAA,QAAG;AAAA,QAChE;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,YAAY,MAAM;AAChB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAsB;AAAA,QAAG;AAAA,QAClE;AAAA,QAAsB;AAAA,QAAoB;AAAA,QAAsB;AAAA,QAAG;AAAA,QACnE;AAAA,QAAsB;AAAA,QAAqB;AAAA,QAAoB;AAAA,QAAG;AAAA,QAClE;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,aAAa,MAAM;AACjB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAsB;AAAA,QAAG;AAAA,QAClE;AAAA,QAAqB;AAAA,QAAoB;AAAA,QAAsB;AAAA,QAAG;AAAA,QAClE;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAmB;AAAA,QAAG;AAAA,QAC/D;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,UAAU,MAAM;AACd,aAAO,YAAY;AAAA,QACjB;AAAA,QAAO;AAAA,QAAQ;AAAA,QAAQ;AAAA,QAAG;AAAA,QAC1B;AAAA,QAAQ;AAAA,QAAO;AAAA,QAAQ;AAAA,QAAG;AAAA,QAC1B;AAAA,QAAQ;AAAA,QAAQ;AAAA,QAAO;AAAA,QAAG;AAAA,QAC1B;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,YAAY,MAAM;AAChB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,aAAa,CAAC,WAAqB;AACjC,YAAM,IAAI,IAAI,aAAa,MAAM;AACjC,YAAM,aAAa,IAAI,SAAS;AAChC,YAAM,aAAa,IAAI,SAAS;AAChC,YAAM,UAAU,cAAsB,WAAW;AACjD,UAAI,CAAC;AAAS;AACd,SAAG,WAAW,QAAQ,QAAQ,MAAM,CAAC;AACrC,SAAG,UAAU,QAAQ,QAAQ,OAAO,YAAY,UAAU;AAC1D,WAAK;AAAA,IACP;AAAA,IAEA,aAAa,MAAM;AAEjB,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B;AAAA,QAAG;AAAA,QAAG;AAAA,QACN;AAAA,QAAG;AAAA,QAAI;AAAA,QACP;AAAA,QAAG;AAAA,QAAG;AAAA,MACR,CAAC;AAAA,IACH;AAAA,IAEA,QAAQ,MAAM;AAEZ,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B;AAAA,QAAI;AAAA,QAAG;AAAA,QACP;AAAA,QAAI;AAAA,QAAG;AAAA,QACP;AAAA,QAAI;AAAA,QAAG;AAAA,MACT,CAAC;AAAA,IACH;AAAA,IAEA,QAAQ,MAAM;AAEZ,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B;AAAA,QAAI;AAAA,QAAI;AAAA,QACR;AAAA,QAAG;AAAA,QAAG;AAAA,QACN;AAAA,QAAG;AAAA,QAAG;AAAA,MACR,CAAC;AAAA,IACH;AAAA,IAEA,SAAS,CAAC,WAAW;AACnB,YAAM,IAAI,UAAU;AAEpB,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B;AAAA,QAAG,KAAK;AAAA,QAAG;AAAA,QACX,KAAK;AAAA,QAAG,IAAI,IAAI;AAAA,QAAG,KAAK;AAAA,QACxB;AAAA,QAAG,KAAK;AAAA,QAAG;AAAA,MACb,CAAC;AAAA,IACH;AAAA,IAEA,QAAQ,CAACC,UAAiB;AACxB,YAAMC,KAAID,SAAQ;AAElB,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B,KAAKC;AAAA,QAAG,KAAKA;AAAA,QAAG;AAAA,QAChB,KAAKA;AAAA,QAAG;AAAA,QAAG,IAAIA;AAAA,QACf;AAAA,QAAG,IAAIA;AAAA,QAAG,IAAIA;AAAA,MAChB,CAAC;AAAA,IACH;AAAA,IAEA,MAAM,CAACD,UAAiB;AACtB,YAAM,YAAaA,QAAO,IAAK,SAAS;AACxC,YAAM,YAAaA,QAAO,IAAK,SAAS;AACxC,YAAM,UAAU,cAAsB,IAAI;AAC1C,UAAI,CAAC;AAAS;AAEd,SAAG,UAAU,QAAQ,QAAQ,OAAO,GAAG,SAAS;AAChD,WAAK,KAAK,YAAY;AAEtB,SAAG,UAAU,QAAQ,QAAQ,OAAO,WAAW,CAAC;AAChD,WAAK;AAAA,IACP;AAAA,IAEA,UAAU,CAACA,UAAiB;AAC1B,YAAM,YAAaA,QAAQ,SAAS;AACpC,YAAM,YAAaA,QAAQ,SAAS;AACpC,YAAM,UAAU,cAAsB,QAAQ;AAC9C,UAAI,CAAC;AAAS;AACd,SAAG,UAAU,QAAQ,QAAQ,SAAS,WAAW,SAAS;AAC1D,WAAK;AAAA,IACP;AAAA,EACF;AAGA,OAAK,MAAM,SAAU,MAAM;AACzB,UAAM,OAAO,MAAM,UAAU,MAAM,KAAK,WAAW,CAAC;AACpD,UAAME,QAAO,OAAO;AACpB,gBAAY,KAAK,EAAE,MAAAA,OAAM,KAAK,CAAC;AAAA,EACjC;AAGA,OAAK,QAAQ,WAAY;AACvB,kBAAc,CAAC;AAAA,EACjB;AAGA,OAAK,MAAM,WAAY;AACrB,WAAO;AAAA,EACT;AAGA,OAAK,QAAQ,SAAUC,QAAO;AAC5B,WAAOA,OAAM,OAAOA,OAAM,MAAM;AAChC,gBAAY;AACZ,QAAI,CAAC;AAAe,sBAAgB,GAAG,cAAc;AACrD,OAAG,YAAY,GAAG,YAAY,aAAa;AAC3C,OAAG,cAAc,GAAG,YAAY,GAAG,gBAAgB,GAAG,aAAa;AACnE,OAAG,cAAc,GAAG,YAAY,GAAG,gBAAgB,GAAG,aAAa;AACnE,OAAG,cAAc,GAAG,YAAY,GAAG,oBAAoB,GAAG,OAAO;AACjE,OAAG,cAAc,GAAG,YAAY,GAAG,oBAAoB,GAAG,OAAO;AACjE,OAAG,WAAW,GAAG,YAAY,GAAG,GAAG,MAAM,GAAG,MAAM,GAAG,eAAeA,MAAK;AACzE,aAASC,KAAI,GAAGA,KAAI,YAAY,QAAQA,MAAK;AAC3C,oBAAeA,OAAM,YAAY,SAAS;AAC1C,YAAM,IAAI,YAAYA;AAEtB,QAAE,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC;AAAA,IACjC;AACA,WAAO;AAAA,EACT;AAGA,OAAK,OAAO,SAAUD,QAAO;AAC3B,SAAK,IAAI,cAAc,CAAC;AACxB,WAAO,KAAK,MAAMA,MAAK;AAAA,EACzB;AACF;;;AClbA,eAAsB,sBAAsB,YAAqC;AAE/E,QAAME,WAAU,WAAW,MAAM,WAAW,IAAO,QAAQ,UAAU,IAAI;AACzE,QAAM,WAAc,MAAMA,UAAS,GAAG,CAAC;AACvC,QAAMC,OAAgB,CAAI,IAAI,SAAS,EAAE,GAAM,IAAI,SAAS,EAAE,GAAM,IAAI,SAAS,EAAE,CAAC;AACpF,QAAMC,OAAgB,CAAI,IAAI,SAAS,EAAE,GAAM,IAAI,SAAS,EAAE,GAAM,IAAI,SAAS,EAAE,CAAC;AACpF,QAAM,SAAS,MAAM,QAAQ,IAAIA,KAAI,IAAI,CAAC,YAAY,QAAQ,KAAK,CAAC,CAAC;AACrE,QAAM,WAAW,OAAO,KAAK,IAAI,OAAO,GAAG,IAAI,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACzE,QAAMC,OAAM,CAAI,IAAI,SAAS,IAAIF,KAAI,EAAE,GAAM,IAAI,SAAS,IAAIA,KAAI,EAAE,GAAM,IAAI,SAAS,IAAIA,KAAI,EAAE,CAAC;AAClG,QAAMG,SAAQ,CAAI,IAAIF,KAAI,IAAID,KAAI,EAAE,GAAM,IAAIC,KAAI,IAAID,KAAI,EAAE,GAAM,IAAIC,KAAI,IAAID,KAAI,EAAE,CAAC;AACrF,QAAM,OAAO,CAAI,IAAI,UAAUG,OAAM,EAAE,GAAM,IAAI,UAAUA,OAAM,EAAE,GAAM,IAAI,UAAUA,OAAM,EAAE,CAAC;AAChG,QAAM,MAAM,CAAI,IAAID,KAAI,IAAI,KAAK,EAAE,GAAM,IAAIA,KAAI,IAAI,KAAK,EAAE,GAAM,IAAIA,KAAI,IAAI,KAAK,EAAE,CAAC;AACtF,QAAME,OAAS,MAAM,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,GAAG,CAAC;AAChD,QAAMC,WAAa,QAAQD,MAAK,CAAC,GAAGL,SAAQ,MAAM,IAAIA,SAAQ,MAAM,IAAI,CAAC,CAAC;AAC1E,EAAG,QAAQ,CAAC,GAAG,UAAU,GAAGC,MAAK,GAAGC,MAAK,GAAGC,MAAK,GAAGC,QAAO,GAAG,MAAM,GAAG,KAAKC,MAAKL,QAAO,CAAC;AACzF,SAAOM;AACT;;;ACZA,IAAM,UAAU;AAEhB,IAAI,WAA6B;AACjC,IAAI,YAA8B;AAClC,IAAI,YAA8B;AAElC,IAAI;AAEJ,IAAM,OAAoG;AAAA,EACxG,UAAU;AAAA,EACV,WAAW;AAAA,EACX,WAAW;AAAA,EACX,aAAa;AACf;AAEO,SAAS,OAAO,OAAe,QAA2B;AAC/D,MAAI;AACJ,MAAIC,KAAI,SAAS;AACf,QAAIA,KAAI,QAAQ;AACd,UAAI,OAAO,oBAAoB;AAAa,cAAM,IAAI,MAAM,mFAAmF;AAC/I,UAAI,IAAI,gBAAgB,OAAO,MAAM;AAAA,IACvC,OAAO;AACL,UAAI,OAAO,aAAa;AAAa,cAAM,IAAI,MAAM,kEAAkE;AACvH,UAAI,SAAS,cAAc,QAAQ;AACnC,QAAE,QAAQ;AACV,QAAE,SAAS;AAAA,IACb;AAAA,EACF,OAAO;AAEL,QAAI,OAAOA,KAAI,WAAW;AAAa,UAAI,IAAIA,KAAI,OAAO,OAAO,MAAM;AAAA,aAC9D,OAAO,WAAW,WAAW;AAAa,UAAI,IAAI,WAAW,OAAO,OAAO,MAAM;AAAA,EAE5F;AAEA,SAAO;AACT;AAGO,SAAS,KAAKC,QAAkB,QAAoB;AACzD,QAAM,eAAe,UAAU,OAAOA,OAAM,OAAOA,OAAM,MAAM;AAC/D,QAAM,MAAM,aAAa,WAAW,IAAI;AACxC,MAAI,UAAUA,QAAO,GAAG,CAAC;AACzB,SAAO;AACT;AAKA,eAAsBC,SAAQD,QAAcE,SAAgBC,aAAqB,MAAoE;AA3DrJ;AA4DE,MAAI,CAACH,QAAO;AAEV,QAAIE,QAAO;AAAO,UAAI,+BAA+B;AACrD,WAAO,EAAE,QAAQ,MAAM,QAAQ,KAAK;AAAA,EACtC;AAEA,MACE,EAAEF,kBAAoB,WACnB,EAAE,OAAO,UAAU,eAAeA,kBAAiB,UACnD,EAAE,OAAOD,KAAI,WAAW,eAAeC,kBAAiBD,KAAI,WAC5D,EAAE,OAAO,WAAW,WAAW,eAAeC,kBAAiB,WAAW,WAC1E,EAAE,OAAO,cAAc,eAAeA,kBAAiB,cACvD,EAAE,OAAO,gBAAgB,eAAeA,kBAAiB,gBACzD,EAAE,OAAO,qBAAqB,eAAeA,kBAAiB,qBAC9D,EAAE,OAAO,qBAAqB,eAAeA,kBAAiB,qBAC9D,EAAE,OAAO,qBAAqB,eAAeA,kBAAiB,qBAC9D,EAAE,OAAO,sBAAsB,eAAeA,kBAAiB,sBAC/D,EAAE,OAAO,oBAAoB,eAAeA,kBAAiB,kBAChE;AACA,UAAM,IAAI,MAAM,qCAAqC;AAAA,EACvD;AACA,MAAIA,kBAAoB,QAAQ;AAC9B,QAAII,UAAwB;AAC5B,QAAKJ,OAAiB;AAAuB,YAAM,IAAI,MAAM,yDAAyD;AACtH,QAAI,CAAEA,OAAiB;AAAO,YAAM,IAAI,MAAM,sDAAsD;AACpG,QAAKA,OAAiB,MAAM,WAAW,GAAG;AACxC,UAAKA,OAAiB,MAAM,OAAO,GAAG;AACpC,QAAAI,UAAY,WAAWJ,QAAO,CAAC;AAAA,MACjC,WAAYA,OAAiB,MAAM,OAAO,GAAG;AAC3C,cAAMK,OAAS,QAAQL,QAAO,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,CAAC;AACpD,QAAAI,UAAY,WAAWC,MAAK,CAAC;AAC7B,QAAG,QAAQA,IAAG;AAAA,MAChB;AAAA,IACF,WAAYL,OAAiB,MAAM,WAAW,GAAG;AAC/C,UAAKA,OAAiB,MAAM,OAAO,GAAG;AACpC,QAAAI,UAAY,MAAMJ,MAAK;AAAA,MACzB,WAAYA,OAAiB,MAAM,OAAO,GAAG;AAC3C,QAAAI,UAAY,QAAQJ,QAAO,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC,CAAC;AAAA,MAC1D;AAAA,IACF;AAEA,QAAII,WAAU,QAAQA,QAAO,MAAM,WAAW,KAAKA,QAAO,MAAM,OAAO,KAAKA,QAAO,MAAM,OAAO;AAAG,YAAM,IAAI,MAAM,iEAAmEJ,OAAiB,MAAO,SAAS,GAAG;AAC1N,QAAKI,QAAQ,UAAU,SAAS;AAC9B,YAAME,QAAU,KAAKF,SAAQ,SAAS;AACtC,MAAG,QAAQA,OAAM;AACjB,MAAAA,UAASE;AAAA,IACX;AACA,WAAO,EAAE,QAAAF,SAAQ,QAASF,QAAO,OAAO,SAAS,YAAY,KAAM;AAAA,EACrE;AAEA,MAAI,OAAOF,OAAM,kBAAkB,eAAgBA,OAA2B,cAAc,GAAG;AAC7F,QAAIE,QAAO;AAAO,UAAI,2BAA2B;AACjD,WAAO,EAAE,QAAQ,MAAM,QAAQ,SAAS;AAAA,EAC1C;AACA,QAAM,gBAAwBF,OAAM,mBAAmBA,OAAM,iBAAiBA,OAAM,YAAaA,OAAM,YAAaA,OAAM,SAAS,KAAK;AACxI,QAAM,iBAAyBA,OAAM,oBAAoBA,OAAM,kBAAkBA,OAAM,aAAcA,OAAM,YAAaA,OAAM,SAAS,KAAK;AAC5I,MAAI,CAAC,iBAAiB,CAAC,gBAAgB;AACrC,QAAIE,QAAO;AAAO,UAAI,mCAAmC;AACzD,WAAO,EAAE,QAAQ,MAAM,QAAQ,SAAS;AAAA,EAC1C;AACA,MAAI,cAAsB;AAC1B,MAAI,eAAuB;AAC3B,MAAI,cAAc,SAAS;AACzB,kBAAc;AACd,mBAAe,KAAK,MAAM,cAAc,iBAAiB,aAAa;AAAA,EACxE;AACA,MAAI,eAAe,SAAS;AAC1B,mBAAe;AACf,kBAAc,KAAK,MAAM,eAAe,gBAAgB,cAAc;AAAA,EACxE;AAGA,SAAK,KAAAA,QAAO,WAAP,mBAAe,UAAS,KAAK;AAAG,kBAAcA,QAAO,OAAO;AAAA,cACvD,KAAAA,QAAO,WAAP,mBAAe,WAAU,KAAK;AAAG,kBAAc,kBAAkBA,QAAO,OAAO,UAAU,KAAK;AACxG,OAAKA,QAAO,OAAO,UAAU,KAAK;AAAG,mBAAeA,QAAO,OAAO;AAAA,YACxDA,QAAO,OAAO,SAAS,KAAK;AAAG,mBAAe,mBAAmBA,QAAO,OAAO,SAAS,KAAK;AACvG,MAAI,CAAC,eAAe,CAAC;AAAc,UAAM,IAAI,MAAM,yCAAyC;AAC5F,MAAI,CAAC,YAAa,SAAS,UAAU,eAAiB,SAAS,WAAW;AAAe,eAAW,OAAO,aAAa,YAAY;AAGpI,QAAM,QAAQ,SAAS,WAAW,IAAI;AACtC,MAAK,OAAO,cAAc,eAAiBF,kBAAiB,WAAY;AACtE,UAAM,aAAaA,QAAO,GAAG,CAAC;AAAA,EAChC,OAAO;AACL,QAAIE,QAAO,OAAO,QAAQ,OAAO,MAAM,cAAc,aAAa;AAChE,YAAM,UAAU,eAAe,CAAC;AAChC,YAAM,MAAM,IAAI,CAAC;AACjB,YAAM,UAAUF,QAAoB,GAAG,GAAG,eAAe,gBAAgB,GAAG,GAAG,SAAS,OAAO,SAAS,MAAM;AAC9G,YAAM,aAAa,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,IACrC,OAAO;AACL,YAAM,UAAUA,QAAoB,GAAG,GAAG,eAAe,gBAAgB,GAAG,GAAG,SAAS,OAAO,SAAS,MAAM;AAAA,IAChH;AAAA,EACF;AAEA,MAAI,CAAC,aAAc,SAAS,UAAU,UAAU,SAAW,SAAS,WAAW,UAAU;AAAS,gBAAY,OAAO,SAAS,OAAO,SAAS,MAAM;AAGpJ,MAAIE,QAAO,OAAO,WAAWH,KAAI,MAAM,WAAW;AAChD,QAAI,CAAC;AAAI,WAAKA,KAAI,UAAU,IAAY,cAAc,IAAI;AAC1D,IAAAA,KAAI,SAAS,CAAC,CAAC;AACf,QAAI,EAAC,yBAAI,MAAK;AACZ,UAAIG,QAAO;AAAO,YAAI,gDAAgD;AACtE,MAAAH,KAAI,MAAM,YAAY;AACtB,MAAAG,QAAO,OAAO,UAAU;AACxB,WAAK,UAAU,SAAS;AAAA,IAE1B,OAAO;AACL,SAAG,MAAM;AACT,UAAIA,QAAO,OAAO,eAAe;AAAG,WAAG,IAAI,cAAcA,QAAO,OAAO,UAAU;AACjF,UAAIA,QAAO,OAAO,aAAa;AAAG,WAAG,IAAI,YAAYA,QAAO,OAAO,QAAQ;AAC3E,UAAIA,QAAO,OAAO,cAAc;AAAG,WAAG,IAAI,WAAWA,QAAO,OAAO,SAAS;AAC5E,UAAIA,QAAO,OAAO,SAAS;AAAG,WAAG,IAAI,QAAQA,QAAO,OAAO,IAAI;AAC/D,UAAIA,QAAO,OAAO,eAAe;AAAG,WAAG,IAAI,cAAcA,QAAO,OAAO,UAAU;AACjF,UAAIA,QAAO,OAAO,QAAQ;AAAG,WAAG,IAAI,OAAOA,QAAO,OAAO,GAAG;AAC5D,UAAIA,QAAO,OAAO;AAAU,WAAG,IAAI,UAAU;AAC7C,UAAIA,QAAO,OAAO;AAAO,WAAG,IAAI,OAAO;AACvC,UAAIA,QAAO,OAAO;AAAS,WAAG,IAAI,SAAS;AAC3C,UAAIA,QAAO,OAAO;AAAO,WAAG,IAAI,OAAO;AACvC,UAAIA,QAAO,OAAO;AAAY,WAAG,IAAI,YAAY;AACjD,UAAIA,QAAO,OAAO;AAAa,WAAG,IAAI,aAAa;AACnD,UAAIA,QAAO,OAAO;AAAU,WAAG,IAAI,UAAU;AAC7C,UAAIA,QAAO,OAAO,aAAa;AAAG,WAAG,IAAI,YAAYA,QAAO,OAAO,QAAQ;AAC3E,UAAI,GAAG,IAAI,IAAI;AAAG,oBAAY,GAAG,MAAM,QAAQ;AAAA;AAC1C,oBAAY,GAAG,KAAK,QAAQ;AAAA,IACnC;AAAA,EACF,OAAO;AACL,SAAK,UAAU,SAAS;AACxB,QAAI;AAAI,WAAK;AACb,IAAAH,KAAI,SAAS,CAAC,CAAC;AAAA,EACjB;AAEA,MAAI,CAACI;AAAW,WAAO,EAAE,QAAQ,MAAM,QAAQ,UAAU;AACzD,MAAI,CAAC;AAAW,UAAM,IAAI,MAAM,oCAAoC;AAGpE,MAAI;AACJ,MAAI,QAAQ;AACZ,MAAK,OAAO,cAAc,eAAeH,kBAAiB,aAAgBA,OAAoB,QAASA,OAAoB,SAAUA,OAAoB,QAAS;AAChK,QAAID,KAAI,WAAc,iBAAS;AAC7B,eAAY,kBAAa,gBAAQ,WAAWC,MAAK,IAAI;AAAA,IACvD,OAAO;AACL,cAASA,OAAoB,KAAK,SAAUA,OAAoB,SAAUA,OAAoB;AAE9F,YAAM,MAAM,IAAI,WAAYA,OAAoB,KAAK,MAAM;AAC3D,eAAY,OAAO,KAAK,CAAEA,OAAoB,QAASA,OAAoB,OAAO,KAAK,GAAG,OAAO;AAAA,IACnG;AAAA,EACF,OAAO;AACL,QAAI,CAAC,aAAc,UAAU,UAAU,UAAU,SAAW,UAAU,WAAW,UAAU;AAAS,kBAAY,OAAO,UAAU,OAAO,UAAU,MAAM;AACxJ,QAAO,mBAAWD,KAAI,SAAS;AAC7B,UAAIG,QAAO,YAAY,WAAWA,QAAO,YAAY,aAAaA,QAAO,YAAY,UAAU;AAC7F,iBAAY,gBAAQ,WAAW,SAAS;AAAA,MAC1C,OAAO;AACL,oBAAY,KAAK,SAAS;AAC1B,iBAAY,gBAAQ,WAAW,SAAS;AAAA,MAC1C;AAAA,IACF,OAAO;AACL,YAAM,aAAa,KAAK,SAAS;AACjC,YAAM,UAAU,WAAW,WAAW,IAAI;AAC1C,YAAM,WAAW,QAAQ,aAAa,GAAG,GAAG,aAAa,YAAY;AACrE,cAAQ,SAAS,KAAK,SAAS,cAAc;AAC7C,YAAM,MAAM,IAAI,WAAW,SAAS,KAAK,MAAM;AAC/C,eAAY,OAAO,KAAK,CAAC,aAAa,cAAc,KAAK,CAAC;AAAA,IAC5D;AAAA,EACF;AACA,MAAI,UAAU,GAAG;AACf,UAAMG,OAAS,QAAQ,QAAQ,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,CAAC;AACrD,IAAG,QAAQ,MAAM;AACjB,aAASA;AAAA,EACX;AACA,MAAI,CAAC;AAAQ,UAAM,IAAI,MAAM,mCAAmC;AAChE,QAAM,SAAoB,KAAK,QAAQ,SAAS;AAChD,QAAMD,UAAiBF,QAAO,OAAO,eAAe,MAAc,sBAAsB,MAAM,IAAO,WAAW,QAAQ,CAAC;AACzH,EAAG,QAAQ,CAAC,QAAQ,MAAM,CAAC;AAC3B,SAAO,EAAE,QAAAE,SAAQ,QAASF,QAAO,OAAO,SAAS,YAAY,KAAM;AACrE;AAgCA,eAAsB,KAAKA,SAAyBF,QAAe;AACjE,MAAI,YAAY;AAChB,MAAIE,QAAO,qBAAqB,KAAK,CAACF,OAAM,SAASA,OAAM,MAAM,WAAW,KAAKA,OAAM,MAAM,KAAK,QAAQA,OAAM,MAAM,KAAK;AAAM,WAAO;AAcxI,MAAI,CAAC,KAAK,aAAa;AACrB,SAAK,cAAiB,MAAMA,MAAK;AAAA,EACnC,WAAW,KAAK,YAAY,MAAM,OAAOA,OAAM,MAAM,MAAM,KAAK,YAAY,MAAM,OAAOA,OAAM,MAAM,IAAI;AACvG,IAAG,QAAQ,KAAK,WAAW;AAC3B,SAAK,cAAiB,MAAMA,MAAK;AAAA,EACnC,OAAO;AACL,UAAMO,KAA4B,CAAC;AACnC,IAAAA,GAAE,OAAU,IAAIP,QAAO,KAAK,WAAW;AACvC,IAAAO,GAAE,UAAa,IAAIA,GAAE,MAAMA,GAAE,IAAI;AACjC,IAAAA,GAAE,MAAS,KAAIA,GAAE,OAAO;AACxB,UAAM,UAAU,MAAMA,GAAE,IAAI,KAAK;AACjC,UAAM,eAAe,QAAQ,MAAMP,OAAM,MAAM,MAAM,MAAMA,OAAM,MAAM,MAAM,KAAK,MAAM;AACxF,IAAG,QAAQ,CAAC,KAAK,aAAaO,GAAE,MAAMA,GAAE,SAASA,GAAE,GAAG,CAAC;AACvD,SAAK,cAAiB,MAAMP,MAAK;AACjC,gBAAY,iBAAiBE,QAAO,oBAAoB;AAAA,EAC1D;AACA,SAAO;AACT;AAEA,eAAsB,QAAQA,SAAyB,QAAgB,QAAiC;AACtG,QAAMK,KAA4B,CAAC;AACnC,MAAI,CAAC,UAAU,CAAC,UAAU,OAAO,MAAM,WAAW,KAAK,OAAO,MAAM,WAAW,OAAO,MAAM,QAAQ;AAClG,QAAI,CAACL,QAAO;AAAO,UAAI,uDAAuD,OAAO,OAAO,OAAO,KAAK;AACxG,WAAO;AAAA,EACT;AACA,MAAI,OAAO,MAAM,OAAO,KAAK,OAAO,MAAM,OAAO,KAAK,OAAO,MAAM,OAAO,KAAK,OAAO,MAAM,OAAO,GAAG;AACpG,QAAI,CAACA,QAAO;AAAO,UAAI,yDAAyD,OAAO,OAAO,OAAO,KAAK;AAC1G,WAAO;AAAA,EACT;AACA,EAAAK,GAAE,SAAY,MAAM,MAAM;AAC1B,EAAAA,GAAE,SAAU,OAAO,MAAM,OAAO,OAAO,MAAM,MAAM,OAAO,MAAM,OAAO,OAAO,MAAM,KAAS,MAAM,eAAe,QAAQ,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC,IAAO,MAAM,MAAM;AAC/K,EAAAA,GAAE,OAAU,IAAIA,GAAE,QAAQA,GAAE,MAAM;AAClC,EAAAA,GAAE,UAAa,IAAIA,GAAE,MAAMA,GAAE,IAAI;AACjC,EAAAA,GAAE,MAAS,KAAIA,GAAE,OAAO;AACxB,QAAM,UAAU,MAAMA,GAAE,IAAI,KAAK;AACjC,QAAM,eAAe,QAAQ,MAAM,OAAO,MAAM,MAAM,MAAM,OAAO,MAAM,MAAM,KAAK,MAAM;AAC1F,EAAG,QAAQ,CAACA,GAAE,QAAQA,GAAE,QAAQA,GAAE,MAAMA,GAAE,SAASA,GAAE,GAAG,CAAC;AACzD,SAAO;AACT;;;AC5TO,IAAM,MAAN,MAAU;AAAA,EAoFf,cAAc;AAlFd;AAEA;AAEA;AAEA,oCAAmB;AAEnB,iCAAgB;AAEhB,oCAAqB,CAAC;AAEtB;AAEA;AAEA;AAIA;AAEA,mCAAmB;AAEnB,sCAGI;AAAA,MACA,SAAS;AAAA,MACT,KAAK;AAAA,IACP;AAEF,gCAKI;AAAA,MACA,WAAW;AAAA,MACX,SAAS;AAAA,MACT,MAAM;AAAA,MACN,aAAa;AAAA,IACf;AAEF,iCAKI;AAAA,MACA,WAAW;AAAA,MACX,SAAS;AAAA,MACT,SAAS;AAAA,MACT,UAAU;AAAA,IACZ;AAEF,kCAII;AAAA,MACA,WAAW;AAAA,MACX,SAAS;AAAA,MACT,SAAS;AAAA,IACX;AAEF,+BAGI;AAAA,MACA,OAAO;AAAA,MACP,OAAO,CAAC;AAAA,IACV;AAEF,mCAAoB,CAAC;AAErB;AAEA;AAEA;AAGE,SAAK,UAAU,OAAO,cAAc;AACpC,SAAK,OAAQ,OAAO,YAAY,eAAiB,OAAO,QAAQ,aAAa,eAAiB,OAAO,QAAQ,SAAS,SAAS;AAC/H,SAAK,OAAO,EAAE,SAAY,EAAQ,aAAa;AAC/C,SAAK,YAAY,OAAO,oBAAoB;AAC5C,SAAK,UAAU;AAGf,SAAK,SAAS,KAAK,WAAW,KAAK,YAAa,OAAO,sBAAsB,cAAe;AAC5F,QAAI,OAAO,cAAc,aAAa;AACpC,YAAM,MAAM,UAAU,UAAU,MAAM,eAAe;AACrD,UAAI,2BAAM,IAAI;AACZ,cAAM,gBAAgB,IAAI,GAAG,MAAM,eAAe;AAClD,aAAK,YAAY,+CAAgB,MAAM,cAAc,GAAG,QAAQ,UAAU,EAAE,IAAI;AAChF,aAAK,QAAQ,UAAU,UAAU,QAAQ,IAAI,IAAI,EAAE;AACnD,YAAI,KAAK,SAAS;AAAI,eAAK,QAAQ,KAAK,MAAM,QAAQ,IAAI,IAAI,EAAE;AAChE,aAAK,QAAQ,KAAK,MAAM,QAAQ,OAAO,GAAG;AAAA,MAU5C;AAAA,IACF,WAAW,OAAO,YAAY,aAAa;AACzC,WAAK,WAAW,GAAG,QAAQ,YAAY,QAAQ;AAC/C,WAAK,QAAQ,UAAU,QAAQ;AAAA,IACjC;AAAA,EACF;AAAA,EAGA,MAAM,gBAAgB;AAEpB,SAAK,WAAW,OAAO,KAAQ,OAAO,EAAE,eAAe;AACvD,SAAK,aAAa;AAAA,MAChB,SAAa,QAAQ,EAAE,UAAa,QAAQ,EAAE,QAAQ,aAAa;AAAA,MACnE,KAAS,QAAQ,EAAE,UAAa,QAAQ,EAAE,QAAQ,iBAAiB,IAAI;AAAA,IACzE;AACA,SAAK,KAAK,YAAY,OAAO,gBAAgB;AAC7C,SAAK,KAAK,UAAU,KAAK,SAAS,SAAS,MAAM;AACjD,QAAI,KAAK,KAAK,aAAa,KAAK,KAAK,WAAc,WAAW,MAAM,QAAQ;AAC1E,WAAK,KAAK,OAAU,IAAI,EAAE,IAAI,uBAAuB;AACrD,WAAK,KAAK,cAAiB,IAAI,EAAE,IAAI,8BAA8B;AAAA,IACrE;AACA,UAAM,IAAU,OAAO,KAAK,GAAG;AAC/B,UAAM,MAAM,IAAI,EAAE,WAAW,QAAQ,IAAI;AAEzC,SAAK,MAAM,YAAY,OAAO,QAAQ;AACtC,SAAK,MAAM,UAAU,KAAK,SAAS,SAAS,OAAO;AACnD,QAAI,KAAK,MAAM,aAAa,KAAK,MAAM,YAAe,WAAW,MAAM,WAAc,WAAW,MAAM,YAAY;AAChH,YAAM,KAAQ,QAAQ,EAAE,UAAU,cAAc,MAAS,QAAQ,EAAE,gBAAgB,EAAE,KAAK;AAC1F,UAAI,IAAI;AACN,aAAK,MAAM,UAAU,GAAG,aAAa,GAAG,OAAO;AAC/C,aAAK,MAAM,WAAW,GAAG,aAAa,GAAG,QAAQ;AAAA,MACnD;AAAA,IACF;AACA,SAAK,OAAO,YAAY,KAAK,WAAW,OAAO,UAAU,QAAQ;AACjE,SAAK,OAAO,UAAU,KAAK,SAAS,SAAS,QAAQ;AACrD,QAAI;AACF,UAAI,KAAK,OAAO,WAAW;AACzB,cAAM,UAAU,MAAM,UAAU,IAAI,eAAe;AACnD,aAAK,OAAO,UAAU,UAAU,QAAQ,OAAO;AAAA,MACjD;AAAA,IACF,SAAQC,IAAN;AACA,WAAK,OAAO,YAAY;AAAA,IAC1B;AACA,QAAI;AACF,WAAK,UAAa,qBAAwB,WAAW,CAAC,EAAE,IAAI,CAAC,WAAY,OAAO,WAAsB,YAAY,CAAC;AAAA,IACrH,SAAQA,IAAN;AAAA,IAAa;AAAA,EACjB;AAAA,EAGA,YAAY;AACV,UAAM,MAAM,EAAE,OAAO,IAAI,OAAO,CAAC,EAAE;AACnC,QAAI,KAAK,QAAQ,KAAK,SAAS,WAAW,OAAO,GAAG;AAAA,IAWpD;AACA,QAAI,CAAC,KAAK;AAAK,aAAO,eAAe,MAAM,OAAO,EAAE,OAAO,IAAI,CAAC;AAAA;AAC3D,WAAK,MAAM;AAAA,EAClB;AACF;AAEO,IAAMC,OAAM,IAAI,IAAI;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ACtL3B,IAAAC,kBAAA;AAAA,SAAAA,iBAAA;AAAA;AAAA;AAAA,cAAAC;AAAA,EAAA;AAAA,kBAAAC;AAAA,EAAA;AAAA;;;ACeA,IAAIC;AACJ,IAAMC,QAAmB,CAAC;AAC1B,IAAM,YAAY,CAAC,SAAS,SAAS,SAAS,UAAU,OAAO;AAC/D,IAAM,aAAa,CAAC,IAAI,IAAI,IAAI,MAAM,MAAM,MAAM,EAAE;AACpD,IAAI,YAAY;AAChB,IAAI,WAAW;AACf,IAAI,UAAU,OAAO;AAErB,eAAsB,KAAKC,SAAgB;AAvB3C;AAwBE,MAAIC,KAAI;AAAS,IAAAH,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAE,QAAO,KAAK,SAAZ,mBAAkB,SAAS;AAAA,WACtDA,QAAO;AAAO,QAAI,iBAAiBF,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsB,QAAQI,QAAeF,SAAgB,KAAaG,QAAkC;AA9B5G;AA+BE,MAAI,CAACL;AAAO,WAAO,EAAE,KAAK,GAAG,QAAQ,WAAW,aAAa,GAAG,MAAM,CAAC,EAAE;AACzE,QAAM,YAAY,aAAW,KAAAE,QAAO,KAAK,SAAZ,mBAAkB,eAAc;AAC7D,QAAM,cAAY,KAAAA,QAAO,KAAK,SAAZ,mBAAkB,aAAY,KAAM,IAAI,IAAI;AAC9D,MAAIA,QAAO,eAAe,YAAY,aAAc,cAAcG,UAAUJ,MAAK,MAAM;AACrF;AACA,WAAOA,MAAK;AAAA,EACd;AACA,YAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AAvCxC,QAAAK,KAAAC;AAwCI,QAAI,EAACP,UAAA,gBAAAA,OAAO,OAAO,GAAG;AAAO;AAC7B,UAAMQ,KAA4B,CAAC;AAEnC,UAAM,MAAM,CAAC,CAAC,GAAK,KAAM,KAAM,GAAI,CAAC;AACpC,IAAAA,GAAE,SAAY,MAAM,cAAcJ,QAAO,KAAK,CAAC,CAAC,GAAG,CAACJ,OAAM,OAAO,GAAG,MAAM,IAAIA,OAAM,OAAO,GAAG,MAAM,EAAE,CAAC;AACvG,UAAM,MAAgB,EAAE,KAAK,GAAG,QAAQ,WAAW,aAAa,GAAG,MAAM,CAAC,EAAE;AAC5E,SAAIM,MAAAJ,QAAO,KAAK,SAAZ,gBAAAI,IAAkB;AAAS,OAACE,GAAE,KAAKA,GAAE,QAAQA,GAAE,IAAI,IAAIR,OAAM,QAAQQ,GAAE,QAAQ,CAAC,cAAc,iBAAiB,aAAa,CAAC;AACjI,UAAMC,UAAS,MAAMD,GAAE,OAAO,KAAK;AACnC,QAAI,SAASC,QAAO,KAAKA,QAAO,KAAK,SAAS;AAC9C,QAAI,cAAc,KAAK,MAAM,OAAOA,QAAO,KAAKA,QAAO,KAAKA,QAAO,KAAKA,QAAO,GAAG,IAAI;AACtF,UAAM,OAAO,MAAMD,GAAE,KAAK,KAAK;AAC/B,aAASE,KAAI,GAAGA,KAAI,KAAK,QAAQA,MAAK;AACpC,UAAI,KAAKA,SAAMH,MAAAL,QAAO,KAAK,SAAZ,gBAAAK,IAAkB,kBAAiB;AAAM,YAAI,KAAK,KAAK,EAAE,OAAO,KAAK,MAAM,MAAM,KAAKG,GAAE,IAAI,KAAK,MAAM,UAAUA,IAAW,CAAC;AAAA,IAC9I;AACA,QAAI,KAAK,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAEzC,UAAM,kBAAkB,MAAM,KAAK,MAAMF,GAAE,IAAI,KAAK,CAAC;AACrD,UAAM,YAAY,gBAAgB,IAAI,CAAC,GAAGE,OAAM,CAAC,WAAWA,KAAI,CAAC,CAAC,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,KAAK,EAAE,EAAE;AAC9F,QAAIC,OAAM,UAAU,GAAG;AACvB,aAASD,KAAI,GAAGA,KAAI,UAAU,QAAQA;AAAK,MAAAC,QAAO,UAAUD,IAAG,MAAM,UAAUA,IAAG,KAAKC;AACvF,QAAI,MAAM,KAAK,MAAM,KAAKA,IAAG,IAAI;AACjC,WAAO,KAAKH,EAAC,EAAE,QAAQ,CAACI,YAAc,QAAQJ,GAAEI,QAAO,CAAC;AACxD,IAAAX,MAAK,OAAO;AACZ,gBAAYI;AACZ,eAAW,IAAI;AACf,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;AChEO,IAAM,YAAwD;AAAA,EACnE,OAAO;AAAA,EACP,KAAK;AAAA,EACL,KAAK;AAAA,EACL,MAAM;AAAA,EACN,OAAO;AAAA,EACP,KAAK,CAAC,QAAQ,OAAQ,KAAM;AAC9B;AAEO,SAASQ,QAAO;AACrB,YAAU,QAAW,OAAO,KAAK,SAAS;AAC1C,YAAU,MAAS,OAAO,GAAG,SAAS;AACtC,YAAU,MAAS,OAAO,GAAG,SAAS;AACtC,YAAU,OAAU,OAAO,KAAK,SAAS;AACzC,YAAU,QAAW,OAAO,OAAO,SAAS;AAC5C,YAAU,MAAS,SAAS,CAAC,QAAQ,OAAQ,KAAM,GAAG,SAAS;AACjE;;;ACLA,IAAIC;AACJ,IAAMC,QAA0B,CAAC;AACjC,IAAIC,aAAY;AAChB,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAgB;AACzC,MAAIC,KAAI;AAAS,IAAAP,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,UAAUM,QAAO,KAAK,UAAU,YAAY;AAAA,WAC7DA,QAAO;AAAO,QAAI,iBAAiBN,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,SAAQC,QAAeH,SAAgB,KAAaI,QAAyC;AA3BnH;AA4BE,MAAI,CAACV;AAAO,WAAO,EAAE,KAAK,EAAE;AAC5B,QAAM,YAAYI,cAAW,KAAAE,QAAO,KAAK,cAAZ,mBAAuB,eAAc;AAClE,QAAM,cAAY,KAAAA,QAAO,KAAK,cAAZ,mBAAuB,aAAY,KAAM,IAAI,IAAIH;AACnE,MAAIG,QAAO,eAAe,aAAa,YAAaJ,eAAcQ,YAAU,KAAAT,MAAK,SAAL,mBAAW,UAAQ,KAAAA,MAAK,SAAL,mBAAW,OAAM,GAAI;AAClH,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,EAAAG,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AApCxC,QAAAO;AAqCI,QAAI,EAACX,UAAA,gBAAAA,OAAO,WAAU,CAACA,OAAM,OAAO,MAAM,CAACA,OAAM,OAAO,GAAG;AAAO;AAClE,UAAMY,KAA4B,CAAC;AACnC,IAAAA,GAAE,SAAY,MAAM,eAAeH,QAAO,CAACT,OAAM,OAAO,GAAG,MAAM,IAAIA,OAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AACrG,IAAAY,GAAE,UAAa,IAAIA,GAAE,QAAQ,UAAU,KAAK;AAC5C,UAAM,MAAM,EAAE,KAAK,EAAE;AACrB,SAAID,MAAAL,QAAO,KAAK,cAAZ,gBAAAK,IAAuB;AAAS,MAAAC,GAAE,MAAMZ,OAAM,QAAQY,GAAE,OAAO;AACnE,QAAIA,GAAE,KAAK;AACT,YAAM,OAAO,MAAMA,GAAE,IAAI,KAAK;AAC9B,UAAI,MAAM,KAAK,MAAM,KAAK,KAAK,EAAE,IAAI;AAAA,IACvC;AACA,WAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,IAAAZ,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,IAAAP,YAAW,IAAI;AACf,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;ACtCA,IAAIW;AACJ,IAAMC,QAAkD,CAAC;AACzD,IAAIC,aAAY;AAChB,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAGrB,IAAM,MAAM,CAAC,QAAQ,OAAQ,KAAM;AAEnC,eAAsBC,MAAKC,SAAgB;AAxB3C;AAyBE,MAAIC,KAAI;AAAS,IAAAP,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,cAAZ,mBAAuB,eAAe;AAAA,WACjEA,QAAO;AAAO,QAAI,iBAAiBN,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,SAAQC,QAAeH,SAAgB,KAAKI,QAAyD;AA/B3H;AAgCE,MAAI,CAACV;AAAO,WAAO,EAAE,QAAQ,WAAW,aAAa,EAAE;AACvD,QAAM,YAAYI,cAAW,KAAAE,QAAO,KAAK,cAAZ,mBAAuB,eAAc;AAClE,QAAM,cAAY,KAAAA,QAAO,KAAK,cAAZ,mBAAuB,aAAY,KAAM,IAAI,IAAIH;AACnE,MAAIG,QAAO,eAAe,aAAa,YAAaJ,eAAcQ,YAAU,KAAAT,MAAK,SAAL,mBAAW,aAAW,KAAAA,MAAK,SAAL,mBAAW,eAAc,GAAI;AAC7H,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,EAAAG,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AAxCxC,QAAAO;AAyCI,QAAI,EAACX,UAAA,gBAAAA,OAAO,OAAO,GAAG;AAAO;AAC7B,UAAMY,KAA4B,CAAC;AACnC,IAAAA,GAAE,SAAY,MAAM,eAAeH,QAAO,CAACT,OAAM,OAAO,GAAG,MAAM,IAAIA,OAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AACrG,IAAAY,GAAE,UAAa,KAAK,MAAM;AACxB,YAAM,CAAC,KAAK,OAAO,IAAI,IAAO,MAAMA,GAAE,QAAQ,GAAG,CAAC;AAClD,YAAM,UAAa,IAAI,KAAK,IAAI,EAAE;AAClC,YAAM,YAAe,IAAI,OAAO,IAAI,EAAE;AACtC,YAAM,WAAc,IAAI,MAAM,IAAI,EAAE;AACpC,YAAM,YAAe,KAAK,CAAC,SAAS,WAAW,QAAQ,CAAC;AACxD,YAAM,YAAe,IAAO,IAAI,WAAW,UAAU,IAAI,GAAG,CAAC;AAC7D,aAAO;AAAA,IACT,CAAC;AACD,UAAM,MAA+C,EAAE,QAAQ,WAAW,aAAa,EAAE;AACzF,SAAID,MAAAL,QAAO,KAAK,cAAZ,gBAAAK,IAAuB;AAAS,MAAAC,GAAE,SAASZ,OAAM,QAAQY,GAAE,OAAO;AACtE,UAAM,OAAO,MAAMA,GAAE,OAAO,KAAK;AACjC,QAAI,SAAS,KAAK,KAAK,KAAK,KAAK,WAAW;AAC5C,QAAI,cAAc,KAAK,KAAK,KAAK,KAAM,KAAK,MAAM,MAAM,KAAK,EAAE,IAAI,MAAQ,KAAK,MAAM,MAAM,KAAK,EAAE,IAAI;AACvG,WAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,IAAAZ,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,IAAAP,YAAW,IAAI;AACf,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;ACrDA,IAAIW;AACJ,IAAM,SAAmB,CAAC;AAC1B,IAAIC,WAAU,OAAO;AACrB,IAAIC,aAAY;AAChB,IAAIC,YAAW;AAEf,eAAsBC,MAAKC,SAAqC;AAjBhE;AAkBE,MAAIC,KAAI;AAAS,IAAAN,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAK,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAAA,WAC3DA,QAAO;AAAO,QAAI,iBAAiBL,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBO,SAAQC,QAAeH,SAAgB,KAAaI,QAAgC;AAxB1G;AAyBE,MAAI,CAACT,UAAS,EAACA,UAAA,gBAAAA,OAAQ;AAAa,WAAO;AAC3C,QAAM,cAAY,KAAAK,QAAO,KAAK,cAAZ,mBAAuB,aAAY,KAAM,IAAI,IAAIF;AACnE,QAAM,YAAYF,cAAW,KAAAI,QAAO,KAAK,cAAZ,mBAAuB,eAAc;AAClE,MAAIA,QAAO,eAAe,YAAY,aAAcH,eAAcO,UAAU,OAAO,MAAM;AACvF,IAAAR;AACA,WAAO,OAAO;AAAA,EAChB;AACA,EAAAA,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAM,SAAY,MAAM,eAAeO,QAAO,EAACR,UAAA,gBAAAA,OAAO,OAAO,GAAG,SAAQA,OAAM,OAAO,GAAG,MAAM,KAAK,IAAGA,UAAA,gBAAAA,OAAO,OAAO,GAAG,SAAQA,OAAM,OAAO,GAAG,MAAM,KAAK,CAAC,GAAG,KAAK;AACnK,UAAM,MAAMA,UAAA,gBAAAA,OAAO,QAAQ;AAC3B,UAAM,OAAO,MAAM,IAAI,KAAK,GAAG;AAC/B,WAAO,OAAO,KAAK,MAAM,MAAM,GAAG,IAAI;AACtC,IAAAE,aAAYO;AACZ,IAAAN,YAAW,IAAI;AACf,IAAG,QAAQ,CAAC,QAAQ,GAAG,CAAC;AACxB,YAAQ,OAAO,IAAI;AAAA,EACrB,CAAC;AACH;;;ACtCO,IAAM,kBAA4C;AAAA,EACvD,YAAY;AAAA,IACV;AAAA,IAAI;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IACtD;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IACvD;AAAA,IAAK;AAAA,IAAI;AAAA,IAAK;AAAA,IAAI;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAI;AAAA,IAAI;AAAA,IAAK;AAAA,IAAI;AAAA,EACpD;AAAA,EAKA,gBAAgB,CAAC,KAAK,IAAI,IAAI,IAAI,GAAG,KAAK,KAAK,KAAK,GAAG;AAAA,EACvD,gBAAgB,CAAC,IAAI,KAAK,IAAI,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAClE,gBAAgB,CAAC,KAAK,IAAI,IAAI,IAAI,IAAI,KAAK,KAAK,KAAK,GAAG;AAAA,EACxD,gBAAgB,CAAC,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACjE,oBAAoB,CAAC,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACrE,oBAAoB,CAAC,KAAK,IAAI,IAAI,IAAI,IAAI,KAAK,KAAK,KAAK,GAAG;AAAA,EAC5D,oBAAoB,CAAC,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACrE,oBAAoB,CAAC,KAAK,IAAI,IAAI,IAAI,IAAI,KAAK,KAAK,KAAK,GAAG;AAAA,EAC5D,gBAAgB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAClD,gBAAgB,CAAC,IAAI,GAAG,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACzD,gBAAgB,CAAC,KAAK,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG;AAAA,EAC7C,gBAAgB,CAAC,KAAK,IAAI,KAAK,IAAI,IAAI,IAAI,IAAI,KAAK,GAAG;AAAA,EACvD,gBAAgB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAClD,gBAAgB,CAAC,KAAK,IAAI,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,gBAAgB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC5D,mBAAmB,CAAC,KAAK,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,GAAG;AAAA,EACtD,mBAAmB,CAAC,IAAI,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC3C,cAAc,CAAC,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACtC,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACjD,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACjD,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACjD,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,kBAAkB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACzD,kBAAkB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC/C,aAAa,CAAC,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACrC,mBAAmB,CAAC,GAAG;AAAA,EACvB,SAAS,CAAC,CAAC;AAAA,EACX,YAAY,CAAC,CAAC;AAAA,EACd,iBAAiB,CAAC,EAAE;AAAA,EACpB,gBAAgB,CAAC,GAAG;AAAA,EACpB,YAAY,CAAC,GAAG;AAAA,EAChB,WAAW,CAAC,GAAG;AACjB;AAEO,IAAM,gBAAmD;AAAA,EAC9D,OAAO;AAAA,EACP,OAAO;AAAA,EACP,cAAc,CAAC,IAAI,gBAAgB,kBAAkB,EAAE;AACzD;AAEO,IAAM,qBAAwD;AAAA,EACnE,SAAS;AAAA,EACT,UAAU;AAAA,EACV,MAAM;AAAA,EACN,OAAO;AAAA,EACP,SAAS;AAAA,EACT,UAAU;AAAA,EACV,cAAc,CAAC,GAAG,CAAC;AACrB;AAEO,IAAM,cAAoD;AAAA,EAC/D,EAAE,KAAK,aAAa,SAAS,CAAC,GAAG,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EACzD,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAC1D,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAC1D,EAAE,KAAK,aAAa,SAAS,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,EAAE;AAAA,EACzD,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAClE,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAClE,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAClE,EAAE,KAAK,gBAAgB,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EACjE,EAAE,KAAK,gBAAgB,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAC3D;AAEO,IAAM,QAA4B;AAAA,EACvC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,gBAAgB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,gBAAgB;AAAA,EAClC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,gBAAgB,iBAAiB;AAAA,EAClC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AACvC;AAEO,IAAM,SAAmB;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACtJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EACrJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAC7I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACrJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EACtJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACrJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EACnJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EACrJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACpJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACrJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAG;AAwB1I,IAAM,QAAkB;AAAA,EACjB;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/E;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC1C;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAChC;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACtD;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAChD;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAC7C;AAEO,IAAM,QAAkB,CAAC,IAAI,KAAK,KAAK,KAAK,GAAG,IAAI,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,KAAK,KAAK,GAAG,IAAI,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,KAAK,IAAI,IAAI,KAAK,IAAI,KAAK,KAAK,KAAK,IAAI,KAAK,GAAG;AAE7K,IAAM,OAAiB,CAAC,IAAI,KAAK,KAAK,KAAK,GAAG,IAAI,GAAG;AAErD,IAAM,OAAO,MAAM,IAAI,CAAC,MAAM,MAAM,EAAE;AAEtC,IAAM,OAAO,MAAM,IAAI,CAAC,MAAM,MAAM,EAAE;AAEtC,IAAM,MAAM,KAAK,IAAI,CAAC,MAAM,MAAM,EAAE;AAO3C,SAAS,qBAAqB,aAAwB;AACpD,QAAM,UAAU,YAAY,IAAI,CAAC,eAAe,WAAW,EAAE;AAC7D,UAAQ,KAAK,YAAY,YAAY,SAAS,GAAG,EAAE;AACnD,SAAO;AACT;AAEO,IAAM,YAAuB;AAAA,EAClC,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,CAAC;AAAA,EAAG,CAAC,GAAG,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAC3N,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAC7N;AAEO,IAAM,eAA0B,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAE/N,IAAM,mBAA8B,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEnI,IAAM,gBAA2B,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEhF,IAAM,gBAA2B,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,IAAI,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAE1N,IAAM,oBAA+B,CAAC,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,GAAG,GAAG,CAAC,KAAK,EAAE,GAAG,CAAC,IAAI,GAAG,CAAC;AAEvH,IAAM,iBAA4B,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEjF,IAAM,mBAA8B;AAAA,EACzC,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACpE,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACrE,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACrE,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACrE,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACjE,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAChE;AAEO,IAAM,mBAAmB;AAAA,EAC9B,MAAM,qBAAqB,SAAS;AAAA,EACpC,SAAS,qBAAqB,YAAY;AAAA,EAC1C,aAAa,qBAAqB,gBAAgB;AAAA,EAClD,UAAU,qBAAqB,aAAa;AAAA,EAC5C,UAAU,qBAAqB,aAAa;AAAA,EAC5C,cAAc,qBAAqB,iBAAiB;AAAA,EACpD,WAAW,qBAAqB,cAAc;AAAA,EAC9C,UAAU,qBAAqB,gBAAgB;AACjD;;;ACrsBO,IAAM,aAAa,CAAC,QAA0B,CAAC,KAAK,IAAI,IAAI,SAAS,KAAK,IAAI,WAAW,EAAE,GAAG,KAAK,IAAI,IAAI,SAAS,KAAK,IAAI,WAAW,EAAE,CAAC;AAE3I,IAAM,eAAe,CAAC,QAAkC,CAAC,IAAI,WAAW,MAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,IAAI,WAAW,MAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,CAAC;AAExL,IAAM,WAAW,CAAC,KAAKO,WAAgB,MAAM;AAAA,EAClD,KAAK,MAAM,KAAK,IAAI,GAAG,IAAI,WAAW,EAAE,CAAC;AAAA,EACzC,KAAK,MAAM,KAAK,IAAI,GAAG,IAAI,WAAW,EAAE,CAAC;AAAA,EACzC,KAAK,MAAM,KAAK,IAAKA,OAAM,MAAM,MAAM,GAAI,IAAI,SAAS,EAAE,IAAI,KAAK,IAAI,GAAG,IAAI,WAAW,EAAE,CAAC;AAAA,EAC5F,KAAK,MAAM,KAAK,IAAKA,OAAM,MAAM,MAAM,GAAI,IAAI,SAAS,EAAE,IAAI,KAAK,IAAI,GAAG,IAAI,WAAW,EAAE,CAAC;AAC9F,IAAI,CAAC,GAAG,GAAG,GAAG,CAAC;AAER,IAAM,YAAY,CAAC,KAAKA,WAAgB,MAAM;AAAA,EACnD,IAAI,WAAW,MAAMA,OAAM,MAAM,MAAM;AAAA,EACvC,IAAI,WAAW,MAAMA,OAAM,MAAM,MAAM;AAAA,GACtC,IAAI,SAAS,KAAK,IAAI,WAAW,OAAOA,OAAM,MAAM,MAAM;AAAA,GAC1D,IAAI,SAAS,KAAK,IAAI,WAAW,OAAOA,OAAM,MAAM,MAAM;AAC7D,IAAI,CAAC,GAAG,GAAG,GAAG,CAAC;AAER,IAAM,sBAAsB,CAAC,KAAK,WAAW;AAClD,QAAM,aAAoB,CAAC,IAAI,WAAW,KAAK,OAAO,IAAI,IAAI,WAAW,KAAK,OAAO,EAAE;AACvF,QAAM,WAAkB,CAAC,IAAI,SAAS,KAAK,OAAO,IAAI,IAAI,SAAS,KAAK,OAAO,EAAE;AACjF,SAAO,EAAE,YAAY,UAAU,WAAW,IAAI,WAAW,YAAY,IAAI,WAAW;AACtF;AAEO,IAAM,eAAe,CAAC,KAAKC,QAAO,aAAa;AACpD,QAAM,IAAIA,OAAM,MAAM;AACtB,QAAM,IAAIA,OAAM,MAAM;AACtB,QAAM,SAAS,CAAC,IAAI,WAAW,KAAK,GAAG,IAAI,WAAW,KAAK,GAAG,IAAI,SAAS,KAAK,GAAG,IAAI,SAAS,KAAK,CAAC;AACtG,QAAM,OAAU,MAAM,cAAcA,QAAO,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,QAAQ;AAClE,QAAMC,QAAU,IAAI,MAAM,UAAU,KAAK;AACzC,EAAG,QAAQ,IAAI;AACf,SAAOA;AACT;AAEO,IAAM,aAAa,CAAC,KAAK,WAAW;AACzC,QAAM,SAAS,aAAa,GAAG;AAC/B,QAAMC,QAAO,WAAW,GAAG;AAC3B,QAAM,WAA6B,CAAC,SAASA,MAAK,KAAK,GAAG,SAASA,MAAK,KAAK,CAAC;AAC9E,SAAO,EAAE,YAAY,CAAC,OAAO,KAAK,SAAS,IAAI,OAAO,KAAK,SAAS,EAAE,GAAY,UAAU,CAAC,OAAO,KAAK,SAAS,IAAI,OAAO,KAAK,SAAS,EAAE,GAAY,WAAW,IAAI,WAAW,YAAY,IAAI,WAAW;AAChN;AAEO,IAAM,cAAc,CAAC,QAAQ;AAClC,QAAM,UAAU,aAAa,GAAG;AAChC,QAAMA,QAAO,WAAW,GAAG;AAC3B,QAAM,WAAW,KAAK,IAAI,GAAGA,KAAI,IAAI;AACrC,SAAO,EAAE,YAAY,CAAC,KAAK,MAAM,QAAQ,KAAK,QAAQ,GAAG,KAAK,MAAM,QAAQ,KAAK,QAAQ,CAAC,GAAY,UAAU,CAAC,KAAK,MAAM,QAAQ,KAAK,QAAQ,GAAG,KAAK,MAAM,QAAQ,KAAK,QAAQ,CAAC,GAAY,WAAW,IAAI,WAAW,YAAY,IAAI,WAAW;AACxP;AAEO,IAAM,gCAAgC,CAAC,cAAc;AAC1D,QAAM,IAAI,UAAU,IAAI,CAAC,MAAM,EAAE,EAAE;AACnC,QAAM,IAAI,UAAU,IAAI,CAAC,MAAM,EAAE,EAAE;AACnC,SAAO,EAAE,YAAY,CAAC,KAAK,IAAI,GAAG,CAAC,GAAG,KAAK,IAAI,GAAG,CAAC,CAAC,GAAY,UAAU,CAAC,KAAK,IAAI,GAAG,CAAC,GAAG,KAAK,IAAI,GAAG,CAAC,CAAC,GAAY,UAAU;AACjI;AAEO,IAAM,sBAAsB,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAE5D,IAAM,mBAAmB,CAAC,UAAkB,QAAQ,IAAI,KAAK,KAAK,KAAK,OAAO,QAAQ,KAAK,OAAO,IAAI,KAAK,GAAG;AAE9G,IAAM,kBAAkB,CAAC,QAAQ,WAAW,iBAAiB,KAAK,KAAK,IAAI,KAAK,MAAM,EAAE,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,OAAO,EAAE,CAAC;AAItI,IAAM,yBAAyB,CAAC,GAAG,MAAM,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAEzE,IAAMC,OAAM,CAAC,IAAc,OAAiB;AACjD,MAAI,UAAU;AACd,WAASC,KAAI,GAAGA,KAAI,GAAG,QAAQA;AAAK,eAAW,GAAGA,MAAK,GAAGA;AAC1D,SAAO;AACT;AAEO,IAAM,qBAAqB,CAAC,KAAK,gBAAgB;AACtD,QAAM,SAAmB,CAAC;AAC1B,WAASA,KAAI,GAAGA,KAAI,IAAI,QAAQA;AAAK,WAAO,KAAK,IAAIA,IAAG,YAAY;AACpE,SAAO;AACT;AAEO,IAAM,4BAA4B,CAAC,MAAM,SAAS;AACvD,QAAM,UAAsB,CAAC;AAC7B,QAAMC,QAAO,KAAK;AAClB,WAAS,MAAM,GAAG,MAAMA,OAAM,OAAO;AACnC,YAAQ,KAAK,CAAC,CAAC;AACf,aAAS,MAAM,GAAG,MAAMA,OAAM;AAAO,cAAQ,KAAK,KAAKF,KAAI,KAAK,MAAM,mBAAmB,MAAM,GAAG,CAAC,CAAC;AAAA,EACtG;AACA,SAAO;AACT;AAEO,IAAM,sBAAsB,CAAC,UAAU,WAAW;AACvD,QAAM,OAAO,KAAK,IAAI,QAAQ;AAC9B,QAAM,OAAO,KAAK,IAAI,QAAQ;AAC9B,QAAM,iBAAiB,CAAC,CAAC,MAAM,CAAC,MAAM,CAAC,GAAG,CAAC,MAAM,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AACpE,QAAM,oBAAoB,uBAAuB,OAAO,IAAI,OAAO,EAAE;AACrE,QAAM,2BAA2B,0BAA0B,mBAAmB,cAAc;AAC5F,QAAM,4BAA4B,uBAAuB,CAAC,OAAO,IAAI,CAAC,OAAO,EAAE;AAC/E,SAAO,0BAA0B,0BAA0B,yBAAyB;AACtF;AAEO,IAAM,wBAAwB,CAAC,WAAW;AAC/C,QAAM,oBAAoB,CAAC,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE,GAAG,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE,CAAC;AACrF,QAAM,uBAAuB,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACxD,QAAM,sBAAsB,CAAC,CAACA,KAAI,kBAAkB,IAAI,oBAAoB,GAAG,CAACA,KAAI,kBAAkB,IAAI,oBAAoB,CAAC;AAC/H,SAAO,CAAC,kBAAkB,GAAG,OAAO,oBAAoB,EAAE,GAAG,kBAAkB,GAAG,OAAO,oBAAoB,EAAE,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAC7H;AAEO,IAAM,cAAc,CAAC,uBAAuB,mBAAmB,CAACA,KAAI,uBAAuB,eAAe,EAAE,GAAGA,KAAI,uBAAuB,eAAe,EAAE,CAAC;AAI5J,SAAS,gBAAgBG,aAAmB;AACjD,QAAM,OAAOA,gBAAc,MACvB,EAAE,SAAS,CAAC,CAAC,GAAG,SAAS,CAAC,CAAC,EAAE,IAC7B,EAAE,SAAS,CAACA,cAAY,IAAIA,cAAY,CAAC,GAAG,SAAS,CAAC,GAAG,CAAC,EAAE;AAChE,QAAMC,WAA8B,CAAC;AACrC,WAASC,KAAI,GAAGA,KAAI,KAAK,QAAQ,QAAQA,MAAK;AAC5C,UAAM,SAAS,KAAK,QAAQA;AAC5B,UAAM,WAAW,KAAK,OAAOF,cAAY,SAAS,KAAK,MAAM;AAC7D,UAAM,WAAW,KAAK,OAAOA,cAAY,SAAS,KAAK,MAAM;AAC7D,UAAM,aAAa,KAAK,QAAQE;AAChC,aAAS,QAAQ,GAAG,QAAQ,UAAU,SAAS;AAC7C,YAAM,UAAU,UAAU,QAAQ;AAClC,eAAS,QAAQ,GAAG,QAAQ,UAAU,SAAS;AAC7C,cAAM,UAAU,UAAU,QAAQ;AAClC,iBAASC,KAAI,GAAGA,KAAI,YAAYA;AAAK,UAAAF,SAAQ,KAAK,CAAC,SAAS,OAAO,CAAC;AAAA,MACtE;AAAA,IACF;AAAA,EACF;AACA,SAAOA;AACT;AAEO,SAAS,mBAAmB,WAAW,KAAK,OAAO,gBAAgBD,aAAW;AACnF,QAAM,UAAU,WAAW,GAAG;AAC9B,QAAM,eAAe,UAAU,IAAI,CAAC,UAAW;AAAA,IAC5C,QAAQ,KAAKA,eAAc,MAAM,KAAMA,cAAY;AAAA,IACnD,QAAQ,KAAKA,eAAc,MAAM,KAAMA,cAAY;AAAA,IACnD,MAAM,MAAM;AAAA,EACf,CAAE;AACF,QAAM,aAAa,SAAU,UAAU,KAAO,KAAK,IAAI,KAAK,IAAI;AAChE,QAAM,uBAAuB,aAAa,oBAAoB,OAAO,CAAC,GAAG,CAAC,CAAC,IAAI;AAC/E,QAAM,gBAAgB,aAAa,aAAa,IAAI,CAAC,UAAW,CAAC,GAAG,YAAY,OAAO,oBAAoB,GAAG,MAAM,EAAE,CAAE,IAAI;AAC5H,QAAM,wBAAwB,aAAa,sBAAsB,cAAc,IAAI;AACnF,QAAM,YAAY,aAAa,GAAG;AAClC,QAAM,UAAU,CAACI,KAAI,WAAW,sBAAsB,EAAE,GAAGA,KAAI,WAAW,sBAAsB,EAAE,CAAC;AACnG,SAAO,cAAc,IAAI,CAAC,UAAW;AAAA,IACnC,KAAK,MAAM,MAAM,KAAK,QAAQ,EAAE;AAAA,IAChC,KAAK,MAAM,MAAM,KAAK,QAAQ,EAAE;AAAA,IAChC,KAAK,MAAM,MAAM,MAAM,CAAC;AAAA,EAC1B,CAAE;AACJ;AAEO,SAAS,oBAAoB,QAAQ,KAAKC,QAAOL,aAAW;AACjE,QAAM,eAAgB,IAAI,UAAU,UAAiB,cAAc,QACxD,cAAc,eACd,mBAAmB;AAC9B,MAAI,QAAQ;AACZ,MAAI,iBAAiB;AACrB,MAAIM;AAEJ,MAAI,UAAUC,KAAI,QAAQ,SAAS,kBAAkB,GAAG;AACtD,YAAQ,gBAAgB,IAAI,UAAU,aAAa,KAAK,IAAI,UAAU,aAAa,GAAG;AACtF,UAAM,aAAa,SAAU,UAAU,KAAO,KAAK,IAAI,KAAK,IAAI;AAChE,QAAI,YAAY;AACd,YAAM,SAAgB,aAAa,GAAG;AACtC,YAAM,YAAmB,CAAC,OAAO,KAAKF,OAAM,MAAM,IAAI,OAAO,KAAKA,OAAM,MAAM,EAAE;AAChF,YAAM,UAAa,MAAM,iBAAiBA,QAAO,OAAO,GAAG,SAAS;AACpE,uBAAiB,oBAAoB,CAAC,OAAO,MAAM;AACnD,MAAAC,QAAO,aAAa,KAAK,SAAS,CAACN,aAAWA,WAAS,CAAC;AACxD,MAAG,QAAQ,OAAO;AAAA,IACpB,OAAO;AACL,MAAAM,QAAO,aAAa,KAAKD,QAAO,CAACL,aAAWA,WAAS,CAAC;AAAA,IACxD;AAAA,EACF,OAAO;AACL,IAAAM,QAAO,aAAa,KAAKD,QAAO,CAACL,aAAWA,WAAS,CAAC;AAAA,EACxD;AACA,SAAO,CAAC,OAAO,gBAAgBM,KAAI;AACrC;AAEO,IAAM,iBAAiB,CAAC,SAAS;AACtC,QAAM,IAAI,KAAK,IAAI,CAAC,MAAM,EAAE,EAAE;AAC9B,QAAM,IAAI,KAAK,IAAI,CAAC,MAAM,EAAE,EAAE;AAO9B,SAAO,CAAC,KAAK,IAAI,GAAG,CAAC,KAAK,KAAK,IAAI,GAAG,CAAC,IAAI,KAAK,IAAI,GAAG,CAAC,KAAK,GAAG,KAAK,IAAI,GAAG,CAAC,KAAK,KAAK,IAAI,GAAG,CAAC,IAAI,KAAK,IAAI,GAAG,CAAC,KAAK,CAAC;AACxH;AAEO,IAAM,mBAAmB,CAAC,MAAM,gBAAgB;AACrD,QAAM,SAAS,eAAe,IAAI;AAClC,QAAM,UAAU,WAAW,WAAW;AACtC,QAAM,gBAAgB;AAAA,IACpB,YAAY,CAAC,OAAO,KAAK,QAAQ,KAAK,GAAG,OAAO,KAAK,QAAQ,KAAK,CAAC;AAAA,IACnE,UAAU,CAAC,OAAO,KAAK,QAAQ,KAAK,GAAG,OAAO,KAAK,QAAQ,KAAK,CAAC;AAAA,EACnE;AACA,SAAO;AACT;;;ACnMA,IAAM,iBAAiB;AACvB,IAAM,qBAAqB;AAC3B,IAAIE;AACJ,IAAI,UAAyB;AAC7B,IAAI,YAAY;AAChB,IAAI,aAA4B;AAIzB,IAAM,OAAO,MAAM;AAE1B,eAAsBC,MAAKC,SAAqC;AA1BhE;AA2BE,MAAIC,KAAI;AAAS,IAAAH,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAE,QAAO,KAAK,aAAZ,mBAAsB,SAAS;AAAA,WAC1DA,QAAO;AAAO,QAAI,iBAAiBF,OAAM,WAAW;AAC7D,cAAaA,OAAM,eAAeA,OAAM,OAAO,GAAG,QAASA,OAAM,OAAO,GAAG,MAAM,KAAK;AACtF,eAAgB,OAAO,WAAW,OAAO;AACzC,YAAa,SAAc,gBAAgB,SAAS,CAAC;AACrD,SAAOA;AACT;AAEA,SAAS,YAAY,YAAoB;AACvC,QAAMI,KAA4B,CAAC;AACnC,EAAAA,GAAE,YAAe,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AAClD,EAAAA,GAAE,UAAa,KAAIA,GAAE,WAAW,OAAO;AACvC,EAAAA,GAAE,WAAc,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AACjD,EAAAA,GAAE,qBAAwB,IAAIA,GAAE,UAAU,UAAU;AACpD,EAAAA,GAAE,oBAAuB,IAAIA,GAAE,SAAS,UAAU;AAClD,EAAAA,GAAE,cAAiB,IAAIA,GAAE,oBAAoB,UAAU,GAAG;AAC1D,EAAAA,GAAE,SAAY,IAAIA,GAAE,mBAAmBA,GAAE,WAAW;AACpD,EAAAA,GAAE,OAAU,KAAIA,GAAE,mBAAmBA,GAAE,WAAW;AAClD,EAAAA,GAAE,kBAAqB,IAAIA,GAAE,QAAQ,UAAU;AAC/C,EAAAA,GAAE,gBAAmB,IAAIA,GAAE,MAAM,UAAU;AAC3C,QAAM,QAAW,SAAS,CAACA,GAAE,iBAAiBA,GAAE,aAAa,GAAG,CAAC;AACjE,SAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AACT;AAEA,eAAsB,SAAS,YAAoBH,SAAgB;AArDnE;AAuDE,MAAK,CAAC,cAAgB,WAAW,yBAA2B,WAAW,MAAM,WAAW,KAAO,WAAW,MAAM,KAAK,KAAO,WAAW,MAAM,KAAK;AAAI,WAAO,CAAC;AAC9J,QAAME,KAA4B,CAAC;AACnC,EAAAA,GAAE,UAAa,MAAM,eAAe,YAAY,CAAC,WAAW,SAAS,CAAC;AACtE,EAAAA,GAAE,MAAS,IAAIA,GAAE,SAAS,UAAU,KAAK;AACzC,EAAAA,GAAE,aAAgB,IAAIA,GAAE,KAAK,UAAU,IAAI;AAC3C,QAAM,MAAMJ,UAAA,gBAAAA,OAAO,QAAQI,GAAE;AAC7B,MAAI,MAAM,QAAQ,GAAG,KAAK,IAAI,SAAS,GAAG;AACxC,UAAM,SAAS,IAAI,KAAK,CAAC,GAAG,MAAM,EAAE,OAAO,EAAE,IAAI;AACjD,IAAAA,GAAE,YAAe,OAAO,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,CAAC;AACjD,IAAAA,GAAE,YAAe,OAAO,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,CAAC;AACjD,IAAAA,GAAE,SAAY,OAAO,CAACA,GAAE,WAAWA,GAAE,SAAS,GAAG,CAAC;AAClD,IAAAA,GAAE,QAAW,QAAQA,GAAE,QAAQ,CAAC;AAAA,EAClC,WAAW,MAAM,QAAQ,GAAG,GAAG;AAC7B,IAAAA,GAAE,QAAW,QAAQ,IAAI,EAAE;AAAA,EAC7B,OAAO;AACL,IAAAA,GAAE,QAAW,QAAQ,GAAG;AAAA,EAC1B;AACA,EAAG,QAAQ,GAAG;AACd,EAAAA,GAAE,QAAQ,YAAYA,GAAE,KAAK;AAC7B,EAAAA,GAAE,SAAY,MAAMA,GAAE,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AAC5C,EAAAA,GAAE,UAAa,QAAQA,GAAE,MAAM;AAC/B,EAAAA,GAAE,SAAY,QAAQA,GAAE,OAAO;AAC/B,EAAAA,GAAE,MAAM,MAAS,MAAM,uBAAuBA,GAAE,OAAOA,GAAE,UAAS,KAAAF,QAAO,KAAK,aAAZ,mBAAsB,gBAAe,KAAK,KAAAA,QAAO,KAAK,aAAZ,mBAAsB,iBAAgB,KAAK,KAAAA,QAAO,KAAK,aAAZ,mBAAsB,kBAAiB,CAAE;AAChM,QAAM,MAAM,MAAME,GAAE,IAAI,MAAM;AAC9B,QAAM,QAAqB,CAAC;AAC5B,QAAM,SAAS,MAAMA,GAAE,OAAO,KAAK;AACnC,WAASE,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,UAAM,aAAa,OAAO,IAAIA;AAC9B,QAAI,gBAAc,KAAAJ,QAAO,KAAK,aAAZ,mBAAsB,kBAAiB,IAAI;AAC3D,YAAM,IAA4B,CAAC;AACnC,QAAE,OAAU,MAAME,GAAE,OAAO,CAAC,IAAIE,KAAI,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AAC/C,QAAE,QAAW,MAAMF,GAAE,OAAO,CAAC,IAAIE,KAAI,iBAAiB,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AACjE,QAAE,UAAa,QAAQ,EAAE,KAAK;AAC9B,QAAE,YAAe,QAAQ,EAAE,SAAS,CAAC,gBAAgB,EAAE,CAAC;AACxD,YAAM,SAAS,MAAM,EAAE,KAAK,KAAK;AACjC,YAAM,SAAS;AAAA,QACb,YAAY,CAAC,OAAO,IAAI,OAAO,EAAE;AAAA,QACjC,UAAU,CAAC,OAAO,IAAI,OAAO,EAAE;AAAA,QAC/B,WAAY,MAAM,EAAE,UAAU,MAAM;AAAA,QACpC;AAAA,MACF;AACA,YAAM,YAAiB,oBAAoB,QAAQ,EAAE,WAAW,MAAM,MAAM,KAAK,YAAY,WAAW,MAAM,MAAM,KAAK,SAAS,CAAC;AACnI,YAAM,cAAmB,WAAW,WAAWJ,QAAO,KAAK,YAAY,kBAAkB;AACzF,YAAM,aAAkB,YAAY,WAAW;AAC/C,YAAM,KAAK,UAAU;AACrB,aAAO,KAAK,CAAC,EAAE,QAAQ,CAACG,YAAc,QAAQ,EAAEA,QAAO,CAAC;AAAA,IAC1D;AAAA,EACF;AACA,SAAO,KAAKD,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AACT;;;ACzGA;AAAA;AAAA;AAAA;AAAA;AAEO,IAAM,MAAgB;AAAA,EAC3B;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AAEO,IAAM,YAAsC;AAAA,EACjD,WAAW,CAAC,gBAAgB,eAAe;AAAA,EAC3C,MAAM,CAAC,YAAY,SAAS;AAAA,EAC5B,OAAO,CAAC,aAAa,YAAY;AAAA,EACjC,cAAc,CAAC,WAAW,UAAU;AAAA,EACpC,cAAc,CAAC,YAAY,WAAW;AAAA,EACtC,UAAU,CAAC,aAAa,YAAY,UAAU;AAAA,EAC9C,WAAW,CAAC,gBAAgB,SAAS;AAAA,EACrC,cAAc,CAAC,gBAAgB,WAAW;AAAA,EAC1C,cAAc,CAAC,aAAa,WAAW;AAAA,EACvC,UAAU,CAAC,aAAa,UAAU;AAAA,EAClC,eAAe,CAAC,YAAY,WAAW;AAAA,EACvC,eAAe,CAAC,YAAY,WAAW;AAAA,EACvC,eAAe,CAAC,YAAY,WAAW;AAAA,EACvC,gBAAgB,CAAC,iBAAiB,gBAAgB;AAAA,EAClD,eAAe,CAAC,YAAY,WAAW;AAAA,EACvC,eAAe,CAAC,aAAa,YAAY;AAAA,EACzC,WAAW,CAAC,cAAc,aAAa,WAAW;AAAA,EAClD,YAAY,CAAC,iBAAiB,UAAU;AAAA,EACxC,eAAe,CAAC,iBAAiB,YAAY;AAAA,EAC7C,eAAe,CAAC,cAAc,YAAY;AAAA,EAC1C,WAAW,CAAC,cAAc,WAAW;AAAA,EACrC,gBAAgB,CAAC,aAAa,YAAY;AAAA,EAC1C,gBAAgB,CAAC,aAAa,YAAY;AAAA,EAC1C,gBAAgB,CAAC,aAAa,YAAY;AAAA,EAC1C,iBAAiB,CAAC,kBAAkB,iBAAiB;AACvD;;;AC/DA,IAAME,aAAY;AAClB,IAAI;AACJ,IAAM,YAAY;AAClB,IAAM,UAAU,CAAC,GAAG,IAAI,IAAI,IAAI,EAAE;AAE3B,SAAS,gBAAgB;AAC9B,QAAMC,WAAsC,CAAC;AAC7C,MAAI,UAAU;AACd,SAAO,UAAU,WAAW;AAC1B,QAAI,cAAc;AAClB,QAAI,sBAAsB;AAC1B,WAAO,sBAAsB,QAAQ,UAAU,QAAQ,yBAAyB,QAAQ,UAAU;AAChG,qBAAe;AACf;AAAA,IACF;AACA,UAAM,SAAS,QAAQ;AACvB,UAAM,mBAAmB,KAAK,KAAKD,aAAY,MAAM;AACrD,UAAM,kBAAkB,KAAK,KAAKA,aAAY,MAAM;AACpD,aAAS,IAAI,GAAG,IAAI,kBAAkB,EAAE,GAAG;AACzC,eAAS,IAAI,GAAG,IAAI,iBAAiB,EAAE,GAAG;AACxC,iBAAS,WAAW,GAAG,WAAW,aAAa,EAAE,UAAU;AACzD,UAAAC,SAAQ,KAAK,EAAE,IAAI,IAAI,OAAO,iBAAiB,IAAI,IAAI,OAAO,iBAAiB,CAAC;AAAA,QAClF;AAAA,MACF;AAAA,IACF;AACA,cAAU;AAAA,EACZ;AACA,iBAAe,EAAE,GAAM,SAASA,SAAQ,IAAI,CAAC,MAAM,EAAE,CAAC,CAAC,GAAG,GAAM,SAASA,SAAQ,IAAI,CAAC,MAAM,EAAE,CAAC,CAAC,EAAE;AACpG;;;ACjCO,SAAS,KAAK,WAAoBC,cAA+B,CAAC,GAAG,CAAC,GAAG;AAC9E,QAAMC,UAAS,CAAC,UAAU,IAAI,CAAC,OAAO,GAAG,EAAE,GAAG,UAAU,IAAI,CAAC,OAAO,GAAG,EAAE,CAAC;AAC1E,QAAMC,OAAM,CAAC,KAAK,IAAI,GAAGD,QAAO,EAAE,GAAG,KAAK,IAAI,GAAGA,QAAO,EAAE,CAAC;AAC3D,QAAME,OAAM,CAAC,KAAK,IAAI,GAAGF,QAAO,EAAE,GAAG,KAAK,IAAI,GAAGA,QAAO,EAAE,CAAC;AAC3D,QAAM,MAAW,CAACC,KAAI,IAAIA,KAAI,IAAIC,KAAI,KAAKD,KAAI,IAAIC,KAAI,KAAKD,KAAI,EAAE;AAClE,QAAM,SAAc,CAAC,IAAI,KAAKF,YAAW,IAAI,IAAI,KAAKA,YAAW,IAAI,IAAI,KAAKA,YAAW,IAAI,IAAI,KAAKA,YAAW,EAAE;AACnH,SAAO,EAAE,KAAK,OAAO;AACvB;AAEO,SAASI,QAAO,WAAoBJ,cAA+B,CAAC,GAAG,CAAC,GAAG;AAChF,QAAMC,UAAS,CAAC,UAAU,IAAI,CAAC,OAAO,GAAG,EAAE,GAAG,UAAU,IAAI,CAAC,OAAO,GAAG,EAAE,CAAC;AAC1E,QAAMC,OAAM,CAAC,KAAK,IAAI,GAAGD,QAAO,EAAE,GAAG,KAAK,IAAI,GAAGA,QAAO,EAAE,CAAC;AAC3D,QAAME,OAAM,CAAC,KAAK,IAAI,GAAGF,QAAO,EAAE,GAAG,KAAK,IAAI,GAAGA,QAAO,EAAE,CAAC;AAC3D,QAAM,SAAS,EAAEC,KAAI,KAAKC,KAAI,MAAM,IAAID,KAAI,KAAKC,KAAI,MAAM,CAAC;AAC5D,QAAM,OAAO,KAAK,IAAI,OAAO,KAAKD,KAAI,IAAI,OAAO,KAAKA,KAAI,IAAI,CAAC,OAAO,KAAKC,KAAI,IAAI,CAAC,OAAO,KAAKA,KAAI,EAAE;AACtG,QAAM,MAAW,CAAC,KAAK,MAAM,OAAO,KAAK,IAAI,GAAG,KAAK,MAAM,OAAO,KAAK,IAAI,GAAG,KAAK,MAAM,IAAI,IAAI,GAAG,KAAK,MAAM,IAAI,IAAI,CAAC;AACxH,QAAM,SAAc,CAAC,IAAI,KAAKH,YAAW,IAAI,IAAI,KAAKA,YAAW,IAAI,IAAI,KAAKA,YAAW,IAAI,IAAI,KAAKA,YAAW,EAAE;AACnH,SAAO,EAAE,KAAK,OAAO;AACvB;AAEO,SAASK,OAAM,KAAU,WAAmB;AACjD,QAAM,OAAO,CAAC,IAAI,KAAK,WAAW,IAAI,KAAK,SAAS;AACpD,QAAM,SAAc;AAAA,IAClB,IAAI,MAAM,KAAK,KAAK,IAAI,MAAM;AAAA,IAC9B,IAAI,MAAM,KAAK,KAAK,IAAI,MAAM;AAAA,IAC9B,KAAK;AAAA,IACL,KAAK;AAAA,EACP;AACA,SAAO;AACT;;;AChBA,IAAMC,OAAM,EAAE,SAAS,KAAK;AAE5B,IAAMC,UAAwE,EAAE,UAAU,MAAM,WAAW,KAAK;AAChH,IAAMC,aAAyE,EAAE,UAAU,CAAC,KAAK,GAAG,GAAG,WAAW,CAAC,KAAK,GAAG,EAAE;AAC7H,IAAIC,WAAU,OAAO;AACrB,IAAM,cAA2D;AAAA,EAC/D,WAAW,CAAC,SAAS,2BAA2B,sBAAsB,YAAY,iBAAiB;AAAA,EACnG,UAAU,CAAC;AACb;AAEA,IAAI,QAA2B;AAC/B,IAAI;AACJ,IAAI,UAA8B,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACjE,IAAIC,YAAW;AAEf,IAAMC,WAAU,CAAC,MAAO,IAAK,KAAK,IAAI,KAAK,IAAI,CAAC;AAEhD,eAAsB,WAAWC,SAAqC;AAhCtE;AAiCE,MAAIN,KAAI;AAAS,IAAAC,QAAO,WAAW;AACnC,MAAI,CAACA,QAAO,YAAYK,QAAO,KAAK,eAAeA,QAAO,KAAK,YAAY,aAAa,IAAI;AAC1F,IAAAL,QAAO,WAAW,MAAM,UAAUK,QAAO,KAAK,YAAY,SAAS;AACnE,UAAM,WAAS,KAAAL,QAAO,aAAP,mBAAkB,eAAc,OAAO,OAAOA,QAAO,SAAS,eAAe,SAAS,IAAI;AACzG,IAAAC,WAAU,SAAS,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAC9F,IAAAA,WAAU,SAAS,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EAChG,WAAWI,QAAO,SAASL,QAAO;AAAU,QAAI,iBAAiBA,QAAO,SAAS,WAAW;AAC5F,EAAO,cAAc;AACrB,SAAOA,QAAO;AAChB;AAEA,eAAsB,SAASK,SAAqC;AA5CpE;AA6CE,MAAIN,KAAI;AAAS,IAAAC,QAAO,YAAY;AACpC,MAAI,CAACA,QAAO,WAAW;AACrB,IAAAA,QAAO,YAAY,MAAM,UAAUK,QAAO,KAAK,SAAS;AACxD,UAAM,WAAS,KAAAL,QAAO,cAAP,mBAAmB,eAAc,OAAO,OAAOA,QAAO,UAAU,eAAe,SAAS,IAAI;AAC3G,IAAAC,WAAU,UAAU,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAC/F,IAAAA,WAAU,UAAU,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EACjG,WAAWI,QAAO;AAAO,QAAI,iBAAiBL,QAAO,UAAU,WAAW;AAC1E,SAAOA,QAAO;AAChB;AAQA,SAAS,aAAaM,QAAeC,OAAsB;AA7D3D;AA8DE,QAAMC,KAA4B,CAAC;AACnC,MAAI,GAAC,KAAAF,UAAA,gBAAAA,OAAO,UAAP,mBAAe,OAAM,GAAC,KAAAA,UAAA,gBAAAA,OAAO,UAAP,mBAAe;AAAI,WAAOA;AACrD,MAAI;AACJ,MAAI,SAAS;AACX,IAAAE,GAAE,UAAa,MAAM,cAAcF,QAAO,CAAC,OAAO,GAAG,CAAC,CAAC,GAAG,CAACA,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,CAAC;AAAA,EAC5F;AACA,MAAIA,OAAM,MAAM,OAAOA,OAAM,MAAM,IAAI;AACrC,UAAM,SAA2B;AAAA,MAC/BA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI;AAAA,MACtFA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI;AAAA,IACxF;AACA,UAAM,QAA0B;AAAA,MAC9BA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI;AAAA,MACtFA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI;AAAA,IACxF;AACA,cAAU;AAAA,MACR,CAAC,GAAG,CAAC;AAAA,MACL;AAAA,MACA;AAAA,MACA,CAAC,GAAG,CAAC;AAAA,IACP;AACA,IAAAE,GAAE,MAAS,IAAIA,GAAE,WAAWF,QAAO,OAAO;AAC1C,IAAAE,GAAE,SAAY,MAAM,eAAeA,GAAE,KAAK,CAACD,OAAMA,KAAI,CAAC;AACtD,YAAW,IAAIC,GAAE,QAAQ,UAAU,KAAK;AAAA,EAC1C,WAAWF,OAAM,MAAM,OAAOC,OAAM;AAClC,IAAAC,GAAE,SAAY,MAAM,eAAeA,GAAE,WAAWF,QAAO,CAACC,OAAMA,KAAI,CAAC;AACnE,YAAW,IAAIC,GAAE,QAAQ,UAAU,KAAK;AAAA,EAC1C,OAAO;AACL,YAAW,IAAIA,GAAE,WAAWF,QAAO,UAAU,KAAK;AAAA,EACpD;AACA,SAAO,KAAKE,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AACT;AAEA,SAAS,iBAAiB,WAA2BC,aAA8C;AACjG,aAAWC,QAAO,WAAW;AAC3B,IAAAA,KAAI,WAAW;AAAA,MACb,KAAK,MAAMA,KAAI,SAAS,MAAMD,YAAW,KAAK,QAAQ,GAAG,KAAK,QAAQ,GAAG,MAAMA,YAAW,KAAK,QAAQ,GAAG,EAAE;AAAA,MAC5G,KAAK,MAAMC,KAAI,SAAS,MAAMD,YAAW,KAAK,QAAQ,GAAG,KAAK,QAAQ,GAAG,MAAMA,YAAW,KAAK,QAAQ,GAAG,EAAE;AAAA,MAC5GC,KAAI,SAAS;AAAA,IACf;AACA,IAAAA,KAAI,cAAc,CAACA,KAAI,SAAS,KAAKD,YAAW,IAAIC,KAAI,SAAS,KAAKD,YAAW,IAAI,IAAKC,KAAI,SAAS,MAAiBD,YAAW,KAAKA,YAAW,GAAG;AAAA,EACxJ;AACA,MAAI,SAAS;AACX,eAAWC,QAAO,WAAW;AAC3B,MAAAA,KAAI,cAAc;AAAA,QAChBA,KAAI,YAAY,KAAK,QAAQ;AAAA,QAC7BA,KAAI,YAAY,KAAK,QAAQ;AAAA,QAC7BA,KAAI,YAAY;AAAA,MAClB;AACA,MAAAA,KAAI,WAAW;AAAA,QACb,KAAK,MAAMA,KAAI,YAAY,KAAKD,YAAW,EAAE;AAAA,QAC7C,KAAK,MAAMC,KAAI,YAAY,KAAKD,YAAW,EAAE;AAAA,QAC7CC,KAAI,YAAY;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAEA,SAAS,aAAa,WAA2B;AAE/C,QAAM,WAAW,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,UAAU;AAC5D,QAAM,YAAY,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,WAAW;AAC9D,QAAM,YAAY,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,WAAW;AAC9D,WAAS,SAAS,OAAO,UAAU,SAAS,MAAM,MAAM,UAAU,SAAS,MAAM,MAAM;AACvF,QAAM,YAAY,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,WAAW;AAC9D,QAAM,aAAa,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,YAAY;AAChE,QAAM,aAAa,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,YAAY;AAChE,YAAU,SAAS,OAAO,WAAW,SAAS,MAAM,MAAM,WAAW,SAAS,MAAM,MAAM;AAC5F;AAEA,eAAe,gBAAgBL,QAAeM,SAAgBF,aAA0D;AAtIxH;AA8IE,MAAI,GAAC,KAAAG,QAAO,cAAP,mBAAmB;AAAa,WAAO;AAC5C,QAAML,KAA4B,CAAC;AACnC,GAACA,GAAE,IAAqBA,GAAE,cAA+BA,GAAE,SAAyBA,GAAE,OAAwBA,GAAE,QAAiB,KAAI,KAAAK,QAAO,cAAP,mBAAkB,QAAQP,QAAO,YAAY;AAClL,QAAM,aAAa,MAAME,GAAE,SAAS,KAAK,GAAG;AAC5C,QAAM,SAAS,MAAMA,GAAE,GAAG,KAAK;AAC/B,QAAM,YAAY,MAAMA,GAAE,MAAM,KAAK;AACrC,SAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,QAAM,oBAAoC,CAAC;AAC3C,QAAM,QAAQ;AACd,WAASK,KAAI,GAAGA,KAAI,OAAO,SAAS,OAAOA,MAAK;AAC9C,UAAM,QAAQC,SAAQ,OAAO,QAAQD,KAAI,EAAE;AAC3C,UAAM,WAAWC,SAAQ,OAAO,QAAQD,KAAI,EAAE;AAC9C,UAAM,WAAW,KAAK,MAAM,MAAM,QAAQ,WAAW,SAAS,IAAI;AAClE,UAAM,cAAqB,CAAC,OAAO,QAAQA,KAAI,KAAKE,WAAU,UAAU,IAAI,OAAO,QAAQF,KAAI,KAAKE,WAAU,UAAU,IAAI,OAAO,QAAQF,KAAI,KAAK,CAAC;AACrJ,UAAM,WAAkB,CAAC,KAAK,MAAMJ,YAAW,KAAK,YAAY,EAAE,GAAG,KAAK,MAAMA,YAAW,KAAK,YAAY,EAAE,GAAG,YAAY,EAAY;AACzI,UAAMO,YAAkB,CAAC,UAAU,QAAQH,KAAI,IAAI,UAAU,QAAQA,KAAI,IAAI,UAAU,QAAQA,KAAI,KAAK,CAAC;AACzG,sBAAkB,KAAK,EAAE,MAAa,IAAIA,KAAoB,aAAa,UAAU,UAAAG,WAAU,OAAO,SAAS,CAAC;AAAA,EAClH;AACA,MAAI,aAAaL,QAAO,KAAK,iBAAiB;AAAI,WAAO;AACzD,eAAa,iBAAiB;AAC9B,QAAM,YAA4B,iBAAiB,mBAAmBF,WAAU;AAChF,QAAM,OAAO,UAAU,IAAI,CAAC,MAAM,EAAE,QAAQ;AAC5C,QAAM,QAAY,KAAK,MAAM,CAACA,YAAW,IAAIA,YAAW,EAAE,CAAC;AAC3D,QAAMQ,eAAiD,CAAC;AACxD,aAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAe,SAAS,GAAG;AAC9D,UAAM,KAAgB,CAAC;AACvB,aAASJ,KAAI,GAAGA,KAAI,QAAQ,SAAS,GAAGA,MAAK;AAC3C,YAAM,MAAM,UAAU,KAAK,CAACH,SAAQA,KAAI,SAAS,QAAQG,GAAE;AAC3D,YAAM,MAAM,UAAU,KAAK,CAACH,SAAQA,KAAI,SAAS,QAAQG,KAAI,EAAE;AAC/D,UAAI,OAAO;AAAK,WAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,IACtD;AACA,IAAAI,aAAY,QAAQ;AAAA,EACtB;AACA,QAAMC,QAAO,EAAE,IAAI,GAAG,OAAO,KAAK,MAAM,MAAM,SAAS,IAAI,KAAK,KAAK,MAAM,KAAK,QAAQ,MAAM,QAAQ,WAAW,aAAAD,aAAY;AAC7H,SAAOC;AACT;AAgCA,eAAsBC,SAAQd,QAAeM,SAAuC;AAClF,QAAMF,cAA+B,CAACJ,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC;AAC9E,QAAM,YAAYM,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIS;AACxD,QAAM,YAAYC,YAAWV,QAAO,KAAK,cAAc;AACvD,MAAIA,QAAO,eAAe,YAAY,aAAa,UAAU,MAAM;AACjE,IAAAU;AAAA,EACF,OAAO;AACL,UAAMd,KAA4B,CAAC;AAOnC,IAAAA,GAAE,YAAY,aAAaF,QAAO,GAAG;AACrC,YAAQ,MAAM,gBAAgBE,GAAE,WAAWI,SAAQF,WAAU;AAe7D,WAAO,KAAKF,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,IAAAY,YAAW,IAAI;AACf,IAAAC,WAAU;AAAA,EACZ;AACA,SAAO,QAAQ,CAAC,KAAK,IAAI,CAAC;AAC5B;;;ACjPO,IAAM,SAAS;AAAA,EACpB,EAAE,OAAO,GAAG,OAAO,SAAS;AAAA,EAC5B,EAAE,OAAO,GAAG,OAAO,UAAU;AAAA,EAC7B,EAAE,OAAO,GAAG,OAAO,MAAM;AAAA,EACzB,EAAE,OAAO,GAAG,OAAO,aAAa;AAAA,EAChC,EAAE,OAAO,GAAG,OAAO,WAAW;AAAA,EAC9B,EAAE,OAAO,GAAG,OAAO,MAAM;AAAA,EACzB,EAAE,OAAO,GAAG,OAAO,QAAQ;AAAA,EAC3B,EAAE,OAAO,GAAG,OAAO,QAAQ;AAAA,EAC3B,EAAE,OAAO,GAAG,OAAO,OAAO;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,gBAAgB;AAAA,EACpC,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,YAAY;AAAA,EAChC,EAAE,OAAO,IAAI,OAAO,gBAAgB;AAAA,EACpC,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,YAAY;AAAA,EAChC,EAAE,OAAO,IAAI,OAAO,cAAc;AAAA,EAClC,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,iBAAiB;AAAA,EACrC,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,YAAY;AAAA,EAChC,EAAE,OAAO,IAAI,OAAO,gBAAgB;AAAA,EACpC,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,KAAK;AAAA,EACzB,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,YAAY;AAAA,EAChC,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,aAAa;AACnC;;;ACrEA,IAAIC;AACJ,IAAIC,aAAY;AAChB,IAAIC,QAAuB,CAAC;AAC5B,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAqC;AAC9D,MAAIC,KAAI;AAAS,IAAAP,SAAQ;AACzB,MAAI,CAACA,QAAO;AAEV,IAAAA,SAAQ,MAAM,UAAUM,QAAO,OAAO,SAAS;AAC/C,UAAM,UAASN,UAAA,gBAAAA,OAAQ,eAAc,OAAO,OAAOA,OAAM,eAAe,SAAS,IAAI;AACrF,IAAAC,aAAY,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EACpF,WAAWK,QAAO;AAAO,QAAI,iBAAiBN,OAAM,WAAW;AAC/D,SAAOA;AACT;AAEA,eAAeQ,SAAQ,KAAoB,aAA+BF,SAAgB;AACxF,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAMG,KAA4B,CAAC;AACnC,QAAM,UAA0B,CAAC;AACjC,QAAM,aAAa,MAAM,IAAI,MAAM;AACnC,EAAAA,GAAE,UAAa,QAAQ,GAAG;AAC1B,QAAM,MAAS,MAAMA,GAAE,SAAS,GAAG,CAAC;AACpC,EAAAA,GAAE,QAAW,MAAM,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,GAAG,CAAC;AACtD,EAAAA,GAAE,QAAW,QAAQA,GAAE,KAAK;AAC5B,EAAAA,GAAE,SAAY,QAAQ,IAAI,EAAE;AAC5B,EAAAA,GAAE,UAAa,QAAQ,IAAI,EAAE;AAC7B,EAAG,QAAQ,CAAC,KAAK,GAAG,GAAG,CAAC;AACxB,EAAAA,GAAE,MAAM,MAAS,MAAM,uBAAuBA,GAAE,OAAOA,GAAE,QAAQH,QAAO,OAAO,aAAaA,QAAO,OAAO,cAAeA,QAAO,OAAO,iBAAiB,CAAE;AAC1J,QAAM,MAAM,MAAMG,GAAE,IAAI,KAAK;AAC7B,MAAIC,KAAI;AACR,aAAW,MAAM,MAAM,KAAK,GAAG,GAAG;AAChC,UAAM,QAAQ,KAAK,MAAM,MAAM,WAAW,GAAG,IAAI,EAAE,IAAI;AACvD,UAAM,WAAW,WAAW,GAAG,IAAI;AACnC,UAAM,QAAQ,OAAO,UAAU;AAC/B,UAAM,CAAC,GAAG,CAAC,IAAI;AAAA,MACb,WAAW,GAAG,IAAI,KAAKT;AAAA,MACvB,WAAW,GAAG,IAAI,KAAKA;AAAA,IACzB;AACA,UAAM,SAAc;AAAA,MAClB;AAAA,MACA;AAAA,MACA,WAAW,GAAG,IAAI,KAAKA,aAAY;AAAA,MACnC,WAAW,GAAG,IAAI,KAAKA,aAAY;AAAA,IACrC;AACA,UAAM,MAAW;AAAA,MACf,KAAK,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,MACrC,KAAK,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,MACrC,KAAK,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,MACrC,KAAK,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,IACvC;AACA,YAAQ,KAAK,EAAE,IAAIS,MAAK,OAAO,OAAO,UAAU,OAAO,KAAK,OAAO,CAAC;AAAA,EACtE;AACA,SAAO,KAAKD,EAAC,EAAE,QAAQ,CAACE,YAAc,QAAQF,GAAEE,QAAO,CAAC;AACxD,SAAO;AACT;AAEA,eAAsBC,SAAQC,QAAeP,SAAyC;AACpF,MAAI,EAACN,UAAA,gBAAAA,OAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYM,QAAO,OAAO,YAAY,KAAM,IAAI,IAAIH;AAC1D,QAAM,YAAYC,YAAWE,QAAO,OAAO,cAAc;AACzD,MAAIA,QAAO,eAAe,YAAY,aAAcJ,MAAK,SAAS,GAAI;AACpE,IAAAE;AACA,WAAOF;AAAA,EACT;AACA,EAAAE,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAMU,cAAa,CAACD,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC;AAC5D,UAAM,SAAY,MAAM,eAAeA,QAAO,CAACZ,YAAWA,UAAS,CAAC;AACpE,UAAM,UAAUK,QAAO,OAAO,UAAUN,UAAA,gBAAAA,OAAO,QAAQ,QAAQ,CAAC,oBAAoB,KAAe;AACnG,IAAAG,YAAW,IAAI;AACf,IAAG,QAAQ,MAAM;AAEjB,UAAM,MAAM,MAAMK,SAAQ,SAASM,aAAYR,OAAM;AACrD,IAAAJ,QAAO;AAEP,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;AC9FA;AAAA;AAAA,mBAAAa;AAAA,EAAA,WAAAC;AAAA;AAAO,IAAMA,OAAgB;AAAA,EAC3B;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AAEO,IAAMD,aAAsC;AAAA,EACjD,SAAS,CAAC,WAAW,YAAY,WAAW;AAAA,EAC5C,UAAU,CAAC,YAAY,aAAa,YAAY;AAAA,EAChD,OAAO,CAAC,gBAAgB,iBAAiB,YAAY,WAAW,cAAc;AAAA,EAC9E,SAAS,CAAC,gBAAgB,aAAa,WAAW;AAAA,EAClD,UAAU,CAAC,iBAAiB,cAAc,YAAY;AAAA,EACtD,MAAM,CAAC;AACT;;;ACVA,IAAIE;AACJ,IAAIC,YAAW;AACf,IAAMC,SAAoB,EAAE,IAAI,GAAG,WAAW,CAAC,GAAG,KAAK,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,OAAO,GAAG,aAAa,CAAC,EAAuC;AAM1J,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAqC;AAC9D,MAAIC,KAAI;AAAS,IAAAN,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,UAAUK,QAAO,KAAK,SAAS;AAAA,WAChDA,QAAO;AAAO,QAAI,iBAAiBL,OAAM,WAAW;AAC7D,SAAOA;AACT;AAGA,eAAe,MAAM,QAAQ,UAA6C;AACxE,QAAM,CAAC,OAAO,MAAM,IAAI,OAAO;AAC/B,QAAM,WAAc,QAAQ,QAAQ,CAAC,SAAS,KAAK,CAAC;AACpD,QAAMO,OAAS,IAAI,UAAU,CAAC;AAC9B,QAAM,YAAoB,MAAMA,KAAI,KAAK,GAAG;AAC5C,MAAI,WAAW,UAAU;AACvB,UAAM,cAAiB,OAAO,UAAU,CAAC;AACzC,UAAMC,OAAS,IAAI,aAAa,KAAK;AACrC,UAAM,KAAK,MAAMA,KAAI,KAAK,GAAG;AAC7B,UAAMC,OAAS,IAAI,aAAa,KAAK;AACrC,UAAM,KAAa,MAAMA,KAAI,KAAK,GAAG;AACrC,IAAG,QAAQ,CAAC,UAAUF,MAAK,aAAaC,MAAKC,IAAG,CAAC;AACjD,WAAO,CAAC,GAAG,GAAG,QAAQ;AAAA,EACxB;AACA,EAAG,QAAQ,CAAC,UAAUF,IAAG,CAAC;AAC1B,SAAO,CAAC,GAAG,GAAG,QAAQ;AACxB;AAEA,eAAsBG,SAAQC,QAAeN,SAAuC;AAClF,MAAI,EAACL,UAAA,gBAAAA,OAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYK,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIJ;AACxD,QAAM,YAAYE,YAAWE,QAAO,KAAK,cAAc;AACvD,MAAIA,QAAO,eAAe,YAAY,aAAa,OAAO,KAAKH,OAAM,SAAS,EAAE,SAAS,GAAG;AAC1F,IAAAC;AACA,WAAO,CAACD,MAAK;AAAA,EACf;AACA,EAAAC,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAMS,UAAY,KAAK,MAAM;AAC3B,UAAI,EAACZ,UAAA,gBAAAA,OAAO,OAAO,GAAG;AAAO,eAAO;AACpC,YAAM,SAAY,MAAM,eAAeW,QAAO,CAACX,OAAM,OAAO,GAAG,MAAM,IAAIA,OAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AACzG,YAAMa,WAAa,IAAI,QAAQ,UAAU,GAAG;AAC5C,YAAMC,QAAU,IAAID,UAAS,UAAU,GAAG;AAC1C,aAAOC;AAAA,IACT,CAAC;AACD,QAAI;AACJ,QAAIT,QAAO,KAAK;AAAS,aAAOL,UAAA,gBAAAA,OAAO,QAAQY;AAC/C,IAAAX,YAAW,IAAI;AACf,IAAG,QAAQW,OAAM;AAEjB,QAAI,MAAM;AACR,MAAAV,OAAM,UAAU,SAAS;AACzB,YAAMa,WAAa,QAAQ,IAAI;AAC/B,MAAG,QAAQ,IAAI;AAEf,YAAMC,SAAW,QAAQD,UAAS,CAAC;AACnC,MAAG,QAAQA,QAAO;AAGlB,eAAS,KAAK,GAAG,KAAKC,OAAM,QAAQ,MAAM;AAExC,cAAM,CAACC,IAAGC,IAAG,SAAS,IAAI,MAAM,MAAMF,OAAM,KAAKX,QAAO,KAAK,aAAa;AAC1E,YAAI,aAAaA,QAAO,KAAK,iBAAiB,IAAI;AAChD,UAAAH,OAAM,UAAU,KAAK;AAAA,YACnB,OAAO,KAAK,MAAM,MAAM,SAAS,IAAI;AAAA,YACrC,MAAaiB,KAAI;AAAA,YACjB,aAAa;AAAA,cAEXF,KAAIjB,OAAM,OAAO,GAAG,MAAM;AAAA,cAAIkB,KAAIlB,OAAM,OAAO,GAAG,MAAM;AAAA,YAC1D;AAAA,YACA,UAAU;AAAA,cAER,KAAK,MAAMW,OAAM,MAAM,KAAKM,KAAIjB,OAAM,OAAO,GAAG,MAAM,EAAE;AAAA,cAAG,KAAK,MAAMW,OAAM,MAAM,KAAKO,KAAIlB,OAAM,OAAO,GAAG,MAAM,EAAE;AAAA,YACrH;AAAA,UACF,CAAC;AAAA,QACH;AAAA,MACF;AACA,MAAAgB,OAAM,QAAQ,CAACI,OAAS,QAAQA,EAAC,CAAC;AAAA,IACpC;AACA,IAAAlB,OAAM,QAAQA,OAAM,UAAU,OAAO,CAAC,MAAM,SAAU,KAAK,QAAQ,OAAO,KAAK,QAAQ,MAAO,CAAC;AAC/F,UAAM,IAAIA,OAAM,UAAU,IAAI,CAAC,MAAM,EAAE,SAAS,EAAE;AAClD,UAAM,IAAIA,OAAM,UAAU,IAAI,CAAC,MAAM,EAAE,SAAS,EAAE;AAClD,IAAAA,OAAM,MAAM;AAAA,MACV,KAAK,IAAI,GAAG,CAAC;AAAA,MACb,KAAK,IAAI,GAAG,CAAC;AAAA,MACb,KAAK,IAAI,GAAG,CAAC,IAAI,KAAK,IAAI,GAAG,CAAC;AAAA,MAC9B,KAAK,IAAI,GAAG,CAAC,IAAI,KAAK,IAAI,GAAG,CAAC;AAAA,IAChC;AACA,UAAM,OAAOA,OAAM,UAAU,IAAI,CAAC,MAAM,EAAE,YAAY,EAAE;AACxD,UAAM,OAAOA,OAAM,UAAU,IAAI,CAAC,MAAM,EAAE,YAAY,EAAE;AACxD,IAAAA,OAAM,SAAS;AAAA,MACb,KAAK,IAAI,GAAG,IAAI;AAAA,MAChB,KAAK,IAAI,GAAG,IAAI;AAAA,MAChB,KAAK,IAAI,GAAG,IAAI,IAAI,KAAK,IAAI,GAAG,IAAI;AAAA,MACpC,KAAK,IAAI,GAAG,IAAI,IAAI,KAAK,IAAI,GAAG,IAAI;AAAA,IACtC;AACA,eAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAemB,UAAS,GAAG;AAC9D,YAAM,KAAgB,CAAC;AACvB,eAASC,KAAI,GAAGA,KAAI,QAAQ,SAAS,GAAGA,MAAK;AAC3C,cAAM,MAAMpB,OAAM,UAAU,KAAK,CAACiB,SAAQA,KAAI,SAAS,QAAQG,GAAE;AACjE,cAAM,MAAMpB,OAAM,UAAU,KAAK,CAACiB,SAAQA,KAAI,SAAS,QAAQG,KAAI,EAAE;AACrE,YAAI,OAAO,OAAO,IAAI,SAASjB,QAAO,KAAK,iBAAiB,MAAM,IAAI,SAASA,QAAO,KAAK,iBAAiB;AAAI,aAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,MACtJ;AACA,MAAAH,OAAM,YAAY,QAAQ;AAAA,IAC5B;AACA,YAAQ,CAACA,MAAK,CAAC;AAAA,EACjB,CAAC;AACH;;;ACpHA,IAAM,cAAc,CAAC,SAAS,WAAW,QAAQ,SAAS,OAAO,YAAY,SAAS;AACtF,IAAIqB;AACJ,IAAMC,QAAgD,CAAC;AACvD,IAAIC,aAAY;AAChB,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAqC;AAtBhE;AAuBE,MAAIC,KAAI;AAAS,IAAAP,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,YAAZ,mBAAqB,SAAS;AAAA,WACzDA,QAAO;AAAO,QAAI,iBAAiBN,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,SAAQC,QAAeH,SAAgB,KAAaI,QAA+D;AA7BzI;AA8BE,MAAI,CAACV;AAAO,WAAO,CAAC;AACpB,QAAM,YAAYI,cAAW,KAAAE,QAAO,KAAK,YAAZ,mBAAqB,eAAc;AAChE,QAAM,cAAY,KAAAA,QAAO,KAAK,YAAZ,mBAAqB,aAAY,KAAM,IAAI,IAAIH;AACjE,MAAIG,QAAO,eAAe,YAAY,aAAcJ,eAAcQ,UAAUT,MAAK,QAASA,MAAK,KAAK,SAAS,GAAI;AAC/G,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,EAAAG,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AAtCxC,QAAAO;AAuCI,UAAM,MAA6C,CAAC;AACpD,SAAIA,MAAAL,QAAO,KAAK,YAAZ,gBAAAK,IAAqB,SAAS;AAChC,YAAMC,KAA4B,CAAC;AACnC,YAAMC,eAAYb,UAAA,gBAAAA,OAAO,OAAO,GAAG,SAAQA,OAAM,OAAO,GAAG,MAAM,KAAK;AACtE,MAAAY,GAAE,SAAY,MAAM,eAAeH,QAAO,CAACI,aAAWA,WAAS,GAAG,KAAK;AASvE,MAAAD,GAAE,WAAc,IAAIA,GAAE,QAAQ,UAAU,GAAG;AAC3C,MAAAA,GAAE,YAAe,KAAIA,GAAE,UAAU,GAAG,IAAI;AACxC,MAAAA,GAAE,eAAkB,IAAIA,GAAE,WAAW,UAAU,IAAI;AACnD,MAAAA,GAAE,eAAkB,IAAIA,GAAE,cAAc,UAAU,GAAG;AACrD,MAAAA,GAAE,UAAUZ,UAAA,gBAAAA,OAAO,QAAQY,GAAE;AAC7B,MAAAT,YAAW,IAAI;AACf,YAAM,OAAO,MAAMS,GAAE,QAAQ,KAAK;AAClC,eAASE,KAAI,GAAGA,KAAI,KAAK,QAAQA,MAAK;AACpC,YAAI,KAAKA,OAAMR,QAAO,KAAK,QAAQ,iBAAiB;AAAI,cAAI,KAAK,EAAE,OAAO,KAAK,IAAI,MAAM,KAAK,MAAM,MAAM,KAAKQ,GAAE,IAAI,GAAG,GAAG,SAAS,YAAYA,IAAc,CAAC;AAAA,MACjK;AACA,UAAI,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AACpC,aAAO,KAAKF,EAAC,EAAE,QAAQ,CAACG,YAAc,QAAQH,GAAEG,QAAO,CAAC;AAAA,IAC1D;AACA,IAAAd,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;ACtDA,IAAIM;AACJ,IAAMC,QAAmB,CAAC;AAC1B,IAAIC,aAAY;AAChB,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAqC;AArBhE;AAsBE,MAAIC,KAAI;AAAS,IAAAP,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,qBAAZ,mBAA8B,SAAS;AAAA,WAClEA,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC7D,SAAOA;AACT;AAoBA,eAAsBQ,SAAQC,QAAeH,SAAgB,KAAKI,QAA0B;AA9C5F;AA+CE,MAAI,EAACV,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYI,cAAW,KAAAE,QAAO,KAAK,qBAAZ,mBAA8B,eAAc;AACzE,QAAM,cAAY,KAAAA,QAAO,KAAK,qBAAZ,mBAA8B,aAAY,KAAM,IAAI,IAAIH;AAC1E,MAAIG,QAAO,eAAe,YAAY,aAAcJ,eAAcQ,UAAUT,MAAK,MAAM;AACrF,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AAtDxC,QAAAU;AAuDI,QAAI,OAAiB,CAAC;AACtB,UAAIA,MAAAL,QAAO,KAAK,qBAAZ,gBAAAK,IAA8B,aAAWX,WAAA,gBAAAA,QAAO,OAAO,GAAG,QAAO;AACnE,YAAMY,KAA4B,CAAC;AACnC,MAAAA,GAAE,OAAU,MAAM,eAAeH,QAAO,CAACT,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AAInG,MAAAY,GAAE,OAAOZ,QAAM,QAAQY,GAAE,IAAI;AAa7B,YAAM,SAAS,MAAMA,GAAE,KAAK,KAAK;AACjC,aAAO,MAAM,KAAK,MAAM;AACxB,aAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AAAA,IAC1D;AACA,IAAAZ,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,IAAAP,YAAW,IAAI;AACf,YAAQ,IAAI;AAAA,EACd,CAAC;AACH;;;ACrEA,IAAIW;AACJ,IAAMC,QAAmB,CAAC;AAC1B,IAAIC,aAAY;AAChB,IAAIC,aAAW;AACf,IAAIC,YAAU,OAAO;AAErB,eAAsBC,OAAKC,SAAqC;AAC9D,MAAIC,KAAI;AAAS,IAAAP,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,UAAUM,QAAO,KAAK,eAAe,SAAS;AAAA,WAC/DA,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,UAAQC,QAAeH,SAAgB,KAAKI,QAA0B;AA5B5F;AA6BE,MAAI,EAACV,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYI,eAAW,KAAAE,QAAO,KAAK,mBAAZ,mBAA4B,eAAc;AACvE,QAAM,cAAY,KAAAA,QAAO,KAAK,mBAAZ,mBAA4B,aAAY,KAAM,IAAI,IAAIH;AACxE,MAAIG,QAAO,eAAe,YAAY,aAAcJ,eAAcQ,UAAUT,MAAK,MAAM;AACrF,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AApCxC,QAAAU;AAqCI,QAAI,OAAiB,CAAC;AACtB,UAAIA,MAAAL,QAAO,KAAK,mBAAZ,gBAAAK,IAA4B,aAAWX,WAAA,gBAAAA,QAAO,OAAO,GAAG,QAAO;AACjE,YAAMY,KAA4B,CAAC;AACnC,MAAAA,GAAE,OAAU,MAAM,eAAeH,QAAO,CAACT,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AAInG,MAAAY,GAAE,OAAOZ,QAAM,QAAQY,GAAE,IAAI;AAC7B,YAAM,SAAS,MAAMA,GAAE,KAAK,KAAK;AACjC,aAAO,MAAM,KAAK,MAAM;AACxB,aAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AAAA,IAC1D;AACA,IAAAZ,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,IAAAP,aAAW,IAAI;AACf,YAAQ,IAAI;AAAA,EACd,CAAC;AACH;;;AC5CA,IAAIW;AACJ,IAAIC,aAAY;AAEhB,IAAM,cAAc;AAEpB,IAAM,cAAqB,gBAAgB;AAC3C,IAAM,eAAsB,gBAAgB;AAE5C,IAAM,eAAe;AAAA,EACnB,YAAY,CAAC,YAAY,IAAI,YAAY,YAAY,SAAS,EAAE;AAAA,EAChE,aAAa,CAAC,aAAa,IAAI,aAAa,aAAa,SAAS,EAAE;AACtE;AAEA,IAAM,gBAAgB;AAAA,EACpB,aAAa;AAAA,EACb,aAAa;AAAA,EACb,OAAO;AAAA,EACP,gBAAgB;AAClB;AAEA,eAAsBC,OAAKC,SAAqC;AA9BhE;AA+BE,MAAIC,KAAI;AAAS,IAAAJ,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,WAAU,KAAAG,QAAO,KAAK,SAAZ,mBAAkB,SAAS;AAAA,WACtDA,QAAO;AAAO,QAAI,iBAAiBH,QAAM,WAAW;AAC7D,EAAAC,cAAaD,WAAA,gBAAAA,QAAQ,kBAAe,KAAAA,QAAM,WAAN,mBAAe,GAAG,SAASA,QAAM,OAAO,GAAG,MAAM,KAAK;AAC1F,MAAIC,eAAc;AAAI,IAAAA,aAAY;AAClC,SAAOD;AACT;AAGO,SAAS,kBAAkB,WAAW,WAAW,QAAQ,MAAM;AACpE,WAASK,KAAI,GAAGA,KAAW,YAAY,QAAQA,MAAK;AAClD,UAAM,EAAE,KAAK,QAAQ,IAAW,YAAYA;AAC5C,UAAM,kBAAyB,gBAAgB,GAAG,SAAS;AAC3D,QAAI,CAAC,QAAQ,KAAK,SAAS,GAAG,GAAG;AAC/B,eAAS,IAAI,GAAG,IAAI,QAAQ,QAAQ,KAAK;AACvC,cAAMC,SAAQ,QAAQ;AACtB,kBAAU,gBAAgB,MAAM;AAAA,UAC9B,UAAUA,QAAO;AAAA,UACjB,UAAUA,QAAO;AAAA,WAChB,UAAUA,QAAO,KAAK,UAAU,gBAAgB,IAAI,MAAM;AAAA,QAC7D;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AAEO,IAAM,mCAAmC,CAAC,cAAc;AAC7D,QAAM,WAAW,UAAU,aAAa,WAAW,IAAI;AACvD,QAAM,YAAY,UAAU,aAAa,YAAY,IAAI;AACzD,SAAO,WAAW;AACpB;AAGO,IAAM,YAAY,CAAC,WAAWC,OAAM,qBAAqB,qBAAqB,UAAU,OAAO,UAAU;AAC9G,QAAM,MAAW,YAAiB,WAAgB,8BAA8B,CAAC,UAAU,sBAAsB,UAAU,oBAAoB,CAAC,GAAG,WAAW,CAAC;AAC/J,QAAM,UAAe,WAAW,GAAG;AACnC,MAAI,OAAU,MAAM,cAAcA,OAAM,CAAC;AAAA,IACvC,IAAI,WAAW,KAAK;AAAA,IACpB,IAAI,WAAW,KAAK;AAAA,IAAU,IAAI,SAAS,KAAK;AAAA,IAChD,IAAI,SAAS,KAAK;AAAA,EACpB,CAAC,GAAG,CAAC,CAAC,GAAG,CAACN,YAAWA,UAAS,CAAC;AAC/B,MAAI,QAAQG,KAAI,QAAQ,SAAS,eAAe,GAAG;AACjD,UAAM,UAAa,MAAM,cAAc,IAAI;AAC3C,IAAG,QAAQ,IAAI;AACf,WAAO;AAAA,EACT;AACA,SAAO,EAAE,KAAK,SAAS,KAAK;AAC9B;AAGO,IAAM,eAAe,CAAC,SAAS,QAAQ,YAAY,OAAO,UAAU;AACzE,QAAM,eAAwB,CAAC;AAC/B,WAASC,KAAI,GAAGA,KAAI,cAAc,gBAAgBA,MAAK;AACrD,UAAM,IAAI,QAAQA,KAAI;AACtB,UAAM,IAAI,QAAQA,KAAI,IAAI;AAC1B,UAAM,IAAI,QAAQA,KAAI,IAAI;AAC1B,iBAAa,KAAK;AAAA,OACf,OAAQ,IAAK,IAAIJ,aAAe,IAAIA,cAAc,WAAW,KAAK,OAAO,WAAW;AAAA,MACpF,IAAIA,aAAa,WAAW,KAAK,OAAO,WAAW;AAAA,MAAI;AAAA,IAC1D,CAAC;AAAA,EACH;AACA,SAAO,EAAE,WAAW,cAAc,MAAM,aAAa,MAAM,cAAc,KAAK,EAAE;AAClF;AAGO,IAAM,wBAAwB,CAAC,WAAW,YAAY,cAAc;AACzE,QAAM,eAAe,UAAiB,gBAAgB,GAAG,sBAAsB,cAAc,cAAc;AAC3G,QAAM,eAAe,UAAiB,gBAAgB,GAAG,sBAAsB,cAAc,cAAc;AAC3G,QAAM,YAAY,eAAe,gBAAgB;AAEjD,SAAO,WAAW,IAAI,CAAC,OAAOI,OAAM;AAClC,QAAI,IAAI;AACR,QAAIA,OAAM,GAAG;AACX,UAAI;AAAA,IACN,WAAWA,OAAM,GAAG;AAClB,UAAI;AAAA,IACN;AACA,WAAO,CAAC,MAAM,IAAI,MAAM,IAAI,CAAC;AAAA,EAC/B,CAAC;AACH;AAEA,eAAsB,YAAY,WAAWE,OAAM,UAAU;AAC3D,MAAI,EAACP,WAAA,gBAAAA,QAAQ;AAAa,WAAO;AACjC,QAAM,EAAE,KAAK,YAAY,SAAS,gBAAgB,MAAM,YAAY,IAAI,UAAU,WAAWO,OAAM,aAAa,WAAW,IAAI,aAAa,WAAW,IAAI,UAAU,IAAI;AACzK,QAAM,EAAE,KAAK,aAAa,SAAS,iBAAiB,MAAM,aAAa,IAAI,UAAU,WAAWA,OAAM,aAAa,YAAY,IAAI,aAAa,YAAY,IAAI,UAAU,IAAI;AAC9K,QAAM,WAAc,OAAO,CAAC,aAAa,YAAY,CAAC;AACtD,EAAG,QAAQ,WAAW;AACtB,EAAG,QAAQ,YAAY;AACvB,QAAM,iBAAiBP,QAAM,QAAQ,QAAQ;AAC7C,EAAG,QAAQ,QAAQ;AACnB,QAAM,qBAAqB,MAAM,eAAe,KAAK;AACrD,EAAG,QAAQ,cAAc;AACzB,QAAM,cAAc,mBAAmB,MAAM,GAAG,cAAc,iBAAiB,CAAC;AAChF,QAAM,EAAE,WAAW,kBAAkB,MAAM,kBAAkB,IAAI,aAAa,aAAa,YAAY,gBAAgB,IAAI;AAC3H,QAAM,eAAe,mBAAmB,MAAM,cAAc,iBAAiB,CAAC;AAC9E,QAAM,EAAE,WAAW,mBAAmB,MAAM,mBAAmB,IAAI,aAAa,cAAc,aAAa,iBAAiB,KAAK;AACjI,QAAM,gCAAgC,iCAAiC,SAAS;AAChF,MAAI,KAAK,IAAI,6BAA6B,IAAI,IAAI;AAChD,sBAAkB,WAAW,kBAAkB,QAAQ,IAAI;AAC3D,sBAAkB,WAAW,mBAAmB,SAAS,IAAI;AAAA,EAE/D,WAAW,gCAAgC,GAAG;AAC5C,sBAAkB,WAAW,kBAAkB,QAAQ,CAAC,aAAa,WAAW,CAAC;AAAA,EACnF,OAAO;AACL,sBAAkB,WAAW,mBAAmB,SAAS,CAAC,aAAa,WAAW,CAAC;AAAA,EACrF;AACA,QAAM,yBAAyB,sBAAsB,WAAW,mBAAmB,MAAM;AACzF,QAAM,0BAA0B,sBAAsB,WAAW,oBAAoB,OAAO;AAC5F,QAAM,YAAY,UAAU,OAAO,sBAAsB,EAAE,OAAO,uBAAuB;AACzF,SAAO;AACT;;;ACxIA,IAAM,mBAA8B;AAAA,EAClC,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,CAAC;AAAA,EAAG,CAAC,GAAG,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAC3N,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAC7N;AAEA,IAAM,uBAAkC,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEvO,IAAM,2BAAsC,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAE3I,IAAM,wBAAmC,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAExF,IAAM,wBAAmC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,IAAI,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAElO,IAAM,4BAAuC,CAAC,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,GAAG,GAAG,CAAC,KAAK,EAAE,GAAG,CAAC,IAAI,GAAG,CAAC;AAE/H,IAAM,yBAAoC,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEzF,IAAM,wBAAmC;AAAA,EACvC,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACpN,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAC5M;AAmJA,SAASQ,sBAAqB,aAAwB;AACpD,QAAM,UAAU,YAAY,IAAI,CAAC,eAAe,WAAW,EAAE;AAC7D,UAAQ,KAAK,YAAY,YAAY,SAAS,GAAG,EAAE;AACnD,SAAO;AACT;AAEO,IAAM,2CAA2C;AAAA,EACtD,MAAMA,sBAAqB,gBAAgB;AAAA,EAC3C,SAASA,sBAAqB,oBAAoB;AAAA,EAClD,aAAaA,sBAAqB,wBAAwB;AAAA,EAC1D,UAAUA,sBAAqB,qBAAqB;AAAA,EACpD,UAAUA,sBAAqB,qBAAqB;AAAA,EACpD,cAAcA,sBAAqB,yBAAyB;AAAA,EAC5D,WAAWA,sBAAqB,sBAAsB;AAAA,EACtD,UAAUA,sBAAqB,qBAAqB;AACtD;AAEA,IAAM,kBAAsC,OAAO,QAAQ,wCAAwC,EAChG,IAAI,CAAC,CAAC,OAAO,OAAO,MAAM,QAAQ,IAAI,CAACC,WAAU,CAACA,QAAO,KAAK,CAAqB,CAAC,EACpF,KAAK;AAED,IAAM,gCAAgC,IAAI,IAAI,eAAe;AAQ7D,IAAM,mCAAmC;AAAA,EAC9C;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9C;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnC;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7C;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpC;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7C;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpC;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7C;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AACtC;AAEO,IAAM,uCAAuC;AAAA,EAClD;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACrC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EACnC;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACzB;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACvC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACrB;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AACjC;AAEO,IAAM,wCAAwC;AAAA,EACnD;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACzB;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AACrC;;;ACvOA,eAAsB,QAAQ,WAAW,SAAmB;AAC1D,QAAMC,KAAkC;AAAA,IAGtC,MAAM,MAAM,QAAQ,OAAO,CAACC,OAAMA,GAAE,SAAS,GAAG,EAAE,GAAG,KAAK;AAAA,IAC1D,OAAO,MAAM,QAAQ,OAAO,CAACA,OAAMA,GAAE,SAAS,EAAE,EAAE,GAAG,KAAK;AAAA,IAC1D,MAAM,MAAM,QAAQ,OAAO,CAACA,OAAMA,GAAE,SAAS,GAAG,EAAE,GAAG,KAAK;AAAA,IAC1D,OAAO,MAAM,QAAQ,OAAO,CAACA,OAAMA,GAAE,SAAS,EAAE,EAAE,GAAG,KAAK;AAAA,IAC1D,MAAM,MAAM,QAAQ,OAAO,CAACA,OAAMA,GAAE,SAAS,GAAG,EAAE,GAAG,KAAK;AAAA,EAC5D;AAGA,QAAM,aAAuB,qCAAqC,OAAO,CAAC,MAAM,SAAS,QAAQ,UAAU,MAAM,IAAI,CAAC,IAAc,qCAAqC;AACzK,WAASC,KAAI,GAAGA,KAAIF,GAAE,MAAM,SAAS,GAAGE;AAAK,cAAU,KAAK,CAACF,GAAE,MAAM,IAAIE,KAAI,IAAIF,GAAE,MAAM,IAAIE,KAAI,IAAI,UAAU,CAAC;AAChH,QAAM,aAAuB,sCAAsC,OAAO,CAAC,MAAM,SAAS,QAAQ,UAAU,MAAM,IAAI,CAAC,IAAc,sCAAsC;AAC3K,WAASA,KAAI,GAAGA,KAAIF,GAAE,MAAM,SAAS,GAAGE;AAAK,cAAU,KAAK,CAACF,GAAE,MAAM,IAAIE,KAAI,IAAIF,GAAE,MAAM,IAAIE,KAAI,IAAI,UAAU,CAAC;AAGhH,WAASA,KAAI,GAAGA,KAAIF,GAAE,KAAK,SAAS,GAAGE;AAAK,cAAoB,qCAAqCA,OAAM,CAACF,GAAE,KAAK,IAAIE,KAAI,IAAIF,GAAE,KAAK,IAAIE,KAAI,IAAI,UAAoB,qCAAqCA,KAAI,EAAE;AACjN,WAASA,KAAI,GAAGA,KAAIF,GAAE,KAAK,SAAS,GAAGE;AAAK,cAAoB,sCAAsCA,OAAM,CAACF,GAAE,KAAK,IAAIE,KAAI,IAAIF,GAAE,KAAK,IAAIE,KAAI,IAAI,UAAoB,sCAAsCA,KAAI,EAAE;AAGnN,WAASA,KAAI,GAAGA,KAAIF,GAAE,KAAK,SAAS,GAAGE;AAAK,cAAoB,iCAAiCA,OAAM,CAACF,GAAE,KAAK,IAAIE,KAAI,IAAIF,GAAE,KAAK,IAAIE,KAAI,IAAI,UAAoB,iCAAiCA,KAAI,EAAE;AAEzM,SAAO;AACT;;;ACHA,IAAMC,SAAQ;AAAA,EACZ,OAAO,CAAC;AAAA,EACR,SAAS,OAAO;AAAA,EAChB,WAAW;AACb;AAEA,IAAIC,UAA2B;AAC/B,IAAIC,aAAY;AAEhB,eAAsBC,UAAQC,QAAeC,SAAuC;AAlCpF;AAmCE,MAAI,EAACJ,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAElC,QAAM,cAAY,KAAAI,QAAO,KAAK,aAAZ,mBAAsB,aAAY,KAAM,IAAI,IAAIL,OAAM;AACxE,QAAM,YAAYA,OAAM,aAAW,KAAAK,QAAO,KAAK,aAAZ,mBAAsB,eAAc;AACvE,MAAI,CAACA,QAAO,eAAe,CAAC,YAAY,CAAC,aAAaL,OAAM,MAAM,WAAW,GAAG;AAC9E,IAAAA,OAAM,QAAQ,MAAgB,SAASI,QAAOC,OAAM;AACpD,IAAAL,OAAM,YAAY,IAAI;AACtB,IAAAA,OAAM,UAAU;AAAA,EAClB,OAAO;AACL,IAAAA,OAAM;AAAA,EACR;AACA,QAAM,QAAsB,CAAC;AAC7B,QAAM,WAAwB,CAAC;AAC/B,MAAI,KAAK;AACT,QAAMM,QAAOJ;AACb,WAASK,KAAI,GAAGA,KAAIP,OAAM,MAAM,QAAQO,MAAK;AAC3C,UAAM,MAAMP,OAAM,MAAMO;AACxB,QAAI,QAAQ;AACZ,QAAI;AACJ,UAAMC,QAAmB;AAAA,MACvB,IAAI;AAAA,MACJ,MAAM,CAAC;AAAA,MACP,SAAS,CAAC;AAAA,MACV,KAAK,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,MAChB,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,MACnB,OAAO;AAAA,MACP,UAAU;AAAA,MACV,WAAW;AAAA,MAGX,aAAa,CAAC;AAAA,IAChB;AAGA,KAAC,OAAO,gBAAgBA,MAAK,MAAM,IAAS,qBAAoB,KAAAH,QAAO,KAAK,aAAZ,mBAAsB,UAAU,KAAKD,UAAO,KAAAC,QAAO,KAAK,SAAZ,mBAAkB,WAAUH,aAAsB,KAAK,CAAC;AACpK,QAAIG,QAAO,OAAO,cAAc;AAC9B,YAAM,YAAYG,MAAK,SAAS,MAAM,sBAAsBA,MAAK,MAAM,IAAI;AAC3E,MAAG,QAAQA,MAAK,MAAM;AACtB,UAAI;AAAW,QAAAA,MAAK,SAAS;AAAA,IAC/B;AACA,IAAAA,MAAK,WAAW,KAAK,MAAM,MAAM,IAAI,UAAU,IAAI;AACnD,QAAI,GAAC,KAAAH,QAAO,KAAK,SAAZ,mBAAkB,UAAS;AAC9B,MAAAG,MAAK,MAAW,SAAS,KAAKJ,MAAK;AACnC,MAAAI,MAAK,SAAc,UAAU,KAAKJ,MAAK;AACvC,MAAAI,MAAK,QAAQA,MAAK;AAClB,MAAAA,MAAK,OAAO,IAAI,UAAU,IAAI,CAAC,OAAO;AAAA,SAClC,IAAI,WAAW,KAAK,IAAI,SAAS,MAAO,KAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,KAAe,KAAK;AAAA,SAC5G,IAAI,WAAW,KAAK,IAAI,SAAS,MAAO,KAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,KAAe,KAAK;AAAA,MAChH,CAAC;AACD,MAAAA,MAAK,UAAUA,MAAK,KAAK,IAAI,CAAC,OAAO,CAAC,GAAG,MAAMJ,OAAM,MAAM,MAAM,IAAI,GAAG,MAAMA,OAAM,MAAM,MAAM,KAAK,GAAG,MAAM,KAAKE,KAAI,CAAC;AACxH,iBAAW,OAAO,OAAO,KAAY,kBAAkB,GAAG;AACxD,QAAAE,MAAK,YAAY,OAAO,CAACA,MAAK,KAAY,mBAAmB,KAAe;AAAA,MAC9E;AAAA,IACF,WAAW,CAACP,SAAO;AACjB,UAAII,QAAO;AAAO,YAAI,wDAAwD;AAAA,IAChF,OAAO;AACL,YAAI,KAAAA,QAAO,KAAK,cAAZ,mBAAuB,YAAW,CAACI,KAAI,QAAQ,SAAS,OAAO,GAAG;AACpE,QAAG,QAAQD,MAAK,MAAM;AACtB,eAAO;AAAA,MACT;AACA,YAAM,UAAUP,QAAM,QAAQO,MAAK,MAAgB;AACnD,YAAM,cAAc,QAAQ,KAAK,CAACE,OAAMA,GAAE,MAAMA,GAAE,MAAM,SAAS,OAAO,CAAC;AACzE,YAAM,iBAAiB,MAAM,YAAY,KAAK;AAC9C,MAAAF,MAAK,YAAY,KAAK,MAAM,MAAM,eAAe,EAAE,IAAI;AAEvD,UAAIA,MAAK,eAAa,KAAAH,QAAO,KAAK,aAAZ,mBAAsB,kBAAiB,IAAI;AAC/D,YAAI,aAAaG,MAAK;AACtB,YAAIH,QAAO,KAAK,KAAK,aAAa;AAChC,UAAAG,MAAK,MAAW,SAAS,KAAKJ,MAAK;AACnC,UAAAI,MAAK,SAAc,UAAU,KAAKJ,MAAK;AACvC,UAAAI,MAAK,QAAQA,MAAK;AAClB,UAAAA,MAAK,OAAO,IAAI,UAAU,IAAI,CAAC,OAAO;AAAA,aAClC,IAAI,WAAW,KAAK,IAAI,SAAS,MAAO,KAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,KAAe,KAAK;AAAA,aAC5G,IAAI,WAAW,KAAK,IAAI,SAAS,MAAO,KAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,KAAe,KAAK;AAAA,UAChH,CAAC;AACD,UAAAA,MAAK,UAAUA,MAAK,KAAK,IAAI,CAAC,OAAO,CAAC,GAAG,MAAMJ,OAAM,MAAM,MAAM,IAAI,GAAG,MAAMA,OAAM,MAAM,MAAM,KAAK,GAAG,MAAM,KAAKE,KAAI,CAAC;AACxH,qBAAW,OAAO,OAAO,KAAY,kBAAkB,GAAG;AACxD,YAAAE,MAAK,YAAY,OAAO,CAACA,MAAK,KAAY,mBAAmB,KAAe;AAAA,UAC9E;AAAA,QACF;AAAA,MACF,OAAO;AACL,cAAM,QAAQ,QAAQ,KAAK,CAACE,OAAMA,GAAE,MAAMA,GAAE,MAAM,SAAS,OAAO,IAAI;AACtE,cAAM,iBAAoB,QAAQ,OAAO,CAAC,IAAI,CAAC,CAAC;AAChD,YAAI,YAAY,MAAM,eAAe,MAAM;AAC3C,QAAG,QAAQ,cAAc;AACzB,aAAI,KAAAL,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAClC,sBAAY,MAAgB,QAAQ,WAAW,OAAO;AAAA,QACxD,YAAW,KAAAA,QAAO,KAAK,SAAZ,mBAAkB,SAAS;AACpC,sBAAY,MAAW,YAAY,WAAWG,MAAK,QAAQN,UAAS;AAAA,QACtE;AACA,QAAAM,MAAK,OAAY,mBAAmB,WAAW,KAAK,OAAO,gBAAgBN,UAAS;AACpF,QAAAM,MAAK,UAAUA,MAAK,KAAK,IAAI,CAAC,OAAO,CAAC,GAAG,MAAMJ,OAAM,MAAM,MAAM,IAAI,GAAG,MAAMA,OAAM,MAAM,MAAM,KAAK,GAAG,MAAM,KAAKE,KAAI,CAAC;AACxH,mBAAW,OAAO,OAAO,KAAY,eAAe;AAAG,UAAAE,MAAK,YAAY,OAAc,gBAAgB,KAAK,IAAI,CAACG,WAAUH,MAAK,KAAKG,OAAM;AAC1I,QAAAH,MAAK,QAAQA,MAAK;AAClB,cAAM,gBAAgB,EAAE,GAAQ,iBAAiBA,MAAK,MAAM,GAAG,GAAG,YAAY,IAAI,YAAY,WAAW,IAAI,UAAU;AACvH,QAAAA,MAAK,MAAW,SAAS,eAAeJ,MAAK;AAC7C,QAAAI,MAAK,SAAc,UAAU,eAAeJ,MAAK;AAQjD,iBAAS,KAAK,aAAa;AAAA,MAC7B;AACA,MAAG,QAAQ,OAAO;AAAA,IACpB;AACA,QAAII,MAAK,WAAS,KAAAH,QAAO,KAAK,aAAZ,mBAAsB,kBAAiB;AAAI,YAAM,KAAKG,KAAI;AAAA;AACvE,MAAG,QAAQA,MAAK,MAAM;AAAA,EAC7B;AACA,EAAAR,OAAM,QAAQ;AACd,SAAO;AACT;AAEA,eAAsBY,OAAKP,SAAqC;AAtJhE;AAuJE,MAAII,KAAI;AAAS,IAAAR,UAAQ;AACzB,QAAI,KAAAI,QAAO,KAAK,cAAZ,mBAAuB,aAAWJ,WAAA,gBAAAA,QAAQ,eAAc;AAC1D,QAAI,OAAO,OAAK,KAAAA,WAAA,gBAAAA,QAAQ,iBAAR,mBAAsB,YAAW,CAAC,CAAC,EAAE,SAAS;AAAG,MAAAA,UAAQ;AAAA,EAC3E;AACA,MAAI,CAACA,SAAO;AACV,SAAI,KAAAI,QAAO,KAAK,cAAZ,mBAAuB;AAAS,MAAAJ,UAAQ,MAAM,UAAUI,QAAO,KAAK,UAAU,SAAS;AAAA;AACtF,MAAAJ,UAAQ,MAAM,WAAU,KAAAI,QAAO,KAAK,SAAZ,mBAAkB,SAAS;AAAA,EAC1D,WAAWA,QAAO,OAAO;AACvB,QAAI,iBAAiBJ,QAAM,WAAW;AAAA,EACxC;AACA,EAAAC,aAAaD,QAAM,iBAAe,KAAAA,WAAA,gBAAAA,QAAO,WAAP,mBAAgB,GAAG,UAAS,KAAAA,WAAA,gBAAAA,QAAO,WAAP,mBAAgB,GAAG,MAAM,KAAK;AAC5F,SAAOA;AACT;AAEO,IAAM,gBAAuB;AAC7B,IAAM,QAAe;;;AClJ5B,IAAIY;AACJ,IAAMC,QAKA,CAAC;AAEP,IAAIC,aAAW;AACf,IAAIC,aAAY;AAChB,IAAIC,YAAU,OAAO;AAErB,eAAsBC,OAAKC,SAAqC;AAhChE;AAiCE,MAAIC,KAAI;AAAS,IAAAP,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,gBAAZ,mBAAyB,SAAS;AAAA,WAC7DA,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC7D,SAAOA;AACT;AAEO,SAAS,QAAQQ,QAAe;AACrC,QAAMC,UAAUD,OAAM,SAASA,OAAM,UAAUA;AAC/C,MAAI,EAACR,WAAA,gBAAAA,QAAO,OAAO,GAAG;AAAO,WAAOS;AACpC,QAAM,OAAkB,MAAM,eAAeA,SAAQ,CAACT,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AAChH,QAAMU,QAAkB,IAAI,MAAM,UAAU,KAAK;AACjD,EAAG,QAAQ,IAAI;AACf,SAAOA;AAkBT;AAEA,eAAsBC,UAAQC,QAAeN,SAAgB,KAAaO,QAAiC;AAjE3G;AAkEE,MAAI,EAACb,WAAA,gBAAAA,QAAQ;AAAa,WAAO,EAAE,KAAK,GAAG,QAAQ,WAAW,aAAa,GAAG,YAAY,CAAC,EAAE;AAC7F,QAAM,YAAYI,eAAW,KAAAE,QAAO,KAAK,gBAAZ,mBAAyB,eAAc;AACpE,QAAM,cAAY,KAAAA,QAAO,KAAK,gBAAZ,mBAAyB,aAAY,KAAM,IAAI,IAAIJ;AACrE,MAAII,QAAO,eAAe,aAAa,YAAaH,eAAcU,YAAU,KAAAZ,MAAK,SAAL,mBAAW,UAAQ,KAAAA,MAAK,SAAL,mBAAW,OAAM,GAAI;AAClH,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,EAAAG,YAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AA1ExC,QAAAU;AA2EI,UAAM,MAAM;AAAA,MACV,KAAK;AAAA,MACL,QAAQ;AAAA,MACR,aAAa;AAAA,MACb,YAAY,CAAC;AAAA,IACf;AAEA,SAAIA,MAAAR,QAAO,KAAK,gBAAZ,gBAAAQ,IAAyB,SAAS;AACpC,YAAM,WAAW,QAAQF,MAAK;AAC9B,YAAM,OAAOZ,WAAA,gBAAAA,QAAO,QAAQ;AAC5B,MAAAE,aAAW,IAAI;AACf,MAAG,QAAQ,QAAQ;AACnB,YAAM,UAAU,KAAK,KAAK,CAACa,OAAMA,GAAE,MAAM,OAAO,CAAC;AACjD,YAAMC,UAAS,MAAM,QAAQ,KAAK;AAClC,YAAM,aAAa,KAAK,MAAM,MAAM,KAAK,IAAKA,QAAO,KAAK,GAAI,CAAC,IAAI;AACnE,UAAI,cAAcV,QAAO,KAAK,YAAY,iBAAiB,IAAI;AAC7D,YAAI,SAASU,QAAO,MAAM,MAAM,WAAW;AAC3C,YAAI,cAAc,KAAK,IAAI,MAAM,UAAU;AAAA,MAC7C;AACA,YAAMC,UAAY,OAAO,KAAK,KAAK,CAACF,OAAMA,GAAE,MAAM,OAAO,GAAG,GAAG,CAAC;AAChE,YAAMG,QAAe,MAAMD,QAAO,KAAK,GAAG;AAC1C,MAAG,QAAQA,OAAM;AACjB,YAAM,OAAO,KAAK,KAAK,CAACF,OAAMA,GAAE,MAAM,OAAO,GAAG;AAChD,YAAMI,OAAM,MAAM,KAAK,KAAK;AAC5B,UAAI,MAAM,KAAK,MAAMA,KAAID,OAAM,KAAKC,KAAID,OAAM,KAAK,KAAKA,OAAM,MAAMC,KAAID,OAAM,KAAK,KAAKA,OAAM,MAAMC,KAAID,OAAM,EAAE,IAAI;AAEpH,YAAM,OAAO,KAAK,KAAK,CAACH,OAAMA,GAAE,MAAM,OAAO,IAAI;AAGjD,YAAM,aAAa,OAAO,MAAM,KAAK,KAAK,IAAI,CAAC;AAC/C,UAAI,aAAa,MAAM,KAAK,UAAU;AACtC,WAAK,QAAQ,CAACA,OAAS,QAAQA,EAAC,CAAC;AAAA,IACnC;AACA,IAAAd,MAAK,OAAO;AACZ,IAAAE,aAAYU;AACZ,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;AC7GO,SAASO,YAAW,KAAK;AAC9B,SAAO;AAAA,IACL,KAAK,IAAI,IAAI,SAAS,KAAK,IAAI,WAAW,EAAE;AAAA,IAC5C,KAAK,IAAI,IAAI,SAAS,KAAK,IAAI,WAAW,EAAE;AAAA,EAC9C;AACF;AAEO,SAASC,cAAa,KAAK;AAChC,SAAO;AAAA,IACL,IAAI,WAAW,MAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM;AAAA,IAC5D,IAAI,WAAW,MAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM;AAAA,EAC9D;AACF;AAEO,SAAS,yBAAyB,KAAKC,QAAO,UAAU;AAC7D,QAAM,IAAIA,OAAM,MAAM;AACtB,QAAM,IAAIA,OAAM,MAAM;AACtB,QAAM,QAAQ,CAAC;AAAA,IACb,IAAI,WAAW,KAAK;AAAA,IACpB,IAAI,WAAW,KAAK;AAAA,IACpB,IAAI,SAAS,KAAK;AAAA,IAClB,IAAI,SAAS,KAAK;AAAA,EACpB,CAAC;AACD,SAAU,MAAM,cAAcA,QAAO,OAAO,CAAC,CAAC,GAAG,QAAQ;AAC3D;AAEO,SAASC,qBAAoB,KAAK,QAAQ;AAC/C,QAAM,aAAa,CAAC,IAAI,WAAW,KAAK,OAAO,IAAI,IAAI,WAAW,KAAK,OAAO,EAAE;AAChF,QAAM,WAAW,CAAC,IAAI,SAAS,KAAK,OAAO,IAAI,IAAI,SAAS,KAAK,OAAO,EAAE;AAC1E,QAAM,gBAAgB,IAAI,cAAc,IAAI,CAAC,UAAU;AACrD,UAAM,cAAc,CAAC,MAAM,KAAK,OAAO,IAAI,MAAM,KAAK,OAAO,EAAE;AAC/D,WAAO;AAAA,EACT,CAAC;AACD,SAAO,EAAE,YAAY,UAAU,eAAe,YAAY,IAAI,WAAW;AAC3E;AAEO,SAASC,YAAW,KAAK,SAAS,KAAK;AAC5C,QAAM,SAASH,cAAa,GAAG;AAC/B,QAAMI,QAAOL,YAAW,GAAG;AAC3B,QAAM,cAAc,CAAC,SAASK,MAAK,KAAK,GAAG,SAASA,MAAK,KAAK,CAAC;AAC/D,QAAM,aAAa,CAAC,OAAO,KAAK,YAAY,IAAI,OAAO,KAAK,YAAY,EAAE;AAC1E,QAAM,WAAW,CAAC,OAAO,KAAK,YAAY,IAAI,OAAO,KAAK,YAAY,EAAE;AACxE,SAAO,EAAE,YAAY,UAAU,eAAe,IAAI,cAAc;AAClE;AAEO,SAASC,aAAY,KAAK;AAC/B,QAAM,UAAUL,cAAa,GAAG;AAChC,QAAMI,QAAOL,YAAW,GAAG;AAC3B,QAAM,UAAU,KAAK,IAAI,GAAGK,KAAI;AAChC,QAAM,WAAW,UAAU;AAC3B,QAAM,aAAa,CAAC,QAAQ,KAAK,UAAU,QAAQ,KAAK,QAAQ;AAChE,QAAM,WAAW,CAAC,QAAQ,KAAK,UAAU,QAAQ,KAAK,QAAQ;AAC9D,SAAO,EAAE,YAAY,UAAU,eAAe,IAAI,cAAc;AAClE;AAaO,SAASE,kBAAiB,OAAO;AACtC,SAAO,QAAQ,IAAI,KAAK,KAAK,KAAK,OAAO,QAAQ,KAAK,OAAO,IAAI,KAAK,GAAG;AAC3E;AAEO,SAASC,iBAAgB,QAAQ,QAAQ;AAC9C,QAAM,UAAU,KAAK,KAAK,IAAI,KAAK,MAAM,EAAE,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,OAAO,EAAE;AACxF,SAAOD,kBAAiB,OAAO;AACjC;AAEO,IAAME,0BAAyB,CAAC,GAAG,MAAM,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAEzE,SAASC,KAAI,IAAI,IAAI;AAC1B,MAAI,UAAU;AACd,WAASC,KAAI,GAAGA,KAAI,GAAG,QAAQA,MAAK;AAClC,eAAW,GAAGA,MAAK,GAAGA;AAAA,EACxB;AACA,SAAO;AACT;AAEO,SAASC,oBAAmB,KAAK,aAAa;AACnD,QAAM,SAAmB,CAAC;AAC1B,WAASD,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,WAAO,KAAK,IAAIA,IAAG,YAAY;AAAA,EACjC;AACA,SAAO;AACT;AAEO,SAASE,2BAA0B,MAAM,MAAM;AACpD,QAAM,UAAsB,CAAC;AAC7B,QAAMC,QAAO,KAAK;AAClB,WAAS,MAAM,GAAG,MAAMA,OAAM,OAAO;AACnC,YAAQ,KAAK,CAAC,CAAC;AACf,aAAS,MAAM,GAAG,MAAMA,OAAM,OAAO;AACnC,cAAQ,KAAK,KAAKJ,KAAI,KAAK,MAAME,oBAAmB,MAAM,GAAG,CAAC,CAAC;AAAA,IACjE;AAAA,EACF;AACA,SAAO;AACT;AAEO,SAASG,qBAAoB,UAAU,QAAQ;AACpD,QAAM,OAAO,KAAK,IAAI,QAAQ;AAC9B,QAAM,OAAO,KAAK,IAAI,QAAQ;AAC9B,QAAM,iBAAiB,CAAC,CAAC,MAAM,CAAC,MAAM,CAAC,GAAG,CAAC,MAAM,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AACpE,QAAM,oBAAoBN,wBAAuB,OAAO,IAAI,OAAO,EAAE;AACrE,QAAM,2BAA2BI,2BAA0B,mBAAmB,cAAc;AAC5F,QAAM,4BAA4BJ,wBAAuB,CAAC,OAAO,IAAI,CAAC,OAAO,EAAE;AAC/E,SAAOI,2BAA0B,0BAA0B,yBAAyB;AACtF;AAEO,SAASG,uBAAsB,QAAQ;AAC5C,QAAM,oBAAoB,CAAC,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE,GAAG,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE,CAAC;AACrF,QAAM,uBAAuB,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACxD,QAAM,sBAAsB;AAAA,IAC1B,CAACN,KAAI,kBAAkB,IAAI,oBAAoB;AAAA,IAC/C,CAACA,KAAI,kBAAkB,IAAI,oBAAoB;AAAA,EACjD;AACA,SAAO;AAAA,IACL,kBAAkB,GAAG,OAAO,oBAAoB,EAAE;AAAA,IAClD,kBAAkB,GAAG,OAAO,oBAAoB,EAAE;AAAA,IAClD,CAAC,GAAG,GAAG,CAAC;AAAA,EACV;AACF;AAEO,SAASO,aAAY,uBAAuB,gBAAgB;AACjE,SAAO;AAAA,IACLP,KAAI,uBAAuB,eAAe,EAAE;AAAA,IAC5CA,KAAI,uBAAuB,eAAe,EAAE;AAAA,EAC9C;AACF;;;ACpIO,IAAMQ,WAAU;AAAA,EACrB,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AACzB;;;ACz3FO,IAAM,eAAN,MAAmB;AAAA,EAQxB,YAAYC,SAAmB;AAP/B;AACA;AACA;AACA;AACA;AACA;AAnBF;AAsBI,SAAK,QAAQA;AACb,SAAK,UAAkBC,SAAQ,IAAI,CAAC,WAAW,CAAC,OAAO,GAAG,OAAO,CAAC,CAAC;AACnE,SAAK,gBAAmB,SAAS,KAAK,OAAO;AAC7C,SAAK,cAAY,oDAAM,UAAN,mBAAa,WAAb,mBAAsB,OAAtB,mBAA0B,UAA1B,mBAAkC,OAAM;AACzD,SAAK,kBAAqB,SAAS,CAAC,KAAK,WAAW,KAAK,SAAS,CAAC;AACnE,SAAK,wBAA2B,SAAS,CAAC,KAAK,YAAY,GAAG,KAAK,YAAY,CAAC,CAAC;AAAA,EACnF;AAAA,EAEA,eAAe,OAAO;AACpB,UAAMC,KAA4B,CAAC;AACnC,IAAAA,GAAE,aAAgB,MAAM,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AAC9C,IAAAA,GAAE,WAAc,MAAM,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AAC5C,IAAAA,GAAE,MAAS,IAAIA,GAAE,YAAY,KAAK,eAAe;AACjD,IAAAA,GAAE,kBAAqB,KAAIA,GAAE,KAAK,KAAK,aAAa;AACpD,IAAAA,GAAE,eAAkB,IAAIA,GAAE,UAAU,KAAK,qBAAqB;AAC9D,IAAAA,GAAE,MAAS,IAAIA,GAAE,iBAAiBA,GAAE,YAAY;AAChD,IAAAA,GAAE,cAAiB,IAAIA,GAAE,KAAK,KAAK,eAAe;AAClD,IAAAA,GAAE,MAAS,KAAIA,GAAE,iBAAiBA,GAAE,YAAY;AAChD,IAAAA,GAAE,YAAe,IAAIA,GAAE,KAAK,KAAK,eAAe;AAChD,UAAM,MAAS,SAAS,CAACA,GAAE,aAAaA,GAAE,SAAS,GAAG,CAAC;AACvD,WAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,WAAO;AAAA,EACT;AAAA,EAEA,mBAAmB,kBAAkBC,QAAe;AAClD,UAAMF,KAA4B,CAAC;AACnC,IAAAA,GAAE,UAAa,QAAQ,kBAAkB,CAAC,IAAI,GAAG,CAAC,CAAC;AACnD,IAAAA,GAAE,MAAS,IAAIA,GAAE,SAAS,KAAK,eAAe;AAC9C,IAAAA,GAAE,YAAe,KAAIA,GAAE,KAAK,KAAK,QAAQE,UAAS,KAAK,QAAQA,UAAS,CAAC;AACzE,UAAM,MAAS,IAAIF,GAAE,WAAW,KAAK,eAAe;AACpD,WAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,WAAO;AAAA,EACT;AAAA,EAEA,MAAM,QAAQE,QAAeC,SAA+G;AAxD9I;AAyDI,UAAMJ,KAA4B,CAAC;AACnC,IAAAA,GAAE,SAAY,MAAM,eAAeG,QAAO,CAAC,KAAK,WAAW,KAAK,SAAS,CAAC;AAC1E,IAAAH,GAAE,MAAS,IAAIA,GAAE,QAAQ,UAAU,KAAK;AACxC,IAAAA,GAAE,QAAW,IAAIA,GAAE,KAAK,UAAU,GAAG;AACrC,IAAAA,GAAE,UAAU,KAAK,MAAM,QAAQA,GAAE,KAAK;AACtC,IAAAA,GAAE,cAAiB,QAAQA,GAAE,OAAO;AACpC,IAAAA,GAAE,QAAW,MAAMA,GAAE,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AACjD,IAAAA,GAAE,UAAa,QAAQA,GAAE,KAAK;AAC9B,IAAAA,GAAE,SAAY,QAAQA,GAAE,OAAO;AAC/B,UAAM,SAAS,MAAMA,GAAE,OAAO,KAAK;AACnC,IAAAA,GAAE,QAAW,MAAMA,GAAE,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AACjD,IAAAA,GAAE,OAAO,KAAK,eAAeA,GAAE,KAAK;AAEpC,IAAAA,GAAE,MAAM,MAAS,MAAM,uBAAuBA,GAAE,MAAMA,GAAE,QAAQ,OAAK,KAAAI,QAAO,SAAP,mBAAa,gBAAe,IAAIA,QAAO,KAAK,cAAcA,QAAO,KAAK,aAAa;AACxJ,UAAM,MAAM,MAAMJ,GAAE,IAAI,MAAM;AAC9B,UAAM,QAA8F,CAAC;AACrG,eAAWE,UAAS,KAAK;AACvB,YAAMG,KAA4B,CAAC;AACnC,MAAAA,GAAE,MAAS,MAAML,GAAE,MAAM,CAACE,QAAO,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AAC5C,MAAAG,GAAE,QAAW,MAAML,GAAE,aAAa,CAACE,QAAO,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AACrD,MAAAG,GAAE,OAAO,KAAK,mBAAmBA,GAAE,OAAOH,MAAK;AAC/C,MAAAG,GAAE,gBAAmB,QAAQA,GAAE,MAAM,CAAC,IAAI,CAAC,CAAC;AAC5C,YAAM,MAAM,MAAMA,GAAE,IAAI,KAAK;AAC7B,YAAM,aAAa,IAAI,MAAM,GAAG,CAAC;AACjC,YAAM,WAAW,IAAI,MAAM,GAAG,CAAC;AAC/B,YAAM,gBAAgB,MAAMA,GAAE,cAAc,MAAM;AAClD,YAAMC,QAAO,EAAE,YAAY,UAAU,eAAe,YAAY,OAAOJ,QAAO;AAC9E,YAAM,SAAcK,qBAAoBD,OAAM,EAAEH,OAAM,MAAM,MAAM,KAAK,KAAK,YAAYA,OAAM,MAAM,MAAM,KAAK,KAAK,SAAS,CAAC;AAC9H,YAAM,KAAK,MAAM;AACjB,aAAO,KAAKE,EAAC,EAAE,QAAQ,CAACJ,YAAc,QAAQI,GAAEJ,QAAO,CAAC;AAAA,IAC1D;AACA,WAAO,KAAKD,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,WAAO;AAAA,EACT;AACF;;;AC7EA,IAAM,uBAAuB;AAC7B,IAAM,uBAAuB;AAC7B,IAAM,kBAAkB,CAAC,GAAG,GAAG,GAAG,IAAI,IAAI,GAAG,CAAC;AAC9C,IAAM,wBAAwB;AAC9B,IAAM,gCAAgC;AACtC,IAAIO,aAAW;AAER,IAAM,eAAN,MAAmB;AAAA,EAQxB,YAAY,cAAcC,gBAAe;AAPzC;AACA;AACA;AACA;AACA;AACA;AA3BF;AA8BI,SAAK,eAAe;AACpB,SAAK,gBAAgBA;AACrB,SAAK,cAAY,sBAAK,kBAAL,mBAAoB,WAApB,mBAA6B,GAAG,UAAhC,mBAAwC,OAAM;AAC/D,SAAK,cAAc,CAAC;AACpB,SAAK,UAAU,OAAO;AACtB,SAAK,gBAAgB;AAAA,EACvB;AAAA,EAEA,8BAA8B,WAAW;AACvC,UAAM,KAAK,UAAU,IAAI,CAAC,MAAM,EAAE,EAAE;AACpC,UAAM,KAAK,UAAU,IAAI,CAAC,MAAM,EAAE,EAAE;AACpC,UAAM,aAAa,CAAC,KAAK,IAAI,GAAG,EAAE,GAAG,KAAK,IAAI,GAAG,EAAE,CAAC;AACpD,UAAM,WAAW,CAAC,KAAK,IAAI,GAAG,EAAE,GAAG,KAAK,IAAI,GAAG,EAAE,CAAC;AAClD,WAAO,EAAE,YAAY,SAAS;AAAA,EAChC;AAAA,EAEA,uBAAuB,eAAe,gBAAgB;AACpD,UAAM,uBAAuB,cAAc,IAAI,CAAC,UAAeC,aAAY,CAAC,GAAG,OAAO,CAAC,GAAG,cAAc,CAAC;AACzG,UAAM,gBAAgB,KAAK,8BAA8B,oBAAoB;AAC7E,WAAYC,YAAgBC,aAAY,aAAa,GAAG,oBAAoB;AAAA,EAC9E;AAAA,EAEA,uBAAuB,WAAW;AAChC,UAAM,cAAc,KAAK,8BAA8B,SAAS;AAChE,UAAM,gBAAqBD,YAAgBC,aAAY,WAAW,GAAG,oBAAoB;AACzF,kBAAc,gBAAgB,CAAC;AAC/B,aAASC,KAAI,GAAGA,KAAI,gBAAgB,QAAQA,MAAK;AAC/C,oBAAc,cAAc,KAAK,UAAU,gBAAgBA,KAAI,MAAM,GAAG,CAAC,CAAC;AAAA,IAC5E;AACA,WAAO;AAAA,EACT;AAAA,EAEA,mBAAmB,WAAW,MAAM,OAAO,gBAAgB;AACzD,UAAM,UAAeC,YAAW,IAAI;AACpC,UAAM,cAAc,CAAC,QAAQ,KAAK,KAAK,WAAW,QAAQ,KAAK,KAAK,YAAY,QAAQ,KAAK,QAAQ,MAAM,KAAK,YAAY,CAAC;AAC7H,UAAM,eAAe,UAAU,IAAI,CAAC,UAAU;AAAA,MAC5C,YAAY,MAAM,MAAM,KAAK,KAAK,YAAY;AAAA,MAC9C,YAAY,MAAM,MAAM,KAAK,KAAK,YAAY;AAAA,MAC9C,YAAY,KAAK,MAAM;AAAA,IACzB,CAAC;AACD,UAAM,uBAA4BC,qBAAoB,OAAO,CAAC,GAAG,CAAC,CAAC;AACnE,UAAM,gBAAgB,aAAa,IAAI,CAAC,UAAU;AAChD,YAAM,UAAeL,aAAY,OAAO,oBAAoB;AAC5D,aAAO,CAAC,GAAG,SAAS,MAAM,EAAE;AAAA,IAC9B,CAAC;AACD,UAAM,wBAA6BM,uBAAsB,cAAc;AACvE,UAAM,YAAY,CAAC,GAAQC,cAAa,IAAI,GAAG,CAAC;AAChD,UAAM,oBAAoB;AAAA,MACnBC,KAAI,WAAW,sBAAsB,EAAE;AAAA,MACvCA,KAAI,WAAW,sBAAsB,EAAE;AAAA,IAC9C;AACA,WAAO,cAAc,IAAI,CAAC,UAAU;AAAA,MAClC,KAAK,MAAM,MAAM,KAAK,kBAAkB,EAAE;AAAA,MAC1C,KAAK,MAAM,MAAM,KAAK,kBAAkB,EAAE;AAAA,MAC1C,KAAK,MAAM,MAAM,EAAE;AAAA,IACrB,CAAC;AAAA,EACH;AAAA,EAEA,MAAM,cAAcC,QAAOC,SAAQ;AACjC,QAAI,cAAc;AAGlB,QAAI;AACJ,UAAM,YAAYA,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIZ;AACxD,UAAM,YAAY,KAAK,WAAWY,QAAO,KAAK,cAAc;AAC5D,QAAIA,QAAO,eAAe,YAAY,WAAW;AAC/C,cAAQ,MAAM,KAAK,aAAa,QAAQD,QAAOC,OAAM;AACrD,WAAK,UAAU;AAAA,IACjB;AACA,QAAIA,QAAO;AAAa,WAAK;AAG7B,QAAI,SAAU,MAAM,SAAS,MAAQ,MAAM,WAAW,KAAK,iBAAmB,KAAK,kBAAkBA,QAAO,KAAK,eAAgB,CAACA,QAAO,KAAK,YAAY;AACxJ,WAAK,gBAAgB;AACrB,WAAK,cAAc,CAAC,GAAG,KAAK;AAE5B,UAAI,KAAK,YAAY,SAAS;AAAG,sBAAc;AAAA,IACjD;AACA,UAAM,QAAoJ,CAAC;AAG3J,aAASP,KAAI,GAAGA,KAAI,KAAK,YAAY,QAAQA,MAAK;AAChD,YAAM,aAAa,KAAK,YAAYA;AACpC,UAAI,CAAC;AAAY;AACjB,UAAIO,QAAO,KAAK,WAAW;AACzB,cAAM,QAAQA,QAAO,KAAK,WAAgBC,iBAAgB,WAAW,cAAc,wBAAwB,WAAW,cAAc,8BAA8B,IAAI;AACtK,cAAM,aAAkBJ,cAAa,UAAU;AAC/C,cAAM,uBAAuB,CAAC,WAAW,KAAKE,OAAM,MAAM,IAAI,WAAW,KAAKA,OAAM,MAAM,EAAE;AAC5F,cAAM,eAAeC,QAAO,KAAK,YAAYE,KAAI,QAAQ,SAAS,kBAAkB,IAAO,MAAM,iBAAiBH,QAAO,OAAO,GAAG,oBAAoB,IAAIA,OAAM,MAAM;AACvK,cAAM,iBAAsBJ,qBAAoB,CAAC,OAAO,UAAU;AAClE,cAAM,SAAS,cAAc,KAAK,uBAAuB,WAAW,eAAe,cAAc,IAAI;AACrG,cAAM,eAAoB,yBAAyB,QAAQ,cAAc,CAAC,KAAK,WAAW,KAAK,SAAS,CAAC;AACzG,cAAM,YAAe,IAAI,cAAc,UAAU,KAAK;AACtD,QAAG,QAAQ,YAAY;AACvB,QAAG,QAAQ,YAAY;AACvB,cAAM,CAAC,aAAa,SAAS,IAAI,KAAK,cAAc,QAAQ,SAAS;AACrE,QAAAP,aAAW,IAAI;AACf,QAAG,QAAQ,SAAS;AACpB,cAAM,cAAc,MAAM,YAAY,KAAK,GAAG;AAC9C,QAAG,QAAQ,WAAW;AACtB,YAAI,cAAcY,QAAO,KAAK,gBAAgB,GAAG;AAC/C,gBAAM,oBAAuB,QAAQ,WAAW,CAAC,IAAI,CAAC,CAAC;AACvD,gBAAM,YAAY,MAAM,kBAAkB,MAAM;AAChD,UAAG,QAAQ,SAAS;AACpB,UAAG,QAAQ,iBAAiB;AAC5B,gBAAMG,UAAS,KAAK,mBAAmB,WAAW,QAAQ,OAAO,cAAc;AAC/E,gBAAM,kBAAkB,KAAK,uBAAuBA,OAAM;AAC1D,eAAK,YAAYV,MAAK,EAAE,GAAG,iBAAiB,WAAW;AACvD,gBAAM,SAAS;AAAA,YACb,WAAWU;AAAA,YACX;AAAA,YACA,eAAe,WAAW;AAAA,YAC1B,kBAAkB;AAAA,YAClB,KAAK,EAAE,SAAS,gBAAgB,YAAY,aAAa,gBAAgB,SAAS;AAAA,UACpF;AACA,gBAAM,KAAK,MAAM;AAAA,QACnB,OAAO;AACL,eAAK,YAAYV,MAAK;AAAA,QACxB;AACA,QAAG,QAAQ,SAAS;AAAA,MACtB,OAAO;AAEL,cAAM,WAAgBF,YAAgBC,aAAY,UAAU,GAAG,oBAAoB;AACnF,cAAM,SAAS;AAAA,UACb,YAAY,WAAW;AAAA,UACvB,eAAe,WAAW;AAAA,UAC1B,kBAAkB;AAAA,UAClB,KAAK,EAAE,SAAS,SAAS,YAAY,aAAa,SAAS,SAAS;AAAA,UACpE,WAAW,CAAC;AAAA,QACd;AACA,cAAM,KAAK,MAAM;AAAA,MACnB;AAAA,IACF;AACA,SAAK,cAAc,KAAK,YAAY,OAAO,CAAC,MAAM,MAAM,IAAI;AAC5D,SAAK,gBAAgB,MAAM;AAC3B,QAAI,MAAM,SAASQ,QAAO,KAAK;AAAa,YAAM,SAASA,QAAO,KAAK;AACvE,WAAO;AAAA,EACT;AACF;;;ACnKO,IAAM,SAAS;AAAA,EACpB,OAAO;AAAA,EACP,OAAO;AAAA,EACP,QAAQ;AAAA,EACR,MAAM;AAAA,EACN,OAAO;AAAA,EACP,KAAK,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACnB,aAAa,EAAE,GAAG,SAAS,GAAG,SAAS,GAAG,UAAU,GAAG,QAAQ,GAAG,QAAQ;AAAA,EAQ1E,eAAe;AAAA,IACb,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,IAClC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,IAClC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,CAAC;AAAA,IACvC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,CAAC;AAAA,IACzC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,CAAC;AAAA,EAC3C;AAAA,EACA,SAAS,CAAC,UAAU,OAAO,YAAY;AAAA,EACvC,WAAW,CAAC,UAAU,OAAO,cAAc;AAC7C;AAEO,IAAM,aAAa;AAAA,EACxB,MAAM;AAAA,EACN,MAAM;AAAA,EACN,MAAM;AAAA,EACN,aAAa,EAAE,GAAG,QAAQ,GAAG,QAAQ,GAAG,OAAO;AAAA,EAC/C,SAAS,CAAC,UAAU,WAAW,YAAY;AAC7C;AAEO,IAAM,kBAAkB;AAAA,EAC7B,YAAY;AAAA,EACZ,cAAc;AAAA,EACd,gBAAgB;AAAA,EAChB,iBAAiB;AAAA,EACjB,iBAAiB;AAAA,EACjB,gBAAgB;AAAA,EAChB,mBAAmB;AAAA,EACnB,kBAAkB;AAAA,EAClB,aAAa,EAAE,GAAG,cAAc,GAAG,gBAAgB,GAAG,kBAAkB,GAAG,mBAAmB,GAAG,mBAAmB,GAAG,kBAAkB,GAAG,qBAAqB,GAAG,mBAAmB;AAAA,EACvL,SAAS,CAAC,UAAU,gBAAgB,YAAY;AAClD;AAEO,IAAM,gBAAN,MAAoB;AAAA,EAOzB,YAAY,MAAM;AANlB;AACA;AACA;AACA;AACA;AAIE,SAAK,OAAO;AACZ,SAAK,QAAQ,CAAC;AACd,SAAK,aAAa,CAAC;AACnB,SAAK,UAAU,CAAC,GAAK,GAAK,GAAK,GAAK,CAAG;AACvC,SAAK,kBAAkB,CAAC,GAAK,GAAK,GAAK,GAAK,CAAG;AAAA,EACjD;AAAA,EAEA,KAAK,QAAQ,MAAM,YAAY;AAC7B,QAAI,OAAO,KAAK,MAAM,YAAY;AAAa,WAAK,MAAM,UAAU,CAAC;AACrE,SAAK,MAAM,QAAQ,KAAK,CAAC,MAAM,UAAU,CAAC;AAAA,EAC5C;AAAA,EAEA,UAAU,QAAQ,UAAU,YAAY;AACtC,QAAI,CAAC,KAAK,WAAW;AAAS,WAAK,WAAW,UAAU,CAAC;AACzD,SAAK,WAAW,QAAQ,KAAK,CAAC,UAAU,UAAU,CAAC;AAAA,EACrD;AAAA,EAEA,OAAO,QAAQ,QAAQ;AACrB,SAAK,QAAQ,UAAU;AAEvB,UAAM,QAAQ,KAAK,QAAQ,OAAO,CAAC,GAAG,MAAM,IAAI,GAAG,CAAC;AACpD,SAAK,kBAAkB,KAAK,QAAQ,IAAI,CAAC,OAAO,KAAK,IAAI,KAAK;AAAA,EAChE;AAAA,EAEA,aAAa,eAAe,oBAAoB;AAC9C,QAAI,aAAa;AAGjB,eAAW,aAAa,eAAe;AACrC,YAAM,eAAe,cAAc;AACnC,YAAM,gBAAgB,KAAK,MAAM;AACjC,UAAI,OAAO,kBAAkB,aAAa;AAGxC,sBAAc,KAAK,gBAAgB;AACnC;AAAA,MACF;AAEA,iBAAW,CAAC,cAAc,KAAK,KAAK,eAAe;AACjD,YAAI,iBAAiB,cAAc;AACjC,wBAAc,QAAQ,KAAK,gBAAgB;AAC3C;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAEA,eAAW,aAAa,oBAAoB;AAC1C,YAAM,oBAAoB,mBAAmB;AAC7C,YAAM,qBAAqB,KAAK,WAAW;AAC3C,UAAI,OAAO,uBAAuB,aAAa;AAG7C,sBAAc,KAAK,gBAAgB;AACnC;AAAA,MACF;AAEA,iBAAW,CAAC,mBAAmB,KAAK,KAAK,oBAAoB;AAC3D,YAAI,sBAAsB,mBAAmB;AAC3C,wBAAc,QAAQ,KAAK,gBAAgB;AAC3C;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,WAAO,aAAa;AAAA,EACtB;AACF;;;ACvHO,IAAM,EAAE,OAAO,OAAO,QAAQ,MAAM,MAAM,IAAI;AAC9C,IAAM,EAAE,MAAM,MAAM,KAAK,IAAI;AAC7B,IAAM,EAAE,YAAY,cAAc,gBAAgB,iBAAiB,iBAAiB,gBAAgB,mBAAmB,iBAAiB,IAAI;AAGnJ,IAAM,WAAW,IAAI,cAAc,WAAW;AAC9C,SAAS,KAAK,OAAO,MAAM,CAAG;AAC9B,SAAS,UAAU,OAAO,YAAY,CAAG;AACzC,SAAS,UAAU,OAAO,gBAAgB,IAAI;AAC9C,SAAS,UAAU,OAAO,iBAAiB,IAAI;AAC/C,WAAW,UAAU,CAAC,OAAO,OAAO,OAAO,QAAQ,OAAO,MAAM,OAAO,KAAK,GAAG;AAC7E,WAAS,KAAK,QAAQ,MAAM,CAAG;AAC/B,WAAS,UAAU,QAAQ,gBAAgB,CAAG;AAC9C,WAAS,UAAU,QAAQ,iBAAiB,CAAG;AACjD;AAGA,IAAM,UAAU,IAAI,cAAc,SAAS;AAC3C,QAAQ,KAAK,OAAO,MAAM,GAAG;AAC7B,QAAQ,KAAK,OAAO,MAAM,GAAG;AAC7B,QAAQ,UAAU,OAAO,YAAY,CAAG;AACxC,QAAQ,UAAU,OAAO,gBAAgB,CAAG;AAC5C,QAAQ,KAAK,OAAO,MAAM,CAAG;AAC7B,QAAQ,UAAU,OAAO,YAAY,IAAI;AACzC,QAAQ,UAAU,OAAO,gBAAgB,CAAG;AAC5C,QAAQ,KAAK,QAAQ,MAAM,CAAG;AAC9B,QAAQ,UAAU,QAAQ,YAAY,CAAG;AACzC,QAAQ,UAAU,QAAQ,gBAAgB,IAAI;AAC9C,QAAQ,KAAK,MAAM,MAAM,CAAG;AAC5B,QAAQ,UAAU,MAAM,YAAY,GAAG;AACvC,QAAQ,UAAU,MAAM,gBAAgB,CAAG;AAC3C,QAAQ,UAAU,MAAM,gBAAgB,GAAG;AAC3C,QAAQ,KAAK,OAAO,MAAM,CAAG;AAC7B,QAAQ,UAAU,OAAO,YAAY,GAAG;AACxC,QAAQ,UAAU,OAAO,gBAAgB,CAAG;AAC5C,QAAQ,UAAU,OAAO,gBAAgB,GAAG;AAC5C,QAAQ,OAAO,OAAO,CAAC;AACvB,QAAQ,OAAO,QAAQ,CAAC;AAGxB,IAAM,QAAQ,IAAI,cAAc,OAAO;AACvC,MAAM,KAAK,OAAO,MAAM,CAAG;AAC3B,MAAM,KAAK,OAAO,MAAM,GAAG;AAC3B,MAAM,KAAK,QAAQ,MAAM,GAAG;AAC5B,MAAM,KAAK,MAAM,MAAM,GAAG;AAC1B,MAAM,KAAK,OAAO,MAAM,GAAG;AAC3B,MAAM,OAAO,OAAO,CAAC;AACrB,MAAM,OAAO,QAAQ,CAAC;AAGtB,IAAM,eAAe,IAAI,cAAc,eAAe;AACtD,aAAa,KAAK,OAAO,MAAM,CAAG;AAClC,aAAa,KAAK,OAAO,MAAM,GAAG;AAClC,aAAa,KAAK,QAAQ,MAAM,GAAG;AACnC,aAAa,KAAK,MAAM,MAAM,GAAG;AACjC,aAAa,KAAK,OAAO,MAAM,GAAG;AAClC,aAAa,OAAO,OAAO,CAAC;AAC5B,aAAa,OAAO,QAAQ,CAAC;AAG7B,IAAM,WAAW,IAAI,cAAc,WAAW;AAC9C,SAAS,KAAK,OAAO,MAAM,IAAI;AAC/B,SAAS,KAAK,OAAO,MAAM,IAAI;AAC/B,SAAS,KAAK,QAAQ,MAAM,IAAI;AAChC,SAAS,KAAK,MAAM,MAAM,IAAI;AAC9B,SAAS,KAAK,OAAO,MAAM,IAAI;AAE/B,IAAO,wBAAQ,CAAC,UAAU,SAAS,OAAO,cAAc,QAAQ;;;AC/DhE,IAAM,gBAAgB;AACtB,IAAM,UAAU;AAAA,EAEd,uBAAuB;AAAA,EACvB,qBAAqB;AAAA,EAErB,qBAAqB;AAAA,EACrB,yBAAyB;AAAA,EACzB,wBAAwB;AAC1B;AAEA,SAAS,eAAe,SAAS,SAAS,SAAS,SAAS;AAC1D,QAAM,SAAS,UAAU,YAAY,UAAU;AAC/C,MAAI,QAAQ,KAAK,KAAK,KAAK,IAAI,MAAM,KAAK;AAC1C,MAAI,SAAS;AAAG,YAAQ,CAAC;AAAA,WAChB,QAAQ;AAAG,YAAQ,MAAM;AAClC,SAAO;AACT;AAIA,SAAS,UAAU,QAAQ,QAAQ;AACjC,MAAI,CAAC,UAAU,CAAC;AAAQ,WAAO,CAAC,GAAG,CAAC;AACpC,QAAM,UAAU,eAAe,OAAO,IAAI,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE;AACzE,MAAI,OAAO,WAAW;AAAG,WAAO;AAChC,QAAM,UAAU,eAAe,OAAO,IAAI,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE;AACzE,SAAO,CAAC,SAAS,OAAO;AAC1B;AAEA,SAAS,mBAAmB,OAAO,cAAc,GAAK;AACpD,MAAI,aAAa;AACjB,MAAI,aAAa;AACjB,MAAI,eAAe;AACnB,MAAI,SAAS,MAAQ,SAAS;AAAO,iBAAa,IAAI;AAAA,WAC7C,SAAS,MAAQ,SAAS;AAAO,iBAAa,IAAI;AAAA;AACtD,mBAAe,IAAI;AACxB,SAAO,CAAC,YAAY,YAAY,YAAY;AAC9C;AAEA,SAAS,mBAAmB,YAAY,UAAU,UAAU;AAC1D,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,iBAAiB,KAAK,KAAK,mBAAmB,mBAAmB,mBAAmB,mBAAmB,mBAAmB,gBAAgB;AAChJ,QAAM,iBAAiB,KAAK,KAAK,mBAAmB,mBAAmB,mBAAmB,mBAAmB,mBAAmB,gBAAgB;AAChJ,QAAM,eAAe,KAAK,KAAK,iBAAiB,iBAAiB,iBAAiB,iBAAiB,iBAAiB,cAAc;AAClI,MAAI,UAAU,eAAe,eAAe,iBAAiB,iBAAiB,iBAAiB,mBAAmB,IAAI,eAAe;AACrI,MAAI,SAAS;AAAK,aAAS;AAAA,WAClB,SAAS;AAAM,aAAS;AACjC,MAAI,eAAe,KAAK,KAAK,MAAM;AACnC,iBAAgB,UAAU,eAAgB;AAC1C,MAAI;AACJ,MAAI,eAAe,QAAQ;AAAqB,iBAAa,WAAW;AAAA,WAC/D,eAAe,QAAQ;AAAuB,iBAAa,WAAW;AAAA;AAC1E,iBAAa,WAAW;AAC7B,SAAO;AACT;AAEA,SAAS,4BAA4B,kBAAkB,kBAAkB,gBAAgB,YAAY;AACnG,MAAI;AACJ,MAAI,eAAe,KAAK,IAAI,gBAAgB,GAAG;AAC7C,QAAI,mBAAmB;AAAG,2BAAqB,gBAAgB;AAAA;AAC1D,2BAAqB,gBAAgB;AAAA,EAC5C,WAAW,eAAe,KAAK,IAAI,gBAAgB,GAAG;AACpD,QAAI,mBAAmB;AAAG,2BAAqB,gBAAgB;AAAA;AAC1D,2BAAqB,gBAAgB;AAAA,EAC5C,OAAO;AACL,QAAI,iBAAiB;AAAG,2BAAqB,gBAAgB;AAAA;AACxD,2BAAqB,gBAAgB;AAAA,EAC5C;AACA,SAAO;AACT;AAEA,SAAS,0BAA0B,kBAAkB,kBAAkB,gBAAgB,YAAY;AACjG,MAAI;AACJ,MAAI,eAAe,KAAK,IAAI,gBAAgB,GAAG;AAC7C,QAAI,mBAAmB;AAAG,2BAAqB,gBAAgB;AAAA;AAC1D,2BAAqB,gBAAgB;AAAA,EAC5C,WAAW,eAAe,KAAK,IAAI,gBAAgB,GAAG;AACpD,QAAI,mBAAmB;AAAG,2BAAqB,gBAAgB;AAAA;AAC1D,2BAAqB,gBAAgB;AAAA,EAC5C,OAAO;AACL,QAAI,iBAAiB;AAAG,2BAAqB,gBAAgB;AAAA;AACxD,2BAAqB,gBAAgB;AAAA,EAC5C;AACA,SAAO;AACT;AAEA,SAAS,0BAA0B,kBAAkB,kBAAkB,gBAAgB,YAAY,kBAAkB,kBAAkB,gBAAgB,YAAY;AACjK,MAAI;AACJ,QAAM,0BAA0B,0BAA0B,kBAAkB,kBAAkB,gBAAgB,UAAU;AACxH,QAAM,4BAA4B,4BAA4B,kBAAkB,kBAAkB,gBAAgB,UAAU;AAC5H,MAAI,4BAA4B,gBAAgB,YAAY;AAC1D,QAAI,8BAA8B,gBAAgB;AAAgB,2BAAqB,gBAAgB;AAAA;AAClG,2BAAqB,gBAAgB;AAAA,EAC5C,OAAO;AACL,QAAI,8BAA8B,gBAAgB;AAAgB,2BAAqB,gBAAgB;AAAA;AAClG,2BAAqB,gBAAgB;AAAA,EAC5C;AACA,SAAO;AACT;AAEA,SAAS,yBAAyB,YAAY,UAAU,UAAU,cAAc;AAC9E,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,aAAa,KAAK,IAAI,KAAK,IAAI,gBAAgB,GAAG,KAAK,IAAI,gBAAgB,GAAG,KAAK,IAAI,cAAc,CAAC;AAC5G,QAAM,aAAa,KAAK,IAAI,KAAK,IAAI,gBAAgB,GAAG,KAAK,IAAI,gBAAgB,GAAG,KAAK,IAAI,cAAc,CAAC;AAC5G,MAAI,eAAe;AACnB,MAAI,eAAe;AACnB,MAAI,iBAAiB;AACrB,QAAM,2BAA2B,cAAc,aAAa;AAC5D,MAAI,2BAA2B;AAAK,oBAAgB,QAAQ;AAAA,WACnD,2BAA2B;AAAM,oBAAgB,QAAQ;AAAA;AAC7D,sBAAkB,QAAQ;AAC/B,QAAM,iBAAiB,KAAK,KAAK,mBAAmB,mBAAmB,mBAAmB,gBAAgB;AAC1G,QAAM,iBAAiB,KAAK,KAAK,mBAAmB,mBAAmB,mBAAmB,gBAAgB;AAC1G,QAAM,eAAe,KAAK,KAAK,iBAAiB,iBAAiB,iBAAiB,cAAc;AAChG,QAAM,WAAW,KAAK,IAAI,gBAAgB,gBAAgB,YAAY;AACtE,MAAI,qBAAqB,WAAW;AACpC,MAAI,qBAAqB,WAAW;AACpC,MAAI,mBAAmB,SAAS;AAChC,MAAI,mBAAmB,SAAS;AAChC,MAAI,aAAa,gBAAgB;AAC/B,uBAAmB,SAAS;AAC5B,uBAAmB,SAAS;AAAA,EAC9B,WAAW,aAAa,cAAc;AACpC,yBAAqB,SAAS;AAC9B,yBAAqB,SAAS;AAAA,EAChC;AACA,QAAM,iBAAiB,CAAC,oBAAoB,kBAAkB;AAC9D,QAAM,eAAe,CAAC,kBAAkB,gBAAgB;AACxD,QAAM,aAAa,UAAU,gBAAgB,YAAY;AACzD,QAAM,QAAQ,mBAAmB,YAAY,QAAQ,sBAAsB;AAC3E,kBAAgB,MAAM;AACtB,kBAAgB,MAAM;AACtB,oBAAkB,MAAM;AACxB,aAAW,eAAe,cAAc;AACtC,UAAM,cAAc,mBAAmB,aAAa,QAAQ,uBAAuB;AACnF,oBAAgB,YAAY;AAC5B,oBAAgB,YAAY;AAC5B,sBAAkB,YAAY;AAAA,EAChC;AAGA,MAAI;AACJ,MAAI,iBAAiB,KAAK,IAAI,cAAc,cAAc,cAAc,GAAG;AACzE,yBAAqB,0BAA0B,kBAAkB,kBAAkB,gBAAgB,UAAU;AAAA,EAC/G,WAAW,mBAAmB,KAAK,IAAI,cAAc,cAAc,GAAG;AACpE,yBAAqB,4BAA4B,kBAAkB,kBAAkB,gBAAgB,UAAU;AAAA,EACjH,OAAO;AACL,yBAAqB,0BAA0B,kBAAkB,kBAAkB,gBAAgB,YAAY,kBAAkB,kBAAkB,gBAAgB,UAAU;AAAA,EAC/K;AACA,SAAO;AACT;AAEA,SAAS,SAAS,WAAW;AAE3B,QAAM,WAAuB,CAAC;AAC9B,QAAM,WAAuB,CAAC;AAC9B,QAAM,cAAwB,CAAC;AAC/B,QAAM,mBAA6B,CAAC;AACpC,MAAI,CAAC;AAAW,WAAO,EAAE,OAAO,aAAa,YAAY,iBAAiB;AAG1E,aAAW,UAAU,OAAO,KAAK;AAC/B,UAAM,SAAS,OAAO,UAAU,MAAM;AACtC,UAAM,YAAsB,CAAC;AAC7B,UAAM,YAAsB,CAAC;AAC7B,eAAWI,UAAS,QAAQ;AAC1B,YAAM,SAAS,UAAUA,OAAM;AAC/B,YAAMC,UAAS,UAAUD,OAAM;AAE/B,YAAM,SAAS,UAAU,QAAQC,OAAM;AACvC,YAAM,UAAU,OAAO;AACvB,YAAM,UAAU,OAAO;AACvB,gBAAU,KAAK,OAAO;AACtB,gBAAU,KAAK,OAAO;AAAA,IACxB;AACA,aAAS,KAAK,SAAS;AACvB,aAAS,KAAK,SAAS;AAAA,EACzB;AAGA,aAAW,UAAU,OAAO,KAAK;AAE/B,UAAM,eAAgB,WAAW,OAAO,QAAS,IAAI;AACrD,UAAM,iBAAiB,OAAO,UAAU,MAAM;AAC9C,UAAM,aAAa,UAAU,eAAe,cAAc;AAC1D,UAAM,WAAW,UAAU,eAAe,eAAe,GAAG;AAC5D,UAAM,WAAW,UAAU,eAAe,GAAG;AAE7C,UAAM,eAAe,mBAAmB,YAAY,UAAU,QAAQ;AACtE,UAAM,iBAAiB,yBAAyB,YAAY,UAAU,UAAU,SAAS,QAAQ,MAAM,YAAY,CAAC;AACpH,gBAAY,UAAU;AACtB,qBAAiB,UAAU;AAAA,EAC7B;AACA,SAAO,EAAE,OAAO,aAAa,YAAY,iBAAiB;AAC5D;AAEO,SAAS,QAAQ,WAAW;AACjC,MAAI,CAAC,aAAa,UAAU,WAAW;AAAG,WAAO;AACjD,QAAM,eAAe,SAAS,SAAS;AACvC,QAAM,YAAY,CAAC;AACnB,aAAW,aAAa,OAAO,KAAK;AAClC,cAAU,OAAO,QAAQ,SAAS,KAAK;AAAA,MACrC,MAAM,WAAW,QAAQ,aAAa,MAAM,UAAU;AAAA,MACtD,WAAW,gBAAgB,QAAQ,aAAa,WAAW,UAAU;AAAA,IACvE;AAAA,EACF;AACA,SAAO;AACT;AAEO,SAAS,MAAM,WAAW;AAC/B,QAAM,QAAgD,CAAC;AACvD,MAAI,CAAC,aAAa,UAAU,WAAW;AAAG,WAAO;AACjD,QAAM,eAAe,SAAS,SAAS;AACvC,aAAWC,YAAW,uBAAU;AAC9B,UAAM,aAAaA,SAAQ,aAAa,aAAa,OAAO,aAAa,UAAU;AACnF,QAAI,cAAc;AAAe,YAAM,KAAK,EAAE,MAAMA,SAAQ,MAAM,WAAW,CAAC;AAAA,EAChF;AACA,SAAO;AACT;;;AClOA,IAAMC,mBAAkB;AAAA,EACtB,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,EAClB,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,EAClB,QAAQ,CAAC,GAAG,IAAI,IAAI,EAAE;AAAA,EACtB,MAAM,CAAC,IAAI,IAAI,IAAI,EAAE;AAAA,EACrB,OAAO,CAAC,IAAI,IAAI,IAAI,EAAE;AAAA,EACtB,MAAM,CAAC,CAAC;AACV;AAEA,IAAI;AACJ,IAAI;AACJ,IAAI;AAEJ,eAAsBC,UAAQC,QAAeC,SAAuC;AAClF,QAAM,cAAc,MAAM,aAAa,cAAcD,QAAOC,OAAM;AAClE,MAAI,CAAC;AAAa,WAAO,CAAC;AAC1B,QAAM,QAAsB,CAAC;AAC7B,WAASC,KAAI,GAAGA,KAAI,YAAY,QAAQA,MAAK;AAC3C,UAAMC,eAAc,CAAC;AACrB,QAAI,YAAYD,IAAG,WAAW;AAC5B,iBAAW,OAAO,OAAO,KAAKJ,gBAAe,GAAG;AAC9C,QAAAK,aAAY,OAAOL,iBAAgB,KAAK,IAAI,CAACM,WAAU,YAAYF,IAAG,UAAUE,OAAM;AAAA,MACxF;AAAA,IACF;AACA,UAAM,YAAY,YAAYF,IAAG;AACjC,QAAI,MAAW,CAAC,OAAO,kBAAkB,OAAO,kBAAkB,GAAG,CAAC;AACtE,QAAI,SAAc,CAAC,GAAG,GAAG,GAAG,CAAC;AAC7B,QAAI,aAAa,UAAU,SAAS,GAAG;AACrC,iBAAW,MAAM,WAAW;AAC1B,YAAI,GAAG,KAAK,IAAI;AAAI,cAAI,KAAK,GAAG;AAChC,YAAI,GAAG,KAAK,IAAI;AAAI,cAAI,KAAK,GAAG;AAChC,YAAI,GAAG,KAAK,IAAI;AAAI,cAAI,KAAK,GAAG;AAChC,YAAI,GAAG,KAAK,IAAI;AAAI,cAAI,KAAK,GAAG;AAAA,MAClC;AACA,UAAI,MAAM,IAAI;AACd,UAAI,MAAM,IAAI;AACd,eAAS,CAAC,IAAI,MAAMF,OAAM,MAAM,MAAM,IAAI,IAAI,MAAMA,OAAM,MAAM,MAAM,IAAI,IAAI,MAAMA,OAAM,MAAM,MAAM,IAAI,IAAI,MAAMA,OAAM,MAAM,MAAM,EAAE;AAAA,IAC1I,OAAO;AACL,YAAM,YAAYE,IAAG,MAAM;AAAA,QACzB,KAAK,MAAM,KAAK,IAAI,GAAG,YAAYA,IAAG,IAAI,QAAQ,EAAE,CAAC;AAAA,QACrD,KAAK,MAAM,KAAK,IAAI,GAAG,YAAYA,IAAG,IAAI,QAAQ,EAAE,CAAC;AAAA,QACrD,KAAK,MAAM,KAAK,IAAKF,OAAM,MAAM,MAAM,GAAI,YAAYE,IAAG,IAAI,YAAY,EAAE,IAAI,KAAK,IAAI,GAAG,YAAYA,IAAG,IAAI,QAAQ,EAAE,CAAC;AAAA,QAC1H,KAAK,MAAM,KAAK,IAAKF,OAAM,MAAM,MAAM,GAAI,YAAYE,IAAG,IAAI,YAAY,EAAE,IAAI,KAAK,IAAI,GAAG,YAAYA,IAAG,IAAI,QAAQ,EAAE,CAAC;AAAA,MAC5H,IAAI,CAAC,GAAG,GAAG,GAAG,CAAC;AACf,eAAS;AAAA,QACN,YAAYA,IAAG,IAAI,QAAQ,MAAOF,OAAM,MAAM,MAAM;AAAA,QACpD,YAAYE,IAAG,IAAI,QAAQ,MAAOF,OAAM,MAAM,MAAM;AAAA,SACpD,YAAYE,IAAG,IAAI,YAAY,KAAK,YAAYA,IAAG,IAAI,QAAQ,OAAOF,OAAM,MAAM,MAAM;AAAA,SACxF,YAAYE,IAAG,IAAI,YAAY,KAAK,YAAYA,IAAG,IAAI,QAAQ,OAAOF,OAAM,MAAM,MAAM;AAAA,MAC3F;AAAA,IACF;AACA,UAAM,YAAuB,QAAQ,SAAS;AAC9C,UAAM,KAAK;AAAA,MACT,IAAIE;AAAA,MACJ,OAAO,KAAK,MAAM,MAAM,YAAYA,IAAG,UAAU,IAAI;AAAA,MACrD,UAAU,KAAK,MAAM,MAAM,YAAYA,IAAG,aAAa,IAAI;AAAA,MAC3D,aAAa,KAAK,MAAM,MAAM,YAAYA,IAAG,gBAAgB,IAAI;AAAA,MACjE,OAAO;AAAA,MACP;AAAA,MACA;AAAA,MACA;AAAA,MACA,aAAaC;AAAA,MACb;AAAA,IACF,CAAC;AAAA,EACH;AACA,SAAO;AACT;AAEA,eAAsBE,OAAKJ,SAAiE;AApF5F;AAqFE,MAAIK,KAAI,SAAS;AACf,wBAAoB;AACpB,oBAAgB;AAAA,EAClB;AACA,MAAI,CAAC,qBAAqB,CAAC,eAAe;AACxC,KAAC,mBAAmB,aAAa,IAAI,MAAM,QAAQ,IAAI;AAAA,MACrDL,QAAO,KAAK,UAAU,WAAU,KAAAA,QAAO,KAAK,aAAZ,mBAAsB,SAAS,IAAI;AAAA,MACnEA,QAAO,KAAK,YAAY,WAAU,KAAAA,QAAO,KAAK,aAAZ,mBAAsB,SAAS,IAAI;AAAA,IACvE,CAAC;AAAA,EACH,OAAO;AACL,QAAIA,QAAO;AAAO,UAAI,iBAAiB,kBAAkB,WAAW;AACpE,QAAIA,QAAO;AAAO,UAAI,iBAAiB,cAAc,WAAW;AAAA,EAClE;AACA,QAAM,eAAe,oBAAoB,IAAiB,aAAa,iBAAiB,IAAI;AAC5F,MAAI,gBAAgB;AAAe,mBAAe,IAAiB,aAAa,cAAc,aAAa;AAC3G,SAAO,CAAC,mBAAmB,aAAa;AAC1C;;;AC3FO,IAAMM,UAAS;AAAA,EACpB,MAAM;AAAA,EACN,UAAU;AAAA,EACV,QAAQ;AAAA,EACR,IAAI;AAAA,EACJ,YAAY,CAAC;AAAA,EACb,WAAW;AAAA,IACT,OAAO;AAAA,IACP,WAAW;AAAA,IACX,oBAAoB;AAAA,IACpB,uBAAuB;AAAA,IACvB,OAAO;AAAA,IACP,SAAS;AAAA,IACT,8BAA8B;AAAA,IAC9B,gBAAgB;AAAA,EAClB;AACF;AAEA,SAAS,aAAmB;AAK1B,QAAM,KAAKA,QAAO;AAClB,MAAI,CAAC;AAAI;AACT,EAAAA,QAAO,aAAa,GAAG,uBAAuB;AAEhD;AAOO,SAAS,SAASC,WAAuB;AA5ChD;AA8CE,MAAIA,UAAS,OAAO,YAAY;AAAW;AAC3C,MAAKD,QAAO,QAAW,OAAO,EAAE,YAAa,GAAC,KAAAA,WAAA,gBAAAA,QAAQ,OAAR,mBAAY,aAAaA,QAAO,GAAG,WAAU;AACzF,QAAI,wCAAwC;AAC5C,IAAO,MAAMC,SAAQ;AAAA,EAMvB;AACA,MAAI,CAAI,YAAYD,QAAO,IAAI,GAAG;AAChC,QAAI;AACF,MAAAA,QAAO,SAAe,OAAO,KAAK,GAAG;AAAA,IACvC,SAAS,KAAP;AACA,UAAI,gCAAgC,GAAG;AACvC;AAAA,IACF;AACA,QAAI;AACF,MAAAA,QAAO,KAAKA,QAAO,OAAO,WAAW,UAAUA,QAAO,SAAS;AAC/D,UAAI,CAACA,QAAO,IAAI;AACd,YAAI,iCAAiC;AACrC;AAAA,MACF;AACA,YAAM,OAAOA,QAAO,GAAG,aAAaA,QAAO,GAAG,OAAO,EAAE,SAAS,KAAK;AACrE,UAAI,CAAC,MAAM;AACT,YAAI,qEAAqE;AACzE,QAAAC,UAAS,OAAO,UAAU;AAC1B;AAAA,MACF;AACA,UAAID,QAAO,QAAQ;AACjB,QAAAA,QAAO,OAAO,iBAAiB,oBAAoB,CAACE,OAAM;AACxD,cAAI,mBAAmBA,GAAE,IAAI;AAC7B,cAAI,0FAA0F;AAC9F,UAAAD,UAAS,KAAK,OAAO;AACrB,gBAAM,IAAI,MAAM,mCAAmC;AAAA,QAMrD,CAAC;AACD,QAAAD,QAAO,OAAO,iBAAiB,wBAAwB,CAACE,OAAM;AAC5D,cAAI,oCAAoCA,EAAC;AAAA,QAC3C,CAAC;AACD,QAAAF,QAAO,OAAO,iBAAiB,6BAA6B,CAACE,OAAM;AACjE,cAAI,kCAAkCA,EAAC;AAAA,QACzC,CAAC;AAAA,MACH;AAAA,IACF,SAAS,KAAP;AACA,UAAI,oCAAoC,GAAG;AAC3C;AAAA,IACF;AACA,QAAI;AACF,MAAG,gBAAgB,GAAGF,QAAO,EAAE;AAAA,IACjC,SAAS,KAAP;AACA,UAAI,oCAAoC,GAAG;AAC3C;AAAA,IACF;AACA,QAAI;AACF,YAAM,MAAM,IAAO,aAAaA,QAAO,EAAE;AACzC,MAAG,gBAAgBA,QAAO,MAAM,MAAM,IAAO,iBAAiB,GAAG,GAAGA,QAAO,QAAQ;AAAA,IACrF,SAAS,KAAP;AACA,UAAI,yCAAyC,GAAG;AAChD;AAAA,IACF;AACA,QAAI;AACF,YAAM,UAAa,qBAAqB,OAAO;AAC/C,cAAQ,QAAQ,CAAC,iBAAiB;AAChC,cAAM,kBAAkB,EAAE,GAAG,cAAc,aAAaA,QAAO,KAAK;AACpE,QAAG,eAAe,eAAe;AAAA,MACnC,CAAC;AAAA,IACH,SAAS,KAAP;AACA,UAAI,oDAAoD,GAAG;AAC3D;AAAA,IACF;AACA,UAAM,UAAa,QAAQ,EAAE,kBAAqB,QAAQ,EAAE,gBAAgB,EAAE,KAAK;AACnF,QAAI,SAAS;AACX,UAAI,yBAAyB,QAAQ,aAAa,QAAQ,OAAO,cAAwB,QAAQ,aAAa,QAAQ,QAAQ,GAAa;AAAA,IAC7I,OAAO;AACL,UAAI,iCAAiC,SAASA,QAAO,EAAE;AACvD;AAAA,IACF;AACA,QAAI;AACF,UAAO,IAAI,EAAE,aAAa;AAAe,QAAG,IAAI,EAAE,IAAI,iBAAiB,CAAC;AAAA,IAC1E,SAAS,KAAP;AACA,UAAI,0CAA0C,GAAG;AACjD;AAAA,IACF;AACA,eAAW;AACX,QAAI,uBAAuBA,QAAO,IAAI;AAAA,EACxC;AACF;;;AChIA,SAAS,kBAAkBG,SAAgB;AACzC,MAAI,CAACC,KAAI,QAAQ,SAAS,KAAK,GAAG;AAChC,UAAM,YAAY;AAAA,MAChB,YAAY;AAAA,MACZ,aAAgB,WAAW;AAAA,MAC3B,YAAY,CAACC,QAAU,KAAK,MAAS,IAAIA,IAAG,OAAO,GAAM,IAAO,IAAIA,IAAG,OAAO,GAAGA,IAAG,OAAO,CAAC,GAAGA,IAAG,OAAO,CAAC,CAAC,CAAC;AAAA,IAC9G;AACA,QAAIF,QAAO;AAAO,UAAI,sBAAsB,KAAK;AACjD,IAAG,eAAe,SAAS;AAC3B,IAAAC,KAAI,QAAQ,KAAK,KAAK;AAAA,EACxB;AACA,MAAI,CAACA,KAAI,QAAQ,SAAS,UAAU,GAAG;AACrC,UAAM,iBAAiB;AAAA,MACrB,YAAY;AAAA,MACZ,aAAgB,WAAW;AAAA,MAC3B,YAAY,CAACC,QAAU,KAAK,MAAS,KAAO,IAAO,SAASA,IAAG,OAAO,IAAIA,IAAG,OAAO,CAAC,GAAGA,IAAG,OAAO,CAAC,GAAM,IAAIA,IAAG,OAAO,GAAGA,IAAG,OAAO,CAAC,CAAC,CAAC;AAAA,IACzI;AACA,QAAIF,QAAO;AAAO,UAAI,sBAAsB,UAAU;AACtD,IAAG,eAAe,cAAc;AAChC,IAAAC,KAAI,QAAQ,KAAK,UAAU;AAAA,EAC7B;AAoBA,MAAI,CAACA,KAAI,QAAQ,SAAS,kBAAkB,KAAKD,QAAO,iBAAiB;AACvE,UAAM,yBAAyB;AAAA,MAC7B,YAAY;AAAA,MACZ,aAAgB,WAAW;AAAA,MAC3B,YAAY,CAACE,QAAU,KAAK,MAAM;AAChC,cAAMC,WAAa,WAAW;AAC9B,QAAG,WAAW,KAAK;AACnB,cAAMC,KAAO,MAAM,iBAAiBF,IAAG,OAAO,OAAOA,IAAG,MAAM,SAASA,IAAG,MAAM,WAAWA,IAAG,MAAM,MAAM;AAC1G,QAAG,WAAWC,QAAO;AACrB,eAAOC;AAAA,MACT,CAAC;AAAA,IACH;AACA,QAAIJ,QAAO;AAAO,UAAI,sBAAsB,kBAAkB;AAC9D,IAAG,eAAe,sBAAsB;AACxC,IAAAC,KAAI,QAAQ,KAAK,kBAAkB;AAAA,EACrC;AACF;AAEA,eAAsB,MAAMI,WAAiB,QAAQ,OAAO;AAC1D,EAAAA,UAAS,QAAQ;AACjB,MAAI,SAASJ,KAAI,WAAYI,UAAS,OAAO,WAAYA,UAAS,OAAO,QAAQ,SAAS,KAAU,WAAW,MAAMA,UAAS,OAAO,SAAW;AAC9I,UAAM,YAAY,IAAI;AAEtB,QAAIA,UAAS,OAAO,WAAWA,UAAS,OAAO,QAAQ,SAAS,GAAG;AAGjE,UAAI,OAAO,WAAW,eAAe,OAAO,sBAAsB,eAAeA,UAAS,OAAO,OAAO;AACtG,YAAIA,UAAS,OAAO;AAAO,cAAI,2BAA2B;AAAA,MAC5D;AAGA,UAAIJ,KAAI,WAAWI,UAAS,OAAO,YAAY,cAAc;AAC3D,YAAIA,UAAS,OAAO;AAAO,cAAI,8DAA8D;AAC7F,QAAAA,UAAS,OAAO,UAAU;AAAA,MAC5B;AACA,UAAIJ,KAAI,SAASI,UAAS,OAAO,YAAY,WAAWA,UAAS,OAAO,YAAY,YAAY;AAC9F,YAAIA,UAAS,OAAO;AAAO,cAAI,4BAA4BA,UAAS,OAAO,iCAAiC;AAC5G,QAAAA,UAAS,OAAO,UAAU;AAAA,MAC5B;AAGA,UAAIJ,KAAI,WAAWI,UAAS,OAAO,YAAY,UAAU;AACvD,YAAI,OAAO,cAAc,eAAe,OAAO,UAAU,QAAQ,aAAa;AAC5E,cAAI,qEAAqE;AACzE,UAAAA,UAAS,OAAO,UAAU;AAAA,QAC5B,OAAO;AACL,gBAAM,UAAU,MAAM,UAAU,IAAI,eAAe;AACnD,cAAIA,UAAS,OAAO;AAAO,gBAAI,8BAA8B,OAAO;AACpE,cAAI,CAAC,SAAS;AACZ,gBAAI,sEAAsE;AAC1E,YAAAA,UAAS,OAAO,UAAU;AAAA,UAC5B,OAAO;AAEL,kBAAM,cAAc,wBAAwB,UAAU,MAAO,QAAuB,mBAAmB,IAAI;AAE3G,gBAAI,wBAAwB,WAAW;AAAA,UACzC;AAAA,QACF;AAAA,MACF;AAGA,UAAIA,UAAS,OAAO,YAAY;AAAW,QAAQ,SAASA,SAAQ;AACpE,YAAM,YAAY,OAAO,KAAQ,OAAO,EAAE,eAA0C;AACpF,UAAIA,UAAS,OAAO;AAAO,YAAI,uBAAuB,SAAS;AAE/D,UAAI,CAAC,UAAU,SAASA,UAAS,OAAO,OAAO,GAAG;AAChD,YAAI,kBAAkBA,UAAS,OAAO,+BAA+B;AACrE,QAAAA,UAAS,OAAO,UAAUJ,KAAI,OAAO,eAAe;AACpD,YAAII,UAAS,OAAO;AAAO,cAAI,6BAA6BA,UAAS,OAAO,SAAS;AAAA,MACvF;AAEA,UAAIA,UAAS,OAAO;AAAO,YAAI,oBAAoBA,UAAS,OAAO,OAAO;AAG1E,UAAIA,UAAS,OAAO,YAAY,QAAQ;AACtC,YAAO,IAAI,EAAE,aAAa;AAA+B,UAAG,IAAI,EAAE,IAAI,iCAAiC,IAAI;AAC3G,YAAIA,UAAS,OAAO;AAAO,cAAI,cAAcA,UAAS,OAAO,QAAQ;AACrE,YAAI,OAAU,iBAAiB;AAAa,UAAG,aAAaA,UAAS,OAAO,UAAUA,UAAS,OAAO,iBAAiB;AAAA;AAClH,gBAAM,IAAI,MAAM,wEAAwE;AAC7F,YAAI,KAAK;AACT,YAAI,OAAO;AACX,YAAI;AACF,eAAK,MAAS,IAAI,EAAE,SAAS,8BAA8B;AAC3D,iBAAO,MAAS,IAAI,EAAE,SAAS,uBAAuB;AACtD,cAAIA,UAAS,OAAO;AAAO,gBAAI,mBAAmB,OAAO,SAAS,aAAa,KAAK,kBAAkB,kBAAkB;AACxH,cAAIA,UAAS,OAAO,SAAS,CAAC;AAAM,gBAAI,2CAA2C;AAAA,QACrF,SAAQC,IAAN;AACA,cAAI,uBAAuB;AAAA,QAC7B;AAAA,MACF;AAEA,UAAI;AACF,cAAS,WAAWD,UAAS,OAAO,OAAO;AAC3C,cAAS,MAAM;AACf,QAAUE,MAAK;AAAA,MACjB,SAAS,KAAP;AACA,YAAI,8BAA8BF,UAAS,OAAO,SAAS,GAAG;AAC9D,eAAO;AAAA,MACT;AAAA,IACF;AAGA,QAAO,WAAW,MAAM,WAAW;AACjC,UAAO,IAAI,EAAE,aAAa;AAA8B,QAAG,IAAI,EAAE,IAAI,gCAAgC,KAAK;AAC1G,UAAO,IAAI,EAAE,aAAa;AAAmB,QAAG,IAAI,EAAE,IAAI,qBAAqB,IAAI;AACnF,UAAO,IAAI,EAAE,aAAa;AAA2B,QAAG,IAAI,EAAE,IAAI,6BAA6B,IAAI;AACnG,UAAO,IAAI,EAAE,aAAa;AAA4B,QAAG,IAAI,EAAE,IAAI,8BAA8B,GAAG;AACpG,UAAO,IAAI,EAAE,aAAa;AAAgB,QAAG,IAAI,EAAE,IAAI,kBAAkB,IAAI;AAC7E,UAAO,IAAI,EAAE,aAAa;AAAsB,QAAG,IAAI,EAAE,IAAI,wBAAwB,IAAI;AAGzF,UAAI,OAAOA,UAAS,OAAO,eAAe,eAAeA,UAAS,OAAO,YAAY;AACnF,YAAI,mDAAmD,IAAI;AAC3D,QAAG,IAAI,EAAE,IAAI,kCAAkC,CAAC;AAAA,MAClD;AACA,UAAO,QAAQ,EAAE,iBAAiB;AAChC,cAAM,KAAK,MAAS,QAAQ,EAAE,gBAAgB,EAAE;AAChD,YAAIA,UAAS,OAAO;AAAO,cAAI,cAAc,GAAG,aAAa,GAAG,OAAO,cAAwB,GAAG,aAAa,GAAG,QAAQ,GAAa;AAAA,MACzI;AAAA,IACF;AAGA,QAAO,WAAW,MAAM,UAAU;AAAA,IAIlC;AAGA,IAAG,eAAe;AAClB,UAAS,MAAM;AAEf,IAAAA,UAAS,YAAY,cAAc,KAAK,MAAM,IAAI,IAAI,SAAS;AAC/D,IAAAA,UAAS,OAAO,UAAa,WAAW;AAExC,UAAMJ,KAAI,cAAc;AACxB,sBAAkBI,UAAS,MAAM;AAAA,EAEnC;AACA,SAAO;AACT;AAGO,SAAS,QAAQ,aAAuBL,SAAQ;AAErD,aAAW,cAAc,aAAa;AACpC,UAAM,eAAe;AAAA,MACnB;AAAA,MACA,aAAaA,QAAO;AAAA,MACpB,YAAY,MAAM;AAAE,YAAIA,QAAO;AAAO,cAAI,cAAc,YAAYA,QAAO,OAAO;AAAA,MAAG;AAAA,IAGvF;AACA,IAAG,eAAe,YAAY;AAAA,EAChC;AACA,EAAAC,KAAI,UAAa,qBAAwB,WAAW,CAAC,EAAE,IAAI,CAAC,WAAY,OAAO,WAAsB,YAAY,CAAC;AACpH;;;ACzLA,IAAMO,UAAiD,CAAC,MAAM,IAAI;AAClE,IAAM,mBAAmB,CAAC,+CAA+C,oDAAoD;AAE7H,IAAMC,aAAY,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAEjC,IAAM,UAAU,CAAC,QAAQ,QAAQ,SAAS,SAAS,QAAQ,OAAO,UAAU;AAC5E,IAAM,YAAY;AAElB,IAAM,gBAAgB;AACtB,IAAM,wBAAwB;AAC9B,IAAM,qBAAqB;AAE3B,IAAIC,YAAU,OAAO;AACrB,IAAIC,aAAW;AACf,IAAI,aAA+B,CAAC,GAAG,CAAC;AAUxC,IAAMC,SAGF;AAAA,EACF,OAAO,CAAC;AAAA,EACR,OAAO,CAAC;AACV;AAEA,IAAM,YAAY;AAAA,EAShB,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,EAClB,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,EAClB,QAAQ,CAAC,GAAG,IAAI,IAAI,EAAE;AAAA,EACtB,MAAM,CAAC,IAAI,IAAI,IAAI,EAAE;AAAA,EACrB,OAAO,CAAC,IAAI,IAAI,IAAI,EAAE;AAAA,EACtB,MAAM,CAAC,CAAC;AAAA,EACR,MAAM,CAAC,GAAG,IAAI,IAAI,GAAG,GAAG,GAAG,CAAC;AAC9B;AAEA,eAAsBC,YAAWC,SAAqC;AAtEtE;AAwEE,MAAIC,KAAI;AAAS,IAAAP,QAAO,KAAK;AAC7B,MAAI,CAACA,QAAO,IAAI;AAGd,YAAQ,CAAC,qBAAqB,SAAS,wBAAwB,SAAS,YAAY,UAAU,QAAQ,mBAAmB,iBAAiB,qBAAqB,qBAAqB,cAAc,SAAS,SAAS,OAAO,GAAGM,OAAM;AACpO,IAAAN,QAAO,KAAK,MAAM,WAAU,KAAAM,QAAO,KAAK,aAAZ,mBAAsB,SAAS;AAC3D,UAAM,SAASN,QAAO,GAAG,cAAc,OAAO,OAAOA,QAAO,GAAG,eAAe,SAAS,IAAI;AAC3F,IAAAC,WAAU,GAAG,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AACxF,IAAAA,WAAU,GAAG,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EAC1F,WAAWK,QAAO;AAAO,QAAI,iBAAiBN,QAAO,GAAG,WAAW;AACnE,SAAOA,QAAO;AAChB;AAEA,eAAsB,aAAaM,SAAqC;AArFxE;AAsFE,MAAIC,KAAI;AAAS,IAAAP,QAAO,KAAK;AAC7B,MAAI,CAACA,QAAO,IAAI;AACd,IAAAA,QAAO,KAAK,MAAM,WAAU,KAAAM,QAAO,KAAK,aAAZ,mBAAsB,SAAS;AAC3D,UAAM,SAASN,QAAO,GAAG,cAAc,OAAO,OAAOA,QAAO,GAAG,eAAe,SAAS,IAAI;AAC3F,IAAAC,WAAU,GAAG,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AACxF,IAAAA,WAAU,GAAG,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EAC1F,WAAWK,QAAO;AAAO,QAAI,iBAAiBN,QAAO,GAAG,WAAW;AACnE,SAAOA,QAAO;AAChB;AAQA,eAAe,YAAYQ,QAAeC,SAA6C;AACrF,QAAM,QAA4B,CAAC;AACnC,MAAI,CAACD,UAAS,CAACE,QAAO;AAAI,WAAO;AACjC,QAAMC,KAA4B,CAAC;AACnC,QAAM,SAASH,OAAM,MAAM,MAAM,MAAMA,OAAM,MAAM,MAAM;AACzD,QAAM,SAAS,KAAK,IAAI,KAAK,OAAOA,OAAM,MAAM,MAAM,KAAK,CAAC,IAAI,GAAG,qBAAqB;AACxF,QAAM,QAAQ,KAAK,MAAM,SAAS,QAAQ,CAAC,IAAI;AAC/C,EAAAG,GAAE,SAAY,MAAM,eAAeH,QAAO,CAAC,QAAQ,KAAK,CAAC;AACzD,EAAAG,GAAE,OAAU,KAAKA,GAAE,QAAQ,OAAO;AAClC,GAACA,GAAE,WAAWA,GAAE,QAAQ,IAAI,MAAMD,QAAO,GAAG,aAAaC,GAAE,MAAM,gBAAgB;AACjF,EAAAA,GAAE,QAAW,QAAQA,GAAE,UAAU,CAAC,GAAG,CAAC,CAAC;AACvC,EAAAA,GAAE,SAAY,QAAQA,GAAE,WAAW,CAAC,CAAC,CAAC;AACtC,QAAM,cAA2B,QAAQA,GAAE,QAAQ,CAAC;AACpD,EAAG,QAAQ,YAAY,UAAU;AACjC,cAAY,OAAO,WAAW,CAAC;AAC/B,EAAAA,GAAE,WAAc,MAAM,aAAa,CAAC;AACpC,EAAG,QAAQ,WAAW;AAEtB,EAAAA,GAAE,MAAS,IAAIA,GAAE,UAAU,CAAC;AAC5B,EAAAA,GAAE,SAAY,OAAOA,GAAE,UAAU,CAAC;AAClC,MAAI,KAAK;AACT,EAAAA,GAAE,MAAM,MAAS,MAAM,uBAAuBA,GAAE,OAAOA,GAAE,MAAMF,QAAO,KAAK,eAAe,KAAK,GAAGA,QAAO,KAAK,gBAAgB,GAAGA,QAAO,KAAK,iBAAiB,CAAC;AAC/J,QAAM,MAAM,MAAME,GAAE,IAAI,KAAK;AAC7B,QAAM,SAAS,MAAMA,GAAE,IAAI,KAAK;AAChC,QAAM,WAAW,MAAMA,GAAE,OAAO,KAAK;AACrC,aAAW,YAAY,MAAM,KAAK,GAAG,GAAG;AACtC,UAAM,WAAc,MAAMA,GAAE,OAAO,UAAU,CAAC;AAC9C,UAAM,QAAQ,MAAM,SAAS,KAAK;AAClC,IAAG,QAAQ,QAAQ;AACnB,UAAM,UAAe,CAAC,MAAM,IAAI,MAAM,IAAI,MAAM,KAAK,MAAM,IAAI,MAAM,KAAK,MAAM,EAAE;AAClF,UAAM,SAAkBC,OAAM,SAAS,kBAAkB;AACzD,UAAM,UAAe,CAAC,KAAK,MAAM,QAAQ,KAAK,WAAW,EAAE,GAAG,KAAK,MAAM,QAAQ,KAAK,WAAW,EAAE,GAAG,KAAK,MAAM,QAAQ,KAAK,WAAW,EAAE,GAAG,KAAK,MAAM,QAAQ,KAAK,WAAW,EAAE,CAAC;AACpL,UAAM,QAAQ,OAAO;AACrB,UAAM,QAAQ,QAAQ,SAAS;AAC/B,UAAMC,QAAyB,EAAE,IAAI,MAAM,OAAO,KAAK,SAAS,QAAQ,MAAM;AAC9E,UAAM,KAAKA,KAAI;AAAA,EACjB;AACA,SAAO,KAAKF,EAAC,EAAE,QAAQ,CAACG,YAAc,QAAQH,GAAEG,QAAO,CAAC;AACxD,QAAM,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AACtC,MAAI,MAAM,UAAUL,QAAO,KAAK,eAAe;AAAI,UAAM,SAAUA,QAAO,KAAK,eAAe;AAC9F,SAAO;AACT;AAEA,eAAe,cAAcD,QAAe,GAAqBC,SAAqC;AACpG,QAAMI,QAAmB;AAAA,IACvB,IAAI,EAAE;AAAA,IACN,OAAO,KAAK,MAAM,MAAM,EAAE,KAAK,IAAI;AAAA,IACnC,UAAU,KAAK,MAAM,MAAM,EAAE,KAAK,IAAI;AAAA,IACtC,aAAa;AAAA,IACb,KAAK,EAAE;AAAA,IACP,QAAQ,EAAE;AAAA,IACV,OAAO,EAAE;AAAA,IACT,WAAW,CAAC;AAAA,IACZ,WAAW,CAAC;AAAA,IACZ,aAAa,CAAC;AAAA,EAChB;AACA,MAAIL,UAASE,QAAO,MAAMD,QAAO,KAAK,aAAa,EAAE,SAASA,QAAO,KAAK,iBAAiB,IAAI;AAC7F,UAAME,KAA4B,CAAC;AACnC,UAAM,UAAU,CAAC,EAAE,OAAO,IAAI,EAAE,OAAO,IAAI,EAAE,OAAO,KAAK,EAAE,OAAO,IAAI,EAAE,OAAO,KAAK,EAAE,OAAO,EAAE;AAC/F,IAAAA,GAAE,OAAU,MAAM,cAAcH,QAAO,CAAC,OAAO,GAAG,CAAC,CAAC,GAAG,CAACO,WAAU,GAAG,IAAIA,WAAU,GAAG,EAAE,GAAG,UAAU;AACrG,IAAAJ,GAAE,MAAS,IAAIA,GAAE,MAAM,UAAU,KAAK;AACtC,KAACA,GAAE,OAAOA,GAAE,SAAS,IAAID,QAAO,GAAG,QAAQC,GAAE,KAAK,CAAC,cAAc,UAAU,CAAC;AAC5E,UAAM,YAAY,MAAMA,GAAE,MAAM,KAAK,GAAG;AACxC,UAAM,SAAS,MAAM,KAAK,MAAM,OAAO,IAAI,KAAK,IAAI,QAAQ,EAAE,KAAK;AACnE,QAAI,UAAUF,QAAO,KAAK,iBAAiB,IAAI;AAC7C,MAAAI,MAAK,cAAc;AACnB,MAAAF,GAAE,WAAc,QAAQA,GAAE,WAAW,CAAC,IAAI,CAAC,CAAC;AAC5C,YAAM,aAAsB,MAAMA,GAAE,SAAS,MAAM;AACnD,YAAM,YAAqB,WAAW,IAAI,CAACK,SAAQ,CAACA,KAAI,KAAKD,WAAU,GAAG,IAAIC,KAAI,KAAKD,WAAU,GAAG,IAAKC,KAAI,MAAM,CAAE,CAAC;AACtH,YAAM,aAAsB,UAAU,IAAI,CAACA,SAAQ,CAACA,KAAI,KAAK,EAAE,OAAO,IAAIA,KAAI,KAAK,EAAE,OAAO,IAAKA,KAAI,MAAM,CAAE,CAAC;AAC9G,MAAAH,MAAK,YAAa,WAAY,IAAI,CAACG,SAAQ,CAAC,WAAW,MAAMA,KAAI,KAAK,EAAE,OAAO,KAAK,WAAW,MAAMA,KAAI,KAAK,EAAE,OAAO,KAAMA,KAAI,MAAM,CAAE,CAAC;AAC1I,MAAAH,MAAK,YAAuB,QAAQA,MAAK,SAAS;AAClD,iBAAW,OAAO,OAAO,KAAK,SAAS,GAAG;AACxC,QAAAA,MAAK,YAAY,OAAO,UAAU,KAAK,IAAI,CAACI,WAAmBJ,MAAK,aAAaA,MAAK,UAAUI,UAASJ,MAAK,UAAUI,UAAS,IAAK;AAAA,MACxI;AAAA,IACF;AACA,WAAO,KAAKN,EAAC,EAAE,QAAQ,CAACG,YAAc,QAAQH,GAAEG,QAAO,CAAC;AAAA,EAC1D;AACA,SAAOD;AACT;AAEA,eAAsBK,UAAQV,QAAeC,SAAuC;AAvLpF;AAwLE,MAAI,GAAC,KAAAC,QAAO,OAAP,mBAAY,gBAAe,GAAC,KAAAA,QAAO,OAAP,mBAAY,gBAAe,CAACA,QAAO,GAAG,OAAO,GAAG,SAAS,CAACA,QAAO,GAAG,OAAO,GAAG;AAAO,WAAO,CAAC;AAC9H,eAAa,CAACF,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC;AACtD,EAAAW;AACA,QAAM,YAAYV,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIW;AACxD,QAAM,YAAYD,aAAWV,QAAO,KAAK,cAAc;AACvD,MAAIA,QAAO,eAAe,YAAY,WAAW;AAC/C,WAAOY,OAAM;AAAA,EACf;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAM,mBAAmB,KAAKZ,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIW;AACpE,UAAM,oBAAoBD,YAAU,KAAKV,QAAO,KAAK,cAAc;AACnE,QAAIA,QAAO,eAAeY,OAAM,MAAM,WAAWZ,QAAO,KAAK,aAAa;AACxE,MAAAY,OAAM,QAAQ,MAAM,QAAQ,IAAIA,OAAM,MAAM,IAAI,CAAC,YAAY,cAAcb,QAAO,SAASC,OAAM,CAAC,CAAC;AAAA,IACrG,WAAWA,QAAO,eAAe,oBAAoB,qBAAqBY,OAAM,MAAM,SAAS,GAAG;AAChG,MAAAA,OAAM,QAAQ,MAAM,QAAQ,IAAIA,OAAM,MAAM,IAAI,CAAC,YAAY,cAAcb,QAAO,SAASC,OAAM,CAAC,CAAC;AAAA,IACrG,OAAO;AACL,MAAAY,OAAM,QAAQ,MAAM,YAAYb,QAAOC,OAAM;AAC7C,MAAAW,aAAW,IAAI;AACf,MAAAC,OAAM,QAAQ,MAAM,QAAQ,IAAIA,OAAM,MAAM,IAAI,CAAC,YAAY,cAAcb,QAAO,SAASC,OAAM,CAAC,CAAC;AACnG,MAAAU,YAAU;AAAA,IACZ;AAEA,UAAM,WAAW,CAAC,GAAGE,OAAM,KAAK;AAChC,IAAAA,OAAM,MAAM,SAAS;AACrB,QAAIZ,QAAO,mBAAmB,GAAG;AAC/B,eAASa,KAAI,GAAGA,KAAID,OAAM,MAAM,QAAQC,MAAK;AAC3C,cAAM,SAAaC,QAAOF,OAAM,MAAMC,IAAG,WAAW,UAAU;AAC9D,YAAI,OAAO,IAAI,MAAMd,OAAM,MAAM,MAAM,KAAK,QAAQ,OAAO,IAAI,MAAMA,OAAM,MAAM,MAAM,KAAK,QAAQa,OAAM,MAAMC,IAAG,eAAeD,OAAM,MAAMC,IAAG,eAAeb,QAAO,KAAK,iBAAiB,IAAI;AAC/L,gBAAM,WAAeG,OAAM,OAAO,KAAK,aAAa;AACpD,gBAAM,cAAkBA,OAAM,OAAO,QAAQ,aAAa;AAE1D,UAAAS,OAAM,MAAM,KAAK,EAAE,GAAG,SAASC,KAAI,KAAK,UAAU,QAAQ,YAAY,CAAC;AAAA,QACzE;AAAA,MACF;AAAA,IACF;AACA,aAASA,KAAI,GAAGA,KAAID,OAAM,MAAM,QAAQC,MAAK;AAC3C,YAAM,OAAW,KAAKD,OAAM,MAAMC,IAAG,WAAW,UAAU;AAC1D,MAAAD,OAAM,MAAMC,IAAG,MAAM,KAAK;AAC1B,MAAAD,OAAM,MAAMC,IAAG,SAAS,KAAK;AAAA,IAC/B;AACA,YAAQD,OAAM,KAAK;AAAA,EACrB,CAAC;AACH;;;ACvNA,IAAIG;AACJ,IAAMC,UAAmB,CAAC;AAC1B,IAAIC,YAAU,OAAO;AACrB,IAAIC,aAAY;AAChB,IAAIC,aAAW;AAEf,eAAsBC,OAAKC,SAAqC;AAjBhE;AAkBE,MAAIC,KAAI;AAAS,IAAAP,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,aAAZ,mBAAsB,SAAS;AAAA,WAC1DA,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,UAAQC,QAAeH,SAAgB,KAAaI,QAAgC;AAxB1G;AAyBE,MAAI,EAACV,WAAA,gBAAAA,QAAQ;AAAa,WAAO;AACjC,QAAM,cAAY,KAAAM,QAAO,KAAK,aAAZ,mBAAsB,aAAY,KAAM,IAAI,IAAIF;AAClE,QAAM,YAAYF,eAAW,KAAAI,QAAO,KAAK,aAAZ,mBAAsB,eAAc;AACjE,MAAIA,QAAO,eAAe,YAAY,aAAcH,eAAcO,UAAUT,QAAO,MAAM;AACvF,IAAAC;AACA,WAAOD,QAAO;AAAA,EAChB;AACA,EAAAC,YAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAM,SAAY,MAAM,eAAeO,QAAO,EAACT,WAAA,gBAAAA,QAAO,OAAO,GAAG,SAAQA,QAAM,OAAO,GAAG,MAAM,KAAK,IAAGA,WAAA,gBAAAA,QAAO,OAAO,GAAG,SAAQA,QAAM,OAAO,GAAG,MAAM,KAAK,CAAC,GAAG,KAAK;AACnK,UAAM,MAAMA,WAAA,gBAAAA,QAAO,QAAQ;AAC3B,UAAM,OAAO,MAAM,IAAI,KAAK,GAAG;AAC/B,IAAAC,QAAO,OAAO,KAAK,MAAM,MAAM,GAAG,IAAI;AACtC,IAAAE,aAAYO;AACZ,IAAAN,aAAW,IAAI;AACf,IAAG,QAAQ,CAAC,QAAQ,GAAG,CAAC;AACxB,YAAQH,QAAO,IAAI;AAAA,EACrB,CAAC;AACH;;;AC3CA;AAAA;AAAA,mBAAAU;AAAA,EAAA;AAAA,aAAAC;AAAA,EAAA;AAAA;AAAA;AAAO,IAAMA,OAAgB;AAAA,EAC3B;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AAEO,IAAM,aAAyB;AAAA,EACpC,CAAC,WAAW,UAAU;AAAA,EACtB,CAAC,WAAW,UAAU;AAAA,EACtB,CAAC,gBAAgB,eAAe;AAAA,EAChC,CAAC,aAAa,YAAY;AAAA,EAC1B,CAAC,aAAa,YAAY;AAAA,EAC1B,CAAC,WAAW,UAAU;AAAA,EACtB,CAAC,YAAY,WAAW;AAAA,EACxB,CAAC,aAAa,YAAY;AAC5B;AAEO,IAAM,WAAuB;AAAA,EAClC,CAAC,YAAY,cAAc;AAAA,EAC3B,CAAC,aAAa,eAAe;AAAA,EAC7B,CAAC,aAAa,UAAU;AAAA,EACxB,CAAC,cAAc,WAAW;AAC5B;AAEO,IAAM,WAAyB;AAAA,EACpC,CAAC,CAAC,WAAW,UAAU,GAAG,CAAC,gBAAgB,eAAe,CAAC;AAAA,EAC3D,CAAC,CAAC,aAAa,YAAY,GAAG,CAAC,gBAAgB,eAAe,CAAC;AACjE;AAEO,IAAMD,aAAsC;AAAA,EACjD,SAAS,CAAC,WAAW,YAAY,WAAW;AAAA,EAC5C,UAAU,CAAC,YAAY,aAAa,YAAY;AAAA,EAChD,OAAO,CAAC,gBAAgB,iBAAiB,YAAY,WAAW,cAAc;AAAA,EAC9E,SAAS,CAAC,gBAAgB,aAAa,WAAW;AAAA,EAClD,UAAU,CAAC,iBAAiB,cAAc,YAAY;AAAA,EACtD,MAAM,CAAC;AACT;;;AC5CA,IAAM,YAAY;AAElB,IAAME,SAGF;AAAA,EACF,WAAW,CAAC;AAAA,EACZ,SAAS,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAC1C;AAEO,SAAS,UAAUC,OAAkB;AAC1C,aAAW,QAAe,YAAY;AACpC,UAAM,OAAOA,MAAK,UAAU,UAAU,CAAC,OAAO,GAAG,SAAS,KAAK,EAAE;AACjE,UAAM,QAAQA,MAAK,UAAU,UAAU,CAAC,OAAO,GAAG,SAAS,KAAK,EAAE;AAClE,QAAIA,MAAK,UAAU,SAASA,MAAK,UAAU,QAAQ;AACjD,UAAIA,MAAK,UAAU,MAAM,SAAS,KAAKA,MAAK,UAAU,OAAO,SAAS,IAAI;AACxE,cAAM,MAAMA,MAAK,UAAU;AAC3B,QAAAA,MAAK,UAAU,QAAQA,MAAK,UAAU;AACtC,QAAAA,MAAK,UAAU,SAAS;AAAA,MAC1B;AAAA,IACF;AAAA,EACF;AACA,aAAW,QAAe,UAAU;AAClC,UAAM,QAAQA,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAAS,KAAK,EAAG;AAC1E,UAAM,SAASA,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAAS,KAAK,EAAG;AAC3E,QAAIA,MAAK,UAAU,UAAUA,MAAK,UAAU,SAAS;AACnD,UAAIA,MAAK,UAAU,OAAO,SAAS,KAAKA,MAAK,UAAU,QAAQ,SAAS,IAAI;AAC1E,QAAAA,MAAK,UAAU,OAAO,OAAO,CAAC;AAAA,MAChC;AAAA,IACF;AAAA,EACF;AACA,aAAW,CAAC,MAAMC,QAAO,KAAY,UAAU;AAC7C,UAAM,OAAOD,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAAS,KAAK,EAAG;AACzE,UAAM,QAAQA,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAAS,KAAK,EAAG;AAC1E,UAAM,SAASA,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAASC,SAAQ,EAAG;AAC9E,UAAM,UAAUD,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAASC,SAAQ,EAAG;AAC/E,QAAI,CAACD,MAAK,UAAU,WAAW,CAACA,MAAK,UAAU;AAAU;AACzD,UAAM,eAAeA,MAAK,UAAU,QAAQ;AAAA,MAC1C,KAAK,IAAIA,MAAK,UAAU,QAAQ,SAAS,KAAKA,MAAK,UAAU,MAAM,SAAS,EAAE;AAAA,MAC9E,KAAK,IAAIA,MAAK,UAAU,SAAS,SAAS,KAAKA,MAAK,UAAU,MAAM,SAAS,EAAE;AAAA,IACjF,IAAI,CAAC,GAAG,CAAC;AACT,UAAM,gBAAgBA,MAAK,UAAU,SAAS;AAAA,MAC5C,KAAK,IAAIA,MAAK,UAAU,SAAS,SAAS,KAAKA,MAAK,UAAU,OAAO,SAAS,EAAE;AAAA,MAChF,KAAK,IAAIA,MAAK,UAAU,QAAQ,SAAS,KAAKA,MAAK,UAAU,OAAO,SAAS,EAAE;AAAA,IACjF,IAAI,CAAC,GAAG,CAAC;AACT,QAAI,aAAa,KAAK,aAAa,MAAM,cAAc,KAAK,cAAc,IAAI;AAC5E,YAAM,MAAMA,MAAK,UAAU;AAC3B,MAAAA,MAAK,UAAU,QAAQA,MAAK,UAAU;AACtC,MAAAA,MAAK,UAAU,SAAS;AAAA,IAC1B;AAAA,EACF;AACF;AAEO,SAAS,OAAO,WAA2C;AAChE,WAASE,KAAI,GAAGA,KAAI,UAAU,QAAQA,MAAK;AACzC,QAAI,UAAUA,OAAMH,OAAM,UAAUG,KAAI;AACtC,YAAM,OAAO,CAAC,KAAK,IAAI,UAAUA,IAAG,YAAY,KAAKH,OAAM,UAAUG,IAAG,YAAY,EAAE,GAAG,KAAK,IAAI,UAAUA,IAAG,YAAY,KAAKH,OAAM,UAAUG,IAAG,YAAY,EAAE,CAAC;AAClK,UAAI,KAAK,KAAK,aAAa,KAAK,KAAK,WAAW;AAC9C,kBAAUA,MAAKH,OAAM,UAAUG;AAAA,MACjC,OAAO;AACL,QAAAH,OAAM,UAAUG,MAAK,UAAUA;AAAA,MACjC;AAAA,IACF,OAAO;AACL,MAAAH,OAAM,UAAUG,MAAK,UAAUA;AAAA,IACjC;AAAA,EACF;AACA,SAAO;AACT;AAEO,SAAS,SAASC,QAAeC,aAA2B;AA3EnE;AA4EE,QAAMC,KAA4B,CAAC;AACnC,MAAI,GAAC,KAAAF,UAAA,gBAAAA,OAAO,UAAP,mBAAe,OAAM,GAAC,KAAAA,UAAA,gBAAAA,OAAO,UAAP,mBAAe;AAAI,WAAOA;AACrD,EAAAJ,OAAM,UAAU;AAAA,IACd,CAAC,GAAG,CAAC;AAAA,IACL,CAACI,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI,GAAGA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI,CAAC;AAAA,IACjL,CAACA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI,GAAGA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI,CAAC;AAAA,IACjL,CAAC,GAAG,CAAC;AAAA,EACP;AACA,EAAAE,GAAE,MAAS,IAAIF,QAAOJ,OAAM,OAAO;AACnC,EAAAM,GAAE,SAAY,MAAM,eAAeA,GAAE,KAAK,CAACD,aAAWA,WAAS,CAAC;AAChE,QAAM,QAAW,KAAKC,GAAE,QAAQ,OAAO;AACvC,SAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AACT;AAEO,SAAS,YAAYN,OAAkBO,aAA0C;AACtF,EAAAP,MAAK,YAAYA,MAAK,UAAU,OAAO,CAACQ,SAAQA,QAAA,gBAAAA,KAAK,QAAQ;AAC7D,aAAWA,QAAOR,MAAK,WAAW;AAChC,IAAAQ,KAAI,WAAW;AAAA,MACbA,KAAI,SAAS,MAAMD,YAAW,KAAKR,OAAM,QAAQ,GAAG,KAAKA,OAAM,QAAQ,GAAG,MAAMQ,YAAW,KAAKR,OAAM,QAAQ,GAAG;AAAA,MACjHS,KAAI,SAAS,MAAMD,YAAW,KAAKR,OAAM,QAAQ,GAAG,KAAKA,OAAM,QAAQ,GAAG,MAAMQ,YAAW,KAAKR,OAAM,QAAQ,GAAG;AAAA,IACnH;AACA,IAAAS,KAAI,cAAc;AAAA,MAChBA,KAAI,SAAS,KAAKD,YAAW;AAAA,MAAIC,KAAI,SAAS,KAAKD,YAAW;AAAA,IAChE;AAAA,EACF;AACA,QAAM,gBAAoB,KAAKP,MAAK,UAAU,IAAI,CAAC,OAAO,GAAG,QAAQ,GAAGO,WAAU;AAClF,EAAAP,MAAK,MAAM,cAAc;AACzB,EAAAA,MAAK,SAAS,cAAc;AAC5B,SAAOA;AACT;;;ACxFA,IAAIS;AACJ,IAAIC,aAAY;AAChB,IAAIC,YAAU,OAAO;AAGrB,IAAMC,SAIF;AAAA,EACF,OAAO,CAAC;AAAA,EACR,QAAQ,CAAC;AAAA,EACT,MAAM;AACR;AAEA,eAAsBC,OAAKC,SAAqC;AAjChE;AAkCE,MAAIC,KAAI;AAAS,IAAAN,UAAQ;AACzB,MAAI,CAACA,SAAO;AACV,YAAQ,CAAC,MAAM,GAAGK,OAAM;AACxB,IAAAL,UAAQ,MAAM,UAAUK,QAAO,KAAK,SAAS;AAAA,EAC/C,WAAWA,QAAO;AAAO,QAAI,iBAAiBL,QAAM,WAAW;AAC/D,EAAAC,cAAaD,WAAA,gBAAAA,QAAQ,kBAAe,KAAAA,WAAA,gBAAAA,QAAO,WAAP,mBAAgB,GAAG,SAASA,QAAM,OAAO,GAAG,MAAM,KAAK;AAC3F,MAAIC,aAAY;AAAI,IAAAA,aAAY;AAChC,SAAOD;AACT;AAEA,SAAS,gBAAgB,KAAKK,SAAQE,QAAO;AAC3C,QAAMC,OAAM,IAAI,GAAG;AACnB,QAAM,YAA4B,CAAC;AACnC,MAAI,QAAQ;AACZ,WAAS,KAAK,GAAG,KAAKA,KAAI,QAAQ,MAAM;AACtC,YAAQA,KAAI,IAAI;AAChB,QAAI,QAAQH,QAAO,KAAK,eAAe;AACrC,YAAM,cAAqB,CAACG,KAAI,IAAI,IAAIA,KAAI,IAAI,EAAE;AAClD,gBAAU,KAAK;AAAA,QACb,OAAO,KAAK,MAAM,MAAM,KAAK,IAAI;AAAA,QACjC,MAAaA,KAAI;AAAA,QACjB;AAAA,QACA,UAAU;AAAA,UACR,KAAK,OAAOD,OAAM,MAAM,MAAM,KAAK,YAAY,EAAE;AAAA,UACjD,KAAK,OAAOA,OAAM,MAAM,MAAM,KAAK,YAAY,EAAE;AAAA,QACnD;AAAA,MACF,CAAC;AAAA,IACH;AAAA,EACF;AACA,UAAQ,UAAU,OAAO,CAAC,MAAM,SAAU,KAAK,QAAQ,OAAO,KAAK,QAAQ,MAAO,CAAC;AACnF,QAAM,SAAuB,CAAC;AAC9B,QAAM,SAAa,KAAK,UAAU,IAAI,CAAC,OAAO,GAAG,QAAQ,GAAG,CAACA,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,CAAC;AAC5F,QAAME,eAAyC,CAAC;AAChD,aAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAeC,UAAS,GAAG;AAC9D,UAAM,KAAgB,CAAC;AACvB,aAASC,KAAI,GAAGA,KAAI,QAAQ,SAAS,GAAGA,MAAK;AAC3C,YAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQA,GAAE;AACzD,YAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQA,KAAI,EAAE;AAC7D,UAAI,OAAO,OAAO,IAAI,SAASN,QAAO,KAAK,iBAAiB,MAAM,IAAI,SAASA,QAAO,KAAK,iBAAiB;AAAI,WAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,IACtJ;AACA,IAAAI,aAAY,QAAQ;AAAA,EACtB;AACA,QAAMG,QAAmB,EAAE,IAAI,GAAG,OAAO,KAAK,OAAO,KAAK,QAAQ,OAAO,QAAQ,WAAW,aAAAH,aAAY;AACxG,EAAI,UAAUG,KAAI;AAClB,SAAO,KAAKA,KAAI;AAChB,SAAO;AACT;AAEA,SAAS,eAAe,KAAKP,SAAQE,QAAO;AAC1C,QAAM,SAAuB,CAAC;AAC9B,WAAS,KAAK,GAAG,KAAK,IAAI,GAAG,QAAQ,MAAM;AACzC,UAAMC,OAAM,IAAI,GAAG;AACnB,UAAM,aAAa,KAAK,MAAM,MAAMA,KAAI,KAAK,EAAE,IAAI;AACnD,QAAI,aAAaH,QAAO,KAAK,eAAe;AAC1C,YAAM,YAA4B,CAAC;AACnC,eAASM,KAAI,GAAGA,KAAI,IAAIA,MAAK;AAC3B,cAAM,QAAQH,KAAI,IAAIG,KAAI;AAC1B,YAAI,QAAQN,QAAO,KAAK,eAAe;AACrC,gBAAM,cAAqB,CAACG,KAAI,IAAIG,KAAI,IAAIH,KAAI,IAAIG,KAAI,EAAE;AAC1D,oBAAU,KAAK;AAAA,YACb,MAAaH,KAAIG;AAAA,YACjB,OAAO,KAAK,MAAM,MAAM,KAAK,IAAI;AAAA,YACjC;AAAA,YACA,UAAU,CAAC,KAAK,OAAOJ,OAAM,MAAM,MAAM,KAAK,YAAY,EAAE,GAAG,KAAK,OAAOA,OAAM,MAAM,MAAM,KAAK,YAAY,EAAE,CAAC;AAAA,UACnH,CAAC;AAAA,QACH;AAAA,MACF;AACA,YAAM,SAAa,KAAK,UAAU,IAAI,CAAC,OAAO,GAAG,QAAQ,GAAG,CAACA,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,CAAC;AAI5F,YAAME,eAAiD,CAAC;AACxD,iBAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAeC,UAAS,GAAG;AAC9D,cAAM,KAAgB,CAAC;AACvB,iBAASC,KAAI,GAAGA,KAAI,QAAQ,SAAS,GAAGA,MAAK;AAC3C,gBAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQA,GAAE;AACzD,gBAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQA,KAAI,EAAE;AAC7D,cAAI,OAAO,OAAO,IAAI,SAASN,QAAO,KAAK,iBAAiB,MAAM,IAAI,SAASA,QAAO,KAAK,iBAAiB;AAAI,eAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,QACtJ;AACA,QAAAI,aAAY,QAAQ;AAAA,MACtB;AACA,YAAMG,QAAmB,EAAE,IAAI,OAAO,YAAY,KAAK,OAAO,KAAK,QAAQ,OAAO,QAAQ,WAAW,CAAC,GAAG,SAAS,GAAG,aAAAH,aAAY;AACjI,MAAI,UAAUG,KAAI;AAClB,aAAO,KAAKA,KAAI;AAAA,IAClB;AAAA,EACF;AACA,SAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AACvC,MAAI,OAAO,SAASP,QAAO,KAAK;AAAa,WAAO,SAASA,QAAO,KAAK;AACzE,SAAO;AACT;AAEA,eAAsBQ,UAAQC,QAAeT,SAAuC;AA7HpF;AA8HE,MAAI,EAACL,WAAA,gBAAAA,QAAQ,gBAAe,GAAC,KAAAA,WAAA,gBAAAA,QAAO,WAAP,mBAAgB,GAAG;AAAO,WAAO,CAAC;AAC/D,MAAI,CAACK,QAAO;AAAa,IAAAF,OAAM,MAAM,SAAS;AAC9C,EAAAD;AACA,QAAM,YAAYG,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIF,OAAM;AAC9D,QAAM,YAAYD,aAAWG,QAAO,KAAK,cAAc;AACvD,MAAIA,QAAO,eAAe,YAAY,WAAW;AAC/C,WAAOF,OAAM;AAAA,EACf;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAMY,KAA4B,CAAC;AACnC,IAAAb,YAAU;AAmCV,IAAAa,GAAE,QAAY,SAASD,QAAOb,UAAS;AACvC,IAAAc,GAAE,MAAMf,WAAA,gBAAAA,QAAO,QAAQe,GAAE;AACzB,IAAAZ,OAAM,OAAO,IAAI;AACjB,UAAM,MAAM,MAAMY,GAAE,IAAI,MAAM;AAC9B,IAAAZ,OAAM,SAAUY,GAAE,IAAI,MAAM,OAAO,KAC/B,gBAAgB,KAAKV,SAAQS,MAAK,IAClC,eAAe,KAAKT,SAAQS,MAAK;AACrC,eAAWF,SAAQT,OAAM,QAAQ;AAC/B,MAAI,YAAYS,OAAM,CAACE,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC,CAAC;AAChE,MAAI,OAAOF,MAAK,SAAS;AAAA,IAC3B;AACA,WAAO,KAAKG,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AAExD,YAAQb,OAAM,MAAM;AAAA,EACtB,CAAC;AACH;;;AC1KA,IAAIc;AACJ,IAAIC,SAAuB,CAAC;AAC5B,IAAIC,aAAW;AACf,IAAIC,YAAU,OAAO;AACrB,IAAIC,aAAY;AAEhB,IAAM,WAAW;AAEjB,eAAsBC,OAAKC,SAAqC;AAC9D,MAAI,CAACN,WAASO,KAAI,SAAS;AACzB,IAAAP,UAAQ,MAAM,UAAUM,QAAO,OAAO,SAAS;AAC/C,UAAM,UAASN,WAAA,gBAAAA,QAAQ,eAAc,OAAO,OAAOA,QAAM,eAAe,SAAS,IAAI;AACrF,IAAAI,aAAY,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EACpF,WAAWE,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC/D,SAAOA;AACT;AAEA,eAAeQ,SAAQ,KAAe,aAA+BF,SAAgB;AACnF,MAAI,KAAK;AACT,MAAI,UAA0B,CAAC;AAC/B,QAAMG,QAAOL;AACb,aAAW,cAAc,CAAC,GAAG,GAAG,CAAC,GAAG;AAElC,UAAM,WAAW,aAAa;AAE9B,UAAM,UAAa,QAAQ,IAAI,KAAK,CAAC,MAAe,EAAE,MAAM,OAAQ,YAAY,MAAO,EAAE,MAAM,MAAM,OAAO,OAAO,MAAO,CAAC;AAC3H,UAAM,SAAS,MAAM,QAAQ,MAAM;AACnC,UAAM,YAAe,QAAQ,IAAI,KAAK,CAAC,MAAe,EAAE,MAAM,OAAQ,YAAY,MAAO,EAAE,MAAM,MAAM,KAAK,OAAO,MAAO,CAAC;AAC3H,UAAM,YAAY,UAAU,QAAQ,CAAC,IAAI,GAAG,UAAU,MAAM,KAAK,CAAC,CAAC;AACnE,UAAM,UAAU,UAAU,OAAO,CAAC;AAClC,UAAM,SAAS,MAAM,QAAQ,MAAM;AACnC,aAASM,KAAI,GAAGA,KAAI,QAAQ,MAAM,IAAIA,MAAK;AACzC,eAAS,IAAI,GAAG,IAAI,QAAQ,MAAM,IAAI,KAAK;AACzC,cAAM,QAAQ,OAAOA,IAAG;AACxB,YAAI,SAASJ,QAAO,OAAO,iBAAiB,MAAM,MAAM,IAAI;AAC1D,gBAAM,MAAM,MAAM,KAAK,MAAMI,KAAI,QAAQ,KAAK;AAC9C,gBAAM,MAAM,MAAM,KAAK,MAAMA,KAAI,QAAQ,KAAK;AAC9C,gBAAM,YAAY,OAAOA,IAAG,IAAI,CAAC,MAAc,KAAK,WAAW,aAAcD,MAAM;AACnF,gBAAM,CAAC,GAAG,CAAC,IAAI;AAAA,YACb,KAAM,WAAW,aAAa,UAAU;AAAA,YACxC,KAAM,WAAW,aAAa,UAAU;AAAA,UAC1C;AACA,gBAAM,CAAC,GAAG,CAAC,IAAI;AAAA,YACb,KAAM,WAAW,aAAa,UAAU,KAAM;AAAA,YAC9C,KAAM,WAAW,aAAa,UAAU,KAAM;AAAA,UAChD;AACA,cAAI,SAAc,CAAC,GAAG,GAAG,GAAG,CAAC;AAC7B,mBAAS,OAAO,IAAI,CAAC,MAAM,KAAK,IAAI,GAAG,KAAK,IAAI,GAAG,CAAC,CAAC,CAAC;AACtD,gBAAM,MAAM;AAAA,YACV,OAAO,KAAK,YAAY;AAAA,YACxB,OAAO,KAAK,YAAY;AAAA,YACxB,OAAO,KAAK,YAAY;AAAA,YACxB,OAAO,KAAK,YAAY;AAAA,UAC1B;AACA,gBAAM,SAAS;AAAA,YACb,IAAI;AAAA,YAEJ,OAAO,KAAK,MAAM,MAAM,KAAK,IAAI;AAAA,YACjC,OAAO,IAAI;AAAA,YACX,OAAO,OAAO,GAAG;AAAA,YAGjB,KAAK,IAAI,IAAI,CAAC,MAAM,KAAK,MAAM,CAAC,CAAC;AAAA,YACjC;AAAA,UACF;AACA,kBAAQ,KAAK,MAAM;AAAA,QACrB;AAAA,MACF;AAAA,IACF;AACA,IAAG,QAAQ,CAAC,SAAS,WAAW,WAAW,OAAO,CAAC;AAAA,EACrD;AAIA,QAAM,WAAW,QAAQ,IAAI,CAAC,MAAM,CAAC,EAAE,OAAO,IAAI,EAAE,OAAO,IAAI,EAAE,OAAO,IAAI,EAAE,OAAO,EAAE,CAAC;AACxF,QAAM,YAAY,QAAQ,IAAI,CAAC,MAAM,EAAE,KAAK;AAC5C,MAAI,SAAmB,CAAC;AACxB,MAAI,YAAY,SAAS,SAAS,GAAG;AACnC,UAAM,MAAM,MAAS,MAAM,uBAAuB,UAAU,WAAWH,QAAO,OAAO,aAAaA,QAAO,OAAO,cAAcA,QAAO,OAAO,aAAa;AACzJ,aAAS,MAAM,IAAI,KAAK;AACxB,IAAG,QAAQ,GAAG;AAAA,EAChB;AAGA,YAAU,QACP,OAAO,CAAC,MAAM,QAAQ,OAAO,SAAS,GAAG,CAAC,EAC1C,KAAK,CAAC,GAAG,MAAO,EAAE,QAAQ,EAAE,KAAM;AAErC,SAAO;AACT;AAEA,eAAsBK,UAAQC,QAAeN,SAAyC;AACpF,MAAI,EAACN,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYM,QAAO,OAAO,YAAY,KAAM,IAAI,IAAIJ;AAC1D,QAAM,YAAYC,aAAWG,QAAO,OAAO,cAAc;AACzD,MAAIA,QAAO,eAAe,YAAY,aAAcL,OAAK,SAAS,GAAI;AACpE,IAAAE;AACA,WAAOF;AAAA,EACT;AACA,EAAAE,YAAU;AACV,MAAI,CAACI,KAAI,QAAQ,SAAS,KAAK,KAAK,CAACA,KAAI,QAAQ,SAAS,eAAe;AAAG,WAAON;AACnF,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAMY,cAAa,CAACD,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC;AAC5D,UAAM,UAAa,MAAM,eAAeA,QAAO,CAACR,YAAWA,UAAS,GAAG,KAAK;AAC5E,UAAM,QAAW,IAAI,SAAS,UAAU,KAAK;AAC7C,UAAM,aAAgB,UAAU,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAEnD,QAAI;AACJ,QAAIE,QAAO,OAAO;AAAS,gBAAUN,QAAM,QAAQ,UAAU;AAC7D,IAAAE,aAAW,IAAI;AAEf,UAAM,MAAM,MAAMM,SAAQ,SAAqBK,aAAgCP,OAAM;AACrF,IAAAL,SAAO;AACP,IAAG,QAAQ,CAAC,SAAS,OAAO,YAAY,GAAG,OAAO,CAAC;AACnD,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;AC7HO,IAAM,YAAY;AAAA,EACvB;AAAA,EAAQ;AAAA,EAAW;AAAA,EAAY;AAAA,EAAW;AAAA,EAAY;AAAA,EACtD;AAAA,EAAiB;AAAA,EAAa;AAAA,EAAc;AAAA,EAAa;AAAA,EACzD;AAAA,EAAW;AAAA,EAAY;AAAA,EAAY;AAAA,EAAa;AAAA,EAAa;AAC/D;AAEO,IAAMa,SAAQ,UAAU;AAExB,IAAM,UAAU,UAAU,OAAO,CAAC,QAAQ,WAAWC,OAAM;AAChE,SAAO,aAAaA;AACpB,SAAO;AACT,GAAG,CAAC,CAAC;AAEL,IAAM,qBAAqB;AAAA,EACzB,CAAC,WAAW,cAAc;AAAA,EAAG,CAAC,aAAa,cAAc;AAAA,EACzD,CAAC,aAAa,WAAW;AAAA,EAAG,CAAC,WAAW,UAAU;AAAA,EAClD,CAAC,YAAY,WAAW;AAAA,EAAG,CAAC,YAAY,eAAe;AAAA,EACvD,CAAC,cAAc,eAAe;AAAA,EAAG,CAAC,cAAc,YAAY;AAAA,EAC5D,CAAC,YAAY,WAAW;AAAA,EAAG,CAAC,aAAa,YAAY;AAAA,EACrD,CAAC,gBAAgB,eAAe;AAAA,EAAG,CAAC,WAAW,UAAU;AAC3D;AACO,IAAM,uBAAuB,mBAAmB,IAAI,CAAC,CAAC,YAAY,UAAU,MAAO,CAAC,QAAQ,aAAa,QAAQ,WAAW,CAAE;AAE9H,IAAM,YAAY;AAAA,EACvB,CAAC,QAAQ,SAAS;AAAA,EAAG,CAAC,WAAW,SAAS;AAAA,EAAG,CAAC,QAAQ,UAAU;AAAA,EAChE,CAAC,YAAY,UAAU;AAAA,EAAG,CAAC,QAAQ,cAAc;AAAA,EACjD,CAAC,gBAAgB,WAAW;AAAA,EAAG,CAAC,aAAa,WAAW;AAAA,EACxD,CAAC,gBAAgB,SAAS;AAAA,EAAG,CAAC,WAAW,UAAU;AAAA,EACnD,CAAC,YAAY,WAAW;AAAA,EAAG,CAAC,QAAQ,eAAe;AAAA,EACnD,CAAC,iBAAiB,YAAY;AAAA,EAAG,CAAC,cAAc,YAAY;AAAA,EAC5D,CAAC,iBAAiB,UAAU;AAAA,EAAG,CAAC,YAAY,WAAW;AAAA,EACvD,CAAC,aAAa,YAAY;AAC5B;AAgBO,SAAS,eAAe,WAA6C;AAC1E,QAAM,QAAQ,UAAU,OAAO,CAAC,EAAE,MAAM,MAAM,MAAM,KAAK,GAAG,EAAE,UAAU,EAAE,GAAG,EAAE,EAAE,OAAO;AAAA,IACtF,MAAM,KAAK,IAAI,MAAM,CAAC;AAAA,IACtB,MAAM,KAAK,IAAI,MAAM,CAAC;AAAA,IACtB,MAAM,KAAK,IAAI,MAAM,CAAC;AAAA,IACtB,MAAM,KAAK,IAAI,MAAM,CAAC;AAAA,EACxB,IAAI;AAAA,IACF,MAAM,OAAO;AAAA,IACb,MAAM,OAAO;AAAA,IACb,MAAM,OAAO;AAAA,IACb,MAAM,OAAO;AAAA,EACf,CAAC;AACD,SAAO,CAAC,MAAM,MAAM,MAAM,MAAM,MAAM,OAAO,MAAM,MAAM,MAAM,OAAO,MAAM,IAAI;AAClF;AAEO,SAAS,WAAW,OAAO,CAAC,QAAQ,KAAK,GAAG,CAAC,uBAAuB,oBAAoB,GAAiB;AAC9G,QAAM,SAAS,SAAS;AACxB,QAAM,SAAS,QAAQ;AACvB,QAAM,YAAY,CAAC,MAAMC,QAAmB;AAAA,IAC1C,IAAIA;AAAA,IACJ,OAAO,KAAK;AAAA,IACZ,QAAQ,CAAC,KAAK,IAAI,KAAK,sBAAsB,KAAK,IAAI,KAAK,uBAAuB,KAAK,IAAI,KAAK,sBAAsB,KAAK,IAAI,KAAK,qBAAqB;AAAA,IACzJ,KAAK,CAAC,KAAK,MAAM,KAAK,IAAI,KAAK,MAAM,GAAG,KAAK,MAAM,KAAK,IAAI,KAAK,MAAM,GAAG,KAAK,MAAM,KAAK,IAAI,KAAK,MAAM,GAAG,KAAK,MAAM,KAAK,IAAI,KAAK,MAAM,CAAC;AAAA,IAC5I,WAAW,KAAK,UAAU,IAAI,CAAC,EAAE,OAAO,MAAM,SAAS,OAAO;AAAA,MAC5D;AAAA,MACA;AAAA,MACA,UAAU,CAAC,KAAK,MAAM,SAAS,IAAI,MAAM,GAAG,KAAK,MAAM,SAAS,IAAI,MAAM,CAAC;AAAA,MAC3E,aAAa,CAAC,SAAS,IAAI,uBAAuB,SAAS,IAAI,qBAAqB;AAAA,IACtF,EAAE;AAAA,IACF,aAAa,CAAC;AAAA,EAChB;AACA,QAAM,cAAc,MAAM,IAAI,CAAC,MAAMA,OAAM,UAAU,MAAMA,EAAC,CAAC;AAC7D,SAAO;AACT;AAGO,IAAM,UAAN,MAAc;AAAA,EAKnB,YAAYC,UAAS,iBAAiB;AAJtC;AACA;AACA;AAGE,SAAK,gBAAgB,IAAI,MAAMA,QAAO;AACtC,SAAK,mBAAmB;AACxB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EAEA,QAAQ,GAAG;AACT,SAAK,cAAc,EAAE,KAAK,oBAAoB;AAC9C,SAAK,KAAK,KAAK,gBAAgB;AAAA,EACjC;AAAA,EAEA,UAAU;AACR,UAAMC,OAAM,KAAK,cAAc;AAC/B,SAAK,SAAS,GAAG,KAAK,kBAAkB;AACxC,SAAK,KAAK,CAAC;AACX,SAAK,cAAc,KAAK,mBAAmB,KAAK;AAChD,WAAOA;AAAA,EACT;AAAA,EAEA,QAAQ;AAAE,WAAO,KAAK,qBAAqB;AAAA,EAAI;AAAA,EAE/C,OAAO;AAAE,WAAO,KAAK,mBAAmB;AAAA,EAAG;AAAA,EAE3C,MAAM;AAAE,WAAO,KAAK,cAAc,MAAM,GAAG,KAAK,mBAAmB,CAAC;AAAA,EAAG;AAAA,EAEvE,MAAM;AAAE,WAAO,KAAK,cAAc;AAAA,EAAI;AAAA,EAEtC,KAAK,GAAG;AACN,WAAO,IAAI,KAAK,KAAK,KAAK,KAAK,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG;AAC/C,WAAK,SAAS,GAAG,KAAK,MAAM,IAAI,CAAC,CAAC;AAClC,UAAI,KAAK,MAAM,IAAI,CAAC;AAAA,IACtB;AAAA,EACF;AAAA,EAEA,KAAK,GAAG;AACN,WAAO,IAAI,KAAK,KAAK,kBAAkB;AACrC,UAAI,IAAI,IAAI;AACZ,UAAI,IAAI,KAAK,oBAAoB,KAAK,KAAK,GAAG,IAAI,CAAC;AAAG;AACtD,UAAI,CAAC,KAAK,KAAK,GAAG,CAAC;AAAG;AACtB,WAAK,SAAS,GAAG,CAAC;AAClB,UAAI;AAAA,IACN;AAAA,EACF;AAAA,EAEA,WAAWF,IAAG;AAEZ,WAAO,KAAK,gBAAgB,KAAK,cAAcA,GAAE;AAAA,EACnD;AAAA,EAEA,KAAKA,IAAG,GAAG;AACT,WAAO,KAAK,WAAWA,EAAC,IAAI,KAAK,WAAW,CAAC;AAAA,EAC/C;AAAA,EAEA,SAASA,IAAG,GAAG;AACb,UAAMG,KAAI,KAAK,cAAcH;AAC7B,SAAK,cAAcA,MAAK,KAAK,cAAc;AAC3C,SAAK,cAAc,KAAKG;AAAA,EAC1B;AACF;AAEO,SAAS,eAAe,GAAG,GAAG,UAAkB,SAAS;AAC9D,SAAO;AAAA,IACL,GAAG,QAAQ,IAAI,GAAG,GAAG,QAAQ;AAAA,IAC7B,GAAG,QAAQ,IAAI,GAAG,GAAG,WAAWC,MAAK;AAAA,EACvC;AACF;AAEO,SAAS,eAAe,MAAMC,eAAsB,SAAS;AAClE,QAAM,EAAE,UAAU,UAAU,IAAI,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI,eAAe,UAAU,UAAU,UAAU,OAAO;AACrE,SAAO;AAAA,IACL,GAAG,KAAK,WAAWA,gBAAe;AAAA,IAClC,GAAG,KAAK,WAAWA,gBAAe;AAAA,EACpC;AACF;AAUO,SAASC,OAAM,GAAGC,MAAKC,MAAK;AACjC,MAAI,IAAID;AAAK,WAAOA;AACpB,MAAI,IAAIC;AAAK,WAAOA;AACpB,SAAO;AACT;AAEO,SAAS,gBAAgB,IAAI,IAAI,IAAI,IAAI;AAC9C,QAAM,KAAK,KAAK;AAChB,QAAM,KAAK,KAAK;AAChB,SAAO,KAAK,KAAK,KAAK;AACxB;AAEO,SAAS,WAAW,GAA6B,GAA6B;AACnF,SAAO,EAAE,GAAG,EAAE,IAAI,EAAE,GAAG,GAAG,EAAE,IAAI,EAAE,EAAE;AACtC;;;ACnLA,IAAIC;AACJ,IAAM,iBAAiB,CAAC,gCAA6C,iCAAoD,0CAA+D,wCAA6D;AACrP,IAAM,qBAAqB;AAC3B,IAAM,eAAe;AACrB,IAAM,mBAAmB,MAAM;AAE/B,SAAS,SAAS,QAAgB,gBAAgB,UAAU,QAAQ,SAAS,eAAe,mBAAmB,GAAG;AAChH,QAAM,kBAAkB,CAACC,YAAW;AAAA,IAClC,GAAG,cAAc,IAAIA,OAAM,GAAGA,OAAM,GAAG,MAAM;AAAA,IAC7C,GAAG,cAAc,IAAIA,OAAM,GAAGA,OAAM,GAAI,cAAc,MAAM,KAAK,IAAK,MAAM;AAAA,EAC9E;AACA,QAAM,2BAA2B,CAACA,QAAOC,SAAQC,YAAW;AAAA,IAC1D,GAASC,OAAM,KAAK,MAAMH,OAAM,IAAI,YAAY,GAAG,GAAGC,UAAS,CAAC;AAAA,IAChE,GAASE,OAAM,KAAK,MAAMH,OAAM,IAAI,YAAY,GAAG,GAAGE,SAAQ,CAAC;AAAA,EACjE;AAEA,QAAM,CAAC,QAAQ,KAAK,IAAI,OAAO;AAE/B,QAAM,wBAAwB,yBAAyB,eAAe,UAAU,QAAQ,KAAK;AAC7F,QAAM,eAAe,gBAAgB,qBAAqB;AAC1D,QAAM,iBAAuB,WAAW,eAAe,UAAU,YAAY;AAC7E,MAAI,iBAAiB;AACrB,WAASE,KAAI,GAAGA,KAAI,kBAAkBA,MAAK;AACzC,UAAM,wBAAwB,yBAAyB,gBAAgB,QAAQ,KAAK;AACpF,UAAM,cAAoB,eAAe,sBAAsB,GAAG,sBAAsB,GAAG,UAAU,OAAO;AAC5G,qBAAuB;AAAA,MACrB,EAAE,GAAG,sBAAsB,IAAI,cAAc,GAAG,sBAAsB,IAAI,aAAa;AAAA,MACvF,EAAE,GAAG,YAAY,GAAG,GAAG,YAAY,EAAE;AAAA,IACvC;AAAA,EACF;AACA,QAAM,wBAAwB,yBAAyB,gBAAgB,QAAQ,KAAK;AACpF,QAAM,QAAQ,OAAO,IAAI,sBAAsB,GAAG,sBAAsB,GAAG,QAAQ;AACnF,SAAO,EAAE,UAAU,gBAAgB,MAAY,UAAU,WAAW,MAAM;AAC5E;AAEO,SAAS,WAAW,MAAM,QAAQ,SAAS,kBAAkB,kBAAkB;AACpF,QAAM,SAAe,UAAU,IAAI,CAAC,CAAC,gBAAgB,aAAa,MAAO,CAAO,QAAQ,iBAAuB,QAAQ,cAAc,CAAE;AACvI,QAAM,WAAW,OAAO,IAAI,CAAC,CAAC,EAAE,YAAY,MAAM,YAAY;AAC9D,QAAM,WAAW,OAAO,IAAI,CAAC,CAAC,aAAa,MAAM,aAAa;AAC9D,QAAM,WAAW,OAAO,MAAM;AAC9B,QAAM,WAAW,SAAS;AAC1B,QAAM,YAAY,IAAI,MAAM,QAAQ;AAEpC,QAAM,YAAkB,eAAe,KAAK,MAAM,cAAc,OAAO;AACvE,YAAU,KAAK,KAAK,MAAM;AAAA,IACxB,OAAO,KAAK;AAAA,IACZ,MAAY,UAAU,KAAK,KAAK;AAAA,IAChC,UAAU;AAAA,EACZ;AAEA,WAAS,OAAO,WAAW,GAAG,QAAQ,GAAG,EAAE,MAAM;AAC/C,UAAM,WAAW,SAAS;AAC1B,UAAM,WAAW,SAAS;AAC1B,QAAI,UAAU,aAAa,CAAC,UAAU,WAAW;AAC/C,gBAAU,YAAY,SAAS,MAAM,UAAU,WAAW,UAAU,QAAQ,SAAS,gBAAgB;AAAA,IACvG;AAAA,EACF;AAEA,WAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,UAAM,WAAW,SAAS;AAC1B,UAAM,WAAW,SAAS;AAC1B,QAAI,UAAU,aAAa,CAAC,UAAU,WAAW;AAC/C,gBAAU,YAAY,SAAS,MAAM,UAAU,WAAW,UAAU,QAAQ,SAAS,gBAAgB;AAAA,IACvG;AAAA,EACF;AACA,SAAO;AACT;AAEA,SAAS,4BAA4B,YAAY,OAAe,UAAkB,UAAkB,QAAQ;AAC1G,QAAM,CAAC,QAAQ,KAAK,IAAsB,OAAO;AACjD,MAAI,eAAe;AACnB,QAAM,SAAS,KAAK,IAAI,WAAW,oBAAoB,CAAC;AACxD,QAAM,OAAO,KAAK,IAAI,WAAW,qBAAqB,GAAG,MAAM;AAC/D,WAAS,WAAW,QAAQ,WAAW,MAAM,EAAE,UAAU;AACvD,UAAM,SAAS,KAAK,IAAI,WAAW,oBAAoB,CAAC;AACxD,UAAM,OAAO,KAAK,IAAI,WAAW,qBAAqB,GAAG,KAAK;AAC9D,aAAS,WAAW,QAAQ,WAAW,MAAM,EAAE,UAAU;AACvD,UAAI,OAAO,IAAI,UAAU,UAAU,UAAU,IAAI,OAAO;AACtD,uBAAe;AACf;AAAA,MACF;AAAA,IACF;AACA,QAAI,CAAC;AAAc;AAAA,EACrB;AACA,SAAO;AACT;AAEO,SAAS,wBAAwBC,gBAAe,QAAQ;AAC7D,QAAM,CAAC,QAAQ,OAAO,YAAY,IAAI,OAAO;AAC7C,QAAM,QAAQ,IAAU,QAAQ,SAAS,QAAQ,cAAc,CAAC,EAAE,MAAM,MAAM,KAAK;AACnF,WAAS,WAAW,GAAG,WAAW,QAAQ,EAAE,UAAU;AACpD,aAAS,WAAW,GAAG,WAAW,OAAO,EAAE,UAAU;AACnD,eAAS,aAAa,GAAG,aAAa,cAAc,EAAE,YAAY;AAChE,cAAM,QAAQ,OAAO,IAAI,UAAU,UAAU,UAAU;AAEvD,YAAI,QAAQA;AAAe;AAE3B,YAAI,4BAA4B,YAAY,OAAO,UAAU,UAAU,MAAM;AAAG,gBAAM,QAAQ,EAAE,OAAO,MAAM,EAAE,UAAU,UAAU,IAAI,WAAW,EAAE,CAAC;AAAA,MACvJ;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAEA,SAAS,aAAa,OAAO,EAAE,GAAG,EAAE,GAAG,YAAY;AACjD,SAAO,MAAM,KAAK,CAAC,EAAE,UAAU,MAAM;AAxHvC;AAyHI,UAAM,yBAAwB,eAAU,gBAAV,mBAAuB;AACrD,QAAI,CAAC;AAAuB,aAAO;AACnC,WAAa,gBAAgB,GAAG,GAAG,sBAAsB,GAAG,sBAAsB,CAAC,KAAK;AAAA,EAC1F,CAAC;AACH;AAEA,SAAS,iBAAiB,eAAe,WAAW;AAClD,QAAM,8BAA8B,UAAU,OAAO,CAAC,QAAQ,EAAE,UAAU,MAAM,GAAG,eAAe;AAChG,QAAI,CAAC,aAAa,eAAe,UAAU,UAAU;AAAG,gBAAU;AAClE,WAAO;AAAA,EACT,GAAG,CAAG;AACN,SAAO,8BAA8B,UAAU;AACjD;AAEO,SAAS,OAAO,SAAS,QAAQ,kBAAkB,kBAAkB,aAAaA,gBAAe;AACtG,QAAM,QAAkD,CAAC;AACzD,QAAM,QAAQ,wBAAwBA,gBAAe,MAAM;AAE3D,SAAO,MAAM,SAAS,eAAe,CAAC,MAAM,MAAM,GAAG;AAEnD,UAAM,OAAO,MAAM,QAAQ;AAG3B,UAAM,kBAAwB,eAAe,KAAK,MAAM,cAAc,OAAO;AAE7E,QAAI,aAAa,OAAO,iBAAiB,KAAK,KAAK,EAAE;AAAG;AAExD,QAAI,YAAY,WAAW,MAAM,QAAQ,SAAS,kBAAkB,gBAAgB;AACpF,gBAAY,UAAU,OAAO,CAAC,MAAM,EAAE,QAAQA,cAAa;AAC3D,UAAM,QAAQ,iBAAiB,OAAO,SAAS;AAC/C,UAAM,MAAY,eAAe,SAAS;AAC1C,QAAI,QAAQA;AAAe,YAAM,KAAK,EAAE,WAAW,KAAK,OAAO,KAAK,MAAM,MAAM,KAAK,IAAI,IAAI,CAAC;AAAA,EAChG;AACA,SAAO;AACT;AAEA,eAAsBC,UAAQC,QAAeC,SAAuC;AAIlF,MAAI,EAACT,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,MAAS,KAAK,MAAM;AACxB,QAAI,CAACA,QAAM,OAAO,GAAG;AAAO,aAAO,CAAC;AACpC,UAAM,UAAa,MAAM,eAAeQ,QAAO,CAACR,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,CAAC;AACnG,UAAM,aAAgB,IAAO,IAAO,KAAK,SAAS,SAAS,GAAG,KAAK,GAAG,CAAG;AACzE,UAAM,UAAoBA,QAAM,QAAQ,YAAY,cAAc;AAClE,UAAM,YAAY,QAAQ,IAAI,CAAC,MAAS,QAAQ,GAAG,CAAC,CAAC,CAAC,CAAC;AACvD,cAAU,KAAQ,QAAQ,UAAU,EAAE;AACtC,WAAO;AAAA,EACT,CAAC;AAED,QAAM,UAAU,MAAM,QAAQ,IAAI,IAAI,IAAI,CAACU,YAAmBA,QAAO,OAAO,CAAC,CAAC;AAC9E,aAAWC,MAAK;AAAK,IAAG,QAAQA,EAAC;AAEjC,QAAM,UAAU,OAAO,QAAQ,IAAI,QAAQ,IAAI,QAAQ,IAAI,QAAQ,IAAIF,QAAO,KAAK,aAAaA,QAAO,KAAK,aAAa;AACzH,MAAI,CAACT,QAAM,OAAO,GAAG;AAAO,WAAO,CAAC;AACpC,QAAM,SAAe,WAAW,SAAS,CAACQ,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,GAAG,CAACR,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,CAAC;AAC/H,SAAO;AACT;AAEA,eAAsBY,OAAKH,SAAqC;AAC9D,MAAI,CAACT,WAASa,KAAI;AAAS,IAAAb,UAAQ,MAAM,UAAUS,QAAO,KAAK,SAAS;AAAA,WAC/DA,QAAO;AAAO,QAAI,iBAAiBT,QAAM,WAAW;AAC7D,SAAOA;AACT;;;ACvKA,IAAIc;AACJ,IAAI,OAAO;AAEX,eAAsBC,OAAKC,SAAqC;AAC9D,MAAI,CAACF,WAASG,KAAI;AAAS,IAAAH,UAAQ,MAAM,UAAUE,QAAO,aAAa,SAAS;AAAA,WACvEA,QAAO;AAAO,QAAI,iBAAiBF,QAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBI,SAAQC,QAAc,YAA+BH,SACe;AA5B1F;AA6BE,MAAI;AAAM,WAAO,EAAE,MAAM,CAAC,GAAG,QAAQ,MAAM,OAAO,KAAK;AACvD,SAAO;AACP,MAAI,CAACF;AAAO,UAAMC,OAAKC,OAAM;AAC7B,QAAM,aAAa,MAAYE,SAAQC,QAAOH,OAAM;AACpD,QAAM,UAAQ,gBAAW,WAAX,mBAAmB,MAAM,OAAM;AAC7C,QAAM,WAAS,gBAAW,WAAX,mBAAmB,MAAM,OAAM;AAC9C,MAAI,CAAC,WAAW;AAAQ,WAAO,EAAE,MAAM,CAAC,GAAG,QAAQ,MAAM,OAAO,KAAK;AACrE,QAAMI,KAA4B,CAAC;AAEnC,EAAAA,GAAE,SAAY,MAAM,eAAe,WAAW,QAAQ,CAACN,QAAM,OAAO,GAAG,QAAQA,QAAM,OAAO,GAAG,MAAM,KAAK,GAAGA,QAAM,OAAO,GAAG,QAAQA,QAAM,OAAO,GAAG,MAAM,KAAK,CAAC,GAAG,KAAK;AACzK,EAAG,QAAQ,WAAW,MAAM;AAC5B,EAAAM,GAAE,OAAU,IAAIA,GAAE,QAAQ,UAAU,KAAK;AACzC,EAAAA,GAAE,MAAMN,QAAM,QAAQM,GAAE,IAAI;AAE5B,EAAAA,GAAE,UAAa,QAAQA,GAAE,KAAK,CAAC;AAC/B,MAAIA,GAAE,QAAQ,MAAM,OAAO,GAAG;AAC5B,IAAAA,GAAE,UAAa,QAAQA,GAAE,OAAO;AAChC,KAACA,GAAE,IAAIA,GAAE,EAAE,IAAO,QAAQA,GAAE,SAAS,CAAC;AACtC,IAAAA,GAAE,SAAY,WAAWA,GAAE,IAAI,CAAC;AAChC,IAAAA,GAAE,MAAS,WAAWA,GAAE,QAAQ,CAAC;AACjC,IAAAA,GAAE,OAAU,MAAM,cAAcA,GAAE,KAAK,CAAC,CAAC,GAAG,GAAG,KAAK,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,OAAO,MAAM,CAAC;AAI/E,IAAAA,GAAE,OAAU,QAAQA,GAAE,MAAM,CAAC;AAAA,EAC/B,OAAO;AACL,IAAAA,GAAE,OAAU,MAAM,eAAeA,GAAE,SAAS,CAAC,QAAQ,KAAK,CAAC;AAAA,EAC7D;AACA,QAAM,OAAO,MAAM,KAAK,MAAMA,GAAE,KAAK,KAAK,CAAC;AAE3C,MAAIH,KAAI,QAAQ,CAACA,KAAI,UAAW,OAAO,cAAc,aAAc;AACjE,QAAID,QAAO;AAAO,UAAI,wBAAwB;AAC9C,WAAO,KAAKI,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,WAAO,EAAE,MAAM,QAAQ,MAAM,OAAO,KAAK;AAAA,EAC3C;AAEA,QAAM,cAAoB,OAAO,OAAO,MAAM;AAC9C,MAAO;AAAS,UAAS,gBAAQ,SAASD,GAAE,MAAM,WAAW;AAC7D,QAAM,WAAW,YAAY,WAAW,IAAI;AAC5C,MAAIJ,QAAO,aAAa,QAAQA,QAAO,aAAa,OAAO;AAAG,aAAS,SAAS,QAAQA,QAAO,aAAa;AAC5G,QAAM,YAAY,SAAS,aAAa,GAAG,GAAG,OAAO,MAAM;AAE3D,QAAM,kBAAwB,OAAO,OAAO,MAAM;AAClD,QAAM,eAAe,gBAAgB,WAAW,IAAI;AACpD,MAAI,WAAW;AAAQ,iBAAa,UAAU,WAAW,QAAQ,GAAG,CAAC;AACrE,eAAa,2BAA2B;AACxC,MAAIA,QAAO,aAAa,QAAQA,QAAO,aAAa,OAAO;AAAG,iBAAa,SAAS,QAAQA,QAAO,aAAa;AAChH,eAAa,UAAU,aAAa,GAAG,CAAC;AACxC,eAAa,2BAA2B;AACxC,eAAa,SAAS;AACtB,QAAM,gBAAgB,aAAa,aAAa,GAAG,GAAG,OAAO,MAAM;AACnE,WAASM,KAAI,GAAGA,KAAI,QAAQ,QAAQA;AAAK,kBAAc,KAAK,IAAIA,KAAI,KAAK,UAAU,KAAK,IAAIA,KAAI;AAChG,eAAa,aAAa,eAAe,GAAG,CAAC;AAE7C,MAAI,eAAiC;AACrC,MAAI,cAAc,iBAAiB;AACjC,mBAAqB,OAAO,OAAO,MAAM;AACzC,UAAM,UAAU,MAAYJ,SAAQ,YAAYF,OAAM;AACtD,IAAG,QAAQ,QAAQ,MAAM;AACzB,UAAM,WAAW,aAAa,WAAW,IAAI;AAC7C,aAAS,UAAU,QAAQ,QAA6B,GAAG,GAAG,aAAa,OAAO,aAAa,MAAM;AACrG,aAAS,UAAU,iBAAiB,GAAG,CAAC;AAAA,EAC1C;AAEA,SAAO,KAAKI,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AAEP,SAAO,EAAE,MAAM,QAAQ,iBAAiB,OAAO,YAAY;AAC7D;;;A3C5DO,IAAM,SAAN,MAAa;AAAA,EAAb;AACL,qCAAqD;AACrD,gCAAgD;AAChD,2CAA2D;AAC3D,qCAAqD;AACrD,qCAAqD;AACrD,yCAAyD;AACzD,yCAAyD;AACzD,uCAAuD;AACvD,mCAAmD;AACnD,sCAAsD;AACtD,oCAAoD;AACpD,oCAAoD;AACpD,mCAAmD;AACnD,wCAAwD;AACxD,oCAAoD;AACpD,wCAAwD;AACxD,qCAAqD;AACrD,oCAAoD;AACpD,mCAAmD;AACnD,mCAAmD;AACnD,mCAAmD;AACnD,wCAAwD;AACxD,qCAAqD;AAAA;AACvD;AAcO,IAAM,gBAAgB,CAACE,cAAgC;AAC5D,MAAI,wBAAwB;AAC5B,MAAI,mBAAmB;AACvB,MAAI,mBAAmB;AACvB,aAAW,KAAK,OAAO,OAAO,UAAU,GAAG;AACzC,6BAAyB,EAAE;AAC3B,wBAAoB,EAAE;AACtB,wBAAoB,EAAE;AAAA,EACxB;AACA,QAAM,mBAAmB,mBAAmB,IAAI,mBAAmB,mBAAmB;AACtF,SAAO;AAAA,IACL,iBAAiB,OAAO,OAAO,UAAU,EAAE;AAAA,IAC3C,kBAAkB;AAAA,IAClB,kBAAkB,OAAO,KAAKA,UAAS,MAAM,EAAE;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,kBAAkB;AAAA,IAClB,YAAY,OAAO,OAAO,UAAU;AAAA,EACtC;AACF;AAEO,SAAS,MAAMA,WAAuB;AAE3C,aAAWC,WAAS,OAAO,KAAKD,UAAS,MAAM;AAAG,IAAAA,UAAS,OAAOC,WAAyB;AAC7F;AAGA,eAAsBC,OAAKF,WAAgC;AAxG3D;AAyGE,MAAIG,KAAI;AAAS,UAAMH,SAAQ;AAC/B,MAAIA,UAAS,OAAO,KAAK,SAAS;AAChC,QAAI,CAACA,UAAS,OAAO,cAAY,WAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,cAA/B,mBAA0C,SAAS,gBAAe;AACjG,OAACA,UAAS,OAAO,UAAUA,UAAS,OAAO,YAAY,IAAI,MAAeE,OAAKF,UAAS,MAAM;AAAA,IAChG;AACA,QAAI,CAACA,UAAS,OAAO,gBAAgBA,UAAS,OAAO,KAAK,eAAa,WAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,cAA/B,mBAA0C,SAAS,gBAAe;AACvI,OAACA,UAAS,OAAO,UAAUA,UAAS,OAAO,YAAY,IAAI,MAAeE,OAAKF,UAAS,MAAM;AAAA,IAChG;AAAA,EACF;AACA,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,eAAa,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,SAAS;AAAc,IAAAA,UAAS,OAAO,YAAsB,SAASA,UAAS,MAAM;AACvL,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,mBAAmBA,UAAS,OAAO,KAAK,eAAeA,UAAS,OAAO,KAAK,YAAY;AAAW,IAAAA,UAAS,OAAO,kBAA4B,WAAWA,UAAS,MAAM;AAC9N,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,mBAAiB,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,SAAS;AAAkB,IAAAA,UAAS,OAAO,gBAA8BE,MAAKF,UAAS,MAAM;AACnM,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,SAAS;AAAY,IAAAA,UAAS,OAAO,UAAkBE,OAAKF,UAAS,MAAM;AAC3K,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,SAAS;AAAY,IAAAA,UAAS,OAAO,UAAkBE,OAAKF,UAAS,MAAM;AAC3K,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO;AAAY,IAAAA,UAAS,OAAO,aAAuBE,MAAKF,UAAS,MAAM;AAC5H,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,CAACA,UAAS,OAAO;AAAW,IAAAA,UAAS,OAAO,YAAsBE,MAAKF,UAAS,MAAM;AACrK,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,YAAW,CAACA,UAAS,OAAO;AAAU,IAAAA,UAAS,OAAO,WAAoBE,OAAKF,UAAS,MAAM;AACjK,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,gBAArB,mBAAkC,YAAW,CAACA,UAAS,OAAO;AAAS,IAAAA,UAAS,OAAO,UAAkBE,OAAKF,UAAS,MAAM;AACjK,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,YAArB,mBAA8B,YAAW,CAACA,UAAS,OAAO;AAAS,IAAAA,UAAS,OAAO,UAAkBE,MAAKF,UAAS,MAAM;AAC7J,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,YAAW,GAAC,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,CAACA,UAAS,OAAO;AAAU,IAAAA,UAAS,OAAO,WAAgBE,OAAKF,UAAS,MAAM;AACrM,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,YAAW,CAACA,UAAS,OAAO;AAAU,IAAAA,UAAS,OAAO,WAAoBE,OAAKF,UAAS,MAAM;AAC7J,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,YAArB,mBAA8B,YAAW,CAACA,UAAS,OAAO;AAAM,IAAAA,UAAS,OAAO,OAAY,KAAKA,UAAS,MAAM;AACpJ,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,CAACA,UAAS,OAAO;AAAW,IAAAA,UAAS,OAAO,YAAsBE,MAAKF,UAAS,MAAM;AACrK,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,CAACA,UAAS,OAAO;AAAc,IAAAA,UAAS,OAAO,eAA4BE,MAAKF,UAAS,MAAM;AAC9K,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,qBAArB,mBAAuC,YAAW,CAACA,UAAS,OAAO;AAAe,IAAAA,UAAS,OAAO,gBAA8BE,MAAKF,UAAS,MAAM;AACxL,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,mBAArB,mBAAqC,YAAW,CAACA,UAAS,OAAO;AAAa,IAAAA,UAAS,OAAO,cAA0BE,OAAKF,UAAS,MAAM;AAChL,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,eAAa,WAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,cAA/B,mBAA0C,SAAS;AAAc,IAAAA,UAAS,OAAO,YAAsBI,YAAWJ,UAAS,MAAM;AACnM,MAAIA,UAAS,OAAO,KAAK,WAAWA,UAAS,OAAO,KAAK,aAAa,CAACA,UAAS,OAAO,kBAAgB,WAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,cAA/B,mBAA0C,SAAS;AAAc,IAAAA,UAAS,OAAO,eAAyB,aAAaA,UAAS,MAAM;AAC7O,MAAIA,UAAS,OAAO,OAAO,WAAW,CAACA,UAAS,OAAO,eAAa,KAAAA,UAAS,OAAO,OAAO,cAAvB,mBAAkC,SAAS;AAAc,IAAAA,UAAS,OAAO,YAAsBE,MAAKF,UAAS,MAAM;AACvL,MAAIA,UAAS,OAAO,OAAO,WAAW,CAACA,UAAS,OAAO,aAAW,KAAAA,UAAS,OAAO,OAAO,cAAvB,mBAAkC,SAAS;AAAY,IAAAA,UAAS,OAAO,UAAkBE,OAAKF,UAAS,MAAM;AAC/K,MAAIA,UAAS,OAAO,aAAa,WAAW,CAACA,UAAS,OAAO;AAAc,IAAAA,UAAS,OAAO,eAA4BE,OAAKF,UAAS,MAAM;AAG3I,mBAAiBC,WAAS,OAAO,KAAKD,UAAS,MAAM,GAAG;AACtD,QAAIA,UAAS,OAAOC,YAA0B,OAAOD,UAAS,OAAOC,aAA2B,aAAa;AAC3G,MAAAD,UAAS,OAAOC,WAAyB,MAAMD,UAAS,OAAOC;AAAA,IACjE;AAAA,EACF;AACF;AAEA,IAAI;AAGG,SAAS,cAAc,aAA2BA,SAA0B,MAAgC;AApJnH;AAqJE,MAAI;AAAa,eAAW;AAC5B,MAAI,CAACA;AAAO,WAAO;AACnB,MAAI,CAAC;AAAU,QAAI,wBAAwB;AAC3C,MAAI,CAAC,SAAS,OAAO;AAAgB,WAAO;AAC5C,QAAM,YAAY,CAAC,SAAS,eAAe,QAAQ,OAAO,WAAW,OAAO,OAAO,OAAO,KAAK;AAC/F,QAAM,YAAY,CAAC,WAAW,oBAAoB,QAAQ;AAC1D,QAAM,MAAgB,CAAC;AACvB,QAAM,UAAoB,CAAC;AAE3B,QAAM,MAAMA,QAAM;AAClB,QAAM,WAAWA,QAAM;AACvB,OAAI,0CAAU,UAAV,mBAAiB,OAAO;AAC1B,eAAW,UAAU,OAAO,OAAO,SAAS,MAAM,KAAK,GAAG;AACxD,YAAMI,MAAM,OAAc,GAAG,YAAY;AACzC,UAAI,CAAC,IAAI,SAASA,GAAE;AAAG,YAAI,KAAKA,GAAE;AAAA,IACpC;AAAA,EACF,OAAO;AACL,QAAI,CAAC,YAAY,SAAS,OAAO,OAAO;AACtC,UAAI,oBAAoB,IAAI;AAAA,IAC9B;AAAA,EACF;AACA,aAAWA,OAAM,KAAK;AACpB,QAAI,CAAC,UAAU,SAASA,GAAE,KACrB,CAAC,UAAU,SAASA,GAAE,KACtB,CAAC,SAAS,IAAI,QAAQ,SAASA,GAAE,KACjC,CAAC,SAAS,IAAI,QAAQ,SAASA,IAAG,QAAQ,KAAK,EAAE,CAAC,KAClD,CAAC,SAAS,IAAI,QAAQ,SAASA,IAAG,QAAQ,UAAU,EAAE,CAAC,KACvD,CAAC,SAAS,IAAI,QAAQ,SAASA,IAAG,QAAQ,MAAM,EAAE,CAAC,GAAG;AACzD,cAAQ,KAAKA,GAAE;AAAA,IACjB;AAAA,EACF;AACA,MAAI,SAAS,OAAO,SAAS,QAAQ,SAAS;AAAG,QAAI,4BAA4B,MAAM,OAAO;AAC9F,SAAO,QAAQ,SAAS,IAAI,EAAE,MAAM,SAAS,KAAK,IAAI,IAAI;AAC5D;AAEO,SAASC,UAAS,aAA2D;AAClF,aAAW;AACX,QAAM,UAAuB,CAAC;AAC9B,aAAW,WAAW,OAAO,KAAK,SAAS,MAAM,GAAG;AAClD,UAAML,UAA2B,SAAS,OAAO;AACjD,QAAI,CAACA;AAAO;AACZ,UAAM,MAAM,cAAc,UAAUA,SAAO,OAAO;AAClD,QAAI;AAAK,cAAQ,KAAK,GAAG;AAAA,EAC3B;AACA,SAAO;AACT;;;A4C3LA,IAAMM,WAAU;AAAA,EACd,aAAa;AAAA,EACb,gBAAgB;AAAA,EAChB,SAAS;AAAA,EACT,OAAO;AAAA,EACP,eAAe;AACjB;AAUO,IAAM,aAAwC,CAAC;AAEtD,eAAe,YAAY,KAAaC,OAA8C;AACpF,MAAID,SAAQ;AAAO,QAAI,qBAAqB,KAAKC,KAAI;AACrD,SAAO,MAAM,KAAKA,KAAI;AACxB;AAEO,SAAS,oBAAoBC,SAAgB;AAClD,EAAAF,SAAQ,cAAcE,QAAO;AAC7B,EAAAF,SAAQ,UAAUE,QAAO;AACzB,EAAAF,SAAQ,gBAAgBE,QAAO;AACjC;AAEA,eAAsB,UAAU,WAAoD;AApCpF;AAqCE,MAAI,WAAW,KAAKF,SAAQ,eAAe,aAAa,EAAE;AAC1D,MAAI,CAAC,SAAS,YAAY,EAAE,SAAS,OAAO;AAAG,gBAAY;AAC3D,QAAM,oBAAoB,SAAS,SAAS,GAAG,IAAI,SAAS,MAAM,GAAG,IAAI,SAAS,MAAM,IAAI;AAC5F,QAAM,iBAAiB,kBAAkB,kBAAkB,SAAS,GAAG,QAAQ,SAAS,EAAE;AAC1F,QAAM,kBAAkB,iBAAiB;AACzC,aAAW,kBAAkB;AAAA,IAC3B,MAAM;AAAA,IACN,kBAAkB;AAAA,IAClB,mBAAmB;AAAA,IACnB,aAAa,eAAW;AAAA,IACxB,SAAS;AAAA,EACX;AACA,EAAAA,SAAQ,iBAAkB,OAAO,WAAW,eAAiB,OAAO,OAAO,iBAAiB,eAAiB,OAAO,OAAO,cAAc;AACzI,MAAI,eAAe,CAAC;AACpB,MAAI;AACF,mBAAgBA,SAAQ,kBAAkBA,SAAQ,cAAe,MAAS,WAAG,WAAW,IAAI,CAAC;AAAA,EAC/F,SAAQG,IAAN;AACA,IAAAH,SAAQ,iBAAiB;AAAA,EAC3B;AACA,aAAW,gBAAgB,UAAWA,SAAQ,kBAAkBA,SAAQ,eAAgB,OAAO,KAAK,YAAY,EAAE,SAAS,eAAe;AAC1I,QAAM,gBAAgB,OAAO,UAAU,cAAc,CAAC,IAAI,EAAE,WAAW,CAAC,KAAaC,UAAuB,YAAY,KAAKA,KAAI,EAAE;AACnI,QAAMG,UAAoB,IAAO,WAAW,WAAW,gBAAgB,UAAU,kBAAkB,UAAU,aAAa;AAC1H,MAAI,SAAS;AACb,MAAI;AAEF,IAAAA,QAAM,cAAc;AACpB,QAAIJ,SAAQ;AAAO,UAAI,uBAAuBI,QAAM,UAAU;AAE9D,UAAM,YAAY,MAAMA,QAAM,QAAQ,KAAK;AAC3C,eAAW,gBAAgB,qBAAmB,4CAAW,eAAX,mBAAuB,eAAc;AACnF,IAAAA,QAAM,SAAS,SAAS;AAExB,eAAW,gBAAgB,sBAAoB,WAAAA,QAAM,cAAN,mBAAiB,eAAjB,mBAA6B,eAAc;AAC1F,QAAIJ,SAAQ;AAAS,UAAI,eAAeI,QAAM,aAAa,EAAE,OAAO,WAAW,gBAAgB,kBAAkB,GAAGJ,QAAO;AAC3H,aAAS;AAAA,EACX,SAAS,KAAP;AACA,QAAI,wBAAwB,UAAU,GAAG;AAAA,EAC3C;AACA,MAAI,UAAUA,SAAQ,eAAeA,SAAQ,kBAAkB,CAAC,WAAW,gBAAgB,SAAS;AAClG,QAAI;AACF,YAAM,aAAa,MAAMI,QAAM,KAAK,eAAe;AACnD,UAAI,gBAAgB,iBAAiB,UAAU;AAAA,IACjD,SAAS,KAAP;AACA,UAAI,uBAAuB,UAAU,GAAG;AAAA,IAC1C;AAAA,EACF;AACA,gBAAc,MAAMA,SAAO,GAAG,aAAa,IAAI;AAC/C,SAAOA;AACT;;;;;;ACrFA;AAAA;AAAA,aAAAC;AAAA,EAAA;AAAA,gBAAAC;AAAA,EAAA;AAAA;AAAA;AAAA;AAAA,iBAAAC;AAAA,EAAA;AAAA;;;ACKO,IAAM,mBAAmB,CAACC,WAAqB;AACpD,MAAI,CAACA;AAAO,QAAI,4BAA4B;AAAA,WACnC,CAACA,OAAM;AAAY,QAAI,wCAAwC;AAAA,OACnE;AACH,UAAM,MAAMA,OAAM,WAAW,IAAI;AACjC,QAAI,CAAC;AAAK,UAAI,uCAAuC;AAAA;AAChD,aAAO;AAAA,EACd;AACA,SAAO;AACT;AAEO,IAAM,UAAU,CAAC,UAAkB,KAAK,MAAO,QAAQ,MAAO,KAAK,EAAE;AAErE,IAAM,aAAa,CAAC,GAAuBC,SAA6B;AAC7E,MAAI,CAACA,KAAI,YAAY,OAAO,MAAM;AAAa,WAAOA,KAAI;AAC1D,QAAMC,OAAM,kBAAkB,KAAK,CAAC,MAAO,IAAI,GAAI,MAAO,IAAI,GAAI,GAAG,CAAC;AACtE,SAAO,QAAQA,KAAI,OAAOA,KAAI,OAAOA,KAAI,OAAOD,KAAI;AACtD;AAEO,SAAS,MAAM,KAAmE,GAAW,GAAW,GAAuB,cAA2B;AAC/J,MAAI,YAAY,WAAW,GAAG,YAAY;AAC1C,MAAI,UAAU;AACd,MAAI,IAAI,GAAG,GAAG,aAAa,WAAW,GAAG,IAAI,KAAK,EAAE;AACpD,MAAI,KAAK;AACX;AAEO,SAAS,KAAK,KAAmE,GAAW,GAAW,OAAe,QAAgB,cAA2B;AACtK,MAAI,UAAU;AACd,MAAI,YAAY,aAAa;AAC7B,MAAI,aAAa,WAAW;AAC1B,UAAM,MAAM,IAAI,IAAI,SAAS;AAC7B,UAAM,MAAM,IAAI,IAAI,UAAU;AAC9B,QAAI,QAAQ,IAAI,IAAI,QAAQ,GAAG,SAAS,GAAG,GAAG,GAAG,IAAI,KAAK,EAAE;AAAA,EAC9D,OAAO;AACL,QAAI,OAAO,IAAI,aAAa,WAAW,CAAC;AACxC,QAAI,OAAO,IAAI,QAAQ,aAAa,WAAW,CAAC;AAChD,QAAI,iBAAiB,IAAI,OAAO,GAAG,IAAI,OAAO,IAAI,aAAa,SAAS;AACxE,QAAI,OAAO,IAAI,OAAO,IAAI,SAAS,aAAa,SAAS;AACzD,QAAI,iBAAiB,IAAI,OAAO,IAAI,QAAQ,IAAI,QAAQ,aAAa,WAAW,IAAI,MAAM;AAC1F,QAAI,OAAO,IAAI,aAAa,WAAW,IAAI,MAAM;AACjD,QAAI,iBAAiB,GAAG,IAAI,QAAQ,GAAG,IAAI,SAAS,aAAa,SAAS;AAC1E,QAAI,OAAO,GAAG,IAAI,aAAa,SAAS;AACxC,QAAI,iBAAiB,GAAG,GAAG,IAAI,aAAa,WAAW,CAAC;AACxD,QAAI,UAAU;AAAA,EAChB;AACA,MAAI,OAAO;AACb;AAEO,SAAS,MAAM,KAAmE,QAAiB,cAA2B;AACnI,MAAI,OAAO,SAAS;AAAG;AACvB,MAAI,UAAU;AACd,MAAI,OAAO,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACrC,aAAW,MAAM,QAAQ;AACvB,QAAI,cAAc,WAAW,GAAG,MAAM,GAAG,YAAY;AACrD,QAAI,OAAO,KAAK,MAAM,GAAG,EAAE,GAAG,KAAK,MAAM,GAAG,EAAE,CAAC;AAAA,EACjD;AACA,MAAI,OAAO;AACX,MAAI,aAAa,cAAc;AAC7B,QAAI,UAAU;AACd,QAAI,KAAK;AAAA,EACX;AACF;AAEO,SAAS,OAAO,KAAmE,QAAiB,cAA2B;AACpI,MAAI,OAAO,SAAS;AAAG;AACvB,MAAI,YAAY,aAAa;AAC7B,MAAI,CAAC,aAAa,aAAa,OAAO,UAAU,GAAG;AACjD,UAAM,KAAK,QAAQ,YAAY;AAC/B;AAAA,EACF;AACA,MAAI,OAAO,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACrC,WAASE,KAAI,GAAGA,KAAI,OAAO,SAAS,GAAGA,MAAK;AAC1C,UAAM,MAAM,OAAOA,IAAG,KAAK,OAAOA,KAAI,GAAG,MAAM;AAC/C,UAAM,MAAM,OAAOA,IAAG,KAAK,OAAOA,KAAI,GAAG,MAAM;AAC/C,QAAI,iBAAiB,OAAOA,IAAG,IAAI,OAAOA,IAAG,IAAI,IAAI,EAAE;AAAA,EACzD;AACA,MAAI,iBAAiB,OAAO,OAAO,SAAS,GAAG,IAAI,OAAO,OAAO,SAAS,GAAG,IAAI,OAAO,OAAO,SAAS,GAAG,IAAI,OAAO,OAAO,SAAS,GAAG,EAAE;AAC3I,MAAI,OAAO;AACX,MAAI,aAAa,cAAc;AAC7B,QAAI,UAAU;AACd,QAAI,KAAK;AAAA,EACX;AACF;AAEO,SAAS,MAAM,KAAmE,MAAa,IAAW,SAAS,GAAG;AAC3H,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,UAAU;AACd,MAAI,OAAO,KAAK,IAAI,KAAK,EAAE;AAC3B,MAAI,OAAO,GAAG,IAAI,GAAG,EAAE;AACvB,UAAQ,KAAK,MAAM,GAAG,KAAK,KAAK,IAAI,GAAG,KAAK,KAAK,EAAE;AACnD,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,OAAO,GAAG,CAAC;AACf,WAAU,IAAM,KAAQ,IAAI,KAAK;AACjC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,OAAO,GAAG,CAAC;AACf,WAAU,IAAM,KAAQ,IAAI,KAAK;AACjC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,OAAO,GAAG,CAAC;AACf,MAAI,UAAU;AACd,MAAI,OAAO;AACX,MAAI,KAAK;AACX;;;AClEO,IAAMC,WAAuB;AAAA,EAClC,OAAO;AAAA,EACP,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,OAAO;AAAA,EACP,MAAM;AAAA,EACN,YAAY;AAAA,EACZ,WAAW;AAAA,EACX,WAAW;AAAA,EACX,WAAW;AAAA,EACX,YAAY;AAAA,EACZ,YAAY;AAAA,EACZ,WAAW;AAAA,EACX,eAAe;AAAA,EACf,cAAc;AAAA,EACd,cAAc;AAAA,EACd,UAAU;AAAA,EACV,cAAc;AAAA,EACd,UAAU;AAAA,EACV,WAAW;AACb;;;ACzDA,IAAI;AAEJ,SAAS,WAAW,GAAe,KAAmE;AAVtG;AAWE,MAAI,IAAI,YAAY;AAElB,UAAMC,UAAkB,CAAC;AACzB,IAAAA,QAAO,KAAK,SAAS,KAAK,MAAM,MAAM,EAAE,KAAK,IAAI;AACjD,QAAI,EAAE;AAAa,MAAAA,QAAO,KAAK,GAAG,EAAE,UAAU,MAAM,KAAK,MAAM,MAAM,EAAE,WAAW,IAAI;AACtF,QAAI,EAAE;AAAK,MAAAA,QAAO,KAAK,QAAQ,EAAE,OAAO,IAAI;AAC5C,QAAI,EAAE;AAAM,MAAAA,QAAO,KAAK,aAAa,EAAE,MAAM;AAC7C,QAAI,EAAE;AAAM,MAAAA,QAAO,KAAK,SAAS,KAAK,MAAM,MAAM,EAAE,IAAI,IAAI;AAC5D,QAAI,EAAE;AAAM,MAAAA,QAAO,KAAK,SAAS,KAAK,MAAM,MAAM,EAAE,IAAI,IAAI;AAC5D,QAAI,EAAE,WAAW,EAAE,QAAQ,SAAS,GAAG;AACrC,YAAMC,WAAU,EAAE,QAAQ,IAAI,CAAC,MAAM,GAAG,KAAK,MAAM,MAAM,EAAE,KAAK,MAAM,EAAE,SAAS;AACjF,UAAIA,SAAQ,SAAS;AAAG,QAAAA,SAAQ,SAAS;AACzC,MAAAD,QAAO,KAAKC,SAAQ,KAAK,GAAG,CAAC;AAAA,IAC/B;AACA,UAAI,OAAE,aAAF,mBAAY,YAAS,OAAE,aAAF,mBAAY,OAAM;AACzC,UAAI,EAAE,SAAS,MAAM;AAAM,QAAAD,QAAO,KAAK,SAAS,QAAQ,EAAE,SAAS,MAAM,IAAI,aAAU,QAAQ,EAAE,SAAS,MAAM,GAAG,eAAY,QAAQ,EAAE,SAAS,MAAM,KAAK,OAAI;AACjK,UAAI,EAAE,SAAS,KAAK;AAAS,QAAAA,QAAO,KAAK,SAAS,QAAQ,EAAE,SAAS,KAAK,OAAO,OAAI;AAAA,IACvF;AACA,QAAIA,QAAO,WAAW;AAAG,MAAAA,QAAO,KAAK,MAAM;AAC3C,QAAI,YAAY,IAAI;AACpB,aAASE,KAAIF,QAAO,SAAS,GAAGE,MAAK,GAAGA,MAAK;AAC3C,YAAM,IAAI,KAAK,IAAI,EAAE,IAAI,IAAI,CAAC;AAC9B,YAAM,IAAIA,KAAI,IAAI,aAAa,EAAE,IAAI;AACrC,UAAI,IAAI,eAAe,IAAI,gBAAgB,IAAI;AAC7C,YAAI,YAAY,IAAI;AACpB,YAAI,SAASF,QAAOE,KAAI,IAAI,GAAG,IAAI,EAAE;AAAA,MACvC;AACA,UAAI,YAAY,IAAI;AACpB,UAAI,SAASF,QAAOE,KAAI,IAAI,GAAG,IAAI,EAAE;AAAA,IACvC;AAAA,EACF;AACF;AAEA,SAAS,eAAe,GAAe,KAAmE;AA5C1G;AA8CE,QAAI,OAAE,gBAAF,mBAAe,kBAAe,OAAE,gBAAF,mBAAe,YAAY,KAAI;AAC/D,QAAI,cAAc,IAAI,WAAW,6BAA6B,IAAI;AAClE,QAAI,UAAU;AACd,UAAM,QAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,KAAK,EAAE,YAAY,YAAY,GAAG,EAAE,IAAI;AAC5F,UAAM,QAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,KAAK,EAAE,YAAY,YAAY,GAAG,EAAE,IAAI;AAC5F,QAAI,QAAQ,EAAE,YAAY,YAAY,GAAG,IAAI,EAAE,YAAY,YAAY,GAAG,IAAI,OAAO,OAAO,GAAG,GAAG,IAAI,KAAK,EAAE;AAC7G,QAAI,OAAO;AACX,QAAI,IAAI,cAAc;AACpB,UAAI,YAAY,IAAI,WAAW,6BAA6B,IAAI;AAChE,UAAI,KAAK;AAAA,IACX;AAAA,EACF;AACA,QAAI,OAAE,gBAAF,mBAAe,mBAAgB,OAAE,gBAAF,mBAAe,aAAa,KAAI;AACjE,QAAI,cAAc,IAAI,WAAW,6BAA6B,IAAI;AAClE,QAAI,UAAU;AACd,UAAM,QAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,KAAK,EAAE,YAAY,aAAa,GAAG,EAAE,IAAI;AAC9F,UAAM,QAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,KAAK,EAAE,YAAY,aAAa,GAAG,EAAE,IAAI;AAC9F,QAAI,QAAQ,EAAE,YAAY,aAAa,GAAG,IAAI,EAAE,YAAY,aAAa,GAAG,IAAI,OAAO,OAAO,GAAG,GAAG,IAAI,KAAK,EAAE;AAC/G,QAAI,OAAO;AACX,QAAI,IAAI,cAAc;AACpB,UAAI,YAAY,IAAI,WAAW,6BAA6B,IAAI;AAChE,UAAI,KAAK;AAAA,IACX;AAAA,EACF;AACF;AAEA,SAAS,gBAAgB,GAAe,KAAmE;AAxE3G;AAyEE,MAAI,IAAI,cAAY,OAAE,aAAF,mBAAY,UAAS,OAAO,WAAW,aAAa;AACtE,QAAI,cAAc;AAClB,UAAM,OAAQ,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK,IAAM,EAAE,IAAI,KAAK,QAAQ,EAAE,SAAS,MAAM,GAAG,IAAI;AACrF,UAAM,OAAQ,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK,IAAM,EAAE,IAAI,KAAK,QAAQ,EAAE,SAAS,MAAM,KAAK,IAAI;AACvF,UAAM,QAAQ,IAAI,OAAO;AAAA,UACnB,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK,KAAK,EAAE,IAAI;AAAA;AAAA,UAEjC,QAAQ,EAAE,IAAI;AAAA,UACd,QAAQ,EAAE,IAAI,KAAK,EAAE,IAAI;AAAA,UACzB,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,EAAE,IAAI;AAAA,KACjD;AACD,UAAM,QAAQ,IAAI,OAAO;AAAA,UACnB,EAAE,IAAI,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK;AAAA;AAAA,UAElC,EAAE,IAAI,MAAM;AAAA,UACZ,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,UACvB,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK;AAAA,KAClD;AACD,QAAI,OAAO,KAAK;AAChB,QAAI,OAAO,KAAK;AAAA,EAClB;AACF;AAEA,SAAS,eAAe,GAAe,KAAmE;AAhG1G;AAiGE,MAAI,IAAI,cAAY,OAAE,aAAF,mBAAY,KAAK,aAAY,EAAE,SAAS,KAAK,WAAW,EAAE,YAAY,eAAe,EAAE,YAAY,gBAAgB,EAAE,YAAY,YAAY,MAAM,EAAE,YAAY,aAAa,IAAI;AACpM,QAAI,cAAc;AAClB,QAAI,YAAY;AAChB,UAAM,WAAW;AAAA,MACf,EAAE,YAAY,YAAY,GAAG,KAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,IAAI,EAAE,SAAS,KAAK,WAAW,EAAE,IAAI;AAAA,MACxG,EAAE,YAAY,YAAY,GAAG,KAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,IAAI,EAAE,SAAS,KAAK,WAAW,EAAE,IAAI;AAAA,IAC1G;AACA,UAAM,KAAK,CAAC,EAAE,YAAY,YAAY,GAAG,IAAI,EAAE,YAAY,YAAY,GAAG,EAAE,GAAG,CAAC,SAAS,IAAI,SAAS,EAAE,GAAG,CAAC;AAC5G,UAAM,YAAY;AAAA,MAChB,EAAE,YAAY,aAAa,GAAG,KAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,IAAI,EAAE,SAAS,KAAK,WAAW,EAAE,IAAI;AAAA,MACzG,EAAE,YAAY,aAAa,GAAG,KAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,IAAI,EAAE,SAAS,KAAK,WAAW,EAAE,IAAI;AAAA,IAC3G;AACA,UAAM,KAAK,CAAC,EAAE,YAAY,aAAa,GAAG,IAAI,EAAE,YAAY,aAAa,GAAG,EAAE,GAAG,CAAC,UAAU,IAAI,UAAU,EAAE,GAAG,CAAC;AAAA,EAClH;AACF;AAEA,SAAS,iBAAiB,GAAe,KAAmE;AAC1G,MAAI,IAAI,gBAAgB,EAAE,KAAK,UAAU,KAAK;AAC5C,QAAI,YAAY;AAChB,aAASA,KAAI,GAAGA,KAAI,OAAc,SAAS,GAAGA,MAAK;AACjD,YAAM,SAAS,CAAC,OAAcA,KAAI,IAAI,IAAI,OAAcA,KAAI,IAAI,IAAI,OAAcA,KAAI,IAAI,EAAE,EAAE,IAAI,CAACC,WAAU,EAAE,KAAKA,OAAM;AAC1H,YAAM,KAAK,QAAQ,GAAG;AAAA,IACxB;AACA,mBAAe,GAAG,GAAG;AAAA,EACvB;AAQF;AAEA,SAAS,eAAe,GAAe,KAAmE;AACxG,MAAI,IAAI,cAAc,EAAE,KAAK,UAAU,KAAK;AAC1C,aAASD,KAAI,GAAGA,KAAI,EAAE,KAAK,QAAQA,MAAK;AACtC,YAAM,KAAK,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAI,GAAG;AACxD,UAAI,IAAI,eAAe;AACrB,YAAsB,iCAAiC,SAASA,EAAC;AAAG,gBAAM,KAAK,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAK,EAAE,KAAKA,IAAG,KAAgB,KAAK,GAAG;AAC9I,YAAsB,qCAAqC,SAASA,EAAC;AAAG,gBAAM,KAAK,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAK,EAAE,KAAKA,IAAG,KAAgB,KAAK,GAAG;AAClJ,YAAsB,sCAAsC,SAASA,EAAC;AAAG,gBAAM,KAAK,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAK,EAAE,KAAKA,IAAG,KAAgB,KAAK,GAAG;AAAA,MACrJ;AAAA,IACF;AAAA,EACF;AACF;AAEA,SAAS,cAAc,GAAe,KAAK;AACzC,MAAI,IAAI,WAAW;AACjB,SAAK,KAAK,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,GAAG;AAAA,EACvD;AACF;AAGO,SAAS,KAAKE,WAAqB,QAAsB,aAAoC;AAClG,QAAM,UAAUC,UAAS,WAAW;AACpC,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,OAAO,IAAI;AACf,MAAI,cAAc,IAAI;AACtB,MAAI,YAAY,IAAI;AACpB,aAAW,KAAK,QAAQ;AACtB,kBAAc,GAAG,GAAG;AACpB,eAAW,GAAG,GAAG;AACjB,QAAI,EAAE,QAAQ,EAAE,KAAK,SAAS,GAAG;AAC/B,qBAAe,GAAG,GAAG;AACrB,uBAAiB,GAAG,GAAG;AACvB,sBAAgB,GAAG,GAAG;AACtB,qBAAe,GAAG,GAAG;AAAA,IACvB;AAAA,EACF;AACF;;;AClKO,SAAS,KAAKE,WAAqB,QAAsB,aAAoC;AAClG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,WAAW;AACf,WAASE,KAAI,GAAGA,KAAI,OAAO,QAAQA,MAAK;AACtC,QAAI,cAAc,aAAa;AAC/B,QAAI,YAAY,aAAa;AAC7B,QAAI,YAAY,aAAa;AAC7B,QAAI,OAAO,aAAa;AACxB,QAAI,aAAa,aAAa,OAAOA,IAAG,OAAO,OAAOA,IAAG,IAAI,WAAW,GAAG;AACzE,WAAK,KAAK,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,YAAY;AAC9F,UAAI,aAAa,YAAY;AAC3B,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,QAAQ,MAAM,OAAOA,IAAG,UAAU,OAAOA,IAAG,IAAI,KAAK,GAAG,IAAI,OAAOA,IAAG,IAAI,KAAK,aAAa,YAAY,OAAOA,IAAG,IAAI,EAAE;AAAA,QACvI;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,QAAQ,MAAM,OAAOA,IAAG,UAAU,OAAOA,IAAG,IAAI,KAAK,GAAG,IAAI,OAAOA,IAAG,IAAI,KAAK,aAAa,YAAY,OAAOA,IAAG,IAAI,EAAE;AAAA,MACvI;AAAA,IACF;AACA,QAAI,aAAa,cAAc,OAAOA,IAAG,WAAW;AAClD,eAAS,KAAK,GAAG,KAAK,OAAOA,IAAG,UAAU,QAAQ,MAAM;AACtD,YAAI,CAAC,OAAOA,IAAG,UAAU,IAAI,SAAU,OAAOA,IAAG,UAAU,IAAI,UAAU;AAAI;AAC7E,YAAI,YAAY,WAAW,OAAOA,IAAG,UAAU,IAAI,SAAS,IAAI,YAAY;AAC5E,cAAM,KAAK,OAAOA,IAAG,UAAU,IAAI,SAAS,IAAI,OAAOA,IAAG,UAAU,IAAI,SAAS,IAAI,GAAG,YAAY;AAAA,MACtG;AAAA,IACF;AACA,QAAI,aAAa,cAAc,OAAOA,IAAG,WAAW;AAClD,UAAI,OAAO,aAAa;AACxB,iBAAW,MAAM,OAAOA,IAAG,WAAW;AACpC,YAAI,CAAC,GAAG,SAAU,GAAG,UAAU;AAAI;AACnC,YAAI,YAAY,WAAW,GAAG,SAAS,IAAI,YAAY;AACvD,YAAI,SAAS,GAAG,GAAG,QAAQ,KAAK,MAAM,MAAM,GAAG,KAAK,MAAM,GAAG,SAAS,KAAK,GAAG,GAAG,SAAS,KAAK,CAAC;AAAA,MAClG;AAAA,IACF;AACA,QAAI,aAAa,gBAAgB,OAAOA,IAAG,aAAa,OAAOA,IAAG,aAAa;AAC7E,iBAAW,QAAQ,OAAO,OAAO,OAAOA,IAAG,WAAW,GAAG;AACvD,mBAAWC,cAAa;AAAM,iBAAO,KAAKA,YAAW,YAAY;AAAA,MACnE;AAAA,IACF;AAAA,EACF;AACF;;;AC3CO,SAAS,KAAKC,WAAqB,QAAsB,aAAoC;AAClG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,WAAW;AACf,MAAI,OAAO,aAAa;AACxB,aAAW,KAAK,QAAQ;AACtB,QAAI,aAAa,WAAW;AAC1B,UAAI,cAAc,aAAa;AAC/B,UAAI,YAAY,aAAa;AAC7B,WAAK,KAAK,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,YAAY;AAC9D,UAAI,aAAa,YAAY;AAC3B,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,QAAQ,KAAK,MAAM,MAAM,EAAE,KAAK,MAAM,EAAE,IAAI,KAAK,GAAG,IAAI,EAAE,IAAI,KAAK,aAAa,YAAY,EAAE,IAAI,EAAE;AAAA,QACnH;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,QAAQ,KAAK,MAAM,MAAM,EAAE,KAAK,MAAM,EAAE,IAAI,KAAK,GAAG,IAAI,EAAE,IAAI,KAAK,aAAa,YAAY,EAAE,IAAI,EAAE;AAAA,MACnH;AACA,UAAI,OAAO;AAAA,IACb;AACA,QAAI,aAAa,YAAY;AAC3B,UAAI,EAAE,aAAa,EAAE,UAAU,SAAS,GAAG;AACzC,mBAAW,MAAM,EAAE,WAAW;AAC5B,cAAI,YAAY,WAAW,GAAG,IAAI,YAAY;AAC9C,gBAAM,KAAK,GAAG,IAAI,GAAG,IAAI,GAAG,YAAY;AAAA,QAC1C;AAAA,MACF;AAAA,IACF;AACA,QAAI,aAAa,cAAc,EAAE,aAAa;AAC5C,YAAM,eAAe,CAAC,MAAe,UAAkB;AACrD,YAAI,CAAC,QAAQ,KAAK,WAAW,KAAK,CAAC,KAAK;AAAI;AAC5C,cAAM,IAAI,KAAK,KAAK,SAAS,GAAG,MAAM;AACtC,YAAI,YAAY,WAAW,GAAG,YAAY;AAC1C,YAAI,SAAS,OAAO,KAAK,KAAK,SAAS,GAAG,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,KAAK,CAAC;AAAA,MAChF;AACA,UAAI,OAAO,aAAa;AACxB,mBAAa,EAAE,YAAY,OAAO,OAAO;AACzC,mBAAa,EAAE,YAAY,QAAQ,QAAQ;AAC3C,mBAAa,EAAE,YAAY,MAAM,MAAM;AACvC,mBAAa,EAAE,YAAY,OAAO,OAAO;AACzC,mBAAa,EAAE,YAAY,OAAO,OAAO;AACzC,mBAAa,EAAE,YAAY,MAAM,MAAM;AAAA,IACzC;AACA,QAAI,aAAa,gBAAgB,EAAE,aAAa;AAC9C,YAAM,cAAc,CAAC,SAAkB;AACrC,YAAI,CAAC,QAAQ,KAAK,WAAW,KAAK,CAAC,KAAK;AAAI;AAC5C,iBAASE,KAAI,GAAGA,KAAI,KAAK,QAAQA,MAAK;AACpC,cAAI,UAAU;AACd,gBAAM,IAAI,KAAKA,IAAG,MAAM;AACxB,cAAI,cAAc,WAAWA,KAAI,GAAG,YAAY;AAChD,cAAI,OAAO,KAAKA,KAAI,IAAIA,KAAI,IAAI,GAAG,IAAI,KAAKA,KAAI,IAAIA,KAAI,IAAI,GAAG,EAAE;AACjE,cAAI,OAAO,KAAKA,IAAG,IAAI,KAAKA,IAAG,EAAE;AACjC,cAAI,OAAO;AAAA,QACb;AAAA,MACF;AACA,UAAI,YAAY,aAAa;AAC7B,kBAAY,EAAE,YAAY,KAAK;AAC/B,kBAAY,EAAE,YAAY,MAAM;AAChC,kBAAY,EAAE,YAAY,IAAI;AAC9B,kBAAY,EAAE,YAAY,KAAK;AAC/B,kBAAY,EAAE,YAAY,KAAK;AAAA,IAEjC;AAAA,EACF;AACF;;;AClEO,SAAS,OAAOC,WAAqB,QAAwB,aAAoC;AACtG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,WAAW;AACf,MAAI,OAAO,aAAa;AACxB,aAAW,KAAK,QAAQ;AACtB,QAAI,aAAa,WAAW;AAC1B,UAAI,cAAc,aAAa;AAC/B,UAAI,YAAY,aAAa;AAC7B,WAAK,KAAK,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,YAAY;AAC9D,UAAI,aAAa,YAAY;AAC3B,cAAM,QAAQ,GAAG,EAAE,SAAS,KAAK,MAAM,MAAM,EAAE,KAAK;AACpD,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,OAAO,EAAE,IAAI,KAAK,GAAG,IAAI,EAAE,IAAI,KAAK,aAAa,YAAY,EAAE,IAAI,EAAE;AAAA,QACpF;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,OAAO,EAAE,IAAI,KAAK,GAAG,IAAI,EAAE,IAAI,KAAK,aAAa,YAAY,EAAE,IAAI,EAAE;AAAA,MACpF;AACA,UAAI,OAAO;AAAA,IACb;AAAA,EACF;AACF;;;ACxBO,SAAS,QAAQE,WAAqB,QAAyB,aAAoC;AACxG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,MAAI,aAAa,cAAc;AAC7B,UAAM,MAAM,iBAAiBA,SAAQ;AACrC,QAAI,CAAC;AAAK;AACV,QAAI,OAAO,aAAa;AACxB,QAAI,YAAY,aAAa;AAC7B,QAAIE,KAAI;AACR,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,KAAK;AACtC,UAAIC,SAAmB,CAAC;AACxB,UAAI,OAAkB,CAAC;AACvB,OAACA,QAAO,IAAI,IAAI,OAAO,QAAQ,OAAO,EAAE;AACxC,UAAK,KAAK,SAAS,KAAQ,KAAK,GAAc,SAAS,GAAI;AACzD,cAAM,MAAMA,OAAM,KAAe,IAAI,IAAIA,OAAM,OAAO;AACtD,cAAM,QAAQ,GAAGA,OAAM,MAAM,QAAQ,KAAK;AAC1C,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,OAAO,GAAG,IAAKD,KAAI,aAAa,UAAW;AAAA,QAC1D;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,OAAO,GAAG,IAAKA,KAAI,aAAa,UAAW;AACxD,QAAAA,MAAK;AAAA,MACP;AAAA,IACF;AAAA,EACF;AACF;;;APjBA,IAAI,WAAW;AAUR,SAAS,OAAOE,WAAqB,QAAwB,aAAoC;AACtG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,WAAW;AACf,MAAI,OAAO,aAAa;AAExB,WAASE,KAAI,GAAGA,KAAI,OAAO,QAAQA,MAAK;AACtC,QAAI,aAAa,WAAW;AAC1B,UAAI,cAAc,aAAa;AAC/B,UAAI,YAAY,aAAa;AAC7B,WAAK,KAAK,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,YAAY;AAC9F,UAAI,aAAa,YAAY;AAC3B,cAAM,QAAQ,WAAWA;AACzB,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,OAAO,OAAOA,IAAG,IAAI,KAAK,GAAG,IAAI,OAAOA,IAAG,IAAI,KAAK,aAAa,YAAY,OAAOA,IAAG,IAAI,EAAE;AAAA,QAC5G;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,OAAO,OAAOA,IAAG,IAAI,KAAK,GAAG,IAAI,OAAOA,IAAG,IAAI,KAAK,aAAa,YAAY,OAAOA,IAAG,IAAI,EAAE;AAAA,MAC5G;AACA,UAAI,OAAO;AAAA,IACb;AAAA,EACF;AACF;AAGO,SAASC,QAAOC,QAAwD,QAAmB;AAChG,MAAI,CAACA,UAAS,CAAC;AAAQ;AACvB,QAAM,MAAM,iBAAiB,MAAM;AACnC,MAAI,CAAC;AAAK;AACV,MAAI,UAAUA,QAAO,GAAG,CAAC;AAC3B;AAGA,eAAsBC,KAAIL,WAAqB,QAAgB,aAAoC;AACjG,MAAI,EAAC,iCAAQ,gBAAe,CAACA;AAAU,WAAO;AAC9C,QAAM,YAAY,IAAI;AACtB,QAAM,eAAe,UAAUC,UAAS,WAAW;AACnD,QAAM,UAAU,QAAQ,IAAI;AAAA,IAC1B,KAAKD,WAAU,OAAO,MAAM,YAAY;AAAA,IACxC,KAAKA,WAAU,OAAO,MAAM,YAAY;AAAA,IACxC,KAAKA,WAAU,OAAO,MAAM,YAAY;AAAA,IACxC,OAAOA,WAAU,OAAO,QAAQ,YAAY;AAAA,IAC5C,QAAQA,WAAU,OAAO,SAAS,YAAY;AAAA,EAEhD,CAAC;AACD,aAAWM,KAAI,UAAU,WAAW,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAChG,SAAO,YAAY,OAAO;AAC1B,SAAO;AACT;;;AQxEA,IAAM,aAAa;AACnB,IAAM,QAAQ;AAGd,SAAS,WAAW,GAAW,GAAW,SAA8C;AACtF,MAAI,SAAS;AACb,MAAI,IAAI,QAAQ,SAAS;AACzB,WAASC,KAAI,GAAGA,KAAI,QAAQ,QAAQ,IAAIA,MAAK;AAC3C,QAAM,QAAQA,IAAG,IAAI,MAAQ,QAAQ,GAAG,IAAI,KAAQ,KAAK,QAAQ,GAAG,IAAI,QAAQA,IAAG,MAAM,IAAI,QAAQA,IAAG,MAAM,QAAQ,GAAG,IAAI,QAAQA,IAAG,KAAK,QAAQA,IAAG;AAAI,eAAS,CAAC;AAAA,EACxK;AACA,SAAO;AACT;AAEA,eAAsB,KAAKC,OAA+C;AACxE,MAAI,CAACA,MAAK;AAAQ,WAAOA,MAAK;AAC9B,MAAI,CAACA,MAAK,QAAQA,MAAK,KAAK,SAAS;AAAK,WAAOA,MAAK;AACtD,QAAM,QAAQA,MAAK,OAAO,MAAM,MAAM;AACtC,QAAM,SAASA,MAAK,OAAO,MAAM,MAAM;AACvC,QAAMC,UAAS,MAAMD,MAAK,OAAO,OAAO;AACxC,MAAI,aAAyC,CAAC;AAC9C,aAAW,MAAM,gBAAgB;AAAY,eAAW,KAAK,EAAE,IAAIA,MAAK,KAAK,IAAI,KAAKA,MAAK,IAAI,MAAMA,MAAK,IAAI,IAAI,IAAIA,MAAK,KAAK,IAAI,KAAKA,MAAK,IAAI,MAAMA,MAAK,IAAI,GAAG,CAAC;AACrK,MAAI,cAAc,aAAa;AAAG,iBAAa,WAAW,IAAI,CAAC,QAAQ,EAAE,GAAG,GAAG,IAAI,MAAM,GAAG,IAAI,aAAa,GAAG,IAAI,YAAY,GAAG,GAAG,IAAI,MAAM,GAAG,IAAI,aAAa,GAAG,IAAI,WAAW,EAAE;AACxL,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,aAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,YAAM,SAAS,WAAW,IAAI,OAAO,IAAI,OAAO,UAAU;AAC1D,UAAI,CAAC,QAAQ;AACX,QAAAC,QAAO,IAAI,QAAQA,QAAO,IAAI,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;AACrD,QAAAA,QAAO,IAAI,QAAQA,QAAO,IAAI,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;AACrD,QAAAA,QAAO,IAAI,QAAQA,QAAO,IAAI,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,MACvD;AAAA,IACF;AAAA,EACF;AACA,QAAM,SAASA,QAAO,SAAS;AAC/B,EAAG,QAAQA,OAAM;AACjB,SAAO;AACT;;;ACpCA,IAAM,gBAAgB,CAACC,UAA4D;AACjF,QAAM,UAAU,CAAC,KAAY,QAAe,KAAK,MAAM,IAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,EAAE;AACvF,MAAI,CAACA,MAAK,YAAY,gBAAgB,CAACA,MAAK,YAAY;AAAa,WAAO,EAAE,SAAS,GAAG,UAAU,EAAE;AAEtG,QAAM,aAAa,CAAC,GAAG,IAAI;AAC3B,QAAM,WAAW;AAEjB,QAAM,QAAQA,MAAK,KAAK,IAAI,MAAM,MAAMA,MAAK,KAAK,KAAK,MAAM;AAC7D,QAAM,aAAa,OAAOA,MAAK,KAAK,OAAOA,MAAK,KAAK;AACrD,QAAM,YAAY,OACd,EAAEA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,IAAI,MAAM,IAAIA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,IAAI,MAAM,CAAC,IACvF,EAAEA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,KAAK,MAAM,IAAIA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,KAAK,MAAM,CAAC;AAC7F,QAAM,UAAU,OACZ,CAACA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,IAAI,IAAIA,MAAK,KAAK,IAAI,KAAKA,MAAK,KAAK,IAAI,EAAE,IAC1E,CAACA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,KAAK,IAAIA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,KAAK,EAAE;AACjF,QAAM,UAAiB;AAAA,KACpB,UAAU,KAAK,WAAW,MAAM,QAAQ,KAAK,WAAW;AAAA,IACzD,YAAY,WAAW,KAAK,UAAU,MAAM,QAAQ,KAAK,WAAW;AAAA,EACtE;AACA,MAAI,WAAW,KAAK,KAAM,QAAQ,KAAK,QAAQ,KAAO,QAAQ,KAAK,QAAQ,EAAG;AAC9E,aAAW,KAAK,IAAI,UAAUA,MAAK,OAAO,KAAK,GAAGA,MAAK,OAAO,KAAK,CAAC;AACpE,QAAM,WAAW,QAAQ,CAAC,GAAG,CAAC,GAAG,OAAO,IAAK,KAAK,KAAK,KAAM,KAAK;AAClE,SAAO,EAAE,SAAS,SAAS;AAC7B;AAEO,IAAM,qBAAqB,CAACA,OAAkB,cAIhD;AAEH,QAAM,YAAY,CAAC,MAAsB;AACvC,UAAM,SAAS,KAAK,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE,EAAE;AAChE,MAAE,MAAM;AACR,MAAE,MAAM;AACR,MAAE,MAAM;AACR,WAAO;AAAA,EACT;AACA,QAAM,aAAa,CAAC,GAAW,MAAsB;AACnD,UAAM,IAAI,EAAE,KAAK,EAAE;AACnB,UAAM,IAAI,EAAE,KAAK,EAAE;AACnB,UAAM,IAAI,EAAE,KAAK,EAAE;AACnB,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,QAAM,eAAe,CAAC,GAAW,MAAsB;AACrD,UAAM,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE;AACjC,UAAM,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE;AACjC,UAAM,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE;AACjC,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AAEA,QAAM,6BAA6B,CAACC,OAA8D;AAChG,UAAM,CAAC,KAAK,MAAM,MAAM,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,IAAIA;AACxD,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI,MAAM,GAAG;AACX,UAAI,MAAM,IAAI;AACZ,iBAAS,KAAK,KAAK,GAAG;AACtB,iBAAS,KAAK,MAAM,CAAC,KAAK,GAAG;AAC7B,iBAAS,KAAK,MAAM,CAAC,KAAK,GAAG;AAAA,MAC/B,OAAO;AACL,iBAAS,CAAC,KAAK,KAAK;AACpB,iBAAS,CAAC,KAAK,MAAM,KAAK,GAAG;AAC7B,iBAAS;AAAA,MACX;AAAA,IACF,OAAO;AACL,eAAS,KAAK,KAAK;AACnB,eAAS,KAAK,MAAM,KAAK,GAAG;AAC5B,eAAS;AAAA,IACX;AACA,QAAI,OAAO,MAAM,MAAM;AAAG,eAAS;AACnC,QAAI,OAAO,MAAM,MAAM;AAAG,eAAS;AACnC,QAAI,OAAO,MAAM,MAAM;AAAG,eAAS;AACnC,WAAO,EAAE,OAAO,IAAI,CAAC,QAAQ,KAAK,IAAI,CAAC,QAAQ,MAAM,IAAI,CAAC,OAAO;AAAA,EACnE;AAcA,QAAM,OAAOD,MAAK;AAClB,MAAI,CAAC,QAAQ,KAAK,SAAS;AAAK,WAAO,EAAE,OAAO,EAAE,OAAO,GAAG,KAAK,GAAG,MAAM,EAAE,GAAG,QAAQ,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,MAAM,EAAE,SAAS,GAAG,UAAU,EAAE,EAAE;AAEtJ,QAAME,QAAO,KAAK,IAAIF,MAAK,OAAO,KAAK,UAAU,IAAIA,MAAK,OAAO,KAAK,UAAU,EAAE,IAAI;AAEtF,QAAM,MAAe,CAAC,KAAK,KAAK,KAAK,MAAM,KAAK,MAAM,KAAK,IAAI,EAAE,IAAI,CAAC,OAAO,CAAC,GAAG,KAAK,UAAU,KAAKE,OAAM,GAAG,KAAK,UAAU,KAAKA,OAAM,GAAG,EAAE,CAAU;AAEvJ,QAAM,QAAQ,UAAU,WAAW,IAAI,IAAc,IAAI,EAAY,CAAC;AACtE,MAAI,QAAQ,UAAU,WAAW,IAAI,IAAc,IAAI,EAAY,CAAC;AACpE,QAAM,QAAQ,UAAU,aAAa,OAAO,KAAK,CAAC;AAElD,UAAQ,aAAa,OAAO,KAAK;AAIjC,QAAM,SAAmF;AAAA,IACvF,MAAM;AAAA,IAAI,MAAM;AAAA,IAAI,MAAM;AAAA,IAC1B,MAAM;AAAA,IAAI,MAAM;AAAA,IAAI,MAAM;AAAA,IAC1B,MAAM;AAAA,IAAI,MAAM;AAAA,IAAI,MAAM;AAAA,EAC5B;AACA,QAAM,QAAQ,2BAA2B,MAAM;AAI/C,QAAM,OAAO,KAAK,WAAW,MAAM,cAAcF,KAAI,IAAI,EAAE,SAAS,GAAG,UAAU,EAAE;AAEnF,SAAO,EAAE,OAAO,QAAQ,KAAK;AAC/B;;;AC9FO,IAAM,aAAa,OAAOG,WAAyCC,WAAyC;AA1BnH;AA4BE,MAAI,YAAoB,IAAI;AAC5B,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AAEJ,QAAM,UAAwB,CAAC;AAC/B,EAAAD,UAAS,QAAQ;AAEjB,QAAM,QAAQ,MAAeE,UAAQD,QAAOD,UAAS,MAAM;AAC3D,EAAAA,UAAS,YAAY,OAAOG,KAAI,WAAWH,UAAS,YAAY,QAAQ,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AACzI,MAAI,CAACC,OAAM,SAASA,OAAM,MAAM,WAAW;AAAG,WAAO,CAAC;AACtD,MAAI,CAAC;AAAO,WAAO,CAAC;AAEpB,WAASG,KAAI,GAAGA,KAAI,MAAM,QAAQA,MAAK;AACrC,IAAAJ,UAAS,QAAQ,UAAU;AAI3B,QAAI,CAAC,MAAMI,IAAG,UAAU,MAAMA,IAAG,OAAO,oBAAoB;AAC1D,UAAI,4BAA4B,MAAMA,IAAG,MAAM;AAC/C;AAAA,IACF;AAGA,SAAI,KAAAJ,UAAS,OAAO,KAAK,aAArB,mBAA+B,MAAM;AACvC,YAAM,SAAS,MAAW,KAAK,MAAMI,GAAE;AACvC,MAAG,QAAQ,MAAMA,IAAG,MAAM;AAC1B,UAAI;AAAQ,cAAMA,IAAG,SAAS;AAAA,IAChC;AAGA,UAAM,WAAW,MAAMA,IAAG,QAAS,MAAMA,IAAG,KAAK,SAAS,MAAO,mBAAmB,MAAMA,KAAI,CAACH,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,CAAC,IAAI;AAGlI,IAAAD,UAAS,QAAQ,gBAAgB;AACjC,QAAIA,UAAS,OAAO,OAAO;AACzB,qBAAa,KAAAA,UAAS,OAAO,KAAK,YAArB,mBAA8B,WAAkBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI,CAAC;AAAA,IAC9I,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,qBAAa,KAAAA,UAAS,OAAO,KAAK,YAArB,mBAA8B,WAAU,MAAcE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI,CAAC;AAClJ,MAAAJ,UAAS,YAAY,UAAUG,KAAI,WAAWH,UAAS,YAAY,WAAW,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACjJ;AACA,IAAAA,UAAS,QAAQ,cAAc;AAG/B,IAAAA,UAAS,QAAQ,kBAAkB;AACnC,QAAIA,UAAS,OAAO,OAAO;AACzB,uBAAe,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAoBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IACnJ,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,uBAAe,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAU,MAAgBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACvJ,MAAAJ,UAAS,YAAY,YAAYG,KAAI,WAAWH,UAAS,YAAY,aAAa,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACrJ;AACA,IAAAA,UAAS,QAAQ,gBAAgB;AAGjC,IAAAA,UAAS,QAAQ,iBAAiB;AAClC,QAAIA,UAAS,OAAO,OAAO;AACzB,sBAAc,KAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,WAAmBE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IAChJ,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,sBAAc,KAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,WAAU,MAAeE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACpJ,MAAAJ,UAAS,YAAY,WAAWG,KAAI,WAAWH,UAAS,YAAY,aAAa,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACpJ;AACA,IAAAA,UAAS,QAAQ,eAAe;AAGhC,IAAAA,UAAS,QAAQ,aAAa;AAC9B,QAAIA,UAAS,OAAO,OAAO;AACzB,kBAAU,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,WAAe,QAAQ,MAAMI,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IACpI,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,kBAAU,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,WAAU,MAAW,QAAQ,MAAMI,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACxI,MAAAJ,UAAS,YAAY,OAAO,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IAC1D;AACA,IAAAA,UAAS,QAAQ,WAAW;AAG5B,IAAAA,UAAS,QAAQ,eAAe;AAChC,QAAIA,UAAS,OAAO,OAAO;AACzB,iBAAS,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAoBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAC3I,oBAAY,KAAAJ,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAuBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IACnJ,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,iBAAS,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAU,MAAgBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACjJ,oBAAY,KAAAJ,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAU,MAAmBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACvJ,MAAAJ,UAAS,YAAY,SAAS,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IAC5D;AACA,IAAAA,UAAS,QAAQ,aAAa;AAG9B,IAAAA,UAAS,QAAQ,sBAAsB;AACvC,QAAIA,UAAS,OAAO,OAAO;AACzB,2BAAmB,KAAAA,UAAS,OAAO,KAAK,qBAArB,mBAAuC,WAAwBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IAClK,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,2BAAmB,KAAAA,UAAS,OAAO,KAAK,qBAArB,mBAAuC,WAAU,MAAoBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACtK,MAAAJ,UAAS,YAAY,gBAAgB,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACnE;AACA,IAAAA,UAAS,QAAQ,oBAAoB;AAGrC,IAAAA,UAAS,QAAQ,oBAAoB;AACrC,QAAIA,UAAS,OAAO,OAAO;AACzB,yBAAiB,KAAAA,UAAS,OAAO,KAAK,mBAArB,mBAAqC,WAAsBE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IAC5J,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,yBAAiB,KAAAA,UAAS,OAAO,KAAK,mBAArB,mBAAqC,WAAU,MAAkBE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAChK,MAAAJ,UAAS,YAAY,gBAAgB,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACnE;AACA,IAAAA,UAAS,QAAQ,kBAAkB;AAGnC,IAAAA,UAAS,QAAQ,oBAAoB;AACrC,QAAIA,UAAS,OAAO,OAAO;AACzB,gBAAkBE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM;AAAA,IAC9F,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,gBAAU,MAAcE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM;AAClG,MAAAJ,UAAS,YAAY,cAAcG,KAAI,WAAWH,UAAS,YAAY,eAAe,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACzJ;AACA,IAAAA,UAAS,QAAQ,kBAAkB;AAGnC,QAAIA,UAAS,OAAO,OAAO;AACzB,OAAC,QAAQ,WAAW,YAAY,kBAAkB,gBAAgB,SAAS,SAAS,cAAc,WAAW,IAAI,MAAM,QAAQ,IAAI,CAAC,QAAQ,WAAW,YAAY,kBAAkB,gBAAgB,SAAS,SAAS,cAAc,WAAW,CAAC;AAAA,IACnP;AACA,IAAAA,UAAS,QAAQ,cAAc;AAE/B,UAAI,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,UAAU,WAAW;AAClE,gBAAU;AAAA,QACR,GAAI;AAAA,QACJ,KAAM,OAA0B;AAAA,QAChC,QAAS,UAAsD;AAAA,QAC/D,aAAc,UAAsD;AAAA,MACtE;AAAA,IACF;AACA,UAAI,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,YAAW,SAAS;AACjD,gBAAU;AAAA,QACR,GAAI;AAAA,QACJ,KAAM,QAA0B;AAAA,QAChC,QAAS,QAA0B;AAAA,QACnC,aAAc,QAA0B;AAAA,QACxC,MAAO,QAA0B;AAAA,MACnC;AAAA,IACF;AACA,UAAI,KAAAA,UAAS,OAAO,KAAK,qBAArB,mBAAuC,YAAW,kBAAkB;AACtE,MAAC,QAAoB,aAAa;AAAA,IACpC;AAEA,UAAI,KAAAA,UAAS,OAAO,KAAK,mBAArB,mBAAqC,YAAW,gBAAgB;AAClE,MAAC,QAAoB,aAAa;AAAA,IACpC;AAIA,QAAI,GAAC,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,UAAS;AAAA,IAGzC;AACA,UAAM,aAAY,uBAAMI,QAAN,mBAAU,gBAAV,mBAAuB,gBAAvB,mBAAqC,SAAM,uBAAMA,QAAN,mBAAU,gBAAV,mBAAuB,iBAAvB,mBAAsC,OAC7F,MAAMA,IAAG,YAAY,YAAY,SAAS,KAAO,MAAMA,IAAG,YAAY,aAAa,SAAS,KAC5F,MAAMA,IAAG,YAAY,YAAY,OAAO,QAAU,MAAMA,IAAG,YAAY,aAAa,OAAO,OAC7F,KAAK,IAAI,KAAK,IAAI,MAAMA,IAAG,YAAY,YAAY,GAAG,KAAK,MAAMA,IAAG,YAAY,YAAY,GAAG,EAAE,GAAG,KAAK,IAAI,MAAMA,IAAG,YAAY,aAAa,GAAG,KAAK,MAAMA,IAAG,YAAY,aAAa,GAAG,EAAE,CAAC,IAAIH,OAAM,MAAM,KAC/M;AAGJ,UAAMI,YAAS,KAAAL,UAAS,OAAO,KAAK,aAArB,mBAA+B,UAAY,QAAQ,MAAMI,IAAG,MAAM,IAAI;AAErF,IAAG,QAAQ,MAAMA,IAAG,MAAM;AAE1B,QAAI,MAAMA,IAAG;AAAQ,aAAO,MAAMA,IAAG;AAErC,UAAM,MAAkB;AAAA,MACtB,GAAG,MAAMA;AAAA,MACT,IAAIA;AAAA,IACN;AACA,QAAK,QAAoB;AAAK,UAAI,MAAO,QAAoB;AAC7D,QAAK,QAAoB;AAAQ,UAAI,SAAU,QAAoB;AACnE,QAAK,QAAoB;AAAa,UAAI,cAAe,QAAoB;AAC7E,QAAK,QAAoB;AAAY,UAAI,YAAa,QAAoB;AAC1E,QAAK,QAAoB;AAAM,UAAI,OAAQ,QAAoB;AAC/D,QAAI;AAAY,UAAI,UAAU;AAC9B,QAAI;AAAc,UAAI,OAAO;AAC7B,QAAI;AAAa,UAAI,OAAO;AAC5B,QAAI,YAAY,aAAa;AAAG,UAAI,OAAO,KAAK,MAAM,MAAM,WAAW,IAAI,IAAI;AAC/E,QAAI;AAAU,UAAI,WAAW;AAC7B,QAAIC;AAAQ,UAAI,SAASA;AACzB,YAAQ,KAAK,GAAG;AAChB,IAAAL,UAAS,QAAQ,UAAU;AAAA,EAC7B;AACA,EAAAA,UAAS,QAAQ,eAAe;AAChC,MAAIA,UAAS,OAAO,OAAO;AACzB,QAAIA,UAAS,YAAY;AAAM,aAAOA,UAAS,YAAY;AAC3D,QAAIA,UAAS,YAAY;AAAK,aAAOA,UAAS,YAAY;AAC1D,QAAIA,UAAS,YAAY;AAAQ,aAAOA,UAAS,YAAY;AAC7D,QAAIA,UAAS,YAAY;AAAS,aAAOA,UAAS,YAAY;AAAA,EAChE;AACA,SAAO;AACT;;;AChNO,IAAMM,QAAO,CAAC,QAAuC;AAC1D,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAM,WAAqD,CAAC;AAC5D,WAASC,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AAEnC,UAAM,YAAY,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,WAAY;AACvE,UAAM,aAAa,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,YAAa;AACzE,UAAM,OAAO,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,MAAO;AAC7D,QAAI,QAAQ,aAAa,cAAe,UAAU,SAAS,KAAK,KAAK,SAAS,MAAQ,WAAW,SAAS,KAAK,KAAK,SAAS;AAAK,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,YAAY,CAAC;AAAA,aACxK,QAAQ,aAAc,UAAU,SAAS,KAAK,KAAK,SAAS;AAAK,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,kBAAkB,CAAC;AAAA,aACtH,QAAQ,cAAe,WAAW,SAAS,KAAK,KAAK,SAAS;AAAK,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,mBAAmB,CAAC;AAGlI,UAAM,eAAe,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,cAAe;AAC7E,UAAM,gBAAgB,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,eAAgB;AAC/E,QAAI,gBAAgB,iBAAiB,KAAK,IAAI,aAAa,YAAY,KAAK,cAAc,YAAY,EAAE,IAAI,KAAK;AAC/G,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,WAAY,aAAa,SAAS,KAAK,cAAc,SAAS,KAAM,SAAS,UAAU,CAAC;AAAA,IAC5H;AAAA,EACF;AACA,SAAO;AACT;AAEO,IAAMC,QAAO,CAAC,QAAuC;AAC1D,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAM,WAAqD,CAAC;AAC5D,WAASD,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,QAAI,IAAIA,IAAG,QAAQ,IAAIA,IAAG,KAAK,SAAS,KAAK;AAC3C,YAAM,SAAS,IAAIA,IAAG,KAAK,IAAI,MAAM,MAAM,IAAIA,IAAG,KAAK,KAAK,MAAM;AAClE,YAAM,QAAQ,IAAIA,IAAG,KAAK,IAAI,KAAK,IAAIA,IAAG,KAAK,KAAK;AACpD,UAAI,KAAK,IAAI,QAAQ,KAAK,KAAK;AAAM,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,gBAAgB,CAAC;AAAA;AACnF,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,UAAU,QAAQ,IAAI,SAAS,UAAU,CAAC;AACjF,YAAM,WAAW,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE,IAAI,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE;AACzH,UAAI,WAAW;AAAK,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,iBAAiB,CAAC;AACxE,YAAM,YAAY,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE,IAAI,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE;AAC1H,UAAI,YAAY;AAAK,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,kBAAkB,CAAC;AAC1E,YAAM,YAAY,KAAK,IAAI,KAAK,MAAM,KAAK,IAAI,IAAIA,IAAG,KAAK,IAAI,KAAK,IAAIA,IAAG,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,IAAIA,IAAG,KAAK,IAAI,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE,CAAC;AAC5I,UAAI,YAAY;AAAI,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,SAAS,KAAK,MAAM,SAAS,UAAU,CAAC;AAC9F,YAAM,YAAY,IAAIA,IAAG,KAAK,KAAK,MAAM;AACzC,UAAI,KAAK,IAAI,SAAS,IAAI;AAAI,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,QAAQ,YAAY,IAAI,OAAO,SAAS,CAAC;AAAA,IAC3G;AAAA,EACF;AACA,SAAO;AACT;AAEO,IAAME,QAAO,CAAC,QAAuC;AA7E5D;AA8EE,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAM,WAAqD,CAAC;AAC5D,WAASF,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,QAAI,GAAC,eAAIA,IAAG,gBAAP,mBAAoB,gBAApB,mBAAkC,OAAM,GAAC,eAAIA,IAAG,gBAAP,mBAAoB,iBAApB,mBAAmC;AAAI;AACrF,UAAM,YAAY,IAAIA,IAAG,YAAY,YAAY,GAAG,KAAK,IAAIA,IAAG,YAAY,YAAY,GAAG;AAC3F,UAAM,YAAY,IAAIA,IAAG,YAAY,YAAY,GAAG,KAAK,IAAIA,IAAG,YAAY,YAAY,GAAG;AAC3F,UAAM,WAAW,KAAK,IAAI,YAAY,SAAS;AAE/C,UAAM,aAAa,IAAIA,IAAG,YAAY,aAAa,GAAG,KAAK,IAAIA,IAAG,YAAY,aAAa,GAAG;AAC9F,UAAM,aAAa,IAAIA,IAAG,YAAY,aAAa,GAAG,KAAK,IAAIA,IAAG,YAAY,aAAa,GAAG;AAC9F,UAAM,YAAY,KAAK,IAAI,aAAa,UAAU;AAElD,QAAI,SAAS;AACb,UAAM,aAAa,KAAK,IAAI,WAAW,SAAS,IAAI,KAAK,IAAI,UAAU,SAAS;AAChF,QAAI,aAAa,MAAM;AACrB,eAAS;AACT,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,gBAAgB,CAAC;AAAA,IACrD;AAEA,UAAM,kBAAkB,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,YAAY,YAAY,GAAG,EAAE,IAAI,IAAIA,IAAG,IAAI;AAC1G,UAAM,mBAAmB,KAAK,IAAI,IAAIA,IAAG,KAAK,IAAI,KAAK,IAAIA,IAAG,YAAY,aAAa,GAAG,EAAE,IAAI,IAAIA,IAAG,IAAI;AAC3G,QAAI,kBAAkB,QAAQ,mBAAmB;AAAM,eAAS;AAChE,QAAI,kBAAkB,kBAAkB;AACtC,UAAI,kBAAkB;AAAM,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,gBAAgB,CAAC;AAAA,IACjF,OAAO;AACL,UAAI,mBAAmB;AAAM,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,eAAe,CAAC;AAAA,IACjF;AAEA,UAAM,mBAAmB,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,YAAY,aAAa,GAAG,EAAE,IAAI,IAAIA,IAAG,IAAI;AAC5G,UAAM,kBAAkB,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,YAAY,YAAY,GAAG,EAAE,IAAI,IAAIA,IAAG,IAAI;AAC1G,QAAI,kBAAkB,QAAQ,mBAAmB,QAAQ,kBAAkB,SAAS,mBAAmB;AAAO,eAAS;AACvH,QAAI,kBAAkB,QAAQ,mBAAmB;AAAM,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,eAAe,CAAC;AACzG,QAAI,kBAAkB,SAAS,mBAAmB;AAAO,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,aAAa,CAAC;AAGzG,QAAI;AAAQ,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,iBAAiB,CAAC;AAAA,EAClE;AACA,SAAO;AACT;AAEO,IAAMG,QAAO,CAAC,QAAuC;AAC1D,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAM,WAAqD,CAAC;AAC5D,WAASH,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,UAAM,UAA+C,CAAC;AACtD,QAAI,IAAIA,IAAG,aAAa;AACtB,iBAAW,CAAC,QAAQ,GAAG,KAAK,OAAO,QAAQ,IAAIA,IAAG,WAAW,GAAG;AAC9D,YAAI,WAAW,cAAc,MAAM,QAAQ,GAAG,KAAK,IAAI;AAAI,kBAAQ,KAAK,EAAE,MAAM,OAAO,YAAY,GAAG,UAAU,IAAI,GAAG,CAAC;AAAA,MAC1H;AAAA,IACF;AACA,QAAI,WAAW,QAAQ,SAAS,GAAG;AACjC,YAAM,UAAU,QAAQ,OAAO,CAAC,MAAM,OAAQ,KAAK,SAAS,MAAM,MAAM,EAAE,SAAS,MAAM,KAAK,OAAO,CAAE;AACvG,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,GAAG,QAAQ,eAA8B,CAAC;AAC5E,YAAM,UAAU,QAAQ,OAAO,CAAC,MAAM,MAAO,KAAK,SAAS,KAAK,EAAE,SAAS,KAAK,OAAO,CAAE;AACzF,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,GAAG,QAAQ,UAAyB,CAAC;AAAA,IACzE;AACA,QAAI,IAAIA,IAAG,WAAW;AACpB,YAAM,QAAmB,MAAM,IAAIA,IAAG,SAAS;AAC/C,iBAAW,QAAQ;AAAO,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,KAAK,KAAoB,CAAC;AAAA,IACxF;AAAA,EACF;AACA,SAAO;AACT;;;AC/HA,IAAM,iBAAyB,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,SAAS,CAAC,GAAG,aAAa,CAAC,GAAG,WAAW,GAAG,OAAO,KAAK;AAChJ,IAAI,kBAAkB;AAEf,SAASI,MAAK,WAAmBC,SAAwB;AAhBhE;AAiBE,QAAM,KAAK,IAAI;AACf,MAAI,CAAC;AAAW,WAAO,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,SAAS,CAAC,GAAG,aAAa,CAAC,GAAG,WAAW,GAAG,OAAO,KAAK;AAKxI,QAAM,UAAU,KAAK,IAAI,IAAI,UAAU;AAQvC,QAAM,iBAAiB,UAAU,MAAO,IAAI,KAAK,IAAI,UAAU,CAAC,IAAI;AAEpE,MAAI,UAAU;AAAQ,mBAAe,SAAS,UAAU;AACxD,MAAI,UAAU;AAAO,mBAAe,QAAQ,UAAU;AAGtD,MAAI,CAAC,eAAe,QAAS,UAAU,KAAK,WAAW,eAAe,KAAK,QAAS;AAClF,mBAAe,OAAO,KAAK,MAAM,KAAK,UAAU,UAAU,IAAI,CAAC;AAAA,EACjE,OAAO;AACL,aAASC,KAAI,GAAGA,KAAI,UAAU,KAAK,QAAQA,MAAK;AAC9C,YAAM,MAAM,UAAU,KAAKA,IAAG,IAC3B,IAAI,CAAC,aAAa,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,IAAI,KAAK,eAAe,cAAc;AAChH,YAAM,SAAS,UAAU,KAAKA,IAAG,OAC9B,IAAI,CAAC,aAAa,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,OAAO,KAAK,eAAe,cAAc;AACnH,YAAM,YAAa,UAAU,KAAKA,IAAG,UAClC,IAAI,CAAC,QAAQ,MAAG;AA9CzB,YAAAC,KAAAC,KAAAC,KAAAC,KAAAC,KAAAC,KAAAC,KAAAC,KAAAC;AA8C6B;AAAA,UACnB,OAAO,OAAO;AAAA,UACd,MAAM,OAAO;AAAA,UACb,UAAU;AAAA,YACR,eAAe,KAAKT,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,SAAS,MAAM,MAAM,OAAO,SAAS,MAAM,MAAM,iBAAiB,OAAO,SAAS;AAAA,YACrL,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,SAAS,MAAM,MAAM,OAAO,SAAS,MAAM,MAAM,iBAAiB,OAAO,SAAS;AAAA,YACrL,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,SAAS,MAAM,MAAM,OAAO,SAAS,MAAM,MAAM,iBAAiB,OAAO,SAAS;AAAA,UACvL;AAAA,UACA,aAAa;AAAA,YACX,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,YAAY,MAAM,MAAM,OAAO,YAAY,MAAM,MAAM,iBAAiB,OAAO,YAAY;AAAA,YAC9L,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,YAAY,MAAM,MAAM,OAAO,YAAY,MAAM,MAAM,iBAAiB,OAAO,YAAY;AAAA,YAC9L,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,YAAY,MAAM,MAAM,OAAO,YAAY,MAAM,MAAM,iBAAiB,OAAO,YAAY;AAAA,UAChM;AAAA,UACA,UAAU;AAAA,YACR,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,QAAMC,MAAA,eAAe,KAAKD,IAAG,UAAU,GAAG,aAApC,gBAAAC,IAA+C,OAAM,QAAMC,MAAA,OAAO,aAAP,gBAAAA,IAAkB,OAAM,MAAM,kBAAiBC,MAAA,OAAO,aAAP,gBAAAA,IAAkB;AAAA,YAC3L,eAAe,KAAKH,IAAG,UAAU,OAAO,iBAAiB,QAAMI,MAAA,eAAe,KAAKJ,IAAG,UAAU,GAAG,aAApC,gBAAAI,IAA+C,OAAM,QAAMC,MAAA,OAAO,aAAP,gBAAAA,IAAkB,OAAM,MAAM,kBAAiBC,MAAA,OAAO,aAAP,gBAAAA,IAAkB;AAAA,YAC3L,eAAe,KAAKN,IAAG,UAAU,OAAO,iBAAiB,QAAMO,MAAA,eAAe,KAAKP,IAAG,UAAU,GAAG,aAApC,gBAAAO,IAA+C,OAAM,QAAMC,MAAA,OAAO,aAAP,gBAAAA,IAAkB,OAAM,MAAM,kBAAiBC,MAAA,OAAO,aAAP,gBAAAA,IAAkB;AAAA,UAC7L;AAAA,QACF;AAAA,OAAE;AAEJ,YAAMC,eAAiD,CAAC;AACxD,UAAIC,UAAS,EAAE,WAAW,CAAC,EAAE;AAC7B,WAAI,KAAAZ,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAAkB,QAAAY,UAAS;AAAA,gBACtD,KAAAZ,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAAc,QAAAY,UAAS;AAAA,gBACvD,KAAAZ,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAAY,QAAAY,UAAS;AAC9D,iBAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAQA,QAAO,SAAqC,GAAG;AAC1F,cAAM,KAAgB,CAAC;AACvB,iBAAS,IAAI,GAAG,IAAI,QAAQ,SAAS,GAAG,KAAK;AAC3C,gBAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQ,EAAE;AACzD,gBAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQ,IAAI,EAAE;AAE7D,cAAI,OAAO;AAAK,eAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,QACtD;AACA,QAAAD,aAAY,QAAQ;AAAA,MACtB;AACA,qBAAe,KAAKV,MAAK,EAAE,GAAG,UAAU,KAAKA,KAAI,KAAK,QAAQ,WAAW,aAAAU,aAAY;AAAA,IACvF;AAAA,EACF;AAGA,MAAI,CAAC,eAAe,QAAS,UAAU,KAAK,WAAW,eAAe,KAAK,QAAS;AAClF,mBAAe,OAAO,KAAK,MAAM,KAAK,UAAU,UAAU,IAAI,CAAC;AAAA,EACjE,OAAO;AACL,aAASV,KAAI,GAAGA,KAAI,UAAU,KAAK,QAAQA,MAAK;AAC9C,YAAM,MAAO,UAAU,KAAKA,IAAG,IAC5B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,IAAI,KAAK,KAAK,cAAc;AAC5F,YAAM,SAAU,UAAU,KAAKA,IAAG,OAC/B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,OAAO,KAAK,KAAK,cAAc;AAC/F,UAAI,eAAe,KAAKA,IAAG,UAAU,WAAW,UAAU,KAAKA,IAAG,UAAU;AAAQ,uBAAe,KAAKA,IAAG,YAAY,UAAU,KAAKA,IAAG;AACzI,YAAM,YAAY,UAAU,KAAKA,IAAG,aAAa,UAAU,KAAKA,IAAG,UAAU,SAAS,IAAI,UAAU,KAAKA,IAAG,UACzG,IAAI,CAAC,UAAU,MAAM,SACnB,IAAI,CAAC,OAAO,QAAS,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,MAAM,MAAM,SAAS,MAAM,cAAe,CAAU,IACrI,CAAC;AACL,UAAIU,eAAc,CAAC;AACnB,UAAI,OAAO,KAAK,eAAe,KAAKV,IAAG,WAAW,EAAE,WAAW,OAAO,KAAK,UAAU,KAAKA,IAAG,WAAW,EAAE,QAAQ;AAChH,uBAAe,KAAKA,IAAG,cAAc,UAAU,KAAKA,IAAG;AACvD,QAAAU,eAAc,eAAe,KAAKV,IAAG;AAAA,MACvC,WAAW,UAAU,KAAKA,IAAG,aAAa;AACxC,mBAAW,OAAO,OAAO,KAAK,UAAU,KAAKA,IAAG,WAAW,GAAG;AAC5D,UAAAU,aAAY,SAAO,2BAAU,KAAKV,QAAf,mBAAmB,gBAAnB,mBAAiC,SAAjC,mBAAwC,MACvD,UAAU,KAAKA,IAAG,YAAY,KAC7B,IAAI,CAAC,KAAK,MAAc,IACtB,IAAI,CAAC,OAAe,QAAgB,iBAAiB,KAAK,eAAe,KAAKA,IAAG,YAAY,KAAK,GAAG,KAAK,SAAS,cAAc,CAAC,IACrI;AAAA,QACN;AAAA,MACF;AACA,qBAAe,KAAKA,MAAK,EAAE,GAAG,UAAU,KAAKA,KAAI,KAAK,QAAQ,WAAW,aAAaU,aAAyC;AAAA,IACjI;AAAA,EACF;AAGA,MAAI,CAAC,eAAe,QAAS,UAAU,KAAK,WAAW,eAAe,KAAK,QAAS;AAClF,mBAAe,OAAO,KAAK,MAAM,KAAK,UAAU,UAAU,IAAI,CAAC;AAAA,EACjE,OAAO;AACL,aAASV,KAAI,GAAGA,KAAI,UAAU,KAAK,QAAQA,MAAK;AAC9C,YAAM,MAAO,UAAU,KAAKA,IAAG,IAC5B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,IAAI,KAAK,KAAK,cAAc;AAC5F,YAAM,SAAU,UAAU,KAAKA,IAAG,OAC/B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,OAAO,KAAK,KAAK,cAAc;AAC/F,UAAI,UAAU,KAAKA,IAAG,UAAU;AAC9B,cAAM,WAIF,EAAE,QAAQ,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,OAAO,EAAE,MAAM,GAAG,KAAK,GAAG,OAAO,EAAE,GAAG,MAAM,EAAE,SAAS,GAAG,UAAU,EAAE,EAAE;AACnH,iBAAS,UAAS,eAAU,KAAKA,IAAG,aAAlB,mBAA4B;AAC9C,iBAAS,QAAQ;AAAA,UACf,QAAQ,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,MAAM,SAAQ,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,MAAM,SAAQ,MAAM;AAAA,UACpI,OAAO,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,MAAM,QAAO,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,MAAM,QAAO,MAAM;AAAA,UACjI,SAAS,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,MAAM,UAAS,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,MAAM,UAAS,MAAM;AAAA,QACzI;AACA,iBAAS,OAAO;AAAA,UAEd,WAAW,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,KAAK,YAAW,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,KAAK,YAAW,MAAM;AAAA,UAC3I,YAAY,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,KAAK,aAAY,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,KAAK,aAAY,MAAM;AAAA,QAChJ;AACA,uBAAe,KAAKA,MAAK,EAAE,GAAG,UAAU,KAAKA,KAAI,UAAU,KAAK,OAAO;AAAA,MACzE;AACA,qBAAe,KAAKA,MAAK,EAAE,GAAG,UAAU,KAAKA,KAAI,KAAK,OAAO;AAAA,IAC/D;AAAA,EACF;AAGA,MAAI,CAAC,eAAe,UAAW,UAAU,OAAO,WAAW,eAAe,OAAO,QAAS;AACxF,mBAAe,SAAS,KAAK,MAAM,KAAK,UAAU,UAAU,MAAM,CAAC;AAAA,EACrE,OAAO;AACL,aAASA,KAAI,GAAGA,KAAI,UAAU,OAAO,QAAQA,MAAK;AAChD,YAAM,MAAO,UAAU,OAAOA,IAAG,IAC9B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,OAAOA,IAAG,IAAI,KAAK,KAAK,cAAc;AAC9F,YAAM,SAAU,UAAU,OAAOA,IAAG,OACjC,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,OAAOA,IAAG,OAAO,KAAK,KAAK,cAAc;AACjG,qBAAe,OAAOA,MAAK,EAAE,GAAG,UAAU,OAAOA,KAAI,KAAK,OAAO;AAAA,IACnE;AAAA,EACF;AAGA,MAAI,UAAU,SAAS;AACrB,UAAM,aAAa,UAAU;AAC7B,QAAI,CAAC,eAAe,WAAY,WAAW,WAAW,eAAe,QAAQ,QAAS;AACpF,qBAAe,UAAU,KAAK,MAAM,KAAK,UAAU,UAAU,CAAC;AAAA,IAChE,OAAO;AACL,eAASA,KAAI,GAAGA,KAAI,WAAW,QAAQA,MAAK;AAC1C,uBAAe,QAAQA,IAAG,MAAO,WAAWA,IAAG,IAC5C,IAAI,CAAC,KAAK,QAAQ,iBAAiB,KAAK,eAAe,QAAQA,IAAG,IAAI,KAAK,OAAO,cAAc;AAAA,MACrG;AAAA,IACF;AAAA,EACF;AAGA,MAAI,UAAU;AAAS,mBAAe,UAAU,UAAU;AAG1D,QAAM,KAAK,IAAI;AACf,oBAAkBY,KAAI,UAAU,kBAAkB,KAAK,MAAM,KAAK,EAAE,IAAI,KAAK,MAAM,KAAK,EAAE;AAC1F,MAAI,UAAU;AAAa,mBAAe,cAAc,EAAE,GAAG,UAAU,aAAa,aAAa,gBAAgB;AAEjH,SAAO;AACT;;;ACvLA;AAAA;AAAA;AAAA,eAAAC;AAAA,EAAA;AAAA;AAWO,SAAS,SAAS,aAAyB,aAAyBC,WAAwB,EAAE,OAAO,GAAG,YAAY,GAAG,GAAG;AAE/H,MAAI,CAAC,eAAe,CAAC;AAAa,WAAO,OAAO;AAChD,MAAIC,OAAM;AACV,WAASC,KAAI,GAAGA,KAAI,YAAY,QAAQA,MAAK;AAC3C,UAAM,OAAQ,CAACF,SAAQ,SAASA,SAAQ,UAAU,IAAM,YAAYE,MAAK,YAAYA,MAAO,KAAK,IAAI,YAAYA,MAAK,YAAYA,GAAE;AACpI,IAAAD,QAAQ,CAACD,SAAQ,SAASA,SAAQ,UAAU,IAAM,OAAO,OAAS,QAAQA,SAAQ;AAAA,EACpF;AACA,UAAQA,SAAQ,cAAc,MAAMC;AACtC;AAGA,IAAM,oBAAoB,CAAC,MAAM,OAAOE,MAAKC,SAAQ;AACnD,MAAI,SAAS;AAAG,WAAO;AACvB,QAAM,OAAO,UAAU,IAAI,KAAK,KAAK,IAAI,IAAI,SAAS,IAAI;AAC1D,QAAMC,SAAQ,IAAK,OAAO,MAAOF,SAAQC,OAAMD;AAC/C,QAAMG,SAAQ,KAAK,IAAI,KAAK,IAAID,OAAM,CAAC,GAAG,CAAC;AAC3C,SAAOC;AACT;AAaO,SAAS,WAAW,aAAyB,aAAyBN,WAAwB,EAAE,OAAO,GAAG,YAAY,IAAI,KAAK,KAAK,KAAK,IAAI,GAAG;AACrJ,QAAM,OAAO,SAAS,aAAa,aAAaA,QAAO;AACvD,SAAO,kBAAkB,MAAMA,SAAQ,SAAS,GAAGA,SAAQ,OAAO,GAAGA,SAAQ,OAAO,CAAC;AACvF;AAWO,SAASD,OAAM,YAAwB,aAA2BC,WAAwB,EAAE,OAAO,GAAG,YAAY,IAAI,WAAW,GAAG,KAAK,KAAK,KAAK,IAAI,GAAG;AAC/J,MAAI,CAAC,MAAM,QAAQ,UAAU,KAAK,CAAC,MAAM,QAAQ,WAAW,KAAK,WAAW,SAAS,MAAM,YAAY,WAAW,GAAG;AACnH,WAAO,EAAE,OAAO,IAAI,UAAU,OAAO,mBAAmB,YAAY,EAAE;AAAA,EACxE;AACA,MAAI,iBAAiB,OAAO;AAC5B,MAAIO,SAAQ;AACZ,WAASL,KAAI,GAAGA,KAAI,YAAY,QAAQA,MAAK;AAC3C,UAAM,MAAM,YAAYA,IAAG,WAAW,WAAW,SAAS,SAAS,YAAY,YAAYA,KAAIF,QAAO,IAAI,OAAO;AACjH,QAAI,MAAM,gBAAgB;AACxB,uBAAiB;AACjB,MAAAO,SAAQL;AAAA,IACV;AACA,QAAI,kBAAkBF,SAAQ,aAAa;AAAI;AAAA,EACjD;AACA,QAAM,uBAAuB,kBAAkB,gBAAgBA,SAAQ,SAAS,GAAGA,SAAQ,OAAO,GAAGA,SAAQ,OAAO,CAAC;AACrH,SAAO,EAAE,OAAAO,QAAO,UAAU,gBAAgB,YAAY,qBAAqB;AAC7E;;;AClEO,SAASC,MAAK,OAAqB,QAAsB,OAAqB,UAA2B,OAA6C;AAN7J;AAOE,MAAI,KAAK;AACT,QAAM,UAA0B,CAAC;AACjC,aAAWC,SAAQ,OAAO;AACxB,UAAMC,UAAuB,EAAE,IAAI,MAAM,MAAAD,OAAM,MAAM,MAAM,OAAO,EAAE,MAAM,MAAM,OAAO,KAAK,GAAG,UAAU,CAAC,GAAG,KAAK,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE;AAC/H,eAAWE,SAAQ,QAAQ;AACzB,UAAIF,MAAK,IAAI,KAAKE,MAAK,IAAI,MACtBF,MAAK,IAAI,KAAKE,MAAK,IAAI,KAAKA,MAAK,IAAI,MACrCF,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKE,MAAK,IAAI,MACrCF,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKE,MAAK,IAAI,KAAKA,MAAK,IAAI,IAAI;AAC1D,QAAAD,QAAO,OAAOC;AAAA,MAChB;AAAA,IACF;AACA,QAAID,QAAO,MAAM;AACf,iBAAWE,SAAQ,OAAO;AACxB,YAAIA,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,MAC3CE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,KAAKA,QAAO,KAAK,IAAI,MACjEE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,MAC5CE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,KAAKA,QAAO,KAAK,IAAI,IAAI;AACxE,cAAIA,QAAO;AAAO,YAAAA,QAAO,MAAM,OAAOE;AAAA,QACxC;AACA,YAAIA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,KAAKA,QAAO,KAAK,IAAI,MAClDE,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,MAC9BE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,MAC5CE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,KAAKA,QAAO,KAAK,IAAI,IAAI;AACxE,cAAIA,QAAO;AAAO,YAAAA,QAAO,MAAM,QAAQE;AAAA,QACzC;AAAA,MACF;AAAA,IACF;AACA,eAAWC,YAAW,UAAU;AAC9B,UAAIA,SAAQ,YAAY,UAAaA,SAAQ,YAAYJ,MAAK;AAAI,QAAAC,QAAO,SAAS,KAAKG,QAAO;AAAA,eACrFA,SAAQ,YAAY,UAAaA,SAAQ,YAAYJ,MAAK;AAAI,QAAAC,QAAO,SAAS,KAAKG,QAAO;AAAA,eAC1FA,SAAQ,YAAY,UAAaA,SAAQ,cAAY,KAAAH,QAAO,SAAP,mBAAa;AAAI,QAAAA,QAAO,SAAS,KAAKG,QAAO;AAAA,eAClGA,SAAQ,YAAY,UAAaA,SAAQ,cAAY,KAAAH,QAAO,MAAM,SAAb,mBAAmB;AAAI,QAAAA,QAAO,SAAS,KAAKG,QAAO;AAAA,eACxGA,SAAQ,YAAY,UAAaA,SAAQ,cAAY,KAAAH,QAAO,MAAM,UAAb,mBAAoB;AAAI,QAAAA,QAAO,SAAS,KAAKG,QAAO;AAAA,IACpH;AAGA,UAAM,IAAc,CAAC;AACrB,UAAM,IAAc,CAAC;AACrB,UAAM,YAAY,CAAC,QAAyB;AAC1C,UAAI,OAAO,IAAI,WAAW,GAAG;AAC3B,UAAE,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,EAAE;AAC9B,UAAE,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,EAAE;AAAA,MAChC;AAAA,IACF;AACA,cAAUH,QAAO,KAAK,GAAG;AACzB,eAAU,KAAAA,QAAO,SAAP,mBAAa,GAAG;AAC1B,eAAU,KAAAA,QAAO,MAAM,SAAb,mBAAmB,GAAG;AAChC,eAAU,KAAAA,QAAO,MAAM,UAAb,mBAAoB,GAAG;AACjC,UAAM,OAAO,KAAK,IAAI,GAAG,CAAC;AAC1B,UAAM,OAAO,KAAK,IAAI,GAAG,CAAC;AAC1B,IAAAA,QAAO,MAAM,CAAC,MAAM,MAAM,KAAK,IAAI,GAAG,CAAC,IAAI,MAAM,KAAK,IAAI,GAAG,CAAC,IAAI,IAAI;AAGtE,SAAI,+BAAQ,QAAM,+BAAQ;AAAI,MAAAA,QAAO,SAAS,CAACA,QAAO,IAAI,KAAK,MAAM,IAAIA,QAAO,IAAI,KAAK,MAAM,IAAIA,QAAO,IAAI,KAAK,MAAM,IAAIA,QAAO,IAAI,KAAK,MAAM,EAAE;AAErJ,YAAQ,KAAKA,OAAM;AAAA,EACrB;AACA,SAAO;AACT;;;AC7DO,IAAMI,QAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA0Jb,IAAMC,QAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;;;ACjJpB,eAAe,aAAaC,WAA8C;AACxE,QAAM,YAAY,CAAC,QAAgB,OAAO,+BAA+B,MAAM,QAAQ,eAAe,QAAQ,EAAE,KAAK,CAACC,SAAQA,KAAI,KAAK,CAAC;AACxI,MAAI;AACJ,MAAI;AACJ,UAAQD,UAAS,OAAO;AAAA,SACjB;AAAQ,aAAO,MAAM,UAAiBE,KAAI;AAAG;AAAA,SAC7C;AAAA,SACA;AAAQ,aAAO,MAAM,UAAiBC,KAAI;AAAG;AAAA;AACzC,aAAO;AAAA;AAElB,MAAI,MAAM;AACR,UAAM,SAAS,MAAM,kBAAkB,IAAI;AAC3C,UAAM,MAAMH,UAAS,OAAO,QAAQA,UAAS,MAAM;AACnD,WAAO,MAAM;AAAA,EACf;AACA,SAAO;AACT;AAEA,eAAe,aAAaA,WAA8C;AACxE,SAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,QAAI;AAEJ,YAAQA,UAAS,OAAO;AAAA,WACjB;AAEH,cAAM,4BAAmCE;AACzC;AAAA,WACG;AAAA,WACA;AAEH,cAAM,4BAAmCC;AACzC;AAAA;AAEA,cAAM;AAAA;AAGV,QAAI;AACJ,QAAI,OAAO,UAAU;AAAa,YAAM,IAAI,MAAM;AAAA,aAEzCC,KAAI;AAAO,YAAM,IAAIA,KAAI,MAAM;AAAA;AACnC;AACL,QAAI,SAAS,YAAY;AACvB,YAAMC,UAAe,OAAO,IAAI,cAAc,IAAI,aAAa;AAC/D,UAAI,CAACA,SAAQ;AACX,YAAI,0BAA0B;AAC9B,gBAAQ,MAAS;AAAA,MACnB,OAAO;AACL,cAAM,MAAMA,QAAO,WAAW,IAAI;AAClC,YAAI;AAAK,cAAI,UAAU,KAAK,GAAG,CAAC;AAEhC,cAAMC,UAAS,MAAMN,UAAS,MAAMK,OAAM;AAC1C,cAAM,MAAMC,QAAO,SAAS,MAAMN,UAAS,OAAOM,QAAO,QAAQN,UAAS,MAAM,IAAI;AACpF,gBAAQ,GAAG;AAAA,MACb;AAAA,IACF;AACA,QAAI;AAAK,UAAI,MAAM;AAAA;AACd,cAAQ,MAAS;AAAA,EACxB,CAAC;AACH;AAEA,eAAe,WAAWA,WAA8C;AACtE,QAAMO,QAAO,CAAC,QAAgB,OAAO,KAAK,KAAK,QAAQ;AACvD,MAAI;AACJ,MAAIP,UAAS,OAAO,WAAW;AAAQ,UAAMO,MAAYL,KAAI;AAAA;AACxD,UAAMK,MAAYJ,KAAI;AAC3B,MAAI;AACJ,MAAK,UAAU,oBAAW,WAAW,MAAM,cAAe;AACxD,UAAM,OAAkB,SAAQ,WAAW,GAAG;AAC9C,UAAM,WAAsB,WAAW,MAAM,CAAC;AAC9C,IAAAH,UAAS,GAAG,QAAQ,IAAI;AAExB,UAAM,MAAMA,UAAS,OAAO,UAAUA,UAAS,MAAM;AACrD,IAAAA,UAAS,GAAG,QAAQ,QAAQ;AAAA,EAC9B,OAAO;AACL,QAAIA,UAAS,OAAO;AAAO,UAAI,6BAA6B;AAAA,EAQ9D;AAEA,SAAO;AACT;AAEA,eAAe,aAAaA,WAAiB;AAC3C,MAAI;AACJ,MAAI,OAAO,sBAAsB;AAAY,UAAM,MAAM,aAAaA,SAAQ;AAAA,WACrE,OAAO,UAAU,eAAeI,KAAI,WAAW;AAAW,UAAM,MAAM,aAAaJ,SAAQ;AAAA;AAC/F,UAAM,MAAM,WAAWA,SAAQ;AACpC,SAAO;AACT;AAGA,eAAsB,WAAW,WAAmB;AA9GpD;AA+GE,MAAI,CAAI,IAAI,EAAE,aAAa;AAAqB;AAChD,QAAM,cAAiB,WAAW;AAClC,QAAM,eAAkB,QAAQ;AAChC,MAAK,gBAAgB,WAAW,gBAAgB,aAAc,EAAC,6CAAc,yBAAwB;AAEnG;AAAA,EACF;AACA,EAAG,IAAI,EAAE,IAAI,uBAAuB,IAAI;AACxC,QAAM,kBAAqB,OAAO,EAAE,MAAM;AAC1C,QAAM,iBAA2B,CAAC;AAClC,aAAW,CAAC,WAAWQ,OAAK,KAAK,OAAO,QAAQ,SAAS,EAAE,OAAO,CAAC,CAAC,KAAK,GAAG,MAAO,QAAQ,QAAQ,QAAQ,IAAK,GAAG;AACjH,UAAM,UAAS,WAAAA,QAAM,WAAN,mBAAe,OAAf,mBAAmB,SAAS,CAAC,GAAGA,QAAM,OAAO,GAAG,KAAK,IAAI,CAAC,GAAG,IAAI,IAAI,CAAC;AACrF,UAAM,UAAiB,WAAAA,QAAM,WAAN,mBAAe,OAAf,mBAAmB,SAASA,QAAM,OAAO,GAAG,QAAQ;AAC3E,aAAS,MAAM,GAAG,MAAM,MAAM,QAAQ,OAAO;AAC3C,UAAI,MAAM,SAAS;AAAI,cAAM,OAAO,QAAQ,IAAI,IAAI;AAAA,IACtD;AACA,UAAMF,UAAY,MAAM,OAAO,KAAK;AACpC,QAAI;AACF,YAAM,MAAME,QAAM,QAAQF,OAAM;AAChC,qBAAe,KAAK,SAAS;AAC7B,UAAI,MAAM,QAAQ,GAAG;AAAG,YAAI,QAAQ,CAACG,OAAS,QAAQA,EAAC,CAAC;AAAA;AACnD,QAAG,QAAQ,GAAG;AAAA,IACrB,SAAQC,IAAN;AACA,UAAI,uBAAuB,SAAS;AAAA,IACtC;AACA,IAAG,QAAQJ,OAAM;AAAA,EACnB;AACA,QAAM,UAAU,MAAM,aAAa,4BAA4B;AAC/D,eAAa,oBAAoB;AACjC,MAAI,wBAAwB,cAAc;AAC1C,MAAI,yBAAyB,QAAQ,MAAM;AAC3C,EAAG,IAAI,EAAE,IAAI,uBAAuB,KAAK;AACzC,QAAM,gBAAmB,OAAO,EAAE,MAAM;AACxC,MAAK,gBAAgB,kBAAmB;AAAG,QAAI,gBAAgB,gBAAgB,eAAe;AAChG;AAOA,eAAsB,OAAON,WAAiB,YAA2D;AACvG,QAAM,KAAK,IAAI;AACf,EAAAA,UAAS,QAAQ;AACjB,MAAI;AAAY,IAAAA,UAAS,SAAS,UAAUA,UAAS,QAAQ,UAAU;AACvE,MAAI,CAACA,UAAS,OAAO,UAAUA,UAAS,OAAO,OAAO,WAAW,KAAKA,UAAS,OAAO,WAAW,QAAQ;AACvG,WAAO,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,aAAaA,UAAS,aAAa,WAAW,IAAI,GAAG,SAAS,CAAC,GAAG,OAAO,KAAK;AAAA,EAChJ;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAM,WAAWA,UAAS,MAAM;AAChC,UAAM,MAAM,MAAM,aAAaA,SAAQ;AACvC,UAAM,KAAK,IAAI;AACf,QAAIA,UAAS,OAAO;AAAO,UAAI,UAAUA,UAAS,OAAO,QAAQ,KAAK,MAAM,KAAK,EAAE,GAAG,IAAI;AAC1F,IAAAA,UAAS,KAAK,QAAQ;AACtB,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;ACvKA;AAsDO,IAAM,QAAN,MAAY;AAAA,EAuEjB,YAAY,YAA8B;AArE1C;AAKA;AAKA;AAMA;AAGA;AAMA;AAGA;AAOA;AAMA;AAWA;AAEA;AAEA;AAEA;AACA;AACA;AACA;AAEA;AA4DA,mCAAU,IAAI,QAAkB;AAC9B,UAAI,CAAC,mBAAK;AAAqB;AAC/B,YAAM,iBAAiB,KAAK,GAAG,OAAO,EAAE,MAAM;AAC9C,YAAM,kBAAkB,mBAAK;AAC7B,yBAAK,aAAc;AACnB,YAAM,SAAS,iBAAiB;AAChC,UAAI,WAAW;AAAG,YAAI,GAAG,KAAK,MAAM;AAAA,IACtC;AAGA,gCAAU,CAACW,WAAgC;AACzC,UAAI,CAAC,mBAAK;AAAc,eAAO;AAC/B,UAAI,CAACA;AAAO,eAAO;AACnB,UAAI,KAAK,IAAI,QAAQ,EAAEA,kBAAoB;AAAS,eAAO;AAC3D,UAAI;AACF,aAAK,GAAG,WAAW;AAAA,MACrB,SAAQC,IAAN;AACA,eAAO;AAAA,MACT;AACA,aAAO;AAAA,IACT;AAoBA,wBAAO,cAAmB;AAE1B,wBAAO,YAAiB;AAExB,wBAAO,SAAcC;AAmGrB,gCAAO,CAAC,UAAkB;AAlU5B;AAmUI,WAAI,UAAK,WAAL,mBAAa;AAAe,aAAK,OAAO,cAAc,IAAI,MAAM,KAAK,CAAC;AAAA,IAC5E;AAtME,SAAK,MAAMC;AAMX,UAAM,aAAgB,EAAQ,QAAW,SAAc,QAAQ,SAAS,EAAE;AAC1E,WAAS,WAAW,8DAA8D;AAClF,WAAS,gBAAgBA,KAAI,UAAU,eAAe;AACtD,WAAS,UAAUA,KAAI,UAAU,YAAY;AAC7C,SAAK,UAAcC;AACnB,WAAO,eAAe,MAAM,WAAW,EAAE,OAAWA,SAAQ,CAAC;AAC7D,SAAK,SAAS,KAAK,MAAM,KAAK,UAAU,MAAQ,CAAC;AACjD,WAAO,KAAK,KAAK,MAAM;AACvB,SAAK,OAAO,cAAc,OAAO,cAAc;AAC/C,QAAI;AAAY,WAAK,SAAS,UAAU,KAAK,QAAQ,UAAU;AAC/D,wBAAoB,KAAK,MAAM;AAC/B,SAAK,KAAK;AACV,SAAK,QAAQ;AACb,uBAAK,aAAc;AACnB,uBAAK,qBAAsB;AAC3B,uBAAK,cAAe;AACpB,SAAK,cAAc,CAAC;AACpB,SAAK,SAAU,OAAO,gBAAgB,cAAe,IAAI,YAAY,IAAI;AAEzE,SAAK,SAAS,IAAW,OAAO;AAEhC,SAAK,OAAO;AAAA,MACV,SAAcC;AAAA,MACd,QAAQ,CAACL,QAAwD,WAA2BM,QAAON,QAAO,MAAM;AAAA,MAChH,MAAM,CAAC,QAAmB,QAAsBK,aAAwC,KAAK,QAAQ,QAAQA,QAAO;AAAA,MACpH,MAAM,CAAC,QAAmB,QAAsBA,aAAwC,KAAK,QAAQ,QAAQA,QAAO;AAAA,MACpH,MAAM,CAAC,QAAmB,QAAsBA,aAAwC,KAAK,QAAQ,QAAQA,QAAO;AAAA,MACpH,SAAS,CAAC,QAAmB,QAAyBA,aAAwC,QAAQ,QAAQ,QAAQA,QAAO;AAAA,MAC7H,QAAQ,CAAC,QAAmB,QAAwBA,aAAwC,OAAO,QAAQ,QAAQA,QAAO;AAAA,MAC1H,QAAQ,CAAC,QAAmB,QAAwBA,aAAwC,OAAO,QAAQ,QAAQA,QAAO;AAAA,MAC1H,KAAK,CAAC,QAAmB,QAAgBA,aAAwCE,KAAI,QAAQ,QAAQF,QAAO;AAAA,IAC9G;AACA,SAAK,SAAS,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,aAAa,CAAC,GAAG,WAAW,GAAG,SAAS,CAAC,GAAG,OAAO,KAAK;AAE/H,SAAK,UAAU,EAAE,QAAQ,MAAM,QAAQ,KAAK;AAE5C,SAAK,oBAA6B;AAClC,SAAK,YAAqB;AAE1B,SAAK,KAAaG;AAElB,IAAO,cAAc,MAAM,MAAM,EAAE;AAEnC,SAAK,KAAK,QAAQ;AAAA,EACpB;AAAA,EA0BA,QAAc;AACZ,UAAM,iBAAiB,KAAK,OAAO;AACnC,SAAK,SAAS,KAAK,MAAM,KAAK,UAAU,MAAQ,CAAC;AACjD,SAAK,OAAO,UAAU;AAAA,EACxB;AAAA,EAGA,SAAS,YAA8B;AACrC,WAAO,SAAS,QAAU,cAAc,KAAK,MAAM;AAAA,EACrD;AAAA,EAGA,QAAQ;AACN,WAAcC,UAAS,IAAI;AAAA,EAC7B;AAAA,EAUA,MAAc;AACZ,WAAO,IAAI;AAAA,EACb;AAAA,EAQA,MAAMT,QAAcU,aAAqB,MAAM;AAC7C,WAAaC,SAAQX,QAAO,KAAK,QAAQU,UAAS;AAAA,EACpD;AAAA,EAYA,MAAM,aAAaV,QAAc,YAA6G;AAC5I,WAAoBW,SAAQX,QAAO,YAAY,KAAK,MAAM;AAAA,EAC5D;AAAA,EAOA,QAAQA,QAA8B;AACpC,WAAe,QAAQA,MAAK;AAAA,EAC9B;AAAA,EASA,QAAQ,kBAA0B,mBAA4C;AAC5E,WAAa,QAAQ,KAAK,QAAQ,kBAAkB,iBAAiB;AAAA,EACvE;AAAA,EAOA,MAAM,OAAsB;AAC1B,UAAc,MAAM,MAAM,IAAI;AAC9B,UAAM,KAAK,GAAG,MAAM;AAAA,EACtB;AAAA,EAOA,MAAM,KAAK,YAA6C;AACtD,SAAK,QAAQ;AACb,UAAM,YAAY,IAAI;AACtB,UAAMY,SAAQ,OAAO,OAAO,KAAK,MAAM,EAAE,OAAO,CAACC,YAAUA,OAAK,EAAE;AAClE,QAAI;AAAY,WAAK,SAAS,UAAU,KAAK,QAAQ,UAAU;AAE/D,QAAI,KAAK,IAAI,SAAS;AACpB,UAAI,KAAK,OAAO;AAAO,YAAI,YAAY,KAAK,SAAS;AACrD,UAAI,KAAK,OAAO;AAAO,YAAI,iBAAiB,KAAK,GAAG,QAAQ,cAAwB;AACpF,UAAI,CAAC,MAAc,MAAM,IAAI;AAAG,YAAI,6BAA6B;AACjE,YAAS,MAAM;AACf,UAAI,KAAK,IAAI,SAAS;AACpB,YAAI,KAAK,OAAO;AAAO,cAAI,kBAAkB,KAAK,MAAM;AACxD,YAAI,KAAK,OAAO;AAAO,cAAI,gBAAgB,KAAK,GAAG;AACnD,YAAI,KAAK,OAAO;AAAO,cAAI,aAAa,KAAK,GAAG,IAAI,KAAK;AAAA,MAC3D;AAAA,IACF;AAEA,UAAaC,OAAK,IAAI;AACtB,QAAI,KAAK,IAAI,WAAW,KAAK,OAAO;AAAO,UAAI,oBAAoB,KAAK,GAAG,OAAO,EAAE,MAAM,UAAU,SAAS,KAAK,GAAG,OAAO,EAAE,MAAM,YAAY,SAAS;AACzJ,SAAK,IAAI,UAAU;AAEnB,UAAM,SAAS,OAAO,OAAO,KAAK,MAAM,EAAE,OAAO,CAACD,YAAUA,OAAK,EAAE;AACnE,QAAI,WAAWD,QAAO;AACpB,MAAOH,UAAS,IAAI;AACpB,WAAK,KAAK,MAAM;AAAA,IAClB;AAEA,UAAM,UAAU,KAAK,MAAM,IAAI,IAAI,SAAS;AAC5C,QAAI,WAAW,KAAK,YAAY,cAAc;AAAI,WAAK,YAAY,aAAa,KAAK,IAAI,WAAW,KAAK,YAAY,cAAc,KAAK,UAAU;AAAA,EACpJ;AAAA,EAaA,KAAK,SAAiB,KAAK,QAAgB;AACzC,WAAmBM,MAAK,QAAQ,KAAK,MAAM;AAAA,EAC7C;AAAA,EAGA,gBAA4B;AAAE,WAAc,cAAc,IAAI;AAAA,EAAG;AAAA,EAQjE,MAAM,OAAO,YAA8B;AACzC,UAAM,KAAK,IAAI;AACf,UAAM,MAAM,MAAc,OAAO,MAAM,UAAU;AACjD,UAAM,KAAK,IAAI;AACf,SAAK,YAAY,SAAS,KAAK,MAAM,KAAK,EAAE;AAC5C,WAAO;AAAA,EACT;AAAA,EAMA,MAAM,QAAQf,QAAc,YAAyF;AACnH,UAAMgB,WAAU,MAAM,KAAK,GAAG,QAAQ,MAAM,KAAK,OAAOhB,QAAO,UAAU,CAAC;AAC1E,UAAM,UAAkC,CAAC;AACzC,QAAI,QAAQ;AACZ,eAAW,UAAUgB,SAAQ,SAAS;AACpC,UAAI,QAAQ,OAAO;AAAO,gBAAQ,OAAO,SAAS,OAAO;AAAA;AACpD,gBAAQ,OAAO,QAAQ,OAAO;AACnC,eAAS,OAAO;AAAA,IAClB;AACA,UAAM,YAA8D,CAAC;AACrE,WAAO,QAAQ,OAAO,EAAE,QAAQ,CAAC,QAAQ,UAAU,KAAK,EAAE,QAAQ,IAAI,IAAI,MAAM,IAAI,IAAyB,MAAM,EAAE,CAAC,CAAC;AACvH,eAAW,UAAU,WAAW;AAC9B,aAAO,OAAO,KAAK,MAAM,MAAO,OAAO,OAAO,KAAK,IAAI;AACvD,aAAO,OAAO,KAAK,MAAM,MAAO,OAAO,IAAI,IAAI;AAAA,IACjD;AACA,cAAU,KAAK,CAAC,GAAG,MAAM,EAAE,OAAO,EAAE,IAAI;AACxC,cAAU,SAAS;AACnB,WAAO;AAAA,EACT;AAAA,EAYA,MAAM,OAAOhB,QAAc,YAA+C;AAExE,SAAK,QAAQ;AACb,WAAO,IAAI,QAAQ,OAAO,YAAY;AAtY1C;AAuYM,WAAK,QAAQ;AACb,UAAI;AAGJ,WAAK,SAAS,UAAU,KAAK,QAAQ,UAAU;AAG/C,WAAK,QAAQ;AACb,YAAM,QAAQ,mBAAK,SAAL,WAAaA;AAC3B,UAAI,OAAO;AACT,YAAI,OAAOA,MAAK;AAChB,aAAK,KAAK,OAAO;AACjB,gBAAQ,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,aAAa,KAAK,aAAa,WAAW,IAAI,GAAG,SAAS,CAAC,GAAG,MAAM,CAAC;AAAA,MACxI;AAEA,YAAM,YAAY,IAAI;AAGtB,YAAc,MAAM,IAAI;AAGxB,YAAM,KAAK,KAAK;AAEhB,kBAAY,IAAI;AAChB,WAAK,QAAQ;AACb,YAAM,MAAM,MAAYW,SAAQX,QAAO,KAAK,MAAM;AAClD,WAAK,UAAU;AACf,WAAK,YAAY,eAAe,KAAK,IAAI,WAAW,KAAK,YAAY,gBAAgB,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AACtJ,WAAK,QAAQ,YAAY;AAEzB,UAAI,CAAC,IAAI,QAAQ;AACf,YAAI,KAAK,OAAO;AAAO,cAAI,mCAAmC;AAC9D,aAAK,KAAK,OAAO;AACjB,gBAAQ,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,aAAa,KAAK,aAAa,WAAW,IAAI,GAAG,SAAS,CAAC,GAAG,OAAO,oCAAoC,CAAC;AAC3K;AAAA,MACF;AACA,WAAK,KAAK,OAAO;AAEjB,kBAAY,IAAI;AAChB,WAAK,OAAO,cAAc,MAAY,KAAK,KAAK,QAAQ,IAAI,MAAM;AAClE,UAAI,CAAC,KAAK,YAAY;AAAa,aAAK,YAAY,cAAc;AAClE,UAAI,CAAC,KAAK,YAAY;AAAc,aAAK,YAAY,eAAe;AACpE,MAAC,KAAK,YAAY;AAClB,UAAI,KAAK,OAAO;AAAa,aAAK,YAAY;AAC9C,WAAK,YAAY,aAAa,KAAK,IAAI,WAAW,KAAK,YAAY,cAAc,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAClJ,WAAK,QAAQ,gBAAgB;AAI7B,UAAI,UAA0D,CAAC;AAC/D,UAAI,UAA0D,CAAC;AAC/D,UAAI,UAA0D,CAAC;AAC/D,UAAI,YAAgE,CAAC;AAGrE,WAAK,QAAQ;AACb,UAAI,KAAK,OAAO,OAAO;AACrB,kBAAU,KAAK,OAAO,KAAK,UAAe,WAAW,MAAM,IAAI,MAAM,IAAI,CAAC;AAC1E,YAAI,KAAK,YAAY;AAAM,iBAAO,KAAK,YAAY;AAAA,MACrD,OAAO;AACL,oBAAY,IAAI;AAChB,kBAAU,KAAK,OAAO,KAAK,UAAU,MAAW,WAAW,MAAM,IAAI,MAAM,IAAI,CAAC;AAChF,aAAK,YAAY,OAAO,KAAK,IAAI,WAAW,KAAK,YAAY,QAAQ,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,MACxI;AAEA,UAAI,KAAK,OAAO,UAAU,KAAK,OAAO,KAAK,gBAAgB,MAAM,KAAK,OAAO,KAAK,gBAAgB;AAAK,kBAAU,MAAM;AAGvH,WAAK,QAAQ,aAAa;AAC1B,WAAK,QAAQ;AACb,YAAM,aAAa,KAAK,OAAO,KAAK,gBAAgB,KAAK,UAAU,KAAK,QAAQ,EAAE,MAAM,EAAE,aAAa,KAAK,OAAO,KAAK,UAAU,IAAK,QAAyB,SAAS,EAAE,EAAE,CAAC,IAAI,KAAK;AACvL,UAAI,KAAK,OAAO,OAAO;AACrB,aAAI,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAY,oBAAU,KAAK,OAAO,KAAK,UAAkBiB,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAC5H,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAc,oBAAU,KAAK,OAAO,KAAK,UAAoBA,SAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBACrI,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAkB,oBAAU,KAAK,OAAO,KAAK,UAAwBA,SAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAC7I,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAY,oBAAU,KAAK,OAAO,KAAK,UAAkBA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAC1I,YAAI,KAAK,YAAY;AAAM,iBAAO,KAAK,YAAY;AAAA,MACrD,OAAO;AACL,oBAAY,IAAI;AAChB,aAAI,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAY,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAcA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAClI,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAc,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAgBA,SAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAC3I,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAkB,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAoBA,SAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBACnJ,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAY,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAcA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAChJ,aAAK,YAAY,OAAO,KAAK,IAAI,WAAW,KAAK,YAAY,QAAQ,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,MACxI;AACA,WAAK,QAAQ,WAAW;AAGxB,WAAK,QAAQ,aAAa;AAC1B,WAAK,QAAQ;AACb,YAAM,aAAa,KAAK,OAAO,KAAK,gBAAgB,KAAK,UAAU,KAAK,QAAQ,EAAE,MAAM,EAAE,aAAa,KAAK,OAAO,KAAK,UAAU,IAAK,QAAyB,SAAS,EAAE,EAAE,CAAC,IAAI,KAAK;AACvL,UAAI,KAAK,OAAO,OAAO;AACrB,aAAI,gBAAK,OAAO,KAAK,aAAjB,mBAA2B,cAA3B,mBAAsC,SAAS;AAAe,oBAAU,KAAK,OAAO,KAAK,UAAmBA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAC1I,gBAAK,OAAO,KAAK,aAAjB,mBAA2B,cAA3B,mBAAsC,SAAS;AAAc,oBAAU,KAAK,OAAO,KAAK,UAAoBA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AACxJ,YAAI,KAAK,YAAY;AAAM,iBAAO,KAAK,YAAY;AAAA,MACrD,OAAO;AACL,oBAAY,IAAI;AAChB,aAAI,gBAAK,OAAO,KAAK,aAAjB,mBAA2B,cAA3B,mBAAsC,SAAS;AAAe,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAeA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAChJ,gBAAK,OAAO,KAAK,aAAjB,mBAA2B,cAA3B,mBAAsC,SAAS;AAAc,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAgBA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAC9J,aAAK,YAAY,OAAO,KAAK,IAAI,WAAW,KAAK,YAAY,QAAQ,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,MACxI;AACA,WAAK,QAAQ,WAAW;AAGxB,WAAK,QAAQ,eAAe;AAC5B,WAAK,QAAQ;AACb,UAAI,KAAK,OAAO,OAAO;AACrB,aAAI,UAAK,OAAO,OAAO,cAAnB,mBAA8B,SAAS;AAAY,sBAAY,KAAK,OAAO,OAAO,UAAkBA,UAAQ,IAAI,QAAQ,KAAK,MAAM,IAAI,CAAC;AAAA,kBACnI,UAAK,OAAO,OAAO,cAAnB,mBAA8B,SAAS;AAAc,sBAAY,KAAK,OAAO,OAAO,UAAoBA,SAAQ,IAAI,QAAQ,KAAK,MAAM,IAAI,CAAC;AACrJ,YAAI,KAAK,YAAY;AAAQ,iBAAO,KAAK,YAAY;AAAA,MACvD,OAAO;AACL,oBAAY,IAAI;AAChB,aAAI,UAAK,OAAO,OAAO,cAAnB,mBAA8B,SAAS;AAAY,sBAAY,KAAK,OAAO,OAAO,UAAU,MAAcA,UAAQ,IAAI,QAAQ,KAAK,MAAM,IAAI,CAAC;AAAA,kBACzI,UAAK,OAAO,OAAO,cAAnB,mBAA8B,SAAS;AAAc,sBAAY,KAAK,OAAO,OAAO,UAAU,MAAgBA,SAAQ,IAAI,QAAQ,KAAK,MAAM,IAAI,CAAC;AAC3J,aAAK,YAAY,SAAS,KAAK,IAAI,WAAW,KAAK,YAAY,UAAU,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,MAC5I;AACA,WAAK,QAAQ,aAAa;AAG1B,WAAK,QAAQ;AACb,UAAI,KAAK,OAAO;AAAO,SAAC,SAAS,SAAS,SAAS,SAAS,IAAI,MAAM,QAAQ,IAAI,CAAC,SAAS,SAAS,SAAS,SAAS,CAAC;AAGxH,WAAK,QAAQ;AACb,UAAI,aAA8B,CAAC;AACnC,UAAI,KAAK,OAAO,QAAQ,SAAS;AAC/B,oBAAY,IAAI;AAChB,qBAAa,CAAC,GAAWC,MAAK,OAAuB,GAAG,GAAWC,MAAK,OAAuB,GAAG,GAAWC,MAAK,OAAuB,GAAG,GAAWC,MAAK,OAAuB,CAAC;AACpL,YAAI,CAAC,KAAK,OAAO;AAAO,eAAK,YAAY,UAAU,KAAK,IAAI,WAAW,KAAK,YAAY,WAAW,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,iBAC3J,KAAK,YAAY;AAAS,iBAAO,KAAK,YAAY;AAAA,MAC7D;AAEA,WAAK,YAAY,QAAQ,KAAK,IAAI,WAAW,KAAK,YAAY,SAAS,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AACxI,YAAM,UAAQ,UAAK,QAAQ,WAAb,mBAAqB,UAAS,CAAC;AAC7C,WAAK,SAAS;AAAA,QACZ,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,aAAa,KAAK;AAAA,QAClB,QAAQ,KAAK,QAAQ;AAAA,QACrB,WAAW,KAAK,IAAI;AAAA,QACpB,OAAO;AAAA,QACP,IAAI,UAAU;AAAE,iBAAeC,MAAK,SAAyB,SAAyB,SAAyB,YAAY,KAAK;AAAA,QAAG;AAAA,MACrI;AAGA,MAAG,QAAQ,IAAI,MAAM;AAGrB,WAAK,KAAK,QAAQ;AAClB,WAAK,QAAQ;AACb,cAAQ,KAAK,MAAM;AAAA,IACrB,CAAC;AAAA,EACH;AACF;AAhbE;AACA;AACA;AAwEA;", - "names": ["config", "log2", "__defProp", "__export", "all5", "cache", "size", "compare", "log22", "copy", "init2", "mask", "options", "count2", "instance", "now2", "index", "canvas", "object", "strides", "log", "config", "now", "node", "lines", "size2", "labels", "outputSize", "scale2", "alpha", "half", "middle", "labels2", "inputSize", "padding", "lastTime", "model2", "constants", "maxSize", "node2", "outputNodes", "match", "skipped", "strides2", "body", "r", "match", "index", "cos", "sin", "size", "s", "func", "image", "i", "squeeze", "min", "max", "sub", "range", "rgb", "reshape", "env", "input", "process", "config", "getTensor", "tensor", "rgb", "cast", "t", "e", "env", "models_exports", "load", "validate", "model", "last", "config", "env", "image", "count", "_a", "_b", "t", "gender", "i", "age", "tensor", "init", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "image", "count", "_a", "t", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "image", "count", "_a", "t", "tensor", "model", "skipped", "lastCount", "lastTime", "load", "config", "env", "predict", "image", "count", "input", "image", "norm", "size", "dot", "i", "size", "inputSize", "anchors", "i", "n", "dot", "input", "face", "env", "model", "load", "config", "env", "t", "tensor", "i", "inputSize", "anchors", "outputSize", "coords", "min", "max", "square", "scale", "env", "models", "inputSize", "skipped", "lastTime", "sigmoid", "config", "input", "size", "t", "tensor", "outputSize", "kpt", "config", "models", "i", "sigmoid", "inputSize", "distance", "annotations", "body", "predict", "lastTime", "skipped", "model", "inputSize", "last", "lastTime", "skipped", "load", "config", "env", "process", "t", "i", "tensor", "predict", "input", "outputSize", "connected", "kpt", "model", "lastTime", "cache", "skipped", "load", "config", "env", "max", "mod", "div", "predict", "image", "tensor", "enhance", "norm", "squeeze", "stack", "x", "y", "kpt", "s", "connected", "i", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "image", "count", "_a", "t", "inputSize", "i", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "input", "count", "_a", "t", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "input", "count", "_a", "t", "tensor", "model", "inputSize", "load", "config", "env", "i", "index", "face", "connectionsToIndices", "index", "t", "r", "i", "cache", "model", "inputSize", "predict", "input", "config", "size", "i", "face", "env", "t", "index", "load", "model", "last", "lastTime", "lastCount", "skipped", "load", "config", "env", "input", "tensor", "norm", "predict", "image", "count", "_a", "t", "gender", "argmax", "age", "all", "getBoxSize", "getBoxCenter", "image", "scaleBoxCoordinates", "enlargeBox", "size", "squarifyBox", "normalizeRadians", "computeRotation", "buildTranslationMatrix", "dot", "i", "getColumnFrom2DArr", "multiplyTransformMatrices", "size", "buildRotationMatrix", "invertTransformMatrix", "rotatePoint", "anchors", "model", "anchors", "t", "tensor", "index", "input", "config", "p", "hand", "scaleBoxCoordinates", "lastTime", "handPoseModel", "rotatePoint", "enlargeBox", "squarifyBox", "i", "getBoxSize", "buildRotationMatrix", "invertTransformMatrix", "getBoxCenter", "dot", "image", "config", "computeRotation", "env", "coords", "point", "point2", "gesture", "meshAnnotations", "predict", "input", "config", "i", "annotations", "index", "load", "env", "config", "instance", "e", "config", "env", "op", "backend", "t", "instance", "e", "init", "models", "inputSize", "skipped", "lastTime", "cache", "loadDetect", "config", "env", "input", "config", "models", "t", "scale", "hand", "tensor", "inputSize", "kpt", "index", "predict", "skipped", "lastTime", "cache", "i", "square", "model", "cached", "skipped", "lastCount", "lastTime", "load", "config", "env", "predict", "image", "count", "connected", "kpt", "cache", "body", "compare", "i", "input", "inputSize", "t", "tensor", "outputSize", "kpt", "model", "inputSize", "skipped", "cache", "load", "config", "env", "image", "kpt", "annotations", "connected", "i", "body", "predict", "input", "t", "tensor", "model", "last", "lastTime", "skipped", "inputSize", "load", "config", "env", "process", "size", "i", "predict", "image", "outputSize", "count", "i", "i", "maxSize", "max", "t", "count", "outputStride", "clamp", "min", "max", "model", "point", "height", "width", "clamp", "i", "minConfidence", "predict", "input", "config", "tensor", "t", "load", "env", "model", "load", "config", "env", "process", "input", "t", "tensor", "i", "instance", "model", "load", "env", "loadDetect", "op", "validate", "options", "init", "config", "e", "model", "all", "canvas", "options", "input", "opt", "rgb", "i", "options", "labels", "emotion", "i", "index", "inCanvas", "options", "inCanvas", "options", "i", "connected", "inCanvas", "options", "i", "inCanvas", "options", "inCanvas", "options", "i", "where", "inCanvas", "options", "i", "canvas", "input", "all", "env", "i", "face", "buffer", "face", "r", "size", "instance", "input", "predict", "env", "i", "tensor", "body", "i", "face", "iris", "hand", "calc", "config", "i", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "annotations", "coords", "env", "match", "options", "sum", "i", "min", "max", "norm", "clamp", "index", "join", "face", "person", "body", "hand", "gesture", "face", "body", "instance", "res", "face", "body", "env", "canvas", "tensor", "atob", "model", "t", "e", "input", "e", "match", "env", "version", "options", "canvas", "all", "config", "validate", "getTensor", "process", "count", "model", "load", "calc", "profile", "predict", "face", "body", "hand", "iris", "join"] + "sourcesContent": ["import type { Config } from '../exports';\n\n/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n if (msg) console.log(ts, 'Human:', ...msg); // eslint-disable-line no-console\n}\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`modelpath error: expecting json file: ${path}`);\n return path;\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: checks current config validity\nexport function validate(defaults: Partial, config: Partial, parent = 'config', msgs: { reason: string, where: string, expected?: string }[] = []) {\n for (const key of Object.keys(config)) {\n if (typeof config[key] === 'object') {\n validate(defaults[key], config[key], key, msgs);\n } else {\n const defined = defaults && (typeof defaults[key] !== 'undefined');\n if (!defined) msgs.push({ reason: 'unknown property', where: `${parent}.${key} = ${config[key]}` });\n const same = defaults && typeof defaults[key] === typeof config[key];\n if (defined && !same) msgs.push({ reason: 'property type mismatch', where: `${parent}.${key} = ${config[key]}`, expected: typeof defaults[key] });\n }\n // ok = ok && defined && same;\n }\n if (config.debug && parent === 'config' && msgs.length > 0) log('invalid configuration', msgs);\n return msgs;\n}\n\n// helper function: perform deep merge of multiple objects so it allows full inheritance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: number[]) => data.reduce((acc: number[], val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n\n// helper function: async wait\nexport async function wait(time: number) {\n const waiting = new Promise((resolve) => { setTimeout(() => resolve(true), time); });\n await waiting;\n}\n", "/* eslint-disable no-multi-spaces */\n\n/** Generic config type inherited by all module types */\nexport interface GenericConfig {\n /** is module enabled? */\n enabled: boolean,\n /** path to model json file (relative to `modelBasePath` */\n modelPath: string,\n /** how many max frames to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipFrames: number,\n /** how many max milliseconds to go without re-running model if cached results are acceptable\n * for two-phase models such as face and hand caching applies to bounding boxes detection only */\n skipTime: number,\n}\n\n/** Detector part of face configuration */\nexport interface FaceDetectorConfig extends GenericConfig {\n /** is face rotation correction performed after detecting face?\n * used to correctly analyze faces under high angles\n */\n rotation: boolean,\n /** maximum number of detected faces */\n maxDetected: number,\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected faces before one is discarded */\n iouThreshold: number,\n /** should child models perform on masked image of a face */\n mask: boolean,\n /** should face detection return processed and cropped face tensor that can with an external model for addtional processing?\n * if enabled it must be manually deallocated to avoid memory leak */\n return: boolean,\n}\n\n/** Mesh part of face configuration */\nexport interface FaceMeshConfig extends GenericConfig {\n /** Keep detected faces that cannot be verified using facemesh */\n keepInvalid: boolean\n}\n\n/** Iris part of face configuration */\nexport interface FaceIrisConfig extends GenericConfig {}\n\n/** Attention part of face configuration */\nexport interface FaceAttentionConfig extends GenericConfig {}\n\n/** Description or face embedding part of face configuration\n * - also used by age and gender detection\n */\nexport interface FaceDescriptionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Emotion part of face configuration */\nexport interface FaceEmotionConfig extends GenericConfig {\n /** minimum confidence for a detected face before results are discarded */\n minConfidence: number,\n}\n\n/** Anti-spoofing part of face configuration */\nexport interface FaceAntiSpoofConfig extends GenericConfig {}\n\n/** Liveness part of face configuration */\nexport interface FaceLivenessConfig extends GenericConfig {}\n\n/** Gear part of face configuration */\nexport interface FaceGearConfig extends GenericConfig {\n /** minimum confidence for a detected race before results are discarded */\n minConfidence: number,\n}\n\n/** Configures all face-specific options: face detection, mesh analysis, age, gender, emotion detection and face description */\nexport interface FaceConfig extends GenericConfig {\n detector: Partial,\n mesh: Partial,\n attention: Partial,\n iris: Partial,\n description: Partial,\n emotion: Partial,\n antispoof: Partial,\n liveness: Partial,\n gear: Partial,\n}\n\n/** Configures all body detection specific options */\nexport interface BodyConfig extends GenericConfig {\n /** maximum number of detected bodies */\n maxDetected: number,\n /** minimum confidence for a detected body before results are discarded */\n minConfidence: number,\n /* experimental\n /** experimental: detector used for body model before actual analysis\n detector?: {\n /** experimental: enable body detector before body landmarks\n enabled: boolean,\n /** experimental: path to optional body detector model json file\n modelPath: string,\n /** experimental: minimum confidence for a detected body before results are discarded\n minConfidence: number,\n /** experimental: minimum overlap between two detected bodies before one is discarded\n iouThreshold: number\n },\n */\n}\n\n/** Configures all hand detection specific options */\nexport interface HandConfig extends GenericConfig {\n /** should hand rotation correction be performed after hand detection? */\n rotation: boolean,\n /** minimum confidence for a detected hand before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected hands before one is discarded */\n iouThreshold: number,\n /** maximum number of detected hands */\n maxDetected: number,\n /** should hand landmarks be detected or just return detected hand box */\n landmarks: boolean,\n detector: {\n /** path to hand detector model json */\n modelPath?: string,\n },\n skeleton: {\n /** path to hand skeleton model json */\n modelPath?: string,\n },\n}\n\n/** Configures all object detection specific options */\nexport interface ObjectConfig extends GenericConfig {\n /** minimum confidence for a detected objects before results are discarded */\n minConfidence: number,\n /** minimum overlap between two detected objects before one is discarded */\n iouThreshold: number,\n /** maximum number of detected objects */\n maxDetected: number,\n}\n\n/** Configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n*/\nexport interface SegmentationConfig extends GenericConfig {\n /** blur segmentation output by pixels for more realistic image */\n blur: number,\n}\n\n/** Run input through image filters before inference\n * - available only in Browser environments\n * - image filters run with near-zero latency as they are executed on the GPU using WebGL\n*/\nexport interface FilterConfig {\n /** are image filters enabled? */\n enabled: boolean,\n /** perform image histogram equalization\n * - equalization is performed on input as a whole and detected face before its passed for further analysis\n */\n equalization: boolean,\n /** resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** return processed canvas imagedata in result */\n return: boolean,\n /** flip input as mirror image */\n flip: boolean,\n /** range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** image negative */\n negative: boolean,\n /** image sepia colors */\n sepia: boolean,\n /** image vintage colors */\n vintage: boolean,\n /** image kodachrome colors */\n kodachrome: boolean,\n /** image technicolor colors */\n technicolor: boolean,\n /** image polaroid camera effect */\n polaroid: boolean,\n /** range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n}\n\n/** Controlls gesture detection */\nexport interface GestureConfig {\n /** is gesture detection enabled? */\n enabled: boolean,\n}\n/** Possible TensorFlow backends */\nexport type BackendType = ['cpu', 'wasm', 'webgl', 'humangl', 'tensorflow', 'webgpu'];\n\n/** Possible values for `human.warmup` */\nexport type WarmupType = ['' | 'none' | 'face' | 'full' | 'body'];\n\n/**\n * Configuration interface definition for **Human** library\n * Contains all configurable parameters\n * Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\nexport interface Config {\n /** Backend used for TFJS operations\n * valid build-in backends are:\n * - Browser: `cpu`, `wasm`, `webgl`, `humangl`, `webgpu`\n * - NodeJS: `cpu`, `wasm`, `tensorflow`\n * default: `humangl` for browser and `tensorflow` for nodejs\n */\n backend: '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm`\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPath: string,\n\n /** Force WASM loader to use platform fetch\n *\n * default: auto-detects to link to CDN `jsdelivr` when running in browser\n */\n wasmPlatformFetch: boolean,\n\n /** Print debug statements to console\n *\n * default: `true`\n */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially\n *\n * default: `true`\n */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - used by `webgl`, `humangl` and `webgpu` backends\n *\n * default: `full`\n */\n warmup: '' | 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n *\n * default: `../models/` for browsers and `file://models/` for nodejs\n */\n modelBasePath: string,\n\n /** Cache models in IndexDB on first sucessfull load\n * default: true if indexdb is available (browsers), false if its not (nodejs)\n */\n cacheModels: boolean,\n\n /** Validate kernel ops used in model during model load\n * default: true\n * any errors will be printed on console but will be treated as non-fatal\n */\n validateModels: boolean,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n *\n * default: 0.7\n */\n cacheSensitivity: number;\n\n /** Software Kernels\n * Registers software kernel ops running on CPU when accelerated version of kernel is not found in the current backend\n */\n softwareKernels: boolean,\n\n /** Perform immediate garbage collection on deallocated tensors instead of caching them */\n deallocate: boolean;\n\n /** Internal Variable */\n skipAllowed: boolean;\n\n /** Filter config {@link FilterConfig} */\n filter: Partial,\n\n /** Gesture config {@link GestureConfig} */\n gesture: Partial;\n\n /** Face config {@link FaceConfig} */\n face: Partial,\n\n /** Body config {@link BodyConfig} */\n body: Partial,\n\n /** Hand config {@link HandConfig} */\n hand: Partial,\n\n /** Object config {@link ObjectConfig} */\n object: Partial,\n\n /** Segmentation config {@link SegmentationConfig} */\n segmentation: Partial,\n}\n\n/** - [See all default Config values...](https://github.com/vladmandic/human/blob/main/src/config.ts#L262) */\nconst config: Config = {\n backend: '',\n modelBasePath: '',\n cacheModels: true,\n validateModels: true,\n wasmPath: '',\n wasmPlatformFetch: false,\n debug: false,\n async: true,\n warmup: 'full',\n cacheSensitivity: 0.70,\n skipAllowed: false,\n deallocate: false,\n softwareKernels: false,\n filter: {\n enabled: true,\n equalization: false,\n width: 0,\n height: 0,\n flip: false,\n return: true,\n brightness: 0,\n contrast: 0,\n sharpness: 0,\n blur: 0,\n saturation: 0,\n hue: 0,\n negative: false,\n sepia: false,\n vintage: false,\n kodachrome: false,\n technicolor: false,\n polaroid: false,\n pixelate: 0,\n },\n gesture: {\n enabled: true,\n },\n face: {\n enabled: true,\n detector: {\n modelPath: 'blazeface.json',\n rotation: true,\n maxDetected: 1,\n skipFrames: 99,\n skipTime: 2500,\n minConfidence: 0.2,\n iouThreshold: 0.1,\n mask: false,\n return: false,\n },\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json',\n keepInvalid: false,\n },\n attention: {\n enabled: false,\n modelPath: 'facemesh-attention.json',\n },\n iris: {\n enabled: true,\n modelPath: 'iris.json',\n },\n emotion: {\n enabled: true,\n minConfidence: 0.1,\n skipFrames: 99,\n skipTime: 1500,\n modelPath: 'emotion.json',\n },\n description: {\n enabled: true,\n modelPath: 'faceres.json',\n skipFrames: 99,\n skipTime: 3000,\n minConfidence: 0.1,\n },\n antispoof: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'antispoof.json',\n },\n liveness: {\n enabled: false,\n skipFrames: 99,\n skipTime: 4000,\n modelPath: 'liveness.json',\n },\n },\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json',\n maxDetected: -1,\n minConfidence: 0.3,\n skipFrames: 1,\n skipTime: 200,\n },\n hand: {\n enabled: true,\n rotation: true,\n skipFrames: 99,\n skipTime: 1000,\n minConfidence: 0.50,\n iouThreshold: 0.2,\n maxDetected: -1,\n landmarks: true,\n detector: {\n modelPath: 'handtrack.json',\n },\n skeleton: {\n modelPath: 'handlandmark-full.json',\n },\n },\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json',\n minConfidence: 0.2,\n iouThreshold: 0.4,\n maxDetected: 10,\n skipFrames: 99,\n skipTime: 2000,\n },\n segmentation: {\n enabled: false,\n modelPath: 'selfie.json',\n blur: 8,\n },\n};\n\nexport { config as defaults };\n", "/*\n Human\n homepage: \n author: '\n*/\n\nvar __create = Object.create;\nvar __defProp = Object.defineProperty;\nvar __getOwnPropDesc = Object.getOwnPropertyDescriptor;\nvar __getOwnPropNames = Object.getOwnPropertyNames;\nvar __getProtoOf = Object.getPrototypeOf;\nvar __hasOwnProp = Object.prototype.hasOwnProperty;\nvar __commonJS = (cb, mod4) => function __require() {\n return mod4 || (0, cb[__getOwnPropNames(cb)[0]])((mod4 = { exports: {} }).exports, mod4), mod4.exports;\n};\nvar __export = (target, all5) => {\n for (var name in all5)\n __defProp(target, name, { get: all5[name], enumerable: true });\n};\nvar __copyProps = (to, from, except, desc) => {\n if (from && typeof from === \"object\" || typeof from === \"function\") {\n for (let key of __getOwnPropNames(from))\n if (!__hasOwnProp.call(to, key) && key !== except)\n __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });\n }\n return to;\n};\nvar __toESM = (mod4, isNodeMode, target) => (target = mod4 != null ? __create(__getProtoOf(mod4)) : {}, __copyProps(\n isNodeMode || !mod4 || !mod4.__esModule ? __defProp(target, \"default\", { value: mod4, enumerable: true }) : target,\n mod4\n));\n\n// node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js\nvar require_long = __commonJS({\n \"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js\"(exports, module) {\n module.exports = Long2;\n var wasm = null;\n try {\n wasm = new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([\n 0,\n 97,\n 115,\n 109,\n 1,\n 0,\n 0,\n 0,\n 1,\n 13,\n 2,\n 96,\n 0,\n 1,\n 127,\n 96,\n 4,\n 127,\n 127,\n 127,\n 127,\n 1,\n 127,\n 3,\n 7,\n 6,\n 0,\n 1,\n 1,\n 1,\n 1,\n 1,\n 6,\n 6,\n 1,\n 127,\n 1,\n 65,\n 0,\n 11,\n 7,\n 50,\n 6,\n 3,\n 109,\n 117,\n 108,\n 0,\n 1,\n 5,\n 100,\n 105,\n 118,\n 95,\n 115,\n 0,\n 2,\n 5,\n 100,\n 105,\n 118,\n 95,\n 117,\n 0,\n 3,\n 5,\n 114,\n 101,\n 109,\n 95,\n 115,\n 0,\n 4,\n 5,\n 114,\n 101,\n 109,\n 95,\n 117,\n 0,\n 5,\n 8,\n 103,\n 101,\n 116,\n 95,\n 104,\n 105,\n 103,\n 104,\n 0,\n 0,\n 10,\n 191,\n 1,\n 6,\n 4,\n 0,\n 35,\n 0,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 126,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 127,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 128,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 129,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11,\n 36,\n 1,\n 1,\n 126,\n 32,\n 0,\n 173,\n 32,\n 1,\n 173,\n 66,\n 32,\n 134,\n 132,\n 32,\n 2,\n 173,\n 32,\n 3,\n 173,\n 66,\n 32,\n 134,\n 132,\n 130,\n 34,\n 4,\n 66,\n 32,\n 135,\n 167,\n 36,\n 0,\n 32,\n 4,\n 167,\n 11\n ])), {}).exports;\n } catch (e2) {\n }\n function Long2(low, high, unsigned) {\n this.low = low | 0;\n this.high = high | 0;\n this.unsigned = !!unsigned;\n }\n Long2.prototype.__isLong__;\n Object.defineProperty(Long2.prototype, \"__isLong__\", { value: true });\n function isLong(obj) {\n return (obj && obj[\"__isLong__\"]) === true;\n }\n Long2.isLong = isLong;\n var INT_CACHE = {};\n var UINT_CACHE = {};\n function fromInt(value, unsigned) {\n var obj, cachedObj, cache;\n if (unsigned) {\n value >>>= 0;\n if (cache = 0 <= value && value < 256) {\n cachedObj = UINT_CACHE[value];\n if (cachedObj)\n return cachedObj;\n }\n obj = fromBits(value, (value | 0) < 0 ? -1 : 0, true);\n if (cache)\n UINT_CACHE[value] = obj;\n return obj;\n } else {\n value |= 0;\n if (cache = -128 <= value && value < 128) {\n cachedObj = INT_CACHE[value];\n if (cachedObj)\n return cachedObj;\n }\n obj = fromBits(value, value < 0 ? -1 : 0, false);\n if (cache)\n INT_CACHE[value] = obj;\n return obj;\n }\n }\n Long2.fromInt = fromInt;\n function fromNumber(value, unsigned) {\n if (isNaN(value))\n return unsigned ? UZERO : ZERO;\n if (unsigned) {\n if (value < 0)\n return UZERO;\n if (value >= TWO_PWR_64_DBL)\n return MAX_UNSIGNED_VALUE;\n } else {\n if (value <= -TWO_PWR_63_DBL)\n return MIN_VALUE;\n if (value + 1 >= TWO_PWR_63_DBL)\n return MAX_VALUE;\n }\n if (value < 0)\n return fromNumber(-value, unsigned).neg();\n return fromBits(value % TWO_PWR_32_DBL | 0, value / TWO_PWR_32_DBL | 0, unsigned);\n }\n Long2.fromNumber = fromNumber;\n function fromBits(lowBits, highBits, unsigned) {\n return new Long2(lowBits, highBits, unsigned);\n }\n Long2.fromBits = fromBits;\n var pow_dbl = Math.pow;\n function fromString(str, unsigned, radix) {\n if (str.length === 0)\n throw Error(\"empty string\");\n if (str === \"NaN\" || str === \"Infinity\" || str === \"+Infinity\" || str === \"-Infinity\")\n return ZERO;\n if (typeof unsigned === \"number\") {\n radix = unsigned, unsigned = false;\n } else {\n unsigned = !!unsigned;\n }\n radix = radix || 10;\n if (radix < 2 || 36 < radix)\n throw RangeError(\"radix\");\n var p2;\n if ((p2 = str.indexOf(\"-\")) > 0)\n throw Error(\"interior hyphen\");\n else if (p2 === 0) {\n return fromString(str.substring(1), unsigned, radix).neg();\n }\n var radixToPower = fromNumber(pow_dbl(radix, 8));\n var result = ZERO;\n for (var i2 = 0; i2 < str.length; i2 += 8) {\n var size = Math.min(8, str.length - i2), value = parseInt(str.substring(i2, i2 + size), radix);\n if (size < 8) {\n var power = fromNumber(pow_dbl(radix, size));\n result = result.mul(power).add(fromNumber(value));\n } else {\n result = result.mul(radixToPower);\n result = result.add(fromNumber(value));\n }\n }\n result.unsigned = unsigned;\n return result;\n }\n Long2.fromString = fromString;\n function fromValue(val, unsigned) {\n if (typeof val === \"number\")\n return fromNumber(val, unsigned);\n if (typeof val === \"string\")\n return fromString(val, unsigned);\n return fromBits(val.low, val.high, typeof unsigned === \"boolean\" ? unsigned : val.unsigned);\n }\n Long2.fromValue = fromValue;\n var TWO_PWR_16_DBL = 1 << 16;\n var TWO_PWR_24_DBL = 1 << 24;\n var TWO_PWR_32_DBL = TWO_PWR_16_DBL * TWO_PWR_16_DBL;\n var TWO_PWR_64_DBL = TWO_PWR_32_DBL * TWO_PWR_32_DBL;\n var TWO_PWR_63_DBL = TWO_PWR_64_DBL / 2;\n var TWO_PWR_24 = fromInt(TWO_PWR_24_DBL);\n var ZERO = fromInt(0);\n Long2.ZERO = ZERO;\n var UZERO = fromInt(0, true);\n Long2.UZERO = UZERO;\n var ONE = fromInt(1);\n Long2.ONE = ONE;\n var UONE = fromInt(1, true);\n Long2.UONE = UONE;\n var NEG_ONE = fromInt(-1);\n Long2.NEG_ONE = NEG_ONE;\n var MAX_VALUE = fromBits(4294967295 | 0, 2147483647 | 0, false);\n Long2.MAX_VALUE = MAX_VALUE;\n var MAX_UNSIGNED_VALUE = fromBits(4294967295 | 0, 4294967295 | 0, true);\n Long2.MAX_UNSIGNED_VALUE = MAX_UNSIGNED_VALUE;\n var MIN_VALUE = fromBits(0, 2147483648 | 0, false);\n Long2.MIN_VALUE = MIN_VALUE;\n var LongPrototype = Long2.prototype;\n LongPrototype.toInt = function toInt() {\n return this.unsigned ? this.low >>> 0 : this.low;\n };\n LongPrototype.toNumber = function toNumber() {\n if (this.unsigned)\n return (this.high >>> 0) * TWO_PWR_32_DBL + (this.low >>> 0);\n return this.high * TWO_PWR_32_DBL + (this.low >>> 0);\n };\n LongPrototype.toString = function toString(radix) {\n radix = radix || 10;\n if (radix < 2 || 36 < radix)\n throw RangeError(\"radix\");\n if (this.isZero())\n return \"0\";\n if (this.isNegative()) {\n if (this.eq(MIN_VALUE)) {\n var radixLong = fromNumber(radix), div3 = this.div(radixLong), rem1 = div3.mul(radixLong).sub(this);\n return div3.toString(radix) + rem1.toInt().toString(radix);\n } else\n return \"-\" + this.neg().toString(radix);\n }\n var radixToPower = fromNumber(pow_dbl(radix, 6), this.unsigned), rem = this;\n var result = \"\";\n while (true) {\n var remDiv = rem.div(radixToPower), intval = rem.sub(remDiv.mul(radixToPower)).toInt() >>> 0, digits = intval.toString(radix);\n rem = remDiv;\n if (rem.isZero())\n return digits + result;\n else {\n while (digits.length < 6)\n digits = \"0\" + digits;\n result = \"\" + digits + result;\n }\n }\n };\n LongPrototype.getHighBits = function getHighBits() {\n return this.high;\n };\n LongPrototype.getHighBitsUnsigned = function getHighBitsUnsigned() {\n return this.high >>> 0;\n };\n LongPrototype.getLowBits = function getLowBits() {\n return this.low;\n };\n LongPrototype.getLowBitsUnsigned = function getLowBitsUnsigned() {\n return this.low >>> 0;\n };\n LongPrototype.getNumBitsAbs = function getNumBitsAbs() {\n if (this.isNegative())\n return this.eq(MIN_VALUE) ? 64 : this.neg().getNumBitsAbs();\n var val = this.high != 0 ? this.high : this.low;\n for (var bit = 31; bit > 0; bit--)\n if ((val & 1 << bit) != 0)\n break;\n return this.high != 0 ? bit + 33 : bit + 1;\n };\n LongPrototype.isZero = function isZero() {\n return this.high === 0 && this.low === 0;\n };\n LongPrototype.eqz = LongPrototype.isZero;\n LongPrototype.isNegative = function isNegative() {\n return !this.unsigned && this.high < 0;\n };\n LongPrototype.isPositive = function isPositive() {\n return this.unsigned || this.high >= 0;\n };\n LongPrototype.isOdd = function isOdd() {\n return (this.low & 1) === 1;\n };\n LongPrototype.isEven = function isEven2() {\n return (this.low & 1) === 0;\n };\n LongPrototype.equals = function equals(other) {\n if (!isLong(other))\n other = fromValue(other);\n if (this.unsigned !== other.unsigned && this.high >>> 31 === 1 && other.high >>> 31 === 1)\n return false;\n return this.high === other.high && this.low === other.low;\n };\n LongPrototype.eq = LongPrototype.equals;\n LongPrototype.notEquals = function notEquals(other) {\n return !this.eq(other);\n };\n LongPrototype.neq = LongPrototype.notEquals;\n LongPrototype.ne = LongPrototype.notEquals;\n LongPrototype.lessThan = function lessThan(other) {\n return this.comp(other) < 0;\n };\n LongPrototype.lt = LongPrototype.lessThan;\n LongPrototype.lessThanOrEqual = function lessThanOrEqual(other) {\n return this.comp(other) <= 0;\n };\n LongPrototype.lte = LongPrototype.lessThanOrEqual;\n LongPrototype.le = LongPrototype.lessThanOrEqual;\n LongPrototype.greaterThan = function greaterThan(other) {\n return this.comp(other) > 0;\n };\n LongPrototype.gt = LongPrototype.greaterThan;\n LongPrototype.greaterThanOrEqual = function greaterThanOrEqual(other) {\n return this.comp(other) >= 0;\n };\n LongPrototype.gte = LongPrototype.greaterThanOrEqual;\n LongPrototype.ge = LongPrototype.greaterThanOrEqual;\n LongPrototype.compare = function compare(other) {\n if (!isLong(other))\n other = fromValue(other);\n if (this.eq(other))\n return 0;\n var thisNeg = this.isNegative(), otherNeg = other.isNegative();\n if (thisNeg && !otherNeg)\n return -1;\n if (!thisNeg && otherNeg)\n return 1;\n if (!this.unsigned)\n return this.sub(other).isNegative() ? -1 : 1;\n return other.high >>> 0 > this.high >>> 0 || other.high === this.high && other.low >>> 0 > this.low >>> 0 ? -1 : 1;\n };\n LongPrototype.comp = LongPrototype.compare;\n LongPrototype.negate = function negate() {\n if (!this.unsigned && this.eq(MIN_VALUE))\n return MIN_VALUE;\n return this.not().add(ONE);\n };\n LongPrototype.neg = LongPrototype.negate;\n LongPrototype.add = function add5(addend) {\n if (!isLong(addend))\n addend = fromValue(addend);\n var a48 = this.high >>> 16;\n var a32 = this.high & 65535;\n var a16 = this.low >>> 16;\n var a00 = this.low & 65535;\n var b48 = addend.high >>> 16;\n var b32 = addend.high & 65535;\n var b16 = addend.low >>> 16;\n var b00 = addend.low & 65535;\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\n c00 += a00 + b00;\n c16 += c00 >>> 16;\n c00 &= 65535;\n c16 += a16 + b16;\n c32 += c16 >>> 16;\n c16 &= 65535;\n c32 += a32 + b32;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c48 += a48 + b48;\n c48 &= 65535;\n return fromBits(c16 << 16 | c00, c48 << 16 | c32, this.unsigned);\n };\n LongPrototype.subtract = function subtract(subtrahend) {\n if (!isLong(subtrahend))\n subtrahend = fromValue(subtrahend);\n return this.add(subtrahend.neg());\n };\n LongPrototype.sub = LongPrototype.subtract;\n LongPrototype.multiply = function multiply4(multiplier) {\n if (this.isZero())\n return ZERO;\n if (!isLong(multiplier))\n multiplier = fromValue(multiplier);\n if (wasm) {\n var low = wasm.mul(\n this.low,\n this.high,\n multiplier.low,\n multiplier.high\n );\n return fromBits(low, wasm.get_high(), this.unsigned);\n }\n if (multiplier.isZero())\n return ZERO;\n if (this.eq(MIN_VALUE))\n return multiplier.isOdd() ? MIN_VALUE : ZERO;\n if (multiplier.eq(MIN_VALUE))\n return this.isOdd() ? MIN_VALUE : ZERO;\n if (this.isNegative()) {\n if (multiplier.isNegative())\n return this.neg().mul(multiplier.neg());\n else\n return this.neg().mul(multiplier).neg();\n } else if (multiplier.isNegative())\n return this.mul(multiplier.neg()).neg();\n if (this.lt(TWO_PWR_24) && multiplier.lt(TWO_PWR_24))\n return fromNumber(this.toNumber() * multiplier.toNumber(), this.unsigned);\n var a48 = this.high >>> 16;\n var a32 = this.high & 65535;\n var a16 = this.low >>> 16;\n var a00 = this.low & 65535;\n var b48 = multiplier.high >>> 16;\n var b32 = multiplier.high & 65535;\n var b16 = multiplier.low >>> 16;\n var b00 = multiplier.low & 65535;\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\n c00 += a00 * b00;\n c16 += c00 >>> 16;\n c00 &= 65535;\n c16 += a16 * b00;\n c32 += c16 >>> 16;\n c16 &= 65535;\n c16 += a00 * b16;\n c32 += c16 >>> 16;\n c16 &= 65535;\n c32 += a32 * b00;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c32 += a16 * b16;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c32 += a00 * b32;\n c48 += c32 >>> 16;\n c32 &= 65535;\n c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;\n c48 &= 65535;\n return fromBits(c16 << 16 | c00, c48 << 16 | c32, this.unsigned);\n };\n LongPrototype.mul = LongPrototype.multiply;\n LongPrototype.divide = function divide(divisor) {\n if (!isLong(divisor))\n divisor = fromValue(divisor);\n if (divisor.isZero())\n throw Error(\"division by zero\");\n if (wasm) {\n if (!this.unsigned && this.high === -2147483648 && divisor.low === -1 && divisor.high === -1) {\n return this;\n }\n var low = (this.unsigned ? wasm.div_u : wasm.div_s)(\n this.low,\n this.high,\n divisor.low,\n divisor.high\n );\n return fromBits(low, wasm.get_high(), this.unsigned);\n }\n if (this.isZero())\n return this.unsigned ? UZERO : ZERO;\n var approx, rem, res;\n if (!this.unsigned) {\n if (this.eq(MIN_VALUE)) {\n if (divisor.eq(ONE) || divisor.eq(NEG_ONE))\n return MIN_VALUE;\n else if (divisor.eq(MIN_VALUE))\n return ONE;\n else {\n var halfThis = this.shr(1);\n approx = halfThis.div(divisor).shl(1);\n if (approx.eq(ZERO)) {\n return divisor.isNegative() ? ONE : NEG_ONE;\n } else {\n rem = this.sub(divisor.mul(approx));\n res = approx.add(rem.div(divisor));\n return res;\n }\n }\n } else if (divisor.eq(MIN_VALUE))\n return this.unsigned ? UZERO : ZERO;\n if (this.isNegative()) {\n if (divisor.isNegative())\n return this.neg().div(divisor.neg());\n return this.neg().div(divisor).neg();\n } else if (divisor.isNegative())\n return this.div(divisor.neg()).neg();\n res = ZERO;\n } else {\n if (!divisor.unsigned)\n divisor = divisor.toUnsigned();\n if (divisor.gt(this))\n return UZERO;\n if (divisor.gt(this.shru(1)))\n return UONE;\n res = UZERO;\n }\n rem = this;\n while (rem.gte(divisor)) {\n approx = Math.max(1, Math.floor(rem.toNumber() / divisor.toNumber()));\n var log22 = Math.ceil(Math.log(approx) / Math.LN2), delta = log22 <= 48 ? 1 : pow_dbl(2, log22 - 48), approxRes = fromNumber(approx), approxRem = approxRes.mul(divisor);\n while (approxRem.isNegative() || approxRem.gt(rem)) {\n approx -= delta;\n approxRes = fromNumber(approx, this.unsigned);\n approxRem = approxRes.mul(divisor);\n }\n if (approxRes.isZero())\n approxRes = ONE;\n res = res.add(approxRes);\n rem = rem.sub(approxRem);\n }\n return res;\n };\n LongPrototype.div = LongPrototype.divide;\n LongPrototype.modulo = function modulo(divisor) {\n if (!isLong(divisor))\n divisor = fromValue(divisor);\n if (wasm) {\n var low = (this.unsigned ? wasm.rem_u : wasm.rem_s)(\n this.low,\n this.high,\n divisor.low,\n divisor.high\n );\n return fromBits(low, wasm.get_high(), this.unsigned);\n }\n return this.sub(this.div(divisor).mul(divisor));\n };\n LongPrototype.mod = LongPrototype.modulo;\n LongPrototype.rem = LongPrototype.modulo;\n LongPrototype.not = function not() {\n return fromBits(~this.low, ~this.high, this.unsigned);\n };\n LongPrototype.and = function and(other) {\n if (!isLong(other))\n other = fromValue(other);\n return fromBits(this.low & other.low, this.high & other.high, this.unsigned);\n };\n LongPrototype.or = function or(other) {\n if (!isLong(other))\n other = fromValue(other);\n return fromBits(this.low | other.low, this.high | other.high, this.unsigned);\n };\n LongPrototype.xor = function xor(other) {\n if (!isLong(other))\n other = fromValue(other);\n return fromBits(this.low ^ other.low, this.high ^ other.high, this.unsigned);\n };\n LongPrototype.shiftLeft = function shiftLeft(numBits) {\n if (isLong(numBits))\n numBits = numBits.toInt();\n if ((numBits &= 63) === 0)\n return this;\n else if (numBits < 32)\n return fromBits(this.low << numBits, this.high << numBits | this.low >>> 32 - numBits, this.unsigned);\n else\n return fromBits(0, this.low << numBits - 32, this.unsigned);\n };\n LongPrototype.shl = LongPrototype.shiftLeft;\n LongPrototype.shiftRight = function shiftRight(numBits) {\n if (isLong(numBits))\n numBits = numBits.toInt();\n if ((numBits &= 63) === 0)\n return this;\n else if (numBits < 32)\n return fromBits(this.low >>> numBits | this.high << 32 - numBits, this.high >> numBits, this.unsigned);\n else\n return fromBits(this.high >> numBits - 32, this.high >= 0 ? 0 : -1, this.unsigned);\n };\n LongPrototype.shr = LongPrototype.shiftRight;\n LongPrototype.shiftRightUnsigned = function shiftRightUnsigned(numBits) {\n if (isLong(numBits))\n numBits = numBits.toInt();\n numBits &= 63;\n if (numBits === 0)\n return this;\n else {\n var high = this.high;\n if (numBits < 32) {\n var low = this.low;\n return fromBits(low >>> numBits | high << 32 - numBits, high >>> numBits, this.unsigned);\n } else if (numBits === 32)\n return fromBits(high, 0, this.unsigned);\n else\n return fromBits(high >>> numBits - 32, 0, this.unsigned);\n }\n };\n LongPrototype.shru = LongPrototype.shiftRightUnsigned;\n LongPrototype.shr_u = LongPrototype.shiftRightUnsigned;\n LongPrototype.toSigned = function toSigned() {\n if (!this.unsigned)\n return this;\n return fromBits(this.low, this.high, false);\n };\n LongPrototype.toUnsigned = function toUnsigned() {\n if (this.unsigned)\n return this;\n return fromBits(this.low, this.high, true);\n };\n LongPrototype.toBytes = function toBytes(le) {\n return le ? this.toBytesLE() : this.toBytesBE();\n };\n LongPrototype.toBytesLE = function toBytesLE() {\n var hi = this.high, lo = this.low;\n return [\n lo & 255,\n lo >>> 8 & 255,\n lo >>> 16 & 255,\n lo >>> 24,\n hi & 255,\n hi >>> 8 & 255,\n hi >>> 16 & 255,\n hi >>> 24\n ];\n };\n LongPrototype.toBytesBE = function toBytesBE() {\n var hi = this.high, lo = this.low;\n return [\n hi >>> 24,\n hi >>> 16 & 255,\n hi >>> 8 & 255,\n hi & 255,\n lo >>> 24,\n lo >>> 16 & 255,\n lo >>> 8 & 255,\n lo & 255\n ];\n };\n Long2.fromBytes = function fromBytes(bytes, unsigned, le) {\n return le ? Long2.fromBytesLE(bytes, unsigned) : Long2.fromBytesBE(bytes, unsigned);\n };\n Long2.fromBytesLE = function fromBytesLE(bytes, unsigned) {\n return new Long2(\n bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes[3] << 24,\n bytes[4] | bytes[5] << 8 | bytes[6] << 16 | bytes[7] << 24,\n unsigned\n );\n };\n Long2.fromBytesBE = function fromBytesBE(bytes, unsigned) {\n return new Long2(\n bytes[4] << 24 | bytes[5] << 16 | bytes[6] << 8 | bytes[7],\n bytes[0] << 24 | bytes[1] << 16 | bytes[2] << 8 | bytes[3],\n unsigned\n );\n };\n }\n});\n\n// (disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js\nvar require_browser = __commonJS({\n \"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js\"() {\n }\n});\n\n// (disabled):util\nvar require_util = __commonJS({\n \"(disabled):util\"() {\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js\nvar require_alea = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js\"(exports, module) {\n (function(global2, module2, define2) {\n function Alea(seed) {\n var me = this, mash = Mash();\n me.next = function() {\n var t2 = 2091639 * me.s0 + me.c * 23283064365386963e-26;\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t2 - (me.c = t2 | 0);\n };\n me.c = 1;\n me.s0 = mash(\" \");\n me.s1 = mash(\" \");\n me.s2 = mash(\" \");\n me.s0 -= mash(seed);\n if (me.s0 < 0) {\n me.s0 += 1;\n }\n me.s1 -= mash(seed);\n if (me.s1 < 0) {\n me.s1 += 1;\n }\n me.s2 -= mash(seed);\n if (me.s2 < 0) {\n me.s2 += 1;\n }\n mash = null;\n }\n function copy(f, t2) {\n t2.c = f.c;\n t2.s0 = f.s0;\n t2.s1 = f.s1;\n t2.s2 = f.s2;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new Alea(seed), state = opts && opts.state, prng = xg.next;\n prng.int32 = function() {\n return xg.next() * 4294967296 | 0;\n };\n prng.double = function() {\n return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32;\n };\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n function Mash() {\n var n2 = 4022871197;\n var mash = function(data) {\n data = String(data);\n for (var i2 = 0; i2 < data.length; i2++) {\n n2 += data.charCodeAt(i2);\n var h = 0.02519603282416938 * n2;\n n2 = h >>> 0;\n h -= n2;\n h *= n2;\n n2 = h >>> 0;\n h -= n2;\n n2 += h * 4294967296;\n }\n return (n2 >>> 0) * 23283064365386963e-26;\n };\n return mash;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.alea = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js\nvar require_xor128 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.next = function() {\n var t2 = me.x ^ me.x << 11;\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= me.w >>> 19 ^ t2 ^ t2 >>> 8;\n };\n if (seed === (seed | 0)) {\n me.x = seed;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n }\n function copy(f, t2) {\n t2.x = f.x;\n t2.y = f.y;\n t2.z = f.z;\n t2.w = f.w;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xor128 = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js\nvar require_xorwow = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.next = function() {\n var t2 = me.x ^ me.x >>> 2;\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n me.w = me.v;\n return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t2 ^ t2 << 1)) | 0;\n };\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n if (seed === (seed | 0)) {\n me.x = seed;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n }\n function copy(f, t2) {\n t2.x = f.x;\n t2.y = f.y;\n t2.z = f.z;\n t2.w = f.w;\n t2.v = f.v;\n t2.d = f.d;\n return t2;\n }\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xorwow = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js\nvar require_xorshift7 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this;\n me.next = function() {\n var X = me.x, i2 = me.i, t2, v, w;\n t2 = X[i2];\n t2 ^= t2 >>> 7;\n v = t2 ^ t2 << 24;\n t2 = X[i2 + 1 & 7];\n v ^= t2 ^ t2 >>> 10;\n t2 = X[i2 + 3 & 7];\n v ^= t2 ^ t2 >>> 3;\n t2 = X[i2 + 4 & 7];\n v ^= t2 ^ t2 << 7;\n t2 = X[i2 + 7 & 7];\n t2 = t2 ^ t2 << 13;\n v ^= t2 ^ t2 << 9;\n X[i2] = v;\n me.i = i2 + 1 & 7;\n return v;\n };\n function init2(me2, seed2) {\n var j, w, X = [];\n if (seed2 === (seed2 | 0)) {\n w = X[0] = seed2;\n } else {\n seed2 = \"\" + seed2;\n for (j = 0; j < seed2.length; ++j) {\n X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13;\n }\n }\n while (X.length < 8)\n X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j)\n ;\n if (j == 8)\n w = X[7] = -1;\n else\n w = X[j];\n me2.x = X;\n me2.i = 0;\n for (j = 256; j > 0; --j) {\n me2.next();\n }\n }\n init2(me, seed);\n }\n function copy(f, t2) {\n t2.x = f.x.slice();\n t2.i = f.i;\n return t2;\n }\n function impl(seed, opts) {\n if (seed == null)\n seed = +new Date();\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x)\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xorshift7 = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js\nvar require_xor4096 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this;\n me.next = function() {\n var w = me.w, X = me.X, i2 = me.i, t2, v;\n me.w = w = w + 1640531527 | 0;\n v = X[i2 + 34 & 127];\n t2 = X[i2 = i2 + 1 & 127];\n v ^= v << 13;\n t2 ^= t2 << 17;\n v ^= v >>> 15;\n t2 ^= t2 >>> 12;\n v = X[i2] = v ^ t2;\n me.i = i2;\n return v + (w ^ w >>> 16) | 0;\n };\n function init2(me2, seed2) {\n var t2, v, i2, j, w, X = [], limit = 128;\n if (seed2 === (seed2 | 0)) {\n v = seed2;\n seed2 = null;\n } else {\n seed2 = seed2 + \"\\0\";\n v = 0;\n limit = Math.max(limit, seed2.length);\n }\n for (i2 = 0, j = -32; j < limit; ++j) {\n if (seed2)\n v ^= seed2.charCodeAt((j + 32) % seed2.length);\n if (j === 0)\n w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = w + 1640531527 | 0;\n t2 = X[j & 127] ^= v + w;\n i2 = 0 == t2 ? i2 + 1 : 0;\n }\n }\n if (i2 >= 128) {\n X[(seed2 && seed2.length || 0) & 127] = -1;\n }\n i2 = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[i2 + 34 & 127];\n t2 = X[i2 = i2 + 1 & 127];\n v ^= v << 13;\n t2 ^= t2 << 17;\n v ^= v >>> 15;\n t2 ^= t2 >>> 12;\n X[i2] = v ^ t2;\n }\n me2.w = w;\n me2.X = X;\n me2.i = i2;\n }\n init2(me, seed);\n }\n function copy(f, t2) {\n t2.i = f.i;\n t2.w = f.w;\n t2.X = f.X.slice();\n return t2;\n }\n ;\n function impl(seed, opts) {\n if (seed == null)\n seed = +new Date();\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X)\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.xor4096 = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js\nvar require_tychei = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js\"(exports, module) {\n (function(global2, module2, define2) {\n function XorGen(seed) {\n var me = this, strseed = \"\";\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = b << 25 ^ b >>> 7 ^ c;\n c = c - d | 0;\n d = d << 24 ^ d >>> 8 ^ a;\n a = a - b | 0;\n me.b = b = b << 20 ^ b >>> 12 ^ c;\n me.c = c = c - d | 0;\n me.d = d << 16 ^ c >>> 16 ^ a;\n return me.a = a - b | 0;\n };\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n if (seed === Math.floor(seed)) {\n me.a = seed / 4294967296 | 0;\n me.b = seed | 0;\n } else {\n strseed += seed;\n }\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n }\n function copy(f, t2) {\n t2.a = f.a;\n t2.b = f.b;\n t2.c = f.c;\n t2.d = f.d;\n return t2;\n }\n ;\n function impl(seed, opts) {\n var xg = new XorGen(seed), state = opts && opts.state, prng = function() {\n return (xg.next() >>> 0) / 4294967296;\n };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof state == \"object\")\n copy(state, xg);\n prng.state = function() {\n return copy(xg, {});\n };\n }\n return prng;\n }\n if (module2 && module2.exports) {\n module2.exports = impl;\n } else if (define2 && define2.amd) {\n define2(function() {\n return impl;\n });\n } else {\n this.tychei = impl;\n }\n })(\n exports,\n typeof module == \"object\" && module,\n typeof define == \"function\" && define\n );\n }\n});\n\n// (disabled):crypto\nvar require_crypto = __commonJS({\n \"(disabled):crypto\"() {\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js\nvar require_seedrandom = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js\"(exports, module) {\n (function(global2, pool3, math) {\n var width = 256, chunks = 6, digits = 52, rngname = \"random\", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto;\n function seedrandom5(seed, options, callback) {\n var key = [];\n options = options == true ? { entropy: true } : options || {};\n var shortseed = mixkey(flatten4(\n options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed,\n 3\n ), key);\n var arc4 = new ARC4(key);\n var prng = function() {\n var n2 = arc4.g(chunks), d = startdenom, x = 0;\n while (n2 < significance) {\n n2 = (n2 + x) * width;\n d *= width;\n x = arc4.g(1);\n }\n while (n2 >= overflow) {\n n2 /= 2;\n d /= 2;\n x >>>= 1;\n }\n return (n2 + x) / d;\n };\n prng.int32 = function() {\n return arc4.g(4) | 0;\n };\n prng.quick = function() {\n return arc4.g(4) / 4294967296;\n };\n prng.double = prng;\n mixkey(tostring(arc4.S), pool3);\n return (options.pass || callback || function(prng2, seed2, is_math_call, state) {\n if (state) {\n if (state.S) {\n copy(state, arc4);\n }\n prng2.state = function() {\n return copy(arc4, {});\n };\n }\n if (is_math_call) {\n math[rngname] = prng2;\n return seed2;\n } else\n return prng2;\n })(\n prng,\n shortseed,\n \"global\" in options ? options.global : this == math,\n options.state\n );\n }\n function ARC4(key) {\n var t2, keylen = key.length, me = this, i2 = 0, j = me.i = me.j = 0, s2 = me.S = [];\n if (!keylen) {\n key = [keylen++];\n }\n while (i2 < width) {\n s2[i2] = i2++;\n }\n for (i2 = 0; i2 < width; i2++) {\n s2[i2] = s2[j = mask & j + key[i2 % keylen] + (t2 = s2[i2])];\n s2[j] = t2;\n }\n (me.g = function(count2) {\n var t3, r2 = 0, i3 = me.i, j2 = me.j, s3 = me.S;\n while (count2--) {\n t3 = s3[i3 = mask & i3 + 1];\n r2 = r2 * width + s3[mask & (s3[i3] = s3[j2 = mask & j2 + t3]) + (s3[j2] = t3)];\n }\n me.i = i3;\n me.j = j2;\n return r2;\n })(width);\n }\n function copy(f, t2) {\n t2.i = f.i;\n t2.j = f.j;\n t2.S = f.S.slice();\n return t2;\n }\n ;\n function flatten4(obj, depth) {\n var result = [], typ = typeof obj, prop;\n if (depth && typ == \"object\") {\n for (prop in obj) {\n try {\n result.push(flatten4(obj[prop], depth - 1));\n } catch (e2) {\n }\n }\n }\n return result.length ? result : typ == \"string\" ? obj : obj + \"\\0\";\n }\n function mixkey(seed, key) {\n var stringseed = seed + \"\", smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++);\n }\n return tostring(key);\n }\n function autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global2.crypto || global2.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e2) {\n var browser = global2.navigator, plugins = browser && browser.plugins;\n return [+new Date(), global2, plugins, global2.screen, tostring(pool3)];\n }\n }\n function tostring(a) {\n return String.fromCharCode.apply(0, a);\n }\n mixkey(math.random(), pool3);\n if (typeof module == \"object\" && module.exports) {\n module.exports = seedrandom5;\n try {\n nodecrypto = require_crypto();\n } catch (ex) {\n }\n } else if (typeof define == \"function\" && define.amd) {\n define(function() {\n return seedrandom5;\n });\n } else {\n math[\"seed\" + rngname] = seedrandom5;\n }\n })(\n typeof self !== \"undefined\" ? self : exports,\n [],\n Math\n );\n }\n});\n\n// node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js\nvar require_seedrandom2 = __commonJS({\n \"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js\"(exports, module) {\n var alea5 = require_alea();\n var xor128 = require_xor128();\n var xorwow = require_xorwow();\n var xorshift7 = require_xorshift7();\n var xor4096 = require_xor4096();\n var tychei = require_tychei();\n var sr = require_seedrandom();\n sr.alea = alea5;\n sr.xor128 = xor128;\n sr.xorwow = xorwow;\n sr.xorshift7 = xorshift7;\n sr.xor4096 = xor4096;\n sr.tychei = tychei;\n module.exports = sr;\n }\n});\n\n// (disabled):node_modules/.pnpm/string_decoder@1.3.0/node_modules/string_decoder/lib/string_decoder.js\nvar require_string_decoder = __commonJS({\n \"(disabled):node_modules/.pnpm/string_decoder@1.3.0/node_modules/string_decoder/lib/string_decoder.js\"() {\n }\n});\n\n// (disabled):fs\nvar require_fs = __commonJS({\n \"(disabled):fs\"() {\n }\n});\n\n// (disabled):path\nvar require_path = __commonJS({\n \"(disabled):path\"() {\n }\n});\n\n// (disabled):worker_threads\nvar require_worker_threads = __commonJS({\n \"(disabled):worker_threads\"() {\n }\n});\n\n// (disabled):perf_hooks\nvar require_perf_hooks = __commonJS({\n \"(disabled):perf_hooks\"() {\n }\n});\n\n// (disabled):os\nvar require_os = __commonJS({\n \"(disabled):os\"() {\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js\nvar require_tfjs_backend_wasm_threaded_simd = __commonJS({\n \"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js\"(exports, module) {\n var WasmBackendModuleThreadedSimd2 = (() => {\n var _scriptDir = typeof document !== \"undefined\" && document.currentScript ? document.currentScript.src : void 0;\n if (typeof __filename !== \"undefined\")\n _scriptDir = _scriptDir || __filename;\n return function(WasmBackendModuleThreadedSimd3) {\n WasmBackendModuleThreadedSimd3 = WasmBackendModuleThreadedSimd3 || {};\n function GROWABLE_HEAP_I8() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAP8;\n }\n function GROWABLE_HEAP_U8() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPU8;\n }\n function GROWABLE_HEAP_I16() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAP16;\n }\n function GROWABLE_HEAP_U16() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPU16;\n }\n function GROWABLE_HEAP_I32() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAP32;\n }\n function GROWABLE_HEAP_F32() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPF32;\n }\n function GROWABLE_HEAP_F64() {\n if (wasmMemory.buffer != buffer2) {\n updateGlobalBufferAndViews(wasmMemory.buffer);\n }\n return HEAPF64;\n }\n var Module = typeof WasmBackendModuleThreadedSimd3 !== \"undefined\" ? WasmBackendModuleThreadedSimd3 : {};\n var readyPromiseResolve, readyPromiseReject;\n Module[\"ready\"] = new Promise(function(resolve, reject) {\n readyPromiseResolve = resolve;\n readyPromiseReject = reject;\n });\n var beforeListeners;\n if (typeof process !== \"undefined\" && process.listeners) {\n beforeListeners = { uncaughtException: process.listeners(\"uncaughtException\"), unhandledRejection: process.listeners(\"unhandledRejection\") };\n }\n var moduleOverrides = Object.assign({}, Module);\n var arguments_ = [];\n var thisProgram = \"./this.program\";\n var quit_ = (status, toThrow) => {\n throw toThrow;\n };\n var ENVIRONMENT_IS_WEB = typeof window === \"object\";\n var ENVIRONMENT_IS_WORKER = typeof importScripts === \"function\";\n var ENVIRONMENT_IS_NODE = typeof process === \"object\" && typeof process.versions === \"object\" && typeof process.versions.node === \"string\";\n var ENVIRONMENT_IS_PTHREAD = Module[\"ENVIRONMENT_IS_PTHREAD\"] || false;\n var scriptDirectory = \"\";\n function locateFile(path) {\n if (Module[\"locateFile\"]) {\n return Module[\"locateFile\"](path, scriptDirectory);\n }\n return scriptDirectory + path;\n }\n var read_, readAsync, readBinary, setWindowTitle;\n function logExceptionOnExit(e2) {\n if (e2 instanceof ExitStatus)\n return;\n let toLog = e2;\n err(\"exiting due to exception: \" + toLog);\n }\n var fs;\n var nodePath;\n var requireNodeFS;\n if (ENVIRONMENT_IS_NODE) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = require_path().dirname(scriptDirectory) + \"/\";\n } else {\n scriptDirectory = __dirname + \"/\";\n }\n requireNodeFS = () => {\n if (!nodePath) {\n fs = require_fs();\n nodePath = require_path();\n }\n };\n read_ = function shell_read(filename, binary) {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n return fs.readFileSync(filename, binary ? void 0 : \"utf8\");\n };\n readBinary = (filename) => {\n var ret = read_(filename, true);\n if (!ret.buffer) {\n ret = new Uint8Array(ret);\n }\n return ret;\n };\n readAsync = (filename, onload, onerror) => {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n fs.readFile(filename, function(err2, data) {\n if (err2)\n onerror(err2);\n else\n onload(data.buffer);\n });\n };\n if (process[\"argv\"].length > 1) {\n thisProgram = process[\"argv\"][1].replace(/\\\\/g, \"/\");\n }\n arguments_ = process[\"argv\"].slice(2);\n process[\"on\"](\"uncaughtException\", function(ex) {\n if (!(ex instanceof ExitStatus)) {\n throw ex;\n }\n });\n process[\"on\"](\"unhandledRejection\", function(reason) {\n throw reason;\n });\n quit_ = (status, toThrow) => {\n if (keepRuntimeAlive()) {\n process[\"exitCode\"] = status;\n throw toThrow;\n }\n logExceptionOnExit(toThrow);\n process[\"exit\"](status);\n };\n Module[\"inspect\"] = function() {\n return \"[Emscripten Module object]\";\n };\n let nodeWorkerThreads;\n try {\n nodeWorkerThreads = require_worker_threads();\n } catch (e2) {\n console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?');\n throw e2;\n }\n global.Worker = nodeWorkerThreads.Worker;\n } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = self.location.href;\n } else if (typeof document !== \"undefined\" && document.currentScript) {\n scriptDirectory = document.currentScript.src;\n }\n if (typeof _scriptDir !== \"undefined\" && _scriptDir) {\n scriptDirectory = _scriptDir;\n }\n if (scriptDirectory.indexOf(\"blob:\") !== 0) {\n scriptDirectory = scriptDirectory.substr(0, scriptDirectory.replace(/[?#].*/, \"\").lastIndexOf(\"/\") + 1);\n } else {\n scriptDirectory = \"\";\n }\n if (!ENVIRONMENT_IS_NODE) {\n read_ = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.send(null);\n return xhr.responseText;\n };\n if (ENVIRONMENT_IS_WORKER) {\n readBinary = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.responseType = \"arraybuffer\";\n xhr.send(null);\n return new Uint8Array(xhr.response);\n };\n }\n readAsync = (url, onload, onerror) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, true);\n xhr.responseType = \"arraybuffer\";\n xhr.onload = () => {\n if (xhr.status == 200 || xhr.status == 0 && xhr.response) {\n onload(xhr.response);\n return;\n }\n onerror();\n };\n xhr.onerror = onerror;\n xhr.send(null);\n };\n }\n setWindowTitle = (title) => document.title = title;\n } else {\n }\n if (ENVIRONMENT_IS_NODE) {\n if (typeof performance === \"undefined\") {\n global.performance = require_perf_hooks().performance;\n }\n }\n var defaultPrint = console.log.bind(console);\n var defaultPrintErr = console.warn.bind(console);\n if (ENVIRONMENT_IS_NODE) {\n requireNodeFS();\n defaultPrint = (str) => fs.writeSync(1, str + \"\\n\");\n defaultPrintErr = (str) => fs.writeSync(2, str + \"\\n\");\n }\n var out = Module[\"print\"] || defaultPrint;\n var err = Module[\"printErr\"] || defaultPrintErr;\n Object.assign(Module, moduleOverrides);\n moduleOverrides = null;\n if (Module[\"arguments\"])\n arguments_ = Module[\"arguments\"];\n if (Module[\"thisProgram\"])\n thisProgram = Module[\"thisProgram\"];\n if (Module[\"quit\"])\n quit_ = Module[\"quit\"];\n var POINTER_SIZE = 4;\n function warnOnce(text) {\n if (!warnOnce.shown)\n warnOnce.shown = {};\n if (!warnOnce.shown[text]) {\n warnOnce.shown[text] = 1;\n err(text);\n }\n }\n function convertJsFunctionToWasm(func2, sig) {\n if (typeof WebAssembly.Function === \"function\") {\n var typeNames = { \"i\": \"i32\", \"j\": \"i64\", \"f\": \"f32\", \"d\": \"f64\" };\n var type = { parameters: [], results: sig[0] == \"v\" ? [] : [typeNames[sig[0]]] };\n for (var i2 = 1; i2 < sig.length; ++i2) {\n type.parameters.push(typeNames[sig[i2]]);\n }\n return new WebAssembly.Function(type, func2);\n }\n var typeSection = [1, 0, 1, 96];\n var sigRet = sig.slice(0, 1);\n var sigParam = sig.slice(1);\n var typeCodes = { \"i\": 127, \"j\": 126, \"f\": 125, \"d\": 124 };\n typeSection.push(sigParam.length);\n for (var i2 = 0; i2 < sigParam.length; ++i2) {\n typeSection.push(typeCodes[sigParam[i2]]);\n }\n if (sigRet == \"v\") {\n typeSection.push(0);\n } else {\n typeSection = typeSection.concat([1, typeCodes[sigRet]]);\n }\n typeSection[1] = typeSection.length - 2;\n var bytes = new Uint8Array([0, 97, 115, 109, 1, 0, 0, 0].concat(typeSection, [2, 7, 1, 1, 101, 1, 102, 0, 0, 7, 5, 1, 1, 102, 0, 0]));\n var module2 = new WebAssembly.Module(bytes);\n var instance = new WebAssembly.Instance(module2, { \"e\": { \"f\": func2 } });\n var wrappedFunc = instance.exports[\"f\"];\n return wrappedFunc;\n }\n var freeTableIndexes = [];\n var functionsInTableMap;\n function getEmptyTableSlot() {\n if (freeTableIndexes.length) {\n return freeTableIndexes.pop();\n }\n try {\n wasmTable.grow(1);\n } catch (err2) {\n if (!(err2 instanceof RangeError)) {\n throw err2;\n }\n throw \"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.\";\n }\n return wasmTable.length - 1;\n }\n function updateTableMap(offset, count2) {\n for (var i2 = offset; i2 < offset + count2; i2++) {\n var item = getWasmTableEntry(i2);\n if (item) {\n functionsInTableMap.set(item, i2);\n }\n }\n }\n var tempRet0 = 0;\n var setTempRet0 = (value) => {\n tempRet0 = value;\n };\n var Atomics_load = Atomics.load;\n var Atomics_store = Atomics.store;\n var Atomics_compareExchange = Atomics.compareExchange;\n var wasmBinary;\n if (Module[\"wasmBinary\"])\n wasmBinary = Module[\"wasmBinary\"];\n var noExitRuntime = Module[\"noExitRuntime\"] || true;\n if (typeof WebAssembly !== \"object\") {\n abort(\"no native wasm support detected\");\n }\n var wasmMemory;\n var wasmModule;\n var ABORT = false;\n var EXITSTATUS;\n function assert3(condition, text) {\n if (!condition) {\n abort(text);\n }\n }\n function getCFunc(ident) {\n var func2 = Module[\"_\" + ident];\n return func2;\n }\n function ccall(ident, returnType, argTypes, args, opts) {\n var toC = { \"string\": function(str) {\n var ret2 = 0;\n if (str !== null && str !== void 0 && str !== 0) {\n var len = (str.length << 2) + 1;\n ret2 = stackAlloc(len);\n stringToUTF8(str, ret2, len);\n }\n return ret2;\n }, \"array\": function(arr) {\n var ret2 = stackAlloc(arr.length);\n writeArrayToMemory(arr, ret2);\n return ret2;\n } };\n function convertReturnValue(ret2) {\n if (returnType === \"string\")\n return UTF8ToString(ret2);\n if (returnType === \"boolean\")\n return Boolean(ret2);\n return ret2;\n }\n var func2 = getCFunc(ident);\n var cArgs = [];\n var stack2 = 0;\n if (args) {\n for (var i2 = 0; i2 < args.length; i2++) {\n var converter = toC[argTypes[i2]];\n if (converter) {\n if (stack2 === 0)\n stack2 = stackSave();\n cArgs[i2] = converter(args[i2]);\n } else {\n cArgs[i2] = args[i2];\n }\n }\n }\n var ret = func2.apply(null, cArgs);\n function onDone(ret2) {\n if (stack2 !== 0)\n stackRestore(stack2);\n return convertReturnValue(ret2);\n }\n ret = onDone(ret);\n return ret;\n }\n function cwrap(ident, returnType, argTypes, opts) {\n argTypes = argTypes || [];\n var numericArgs = argTypes.every(function(type) {\n return type === \"number\";\n });\n var numericRet = returnType !== \"string\";\n if (numericRet && numericArgs && !opts) {\n return getCFunc(ident);\n }\n return function() {\n return ccall(ident, returnType, argTypes, arguments, opts);\n };\n }\n var ALLOC_STACK = 1;\n function TextDecoderWrapper(encoding) {\n var textDecoder = new TextDecoder(encoding);\n this.decode = (data) => {\n if (data.buffer instanceof SharedArrayBuffer) {\n data = new Uint8Array(data);\n }\n return textDecoder.decode.call(textDecoder, data);\n };\n }\n var UTF8Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoderWrapper(\"utf8\") : void 0;\n function UTF8ArrayToString(heap, idx, maxBytesToRead) {\n var endIdx = idx + maxBytesToRead;\n var endPtr = idx;\n while (heap[endPtr] && !(endPtr >= endIdx))\n ++endPtr;\n if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) {\n return UTF8Decoder.decode(heap.subarray(idx, endPtr));\n } else {\n var str = \"\";\n while (idx < endPtr) {\n var u0 = heap[idx++];\n if (!(u0 & 128)) {\n str += String.fromCharCode(u0);\n continue;\n }\n var u1 = heap[idx++] & 63;\n if ((u0 & 224) == 192) {\n str += String.fromCharCode((u0 & 31) << 6 | u1);\n continue;\n }\n var u2 = heap[idx++] & 63;\n if ((u0 & 240) == 224) {\n u0 = (u0 & 15) << 12 | u1 << 6 | u2;\n } else {\n u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63;\n }\n if (u0 < 65536) {\n str += String.fromCharCode(u0);\n } else {\n var ch = u0 - 65536;\n str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023);\n }\n }\n }\n return str;\n }\n function UTF8ToString(ptr, maxBytesToRead) {\n return ptr ? UTF8ArrayToString(GROWABLE_HEAP_U8(), ptr, maxBytesToRead) : \"\";\n }\n function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) {\n if (!(maxBytesToWrite > 0))\n return 0;\n var startIdx = outIdx;\n var endIdx = outIdx + maxBytesToWrite - 1;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343) {\n var u1 = str.charCodeAt(++i2);\n u = 65536 + ((u & 1023) << 10) | u1 & 1023;\n }\n if (u <= 127) {\n if (outIdx >= endIdx)\n break;\n heap[outIdx++] = u;\n } else if (u <= 2047) {\n if (outIdx + 1 >= endIdx)\n break;\n heap[outIdx++] = 192 | u >> 6;\n heap[outIdx++] = 128 | u & 63;\n } else if (u <= 65535) {\n if (outIdx + 2 >= endIdx)\n break;\n heap[outIdx++] = 224 | u >> 12;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n } else {\n if (outIdx + 3 >= endIdx)\n break;\n heap[outIdx++] = 240 | u >> 18;\n heap[outIdx++] = 128 | u >> 12 & 63;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n }\n }\n heap[outIdx] = 0;\n return outIdx - startIdx;\n }\n function stringToUTF8(str, outPtr, maxBytesToWrite) {\n return stringToUTF8Array(str, GROWABLE_HEAP_U8(), outPtr, maxBytesToWrite);\n }\n function lengthBytesUTF8(str) {\n var len = 0;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343)\n u = 65536 + ((u & 1023) << 10) | str.charCodeAt(++i2) & 1023;\n if (u <= 127)\n ++len;\n else if (u <= 2047)\n len += 2;\n else if (u <= 65535)\n len += 3;\n else\n len += 4;\n }\n return len;\n }\n var UTF16Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoderWrapper(\"utf-16le\") : void 0;\n function writeArrayToMemory(array2, buffer3) {\n GROWABLE_HEAP_I8().set(array2, buffer3);\n }\n function writeAsciiToMemory(str, buffer3, dontAddNull) {\n for (var i2 = 0; i2 < str.length; ++i2) {\n GROWABLE_HEAP_I8()[buffer3++ >> 0] = str.charCodeAt(i2);\n }\n if (!dontAddNull)\n GROWABLE_HEAP_I8()[buffer3 >> 0] = 0;\n }\n function alignUp(x, multiple) {\n if (x % multiple > 0) {\n x += multiple - x % multiple;\n }\n return x;\n }\n var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64;\n if (ENVIRONMENT_IS_PTHREAD) {\n buffer2 = Module[\"buffer\"];\n }\n function updateGlobalBufferAndViews(buf) {\n buffer2 = buf;\n Module[\"HEAP8\"] = HEAP8 = new Int8Array(buf);\n Module[\"HEAP16\"] = HEAP16 = new Int16Array(buf);\n Module[\"HEAP32\"] = HEAP32 = new Int32Array(buf);\n Module[\"HEAPU8\"] = HEAPU8 = new Uint8Array(buf);\n Module[\"HEAPU16\"] = HEAPU16 = new Uint16Array(buf);\n Module[\"HEAPU32\"] = HEAPU32 = new Uint32Array(buf);\n Module[\"HEAPF32\"] = HEAPF32 = new Float32Array(buf);\n Module[\"HEAPF64\"] = HEAPF64 = new Float64Array(buf);\n }\n var INITIAL_MEMORY = Module[\"INITIAL_MEMORY\"] || 16777216;\n if (ENVIRONMENT_IS_PTHREAD) {\n wasmMemory = Module[\"wasmMemory\"];\n buffer2 = Module[\"buffer\"];\n } else {\n if (Module[\"wasmMemory\"]) {\n wasmMemory = Module[\"wasmMemory\"];\n } else {\n wasmMemory = new WebAssembly.Memory({ \"initial\": INITIAL_MEMORY / 65536, \"maximum\": 2147483648 / 65536, \"shared\": true });\n if (!(wasmMemory.buffer instanceof SharedArrayBuffer)) {\n err(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\");\n if (ENVIRONMENT_IS_NODE) {\n console.log(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)\");\n }\n throw Error(\"bad memory\");\n }\n }\n }\n if (wasmMemory) {\n buffer2 = wasmMemory.buffer;\n }\n INITIAL_MEMORY = buffer2.byteLength;\n updateGlobalBufferAndViews(buffer2);\n var wasmTable;\n var __ATPRERUN__ = [];\n var __ATINIT__ = [];\n var __ATEXIT__ = [];\n var __ATPOSTRUN__ = [];\n var runtimeInitialized = false;\n var runtimeExited = false;\n var runtimeKeepaliveCounter = 0;\n function keepRuntimeAlive() {\n return noExitRuntime || runtimeKeepaliveCounter > 0;\n }\n function preRun() {\n if (Module[\"preRun\"]) {\n if (typeof Module[\"preRun\"] == \"function\")\n Module[\"preRun\"] = [Module[\"preRun\"]];\n while (Module[\"preRun\"].length) {\n addOnPreRun(Module[\"preRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPRERUN__);\n }\n function initRuntime() {\n runtimeInitialized = true;\n if (ENVIRONMENT_IS_PTHREAD)\n return;\n callRuntimeCallbacks(__ATINIT__);\n }\n function exitRuntime() {\n if (ENVIRONMENT_IS_PTHREAD)\n return;\n PThread.terminateAllThreads();\n runtimeExited = true;\n }\n function postRun() {\n if (ENVIRONMENT_IS_PTHREAD)\n return;\n if (Module[\"postRun\"]) {\n if (typeof Module[\"postRun\"] == \"function\")\n Module[\"postRun\"] = [Module[\"postRun\"]];\n while (Module[\"postRun\"].length) {\n addOnPostRun(Module[\"postRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPOSTRUN__);\n }\n function addOnPreRun(cb) {\n __ATPRERUN__.unshift(cb);\n }\n function addOnInit(cb) {\n __ATINIT__.unshift(cb);\n }\n function addOnPostRun(cb) {\n __ATPOSTRUN__.unshift(cb);\n }\n var runDependencies = 0;\n var runDependencyWatcher = null;\n var dependenciesFulfilled = null;\n function addRunDependency(id) {\n runDependencies++;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n }\n function removeRunDependency(id) {\n runDependencies--;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n if (runDependencies == 0) {\n if (runDependencyWatcher !== null) {\n clearInterval(runDependencyWatcher);\n runDependencyWatcher = null;\n }\n if (dependenciesFulfilled) {\n var callback = dependenciesFulfilled;\n dependenciesFulfilled = null;\n callback();\n }\n }\n }\n Module[\"preloadedImages\"] = {};\n Module[\"preloadedAudios\"] = {};\n function abort(what) {\n if (ENVIRONMENT_IS_PTHREAD) {\n postMessage({ \"cmd\": \"onAbort\", \"arg\": what });\n } else {\n if (Module[\"onAbort\"]) {\n Module[\"onAbort\"](what);\n }\n }\n what = \"Aborted(\" + what + \")\";\n err(what);\n ABORT = true;\n EXITSTATUS = 1;\n what += \". Build with -s ASSERTIONS=1 for more info.\";\n var e2 = new WebAssembly.RuntimeError(what);\n readyPromiseReject(e2);\n throw e2;\n }\n var dataURIPrefix = \"data:application/octet-stream;base64,\";\n function isDataURI(filename) {\n return filename.startsWith(dataURIPrefix);\n }\n function isFileURI(filename) {\n return filename.startsWith(\"file://\");\n }\n var wasmBinaryFile;\n wasmBinaryFile = \"tfjs-backend-wasm-threaded-simd.wasm\";\n if (!isDataURI(wasmBinaryFile)) {\n wasmBinaryFile = locateFile(wasmBinaryFile);\n }\n function getBinary(file) {\n try {\n if (file == wasmBinaryFile && wasmBinary) {\n return new Uint8Array(wasmBinary);\n }\n if (readBinary) {\n return readBinary(file);\n } else {\n throw \"both async and sync fetching of the wasm failed\";\n }\n } catch (err2) {\n abort(err2);\n }\n }\n function getBinaryPromise() {\n if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) {\n if (typeof fetch === \"function\" && !isFileURI(wasmBinaryFile)) {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n if (!response[\"ok\"]) {\n throw \"failed to load wasm binary file at '\" + wasmBinaryFile + \"'\";\n }\n return response[\"arrayBuffer\"]();\n }).catch(function() {\n return getBinary(wasmBinaryFile);\n });\n } else {\n if (readAsync) {\n return new Promise(function(resolve, reject) {\n readAsync(wasmBinaryFile, function(response) {\n resolve(new Uint8Array(response));\n }, reject);\n });\n }\n }\n }\n return Promise.resolve().then(function() {\n return getBinary(wasmBinaryFile);\n });\n }\n function createWasm() {\n var info = { \"env\": asmLibraryArg, \"wasi_snapshot_preview1\": asmLibraryArg };\n function receiveInstance(instance, module2) {\n var exports3 = instance.exports;\n Module[\"asm\"] = exports3;\n registerTlsInit(Module[\"asm\"][\"emscripten_tls_init\"]);\n wasmTable = Module[\"asm\"][\"__indirect_function_table\"];\n addOnInit(Module[\"asm\"][\"__wasm_call_ctors\"]);\n wasmModule = module2;\n if (!ENVIRONMENT_IS_PTHREAD) {\n var numWorkersToLoad = PThread.unusedWorkers.length;\n PThread.unusedWorkers.forEach(function(w) {\n PThread.loadWasmModuleToWorker(w, function() {\n if (!--numWorkersToLoad)\n removeRunDependency(\"wasm-instantiate\");\n });\n });\n }\n }\n if (!ENVIRONMENT_IS_PTHREAD) {\n addRunDependency(\"wasm-instantiate\");\n }\n function receiveInstantiationResult(result) {\n receiveInstance(result[\"instance\"], result[\"module\"]);\n }\n function instantiateArrayBuffer(receiver) {\n return getBinaryPromise().then(function(binary) {\n return WebAssembly.instantiate(binary, info);\n }).then(function(instance) {\n return instance;\n }).then(receiver, function(reason) {\n err(\"failed to asynchronously prepare wasm: \" + reason);\n abort(reason);\n });\n }\n function instantiateAsync() {\n if (!wasmBinary && typeof WebAssembly.instantiateStreaming === \"function\" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === \"function\") {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n var result = WebAssembly.instantiateStreaming(response, info);\n return result.then(receiveInstantiationResult, function(reason) {\n err(\"wasm streaming compile failed: \" + reason);\n err(\"falling back to ArrayBuffer instantiation\");\n return instantiateArrayBuffer(receiveInstantiationResult);\n });\n });\n } else {\n return instantiateArrayBuffer(receiveInstantiationResult);\n }\n }\n if (Module[\"instantiateWasm\"]) {\n try {\n var exports2 = Module[\"instantiateWasm\"](info, receiveInstance);\n return exports2;\n } catch (e2) {\n err(\"Module.instantiateWasm callback failed with error: \" + e2);\n return false;\n }\n }\n instantiateAsync().catch(readyPromiseReject);\n return {};\n }\n var tempDouble;\n var tempI64;\n var ASM_CONSTS = {};\n function callRuntimeCallbacks(callbacks2) {\n while (callbacks2.length > 0) {\n var callback = callbacks2.shift();\n if (typeof callback == \"function\") {\n callback(Module);\n continue;\n }\n var func2 = callback.func;\n if (typeof func2 === \"number\") {\n if (callback.arg === void 0) {\n getWasmTableEntry(func2)();\n } else {\n getWasmTableEntry(func2)(callback.arg);\n }\n } else {\n func2(callback.arg === void 0 ? null : callback.arg);\n }\n }\n }\n function withStackSave(f) {\n var stack2 = stackSave();\n var ret = f();\n stackRestore(stack2);\n return ret;\n }\n function demangle(func2) {\n return func2;\n }\n function demangleAll(text) {\n var regex = /\\b_Z[\\w\\d_]+/g;\n return text.replace(regex, function(x) {\n var y = demangle(x);\n return x === y ? x : y + \" [\" + x + \"]\";\n });\n }\n function killThread(pthread_ptr) {\n GROWABLE_HEAP_I32()[pthread_ptr >> 2] = 0;\n var pthread = PThread.pthreads[pthread_ptr];\n delete PThread.pthreads[pthread_ptr];\n pthread.worker.terminate();\n __emscripten_thread_free_data(pthread_ptr);\n PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker), 1);\n pthread.worker.pthread = void 0;\n }\n function cancelThread(pthread_ptr) {\n var pthread = PThread.pthreads[pthread_ptr];\n pthread.worker.postMessage({ \"cmd\": \"cancel\" });\n }\n function cleanupThread(pthread_ptr) {\n var pthread = PThread.pthreads[pthread_ptr];\n if (pthread) {\n GROWABLE_HEAP_I32()[pthread_ptr >> 2] = 0;\n var worker = pthread.worker;\n PThread.returnWorkerToPool(worker);\n }\n }\n function _exit(status) {\n exit(status);\n }\n function handleException(e2) {\n if (e2 instanceof ExitStatus || e2 == \"unwind\") {\n return EXITSTATUS;\n }\n quit_(1, e2);\n }\n var PThread = { unusedWorkers: [], runningWorkers: [], tlsInitFunctions: [], init: function() {\n if (ENVIRONMENT_IS_PTHREAD) {\n PThread.initWorker();\n } else {\n PThread.initMainThread();\n }\n }, initMainThread: function() {\n var pthreadPoolSize = 8;\n for (var i2 = 0; i2 < pthreadPoolSize; ++i2) {\n PThread.allocateUnusedWorker();\n }\n }, initWorker: function() {\n noExitRuntime = false;\n }, pthreads: {}, setExitStatus: function(status) {\n EXITSTATUS = status;\n }, terminateAllThreads: function() {\n for (var t2 in PThread.pthreads) {\n var pthread = PThread.pthreads[t2];\n if (pthread && pthread.worker) {\n PThread.returnWorkerToPool(pthread.worker);\n }\n }\n for (var i2 = 0; i2 < PThread.unusedWorkers.length; ++i2) {\n var worker = PThread.unusedWorkers[i2];\n worker.terminate();\n }\n PThread.unusedWorkers = [];\n }, returnWorkerToPool: function(worker) {\n PThread.runWithoutMainThreadQueuedCalls(function() {\n delete PThread.pthreads[worker.pthread.threadInfoStruct];\n PThread.unusedWorkers.push(worker);\n PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker), 1);\n __emscripten_thread_free_data(worker.pthread.threadInfoStruct);\n worker.pthread = void 0;\n });\n }, runWithoutMainThreadQueuedCalls: function(func2) {\n GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 0;\n try {\n func2();\n } finally {\n GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 1;\n }\n }, receiveObjectTransfer: function(data) {\n }, threadInit: function() {\n for (var i2 in PThread.tlsInitFunctions) {\n PThread.tlsInitFunctions[i2]();\n }\n }, loadWasmModuleToWorker: function(worker, onFinishedLoading) {\n worker.onmessage = (e2) => {\n var d = e2[\"data\"];\n var cmd = d[\"cmd\"];\n if (worker.pthread)\n PThread.currentProxiedOperationCallerThread = worker.pthread.threadInfoStruct;\n if (d[\"targetThread\"] && d[\"targetThread\"] != _pthread_self()) {\n var thread = PThread.pthreads[d.targetThread];\n if (thread) {\n thread.worker.postMessage(d, d[\"transferList\"]);\n } else {\n err('Internal error! Worker sent a message \"' + cmd + '\" to target pthread ' + d[\"targetThread\"] + \", but that thread no longer exists!\");\n }\n PThread.currentProxiedOperationCallerThread = void 0;\n return;\n }\n if (cmd === \"processQueuedMainThreadWork\") {\n _emscripten_main_thread_process_queued_calls();\n } else if (cmd === \"spawnThread\") {\n spawnThread(d);\n } else if (cmd === \"cleanupThread\") {\n cleanupThread(d[\"thread\"]);\n } else if (cmd === \"killThread\") {\n killThread(d[\"thread\"]);\n } else if (cmd === \"cancelThread\") {\n cancelThread(d[\"thread\"]);\n } else if (cmd === \"loaded\") {\n worker.loaded = true;\n if (onFinishedLoading)\n onFinishedLoading(worker);\n if (worker.runPthread) {\n worker.runPthread();\n delete worker.runPthread;\n }\n } else if (cmd === \"print\") {\n out(\"Thread \" + d[\"threadId\"] + \": \" + d[\"text\"]);\n } else if (cmd === \"printErr\") {\n err(\"Thread \" + d[\"threadId\"] + \": \" + d[\"text\"]);\n } else if (cmd === \"alert\") {\n alert(\"Thread \" + d[\"threadId\"] + \": \" + d[\"text\"]);\n } else if (d.target === \"setimmediate\") {\n worker.postMessage(d);\n } else if (cmd === \"onAbort\") {\n if (Module[\"onAbort\"]) {\n Module[\"onAbort\"](d[\"arg\"]);\n }\n } else {\n err(\"worker sent an unknown command \" + cmd);\n }\n PThread.currentProxiedOperationCallerThread = void 0;\n };\n worker.onerror = (e2) => {\n var message = \"worker sent an error!\";\n err(message + \" \" + e2.filename + \":\" + e2.lineno + \": \" + e2.message);\n throw e2;\n };\n if (ENVIRONMENT_IS_NODE) {\n worker.on(\"message\", function(data) {\n worker.onmessage({ data });\n });\n worker.on(\"error\", function(e2) {\n worker.onerror(e2);\n });\n worker.on(\"detachedExit\", function() {\n });\n }\n worker.postMessage({ \"cmd\": \"load\", \"urlOrBlob\": Module[\"mainScriptUrlOrBlob\"] || _scriptDir, \"wasmMemory\": wasmMemory, \"wasmModule\": wasmModule });\n }, allocateUnusedWorker: function() {\n var pthreadMainJs = locateFile(\"tfjs-backend-wasm-threaded-simd.worker.js\");\n PThread.unusedWorkers.push(new Worker(pthreadMainJs));\n }, getNewWorker: function() {\n if (PThread.unusedWorkers.length == 0) {\n PThread.allocateUnusedWorker();\n PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0]);\n }\n return PThread.unusedWorkers.pop();\n } };\n function establishStackSpace() {\n var pthread_ptr = _pthread_self();\n var stackTop = GROWABLE_HEAP_I32()[pthread_ptr + 44 >> 2];\n var stackSize = GROWABLE_HEAP_I32()[pthread_ptr + 48 >> 2];\n var stackMax = stackTop - stackSize;\n _emscripten_stack_set_limits(stackTop, stackMax);\n stackRestore(stackTop);\n }\n Module[\"establishStackSpace\"] = establishStackSpace;\n function exitOnMainThread(returnCode) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(1, 0, returnCode);\n try {\n _exit(returnCode);\n } catch (e2) {\n handleException(e2);\n }\n }\n var wasmTableMirror = [];\n function getWasmTableEntry(funcPtr) {\n var func2 = wasmTableMirror[funcPtr];\n if (!func2) {\n if (funcPtr >= wasmTableMirror.length)\n wasmTableMirror.length = funcPtr + 1;\n wasmTableMirror[funcPtr] = func2 = wasmTable.get(funcPtr);\n }\n return func2;\n }\n function invokeEntryPoint(ptr, arg) {\n return getWasmTableEntry(ptr)(arg);\n }\n Module[\"invokeEntryPoint\"] = invokeEntryPoint;\n function jsStackTrace() {\n var error = new Error();\n if (!error.stack) {\n try {\n throw new Error();\n } catch (e2) {\n error = e2;\n }\n if (!error.stack) {\n return \"(no stack trace available)\";\n }\n }\n return error.stack.toString();\n }\n function registerTlsInit(tlsInitFunc, moduleExports, metadata) {\n PThread.tlsInitFunctions.push(tlsInitFunc);\n }\n function setWasmTableEntry(idx, func2) {\n wasmTable.set(idx, func2);\n wasmTableMirror[idx] = func2;\n }\n var _emscripten_get_now;\n if (ENVIRONMENT_IS_NODE) {\n _emscripten_get_now = () => {\n var t2 = process[\"hrtime\"]();\n return t2[0] * 1e3 + t2[1] / 1e6;\n };\n } else if (ENVIRONMENT_IS_PTHREAD) {\n _emscripten_get_now = () => performance.now() - Module[\"__performance_now_clock_drift\"];\n } else\n _emscripten_get_now = () => performance.now();\n var _emscripten_get_now_is_monotonic = true;\n function setErrNo(value) {\n GROWABLE_HEAP_I32()[___errno_location() >> 2] = value;\n return value;\n }\n function _clock_gettime(clk_id, tp) {\n var now2;\n if (clk_id === 0) {\n now2 = Date.now();\n } else if ((clk_id === 1 || clk_id === 4) && _emscripten_get_now_is_monotonic) {\n now2 = _emscripten_get_now();\n } else {\n setErrNo(28);\n return -1;\n }\n GROWABLE_HEAP_I32()[tp >> 2] = now2 / 1e3 | 0;\n GROWABLE_HEAP_I32()[tp + 4 >> 2] = now2 % 1e3 * 1e3 * 1e3 | 0;\n return 0;\n }\n function ___clock_gettime(a0, a12) {\n return _clock_gettime(a0, a12);\n }\n function ___emscripten_init_main_thread_js(tb) {\n __emscripten_thread_init(tb, !ENVIRONMENT_IS_WORKER, 1, !ENVIRONMENT_IS_WEB);\n PThread.threadInit();\n }\n function ___emscripten_thread_cleanup(thread) {\n if (!ENVIRONMENT_IS_PTHREAD)\n cleanupThread(thread);\n else\n postMessage({ \"cmd\": \"cleanupThread\", \"thread\": thread });\n }\n function spawnThread(threadParams) {\n var worker = PThread.getNewWorker();\n if (!worker) {\n return 6;\n }\n PThread.runningWorkers.push(worker);\n var pthread = PThread.pthreads[threadParams.pthread_ptr] = { worker, threadInfoStruct: threadParams.pthread_ptr };\n worker.pthread = pthread;\n var msg = { \"cmd\": \"run\", \"start_routine\": threadParams.startRoutine, \"arg\": threadParams.arg, \"threadInfoStruct\": threadParams.pthread_ptr };\n worker.runPthread = () => {\n msg.time = performance.now();\n worker.postMessage(msg, threadParams.transferList);\n };\n if (worker.loaded) {\n worker.runPthread();\n delete worker.runPthread;\n }\n return 0;\n }\n function ___pthread_create_js(pthread_ptr, attr, start_routine, arg) {\n if (typeof SharedArrayBuffer === \"undefined\") {\n err(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\");\n return 6;\n }\n var transferList = [];\n var error = 0;\n if (ENVIRONMENT_IS_PTHREAD && (transferList.length === 0 || error)) {\n return _emscripten_sync_run_in_main_thread_4(687865856, pthread_ptr, attr, start_routine, arg);\n }\n if (error)\n return error;\n var threadParams = { startRoutine: start_routine, pthread_ptr, arg, transferList };\n if (ENVIRONMENT_IS_PTHREAD) {\n threadParams.cmd = \"spawnThread\";\n postMessage(threadParams, transferList);\n return 0;\n }\n return spawnThread(threadParams);\n }\n function __emscripten_default_pthread_stack_size() {\n return 2097152;\n }\n function __emscripten_notify_thread_queue(targetThreadId, mainThreadId) {\n if (targetThreadId == mainThreadId) {\n postMessage({ \"cmd\": \"processQueuedMainThreadWork\" });\n } else if (ENVIRONMENT_IS_PTHREAD) {\n postMessage({ \"targetThread\": targetThreadId, \"cmd\": \"processThreadQueue\" });\n } else {\n var pthread = PThread.pthreads[targetThreadId];\n var worker = pthread && pthread.worker;\n if (!worker) {\n return;\n }\n worker.postMessage({ \"cmd\": \"processThreadQueue\" });\n }\n return 1;\n }\n function _abort() {\n abort(\"\");\n }\n function _emscripten_check_blocking_allowed() {\n if (ENVIRONMENT_IS_NODE)\n return;\n if (ENVIRONMENT_IS_WORKER)\n return;\n warnOnce(\"Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread\");\n }\n function _emscripten_get_heap_max() {\n return 2147483648;\n }\n function _emscripten_memcpy_big(dest, src, num) {\n GROWABLE_HEAP_U8().copyWithin(dest, src, src + num);\n }\n function _emscripten_num_logical_cores() {\n if (ENVIRONMENT_IS_NODE)\n return require_os().cpus().length;\n return navigator[\"hardwareConcurrency\"];\n }\n function _emscripten_proxy_to_main_thread_js(index, sync) {\n var numCallArgs = arguments.length - 2;\n var outerArgs = arguments;\n return withStackSave(function() {\n var serializedNumCallArgs = numCallArgs;\n var args = stackAlloc(serializedNumCallArgs * 8);\n var b = args >> 3;\n for (var i2 = 0; i2 < numCallArgs; i2++) {\n var arg = outerArgs[2 + i2];\n GROWABLE_HEAP_F64()[b + i2] = arg;\n }\n return _emscripten_run_in_main_runtime_thread_js(index, serializedNumCallArgs, args, sync);\n });\n }\n var _emscripten_receive_on_main_thread_js_callArgs = [];\n function _emscripten_receive_on_main_thread_js(index, numCallArgs, args) {\n _emscripten_receive_on_main_thread_js_callArgs.length = numCallArgs;\n var b = args >> 3;\n for (var i2 = 0; i2 < numCallArgs; i2++) {\n _emscripten_receive_on_main_thread_js_callArgs[i2] = GROWABLE_HEAP_F64()[b + i2];\n }\n var isEmAsmConst = index < 0;\n var func2 = !isEmAsmConst ? proxiedFunctionTable[index] : ASM_CONSTS[-index - 1];\n return func2.apply(null, _emscripten_receive_on_main_thread_js_callArgs);\n }\n function emscripten_realloc_buffer(size) {\n try {\n wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16);\n updateGlobalBufferAndViews(wasmMemory.buffer);\n return 1;\n } catch (e2) {\n }\n }\n function _emscripten_resize_heap(requestedSize) {\n var oldSize = GROWABLE_HEAP_U8().length;\n requestedSize = requestedSize >>> 0;\n if (requestedSize <= oldSize) {\n return false;\n }\n var maxHeapSize = _emscripten_get_heap_max();\n if (requestedSize > maxHeapSize) {\n return false;\n }\n for (var cutDown = 1; cutDown <= 4; cutDown *= 2) {\n var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown);\n overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296);\n var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536));\n var replacement = emscripten_realloc_buffer(newSize);\n if (replacement) {\n return true;\n }\n }\n return false;\n }\n var JSEvents = { inEventHandler: 0, removeAllEventListeners: function() {\n for (var i2 = JSEvents.eventHandlers.length - 1; i2 >= 0; --i2) {\n JSEvents._removeHandler(i2);\n }\n JSEvents.eventHandlers = [];\n JSEvents.deferredCalls = [];\n }, registerRemoveEventListeners: function() {\n if (!JSEvents.removeEventListenersRegistered) {\n __ATEXIT__.push(JSEvents.removeAllEventListeners);\n JSEvents.removeEventListenersRegistered = true;\n }\n }, deferredCalls: [], deferCall: function(targetFunction, precedence, argsList) {\n function arraysHaveEqualContent(arrA, arrB) {\n if (arrA.length != arrB.length)\n return false;\n for (var i3 in arrA) {\n if (arrA[i3] != arrB[i3])\n return false;\n }\n return true;\n }\n for (var i2 in JSEvents.deferredCalls) {\n var call = JSEvents.deferredCalls[i2];\n if (call.targetFunction == targetFunction && arraysHaveEqualContent(call.argsList, argsList)) {\n return;\n }\n }\n JSEvents.deferredCalls.push({ targetFunction, precedence, argsList });\n JSEvents.deferredCalls.sort(function(x, y) {\n return x.precedence < y.precedence;\n });\n }, removeDeferredCalls: function(targetFunction) {\n for (var i2 = 0; i2 < JSEvents.deferredCalls.length; ++i2) {\n if (JSEvents.deferredCalls[i2].targetFunction == targetFunction) {\n JSEvents.deferredCalls.splice(i2, 1);\n --i2;\n }\n }\n }, canPerformEventHandlerRequests: function() {\n return JSEvents.inEventHandler && JSEvents.currentEventHandler.allowsDeferredCalls;\n }, runDeferredCalls: function() {\n if (!JSEvents.canPerformEventHandlerRequests()) {\n return;\n }\n for (var i2 = 0; i2 < JSEvents.deferredCalls.length; ++i2) {\n var call = JSEvents.deferredCalls[i2];\n JSEvents.deferredCalls.splice(i2, 1);\n --i2;\n call.targetFunction.apply(null, call.argsList);\n }\n }, eventHandlers: [], removeAllHandlersOnTarget: function(target, eventTypeString) {\n for (var i2 = 0; i2 < JSEvents.eventHandlers.length; ++i2) {\n if (JSEvents.eventHandlers[i2].target == target && (!eventTypeString || eventTypeString == JSEvents.eventHandlers[i2].eventTypeString)) {\n JSEvents._removeHandler(i2--);\n }\n }\n }, _removeHandler: function(i2) {\n var h = JSEvents.eventHandlers[i2];\n h.target.removeEventListener(h.eventTypeString, h.eventListenerFunc, h.useCapture);\n JSEvents.eventHandlers.splice(i2, 1);\n }, registerOrRemoveHandler: function(eventHandler) {\n var jsEventHandler = function jsEventHandler2(event) {\n ++JSEvents.inEventHandler;\n JSEvents.currentEventHandler = eventHandler;\n JSEvents.runDeferredCalls();\n eventHandler.handlerFunc(event);\n JSEvents.runDeferredCalls();\n --JSEvents.inEventHandler;\n };\n if (eventHandler.callbackfunc) {\n eventHandler.eventListenerFunc = jsEventHandler;\n eventHandler.target.addEventListener(eventHandler.eventTypeString, jsEventHandler, eventHandler.useCapture);\n JSEvents.eventHandlers.push(eventHandler);\n JSEvents.registerRemoveEventListeners();\n } else {\n for (var i2 = 0; i2 < JSEvents.eventHandlers.length; ++i2) {\n if (JSEvents.eventHandlers[i2].target == eventHandler.target && JSEvents.eventHandlers[i2].eventTypeString == eventHandler.eventTypeString) {\n JSEvents._removeHandler(i2--);\n }\n }\n }\n }, queueEventHandlerOnThread_iiii: function(targetThread, eventHandlerFunc, eventTypeId, eventData, userData) {\n withStackSave(function() {\n var varargs = stackAlloc(12);\n GROWABLE_HEAP_I32()[varargs >> 2] = eventTypeId;\n GROWABLE_HEAP_I32()[varargs + 4 >> 2] = eventData;\n GROWABLE_HEAP_I32()[varargs + 8 >> 2] = userData;\n _emscripten_dispatch_to_thread_(targetThread, 637534208, eventHandlerFunc, eventData, varargs);\n });\n }, getTargetThreadForEventCallback: function(targetThread) {\n switch (targetThread) {\n case 1:\n return 0;\n case 2:\n return PThread.currentProxiedOperationCallerThread;\n default:\n return targetThread;\n }\n }, getNodeNameForTarget: function(target) {\n if (!target)\n return \"\";\n if (target == window)\n return \"#window\";\n if (target == screen)\n return \"#screen\";\n return target && target.nodeName ? target.nodeName : \"\";\n }, fullscreenEnabled: function() {\n return document.fullscreenEnabled || document.webkitFullscreenEnabled;\n } };\n function stringToNewUTF8(jsString) {\n var length = lengthBytesUTF8(jsString) + 1;\n var cString = _malloc(length);\n stringToUTF8(jsString, cString, length);\n return cString;\n }\n function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height) {\n withStackSave(function() {\n var varargs = stackAlloc(12);\n var targetCanvasPtr = 0;\n if (targetCanvas) {\n targetCanvasPtr = stringToNewUTF8(targetCanvas);\n }\n GROWABLE_HEAP_I32()[varargs >> 2] = targetCanvasPtr;\n GROWABLE_HEAP_I32()[varargs + 4 >> 2] = width;\n GROWABLE_HEAP_I32()[varargs + 8 >> 2] = height;\n _emscripten_dispatch_to_thread_(targetThread, 657457152, 0, targetCanvasPtr, varargs);\n });\n }\n function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, targetCanvas, width, height) {\n targetCanvas = targetCanvas ? UTF8ToString(targetCanvas) : \"\";\n _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height);\n }\n function maybeCStringToJsString(cString) {\n return cString > 2 ? UTF8ToString(cString) : cString;\n }\n var specialHTMLTargets = [0, typeof document !== \"undefined\" ? document : 0, typeof window !== \"undefined\" ? window : 0];\n function findEventTarget(target) {\n target = maybeCStringToJsString(target);\n var domElement = specialHTMLTargets[target] || (typeof document !== \"undefined\" ? document.querySelector(target) : void 0);\n return domElement;\n }\n function findCanvasEventTarget(target) {\n return findEventTarget(target);\n }\n function _emscripten_set_canvas_element_size_calling_thread(target, width, height) {\n var canvas = findCanvasEventTarget(target);\n if (!canvas)\n return -4;\n if (canvas.canvasSharedPtr) {\n GROWABLE_HEAP_I32()[canvas.canvasSharedPtr >> 2] = width;\n GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 4 >> 2] = height;\n }\n if (canvas.offscreenCanvas || !canvas.controlTransferredOffscreen) {\n if (canvas.offscreenCanvas)\n canvas = canvas.offscreenCanvas;\n var autoResizeViewport = false;\n if (canvas.GLctxObject && canvas.GLctxObject.GLctx) {\n var prevViewport = canvas.GLctxObject.GLctx.getParameter(2978);\n autoResizeViewport = prevViewport[0] === 0 && prevViewport[1] === 0 && prevViewport[2] === canvas.width && prevViewport[3] === canvas.height;\n }\n canvas.width = width;\n canvas.height = height;\n if (autoResizeViewport) {\n canvas.GLctxObject.GLctx.viewport(0, 0, width, height);\n }\n } else if (canvas.canvasSharedPtr) {\n var targetThread = GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 8 >> 2];\n _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, target, width, height);\n return 1;\n } else {\n return -4;\n }\n return 0;\n }\n function _emscripten_set_canvas_element_size_main_thread(target, width, height) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(2, 1, target, width, height);\n return _emscripten_set_canvas_element_size_calling_thread(target, width, height);\n }\n function _emscripten_set_canvas_element_size(target, width, height) {\n var canvas = findCanvasEventTarget(target);\n if (canvas) {\n return _emscripten_set_canvas_element_size_calling_thread(target, width, height);\n } else {\n return _emscripten_set_canvas_element_size_main_thread(target, width, height);\n }\n }\n function _emscripten_unwind_to_js_event_loop() {\n throw \"unwind\";\n }\n function __webgl_enable_ANGLE_instanced_arrays(ctx) {\n var ext = ctx.getExtension(\"ANGLE_instanced_arrays\");\n if (ext) {\n ctx[\"vertexAttribDivisor\"] = function(index, divisor) {\n ext[\"vertexAttribDivisorANGLE\"](index, divisor);\n };\n ctx[\"drawArraysInstanced\"] = function(mode, first, count2, primcount) {\n ext[\"drawArraysInstancedANGLE\"](mode, first, count2, primcount);\n };\n ctx[\"drawElementsInstanced\"] = function(mode, count2, type, indices, primcount) {\n ext[\"drawElementsInstancedANGLE\"](mode, count2, type, indices, primcount);\n };\n return 1;\n }\n }\n function __webgl_enable_OES_vertex_array_object(ctx) {\n var ext = ctx.getExtension(\"OES_vertex_array_object\");\n if (ext) {\n ctx[\"createVertexArray\"] = function() {\n return ext[\"createVertexArrayOES\"]();\n };\n ctx[\"deleteVertexArray\"] = function(vao) {\n ext[\"deleteVertexArrayOES\"](vao);\n };\n ctx[\"bindVertexArray\"] = function(vao) {\n ext[\"bindVertexArrayOES\"](vao);\n };\n ctx[\"isVertexArray\"] = function(vao) {\n return ext[\"isVertexArrayOES\"](vao);\n };\n return 1;\n }\n }\n function __webgl_enable_WEBGL_draw_buffers(ctx) {\n var ext = ctx.getExtension(\"WEBGL_draw_buffers\");\n if (ext) {\n ctx[\"drawBuffers\"] = function(n2, bufs) {\n ext[\"drawBuffersWEBGL\"](n2, bufs);\n };\n return 1;\n }\n }\n function __webgl_enable_WEBGL_multi_draw(ctx) {\n return !!(ctx.multiDrawWebgl = ctx.getExtension(\"WEBGL_multi_draw\"));\n }\n var GL = { counter: 1, buffers: [], programs: [], framebuffers: [], renderbuffers: [], textures: [], shaders: [], vaos: [], contexts: {}, offscreenCanvases: {}, queries: [], stringCache: {}, unpackAlignment: 4, recordError: function recordError(errorCode) {\n if (!GL.lastError) {\n GL.lastError = errorCode;\n }\n }, getNewId: function(table) {\n var ret = GL.counter++;\n for (var i2 = table.length; i2 < ret; i2++) {\n table[i2] = null;\n }\n return ret;\n }, getSource: function(shader, count2, string2, length) {\n var source = \"\";\n for (var i2 = 0; i2 < count2; ++i2) {\n var len = length ? GROWABLE_HEAP_I32()[length + i2 * 4 >> 2] : -1;\n source += UTF8ToString(GROWABLE_HEAP_I32()[string2 + i2 * 4 >> 2], len < 0 ? void 0 : len);\n }\n return source;\n }, createContext: function(canvas, webGLContextAttributes) {\n if (!canvas.getContextSafariWebGL2Fixed) {\n canvas.getContextSafariWebGL2Fixed = canvas.getContext;\n canvas.getContext = function(ver, attrs) {\n var gl = canvas.getContextSafariWebGL2Fixed(ver, attrs);\n return ver == \"webgl\" == gl instanceof WebGLRenderingContext ? gl : null;\n };\n }\n var ctx = canvas.getContext(\"webgl\", webGLContextAttributes);\n if (!ctx)\n return 0;\n var handle = GL.registerContext(ctx, webGLContextAttributes);\n return handle;\n }, registerContext: function(ctx, webGLContextAttributes) {\n var handle = _malloc(8);\n GROWABLE_HEAP_I32()[handle + 4 >> 2] = _pthread_self();\n var context = { handle, attributes: webGLContextAttributes, version: webGLContextAttributes.majorVersion, GLctx: ctx };\n if (ctx.canvas)\n ctx.canvas.GLctxObject = context;\n GL.contexts[handle] = context;\n if (typeof webGLContextAttributes.enableExtensionsByDefault === \"undefined\" || webGLContextAttributes.enableExtensionsByDefault) {\n GL.initExtensions(context);\n }\n return handle;\n }, makeContextCurrent: function(contextHandle) {\n GL.currentContext = GL.contexts[contextHandle];\n Module.ctx = GLctx = GL.currentContext && GL.currentContext.GLctx;\n return !(contextHandle && !GLctx);\n }, getContext: function(contextHandle) {\n return GL.contexts[contextHandle];\n }, deleteContext: function(contextHandle) {\n if (GL.currentContext === GL.contexts[contextHandle])\n GL.currentContext = null;\n if (typeof JSEvents === \"object\")\n JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);\n if (GL.contexts[contextHandle] && GL.contexts[contextHandle].GLctx.canvas)\n GL.contexts[contextHandle].GLctx.canvas.GLctxObject = void 0;\n _free(GL.contexts[contextHandle].handle);\n GL.contexts[contextHandle] = null;\n }, initExtensions: function(context) {\n if (!context)\n context = GL.currentContext;\n if (context.initExtensionsDone)\n return;\n context.initExtensionsDone = true;\n var GLctx2 = context.GLctx;\n __webgl_enable_ANGLE_instanced_arrays(GLctx2);\n __webgl_enable_OES_vertex_array_object(GLctx2);\n __webgl_enable_WEBGL_draw_buffers(GLctx2);\n {\n GLctx2.disjointTimerQueryExt = GLctx2.getExtension(\"EXT_disjoint_timer_query\");\n }\n __webgl_enable_WEBGL_multi_draw(GLctx2);\n var exts = GLctx2.getSupportedExtensions() || [];\n exts.forEach(function(ext) {\n if (!ext.includes(\"lose_context\") && !ext.includes(\"debug\")) {\n GLctx2.getExtension(ext);\n }\n });\n } };\n var __emscripten_webgl_power_preferences = [\"default\", \"low-power\", \"high-performance\"];\n function _emscripten_webgl_do_create_context(target, attributes) {\n var a = attributes >> 2;\n var powerPreference = GROWABLE_HEAP_I32()[a + (24 >> 2)];\n var contextAttributes = { \"alpha\": !!GROWABLE_HEAP_I32()[a + (0 >> 2)], \"depth\": !!GROWABLE_HEAP_I32()[a + (4 >> 2)], \"stencil\": !!GROWABLE_HEAP_I32()[a + (8 >> 2)], \"antialias\": !!GROWABLE_HEAP_I32()[a + (12 >> 2)], \"premultipliedAlpha\": !!GROWABLE_HEAP_I32()[a + (16 >> 2)], \"preserveDrawingBuffer\": !!GROWABLE_HEAP_I32()[a + (20 >> 2)], \"powerPreference\": __emscripten_webgl_power_preferences[powerPreference], \"failIfMajorPerformanceCaveat\": !!GROWABLE_HEAP_I32()[a + (28 >> 2)], majorVersion: GROWABLE_HEAP_I32()[a + (32 >> 2)], minorVersion: GROWABLE_HEAP_I32()[a + (36 >> 2)], enableExtensionsByDefault: GROWABLE_HEAP_I32()[a + (40 >> 2)], explicitSwapControl: GROWABLE_HEAP_I32()[a + (44 >> 2)], proxyContextToMainThread: GROWABLE_HEAP_I32()[a + (48 >> 2)], renderViaOffscreenBackBuffer: GROWABLE_HEAP_I32()[a + (52 >> 2)] };\n var canvas = findCanvasEventTarget(target);\n if (!canvas) {\n return 0;\n }\n if (contextAttributes.explicitSwapControl) {\n return 0;\n }\n var contextHandle = GL.createContext(canvas, contextAttributes);\n return contextHandle;\n }\n function _emscripten_webgl_create_context(a0, a12) {\n return _emscripten_webgl_do_create_context(a0, a12);\n }\n var SYSCALLS = { mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) {\n var buffer3 = SYSCALLS.buffers[stream];\n if (curr === 0 || curr === 10) {\n (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0));\n buffer3.length = 0;\n } else {\n buffer3.push(curr);\n }\n }, varargs: void 0, get: function() {\n SYSCALLS.varargs += 4;\n var ret = GROWABLE_HEAP_I32()[SYSCALLS.varargs - 4 >> 2];\n return ret;\n }, getStr: function(ptr) {\n var ret = UTF8ToString(ptr);\n return ret;\n }, get64: function(low, high) {\n return low;\n } };\n function _fd_close(fd) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(3, 1, fd);\n return 0;\n }\n function _fd_seek(fd, offset_low, offset_high, whence, newOffset) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(4, 1, fd, offset_low, offset_high, whence, newOffset);\n }\n function _fd_write(fd, iov, iovcnt, pnum) {\n if (ENVIRONMENT_IS_PTHREAD)\n return _emscripten_proxy_to_main_thread_js(5, 1, fd, iov, iovcnt, pnum);\n var num = 0;\n for (var i2 = 0; i2 < iovcnt; i2++) {\n var ptr = GROWABLE_HEAP_I32()[iov >> 2];\n var len = GROWABLE_HEAP_I32()[iov + 4 >> 2];\n iov += 8;\n for (var j = 0; j < len; j++) {\n SYSCALLS.printChar(fd, GROWABLE_HEAP_U8()[ptr + j]);\n }\n num += len;\n }\n GROWABLE_HEAP_I32()[pnum >> 2] = num;\n return 0;\n }\n function _setTempRet0(val) {\n setTempRet0(val);\n }\n PThread.init();\n var GLctx;\n var proxiedFunctionTable = [null, exitOnMainThread, _emscripten_set_canvas_element_size_main_thread, _fd_close, _fd_seek, _fd_write];\n var ASSERTIONS = false;\n var asmLibraryArg = { \"__clock_gettime\": ___clock_gettime, \"__emscripten_init_main_thread_js\": ___emscripten_init_main_thread_js, \"__emscripten_thread_cleanup\": ___emscripten_thread_cleanup, \"__pthread_create_js\": ___pthread_create_js, \"_emscripten_default_pthread_stack_size\": __emscripten_default_pthread_stack_size, \"_emscripten_notify_thread_queue\": __emscripten_notify_thread_queue, \"abort\": _abort, \"emscripten_check_blocking_allowed\": _emscripten_check_blocking_allowed, \"emscripten_get_heap_max\": _emscripten_get_heap_max, \"emscripten_get_now\": _emscripten_get_now, \"emscripten_memcpy_big\": _emscripten_memcpy_big, \"emscripten_num_logical_cores\": _emscripten_num_logical_cores, \"emscripten_receive_on_main_thread_js\": _emscripten_receive_on_main_thread_js, \"emscripten_resize_heap\": _emscripten_resize_heap, \"emscripten_set_canvas_element_size\": _emscripten_set_canvas_element_size, \"emscripten_unwind_to_js_event_loop\": _emscripten_unwind_to_js_event_loop, \"emscripten_webgl_create_context\": _emscripten_webgl_create_context, \"exit\": _exit, \"fd_close\": _fd_close, \"fd_seek\": _fd_seek, \"fd_write\": _fd_write, \"memory\": wasmMemory || Module[\"wasmMemory\"], \"setTempRet0\": _setTempRet0 };\n var asm = createWasm();\n var ___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = function() {\n return (___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = Module[\"asm\"][\"__wasm_call_ctors\"]).apply(null, arguments);\n };\n var _init = Module[\"_init\"] = function() {\n return (_init = Module[\"_init\"] = Module[\"asm\"][\"init\"]).apply(null, arguments);\n };\n var _init_with_threads_count = Module[\"_init_with_threads_count\"] = function() {\n return (_init_with_threads_count = Module[\"_init_with_threads_count\"] = Module[\"asm\"][\"init_with_threads_count\"]).apply(null, arguments);\n };\n var _get_threads_count = Module[\"_get_threads_count\"] = function() {\n return (_get_threads_count = Module[\"_get_threads_count\"] = Module[\"asm\"][\"get_threads_count\"]).apply(null, arguments);\n };\n var _register_tensor = Module[\"_register_tensor\"] = function() {\n return (_register_tensor = Module[\"_register_tensor\"] = Module[\"asm\"][\"register_tensor\"]).apply(null, arguments);\n };\n var _dispose_data = Module[\"_dispose_data\"] = function() {\n return (_dispose_data = Module[\"_dispose_data\"] = Module[\"asm\"][\"dispose_data\"]).apply(null, arguments);\n };\n var _dispose = Module[\"_dispose\"] = function() {\n return (_dispose = Module[\"_dispose\"] = Module[\"asm\"][\"dispose\"]).apply(null, arguments);\n };\n var _Abs = Module[\"_Abs\"] = function() {\n return (_Abs = Module[\"_Abs\"] = Module[\"asm\"][\"Abs\"]).apply(null, arguments);\n };\n var _Add = Module[\"_Add\"] = function() {\n return (_Add = Module[\"_Add\"] = Module[\"asm\"][\"Add\"]).apply(null, arguments);\n };\n var _AddN = Module[\"_AddN\"] = function() {\n return (_AddN = Module[\"_AddN\"] = Module[\"asm\"][\"AddN\"]).apply(null, arguments);\n };\n var _All = Module[\"_All\"] = function() {\n return (_All = Module[\"_All\"] = Module[\"asm\"][\"All\"]).apply(null, arguments);\n };\n var _Any = Module[\"_Any\"] = function() {\n return (_Any = Module[\"_Any\"] = Module[\"asm\"][\"Any\"]).apply(null, arguments);\n };\n var _ArgMax = Module[\"_ArgMax\"] = function() {\n return (_ArgMax = Module[\"_ArgMax\"] = Module[\"asm\"][\"ArgMax\"]).apply(null, arguments);\n };\n var _AvgPool = Module[\"_AvgPool\"] = function() {\n return (_AvgPool = Module[\"_AvgPool\"] = Module[\"asm\"][\"AvgPool\"]).apply(null, arguments);\n };\n var _BatchMatMul = Module[\"_BatchMatMul\"] = function() {\n return (_BatchMatMul = Module[\"_BatchMatMul\"] = Module[\"asm\"][\"BatchMatMul\"]).apply(null, arguments);\n };\n var _Ceil = Module[\"_Ceil\"] = function() {\n return (_Ceil = Module[\"_Ceil\"] = Module[\"asm\"][\"Ceil\"]).apply(null, arguments);\n };\n var _ClipByValue = Module[\"_ClipByValue\"] = function() {\n return (_ClipByValue = Module[\"_ClipByValue\"] = Module[\"asm\"][\"ClipByValue\"]).apply(null, arguments);\n };\n var _Conv2D = Module[\"_Conv2D\"] = function() {\n return (_Conv2D = Module[\"_Conv2D\"] = Module[\"asm\"][\"Conv2D\"]).apply(null, arguments);\n };\n var _Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = function() {\n return (_Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = Module[\"asm\"][\"Conv2DBackpropInput\"]).apply(null, arguments);\n };\n var _Cos = Module[\"_Cos\"] = function() {\n return (_Cos = Module[\"_Cos\"] = Module[\"asm\"][\"Cos\"]).apply(null, arguments);\n };\n var _Cosh = Module[\"_Cosh\"] = function() {\n return (_Cosh = Module[\"_Cosh\"] = Module[\"asm\"][\"Cosh\"]).apply(null, arguments);\n };\n var _CropAndResize = Module[\"_CropAndResize\"] = function() {\n return (_CropAndResize = Module[\"_CropAndResize\"] = Module[\"asm\"][\"CropAndResize\"]).apply(null, arguments);\n };\n var _Cumprod = Module[\"_Cumprod\"] = function() {\n return (_Cumprod = Module[\"_Cumprod\"] = Module[\"asm\"][\"Cumprod\"]).apply(null, arguments);\n };\n var _Cumsum = Module[\"_Cumsum\"] = function() {\n return (_Cumsum = Module[\"_Cumsum\"] = Module[\"asm\"][\"Cumsum\"]).apply(null, arguments);\n };\n var _DepthToSpace = Module[\"_DepthToSpace\"] = function() {\n return (_DepthToSpace = Module[\"_DepthToSpace\"] = Module[\"asm\"][\"DepthToSpace\"]).apply(null, arguments);\n };\n var _DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = function() {\n return (_DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = Module[\"asm\"][\"DepthwiseConv2dNative\"]).apply(null, arguments);\n };\n var _Elu = Module[\"_Elu\"] = function() {\n return (_Elu = Module[\"_Elu\"] = Module[\"asm\"][\"Elu\"]).apply(null, arguments);\n };\n var _Equal = Module[\"_Equal\"] = function() {\n return (_Equal = Module[\"_Equal\"] = Module[\"asm\"][\"Equal\"]).apply(null, arguments);\n };\n var _Exp = Module[\"_Exp\"] = function() {\n return (_Exp = Module[\"_Exp\"] = Module[\"asm\"][\"Exp\"]).apply(null, arguments);\n };\n var _FlipLeftRight = Module[\"_FlipLeftRight\"] = function() {\n return (_FlipLeftRight = Module[\"_FlipLeftRight\"] = Module[\"asm\"][\"FlipLeftRight\"]).apply(null, arguments);\n };\n var _Floor = Module[\"_Floor\"] = function() {\n return (_Floor = Module[\"_Floor\"] = Module[\"asm\"][\"Floor\"]).apply(null, arguments);\n };\n var _FloorDiv = Module[\"_FloorDiv\"] = function() {\n return (_FloorDiv = Module[\"_FloorDiv\"] = Module[\"asm\"][\"FloorDiv\"]).apply(null, arguments);\n };\n var _FusedBatchNorm = Module[\"_FusedBatchNorm\"] = function() {\n return (_FusedBatchNorm = Module[\"_FusedBatchNorm\"] = Module[\"asm\"][\"FusedBatchNorm\"]).apply(null, arguments);\n };\n var _FusedConv2D = Module[\"_FusedConv2D\"] = function() {\n return (_FusedConv2D = Module[\"_FusedConv2D\"] = Module[\"asm\"][\"FusedConv2D\"]).apply(null, arguments);\n };\n var _FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = function() {\n return (_FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = Module[\"asm\"][\"FusedDepthwiseConv2D\"]).apply(null, arguments);\n };\n var _Gather = Module[\"_Gather\"] = function() {\n return (_Gather = Module[\"_Gather\"] = Module[\"asm\"][\"Gather\"]).apply(null, arguments);\n };\n var _GatherNd = Module[\"_GatherNd\"] = function() {\n return (_GatherNd = Module[\"_GatherNd\"] = Module[\"asm\"][\"GatherNd\"]).apply(null, arguments);\n };\n var _Greater = Module[\"_Greater\"] = function() {\n return (_Greater = Module[\"_Greater\"] = Module[\"asm\"][\"Greater\"]).apply(null, arguments);\n };\n var _GreaterEqual = Module[\"_GreaterEqual\"] = function() {\n return (_GreaterEqual = Module[\"_GreaterEqual\"] = Module[\"asm\"][\"GreaterEqual\"]).apply(null, arguments);\n };\n var _LeakyRelu = Module[\"_LeakyRelu\"] = function() {\n return (_LeakyRelu = Module[\"_LeakyRelu\"] = Module[\"asm\"][\"LeakyRelu\"]).apply(null, arguments);\n };\n var _Less = Module[\"_Less\"] = function() {\n return (_Less = Module[\"_Less\"] = Module[\"asm\"][\"Less\"]).apply(null, arguments);\n };\n var _LessEqual = Module[\"_LessEqual\"] = function() {\n return (_LessEqual = Module[\"_LessEqual\"] = Module[\"asm\"][\"LessEqual\"]).apply(null, arguments);\n };\n var _Log = Module[\"_Log\"] = function() {\n return (_Log = Module[\"_Log\"] = Module[\"asm\"][\"Log\"]).apply(null, arguments);\n };\n var _LogicalAnd = Module[\"_LogicalAnd\"] = function() {\n return (_LogicalAnd = Module[\"_LogicalAnd\"] = Module[\"asm\"][\"LogicalAnd\"]).apply(null, arguments);\n };\n var _LogicalNot = Module[\"_LogicalNot\"] = function() {\n return (_LogicalNot = Module[\"_LogicalNot\"] = Module[\"asm\"][\"LogicalNot\"]).apply(null, arguments);\n };\n var _LogicalOr = Module[\"_LogicalOr\"] = function() {\n return (_LogicalOr = Module[\"_LogicalOr\"] = Module[\"asm\"][\"LogicalOr\"]).apply(null, arguments);\n };\n var _LogicalXor = Module[\"_LogicalXor\"] = function() {\n return (_LogicalXor = Module[\"_LogicalXor\"] = Module[\"asm\"][\"LogicalXor\"]).apply(null, arguments);\n };\n var _Max = Module[\"_Max\"] = function() {\n return (_Max = Module[\"_Max\"] = Module[\"asm\"][\"Max\"]).apply(null, arguments);\n };\n var _MaxPool = Module[\"_MaxPool\"] = function() {\n return (_MaxPool = Module[\"_MaxPool\"] = Module[\"asm\"][\"MaxPool\"]).apply(null, arguments);\n };\n var _Maximum = Module[\"_Maximum\"] = function() {\n return (_Maximum = Module[\"_Maximum\"] = Module[\"asm\"][\"Maximum\"]).apply(null, arguments);\n };\n var _Mean = Module[\"_Mean\"] = function() {\n return (_Mean = Module[\"_Mean\"] = Module[\"asm\"][\"Mean\"]).apply(null, arguments);\n };\n var _Min = Module[\"_Min\"] = function() {\n return (_Min = Module[\"_Min\"] = Module[\"asm\"][\"Min\"]).apply(null, arguments);\n };\n var _Minimum = Module[\"_Minimum\"] = function() {\n return (_Minimum = Module[\"_Minimum\"] = Module[\"asm\"][\"Minimum\"]).apply(null, arguments);\n };\n var _MirrorPad = Module[\"_MirrorPad\"] = function() {\n return (_MirrorPad = Module[\"_MirrorPad\"] = Module[\"asm\"][\"MirrorPad\"]).apply(null, arguments);\n };\n var _Multiply = Module[\"_Multiply\"] = function() {\n return (_Multiply = Module[\"_Multiply\"] = Module[\"asm\"][\"Multiply\"]).apply(null, arguments);\n };\n var _Neg = Module[\"_Neg\"] = function() {\n return (_Neg = Module[\"_Neg\"] = Module[\"asm\"][\"Neg\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = function() {\n return (_NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = Module[\"asm\"][\"NonMaxSuppressionV3\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = function() {\n return (_NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = Module[\"asm\"][\"NonMaxSuppressionV4\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = function() {\n return (_NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = Module[\"asm\"][\"NonMaxSuppressionV5\"]).apply(null, arguments);\n };\n var _NotEqual = Module[\"_NotEqual\"] = function() {\n return (_NotEqual = Module[\"_NotEqual\"] = Module[\"asm\"][\"NotEqual\"]).apply(null, arguments);\n };\n var _OneHot = Module[\"_OneHot\"] = function() {\n return (_OneHot = Module[\"_OneHot\"] = Module[\"asm\"][\"OneHot\"]).apply(null, arguments);\n };\n var _PadV2 = Module[\"_PadV2\"] = function() {\n return (_PadV2 = Module[\"_PadV2\"] = Module[\"asm\"][\"PadV2\"]).apply(null, arguments);\n };\n var _Pow = Module[\"_Pow\"] = function() {\n return (_Pow = Module[\"_Pow\"] = Module[\"asm\"][\"Pow\"]).apply(null, arguments);\n };\n var _Prelu = Module[\"_Prelu\"] = function() {\n return (_Prelu = Module[\"_Prelu\"] = Module[\"asm\"][\"Prelu\"]).apply(null, arguments);\n };\n var _Prod = Module[\"_Prod\"] = function() {\n return (_Prod = Module[\"_Prod\"] = Module[\"asm\"][\"Prod\"]).apply(null, arguments);\n };\n var _RealDiv = Module[\"_RealDiv\"] = function() {\n return (_RealDiv = Module[\"_RealDiv\"] = Module[\"asm\"][\"RealDiv\"]).apply(null, arguments);\n };\n var _Relu = Module[\"_Relu\"] = function() {\n return (_Relu = Module[\"_Relu\"] = Module[\"asm\"][\"Relu\"]).apply(null, arguments);\n };\n var _Relu6 = Module[\"_Relu6\"] = function() {\n return (_Relu6 = Module[\"_Relu6\"] = Module[\"asm\"][\"Relu6\"]).apply(null, arguments);\n };\n var _ResizeBilinear = Module[\"_ResizeBilinear\"] = function() {\n return (_ResizeBilinear = Module[\"_ResizeBilinear\"] = Module[\"asm\"][\"ResizeBilinear\"]).apply(null, arguments);\n };\n var _ResizeNearestNeighbor = Module[\"_ResizeNearestNeighbor\"] = function() {\n return (_ResizeNearestNeighbor = Module[\"_ResizeNearestNeighbor\"] = Module[\"asm\"][\"ResizeNearestNeighbor\"]).apply(null, arguments);\n };\n var _Reverse = Module[\"_Reverse\"] = function() {\n return (_Reverse = Module[\"_Reverse\"] = Module[\"asm\"][\"Reverse\"]).apply(null, arguments);\n };\n var _RotateWithOffset = Module[\"_RotateWithOffset\"] = function() {\n return (_RotateWithOffset = Module[\"_RotateWithOffset\"] = Module[\"asm\"][\"RotateWithOffset\"]).apply(null, arguments);\n };\n var _Round = Module[\"_Round\"] = function() {\n return (_Round = Module[\"_Round\"] = Module[\"asm\"][\"Round\"]).apply(null, arguments);\n };\n var _Rsqrt = Module[\"_Rsqrt\"] = function() {\n return (_Rsqrt = Module[\"_Rsqrt\"] = Module[\"asm\"][\"Rsqrt\"]).apply(null, arguments);\n };\n var _ScatterNd = Module[\"_ScatterNd\"] = function() {\n return (_ScatterNd = Module[\"_ScatterNd\"] = Module[\"asm\"][\"ScatterNd\"]).apply(null, arguments);\n };\n var _SelectV2 = Module[\"_SelectV2\"] = function() {\n return (_SelectV2 = Module[\"_SelectV2\"] = Module[\"asm\"][\"SelectV2\"]).apply(null, arguments);\n };\n var _Sigmoid = Module[\"_Sigmoid\"] = function() {\n return (_Sigmoid = Module[\"_Sigmoid\"] = Module[\"asm\"][\"Sigmoid\"]).apply(null, arguments);\n };\n var _Sin = Module[\"_Sin\"] = function() {\n return (_Sin = Module[\"_Sin\"] = Module[\"asm\"][\"Sin\"]).apply(null, arguments);\n };\n var _Softmax = Module[\"_Softmax\"] = function() {\n return (_Softmax = Module[\"_Softmax\"] = Module[\"asm\"][\"Softmax\"]).apply(null, arguments);\n };\n var _SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = function() {\n return (_SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = Module[\"asm\"][\"SparseFillEmptyRows\"]).apply(null, arguments);\n };\n var _SparseReshape = Module[\"_SparseReshape\"] = function() {\n return (_SparseReshape = Module[\"_SparseReshape\"] = Module[\"asm\"][\"SparseReshape\"]).apply(null, arguments);\n };\n var _SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = function() {\n return (_SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = Module[\"asm\"][\"SparseSegmentReduction\"]).apply(null, arguments);\n };\n var _Sqrt = Module[\"_Sqrt\"] = function() {\n return (_Sqrt = Module[\"_Sqrt\"] = Module[\"asm\"][\"Sqrt\"]).apply(null, arguments);\n };\n var _Square = Module[\"_Square\"] = function() {\n return (_Square = Module[\"_Square\"] = Module[\"asm\"][\"Square\"]).apply(null, arguments);\n };\n var _SquaredDifference = Module[\"_SquaredDifference\"] = function() {\n return (_SquaredDifference = Module[\"_SquaredDifference\"] = Module[\"asm\"][\"SquaredDifference\"]).apply(null, arguments);\n };\n var _Step = Module[\"_Step\"] = function() {\n return (_Step = Module[\"_Step\"] = Module[\"asm\"][\"Step\"]).apply(null, arguments);\n };\n var _StridedSlice = Module[\"_StridedSlice\"] = function() {\n return (_StridedSlice = Module[\"_StridedSlice\"] = Module[\"asm\"][\"StridedSlice\"]).apply(null, arguments);\n };\n var _Sub = Module[\"_Sub\"] = function() {\n return (_Sub = Module[\"_Sub\"] = Module[\"asm\"][\"Sub\"]).apply(null, arguments);\n };\n var _Sum = Module[\"_Sum\"] = function() {\n return (_Sum = Module[\"_Sum\"] = Module[\"asm\"][\"Sum\"]).apply(null, arguments);\n };\n var _Tan = Module[\"_Tan\"] = function() {\n return (_Tan = Module[\"_Tan\"] = Module[\"asm\"][\"Tan\"]).apply(null, arguments);\n };\n var _Tanh = Module[\"_Tanh\"] = function() {\n return (_Tanh = Module[\"_Tanh\"] = Module[\"asm\"][\"Tanh\"]).apply(null, arguments);\n };\n var _Tile = Module[\"_Tile\"] = function() {\n return (_Tile = Module[\"_Tile\"] = Module[\"asm\"][\"Tile\"]).apply(null, arguments);\n };\n var _TopK = Module[\"_TopK\"] = function() {\n return (_TopK = Module[\"_TopK\"] = Module[\"asm\"][\"TopK\"]).apply(null, arguments);\n };\n var _Transform = Module[\"_Transform\"] = function() {\n return (_Transform = Module[\"_Transform\"] = Module[\"asm\"][\"Transform\"]).apply(null, arguments);\n };\n var _Transpose = Module[\"_Transpose\"] = function() {\n return (_Transpose = Module[\"_Transpose\"] = Module[\"asm\"][\"Transpose\"]).apply(null, arguments);\n };\n var __FusedMatMul = Module[\"__FusedMatMul\"] = function() {\n return (__FusedMatMul = Module[\"__FusedMatMul\"] = Module[\"asm\"][\"_FusedMatMul\"]).apply(null, arguments);\n };\n var _malloc = Module[\"_malloc\"] = function() {\n return (_malloc = Module[\"_malloc\"] = Module[\"asm\"][\"malloc\"]).apply(null, arguments);\n };\n var _free = Module[\"_free\"] = function() {\n return (_free = Module[\"_free\"] = Module[\"asm\"][\"free\"]).apply(null, arguments);\n };\n var _emscripten_tls_init = Module[\"_emscripten_tls_init\"] = function() {\n return (_emscripten_tls_init = Module[\"_emscripten_tls_init\"] = Module[\"asm\"][\"emscripten_tls_init\"]).apply(null, arguments);\n };\n var ___errno_location = Module[\"___errno_location\"] = function() {\n return (___errno_location = Module[\"___errno_location\"] = Module[\"asm\"][\"__errno_location\"]).apply(null, arguments);\n };\n var _pthread_self = Module[\"_pthread_self\"] = function() {\n return (_pthread_self = Module[\"_pthread_self\"] = Module[\"asm\"][\"pthread_self\"]).apply(null, arguments);\n };\n var _emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = function() {\n return (_emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = Module[\"asm\"][\"emscripten_main_thread_process_queued_calls\"]).apply(null, arguments);\n };\n var __emscripten_thread_crashed = Module[\"__emscripten_thread_crashed\"] = function() {\n return (__emscripten_thread_crashed = Module[\"__emscripten_thread_crashed\"] = Module[\"asm\"][\"_emscripten_thread_crashed\"]).apply(null, arguments);\n };\n var __emscripten_thread_init = Module[\"__emscripten_thread_init\"] = function() {\n return (__emscripten_thread_init = Module[\"__emscripten_thread_init\"] = Module[\"asm\"][\"_emscripten_thread_init\"]).apply(null, arguments);\n };\n var _emscripten_current_thread_process_queued_calls = Module[\"_emscripten_current_thread_process_queued_calls\"] = function() {\n return (_emscripten_current_thread_process_queued_calls = Module[\"_emscripten_current_thread_process_queued_calls\"] = Module[\"asm\"][\"emscripten_current_thread_process_queued_calls\"]).apply(null, arguments);\n };\n var _emscripten_main_browser_thread_id = Module[\"_emscripten_main_browser_thread_id\"] = function() {\n return (_emscripten_main_browser_thread_id = Module[\"_emscripten_main_browser_thread_id\"] = Module[\"asm\"][\"emscripten_main_browser_thread_id\"]).apply(null, arguments);\n };\n var _emscripten_sync_run_in_main_thread_2 = Module[\"_emscripten_sync_run_in_main_thread_2\"] = function() {\n return (_emscripten_sync_run_in_main_thread_2 = Module[\"_emscripten_sync_run_in_main_thread_2\"] = Module[\"asm\"][\"emscripten_sync_run_in_main_thread_2\"]).apply(null, arguments);\n };\n var _emscripten_sync_run_in_main_thread_4 = Module[\"_emscripten_sync_run_in_main_thread_4\"] = function() {\n return (_emscripten_sync_run_in_main_thread_4 = Module[\"_emscripten_sync_run_in_main_thread_4\"] = Module[\"asm\"][\"emscripten_sync_run_in_main_thread_4\"]).apply(null, arguments);\n };\n var _emscripten_run_in_main_runtime_thread_js = Module[\"_emscripten_run_in_main_runtime_thread_js\"] = function() {\n return (_emscripten_run_in_main_runtime_thread_js = Module[\"_emscripten_run_in_main_runtime_thread_js\"] = Module[\"asm\"][\"emscripten_run_in_main_runtime_thread_js\"]).apply(null, arguments);\n };\n var _emscripten_dispatch_to_thread_ = Module[\"_emscripten_dispatch_to_thread_\"] = function() {\n return (_emscripten_dispatch_to_thread_ = Module[\"_emscripten_dispatch_to_thread_\"] = Module[\"asm\"][\"emscripten_dispatch_to_thread_\"]).apply(null, arguments);\n };\n var __emscripten_thread_free_data = Module[\"__emscripten_thread_free_data\"] = function() {\n return (__emscripten_thread_free_data = Module[\"__emscripten_thread_free_data\"] = Module[\"asm\"][\"_emscripten_thread_free_data\"]).apply(null, arguments);\n };\n var __emscripten_thread_exit = Module[\"__emscripten_thread_exit\"] = function() {\n return (__emscripten_thread_exit = Module[\"__emscripten_thread_exit\"] = Module[\"asm\"][\"_emscripten_thread_exit\"]).apply(null, arguments);\n };\n var _memalign = Module[\"_memalign\"] = function() {\n return (_memalign = Module[\"_memalign\"] = Module[\"asm\"][\"memalign\"]).apply(null, arguments);\n };\n var _emscripten_stack_set_limits = Module[\"_emscripten_stack_set_limits\"] = function() {\n return (_emscripten_stack_set_limits = Module[\"_emscripten_stack_set_limits\"] = Module[\"asm\"][\"emscripten_stack_set_limits\"]).apply(null, arguments);\n };\n var stackSave = Module[\"stackSave\"] = function() {\n return (stackSave = Module[\"stackSave\"] = Module[\"asm\"][\"stackSave\"]).apply(null, arguments);\n };\n var stackRestore = Module[\"stackRestore\"] = function() {\n return (stackRestore = Module[\"stackRestore\"] = Module[\"asm\"][\"stackRestore\"]).apply(null, arguments);\n };\n var stackAlloc = Module[\"stackAlloc\"] = function() {\n return (stackAlloc = Module[\"stackAlloc\"] = Module[\"asm\"][\"stackAlloc\"]).apply(null, arguments);\n };\n var dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = function() {\n return (dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = Module[\"asm\"][\"dynCall_iijjiiii\"]).apply(null, arguments);\n };\n var dynCall_jiji = Module[\"dynCall_jiji\"] = function() {\n return (dynCall_jiji = Module[\"dynCall_jiji\"] = Module[\"asm\"][\"dynCall_jiji\"]).apply(null, arguments);\n };\n var __emscripten_allow_main_runtime_queued_calls = Module[\"__emscripten_allow_main_runtime_queued_calls\"] = 21672;\n Module[\"cwrap\"] = cwrap;\n Module[\"keepRuntimeAlive\"] = keepRuntimeAlive;\n Module[\"PThread\"] = PThread;\n Module[\"PThread\"] = PThread;\n Module[\"wasmMemory\"] = wasmMemory;\n Module[\"ExitStatus\"] = ExitStatus;\n var calledRun;\n function ExitStatus(status) {\n this.name = \"ExitStatus\";\n this.message = \"Program terminated with exit(\" + status + \")\";\n this.status = status;\n }\n dependenciesFulfilled = function runCaller() {\n if (!calledRun)\n run();\n if (!calledRun)\n dependenciesFulfilled = runCaller;\n };\n function run(args) {\n args = args || arguments_;\n if (runDependencies > 0) {\n return;\n }\n if (ENVIRONMENT_IS_PTHREAD) {\n readyPromiseResolve(Module);\n initRuntime();\n postMessage({ \"cmd\": \"loaded\" });\n return;\n }\n preRun();\n if (runDependencies > 0) {\n return;\n }\n function doRun() {\n if (calledRun)\n return;\n calledRun = true;\n Module[\"calledRun\"] = true;\n if (ABORT)\n return;\n initRuntime();\n readyPromiseResolve(Module);\n if (Module[\"onRuntimeInitialized\"])\n Module[\"onRuntimeInitialized\"]();\n postRun();\n }\n if (Module[\"setStatus\"]) {\n Module[\"setStatus\"](\"Running...\");\n setTimeout(function() {\n setTimeout(function() {\n Module[\"setStatus\"](\"\");\n }, 1);\n doRun();\n }, 1);\n } else {\n doRun();\n }\n }\n Module[\"run\"] = run;\n function exit(status, implicit) {\n EXITSTATUS = status;\n if (!implicit) {\n if (ENVIRONMENT_IS_PTHREAD) {\n exitOnMainThread(status);\n throw \"unwind\";\n } else {\n }\n }\n if (keepRuntimeAlive()) {\n } else {\n exitRuntime();\n }\n procExit(status);\n }\n function procExit(code) {\n EXITSTATUS = code;\n if (!keepRuntimeAlive()) {\n PThread.terminateAllThreads();\n if (Module[\"onExit\"])\n Module[\"onExit\"](code);\n ABORT = true;\n }\n quit_(code, new ExitStatus(code));\n }\n if (Module[\"preInit\"]) {\n if (typeof Module[\"preInit\"] == \"function\")\n Module[\"preInit\"] = [Module[\"preInit\"]];\n while (Module[\"preInit\"].length > 0) {\n Module[\"preInit\"].pop()();\n }\n }\n run();\n var listenersAdded;\n if (beforeListeners) {\n listenersAdded = { uncaughtException: process.listeners(\"uncaughtException\").filter(function(listener) {\n return !beforeListeners.uncaughtException.indexOf(listener) > -1;\n }), unhandledRejection: process.listeners(\"unhandledRejection\").filter(function(listener) {\n return !beforeListeners.unhandledRejection.indexOf(listener) > -1;\n }) };\n }\n var actualModule;\n if (typeof WasmBackendModule !== \"undefined\") {\n actualModule = WasmBackendModule;\n } else if (typeof WasmBackendModuleThreadedSimd3 !== \"undefined\") {\n actualModule = WasmBackendModuleThreadedSimd3;\n } else {\n throw new Error(\"Could not find wasm module in post.js\");\n }\n if (listenersAdded) {\n var tmpDispose = actualModule[\"_dispose\"];\n actualModule[\"_dispose\"] = function() {\n tmpDispose();\n listenersAdded.uncaughtException.forEach(function(listener) {\n process.removeListener(\"uncaughtException\", listener);\n });\n listenersAdded.unhandledRejection.forEach(function(listener) {\n process.removeListener(\"unhandledRejection\", listener);\n });\n };\n }\n return WasmBackendModuleThreadedSimd3.ready;\n };\n })();\n if (typeof exports === \"object\" && typeof module === \"object\")\n module.exports = WasmBackendModuleThreadedSimd2;\n else if (typeof define === \"function\" && define[\"amd\"])\n define([], function() {\n return WasmBackendModuleThreadedSimd2;\n });\n else if (typeof exports === \"object\")\n exports[\"WasmBackendModuleThreadedSimd\"] = WasmBackendModuleThreadedSimd2;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js\nvar require_tfjs_backend_wasm_threaded_simd_worker = __commonJS({\n \"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js\"(exports, module) {\n module.exports.wasmWorkerContents = `\"use strict\";var Module={};var ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require(\"worker_threads\");var parentPort=nodeWorkerThreads.parentPort;parentPort.on(\"message\",function(data){onmessage({data:data})});var fs=require(\"fs\");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,\"utf8\"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(\" \");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+\"\n\");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(\" \");postMessage({cmd:\"alert\",text:text,threadId:Module[\"_pthread_self\"]()})}var err=threadPrintErr;self.alert=threadAlert;Module[\"instantiateWasm\"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module[\"wasmModule\"],info);receiveInstance(instance);Module[\"wasmModule\"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd===\"load\"){Module[\"wasmModule\"]=e.data.wasmModule;Module[\"wasmMemory\"]=e.data.wasmMemory;Module[\"buffer\"]=Module[\"wasmMemory\"].buffer;Module[\"ENVIRONMENT_IS_PTHREAD\"]=true;if(typeof e.data.urlOrBlob===\"string\"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd===\"run\"){Module[\"__performance_now_clock_drift\"]=performance.now()-e.data.time;Module[\"__emscripten_thread_init\"](e.data.threadInfoStruct,0,0,1);Module[\"establishStackSpace\"]();Module[\"PThread\"].receiveObjectTransfer(e.data);Module[\"PThread\"].threadInit();try{var result=Module[\"invokeEntryPoint\"](e.data.start_routine,e.data.arg);if(Module[\"keepRuntimeAlive\"]()){Module[\"PThread\"].setExitStatus(result)}else{Module[\"__emscripten_thread_exit\"](result)}}catch(ex){if(ex!=\"unwind\"){if(ex instanceof Module[\"ExitStatus\"]){if(Module[\"keepRuntimeAlive\"]()){}else{Module[\"__emscripten_thread_exit\"](ex.status)}}else{throw ex}}}}else if(e.data.cmd===\"cancel\"){if(Module[\"_pthread_self\"]()){Module[\"__emscripten_thread_exit\"](-1)}}else if(e.data.target===\"setimmediate\"){}else if(e.data.cmd===\"processThreadQueue\"){if(Module[\"_pthread_self\"]()){Module[\"_emscripten_current_thread_process_queued_calls\"]()}}else if(e.data.cmd===\"processProxyingQueue\"){if(Module[\"_pthread_self\"]()){Module[\"_emscripten_proxy_execute_queue\"](e.data.queue)}}else{err(\"worker.js received unknown command \"+e.data.cmd);err(e.data)}}catch(ex){err(\"worker.js onmessage() captured an uncaught exception: \"+ex);if(ex&&ex.stack)err(ex.stack);if(Module[\"__emscripten_thread_crashed\"]){Module[\"__emscripten_thread_crashed\"]()}throw ex}});`;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js\nvar require_tfjs_backend_wasm = __commonJS({\n \"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js\"(exports, module) {\n var WasmBackendModule2 = (() => {\n var _scriptDir = typeof document !== \"undefined\" && document.currentScript ? document.currentScript.src : void 0;\n if (typeof __filename !== \"undefined\")\n _scriptDir = _scriptDir || __filename;\n return function(WasmBackendModule3) {\n WasmBackendModule3 = WasmBackendModule3 || {};\n var Module = typeof WasmBackendModule3 !== \"undefined\" ? WasmBackendModule3 : {};\n var readyPromiseResolve, readyPromiseReject;\n Module[\"ready\"] = new Promise(function(resolve, reject) {\n readyPromiseResolve = resolve;\n readyPromiseReject = reject;\n });\n var beforeListeners;\n if (typeof process !== \"undefined\" && process.listeners) {\n beforeListeners = { uncaughtException: process.listeners(\"uncaughtException\"), unhandledRejection: process.listeners(\"unhandledRejection\") };\n }\n var moduleOverrides = Object.assign({}, Module);\n var arguments_ = [];\n var thisProgram = \"./this.program\";\n var quit_ = (status, toThrow) => {\n throw toThrow;\n };\n var ENVIRONMENT_IS_WEB = typeof window === \"object\";\n var ENVIRONMENT_IS_WORKER = typeof importScripts === \"function\";\n var ENVIRONMENT_IS_NODE = typeof process === \"object\" && typeof process.versions === \"object\" && typeof process.versions.node === \"string\";\n var scriptDirectory = \"\";\n function locateFile(path) {\n if (Module[\"locateFile\"]) {\n return Module[\"locateFile\"](path, scriptDirectory);\n }\n return scriptDirectory + path;\n }\n var read_, readAsync, readBinary, setWindowTitle;\n function logExceptionOnExit(e2) {\n if (e2 instanceof ExitStatus)\n return;\n let toLog = e2;\n err(\"exiting due to exception: \" + toLog);\n }\n var fs;\n var nodePath;\n var requireNodeFS;\n if (ENVIRONMENT_IS_NODE) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = require_path().dirname(scriptDirectory) + \"/\";\n } else {\n scriptDirectory = __dirname + \"/\";\n }\n requireNodeFS = () => {\n if (!nodePath) {\n fs = require_fs();\n nodePath = require_path();\n }\n };\n read_ = function shell_read(filename, binary) {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n return fs.readFileSync(filename, binary ? void 0 : \"utf8\");\n };\n readBinary = (filename) => {\n var ret = read_(filename, true);\n if (!ret.buffer) {\n ret = new Uint8Array(ret);\n }\n return ret;\n };\n readAsync = (filename, onload, onerror) => {\n requireNodeFS();\n filename = nodePath[\"normalize\"](filename);\n fs.readFile(filename, function(err2, data) {\n if (err2)\n onerror(err2);\n else\n onload(data.buffer);\n });\n };\n if (process[\"argv\"].length > 1) {\n thisProgram = process[\"argv\"][1].replace(/\\\\/g, \"/\");\n }\n arguments_ = process[\"argv\"].slice(2);\n process[\"on\"](\"uncaughtException\", function(ex) {\n if (!(ex instanceof ExitStatus)) {\n throw ex;\n }\n });\n process[\"on\"](\"unhandledRejection\", function(reason) {\n throw reason;\n });\n quit_ = (status, toThrow) => {\n if (keepRuntimeAlive()) {\n process[\"exitCode\"] = status;\n throw toThrow;\n }\n logExceptionOnExit(toThrow);\n process[\"exit\"](status);\n };\n Module[\"inspect\"] = function() {\n return \"[Emscripten Module object]\";\n };\n } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {\n if (ENVIRONMENT_IS_WORKER) {\n scriptDirectory = self.location.href;\n } else if (typeof document !== \"undefined\" && document.currentScript) {\n scriptDirectory = document.currentScript.src;\n }\n if (_scriptDir) {\n scriptDirectory = _scriptDir;\n }\n if (scriptDirectory.indexOf(\"blob:\") !== 0) {\n scriptDirectory = scriptDirectory.substr(0, scriptDirectory.replace(/[?#].*/, \"\").lastIndexOf(\"/\") + 1);\n } else {\n scriptDirectory = \"\";\n }\n {\n read_ = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.send(null);\n return xhr.responseText;\n };\n if (ENVIRONMENT_IS_WORKER) {\n readBinary = (url) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, false);\n xhr.responseType = \"arraybuffer\";\n xhr.send(null);\n return new Uint8Array(xhr.response);\n };\n }\n readAsync = (url, onload, onerror) => {\n var xhr = new XMLHttpRequest();\n xhr.open(\"GET\", url, true);\n xhr.responseType = \"arraybuffer\";\n xhr.onload = () => {\n if (xhr.status == 200 || xhr.status == 0 && xhr.response) {\n onload(xhr.response);\n return;\n }\n onerror();\n };\n xhr.onerror = onerror;\n xhr.send(null);\n };\n }\n setWindowTitle = (title) => document.title = title;\n } else {\n }\n var out = Module[\"print\"] || console.log.bind(console);\n var err = Module[\"printErr\"] || console.warn.bind(console);\n Object.assign(Module, moduleOverrides);\n moduleOverrides = null;\n if (Module[\"arguments\"])\n arguments_ = Module[\"arguments\"];\n if (Module[\"thisProgram\"])\n thisProgram = Module[\"thisProgram\"];\n if (Module[\"quit\"])\n quit_ = Module[\"quit\"];\n var POINTER_SIZE = 4;\n function warnOnce(text) {\n if (!warnOnce.shown)\n warnOnce.shown = {};\n if (!warnOnce.shown[text]) {\n warnOnce.shown[text] = 1;\n err(text);\n }\n }\n function convertJsFunctionToWasm(func2, sig) {\n if (typeof WebAssembly.Function === \"function\") {\n var typeNames = { \"i\": \"i32\", \"j\": \"i64\", \"f\": \"f32\", \"d\": \"f64\" };\n var type = { parameters: [], results: sig[0] == \"v\" ? [] : [typeNames[sig[0]]] };\n for (var i2 = 1; i2 < sig.length; ++i2) {\n type.parameters.push(typeNames[sig[i2]]);\n }\n return new WebAssembly.Function(type, func2);\n }\n var typeSection = [1, 0, 1, 96];\n var sigRet = sig.slice(0, 1);\n var sigParam = sig.slice(1);\n var typeCodes = { \"i\": 127, \"j\": 126, \"f\": 125, \"d\": 124 };\n typeSection.push(sigParam.length);\n for (var i2 = 0; i2 < sigParam.length; ++i2) {\n typeSection.push(typeCodes[sigParam[i2]]);\n }\n if (sigRet == \"v\") {\n typeSection.push(0);\n } else {\n typeSection = typeSection.concat([1, typeCodes[sigRet]]);\n }\n typeSection[1] = typeSection.length - 2;\n var bytes = new Uint8Array([0, 97, 115, 109, 1, 0, 0, 0].concat(typeSection, [2, 7, 1, 1, 101, 1, 102, 0, 0, 7, 5, 1, 1, 102, 0, 0]));\n var module2 = new WebAssembly.Module(bytes);\n var instance = new WebAssembly.Instance(module2, { \"e\": { \"f\": func2 } });\n var wrappedFunc = instance.exports[\"f\"];\n return wrappedFunc;\n }\n var freeTableIndexes = [];\n var functionsInTableMap;\n function getEmptyTableSlot() {\n if (freeTableIndexes.length) {\n return freeTableIndexes.pop();\n }\n try {\n wasmTable.grow(1);\n } catch (err2) {\n if (!(err2 instanceof RangeError)) {\n throw err2;\n }\n throw \"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.\";\n }\n return wasmTable.length - 1;\n }\n function updateTableMap(offset, count2) {\n for (var i2 = offset; i2 < offset + count2; i2++) {\n var item = getWasmTableEntry(i2);\n if (item) {\n functionsInTableMap.set(item, i2);\n }\n }\n }\n var tempRet0 = 0;\n var setTempRet0 = (value) => {\n tempRet0 = value;\n };\n var wasmBinary;\n if (Module[\"wasmBinary\"])\n wasmBinary = Module[\"wasmBinary\"];\n var noExitRuntime = Module[\"noExitRuntime\"] || true;\n if (typeof WebAssembly !== \"object\") {\n abort(\"no native wasm support detected\");\n }\n var wasmMemory;\n var ABORT = false;\n var EXITSTATUS;\n function assert3(condition, text) {\n if (!condition) {\n abort(text);\n }\n }\n function getCFunc(ident) {\n var func2 = Module[\"_\" + ident];\n return func2;\n }\n function ccall(ident, returnType, argTypes, args, opts) {\n var toC = { \"string\": function(str) {\n var ret2 = 0;\n if (str !== null && str !== void 0 && str !== 0) {\n var len = (str.length << 2) + 1;\n ret2 = stackAlloc(len);\n stringToUTF8(str, ret2, len);\n }\n return ret2;\n }, \"array\": function(arr) {\n var ret2 = stackAlloc(arr.length);\n writeArrayToMemory(arr, ret2);\n return ret2;\n } };\n function convertReturnValue(ret2) {\n if (returnType === \"string\")\n return UTF8ToString(ret2);\n if (returnType === \"boolean\")\n return Boolean(ret2);\n return ret2;\n }\n var func2 = getCFunc(ident);\n var cArgs = [];\n var stack2 = 0;\n if (args) {\n for (var i2 = 0; i2 < args.length; i2++) {\n var converter = toC[argTypes[i2]];\n if (converter) {\n if (stack2 === 0)\n stack2 = stackSave();\n cArgs[i2] = converter(args[i2]);\n } else {\n cArgs[i2] = args[i2];\n }\n }\n }\n var ret = func2.apply(null, cArgs);\n function onDone(ret2) {\n if (stack2 !== 0)\n stackRestore(stack2);\n return convertReturnValue(ret2);\n }\n ret = onDone(ret);\n return ret;\n }\n function cwrap(ident, returnType, argTypes, opts) {\n argTypes = argTypes || [];\n var numericArgs = argTypes.every(function(type) {\n return type === \"number\";\n });\n var numericRet = returnType !== \"string\";\n if (numericRet && numericArgs && !opts) {\n return getCFunc(ident);\n }\n return function() {\n return ccall(ident, returnType, argTypes, arguments, opts);\n };\n }\n var ALLOC_STACK = 1;\n var UTF8Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoder(\"utf8\") : void 0;\n function UTF8ArrayToString(heap, idx, maxBytesToRead) {\n var endIdx = idx + maxBytesToRead;\n var endPtr = idx;\n while (heap[endPtr] && !(endPtr >= endIdx))\n ++endPtr;\n if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) {\n return UTF8Decoder.decode(heap.subarray(idx, endPtr));\n } else {\n var str = \"\";\n while (idx < endPtr) {\n var u0 = heap[idx++];\n if (!(u0 & 128)) {\n str += String.fromCharCode(u0);\n continue;\n }\n var u1 = heap[idx++] & 63;\n if ((u0 & 224) == 192) {\n str += String.fromCharCode((u0 & 31) << 6 | u1);\n continue;\n }\n var u2 = heap[idx++] & 63;\n if ((u0 & 240) == 224) {\n u0 = (u0 & 15) << 12 | u1 << 6 | u2;\n } else {\n u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63;\n }\n if (u0 < 65536) {\n str += String.fromCharCode(u0);\n } else {\n var ch = u0 - 65536;\n str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023);\n }\n }\n }\n return str;\n }\n function UTF8ToString(ptr, maxBytesToRead) {\n return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : \"\";\n }\n function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) {\n if (!(maxBytesToWrite > 0))\n return 0;\n var startIdx = outIdx;\n var endIdx = outIdx + maxBytesToWrite - 1;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343) {\n var u1 = str.charCodeAt(++i2);\n u = 65536 + ((u & 1023) << 10) | u1 & 1023;\n }\n if (u <= 127) {\n if (outIdx >= endIdx)\n break;\n heap[outIdx++] = u;\n } else if (u <= 2047) {\n if (outIdx + 1 >= endIdx)\n break;\n heap[outIdx++] = 192 | u >> 6;\n heap[outIdx++] = 128 | u & 63;\n } else if (u <= 65535) {\n if (outIdx + 2 >= endIdx)\n break;\n heap[outIdx++] = 224 | u >> 12;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n } else {\n if (outIdx + 3 >= endIdx)\n break;\n heap[outIdx++] = 240 | u >> 18;\n heap[outIdx++] = 128 | u >> 12 & 63;\n heap[outIdx++] = 128 | u >> 6 & 63;\n heap[outIdx++] = 128 | u & 63;\n }\n }\n heap[outIdx] = 0;\n return outIdx - startIdx;\n }\n function stringToUTF8(str, outPtr, maxBytesToWrite) {\n return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite);\n }\n function lengthBytesUTF8(str) {\n var len = 0;\n for (var i2 = 0; i2 < str.length; ++i2) {\n var u = str.charCodeAt(i2);\n if (u >= 55296 && u <= 57343)\n u = 65536 + ((u & 1023) << 10) | str.charCodeAt(++i2) & 1023;\n if (u <= 127)\n ++len;\n else if (u <= 2047)\n len += 2;\n else if (u <= 65535)\n len += 3;\n else\n len += 4;\n }\n return len;\n }\n var UTF16Decoder = typeof TextDecoder !== \"undefined\" ? new TextDecoder(\"utf-16le\") : void 0;\n function writeArrayToMemory(array2, buffer3) {\n HEAP8.set(array2, buffer3);\n }\n function writeAsciiToMemory(str, buffer3, dontAddNull) {\n for (var i2 = 0; i2 < str.length; ++i2) {\n HEAP8[buffer3++ >> 0] = str.charCodeAt(i2);\n }\n if (!dontAddNull)\n HEAP8[buffer3 >> 0] = 0;\n }\n function alignUp(x, multiple) {\n if (x % multiple > 0) {\n x += multiple - x % multiple;\n }\n return x;\n }\n var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64;\n function updateGlobalBufferAndViews(buf) {\n buffer2 = buf;\n Module[\"HEAP8\"] = HEAP8 = new Int8Array(buf);\n Module[\"HEAP16\"] = HEAP16 = new Int16Array(buf);\n Module[\"HEAP32\"] = HEAP32 = new Int32Array(buf);\n Module[\"HEAPU8\"] = HEAPU8 = new Uint8Array(buf);\n Module[\"HEAPU16\"] = HEAPU16 = new Uint16Array(buf);\n Module[\"HEAPU32\"] = HEAPU32 = new Uint32Array(buf);\n Module[\"HEAPF32\"] = HEAPF32 = new Float32Array(buf);\n Module[\"HEAPF64\"] = HEAPF64 = new Float64Array(buf);\n }\n var INITIAL_MEMORY = Module[\"INITIAL_MEMORY\"] || 16777216;\n var wasmTable;\n var __ATPRERUN__ = [];\n var __ATINIT__ = [];\n var __ATPOSTRUN__ = [];\n var runtimeInitialized = false;\n var runtimeExited = false;\n var runtimeKeepaliveCounter = 0;\n function keepRuntimeAlive() {\n return noExitRuntime || runtimeKeepaliveCounter > 0;\n }\n function preRun() {\n if (Module[\"preRun\"]) {\n if (typeof Module[\"preRun\"] == \"function\")\n Module[\"preRun\"] = [Module[\"preRun\"]];\n while (Module[\"preRun\"].length) {\n addOnPreRun(Module[\"preRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPRERUN__);\n }\n function initRuntime() {\n runtimeInitialized = true;\n callRuntimeCallbacks(__ATINIT__);\n }\n function exitRuntime() {\n runtimeExited = true;\n }\n function postRun() {\n if (Module[\"postRun\"]) {\n if (typeof Module[\"postRun\"] == \"function\")\n Module[\"postRun\"] = [Module[\"postRun\"]];\n while (Module[\"postRun\"].length) {\n addOnPostRun(Module[\"postRun\"].shift());\n }\n }\n callRuntimeCallbacks(__ATPOSTRUN__);\n }\n function addOnPreRun(cb) {\n __ATPRERUN__.unshift(cb);\n }\n function addOnInit(cb) {\n __ATINIT__.unshift(cb);\n }\n function addOnPostRun(cb) {\n __ATPOSTRUN__.unshift(cb);\n }\n var runDependencies = 0;\n var runDependencyWatcher = null;\n var dependenciesFulfilled = null;\n function addRunDependency(id) {\n runDependencies++;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n }\n function removeRunDependency(id) {\n runDependencies--;\n if (Module[\"monitorRunDependencies\"]) {\n Module[\"monitorRunDependencies\"](runDependencies);\n }\n if (runDependencies == 0) {\n if (runDependencyWatcher !== null) {\n clearInterval(runDependencyWatcher);\n runDependencyWatcher = null;\n }\n if (dependenciesFulfilled) {\n var callback = dependenciesFulfilled;\n dependenciesFulfilled = null;\n callback();\n }\n }\n }\n Module[\"preloadedImages\"] = {};\n Module[\"preloadedAudios\"] = {};\n function abort(what) {\n {\n if (Module[\"onAbort\"]) {\n Module[\"onAbort\"](what);\n }\n }\n what = \"Aborted(\" + what + \")\";\n err(what);\n ABORT = true;\n EXITSTATUS = 1;\n what += \". Build with -s ASSERTIONS=1 for more info.\";\n var e2 = new WebAssembly.RuntimeError(what);\n readyPromiseReject(e2);\n throw e2;\n }\n var dataURIPrefix = \"data:application/octet-stream;base64,\";\n function isDataURI(filename) {\n return filename.startsWith(dataURIPrefix);\n }\n function isFileURI(filename) {\n return filename.startsWith(\"file://\");\n }\n var wasmBinaryFile;\n wasmBinaryFile = \"tfjs-backend-wasm.wasm\";\n if (!isDataURI(wasmBinaryFile)) {\n wasmBinaryFile = locateFile(wasmBinaryFile);\n }\n function getBinary(file) {\n try {\n if (file == wasmBinaryFile && wasmBinary) {\n return new Uint8Array(wasmBinary);\n }\n if (readBinary) {\n return readBinary(file);\n } else {\n throw \"both async and sync fetching of the wasm failed\";\n }\n } catch (err2) {\n abort(err2);\n }\n }\n function getBinaryPromise() {\n if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) {\n if (typeof fetch === \"function\" && !isFileURI(wasmBinaryFile)) {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n if (!response[\"ok\"]) {\n throw \"failed to load wasm binary file at '\" + wasmBinaryFile + \"'\";\n }\n return response[\"arrayBuffer\"]();\n }).catch(function() {\n return getBinary(wasmBinaryFile);\n });\n } else {\n if (readAsync) {\n return new Promise(function(resolve, reject) {\n readAsync(wasmBinaryFile, function(response) {\n resolve(new Uint8Array(response));\n }, reject);\n });\n }\n }\n }\n return Promise.resolve().then(function() {\n return getBinary(wasmBinaryFile);\n });\n }\n function createWasm() {\n var info = { \"env\": asmLibraryArg, \"wasi_snapshot_preview1\": asmLibraryArg };\n function receiveInstance(instance, module2) {\n var exports3 = instance.exports;\n Module[\"asm\"] = exports3;\n wasmMemory = Module[\"asm\"][\"memory\"];\n updateGlobalBufferAndViews(wasmMemory.buffer);\n wasmTable = Module[\"asm\"][\"__indirect_function_table\"];\n addOnInit(Module[\"asm\"][\"__wasm_call_ctors\"]);\n removeRunDependency(\"wasm-instantiate\");\n }\n addRunDependency(\"wasm-instantiate\");\n function receiveInstantiationResult(result) {\n receiveInstance(result[\"instance\"]);\n }\n function instantiateArrayBuffer(receiver) {\n return getBinaryPromise().then(function(binary) {\n return WebAssembly.instantiate(binary, info);\n }).then(function(instance) {\n return instance;\n }).then(receiver, function(reason) {\n err(\"failed to asynchronously prepare wasm: \" + reason);\n abort(reason);\n });\n }\n function instantiateAsync() {\n if (!wasmBinary && typeof WebAssembly.instantiateStreaming === \"function\" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === \"function\") {\n return fetch(wasmBinaryFile, { credentials: \"same-origin\" }).then(function(response) {\n var result = WebAssembly.instantiateStreaming(response, info);\n return result.then(receiveInstantiationResult, function(reason) {\n err(\"wasm streaming compile failed: \" + reason);\n err(\"falling back to ArrayBuffer instantiation\");\n return instantiateArrayBuffer(receiveInstantiationResult);\n });\n });\n } else {\n return instantiateArrayBuffer(receiveInstantiationResult);\n }\n }\n if (Module[\"instantiateWasm\"]) {\n try {\n var exports2 = Module[\"instantiateWasm\"](info, receiveInstance);\n return exports2;\n } catch (e2) {\n err(\"Module.instantiateWasm callback failed with error: \" + e2);\n return false;\n }\n }\n instantiateAsync().catch(readyPromiseReject);\n return {};\n }\n var tempDouble;\n var tempI64;\n function callRuntimeCallbacks(callbacks2) {\n while (callbacks2.length > 0) {\n var callback = callbacks2.shift();\n if (typeof callback == \"function\") {\n callback(Module);\n continue;\n }\n var func2 = callback.func;\n if (typeof func2 === \"number\") {\n if (callback.arg === void 0) {\n getWasmTableEntry(func2)();\n } else {\n getWasmTableEntry(func2)(callback.arg);\n }\n } else {\n func2(callback.arg === void 0 ? null : callback.arg);\n }\n }\n }\n function demangle(func2) {\n return func2;\n }\n function demangleAll(text) {\n var regex = /\\b_Z[\\w\\d_]+/g;\n return text.replace(regex, function(x) {\n var y = demangle(x);\n return x === y ? x : y + \" [\" + x + \"]\";\n });\n }\n var wasmTableMirror = [];\n function getWasmTableEntry(funcPtr) {\n var func2 = wasmTableMirror[funcPtr];\n if (!func2) {\n if (funcPtr >= wasmTableMirror.length)\n wasmTableMirror.length = funcPtr + 1;\n wasmTableMirror[funcPtr] = func2 = wasmTable.get(funcPtr);\n }\n return func2;\n }\n function jsStackTrace() {\n var error = new Error();\n if (!error.stack) {\n try {\n throw new Error();\n } catch (e2) {\n error = e2;\n }\n if (!error.stack) {\n return \"(no stack trace available)\";\n }\n }\n return error.stack.toString();\n }\n function setWasmTableEntry(idx, func2) {\n wasmTable.set(idx, func2);\n wasmTableMirror[idx] = func2;\n }\n function _abort() {\n abort(\"\");\n }\n function _emscripten_get_heap_max() {\n return 2147483648;\n }\n function _emscripten_memcpy_big(dest, src, num) {\n HEAPU8.copyWithin(dest, src, src + num);\n }\n function emscripten_realloc_buffer(size) {\n try {\n wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16);\n updateGlobalBufferAndViews(wasmMemory.buffer);\n return 1;\n } catch (e2) {\n }\n }\n function _emscripten_resize_heap(requestedSize) {\n var oldSize = HEAPU8.length;\n requestedSize = requestedSize >>> 0;\n var maxHeapSize = _emscripten_get_heap_max();\n if (requestedSize > maxHeapSize) {\n return false;\n }\n for (var cutDown = 1; cutDown <= 4; cutDown *= 2) {\n var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown);\n overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296);\n var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536));\n var replacement = emscripten_realloc_buffer(newSize);\n if (replacement) {\n return true;\n }\n }\n return false;\n }\n var SYSCALLS = { mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) {\n var buffer3 = SYSCALLS.buffers[stream];\n if (curr === 0 || curr === 10) {\n (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0));\n buffer3.length = 0;\n } else {\n buffer3.push(curr);\n }\n }, varargs: void 0, get: function() {\n SYSCALLS.varargs += 4;\n var ret = HEAP32[SYSCALLS.varargs - 4 >> 2];\n return ret;\n }, getStr: function(ptr) {\n var ret = UTF8ToString(ptr);\n return ret;\n }, get64: function(low, high) {\n return low;\n } };\n function _fd_close(fd) {\n return 0;\n }\n function _fd_seek(fd, offset_low, offset_high, whence, newOffset) {\n }\n function _fd_write(fd, iov, iovcnt, pnum) {\n var num = 0;\n for (var i2 = 0; i2 < iovcnt; i2++) {\n var ptr = HEAP32[iov >> 2];\n var len = HEAP32[iov + 4 >> 2];\n iov += 8;\n for (var j = 0; j < len; j++) {\n SYSCALLS.printChar(fd, HEAPU8[ptr + j]);\n }\n num += len;\n }\n HEAP32[pnum >> 2] = num;\n return 0;\n }\n function _setTempRet0(val) {\n setTempRet0(val);\n }\n var ASSERTIONS = false;\n var asmLibraryArg = { \"abort\": _abort, \"emscripten_get_heap_max\": _emscripten_get_heap_max, \"emscripten_memcpy_big\": _emscripten_memcpy_big, \"emscripten_resize_heap\": _emscripten_resize_heap, \"fd_close\": _fd_close, \"fd_seek\": _fd_seek, \"fd_write\": _fd_write, \"setTempRet0\": _setTempRet0 };\n var asm = createWasm();\n var ___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = function() {\n return (___wasm_call_ctors = Module[\"___wasm_call_ctors\"] = Module[\"asm\"][\"__wasm_call_ctors\"]).apply(null, arguments);\n };\n var _init = Module[\"_init\"] = function() {\n return (_init = Module[\"_init\"] = Module[\"asm\"][\"init\"]).apply(null, arguments);\n };\n var _init_with_threads_count = Module[\"_init_with_threads_count\"] = function() {\n return (_init_with_threads_count = Module[\"_init_with_threads_count\"] = Module[\"asm\"][\"init_with_threads_count\"]).apply(null, arguments);\n };\n var _get_threads_count = Module[\"_get_threads_count\"] = function() {\n return (_get_threads_count = Module[\"_get_threads_count\"] = Module[\"asm\"][\"get_threads_count\"]).apply(null, arguments);\n };\n var _register_tensor = Module[\"_register_tensor\"] = function() {\n return (_register_tensor = Module[\"_register_tensor\"] = Module[\"asm\"][\"register_tensor\"]).apply(null, arguments);\n };\n var _dispose_data = Module[\"_dispose_data\"] = function() {\n return (_dispose_data = Module[\"_dispose_data\"] = Module[\"asm\"][\"dispose_data\"]).apply(null, arguments);\n };\n var _dispose = Module[\"_dispose\"] = function() {\n return (_dispose = Module[\"_dispose\"] = Module[\"asm\"][\"dispose\"]).apply(null, arguments);\n };\n var _Abs = Module[\"_Abs\"] = function() {\n return (_Abs = Module[\"_Abs\"] = Module[\"asm\"][\"Abs\"]).apply(null, arguments);\n };\n var _Add = Module[\"_Add\"] = function() {\n return (_Add = Module[\"_Add\"] = Module[\"asm\"][\"Add\"]).apply(null, arguments);\n };\n var _AddN = Module[\"_AddN\"] = function() {\n return (_AddN = Module[\"_AddN\"] = Module[\"asm\"][\"AddN\"]).apply(null, arguments);\n };\n var _All = Module[\"_All\"] = function() {\n return (_All = Module[\"_All\"] = Module[\"asm\"][\"All\"]).apply(null, arguments);\n };\n var _Any = Module[\"_Any\"] = function() {\n return (_Any = Module[\"_Any\"] = Module[\"asm\"][\"Any\"]).apply(null, arguments);\n };\n var _ArgMax = Module[\"_ArgMax\"] = function() {\n return (_ArgMax = Module[\"_ArgMax\"] = Module[\"asm\"][\"ArgMax\"]).apply(null, arguments);\n };\n var _AvgPool = Module[\"_AvgPool\"] = function() {\n return (_AvgPool = Module[\"_AvgPool\"] = Module[\"asm\"][\"AvgPool\"]).apply(null, arguments);\n };\n var _BatchMatMul = Module[\"_BatchMatMul\"] = function() {\n return (_BatchMatMul = Module[\"_BatchMatMul\"] = Module[\"asm\"][\"BatchMatMul\"]).apply(null, arguments);\n };\n var _Ceil = Module[\"_Ceil\"] = function() {\n return (_Ceil = Module[\"_Ceil\"] = Module[\"asm\"][\"Ceil\"]).apply(null, arguments);\n };\n var _ClipByValue = Module[\"_ClipByValue\"] = function() {\n return (_ClipByValue = Module[\"_ClipByValue\"] = Module[\"asm\"][\"ClipByValue\"]).apply(null, arguments);\n };\n var _Conv2D = Module[\"_Conv2D\"] = function() {\n return (_Conv2D = Module[\"_Conv2D\"] = Module[\"asm\"][\"Conv2D\"]).apply(null, arguments);\n };\n var _Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = function() {\n return (_Conv2DBackpropInput = Module[\"_Conv2DBackpropInput\"] = Module[\"asm\"][\"Conv2DBackpropInput\"]).apply(null, arguments);\n };\n var _Cos = Module[\"_Cos\"] = function() {\n return (_Cos = Module[\"_Cos\"] = Module[\"asm\"][\"Cos\"]).apply(null, arguments);\n };\n var _Cosh = Module[\"_Cosh\"] = function() {\n return (_Cosh = Module[\"_Cosh\"] = Module[\"asm\"][\"Cosh\"]).apply(null, arguments);\n };\n var _CropAndResize = Module[\"_CropAndResize\"] = function() {\n return (_CropAndResize = Module[\"_CropAndResize\"] = Module[\"asm\"][\"CropAndResize\"]).apply(null, arguments);\n };\n var _Cumprod = Module[\"_Cumprod\"] = function() {\n return (_Cumprod = Module[\"_Cumprod\"] = Module[\"asm\"][\"Cumprod\"]).apply(null, arguments);\n };\n var _Cumsum = Module[\"_Cumsum\"] = function() {\n return (_Cumsum = Module[\"_Cumsum\"] = Module[\"asm\"][\"Cumsum\"]).apply(null, arguments);\n };\n var _DepthToSpace = Module[\"_DepthToSpace\"] = function() {\n return (_DepthToSpace = Module[\"_DepthToSpace\"] = Module[\"asm\"][\"DepthToSpace\"]).apply(null, arguments);\n };\n var _DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = function() {\n return (_DepthwiseConv2dNative = Module[\"_DepthwiseConv2dNative\"] = Module[\"asm\"][\"DepthwiseConv2dNative\"]).apply(null, arguments);\n };\n var _Elu = Module[\"_Elu\"] = function() {\n return (_Elu = Module[\"_Elu\"] = Module[\"asm\"][\"Elu\"]).apply(null, arguments);\n };\n var _Equal = Module[\"_Equal\"] = function() {\n return (_Equal = Module[\"_Equal\"] = Module[\"asm\"][\"Equal\"]).apply(null, arguments);\n };\n var _Exp = Module[\"_Exp\"] = function() {\n return (_Exp = Module[\"_Exp\"] = Module[\"asm\"][\"Exp\"]).apply(null, arguments);\n };\n var _FlipLeftRight = Module[\"_FlipLeftRight\"] = function() {\n return (_FlipLeftRight = Module[\"_FlipLeftRight\"] = Module[\"asm\"][\"FlipLeftRight\"]).apply(null, arguments);\n };\n var _Floor = Module[\"_Floor\"] = function() {\n return (_Floor = Module[\"_Floor\"] = Module[\"asm\"][\"Floor\"]).apply(null, arguments);\n };\n var _FloorDiv = Module[\"_FloorDiv\"] = function() {\n return (_FloorDiv = Module[\"_FloorDiv\"] = Module[\"asm\"][\"FloorDiv\"]).apply(null, arguments);\n };\n var _FusedBatchNorm = Module[\"_FusedBatchNorm\"] = function() {\n return (_FusedBatchNorm = Module[\"_FusedBatchNorm\"] = Module[\"asm\"][\"FusedBatchNorm\"]).apply(null, arguments);\n };\n var _FusedConv2D = Module[\"_FusedConv2D\"] = function() {\n return (_FusedConv2D = Module[\"_FusedConv2D\"] = Module[\"asm\"][\"FusedConv2D\"]).apply(null, arguments);\n };\n var _FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = function() {\n return (_FusedDepthwiseConv2D = Module[\"_FusedDepthwiseConv2D\"] = Module[\"asm\"][\"FusedDepthwiseConv2D\"]).apply(null, arguments);\n };\n var _Gather = Module[\"_Gather\"] = function() {\n return (_Gather = Module[\"_Gather\"] = Module[\"asm\"][\"Gather\"]).apply(null, arguments);\n };\n var _GatherNd = Module[\"_GatherNd\"] = function() {\n return (_GatherNd = Module[\"_GatherNd\"] = Module[\"asm\"][\"GatherNd\"]).apply(null, arguments);\n };\n var _Greater = Module[\"_Greater\"] = function() {\n return (_Greater = Module[\"_Greater\"] = Module[\"asm\"][\"Greater\"]).apply(null, arguments);\n };\n var _GreaterEqual = Module[\"_GreaterEqual\"] = function() {\n return (_GreaterEqual = Module[\"_GreaterEqual\"] = Module[\"asm\"][\"GreaterEqual\"]).apply(null, arguments);\n };\n var _LeakyRelu = Module[\"_LeakyRelu\"] = function() {\n return (_LeakyRelu = Module[\"_LeakyRelu\"] = Module[\"asm\"][\"LeakyRelu\"]).apply(null, arguments);\n };\n var _Less = Module[\"_Less\"] = function() {\n return (_Less = Module[\"_Less\"] = Module[\"asm\"][\"Less\"]).apply(null, arguments);\n };\n var _LessEqual = Module[\"_LessEqual\"] = function() {\n return (_LessEqual = Module[\"_LessEqual\"] = Module[\"asm\"][\"LessEqual\"]).apply(null, arguments);\n };\n var _Log = Module[\"_Log\"] = function() {\n return (_Log = Module[\"_Log\"] = Module[\"asm\"][\"Log\"]).apply(null, arguments);\n };\n var _LogicalAnd = Module[\"_LogicalAnd\"] = function() {\n return (_LogicalAnd = Module[\"_LogicalAnd\"] = Module[\"asm\"][\"LogicalAnd\"]).apply(null, arguments);\n };\n var _LogicalNot = Module[\"_LogicalNot\"] = function() {\n return (_LogicalNot = Module[\"_LogicalNot\"] = Module[\"asm\"][\"LogicalNot\"]).apply(null, arguments);\n };\n var _LogicalOr = Module[\"_LogicalOr\"] = function() {\n return (_LogicalOr = Module[\"_LogicalOr\"] = Module[\"asm\"][\"LogicalOr\"]).apply(null, arguments);\n };\n var _LogicalXor = Module[\"_LogicalXor\"] = function() {\n return (_LogicalXor = Module[\"_LogicalXor\"] = Module[\"asm\"][\"LogicalXor\"]).apply(null, arguments);\n };\n var _Max = Module[\"_Max\"] = function() {\n return (_Max = Module[\"_Max\"] = Module[\"asm\"][\"Max\"]).apply(null, arguments);\n };\n var _MaxPool = Module[\"_MaxPool\"] = function() {\n return (_MaxPool = Module[\"_MaxPool\"] = Module[\"asm\"][\"MaxPool\"]).apply(null, arguments);\n };\n var _Maximum = Module[\"_Maximum\"] = function() {\n return (_Maximum = Module[\"_Maximum\"] = Module[\"asm\"][\"Maximum\"]).apply(null, arguments);\n };\n var _Mean = Module[\"_Mean\"] = function() {\n return (_Mean = Module[\"_Mean\"] = Module[\"asm\"][\"Mean\"]).apply(null, arguments);\n };\n var _Min = Module[\"_Min\"] = function() {\n return (_Min = Module[\"_Min\"] = Module[\"asm\"][\"Min\"]).apply(null, arguments);\n };\n var _Minimum = Module[\"_Minimum\"] = function() {\n return (_Minimum = Module[\"_Minimum\"] = Module[\"asm\"][\"Minimum\"]).apply(null, arguments);\n };\n var _MirrorPad = Module[\"_MirrorPad\"] = function() {\n return (_MirrorPad = Module[\"_MirrorPad\"] = Module[\"asm\"][\"MirrorPad\"]).apply(null, arguments);\n };\n var _Multiply = Module[\"_Multiply\"] = function() {\n return (_Multiply = Module[\"_Multiply\"] = Module[\"asm\"][\"Multiply\"]).apply(null, arguments);\n };\n var _Neg = Module[\"_Neg\"] = function() {\n return (_Neg = Module[\"_Neg\"] = Module[\"asm\"][\"Neg\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = function() {\n return (_NonMaxSuppressionV3 = Module[\"_NonMaxSuppressionV3\"] = Module[\"asm\"][\"NonMaxSuppressionV3\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = function() {\n return (_NonMaxSuppressionV4 = Module[\"_NonMaxSuppressionV4\"] = Module[\"asm\"][\"NonMaxSuppressionV4\"]).apply(null, arguments);\n };\n var _NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = function() {\n return (_NonMaxSuppressionV5 = Module[\"_NonMaxSuppressionV5\"] = Module[\"asm\"][\"NonMaxSuppressionV5\"]).apply(null, arguments);\n };\n var _NotEqual = Module[\"_NotEqual\"] = function() {\n return (_NotEqual = Module[\"_NotEqual\"] = Module[\"asm\"][\"NotEqual\"]).apply(null, arguments);\n };\n var _OneHot = Module[\"_OneHot\"] = function() {\n return (_OneHot = Module[\"_OneHot\"] = Module[\"asm\"][\"OneHot\"]).apply(null, arguments);\n };\n var _PadV2 = Module[\"_PadV2\"] = function() {\n return (_PadV2 = Module[\"_PadV2\"] = Module[\"asm\"][\"PadV2\"]).apply(null, arguments);\n };\n var _Pow = Module[\"_Pow\"] = function() {\n return (_Pow = Module[\"_Pow\"] = Module[\"asm\"][\"Pow\"]).apply(null, arguments);\n };\n var _Prelu = Module[\"_Prelu\"] = function() {\n return (_Prelu = Module[\"_Prelu\"] = Module[\"asm\"][\"Prelu\"]).apply(null, arguments);\n };\n var _Prod = Module[\"_Prod\"] = function() {\n return (_Prod = Module[\"_Prod\"] = Module[\"asm\"][\"Prod\"]).apply(null, arguments);\n };\n var _RealDiv = Module[\"_RealDiv\"] = function() {\n return (_RealDiv = Module[\"_RealDiv\"] = Module[\"asm\"][\"RealDiv\"]).apply(null, arguments);\n };\n var _Relu = Module[\"_Relu\"] = function() {\n return (_Relu = Module[\"_Relu\"] = Module[\"asm\"][\"Relu\"]).apply(null, arguments);\n };\n var _Relu6 = Module[\"_Relu6\"] = function() {\n return (_Relu6 = Module[\"_Relu6\"] = Module[\"asm\"][\"Relu6\"]).apply(null, arguments);\n };\n var _ResizeBilinear = Module[\"_ResizeBilinear\"] = function() {\n return (_ResizeBilinear = Module[\"_ResizeBilinear\"] = Module[\"asm\"][\"ResizeBilinear\"]).apply(null, arguments);\n };\n var _ResizeNearestNeighbor = Module[\"_ResizeNearestNeighbor\"] = function() {\n return (_ResizeNearestNeighbor = Module[\"_ResizeNearestNeighbor\"] = Module[\"asm\"][\"ResizeNearestNeighbor\"]).apply(null, arguments);\n };\n var _Reverse = Module[\"_Reverse\"] = function() {\n return (_Reverse = Module[\"_Reverse\"] = Module[\"asm\"][\"Reverse\"]).apply(null, arguments);\n };\n var _RotateWithOffset = Module[\"_RotateWithOffset\"] = function() {\n return (_RotateWithOffset = Module[\"_RotateWithOffset\"] = Module[\"asm\"][\"RotateWithOffset\"]).apply(null, arguments);\n };\n var _Round = Module[\"_Round\"] = function() {\n return (_Round = Module[\"_Round\"] = Module[\"asm\"][\"Round\"]).apply(null, arguments);\n };\n var _Rsqrt = Module[\"_Rsqrt\"] = function() {\n return (_Rsqrt = Module[\"_Rsqrt\"] = Module[\"asm\"][\"Rsqrt\"]).apply(null, arguments);\n };\n var _ScatterNd = Module[\"_ScatterNd\"] = function() {\n return (_ScatterNd = Module[\"_ScatterNd\"] = Module[\"asm\"][\"ScatterNd\"]).apply(null, arguments);\n };\n var _SelectV2 = Module[\"_SelectV2\"] = function() {\n return (_SelectV2 = Module[\"_SelectV2\"] = Module[\"asm\"][\"SelectV2\"]).apply(null, arguments);\n };\n var _Sigmoid = Module[\"_Sigmoid\"] = function() {\n return (_Sigmoid = Module[\"_Sigmoid\"] = Module[\"asm\"][\"Sigmoid\"]).apply(null, arguments);\n };\n var _Sin = Module[\"_Sin\"] = function() {\n return (_Sin = Module[\"_Sin\"] = Module[\"asm\"][\"Sin\"]).apply(null, arguments);\n };\n var _Softmax = Module[\"_Softmax\"] = function() {\n return (_Softmax = Module[\"_Softmax\"] = Module[\"asm\"][\"Softmax\"]).apply(null, arguments);\n };\n var _SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = function() {\n return (_SparseFillEmptyRows = Module[\"_SparseFillEmptyRows\"] = Module[\"asm\"][\"SparseFillEmptyRows\"]).apply(null, arguments);\n };\n var _SparseReshape = Module[\"_SparseReshape\"] = function() {\n return (_SparseReshape = Module[\"_SparseReshape\"] = Module[\"asm\"][\"SparseReshape\"]).apply(null, arguments);\n };\n var _SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = function() {\n return (_SparseSegmentReduction = Module[\"_SparseSegmentReduction\"] = Module[\"asm\"][\"SparseSegmentReduction\"]).apply(null, arguments);\n };\n var _Sqrt = Module[\"_Sqrt\"] = function() {\n return (_Sqrt = Module[\"_Sqrt\"] = Module[\"asm\"][\"Sqrt\"]).apply(null, arguments);\n };\n var _Square = Module[\"_Square\"] = function() {\n return (_Square = Module[\"_Square\"] = Module[\"asm\"][\"Square\"]).apply(null, arguments);\n };\n var _SquaredDifference = Module[\"_SquaredDifference\"] = function() {\n return (_SquaredDifference = Module[\"_SquaredDifference\"] = Module[\"asm\"][\"SquaredDifference\"]).apply(null, arguments);\n };\n var _Step = Module[\"_Step\"] = function() {\n return (_Step = Module[\"_Step\"] = Module[\"asm\"][\"Step\"]).apply(null, arguments);\n };\n var _StridedSlice = Module[\"_StridedSlice\"] = function() {\n return (_StridedSlice = Module[\"_StridedSlice\"] = Module[\"asm\"][\"StridedSlice\"]).apply(null, arguments);\n };\n var _Sub = Module[\"_Sub\"] = function() {\n return (_Sub = Module[\"_Sub\"] = Module[\"asm\"][\"Sub\"]).apply(null, arguments);\n };\n var _Sum = Module[\"_Sum\"] = function() {\n return (_Sum = Module[\"_Sum\"] = Module[\"asm\"][\"Sum\"]).apply(null, arguments);\n };\n var _Tan = Module[\"_Tan\"] = function() {\n return (_Tan = Module[\"_Tan\"] = Module[\"asm\"][\"Tan\"]).apply(null, arguments);\n };\n var _Tanh = Module[\"_Tanh\"] = function() {\n return (_Tanh = Module[\"_Tanh\"] = Module[\"asm\"][\"Tanh\"]).apply(null, arguments);\n };\n var _Tile = Module[\"_Tile\"] = function() {\n return (_Tile = Module[\"_Tile\"] = Module[\"asm\"][\"Tile\"]).apply(null, arguments);\n };\n var _TopK = Module[\"_TopK\"] = function() {\n return (_TopK = Module[\"_TopK\"] = Module[\"asm\"][\"TopK\"]).apply(null, arguments);\n };\n var _Transform = Module[\"_Transform\"] = function() {\n return (_Transform = Module[\"_Transform\"] = Module[\"asm\"][\"Transform\"]).apply(null, arguments);\n };\n var _Transpose = Module[\"_Transpose\"] = function() {\n return (_Transpose = Module[\"_Transpose\"] = Module[\"asm\"][\"Transpose\"]).apply(null, arguments);\n };\n var __FusedMatMul = Module[\"__FusedMatMul\"] = function() {\n return (__FusedMatMul = Module[\"__FusedMatMul\"] = Module[\"asm\"][\"_FusedMatMul\"]).apply(null, arguments);\n };\n var _malloc = Module[\"_malloc\"] = function() {\n return (_malloc = Module[\"_malloc\"] = Module[\"asm\"][\"malloc\"]).apply(null, arguments);\n };\n var _free = Module[\"_free\"] = function() {\n return (_free = Module[\"_free\"] = Module[\"asm\"][\"free\"]).apply(null, arguments);\n };\n var ___errno_location = Module[\"___errno_location\"] = function() {\n return (___errno_location = Module[\"___errno_location\"] = Module[\"asm\"][\"__errno_location\"]).apply(null, arguments);\n };\n var _emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = function() {\n return (_emscripten_main_thread_process_queued_calls = Module[\"_emscripten_main_thread_process_queued_calls\"] = Module[\"asm\"][\"emscripten_main_thread_process_queued_calls\"]).apply(null, arguments);\n };\n var stackSave = Module[\"stackSave\"] = function() {\n return (stackSave = Module[\"stackSave\"] = Module[\"asm\"][\"stackSave\"]).apply(null, arguments);\n };\n var stackRestore = Module[\"stackRestore\"] = function() {\n return (stackRestore = Module[\"stackRestore\"] = Module[\"asm\"][\"stackRestore\"]).apply(null, arguments);\n };\n var stackAlloc = Module[\"stackAlloc\"] = function() {\n return (stackAlloc = Module[\"stackAlloc\"] = Module[\"asm\"][\"stackAlloc\"]).apply(null, arguments);\n };\n var dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = function() {\n return (dynCall_iijjiiii = Module[\"dynCall_iijjiiii\"] = Module[\"asm\"][\"dynCall_iijjiiii\"]).apply(null, arguments);\n };\n var dynCall_jiji = Module[\"dynCall_jiji\"] = function() {\n return (dynCall_jiji = Module[\"dynCall_jiji\"] = Module[\"asm\"][\"dynCall_jiji\"]).apply(null, arguments);\n };\n Module[\"cwrap\"] = cwrap;\n var calledRun;\n function ExitStatus(status) {\n this.name = \"ExitStatus\";\n this.message = \"Program terminated with exit(\" + status + \")\";\n this.status = status;\n }\n dependenciesFulfilled = function runCaller() {\n if (!calledRun)\n run();\n if (!calledRun)\n dependenciesFulfilled = runCaller;\n };\n function run(args) {\n args = args || arguments_;\n if (runDependencies > 0) {\n return;\n }\n preRun();\n if (runDependencies > 0) {\n return;\n }\n function doRun() {\n if (calledRun)\n return;\n calledRun = true;\n Module[\"calledRun\"] = true;\n if (ABORT)\n return;\n initRuntime();\n readyPromiseResolve(Module);\n if (Module[\"onRuntimeInitialized\"])\n Module[\"onRuntimeInitialized\"]();\n postRun();\n }\n if (Module[\"setStatus\"]) {\n Module[\"setStatus\"](\"Running...\");\n setTimeout(function() {\n setTimeout(function() {\n Module[\"setStatus\"](\"\");\n }, 1);\n doRun();\n }, 1);\n } else {\n doRun();\n }\n }\n Module[\"run\"] = run;\n function procExit(code) {\n EXITSTATUS = code;\n if (!keepRuntimeAlive()) {\n if (Module[\"onExit\"])\n Module[\"onExit\"](code);\n ABORT = true;\n }\n quit_(code, new ExitStatus(code));\n }\n if (Module[\"preInit\"]) {\n if (typeof Module[\"preInit\"] == \"function\")\n Module[\"preInit\"] = [Module[\"preInit\"]];\n while (Module[\"preInit\"].length > 0) {\n Module[\"preInit\"].pop()();\n }\n }\n run();\n var listenersAdded;\n if (beforeListeners) {\n listenersAdded = { uncaughtException: process.listeners(\"uncaughtException\").filter(function(listener) {\n return !beforeListeners.uncaughtException.indexOf(listener) > -1;\n }), unhandledRejection: process.listeners(\"unhandledRejection\").filter(function(listener) {\n return !beforeListeners.unhandledRejection.indexOf(listener) > -1;\n }) };\n }\n var actualModule;\n if (typeof WasmBackendModule3 !== \"undefined\") {\n actualModule = WasmBackendModule3;\n } else if (typeof WasmBackendModuleThreadedSimd !== \"undefined\") {\n actualModule = WasmBackendModuleThreadedSimd;\n } else {\n throw new Error(\"Could not find wasm module in post.js\");\n }\n if (listenersAdded) {\n var tmpDispose = actualModule[\"_dispose\"];\n actualModule[\"_dispose\"] = function() {\n tmpDispose();\n listenersAdded.uncaughtException.forEach(function(listener) {\n process.removeListener(\"uncaughtException\", listener);\n });\n listenersAdded.unhandledRejection.forEach(function(listener) {\n process.removeListener(\"unhandledRejection\", listener);\n });\n };\n }\n return WasmBackendModule3.ready;\n };\n })();\n if (typeof exports === \"object\" && typeof module === \"object\")\n module.exports = WasmBackendModule2;\n else if (typeof define === \"function\" && define[\"amd\"])\n define([], function() {\n return WasmBackendModule2;\n });\n else if (typeof exports === \"object\")\n exports[\"WasmBackendModule\"] = WasmBackendModule2;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/backend.js\nvar EPSILON_FLOAT32 = 1e-7;\nvar EPSILON_FLOAT16 = 1e-4;\nvar DataStorage = class {\n constructor(backend2, dataMover) {\n this.backend = backend2;\n this.dataMover = dataMover;\n this.data = /* @__PURE__ */ new WeakMap();\n this.dataIdsCount = 0;\n }\n get(dataId) {\n if (!this.data.has(dataId)) {\n this.dataMover.moveData(this.backend, dataId);\n }\n return this.data.get(dataId);\n }\n set(dataId, value) {\n this.dataIdsCount++;\n this.data.set(dataId, value);\n }\n has(dataId) {\n return this.data.has(dataId);\n }\n delete(dataId) {\n this.dataIdsCount--;\n return this.data.delete(dataId);\n }\n numDataIds() {\n return this.dataIdsCount;\n }\n};\nvar KernelBackend = class {\n refCount(dataId) {\n return notYetImplemented(\"refCount\");\n }\n incRef(dataId) {\n return notYetImplemented(\"incRef\");\n }\n timerAvailable() {\n return true;\n }\n time(f) {\n return notYetImplemented(\"time\");\n }\n read(dataId) {\n return notYetImplemented(\"read\");\n }\n readSync(dataId) {\n return notYetImplemented(\"readSync\");\n }\n readToGPU(dataId, options) {\n return notYetImplemented(\"readToGPU\");\n }\n numDataIds() {\n return notYetImplemented(\"numDataIds\");\n }\n disposeData(dataId, force) {\n return notYetImplemented(\"disposeData\");\n }\n write(values, shape, dtype) {\n return notYetImplemented(\"write\");\n }\n move(dataId, values, shape, dtype, refCount) {\n return notYetImplemented(\"move\");\n }\n memory() {\n return notYetImplemented(\"memory\");\n }\n floatPrecision() {\n return notYetImplemented(\"floatPrecision\");\n }\n epsilon() {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16;\n }\n dispose() {\n return notYetImplemented(\"dispose\");\n }\n};\nfunction notYetImplemented(kernelName) {\n throw new Error(`'${kernelName}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/util_base.js\nfunction shuffle(array2) {\n let counter = array2.length;\n let index = 0;\n while (counter > 0) {\n index = Math.random() * counter | 0;\n counter--;\n swap(array2, counter, index);\n }\n}\nfunction shuffleCombo(array2, array22) {\n if (array2.length !== array22.length) {\n throw new Error(`Array sizes must match to be shuffled together First array length was ${array2.length}Second array length was ${array22.length}`);\n }\n let counter = array2.length;\n let index = 0;\n while (counter > 0) {\n index = Math.random() * counter | 0;\n counter--;\n swap(array2, counter, index);\n swap(array22, counter, index);\n }\n}\nfunction clamp(min7, x, max7) {\n return Math.max(min7, Math.min(x, max7));\n}\nfunction nearestLargerEven(val) {\n return val % 2 === 0 ? val : val + 1;\n}\nfunction swap(object, left, right) {\n const temp = object[left];\n object[left] = object[right];\n object[right] = temp;\n}\nfunction sum(arr) {\n let sum7 = 0;\n for (let i2 = 0; i2 < arr.length; i2++) {\n sum7 += arr[i2];\n }\n return sum7;\n}\nfunction randUniform(a, b) {\n const r2 = Math.random();\n return b * r2 + (1 - r2) * a;\n}\nfunction distSquared(a, b) {\n let result = 0;\n for (let i2 = 0; i2 < a.length; i2++) {\n const diff = Number(a[i2]) - Number(b[i2]);\n result += diff * diff;\n }\n return result;\n}\nfunction assert(expr, msg) {\n if (!expr) {\n throw new Error(typeof msg === \"string\" ? msg : msg());\n }\n}\nfunction assertShapesMatch(shapeA, shapeB, errorMessagePrefix = \"\") {\n assert(arraysEqual(shapeA, shapeB), () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n}\nfunction assertNonNull(a) {\n assert(a != null, () => `The input to the tensor constructor must be a non-null value.`);\n}\nfunction flatten(arr, result = [], skipTypedArray = false) {\n if (result == null) {\n result = [];\n }\n if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {\n for (let i2 = 0; i2 < arr.length; ++i2) {\n flatten(arr[i2], result, skipTypedArray);\n }\n } else {\n result.push(arr);\n }\n return result;\n}\nfunction sizeFromShape(shape) {\n if (shape.length === 0) {\n return 1;\n }\n let size = shape[0];\n for (let i2 = 1; i2 < shape.length; i2++) {\n size *= shape[i2];\n }\n return size;\n}\nfunction isScalarShape(shape) {\n return shape.length === 0;\n}\nfunction arraysEqual(n1, n2) {\n if (n1 === n2) {\n return true;\n }\n if (n1 == null || n2 == null) {\n return false;\n }\n if (n1.length !== n2.length) {\n return false;\n }\n for (let i2 = 0; i2 < n1.length; i2++) {\n if (n1[i2] !== n2[i2]) {\n return false;\n }\n }\n return true;\n}\nfunction isInt(a) {\n return a % 1 === 0;\n}\nfunction tanh(x) {\n if (Math.tanh != null) {\n return Math.tanh(x);\n }\n if (x === Infinity) {\n return 1;\n } else if (x === -Infinity) {\n return -1;\n } else {\n const e2x = Math.exp(2 * x);\n return (e2x - 1) / (e2x + 1);\n }\n}\nfunction sizeToSquarishShape(size) {\n const width = Math.ceil(Math.sqrt(size));\n return [width, Math.ceil(size / width)];\n}\nfunction createShuffledIndices(n2) {\n const shuffledIndices = new Uint32Array(n2);\n for (let i2 = 0; i2 < n2; ++i2) {\n shuffledIndices[i2] = i2;\n }\n shuffle(shuffledIndices);\n return shuffledIndices;\n}\nfunction rightPad(a, size) {\n if (size <= a.length) {\n return a;\n }\n return a + \" \".repeat(size - a.length);\n}\nfunction repeatedTry(checkFn, delayFn = (counter) => 0, maxCounter) {\n return new Promise((resolve, reject) => {\n let tryCount = 0;\n const tryFn = () => {\n if (checkFn()) {\n resolve();\n return;\n }\n tryCount++;\n const nextBackoff = delayFn(tryCount);\n if (maxCounter != null && tryCount >= maxCounter) {\n reject();\n return;\n }\n setTimeout(tryFn, nextBackoff);\n };\n tryFn();\n });\n}\nfunction inferFromImplicitShape(shape, size) {\n let shapeProd = 1;\n let implicitIdx = -1;\n for (let i2 = 0; i2 < shape.length; ++i2) {\n if (shape[i2] >= 0) {\n shapeProd *= shape[i2];\n } else if (shape[i2] === -1) {\n if (implicitIdx !== -1) {\n throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${implicitIdx} and dim ${i2}`);\n }\n implicitIdx = i2;\n } else if (shape[i2] < 0) {\n throw Error(`Shapes can not be < 0. Found ${shape[i2]} at dim ${i2}`);\n }\n }\n if (implicitIdx === -1) {\n if (size > 0 && size !== shapeProd) {\n throw Error(`Size(${size}) must match the product of shape ${shape}`);\n }\n return shape;\n }\n if (shapeProd === 0) {\n throw Error(`Cannot infer the missing size in [${shape}] when there are 0 elements`);\n }\n if (size % shapeProd !== 0) {\n throw Error(`The implicit shape can't be a fractional number. Got ${size} / ${shapeProd}`);\n }\n const newShape = shape.slice();\n newShape[implicitIdx] = size / shapeProd;\n return newShape;\n}\nfunction parseAxisParam(axis, shape) {\n const rank = shape.length;\n axis = axis == null ? shape.map((s2, i2) => i2) : [].concat(axis);\n assert(axis.every((ax) => ax >= -rank && ax < rank), () => `All values in axis param must be in range [-${rank}, ${rank}) but got axis ${axis}`);\n assert(axis.every((ax) => isInt(ax)), () => `All values in axis param must be integers but got axis ${axis}`);\n return axis.map((a) => a < 0 ? rank + a : a);\n}\nfunction squeezeShape(shape, axis) {\n const newShape = [];\n const keptDims = [];\n const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;\n const axes = axis == null || isEmptyArray ? null : parseAxisParam(axis, shape).sort();\n let j = 0;\n for (let i2 = 0; i2 < shape.length; ++i2) {\n if (axes != null) {\n if (axes[j] === i2 && shape[i2] !== 1) {\n throw new Error(`Can't squeeze axis ${i2} since its dim '${shape[i2]}' is not 1`);\n }\n if ((axes[j] == null || axes[j] > i2) && shape[i2] === 1) {\n newShape.push(shape[i2]);\n keptDims.push(i2);\n }\n if (axes[j] <= i2) {\n j++;\n }\n }\n if (shape[i2] !== 1) {\n newShape.push(shape[i2]);\n keptDims.push(i2);\n }\n }\n return { newShape, keptDims };\n}\nfunction getTypedArrayFromDType(dtype, size) {\n let values = null;\n if (dtype == null || dtype === \"float32\") {\n values = new Float32Array(size);\n } else if (dtype === \"int32\") {\n values = new Int32Array(size);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values;\n}\nfunction getArrayFromDType(dtype, size) {\n let values = null;\n if (dtype == null || dtype === \"float32\") {\n values = new Float32Array(size);\n } else if (dtype === \"int32\") {\n values = new Int32Array(size);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(size);\n } else if (dtype === \"string\") {\n values = new Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values;\n}\nfunction checkConversionForErrors(vals, dtype) {\n for (let i2 = 0; i2 < vals.length; i2++) {\n const num = vals[i2];\n if (isNaN(num) || !isFinite(num)) {\n throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);\n }\n }\n}\nfunction isValidDtype(dtype) {\n return dtype === \"bool\" || dtype === \"complex64\" || dtype === \"float32\" || dtype === \"int32\" || dtype === \"string\";\n}\nfunction hasEncodingLoss(oldType, newType) {\n if (newType === \"complex64\") {\n return false;\n }\n if (newType === \"float32\" && oldType !== \"complex64\") {\n return false;\n }\n if (newType === \"int32\" && oldType !== \"float32\" && oldType !== \"complex64\") {\n return false;\n }\n if (newType === \"bool\" && oldType === \"bool\") {\n return false;\n }\n return true;\n}\nfunction isTypedArray(a) {\n return a instanceof Float32Array || a instanceof Int32Array || a instanceof Uint8Array || a instanceof Uint8ClampedArray;\n}\nfunction bytesPerElement(dtype) {\n if (dtype === \"float32\" || dtype === \"int32\") {\n return 4;\n } else if (dtype === \"complex64\") {\n return 8;\n } else if (dtype === \"bool\") {\n return 1;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\nfunction bytesFromStringArray(arr) {\n if (arr == null) {\n return 0;\n }\n let bytes = 0;\n arr.forEach((x) => bytes += x.length);\n return bytes;\n}\nfunction isString(value) {\n return typeof value === \"string\" || value instanceof String;\n}\nfunction isBoolean(value) {\n return typeof value === \"boolean\";\n}\nfunction isNumber(value) {\n return typeof value === \"number\";\n}\nfunction inferDtype(values) {\n if (Array.isArray(values)) {\n return inferDtype(values[0]);\n }\n if (values instanceof Float32Array) {\n return \"float32\";\n } else if (values instanceof Int32Array || values instanceof Uint8Array || values instanceof Uint8ClampedArray) {\n return \"int32\";\n } else if (isNumber(values)) {\n return \"float32\";\n } else if (isString(values)) {\n return \"string\";\n } else if (isBoolean(values)) {\n return \"bool\";\n }\n return \"float32\";\n}\nfunction isFunction(f) {\n return !!(f && f.constructor && f.call && f.apply);\n}\nfunction nearestDivisor(size, start) {\n for (let i2 = start; i2 < size; ++i2) {\n if (size % i2 === 0) {\n return i2;\n }\n }\n return size;\n}\nfunction computeStrides(shape) {\n const rank = shape.length;\n if (rank < 2) {\n return [];\n }\n const strides = new Array(rank - 1);\n strides[rank - 2] = shape[rank - 1];\n for (let i2 = rank - 3; i2 >= 0; --i2) {\n strides[i2] = strides[i2 + 1] * shape[i2 + 1];\n }\n return strides;\n}\nfunction createNestedArray(offset, shape, a, isComplex = false) {\n const ret = new Array();\n if (shape.length === 1) {\n const d = shape[0] * (isComplex ? 2 : 1);\n for (let i2 = 0; i2 < d; i2++) {\n ret[i2] = a[offset + i2];\n }\n } else {\n const d = shape[0];\n const rest = shape.slice(1);\n const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n for (let i2 = 0; i2 < d; i2++) {\n ret[i2] = createNestedArray(offset + i2 * len, rest, a, isComplex);\n }\n }\n return ret;\n}\nfunction toNestedArray(shape, a, isComplex = false) {\n if (shape.length === 0) {\n return a[0];\n }\n const size = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n if (size === 0) {\n return [];\n }\n if (size !== a.length) {\n throw new Error(`[${shape}] does not match the input size ${a.length}${isComplex ? \" for a complex tensor\" : \"\"}.`);\n }\n return createNestedArray(0, shape, a, isComplex);\n}\nfunction makeOnesTypedArray(size, dtype) {\n const array2 = makeZerosTypedArray(size, dtype);\n for (let i2 = 0; i2 < array2.length; i2++) {\n array2[i2] = 1;\n }\n return array2;\n}\nfunction makeZerosTypedArray(size, dtype) {\n if (dtype == null || dtype === \"float32\" || dtype === \"complex64\") {\n return new Float32Array(size);\n } else if (dtype === \"int32\") {\n return new Int32Array(size);\n } else if (dtype === \"bool\") {\n return new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\nfunction makeZerosNestedTypedArray(shape, dtype) {\n const size = shape.reduce((prev, curr) => prev * curr, 1);\n if (dtype == null || dtype === \"float32\") {\n return toNestedArray(shape, new Float32Array(size));\n } else if (dtype === \"int32\") {\n return toNestedArray(shape, new Int32Array(size));\n } else if (dtype === \"bool\") {\n return toNestedArray(shape, new Uint8Array(size));\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\nfunction assertNonNegativeIntegerDimensions(shape) {\n shape.forEach((dimSize) => {\n assert(Number.isInteger(dimSize) && dimSize >= 0, () => `Tensor must have a shape comprised of positive integers but got shape [${shape}].`);\n });\n}\nfunction locToIndex(locs, rank, strides) {\n if (rank === 0) {\n return 0;\n } else if (rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n index += strides[i2] * locs[i2];\n }\n return index;\n}\nfunction indexToLoc(index, rank, strides) {\n if (rank === 0) {\n return [];\n } else if (rank === 1) {\n return [index];\n }\n const locs = new Array(rank);\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n locs[i2] = Math.floor(index / strides[i2]);\n index -= locs[i2] * strides[i2];\n }\n locs[locs.length - 1] = index;\n return locs;\n}\nfunction isPromise(object) {\n return object && object.then && typeof object.then === \"function\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/environment.js\nvar TENSORFLOWJS_FLAGS_PREFIX = \"tfjsflags\";\nvar Environment = class {\n constructor(global2) {\n this.global = global2;\n this.flags = {};\n this.flagRegistry = {};\n this.urlFlags = {};\n this.getQueryParams = getQueryParams;\n this.populateURLFlags();\n }\n setPlatform(platformName, platform) {\n if (this.platform != null) {\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${platformName}.`);\n }\n }\n this.platformName = platformName;\n this.platform = platform;\n }\n registerFlag(flagName, evaluationFn, setHook) {\n this.flagRegistry[flagName] = { evaluationFn, setHook };\n if (this.urlFlags[flagName] != null) {\n const flagValue = this.urlFlags[flagName];\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.warn(`Setting feature override from URL ${flagName}: ${flagValue}.`);\n }\n this.set(flagName, flagValue);\n }\n }\n async getAsync(flagName) {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n this.flags[flagName] = await this.evaluateFlag(flagName);\n return this.flags[flagName];\n }\n get(flagName) {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n const flagValue = this.evaluateFlag(flagName);\n if (isPromise(flagValue)) {\n throw new Error(`Flag ${flagName} cannot be synchronously evaluated. Please use getAsync() instead.`);\n }\n this.flags[flagName] = flagValue;\n return this.flags[flagName];\n }\n getNumber(flagName) {\n return this.get(flagName);\n }\n getBool(flagName) {\n return this.get(flagName);\n }\n getFlags() {\n return this.flags;\n }\n get features() {\n return this.flags;\n }\n set(flagName, value) {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(`Cannot set flag ${flagName} as it has not been registered.`);\n }\n this.flags[flagName] = value;\n if (this.flagRegistry[flagName].setHook != null) {\n this.flagRegistry[flagName].setHook(value);\n }\n }\n evaluateFlag(flagName) {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(`Cannot evaluate flag '${flagName}': no evaluation function found.`);\n }\n return this.flagRegistry[flagName].evaluationFn();\n }\n setFlags(flags) {\n this.flags = Object.assign({}, flags);\n }\n reset() {\n this.flags = {};\n this.urlFlags = {};\n this.populateURLFlags();\n }\n populateURLFlags() {\n if (typeof this.global === \"undefined\" || typeof this.global.location === \"undefined\" || typeof this.global.location.search === \"undefined\") {\n return;\n }\n const urlParams = this.getQueryParams(this.global.location.search);\n if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) {\n const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(\",\");\n keyValues.forEach((keyValue) => {\n const [key, value] = keyValue.split(\":\");\n this.urlFlags[key] = parseValue(key, value);\n });\n }\n }\n};\nfunction getQueryParams(queryString) {\n const params = {};\n queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s2, ...t2) => {\n decodeParam(params, t2[0], t2[1]);\n return t2.join(\"=\");\n });\n return params;\n}\nfunction decodeParam(params, name, value) {\n params[decodeURIComponent(name)] = decodeURIComponent(value || \"\");\n}\nfunction parseValue(flagName, value) {\n value = value.toLowerCase();\n if (value === \"true\" || value === \"false\") {\n return value === \"true\";\n } else if (`${+value}` === value) {\n return +value;\n }\n throw new Error(`Could not parse value flag value ${value} for flag ${flagName}.`);\n}\nfunction env() {\n return ENV;\n}\nvar ENV = null;\nfunction setEnvironmentGlobal(environment) {\n ENV = environment;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/global_util.js\nvar globalNameSpace;\nfunction getGlobalNamespace() {\n if (globalNameSpace == null) {\n let ns;\n if (typeof window !== \"undefined\") {\n ns = window;\n } else if (typeof global !== \"undefined\") {\n ns = global;\n } else if (typeof process !== \"undefined\") {\n ns = process;\n } else if (typeof self !== \"undefined\") {\n ns = self;\n } else {\n throw new Error(\"Could not find a global object\");\n }\n globalNameSpace = ns;\n }\n return globalNameSpace;\n}\nfunction getGlobalMap() {\n const ns = getGlobalNamespace();\n if (ns._tfGlobals == null) {\n ns._tfGlobals = /* @__PURE__ */ new Map();\n }\n return ns._tfGlobals;\n}\nfunction getGlobal(key, init2) {\n const globalMap = getGlobalMap();\n if (globalMap.has(key)) {\n return globalMap.get(key);\n } else {\n const singleton = init2();\n globalMap.set(key, singleton);\n return globalMap.get(key);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/kernel_names.js\nvar Abs = \"Abs\";\nvar Acos = \"Acos\";\nvar Acosh = \"Acosh\";\nvar Add = \"Add\";\nvar AddN = \"AddN\";\nvar All = \"All\";\nvar Any = \"Any\";\nvar ArgMax = \"ArgMax\";\nvar ArgMin = \"ArgMin\";\nvar Asin = \"Asin\";\nvar Asinh = \"Asinh\";\nvar Atan = \"Atan\";\nvar Atanh = \"Atanh\";\nvar Atan2 = \"Atan2\";\nvar AvgPool = \"AvgPool\";\nvar AvgPoolGrad = \"AvgPoolGrad\";\nvar AvgPool3D = \"AvgPool3D\";\nvar AvgPool3DGrad = \"AvgPool3DGrad\";\nvar BatchMatMul = \"BatchMatMul\";\nvar BatchToSpaceND = \"BatchToSpaceND\";\nvar Bincount = \"Bincount\";\nvar BroadcastTo = \"BroadcastTo\";\nvar BroadcastArgs = \"BroadcastArgs\";\nvar Cast = \"Cast\";\nvar Ceil = \"Ceil\";\nvar ClipByValue = \"ClipByValue\";\nvar Complex = \"Complex\";\nvar ComplexAbs = \"ComplexAbs\";\nvar Concat = \"Concat\";\nvar Conv2D = \"Conv2D\";\nvar Conv2DBackpropFilter = \"Conv2DBackpropFilter\";\nvar Conv2DBackpropInput = \"Conv2DBackpropInput\";\nvar Conv3D = \"Conv3D\";\nvar Conv3DBackpropFilterV2 = \"Conv3DBackpropFilterV2\";\nvar Conv3DBackpropInputV2 = \"Conv3DBackpropInputV2\";\nvar Cos = \"Cos\";\nvar Cosh = \"Cosh\";\nvar Cumprod = \"Cumprod\";\nvar Cumsum = \"Cumsum\";\nvar CropAndResize = \"CropAndResize\";\nvar DenseBincount = \"DenseBincount\";\nvar DepthToSpace = \"DepthToSpace\";\nvar DepthwiseConv2dNative = \"DepthwiseConv2dNative\";\nvar DepthwiseConv2dNativeBackpropFilter = \"DepthwiseConv2dNativeBackpropFilter\";\nvar DepthwiseConv2dNativeBackpropInput = \"DepthwiseConv2dNativeBackpropInput\";\nvar Diag = \"Diag\";\nvar Dilation2D = \"Dilation2D\";\nvar Dilation2DBackpropInput = \"Dilation2DBackpropInput\";\nvar Dilation2DBackpropFilter = \"Dilation2DBackpropFilter\";\nvar RealDiv = \"RealDiv\";\nvar Einsum = \"Einsum\";\nvar Elu = \"Elu\";\nvar EluGrad = \"EluGrad\";\nvar Erf = \"Erf\";\nvar Equal = \"Equal\";\nvar Exp = \"Exp\";\nvar ExpandDims = \"ExpandDims\";\nvar Expm1 = \"Expm1\";\nvar FFT = \"FFT\";\nvar Fill = \"Fill\";\nvar FlipLeftRight = \"FlipLeftRight\";\nvar Floor = \"Floor\";\nvar FloorDiv = \"FloorDiv\";\nvar FusedBatchNorm = \"FusedBatchNorm\";\nvar GatherV2 = \"GatherV2\";\nvar GatherNd = \"GatherNd\";\nvar Greater = \"Greater\";\nvar GreaterEqual = \"GreaterEqual\";\nvar Identity = \"Identity\";\nvar IFFT = \"IFFT\";\nvar Imag = \"Imag\";\nvar IsFinite = \"IsFinite\";\nvar IsInf = \"IsInf\";\nvar IsNan = \"IsNan\";\nvar LeakyRelu = \"LeakyRelu\";\nvar Less = \"Less\";\nvar LessEqual = \"LessEqual\";\nvar LinSpace = \"LinSpace\";\nvar Log = \"Log\";\nvar Log1p = \"Log1p\";\nvar LogicalAnd = \"LogicalAnd\";\nvar LogicalNot = \"LogicalNot\";\nvar LogicalOr = \"LogicalOr\";\nvar LogicalXor = \"LogicalXor\";\nvar LogSoftmax = \"LogSoftmax\";\nvar LowerBound = \"LowerBound\";\nvar LRN = \"LRN\";\nvar LRNGrad = \"LRNGrad\";\nvar Max = \"Max\";\nvar Maximum = \"Maximum\";\nvar MaxPool = \"MaxPool\";\nvar MaxPoolGrad = \"MaxPoolGrad\";\nvar MaxPool3D = \"MaxPool3D\";\nvar MaxPool3DGrad = \"MaxPool3DGrad\";\nvar MaxPoolWithArgmax = \"MaxPoolWithArgmax\";\nvar Mean = \"Mean\";\nvar Min = \"Min\";\nvar Minimum = \"Minimum\";\nvar MirrorPad = \"MirrorPad\";\nvar Mod = \"Mod\";\nvar Multinomial = \"Multinomial\";\nvar Multiply = \"Multiply\";\nvar Neg = \"Neg\";\nvar NotEqual = \"NotEqual\";\nvar NonMaxSuppressionV3 = \"NonMaxSuppressionV3\";\nvar NonMaxSuppressionV4 = \"NonMaxSuppressionV4\";\nvar NonMaxSuppressionV5 = \"NonMaxSuppressionV5\";\nvar OnesLike = \"OnesLike\";\nvar OneHot = \"OneHot\";\nvar Pack = \"Pack\";\nvar PadV2 = \"PadV2\";\nvar Pool = \"Pool\";\nvar Pow = \"Pow\";\nvar Prelu = \"Prelu\";\nvar Prod = \"Prod\";\nvar RaggedTensorToTensor = \"RaggedTensorToTensor\";\nvar Range = \"Range\";\nvar Real = \"Real\";\nvar Reciprocal = \"Reciprocal\";\nvar Relu = \"Relu\";\nvar Reshape = \"Reshape\";\nvar ResizeNearestNeighbor = \"ResizeNearestNeighbor\";\nvar ResizeNearestNeighborGrad = \"ResizeNearestNeighborGrad\";\nvar ResizeBilinear = \"ResizeBilinear\";\nvar ResizeBilinearGrad = \"ResizeBilinearGrad\";\nvar Relu6 = \"Relu6\";\nvar Reverse = \"Reverse\";\nvar Round = \"Round\";\nvar Rsqrt = \"Rsqrt\";\nvar ScatterNd = \"ScatterNd\";\nvar SearchSorted = \"SearchSorted\";\nvar Select = \"Select\";\nvar Selu = \"Selu\";\nvar Slice = \"Slice\";\nvar Sin = \"Sin\";\nvar Sinh = \"Sinh\";\nvar Sign = \"Sign\";\nvar Sigmoid = \"Sigmoid\";\nvar Softplus = \"Softplus\";\nvar Sqrt = \"Sqrt\";\nvar Sum = \"Sum\";\nvar SpaceToBatchND = \"SpaceToBatchND\";\nvar SplitV = \"SplitV\";\nvar Softmax = \"Softmax\";\nvar SparseFillEmptyRows = \"SparseFillEmptyRows\";\nvar SparseReshape = \"SparseReshape\";\nvar SparseSegmentMean = \"SparseSegmentMean\";\nvar SparseSegmentSum = \"SparseSegmentSum\";\nvar SparseToDense = \"SparseToDense\";\nvar SquaredDifference = \"SquaredDifference\";\nvar Square = \"Square\";\nvar StridedSlice = \"StridedSlice\";\nvar StringNGrams = \"StringNGrams\";\nvar StringSplit = \"StringSplit\";\nvar StringToHashBucketFast = \"StringToHashBucketFast\";\nvar Sub = \"Sub\";\nvar Tan = \"Tan\";\nvar Tanh = \"Tanh\";\nvar Tile = \"Tile\";\nvar TopK = \"TopK\";\nvar Transform = \"Transform\";\nvar Transpose = \"Transpose\";\nvar Unique = \"Unique\";\nvar Unpack = \"Unpack\";\nvar UnsortedSegmentSum = \"UnsortedSegmentSum\";\nvar UpperBound = \"UpperBound\";\nvar ZerosLike = \"ZerosLike\";\nvar Step = \"Step\";\nvar FromPixels = \"FromPixels\";\nvar RotateWithOffset = \"RotateWithOffset\";\nvar _FusedMatMul = \"_FusedMatMul\";\nvar FusedConv2D = \"FusedConv2D\";\nvar FusedDepthwiseConv2D = \"FusedDepthwiseConv2D\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/log.js\nfunction warn(...msg) {\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.warn(...msg);\n }\n}\nfunction log(...msg) {\n if (!(env().getBool(\"IS_TEST\") || env().getBool(\"PROD\"))) {\n console.log(...msg);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/kernel_registry.js\nvar kernelRegistry = getGlobal(\"kernelRegistry\", () => /* @__PURE__ */ new Map());\nvar gradRegistry = getGlobal(\"gradRegistry\", () => /* @__PURE__ */ new Map());\nfunction getKernel(kernelName, backendName) {\n const key = makeKey(kernelName, backendName);\n return kernelRegistry.get(key);\n}\nfunction getGradient(kernelName) {\n return gradRegistry.get(kernelName);\n}\nfunction getKernelsForBackend(backendName) {\n const it = kernelRegistry.entries();\n const result = [];\n while (true) {\n const { done, value } = it.next();\n if (done) {\n break;\n }\n const [key, config] = value;\n const [backend2] = key.split(\"_\");\n if (backend2 === backendName) {\n result.push(config);\n }\n }\n return result;\n}\nfunction registerKernel(config) {\n const { kernelName, backendName } = config;\n const key = makeKey(kernelName, backendName);\n if (kernelRegistry.has(key)) {\n warn(`The kernel '${kernelName}' for backend '${backendName}' is already registered`);\n }\n kernelRegistry.set(key, config);\n}\nfunction registerGradient(config) {\n const { kernelName } = config;\n if (gradRegistry.has(kernelName)) {\n if (env().getBool(\"DEBUG\")) {\n warn(`Overriding the gradient for '${kernelName}'`);\n }\n }\n gradRegistry.set(kernelName, config);\n}\nfunction unregisterKernel(kernelName, backendName) {\n const key = makeKey(kernelName, backendName);\n if (!kernelRegistry.has(key)) {\n throw new Error(`The kernel '${kernelName}' for backend '${backendName}' is not registered`);\n }\n kernelRegistry.delete(key);\n}\nfunction unregisterGradient(kernelName) {\n if (!gradRegistry.has(kernelName)) {\n throw new Error(`The gradient '${kernelName}' for backend is not registered`);\n }\n gradRegistry.delete(kernelName);\n}\nfunction copyRegisteredKernels(registeredBackendName, newBackendName) {\n const kernels = getKernelsForBackend(registeredBackendName);\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = Object.assign({}, kernelConfig, { backendName: newBackendName });\n registerKernel(newKernelConfig);\n });\n}\nfunction makeKey(kernelName, backendName) {\n return `${backendName}_${kernelName}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/util.js\nvar util_exports = {};\n__export(util_exports, {\n arraysEqual: () => arraysEqual,\n assert: () => assert,\n assertNonNegativeIntegerDimensions: () => assertNonNegativeIntegerDimensions,\n assertNonNull: () => assertNonNull,\n assertShapesMatch: () => assertShapesMatch,\n bytesFromStringArray: () => bytesFromStringArray,\n bytesPerElement: () => bytesPerElement,\n checkConversionForErrors: () => checkConversionForErrors,\n clamp: () => clamp,\n computeStrides: () => computeStrides,\n createScalarValue: () => createScalarValue,\n createShuffledIndices: () => createShuffledIndices,\n decodeString: () => decodeString,\n distSquared: () => distSquared,\n encodeString: () => encodeString,\n fetch: () => fetch3,\n fingerPrint64: () => fingerPrint64,\n flatten: () => flatten,\n getArrayFromDType: () => getArrayFromDType,\n getTypedArrayFromDType: () => getTypedArrayFromDType,\n hasEncodingLoss: () => hasEncodingLoss,\n hexToLong: () => hexToLong,\n indexToLoc: () => indexToLoc,\n inferDtype: () => inferDtype,\n inferFromImplicitShape: () => inferFromImplicitShape,\n isBoolean: () => isBoolean,\n isFunction: () => isFunction,\n isInt: () => isInt,\n isNumber: () => isNumber,\n isPromise: () => isPromise,\n isScalarShape: () => isScalarShape,\n isString: () => isString,\n isTypedArray: () => isTypedArray,\n isValidDtype: () => isValidDtype,\n locToIndex: () => locToIndex,\n makeOnesTypedArray: () => makeOnesTypedArray,\n makeZerosNestedTypedArray: () => makeZerosNestedTypedArray,\n makeZerosTypedArray: () => makeZerosTypedArray,\n nearestDivisor: () => nearestDivisor,\n nearestLargerEven: () => nearestLargerEven,\n now: () => now,\n parseAxisParam: () => parseAxisParam,\n randUniform: () => randUniform,\n repeatedTry: () => repeatedTry,\n rightPad: () => rightPad,\n shuffle: () => shuffle,\n shuffleCombo: () => shuffleCombo,\n sizeFromShape: () => sizeFromShape,\n sizeToSquarishShape: () => sizeToSquarishShape,\n squeezeShape: () => squeezeShape,\n sum: () => sum,\n swap: () => swap,\n tanh: () => tanh,\n toNestedArray: () => toNestedArray,\n toTypedArray: () => toTypedArray\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/hash_util.js\nvar LongExports = __toESM(require_long());\nvar Long = LongExports.default || LongExports;\nfunction hexToLong(hex) {\n return Long.fromString(hex, true, 16);\n}\nvar k0 = hexToLong(\"c3a5c85c97cb3127\");\nvar k1 = hexToLong(\"b492b66fbe98f273\");\nvar k2 = hexToLong(\"9ae16a3b2f90404f\");\nfunction shiftMix(val) {\n return val.xor(val.shru(47));\n}\nfunction fetch2(s2, offset, numBytes) {\n const bytes = s2.slice(offset, offset + numBytes);\n return Long.fromBytes(Array.from(bytes), true, true);\n}\nfunction fetch64(s2, offset) {\n return fetch2(s2, offset, 8);\n}\nfunction fetch32(s2, offset) {\n return fetch2(s2, offset, 4);\n}\nfunction rotate64(val, shift) {\n return shift === 0 ? val : val.shru(shift).or(val.shl(64 - shift));\n}\nfunction hashLen16(u, v, mul2 = hexToLong(\"9ddfea08eb382d69\")) {\n let a = u.xor(v).mul(mul2);\n a = a.xor(a.shru(47));\n let b = v.xor(a).mul(mul2);\n b = b.xor(b.shru(47));\n b = b.mul(mul2);\n return b;\n}\nfunction weakHashLen32WithSeeds(w, x, y, z, a, b) {\n a = a.add(w);\n b = rotate64(b.add(a).add(z), 21);\n const c = a;\n a = a.add(x);\n a = a.add(y);\n b = b.add(rotate64(a, 44));\n return [a.add(z), b.add(c)];\n}\nfunction weakHashLen32WithSeedsStr(s2, offset, a, b) {\n return weakHashLen32WithSeeds(fetch64(s2, offset), fetch64(s2, offset + 8), fetch64(s2, offset + 16), fetch64(s2, offset + 24), a, b);\n}\nfunction hashLen0to16(s2, len = s2.length) {\n if (len >= 8) {\n const mul2 = k2.add(len * 2);\n const a = fetch64(s2, 0).add(k2);\n const b = fetch64(s2, len - 8);\n const c = rotate64(b, 37).mul(mul2).add(a);\n const d = rotate64(a, 25).add(b).mul(mul2);\n return hashLen16(c, d, mul2);\n }\n if (len >= 4) {\n const mul2 = k2.add(len * 2);\n const a = fetch32(s2, 0);\n return hashLen16(a.shl(3).add(len), fetch32(s2, len - 4), mul2);\n }\n if (len > 0) {\n const a = s2[0];\n const b = s2[len >> 1];\n const c = s2[len - 1];\n const y = a + (b << 8);\n const z = len + (c << 2);\n return shiftMix(k2.mul(y).xor(k0.mul(z))).mul(k2);\n }\n return k2;\n}\nfunction hashLen17to32(s2, len = s2.length) {\n const mul2 = k2.add(len * 2);\n const a = fetch64(s2, 0).mul(k1);\n const b = fetch64(s2, 8);\n const c = fetch64(s2, len - 8).mul(mul2);\n const d = fetch64(s2, len - 16).mul(k2);\n return hashLen16(rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d), a.add(rotate64(b.add(k2), 18)).add(c), mul2);\n}\nfunction hashLen33to64(s2, len = s2.length) {\n const mul2 = k2.add(len * 2);\n const a = fetch64(s2, 0).mul(k2);\n const b = fetch64(s2, 8);\n const c = fetch64(s2, len - 8).mul(mul2);\n const d = fetch64(s2, len - 16).mul(k2);\n const y = rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d);\n const z = hashLen16(y, a.add(rotate64(b.add(k2), 18)).add(c), mul2);\n const e2 = fetch64(s2, 16).mul(mul2);\n const f = fetch64(s2, 24);\n const g = y.add(fetch64(s2, len - 32)).mul(mul2);\n const h = z.add(fetch64(s2, len - 24)).mul(mul2);\n return hashLen16(rotate64(e2.add(f), 43).add(rotate64(g, 30)).add(h), e2.add(rotate64(f.add(a), 18)).add(g), mul2);\n}\nfunction fingerPrint64(s2, len = s2.length) {\n const seed = Long.fromNumber(81, true);\n if (len <= 32) {\n if (len <= 16) {\n return hashLen0to16(s2, len);\n } else {\n return hashLen17to32(s2, len);\n }\n } else if (len <= 64) {\n return hashLen33to64(s2, len);\n }\n let x = seed;\n let y = seed.mul(k1).add(113);\n let z = shiftMix(y.mul(k2).add(113)).mul(k2);\n let v = [Long.UZERO, Long.UZERO];\n let w = [Long.UZERO, Long.UZERO];\n x = x.mul(k2).add(fetch64(s2, 0));\n let offset = 0;\n const end = (len - 1 >> 6) * 64;\n const last64 = end + (len - 1 & 63) - 63;\n do {\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s2, offset + 8)), 37).mul(k1);\n y = rotate64(y.add(v[1]).add(fetch64(s2, offset + 48)), 42).mul(k1);\n x = x.xor(w[1]);\n y = y.add(v[0]).add(fetch64(s2, offset + 40));\n z = rotate64(z.add(w[0]), 33).mul(k1);\n v = weakHashLen32WithSeedsStr(s2, offset, v[1].mul(k1), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(s2, offset + 32, z.add(w[1]), y.add(fetch64(s2, offset + 16)));\n [z, x] = [x, z];\n offset += 64;\n } while (offset !== end);\n const mul2 = k1.add(z.and(255).shl(1));\n offset = last64;\n w[0] = w[0].add(len - 1 & 63);\n v[0] = v[0].add(w[0]);\n w[0] = w[0].add(v[0]);\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s2, offset + 8)), 37).mul(mul2);\n y = rotate64(y.add(v[1]).add(fetch64(s2, offset + 48)), 42).mul(mul2);\n x = x.xor(w[1].mul(9));\n y = y.add(v[0].mul(9).add(fetch64(s2, offset + 40)));\n z = rotate64(z.add(w[0]), 33).mul(mul2);\n v = weakHashLen32WithSeedsStr(s2, offset, v[1].mul(mul2), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(s2, offset + 32, z.add(w[1]), y.add(fetch64(s2, offset + 16)));\n [z, x] = [x, z];\n return hashLen16(hashLen16(v[0], w[0], mul2).add(shiftMix(y).mul(k0)).add(z), hashLen16(v[1], w[1], mul2).add(x), mul2);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/util.js\nfunction createScalarValue(value, dtype) {\n if (dtype === \"string\") {\n return encodeString(value);\n }\n return toTypedArray([value], dtype);\n}\nfunction noConversionNeeded(a, dtype) {\n return a instanceof Float32Array && dtype === \"float32\" || a instanceof Int32Array && dtype === \"int32\" || a instanceof Uint8Array && dtype === \"bool\";\n}\nfunction toTypedArray(a, dtype) {\n if (dtype === \"string\") {\n throw new Error(\"Cannot convert a string[] to a TypedArray\");\n }\n if (Array.isArray(a)) {\n a = flatten(a);\n }\n if (env().getBool(\"DEBUG\")) {\n checkConversionForErrors(a, dtype);\n }\n if (noConversionNeeded(a, dtype)) {\n return a;\n }\n if (dtype == null || dtype === \"float32\" || dtype === \"complex64\") {\n return new Float32Array(a);\n } else if (dtype === \"int32\") {\n return new Int32Array(a);\n } else if (dtype === \"bool\") {\n const bool = new Uint8Array(a.length);\n for (let i2 = 0; i2 < bool.length; ++i2) {\n if (Math.round(a[i2]) !== 0) {\n bool[i2] = 1;\n }\n }\n return bool;\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\nfunction now() {\n return env().platform.now();\n}\nfunction fetch3(path, requestInits) {\n return env().platform.fetch(path, requestInits);\n}\nfunction encodeString(s2, encoding = \"utf-8\") {\n encoding = encoding || \"utf-8\";\n return env().platform.encode(s2, encoding);\n}\nfunction decodeString(bytes, encoding = \"utf-8\") {\n encoding = encoding || \"utf-8\";\n return env().platform.decode(bytes, encoding);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/profiler.js\nvar Profiler = class {\n constructor(backendTimer, logger) {\n this.backendTimer = backendTimer;\n this.logger = logger;\n if (logger == null) {\n this.logger = new Logger();\n }\n }\n profileKernel(kernelName, inputs, f) {\n let outputs;\n const holdResultWrapperFn = () => {\n outputs = f();\n };\n let timer;\n const start = now();\n if (this.backendTimer.timerAvailable()) {\n timer = this.backendTimer.time(holdResultWrapperFn);\n } else {\n holdResultWrapperFn();\n for (const output of outputs) {\n output.dataSync();\n }\n timer = Promise.resolve({ kernelMs: now() - start });\n }\n if (env().getBool(\"CHECK_COMPUTATION_FOR_ERRORS\")) {\n for (let i2 = 0; i2 < outputs.length; i2++) {\n const output = outputs[i2];\n output.data().then((tensorVals) => {\n checkComputationForErrors(tensorVals, output.dtype, kernelName);\n });\n }\n }\n const kernelProfile = {\n kernelName,\n outputs,\n inputs,\n timeMs: timer.then((timing) => timing.kernelMs),\n extraInfo: timer.then((timing) => timing.getExtraProfileInfo != null ? timing.getExtraProfileInfo() : \"\")\n };\n return kernelProfile;\n }\n logKernelProfile(kernelProfile) {\n const { kernelName, outputs, timeMs, inputs, extraInfo } = kernelProfile;\n outputs.forEach((result) => {\n Promise.all([result.data(), timeMs, extraInfo]).then((valueContainer) => {\n this.logger.logKernelProfile(kernelName, result, valueContainer[0], valueContainer[1], inputs, valueContainer[2]);\n });\n });\n }\n};\nfunction checkComputationForErrors(vals, dtype, kernelName) {\n if (dtype !== \"float32\") {\n return false;\n }\n for (let i2 = 0; i2 < vals.length; i2++) {\n const num = vals[i2];\n if (isNaN(num) || !isFinite(num)) {\n console.warn(`Found ${num} in the result of '${kernelName}'`);\n return true;\n }\n }\n return false;\n}\nvar Logger = class {\n logKernelProfile(name, result, vals, timeMs, inputs, extraInfo) {\n const time2 = typeof timeMs === \"number\" ? rightPad(`${timeMs}ms`, 9) : timeMs[\"error\"];\n const paddedName = rightPad(name, 25);\n const rank = result.rank;\n const size = result.size;\n const shape = rightPad(result.shape.toString(), 14);\n let inputShapesDescription = \"\";\n for (const name2 in inputs) {\n const input2 = inputs[name2];\n if (input2 != null) {\n const inputShape = input2.shape || result.shape;\n const inputRank = inputShape.length;\n inputShapesDescription += `${name2}: ${inputRank}D ${inputRank > 0 ? inputShape : \"\"} `;\n }\n }\n console.log(`%c${paddedName}\t%c${time2}\t%c${rank}D ${shape}\t%c${size}\t%c${inputShapesDescription}\t%c${extraInfo}`, \"font-weight:bold\", \"color:red\", \"color:blue\", \"color: orange\", \"color: green\", \"color: steelblue\");\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tape.js\nfunction getFilteredNodesXToY(tape, xs, y) {\n const tensorsFromX = {};\n const nodesFromX = {};\n for (let i2 = 0; i2 < xs.length; i2++) {\n tensorsFromX[xs[i2].id] = true;\n }\n for (let i2 = 0; i2 < tape.length; i2++) {\n const node = tape[i2];\n const nodeInputs = node.inputs;\n for (const inputName in nodeInputs) {\n const input2 = nodeInputs[inputName];\n let anyInputFromX = false;\n for (let j = 0; j < xs.length; j++) {\n if (tensorsFromX[input2.id]) {\n node.outputs.forEach((output) => tensorsFromX[output.id] = true);\n anyInputFromX = true;\n nodesFromX[node.id] = true;\n break;\n }\n }\n if (anyInputFromX) {\n break;\n }\n }\n }\n const tensorsLeadToY = {};\n tensorsLeadToY[y.id] = true;\n const nodesToY = {};\n for (let i2 = tape.length - 1; i2 >= 0; i2--) {\n const node = tape[i2];\n const nodeInputs = node.inputs;\n for (let j = 0; j < node.outputs.length; j++) {\n if (tensorsLeadToY[node.outputs[j].id]) {\n for (const inputName in nodeInputs) {\n tensorsLeadToY[nodeInputs[inputName].id] = true;\n nodesToY[node.id] = true;\n }\n break;\n }\n }\n }\n const filteredTape = [];\n for (let i2 = 0; i2 < tape.length; i2++) {\n const node = tape[i2];\n if (nodesFromX[node.id] && nodesToY[node.id]) {\n const prunedInputs = {};\n for (const inputName in node.inputs) {\n const nodeInput = node.inputs[inputName];\n if (tensorsFromX[nodeInput.id]) {\n prunedInputs[inputName] = nodeInput;\n }\n }\n const prunedNode = Object.assign({}, node);\n prunedNode.inputs = prunedInputs;\n prunedNode.outputs = node.outputs;\n filteredTape.push(prunedNode);\n }\n }\n return filteredTape;\n}\nfunction backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add5) {\n for (let i2 = filteredTape.length - 1; i2 >= 0; i2--) {\n const node = filteredTape[i2];\n const dys = [];\n node.outputs.forEach((o) => {\n const gradTensor = tensorAccumulatedGradientMap[o.id];\n if (gradTensor != null) {\n dys.push(gradTensor);\n } else {\n dys.push(null);\n }\n });\n if (node.gradient == null) {\n throw new Error(`Cannot compute gradient: gradient function not found for ${node.kernelName}.`);\n }\n const inputGradients = node.gradient(dys);\n for (const inputName in node.inputs) {\n if (!(inputName in inputGradients)) {\n throw new Error(`Cannot backprop through input ${inputName}. Available gradients found: ${Object.keys(inputGradients)}.`);\n }\n const dx = tidy2(() => inputGradients[inputName]());\n if (dx.dtype !== \"float32\") {\n throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input ${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);\n }\n const x = node.inputs[inputName];\n if (!arraysEqual(dx.shape, x.shape)) {\n throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input '${inputName}' has shape '${dx.shape}', which does not match the shape of the input '${x.shape}'`);\n }\n if (tensorAccumulatedGradientMap[x.id] == null) {\n tensorAccumulatedGradientMap[x.id] = dx;\n } else {\n const curGradient = tensorAccumulatedGradientMap[x.id];\n tensorAccumulatedGradientMap[x.id] = add5(curGradient, dx);\n curGradient.dispose();\n }\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor_format.js\nvar FORMAT_LIMIT_NUM_VALS = 20;\nvar FORMAT_NUM_FIRST_LAST_VALS = 3;\nvar FORMAT_NUM_SIG_DIGITS = 7;\nfunction tensorToString(vals, shape, dtype, verbose) {\n const strides = computeStrides(shape);\n const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides);\n const rank = shape.length;\n const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol);\n const lines = [\"Tensor\"];\n if (verbose) {\n lines.push(` dtype: ${dtype}`);\n lines.push(` rank: ${rank}`);\n lines.push(` shape: [${shape}]`);\n lines.push(` values:`);\n }\n lines.push(valsLines.map((l3) => \" \" + l3).join(\"\\n\"));\n return lines.join(\"\\n\");\n}\nfunction computeMaxSizePerColumn(vals, shape, dtype, strides) {\n const n2 = sizeFromShape(shape);\n const numCols = strides[strides.length - 1];\n const padPerCol = new Array(numCols).fill(0);\n const rank = shape.length;\n const valuesOrTuples = dtype === \"complex64\" ? createComplexTuples(vals) : vals;\n if (rank > 1) {\n for (let row = 0; row < n2 / numCols; row++) {\n const offset = row * numCols;\n for (let j = 0; j < numCols; j++) {\n padPerCol[j] = Math.max(padPerCol[j], valToString(valuesOrTuples[offset + j], 0, dtype).length);\n }\n }\n }\n return padPerCol;\n}\nfunction valToString(val, pad3, dtype) {\n let valStr;\n if (Array.isArray(val)) {\n valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`;\n } else if (isString(val)) {\n valStr = `'${val}'`;\n } else if (dtype === \"bool\") {\n valStr = boolNumToString(val);\n } else {\n valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString();\n }\n return rightPad(valStr, pad3);\n}\nfunction boolNumToString(v) {\n return v === 0 ? \"false\" : \"true\";\n}\nfunction subTensorToString(vals, shape, dtype, strides, padPerCol, isLast = true) {\n const storagePerElement = dtype === \"complex64\" ? 2 : 1;\n const size = shape[0];\n const rank = shape.length;\n if (rank === 0) {\n if (dtype === \"complex64\") {\n const complexTuple = createComplexTuples(vals);\n return [valToString(complexTuple[0], 0, dtype)];\n }\n if (dtype === \"bool\") {\n return [boolNumToString(vals[0])];\n }\n return [vals[0].toString()];\n }\n if (rank === 1) {\n if (size > FORMAT_LIMIT_NUM_VALS) {\n const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement;\n let firstVals = Array.from(vals.slice(0, firstValsSize));\n let lastVals = Array.from(vals.slice((size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement, size * storagePerElement));\n if (dtype === \"complex64\") {\n firstVals = createComplexTuples(firstVals);\n lastVals = createComplexTuples(lastVals);\n }\n return [\n \"[\" + firstVals.map((x, i2) => valToString(x, padPerCol[i2], dtype)).join(\", \") + \", ..., \" + lastVals.map((x, i2) => valToString(x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i2], dtype)).join(\", \") + \"]\"\n ];\n }\n const displayVals = dtype === \"complex64\" ? createComplexTuples(vals) : Array.from(vals);\n return [\n \"[\" + displayVals.map((x, i2) => valToString(x, padPerCol[i2], dtype)).join(\", \") + \"]\"\n ];\n }\n const subshape = shape.slice(1);\n const substrides = strides.slice(1);\n const stride = strides[0] * storagePerElement;\n const lines = [];\n if (size > FORMAT_LIMIT_NUM_VALS) {\n for (let i2 = 0; i2 < FORMAT_NUM_FIRST_LAST_VALS; i2++) {\n const start = i2 * stride;\n const end = start + stride;\n lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, false));\n }\n lines.push(\"...\");\n for (let i2 = size - FORMAT_NUM_FIRST_LAST_VALS; i2 < size; i2++) {\n const start = i2 * stride;\n const end = start + stride;\n lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i2 === size - 1));\n }\n } else {\n for (let i2 = 0; i2 < size; i2++) {\n const start = i2 * stride;\n const end = start + stride;\n lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i2 === size - 1));\n }\n }\n const sep = rank === 2 ? \",\" : \"\";\n lines[0] = \"[\" + lines[0] + sep;\n for (let i2 = 1; i2 < lines.length - 1; i2++) {\n lines[i2] = \" \" + lines[i2] + sep;\n }\n let newLineSep = \",\\n\";\n for (let i2 = 2; i2 < rank; i2++) {\n newLineSep += \"\\n\";\n }\n lines[lines.length - 1] = \" \" + lines[lines.length - 1] + \"]\" + (isLast ? \"\" : newLineSep);\n return lines;\n}\nfunction createComplexTuples(vals) {\n const complexTuples = [];\n for (let i2 = 0; i2 < vals.length; i2 += 2) {\n complexTuples.push([vals[i2], vals[i2 + 1]]);\n }\n return complexTuples;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor.js\nvar TensorBuffer = class {\n constructor(shape, dtype, values) {\n this.dtype = dtype;\n this.shape = shape.slice();\n this.size = sizeFromShape(shape);\n if (values != null) {\n const n2 = values.length;\n assert(n2 === this.size, () => `Length of values '${n2}' does not match the size inferred by the shape '${this.size}'.`);\n }\n if (dtype === \"complex64\") {\n throw new Error(`complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).`);\n }\n this.values = values || getArrayFromDType(dtype, this.size);\n this.strides = computeStrides(shape);\n }\n set(value, ...locs) {\n if (locs.length === 0) {\n locs = [0];\n }\n assert(locs.length === this.rank, () => `The number of provided coordinates (${locs.length}) must match the rank (${this.rank})`);\n const index = this.locToIndex(locs);\n this.values[index] = value;\n }\n get(...locs) {\n if (locs.length === 0) {\n locs = [0];\n }\n let i2 = 0;\n for (const loc of locs) {\n if (loc < 0 || loc >= this.shape[i2]) {\n const msg = `Requested out of range element at ${locs}. Buffer shape=${this.shape}`;\n throw new Error(msg);\n }\n i2++;\n }\n let index = locs[locs.length - 1];\n for (let i3 = 0; i3 < locs.length - 1; ++i3) {\n index += this.strides[i3] * locs[i3];\n }\n return this.values[index];\n }\n locToIndex(locs) {\n if (this.rank === 0) {\n return 0;\n } else if (this.rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n index += this.strides[i2] * locs[i2];\n }\n return index;\n }\n indexToLoc(index) {\n if (this.rank === 0) {\n return [];\n } else if (this.rank === 1) {\n return [index];\n }\n const locs = new Array(this.shape.length);\n for (let i2 = 0; i2 < locs.length - 1; ++i2) {\n locs[i2] = Math.floor(index / this.strides[i2]);\n index -= locs[i2] * this.strides[i2];\n }\n locs[locs.length - 1] = index;\n return locs;\n }\n get rank() {\n return this.shape.length;\n }\n toTensor() {\n return trackerFn().makeTensor(this.values, this.shape, this.dtype);\n }\n};\nvar trackerFn = null;\nvar opHandler = null;\nvar deprecationWarningFn = null;\nfunction setTensorTracker(fn) {\n trackerFn = fn;\n}\nfunction setOpHandler(handler) {\n opHandler = handler;\n}\nfunction setDeprecationWarningFn(fn) {\n deprecationWarningFn = fn;\n}\nvar Tensor = class {\n constructor(shape, dtype, dataId, id) {\n this.kept = false;\n this.isDisposedInternal = false;\n this.shape = shape.slice();\n this.dtype = dtype || \"float32\";\n this.size = sizeFromShape(shape);\n this.strides = computeStrides(shape);\n this.dataId = dataId;\n this.id = id;\n this.rankType = this.rank < 5 ? this.rank.toString() : \"higher\";\n }\n get rank() {\n return this.shape.length;\n }\n async buffer() {\n const vals = await this.data();\n return opHandler.buffer(this.shape, this.dtype, vals);\n }\n bufferSync() {\n return opHandler.buffer(this.shape, this.dtype, this.dataSync());\n }\n async array() {\n const vals = await this.data();\n return toNestedArray(this.shape, vals, this.dtype === \"complex64\");\n }\n arraySync() {\n return toNestedArray(this.shape, this.dataSync(), this.dtype === \"complex64\");\n }\n async data() {\n this.throwIfDisposed();\n const data = trackerFn().read(this.dataId);\n if (this.dtype === \"string\") {\n const bytes = await data;\n try {\n return bytes.map((b) => decodeString(b));\n } catch (_a) {\n throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\");\n }\n }\n return data;\n }\n dataToGPU(options) {\n this.throwIfDisposed();\n return trackerFn().readToGPU(this.dataId, options);\n }\n dataSync() {\n this.throwIfDisposed();\n const data = trackerFn().readSync(this.dataId);\n if (this.dtype === \"string\") {\n try {\n return data.map((b) => decodeString(b));\n } catch (_a) {\n throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\");\n }\n }\n return data;\n }\n async bytes() {\n this.throwIfDisposed();\n const data = await trackerFn().read(this.dataId);\n if (this.dtype === \"string\") {\n return data;\n } else {\n return new Uint8Array(data.buffer);\n }\n }\n dispose() {\n if (this.isDisposed) {\n return;\n }\n trackerFn().disposeTensor(this);\n this.isDisposedInternal = true;\n }\n get isDisposed() {\n return this.isDisposedInternal;\n }\n throwIfDisposed() {\n if (this.isDisposed) {\n throw new Error(`Tensor is disposed.`);\n }\n }\n print(verbose = false) {\n return opHandler.print(this, verbose);\n }\n clone() {\n this.throwIfDisposed();\n return opHandler.clone(this);\n }\n toString(verbose = false) {\n const vals = this.dataSync();\n return tensorToString(vals, this.shape, this.dtype, verbose);\n }\n cast(dtype) {\n this.throwIfDisposed();\n return opHandler.cast(this, dtype);\n }\n variable(trainable = true, name, dtype) {\n this.throwIfDisposed();\n return trackerFn().makeVariable(this, trainable, name, dtype);\n }\n};\nObject.defineProperty(Tensor, Symbol.hasInstance, {\n value: (instance) => {\n return !!instance && instance.data != null && instance.dataSync != null && instance.throwIfDisposed != null;\n }\n});\nfunction getGlobalTensorClass() {\n return getGlobal(\"Tensor\", () => {\n return Tensor;\n });\n}\ngetGlobalTensorClass();\nvar Variable = class extends Tensor {\n constructor(initialValue, trainable, name, tensorId) {\n super(initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId);\n this.trainable = trainable;\n this.name = name;\n }\n assign(newValue) {\n if (newValue.dtype !== this.dtype) {\n throw new Error(`dtype of the new value (${newValue.dtype}) and previous value (${this.dtype}) must match`);\n }\n if (!arraysEqual(newValue.shape, this.shape)) {\n throw new Error(`shape of the new value (${newValue.shape}) and previous value (${this.shape}) must match`);\n }\n trackerFn().disposeTensor(this);\n this.dataId = newValue.dataId;\n trackerFn().incRef(this, null);\n }\n dispose() {\n trackerFn().disposeVariable(this);\n this.isDisposedInternal = true;\n }\n};\nObject.defineProperty(Variable, Symbol.hasInstance, {\n value: (instance) => {\n return instance instanceof Tensor && instance.assign != null && instance.assign instanceof Function;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor_util.js\nvar tensor_util_exports = {};\n__export(tensor_util_exports, {\n assertTypesMatch: () => assertTypesMatch,\n getTensorsInContainer: () => getTensorsInContainer,\n isTensorInList: () => isTensorInList,\n makeTypesMatch: () => makeTypesMatch\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/types.js\nvar Rank;\n(function(Rank2) {\n Rank2[\"R0\"] = \"R0\";\n Rank2[\"R1\"] = \"R1\";\n Rank2[\"R2\"] = \"R2\";\n Rank2[\"R3\"] = \"R3\";\n Rank2[\"R4\"] = \"R4\";\n Rank2[\"R5\"] = \"R5\";\n Rank2[\"R6\"] = \"R6\";\n})(Rank || (Rank = {}));\nvar UpcastInt32AndMap;\n(function(UpcastInt32AndMap2) {\n UpcastInt32AndMap2[\"float32\"] = \"float32\";\n UpcastInt32AndMap2[\"int32\"] = \"int32\";\n UpcastInt32AndMap2[\"bool\"] = \"int32\";\n UpcastInt32AndMap2[\"complex64\"] = \"complex64\";\n})(UpcastInt32AndMap || (UpcastInt32AndMap = {}));\nvar UpcastBoolAndMap;\n(function(UpcastBoolAndMap2) {\n UpcastBoolAndMap2[\"float32\"] = \"float32\";\n UpcastBoolAndMap2[\"int32\"] = \"int32\";\n UpcastBoolAndMap2[\"bool\"] = \"bool\";\n UpcastBoolAndMap2[\"complex64\"] = \"complex64\";\n})(UpcastBoolAndMap || (UpcastBoolAndMap = {}));\nvar UpcastFloat32AndMap;\n(function(UpcastFloat32AndMap2) {\n UpcastFloat32AndMap2[\"float32\"] = \"float32\";\n UpcastFloat32AndMap2[\"int32\"] = \"float32\";\n UpcastFloat32AndMap2[\"bool\"] = \"float32\";\n UpcastFloat32AndMap2[\"complex64\"] = \"complex64\";\n})(UpcastFloat32AndMap || (UpcastFloat32AndMap = {}));\nvar UpcastComplex64AndMap;\n(function(UpcastComplex64AndMap2) {\n UpcastComplex64AndMap2[\"float32\"] = \"complex64\";\n UpcastComplex64AndMap2[\"int32\"] = \"complex64\";\n UpcastComplex64AndMap2[\"bool\"] = \"complex64\";\n UpcastComplex64AndMap2[\"complex64\"] = \"complex64\";\n})(UpcastComplex64AndMap || (UpcastComplex64AndMap = {}));\nvar upcastTypeMap = {\n \"float32\": UpcastFloat32AndMap,\n \"int32\": UpcastInt32AndMap,\n \"bool\": UpcastBoolAndMap,\n \"complex64\": UpcastComplex64AndMap\n};\nfunction upcastType(typeA, typeB) {\n if (typeA === \"string\" || typeB === \"string\") {\n if (typeA === \"string\" && typeB === \"string\") {\n return \"string\";\n }\n throw new Error(`Can not upcast ${typeA} with ${typeB}`);\n }\n return upcastTypeMap[typeA][typeB];\n}\nfunction sumOutType(type) {\n return upcastType(type, \"int32\");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor_util.js\nfunction makeTypesMatch(a, b) {\n if (a.dtype === b.dtype) {\n return [a, b];\n }\n const dtype = upcastType(a.dtype, b.dtype);\n return [a.cast(dtype), b.cast(dtype)];\n}\nfunction assertTypesMatch(a, b) {\n assert(a.dtype === b.dtype, () => `The dtypes of the first(${a.dtype}) and second(${b.dtype}) input must match`);\n}\nfunction isTensorInList(tensor2, tensorList) {\n return tensorList.some((x) => x.id === tensor2.id);\n}\nfunction getTensorsInContainer(result) {\n const list = [];\n const seen = /* @__PURE__ */ new Set();\n walkTensorContainer(result, list, seen);\n return list;\n}\nfunction walkTensorContainer(container, list, seen) {\n if (container == null) {\n return;\n }\n if (container instanceof Tensor) {\n list.push(container);\n return;\n }\n if (!isIterable(container)) {\n return;\n }\n const iterable = container;\n for (const k in iterable) {\n const val = iterable[k];\n if (!seen.has(val)) {\n seen.add(val);\n walkTensorContainer(val, list, seen);\n }\n }\n}\nfunction isIterable(obj) {\n return Array.isArray(obj) || typeof obj === \"object\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/engine.js\nfunction isRegisteredKernelInvocation(kernelInvocation) {\n return kernelInvocation.kernelName != null;\n}\nvar EngineState = class {\n constructor() {\n this.registeredVariables = {};\n this.nextTapeNodeId = 0;\n this.numBytes = 0;\n this.numTensors = 0;\n this.numStringTensors = 0;\n this.numDataBuffers = 0;\n this.gradientDepth = 0;\n this.kernelDepth = 0;\n this.scopeStack = [];\n this.numDataMovesStack = [];\n this.nextScopeId = 0;\n this.tensorInfo = /* @__PURE__ */ new WeakMap();\n this.profiling = false;\n this.activeProfile = {\n newBytes: 0,\n newTensors: 0,\n peakBytes: 0,\n kernels: [],\n result: null,\n get kernelNames() {\n return Array.from(new Set(this.kernels.map((k) => k.name)));\n }\n };\n }\n dispose() {\n for (const variableName in this.registeredVariables) {\n this.registeredVariables[variableName].dispose();\n }\n }\n};\nvar Engine = class {\n constructor(ENV8) {\n this.ENV = ENV8;\n this.registry = {};\n this.registryFactory = {};\n this.pendingBackendInitId = 0;\n this.state = new EngineState();\n }\n async ready() {\n if (this.pendingBackendInit != null) {\n return this.pendingBackendInit.then(() => {\n });\n }\n if (this.backendInstance != null) {\n return;\n }\n const sortedBackends = this.getSortedBackends();\n for (let i2 = 0; i2 < sortedBackends.length; i2++) {\n const backendName = sortedBackends[i2];\n const success = await this.initializeBackend(backendName).success;\n if (success) {\n await this.setBackend(backendName);\n return;\n }\n }\n throw new Error(`Could not initialize any backends, all backend initializations failed.`);\n }\n get backend() {\n if (this.pendingBackendInit != null) {\n throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);\n }\n if (this.backendInstance == null) {\n const { name, asyncInit } = this.initializeBackendsAndReturnBest();\n if (asyncInit) {\n throw new Error(`The highest priority backend '${name}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);\n }\n this.setBackend(name);\n }\n return this.backendInstance;\n }\n backendNames() {\n return Object.keys(this.registryFactory);\n }\n findBackend(backendName) {\n if (!(backendName in this.registry)) {\n if (backendName in this.registryFactory) {\n const { asyncInit } = this.initializeBackend(backendName);\n if (asyncInit) {\n return null;\n }\n } else {\n return null;\n }\n }\n return this.registry[backendName];\n }\n findBackendFactory(backendName) {\n if (!(backendName in this.registryFactory)) {\n return null;\n }\n return this.registryFactory[backendName].factory;\n }\n registerBackend(backendName, factory, priority = 1) {\n if (backendName in this.registryFactory) {\n warn(`${backendName} backend was already registered. Reusing existing backend factory.`);\n return false;\n }\n this.registryFactory[backendName] = { factory, priority };\n return true;\n }\n async setBackend(backendName) {\n if (this.registryFactory[backendName] == null) {\n throw new Error(`Backend name '${backendName}' not found in registry`);\n }\n this.backendName = backendName;\n if (this.registry[backendName] == null) {\n this.backendInstance = null;\n const { success, asyncInit } = this.initializeBackend(backendName);\n const result = asyncInit ? await success : success;\n if (!result) {\n return false;\n }\n }\n this.backendInstance = this.registry[backendName];\n this.setupRegisteredKernels();\n this.profiler = new Profiler(this.backendInstance);\n return true;\n }\n setupRegisteredKernels() {\n const kernels = getKernelsForBackend(this.backendName);\n kernels.forEach((kernel) => {\n if (kernel.setupFunc != null) {\n kernel.setupFunc(this.backendInstance);\n }\n });\n }\n disposeRegisteredKernels(backendName) {\n const kernels = getKernelsForBackend(backendName);\n kernels.forEach((kernel) => {\n if (kernel.disposeFunc != null) {\n kernel.disposeFunc(this.registry[backendName]);\n }\n });\n }\n initializeBackend(backendName) {\n const registryFactoryEntry = this.registryFactory[backendName];\n if (registryFactoryEntry == null) {\n throw new Error(`Cannot initialize backend ${backendName}, no registration found.`);\n }\n try {\n const backend2 = registryFactoryEntry.factory();\n if (backend2 && !(backend2 instanceof KernelBackend) && typeof backend2.then === \"function\") {\n const promiseId = ++this.pendingBackendInitId;\n const success = backend2.then((backendInstance) => {\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.registry[backendName] = backendInstance;\n this.pendingBackendInit = null;\n return true;\n }).catch((err) => {\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.pendingBackendInit = null;\n warn(`Initialization of backend ${backendName} failed`);\n warn(err.stack || err.message);\n return false;\n });\n this.pendingBackendInit = success;\n return { success, asyncInit: true };\n } else {\n this.registry[backendName] = backend2;\n return { success: true, asyncInit: false };\n }\n } catch (err) {\n warn(`Initialization of backend ${backendName} failed`);\n warn(err.stack || err.message);\n return { success: false, asyncInit: false };\n }\n }\n removeBackend(backendName) {\n if (!(backendName in this.registryFactory)) {\n throw new Error(`${backendName} backend not found in registry`);\n }\n if (this.backendName === backendName && this.pendingBackendInit != null) {\n this.pendingBackendInitId++;\n }\n if (backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n delete this.registryFactory[backendName];\n if (this.backendName === backendName) {\n this.pendingBackendInit = null;\n this.backendName = null;\n this.backendInstance = null;\n }\n }\n getSortedBackends() {\n if (Object.keys(this.registryFactory).length === 0) {\n throw new Error(\"No backend found in registry.\");\n }\n return Object.keys(this.registryFactory).sort((a, b) => {\n return this.registryFactory[b].priority - this.registryFactory[a].priority;\n });\n }\n initializeBackendsAndReturnBest() {\n const sortedBackends = this.getSortedBackends();\n for (let i2 = 0; i2 < sortedBackends.length; i2++) {\n const backendName = sortedBackends[i2];\n const { success, asyncInit } = this.initializeBackend(backendName);\n if (asyncInit || success) {\n return { name: backendName, asyncInit };\n }\n }\n throw new Error(`Could not initialize any backends, all backend initializations failed.`);\n }\n moveData(backend2, dataId) {\n const info = this.state.tensorInfo.get(dataId);\n const srcBackend = info.backend;\n const values = this.readSync(dataId);\n const refCount = srcBackend.refCount(dataId);\n srcBackend.disposeData(dataId, true);\n info.backend = backend2;\n backend2.move(dataId, values, info.shape, info.dtype, refCount);\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;\n }\n }\n tidy(nameOrFn, fn) {\n let name = null;\n if (fn == null) {\n if (typeof nameOrFn !== \"function\") {\n throw new Error(\"Please provide a function to tidy()\");\n }\n fn = nameOrFn;\n } else {\n if (typeof nameOrFn !== \"string\" && !(nameOrFn instanceof String)) {\n throw new Error(\"When calling with two arguments, the first argument to tidy() must be a string\");\n }\n if (typeof fn !== \"function\") {\n throw new Error(\"When calling with two arguments, the 2nd argument to tidy() must be a function\");\n }\n name = nameOrFn;\n }\n let result;\n return this.scopedRun(() => this.startScope(name), () => this.endScope(result), () => {\n result = fn();\n if (result instanceof Promise) {\n console.error(\"Cannot return a Promise inside of tidy.\");\n }\n return result;\n });\n }\n scopedRun(start, end, f) {\n start();\n try {\n const res = f();\n end();\n return res;\n } catch (ex) {\n end();\n throw ex;\n }\n }\n nextTensorId() {\n return Engine.nextTensorId++;\n }\n nextVariableId() {\n return Engine.nextVariableId++;\n }\n clone(x) {\n const y = ENGINE.runKernel(Identity, { x });\n const inputs = { x };\n const grad2 = (dy) => ({\n x: () => {\n const dtype = \"float32\";\n const gradInputs = { x: dy };\n const attrs = { dtype };\n return ENGINE.runKernel(\n Cast,\n gradInputs,\n attrs\n );\n }\n });\n const saved = [];\n this.addTapeNode(this.state.activeScope.name, inputs, [y], grad2, saved, {});\n return y;\n }\n runKernel(kernelName, inputs, attrs) {\n if (this.backendName == null) {\n this.backend;\n }\n const hasKernel = getKernel(kernelName, this.backendName) != null;\n if (!hasKernel) {\n throw new Error(`Kernel '${kernelName}' not registered for backend '${this.backendName}'`);\n }\n return this.runKernelFunc({ kernelName, inputs, attrs });\n }\n shouldCheckForMemLeaks() {\n return this.ENV.getBool(\"IS_TEST\");\n }\n checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos) {\n const numDataIdsAfter = this.backend.numDataIds();\n let numOutputDataIds = 0;\n outInfos.forEach((info) => {\n numOutputDataIds += info.dtype === \"complex64\" ? 3 : 1;\n });\n const numMoves = this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1];\n const dataIdsLeaked = numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves;\n if (dataIdsLeaked > 0) {\n throw new Error(`Backend '${this.backendName}' has an internal memory leak (${dataIdsLeaked} data ids) after running '${kernelName}'`);\n }\n }\n runKernelFunc(kernelParams) {\n let outputs;\n let saved = [];\n const isTapeOn = this.isTapeOn();\n const startingBytecount = this.state.numBytes;\n const startingNumTensors = this.state.numTensors;\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack.push(0);\n }\n let kernelFunc3;\n if (this.backendName == null) {\n this.backend;\n }\n let out;\n const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ? kernelParams.kernelName : this.state.activeScope != null ? this.state.activeScope.name : \"\";\n if (isRegisteredKernelInvocation(kernelParams)) {\n const { kernelName, inputs: inputs2, attrs: attrs2 } = kernelParams;\n if (this.backendName == null) {\n this.backend;\n }\n const kernel = getKernel(kernelName, this.backendName);\n assert(kernel != null, () => `Cannot find registered kernel '${kernelName}' for backend '${this.backendName}'`);\n kernelFunc3 = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = kernel.kernelFunc({ inputs: inputs2, attrs: attrs2, backend: this.backend });\n const outInfos = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos);\n }\n const outTensors = outInfos.map((outInfo) => {\n if (outInfo.rank != null) {\n return outInfo;\n }\n return this.makeTensorFromTensorInfo(outInfo);\n });\n if (isTapeOn) {\n const tensorsToSave = this.getTensorsForGradient(kernelName, inputs2, outTensors);\n saved = this.saveTensorsForBackwardMode(tensorsToSave);\n }\n return outTensors;\n };\n } else {\n const { forwardFunc } = kernelParams;\n const saveFunc = (tensors) => {\n if (!isTapeOn) {\n return;\n }\n saved = tensors.map((tensor2) => this.keep(this.clone(tensor2)));\n };\n kernelFunc3 = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = this.tidy(() => forwardFunc(this.backend, saveFunc));\n const outs = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs);\n }\n return outs;\n };\n }\n const { inputs, attrs } = kernelParams;\n const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ? null : kernelParams.backwardsFunc;\n let kernelProfile;\n this.scopedRun(\n () => this.state.kernelDepth++,\n () => this.state.kernelDepth--,\n () => {\n if (!this.ENV.getBool(\"DEBUG\") && !this.state.profiling) {\n outputs = kernelFunc3();\n } else {\n kernelProfile = this.profiler.profileKernel(kernelOrScopeName, inputs, () => kernelFunc3());\n if (this.ENV.getBool(\"DEBUG\")) {\n this.profiler.logKernelProfile(kernelProfile);\n }\n outputs = kernelProfile.outputs;\n }\n }\n );\n if (isTapeOn) {\n this.addTapeNode(kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs);\n }\n if (this.state.profiling) {\n this.state.activeProfile.kernels.push({\n name: kernelOrScopeName,\n bytesAdded: this.state.numBytes - startingBytecount,\n totalBytesSnapshot: this.state.numBytes,\n tensorsAdded: this.state.numTensors - startingNumTensors,\n totalTensorsSnapshot: this.state.numTensors,\n inputShapes: Object.keys(inputs).map((key) => inputs[key] != null ? inputs[key].shape : null),\n outputShapes: outputs.map((item) => item.shape),\n kernelTimeMs: kernelProfile.timeMs,\n extraInfo: kernelProfile.extraInfo\n });\n }\n return Array.isArray(out) ? outputs : outputs[0];\n }\n saveTensorsForBackwardMode(tensors) {\n const saved = tensors.map((tensor2) => this.keep(this.clone(tensor2)));\n return saved;\n }\n getTensorsForGradient(kernelName, inputs, outputs) {\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n const inputsToSave = gradConfig.inputsToSave || [];\n const outputsToSave = gradConfig.outputsToSave || [];\n let inputTensorsToSave;\n if (gradConfig.saveAllInputs) {\n assert(Array.isArray(inputs), () => \"saveAllInputs is true, expected inputs to be an array.\");\n inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]);\n } else {\n inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]);\n }\n const outputTensorsToSave = outputs.filter((_, i2) => outputsToSave[i2]);\n return inputTensorsToSave.concat(outputTensorsToSave);\n }\n return [];\n }\n makeTensor(values, shape, dtype, backend2) {\n if (values == null) {\n throw new Error(\"Values passed to engine.makeTensor() are null\");\n }\n dtype = dtype || \"float32\";\n backend2 = backend2 || this.backend;\n let backendVals = values;\n if (dtype === \"string\" && isString(values[0])) {\n backendVals = values.map((d) => encodeString(d));\n }\n const dataId = backend2.write(backendVals, shape, dtype);\n const t2 = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t2, backend2);\n if (dtype === \"string\") {\n const info = this.state.tensorInfo.get(dataId);\n const newBytes = bytesFromStringArray(backendVals);\n this.state.numBytes += newBytes - info.bytes;\n info.bytes = newBytes;\n }\n return t2;\n }\n makeTensorFromDataId(dataId, shape, dtype, backend2) {\n dtype = dtype || \"float32\";\n const tensorInfo = { dataId, shape, dtype };\n return this.makeTensorFromTensorInfo(tensorInfo, backend2);\n }\n makeTensorFromTensorInfo(tensorInfo, backend2) {\n const { dataId, shape, dtype } = tensorInfo;\n const t2 = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t2, backend2);\n return t2;\n }\n makeVariable(initialValue, trainable = true, name, dtype) {\n name = name || this.nextVariableId().toString();\n if (dtype != null && dtype !== initialValue.dtype) {\n initialValue = initialValue.cast(dtype);\n }\n const v = new Variable(initialValue, trainable, name, this.nextTensorId());\n if (this.state.registeredVariables[v.name] != null) {\n throw new Error(`Variable with name ${v.name} was already registered`);\n }\n this.state.registeredVariables[v.name] = v;\n this.incRef(v, this.backend);\n return v;\n }\n trackTensor(a, backend2) {\n this.state.numTensors++;\n if (a.dtype === \"string\") {\n this.state.numStringTensors++;\n }\n let bytes = 0;\n if (a.dtype !== \"complex64\" && a.dtype !== \"string\") {\n bytes = a.size * bytesPerElement(a.dtype);\n }\n this.state.numBytes += bytes;\n if (!this.state.tensorInfo.has(a.dataId)) {\n this.state.numDataBuffers++;\n this.state.tensorInfo.set(a.dataId, {\n backend: backend2 || this.backend,\n dtype: a.dtype,\n shape: a.shape,\n bytes\n });\n }\n if (!(a instanceof Variable)) {\n this.track(a);\n }\n }\n incRef(a, backend2) {\n this.trackTensor(a, backend2);\n this.backend.incRef(a.dataId);\n }\n removeDataId(dataId, backend2) {\n if (this.state.tensorInfo.has(dataId) && this.state.tensorInfo.get(dataId).backend === backend2) {\n this.state.tensorInfo.delete(dataId);\n this.state.numDataBuffers--;\n }\n }\n disposeTensor(a) {\n if (!this.state.tensorInfo.has(a.dataId)) {\n return;\n }\n const info = this.state.tensorInfo.get(a.dataId);\n this.state.numTensors--;\n if (a.dtype === \"string\") {\n this.state.numStringTensors--;\n this.state.numBytes -= info.bytes;\n }\n if (a.dtype !== \"complex64\" && a.dtype !== \"string\") {\n const bytes = a.size * bytesPerElement(a.dtype);\n this.state.numBytes -= bytes;\n }\n if (info.backend.disposeData(a.dataId)) {\n this.removeDataId(a.dataId, info.backend);\n }\n }\n disposeVariables() {\n for (const varName in this.state.registeredVariables) {\n const v = this.state.registeredVariables[varName];\n this.disposeVariable(v);\n }\n }\n disposeVariable(v) {\n this.disposeTensor(v);\n if (this.state.registeredVariables[v.name] != null) {\n delete this.state.registeredVariables[v.name];\n }\n }\n memory() {\n const info = this.backend.memory();\n info.numTensors = this.state.numTensors;\n info.numDataBuffers = this.state.numDataBuffers;\n info.numBytes = this.state.numBytes;\n if (this.state.numStringTensors > 0) {\n info.unreliable = true;\n if (info.reasons == null) {\n info.reasons = [];\n }\n info.reasons.push(\"Memory usage by string tensors is approximate (2 bytes per character)\");\n }\n return info;\n }\n async profile(query) {\n this.state.profiling = true;\n const startBytes = this.state.numBytes;\n const startNumTensors = this.state.numTensors;\n this.state.activeProfile.kernels = [];\n this.state.activeProfile.result = await query();\n this.state.profiling = false;\n this.state.activeProfile.peakBytes = Math.max(...this.state.activeProfile.kernels.map((d) => d.totalBytesSnapshot));\n this.state.activeProfile.newBytes = this.state.numBytes - startBytes;\n this.state.activeProfile.newTensors = this.state.numTensors - startNumTensors;\n for (const kernel of this.state.activeProfile.kernels) {\n kernel.kernelTimeMs = await kernel.kernelTimeMs;\n kernel.extraInfo = await kernel.extraInfo;\n }\n return this.state.activeProfile;\n }\n isTapeOn() {\n return this.state.gradientDepth > 0 && this.state.kernelDepth === 0;\n }\n addTapeNode(kernelName, inputs, outputs, gradientsFunc, saved, attrs) {\n const tapeNode = { id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved };\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n gradientsFunc = gradConfig.gradFunc;\n }\n if (gradientsFunc != null) {\n tapeNode.gradient = (dys) => {\n dys = dys.map((dy, i2) => {\n if (dy == null) {\n const output = outputs[i2];\n const vals = makeZerosTypedArray(output.size, output.dtype);\n return this.makeTensor(vals, output.shape, output.dtype);\n }\n return dy;\n });\n return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs);\n };\n }\n this.state.activeTape.push(tapeNode);\n }\n keep(result) {\n result.kept = true;\n return result;\n }\n startTape() {\n if (this.state.gradientDepth === 0) {\n this.state.activeTape = [];\n }\n this.state.gradientDepth++;\n }\n endTape() {\n this.state.gradientDepth--;\n }\n startScope(name) {\n const scopeInfo = {\n track: [],\n name: \"unnamed scope\",\n id: this.state.nextScopeId++\n };\n if (name) {\n scopeInfo.name = name;\n }\n this.state.scopeStack.push(scopeInfo);\n this.state.activeScope = scopeInfo;\n }\n endScope(result) {\n const tensorsToTrackInParent = getTensorsInContainer(result);\n const tensorsToTrackInParentSet = new Set(tensorsToTrackInParent.map((t2) => t2.id));\n for (let i2 = 0; i2 < this.state.activeScope.track.length; i2++) {\n const tensor2 = this.state.activeScope.track[i2];\n if (!tensor2.kept && !tensorsToTrackInParentSet.has(tensor2.id)) {\n tensor2.dispose();\n }\n }\n const oldScope = this.state.scopeStack.pop();\n this.state.activeScope = this.state.scopeStack.length === 0 ? null : this.state.scopeStack[this.state.scopeStack.length - 1];\n tensorsToTrackInParent.forEach((tensor2) => {\n if (!tensor2.kept && tensor2.scopeId === oldScope.id) {\n this.track(tensor2);\n }\n });\n }\n gradients(f, xs, dy, allowNoGradients = false) {\n assert(xs.length > 0, () => \"gradients() received an empty list of xs.\");\n if (dy != null && dy.dtype !== \"float32\") {\n throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);\n }\n const y = this.scopedRun(() => this.startTape(), () => this.endTape(), () => this.tidy(\"forward\", f));\n assert(y instanceof Tensor, () => \"The result y returned by f() must be a tensor.\");\n const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y);\n if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) {\n throw new Error(\"Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.\");\n }\n return this.tidy(\"backward\", () => {\n const accumulatedGradientMap = {};\n accumulatedGradientMap[y.id] = dy == null ? ones(y.shape) : dy;\n backpropagateGradients(\n accumulatedGradientMap,\n filteredTape,\n (f2) => this.tidy(f2),\n add\n );\n const grads2 = xs.map((x) => accumulatedGradientMap[x.id]);\n if (this.state.gradientDepth === 0) {\n this.state.activeTape.forEach((node) => {\n for (const tensor2 of node.saved) {\n tensor2.dispose();\n }\n });\n this.state.activeTape = null;\n }\n return { value: y, grads: grads2 };\n });\n }\n customGrad(f) {\n assert(isFunction(f), () => \"The f passed in customGrad(f) must be a function.\");\n return (...inputs) => {\n assert(inputs.every((t2) => t2 instanceof Tensor), () => \"The args passed in customGrad(f)(x1, x2,...) must all be tensors\");\n let res;\n const inputMap = {};\n inputs.forEach((input2, i2) => {\n inputMap[i2] = input2;\n });\n const forwardFunc = (_, save) => {\n res = f(...[...inputs, save]);\n assert(res.value instanceof Tensor, () => \"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor\");\n assert(isFunction(res.gradFunc), () => \"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function.\");\n return res.value;\n };\n const backwardsFunc = (dy, saved) => {\n const gradRes = res.gradFunc(dy, saved);\n const grads2 = Array.isArray(gradRes) ? gradRes : [gradRes];\n assert(grads2.length === inputs.length, () => \"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...).\");\n assert(grads2.every((t2) => t2 instanceof Tensor), () => \"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.\");\n const gradMap = {};\n grads2.forEach((grad2, i2) => {\n gradMap[i2] = () => grad2;\n });\n return gradMap;\n };\n return this.runKernelFunc({\n forwardFunc,\n backwardsFunc,\n inputs: inputMap\n });\n };\n }\n readSync(dataId) {\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readSync(dataId);\n }\n read(dataId) {\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.read(dataId);\n }\n readToGPU(dataId, options) {\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readToGPU(dataId, options);\n }\n async time(query) {\n const start = now();\n const timingInfo = await this.backend.time(query);\n timingInfo.wallMs = now() - start;\n return timingInfo;\n }\n track(result) {\n if (this.state.activeScope != null) {\n result.scopeId = this.state.activeScope.id;\n this.state.activeScope.track.push(result);\n }\n return result;\n }\n get registeredVariables() {\n return this.state.registeredVariables;\n }\n reset() {\n this.pendingBackendInitId++;\n this.state.dispose();\n this.ENV.reset();\n this.state = new EngineState();\n for (const backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n this.backendName = null;\n this.backendInstance = null;\n this.pendingBackendInit = null;\n }\n};\nEngine.nextTensorId = 0;\nEngine.nextVariableId = 0;\nfunction ones(shape) {\n const values = makeOnesTypedArray(sizeFromShape(shape), \"float32\");\n return ENGINE.makeTensor(values, shape, \"float32\");\n}\nfunction getOrMakeEngine() {\n const ns = getGlobalNamespace();\n if (ns._tfengine == null) {\n const environment = new Environment(ns);\n ns._tfengine = new Engine(environment);\n }\n setEnvironmentGlobal(ns._tfengine.ENV);\n setTensorTracker(() => ns._tfengine);\n return ns._tfengine;\n}\nvar ENGINE = getOrMakeEngine();\nfunction add(a, b) {\n const inputs = { a, b };\n return ENGINE.runKernel(Add, inputs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/device_util.js\nvar device_util_exports = {};\n__export(device_util_exports, {\n isBrowser: () => isBrowser,\n isMobile: () => isMobile,\n mockIsMobile: () => mockIsMobile\n});\nfunction _isNavigatorDefined() {\n return typeof navigator !== \"undefined\" && navigator != null;\n}\nvar isMobileMockValue;\nfunction mockIsMobile(value) {\n isMobileMockValue = value;\n}\nfunction isMobile(nav) {\n if (isMobileMockValue !== void 0) {\n return isMobileMockValue;\n }\n if (nav || _isNavigatorDefined()) {\n if (!nav) {\n nav = navigator;\n }\n if (nav.product === \"ReactNative\") {\n return true;\n }\n const a = nav.userAgent || nav.vendor || (typeof window !== \"undefined\" ? window.opera : \"\");\n if (!a) {\n const navAny = nav;\n return navAny.userAgentData && navAny.userAgentData.mobile;\n }\n return /(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i.test(a.substr(0, 4));\n }\n return false;\n}\nfunction isBrowser() {\n return typeof window !== \"undefined\" && window.document != null || typeof WorkerGlobalScope !== \"undefined\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/flags.js\nvar ENV2 = env();\nENV2.registerFlag(\"DEBUG\", () => false, (debugValue) => {\n if (debugValue) {\n console.warn(\"Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.\");\n }\n});\nENV2.registerFlag(\"IS_BROWSER\", () => isBrowser());\nENV2.registerFlag(\"IS_NODE\", () => typeof process !== \"undefined\" && typeof process.versions !== \"undefined\" && typeof process.versions.node !== \"undefined\");\nENV2.registerFlag(\"IS_CHROME\", () => typeof navigator !== \"undefined\" && navigator != null && navigator.userAgent != null && /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor));\nENV2.registerFlag(\"PROD\", () => false);\nENV2.registerFlag(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\", () => ENV2.getBool(\"DEBUG\"));\nENV2.registerFlag(\"DEPRECATION_WARNINGS_ENABLED\", () => true);\nENV2.registerFlag(\"IS_TEST\", () => false);\nENV2.registerFlag(\"CHECK_COMPUTATION_FOR_ERRORS\", () => true);\nENV2.registerFlag(\"WRAP_TO_IMAGEBITMAP\", () => false);\nENV2.registerFlag(\"ENGINE_COMPILE_ONLY\", () => false);\nENV2.registerFlag(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\", () => false);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/tensor_util_env.js\nfunction inferShape(val, dtype) {\n let firstElem = val;\n if (isTypedArray(val)) {\n return dtype === \"string\" ? [] : [val.length];\n }\n if (!Array.isArray(val)) {\n return [];\n }\n const shape = [];\n while (Array.isArray(firstElem) || isTypedArray(firstElem) && dtype !== \"string\") {\n shape.push(firstElem.length);\n firstElem = firstElem[0];\n }\n if (Array.isArray(val) && env().getBool(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\")) {\n deepAssertShapeConsistency(val, shape, []);\n }\n return shape;\n}\nfunction deepAssertShapeConsistency(val, shape, indices) {\n indices = indices || [];\n if (!Array.isArray(val) && !isTypedArray(val)) {\n assert(shape.length === 0, () => `Element arr[${indices.join(\"][\")}] is a primitive, but should be an array/TypedArray of ${shape[0]} elements`);\n return;\n }\n assert(shape.length > 0, () => `Element arr[${indices.join(\"][\")}] should be a primitive, but is an array of ${val.length} elements`);\n assert(val.length === shape[0], () => `Element arr[${indices.join(\"][\")}] should have ${shape[0]} elements, but has ${val.length} elements`);\n const subShape = shape.slice(1);\n for (let i2 = 0; i2 < val.length; ++i2) {\n deepAssertShapeConsistency(val[i2], subShape, indices.concat(i2));\n }\n}\nfunction assertDtype(expectedDtype, actualDType, argName, functionName) {\n if (expectedDtype === \"string_or_numeric\") {\n return;\n }\n if (expectedDtype == null) {\n throw new Error(`Expected dtype cannot be null.`);\n }\n if (expectedDtype !== \"numeric\" && expectedDtype !== actualDType || expectedDtype === \"numeric\" && actualDType === \"string\") {\n throw new Error(`Argument '${argName}' passed to '${functionName}' must be ${expectedDtype} tensor, but got ${actualDType} tensor`);\n }\n}\nfunction convertToTensor(x, argName, functionName, parseAsDtype = \"numeric\") {\n if (x instanceof Tensor) {\n assertDtype(parseAsDtype, x.dtype, argName, functionName);\n return x;\n }\n let inferredDtype = inferDtype(x);\n if (inferredDtype !== \"string\" && [\"bool\", \"int32\", \"float32\"].indexOf(parseAsDtype) >= 0) {\n inferredDtype = parseAsDtype;\n }\n assertDtype(parseAsDtype, inferredDtype, argName, functionName);\n if (x == null || !isTypedArray(x) && !Array.isArray(x) && typeof x !== \"number\" && typeof x !== \"boolean\" && typeof x !== \"string\") {\n const type = x == null ? \"null\" : x.constructor.name;\n throw new Error(`Argument '${argName}' passed to '${functionName}' must be a Tensor or TensorLike, but got '${type}'`);\n }\n const inferredShape = inferShape(x, inferredDtype);\n if (!isTypedArray(x) && !Array.isArray(x)) {\n x = [x];\n }\n const skipTypedArray = true;\n const values = inferredDtype !== \"string\" ? toTypedArray(x, inferredDtype) : flatten(x, [], skipTypedArray);\n return ENGINE.makeTensor(values, inferredShape, inferredDtype);\n}\nfunction convertToTensorArray(arg, argName, functionName, parseAsDtype = \"numeric\") {\n if (!Array.isArray(arg)) {\n throw new Error(`Argument ${argName} passed to ${functionName} must be a \\`Tensor[]\\` or \\`TensorLike[]\\``);\n }\n const tensors = arg;\n return tensors.map((t2, i2) => convertToTensor(t2, `${argName}[${i2}]`, functionName, parseAsDtype));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/operation.js\nvar OP_SCOPE_SUFFIX = \"__op\";\nfunction op(f) {\n const keys = Object.keys(f);\n if (keys.length !== 1) {\n throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${keys.length} keys.`);\n }\n let opName = keys[0];\n const fn = f[opName];\n if (opName.endsWith(\"_\")) {\n opName = opName.substring(0, opName.length - 1);\n }\n opName = opName + OP_SCOPE_SUFFIX;\n const f2 = (...args) => {\n ENGINE.startScope(opName);\n try {\n const result = fn(...args);\n if (isPromise(result)) {\n console.error(\"Cannot return a Promise inside of tidy.\");\n }\n ENGINE.endScope(result);\n return result;\n } catch (ex) {\n ENGINE.endScope(null);\n throw ex;\n }\n };\n Object.defineProperty(f2, \"name\", { value: opName, configurable: true });\n return f2;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/complex.js\nfunction complex_(real5, imag5) {\n const $real = convertToTensor(real5, \"real\", \"complex\");\n const $imag = convertToTensor(imag5, \"imag\", \"complex\");\n assertShapesMatch($real.shape, $imag.shape, `real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`);\n const inputs = { real: $real, imag: $imag };\n return ENGINE.runKernel(Complex, inputs);\n}\nvar complex = op({ complex_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor_ops_util.js\nfunction makeTensor(values, shape, inferredShape, dtype) {\n if (dtype == null) {\n dtype = inferDtype(values);\n }\n if (dtype === \"complex64\") {\n throw new Error(`Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).`);\n }\n if (!isTypedArray(values) && !Array.isArray(values) && typeof values !== \"number\" && typeof values !== \"boolean\" && typeof values !== \"string\") {\n throw new Error(\"values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray\");\n }\n if (shape != null) {\n assertNonNegativeIntegerDimensions(shape);\n const providedSize = sizeFromShape(shape);\n const inferredSize = sizeFromShape(inferredShape);\n assert(providedSize === inferredSize, () => `Based on the provided shape, [${shape}], the tensor should have ${providedSize} values but has ${inferredSize}`);\n for (let i2 = 0; i2 < inferredShape.length; ++i2) {\n const inferred = inferredShape[i2];\n const flatDimsDontMatch = i2 === inferredShape.length - 1 ? inferred !== sizeFromShape(shape.slice(i2)) : true;\n assert(inferredShape[i2] === shape[i2] || !flatDimsDontMatch, () => `Error creating a new Tensor. Inferred shape (${inferredShape}) does not match the provided shape (${shape}). `);\n }\n }\n if (!isTypedArray(values) && !Array.isArray(values)) {\n values = [values];\n }\n shape = shape || inferredShape;\n values = dtype !== \"string\" ? toTypedArray(values, dtype) : flatten(values, [], true);\n return ENGINE.makeTensor(values, shape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor.js\nfunction tensor(values, shape, dtype) {\n const inferredShape = inferShape(values, dtype);\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/types.js\nvar DTYPE_VALUE_SIZE_MAP = {\n \"float32\": 4,\n \"float16\": 2,\n \"int32\": 4,\n \"uint16\": 2,\n \"uint8\": 1,\n \"bool\": 1,\n \"complex64\": 8\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/io_utils.js\nvar NUM_BYTES_STRING_LENGTH = 4;\nasync function encodeWeights(tensors, group) {\n const specs = [];\n const dataPromises = [];\n const names = Array.isArray(tensors) ? tensors.map((tensor2) => tensor2.name) : Object.keys(tensors);\n for (let i2 = 0; i2 < names.length; ++i2) {\n const name = names[i2];\n const t2 = Array.isArray(tensors) ? tensors[i2].tensor : tensors[name];\n if (t2.dtype !== \"float32\" && t2.dtype !== \"int32\" && t2.dtype !== \"bool\" && t2.dtype !== \"string\" && t2.dtype !== \"complex64\") {\n throw new Error(`Unsupported dtype in weight '${name}': ${t2.dtype}`);\n }\n const spec = { name, shape: t2.shape, dtype: t2.dtype };\n if (t2.dtype === \"string\") {\n const utf8bytes = new Promise(async (resolve) => {\n const vals = await t2.bytes();\n const totalNumBytes = vals.reduce((p2, c) => p2 + c.length, 0) + NUM_BYTES_STRING_LENGTH * vals.length;\n const bytes = new Uint8Array(totalNumBytes);\n let offset = 0;\n for (let i3 = 0; i3 < vals.length; i3++) {\n const val = vals[i3];\n const bytesOfLength = new Uint8Array(new Uint32Array([val.length]).buffer);\n bytes.set(bytesOfLength, offset);\n offset += NUM_BYTES_STRING_LENGTH;\n bytes.set(val, offset);\n offset += val.length;\n }\n resolve(bytes);\n });\n dataPromises.push(utf8bytes);\n } else {\n dataPromises.push(t2.data());\n }\n if (group != null) {\n spec.group = group;\n }\n specs.push(spec);\n }\n const tensorValues = await Promise.all(dataPromises);\n return { data: concatenateTypedArrays(tensorValues), specs };\n}\nfunction decodeWeights(buffer2, specs) {\n const out = {};\n let float16Decode;\n let offset = 0;\n for (const spec of specs) {\n const name = spec.name;\n const dtype = spec.dtype;\n const shape = spec.shape;\n const size = sizeFromShape(shape);\n let values;\n if (\"quantization\" in spec) {\n const quantization = spec.quantization;\n if (quantization.dtype === \"uint8\" || quantization.dtype === \"uint16\") {\n if (!(\"min\" in quantization && \"scale\" in quantization)) {\n throw new Error(`Weight ${spec.name} with quantization ${quantization.dtype} doesn't have corresponding metadata min and scale.`);\n }\n } else if (quantization.dtype === \"float16\") {\n if (dtype !== \"float32\") {\n throw new Error(`Weight ${spec.name} is quantized with ${quantization.dtype} which only supports weights of type float32 not ${dtype}.`);\n }\n } else {\n throw new Error(`Weight ${spec.name} has unknown quantization dtype ${quantization.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);\n }\n const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype];\n const byteBuffer = buffer2.slice(offset, offset + size * quantizationSizeFactor);\n const quantizedArray = quantization.dtype === \"uint8\" ? new Uint8Array(byteBuffer) : new Uint16Array(byteBuffer);\n if (dtype === \"float32\") {\n if (quantization.dtype === \"uint8\" || quantization.dtype === \"uint16\") {\n values = new Float32Array(quantizedArray.length);\n for (let i2 = 0; i2 < quantizedArray.length; i2++) {\n const v = quantizedArray[i2];\n values[i2] = v * quantization.scale + quantization.min;\n }\n } else if (quantization.dtype === \"float16\") {\n if (float16Decode === void 0) {\n float16Decode = getFloat16Decoder();\n }\n values = float16Decode(quantizedArray);\n } else {\n throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type float32.`);\n }\n } else if (dtype === \"int32\") {\n if (quantization.dtype !== \"uint8\" && quantization.dtype !== \"uint16\") {\n throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type int32.`);\n }\n values = new Int32Array(quantizedArray.length);\n for (let i2 = 0; i2 < quantizedArray.length; i2++) {\n const v = quantizedArray[i2];\n values[i2] = Math.round(v * quantization.scale + quantization.min);\n }\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * quantizationSizeFactor;\n } else if (dtype === \"string\") {\n const size2 = sizeFromShape(spec.shape);\n values = [];\n for (let i2 = 0; i2 < size2; i2++) {\n const byteLength = new Uint32Array(buffer2.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0];\n offset += NUM_BYTES_STRING_LENGTH;\n const bytes = new Uint8Array(buffer2.slice(offset, offset + byteLength));\n values.push(bytes);\n offset += byteLength;\n }\n } else {\n const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype];\n const byteBuffer = buffer2.slice(offset, offset + size * dtypeFactor);\n if (dtype === \"float32\") {\n values = new Float32Array(byteBuffer);\n } else if (dtype === \"int32\") {\n values = new Int32Array(byteBuffer);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(byteBuffer);\n } else if (dtype === \"complex64\") {\n values = new Float32Array(byteBuffer);\n const real5 = new Float32Array(values.length / 2);\n const image2 = new Float32Array(values.length / 2);\n for (let i2 = 0; i2 < real5.length; i2++) {\n real5[i2] = values[i2 * 2];\n image2[i2] = values[i2 * 2 + 1];\n }\n const realTensor = tensor(real5, shape, \"float32\");\n const imageTensor = tensor(image2, shape, \"float32\");\n out[name] = complex(realTensor, imageTensor);\n realTensor.dispose();\n imageTensor.dispose();\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * dtypeFactor;\n }\n if (dtype !== \"complex64\") {\n out[name] = tensor(values, shape, dtype);\n }\n }\n return out;\n}\nfunction concatenateTypedArrays(xs) {\n if (xs === null) {\n throw new Error(`Invalid input value: ${JSON.stringify(xs)}`);\n }\n let totalByteLength = 0;\n const normalizedXs = [];\n xs.forEach((x) => {\n totalByteLength += x.byteLength;\n normalizedXs.push(x.byteLength === x.buffer.byteLength ? x : new x.constructor(x));\n if (!(x instanceof Float32Array || x instanceof Int32Array || x instanceof Uint8Array)) {\n throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`);\n }\n });\n const y = new Uint8Array(totalByteLength);\n let offset = 0;\n normalizedXs.forEach((x) => {\n y.set(new Uint8Array(x.buffer), offset);\n offset += x.byteLength;\n });\n return y.buffer;\n}\nvar useNodeBuffer = typeof Buffer !== \"undefined\" && (typeof Blob === \"undefined\" || typeof atob === \"undefined\" || typeof btoa === \"undefined\");\nfunction stringByteLength(str) {\n if (useNodeBuffer) {\n return Buffer.byteLength(str);\n }\n return new Blob([str]).size;\n}\nfunction arrayBufferToBase64String(buffer2) {\n if (useNodeBuffer) {\n return Buffer.from(buffer2).toString(\"base64\");\n }\n const buf = new Uint8Array(buffer2);\n let s2 = \"\";\n for (let i2 = 0, l3 = buf.length; i2 < l3; i2++) {\n s2 += String.fromCharCode(buf[i2]);\n }\n return btoa(s2);\n}\nfunction base64StringToArrayBuffer(str) {\n if (useNodeBuffer) {\n const buf = Buffer.from(str, \"base64\");\n return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);\n }\n const s2 = atob(str);\n const buffer2 = new Uint8Array(s2.length);\n for (let i2 = 0; i2 < s2.length; ++i2) {\n buffer2.set([s2.charCodeAt(i2)], i2);\n }\n return buffer2.buffer;\n}\nfunction concatenateArrayBuffers(buffers) {\n if (buffers.length === 1) {\n return buffers[0];\n }\n let totalByteLength = 0;\n buffers.forEach((buffer2) => {\n totalByteLength += buffer2.byteLength;\n });\n const temp = new Uint8Array(totalByteLength);\n let offset = 0;\n buffers.forEach((buffer2) => {\n temp.set(new Uint8Array(buffer2), offset);\n offset += buffer2.byteLength;\n });\n return temp.buffer;\n}\nfunction basename(path) {\n const SEPARATOR = \"/\";\n path = path.trim();\n while (path.endsWith(SEPARATOR)) {\n path = path.slice(0, path.length - 1);\n }\n const items = path.split(SEPARATOR);\n return items[items.length - 1];\n}\nfunction getModelJSONForModelArtifacts(artifacts, manifest) {\n const result = {\n modelTopology: artifacts.modelTopology,\n format: artifacts.format,\n generatedBy: artifacts.generatedBy,\n convertedBy: artifacts.convertedBy,\n weightsManifest: manifest\n };\n if (artifacts.signature != null) {\n result.signature = artifacts.signature;\n }\n if (artifacts.userDefinedMetadata != null) {\n result.userDefinedMetadata = artifacts.userDefinedMetadata;\n }\n if (artifacts.modelInitializer != null) {\n result.modelInitializer = artifacts.modelInitializer;\n }\n if (artifacts.trainingConfig != null) {\n result.trainingConfig = artifacts.trainingConfig;\n }\n return result;\n}\nasync function getModelArtifactsForJSON(modelJSON, loadWeights2) {\n const modelArtifacts = {\n modelTopology: modelJSON.modelTopology,\n format: modelJSON.format,\n generatedBy: modelJSON.generatedBy,\n convertedBy: modelJSON.convertedBy\n };\n if (modelJSON.trainingConfig != null) {\n modelArtifacts.trainingConfig = modelJSON.trainingConfig;\n }\n if (modelJSON.weightsManifest != null) {\n const [weightSpecs, weightData] = await loadWeights2(modelJSON.weightsManifest);\n modelArtifacts.weightSpecs = weightSpecs;\n modelArtifacts.weightData = weightData;\n }\n if (modelJSON.signature != null) {\n modelArtifacts.signature = modelJSON.signature;\n }\n if (modelJSON.userDefinedMetadata != null) {\n modelArtifacts.userDefinedMetadata = modelJSON.userDefinedMetadata;\n }\n if (modelJSON.modelInitializer != null) {\n modelArtifacts.modelInitializer = modelJSON.modelInitializer;\n }\n return modelArtifacts;\n}\nfunction getModelArtifactsInfoForJSON(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"Expected JSON model topology, received ArrayBuffer.\");\n }\n return {\n dateSaved: new Date(),\n modelTopologyType: \"JSON\",\n modelTopologyBytes: modelArtifacts.modelTopology == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),\n weightSpecsBytes: modelArtifacts.weightSpecs == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),\n weightDataBytes: modelArtifacts.weightData == null ? 0 : modelArtifacts.weightData.byteLength\n };\n}\nfunction computeFloat16MantisaTable() {\n const convertMantissa = (i2) => {\n let m = i2 << 13;\n let e2 = 0;\n while ((m & 8388608) === 0) {\n e2 -= 8388608;\n m <<= 1;\n }\n m &= ~8388608;\n e2 += 947912704;\n return m | e2;\n };\n const mantisaTable = new Uint32Array(2048);\n mantisaTable[0] = 0;\n for (let i2 = 1; i2 < 1024; i2++) {\n mantisaTable[i2] = convertMantissa(i2);\n }\n for (let i2 = 1024; i2 < 2048; i2++) {\n mantisaTable[i2] = 939524096 + (i2 - 1024 << 13);\n }\n return mantisaTable;\n}\nfunction computeFloat16ExponentTable() {\n const exponentTable = new Uint32Array(64);\n exponentTable[0] = 0;\n exponentTable[31] = 1199570944;\n exponentTable[32] = 2147483648;\n exponentTable[63] = 3347054592;\n for (let i2 = 1; i2 < 31; i2++) {\n exponentTable[i2] = i2 << 23;\n }\n for (let i2 = 33; i2 < 63; i2++) {\n exponentTable[i2] = 2147483648 + (i2 - 32 << 23);\n }\n return exponentTable;\n}\nfunction computeFloat16OffsetTable() {\n const offsetTable = new Uint32Array(64);\n for (let i2 = 0; i2 < 64; i2++) {\n offsetTable[i2] = 1024;\n }\n offsetTable[0] = offsetTable[32] = 0;\n return offsetTable;\n}\nfunction getFloat16Decoder() {\n const mantisaTable = computeFloat16MantisaTable();\n const exponentTable = computeFloat16ExponentTable();\n const offsetTable = computeFloat16OffsetTable();\n return (quantizedArray) => {\n const buffer2 = new ArrayBuffer(4 * quantizedArray.length);\n const bufferUint32View = new Uint32Array(buffer2);\n for (let index = 0; index < quantizedArray.length; index++) {\n const float16Bits = quantizedArray[index];\n const float32Bits = mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 1023)] + exponentTable[float16Bits >> 10];\n bufferUint32View[index] = float32Bits;\n }\n return new Float32Array(buffer2);\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/router_registry.js\nvar IORouterRegistry = class {\n constructor() {\n this.saveRouters = [];\n this.loadRouters = [];\n }\n static getInstance() {\n if (IORouterRegistry.instance == null) {\n IORouterRegistry.instance = new IORouterRegistry();\n }\n return IORouterRegistry.instance;\n }\n static registerSaveRouter(saveRouter) {\n IORouterRegistry.getInstance().saveRouters.push(saveRouter);\n }\n static registerLoadRouter(loadRouter) {\n IORouterRegistry.getInstance().loadRouters.push(loadRouter);\n }\n static getSaveHandlers(url) {\n return IORouterRegistry.getHandlers(url, \"save\");\n }\n static getLoadHandlers(url, loadOptions) {\n return IORouterRegistry.getHandlers(url, \"load\", loadOptions);\n }\n static getHandlers(url, handlerType, loadOptions) {\n const validHandlers = [];\n const routers = handlerType === \"load\" ? IORouterRegistry.getInstance().loadRouters : IORouterRegistry.getInstance().saveRouters;\n routers.forEach((router) => {\n const handler = router(url, loadOptions);\n if (handler !== null) {\n validHandlers.push(handler);\n }\n });\n return validHandlers;\n }\n};\nvar registerSaveRouter = (loudRouter) => IORouterRegistry.registerSaveRouter(loudRouter);\nvar registerLoadRouter = (loudRouter) => IORouterRegistry.registerLoadRouter(loudRouter);\nvar getSaveHandlers = (url) => IORouterRegistry.getSaveHandlers(url);\nvar getLoadHandlers = (url, loadOptions) => IORouterRegistry.getLoadHandlers(url, loadOptions);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/indexed_db.js\nvar DATABASE_NAME = \"tensorflowjs\";\nvar DATABASE_VERSION = 1;\nvar MODEL_STORE_NAME = \"models_store\";\nvar INFO_STORE_NAME = \"model_info_store\";\nfunction getIndexedDBFactory() {\n if (!env().getBool(\"IS_BROWSER\")) {\n throw new Error(\"Failed to obtain IndexedDB factory because the current environmentis not a web browser.\");\n }\n const theWindow = typeof window === \"undefined\" ? self : window;\n const factory = theWindow.indexedDB || theWindow.mozIndexedDB || theWindow.webkitIndexedDB || theWindow.msIndexedDB || theWindow.shimIndexedDB;\n if (factory == null) {\n throw new Error(\"The current browser does not appear to support IndexedDB.\");\n }\n return factory;\n}\nfunction setUpDatabase(openRequest) {\n const db = openRequest.result;\n db.createObjectStore(MODEL_STORE_NAME, { keyPath: \"modelPath\" });\n db.createObjectStore(INFO_STORE_NAME, { keyPath: \"modelPath\" });\n}\nvar BrowserIndexedDB = class {\n constructor(modelPath) {\n this.indexedDB = getIndexedDBFactory();\n if (modelPath == null || !modelPath) {\n throw new Error(\"For IndexedDB, modelPath must not be null, undefined or empty.\");\n }\n this.modelPath = modelPath;\n }\n async save(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");\n }\n return this.databaseAction(this.modelPath, modelArtifacts);\n }\n async load() {\n return this.databaseAction(this.modelPath);\n }\n databaseAction(modelPath, modelArtifacts) {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n if (modelArtifacts == null) {\n const modelTx = db.transaction(MODEL_STORE_NAME, \"readonly\");\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const getRequest = modelStore.get(this.modelPath);\n getRequest.onsuccess = () => {\n if (getRequest.result == null) {\n db.close();\n return reject(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));\n } else {\n resolve(getRequest.result.modelArtifacts);\n }\n };\n getRequest.onerror = (error) => {\n db.close();\n return reject(getRequest.error);\n };\n modelTx.oncomplete = () => db.close();\n } else {\n const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts);\n const infoTx = db.transaction(INFO_STORE_NAME, \"readwrite\");\n let infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const putInfoRequest = infoStore.put({ modelPath: this.modelPath, modelArtifactsInfo });\n let modelTx;\n putInfoRequest.onsuccess = () => {\n modelTx = db.transaction(MODEL_STORE_NAME, \"readwrite\");\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const putModelRequest = modelStore.put({\n modelPath: this.modelPath,\n modelArtifacts,\n modelArtifactsInfo\n });\n putModelRequest.onsuccess = () => resolve({ modelArtifactsInfo });\n putModelRequest.onerror = (error) => {\n infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const deleteInfoRequest = infoStore.delete(this.modelPath);\n deleteInfoRequest.onsuccess = () => {\n db.close();\n return reject(putModelRequest.error);\n };\n deleteInfoRequest.onerror = (error2) => {\n db.close();\n return reject(putModelRequest.error);\n };\n };\n };\n putInfoRequest.onerror = (error) => {\n db.close();\n return reject(putInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n }\n };\n openRequest.onerror = (error) => reject(openRequest.error);\n });\n }\n};\nBrowserIndexedDB.URL_SCHEME = \"indexeddb://\";\nvar indexedDBRouter = (url) => {\n if (!env().getBool(\"IS_BROWSER\")) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) {\n return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(indexedDBRouter);\nIORouterRegistry.registerLoadRouter(indexedDBRouter);\nfunction browserIndexedDB(modelPath) {\n return new BrowserIndexedDB(modelPath);\n}\nfunction maybeStripScheme(key) {\n return key.startsWith(BrowserIndexedDB.URL_SCHEME) ? key.slice(BrowserIndexedDB.URL_SCHEME.length) : key;\n}\nvar BrowserIndexedDBManager = class {\n constructor() {\n this.indexedDB = getIndexedDBFactory();\n }\n async listModels() {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const tx = db.transaction(INFO_STORE_NAME, \"readonly\");\n const store = tx.objectStore(INFO_STORE_NAME);\n const getAllInfoRequest = store.getAll();\n getAllInfoRequest.onsuccess = () => {\n const out = {};\n for (const item of getAllInfoRequest.result) {\n out[item.modelPath] = item.modelArtifactsInfo;\n }\n resolve(out);\n };\n getAllInfoRequest.onerror = (error) => {\n db.close();\n return reject(getAllInfoRequest.error);\n };\n tx.oncomplete = () => db.close();\n };\n openRequest.onerror = (error) => reject(openRequest.error);\n });\n }\n async removeModel(path) {\n path = maybeStripScheme(path);\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const infoTx = db.transaction(INFO_STORE_NAME, \"readwrite\");\n const infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const getInfoRequest = infoStore.get(path);\n let modelTx;\n getInfoRequest.onsuccess = () => {\n if (getInfoRequest.result == null) {\n db.close();\n return reject(new Error(`Cannot find model with path '${path}' in IndexedDB.`));\n } else {\n const deleteInfoRequest = infoStore.delete(path);\n const deleteModelData = () => {\n modelTx = db.transaction(MODEL_STORE_NAME, \"readwrite\");\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const deleteModelRequest = modelStore.delete(path);\n deleteModelRequest.onsuccess = () => resolve(getInfoRequest.result.modelArtifactsInfo);\n deleteModelRequest.onerror = (error) => reject(getInfoRequest.error);\n };\n deleteInfoRequest.onsuccess = deleteModelData;\n deleteInfoRequest.onerror = (error) => {\n deleteModelData();\n db.close();\n return reject(getInfoRequest.error);\n };\n }\n };\n getInfoRequest.onerror = (error) => {\n db.close();\n return reject(getInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n };\n openRequest.onerror = (error) => reject(openRequest.error);\n });\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/local_storage.js\nvar PATH_SEPARATOR = \"/\";\nvar PATH_PREFIX = \"tensorflowjs_models\";\nvar INFO_SUFFIX = \"info\";\nvar MODEL_TOPOLOGY_SUFFIX = \"model_topology\";\nvar WEIGHT_SPECS_SUFFIX = \"weight_specs\";\nvar WEIGHT_DATA_SUFFIX = \"weight_data\";\nvar MODEL_METADATA_SUFFIX = \"model_metadata\";\nfunction getModelKeys(path) {\n return {\n info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR),\n topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),\n weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),\n weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),\n modelMetadata: [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)\n };\n}\nfunction removeItems(keys) {\n for (const key of Object.values(keys)) {\n window.localStorage.removeItem(key);\n }\n}\nfunction getModelPathFromKey(key) {\n const items = key.split(PATH_SEPARATOR);\n if (items.length < 3) {\n throw new Error(`Invalid key format: ${key}`);\n }\n return items.slice(1, items.length - 1).join(PATH_SEPARATOR);\n}\nfunction maybeStripScheme2(key) {\n return key.startsWith(BrowserLocalStorage.URL_SCHEME) ? key.slice(BrowserLocalStorage.URL_SCHEME.length) : key;\n}\nvar BrowserLocalStorage = class {\n constructor(modelPath) {\n if (!env().getBool(\"IS_BROWSER\") || typeof window === \"undefined\" || typeof window.localStorage === \"undefined\") {\n throw new Error(\"The current environment does not support local storage.\");\n }\n this.LS = window.localStorage;\n if (modelPath == null || !modelPath) {\n throw new Error(\"For local storage, modelPath must not be null, undefined or empty.\");\n }\n this.modelPath = modelPath;\n this.keys = getModelKeys(this.modelPath);\n }\n async save(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");\n } else {\n const topology = JSON.stringify(modelArtifacts.modelTopology);\n const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs);\n const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts);\n try {\n this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo));\n this.LS.setItem(this.keys.topology, topology);\n this.LS.setItem(this.keys.weightSpecs, weightSpecs);\n this.LS.setItem(this.keys.weightData, arrayBufferToBase64String(modelArtifacts.weightData));\n const metadata = {\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n signature: modelArtifacts.signature != null ? modelArtifacts.signature : void 0,\n userDefinedMetadata: modelArtifacts.userDefinedMetadata != null ? modelArtifacts.userDefinedMetadata : void 0,\n modelInitializer: modelArtifacts.modelInitializer != null ? modelArtifacts.modelInitializer : void 0,\n trainingConfig: modelArtifacts.trainingConfig != null ? modelArtifacts.trainingConfig : void 0\n };\n this.LS.setItem(this.keys.modelMetadata, JSON.stringify(metadata));\n return { modelArtifactsInfo };\n } catch (err) {\n removeItems(this.keys);\n throw new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`);\n }\n }\n }\n async load() {\n const info = JSON.parse(this.LS.getItem(this.keys.info));\n if (info == null) {\n throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);\n }\n if (info.modelTopologyType !== \"JSON\") {\n throw new Error(\"BrowserLocalStorage does not support loading non-JSON model topology yet.\");\n }\n const out = {};\n const topology = JSON.parse(this.LS.getItem(this.keys.topology));\n if (topology == null) {\n throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);\n }\n out.modelTopology = topology;\n const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs));\n if (weightSpecs == null) {\n throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);\n }\n out.weightSpecs = weightSpecs;\n const metadataString = this.LS.getItem(this.keys.modelMetadata);\n if (metadataString != null) {\n const metadata = JSON.parse(metadataString);\n out.format = metadata.format;\n out.generatedBy = metadata.generatedBy;\n out.convertedBy = metadata.convertedBy;\n if (metadata.signature != null) {\n out.signature = metadata.signature;\n }\n if (metadata.userDefinedMetadata != null) {\n out.userDefinedMetadata = metadata.userDefinedMetadata;\n }\n if (metadata.modelInitializer != null) {\n out.modelInitializer = metadata.modelInitializer;\n }\n if (metadata.trainingConfig != null) {\n out.trainingConfig = metadata.trainingConfig;\n }\n }\n const weightDataBase64 = this.LS.getItem(this.keys.weightData);\n if (weightDataBase64 == null) {\n throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);\n }\n out.weightData = base64StringToArrayBuffer(weightDataBase64);\n return out;\n }\n};\nBrowserLocalStorage.URL_SCHEME = \"localstorage://\";\nvar localStorageRouter = (url) => {\n if (!env().getBool(\"IS_BROWSER\")) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) {\n return browserLocalStorage(url.slice(BrowserLocalStorage.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(localStorageRouter);\nIORouterRegistry.registerLoadRouter(localStorageRouter);\nfunction browserLocalStorage(modelPath) {\n return new BrowserLocalStorage(modelPath);\n}\nvar BrowserLocalStorageManager = class {\n constructor() {\n assert(env().getBool(\"IS_BROWSER\"), () => \"Current environment is not a web browser\");\n assert(typeof window === \"undefined\" || typeof window.localStorage !== \"undefined\", () => \"Current browser does not appear to support localStorage\");\n this.LS = window.localStorage;\n }\n async listModels() {\n const out = {};\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n const suffix = PATH_SEPARATOR + INFO_SUFFIX;\n for (let i2 = 0; i2 < this.LS.length; ++i2) {\n const key = this.LS.key(i2);\n if (key.startsWith(prefix) && key.endsWith(suffix)) {\n const modelPath = getModelPathFromKey(key);\n out[modelPath] = JSON.parse(this.LS.getItem(key));\n }\n }\n return out;\n }\n async removeModel(path) {\n path = maybeStripScheme2(path);\n const keys = getModelKeys(path);\n if (this.LS.getItem(keys.info) == null) {\n throw new Error(`Cannot find model at path '${path}'`);\n }\n const info = JSON.parse(this.LS.getItem(keys.info));\n removeItems(keys);\n return info;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/model_management.js\nvar URL_SCHEME_SUFFIX = \"://\";\nvar ModelStoreManagerRegistry = class {\n constructor() {\n this.managers = {};\n }\n static getInstance() {\n if (ModelStoreManagerRegistry.instance == null) {\n ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry();\n }\n return ModelStoreManagerRegistry.instance;\n }\n static registerManager(scheme, manager) {\n assert(scheme != null, () => \"scheme must not be undefined or null.\");\n if (scheme.endsWith(URL_SCHEME_SUFFIX)) {\n scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX));\n }\n assert(scheme.length > 0, () => \"scheme must not be an empty string.\");\n const registry = ModelStoreManagerRegistry.getInstance();\n assert(registry.managers[scheme] == null, () => `A model store manager is already registered for scheme '${scheme}'.`);\n registry.managers[scheme] = manager;\n }\n static getManager(scheme) {\n const manager = ModelStoreManagerRegistry.getInstance().managers[scheme];\n if (manager == null) {\n throw new Error(`Cannot find model manager for scheme '${scheme}'`);\n }\n return manager;\n }\n static getSchemes() {\n return Object.keys(ModelStoreManagerRegistry.getInstance().managers);\n }\n};\nfunction parseURL(url) {\n if (url.indexOf(URL_SCHEME_SUFFIX) === -1) {\n throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ModelStoreManagerRegistry.getSchemes().join(\",\")}`);\n }\n return {\n scheme: url.split(URL_SCHEME_SUFFIX)[0],\n path: url.split(URL_SCHEME_SUFFIX)[1]\n };\n}\nasync function cloneModelInternal(sourceURL, destURL, deleteSource = false) {\n assert(sourceURL !== destURL, () => `Old path and new path are the same: '${sourceURL}'`);\n const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL);\n assert(loadHandlers.length > 0, () => `Copying failed because no load handler is found for source URL ${sourceURL}.`);\n assert(loadHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) load handlers for source URL ${sourceURL}.`);\n const loadHandler = loadHandlers[0];\n const saveHandlers = IORouterRegistry.getSaveHandlers(destURL);\n assert(saveHandlers.length > 0, () => `Copying failed because no save handler is found for destination URL ${destURL}.`);\n assert(saveHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) save handlers for destination URL ${destURL}.`);\n const saveHandler = saveHandlers[0];\n const sourceScheme = parseURL(sourceURL).scheme;\n const sourcePath = parseURL(sourceURL).path;\n const sameMedium = sourceScheme === parseURL(sourceURL).scheme;\n const modelArtifacts = await loadHandler.load();\n if (deleteSource && sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath);\n }\n const saveResult = await saveHandler.save(modelArtifacts);\n if (deleteSource && !sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath);\n }\n return saveResult.modelArtifactsInfo;\n}\nasync function listModels() {\n const schemes = ModelStoreManagerRegistry.getSchemes();\n const out = {};\n for (const scheme of schemes) {\n const schemeOut = await ModelStoreManagerRegistry.getManager(scheme).listModels();\n for (const path in schemeOut) {\n const url = scheme + URL_SCHEME_SUFFIX + path;\n out[url] = schemeOut[path];\n }\n }\n return out;\n}\nasync function removeModel(url) {\n const schemeAndPath = parseURL(url);\n const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);\n return manager.removeModel(schemeAndPath.path);\n}\nasync function copyModel(sourceURL, destURL) {\n const deleteSource = false;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\nasync function moveModel(sourceURL, destURL) {\n const deleteSource = true;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/platforms/platform_browser.js\nvar PlatformBrowser = class {\n fetch(path, init2) {\n return fetch(path, init2);\n }\n now() {\n return performance.now();\n }\n encode(text, encoding) {\n if (encoding !== \"utf-8\" && encoding !== \"utf8\") {\n throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`);\n }\n if (this.textEncoder == null) {\n this.textEncoder = new TextEncoder();\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes, encoding) {\n return new TextDecoder(encoding).decode(bytes);\n }\n};\nif (env().get(\"IS_BROWSER\")) {\n env().setPlatform(\"browser\", new PlatformBrowser());\n try {\n ModelStoreManagerRegistry.registerManager(BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager());\n } catch (err) {\n }\n try {\n ModelStoreManagerRegistry.registerManager(BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager());\n } catch (err) {\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/platforms/platform_node.js\nvar getNodeFetch = {\n importFetch: () => require_browser()\n};\nvar systemFetch;\nvar PlatformNode = class {\n constructor() {\n this.util = require_util();\n this.textEncoder = new this.util.TextEncoder();\n }\n fetch(path, requestInits) {\n if (env().global.fetch != null) {\n return env().global.fetch(path, requestInits);\n }\n if (systemFetch == null) {\n systemFetch = getNodeFetch.importFetch();\n }\n return systemFetch(path, requestInits);\n }\n now() {\n const time2 = process.hrtime();\n return time2[0] * 1e3 + time2[1] / 1e6;\n }\n encode(text, encoding) {\n if (encoding !== \"utf-8\" && encoding !== \"utf8\") {\n throw new Error(`Node built-in encoder only supports utf-8, but got ${encoding}`);\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes, encoding) {\n if (bytes.length === 0) {\n return \"\";\n }\n return new this.util.TextDecoder(encoding).decode(bytes);\n }\n};\nif (env().get(\"IS_NODE\") && !env().get(\"IS_BROWSER\")) {\n env().setPlatform(\"node\", new PlatformNode());\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/buffer.js\nfunction buffer(shape, dtype = \"float32\", values) {\n dtype = dtype || \"float32\";\n assertNonNegativeIntegerDimensions(shape);\n return new TensorBuffer(shape, dtype, values);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cast.js\nfunction cast_(x, dtype) {\n const $x = convertToTensor(x, \"x\", \"cast\");\n if (!isValidDtype(dtype)) {\n throw new Error(`Failed to cast to unknown dtype ${dtype}`);\n }\n if (dtype === \"string\" && $x.dtype !== \"string\" || dtype !== \"string\" && $x.dtype === \"string\") {\n throw new Error(\"Only strings can be casted to strings\");\n }\n const inputs = { x: $x };\n const attrs = { dtype };\n return ENGINE.runKernel(Cast, inputs, attrs);\n}\nvar cast = op({ cast_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/clone.js\nfunction clone_(x) {\n const $x = convertToTensor(x, \"x\", \"clone\", \"string_or_numeric\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Identity, inputs);\n}\nvar clone = op({ clone_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/print.js\nfunction print(x, verbose = false) {\n console.log(x.toString(verbose));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/base_side_effects.js\ngetOrMakeEngine();\nvar opHandler2 = {\n buffer,\n cast,\n clone,\n print\n};\nsetOpHandler(opHandler2);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/io.js\nvar io_exports = {};\n__export(io_exports, {\n browserFiles: () => browserFiles,\n browserHTTPRequest: () => browserHTTPRequest,\n concatenateArrayBuffers: () => concatenateArrayBuffers,\n copyModel: () => copyModel,\n decodeWeights: () => decodeWeights,\n encodeWeights: () => encodeWeights,\n fromMemory: () => fromMemory,\n fromMemorySync: () => fromMemorySync,\n getLoadHandlers: () => getLoadHandlers,\n getModelArtifactsForJSON: () => getModelArtifactsForJSON,\n getModelArtifactsInfoForJSON: () => getModelArtifactsInfoForJSON,\n getSaveHandlers: () => getSaveHandlers,\n http: () => http,\n isHTTPScheme: () => isHTTPScheme,\n listModels: () => listModels,\n loadWeights: () => loadWeights,\n moveModel: () => moveModel,\n registerLoadRouter: () => registerLoadRouter,\n registerSaveRouter: () => registerSaveRouter,\n removeModel: () => removeModel,\n weightsLoaderFactory: () => weightsLoaderFactory,\n withSaveHandler: () => withSaveHandler,\n withSaveHandlerSync: () => withSaveHandlerSync\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/browser_files.js\nvar DEFAULT_FILE_NAME_PREFIX = \"model\";\nvar DEFAULT_JSON_EXTENSION_NAME = \".json\";\nvar DEFAULT_WEIGHT_DATA_EXTENSION_NAME = \".weights.bin\";\nfunction defer(f) {\n return new Promise((resolve) => setTimeout(resolve)).then(f);\n}\nvar BrowserDownloads = class {\n constructor(fileNamePrefix) {\n if (!env().getBool(\"IS_BROWSER\")) {\n throw new Error(\"browserDownloads() cannot proceed because the current environment is not a browser.\");\n }\n if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) {\n fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length);\n }\n if (fileNamePrefix == null || fileNamePrefix.length === 0) {\n fileNamePrefix = DEFAULT_FILE_NAME_PREFIX;\n }\n this.modelJsonFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME;\n this.weightDataFileName = fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME;\n }\n async save(modelArtifacts) {\n if (typeof document === \"undefined\") {\n throw new Error(\"Browser downloads are not supported in this environment since `document` is not present\");\n }\n const weightsURL = window.URL.createObjectURL(new Blob([modelArtifacts.weightData], { type: \"application/octet-stream\" }));\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserDownloads.save() does not support saving model topology in binary formats yet.\");\n } else {\n const weightsManifest = [{\n paths: [\"./\" + this.weightDataFileName],\n weights: modelArtifacts.weightSpecs\n }];\n const modelJSON = getModelJSONForModelArtifacts(modelArtifacts, weightsManifest);\n const modelJsonURL = window.URL.createObjectURL(new Blob([JSON.stringify(modelJSON)], { type: \"application/json\" }));\n const jsonAnchor = this.modelJsonAnchor == null ? document.createElement(\"a\") : this.modelJsonAnchor;\n jsonAnchor.download = this.modelJsonFileName;\n jsonAnchor.href = modelJsonURL;\n await defer(() => jsonAnchor.dispatchEvent(new MouseEvent(\"click\")));\n if (modelArtifacts.weightData != null) {\n const weightDataAnchor = this.weightDataAnchor == null ? document.createElement(\"a\") : this.weightDataAnchor;\n weightDataAnchor.download = this.weightDataFileName;\n weightDataAnchor.href = weightsURL;\n await defer(() => weightDataAnchor.dispatchEvent(new MouseEvent(\"click\")));\n }\n return { modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts) };\n }\n }\n};\nBrowserDownloads.URL_SCHEME = \"downloads://\";\nvar BrowserFiles = class {\n constructor(files) {\n if (files == null || files.length < 1) {\n throw new Error(`When calling browserFiles, at least 1 file is required, but received ${files}`);\n }\n this.jsonFile = files[0];\n this.weightsFiles = files.slice(1);\n }\n async load() {\n return new Promise((resolve, reject) => {\n const jsonReader = new FileReader();\n jsonReader.onload = (event) => {\n const modelJSON = JSON.parse(event.target.result);\n const modelTopology = modelJSON.modelTopology;\n if (modelTopology == null) {\n reject(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));\n return;\n }\n const weightsManifest = modelJSON.weightsManifest;\n if (weightsManifest == null) {\n reject(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));\n return;\n }\n if (this.weightsFiles.length === 0) {\n resolve({ modelTopology });\n return;\n }\n const modelArtifactsPromise = getModelArtifactsForJSON(modelJSON, (weightsManifest2) => this.loadWeights(weightsManifest2));\n resolve(modelArtifactsPromise);\n };\n jsonReader.onerror = (error) => reject(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`);\n jsonReader.readAsText(this.jsonFile);\n });\n }\n loadWeights(weightsManifest) {\n const weightSpecs = [];\n const paths = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n paths.push(...entry.paths);\n }\n const pathToFile = this.checkManifestAndWeightFiles(weightsManifest);\n const promises = paths.map((path) => this.loadWeightsFile(path, pathToFile[path]));\n return Promise.all(promises).then((buffers) => [weightSpecs, concatenateArrayBuffers(buffers)]);\n }\n loadWeightsFile(path, file) {\n return new Promise((resolve, reject) => {\n const weightFileReader = new FileReader();\n weightFileReader.onload = (event) => {\n const weightData = event.target.result;\n resolve(weightData);\n };\n weightFileReader.onerror = (error) => reject(`Failed to weights data from file of path '${path}'.`);\n weightFileReader.readAsArrayBuffer(file);\n });\n }\n checkManifestAndWeightFiles(manifest) {\n const basenames = [];\n const fileNames = this.weightsFiles.map((file) => basename(file.name));\n const pathToFile = {};\n for (const group of manifest) {\n group.paths.forEach((path) => {\n const pathBasename = basename(path);\n if (basenames.indexOf(pathBasename) !== -1) {\n throw new Error(`Duplicate file basename found in weights manifest: '${pathBasename}'`);\n }\n basenames.push(pathBasename);\n if (fileNames.indexOf(pathBasename) === -1) {\n throw new Error(`Weight file with basename '${pathBasename}' is not provided.`);\n } else {\n pathToFile[path] = this.weightsFiles[fileNames.indexOf(pathBasename)];\n }\n });\n }\n if (basenames.length !== this.weightsFiles.length) {\n throw new Error(`Mismatch in the number of files in weights manifest (${basenames.length}) and the number of weight files provided (${this.weightsFiles.length}).`);\n }\n return pathToFile;\n }\n};\nvar browserDownloadsRouter = (url) => {\n if (!env().getBool(\"IS_BROWSER\")) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) {\n return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(browserDownloadsRouter);\nfunction browserDownloads(fileNamePrefix = \"model\") {\n return new BrowserDownloads(fileNamePrefix);\n}\nfunction browserFiles(files) {\n return new BrowserFiles(files);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/progress.js\nfunction monitorPromisesProgress(promises, onProgress, startFraction, endFraction) {\n checkPromises(promises);\n startFraction = startFraction == null ? 0 : startFraction;\n endFraction = endFraction == null ? 1 : endFraction;\n checkFraction(startFraction, endFraction);\n let resolvedPromise = 0;\n const registerMonitor = (promise) => {\n promise.then((value) => {\n const fraction = startFraction + ++resolvedPromise / promises.length * (endFraction - startFraction);\n onProgress(fraction);\n return value;\n });\n return promise;\n };\n function checkPromises(promises2) {\n assert(promises2 != null && Array.isArray(promises2) && promises2.length > 0, () => \"promises must be a none empty array\");\n }\n function checkFraction(startFraction2, endFraction2) {\n assert(startFraction2 >= 0 && startFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got startFraction ${startFraction2}`);\n assert(endFraction2 >= 0 && endFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got endFraction ${endFraction2}`);\n assert(endFraction2 >= startFraction2, () => `startFraction must be no more than endFraction, but got startFraction ${startFraction2} and endFraction ${endFraction2}`);\n }\n return Promise.all(promises.map(registerMonitor));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/weights_loader.js\nasync function loadWeightsAsArrayBuffer(fetchURLs, loadOptions) {\n if (loadOptions == null) {\n loadOptions = {};\n }\n const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch : loadOptions.fetchFunc;\n const requests = fetchURLs.map((fetchURL) => fetchFunc(fetchURL, loadOptions.requestInit, { isBinary: true }));\n const fetchStartFraction = 0;\n const fetchEndFraction = 0.5;\n const responses = loadOptions.onProgress == null ? await Promise.all(requests) : await monitorPromisesProgress(requests, loadOptions.onProgress, fetchStartFraction, fetchEndFraction);\n const bufferPromises = responses.map((response) => response.arrayBuffer());\n const bufferStartFraction = 0.5;\n const bufferEndFraction = 1;\n const buffers = loadOptions.onProgress == null ? await Promise.all(bufferPromises) : await monitorPromisesProgress(bufferPromises, loadOptions.onProgress, bufferStartFraction, bufferEndFraction);\n return buffers;\n}\nasync function loadWeights(manifest, filePathPrefix = \"\", weightNames, requestInit) {\n const fetchWeights = (fetchUrls) => loadWeightsAsArrayBuffer(fetchUrls, { requestInit });\n const loadWeights2 = weightsLoaderFactory(fetchWeights);\n return loadWeights2(manifest, filePathPrefix, weightNames);\n}\nfunction weightsLoaderFactory(fetchWeightsFunction) {\n return async (manifest, filePathPrefix = \"\", weightNames) => {\n const groupIndicesToFetchMap = manifest.map(() => false);\n const groupWeightsToFetch = {};\n const weightsFound = weightNames != null ? weightNames.map(() => false) : [];\n const allManifestWeightNames = [];\n manifest.forEach((manifestGroupConfig, groupIndex) => {\n let groupOffset = 0;\n manifestGroupConfig.weights.forEach((weightsEntry) => {\n const rawDtype = \"quantization\" in weightsEntry ? weightsEntry.quantization.dtype : weightsEntry.dtype;\n const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] * sizeFromShape(weightsEntry.shape);\n const enqueueWeightsForFetchingFn = () => {\n groupIndicesToFetchMap[groupIndex] = true;\n if (groupWeightsToFetch[groupIndex] == null) {\n groupWeightsToFetch[groupIndex] = [];\n }\n groupWeightsToFetch[groupIndex].push({\n manifestEntry: weightsEntry,\n groupOffset,\n sizeBytes: weightsBytes\n });\n };\n if (weightNames != null) {\n weightNames.forEach((weightName, weightIndex) => {\n if (weightName === weightsEntry.name) {\n enqueueWeightsForFetchingFn();\n weightsFound[weightIndex] = true;\n }\n });\n } else {\n enqueueWeightsForFetchingFn();\n }\n allManifestWeightNames.push(weightsEntry.name);\n groupOffset += weightsBytes;\n });\n });\n if (!weightsFound.every((found) => found)) {\n const weightsNotFound = weightNames.filter((_, i2) => !weightsFound[i2]);\n throw new Error(`Could not find weights in manifest with names: ${weightsNotFound.join(\", \")}. \nManifest JSON has weights with names: ${allManifestWeightNames.join(\", \")}.`);\n }\n const groupIndicesToFetch = groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i2) => {\n if (shouldFetch) {\n accumulator.push(i2);\n }\n return accumulator;\n }, []);\n const fetchUrls = [];\n groupIndicesToFetch.forEach((i2) => {\n manifest[i2].paths.forEach((filepath) => {\n const fetchUrl = filePathPrefix + (!filePathPrefix.endsWith(\"/\") ? \"/\" : \"\") + filepath;\n fetchUrls.push(fetchUrl);\n });\n });\n const buffers = await fetchWeightsFunction(fetchUrls);\n const weightsTensorMap = {};\n let bufferIndexOffset = 0;\n groupIndicesToFetch.forEach((i2) => {\n const numBuffers = manifest[i2].paths.length;\n let groupBytes = 0;\n for (let i3 = 0; i3 < numBuffers; i3++) {\n groupBytes += buffers[bufferIndexOffset + i3].byteLength;\n }\n const groupBuffer = new ArrayBuffer(groupBytes);\n const groupByteBuffer = new Uint8Array(groupBuffer);\n let groupBufferOffset = 0;\n for (let i3 = 0; i3 < numBuffers; i3++) {\n const buffer2 = new Uint8Array(buffers[bufferIndexOffset + i3]);\n groupByteBuffer.set(buffer2, groupBufferOffset);\n groupBufferOffset += buffer2.byteLength;\n }\n const weightsEntries = groupWeightsToFetch[i2];\n weightsEntries.forEach((weightsEntry) => {\n const byteBuffer = groupBuffer.slice(weightsEntry.groupOffset, weightsEntry.groupOffset + weightsEntry.sizeBytes);\n const nameToTensorMap = decodeWeights(byteBuffer, [weightsEntry.manifestEntry]);\n for (const name in nameToTensorMap) {\n weightsTensorMap[name] = nameToTensorMap[name];\n }\n });\n bufferIndexOffset += numBuffers;\n });\n return weightsTensorMap;\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/http.js\nvar OCTET_STREAM_MIME_TYPE = \"application/octet-stream\";\nvar JSON_TYPE = \"application/json\";\nvar HTTPRequest = class {\n constructor(path, loadOptions) {\n this.DEFAULT_METHOD = \"POST\";\n if (loadOptions == null) {\n loadOptions = {};\n }\n this.weightPathPrefix = loadOptions.weightPathPrefix;\n this.onProgress = loadOptions.onProgress;\n this.weightUrlConverter = loadOptions.weightUrlConverter;\n if (loadOptions.fetchFunc != null) {\n assert(typeof loadOptions.fetchFunc === \"function\", () => \"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)\");\n this.fetch = loadOptions.fetchFunc;\n } else {\n this.fetch = env().platform.fetch;\n }\n assert(path != null && path.length > 0, () => \"URL path for http must not be null, undefined or empty.\");\n if (Array.isArray(path)) {\n assert(path.length === 2, () => `URL paths for http must have a length of 2, (actual length is ${path.length}).`);\n }\n this.path = path;\n if (loadOptions.requestInit != null && loadOptions.requestInit.body != null) {\n throw new Error(\"requestInit is expected to have no pre-existing body, but has one.\");\n }\n this.requestInit = loadOptions.requestInit || {};\n }\n async save(modelArtifacts) {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\"BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.\");\n }\n const init2 = Object.assign({ method: this.DEFAULT_METHOD }, this.requestInit);\n init2.body = new FormData();\n const weightsManifest = [{\n paths: [\"./model.weights.bin\"],\n weights: modelArtifacts.weightSpecs\n }];\n const modelTopologyAndWeightManifest = getModelJSONForModelArtifacts(modelArtifacts, weightsManifest);\n init2.body.append(\"model.json\", new Blob([JSON.stringify(modelTopologyAndWeightManifest)], { type: JSON_TYPE }), \"model.json\");\n if (modelArtifacts.weightData != null) {\n init2.body.append(\"model.weights.bin\", new Blob([modelArtifacts.weightData], { type: OCTET_STREAM_MIME_TYPE }), \"model.weights.bin\");\n }\n const response = await this.fetch(this.path, init2);\n if (response.ok) {\n return {\n modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts),\n responses: [response]\n };\n } else {\n throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${response.status}.`);\n }\n }\n async load() {\n const modelConfigRequest = await this.fetch(this.path, this.requestInit);\n if (!modelConfigRequest.ok) {\n throw new Error(`Request to ${this.path} failed with status code ${modelConfigRequest.status}. Please verify this URL points to the model JSON of the model to load.`);\n }\n let modelJSON;\n try {\n modelJSON = await modelConfigRequest.json();\n } catch (e2) {\n let message = `Failed to parse model JSON of response from ${this.path}.`;\n if (this.path.endsWith(\".pb\")) {\n message += \" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.\";\n } else {\n message += \" Please make sure the server is serving valid JSON for this request.\";\n }\n throw new Error(message);\n }\n const modelTopology = modelJSON.modelTopology;\n const weightsManifest = modelJSON.weightsManifest;\n if (modelTopology == null && weightsManifest == null) {\n throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);\n }\n return getModelArtifactsForJSON(modelJSON, (weightsManifest2) => this.loadWeights(weightsManifest2));\n }\n async loadWeights(weightsManifest) {\n const weightPath = Array.isArray(this.path) ? this.path[1] : this.path;\n const [prefix, suffix] = parseUrl(weightPath);\n const pathPrefix = this.weightPathPrefix || prefix;\n const weightSpecs = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n }\n const fetchURLs = [];\n const urlPromises = [];\n for (const weightsGroup of weightsManifest) {\n for (const path of weightsGroup.paths) {\n if (this.weightUrlConverter != null) {\n urlPromises.push(this.weightUrlConverter(path));\n } else {\n fetchURLs.push(pathPrefix + path + suffix);\n }\n }\n }\n if (this.weightUrlConverter) {\n fetchURLs.push(...await Promise.all(urlPromises));\n }\n const buffers = await loadWeightsAsArrayBuffer(fetchURLs, {\n requestInit: this.requestInit,\n fetchFunc: this.fetch,\n onProgress: this.onProgress\n });\n return [weightSpecs, concatenateArrayBuffers(buffers)];\n }\n};\nHTTPRequest.URL_SCHEME_REGEX = /^https?:\\/\\//;\nfunction parseUrl(url) {\n const lastSlash = url.lastIndexOf(\"/\");\n const lastSearchParam = url.lastIndexOf(\"?\");\n const prefix = url.substring(0, lastSlash);\n const suffix = lastSearchParam > lastSlash ? url.substring(lastSearchParam) : \"\";\n return [prefix + \"/\", suffix];\n}\nfunction isHTTPScheme(url) {\n return url.match(HTTPRequest.URL_SCHEME_REGEX) != null;\n}\nvar httpRouter = (url, loadOptions) => {\n if (typeof fetch === \"undefined\" && (loadOptions == null || loadOptions.fetchFunc == null)) {\n return null;\n } else {\n let isHTTP = true;\n if (Array.isArray(url)) {\n isHTTP = url.every((urlItem) => isHTTPScheme(urlItem));\n } else {\n isHTTP = isHTTPScheme(url);\n }\n if (isHTTP) {\n return http(url, loadOptions);\n }\n }\n return null;\n};\nIORouterRegistry.registerSaveRouter(httpRouter);\nIORouterRegistry.registerLoadRouter(httpRouter);\nfunction http(path, loadOptions) {\n return new HTTPRequest(path, loadOptions);\n}\nfunction browserHTTPRequest(path, loadOptions) {\n return http(path, loadOptions);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/io/passthrough.js\nvar PassthroughLoader = class {\n constructor(modelArtifacts) {\n this.modelArtifacts = modelArtifacts;\n }\n load() {\n return this.modelArtifacts;\n }\n};\nvar PassthroughSaver = class {\n constructor(saveHandler) {\n this.saveHandler = saveHandler;\n }\n save(modelArtifacts) {\n return this.saveHandler(modelArtifacts);\n }\n};\nvar PassthroughAsync = class {\n constructor(handler) {\n if (handler.load) {\n this.load = () => Promise.resolve(handler.load());\n }\n if (handler.save) {\n this.save = (modelArtifacts) => Promise.resolve(handler.save(modelArtifacts));\n }\n }\n};\nfunction fromMemory(modelArtifacts, weightSpecs, weightData, trainingConfig) {\n const args = arguments;\n return new PassthroughAsync(fromMemorySync(...args));\n}\nfunction fromMemorySync(modelArtifacts, weightSpecs, weightData, trainingConfig) {\n if (arguments.length === 1) {\n const isModelArtifacts = modelArtifacts.modelTopology != null || modelArtifacts.weightSpecs != null;\n if (isModelArtifacts) {\n return new PassthroughLoader(modelArtifacts);\n } else {\n console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\");\n return new PassthroughLoader({ modelTopology: modelArtifacts });\n }\n } else {\n console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\");\n return new PassthroughLoader({\n modelTopology: modelArtifacts,\n weightSpecs,\n weightData,\n trainingConfig\n });\n }\n}\nfunction withSaveHandler(saveHandler) {\n return new PassthroughSaver(saveHandler);\n}\nfunction withSaveHandlerSync(saveHandler) {\n return new PassthroughSaver(saveHandler);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/math.js\nvar math_exports = {};\n__export(math_exports, {\n confusionMatrix: () => confusionMatrix\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mat_mul.js\nfunction matMul_(a, b, transposeA = false, transposeB = false) {\n let $a = convertToTensor(a, \"a\", \"matMul\");\n let $b = convertToTensor(b, \"b\", \"matMul\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n const attrs = { transposeA, transposeB };\n return ENGINE.runKernel(BatchMatMul, inputs, attrs);\n}\nvar matMul = op({ matMul_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/one_hot.js\nfunction oneHot_(indices, depth, onValue = 1, offValue = 0, dtype = \"int32\") {\n if (depth < 2) {\n throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);\n }\n const $indices = convertToTensor(indices, \"indices\", \"oneHot\", \"int32\");\n const inputs = { indices: $indices };\n const attrs = { dtype, depth, onValue, offValue };\n return ENGINE.runKernel(OneHot, inputs, attrs);\n}\nvar oneHot = op({ oneHot_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/globals.js\nfunction enableProdMode() {\n env().set(\"PROD\", true);\n}\nfunction enableDebugMode() {\n env().set(\"DEBUG\", true);\n}\nfunction disableDeprecationWarnings() {\n env().set(\"DEPRECATION_WARNINGS_ENABLED\", false);\n console.warn(`TensorFlow.js deprecation warnings have been disabled.`);\n}\nfunction deprecationWarn(msg) {\n if (env().getBool(\"DEPRECATION_WARNINGS_ENABLED\")) {\n console.warn(msg + \" You can disable deprecation warnings with tf.disableDeprecationWarnings().\");\n }\n}\nsetDeprecationWarningFn(deprecationWarn);\nfunction disposeVariables() {\n ENGINE.disposeVariables();\n}\nfunction engine() {\n return ENGINE;\n}\nfunction memory() {\n return ENGINE.memory();\n}\nfunction profile(f) {\n return ENGINE.profile(f);\n}\nfunction tidy(nameOrFn, fn) {\n return ENGINE.tidy(nameOrFn, fn);\n}\nfunction dispose(container) {\n const tensors = getTensorsInContainer(container);\n tensors.forEach((tensor2) => tensor2.dispose());\n}\nfunction keep(result) {\n return ENGINE.keep(result);\n}\nfunction time(f) {\n return ENGINE.time(f);\n}\nfunction setBackend(backendName) {\n return ENGINE.setBackend(backendName);\n}\nfunction ready() {\n return ENGINE.ready();\n}\nfunction getBackend() {\n return ENGINE.backendName;\n}\nfunction removeBackend(name) {\n ENGINE.removeBackend(name);\n}\nfunction findBackend(name) {\n return ENGINE.findBackend(name);\n}\nfunction findBackendFactory(name) {\n return ENGINE.findBackendFactory(name);\n}\nfunction registerBackend(name, factory, priority = 1) {\n return ENGINE.registerBackend(name, factory, priority);\n}\nfunction backend() {\n return ENGINE.backend;\n}\nfunction setPlatform(platformName, platform) {\n env().setPlatform(platformName, platform);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/imag.js\nfunction imag_(input2) {\n const $input = convertToTensor(input2, \"input\", \"imag\");\n const inputs = { input: $input };\n return ENGINE.runKernel(Imag, inputs);\n}\nvar imag = op({ imag_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/neg.js\nfunction neg_(x) {\n const $x = convertToTensor(x, \"x\", \"neg\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Neg, inputs);\n}\nvar neg = op({ neg_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/real.js\nfunction real_(input2) {\n const $input = convertToTensor(input2, \"input\", \"real\");\n const inputs = { input: $input };\n return ENGINE.runKernel(Real, inputs);\n}\nvar real = op({ real_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/transpose.js\nfunction transpose_(x, perm, conjugate) {\n const $x = convertToTensor(x, \"x\", \"transpose\");\n if (perm == null) {\n perm = $x.shape.map((s2, i2) => i2).reverse();\n }\n assert($x.rank === perm.length, () => `Error in transpose: rank of input ${$x.rank} must match length of perm ${perm}.`);\n perm.forEach((axis) => {\n assert(axis >= 0 && axis < $x.rank, () => `All entries in 'perm' must be between 0 and ${$x.rank - 1} but got ${perm}`);\n });\n if ($x.rank <= 1) {\n return $x.clone();\n }\n const inputs = { x: $x };\n const attrs = { perm };\n if ($x.dtype === \"complex64\") {\n return tidy(() => {\n let $real = real($x);\n let $imag = imag($x);\n $real = ENGINE.runKernel(Transpose, { x: $real }, attrs);\n $imag = ENGINE.runKernel(Transpose, { x: $imag }, attrs);\n if (conjugate) {\n $imag = neg($imag);\n }\n return complex($real, $imag);\n });\n }\n return ENGINE.runKernel(Transpose, inputs, attrs);\n}\nvar transpose = op({ transpose_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/confusion_matrix.js\nfunction confusionMatrix_(labels, predictions, numClasses) {\n const $labels = convertToTensor(labels, \"labels\", \"confusionMatrix\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"confusionMatrix\");\n assert(numClasses == null || numClasses > 0 && Number.isInteger(numClasses), () => `If provided, numClasses must be a positive integer, but got ${numClasses}`);\n assert($labels.rank === 1, () => `Expected the rank of labels to be 1, but got ${$labels.rank}`);\n assert($predictions.rank === 1, () => `Expected the rank of predictions to be 1, but got ${$predictions.rank}`);\n assert($labels.shape[0] === $predictions.shape[0], () => `Mismatch in the number of examples: ${$labels.shape[0]} vs. ${$predictions.shape[0]}. Labels and predictions should have the same number of elements.`);\n assert(numClasses > 0 && Number.isInteger(numClasses), () => `numClasses is required to be a positive integer, but got ${numClasses}`);\n const oneHotLabels = oneHot(cast($labels, \"int32\"), numClasses);\n const oneHotPredictions = oneHot(cast($predictions, \"int32\"), numClasses);\n const oneHotLabelsT = transpose(oneHotLabels);\n const product = matMul(oneHotLabelsT, oneHotPredictions);\n return cast(product, \"int32\");\n}\nvar confusionMatrix = op({ confusionMatrix_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/broadcast_util.js\nvar broadcast_util_exports = {};\n__export(broadcast_util_exports, {\n assertAndGetBroadcastShape: () => assertAndGetBroadcastShape,\n getBroadcastDims: () => getBroadcastDims,\n getReductionAxes: () => getReductionAxes\n});\nfunction getBroadcastDims(inShape, outShape) {\n const inRank = inShape.length;\n const dims = [];\n for (let i2 = 0; i2 < inRank; i2++) {\n const dim = inRank - 1 - i2;\n const a = inShape[dim] || 1;\n const b = outShape[outShape.length - 1 - i2] || 1;\n if (b > 1 && a === 1) {\n dims.unshift(dim);\n }\n }\n return dims;\n}\nfunction getReductionAxes(inShape, outShape) {\n const result = [];\n for (let i2 = 0; i2 < outShape.length; i2++) {\n const inDim = inShape[inShape.length - i2 - 1];\n const outAxis = outShape.length - i2 - 1;\n const outDim = outShape[outAxis];\n if (inDim == null || inDim === 1 && outDim > 1) {\n result.unshift(outAxis);\n }\n }\n return result;\n}\nfunction assertAndGetBroadcastShape(shapeA, shapeB) {\n const result = [];\n const l3 = Math.max(shapeA.length, shapeB.length);\n for (let i2 = 0; i2 < l3; i2++) {\n let a = shapeA[shapeA.length - i2 - 1];\n if (a == null) {\n a = 1;\n }\n let b = shapeB[shapeB.length - i2 - 1];\n if (b == null) {\n b = 1;\n }\n if (a === 1) {\n result.unshift(b);\n } else if (b === 1) {\n result.unshift(a);\n } else if (a !== b) {\n const errMsg = `Operands could not be broadcast together with shapes ${shapeA} and ${shapeB}.`;\n throw Error(errMsg);\n } else {\n result.unshift(a);\n }\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/browser.js\nvar browser_exports = {};\n__export(browser_exports, {\n fromPixels: () => fromPixels,\n fromPixelsAsync: () => fromPixelsAsync,\n toPixels: () => toPixels\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor3d.js\nfunction tensor3d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 3) {\n throw new Error(\"tensor3d() requires shape to have three numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 3 && inferredShape.length !== 1) {\n throw new Error(\"tensor3d() requires values to be number[][][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor3d() requires shape to be provided when `values` are a flat array\");\n }\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/browser.js\nvar fromPixels2DContext;\nfunction fromPixels_(pixels, numChannels = 3) {\n if (numChannels > 4) {\n throw new Error(\"Cannot construct Tensor with more than 4 channels from pixels.\");\n }\n if (pixels == null) {\n throw new Error(\"pixels passed to tf.browser.fromPixels() can not be null\");\n }\n let isPixelData2 = false;\n let isImageData = false;\n let isVideo = false;\n let isImage = false;\n let isCanvasLike = false;\n let isImageBitmap = false;\n if (pixels.data instanceof Uint8Array) {\n isPixelData2 = true;\n } else if (typeof ImageData !== \"undefined\" && pixels instanceof ImageData) {\n isImageData = true;\n } else if (typeof HTMLVideoElement !== \"undefined\" && pixels instanceof HTMLVideoElement) {\n isVideo = true;\n } else if (typeof HTMLImageElement !== \"undefined\" && pixels instanceof HTMLImageElement) {\n isImage = true;\n } else if (pixels.getContext != null) {\n isCanvasLike = true;\n } else if (typeof ImageBitmap !== \"undefined\" && pixels instanceof ImageBitmap) {\n isImageBitmap = true;\n } else {\n throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${pixels.constructor.name}`);\n }\n const kernel = getKernel(FromPixels, ENGINE.backendName);\n if (kernel != null) {\n const inputs = { pixels };\n const attrs = { numChannels };\n return ENGINE.runKernel(FromPixels, inputs, attrs);\n }\n const [width, height] = isVideo ? [\n pixels.videoWidth,\n pixels.videoHeight\n ] : [pixels.width, pixels.height];\n let vals;\n if (isCanvasLike) {\n vals = pixels.getContext(\"2d\").getImageData(0, 0, width, height).data;\n } else if (isImageData || isPixelData2) {\n vals = pixels.data;\n } else if (isImage || isVideo || isImageBitmap) {\n if (fromPixels2DContext == null) {\n if (typeof document === \"undefined\") {\n if (typeof OffscreenCanvas !== \"undefined\" && typeof OffscreenCanvasRenderingContext2D !== \"undefined\") {\n fromPixels2DContext = new OffscreenCanvas(1, 1).getContext(\"2d\");\n } else {\n throw new Error(\"Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.\");\n }\n } else {\n fromPixels2DContext = document.createElement(\"canvas\").getContext(\"2d\", { willReadFrequently: true });\n }\n }\n fromPixels2DContext.canvas.width = width;\n fromPixels2DContext.canvas.height = height;\n fromPixels2DContext.drawImage(pixels, 0, 0, width, height);\n vals = fromPixels2DContext.getImageData(0, 0, width, height).data;\n }\n let values;\n if (numChannels === 4) {\n values = new Int32Array(vals);\n } else {\n const numPixels = width * height;\n values = new Int32Array(numPixels * numChannels);\n for (let i2 = 0; i2 < numPixels; i2++) {\n for (let channel = 0; channel < numChannels; ++channel) {\n values[i2 * numChannels + channel] = vals[i2 * 4 + channel];\n }\n }\n }\n const outShape = [height, width, numChannels];\n return tensor3d(values, outShape, \"int32\");\n}\nfunction isPixelData(pixels) {\n return pixels != null && pixels.data instanceof Uint8Array;\n}\nfunction isImageBitmapFullySupported() {\n return typeof window !== \"undefined\" && typeof ImageBitmap !== \"undefined\" && window.hasOwnProperty(\"createImageBitmap\");\n}\nfunction isNonEmptyPixels(pixels) {\n return pixels != null && pixels.width !== 0 && pixels.height !== 0;\n}\nfunction canWrapPixelsToImageBitmap(pixels) {\n return isImageBitmapFullySupported() && !(pixels instanceof ImageBitmap) && isNonEmptyPixels(pixels) && !isPixelData(pixels);\n}\nasync function fromPixelsAsync(pixels, numChannels = 3) {\n let inputs = null;\n if (env().getBool(\"WRAP_TO_IMAGEBITMAP\") && canWrapPixelsToImageBitmap(pixels)) {\n let imageBitmap;\n try {\n imageBitmap = await createImageBitmap(pixels, { premultiplyAlpha: \"none\" });\n } catch (e2) {\n imageBitmap = null;\n }\n if (imageBitmap != null && imageBitmap.width === pixels.width && imageBitmap.height === pixels.height) {\n inputs = imageBitmap;\n } else {\n inputs = pixels;\n }\n } else {\n inputs = pixels;\n }\n return fromPixels_(inputs, numChannels);\n}\nasync function toPixels(img, canvas) {\n let $img = convertToTensor(img, \"img\", \"toPixels\");\n if (!(img instanceof Tensor)) {\n const originalImgTensor = $img;\n $img = cast(originalImgTensor, \"int32\");\n originalImgTensor.dispose();\n }\n if ($img.rank !== 2 && $img.rank !== 3) {\n throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${$img.rank}.`);\n }\n const [height, width] = $img.shape.slice(0, 2);\n const depth = $img.rank === 2 ? 1 : $img.shape[2];\n if (depth > 4 || depth === 2) {\n throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${depth}`);\n }\n if ($img.dtype !== \"float32\" && $img.dtype !== \"int32\") {\n throw new Error(`Unsupported type for toPixels: ${$img.dtype}. Please use float32 or int32 tensors.`);\n }\n const data = await $img.data();\n const multiplier = $img.dtype === \"float32\" ? 255 : 1;\n const bytes = new Uint8ClampedArray(width * height * 4);\n for (let i2 = 0; i2 < height * width; ++i2) {\n const rgba = [0, 0, 0, 255];\n for (let d = 0; d < depth; d++) {\n const value = data[i2 * depth + d];\n if ($img.dtype === \"float32\") {\n if (value < 0 || value > 1) {\n throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${value}.`);\n }\n } else if ($img.dtype === \"int32\") {\n if (value < 0 || value > 255) {\n throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${value}.`);\n }\n }\n if (depth === 1) {\n rgba[0] = value * multiplier;\n rgba[1] = value * multiplier;\n rgba[2] = value * multiplier;\n } else {\n rgba[d] = value * multiplier;\n }\n }\n const j = i2 * 4;\n bytes[j + 0] = Math.round(rgba[0]);\n bytes[j + 1] = Math.round(rgba[1]);\n bytes[j + 2] = Math.round(rgba[2]);\n bytes[j + 3] = Math.round(rgba[3]);\n }\n if (canvas != null) {\n canvas.width = width;\n canvas.height = height;\n const ctx = canvas.getContext(\"2d\");\n const imageData = new ImageData(bytes, width, height);\n ctx.putImageData(imageData, 0, 0);\n }\n if ($img !== img) {\n $img.dispose();\n }\n return bytes;\n}\nvar fromPixels = op({ fromPixels_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/gather_nd_util.js\nvar gather_nd_util_exports = {};\n__export(gather_nd_util_exports, {\n prepareAndValidate: () => prepareAndValidate\n});\nfunction prepareAndValidate(tensor2, indices) {\n const tensorRank = tensor2.shape.length;\n const indicesRank = indices.shape.length;\n if (tensorRank < 1) {\n throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${tensorRank}.`);\n }\n if (indicesRank < 1) {\n throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${indicesRank}.`);\n }\n if (indices.dtype !== \"int32\") {\n throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${indices.dtype}.`);\n }\n if (indices.shape[indicesRank - 1] > tensorRank) {\n throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${indices.shape[indicesRank - 1]} vs. ${tensorRank}`);\n }\n if (sizeFromShape(tensor2.shape) === 0) {\n throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${tensor2.shape}.`);\n }\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n let nResult = 1;\n for (let i2 = 0; i2 < indicesShape.length - 1; ++i2) {\n nResult *= indicesShape[i2];\n }\n const inputShape = tensor2.shape;\n const resultShape = indicesShape.slice();\n resultShape.pop();\n let sliceSize = 1;\n for (let i2 = sliceRank; i2 < tensorRank; ++i2) {\n sliceSize *= inputShape[i2];\n resultShape.push(inputShape[i2]);\n }\n const strides = [\n ...computeStrides(tensor2.shape).map((stride) => stride / sliceSize),\n 1\n ].slice(0, sliceRank);\n return [resultShape, nResult, sliceSize, strides];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/scatter_nd_util.js\nvar scatter_nd_util_exports = {};\n__export(scatter_nd_util_exports, {\n calculateShapes: () => calculateShapes,\n validateInput: () => validateInput,\n validateUpdateShape: () => validateUpdateShape\n});\nfunction validateUpdateShape(shape, indices, updates) {\n const sliceDim = indices.rank > 1 ? indices.shape[indices.rank - 1] : 1;\n const batchDim = indices.rank > 1 ? indices.rank - 1 : 1;\n const shapeError = `Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${updates.shape}, indices.shape: ${indices.shape}, shape: ${shape}, sliceDim: ${sliceDim}, and batchDim: ${batchDim}.`;\n if (updates.rank < batchDim) {\n throw new Error(shapeError + ` update.rank < ${batchDim}. `);\n }\n if (shape.length < sliceDim + (updates.rank - batchDim)) {\n throw new Error(shapeError + ` Output shape length < ${sliceDim + (updates.rank - batchDim)}`);\n }\n if (updates.rank !== batchDim + shape.length - sliceDim) {\n throw new Error(shapeError + ` update.rank != ${batchDim + shape.length - sliceDim}`);\n }\n for (let d = 0; d < batchDim; ++d) {\n if (updates.shape[d] !== indices.shape[d]) {\n throw new Error(shapeError + ` updates.shape[${d}] (${updates.shape[d]}) != indices.shape[${d}] (${indices.shape[d]}).`);\n }\n }\n for (let d = 0; d < updates.rank - batchDim; ++d) {\n if (updates.shape[d + batchDim] !== shape[d + sliceDim]) {\n throw new Error(shapeError + ` updates.shape[${d + batchDim}] (${updates.shape[d + batchDim]}) != shape[${d + batchDim}] (${shape[d + batchDim]})`);\n }\n }\n}\nfunction validateInput(updates, indices, shape) {\n if (indices.rank < 1) {\n throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${indices.rank}.`);\n }\n if (updates.rank < 1) {\n throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${updates.rank}.`);\n }\n if (indices.dtype !== \"int32\") {\n throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${indices.dtype}`);\n }\n if (shape.length < 1) {\n throw new Error(`Output rank must be greater or equal to 1, but got shape: ${shape}`);\n }\n if (shape.length === 0) {\n if (indices.size === 0) {\n throw new Error(`Indices specified for empty output. indices shape: ${indices.shape}`);\n }\n if (updates.size === 0) {\n throw new Error(`Updates specified for empty output. updates shape: ${updates.shape}`);\n }\n }\n validateUpdateShape(shape, indices, updates);\n}\nfunction calculateShapes(updates, indices, shape) {\n const indicesRank = indices.shape.length;\n const sliceRank = indicesRank > 1 ? indices.shape[indicesRank - 1] : 1;\n const totalNd = shape.length;\n let sliceSize = 1;\n for (let i2 = sliceRank; i2 < totalNd; ++i2) {\n sliceSize *= shape[i2];\n }\n const safeSliceDim = sliceRank < 1 ? 1 : sliceRank;\n const numUpdates = sizeFromShape(indices.shape) / safeSliceDim;\n const strides = [...computeStrides(shape.slice(0, sliceRank)), 1];\n const outputSize = sizeFromShape(shape);\n return { sliceRank, numUpdates, sliceSize, strides, outputSize };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice_util.js\nvar slice_util_exports = {};\n__export(slice_util_exports, {\n assertParamsValid: () => assertParamsValid,\n computeFlatOffset: () => computeFlatOffset,\n computeOutShape: () => computeOutShape,\n getNormalizedAxes: () => getNormalizedAxes,\n isSliceContinous: () => isSliceContinous,\n maskToAxes: () => maskToAxes,\n parseSliceParams: () => parseSliceParams,\n sliceInfo: () => sliceInfo,\n startForAxis: () => startForAxis,\n startIndicesWithElidedDims: () => startIndicesWithElidedDims,\n stopForAxis: () => stopForAxis,\n stopIndicesWithElidedDims: () => stopIndicesWithElidedDims,\n stridesForAxis: () => stridesForAxis,\n stridesWithElidedDims: () => stridesWithElidedDims\n});\nvar NEW_AXIS = -2;\nvar SHRINK_AXIS = -1;\nfunction assertParamsValid(input2, begin, size) {\n const inputRank = input2.shape.length;\n assert(inputRank === begin.length, () => `Error in slice${inputRank}D: Length of begin ${begin} must match the rank of the array (${inputRank}).`);\n assert(inputRank === size.length, () => `Error in slice${inputRank}D: Length of size ${size} must match the rank of the array (${inputRank}).`);\n for (let i2 = 0; i2 < inputRank; ++i2) {\n assert(begin[i2] + size[i2] <= input2.shape[i2], () => `Error in slice${inputRank}D: begin[${i2}] + size[${i2}] (${begin[i2] + size[i2]}) would overflow input.shape[${i2}] (${input2.shape[i2]})`);\n }\n}\nfunction maskToAxes(mask) {\n const axes = [];\n let axis = 0;\n while (mask > 0) {\n if (mask & 1) {\n axes.push(axis);\n }\n mask /= 2;\n axis++;\n }\n return axes;\n}\nfunction computeOutShape(begin, end, strides) {\n const size = [];\n for (let axis = 0; axis < begin.length; axis++) {\n size[axis] = Math.ceil((end[axis] - begin[axis]) / strides[axis]);\n }\n return size;\n}\nfunction stridesWithElidedDims(strides, ellipsisInsertionIndex, numElidedAxes, inputShape) {\n const newStrides = [...strides];\n for (let i2 = newStrides.length; i2 < inputShape.length; i2++) {\n newStrides.push(1);\n }\n for (let i2 = 0; i2 < numElidedAxes; i2++) {\n if (i2 === 0) {\n newStrides[ellipsisInsertionIndex] = 1;\n } else {\n newStrides.splice(ellipsisInsertionIndex, 0, 1);\n newStrides.pop();\n }\n }\n return newStrides;\n}\nfunction unnormalizeAxis(ellipsisInsertionIndex, numElidedAxes, normalizedAxis) {\n if (normalizedAxis <= ellipsisInsertionIndex) {\n return normalizedAxis;\n }\n return normalizedAxis - (numElidedAxes - 1);\n}\nfunction getElidedAxes(numElidedAxes, ellipsisInsertionIndex) {\n const elidedAxes = [];\n for (let i2 = 0; i2 < numElidedAxes; i2++) {\n elidedAxes.push(ellipsisInsertionIndex + i2);\n }\n return elidedAxes;\n}\nfunction getNormalizedAxes(inputShape, ellipsisAxes, numInterpolatedAxes, begin, end, strides, beginMask, endMask, ellipsisMask) {\n const inputRank = inputShape.length;\n let normalizedBegin = new Array(inputRank), normalizedEnd = new Array(inputRank), normalizedStrides = new Array(inputRank);\n if (ellipsisAxes.length && numInterpolatedAxes > 0) {\n const fullIndex = ellipsisAxes[0];\n const numElidedAxes = numInterpolatedAxes + 1;\n normalizedBegin = startIndicesWithElidedDims(beginMask, fullIndex, numElidedAxes, begin, inputShape);\n normalizedEnd = stopIndicesWithElidedDims(endMask, fullIndex, numElidedAxes, end, inputShape);\n normalizedStrides = stridesWithElidedDims(strides, fullIndex, numElidedAxes, inputShape);\n } else {\n for (let axis = 0; axis < inputRank; axis++) {\n normalizedBegin[axis] = startForAxis(beginMask, begin, strides, inputShape, axis, ellipsisMask);\n normalizedEnd[axis] = stopForAxis(endMask, end, strides, inputShape, axis, ellipsisMask);\n normalizedStrides[axis] = stridesForAxis(strides, axis, ellipsisMask);\n }\n }\n return {\n begin: normalizedBegin,\n end: normalizedEnd,\n strides: normalizedStrides\n };\n}\nfunction startIndicesWithElidedDims(beginMask, ellipsisInsertionIndex, numElidedAxes, originalBegin, inputShape) {\n const newIndices = [...inputShape];\n const elidedAxes = getElidedAxes(numElidedAxes, ellipsisInsertionIndex);\n for (let axis = 0; axis < newIndices.length; axis++) {\n if (elidedAxes.indexOf(axis) > -1) {\n newIndices[axis] = 0;\n } else {\n const originalAxis = unnormalizeAxis(ellipsisInsertionIndex, numElidedAxes, axis);\n let originalValue = originalBegin[originalAxis];\n if (beginMask & 1 << originalAxis) {\n originalValue = 0;\n }\n newIndices[axis] = originalValue;\n }\n }\n return newIndices;\n}\nfunction stopIndicesWithElidedDims(endMask, ellipsisInsertionIndex, numElidedAxes, originalEnd, inputShape) {\n const newIndices = [...inputShape];\n const elidedAxes = getElidedAxes(numElidedAxes, ellipsisInsertionIndex);\n for (let axis = 0; axis < newIndices.length; axis++) {\n if (elidedAxes.indexOf(axis) > -1) {\n newIndices[axis] = Number.MAX_SAFE_INTEGER;\n } else {\n const originalAxis = unnormalizeAxis(ellipsisInsertionIndex, numElidedAxes, axis);\n let originalValue = originalEnd[originalAxis];\n if (endMask & 1 << originalAxis) {\n originalValue = Number.MAX_SAFE_INTEGER;\n }\n newIndices[axis] = originalValue;\n }\n }\n for (let i2 = 0; i2 < newIndices.length; i2++) {\n const axisSize = inputShape[i2];\n if (newIndices[i2] < 0) {\n newIndices[i2] += axisSize;\n }\n newIndices[i2] = clamp(0, newIndices[i2], inputShape[i2]);\n }\n return newIndices;\n}\nfunction stridesForAxis(strides, axis, ellipsisMask) {\n let stride = strides[axis];\n if (ellipsisMask & 1 << axis || stride == null) {\n stride = 1;\n }\n return stride;\n}\nfunction startForAxis(beginMask, startIndices, strides, inputShape, axis, ellipsisMask) {\n let start = startIndices[axis];\n const stride = strides[axis] || 1;\n if (beginMask & 1 << axis || ellipsisMask & 1 << axis || start == null) {\n if (stride > 0) {\n start = Number.MIN_SAFE_INTEGER;\n } else {\n start = Number.MAX_SAFE_INTEGER;\n }\n }\n const axisSize = inputShape[axis];\n if (start < 0) {\n start += axisSize;\n }\n start = clamp(0, start, axisSize - 1);\n return start;\n}\nfunction stopForAxis(endMask, stopIndices, strides, inputShape, axis, ellipsisMask) {\n let stop = stopIndices[axis];\n const stride = strides[axis] || 1;\n if (endMask & 1 << axis || ellipsisMask & 1 << axis || stop == null) {\n if (stride > 0) {\n stop = Number.MAX_SAFE_INTEGER;\n } else {\n stop = Number.MIN_SAFE_INTEGER;\n }\n }\n const axisSize = inputShape[axis];\n if (stop < 0) {\n stop += axisSize;\n }\n if (stride > 0) {\n stop = clamp(0, stop, axisSize);\n } else {\n stop = clamp(-1, stop, axisSize - 1);\n }\n return stop;\n}\nfunction isSliceContinous(shape, begin, size) {\n let firstNonOneAxis = size.length;\n for (let i2 = 0; i2 < size.length; i2++) {\n if (size[i2] > 1) {\n firstNonOneAxis = i2;\n break;\n }\n }\n for (let i2 = firstNonOneAxis + 1; i2 < size.length; i2++) {\n if (begin[i2] > 0 || size[i2] !== shape[i2]) {\n return false;\n }\n }\n return true;\n}\nfunction computeFlatOffset(begin, strides) {\n let flatOffset = begin.length > 0 ? begin[begin.length - 1] : 1;\n for (let i2 = 0; i2 < begin.length - 1; i2++) {\n flatOffset += begin[i2] * strides[i2];\n }\n return flatOffset;\n}\nfunction parseSliceParams(x, begin, size) {\n let begin_;\n const xRank = x.shape.length;\n if (typeof begin === \"number\") {\n begin_ = [begin, ...new Array(xRank - 1).fill(0)];\n } else if (begin.length < xRank) {\n begin_ = begin.concat(new Array(xRank - begin.length).fill(0));\n } else {\n begin_ = begin.slice();\n }\n begin_.forEach((d) => {\n assert(d !== -1, () => \"slice() does not support negative begin indexing.\");\n });\n let size_;\n if (size == null) {\n size_ = new Array(xRank).fill(-1);\n } else if (typeof size === \"number\") {\n size_ = [size, ...new Array(xRank - 1).fill(-1)];\n } else if (size.length < xRank) {\n size_ = size.concat(new Array(xRank - size.length).fill(-1));\n } else {\n size_ = size;\n }\n size_ = size_.map((d, i2) => {\n if (d >= 0) {\n return d;\n } else {\n assert(d === -1, () => `Negative size values should be exactly -1 but got ${d} for the slice() size at index ${i2}.`);\n return x.shape[i2] - begin_[i2];\n }\n });\n return [begin_, size_];\n}\nfunction sliceInfo(xShape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask) {\n let stridesNonNull;\n if (strides == null) {\n stridesNonNull = new Array(begin.length);\n stridesNonNull.fill(1);\n } else {\n stridesNonNull = strides;\n }\n if (ellipsisMask != null && (ellipsisMask & ellipsisMask - 1) !== 0) {\n throw new Error(\"Multiple ellipses in slice is not allowed.\");\n }\n let ellipsisSeen = false;\n const sparseSpec = {\n dims: stridesNonNull.length,\n numAddAxisAfterEllipsis: 0,\n begin: begin.slice(),\n end: end.slice(),\n strides: stridesNonNull.slice(),\n beginMask,\n endMask,\n ellipsisMask,\n newAxisMask,\n shrinkAxisMask\n };\n for (let i2 = 0; i2 < sparseSpec.dims; i2++) {\n if (ellipsisSeen && (1 << i2 & newAxisMask) !== 0) {\n sparseSpec.numAddAxisAfterEllipsis++;\n }\n if (1 << i2 & ellipsisMask) {\n ellipsisSeen = true;\n }\n }\n if (!ellipsisSeen) {\n sparseSpec.ellipsisMask |= 1 << sparseSpec.dims;\n sparseSpec.dims++;\n }\n const denseSpec = {\n dims: xShape.length,\n beginMask: 0,\n endMask: 0,\n beginValid: false,\n endValid: false\n };\n buildDenseSpec(sparseSpec, denseSpec);\n let isIdentity = true;\n let sliceDim0 = true;\n let isSimpleSlice = true;\n const processingShape = [];\n const finalShape = [];\n for (let i2 = 0; i2 < xShape.length; ++i2) {\n if (denseSpec.strides[i2] === 0) {\n throw Error(`strides[${i2}] must be non-zero`);\n }\n const shrinkI = !!(denseSpec.shrinkAxisMask & 1 << i2);\n const dimI = xShape[i2];\n if (dimI === -1) {\n processingShape.push(shrinkI ? 1 : -1);\n continue;\n }\n const masks = [denseSpec.beginMask & 1 << i2, denseSpec.endMask & 1 << i2];\n const validRange = [\n denseSpec.strides[i2] > 0 ? 0 : -1,\n denseSpec.strides[i2] > 0 ? dimI : dimI - 1\n ];\n if (shrinkI && denseSpec.strides[i2] <= 0) {\n throw Error(\"only stride 1 allowed on non-range indexing.\");\n }\n isSimpleSlice = isSimpleSlice && denseSpec.strides[i2] === 1;\n const beginAndEndMasked = !!(denseSpec.beginMask & 1 << i2 && denseSpec.endMask & 1 << i2);\n if (denseSpec.beginValid && denseSpec.endValid) {\n if (shrinkI) {\n const xFwd = denseSpec.begin[i2] < 0 ? dimI + denseSpec.begin[i2] : denseSpec.begin[i2];\n denseSpec.begin[i2] = xFwd;\n denseSpec.end[i2] = denseSpec.begin[i2] + 1;\n if (xFwd < 0 || xFwd >= dimI) {\n throw Error(`slice index ${denseSpec.begin[i2]} of dimension ${i2} out of bounds.`);\n }\n } else {\n denseSpec.begin[i2] = canonical(denseSpec.begin[i2], 0, denseSpec.strides[i2], dimI, masks, validRange);\n denseSpec.end[i2] = canonical(denseSpec.end[i2], 1, denseSpec.strides[i2], dimI, masks, validRange);\n }\n const takeAllInDimension = denseSpec.strides[i2] === 1 && denseSpec.begin[i2] === 0 && denseSpec.end[i2] === dimI;\n isIdentity = isIdentity && takeAllInDimension;\n sliceDim0 = sliceDim0 && (i2 === 0 && denseSpec.strides[i2] === 1 || takeAllInDimension);\n } else {\n isIdentity = isIdentity && (denseSpec.strides[i2] === 1 && beginAndEndMasked);\n sliceDim0 = sliceDim0 && (i2 === 0 && denseSpec.strides[i2] === 1 || beginAndEndMasked);\n }\n let intervalLength;\n let knownInterval = false;\n if (denseSpec.beginValid && denseSpec.endValid) {\n intervalLength = denseSpec.end[i2] - denseSpec.begin[i2];\n knownInterval = true;\n } else if (shrinkI) {\n intervalLength = 1;\n knownInterval = true;\n } else if (beginAndEndMasked) {\n if (dimI >= 0) {\n if (denseSpec.strides[i2] < 0) {\n intervalLength = -dimI;\n } else {\n intervalLength = dimI;\n }\n knownInterval = true;\n }\n }\n if (knownInterval) {\n let sizeI;\n if (intervalLength === 0 || intervalLength < 0 !== denseSpec.strides[i2] < 0) {\n sizeI = 0;\n } else {\n sizeI = Math.trunc(intervalLength / denseSpec.strides[i2]) + (intervalLength % denseSpec.strides[i2] !== 0 ? 1 : 0);\n }\n processingShape.push(sizeI);\n } else {\n processingShape.push(-1);\n }\n }\n for (let denseDim = 0; denseDim < denseSpec.finalShapeGatherIndices.length; ++denseDim) {\n const gatherIndex = denseSpec.finalShapeGatherIndices[denseDim];\n if (gatherIndex >= 0) {\n finalShape.push(processingShape[gatherIndex]);\n } else if (gatherIndex === NEW_AXIS) {\n finalShape.push(1);\n }\n }\n const finalShapeSparse = finalShape.filter((dim, i2) => denseSpec.finalShapeGatherIndices[i2] !== NEW_AXIS);\n return {\n finalShapeSparse,\n finalShape,\n isIdentity,\n sliceDim0,\n isSimpleSlice,\n begin: denseSpec.begin,\n end: denseSpec.end,\n strides: denseSpec.strides\n };\n}\nfunction buildDenseSpec(sparse2, dense2) {\n dense2.beginMask = 0;\n dense2.endMask = 0;\n dense2.shrinkAxisMask = 0;\n let fullIndex = 0;\n dense2.beginValid = sparse2.begin != null;\n dense2.endValid = sparse2.end != null;\n dense2.begin = new Array(dense2.dims);\n dense2.end = new Array(dense2.dims);\n dense2.strides = new Array(dense2.dims);\n dense2.finalShapeGatherIndices = [];\n dense2.finalShapeGatherIndicesSparse = [];\n dense2.inputShapeGatherIndicesSparse = new Array(dense2.dims);\n for (let i2 = 0; i2 < sparse2.dims; i2++) {\n if (1 << i2 & sparse2.ellipsisMask) {\n const nextIndex = Math.min(dense2.dims - (sparse2.dims - i2) + 1 + sparse2.numAddAxisAfterEllipsis, dense2.dims);\n for (; fullIndex < nextIndex; fullIndex++) {\n dense2.begin[fullIndex] = 0;\n dense2.end[fullIndex] = 0;\n dense2.strides[fullIndex] = 1;\n dense2.beginMask |= 1 << fullIndex;\n dense2.endMask |= 1 << fullIndex;\n dense2.finalShapeGatherIndices.push(fullIndex);\n dense2.finalShapeGatherIndicesSparse.push(-1);\n dense2.inputShapeGatherIndicesSparse[fullIndex] = i2;\n }\n } else if (1 << i2 & sparse2.newAxisMask) {\n dense2.finalShapeGatherIndices.push(NEW_AXIS);\n dense2.finalShapeGatherIndicesSparse.push(-1);\n } else {\n if (fullIndex === dense2.begin.length) {\n throw Error(`Index out of range using input dim ${fullIndex}; input has only ${dense2.dims} dims, ${dense2.begin.length}.`);\n }\n if (sparse2.begin != null) {\n dense2.begin[fullIndex] = sparse2.begin[i2];\n }\n if (sparse2.end != null) {\n dense2.end[fullIndex] = sparse2.end[i2];\n }\n dense2.strides[fullIndex] = sparse2.strides[i2];\n if (sparse2.beginMask & 1 << i2) {\n dense2.beginMask |= 1 << fullIndex;\n }\n if (sparse2.endMask & 1 << i2) {\n dense2.endMask |= 1 << fullIndex;\n }\n if (sparse2.shrinkAxisMask & 1 << i2) {\n dense2.finalShapeGatherIndices.push(SHRINK_AXIS);\n dense2.finalShapeGatherIndicesSparse.push(-1);\n dense2.shrinkAxisMask |= 1 << fullIndex;\n } else {\n dense2.finalShapeGatherIndices.push(fullIndex);\n dense2.finalShapeGatherIndicesSparse.push(i2);\n }\n dense2.inputShapeGatherIndicesSparse[fullIndex] = i2;\n fullIndex++;\n }\n }\n}\nfunction canonical(x, c, strideI, dimI, masks, validRange) {\n if (masks[c]) {\n return strideI > 0 ? validRange[c] : validRange[c + 1 & 1];\n } else {\n const xFwd = x < 0 ? dimI + x : x;\n return xFwd < validRange[0] ? validRange[0] : xFwd > validRange[1] ? validRange[1] : xFwd;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/serialization.js\nvar serialization_exports = {};\n__export(serialization_exports, {\n Serializable: () => Serializable,\n SerializationMap: () => SerializationMap,\n registerClass: () => registerClass\n});\nvar Serializable = class {\n getClassName() {\n return this.constructor.className;\n }\n static fromConfig(cls, config) {\n return new cls(config);\n }\n};\nvar SerializationMap = class {\n constructor() {\n this.classNameMap = {};\n }\n static getMap() {\n if (SerializationMap.instance == null) {\n SerializationMap.instance = new SerializationMap();\n }\n return SerializationMap.instance;\n }\n static register(cls) {\n SerializationMap.getMap().classNameMap[cls.className] = [cls, cls.fromConfig];\n }\n};\nfunction registerClass(cls) {\n assert(cls.className != null, () => `Class being registered does not have the static className property defined.`);\n assert(typeof cls.className === \"string\", () => `className is required to be a string, but got type ` + typeof cls.className);\n assert(cls.className.length > 0, () => `Class being registered has an empty-string as its className, which is disallowed.`);\n SerializationMap.register(cls);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/test_util.js\nvar test_util_exports = {};\n__export(test_util_exports, {\n TEST_EPSILON_FLOAT16: () => TEST_EPSILON_FLOAT16,\n createVideoElement: () => createVideoElement,\n encodeStrings: () => encodeStrings,\n expectArrayBuffersEqual: () => expectArrayBuffersEqual,\n expectArraysClose: () => expectArraysClose,\n expectArraysEqual: () => expectArraysEqual,\n expectNumbersClose: () => expectNumbersClose,\n expectPromiseToFail: () => expectPromiseToFail,\n expectValuesInRange: () => expectValuesInRange,\n play: () => play,\n testEpsilon: () => testEpsilon\n});\nvar TEST_EPSILON_FLOAT32 = 1e-3;\nvar TEST_EPSILON_FLOAT16 = 0.1;\nfunction expectArraysClose(actual, expected, epsilon3) {\n if (epsilon3 == null) {\n epsilon3 = testEpsilon();\n }\n return expectArraysPredicate(actual, expected, (a, b) => areClose(a, b, epsilon3));\n}\nfunction testEpsilon() {\n return ENGINE.backend.floatPrecision() === 32 ? TEST_EPSILON_FLOAT32 : TEST_EPSILON_FLOAT16;\n}\nfunction expectArraysPredicate(actual, expected, predicate) {\n let checkClassType = true;\n if (isTypedArray(actual) || isTypedArray(expected)) {\n checkClassType = false;\n }\n if (isTypedArray(actual) && isTypedArray(expected)) {\n checkClassType = true;\n }\n if (checkClassType) {\n const aType = actual.constructor.name;\n const bType = expected.constructor.name;\n if (aType !== bType) {\n throw new Error(`Arrays are of different type. Actual: ${aType}. Expected: ${bType}`);\n }\n }\n if (Array.isArray(actual) && Array.isArray(expected)) {\n const actualShape = inferShape(actual);\n const expectedShape = inferShape(expected);\n if (!arraysEqual(actualShape, expectedShape)) {\n throw new Error(`Arrays have different shapes. Actual: [${actualShape}]. Expected: [${expectedShape}]`);\n }\n }\n const actualFlat = isTypedArray(actual) ? actual : flatten(actual);\n const expectedFlat = isTypedArray(expected) ? expected : flatten(expected);\n if (actualFlat.length !== expectedFlat.length) {\n throw new Error(`Arrays have different lengths actual: ${actualFlat.length} vs expected: ${expectedFlat.length}.\nActual: ${actualFlat}.\nExpected: ${expectedFlat}.`);\n }\n for (let i2 = 0; i2 < expectedFlat.length; ++i2) {\n const a = actualFlat[i2];\n const e2 = expectedFlat[i2];\n if (!predicate(a, e2)) {\n throw new Error(`Arrays differ: actual[${i2}] = ${a}, expected[${i2}] = ${e2}.\nActual: ${actualFlat}.\nExpected: ${expectedFlat}.`);\n }\n }\n if (typeof expect !== \"undefined\") {\n expect().nothing();\n }\n}\nfunction expectPromiseToFail(fn, done) {\n fn().then(() => done.fail(), () => done());\n if (typeof expect !== \"undefined\") {\n expect().nothing();\n }\n}\nfunction expectArraysEqual(actual, expected) {\n const exp5 = typeof expected === \"string\" || typeof expected === \"number\" || typeof expected === \"boolean\" ? [expected] : expected;\n if (isString(actual) || isString(actual[0]) || isString(expected) || isString(expected[0])) {\n return expectArraysPredicate(actual, exp5, (a, b) => a == b);\n }\n return expectArraysPredicate(actual, expected, (a, b) => areClose(a, b, 0));\n}\nfunction expectNumbersClose(a, e2, epsilon3) {\n if (epsilon3 == null) {\n epsilon3 = testEpsilon();\n }\n if (!areClose(a, e2, epsilon3)) {\n throw new Error(`Numbers differ: actual === ${a}, expected === ${e2}`);\n }\n if (typeof expect !== \"undefined\") {\n expect().nothing();\n }\n}\nfunction areClose(a, e2, epsilon3) {\n if (!isFinite(a) && !isFinite(e2)) {\n return true;\n }\n if (isNaN(a) || isNaN(e2) || Math.abs(a - e2) > epsilon3) {\n return false;\n }\n return true;\n}\nfunction expectValuesInRange(actual, low, high) {\n for (let i2 = 0; i2 < actual.length; i2++) {\n if (actual[i2] < low || actual[i2] > high) {\n throw new Error(`Value out of range:${actual[i2]} low: ${low}, high: ${high}`);\n }\n }\n}\nfunction expectArrayBuffersEqual(actual, expected) {\n const actualArray = new Float32Array(actual);\n const expectedArray = new Float32Array(expected);\n if (actualArray.length !== expectedArray.length) {\n throw new Error(`Expected ArrayBuffer to be of length ${expectedArray.length}, but it was ${actualArray.length}`);\n }\n for (let i2 = 0; i2 < expectedArray.length; i2++) {\n if (actualArray[i2] !== expectedArray[i2]) {\n throw new Error(`Expected ArrayBuffer value at ${i2} to be ${expectedArray[i2]} but got ${actualArray[i2]} instead`);\n }\n }\n}\nfunction encodeStrings(a) {\n for (let i2 = 0; i2 < a.length; i2++) {\n const val = a[i2];\n if (Array.isArray(val)) {\n encodeStrings(val);\n } else {\n a[i2] = encodeString(val);\n }\n }\n return a;\n}\nfunction createVideoElement(source) {\n const video = document.createElement(\"video\");\n if (\"playsInline\" in video) {\n video.playsInline = true;\n }\n video.muted = true;\n video.loop = true;\n video.style.position = \"fixed\";\n video.style.left = \"0px\";\n video.style.top = \"0px\";\n video.preload = \"auto\";\n video.appendChild(source);\n return new Promise((resolve) => {\n video.addEventListener(\"loadeddata\", (_) => resolve(video));\n video.load();\n });\n}\nasync function play(video) {\n await video.play();\n if (\"requestVideoFrameCallback\" in video) {\n await new Promise((resolve) => {\n video.requestVideoFrameCallback(resolve);\n });\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/version.js\nvar version = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/add.js\nfunction add_(a, b) {\n let $a = convertToTensor(a, \"a\", \"add\");\n let $b = convertToTensor(b, \"b\", \"add\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Add, inputs);\n}\nvar add2 = op({ add_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/floorDiv.js\nfunction floorDiv_(a, b) {\n let $a = convertToTensor(a, \"a\", \"floorDiv\");\n let $b = convertToTensor(b, \"b\", \"floorDiv\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(FloorDiv, inputs);\n}\nvar floorDiv = op({ floorDiv_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/div.js\nfunction div_(a, b) {\n let $a = convertToTensor(a, \"a\", \"div\");\n let $b = convertToTensor(b, \"b\", \"div\");\n [$a, $b] = makeTypesMatch($a, $b);\n if ($a.dtype === \"int32\" && $b.dtype === \"int32\") {\n return floorDiv($a, $b);\n }\n const inputs = { a: $a, b: $b };\n const attrs = {};\n return ENGINE.runKernel(RealDiv, inputs, attrs);\n}\nvar div = op({ div_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mul.js\nfunction mul_(a, b) {\n let $a = convertToTensor(a, \"a\", \"mul\");\n let $b = convertToTensor(b, \"b\", \"mul\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Multiply, inputs);\n}\nvar mul = op({ mul_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/abs.js\nfunction abs_(x) {\n const $x = convertToTensor(x, \"x\", \"abs\");\n if ($x.dtype === \"complex64\") {\n const inputs = { x: $x };\n return ENGINE.runKernel(ComplexAbs, inputs);\n } else {\n const inputs = { x: $x };\n return ENGINE.runKernel(Abs, inputs);\n }\n}\nvar abs = op({ abs_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/acos.js\nfunction acos_(x) {\n const $x = convertToTensor(x, \"x\", \"acos\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Acos, inputs);\n}\nvar acos = op({ acos_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/acosh.js\nfunction acosh_(x) {\n const $x = convertToTensor(x, \"x\", \"acosh\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Acosh, inputs);\n}\nvar acosh = op({ acosh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/add_n.js\nfunction addN_(tensors) {\n assert(Array.isArray(tensors), () => \"The argument passed to tf.addN() must be a list of tensors\");\n assert(tensors.length >= 1, () => `Must pass at least one tensor to tf.addN(), but got ${tensors.length}`);\n const $tensors = tensors.map((t2, i2) => convertToTensor(t2, `tensors${i2}`, \"addN\"));\n const firstTensor = $tensors[0];\n $tensors.forEach((t2) => {\n if (t2.dtype !== firstTensor.dtype) {\n throw new Error(\"All tensors passed to tf.addN() must have the same dtype\");\n }\n });\n $tensors.forEach((t2) => {\n if (!arraysEqual(t2.shape, firstTensor.shape)) {\n throw new Error(\"All tensors passed to tf.addN() must have the same shape\");\n }\n });\n const inputs = $tensors;\n return ENGINE.runKernel(AddN, inputs);\n}\nvar addN = op({ addN_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/all.js\nfunction all_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"all\", \"bool\");\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(All, inputs, attrs);\n}\nvar all = op({ all_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/any.js\nfunction any_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"any\", \"bool\");\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Any, inputs, attrs);\n}\nvar any = op({ any_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/arg_max.js\nfunction argMax_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"argMax\");\n const inputs = { x: $x };\n const attrs = { axis };\n return ENGINE.runKernel(ArgMax, inputs, attrs);\n}\nvar argMax = op({ argMax_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/arg_min.js\nfunction argMin_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"argMin\");\n const inputs = { x: $x };\n const attrs = { axis };\n return ENGINE.runKernel(ArgMin, inputs, attrs);\n}\nvar argMin = op({ argMin_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/asin.js\nfunction asin_(x) {\n const $x = convertToTensor(x, \"x\", \"asin\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Asin, inputs);\n}\nvar asin = op({ asin_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/asinh.js\nfunction asinh_(x) {\n const $x = convertToTensor(x, \"x\", \"asinh\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Asinh, inputs);\n}\nvar asinh = op({ asinh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/atan.js\nfunction atan_(x) {\n const $x = convertToTensor(x, \"x\", \"atan\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Atan, inputs);\n}\nvar atan = op({ atan_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/atan2.js\nfunction atan2_(a, b) {\n let $a = convertToTensor(a, \"a\", \"atan2\");\n let $b = convertToTensor(b, \"b\", \"atan2\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Atan2, inputs);\n}\nvar atan2 = op({ atan2_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/atanh.js\nfunction atanh_(x) {\n const $x = convertToTensor(x, \"x\", \"atanh\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Atanh, inputs);\n}\nvar atanh = op({ atanh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv_util.js\nfunction computeDilation2DInfo(inputShape, filterShape, strides, pad3, dataFormat = \"NHWC\", dilations) {\n const inputChannels = inputShape[3];\n const $filterShape = [...filterShape, inputChannels];\n const $dataFormat = convertConv2DDataFormat(dataFormat);\n return computeConv2DInfo(inputShape, $filterShape, strides, dilations, pad3, null, null, $dataFormat);\n}\nfunction computePool2DInfo(inShape, filterSize, strides, dilations, pad3, roundingMode, dataFormat = \"channelsLast\") {\n const [filterHeight, filterWidth] = parseTupleParam(filterSize);\n let filterShape;\n if (dataFormat === \"channelsLast\") {\n filterShape = [filterHeight, filterWidth, inShape[3], inShape[3]];\n } else if (dataFormat === \"channelsFirst\") {\n filterShape = [filterHeight, filterWidth, inShape[1], inShape[1]];\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n return computeConv2DInfo(inShape, filterShape, strides, dilations, pad3, roundingMode, false, dataFormat);\n}\nfunction computePool3DInfo(inShape, filterSize, strides, dilations, pad3, roundingMode, dataFormat = \"NDHWC\") {\n const [filterDepth, filterHeight, filterWidth] = parse3TupleParam(filterSize);\n let filterShape;\n let $dataFormat;\n if (dataFormat === \"NDHWC\") {\n $dataFormat = \"channelsLast\";\n filterShape = [filterDepth, filterHeight, filterWidth, inShape[4], inShape[4]];\n } else if (dataFormat === \"NCDHW\") {\n $dataFormat = \"channelsFirst\";\n filterShape = [filterDepth, filterHeight, filterWidth, inShape[1], inShape[1]];\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n return computeConv3DInfo(inShape, filterShape, strides, dilations, pad3, false, $dataFormat, roundingMode);\n}\nfunction computeConv2DInfo(inShape, filterShape, strides, dilations, pad3, roundingMode, depthwise = false, dataFormat = \"channelsLast\") {\n let [batchSize, inHeight, inWidth, inChannels] = [-1, -1, -1, -1];\n if (dataFormat === \"channelsLast\") {\n [batchSize, inHeight, inWidth, inChannels] = inShape;\n } else if (dataFormat === \"channelsFirst\") {\n [batchSize, inChannels, inHeight, inWidth] = inShape;\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n const [filterHeight, filterWidth, , filterChannels] = filterShape;\n const [strideHeight, strideWidth] = parseTupleParam(strides);\n const [dilationHeight, dilationWidth] = parseTupleParam(dilations);\n const effectiveFilterHeight = getEffectiveFilterSize(filterHeight, dilationHeight);\n const effectiveFilterWidth = getEffectiveFilterSize(filterWidth, dilationWidth);\n const { padInfo, outHeight, outWidth } = getPadAndOutInfo(pad3, inHeight, inWidth, strideHeight, strideWidth, effectiveFilterHeight, effectiveFilterWidth, roundingMode, dataFormat);\n const outChannels = depthwise ? filterChannels * inChannels : filterChannels;\n let outShape;\n if (dataFormat === \"channelsFirst\") {\n outShape = [batchSize, outChannels, outHeight, outWidth];\n } else if (dataFormat === \"channelsLast\") {\n outShape = [batchSize, outHeight, outWidth, outChannels];\n }\n return {\n batchSize,\n dataFormat,\n inHeight,\n inWidth,\n inChannels,\n outHeight,\n outWidth,\n outChannels,\n padInfo,\n strideHeight,\n strideWidth,\n filterHeight,\n filterWidth,\n effectiveFilterHeight,\n effectiveFilterWidth,\n dilationHeight,\n dilationWidth,\n inShape,\n outShape,\n filterShape\n };\n}\nfunction computeConv3DInfo(inShape, filterShape, strides, dilations, pad3, depthwise = false, dataFormat = \"channelsLast\", roundingMode) {\n let [batchSize, inDepth, inHeight, inWidth, inChannels] = [-1, -1, -1, -1, -1];\n if (dataFormat === \"channelsLast\") {\n [batchSize, inDepth, inHeight, inWidth, inChannels] = inShape;\n } else if (dataFormat === \"channelsFirst\") {\n [batchSize, inChannels, inDepth, inHeight, inWidth] = inShape;\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n const [filterDepth, filterHeight, filterWidth, , filterChannels] = filterShape;\n const [strideDepth, strideHeight, strideWidth] = parse3TupleParam(strides);\n const [dilationDepth, dilationHeight, dilationWidth] = parse3TupleParam(dilations);\n const effectiveFilterDepth = getEffectiveFilterSize(filterDepth, dilationDepth);\n const effectiveFilterHeight = getEffectiveFilterSize(filterHeight, dilationHeight);\n const effectiveFilterWidth = getEffectiveFilterSize(filterWidth, dilationWidth);\n const { padInfo, outDepth, outHeight, outWidth } = get3DPadAndOutInfo(pad3, inDepth, inHeight, inWidth, strideDepth, strideHeight, strideWidth, effectiveFilterDepth, effectiveFilterHeight, effectiveFilterWidth, roundingMode);\n const outChannels = depthwise ? filterChannels * inChannels : filterChannels;\n let outShape;\n if (dataFormat === \"channelsFirst\") {\n outShape = [batchSize, outChannels, outDepth, outHeight, outWidth];\n } else if (dataFormat === \"channelsLast\") {\n outShape = [batchSize, outDepth, outHeight, outWidth, outChannels];\n }\n return {\n batchSize,\n dataFormat,\n inDepth,\n inHeight,\n inWidth,\n inChannels,\n outDepth,\n outHeight,\n outWidth,\n outChannels,\n padInfo,\n strideDepth,\n strideHeight,\n strideWidth,\n filterDepth,\n filterHeight,\n filterWidth,\n effectiveFilterDepth,\n effectiveFilterHeight,\n effectiveFilterWidth,\n dilationDepth,\n dilationHeight,\n dilationWidth,\n inShape,\n outShape,\n filterShape\n };\n}\nfunction computeOutputShape2D(inShape, fieldSize, stride, zeroPad, roundingMode) {\n if (zeroPad == null) {\n zeroPad = computeDefaultPad(inShape, fieldSize, stride);\n }\n const inputRows = inShape[0];\n const inputCols = inShape[1];\n const outputRows = round((inputRows - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n const outputCols = round((inputCols - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n return [outputRows, outputCols];\n}\nfunction computeOutputShape4D(inShape, fieldSize, outChannels, stride, zeroPad, roundingMode) {\n if (zeroPad == null) {\n zeroPad = computeDefaultPad(inShape, fieldSize, stride);\n }\n const inputDepth = inShape[0];\n const inputRows = inShape[1];\n const inputCols = inShape[2];\n const outputDepths = round((inputDepth - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n const outputRows = round((inputRows - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n const outputCols = round((inputCols - fieldSize + 2 * zeroPad) / stride + 1, roundingMode);\n return [outputDepths, outputRows, outputCols, outChannels];\n}\nfunction computeDefaultPad(inputShape, fieldSize, stride, dilation = 1) {\n const effectiveFieldSize = getEffectiveFilterSize(fieldSize, dilation);\n return Math.floor((inputShape[0] * (stride - 1) - stride + effectiveFieldSize) / 2);\n}\nfunction parseTupleParam(param) {\n if (typeof param === \"number\") {\n return [param, param, param];\n }\n if (param.length === 2) {\n return [param[0], param[1], 1];\n }\n return param;\n}\nfunction parse3TupleParam(param) {\n return typeof param === \"number\" ? [param, param, param] : param;\n}\nfunction getEffectiveFilterSize(filterSize, dilation) {\n if (dilation <= 1) {\n return filterSize;\n }\n return filterSize + (filterSize - 1) * (dilation - 1);\n}\nfunction getPadAndOutInfo(pad3, inHeight, inWidth, strideHeight, strideWidth, filterHeight, filterWidth, roundingMode, dataFormat) {\n let padInfo;\n let outHeight;\n let outWidth;\n if (typeof pad3 === \"number\") {\n const padType = pad3 === 0 ? \"VALID\" : \"NUMBER\";\n padInfo = { top: pad3, bottom: pad3, left: pad3, right: pad3, type: padType };\n const outShape = computeOutputShape2D([inHeight, inWidth], filterHeight, strideHeight, pad3, roundingMode);\n outHeight = outShape[0];\n outWidth = outShape[1];\n } else if (pad3 === \"same\") {\n outHeight = Math.ceil(inHeight / strideHeight);\n outWidth = Math.ceil(inWidth / strideWidth);\n const padAlongHeight = Math.max(0, (outHeight - 1) * strideHeight + filterHeight - inHeight);\n const padAlongWidth = Math.max(0, (outWidth - 1) * strideWidth + filterWidth - inWidth);\n const top = Math.floor(padAlongHeight / 2);\n const bottom = padAlongHeight - top;\n const left = Math.floor(padAlongWidth / 2);\n const right = padAlongWidth - left;\n padInfo = { top, bottom, left, right, type: \"SAME\" };\n } else if (pad3 === \"valid\") {\n padInfo = { top: 0, bottom: 0, left: 0, right: 0, type: \"VALID\" };\n outHeight = Math.ceil((inHeight - filterHeight + 1) / strideHeight);\n outWidth = Math.ceil((inWidth - filterWidth + 1) / strideWidth);\n } else if (typeof pad3 === \"object\") {\n const top = dataFormat === \"channelsLast\" ? pad3[1][0] : pad3[2][0];\n const bottom = dataFormat === \"channelsLast\" ? pad3[1][1] : pad3[2][1];\n const left = dataFormat === \"channelsLast\" ? pad3[2][0] : pad3[3][0];\n const right = dataFormat === \"channelsLast\" ? pad3[2][1] : pad3[3][1];\n const padType = top === 0 && bottom === 0 && left === 0 && right === 0 ? \"VALID\" : \"EXPLICIT\";\n padInfo = { top, bottom, left, right, type: padType };\n outHeight = round((inHeight - filterHeight + top + bottom) / strideHeight + 1, roundingMode);\n outWidth = round((inWidth - filterWidth + left + right) / strideWidth + 1, roundingMode);\n } else {\n throw Error(`Unknown padding parameter: ${pad3}`);\n }\n return { padInfo, outHeight, outWidth };\n}\nfunction get3DPadAndOutInfo(pad3, inDepth, inHeight, inWidth, strideDepth, strideHeight, strideWidth, filterDepth, filterHeight, filterWidth, roundingMode) {\n let padInfo;\n let outDepth;\n let outHeight;\n let outWidth;\n if (typeof pad3 === \"number\") {\n const padType = pad3 === 0 ? \"VALID\" : \"NUMBER\";\n padInfo = {\n top: pad3,\n bottom: pad3,\n left: pad3,\n right: pad3,\n front: pad3,\n back: pad3,\n type: padType\n };\n const outShape = computeOutputShape4D([inDepth, inHeight, inWidth, 1], filterDepth, 1, strideDepth, pad3, roundingMode);\n outDepth = outShape[0];\n outHeight = outShape[1];\n outWidth = outShape[2];\n } else if (pad3 === \"same\") {\n outDepth = Math.ceil(inDepth / strideDepth);\n outHeight = Math.ceil(inHeight / strideHeight);\n outWidth = Math.ceil(inWidth / strideWidth);\n const padAlongDepth = (outDepth - 1) * strideDepth + filterDepth - inDepth;\n const padAlongHeight = (outHeight - 1) * strideHeight + filterHeight - inHeight;\n const padAlongWidth = (outWidth - 1) * strideWidth + filterWidth - inWidth;\n const front = Math.floor(padAlongDepth / 2);\n const back = padAlongDepth - front;\n const top = Math.floor(padAlongHeight / 2);\n const bottom = padAlongHeight - top;\n const left = Math.floor(padAlongWidth / 2);\n const right = padAlongWidth - left;\n padInfo = { top, bottom, left, right, front, back, type: \"SAME\" };\n } else if (pad3 === \"valid\") {\n padInfo = {\n top: 0,\n bottom: 0,\n left: 0,\n right: 0,\n front: 0,\n back: 0,\n type: \"VALID\"\n };\n outDepth = Math.ceil((inDepth - filterDepth + 1) / strideDepth);\n outHeight = Math.ceil((inHeight - filterHeight + 1) / strideHeight);\n outWidth = Math.ceil((inWidth - filterWidth + 1) / strideWidth);\n } else {\n throw Error(`Unknown padding parameter: ${pad3}`);\n }\n return { padInfo, outDepth, outHeight, outWidth };\n}\nfunction round(value, roundingMode) {\n if (!roundingMode) {\n return Math.trunc(value);\n }\n switch (roundingMode) {\n case \"round\":\n return Math.round(value);\n case \"ceil\":\n return Math.ceil(value);\n case \"floor\":\n return Math.floor(value);\n default:\n throw new Error(`Unknown roundingMode ${roundingMode}`);\n }\n}\nfunction tupleValuesAreOne(param) {\n const [dimA, dimB, dimC] = parseTupleParam(param);\n return dimA === 1 && dimB === 1 && dimC === 1;\n}\nfunction eitherStridesOrDilationsAreOne(strides, dilations) {\n return tupleValuesAreOne(strides) || tupleValuesAreOne(dilations);\n}\nfunction convertConv2DDataFormat(dataFormat) {\n if (dataFormat === \"NHWC\") {\n return \"channelsLast\";\n } else if (dataFormat === \"NCHW\") {\n return \"channelsFirst\";\n } else {\n throw new Error(`Unknown dataFormat ${dataFormat}`);\n }\n}\nfunction checkPadOnDimRoundingMode(opDesc, pad3, dimRoundingMode) {\n if (dimRoundingMode != null) {\n if (typeof pad3 === \"string\") {\n throw Error(`Error in ${opDesc}: pad must be an integer when using dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`);\n } else if (typeof pad3 === \"number\") {\n assert(isInt(pad3), () => `Error in ${opDesc}: pad must be an integer when using dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`);\n } else if (typeof pad3 === \"object\") {\n pad3.forEach((p2) => {\n p2.forEach((v) => {\n assert(isInt(v), () => `Error in ${opDesc}: pad must be an integer when using dimRoundingMode ${dimRoundingMode} but got pad ${v}.`);\n });\n });\n } else {\n throw Error(`Error in ${opDesc}: Unknown padding parameter: ${pad3}`);\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reshape.js\nfunction reshape_(x, shape) {\n const $x = convertToTensor(x, \"x\", \"reshape\", \"string_or_numeric\");\n const inputs = { x: $x };\n const attrs = { shape };\n return ENGINE.runKernel(Reshape, inputs, attrs);\n}\nvar reshape = op({ reshape_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/avg_pool.js\nfunction avgPool_(x, filterSize, strides, pad3, dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"avgPool\", \"float32\");\n const dilations = 1;\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in avgPool: x must be rank 4 but got rank ${x4D.rank}.`);\n checkPadOnDimRoundingMode(\"avgPool\", pad3, dimRoundingMode);\n const inputs = { x: x4D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n let res = ENGINE.runKernel(AvgPool, inputs, attrs);\n res = cast(res, $x.dtype);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar avgPool = op({ avgPool_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/avg_pool_3d.js\nfunction avgPool3d_(x, filterSize, strides, pad3, dimRoundingMode, dataFormat = \"NDHWC\") {\n const $x = convertToTensor(x, \"x\", \"avgPool3d\", \"float32\");\n let x5D = $x;\n let reshapedTo5D = false;\n if ($x.rank === 4) {\n reshapedTo5D = true;\n x5D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]]);\n }\n assert(x5D.rank === 5, () => `Error in avgPool3d: x must be rank 5 but got rank ${x5D.rank}.`);\n assert(dataFormat === \"NDHWC\", () => `Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${dataFormat}`);\n checkPadOnDimRoundingMode(\"avgPool3d\", pad3, dimRoundingMode);\n const inputs = { x: x5D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat };\n let res = ENGINE.runKernel(AvgPool3D, inputs, attrs);\n res = cast(res, x5D.dtype);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar avgPool3d = op({ avgPool3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat.js\nfunction concat_(tensors, axis = 0) {\n assert(tensors.length >= 1, () => \"Pass at least one tensor to concat\");\n const $tensors = convertToTensorArray(tensors, \"tensors\", \"concat\", \"string_or_numeric\");\n if ($tensors[0].dtype === \"complex64\") {\n $tensors.forEach((tensor2) => {\n if (tensor2.dtype !== \"complex64\") {\n throw new Error(`Cannot concatenate complex64 tensors with a tensor\n with dtype ${tensor2.dtype}. `);\n }\n });\n }\n if ($tensors.length === 1) {\n return clone($tensors[0]);\n }\n const inputs = $tensors;\n const attr = { axis };\n return ENGINE.runKernel(Concat, inputs, attr);\n}\nvar concat = op({ concat_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sigmoid.js\nfunction sigmoid_(x) {\n const $x = convertToTensor(x, \"x\", \"sigmoid\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sigmoid, inputs);\n}\nvar sigmoid = op({ sigmoid_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice.js\nfunction slice_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice\", \"string_or_numeric\");\n if ($x.rank === 0) {\n throw new Error(\"Slicing scalar is not possible\");\n }\n const inputs = { x: $x };\n const attrs = { begin, size };\n return ENGINE.runKernel(Slice, inputs, attrs);\n}\nvar slice = op({ slice_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tanh.js\nfunction tanh_(x) {\n const $x = convertToTensor(x, \"x\", \"tanh\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Tanh, inputs);\n}\nvar tanh2 = op({ tanh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/basic_lstm_cell.js\nfunction basicLSTMCell_(forgetBias, lstmKernel, lstmBias, data, c, h) {\n const $forgetBias = convertToTensor(forgetBias, \"forgetBias\", \"basicLSTMCell\");\n const $lstmKernel = convertToTensor(lstmKernel, \"lstmKernel\", \"basicLSTMCell\");\n const $lstmBias = convertToTensor(lstmBias, \"lstmBias\", \"basicLSTMCell\");\n const $data = convertToTensor(data, \"data\", \"basicLSTMCell\");\n const $c = convertToTensor(c, \"c\", \"basicLSTMCell\");\n const $h = convertToTensor(h, \"h\", \"basicLSTMCell\");\n const combined = concat([$data, $h], 1);\n const weighted = matMul(combined, $lstmKernel);\n const res = add2(weighted, $lstmBias);\n const batchSize = res.shape[0];\n const sliceCols = res.shape[1] / 4;\n const sliceSize = [batchSize, sliceCols];\n const i2 = slice(res, [0, 0], sliceSize);\n const j = slice(res, [0, sliceCols], sliceSize);\n const f = slice(res, [0, sliceCols * 2], sliceSize);\n const o = slice(res, [0, sliceCols * 3], sliceSize);\n const newC = add2(mul(sigmoid(i2), tanh2(j)), mul($c, sigmoid(add2($forgetBias, f))));\n const newH = mul(tanh2(newC), sigmoid(o));\n return [newC, newH];\n}\nvar basicLSTMCell = op({ basicLSTMCell_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batch_to_space_nd.js\nfunction batchToSpaceND_(x, blockShape, crops) {\n const $x = convertToTensor(x, \"x\", \"batchToSpaceND\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n assert($x.rank >= 1 + blockShape.length, () => `input rank is ${$x.rank} but should be > than blockShape.length ${blockShape.length}`);\n assert(crops.length === blockShape.length, () => `crops.length is ${crops.length} but should be equal to blockShape.length ${blockShape.length}`);\n assert($x.shape[0] % prod6 === 0, () => `input tensor batch is ${$x.shape[0]} but is not divisible by the product of the elements of blockShape ${blockShape.join(\" * \")} === ${prod6}`);\n const inputs = { x: $x };\n const attrs = { blockShape, crops };\n return ENGINE.runKernel(BatchToSpaceND, inputs, attrs);\n}\nvar batchToSpaceND = op({ batchToSpaceND_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm_util.js\nfunction xAs4D(x) {\n let x4D;\n if (x.rank === 0 || x.rank === 1) {\n x4D = reshape(x, [1, 1, 1, x.size]);\n } else if (x.rank === 2) {\n x4D = reshape(x, [1, 1, x.shape[0], x.shape[1]]);\n } else if (x.rank === 3) {\n x4D = reshape(x, [1, x.shape[0], x.shape[1], x.shape[2]]);\n } else {\n x4D = x;\n }\n return x4D;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm.js\nfunction batchNorm_(x, mean5, variance, offset, scale2, varianceEpsilon) {\n if (varianceEpsilon == null) {\n varianceEpsilon = 1e-3;\n }\n const $x = convertToTensor(x, \"x\", \"batchNorm\");\n const $mean = convertToTensor(mean5, \"mean\", \"batchNorm\");\n const $variance = convertToTensor(variance, \"variance\", \"batchNorm\");\n let $scale;\n if (scale2 != null) {\n $scale = convertToTensor(scale2, \"scale\", \"batchNorm\");\n }\n let $offset;\n if (offset != null) {\n $offset = convertToTensor(offset, \"offset\", \"batchNorm\");\n }\n assert($mean.rank === $variance.rank, () => \"Batch normalization gradient requires mean and variance to have equal ranks.\");\n assert($offset == null || $mean.rank === $offset.rank, () => \"Batch normalization gradient requires mean and offset to have equal ranks.\");\n assert($scale == null || $mean.rank === $scale.rank, () => \"Batch normalization gradient requires mean and scale to have equal ranks.\");\n const x4D = xAs4D($x);\n const inputs = {\n x: x4D,\n scale: $scale,\n offset: $offset,\n mean: $mean,\n variance: $variance\n };\n const attrs = { varianceEpsilon };\n const res = ENGINE.runKernel(FusedBatchNorm, inputs, attrs);\n return reshape(res, $x.shape);\n}\nvar batchNorm = op({ batchNorm_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm2d.js\nfunction batchNorm2d_(x, mean5, variance, offset, scale2, varianceEpsilon) {\n const $x = convertToTensor(x, \"x\", \"batchNorm\");\n const $mean = convertToTensor(mean5, \"mean\", \"batchNorm\");\n const $variance = convertToTensor(variance, \"variance\", \"batchNorm\");\n let $scale;\n if (scale2 != null) {\n $scale = convertToTensor(scale2, \"scale\", \"batchNorm\");\n }\n let $offset;\n if (offset != null) {\n $offset = convertToTensor(offset, \"offset\", \"batchNorm\");\n }\n assert($x.rank === 2, () => `Error in batchNorm2D: x must be rank 2 but got rank ${$x.rank}.`);\n assert($mean.rank === 2 || $mean.rank === 1, () => `Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${$mean.rank}.`);\n assert($variance.rank === 2 || $variance.rank === 1, () => `Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${$variance.rank}.`);\n if ($scale != null) {\n assert($scale.rank === 2 || $scale.rank === 1, () => `Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${$scale.rank}.`);\n }\n if ($offset != null) {\n assert($offset.rank === 2 || $offset.rank === 1, () => `Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${$offset.rank}.`);\n }\n return batchNorm($x, $mean, $variance, $offset, $scale, varianceEpsilon);\n}\nvar batchNorm2d = op({ batchNorm2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm3d.js\nfunction batchNorm3d_(x, mean5, variance, offset, scale2, varianceEpsilon) {\n const $x = convertToTensor(x, \"x\", \"batchNorm\");\n const $mean = convertToTensor(mean5, \"mean\", \"batchNorm\");\n const $variance = convertToTensor(variance, \"variance\", \"batchNorm\");\n let $scale;\n if (scale2 != null) {\n $scale = convertToTensor(scale2, \"scale\", \"batchNorm\");\n }\n let $offset;\n if (offset != null) {\n $offset = convertToTensor(offset, \"offset\", \"batchNorm\");\n }\n assert($x.rank === 3, () => `Error in batchNorm3D: x must be rank 3 but got rank ${$x.rank}.`);\n assert($mean.rank === 3 || $mean.rank === 1, () => `Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${$mean.rank}.`);\n assert($variance.rank === 3 || $variance.rank === 1, () => `Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${$variance.rank}.`);\n if ($scale != null) {\n assert($scale.rank === 3 || $scale.rank === 1, () => `Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${$scale.rank}.`);\n }\n if ($offset != null) {\n assert($offset.rank === 3 || $offset.rank === 1, () => `Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${$offset.rank}.`);\n }\n return batchNorm($x, $mean, $variance, $offset, $scale, varianceEpsilon);\n}\nvar batchNorm3d = op({ batchNorm3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/batchnorm4d.js\nfunction batchNorm4d_(x, mean5, variance, offset, scale2, varianceEpsilon) {\n const $x = convertToTensor(x, \"x\", \"batchNorm\");\n const $mean = convertToTensor(mean5, \"mean\", \"batchNorm\");\n const $variance = convertToTensor(variance, \"variance\", \"batchNorm\");\n let $scale;\n if (scale2 != null) {\n $scale = convertToTensor(scale2, \"scale\", \"batchNorm\");\n }\n let $offset;\n if (offset != null) {\n $offset = convertToTensor(offset, \"offset\", \"batchNorm\");\n }\n assert($x.rank === 4, () => `Error in batchNorm4D: x must be rank 4 but got rank ${$x.rank}.`);\n assert($mean.rank === 4 || $mean.rank === 1, () => `Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${$mean.rank}.`);\n assert($variance.rank === 4 || $variance.rank === 1, () => `Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${$variance.rank}.`);\n if ($scale != null) {\n assert($scale.rank === 4 || $scale.rank === 1, () => `Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${$scale.rank}.`);\n }\n if ($offset != null) {\n assert($offset.rank === 4 || $offset.rank === 1, () => `Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${$offset.rank}.`);\n }\n return batchNorm($x, $mean, $variance, $offset, $scale, varianceEpsilon);\n}\nvar batchNorm4d = op({ batchNorm4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/bincount.js\nfunction bincount_(x, weights, size) {\n const $x = convertToTensor(x, \"x\", \"bincount\");\n const $weights = convertToTensor(weights, \"weights\", \"bincount\");\n assert($x.dtype === \"int32\", () => `Error in bincount: input dtype must be int32, but got ${$x.dtype}`);\n assert(size >= 0, () => `size must be non-negative, but got ${size}.`);\n assert($weights.size === $x.size || $weights.size === 0, () => `Error in bincount: weights must have the same size as input or0-length, but got input shape: ${$x.shape}, weights shape: ${$weights.shape}.`);\n const inputs = { x: $x, weights: $weights };\n const attrs = { size };\n return ENGINE.runKernel(Bincount, inputs, attrs);\n}\nvar bincount = op({ bincount_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/broadcast_args.js\nfunction broadcastArgs_(s0, s1) {\n const shape1Input = convertToTensor(s0, \"s0\", \"broadcastArgs\", \"int32\");\n const shape2Input = convertToTensor(s1, \"s1\", \"broadcastArgs\", \"int32\");\n if (shape1Input.rank !== 1) {\n throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${shape1Input.rank}`);\n }\n if (shape2Input.rank !== 1) {\n throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${shape2Input.rank}`);\n }\n const inputs = { s0: shape1Input, s1: shape2Input };\n return ENGINE.runKernel(BroadcastArgs, inputs);\n}\nvar broadcastArgs = op({ broadcastArgs_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/broadcast_to.js\nfunction broadcastTo_(x, shape) {\n let input2 = convertToTensor(x, \"broadcastTo\", \"x\");\n const xShape = input2.shape;\n if (shape.some((d) => !(d > 0) || d % 1 !== 0)) {\n throw new Error(`broadcastTo(): Invalid broadcast shape [${shape}].`);\n }\n if (shape.length < input2.rank) {\n throw new Error(`broadcastTo(): shape.length=${shape.length} < input.rank=${input2.rank}.`);\n }\n if (shape.length > input2.rank) {\n const newShape = input2.shape.slice();\n while (newShape.length < shape.length) {\n newShape.unshift(1);\n }\n input2 = reshape(input2, newShape);\n }\n const inputShape = input2.shape;\n const reps = Array.from(shape);\n for (let i2 = shape.length - 1; i2 >= 0; i2--) {\n if (inputShape[i2] === shape[i2]) {\n reps[i2] = 1;\n } else if (input2.shape[i2] !== 1) {\n throw new Error(`broadcastTo(): [${xShape}] cannot be broadcast to [${shape}].`);\n }\n }\n const axes = reps.map((n2, i2) => n2 > 1 ? i2 : -1).filter((i2) => i2 >= 0);\n if (axes.length === 0) {\n return clone(input2);\n }\n const inputs = { x: input2 };\n const attrs = { reps };\n return ENGINE.runKernel(Tile, inputs, attrs);\n}\nvar broadcastTo = op({ broadcastTo_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ceil.js\nfunction ceil_(x) {\n const $x = convertToTensor(x, \"x\", \"ceil\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Ceil, inputs);\n}\nvar ceil = op({ ceil_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/clip_by_value.js\nfunction clipByValue_(x, clipValueMin, clipValueMax) {\n const $x = convertToTensor(x, \"x\", \"clipByValue\");\n assert(clipValueMin <= clipValueMax, () => `Error in clip: min (${clipValueMin}) must be less than or equal to max (${clipValueMax}).`);\n const inputs = { x: $x };\n const attrs = { clipValueMin, clipValueMax };\n return ENGINE.runKernel(ClipByValue, inputs, attrs);\n}\nvar clipByValue = op({ clipByValue_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_1d.js\nfunction concat1d_(tensors) {\n return concat(tensors, 0);\n}\nvar concat1d = op({ concat1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_2d.js\nfunction concat2d_(tensors, axis) {\n return concat(tensors, axis);\n}\nvar concat2d = op({ concat2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_3d.js\nfunction concat3d_(tensors, axis) {\n return concat(tensors, axis);\n}\nvar concat3d = op({ concat3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_4d.js\nfunction concat4d_(tensors, axis) {\n return concat(tensors, axis);\n}\nvar concat4d = op({ concat4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv2d.js\nfunction conv2d_(x, filter, strides, pad3, dataFormat = \"NHWC\", dilations = [1, 1], dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"conv2d\", \"float32\");\n const $filter = convertToTensor(filter, \"filter\", \"conv2d\", \"float32\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in conv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($filter.rank === 4, () => `Error in conv2d: filter must be rank 4, but got rank ${$filter.rank}.`);\n checkPadOnDimRoundingMode(\"conv2d\", pad3, dimRoundingMode);\n const inDepth = dataFormat === \"NHWC\" ? x4D.shape[3] : x4D.shape[1];\n assert(inDepth === $filter.shape[2], () => `Error in conv2d: depth of input (${inDepth}) must match input depth for filter ${$filter.shape[2]}.`);\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in conv2D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const inputs = { x: x4D, filter: $filter };\n const attrs = { strides, pad: pad3, dataFormat, dilations, dimRoundingMode };\n const res = ENGINE.runKernel(Conv2D, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar conv2d = op({ conv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv1d.js\nfunction conv1d_(x, filter, stride, pad3, dataFormat = \"NWC\", dilation = 1, dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"conv1d\");\n const $filter = convertToTensor(filter, \"filter\", \"conv1d\");\n let x3D = $x;\n let reshapedTo3D = false;\n if ($x.rank === 2) {\n reshapedTo3D = true;\n x3D = reshape($x, [1, $x.shape[0], $x.shape[1]]);\n }\n assert(x3D.rank === 3, () => `Error in conv1d: input must be rank 3, but got rank ${x3D.rank}.`);\n assert($filter.rank === 3, () => `Error in conv1d: filter must be rank 3, but got rank ${$filter.rank}.`);\n checkPadOnDimRoundingMode(\"conv1d\", pad3, dimRoundingMode);\n assert(x3D.shape[2] === $filter.shape[1], () => `Error in conv1d: depth of input (${x3D.shape[2]}) must match input depth for filter ${$filter.shape[1]}.`);\n assert(eitherStridesOrDilationsAreOne(stride, dilation), () => `Error in conv1D: Either stride or dilation must be 1. Got stride ${stride} and dilation '${dilation}'`);\n assert(dataFormat === \"NWC\", () => `Error in conv1d: got dataFormat of ${dataFormat} but only NWC is currently supported.`);\n const filter4D = reshape($filter, [1, $filter.shape[0], $filter.shape[1], $filter.shape[2]]);\n const input4D = reshape(x3D, [x3D.shape[0], 1, x3D.shape[1], x3D.shape[2]]);\n const strides = [1, stride];\n const dilations = [1, dilation];\n const conv2dDataFormat = \"NHWC\";\n const res = conv2d(input4D, filter4D, strides, pad3, conv2dDataFormat, dilations, dimRoundingMode);\n if (reshapedTo3D) {\n return reshape(res, [res.shape[2], res.shape[3]]);\n }\n return reshape(res, [res.shape[0], res.shape[2], res.shape[3]]);\n}\nvar conv1d = op({ conv1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv2d_backprop_input.js\nfunction conv2DBackpropInput_(xShape, dy, filter, strides, pad3, dataFormat = \"NHWC\", dimRoundingMode) {\n assert(xShape.length === dy.rank, () => `Length of inShape (${xShape.length}) and rank of dy (${dy.rank}) must match`);\n let xShape4D = xShape;\n let dy4D = dy;\n let reshapedTo4D = false;\n if (dy.rank === 3) {\n reshapedTo4D = true;\n dy4D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2]]);\n xShape4D = [1, xShape[0], xShape[1], xShape[2]];\n }\n assert(xShape4D.length === 4, () => `Error in conv2dDerInput: inShape must be length 4, but got length ${xShape4D.length}.`);\n assert(dy4D.rank === 4, () => `Error in conv2dDerInput: dy must be rank 4, but got rank ${dy4D.rank}`);\n assert(filter.rank === 4, () => `Error in conv2dDerInput: filter must be rank 4, but got rank ${filter.rank}`);\n const inDepth = dataFormat === \"NHWC\" ? xShape4D[3] : xShape4D[1];\n const outDepth = dataFormat === \"NHWC\" ? dy4D.shape[3] : dy4D.shape[1];\n assert(inDepth === filter.shape[2], () => `Error in conv2dDerInput: depth of input (${inDepth}) must match input depth for filter ${filter.shape[2]}.`);\n assert(outDepth === filter.shape[3], () => `Error in conv2dDerInput: depth of output (${outDepth}) must match output depth for filter ${filter.shape[3]}.`);\n checkPadOnDimRoundingMode(\"conv2dDerInput\", pad3, dimRoundingMode);\n const inputs = { dy: dy4D, filter };\n const attrs = { strides, pad: pad3, dataFormat, dimRoundingMode, inputShape: xShape4D };\n const res = ENGINE.runKernel(Conv2DBackpropInput, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar conv2DBackpropInput = op({ conv2DBackpropInput_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv2d_transpose.js\nfunction conv2dTranspose_(x, filter, outputShape, strides, pad3, dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"conv2dTranspose\");\n const $filter = convertToTensor(filter, \"filter\", \"conv2dTranspose\");\n return conv2DBackpropInput(outputShape, $x, $filter, strides, pad3, \"NHWC\", dimRoundingMode);\n}\nvar conv2dTranspose = op({ conv2dTranspose_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv3d.js\nfunction conv3d_(x, filter, strides, pad3, dataFormat = \"NDHWC\", dilations = [1, 1, 1]) {\n const $x = convertToTensor(x, \"x\", \"conv3d\");\n const $filter = convertToTensor(filter, \"filter\", \"conv3d\");\n let x5D = $x;\n let reshapedTo5D = false;\n if ($x.rank === 4) {\n reshapedTo5D = true;\n x5D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]]);\n }\n assert(x5D.rank === 5, () => `Error in conv3d: input must be rank 5, but got rank ${x5D.rank}.`);\n assert($filter.rank === 5, () => `Error in conv3d: filter must be rank 5, but got rank ${$filter.rank}.`);\n assert(x5D.shape[4] === $filter.shape[3], () => `Error in conv3d: depth of input (${x5D.shape[4]}) must match input depth for filter ${$filter.shape[3]}.`);\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in conv3D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n assert(dataFormat === \"NDHWC\", () => `Error in conv3d: got dataFormat of ${dataFormat} but only NDHWC is currently supported.`);\n const inputs = { x: x5D, filter: $filter };\n const attrs = { strides, pad: pad3, dataFormat, dilations };\n const res = ENGINE.runKernel(Conv3D, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar conv3d = op({ conv3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv3d_backprop_input.js\nfunction conv3DBackpropInput_(xShape, dy, filter, strides, pad3) {\n assert(xShape.length === dy.rank, () => `Length of inShape (${xShape.length}) and rank of dy (${dy.rank}) must match`);\n let xShape5D = xShape;\n let dy5D = dy;\n let reshapedTo5D = false;\n if (dy.rank === 4) {\n reshapedTo5D = true;\n dy5D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2], dy.shape[3]]);\n xShape5D = [1, xShape[0], xShape[1], xShape[2], xShape[3]];\n }\n const inDepth = xShape5D[4];\n const outDepth = dy5D.shape[4];\n assert(xShape5D.length === 5, () => `Error in conv3dDerInput: inShape must be length 5, but got length ${xShape5D.length}.`);\n assert(dy5D.rank === 5, () => `Error in conv3dDerInput: dy must be rank 5, but got rank ${dy5D.rank}`);\n assert(filter.rank === 5, () => `Error in conv3dDerInput: filter must be rank 5, but got rank ${filter.rank}`);\n assert(inDepth === filter.shape[3], () => `Error in conv3dDerInput: depth of input (${inDepth}) must match input depth for filter ${filter.shape[3]}.`);\n assert(outDepth === filter.shape[4], () => `Error in conv3dDerInput: depth of output (${outDepth}) must match output depth for filter ${filter.shape[4]}.`);\n const inputs = { dy: dy5D, filter };\n const attrs = { pad: pad3, strides, inputShape: xShape5D };\n const res = ENGINE.runKernel(Conv3DBackpropInputV2, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar conv3DBackpropInput = op({ conv3DBackpropInput_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv3d_transpose.js\nfunction conv3dTranspose_(x, filter, outputShape, strides, pad3) {\n const $x = convertToTensor(x, \"x\", \"conv3dTranspose\");\n const $filter = convertToTensor(filter, \"filter\", \"conv3dTranspose\");\n return conv3DBackpropInput(outputShape, $x, $filter, strides, pad3);\n}\nvar conv3dTranspose = op({ conv3dTranspose_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cos.js\nfunction cos_(x) {\n const $x = convertToTensor(x, \"x\", \"cos\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Cos, inputs);\n}\nvar cos = op({ cos_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cosh.js\nfunction cosh_(x) {\n const $x = convertToTensor(x, \"x\", \"cosh\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Cosh, inputs);\n}\nvar cosh = op({ cosh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cumprod.js\nfunction cumprod_(x, axis = 0, exclusive = false, reverse5 = false) {\n const $x = convertToTensor(x, \"x\", \"cumprod\");\n const inputs = { x: $x };\n const attrs = { axis, exclusive, reverse: reverse5 };\n return ENGINE.runKernel(Cumprod, inputs, attrs);\n}\nvar cumprod = op({ cumprod_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/cumsum.js\nfunction cumsum_(x, axis = 0, exclusive = false, reverse5 = false) {\n const $x = convertToTensor(x, \"x\", \"cumsum\");\n const inputs = { x: $x };\n const attrs = { axis, exclusive, reverse: reverse5 };\n return ENGINE.runKernel(Cumsum, inputs, attrs);\n}\nvar cumsum = op({ cumsum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dense_bincount.js\nfunction denseBincount_(x, weights, size, binaryOutput = false) {\n const $x = convertToTensor(x, \"x\", \"denseBincount\");\n const $weights = convertToTensor(weights, \"weights\", \"denseBincount\");\n assert($x.dtype === \"int32\", () => `Error in denseBincount: input dtype must be int32, but got ${$x.dtype}`);\n assert($x.rank <= 2, () => `Error in denseBincount: input must be at most rank 2, but got rank ${$x.rank}.`);\n assert(size >= 0, () => `size must be non-negative, but got ${size}.`);\n assert($weights.size === $x.size || $weights.size === 0, () => `Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${$x.shape}, weights shape: ${$weights.shape}.`);\n const inputs = { x: $x, weights: $weights };\n const attrs = { size, binaryOutput };\n return ENGINE.runKernel(DenseBincount, inputs, attrs);\n}\nvar denseBincount = op({ denseBincount_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/depth_to_space.js\nfunction depthToSpace_(x, blockSize, dataFormat = \"NHWC\") {\n const $x = convertToTensor(x, \"x\", \"depthToSpace\", \"float32\");\n const inputHeight = dataFormat === \"NHWC\" ? $x.shape[1] : $x.shape[2];\n const inputWidth = dataFormat === \"NHWC\" ? $x.shape[2] : $x.shape[3];\n const inputDepth = dataFormat === \"NHWC\" ? $x.shape[3] : $x.shape[1];\n assert(blockSize > 1, () => `blockSize should be > 1 for depthToSpace, but was: ${blockSize}`);\n assert(inputHeight * blockSize >= 0, () => `Negative dimension size caused by overflow when multiplying\n ${inputHeight} and ${blockSize} for depthToSpace with input shape\n ${$x.shape}`);\n assert(inputWidth * blockSize >= 0, () => `Negative dimension size caused by overflow when multiplying\n ${inputWidth} and ${blockSize} for depthToSpace with input shape\n ${$x.shape}`);\n assert(inputDepth % (blockSize * blockSize) === 0, () => `Dimension size must be evenly divisible by ${blockSize * blockSize} but is ${inputDepth} for depthToSpace with input shape ${$x.shape}`);\n const inputs = { x: $x };\n const attrs = { blockSize, dataFormat };\n return ENGINE.runKernel(DepthToSpace, inputs, attrs);\n}\nvar depthToSpace = op({ depthToSpace_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/depthwise_conv2d.js\nfunction depthwiseConv2d_(x, filter, strides, pad3, dataFormat = \"NHWC\", dilations = [1, 1], dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"depthwiseConv2d\", \"float32\");\n const $filter = convertToTensor(filter, \"filter\", \"depthwiseConv2d\", \"float32\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in depthwiseConv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($filter.rank === 4, () => `Error in depthwiseConv2d: filter must be rank 4, but got rank ${$filter.rank}.`);\n const inChannels = dataFormat === \"NHWC\" ? x4D.shape[3] : x4D.shape[1];\n assert(inChannels === $filter.shape[2], () => `Error in depthwiseConv2d: number of input channels (${inChannels}) must match the inChannels dimension in filter ${$filter.shape[2]}.`);\n checkPadOnDimRoundingMode(\"depthwiseConv2d\", pad3, dimRoundingMode);\n const inputs = { x: x4D, filter: $filter };\n const attrs = { strides, pad: pad3, dataFormat, dilations, dimRoundingMode };\n const res = ENGINE.runKernel(DepthwiseConv2dNative, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar depthwiseConv2d = op({ depthwiseConv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/diag.js\nfunction diag_(x) {\n const $x = convertToTensor(x, \"x\", \"diag\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Diag, inputs);\n}\nvar diag = op({ diag_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dilation2d.js\nfunction dilation2d_(x, filter, strides, pad3, dilations = [1, 1], dataFormat = \"NHWC\") {\n const $x = convertToTensor(x, \"x\", \"dilation2d\");\n const $filter = convertToTensor(filter, \"filter\", \"dilation2d\");\n assert($x.rank === 3 || $x.rank === 4, () => `Error in dilation2d: input must be rank 3 or 4, but got rank ${$x.rank}.`);\n assert($filter.rank === 3, () => `Error in dilation2d: filter must be rank 3, but got rank ${$filter.rank}.`);\n assert(dataFormat === \"NHWC\", () => `Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${dataFormat}`);\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n reshapedTo4D = true;\n }\n const inputs = { x: x4D, filter: $filter };\n const attrs = { strides, pad: pad3, dilations };\n const res = ENGINE.runKernel(Dilation2D, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar dilation2d = op({ dilation2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/equal.js\nfunction equal_(a, b) {\n let $a = convertToTensor(a, \"a\", \"equal\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"equal\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Equal, inputs);\n}\nvar equal = op({ equal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/where.js\nfunction where_(condition, a, b) {\n const $a = convertToTensor(a, \"a\", \"where\");\n const $b = convertToTensor(b, \"b\", \"where\");\n const $condition = convertToTensor(condition, \"condition\", \"where\", \"bool\");\n const broadcastShape = assertAndGetBroadcastShape(assertAndGetBroadcastShape($condition.shape, $a.shape), $b.shape);\n const $broadcastedCondition = broadcastTo($condition, broadcastShape);\n const $broadcastedA = broadcastTo($a, broadcastShape);\n const $broadcastedB = broadcastTo($b, broadcastShape);\n const inputs = {\n condition: $broadcastedCondition,\n t: $broadcastedA,\n e: $broadcastedB\n };\n return ENGINE.runKernel(Select, inputs);\n}\nvar where = op({ where_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/zeros_like.js\nfunction zerosLike_(x) {\n const $x = convertToTensor(x, \"x\", \"zerosLike\");\n const inputs = { x: $x };\n return ENGINE.runKernel(ZerosLike, inputs);\n}\nvar zerosLike = op({ zerosLike_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/div_no_nan.js\nfunction divNoNan_(a, b) {\n let $a = convertToTensor(a, \"a\", \"div\");\n let $b = convertToTensor(b, \"b\", \"div\");\n [$a, $b] = makeTypesMatch($a, $b);\n const divResult = div($a, $b);\n const zeros4 = zerosLike(divResult);\n const bEqualsZero = equal($b, zeros4);\n return where(bEqualsZero, zeros4, divResult);\n}\nvar divNoNan = op({ divNoNan_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dot.js\nfunction dot_(t1, t2) {\n const $t1 = convertToTensor(t1, \"t1\", \"dot\");\n const $t2 = convertToTensor(t2, \"t2\", \"dot\");\n assert(($t1.rank === 1 || $t1.rank === 2) && ($t2.rank === 1 || $t2.rank === 2), () => `Error in dot: inputs must all be rank 1 or 2, but got ranks ${$t1.rank} and ${$t2.rank}.`);\n const t1Inner = $t1.rank === 1 ? $t1.size : $t1.shape[1];\n const t2Inner = $t2.rank === 1 ? $t2.size : $t2.shape[0];\n assert(t1Inner === t2Inner, () => `Error in dot: inner dimensions of inputs must match, but got ${t1Inner} and ${t2Inner}.`);\n if ($t1.rank === 1 && $t2.rank === 1) {\n const t12D = reshape($t1, [1, -1]);\n const t22D = reshape($t2, [-1, 1]);\n const t1t2 = matMul(t12D, t22D);\n return reshape(t1t2, []);\n } else if ($t1.rank === 1 && $t2.rank === 2) {\n const t12D = reshape($t1, [1, -1]);\n const t22D = reshape($t2, [$t2.shape[0], $t2.shape[1]]);\n const t1t2 = matMul(t12D, t22D);\n return reshape(t1t2, [t1t2.size]);\n } else if ($t1.rank === 2 && $t2.rank === 1) {\n const t22D = reshape($t2, [-1, 1]);\n const t1t2 = matMul($t1, t22D);\n return reshape(t1t2, [t1t2.size]);\n } else {\n const t22D = reshape($t2, [$t2.shape[0], $t2.shape[1]]);\n const t1t2 = matMul($t1, t22D);\n return t1t2;\n }\n}\nvar dot = op({ dot_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/einsum.js\nfunction einsum_(equation, ...tensors) {\n const $tensors = tensors.map((t2, i2) => convertToTensor(t2, `tensors${i2}`, \"einsum\"));\n const attrs = { equation };\n return ENGINE.runKernel(Einsum, $tensors, attrs);\n}\nvar einsum = op({ einsum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/elu.js\nfunction elu_(x) {\n const $x = convertToTensor(x, \"x\", \"elu\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Elu, inputs);\n}\nvar elu = op({ elu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/erf.js\nfunction erf_(x) {\n let $x = convertToTensor(x, \"x\", \"erf\");\n assert($x.dtype === \"int32\" || $x.dtype === \"float32\", () => \"Input dtype must be `int32` or `float32`.\");\n if ($x.dtype === \"int32\") {\n $x = cast($x, \"float32\");\n }\n const inputs = { x: $x };\n return ENGINE.runKernel(Erf, inputs);\n}\nvar erf = op({ erf_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/axis_util.js\nfunction axesAreInnerMostDims(axes, rank) {\n for (let i2 = 0; i2 < axes.length; ++i2) {\n if (axes[axes.length - i2 - 1] !== rank - 1 - i2) {\n return false;\n }\n }\n return true;\n}\nfunction combineLocations(outputLoc, reduceLoc, axes) {\n const rank = outputLoc.length + reduceLoc.length;\n const loc = [];\n let outIdx = 0;\n let reduceIdx = 0;\n for (let dim = 0; dim < rank; dim++) {\n if (axes.indexOf(dim) === -1) {\n loc.push(outputLoc[outIdx++]);\n } else {\n loc.push(reduceLoc[reduceIdx++]);\n }\n }\n return loc;\n}\nfunction computeOutAndReduceShapes(aShape, axes) {\n const outShape = [];\n const rank = aShape.length;\n for (let dim = 0; dim < rank; dim++) {\n if (axes.indexOf(dim) === -1) {\n outShape.push(aShape[dim]);\n }\n }\n const reduceShape = axes.map((dim) => aShape[dim]);\n return [outShape, reduceShape];\n}\nfunction expandShapeToKeepDim(shape, axes) {\n const reduceSubShape = axes.map((x) => 1);\n return combineLocations(shape, reduceSubShape, axes);\n}\nfunction assertAxesAreInnerMostDims(msg, axes, rank) {\n assert(axesAreInnerMostDims(axes, rank), () => `${msg} supports only inner-most axes for now. Got axes ${axes} and rank-${rank} input.`);\n}\nfunction getAxesPermutation(axes, rank) {\n if (axesAreInnerMostDims(axes, rank)) {\n return null;\n }\n const result = [];\n for (let i2 = 0; i2 < rank; ++i2) {\n if (axes.indexOf(i2) === -1) {\n result.push(i2);\n }\n }\n axes.forEach((axis) => result.push(axis));\n return result;\n}\nfunction getUndoAxesPermutation(axes) {\n return axes.map((axis, i2) => [i2, axis]).sort((a, b) => a[1] - b[1]).map((x) => x[0]);\n}\nfunction getInnerMostAxes(numAxes, rank) {\n const res = [];\n for (let i2 = rank - numAxes; i2 < rank; ++i2) {\n res.push(i2);\n }\n return res;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max.js\nfunction max_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"max\");\n const inputs = { x: $x };\n const attrs = { reductionIndices: axis, keepDims };\n return ENGINE.runKernel(Max, inputs, attrs);\n}\nvar max = op({ max_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/min.js\nfunction min_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"min\");\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Min, inputs, attrs);\n}\nvar min = op({ min_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pow.js\nfunction pow_(base, exp5) {\n let $base = convertToTensor(base, \"base\", \"pow\");\n let $exp = convertToTensor(exp5, \"exp\", \"pow\");\n [$base, $exp] = makeTypesMatch($base, $exp);\n const inputs = { a: $base, b: $exp };\n return ENGINE.runKernel(Pow, inputs);\n}\nvar pow = op({ pow_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/scalar.js\nfunction scalar(value, dtype) {\n if ((isTypedArray(value) && dtype !== \"string\" || Array.isArray(value)) && dtype !== \"complex64\") {\n throw new Error(\"Error creating a new Scalar: value must be a primitive (number|boolean|string)\");\n }\n if (dtype === \"string\" && isTypedArray(value) && !(value instanceof Uint8Array)) {\n throw new Error(\"When making a scalar from encoded string, the value must be `Uint8Array`.\");\n }\n const shape = [];\n const inferredShape = [];\n return makeTensor(value, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sqrt.js\nfunction sqrt_(x) {\n const $x = convertToTensor(x, \"x\", \"sqrt\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sqrt, inputs);\n}\nvar sqrt = op({ sqrt_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/square.js\nfunction square_(x) {\n const $x = convertToTensor(x, \"x\", \"square\");\n const attrs = {};\n return ENGINE.runKernel(\"Square\", { x: $x }, attrs);\n}\nvar square = op({ square_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sum.js\nfunction sum_(x, axis = null, keepDims = false) {\n let $x = convertToTensor(x, \"x\", \"sum\");\n if ($x.dtype === \"bool\") {\n $x = cast($x, \"int32\");\n }\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Sum, inputs, attrs);\n}\nvar sum2 = op({ sum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/norm.js\nfunction norm_(x, ord = \"euclidean\", axis = null, keepDims = false) {\n x = convertToTensor(x, \"x\", \"norm\");\n const norm2 = normImpl(x, ord, axis);\n let keepDimsShape = norm2.shape;\n if (keepDims) {\n const axes = parseAxisParam(axis, x.shape);\n keepDimsShape = expandShapeToKeepDim(norm2.shape, axes);\n }\n return reshape(norm2, keepDimsShape);\n}\nfunction normImpl(x, p2, axis = null) {\n if (x.rank === 0) {\n return abs(x);\n }\n if (x.rank !== 1 && axis === null) {\n return normImpl(reshape(x, [-1]), p2, axis);\n }\n if (x.rank === 1 || typeof axis === \"number\" || Array.isArray(axis) && axis.length === 1) {\n if (p2 === 1) {\n return sum2(abs(x), axis);\n }\n if (p2 === Infinity) {\n return max(abs(x), axis);\n }\n if (p2 === -Infinity) {\n return min(abs(x), axis);\n }\n if (p2 === \"euclidean\" || p2 === 2) {\n return sqrt(sum2(pow(abs(x), scalar(2, \"int32\")), axis));\n }\n throw new Error(`Error in norm: invalid ord value: ${p2}`);\n }\n if (Array.isArray(axis) && axis.length === 2) {\n if (p2 === 1) {\n return max(sum2(abs(x), axis[0]), axis[1] - 1);\n }\n if (p2 === Infinity) {\n return max(sum2(abs(x), axis[1]), axis[0]);\n }\n if (p2 === -Infinity) {\n return min(sum2(abs(x), axis[1]), axis[0]);\n }\n if (p2 === \"fro\" || p2 === \"euclidean\") {\n return sqrt(sum2(square(x), axis));\n }\n throw new Error(`Error in norm: invalid ord value: ${p2}`);\n }\n throw new Error(`Error in norm: invalid axis: ${axis}`);\n}\nvar norm = op({ norm_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/euclidean_norm.js\nfunction euclideanNorm_(x, axis = null, keepDims = false) {\n return norm(x, \"euclidean\", axis, keepDims);\n}\nvar euclideanNorm = op({ euclideanNorm_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/exp.js\nfunction exp_(x) {\n const $x = convertToTensor(x, \"x\", \"exp\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Exp, inputs);\n}\nvar exp = op({ exp_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/expand_dims.js\nfunction expandDims_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"expandDims\", \"string_or_numeric\");\n assert(axis <= $x.rank, () => \"Axis must be <= rank of the tensor\");\n const inputs = { input: $x };\n const attrs = { dim: axis };\n return ENGINE.runKernel(ExpandDims, inputs, attrs);\n}\nvar expandDims = op({ expandDims_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/expm1.js\nfunction expm1_(x) {\n const $x = convertToTensor(x, \"x\", \"expm1\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Expm1, inputs);\n}\nvar expm1 = op({ expm1_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tile.js\nfunction tile_(x, reps) {\n const $x = convertToTensor(x, \"x\", \"tile\", \"string_or_numeric\");\n assert($x.rank === reps.length, () => `Error in transpose: rank of input ${$x.rank} must match length of reps ${reps}.`);\n const inputs = { x: $x };\n const attrs = { reps };\n return ENGINE.runKernel(Tile, inputs, attrs);\n}\nvar tile = op({ tile_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/eye.js\nfunction eye_(numRows, numColumns, batchShape, dtype = \"float32\") {\n if (numColumns == null) {\n numColumns = numRows;\n }\n const buff = buffer([numRows, numColumns], dtype);\n const n2 = numRows <= numColumns ? numRows : numColumns;\n for (let i2 = 0; i2 < n2; ++i2) {\n buff.set(1, i2, i2);\n }\n const out = reshape(buff.toTensor(), [numRows, numColumns]);\n if (batchShape == null) {\n return out;\n } else {\n if (batchShape.length === 1) {\n return tile(expandDims(out, 0), [batchShape[0], 1, 1]);\n } else if (batchShape.length === 2) {\n return tile(expandDims(expandDims(out, 0), 0), [batchShape[0], batchShape[1], 1, 1]);\n } else if (batchShape.length === 3) {\n return tile(expandDims(expandDims(expandDims(out, 0), 0), 0), [\n batchShape[0],\n batchShape[1],\n batchShape[2],\n 1,\n 1\n ]);\n } else {\n throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${batchShape.length}D.`);\n }\n }\n}\nvar eye = op({ eye_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fill.js\nfunction fill(shape, value, dtype) {\n const attrs = { shape, value, dtype };\n return ENGINE.runKernel(Fill, {}, attrs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/floor.js\nfunction floor_(x) {\n const $x = convertToTensor(x, \"x\", \"floor\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Floor, inputs);\n}\nvar floor = op({ floor_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/gather.js\nfunction gather_(x, indices, axis = 0, batchDims = 0) {\n const $x = convertToTensor(x, \"x\", \"gather\");\n const $indices = convertToTensor(indices, \"indices\", \"gather\", \"int32\");\n const inputs = { x: $x, indices: $indices };\n const attrs = { axis, batchDims };\n return ENGINE.runKernel(GatherV2, inputs, attrs);\n}\nvar gather = op({ gather_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/greater.js\nfunction greater_(a, b) {\n let $a = convertToTensor(a, \"a\", \"greater\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"greater\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Greater, inputs);\n}\nvar greater = op({ greater_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/greater_equal.js\nfunction greaterEqual_(a, b) {\n let $a = convertToTensor(a, \"a\", \"greaterEqual\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"greaterEqual\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(GreaterEqual, inputs);\n}\nvar greaterEqual = op({ greaterEqual_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/is_finite.js\nfunction isFinite_(x) {\n const $x = convertToTensor(x, \"x\", \"isFinite\");\n const inputs = { x: $x };\n return ENGINE.runKernel(IsFinite, inputs);\n}\nvar isFinite2 = op({ isFinite_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/is_inf.js\nfunction isInf_(x) {\n const $x = convertToTensor(x, \"x\", \"isInf\");\n const inputs = { x: $x };\n return ENGINE.runKernel(IsInf, inputs);\n}\nvar isInf = op({ isInf_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/is_nan.js\nfunction isNaN_(x) {\n const $x = convertToTensor(x, \"x\", \"isNaN\");\n const inputs = { x: $x };\n return ENGINE.runKernel(IsNan, inputs);\n}\nvar isNaN2 = op({ isNaN_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/leaky_relu.js\nfunction leakyRelu_(x, alpha = 0.2) {\n const $x = convertToTensor(x, \"x\", \"leakyRelu\");\n const inputs = { x: $x };\n const attrs = { alpha };\n return ENGINE.runKernel(LeakyRelu, inputs, attrs);\n}\nvar leakyRelu = op({ leakyRelu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/less.js\nfunction less_(a, b) {\n let $a = convertToTensor(a, \"a\", \"less\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"less\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Less, inputs);\n}\nvar less = op({ less_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/less_equal.js\nfunction lessEqual_(a, b) {\n let $a = convertToTensor(a, \"a\", \"lessEqual\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"lessEqual\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(LessEqual, inputs);\n}\nvar lessEqual = op({ lessEqual_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/linspace.js\nfunction linspace(start, stop, num) {\n if (num <= 0) {\n throw new Error(\"The number of values should be positive.\");\n }\n const attrs = { start, stop, num };\n return ENGINE.runKernel(LinSpace, {}, attrs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/local_response_normalization.js\nfunction localResponseNormalization_(x, depthRadius = 5, bias = 1, alpha = 1, beta = 0.5) {\n const $x = convertToTensor(x, \"x\", \"localResponseNormalization\");\n assert($x.rank === 4 || $x.rank === 3, () => `Error in localResponseNormalization: x must be rank 3 or 4 but got\n rank ${$x.rank}.`);\n assert(isInt(depthRadius), () => `Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${depthRadius}.`);\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n const inputs = { x: x4D };\n const attrs = { depthRadius, bias, alpha, beta };\n const res = ENGINE.runKernel(LRN, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n } else {\n return res;\n }\n}\nvar localResponseNormalization = op({ localResponseNormalization_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log.js\nfunction log_(x) {\n const $x = convertToTensor(x, \"x\", \"log\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Log, inputs);\n}\nvar log2 = op({ log_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log1p.js\nfunction log1p_(x) {\n const $x = convertToTensor(x, \"x\", \"log1p\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Log1p, inputs);\n}\nvar log1p = op({ log1p_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients.js\nfunction grad(f) {\n assert(isFunction(f), () => \"The f passed in grad(f) must be a function\");\n return (x, dy) => {\n const $x = convertToTensor(x, \"x\", \"tf.grad\", \"string_or_numeric\");\n const $dy = dy != null ? convertToTensor(dy, \"dy\", \"tf.grad\") : null;\n return ENGINE.tidy(() => {\n const { value, grads: grads2 } = ENGINE.gradients(() => f($x), [$x], $dy);\n if ($dy != null) {\n assertShapesMatch(value.shape, $dy.shape, \"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)\");\n }\n checkGrads(grads2);\n return grads2[0];\n });\n };\n}\nfunction grads(f) {\n assert(isFunction(f), () => \"The f passed in grads(f) must be a function\");\n return (args, dy) => {\n assert(Array.isArray(args), () => \"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s\");\n const $args = convertToTensorArray(args, \"args\", \"tf.grads\", \"string_or_numeric\");\n const $dy = dy != null ? convertToTensor(dy, \"dy\", \"tf.grads\") : null;\n return ENGINE.tidy(() => {\n const { value, grads: grads2 } = ENGINE.gradients(() => f(...$args), $args, $dy);\n if ($dy != null) {\n assertShapesMatch(value.shape, $dy.shape, \"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])\");\n }\n checkGrads(grads2);\n return grads2;\n });\n };\n}\nfunction valueAndGrad(f) {\n assert(isFunction(f), () => \"The f passed in valueAndGrad(f) must be a function\");\n return (x, dy) => {\n assert(x instanceof Tensor, () => \"The x passed in valueAndGrad(f)(x) must be a tensor\");\n assert(dy == null || dy instanceof Tensor, () => \"The dy passed in valueAndGrad(f)(x, dy) must be a tensor\");\n const { grads: grads2, value } = ENGINE.gradients(() => f(x), [x], dy);\n checkGrads(grads2);\n return { grad: grads2[0], value };\n };\n}\nfunction valueAndGrads(f) {\n assert(isFunction(f), () => \"The f passed in valueAndGrads(f) must be a function\");\n return (args, dy) => {\n assert(Array.isArray(args) && args.every((arg) => arg instanceof Tensor), () => \"The args passed in valueAndGrads(f)(args) must be array of tensors\");\n assert(dy == null || dy instanceof Tensor, () => \"The dy passed in valueAndGrads(f)(args, dy) must be a tensor\");\n const res = ENGINE.gradients(() => f(...args), args, dy);\n if (dy != null) {\n assertShapesMatch(res.value.shape, dy.shape, \"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])\");\n }\n checkGrads(res.grads);\n return res;\n };\n}\nfunction variableGrads(f, varList) {\n assert(isFunction(f), () => \"The f passed in variableGrads(f) must be a function\");\n assert(varList == null || Array.isArray(varList) && varList.every((v) => v instanceof Variable), () => \"The varList passed in variableGrads(f, varList) must be an array of variables\");\n const specifiedVarList = varList != null;\n if (!specifiedVarList) {\n varList = [];\n for (const varName in ENGINE.registeredVariables) {\n varList.push(ENGINE.registeredVariables[varName]);\n }\n }\n const specifiedNonTrainable = specifiedVarList ? varList.filter((variable2) => !variable2.trainable) : null;\n const originalVarCount = varList.length;\n varList = varList.filter((variable2) => variable2.trainable);\n assert(varList.length > 0, () => `variableGrads() expects at least one of the input variables to be trainable, but none of the ${originalVarCount} variables is trainable.`);\n const allowNoGradients = true;\n const { value, grads: grads2 } = ENGINE.gradients(f, varList, null, allowNoGradients);\n assert(grads2.some((g) => g != null), () => \"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize().\");\n assert(value.rank === 0, () => `The f passed in variableGrads(f) must return a scalar, but it returned a rank-${value.rank} tensor`);\n const namedGrads = {};\n varList.forEach((v, i2) => {\n if (grads2[i2] != null) {\n namedGrads[v.name] = grads2[i2];\n }\n });\n if (specifiedNonTrainable != null) {\n specifiedNonTrainable.forEach((v) => namedGrads[v.name] = null);\n }\n return { value, grads: namedGrads };\n}\nfunction customGrad(f) {\n return ENGINE.customGrad(f);\n}\nfunction checkGrads(grads2) {\n const numNullGradients = grads2.filter((g) => g == null).length;\n if (numNullGradients > 0) {\n throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that\n the f you passed encloses all operations that lead from x to y.`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/softplus.js\nfunction softplus_(x) {\n const $x = convertToTensor(x, \"x\", \"softplus\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Softplus, inputs);\n}\nvar softplus = op({ softplus_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log_sigmoid.js\nfunction logSigmoid_(x) {\n const $x = convertToTensor(x, \"x\", \"logSigmoid\");\n const customOp = customGrad((x2) => {\n const value = neg(softplus(neg(x2)));\n const gradFunc = (dy) => {\n const derX = mul(dy, sigmoid(neg(x2)));\n return derX;\n };\n return { value, gradFunc };\n });\n return customOp($x);\n}\nvar logSigmoid = op({ logSigmoid_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sub.js\nfunction sub_(a, b) {\n let $a = convertToTensor(a, \"a\", \"sub\");\n let $b = convertToTensor(b, \"b\", \"sub\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Sub, inputs);\n}\nvar sub = op({ sub_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log_softmax.js\nfunction logSoftmax_(logits, axis = -1) {\n const $logits = convertToTensor(logits, \"logits\", \"logSoftmax\");\n if (axis === -1) {\n axis = $logits.rank - 1;\n }\n if (axis !== $logits.rank - 1) {\n throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${$logits.rank} and axis was ${axis}`);\n }\n const customOp = customGrad((logits2, save) => {\n const keepDims = true;\n const xMax = max(logits2, axis, true);\n const shifted = sub(logits2, xMax);\n const value = sub(cast(shifted, \"float32\"), log2(sum2(exp(shifted), axis, keepDims)));\n save([value]);\n const gradFunc = (dy, saved) => {\n const [value2] = saved;\n const keepDims2 = true;\n const softmax7 = exp(value2);\n return sub(dy, mul(sum2(dy, axis, keepDims2), softmax7));\n };\n return { value, gradFunc };\n });\n return customOp($logits);\n}\nvar logSoftmax = op({ logSoftmax_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/log_sum_exp.js\nfunction logSumExp_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"logSumExp\");\n const axes = parseAxisParam(axis, $x.shape);\n const xMax = max($x, axes, true);\n const a = sub($x, xMax);\n const b = exp(a);\n const c = sum2(b, axes);\n const d = log2(c);\n const res = add2(reshape(xMax, d.shape), d);\n if (keepDims) {\n const newShape = expandShapeToKeepDim(res.shape, axes);\n return reshape(res, newShape);\n }\n return res;\n}\nvar logSumExp = op({ logSumExp_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/logical_and.js\nfunction logicalAnd_(a, b) {\n const $a = convertToTensor(a, \"a\", \"logicalAnd\", \"bool\");\n const $b = convertToTensor(b, \"b\", \"logicalAnd\", \"bool\");\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(LogicalAnd, inputs);\n}\nvar logicalAnd = op({ logicalAnd_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/logical_not.js\nfunction logicalNot_(x) {\n const $x = convertToTensor(x, \"x\", \"logicalNot\", \"bool\");\n const inputs = { x: $x };\n return ENGINE.runKernel(LogicalNot, inputs);\n}\nvar logicalNot = op({ logicalNot_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/logical_or.js\nfunction logicalOr_(a, b) {\n const $a = convertToTensor(a, \"a\", \"logicalOr\", \"bool\");\n const $b = convertToTensor(b, \"b\", \"logicalOr\", \"bool\");\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(LogicalOr, inputs);\n}\nvar logicalOr = op({ logicalOr_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/logical_xor.js\nfunction logicalXor_(a, b) {\n const $a = convertToTensor(a, \"a\", \"logicalXor\", \"bool\");\n const $b = convertToTensor(b, \"b\", \"logicalXor\", \"bool\");\n assertAndGetBroadcastShape($a.shape, $b.shape);\n return logicalAnd(logicalOr(a, b), logicalNot(logicalAnd(a, b)));\n}\nvar logicalXor = op({ logicalXor_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/search_sorted.js\nvar INT32_MAX = 2147483648;\nfunction searchSorted_(sortedSequence, values, side = \"left\") {\n const $sortedSequence = convertToTensor(sortedSequence, \"sortedSequence\", \"searchSorted\");\n const $values = convertToTensor(values, \"values\", \"searchSorted\");\n const sequenceSize = $sortedSequence.shape[$sortedSequence.shape.length - 1];\n const valuesSize = $values.shape[$values.shape.length - 1];\n const $sortedSequence2D = reshape($sortedSequence, [-1, sequenceSize]);\n const $values2D = reshape($values, [-1, valuesSize]);\n if ($sortedSequence2D.rank < 2) {\n throw new Error(`Sorted input argument must be at least 2-dimensional`);\n }\n if ($sortedSequence2D.shape[0] !== $values2D.shape[0]) {\n throw new Error(`Leading dimension of 'sortedSequence' and 'values' must match.`);\n }\n if (sizeFromShape($values2D.shape) >= INT32_MAX) {\n throw new Error(`values tensor size must less than ${INT32_MAX}`);\n }\n if ($sortedSequence2D.shape[1] >= INT32_MAX) {\n throw new Error(`trailing dim_size must less than ${INT32_MAX} for int32 output type, was ${$sortedSequence2D.shape[1]}`);\n }\n const inputs = {\n sortedSequence: $sortedSequence2D,\n values: $values2D\n };\n const attrs = { side };\n return ENGINE.runKernel(SearchSorted, inputs, attrs);\n}\nvar searchSorted = op({ searchSorted_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/lower_bound.js\nfunction lowerBound(sortedSequence, values) {\n return searchSorted(sortedSequence, values, \"left\");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool.js\nfunction maxPool_(x, filterSize, strides, pad3, dimRoundingMode) {\n const $x = convertToTensor(x, \"x\", \"maxPool\");\n const dilations = 1;\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in maxPool: input must be rank 4 but got rank ${x4D.rank}.`);\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n checkPadOnDimRoundingMode(\"maxPool\", pad3, dimRoundingMode);\n const inputs = { x: x4D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n const res = ENGINE.runKernel(MaxPool, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar maxPool = op({ maxPool_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool_3d.js\nfunction maxPool3d_(x, filterSize = [1, 1, 1], strides, pad3, dimRoundingMode, dataFormat = \"NDHWC\") {\n const $x = convertToTensor(x, \"x\", \"maxPool3d\");\n let x5D = $x;\n let reshapedTo5D = false;\n if ($x.rank === 4) {\n reshapedTo5D = true;\n x5D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]]);\n }\n assert(x5D.rank === 5, () => `Error in maxPool3d: x must be rank 5 but got rank ${x5D.rank}.`);\n assert(dataFormat === \"NDHWC\", () => `Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${dataFormat}`);\n checkPadOnDimRoundingMode(\"maxPool3d\", pad3, dimRoundingMode);\n const inputs = { x: x5D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat };\n const res = ENGINE.runKernel(MaxPool3D, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar maxPool3d = op({ maxPool3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool_with_argmax.js\nfunction maxPoolWithArgmax_(x, filterSize, strides, pad3, includeBatchInIndex = false) {\n const $x = convertToTensor(x, \"x\", \"maxPoolWithArgmax\");\n const inputs = { x: $x };\n const attrs = { filterSize, strides, pad: pad3, includeBatchInIndex };\n const result = ENGINE.runKernel(MaxPoolWithArgmax, inputs, attrs);\n return { result: result[0], indexes: result[1] };\n}\nvar maxPoolWithArgmax = op({ maxPoolWithArgmax_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/maximum.js\nfunction maximum_(a, b) {\n let $a = convertToTensor(a, \"a\", \"maximum\");\n let $b = convertToTensor(b, \"b\", \"maximum\");\n [$a, $b] = makeTypesMatch($a, $b);\n if ($a.dtype === \"bool\") {\n $a = cast($a, \"int32\");\n $b = cast($b, \"int32\");\n }\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Maximum, inputs);\n}\nvar maximum = op({ maximum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mean.js\nfunction mean_(x, axis = null, keepDims = false) {\n const $x = convertToTensor(x, \"x\", \"mean\");\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Mean, inputs, attrs);\n}\nvar mean = op({ mean_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/zeros.js\nfunction zeros(shape, dtype = \"float32\") {\n if (dtype === \"complex64\") {\n const real5 = zeros(shape, \"float32\");\n const imag5 = zeros(shape, \"float32\");\n return complex(real5, imag5);\n }\n const values = makeZerosTypedArray(sizeFromShape(shape), dtype);\n return ENGINE.makeTensor(values, shape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ones.js\nfunction ones2(shape, dtype = \"float32\") {\n if (dtype === \"complex64\") {\n const real5 = ones2(shape, \"float32\");\n const imag5 = zeros(shape, \"float32\");\n return complex(real5, imag5);\n }\n const values = makeOnesTypedArray(sizeFromShape(shape), dtype);\n return ENGINE.makeTensor(values, shape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/meshgrid.js\nfunction meshgrid(x, y, { indexing = \"xy\" } = {}) {\n if (indexing !== \"xy\" && indexing !== \"ij\") {\n throw new TypeError(`${indexing} is not a valid third argument to meshgrid`);\n }\n if (x === void 0) {\n return [];\n }\n let $x = convertToTensor(x, \"x\", \"meshgrid\", x instanceof Tensor ? x.dtype : \"float32\");\n if (y === void 0) {\n return [$x];\n }\n let $y = convertToTensor(y, \"y\", \"meshgrid\", y instanceof Tensor ? y.dtype : \"float32\");\n const w = sizeFromShape($x.shape);\n const h = sizeFromShape($y.shape);\n if (indexing === \"xy\") {\n $x = reshape($x, [1, -1]);\n $y = reshape($y, [-1, 1]);\n return [\n matMul(ones2([h, 1], $x.dtype), $x),\n matMul($y, ones2([1, w], $y.dtype))\n ];\n }\n $x = reshape($x, [-1, 1]);\n $y = reshape($y, [1, -1]);\n return [\n matMul($x, ones2([1, h], $x.dtype)),\n matMul(ones2([w, 1], $y.dtype), $y)\n ];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/minimum.js\nfunction minimum_(a, b) {\n let $a = convertToTensor(a, \"a\", \"minimum\");\n let $b = convertToTensor(b, \"b\", \"minimum\");\n [$a, $b] = makeTypesMatch($a, $b);\n if ($a.dtype === \"bool\") {\n $a = cast($a, \"int32\");\n $b = cast($b, \"int32\");\n }\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Minimum, inputs);\n}\nvar minimum = op({ minimum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mirror_pad.js\nfunction mirrorPad_(x, paddings, mode) {\n assert(mode === \"reflect\" || mode === \"symmetric\", () => `Invalid mode. Mode must be either reflect or symmetric. Got ${mode}.`);\n const $x = convertToTensor(x, \"x\", \"mirrorPad\");\n if ($x.rank === 0) {\n throw new Error(\"mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad\");\n }\n assert(paddings.length === $x.rank, () => `Padding doesn't match input. Must be ${$x.rank}. Got ${paddings.length}.`);\n const shapeOffset = mode === \"reflect\" ? 1 : 0;\n for (let i2 = 0; i2 < $x.rank; i2++) {\n assert(paddings[i2].length === 2, () => `Invalid number of paddings. Must be length of 2 each.`);\n assert(paddings[i2][0] >= 0 && paddings[i2][0] <= $x.shape[i2] - shapeOffset && paddings[i2][1] >= 0 && paddings[i2][1] <= $x.shape[i2] - shapeOffset, () => `Padding in dimension ${i2} cannot be greater than or equal to ${$x.shape[i2] - shapeOffset} or less than 0 for input of shape ${$x.shape}`);\n }\n const attrs = { paddings, mode };\n const inputs = { x: $x };\n return ENGINE.runKernel(MirrorPad, inputs, attrs);\n}\nvar mirrorPad = op({ mirrorPad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/mod.js\nfunction mod_(a, b) {\n let $a = convertToTensor(a, \"a\", \"mod\");\n let $b = convertToTensor(b, \"b\", \"mod\");\n [$a, $b] = makeTypesMatch($a, $b);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(Mod, inputs);\n}\nvar mod = op({ mod_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/moments.js\nfunction moments_(x, axis = null, keepDims = false) {\n x = convertToTensor(x, \"x\", \"moments\");\n const axes = parseAxisParam(axis, x.shape);\n const xMean = mean(x, axes, keepDims);\n let keepDimsShape = xMean.shape;\n if (!keepDims) {\n keepDimsShape = expandShapeToKeepDim(xMean.shape, axes);\n }\n const devSquared = square(sub(cast(x, \"float32\"), reshape(xMean, keepDimsShape)));\n const variance = mean(devSquared, axes, keepDims);\n return { mean: xMean, variance };\n}\nvar moments = op({ moments_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/multi_rnn_cell.js\nfunction multiRNNCell_(lstmCells, data, c, h) {\n const $data = convertToTensor(data, \"data\", \"multiRNNCell\");\n const $c = convertToTensorArray(c, \"c\", \"multiRNNCell\");\n const $h = convertToTensorArray(h, \"h\", \"multiRNNCell\");\n let input2 = $data;\n const newStates = [];\n for (let i2 = 0; i2 < lstmCells.length; i2++) {\n const output = lstmCells[i2](input2, $c[i2], $h[i2]);\n newStates.push(output[0]);\n newStates.push(output[1]);\n input2 = output[1];\n }\n const newC = [];\n const newH = [];\n for (let i2 = 0; i2 < newStates.length; i2 += 2) {\n newC.push(newStates[i2]);\n newH.push(newStates[i2 + 1]);\n }\n return [newC, newH];\n}\nvar multiRNNCell = op({ multiRNNCell_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/multinomial.js\nfunction multinomial_(logits, numSamples, seed, normalized = false) {\n const $logits = convertToTensor(logits, \"logits\", \"multinomial\");\n const numOutcomes = $logits.size;\n const origRank = $logits.rank;\n if (numOutcomes < 2) {\n throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${numOutcomes}.`);\n }\n if (origRank > 2) {\n throw new Error(`Rank of probabilities must be 1 or 2, but is ${origRank}`);\n }\n seed = seed || Math.random();\n const logits2D = origRank === 1 ? reshape($logits, [1, -1]) : $logits;\n const inputs = { logits: logits2D };\n const attrs = { numSamples, seed, normalized };\n const res = ENGINE.runKernel(Multinomial, inputs, attrs);\n return origRank === 1 ? reshape(res, [res.size]) : res;\n}\nvar multinomial = op({ multinomial_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/not_equal.js\nfunction notEqual_(a, b) {\n let $a = convertToTensor(a, \"a\", \"notEqual\", \"string_or_numeric\");\n let $b = convertToTensor(b, \"b\", \"notEqual\", \"string_or_numeric\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n return ENGINE.runKernel(NotEqual, inputs);\n}\nvar notEqual = op({ notEqual_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ones_like.js\nfunction onesLike_(x) {\n const $x = convertToTensor(x, \"x\", \"onesLike\");\n const inputs = { x: $x };\n return ENGINE.runKernel(OnesLike, inputs);\n}\nvar onesLike = op({ onesLike_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/outer_product.js\nfunction outerProduct_(v1, v2) {\n const $v1 = convertToTensor(v1, \"v1\", \"outerProduct\");\n const $v2 = convertToTensor(v2, \"v2\", \"outerProduct\");\n assert($v1.rank === 1 && $v2.rank === 1, () => `Error in outerProduct: inputs must be rank 1, but got ranks ${$v1.rank} and ${$v2.rank}.`);\n const v12D = reshape($v1, [-1, 1]);\n const v22D = reshape($v2, [1, -1]);\n return matMul(v12D, v22D);\n}\nvar outerProduct = op({ outerProduct_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad.js\nfunction pad_(x, paddings, constantValue = 0) {\n const $x = convertToTensor(x, \"x\", \"pad\");\n if ($x.rank === 0) {\n throw new Error(\"pad(scalar) is not defined. Pass non-scalar to pad\");\n }\n const attrs = { paddings, constantValue };\n const inputs = { x: $x };\n return ENGINE.runKernel(PadV2, inputs, attrs);\n}\nvar pad = op({ pad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad1d.js\nfunction pad1d_(x, paddings, constantValue = 0) {\n assert(paddings.length === 2, () => \"Invalid number of paddings. Must be length of 2.\");\n return pad(x, [paddings], constantValue);\n}\nvar pad1d = op({ pad1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad2d.js\nfunction pad2d_(x, paddings, constantValue = 0) {\n assert(paddings.length === 2 && paddings[0].length === 2 && paddings[1].length === 2, () => \"Invalid number of paddings. Must be length of 2 each.\");\n return pad(x, paddings, constantValue);\n}\nvar pad2d = op({ pad2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad3d.js\nfunction pad3d_(x, paddings, constantValue = 0) {\n assert(paddings.length === 3 && paddings[0].length === 2 && paddings[1].length === 2 && paddings[2].length === 2, () => \"Invalid number of paddings. Must be length of 2 each.\");\n return pad(x, paddings, constantValue);\n}\nvar pad3d = op({ pad3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pad4d.js\nfunction pad4d_(x, paddings, constantValue = 0) {\n assert(paddings.length === 4 && paddings[0].length === 2 && paddings[1].length === 2 && paddings[2].length === 2 && paddings[3].length === 2, () => \"Invalid number of paddings. Must be length of 2 each.\");\n return pad(x, paddings, constantValue);\n}\nvar pad4d = op({ pad4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/space_to_batch_nd.js\nfunction spaceToBatchND_(x, blockShape, paddings) {\n const $x = convertToTensor(x, \"x\", \"spaceToBatchND\");\n assert($x.rank >= 1 + blockShape.length, () => `input rank ${$x.rank} should be > than [blockShape] ${blockShape.length}`);\n assert(paddings.length === blockShape.length, () => `paddings.shape[0] ${paddings.length} must be equal to [blockShape] ${blockShape.length}`);\n assert($x.shape.reduce((a, b, i2) => {\n if (i2 > 0 && i2 <= blockShape.length) {\n return a && (b + paddings[i2 - 1][0] + paddings[i2 - 1][1]) % blockShape[i2 - 1] === 0;\n }\n return a;\n }, true), () => `input spatial dimensions ${$x.shape.slice(1)} with paddings ${paddings.toString()} must be divisible by blockShapes ${blockShape.toString()}`);\n const inputs = { x: $x };\n const attrs = { blockShape, paddings };\n return ENGINE.runKernel(SpaceToBatchND, inputs, attrs);\n}\nvar spaceToBatchND = op({ spaceToBatchND_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pool.js\nfunction pool_(input2, windowShape, poolingType, pad3, dilations, strides, dimRoundingMode) {\n if (dilations == null) {\n dilations = [1, 1];\n }\n if (strides == null) {\n strides = 1;\n }\n if (pad3 === 0) {\n pad3 = \"valid\";\n }\n const $x = convertToTensor(input2, \"x\", \"maxPool\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in pool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = computePool2DInfo(x4D.shape, windowShape, strides, dilations, pad3);\n const dilation = [convInfo.dilationHeight, convInfo.dilationWidth];\n let basePadding;\n if (pad3 === \"same\") {\n basePadding = withSpaceToBatchBasePaddings([convInfo.filterHeight, convInfo.filterWidth], dilation);\n } else {\n basePadding = [[0, 0], [0, 0]];\n }\n const isDilationOne = dilation[0] === 1 && dilation[1] === 1;\n const [adjustedPadding, adjustedCrops] = requiredSpaceToBatchPaddings([convInfo.inHeight, convInfo.inWidth], dilation, basePadding);\n const convertedPad = isDilationOne ? pad3 : \"valid\";\n const convertedX = isDilationOne ? x4D : spaceToBatchND(x4D, dilation, adjustedPadding);\n const forwardOp = poolingType === \"avg\" ? () => avgPool(convertedX, windowShape, strides, convertedPad, dimRoundingMode) : () => maxPool(convertedX, windowShape, strides, convertedPad, dimRoundingMode);\n const y = forwardOp();\n const res = isDilationOne ? y : batchToSpaceND(y, dilation, adjustedCrops);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nfunction requiredSpaceToBatchPaddings(inputShape, blockShape, basePadding) {\n const padStart = basePadding.map((b) => b[0]);\n const origPadEnd = basePadding.map((b) => b[1]);\n const fullInputShape = inputShape.concat(padStart, origPadEnd);\n const padEndExtra = blockShape.map((b, i2) => (b - fullInputShape[i2] % b) % b);\n const padEnd = origPadEnd.map((s2, i2) => s2 + padEndExtra[i2]);\n const paddings = blockShape.map((_, i2) => [padStart[i2], padEnd[i2]]);\n const crops = blockShape.map((_, i2) => [0, padEndExtra[i2]]);\n return [paddings, crops];\n}\nfunction withSpaceToBatchBasePaddings(filterShape, dilation) {\n const dilatedFilterShape = filterShape.map((s2, i2) => {\n return s2 + (s2 - 1) * (dilation[i2] - 1);\n });\n const padExtraShape = dilatedFilterShape.map((s2) => s2 - 1);\n const padExtraStart = padExtraShape.map((s2) => Math.floor(s2 / 2));\n const padExtraEnd = padExtraShape.map((s2, i2) => s2 - padExtraStart[i2]);\n return padExtraShape.map((_, i2) => {\n return [padExtraStart[i2], padExtraEnd[i2]];\n });\n}\nvar pool = op({ pool_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/prelu.js\nfunction prelu_(x, alpha) {\n const $x = convertToTensor(x, \"x\", \"prelu\");\n const $alpha = convertToTensor(alpha, \"alpha\", \"prelu\");\n const inputs = { x: $x, alpha: $alpha };\n return ENGINE.runKernel(Prelu, inputs);\n}\nvar prelu = op({ prelu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/prod.js\nfunction prod_(x, axis = null, keepDims = false) {\n let $x = convertToTensor(x, \"x\", \"prod\");\n if ($x.dtype === \"bool\") {\n $x = cast($x, \"int32\");\n }\n const inputs = { x: $x };\n const attrs = { axis, keepDims };\n return ENGINE.runKernel(Prod, inputs, attrs);\n}\nvar prod = op({ prod_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ragged_tensor_to_tensor.js\nfunction raggedTensorToTensor_(shape, values, defaultValue, rowPartitionTensors, rowPartitionTypes) {\n const $shape = convertToTensor(shape, \"shape\", \"raggedTensorToTensor\", \"int32\");\n const $values = convertToTensor(values, \"values\", \"raggedTensorToTensor\");\n const $defaultValue = convertToTensor(defaultValue, \"defaultValue\", \"raggedTensorToTensor\", $values.dtype);\n const $rowPartitionTensors = rowPartitionTensors.map((t2, i2) => convertToTensor(t2, `tensors${i2}`, \"raggedTensorToTensor\", \"int32\"));\n const inputs = {\n shape: $shape,\n values: $values,\n defaultValue: $defaultValue,\n rowPartitionTensors: $rowPartitionTensors\n };\n const attrs = { rowPartitionTypes };\n return ENGINE.runKernel(RaggedTensorToTensor, inputs, attrs);\n}\nvar raggedTensorToTensor = op({ raggedTensorToTensor_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/rand.js\nfunction rand_(shape, randFunction, dtype) {\n const size = sizeFromShape(shape);\n let values = null;\n if (dtype == null || dtype === \"float32\") {\n values = new Float32Array(size);\n } else if (dtype === \"int32\") {\n values = new Int32Array(size);\n } else if (dtype === \"bool\") {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n for (let i2 = 0; i2 < size; i2++) {\n values[i2] = randFunction();\n }\n return ENGINE.makeTensor(values, shape, dtype);\n}\nvar rand = op({ rand_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/rand_util.js\nvar seedrandom = __toESM(require_seedrandom2());\nvar MPRandGauss = class {\n constructor(mean5, stdDeviation, dtype, truncated, seed) {\n this.mean = mean5;\n this.stdDev = stdDeviation;\n this.dtype = dtype;\n this.nextVal = NaN;\n this.truncated = truncated;\n if (this.truncated) {\n this.upper = this.mean + this.stdDev * 2;\n this.lower = this.mean - this.stdDev * 2;\n }\n const seedValue = seed ? seed : Math.random();\n this.random = seedrandom.alea(seedValue.toString());\n }\n nextValue() {\n if (!isNaN(this.nextVal)) {\n const value = this.nextVal;\n this.nextVal = NaN;\n return value;\n }\n let resultX, resultY;\n let isValid = false;\n while (!isValid) {\n let v1, v2, s2;\n do {\n v1 = 2 * this.random() - 1;\n v2 = 2 * this.random() - 1;\n s2 = v1 * v1 + v2 * v2;\n } while (s2 >= 1 || s2 === 0);\n const mul2 = Math.sqrt(-2 * Math.log(s2) / s2);\n resultX = this.mean + this.stdDev * v1 * mul2;\n resultY = this.mean + this.stdDev * v2 * mul2;\n if (!this.truncated || this.isValidTruncated(resultX)) {\n isValid = true;\n }\n }\n if (!this.truncated || this.isValidTruncated(resultY)) {\n this.nextVal = this.convertValue(resultY);\n }\n return this.convertValue(resultX);\n }\n convertValue(value) {\n if (this.dtype == null || this.dtype === \"float32\") {\n return value;\n }\n return Math.round(value);\n }\n isValidTruncated(value) {\n return value <= this.upper && value >= this.lower;\n }\n};\nvar RandGamma = class {\n constructor(alpha, beta, dtype, seed) {\n this.alpha = alpha;\n this.beta = 1 / beta;\n this.dtype = dtype;\n const seedValue = seed ? seed : Math.random();\n this.randu = seedrandom.alea(seedValue.toString());\n this.randn = new MPRandGauss(0, 1, dtype, false, this.randu());\n if (alpha < 1) {\n this.d = alpha + 2 / 3;\n } else {\n this.d = alpha - 1 / 3;\n }\n this.c = 1 / Math.sqrt(9 * this.d);\n }\n nextValue() {\n let x2, v0, v1, x, u, v;\n while (true) {\n do {\n x = this.randn.nextValue();\n v = 1 + this.c * x;\n } while (v <= 0);\n v *= v * v;\n x2 = x * x;\n v0 = 1 - 0.331 * x2 * x2;\n v1 = 0.5 * x2 + this.d * (1 - v + Math.log(v));\n u = this.randu();\n if (u < v0 || Math.log(u) < v1) {\n break;\n }\n }\n v = 1 / this.beta * this.d * v;\n if (this.alpha < 1) {\n v *= Math.pow(this.randu(), 1 / this.alpha);\n }\n return this.convertValue(v);\n }\n convertValue(value) {\n if (this.dtype === \"float32\") {\n return value;\n }\n return Math.round(value);\n }\n};\nvar UniformRandom = class {\n constructor(min7 = 0, max7 = 1, dtype, seed) {\n this.canReturnFloat = () => this.dtype == null || this.dtype === \"float32\";\n this.min = min7;\n this.range = max7 - min7;\n this.dtype = dtype;\n if (seed == null) {\n seed = Math.random();\n }\n if (typeof seed === \"number\") {\n seed = seed.toString();\n }\n if (!this.canReturnFloat() && this.range <= 1) {\n throw new Error(`The difference between ${min7} - ${max7} <= 1 and dtype is not float`);\n }\n this.random = seedrandom.alea(seed);\n }\n convertValue(value) {\n if (this.canReturnFloat()) {\n return value;\n }\n return Math.round(value);\n }\n nextValue() {\n return this.convertValue(this.min + this.range * this.random());\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/random_gamma.js\nfunction randomGamma_(shape, alpha, beta = 1, dtype = \"float32\", seed) {\n if (beta == null) {\n beta = 1;\n }\n if (dtype == null) {\n dtype = \"float32\";\n }\n if (dtype !== \"float32\" && dtype !== \"int32\") {\n throw new Error(`Unsupported data type ${dtype}`);\n }\n const rgamma = new RandGamma(alpha, beta, dtype, seed);\n const res = buffer(shape, dtype);\n for (let i2 = 0; i2 < res.values.length; i2++) {\n res.values[i2] = rgamma.nextValue();\n }\n return res.toTensor();\n}\nvar randomGamma = op({ randomGamma_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/random_normal.js\nfunction randomNormal_(shape, mean5 = 0, stdDev = 1, dtype, seed) {\n if (dtype != null && dtype === \"bool\") {\n throw new Error(`Unsupported data type ${dtype}`);\n }\n const randGauss = new MPRandGauss(mean5, stdDev, dtype, false, seed);\n const res = buffer(shape, dtype);\n for (let i2 = 0; i2 < res.values.length; i2++) {\n res.values[i2] = randGauss.nextValue();\n }\n return res.toTensor();\n}\nvar randomNormal = op({ randomNormal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/random_standard_normal.js\nfunction randomStandardNormal_(shape, dtype, seed) {\n if (dtype != null && dtype === \"bool\") {\n throw new Error(`Unsupported data type ${dtype}`);\n }\n return randomNormal(shape, 0, 1, dtype, seed);\n}\nvar randomStandardNormal = op({ randomStandardNormal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/random_uniform.js\nfunction randomUniform_(shape, minval = 0, maxval = 1, dtype = \"float32\", seed) {\n const res = buffer(shape, dtype);\n const random = new UniformRandom(minval, maxval, null, seed);\n for (let i2 = 0; i2 < res.values.length; i2++) {\n res.values[i2] = random.nextValue();\n }\n return res.toTensor();\n}\nvar randomUniform = op({ randomUniform_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/range.js\nfunction range(start, stop, step5 = 1, dtype = \"float32\") {\n if (step5 === 0) {\n throw new Error(\"Cannot have a step of zero\");\n }\n const attrs = { start, stop, step: step5, dtype };\n return ENGINE.runKernel(Range, {}, attrs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reciprocal.js\nfunction reciprocal_(x) {\n const $x = convertToTensor(x, \"x\", \"reciprocal\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Reciprocal, inputs);\n}\nvar reciprocal = op({ reciprocal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/relu.js\nfunction relu_(x) {\n const $x = convertToTensor(x, \"x\", \"relu\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Relu, inputs);\n}\nvar relu = op({ relu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/relu6.js\nfunction relu6_(x) {\n const $x = convertToTensor(x, \"x\", \"relu6\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Relu6, inputs);\n}\nvar relu6 = op({ relu6_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse.js\nfunction reverse_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n const inputs = { x: $x };\n const attrs = { dims: axis };\n return ENGINE.runKernel(Reverse, inputs, attrs);\n}\nvar reverse = op({ reverse_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse_1d.js\nfunction reverse1d_(x) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n assert($x.rank === 1, () => `Error in reverse1D: x must be rank 1 but got rank ${$x.rank}.`);\n return reverse($x, 0);\n}\nvar reverse1d = op({ reverse1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse_2d.js\nfunction reverse2d_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n assert($x.rank === 2, () => `Error in reverse2D: x must be rank 2 but got rank ${$x.rank}.`);\n return reverse($x, axis);\n}\nvar reverse2d = op({ reverse2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse_3d.js\nfunction reverse3d_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n assert($x.rank === 3, () => `Error in reverse3D: x must be rank 3 but got rank ${$x.rank}.`);\n return reverse($x, axis);\n}\nvar reverse3d = op({ reverse3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reverse_4d.js\nfunction reverse4d_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"reverse\");\n assert($x.rank === 4, () => `Error in reverse4D: x must be rank 4 but got rank ${$x.rank}.`);\n return reverse($x, axis);\n}\nvar reverse4d = op({ reverse4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/round.js\nfunction round_(x) {\n const $x = convertToTensor(x, \"x\", \"round\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Round, inputs);\n}\nvar round2 = op({ round_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/rsqrt.js\nfunction rsqrt_(x) {\n const $x = convertToTensor(x, \"x\", \"rsqrt\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Rsqrt, inputs);\n}\nvar rsqrt = op({ rsqrt_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/selu.js\nfunction selu_(x) {\n const $x = convertToTensor(x, \"x\", \"selu\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Selu, inputs);\n}\nvar selu = op({ selu_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/separable_conv2d.js\nfunction separableConv2d_(x, depthwiseFilter, pointwiseFilter, strides, pad3, dilation = [1, 1], dataFormat = \"NHWC\") {\n const $x = convertToTensor(x, \"x\", \"separableConv2d\");\n const $depthwiseFilter = convertToTensor(depthwiseFilter, \"depthwiseFilter\", \"separableConv2d\");\n const $pointwiseFilter = convertToTensor(pointwiseFilter, \"pointwiseFilter\", \"separableConv2d\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n if (dataFormat === \"NCHW\") {\n throw new Error(\"separableConv2d currently does not support dataFormat NCHW; only NHWC is supported\");\n }\n assert(x4D.rank === 4, () => `Error in separableConv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($depthwiseFilter.rank === 4, () => `Error in separableConv2d: depthwise filter must be rank 4, but got rank ${$depthwiseFilter.rank}.`);\n assert($pointwiseFilter.rank === 4, () => `Error in separableConv2d: pointwise filter must be rank 4, but got rank ${$depthwiseFilter.rank}.`);\n assert($pointwiseFilter.shape[0] === 1, () => `Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${$pointwiseFilter.shape[0]}.`);\n assert($pointwiseFilter.shape[1] === 1, () => `Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${$pointwiseFilter.shape[1]}.`);\n const inChannels = $depthwiseFilter.shape[2];\n const channelMultiplier = $depthwiseFilter.shape[3];\n assert($pointwiseFilter.shape[2] === inChannels * channelMultiplier, () => `Error in separableConv2d: the third dimension of pointwise filter must be ${inChannels * channelMultiplier}, but got ${$pointwiseFilter.shape[2]}.`);\n const depthwise = depthwiseConv2d(x4D, $depthwiseFilter, strides, pad3, dataFormat, dilation);\n const pointwiseStride = 1;\n const res = conv2d(depthwise, $pointwiseFilter, pointwiseStride, \"valid\", dataFormat);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar separableConv2d = op({ separableConv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/setdiff1d_async.js\nasync function setdiff1dAsync_(x, y) {\n const $x = convertToTensor(x, \"x\", \"setdiff1d\");\n const $y = convertToTensor(y, \"y\", \"setdiff1d\");\n assert($x.dtype === $y.dtype, () => `x and y should have the same dtype, but got x (${$x.dtype}) and y (${$y.dtype}).`);\n assert($x.rank === 1, () => `x should be 1D tensor, but got x (${$x.shape}).`);\n assert($y.rank === 1, () => `y should be 1D tensor, but got y (${$y.shape}).`);\n const xVals = await $x.data();\n const yVals = await $y.data();\n const ySet = new Set(yVals);\n let outputSize = 0;\n for (let i2 = 0; i2 < xVals.length; i2++) {\n if (!ySet.has(xVals[i2])) {\n outputSize++;\n }\n }\n const buffer2 = new TensorBuffer([outputSize], $x.dtype);\n const indices = new TensorBuffer([outputSize], \"int32\");\n for (let i2 = 0, p2 = 0; i2 < xVals.length; i2++) {\n if (!ySet.has(xVals[i2])) {\n buffer2.values[p2] = xVals[i2];\n indices.values[p2] = i2;\n p2++;\n }\n }\n return [buffer2.toTensor(), indices.toTensor()];\n}\nvar setdiff1dAsync = setdiff1dAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sign.js\nfunction sign_(x) {\n const $x = convertToTensor(x, \"x\", \"sign\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sign, inputs);\n}\nvar sign = op({ sign_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sin.js\nfunction sin_(x) {\n const $x = convertToTensor(x, \"x\", \"sin\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sin, inputs);\n}\nvar sin = op({ sin_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sinh.js\nfunction sinh_(x) {\n const $x = convertToTensor(x, \"x\", \"sinh\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Sinh, inputs);\n}\nvar sinh = op({ sinh_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice1d.js\nfunction slice1d_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice1d\");\n assert($x.rank === 1, () => `slice1d expects a rank-1 tensor, but got a rank-${$x.rank} tensor`);\n return slice($x, [begin], [size]);\n}\nvar slice1d = op({ slice1d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice2d.js\nfunction slice2d_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice2d\");\n assert($x.rank === 2, () => `slice2d expects a rank-2 tensor, but got a rank-${$x.rank} tensor`);\n return slice($x, begin, size);\n}\nvar slice2d = op({ slice2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice3d.js\nfunction slice3d_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice3d\");\n assert($x.rank === 3, () => `slice3d expects a rank-3 tensor, but got a rank-${$x.rank} tensor`);\n return slice($x, begin, size);\n}\nvar slice3d = op({ slice3d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/slice4d.js\nfunction slice4d_(x, begin, size) {\n const $x = convertToTensor(x, \"x\", \"slice4d\");\n assert($x.rank === 4, () => `slice4d expects a rank-4 tensor, but got a rank-${$x.rank} tensor`);\n return slice($x, begin, size);\n}\nvar slice4d = op({ slice4d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/softmax.js\nfunction softmax_(logits, dim = -1) {\n const $logits = convertToTensor(logits, \"logits\", \"softmax\", \"float32\");\n if (dim === -1) {\n dim = $logits.rank - 1;\n }\n if (dim !== $logits.rank - 1) {\n throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${$logits.rank} and dim was ${dim}`);\n }\n const inputs = { logits: $logits };\n const attrs = { dim };\n return ENGINE.runKernel(Softmax, inputs, attrs);\n}\nvar softmax = op({ softmax_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/spectral/fft.js\nfunction fft_(input2) {\n assert(input2.dtype === \"complex64\", () => `The dtype for tf.spectral.fft() must be complex64 but got ${input2.dtype}.`);\n const inputs = { input: input2 };\n return ENGINE.runKernel(FFT, inputs);\n}\nvar fft = op({ fft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/spectral/ifft.js\nfunction ifft_(input2) {\n assert(input2.dtype === \"complex64\", () => `The dtype for tf.spectral.ifft() must be complex64 but got ${input2.dtype}.`);\n const inputs = { input: input2 };\n return ENGINE.runKernel(IFFT, inputs);\n}\nvar ifft = op({ ifft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/spectral/irfft.js\nfunction irfft_(input2) {\n const innerDimensionSize = input2.shape[input2.shape.length - 1];\n const batch = input2.size / innerDimensionSize;\n let ret;\n if (innerDimensionSize <= 2) {\n const complexInput = reshape(input2, [batch, innerDimensionSize]);\n ret = ifft(complexInput);\n } else {\n const outputShape = [batch, 2 * (innerDimensionSize - 1)];\n const realInput = reshape(real(input2), [batch, innerDimensionSize]);\n const imagInput = reshape(imag(input2), [batch, innerDimensionSize]);\n const realConjugate = reverse(slice(realInput, [0, 1], [batch, innerDimensionSize - 2]), 1);\n const imagConjugate = mul(reverse(slice(imagInput, [0, 1], [batch, innerDimensionSize - 2]), 1), scalar(-1));\n const r2 = concat([realInput, realConjugate], 1);\n const i2 = concat([imagInput, imagConjugate], 1);\n const complexInput = reshape(complex(r2, i2), [outputShape[0], outputShape[1]]);\n ret = ifft(complexInput);\n }\n ret = real(ret);\n if (input2.rank === 3 && input2.shape[0] !== 0) {\n const temp = ret;\n const batch2 = input2.shape[0];\n ret = reshape(ret, [batch2, ret.shape[0] / batch2, ret.shape[1]]);\n temp.dispose();\n }\n return ret;\n}\nvar irfft = op({ irfft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/split.js\nfunction split_(x, numOrSizeSplits, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"split\");\n const inputs = { x: $x };\n const attr = { numOrSizeSplits, axis };\n return ENGINE.runKernel(SplitV, inputs, attr);\n}\nvar split = op({ split_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/spectral/rfft.js\nfunction rfft_(input2, fftLength) {\n assert(input2.dtype === \"float32\", () => `The dtype for rfft() must be real value but got ${input2.dtype}`);\n let innerDimensionSize = input2.shape[input2.shape.length - 1];\n const batch = input2.size / innerDimensionSize;\n let adjustedInput;\n if (fftLength != null && fftLength < innerDimensionSize) {\n const begin = input2.shape.map((v) => 0);\n const size = input2.shape.map((v) => v);\n size[input2.shape.length - 1] = fftLength;\n adjustedInput = slice(input2, begin, size);\n innerDimensionSize = fftLength;\n } else if (fftLength != null && fftLength > innerDimensionSize) {\n const zerosShape = input2.shape.map((v) => v);\n zerosShape[input2.shape.length - 1] = fftLength - innerDimensionSize;\n adjustedInput = concat([input2, zeros(zerosShape)], input2.shape.length - 1);\n innerDimensionSize = fftLength;\n } else {\n adjustedInput = input2;\n }\n const zerosInput = zerosLike(adjustedInput);\n const complexInput = reshape(complex(adjustedInput, zerosInput), [batch, innerDimensionSize]);\n const ret = fft(complexInput);\n const half = Math.floor(innerDimensionSize / 2) + 1;\n const realValues = real(ret);\n const imagValues = imag(ret);\n const realComplexConjugate = split(realValues, [half, innerDimensionSize - half], realValues.shape.length - 1);\n const imagComplexConjugate = split(imagValues, [half, innerDimensionSize - half], imagValues.shape.length - 1);\n const outputShape = adjustedInput.shape.slice();\n outputShape[adjustedInput.shape.length - 1] = half;\n return reshape(complex(realComplexConjugate[0], imagComplexConjugate[0]), outputShape);\n}\nvar rfft = op({ rfft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/squared_difference.js\nfunction squaredDifference_(a, b) {\n let $a = convertToTensor(a, \"a\", \"squaredDifference\");\n let $b = convertToTensor(b, \"b\", \"squaredDifference\");\n [$a, $b] = makeTypesMatch($a, $b);\n assertAndGetBroadcastShape($a.shape, $b.shape);\n const inputs = { a: $a, b: $b };\n const attrs = {};\n return ENGINE.runKernel(SquaredDifference, inputs, attrs);\n}\nvar squaredDifference = op({ squaredDifference_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/squeeze.js\nfunction squeeze_(x, axis) {\n const $x = convertToTensor(x, \"x\", \"squeeze\", \"string_or_numeric\");\n return reshape($x, squeezeShape($x.shape, axis).newShape);\n}\nvar squeeze = op({ squeeze_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/stack.js\nfunction stack_(tensors, axis = 0) {\n const $tensors = convertToTensorArray(tensors, \"tensors\", \"stack\", \"string_or_numeric\");\n assert($tensors.length >= 1, () => \"Pass at least one tensor to tf.stack\");\n if ($tensors.length > 0) {\n assert(axis <= $tensors[0].rank, () => \"Axis must be <= rank of the tensor\");\n }\n const inputs = $tensors;\n const attrs = { axis };\n return ENGINE.runKernel(Pack, inputs, attrs);\n}\nvar stack = op({ stack_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/step.js\nfunction step_(x, alpha = 0) {\n const $x = convertToTensor(x, \"x\", \"step\");\n const inputs = { x: $x };\n const attrs = { alpha };\n return ENGINE.runKernel(Step, inputs, attrs);\n}\nvar step = op({ step_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/strided_slice.js\nfunction stridedSlice_(x, begin, end, strides, beginMask = 0, endMask = 0, ellipsisMask = 0, newAxisMask = 0, shrinkAxisMask = 0) {\n const $x = convertToTensor(x, \"x\", \"stridedSlice\", \"string_or_numeric\");\n const inputs = { x: $x };\n const attrs = {\n begin,\n end,\n strides,\n beginMask,\n endMask,\n ellipsisMask,\n newAxisMask,\n shrinkAxisMask\n };\n return ENGINE.runKernel(StridedSlice, inputs, attrs);\n}\nvar stridedSlice = op({ stridedSlice_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tan.js\nfunction tan_(x) {\n const $x = convertToTensor(x, \"x\", \"tan\", \"float32\");\n const inputs = { x: $x };\n return ENGINE.runKernel(Tan, inputs);\n}\nvar tan = op({ tan_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor1d.js\nfunction tensor1d(values, dtype) {\n assertNonNull(values);\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 1) {\n throw new Error(\"tensor1d() requires values to be a flat/TypedArray\");\n }\n const shape = null;\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor2d.js\nfunction tensor2d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 2) {\n throw new Error(\"tensor2d() requires shape to have two numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 2 && inferredShape.length !== 1) {\n throw new Error(\"tensor2d() requires values to be number[][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor2d() requires shape to be provided when `values` are a flat/TypedArray\");\n }\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor4d.js\nfunction tensor4d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 4) {\n throw new Error(\"tensor4d() requires shape to have four numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 4 && inferredShape.length !== 1) {\n throw new Error(\"tensor4d() requires values to be number[][][][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor4d() requires shape to be provided when `values` are a flat array\");\n }\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor5d.js\nfunction tensor5d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 5) {\n throw new Error(\"tensor5d() requires shape to have five numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 5 && inferredShape.length !== 1) {\n throw new Error(\"tensor5d() requires values to be number[][][][][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor5d() requires shape to be provided when `values` are a flat array\");\n }\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/tensor6d.js\nfunction tensor6d(values, shape, dtype) {\n assertNonNull(values);\n if (shape != null && shape.length !== 6) {\n throw new Error(\"tensor6d() requires shape to have six numbers\");\n }\n const inferredShape = inferShape(values, dtype);\n if (inferredShape.length !== 6 && inferredShape.length !== 1) {\n throw new Error(\"tensor6d() requires values to be number[][][][][][] or flat/TypedArray\");\n }\n if (inferredShape.length === 1 && shape == null) {\n throw new Error(\"tensor6d() requires shape to be provided when `values` are a flat array\");\n }\n shape = shape || inferredShape;\n return makeTensor(values, shape, inferredShape, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/topk.js\nfunction topk_(x, k = 1, sorted = true) {\n const $x = convertToTensor(x, \"x\", \"topk\");\n if ($x.rank === 0) {\n throw new Error(\"topk() expects the input to be of rank 1 or higher\");\n }\n const lastDim = $x.shape[$x.shape.length - 1];\n if (k < 0) {\n throw new Error(`'k' passed to topk() must be >= 0 but got ${k}`);\n }\n if (k > lastDim) {\n throw new Error(`'k' passed to topk() must be <= the last dimension (${lastDim}) but got ${k}`);\n }\n const inputs = { x: $x };\n const attrs = { k, sorted };\n const [values, indices] = ENGINE.runKernel(TopK, inputs, attrs);\n return { values, indices };\n}\nvar topk = op({ topk_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/truncated_normal.js\nfunction truncatedNormal_(shape, mean5 = 0, stdDev = 1, dtype, seed) {\n if (dtype != null && dtype === \"bool\") {\n throw new Error(`Unsupported data type $ { dtype }`);\n }\n const randGauss = new MPRandGauss(mean5, stdDev, dtype, true, seed);\n const res = buffer(shape, dtype);\n for (let i2 = 0; i2 < res.values.length; i2++) {\n res.values[i2] = randGauss.nextValue();\n }\n return res.toTensor();\n}\nvar truncatedNormal = op({ truncatedNormal_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/unique.js\nfunction unique_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"unique\", \"string_or_numeric\");\n assert($x.rank > 0, () => \"The input tensor must be at least 1D\");\n const inputs = { x: $x };\n const attrs = { axis };\n const [values, indices] = ENGINE.runKernel(Unique, inputs, attrs);\n return { values, indices };\n}\nvar unique = op({ unique_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/unsorted_segment_sum.js\nfunction unsortedSegmentSum_(x, segmentIds, numSegments) {\n const $x = convertToTensor(x, \"x\", \"unsortedSegmentSum\");\n const $segmentIds = convertToTensor(segmentIds, \"segmentIds\", \"unsortedSegmentSum\", \"int32\");\n assert(isInt(numSegments), () => \"numSegments must be of dtype int\");\n const inputs = { x: $x, segmentIds: $segmentIds };\n const attrs = { numSegments };\n return ENGINE.runKernel(UnsortedSegmentSum, inputs, attrs);\n}\nvar unsortedSegmentSum = op({ unsortedSegmentSum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/unstack.js\nfunction unstack_(x, axis = 0) {\n const $x = convertToTensor(x, \"x\", \"unstack\", \"string_or_numeric\");\n assert(axis >= -$x.shape.length && axis < $x.shape.length, () => `Axis = ${axis} is not in [-${$x.shape.length}, ${$x.shape.length})`);\n const inputs = { value: $x };\n const attrs = { axis };\n return ENGINE.runKernel(Unpack, inputs, attrs);\n}\nvar unstack = op({ unstack_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/upper_bound.js\nfunction upperBound(sortedSequence, values) {\n return searchSorted(sortedSequence, values, \"right\");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/variable.js\nfunction variable(initialValue, trainable = true, name, dtype) {\n return ENGINE.makeVariable(initialValue, trainable, name, dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/where_impl.js\nfunction whereImpl(condShape, condVals) {\n const indices = [];\n for (let i2 = 0; i2 < condVals.length; i2++) {\n if (condVals[i2]) {\n indices.push(i2);\n }\n }\n const inBuffer = buffer(condShape, \"int32\");\n const out = buffer([indices.length, condShape.length], \"int32\");\n for (let i2 = 0; i2 < indices.length; i2++) {\n const loc = inBuffer.indexToLoc(indices[i2]);\n const offset = i2 * condShape.length;\n out.values.set(loc, offset);\n }\n return out.toTensor();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/where_async.js\nasync function whereAsync_(condition) {\n const $condition = convertToTensor(condition, \"condition\", \"whereAsync\", \"bool\");\n const vals = await $condition.data();\n const res = whereImpl($condition.shape, vals);\n if (condition !== $condition) {\n $condition.dispose();\n }\n return res;\n}\nvar whereAsync = whereAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/boolean_mask.js\nasync function booleanMaskAsync_(tensor2, mask, axis) {\n const $tensor = convertToTensor(tensor2, \"tensor\", \"boolMask\");\n const $mask = convertToTensor(mask, \"mask\", \"boolMask\", \"bool\");\n const axisFrom = axis == null ? 0 : axis;\n const maskDim = $mask.rank;\n const tensorShape = $tensor.shape;\n assert(maskDim > 0, () => \"mask cannot be scalar\");\n assertShapesMatch(tensorShape.slice(axisFrom, axisFrom + maskDim), $mask.shape, `mask's shape must match the first K dimensions of tensor's shape,`);\n let leadingSize = 1;\n for (let i2 = axisFrom; i2 < axisFrom + maskDim; i2++) {\n leadingSize *= tensorShape[i2];\n }\n const targetTensorShape = tensorShape.slice(0, axisFrom).concat([leadingSize], tensorShape.slice(axisFrom + maskDim));\n const reshapedTensor = reshape($tensor, targetTensorShape);\n const reshapedMask = reshape($mask, [-1]);\n const positivePositions = await whereAsync(reshapedMask);\n const indices = squeeze(positivePositions, [1]);\n const res = gather(reshapedTensor, indices, axisFrom);\n if (tensor2 !== $tensor) {\n $tensor.dispose();\n }\n if (mask !== $mask) {\n $mask.dispose();\n }\n indices.dispose();\n reshapedTensor.dispose();\n reshapedMask.dispose();\n positivePositions.dispose();\n return res;\n}\nvar booleanMaskAsync = booleanMaskAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/moving_average.js\nfunction movingAverage_(v, x, decay, step5, zeroDebias = true) {\n const $v = convertToTensor(v, \"v\", \"movingAverage\");\n const $x = convertToTensor(x, \"x\", \"movingAverage\");\n const $decay = convertToTensor(decay, \"decay\", \"movingAverage\");\n assertTypesMatch($v, $x);\n assert(arraysEqual($v.shape, $x.shape), () => \"Shape mismatch in v and x\");\n const one = scalar(1);\n const oneMinusDecay = sub(one, $decay);\n let update = mul(sub($x, $v), oneMinusDecay);\n if (zeroDebias) {\n assert(step5 != null, () => \"When using zeroDebias: true, step is required.\");\n const $step = convertToTensor(step5, \"step\", \"movingAverage\");\n update = div(update, sub(one, pow($decay, $step)));\n }\n return add2($v, update);\n}\nvar movingAverage = op({ movingAverage_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/scatter_nd.js\nfunction scatterND_(indices, updates, shape) {\n const $indices = convertToTensor(indices, \"indices\", \"scatterND\", \"int32\");\n const $updates = convertToTensor(updates, \"updates\", \"scatterND\");\n validateInput($updates, $indices, shape);\n const inputs = { indices: $indices, updates: $updates };\n const attrs = { shape };\n return ENGINE.runKernel(ScatterNd, inputs, attrs);\n}\nvar scatterND = op({ scatterND_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse_to_dense_util.js\nfunction validateInput2(sparseIndices, sparseValues, outputShape, defaultValues) {\n if (sparseIndices.dtype !== \"int32\") {\n throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${sparseIndices.dtype}.`);\n }\n if (sparseIndices.rank > 2) {\n throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${sparseIndices.shape}.`);\n }\n const numElems = sparseIndices.rank > 0 ? sparseIndices.shape[0] : 1;\n const numDims = sparseIndices.rank > 1 ? sparseIndices.shape[1] : 1;\n if (outputShape.length !== numDims) {\n throw new Error(`outputShape has incorrect number of elements:, ${outputShape.length}, should be: ${numDims}.`);\n }\n const numValues = sparseValues.size;\n if (!(sparseValues.rank === 0 || sparseValues.rank === 1 && numValues === numElems)) {\n throw new Error(`sparseValues has incorrect shape ${sparseValues.shape}, should be [] or [${numElems}]`);\n }\n if (sparseValues.dtype !== defaultValues.dtype) {\n throw new Error(\"sparseValues.dtype must match defaultValues.dtype\");\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse_to_dense.js\nfunction sparseToDense_(sparseIndices, sparseValues, outputShape, defaultValue = 0) {\n const $sparseIndices = convertToTensor(sparseIndices, \"sparseIndices\", \"sparseToDense\", \"int32\");\n const $sparseValues = convertToTensor(sparseValues, \"sparseValues\", \"sparseToDense\", \"string_or_numeric\");\n const $defaultValue = convertToTensor(defaultValue, \"defaultValue\", \"sparseToDense\", $sparseValues.dtype);\n validateInput2($sparseIndices, $sparseValues, outputShape, $defaultValue);\n const inputs = {\n sparseIndices: $sparseIndices,\n sparseValues: $sparseValues,\n defaultValue: $defaultValue\n };\n const attrs = { outputShape };\n return ENGINE.runKernel(SparseToDense, inputs, attrs);\n}\nvar sparseToDense = op({ sparseToDense_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/gather_nd.js\nfunction gatherND_(x, indices) {\n const $indices = convertToTensor(indices, \"indices\", \"gatherND\", \"int32\");\n const $x = convertToTensor(x, \"x\", \"gatherND\", \"string_or_numeric\");\n const inputs = { params: $x, indices: $indices };\n return ENGINE.runKernel(GatherNd, inputs);\n}\nvar gatherND = op({ gatherND_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dropout_util.js\nfunction getNoiseShape(x, noiseShape) {\n if (noiseShape == null) {\n return x.shape.slice();\n }\n if (arraysEqual(x.shape, noiseShape)) {\n return noiseShape;\n }\n if (x.shape.length === noiseShape.length) {\n const newDimension = [];\n for (let i2 = 0; i2 < x.shape.length; i2++) {\n if (noiseShape[i2] == null && x.shape[i2] != null) {\n newDimension.push(x.shape[i2]);\n } else {\n newDimension.push(noiseShape[i2]);\n }\n }\n return newDimension;\n }\n return noiseShape;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/dropout.js\nfunction dropout_(x, rate, noiseShape, seed) {\n const $x = convertToTensor(x, \"x\", \"dropout\");\n assert($x.dtype === \"float32\", () => `x has to be a floating point tensor since it's going to be scaled, but got a ${$x.dtype} tensor instead.`);\n assert(rate >= 0 && rate < 1, () => `rate must be a float in the range [0, 1), but got ${rate}.`);\n if (rate === 0) {\n return x instanceof Tensor ? $x.clone() : $x;\n }\n const $noiseShape = getNoiseShape($x, noiseShape);\n const keepProb = 1 - rate;\n const multiplier = div(floor(add2(randomUniform($noiseShape, 0, 1, \"float32\", seed), keepProb)), keepProb);\n return mul($x, multiplier);\n}\nvar dropout = op({ dropout_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal_ops_util.js\nfunction enclosingPowerOfTwo(value) {\n return Math.floor(Math.pow(2, Math.ceil(Math.log(value) / Math.log(2))));\n}\nfunction cosineWindow(windowLength, a, b) {\n const even = 1 - windowLength % 2;\n const newValues = new Float32Array(windowLength);\n for (let i2 = 0; i2 < windowLength; ++i2) {\n const cosArg = 2 * Math.PI * i2 / (windowLength + even - 1);\n newValues[i2] = a - b * Math.cos(cosArg);\n }\n return tensor1d(newValues, \"float32\");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/in_top_k.js\nasync function inTopKAsync_(predictions, targets, k = 1) {\n const $predictions = convertToTensor(predictions, \"predictions\", \"inTopK\");\n const $targets = convertToTensor(targets, \"targets\", \"inTopK\");\n assert($predictions.rank > 1, () => `inTopK() expects the predictions to be of rank 2 or higher, but got ${$predictions.rank}`);\n assert($predictions.rank - 1 === $targets.rank, () => `predictions rank should be 1 larger than targets rank, but got predictions rank ${$predictions.rank} and targets rank ${$targets.rank}`);\n assertShapesMatch($predictions.shape.slice(0, $predictions.shape.length - 1), $targets.shape, `predictions's shape should be align with the targets' shape, except the last dimension.`);\n const lastDim = $predictions.shape[$predictions.shape.length - 1];\n assert(k > 0 && k <= lastDim, () => `'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${lastDim}), but got ${k}`);\n const predictionsVals = await $predictions.data();\n const targetsVals = await $targets.data();\n const [batch, size] = [predictionsVals.length / lastDim, lastDim];\n const precision3 = getTypedArrayFromDType(\"bool\", batch);\n for (let b = 0; b < batch; b++) {\n const offset = b * size;\n const vals = predictionsVals.subarray(offset, offset + size);\n const valAndInd = [];\n for (let i2 = 0; i2 < vals.length; i2++) {\n valAndInd.push({ value: vals[i2], index: i2 });\n }\n valAndInd.sort((a, b2) => b2.value - a.value);\n precision3[b] = 0;\n for (let i2 = 0; i2 < k; i2++) {\n if (valAndInd[i2].index === targetsVals[b]) {\n precision3[b] = 1;\n break;\n }\n }\n }\n if (predictions !== $predictions) {\n $predictions.dispose();\n }\n if (targets !== $targets) {\n $targets.dispose();\n }\n return tensor(precision3, $targets.shape, \"bool\");\n}\nvar inTopKAsync = inTopKAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused_ops.js\nvar fused_ops_exports = {};\n__export(fused_ops_exports, {\n conv2d: () => conv2d2,\n depthwiseConv2d: () => depthwiseConv2d2,\n matMul: () => matMul2\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv2d_backprop_filter.js\nfunction conv2DBackpropFilter_(x, dy, filterShape, strides, pad3, dataFormat = \"NHWC\", dimRoundingMode) {\n let x4D = x;\n if (x.rank === 3) {\n x4D = reshape(x, [1, x.shape[0], x.shape[1], x.shape[2]]);\n }\n let dy4D = dy;\n if (dy4D.rank === 3) {\n dy4D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in conv2dDerFilter: input must be rank 4, but got shape ${x4D.shape}.`);\n assert(dy4D.rank === 4, () => `Error in conv2dDerFilter: dy must be rank 4, but got shape ${dy4D.shape}.`);\n assert(filterShape.length === 4, () => `Error in conv2dDerFilter: filterShape must be length 4, but got ${filterShape}.`);\n const inDepth = dataFormat === \"NHWC\" ? x4D.shape[3] : x4D.shape[1];\n const outDepth = dataFormat === \"NHWC\" ? dy4D.shape[3] : dy4D.shape[1];\n assert(inDepth === filterShape[2], () => `Error in conv2dDerFilter: depth of input ${inDepth}) must match input depth in filter (${filterShape[2]}.`);\n assert(outDepth === filterShape[3], () => `Error in conv2dDerFilter: depth of dy (${outDepth}) must match output depth for filter (${filterShape[3]}).`);\n checkPadOnDimRoundingMode(\"conv2dDerFilter\", pad3, dimRoundingMode);\n const inputs = { x: x4D, dy: dy4D };\n const attrs = { strides, pad: pad3, dataFormat, dimRoundingMode, filterShape };\n return ENGINE.runKernel(Conv2DBackpropFilter, inputs, attrs);\n}\nvar conv2DBackpropFilter = op({ conv2DBackpropFilter_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused_util.js\nfunction getFusedDyActivation(dy, y, activation2) {\n if (activation2 == null || activation2 === \"linear\") {\n return dy;\n }\n if (activation2 === \"relu\") {\n return mul(dy, step(y));\n }\n throw new Error(`Cannot compute gradient for fused activation ${activation2}.`);\n}\nfunction getFusedBiasGradient(bias, dyActivation) {\n let res = dyActivation;\n const reduceAxes = getReductionAxes(bias.shape, dyActivation.shape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, bias.shape);\n}\nfunction applyActivation(x, activation2, preluActivationWeights, leakyreluAlpha) {\n if (activation2 === \"linear\") {\n return x;\n } else if (activation2 === \"relu\") {\n return relu(x);\n } else if (activation2 === \"elu\") {\n return elu(x);\n } else if (activation2 === \"relu6\") {\n return relu6(x);\n } else if (activation2 === \"prelu\") {\n return prelu(x, preluActivationWeights);\n } else if (activation2 === \"leakyrelu\") {\n return leakyRelu(x, leakyreluAlpha);\n } else if (activation2 === \"sigmoid\") {\n return sigmoid(x);\n }\n throw new Error(`Unknown fused activation ${activation2}.`);\n}\nvar shouldFuse = (gradientDepth, activation2) => {\n const gradientMode = gradientDepth > 0;\n return !gradientMode || activation2 === \"linear\";\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused/conv2d.js\nfunction fusedConv2d_({ x, filter, strides, pad: pad3, dataFormat = \"NHWC\", dilations = [1, 1], dimRoundingMode, bias, activation: activation2 = \"linear\", preluActivationWeights, leakyreluAlpha }) {\n activation2 = activation2 || \"linear\";\n if (shouldFuse(ENGINE.state.gradientDepth, activation2) === false) {\n assert(dataFormat === \"NHWC\", () => `Error in fused conv2d: got dataFormat of ${dataFormat} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);\n let result = conv2d(x, filter, strides, pad3, dataFormat, dilations, dimRoundingMode);\n if (bias != null) {\n result = add2(result, bias);\n }\n return applyActivation(result, activation2, preluActivationWeights, leakyreluAlpha);\n }\n const $x = convertToTensor(x, \"x\", \"conv2d\", \"float32\");\n const $filter = convertToTensor(filter, \"filter\", \"conv2d\", \"float32\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in fused conv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($filter.rank === 4, () => `Error in fused conv2d: filter must be rank 4, but got rank ${$filter.rank}.`);\n checkPadOnDimRoundingMode(\"fused conv2d\", pad3, dimRoundingMode);\n const inputChannels = dataFormat === \"NHWC\" ? x4D.shape[3] : x4D.shape[1];\n assert($filter.shape[2] === inputChannels, () => `Error in conv2d: depth of input (${inputChannels}) must match input depth for filter ${$filter.shape[2]}.`);\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in conv2D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad3, dimRoundingMode);\n let $bias;\n if (bias != null) {\n $bias = convertToTensor(bias, \"bias\", \"fused conv2d\");\n [$bias] = makeTypesMatch($bias, $x);\n if (dataFormat === \"NHWC\") {\n assertAndGetBroadcastShape(convInfo.outShape, $bias.shape);\n } else {\n assert($bias.shape.length <= 1, () => `Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${$bias.shape.length}.`);\n assert($bias.shape.length === 0 || $bias.shape[0] === convInfo.outChannels || $bias.shape[0] === 1, () => `Error in fused conv2d: bias shape (${$bias.shape}) is not compatible with the number of output channels (${convInfo.outChannels})`);\n }\n }\n let $preluActivationWeights;\n if (preluActivationWeights != null) {\n const alphaShape = preluActivationWeights.shape;\n assert(alphaShape.length <= 1 || alphaShape.length === 3, () => `Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${alphaShape.length}.`);\n if (alphaShape.length === 1) {\n assert(alphaShape[0] === 1 || alphaShape[0] === convInfo.outChannels, () => `Error in fused conv2d: PReLU activation weights (${alphaShape}) is not compatible with the number of output channels (${convInfo.outChannels}).`);\n } else if (alphaShape.length === 3) {\n try {\n assertAndGetBroadcastShape(alphaShape, convInfo.outShape);\n } catch (e2) {\n const errMsg = `Error in fused conv2d: PReLU activation weights (${alphaShape}) is not compatible with the output shape of the conv2d (${convInfo.outShape}).`;\n throw Error(errMsg);\n }\n }\n $preluActivationWeights = convertToTensor(preluActivationWeights, \"prelu weights\", \"fused conv2d\");\n }\n const grad2 = (dy, saved) => {\n assert(dataFormat === \"NHWC\", () => `Error in gradient of fused conv2D: got dataFormat of ${dataFormat} but only NHWC is currently supported.`);\n const [$filter2, x4D2, y, $bias2] = saved;\n const dyActivation = getFusedDyActivation(dy, y, activation2);\n assert(tupleValuesAreOne(dilations), () => `Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);\n const xDer = conv2DBackpropInput(x4D2.shape, dyActivation, $filter2, strides, pad3);\n const filterDer = conv2DBackpropFilter(x4D2, dyActivation, $filter2.shape, strides, pad3);\n const der = [xDer, filterDer];\n if ($bias2 != null) {\n const biasDer = getFusedBiasGradient($bias2, dyActivation);\n der.push(biasDer);\n }\n return der;\n };\n const inputs = {\n x: x4D,\n filter: $filter,\n bias: $bias,\n preluActivationWeights: $preluActivationWeights\n };\n const attrs = {\n strides,\n pad: pad3,\n dataFormat,\n dilations,\n dimRoundingMode,\n activation: activation2,\n leakyreluAlpha\n };\n if (bias == null) {\n const customOp = customGrad((x4D2, filter2, save) => {\n let res = ENGINE.runKernel(FusedConv2D, inputs, attrs);\n save([filter2, x4D2, res]);\n if (reshapedTo4D) {\n res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return { value: res, gradFunc: grad2 };\n });\n return customOp(x4D, $filter);\n } else {\n const customOpWithBias = customGrad((x4D2, filter2, bias2, save) => {\n let res = ENGINE.runKernel(FusedConv2D, inputs, attrs);\n save([filter2, x4D2, res, bias2]);\n if (reshapedTo4D) {\n res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return { value: res, gradFunc: grad2 };\n });\n return customOpWithBias(x4D, $filter, $bias);\n }\n}\nvar conv2d2 = op({ fusedConv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/depthwise_conv2d_native_backprop_filter.js\nfunction depthwiseConv2dNativeBackpropFilter_(x, dy, filterShape, strides, pad3, dilations = [1, 1], dimRoundingMode) {\n let x4D = x;\n if (x.rank === 3) {\n x4D = reshape(x, [1, x.shape[0], x.shape[1], x.shape[2]]);\n }\n let dy4D = dy;\n if (dy4D.rank === 3) {\n dy4D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2]]);\n }\n const inputs = { x: x4D, dy: dy4D };\n const attrs = { strides, pad: pad3, dimRoundingMode, dilations, filterShape };\n return ENGINE.runKernel(DepthwiseConv2dNativeBackpropFilter, inputs, attrs);\n}\nvar depthwiseConv2dNativeBackpropFilter = op({ depthwiseConv2dNativeBackpropFilter_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/depthwise_conv2d_native_backprop_input.js\nfunction depthwiseConv2dNativeBackpropInput_(xShape, dy, filter, strides, pad3, dilations = [1, 1], dimRoundingMode) {\n let dy4D = dy;\n let reshapedTo4D = false;\n if (dy.rank === 3) {\n reshapedTo4D = true;\n dy4D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2]]);\n }\n const inputs = { dy: dy4D, filter };\n const attrs = { strides, pad: pad3, dimRoundingMode, dilations, inputShape: xShape };\n const res = ENGINE.runKernel(DepthwiseConv2dNativeBackpropInput, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar depthwiseConv2dNativeBackpropInput = op({ depthwiseConv2dNativeBackpropInput_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused/depthwise_conv2d.js\nfunction fusedDepthwiseConv2d_({ x, filter, strides, pad: pad3, dataFormat = \"NHWC\", dilations = [1, 1], dimRoundingMode, bias, activation: activation2 = \"linear\", preluActivationWeights, leakyreluAlpha }) {\n if (shouldFuse(ENGINE.state.gradientDepth, activation2) === false) {\n let result = depthwiseConv2d(x, filter, strides, pad3, dataFormat, dilations, dimRoundingMode);\n if (bias != null) {\n result = add2(result, bias);\n }\n return applyActivation(result, activation2, preluActivationWeights, leakyreluAlpha);\n }\n const $x = convertToTensor(x, \"x\", \"depthwiseConv2d\", \"float32\");\n const $filter = convertToTensor(filter, \"filter\", \"depthwiseConv2d\", \"float32\");\n let x4D = $x;\n let reshapedTo4D = false;\n if ($x.rank === 3) {\n reshapedTo4D = true;\n x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);\n }\n assert(x4D.rank === 4, () => `Error in fused depthwiseConv2d: input must be rank 4, but got rank ${x4D.rank}.`);\n assert($filter.rank === 4, () => `Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${$filter.rank}.`);\n assert(x4D.shape[3] === $filter.shape[2], () => `Error in fused depthwiseConv2d: number of input channels (${x4D.shape[3]}) must match the inChannels dimension in filter ${$filter.shape[2]}.`);\n if (dilations == null) {\n dilations = [1, 1];\n }\n assert(eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n checkPadOnDimRoundingMode(\"fused depthwiseConv2d\", pad3, dimRoundingMode);\n const convInfo = computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad3, dimRoundingMode, true);\n let $bias;\n if (bias != null) {\n $bias = convertToTensor(bias, \"bias\", \"fused conv2d\");\n [$bias] = makeTypesMatch($bias, $x);\n assertAndGetBroadcastShape(convInfo.outShape, $bias.shape);\n }\n let $preluActivationWeights;\n if (preluActivationWeights != null) {\n $preluActivationWeights = convertToTensor(preluActivationWeights, \"prelu weights\", \"fused depthwiseConv2d\");\n }\n const grad2 = (dy, saved) => {\n assert(tupleValuesAreOne(dilations), () => `Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${dilations}'`);\n const [$filter2, x4D2, y, bias2] = saved;\n const dyActivation = getFusedDyActivation(dy, y, activation2);\n const xDer = depthwiseConv2dNativeBackpropInput(x4D2.shape, dyActivation, $filter2, strides, pad3, dilations, dimRoundingMode);\n const filterDer = depthwiseConv2dNativeBackpropFilter(x4D2, dyActivation, $filter2.shape, strides, pad3, dilations, dimRoundingMode);\n if (bias2 != null) {\n const biasDer = getFusedBiasGradient($bias, dyActivation);\n return [xDer, filterDer, biasDer];\n }\n return [xDer, filterDer];\n };\n const inputs = {\n x: x4D,\n filter: $filter,\n bias: $bias,\n preluActivationWeights: $preluActivationWeights\n };\n const attrs = {\n strides,\n pad: pad3,\n dataFormat,\n dilations,\n dimRoundingMode,\n activation: activation2,\n leakyreluAlpha\n };\n if (bias == null) {\n const customOp = customGrad((x4D2, filter2, save) => {\n let res = ENGINE.runKernel(FusedDepthwiseConv2D, inputs, attrs);\n save([filter2, x4D2, res]);\n if (reshapedTo4D) {\n res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return { value: res, gradFunc: grad2 };\n });\n return customOp(x4D, $filter);\n } else {\n const customOpWithBias = customGrad((x4D2, filter2, bias2, save) => {\n let res = ENGINE.runKernel(FusedDepthwiseConv2D, inputs, attrs);\n save([filter2, x4D2, res, bias2]);\n if (reshapedTo4D) {\n res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return { value: res, gradFunc: grad2 };\n });\n return customOpWithBias(x4D, $filter, $bias);\n }\n}\nvar depthwiseConv2d2 = op({ fusedDepthwiseConv2d_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/fused/mat_mul.js\nfunction fusedMatMul_({ a, b, transposeA = false, transposeB = false, bias, activation: activation2 = \"linear\", preluActivationWeights, leakyreluAlpha = 0.2 }) {\n if (shouldFuse(ENGINE.state.gradientDepth, activation2) === false) {\n let result = matMul(a, b, transposeA, transposeB);\n if (bias != null) {\n result = add2(result, bias);\n }\n return applyActivation(result, activation2, preluActivationWeights, leakyreluAlpha);\n }\n let $a = convertToTensor(a, \"a\", \"fused matMul\");\n let $b = convertToTensor(b, \"b\", \"fused matMul\");\n [$a, $b] = makeTypesMatch($a, $b);\n const innerShapeA = transposeA ? $a.shape[$a.rank - 2] : $a.shape[$a.rank - 1];\n const innerShapeB = transposeB ? $b.shape[$b.rank - 1] : $b.shape[$b.rank - 2];\n const outerShapeA = transposeA ? $a.shape[$a.rank - 1] : $a.shape[$a.rank - 2];\n const outerShapeB = transposeB ? $b.shape[$b.rank - 2] : $b.shape[$b.rank - 1];\n const outerDimsA = $a.shape.slice(0, -2);\n const outerDimsB = $b.shape.slice(0, -2);\n const batchDimA = sizeFromShape(outerDimsA);\n const batchDimB = sizeFromShape(outerDimsB);\n assert(innerShapeA === innerShapeB, () => `Error in fused matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${$a.shape} and ${$b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const outShapeOuterDims = assertAndGetBroadcastShape($a.shape.slice(0, -2), $b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n const a3D = transposeA ? reshape($a, [batchDimA, innerShapeA, outerShapeA]) : reshape($a, [batchDimA, outerShapeA, innerShapeA]);\n const b3D = transposeB ? reshape($b, [batchDimB, outerShapeB, innerShapeB]) : reshape($b, [batchDimB, innerShapeB, outerShapeB]);\n let $bias;\n if (bias != null) {\n $bias = convertToTensor(bias, \"bias\", \"fused matMul\");\n [$bias] = makeTypesMatch($bias, $a);\n assertAndGetBroadcastShape(outShape, $bias.shape);\n }\n let $preluActivationWeights;\n if (preluActivationWeights != null) {\n $preluActivationWeights = convertToTensor(preluActivationWeights, \"prelu weights\", \"fused matMul\");\n }\n const grad2 = (dy, saved) => {\n const [a3D2, b3D2, y, $bias2] = saved;\n const dyActivation = getFusedDyActivation(reshape(dy, y.shape), y, activation2);\n let aDer;\n let bDer;\n if (!transposeA && !transposeB) {\n aDer = matMul(dyActivation, b3D2, false, true);\n bDer = matMul(a3D2, dyActivation, true, false);\n } else if (!transposeA && transposeB) {\n aDer = matMul(dyActivation, b3D2, false, false);\n bDer = matMul(dyActivation, a3D2, true, false);\n } else if (transposeA && !transposeB) {\n aDer = matMul(b3D2, dyActivation, false, true);\n bDer = matMul(a3D2, dyActivation, false, false);\n } else {\n aDer = matMul(b3D2, dyActivation, true, true);\n bDer = matMul(dyActivation, a3D2, true, true);\n }\n if (bias != null) {\n const biasDer = getFusedBiasGradient($bias2, dyActivation);\n return [aDer, bDer, biasDer];\n } else {\n return [aDer, bDer];\n }\n };\n const inputs = {\n a: a3D,\n b: b3D,\n bias: $bias,\n preluActivationWeights: $preluActivationWeights\n };\n const attrs = { transposeA, transposeB, activation: activation2, leakyreluAlpha };\n if (bias == null) {\n const customOp = customGrad((a3D2, b3D2, save) => {\n const res = ENGINE.runKernel(_FusedMatMul, inputs, attrs);\n save([a3D2, b3D2, res]);\n return { value: reshape(res, outShape), gradFunc: grad2 };\n });\n return customOp(a3D, b3D);\n } else {\n const customOpWithBias = customGrad((a3D2, b3D2, $bias2, save) => {\n const res = ENGINE.runKernel(_FusedMatMul, inputs, attrs);\n save([a3D2, b3D2, res, $bias2]);\n return { value: reshape(res, outShape), gradFunc: grad2 };\n });\n return customOpWithBias(a3D, b3D, $bias);\n }\n}\nvar matMul2 = op({ fusedMatMul_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal/hamming_window.js\nfunction hammingWindow_(windowLength) {\n return cosineWindow(windowLength, 0.54, 0.46);\n}\nvar hammingWindow = op({ hammingWindow_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal/hann_window.js\nfunction hannWindow_(windowLength) {\n return cosineWindow(windowLength, 0.5, 0.5);\n}\nvar hannWindow = op({ hannWindow_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal/frame.js\nfunction frame_(signal2, frameLength, frameStep, padEnd = false, padValue = 0) {\n let start = 0;\n const output = [];\n while (start + frameLength <= signal2.size) {\n output.push(slice(signal2, start, frameLength));\n start += frameStep;\n }\n if (padEnd) {\n while (start < signal2.size) {\n const padLen = start + frameLength - signal2.size;\n const pad3 = concat([\n slice(signal2, start, frameLength - padLen),\n fill([padLen], padValue)\n ]);\n output.push(pad3);\n start += frameStep;\n }\n }\n if (output.length === 0) {\n return tensor2d([], [0, frameLength]);\n }\n return reshape(concat(output), [output.length, frameLength]);\n}\nvar frame = op({ frame_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/signal/stft.js\nfunction stft_(signal2, frameLength, frameStep, fftLength, windowFn = hannWindow) {\n if (fftLength == null) {\n fftLength = enclosingPowerOfTwo(frameLength);\n }\n const framedSignal = frame(signal2, frameLength, frameStep);\n const windowedSignal = mul(framedSignal, windowFn(frameLength));\n return rfft(windowedSignal, fftLength);\n}\nvar stft = op({ stft_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/crop_and_resize.js\nfunction cropAndResize_(image2, boxes, boxInd, cropSize, method = \"bilinear\", extrapolationValue = 0) {\n const $image = convertToTensor(image2, \"image\", \"cropAndResize\");\n const $boxes = convertToTensor(boxes, \"boxes\", \"cropAndResize\", \"float32\");\n const $boxInd = convertToTensor(boxInd, \"boxInd\", \"cropAndResize\", \"int32\");\n const numBoxes = $boxes.shape[0];\n assert($image.rank === 4, () => `Error in cropAndResize: image must be rank 4,but got rank ${$image.rank}.`);\n assert($boxes.rank === 2 && $boxes.shape[1] === 4, () => `Error in cropAndResize: boxes must be have size [${numBoxes},4] but had shape ${$boxes.shape}.`);\n assert($boxInd.rank === 1 && $boxInd.shape[0] === numBoxes, () => `Error in cropAndResize: boxInd must be have size [${numBoxes}] but had shape ${$boxes.shape}.`);\n assert(cropSize.length === 2, () => `Error in cropAndResize: cropSize must be of length 2, but got length ${cropSize.length}.`);\n assert(cropSize[0] >= 1 && cropSize[1] >= 1, () => `cropSize must be atleast [1,1], but was ${cropSize}`);\n assert(method === \"bilinear\" || method === \"nearest\", () => `method must be bilinear or nearest, but was ${method}`);\n const inputs = { image: $image, boxes: $boxes, boxInd: $boxInd };\n const attrs = { method, extrapolationValue, cropSize };\n const res = ENGINE.runKernel(CropAndResize, inputs, attrs);\n return res;\n}\nvar cropAndResize = op({ cropAndResize_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/flip_left_right.js\nfunction flipLeftRight_(image2) {\n const $image = convertToTensor(image2, \"image\", \"flipLeftRight\", \"float32\");\n assert($image.rank === 4, () => `Error in flipLeftRight: image must be rank 4,but got rank ${$image.rank}.`);\n const inputs = { image: $image };\n const res = ENGINE.runKernel(FlipLeftRight, inputs, {});\n return res;\n}\nvar flipLeftRight = op({ flipLeftRight_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/grayscale_to_rgb.js\nfunction grayscaleToRGB_(image2) {\n const $image = convertToTensor(image2, \"image\", \"grayscaleToRGB\");\n const lastDimsIdx = $image.rank - 1;\n const lastDims = $image.shape[lastDimsIdx];\n assert($image.rank >= 2, () => `Error in grayscaleToRGB: images must be at least rank 2, but got rank ${$image.rank}.`);\n assert(lastDims === 1, () => `Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${lastDims}.`);\n const reps = new Array($image.rank);\n reps.fill(1, 0, lastDimsIdx);\n reps[lastDimsIdx] = 3;\n return tile($image, reps);\n}\nvar grayscaleToRGB = op({ grayscaleToRGB_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/rotate_with_offset.js\nfunction rotateWithOffset_(image2, radians, fillValue = 0, center = 0.5) {\n const $image = convertToTensor(image2, \"image\", \"rotateWithOffset\", \"float32\");\n assert($image.rank === 4, () => `Error in rotateWithOffset: image must be rank 4,but got rank ${$image.rank}.`);\n const inputs = { image: $image };\n const attrs = { radians, fillValue, center };\n const res = ENGINE.runKernel(RotateWithOffset, inputs, attrs);\n return res;\n}\nvar rotateWithOffset = op({ rotateWithOffset_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/nonmax_util.js\nfunction nonMaxSuppSanityCheck(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma) {\n if (iouThreshold == null) {\n iouThreshold = 0.5;\n }\n if (scoreThreshold == null) {\n scoreThreshold = Number.NEGATIVE_INFINITY;\n }\n if (softNmsSigma == null) {\n softNmsSigma = 0;\n }\n const numBoxes = boxes.shape[0];\n maxOutputSize = Math.min(maxOutputSize, numBoxes);\n assert(0 <= iouThreshold && iouThreshold <= 1, () => `iouThreshold must be in [0, 1], but was '${iouThreshold}'`);\n assert(boxes.rank === 2, () => `boxes must be a 2D tensor, but was of rank '${boxes.rank}'`);\n assert(boxes.shape[1] === 4, () => `boxes must have 4 columns, but 2nd dimension was ${boxes.shape[1]}`);\n assert(scores.rank === 1, () => \"scores must be a 1D tensor\");\n assert(scores.shape[0] === numBoxes, () => `scores has incompatible shape with boxes. Expected ${numBoxes}, but was ${scores.shape[0]}`);\n assert(0 <= softNmsSigma && softNmsSigma <= 1, () => `softNmsSigma must be in [0, 1], but was '${softNmsSigma}'`);\n return { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression.js\nfunction nonMaxSuppression_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppression\", \"float32\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppression\", \"float32\");\n const inputs = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold);\n maxOutputSize = inputs.maxOutputSize;\n iouThreshold = inputs.iouThreshold;\n scoreThreshold = inputs.scoreThreshold;\n const attrs = { maxOutputSize, iouThreshold, scoreThreshold };\n return ENGINE.runKernel(NonMaxSuppressionV3, { boxes: $boxes, scores: $scores }, attrs);\n}\nvar nonMaxSuppression = op({ nonMaxSuppression_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/non_max_suppression_util.js\nfunction binaryInsert(arr, element, comparator) {\n const index = binarySearch(arr, element, comparator);\n const insertionPoint = index < 0 ? -(index + 1) : index;\n arr.splice(insertionPoint, 0, element);\n}\nfunction binarySearch(arr, target, comparator) {\n return binarySearch_(arr, target, comparator || defaultComparator);\n}\nfunction defaultComparator(a, b) {\n return a > b ? 1 : a < b ? -1 : 0;\n}\nfunction binarySearch_(arr, target, comparator) {\n let left = 0;\n let right = arr.length;\n let middle = 0;\n let found = false;\n while (left < right) {\n middle = left + (right - left >>> 1);\n const compareResult = comparator(target, arr[middle]);\n if (compareResult > 0) {\n left = middle + 1;\n } else {\n right = middle;\n found = !compareResult;\n }\n }\n return found ? left : -left - 1;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/non_max_suppression_impl.js\nfunction nonMaxSuppressionV3Impl(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold) {\n return nonMaxSuppressionImpl_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, 0);\n}\nfunction nonMaxSuppressionV4Impl(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize) {\n return nonMaxSuppressionImpl_(\n boxes,\n scores,\n maxOutputSize,\n iouThreshold,\n scoreThreshold,\n 0,\n false,\n padToMaxOutputSize,\n true\n );\n}\nfunction nonMaxSuppressionV5Impl(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma) {\n return nonMaxSuppressionImpl_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma, true);\n}\nfunction nonMaxSuppressionImpl_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma, returnScoresTensor = false, padToMaxOutputSize = false, returnValidOutputs = false) {\n const candidates = [];\n for (let i2 = 0; i2 < scores.length; i2++) {\n if (scores[i2] > scoreThreshold) {\n candidates.push({ score: scores[i2], boxIndex: i2, suppressBeginIndex: 0 });\n }\n }\n candidates.sort(ascendingComparator);\n const scale2 = softNmsSigma > 0 ? -0.5 / softNmsSigma : 0;\n const selectedIndices = [];\n const selectedScores = [];\n while (selectedIndices.length < maxOutputSize && candidates.length > 0) {\n const candidate = candidates.pop();\n const { score: originalScore, boxIndex, suppressBeginIndex } = candidate;\n if (originalScore < scoreThreshold) {\n break;\n }\n let ignoreCandidate = false;\n for (let j = selectedIndices.length - 1; j >= suppressBeginIndex; --j) {\n const iou = intersectionOverUnion(boxes, boxIndex, selectedIndices[j]);\n if (iou >= iouThreshold) {\n ignoreCandidate = true;\n break;\n }\n candidate.score = candidate.score * suppressWeight(iouThreshold, scale2, iou);\n if (candidate.score <= scoreThreshold) {\n break;\n }\n }\n candidate.suppressBeginIndex = selectedIndices.length;\n if (!ignoreCandidate) {\n if (candidate.score === originalScore) {\n selectedIndices.push(boxIndex);\n selectedScores.push(candidate.score);\n } else if (candidate.score > scoreThreshold) {\n binaryInsert(candidates, candidate, ascendingComparator);\n }\n }\n }\n const validOutputs = selectedIndices.length;\n const elemsToPad = maxOutputSize - validOutputs;\n if (padToMaxOutputSize && elemsToPad > 0) {\n selectedIndices.push(...new Array(elemsToPad).fill(0));\n selectedScores.push(...new Array(elemsToPad).fill(0));\n }\n const result = { selectedIndices };\n if (returnScoresTensor) {\n result[\"selectedScores\"] = selectedScores;\n }\n if (returnValidOutputs) {\n result[\"validOutputs\"] = validOutputs;\n }\n return result;\n}\nfunction intersectionOverUnion(boxes, i2, j) {\n const iCoord = boxes.subarray(i2 * 4, i2 * 4 + 4);\n const jCoord = boxes.subarray(j * 4, j * 4 + 4);\n const yminI = Math.min(iCoord[0], iCoord[2]);\n const xminI = Math.min(iCoord[1], iCoord[3]);\n const ymaxI = Math.max(iCoord[0], iCoord[2]);\n const xmaxI = Math.max(iCoord[1], iCoord[3]);\n const yminJ = Math.min(jCoord[0], jCoord[2]);\n const xminJ = Math.min(jCoord[1], jCoord[3]);\n const ymaxJ = Math.max(jCoord[0], jCoord[2]);\n const xmaxJ = Math.max(jCoord[1], jCoord[3]);\n const areaI = (ymaxI - yminI) * (xmaxI - xminI);\n const areaJ = (ymaxJ - yminJ) * (xmaxJ - xminJ);\n if (areaI <= 0 || areaJ <= 0) {\n return 0;\n }\n const intersectionYmin = Math.max(yminI, yminJ);\n const intersectionXmin = Math.max(xminI, xminJ);\n const intersectionYmax = Math.min(ymaxI, ymaxJ);\n const intersectionXmax = Math.min(xmaxI, xmaxJ);\n const intersectionArea = Math.max(intersectionYmax - intersectionYmin, 0) * Math.max(intersectionXmax - intersectionXmin, 0);\n return intersectionArea / (areaI + areaJ - intersectionArea);\n}\nfunction suppressWeight(iouThreshold, scale2, iou) {\n const weight = Math.exp(scale2 * iou * iou);\n return iou <= iouThreshold ? weight : 0;\n}\nfunction ascendingComparator(c1, c2) {\n return c1.score - c2.score || c1.score === c2.score && c2.boxIndex - c1.boxIndex;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_async.js\nasync function nonMaxSuppressionAsync_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppressionAsync\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppressionAsync\");\n const inputs = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold);\n maxOutputSize = inputs.maxOutputSize;\n iouThreshold = inputs.iouThreshold;\n scoreThreshold = inputs.scoreThreshold;\n const boxesAndScores = await Promise.all([$boxes.data(), $scores.data()]);\n const boxesVals = boxesAndScores[0];\n const scoresVals = boxesAndScores[1];\n const { selectedIndices } = nonMaxSuppressionV3Impl(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold);\n if ($boxes !== boxes) {\n $boxes.dispose();\n }\n if ($scores !== scores) {\n $scores.dispose();\n }\n return tensor1d(selectedIndices, \"int32\");\n}\nvar nonMaxSuppressionAsync = nonMaxSuppressionAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_with_score.js\nfunction nonMaxSuppressionWithScore_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY, softNmsSigma = 0) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppression\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppression\");\n const params = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n maxOutputSize = params.maxOutputSize;\n iouThreshold = params.iouThreshold;\n scoreThreshold = params.scoreThreshold;\n softNmsSigma = params.softNmsSigma;\n const inputs = { boxes: $boxes, scores: $scores };\n const attrs = { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma };\n const result = ENGINE.runKernel(NonMaxSuppressionV5, inputs, attrs);\n return { selectedIndices: result[0], selectedScores: result[1] };\n}\nvar nonMaxSuppressionWithScore = op({ nonMaxSuppressionWithScore_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_with_score_async.js\nasync function nonMaxSuppressionWithScoreAsync_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY, softNmsSigma = 0) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppressionAsync\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppressionAsync\");\n const params = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n maxOutputSize = params.maxOutputSize;\n iouThreshold = params.iouThreshold;\n scoreThreshold = params.scoreThreshold;\n softNmsSigma = params.softNmsSigma;\n const boxesAndScores = await Promise.all([$boxes.data(), $scores.data()]);\n const boxesVals = boxesAndScores[0];\n const scoresVals = boxesAndScores[1];\n const { selectedIndices, selectedScores } = nonMaxSuppressionV5Impl(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n if ($boxes !== boxes) {\n $boxes.dispose();\n }\n if ($scores !== scores) {\n $scores.dispose();\n }\n return {\n selectedIndices: tensor1d(selectedIndices, \"int32\"),\n selectedScores: tensor1d(selectedScores)\n };\n}\nvar nonMaxSuppressionWithScoreAsync = nonMaxSuppressionWithScoreAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_padded.js\nfunction nonMaxSuppressionPadded_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY, padToMaxOutputSize = false) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppression\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppression\");\n const params = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, null);\n const $maxOutputSize = params.maxOutputSize;\n const $iouThreshold = params.iouThreshold;\n const $scoreThreshold = params.scoreThreshold;\n const inputs = { boxes: $boxes, scores: $scores };\n const attrs = {\n maxOutputSize: $maxOutputSize,\n iouThreshold: $iouThreshold,\n scoreThreshold: $scoreThreshold,\n padToMaxOutputSize\n };\n const result = ENGINE.runKernel(NonMaxSuppressionV4, inputs, attrs);\n return { selectedIndices: result[0], validOutputs: result[1] };\n}\nvar nonMaxSuppressionPadded = op({ nonMaxSuppressionPadded_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/non_max_suppression_padded_async.js\nasync function nonMaxSuppressionPaddedAsync_(boxes, scores, maxOutputSize, iouThreshold = 0.5, scoreThreshold = Number.NEGATIVE_INFINITY, padToMaxOutputSize = false) {\n const $boxes = convertToTensor(boxes, \"boxes\", \"nonMaxSuppressionAsync\");\n const $scores = convertToTensor(scores, \"scores\", \"nonMaxSuppressionAsync\");\n const params = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, null);\n const $maxOutputSize = params.maxOutputSize;\n const $iouThreshold = params.iouThreshold;\n const $scoreThreshold = params.scoreThreshold;\n const [boxesVals, scoresVals] = await Promise.all([$boxes.data(), $scores.data()]);\n const { selectedIndices, validOutputs } = nonMaxSuppressionV4Impl(boxesVals, scoresVals, $maxOutputSize, $iouThreshold, $scoreThreshold, padToMaxOutputSize);\n if ($boxes !== boxes) {\n $boxes.dispose();\n }\n if ($scores !== scores) {\n $scores.dispose();\n }\n return {\n selectedIndices: tensor1d(selectedIndices, \"int32\"),\n validOutputs: scalar(validOutputs, \"int32\")\n };\n}\nvar nonMaxSuppressionPaddedAsync = nonMaxSuppressionPaddedAsync_;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/resize_bilinear.js\nfunction resizeBilinear_(images, size, alignCorners = false, halfPixelCenters = false) {\n const $images = convertToTensor(images, \"images\", \"resizeBilinear\");\n assert($images.rank === 3 || $images.rank === 4, () => `Error in resizeBilinear: x must be rank 3 or 4, but got rank ${$images.rank}.`);\n assert(size.length === 2, () => `Error in resizeBilinear: new shape must 2D, but got shape ${size}.`);\n assert(halfPixelCenters === false || alignCorners === false, () => `Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.`);\n let batchImages = $images;\n let reshapedTo4D = false;\n if ($images.rank === 3) {\n reshapedTo4D = true;\n batchImages = reshape($images, [1, $images.shape[0], $images.shape[1], $images.shape[2]]);\n }\n const [] = size;\n const inputs = { images: batchImages };\n const attrs = { alignCorners, halfPixelCenters, size };\n const res = ENGINE.runKernel(ResizeBilinear, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar resizeBilinear = op({ resizeBilinear_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/resize_nearest_neighbor.js\nfunction resizeNearestNeighbor_(images, size, alignCorners = false, halfPixelCenters = false) {\n const $images = convertToTensor(images, \"images\", \"resizeNearestNeighbor\");\n assert($images.rank === 3 || $images.rank === 4, () => `Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${$images.rank}.`);\n assert(size.length === 2, () => `Error in resizeNearestNeighbor: new shape must 2D, but got shape ${size}.`);\n assert($images.dtype === \"float32\" || $images.dtype === \"int32\", () => \"`images` must have `int32` or `float32` as dtype\");\n assert(halfPixelCenters === false || alignCorners === false, () => `Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.`);\n let batchImages = $images;\n let reshapedTo4D = false;\n if ($images.rank === 3) {\n reshapedTo4D = true;\n batchImages = reshape($images, [1, $images.shape[0], $images.shape[1], $images.shape[2]]);\n }\n const [] = size;\n const inputs = { images: batchImages };\n const attrs = { alignCorners, halfPixelCenters, size };\n const res = ENGINE.runKernel(ResizeNearestNeighbor, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar resizeNearestNeighbor = op({ resizeNearestNeighbor_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/threshold.js\nfunction threshold_(image2, method = \"binary\", inverted = false, threshValue = 0.5) {\n const $image = convertToTensor(image2, \"image\", \"threshold\");\n const RED_INTENCITY_COEF = 0.2989;\n const GREEN_INTENCITY_COEF = 0.587;\n const BLUE_INTENCITY_COEF = 0.114;\n const totalPixelsInImage = $image.shape[0] * $image.shape[1];\n let $threshold = mul(tensor1d([threshValue]), 255);\n let r2, g, b, grayscale;\n assert($image.rank === 3, () => `Error in threshold: image must be rank 3,but got rank ${$image.rank}.`);\n assert($image.shape[2] === 3 || $image.shape[2] === 1, () => `Error in threshold: image color channel must be equal to 3 or 1but got ${$image.shape[2]}.`);\n assert($image.dtype === \"int32\" || $image.dtype === \"float32\", () => `Error in dtype: image dtype must be int32 or float32,but got dtype ${$image.dtype}.`);\n assert(method === \"otsu\" || method === \"binary\", () => `Method must be binary or otsu, but was ${method}`);\n if ($image.shape[2] === 3) {\n [r2, g, b] = split($image, [1, 1, 1], -1);\n const $r = mul(r2, RED_INTENCITY_COEF);\n const $g = mul(g, GREEN_INTENCITY_COEF);\n const $b = mul(b, BLUE_INTENCITY_COEF);\n grayscale = add2(add2($r, $g), $b);\n } else {\n grayscale = image2;\n }\n if (method === \"otsu\") {\n const $histogram = bincount(cast(round2(grayscale), \"int32\"), tensor([]), 256);\n $threshold = otsu($histogram, totalPixelsInImage);\n }\n const invCondition = inverted ? lessEqual(grayscale, $threshold) : greater(grayscale, $threshold);\n const result = cast(mul(invCondition, 255), \"int32\");\n return result;\n}\nfunction otsu(histogram, total) {\n let bestThresh = tensor1d([-1]);\n let bestInBetVar = tensor1d([0]);\n let cInBetVar = tensor1d([0]);\n let classFirst, classSecond, meanFirst, meanSec, weightForeground, weightBack;\n for (let index = 0; index < histogram.size - 1; index++) {\n classFirst = slice(histogram, 0, index + 1);\n classSecond = slice(histogram, index + 1);\n weightForeground = div(sum2(classFirst), total);\n weightBack = div(sum2(classSecond), total);\n const meanFirstDivA = sum2(mul(classFirst, range(0, classFirst.size)));\n meanFirst = div(meanFirstDivA, sum2(classFirst));\n const meanSecFill = fill(classSecond.shape, classFirst.size);\n const meanSecAdd = add2(range(0, classSecond.size), meanSecFill);\n const meanSecMul = mul(classSecond, meanSecAdd);\n meanSec = div(sum2(meanSecMul), sum2(classSecond));\n const cInBetVarSubA = sub(meanFirst, meanSec);\n const cInBetVarSubB = sub(meanFirst, meanSec);\n const cInBetVarMul = mul(weightForeground, weightBack);\n cInBetVar = mul(mul(cInBetVarMul, cInBetVarSubA), cInBetVarSubB);\n const condition = greater(cInBetVar, bestInBetVar);\n bestInBetVar = where(condition, cInBetVar, bestInBetVar);\n bestThresh = where(condition, tensor1d([index]), bestThresh);\n }\n return bestThresh;\n}\nvar threshold = op({ threshold_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/image/transform.js\nfunction transform_(image2, transforms, interpolation = \"nearest\", fillMode = \"constant\", fillValue = 0, outputShape) {\n const $image = convertToTensor(image2, \"image\", \"transform\", \"float32\");\n const $transforms = convertToTensor(transforms, \"transforms\", \"transform\", \"float32\");\n assert($image.rank === 4, () => `Error in transform: image must be rank 4,but got rank ${$image.rank}.`);\n assert($transforms.rank === 2 && ($transforms.shape[0] === $image.shape[0] || $transforms.shape[0] === 1) && $transforms.shape[1] === 8, () => `Error in transform: Input transform should be batch x 8 or 1 x 8`);\n assert(outputShape == null || outputShape.length === 2, () => `Error in transform: outputShape must be [height, width] or null, but got ${outputShape}.`);\n const inputs = { image: $image, transforms: $transforms };\n const attrs = { interpolation, fillMode, fillValue, outputShape };\n return ENGINE.runKernel(Transform, inputs, attrs);\n}\nvar transform = op({ transform_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/linalg/band_part.js\nfunction bandPart_(a, numLower, numUpper) {\n assert(numLower % 1 === 0, () => `bandPart(): numLower must be an integer, got ${numLower}.`);\n assert(numUpper % 1 === 0, () => `bandPart(): numUpper must be an integer, got ${numUpper}.`);\n const $a = convertToTensor(a, \"a\", \"bandPart\");\n assert($a.rank >= 2, () => `bandPart(): Rank must be at least 2, got ${$a.rank}.`);\n const shape = $a.shape;\n const [M, N] = $a.shape.slice(-2);\n if (!(numLower <= M)) {\n throw new Error(`bandPart(): numLower (${numLower}) must not be greater than the number of rows (${M}).`);\n }\n if (!(numUpper <= N)) {\n throw new Error(`bandPart(): numUpper (${numUpper}) must not be greater than the number of columns (${N}).`);\n }\n if (numLower < 0) {\n numLower = M;\n }\n if (numUpper < 0) {\n numUpper = N;\n }\n const i2 = reshape(range(0, M, 1, \"int32\"), [-1, 1]);\n const j = range(0, N, 1, \"int32\");\n const ij = sub(i2, j);\n const inBand = logicalAnd(lessEqual(ij, scalar(+numLower, \"int32\")), greaterEqual(ij, scalar(-numUpper, \"int32\")));\n const zero = zeros([M, N], $a.dtype);\n return reshape(stack(unstack(reshape($a, [-1, M, N])).map((mat) => where(inBand, mat, zero))), shape);\n}\nvar bandPart = op({ bandPart_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/linalg/gram_schmidt.js\nfunction gramSchmidt_(xs) {\n let inputIsTensor2D;\n if (Array.isArray(xs)) {\n inputIsTensor2D = false;\n assert(xs != null && xs.length > 0, () => \"Gram-Schmidt process: input must not be null, undefined, or empty\");\n const dim = xs[0].shape[0];\n for (let i2 = 1; i2 < xs.length; ++i2) {\n assert(xs[i2].shape[0] === dim, () => `Gram-Schmidt: Non-unique lengths found in the input vectors: (${xs[i2].shape[0]} vs. ${dim})`);\n }\n } else {\n inputIsTensor2D = true;\n xs = split(xs, xs.shape[0], 0).map((x) => squeeze(x, [0]));\n }\n assert(xs.length <= xs[0].shape[0], () => `Gram-Schmidt: Number of vectors (${xs.length}) exceeds number of dimensions (${xs[0].shape[0]}).`);\n const ys = [];\n const xs1d = xs;\n for (let i2 = 0; i2 < xs.length; ++i2) {\n ys.push(ENGINE.tidy(() => {\n let x = xs1d[i2];\n if (i2 > 0) {\n for (let j = 0; j < i2; ++j) {\n const proj = mul(sum2(mul(ys[j], x)), ys[j]);\n x = sub(x, proj);\n }\n }\n return div(x, norm(x, \"euclidean\"));\n }));\n }\n if (inputIsTensor2D) {\n return stack(ys, 0);\n } else {\n return ys;\n }\n}\nvar gramSchmidt = op({ gramSchmidt_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/linalg/qr.js\nfunction qr_(x, fullMatrices = false) {\n assert(x.rank >= 2, () => `qr() requires input tensor to have a rank >= 2, but got rank ${x.rank}`);\n if (x.rank === 2) {\n return qr2d(x, fullMatrices);\n } else {\n const outerDimsProd = x.shape.slice(0, x.shape.length - 2).reduce((value, prev) => value * prev);\n const x2ds = unstack(reshape(x, [\n outerDimsProd,\n x.shape[x.shape.length - 2],\n x.shape[x.shape.length - 1]\n ]), 0);\n const q2ds = [];\n const r2ds = [];\n x2ds.forEach((x2d) => {\n const [q2d, r2d] = qr2d(x2d, fullMatrices);\n q2ds.push(q2d);\n r2ds.push(r2d);\n });\n const q = reshape(stack(q2ds, 0), x.shape);\n const r2 = reshape(stack(r2ds, 0), x.shape);\n return [q, r2];\n }\n}\nfunction qr2d(x, fullMatrices = false) {\n return ENGINE.tidy(() => {\n assert(x.shape.length === 2, () => `qr2d() requires a 2D Tensor, but got a ${x.shape.length}D Tensor.`);\n const m = x.shape[0];\n const n2 = x.shape[1];\n let q = eye(m);\n let r2 = clone(x);\n const one2D = tensor2d([[1]], [1, 1]);\n let w = clone(one2D);\n const iters = m >= n2 ? n2 : m;\n for (let j = 0; j < iters; ++j) {\n const rTemp = r2;\n const wTemp = w;\n const qTemp = q;\n [w, r2, q] = ENGINE.tidy(() => {\n const rjEnd1 = slice(r2, [j, j], [m - j, 1]);\n const normX = norm(rjEnd1);\n const rjj = slice(r2, [j, j], [1, 1]);\n const s2 = where(greater(rjj, 0), tensor2d([[-1]]), tensor2d([[1]]));\n const u1 = sub(rjj, mul(s2, normX));\n const wPre = div(rjEnd1, u1);\n if (wPre.shape[0] === 1) {\n w = clone(one2D);\n } else {\n w = concat([\n one2D,\n slice(wPre, [1, 0], [wPre.shape[0] - 1, wPre.shape[1]])\n ], 0);\n }\n const tau = neg(div(matMul(s2, u1), normX));\n const rjEndAll = slice(r2, [j, 0], [m - j, n2]);\n const tauTimesW = mul(tau, w);\n const wT = transpose(w);\n if (j === 0) {\n r2 = sub(rjEndAll, matMul(tauTimesW, matMul(wT, rjEndAll)));\n } else {\n const rTimesTau = sub(rjEndAll, matMul(tauTimesW, matMul(wT, rjEndAll)));\n r2 = concat([slice(r2, [0, 0], [j, n2]), rTimesTau], 0);\n }\n const tawTimesWT = transpose(tauTimesW);\n const qAllJEnd = slice(q, [0, j], [m, q.shape[1] - j]);\n if (j === 0) {\n q = sub(qAllJEnd, matMul(matMul(qAllJEnd, w), tawTimesWT));\n } else {\n const qTimesTau = sub(qAllJEnd, matMul(matMul(qAllJEnd, w), tawTimesWT));\n q = concat([slice(q, [0, 0], [m, j]), qTimesTau], 1);\n }\n return [w, r2, q];\n });\n dispose([rTemp, wTemp, qTemp]);\n }\n if (!fullMatrices && m > n2) {\n q = slice(q, [0, 0], [m, n2]);\n r2 = slice(r2, [0, 0], [n2, n2]);\n }\n return [q, r2];\n });\n}\nvar qr = op({ qr_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/loss_ops_utils.js\nvar Reduction;\n(function(Reduction2) {\n Reduction2[Reduction2[\"NONE\"] = 0] = \"NONE\";\n Reduction2[Reduction2[\"MEAN\"] = 1] = \"MEAN\";\n Reduction2[Reduction2[\"SUM\"] = 2] = \"SUM\";\n Reduction2[Reduction2[\"SUM_BY_NONZERO_WEIGHTS\"] = 3] = \"SUM_BY_NONZERO_WEIGHTS\";\n})(Reduction || (Reduction = {}));\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/compute_weighted_loss.js\nfunction computeWeightedLoss_(losses2, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $losses = convertToTensor(losses2, \"losses\", \"computeWeightedLoss\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"computeWeightedLoss\");\n }\n const weightedLoss = $weights == null ? $losses : mul($losses, $weights);\n if (reduction === Reduction.NONE) {\n return weightedLoss;\n }\n if (reduction === Reduction.SUM) {\n return sum2(weightedLoss);\n }\n if (reduction === Reduction.MEAN) {\n if ($weights == null) {\n return mean(weightedLoss);\n } else {\n const broadcastFactor = $losses.size / $weights.size;\n const result = div(sum2(weightedLoss), sum2($weights));\n return broadcastFactor > 1 ? div(result, scalar(broadcastFactor)) : result;\n }\n }\n if (reduction === Reduction.SUM_BY_NONZERO_WEIGHTS) {\n if ($weights == null) {\n return div(sum2(weightedLoss), scalar($losses.size));\n } else {\n const broadcastedWeights = mul($weights, ones2($losses.shape));\n const numNonZeros = cast(sum2(notEqual(broadcastedWeights, scalar(0))), \"float32\");\n return div(sum2(weightedLoss), numNonZeros);\n }\n }\n throw Error(`Unknown reduction: ${reduction}`);\n}\nvar computeWeightedLoss = op({ computeWeightedLoss_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/absolute_difference.js\nfunction absoluteDifference_(labels, predictions, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"absoluteDifference\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"absoluteDifference\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"absoluteDifference\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in absoluteDifference: \");\n const losses2 = abs(sub($labels, $predictions));\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar absoluteDifference = op({ absoluteDifference_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/cosine_distance.js\nfunction cosineDistance_(labels, predictions, axis, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"cosineDistance\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"cosineDistance\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"cosineDistance\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in cosineDistance: \");\n const one = scalar(1);\n const losses2 = sub(one, sum2(mul($labels, $predictions), axis, true));\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar cosineDistance = op({ cosineDistance_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/hinge_loss.js\nfunction hingeLoss_(labels, predictions, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n let $labels = convertToTensor(labels, \"labels\", \"hingeLoss\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"hingeLoss\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"hingeLoss\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in hingeLoss: \");\n const one = scalar(1);\n $labels = sub(mul(scalar(2), $labels), one);\n const losses2 = relu(sub(one, mul($labels, $predictions)));\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar hingeLoss = op({ hingeLoss_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/huber_loss.js\nfunction huberLoss_(labels, predictions, weights, delta = 1, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"huberLoss\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"huberLoss\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"huberLoss\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in huberLoss: \");\n const deltaScalar = scalar(delta);\n const error = abs(sub($predictions, $labels));\n const quadratic = minimum(error, deltaScalar);\n const linear = sub(error, quadratic);\n const losses2 = add2(mul(scalar(0.5), square(quadratic)), mul(deltaScalar, linear));\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar huberLoss = op({ huberLoss_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/log_loss.js\nfunction logLoss_(labels, predictions, weights, epsilon3 = 1e-7, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"logLoss\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"logLoss\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"logLoss\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in logLoss: \");\n const one = scalar(1);\n const epsilonScalar = scalar(epsilon3);\n const l13 = neg(mul($labels, log2(add2($predictions, epsilonScalar))));\n const l23 = mul(sub(one, $labels), log2(add2(sub(one, $predictions), epsilonScalar)));\n const losses2 = sub(l13, l23);\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar logLoss = op({ logLoss_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/mean_squared_error.js\nfunction meanSquaredError_(labels, predictions, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n const $labels = convertToTensor(labels, \"labels\", \"meanSquaredError\");\n const $predictions = convertToTensor(predictions, \"predictions\", \"meanSquaredError\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"meanSquaredError\");\n }\n assertShapesMatch($labels.shape, $predictions.shape, \"Error in meanSquaredError: \");\n const losses2 = squaredDifference($labels, $predictions);\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar meanSquaredError = op({ meanSquaredError_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/sigmoid_cross_entropy.js\nfunction sigmoidCrossEntropyWithLogits_(labels, logits) {\n const $labels = convertToTensor(labels, \"labels\", \"sigmoidCrossEntropyWithLogits\");\n const $logits = convertToTensor(logits, \"logits\", \"sigmoidCrossEntropyWithLogits\");\n assertShapesMatch($labels.shape, $logits.shape, \"Error in sigmoidCrossEntropyWithLogits: \");\n const maxOutput = relu($logits);\n const outputXTarget = mul($logits, $labels);\n const sigmoidOutput = log1p(exp(neg(abs($logits))));\n return add2(sub(maxOutput, outputXTarget), sigmoidOutput);\n}\nfunction sigmoidCrossEntropy_(multiClassLabels, logits, weights, labelSmoothing = 0, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n let $multiClassLabels = convertToTensor(multiClassLabels, \"multiClassLabels\", \"sigmoidCrossEntropy\");\n const $logits = convertToTensor(logits, \"logits\", \"sigmoidCrossEntropy\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"sigmoidCrossEntropy\");\n }\n assertShapesMatch($multiClassLabels.shape, $logits.shape, \"Error in sigmoidCrossEntropy: \");\n if (labelSmoothing > 0) {\n const labelSmoothingScalar = scalar(labelSmoothing);\n const one = scalar(1);\n const half = scalar(0.5);\n $multiClassLabels = add2(mul($multiClassLabels, sub(one, labelSmoothingScalar)), mul(half, labelSmoothingScalar));\n }\n const losses2 = sigmoidCrossEntropyWithLogits_($multiClassLabels, $logits);\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar sigmoidCrossEntropy = op({ sigmoidCrossEntropy_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/losses/softmax_cross_entropy.js\nfunction softmaxCrossEntropyWithLogits_(labels, logits, dim = -1) {\n if (dim === -1) {\n dim = logits.rank - 1;\n }\n if (dim !== logits.rank - 1) {\n throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${logits.rank} and dim was ${dim}`);\n }\n const customOp = customGrad((labels2, logits2, save) => {\n const keepDims = true;\n const lse = logSumExp(logits2, [dim], keepDims);\n const logResult = sub(cast(logits2, \"float32\"), lse);\n save([labels2, logResult]);\n const costVector = neg(mul(logResult, labels2));\n const value = sum2(costVector, [dim]);\n const gradFunc = (dy, saved) => {\n const [labels3, logResult2] = saved;\n const dyShape = expandShapeToKeepDim(dy.shape, [dim]);\n return [\n mul(reshape(dy, dyShape), sub(cast(labels3, \"float32\"), exp(logResult2))),\n mul(reshape(dy, dyShape), sub(exp(logResult2), cast(labels3, \"float32\")))\n ];\n };\n return { value, gradFunc };\n });\n return customOp(labels, logits);\n}\nfunction softmaxCrossEntropy_(onehotLabels, logits, weights, labelSmoothing = 0, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) {\n let $onehotLabels = convertToTensor(onehotLabels, \"onehotLabels\", \"softmaxCrossEntropy\");\n const $logits = convertToTensor(logits, \"logits\", \"softmaxCrossEntropy\");\n let $weights = null;\n if (weights != null) {\n $weights = convertToTensor(weights, \"weights\", \"softmaxCrossEntropy\");\n }\n assertShapesMatch($onehotLabels.shape, $logits.shape, \"Error in softmaxCrossEntropy: \");\n if (labelSmoothing > 0) {\n const labelSmoothingScalar = scalar(labelSmoothing);\n const one = scalar(1);\n const numClasses = scalar($onehotLabels.shape[1]);\n $onehotLabels = add2(mul($onehotLabels, sub(one, labelSmoothingScalar)), div(labelSmoothingScalar, numClasses));\n }\n const losses2 = softmaxCrossEntropyWithLogits_($onehotLabels, $logits);\n return computeWeightedLoss(losses2, $weights, reduction);\n}\nvar softmaxCrossEntropy = op({ softmaxCrossEntropy_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_fill_empty_rows.js\nfunction sparseFillEmptyRows_(indices, values, denseShape, defaultValue) {\n const $indices = convertToTensor(indices, \"indices\", \"sparseFillEmptyRows\", \"int32\");\n const $values = convertToTensor(values, \"values\", \"sparseFillEmptyRows\");\n const $denseShape = convertToTensor(denseShape, \"denseShape\", \"sparseFillEmptyRows\", \"int32\");\n const $defaultValue = convertToTensor(defaultValue, \"defaultValue\", \"sparseFillEmptyRows\", $values.dtype);\n if ($indices.rank !== 2) {\n throw new Error(`Indices should be Tensor2D but received shape\n ${$indices.shape}`);\n }\n if ($values.rank !== 1) {\n throw new Error(`Values should be Tensor1D but received shape ${$values.shape}`);\n }\n if ($denseShape.rank !== 1) {\n throw new Error(`Dense shape should be Tensor1D but received shape ${$denseShape.shape}`);\n }\n if ($defaultValue.rank !== 0) {\n throw new Error(`Default value should be a scalar but received shape ${$defaultValue.shape}`);\n }\n const inputs = {\n indices: $indices,\n values: $values,\n denseShape: $denseShape,\n defaultValue: $defaultValue\n };\n const result = ENGINE.runKernel(SparseFillEmptyRows, inputs);\n return {\n outputIndices: result[0],\n outputValues: result[1],\n emptyRowIndicator: result[2],\n reverseIndexMap: result[3]\n };\n}\nvar sparseFillEmptyRows = op({ sparseFillEmptyRows_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_reshape.js\nfunction sparseReshape_(inputIndices, inputShape, newShape) {\n const $inputIndices = convertToTensor(inputIndices, \"inputIndices\", \"sparseReshape\", \"int32\");\n const $inputShape = convertToTensor(inputShape, \"inputShape\", \"sparseReshape\", \"int32\");\n const $newShape = convertToTensor(newShape, \"newShape\", \"sparseReshape\", \"int32\");\n if ($inputIndices.rank !== 2) {\n throw new Error(`Input indices should be Tensor2D but received shape\n ${$inputIndices.shape}`);\n }\n if ($inputShape.rank !== 1) {\n throw new Error(`Input shape should be Tensor1D but received shape ${$inputShape.shape}`);\n }\n if ($newShape.rank !== 1) {\n throw new Error(`New shape should be Tensor1D but received shape ${$newShape.shape}`);\n }\n const inputs = {\n inputIndices: $inputIndices,\n inputShape: $inputShape,\n newShape: $newShape\n };\n const result = ENGINE.runKernel(SparseReshape, inputs);\n return { outputIndices: result[0], outputShape: result[1] };\n}\nvar sparseReshape = op({ sparseReshape_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_segment_mean.js\nfunction sparseSegmentMean_(data, indices, segmentIds) {\n const $data = convertToTensor(data, \"data\", \"sparseSegmentMean\");\n const $indices = convertToTensor(indices, \"indices\", \"sparseSegmentMean\", \"int32\");\n const $segmentIds = convertToTensor(segmentIds, \"segmentIds\", \"sparseSegmentMean\", \"int32\");\n if ($data.rank < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if ($indices.rank !== 1) {\n throw new Error(`Indices should be Tensor1D but received shape\n ${$indices.shape}`);\n }\n if ($segmentIds.rank !== 1) {\n throw new Error(`Segment ids should be Tensor1D but received shape\n ${$segmentIds.shape}`);\n }\n const inputs = {\n data: $data,\n indices: $indices,\n segmentIds: $segmentIds\n };\n return ENGINE.runKernel(SparseSegmentMean, inputs);\n}\nvar sparseSegmentMean = op({ sparseSegmentMean_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_segment_sum.js\nfunction sparseSegmentSum_(data, indices, segmentIds) {\n const $data = convertToTensor(data, \"data\", \"sparseSegmentSum\");\n const $indices = convertToTensor(indices, \"indices\", \"sparseSegmentSum\", \"int32\");\n const $segmentIds = convertToTensor(segmentIds, \"segmentIds\", \"sparseSegmentSum\", \"int32\");\n if ($data.rank < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if ($indices.rank !== 1) {\n throw new Error(`Indices should be Tensor1D but received shape\n ${$indices.shape}`);\n }\n if ($segmentIds.rank !== 1) {\n throw new Error(`Segment ids should be Tensor1D but received shape\n ${$segmentIds.shape}`);\n }\n const inputs = {\n data: $data,\n indices: $indices,\n segmentIds: $segmentIds\n };\n return ENGINE.runKernel(SparseSegmentSum, inputs);\n}\nvar sparseSegmentSum = op({ sparseSegmentSum_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/string/string_n_grams.js\nfunction stringNGrams_(data, dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) {\n const $data = convertToTensor(data, \"data\", \"stringNGrams\", \"string\");\n if ($data.dtype !== \"string\") {\n throw new Error(\"Data must be of datatype string\");\n }\n if ($data.shape.length !== 1) {\n throw new Error(`Data must be a vector, saw: ${$data.shape}`);\n }\n const $dataSplits = convertToTensor(dataSplits, \"dataSplits\", \"stringNGrams\");\n if ($dataSplits.dtype !== \"int32\") {\n throw new Error(\"Data splits must be of datatype int32\");\n }\n const attrs = {\n separator,\n nGramWidths,\n leftPad,\n rightPad: rightPad2,\n padWidth,\n preserveShortSequences\n };\n const inputs = { data: $data, dataSplits: $dataSplits };\n const result = ENGINE.runKernel(StringNGrams, inputs, attrs);\n return { nGrams: result[0], nGramsSplits: result[1] };\n}\nvar stringNGrams = op({ stringNGrams_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/string/string_split.js\nfunction stringSplit_(input2, delimiter, skipEmpty = true) {\n const $input = convertToTensor(input2, \"input\", \"stringSplit\", \"string\");\n const $delimiter = convertToTensor(delimiter, \"delimiter\", \"stringSplit\", \"string\");\n if ($input.rank !== 1) {\n throw new Error(`Input should be Tensor1D but received shape ${$input.shape}`);\n }\n if ($delimiter.rank !== 0) {\n throw new Error(`Delimiter should be a scalar but received shape ${$delimiter.shape}`);\n }\n const attrs = { skipEmpty };\n const inputs = { input: $input, delimiter: $delimiter };\n const result = ENGINE.runKernel(StringSplit, inputs, attrs);\n return { indices: result[0], values: result[1], shape: result[2] };\n}\nvar stringSplit = op({ stringSplit_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/string/string_to_hash_bucket_fast.js\nfunction stringToHashBucketFast_(input2, numBuckets) {\n const $input = convertToTensor(input2, \"input\", \"stringToHashBucketFast\", \"string\");\n const attrs = { numBuckets };\n if (numBuckets <= 0) {\n throw new Error(`Number of buckets must be at least 1`);\n }\n const inputs = { input: $input };\n return ENGINE.runKernel(StringToHashBucketFast, inputs, attrs);\n}\nvar stringToHashBucketFast = op({ stringToHashBucketFast_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ops.js\nvar spectral = {\n fft,\n ifft,\n rfft,\n irfft\n};\nvar signal = {\n hammingWindow,\n hannWindow,\n frame,\n stft\n};\nvar image = {\n flipLeftRight,\n grayscaleToRGB,\n resizeNearestNeighbor,\n resizeBilinear,\n rotateWithOffset,\n cropAndResize,\n nonMaxSuppression,\n nonMaxSuppressionAsync,\n nonMaxSuppressionWithScore,\n nonMaxSuppressionWithScoreAsync,\n nonMaxSuppressionPadded,\n nonMaxSuppressionPaddedAsync,\n threshold,\n transform\n};\nvar linalg = {\n bandPart,\n gramSchmidt,\n qr\n};\nvar losses = {\n absoluteDifference,\n computeWeightedLoss,\n cosineDistance,\n hingeLoss,\n huberLoss,\n logLoss,\n meanSquaredError,\n sigmoidCrossEntropy,\n softmaxCrossEntropy\n};\nvar sparse = {\n sparseFillEmptyRows,\n sparseReshape,\n sparseSegmentMean,\n sparseSegmentSum\n};\nvar string = {\n stringNGrams,\n stringSplit,\n stringToHashBucketFast\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/optimizer.js\nvar Optimizer = class extends Serializable {\n minimize(f, returnCost = false, varList) {\n const { value, grads: grads2 } = this.computeGradients(f, varList);\n if (varList != null) {\n const gradArray = varList.map((v) => ({ name: v.name, tensor: grads2[v.name] }));\n this.applyGradients(gradArray);\n } else {\n this.applyGradients(grads2);\n }\n dispose(grads2);\n if (returnCost) {\n return value;\n } else {\n value.dispose();\n return null;\n }\n }\n get iterations() {\n if (this.iterations_ == null) {\n this.iterations_ = 0;\n }\n return this.iterations_;\n }\n incrementIterations() {\n this.iterations_ = this.iterations + 1;\n }\n computeGradients(f, varList) {\n return variableGrads(f, varList);\n }\n dispose() {\n if (this.iterations_ != null) {\n dispose(this.iterations_);\n }\n }\n async saveIterations() {\n if (this.iterations_ == null) {\n this.iterations_ = 0;\n }\n return {\n name: \"iter\",\n tensor: scalar(this.iterations_, \"int32\")\n };\n }\n async getWeights() {\n throw new Error(\"getWeights() is not implemented for this optimizer yet.\");\n }\n async setWeights(weightValues) {\n throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`);\n }\n async extractIterations(weightValues) {\n this.iterations_ = (await weightValues[0].tensor.data())[0];\n return weightValues.slice(1);\n }\n};\nObject.defineProperty(Optimizer, Symbol.hasInstance, {\n value: (instance) => {\n return instance.minimize != null && instance.computeGradients != null && instance.applyGradients != null;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/adadelta_optimizer.js\nvar AdadeltaOptimizer = class extends Optimizer {\n constructor(learningRate, rho, epsilon3 = null) {\n super();\n this.learningRate = learningRate;\n this.rho = rho;\n this.epsilon = epsilon3;\n this.accumulatedGrads = [];\n this.accumulatedUpdates = [];\n if (epsilon3 == null) {\n this.epsilon = ENGINE.backend.epsilon();\n }\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n const trainable = false;\n if (this.accumulatedGrads[i2] == null) {\n this.accumulatedGrads[i2] = {\n originalName: `${name}/accum_grad`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n if (this.accumulatedUpdates[i2] == null) {\n this.accumulatedUpdates[i2] = {\n originalName: `${name}/accum_var`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const accumulatedGrad = this.accumulatedGrads[i2].variable;\n const accumulatedUpdate = this.accumulatedUpdates[i2].variable;\n tidy(() => {\n const newAccumulatedGrad = add2(mul(accumulatedGrad, this.rho), mul(square(gradient), 1 - this.rho));\n const updates = mul(div(sqrt(add2(accumulatedUpdate, this.epsilon)), sqrt(add2(accumulatedGrad, this.epsilon))), gradient);\n const newAccumulatedUpdate = add2(mul(accumulatedUpdate, this.rho), mul(square(updates), 1 - this.rho));\n accumulatedGrad.assign(newAccumulatedGrad);\n accumulatedUpdate.assign(newAccumulatedUpdate);\n const newValue = add2(mul(updates, -this.learningRate), value);\n value.assign(newValue);\n });\n });\n this.incrementIterations();\n }\n dispose() {\n if (this.accumulatedUpdates != null) {\n dispose(this.accumulatedGrads.map((v) => v.variable));\n dispose(this.accumulatedUpdates.map((v) => v.variable));\n }\n }\n async getWeights() {\n const variables = [...this.accumulatedGrads, ...this.accumulatedUpdates];\n return [await this.saveIterations()].concat(variables.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n const variableCount = weightValues.length / 2;\n const trainable = false;\n this.accumulatedGrads = weightValues.slice(0, variableCount).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n this.accumulatedUpdates = weightValues.slice(variableCount, variableCount * 2).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"rho\": this.rho,\n \"epsilon\": this.epsilon\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"rho\"], config[\"epsilon\"]);\n }\n};\nAdadeltaOptimizer.className = \"Adadelta\";\nregisterClass(AdadeltaOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/adagrad_optimizer.js\nvar AdagradOptimizer = class extends Optimizer {\n constructor(learningRate, initialAccumulatorValue = 0.1) {\n super();\n this.learningRate = learningRate;\n this.initialAccumulatorValue = initialAccumulatorValue;\n this.accumulatedGrads = [];\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n if (this.accumulatedGrads[i2] == null) {\n const trainable = false;\n this.accumulatedGrads[i2] = {\n originalName: `${name}/accumulator`,\n variable: tidy(() => fill(value.shape, this.initialAccumulatorValue).variable(trainable))\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const accumulatedGrad = this.accumulatedGrads[i2].variable;\n tidy(() => {\n const newAccumulatedGrad = add2(accumulatedGrad, square(gradient));\n accumulatedGrad.assign(newAccumulatedGrad);\n const newValue = add2(mul(div(gradient, sqrt(add2(newAccumulatedGrad, ENGINE.backend.epsilon()))), -this.learningRate), value);\n value.assign(newValue);\n });\n });\n this.incrementIterations();\n }\n dispose() {\n if (this.accumulatedGrads != null) {\n dispose(this.accumulatedGrads.map((v) => v.variable));\n }\n }\n async getWeights() {\n return [await this.saveIterations()].concat(this.accumulatedGrads.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n const trainable = false;\n this.accumulatedGrads = weightValues.map((v) => ({ originalName: v.name, variable: v.tensor.variable(trainable) }));\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"initialAccumulatorValue\": this.initialAccumulatorValue\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"initialAccumulatorValue\"]);\n }\n};\nAdagradOptimizer.className = \"Adagrad\";\nregisterClass(AdagradOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/adam_optimizer.js\nvar AdamOptimizer = class extends Optimizer {\n constructor(learningRate, beta1, beta2, epsilon3 = null) {\n super();\n this.learningRate = learningRate;\n this.beta1 = beta1;\n this.beta2 = beta2;\n this.epsilon = epsilon3;\n this.accumulatedFirstMoment = [];\n this.accumulatedSecondMoment = [];\n tidy(() => {\n this.accBeta1 = scalar(beta1).variable();\n this.accBeta2 = scalar(beta2).variable();\n });\n if (epsilon3 == null) {\n this.epsilon = ENGINE.backend.epsilon();\n }\n }\n applyGradients(variableGradients) {\n const varNames = Array.isArray(variableGradients) ? variableGradients.map((v) => v.name) : Object.keys(variableGradients);\n tidy(() => {\n const oneMinusAccBeta1 = sub(1, this.accBeta1);\n const oneMinusAccBeta2 = sub(1, this.accBeta2);\n varNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n const trainable = false;\n if (this.accumulatedFirstMoment[i2] == null) {\n this.accumulatedFirstMoment[i2] = {\n originalName: `${name}/m`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n if (this.accumulatedSecondMoment[i2] == null) {\n this.accumulatedSecondMoment[i2] = {\n originalName: `${name}/v`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const firstMoment = this.accumulatedFirstMoment[i2].variable;\n const secondMoment = this.accumulatedSecondMoment[i2].variable;\n const newFirstMoment = add2(mul(firstMoment, this.beta1), mul(gradient, 1 - this.beta1));\n const newSecondMoment = add2(mul(secondMoment, this.beta2), mul(square(gradient), 1 - this.beta2));\n const biasCorrectedFirstMoment = div(newFirstMoment, oneMinusAccBeta1);\n const biasCorrectedSecondMoment = div(newSecondMoment, oneMinusAccBeta2);\n firstMoment.assign(newFirstMoment);\n secondMoment.assign(newSecondMoment);\n const newValue = add2(mul(div(biasCorrectedFirstMoment, add2(sqrt(biasCorrectedSecondMoment), this.epsilon)), -this.learningRate), value);\n value.assign(newValue);\n });\n this.accBeta1.assign(mul(this.accBeta1, this.beta1));\n this.accBeta2.assign(mul(this.accBeta2, this.beta2));\n });\n this.incrementIterations();\n }\n dispose() {\n this.accBeta1.dispose();\n this.accBeta2.dispose();\n if (this.accumulatedFirstMoment != null) {\n dispose(this.accumulatedFirstMoment.map((v) => v.variable));\n }\n if (this.accumulatedSecondMoment != null) {\n dispose(this.accumulatedSecondMoment.map((v) => v.variable));\n }\n }\n async getWeights() {\n const variables = [...this.accumulatedFirstMoment, ...this.accumulatedSecondMoment];\n return [await this.saveIterations()].concat(variables.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n tidy(() => {\n this.accBeta1.assign(pow(this.beta1, this.iterations_ + 1));\n this.accBeta2.assign(pow(this.beta2, this.iterations_ + 1));\n });\n const variableCount = weightValues.length / 2;\n const trainable = false;\n this.accumulatedFirstMoment = weightValues.slice(0, variableCount).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n this.accumulatedSecondMoment = weightValues.slice(variableCount, variableCount * 2).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"beta1\": this.beta1,\n \"beta2\": this.beta2,\n \"epsilon\": this.epsilon\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"beta1\"], config[\"beta2\"], config[\"epsilon\"]);\n }\n};\nAdamOptimizer.className = \"Adam\";\nregisterClass(AdamOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/adamax_optimizer.js\nvar AdamaxOptimizer = class extends Optimizer {\n constructor(learningRate, beta1, beta2, epsilon3 = null, decay = 0) {\n super();\n this.learningRate = learningRate;\n this.beta1 = beta1;\n this.beta2 = beta2;\n this.epsilon = epsilon3;\n this.decay = decay;\n this.accumulatedFirstMoment = [];\n this.accumulatedWeightedInfNorm = [];\n tidy(() => {\n this.iteration = scalar(0).variable();\n this.accBeta1 = scalar(beta1).variable();\n });\n if (epsilon3 == null) {\n this.epsilon = ENGINE.backend.epsilon();\n }\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n tidy(() => {\n const oneMinusAccBeta1 = sub(1, this.accBeta1);\n const lr = div(-this.learningRate, add2(mul(this.iteration, this.decay), 1));\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n const trainable = false;\n if (this.accumulatedFirstMoment[i2] == null) {\n this.accumulatedFirstMoment[i2] = {\n originalName: `${name}/m`,\n variable: zerosLike(value).variable(trainable)\n };\n }\n if (this.accumulatedWeightedInfNorm[i2] == null) {\n this.accumulatedWeightedInfNorm[i2] = {\n originalName: `${name}/v`,\n variable: zerosLike(value).variable(trainable)\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const firstMoment = this.accumulatedFirstMoment[i2].variable;\n const weightedInfNorm = this.accumulatedWeightedInfNorm[i2].variable;\n const newFirstMoment = add2(mul(firstMoment, this.beta1), mul(gradient, 1 - this.beta1));\n const ut0 = mul(weightedInfNorm, this.beta2);\n const ut1 = abs(gradient);\n const newWeightedInfNorm = maximum(ut0, ut1);\n firstMoment.assign(newFirstMoment);\n weightedInfNorm.assign(newWeightedInfNorm);\n const newValue = add2(mul(div(lr, oneMinusAccBeta1), div(newFirstMoment, add2(newWeightedInfNorm, this.epsilon))), value);\n value.assign(newValue);\n });\n this.iteration.assign(add2(this.iteration, 1));\n this.accBeta1.assign(mul(this.accBeta1, this.beta1));\n });\n this.incrementIterations();\n }\n dispose() {\n this.accBeta1.dispose();\n this.iteration.dispose();\n if (this.accumulatedFirstMoment != null) {\n dispose(this.accumulatedFirstMoment.map((v) => v.variable));\n }\n if (this.accumulatedWeightedInfNorm != null) {\n dispose(this.accumulatedWeightedInfNorm.map((v) => v.variable));\n }\n }\n async getWeights() {\n throw new Error(\"getWeights() is not implemented for Adamax yet.\");\n }\n async setWeights(weightValues) {\n throw new Error(\"setWeights() is not implemented for Adamax yet.\");\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"beta1\": this.beta1,\n \"beta2\": this.beta2,\n \"epsilon\": this.epsilon,\n \"decay\": this.decay\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"beta1\"], config[\"beta2\"], config[\"epsilon\"], config[\"decay\"]);\n }\n};\nAdamaxOptimizer.className = \"Adamax\";\nregisterClass(AdamaxOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/sgd_optimizer.js\nvar SGDOptimizer = class extends Optimizer {\n constructor(learningRate) {\n super();\n this.learningRate = learningRate;\n this.setLearningRate(learningRate);\n }\n applyGradients(variableGradients) {\n const varNames = Array.isArray(variableGradients) ? variableGradients.map((v) => v.name) : Object.keys(variableGradients);\n varNames.forEach((name, i2) => {\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const value = ENGINE.registeredVariables[name];\n tidy(() => {\n const newValue = add2(mul(this.c, gradient), value);\n value.assign(newValue);\n });\n });\n this.incrementIterations();\n }\n setLearningRate(learningRate) {\n this.learningRate = learningRate;\n if (this.c != null) {\n this.c.dispose();\n }\n this.c = keep(scalar(-learningRate));\n }\n dispose() {\n this.c.dispose();\n }\n async getWeights() {\n return [await this.saveIterations()];\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n if (weightValues.length !== 0) {\n throw new Error(\"SGD optimizer does not have settable weights.\");\n }\n }\n getConfig() {\n return { \"learningRate\": this.learningRate };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"]);\n }\n};\nSGDOptimizer.className = \"SGD\";\nregisterClass(SGDOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/momentum_optimizer.js\nvar MomentumOptimizer = class extends SGDOptimizer {\n constructor(learningRate, momentum, useNesterov = false) {\n super(learningRate);\n this.learningRate = learningRate;\n this.momentum = momentum;\n this.useNesterov = useNesterov;\n this.accumulations = [];\n this.m = scalar(this.momentum);\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n if (this.accumulations[i2] == null) {\n const trainable = false;\n this.accumulations[i2] = {\n originalName: `${name}/momentum`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n const accumulation = this.accumulations[i2].variable;\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n tidy(() => {\n let newValue;\n const newAccumulation = add2(mul(this.m, accumulation), gradient);\n if (this.useNesterov) {\n newValue = add2(mul(this.c, add2(gradient, mul(newAccumulation, this.m))), value);\n } else {\n newValue = add2(mul(this.c, newAccumulation), value);\n }\n accumulation.assign(newAccumulation);\n value.assign(newValue);\n });\n });\n this.incrementIterations();\n }\n dispose() {\n this.m.dispose();\n if (this.accumulations != null) {\n dispose(this.accumulations.map((v) => v.variable));\n }\n }\n setMomentum(momentum) {\n this.momentum = momentum;\n }\n async getWeights() {\n return [await this.saveIterations()].concat(this.accumulations.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n const trainable = false;\n this.accumulations = weightValues.map((v) => ({ originalName: v.name, variable: v.tensor.variable(trainable) }));\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"momentum\": this.momentum,\n \"useNesterov\": this.useNesterov\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"momentum\"], config[\"useNesterov\"]);\n }\n};\nMomentumOptimizer.className = \"Momentum\";\nregisterClass(MomentumOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/rmsprop_optimizer.js\nvar RMSPropOptimizer = class extends Optimizer {\n constructor(learningRate, decay = 0.9, momentum = 0, epsilon3 = null, centered = false) {\n super();\n this.learningRate = learningRate;\n this.decay = decay;\n this.momentum = momentum;\n this.epsilon = epsilon3;\n this.accumulatedMeanSquares = [];\n this.accumulatedMoments = [];\n this.accumulatedMeanGrads = [];\n this.centered = centered;\n if (epsilon3 == null) {\n this.epsilon = ENGINE.backend.epsilon();\n }\n if (learningRate == null) {\n throw new Error(`learningRate for RMSPropOptimizer must be defined.`);\n }\n }\n applyGradients(variableGradients) {\n const variableNames = Array.isArray(variableGradients) ? variableGradients.map((item) => item.name) : Object.keys(variableGradients);\n variableNames.forEach((name, i2) => {\n const value = ENGINE.registeredVariables[name];\n const trainable = false;\n if (this.accumulatedMeanSquares[i2] == null) {\n this.accumulatedMeanSquares[i2] = {\n originalName: `${name}/rms`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n if (this.accumulatedMoments[i2] == null) {\n this.accumulatedMoments[i2] = {\n originalName: `${name}/momentum`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n if (this.accumulatedMeanGrads[i2] == null && this.centered) {\n this.accumulatedMeanGrads[i2] = {\n originalName: `${name}/mg`,\n variable: tidy(() => zerosLike(value).variable(trainable))\n };\n }\n const gradient = Array.isArray(variableGradients) ? variableGradients[i2].tensor : variableGradients[name];\n if (gradient == null) {\n return;\n }\n const accumulatedMeanSquare = this.accumulatedMeanSquares[i2].variable;\n const accumulatedMoments = this.accumulatedMoments[i2].variable;\n tidy(() => {\n const newAccumulatedMeanSquare = add2(mul(accumulatedMeanSquare, this.decay), mul(square(gradient), 1 - this.decay));\n if (this.centered) {\n const accumulatedMeanGrad = this.accumulatedMeanGrads[i2].variable;\n const newAccumulatedMeanGrad = add2(mul(accumulatedMeanGrad, this.decay), mul(gradient, 1 - this.decay));\n const gradContribution = div(mul(gradient, this.learningRate), sqrt(sub(newAccumulatedMeanSquare, add2(square(newAccumulatedMeanGrad), this.epsilon))));\n const newAccumulatedMoments = add2(mul(accumulatedMoments, this.momentum), gradContribution);\n accumulatedMeanSquare.assign(newAccumulatedMeanSquare);\n accumulatedMeanGrad.assign(newAccumulatedMeanGrad);\n accumulatedMoments.assign(newAccumulatedMoments);\n const newValue = sub(value, newAccumulatedMoments);\n value.assign(newValue);\n } else {\n const newAccumulatedMeanSquare2 = add2(mul(accumulatedMeanSquare, this.decay), mul(square(gradient), 1 - this.decay));\n const newAccumulatedMoments = add2(mul(accumulatedMoments, this.momentum), div(mul(gradient, this.learningRate), sqrt(add2(newAccumulatedMeanSquare2, this.epsilon))));\n accumulatedMeanSquare.assign(newAccumulatedMeanSquare2);\n accumulatedMoments.assign(newAccumulatedMoments);\n const newValue = sub(value, newAccumulatedMoments);\n value.assign(newValue);\n }\n });\n });\n this.incrementIterations();\n }\n dispose() {\n if (this.accumulatedMeanSquares != null) {\n dispose(this.accumulatedMeanSquares.map((v) => v.variable));\n }\n if (this.accumulatedMeanGrads != null && this.centered) {\n dispose(this.accumulatedMeanGrads.map((v) => v.variable));\n }\n if (this.accumulatedMoments != null) {\n dispose(this.accumulatedMoments.map((v) => v.variable));\n }\n }\n async getWeights() {\n const variables = [...this.accumulatedMeanSquares, ...this.accumulatedMoments];\n if (this.centered) {\n variables.push(...this.accumulatedMeanGrads);\n }\n return [await this.saveIterations()].concat(variables.map((v) => ({ name: v.originalName, tensor: v.variable })));\n }\n async setWeights(weightValues) {\n weightValues = await this.extractIterations(weightValues);\n const variableCount = this.centered ? weightValues.length / 3 : weightValues.length / 2;\n const trainable = false;\n this.accumulatedMeanSquares = weightValues.slice(0, variableCount).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n this.accumulatedMoments = weightValues.slice(variableCount, variableCount * 2).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n if (this.centered) {\n this.accumulatedMeanGrads = weightValues.slice(variableCount * 2, variableCount * 3).map((v) => ({\n originalName: v.name,\n variable: v.tensor.variable(trainable)\n }));\n }\n }\n getConfig() {\n return {\n \"learningRate\": this.learningRate,\n \"decay\": this.decay,\n \"momentum\": this.momentum,\n \"epsilon\": this.epsilon,\n \"centered\": this.centered\n };\n }\n static fromConfig(cls, config) {\n return new cls(config[\"learningRate\"], config[\"decay\"], config[\"momentum\"], config[\"epsilon\"], config[\"centered\"]);\n }\n};\nRMSPropOptimizer.className = \"RMSProp\";\nregisterClass(RMSPropOptimizer);\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/optimizers/optimizer_constructors.js\nvar OptimizerConstructors = class {\n static sgd(learningRate) {\n return new SGDOptimizer(learningRate);\n }\n static momentum(learningRate, momentum, useNesterov = false) {\n return new MomentumOptimizer(learningRate, momentum, useNesterov);\n }\n static rmsprop(learningRate, decay = 0.9, momentum = 0, epsilon3 = null, centered = false) {\n return new RMSPropOptimizer(learningRate, decay, momentum, epsilon3, centered);\n }\n static adam(learningRate = 1e-3, beta1 = 0.9, beta2 = 0.999, epsilon3 = null) {\n return new AdamOptimizer(learningRate, beta1, beta2, epsilon3);\n }\n static adadelta(learningRate = 1e-3, rho = 0.95, epsilon3 = null) {\n return new AdadeltaOptimizer(learningRate, rho, epsilon3);\n }\n static adamax(learningRate = 2e-3, beta1 = 0.9, beta2 = 0.999, epsilon3 = null, decay = 0) {\n return new AdamaxOptimizer(learningRate, beta1, beta2, epsilon3, decay);\n }\n static adagrad(learningRate, initialAccumulatorValue = 0.1) {\n return new AdagradOptimizer(learningRate, initialAccumulatorValue);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/train.js\nvar train = {\n sgd: OptimizerConstructors.sgd,\n momentum: OptimizerConstructors.momentum,\n adadelta: OptimizerConstructors.adadelta,\n adagrad: OptimizerConstructors.adagrad,\n rmsprop: OptimizerConstructors.rmsprop,\n adamax: OptimizerConstructors.adamax,\n adam: OptimizerConstructors.adam\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/browser_util.js\nvar delayCallback = (() => {\n if (typeof requestAnimationFrame !== \"undefined\") {\n return requestAnimationFrame;\n } else if (typeof setImmediate !== \"undefined\") {\n return setImmediate;\n }\n return (f) => f();\n})();\nfunction nextFrame() {\n return new Promise((resolve) => delayCallback(() => resolve()));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/backend_util.js\nvar backend_util_exports = {};\n__export(backend_util_exports, {\n ERF_A1: () => ERF_A1,\n ERF_A2: () => ERF_A2,\n ERF_A3: () => ERF_A3,\n ERF_A4: () => ERF_A4,\n ERF_A5: () => ERF_A5,\n ERF_P: () => ERF_P,\n PARALLELIZE_THRESHOLD: () => PARALLELIZE_THRESHOLD,\n RowPartitionType: () => RowPartitionType,\n SELU_SCALE: () => SELU_SCALE,\n SELU_SCALEALPHA: () => SELU_SCALEALPHA,\n applyActivation: () => applyActivation,\n assertAndGetBroadcastShape: () => assertAndGetBroadcastShape,\n assertAxesAreInnerMostDims: () => assertAxesAreInnerMostDims,\n assertParamsConsistent: () => assertParamsConsistent,\n assignToTypedArray: () => assignToTypedArray,\n axesAreInnerMostDims: () => axesAreInnerMostDims,\n calculateShapes: () => calculateShapes,\n checkEinsumDimSizes: () => checkEinsumDimSizes,\n checkPadOnDimRoundingMode: () => checkPadOnDimRoundingMode,\n combineLocations: () => combineLocations,\n combineRaggedTensorToTensorShapes: () => combineRaggedTensorToTensorShapes,\n complexWithEvenIndex: () => complexWithEvenIndex,\n complexWithOddIndex: () => complexWithOddIndex,\n computeConv2DInfo: () => computeConv2DInfo,\n computeConv3DInfo: () => computeConv3DInfo,\n computeDefaultPad: () => computeDefaultPad,\n computeDilation2DInfo: () => computeDilation2DInfo,\n computeOptimalWindowSize: () => computeOptimalWindowSize,\n computeOutAndReduceShapes: () => computeOutAndReduceShapes,\n computeOutShape: () => computeOutShape2,\n computePool2DInfo: () => computePool2DInfo,\n computePool3DInfo: () => computePool3DInfo,\n convertConv2DDataFormat: () => convertConv2DDataFormat,\n decodeEinsumEquation: () => decodeEinsumEquation,\n eitherStridesOrDilationsAreOne: () => eitherStridesOrDilationsAreOne,\n expandShapeToKeepDim: () => expandShapeToKeepDim,\n exponent: () => exponent,\n exponents: () => exponents,\n fromStringArrayToUint8: () => fromStringArrayToUint8,\n fromUint8ToStringArray: () => fromUint8ToStringArray,\n getAxesPermutation: () => getAxesPermutation,\n getBroadcastDims: () => getBroadcastDims,\n getComplexWithIndex: () => getComplexWithIndex,\n getEinsumComputePath: () => getEinsumComputePath,\n getEinsumPermutation: () => getEinsumPermutation,\n getFusedBiasGradient: () => getFusedBiasGradient,\n getFusedDyActivation: () => getFusedDyActivation,\n getImageCenter: () => getImageCenter,\n getInnerMostAxes: () => getInnerMostAxes,\n getPermuted: () => getPermuted,\n getRaggedRank: () => getRaggedRank,\n getReductionAxes: () => getReductionAxes,\n getReshaped: () => getReshaped,\n getReshapedPermuted: () => getReshapedPermuted,\n getRowPartitionTypesHelper: () => getRowPartitionTypesHelper,\n getSliceBeginCoords: () => getSliceBeginCoords,\n getSliceSize: () => getSliceSize,\n getSparseFillEmptyRowsIndicesDenseShapeMismatch: () => getSparseFillEmptyRowsIndicesDenseShapeMismatch,\n getSparseFillEmptyRowsNegativeIndexErrorMessage: () => getSparseFillEmptyRowsNegativeIndexErrorMessage,\n getSparseFillEmptyRowsOutOfRangeIndexErrorMessage: () => getSparseFillEmptyRowsOutOfRangeIndexErrorMessage,\n getSparseReshapeEmptyTensorZeroOutputDimErrorMessage: () => getSparseReshapeEmptyTensorZeroOutputDimErrorMessage,\n getSparseReshapeInputOutputMismatchErrorMessage: () => getSparseReshapeInputOutputMismatchErrorMessage,\n getSparseReshapeInputOutputMultipleErrorMessage: () => getSparseReshapeInputOutputMultipleErrorMessage,\n getSparseReshapeMultipleNegativeOneOutputDimErrorMessage: () => getSparseReshapeMultipleNegativeOneOutputDimErrorMessage,\n getSparseReshapeNegativeOutputDimErrorMessage: () => getSparseReshapeNegativeOutputDimErrorMessage,\n getSparseSegmentReductionIndicesOutOfRangeErrorMessage: () => getSparseSegmentReductionIndicesOutOfRangeErrorMessage,\n getSparseSegmentReductionNegativeSegmentIdsErrorMessage: () => getSparseSegmentReductionNegativeSegmentIdsErrorMessage,\n getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage: () => getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage,\n getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage: () => getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage,\n getUndoAxesPermutation: () => getUndoAxesPermutation,\n isIdentityPermutation: () => isIdentityPermutation,\n log: () => log,\n mergeRealAndImagArrays: () => mergeRealAndImagArrays,\n prepareAndValidate: () => prepareAndValidate,\n prepareSplitSize: () => prepareSplitSize,\n segment_util: () => segment_util_exports,\n shouldFuse: () => shouldFuse,\n slice_util: () => slice_util_exports,\n splitRealAndImagArrays: () => splitRealAndImagArrays,\n tupleValuesAreOne: () => tupleValuesAreOne,\n upcastType: () => upcastType,\n validateDefaultValueShape: () => validateDefaultValueShape,\n validateInput: () => validateInput,\n validateUpdateShape: () => validateUpdateShape,\n warn: () => warn\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/concat_util.js\nfunction assertParamsConsistent(shapes, axis) {\n const rank = shapes[0].length;\n shapes.forEach((shape, i2) => {\n assert(shape.length === rank, () => `Error in concat${rank}D: rank of tensors[${i2}] must be the same as the rank of the rest (${rank})`);\n });\n assert(axis >= 0 && axis < rank, () => `Error in concat${rank}D: axis must be between 0 and ${rank - 1}.`);\n const firstShape = shapes[0];\n shapes.forEach((shape, i2) => {\n for (let r2 = 0; r2 < rank; r2++) {\n assert(r2 === axis || shape[r2] === firstShape[r2], () => `Error in concat${rank}D: Shape of tensors[${i2}] (${shape}) does not match the shape of the rest (${firstShape}) along the non-concatenated axis ${i2}.`);\n }\n });\n}\nfunction computeOutShape2(shapes, axis) {\n const outputShape = shapes[0].slice();\n for (let i2 = 1; i2 < shapes.length; i2++) {\n outputShape[axis] += shapes[i2][axis];\n }\n return outputShape;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ragged_to_dense_util.js\nvar RowPartitionType;\n(function(RowPartitionType3) {\n RowPartitionType3[RowPartitionType3[\"FIRST_DIM_SIZE\"] = 0] = \"FIRST_DIM_SIZE\";\n RowPartitionType3[RowPartitionType3[\"VALUE_ROWIDS\"] = 1] = \"VALUE_ROWIDS\";\n RowPartitionType3[RowPartitionType3[\"ROW_LENGTHS\"] = 2] = \"ROW_LENGTHS\";\n RowPartitionType3[RowPartitionType3[\"ROW_SPLITS\"] = 3] = \"ROW_SPLITS\";\n RowPartitionType3[RowPartitionType3[\"ROW_LIMITS\"] = 4] = \"ROW_LIMITS\";\n RowPartitionType3[RowPartitionType3[\"ROW_STARTS\"] = 5] = \"ROW_STARTS\";\n})(RowPartitionType || (RowPartitionType = {}));\nfunction combineRaggedTensorToTensorShapes(raggedRank, shape, valueShape) {\n let outputShape = new Array();\n if (valueShape == null && shape == null) {\n return outputShape;\n }\n if (shape == null) {\n while (outputShape.length < raggedRank + valueShape.length) {\n outputShape.push(-1);\n }\n } else {\n outputShape = shape.slice();\n }\n if (valueShape == null) {\n return outputShape;\n }\n if (raggedRank + valueShape.length !== outputShape.length) {\n throw new Error(`rt input.shape and shape=${shape} are incompatible: rt input.rank = ${raggedRank + valueShape.length}, but shape.rank = ${outputShape.length}`);\n }\n for (let i2 = 1; i2 < valueShape.length; ++i2) {\n const valueDim = valueShape[i2];\n const outputShapeDimIndex = outputShape[outputShape.length - valueShape.length + i2];\n const outputShapeDim = outputShape[outputShapeDimIndex];\n if (valueDim >= 0) {\n if (outputShapeDim >= 0) {\n if (outputShapeDim !== valueDim) {\n throw new Error(`rt input.shape and shape=${shape} are incompatible: rt input.shape[${i2 + raggedRank}] = ${valueDim} but shape[${i2 + raggedRank}] = ${outputShapeDim}`);\n }\n } else {\n outputShape[outputShapeDimIndex] = valueDim;\n }\n }\n }\n return outputShape;\n}\nfunction getRowPartitionTypesHelper(rowPartitionTypeStrings) {\n const stringToType = {\n \"FIRST_DIM_SIZE\": RowPartitionType.FIRST_DIM_SIZE,\n \"VALUE_ROWIDS\": RowPartitionType.VALUE_ROWIDS,\n \"ROW_LENGTHS\": RowPartitionType.ROW_LENGTHS,\n \"ROW_SPLITS\": RowPartitionType.ROW_SPLITS,\n \"ROW_LIMITS\": RowPartitionType.ROW_LIMITS,\n \"ROW_STARTS\": RowPartitionType.ROW_STARTS\n };\n const result = [];\n for (const typeStr of rowPartitionTypeStrings) {\n if (typeStr in stringToType) {\n result.push(stringToType[typeStr]);\n } else {\n break;\n }\n }\n return result;\n}\nfunction getRaggedRank(rowPartitionTypes) {\n if (rowPartitionTypes.length === 0) {\n return 0;\n }\n if (rowPartitionTypes[0] === RowPartitionType.FIRST_DIM_SIZE) {\n return rowPartitionTypes.length - 1;\n }\n return rowPartitionTypes.length;\n}\nfunction validateDefaultValueShape(defaultValueShape, valueShape) {\n if (defaultValueShape == null || valueShape == null) {\n return;\n }\n const defaultNDims = defaultValueShape.length;\n const valuesNDims = valueShape.length;\n if (defaultNDims >= valuesNDims) {\n throw new Error(`defaultValue.shape=${defaultValueShape} and ragged tensor flatValues.shape=${valueShape}, are incompatible: defaultValue.rank = ${defaultNDims} must be less than ragged tensor input flatValues.rank = ${valuesNDims})`);\n }\n for (let i2 = 0; i2 < Math.min(defaultNDims, valuesNDims - 1); ++i2) {\n const defaultDim = defaultValueShape[i2];\n const valueDim = valueShape[i2 + 1];\n if (defaultDim >= 0 && valueDim >= 0 && defaultDim !== 1 && defaultDim !== valueDim) {\n throw new Error(`defaultValue.shape=${defaultValueShape}, and ragged tensor input flatValues.shape=${valueShape} are incompatible: defaultValue.shape[${i2 - defaultValueShape.length}] = ${defaultDim} but ragged tensor input.flatValues.shape[${i2 - defaultValueShape.length}] = ${valueDim}`);\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/reduce_util.js\nvar PARALLELIZE_THRESHOLD = 30;\nfunction computeOptimalWindowSize(inSize) {\n if (inSize <= PARALLELIZE_THRESHOLD) {\n return inSize;\n }\n return nearestDivisor(inSize, Math.floor(Math.sqrt(inSize)));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/rotate_util.js\nfunction getImageCenter(center, imageHeight, imageWidth) {\n const centerX = imageWidth * (typeof center === \"number\" ? center : center[0]);\n const centerY = imageHeight * (typeof center === \"number\" ? center : center[1]);\n return [centerX, centerY];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/array_ops_util.js\nfunction getReshaped(inputShape, blockShape, prod6, batchToSpace = true) {\n let reshaped = [];\n if (batchToSpace) {\n reshaped = reshaped.concat(blockShape.slice(0));\n reshaped.push(inputShape[0] / prod6);\n reshaped = reshaped.concat(inputShape.slice(1));\n } else {\n reshaped = reshaped.concat(inputShape[0]);\n const spatialLength = blockShape.length;\n for (let i2 = 0; i2 < spatialLength; ++i2) {\n reshaped = reshaped.concat([inputShape[i2 + 1] / blockShape[i2], blockShape[i2]]);\n }\n reshaped = reshaped.concat(inputShape.slice(spatialLength + 1));\n }\n return reshaped;\n}\nfunction getPermuted(reshapedRank, blockShapeRank, batchToSpace = true) {\n const permuted = [];\n if (batchToSpace) {\n permuted.push(blockShapeRank);\n for (let i2 = blockShapeRank + 1; i2 < reshapedRank; ++i2) {\n if (i2 <= 2 * blockShapeRank) {\n permuted.push(i2);\n permuted.push(i2 - (blockShapeRank + 1));\n } else {\n permuted.push(i2);\n }\n }\n } else {\n const permutedBeforeBatch = [];\n const permutedAfterBatch = [];\n for (let i2 = 1; i2 < reshapedRank; ++i2) {\n if (i2 >= blockShapeRank * 2 + 1 || i2 % 2 === 1) {\n permutedAfterBatch.push(i2);\n } else {\n permutedBeforeBatch.push(i2);\n }\n }\n permuted.push(...permutedBeforeBatch);\n permuted.push(0);\n permuted.push(...permutedAfterBatch);\n }\n return permuted;\n}\nfunction getReshapedPermuted(inputShape, blockShape, prod6, batchToSpace = true) {\n const reshapedPermuted = [];\n if (batchToSpace) {\n reshapedPermuted.push(inputShape[0] / prod6);\n } else {\n reshapedPermuted.push(inputShape[0] * prod6);\n }\n for (let i2 = 1; i2 < inputShape.length; ++i2) {\n if (i2 <= blockShape.length) {\n if (batchToSpace) {\n reshapedPermuted.push(blockShape[i2 - 1] * inputShape[i2]);\n } else {\n reshapedPermuted.push(inputShape[i2] / blockShape[i2 - 1]);\n }\n } else {\n reshapedPermuted.push(inputShape[i2]);\n }\n }\n return reshapedPermuted;\n}\nfunction getSliceBeginCoords(crops, blockShape) {\n const sliceBeginCoords = [0];\n for (let i2 = 0; i2 < blockShape; ++i2) {\n sliceBeginCoords.push(crops[i2][0]);\n }\n return sliceBeginCoords;\n}\nfunction getSliceSize(uncroppedShape, crops, blockShape) {\n const sliceSize = uncroppedShape.slice(0, 1);\n for (let i2 = 0; i2 < blockShape; ++i2) {\n sliceSize.push(uncroppedShape[i2 + 1] - crops[i2][0] - crops[i2][1]);\n }\n return sliceSize;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/selu_util.js\nvar SELU_SCALEALPHA = 1.7580993408473768;\nvar SELU_SCALE = 1.0507009873554805;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/erf_util.js\nvar ERF_P = 0.3275911;\nvar ERF_A1 = 0.254829592;\nvar ERF_A2 = -0.284496736;\nvar ERF_A3 = 1.421413741;\nvar ERF_A4 = -1.453152027;\nvar ERF_A5 = 1.061405429;\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/complex_util.js\nfunction mergeRealAndImagArrays(real5, imag5) {\n if (real5.length !== imag5.length) {\n throw new Error(`Cannot merge real and imag arrays of different lengths. real:${real5.length}, imag: ${imag5.length}.`);\n }\n const result = new Float32Array(real5.length * 2);\n for (let i2 = 0; i2 < result.length; i2 += 2) {\n result[i2] = real5[i2 / 2];\n result[i2 + 1] = imag5[i2 / 2];\n }\n return result;\n}\nfunction splitRealAndImagArrays(complex5) {\n const real5 = new Float32Array(complex5.length / 2);\n const imag5 = new Float32Array(complex5.length / 2);\n for (let i2 = 0; i2 < complex5.length; i2 += 2) {\n real5[i2 / 2] = complex5[i2];\n imag5[i2 / 2] = complex5[i2 + 1];\n }\n return { real: real5, imag: imag5 };\n}\nfunction complexWithEvenIndex(complex5) {\n const len = Math.ceil(complex5.length / 4);\n const real5 = new Float32Array(len);\n const imag5 = new Float32Array(len);\n for (let i2 = 0; i2 < complex5.length; i2 += 4) {\n real5[Math.floor(i2 / 4)] = complex5[i2];\n imag5[Math.floor(i2 / 4)] = complex5[i2 + 1];\n }\n return { real: real5, imag: imag5 };\n}\nfunction complexWithOddIndex(complex5) {\n const len = Math.floor(complex5.length / 4);\n const real5 = new Float32Array(len);\n const imag5 = new Float32Array(len);\n for (let i2 = 2; i2 < complex5.length; i2 += 4) {\n real5[Math.floor(i2 / 4)] = complex5[i2];\n imag5[Math.floor(i2 / 4)] = complex5[i2 + 1];\n }\n return { real: real5, imag: imag5 };\n}\nfunction getComplexWithIndex(complex5, index) {\n const real5 = complex5[index * 2];\n const imag5 = complex5[index * 2 + 1];\n return { real: real5, imag: imag5 };\n}\nfunction assignToTypedArray(data, real5, imag5, index) {\n data[index * 2] = real5;\n data[index * 2 + 1] = imag5;\n}\nfunction exponents(n2, inverse) {\n const real5 = new Float32Array(n2 / 2);\n const imag5 = new Float32Array(n2 / 2);\n for (let i2 = 0; i2 < Math.ceil(n2 / 2); i2++) {\n const x = (inverse ? 2 : -2) * Math.PI * (i2 / n2);\n real5[i2] = Math.cos(x);\n imag5[i2] = Math.sin(x);\n }\n return { real: real5, imag: imag5 };\n}\nfunction exponent(k, n2, inverse) {\n const x = (inverse ? 2 : -2) * Math.PI * (k / n2);\n const real5 = Math.cos(x);\n const imag5 = Math.sin(x);\n return { real: real5, imag: imag5 };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/einsum_util.js\nvar ARROW = \"->\";\nvar ARROW_REGEX = /->/g;\nvar COMMA = \",\";\nvar ELLIPSIS = \"...\";\nfunction decodeEinsumEquation(equation, numTensors) {\n equation = equation.replace(/\\s/g, \"\");\n const numArrows = (equation.length - equation.replace(ARROW_REGEX, \"\").length) / ARROW.length;\n if (numArrows < 1) {\n throw new Error(\"Equations without an arrow are not supported.\");\n } else if (numArrows > 1) {\n throw new Error(`Equation must contain exactly one arrow (\"${ARROW}\").`);\n }\n const [inputString, outputString] = equation.split(ARROW);\n assert(inputString.indexOf(ELLIPSIS) === -1, () => `The ellipsis notation (\"${ELLIPSIS}\") is not supported yet.`);\n const inputTerms = inputString.split(COMMA);\n const numInputs = inputTerms.length;\n if (numTensors !== numInputs) {\n throw new Error(`Expected ${numInputs} input tensors, received ${numTensors}`);\n }\n if (numInputs > 2) {\n throw new Error(\"Support for more than 2 input tensors is not implemented yet.\");\n }\n const allDims = [];\n for (let i2 = 0; i2 < outputString.length; ++i2) {\n const dimName = outputString[i2];\n if (!inputTerms.some((inputTerm) => inputTerm.indexOf(dimName) !== -1)) {\n throw new Error(`Output subscripts contain the label ${dimName} not present in the input subscripts.`);\n }\n if (allDims.indexOf(dimName) === -1) {\n allDims.push(dimName);\n }\n }\n for (let i2 = 0; i2 < inputString.length; ++i2) {\n const dimName = inputString[i2];\n if (allDims.indexOf(dimName) === -1 && dimName !== COMMA) {\n allDims.push(dimName);\n }\n }\n const idDims = new Array(inputTerms.length);\n for (let i2 = 0; i2 < numInputs; ++i2) {\n if (new Set(inputTerms[i2].split(\"\")).size !== inputTerms[i2].length) {\n throw new Error(`Found duplicate axes in input component ${inputTerms[i2]}. Support for duplicate axes in input is not implemented yet.`);\n }\n idDims[i2] = [];\n for (let j = 0; j < inputTerms[i2].length; ++j) {\n idDims[i2].push(allDims.indexOf(inputTerms[i2][j]));\n }\n }\n const numDims = allDims.length;\n const numOutDims = outputString.length;\n const summedDims = [];\n for (let i2 = numOutDims; i2 < numDims; ++i2) {\n summedDims.push(i2);\n }\n return { allDims, summedDims, idDims };\n}\nfunction getEinsumPermutation(nDims, idDims) {\n let permutationIndices = new Array(nDims);\n permutationIndices.fill(-1);\n for (let i2 = 0; i2 < idDims.length; ++i2) {\n permutationIndices[idDims[i2]] = i2;\n }\n const expandDims7 = [];\n for (let i2 = 0; i2 < nDims; ++i2) {\n if (permutationIndices[i2] === -1) {\n expandDims7.push(i2);\n }\n }\n permutationIndices = permutationIndices.filter((d) => d !== -1);\n return { permutationIndices, expandDims: expandDims7 };\n}\nfunction checkEinsumDimSizes(nDims, idDims, tensors) {\n const dimSizes = new Array(nDims);\n for (let i2 = 0; i2 < tensors.length; ++i2) {\n const shape = tensors[i2].shape;\n for (let j = 0; j < idDims[i2].length; ++j) {\n if (dimSizes[idDims[i2][j]] === void 0) {\n dimSizes[idDims[i2][j]] = shape[j];\n } else {\n assert(dimSizes[idDims[i2][j]] === shape[j], () => `Expected dimension ${dimSizes[idDims[i2][j]]} at axis ${j} of input shaped ${JSON.stringify(shape)}, but got dimension ${shape[j]}`);\n }\n }\n }\n}\nfunction getEinsumComputePath(summedDims, idDims) {\n const path = summedDims;\n const steps = [];\n let nSteps = 0;\n if (summedDims.length === 0) {\n path.push(-1);\n }\n nSteps = summedDims.length + 1;\n for (let i2 = 0; i2 < nSteps; ++i2) {\n steps.push([]);\n }\n const computedTermIndices = [];\n for (let i2 = 0; i2 < path.length; ++i2) {\n const summedDim = path[i2];\n const termIndices = findTermsWithDim(idDims, summedDim);\n for (const termIndex of termIndices) {\n if (computedTermIndices.indexOf(termIndex) === -1) {\n steps[i2].push(termIndex);\n computedTermIndices.push(termIndex);\n }\n }\n }\n return { path, steps };\n}\nfunction isIdentityPermutation(perm) {\n return perm.every((dim, index) => dim === index);\n}\nfunction findTermsWithDim(idDims, dim) {\n const termIndices = [];\n for (let i2 = 0; i2 < idDims.length; ++i2) {\n if (idDims[i2].length === 0 || idDims[i2].indexOf(dim) !== -1 || dim === -1) {\n termIndices.push(i2);\n }\n }\n return termIndices;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/split_util.js\nfunction prepareSplitSize(x, numOrSizeSplits, axis = 0) {\n let splitSizes = [];\n if (typeof numOrSizeSplits === \"number\") {\n assert(x.shape[axis] % numOrSizeSplits === 0, () => \"Number of splits must evenly divide the axis.\");\n splitSizes = new Array(numOrSizeSplits).fill(x.shape[axis] / numOrSizeSplits);\n } else {\n const numOfNegs = numOrSizeSplits.reduce((count2, value) => {\n if (value === -1) {\n count2 += 1;\n }\n return count2;\n }, 0);\n assert(numOfNegs <= 1, () => \"There should be only one negative value in split array.\");\n const negIndex = numOrSizeSplits.indexOf(-1);\n if (negIndex !== -1) {\n const total = numOrSizeSplits.reduce((a, b) => b > 0 ? a + b : a);\n numOrSizeSplits[negIndex] = x.shape[axis] - total;\n }\n assert(x.shape[axis] === numOrSizeSplits.reduce((a, b) => a + b), () => \"The sum of sizes must match the size of the axis dimension.\");\n splitSizes = numOrSizeSplits;\n }\n return splitSizes;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_fill_empty_rows_util.js\nfunction getSparseFillEmptyRowsIndicesDenseShapeMismatch(indicesLength) {\n return `Received SparseTensor with denseShape[0] = 0 but\n indices.shape[0] = ${indicesLength}`;\n}\nfunction getSparseFillEmptyRowsNegativeIndexErrorMessage(index, value) {\n return `indices(${index}, 0) is invalid: ${value} < 0`;\n}\nfunction getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(index, value, limit) {\n return `indices(${index}, 0) is invalid: ${value} >= ${limit}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_reshape_util.js\nfunction getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(dim1, dim2) {\n return `only one output dimension may be -1, not both ${dim1} and ${dim2}`;\n}\nfunction getSparseReshapeNegativeOutputDimErrorMessage(dim, value) {\n return `size ${dim} must be non-negative, not ${value}`;\n}\nfunction getSparseReshapeEmptyTensorZeroOutputDimErrorMessage() {\n return \"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero\";\n}\nfunction getSparseReshapeInputOutputMultipleErrorMessage(inputShape, outputShape) {\n const inputSize = sizeFromShape(inputShape);\n const outputSize = sizeFromShape(outputShape);\n return `Input to reshape is a SparseTensor with ${inputSize}\n dense values, but the requested shape requires a multiple of ${outputSize}. inputShape=${inputShape} outputShape= ${outputShape}`;\n}\nfunction getSparseReshapeInputOutputMismatchErrorMessage(inputShape, outputShape) {\n const inputSize = sizeFromShape(inputShape);\n const outputSize = sizeFromShape(outputShape);\n return `Input to reshape is a tensor with ${inputSize} dense values, but the requested shape has ${outputSize}. inputShape=${inputShape} outputShape=${outputShape}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/sparse/sparse_segment_reduction_util.js\nfunction getSparseSegmentReductionNegativeSegmentIdsErrorMessage() {\n return `segment ids must be >= 0`;\n}\nfunction getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage() {\n return `segment ids are not increasing`;\n}\nfunction getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(segmentId, outputRows) {\n return `Segment id ${segmentId} out of range [0, ${outputRows}), possibly because segmentIds input is not sorted.`;\n}\nfunction getSparseSegmentReductionIndicesOutOfRangeErrorMessage(index, indexValue, inputRows) {\n return `Bad: indices[${index}] == ${indexValue} out of range [0, ${inputRows})`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/segment_util.js\nvar segment_util_exports = {};\n__export(segment_util_exports, {\n collectGatherOpShapeInfo: () => collectGatherOpShapeInfo,\n computeOutShape: () => computeOutShape3,\n segOpComputeOptimalWindowSize: () => segOpComputeOptimalWindowSize\n});\nfunction segOpComputeOptimalWindowSize(inSize, numSegments) {\n let done = false;\n let res;\n if (inSize <= PARALLELIZE_THRESHOLD) {\n res = inSize;\n done = true;\n } else {\n res = nearestDivisor(inSize, Math.floor(Math.sqrt(inSize)));\n }\n while (!done) {\n if (res > numSegments || res === inSize) {\n done = true;\n } else {\n res = nearestDivisor(inSize, res + 1);\n }\n }\n return res;\n}\nfunction computeOutShape3(aShape, axis, numSegments) {\n const outShape = [];\n const rank = aShape.length;\n for (let dim = 0; dim < rank; dim++) {\n if (dim !== axis) {\n outShape.push(aShape[dim]);\n } else {\n outShape.push(numSegments);\n }\n }\n return outShape;\n}\nfunction collectGatherOpShapeInfo(x, indices, axis, batchDims) {\n const indicesRank = indices.shape.length;\n const xRank = x.shape.length;\n if (batchDims !== 0) {\n if (batchDims < -indicesRank || batchDims > indicesRank) {\n throw new Error(`Expect batchDims in the range of [-${indicesRank}, ${indicesRank}], but got ${batchDims}`);\n }\n }\n if (batchDims < 0) {\n batchDims += indicesRank;\n }\n if (batchDims > xRank) {\n throw new Error(`batchDims (${batchDims}) must be less than rank(x) (\n ${xRank}).`);\n }\n if (axis < batchDims) {\n throw new Error(`batchDims (${batchDims}) must be less than or equal to axis (${axis}).`);\n }\n for (let i2 = 0; i2 < batchDims; ++i2) {\n if (x.shape[i2] !== indices.shape[i2]) {\n throw new Error(`x.shape[${i2}]: ${x.shape[i2]} should be equal to indices.shape[${i2}]: ${indices.shape[i2]}.`);\n }\n }\n const dimSize = x.shape[axis];\n const outputShape = [];\n let batchSize = 1;\n let outerSize = 1;\n let sliceSize = 1;\n for (let i2 = 0; i2 < batchDims; ++i2) {\n outputShape.push(x.shape[i2]);\n batchSize *= x.shape[i2];\n }\n for (let i2 = batchDims; i2 < axis; i2++) {\n outputShape.push(x.shape[i2]);\n outerSize *= x.shape[i2];\n }\n for (let i2 = batchDims; i2 < indicesRank; i2++) {\n outputShape.push(indices.shape[i2]);\n }\n for (let i2 = axis + 1; i2 < xRank; i2++) {\n outputShape.push(x.shape[i2]);\n sliceSize *= x.shape[i2];\n }\n return { batchSize, sliceSize, outerSize, dimSize, outputShape };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/backend_util.js\nfunction fromUint8ToStringArray(vals) {\n try {\n return vals.map((val) => decodeString(val));\n } catch (err) {\n throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${err}`);\n }\n}\nfunction fromStringArrayToUint8(strings) {\n return strings.map((s2) => encodeString(s2));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/kernel_impls.js\nvar kernel_impls_exports = {};\n__export(kernel_impls_exports, {\n nonMaxSuppressionV3Impl: () => nonMaxSuppressionV3Impl,\n nonMaxSuppressionV4Impl: () => nonMaxSuppressionV4Impl,\n nonMaxSuppressionV5Impl: () => nonMaxSuppressionV5Impl,\n whereImpl: () => whereImpl\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Abs_grad.js\nvar absGradConfig = {\n kernelName: Abs,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, step(cast(x, \"float32\"), -1)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Acos_grad.js\nvar acosGradConfig = {\n kernelName: Acos,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return {\n x: () => {\n const a = square(cast(x, \"float32\"));\n const b = sqrt(sub(scalar(1), a));\n return neg(div(dy, b));\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Acosh_grad.js\nvar acoshGradConfig = {\n kernelName: Acosh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return {\n x: () => {\n const a = sqrt(sub(square(cast(x, \"float32\")), 1));\n return div(dy, a);\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Add_grad.js\nvar addGradConfig = {\n kernelName: Add,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n let res = dy;\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, a.shape);\n };\n const derB = () => {\n let res = dy;\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, b.shape);\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/AddN_grad.js\nvar addNGradConfig = {\n kernelName: AddN,\n saveAllInputs: true,\n gradFunc: (dy, saved) => {\n const ders = {};\n saved.forEach((_, i2) => {\n ders[i2] = () => dy.clone();\n });\n return ders;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ArgMax_grad.js\nvar argMaxGradConfig = {\n kernelName: ArgMax,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => zerosLike(x) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ArgMin_grad.js\nvar argMinGradConfig = {\n kernelName: ArgMin,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => zerosLike(x) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Asin_grad.js\nvar asinGradConfig = {\n kernelName: Asin,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, sqrt(sub(scalar(1), square(cast(x, \"float32\"))))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Asinh_grad.js\nvar asinhGradConfig = {\n kernelName: Asinh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return {\n x: () => {\n const a = sqrt(add2(scalar(1), square(cast(x, \"float32\"))));\n return div(dy, a);\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Atan2_grad.js\nvar atan2GradConfig = {\n kernelName: Atan2,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const d = add2(square(a), square(b));\n let res = mul(dy, div(b, d));\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, a.shape);\n };\n const derB = () => {\n const d = add2(square(a), square(b));\n let res = neg(mul(dy, div(a, d)));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, b.shape);\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Atan_grad.js\nvar atanGradConfig = {\n kernelName: Atan,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, add2(square(cast(x, \"float32\")), 1)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Atanh_grad.js\nvar atanhGradConfig = {\n kernelName: Atanh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, sub(scalar(1), square(cast(x, \"float32\")))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/avg_pool_3d_grad.js\nfunction avgPool3dGrad_(dy, input2, filterSize, strides, pad3, dimRoundingMode) {\n const $dy = convertToTensor(dy, \"dy\", \"avgPool3dGrad\");\n const $input = convertToTensor(input2, \"input\", \"avgPool3dGrad\");\n let dy5D = $dy;\n let input5D = $input;\n let reshapedTo5D = false;\n if ($input.rank === 4) {\n reshapedTo5D = true;\n dy5D = reshape($dy, [1, $dy.shape[0], $dy.shape[1], $dy.shape[2], $dy.shape[3]]);\n input5D = reshape($input, [\n 1,\n $input.shape[0],\n $input.shape[1],\n $input.shape[2],\n $input.shape[3]\n ]);\n }\n assert(dy5D.rank === 5, () => `Error in avgPool3dGrad: dy must be rank 5 but got rank ${dy5D.rank}.`);\n assert(input5D.rank === 5, () => `Error in avgPool3dGrad: input must be rank 5 but got rank ${input5D.rank}.`);\n checkPadOnDimRoundingMode(\"avgPool3dGrad\", pad3, dimRoundingMode);\n const inputs = { dy: dy5D, input: input5D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n const res = ENGINE.runKernel(AvgPool3DGrad, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar avgPool3dGrad = op({ avgPool3dGrad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/AvgPool3D_grad.js\nvar avgPool3DGradConfig = {\n kernelName: AvgPool3D,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n return {\n x: () => avgPool3dGrad(dy, x, filterSize, strides, pad3, dimRoundingMode)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/avg_pool_grad.js\nfunction avgPoolGrad_(dy, input2, filterSize, strides, pad3) {\n const $dy = convertToTensor(dy, \"dy\", \"avgPoolGrad\");\n const $input = convertToTensor(input2, \"input\", \"avgPoolGrad\");\n assert($input.rank === $dy.rank, () => `Rank of input (${$input.rank}) does not match rank of dy (${$dy.rank})`);\n let input4D = $input;\n let dy4D = $dy;\n let reshapedTo4D = false;\n if ($input.rank === 3) {\n reshapedTo4D = true;\n input4D = reshape($input, [1, $input.shape[0], $input.shape[1], $input.shape[2]]);\n dy4D = reshape($dy, [1, $dy.shape[0], $dy.shape[1], $dy.shape[2]]);\n }\n assert(dy4D.rank === 4, () => `Error in avgPoolGrad: dy must be rank 4 but got rank ${dy4D.rank}.`);\n assert(input4D.rank === 4, () => `Error in avgPoolGrad: input must be rank 4 but got rank ${input4D.rank}.`);\n const inputs = { dy: dy4D, input: input4D };\n const attrs = { filterSize, strides, pad: pad3 };\n const res = ENGINE.runKernel(AvgPoolGrad, inputs, attrs);\n if (reshapedTo4D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);\n }\n return res;\n}\nvar avgPoolGrad = op({ avgPoolGrad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/AvgPool_grad.js\nvar avgPoolGradConfig = {\n kernelName: AvgPool,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { filterSize, strides, pad: pad3 } = attrs;\n return { x: () => avgPoolGrad(dy, x, filterSize, strides, pad3) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/BatchMatMul_grad.js\nvar batchMatMulGradConfig = {\n kernelName: BatchMatMul,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved, attrs) => {\n const [a, b] = saved;\n const { transposeA, transposeB } = attrs;\n if (!transposeA && !transposeB) {\n return {\n a: () => matMul(dy, b, false, true),\n b: () => matMul(a, dy, true, false)\n };\n } else if (!transposeA && transposeB) {\n return {\n a: () => matMul(dy, b, false, false),\n b: () => matMul(dy, a, true, false)\n };\n } else if (transposeA && !transposeB) {\n return {\n a: () => matMul(b, dy, false, true),\n b: () => matMul(a, dy, false, false)\n };\n } else {\n return {\n a: () => matMul(b, dy, true, true),\n b: () => matMul(dy, a, true, true)\n };\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/BatchToSpaceND_grad.js\nvar batchToSpaceNDGradConfig = {\n kernelName: BatchToSpaceND,\n gradFunc: (dy, saved, attrs) => {\n const { blockShape, crops } = attrs;\n return { x: () => spaceToBatchND(dy, blockShape, crops) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/BroadcastTo_grad.js\nvar broadcastToGradConfig = {\n kernelName: BroadcastTo,\n gradFunc: (dy, saved, attrs) => {\n const broadCastToAttrs = attrs;\n const inputShape = broadCastToAttrs.inputShape;\n const outputShape = broadCastToAttrs.shape;\n const reps = Array.from(outputShape);\n for (let i2 = inputShape.length - 1; i2 >= 0; i2--) {\n if (inputShape[i2] === outputShape[i2]) {\n reps[i2] = 1;\n } else if (inputShape[i2] !== 1) {\n throw new Error(`broadcastTo(): [${inputShape}] cannot be broadcast to [${outputShape}].`);\n }\n }\n const axes = [];\n for (let i2 = 0; i2 < reps.length; i2++) {\n if (reps[i2] > 1) {\n axes.push(i2);\n }\n }\n return { x: () => sum2(dy, axes, true) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Cast_grad.js\nvar castGradConfig = {\n kernelName: Cast,\n gradFunc: (dy) => {\n return { x: () => dy.clone() };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Ceil_grad.js\nvar ceilGradConfig = {\n kernelName: Ceil,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ClipByValue_grad.js\nvar clipByValueGradConfig = {\n kernelName: ClipByValue,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { clipValueMin, clipValueMax } = attrs;\n return {\n x: () => where(logicalAnd(greaterEqual(x, clipValueMin), lessEqual(x, clipValueMax)), dy, zerosLike(dy))\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ComplexAbs_grad.js\nvar complexAbsGradConfig = {\n kernelName: ComplexAbs,\n inputsToSave: [\"x\"],\n gradFunc: absGradConfig.gradFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Concat_grad.js\nvar concatGradConfig = {\n kernelName: Concat,\n saveAllInputs: true,\n gradFunc: (dy, saved, attrs) => {\n const shapes = saved.map((t2) => t2.shape);\n const { axis } = attrs;\n const $axis = parseAxisParam(axis, saved[0].shape)[0];\n const sizeSplits = shapes.map((s2) => s2[$axis]);\n const derTensors = split(dy, sizeSplits, $axis);\n return derTensors.map((t2) => () => t2);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Conv2D_grad.js\nvar conv2DGradConfig = {\n kernelName: Conv2D,\n inputsToSave: [\"x\", \"filter\"],\n gradFunc: (dy, saved, attrs) => {\n const [x4D, $filter] = saved;\n const { dilations, strides, pad: pad3, dataFormat } = attrs;\n assert(tupleValuesAreOne(dilations), () => `Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);\n return {\n x: () => conv2DBackpropInput(x4D.shape, dy, $filter, strides, pad3, dataFormat),\n filter: () => conv2DBackpropFilter(x4D, dy, $filter.shape, strides, pad3, dataFormat)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Conv2DBackpropInput_grad.js\nvar conv2DBackpropInputGradConfig = {\n kernelName: Conv2DBackpropInput,\n inputsToSave: [\"dy\", \"filter\"],\n gradFunc: (ddx, saved, attrs) => {\n const [dy, filter] = saved;\n const { strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n return {\n dy: () => conv2d(ddx, filter, strides, pad3, dataFormat, 1, dimRoundingMode),\n filter: () => conv2DBackpropFilter(ddx, dy, filter.shape, strides, pad3, dataFormat, dimRoundingMode)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/conv3d_backprop_filter.js\nfunction conv3DBackpropFilter_(x, dy, filterShape, strides, pad3) {\n let x5D = x;\n if (x.rank === 4) {\n x5D = reshape(x, [1, x.shape[0], x.shape[1], x.shape[2], x.shape[3]]);\n }\n let dy5D = dy;\n if (dy5D.rank === 4) {\n dy5D = reshape(dy, [1, dy.shape[0], dy.shape[1], dy.shape[2], dy.shape[3]]);\n }\n assert(x5D.rank === 5, () => `Error in conv3dDerFilter: input must be rank 5, but got shape ${x5D.shape}.`);\n assert(dy5D.rank === 5, () => `Error in conv3dDerFilter: dy must be rank 5, but got shape ${dy5D.shape}.`);\n assert(filterShape.length === 5, () => `Error in conv3dDerFilter: filterShape must be length 5, but got ${filterShape}.`);\n assert(x5D.shape[4] === filterShape[3], () => `Error in conv3dDerFilter: depth of input ${x5D.shape[4]}) must match input depth in filter (${filterShape[3]}.`);\n assert(dy5D.shape[4] === filterShape[4], () => `Error in conv3dDerFilter: depth of dy (${dy5D.shape[4]}) must match output depth for filter (${filterShape[4]}).`);\n const inputs = { x: x5D, dy: dy5D };\n const attrs = { strides, pad: pad3, filterShape };\n return ENGINE.runKernel(Conv3DBackpropFilterV2, inputs, attrs);\n}\nvar conv3DBackpropFilter = op({ conv3DBackpropFilter_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Conv3D_grad.js\nvar conv3DGradConfig = {\n kernelName: Conv3D,\n inputsToSave: [\"x\", \"filter\"],\n gradFunc: (dy, saved, attrs) => {\n const { dilations, strides, pad: pad3 } = attrs;\n assert(tupleValuesAreOne(dilations), () => `Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);\n const [x5D, $filter] = saved;\n return {\n x: () => conv3DBackpropInput(x5D.shape, dy, $filter, strides, pad3),\n filter: () => conv3DBackpropFilter(x5D, dy, $filter.shape, strides, pad3)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Cos_grad.js\nvar cosGradConfig = {\n kernelName: Cos,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(neg(sin(cast(x, \"float32\"))), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Cosh_grad.js\nvar coshGradConfig = {\n kernelName: Cosh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(sinh(cast(x, \"float32\")), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Cumsum_grad.js\nvar cumsumGradConfig = {\n kernelName: Cumsum,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return {\n x: () => {\n const permutation = getAxesPermutation([axis], x.rank);\n let out = cumsum(dy, axis, exclusive, !reverse5);\n if (permutation != null) {\n out = transpose(out, permutation);\n }\n return out;\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/DepthwiseConv2dNative_grad.js\nvar depthwiseConv2dNativeGradConfig = {\n kernelName: DepthwiseConv2dNative,\n inputsToSave: [\"x\", \"filter\"],\n gradFunc: (dy, saved, attrs) => {\n const { dilations, strides, pad: pad3, dimRoundingMode } = attrs;\n const $dilations = dilations == null ? [1, 1] : dilations;\n assert(tupleValuesAreOne($dilations), () => `Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${$dilations}'`);\n const [x, filter] = saved;\n assert(x.rank === 4, () => `Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${x.rank}.`);\n assert(filter.rank === 4, () => `Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${filter.rank}.`);\n assert(x.shape[3] === filter.shape[2], () => `Error in gradient of depthwiseConv2d: number of input channels (${x.shape[3]}) must match the inChannels dimension in filter ${filter.shape[2]}.`);\n assert(eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'.`);\n checkPadOnDimRoundingMode(\"depthwiseConv2d\", pad3, dimRoundingMode);\n return {\n x: () => depthwiseConv2dNativeBackpropInput(x.shape, dy, filter, strides, pad3, $dilations, dimRoundingMode),\n filter: () => depthwiseConv2dNativeBackpropFilter(x, dy, filter.shape, strides, pad3, $dilations, dimRoundingMode)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Dilation2D_grad.js\nvar dilation2dGradConfig = {\n kernelName: Dilation2D,\n inputsToSave: [\"x\", \"filter\"],\n gradFunc: (dy, saved, attrs) => {\n const [x, filter] = saved;\n const inputInputs = { x, filter, dy };\n const filterInputs = { x, filter, dy };\n return {\n x: () => ENGINE.runKernel(Dilation2DBackpropInput, inputInputs, attrs),\n filter: () => ENGINE.runKernel(Dilation2DBackpropFilter, filterInputs, attrs)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Elu_grad.js\nvar eluGradConfig = {\n kernelName: Elu,\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [y] = saved;\n const inputs = { dy, y };\n return { x: () => ENGINE.runKernel(EluGrad, inputs) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Erf_grad.js\nvar erfGradConfig = {\n kernelName: Erf,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n const a = mul(exp(neg(square(x))), 2 / Math.sqrt(Math.PI));\n return { x: () => mul(dy, a) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Exp_grad.js\nvar expGradConfig = {\n kernelName: Exp,\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [y] = saved;\n return { x: () => mul(dy, y) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ExpandDims_grad.js\nvar expandDimsGradConfig = {\n kernelName: ExpandDims,\n inputsToSave: [\"input\"],\n gradFunc: (dy, saved) => {\n const [input2] = saved;\n return { input: () => reshape(dy, input2.shape) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Expm1_grad.js\nvar expm1GradConfig = {\n kernelName: Expm1,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, exp(x)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Floor_grad.js\nvar floorGradConfig = {\n kernelName: Floor,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/FloorDiv_grad.js\nvar floorDivGradConfig = {\n kernelName: FloorDiv,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const res = div(dy, cast(b, \"float32\"));\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), a.shape);\n }\n return res;\n };\n const derB = () => {\n let res = mul(dy, cast(a, \"float32\"));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = reshape(sum2(res, reduceAxes), b.shape);\n }\n const tmp = square(b);\n return neg(div(res, cast(tmp, \"float32\")));\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/FusedBatchNorm_grad.js\nvar fusedBatchNormGradConfig = {\n kernelName: FusedBatchNorm,\n inputsToSave: [\"x\", \"mean\", \"variance\", \"scale\"],\n gradFunc: (dy, saved, attrs) => {\n const { varianceEpsilon } = attrs;\n const [x, mean5, variance, scale2] = saved;\n const scaleValue = scale2 == null ? scalar(1) : scale2;\n const reductionAxes = getReductionAxes(mean5.shape, x.shape);\n const tileShape = [];\n if (mean5.rank === 1) {\n for (let i2 = 0; i2 < x.shape.length - 1; ++i2) {\n tileShape.push(x.shape[i2]);\n }\n tileShape.push(1);\n }\n const xMinusMean = sub(x, mean5);\n const dyTimesScaleValue = mul(dy, scaleValue);\n const oneOverSqrtVariance = rsqrt(add2(variance, scalar(varianceEpsilon)));\n const minusHalfRCube = mul(mul(mul(oneOverSqrtVariance, oneOverSqrtVariance), oneOverSqrtVariance), scalar(-0.5));\n const derX = () => {\n if (mean5.rank === 1) {\n return reshape(mul(mul(dy, tile(reshape(oneOverSqrtVariance, [1, 1, 1, mean5.shape[0]]), tileShape)), scaleValue), x.shape);\n } else {\n return reshape(mul(mul(dy, oneOverSqrtVariance), scaleValue), x.shape);\n }\n };\n const derMean = () => {\n let meanDer = mul(mul(oneOverSqrtVariance, scalar(-1)), dyTimesScaleValue);\n if (mean5.rank === 1) {\n meanDer = sum2(meanDer, reductionAxes);\n }\n return reshape(meanDer, mean5.shape);\n };\n const derVariance = () => {\n let varianceDer = mul(mul(minusHalfRCube, xMinusMean), dyTimesScaleValue);\n if (mean5.rank === 1) {\n varianceDer = sum2(varianceDer, reductionAxes);\n }\n return reshape(varianceDer, mean5.shape);\n };\n const derScale = () => {\n const xMinusMean2TimesRsqrt = mul(xMinusMean, oneOverSqrtVariance);\n let scaleDer = mul(dy, xMinusMean2TimesRsqrt);\n if (mean5.rank === 1) {\n scaleDer = sum2(scaleDer, reductionAxes);\n }\n return reshape(scaleDer, mean5.shape);\n };\n const derOffset = () => {\n let offsetDer = dy;\n if (mean5.rank === 1) {\n offsetDer = sum2(offsetDer, reductionAxes);\n }\n return reshape(offsetDer, mean5.shape);\n };\n return {\n x: derX,\n mean: derMean,\n variance: derVariance,\n scale: derScale,\n offset: derOffset\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/GatherV2_grad.js\nvar gatherGradConfig = {\n kernelName: GatherV2,\n inputsToSave: [\"x\", \"indices\"],\n gradFunc: (dy, saved, attrs) => {\n const [x, indices] = saved;\n const { axis } = attrs;\n const parsedAxis = parseAxisParam(axis, x.shape)[0];\n const derX = () => {\n const paramsShape = x.shape;\n const indicesSize = indices.size;\n const outerShape = paramsShape.slice(0, parsedAxis);\n const outerDims = outerShape.length;\n const innerShape = paramsShape.slice(axis, paramsShape.length).slice(1);\n const innerDims = innerShape.length;\n const outerAxesIndices = arrayRange(0, outerDims);\n const innerAxesIndices = arrayRange(outerDims + 1, outerDims + 1 + innerDims);\n const valuesShape = arrayConcat([outerShape, [indicesSize], innerShape]);\n const values = reshape(dy, valuesShape);\n const reshapedIndices = reshape(indices, [indicesSize]);\n const transposeDims = arrayConcat([[outerDims], outerAxesIndices, innerAxesIndices]);\n const valuesTranspose = transpose(values, transposeDims);\n let paramsGrad = unsortedSegmentSum(valuesTranspose, reshapedIndices, x.shape[parsedAxis]);\n const invertTransposeDims = getUndoAxesPermutation(transposeDims);\n paramsGrad = transpose(paramsGrad, invertTransposeDims);\n return paramsGrad;\n };\n return { x: derX, indices: () => indices };\n }\n};\nfunction arrayRange(start, stop) {\n const result = [];\n for (let i2 = start; i2 < stop; ++i2) {\n result.push(i2);\n }\n return result;\n}\nfunction arrayConcat(arrays) {\n const result = [];\n for (let i2 = 0; i2 < arrays.length; ++i2) {\n for (let j = 0; j < arrays[i2].length; ++j) {\n result.push(arrays[i2][j]);\n }\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/GreaterEqual_grad.js\nvar greaterEqualGradConfig = {\n kernelName: GreaterEqual,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n return { a: () => zerosLike(a), b: () => zerosLike(b) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Identity_grad.js\nvar identityGradConfig = {\n kernelName: Identity,\n gradFunc: (dy) => {\n return { x: () => cast(dy, \"float32\") };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/IsFinite_grad.js\nvar isFiniteGradConfig = {\n kernelName: IsFinite,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/IsInf_grad.js\nvar isInfGradConfig = {\n kernelName: IsInf,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/IsNan_grad.js\nvar isNanGradConfig = {\n kernelName: IsNan,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/LeakyRelu_grad.js\nvar leakyReluGradConfig = {\n kernelName: LeakyRelu,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { alpha } = attrs;\n const mask = greater(x, 0);\n return { x: () => where(mask, dy, mul(dy, alpha)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Log1p_grad.js\nvar log1pGradConfig = {\n kernelName: Log1p,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, add2(x, 1)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Log_grad.js\nvar logGradConfig = {\n kernelName: Log,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, cast(x, \"float32\")) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/LogSoftmax_grad.js\nvar logSoftmaxGradConfig = {\n kernelName: LogSoftmax,\n inputsToSave: [],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [value] = saved;\n const { axis } = attrs;\n return {\n logits: () => {\n const keepDims = true;\n const softmax7 = exp(value);\n return sub(dy, mul(sum2(dy, axis, keepDims), softmax7));\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/local_response_normalization_backprop.js\nfunction localResponseNormalizationBackprop_(x, y, dy, depthRadius = 5, bias = 1, alpha = 1, beta = 0.5) {\n const inputs = { x, y, dy };\n const attrs = { depthRadius, bias, alpha, beta };\n return ENGINE.runKernel(LRNGrad, inputs, attrs);\n}\nvar localResponseNormalizationBackprop = op({ localResponseNormalizationBackprop_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/LRN_grad.js\nvar lrnGradConfig = {\n kernelName: LRN,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [x, y] = saved;\n const { depthRadius, bias, alpha, beta } = attrs;\n return {\n x: () => localResponseNormalizationBackprop(x, y, dy, depthRadius, bias, alpha, beta)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/min_max_grad_util.js\nfunction gradForMinAndMax(dy, y, xOrig, origAxes) {\n if (y.rank < xOrig.rank) {\n y = reshape(y, expandShapeToKeepDim(y.shape, origAxes));\n }\n if (dy.rank < xOrig.rank) {\n dy = reshape(dy, expandShapeToKeepDim(dy.shape, origAxes));\n }\n return {\n x: () => {\n const dx = mul(dy, cast(equal(xOrig, y), dy.dtype));\n return dx;\n }\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Max_grad.js\nvar maxGradConfig = {\n kernelName: Max,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const maxAttrs = attrs;\n const { reductionIndices } = maxAttrs;\n const x = saved[0];\n const y = saved[1];\n const origAxes = parseAxisParam(reductionIndices, x.shape);\n const maxGrad = gradForMinAndMax(dy, y, x, origAxes);\n return {\n x: () => {\n return maxGrad[\"x\"]();\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Maximum_grad.js\nvar maximumGradConfig = {\n kernelName: Maximum,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const derA = () => mul(dy, cast(greaterEqual(a, b), \"float32\"));\n const derB = () => mul(dy, cast(less(a, b), \"float32\"));\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool_3d_grad.js\nfunction maxPool3dGrad_(dy, input2, output, filterSize, strides, pad3, dimRoundingMode) {\n const $dy = convertToTensor(dy, \"dy\", \"maxPool3dGrad\");\n const $input = convertToTensor(input2, \"input\", \"maxPool3dGrad\");\n const $output = convertToTensor(output, \"output\", \"maxPool3dGrad\");\n let dy5D = $dy;\n let input5D = $input;\n let output5D = $output;\n let reshapedTo5D = false;\n if ($input.rank === 4) {\n reshapedTo5D = true;\n dy5D = reshape($dy, [1, $dy.shape[0], $dy.shape[1], $dy.shape[2], $dy.shape[3]]);\n input5D = reshape($input, [\n 1,\n $input.shape[0],\n $input.shape[1],\n $input.shape[2],\n $input.shape[3]\n ]);\n output5D = reshape($output, [\n 1,\n $output.shape[0],\n $output.shape[1],\n $output.shape[2],\n $output.shape[3]\n ]);\n }\n assert(dy5D.rank === 5, () => `Error in maxPool3dGrad: dy must be rank 5 but got rank ${dy5D.rank}.`);\n assert(input5D.rank === 5, () => `Error in maxPool3dGrad: input must be rank 5 but got rank ${input5D.rank}.`);\n assert(output5D.rank === 5, () => `Error in maxPool3dGrad: output must be rank 5 but got rank ${output5D.rank}.`);\n checkPadOnDimRoundingMode(\"maxPool3dGrad\", pad3, dimRoundingMode);\n const inputs = { dy: dy5D, input: input5D, output: output5D };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n const res = ENGINE.runKernel(MaxPool3DGrad, inputs, attrs);\n if (reshapedTo5D) {\n return reshape(res, [res.shape[1], res.shape[2], res.shape[3], res.shape[4]]);\n }\n return res;\n}\nvar maxPool3dGrad = op({ maxPool3dGrad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/MaxPool3D_grad.js\nvar maxPool3DGradConfig = {\n kernelName: MaxPool3D,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [x, y] = saved;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n return {\n x: () => maxPool3dGrad(dy, x, y, filterSize, strides, pad3, dimRoundingMode)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/max_pool_grad.js\nfunction maxPoolGrad_(dy, input2, output, filterSize, strides, pad3, dimRoundingMode) {\n const $dy = convertToTensor(dy, \"dy\", \"maxPoolGrad\");\n const $input = convertToTensor(input2, \"input\", \"maxPoolGrad\");\n const $output = convertToTensor(output, \"output\", \"maxPoolGrad\");\n assert($input.rank === $dy.rank, () => `Rank of input (${$input.rank}) does not match rank of dy (${$dy.rank})`);\n assert($dy.rank === 4, () => `Error in maxPoolGrad: dy must be rank 4 but got rank ${$dy.rank}.`);\n assert($input.rank === 4, () => `Error in maxPoolGrad: input must be rank 4 but got rank ${$input.rank}.`);\n checkPadOnDimRoundingMode(\"maxPoolGrad\", pad3, dimRoundingMode);\n const inputs = { dy: $dy, input: $input, output: $output };\n const attrs = { filterSize, strides, pad: pad3, dimRoundingMode };\n return ENGINE.runKernel(MaxPoolGrad, inputs, attrs);\n}\nvar maxPoolGrad = op({ maxPoolGrad_ });\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/MaxPool_grad.js\nvar maxPoolGradConfig = {\n kernelName: MaxPool,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [x, y] = saved;\n const { filterSize, strides, pad: pad3 } = attrs;\n return {\n x: () => maxPoolGrad(dy, x, y, filterSize, strides, pad3)\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Mean_grad.js\nvar meanGradConfig = {\n kernelName: Mean,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { axis } = attrs;\n const axes = parseAxisParam(axis, x.shape);\n const shapes = computeOutAndReduceShapes(x.shape, axes);\n const reduceShape = shapes[1];\n const reduceSize = sizeFromShape(reduceShape);\n const derX = () => {\n const expandedDyShape = x.shape.slice();\n axes.forEach((axis2) => {\n expandedDyShape[axis2] = 1;\n });\n const expandedDy = reshape(dy, expandedDyShape);\n const res = div(mul(expandedDy, ones2(x.shape, \"float32\")), reduceSize);\n return res;\n };\n return { x: derX };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Min_grad.js\nvar minGradConfig = {\n kernelName: Min,\n inputsToSave: [\"x\"],\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const minAttrs = attrs;\n const { axis } = minAttrs;\n const [x, y] = saved;\n const origAxes = parseAxisParam(axis, x.shape);\n const minGrad = gradForMinAndMax(dy, y, x, origAxes);\n return {\n x: () => {\n return minGrad[\"x\"]();\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Minimum_grad.js\nvar minimumGradConfig = {\n kernelName: Minimum,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const derA = () => mul(dy, cast(lessEqual(a, b), \"float32\"));\n const derB = () => mul(dy, cast(greater(a, b), \"float32\"));\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/MirrorPad_grad.js\nvar mirrorPadGradConfig = {\n kernelName: MirrorPad,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const x = saved[0];\n const { paddings } = attrs;\n const begin = paddings.map((p2) => p2[0]);\n return { x: () => slice(dy, begin, x.shape) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Mod_grad.js\nvar modGradConfig = {\n kernelName: Mod,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(dy, reduceAxes), a.shape);\n }\n return dy;\n };\n const derB = () => {\n const res = mul(dy, neg(floor(div(a, b))));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), b.shape);\n }\n return res;\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Multiply_grad.js\nvar multiplyGradConfig = {\n kernelName: Multiply,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const res = mul(dy, cast(b, \"float32\"));\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), a.shape);\n }\n return res;\n };\n const derB = () => {\n const res = mul(dy, cast(a, \"float32\"));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), b.shape);\n }\n return res;\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Neg_grad.js\nvar negGradConfig = {\n kernelName: Neg,\n gradFunc: (dy) => {\n return { x: () => neg(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/OneHot_grad.js\nvar oneHotGradConfig = {\n kernelName: OneHot,\n inputsToSave: [\"indices\"],\n gradFunc: (dy, saved) => {\n const indices = saved[0];\n return { indices: () => zeros(indices.shape, \"float32\") };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/OnesLike_grad.js\nvar onesLikeGradConfig = {\n kernelName: OnesLike,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Pack_grad.js\nvar packGradConfig = {\n kernelName: Pack,\n saveAllInputs: true,\n gradFunc: (dy, saved, attrs) => {\n const { axis } = attrs;\n const derTensors = unstack(dy, axis);\n return derTensors.map((t2) => () => t2);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/PadV2_grad.js\nvar padV2GradConfig = {\n kernelName: PadV2,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const x = saved[0];\n const { paddings } = attrs;\n const begin = paddings.map((p2) => p2[0]);\n return { x: () => slice(dy, begin, x.shape) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Pow_grad.js\nvar powGradConfig = {\n kernelName: Pow,\n inputsToSave: [\"a\", \"b\"],\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [a, b, y] = saved;\n const base = a;\n const exp5 = b;\n const outShape = assertAndGetBroadcastShape(base.shape, exp5.shape);\n const derBase = () => {\n const expFloat = cast(exp5, \"float32\");\n let res = mul(dy, mul(expFloat, pow(base, sub(expFloat, scalar(1)))));\n const reduceAxes = getReductionAxes(base.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, base.shape);\n };\n const derExp = () => {\n const condition = greater(base, 0);\n const logBase = where(condition, log2(base), zerosLike(base));\n let res = mul(dy, mul(y, logBase));\n const reduceAxes = getReductionAxes(exp5.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, exp5.shape);\n };\n return { a: derBase, b: derExp };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Prelu_grad.js\nvar preluGradConfig = {\n kernelName: Prelu,\n inputsToSave: [\"x\", \"alpha\"],\n gradFunc: (dy, saved) => {\n const [x, alpha] = saved;\n const mask = greater(x, 0);\n return {\n x: () => where(mask, dy, mul(dy, alpha)),\n alpha: () => {\n let res = where(mask, zerosLike(dy), mul(dy, x));\n const reduceAxes = getReductionAxes(alpha.shape, dy.shape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, alpha.shape);\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Prod_grad.js\nfunction prodGradFn_(x, dy, axis) {\n const expandedYShape = x.shape.slice();\n expandedYShape[axis] = 1;\n const expandedDy = reshape(dy, expandedYShape);\n const xCumProd = cumprod(x, axis, true, false);\n const xCumRevProd = cumprod(x, axis, true, true);\n const dx = mul(xCumProd, xCumRevProd);\n return mul(expandedDy, dx);\n}\nfunction prodsGradFn_(x, dy, axis) {\n const xRank = x.shape.length;\n const finalProdAxis = xRank - axis.length;\n const xPermutation = backend_util_exports.getAxesPermutation(axis, xRank);\n let permutedX = x;\n if (xPermutation != null) {\n permutedX = transpose(x, xPermutation);\n }\n const newShape = permutedX.shape.slice();\n const removedShape = newShape.splice(xRank - axis.length, axis.length);\n const endPartShape = removedShape.reduce((p2, c) => p2 * c, 1);\n newShape.push(endPartShape);\n const reshapedPermutedX = permutedX.reshape(newShape);\n let prodGrad = prodGradFn_(reshapedPermutedX, dy, finalProdAxis);\n prodGrad = prodGrad.reshape(permutedX.shape);\n if (xPermutation != null) {\n const undoPermutation = backend_util_exports.getUndoAxesPermutation(xPermutation);\n prodGrad = transpose(prodGrad, undoPermutation);\n }\n return prodGrad;\n}\nvar prodGradConfig = {\n kernelName: Prod,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { axis } = attrs;\n let axisArr = [];\n if (axis === void 0 || axis === null) {\n axisArr = x.shape.map((_, i2) => i2);\n } else if (typeof axis === \"number\") {\n axisArr = [axis];\n } else {\n axisArr = axis;\n }\n return { x: () => prodsGradFn_(x, dy, axisArr) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/RealDiv_grad.js\nvar divGradConfig = {\n kernelName: RealDiv,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n const res = div(dy, cast(b, \"float32\"));\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n return reshape(sum2(res, reduceAxes), a.shape);\n }\n return res;\n };\n const derB = () => {\n let res = mul(dy, cast(a, \"float32\"));\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = reshape(sum2(res, reduceAxes), b.shape);\n }\n const tmp = square(b);\n return neg(div(res, cast(tmp, \"float32\")));\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Reciprocal_grad.js\nvar reciprocalGradConfig = {\n kernelName: Reciprocal,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, neg(square(x))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Relu6_grad.js\nvar relu6GradConfig = {\n kernelName: Relu6,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n const mask = mul(lessEqual(x, 6), step(x));\n return { x: () => mul(dy, cast(mask, \"float32\")) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Relu_grad.js\nvar reluGradConfig = {\n kernelName: Relu,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, cast(step(x), \"float32\")) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Reshape_grad.js\nvar reshapeGradConfig = {\n kernelName: Reshape,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => reshape(dy, x.shape) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ResizeBilinear_grad.js\nvar resizeBilinearGradConfig = {\n kernelName: ResizeBilinear,\n inputsToSave: [\"images\"],\n gradFunc: (dy, saved, attrs) => {\n const [images] = saved;\n const inputs = { dy, images };\n const imagesDer = () => ENGINE.runKernel(ResizeBilinearGrad, inputs, attrs);\n return { images: imagesDer };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ResizeNearestNeighbor_grad.js\nvar resizeNearestNeighborGradConfig = {\n kernelName: ResizeNearestNeighbor,\n inputsToSave: [\"images\"],\n gradFunc: (dy, saved, attrs) => {\n const [images] = saved;\n const inputs = { dy, images };\n const imagesDer = () => ENGINE.runKernel(ResizeNearestNeighborGrad, inputs, attrs);\n return { images: imagesDer };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Reverse_grad.js\nvar reverseGradConfig = {\n kernelName: Reverse,\n gradFunc: (dy, saved, attrs) => {\n const { dims } = attrs;\n const axes = parseAxisParam(dims, dy.shape);\n return { x: () => reverse(dy, axes) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Round_grad.js\nvar roundGradConfig = {\n kernelName: Round,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Rsqrt_grad.js\nvar rsqrtGradConfig = {\n kernelName: Rsqrt,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => neg(div(dy, mul(pow(x, 1.5), 2))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Select_grad.js\nvar selectGradConfig = {\n kernelName: Select,\n inputsToSave: [\"condition\"],\n gradFunc: (dy, saved) => {\n const [condition] = saved;\n return {\n condition: () => cast(zerosLike(condition), \"float32\"),\n t: () => mul(dy, cast(condition, dy.dtype)),\n e: () => mul(dy, cast(logicalNot(condition), dy.dtype))\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Selu_grad.js\nvar seluGradConfig = {\n kernelName: Selu,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return {\n x: () => {\n const mask = greater(x, scalar(0));\n const scaleAlpha2 = scalar(SELU_SCALEALPHA);\n const scale2 = scalar(SELU_SCALE);\n const greaterThanZeroDer = mul(dy, scale2);\n const lessEqualZeroDer = mul(mul(dy, scaleAlpha2), exp(cast(x, \"float32\")));\n return where(mask, greaterThanZeroDer, lessEqualZeroDer);\n }\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sigmoid_grad.js\nvar sigmoidGradConfig = {\n kernelName: Sigmoid,\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [y] = saved;\n return { x: () => mul(dy, mul(y, sub(scalar(1), y))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sign_grad.js\nvar signGradConfig = {\n kernelName: Sign,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sin_grad.js\nvar sinGradConfig = {\n kernelName: Sin,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(cos(cast(x, \"float32\")), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sinh_grad.js\nvar sinhGradConfig = {\n kernelName: Sinh,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(cosh(cast(x, \"float32\")), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Slice_grad.js\nvar sliceGradConfig = {\n kernelName: Slice,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { begin, size } = attrs;\n const inputShape = x.shape;\n const [begin_, size_] = parseSliceParams(x, begin, size);\n const paddings = [];\n for (let i2 = 0; i2 < dy.rank; i2++) {\n paddings.push([begin_[i2], inputShape[i2] - begin_[i2] - size_[i2]]);\n }\n return { x: () => pad(dy, paddings) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Softmax_grad.js\nvar softmaxGradConfig = {\n kernelName: Softmax,\n outputsToSave: [true],\n gradFunc: (dy, saved, attrs) => {\n const [y] = saved;\n const { dim } = attrs;\n const keepDims = true;\n const dyTimesY = mul(dy, y);\n return {\n logits: () => sub(dyTimesY, mul(sum2(dyTimesY, [dim], keepDims), y))\n };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Softplus_grad.js\nvar softplusGradConfig = {\n kernelName: Softplus,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, sigmoid(x)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/SpaceToBatchND_grad.js\nvar spaceToBatchNDGradConfig = {\n kernelName: SpaceToBatchND,\n gradFunc: (dy, saved, attrs) => {\n const { blockShape, paddings } = attrs;\n return { x: () => batchToSpaceND(dy, blockShape, paddings) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/SplitV_grad.js\nvar splitVGradConfig = {\n kernelName: SplitV,\n gradFunc: (dy, saved, attrs) => {\n const { axis } = attrs;\n return { x: () => concat(dy, axis) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sqrt_grad.js\nvar sqrtGradConfig = {\n kernelName: Sqrt,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, mul(sqrt(cast(x, \"float32\")), 2)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Square_grad.js\nvar squareGradConfig = {\n kernelName: Square,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => mul(dy, mul(cast(x, \"float32\"), 2)) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/SquaredDifference_grad.js\nvar squaredDifferenceGradConfig = {\n kernelName: SquaredDifference,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const two = scalar(2);\n const derA = () => mul(dy, mul(two, sub(a, b)));\n const derB = () => mul(dy, mul(two, sub(b, a)));\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Step_grad.js\nvar stepGradConfig = {\n kernelName: Step,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sub_grad.js\nvar subGradConfig = {\n kernelName: Sub,\n inputsToSave: [\"a\", \"b\"],\n gradFunc: (dy, saved) => {\n const [a, b] = saved;\n const outShape = assertAndGetBroadcastShape(a.shape, b.shape);\n const derA = () => {\n let res = dy;\n const reduceAxes = getReductionAxes(a.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(res, a.shape);\n };\n const derB = () => {\n let res = dy;\n const reduceAxes = getReductionAxes(b.shape, outShape);\n if (reduceAxes.length > 0) {\n res = sum2(res, reduceAxes);\n }\n return reshape(neg(res), b.shape);\n };\n return { a: derA, b: derB };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Sum_grad.js\nvar sumGradConfig = {\n kernelName: Sum,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const expandedDyShape = x.shape.slice();\n const { axis } = attrs;\n const axes = parseAxisParam(axis, x.shape);\n axes.forEach((axis2) => {\n expandedDyShape[axis2] = 1;\n });\n const expandedDy = reshape(dy, expandedDyShape);\n const derX = mul(expandedDy, ones2(x.shape, \"float32\"));\n return { x: () => derX };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Tan_grad.js\nvar tanGradConfig = {\n kernelName: Tan,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved) => {\n const [x] = saved;\n return { x: () => div(dy, square(cos(x))) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Tanh_grad.js\nvar tanhGradConfig = {\n kernelName: Tanh,\n outputsToSave: [true],\n gradFunc: (dy, saved) => {\n const [y] = saved;\n return { x: () => mul(sub(scalar(1), square(y)), dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Tile_grad.js\nvar tileGradConfig = {\n kernelName: Tile,\n inputsToSave: [\"x\"],\n gradFunc: (dy, saved, attrs) => {\n const [x] = saved;\n const { reps } = attrs;\n const derX = () => {\n let xGrad = zerosLike(x);\n if (x.rank === 1) {\n for (let i2 = 0; i2 < reps[0]; ++i2) {\n xGrad = add2(xGrad, slice(dy, [i2 * x.shape[0]], [x.shape[0]]));\n }\n } else if (x.rank === 2) {\n for (let i2 = 0; i2 < reps[0]; ++i2) {\n for (let j = 0; j < reps[1]; ++j) {\n xGrad = add2(xGrad, slice(dy, [i2 * x.shape[0], j * x.shape[1]], [\n x.shape[0],\n x.shape[1]\n ]));\n }\n }\n } else if (x.rank === 3) {\n for (let i2 = 0; i2 < reps[0]; ++i2) {\n for (let j = 0; j < reps[1]; ++j) {\n for (let k = 0; k < reps[2]; ++k) {\n xGrad = add2(xGrad, slice(dy, [i2 * x.shape[0], j * x.shape[1], k * x.shape[2]], [x.shape[0], x.shape[1], x.shape[2]]));\n }\n }\n }\n } else if (x.rank === 4) {\n for (let i2 = 0; i2 < reps[0]; ++i2) {\n for (let j = 0; j < reps[1]; ++j) {\n for (let k = 0; k < reps[2]; ++k) {\n for (let l3 = 0; l3 < reps[3]; ++l3) {\n xGrad = add2(xGrad, slice(dy, [\n i2 * x.shape[0],\n j * x.shape[1],\n k * x.shape[2],\n l3 * x.shape[3]\n ], [x.shape[0], x.shape[1], x.shape[2], x.shape[3]]));\n }\n }\n }\n }\n } else {\n throw new Error(`Gradient for tile operation is not implemented for rank-${x.rank} tensors yet.`);\n }\n return xGrad;\n };\n return { x: derX };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Transpose_grad.js\nvar transposeGradConfig = {\n kernelName: Transpose,\n gradFunc: (dy, saved, attrs) => {\n const transposeAttrs = attrs;\n const { perm } = transposeAttrs;\n const undoPerm = getUndoAxesPermutation(perm);\n return { x: () => transpose(dy, undoPerm) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/Unpack_grad.js\nvar unpackGradConfig = {\n kernelName: Unpack,\n gradFunc: (dy, saved, attrs) => {\n const unpackAttrs = attrs;\n const { axis } = unpackAttrs;\n return { value: () => stack(dy, axis) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/UnsortedSegmentSum_grad.js\nvar unsortedSegmentSumGradConfig = {\n kernelName: UnsortedSegmentSum,\n inputsToSave: [\"segmentIds\"],\n gradFunc: (dy, saved) => {\n const [segmentIds] = saved;\n const derX = () => {\n return gatherDropNegatives(dy, segmentIds);\n };\n return { x: derX };\n }\n};\nfunction gatherDropNegatives(x, indices) {\n const zeroClippedIndices = maximum(indices, zerosLike(indices));\n const gathered = gather(x, zeroClippedIndices);\n let isPositive = greaterEqual(indices, scalar(0, \"int32\"));\n const numIters = gathered.rank - isPositive.rank;\n for (let i2 = 0; i2 < numIters; ++i2) {\n isPositive = expandDims(isPositive, i2 + 1);\n }\n isPositive = logicalAnd(isPositive, ones2(gathered.shape, \"bool\"));\n const zeroSlice = zerosLike(gathered);\n return where(isPositive, gathered, zeroSlice);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/gradients/ZerosLike_grad.js\nvar zerosLikeGradConfig = {\n kernelName: ZerosLike,\n gradFunc: (dy) => {\n return { x: () => zerosLike(dy) };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/register_all_gradients.js\nvar gradConfigs = [\n absGradConfig,\n acosGradConfig,\n acoshGradConfig,\n addGradConfig,\n addNGradConfig,\n argMaxGradConfig,\n argMinGradConfig,\n asinGradConfig,\n asinhGradConfig,\n atan2GradConfig,\n atanGradConfig,\n atanhGradConfig,\n avgPool3DGradConfig,\n avgPoolGradConfig,\n batchMatMulGradConfig,\n batchToSpaceNDGradConfig,\n broadcastToGradConfig,\n castGradConfig,\n ceilGradConfig,\n clipByValueGradConfig,\n complexAbsGradConfig,\n concatGradConfig,\n conv2DBackpropInputGradConfig,\n conv2DGradConfig,\n conv3DGradConfig,\n cosGradConfig,\n coshGradConfig,\n cumsumGradConfig,\n depthwiseConv2dNativeGradConfig,\n dilation2dGradConfig,\n divGradConfig,\n eluGradConfig,\n erfGradConfig,\n expGradConfig,\n expandDimsGradConfig,\n expm1GradConfig,\n floorDivGradConfig,\n floorGradConfig,\n fusedBatchNormGradConfig,\n gatherGradConfig,\n greaterEqualGradConfig,\n identityGradConfig,\n isFiniteGradConfig,\n isInfGradConfig,\n isNanGradConfig,\n leakyReluGradConfig,\n log1pGradConfig,\n logGradConfig,\n logSoftmaxGradConfig,\n lrnGradConfig,\n maxGradConfig,\n maxGradConfig,\n maximumGradConfig,\n maxPool3DGradConfig,\n maxPoolGradConfig,\n meanGradConfig,\n minGradConfig,\n minimumGradConfig,\n mirrorPadGradConfig,\n modGradConfig,\n multiplyGradConfig,\n negGradConfig,\n oneHotGradConfig,\n onesLikeGradConfig,\n packGradConfig,\n padV2GradConfig,\n padV2GradConfig,\n powGradConfig,\n preluGradConfig,\n prodGradConfig,\n reciprocalGradConfig,\n relu6GradConfig,\n reluGradConfig,\n reshapeGradConfig,\n resizeBilinearGradConfig,\n resizeNearestNeighborGradConfig,\n reverseGradConfig,\n roundGradConfig,\n rsqrtGradConfig,\n selectGradConfig,\n seluGradConfig,\n sigmoidGradConfig,\n signGradConfig,\n sinGradConfig,\n sinhGradConfig,\n sliceGradConfig,\n softmaxGradConfig,\n softplusGradConfig,\n spaceToBatchNDGradConfig,\n spaceToBatchNDGradConfig,\n splitVGradConfig,\n splitVGradConfig,\n sqrtGradConfig,\n squaredDifferenceGradConfig,\n squareGradConfig,\n stepGradConfig,\n subGradConfig,\n sumGradConfig,\n tanGradConfig,\n tanhGradConfig,\n tileGradConfig,\n transposeGradConfig,\n unpackGradConfig,\n unsortedSegmentSumGradConfig,\n zerosLikeGradConfig\n];\nfor (const gradientConfig of gradConfigs) {\n registerGradient(gradientConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/abs.js\ngetGlobalTensorClass().prototype.abs = function() {\n this.throwIfDisposed();\n return abs(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/acos.js\ngetGlobalTensorClass().prototype.acos = function() {\n this.throwIfDisposed();\n return acos(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/acosh.js\ngetGlobalTensorClass().prototype.acosh = function() {\n this.throwIfDisposed();\n return acosh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/add.js\ngetGlobalTensorClass().prototype.add = function(b) {\n this.throwIfDisposed();\n return add2(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/all.js\ngetGlobalTensorClass().prototype.all = function(axis, keepDims) {\n this.throwIfDisposed();\n return all(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/any.js\ngetGlobalTensorClass().prototype.any = function(axis, keepDims) {\n this.throwIfDisposed();\n return any(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/arg_max.js\ngetGlobalTensorClass().prototype.argMax = function(axis) {\n this.throwIfDisposed();\n return argMax(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/arg_min.js\ngetGlobalTensorClass().prototype.argMin = function(axis) {\n this.throwIfDisposed();\n return argMin(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as_scalar.js\ngetGlobalTensorClass().prototype.asScalar = function() {\n this.throwIfDisposed();\n assert(this.size === 1, () => \"The array must have only 1 element.\");\n return reshape(this, []);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as_type.js\ngetGlobalTensorClass().prototype.asType = function(dtype) {\n this.throwIfDisposed();\n return cast(this, dtype);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as1d.js\ngetGlobalTensorClass().prototype.as1D = function() {\n this.throwIfDisposed();\n return reshape(this, [this.size]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as2d.js\ngetGlobalTensorClass().prototype.as2D = function(rows, columns) {\n this.throwIfDisposed();\n return reshape(this, [rows, columns]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as3d.js\ngetGlobalTensorClass().prototype.as3D = function(rows, columns, depth) {\n this.throwIfDisposed();\n return reshape(this, [rows, columns, depth]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as4d.js\ngetGlobalTensorClass().prototype.as4D = function(rows, columns, depth, depth2) {\n this.throwIfDisposed();\n return reshape(this, [rows, columns, depth, depth2]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/as5d.js\ngetGlobalTensorClass().prototype.as5D = function(rows, columns, depth, depth2, depth3) {\n this.throwIfDisposed();\n return reshape(this, [rows, columns, depth, depth2, depth3]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/asin.js\ngetGlobalTensorClass().prototype.asin = function() {\n this.throwIfDisposed();\n return asin(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/asinh.js\ngetGlobalTensorClass().prototype.asinh = function() {\n this.throwIfDisposed();\n return asinh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/atan.js\ngetGlobalTensorClass().prototype.atan = function() {\n this.throwIfDisposed();\n return atan(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/atan2.js\ngetGlobalTensorClass().prototype.atan2 = function(b) {\n this.throwIfDisposed();\n return atan2(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/atanh.js\ngetGlobalTensorClass().prototype.atanh = function() {\n this.throwIfDisposed();\n return atanh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/avg_pool.js\ngetGlobalTensorClass().prototype.avgPool = function(filterSize, strides, pad3, dimRoundingMode) {\n this.throwIfDisposed();\n return avgPool(this, filterSize, strides, pad3, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/batch_to_space_nd.js\ngetGlobalTensorClass().prototype.batchToSpaceND = function(blockShape, crops) {\n this.throwIfDisposed();\n return batchToSpaceND(this, blockShape, crops);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/batchnorm.js\ngetGlobalTensorClass().prototype.batchNorm = function(mean5, variance, offset, scale2, varianceEpsilon) {\n this.throwIfDisposed();\n return batchNorm(this, mean5, variance, offset, scale2, varianceEpsilon);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/broadcast_to.js\ngetGlobalTensorClass().prototype.broadcastTo = function(shape) {\n this.throwIfDisposed();\n return broadcastTo(this, shape);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cast.js\ngetGlobalTensorClass().prototype.cast = function(dtype) {\n this.throwIfDisposed();\n return cast(this, dtype);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/ceil.js\ngetGlobalTensorClass().prototype.ceil = function() {\n this.throwIfDisposed();\n return ceil(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/clip_by_value.js\ngetGlobalTensorClass().prototype.clipByValue = function(min7, max7) {\n this.throwIfDisposed();\n return clipByValue(this, min7, max7);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/concat.js\ngetGlobalTensorClass().prototype.concat = function(x, axis) {\n this.throwIfDisposed();\n if (x instanceof Tensor) {\n x = [x];\n }\n return concat([this, ...x], axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/conv1d.js\ngetGlobalTensorClass().prototype.conv1d = function(filter, stride, pad3, dataFormat, dilation, dimRoundingMode) {\n this.throwIfDisposed();\n return conv1d(this, filter, stride, pad3, dataFormat, dilation, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/conv2d_transpose.js\ngetGlobalTensorClass().prototype.conv2dTranspose = function(filter, outputShape, strides, pad3, dimRoundingMode) {\n this.throwIfDisposed();\n return conv2dTranspose(this, filter, outputShape, strides, pad3, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/conv2d.js\ngetGlobalTensorClass().prototype.conv2d = function(filter, strides, pad3, dataFormat, dilations, dimRoundingMode) {\n this.throwIfDisposed();\n return conv2d(this, filter, strides, pad3, dataFormat, dilations, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cos.js\ngetGlobalTensorClass().prototype.cos = function() {\n this.throwIfDisposed();\n return cos(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cosh.js\ngetGlobalTensorClass().prototype.cosh = function() {\n this.throwIfDisposed();\n return cosh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cumprod.js\ngetGlobalTensorClass().prototype.cumprod = function(axis, exclusive, reverse5) {\n this.throwIfDisposed();\n return cumprod(this, axis, exclusive, reverse5);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/cumsum.js\ngetGlobalTensorClass().prototype.cumsum = function(axis, exclusive, reverse5) {\n this.throwIfDisposed();\n return cumsum(this, axis, exclusive, reverse5);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/depth_to_space.js\ngetGlobalTensorClass().prototype.depthToSpace = function(blockSize, dataFormat) {\n this.throwIfDisposed();\n return depthToSpace(this, blockSize, dataFormat);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/depthwise_conv2d.js\ngetGlobalTensorClass().prototype.depthwiseConv2d = function(filter, strides, pad3, dataFormat, dilations, dimRoundingMode) {\n this.throwIfDisposed();\n return depthwiseConv2d(this, filter, strides, pad3, dataFormat, dilations, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/dilation2d.js\ngetGlobalTensorClass().prototype.dilation2d = function(filter, strides, pad3, dilations, dataFormat) {\n this.throwIfDisposed();\n return dilation2d(this, filter, strides, pad3, dilations, dataFormat);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/div_no_nan.js\ngetGlobalTensorClass().prototype.divNoNan = function(b) {\n this.throwIfDisposed();\n return divNoNan(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/div.js\ngetGlobalTensorClass().prototype.div = function(b) {\n this.throwIfDisposed();\n return div(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/dot.js\ngetGlobalTensorClass().prototype.dot = function(b) {\n this.throwIfDisposed();\n return dot(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/elu.js\ngetGlobalTensorClass().prototype.elu = function() {\n this.throwIfDisposed();\n return elu(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/equal.js\ngetGlobalTensorClass().prototype.equal = function(b) {\n this.throwIfDisposed();\n return equal(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/erf.js\ngetGlobalTensorClass().prototype.erf = function() {\n this.throwIfDisposed();\n return erf(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/euclidean_norm.js\ngetGlobalTensorClass().prototype.euclideanNorm = function(axis, keepDims) {\n this.throwIfDisposed();\n return euclideanNorm(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/exp.js\ngetGlobalTensorClass().prototype.exp = function() {\n this.throwIfDisposed();\n return exp(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/expand_dims.js\ngetGlobalTensorClass().prototype.expandDims = function(axis) {\n this.throwIfDisposed();\n return expandDims(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/expm1.js\ngetGlobalTensorClass().prototype.expm1 = function() {\n this.throwIfDisposed();\n return expm1(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/fft.js\ngetGlobalTensorClass().prototype.fft = function() {\n this.throwIfDisposed();\n return fft(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/flatten.js\ngetGlobalTensorClass().prototype.flatten = function() {\n this.throwIfDisposed();\n return reshape(this, [this.size]);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/floor.js\ngetGlobalTensorClass().prototype.floor = function() {\n this.throwIfDisposed();\n return floor(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/floorDiv.js\ngetGlobalTensorClass().prototype.floorDiv = function(b) {\n this.throwIfDisposed();\n return floorDiv(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/gather.js\ngetGlobalTensorClass().prototype.gather = function(indices, axis) {\n this.throwIfDisposed();\n return gather(this, indices, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/greater_equal.js\ngetGlobalTensorClass().prototype.greaterEqual = function(b) {\n this.throwIfDisposed();\n return greaterEqual(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/greater.js\ngetGlobalTensorClass().prototype.greater = function(b) {\n this.throwIfDisposed();\n return greater(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/ifft.js\ngetGlobalTensorClass().prototype.ifft = function() {\n this.throwIfDisposed();\n return ifft(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/irfft.js\ngetGlobalTensorClass().prototype.irfft = function() {\n this.throwIfDisposed();\n return irfft(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/is_finite.js\ngetGlobalTensorClass().prototype.isFinite = function() {\n this.throwIfDisposed();\n return isFinite2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/is_inf.js\ngetGlobalTensorClass().prototype.isInf = function() {\n this.throwIfDisposed();\n return isInf(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/is_nan.js\ngetGlobalTensorClass().prototype.isNaN = function() {\n this.throwIfDisposed();\n return isNaN2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/leaky_relu.js\ngetGlobalTensorClass().prototype.leakyRelu = function(alpha) {\n this.throwIfDisposed();\n return leakyRelu(this, alpha);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/less_equal.js\ngetGlobalTensorClass().prototype.lessEqual = function(b) {\n this.throwIfDisposed();\n return lessEqual(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/less.js\ngetGlobalTensorClass().prototype.less = function(b) {\n this.throwIfDisposed();\n return less(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/local_response_normalization.js\ngetGlobalTensorClass().prototype.localResponseNormalization = function(depthRadius, bias, alpha, beta) {\n this.throwIfDisposed();\n return localResponseNormalization(this, depthRadius, bias, alpha, beta);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log_sigmoid.js\ngetGlobalTensorClass().prototype.logSigmoid = function() {\n this.throwIfDisposed();\n return logSigmoid(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log_softmax.js\ngetGlobalTensorClass().prototype.logSoftmax = function(axis) {\n this.throwIfDisposed();\n return logSoftmax(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log_sum_exp.js\ngetGlobalTensorClass().prototype.logSumExp = function(axis, keepDims) {\n this.throwIfDisposed();\n return logSumExp(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log.js\ngetGlobalTensorClass().prototype.log = function() {\n this.throwIfDisposed();\n return log2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/log1p.js\ngetGlobalTensorClass().prototype.log1p = function() {\n this.throwIfDisposed();\n return log1p(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/logical_and.js\ngetGlobalTensorClass().prototype.logicalAnd = function(b) {\n this.throwIfDisposed();\n return logicalAnd(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/logical_not.js\ngetGlobalTensorClass().prototype.logicalNot = function() {\n this.throwIfDisposed();\n return logicalNot(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/logical_or.js\ngetGlobalTensorClass().prototype.logicalOr = function(b) {\n this.throwIfDisposed();\n return logicalOr(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/logical_xor.js\ngetGlobalTensorClass().prototype.logicalXor = function(b) {\n this.throwIfDisposed();\n return logicalXor(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mat_mul.js\ngetGlobalTensorClass().prototype.matMul = function(b, transposeA, transposeB) {\n this.throwIfDisposed();\n return matMul(this, b, transposeA, transposeB);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/max_pool.js\ngetGlobalTensorClass().prototype.maxPool = function(filterSize, strides, pad3, dimRoundingMode) {\n this.throwIfDisposed();\n return maxPool(this, filterSize, strides, pad3, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/max.js\ngetGlobalTensorClass().prototype.max = function(axis, keepDims) {\n this.throwIfDisposed();\n return max(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/maximum.js\ngetGlobalTensorClass().prototype.maximum = function(b) {\n this.throwIfDisposed();\n return maximum(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mean.js\ngetGlobalTensorClass().prototype.mean = function(axis, keepDims) {\n this.throwIfDisposed();\n return mean(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/min.js\ngetGlobalTensorClass().prototype.min = function(axis, keepDims) {\n this.throwIfDisposed();\n return min(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/minimum.js\ngetGlobalTensorClass().prototype.minimum = function(b) {\n this.throwIfDisposed();\n return minimum(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mirror_pad.js\ngetGlobalTensorClass().prototype.mirrorPad = function(paddings, mode) {\n this.throwIfDisposed();\n return mirrorPad(this, paddings, mode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mod.js\ngetGlobalTensorClass().prototype.mod = function(b) {\n this.throwIfDisposed();\n return mod(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/mul.js\ngetGlobalTensorClass().prototype.mul = function(b) {\n this.throwIfDisposed();\n return mul(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/neg.js\ngetGlobalTensorClass().prototype.neg = function() {\n this.throwIfDisposed();\n return neg(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/norm.js\ngetGlobalTensorClass().prototype.norm = function(ord, axis, keepDims) {\n this.throwIfDisposed();\n return norm(this, ord, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/not_equal.js\ngetGlobalTensorClass().prototype.notEqual = function(b) {\n this.throwIfDisposed();\n return notEqual(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/one_hot.js\ngetGlobalTensorClass().prototype.oneHot = function(depth, onValue = 1, offValue = 0) {\n this.throwIfDisposed();\n return oneHot(this, depth, onValue, offValue);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/ones_like.js\ngetGlobalTensorClass().prototype.onesLike = function() {\n this.throwIfDisposed();\n return onesLike(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/pad.js\ngetGlobalTensorClass().prototype.pad = function(paddings, constantValue) {\n this.throwIfDisposed();\n return pad(this, paddings, constantValue);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/pool.js\ngetGlobalTensorClass().prototype.pool = function(windowShape, poolingType, padding, dilationRate, strides, dimRoundingMode) {\n this.throwIfDisposed();\n return pool(this, windowShape, poolingType, padding, dilationRate, strides, dimRoundingMode);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/pow.js\ngetGlobalTensorClass().prototype.pow = function(exp5) {\n this.throwIfDisposed();\n return pow(this, exp5);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/prelu.js\ngetGlobalTensorClass().prototype.prelu = function(alpha) {\n this.throwIfDisposed();\n return prelu(this, alpha);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/prod.js\ngetGlobalTensorClass().prototype.prod = function(axis, keepDims) {\n this.throwIfDisposed();\n return prod(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/reciprocal.js\ngetGlobalTensorClass().prototype.reciprocal = function() {\n this.throwIfDisposed();\n return reciprocal(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/relu.js\ngetGlobalTensorClass().prototype.relu = function() {\n this.throwIfDisposed();\n return relu(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/relu6.js\ngetGlobalTensorClass().prototype.relu6 = function() {\n this.throwIfDisposed();\n return relu6(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/reshape_as.js\ngetGlobalTensorClass().prototype.reshapeAs = function(x) {\n this.throwIfDisposed();\n return reshape(this, x.shape);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/reshape.js\ngetGlobalTensorClass().prototype.reshape = function(shape) {\n this.throwIfDisposed();\n return reshape(this, shape);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/resize_bilinear.js\ngetGlobalTensorClass().prototype.resizeBilinear = function(newShape2D, alignCorners, halfPixelCenters) {\n this.throwIfDisposed();\n return resizeBilinear(this, newShape2D, alignCorners, halfPixelCenters);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/resize_nearest_neighbor.js\ngetGlobalTensorClass().prototype.resizeNearestNeighbor = function(newShape2D, alignCorners, halfFloatCenters) {\n this.throwIfDisposed();\n return resizeNearestNeighbor(this, newShape2D, alignCorners, halfFloatCenters);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/reverse.js\ngetGlobalTensorClass().prototype.reverse = function(axis) {\n this.throwIfDisposed();\n return reverse(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/rfft.js\ngetGlobalTensorClass().prototype.rfft = function() {\n this.throwIfDisposed();\n return rfft(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/round.js\ngetGlobalTensorClass().prototype.round = function() {\n this.throwIfDisposed();\n return round2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/rsqrt.js\ngetGlobalTensorClass().prototype.rsqrt = function() {\n this.throwIfDisposed();\n return rsqrt(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/selu.js\ngetGlobalTensorClass().prototype.selu = function() {\n this.throwIfDisposed();\n return selu(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/separable_conv2d.js\ngetGlobalTensorClass().prototype.separableConv2d = function(depthwiseFilter, pointwiseFilter, strides, pad3, dilation, dataFormat) {\n this.throwIfDisposed();\n return separableConv2d(this, depthwiseFilter, pointwiseFilter, strides, pad3, dilation, dataFormat);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sigmoid.js\ngetGlobalTensorClass().prototype.sigmoid = function() {\n this.throwIfDisposed();\n return sigmoid(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sign.js\ngetGlobalTensorClass().prototype.sign = function() {\n this.throwIfDisposed();\n return sign(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sin.js\ngetGlobalTensorClass().prototype.sin = function() {\n this.throwIfDisposed();\n return sin(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sinh.js\ngetGlobalTensorClass().prototype.sinh = function() {\n this.throwIfDisposed();\n return sinh(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/slice.js\ngetGlobalTensorClass().prototype.slice = function(begin, size) {\n this.throwIfDisposed();\n return slice(this, begin, size);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/softmax.js\ngetGlobalTensorClass().prototype.softmax = function(dim) {\n this.throwIfDisposed();\n return softmax(this, dim);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/softplus.js\ngetGlobalTensorClass().prototype.softplus = function() {\n this.throwIfDisposed();\n return softplus(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/space_to_batch_nd.js\ngetGlobalTensorClass().prototype.spaceToBatchND = function(blockShape, paddings) {\n this.throwIfDisposed();\n return spaceToBatchND(this, blockShape, paddings);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/split.js\ngetGlobalTensorClass().prototype.split = function(numOrSizeSplits, axis) {\n this.throwIfDisposed();\n return split(this, numOrSizeSplits, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sqrt.js\ngetGlobalTensorClass().prototype.sqrt = function() {\n this.throwIfDisposed();\n return sqrt(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/square.js\ngetGlobalTensorClass().prototype.square = function() {\n this.throwIfDisposed();\n return square(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/squared_difference.js\ngetGlobalTensorClass().prototype.squaredDifference = function(b) {\n this.throwIfDisposed();\n return squaredDifference(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/squeeze.js\ngetGlobalTensorClass().prototype.squeeze = function(axis) {\n this.throwIfDisposed();\n return squeeze(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/stack.js\ngetGlobalTensorClass().prototype.stack = function(x, axis) {\n this.throwIfDisposed();\n const tensorsToBeStacked = x instanceof Tensor ? [this, x] : [this, ...x];\n return stack(tensorsToBeStacked, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/step.js\ngetGlobalTensorClass().prototype.step = function(alpha) {\n this.throwIfDisposed();\n return step(this, alpha);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/strided_slice.js\ngetGlobalTensorClass().prototype.stridedSlice = function(begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask) {\n this.throwIfDisposed();\n return stridedSlice(this, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sub.js\ngetGlobalTensorClass().prototype.sub = function(b) {\n this.throwIfDisposed();\n return sub(this, b);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/sum.js\ngetGlobalTensorClass().prototype.sum = function(axis, keepDims) {\n this.throwIfDisposed();\n return sum2(this, axis, keepDims);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/tan.js\ngetGlobalTensorClass().prototype.tan = function() {\n this.throwIfDisposed();\n return tan(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/tanh.js\ngetGlobalTensorClass().prototype.tanh = function() {\n this.throwIfDisposed();\n return tanh2(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/tile.js\ngetGlobalTensorClass().prototype.tile = function(reps) {\n this.throwIfDisposed();\n return tile(this, reps);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/to_bool.js\ngetGlobalTensorClass().prototype.toBool = function() {\n this.throwIfDisposed();\n return cast(this, \"bool\");\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/to_float.js\ngetGlobalTensorClass().prototype.toFloat = function() {\n this.throwIfDisposed();\n return cast(this, \"float32\");\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/to_int.js\ngetGlobalTensorClass().prototype.toInt = function() {\n this.throwIfDisposed();\n return cast(this, \"int32\");\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/topk.js\ngetGlobalTensorClass().prototype.topk = function(k, sorted) {\n this.throwIfDisposed();\n return topk(this, k, sorted);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/transpose.js\ngetGlobalTensorClass().prototype.transpose = function(perm) {\n this.throwIfDisposed();\n return transpose(this, perm);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/unique.js\ngetGlobalTensorClass().prototype.unique = function(axis) {\n this.throwIfDisposed();\n return unique(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/unsorted_segment_sum.js\ngetGlobalTensorClass().prototype.unsortedSegmentSum = function(segmentIds, numSegments) {\n this.throwIfDisposed();\n return unsortedSegmentSum(this, segmentIds, numSegments);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/unstack.js\ngetGlobalTensorClass().prototype.unstack = function(axis) {\n this.throwIfDisposed();\n return unstack(this, axis);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/where.js\ngetGlobalTensorClass().prototype.where = function(condition, x) {\n this.throwIfDisposed();\n return where(condition, this, x);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/zeros_like.js\ngetGlobalTensorClass().prototype.zerosLike = function() {\n this.throwIfDisposed();\n return zerosLike(this);\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/errors.js\nvar AttributeError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, AttributeError.prototype);\n }\n};\nvar RuntimeError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, RuntimeError.prototype);\n }\n};\nvar ValueError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, ValueError.prototype);\n }\n};\nvar NotImplementedError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, NotImplementedError.prototype);\n }\n};\nvar AssertionError = class extends Error {\n constructor(message) {\n super(message);\n Object.setPrototypeOf(this, AssertionError.prototype);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/executor_utils.js\nvar LruCache = class {\n constructor(maxEntries) {\n this.maxEntries = maxEntries || 100;\n this.cache = /* @__PURE__ */ new Map();\n }\n get(key) {\n let entry;\n if (this.cache.has(key)) {\n entry = this.cache.get(key);\n this.cache.delete(key);\n this.cache.set(key, entry);\n }\n return entry;\n }\n put(key, value) {\n if (this.cache.has(key)) {\n this.cache.delete(key);\n } else if (this.cache.size >= this.maxEntries) {\n const keyToDelete = this.cache.keys().next().value;\n this.cache.delete(keyToDelete);\n }\n this.cache.set(key, value);\n }\n getMaxEntries() {\n return this.maxEntries;\n }\n setMaxEntries(maxEntries) {\n if (maxEntries < 0) {\n throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${maxEntries}.`);\n }\n if (this.maxEntries > maxEntries) {\n for (let i2 = 0; i2 < this.maxEntries - maxEntries; i2++) {\n const keyToDelete = this.cache.keys().next().value;\n this.cache.delete(keyToDelete);\n }\n }\n this.maxEntries = maxEntries;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/generic_utils.js\nfunction pyListRepeat(value, numValues) {\n if (Array.isArray(value)) {\n let newArray = [];\n for (let i2 = 0; i2 < numValues; i2++) {\n newArray = newArray.concat(value);\n }\n return newArray;\n } else {\n const newArray = new Array(numValues);\n newArray.fill(value);\n return newArray;\n }\n}\nfunction assert2(val, message) {\n if (!val) {\n throw new AssertionError(message);\n }\n}\nfunction count(array2, refernce) {\n let counter = 0;\n for (const item of array2) {\n if (item === refernce) {\n counter++;\n }\n }\n return counter;\n}\nfunction singletonOrArray(xs) {\n if (xs.length === 1) {\n return xs[0];\n }\n return xs;\n}\nfunction toList(x) {\n if (Array.isArray(x)) {\n return x;\n }\n return [x];\n}\nfunction toSnakeCase(name) {\n const intermediate = name.replace(/(.)([A-Z][a-z0-9]+)/g, \"$1_$2\");\n const insecure = intermediate.replace(/([a-z])([A-Z])/g, \"$1_$2\").toLowerCase();\n if (insecure[0] !== \"_\") {\n return insecure;\n }\n return \"private\" + insecure;\n}\nfunction toCamelCase(identifier) {\n if (identifier.length <= 1) {\n return identifier;\n }\n if (identifier.indexOf(\"_\") === -1) {\n return identifier;\n }\n return identifier.replace(/[_]+(\\w|$)/g, (m, p1) => p1.toUpperCase());\n}\nvar _GLOBAL_CUSTOM_OBJECTS = {};\nfunction serializeKerasObject(instance) {\n if (instance === null || instance === void 0) {\n return null;\n }\n const dict = {};\n dict[\"className\"] = instance.getClassName();\n dict[\"config\"] = instance.getConfig();\n return dict;\n}\nfunction convertNDArrayScalarsInConfig(config) {\n if (config == null || typeof config !== \"object\") {\n return;\n } else if (Array.isArray(config)) {\n config.forEach((configItem) => convertNDArrayScalarsInConfig(configItem));\n } else {\n const fields = Object.keys(config);\n for (const field of fields) {\n const value = config[field];\n if (value != null && typeof value === \"object\") {\n if (!Array.isArray(value) && value[\"type\"] === \"ndarray\" && typeof value[\"value\"] === \"number\") {\n config[field] = value[\"value\"];\n } else {\n convertNDArrayScalarsInConfig(value);\n }\n }\n }\n }\n}\nfunction deserializeKerasObject(identifier, moduleObjects = {}, customObjects = {}, printableModuleName = \"object\", fastWeightInit = false) {\n if (typeof identifier === \"string\") {\n const functionName = identifier;\n let fn;\n if (functionName in customObjects) {\n fn = customObjects[functionName];\n } else if (functionName in _GLOBAL_CUSTOM_OBJECTS) {\n fn = _GLOBAL_CUSTOM_OBJECTS[functionName];\n } else {\n fn = moduleObjects[functionName];\n if (fn == null) {\n throw new ValueError(`Unknown ${printableModuleName}: ${identifier}. This may be due to one of the following reasons:\n1. The ${printableModuleName} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom ${printableModuleName} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);\n }\n }\n return fn;\n } else {\n const config = identifier;\n if (config[\"className\"] == null || config[\"config\"] == null) {\n throw new ValueError(`${printableModuleName}: Improper config format: ${JSON.stringify(config)}.\n'className' and 'config' must set.`);\n }\n const className = config[\"className\"];\n let cls, fromConfig;\n if (className in customObjects) {\n [cls, fromConfig] = customObjects[className];\n } else if (className in _GLOBAL_CUSTOM_OBJECTS) {\n [cls, fromConfig] = _GLOBAL_CUSTOM_OBJECTS[\"className\"];\n } else if (className in moduleObjects) {\n [cls, fromConfig] = moduleObjects[className];\n }\n if (cls == null) {\n throw new ValueError(`Unknown ${printableModuleName}: ${className}. This may be due to one of the following reasons:\n1. The ${printableModuleName} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom ${printableModuleName} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);\n }\n if (fromConfig != null) {\n const customObjectsCombined = {};\n for (const key of Object.keys(_GLOBAL_CUSTOM_OBJECTS)) {\n customObjectsCombined[key] = _GLOBAL_CUSTOM_OBJECTS[key];\n }\n for (const key of Object.keys(customObjects)) {\n customObjectsCombined[key] = customObjects[key];\n }\n const nestedConfig = config[\"config\"];\n nestedConfig[\"customObjects\"] = customObjectsCombined;\n const backupCustomObjects = Object.assign({}, _GLOBAL_CUSTOM_OBJECTS);\n for (const key of Object.keys(customObjects)) {\n _GLOBAL_CUSTOM_OBJECTS[key] = customObjects[key];\n }\n convertNDArrayScalarsInConfig(config[\"config\"]);\n const returnObj = fromConfig(cls, config[\"config\"], customObjects, fastWeightInit);\n _GLOBAL_CUSTOM_OBJECTS = Object.assign({}, backupCustomObjects);\n return returnObj;\n } else {\n const backupCustomObjects = Object.assign({}, _GLOBAL_CUSTOM_OBJECTS);\n for (const key of Object.keys(customObjects)) {\n _GLOBAL_CUSTOM_OBJECTS[key] = customObjects[key];\n }\n const returnObj = new cls(config[\"config\"]);\n _GLOBAL_CUSTOM_OBJECTS = Object.assign({}, backupCustomObjects);\n return returnObj;\n }\n }\n}\nfunction numberCompare(a, b) {\n return a < b ? -1 : a > b ? 1 : 0;\n}\nfunction reverseNumberCompare(a, b) {\n return -1 * numberCompare(a, b);\n}\nfunction unique2(xs) {\n if (xs == null) {\n return xs;\n }\n const out = [];\n for (const x of xs) {\n if (out.indexOf(x) === -1) {\n out.push(x);\n }\n }\n return out;\n}\nfunction isObjectEmpty(obj) {\n if (obj == null) {\n throw new ValueError(`Invalid value in obj: ${JSON.stringify(obj)}`);\n }\n for (const key in obj) {\n if (obj.hasOwnProperty(key)) {\n return false;\n }\n }\n return true;\n}\nfunction checkStringTypeUnionValue(values, label, value) {\n if (value == null) {\n return;\n }\n if (values.indexOf(value) < 0) {\n throw new ValueError(`${value} is not a valid ${label}. Valid values are ${values} or null/undefined.`);\n }\n}\nfunction checkArrayTypeAndLength(x, expectedType, minLength = 0, maxLength = Infinity) {\n assert2(minLength >= 0);\n assert2(maxLength >= minLength);\n return Array.isArray(x) && x.length >= minLength && x.length <= maxLength && x.every((e2) => typeof e2 === expectedType);\n}\nfunction assertPositiveInteger(value, name) {\n if (Array.isArray(value)) {\n util_exports.assert(value.length > 0, () => `${name} is unexpectedly an empty array.`);\n value.forEach((v, i2) => assertPositiveInteger(v, `element ${i2 + 1} of ${name}`));\n } else {\n util_exports.assert(Number.isInteger(value) && value > 0, () => `Expected ${name} to be a positive integer, but got ${formatAsFriendlyString(value)}.`);\n }\n}\nfunction formatAsFriendlyString(value) {\n if (value === null) {\n return \"null\";\n } else if (Array.isArray(value)) {\n return \"[\" + value.map((v) => formatAsFriendlyString(v)).join(\",\") + \"]\";\n } else if (typeof value === \"string\") {\n return `\"${value}\"`;\n } else {\n return `${value}`;\n }\n}\nfunction debounce(f, waitMs, nowFunc) {\n let lastTime = nowFunc != null ? nowFunc() : util_exports.now();\n let lastResult;\n const f2 = (...args) => {\n const now2 = nowFunc != null ? nowFunc() : util_exports.now();\n if (now2 - lastTime < waitMs) {\n return lastResult;\n }\n lastTime = now2;\n lastResult = f(...args);\n return lastResult;\n };\n return f2;\n}\nfunction mapActivationToFusedKernel(activationName) {\n if (activationName === \"relu\") {\n return \"relu\";\n }\n if (activationName === \"linear\") {\n return \"linear\";\n }\n if (activationName === \"elu\") {\n return \"elu\";\n }\n return null;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/backend/state.js\nvar _nextUniqueTensorId = 0;\nfunction getNextUniqueTensorId() {\n return _nextUniqueTensorId++;\n}\nvar _uidPrefixes = {};\nfunction getUid(prefix = \"\") {\n if (!(prefix in _uidPrefixes)) {\n _uidPrefixes[prefix] = 0;\n }\n _uidPrefixes[prefix] += 1;\n return prefix + _uidPrefixes[prefix].toString();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/keras_format/common.js\nvar VALID_DATA_FORMAT_VALUES = [\"channelsFirst\", \"channelsLast\"];\nvar VALID_INTERPOLATION_FORMAT_VALUES = [\"nearest\", \"bilinear\"];\nvar VALID_PADDING_MODE_VALUES = [\"valid\", \"same\", \"causal\"];\nvar VALID_POOL_MODE_VALUES = [\"max\", \"avg\"];\nvar VALID_BIDIRECTIONAL_MERGE_MODES = [\"sum\", \"mul\", \"concat\", \"ave\"];\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/common.js\nvar nameMap = /* @__PURE__ */ new Map();\nfunction checkDataFormat(value) {\n checkStringTypeUnionValue(VALID_DATA_FORMAT_VALUES, \"DataFormat\", value);\n}\nfunction checkInterpolationFormat(value) {\n checkStringTypeUnionValue(VALID_INTERPOLATION_FORMAT_VALUES, \"InterpolationFormat\", value);\n}\nfunction checkPaddingMode(value) {\n checkStringTypeUnionValue(VALID_PADDING_MODE_VALUES, \"PaddingMode\", value);\n}\nfunction checkPoolMode(value) {\n checkStringTypeUnionValue(VALID_POOL_MODE_VALUES, \"PoolMode\", value);\n}\nvar _nameScopeStack = [];\nvar _nameScopeDivider = \"/\";\nfunction nameScope(name, fn) {\n _nameScopeStack.push(name);\n try {\n const val = fn();\n _nameScopeStack.pop();\n return val;\n } catch (e2) {\n _nameScopeStack.pop();\n throw e2;\n }\n}\nfunction currentNameScopePrefix() {\n if (_nameScopeStack.length === 0) {\n return \"\";\n } else {\n return _nameScopeStack.join(_nameScopeDivider) + _nameScopeDivider;\n }\n}\nfunction getScopedTensorName(tensorName) {\n if (!isValidTensorName(tensorName)) {\n throw new Error(\"Not a valid tensor name: '\" + tensorName + \"'\");\n }\n return currentNameScopePrefix() + tensorName;\n}\nfunction getUniqueTensorName(scopedName) {\n if (!isValidTensorName(scopedName)) {\n throw new Error(\"Not a valid tensor name: '\" + scopedName + \"'\");\n }\n if (!nameMap.has(scopedName)) {\n nameMap.set(scopedName, 0);\n }\n const index = nameMap.get(scopedName);\n nameMap.set(scopedName, nameMap.get(scopedName) + 1);\n if (index > 0) {\n const result = `${scopedName}_${index}`;\n nameMap.set(result, 1);\n return result;\n } else {\n return scopedName;\n }\n}\nvar tensorNameRegex = new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\\._\\/]*$/);\nfunction isValidTensorName(name) {\n return !!name.match(tensorNameRegex);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/math_utils.js\nfunction isInteger(x) {\n return x === parseInt(x.toString(), 10);\n}\nfunction arrayProd(array2, begin, end) {\n if (begin == null) {\n begin = 0;\n }\n if (end == null) {\n end = array2.length;\n }\n let prod6 = 1;\n for (let i2 = begin; i2 < end; ++i2) {\n prod6 *= array2[i2];\n }\n return prod6;\n}\nfunction min2(array2) {\n if (array2.length === 0) {\n return Number.NaN;\n }\n let min7 = Number.POSITIVE_INFINITY;\n for (let i2 = 0; i2 < array2.length; i2++) {\n const value = array2[i2];\n if (value < min7) {\n min7 = value;\n }\n }\n return min7;\n}\nfunction max2(array2) {\n if (array2.length === 0) {\n return Number.NaN;\n }\n let max7 = Number.NEGATIVE_INFINITY;\n for (let i2 = 0; i2 < array2.length; i2++) {\n const value = array2[i2];\n if (value > max7) {\n max7 = value;\n }\n }\n return max7;\n}\nfunction range2(begin, end) {\n if (end < begin) {\n throw new ValueError(`end (${end}) < begin (${begin}) is forbidden.`);\n }\n const out = [];\n for (let i2 = begin; i2 < end; ++i2) {\n out.push(i2);\n }\n return out;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/backend/common.js\nvar _epsilon;\nfunction epsilon() {\n if (_epsilon == null) {\n _epsilon = backend().epsilon();\n }\n return _epsilon;\n}\nfunction imageDataFormat() {\n return \"channelsLast\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/backend/tfjs_backend.js\nfunction cast2(x, dtype) {\n return cast(x, dtype);\n}\nfunction expandDims2(x, axis = -1) {\n const outShape = x.shape.slice();\n if (axis < 0) {\n axis = outShape.length + axis + 1;\n }\n outShape.splice(axis, 0, 1);\n return reshape(x, outShape);\n}\nfunction repeat(x, n2) {\n return tidy(() => {\n if (x.shape.length !== 2) {\n throw new ValueError(`repeat() expects a rank-2 tensor, but received a rank-${x.shape.length} tensor.`);\n }\n const y = expandDims2(x, 1);\n return tile2(y, [1, n2, 1]);\n });\n}\nfunction flatten2(x) {\n const newShape = [arrayProd(x.shape)];\n return reshape(x, newShape);\n}\nfunction batchFlatten(x) {\n if (x.rank <= 1) {\n throw new ValueError(`batchFlatten requires a minimum rank of 2. Got rank: ${x.rank}.`);\n }\n const newShape = [x.shape[0], arrayProd(x.shape, 1)];\n return reshape(x, newShape);\n}\nfunction sliceAlongFirstAxis(array2, start, size) {\n return tidy(() => {\n switch (array2.rank) {\n case 1:\n return slice1d(array2, start, size);\n case 2:\n return slice2d(array2, [start, 0], [size, array2.shape[1]]);\n case 3:\n return slice3d(array2, [start, 0, 0], [size, array2.shape[1], array2.shape[2]]);\n case 4:\n return slice4d(array2, [start, 0, 0, 0], [size, array2.shape[1], array2.shape[2], array2.shape[3]]);\n case 5:\n return slice(array2, [start, 0, 0, 0, 0], [\n size,\n array2.shape[1],\n array2.shape[2],\n array2.shape[3],\n array2.shape[4]\n ]);\n case 6:\n return slice(array2, [start, 0, 0, 0, 0, 0], [\n size,\n array2.shape[1],\n array2.shape[2],\n array2.shape[3],\n array2.shape[4],\n array2.shape[5]\n ]);\n default:\n throw new ValueError(`sliceAlongFirstAxis() received an unsupported tensor rank: ${array2.rank}`);\n }\n });\n}\nfunction sliceAlongLastAxis(array2, start, size) {\n return tidy(() => {\n switch (array2.rank) {\n case 1:\n return slice1d(array2, start, size);\n case 2:\n return slice2d(array2, [0, start], [array2.shape[0], size]);\n case 3:\n return slice3d(array2, [0, 0, start], [array2.shape[0], array2.shape[1], size]);\n case 4:\n return slice4d(array2, [0, 0, 0, start], [array2.shape[0], array2.shape[1], array2.shape[2], size]);\n default:\n throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ${array2.rank}`);\n }\n });\n}\nfunction sliceAlongAxis(array2, start, size, axis) {\n return tidy(() => {\n switch (array2.rank) {\n case 1:\n return slice1d(array2, start, size);\n case 2:\n switch (axis) {\n case 1:\n return sliceAlongFirstAxis(array2, start, size);\n case 2:\n return sliceAlongLastAxis(array2, start, size);\n default:\n throw new ValueError(`The axis is not within the rank of the tensor ${axis}`);\n }\n case 3:\n switch (axis) {\n case 1:\n return sliceAlongFirstAxis(array2, start, size);\n case 2:\n return slice3d(array2, [0, start, 0], [array2.shape[0], size, array2.shape[2]]);\n case 3:\n return sliceAlongLastAxis(array2, start, size);\n default:\n throw new ValueError(`The axis is not within the rank of the tensor ${axis}`);\n }\n case 4:\n switch (axis) {\n case 1:\n return sliceAlongFirstAxis(array2, start, size);\n case 2:\n return slice4d(array2, [0, start, 0, 0], [array2.shape[0], size, array2.shape[2], array2.shape[3]]);\n case 3:\n return slice4d(array2, [0, 0, start, 0], [array2.shape[0], array2.shape[1], size, array2.shape[3]]);\n case 4:\n return sliceAlongLastAxis(array2, start, size);\n default:\n throw new ValueError(`The axis is not within the rank of the tensor ${axis}`);\n }\n default:\n throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ${array2.rank}`);\n }\n });\n}\nfunction concatenate(tensors, axis = -1) {\n let rank;\n if (axis < 0) {\n rank = tensors[0].rank;\n if (rank !== 0) {\n axis = rank;\n } else {\n axis = 0;\n }\n }\n if (axis === tensors[0].rank) {\n axis = -1;\n }\n return concat(tensors, axis);\n}\nfunction concatAlongFirstAxis(a, b) {\n switch (a.rank) {\n case 1:\n return concat1d([a, b]);\n case 2:\n return concat2d([a, b], 0);\n case 3:\n return concat3d([a, b], 0);\n case 4:\n return concat4d([a, b], 0);\n default:\n throw new ValueError(`concatAlongFirstAxis() received an unsupported tensor rank: ${a.rank}`);\n }\n}\nfunction tile2(x, n2) {\n if (!Array.isArray(n2)) {\n n2 = [n2];\n }\n if (x.rank !== n2.length) {\n throw new ValueError(`The length of input n (${n2.length}) does not match the number of dimensions in input x (${x.rank})`);\n }\n return tile(x, n2);\n}\nfunction randomNormal2(shape, mean5 = 0, stddev = 1, dtype, seed) {\n return randomNormal(shape, mean5, stddev, dtype, seed);\n}\nfunction dot2(a, b, activation2, bias) {\n if (a.rank < 2 || b.rank < 2) {\n throw new NotImplementedError(`dot requires both inputs to be rank >= 2 but got x shape = ${a.shape} and y shape = ${b.shape}`);\n }\n if (b.rank >= 3) {\n const xLastDim = a.shape.slice(-1)[0];\n const ySecondLastDim = b.shape.slice(-2)[0];\n if (xLastDim !== ySecondLastDim) {\n throw new NotImplementedError(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${a.shape} and y shape = ${b.shape}`);\n }\n }\n if (a.rank === 2 && b.rank === 2) {\n const transposeA = false;\n const transposeB = false;\n return fused_ops_exports.matMul({\n a,\n b,\n transposeA,\n transposeB,\n bias: bias ? reshapeBias(a.rank, bias, imageDataFormat()) : null,\n activation: activation2\n });\n } else {\n const aFirstDims = a.shape.slice();\n const aLastDim = aFirstDims.pop();\n a = reshape(a, [-1, aLastDim]);\n const bShape = b.shape.slice();\n const bLastDim = bShape.pop();\n const ySecondLastDim = bShape.pop();\n const yOtherDims = [...bShape, bLastDim];\n const perm = Array.from({ length: b.rank }, (_, i2) => {\n if (i2 === 0) {\n return b.rank - 2;\n } else if (i2 <= b.rank - 2) {\n return i2 - 1;\n }\n return i2;\n });\n b = reshape(transpose(b, perm), [ySecondLastDim, -1]);\n const outputShape = [...aFirstDims, ...yOtherDims];\n const transposeA = false;\n const transposeB = false;\n return reshape(fused_ops_exports.matMul({\n a,\n b,\n transposeA,\n transposeB,\n bias: bias ? reshapeBias(a.rank, bias, imageDataFormat()) : null,\n activation: activation2\n }), outputShape);\n }\n}\nfunction gather2(reference, indices, axis) {\n return tidy(() => {\n if (Array.isArray(indices)) {\n indices = tensor1d(indices, \"int32\");\n } else {\n indices = cast(indices, \"int32\");\n }\n return gather(reference, indices, axis);\n });\n}\nfunction square2(x) {\n return mul(x, x);\n}\nfunction reshapeBias(xRank, bias, dataFormat) {\n const biasShape = bias.shape;\n if (bias.rank !== 1 && bias.rank !== xRank) {\n throw new ValueError(`Unexpected bias dimensions: ${bias.rank}; expected it to be 1 or ${xRank}`);\n }\n if (xRank === 5) {\n if (dataFormat === \"channelsFirst\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, biasShape[0], 1, 1, 1]);\n } else {\n return reshape(bias, [1, biasShape[3], biasShape[0], biasShape[1], biasShape[2]]);\n }\n } else if (dataFormat === \"channelsLast\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, 1, 1, 1, biasShape[0]]);\n } else {\n return reshape(bias, [1].concat(biasShape));\n }\n }\n } else if (xRank === 4) {\n if (dataFormat === \"channelsFirst\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, biasShape[0], 1, 1]);\n } else {\n return reshape(bias, [1, biasShape[2], biasShape[0], biasShape[1]]);\n }\n } else if (dataFormat === \"channelsLast\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, 1, 1, biasShape[0]]);\n } else {\n return reshape(bias, [1].concat(biasShape));\n }\n }\n } else if (xRank === 3) {\n if (dataFormat === \"channelsFirst\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, biasShape[0], 1]);\n } else {\n return reshape(bias, [1, biasShape[1], biasShape[0]]);\n }\n } else if (dataFormat === \"channelsLast\") {\n if (biasShape.length === 1) {\n return reshape(bias, [1, 1, biasShape[0]]);\n } else {\n return reshape(bias, [1].concat(biasShape));\n }\n }\n } else if (xRank < 3) {\n return bias;\n }\n throw new ValueError(`Unsupported input rank by biasAdd: ${bias.rank}`);\n}\nfunction biasAdd(x, bias, dataFormat) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n return add2(x, reshapeBias(x.rank, bias, dataFormat));\n });\n}\nfunction elu2(x, alpha = 1) {\n if (alpha !== 1) {\n throw new NotImplementedError(`Support for alpha values other than 1 (${alpha}) is not implemented yet.`);\n }\n return elu(x);\n}\nfunction softsign(x) {\n return tidy(() => div(x, add2(abs(x), 1)));\n}\nfunction dropout2(x, level, noiseShape, seed) {\n return tidy(() => dropout(x, level, noiseShape, seed));\n}\nfunction hardSigmoid(x) {\n return tidy(() => {\n const y = add2(0.5, mul(0.2, x));\n return clipByValue(y, 0, 1);\n });\n}\nfunction inTrainPhase(x, alt, training = false) {\n return training ? x() : alt();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/keras_format/initializer_config.js\nvar VALID_FAN_MODE_VALUES = [\"fanIn\", \"fanOut\", \"fanAvg\"];\nvar VALID_DISTRIBUTION_VALUES = [\"normal\", \"uniform\", \"truncatedNormal\"];\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/initializers.js\nfunction checkFanMode(value) {\n checkStringTypeUnionValue(VALID_FAN_MODE_VALUES, \"FanMode\", value);\n}\nfunction checkDistribution(value) {\n checkStringTypeUnionValue(VALID_DISTRIBUTION_VALUES, \"Distribution\", value);\n}\nvar Initializer = class extends serialization_exports.Serializable {\n fromConfigUsesCustomObjects() {\n return false;\n }\n getConfig() {\n return {};\n }\n};\nvar Zeros = class extends Initializer {\n apply(shape, dtype) {\n return zeros(shape, dtype);\n }\n};\nZeros.className = \"Zeros\";\nserialization_exports.registerClass(Zeros);\nvar Ones = class extends Initializer {\n apply(shape, dtype) {\n return ones2(shape, dtype);\n }\n};\nOnes.className = \"Ones\";\nserialization_exports.registerClass(Ones);\nvar Constant = class extends Initializer {\n constructor(args) {\n super();\n if (typeof args !== \"object\") {\n throw new ValueError(`Expected argument of type ConstantConfig but got ${args}`);\n }\n if (args.value === void 0) {\n throw new ValueError(`config must have value set but got ${args}`);\n }\n this.value = args.value;\n }\n apply(shape, dtype) {\n return tidy(() => mul(scalar(this.value), ones2(shape, dtype)));\n }\n getConfig() {\n return {\n value: this.value\n };\n }\n};\nConstant.className = \"Constant\";\nserialization_exports.registerClass(Constant);\nvar RandomUniform = class extends Initializer {\n constructor(args) {\n super();\n this.DEFAULT_MINVAL = -0.05;\n this.DEFAULT_MAXVAL = 0.05;\n this.minval = args.minval || this.DEFAULT_MINVAL;\n this.maxval = args.maxval || this.DEFAULT_MAXVAL;\n this.seed = args.seed;\n }\n apply(shape, dtype) {\n return randomUniform(shape, this.minval, this.maxval, dtype);\n }\n getConfig() {\n return { minval: this.minval, maxval: this.maxval, seed: this.seed };\n }\n};\nRandomUniform.className = \"RandomUniform\";\nserialization_exports.registerClass(RandomUniform);\nvar RandomNormal = class extends Initializer {\n constructor(args) {\n super();\n this.DEFAULT_MEAN = 0;\n this.DEFAULT_STDDEV = 0.05;\n this.mean = args.mean || this.DEFAULT_MEAN;\n this.stddev = args.stddev || this.DEFAULT_STDDEV;\n this.seed = args.seed;\n }\n apply(shape, dtype) {\n dtype = dtype || \"float32\";\n if (dtype !== \"float32\" && dtype !== \"int32\") {\n throw new NotImplementedError(`randomNormal does not support dType ${dtype}.`);\n }\n return randomNormal2(shape, this.mean, this.stddev, dtype, this.seed);\n }\n getConfig() {\n return { mean: this.mean, stddev: this.stddev, seed: this.seed };\n }\n};\nRandomNormal.className = \"RandomNormal\";\nserialization_exports.registerClass(RandomNormal);\nvar TruncatedNormal = class extends Initializer {\n constructor(args) {\n super();\n this.DEFAULT_MEAN = 0;\n this.DEFAULT_STDDEV = 0.05;\n this.mean = args.mean || this.DEFAULT_MEAN;\n this.stddev = args.stddev || this.DEFAULT_STDDEV;\n this.seed = args.seed;\n }\n apply(shape, dtype) {\n dtype = dtype || \"float32\";\n if (dtype !== \"float32\" && dtype !== \"int32\") {\n throw new NotImplementedError(`truncatedNormal does not support dType ${dtype}.`);\n }\n return truncatedNormal(shape, this.mean, this.stddev, dtype, this.seed);\n }\n getConfig() {\n return { mean: this.mean, stddev: this.stddev, seed: this.seed };\n }\n};\nTruncatedNormal.className = \"TruncatedNormal\";\nserialization_exports.registerClass(TruncatedNormal);\nvar Identity2 = class extends Initializer {\n constructor(args) {\n super();\n this.gain = args.gain != null ? args.gain : 1;\n }\n apply(shape, dtype) {\n return tidy(() => {\n if (shape.length !== 2 || shape[0] !== shape[1]) {\n throw new ValueError(\"Identity matrix initializer can only be used for 2D square matrices.\");\n } else {\n return mul(this.gain, eye(shape[0]));\n }\n });\n }\n getConfig() {\n return { gain: this.gain };\n }\n};\nIdentity2.className = \"Identity\";\nserialization_exports.registerClass(Identity2);\nfunction computeFans(shape, dataFormat = \"channelsLast\") {\n let fanIn;\n let fanOut;\n checkDataFormat(dataFormat);\n if (shape.length === 2) {\n fanIn = shape[0];\n fanOut = shape[1];\n } else if ([3, 4, 5].indexOf(shape.length) !== -1) {\n if (dataFormat === \"channelsFirst\") {\n const receptiveFieldSize = arrayProd(shape, 2);\n fanIn = shape[1] * receptiveFieldSize;\n fanOut = shape[0] * receptiveFieldSize;\n } else if (dataFormat === \"channelsLast\") {\n const receptiveFieldSize = arrayProd(shape, 0, shape.length - 2);\n fanIn = shape[shape.length - 2] * receptiveFieldSize;\n fanOut = shape[shape.length - 1] * receptiveFieldSize;\n }\n } else {\n const shapeProd = arrayProd(shape);\n fanIn = Math.sqrt(shapeProd);\n fanOut = Math.sqrt(shapeProd);\n }\n return [fanIn, fanOut];\n}\nvar VarianceScaling = class extends Initializer {\n constructor(args) {\n super();\n if (args.scale < 0) {\n throw new ValueError(`scale must be a positive float. Got: ${args.scale}`);\n }\n this.scale = args.scale == null ? 1 : args.scale;\n this.mode = args.mode == null ? \"fanIn\" : args.mode;\n checkFanMode(this.mode);\n this.distribution = args.distribution == null ? \"normal\" : args.distribution;\n checkDistribution(this.distribution);\n this.seed = args.seed;\n }\n apply(shape, dtype) {\n const fans = computeFans(shape);\n const fanIn = fans[0];\n const fanOut = fans[1];\n let scale2 = this.scale;\n if (this.mode === \"fanIn\") {\n scale2 /= Math.max(1, fanIn);\n } else if (this.mode === \"fanOut\") {\n scale2 /= Math.max(1, fanOut);\n } else {\n scale2 /= Math.max(1, (fanIn + fanOut) / 2);\n }\n if (this.distribution === \"normal\") {\n const stddev = Math.sqrt(scale2);\n dtype = dtype || \"float32\";\n if (dtype !== \"float32\" && dtype !== \"int32\") {\n throw new NotImplementedError(`${this.getClassName()} does not support dType ${dtype}.`);\n }\n return truncatedNormal(shape, 0, stddev, dtype, this.seed);\n } else {\n const limit = Math.sqrt(3 * scale2);\n return randomUniform(shape, -limit, limit, dtype);\n }\n }\n getConfig() {\n return {\n scale: this.scale,\n mode: this.mode,\n distribution: this.distribution,\n seed: this.seed\n };\n }\n};\nVarianceScaling.className = \"VarianceScaling\";\nserialization_exports.registerClass(VarianceScaling);\nvar GlorotUniform = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 1,\n mode: \"fanAvg\",\n distribution: \"uniform\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nGlorotUniform.className = \"GlorotUniform\";\nserialization_exports.registerClass(GlorotUniform);\nvar GlorotNormal = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 1,\n mode: \"fanAvg\",\n distribution: \"normal\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nGlorotNormal.className = \"GlorotNormal\";\nserialization_exports.registerClass(GlorotNormal);\nvar HeNormal = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 2,\n mode: \"fanIn\",\n distribution: \"normal\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nHeNormal.className = \"HeNormal\";\nserialization_exports.registerClass(HeNormal);\nvar HeUniform = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 2,\n mode: \"fanIn\",\n distribution: \"uniform\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nHeUniform.className = \"HeUniform\";\nserialization_exports.registerClass(HeUniform);\nvar LeCunNormal = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 1,\n mode: \"fanIn\",\n distribution: \"normal\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nLeCunNormal.className = \"LeCunNormal\";\nserialization_exports.registerClass(LeCunNormal);\nvar LeCunUniform = class extends VarianceScaling {\n constructor(args) {\n super({\n scale: 1,\n mode: \"fanIn\",\n distribution: \"uniform\",\n seed: args == null ? null : args.seed\n });\n }\n getClassName() {\n return VarianceScaling.className;\n }\n};\nLeCunUniform.className = \"LeCunNormal\";\nserialization_exports.registerClass(LeCunUniform);\nvar Orthogonal = class extends Initializer {\n constructor(args) {\n super();\n this.DEFAULT_GAIN = 1;\n this.gain = args.gain == null ? this.DEFAULT_GAIN : args.gain;\n this.seed = args.seed;\n if (this.seed != null) {\n throw new NotImplementedError(\"Random seed is not implemented for Orthogonal Initializer yet.\");\n }\n }\n apply(shape, dtype) {\n return tidy(() => {\n if (shape.length < 2) {\n throw new NotImplementedError(\"Shape must be at least 2D.\");\n }\n if (shape[0] * shape[1] > 2e3) {\n console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${shape[0] * shape[1]}) elements: Slowness may result.`);\n }\n const normalizedShape = shape[0] > shape[1] ? [shape[1], shape[0]] : shape;\n const a = randomNormal2(normalizedShape, 0, 1, \"float32\");\n let q = linalg.gramSchmidt(a);\n if (shape[0] > shape[1]) {\n q = transpose(q);\n }\n return mul(this.gain, q);\n });\n }\n getConfig() {\n return {\n gain: this.gain,\n seed: this.seed\n };\n }\n};\nOrthogonal.className = \"Orthogonal\";\nserialization_exports.registerClass(Orthogonal);\nvar INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP = {\n \"constant\": \"Constant\",\n \"glorotNormal\": \"GlorotNormal\",\n \"glorotUniform\": \"GlorotUniform\",\n \"heNormal\": \"HeNormal\",\n \"heUniform\": \"HeUniform\",\n \"identity\": \"Identity\",\n \"leCunNormal\": \"LeCunNormal\",\n \"leCunUniform\": \"LeCunUniform\",\n \"ones\": \"Ones\",\n \"orthogonal\": \"Orthogonal\",\n \"randomNormal\": \"RandomNormal\",\n \"randomUniform\": \"RandomUniform\",\n \"truncatedNormal\": \"TruncatedNormal\",\n \"varianceScaling\": \"VarianceScaling\",\n \"zeros\": \"Zeros\"\n};\nfunction deserializeInitializer(config, customObjects = {}) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"initializer\");\n}\nfunction serializeInitializer(initializer) {\n return serializeKerasObject(initializer);\n}\nfunction getInitializer(identifier) {\n if (typeof identifier === \"string\") {\n const className = identifier in INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP ? INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier] : identifier;\n if (className === \"GlorotNormal\") {\n return new GlorotNormal();\n } else if (className === \"GlorotUniform\") {\n return new GlorotUniform();\n } else if (className === \"HeNormal\") {\n return new HeNormal();\n } else if (className === \"HeUniform\") {\n return new HeUniform();\n } else if (className === \"LeCunNormal\") {\n return new LeCunNormal();\n } else if (className === \"LeCunUniform\") {\n return new LeCunUniform();\n } else {\n const config = {};\n config[\"className\"] = className;\n config[\"config\"] = {};\n return deserializeInitializer(config);\n }\n } else if (identifier instanceof Initializer) {\n return identifier;\n } else {\n return deserializeInitializer(identifier);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/types_utils.js\nfunction isArrayOfShapes(x) {\n return Array.isArray(x) && Array.isArray(x[0]);\n}\nfunction normalizeShapeList(x) {\n if (x.length === 0) {\n return [];\n }\n if (!Array.isArray(x[0])) {\n return [x];\n }\n return x;\n}\nfunction getExactlyOneTensor(xs) {\n let x;\n if (Array.isArray(xs)) {\n if (xs.length !== 1) {\n throw new ValueError(`Expected Tensor length to be 1; got ${xs.length}`);\n }\n x = xs[0];\n } else {\n x = xs;\n }\n return x;\n}\nfunction getExactlyOneShape(shapes) {\n if (Array.isArray(shapes) && Array.isArray(shapes[0])) {\n if (shapes.length === 1) {\n shapes = shapes;\n return shapes[0];\n } else {\n throw new ValueError(`Expected exactly 1 Shape; got ${shapes.length}`);\n }\n } else {\n return shapes;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/variable_utils.js\nfunction countParamsInWeights(weights) {\n let count2 = 0;\n for (const weight of weights) {\n if (weight.shape.length === 0) {\n count2 += 1;\n } else {\n count2 += weight.shape.reduce((a, b) => a * b);\n }\n }\n return count2;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/variables.js\nvar DEFAULT_VARIABLE_NAME_PREFIX = \"Variable\";\nvar LayerVariable = class {\n constructor(val, dtype = \"float32\", name = DEFAULT_VARIABLE_NAME_PREFIX, trainable = true, constraint = null) {\n this.dtype = dtype == null ? \"float32\" : dtype;\n this.shape = val.shape;\n this.id = getNextUniqueTensorId();\n name = name == null ? DEFAULT_VARIABLE_NAME_PREFIX : name;\n this.originalName = getScopedTensorName(name);\n this.name = getUniqueTensorName(this.originalName);\n this.trainable_ = trainable;\n this.constraint = constraint;\n this.val = variable(val, this.trainable_, this.name, this.dtype);\n }\n read() {\n this.assertNotDisposed();\n return this.val;\n }\n write(newVal) {\n this.assertNotDisposed();\n checkShapesMatch(this.val, newVal);\n if (this.val.id !== newVal.id) {\n this.val.assign(newVal);\n if (this.constraint != null) {\n this.val.assign(this.constraint.apply(this.val));\n }\n }\n return this;\n }\n dispose() {\n this.assertNotDisposed();\n this.val.dispose();\n }\n assertNotDisposed() {\n if (this.val.isDisposed) {\n throw new Error(`LayersVariable ${this.name} is already disposed.`);\n }\n }\n get trainable() {\n return this.trainable_;\n }\n set trainable(trainable) {\n this.trainable_ = trainable;\n this.val.trainable = trainable;\n }\n};\nfunction checkShapesMatch(x, y) {\n if (x.shape.toString() !== y.shape.toString()) {\n throw new Error(\"Shape mismatch: \" + JSON.stringify(x.shape) + \" vs. \" + JSON.stringify(y.shape));\n }\n}\nfunction batchGetValue(xs) {\n return xs.map((x) => x.read());\n}\nfunction batchSetValue(variablesAndValues) {\n variablesAndValues.forEach((variableAndValue) => {\n const variable2 = variableAndValue[0];\n variable2.write(variableAndValue[1]);\n });\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/topology.js\nvar InputSpec = class {\n constructor(args) {\n this.dtype = args.dtype;\n this.shape = args.shape;\n if (args.shape != null) {\n this.ndim = args.shape.length;\n } else {\n this.ndim = args.ndim;\n }\n this.maxNDim = args.maxNDim;\n this.minNDim = args.minNDim;\n this.axes = args.axes || {};\n }\n};\nvar SymbolicTensor = class {\n constructor(dtype, shape, sourceLayer, inputs, callArgs, name, outputTensorIndex) {\n this.dtype = dtype;\n this.shape = shape;\n this.sourceLayer = sourceLayer;\n this.inputs = inputs;\n this.callArgs = callArgs;\n this.outputTensorIndex = outputTensorIndex;\n this.id = getNextUniqueTensorId();\n if (name != null) {\n this.originalName = getScopedTensorName(name);\n this.name = getUniqueTensorName(this.originalName);\n }\n this.rank = shape.length;\n }\n};\nvar _nextNodeID = 0;\nvar Node = class {\n constructor(args, callArgs) {\n this.callArgs = callArgs;\n this.id = _nextNodeID++;\n this.outboundLayer = args.outboundLayer;\n this.inboundLayers = args.inboundLayers;\n this.nodeIndices = args.nodeIndices;\n this.tensorIndices = args.tensorIndices;\n this.inputTensors = args.inputTensors;\n this.outputTensors = args.outputTensors;\n this.inputMasks = args.inputMasks;\n this.outputMasks = args.outputMasks;\n this.inputShapes = args.inputShapes;\n this.outputShapes = args.outputShapes;\n for (const layer of args.inboundLayers) {\n if (layer != null) {\n layer.outboundNodes.push(this);\n }\n }\n args.outboundLayer.inboundNodes.push(this);\n }\n getConfig() {\n const inboundNames = [];\n for (const layer of this.inboundLayers) {\n if (layer != null) {\n inboundNames.push(layer.name);\n } else {\n inboundNames.push(null);\n }\n }\n return {\n outboundLayer: this.outboundLayer ? this.outboundLayer.name : null,\n inboundLayers: inboundNames,\n nodeIndices: this.nodeIndices,\n tensorIndices: this.tensorIndices\n };\n }\n};\nvar _nextLayerID = 0;\nvar Layer = class extends serialization_exports.Serializable {\n constructor(args = {}) {\n super();\n this._callHook = null;\n this._addedWeightNames = [];\n this._stateful = false;\n this.id = _nextLayerID++;\n this.activityRegularizer = null;\n this.inputSpec = null;\n this.supportsMasking = false;\n this._trainableWeights = [];\n this._nonTrainableWeights = [];\n this._losses = [];\n this._updates = [];\n this._built = false;\n this.inboundNodes = [];\n this.outboundNodes = [];\n let name = args.name;\n if (!name) {\n const prefix = this.getClassName();\n name = toSnakeCase(prefix) + \"_\" + getUid(prefix);\n }\n this.name = name;\n this.trainable_ = args.trainable == null ? true : args.trainable;\n if (args.inputShape != null || args.batchInputShape != null) {\n let batchInputShape;\n if (args.batchInputShape != null) {\n batchInputShape = args.batchInputShape;\n } else if (args.inputShape != null) {\n let batchSize = null;\n if (args.batchSize != null) {\n batchSize = args.batchSize;\n }\n batchInputShape = [batchSize].concat(args.inputShape);\n }\n this.batchInputShape = batchInputShape;\n let dtype = args.dtype;\n if (dtype == null) {\n dtype = args.inputDType;\n }\n if (dtype == null) {\n dtype = \"float32\";\n }\n this.dtype = dtype;\n }\n if (args.weights != null) {\n this.initialWeights = args.weights;\n } else {\n this.initialWeights = null;\n }\n this._refCount = null;\n this.fastWeightInitDuringBuild = false;\n }\n static nodeKey(layer, nodeIndex) {\n return layer.name + \"_ib-\" + nodeIndex.toString();\n }\n getNodeAtIndex(nodeIndex, attrName) {\n if (this.inboundNodes.length === 0) {\n throw new RuntimeError(`The layer has never been called and thus has no defined ${attrName}.`);\n }\n if (this.inboundNodes.length <= nodeIndex) {\n throw new ValueError(`Asked to get ${attrName} at node ${nodeIndex}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);\n }\n return this.inboundNodes[nodeIndex];\n }\n getInputAt(nodeIndex) {\n return singletonOrArray(this.getNodeAtIndex(nodeIndex, \"input\").inputTensors);\n }\n getOutputAt(nodeIndex) {\n return singletonOrArray(this.getNodeAtIndex(nodeIndex, \"output\").outputTensors);\n }\n get input() {\n if (this.inboundNodes.length > 1) {\n throw new AttributeError(`Layer ${this.name} has multiple inbound nodes, hence the notion of \"layer input\" is ill-defined. Use \\`getInputAt(nodeIndex)\\` instead.`);\n } else if (this.inboundNodes.length === 0) {\n throw new AttributeError(`Layer ${this.name} is not connected, no input to return.`);\n }\n return singletonOrArray(this.getNodeAtIndex(0, \"input\").inputTensors);\n }\n get output() {\n if (this.inboundNodes.length === 0) {\n throw new AttributeError(`Layer ${this.name} has no inbound nodes.`);\n }\n if (this.inboundNodes.length > 1) {\n throw new AttributeError(`Layer ${this.name} has multiple inbound nodes, hence the notion of \"layer output\" is ill-defined. Use \\`getOutputAt(nodeIndex)\\` instead.`);\n }\n return singletonOrArray(this.getNodeAtIndex(0, \"output\").outputTensors);\n }\n get losses() {\n return this._losses;\n }\n calculateLosses() {\n return this.losses.map((lossFn) => lossFn());\n }\n get updates() {\n return this._updates;\n }\n get built() {\n return this._built;\n }\n set built(built) {\n this._built = built;\n }\n get trainable() {\n return this.trainable_;\n }\n set trainable(trainable) {\n this._trainableWeights.forEach((w) => w.trainable = trainable);\n this.trainable_ = trainable;\n }\n get trainableWeights() {\n if (this.trainable_) {\n return this._trainableWeights.filter((w) => w.trainable);\n } else {\n return [];\n }\n }\n set trainableWeights(weights) {\n this._trainableWeights = weights;\n }\n get nonTrainableWeights() {\n if (this.trainable) {\n return this._trainableWeights.filter((w) => !w.trainable).concat(this._nonTrainableWeights);\n } else {\n return this._trainableWeights.concat(this._nonTrainableWeights);\n }\n }\n set nonTrainableWeights(weights) {\n this._nonTrainableWeights = weights;\n }\n get weights() {\n return this.trainableWeights.concat(this.nonTrainableWeights);\n }\n get stateful() {\n return this._stateful;\n }\n resetStates() {\n if (!this.stateful) {\n throw new Error(\"Cannot call the resetStates() method of a non-stateful Layer object.\");\n }\n }\n assertInputCompatibility(inputs) {\n inputs = toList(inputs);\n if (this.inputSpec == null || this.inputSpec.length === 0) {\n return;\n }\n const inputSpec = toList(this.inputSpec);\n if (inputs.length !== inputSpec.length) {\n throw new ValueError(`Layer ${this.name} expects ${inputSpec.length} inputs, but it received ${inputs.length} input tensors. Input received: ${inputs}`);\n }\n for (let inputIndex = 0; inputIndex < inputs.length; inputIndex++) {\n const x = inputs[inputIndex];\n const spec = inputSpec[inputIndex];\n if (spec == null) {\n continue;\n }\n const ndim = x.rank;\n if (spec.ndim != null) {\n if (ndim !== spec.ndim) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected ndim=${spec.ndim}, found ndim=${ndim}`);\n }\n }\n if (spec.maxNDim != null) {\n if (ndim > spec.maxNDim) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected max_ndim=${spec.maxNDim}, found ndim=${ndim}`);\n }\n }\n if (spec.minNDim != null) {\n if (ndim < spec.minNDim) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected min_ndim=${spec.minNDim}, found ndim=${ndim}.`);\n }\n }\n if (spec.dtype != null) {\n if (x.dtype !== spec.dtype) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name} : expected dtype=${spec.dtype}, found dtype=${x.dtype}.`);\n }\n }\n if (spec.axes) {\n const xShape = x.shape;\n for (const key in spec.axes) {\n const axis = Number(key);\n const value = spec.axes[key];\n const xShapeAtAxis = axis >= 0 ? xShape[axis] : xShape[xShape.length + axis];\n if (value != null && [value, null].indexOf(xShapeAtAxis) === -1) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected axis ${axis} of input shape to have value ${value} but got shape ${xShape}.`);\n }\n }\n }\n if (spec.shape != null) {\n for (let i2 = 0; i2 < spec.shape.length; ++i2) {\n const specDim = spec.shape[i2];\n const dim = x.shape[i2];\n if (specDim != null && dim != null) {\n if (specDim !== dim) {\n throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected shape=${spec.shape}, found shape=${x.shape}.`);\n }\n }\n }\n }\n }\n }\n call(inputs, kwargs) {\n return inputs;\n }\n invokeCallHook(inputs, kwargs) {\n if (this._callHook != null) {\n this._callHook(inputs, kwargs);\n }\n }\n setCallHook(callHook) {\n this._callHook = callHook;\n }\n clearCallHook() {\n this._callHook = null;\n }\n apply(inputs, kwargs) {\n kwargs = kwargs || {};\n this.assertNotDisposed();\n const inputsList = toList(inputs);\n let allAreSymbolic = true;\n for (const input2 of inputsList) {\n if (!(input2 instanceof SymbolicTensor)) {\n allAreSymbolic = false;\n break;\n }\n }\n let noneAreSymbolic = true;\n for (const input2 of inputsList) {\n if (input2 instanceof SymbolicTensor) {\n noneAreSymbolic = false;\n break;\n }\n }\n if (allAreSymbolic === noneAreSymbolic) {\n throw new ValueError(\"Arguments to apply() must be all SymbolicTensors or all Tensors\");\n }\n return nameScope(this.name, () => {\n if (!this.built) {\n this.assertInputCompatibility(inputs);\n const inputShapes = [];\n for (const xElem of toList(inputs)) {\n inputShapes.push(xElem.shape);\n }\n this.build(singletonOrArray(inputShapes));\n this.built = true;\n if (this.initialWeights) {\n this.setWeights(this.initialWeights);\n }\n if (this._refCount === null && noneAreSymbolic) {\n this._refCount = 1;\n }\n }\n this.assertInputCompatibility(inputs);\n if (noneAreSymbolic) {\n let output = this.call(inputs, kwargs);\n const outputList = toList(output);\n const outputListCopy = [];\n for (let x of outputList) {\n if (inputsList.indexOf(x) !== -1) {\n x = x.clone();\n }\n outputListCopy.push(x);\n }\n output = singletonOrArray(outputListCopy);\n if (this.activityRegularizer != null) {\n throw new NotImplementedError(\"Layer invocation in the presence of activity regularizer(s) is not supported yet.\");\n }\n return output;\n } else {\n const inputShape = collectInputShape(inputs);\n const outputShape = this.computeOutputShape(inputShape);\n let output;\n const outputDType = guessOutputDType(inputs);\n this.warnOnIncompatibleInputShape(Array.isArray(inputs) ? inputShape[0] : inputShape);\n if (outputShape != null && outputShape.length > 0 && Array.isArray(outputShape[0])) {\n output = outputShape.map((shape, index) => new SymbolicTensor(outputDType, shape, this, toList(inputs), kwargs, this.name, index));\n } else {\n output = new SymbolicTensor(outputDType, outputShape, this, toList(inputs), kwargs, this.name);\n }\n this.addInboundNode(inputs, output, null, null, inputShape, outputShape, kwargs);\n this._refCount++;\n if (this.activityRegularizer != null) {\n throw new NotImplementedError(\"Layer invocation in the presence of activity regularizer(s) is not supported yet.\");\n }\n return output;\n }\n });\n }\n warnOnIncompatibleInputShape(inputShape) {\n if (this.batchInputShape == null) {\n return;\n } else if (inputShape.length !== this.batchInputShape.length) {\n console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(inputShape)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);\n } else {\n let dimMismatch = false;\n this.batchInputShape.forEach((dimension, i2) => {\n if (dimension != null && inputShape[i2] != null && inputShape[i2] !== dimension) {\n dimMismatch = true;\n }\n });\n if (dimMismatch) {\n console.warn(`The shape of the input tensor (${JSON.stringify(inputShape)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`);\n }\n }\n }\n get outputShape() {\n if (this.inboundNodes == null || this.inboundNodes.length === 0) {\n throw new AttributeError(`The layer ${this.name} has never been called and thus has no defined output shape.`);\n }\n const allOutputShapes = [];\n for (const node of this.inboundNodes) {\n const shapeString = JSON.stringify(node.outputShapes);\n if (allOutputShapes.indexOf(shapeString) === -1) {\n allOutputShapes.push(shapeString);\n }\n }\n if (allOutputShapes.length === 1) {\n const outputShapes = this.inboundNodes[0].outputShapes;\n if (Array.isArray(outputShapes) && Array.isArray(outputShapes[0]) && outputShapes.length === 1) {\n return outputShapes[0];\n } else {\n return outputShapes;\n }\n } else {\n throw new AttributeError(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of \"output shape\" is ill-defined for the layer.`);\n }\n }\n countParams() {\n if (!this.built) {\n throw new RuntimeError(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);\n }\n return countParamsInWeights(this.weights);\n }\n build(inputShape) {\n this.built = true;\n }\n getWeights(trainableOnly = false) {\n return batchGetValue(trainableOnly ? this.trainableWeights : this.weights);\n }\n setWeights(weights) {\n tidy(() => {\n const params = this.weights;\n if (params.length !== weights.length) {\n throw new ValueError(`You called setWeights(weights) on layer \"${this.name}\" with a weight list of length ${weights.length}, but the layer was expecting ${params.length} weights. Provided weights: ${weights}...`);\n }\n if (params.length === 0) {\n return;\n }\n const weightValueTuples = [];\n const paramValues = batchGetValue(params);\n for (let i2 = 0; i2 < paramValues.length; ++i2) {\n const pv = paramValues[i2];\n const p2 = params[i2];\n const w = weights[i2];\n if (!util_exports.arraysEqual(pv.shape, w.shape)) {\n throw new ValueError(`Layer weight shape ${pv.shape} not compatible with provided weight shape ${w.shape}`);\n }\n weightValueTuples.push([p2, w]);\n }\n batchSetValue(weightValueTuples);\n });\n }\n addWeight(name, shape, dtype, initializer, regularizer, trainable, constraint, getInitializerFunc) {\n if (this._addedWeightNames.indexOf(name) !== -1) {\n throw new ValueError(`Duplicate weight name ${name} for layer ${this.name}`);\n }\n this._addedWeightNames.push(name);\n if (dtype == null) {\n dtype = \"float32\";\n }\n if (this.fastWeightInitDuringBuild) {\n initializer = getInitializerFunc != null ? getInitializerFunc() : getInitializer(\"zeros\");\n }\n const initValue = initializer.apply(shape, dtype);\n const weight = new LayerVariable(initValue, dtype, name, trainable, constraint);\n initValue.dispose();\n if (regularizer != null) {\n this.addLoss(() => regularizer.apply(weight.read()));\n }\n if (trainable == null) {\n trainable = true;\n }\n if (trainable) {\n this._trainableWeights.push(weight);\n } else {\n this._nonTrainableWeights.push(weight);\n }\n return weight;\n }\n setFastWeightInitDuringBuild(value) {\n this.fastWeightInitDuringBuild = value;\n }\n addLoss(losses2) {\n if (losses2 == null || Array.isArray(losses2) && losses2.length === 0) {\n return;\n }\n losses2 = toList(losses2);\n if (this._losses !== void 0 && this._losses !== null) {\n this.losses.push(...losses2);\n }\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n computeMask(inputs, mask) {\n if (!this.supportsMasking) {\n if (mask != null) {\n if (Array.isArray(mask)) {\n mask.forEach((maskElement) => {\n if (maskElement != null) {\n throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);\n }\n });\n } else {\n throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);\n }\n }\n return null;\n }\n return mask;\n }\n addInboundNode(inputTensors, outputTensors, inputMasks, outputMasks, inputShapes, outputShapes, kwargs = null) {\n const inputTensorList = toList(inputTensors);\n outputTensors = toList(outputTensors);\n inputMasks = toList(inputMasks);\n outputMasks = toList(outputMasks);\n inputShapes = normalizeShapeList(inputShapes);\n outputShapes = normalizeShapeList(outputShapes);\n const inboundLayers = [];\n const nodeIndices = [];\n const tensorIndices = [];\n for (const x of inputTensorList) {\n inboundLayers.push(x.sourceLayer);\n nodeIndices.push(x.nodeIndex);\n tensorIndices.push(x.tensorIndex);\n }\n new Node({\n outboundLayer: this,\n inboundLayers,\n nodeIndices,\n tensorIndices,\n inputTensors: inputTensorList,\n outputTensors,\n inputMasks,\n outputMasks,\n inputShapes,\n outputShapes\n }, kwargs);\n for (let i2 = 0; i2 < outputTensors.length; i2++) {\n outputTensors[i2].sourceLayer = this;\n outputTensors[i2].nodeIndex = this.inboundNodes.length - 1;\n outputTensors[i2].tensorIndex = i2;\n }\n }\n getConfig() {\n const config = { name: this.name, trainable: this.trainable };\n if (this.batchInputShape != null) {\n config[\"batchInputShape\"] = this.batchInputShape;\n }\n if (this.dtype != null) {\n config[\"dtype\"] = this.dtype;\n }\n return config;\n }\n disposeWeights() {\n this.weights.forEach((weight) => weight.dispose());\n return this.weights.length;\n }\n assertNotDisposed() {\n if (this._refCount === 0) {\n throw new Error(`Layer '${this.name}' is already disposed.`);\n }\n }\n dispose() {\n if (!this.built) {\n throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);\n }\n if (this._refCount === null) {\n throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);\n }\n this.assertNotDisposed();\n let numDisposedVariables = 0;\n if (--this._refCount === 0) {\n numDisposedVariables = this.disposeWeights();\n }\n return { refCountAfterDispose: this._refCount, numDisposedVariables };\n }\n};\nfunction collectInputShape(inputTensors) {\n inputTensors = toList(inputTensors);\n const shapes = [];\n for (const x of inputTensors) {\n shapes.push(x.shape);\n }\n return singletonOrArray(shapes);\n}\nfunction guessOutputDType(inputTensors) {\n return \"float32\";\n}\nfunction getSourceInputs(tensor2, layer, nodeIndex) {\n if (layer == null || nodeIndex != null && nodeIndex > 0) {\n layer = tensor2.sourceLayer;\n nodeIndex = tensor2.nodeIndex;\n }\n if (layer.inboundNodes.length === 0) {\n return [tensor2];\n } else {\n const node = layer.inboundNodes[nodeIndex];\n if (node.inboundLayers.length === 0) {\n return node.inputTensors;\n } else {\n const sourceTensors = [];\n for (let i2 = 0; i2 < node.inboundLayers.length; i2++) {\n const x = node.inputTensors[i2];\n const layer2 = node.inboundLayers[i2];\n const nodeIndex2 = node.nodeIndices[i2];\n const previousSources = getSourceInputs(x, layer2, nodeIndex2);\n for (const x2 of previousSources) {\n if (sourceTensors.indexOf(x2) === -1) {\n sourceTensors.push(x2);\n }\n }\n }\n return sourceTensors;\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/input_layer.js\nvar InputLayer = class extends Layer {\n constructor(args) {\n super({\n dtype: args.dtype,\n name: args.name != null ? args.name : getUid(\"input\").toString()\n });\n if (args.batchSize == null) {\n args.batchSize = null;\n }\n if (args.sparse == null) {\n args.sparse = false;\n }\n this.trainable = false;\n this.built = true;\n this.sparse = args.sparse;\n if (args.inputShape != null && args.batchInputShape != null) {\n throw new ValueError(\"Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.\");\n }\n let batchInputShape = args.batchInputShape;\n if (batchInputShape == null) {\n if (args.inputShape == null) {\n throw new ValueError(\"An InputLayer should be passed either a `batchInputShape` or an `inputShape`.\");\n } else {\n batchInputShape = [args.batchSize].concat(args.inputShape);\n }\n } else {\n if (args.batchSize != null) {\n throw new ValueError(\"Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.\");\n }\n }\n const dtype = args.dtype || \"float32\";\n this.batchInputShape = batchInputShape;\n this.dtype = dtype;\n this.inputSpec = [{ shape: batchInputShape }];\n const inputTensor = new SymbolicTensor(this.dtype, this.batchInputShape, this, [], {}, this.name);\n inputTensor.nodeIndex = 0;\n inputTensor.tensorIndex = 0;\n new Node({\n outboundLayer: this,\n inboundLayers: [],\n nodeIndices: [],\n tensorIndices: [],\n inputTensors: [inputTensor],\n outputTensors: [inputTensor],\n inputMasks: [null],\n outputMasks: [null],\n inputShapes: [batchInputShape],\n outputShapes: [batchInputShape]\n });\n }\n apply(inputs, kwargs) {\n throw new ValueError(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`);\n }\n dispose() {\n return { refCountAfterDispose: this._refCount, numDisposedVariables: 0 };\n }\n getConfig() {\n return {\n batchInputShape: this.batchInputShape,\n dtype: this.dtype,\n sparse: this.sparse,\n name: this.name\n };\n }\n};\nInputLayer.className = \"InputLayer\";\nserialization_exports.registerClass(InputLayer);\nfunction Input(config) {\n if (config.batchShape == null && config.shape == null) {\n throw new Error(\"Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.\");\n }\n if (config.batchShape != null && config.shape != null) {\n throw new ValueError(\"Please provide either a `shape` or `batchShape` argument to Input, but not both.\");\n }\n let batchShape = config.batchShape;\n if (config.shape != null && batchShape == null) {\n batchShape = [null].concat(config.shape);\n }\n let dtype = config.dtype;\n if (dtype == null) {\n dtype = \"float32\";\n }\n const inputLayer2 = new InputLayer({\n batchInputShape: batchShape,\n name: config.name,\n dtype,\n sparse: config.sparse\n });\n const outputs = inputLayer2.inboundNodes[0].outputTensors;\n return outputs[0];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/executor.js\nfunction assertFeedCompatibility(key, val) {\n if (key.dtype == null || key.dtype === val.dtype) {\n return val;\n }\n try {\n return cast(val, key.dtype);\n } catch (err) {\n throw new ValueError(`The dtype of the feed (${val.dtype}) can not be cast to the dtype of the key '${key.name}' (${key.dtype}).`);\n }\n}\nvar FeedDict = class {\n constructor(feeds) {\n this.id2Value = {};\n this.id2Mask = {};\n this.name2Id = {};\n if (feeds instanceof FeedDict) {\n for (const id in feeds.id2Value) {\n this.id2Value[id] = feeds.id2Value[id];\n if (id in feeds.id2Mask) {\n this.id2Mask[id] = feeds.id2Mask[id];\n }\n }\n } else {\n if (feeds == null) {\n return;\n }\n for (const feed of feeds) {\n this.add(feed.key, feed.value);\n }\n }\n }\n add(key, value, mask) {\n if (this.id2Value[key.id] == null) {\n this.id2Value[key.id] = assertFeedCompatibility(key, value);\n this.name2Id[key.name] = key.id;\n if (mask != null) {\n this.id2Mask[key.id] = mask;\n }\n } else {\n throw new ValueError(`Duplicate key: name=${key.name}, id=${key.id}`);\n }\n return this;\n }\n addFeed(feed) {\n this.add(feed.key, feed.value);\n }\n hasKey(key) {\n return this.id2Value[key.id] != null;\n }\n names() {\n return Object.keys(this.name2Id);\n }\n getValue(key) {\n if (key instanceof SymbolicTensor) {\n if (this.id2Value[key.id] == null) {\n throw new ValueError(`Nonexistent key: ${key.name}`);\n } else {\n return this.id2Value[key.id];\n }\n } else {\n const id = this.name2Id[key];\n if (id == null) {\n throw new ValueError(`Feed dict has no SymbolicTensor name: ${key}`);\n }\n return this.id2Value[id];\n }\n }\n getMask(key) {\n if (key instanceof SymbolicTensor) {\n if (this.id2Value[key.id] == null) {\n throw new ValueError(`Nonexistent key: ${key.name}`);\n } else {\n return this.id2Mask[key.id];\n }\n } else {\n const id = this.name2Id[key];\n if (id == null) {\n throw new ValueError(`Feed dict has no SymbolicTensor name: ${key}`);\n }\n return this.id2Mask[id];\n }\n }\n disposeMasks() {\n if (this.id2Mask != null) {\n dispose(this.id2Mask);\n }\n }\n};\nvar cachedSorted = new LruCache();\nvar cachedRecipientCounts = new LruCache();\nfunction updateCacheMaxEntries(maxEntries) {\n if (cachedSorted != null) {\n cachedSorted.setMaxEntries(maxEntries);\n }\n if (cachedRecipientCounts != null) {\n cachedRecipientCounts.setMaxEntries(maxEntries);\n }\n}\nfunction execute(fetches, feedDict, kwargs, probe) {\n const training = kwargs == null ? false : kwargs[\"training\"];\n const arrayFetches = Array.isArray(fetches);\n const fetchArray = arrayFetches ? fetches : [fetches];\n const outputNames = fetchArray.map((t2) => t2.name);\n const finalOutputs = [];\n const feedNames = feedDict.names();\n for (const outputName of outputNames) {\n if (feedNames.indexOf(outputName) !== -1) {\n finalOutputs.push(feedDict.getValue(outputName));\n } else {\n finalOutputs.push(null);\n }\n }\n if (probe != null) {\n probe.maxNumTensors = -Infinity;\n probe.minNumTensors = Infinity;\n }\n const fetchAndFeedKey = outputNames.join(\",\") + \"|\" + feedDict.names().sort().join(\",\");\n let sorted = cachedSorted.get(fetchAndFeedKey);\n let recipientCounts;\n if (sorted == null) {\n const out = getTopologicalSortAndRecipientCounts(fetchArray, feedDict);\n sorted = out.sorted;\n recipientCounts = out.recipientCounts;\n cachedSorted.put(fetchAndFeedKey, sorted);\n cachedRecipientCounts.put(fetchAndFeedKey, recipientCounts);\n }\n recipientCounts = {};\n if (!training) {\n Object.assign(recipientCounts, cachedRecipientCounts.get(fetchAndFeedKey));\n }\n const internalFeedDict = new FeedDict(feedDict);\n for (let i2 = 0; i2 < sorted.length; ++i2) {\n if (probe != null) {\n const numTensors = memory().numTensors;\n if (numTensors > probe.maxNumTensors) {\n probe.maxNumTensors = numTensors;\n }\n if (numTensors < probe.minNumTensors) {\n probe.minNumTensors = numTensors;\n }\n }\n const symbolic = sorted[i2];\n const srcLayer = symbolic.sourceLayer;\n if (srcLayer instanceof InputLayer) {\n continue;\n }\n const inputValues = [];\n const inputMasks = [];\n const tensorsToDispose = [];\n let maskExists = false;\n for (const input2 of symbolic.inputs) {\n const value = internalFeedDict.getValue(input2);\n const mask = internalFeedDict.getMask(input2);\n inputValues.push(value);\n inputMasks.push(mask);\n if (mask != null) {\n maskExists = true;\n }\n if (!training) {\n recipientCounts[input2.name]--;\n if (recipientCounts[input2.name] === 0 && !feedDict.hasKey(input2) && outputNames.indexOf(input2.name) === -1 && !value.isDisposed && input2.sourceLayer.stateful !== true) {\n tensorsToDispose.push(value);\n }\n }\n }\n if (maskExists) {\n kwargs = kwargs || {};\n kwargs[\"mask\"] = inputMasks[0];\n }\n const outputTensors = toList(srcLayer.apply(inputValues, kwargs));\n let outputMask = null;\n if (srcLayer.supportsMasking) {\n outputMask = srcLayer.computeMask(inputValues, inputMasks);\n }\n const layerOutputs = getNodeOutputs(symbolic);\n const outputSymbolicTensors = Array.isArray(layerOutputs) ? layerOutputs : [layerOutputs];\n for (let i3 = 0; i3 < outputSymbolicTensors.length; ++i3) {\n if (!internalFeedDict.hasKey(outputSymbolicTensors[i3])) {\n internalFeedDict.add(outputSymbolicTensors[i3], outputTensors[i3], Array.isArray(outputMask) ? outputMask[0] : outputMask);\n }\n const index = outputNames.indexOf(outputSymbolicTensors[i3].name);\n if (index !== -1) {\n finalOutputs[index] = outputTensors[i3];\n }\n }\n if (!training) {\n dispose(tensorsToDispose);\n }\n }\n internalFeedDict.disposeMasks();\n return arrayFetches ? finalOutputs : finalOutputs[0];\n}\nfunction getTopologicalSortAndRecipientCounts(fetches, feedDict) {\n util_exports.assert(fetches != null && fetches.length > 0, () => `Expected at least one fetch, got none`);\n let finalSorted = [];\n let finalRecipientMap = {};\n if (fetches.length === 1) {\n const out = getTopologicalSortAndRecipientCountsForOneFetch(fetches[0], feedDict);\n finalSorted = out.sorted;\n finalRecipientMap = out.recipientMap;\n } else {\n const visited = /* @__PURE__ */ new Set();\n for (const fetch4 of fetches) {\n const { sorted, recipientMap } = getTopologicalSortAndRecipientCountsForOneFetch(fetch4, feedDict);\n for (const symbolicTensor of sorted) {\n if (!visited.has(symbolicTensor.name)) {\n finalSorted.push(symbolicTensor);\n visited.add(symbolicTensor.name);\n }\n }\n for (const name in recipientMap) {\n if (finalRecipientMap[name] == null) {\n finalRecipientMap[name] = /* @__PURE__ */ new Set();\n }\n recipientMap[name].forEach((recipient) => finalRecipientMap[name].add(recipient));\n }\n }\n }\n return {\n sorted: finalSorted,\n recipientCounts: recipientMap2Counts(finalRecipientMap)\n };\n}\nfunction recipientMap2Counts(recipientMap) {\n const recipientCounts = {};\n for (const name in recipientMap) {\n recipientCounts[name] = recipientMap[name].size;\n }\n return recipientCounts;\n}\nfunction getTopologicalSortAndRecipientCountsForOneFetch(fetch4, feedDict) {\n const visited = /* @__PURE__ */ new Set();\n const sorted = [];\n const recipientMap = {};\n for (const key of feedDict.names()) {\n visited.add(key);\n }\n const stack2 = [];\n const marks = [];\n stack2.push(fetch4);\n while (stack2.length > 0) {\n const top = stack2[stack2.length - 1];\n if (visited.has(top.name)) {\n stack2.pop();\n continue;\n }\n const topIsMarked = marks[marks.length - 1] === stack2.length - 1;\n if (top.inputs.length === 0 || topIsMarked) {\n stack2.pop();\n sorted.push(top);\n visited.add(top.name);\n if (topIsMarked) {\n marks.pop();\n }\n } else {\n marks.push(stack2.length - 1);\n for (const input2 of top.inputs) {\n if (recipientMap[input2.name] == null) {\n recipientMap[input2.name] = /* @__PURE__ */ new Set();\n }\n recipientMap[input2.name].add(top.name);\n if (visited.has(input2.name)) {\n continue;\n }\n stack2.push(input2);\n }\n }\n }\n return { sorted, recipientMap };\n}\nfunction getNodeOutputs(fetch4) {\n let layerOutputs;\n if (fetch4.sourceLayer.inboundNodes.length === 1) {\n layerOutputs = fetch4.sourceLayer.output;\n } else {\n let nodeIndex = null;\n for (let i2 = 0; i2 < fetch4.sourceLayer.inboundNodes.length; ++i2) {\n for (const outputTensor of fetch4.sourceLayer.inboundNodes[i2].outputTensors) {\n if (outputTensor.id === fetch4.id) {\n nodeIndex = i2;\n break;\n }\n }\n }\n layerOutputs = fetch4.sourceLayer.getOutputAt(nodeIndex);\n }\n return layerOutputs;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/flags_layers.js\nvar ENV3 = env();\nENV3.registerFlag(\"TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES\", () => 100, updateCacheMaxEntries);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_constraints.js\nvar exports_constraints_exports = {};\n__export(exports_constraints_exports, {\n maxNorm: () => maxNorm,\n minMaxNorm: () => minMaxNorm,\n nonNeg: () => nonNeg,\n unitNorm: () => unitNorm\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/constraints.js\nfunction calcL2Norms(w, axis) {\n return tidy(() => sqrt(sum2(mul(w, w), axis, true)));\n}\nvar Constraint = class extends serialization_exports.Serializable {\n getConfig() {\n return {};\n }\n};\nvar MaxNorm = class extends Constraint {\n constructor(args) {\n super();\n this.defaultMaxValue = 2;\n this.defaultAxis = 0;\n this.maxValue = args.maxValue != null ? args.maxValue : this.defaultMaxValue;\n this.axis = args.axis != null ? args.axis : this.defaultAxis;\n }\n apply(w) {\n return tidy(() => {\n const norms = calcL2Norms(w, this.axis);\n const desired = clipByValue(norms, 0, this.maxValue);\n return mul(w, div(desired, add2(epsilon(), norms)));\n });\n }\n getConfig() {\n return { maxValue: this.maxValue, axis: this.axis };\n }\n};\nMaxNorm.className = \"MaxNorm\";\nserialization_exports.registerClass(MaxNorm);\nvar UnitNorm = class extends Constraint {\n constructor(args) {\n super();\n this.defaultAxis = 0;\n this.axis = args.axis != null ? args.axis : this.defaultAxis;\n }\n apply(w) {\n return tidy(() => div(w, add2(epsilon(), calcL2Norms(w, this.axis))));\n }\n getConfig() {\n return { axis: this.axis };\n }\n};\nUnitNorm.className = \"UnitNorm\";\nserialization_exports.registerClass(UnitNorm);\nvar NonNeg = class extends Constraint {\n apply(w) {\n return relu(w);\n }\n};\nNonNeg.className = \"NonNeg\";\nserialization_exports.registerClass(NonNeg);\nvar MinMaxNorm = class extends Constraint {\n constructor(args) {\n super();\n this.defaultMinValue = 0;\n this.defaultMaxValue = 1;\n this.defaultRate = 1;\n this.defaultAxis = 0;\n this.minValue = args.minValue != null ? args.minValue : this.defaultMinValue;\n this.maxValue = args.maxValue != null ? args.maxValue : this.defaultMaxValue;\n this.rate = args.rate != null ? args.rate : this.defaultRate;\n this.axis = args.axis != null ? args.axis : this.defaultAxis;\n }\n apply(w) {\n return tidy(() => {\n const norms = calcL2Norms(w, this.axis);\n const desired = add2(mul(this.rate, clipByValue(norms, this.minValue, this.maxValue)), mul(1 - this.rate, norms));\n return mul(w, div(desired, add2(epsilon(), norms)));\n });\n }\n getConfig() {\n return {\n minValue: this.minValue,\n maxValue: this.maxValue,\n rate: this.rate,\n axis: this.axis\n };\n }\n};\nMinMaxNorm.className = \"MinMaxNorm\";\nserialization_exports.registerClass(MinMaxNorm);\nvar CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP = {\n \"maxNorm\": \"MaxNorm\",\n \"minMaxNorm\": \"MinMaxNorm\",\n \"nonNeg\": \"NonNeg\",\n \"unitNorm\": \"UnitNorm\"\n};\nfunction serializeConstraint(constraint) {\n return serializeKerasObject(constraint);\n}\nfunction deserializeConstraint(config, customObjects = {}) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"constraint\");\n}\nfunction getConstraint(identifier) {\n if (identifier == null) {\n return null;\n }\n if (typeof identifier === \"string\") {\n const className = identifier in CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP ? CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier] : identifier;\n const config = { className, config: {} };\n return deserializeConstraint(config);\n } else if (identifier instanceof Constraint) {\n return identifier;\n } else {\n return deserializeConstraint(identifier);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_constraints.js\nfunction maxNorm(args) {\n return new MaxNorm(args);\n}\nfunction unitNorm(args) {\n return new UnitNorm(args);\n}\nfunction nonNeg() {\n return new NonNeg();\n}\nfunction minMaxNorm(config) {\n return new MinMaxNorm(config);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_initializers.js\nvar exports_initializers_exports = {};\n__export(exports_initializers_exports, {\n constant: () => constant,\n glorotNormal: () => glorotNormal,\n glorotUniform: () => glorotUniform,\n heNormal: () => heNormal,\n heUniform: () => heUniform,\n identity: () => identity,\n leCunNormal: () => leCunNormal,\n leCunUniform: () => leCunUniform,\n ones: () => ones3,\n orthogonal: () => orthogonal,\n randomNormal: () => randomNormal3,\n randomUniform: () => randomUniform2,\n truncatedNormal: () => truncatedNormal2,\n varianceScaling: () => varianceScaling,\n zeros: () => zeros2\n});\nfunction zeros2() {\n return new Zeros();\n}\nfunction ones3() {\n return new Ones();\n}\nfunction constant(args) {\n return new Constant(args);\n}\nfunction randomUniform2(args) {\n return new RandomUniform(args);\n}\nfunction randomNormal3(args) {\n return new RandomNormal(args);\n}\nfunction truncatedNormal2(args) {\n return new TruncatedNormal(args);\n}\nfunction identity(args) {\n return new Identity2(args);\n}\nfunction varianceScaling(config) {\n return new VarianceScaling(config);\n}\nfunction glorotUniform(args) {\n return new GlorotUniform(args);\n}\nfunction glorotNormal(args) {\n return new GlorotNormal(args);\n}\nfunction heNormal(args) {\n return new HeNormal(args);\n}\nfunction heUniform(args) {\n return new HeUniform(args);\n}\nfunction leCunNormal(args) {\n return new LeCunNormal(args);\n}\nfunction leCunUniform(args) {\n return new LeCunUniform(args);\n}\nfunction orthogonal(args) {\n return new Orthogonal(args);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_layers.js\nvar exports_layers_exports = {};\n__export(exports_layers_exports, {\n Layer: () => Layer,\n RNN: () => RNN,\n RNNCell: () => RNNCell,\n activation: () => activation,\n add: () => add3,\n alphaDropout: () => alphaDropout,\n average: () => average,\n averagePooling1d: () => averagePooling1d,\n averagePooling2d: () => averagePooling2d,\n averagePooling3d: () => averagePooling3d,\n avgPool1d: () => avgPool1d,\n avgPool2d: () => avgPool2d,\n avgPool3d: () => avgPool3d2,\n avgPooling1d: () => avgPooling1d,\n avgPooling2d: () => avgPooling2d,\n avgPooling3d: () => avgPooling3d,\n batchNormalization: () => batchNormalization2,\n bidirectional: () => bidirectional,\n concatenate: () => concatenate2,\n conv1d: () => conv1d2,\n conv2d: () => conv2d3,\n conv2dTranspose: () => conv2dTranspose2,\n conv3d: () => conv3d2,\n conv3dTranspose: () => conv3dTranspose2,\n convLstm2d: () => convLstm2d,\n convLstm2dCell: () => convLstm2dCell,\n cropping2D: () => cropping2D,\n dense: () => dense,\n depthwiseConv2d: () => depthwiseConv2d4,\n dot: () => dot3,\n dropout: () => dropout3,\n elu: () => elu3,\n embedding: () => embedding,\n flatten: () => flatten3,\n gaussianDropout: () => gaussianDropout,\n gaussianNoise: () => gaussianNoise,\n globalAveragePooling1d: () => globalAveragePooling1d,\n globalAveragePooling2d: () => globalAveragePooling2d,\n globalMaxPool1d: () => globalMaxPool1d,\n globalMaxPool2d: () => globalMaxPool2d,\n globalMaxPooling1d: () => globalMaxPooling1d,\n globalMaxPooling2d: () => globalMaxPooling2d,\n gru: () => gru,\n gruCell: () => gruCell,\n input: () => input,\n inputLayer: () => inputLayer,\n layerNormalization: () => layerNormalization,\n leakyReLU: () => leakyReLU,\n lstm: () => lstm,\n lstmCell: () => lstmCell,\n masking: () => masking,\n maxPool1d: () => maxPool1d,\n maxPool2d: () => maxPool2d,\n maxPooling1d: () => maxPooling1d,\n maxPooling2d: () => maxPooling2d,\n maxPooling3d: () => maxPooling3d,\n maximum: () => maximum2,\n minimum: () => minimum2,\n multiply: () => multiply,\n permute: () => permute,\n prelu: () => prelu2,\n reLU: () => reLU,\n repeatVector: () => repeatVector,\n reshape: () => reshape2,\n rnn: () => rnn2,\n separableConv2d: () => separableConv2d2,\n simpleRNN: () => simpleRNN,\n simpleRNNCell: () => simpleRNNCell,\n softmax: () => softmax2,\n spatialDropout1d: () => spatialDropout1d,\n stackedRNNCells: () => stackedRNNCells,\n thresholdedReLU: () => thresholdedReLU,\n timeDistributed: () => timeDistributed,\n upSampling2d: () => upSampling2d,\n zeroPadding2d: () => zeroPadding2d\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/logs.js\nasync function resolveScalarsInLogs(logs) {\n if (logs == null) {\n return;\n }\n const promises = [];\n const keys = [];\n const scalarsToDispose = [];\n for (const key in logs) {\n const value = logs[key];\n if (typeof value !== \"number\") {\n const valueScalar = value;\n promises.push(valueScalar.data());\n keys.push(key);\n scalarsToDispose.push(valueScalar);\n }\n }\n if (promises.length > 0) {\n const values = await Promise.all(promises);\n for (let i2 = 0; i2 < values.length; ++i2) {\n logs[keys[i2]] = values[i2][0];\n }\n dispose(scalarsToDispose);\n }\n}\nfunction disposeTensorsInLogs(logs) {\n if (logs == null) {\n return;\n }\n for (const key in logs) {\n const value = logs[key];\n if (typeof value !== \"number\") {\n value.dispose();\n }\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/base_callbacks.js\nvar ModelLoggingVerbosity;\n(function(ModelLoggingVerbosity2) {\n ModelLoggingVerbosity2[ModelLoggingVerbosity2[\"SILENT\"] = 0] = \"SILENT\";\n ModelLoggingVerbosity2[ModelLoggingVerbosity2[\"VERBOSE\"] = 1] = \"VERBOSE\";\n})(ModelLoggingVerbosity || (ModelLoggingVerbosity = {}));\nvar DEFAULT_YIELD_EVERY_MS = 125;\nvar BaseCallback = class {\n constructor() {\n this.validationData = null;\n }\n setParams(params) {\n this.params = params;\n }\n async onEpochBegin(epoch, logs) {\n }\n async onEpochEnd(epoch, logs) {\n }\n async onBatchBegin(batch, logs) {\n }\n async onBatchEnd(batch, logs) {\n }\n async onTrainBegin(logs) {\n }\n async onTrainEnd(logs) {\n }\n setModel(model2) {\n }\n};\nvar CallbackList = class {\n constructor(callbacks2, queueLength = 10) {\n if (callbacks2 == null) {\n callbacks2 = [];\n }\n this.callbacks = callbacks2;\n this.queueLength = queueLength;\n }\n append(callback) {\n this.callbacks.push(callback);\n }\n setParams(params) {\n for (const callback of this.callbacks) {\n callback.setParams(params);\n }\n }\n setModel(model2) {\n for (const callback of this.callbacks) {\n callback.setModel(model2);\n }\n }\n async onEpochBegin(epoch, logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onEpochBegin(epoch, logs);\n }\n }\n async onEpochEnd(epoch, logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onEpochEnd(epoch, logs);\n }\n }\n async onBatchBegin(batch, logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onBatchBegin(batch, logs);\n }\n }\n async onBatchEnd(batch, logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onBatchEnd(batch, logs);\n }\n }\n async onTrainBegin(logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onTrainBegin(logs);\n }\n }\n async onTrainEnd(logs) {\n if (logs == null) {\n logs = {};\n }\n for (const callback of this.callbacks) {\n await callback.onTrainEnd(logs);\n }\n }\n};\nvar BaseLogger = class extends BaseCallback {\n constructor() {\n super();\n }\n async onEpochBegin(epoch) {\n this.seen = 0;\n this.totals = {};\n }\n async onBatchEnd(batch, logs) {\n if (logs == null) {\n logs = {};\n }\n const batchSize = logs[\"size\"] == null ? 0 : logs[\"size\"];\n this.seen += batchSize;\n for (const key in logs) {\n const value = logs[key];\n if (typeof value === \"number\") {\n if (!this.totals.hasOwnProperty(key)) {\n this.totals[key] = 0;\n }\n this.totals[key] = this.totals[key] + value * batchSize;\n } else {\n let oldTotalsToDispose;\n if (key in this.totals) {\n oldTotalsToDispose = this.totals[key];\n } else {\n this.totals[key] = 0;\n }\n const total = tidy(() => add2(this.totals[key], mul(value, batchSize)));\n this.totals[key] = total;\n if (oldTotalsToDispose != null) {\n oldTotalsToDispose.dispose();\n }\n }\n }\n }\n async onEpochEnd(epoch, logs) {\n if (logs != null) {\n for (const key of this.params[\"metrics\"]) {\n if (this.totals[key] == null) {\n continue;\n }\n if (typeof this.totals[key] === \"number\") {\n logs[key] = this.totals[key] / this.seen;\n } else {\n tidy(() => {\n const log6 = mul(div(1, this.seen), this.totals[key]);\n logs[key] = log6;\n this.totals[key].dispose();\n keep(logs[key]);\n });\n }\n }\n }\n }\n};\nvar History = class extends BaseCallback {\n async onTrainBegin(logs) {\n this.epoch = [];\n this.history = {};\n }\n async onEpochEnd(epoch, logs) {\n if (logs == null) {\n logs = {};\n }\n this.epoch.push(epoch);\n for (const key in logs) {\n if (this.history[key] == null) {\n this.history[key] = [];\n }\n this.history[key].push(logs[key]);\n }\n }\n async syncData() {\n const promises = [];\n const keys = [];\n const indices = [];\n for (const key in this.history) {\n const valueArray = this.history[key];\n for (let i2 = 0; i2 < valueArray.length; ++i2) {\n if (typeof valueArray[i2] !== \"number\") {\n const valueScalar = valueArray[i2];\n promises.push(valueScalar.data());\n keys.push(key);\n indices.push(i2);\n }\n }\n }\n const values = await Promise.all(promises);\n for (let n2 = 0; n2 < values.length; ++n2) {\n const tensorToDispose = this.history[keys[n2]][indices[n2]];\n tensorToDispose.dispose();\n this.history[keys[n2]][indices[n2]] = values[n2][0];\n }\n }\n};\nvar CustomCallback = class extends BaseCallback {\n constructor(args, yieldEvery) {\n super();\n this.currentEpoch = 0;\n this.nowFunc = args.nowFunc;\n this.nextFrameFunc = args.nextFrameFunc || nextFrame;\n this.yieldEvery = yieldEvery || \"auto\";\n if (this.yieldEvery === \"auto\") {\n this.yieldEvery = DEFAULT_YIELD_EVERY_MS;\n }\n if (this.yieldEvery === \"never\" && args.onYield != null) {\n throw new Error(\"yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback\");\n }\n if (util_exports.isNumber(this.yieldEvery)) {\n this.maybeWait = debounce(this.maybeWait.bind(this), this.yieldEvery, this.nowFunc);\n }\n this.trainBegin = args.onTrainBegin;\n this.trainEnd = args.onTrainEnd;\n this.epochBegin = args.onEpochBegin;\n this.epochEnd = args.onEpochEnd;\n this.batchBegin = args.onBatchBegin;\n this.batchEnd = args.onBatchEnd;\n this.yield = args.onYield;\n }\n async maybeWait(epoch, batch, logs) {\n const ps = [];\n if (this.yield != null) {\n await resolveScalarsInLogs(logs);\n ps.push(this.yield(epoch, batch, logs));\n }\n ps.push(this.nextFrameFunc());\n await Promise.all(ps);\n }\n async onEpochBegin(epoch, logs) {\n this.currentEpoch = epoch;\n if (this.epochBegin != null) {\n await resolveScalarsInLogs(logs);\n await this.epochBegin(epoch, logs);\n }\n }\n async onEpochEnd(epoch, logs) {\n const ps = [];\n if (this.epochEnd != null) {\n await resolveScalarsInLogs(logs);\n ps.push(this.epochEnd(epoch, logs));\n }\n if (this.yieldEvery === \"epoch\") {\n ps.push(this.nextFrameFunc());\n }\n await Promise.all(ps);\n }\n async onBatchBegin(batch, logs) {\n if (this.batchBegin != null) {\n await resolveScalarsInLogs(logs);\n await this.batchBegin(batch, logs);\n }\n }\n async onBatchEnd(batch, logs) {\n const ps = [];\n if (this.batchEnd != null) {\n await resolveScalarsInLogs(logs);\n ps.push(this.batchEnd(batch, logs));\n }\n if (this.yieldEvery === \"batch\") {\n ps.push(this.nextFrameFunc());\n } else if (util_exports.isNumber(this.yieldEvery)) {\n ps.push(this.maybeWait(this.currentEpoch, batch, logs));\n }\n await Promise.all(ps);\n }\n async onTrainBegin(logs) {\n if (this.trainBegin != null) {\n await resolveScalarsInLogs(logs);\n await this.trainBegin(logs);\n }\n }\n async onTrainEnd(logs) {\n if (this.trainEnd != null) {\n await resolveScalarsInLogs(logs);\n await this.trainEnd(logs);\n }\n }\n};\nfunction standardizeCallbacks(callbacks2, yieldEvery) {\n if (callbacks2 == null) {\n callbacks2 = {};\n }\n if (callbacks2 instanceof BaseCallback) {\n return [callbacks2];\n }\n if (Array.isArray(callbacks2) && callbacks2[0] instanceof BaseCallback) {\n return callbacks2;\n }\n const callbackConfigs = toList(callbacks2);\n return callbackConfigs.map((callbackConfig) => new CustomCallback(callbackConfig, yieldEvery));\n}\nvar CallbackConstructorRegistry = class {\n constructor() {\n }\n static registerCallbackConstructor(verbosityLevel, callbackConstructor) {\n util_exports.assert(verbosityLevel >= 0 && Number.isInteger(verbosityLevel), () => `Verbosity level is expected to be an integer >= 0, but got ${verbosityLevel}`);\n CallbackConstructorRegistry.checkForDuplicate(callbackConstructor);\n if (CallbackConstructorRegistry.constructors[verbosityLevel] == null) {\n CallbackConstructorRegistry.constructors[verbosityLevel] = [];\n }\n CallbackConstructorRegistry.constructors[verbosityLevel].push(callbackConstructor);\n }\n static checkForDuplicate(callbackConstructor) {\n for (const levelName in CallbackConstructorRegistry.constructors) {\n const constructors = CallbackConstructorRegistry.constructors[+levelName];\n constructors.forEach((ctor) => {\n if (ctor === callbackConstructor) {\n throw new ValueError(\"Duplicate callback constructor.\");\n }\n });\n }\n }\n static clear() {\n CallbackConstructorRegistry.constructors = {};\n }\n static createCallbacks(verbosityLevel) {\n const constructors = [];\n for (const levelName in CallbackConstructorRegistry.constructors) {\n const level = +levelName;\n if (verbosityLevel >= level) {\n constructors.push(...CallbackConstructorRegistry.constructors[level]);\n }\n }\n return constructors.map((ctor) => new ctor());\n }\n};\nCallbackConstructorRegistry.constructors = {};\nfunction configureCallbacks(callbacks2, verbose, epochs, initialEpoch, numTrainSamples, stepsPerEpoch, batchSize, doValidation, callbackMetrics) {\n const history = new History();\n const actualCallbacks = [\n new BaseLogger(),\n ...CallbackConstructorRegistry.createCallbacks(verbose)\n ];\n if (callbacks2 != null) {\n actualCallbacks.push(...callbacks2);\n }\n actualCallbacks.push(history);\n const callbackList = new CallbackList(actualCallbacks);\n callbackList.setParams({\n epochs,\n initialEpoch,\n samples: numTrainSamples,\n steps: stepsPerEpoch,\n batchSize,\n verbose,\n doValidation,\n metrics: callbackMetrics\n });\n return { callbackList, history };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/serialization.js\nfunction deserialize(config, customObjects = {}, fastWeightInit = false) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"layer\", fastWeightInit);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/losses.js\nfunction l2Normalize(x, axis) {\n return tidy(() => {\n if (x.dtype !== \"float32\") {\n x = cast(x, \"float32\");\n }\n const squareSum = sum2(square2(x), axis, true);\n const epsilonTensor = fill(squareSum.shape, epsilon());\n const norm2 = sqrt(maximum(squareSum, epsilonTensor));\n return div(x, norm2);\n });\n}\nfunction meanSquaredError2(yTrue, yPred) {\n return tidy(() => mean(square2(sub(yPred, yTrue)), -1));\n}\nfunction meanAbsoluteError(yTrue, yPred) {\n return tidy(() => mean(abs(sub(yPred, yTrue)), -1));\n}\nfunction meanAbsolutePercentageError(yTrue, yPred) {\n return tidy(() => {\n const diff = sub(yTrue, yPred);\n const clippedTrue = clipByValue(abs(yTrue), epsilon(), Number.MAX_VALUE);\n const absResult = abs(div(diff, clippedTrue));\n return mul(100, mean(absResult, -1));\n });\n}\nfunction meanSquaredLogarithmicError(yTrue, yPred) {\n return tidy(() => {\n const clippedPred = clipByValue(yPred, epsilon(), Number.MAX_VALUE);\n const firstLog = log2(add2(1, clippedPred));\n const clippedTrue = clipByValue(yTrue, epsilon(), Number.MAX_VALUE);\n const secondLog = log2(add2(1, clippedTrue));\n return mean(square2(sub(firstLog, secondLog)), -1);\n });\n}\nfunction squaredHinge(yTrue, yPred) {\n return tidy(() => {\n const maxResult = maximum(0, sub(1, mul(yTrue, yPred)));\n return mean(square2(maxResult), -1);\n });\n}\nfunction hinge(yTrue, yPred) {\n return tidy(() => {\n const maxResult = maximum(0, sub(1, mul(yTrue, yPred)));\n return mean(maxResult, -1);\n });\n}\nfunction categoricalHinge(yTrue, yPred) {\n return tidy(() => {\n const pos = sum2(mul(yTrue, yPred), -1);\n const neg5 = max(mul(sub(1, yTrue), yPred), -1);\n return maximum(0, add2(1, sub(neg5, pos)));\n });\n}\nfunction logcosh(yTrue, yPred) {\n return tidy(() => {\n const log22 = Math.log(2);\n const predictionDiff = sub(yPred, yTrue);\n const logcoshResult = sub(add2(predictionDiff, softplus(mul(-2, predictionDiff))), log22);\n return mean(logcoshResult, -1);\n });\n}\nfunction categoricalCrossentropy(target, output, fromLogits = false) {\n return tidy(() => {\n if (fromLogits) {\n output = softmax(output);\n } else {\n const outputSum = sum2(output, output.shape.length - 1, true);\n output = div(output, outputSum);\n }\n output = clipByValue(output, epsilon(), 1 - epsilon());\n return neg(sum2(mul(cast(target, \"float32\"), log2(output)), output.shape.length - 1));\n });\n}\nfunction sparseCategoricalCrossentropy(target, output, fromLogits = false) {\n return tidy(() => {\n const flatTarget = cast(floor(flatten2(target)), \"int32\");\n output = clipByValue(output, epsilon(), 1 - epsilon());\n const outputShape = output.shape;\n const oneHotTarget = reshape(oneHot(flatTarget, outputShape[outputShape.length - 1]), outputShape);\n return categoricalCrossentropy(oneHotTarget, output, fromLogits);\n });\n}\nfunction sigmoidCrossEntropyWithLogits(labels, logits) {\n if (!util_exports.arraysEqual(labels.shape, logits.shape)) {\n throw new ValueError(`logits and labels must have the same shape, but got shapes ${JSON.stringify(labels.shape)} and ${JSON.stringify(logits.shape)}`);\n }\n return tidy(() => {\n const reluLogits = relu(logits);\n const negAbsLogits = neg(abs(logits));\n return add2(sub(reluLogits, mul(logits, labels)), log1p(exp(negAbsLogits)));\n });\n}\nfunction binaryCrossentropy(yTrue, yPred) {\n return tidy(() => {\n let y;\n y = clipByValue(yPred, epsilon(), 1 - epsilon());\n y = log2(div(y, sub(1, y)));\n return mean(sigmoidCrossEntropyWithLogits(yTrue, y), -1);\n });\n}\nfunction kullbackLeiblerDivergence(yTrue, yPred) {\n return tidy(() => {\n const clippedTrue = clipByValue(yTrue, epsilon(), 1);\n const clippedPred = clipByValue(yPred, epsilon(), 1);\n return sum2(mul(yTrue, log2(div(clippedTrue, clippedPred))), -1);\n });\n}\nfunction poisson(yTrue, yPred) {\n return tidy(() => {\n const logPred = log2(add2(epsilon(), yPred));\n return mean(sub(yPred, mul(yTrue, logPred)), -1);\n });\n}\nfunction cosineProximity(yTrue, yPred) {\n return tidy(() => {\n const trueNormalized = l2Normalize(yTrue, -1);\n const predNormalized = l2Normalize(yPred, -1);\n const trueXPred = mul(trueNormalized, predNormalized);\n return neg(sum2(trueXPred, -1));\n });\n}\nvar lossesMap = {\n meanSquaredError: meanSquaredError2,\n meanAbsoluteError,\n meanAbsolutePercentageError,\n meanSquaredLogarithmicError,\n squaredHinge,\n hinge,\n categoricalHinge,\n logcosh,\n categoricalCrossentropy,\n sparseCategoricalCrossentropy,\n binaryCrossentropy,\n kullbackLeiblerDivergence,\n poisson,\n cosineProximity\n};\nfunction get(identifierOrFn) {\n if (typeof identifierOrFn === \"string\") {\n if (identifierOrFn in lossesMap) {\n return lossesMap[identifierOrFn];\n }\n let errMsg = `Unknown loss ${identifierOrFn}`;\n if (identifierOrFn.toLowerCase().includes(\"softmaxcrossentropy\")) {\n errMsg = `Unknown loss ${identifierOrFn}. Use \"categoricalCrossentropy\" as the string name for tf.losses.softmaxCrossEntropy`;\n }\n throw new ValueError(errMsg);\n } else {\n return identifierOrFn;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/metrics.js\nfunction binaryAccuracy(yTrue, yPred) {\n return tidy(() => {\n const threshold3 = mul(0.5, onesLike(yPred));\n const yPredThresholded = cast2(greater(yPred, threshold3), yTrue.dtype);\n return mean(equal(yTrue, yPredThresholded), -1);\n });\n}\nfunction categoricalAccuracy(yTrue, yPred) {\n return tidy(() => cast2(equal(argMax(yTrue, -1), argMax(yPred, -1)), \"float32\"));\n}\nfunction truePositives(yTrue, yPred) {\n return tidy(() => {\n return cast(sum2(logicalAnd(equal(yTrue, 1), equal(yPred, 1))), \"float32\");\n });\n}\nfunction falseNegatives(yTrue, yPred) {\n return tidy(() => {\n return cast(sum2(logicalAnd(equal(yTrue, 1), equal(yPred, 0))), \"float32\");\n });\n}\nfunction falsePositives(yTrue, yPred) {\n return tidy(() => {\n return cast(sum2(logicalAnd(equal(yTrue, 0), equal(yPred, 1))), \"float32\");\n });\n}\nfunction precision(yTrue, yPred) {\n return tidy(() => {\n const tp = truePositives(yTrue, yPred);\n const fp = falsePositives(yTrue, yPred);\n const denominator = add2(tp, fp);\n return cast(where(greater(denominator, 0), div(tp, denominator), 0), \"float32\");\n });\n}\nfunction recall(yTrue, yPred) {\n return tidy(() => {\n const tp = truePositives(yTrue, yPred);\n const fn = falseNegatives(yTrue, yPred);\n const denominator = add2(tp, fn);\n return cast(where(greater(denominator, 0), div(tp, denominator), 0), \"float32\");\n });\n}\nfunction binaryCrossentropy2(yTrue, yPred) {\n return binaryCrossentropy(yTrue, yPred);\n}\nfunction sparseCategoricalAccuracy(yTrue, yPred) {\n if (yTrue.rank === yPred.rank) {\n yTrue = squeeze(yTrue, [yTrue.rank - 1]);\n }\n yPred = argMax(yPred, -1);\n if (yPred.dtype !== yTrue.dtype) {\n yPred = cast(yPred, yTrue.dtype);\n }\n return cast(equal(yTrue, yPred), \"float32\");\n}\nvar mse = meanSquaredError2;\nvar MSE = meanSquaredError2;\nvar mae = meanAbsoluteError;\nvar MAE = meanAbsoluteError;\nvar mape = meanAbsolutePercentageError;\nvar MAPE = meanAbsolutePercentageError;\nvar categoricalCrossentropy2 = categoricalCrossentropy;\nvar cosine = cosineProximity;\nvar sparseCategoricalCrossentropy2 = sparseCategoricalCrossentropy;\nvar metricsMap = {\n binaryAccuracy,\n categoricalAccuracy,\n precision,\n categoricalCrossentropy: categoricalCrossentropy2,\n sparseCategoricalCrossentropy: sparseCategoricalCrossentropy2,\n mse,\n MSE,\n mae,\n MAE,\n mape,\n MAPE,\n cosine\n};\nfunction get2(identifier) {\n if (typeof identifier === \"string\" && identifier in metricsMap) {\n return metricsMap[identifier];\n } else if (typeof identifier !== \"string\" && identifier != null) {\n return identifier;\n } else {\n throw new ValueError(`Unknown metric ${identifier}`);\n }\n}\nfunction getLossOrMetricName(fn) {\n assert2(fn !== null, `Unknown LossOrMetricFn ${fn}`);\n if (typeof fn === \"string\") {\n return fn;\n } else {\n let fnName;\n for (const key of Object.keys(lossesMap)) {\n if (lossesMap[key] === fn) {\n fnName = key;\n break;\n }\n }\n if (fnName !== void 0) {\n return fnName;\n }\n for (const key of Object.keys(metricsMap)) {\n if (metricsMap[key] === fn) {\n fnName = key;\n break;\n }\n }\n if (fnName !== void 0) {\n return fnName;\n }\n return fn.name;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/optimizers.js\nfunction getOptimizer(identifier) {\n const optimizerMap = {\n \"Adagrad\": () => train.adagrad(0.01),\n \"Adadelta\": () => train.adadelta(1, 0.95, epsilon()),\n \"Adam\": () => train.adam(1e-3, 0.9, 0.999, epsilon()),\n \"Adamax\": () => train.adamax(2e-3, 0.9, 0.999, epsilon(), 0),\n \"RMSProp\": () => train.rmsprop(1e-3, 0.9, 0, epsilon()),\n \"SGD\": () => train.sgd(0.01)\n };\n optimizerMap[\"adagrad\"] = optimizerMap[\"Adagrad\"];\n optimizerMap[\"adadelta\"] = optimizerMap[\"Adadelta\"];\n optimizerMap[\"adam\"] = optimizerMap[\"Adam\"];\n optimizerMap[\"adamax\"] = optimizerMap[\"Adamax\"];\n optimizerMap[\"rmsprop\"] = optimizerMap[\"RMSProp\"];\n optimizerMap[\"sgd\"] = optimizerMap[\"SGD\"];\n if (identifier in optimizerMap) {\n return optimizerMap[identifier]();\n }\n throw new ValueError(`Unknown Optimizer ${identifier}`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/user_defined_metadata.js\nvar MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH = 1 * 1024 * 1024;\nfunction checkUserDefinedMetadata(userDefinedMetadata, modelName, checkSize = false) {\n if (userDefinedMetadata == null || typeof userDefinedMetadata !== \"object\" || Object.getPrototypeOf(userDefinedMetadata) !== Object.prototype || !plainObjectCheck(userDefinedMetadata)) {\n throw new Error(\"User-defined metadata is expected to be a JSON object, but is not.\");\n }\n if (checkSize) {\n const out = JSON.stringify(userDefinedMetadata);\n if (out.length > MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH) {\n console.warn(`User-defined metadata of model \"${modelName}\" is too large in size (length=${out.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH}.`);\n }\n }\n}\nfunction plainObjectCheck(x) {\n if (x === null) {\n return true;\n } else if (typeof x === \"object\") {\n if (Object.getPrototypeOf(x) === Object.prototype) {\n const keys = Object.keys(x);\n for (const key of keys) {\n if (typeof key !== \"string\") {\n return false;\n }\n if (!plainObjectCheck(x[key])) {\n return false;\n }\n }\n return true;\n } else {\n if (Array.isArray(x)) {\n for (const item of x) {\n if (!plainObjectCheck(item)) {\n return false;\n }\n }\n return true;\n } else {\n return false;\n }\n }\n } else {\n const xType = typeof x;\n return xType === \"string\" || xType === \"number\" || xType === \"boolean\";\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/layer_utils.js\nfunction printSummary(model2, lineLength, positions, printFn = console.log) {\n const sequentialLike = isModelSequentialLike(model2);\n const toDisplay = [\"Layer (type)\", \"Input Shape\", \"Output shape\", \"Param #\"];\n if (sequentialLike) {\n lineLength = lineLength || 90;\n positions = positions || [0.32, 0.61, 0.89, 1];\n } else {\n lineLength = lineLength || 115;\n positions = positions || [0.24, 0.48, 0.7, 0.8, 1];\n }\n if (positions[positions.length - 1] <= 1) {\n positions = positions.map((p2) => Math.floor(lineLength * p2));\n }\n let relevantNodes;\n if (!sequentialLike) {\n toDisplay.push(\"Receives inputs\");\n relevantNodes = [];\n for (const depth in model2.nodesByDepth) {\n relevantNodes.push(...model2.nodesByDepth[depth]);\n }\n }\n printFn(\"_\".repeat(lineLength));\n printRow(toDisplay, positions, printFn);\n printFn(\"=\".repeat(lineLength));\n const layers = model2.layers;\n for (let i2 = 0; i2 < layers.length; ++i2) {\n if (sequentialLike) {\n printLayerSummary(layers[i2], positions, printFn);\n } else {\n printLayerSummaryWithConnections(layers[i2], positions, relevantNodes, printFn);\n }\n printFn((i2 === layers.length - 1 ? \"=\" : \"_\").repeat(lineLength));\n }\n model2.checkTrainableWeightsConsistency();\n const trainableCount = countTrainableParams(model2);\n const nonTrainableCount = countParamsInWeights(model2.nonTrainableWeights);\n printFn(`Total params: ${trainableCount + nonTrainableCount}`);\n printFn(`Trainable params: ${trainableCount}`);\n printFn(`Non-trainable params: ${nonTrainableCount}`);\n printFn(\"_\".repeat(lineLength));\n}\nfunction countTrainableParams(model2) {\n let trainableCount;\n if (model2.collectedTrainableWeights != null) {\n trainableCount = countParamsInWeights(model2.collectedTrainableWeights);\n } else {\n trainableCount = countParamsInWeights(model2.trainableWeights);\n }\n return trainableCount;\n}\nfunction isModelSequentialLike(model2) {\n let sequentialLike = true;\n const nodesByDepth = [];\n const nodes = [];\n for (const depth in model2.nodesByDepth) {\n nodesByDepth.push(model2.nodesByDepth[depth]);\n }\n for (const depthNodes of nodesByDepth) {\n if (depthNodes.length > 1 || depthNodes.length === 1 && depthNodes[0].inboundLayers.length > 1) {\n sequentialLike = false;\n break;\n }\n nodes.push(...depthNodes);\n }\n if (sequentialLike) {\n for (const layer of model2.layers) {\n let flag = false;\n for (const node of layer.inboundNodes) {\n if (nodes.indexOf(node) !== -1) {\n if (flag) {\n sequentialLike = false;\n break;\n } else {\n flag = true;\n }\n }\n }\n if (!sequentialLike) {\n break;\n }\n }\n }\n return sequentialLike;\n}\nfunction printRow(fields, positions, printFn = console.log) {\n let line = \"\";\n for (let i2 = 0; i2 < fields.length; ++i2) {\n if (i2 > 0) {\n line = line.slice(0, line.length - 1) + \" \";\n }\n line += fields[i2];\n line = line.slice(0, positions[i2]);\n line += \" \".repeat(positions[i2] - line.length);\n }\n printFn(line);\n}\nfunction printLayerSummary(layer, positions, printFn) {\n let outputShape;\n let inputShape;\n try {\n inputShape = layer.inboundNodes.map((x) => JSON.stringify(x.inputShapes)).join(\",\");\n } catch (err) {\n inputShape = \"multiple\";\n }\n try {\n outputShape = JSON.stringify(layer.outputShape);\n } catch (err) {\n outputShape = \"multiple\";\n }\n const name = layer.name;\n const className = layer.getClassName();\n const fields = [\n `${name} (${className})`,\n inputShape,\n outputShape,\n layer.countParams().toString()\n ];\n printRow(fields, positions, printFn);\n}\nfunction printLayerSummaryWithConnections(layer, positions, relevantNodes, printFn) {\n let outputShape;\n let inputShape;\n try {\n inputShape = layer.inboundNodes.map((x) => JSON.stringify(x.inputShapes)).join(\",\");\n } catch (err) {\n inputShape = \"multiple\";\n }\n try {\n outputShape = JSON.stringify(layer.outputShape);\n } catch (err) {\n outputShape = \"multiple\";\n }\n const connections = [];\n for (const node of layer.inboundNodes) {\n if (relevantNodes != null && relevantNodes.length > 0 && relevantNodes.indexOf(node) === -1) {\n continue;\n }\n for (let i2 = 0; i2 < node.inboundLayers.length; ++i2) {\n const inboundLayer = node.inboundLayers[i2].name;\n const inboundLayerIndex = node.nodeIndices[i2];\n const inboundTensorIndex = node.tensorIndices[i2];\n connections.push(`${inboundLayer}[${inboundLayerIndex}][${inboundTensorIndex}]`);\n }\n }\n const name = layer.name;\n const className = layer.getClassName();\n const firstConnection = connections.length === 0 ? \"\" : connections[0];\n const fields = [\n `${name} (${className})`,\n inputShape,\n outputShape,\n layer.countParams().toString(),\n firstConnection\n ];\n printRow(fields, positions, printFn);\n for (let i2 = 1; i2 < connections.length; ++i2) {\n printRow([\"\", \"\", \"\", \"\", connections[i2]], positions, printFn);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/serialization_utils.js\nfunction isArrayItemInputOrOutputName(key, index, value) {\n return (key === \"inboundNodes\" || key === \"outputLayers\" || key === \"inputLayers\") && index === 0 && typeof value === \"string\";\n}\nfunction convertPythonicToTs(pythonicConfig, key) {\n if (pythonicConfig === null) {\n return null;\n } else if (typeof pythonicConfig === \"string\") {\n return toCamelCase(pythonicConfig);\n } else if (typeof pythonicConfig === \"number\" || typeof pythonicConfig === \"boolean\") {\n return pythonicConfig;\n } else if (pythonicConfig instanceof Array) {\n const tsArray = [];\n const arrayLength = pythonicConfig.length;\n for (let i2 = 0; i2 < arrayLength; ++i2) {\n const item = pythonicConfig[i2];\n if (isArrayItemInputOrOutputName(key, i2, item)) {\n tsArray.push(item);\n } else {\n tsArray.push(convertPythonicToTs(item, key));\n }\n }\n return tsArray;\n } else {\n const tsDict = {};\n for (const pythonicKey of Object.keys(pythonicConfig)) {\n const pythonicValue = pythonicConfig[pythonicKey];\n if (pythonicKey === \"name\" && typeof pythonicValue === \"string\") {\n tsDict[pythonicKey] = pythonicValue;\n } else {\n const tsKey = toCamelCase(pythonicKey);\n tsDict[tsKey] = convertPythonicToTs(pythonicValue, tsKey);\n }\n }\n return tsDict;\n }\n}\nfunction convertTsToPythonic(tsConfig, key) {\n if (tsConfig === null || tsConfig === void 0) {\n return null;\n } else if (typeof tsConfig === \"string\") {\n return toSnakeCase(tsConfig);\n } else if (typeof tsConfig === \"number\" || typeof tsConfig === \"boolean\") {\n return tsConfig;\n } else if (tsConfig instanceof Array) {\n const pyArray = [];\n const arrayLength = tsConfig.length;\n for (let i2 = 0; i2 < arrayLength; ++i2) {\n const item = tsConfig[i2];\n if (isArrayItemInputOrOutputName(key, i2, item)) {\n pyArray.push(item);\n } else {\n pyArray.push(convertTsToPythonic(item, key));\n }\n }\n return pyArray;\n } else {\n const pyDict = {};\n for (const tsKey of Object.keys(tsConfig)) {\n const tsValue = tsConfig[tsKey];\n const pyKey = toSnakeCase(tsKey);\n if ((tsKey === \"name\" || tsKey === \"className\") && typeof tsValue === \"string\") {\n pyDict[pyKey] = tsValue;\n } else {\n pyDict[pyKey] = convertTsToPythonic(tsValue, tsKey);\n }\n }\n return pyDict;\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/version.js\nvar version2 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/container.js\nvar Container = class extends Layer {\n constructor(args) {\n super({});\n this.containerNodes = /* @__PURE__ */ new Set();\n this.name = args.name;\n if (this.name == null) {\n const prefix = this.getClassName().toLowerCase();\n this.name = getUid(prefix);\n }\n this.supportsMasking = false;\n this.trainable_ = true;\n if (Array.isArray(args.inputs)) {\n this.inputs = args.inputs.slice();\n } else {\n this.inputs = [args.inputs];\n }\n if (Array.isArray(args.outputs)) {\n this.outputs = args.outputs.slice();\n } else {\n this.outputs = [args.outputs];\n }\n if (unique2(this.inputs).length !== this.inputs.length) {\n throw new ValueError(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map((x) => x.name)}`);\n }\n if (unique2(this.outputs).length !== this.outputs.length) {\n console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map((x) => x.name)}`);\n }\n this.inputLayers = [];\n this.inputLayersNodeIndices = [];\n this.inputLayersTensorIndices = [];\n this.outputLayers = [];\n this.outputLayersNodeIndices = [];\n this.outputLayersTensorIndices = [];\n this.layers = [];\n this.internalContainerRefs = [];\n for (const x of this.outputs) {\n const layer = x.sourceLayer;\n const nodeIndex = x.nodeIndex;\n const tensorIndex = x.tensorIndex;\n this.outputLayers.push(layer);\n this.outputLayersNodeIndices.push(nodeIndex);\n this.outputLayersTensorIndices.push(tensorIndex);\n }\n for (const x of this.inputs) {\n const layer = x.sourceLayer;\n const nodeIndex = x.nodeIndex;\n const tensorIndex = x.tensorIndex;\n assert2(nodeIndex === 0, \"input layer has >1 nodes\");\n assert2(tensorIndex === 0, \"input layer has >1 tensors\");\n this.inputLayers.push(layer);\n this.inputLayersNodeIndices.push(nodeIndex);\n this.inputLayersTensorIndices.push(tensorIndex);\n }\n this.inputNames = [];\n this.outputNames = [];\n this.feedInputShapes = [];\n this.feedInputNames = [];\n this.feedOutputNames = [];\n for (let i2 = 0; i2 < this.inputLayers.length; i2++) {\n const layer = this.inputLayers[i2];\n if (!(layer instanceof InputLayer)) {\n throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${args.inputs}. Input ${i2} (0-based) originates from layer type ${layer.getClassName()}.`);\n }\n this.inputNames.push(layer.name);\n this.feedInputShapes.push(layer.batchInputShape);\n this.feedInputNames.push(layer.name);\n }\n for (const layer of this.outputLayers) {\n this.outputNames.push(layer.name);\n }\n this.internalInputShapes = this.inputs.map((x) => x.shape);\n this.internalOutputShapes = this.outputs.map((x) => x.shape);\n const nodesDepths = {};\n const nodeIDToNode = {};\n const layersDepths = {};\n const layerIDToLayer = {};\n const layerIndices = {};\n const nodesInDecreasingDepth = [];\n const buildMapOfGraph = (tensor2, finishedNodes2, nodesInProgress2, layer, nodeIndex, tensorIndex) => {\n if (layer == null || nodeIndex == null || tensorIndex == null) {\n layer = tensor2.sourceLayer;\n nodeIndex = tensor2.nodeIndex;\n tensorIndex = tensor2.tensorIndex;\n }\n const node = layer.inboundNodes[nodeIndex];\n if (nodesInProgress2.indexOf(node) !== -1) {\n throw new RuntimeError(`The tensor ${tensor2.name} at layer \"${layer.name}\" is part of a cycle.`);\n }\n if (finishedNodes2.indexOf(node) !== -1) {\n return;\n }\n this.containerNodes.add(Container.nodeKey(layer, nodeIndex));\n if (!(layer.id in layerIndices)) {\n layerIndices[layer.id] = Object.keys(layerIndices).length;\n }\n if (nodesInProgress2.indexOf(node) === -1) {\n nodesInProgress2.push(node);\n }\n const numInboundLayers = node.inboundLayers.length;\n for (let i2 = 0; i2 < numInboundLayers; i2++) {\n const x = node.inputTensors[i2];\n const layer2 = node.inboundLayers[i2];\n const nodeIndex2 = node.nodeIndices[i2];\n const tensorIndex2 = node.tensorIndices[i2];\n buildMapOfGraph(x, finishedNodes2, nodesInProgress2, layer2, nodeIndex2, tensorIndex2);\n }\n finishedNodes2.push(node);\n while (nodesInProgress2.indexOf(node) >= 0) {\n nodesInProgress2.splice(nodesInProgress2.indexOf(node), 1);\n }\n nodesInDecreasingDepth.push(node);\n };\n const finishedNodes = [];\n const nodesInProgress = [];\n for (const x of this.outputs) {\n buildMapOfGraph(x, finishedNodes, nodesInProgress);\n }\n const reversedNodesInDecreasingDepth = nodesInDecreasingDepth.slice().reverse();\n for (const node of reversedNodesInDecreasingDepth) {\n nodeIDToNode[node.id] = node;\n if (!(node.id in nodesDepths)) {\n nodesDepths[node.id] = 0;\n }\n let depth = nodesDepths[node.id];\n const previousDepth = layersDepths[node.outboundLayer.id] == null ? 0 : layersDepths[node.outboundLayer.id];\n depth = Math.max(depth, previousDepth);\n layersDepths[node.outboundLayer.id] = depth;\n layerIDToLayer[node.outboundLayer.id] = node.outboundLayer;\n nodesDepths[node.id] = depth;\n for (let i2 = 0; i2 < node.inboundLayers.length; i2++) {\n const inboundLayer = node.inboundLayers[i2];\n const nodeIndex = node.nodeIndices[i2];\n const inboundNode = inboundLayer.inboundNodes[nodeIndex];\n const previousDepth2 = nodesDepths[inboundNode.id] == null ? 0 : nodesDepths[inboundNode.id];\n nodesDepths[inboundNode.id] = Math.max(depth + 1, previousDepth2);\n nodeIDToNode[inboundNode.id] = inboundNode;\n }\n }\n const nodesByDepth = {};\n for (const nodeID in nodesDepths) {\n const depth = nodesDepths[nodeID];\n if (!(depth in nodesByDepth)) {\n nodesByDepth[depth] = [];\n }\n nodesByDepth[depth].push(nodeIDToNode[nodeID]);\n }\n const layersByDepth = {};\n for (const layerID in layersDepths) {\n const depth = layersDepths[layerID];\n if (!(depth in layersByDepth)) {\n layersByDepth[depth] = [];\n }\n layersByDepth[depth].push(layerIDToLayer[layerID]);\n }\n let depthKeys = Object.keys(layersByDepth).map((x) => parseInt(x, 10)).sort(reverseNumberCompare);\n this.layers = [];\n for (const depth of depthKeys) {\n const layersForDepth = layersByDepth[depth];\n layersForDepth.sort((a, b) => {\n const aIndex = layerIndices[a.id];\n const bIndex = layerIndices[b.id];\n if (aIndex < bIndex) {\n return -1;\n }\n if (aIndex > bIndex) {\n return 1;\n }\n return 0;\n });\n for (const layer of layersForDepth) {\n if (layer instanceof Container) {\n this.internalContainerRefs.push(layer);\n }\n this.layers.push(layer);\n }\n }\n this.layersByDepth = layersByDepth;\n depthKeys = Object.keys(nodesByDepth).map((x) => parseInt(x, 10)).sort(reverseNumberCompare);\n const computableTensors = this.inputs.slice();\n const layersWithCompleteInput = [];\n for (const depth of depthKeys) {\n for (const node of nodesByDepth[depth]) {\n const layer = node.outboundLayer;\n if (layer != null) {\n for (const x of node.inputTensors) {\n if (computableTensors.indexOf(x) === -1) {\n throw new RuntimeError(`Graph disconnected: cannot obtain value for tensor ${x} at layer \"${layer.name}\". The following previous layers were accessed without issue: ${layersWithCompleteInput}`);\n }\n }\n for (const x of node.outputTensors) {\n computableTensors.push(x);\n }\n layersWithCompleteInput.push(layer.name);\n }\n }\n }\n this.nodesByDepth = nodesByDepth;\n const allNames = this.layers.map((x) => x.name);\n for (const name of allNames) {\n const numOccurrences = allNames.filter((x) => x === name).length;\n if (numOccurrences !== 1) {\n throw new RuntimeError(`The name \"${name}\" is used ${numOccurrences} times in the model. All layer names should be unique. Layer names: ` + JSON.stringify(allNames));\n }\n }\n this.outboundNodes = [];\n this.inboundNodes = [];\n new Node({\n outboundLayer: this,\n inboundLayers: [],\n nodeIndices: [],\n tensorIndices: [],\n inputTensors: this.inputs,\n outputTensors: this.outputs,\n inputMasks: this.inputs.map((x) => null),\n outputMasks: this.outputs.map((x) => null),\n inputShapes: this.inputs.map((x) => x.shape),\n outputShapes: this.outputs.map((x) => x.shape)\n });\n this.built = true;\n this._refCount = 1;\n }\n assertNotDisposed() {\n if (this._refCount === 0) {\n throw new Error(`Container '${this.name}' is already disposed.`);\n }\n }\n dispose() {\n this.assertNotDisposed();\n const result = { refCountAfterDispose: null, numDisposedVariables: 0 };\n if (--this._refCount === 0) {\n for (const layer of this.layers) {\n result.numDisposedVariables += layer.dispose().numDisposedVariables;\n }\n for (const container of this.internalContainerRefs) {\n result.numDisposedVariables += container.dispose().numDisposedVariables;\n }\n }\n result.refCountAfterDispose = this._refCount;\n return result;\n }\n get trainable() {\n return this.trainable_;\n }\n set trainable(trainable) {\n this.layers.forEach((layer) => {\n layer._trainableWeights.forEach((w) => w.trainable = trainable);\n });\n this.trainable_ = trainable;\n }\n get trainableWeights() {\n if (this._trainableWeights.length > 0) {\n throw new ValueError(\"Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.\");\n }\n if (!this.trainable) {\n return [];\n }\n let weights = [];\n for (const layer of this.layers) {\n weights = weights.concat(layer.trainableWeights);\n }\n return weights;\n }\n get nonTrainableWeights() {\n const weights = [];\n for (const layer of this.layers) {\n weights.push(...layer.nonTrainableWeights);\n }\n if (!this.trainable) {\n const trainableWeights = [];\n for (const layer of this.layers) {\n trainableWeights.push(...layer.trainableWeights);\n }\n return trainableWeights.concat(weights);\n }\n return weights;\n }\n get weights() {\n return this.trainableWeights.concat(this.nonTrainableWeights);\n }\n loadWeights(weights, strict = true) {\n const nameToWeight = {};\n let totalWeightsCount = 0;\n for (const layer of this.layers) {\n for (const weight of layer.weights) {\n if (nameToWeight[weight.originalName] != null) {\n throw new ValueError(`Duplicate weight name: ${weight.originalName}`);\n }\n nameToWeight[weight.originalName] = weight;\n totalWeightsCount++;\n }\n }\n const weightValueTuples = [];\n for (const name in weights) {\n let validatedName = name;\n if (nameToWeight[name] == null) {\n const tokens = name.split(\"/\");\n const shortenNameArray = tokens.slice(0, -2).concat([tokens[tokens.length - 1]]);\n validatedName = shortenNameArray.join(\"/\");\n }\n if (nameToWeight[validatedName] != null) {\n weightValueTuples.push([nameToWeight[validatedName], weights[name]]);\n } else if (strict) {\n throw new ValueError(`Provided weight data has no target variable: ${name}`);\n }\n delete nameToWeight[validatedName];\n }\n if (strict) {\n const unsetNames = [];\n for (const name in nameToWeight) {\n unsetNames.push(name);\n }\n if (unsetNames.length > 0) {\n throw new ValueError(`${unsetNames.length} of ${totalWeightsCount} weights are not set: ${unsetNames}`);\n }\n }\n batchSetValue(weightValueTuples);\n }\n updatedConfig() {\n const theConfig = this.getConfig();\n const modelConfig = {};\n modelConfig[\"className\"] = this.getClassName();\n modelConfig[\"config\"] = theConfig;\n modelConfig[\"kerasVersion\"] = `tfjs-layers ${version2}`;\n modelConfig[\"backend\"] = \"TensorFlow.js\";\n return modelConfig;\n }\n toJSON(unused, returnString = true) {\n const modelConfig = convertTsToPythonic(this.updatedConfig());\n return returnString ? JSON.stringify(modelConfig) : modelConfig;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = toList(inputs);\n const feedDict = new FeedDict();\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n feedDict.add(this.inputs[i2], inputs[i2]);\n }\n return execute(this.outputs, feedDict, kwargs);\n });\n }\n computeMask(inputs, mask) {\n return tidy(() => {\n inputs = toList(inputs);\n let masks;\n if (mask == null) {\n masks = pyListRepeat(null, inputs.length);\n } else {\n masks = toList(mask);\n }\n return this.runInternalGraph(inputs, masks)[1];\n });\n }\n computeOutputShape(inputShape) {\n const inputShapes = normalizeShapeList(inputShape);\n if (inputShapes.length !== this.inputLayers.length) {\n throw new ValueError(`Invalid inputShape argument ${inputShape}: model has ${this.inputLayers.length} tensor inputs.`);\n }\n const layersToOutputShapes = {};\n for (let i2 = 0; i2 < inputShapes.length; i2++) {\n const layer = this.inputLayers[i2];\n const inputShape2 = inputShapes[i2];\n const shapeKey = layer.name + \"_0_0\";\n layersToOutputShapes[shapeKey] = inputShape2;\n }\n const depthKeys = Object.keys(this.nodesByDepth).map((x) => parseInt(x, 10)).sort(reverseNumberCompare);\n if (depthKeys.length > 1) {\n for (const depth of depthKeys) {\n const nodes = this.nodesByDepth[depth];\n for (const node of nodes) {\n const layer = node.outboundLayer;\n if (this.inputLayers.map((x) => x.id).indexOf(layer.id) !== -1) {\n continue;\n }\n const inputShapes2 = [];\n for (let j = 0; j < node.inboundLayers.length; j++) {\n const inboundLayer = node.inboundLayers[j];\n const nodeIndex2 = node.nodeIndices[j];\n const tensorIndex = node.tensorIndices[j];\n const shapeKey = `${inboundLayer.name}_${nodeIndex2}_${tensorIndex}`;\n const inputShape2 = layersToOutputShapes[shapeKey];\n inputShapes2.push(inputShape2);\n }\n const outputShape = layer.computeOutputShape(singletonOrArray(inputShapes2));\n const outputShapes2 = normalizeShapeList(outputShape);\n const nodeIndex = layer.inboundNodes.indexOf(node);\n for (let j = 0; j < outputShapes2.length; j++) {\n const shapeKey = `${layer.name}_${nodeIndex}_${j}`;\n layersToOutputShapes[shapeKey] = outputShapes2[j];\n }\n }\n }\n }\n const outputShapes = [];\n const outputShapeKeys = [];\n for (let i2 = 0; i2 < this.outputLayers.length; i2++) {\n const layer = this.outputLayers[i2];\n const nodeIndex = this.outputLayersNodeIndices[i2];\n const tensorIndex = this.outputLayersTensorIndices[i2];\n const shapeKey = `${layer.name}_${nodeIndex}_${tensorIndex}`;\n outputShapeKeys.push(shapeKey);\n }\n for (let i2 = 0; i2 < outputShapeKeys.length; i2++) {\n const key = outputShapeKeys[i2];\n assert2(key in layersToOutputShapes);\n outputShapes.push(layersToOutputShapes[key]);\n }\n return singletonOrArray(outputShapes);\n }\n runInternalGraph(inputs, masks) {\n if (masks == null) {\n masks = pyListRepeat(null, inputs.length);\n }\n const tensorMap = {};\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n const x = this.inputs[i2];\n const y = inputs[i2];\n const mask = masks[i2];\n tensorMap[x.id] = [y, mask];\n }\n const depthKeys = Object.keys(this.nodesByDepth).map((x) => parseInt(x, 10)).sort(reverseNumberCompare);\n for (const depth of depthKeys) {\n const nodes = this.nodesByDepth[depth];\n for (const node of nodes) {\n const layer = node.outboundLayer;\n const referenceInputTensors = node.inputTensors;\n const referenceOutputTensors = node.outputTensors;\n const computedData = new Array();\n for (const x of referenceInputTensors) {\n if (x.id in tensorMap) {\n computedData.push(tensorMap[x.id]);\n }\n }\n if (computedData.length === referenceInputTensors.length) {\n let kwargs = {};\n let computedTensors;\n let computedMasks;\n let outputTensors2;\n let outputMasks2;\n if (node.callArgs != null) {\n kwargs = node.callArgs;\n }\n if (computedData.length === 1) {\n const [computedTensor, computedMask] = computedData[0];\n if (kwargs[\"mask\"] == null) {\n kwargs[\"mask\"] = computedMask;\n }\n outputTensors2 = toList(layer.call(computedTensor, kwargs));\n outputMasks2 = toList(layer.computeMask(computedTensor, computedMask));\n computedTensors = [computedTensor];\n computedMasks = [computedMask];\n } else {\n computedTensors = computedData.map((x) => x[0]);\n computedMasks = computedData.map((x) => x[1]);\n if (kwargs[\"mask\"] == null) {\n kwargs[\"mask\"] = computedMasks;\n }\n outputTensors2 = toList(layer.call(computedTensors, kwargs));\n outputMasks2 = toList(layer.computeMask(computedTensors, computedMasks));\n }\n if (layer.activityRegularizer) {\n throw new NotImplementedError(\"LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.\");\n }\n for (let i2 = 0; i2 < referenceOutputTensors.length; ++i2) {\n const x = referenceOutputTensors[i2];\n const y = outputTensors2[i2];\n const mask = outputMasks2[i2];\n tensorMap[x.id] = [y, mask];\n }\n }\n }\n }\n const outputTensors = [];\n const outputMasks = [];\n const outputShapes = [];\n for (const x of this.outputs) {\n assert2(x.id in tensorMap, `Could not compute output ${x.name} : ${x.id}`);\n const [tensor2, mask] = tensorMap[x.id];\n outputShapes.push(tensor2.shape);\n outputTensors.push(tensor2);\n outputMasks.push(mask);\n }\n return [outputTensors, outputMasks, outputShapes];\n }\n buildNodeConversionMap(layers) {\n const nodeConversionMap = {};\n let keptNodes;\n for (const layer of this.layers) {\n keptNodes = layer instanceof Container ? 1 : 0;\n for (let originalNodeIndex = 0; originalNodeIndex < layer.inboundNodes.length; originalNodeIndex++) {\n const nodeKey = Container.nodeKey(layer, originalNodeIndex);\n if (this.containerNodes.has(nodeKey)) {\n nodeConversionMap[nodeKey] = keptNodes;\n keptNodes += 1;\n }\n }\n }\n return nodeConversionMap;\n }\n getLayer(name, index) {\n if (index != null) {\n if (this.layers.length <= index) {\n throw new ValueError(`Was asked to retrieve layer at index ${index}, but model only has ${this.layers.length} layer(s).`);\n } else {\n return this.layers[index];\n }\n } else {\n if (name == null) {\n throw new ValueError(\"Provide either a layer name or layer index\");\n }\n }\n for (const layer of this.layers) {\n if (layer.name === name) {\n return layer;\n }\n }\n throw new ValueError(`No such layer: ${name}`);\n }\n calculateLosses() {\n return tidy(() => {\n const losses2 = [];\n for (const layer of this.layers) {\n for (let nodeIndex = 0; nodeIndex < layer.inboundNodes.length; ++nodeIndex) {\n const nodeKey = Container.nodeKey(layer, nodeIndex);\n if (this.containerNodes.has(nodeKey)) {\n losses2.push(...layer.calculateLosses());\n }\n }\n }\n return losses2;\n });\n }\n getConfig() {\n const config = { name: this.name };\n const nodeConversionMap = this.buildNodeConversionMap(this.layers);\n const layerConfigs = [];\n for (const layer of this.layers) {\n const layerClassName = layer.getClassName();\n const layerConfig = layer.getConfig();\n const filteredInboundNodes = [];\n for (let originalNodeIndex = 0; originalNodeIndex < layer.inboundNodes.length; originalNodeIndex++) {\n const node = layer.inboundNodes[originalNodeIndex];\n const nodeKey = Container.nodeKey(layer, originalNodeIndex);\n let kwargs = {};\n if (this.containerNodes.has(nodeKey)) {\n if (node.callArgs) {\n try {\n JSON.stringify(node.callArgs);\n kwargs = node.callArgs;\n } catch (err) {\n console.warn(`Layer ${layer.name} was passed non-serializable keyword arguments: ${node.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`);\n kwargs = {};\n }\n }\n if (node.inboundLayers.length > 0) {\n const nodeData = [];\n for (let i2 = 0; i2 < node.inboundLayers.length; i2++) {\n const inboundLayer = node.inboundLayers[i2];\n const nodeIndex = node.nodeIndices[i2];\n const tensorIndex = node.tensorIndices[i2];\n const nodeKey2 = Container.nodeKey(inboundLayer, nodeIndex);\n let newNodeIndex = nodeConversionMap[nodeKey2];\n if (newNodeIndex == null) {\n newNodeIndex = 0;\n }\n nodeData.push([inboundLayer.name, newNodeIndex, tensorIndex, kwargs]);\n }\n filteredInboundNodes.push(nodeData);\n }\n }\n }\n const dict = {};\n dict[\"name\"] = layer.name;\n dict[\"className\"] = layerClassName;\n dict[\"config\"] = layerConfig;\n dict[\"inboundNodes\"] = filteredInboundNodes;\n layerConfigs.push(dict);\n }\n config[\"layers\"] = layerConfigs;\n const modelInputs = [];\n for (let i2 = 0; i2 < this.inputLayers.length; i2++) {\n const layer = this.inputLayers[i2];\n const nodeIndex = this.inputLayersNodeIndices[i2];\n const nodeKey = Container.nodeKey(layer, nodeIndex);\n if (!this.containerNodes.has(nodeKey)) {\n continue;\n }\n let newNodeIndex = nodeConversionMap[nodeKey];\n if (newNodeIndex === null || newNodeIndex === void 0) {\n newNodeIndex = 0;\n }\n const tensorIndex = this.inputLayersTensorIndices[i2];\n modelInputs.push([layer.name, newNodeIndex, tensorIndex]);\n }\n config[\"inputLayers\"] = modelInputs;\n const modelOutputs = [];\n for (let i2 = 0; i2 < this.outputLayers.length; i2++) {\n const layer = this.outputLayers[i2];\n const nodeIndex = this.outputLayersNodeIndices[i2];\n const nodeKey = Container.nodeKey(layer, nodeIndex);\n if (!this.containerNodes.has(nodeKey)) {\n continue;\n }\n let newNodeIndex = nodeConversionMap[nodeKey];\n if (newNodeIndex === null || newNodeIndex === void 0) {\n newNodeIndex = 0;\n }\n const tensorIndex = this.outputLayersTensorIndices[i2];\n modelOutputs.push([layer.name, newNodeIndex, tensorIndex]);\n }\n config[\"outputLayers\"] = modelOutputs;\n return config;\n }\n static fromConfig(cls, config, customObjects = {}, fastWeightInit = false) {\n const createdLayers = {};\n const unprocessedNodes = {};\n function addUnprocessedNode(layer, nodeData) {\n if (!(layer.name in unprocessedNodes)) {\n unprocessedNodes[layer.name] = [nodeData];\n } else {\n unprocessedNodes[layer.name].push(nodeData);\n }\n }\n function processNode(layer, nodeData) {\n const inputTensors2 = [];\n let kwargs;\n for (const inputData of nodeData) {\n const inboundLayerName = inputData[0];\n const inboundNodeIndex = inputData[1];\n const inboundTensorIndex = inputData[2];\n kwargs = inputData[3] == null ? {} : inputData[3];\n if (!(inboundLayerName in createdLayers)) {\n addUnprocessedNode(layer, nodeData);\n return;\n }\n const inboundLayer = createdLayers[inboundLayerName];\n if (inboundLayer.inboundNodes.length <= inboundNodeIndex) {\n addUnprocessedNode(layer, nodeData);\n return;\n }\n const inboundNode = inboundLayer.inboundNodes[inboundNodeIndex];\n inputTensors2.push(inboundNode.outputTensors[inboundTensorIndex]);\n }\n if (inputTensors2.length > 0) {\n layer.apply(singletonOrArray(inputTensors2), kwargs);\n }\n }\n function processLayer(layerData) {\n const layerName = layerData[\"name\"];\n const layer = deserialize(layerData, config[\"customObjects\"] != null ? config[\"customObjects\"] : {});\n layer.setFastWeightInitDuringBuild(fastWeightInit);\n createdLayers[layerName] = layer;\n const inboundNodesData = layerData[\"inboundNodes\"];\n inboundNodesData.forEach((nodeData) => {\n if (!(nodeData instanceof Array)) {\n throw new ValueError(`Corrupted configuration, expected array for nodeData: ${nodeData}`);\n }\n addUnprocessedNode(layer, nodeData);\n });\n }\n const name = config[\"name\"];\n const layersFromConfig = config[\"layers\"];\n for (const layerData of layersFromConfig) {\n processLayer(layerData);\n }\n while (!isObjectEmpty(unprocessedNodes)) {\n for (const layerData of layersFromConfig) {\n const layer = createdLayers[layerData[\"name\"]];\n if (layer.name in unprocessedNodes) {\n const currentUnprocessedNodesForLayer = unprocessedNodes[layer.name];\n delete unprocessedNodes[layer.name];\n for (const nodeData of currentUnprocessedNodesForLayer) {\n processNode(layer, nodeData);\n }\n }\n }\n }\n const inputTensors = [];\n const outputTensors = [];\n const inputLayersFromConfig = config[\"inputLayers\"];\n for (const layerData of inputLayersFromConfig) {\n const layerName = layerData[0];\n const nodeIndex = layerData[1];\n const tensorIndex = layerData[2];\n assert2(layerName in createdLayers);\n const layer = createdLayers[layerName];\n const layerOutputTensors = layer.inboundNodes[nodeIndex].outputTensors;\n inputTensors.push(layerOutputTensors[tensorIndex]);\n }\n const outputLayersFromConfig = config[\"outputLayers\"];\n for (const layerData of outputLayersFromConfig) {\n const layerName = layerData[0];\n const nodeIndex = layerData[1];\n const tensorIndex = layerData[2];\n assert2(layerName in createdLayers);\n const layer = createdLayers[layerName];\n const layerOutputTensors = layer.inboundNodes[nodeIndex].outputTensors;\n outputTensors.push(layerOutputTensors[tensorIndex]);\n }\n return new cls({ inputs: inputTensors, outputs: outputTensors, name });\n }\n get stateful() {\n if (this._stateful) {\n throw new ValueError(\"Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.\");\n }\n for (const layer of this.layers) {\n if (layer.stateful) {\n return true;\n }\n }\n return false;\n }\n resetStates() {\n tidy(() => {\n this.layers.forEach((layer) => {\n if (layer.stateful) {\n layer.resetStates();\n }\n });\n });\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/training_utils.js\nfunction standardizeSampleOrClassWeights(xWeight, outputNames, weightType) {\n const numOutputs = outputNames.length;\n if (xWeight == null || Array.isArray(xWeight) && xWeight.length === 0) {\n return outputNames.map((name) => null);\n }\n if (numOutputs === 1) {\n if (Array.isArray(xWeight) && xWeight.length === 1) {\n return xWeight;\n } else if (typeof xWeight === \"object\" && outputNames[0] in xWeight) {\n return [xWeight[outputNames[0]]];\n } else {\n return [xWeight];\n }\n }\n if (Array.isArray(xWeight)) {\n if (xWeight.length !== numOutputs) {\n throw new Error(`Provided ${weightType} is an array of ${xWeight.length} element(s), but the model has ${numOutputs} outputs. Make sure a set of weights is provided for each model output.`);\n }\n return xWeight;\n } else if (typeof xWeight === \"object\" && Object.keys(xWeight).length > 0 && typeof xWeight[Object.keys(xWeight)[0]] === \"object\") {\n const output = [];\n outputNames.forEach((outputName) => {\n if (outputName in xWeight) {\n output.push(xWeight[outputName]);\n } else {\n output.push(null);\n }\n });\n return output;\n } else {\n throw new Error(`The model has multiple (${numOutputs}) outputs, so ${weightType} must be either an array with ${numOutputs} elements or an object with ${outputNames} keys. Provided ${weightType} not understood: ${JSON.stringify(xWeight)}`);\n }\n}\nfunction standardizeClassWeights(classWeight, outputNames) {\n return standardizeSampleOrClassWeights(classWeight, outputNames, \"classWeight\");\n}\nasync function standardizeWeights(y, sampleWeight, classWeight, sampleWeightMode) {\n if (sampleWeight != null || sampleWeightMode != null) {\n throw new Error(\"Support sampleWeight is not implemented yet\");\n }\n if (classWeight != null) {\n const yClasses = tidy(() => {\n if (y.shape.length === 1) {\n return clone(y);\n } else if (y.shape.length === 2) {\n if (y.shape[1] > 1) {\n const axis = 1;\n return argMax(y, axis);\n } else if (y.shape[1] === 1) {\n return reshape(y, [y.shape[0]]);\n } else {\n throw new Error(`Encountered unexpected last-dimension size (${y.shape[1]}) during handling of class weights. The size is expected to be >= 1.`);\n }\n } else {\n throw new Error(`Unexpected rank of target (y) tensor (${y.rank}) during handling of class weights. The rank is expected to be 1 or 2.`);\n }\n });\n const yClassIndices = Array.from(await yClasses.data());\n dispose(yClasses);\n const classSampleWeight = [];\n yClassIndices.forEach((classIndex) => {\n if (classWeight[classIndex] == null) {\n throw new Error(`classWeight must contain all classes in the training data. The class ${classIndex} exists in the data but not in classWeight`);\n } else {\n classSampleWeight.push(classWeight[classIndex]);\n }\n });\n return tensor1d(classSampleWeight, \"float32\");\n } else {\n return null;\n }\n}\nfunction computeWeightedLoss2(losses2, sampleWeights) {\n return mul(losses2, sampleWeights);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/training_dataset.js\nvar DEFAULT_VALIDATION_BATCH_SIZE = 32;\nfunction standardizeDataIteratorOutput(model2, iteratorOut) {\n let xs;\n let ys;\n const iteratorOutObj = iteratorOut;\n xs = iteratorOutObj[\"xs\"];\n ys = iteratorOutObj[\"ys\"];\n util_exports.assert(xs != null && ys != null, () => `A Dataset iterator for fitDataset() is expected to generate objects of the form \\`{xs: xVal, ys: yVal}\\`, where the two values may be \\`tf.Tensor\\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${iteratorOut}`);\n const flattenedXs = flattenTensorOrArrayOrMap(\"input\", model2.inputNames, xs);\n const flattenedYs = flattenTensorOrArrayOrMap(\"output\", model2.outputNames, ys);\n const batchSize = flattenedXs[0].shape[0];\n util_exports.assert(flattenedXs.length === model2.inputs.length, () => `LayersModel has ${model2.inputs.length} inputs, but the dataset provides ${flattenedXs.length} inputs. (Expected input keys: ${JSON.stringify(model2.inputNames)})`);\n util_exports.assert(flattenedYs.length === model2.outputs.length, () => `LayersModel has ${model2.outputs.length} outputs, but the dataset provides ${flattenedYs.length} outputs. (Expected output keys: ${JSON.stringify(model2.outputNames)})`);\n for (let xIndex = 0; xIndex < flattenedXs.length; xIndex++) {\n util_exports.assert(flattenedXs[xIndex].shape[0] === batchSize, () => `Batch size mismatch: input ${model2.inputNames[xIndex]} has ${flattenedXs[xIndex].shape[0]}; expected ${batchSize} based on input ${model2.inputNames[0]}.`);\n }\n for (let yIndex = 0; yIndex < flattenedYs.length; yIndex++) {\n util_exports.assert(flattenedYs[yIndex].shape[0] === batchSize, () => `Batch size mismatch: output ${model2.outputNames[yIndex]} has ${flattenedYs[yIndex].shape[0]}; expected ${batchSize} based on input ${model2.inputNames[0]}.`);\n }\n return { xs: flattenedXs, ys: flattenedYs };\n}\nfunction flattenTensorOrArrayOrMap(inputOrOutput, names, values) {\n if (values instanceof Tensor) {\n return [values];\n } else if (Array.isArray(values)) {\n util_exports.assert(values.length === names.length, () => `Received an array of ${values.length} Tensors, but expected ${names.length} to match the ${inputOrOutput} keys ${names}.`);\n return values;\n } else {\n const result = [];\n for (const name of names) {\n if (values[name] == null) {\n throw new ValueError(`The feature data generated by the dataset lacks the required ${inputOrOutput} key '${name}'.`);\n }\n result.push(values[name]);\n }\n return result;\n }\n}\nfunction standardizeTensorValidationData(data) {\n if (data.length === 3) {\n throw new NotImplementedError(\"Validation with sample weights is not implemented yet.\");\n }\n return { xs: data[0], ys: data[1] };\n}\nasync function fitDataset(model2, dataset, args) {\n const hasBatchesPerEpoch = args.batchesPerEpoch != null;\n util_exports.assert(model2.optimizer != null, () => \"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig).\");\n util_exports.assert(args != null, () => `For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call.`);\n util_exports.assert(args.epochs != null && args.epochs > 0 && Number.isInteger(args.epochs), () => `For fitDataset(), config.epochs is expected to be a positive integer, but got ${args.epochs}`);\n util_exports.assert(!hasBatchesPerEpoch || args.batchesPerEpoch > 0 && Number.isInteger(args.batchesPerEpoch), () => `For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${args.batchesPerEpoch}`);\n util_exports.assert(\n args[\"validationSplit\"] == null,\n () => \"`validationSplit` is not supported by `fitDataset()`. Use validationData instead.\"\n );\n if (model2.isTraining) {\n throw new Error(\"Cannot start training because another fit() call is ongoing.\");\n }\n model2.isTraining = true;\n try {\n const doValidation = args.validationData != null;\n let valXs;\n let valYs;\n if (doValidation) {\n if (isDatasetObject(args.validationData)) {\n util_exports.assert(args.validationBatches == null || args.validationBatches > 0 && Number.isInteger(args.validationBatches), () => `For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${args.validationBatches}`);\n } else {\n const validationData = standardizeTensorValidationData(args.validationData);\n valXs = validationData.xs;\n valYs = validationData.ys;\n }\n }\n const trainFunction = model2.makeTrainFunction();\n const outLabels = model2.getDedupedMetricsNames();\n let callbackMetrics;\n if (doValidation) {\n callbackMetrics = outLabels.slice().concat(outLabels.map((n2) => \"val_\" + n2));\n } else {\n callbackMetrics = outLabels.slice();\n }\n const callbacks2 = standardizeCallbacks(args.callbacks, args.yieldEvery);\n const verbose = args.verbose == null ? 1 : args.verbose;\n const { callbackList, history } = configureCallbacks(\n callbacks2,\n verbose,\n args.epochs,\n null,\n null,\n getStepsPerEpoch(dataset, args),\n null,\n doValidation,\n callbackMetrics\n );\n callbackList.setModel(model2);\n model2.history = history;\n await callbackList.onTrainBegin();\n model2.stopTraining_ = false;\n let epoch = args.initialEpoch == null ? 0 : args.initialEpoch;\n let dataIterator = await dataset.iterator();\n while (epoch < args.epochs) {\n const epochLogs = {};\n await callbackList.onEpochBegin(epoch);\n let stepsDone = 0;\n let batchIndex = 0;\n if (!hasBatchesPerEpoch) {\n dataIterator = await dataset.iterator();\n }\n while (hasBatchesPerEpoch ? stepsDone < args.batchesPerEpoch : true) {\n const iteratorOut = await dataIterator.next();\n if (hasBatchesPerEpoch && iteratorOut.done) {\n console.warn(`You provided \\`batchesPerEpoch\\` as ${args.batchesPerEpoch}, but your dataset iterator ran out of data after ${stepsDone} batches; interrupting training. Make sure that your dataset can generate at least \\`batchesPerEpoch * epochs\\` batches (in this case, ${args.batchesPerEpoch * args.epochs} batches). You may need to use the repeat() function when building your dataset.`);\n break;\n }\n if (iteratorOut.value != null) {\n const { xs, ys } = standardizeDataIteratorOutput(model2, iteratorOut.value);\n const batchLogs = {};\n batchLogs[\"batch\"] = batchIndex;\n batchLogs[\"size\"] = xs[0].shape[0];\n await callbackList.onBatchBegin(batchIndex, batchLogs);\n const sampleWeights = [];\n if (args.classWeight != null) {\n const standardClassWeights = standardizeClassWeights(args.classWeight, model2.outputNames);\n for (let i2 = 0; i2 < standardClassWeights.length; ++i2) {\n sampleWeights.push(await standardizeWeights(ys[i2], null, standardClassWeights[i2]));\n }\n }\n const ins = xs.concat(ys).concat(sampleWeights);\n const outs = trainFunction(ins);\n dispose(ins);\n for (let i2 = 0; i2 < outLabels.length; ++i2) {\n const label = outLabels[i2];\n const out = outs[i2];\n batchLogs[label] = out;\n keep(out);\n }\n await callbackList.onBatchEnd(batchIndex, batchLogs);\n disposeTensorsInLogs(batchLogs);\n batchIndex++;\n stepsDone++;\n }\n if (hasBatchesPerEpoch ? stepsDone >= args.batchesPerEpoch : iteratorOut.done) {\n if (doValidation) {\n let valOuts;\n if (isDatasetObject(args.validationData)) {\n valOuts = toList(await model2.evaluateDataset(args.validationData, { batches: args.validationBatches }));\n } else {\n valOuts = toList(model2.evaluate(valXs, valYs, {\n batchSize: args.validationBatchSize == null ? DEFAULT_VALIDATION_BATCH_SIZE : args.validationBatchSize,\n verbose: 0\n }));\n }\n for (let i2 = 0; i2 < model2.metricsNames.length; ++i2) {\n epochLogs[`val_${model2.metricsNames[i2]}`] = valOuts[i2];\n }\n }\n break;\n }\n if (model2.stopTraining_) {\n break;\n }\n }\n await callbackList.onEpochEnd(epoch, epochLogs);\n epoch++;\n if (model2.stopTraining_) {\n break;\n }\n }\n await callbackList.onTrainEnd();\n await model2.history.syncData();\n return model2.history;\n } finally {\n model2.isTraining = false;\n }\n}\nfunction getStepsPerEpoch(dataset, args) {\n let stepsPerEpoch = null;\n if (args.batchesPerEpoch != null) {\n stepsPerEpoch = args.batchesPerEpoch;\n } else if (Number.isFinite(dataset.size)) {\n stepsPerEpoch = dataset.size;\n }\n return stepsPerEpoch;\n}\nfunction isDatasetObject(dataset) {\n return typeof dataset.iterator === \"function\";\n}\nfunction isLazyIteratorObject(iterator) {\n return typeof iterator.next === \"function\";\n}\nasync function evaluateDataset(model2, dataset, args) {\n args = args || {};\n const hasBatches = args.batches != null;\n const f = model2.testFunction;\n let outs = [];\n if (args.verbose > 0) {\n throw new NotImplementedError(\"Verbose mode is not implemented yet.\");\n }\n util_exports.assert(!hasBatches || args.batches > 0 && Number.isInteger(args.batches), () => `Test loop expects \\`batches\\` to be a positive integer, but received ${JSON.stringify(args.batches)}`);\n const dataIterator = isLazyIteratorObject(dataset) ? dataset : await dataset.iterator();\n let numExamples = 0;\n let batch = 0;\n while (hasBatches ? batch < args.batches : true) {\n const iteratorOut = await dataIterator.next();\n outs = tidy(() => {\n if (iteratorOut.value) {\n const { xs, ys } = standardizeDataIteratorOutput(model2, iteratorOut.value);\n const xsAndYs = xs.concat(ys);\n const batchOuts = tidy(() => f(xsAndYs));\n dispose(xsAndYs);\n if (batch === 0) {\n for (let i2 = 0; i2 < batchOuts.length; ++i2) {\n outs.push(scalar(0));\n }\n }\n const batchSize = xsAndYs[0].shape[0];\n for (let i2 = 0; i2 < batchOuts.length; ++i2) {\n const batchOut = batchOuts[i2];\n const oldScalar = outs[i2];\n outs[i2] = tidy(() => add2(outs[i2], mul(batchSize, batchOut)));\n if (batch > 0) {\n dispose(oldScalar);\n }\n }\n dispose(batchOuts);\n numExamples += batchSize;\n ++batch;\n }\n return outs;\n });\n if (iteratorOut.done) {\n if (hasBatches) {\n console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \\`batches\\` batches (in this case, ${args.batches} batches). You may need to use the repeat() function when building your dataset.`);\n }\n break;\n }\n }\n for (let i2 = 0; i2 < outs.length; ++i2) {\n const oldScalar = outs[i2];\n outs[i2] = div(outs[i2], numExamples);\n dispose(oldScalar);\n }\n return singletonOrArray(outs);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/training_tensors.js\nfunction checkBatchSize(batchSize) {\n util_exports.assert(batchSize > 0 && Number.isInteger(batchSize), () => `batchSize is required to be a positive integer, but got ${batchSize}`);\n}\nfunction sliceArrays(arrays, start, stop) {\n if (arrays == null) {\n return [null];\n } else if (Array.isArray(arrays)) {\n return arrays.map((array2) => sliceAlongFirstAxis(array2, start, stop - start));\n } else {\n return sliceAlongFirstAxis(arrays, start, stop - start);\n }\n}\nfunction sliceArraysByIndices(arrays, indices) {\n return tidy(() => {\n if (arrays == null) {\n return null;\n } else if (Array.isArray(arrays)) {\n return arrays.map((array2) => sliceArraysByIndices(array2, indices));\n } else {\n return gather2(arrays, indices.dtype === \"int32\" ? indices : cast(indices, \"int32\"));\n }\n });\n}\nfunction makeBatches(size, batchSize) {\n const output = [];\n let batchStart = 0;\n let batchEnd = null;\n while (batchStart < size) {\n batchEnd = batchStart + batchSize;\n if (batchEnd >= size) {\n batchEnd = size;\n }\n output.push([batchStart, batchEnd]);\n batchStart = batchEnd;\n }\n return output;\n}\nasync function fitLoop(model2, f, ins, outLabels, batchSize, epochs, verbose, callbacks2, valF, valIns, shuffle2, callbackMetrics, initialEpoch, stepsPerEpoch, validationSteps) {\n if (batchSize == null) {\n batchSize = 32;\n }\n if (epochs == null) {\n epochs = 1;\n }\n if (shuffle2 == null) {\n shuffle2 = true;\n }\n if (initialEpoch == null) {\n initialEpoch = 0;\n }\n let doValidation = false;\n if (valF != null && valIns != null) {\n doValidation = true;\n }\n if (validationSteps != null) {\n doValidation = true;\n if (stepsPerEpoch == null) {\n throw new ValueError(\"Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.\");\n }\n }\n const numTrainSamples = model2.checkNumSamples(ins, batchSize, stepsPerEpoch, \"steps_per_epoch\");\n let indexArray;\n if (numTrainSamples != null) {\n indexArray = range2(0, numTrainSamples);\n }\n if (verbose == null) {\n verbose = 1;\n }\n const { callbackList, history } = configureCallbacks(callbacks2, verbose, epochs, initialEpoch, numTrainSamples, stepsPerEpoch, batchSize, doValidation, callbackMetrics);\n callbackList.setModel(model2);\n model2.history = history;\n await callbackList.onTrainBegin();\n model2.stopTraining_ = false;\n for (let epoch = initialEpoch; epoch < epochs; ++epoch) {\n await callbackList.onEpochBegin(epoch);\n const epochLogs = {};\n if (stepsPerEpoch != null) {\n throw new NotImplementedError(\"stepsPerEpoch mode is not implemented yet.\");\n } else {\n if (shuffle2 === \"batch\") {\n throw new NotImplementedError(\"batch shuffling is not implemneted yet\");\n } else if (shuffle2) {\n util_exports.shuffle(indexArray);\n }\n const epochIndexArray1D = tensor1d(indexArray);\n const batches = makeBatches(numTrainSamples, batchSize);\n for (let batchIndex = 0; batchIndex < batches.length; ++batchIndex) {\n const batchLogs = {};\n await callbackList.onBatchBegin(batchIndex, batchLogs);\n tidy(() => {\n const batchStart = batches[batchIndex][0];\n const batchEnd = batches[batchIndex][1];\n const batchIds = sliceAlongFirstAxis(epochIndexArray1D, batchStart, batchEnd - batchStart);\n batchLogs[\"batch\"] = batchIndex;\n batchLogs[\"size\"] = batchEnd - batchStart;\n const insBatch = sliceArraysByIndices(ins, batchIds);\n const outs = f(insBatch);\n for (let i2 = 0; i2 < outLabels.length; ++i2) {\n const label = outLabels[i2];\n const out = outs[i2];\n batchLogs[label] = out;\n keep(out);\n }\n if (batchIndex === batches.length - 1) {\n if (doValidation) {\n const valOuts = model2.testLoop(valF, valIns, batchSize);\n for (let i2 = 0; i2 < outLabels.length; ++i2) {\n const label = outLabels[i2];\n const out = valOuts[i2];\n keep(out);\n epochLogs[\"val_\" + label] = out;\n }\n }\n }\n });\n await callbackList.onBatchEnd(batchIndex, batchLogs);\n disposeTensorsInLogs(batchLogs);\n if (model2.stopTraining_) {\n break;\n }\n }\n epochIndexArray1D.dispose();\n }\n await callbackList.onEpochEnd(epoch, epochLogs);\n if (model2.stopTraining_) {\n break;\n }\n }\n await callbackList.onTrainEnd();\n await model2.history.syncData();\n return model2.history;\n}\nasync function fitTensors(model2, x, y, args = {}) {\n if (model2.isTraining) {\n throw new Error(\"Cannot start training because another fit() call is ongoing.\");\n }\n model2.isTraining = true;\n let inputs;\n let targets;\n let originalInputs;\n let originalTargets;\n let inputValX;\n let inputValY;\n let valX;\n let valY;\n let sampleWeights;\n try {\n const batchSize = args.batchSize == null ? 32 : args.batchSize;\n checkBatchSize(batchSize);\n const checkBatchAxis = false;\n const standardizedOuts = await model2.standardizeUserData(x, y, args.sampleWeight, args.classWeight, checkBatchAxis, batchSize);\n inputs = standardizedOuts[0];\n targets = standardizedOuts[1];\n sampleWeights = standardizedOuts[2];\n let doValidation = false;\n let valIns;\n if (args.validationData != null && args.validationData.length > 0) {\n doValidation = true;\n if (args.validationData.length === 2) {\n inputValX = args.validationData[0];\n inputValY = args.validationData[1];\n } else if (args.validationData.length === 3) {\n throw new NotImplementedError(\"validationData including sample weights is not supported yet.\");\n } else {\n throw new ValueError(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${args.validationData} is invalid.`);\n }\n const checkBatchAxis2 = true;\n const valStandardized = await model2.standardizeUserData(inputValX, inputValY, null, null, checkBatchAxis2, batchSize);\n valX = valStandardized[0];\n valY = valStandardized[1];\n valIns = valX.concat(valY);\n } else if (args.validationSplit != null && args.validationSplit > 0 && args.validationSplit < 1) {\n doValidation = true;\n const splitAt = Math.floor(inputs[0].shape[0] * (1 - args.validationSplit));\n const originalBatchSize = inputs[0].shape[0];\n valX = sliceArrays(inputs, splitAt, originalBatchSize);\n originalInputs = inputs;\n inputs = sliceArrays(inputs, 0, splitAt);\n valY = sliceArrays(targets, splitAt, originalBatchSize);\n originalTargets = targets;\n targets = sliceArrays(targets, 0, splitAt);\n valIns = valX.concat(valY);\n } else if (args.validationSteps != null) {\n doValidation = true;\n }\n const ins = inputs.concat(targets).concat(sampleWeights);\n model2.checkTrainableWeightsConsistency();\n const trainFunction = model2.makeTrainFunction();\n const outLabels = model2.getDedupedMetricsNames();\n let valFunction;\n let callbackMetrics;\n if (doValidation) {\n model2.makeTestFunction();\n valFunction = model2.testFunction;\n callbackMetrics = outLabels.slice().concat(outLabels.map((n2) => \"val_\" + n2));\n } else {\n valFunction = null;\n valIns = [];\n callbackMetrics = outLabels.slice();\n }\n const callbacks2 = standardizeCallbacks(args.callbacks, args.yieldEvery);\n const out = await fitLoop(model2, trainFunction, ins, outLabels, batchSize, args.epochs, args.verbose, callbacks2, valFunction, valIns, args.shuffle, callbackMetrics, args.initialEpoch, null, null);\n return out;\n } finally {\n model2.isTraining = false;\n disposeNewTensors(inputs, x);\n disposeNewTensors(targets, y);\n disposeNewTensors(originalInputs, x);\n disposeNewTensors(originalTargets, y);\n disposeNewTensors(valX, inputValX);\n disposeNewTensors(valY, inputValY);\n if (sampleWeights != null) {\n dispose(sampleWeights);\n }\n }\n}\nfunction ensureTensorsRank2OrHigher(tensors) {\n const outs = [];\n if (tensors instanceof Tensor) {\n tensors = [tensors];\n }\n for (let i2 = 0; i2 < tensors.length; ++i2) {\n const tensor2 = tensors[i2];\n if (tensor2.rank === 1) {\n outs.push(expandDims2(tensor2, 1));\n } else if (tensor2.rank === 0) {\n throw new Error(\"Expected tensor to be at least 1D, but received a 0D tensor (scalar).\");\n } else {\n outs.push(tensor2);\n }\n }\n return outs;\n}\nfunction disposeNewTensors(tensors, refTensors) {\n if (tensors == null) {\n return;\n }\n const oldTensorIds = [];\n if (refTensors instanceof Tensor) {\n oldTensorIds.push(refTensors.id);\n } else if (Array.isArray(refTensors)) {\n refTensors.forEach((t2) => oldTensorIds.push(t2.id));\n } else if (refTensors != null) {\n for (const name in refTensors) {\n const oldTensor = refTensors[name];\n oldTensorIds.push(oldTensor.id);\n }\n }\n const tensorsToDispose = [];\n if (tensors instanceof Tensor) {\n if (oldTensorIds.indexOf(tensors.id) === -1) {\n tensorsToDispose.push(tensors);\n }\n } else if (Array.isArray(tensors)) {\n tensors.forEach((t2) => {\n if (oldTensorIds.indexOf(t2.id) === -1) {\n tensorsToDispose.push(t2);\n }\n });\n } else if (tensors != null) {\n for (const name in tensors) {\n const tensor2 = tensors[name];\n if (oldTensorIds.indexOf(tensor2.id) === -1) {\n tensorsToDispose.push(tensor2);\n }\n }\n }\n tensorsToDispose.forEach((t2) => {\n if (!t2.isDisposed) {\n t2.dispose();\n }\n });\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/engine/training.js\nfunction isDataTensor(x) {\n return x instanceof Tensor;\n}\nfunction isDataArray(x) {\n return Array.isArray(x);\n}\nfunction isDataDict(x) {\n return !isDataTensor(x) && !isDataArray(x);\n}\nfunction standardizeInputData(data, names, shapes, checkBatchAxis = true, exceptionPrefix = \"\") {\n if (names == null || names.length === 0) {\n if (data != null) {\n let gotUnexpectedData = false;\n if (isDataArray(data) && data.length > 0) {\n gotUnexpectedData = true;\n } else if (isDataDict(data)) {\n for (const key in data) {\n if (data.hasOwnProperty(key)) {\n gotUnexpectedData = true;\n break;\n }\n }\n } else {\n gotUnexpectedData = true;\n }\n if (gotUnexpectedData) {\n throw new ValueError(`Error when checking model ${exceptionPrefix} expected no data, but got ${data}`);\n }\n }\n return [];\n }\n if (data == null) {\n return names.map((name) => null);\n }\n let arrays;\n if (isDataDict(data)) {\n data = data;\n arrays = [];\n for (const name of names) {\n if (data[name] == null) {\n throw new ValueError(`No data provided for \"${name}\". Need data for each key in: ${names}`);\n }\n arrays.push(data[name]);\n }\n } else if (isDataArray(data)) {\n data = data;\n if (data.length !== names.length) {\n throw new ValueError(`Error when checking model ${exceptionPrefix}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${names.length} Tensor(s), but instead got the following list of Tensor(s): ${data}`);\n }\n arrays = data;\n } else {\n data = data;\n if (names.length > 1) {\n throw new ValueError(`The model ${exceptionPrefix} expects ${names.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${data.shape}`);\n }\n arrays = [data];\n }\n arrays = ensureTensorsRank2OrHigher(arrays);\n if (shapes != null) {\n for (let i2 = 0; i2 < names.length; ++i2) {\n if (shapes[i2] == null) {\n continue;\n }\n const array2 = arrays[i2];\n if (array2.shape.length !== shapes[i2].length) {\n throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i2]} to have ${shapes[i2].length} dimension(s). but got array with shape ${array2.shape}`);\n }\n for (let j = 0; j < shapes[i2].length; ++j) {\n if (j === 0 && !checkBatchAxis) {\n continue;\n }\n const dim = array2.shape[j];\n const refDim = shapes[i2][j];\n if (refDim != null && refDim >= 0 && dim !== refDim) {\n throw new ValueError(`${exceptionPrefix} expected a batch of elements where each example has shape [${shapes[i2].slice(1, shapes[i2].length)}] (i.e.,tensor shape [*,${shapes[i2].slice(1, shapes[i2].length)}]) but the ${exceptionPrefix} received an input with ${array2.shape[0]} examples, each with shape [${array2.shape.slice(1, array2.shape.length)}] (tensor shape [${array2.shape}])`);\n }\n }\n }\n }\n return arrays;\n}\nfunction checkArrayLengths(inputs, targets, weights) {\n const setX = unique2(inputs.map((input2) => input2.shape[0]));\n setX.sort();\n const setY = unique2(targets.map((target) => target.shape[0]));\n setY.sort();\n if (setX.length > 1) {\n throw new ValueError(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(inputs.map((input2) => input2.shape))}`);\n }\n if (setY.length > 1) {\n throw new ValueError(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(targets.map((target) => target.shape))}`);\n }\n if (setX.length > 0 && setY.length > 0 && !util_exports.arraysEqual(setX, setY)) {\n throw new ValueError(`Input Tensors should have the same number of samples as target Tensors. Found ${setX[0]} input sample(s) and ${setY[0]} target sample(s).`);\n }\n}\nfunction checkLossAndTargetCompatibility(targets, lossFns, outputShapes) {\n const keyLosses = [\n meanSquaredError2,\n binaryCrossentropy,\n categoricalCrossentropy\n ];\n for (let i2 = 0; i2 < targets.length; ++i2) {\n const y = targets[i2];\n const loss = lossFns[i2];\n const shape = outputShapes[i2];\n if (loss == null) {\n continue;\n }\n if (loss === categoricalCrossentropy) {\n if (y.shape[y.shape.length - 1] === 1) {\n throw new ValueError(`You are passing a target array of shape ${y.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);\n }\n }\n if (keyLosses.indexOf(loss) !== -1) {\n const slicedYShape = y.shape.slice(1);\n const slicedShape = shape.slice(1);\n for (let j = 0; j < slicedYShape.length; ++j) {\n const targetDim = slicedYShape[j];\n const outDim = slicedShape[j];\n if (outDim != null && targetDim !== outDim) {\n throw new ValueError(`A target Tensor with shape ${y.shape} was passed for an output of shape ${shape}, while using a loss function that expects targets to have the same shape as the output.`);\n }\n }\n }\n }\n}\nfunction checkInputData(data, names, shapes, checkBatchAxis = true, exceptionPrefix = \"\") {\n let arrays;\n if (Array.isArray(data)) {\n if (data.length !== names.length) {\n throw new ValueError(`Error when checking model ${exceptionPrefix}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${names.length} Tensor(s), but instead got ${data.length} Tensors(s).`);\n }\n arrays = data;\n } else {\n if (names.length > 1) {\n throw new ValueError(`The model expects ${names.length} ${exceptionPrefix} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(data.shape)}.`);\n }\n arrays = [data];\n }\n if (shapes != null) {\n for (let i2 = 0; i2 < names.length; ++i2) {\n if (shapes[i2] == null) {\n continue;\n }\n const array2 = arrays[i2];\n if (array2.shape.length !== shapes[i2].length) {\n throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i2]} to have ${shapes[i2].length} dimension(s), but got array with shape ${JSON.stringify(array2.shape)}`);\n }\n for (let j = 0; j < shapes[i2].length; ++j) {\n if (j === 0 && !checkBatchAxis) {\n continue;\n }\n const dim = array2.shape[j];\n const refDim = shapes[i2][j];\n if (refDim != null) {\n if (refDim !== dim) {\n throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i2]} to have shape ${JSON.stringify(shapes[i2])} but got array with shape ${JSON.stringify(array2.shape)}.`);\n }\n }\n }\n }\n }\n}\nfunction collectMetrics(metrics, outputNames) {\n if (metrics == null || Array.isArray(metrics) && metrics.length === 0) {\n return outputNames.map((name) => []);\n }\n let wrappedMetrics;\n if (typeof metrics === \"string\" || typeof metrics === \"function\") {\n wrappedMetrics = [metrics];\n } else if (Array.isArray(metrics) || typeof metrics === \"object\") {\n wrappedMetrics = metrics;\n } else {\n throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${metrics}`);\n }\n if (Array.isArray(wrappedMetrics)) {\n return outputNames.map((name) => wrappedMetrics);\n } else {\n const nestedMetrics = [];\n for (const name of outputNames) {\n let outputMetrics = wrappedMetrics.hasOwnProperty(name) ? wrappedMetrics[name] : [];\n if (!Array.isArray(outputMetrics)) {\n outputMetrics = [outputMetrics];\n }\n nestedMetrics.push(outputMetrics);\n }\n return nestedMetrics;\n }\n}\nvar LAYERS_MODEL_FORMAT_NAME = \"layers-model\";\nvar LayersModel = class extends Container {\n constructor(args) {\n super(args);\n this.isTraining = false;\n }\n summary(lineLength, positions, printFn = console.log) {\n if (!this.built) {\n throw new ValueError(`This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).`);\n }\n printSummary(this, lineLength, positions, printFn);\n }\n compile(args) {\n if (args.loss == null) {\n args.loss = [];\n }\n this.loss = args.loss;\n if (typeof args.optimizer === \"string\") {\n this.optimizer_ = getOptimizer(args.optimizer);\n this.isOptimizerOwned = true;\n } else {\n if (!(args.optimizer instanceof Optimizer)) {\n throw new ValueError(`User-defined optimizer must be an instance of tf.Optimizer.`);\n }\n this.optimizer_ = args.optimizer;\n this.isOptimizerOwned = false;\n }\n let lossFunctions = [];\n if (!Array.isArray(args.loss) && typeof args.loss !== \"string\" && typeof args.loss !== \"function\") {\n args.loss = args.loss;\n for (const name in args.loss) {\n if (this.outputNames.indexOf(name) === -1) {\n throw new ValueError(`Unknown entry in loss dictionary: \"${name}\". Only expected the following keys: ${this.outputNames}`);\n }\n }\n for (const name of this.outputNames) {\n if (args.loss[name] == null) {\n console.warn(`Output \"${name}\" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${name} during training`);\n }\n lossFunctions.push(get(args.loss[name]));\n }\n } else if (Array.isArray(args.loss)) {\n if (args.loss.length !== this.outputs.length) {\n throw new ValueError(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${args.loss}.`);\n }\n const theLosses = args.loss;\n lossFunctions = theLosses.map((l3) => get(l3));\n } else {\n const lossFunction = get(args.loss);\n this.outputs.forEach((_) => {\n lossFunctions.push(lossFunction);\n });\n }\n this.lossFunctions = lossFunctions;\n this.feedOutputNames = [];\n this.feedOutputShapes = [];\n this.feedLossFns = [];\n for (let i2 = 0; i2 < this.outputs.length; ++i2) {\n const shape = this.internalOutputShapes[i2];\n const name = this.outputNames[i2];\n this.feedOutputNames.push(name);\n this.feedOutputShapes.push(shape);\n this.feedLossFns.push(this.lossFunctions[i2]);\n }\n const skipTargetIndices = [];\n this.metrics = args.metrics;\n this.metricsNames = [\"loss\"];\n this.metricsTensors = [];\n nameScope(\"loss\", () => {\n for (let i2 = 0; i2 < this.outputs.length; ++i2) {\n if (skipTargetIndices.indexOf(i2) !== -1) {\n continue;\n }\n const weightedLoss = this.lossFunctions[i2];\n if (this.outputs.length > 1) {\n this.metricsTensors.push([weightedLoss, i2]);\n this.metricsNames.push(this.outputNames[i2] + \"_loss\");\n }\n }\n });\n const nestedMetrics = collectMetrics(args.metrics, this.outputNames);\n const appendMetric = (outputIndex, metricName, metricTensor) => {\n if (this.outputNames.length > 1) {\n metricName = this.outputNames[outputIndex] + \"_\" + metricName;\n }\n this.metricsNames.push(metricName);\n this.metricsTensors.push([metricTensor, outputIndex]);\n };\n nameScope(\"metric\", () => {\n for (let i2 = 0; i2 < this.outputs.length; ++i2) {\n if (skipTargetIndices.indexOf(i2) !== -1) {\n continue;\n }\n const outputMetrics = nestedMetrics[i2];\n const handleMetrics = (metrics) => {\n const metricNamePrefix = \"\";\n let metricName;\n let accFn;\n let weightedMetricFn;\n for (const metric of metrics) {\n if (typeof metric === \"string\" && [\"accuracy\", \"acc\", \"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n const outputShape = this.internalOutputShapes[i2];\n if (outputShape[outputShape.length - 1] === 1 || this.lossFunctions[i2] === binaryCrossentropy) {\n if ([\"accuracy\", \"acc\"].indexOf(metric) !== -1) {\n accFn = binaryAccuracy;\n } else if ([\"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n accFn = binaryCrossentropy2;\n }\n } else if (this.lossFunctions[i2] === sparseCategoricalCrossentropy) {\n if ([\"accuracy\", \"acc\"].indexOf(metric) !== -1) {\n accFn = sparseCategoricalAccuracy;\n } else if ([\"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n accFn = sparseCategoricalCrossentropy2;\n }\n } else {\n if ([\"accuracy\", \"acc\"].indexOf(metric) !== -1) {\n accFn = categoricalAccuracy;\n } else if ([\"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n accFn = categoricalCrossentropy2;\n }\n }\n let suffix;\n if ([\"accuracy\", \"acc\"].indexOf(metric) !== -1) {\n suffix = \"acc\";\n } else if ([\"crossentropy\", \"ce\"].indexOf(metric) !== -1) {\n suffix = \"ce\";\n }\n weightedMetricFn = accFn;\n metricName = metricNamePrefix + suffix;\n } else {\n const metricFn = get2(metric);\n weightedMetricFn = metricFn;\n metricName = metricNamePrefix + getLossOrMetricName(metric);\n }\n let metricResult;\n nameScope(metricName, () => {\n metricResult = weightedMetricFn;\n });\n appendMetric(i2, metricName, metricResult);\n }\n };\n handleMetrics(outputMetrics);\n }\n });\n this.collectedTrainableWeights = this.trainableWeights;\n }\n checkTrainableWeightsConsistency() {\n if (this.collectedTrainableWeights == null) {\n return;\n }\n if (this.trainableWeights.length !== this.collectedTrainableWeights.length) {\n console.warn(\"Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?\");\n }\n }\n evaluate(x, y, args = {}) {\n const batchSize = args.batchSize == null ? 32 : args.batchSize;\n checkBatchSize(batchSize);\n const checkBatchAxis = true;\n const standardizedOuts = this.standardizeUserDataXY(x, y, checkBatchAxis, batchSize);\n try {\n const ins = standardizedOuts[0].concat(standardizedOuts[1]);\n this.makeTestFunction();\n const f = this.testFunction;\n const testOuts = this.testLoop(f, ins, batchSize, args.verbose, args.steps);\n return singletonOrArray(testOuts);\n } finally {\n disposeNewTensors(standardizedOuts[0], x);\n disposeNewTensors(standardizedOuts[1], y);\n }\n }\n async evaluateDataset(dataset, args) {\n this.makeTestFunction();\n return evaluateDataset(this, dataset, args);\n }\n checkNumSamples(ins, batchSize, steps, stepsName = \"steps\") {\n let numSamples;\n if (steps != null) {\n numSamples = null;\n if (batchSize != null) {\n throw new ValueError(`If ${stepsName} is set, batchSize must be null or undefined.Got batchSize = ${batchSize}`);\n }\n } else if (ins != null) {\n if (Array.isArray(ins)) {\n numSamples = ins[0].shape[0];\n } else {\n numSamples = ins.shape[0];\n }\n } else {\n throw new ValueError(`Either the input data should have a defined shape, or ${stepsName} shoud be specified.`);\n }\n return numSamples;\n }\n execute(inputs, outputs) {\n if (Array.isArray(outputs) && outputs.length === 0) {\n throw new ValueError(\"`outputs` is an empty Array, which is not allowed.\");\n }\n const outputsIsArray = Array.isArray(outputs);\n const outputNames = outputsIsArray ? outputs : [outputs];\n const outputSymbolicTensors = this.retrieveSymbolicTensors(outputNames);\n const feedDict = new FeedDict();\n if (inputs instanceof Tensor) {\n inputs = [inputs];\n }\n if (Array.isArray(inputs)) {\n if (inputs.length !== this.inputs.length) {\n throw new ValueError(`The number of inputs provided (${inputs.length}) does not match the number of inputs of this model (${this.inputs.length}).`);\n }\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n feedDict.add(this.inputs[i2], inputs[i2]);\n }\n } else {\n for (const input2 of this.inputs) {\n const tensorValue = inputs[input2.name];\n if (tensorValue == null) {\n throw new ValueError(`No value is provided for the model's input ${input2.name}`);\n }\n feedDict.add(input2, tensorValue);\n }\n }\n const executeOutputs = execute(outputSymbolicTensors, feedDict);\n return outputsIsArray ? executeOutputs : executeOutputs[0];\n }\n retrieveSymbolicTensors(symbolicTensorNames) {\n const outputSymbolicTensors = pyListRepeat(null, symbolicTensorNames.length);\n let outputsRemaining = symbolicTensorNames.length;\n for (const layer of this.layers) {\n const layerOutputs = Array.isArray(layer.output) ? layer.output : [layer.output];\n const layerOutputNames = layerOutputs.map((output) => output.name);\n for (let i2 = 0; i2 < symbolicTensorNames.length; ++i2) {\n const index = layerOutputNames.indexOf(symbolicTensorNames[i2]);\n if (index !== -1) {\n outputSymbolicTensors[i2] = layerOutputs[index];\n outputsRemaining--;\n }\n if (outputsRemaining === 0) {\n break;\n }\n }\n if (outputsRemaining === 0) {\n break;\n }\n }\n if (outputsRemaining > 0) {\n const remainingNames = [];\n outputSymbolicTensors.forEach((tensor2, i2) => {\n if (tensor2 == null) {\n remainingNames.push(symbolicTensorNames[i2]);\n }\n });\n throw new ValueError(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(remainingNames)}`);\n }\n return outputSymbolicTensors;\n }\n predictLoop(ins, batchSize = 32, verbose = false) {\n return tidy(() => {\n const numSamples = this.checkNumSamples(ins);\n if (verbose) {\n throw new NotImplementedError(\"Verbose predictLoop() is not implemented yet.\");\n }\n const batches = makeBatches(numSamples, batchSize);\n const outsBatches = this.outputs.map((output) => []);\n for (let batchIndex = 0; batchIndex < batches.length; ++batchIndex) {\n const batchOuts = tidy(() => {\n const batchStart = batches[batchIndex][0];\n const batchEnd = batches[batchIndex][1];\n const insBatch = sliceArrays(ins, batchStart, batchEnd);\n const feeds = [];\n if (Array.isArray(insBatch)) {\n for (let i2 = 0; i2 < insBatch.length; ++i2) {\n feeds.push({ key: this.inputs[i2], value: insBatch[i2] });\n }\n } else {\n feeds.push({ key: this.inputs[0], value: insBatch });\n }\n const feedDict = new FeedDict(feeds);\n return execute(this.outputs, feedDict);\n });\n batchOuts.forEach((batchOut, i2) => outsBatches[i2].push(batchOut));\n }\n return singletonOrArray(outsBatches.map((batches2) => concat(batches2, 0)));\n });\n }\n predict(x, args = {}) {\n const xsRank2OrHigher = ensureTensorsRank2OrHigher(x);\n checkInputData(xsRank2OrHigher, this.inputNames, this.feedInputShapes, false);\n try {\n const batchSize = args.batchSize == null ? 32 : args.batchSize;\n checkBatchSize(batchSize);\n return this.predictLoop(xsRank2OrHigher, batchSize);\n } finally {\n disposeNewTensors(xsRank2OrHigher, x);\n }\n }\n predictOnBatch(x) {\n checkInputData(x, this.inputNames, this.feedInputShapes, true);\n const batchSize = (Array.isArray(x) ? x[0] : x).shape[0];\n return this.predictLoop(x, batchSize);\n }\n standardizeUserDataXY(x, y, checkBatchAxis = true, batchSize) {\n if (this.optimizer_ == null) {\n throw new RuntimeError(\"You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).\");\n }\n const outputShapes = [];\n for (let i2 = 0; i2 < this.feedOutputShapes.length; ++i2) {\n const outputShape = this.feedOutputShapes[i2];\n const lossFn = this.feedLossFns[i2];\n if (lossFn === sparseCategoricalCrossentropy) {\n outputShapes.push(outputShape.slice(0, outputShape.length - 1).concat([1]));\n } else {\n outputShapes.push(outputShape);\n }\n }\n x = standardizeInputData(x, this.feedInputNames, this.feedInputShapes, false, \"input\");\n y = standardizeInputData(y, this.feedOutputNames, outputShapes, false, \"target\");\n checkArrayLengths(x, y, null);\n checkLossAndTargetCompatibility(y, this.feedLossFns, this.feedOutputShapes);\n if (this.stateful && batchSize != null && batchSize > 0) {\n if (x[0].shape[0] % batchSize !== 0) {\n throw new ValueError(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${batchSize}. Found: ${x[0].shape[0]} sample(s).`);\n }\n }\n return [x, y];\n }\n async standardizeUserData(x, y, sampleWeight, classWeight, checkBatchAxis = true, batchSize) {\n const [standardXs, standardYs] = this.standardizeUserDataXY(x, y, checkBatchAxis, batchSize);\n if (sampleWeight != null) {\n throw new Error(\"sample weight is not supported yet.\");\n }\n let standardSampleWeights = null;\n if (classWeight != null) {\n const classWeights = standardizeClassWeights(classWeight, this.outputNames);\n standardSampleWeights = [];\n for (let i2 = 0; i2 < classWeights.length; ++i2) {\n standardSampleWeights.push(await standardizeWeights(standardYs[i2], null, classWeights[i2]));\n }\n }\n return [standardXs, standardYs, standardSampleWeights];\n }\n testLoop(f, ins, batchSize, verbose = 0, steps) {\n return tidy(() => {\n const numSamples = this.checkNumSamples(ins, batchSize, steps, \"steps\");\n const outs = [];\n if (verbose > 0) {\n throw new NotImplementedError(\"Verbose mode is not implemented yet.\");\n }\n if (steps != null) {\n throw new NotImplementedError(\"steps mode in testLoop() is not implemented yet\");\n } else {\n const batches = makeBatches(numSamples, batchSize);\n const indexArray = tensor1d(range2(0, numSamples));\n for (let batchIndex = 0; batchIndex < batches.length; ++batchIndex) {\n const batchStart = batches[batchIndex][0];\n const batchEnd = batches[batchIndex][1];\n const batchIds = sliceAlongFirstAxis(indexArray, batchStart, batchEnd - batchStart);\n const insBatch = sliceArraysByIndices(ins, batchIds);\n const batchOuts = f(insBatch);\n if (batchIndex === 0) {\n for (let i2 = 0; i2 < batchOuts.length; ++i2) {\n outs.push(scalar(0));\n }\n }\n for (let i2 = 0; i2 < batchOuts.length; ++i2) {\n const batchOut = batchOuts[i2];\n outs[i2] = add2(outs[i2], mul(batchEnd - batchStart, batchOut));\n }\n }\n for (let i2 = 0; i2 < outs.length; ++i2) {\n outs[i2] = div(outs[i2], numSamples);\n }\n }\n return outs;\n });\n }\n getDedupedMetricsNames() {\n const outLabels = this.metricsNames;\n const dedupedOutLabels = [];\n for (let i2 = 0; i2 < outLabels.length; ++i2) {\n const label = outLabels[i2];\n let newLabel = label;\n if (count(outLabels, label) > 1) {\n const dupIndex = count(outLabels.slice(0, i2), label);\n newLabel += `_${dupIndex}`;\n }\n dedupedOutLabels.push(newLabel);\n }\n return dedupedOutLabels;\n }\n makeTrainFunction() {\n return (data) => {\n const lossValues = [];\n const inputs = data.slice(0, this.inputs.length);\n const targets = data.slice(this.inputs.length, this.inputs.length + this.outputs.length);\n const sampleWeights = data.slice(this.inputs.length + this.outputs.length, this.inputs.length + this.outputs.length * 2);\n const metricsValues = [];\n const totalLossFunction = () => {\n const feeds = [];\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n feeds.push({ key: this.inputs[i2], value: inputs[i2] });\n }\n const feedDict = new FeedDict(feeds);\n const outputs = execute(this.outputs, feedDict, { \"training\": true });\n let totalLoss;\n for (let i2 = 0; i2 < this.lossFunctions.length; ++i2) {\n const lossFunction = this.lossFunctions[i2];\n let loss = lossFunction(targets[i2], outputs[i2]);\n if (sampleWeights[i2] != null) {\n loss = computeWeightedLoss2(loss, sampleWeights[i2]);\n }\n const meanLoss = mean(loss);\n lossValues.push(meanLoss);\n if (i2 === 0) {\n totalLoss = loss;\n } else {\n totalLoss = add2(totalLoss, loss);\n }\n }\n for (let i2 = 0; i2 < this.metricsTensors.length; ++i2) {\n let weightedMetric;\n if (this.outputs.length > 1 && i2 < this.outputs.length) {\n weightedMetric = lossValues[i2];\n } else {\n const metric = this.metricsTensors[i2][0];\n const outputIndex = this.metricsTensors[i2][1];\n weightedMetric = mean(metric(targets[outputIndex], outputs[outputIndex]));\n }\n keep(weightedMetric);\n metricsValues.push(weightedMetric);\n }\n totalLoss = mean(totalLoss);\n this.calculateLosses().forEach((regularizerLoss) => {\n totalLoss = add2(totalLoss, regularizerLoss);\n });\n return totalLoss;\n };\n const variables = this.collectedTrainableWeights.map((param) => param.read());\n const returnCost = true;\n const totalLossValue = this.optimizer_.minimize(totalLossFunction, returnCost, variables);\n return [totalLossValue].concat(metricsValues);\n };\n }\n makeTestFunction() {\n this.testFunction = (data) => {\n return tidy(() => {\n const valOutputs = [];\n let totalLoss;\n const inputs = data.slice(0, this.inputs.length);\n const targets = data.slice(this.inputs.length, this.inputs.length + this.outputs.length);\n const feeds = [];\n for (let i2 = 0; i2 < this.inputs.length; ++i2) {\n feeds.push({ key: this.inputs[i2], value: inputs[i2] });\n }\n const feedDict = new FeedDict(feeds);\n const outputs = execute(this.outputs, feedDict);\n for (let i2 = 0; i2 < this.lossFunctions.length; ++i2) {\n const lossFunction = this.lossFunctions[i2];\n const loss = mean(lossFunction(targets[i2], outputs[i2]));\n if (i2 === 0) {\n totalLoss = loss;\n } else {\n totalLoss = add2(totalLoss, loss);\n }\n valOutputs.push(totalLoss);\n }\n for (let i2 = 0; i2 < this.metricsTensors.length; ++i2) {\n const metric = this.metricsTensors[i2][0];\n const outputIndex = this.metricsTensors[i2][1];\n const meanMetric = mean(metric(targets[outputIndex], outputs[outputIndex]));\n valOutputs.push(meanMetric);\n }\n return valOutputs;\n });\n };\n }\n async fit(x, y, args = {}) {\n return fitTensors(this, x, y, args);\n }\n async fitDataset(dataset, args) {\n return fitDataset(this, dataset, args);\n }\n async trainOnBatch(x, y) {\n const standardizeOut = await this.standardizeUserData(x, y);\n const inputs = standardizeOut[0];\n const targets = standardizeOut[1];\n const trainFunction = this.makeTrainFunction();\n const losses2 = trainFunction(inputs.concat(targets));\n const lossValues = [];\n for (const loss of losses2) {\n const v = await loss.data();\n lossValues.push(v[0]);\n }\n dispose(losses2);\n disposeNewTensors(standardizeOut[0], x);\n disposeNewTensors(standardizeOut[1], y);\n return singletonOrArray(lossValues);\n }\n getNamedWeights(config) {\n const namedWeights = [];\n const trainableOnly = config != null && config.trainableOnly;\n const weights = trainableOnly ? this.trainableWeights : this.weights;\n const weightValues = this.getWeights(trainableOnly);\n for (let i2 = 0; i2 < weights.length; ++i2) {\n if (trainableOnly && !weights[i2].trainable) {\n continue;\n }\n namedWeights.push({ name: weights[i2].originalName, tensor: weightValues[i2] });\n }\n return namedWeights;\n }\n set stopTraining(stop) {\n this.stopTraining_ = stop;\n }\n get stopTraining() {\n return this.stopTraining_;\n }\n get optimizer() {\n return this.optimizer_;\n }\n set optimizer(optimizer) {\n if (this.optimizer_ !== optimizer) {\n this.optimizer_ = optimizer;\n this.isOptimizerOwned = false;\n }\n }\n dispose() {\n const result = super.dispose();\n if (result.refCountAfterDispose === 0 && this.optimizer != null && this.isOptimizerOwned) {\n const numTensorsBeforeOptmizerDisposal = memory().numTensors;\n this.optimizer_.dispose();\n result.numDisposedVariables += numTensorsBeforeOptmizerDisposal - memory().numTensors;\n }\n return result;\n }\n getLossIdentifiers() {\n let lossNames;\n if (typeof this.loss === \"string\") {\n lossNames = toSnakeCase(this.loss);\n } else if (Array.isArray(this.loss)) {\n for (const loss of this.loss) {\n if (typeof loss !== \"string\") {\n throw new Error(\"Serialization of non-string loss is not supported.\");\n }\n }\n lossNames = this.loss.map((name) => toSnakeCase(name));\n } else {\n const outputNames = Object.keys(this.loss);\n lossNames = {};\n const losses2 = this.loss;\n for (const outputName of outputNames) {\n if (typeof losses2[outputName] === \"string\") {\n lossNames[outputName] = toSnakeCase(losses2[outputName]);\n } else {\n throw new Error(\"Serialization of non-string loss is not supported.\");\n }\n }\n }\n return lossNames;\n }\n getMetricIdentifiers() {\n if (typeof this.metrics === \"string\" || typeof this.metrics === \"function\") {\n return [toSnakeCase(getLossOrMetricName(this.metrics))];\n } else if (Array.isArray(this.metrics)) {\n return this.metrics.map((metric) => toSnakeCase(getLossOrMetricName(metric)));\n } else {\n const metricsIdentifiers = {};\n for (const key in this.metrics) {\n metricsIdentifiers[key] = toSnakeCase(getLossOrMetricName(this.metrics[key]));\n }\n return metricsIdentifiers;\n }\n }\n getTrainingConfig() {\n return {\n loss: this.getLossIdentifiers(),\n metrics: this.getMetricIdentifiers(),\n optimizer_config: {\n class_name: this.optimizer.getClassName(),\n config: this.optimizer.getConfig()\n }\n };\n }\n loadTrainingConfig(trainingConfig) {\n if (trainingConfig.weighted_metrics != null) {\n throw new Error(\"Loading weight_metrics is not supported yet.\");\n }\n if (trainingConfig.loss_weights != null) {\n throw new Error(\"Loading loss_weights is not supported yet.\");\n }\n if (trainingConfig.sample_weight_mode != null) {\n throw new Error(\"Loading sample_weight_mode is not supported yet.\");\n }\n const tsConfig = convertPythonicToTs(trainingConfig.optimizer_config);\n const optimizer = deserialize(tsConfig);\n let loss;\n if (typeof trainingConfig.loss === \"string\") {\n loss = toCamelCase(trainingConfig.loss);\n } else if (Array.isArray(trainingConfig.loss)) {\n loss = trainingConfig.loss.map((lossEntry) => toCamelCase(lossEntry));\n } else if (trainingConfig.loss != null) {\n loss = {};\n for (const key in trainingConfig.loss) {\n loss[key] = toCamelCase(trainingConfig.loss[key]);\n }\n }\n let metrics;\n if (Array.isArray(trainingConfig.metrics)) {\n metrics = trainingConfig.metrics.map((metric) => toCamelCase(metric));\n } else if (trainingConfig.metrics != null) {\n metrics = {};\n for (const key in trainingConfig.metrics) {\n metrics[key] = toCamelCase(trainingConfig.metrics[key]);\n }\n }\n this.compile({ loss, metrics, optimizer });\n }\n async save(handlerOrURL, config) {\n if (typeof handlerOrURL === \"string\") {\n const handlers = io_exports.getSaveHandlers(handlerOrURL);\n if (handlers.length === 0) {\n throw new ValueError(`Cannot find any save handlers for URL '${handlerOrURL}'`);\n } else if (handlers.length > 1) {\n throw new ValueError(`Found more than one (${handlers.length}) save handlers for URL '${handlerOrURL}'`);\n }\n handlerOrURL = handlers[0];\n }\n if (handlerOrURL.save == null) {\n throw new ValueError(\"LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.\");\n }\n const weightDataAndSpecs = await io_exports.encodeWeights(this.getNamedWeights(config));\n const returnString = false;\n const unusedArg = null;\n const modelConfig = this.toJSON(unusedArg, returnString);\n const modelArtifacts = {\n modelTopology: modelConfig,\n format: LAYERS_MODEL_FORMAT_NAME,\n generatedBy: `TensorFlow.js tfjs-layers v${version2}`,\n convertedBy: null\n };\n const includeOptimizer = config == null ? false : config.includeOptimizer;\n if (includeOptimizer && this.optimizer != null) {\n modelArtifacts.trainingConfig = this.getTrainingConfig();\n const weightType = \"optimizer\";\n const { data: optimizerWeightData, specs: optimizerWeightSpecs } = await io_exports.encodeWeights(await this.optimizer.getWeights(), weightType);\n weightDataAndSpecs.specs.push(...optimizerWeightSpecs);\n weightDataAndSpecs.data = io_exports.concatenateArrayBuffers([weightDataAndSpecs.data, optimizerWeightData]);\n }\n if (this.userDefinedMetadata != null) {\n const checkSize = true;\n checkUserDefinedMetadata(this.userDefinedMetadata, this.name, checkSize);\n modelArtifacts.userDefinedMetadata = this.userDefinedMetadata;\n }\n modelArtifacts.weightData = weightDataAndSpecs.data;\n modelArtifacts.weightSpecs = weightDataAndSpecs.specs;\n return handlerOrURL.save(modelArtifacts);\n }\n setUserDefinedMetadata(userDefinedMetadata) {\n checkUserDefinedMetadata(userDefinedMetadata, this.name);\n this.userDefinedMetadata = userDefinedMetadata;\n }\n getUserDefinedMetadata() {\n return this.userDefinedMetadata;\n }\n};\nLayersModel.className = \"Model\";\nserialization_exports.registerClass(LayersModel);\nvar Functional = class extends LayersModel {\n};\nFunctional.className = \"Functional\";\nserialization_exports.registerClass(Functional);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/models.js\nasync function modelFromJSON(modelAndWeightsConfig, customObjects) {\n if (!(\"modelTopology\" in modelAndWeightsConfig)) {\n modelAndWeightsConfig = { modelTopology: modelAndWeightsConfig };\n }\n modelAndWeightsConfig = modelAndWeightsConfig;\n let modelTopology = modelAndWeightsConfig.modelTopology;\n if (modelTopology[\"model_config\"] != null) {\n modelTopology = modelTopology[\"model_config\"];\n }\n const tsConfig = convertPythonicToTs(modelTopology);\n const model2 = deserialize(tsConfig, customObjects);\n if (modelAndWeightsConfig.weightsManifest != null) {\n const weightValues = await io_exports.loadWeights(modelAndWeightsConfig.weightsManifest, modelAndWeightsConfig.pathPrefix, model2.weights.map((weight) => weight.originalName));\n const uniqueWeightValues = {};\n for (const weight of model2.weights) {\n uniqueWeightValues[weight.originalName] = weightValues[weight.originalName];\n }\n model2.loadWeights(uniqueWeightValues);\n dispose(weightValues);\n }\n return model2;\n}\nasync function loadLayersModelInternal(pathOrIOHandler, options) {\n if (options == null) {\n options = {};\n }\n if (typeof pathOrIOHandler === \"string\") {\n const handlers = io_exports.getLoadHandlers(pathOrIOHandler, options);\n if (handlers.length === 0) {\n handlers.push(io_exports.browserHTTPRequest(pathOrIOHandler, options));\n } else if (handlers.length > 1) {\n throw new ValueError(`Found more than one (${handlers.length}) load handlers for URL '${pathOrIOHandler}'`);\n }\n pathOrIOHandler = handlers[0];\n }\n return loadLayersModelFromIOHandler(pathOrIOHandler, void 0, options);\n}\nasync function loadLayersModelFromIOHandler(handler, customObjects, options) {\n if (options == null) {\n options = {};\n }\n if (handler.load == null) {\n throw new ValueError(\"Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.\");\n }\n const artifacts = await handler.load();\n let modelTopology = artifacts.modelTopology;\n if (modelTopology[\"model_config\"] != null) {\n modelTopology = modelTopology[\"model_config\"];\n }\n const strict = options.strict == null ? true : options.strict;\n const fastWeightInit = artifacts.weightData != null && artifacts.weightSpecs != null && strict;\n const model2 = deserialize(convertPythonicToTs(modelTopology), customObjects, fastWeightInit);\n const trainingConfig = artifacts.trainingConfig;\n if (trainingConfig != null) {\n model2.loadTrainingConfig(trainingConfig);\n }\n if (artifacts.userDefinedMetadata != null) {\n model2.setUserDefinedMetadata(artifacts.userDefinedMetadata);\n }\n if (artifacts.weightData != null) {\n if (artifacts.weightSpecs == null) {\n throw new ValueError(\"LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.\");\n }\n const { modelWeights, optimizerWeights } = decodeModelAndOptimizerWeights(artifacts.weightData, artifacts.weightSpecs);\n model2.loadWeights(modelWeights, strict);\n if (model2.optimizer != null && optimizerWeights.length > 0) {\n await model2.optimizer.setWeights(optimizerWeights);\n }\n dispose(modelWeights);\n dispose(optimizerWeights.map((w) => w.tensor));\n }\n return model2;\n}\nfunction decodeModelAndOptimizerWeights(buffer2, specs) {\n const name2Tensor = io_exports.decodeWeights(buffer2, specs);\n const modelWeights = {};\n const optimizerWeights = [];\n specs.forEach((spec) => {\n if (spec.group === \"optimizer\") {\n optimizerWeights.push({ name: spec.name, tensor: name2Tensor[spec.name] });\n } else {\n modelWeights[spec.name] = name2Tensor[spec.name];\n }\n });\n return { modelWeights, optimizerWeights };\n}\nvar Sequential = class extends LayersModel {\n constructor(args) {\n super({ inputs: [], outputs: [] });\n args = args || {};\n this.trainable = true;\n this.built = false;\n this.name = args.name != null ? args.name : getUid(\"sequential_\");\n if (args.layers != null) {\n for (const layer of args.layers) {\n this.add(layer);\n }\n }\n }\n checkShape(layer) {\n const shape = layer.inboundNodes[0].outputTensors[0].shape;\n if (shape.some((x) => x < 0)) {\n throw new ValueError(`Negative dimension size caused by adding layer ${layer.name} with input shape [${layer.inboundNodes[0].inputTensors[0].shape}]`);\n }\n }\n add(layer) {\n const isLayerModelInstance = layer instanceof Sequential || layer instanceof LayersModel;\n let modelLayer;\n if (isLayerModelInstance) {\n modelLayer = layer;\n if (modelLayer.outputs.length !== 1) {\n throw new ValueError(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");\n }\n if (modelLayer.inputs.length !== 1) {\n throw new ValueError(\"All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.\");\n }\n }\n if (this.outputs.length === 0) {\n if (layer.inboundNodes.length === 0) {\n if (layer.batchInputShape == null) {\n throw new ValueError(\"The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.\");\n }\n const x = Input({\n batchShape: layer.batchInputShape,\n dtype: layer.dtype,\n name: layer.name + \"_input\"\n });\n layer.apply(x);\n }\n if (isLayerModelInstance) {\n this.outputs = modelLayer.outputs;\n this.inputs = modelLayer.inputs;\n } else {\n if (layer.inboundNodes.length !== 1) {\n throw new ValueError(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${layer.name} which has ${layer.inboundNodes.length} pre-existing inbound connections.`);\n }\n if (layer.inboundNodes[0].outputTensors.length !== 1) {\n throw new ValueError(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");\n }\n this.checkShape(layer);\n this.outputs = [layer.inboundNodes[0].outputTensors[0]];\n this.inputs = getSourceInputs(this.outputs[0]);\n }\n this.inboundNodes = [];\n new Node({\n outboundLayer: this,\n inboundLayers: [],\n nodeIndices: [],\n tensorIndices: [],\n inputTensors: this.inputs,\n outputTensors: this.outputs,\n inputMasks: pyListRepeat(null, this.inputs.length),\n outputMasks: [null],\n inputShapes: this.inputs.map((x) => x.shape),\n outputShapes: this.outputs[0].shape\n });\n } else {\n const outputTensor = layer.apply(this.outputs[0]);\n if (Array.isArray(outputTensor)) {\n throw new TypeError(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");\n }\n this.checkShape(layer);\n this.outputs = [outputTensor];\n this.inboundNodes[0].outputTensors = this.outputs;\n this.inboundNodes[0].outputShapes = [this.outputs[0].shape];\n }\n this.layers.push(layer);\n this.built = false;\n }\n pop() {\n if (this.layers.length === 0) {\n throw new TypeError(\"There are no layers in the model.\");\n }\n this.layers.pop();\n if (this.layers.length === 0) {\n this.outputs = [];\n this.inboundNodes = [];\n this.outboundNodes = [];\n } else {\n const lastLayerIndex = this.layers.length - 1;\n this.layers[lastLayerIndex].outboundNodes = [];\n this.outputs = [this.layers[lastLayerIndex].output];\n this.inboundNodes[0].outputTensors = this.outputs;\n this.inboundNodes[0].outputShapes = [this.outputs[0].shape];\n }\n }\n call(inputs, kwargs) {\n if (this.model == null) {\n this.build();\n }\n return this.model.call(inputs, kwargs);\n }\n build(inputShape) {\n getExactlyOneShape(inputShape);\n if (this.inputs.length === 0 || this.outputs.length === 0) {\n throw new TypeError(\"Sequential model cannot be built: model is empty. Add some layers first.\");\n }\n this.model = new LayersModel({\n inputs: this.inputs,\n outputs: this.outputs[0],\n name: this.name + \"_model\"\n });\n this.model.trainable = this.trainable;\n this.supportsMasking = this.model.supportsMasking;\n this.inputLayers = this.model.inputLayers;\n this.inputLayersNodeIndices = this.model.inputLayersNodeIndices;\n this.inputLayersTensorIndices = this.model.inputLayersTensorIndices;\n this.outputLayers = this.model.outputLayers;\n this.outputLayersNodeIndices = this.model.outputLayersNodeIndices;\n this.outputLayersTensorIndices = this.model.outputLayersTensorIndices;\n this.nodesByDepth = this.model.nodesByDepth;\n this.containerNodes = this.model.containerNodes;\n this.outputNames = this.model.outputNames;\n this.inputNames = this.model.inputNames;\n this.built = true;\n }\n countParams() {\n if (!this.built) {\n this.build();\n }\n return super.countParams();\n }\n summary(lineLength, positions, printFn = console.log) {\n if (!this.built) {\n this.build();\n }\n super.summary(lineLength, positions, printFn);\n }\n setWeights(weights) {\n if (this.model == null) {\n this.build();\n }\n this.model.setWeights(weights);\n }\n evaluate(x, y, args = {}) {\n if (!this.built) {\n throw new RuntimeError(\"The model needs to be compiled before being used.\");\n }\n return this.model.evaluate(x, y, args);\n }\n async evaluateDataset(dataset, args) {\n if (!this.built) {\n throw new RuntimeError(\"The model needs to be compiled before being used.\");\n }\n return this.model.evaluateDataset(dataset, args);\n }\n predict(x, args = {}) {\n if (this.model == null) {\n this.build();\n }\n return this.model.predict(x, args);\n }\n predictOnBatch(x) {\n if (this.model == null) {\n this.build();\n }\n return this.model.predictOnBatch(x);\n }\n compile(args) {\n this.build();\n this.model.compile(args);\n this.optimizer_ = this.model.optimizer;\n this.isOptimizerOwned = this.model.isOptimizerOwned;\n this.loss = this.model.loss;\n this.metrics = this.model.metrics;\n this.metricsTensors = this.model.metricsTensors;\n this.metricsNames = this.model.metricsNames;\n }\n get optimizer() {\n return this.model == null ? void 0 : this.model.optimizer;\n }\n set optimizer(optimizer) {\n this.model.optimizer = optimizer;\n }\n async fit(x, y, args = {}) {\n if (!this.built) {\n throw new RuntimeError(\"The model needs to be compiled before being used.\");\n }\n return this.model.fit(x, y, args);\n }\n async fitDataset(dataset, args) {\n if (!this.built) {\n throw new RuntimeError(\"The model needs to be compiled before being used.\");\n }\n return this.model.fitDataset(dataset, args);\n }\n async trainOnBatch(x, y) {\n return this.model.trainOnBatch(x, y);\n }\n static fromConfig(cls, config, customObjects = {}, fastWeightInit = false) {\n let configArray;\n let extraModelConfig = {};\n if (config instanceof Array) {\n if (!(config[0].className != null) || config[0][\"className\"] === \"Merge\") {\n throw new ValueError(\"Legacy serialization format not supported yet.\");\n }\n configArray = config;\n } else {\n util_exports.assert(config[\"layers\"] != null, () => `When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field.`);\n configArray = config[\"layers\"];\n delete config[\"layers\"];\n extraModelConfig = config;\n }\n const model2 = new cls(extraModelConfig);\n if (!(model2 instanceof Sequential)) {\n throw new NotImplementedError(`Sequential.fromConfig called on non-Sequential input: ${model2}`);\n }\n for (const conf of configArray) {\n const customObjects2 = void 0;\n const layer = deserialize(conf, customObjects2, fastWeightInit);\n if (fastWeightInit) {\n layer.setFastWeightInitDuringBuild(true);\n }\n model2.add(layer);\n }\n return model2;\n }\n set stopTraining(stop) {\n if (this.model == null) {\n throw new ValueError(\"Cannot set the stopTraining property of a sequential model before it is compiled.\");\n }\n this.model.stopTraining = stop;\n }\n get stopTraining() {\n if (this.model == null) {\n throw new ValueError(\"Cannot get the stopTraining property of a sequential model before it is compiled.\");\n }\n return this.model.stopTraining;\n }\n getConfig() {\n const layers = [];\n for (const layer of this.layers) {\n const dict = {};\n dict[\"className\"] = layer.getClassName();\n dict[\"config\"] = layer.getConfig();\n layers.push(dict);\n }\n return { name: this.name, layers };\n }\n};\nSequential.className = \"Sequential\";\nserialization_exports.registerClass(Sequential);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports.js\nfunction model(args) {\n return new LayersModel(args);\n}\nfunction sequential(config) {\n return new Sequential(config);\n}\nfunction loadLayersModel(pathOrIOHandler, options) {\n if (options == null) {\n options = {};\n }\n return loadLayersModelInternal(pathOrIOHandler, options);\n}\nfunction input(config) {\n return Input(config);\n}\nfunction registerCallbackConstructor(verbosityLevel, callbackConstructor) {\n CallbackConstructorRegistry.registerCallbackConstructor(verbosityLevel, callbackConstructor);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/activations.js\nvar Activation = class extends serialization_exports.Serializable {\n getConfig() {\n return {};\n }\n};\nvar Elu2 = class extends Activation {\n apply(x, alpha = 1) {\n return elu2(x, alpha);\n }\n};\nElu2.className = \"elu\";\nserialization_exports.registerClass(Elu2);\nvar Selu2 = class extends Activation {\n apply(x) {\n return selu(x);\n }\n};\nSelu2.className = \"selu\";\nserialization_exports.registerClass(Selu2);\nvar Relu2 = class extends Activation {\n apply(x) {\n return relu(x);\n }\n};\nRelu2.className = \"relu\";\nserialization_exports.registerClass(Relu2);\nvar Relu62 = class extends Activation {\n apply(x) {\n return tidy(() => minimum(6, relu(x)));\n }\n};\nRelu62.className = \"relu6\";\nserialization_exports.registerClass(Relu62);\nvar Linear = class extends Activation {\n apply(x) {\n return x;\n }\n};\nLinear.className = \"linear\";\nserialization_exports.registerClass(Linear);\nvar Sigmoid2 = class extends Activation {\n apply(x) {\n return sigmoid(x);\n }\n};\nSigmoid2.className = \"sigmoid\";\nserialization_exports.registerClass(Sigmoid2);\nvar HardSigmoid = class extends Activation {\n apply(x) {\n return hardSigmoid(x);\n }\n};\nHardSigmoid.className = \"hardSigmoid\";\nserialization_exports.registerClass(HardSigmoid);\nvar Softplus2 = class extends Activation {\n apply(x) {\n return softplus(x);\n }\n};\nSoftplus2.className = \"softplus\";\nserialization_exports.registerClass(Softplus2);\nvar Softsign = class extends Activation {\n apply(x) {\n return softsign(x);\n }\n};\nSoftsign.className = \"softsign\";\nserialization_exports.registerClass(Softsign);\nvar Tanh2 = class extends Activation {\n apply(x) {\n return tanh2(x);\n }\n};\nTanh2.className = \"tanh\";\nserialization_exports.registerClass(Tanh2);\nvar Softmax2 = class extends Activation {\n apply(x, axis = -1) {\n return softmax(x, axis);\n }\n};\nSoftmax2.className = \"softmax\";\nserialization_exports.registerClass(Softmax2);\nvar LogSoftmax2 = class extends Activation {\n apply(x, axis = -1) {\n return logSoftmax(x, axis);\n }\n};\nLogSoftmax2.className = \"logSoftmax\";\nserialization_exports.registerClass(LogSoftmax2);\nvar Swish = class extends Activation {\n apply(x, alpha = 1) {\n return tidy(() => mul(sigmoid(mul(x, alpha)), x));\n }\n};\nSwish.className = \"swish\";\nserialization_exports.registerClass(Swish);\nvar Mish = class extends Activation {\n apply(x) {\n return tidy(() => mul(x, tanh2(softplus(x))));\n }\n};\nMish.className = \"mish\";\nserialization_exports.registerClass(Mish);\nfunction serializeActivation(activation2) {\n return activation2.getClassName();\n}\nfunction deserializeActivation(config, customObjects = {}) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"activation\");\n}\nfunction getActivation(identifier) {\n if (identifier == null) {\n const config = {};\n config[\"className\"] = \"linear\";\n config[\"config\"] = {};\n return deserializeActivation(config);\n }\n if (typeof identifier === \"string\") {\n const config = {};\n config[\"className\"] = identifier;\n config[\"config\"] = {};\n return deserializeActivation(config);\n } else if (identifier instanceof Activation) {\n return identifier;\n } else {\n return deserializeActivation(identifier);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/regularizers.js\nfunction assertObjectArgs(args) {\n if (args != null && typeof args !== \"object\") {\n throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${args}`);\n }\n}\nvar Regularizer = class extends serialization_exports.Serializable {\n};\nvar L1L2 = class extends Regularizer {\n constructor(args) {\n super();\n assertObjectArgs(args);\n this.l1 = args == null || args.l1 == null ? 0.01 : args.l1;\n this.l2 = args == null || args.l2 == null ? 0.01 : args.l2;\n this.hasL1 = this.l1 !== 0;\n this.hasL2 = this.l2 !== 0;\n }\n apply(x) {\n return tidy(() => {\n let regularization = zeros([1]);\n if (this.hasL1) {\n regularization = add2(regularization, sum2(mul(this.l1, abs(x))));\n }\n if (this.hasL2) {\n regularization = add2(regularization, sum2(mul(this.l2, square2(x))));\n }\n return reshape(regularization, []);\n });\n }\n getConfig() {\n return { \"l1\": this.l1, \"l2\": this.l2 };\n }\n static fromConfig(cls, config) {\n return new cls({ l1: config[\"l1\"], l2: config[\"l2\"] });\n }\n};\nL1L2.className = \"L1L2\";\nserialization_exports.registerClass(L1L2);\nfunction l1(args) {\n assertObjectArgs(args);\n return new L1L2({ l1: args != null ? args.l1 : null, l2: 0 });\n}\nfunction l2(args) {\n assertObjectArgs(args);\n return new L1L2({ l2: args != null ? args.l2 : null, l1: 0 });\n}\nvar REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP = {\n \"l1l2\": \"L1L2\"\n};\nfunction serializeRegularizer(constraint) {\n return serializeKerasObject(constraint);\n}\nfunction deserializeRegularizer(config, customObjects = {}) {\n return deserializeKerasObject(config, serialization_exports.SerializationMap.getMap().classNameMap, customObjects, \"regularizer\");\n}\nfunction getRegularizer(identifier) {\n if (identifier == null) {\n return null;\n }\n if (typeof identifier === \"string\") {\n const className = identifier in REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP ? REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier] : identifier;\n const config = { className, config: {} };\n return deserializeRegularizer(config);\n } else if (identifier instanceof Regularizer) {\n return identifier;\n } else {\n return deserializeRegularizer(identifier);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/advanced_activations.js\nvar ReLU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.supportsMasking = true;\n if (args != null) {\n this.maxValue = args.maxValue;\n }\n }\n call(inputs, kwargs) {\n inputs = getExactlyOneTensor(inputs);\n let output = relu(inputs);\n if (this.maxValue != null) {\n output = clipByValue(output, 0, this.maxValue);\n }\n return output;\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { maxValue: this.maxValue };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nReLU.className = \"ReLU\";\nserialization_exports.registerClass(ReLU);\nvar LeakyReLU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_ALPHA = 0.3;\n if (args == null) {\n args = {};\n }\n this.alpha = args.alpha == null ? this.DEFAULT_ALPHA : args.alpha;\n }\n call(inputs, kwargs) {\n const x = getExactlyOneTensor(inputs);\n return leakyRelu(x, this.alpha);\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { alpha: this.alpha };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nLeakyReLU.className = \"LeakyReLU\";\nserialization_exports.registerClass(LeakyReLU);\nvar PReLU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_ALPHA_INITIALIZER = \"zeros\";\n if (args == null) {\n args = {};\n }\n this.supportsMasking = true;\n this.alphaInitializer = getInitializer(args.alphaInitializer || this.DEFAULT_ALPHA_INITIALIZER);\n this.alphaRegularizer = getRegularizer(args.alphaRegularizer);\n this.alphaConstraint = getConstraint(args.alphaConstraint);\n if (args.sharedAxes == null) {\n this.sharedAxes = null;\n } else if (Array.isArray(args.sharedAxes)) {\n this.sharedAxes = args.sharedAxes;\n } else if (typeof args.sharedAxes === \"number\") {\n this.sharedAxes = [args.sharedAxes];\n } else {\n throw new ValueError(`Expected sharedAxes to be a number or an array of numbers, but got ${args.sharedAxes}`);\n }\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const paramShape = inputShape.slice(1);\n if (this.sharedAxes != null) {\n for (const i2 of this.sharedAxes) {\n paramShape[i2 - 1] = 1;\n }\n }\n this.alpha = this.addWeight(\"alpha\", paramShape, \"float32\", this.alphaInitializer, this.alphaRegularizer, true, this.alphaConstraint);\n const axes = {};\n if (this.sharedAxes != null) {\n for (let i2 = 1; i2 < inputShape.length; ++i2) {\n axes[i2] = inputShape[i2];\n }\n }\n this.inputSpec = [new InputSpec({\n ndim: inputShape.length,\n axes\n })];\n this.built = true;\n }\n call(inputs, kwargs) {\n inputs = getExactlyOneTensor(inputs);\n return prelu(inputs, this.alpha.read());\n }\n getConfig() {\n const config = {\n alphaInitializer: serializeInitializer(this.alphaInitializer),\n alphaRegularizer: serializeRegularizer(this.alphaRegularizer),\n alphaConstraint: serializeConstraint(this.alphaConstraint),\n sharedAxes: this.sharedAxes\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nPReLU.className = \"PReLU\";\nserialization_exports.registerClass(PReLU);\nvar ELU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_ALPHA = 1;\n if (args == null) {\n args = {};\n }\n if (args.alpha != null && args.alpha !== this.DEFAULT_ALPHA) {\n throw new NotImplementedError(`Non-default alpha value (${args.alpha}) is not supported by the ELU layer yet.`);\n }\n this.alpha = args.alpha == null ? this.DEFAULT_ALPHA : args.alpha;\n }\n call(inputs, kwargs) {\n const x = getExactlyOneTensor(inputs);\n return elu(x);\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { alpha: this.alpha };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nELU.className = \"ELU\";\nserialization_exports.registerClass(ELU);\nvar ThresholdedReLU = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_THETA = 1;\n if (args == null) {\n args = {};\n }\n this.theta = args.theta == null ? this.DEFAULT_THETA : args.theta;\n }\n call(inputs, kwargs) {\n const x = getExactlyOneTensor(inputs);\n return mul(x, cast(greater(x, this.theta), \"float32\"));\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { theta: this.theta };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nThresholdedReLU.className = \"ThresholdedReLU\";\nserialization_exports.registerClass(ThresholdedReLU);\nvar Softmax3 = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.DEFAULT_AXIS = 1;\n if (args == null) {\n args = {};\n }\n this.softmax = new Softmax2().apply;\n this.axis = args.axis == null ? this.DEFAULT_AXIS : args.axis;\n }\n call(inputs, kwargs) {\n const x = getExactlyOneTensor(inputs);\n return this.softmax(x, this.axis);\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const config = { axis: this.axis };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nSoftmax3.className = \"Softmax\";\nserialization_exports.registerClass(Softmax3);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/utils/conv_utils.js\nfunction normalizeArray(value, n2, name) {\n if (typeof value === \"number\") {\n return pyListRepeat(value, n2);\n } else {\n if (value.length !== n2) {\n throw new ValueError(`The ${name} argument must be an integer or tuple of ${n2} integers. Received: ${value.length} elements.`);\n }\n for (let i2 = 0; i2 < n2; ++i2) {\n const singleValue = value[i2];\n if (!isInteger(singleValue)) {\n throw new ValueError(`The ${name} argument must be an integer or tuple of ${n2} integers. Received: ${JSON.stringify(value)} including a non-integer number ${singleValue}`);\n }\n }\n return value;\n }\n}\nfunction convOutputLength(inputLength, filterSize, padding, stride, dilation = 1) {\n if (inputLength == null) {\n return inputLength;\n }\n const dilatedFilterSize = filterSize + (filterSize - 1) * (dilation - 1);\n let outputLength;\n if (padding === \"same\") {\n outputLength = inputLength;\n } else {\n outputLength = inputLength - dilatedFilterSize + 1;\n }\n return Math.floor((outputLength + stride - 1) / stride);\n}\nfunction deconvLength(dimSize, strideSize, kernelSize, padding) {\n if (dimSize == null) {\n return null;\n }\n if (padding === \"valid\") {\n dimSize = dimSize * strideSize + max2([kernelSize - strideSize, 0]);\n } else if (padding === \"same\") {\n dimSize = dimSize * strideSize;\n } else {\n throw new ValueError(`Unsupport padding mode: ${padding}.`);\n }\n return dimSize;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/convolutional.js\nfunction preprocessConv2DInput(x, dataFormat) {\n return tidy(() => {\n checkDataFormat(dataFormat);\n if (dataFormat === \"channelsFirst\") {\n return transpose(x, [0, 2, 3, 1]);\n } else {\n return x;\n }\n });\n}\nfunction preprocessConv3DInput(x, dataFormat) {\n return tidy(() => {\n checkDataFormat(dataFormat);\n if (dataFormat === \"channelsFirst\") {\n return transpose(x, [0, 2, 3, 4, 1]);\n } else {\n return x;\n }\n });\n}\nfunction conv1dWithBias(x, kernel, bias, strides = 1, padding = \"valid\", dataFormat, dilationRate = 1) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n if (x.shape.length !== 3) {\n throw new ValueError(`The input of a conv1dWithBias operation should be 3, but is ${x.shape.length} instead.`);\n }\n if (kernel.shape.length !== 3) {\n throw new ValueError(`The kernel for a conv1dWithBias operation should be 3, but is ${kernel.shape.length} instead`);\n }\n if (bias != null && bias.shape.length !== 1) {\n throw new ValueError(`The bias for a conv1dWithBias operation should be 1, but is ${kernel.shape.length} instead`);\n }\n if (dataFormat === \"channelsFirst\") {\n x = transpose(x, [0, 2, 1]);\n }\n if (padding === \"causal\") {\n throw new NotImplementedError(\"The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.\");\n }\n let y = conv1d(x, kernel, strides, padding === \"same\" ? \"same\" : \"valid\", \"NWC\", dilationRate);\n if (bias != null) {\n y = biasAdd(y, bias);\n }\n return y;\n });\n}\nfunction conv2dWithBiasActivation(x, kernel, bias, strides = [1, 1], padding = \"valid\", dataFormat, dilationRate, activation2 = null) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n if (x.rank !== 3 && x.rank !== 4) {\n throw new ValueError(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${x.rank}.`);\n }\n if (kernel.rank !== 3 && kernel.rank !== 4) {\n throw new ValueError(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${x.rank}.`);\n }\n let y = preprocessConv2DInput(x, dataFormat);\n if (padding === \"causal\") {\n throw new NotImplementedError(\"The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.\");\n }\n y = fused_ops_exports.conv2d({\n x: y,\n filter: kernel,\n strides,\n pad: padding === \"same\" ? \"same\" : \"valid\",\n dilations: dilationRate,\n dataFormat: \"NHWC\",\n bias,\n activation: activation2\n });\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 3, 1, 2]);\n }\n return y;\n });\n}\nfunction conv3dWithBias(x, kernel, bias, strides = [1, 1, 1], padding = \"valid\", dataFormat, dilationRate) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n if (x.rank !== 4 && x.rank !== 5) {\n throw new ValueError(`conv3dWithBias expects input to be of rank 4 or 5, but received ${x.rank}.`);\n }\n if (kernel.rank !== 4 && kernel.rank !== 5) {\n throw new ValueError(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${x.rank}.`);\n }\n let y = preprocessConv3DInput(x, dataFormat);\n if (padding === \"causal\") {\n throw new NotImplementedError(\"The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.\");\n }\n y = conv3d(y, kernel, strides, padding === \"same\" ? \"same\" : \"valid\", \"NDHWC\", dilationRate);\n if (bias != null) {\n y = biasAdd(y, bias);\n }\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 4, 1, 2, 3]);\n }\n return y;\n });\n}\nvar BaseConv = class extends Layer {\n constructor(rank, args) {\n super(args);\n this.bias = null;\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n BaseConv.verifyArgs(args);\n this.rank = rank;\n assertPositiveInteger(this.rank, \"rank\");\n if (this.rank !== 1 && this.rank !== 2 && this.rank !== 3) {\n throw new NotImplementedError(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);\n }\n this.kernelSize = normalizeArray(args.kernelSize, rank, \"kernelSize\");\n this.strides = normalizeArray(args.strides == null ? 1 : args.strides, rank, \"strides\");\n this.padding = args.padding == null ? \"valid\" : args.padding;\n checkPaddingMode(this.padding);\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n this.activation = getActivation(args.activation);\n this.useBias = args.useBias == null ? true : args.useBias;\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.activityRegularizer = getRegularizer(args.activityRegularizer);\n this.dilationRate = normalizeArray(args.dilationRate == null ? 1 : args.dilationRate, rank, \"dilationRate\");\n if (this.rank === 1 && (Array.isArray(this.dilationRate) && this.dilationRate.length !== 1)) {\n throw new ValueError(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);\n } else if (this.rank === 2) {\n if (typeof this.dilationRate === \"number\") {\n this.dilationRate = [this.dilationRate, this.dilationRate];\n } else if (this.dilationRate.length !== 2) {\n throw new ValueError(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`);\n }\n } else if (this.rank === 3) {\n if (typeof this.dilationRate === \"number\") {\n this.dilationRate = [this.dilationRate, this.dilationRate, this.dilationRate];\n } else if (this.dilationRate.length !== 3) {\n throw new ValueError(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`);\n }\n }\n }\n static verifyArgs(args) {\n assert2(\"kernelSize\" in args, `required key 'kernelSize' not in config`);\n if (typeof args.kernelSize !== \"number\" && !checkArrayTypeAndLength(args.kernelSize, \"number\", 1, 3)) {\n throw new ValueError(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(args.kernelSize)}.`);\n }\n }\n getConfig() {\n const config = {\n kernelSize: this.kernelSize,\n strides: this.strides,\n padding: this.padding,\n dataFormat: this.dataFormat,\n dilationRate: this.dilationRate,\n activation: serializeActivation(this.activation),\n useBias: this.useBias,\n biasInitializer: serializeInitializer(this.biasInitializer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n biasConstraint: serializeConstraint(this.biasConstraint)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar Conv = class extends BaseConv {\n constructor(rank, args) {\n super(rank, args);\n this.kernel = null;\n Conv.verifyArgs(args);\n this.filters = args.filters;\n assertPositiveInteger(this.filters, \"filters\");\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null) {\n throw new ValueError(`The channel dimension of the input should be defined. Found ${inputShape[channelAxis]}`);\n }\n const inputDim = inputShape[channelAxis];\n const kernelShape = this.kernelSize.concat([inputDim, this.filters]);\n this.kernel = this.addWeight(\"kernel\", kernelShape, null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.filters], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n this.inputSpec = [{ ndim: this.rank + 2, axes: { [channelAxis]: inputDim } }];\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n let outputs;\n const biasValue = this.bias == null ? null : this.bias.read();\n const fusedActivationName = mapActivationToFusedKernel(this.activation.getClassName());\n if (fusedActivationName != null && this.rank === 2) {\n outputs = conv2dWithBiasActivation(inputs, this.kernel.read(), biasValue, this.strides, this.padding, this.dataFormat, this.dilationRate, fusedActivationName);\n } else {\n if (this.rank === 1) {\n outputs = conv1dWithBias(inputs, this.kernel.read(), biasValue, this.strides[0], this.padding, this.dataFormat, this.dilationRate[0]);\n } else if (this.rank === 2) {\n outputs = conv2dWithBiasActivation(inputs, this.kernel.read(), biasValue, this.strides, this.padding, this.dataFormat, this.dilationRate);\n } else if (this.rank === 3) {\n outputs = conv3dWithBias(inputs, this.kernel.read(), biasValue, this.strides, this.padding, this.dataFormat, this.dilationRate);\n } else {\n throw new NotImplementedError(\"convolutions greater than 3D are not implemented yet.\");\n }\n if (this.activation != null) {\n outputs = this.activation.apply(outputs);\n }\n }\n return outputs;\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const newSpace = [];\n const space = this.dataFormat === \"channelsLast\" ? inputShape.slice(1, inputShape.length - 1) : inputShape.slice(2);\n for (let i2 = 0; i2 < space.length; ++i2) {\n const newDim = convOutputLength(space[i2], this.kernelSize[i2], this.padding, this.strides[i2], typeof this.dilationRate === \"number\" ? this.dilationRate : this.dilationRate[i2]);\n newSpace.push(newDim);\n }\n let outputShape = [inputShape[0]];\n if (this.dataFormat === \"channelsLast\") {\n outputShape = outputShape.concat(newSpace);\n outputShape.push(this.filters);\n } else {\n outputShape.push(this.filters);\n outputShape = outputShape.concat(newSpace);\n }\n return outputShape;\n }\n getConfig() {\n const config = {\n filters: this.filters,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n static verifyArgs(args) {\n if (!(\"filters\" in args) || typeof args.filters !== \"number\" || args.filters < 1) {\n throw new ValueError(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(args.filters)}`);\n }\n }\n};\nvar Conv2D2 = class extends Conv {\n constructor(args) {\n super(2, args);\n Conv2D2.verifyArgs(args);\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"rank\"];\n return config;\n }\n static verifyArgs(args) {\n if (typeof args.kernelSize !== \"number\" && !checkArrayTypeAndLength(args.kernelSize, \"number\", 1, 2)) {\n throw new ValueError(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(args.kernelSize)}.`);\n }\n }\n};\nConv2D2.className = \"Conv2D\";\nserialization_exports.registerClass(Conv2D2);\nvar Conv3D2 = class extends Conv {\n constructor(args) {\n super(3, args);\n Conv3D2.verifyArgs(args);\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"rank\"];\n return config;\n }\n static verifyArgs(args) {\n if (typeof args.kernelSize !== \"number\") {\n if (!(Array.isArray(args.kernelSize) && (args.kernelSize.length === 1 || args.kernelSize.length === 3))) {\n throw new ValueError(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(args.kernelSize)}.`);\n }\n }\n }\n};\nConv3D2.className = \"Conv3D\";\nserialization_exports.registerClass(Conv3D2);\nvar Conv2DTranspose = class extends Conv2D2 {\n constructor(args) {\n super(args);\n this.inputSpec = [new InputSpec({ ndim: 4 })];\n if (this.padding !== \"same\" && this.padding !== \"valid\") {\n throw new ValueError(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`);\n }\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length !== 4) {\n throw new ValueError(\"Input should have rank 4; Received input shape: \" + JSON.stringify(inputShape));\n }\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null) {\n throw new ValueError(\"The channel dimension of the inputs should be defined. Found `None`.\");\n }\n const inputDim = inputShape[channelAxis];\n const kernelShape = this.kernelSize.concat([this.filters, inputDim]);\n this.kernel = this.addWeight(\"kernel\", kernelShape, \"float32\", this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.filters], \"float32\", this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n this.inputSpec = [new InputSpec({ ndim: 4, axes: { [channelAxis]: inputDim } })];\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n let input2 = getExactlyOneTensor(inputs);\n if (input2.shape.length !== 4) {\n throw new ValueError(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${input2.shape.length}`);\n }\n const inputShape = input2.shape;\n const batchSize = inputShape[0];\n let hAxis;\n let wAxis;\n if (this.dataFormat === \"channelsFirst\") {\n hAxis = 2;\n wAxis = 3;\n } else {\n hAxis = 1;\n wAxis = 2;\n }\n const height = inputShape[hAxis];\n const width = inputShape[wAxis];\n const kernelH = this.kernelSize[0];\n const kernelW = this.kernelSize[1];\n const strideH = this.strides[0];\n const strideW = this.strides[1];\n const outHeight = deconvLength(height, strideH, kernelH, this.padding);\n const outWidth = deconvLength(width, strideW, kernelW, this.padding);\n const outputShape = [batchSize, outHeight, outWidth, this.filters];\n if (this.dataFormat !== \"channelsLast\") {\n input2 = transpose(input2, [0, 2, 3, 1]);\n }\n let outputs = conv2dTranspose(input2, this.kernel.read(), outputShape, this.strides, this.padding);\n if (this.dataFormat !== \"channelsLast\") {\n outputs = transpose(outputs, [0, 3, 1, 2]);\n }\n if (this.bias != null) {\n outputs = biasAdd(outputs, this.bias.read(), this.dataFormat);\n }\n if (this.activation != null) {\n outputs = this.activation.apply(outputs);\n }\n return outputs;\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const outputShape = inputShape.slice();\n let channelAxis;\n let heightAxis;\n let widthAxis;\n if (this.dataFormat === \"channelsFirst\") {\n channelAxis = 1;\n heightAxis = 2;\n widthAxis = 3;\n } else {\n channelAxis = 3;\n heightAxis = 1;\n widthAxis = 2;\n }\n const kernelH = this.kernelSize[0];\n const kernelW = this.kernelSize[1];\n const strideH = this.strides[0];\n const strideW = this.strides[1];\n outputShape[channelAxis] = this.filters;\n outputShape[heightAxis] = deconvLength(outputShape[heightAxis], strideH, kernelH, this.padding);\n outputShape[widthAxis] = deconvLength(outputShape[widthAxis], strideW, kernelW, this.padding);\n return outputShape;\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"dilationRate\"];\n return config;\n }\n};\nConv2DTranspose.className = \"Conv2DTranspose\";\nserialization_exports.registerClass(Conv2DTranspose);\nvar Conv3DTranspose = class extends Conv3D2 {\n constructor(args) {\n super(args);\n this.inputSpec = [new InputSpec({ ndim: 5 })];\n if (this.padding !== \"same\" && this.padding !== \"valid\") {\n throw new ValueError(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`);\n }\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length !== 5) {\n throw new ValueError(\"Input should have rank 5; Received input shape: \" + JSON.stringify(inputShape));\n }\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null) {\n throw new ValueError(\"The channel dimension of the inputs should be defined. Found `None`.\");\n }\n const inputDim = inputShape[channelAxis];\n const kernelShape = this.kernelSize.concat([this.filters, inputDim]);\n this.kernel = this.addWeight(\"kernel\", kernelShape, \"float32\", this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.filters], \"float32\", this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n this.inputSpec = [new InputSpec({ ndim: 5, axes: { [channelAxis]: inputDim } })];\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n let input2 = getExactlyOneTensor(inputs);\n if (input2.shape.length !== 5) {\n throw new ValueError(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${input2.shape.length}`);\n }\n const inputShape = input2.shape;\n const batchSize = inputShape[0];\n let hAxis;\n let wAxis;\n let dAxis;\n if (this.dataFormat === \"channelsFirst\") {\n dAxis = 2;\n hAxis = 3;\n wAxis = 4;\n } else {\n dAxis = 1;\n hAxis = 2;\n wAxis = 3;\n }\n const depth = inputShape[dAxis];\n const height = inputShape[hAxis];\n const width = inputShape[wAxis];\n const kernelD = this.kernelSize[0];\n const kernelH = this.kernelSize[1];\n const kernelW = this.kernelSize[2];\n const strideD = this.strides[0];\n const strideH = this.strides[1];\n const strideW = this.strides[2];\n const outDepth = deconvLength(depth, strideD, kernelD, this.padding);\n const outHeight = deconvLength(height, strideH, kernelH, this.padding);\n const outWidth = deconvLength(width, strideW, kernelW, this.padding);\n const outputShape = [batchSize, outDepth, outHeight, outWidth, this.filters];\n if (this.dataFormat !== \"channelsLast\") {\n input2 = transpose(input2, [0, 2, 3, 4, 1]);\n }\n let outputs = conv3dTranspose(input2, this.kernel.read(), outputShape, this.strides, this.padding);\n if (this.dataFormat !== \"channelsLast\") {\n outputs = transpose(outputs, [0, 4, 1, 2, 3]);\n }\n if (this.bias !== null) {\n outputs = biasAdd(outputs, this.bias.read(), this.dataFormat);\n }\n if (this.activation !== null) {\n outputs = this.activation.apply(outputs);\n }\n return outputs;\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const outputShape = inputShape.slice();\n let channelAxis;\n let depthAxis;\n let heightAxis;\n let widthAxis;\n if (this.dataFormat === \"channelsFirst\") {\n channelAxis = 1;\n depthAxis = 2;\n heightAxis = 3;\n widthAxis = 4;\n } else {\n channelAxis = 4;\n depthAxis = 1;\n heightAxis = 2;\n widthAxis = 3;\n }\n const kernelD = this.kernelSize[0];\n const kernelH = this.kernelSize[1];\n const kernelW = this.kernelSize[2];\n const strideD = this.strides[0];\n const strideH = this.strides[1];\n const strideW = this.strides[2];\n outputShape[channelAxis] = this.filters;\n outputShape[depthAxis] = deconvLength(outputShape[depthAxis], strideD, kernelD, this.padding);\n outputShape[heightAxis] = deconvLength(outputShape[heightAxis], strideH, kernelH, this.padding);\n outputShape[widthAxis] = deconvLength(outputShape[widthAxis], strideW, kernelW, this.padding);\n return outputShape;\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"dilationRate\"];\n return config;\n }\n};\nConv3DTranspose.className = \"Conv3DTranspose\";\nserialization_exports.registerClass(Conv3DTranspose);\nvar SeparableConv = class extends Conv {\n constructor(rank, config) {\n super(rank, config);\n this.DEFAULT_DEPTHWISE_INITIALIZER = \"glorotUniform\";\n this.DEFAULT_POINTWISE_INITIALIZER = \"glorotUniform\";\n this.depthwiseKernel = null;\n this.pointwiseKernel = null;\n if (config.filters == null) {\n throw new ValueError(\"The `filters` configuration field is required by SeparableConv, but is unspecified.\");\n }\n if (config.kernelInitializer != null || config.kernelRegularizer != null || config.kernelConstraint != null) {\n throw new ValueError(\"Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.\");\n }\n if (config.padding != null && config.padding !== \"same\" && config.padding !== \"valid\") {\n throw new ValueError(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(config.padding)}`);\n }\n this.depthMultiplier = config.depthMultiplier == null ? 1 : config.depthMultiplier;\n this.depthwiseInitializer = getInitializer(config.depthwiseInitializer || this.DEFAULT_DEPTHWISE_INITIALIZER);\n this.depthwiseRegularizer = getRegularizer(config.depthwiseRegularizer);\n this.depthwiseConstraint = getConstraint(config.depthwiseConstraint);\n this.pointwiseInitializer = getInitializer(config.depthwiseInitializer || this.DEFAULT_POINTWISE_INITIALIZER);\n this.pointwiseRegularizer = getRegularizer(config.pointwiseRegularizer);\n this.pointwiseConstraint = getConstraint(config.pointwiseConstraint);\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length < this.rank + 2) {\n throw new ValueError(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank + 2}, but received input shape: ${JSON.stringify(inputShape)}`);\n }\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null || inputShape[channelAxis] < 0) {\n throw new ValueError(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(inputShape[channelAxis])}`);\n }\n const inputDim = inputShape[channelAxis];\n const depthwiseKernelShape = this.kernelSize.concat([inputDim, this.depthMultiplier]);\n const pointwiseKernelShape = [];\n for (let i2 = 0; i2 < this.rank; ++i2) {\n pointwiseKernelShape.push(1);\n }\n pointwiseKernelShape.push(inputDim * this.depthMultiplier, this.filters);\n const trainable = true;\n this.depthwiseKernel = this.addWeight(\"depthwise_kernel\", depthwiseKernelShape, \"float32\", this.depthwiseInitializer, this.depthwiseRegularizer, trainable, this.depthwiseConstraint);\n this.pointwiseKernel = this.addWeight(\"pointwise_kernel\", pointwiseKernelShape, \"float32\", this.pointwiseInitializer, this.pointwiseRegularizer, trainable, this.pointwiseConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.filters], \"float32\", this.biasInitializer, this.biasRegularizer, trainable, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.inputSpec = [new InputSpec({ ndim: this.rank + 2, axes: { [channelAxis]: inputDim } })];\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n let output;\n if (this.rank === 1) {\n throw new NotImplementedError(\"1D separable convolution is not implemented yet.\");\n } else if (this.rank === 2) {\n if (this.dataFormat === \"channelsFirst\") {\n inputs = transpose(inputs, [0, 2, 3, 1]);\n }\n output = separableConv2d(inputs, this.depthwiseKernel.read(), this.pointwiseKernel.read(), this.strides, this.padding, this.dilationRate, \"NHWC\");\n }\n if (this.useBias) {\n output = biasAdd(output, this.bias.read(), this.dataFormat);\n }\n if (this.activation != null) {\n output = this.activation.apply(output);\n }\n if (this.dataFormat === \"channelsFirst\") {\n output = transpose(output, [0, 3, 1, 2]);\n }\n return output;\n });\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"rank\"];\n delete config[\"kernelInitializer\"];\n delete config[\"kernelRegularizer\"];\n delete config[\"kernelConstraint\"];\n config[\"depthwiseInitializer\"] = serializeInitializer(this.depthwiseInitializer);\n config[\"pointwiseInitializer\"] = serializeInitializer(this.pointwiseInitializer);\n config[\"depthwiseRegularizer\"] = serializeRegularizer(this.depthwiseRegularizer);\n config[\"pointwiseRegularizer\"] = serializeRegularizer(this.pointwiseRegularizer);\n config[\"depthwiseConstraint\"] = serializeConstraint(this.depthwiseConstraint);\n config[\"pointwiseConstraint\"] = serializeConstraint(this.pointwiseConstraint);\n return config;\n }\n};\nSeparableConv.className = \"SeparableConv\";\nvar SeparableConv2D = class extends SeparableConv {\n constructor(args) {\n super(2, args);\n }\n};\nSeparableConv2D.className = \"SeparableConv2D\";\nserialization_exports.registerClass(SeparableConv2D);\nvar Conv1D = class extends Conv {\n constructor(args) {\n super(1, args);\n Conv1D.verifyArgs(args);\n this.inputSpec = [{ ndim: 3 }];\n }\n getConfig() {\n const config = super.getConfig();\n delete config[\"rank\"];\n delete config[\"dataFormat\"];\n return config;\n }\n static verifyArgs(args) {\n if (typeof args.kernelSize !== \"number\" && !checkArrayTypeAndLength(args.kernelSize, \"number\", 1, 1)) {\n throw new ValueError(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(args.kernelSize)}.`);\n }\n }\n};\nConv1D.className = \"Conv1D\";\nserialization_exports.registerClass(Conv1D);\nvar Cropping2D = class extends Layer {\n constructor(args) {\n super(args);\n if (typeof args.cropping === \"number\") {\n this.cropping = [[args.cropping, args.cropping], [args.cropping, args.cropping]];\n } else if (typeof args.cropping[0] === \"number\") {\n this.cropping = [\n [args.cropping[0], args.cropping[0]],\n [args.cropping[1], args.cropping[1]]\n ];\n } else {\n this.cropping = args.cropping;\n }\n this.dataFormat = args.dataFormat === void 0 ? \"channelsLast\" : args.dataFormat;\n this.inputSpec = [{ ndim: 4 }];\n }\n computeOutputShape(inputShape) {\n if (this.dataFormat === \"channelsFirst\") {\n return [\n inputShape[0],\n inputShape[1],\n inputShape[2] - this.cropping[0][0] - this.cropping[0][1],\n inputShape[3] - this.cropping[1][0] - this.cropping[1][1]\n ];\n } else {\n return [\n inputShape[0],\n inputShape[1] - this.cropping[0][0] - this.cropping[0][1],\n inputShape[2] - this.cropping[1][0] - this.cropping[1][1],\n inputShape[3]\n ];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n if (this.dataFormat === \"channelsLast\") {\n const hSliced = sliceAlongAxis(inputs, this.cropping[0][0], inputs.shape[1] - this.cropping[0][0] - this.cropping[0][1], 2);\n return sliceAlongAxis(hSliced, this.cropping[1][0], inputs.shape[2] - this.cropping[1][1] - this.cropping[1][0], 3);\n } else {\n const hSliced = sliceAlongAxis(inputs, this.cropping[0][0], inputs.shape[2] - this.cropping[0][0] - this.cropping[0][1], 3);\n return sliceAlongAxis(hSliced, this.cropping[1][0], inputs.shape[3] - this.cropping[1][1] - this.cropping[1][0], 4);\n }\n });\n }\n getConfig() {\n const config = { cropping: this.cropping, dataFormat: this.dataFormat };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nCropping2D.className = \"Cropping2D\";\nserialization_exports.registerClass(Cropping2D);\nvar UpSampling2D = class extends Layer {\n constructor(args) {\n super(args);\n this.DEFAULT_SIZE = [2, 2];\n this.inputSpec = [{ ndim: 4 }];\n this.size = args.size == null ? this.DEFAULT_SIZE : args.size;\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n this.interpolation = args.interpolation == null ? \"nearest\" : args.interpolation;\n checkInterpolationFormat(this.interpolation);\n }\n computeOutputShape(inputShape) {\n if (this.dataFormat === \"channelsFirst\") {\n const height = inputShape[2] == null ? null : this.size[0] * inputShape[2];\n const width = inputShape[3] == null ? null : this.size[1] * inputShape[3];\n return [inputShape[0], inputShape[1], height, width];\n } else {\n const height = inputShape[1] == null ? null : this.size[0] * inputShape[1];\n const width = inputShape[2] == null ? null : this.size[1] * inputShape[2];\n return [inputShape[0], height, width, inputShape[3]];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n let input2 = getExactlyOneTensor(inputs);\n const inputShape = input2.shape;\n if (this.dataFormat === \"channelsFirst\") {\n input2 = transpose(input2, [0, 2, 3, 1]);\n const height = this.size[0] * inputShape[2];\n const width = this.size[1] * inputShape[3];\n const resized = this.interpolation === \"nearest\" ? image.resizeNearestNeighbor(input2, [height, width]) : image.resizeBilinear(input2, [height, width]);\n return transpose(resized, [0, 3, 1, 2]);\n } else {\n const height = this.size[0] * inputShape[1];\n const width = this.size[1] * inputShape[2];\n return this.interpolation === \"nearest\" ? image.resizeNearestNeighbor(input2, [height, width]) : image.resizeBilinear(input2, [height, width]);\n }\n });\n }\n getConfig() {\n const config = {\n size: this.size,\n dataFormat: this.dataFormat,\n interpolation: this.interpolation\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nUpSampling2D.className = \"UpSampling2D\";\nserialization_exports.registerClass(UpSampling2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/convolutional_depthwise.js\nfunction depthwiseConv2d3(x, depthwiseKernel, strides = [1, 1], padding = \"valid\", dataFormat, dilationRate) {\n return tidy(() => {\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n checkDataFormat(dataFormat);\n let y = preprocessConv2DInput(x, dataFormat);\n if (x.rank !== 4) {\n throw new ValueError(`Input for depthwiseConv2d is required to be 4-D, but is instead ${x.rank}-D`);\n }\n if (depthwiseKernel.rank !== 4) {\n throw new ValueError(`depthwiseKernel is required to be 4-D, but is instead ${depthwiseKernel.rank}-D`);\n }\n y = depthwiseConv2d(y, depthwiseKernel, strides, padding === \"same\" ? \"same\" : \"valid\", \"NHWC\", dilationRate);\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 3, 1, 2]);\n }\n return y;\n });\n}\nvar DepthwiseConv2D = class extends BaseConv {\n constructor(args) {\n super(2, args);\n this.depthwiseKernel = null;\n this.depthMultiplier = args.depthMultiplier == null ? 1 : args.depthMultiplier;\n this.depthwiseInitializer = getInitializer(args.depthwiseInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.depthwiseConstraint = getConstraint(args.depthwiseConstraint);\n this.depthwiseRegularizer = getRegularizer(args.depthwiseRegularizer);\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length < 4) {\n throw new ValueError(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(inputShape)}.`);\n }\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : 3;\n if (inputShape[channelAxis] == null || inputShape[channelAxis] < 0) {\n throw new ValueError(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${inputShape[channelAxis]}).`);\n }\n const inputDim = inputShape[channelAxis];\n const depthwiseKernelShape = [\n this.kernelSize[0],\n this.kernelSize[1],\n inputDim,\n this.depthMultiplier\n ];\n this.depthwiseKernel = this.addWeight(\"depthwise_kernel\", depthwiseKernelShape, null, this.depthwiseInitializer, this.depthwiseRegularizer, true, this.depthwiseConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [inputDim * this.depthMultiplier], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n let outputs = depthwiseConv2d3(inputs, this.depthwiseKernel.read(), this.strides, this.padding, this.dataFormat, null);\n if (this.useBias) {\n outputs = biasAdd(outputs, this.bias.read(), this.dataFormat);\n }\n if (this.activation != null) {\n outputs = this.activation.apply(outputs);\n }\n return outputs;\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const rows = this.dataFormat === \"channelsFirst\" ? inputShape[2] : inputShape[1];\n const cols = this.dataFormat === \"channelsFirst\" ? inputShape[3] : inputShape[2];\n const outFilters = this.dataFormat === \"channelsFirst\" ? inputShape[1] * this.depthMultiplier : inputShape[3] * this.depthMultiplier;\n const outRows = convOutputLength(rows, this.kernelSize[0], this.padding, this.strides[0]);\n const outCols = convOutputLength(cols, this.kernelSize[1], this.padding, this.strides[1]);\n if (this.dataFormat === \"channelsFirst\") {\n return [inputShape[0], outFilters, outRows, outCols];\n } else {\n return [inputShape[0], outRows, outCols, outFilters];\n }\n }\n getConfig() {\n const config = super.getConfig();\n config[\"depthMultiplier\"] = this.depthMultiplier;\n config[\"depthwiseInitializer\"] = serializeInitializer(this.depthwiseInitializer);\n config[\"depthwiseRegularizer\"] = serializeRegularizer(this.depthwiseRegularizer);\n config[\"depthwiseConstraint\"] = serializeConstraint(this.depthwiseRegularizer);\n return config;\n }\n};\nDepthwiseConv2D.className = \"DepthwiseConv2D\";\nserialization_exports.registerClass(DepthwiseConv2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/recurrent.js\nfunction standardizeArgs(inputs, initialState, constants, numConstants) {\n if (Array.isArray(inputs)) {\n if (initialState != null || constants != null) {\n throw new ValueError(\"When inputs is an array, neither initialState or constants should be provided\");\n }\n if (numConstants != null) {\n constants = inputs.slice(inputs.length - numConstants, inputs.length);\n inputs = inputs.slice(0, inputs.length - numConstants);\n }\n if (inputs.length > 1) {\n initialState = inputs.slice(1, inputs.length);\n }\n inputs = inputs[0];\n }\n function toListOrNull(x) {\n if (x == null || Array.isArray(x)) {\n return x;\n } else {\n return [x];\n }\n }\n initialState = toListOrNull(initialState);\n constants = toListOrNull(constants);\n return { inputs, initialState, constants };\n}\nfunction rnn(stepFunction, inputs, initialStates, goBackwards = false, mask, constants, unroll = false, needPerStepOutputs = false) {\n return tidy(() => {\n const ndim = inputs.shape.length;\n if (ndim < 3) {\n throw new ValueError(`Input should be at least 3D, but is ${ndim}D.`);\n }\n const axes = [1, 0].concat(range2(2, ndim));\n inputs = transpose(inputs, axes);\n if (constants != null) {\n throw new NotImplementedError(\"The rnn() functoin of the deeplearn.js backend does not support constants yet.\");\n }\n if (unroll) {\n console.warn(\"Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend.\");\n }\n if (mask != null) {\n mask = cast(cast(mask, \"bool\"), \"float32\");\n if (mask.rank === ndim - 1) {\n mask = expandDims(mask, -1);\n }\n mask = transpose(mask, axes);\n }\n if (goBackwards) {\n inputs = reverse(inputs, 0);\n if (mask != null) {\n mask = reverse(mask, 0);\n }\n }\n const perStepOutputs = [];\n let lastOutput;\n let states = initialStates;\n const timeSteps = inputs.shape[0];\n const perStepInputs = unstack(inputs);\n let perStepMasks;\n if (mask != null) {\n perStepMasks = unstack(mask);\n }\n for (let t2 = 0; t2 < timeSteps; ++t2) {\n const currentInput = perStepInputs[t2];\n const stepOutputs = tidy(() => stepFunction(currentInput, states));\n if (mask == null) {\n lastOutput = stepOutputs[0];\n states = stepOutputs[1];\n } else {\n const maskedOutputs = tidy(() => {\n const stepMask = perStepMasks[t2];\n const negStepMask = sub(onesLike(stepMask), stepMask);\n const output = add2(mul(stepOutputs[0], stepMask), mul(states[0], negStepMask));\n const newStates = states.map((state, i2) => {\n return add2(mul(stepOutputs[1][i2], stepMask), mul(state, negStepMask));\n });\n return { output, newStates };\n });\n lastOutput = maskedOutputs.output;\n states = maskedOutputs.newStates;\n }\n if (needPerStepOutputs) {\n perStepOutputs.push(lastOutput);\n }\n }\n let outputs;\n if (needPerStepOutputs) {\n const axis = 1;\n outputs = stack(perStepOutputs, axis);\n }\n return [lastOutput, outputs, states];\n });\n}\nvar RNN = class extends Layer {\n constructor(args) {\n super(args);\n let cell;\n if (args.cell == null) {\n throw new ValueError(\"cell property is missing for the constructor of RNN.\");\n } else if (Array.isArray(args.cell)) {\n cell = new StackedRNNCells({ cells: args.cell });\n } else {\n cell = args.cell;\n }\n if (cell.stateSize == null) {\n throw new ValueError(\"The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).\");\n }\n this.cell = cell;\n this.returnSequences = args.returnSequences == null ? false : args.returnSequences;\n this.returnState = args.returnState == null ? false : args.returnState;\n this.goBackwards = args.goBackwards == null ? false : args.goBackwards;\n this._stateful = args.stateful == null ? false : args.stateful;\n this.unroll = args.unroll == null ? false : args.unroll;\n this.supportsMasking = true;\n this.inputSpec = [new InputSpec({ ndim: 3 })];\n this.stateSpec = null;\n this.states_ = null;\n this.numConstants = null;\n this.keptStates = [];\n }\n getStates() {\n if (this.states_ == null) {\n const numStates = Array.isArray(this.cell.stateSize) ? this.cell.stateSize.length : 1;\n return range2(0, numStates).map((x) => null);\n } else {\n return this.states_;\n }\n }\n setStates(states) {\n this.states_ = states;\n }\n computeOutputShape(inputShape) {\n if (isArrayOfShapes(inputShape)) {\n inputShape = inputShape[0];\n }\n inputShape = inputShape;\n let stateSize = this.cell.stateSize;\n if (!Array.isArray(stateSize)) {\n stateSize = [stateSize];\n }\n const outputDim = stateSize[0];\n let outputShape;\n if (this.returnSequences) {\n outputShape = [inputShape[0], inputShape[1], outputDim];\n } else {\n outputShape = [inputShape[0], outputDim];\n }\n if (this.returnState) {\n const stateShape = [];\n for (const dim of stateSize) {\n stateShape.push([inputShape[0], dim]);\n }\n return [outputShape].concat(stateShape);\n } else {\n return outputShape;\n }\n }\n computeMask(inputs, mask) {\n return tidy(() => {\n if (Array.isArray(mask)) {\n mask = mask[0];\n }\n const outputMask = this.returnSequences ? mask : null;\n if (this.returnState) {\n const stateMask = this.states.map((s2) => null);\n return [outputMask].concat(stateMask);\n } else {\n return outputMask;\n }\n });\n }\n get states() {\n if (this.states_ == null) {\n const numStates = Array.isArray(this.cell.stateSize) ? this.cell.stateSize.length : 1;\n const output = [];\n for (let i2 = 0; i2 < numStates; ++i2) {\n output.push(null);\n }\n return output;\n } else {\n return this.states_;\n }\n }\n set states(s2) {\n this.states_ = s2;\n }\n build(inputShape) {\n const constantShape = null;\n if (this.numConstants != null) {\n throw new NotImplementedError(\"Constants support is not implemented in RNN yet.\");\n }\n if (isArrayOfShapes(inputShape)) {\n inputShape = inputShape[0];\n }\n inputShape = inputShape;\n const batchSize = this.stateful ? inputShape[0] : null;\n const inputDim = inputShape.slice(2);\n this.inputSpec[0] = new InputSpec({ shape: [batchSize, null, ...inputDim] });\n const stepInputShape = [inputShape[0]].concat(inputShape.slice(2));\n if (constantShape != null) {\n throw new NotImplementedError(\"Constants support is not implemented in RNN yet.\");\n } else {\n this.cell.build(stepInputShape);\n }\n let stateSize;\n if (Array.isArray(this.cell.stateSize)) {\n stateSize = this.cell.stateSize;\n } else {\n stateSize = [this.cell.stateSize];\n }\n if (this.stateSpec != null) {\n if (!util_exports.arraysEqual(this.stateSpec.map((spec) => spec.shape[spec.shape.length - 1]), stateSize)) {\n throw new ValueError(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`);\n }\n } else {\n this.stateSpec = stateSize.map((dim) => new InputSpec({ shape: [null, dim] }));\n }\n if (this.stateful) {\n this.resetStates();\n }\n }\n resetStates(states, training = false) {\n tidy(() => {\n if (!this.stateful) {\n throw new AttributeError(\"Cannot call resetStates() on an RNN Layer that is not stateful.\");\n }\n const batchSize = this.inputSpec[0].shape[0];\n if (batchSize == null) {\n throw new ValueError(\"If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \\n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.\");\n }\n if (this.states_ == null) {\n if (Array.isArray(this.cell.stateSize)) {\n this.states_ = this.cell.stateSize.map((dim) => zeros([batchSize, dim]));\n } else {\n this.states_ = [zeros([batchSize, this.cell.stateSize])];\n }\n } else if (states == null) {\n dispose(this.states_);\n if (this.keptStates != null) {\n dispose(this.keptStates);\n this.keptStates = [];\n }\n if (Array.isArray(this.cell.stateSize)) {\n this.states_ = this.cell.stateSize.map((dim) => zeros([batchSize, dim]));\n } else {\n this.states_[0] = zeros([batchSize, this.cell.stateSize]);\n }\n } else {\n if (!Array.isArray(states)) {\n states = [states];\n }\n if (states.length !== this.states_.length) {\n throw new ValueError(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${states.length} state value(s). Input received: ${states}`);\n }\n if (training === true) {\n this.keptStates.push(this.states_.slice());\n } else {\n dispose(this.states_);\n }\n for (let index = 0; index < this.states_.length; ++index) {\n const value = states[index];\n const dim = Array.isArray(this.cell.stateSize) ? this.cell.stateSize[index] : this.cell.stateSize;\n const expectedShape = [batchSize, dim];\n if (!util_exports.arraysEqual(value.shape, expectedShape)) {\n throw new ValueError(`State ${index} is incompatible with layer ${this.name}: expected shape=${expectedShape}, received shape=${value.shape}`);\n }\n this.states_[index] = value;\n }\n }\n this.states_ = this.states_.map((state) => keep(state.clone()));\n });\n }\n apply(inputs, kwargs) {\n let initialState = kwargs == null ? null : kwargs[\"initialState\"];\n let constants = kwargs == null ? null : kwargs[\"constants\"];\n if (kwargs == null) {\n kwargs = {};\n }\n const standardized = standardizeArgs(inputs, initialState, constants, this.numConstants);\n inputs = standardized.inputs;\n initialState = standardized.initialState;\n constants = standardized.constants;\n let additionalInputs = [];\n let additionalSpecs = [];\n if (initialState != null) {\n kwargs[\"initialState\"] = initialState;\n additionalInputs = additionalInputs.concat(initialState);\n this.stateSpec = [];\n for (const state of initialState) {\n this.stateSpec.push(new InputSpec({ shape: state.shape }));\n }\n additionalSpecs = additionalSpecs.concat(this.stateSpec);\n }\n if (constants != null) {\n kwargs[\"constants\"] = constants;\n additionalInputs = additionalInputs.concat(constants);\n this.numConstants = constants.length;\n }\n const isTensor = additionalInputs[0] instanceof SymbolicTensor;\n if (isTensor) {\n const fullInput = [inputs].concat(additionalInputs);\n const fullInputSpec = this.inputSpec.concat(additionalSpecs);\n const originalInputSpec = this.inputSpec;\n this.inputSpec = fullInputSpec;\n const output = super.apply(fullInput, kwargs);\n this.inputSpec = originalInputSpec;\n return output;\n } else {\n return super.apply(inputs, kwargs);\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n let initialState = kwargs == null ? null : kwargs[\"initialState\"];\n inputs = getExactlyOneTensor(inputs);\n if (initialState == null) {\n if (this.stateful) {\n initialState = this.states_;\n } else {\n initialState = this.getInitialState(inputs);\n }\n }\n const numStates = Array.isArray(this.cell.stateSize) ? this.cell.stateSize.length : 1;\n if (initialState.length !== numStates) {\n throw new ValueError(`RNN Layer has ${numStates} state(s) but was passed ${initialState.length} initial state(s).`);\n }\n if (this.unroll) {\n console.warn(\"Ignoring unroll = true for RNN layer, due to imperative backend.\");\n }\n const cellCallKwargs = { training };\n const step5 = (inputs2, states2) => {\n const outputs2 = this.cell.call([inputs2].concat(states2), cellCallKwargs);\n return [outputs2[0], outputs2.slice(1)];\n };\n const rnnOutputs = rnn(step5, inputs, initialState, this.goBackwards, mask, null, this.unroll, this.returnSequences);\n const lastOutput = rnnOutputs[0];\n const outputs = rnnOutputs[1];\n const states = rnnOutputs[2];\n if (this.stateful) {\n this.resetStates(states, training);\n }\n const output = this.returnSequences ? outputs : lastOutput;\n if (this.returnState) {\n return [output].concat(states);\n } else {\n return output;\n }\n });\n }\n getInitialState(inputs) {\n return tidy(() => {\n let initialState = zeros(inputs.shape);\n initialState = sum2(initialState, [1, 2]);\n initialState = expandDims2(initialState);\n if (Array.isArray(this.cell.stateSize)) {\n return this.cell.stateSize.map((dim) => dim > 1 ? tile2(initialState, [1, dim]) : initialState);\n } else {\n return this.cell.stateSize > 1 ? [tile2(initialState, [1, this.cell.stateSize])] : [initialState];\n }\n });\n }\n get trainableWeights() {\n if (!this.trainable) {\n return [];\n }\n return this.cell.trainableWeights;\n }\n get nonTrainableWeights() {\n if (!this.trainable) {\n return this.cell.weights;\n }\n return this.cell.nonTrainableWeights;\n }\n setFastWeightInitDuringBuild(value) {\n super.setFastWeightInitDuringBuild(value);\n if (this.cell != null) {\n this.cell.setFastWeightInitDuringBuild(value);\n }\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = {\n returnSequences: this.returnSequences,\n returnState: this.returnState,\n goBackwards: this.goBackwards,\n stateful: this.stateful,\n unroll: this.unroll\n };\n if (this.numConstants != null) {\n config[\"numConstants\"] = this.numConstants;\n }\n const cellConfig = this.cell.getConfig();\n if (this.getClassName() === RNN.className) {\n config[\"cell\"] = {\n \"className\": this.cell.getClassName(),\n \"config\": cellConfig\n };\n }\n return Object.assign({}, cellConfig, baseConfig, config);\n }\n static fromConfig(cls, config, customObjects = {}) {\n const cellConfig = config[\"cell\"];\n const cell = deserialize(cellConfig, customObjects);\n return new cls(Object.assign(config, { cell }));\n }\n};\nRNN.className = \"RNN\";\nserialization_exports.registerClass(RNN);\nvar RNNCell = class extends Layer {\n};\nvar SimpleRNNCell = class extends RNNCell {\n constructor(args) {\n super(args);\n this.DEFAULT_ACTIVATION = \"tanh\";\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_RECURRENT_INITIALIZER = \"orthogonal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n this.units = args.units;\n assertPositiveInteger(this.units, `units`);\n this.activation = getActivation(args.activation == null ? this.DEFAULT_ACTIVATION : args.activation);\n this.useBias = args.useBias == null ? true : args.useBias;\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.recurrentInitializer = getInitializer(args.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER);\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n this.recurrentRegularizer = getRegularizer(args.recurrentRegularizer);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.recurrentConstraint = getConstraint(args.recurrentConstraint);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.dropout = min2([1, max2([0, args.dropout == null ? 0 : args.dropout])]);\n this.recurrentDropout = min2([\n 1,\n max2([0, args.recurrentDropout == null ? 0 : args.recurrentDropout])\n ]);\n this.dropoutFunc = args.dropoutFunc;\n this.stateSize = this.units;\n this.dropoutMask = null;\n this.recurrentDropoutMask = null;\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n this.kernel = this.addWeight(\"kernel\", [inputShape[inputShape.length - 1], this.units], null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n this.recurrentKernel = this.addWeight(\"recurrent_kernel\", [this.units, this.units], null, this.recurrentInitializer, this.recurrentRegularizer, true, this.recurrentConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.units], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = inputs;\n if (inputs.length !== 2) {\n throw new ValueError(`SimpleRNNCell expects 2 input Tensors, got ${inputs.length}.`);\n }\n let prevOutput = inputs[1];\n inputs = inputs[0];\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n if (0 < this.dropout && this.dropout < 1 && this.dropoutMask == null) {\n this.dropoutMask = generateDropoutMask({\n ones: () => onesLike(inputs),\n rate: this.dropout,\n training,\n dropoutFunc: this.dropoutFunc\n });\n }\n if (0 < this.recurrentDropout && this.recurrentDropout < 1 && this.recurrentDropoutMask == null) {\n this.recurrentDropoutMask = generateDropoutMask({\n ones: () => onesLike(prevOutput),\n rate: this.recurrentDropout,\n training,\n dropoutFunc: this.dropoutFunc\n });\n }\n let h;\n const dpMask = this.dropoutMask;\n const recDpMask = this.recurrentDropoutMask;\n if (dpMask != null) {\n h = dot2(mul(inputs, dpMask), this.kernel.read());\n } else {\n h = dot2(inputs, this.kernel.read());\n }\n if (this.bias != null) {\n h = biasAdd(h, this.bias.read());\n }\n if (recDpMask != null) {\n prevOutput = mul(prevOutput, recDpMask);\n }\n let output = add2(h, dot2(prevOutput, this.recurrentKernel.read()));\n if (this.activation != null) {\n output = this.activation.apply(output);\n }\n return [output, output];\n });\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = {\n units: this.units,\n activation: serializeActivation(this.activation),\n useBias: this.useBias,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n recurrentInitializer: serializeInitializer(this.recurrentInitializer),\n biasInitializer: serializeInitializer(this.biasInitializer),\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint),\n recurrentConstraint: serializeConstraint(this.recurrentConstraint),\n biasConstraint: serializeConstraint(this.biasConstraint),\n dropout: this.dropout,\n recurrentDropout: this.recurrentDropout\n };\n return Object.assign({}, baseConfig, config);\n }\n};\nSimpleRNNCell.className = \"SimpleRNNCell\";\nserialization_exports.registerClass(SimpleRNNCell);\nvar SimpleRNN = class extends RNN {\n constructor(args) {\n args.cell = new SimpleRNNCell(args);\n super(args);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.cell.dropoutMask != null) {\n dispose(this.cell.dropoutMask);\n this.cell.dropoutMask = null;\n }\n if (this.cell.recurrentDropoutMask != null) {\n dispose(this.cell.recurrentDropoutMask);\n this.cell.recurrentDropoutMask = null;\n }\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n const initialState = kwargs == null ? null : kwargs[\"initialState\"];\n return super.call(inputs, { mask, training, initialState });\n });\n }\n static fromConfig(cls, config) {\n return new cls(config);\n }\n};\nSimpleRNN.className = \"SimpleRNN\";\nserialization_exports.registerClass(SimpleRNN);\nvar GRUCell = class extends RNNCell {\n constructor(args) {\n super(args);\n this.DEFAULT_ACTIVATION = \"tanh\";\n this.DEFAULT_RECURRENT_ACTIVATION = \"hardSigmoid\";\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_RECURRENT_INITIALIZER = \"orthogonal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n if (args.resetAfter) {\n throw new ValueError(`GRUCell does not support reset_after parameter set to true.`);\n }\n this.units = args.units;\n assertPositiveInteger(this.units, \"units\");\n this.activation = getActivation(args.activation === void 0 ? this.DEFAULT_ACTIVATION : args.activation);\n this.recurrentActivation = getActivation(args.recurrentActivation === void 0 ? this.DEFAULT_RECURRENT_ACTIVATION : args.recurrentActivation);\n this.useBias = args.useBias == null ? true : args.useBias;\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.recurrentInitializer = getInitializer(args.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER);\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n this.recurrentRegularizer = getRegularizer(args.recurrentRegularizer);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.recurrentConstraint = getConstraint(args.recurrentConstraint);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.dropout = min2([1, max2([0, args.dropout == null ? 0 : args.dropout])]);\n this.recurrentDropout = min2([\n 1,\n max2([0, args.recurrentDropout == null ? 0 : args.recurrentDropout])\n ]);\n this.dropoutFunc = args.dropoutFunc;\n this.implementation = args.implementation;\n this.stateSize = this.units;\n this.dropoutMask = null;\n this.recurrentDropoutMask = null;\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const inputDim = inputShape[inputShape.length - 1];\n this.kernel = this.addWeight(\"kernel\", [inputDim, this.units * 3], null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n this.recurrentKernel = this.addWeight(\"recurrent_kernel\", [this.units, this.units * 3], null, this.recurrentInitializer, this.recurrentRegularizer, true, this.recurrentConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.units * 3], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = inputs;\n if (inputs.length !== 2) {\n throw new ValueError(`GRUCell expects 2 input Tensors (inputs, h, c), got ${inputs.length}.`);\n }\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n let hTMinus1 = inputs[1];\n inputs = inputs[0];\n if (0 < this.dropout && this.dropout < 1 && this.dropoutMask == null) {\n this.dropoutMask = generateDropoutMask({\n ones: () => onesLike(inputs),\n rate: this.dropout,\n training,\n count: 3,\n dropoutFunc: this.dropoutFunc\n });\n }\n if (0 < this.recurrentDropout && this.recurrentDropout < 1 && this.recurrentDropoutMask == null) {\n this.recurrentDropoutMask = generateDropoutMask({\n ones: () => onesLike(hTMinus1),\n rate: this.recurrentDropout,\n training,\n count: 3,\n dropoutFunc: this.dropoutFunc\n });\n }\n const dpMask = this.dropoutMask;\n const recDpMask = this.recurrentDropoutMask;\n let z;\n let r2;\n let hh;\n if (0 < this.dropout && this.dropout < 1) {\n inputs = mul(inputs, dpMask[0]);\n }\n let matrixX = dot2(inputs, this.kernel.read());\n if (this.useBias) {\n matrixX = biasAdd(matrixX, this.bias.read());\n }\n if (0 < this.recurrentDropout && this.recurrentDropout < 1) {\n hTMinus1 = mul(hTMinus1, recDpMask[0]);\n }\n const recurrentKernelValue = this.recurrentKernel.read();\n const [rk1, rk2] = split(recurrentKernelValue, [2 * this.units, this.units], recurrentKernelValue.rank - 1);\n const matrixInner = dot2(hTMinus1, rk1);\n const [xZ, xR, xH] = split(matrixX, 3, matrixX.rank - 1);\n const [recurrentZ, recurrentR] = split(matrixInner, 2, matrixInner.rank - 1);\n z = this.recurrentActivation.apply(add2(xZ, recurrentZ));\n r2 = this.recurrentActivation.apply(add2(xR, recurrentR));\n const recurrentH = dot2(mul(r2, hTMinus1), rk2);\n hh = this.activation.apply(add2(xH, recurrentH));\n const h = add2(mul(z, hTMinus1), mul(add2(1, neg(z)), hh));\n return [h, h];\n });\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = {\n units: this.units,\n activation: serializeActivation(this.activation),\n recurrentActivation: serializeActivation(this.recurrentActivation),\n useBias: this.useBias,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n recurrentInitializer: serializeInitializer(this.recurrentInitializer),\n biasInitializer: serializeInitializer(this.biasInitializer),\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint),\n recurrentConstraint: serializeConstraint(this.recurrentConstraint),\n biasConstraint: serializeConstraint(this.biasConstraint),\n dropout: this.dropout,\n recurrentDropout: this.recurrentDropout,\n implementation: this.implementation,\n resetAfter: false\n };\n return Object.assign({}, baseConfig, config);\n }\n};\nGRUCell.className = \"GRUCell\";\nserialization_exports.registerClass(GRUCell);\nvar GRU = class extends RNN {\n constructor(args) {\n if (args.implementation === 0) {\n console.warn(\"`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call.\");\n }\n args.cell = new GRUCell(args);\n super(args);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.cell.dropoutMask != null) {\n dispose(this.cell.dropoutMask);\n this.cell.dropoutMask = null;\n }\n if (this.cell.recurrentDropoutMask != null) {\n dispose(this.cell.recurrentDropoutMask);\n this.cell.recurrentDropoutMask = null;\n }\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n const initialState = kwargs == null ? null : kwargs[\"initialState\"];\n return super.call(inputs, { mask, training, initialState });\n });\n }\n static fromConfig(cls, config) {\n if (config[\"implmentation\"] === 0) {\n config[\"implementation\"] = 1;\n }\n return new cls(config);\n }\n};\nGRU.className = \"GRU\";\nserialization_exports.registerClass(GRU);\nvar LSTMCell = class extends RNNCell {\n constructor(args) {\n super(args);\n this.DEFAULT_ACTIVATION = \"tanh\";\n this.DEFAULT_RECURRENT_ACTIVATION = \"hardSigmoid\";\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_RECURRENT_INITIALIZER = \"orthogonal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n this.units = args.units;\n assertPositiveInteger(this.units, \"units\");\n this.activation = getActivation(args.activation === void 0 ? this.DEFAULT_ACTIVATION : args.activation);\n this.recurrentActivation = getActivation(args.recurrentActivation === void 0 ? this.DEFAULT_RECURRENT_ACTIVATION : args.recurrentActivation);\n this.useBias = args.useBias == null ? true : args.useBias;\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.recurrentInitializer = getInitializer(args.recurrentInitializer || this.DEFAULT_RECURRENT_INITIALIZER);\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.unitForgetBias = args.unitForgetBias;\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n this.recurrentRegularizer = getRegularizer(args.recurrentRegularizer);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.recurrentConstraint = getConstraint(args.recurrentConstraint);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.dropout = min2([1, max2([0, args.dropout == null ? 0 : args.dropout])]);\n this.recurrentDropout = min2([\n 1,\n max2([0, args.recurrentDropout == null ? 0 : args.recurrentDropout])\n ]);\n this.dropoutFunc = args.dropoutFunc;\n this.implementation = args.implementation;\n this.stateSize = [this.units, this.units];\n this.dropoutMask = null;\n this.recurrentDropoutMask = null;\n }\n build(inputShape) {\n var _a;\n inputShape = getExactlyOneShape(inputShape);\n const inputDim = inputShape[inputShape.length - 1];\n this.kernel = this.addWeight(\"kernel\", [inputDim, this.units * 4], null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n this.recurrentKernel = this.addWeight(\"recurrent_kernel\", [this.units, this.units * 4], null, this.recurrentInitializer, this.recurrentRegularizer, true, this.recurrentConstraint);\n let biasInitializer;\n if (this.useBias) {\n if (this.unitForgetBias) {\n const capturedBiasInit = this.biasInitializer;\n const capturedUnits = this.units;\n biasInitializer = new (_a = class CustomInit extends Initializer {\n apply(shape, dtype) {\n const bI = capturedBiasInit.apply([capturedUnits]);\n const bF = new Ones().apply([capturedUnits]);\n const bCAndH = capturedBiasInit.apply([capturedUnits * 2]);\n return concatAlongFirstAxis(concatAlongFirstAxis(bI, bF), bCAndH);\n }\n }, _a.className = \"CustomInit\", _a)();\n } else {\n biasInitializer = this.biasInitializer;\n }\n this.bias = this.addWeight(\"bias\", [this.units * 4], null, biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n } else {\n this.bias = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n inputs = inputs;\n if (inputs.length !== 3) {\n throw new ValueError(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${inputs.length}.`);\n }\n let hTMinus1 = inputs[1];\n const cTMinus1 = inputs[2];\n inputs = inputs[0];\n if (0 < this.dropout && this.dropout < 1 && this.dropoutMask == null) {\n this.dropoutMask = generateDropoutMask({\n ones: () => onesLike(inputs),\n rate: this.dropout,\n training,\n count: 4,\n dropoutFunc: this.dropoutFunc\n });\n }\n if (0 < this.recurrentDropout && this.recurrentDropout < 1 && this.recurrentDropoutMask == null) {\n this.recurrentDropoutMask = generateDropoutMask({\n ones: () => onesLike(hTMinus1),\n rate: this.recurrentDropout,\n training,\n count: 4,\n dropoutFunc: this.dropoutFunc\n });\n }\n const dpMask = this.dropoutMask;\n const recDpMask = this.recurrentDropoutMask;\n let i2;\n let f;\n let c;\n let o;\n if (0 < this.dropout && this.dropout < 1) {\n inputs = mul(inputs, dpMask[0]);\n }\n let z = dot2(inputs, this.kernel.read());\n if (0 < this.recurrentDropout && this.recurrentDropout < 1) {\n hTMinus1 = mul(hTMinus1, recDpMask[0]);\n }\n z = add2(z, dot2(hTMinus1, this.recurrentKernel.read()));\n if (this.useBias) {\n z = biasAdd(z, this.bias.read());\n }\n const [z0, z1, z2, z3] = split(z, 4, z.rank - 1);\n i2 = this.recurrentActivation.apply(z0);\n f = this.recurrentActivation.apply(z1);\n c = add2(mul(f, cTMinus1), mul(i2, this.activation.apply(z2)));\n o = this.recurrentActivation.apply(z3);\n const h = mul(o, this.activation.apply(c));\n return [h, h, c];\n });\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = {\n units: this.units,\n activation: serializeActivation(this.activation),\n recurrentActivation: serializeActivation(this.recurrentActivation),\n useBias: this.useBias,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n recurrentInitializer: serializeInitializer(this.recurrentInitializer),\n biasInitializer: serializeInitializer(this.biasInitializer),\n unitForgetBias: this.unitForgetBias,\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint),\n recurrentConstraint: serializeConstraint(this.recurrentConstraint),\n biasConstraint: serializeConstraint(this.biasConstraint),\n dropout: this.dropout,\n recurrentDropout: this.recurrentDropout,\n implementation: this.implementation\n };\n return Object.assign({}, baseConfig, config);\n }\n};\nLSTMCell.className = \"LSTMCell\";\nserialization_exports.registerClass(LSTMCell);\nvar LSTM = class extends RNN {\n constructor(args) {\n if (args.implementation === 0) {\n console.warn(\"`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call.\");\n }\n args.cell = new LSTMCell(args);\n super(args);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.cell.dropoutMask != null) {\n dispose(this.cell.dropoutMask);\n this.cell.dropoutMask = null;\n }\n if (this.cell.recurrentDropoutMask != null) {\n dispose(this.cell.recurrentDropoutMask);\n this.cell.recurrentDropoutMask = null;\n }\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n const initialState = kwargs == null ? null : kwargs[\"initialState\"];\n return super.call(inputs, { mask, training, initialState });\n });\n }\n static fromConfig(cls, config) {\n if (config[\"implmentation\"] === 0) {\n config[\"implementation\"] = 1;\n }\n return new cls(config);\n }\n};\nLSTM.className = \"LSTM\";\nserialization_exports.registerClass(LSTM);\nvar StackedRNNCells = class extends RNNCell {\n constructor(args) {\n super(args);\n this.cells = args.cells;\n }\n get stateSize() {\n const stateSize = [];\n for (const cell of this.cells.slice().reverse()) {\n if (Array.isArray(cell.stateSize)) {\n stateSize.push(...cell.stateSize);\n } else {\n stateSize.push(cell.stateSize);\n }\n }\n return stateSize;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = inputs;\n let states = inputs.slice(1);\n const nestedStates = [];\n for (const cell of this.cells.slice().reverse()) {\n if (Array.isArray(cell.stateSize)) {\n nestedStates.push(states.splice(0, cell.stateSize.length));\n } else {\n nestedStates.push(states.splice(0, 1));\n }\n }\n nestedStates.reverse();\n const newNestedStates = [];\n let callInputs;\n for (let i2 = 0; i2 < this.cells.length; ++i2) {\n const cell = this.cells[i2];\n states = nestedStates[i2];\n if (i2 === 0) {\n callInputs = [inputs[0]].concat(states);\n } else {\n callInputs = [callInputs[0]].concat(states);\n }\n callInputs = cell.call(callInputs, kwargs);\n newNestedStates.push(callInputs.slice(1));\n }\n states = [];\n for (const cellStates of newNestedStates.slice().reverse()) {\n states.push(...cellStates);\n }\n return [callInputs[0]].concat(states);\n });\n }\n build(inputShape) {\n if (isArrayOfShapes(inputShape)) {\n inputShape = inputShape[0];\n }\n inputShape = inputShape;\n let outputDim;\n this.cells.forEach((cell, i2) => {\n nameScope(`RNNCell_${i2}`, () => {\n cell.build(inputShape);\n if (Array.isArray(cell.stateSize)) {\n outputDim = cell.stateSize[0];\n } else {\n outputDim = cell.stateSize;\n }\n inputShape = [inputShape[0], outputDim];\n });\n });\n this.built = true;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const getCellConfig = (cell) => {\n return {\n \"className\": cell.getClassName(),\n \"config\": cell.getConfig()\n };\n };\n const cellConfigs = this.cells.map(getCellConfig);\n const config = { \"cells\": cellConfigs };\n return Object.assign({}, baseConfig, config);\n }\n static fromConfig(cls, config, customObjects = {}) {\n const cells = [];\n for (const cellConfig of config[\"cells\"]) {\n cells.push(deserialize(cellConfig, customObjects));\n }\n return new cls({ cells });\n }\n get trainableWeights() {\n if (!this.trainable) {\n return [];\n }\n const weights = [];\n for (const cell of this.cells) {\n weights.push(...cell.trainableWeights);\n }\n return weights;\n }\n get nonTrainableWeights() {\n const weights = [];\n for (const cell of this.cells) {\n weights.push(...cell.nonTrainableWeights);\n }\n if (!this.trainable) {\n const trainableWeights = [];\n for (const cell of this.cells) {\n trainableWeights.push(...cell.trainableWeights);\n }\n return trainableWeights.concat(weights);\n }\n return weights;\n }\n getWeights() {\n const weights = [];\n for (const cell of this.cells) {\n weights.push(...cell.weights);\n }\n return batchGetValue(weights);\n }\n setWeights(weights) {\n const tuples = [];\n for (const cell of this.cells) {\n const numParams = cell.weights.length;\n const inputWeights = weights.splice(numParams);\n for (let i2 = 0; i2 < cell.weights.length; ++i2) {\n tuples.push([cell.weights[i2], inputWeights[i2]]);\n }\n }\n batchSetValue(tuples);\n }\n};\nStackedRNNCells.className = \"StackedRNNCells\";\nserialization_exports.registerClass(StackedRNNCells);\nfunction generateDropoutMask(args) {\n const { ones: ones4, rate, training = false, count: count2 = 1, dropoutFunc } = args;\n const droppedInputs = () => dropoutFunc != null ? dropoutFunc(ones4(), rate) : dropout2(ones4(), rate);\n const createMask = () => inTrainPhase(droppedInputs, ones4, training);\n if (!count2 || count2 <= 1) {\n return keep(createMask().clone());\n }\n const masks = Array(count2).fill(void 0).map(createMask);\n return masks.map((m) => keep(m.clone()));\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/convolutional_recurrent.js\nvar __rest = function(s2, e2) {\n var t2 = {};\n for (var p2 in s2)\n if (Object.prototype.hasOwnProperty.call(s2, p2) && e2.indexOf(p2) < 0)\n t2[p2] = s2[p2];\n if (s2 != null && typeof Object.getOwnPropertySymbols === \"function\")\n for (var i2 = 0, p2 = Object.getOwnPropertySymbols(s2); i2 < p2.length; i2++) {\n if (e2.indexOf(p2[i2]) < 0 && Object.prototype.propertyIsEnumerable.call(s2, p2[i2]))\n t2[p2[i2]] = s2[p2[i2]];\n }\n return t2;\n};\nvar ConvRNN2D = class extends RNN {\n constructor(args) {\n if (args.unroll) {\n throw new NotImplementedError(\"Unrolling is not possible with convolutional RNNs.\");\n }\n if (Array.isArray(args.cell)) {\n throw new NotImplementedError(\"It is not possible at the moment to stack convolutional cells.\");\n }\n super(args);\n this.inputSpec = [new InputSpec({ ndim: 5 })];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.cell.dropoutMask != null) {\n dispose(this.cell.dropoutMask);\n this.cell.dropoutMask = null;\n }\n if (this.cell.recurrentDropoutMask != null) {\n dispose(this.cell.recurrentDropoutMask);\n this.cell.recurrentDropoutMask = null;\n }\n if (kwargs && kwargs[\"constants\"]) {\n throw new ValueError(\"ConvRNN2D cell does not support constants\");\n }\n const mask = kwargs == null ? null : kwargs[\"mask\"];\n const training = kwargs == null ? null : kwargs[\"training\"];\n const initialState = kwargs == null ? null : kwargs[\"initialState\"];\n return super.call(inputs, { mask, training, initialState });\n });\n }\n computeOutputShape(inputShape) {\n let outShape = this.computeSingleOutputShape(inputShape);\n if (!this.returnSequences) {\n outShape = [outShape[0], ...outShape.slice(2)];\n }\n if (this.returnState) {\n outShape = [outShape, ...Array(2).fill([inputShape[0], ...outShape.slice(-3)])];\n }\n return outShape;\n }\n getInitialState(inputs) {\n return tidy(() => {\n const { stateSize } = this.cell;\n const inputShape = inputs.shape;\n const outputShape = this.computeSingleOutputShape(inputShape);\n const stateShape = [outputShape[0], ...outputShape.slice(2)];\n const initialState = zeros(stateShape);\n if (Array.isArray(stateSize)) {\n return Array(stateSize.length).fill(initialState);\n }\n return [initialState];\n });\n }\n resetStates(states, training = false) {\n tidy(() => {\n if (!this.stateful) {\n throw new AttributeError(\"Cannot call resetStates() on an RNN Layer that is not stateful.\");\n }\n const inputShape = this.inputSpec[0].shape;\n const outputShape = this.computeSingleOutputShape(inputShape);\n const stateShape = [outputShape[0], ...outputShape.slice(2)];\n const batchSize = inputShape[0];\n if (batchSize == null) {\n throw new ValueError(\"If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \\n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.\");\n }\n if (this.getStates() == null) {\n if (Array.isArray(this.cell.stateSize)) {\n this.states_ = this.cell.stateSize.map(() => zeros(stateShape));\n } else {\n this.states_ = [zeros(stateShape)];\n }\n } else if (states == null) {\n dispose(this.states_);\n if (this.keptStates != null) {\n dispose(this.keptStates);\n this.keptStates = [];\n }\n if (Array.isArray(this.cell.stateSize)) {\n this.states_ = this.cell.stateSize.map(() => zeros(stateShape));\n } else {\n this.states_[0] = zeros(stateShape);\n }\n } else {\n if (!Array.isArray(states)) {\n states = [states];\n }\n if (states.length !== this.states_.length) {\n throw new ValueError(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${states.length} state value(s). Input received: ${states}`);\n }\n if (training) {\n this.keptStates.push(this.states_.slice());\n } else {\n dispose(this.states_);\n }\n for (let index = 0; index < this.states_.length; ++index) {\n const value = states[index];\n const expectedShape = stateShape;\n if (!util_exports.arraysEqual(value.shape, expectedShape)) {\n throw new ValueError(`State ${index} is incompatible with layer ${this.name}: expected shape=${expectedShape}, received shape=${value.shape}`);\n }\n this.states_[index] = value;\n }\n }\n this.states_ = this.states_.map((state) => keep(state.clone()));\n });\n }\n computeSingleOutputShape(inputShape) {\n const { dataFormat, filters, kernelSize, padding, strides, dilationRate } = this.cell;\n const isChannelsFirst = dataFormat === \"channelsFirst\";\n const h = inputShape[isChannelsFirst ? 3 : 2];\n const w = inputShape[isChannelsFirst ? 4 : 3];\n const hOut = convOutputLength(h, kernelSize[0], padding, strides[0], dilationRate[0]);\n const wOut = convOutputLength(w, kernelSize[1], padding, strides[1], dilationRate[1]);\n const outShape = [\n ...inputShape.slice(0, 2),\n ...isChannelsFirst ? [filters, hOut, wOut] : [hOut, wOut, filters]\n ];\n return outShape;\n }\n};\nConvRNN2D.className = \"ConvRNN2D\";\nvar ConvLSTM2DCell = class extends LSTMCell {\n constructor(args) {\n const { filters, kernelSize, strides, padding, dataFormat, dilationRate } = args;\n super(Object.assign({}, args, { units: filters }));\n this.filters = filters;\n assertPositiveInteger(this.filters, \"filters\");\n this.kernelSize = normalizeArray(kernelSize, 2, \"kernelSize\");\n this.kernelSize.forEach((size) => assertPositiveInteger(size, \"kernelSize\"));\n this.strides = normalizeArray(strides || 1, 2, \"strides\");\n this.strides.forEach((stride) => assertPositiveInteger(stride, \"strides\"));\n this.padding = padding || \"valid\";\n checkPaddingMode(this.padding);\n this.dataFormat = dataFormat || \"channelsLast\";\n checkDataFormat(this.dataFormat);\n this.dilationRate = normalizeArray(dilationRate || 1, 2, \"dilationRate\");\n this.dilationRate.forEach((rate) => assertPositiveInteger(rate, \"dilationRate\"));\n }\n build(inputShape) {\n var _a;\n inputShape = getExactlyOneShape(inputShape);\n const channelAxis = this.dataFormat === \"channelsFirst\" ? 1 : inputShape.length - 1;\n if (inputShape[channelAxis] == null) {\n throw new ValueError(`The channel dimension of the input should be defined. Found ${inputShape[channelAxis]}`);\n }\n const inputDim = inputShape[channelAxis];\n const numOfKernels = 4;\n const kernelShape = this.kernelSize.concat([inputDim, this.filters * numOfKernels]);\n this.kernel = this.addWeight(\"kernel\", kernelShape, null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n const recurrentKernelShape = this.kernelSize.concat([this.filters, this.filters * numOfKernels]);\n this.recurrentKernel = this.addWeight(\"recurrent_kernel\", recurrentKernelShape, null, this.recurrentInitializer, this.recurrentRegularizer, true, this.recurrentConstraint);\n if (this.useBias) {\n let biasInitializer;\n if (this.unitForgetBias) {\n const init2 = this.biasInitializer;\n const filters = this.filters;\n biasInitializer = new (_a = class CustomInit extends Initializer {\n apply(shape, dtype) {\n const biasI = init2.apply([filters]);\n const biasF = ones2([filters]);\n const biasCAndO = init2.apply([filters * 2]);\n return concatenate([biasI, biasF, biasCAndO]);\n }\n }, _a.className = \"CustomInit\", _a)();\n } else {\n biasInitializer = this.biasInitializer;\n }\n this.bias = this.addWeight(\"bias\", [this.filters * numOfKernels], null, biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (inputs.length !== 3) {\n throw new ValueError(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${inputs.length}.`);\n }\n const training = kwargs[\"training\"] || false;\n const x = inputs[0];\n const hTMinus1 = inputs[1];\n const cTMinus1 = inputs[2];\n const numOfKernels = 4;\n if (0 < this.dropout && this.dropout < 1 && this.dropoutMask == null) {\n this.dropoutMask = generateDropoutMask({\n ones: () => onesLike(x),\n rate: this.dropout,\n training,\n count: numOfKernels,\n dropoutFunc: this.dropoutFunc\n });\n }\n const dropoutMask = this.dropoutMask;\n const applyDropout = (x2, mask, index) => {\n if (!mask || !mask[index]) {\n return x2;\n }\n return mul(mask[index], x2);\n };\n let xI = applyDropout(x, dropoutMask, 0);\n let xF = applyDropout(x, dropoutMask, 1);\n let xC = applyDropout(x, dropoutMask, 2);\n let xO = applyDropout(x, dropoutMask, 3);\n if (0 < this.recurrentDropout && this.recurrentDropout < 1 && this.recurrentDropoutMask == null) {\n this.recurrentDropoutMask = generateDropoutMask({\n ones: () => onesLike(hTMinus1),\n rate: this.recurrentDropout,\n training,\n count: numOfKernels,\n dropoutFunc: this.dropoutFunc\n });\n }\n const recDropoutMask = this.recurrentDropoutMask;\n let hI = applyDropout(hTMinus1, recDropoutMask, 0);\n let hF = applyDropout(hTMinus1, recDropoutMask, 1);\n let hC = applyDropout(hTMinus1, recDropoutMask, 2);\n let hO = applyDropout(hTMinus1, recDropoutMask, 3);\n const kernelChannelAxis = 3;\n const [kernelI, kernelF, kernelC, kernelO] = split(this.kernel.read(), numOfKernels, kernelChannelAxis);\n const [biasI, biasF, biasC, biasO] = this.useBias ? split(this.bias.read(), numOfKernels) : [null, null, null, null];\n xI = this.inputConv(xI, kernelI, biasI, this.padding);\n xF = this.inputConv(xF, kernelF, biasF, this.padding);\n xC = this.inputConv(xC, kernelC, biasC, this.padding);\n xO = this.inputConv(xO, kernelO, biasO, this.padding);\n const [recKernelI, recKernelF, recKernelC, recKernelO] = split(this.recurrentKernel.read(), numOfKernels, kernelChannelAxis);\n hI = this.recurrentConv(hI, recKernelI);\n hF = this.recurrentConv(hF, recKernelF);\n hC = this.recurrentConv(hC, recKernelC);\n hO = this.recurrentConv(hO, recKernelO);\n const i2 = this.recurrentActivation.apply(add2(xI, hI));\n const f = this.recurrentActivation.apply(add2(xF, hF));\n const c = add2(mul(f, cTMinus1), mul(i2, this.activation.apply(add2(xC, hC))));\n const h = mul(this.recurrentActivation.apply(add2(xO, hO)), this.activation.apply(c));\n return [h, h, c];\n });\n }\n getConfig() {\n const _a = super.getConfig(), { \"units\": _ } = _a, baseConfig = __rest(_a, [\"units\"]);\n const config = {\n filters: this.filters,\n kernelSize: this.kernelSize,\n padding: this.padding,\n dataFormat: this.dataFormat,\n dilationRate: this.dilationRate,\n strides: this.strides\n };\n return Object.assign({}, baseConfig, config);\n }\n inputConv(x, w, b, padding) {\n const out = conv2d(x, w, this.strides, padding || \"valid\", this.dataFormat === \"channelsFirst\" ? \"NCHW\" : \"NHWC\", this.dilationRate);\n if (b) {\n return biasAdd(out, b, this.dataFormat);\n }\n return out;\n }\n recurrentConv(x, w) {\n const strides = 1;\n return conv2d(x, w, strides, \"same\", this.dataFormat === \"channelsFirst\" ? \"NCHW\" : \"NHWC\");\n }\n};\nConvLSTM2DCell.className = \"ConvLSTM2DCell\";\nserialization_exports.registerClass(ConvLSTM2DCell);\nvar ConvLSTM2D = class extends ConvRNN2D {\n constructor(args) {\n const cell = new ConvLSTM2DCell(args);\n super(Object.assign({}, args, { cell }));\n }\n static fromConfig(cls, config) {\n return new cls(config);\n }\n};\nConvLSTM2D.className = \"ConvLSTM2D\";\nserialization_exports.registerClass(ConvLSTM2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/core.js\nvar Dropout = class extends Layer {\n constructor(args) {\n super(args);\n this.rate = Math.max(Math.min(args.rate, 1), 0);\n this.noiseShape = args.noiseShape;\n this.seed = args.seed;\n this.supportsMasking = true;\n }\n getNoiseShape(input2) {\n if (this.noiseShape == null) {\n return this.noiseShape;\n }\n const inputShape = input2.shape;\n const noiseShape = [];\n for (let i2 = 0; i2 < this.noiseShape.length; ++i2) {\n noiseShape.push(this.noiseShape[i2] == null ? inputShape[i2] : this.noiseShape[i2]);\n }\n return noiseShape;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n if (0 < this.rate && this.rate < 1) {\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n const noiseShape = this.getNoiseShape(input2);\n const output = inTrainPhase(() => dropout2(input2, this.rate, noiseShape, this.seed), () => input2, training);\n return output;\n }\n return inputs;\n });\n }\n getConfig() {\n const config = {\n rate: this.rate,\n noiseShape: this.noiseShape,\n seed: this.seed\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n dispose() {\n return super.dispose();\n }\n};\nDropout.className = \"Dropout\";\nserialization_exports.registerClass(Dropout);\nvar SpatialDropout1D = class extends Dropout {\n constructor(args) {\n super(args);\n this.inputSpec = [{ ndim: 3 }];\n }\n getNoiseShape(input2) {\n const inputShape = input2.shape;\n return [inputShape[0], 1, inputShape[2]];\n }\n};\nSpatialDropout1D.className = \"SpatialDropout1D\";\nserialization_exports.registerClass(SpatialDropout1D);\nvar Dense = class extends Layer {\n constructor(args) {\n super(args);\n this.activation = null;\n this.useBias = true;\n this.kernel = null;\n this.bias = null;\n this.DEFAULT_KERNEL_INITIALIZER = \"glorotNormal\";\n this.DEFAULT_BIAS_INITIALIZER = \"zeros\";\n if (args.batchInputShape == null && args.inputShape == null && args.inputDim != null) {\n let batchSize = null;\n if (args.batchSize != null) {\n batchSize = args.batchSize;\n }\n this.batchInputShape = [batchSize, args.inputDim];\n }\n this.units = args.units;\n assertPositiveInteger(this.units, \"units\");\n this.activation = getActivation(args.activation);\n if (args.useBias != null) {\n this.useBias = args.useBias;\n }\n this.kernelInitializer = getInitializer(args.kernelInitializer || this.DEFAULT_KERNEL_INITIALIZER);\n this.biasInitializer = getInitializer(args.biasInitializer || this.DEFAULT_BIAS_INITIALIZER);\n this.kernelConstraint = getConstraint(args.kernelConstraint);\n this.biasConstraint = getConstraint(args.biasConstraint);\n this.kernelRegularizer = getRegularizer(args.kernelRegularizer);\n this.biasRegularizer = getRegularizer(args.biasRegularizer);\n this.activityRegularizer = getRegularizer(args.activityRegularizer);\n this.supportsMasking = true;\n this.inputSpec = [{ minNDim: 2 }];\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const inputLastDim = inputShape[inputShape.length - 1];\n if (this.kernel == null) {\n this.kernel = this.addWeight(\"kernel\", [inputLastDim, this.units], null, this.kernelInitializer, this.kernelRegularizer, true, this.kernelConstraint);\n if (this.useBias) {\n this.bias = this.addWeight(\"bias\", [this.units], null, this.biasInitializer, this.biasRegularizer, true, this.biasConstraint);\n }\n }\n this.inputSpec = [{ minNDim: 2, axes: { [-1]: inputLastDim } }];\n this.built = true;\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const outputShape = inputShape.slice();\n outputShape[outputShape.length - 1] = this.units;\n return outputShape;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n const fusedActivationName = mapActivationToFusedKernel(this.activation.getClassName());\n let output;\n if (fusedActivationName != null) {\n output = dot2(input2, this.kernel.read(), fusedActivationName, this.bias ? this.bias.read() : null);\n } else {\n output = dot2(input2, this.kernel.read());\n if (this.bias != null) {\n output = biasAdd(output, this.bias.read());\n }\n if (this.activation != null) {\n output = this.activation.apply(output);\n }\n }\n return output;\n });\n }\n getConfig() {\n const config = {\n units: this.units,\n activation: serializeActivation(this.activation),\n useBias: this.useBias,\n kernelInitializer: serializeInitializer(this.kernelInitializer),\n biasInitializer: serializeInitializer(this.biasInitializer),\n kernelRegularizer: serializeRegularizer(this.kernelRegularizer),\n biasRegularizer: serializeRegularizer(this.biasRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n kernelConstraint: serializeConstraint(this.kernelConstraint),\n biasConstraint: serializeConstraint(this.biasConstraint)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nDense.className = \"Dense\";\nserialization_exports.registerClass(Dense);\nvar Flatten = class extends Layer {\n constructor(args) {\n args = args || {};\n super(args);\n this.inputSpec = [{ minNDim: 3 }];\n this.dataFormat = args.dataFormat;\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n for (const dim of inputShape.slice(1)) {\n if (dim == null) {\n throw new ValueError(`The shape of the input to \"Flatten\" is not fully defined (got ${inputShape.slice(1)}). Make sure to pass a complete \"input_shape\" or \"batch_input_shape\" argument to the first layer in your model.`);\n }\n }\n return [inputShape[0], arrayProd(inputShape, 1)];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n let input2 = getExactlyOneTensor(inputs);\n if (this.dataFormat === \"channelsFirst\" && input2.rank > 1) {\n const permutation = [0];\n for (let i2 = 2; i2 < input2.rank; ++i2) {\n permutation.push(i2);\n }\n permutation.push(1);\n input2 = transpose(input2, permutation);\n }\n return batchFlatten(input2);\n });\n }\n getConfig() {\n const config = {};\n if (this.dataFormat != null) {\n config[\"dataFormat\"] = this.dataFormat;\n }\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nFlatten.className = \"Flatten\";\nserialization_exports.registerClass(Flatten);\nvar Activation2 = class extends Layer {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n this.activation = getActivation(args.activation);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n return this.activation.apply(input2);\n });\n }\n getConfig() {\n const config = { activation: serializeActivation(this.activation) };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nActivation2.className = \"Activation\";\nserialization_exports.registerClass(Activation2);\nvar RepeatVector = class extends Layer {\n constructor(args) {\n super(args);\n this.n = args.n;\n this.inputSpec = [{ ndim: 2 }];\n }\n computeOutputShape(inputShape) {\n return [inputShape[0], this.n, inputShape[1]];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n return repeat(inputs, this.n);\n });\n }\n getConfig() {\n const config = {\n n: this.n\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nRepeatVector.className = \"RepeatVector\";\nserialization_exports.registerClass(RepeatVector);\nvar Reshape2 = class extends Layer {\n constructor(args) {\n super(args);\n this.targetShape = args.targetShape;\n for (let i2 = 0; i2 < this.targetShape.length; ++i2) {\n if (this.isUnknown(this.targetShape[i2])) {\n this.targetShape[i2] = null;\n }\n }\n }\n isUnknown(dim) {\n return dim < 0 || dim == null;\n }\n fixUnknownDimension(inputShape, outputShape) {\n const errorMsg = \"Total size of new array must be unchanged.\";\n const finalShape = outputShape.slice();\n let known = 1;\n let unknown = null;\n for (let i2 = 0; i2 < finalShape.length; ++i2) {\n const dim = finalShape[i2];\n if (this.isUnknown(dim)) {\n if (unknown === null) {\n unknown = i2;\n } else {\n throw new ValueError(\"Can only specifiy one unknown dimension.\");\n }\n } else {\n known *= dim;\n }\n }\n const originalSize = arrayProd(inputShape);\n if (unknown !== null) {\n if (known === 0 || originalSize % known !== 0) {\n throw new ValueError(errorMsg);\n }\n finalShape[unknown] = originalSize / known;\n } else if (originalSize !== known) {\n throw new ValueError(errorMsg);\n }\n return finalShape;\n }\n computeOutputShape(inputShape) {\n let anyUnknownDims = false;\n for (let i2 = 0; i2 < inputShape.length; ++i2) {\n if (this.isUnknown(inputShape[i2])) {\n anyUnknownDims = true;\n break;\n }\n }\n if (anyUnknownDims) {\n return inputShape.slice(0, 1).concat(this.targetShape);\n } else {\n return inputShape.slice(0, 1).concat(this.fixUnknownDimension(inputShape.slice(1), this.targetShape));\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n const inputShape = input2.shape;\n const outputShape = inputShape.slice(0, 1).concat(this.fixUnknownDimension(inputShape.slice(1), this.targetShape));\n return reshape(input2, outputShape);\n });\n }\n getConfig() {\n const config = {\n targetShape: this.targetShape\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nReshape2.className = \"Reshape\";\nserialization_exports.registerClass(Reshape2);\nvar Permute = class extends Layer {\n constructor(args) {\n super(args);\n if (args.dims == null) {\n throw new Error(\"Required configuration field `dims` is missing during Permute constructor call.\");\n }\n if (!Array.isArray(args.dims)) {\n throw new Error(`Permute constructor requires \\`dims\\` to be an Array, but received ${args.dims} instead.`);\n }\n const expectedSortedIndices = range2(1, args.dims.length + 1);\n if (!util_exports.arraysEqual(args.dims.slice().sort(), expectedSortedIndices)) {\n throw new Error(\"Invalid permutation `dims`: \" + JSON.stringify(args.dims) + \" `dims` must contain consecutive integers starting from 1.\");\n }\n this.dims = args.dims;\n this.dimsIncludingBatch = [0].concat(this.dims);\n this.inputSpec = [new InputSpec({ ndim: this.dims.length + 1 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const outputShape = inputShape.slice();\n this.dims.forEach((dim, i2) => {\n outputShape[i2 + 1] = inputShape[dim];\n });\n return outputShape;\n }\n call(inputs, kwargs) {\n return transpose(getExactlyOneTensor(inputs), this.dimsIncludingBatch);\n }\n getConfig() {\n const config = {\n dims: this.dims\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nPermute.className = \"Permute\";\nserialization_exports.registerClass(Permute);\nvar Masking = class extends Layer {\n constructor(args) {\n super(args == null ? {} : args);\n this.supportsMasking = true;\n if (args != null) {\n this.maskValue = args.maskValue == null ? 0 : args.maskValue;\n } else {\n this.maskValue = 0;\n }\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = { maskValue: this.maskValue };\n Object.assign(config, baseConfig);\n return config;\n }\n computeMask(inputs, mask) {\n const input2 = getExactlyOneTensor(inputs);\n const axis = -1;\n return any(notEqual(input2, this.maskValue), axis);\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n const axis = -1;\n const keepDims = true;\n const booleanMask = any(notEqual(input2, this.maskValue), axis, keepDims);\n const output = mul(input2, cast(booleanMask, input2.dtype));\n return output;\n });\n }\n};\nMasking.className = \"Masking\";\nserialization_exports.registerClass(Masking);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/embeddings.js\nvar Embedding = class extends Layer {\n constructor(args) {\n super(args);\n this.embeddings = null;\n this.DEFAULT_EMBEDDINGS_INITIALIZER = \"randomUniform\";\n if (args.batchInputShape == null && args.inputShape == null) {\n let batchSize = null;\n if (args.batchSize != null) {\n batchSize = args.batchSize;\n }\n if (args.inputLength == null) {\n this.batchInputShape = [batchSize, null];\n } else {\n this.batchInputShape = [batchSize].concat(toList(args.inputLength));\n }\n }\n this.inputDim = args.inputDim;\n assertPositiveInteger(this.inputDim, \"inputDim\");\n this.outputDim = args.outputDim;\n assertPositiveInteger(this.outputDim, \"outputDim\");\n this.embeddingsInitializer = getInitializer(args.embeddingsInitializer || this.DEFAULT_EMBEDDINGS_INITIALIZER);\n this.embeddingsRegularizer = getRegularizer(args.embeddingsRegularizer);\n this.activityRegularizer = getRegularizer(args.activityRegularizer);\n this.embeddingsConstraint = getConstraint(args.embeddingsConstraint);\n this.maskZero = args.maskZero;\n this.supportsMasking = args.maskZero;\n this.inputLength = args.inputLength;\n }\n build(inputShape) {\n this.embeddings = this.addWeight(\"embeddings\", [this.inputDim, this.outputDim], this.dtype, this.embeddingsInitializer, this.embeddingsRegularizer, true, this.embeddingsConstraint);\n this.built = true;\n }\n warnOnIncompatibleInputShape(inputShape) {\n }\n computeMask(inputs, mask) {\n return tidy(() => {\n if (!this.maskZero) {\n return null;\n } else {\n inputs = getExactlyOneTensor(inputs);\n return notEqual(inputs, zerosLike(inputs));\n }\n });\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (this.inputLength == null) {\n return [...inputShape, this.outputDim];\n }\n const inLens = toList(this.inputLength);\n if (inLens.length !== inputShape.length - 1) {\n throw new ValueError(`\"inputLength\" is ${this.inputLength}, but received input shape has shape ${inputShape}`);\n } else {\n let i2 = 0;\n for (let k = 0; k < inLens.length; ++k) {\n const s1 = inLens[k];\n const s2 = inputShape[k + 1];\n if (s1 != null && s2 != null && s1 !== s2) {\n throw new ValueError(`\"inputLength\" is ${this.inputLength}, but received input shape has shape ${inputShape}`);\n } else if (s1 == null) {\n inLens[i2] = s2;\n }\n i2++;\n }\n }\n return [inputShape[0], ...inLens, this.outputDim];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n let input2 = getExactlyOneTensor(inputs);\n if (input2.dtype !== \"int32\") {\n input2 = cast2(input2, \"int32\");\n }\n const output = gather2(this.embeddings.read(), reshape(input2, [input2.size]));\n return reshape(output, getExactlyOneShape(this.computeOutputShape(input2.shape)));\n });\n }\n getConfig() {\n const config = {\n inputDim: this.inputDim,\n outputDim: this.outputDim,\n embeddingsInitializer: serializeInitializer(this.embeddingsInitializer),\n embeddingsRegularizer: serializeRegularizer(this.embeddingsRegularizer),\n activityRegularizer: serializeRegularizer(this.activityRegularizer),\n embeddingsConstraint: serializeConstraint(this.embeddingsConstraint),\n maskZero: this.maskZero,\n inputLength: this.inputLength\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nEmbedding.className = \"Embedding\";\nserialization_exports.registerClass(Embedding);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/merge.js\nvar Merge = class extends Layer {\n constructor(args) {\n super(args || {});\n this.supportsMasking = true;\n }\n mergeFunction(inputs) {\n throw new NotImplementedError();\n }\n computeElementwiseOpOutputShape(shape1, shape2) {\n if (shape1 == null || shape2 == null) {\n return null;\n } else if (shape1.length < shape2.length) {\n return this.computeElementwiseOpOutputShape(shape2, shape1);\n } else if (shape2.length === 0) {\n return shape1;\n }\n const outputShape = shape1.slice(0, shape1.length - shape2.length);\n for (let k = 0; k < shape2.length; ++k) {\n const i2 = shape1[shape1.length - shape2.length + k];\n const j = shape2[k];\n if (i2 == null || j == null || i2 < 0 || j < 0) {\n outputShape.push(null);\n } else if (i2 === 1) {\n outputShape.push(j);\n } else if (j === 1) {\n outputShape.push(i2);\n } else {\n if (i2 !== j) {\n throw new ValueError(\"Operands could not be broadcast together with shapes \" + JSON.stringify(shape1) + \" \" + JSON.stringify(shape2));\n }\n outputShape.push(i2);\n }\n }\n return outputShape;\n }\n build(inputShape) {\n if (Array.isArray(inputShape) && !Array.isArray(inputShape[0])) {\n inputShape = [getExactlyOneShape(inputShape)];\n }\n inputShape = inputShape;\n if (inputShape.length < 2) {\n throw new ValueError(`A merge layer should be called on an Array of at least 2 inputs. Got ${inputShape.length} input(s).`);\n }\n let batchSizes = [];\n for (const shape of inputShape) {\n if (shape != null && shape[0] !== null) {\n batchSizes.push(shape[0]);\n }\n }\n batchSizes = unique2(batchSizes);\n if (batchSizes.length > 1) {\n throw new ValueError(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(inputShape)}.`);\n }\n let outputShape = inputShape[0] == null ? null : inputShape[0].slice(1);\n for (let i2 = 1; i2 < inputShape.length; ++i2) {\n const shape = inputShape[i2] == null ? null : inputShape[i2].slice(1);\n outputShape = this.computeElementwiseOpOutputShape(outputShape, shape);\n }\n const allRanks = inputShape.map((shape) => shape.length);\n if (inputShape.indexOf(null) === -1 && unique2(allRanks).length === 1) {\n this.reshapeRequired = false;\n } else {\n this.reshapeRequired = true;\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = inputs;\n if (this.reshapeRequired) {\n const reshapedInputs = [];\n const inputDims = inputs.map((input2) => input2.rank);\n if (inputDims.indexOf(null) === -1) {\n const maxNDim = max2(inputDims);\n for (let x of inputs) {\n const xNDim = x.rank;\n for (let k = 0; k < maxNDim - xNDim; ++k) {\n x = expandDims2(x, 1);\n }\n reshapedInputs.push(x);\n }\n return this.mergeFunction(reshapedInputs);\n } else {\n let transposed = false;\n for (const x of inputs) {\n const xNDim = x.rank;\n if (xNDim == null) {\n const xShape = x.shape;\n const batchSize = xShape[0];\n const newShape = xShape.slice(1).concat([batchSize]);\n let xTransposed = reshape(x, [batchSize].concat(arrayProd(xShape.slice(1))));\n xTransposed = transpose(xTransposed, [1, 0]);\n xTransposed = reshape(xTransposed, newShape);\n reshapedInputs.push(xTransposed);\n transposed = true;\n } else if (xNDim > 1) {\n const dims = range2(1, xNDim).concat([0]);\n reshapedInputs.push(transpose(x, dims));\n transposed = true;\n } else {\n reshapedInputs.push(x);\n }\n }\n let y = this.mergeFunction(reshapedInputs);\n const yNDim = y.rank;\n if (transposed) {\n if (yNDim == null) {\n const yShape = y.shape;\n const yNDim2 = yShape.length;\n const batchSize = yShape[yNDim2 - 1];\n const newShape = [batchSize].concat(yShape.slice(0, yShape.length - 1));\n y = reshape(transpose(reshape(y, [-1, batchSize]), [1, 0]), newShape);\n } else if (yNDim > 1) {\n const dims = [yNDim - 1].concat(range2(0, yNDim - 1));\n y = transpose(y, dims);\n }\n }\n return y;\n }\n } else {\n return this.mergeFunction(inputs);\n }\n });\n }\n computeOutputShape(inputShape) {\n inputShape = inputShape;\n let outputShape;\n if (inputShape[0] == null) {\n outputShape = null;\n } else {\n outputShape = inputShape[0].slice(1);\n }\n for (let i2 = 1; i2 < inputShape.length; ++i2) {\n const shape = inputShape[i2] == null ? null : inputShape[i2].slice(1);\n outputShape = this.computeElementwiseOpOutputShape(outputShape, shape);\n }\n let batchSizes = [];\n for (const shape of inputShape) {\n if (shape != null && shape[0] !== null) {\n batchSizes.push(shape[0]);\n }\n }\n batchSizes = unique2(batchSizes);\n if (batchSizes.length === 1) {\n outputShape = batchSizes.concat(outputShape);\n } else {\n outputShape = [null].concat(outputShape);\n }\n return outputShape;\n }\n computeMask(inputs, mask) {\n return tidy(() => {\n if (mask == null) {\n return null;\n }\n if (!Array.isArray(mask)) {\n throw new ValueError(\"`mask` should be an Array\");\n }\n if (!Array.isArray(inputs)) {\n throw new ValueError(\"`inputs` should be an Array\");\n }\n if (mask.length !== inputs.length) {\n throw new ValueError(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${inputs.length} vs ${mask.length})`);\n }\n if (mask.every((m) => m == null)) {\n return null;\n }\n mask = mask.map((m) => m == null ? m : expandDims(m, 0));\n let output = mask[0];\n for (let i2 = 1; i2 < mask.length - 1; ++i2) {\n output = logicalAnd(output, mask[i2]);\n }\n return output;\n });\n }\n};\nvar Add2 = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0].clone();\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = add2(output, inputs[i2]);\n }\n return output;\n });\n }\n};\nAdd2.className = \"Add\";\nserialization_exports.registerClass(Add2);\nvar Multiply2 = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0].clone();\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = mul(output, inputs[i2]);\n }\n return output;\n });\n }\n};\nMultiply2.className = \"Multiply\";\nserialization_exports.registerClass(Multiply2);\nvar Average = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0].clone();\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = add2(output, inputs[i2]);\n }\n return mul(1 / inputs.length, output);\n });\n }\n};\nAverage.className = \"Average\";\nserialization_exports.registerClass(Average);\nvar Maximum2 = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0];\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = maximum(output, inputs[i2]);\n }\n return output;\n });\n }\n};\nMaximum2.className = \"Maximum\";\nserialization_exports.registerClass(Maximum2);\nvar Minimum2 = class extends Merge {\n constructor(args) {\n super(args);\n }\n mergeFunction(inputs) {\n return tidy(() => {\n let output = inputs[0];\n for (let i2 = 1; i2 < inputs.length; ++i2) {\n output = minimum(output, inputs[i2]);\n }\n return output;\n });\n }\n};\nMinimum2.className = \"Minimum\";\nserialization_exports.registerClass(Minimum2);\nvar Concatenate = class extends Merge {\n constructor(args) {\n super(args);\n this.DEFAULT_AXIS = -1;\n if (args == null) {\n args = {};\n }\n this.axis = args.axis == null ? this.DEFAULT_AXIS : args.axis;\n this.supportsMasking = true;\n this.reshapeRequired = false;\n }\n build(inputShape) {\n if (!(Array.isArray(inputShape) && Array.isArray(inputShape[0])) || inputShape.length === 1) {\n throw new ValueError(\"A `Concatenate` layer should be called on a list of at least 2 inputs\");\n }\n inputShape = inputShape;\n let allNoneShape = true;\n for (const shape of inputShape) {\n if (shape != null) {\n allNoneShape = false;\n break;\n }\n }\n if (allNoneShape) {\n return;\n }\n const shapeSet = [];\n for (let i2 = 0; i2 < inputShape.length; ++i2) {\n const shapeWithoutConcatAxis = inputShape[i2].slice();\n shapeWithoutConcatAxis.splice(this.axis, 1);\n let exists = false;\n for (const shape of shapeSet) {\n if (util_exports.arraysEqual(shape, shapeWithoutConcatAxis)) {\n exists = true;\n break;\n }\n }\n if (!exists) {\n shapeSet.push(shapeWithoutConcatAxis);\n }\n }\n if (shapeSet.length > 1) {\n throw new ValueError(\"A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: \" + JSON.stringify(inputShape));\n }\n }\n mergeFunction(inputs) {\n return tidy(() => {\n return concatenate(inputs, this.axis);\n });\n }\n computeOutputShape(inputShape) {\n if (!(Array.isArray(inputShape) && Array.isArray(inputShape[0]))) {\n throw new ValueError(\"A `Concatenate` layer should be called on a list of inputs.\");\n }\n const inputShapes = inputShape;\n const outputShape = inputShapes[0].slice();\n const axis = this.axis < 0 ? outputShape.length + this.axis : this.axis;\n for (const shape of inputShapes.slice(1)) {\n if (outputShape[axis] == null || shape[axis] == null) {\n outputShape[axis] = null;\n break;\n }\n outputShape[axis] += shape[axis];\n }\n return outputShape;\n }\n computeMask(inputs, mask) {\n if (mask == null) {\n return null;\n }\n if (!Array.isArray(mask)) {\n throw new ValueError(\"`mask` should be an array for Concatenate\");\n }\n if (!Array.isArray(inputs)) {\n throw new ValueError(\"`inputs` should be an array for Concatenate\");\n }\n if (mask.length !== inputs.length) {\n throw new ValueError(`Mismatch in the length of mask (${mask.length}) and the legnth of inputs (${inputs.length})`);\n }\n return tidy(() => {\n let allNullMasks = true;\n mask.forEach((m) => {\n if (m != null) {\n allNullMasks = false;\n return;\n }\n });\n if (allNullMasks) {\n return null;\n }\n const outputMasks = [];\n for (let i2 = 0; i2 < inputs.length; ++i2) {\n if (mask[i2] == null) {\n outputMasks.push(cast(onesLike(inputs[i2]), \"bool\"));\n } else if (mask[i2].rank < inputs[i2].rank) {\n outputMasks.push(expandDims(mask[i2], -1));\n } else {\n outputMasks.push(mask[i2]);\n }\n }\n const concatenatedMasks = concat(outputMasks, this.axis);\n return all(concatenatedMasks, -1, false);\n });\n }\n getConfig() {\n const config = {\n \"axis\": this.axis\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nConcatenate.className = \"Concatenate\";\nserialization_exports.registerClass(Concatenate);\nfunction interpretAxis(axis, dim) {\n while (axis < 0) {\n axis += dim;\n }\n return axis;\n}\nfunction batchDot(x, y, axes) {\n if (x.shape.length > 3 || y.shape.length > 3) {\n throw new NotImplementedError(\"batchDot is not implemented for tensors of 4D or higher rank yet\");\n }\n util_exports.assert(x.shape.length >= 2, () => `batchDot requires the rank of x to be >= 2, but got ${x.shape.length}`);\n util_exports.assert(x.shape.length >= 2, () => `batchDot requires the rank of y to be >= 2, but got ${y.shape.length}`);\n if (typeof axes === \"number\") {\n axes = [axes, axes];\n }\n if (x.dtype === \"complex64\" || y.dtype === \"complex64\") {\n throw new NotImplementedError(\"batchDot is not implemented for complex64-type Tensors yet.\");\n }\n const xNDim = x.shape.length;\n const yNDim = y.shape.length;\n if (axes == null) {\n axes = [xNDim - 1, yNDim - 2];\n }\n const axesArray = axes;\n return tidy(() => {\n let diff;\n if (xNDim > yNDim) {\n diff = xNDim - yNDim;\n const diffShape = [];\n for (let i2 = 0; i2 < diff; ++i2) {\n diffShape.push(1);\n }\n y = reshape(y, y.shape.concat(diffShape));\n } else if (yNDim > xNDim) {\n diff = yNDim - xNDim;\n const diffShape = [];\n for (let i2 = 0; i2 < diff; ++i2) {\n diffShape.push(1);\n }\n x = reshape(x, x.shape.concat(diffShape));\n } else {\n diff = 0;\n }\n let out;\n if (x.shape.length === 2 && y.shape.length === 2) {\n if (axesArray[0] === axesArray[1]) {\n out = sum2(mul(x, y), axesArray[0]);\n } else {\n out = sum2(mul(transpose(x, [1, 0]), y), axesArray[1]);\n }\n } else {\n const adjX = axesArray[0] !== x.shape.length - 1;\n const adjY = axesArray[1] === y.shape.length - 1;\n out = matMul(x, y, adjX, adjY);\n }\n if (diff > 0) {\n let idx;\n if (xNDim > yNDim) {\n idx = xNDim + yNDim - 3;\n } else {\n idx = xNDim - 1;\n }\n const squeezeAxes = [];\n for (let i2 = idx; i2 < idx + diff; ++i2) {\n squeezeAxes.push(i2);\n }\n out = squeeze(out, squeezeAxes);\n }\n if (out.shape.length === 1) {\n out = expandDims(out, 1);\n }\n return out;\n });\n}\nvar Dot = class extends Merge {\n constructor(args) {\n super(args);\n this.axes = args.axes;\n this.normalize = args.normalize == null ? false : args.normalize;\n this.supportsMasking = true;\n this.reshapeRequired = false;\n }\n build(inputShape) {\n util_exports.assert(Array.isArray(inputShape) && inputShape.length === 2 && Array.isArray(inputShape[0]) && Array.isArray(inputShape[1]), () => \"A `Dot` layer should be called on a list of exactly 2 inputs.\");\n const shape1 = inputShape[0];\n const shape2 = inputShape[1];\n if (shape1.length > 3 || shape2.length > 3) {\n throw new NotImplementedError(\"Dot layer does not support tensors of 4D or higher rank yet.\");\n }\n const axes = this.interpretAxes(shape1, shape2);\n if (shape1[axes[0]] !== shape2[axes[1]]) {\n throw new ValueError(`Dimension incompatibility: ${shape1[axes[0]]} !== ${shape2[axes[1]]}`);\n }\n }\n mergeFunction(inputs) {\n if (inputs.length !== 2) {\n throw new ValueError(`A \\`Dot\\` layer must be called on exactly 2 inputs, but received ${inputs.length} input(s).`);\n }\n let x1 = inputs[0];\n let x2 = inputs[1];\n let axes;\n if (!Array.isArray(this.axes)) {\n axes = [\n interpretAxis(this.axes, x1.shape.length),\n interpretAxis(this.axes, x2.shape.length)\n ];\n } else {\n axes = this.axes.map((axis, i2) => interpretAxis(axis, inputs[i2].shape.length));\n }\n if (this.normalize) {\n x1 = l2Normalize(x1, axes[0]);\n x2 = l2Normalize(x2, axes[1]);\n }\n return batchDot(x1, x2, axes);\n }\n interpretAxes(shape1, shape2) {\n let axes;\n if (!Array.isArray(this.axes)) {\n axes = [\n interpretAxis(this.axes, shape1.length),\n interpretAxis(this.axes, shape2.length)\n ];\n } else {\n axes = this.axes;\n }\n return axes;\n }\n computeOutputShape(inputShape) {\n util_exports.assert(Array.isArray(inputShape) && inputShape.length === 2 && Array.isArray(inputShape[0]) && Array.isArray(inputShape[1]), () => \"A `Dot` layer should be called on a list of exactly 2 inputs.\");\n const shape1 = inputShape[0].slice();\n const shape2 = inputShape[1].slice();\n if (shape1.length > 3 || shape2.length > 3) {\n throw new NotImplementedError(\"Dot layer does not support tensors of 4D or higher rank yet.\");\n }\n const axes = this.interpretAxes(shape1, shape2);\n shape1.splice(axes[0], 1);\n shape2.splice(axes[1], 1);\n shape2.splice(0, 1);\n const outputShape = shape1.concat(shape2);\n if (outputShape.length === 1) {\n outputShape.push(1);\n }\n return outputShape;\n }\n computeMask(inputs, mask) {\n return null;\n }\n getConfig() {\n const config = {\n \"axes\": this.axes,\n \"normalize\": this.normalize\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nDot.className = \"Dot\";\nserialization_exports.registerClass(Dot);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/noise.js\nvar GaussianNoise = class extends Layer {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n this.stddev = args.stddev;\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = { stddev: this.stddev };\n Object.assign(config, baseConfig);\n return config;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n const noised = () => add2(randomNormal2(input2.shape, 0, this.stddev), input2);\n const output = inTrainPhase(noised, () => input2, kwargs[\"training\"] || false);\n return output;\n });\n }\n};\nGaussianNoise.className = \"GaussianNoise\";\nserialization_exports.registerClass(GaussianNoise);\nvar GaussianDropout = class extends Layer {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n this.rate = args.rate;\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = { rate: this.rate };\n Object.assign(config, baseConfig);\n return config;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n const input2 = getExactlyOneTensor(inputs);\n if (this.rate > 0 && this.rate < 1) {\n const noised = () => {\n const stddev = Math.sqrt(this.rate / (1 - this.rate));\n return mul(input2, randomNormal2(input2.shape, 1, stddev));\n };\n return inTrainPhase(noised, () => input2, kwargs[\"training\"] || false);\n }\n return input2;\n });\n }\n};\nGaussianDropout.className = \"GaussianDropout\";\nserialization_exports.registerClass(GaussianDropout);\nvar AlphaDropout = class extends Layer {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n this.rate = args.rate;\n this.noiseShape = args.noiseShape;\n }\n _getNoiseShape(inputs) {\n return this.noiseShape || getExactlyOneTensor(inputs).shape;\n }\n computeOutputShape(inputShape) {\n return inputShape;\n }\n getConfig() {\n const baseConfig = super.getConfig();\n const config = { rate: this.rate };\n Object.assign(config, baseConfig);\n return config;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n if (this.rate < 1 && this.rate > 0) {\n const noiseShape = this._getNoiseShape(inputs);\n const droppedInputs = () => {\n const input2 = getExactlyOneTensor(inputs);\n const alpha = 1.6732632423543772;\n const scale2 = 1.0507009873554805;\n const alphaP = -alpha * scale2;\n let keptIdx = greaterEqual(randomUniform(noiseShape), this.rate);\n keptIdx = cast2(keptIdx, \"float32\");\n const a = ((1 - this.rate) * (1 + this.rate * alphaP ** 2)) ** -0.5;\n const b = -a * alphaP * this.rate;\n const x = add2(mul(input2, keptIdx), mul(add2(keptIdx, -1), alphaP));\n return add2(mul(x, a), b);\n };\n return inTrainPhase(droppedInputs, () => getExactlyOneTensor(inputs), kwargs[\"training\"] || false);\n }\n return inputs;\n });\n }\n};\nAlphaDropout.className = \"AlphaDropout\";\nserialization_exports.registerClass(AlphaDropout);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/normalization.js\nfunction batchNormalization(x, mean5, variance, beta, gamma, epsilon3 = 1e-3) {\n let out;\n if (x.rank === 2) {\n out = batchNorm2d(x, mean5, variance, beta, gamma, epsilon3);\n } else if (x.rank === 3) {\n out = batchNorm3d(x, mean5, variance, beta, gamma, epsilon3);\n } else if (x.rank === 4) {\n out = batchNorm4d(x, mean5, variance, beta, gamma, epsilon3);\n } else {\n throw new NotImplementedError(`batchNormalization is not implemented for array of rank ${x.rank} yet`);\n }\n return out;\n}\nfunction regularNormalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3 = 1e-3) {\n return tidy(() => {\n const meanAndVariance = moments(x, reductionAxes);\n const mean5 = meanAndVariance.mean;\n const variance = meanAndVariance.variance;\n const normed = batchNormalization(x, mean5, variance, beta, gamma, epsilon3);\n return [normed, mean5, variance];\n });\n}\nfunction broadcastNormalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3 = 1e-3) {\n return tidy(() => {\n const meanAndVariance = moments(x, reductionAxes);\n const mean5 = meanAndVariance.mean;\n const variance = meanAndVariance.variance;\n const targetShape = [];\n for (const axis of range2(0, x.rank)) {\n if (reductionAxes.indexOf(axis) !== -1) {\n targetShape.push(1);\n } else {\n targetShape.push(x.shape[axis]);\n }\n }\n const broadcastMean = reshape(mean5, targetShape);\n const broadcastVariance = reshape(variance, targetShape);\n const broadcastGamma = gamma == null ? null : reshape(gamma, targetShape);\n const broadcastBeta = beta == null ? null : reshape(beta, targetShape);\n const normed = batchNormalization(x, broadcastMean, broadcastVariance, broadcastBeta, broadcastGamma, epsilon3);\n return [normed, mean5, variance];\n });\n}\nfunction normalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3 = 1e-3) {\n if (util_exports.arraysEqual(reductionAxes.slice().sort(), range2(0, x.rank - 1))) {\n return regularNormalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3);\n } else {\n return broadcastNormalizeBatchInTraining(x, gamma, beta, reductionAxes, epsilon3);\n }\n}\nvar BatchNormalization = class extends Layer {\n constructor(args) {\n if (args == null) {\n args = {};\n }\n super(args);\n this.supportsMasking = true;\n this.axis = args.axis == null ? -1 : args.axis;\n this.momentum = args.momentum == null ? 0.99 : args.momentum;\n this.epsilon = args.epsilon == null ? 1e-3 : args.epsilon;\n this.center = args.center == null ? true : args.center;\n this.scale = args.scale == null ? true : args.scale;\n this.betaInitializer = getInitializer(args.betaInitializer || \"zeros\");\n this.gammaInitializer = getInitializer(args.gammaInitializer || \"ones\");\n this.movingMeanInitializer = getInitializer(args.movingMeanInitializer || \"zeros\");\n this.movingVarianceInitializer = getInitializer(args.movingVarianceInitializer || \"ones\");\n this.betaConstraint = getConstraint(args.betaConstraint);\n this.gammaConstraint = getConstraint(args.gammaConstraint);\n this.betaRegularizer = getRegularizer(args.betaRegularizer);\n this.gammaRegularizer = getRegularizer(args.gammaRegularizer);\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const axis = this.axis >= 0 ? this.axis : this.axis + inputShape.length;\n const dim = inputShape[axis];\n if (dim == null) {\n throw new ValueError(`Axis ${axis} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(inputShape)}.`);\n }\n this.inputSpec = [new InputSpec({ ndim: inputShape.length, axes: { [axis]: dim } })];\n const shape = [dim];\n if (this.scale) {\n this.gamma = this.addWeight(\"gamma\", shape, null, this.gammaInitializer, this.gammaRegularizer, true, this.gammaConstraint);\n }\n if (this.center) {\n this.beta = this.addWeight(\"beta\", shape, null, this.betaInitializer, this.betaRegularizer, true, this.betaConstraint);\n }\n this.movingMean = this.addWeight(\"moving_mean\", shape, null, this.movingMeanInitializer, null, false);\n this.movingVariance = this.addWeight(\"moving_variance\", shape, null, this.movingVarianceInitializer, null, false);\n this.built = true;\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const training = kwargs[\"training\"] == null ? false : kwargs[\"training\"];\n const input2 = getExactlyOneTensor(inputs);\n const inputShape = input2.shape;\n const ndim = inputShape.length;\n const reductionAxes = range2(0, ndim);\n const axis = this.axis >= 0 ? this.axis : this.axis + ndim;\n reductionAxes.splice(axis, 1);\n const broadcastShape = pyListRepeat(1, ndim);\n broadcastShape[axis] = inputShape[axis];\n const sortedReductionAxes = reductionAxes.slice();\n sortedReductionAxes.sort();\n const needsBroadcasting = !util_exports.arraysEqual(sortedReductionAxes, range2(0, ndim).slice(0, ndim - 1));\n const normalizeInference = () => {\n if (needsBroadcasting) {\n const broadcastMovingMean = reshape(this.movingMean.read(), broadcastShape);\n const broadcastMovingVariance = reshape(this.movingVariance.read(), broadcastShape);\n const broadcastBeta = this.center ? reshape(this.beta.read(), broadcastShape) : null;\n const broadcastGamma = this.scale ? reshape(this.gamma.read(), broadcastShape) : null;\n return batchNormalization(input2, broadcastMovingMean, broadcastMovingVariance, broadcastBeta, broadcastGamma, this.epsilon);\n } else {\n return batchNormalization(input2, this.movingMean.read(), this.movingVariance.read(), this.beta == null ? null : this.beta.read(), this.gamma == null ? null : this.gamma.read(), this.epsilon);\n }\n };\n if (!training) {\n return normalizeInference();\n }\n const [normedTraining, mean5, variance] = normalizeBatchInTraining(input2, this.gamma.read(), this.beta.read(), reductionAxes, this.epsilon);\n const doMovingAverage = (variable2, value, momentum) => {\n tidy(() => {\n const decay = 1 - momentum;\n const origValue = variable2.read();\n const updateDelta = mul(sub(origValue, value), decay);\n variable2.write(sub(origValue, updateDelta));\n });\n };\n const updateMovingMeanAndVariance = () => {\n doMovingAverage(this.movingMean, mean5, this.momentum);\n doMovingAverage(this.movingVariance, variance, this.momentum);\n };\n updateMovingMeanAndVariance();\n return normedTraining;\n });\n }\n getConfig() {\n const config = {\n axis: this.axis,\n momentum: this.momentum,\n epsilon: this.epsilon,\n center: this.center,\n scale: this.scale,\n betaInitializer: serializeInitializer(this.betaInitializer),\n gammaInitializer: serializeInitializer(this.gammaInitializer),\n movingMeanInitializer: serializeInitializer(this.movingMeanInitializer),\n movingVarianceInitializer: serializeInitializer(this.movingVarianceInitializer),\n betaRegularizer: serializeRegularizer(this.betaRegularizer),\n gammaRegularizer: serializeRegularizer(this.gammaRegularizer),\n betaConstraint: serializeConstraint(this.betaConstraint),\n gammaConstraint: serializeConstraint(this.gammaConstraint)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nBatchNormalization.className = \"BatchNormalization\";\nserialization_exports.registerClass(BatchNormalization);\nvar LayerNormalization = class extends Layer {\n constructor(args) {\n if (args == null) {\n args = {};\n }\n super(args);\n this.axis = args.axis == null ? -1 : args.axis;\n if (typeof this.axis === \"number\") {\n if (!Number.isInteger(this.axis)) {\n throw new Error(`Expected axis to be an integer, but received ${this.axis}`);\n }\n } else if (Array.isArray(this.axis)) {\n for (const axis of this.axis) {\n if (!Number.isInteger(axis)) {\n throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`);\n }\n }\n } else {\n throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);\n }\n this.epsilon = args.epsilon == null ? 1e-3 : args.epsilon;\n this.center = args.center == null ? true : args.center;\n this.scale = args.scale == null ? true : args.scale;\n this.betaInitializer = getInitializer(args.betaInitializer || \"zeros\");\n this.gammaInitializer = getInitializer(args.gammaInitializer || \"ones\");\n this.betaRegularizer = getRegularizer(args.betaRegularizer);\n this.gammaRegularizer = getRegularizer(args.gammaRegularizer);\n this.supportsMasking = true;\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const nDims = inputShape.length;\n if (typeof this.axis === \"number\") {\n this.axis = [this.axis];\n }\n for (let i2 = 0; i2 < this.axis.length; ++i2) {\n if (this.axis[i2] < 0) {\n this.axis[i2] += nDims;\n }\n }\n for (const axis of this.axis) {\n if (axis < 0 || axis >= nDims) {\n throw new Error(`Invalid axis: ${axis}`);\n }\n }\n if (this.axis.length !== unique2(this.axis).length) {\n throw new Error(`Found duplicate axes in: ${this.axis}`);\n }\n const paramShape = this.axis.map((axis) => inputShape[axis]);\n const trainable = true;\n if (this.scale) {\n this.gamma = this.addWeight(\"gamma\", paramShape, \"float32\", this.gammaInitializer, this.gammaRegularizer, trainable);\n } else {\n this.gamma = null;\n }\n if (this.center) {\n this.beta = this.addWeight(\"beta\", paramShape, \"float32\", this.betaInitializer, this.betaRegularizer, trainable);\n } else {\n this.beta = null;\n }\n this.built = true;\n }\n call(inputs, kwargs) {\n const input2 = getExactlyOneTensor(inputs);\n const inputShape = input2.shape;\n const nDims = inputShape.length;\n return tidy(() => {\n const keepDims = true;\n let { mean: mean5, variance } = moments(input2, this.axis, keepDims);\n const broadcastShape = pyListRepeat(1, nDims);\n for (const dim of this.axis) {\n broadcastShape[dim] = inputShape[dim];\n }\n const broadcast = (v) => {\n if (v != null && v.shape.length !== nDims) {\n return reshape(v, broadcastShape);\n } else {\n return v;\n }\n };\n let scale2 = this.scale ? broadcast(this.gamma.read()) : null;\n let offset = this.center ? broadcast(this.beta.read()) : null;\n const momentsTiling = [];\n const scaleOffsetTiling = [];\n for (let i2 = 0; i2 < nDims; ++i2) {\n if (this.axis.indexOf(i2) !== -1) {\n momentsTiling.push(inputShape[i2]);\n scaleOffsetTiling.push(1);\n } else {\n momentsTiling.push(1);\n scaleOffsetTiling.push(inputShape[i2]);\n }\n }\n mean5 = tile(mean5, momentsTiling);\n variance = tile(variance, momentsTiling);\n if (scale2 != null) {\n scale2 = tile(scale2, scaleOffsetTiling);\n }\n if (offset != null) {\n offset = tile(offset, scaleOffsetTiling);\n }\n return batchNormalization(input2, mean5, variance, offset, scale2, this.epsilon);\n });\n }\n getConfig() {\n const config = {\n axis: this.axis,\n epsilon: this.epsilon,\n center: this.center,\n scale: this.scale,\n betaInitializer: serializeInitializer(this.betaInitializer),\n gammaInitializer: serializeInitializer(this.gammaInitializer),\n betaRegularizer: serializeRegularizer(this.betaRegularizer),\n gammaRegularizer: serializeRegularizer(this.gammaRegularizer)\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nLayerNormalization.className = \"LayerNormalization\";\nserialization_exports.registerClass(LayerNormalization);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/padding.js\nfunction spatial2dPadding(x, padding, dataFormat) {\n return tidy(() => {\n if (x.rank !== 4) {\n throw new ValueError(`temporalPadding expects input tensor to be 4-D, but received a ${x.rank}-D tensor.`);\n }\n if (padding == null) {\n padding = [[1, 1], [1, 1]];\n }\n if (padding.length !== 2 || padding[0].length !== 2 || padding[1].length !== 2) {\n throw new ValueError(\"spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.\");\n }\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n if (dataFormat !== \"channelsLast\" && dataFormat !== \"channelsFirst\") {\n throw new ValueError(`Unknown data format: ${dataFormat}. Supported data formats are 'channelsLast' and 'channelsFirst.`);\n }\n let pattern;\n if (dataFormat === \"channelsFirst\") {\n pattern = [[0, 0], [0, 0], padding[0], padding[1]];\n } else {\n pattern = [[0, 0], padding[0], padding[1], [0, 0]];\n }\n return pad(x, pattern);\n });\n}\nvar ZeroPadding2D = class extends Layer {\n constructor(args) {\n if (args == null) {\n args = {};\n }\n super(args);\n this.dataFormat = args.dataFormat == null ? imageDataFormat() : args.dataFormat;\n if (args.padding == null) {\n this.padding = [[1, 1], [1, 1]];\n } else if (typeof args.padding === \"number\") {\n this.padding = [[args.padding, args.padding], [args.padding, args.padding]];\n } else {\n args.padding = args.padding;\n if (args.padding.length !== 2) {\n throw new ValueError(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${args.padding.length} array.`);\n }\n let heightPadding;\n let widthPadding;\n if (typeof args.padding[0] === \"number\") {\n heightPadding = [args.padding[0], args.padding[0]];\n widthPadding = [args.padding[1], args.padding[1]];\n } else {\n args.padding = args.padding;\n if (args.padding[0].length !== 2) {\n throw new ValueError(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${args.padding[0].length} array.`);\n }\n heightPadding = args.padding[0];\n if (args.padding[1].length !== 2) {\n throw new ValueError(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${args.padding[1].length} array.`);\n }\n widthPadding = args.padding[1];\n }\n this.padding = [heightPadding, widthPadding];\n }\n this.inputSpec = [new InputSpec({ ndim: 4 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n let rows;\n let cols;\n if (this.dataFormat === \"channelsFirst\") {\n if (inputShape[2] != null && inputShape[2] >= 0) {\n rows = inputShape[2] + this.padding[0][0] + this.padding[0][1];\n } else {\n rows = null;\n }\n if (inputShape[3] != null && inputShape[3] >= 0) {\n cols = inputShape[3] + this.padding[1][0] + this.padding[1][1];\n } else {\n cols = null;\n }\n return [inputShape[0], inputShape[1], rows, cols];\n } else {\n if (inputShape[1] != null && inputShape[1] >= 0) {\n rows = inputShape[1] + this.padding[0][0] + this.padding[0][1];\n } else {\n rows = null;\n }\n if (inputShape[2] != null && inputShape[2] >= 0) {\n cols = inputShape[2] + this.padding[1][0] + this.padding[1][1];\n } else {\n cols = null;\n }\n return [inputShape[0], rows, cols, inputShape[3]];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => spatial2dPadding(getExactlyOneTensor(inputs), this.padding, this.dataFormat));\n }\n getConfig() {\n const config = {\n padding: this.padding,\n dataFormat: this.dataFormat\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nZeroPadding2D.className = \"ZeroPadding2D\";\nserialization_exports.registerClass(ZeroPadding2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/pooling.js\nfunction pool2d(x, poolSize, strides, padding, dataFormat, poolMode) {\n return tidy(() => {\n checkDataFormat(dataFormat);\n checkPoolMode(poolMode);\n checkPaddingMode(padding);\n if (strides == null) {\n strides = [1, 1];\n }\n if (padding == null) {\n padding = \"valid\";\n }\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n if (poolMode == null) {\n poolMode = \"max\";\n }\n x = preprocessConv2DInput(x, dataFormat);\n let y;\n const paddingString = padding === \"same\" ? \"same\" : \"valid\";\n if (poolMode === \"max\") {\n y = maxPool(x, poolSize, strides, paddingString);\n } else {\n y = avgPool(\n x,\n poolSize,\n strides,\n paddingString\n );\n }\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 3, 1, 2]);\n }\n return y;\n });\n}\nfunction pool3d(x, poolSize, strides, padding, dataFormat, poolMode) {\n return tidy(() => {\n checkDataFormat(dataFormat);\n checkPoolMode(poolMode);\n checkPaddingMode(padding);\n if (strides == null) {\n strides = [1, 1, 1];\n }\n if (padding == null) {\n padding = \"valid\";\n }\n if (dataFormat == null) {\n dataFormat = imageDataFormat();\n }\n if (poolMode == null) {\n poolMode = \"max\";\n }\n x = preprocessConv3DInput(x, dataFormat);\n let y;\n const paddingString = padding === \"same\" ? \"same\" : \"valid\";\n if (poolMode === \"max\") {\n y = maxPool3d(x, poolSize, strides, paddingString);\n } else {\n y = avgPool3d(x, poolSize, strides, paddingString);\n }\n if (dataFormat === \"channelsFirst\") {\n y = transpose(y, [0, 4, 1, 2, 3]);\n }\n return y;\n });\n}\nvar Pooling1D = class extends Layer {\n constructor(args) {\n if (args.poolSize == null) {\n args.poolSize = 2;\n }\n super(args);\n if (typeof args.poolSize === \"number\") {\n this.poolSize = [args.poolSize];\n } else if (Array.isArray(args.poolSize) && args.poolSize.length === 1 && typeof args.poolSize[0] === \"number\") {\n this.poolSize = args.poolSize;\n } else {\n throw new ValueError(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(args.poolSize)}`);\n }\n assertPositiveInteger(this.poolSize, \"poolSize\");\n if (args.strides == null) {\n this.strides = this.poolSize;\n } else {\n if (typeof args.strides === \"number\") {\n this.strides = [args.strides];\n } else if (Array.isArray(args.strides) && args.strides.length === 1 && typeof args.strides[0] === \"number\") {\n this.strides = args.strides;\n } else {\n throw new ValueError(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(args.strides)}`);\n }\n }\n assertPositiveInteger(this.strides, \"strides\");\n this.padding = args.padding == null ? \"valid\" : args.padding;\n checkPaddingMode(this.padding);\n this.inputSpec = [new InputSpec({ ndim: 3 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const length = convOutputLength(inputShape[1], this.poolSize[0], this.padding, this.strides[0]);\n return [inputShape[0], length, inputShape[2]];\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n inputs = expandDims2(getExactlyOneTensor(inputs), 2);\n const output = this.poolingFunction(getExactlyOneTensor(inputs), [this.poolSize[0], 1], [this.strides[0], 1], this.padding, \"channelsLast\");\n return squeeze(output, [2]);\n });\n }\n getConfig() {\n const config = {\n poolSize: this.poolSize,\n padding: this.padding,\n strides: this.strides\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar MaxPooling1D = class extends Pooling1D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool2d(inputs, poolSize, strides, padding, dataFormat, \"max\");\n }\n};\nMaxPooling1D.className = \"MaxPooling1D\";\nserialization_exports.registerClass(MaxPooling1D);\nvar AveragePooling1D = class extends Pooling1D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool2d(inputs, poolSize, strides, padding, dataFormat, \"avg\");\n }\n};\nAveragePooling1D.className = \"AveragePooling1D\";\nserialization_exports.registerClass(AveragePooling1D);\nvar Pooling2D = class extends Layer {\n constructor(args) {\n if (args.poolSize == null) {\n args.poolSize = [2, 2];\n }\n super(args);\n this.poolSize = Array.isArray(args.poolSize) ? args.poolSize : [args.poolSize, args.poolSize];\n if (args.strides == null) {\n this.strides = this.poolSize;\n } else if (Array.isArray(args.strides)) {\n if (args.strides.length !== 2) {\n throw new ValueError(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${args.strides.length}.`);\n }\n this.strides = args.strides;\n } else {\n this.strides = [args.strides, args.strides];\n }\n assertPositiveInteger(this.poolSize, \"poolSize\");\n assertPositiveInteger(this.strides, \"strides\");\n this.padding = args.padding == null ? \"valid\" : args.padding;\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n checkPaddingMode(this.padding);\n this.inputSpec = [new InputSpec({ ndim: 4 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n let rows = this.dataFormat === \"channelsFirst\" ? inputShape[2] : inputShape[1];\n let cols = this.dataFormat === \"channelsFirst\" ? inputShape[3] : inputShape[2];\n rows = convOutputLength(rows, this.poolSize[0], this.padding, this.strides[0]);\n cols = convOutputLength(cols, this.poolSize[1], this.padding, this.strides[1]);\n if (this.dataFormat === \"channelsFirst\") {\n return [inputShape[0], inputShape[1], rows, cols];\n } else {\n return [inputShape[0], rows, cols, inputShape[3]];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n return this.poolingFunction(getExactlyOneTensor(inputs), this.poolSize, this.strides, this.padding, this.dataFormat);\n });\n }\n getConfig() {\n const config = {\n poolSize: this.poolSize,\n padding: this.padding,\n strides: this.strides,\n dataFormat: this.dataFormat\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar MaxPooling2D = class extends Pooling2D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool2d(inputs, poolSize, strides, padding, dataFormat, \"max\");\n }\n};\nMaxPooling2D.className = \"MaxPooling2D\";\nserialization_exports.registerClass(MaxPooling2D);\nvar AveragePooling2D = class extends Pooling2D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool2d(inputs, poolSize, strides, padding, dataFormat, \"avg\");\n }\n};\nAveragePooling2D.className = \"AveragePooling2D\";\nserialization_exports.registerClass(AveragePooling2D);\nvar Pooling3D = class extends Layer {\n constructor(args) {\n if (args.poolSize == null) {\n args.poolSize = [2, 2, 2];\n }\n super(args);\n this.poolSize = Array.isArray(args.poolSize) ? args.poolSize : [args.poolSize, args.poolSize, args.poolSize];\n if (args.strides == null) {\n this.strides = this.poolSize;\n } else if (Array.isArray(args.strides)) {\n if (args.strides.length !== 3) {\n throw new ValueError(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${args.strides.length}.`);\n }\n this.strides = args.strides;\n } else {\n this.strides = [args.strides, args.strides, args.strides];\n }\n assertPositiveInteger(this.poolSize, \"poolSize\");\n assertPositiveInteger(this.strides, \"strides\");\n this.padding = args.padding == null ? \"valid\" : args.padding;\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n checkPaddingMode(this.padding);\n this.inputSpec = [new InputSpec({ ndim: 5 })];\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n let depths = this.dataFormat === \"channelsFirst\" ? inputShape[2] : inputShape[1];\n let rows = this.dataFormat === \"channelsFirst\" ? inputShape[3] : inputShape[2];\n let cols = this.dataFormat === \"channelsFirst\" ? inputShape[4] : inputShape[3];\n depths = convOutputLength(depths, this.poolSize[0], this.padding, this.strides[0]);\n rows = convOutputLength(rows, this.poolSize[1], this.padding, this.strides[1]);\n cols = convOutputLength(cols, this.poolSize[2], this.padding, this.strides[2]);\n if (this.dataFormat === \"channelsFirst\") {\n return [inputShape[0], inputShape[1], depths, rows, cols];\n } else {\n return [inputShape[0], depths, rows, cols, inputShape[4]];\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n this.invokeCallHook(inputs, kwargs);\n return this.poolingFunction(getExactlyOneTensor(inputs), this.poolSize, this.strides, this.padding, this.dataFormat);\n });\n }\n getConfig() {\n const config = {\n poolSize: this.poolSize,\n padding: this.padding,\n strides: this.strides,\n dataFormat: this.dataFormat\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar MaxPooling3D = class extends Pooling3D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool3d(inputs, poolSize, strides, padding, dataFormat, \"max\");\n }\n};\nMaxPooling3D.className = \"MaxPooling3D\";\nserialization_exports.registerClass(MaxPooling3D);\nvar AveragePooling3D = class extends Pooling3D {\n constructor(args) {\n super(args);\n }\n poolingFunction(inputs, poolSize, strides, padding, dataFormat) {\n checkDataFormat(dataFormat);\n checkPaddingMode(padding);\n return pool3d(inputs, poolSize, strides, padding, dataFormat, \"avg\");\n }\n};\nAveragePooling3D.className = \"AveragePooling3D\";\nserialization_exports.registerClass(AveragePooling3D);\nvar GlobalPooling1D = class extends Layer {\n constructor(args) {\n super(args);\n this.inputSpec = [new InputSpec({ ndim: 3 })];\n }\n computeOutputShape(inputShape) {\n return [inputShape[0], inputShape[2]];\n }\n call(inputs, kwargs) {\n throw new NotImplementedError();\n }\n};\nvar GlobalAveragePooling1D = class extends GlobalPooling1D {\n constructor(args) {\n super(args || {});\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const input2 = getExactlyOneTensor(inputs);\n return mean(input2, 1);\n });\n }\n};\nGlobalAveragePooling1D.className = \"GlobalAveragePooling1D\";\nserialization_exports.registerClass(GlobalAveragePooling1D);\nvar GlobalMaxPooling1D = class extends GlobalPooling1D {\n constructor(args) {\n super(args || {});\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const input2 = getExactlyOneTensor(inputs);\n return max(input2, 1);\n });\n }\n};\nGlobalMaxPooling1D.className = \"GlobalMaxPooling1D\";\nserialization_exports.registerClass(GlobalMaxPooling1D);\nvar GlobalPooling2D = class extends Layer {\n constructor(args) {\n super(args);\n this.dataFormat = args.dataFormat == null ? \"channelsLast\" : args.dataFormat;\n checkDataFormat(this.dataFormat);\n this.inputSpec = [new InputSpec({ ndim: 4 })];\n }\n computeOutputShape(inputShape) {\n inputShape = inputShape;\n if (this.dataFormat === \"channelsLast\") {\n return [inputShape[0], inputShape[3]];\n } else {\n return [inputShape[0], inputShape[1]];\n }\n }\n call(inputs, kwargs) {\n throw new NotImplementedError();\n }\n getConfig() {\n const config = { dataFormat: this.dataFormat };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n};\nvar GlobalAveragePooling2D = class extends GlobalPooling2D {\n call(inputs, kwargs) {\n return tidy(() => {\n const input2 = getExactlyOneTensor(inputs);\n if (this.dataFormat === \"channelsLast\") {\n return mean(input2, [1, 2]);\n } else {\n return mean(input2, [2, 3]);\n }\n });\n }\n};\nGlobalAveragePooling2D.className = \"GlobalAveragePooling2D\";\nserialization_exports.registerClass(GlobalAveragePooling2D);\nvar GlobalMaxPooling2D = class extends GlobalPooling2D {\n call(inputs, kwargs) {\n return tidy(() => {\n const input2 = getExactlyOneTensor(inputs);\n if (this.dataFormat === \"channelsLast\") {\n return max(input2, [1, 2]);\n } else {\n return max(input2, [2, 3]);\n }\n });\n }\n};\nGlobalMaxPooling2D.className = \"GlobalMaxPooling2D\";\nserialization_exports.registerClass(GlobalMaxPooling2D);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/layers/wrappers.js\nvar Wrapper = class extends Layer {\n constructor(args) {\n super(args);\n this.layer = args.layer;\n }\n build(inputShape) {\n this.built = true;\n }\n get trainable() {\n if (this.layer != null) {\n return this.layer.trainable;\n } else {\n return false;\n }\n }\n set trainable(value) {\n if (this.layer != null) {\n this.layer.trainable = value;\n }\n }\n get trainableWeights() {\n return this.layer.trainableWeights;\n }\n get nonTrainableWeights() {\n return this.layer.nonTrainableWeights;\n }\n get updates() {\n return this.layer._updates;\n }\n get losses() {\n return this.layer.losses;\n }\n getWeights() {\n return this.layer.getWeights();\n }\n setWeights(weights) {\n this.layer.setWeights(weights);\n }\n getConfig() {\n const config = {\n \"layer\": {\n \"className\": this.layer.getClassName(),\n \"config\": this.layer.getConfig()\n }\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n setFastWeightInitDuringBuild(value) {\n super.setFastWeightInitDuringBuild(value);\n if (this.layer != null) {\n this.layer.setFastWeightInitDuringBuild(value);\n }\n }\n static fromConfig(cls, config, customObjects = {}) {\n const layerConfig = config[\"layer\"];\n const layer = deserialize(layerConfig, customObjects);\n delete config[\"layer\"];\n const newConfig = { layer };\n Object.assign(newConfig, config);\n return new cls(newConfig);\n }\n};\nvar TimeDistributed = class extends Wrapper {\n constructor(args) {\n super(args);\n this.supportsMasking = true;\n }\n build(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n if (inputShape.length < 3) {\n throw new ValueError(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(inputShape)}`);\n }\n this.inputSpec = [{ shape: inputShape }];\n const childInputShape = [inputShape[0]].concat(inputShape.slice(2));\n if (!this.layer.built) {\n this.layer.build(childInputShape);\n this.layer.built = true;\n }\n super.build(inputShape);\n }\n computeOutputShape(inputShape) {\n inputShape = getExactlyOneShape(inputShape);\n const childInputShape = [inputShape[0]].concat(inputShape.slice(2));\n const childOutputShape = this.layer.computeOutputShape(childInputShape);\n const timesteps = inputShape[1];\n return [childOutputShape[0], timesteps].concat(childOutputShape.slice(1));\n }\n call(inputs, kwargs) {\n return tidy(() => {\n inputs = getExactlyOneTensor(inputs);\n const step5 = (inputs2, states) => {\n const output = getExactlyOneTensor(this.layer.call(inputs2, kwargs));\n return [output, []];\n };\n const rnnOutputs = rnn(step5, inputs, [], false, null, null, false, true);\n const y = rnnOutputs[1];\n return y;\n });\n }\n};\nTimeDistributed.className = \"TimeDistributed\";\nserialization_exports.registerClass(TimeDistributed);\nfunction checkBidirectionalMergeMode(value) {\n checkStringTypeUnionValue(VALID_BIDIRECTIONAL_MERGE_MODES, \"BidirectionalMergeMode\", value);\n}\nvar DEFAULT_BIDIRECTIONAL_MERGE_MODE = \"concat\";\nvar Bidirectional = class extends Wrapper {\n constructor(args) {\n super(args);\n const layerConfig = args.layer.getConfig();\n const forwDict = {};\n forwDict[\"className\"] = args.layer.getClassName();\n forwDict[\"config\"] = layerConfig;\n this.forwardLayer = deserialize(forwDict);\n layerConfig[\"goBackwards\"] = layerConfig[\"goBackwards\"] === true ? false : true;\n const backDict = {};\n backDict[\"className\"] = args.layer.getClassName();\n backDict[\"config\"] = layerConfig;\n this.backwardLayer = deserialize(backDict);\n this.forwardLayer.name = \"forward_\" + this.forwardLayer.name;\n this.backwardLayer.name = \"backward_\" + this.backwardLayer.name;\n this.mergeMode = args.mergeMode === void 0 ? DEFAULT_BIDIRECTIONAL_MERGE_MODE : args.mergeMode;\n checkBidirectionalMergeMode(this.mergeMode);\n if (args.weights) {\n throw new NotImplementedError(\"weights support is not implemented for Bidirectional layer yet.\");\n }\n this._stateful = args.layer.stateful;\n this.returnSequences = args.layer.returnSequences;\n this.returnState = args.layer.returnState;\n this.supportsMasking = true;\n this._trainable = true;\n this.inputSpec = args.layer.inputSpec;\n this.numConstants = null;\n }\n get trainable() {\n return this._trainable;\n }\n set trainable(value) {\n this._trainable = value;\n if (this.forwardLayer != null) {\n this.forwardLayer.trainable = value;\n }\n if (this.backwardLayer != null) {\n this.backwardLayer.trainable = value;\n }\n }\n getWeights() {\n return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights());\n }\n setWeights(weights) {\n const numWeights = weights.length;\n const numeightsOver2 = Math.floor(numWeights / 2);\n this.forwardLayer.setWeights(weights.slice(0, numeightsOver2));\n this.backwardLayer.setWeights(weights.slice(numeightsOver2));\n }\n computeOutputShape(inputShape) {\n let layerShapes = this.forwardLayer.computeOutputShape(inputShape);\n if (!(Array.isArray(layerShapes) && Array.isArray(layerShapes[0]))) {\n layerShapes = [layerShapes];\n }\n layerShapes = layerShapes;\n let outputShape;\n let outputShapes;\n let stateShape;\n if (this.returnState) {\n stateShape = layerShapes.slice(1);\n outputShape = layerShapes[0];\n } else {\n outputShape = layerShapes[0];\n }\n outputShape = outputShape;\n if (this.mergeMode === \"concat\") {\n outputShape[outputShape.length - 1] *= 2;\n outputShapes = [outputShape];\n } else if (this.mergeMode == null) {\n outputShapes = [outputShape, outputShape.slice()];\n } else {\n outputShapes = [outputShape];\n }\n if (this.returnState) {\n if (this.mergeMode == null) {\n return outputShapes.concat(stateShape).concat(stateShape.slice());\n }\n return [outputShape].concat(stateShape).concat(stateShape.slice());\n }\n return singletonOrArray(outputShapes);\n }\n apply(inputs, kwargs) {\n let initialState = kwargs == null ? null : kwargs[\"initialState\"];\n let constants = kwargs == null ? null : kwargs[\"constants\"];\n if (kwargs == null) {\n kwargs = {};\n }\n const standardized = standardizeArgs(inputs, initialState, constants, this.numConstants);\n inputs = standardized.inputs;\n initialState = standardized.initialState;\n constants = standardized.constants;\n if (Array.isArray(inputs)) {\n initialState = inputs.slice(1);\n inputs = inputs[0];\n }\n if ((initialState == null || initialState.length === 0) && constants == null) {\n return super.apply(inputs, kwargs);\n }\n const additionalInputs = [];\n const additionalSpecs = [];\n if (initialState != null) {\n const numStates = initialState.length;\n if (numStates % 2 > 0) {\n throw new ValueError(\"When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.\");\n }\n kwargs[\"initialState\"] = initialState;\n additionalInputs.push(...initialState);\n const stateSpecs = initialState.map((state) => new InputSpec({ shape: state.shape }));\n this.forwardLayer.stateSpec = stateSpecs.slice(0, numStates / 2);\n this.backwardLayer.stateSpec = stateSpecs.slice(numStates / 2);\n additionalSpecs.push(...stateSpecs);\n }\n if (constants != null) {\n throw new NotImplementedError(\"Support for constants in Bidirectional layers is not implemented yet.\");\n }\n const isSymbolicTensor = additionalInputs[0] instanceof SymbolicTensor;\n for (const tensor2 of additionalInputs) {\n if (tensor2 instanceof SymbolicTensor !== isSymbolicTensor) {\n throw new ValueError(\"The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors\");\n }\n }\n if (isSymbolicTensor) {\n const fullInput = [inputs].concat(additionalInputs);\n const fullInputSpec = this.inputSpec.concat(additionalSpecs);\n const originalInputSpec = this.inputSpec;\n this.inputSpec = fullInputSpec;\n const output = super.apply(fullInput, kwargs);\n this.inputSpec = originalInputSpec;\n return output;\n } else {\n return super.apply(inputs, kwargs);\n }\n }\n call(inputs, kwargs) {\n return tidy(() => {\n const initialState = kwargs[\"initialState\"];\n let y;\n let yRev;\n if (initialState == null) {\n y = this.forwardLayer.call(inputs, kwargs);\n yRev = this.backwardLayer.call(inputs, kwargs);\n } else {\n const forwardState = initialState.slice(0, initialState.length / 2);\n const backwardState = initialState.slice(initialState.length / 2);\n y = this.forwardLayer.call(inputs, Object.assign(kwargs, { initialState: forwardState }));\n yRev = this.backwardLayer.call(inputs, Object.assign(kwargs, { initialState: backwardState }));\n }\n let states;\n if (this.returnState) {\n if (Array.isArray(y)) {\n states = y.slice(1).concat(yRev.slice(1));\n } else {\n }\n y = y[0];\n yRev = yRev[0];\n }\n if (this.returnSequences) {\n yRev = reverse(yRev, 1);\n }\n let output;\n if (this.mergeMode === \"concat\") {\n output = concatenate([y, yRev]);\n } else if (this.mergeMode === \"sum\") {\n output = add2(y, yRev);\n } else if (this.mergeMode === \"ave\") {\n output = mul(0.5, add2(y, yRev));\n } else if (this.mergeMode === \"mul\") {\n output = mul(y, yRev);\n } else if (this.mergeMode == null) {\n output = [y, yRev];\n }\n if (this.returnState) {\n if (this.mergeMode == null) {\n return output.concat(states);\n }\n return [output].concat(states);\n }\n return output;\n });\n }\n resetStates(states) {\n this.forwardLayer.resetStates();\n this.backwardLayer.resetStates();\n }\n build(inputShape) {\n nameScope(this.forwardLayer.name, () => {\n this.forwardLayer.build(inputShape);\n });\n nameScope(this.backwardLayer.name, () => {\n this.backwardLayer.build(inputShape);\n });\n this.built = true;\n }\n computeMask(inputs, mask) {\n if (Array.isArray(mask)) {\n mask = mask[0];\n }\n let outputMask;\n if (this.returnSequences) {\n if (this.mergeMode == null) {\n outputMask = [mask, mask];\n } else {\n outputMask = mask;\n }\n } else {\n if (this.mergeMode == null) {\n outputMask = [null, null];\n } else {\n outputMask = null;\n }\n }\n if (this.returnState) {\n const states = this.forwardLayer.states;\n const stateMask = states.map((state) => null);\n if (Array.isArray(outputMask)) {\n return outputMask.concat(stateMask).concat(stateMask);\n } else {\n return [outputMask].concat(stateMask).concat(stateMask);\n }\n } else {\n return outputMask;\n }\n }\n get trainableWeights() {\n return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights);\n }\n get nonTrainableWeights() {\n return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights);\n }\n setFastWeightInitDuringBuild(value) {\n super.setFastWeightInitDuringBuild(value);\n if (this.forwardLayer != null) {\n this.forwardLayer.setFastWeightInitDuringBuild(value);\n }\n if (this.backwardLayer != null) {\n this.backwardLayer.setFastWeightInitDuringBuild(value);\n }\n }\n getConfig() {\n const config = {\n \"mergeMode\": this.mergeMode\n };\n const baseConfig = super.getConfig();\n Object.assign(config, baseConfig);\n return config;\n }\n static fromConfig(cls, config) {\n const rnnLayer = deserialize(config[\"layer\"]);\n delete config[\"layer\"];\n if (config[\"numConstants\"] != null) {\n throw new NotImplementedError(`Deserialization of a Bidirectional layer with numConstants present is not supported yet.`);\n }\n const newConfig = config;\n newConfig[\"layer\"] = rnnLayer;\n return new cls(newConfig);\n }\n};\nBidirectional.className = \"Bidirectional\";\nserialization_exports.registerClass(Bidirectional);\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_layers.js\nfunction inputLayer(args) {\n return new InputLayer(args);\n}\nfunction elu3(args) {\n return new ELU(args);\n}\nfunction reLU(args) {\n return new ReLU(args);\n}\nfunction leakyReLU(args) {\n return new LeakyReLU(args);\n}\nfunction prelu2(args) {\n return new PReLU(args);\n}\nfunction softmax2(args) {\n return new Softmax3(args);\n}\nfunction thresholdedReLU(args) {\n return new ThresholdedReLU(args);\n}\nfunction conv1d2(args) {\n return new Conv1D(args);\n}\nfunction conv2d3(args) {\n return new Conv2D2(args);\n}\nfunction conv2dTranspose2(args) {\n return new Conv2DTranspose(args);\n}\nfunction conv3d2(args) {\n return new Conv3D2(args);\n}\nfunction conv3dTranspose2(args) {\n return new Conv3DTranspose(args);\n}\nfunction separableConv2d2(args) {\n return new SeparableConv2D(args);\n}\nfunction cropping2D(args) {\n return new Cropping2D(args);\n}\nfunction upSampling2d(args) {\n return new UpSampling2D(args);\n}\nfunction depthwiseConv2d4(args) {\n return new DepthwiseConv2D(args);\n}\nfunction activation(args) {\n return new Activation2(args);\n}\nfunction dense(args) {\n return new Dense(args);\n}\nfunction dropout3(args) {\n return new Dropout(args);\n}\nfunction spatialDropout1d(args) {\n return new SpatialDropout1D(args);\n}\nfunction flatten3(args) {\n return new Flatten(args);\n}\nfunction repeatVector(args) {\n return new RepeatVector(args);\n}\nfunction reshape2(args) {\n return new Reshape2(args);\n}\nfunction permute(args) {\n return new Permute(args);\n}\nfunction embedding(args) {\n return new Embedding(args);\n}\nfunction add3(args) {\n return new Add2(args);\n}\nfunction average(args) {\n return new Average(args);\n}\nfunction concatenate2(args) {\n return new Concatenate(args);\n}\nfunction maximum2(args) {\n return new Maximum2(args);\n}\nfunction minimum2(args) {\n return new Minimum2(args);\n}\nfunction multiply(args) {\n return new Multiply2(args);\n}\nfunction dot3(args) {\n return new Dot(args);\n}\nfunction batchNormalization2(args) {\n return new BatchNormalization(args);\n}\nfunction layerNormalization(args) {\n return new LayerNormalization(args);\n}\nfunction zeroPadding2d(args) {\n return new ZeroPadding2D(args);\n}\nfunction averagePooling1d(args) {\n return new AveragePooling1D(args);\n}\nfunction avgPool1d(args) {\n return averagePooling1d(args);\n}\nfunction avgPooling1d(args) {\n return averagePooling1d(args);\n}\nfunction averagePooling2d(args) {\n return new AveragePooling2D(args);\n}\nfunction avgPool2d(args) {\n return averagePooling2d(args);\n}\nfunction avgPooling2d(args) {\n return averagePooling2d(args);\n}\nfunction averagePooling3d(args) {\n return new AveragePooling3D(args);\n}\nfunction avgPool3d2(args) {\n return averagePooling3d(args);\n}\nfunction avgPooling3d(args) {\n return averagePooling3d(args);\n}\nfunction globalAveragePooling1d(args) {\n return new GlobalAveragePooling1D(args);\n}\nfunction globalAveragePooling2d(args) {\n return new GlobalAveragePooling2D(args);\n}\nfunction globalMaxPooling1d(args) {\n return new GlobalMaxPooling1D(args);\n}\nfunction globalMaxPooling2d(args) {\n return new GlobalMaxPooling2D(args);\n}\nfunction maxPooling1d(args) {\n return new MaxPooling1D(args);\n}\nfunction maxPooling2d(args) {\n return new MaxPooling2D(args);\n}\nfunction maxPooling3d(args) {\n return new MaxPooling3D(args);\n}\nfunction gru(args) {\n return new GRU(args);\n}\nfunction gruCell(args) {\n return new GRUCell(args);\n}\nfunction lstm(args) {\n return new LSTM(args);\n}\nfunction lstmCell(args) {\n return new LSTMCell(args);\n}\nfunction simpleRNN(args) {\n return new SimpleRNN(args);\n}\nfunction simpleRNNCell(args) {\n return new SimpleRNNCell(args);\n}\nfunction convLstm2d(args) {\n return new ConvLSTM2D(args);\n}\nfunction convLstm2dCell(args) {\n return new ConvLSTM2DCell(args);\n}\nfunction rnn2(args) {\n return new RNN(args);\n}\nfunction stackedRNNCells(args) {\n return new StackedRNNCells(args);\n}\nfunction bidirectional(args) {\n return new Bidirectional(args);\n}\nfunction timeDistributed(args) {\n return new TimeDistributed(args);\n}\nvar globalMaxPool1d = globalMaxPooling1d;\nvar globalMaxPool2d = globalMaxPooling2d;\nvar maxPool1d = maxPooling1d;\nvar maxPool2d = maxPooling2d;\nfunction gaussianNoise(args) {\n return new GaussianNoise(args);\n}\nfunction gaussianDropout(args) {\n return new GaussianDropout(args);\n}\nfunction alphaDropout(args) {\n return new AlphaDropout(args);\n}\nfunction masking(args) {\n return new Masking(args);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_metrics.js\nvar exports_metrics_exports = {};\n__export(exports_metrics_exports, {\n MAPE: () => MAPE2,\n MSE: () => MSE2,\n binaryAccuracy: () => binaryAccuracy2,\n binaryCrossentropy: () => binaryCrossentropy3,\n categoricalAccuracy: () => categoricalAccuracy2,\n categoricalCrossentropy: () => categoricalCrossentropy3,\n cosineProximity: () => cosineProximity2,\n mape: () => mape2,\n meanAbsoluteError: () => meanAbsoluteError2,\n meanAbsolutePercentageError: () => meanAbsolutePercentageError2,\n meanSquaredError: () => meanSquaredError3,\n mse: () => mse2,\n precision: () => precision2,\n recall: () => recall2,\n sparseCategoricalAccuracy: () => sparseCategoricalAccuracy2\n});\nfunction binaryAccuracy2(yTrue, yPred) {\n return binaryAccuracy(yTrue, yPred);\n}\nfunction binaryCrossentropy3(yTrue, yPred) {\n return binaryCrossentropy2(yTrue, yPred);\n}\nfunction sparseCategoricalAccuracy2(yTrue, yPred) {\n return sparseCategoricalAccuracy(yTrue, yPred);\n}\nfunction categoricalAccuracy2(yTrue, yPred) {\n return categoricalAccuracy(yTrue, yPred);\n}\nfunction categoricalCrossentropy3(yTrue, yPred) {\n return categoricalCrossentropy2(yTrue, yPred);\n}\nfunction precision2(yTrue, yPred) {\n return precision(yTrue, yPred);\n}\nfunction recall2(yTrue, yPred) {\n return recall(yTrue, yPred);\n}\nfunction cosineProximity2(yTrue, yPred) {\n return cosineProximity(yTrue, yPred);\n}\nfunction meanAbsoluteError2(yTrue, yPred) {\n return meanAbsoluteError(yTrue, yPred);\n}\nfunction meanAbsolutePercentageError2(yTrue, yPred) {\n return meanAbsolutePercentageError(yTrue, yPred);\n}\nfunction MAPE2(yTrue, yPred) {\n return meanAbsolutePercentageError(yTrue, yPred);\n}\nfunction mape2(yTrue, yPred) {\n return meanAbsolutePercentageError(yTrue, yPred);\n}\nfunction meanSquaredError3(yTrue, yPred) {\n return meanSquaredError2(yTrue, yPred);\n}\nfunction MSE2(yTrue, yPred) {\n return meanSquaredError2(yTrue, yPred);\n}\nfunction mse2(yTrue, yPred) {\n return meanSquaredError2(yTrue, yPred);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_models.js\nvar exports_models_exports = {};\n__export(exports_models_exports, {\n modelFromJSON: () => modelFromJSON\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/exports_regularizers.js\nvar exports_regularizers_exports = {};\n__export(exports_regularizers_exports, {\n l1: () => l12,\n l1l2: () => l1l2,\n l2: () => l22\n});\nfunction l1l2(config) {\n return new L1L2(config);\n}\nfunction l12(config) {\n return l1(config);\n}\nfunction l22(config) {\n return l2(config);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-layers@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-layers/dist/callbacks.js\nvar Callback = class extends BaseCallback {\n constructor() {\n super(...arguments);\n this.model = null;\n }\n setModel(model2) {\n if (!(model2 instanceof LayersModel)) {\n throw new Error(\"model must be a LayersModel, not some other Container\");\n }\n this.model = model2;\n }\n};\nfunction less2(currVal, prevVal) {\n return currVal < prevVal;\n}\nfunction greater2(currVal, prevVal) {\n return currVal > prevVal;\n}\nvar EarlyStopping = class extends Callback {\n constructor(args) {\n super();\n if (args == null) {\n args = {};\n }\n if (args.restoreBestWeights) {\n throw new NotImplementedError(\"restoreBestWeights = True is not implemented in EarlyStopping yet.\");\n }\n this.monitor = args.monitor || \"val_loss\";\n this.minDelta = Math.abs(args.minDelta || 0);\n this.patience = args.patience || 0;\n this.verbose = args.verbose || 0;\n this.mode = args.mode || \"auto\";\n this.baseline = args.baseline;\n if ([\"auto\", \"min\", \"max\"].indexOf(this.mode) === -1) {\n console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`);\n this.mode = \"auto\";\n }\n if (this.mode === \"min\") {\n this.monitorFunc = less2;\n } else if (this.mode === \"max\") {\n this.monitorFunc = greater2;\n } else {\n if (this.monitor.indexOf(\"acc\") !== -1) {\n this.monitorFunc = greater2;\n } else {\n this.monitorFunc = less2;\n }\n }\n if (this.monitorFunc === less2) {\n this.minDelta *= -1;\n }\n }\n async onTrainBegin(logs) {\n this.wait = 0;\n this.stoppedEpoch = 0;\n if (this.baseline != null) {\n this.best = this.baseline;\n } else {\n this.best = this.monitorFunc === less2 ? Infinity : -Infinity;\n }\n }\n async onEpochEnd(epoch, logs) {\n await resolveScalarsInLogs(logs);\n const current = this.getMonitorValue(logs);\n if (current == null) {\n return;\n }\n if (this.monitorFunc(current - this.minDelta, this.best)) {\n this.best = current;\n this.wait = 0;\n } else {\n this.wait++;\n if (this.wait >= this.patience) {\n this.stoppedEpoch = epoch;\n this.model.stopTraining = true;\n }\n }\n }\n async onTrainEnd(logs) {\n if (this.stoppedEpoch > 0 && this.verbose) {\n console.log(`Epoch ${this.stoppedEpoch}: early stopping.`);\n }\n }\n getMonitorValue(logs) {\n if (logs == null) {\n logs = {};\n }\n const monitorValue = logs[this.monitor];\n if (monitorValue == null) {\n console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(logs)}`);\n }\n return monitorValue;\n }\n};\nfunction earlyStopping(args) {\n return new EarlyStopping(args);\n}\nvar callbacks = { earlyStopping };\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/flags.js\nvar ENV4 = env();\nENV4.registerFlag(\"KEEP_INTERMEDIATE_TENSORS\", () => false, (debugValue) => {\n if (debugValue) {\n console.warn(\"Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.\");\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/data/compiled_api.js\nvar DataType;\n(function(DataType2) {\n DataType2[DataType2[\"DT_INVALID\"] = 0] = \"DT_INVALID\";\n DataType2[DataType2[\"DT_FLOAT\"] = 1] = \"DT_FLOAT\";\n DataType2[DataType2[\"DT_DOUBLE\"] = 2] = \"DT_DOUBLE\";\n DataType2[DataType2[\"DT_INT32\"] = 3] = \"DT_INT32\";\n DataType2[DataType2[\"DT_UINT8\"] = 4] = \"DT_UINT8\";\n DataType2[DataType2[\"DT_INT16\"] = 5] = \"DT_INT16\";\n DataType2[DataType2[\"DT_INT8\"] = 6] = \"DT_INT8\";\n DataType2[DataType2[\"DT_STRING\"] = 7] = \"DT_STRING\";\n DataType2[DataType2[\"DT_COMPLEX64\"] = 8] = \"DT_COMPLEX64\";\n DataType2[DataType2[\"DT_INT64\"] = 9] = \"DT_INT64\";\n DataType2[DataType2[\"DT_BOOL\"] = 10] = \"DT_BOOL\";\n DataType2[DataType2[\"DT_QINT8\"] = 11] = \"DT_QINT8\";\n DataType2[DataType2[\"DT_QUINT8\"] = 12] = \"DT_QUINT8\";\n DataType2[DataType2[\"DT_QINT32\"] = 13] = \"DT_QINT32\";\n DataType2[DataType2[\"DT_BFLOAT16\"] = 14] = \"DT_BFLOAT16\";\n DataType2[DataType2[\"DT_QINT16\"] = 15] = \"DT_QINT16\";\n DataType2[DataType2[\"DT_QUINT16\"] = 16] = \"DT_QUINT16\";\n DataType2[DataType2[\"DT_UINT16\"] = 17] = \"DT_UINT16\";\n DataType2[DataType2[\"DT_COMPLEX128\"] = 18] = \"DT_COMPLEX128\";\n DataType2[DataType2[\"DT_HALF\"] = 19] = \"DT_HALF\";\n DataType2[DataType2[\"DT_RESOURCE\"] = 20] = \"DT_RESOURCE\";\n DataType2[DataType2[\"DT_VARIANT\"] = 21] = \"DT_VARIANT\";\n DataType2[DataType2[\"DT_UINT32\"] = 22] = \"DT_UINT32\";\n DataType2[DataType2[\"DT_UINT64\"] = 23] = \"DT_UINT64\";\n DataType2[DataType2[\"DT_FLOAT_REF\"] = 101] = \"DT_FLOAT_REF\";\n DataType2[DataType2[\"DT_DOUBLE_REF\"] = 102] = \"DT_DOUBLE_REF\";\n DataType2[DataType2[\"DT_INT32_REF\"] = 103] = \"DT_INT32_REF\";\n DataType2[DataType2[\"DT_UINT8_REF\"] = 104] = \"DT_UINT8_REF\";\n DataType2[DataType2[\"DT_INT16_REF\"] = 105] = \"DT_INT16_REF\";\n DataType2[DataType2[\"DT_INT8_REF\"] = 106] = \"DT_INT8_REF\";\n DataType2[DataType2[\"DT_STRING_REF\"] = 107] = \"DT_STRING_REF\";\n DataType2[DataType2[\"DT_COMPLEX64_REF\"] = 108] = \"DT_COMPLEX64_REF\";\n DataType2[DataType2[\"DT_INT64_REF\"] = 109] = \"DT_INT64_REF\";\n DataType2[DataType2[\"DT_BOOL_REF\"] = 110] = \"DT_BOOL_REF\";\n DataType2[DataType2[\"DT_QINT8_REF\"] = 111] = \"DT_QINT8_REF\";\n DataType2[DataType2[\"DT_QUINT8_REF\"] = 112] = \"DT_QUINT8_REF\";\n DataType2[DataType2[\"DT_QINT32_REF\"] = 113] = \"DT_QINT32_REF\";\n DataType2[DataType2[\"DT_BFLOAT16_REF\"] = 114] = \"DT_BFLOAT16_REF\";\n DataType2[DataType2[\"DT_QINT16_REF\"] = 115] = \"DT_QINT16_REF\";\n DataType2[DataType2[\"DT_QUINT16_REF\"] = 116] = \"DT_QUINT16_REF\";\n DataType2[DataType2[\"DT_UINT16_REF\"] = 117] = \"DT_UINT16_REF\";\n DataType2[DataType2[\"DT_COMPLEX128_REF\"] = 118] = \"DT_COMPLEX128_REF\";\n DataType2[DataType2[\"DT_HALF_REF\"] = 119] = \"DT_HALF_REF\";\n DataType2[DataType2[\"DT_RESOURCE_REF\"] = 120] = \"DT_RESOURCE_REF\";\n DataType2[DataType2[\"DT_VARIANT_REF\"] = 121] = \"DT_VARIANT_REF\";\n DataType2[DataType2[\"DT_UINT32_REF\"] = 122] = \"DT_UINT32_REF\";\n DataType2[DataType2[\"DT_UINT64_REF\"] = 123] = \"DT_UINT64_REF\";\n})(DataType || (DataType = {}));\nvar SaverDef;\n(function(SaverDef2) {\n let CheckpointFormatVersion;\n (function(CheckpointFormatVersion2) {\n CheckpointFormatVersion2[CheckpointFormatVersion2[\"LEGACY\"] = 0] = \"LEGACY\";\n CheckpointFormatVersion2[CheckpointFormatVersion2[\"V1\"] = 1] = \"V1\";\n CheckpointFormatVersion2[CheckpointFormatVersion2[\"V2\"] = 2] = \"V2\";\n })(CheckpointFormatVersion = SaverDef2.CheckpointFormatVersion || (SaverDef2.CheckpointFormatVersion = {}));\n})(SaverDef || (SaverDef = {}));\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/custom_op/register.js\nvar CUSTOM_OPS = {};\nfunction registerOp(name, opFunc) {\n const opMapper = {\n tfOpName: name,\n category: \"custom\",\n inputs: [],\n attrs: [],\n customExecutor: opFunc\n };\n CUSTOM_OPS[name] = opMapper;\n}\nfunction getRegisteredOp(name) {\n return CUSTOM_OPS[name];\n}\nfunction deregisterOp(name) {\n delete CUSTOM_OPS[name];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/utils.js\nfunction getParamValue(paramName, node, tensorMap, context, resourceManager) {\n const inputParam = node.inputParams[paramName];\n if (inputParam && inputParam.inputIndexStart !== void 0) {\n const start = inputParam.inputIndexStart;\n const end = inputParam.inputIndexEnd === 0 ? void 0 : inputParam.inputIndexEnd === void 0 ? start + 1 : inputParam.inputIndexEnd;\n if (inputParam.type === \"tensor\") {\n return getTensor(node.inputNames[inputParam.inputIndexStart], tensorMap, context, resourceManager);\n }\n if (inputParam.type === \"tensors\") {\n const inputs = node.inputNames.slice(start, end);\n return inputs.map((name) => getTensor(name, tensorMap, context, resourceManager));\n }\n const tensor2 = getTensor(node.inputNames.slice(start)[0], tensorMap, context, resourceManager);\n const data = tensor2.dataSync();\n return inputParam.type === \"number\" ? data[0] : util_exports.toNestedArray(tensor2.shape, data);\n }\n const attrParam = node.attrParams[paramName];\n return attrParam && attrParam.value;\n}\nfunction getTensor(name, tensorsMap, context, resourceManager) {\n const [nodeName, index] = parseNodeName(name);\n if (resourceManager != null) {\n const tensor2 = resourceManager.getHashTableHandleByName(nodeName);\n if (tensor2 != null) {\n return tensor2;\n }\n }\n const contextId = context.currentContextIds.find((contextId2) => {\n return !!tensorsMap[getNodeNameWithContextId(nodeName, contextId2)];\n });\n return contextId !== void 0 ? tensorsMap[getNodeNameWithContextId(nodeName, contextId)][index] : void 0;\n}\nfunction getTensorsForCurrentContenxt(name, tensorsMap, context) {\n return tensorsMap[getNodeNameWithContextId(name, context.currentContextId)];\n}\nfunction getNodeNameAndIndex(inputName, context) {\n const [nodeName, index, outputName] = parseNodeName(inputName);\n return [\n getNodeNameWithContextId(nodeName, context && context.currentContextId),\n index,\n outputName\n ];\n}\nfunction getNodeNameWithContextId(name, contextId) {\n return !!contextId ? `${name}-${contextId}` : name;\n}\nfunction parseNodeName(name) {\n const parts = name.split(\":\");\n if (parts.length === 1) {\n return [name, 0, void 0];\n }\n const nodeName = parts[0];\n const outputName = parts.length === 3 ? parts[1] : void 0;\n const index = Number(parts[parts.length - 1]);\n return [nodeName, index, outputName];\n}\nfunction getPadding(node, tensorMap, context) {\n let pad3 = getParamValue(\"pad\", node, tensorMap, context);\n if (pad3 === \"explicit\") {\n pad3 = getParamValue(\"explicitPaddings\", node, tensorMap, context);\n const explicitPadding = [[0, 0], [0, 0], [0, 0], [0, 0]];\n for (let i2 = 0; i2 < 4; i2++) {\n explicitPadding[i2][0] = pad3[i2 * 2];\n explicitPadding[i2][1] = pad3[i2 * 2 + 1];\n }\n return explicitPadding;\n }\n return pad3;\n}\nfunction cloneTensor(tensor2) {\n return tensor2.kept ? tensor2 : clone(tensor2);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/arithmetic.js\nvar arithmetic_exports = {};\n__export(arithmetic_exports, {\n json: () => json\n});\nvar json = [\n {\n \"tfOpName\": \"Add\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"AddV2\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"AddN\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n }\n ]\n },\n {\n \"tfOpName\": \"BiasAdd\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sub\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"RealDiv\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Div\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"DivNoNan\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"FloorDiv\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Mul\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Maximum\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Minimum\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Pow\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"SquaredDifference\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Mod\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"FloorMod\",\n \"category\": \"arithmetic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/basic_math.js\nvar basic_math_exports = {};\n__export(basic_math_exports, {\n json: () => json2\n});\nvar json2 = [\n {\n \"tfOpName\": \"Abs\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Acos\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Asin\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Atan\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Atan2\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"y\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Ceil\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"ClipByValue\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"clipValueMin\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"clipValueMax\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Complex\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"real\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"imag\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"ComplexAbs\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Cos\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Cosh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Elu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Exp\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Floor\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Log\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Imag\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"outputType\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Neg\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Real\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"outputType\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Prelu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"alpha\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Relu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Relu6\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Selu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sigmoid\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sin\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sinh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sqrt\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Rsqrt\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Square\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Tan\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Tanh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Sign\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Round\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Expm1\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Log1p\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Reciprocal\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Softplus\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Asinh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Acosh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Atanh\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Erf\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Prod\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axes\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LeakyRelu\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"alpha\",\n \"name\": \"alpha\",\n \"type\": \"number\",\n \"defaultValue\": 0.2\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"IsNan\",\n \"category\": \"basic_math\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/control.js\nvar control_exports = {};\n__export(control_exports, {\n json: () => json3\n});\nvar json3 = [\n {\n \"tfOpName\": \"EmptyTensorList\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"start\": 1,\n \"name\": \"maxNumElements\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"LoopCond\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"pred\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Switch\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"data\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"pred\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Merge\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n }\n ]\n },\n {\n \"tfOpName\": \"Enter\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"frame_name\",\n \"name\": \"frameName\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"is_constant\",\n \"name\": \"isConstant\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Exit\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"NextIteration\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"size\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"element_shape\",\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"dynamic_size\",\n \"name\": \"dynamicSize\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"clear_after_read\",\n \"name\": \"clearAfterRead\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"identical_element_shapes\",\n \"name\": \"identicalElementShapes\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"tensor_array_name\",\n \"name\": \"name\",\n \"type\": \"string\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayWriteV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"index\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayReadV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"index\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayGatherV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"element_shape\",\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayScatterV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayConcatV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"element_shape_except0\",\n \"name\": \"elementShapeExcept0\",\n \"type\": \"shape\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArraySplitV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"lengths\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 3,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArraySizeV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"flowIn\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorArrayCloseV3\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorArrayId\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"StatelessIf\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"cond\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"then_branch\",\n \"name\": \"thenBranch\",\n \"type\": \"func\"\n },\n {\n \"tfName\": \"else_branch\",\n \"name\": \"elseBranch\",\n \"type\": \"func\"\n }\n ]\n },\n {\n \"tfOpName\": \"If\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"cond\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"then_branch\",\n \"name\": \"thenBranch\",\n \"type\": \"func\"\n },\n {\n \"tfName\": \"else_branch\",\n \"name\": \"elseBranch\",\n \"type\": \"func\"\n }\n ]\n },\n {\n \"tfOpName\": \"StatelessWhile\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"cond\",\n \"name\": \"cond\",\n \"type\": \"func\"\n },\n {\n \"tfName\": \"body\",\n \"name\": \"body\",\n \"type\": \"func\"\n }\n ]\n },\n {\n \"tfOpName\": \"While\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"cond\",\n \"name\": \"cond\",\n \"type\": \"func\"\n },\n {\n \"tfName\": \"body\",\n \"name\": \"body\",\n \"type\": \"func\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListScatter\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListScatterV2\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"start\": 3,\n \"name\": \"numElements\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListGather\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListGetItem\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"index\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListSetItem\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"index\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListReserve\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"start\": 1,\n \"name\": \"numElements\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListFromTensor\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListStack\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"num_elements\",\n \"name\": \"numElements\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListSplit\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"start\": 2,\n \"name\": \"lengths\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListConcat\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_shape\",\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListConcatV2\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_shape\",\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListPopBack\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"elementShape\",\n \"type\": \"shape\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListPushBack\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"element_dtype\",\n \"name\": \"elementDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListLength\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"TensorListResize\",\n \"category\": \"control\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensorListId\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/convolution.js\nvar convolution_exports = {};\n__export(convolution_exports, {\n json: () => json4\n});\nvar json4 = [\n {\n \"tfOpName\": \"AvgPool\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"MaxPool\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": [],\n \"notSupported\": true\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"MaxPoolWithArgmax\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"include_batch_in_index\",\n \"name\": \"includeBatchInIndex\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"AvgPool3D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"MaxPool3D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"ksize\",\n \"name\": \"kernelSize\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Conv1D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"stride\",\n \"name\": \"stride\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NWC\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"dilation\",\n \"name\": \"dilation\",\n \"type\": \"number\",\n \"defaultValue\": 1\n }\n ]\n },\n {\n \"tfOpName\": \"Conv2D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"useCudnnOnGpu\",\n \"name\": \"useCudnnOnGpu\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"_FusedConv2D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_args\",\n \"name\": \"numArgs\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"use_cudnn_on_gpu\",\n \"name\": \"useCudnnOnGpu\",\n \"type\": \"bool\",\n \"defaultValue\": true\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\",\n \"defaultValue\": [\n 1,\n 1,\n 1,\n 1\n ]\n },\n {\n \"tfName\": \"fused_ops\",\n \"name\": \"fusedOps\",\n \"type\": \"string[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-4\n },\n {\n \"tfName\": \"leakyrelu_alpha\",\n \"name\": \"leakyreluAlpha\",\n \"type\": \"number\",\n \"defaultValue\": 0.2\n }\n ]\n },\n {\n \"tfOpName\": \"Conv2DBackpropInput\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 2,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 0,\n \"name\": \"outputShape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"DepthwiseConv2d\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"input\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"DepthwiseConv2dNative\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"input\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"FusedDepthwiseConv2dNative\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_args\",\n \"name\": \"numArgs\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\",\n \"defaultValue\": [\n 1,\n 1,\n 1,\n 1\n ]\n },\n {\n \"tfName\": \"fused_ops\",\n \"name\": \"fusedOps\",\n \"type\": \"string[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"explicit_paddings\",\n \"name\": \"explicitPaddings\",\n \"type\": \"number[]\",\n \"defaultValue\": []\n }\n ]\n },\n {\n \"tfOpName\": \"Conv3D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"defaultValue\": \"NHWC\"\n },\n {\n \"tfName\": \"dilations\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"Dilation2D\",\n \"category\": \"convolution\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"filter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"strides\",\n \"name\": \"strides\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"rates\",\n \"name\": \"dilations\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"padding\",\n \"name\": \"pad\",\n \"type\": \"string\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/creation.js\nvar creation_exports = {};\n__export(creation_exports, {\n json: () => json5\n});\nvar json5 = [\n {\n \"tfOpName\": \"Fill\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 1,\n \"name\": \"value\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"LinSpace\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"start\",\n \"type\": \"number\"\n },\n {\n \"start\": 1,\n \"name\": \"stop\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"num\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"OneHot\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"depth\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"onValue\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"start\": 3,\n \"name\": \"offValue\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"axis\",\n \"name\": \"axis\",\n \"type\": \"number\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"Ones\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"OnesLike\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"RandomStandardNormal\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"seed\",\n \"name\": \"seed\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"seed2\",\n \"name\": \"seed2\",\n \"type\": \"number\",\n \"defaultValue\": 0,\n \"notSupported\": true\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"T\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"RandomUniform\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"minval\",\n \"name\": \"minval\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"maxval\",\n \"name\": \"maxval\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"seed\",\n \"name\": \"seed\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"seed2\",\n \"name\": \"seed2\",\n \"type\": \"number\",\n \"defaultValue\": 0,\n \"notSupported\": true\n },\n {\n \"tfName\": \"T\",\n \"name\": \"T\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Range\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"start\",\n \"type\": \"number\"\n },\n {\n \"start\": 1,\n \"name\": \"stop\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"step\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tidx\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"TruncatedNormal\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"means\",\n \"name\": \"mean\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"stddev\",\n \"name\": \"stdDev\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"tfName\": \"seed\",\n \"name\": \"seed\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"seed2\",\n \"name\": \"seed2\",\n \"type\": \"number\",\n \"defaultValue\": 0,\n \"notSupported\": true\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"T\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Zeros\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"ZerosLike\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"Multinomial\",\n \"category\": \"creation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"logits\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"numSamples\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"seed\",\n \"name\": \"seed\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"seed2\",\n \"name\": \"seed2\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"output_dtype\",\n \"name\": \"output_dtype\",\n \"type\": \"dtype\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/dynamic.js\nvar dynamic_exports = {};\n__export(dynamic_exports, {\n json: () => json6\n});\nvar json6 = [\n {\n \"tfOpName\": \"NonMaxSuppressionV2\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scores\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"maxOutputSize\",\n \"type\": \"number\"\n },\n {\n \"start\": 3,\n \"name\": \"iouThreshold\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"NonMaxSuppressionV3\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scores\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"maxOutputSize\",\n \"type\": \"number\"\n },\n {\n \"start\": 3,\n \"name\": \"iouThreshold\",\n \"type\": \"number\"\n },\n {\n \"start\": 4,\n \"name\": \"scoreThreshold\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"NonMaxSuppressionV4\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scores\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"maxOutputSize\",\n \"type\": \"number\"\n },\n {\n \"start\": 3,\n \"name\": \"iouThreshold\",\n \"type\": \"number\"\n },\n {\n \"start\": 4,\n \"name\": \"scoreThreshold\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"T_threshold\",\n \"name\": \"threshold\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"pad_to_max_output_size\",\n \"name\": \"padToMaxOutputSize\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"NonMaxSuppressionV5\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scores\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"maxOutputSize\",\n \"type\": \"number\"\n },\n {\n \"start\": 3,\n \"name\": \"iouThreshold\",\n \"type\": \"number\"\n },\n {\n \"start\": 4,\n \"name\": \"scoreThreshold\",\n \"type\": \"number\"\n },\n {\n \"start\": 5,\n \"name\": \"softNmsSigma\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"Where\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"condition\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"ListDiff\",\n \"category\": \"dynamic\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"y\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/evaluation.js\nvar evaluation_exports = {};\n__export(evaluation_exports, {\n json: () => json7\n});\nvar json7 = [\n {\n \"tfOpName\": \"LowerBound\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"sortedSequence\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"values\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"TopKV2\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"k\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"sorted\",\n \"name\": \"sorted\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"UpperBound\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"sortedSequence\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"values\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Unique\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"UniqueV2\",\n \"category\": \"evaluation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/graph.js\nvar graph_exports = {};\n__export(graph_exports, {\n json: () => json8\n});\nvar json8 = [\n {\n \"tfOpName\": \"PlaceholderWithDefault\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"default\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"shape\",\n \"name\": \"shape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"Placeholder\",\n \"category\": \"graph\",\n \"attrs\": [\n {\n \"tfName\": \"shape\",\n \"name\": \"shape\",\n \"type\": \"shape\"\n },\n {\n \"tfName\": \"dtype\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"Const\",\n \"category\": \"graph\"\n },\n {\n \"tfOpName\": \"Identity\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"IdentityN\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"x\",\n \"type\": \"tensors\"\n }\n ]\n },\n {\n \"tfOpName\": \"Snapshot\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Rank\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Size\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"Shape\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"ShapeN\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"x\",\n \"type\": \"tensors\"\n }\n ]\n },\n {\n \"tfOpName\": \"Print\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"data\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"message\",\n \"name\": \"message\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"first_n\",\n \"name\": \"firstN\",\n \"type\": \"number\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"summarize\",\n \"name\": \"summarize\",\n \"type\": \"number\",\n \"defaultValue\": 3\n }\n ]\n },\n {\n \"tfOpName\": \"NoOp\",\n \"category\": \"graph\",\n \"inputs\": []\n },\n {\n \"tfOpName\": \"StopGradient\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"FakeQuantWithMinMaxVars\",\n \"category\": \"graph\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"min\",\n \"name\": \"min\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"max\",\n \"name\": \"max\",\n \"type\": \"number\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/hash_table.js\nvar hash_table_exports = {};\n__export(hash_table_exports, {\n json: () => json9\n});\nvar json9 = [\n {\n \"tfOpName\": \"HashTable\",\n \"category\": \"hash_table\",\n \"inputs\": [],\n \"attrs\": [\n {\n \"tfName\": \"shared_name\",\n \"name\": \"sharedName\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"use_node_name_sharing\",\n \"name\": \"useNodeNameSharing\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"key_dtype\",\n \"name\": \"keyDType\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"value_dtype\",\n \"name\": \"valueDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"HashTableV2\",\n \"category\": \"hash_table\",\n \"inputs\": [],\n \"attrs\": [\n {\n \"tfName\": \"shared_name\",\n \"name\": \"sharedName\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"use_node_name_sharing\",\n \"name\": \"useNodeNameSharing\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"key_dtype\",\n \"name\": \"keyDType\",\n \"type\": \"dtype\"\n },\n {\n \"tfName\": \"value_dtype\",\n \"name\": \"valueDType\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableImport\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"keys\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"values\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tin\",\n \"name\": \"tIn\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"tOut\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableImportV2\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"keys\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"values\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tin\",\n \"name\": \"tIn\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"tOut\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableFind\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"keys\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tin\",\n \"name\": \"tIn\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"tOut\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableFindV2\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"keys\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"Tin\",\n \"name\": \"tIn\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"Tout\",\n \"name\": \"tOut\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableSize\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"LookupTableSizeV2\",\n \"category\": \"hash_table\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tableHandle\",\n \"type\": \"tensor\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/image.js\nvar image_exports = {};\n__export(image_exports, {\n json: () => json10\n});\nvar json10 = [\n {\n \"tfOpName\": \"ResizeBilinear\",\n \"category\": \"image\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"images\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"align_corners\",\n \"name\": \"alignCorners\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"half_pixel_centers\",\n \"name\": \"halfPixelCenters\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"ResizeNearestNeighbor\",\n \"category\": \"image\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"images\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"align_corners\",\n \"name\": \"alignCorners\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"half_pixel_centers\",\n \"name\": \"halfPixelCenters\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"CropAndResize\",\n \"category\": \"image\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"image\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"boxes\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"boxInd\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"cropSize\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"method\",\n \"name\": \"method\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"extrapolation_value\",\n \"name\": \"extrapolationValue\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"ImageProjectiveTransformV3\",\n \"category\": \"image\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"images\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"transforms\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"outputShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 3,\n \"name\": \"fillValue\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"interpolation\",\n \"name\": \"interpolation\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"fill_mode\",\n \"name\": \"fillMode\",\n \"type\": \"string\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/logical.js\nvar logical_exports = {};\n__export(logical_exports, {\n json: () => json11\n});\nvar json11 = [\n {\n \"tfOpName\": \"Equal\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"NotEqual\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Greater\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"GreaterEqual\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Less\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LessEqual\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LogicalAnd\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LogicalNot\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LogicalOr\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Select\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"condition\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"SelectV2\",\n \"category\": \"logical\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"condition\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/matrices.js\nvar matrices_exports = {};\n__export(matrices_exports, {\n json: () => json12\n});\nvar json12 = [\n {\n \"tfOpName\": \"_FusedMatMul\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"end\": 0,\n \"name\": \"args\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_args\",\n \"name\": \"numArgs\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"fused_ops\",\n \"name\": \"fusedOps\",\n \"type\": \"string[]\",\n \"defaultValue\": []\n },\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-4\n },\n {\n \"tfName\": \"transpose_a\",\n \"name\": \"transposeA\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"transpose_b\",\n \"name\": \"transposeB\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"leakyrelu_alpha\",\n \"name\": \"leakyreluAlpha\",\n \"type\": \"number\",\n \"defaultValue\": 0.2\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"MatMul\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"transpose_a\",\n \"name\": \"transposeA\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"transpose_b\",\n \"name\": \"transposeB\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"BatchMatMul\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"adj_x\",\n \"name\": \"transposeA\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"adj_y\",\n \"name\": \"transposeB\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"BatchMatMulV2\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"a\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"b\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"adj_x\",\n \"name\": \"transposeA\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"adj_y\",\n \"name\": \"transposeB\",\n \"type\": \"bool\",\n \"defaultValue\": false\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Transpose\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"perm\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Einsum\",\n \"category\": \"matrices\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"equation\",\n \"name\": \"equation\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"N\",\n \"name\": \"n\",\n \"type\": \"number\",\n \"defaultValue\": 2\n },\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/normalization.js\nvar normalization_exports = {};\n__export(normalization_exports, {\n json: () => json13\n});\nvar json13 = [\n {\n \"tfOpName\": \"EuclideanNorm\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\",\n \"defaultValue\": false\n }\n ]\n },\n {\n \"tfOpName\": \"FusedBatchNorm\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scale\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"offset\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"mean\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 4,\n \"name\": \"variance\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-3\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"FusedBatchNormV2\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scale\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"offset\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"mean\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 4,\n \"name\": \"variance\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-3\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"FusedBatchNormV3\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"scale\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"offset\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"mean\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 4,\n \"name\": \"variance\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"epsilon\",\n \"name\": \"epsilon\",\n \"type\": \"number\",\n \"defaultValue\": 1e-3\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"LRN\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"depth_radius\",\n \"name\": \"radius\",\n \"type\": \"number\",\n \"defaultValue\": 5\n },\n {\n \"tfName\": \"bias\",\n \"name\": \"bias\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"tfName\": \"alpha\",\n \"name\": \"alpha\",\n \"type\": \"number\",\n \"defaultValue\": 1\n },\n {\n \"tfName\": \"beta\",\n \"name\": \"beta\",\n \"type\": \"number\",\n \"defaultValue\": 0.5\n }\n ]\n },\n {\n \"tfOpName\": \"Softmax\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"LogSoftmax\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"SparseToDense\",\n \"category\": \"normalization\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"sparseIndices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"outputShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"sparseValues\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"validate_indices\",\n \"name\": \"validateIndices\",\n \"type\": \"bool\",\n \"defaultValue\": true,\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/reduction.js\nvar reduction_exports = {};\n__export(reduction_exports, {\n json: () => json14\n});\nvar json14 = [\n {\n \"tfOpName\": \"Bincount\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"weights\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"DenseBincount\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"size\",\n \"type\": \"number\"\n },\n {\n \"start\": 2,\n \"name\": \"weights\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"binary_output\",\n \"name\": \"binaryOutput\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Max\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Mean\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Min\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Sum\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"All\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Any\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"ArgMax\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"ArgMin\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"Prod\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"keep_dims\",\n \"name\": \"keepDims\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Cumprod\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"exclusive\",\n \"name\": \"exclusive\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"reverse\",\n \"name\": \"reverse\",\n \"type\": \"bool\"\n }\n ]\n },\n {\n \"tfOpName\": \"Cumsum\",\n \"category\": \"reduction\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"exclusive\",\n \"name\": \"exclusive\",\n \"type\": \"bool\"\n },\n {\n \"tfName\": \"reverse\",\n \"name\": \"reverse\",\n \"type\": \"bool\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/slice_join.js\nvar slice_join_exports = {};\n__export(slice_join_exports, {\n json: () => json15\n});\nvar json15 = [\n {\n \"tfOpName\": \"ConcatV2\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": -1,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n },\n {\n \"start\": -1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"N\",\n \"name\": \"n\",\n \"type\": \"number\",\n \"defaultValue\": 2\n }\n ]\n },\n {\n \"tfOpName\": \"Concat\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 1,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n },\n {\n \"start\": 0,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"N\",\n \"name\": \"n\",\n \"type\": \"number\",\n \"defaultValue\": 2\n }\n ]\n },\n {\n \"tfOpName\": \"GatherV2\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"batch_dims\",\n \"name\": \"batchDims\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"Gather\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"validate_indices\",\n \"name\": \"validateIndices\",\n \"type\": \"bool\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Reverse\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"dims\",\n \"type\": \"bool[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"ReverseV2\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"Slice\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"begin\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"size\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"StridedSlice\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"begin\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"end\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 3,\n \"name\": \"strides\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"begin_mask\",\n \"name\": \"beginMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"end_mask\",\n \"name\": \"endMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"new_axis_mask\",\n \"name\": \"newAxisMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"ellipsis_mask\",\n \"name\": \"ellipsisMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"shrink_axis_mask\",\n \"name\": \"shrinkAxisMask\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"Pack\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"end\": 0,\n \"name\": \"tensors\",\n \"type\": \"tensors\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"axis\",\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"Unpack\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"tensor\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"axis\",\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"tfName\": \"num\",\n \"name\": \"num\",\n \"type\": \"number\",\n \"defaultValue\": 0,\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"Tile\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"reps\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"Split\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n },\n {\n \"start\": 1,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_split\",\n \"name\": \"numOrSizeSplits\",\n \"type\": \"number\",\n \"defaultValue\": 1\n }\n ]\n },\n {\n \"tfOpName\": \"SplitV\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"numOrSizeSplits\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"axis\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"ScatterNd\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"values\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"GatherNd\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"SparseToDense\",\n \"category\": \"slice_join\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"sparseIndices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"outputShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"sparseValues\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"validate_indices\",\n \"name\": \"validateIndices\",\n \"type\": \"bool\",\n \"defaultValue\": false,\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/sparse.js\nvar sparse_exports = {};\n__export(sparse_exports, {\n json: () => json16\n});\nvar json16 = [\n {\n \"tfOpName\": \"SparseFillEmptyRows\",\n \"category\": \"sparse\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"values\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"denseShape\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 3,\n \"name\": \"defaultValue\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"SparseReshape\",\n \"category\": \"sparse\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"inputIndices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"inputShape\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"newShape\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"T\",\n \"name\": \"dtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"SparseSegmentMean\",\n \"category\": \"sparse\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"data\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"segmentIds\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"SparseSegmentSum\",\n \"category\": \"sparse\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"data\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"indices\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 2,\n \"name\": \"segmentIds\",\n \"type\": \"tensor\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/spectral.js\nvar spectral_exports = {};\n__export(spectral_exports, {\n json: () => json17\n});\nvar json17 = [\n {\n \"tfOpName\": \"FFT\",\n \"category\": \"spectral\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"IFFT\",\n \"category\": \"spectral\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ]\n },\n {\n \"tfOpName\": \"RFFT\",\n \"category\": \"spectral\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"fft_length\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n },\n {\n \"tfOpName\": \"IRFFT\",\n \"category\": \"spectral\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"fft_length\",\n \"type\": \"number\",\n \"notSupported\": true\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/string.js\nvar string_exports = {};\n__export(string_exports, {\n json: () => json18\n});\nvar json18 = [\n {\n \"tfOpName\": \"StringNGrams\",\n \"category\": \"string\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"data\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"dataSplits\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"separator\",\n \"name\": \"separator\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"ngram_widths\",\n \"name\": \"nGramWidths\",\n \"type\": \"number[]\"\n },\n {\n \"tfName\": \"left_pad\",\n \"name\": \"leftPad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"right_pad\",\n \"name\": \"rightPad\",\n \"type\": \"string\"\n },\n {\n \"tfName\": \"pad_width\",\n \"name\": \"padWidth\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"preserve_short_sequences\",\n \"name\": \"preserveShortSequences\",\n \"type\": \"bool\"\n }\n ],\n \"outputs\": [\n \"ngrams\",\n \"ngrams_splits\"\n ]\n },\n {\n \"tfOpName\": \"StringSplit\",\n \"category\": \"string\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"input\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"delimiter\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"skip_empty\",\n \"name\": \"skipEmpty\",\n \"type\": \"bool\"\n }\n ],\n \"outputs\": [\n \"indices\",\n \"values\",\n \"shape\"\n ]\n },\n {\n \"tfOpName\": \"StringToHashBucketFast\",\n \"category\": \"string\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"input\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"num_buckets\",\n \"name\": \"numBuckets\",\n \"type\": \"number\"\n }\n ]\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/op_list/transformation.js\nvar transformation_exports = {};\n__export(transformation_exports, {\n json: () => json19\n});\nvar json19 = [\n {\n \"tfOpName\": \"Cast\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"SrcT\",\n \"name\": \"sdtype\",\n \"type\": \"dtype\",\n \"notSupported\": true\n },\n {\n \"tfName\": \"DstT\",\n \"name\": \"dtype\",\n \"type\": \"dtype\"\n }\n ]\n },\n {\n \"tfOpName\": \"ExpandDims\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"axis\",\n \"type\": \"number\"\n }\n ]\n },\n {\n \"tfOpName\": \"MirrorPad\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"padding\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"mode\",\n \"name\": \"mode\",\n \"type\": \"string\"\n }\n ]\n },\n {\n \"tfOpName\": \"Pad\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"padding\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"constant_value\",\n \"name\": \"constantValue\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"PadV2\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"padding\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"constantValue\",\n \"type\": \"number\",\n \"defaultValue\": 0\n }\n ]\n },\n {\n \"tfOpName\": \"Reshape\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"Squeeze\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"axis\",\n \"tfDeprecatedName\": \"squeeze_dims\",\n \"name\": \"axis\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"SpaceToBatchND\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"blockShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"paddings\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"BatchToSpaceND\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"blockShape\",\n \"type\": \"number[]\"\n },\n {\n \"start\": 2,\n \"name\": \"crops\",\n \"type\": \"number[]\"\n }\n ]\n },\n {\n \"tfOpName\": \"DepthToSpace\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": [\n {\n \"tfName\": \"block_size\",\n \"name\": \"blockSize\",\n \"type\": \"number\"\n },\n {\n \"tfName\": \"data_format\",\n \"name\": \"dataFormat\",\n \"type\": \"string\"\n }\n ]\n },\n {\n \"tfOpName\": \"BroadcastTo\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"x\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"shape\",\n \"type\": \"number[]\"\n }\n ],\n \"attrs\": []\n },\n {\n \"tfOpName\": \"BroadcastArgs\",\n \"category\": \"transformation\",\n \"inputs\": [\n {\n \"start\": 0,\n \"name\": \"s0\",\n \"type\": \"tensor\"\n },\n {\n \"start\": 1,\n \"name\": \"s1\",\n \"type\": \"tensor\"\n }\n ],\n \"attrs\": []\n }\n];\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/operation_mapper.js\nvar OperationMapper = class {\n static get Instance() {\n return this._instance || (this._instance = new this());\n }\n constructor() {\n const ops = [\n arithmetic_exports,\n basic_math_exports,\n control_exports,\n convolution_exports,\n creation_exports,\n dynamic_exports,\n evaluation_exports,\n graph_exports,\n hash_table_exports,\n image_exports,\n logical_exports,\n matrices_exports,\n normalization_exports,\n reduction_exports,\n slice_join_exports,\n sparse_exports,\n spectral_exports,\n string_exports,\n transformation_exports\n ];\n const mappersJson = [].concat(...ops.map((op2) => op2.json));\n this.opMappers = mappersJson.reduce((map, mapper) => {\n map[mapper.tfOpName] = mapper;\n return map;\n }, {});\n }\n transformGraph(graph, signature = {}) {\n const tfNodes = graph.node;\n const placeholders = [];\n const weights = [];\n const initNodes = [];\n const nodes = tfNodes.reduce((map, node) => {\n map[node.name] = this.mapNode(node);\n if (node.op.startsWith(\"Placeholder\")) {\n placeholders.push(map[node.name]);\n } else if (node.op === \"Const\") {\n weights.push(map[node.name]);\n } else if (node.input == null || node.input.length === 0) {\n initNodes.push(map[node.name]);\n }\n return map;\n }, {});\n let inputs = [];\n const outputs = [];\n let inputNodeNameToKey = {};\n let outputNodeNameToKey = {};\n if (signature != null) {\n inputNodeNameToKey = this.mapSignatureEntries(signature.inputs);\n outputNodeNameToKey = this.mapSignatureEntries(signature.outputs);\n }\n const allNodes = Object.keys(nodes);\n allNodes.forEach((key) => {\n const node = nodes[key];\n node.inputNames.forEach((name, index) => {\n const [nodeName, , outputName] = getNodeNameAndIndex(name);\n const inputNode = nodes[nodeName];\n if (inputNode.outputs != null) {\n const outputIndex = inputNode.outputs.indexOf(outputName);\n if (outputIndex !== -1) {\n const inputName = `${nodeName}:${outputIndex}`;\n node.inputNames[index] = inputName;\n }\n }\n node.inputs.push(inputNode);\n inputNode.children.push(node);\n });\n });\n if (Object.keys(outputNodeNameToKey).length === 0) {\n allNodes.forEach((key) => {\n const node = nodes[key];\n if (node.children.length === 0) {\n outputs.push(node);\n }\n });\n } else {\n Object.keys(outputNodeNameToKey).forEach((name) => {\n const [nodeName] = getNodeNameAndIndex(name);\n const node = nodes[nodeName];\n if (node != null) {\n node.signatureKey = outputNodeNameToKey[name];\n outputs.push(node);\n }\n });\n }\n if (Object.keys(inputNodeNameToKey).length > 0) {\n Object.keys(inputNodeNameToKey).forEach((name) => {\n const [nodeName] = getNodeNameAndIndex(name);\n const node = nodes[nodeName];\n if (node) {\n node.signatureKey = inputNodeNameToKey[name];\n inputs.push(node);\n }\n });\n } else {\n inputs = placeholders;\n }\n let functions = {};\n if (graph.library != null && graph.library.function != null) {\n functions = graph.library.function.reduce((functions2, func2) => {\n functions2[func2.signature.name] = this.mapFunction(func2);\n return functions2;\n }, {});\n }\n const result = { nodes, inputs, outputs, weights, placeholders, signature, functions };\n if (initNodes.length > 0) {\n result.initNodes = initNodes;\n }\n return result;\n }\n mapSignatureEntries(entries) {\n return Object.keys(entries || {}).reduce((prev, curr) => {\n prev[entries[curr].name] = curr;\n return prev;\n }, {});\n }\n mapNode(node) {\n const mapper = getRegisteredOp(node.op) || this.opMappers[node.op] || {};\n if (node.attr == null) {\n node.attr = {};\n }\n const newNode = {\n name: node.name,\n op: node.op,\n category: mapper.category,\n inputNames: (node.input || []).map((input2) => input2.startsWith(\"^\") ? input2.slice(1) : input2),\n inputs: [],\n children: [],\n inputParams: {},\n attrParams: {},\n rawAttrs: node.attr,\n outputs: mapper.outputs\n };\n if (mapper.inputs != null) {\n newNode.inputParams = mapper.inputs.reduce((map, param) => {\n map[param.name] = {\n type: param.type,\n inputIndexStart: param.start,\n inputIndexEnd: param.end\n };\n return map;\n }, {});\n }\n if (mapper.attrs != null) {\n newNode.attrParams = mapper.attrs.reduce((map, param) => {\n const type = param.type;\n let value = void 0;\n switch (param.type) {\n case \"string\":\n value = getStringParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getStringParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"string[]\":\n value = getStringArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getStringArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"number\":\n value = getNumberParam(node.attr, param.tfName, param.defaultValue || 0);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getNumberParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"number[]\":\n value = getNumericArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getNumericArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"bool\":\n value = getBoolParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getBoolParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"bool[]\":\n value = getBoolArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getBoolArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"shape\":\n value = getTensorShapeParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getTensorShapeParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"shape[]\":\n value = getTensorShapeArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getTensorShapeArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"dtype\":\n value = getDtypeParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getDtypeParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"dtype[]\":\n value = getDtypeArrayParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getDtypeArrayParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"func\":\n value = getFuncParam(node.attr, param.tfName, param.defaultValue);\n if (value === void 0 && !!param.tfDeprecatedName) {\n value = getFuncParam(node.attr, param.tfDeprecatedName, param.defaultValue);\n }\n break;\n case \"tensor\":\n case \"tensors\":\n break;\n default:\n throw new Error(`Unsupported param type: ${param.type} for op: ${node.op}`);\n }\n map[param.name] = { value, type };\n return map;\n }, {});\n }\n return newNode;\n }\n mapFunction(functionDef) {\n const tfNodes = functionDef.nodeDef;\n const placeholders = [];\n const weights = [];\n let nodes = {};\n if (tfNodes != null) {\n nodes = tfNodes.reduce((map, node) => {\n map[node.name] = this.mapNode(node);\n if (node.op === \"Const\") {\n weights.push(map[node.name]);\n }\n return map;\n }, {});\n }\n const inputs = [];\n const outputs = [];\n functionDef.signature.inputArg.forEach((arg) => {\n const [nodeName] = getNodeNameAndIndex(arg.name);\n const node = {\n name: nodeName,\n op: \"Placeholder\",\n inputs: [],\n inputNames: [],\n category: \"graph\",\n inputParams: {},\n attrParams: { dtype: { value: parseDtypeParam(arg.type), type: \"dtype\" } },\n children: []\n };\n node.signatureKey = arg.name;\n inputs.push(node);\n nodes[nodeName] = node;\n });\n const allNodes = Object.keys(nodes);\n allNodes.forEach((key) => {\n const node = nodes[key];\n node.inputNames.forEach((name, index) => {\n const [nodeName, , outputName] = getNodeNameAndIndex(name);\n const inputNode = nodes[nodeName];\n if (inputNode.outputs != null) {\n const outputIndex = inputNode.outputs.indexOf(outputName);\n if (outputIndex !== -1) {\n const inputName = `${nodeName}:${outputIndex}`;\n node.inputNames[index] = inputName;\n }\n }\n node.inputs.push(inputNode);\n inputNode.children.push(node);\n });\n });\n const returnNodeMap = functionDef.ret;\n functionDef.signature.outputArg.forEach((output) => {\n const [nodeName, index] = getNodeNameAndIndex(returnNodeMap[output.name]);\n const node = nodes[nodeName];\n if (node != null) {\n node.defaultOutput = index;\n outputs.push(node);\n }\n });\n const signature = this.mapArgsToSignature(functionDef);\n return { nodes, inputs, outputs, weights, placeholders, signature };\n }\n mapArgsToSignature(functionDef) {\n return {\n methodName: functionDef.signature.name,\n inputs: functionDef.signature.inputArg.reduce((map, arg) => {\n map[arg.name] = this.mapArgToTensorInfo(arg);\n return map;\n }, {}),\n outputs: functionDef.signature.outputArg.reduce((map, arg) => {\n map[arg.name] = this.mapArgToTensorInfo(arg, functionDef.ret);\n return map;\n }, {})\n };\n }\n mapArgToTensorInfo(arg, nameMap2) {\n let name = arg.name;\n if (nameMap2 != null) {\n name = nameMap2[name];\n }\n return { name, dtype: arg.type };\n }\n};\nfunction decodeBase64(text) {\n const global2 = env().global;\n if (typeof global2.atob !== \"undefined\") {\n return global2.atob(text);\n } else if (typeof Buffer !== \"undefined\") {\n return new Buffer(text, \"base64\").toString();\n } else {\n throw new Error(\"Unable to decode base64 in this environment. Missing built-in atob() or Buffer()\");\n }\n}\nfunction parseStringParam(s2, keepCase) {\n const value = Array.isArray(s2) ? String.fromCharCode.apply(null, s2) : decodeBase64(s2);\n return keepCase ? value : value.toLowerCase();\n}\nfunction getStringParam(attrs, name, def, keepCase = false) {\n const param = attrs[name];\n if (param != null) {\n return parseStringParam(param.s, keepCase);\n }\n return def;\n}\nfunction getBoolParam(attrs, name, def) {\n const param = attrs[name];\n return param ? param.b : def;\n}\nfunction getNumberParam(attrs, name, def) {\n const param = attrs[name] || {};\n const value = param[\"i\"] != null ? param[\"i\"] : param[\"f\"] != null ? param[\"f\"] : def;\n return typeof value === \"number\" ? value : parseInt(value, 10);\n}\nfunction parseDtypeParam(value) {\n if (typeof value === \"string\") {\n value = DataType[value];\n }\n switch (value) {\n case DataType.DT_FLOAT:\n case DataType.DT_HALF:\n return \"float32\";\n case DataType.DT_INT32:\n case DataType.DT_INT64:\n case DataType.DT_INT8:\n case DataType.DT_UINT8:\n return \"int32\";\n case DataType.DT_BOOL:\n return \"bool\";\n case DataType.DT_DOUBLE:\n return \"float32\";\n case DataType.DT_STRING:\n return \"string\";\n default:\n return null;\n }\n}\nfunction getFuncParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.func) {\n return param.func.name;\n }\n return def;\n}\nfunction getDtypeParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.type) {\n return parseDtypeParam(param.type);\n }\n return def;\n}\nfunction getDtypeArrayParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.list && param.list.type) {\n return param.list.type.map((v) => parseDtypeParam(v));\n }\n return def;\n}\nfunction parseTensorShapeParam(shape) {\n if (shape.unknownRank) {\n return void 0;\n }\n if (shape.dim != null) {\n return shape.dim.map((dim) => typeof dim.size === \"number\" ? dim.size : parseInt(dim.size, 10));\n }\n return [];\n}\nfunction getTensorShapeParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.shape) {\n return parseTensorShapeParam(param.shape);\n }\n return def;\n}\nfunction getNumericArrayParam(attrs, name, def) {\n const param = attrs[name];\n if (param) {\n return ((param.list.f && param.list.f.length ? param.list.f : param.list.i) || []).map((v) => typeof v === \"number\" ? v : parseInt(v, 10));\n }\n return def;\n}\nfunction getStringArrayParam(attrs, name, def, keepCase = false) {\n const param = attrs[name];\n if (param && param.list && param.list.s) {\n return param.list.s.map((v) => {\n return parseStringParam(v, keepCase);\n });\n }\n return def;\n}\nfunction getTensorShapeArrayParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.list && param.list.shape) {\n return param.list.shape.map((v) => {\n return parseTensorShapeParam(v);\n });\n }\n return def;\n}\nfunction getBoolArrayParam(attrs, name, def) {\n const param = attrs[name];\n if (param && param.list && param.list.b) {\n return param.list.b;\n }\n return def;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/custom_op/node_value_impl.js\nvar NodeValueImpl = class {\n constructor(node, tensorMap, context) {\n this.node = node;\n this.tensorMap = tensorMap;\n this.context = context;\n this.inputs = [];\n this.attrs = {};\n this.inputs = node.inputNames.map((name) => this.getInput(name));\n if (node.rawAttrs != null) {\n this.attrs = Object.keys(node.rawAttrs).reduce((attrs, key) => {\n attrs[key] = this.getAttr(key);\n return attrs;\n }, {});\n }\n }\n getInput(name) {\n return getTensor(name, this.tensorMap, this.context);\n }\n getAttr(name, defaultValue) {\n const value = this.node.rawAttrs[name];\n if (value.tensor != null) {\n return getTensor(name, this.tensorMap, this.context);\n }\n if (value.i != null || value.f != null) {\n return getNumberParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.s != null) {\n return getStringParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.b != null) {\n return getBoolParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.shape != null) {\n return getTensorShapeParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.type != null) {\n return getDtypeParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list != null) {\n if (value.list.i != null || value.list.f != null) {\n return getNumericArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list.s != null) {\n return getStringArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list.shape != null) {\n return getTensorShapeArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list.b != null) {\n return getBoolArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n if (value.list.type != null) {\n return getDtypeArrayParam(this.node.rawAttrs, name, defaultValue);\n }\n }\n return defaultValue;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ops_for_converter.js\nvar ops_for_converter_exports = {};\n__export(ops_for_converter_exports, {\n OP_SCOPE_SUFFIX: () => OP_SCOPE_SUFFIX,\n abs: () => abs,\n acos: () => acos,\n acosh: () => acosh,\n add: () => add2,\n addN: () => addN,\n all: () => all,\n any: () => any,\n argMax: () => argMax,\n argMin: () => argMin,\n asin: () => asin,\n asinh: () => asinh,\n atan: () => atan,\n atan2: () => atan2,\n atanh: () => atanh,\n avgPool: () => avgPool,\n avgPool3d: () => avgPool3d,\n basicLSTMCell: () => basicLSTMCell,\n batchNorm: () => batchNorm,\n batchNorm2d: () => batchNorm2d,\n batchNorm3d: () => batchNorm3d,\n batchNorm4d: () => batchNorm4d,\n batchToSpaceND: () => batchToSpaceND,\n bincount: () => bincount,\n booleanMaskAsync: () => booleanMaskAsync,\n broadcastArgs: () => broadcastArgs,\n broadcastTo: () => broadcastTo,\n buffer: () => buffer,\n cast: () => cast,\n ceil: () => ceil,\n clipByValue: () => clipByValue,\n clone: () => clone,\n complex: () => complex,\n concat: () => concat,\n concat1d: () => concat1d,\n concat2d: () => concat2d,\n concat3d: () => concat3d,\n concat4d: () => concat4d,\n conv1d: () => conv1d,\n conv2d: () => conv2d,\n conv2dTranspose: () => conv2dTranspose,\n conv3d: () => conv3d,\n conv3dTranspose: () => conv3dTranspose,\n cos: () => cos,\n cosh: () => cosh,\n cosineWindow: () => cosineWindow,\n cumprod: () => cumprod,\n cumsum: () => cumsum,\n denseBincount: () => denseBincount,\n depthToSpace: () => depthToSpace,\n depthwiseConv2d: () => depthwiseConv2d,\n diag: () => diag,\n dilation2d: () => dilation2d,\n div: () => div,\n divNoNan: () => divNoNan,\n dot: () => dot,\n dropout: () => dropout,\n einsum: () => einsum,\n elu: () => elu,\n enclosingPowerOfTwo: () => enclosingPowerOfTwo,\n equal: () => equal,\n erf: () => erf,\n euclideanNorm: () => euclideanNorm,\n exp: () => exp,\n expandDims: () => expandDims,\n expm1: () => expm1,\n eye: () => eye,\n fft: () => fft,\n fill: () => fill,\n floor: () => floor,\n floorDiv: () => floorDiv,\n fused: () => fused_ops_exports,\n gather: () => gather,\n gatherND: () => gatherND,\n greater: () => greater,\n greaterEqual: () => greaterEqual,\n ifft: () => ifft,\n imag: () => imag,\n image: () => image,\n inTopKAsync: () => inTopKAsync,\n irfft: () => irfft,\n isFinite: () => isFinite2,\n isInf: () => isInf,\n isNaN: () => isNaN2,\n leakyRelu: () => leakyRelu,\n less: () => less,\n lessEqual: () => lessEqual,\n linalg: () => linalg,\n linspace: () => linspace,\n localResponseNormalization: () => localResponseNormalization,\n log: () => log2,\n log1p: () => log1p,\n logSigmoid: () => logSigmoid,\n logSoftmax: () => logSoftmax,\n logSumExp: () => logSumExp,\n logicalAnd: () => logicalAnd,\n logicalNot: () => logicalNot,\n logicalOr: () => logicalOr,\n logicalXor: () => logicalXor,\n losses: () => losses,\n lowerBound: () => lowerBound,\n matMul: () => matMul,\n max: () => max,\n maxPool: () => maxPool,\n maxPool3d: () => maxPool3d,\n maxPoolWithArgmax: () => maxPoolWithArgmax,\n maximum: () => maximum,\n mean: () => mean,\n meshgrid: () => meshgrid,\n min: () => min,\n minimum: () => minimum,\n mirrorPad: () => mirrorPad,\n mod: () => mod,\n moments: () => moments,\n movingAverage: () => movingAverage,\n mul: () => mul,\n multiRNNCell: () => multiRNNCell,\n multinomial: () => multinomial,\n neg: () => neg,\n norm: () => norm,\n notEqual: () => notEqual,\n oneHot: () => oneHot,\n ones: () => ones2,\n onesLike: () => onesLike,\n op: () => op,\n outerProduct: () => outerProduct,\n pad: () => pad,\n pad1d: () => pad1d,\n pad2d: () => pad2d,\n pad3d: () => pad3d,\n pad4d: () => pad4d,\n pool: () => pool,\n pow: () => pow,\n prelu: () => prelu,\n print: () => print,\n prod: () => prod,\n raggedTensorToTensor: () => raggedTensorToTensor,\n rand: () => rand,\n randomGamma: () => randomGamma,\n randomNormal: () => randomNormal,\n randomStandardNormal: () => randomStandardNormal,\n randomUniform: () => randomUniform,\n range: () => range,\n real: () => real,\n reciprocal: () => reciprocal,\n relu: () => relu,\n relu6: () => relu6,\n reshape: () => reshape,\n reverse: () => reverse,\n reverse1d: () => reverse1d,\n reverse2d: () => reverse2d,\n reverse3d: () => reverse3d,\n reverse4d: () => reverse4d,\n rfft: () => rfft,\n round: () => round2,\n rsqrt: () => rsqrt,\n scalar: () => scalar,\n scatterND: () => scatterND,\n searchSorted: () => searchSorted,\n selu: () => selu,\n separableConv2d: () => separableConv2d,\n setdiff1dAsync: () => setdiff1dAsync,\n sigmoid: () => sigmoid,\n sign: () => sign,\n signal: () => signal,\n sin: () => sin,\n sinh: () => sinh,\n slice: () => slice,\n slice1d: () => slice1d,\n slice2d: () => slice2d,\n slice3d: () => slice3d,\n slice4d: () => slice4d,\n softmax: () => softmax,\n softplus: () => softplus,\n spaceToBatchND: () => spaceToBatchND,\n sparse: () => sparse,\n sparseToDense: () => sparseToDense,\n spectral: () => spectral,\n split: () => split,\n sqrt: () => sqrt,\n square: () => square,\n squaredDifference: () => squaredDifference,\n squeeze: () => squeeze,\n stack: () => stack,\n step: () => step,\n stridedSlice: () => stridedSlice,\n string: () => string,\n sub: () => sub,\n sum: () => sum2,\n tan: () => tan,\n tanh: () => tanh2,\n tensor: () => tensor,\n tensor1d: () => tensor1d,\n tensor2d: () => tensor2d,\n tensor3d: () => tensor3d,\n tensor4d: () => tensor4d,\n tensor5d: () => tensor5d,\n tensor6d: () => tensor6d,\n tile: () => tile,\n topk: () => topk,\n transpose: () => transpose,\n truncatedNormal: () => truncatedNormal,\n unique: () => unique,\n unsortedSegmentSum: () => unsortedSegmentSum,\n unstack: () => unstack,\n upperBound: () => upperBound,\n variable: () => variable,\n where: () => where,\n whereAsync: () => whereAsync,\n zeros: () => zeros,\n zerosLike: () => zerosLike\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/arithmetic_executor.js\nvar executeOp = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"BiasAdd\":\n case \"AddV2\":\n case \"Add\": {\n return [ops.add(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"AddN\": {\n return [ops.addN(getParamValue(\"tensors\", node, tensorMap, context))];\n }\n case \"FloorMod\":\n case \"Mod\":\n return [ops.mod(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n case \"Mul\":\n return [ops.mul(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n case \"RealDiv\":\n case \"Div\": {\n return [ops.div(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"DivNoNan\": {\n return [ops.divNoNan(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"FloorDiv\": {\n return [ops.floorDiv(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Sub\": {\n return [ops.sub(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Minimum\": {\n return [ops.minimum(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Maximum\": {\n return [ops.maximum(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Pow\": {\n return [ops.pow(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"SquaredDifference\": {\n return [ops.squaredDifference(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/basic_math_executor.js\nvar executeOp2 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Abs\":\n case \"ComplexAbs\":\n return [ops.abs(getParamValue(\"x\", node, tensorMap, context))];\n case \"Acos\":\n return [ops.acos(getParamValue(\"x\", node, tensorMap, context))];\n case \"Acosh\":\n return [ops.acosh(getParamValue(\"x\", node, tensorMap, context))];\n case \"Asin\":\n return [ops.asin(getParamValue(\"x\", node, tensorMap, context))];\n case \"Asinh\":\n return [ops.asinh(getParamValue(\"x\", node, tensorMap, context))];\n case \"Atan\":\n return [ops.atan(getParamValue(\"x\", node, tensorMap, context))];\n case \"Atan2\":\n return [ops.atan2(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"y\", node, tensorMap, context))];\n case \"Atanh\":\n return [ops.atanh(getParamValue(\"x\", node, tensorMap, context))];\n case \"Ceil\":\n return [ops.ceil(getParamValue(\"x\", node, tensorMap, context))];\n case \"Complex\":\n return [ops.complex(getParamValue(\"real\", node, tensorMap, context), getParamValue(\"imag\", node, tensorMap, context))];\n case \"Cos\":\n return [ops.cos(getParamValue(\"x\", node, tensorMap, context))];\n case \"Cosh\":\n return [ops.cosh(getParamValue(\"x\", node, tensorMap, context))];\n case \"Elu\":\n return [ops.elu(getParamValue(\"x\", node, tensorMap, context))];\n case \"Erf\":\n return [ops.erf(getParamValue(\"x\", node, tensorMap, context))];\n case \"Exp\":\n return [ops.exp(getParamValue(\"x\", node, tensorMap, context))];\n case \"Expm1\": {\n return [ops.expm1(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Floor\":\n return [ops.floor(getParamValue(\"x\", node, tensorMap, context))];\n case \"Log\":\n return [ops.log(getParamValue(\"x\", node, tensorMap, context))];\n case \"Log1p\": {\n return [ops.log1p(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Imag\":\n return [ops.imag(getParamValue(\"x\", node, tensorMap, context))];\n case \"Neg\":\n return [ops.neg(getParamValue(\"x\", node, tensorMap, context))];\n case \"Reciprocal\": {\n return [ops.reciprocal(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Real\":\n return [ops.real(getParamValue(\"x\", node, tensorMap, context))];\n case \"Relu\":\n return [ops.relu(getParamValue(\"x\", node, tensorMap, context))];\n case \"Round\": {\n return [ops.round(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Selu\":\n return [ops.selu(getParamValue(\"x\", node, tensorMap, context))];\n case \"Sigmoid\":\n return [ops.sigmoid(getParamValue(\"x\", node, tensorMap, context))];\n case \"Sin\":\n return [ops.sin(getParamValue(\"x\", node, tensorMap, context))];\n case \"Sign\": {\n return [ops.sign(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Sinh\": {\n return [ops.sinh(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Softplus\": {\n return [ops.softplus(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Sqrt\": {\n return [ops.sqrt(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Square\": {\n return [ops.square(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Tanh\": {\n return [ops.tanh(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"Tan\":\n return [ops.tan(getParamValue(\"x\", node, tensorMap, context))];\n case \"ClipByValue\":\n return [ops.clipByValue(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"clipValueMin\", node, tensorMap, context), getParamValue(\"clipValueMax\", node, tensorMap, context))];\n case \"Relu6\":\n return [ops.relu6(getParamValue(\"x\", node, tensorMap, context))];\n case \"Rsqrt\":\n return [ops.rsqrt(getTensor(node.inputNames[0], tensorMap, context))];\n case \"Prod\":\n return [ops.prod(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"axes\", node, tensorMap, context))];\n case \"LeakyRelu\":\n return [ops.leakyRelu(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"alpha\", node, tensorMap, context))];\n case \"Prelu\":\n return [ops.prelu(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"alpha\", node, tensorMap, context))];\n case \"IsNan\":\n return [ops.isNaN(getTensor(node.inputNames[0], tensorMap, context))];\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/tensor_utils.js\nfunction assertShapesMatchAllowUndefinedSize(shapeA, shapeB, errorMessagePrefix = \"\") {\n if (typeof shapeA === \"number\" || typeof shapeB === \"number\") {\n return;\n }\n util_exports.assert(shapeA.length === shapeB.length, () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n for (let i2 = 0; i2 < shapeA.length; i2++) {\n const dim0 = shapeA[i2];\n const dim1 = shapeB[i2];\n util_exports.assert(dim0 < 0 || dim1 < 0 || dim0 === dim1, () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n }\n}\nfunction fullDefinedShape(elementShape) {\n if (typeof elementShape === \"number\" || elementShape.some((dim) => dim < 0)) {\n return false;\n }\n return true;\n}\nfunction inferElementShape(listElementShape, tensors, elementShape) {\n let partialShape = mergeElementShape(listElementShape, elementShape);\n const notfullDefinedShape = !fullDefinedShape(partialShape);\n if (notfullDefinedShape && tensors.length === 0) {\n throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${partialShape}`);\n }\n if (notfullDefinedShape) {\n tensors.forEach((tensor2) => {\n partialShape = mergeElementShape(tensor2.shape, partialShape);\n });\n }\n if (!fullDefinedShape(partialShape)) {\n throw new Error(`Non-fully-defined elementShape: ${partialShape}`);\n }\n return partialShape;\n}\nfunction mergeElementShape(elementShapeA, elementShapeB) {\n if (typeof elementShapeA === \"number\") {\n return elementShapeB;\n }\n if (typeof elementShapeB === \"number\") {\n return elementShapeA;\n }\n if (elementShapeA.length !== elementShapeB.length) {\n throw new Error(`Incompatible ranks during merge: ${elementShapeA} vs. ${elementShapeB}`);\n }\n const result = [];\n for (let i2 = 0; i2 < elementShapeA.length; ++i2) {\n const dim0 = elementShapeA[i2];\n const dim1 = elementShapeB[i2];\n if (dim0 >= 0 && dim1 >= 0 && dim0 !== dim1) {\n throw new Error(`Incompatible shape during merge: ${elementShapeA} vs. ${elementShapeB}`);\n }\n result[i2] = dim0 >= 0 ? dim0 : dim1;\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/tensor_array.js\nvar TensorArray = class {\n constructor(name, dtype, maxSize, elementShape, identicalElementShapes, dynamicSize, clearAfterRead) {\n this.name = name;\n this.dtype = dtype;\n this.maxSize = maxSize;\n this.elementShape = elementShape;\n this.identicalElementShapes = identicalElementShapes;\n this.dynamicSize = dynamicSize;\n this.clearAfterRead = clearAfterRead;\n this.tensors = [];\n this.closed_ = false;\n this.idTensor = scalar(0);\n keep(this.idTensor);\n }\n get id() {\n return this.idTensor.id;\n }\n get closed() {\n return this.closed_;\n }\n clearAndClose(keepIds) {\n this.tensors.forEach((tensor2) => {\n if (keepIds == null || !keepIds.has(tensor2.tensor.id)) {\n tensor2.tensor.dispose();\n }\n });\n this.tensors = [];\n this.closed_ = true;\n this.idTensor.dispose();\n }\n size() {\n return this.tensors.length;\n }\n read(index) {\n if (this.closed_) {\n throw new Error(`TensorArray ${this.name} has already been closed.`);\n }\n if (index < 0 || index >= this.size()) {\n throw new Error(`Tried to read from index ${index}, but array size is: ${this.size()}`);\n }\n const tensorWithState = this.tensors[index];\n if (tensorWithState.cleared) {\n throw new Error(`TensorArray ${this.name}: Could not read index ${index} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);\n }\n if (this.clearAfterRead) {\n tensorWithState.cleared = true;\n }\n tensorWithState.read = true;\n return tensorWithState.tensor;\n }\n readMany(indices) {\n return indices.map((index) => this.read(index));\n }\n write(index, tensor2) {\n if (this.closed_) {\n throw new Error(`TensorArray ${this.name} has already been closed.`);\n }\n if (index < 0 || !this.dynamicSize && index >= this.maxSize) {\n throw new Error(`Tried to write to index ${index}, but array is not resizeable and size is: ${this.maxSize}`);\n }\n const t2 = this.tensors[index] || {};\n if (tensor2.dtype !== this.dtype) {\n throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index},\n because the value dtype is ${tensor2.dtype}, but TensorArray dtype is ${this.dtype}.`);\n }\n if (this.size() === 0 && (this.elementShape == null || this.elementShape.length === 0)) {\n this.elementShape = tensor2.shape;\n }\n assertShapesMatchAllowUndefinedSize(this.elementShape, tensor2.shape, `TensorArray ${this.name}: Could not write to TensorArray index ${index}.`);\n if (t2.read) {\n throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index}, because it has already been read.`);\n }\n if (t2.written) {\n throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index}, because it has already been written.`);\n }\n t2.tensor = tensor2;\n keep(tensor2);\n t2.written = true;\n this.tensors[index] = t2;\n }\n writeMany(indices, tensors) {\n if (indices.length !== tensors.length) {\n throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${indices.length} is not the same as tensors size: ${tensors.length}.`);\n }\n indices.forEach((i2, index) => this.write(i2, tensors[index]));\n }\n gather(indices, dtype) {\n if (!!dtype && dtype !== this.dtype) {\n throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${dtype}`);\n }\n if (!indices) {\n indices = [];\n for (let i2 = 0; i2 < this.size(); i2++) {\n indices.push(i2);\n }\n } else {\n indices = indices.slice(0, this.size());\n }\n if (indices.length === 0) {\n return tensor([], [0].concat(this.elementShape));\n }\n const tensors = this.readMany(indices);\n assertShapesMatchAllowUndefinedSize(this.elementShape, tensors[0].shape, \"TensorArray shape mismatch: \");\n return stack(tensors, 0);\n }\n concat(dtype) {\n if (!!dtype && dtype !== this.dtype) {\n throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${dtype}`);\n }\n if (this.size() === 0) {\n return tensor([], [0].concat(this.elementShape));\n }\n const indices = [];\n for (let i2 = 0; i2 < this.size(); i2++) {\n indices.push(i2);\n }\n const tensors = this.readMany(indices);\n assertShapesMatchAllowUndefinedSize(this.elementShape, tensors[0].shape, `TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${tensors[0].shape})`);\n return concat(tensors, 0);\n }\n scatter(indices, tensor2) {\n if (tensor2.dtype !== this.dtype) {\n throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${tensor2.dtype}`);\n }\n if (indices.length !== tensor2.shape[0]) {\n throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${indices.length} vs. ${tensor2.shape[0]}`);\n }\n const maxIndex = Math.max(...indices);\n if (!this.dynamicSize && maxIndex >= this.maxSize) {\n throw new Error(`Max index must be < array size (${maxIndex} vs. ${this.maxSize})`);\n }\n this.writeMany(indices, unstack(tensor2, 0));\n }\n split(length, tensor2) {\n if (tensor2.dtype !== this.dtype) {\n throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${tensor2.dtype}`);\n }\n let totalLength = 0;\n const cumulativeLengths = length.map((len) => {\n totalLength += len;\n return totalLength;\n });\n if (totalLength !== tensor2.shape[0]) {\n throw new Error(`Expected sum of lengths to be equal to\n tensor.shape[0], but sum of lengths is\n ${totalLength}, and tensor's shape is: ${tensor2.shape}`);\n }\n if (!this.dynamicSize && length.length !== this.maxSize) {\n throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${length.length}), and the TensorArray is not marked as dynamically resizeable`);\n }\n const elementPerRow = totalLength === 0 ? 0 : tensor2.size / totalLength;\n const tensors = [];\n tidy(() => {\n tensor2 = reshape(tensor2, [1, totalLength, elementPerRow]);\n for (let i2 = 0; i2 < length.length; ++i2) {\n const previousLength = i2 === 0 ? 0 : cumulativeLengths[i2 - 1];\n const indices2 = [0, previousLength, 0];\n const sizes = [1, length[i2], elementPerRow];\n tensors[i2] = reshape(slice(tensor2, indices2, sizes), this.elementShape);\n }\n return tensors;\n });\n const indices = [];\n for (let i2 = 0; i2 < length.length; i2++) {\n indices[i2] = i2;\n }\n this.writeMany(indices, tensors);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/tensor_list.js\nvar TensorList = class {\n constructor(tensors, elementShape, elementDtype, maxNumElements = -1) {\n this.tensors = tensors;\n this.elementShape = elementShape;\n this.elementDtype = elementDtype;\n if (tensors != null) {\n tensors.forEach((tensor2) => {\n if (elementDtype !== tensor2.dtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${tensor2.dtype}`);\n }\n assertShapesMatchAllowUndefinedSize(elementShape, tensor2.shape, \"TensorList shape mismatch: \");\n keep(tensor2);\n });\n }\n this.idTensor = scalar(0);\n this.maxNumElements = maxNumElements;\n keep(this.idTensor);\n }\n get id() {\n return this.idTensor.id;\n }\n copy() {\n return new TensorList([...this.tensors], this.elementShape, this.elementDtype);\n }\n clearAndClose(keepIds) {\n this.tensors.forEach((tensor2) => {\n if (keepIds == null || !keepIds.has(tensor2.id)) {\n tensor2.dispose();\n }\n });\n this.tensors.length = 0;\n this.idTensor.dispose();\n }\n size() {\n return this.tensors.length;\n }\n stack(elementShape, elementDtype, numElements = -1) {\n if (elementDtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);\n }\n if (numElements !== -1 && this.tensors.length !== numElements) {\n throw new Error(`Operation expected a list with ${numElements} elements but got a list with ${this.tensors.length} elements.`);\n }\n assertShapesMatchAllowUndefinedSize(elementShape, this.elementShape, \"TensorList shape mismatch: \");\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n return tidy(() => {\n const reshapedTensors = this.tensors.map((tensor2) => reshape(tensor2, outputElementShape));\n return stack(reshapedTensors, 0);\n });\n }\n popBack(elementShape, elementDtype) {\n if (elementDtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);\n }\n if (this.size() === 0) {\n throw new Error(\"Trying to pop from an empty list.\");\n }\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n const tensor2 = this.tensors.pop();\n tensor2.kept = false;\n assertShapesMatchAllowUndefinedSize(tensor2.shape, elementShape, \"TensorList shape mismatch: \");\n return reshape(tensor2, outputElementShape);\n }\n pushBack(tensor2) {\n if (tensor2.dtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${tensor2.dtype}, but list elements ${this.elementDtype}`);\n }\n assertShapesMatchAllowUndefinedSize(tensor2.shape, this.elementShape, \"TensorList shape mismatch: \");\n if (this.maxNumElements === this.size()) {\n throw new Error(`Trying to push element into a full list.`);\n }\n keep(tensor2);\n this.tensors.push(tensor2);\n }\n resize(size) {\n if (size < 0) {\n throw new Error(`TensorListResize expects size to be non-negative. Got: ${size}`);\n }\n if (this.maxNumElements !== -1 && size > this.maxNumElements) {\n throw new Error(`TensorListResize input size ${size} is greater maxNumElement ${this.maxNumElements}.`);\n }\n const destTensorList = new TensorList([], this.elementShape, this.elementDtype, this.maxNumElements);\n destTensorList.tensors.length = size;\n for (let i2 = 0; i2 < Math.min(this.tensors.length, size); ++i2) {\n destTensorList.tensors[i2] = this.tensors[i2];\n }\n return destTensorList;\n }\n getItem(elementIndex, elementShape, elementDtype) {\n if (elementDtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);\n }\n if (elementIndex < 0 || elementIndex > this.tensors.length) {\n throw new Error(`Trying to access element ${elementIndex} in a list with ${this.tensors.length} elements.`);\n }\n if (this.tensors[elementIndex] == null) {\n throw new Error(`element at index ${elementIndex} is null.`);\n }\n assertShapesMatchAllowUndefinedSize(this.tensors[elementIndex].shape, elementShape, \"TensorList shape mismatch: \");\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n return reshape(this.tensors[elementIndex], outputElementShape);\n }\n setItem(elementIndex, tensor2) {\n if (tensor2.dtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${tensor2.dtype}, but list elements ${this.elementDtype}`);\n }\n if (elementIndex < 0 || this.maxNumElements !== -1 && elementIndex >= this.maxNumElements) {\n throw new Error(`Trying to set element ${elementIndex} in a list with max ${this.maxNumElements} elements.`);\n }\n assertShapesMatchAllowUndefinedSize(this.elementShape, tensor2.shape, \"TensorList shape mismatch: \");\n keep(tensor2);\n if (this.tensors[elementIndex] != null) {\n this.tensors[elementIndex].kept = false;\n }\n this.tensors[elementIndex] = tensor2;\n }\n gather(indices, elementDtype, elementShape) {\n if (elementDtype !== this.elementDtype) {\n throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);\n }\n assertShapesMatchAllowUndefinedSize(this.elementShape, elementShape, \"TensorList shape mismatch: \");\n indices = indices.slice(0, this.size());\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n if (indices.length === 0) {\n return tensor([], [0].concat(outputElementShape));\n }\n return tidy(() => {\n const tensors = indices.map((i2) => reshape(this.tensors[i2], outputElementShape));\n return stack(tensors, 0);\n });\n }\n concat(elementDtype, elementShape) {\n if (!!elementDtype && elementDtype !== this.elementDtype) {\n throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${elementDtype}`);\n }\n assertShapesMatchAllowUndefinedSize(this.elementShape, elementShape, \"TensorList shape mismatch: \");\n const outputElementShape = inferElementShape(this.elementShape, this.tensors, elementShape);\n if (this.size() === 0) {\n return tensor([], [0].concat(outputElementShape));\n }\n return tidy(() => {\n const tensors = this.tensors.map((t2) => reshape(t2, outputElementShape));\n return concat(tensors, 0);\n });\n }\n};\nfunction fromTensor(tensor2, elementShape, elementDtype) {\n const dtype = tensor2.dtype;\n if (tensor2.shape.length < 1) {\n throw new Error(`Tensor must be at least a vector, but saw shape: ${tensor2.shape}`);\n }\n if (tensor2.dtype !== elementDtype) {\n throw new Error(`Invalid data types; op elements ${tensor2.dtype}, but list elements ${elementDtype}`);\n }\n const tensorElementShape = tensor2.shape.slice(1);\n assertShapesMatchAllowUndefinedSize(tensorElementShape, elementShape, \"TensorList shape mismatch: \");\n const tensorList = unstack(tensor2);\n return new TensorList(tensorList, elementShape, dtype);\n}\nfunction reserve(elementShape, elementDtype, numElements, maxNumElements) {\n return new TensorList([], elementShape, elementDtype, maxNumElements);\n}\nfunction scatter(tensor2, indices, elementShape, numElements) {\n if (indices.length !== tensor2.shape[0]) {\n throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${indices.length} vs. ${tensor2.shape[0]}`);\n }\n const maxIndex = Math.max(...indices);\n if (numElements != null && numElements !== -1 && maxIndex >= numElements) {\n throw new Error(`Max index must be < array size (${maxIndex} vs. ${numElements})`);\n }\n const list = new TensorList([], elementShape, tensor2.dtype, numElements);\n const tensors = unstack(tensor2, 0);\n indices.forEach((value, index) => {\n list.setItem(value, tensors[index]);\n });\n return list;\n}\nfunction split2(tensor2, length, elementShape) {\n let totalLength = 0;\n const cumulativeLengths = length.map((len) => {\n totalLength += len;\n return totalLength;\n });\n if (totalLength !== tensor2.shape[0]) {\n throw new Error(`Expected sum of lengths to be equal to\n tensor.shape[0], but sum of lengths is\n ${totalLength}, and tensor's shape is: ${tensor2.shape}`);\n }\n const shapeWithoutFirstDim = tensor2.shape.slice(1);\n const outputElementShape = mergeElementShape(shapeWithoutFirstDim, elementShape);\n const elementPerRow = totalLength === 0 ? 0 : tensor2.size / totalLength;\n const tensors = tidy(() => {\n const tensors2 = [];\n tensor2 = reshape(tensor2, [1, totalLength, elementPerRow]);\n for (let i2 = 0; i2 < length.length; ++i2) {\n const previousLength = i2 === 0 ? 0 : cumulativeLengths[i2 - 1];\n const indices = [0, previousLength, 0];\n const sizes = [1, length[i2], elementPerRow];\n tensors2[i2] = reshape(slice(tensor2, indices, sizes), outputElementShape);\n }\n tensor2.dispose();\n return tensors2;\n });\n const list = new TensorList([], elementShape, tensor2.dtype, length.length);\n for (let i2 = 0; i2 < tensors.length; i2++) {\n list.setItem(i2, tensors[i2]);\n }\n return list;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/control_executor.js\nvar executeOp3 = async (node, tensorMap, context) => {\n switch (node.op) {\n case \"If\":\n case \"StatelessIf\": {\n const thenFunc = getParamValue(\"thenBranch\", node, tensorMap, context);\n const elseFunc = getParamValue(\"elseBranch\", node, tensorMap, context);\n const cond = getParamValue(\"cond\", node, tensorMap, context);\n const args = getParamValue(\"args\", node, tensorMap, context);\n const condValue = await cond.data();\n if (condValue[0]) {\n return context.functionMap[thenFunc].executeFunctionAsync(args, context.tensorArrayMap, context.tensorListMap);\n } else {\n return context.functionMap[elseFunc].executeFunctionAsync(args, context.tensorArrayMap, context.tensorListMap);\n }\n }\n case \"While\":\n case \"StatelessWhile\": {\n const bodyFunc = getParamValue(\"body\", node, tensorMap, context);\n const condFunc = getParamValue(\"cond\", node, tensorMap, context);\n const args = getParamValue(\"args\", node, tensorMap, context);\n const condResult = await context.functionMap[condFunc].executeFunctionAsync(args, context.tensorArrayMap, context.tensorListMap);\n const argIds = args.map((tensor2) => tensor2.id);\n let condValue = await condResult[0].data();\n condResult.forEach((tensor2) => {\n if (!tensor2.kept && argIds.indexOf(tensor2.id) === -1) {\n tensor2.dispose();\n }\n });\n let result = args;\n while (condValue[0]) {\n const origResult = result;\n result = await context.functionMap[bodyFunc].executeFunctionAsync(result, context.tensorArrayMap, context.tensorListMap);\n const resultIds = result.map((tensor2) => tensor2.id);\n origResult.forEach((tensor2) => {\n if (!tensor2.kept && argIds.indexOf(tensor2.id) === -1 && resultIds.indexOf(tensor2.id) === -1) {\n tensor2.dispose();\n }\n });\n const condResult2 = await context.functionMap[condFunc].executeFunctionAsync(result, context.tensorArrayMap, context.tensorListMap);\n condValue = await condResult2[0].data();\n condResult2.forEach((tensor2) => {\n if (!tensor2.kept && argIds.indexOf(tensor2.id) === -1 && resultIds.indexOf(tensor2.id) === -1) {\n tensor2.dispose();\n }\n });\n }\n return result;\n }\n case \"LoopCond\": {\n const pred = getParamValue(\"pred\", node, tensorMap, context);\n return [cloneTensor(pred)];\n }\n case \"Switch\": {\n const pred = getParamValue(\"pred\", node, tensorMap, context);\n let data = getParamValue(\"data\", node, tensorMap, context);\n if (!data.kept) {\n data = cloneTensor(data);\n }\n return (await pred.data())[0] ? [void 0, data] : [data, void 0];\n }\n case \"Merge\": {\n const inputName = node.inputNames.find((name) => getTensor(name, tensorMap, context) !== void 0);\n if (inputName) {\n const data = getTensor(inputName, tensorMap, context);\n return [cloneTensor(data)];\n }\n return void 0;\n }\n case \"Enter\": {\n const frameId = getParamValue(\"frameName\", node, tensorMap, context);\n const data = getParamValue(\"tensor\", node, tensorMap, context);\n context.enterFrame(frameId);\n return [cloneTensor(data)];\n }\n case \"Exit\": {\n const data = getParamValue(\"tensor\", node, tensorMap, context);\n context.exitFrame();\n return [cloneTensor(data)];\n }\n case \"NextIteration\": {\n const data = getParamValue(\"tensor\", node, tensorMap, context);\n context.nextIteration();\n return [cloneTensor(data)];\n }\n case \"TensorArrayV3\": {\n const size = getParamValue(\"size\", node, tensorMap, context);\n const dtype = getParamValue(\"dtype\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const dynamicSize = getParamValue(\"dynamicSize\", node, tensorMap, context);\n const clearAfterRead = getParamValue(\"clearAfterRead\", node, tensorMap, context);\n const identicalElementShapes = getParamValue(\"identicalElementShapes\", node, tensorMap, context);\n const name = getParamValue(\"name\", node, tensorMap, context);\n const tensorArray = new TensorArray(name, dtype, size, elementShape, identicalElementShapes, dynamicSize, clearAfterRead);\n context.addTensorArray(tensorArray);\n return [tensorArray.idTensor, scalar(1)];\n }\n case \"TensorArrayWriteV3\": {\n const id = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const index = getParamValue(\"index\", node, tensorMap, context);\n const writeTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const writeTensorArray = context.getTensorArray(id.id);\n writeTensorArray.write(index, writeTensor);\n return [writeTensorArray.idTensor];\n }\n case \"TensorArrayReadV3\": {\n const readId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const readIndex = getParamValue(\"index\", node, tensorMap, context);\n const readTensorArray = context.getTensorArray(readId.id);\n return [readTensorArray.read(readIndex)];\n }\n case \"TensorArrayGatherV3\": {\n const gatherId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const gatherIndices = getParamValue(\"indices\", node, tensorMap, context);\n const gatherDtype = getParamValue(\"dtype\", node, tensorMap, context);\n const gatherTensorArray = context.getTensorArray(gatherId.id);\n return [gatherTensorArray.gather(gatherIndices, gatherDtype)];\n }\n case \"TensorArrayScatterV3\": {\n const scatterId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const scatterIndices = getParamValue(\"indices\", node, tensorMap, context);\n const scatterTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const scatterTensorArray = context.getTensorArray(scatterId.id);\n scatterTensorArray.scatter(scatterIndices, scatterTensor);\n return [scatterTensorArray.idTensor];\n }\n case \"TensorArrayConcatV3\": {\n const concatId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const concatTensorArray = context.getTensorArray(concatId.id);\n const concatDtype = getParamValue(\"dtype\", node, tensorMap, context);\n return [concatTensorArray.concat(concatDtype)];\n }\n case \"TensorArraySplitV3\": {\n const splitId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const splitTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const lengths = getParamValue(\"lengths\", node, tensorMap, context);\n const splitTensorArray = context.getTensorArray(splitId.id);\n splitTensorArray.split(lengths, splitTensor);\n return [splitTensorArray.idTensor];\n }\n case \"TensorArraySizeV3\": {\n const sizeId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const sizeTensorArray = context.getTensorArray(sizeId.id);\n return [scalar(sizeTensorArray.size(), \"int32\")];\n }\n case \"TensorArrayCloseV3\": {\n const closeId = getParamValue(\"tensorArrayId\", node, tensorMap, context);\n const closeTensorArray = context.getTensorArray(closeId.id);\n closeTensorArray.clearAndClose();\n return [closeTensorArray.idTensor];\n }\n case \"TensorListSetItem\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const index = getParamValue(\"index\", node, tensorMap, context);\n const writeTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n tensorList.setItem(index, writeTensor);\n return [tensorList.idTensor];\n }\n case \"TensorListGetItem\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const readIndex = getParamValue(\"index\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDType = getParamValue(\"elementDType\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n return [tensorList.getItem(readIndex, elementShape, elementDType)];\n }\n case \"TensorListScatterV2\":\n case \"TensorListScatter\": {\n const scatterIndices = getParamValue(\"indices\", node, tensorMap, context);\n const scatterTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const numElements = getParamValue(\"numElements\", node, tensorMap, context);\n const tensorList = scatter(scatterTensor, scatterIndices, elementShape, numElements);\n context.addTensorList(tensorList);\n return [tensorList.idTensor];\n }\n case \"TensorListReserve\":\n case \"EmptyTensorList\": {\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDtype = getParamValue(\"elementDType\", node, tensorMap, context);\n let numElementsParam;\n if (node.op === \"TensorListReserve\") {\n numElementsParam = \"numElements\";\n } else {\n numElementsParam = \"maxNumElements\";\n }\n const numElements = getParamValue(numElementsParam, node, tensorMap, context);\n const maxNumElements = node.op === \"TensorListReserve\" ? -1 : numElements;\n const tensorList = reserve(elementShape, elementDtype, numElements, maxNumElements);\n context.addTensorList(tensorList);\n return [tensorList.idTensor];\n }\n case \"TensorListGather\": {\n const gatherId = getParamValue(\"tensorListId\", node, tensorMap, context);\n const gatherIndices = getParamValue(\"indices\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDtype = getParamValue(\"elementDType\", node, tensorMap, context);\n const tensorList = context.getTensorList(gatherId.id);\n return [tensorList.gather(gatherIndices, elementDtype, elementShape)];\n }\n case \"TensorListStack\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDtype = getParamValue(\"elementDType\", node, tensorMap, context);\n const numElements = getParamValue(\"numElements\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n return [tensorList.stack(elementShape, elementDtype, numElements)];\n }\n case \"TensorListFromTensor\": {\n const tensor2 = getParamValue(\"tensor\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDtype = getParamValue(\"elementDType\", node, tensorMap, context);\n const tensorList = fromTensor(tensor2, elementShape, elementDtype);\n context.addTensorList(tensorList);\n return [tensorList.idTensor];\n }\n case \"TensorListConcat\":\n case \"TensorListConcatV2\": {\n const concatId = getParamValue(\"tensorListId\", node, tensorMap, context);\n const tensorList = context.getTensorList(concatId.id);\n const concatDtype = getParamValue(\"dtype\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n return [tensorList.concat(concatDtype, elementShape)];\n }\n case \"TensorListPushBack\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const writeTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n tensorList.pushBack(writeTensor);\n return [tensorList.idTensor];\n }\n case \"TensorListPopBack\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const elementDType = getParamValue(\"elementDType\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n return [tensorList.popBack(elementShape, elementDType)];\n }\n case \"TensorListSplit\": {\n const splitTensor = getParamValue(\"tensor\", node, tensorMap, context);\n const elementShape = getParamValue(\"elementShape\", node, tensorMap, context);\n const lengths = getParamValue(\"lengths\", node, tensorMap, context);\n const tensorList = split2(splitTensor, lengths, elementShape);\n context.addTensorList(tensorList);\n return [tensorList.idTensor];\n }\n case \"TensorListLength\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const tensorList = context.getTensorList(idTensor.id);\n return [scalar(tensorList.size(), \"int32\")];\n }\n case \"TensorListResize\": {\n const idTensor = getParamValue(\"tensorListId\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n const srcTensorList = context.getTensorList(idTensor.id);\n const destTensorList = srcTensorList.resize(size);\n context.addTensorList(destTensorList);\n return [destTensorList.idTensor];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/convolution_executor.js\nfunction fusedConvAndDepthWiseParams(node, tensorMap, context) {\n const [extraOp, activationFunc] = getParamValue(\"fusedOps\", node, tensorMap, context);\n const isBiasAdd = extraOp === \"biasadd\";\n const noBiasAdd = !isBiasAdd;\n const isPrelu = activationFunc === \"prelu\";\n const isBatchNorm = extraOp === \"fusedbatchnorm\";\n const numArgs = getParamValue(\"numArgs\", node, tensorMap, context);\n if (isBiasAdd) {\n if (isPrelu && numArgs !== 2) {\n throw new Error(\"FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.\");\n }\n if (!isPrelu && isBiasAdd && numArgs !== 1) {\n throw new Error(\"FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.\");\n }\n }\n if (isBatchNorm) {\n throw new Error(\"FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported\");\n }\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getPadding(node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n let [biasArg, preluArg] = getParamValue(\"args\", node, tensorMap, context);\n if (noBiasAdd) {\n preluArg = biasArg;\n biasArg = void 0;\n }\n const leakyreluAlpha = getParamValue(\"leakyreluAlpha\", node, tensorMap, context);\n return {\n stride,\n pad: pad3,\n dataFormat,\n dilations,\n biasArg,\n preluArg,\n activationFunc,\n leakyreluAlpha\n };\n}\nvar executeOp4 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Conv1D\": {\n const stride = getParamValue(\"stride\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n const dilation = getParamValue(\"dilation\", node, tensorMap, context);\n return [ops.conv1d(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), stride, pad3, dataFormat, dilation)];\n }\n case \"Conv2D\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getPadding(node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n return [ops.conv2d(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), [stride[1], stride[2]], pad3, dataFormat, [dilations[1], dilations[2]])];\n }\n case \"_FusedConv2D\": {\n const { stride, pad: pad3, dataFormat, dilations, biasArg, preluArg, activationFunc, leakyreluAlpha } = fusedConvAndDepthWiseParams(node, tensorMap, context);\n return [ops.fused.conv2d({\n x: getParamValue(\"x\", node, tensorMap, context),\n filter: getParamValue(\"filter\", node, tensorMap, context),\n strides: [stride[1], stride[2]],\n pad: pad3,\n dataFormat,\n dilations: [dilations[1], dilations[2]],\n bias: biasArg,\n activation: activationFunc,\n preluActivationWeights: preluArg,\n leakyreluAlpha\n })];\n }\n case \"FusedDepthwiseConv2dNative\": {\n const { stride, pad: pad3, dataFormat, dilations, biasArg, preluArg, activationFunc, leakyreluAlpha } = fusedConvAndDepthWiseParams(node, tensorMap, context);\n return [ops.fused.depthwiseConv2d({\n x: getParamValue(\"x\", node, tensorMap, context),\n filter: getParamValue(\"filter\", node, tensorMap, context),\n strides: [stride[1], stride[2]],\n pad: pad3,\n dataFormat,\n dilations: [dilations[1], dilations[2]],\n bias: biasArg,\n activation: activationFunc,\n preluActivationWeights: preluArg,\n leakyreluAlpha\n })];\n }\n case \"Conv2DBackpropInput\":\n case \"Conv2dTranspose\": {\n const shape = getParamValue(\"outputShape\", node, tensorMap, context);\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getPadding(node, tensorMap, context);\n return [ops.conv2dTranspose(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), shape, [stride[1], stride[2]], pad3)];\n }\n case \"DepthwiseConv2dNative\":\n case \"DepthwiseConv2d\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getPadding(node, tensorMap, context);\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n return [ops.depthwiseConv2d(getParamValue(\"input\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), [stride[1], stride[2]], pad3, dataFormat, [dilations[1], dilations[2]])];\n }\n case \"Conv3D\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n return [ops.conv3d(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), [stride[1], stride[2], stride[3]], pad3, dataFormat, [dilations[1], dilations[2], dilations[3]])];\n }\n case \"AvgPool\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n return [ops.avgPool(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3)];\n }\n case \"MaxPool\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n return [ops.maxPool(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3)];\n }\n case \"MaxPoolWithArgmax\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n const includeBatchInIndex = getParamValue(\"includeBatchInIndex\", node, tensorMap, context);\n const { result, indexes } = ops.maxPoolWithArgmax(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2]], [stride[1], stride[2]], pad3, includeBatchInIndex);\n return [result, indexes];\n }\n case \"AvgPool3D\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n return [ops.avgPool3d(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2], kernelSize[3]], [stride[1], stride[2], stride[3]], pad3)];\n }\n case \"MaxPool3D\": {\n const stride = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const kernelSize = getParamValue(\"kernelSize\", node, tensorMap, context);\n return [ops.maxPool3d(getParamValue(\"x\", node, tensorMap, context), [kernelSize[1], kernelSize[2], kernelSize[3]], [stride[1], stride[2], stride[3]], pad3)];\n }\n case \"Dilation2D\": {\n const strides = getParamValue(\"strides\", node, tensorMap, context);\n const pad3 = getParamValue(\"pad\", node, tensorMap, context);\n const dilations = getParamValue(\"dilations\", node, tensorMap, context);\n const strideHeight = strides[1];\n const strideWidth = strides[2];\n const dilationHeight = dilations[1];\n const dilationWidth = dilations[2];\n return [ops.dilation2d(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"filter\", node, tensorMap, context), [strideHeight, strideWidth], pad3, [dilationHeight, dilationWidth], \"NHWC\")];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/creation_executor.js\nvar executeOp5 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Fill\": {\n const shape = getParamValue(\"shape\", node, tensorMap, context);\n const dtype = getParamValue(\"dtype\", node, tensorMap, context);\n const value = getParamValue(\"value\", node, tensorMap, context);\n return [ops.fill(shape, value, dtype)];\n }\n case \"LinSpace\": {\n const start = getParamValue(\"start\", node, tensorMap, context);\n const stop = getParamValue(\"stop\", node, tensorMap, context);\n const num = getParamValue(\"num\", node, tensorMap, context);\n return [ops.linspace(start, stop, num)];\n }\n case \"Multinomial\": {\n const logits = getParamValue(\"logits\", node, tensorMap, context);\n const numSamples = getParamValue(\"numSamples\", node, tensorMap, context);\n const seed = getParamValue(\"seed\", node, tensorMap, context);\n return [ops.multinomial(logits, numSamples, seed)];\n }\n case \"OneHot\": {\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n const depth = getParamValue(\"depth\", node, tensorMap, context);\n const onValue = getParamValue(\"onValue\", node, tensorMap, context);\n const offValue = getParamValue(\"offValue\", node, tensorMap, context);\n const dtype = getParamValue(\"dtype\", node, tensorMap, context);\n return [ops.oneHot(indices, depth, onValue, offValue, dtype)];\n }\n case \"Ones\": {\n return [ops.ones(getParamValue(\"shape\", node, tensorMap, context), getParamValue(\"dtype\", node, tensorMap, context))];\n }\n case \"OnesLike\": {\n return [ops.onesLike(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"RandomStandardNormal\": {\n return [ops.randomStandardNormal(getParamValue(\"shape\", node, tensorMap, context), getParamValue(\"dtype\", node, tensorMap, context), getParamValue(\"seed\", node, tensorMap, context))];\n }\n case \"RandomUniform\": {\n return [ops.randomUniform(\n getParamValue(\"shape\", node, tensorMap, context),\n getParamValue(\"minval\", node, tensorMap, context),\n getParamValue(\"maxval\", node, tensorMap, context),\n getParamValue(\"dtype\", node, tensorMap, context)\n )];\n }\n case \"Range\": {\n const start = getParamValue(\"start\", node, tensorMap, context);\n const stop = getParamValue(\"stop\", node, tensorMap, context);\n const step5 = getParamValue(\"step\", node, tensorMap, context);\n return [ops.range(start, stop, step5, getParamValue(\"dtype\", node, tensorMap, context))];\n }\n case \"TruncatedNormal\": {\n const shape = getParamValue(\"shape\", node, tensorMap, context);\n const mean5 = getParamValue(\"mean\", node, tensorMap, context);\n const stdDev = getParamValue(\"stdDev\", node, tensorMap, context);\n const seed = getParamValue(\"seed\", node, tensorMap, context);\n return [ops.truncatedNormal(shape, mean5, stdDev, getParamValue(\"dtype\", node, tensorMap, context), seed)];\n }\n case \"Zeros\": {\n return [ops.zeros(getParamValue(\"shape\", node, tensorMap, context), getParamValue(\"dtype\", node, tensorMap, context))];\n }\n case \"ZerosLike\": {\n return [ops.zerosLike(getParamValue(\"x\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/dynamic_executor.js\nfunction nmsParams(node, tensorMap, context) {\n const boxes = getParamValue(\"boxes\", node, tensorMap, context);\n const scores = getParamValue(\"scores\", node, tensorMap, context);\n const maxOutputSize = getParamValue(\"maxOutputSize\", node, tensorMap, context);\n const iouThreshold = getParamValue(\"iouThreshold\", node, tensorMap, context);\n const scoreThreshold = getParamValue(\"scoreThreshold\", node, tensorMap, context);\n const softNmsSigma = getParamValue(\"softNmsSigma\", node, tensorMap, context);\n return {\n boxes,\n scores,\n maxOutputSize,\n iouThreshold,\n scoreThreshold,\n softNmsSigma\n };\n}\nvar executeOp6 = async (node, tensorMap, context, resourceManager, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"NonMaxSuppressionV5\": {\n const { boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = nmsParams(node, tensorMap, context);\n const result = await ops.image.nonMaxSuppressionWithScoreAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n return [result.selectedIndices, result.selectedScores];\n }\n case \"NonMaxSuppressionV4\": {\n const { boxes, scores, maxOutputSize, iouThreshold, scoreThreshold } = nmsParams(node, tensorMap, context);\n const padToMaxOutputSize = getParamValue(\"padToMaxOutputSize\", node, tensorMap, context);\n const result = await ops.image.nonMaxSuppressionPaddedAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize);\n return [result.selectedIndices, result.validOutputs];\n }\n case \"NonMaxSuppressionV3\":\n case \"NonMaxSuppressionV2\": {\n const { boxes, scores, maxOutputSize, iouThreshold, scoreThreshold } = nmsParams(node, tensorMap, context);\n return [await ops.image.nonMaxSuppressionAsync(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold)];\n }\n case \"Where\": {\n const condition = ops.cast(getParamValue(\"condition\", node, tensorMap, context), \"bool\");\n const result = [await ops.whereAsync(condition)];\n condition.dispose();\n return result;\n }\n case \"ListDiff\": {\n return ops.setdiff1dAsync(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"y\", node, tensorMap, context));\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/evaluation_executor.js\nvar executeOp7 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"LowerBound\": {\n const sortedSequence = getParamValue(\"sortedSequence\", node, tensorMap, context);\n const values = getParamValue(\"values\", node, tensorMap, context);\n return [ops.lowerBound(sortedSequence, values)];\n }\n case \"TopKV2\": {\n const x = getParamValue(\"x\", node, tensorMap, context);\n const k = getParamValue(\"k\", node, tensorMap, context);\n const sorted = getParamValue(\"sorted\", node, tensorMap, context);\n const result = ops.topk(x, k, sorted);\n return [result.values, result.indices];\n }\n case \"UpperBound\": {\n const sortedSequence = getParamValue(\"sortedSequence\", node, tensorMap, context);\n const values = getParamValue(\"values\", node, tensorMap, context);\n return [ops.upperBound(sortedSequence, values)];\n }\n case \"Unique\": {\n const x = getParamValue(\"x\", node, tensorMap, context);\n const result = ops.unique(x);\n return [result.values, result.indices];\n }\n case \"UniqueV2\": {\n const x = getParamValue(\"x\", node, tensorMap, context);\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const result = ops.unique(x, axis);\n return [result.values, result.indices];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/graph_executor.js\nvar executeOp8 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Const\": {\n return tensorMap[node.name];\n }\n case \"PlaceholderWithDefault\":\n const def = getParamValue(\"default\", node, tensorMap, context);\n return [getTensor(node.name, tensorMap, context) || def];\n case \"Placeholder\":\n return [getTensor(node.name, tensorMap, context)];\n case \"Identity\":\n case \"StopGradient\":\n case \"FakeQuantWithMinMaxVars\": {\n const data2 = getParamValue(\"x\", node, tensorMap, context);\n return [cloneTensor(data2)];\n }\n case \"IdentityN\":\n return getParamValue(\"x\", node, tensorMap, context).map((t2) => cloneTensor(t2));\n case \"Snapshot\":\n const snapshot = getParamValue(\"x\", node, tensorMap, context);\n return [cloneTensor(snapshot)];\n case \"Shape\":\n return [ops.tensor1d(getParamValue(\"x\", node, tensorMap, context).shape, \"int32\")];\n case \"ShapeN\":\n return getParamValue(\"x\", node, tensorMap, context).map((t2) => ops.tensor1d(t2.shape));\n case \"Size\":\n return [ops.scalar(getParamValue(\"x\", node, tensorMap, context).size, \"int32\")];\n case \"Rank\":\n return [ops.scalar(getParamValue(\"x\", node, tensorMap, context).rank, \"int32\")];\n case \"NoOp\":\n return [ops.scalar(1)];\n case \"Print\":\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n const data = getParamValue(\"data\", node, tensorMap, context);\n const message = getParamValue(\"message\", node, tensorMap, context);\n const summarize = getParamValue(\"summarize\", node, tensorMap, context);\n console.warn(\"The graph has a tf.print() operation,usually used for debugging, which slows down performance.\");\n console.log(message);\n for (let i2 = 0; i2 < data.length; i2++) {\n console.log(Array.prototype.slice.call(data[i2].dataSync()).slice(0, summarize));\n }\n return [input2];\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/hash_table.js\nvar HashTable = class {\n constructor(keyDType, valueDType) {\n this.keyDType = keyDType;\n this.valueDType = valueDType;\n this.handle = scalar(0);\n this.tensorMap = /* @__PURE__ */ new Map();\n keep(this.handle);\n }\n get id() {\n return this.handle.id;\n }\n clearAndClose() {\n this.tensorMap.forEach((value) => value.dispose());\n this.tensorMap.clear();\n this.handle.dispose();\n }\n size() {\n return this.tensorMap.size;\n }\n tensorSize() {\n return scalar(this.size(), \"int32\");\n }\n async import(keys, values) {\n this.checkKeyAndValueTensor(keys, values);\n const $keys = await keys.data();\n this.tensorMap.forEach((value) => value.dispose());\n this.tensorMap.clear();\n return tidy(() => {\n const $values = unstack(values);\n const keysLength = $keys.length;\n const valuesLength = $values.length;\n util_exports.assert(keysLength === valuesLength, () => `The number of elements doesn't match, keys has ${keysLength} elements, the values has ${valuesLength} elements.`);\n for (let i2 = 0; i2 < keysLength; i2++) {\n const key = $keys[i2];\n const value = $values[i2];\n keep(value);\n this.tensorMap.set(key, value);\n }\n return this.handle;\n });\n }\n async find(keys, defaultValue) {\n this.checkKeyAndValueTensor(keys, defaultValue);\n const $keys = await keys.data();\n return tidy(() => {\n const result = [];\n for (let i2 = 0; i2 < $keys.length; i2++) {\n const key = $keys[i2];\n const value = this.findWithDefault(key, defaultValue);\n result.push(value);\n }\n return stack(result);\n });\n }\n findWithDefault(key, defaultValue) {\n const result = this.tensorMap.get(key);\n return result != null ? result : defaultValue;\n }\n checkKeyAndValueTensor(key, value) {\n if (key.dtype !== this.keyDType) {\n throw new Error(`Expect key dtype ${this.keyDType}, but got ${key.dtype}`);\n }\n if (value.dtype !== this.valueDType) {\n throw new Error(`Expect value dtype ${this.valueDType}, but got ${value.dtype}`);\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/hash_table_executor.js\nvar executeOp9 = async (node, tensorMap, context, resourceManager) => {\n switch (node.op) {\n case \"HashTable\":\n case \"HashTableV2\": {\n const keyDType = getParamValue(\"keyDType\", node, tensorMap, context);\n const valueDType = getParamValue(\"valueDType\", node, tensorMap, context);\n const hashTable = new HashTable(keyDType, valueDType);\n resourceManager.addHashTable(node.name, hashTable);\n return [hashTable.handle];\n }\n case \"LookupTableImport\":\n case \"LookupTableImportV2\": {\n const handle = getParamValue(\"tableHandle\", node, tensorMap, context, resourceManager);\n const keys = getParamValue(\"keys\", node, tensorMap, context);\n const values = getParamValue(\"values\", node, tensorMap, context);\n const hashTable = resourceManager.getHashTableById(handle.id);\n return [await hashTable.import(keys, values)];\n }\n case \"LookupTableFind\":\n case \"LookupTableFindV2\": {\n const handle = getParamValue(\"tableHandle\", node, tensorMap, context, resourceManager);\n const keys = getParamValue(\"keys\", node, tensorMap, context);\n const defaultValue = getParamValue(\"defaultValue\", node, tensorMap, context);\n const hashTable = resourceManager.getHashTableById(handle.id);\n return [await hashTable.find(keys, defaultValue)];\n }\n case \"LookupTableSize\":\n case \"LookupTableSizeV2\": {\n const handle = getParamValue(\"tableHandle\", node, tensorMap, context, resourceManager);\n const hashTable = resourceManager.getHashTableById(handle.id);\n return [hashTable.tensorSize()];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/image_executor.js\nvar executeOp10 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"ResizeBilinear\": {\n const images = getParamValue(\"images\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n const alignCorners = getParamValue(\"alignCorners\", node, tensorMap, context);\n const halfPixelCenters = getParamValue(\"halfPixelCenters\", node, tensorMap, context);\n return [ops.image.resizeBilinear(images, [size[0], size[1]], alignCorners, halfPixelCenters)];\n }\n case \"ResizeNearestNeighbor\": {\n const images = getParamValue(\"images\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n const alignCorners = getParamValue(\"alignCorners\", node, tensorMap, context);\n const halfPixelCenters = getParamValue(\"halfPixelCenters\", node, tensorMap, context);\n return [ops.image.resizeNearestNeighbor(images, [size[0], size[1]], alignCorners, halfPixelCenters)];\n }\n case \"CropAndResize\": {\n const image2 = getParamValue(\"image\", node, tensorMap, context);\n const boxes = getParamValue(\"boxes\", node, tensorMap, context);\n const boxInd = getParamValue(\"boxInd\", node, tensorMap, context);\n const cropSize = getParamValue(\"cropSize\", node, tensorMap, context);\n const method = getParamValue(\"method\", node, tensorMap, context);\n const extrapolationValue = getParamValue(\"extrapolationValue\", node, tensorMap, context);\n return [ops.image.cropAndResize(image2, boxes, boxInd, cropSize, method, extrapolationValue)];\n }\n case \"ImageProjectiveTransformV3\": {\n const images = getParamValue(\"images\", node, tensorMap, context);\n const transforms = getParamValue(\"transforms\", node, tensorMap, context);\n const outputShape = getParamValue(\"outputShape\", node, tensorMap, context);\n const fillValue = getParamValue(\"fillValue\", node, tensorMap, context);\n const interpolation = getParamValue(\"interpolation\", node, tensorMap, context);\n const fillMode = getParamValue(\"fillMode\", node, tensorMap, context);\n return [ops.image.transform(images, transforms, interpolation.toLowerCase(), fillMode.toLowerCase(), fillValue, outputShape)];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/logical_executor.js\nvar executeOp11 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Equal\": {\n return [ops.equal(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"NotEqual\": {\n return [ops.notEqual(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Greater\": {\n return [ops.greater(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"GreaterEqual\": {\n return [ops.greaterEqual(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Less\": {\n return [ops.less(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"LessEqual\": {\n return [ops.lessEqual(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"LogicalAnd\": {\n return [ops.logicalAnd(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"LogicalNot\": {\n return [ops.logicalNot(getParamValue(\"a\", node, tensorMap, context))];\n }\n case \"LogicalOr\": {\n return [ops.logicalOr(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n case \"Select\":\n case \"SelectV2\": {\n return [ops.where(getParamValue(\"condition\", node, tensorMap, context), getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/matrices_executor.js\nvar executeOp12 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"BatchMatMul\":\n case \"BatchMatMulV2\":\n case \"MatMul\":\n return [ops.matMul(getParamValue(\"a\", node, tensorMap, context), getParamValue(\"b\", node, tensorMap, context), getParamValue(\"transposeA\", node, tensorMap, context), getParamValue(\"transposeB\", node, tensorMap, context))];\n case \"Einsum\":\n return [ops.einsum(getParamValue(\"equation\", node, tensorMap, context), ...getParamValue(\"tensors\", node, tensorMap, context))];\n case \"Transpose\":\n return [ops.transpose(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"perm\", node, tensorMap, context))];\n case \"_FusedMatMul\":\n const [extraOp, activationFunc] = getParamValue(\"fusedOps\", node, tensorMap, context);\n const isBiasAdd = extraOp === \"biasadd\";\n const isPrelu = activationFunc === \"prelu\";\n const numArgs = getParamValue(\"numArgs\", node, tensorMap, context);\n const leakyreluAlpha = getParamValue(\"leakyreluAlpha\", node, tensorMap, context);\n if (isBiasAdd) {\n if (isPrelu && numArgs !== 2) {\n throw new Error(\"Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.\");\n }\n if (!isPrelu && numArgs !== 1) {\n throw new Error(\"Fused MatMul with BiasAdd must have one extra argument: bias.\");\n }\n }\n const [biasArg, preluArg] = getParamValue(\"args\", node, tensorMap, context);\n return [ops.fused.matMul({\n a: getParamValue(\"a\", node, tensorMap, context),\n b: getParamValue(\"b\", node, tensorMap, context),\n transposeA: getParamValue(\"transposeA\", node, tensorMap, context),\n transposeB: getParamValue(\"transposeB\", node, tensorMap, context),\n bias: biasArg,\n activation: activationFunc,\n preluActivationWeights: preluArg,\n leakyreluAlpha\n })];\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/normalization_executor.js\nvar executeOp13 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"EuclideanNorm\":\n return [ops.euclideanNorm(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"axis\", node, tensorMap, context), getParamValue(\"keepDims\", node, tensorMap, context))];\n case \"FusedBatchNorm\":\n case \"FusedBatchNormV2\": {\n return [ops.batchNorm(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"mean\", node, tensorMap, context), getParamValue(\"variance\", node, tensorMap, context), getParamValue(\"offset\", node, tensorMap, context), getParamValue(\"scale\", node, tensorMap, context), getParamValue(\"epsilon\", node, tensorMap, context))];\n }\n case \"FusedBatchNormV3\": {\n return [ops.batchNorm(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"mean\", node, tensorMap, context), getParamValue(\"variance\", node, tensorMap, context), getParamValue(\"offset\", node, tensorMap, context), getParamValue(\"scale\", node, tensorMap, context), getParamValue(\"epsilon\", node, tensorMap, context))];\n }\n case \"LRN\": {\n return [ops.localResponseNormalization(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"radius\", node, tensorMap, context), getParamValue(\"bias\", node, tensorMap, context), getParamValue(\"alpha\", node, tensorMap, context), getParamValue(\"beta\", node, tensorMap, context))];\n }\n case \"Softmax\": {\n return [ops.softmax(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"LogSoftmax\": {\n return [ops.logSoftmax(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"SparseToDense\": {\n return [ops.sparseToDense(getParamValue(\"sparseIndices\", node, tensorMap, context), getParamValue(\"outputShape\", node, tensorMap, context), getParamValue(\"sparseValues\", node, tensorMap, context), getParamValue(\"defaultValue\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/reduction_executor.js\nvar executeOp14 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Max\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.max(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Mean\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.mean(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Min\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.min(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Sum\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.sum(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"All\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.all(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Any\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.any(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"ArgMax\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n return [ops.argMax(getParamValue(\"x\", node, tensorMap, context), axis)];\n }\n case \"ArgMin\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n return [ops.argMin(getParamValue(\"x\", node, tensorMap, context), axis)];\n }\n case \"Prod\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const keepDims = getParamValue(\"keepDims\", node, tensorMap, context);\n return [ops.prod(getParamValue(\"x\", node, tensorMap, context), axis, keepDims)];\n }\n case \"Cumprod\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const exclusive = getParamValue(\"exclusive\", node, tensorMap, context);\n const reverse5 = getParamValue(\"reverse\", node, tensorMap, context);\n return [ops.cumprod(getParamValue(\"x\", node, tensorMap, context), axis, exclusive, reverse5)];\n }\n case \"Cumsum\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const exclusive = getParamValue(\"exclusive\", node, tensorMap, context);\n const reverse5 = getParamValue(\"reverse\", node, tensorMap, context);\n return [ops.cumsum(getParamValue(\"x\", node, tensorMap, context), axis, exclusive, reverse5)];\n }\n case \"Bincount\":\n const x = getParamValue(\"x\", node, tensorMap, context);\n const weights = getParamValue(\"weights\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n return [ops.bincount(x, weights, size)];\n case \"DenseBincount\": {\n const x2 = getParamValue(\"x\", node, tensorMap, context);\n const weights2 = getParamValue(\"weights\", node, tensorMap, context);\n const size2 = getParamValue(\"size\", node, tensorMap, context);\n const binaryOutput = getParamValue(\"binaryOutput\", node, tensorMap, context);\n return [ops.denseBincount(x2, weights2, size2, binaryOutput)];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/slice_join_executor.js\nvar executeOp15 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"ConcatV2\":\n case \"Concat\": {\n const n2 = getParamValue(\"n\", node, tensorMap, context);\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n let inputs = getParamValue(\"tensors\", node, tensorMap, context);\n inputs = inputs.slice(0, n2);\n return [ops.concat(inputs, axis)];\n }\n case \"Gather\": {\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n return [ops.gather(input2, ops.cast(indices, \"int32\"), 0)];\n }\n case \"GatherV2\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const batchDims = getParamValue(\"batchDims\", node, tensorMap, context);\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n return [ops.gather(input2, ops.cast(indices, \"int32\"), axis, batchDims)];\n }\n case \"Reverse\": {\n const dims = getParamValue(\"dims\", node, tensorMap, context);\n const axis = [];\n for (let i2 = 0; i2 < dims.length; i2++) {\n if (dims[i2]) {\n axis.push(i2);\n }\n }\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n return [ops.reverse(input2, axis)];\n }\n case \"ReverseV2\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const input2 = getParamValue(\"x\", node, tensorMap, context);\n return [ops.reverse(input2, axis)];\n }\n case \"Slice\": {\n const begin = getParamValue(\"begin\", node, tensorMap, context);\n const size = getParamValue(\"size\", node, tensorMap, context);\n return [ops.slice(getParamValue(\"x\", node, tensorMap, context), begin, size)];\n }\n case \"StridedSlice\": {\n const begin = getParamValue(\"begin\", node, tensorMap, context);\n const end = getParamValue(\"end\", node, tensorMap, context);\n const strides = getParamValue(\"strides\", node, tensorMap, context);\n const beginMask = getParamValue(\"beginMask\", node, tensorMap, context);\n const endMask = getParamValue(\"endMask\", node, tensorMap, context);\n const ellipsisMask = getParamValue(\"ellipsisMask\", node, tensorMap, context);\n const newAxisMask = getParamValue(\"newAxisMask\", node, tensorMap, context);\n const shrinkAxisMask = getParamValue(\"shrinkAxisMask\", node, tensorMap, context);\n const tensor2 = getParamValue(\"x\", node, tensorMap, context);\n return [ops.stridedSlice(tensor2, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask)];\n }\n case \"Pack\": {\n return tidy(() => {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const tensors = getParamValue(\"tensors\", node, tensorMap, context);\n const shape = tensors[0].shape;\n const squeezedShape = ops.squeeze(tensors[0]).shape;\n const mapped = tensors.map((tensor2) => {\n const sameShape = util_exports.arraysEqual(tensor2.shape, shape);\n if (!sameShape && !util_exports.arraysEqual(ops.squeeze(tensor2).shape, squeezedShape)) {\n throw new Error(\"the input tensors shape does not match\");\n }\n return sameShape ? tensor2 : ops.reshape(tensor2, shape);\n });\n return [ops.stack(mapped, axis)];\n });\n }\n case \"Unpack\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const tensor2 = getParamValue(\"tensor\", node, tensorMap, context);\n return ops.unstack(tensor2, axis);\n }\n case \"Tile\": {\n const reps = getParamValue(\"reps\", node, tensorMap, context);\n return [ops.tile(getParamValue(\"x\", node, tensorMap, context), reps)];\n }\n case \"Split\":\n case \"SplitV\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n const numOrSizeSplits = getParamValue(\"numOrSizeSplits\", node, tensorMap, context);\n const tensor2 = getParamValue(\"x\", node, tensorMap, context);\n return ops.split(tensor2, numOrSizeSplits, axis);\n }\n case \"ScatterNd\": {\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n const values = getParamValue(\"values\", node, tensorMap, context);\n const shape = getParamValue(\"shape\", node, tensorMap, context);\n return [ops.scatterND(indices, values, shape)];\n }\n case \"GatherNd\": {\n const x = getParamValue(\"x\", node, tensorMap, context);\n const indices = getParamValue(\"indices\", node, tensorMap, context);\n return [ops.gatherND(x, indices)];\n }\n case \"SparseToDense\": {\n const indices = getParamValue(\"sparseIndices\", node, tensorMap, context);\n const shape = getParamValue(\"outputShape\", node, tensorMap, context);\n const sparseValues = getParamValue(\"sparseValues\", node, tensorMap, context);\n const defaultValue = getParamValue(\"defaultValue\", node, tensorMap, context);\n return [ops.sparseToDense(indices, sparseValues, shape, sparseValues.dtype === defaultValue.dtype ? defaultValue : ops.cast(defaultValue, sparseValues.dtype))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/sparse_executor.js\nvar executeOp16 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"SparseFillEmptyRows\": {\n const { outputIndices, outputValues, emptyRowIndicator, reverseIndexMap } = ops.sparse.sparseFillEmptyRows(getParamValue(\"indices\", node, tensorMap, context), getParamValue(\"values\", node, tensorMap, context), getParamValue(\"denseShape\", node, tensorMap, context), getParamValue(\"defaultValue\", node, tensorMap, context));\n return [\n outputIndices,\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n }\n case \"SparseReshape\": {\n const { outputIndices, outputShape } = ops.sparse.sparseReshape(getParamValue(\"inputIndices\", node, tensorMap, context), getParamValue(\"inputShape\", node, tensorMap, context), getParamValue(\"newShape\", node, tensorMap, context));\n return [outputIndices, outputShape];\n }\n case \"SparseSegmentMean\": {\n const outputData = ops.sparse.sparseSegmentMean(getParamValue(\"data\", node, tensorMap, context), getParamValue(\"indices\", node, tensorMap, context), getParamValue(\"segmentIds\", node, tensorMap, context));\n return [outputData];\n }\n case \"SparseSegmentSum\": {\n const outputData = ops.sparse.sparseSegmentSum(getParamValue(\"data\", node, tensorMap, context), getParamValue(\"indices\", node, tensorMap, context), getParamValue(\"segmentIds\", node, tensorMap, context));\n return [outputData];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/spectral_executor.js\nvar executeOp17 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"FFT\": {\n return [ops.fft(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"IFFT\": {\n return [ops.ifft(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"RFFT\": {\n return [ops.rfft(getParamValue(\"x\", node, tensorMap, context))];\n }\n case \"IRFFT\": {\n return [ops.irfft(getParamValue(\"x\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/string_executor.js\nvar executeOp18 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"StringNGrams\": {\n const { nGrams, nGramsSplits } = ops.string.stringNGrams(getParamValue(\"data\", node, tensorMap, context), getParamValue(\"dataSplits\", node, tensorMap, context), getParamValue(\"separator\", node, tensorMap, context), getParamValue(\"nGramWidths\", node, tensorMap, context), getParamValue(\"leftPad\", node, tensorMap, context), getParamValue(\"rightPad\", node, tensorMap, context), getParamValue(\"padWidth\", node, tensorMap, context), getParamValue(\"preserveShortSequences\", node, tensorMap, context));\n return [nGrams, nGramsSplits];\n }\n case \"StringSplit\": {\n const { indices, values, shape } = ops.string.stringSplit(getParamValue(\"input\", node, tensorMap, context), getParamValue(\"delimiter\", node, tensorMap, context), getParamValue(\"skipEmpty\", node, tensorMap, context));\n return [indices, values, shape];\n }\n case \"StringToHashBucketFast\": {\n const output = ops.string.stringToHashBucketFast(getParamValue(\"input\", node, tensorMap, context), getParamValue(\"numBuckets\", node, tensorMap, context));\n return [output];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/executors/transformation_executor.js\nvar executeOp19 = (node, tensorMap, context, ops = ops_for_converter_exports) => {\n switch (node.op) {\n case \"Cast\": {\n return [ops.cast(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"dtype\", node, tensorMap, context))];\n }\n case \"ExpandDims\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n return [ops.expandDims(getParamValue(\"x\", node, tensorMap, context), axis)];\n }\n case \"Squeeze\": {\n const axis = getParamValue(\"axis\", node, tensorMap, context);\n return [ops.squeeze(getParamValue(\"x\", node, tensorMap, context), axis)];\n }\n case \"Reshape\": {\n return [ops.reshape(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"shape\", node, tensorMap, context))];\n }\n case \"MirrorPad\": {\n return [ops.mirrorPad(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"padding\", node, tensorMap, context), getParamValue(\"mode\", node, tensorMap, context))];\n }\n case \"PadV2\":\n case \"Pad\": {\n return [ops.pad(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"padding\", node, tensorMap, context), getParamValue(\"constantValue\", node, tensorMap, context))];\n }\n case \"SpaceToBatchND\": {\n const blockShape = getParamValue(\"blockShape\", node, tensorMap, context);\n const paddings = getParamValue(\"paddings\", node, tensorMap, context);\n return [ops.spaceToBatchND(getParamValue(\"x\", node, tensorMap, context), blockShape, paddings)];\n }\n case \"BatchToSpaceND\": {\n const blockShape = getParamValue(\"blockShape\", node, tensorMap, context);\n const crops = getParamValue(\"crops\", node, tensorMap, context);\n return [ops.batchToSpaceND(getParamValue(\"x\", node, tensorMap, context), blockShape, crops)];\n }\n case \"DepthToSpace\": {\n const blockSize = getParamValue(\"blockSize\", node, tensorMap, context);\n const dataFormat = getParamValue(\"dataFormat\", node, tensorMap, context).toUpperCase();\n return [ops.depthToSpace(getParamValue(\"x\", node, tensorMap, context), blockSize, dataFormat)];\n }\n case \"BroadcastTo\": {\n return [ops.broadcastTo(getParamValue(\"x\", node, tensorMap, context), getParamValue(\"shape\", node, tensorMap, context))];\n }\n case \"BroadcastArgs\": {\n return [ops.broadcastArgs(getParamValue(\"s0\", node, tensorMap, context), getParamValue(\"s1\", node, tensorMap, context))];\n }\n default:\n throw TypeError(`Node type ${node.op} is not implemented`);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/operations/operation_executor.js\nfunction executeOp20(node, tensorMap, context, resourceManager, tidy2 = tidy) {\n const value = ((node2, tensorMap2, context2) => {\n switch (node2.category) {\n case \"arithmetic\":\n return tidy2(() => executeOp(node2, tensorMap2, context2));\n case \"basic_math\":\n return tidy2(() => executeOp2(node2, tensorMap2, context2));\n case \"control\":\n return executeOp3(node2, tensorMap2, context2);\n case \"convolution\":\n return tidy2(() => executeOp4(node2, tensorMap2, context2));\n case \"creation\":\n return tidy2(() => executeOp5(node2, tensorMap2, context2));\n case \"dynamic\":\n return executeOp6(node2, tensorMap2, context2);\n case \"evaluation\":\n return tidy2(() => executeOp7(node2, tensorMap2, context2));\n case \"image\":\n return tidy2(() => executeOp10(node2, tensorMap2, context2));\n case \"graph\":\n return tidy2(() => executeOp8(node2, tensorMap2, context2));\n case \"logical\":\n return tidy2(() => executeOp11(node2, tensorMap2, context2));\n case \"matrices\":\n return tidy2(() => executeOp12(node2, tensorMap2, context2));\n case \"normalization\":\n return tidy2(() => executeOp13(node2, tensorMap2, context2));\n case \"reduction\":\n return tidy2(() => executeOp14(node2, tensorMap2, context2));\n case \"slice_join\":\n return tidy2(() => executeOp15(node2, tensorMap2, context2));\n case \"sparse\":\n return tidy2(() => executeOp16(node2, tensorMap2, context2));\n case \"spectral\":\n return tidy2(() => executeOp17(node2, tensorMap2, context2));\n case \"string\":\n return tidy2(() => executeOp18(node2, tensorMap2, context2));\n case \"transformation\":\n return tidy2(() => executeOp19(node2, tensorMap2, context2));\n case \"hash_table\":\n return executeOp9(node2, tensorMap2, context2, resourceManager);\n case \"custom\":\n const opMapper = getRegisteredOp(node2.op);\n if (opMapper && opMapper.customExecutor) {\n return opMapper.customExecutor(new NodeValueImpl(node2, tensorMap2, context2));\n } else {\n throw TypeError(`Custom op ${node2.op} is not registered.`);\n }\n default:\n throw TypeError(`Unknown op '${node2.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`);\n }\n })(node, tensorMap, context);\n if (util_exports.isPromise(value)) {\n return value.then((data) => [].concat(data));\n }\n return [].concat(value);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/execution_context.js\nvar ExecutionContext = class {\n constructor(weightMap = {}, tensorArrayMap = {}, tensorListMap = {}, functionMap = {}) {\n this.weightMap = weightMap;\n this.tensorArrayMap = tensorArrayMap;\n this.tensorListMap = tensorListMap;\n this.functionMap = functionMap;\n this.rootContext = { id: 0, frameName: \"\", iterationId: 0 };\n this.contexts = [this.rootContext];\n this.lastId = 0;\n this.generateCurrentContextIds();\n }\n newFrame(id, frameName) {\n return { id, frameName, iterationId: 0 };\n }\n set currentContext(contexts2) {\n if (this.contexts !== contexts2) {\n this.contexts = contexts2;\n this.generateCurrentContextIds();\n }\n }\n get currentContext() {\n return this.contexts;\n }\n get currentContextId() {\n return this._currentContextIds[0];\n }\n get currentContextIds() {\n return this._currentContextIds;\n }\n generateCurrentContextIds() {\n const names = [];\n for (let i2 = 0; i2 < this.contexts.length - 1; i2++) {\n const contexts2 = this.contexts.slice(0, this.contexts.length - i2);\n names.push(this.contextIdforContexts(contexts2));\n }\n names.push(\"\");\n this._currentContextIds = names;\n }\n contextIdforContexts(contexts2) {\n return contexts2 ? contexts2.map((context) => context.id === 0 && context.iterationId === 0 ? \"\" : `${context.frameName}-${context.iterationId}`).join(\"/\") : \"\";\n }\n enterFrame(frameId) {\n if (this.contexts) {\n this.lastId++;\n this.contexts = this.contexts.slice();\n this.contexts.push(this.newFrame(this.lastId, frameId));\n this._currentContextIds.unshift(this.contextIdforContexts(this.contexts));\n }\n }\n exitFrame() {\n if (this.contexts && this.contexts.length > 1) {\n this.contexts = this.contexts.slice();\n this.contexts.splice(-1);\n this.currentContextIds.shift();\n } else {\n throw new Error(\"Cannot exit frame, the context is empty\");\n }\n }\n nextIteration() {\n if (this.contexts && this.contexts.length > 0) {\n this.contexts = this.contexts.slice();\n this.lastId++;\n const context = Object.assign({}, this.contexts[this.contexts.length - 1]);\n context.iterationId += 1;\n context.id = this.lastId;\n this.contexts.splice(-1, 1, context);\n this._currentContextIds.splice(0, 1, this.contextIdforContexts(this.contexts));\n } else {\n throw new Error(\"Cannot increase frame iteration, the context is empty\");\n }\n }\n getWeight(name) {\n return this.weightMap[name];\n }\n addTensorArray(tensorArray) {\n this.tensorArrayMap[tensorArray.id] = tensorArray;\n }\n getTensorArray(id) {\n return this.tensorArrayMap[id];\n }\n addTensorList(tensorList) {\n this.tensorListMap[tensorList.id] = tensorList;\n }\n getTensorList(id) {\n return this.tensorListMap[id];\n }\n dispose(keepIds) {\n for (const key in this.tensorArrayMap) {\n this.tensorArrayMap[key].clearAndClose(keepIds);\n }\n for (const key in this.tensorListMap) {\n this.tensorListMap[key].clearAndClose(keepIds);\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/model_analysis.js\nfunction getExecutionSubgraph(inputs, outputs, weightMap, initNodes) {\n const usedNodes = /* @__PURE__ */ new Set();\n const missingInputs = [];\n let dynamicNode = null;\n let syncInputs = null;\n const seen = /* @__PURE__ */ new Set();\n const inputNodeNames = Object.keys(inputs).map((name) => parseNodeName(name)[0]);\n let initNodeNames = [];\n if (initNodes != null) {\n initNodeNames = initNodes.map((node) => parseNodeName(node.name)[0]);\n }\n const frontier = [...outputs];\n while (frontier.length > 0) {\n const node = frontier.pop();\n if (isControlFlow(node) || isDynamicShape(node) || isHashTable(node)) {\n if (dynamicNode == null) {\n dynamicNode = node;\n syncInputs = dynamicNode.children.map((child) => child.name).filter((name) => usedNodes.has(name));\n }\n }\n usedNodes.add(node.name);\n if (weightMap[node.name] != null) {\n continue;\n }\n if (inputNodeNames.indexOf(node.name) !== -1) {\n continue;\n }\n if (initNodeNames.indexOf(node.name) !== -1) {\n continue;\n }\n if (node.inputs.length === 0) {\n missingInputs.push(node.name);\n continue;\n }\n node.inputs.forEach((input2) => {\n if (seen.has(input2.name)) {\n return;\n }\n seen.add(input2.name);\n frontier.push(input2);\n });\n }\n return { inputs, outputs, usedNodes, missingInputs, dynamicNode, syncInputs };\n}\nfunction getNodesInTopologicalOrder(graph, weightMap, executionInfo) {\n const { usedNodes, inputs } = executionInfo;\n const frontier = [];\n const inputNodes = Object.keys(inputs).map((name) => parseNodeName(name)[0]).map((name) => graph.nodes[name]);\n const initNodes = graph.initNodes;\n inputNodes.forEach((input2) => {\n if (usedNodes.has(input2.name)) {\n frontier.push(input2);\n }\n });\n graph.weights.forEach((weight) => {\n if (usedNodes.has(weight.name)) {\n frontier.push(weight);\n }\n });\n if (initNodes != null) {\n initNodes.forEach((node) => {\n if (usedNodes.has(node.name)) {\n frontier.push(node);\n }\n });\n }\n const seen = /* @__PURE__ */ new Set();\n const orderedNodes = [];\n while (frontier.length > 0) {\n const node = frontier.pop();\n seen.add(node.name);\n if (!weightMap[node.name]) {\n orderedNodes.push(node);\n }\n node.children.forEach((child) => {\n if (!seen.has(child.name) && usedNodes.has(child.name) && child.inputs.every((input2) => seen.has(input2.name))) {\n frontier.push(child);\n }\n });\n }\n return orderedNodes;\n}\nvar CONTROL_FLOW_OPS = [\n \"Switch\",\n \"Merge\",\n \"Enter\",\n \"Exit\",\n \"NextIteration\",\n \"StatelessIf\",\n \"StatelessWhile\",\n \"if\",\n \"While\"\n];\nvar DYNAMIC_SHAPE_OPS = [\n \"NonMaxSuppressionV2\",\n \"NonMaxSuppressionV3\",\n \"NonMaxSuppressionV5\",\n \"Where\"\n];\nvar HASH_TABLE_OPS = [\n \"HashTable\",\n \"HashTableV2\",\n \"LookupTableImport\",\n \"LookupTableImportV2\",\n \"LookupTableFind\",\n \"LookupTableFindV2\",\n \"LookupTableSize\",\n \"LookupTableSizeV2\"\n];\nfunction isControlFlow(node) {\n return CONTROL_FLOW_OPS.indexOf(node.op) >= 0;\n}\nfunction isDynamicShape(node) {\n return DYNAMIC_SHAPE_OPS.indexOf(node.op) >= 0;\n}\nfunction isHashTable(node) {\n return HASH_TABLE_OPS.indexOf(node.op) >= 0;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/graph_executor.js\nvar GraphExecutor = class {\n constructor(graph, parent) {\n this.graph = graph;\n this.parent = parent;\n this.compiledMap = /* @__PURE__ */ new Map();\n this._weightMap = {};\n this.SEPERATOR = \",\";\n this._functions = {};\n this._functionExecutorMap = {};\n this.intermediateTensors = {};\n this.keepTensorForDebug = false;\n this._outputs = graph.outputs;\n this._inputs = graph.inputs;\n this._initNodes = graph.initNodes;\n this._signature = graph.signature;\n this._functions = graph.functions;\n if (graph.functions != null) {\n Object.keys(graph.functions).forEach((name) => {\n this._functionExecutorMap[name] = new GraphExecutor(graph.functions[name], this);\n });\n }\n }\n get weightIds() {\n return this.parent ? this.parent.weightIds : this._weightIds;\n }\n get functionExecutorMap() {\n return this.parent ? this.parent.functionExecutorMap : this._functionExecutorMap;\n }\n get weightMap() {\n return this.parent ? this.parent.weightMap : this._weightMap;\n }\n set weightMap(weightMap) {\n const weightIds = Object.keys(weightMap).map((key) => weightMap[key].map((tensor2) => tensor2.id));\n this._weightIds = [].concat(...weightIds);\n this._weightMap = weightMap;\n }\n set resourceManager(resourceManager) {\n this._resourceManager = resourceManager;\n }\n get inputs() {\n return this._inputs.map((node) => {\n return {\n name: node.name,\n shape: node.attrParams[\"shape\"] ? node.attrParams[\"shape\"].value : void 0,\n dtype: node.attrParams[\"dtype\"] ? node.attrParams[\"dtype\"].value : void 0\n };\n });\n }\n get outputs() {\n return this._outputs.map((node) => {\n return {\n name: node.name,\n shape: node.attrParams[\"shape\"] ? node.attrParams[\"shape\"].value : void 0,\n dtype: node.attrParams[\"dtype\"] ? node.attrParams[\"dtype\"].value : void 0\n };\n });\n }\n get inputNodes() {\n return this._inputs.map((node) => node.signatureKey || node.name);\n }\n get outputNodes() {\n return this._outputs.map((node) => {\n const name = node.signatureKey || node.name;\n return node.defaultOutput ? `${name}:${node.defaultOutput}` : name;\n });\n }\n get functions() {\n return Object.keys(this._functions).reduce((map, key) => {\n map[key] = this._functions[key].signature;\n return map;\n }, {});\n }\n getCompilationKey(inputs, outputs) {\n const sortedInputs = inputs.map((node) => node.name).sort();\n const sortedOutputs = outputs.map((node) => node.name).sort();\n return sortedInputs.join(this.SEPERATOR) + \"--\" + sortedOutputs.join(this.SEPERATOR);\n }\n compile(inputs, outputs) {\n const executionInfo = getExecutionSubgraph(inputs, outputs, this.weightMap, this._initNodes);\n const { missingInputs, dynamicNode, syncInputs } = executionInfo;\n if (dynamicNode != null) {\n throw new Error(`This execution contains the node '${dynamicNode.name}', which has the dynamic op '${dynamicNode.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${syncInputs}]`);\n }\n if (missingInputs.length > 0) {\n const outNames = outputs.map((n2) => n2.name);\n const inNames = Object.keys(inputs);\n throw new Error(`Cannot compute the outputs [${outNames}] from the provided inputs [${inNames}]. Missing the following inputs: [${missingInputs}]`);\n }\n return getNodesInTopologicalOrder(this.graph, this.weightMap, executionInfo);\n }\n execute(inputs, outputs) {\n inputs = this.mapInputs(inputs);\n const names = Object.keys(inputs).sort();\n this.checkInputs(inputs);\n this.checkInputShapeAndType(inputs);\n outputs = this.mapOutputs(outputs);\n this.checkOutputs(outputs);\n const inputNodes = names.map((name) => this.graph.nodes[parseNodeName(name)[0]]);\n const outputNodeNames = outputs.map((name) => parseNodeName(name)[0]);\n let outputNodes = outputNodeNames.map((name) => this.graph.nodes[name]);\n this.resetIntermediateTensors();\n if (outputNodes.length === 0) {\n outputNodes = this._outputs;\n }\n const compilationKey = this.getCompilationKey(inputNodes, outputNodes);\n let orderedNodes = this.compiledMap.get(compilationKey);\n if (orderedNodes == null) {\n orderedNodes = this.compile(inputs, outputNodes);\n this.compiledMap.set(compilationKey, orderedNodes);\n }\n const tensorArrayMap = {};\n const tensorListMap = {};\n return tidy(() => {\n const context = new ExecutionContext(this.weightMap, tensorArrayMap, tensorListMap, this.functionExecutorMap);\n const tensorsMap = Object.assign({}, this.weightMap);\n Object.keys(inputs).forEach((name) => {\n const [nodeName, index] = parseNodeName(name);\n const tensors = [];\n tensors[index] = inputs[name];\n tensorsMap[nodeName] = tensors;\n });\n const tensorsToKeep = this.getFrozenTensorIds(tensorsMap);\n const intermediateTensorConsumerCount = {};\n for (let i2 = 0; i2 < orderedNodes.length; i2++) {\n const node = orderedNodes[i2];\n if (!tensorsMap[node.name]) {\n const tensors = executeOp20(node, tensorsMap, context, this._resourceManager);\n if (util_exports.isPromise(tensors)) {\n throw new Error(`The execution of the op '${node.op}' returned a promise. Please use model.executeAsync() instead.`);\n }\n tensorsMap[node.name] = tensors;\n this.checkTensorForDisposal(node.name, node, tensorsMap, context, tensorsToKeep, outputNodeNames, intermediateTensorConsumerCount);\n }\n }\n if (this.parent == null) {\n context.dispose(tensorsToKeep);\n }\n return outputs.map((name) => getTensor(name, tensorsMap, context));\n });\n }\n getFrozenTensorIds(tensorMap) {\n const ids = [].concat.apply([], Object.keys(tensorMap).map((key) => tensorMap[key]).map((tensors) => tensors.map((tensor2) => tensor2.id)));\n return new Set(ids);\n }\n checkTensorForDisposal(nodeName, node, tensorMap, context, tensorsToKeep, outputNames, intermediateTensorConsumerCount) {\n if (node.category === \"control\" || outputNames.indexOf(nodeName) !== -1) {\n return;\n }\n tensorMap[nodeName].forEach((tensor2) => {\n if (tensor2 != null) {\n intermediateTensorConsumerCount[tensor2.id] = (intermediateTensorConsumerCount[tensor2.id] || 0) + node.children.length;\n }\n });\n node.inputs.forEach((input2) => {\n if (input2.category !== \"control\") {\n const tensors = getTensorsForCurrentContenxt(input2.name, tensorMap, context);\n if (tensors != null) {\n tensors.forEach((tensor2) => {\n if (tensor2 && !tensor2.kept && !tensorsToKeep.has(tensor2.id)) {\n const count2 = intermediateTensorConsumerCount[tensor2.id];\n if (count2 === 1) {\n if (!this.keepTensorForDebug) {\n tensor2.dispose();\n } else {\n const [nodeName2, index] = getNodeNameAndIndex(node.name, context);\n if (this.intermediateTensors[nodeName2]) {\n this.intermediateTensors[nodeName2][index] = tensor2;\n } else {\n this.intermediateTensors[nodeName2] = [];\n this.intermediateTensors[nodeName2][index] = tensor2;\n }\n }\n delete intermediateTensorConsumerCount[tensor2.id];\n } else if (count2 != null) {\n intermediateTensorConsumerCount[tensor2.id]--;\n }\n }\n });\n }\n }\n });\n }\n async executeAsync(inputs, outputs) {\n return this._executeAsync(inputs, outputs);\n }\n disposeIntermediateTensors() {\n if (!this.intermediateTensors) {\n return;\n }\n Object.keys(this.intermediateTensors).forEach((key) => this.intermediateTensors[key].forEach((tensor2) => tensor2.dispose()));\n this.disposeTensorsMap();\n }\n disposeTensorsMap() {\n if (!this.tensorsMap) {\n return;\n }\n Object.keys(this.tensorsMap).forEach((key) => {\n const tensorArray = this.tensorsMap[key];\n tensorArray.forEach((tensor2) => {\n if (tensor2 && !tensor2.kept && !tensor2.isDisposed && !this.keepIds.has(tensor2.id)) {\n tensor2.dispose();\n }\n });\n });\n }\n getIntermediateTensors() {\n return this.tensorsMap;\n }\n resetIntermediateTensors() {\n for (const key in this.intermediateTensors) {\n this.intermediateTensors[key].forEach((tensor2) => tensor2.dispose());\n delete this.intermediateTensors[key];\n }\n }\n async _executeAsync(inputs, outputs, isFunctionExecution = false, tensorArrayMap = {}, tensorListMap = {}) {\n if (!isFunctionExecution) {\n inputs = this.mapInputs(inputs);\n this.checkInputs(inputs);\n this.checkInputShapeAndType(inputs);\n outputs = this.mapOutputs(outputs);\n this.checkOutputs(outputs);\n }\n try {\n this.keepTensorForDebug = env().getBool(\"KEEP_INTERMEDIATE_TENSORS\");\n } catch (e2) {\n console.warn(e2.message);\n }\n this.resetIntermediateTensors();\n const context = new ExecutionContext(this.weightMap, tensorArrayMap, tensorListMap, this.functionExecutorMap);\n this.tensorsMap = await this.executeWithControlFlow(inputs, context, outputs, isFunctionExecution);\n const results = outputs.map((name) => getTensor(name, this.tensorsMap, context));\n const outputIds = results.map((t2) => t2.id);\n const inputIds = Object.keys(inputs).map((name) => inputs[name].id);\n this.keepIds = /* @__PURE__ */ new Set([...outputIds, ...inputIds, ...this.weightIds]);\n if (!this.keepTensorForDebug) {\n this.disposeTensorsMap();\n }\n if (this.parent == null) {\n context.dispose(this.keepIds);\n }\n return results;\n }\n async executeFunctionAsync(inputs, tensorArrayMap, tensorListMap) {\n const mappedInputs = inputs.reduce((map, tensor2, index) => {\n map[this.inputs[index].name] = tensor2;\n return map;\n }, {});\n return this._executeAsync(mappedInputs, this.outputNodes, true, tensorArrayMap, tensorListMap);\n }\n async executeWithControlFlow(inputs, context, outputNames, isFunctionExecution) {\n const names = Object.keys(inputs);\n const inputNodes = names.map((name) => this.graph.nodes[parseNodeName(name)[0]]);\n const outputNodeNames = outputNames.map((name) => parseNodeName(name)[0]);\n let outputNodes = outputNodeNames.map((name) => this.graph.nodes[name]);\n if (outputNodes.length === 0) {\n outputNodes = this._outputs;\n }\n const { usedNodes, missingInputs, dynamicNode, syncInputs } = getExecutionSubgraph(inputs, outputNodes, this.weightMap, this._initNodes);\n const stack2 = [\n ...inputNodes,\n ...this.graph.weights,\n ...this._initNodes || []\n ].map((node) => {\n return { node, contexts: context.currentContext };\n });\n const tensorsMap = Object.assign({}, this.weightMap);\n Object.keys(inputs).forEach((name) => {\n const [nodeName, index] = parseNodeName(name);\n const tensors = [];\n tensors[index] = inputs[name];\n tensorsMap[nodeName] = tensors;\n });\n const intermediateTensorConsumerCount = {};\n const tensorsToKeep = this.getFrozenTensorIds(tensorsMap);\n const added = {};\n while (stack2.length > 0) {\n const promises = this.processStack(inputNodes, stack2, context, tensorsMap, added, tensorsToKeep, outputNodeNames, intermediateTensorConsumerCount, usedNodes);\n await Promise.all(promises);\n }\n if (dynamicNode == null && !isFunctionExecution) {\n console.warn(`This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.`);\n }\n const missingOutputs = outputNodes.filter((node) => !isControlFlow(node) && !getTensor(node.name, tensorsMap, context)).map((node) => node.name);\n if (missingOutputs.length > 0) {\n let alternativeMsg = \"\";\n if (dynamicNode != null) {\n alternativeMsg = `Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${syncInputs}]`;\n }\n throw new Error(`Cannot compute the outputs [${missingOutputs}] from the provided inputs [${names}]. Consider providing the following inputs: [${missingInputs}]. ${alternativeMsg}`);\n }\n return tensorsMap;\n }\n processStack(inputNodes, stack2, context, tensorMap, added, tensorsToKeep, outputNames, intermediateTensorConsumerCount, usedNodes) {\n const promises = [];\n while (stack2.length > 0) {\n const item = stack2.pop();\n context.currentContext = item.contexts;\n let nodeName = \"\";\n if (item.node.op === \"Enter\" && getParamValue(\"isConstant\", item.node, tensorMap, context)) {\n [nodeName] = getNodeNameAndIndex(item.node.name, context);\n }\n if (tensorMap[item.node.name] == null) {\n const tensors = executeOp20(item.node, tensorMap, context, this._resourceManager);\n if (!nodeName) {\n [nodeName] = getNodeNameAndIndex(item.node.name, context);\n }\n const currentContext = context.currentContext;\n if (util_exports.isPromise(tensors)) {\n promises.push(tensors.then((t2) => {\n tensorMap[nodeName] = t2;\n context.currentContext = currentContext;\n this.checkTensorForDisposal(nodeName, item.node, tensorMap, context, tensorsToKeep, outputNames, intermediateTensorConsumerCount);\n this.processChildNodes(item.node, stack2, context, tensorMap, added, usedNodes);\n return t2;\n }));\n } else {\n tensorMap[nodeName] = tensors;\n this.checkTensorForDisposal(nodeName, item.node, tensorMap, context, tensorsToKeep, outputNames, intermediateTensorConsumerCount);\n this.processChildNodes(item.node, stack2, context, tensorMap, added, usedNodes);\n }\n } else {\n this.processChildNodes(item.node, stack2, context, tensorMap, added, usedNodes);\n }\n }\n return promises;\n }\n processChildNodes(node, stack2, context, tensorMap, added, usedNodes) {\n node.children.forEach((childNode) => {\n const [nodeName] = getNodeNameAndIndex(childNode.name, context);\n if (added[nodeName] || !usedNodes.has(childNode.name)) {\n return;\n }\n if (childNode.op === \"Merge\") {\n if (childNode.inputNames.some((name) => {\n return !!getTensor(name, tensorMap, context);\n })) {\n added[nodeName] = true;\n stack2.push({ contexts: context.currentContext, node: childNode });\n }\n } else if (childNode.inputNames.every((name) => {\n return !!getTensor(name, tensorMap, context);\n })) {\n added[nodeName] = true;\n stack2.push({ contexts: context.currentContext, node: childNode });\n }\n });\n }\n dispose() {\n Object.keys(this.weightMap).forEach((key) => this.weightMap[key].forEach((tensor2) => tensor2.dispose()));\n }\n checkInputShapeAndType(inputs) {\n Object.keys(inputs).forEach((name) => {\n const input2 = inputs[name];\n const [nodeName] = parseNodeName(name);\n const node = this.graph.nodes[nodeName];\n if (node.attrParams[\"shape\"] && node.attrParams[\"shape\"].value) {\n const shape = node.attrParams[\"shape\"].value;\n const match = shape.length === input2.shape.length && input2.shape.every((dim, index) => shape[index] === -1 || shape[index] === dim);\n util_exports.assert(match, () => `The shape of dict['${node.name}'] provided in model.execute(dict) must be [${shape}], but was [${input2.shape}]`);\n }\n if (node.attrParams[\"dtype\"] && node.attrParams[\"dtype\"].value) {\n util_exports.assert(input2.dtype === node.attrParams[\"dtype\"].value, () => `The dtype of dict['${node.name}'] provided in model.execute(dict) must be ${node.attrParams[\"dtype\"].value}, but was ${input2.dtype}`);\n }\n });\n }\n mapInputs(inputs) {\n const result = {};\n for (const inputName in inputs) {\n if (this._signature != null && this._signature.inputs != null && this._signature.inputs[inputName] != null) {\n const tensor2 = this._signature.inputs[inputName];\n result[tensor2.name] = inputs[inputName];\n } else {\n result[inputName] = inputs[inputName];\n }\n }\n return result;\n }\n checkInputs(inputs) {\n const notInGraph = Object.keys(inputs).filter((name) => {\n const [nodeName] = parseNodeName(name);\n return this.graph.nodes[nodeName] == null;\n });\n if (notInGraph.length > 0) {\n throw new Error(`The dict provided in model.execute(dict) has keys: [${notInGraph}] that are not part of graph`);\n }\n }\n mapOutputs(outputs) {\n return outputs.map((name) => {\n if (this._signature != null && this._signature.outputs != null && this._signature.outputs[name] != null) {\n const tensor2 = this._signature.outputs[name];\n return tensor2.name;\n }\n return name;\n }, {});\n }\n checkOutputs(outputs) {\n outputs.forEach((name) => {\n const [normalizedName] = parseNodeName(name);\n if (!this.graph.nodes[normalizedName]) {\n throw new Error(`The output '${name}' is not found in the graph`);\n }\n });\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/resource_manager.js\nvar ResourceManager = class {\n constructor(hashTableNameToHandle = {}, hashTableMap = {}) {\n this.hashTableNameToHandle = hashTableNameToHandle;\n this.hashTableMap = hashTableMap;\n }\n addHashTable(name, hashTable) {\n this.hashTableNameToHandle[name] = hashTable.handle;\n this.hashTableMap[hashTable.id] = hashTable;\n }\n getHashTableHandleByName(name) {\n return this.hashTableNameToHandle[name];\n }\n getHashTableById(id) {\n return this.hashTableMap[id];\n }\n dispose() {\n for (const key in this.hashTableMap) {\n this.hashTableMap[key].clearAndClose();\n delete this.hashTableMap[key];\n }\n for (const name in this.hashTableNameToHandle) {\n this.hashTableNameToHandle[name].dispose();\n delete this.hashTableNameToHandle[name];\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/executor/graph_model.js\nvar TFHUB_SEARCH_PARAM = \"?tfjs-format=file\";\nvar DEFAULT_MODEL_NAME = \"model.json\";\nvar GraphModel = class {\n constructor(modelUrl, loadOptions = {}, tfio = io_exports) {\n this.modelUrl = modelUrl;\n this.loadOptions = loadOptions;\n this.version = \"n/a\";\n this.io = tfio;\n if (loadOptions == null) {\n this.loadOptions = {};\n }\n this.resourceManager = new ResourceManager();\n }\n get modelVersion() {\n return this.version;\n }\n get inputNodes() {\n return this.executor.inputNodes;\n }\n get outputNodes() {\n return this.executor.outputNodes;\n }\n get inputs() {\n return this.executor.inputs;\n }\n get outputs() {\n return this.executor.outputs;\n }\n get weights() {\n return this.executor.weightMap;\n }\n get metadata() {\n return this.artifacts.userDefinedMetadata;\n }\n get modelSignature() {\n return this.signature;\n }\n get modelStructuredOutputKeys() {\n return this.structuredOutputKeys;\n }\n findIOHandler() {\n const path = this.modelUrl;\n if (path.load != null) {\n this.handler = path;\n } else if (this.loadOptions.requestInit != null) {\n this.handler = this.io.browserHTTPRequest(path, this.loadOptions);\n } else {\n const handlers = this.io.getLoadHandlers(path, this.loadOptions);\n if (handlers.length === 0) {\n handlers.push(this.io.browserHTTPRequest(path, this.loadOptions));\n } else if (handlers.length > 1) {\n throw new Error(`Found more than one (${handlers.length}) load handlers for URL '${[path]}'`);\n }\n this.handler = handlers[0];\n }\n }\n load() {\n this.findIOHandler();\n if (this.handler.load == null) {\n throw new Error(\"Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.\");\n }\n const loadResult = this.handler.load();\n if (util_exports.isPromise(loadResult)) {\n return loadResult.then((artifacts) => this.loadSync(artifacts));\n }\n return this.loadSync(loadResult);\n }\n loadSync(artifacts) {\n this.artifacts = artifacts;\n const graph = this.artifacts.modelTopology;\n let signature = this.artifacts.signature;\n if (this.artifacts.userDefinedMetadata != null) {\n const metadata = this.artifacts.userDefinedMetadata;\n if (metadata.signature != null) {\n signature = metadata.signature;\n }\n if (metadata.structuredOutputKeys != null) {\n this.structuredOutputKeys = metadata.structuredOutputKeys;\n }\n }\n this.signature = signature;\n this.version = `${graph.versions.producer}.${graph.versions.minConsumer}`;\n const weightMap = this.io.decodeWeights(this.artifacts.weightData, this.artifacts.weightSpecs);\n this.executor = new GraphExecutor(OperationMapper.Instance.transformGraph(graph, this.signature));\n this.executor.weightMap = this.convertTensorMapToTensorsMap(weightMap);\n this.executor.resourceManager = this.resourceManager;\n if (artifacts.modelInitializer != null && artifacts.modelInitializer.node != null) {\n const initializer = OperationMapper.Instance.transformGraph(artifacts.modelInitializer);\n this.initializer = new GraphExecutor(initializer);\n this.initializer.weightMap = this.executor.weightMap;\n this.initializer.resourceManager = this.resourceManager;\n this.initializer.executeAsync({}, []);\n }\n return true;\n }\n async save(handlerOrURL, config) {\n if (typeof handlerOrURL === \"string\") {\n const handlers = this.io.getSaveHandlers(handlerOrURL);\n if (handlers.length === 0) {\n throw new Error(`Cannot find any save handlers for URL '${handlerOrURL}'`);\n } else if (handlers.length > 1) {\n throw new Error(`Found more than one (${handlers.length}) save handlers for URL '${handlerOrURL}'`);\n }\n handlerOrURL = handlers[0];\n }\n if (handlerOrURL.save == null) {\n throw new Error(\"GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.\");\n }\n return handlerOrURL.save(this.artifacts);\n }\n predict(inputs, config) {\n const outputTensors = this.execute(inputs, this.outputNodes);\n if (this.structuredOutputKeys) {\n const outputTensorsArray = outputTensors instanceof Tensor ? [outputTensors] : outputTensors;\n const outputTensorMap = {};\n outputTensorsArray.forEach((outputTensor, i2) => outputTensorMap[this.structuredOutputKeys[i2]] = outputTensor);\n return outputTensorMap;\n }\n return outputTensors;\n }\n normalizeInputs(inputs) {\n if (!(inputs instanceof Tensor) && !Array.isArray(inputs)) {\n return inputs;\n }\n inputs = Array.isArray(inputs) ? inputs : [inputs];\n if (inputs.length !== this.inputNodes.length) {\n throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${inputs.length} input tensors.`);\n }\n return this.inputNodes.reduce((map, inputName, i2) => {\n map[inputName] = inputs[i2];\n return map;\n }, {});\n }\n normalizeOutputs(outputs) {\n outputs = outputs || this.outputNodes;\n return !Array.isArray(outputs) ? [outputs] : outputs;\n }\n execute(inputs, outputs) {\n inputs = this.normalizeInputs(inputs);\n outputs = this.normalizeOutputs(outputs);\n const result = this.executor.execute(inputs, outputs);\n return result.length > 1 ? result : result[0];\n }\n async executeAsync(inputs, outputs) {\n inputs = this.normalizeInputs(inputs);\n outputs = this.normalizeOutputs(outputs);\n const result = await this.executor.executeAsync(inputs, outputs);\n return result.length > 1 ? result : result[0];\n }\n getIntermediateTensors() {\n return this.executor.getIntermediateTensors();\n }\n disposeIntermediateTensors() {\n this.executor.disposeIntermediateTensors();\n }\n convertTensorMapToTensorsMap(map) {\n return Object.keys(map).reduce((newMap, key) => {\n newMap[key] = [map[key]];\n return newMap;\n }, {});\n }\n dispose() {\n this.executor.dispose();\n if (this.initializer) {\n this.initializer.dispose();\n }\n this.resourceManager.dispose();\n }\n};\nasync function loadGraphModel(modelUrl, options = {}, tfio = io_exports) {\n if (modelUrl == null) {\n throw new Error(\"modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model\");\n }\n if (options == null) {\n options = {};\n }\n if (options.fromTFHub && typeof modelUrl === \"string\") {\n modelUrl = getTFHubUrl(modelUrl);\n }\n const model2 = new GraphModel(modelUrl, options, tfio);\n await model2.load();\n return model2;\n}\nfunction loadGraphModelSync(modelSource) {\n if (modelSource == null) {\n throw new Error(\"modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model\");\n }\n if (!modelSource.load) {\n throw new Error(`modelUrl IO Handler ${modelSource} has no load function`);\n }\n const model2 = new GraphModel(modelSource);\n model2.load();\n return model2;\n}\nfunction getTFHubUrl(modelUrl) {\n if (!modelUrl.endsWith(\"/\")) {\n modelUrl = modelUrl + \"/\";\n }\n return `${modelUrl}${DEFAULT_MODEL_NAME}${TFHUB_SEARCH_PARAM}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-converter@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-converter/dist/version.js\nvar version3 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/index.js\nvar dist_exports2 = {};\n__export(dist_exports2, {\n CSVDataset: () => CSVDataset,\n Dataset: () => Dataset,\n FileDataSource: () => FileDataSource,\n TextLineDataset: () => TextLineDataset,\n URLDataSource: () => URLDataSource,\n array: () => array,\n csv: () => csv,\n func: () => func,\n generator: () => generator,\n microphone: () => microphone,\n version_data: () => version4,\n webcam: () => webcam,\n zip: () => zip\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/dataset.js\nvar seedrandom3 = __toESM(require_seedrandom2());\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/lazy_iterator.js\nvar seedrandom2 = __toESM(require_seedrandom2());\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/deep_map.js\nfunction deepMap(input2, mapFn) {\n return deepMapInternal(input2, mapFn);\n}\nfunction deepMapInternal(input2, mapFn, seen = /* @__PURE__ */ new Map(), containedIn = /* @__PURE__ */ new Set()) {\n if (input2 == null) {\n return null;\n }\n if (typeof Blob === \"function\" && input2 instanceof Blob) {\n return input2.slice();\n }\n if (containedIn.has(input2)) {\n throw new Error(\"Circular references are not supported.\");\n }\n if (seen.has(input2)) {\n return seen.get(input2);\n }\n const result = mapFn(input2);\n if (result.recurse && result.value !== null) {\n throw new Error(\"A deep map function may not return both a value and recurse=true.\");\n }\n if (!result.recurse) {\n seen.set(input2, result.value);\n return result.value;\n } else if (isIterable2(input2)) {\n const mappedIterable = Array.isArray(input2) ? [] : {};\n containedIn.add(input2);\n for (const k in input2) {\n const child = input2[k];\n const childResult = deepMapInternal(child, mapFn, seen, containedIn);\n mappedIterable[k] = childResult;\n }\n containedIn.delete(input2);\n if (input2.__proto__) {\n mappedIterable.__proto__ = input2.__proto__;\n }\n return mappedIterable;\n } else {\n throw new Error(`Can't recurse into non-iterable type: ${input2}`);\n }\n}\nfunction deepZip(inputs, zipFn = zipToList) {\n return deepZipInternal(inputs, zipFn);\n}\nfunction deepZipInternal(inputs, zipFn, containedIn = /* @__PURE__ */ new Set()) {\n const input2 = inputs[0];\n if (containedIn.has(input2)) {\n throw new Error(\"Circular references are not supported.\");\n }\n const result = zipFn(inputs);\n if (result.recurse && result.value !== null) {\n throw new Error(\"A deep zip function may not return both a value and recurse=true.\");\n }\n if (!result.recurse) {\n return result.value;\n } else if (isIterable2(input2)) {\n const mappedIterable = Array.isArray(input2) ? [] : {};\n containedIn.add(input2);\n for (const k in input2) {\n const children = inputs.map((x) => x[k]);\n const childResult = deepZipInternal(children, zipFn, containedIn);\n mappedIterable[k] = childResult;\n }\n containedIn.delete(input2);\n return mappedIterable;\n } else {\n throw new Error(`Can't recurse into non-iterable type: ${input2}`);\n }\n}\nfunction zipToList(x) {\n if (x === null) {\n return null;\n }\n if (isIterable2(x[0])) {\n return { value: null, recurse: true };\n } else {\n return { value: x, recurse: false };\n }\n}\nasync function deepMapAndAwaitAll(input2, mapFn) {\n const seen = /* @__PURE__ */ new Map();\n deepMapInternal(input2, mapFn, seen);\n for (const key of Array.from(seen.keys())) {\n const value = seen.get(key);\n if (util_exports.isPromise(value)) {\n const mappedValue = await value;\n seen.set(key, mappedValue);\n }\n }\n const result = deepMapInternal(input2, mapFn, seen);\n return result;\n}\nfunction isIterable2(obj) {\n let isTextDecoder = false;\n if (env().get(\"IS_BROWSER\")) {\n isTextDecoder = obj instanceof TextDecoder;\n } else {\n const { StringDecoder } = require_string_decoder();\n isTextDecoder = obj instanceof StringDecoder;\n }\n return obj != null && !ArrayBuffer.isView(obj) && (Array.isArray(obj) || typeof obj === \"object\" && !(obj instanceof Tensor) && !(obj instanceof Promise) && !isTextDecoder);\n}\nfunction canTensorify(obj) {\n return obj == null || isPrimitive(obj) || Array.isArray(obj) || typeof obj === \"object\" && obj instanceof Tensor || util_exports.isTypedArray(obj);\n}\nfunction isPrimitive(value) {\n return value === null || typeof value !== \"object\" && typeof value !== \"function\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/deep_clone.js\nfunction deepClone(container) {\n return deepMap(container, cloneIfTensor);\n}\nfunction cloneIfTensor(item) {\n if (item instanceof Tensor) {\n return { value: item.clone(), recurse: false };\n } else if (isIterable2(item)) {\n return { value: null, recurse: true };\n } else {\n return { value: item, recurse: false };\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/ring_buffer.js\nvar RingBuffer = class {\n constructor(capacity) {\n this.capacity = capacity;\n this.begin = 0;\n this.end = 0;\n if (capacity == null) {\n throw new RangeError(\"Can't create a ring buffer of unknown capacity.\");\n }\n if (capacity < 1) {\n throw new RangeError(\"Can't create ring buffer of capacity < 1.\");\n }\n this.data = new Array(capacity);\n this.doubledCapacity = 2 * capacity;\n }\n wrap(index) {\n while (index < 0) {\n index += this.doubledCapacity;\n }\n return index % this.doubledCapacity;\n }\n get(index) {\n if (index < 0) {\n throw new RangeError(\"Can't get item at a negative index.\");\n }\n return this.data[index % this.capacity];\n }\n set(index, value) {\n if (index < 0) {\n throw new RangeError(\"Can't set item at a negative index.\");\n }\n this.data[index % this.capacity] = value;\n }\n length() {\n let length = this.end - this.begin;\n if (length < 0) {\n length = this.doubledCapacity + length;\n }\n return length;\n }\n isFull() {\n return this.length() === this.capacity;\n }\n isEmpty() {\n return this.length() === 0;\n }\n push(value) {\n if (this.isFull()) {\n throw new RangeError(\"Ring buffer is full.\");\n }\n this.set(this.end, value);\n this.end = this.wrap(this.end + 1);\n }\n pushAll(values) {\n for (const value of values) {\n this.push(value);\n }\n }\n pop() {\n if (this.isEmpty()) {\n throw new RangeError(\"Ring buffer is empty.\");\n }\n this.end = this.wrap(this.end - 1);\n const result = this.get(this.end);\n this.set(this.end, void 0);\n return result;\n }\n unshift(value) {\n if (this.isFull()) {\n throw new RangeError(\"Ring buffer is full.\");\n }\n this.begin = this.wrap(this.begin - 1);\n this.set(this.begin, value);\n }\n shift() {\n if (this.isEmpty()) {\n throw new RangeError(\"Ring buffer is empty.\");\n }\n const result = this.get(this.begin);\n this.set(this.begin, void 0);\n this.begin = this.wrap(this.begin + 1);\n return result;\n }\n shuffleExcise(relativeIndex) {\n if (this.isEmpty()) {\n throw new RangeError(\"Ring buffer is empty.\");\n }\n const index = this.wrap(this.begin + relativeIndex);\n const result = this.get(index);\n this.set(index, this.pop());\n return result;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/growing_ring_buffer.js\nvar GrowingRingBuffer = class extends RingBuffer {\n constructor() {\n super(GrowingRingBuffer.INITIAL_CAPACITY);\n }\n isFull() {\n return false;\n }\n push(value) {\n if (super.isFull()) {\n this.expand();\n }\n super.push(value);\n }\n unshift(value) {\n if (super.isFull()) {\n this.expand();\n }\n super.unshift(value);\n }\n expand() {\n const newCapacity = this.capacity * 2;\n const newData = new Array(newCapacity);\n const len = this.length();\n for (let i2 = 0; i2 < len; i2++) {\n newData[i2] = this.get(this.wrap(this.begin + i2));\n }\n this.data = newData;\n this.capacity = newCapacity;\n this.doubledCapacity = 2 * this.capacity;\n this.begin = 0;\n this.end = len;\n }\n};\nGrowingRingBuffer.INITIAL_CAPACITY = 32;\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/lazy_iterator.js\nfunction iteratorFromItems(items) {\n return new ArrayIterator(items);\n}\nfunction iteratorFromFunction(func2) {\n return new FunctionCallIterator(func2);\n}\nfunction iteratorFromConcatenated(baseIterators, baseErrorHandler) {\n return new ChainedIterator(baseIterators, baseErrorHandler);\n}\nfunction iteratorFromZipped(iterators, mismatchMode = ZipMismatchMode.FAIL) {\n return new ZipIterator(iterators, mismatchMode);\n}\nvar LazyIterator = class {\n async toArray() {\n const result = [];\n let x = await this.next();\n while (!x.done) {\n result.push(x.value);\n x = await this.next();\n }\n return result;\n }\n async toArrayForTest() {\n const stream = this.prefetch(100);\n const result = [];\n let x = await stream.next();\n while (!x.done) {\n result.push(x.value);\n x = await stream.next();\n }\n return result;\n }\n async resolveFully() {\n let x = await this.next();\n while (!x.done) {\n x = await this.next();\n }\n }\n async resolveWhile(predicate) {\n let x = await this.next();\n let shouldContinue = predicate(x.value);\n while (!x.done && shouldContinue) {\n x = await this.next();\n shouldContinue = predicate(x.value);\n }\n }\n handleErrors(handler) {\n return new ErrorHandlingLazyIterator(this, handler);\n }\n filter(predicate) {\n return new FilterIterator(this, predicate);\n }\n map(transform6) {\n return new MapIterator(this, transform6);\n }\n mapAsync(transform6) {\n return new AsyncMapIterator(this, transform6);\n }\n serialMapAsync(transform6) {\n return new AsyncMapIterator(this, transform6).serial();\n }\n flatmap(transform6) {\n return new FlatmapIterator(this, transform6);\n }\n async forEachAsync(f) {\n return this.map(f).resolveFully();\n }\n async serialForEach(f) {\n return this.serialMapAsync(f).resolveWhile((x) => x === true);\n }\n rowMajorBatch(batchSize, smallLastBatch = true) {\n return new RowMajorBatchIterator(this, batchSize, smallLastBatch);\n }\n columnMajorBatch(batchSize, smallLastBatch = true, zipFn = zipToList) {\n const rowBatches = this.rowMajorBatch(batchSize, smallLastBatch);\n return rowBatches.map((x) => deepZip(x, zipFn));\n }\n concatenate(iterator, baseErrorHandler) {\n return new ChainedIterator(iteratorFromItems([this, iterator]), baseErrorHandler);\n }\n take(count2) {\n if (count2 < 0 || count2 == null) {\n return this;\n }\n return new TakeIterator(this, count2);\n }\n skip(count2) {\n if (count2 < 0 || count2 == null) {\n return this;\n }\n return new SkipIterator(this, count2);\n }\n prefetch(bufferSize) {\n return new PrefetchIterator(this, bufferSize);\n }\n shuffle(windowSize, seed) {\n return new ShuffleIterator(this, windowSize, seed);\n }\n serial() {\n return new SerialIterator(this);\n }\n};\nvar ArrayIterator = class extends LazyIterator {\n constructor(items) {\n super();\n this.items = items;\n this.trav = 0;\n }\n summary() {\n return `Array of ${this.items.length} items`;\n }\n async next() {\n if (this.trav >= this.items.length) {\n return { value: null, done: true };\n }\n const item = this.items[this.trav];\n this.trav++;\n return { value: deepClone(item), done: false };\n }\n};\nvar FunctionCallIterator = class extends LazyIterator {\n constructor(nextFn) {\n super();\n this.nextFn = nextFn;\n }\n summary() {\n return `Function call`;\n }\n async next() {\n try {\n return this.nextFn();\n } catch (e2) {\n e2.message = `Error thrown while iterating through a dataset: ${e2.message}`;\n throw e2;\n }\n }\n};\nvar SerialIterator = class extends LazyIterator {\n constructor(upstream) {\n super();\n this.upstream = upstream;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> Serial`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n return this.upstream.next();\n }\n};\nvar SkipIterator = class extends LazyIterator {\n constructor(upstream, maxCount) {\n super();\n this.upstream = upstream;\n this.maxCount = maxCount;\n this.count = 0;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> Skip`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n while (this.count++ < this.maxCount) {\n const skipped = await this.upstream.next();\n if (skipped.done) {\n return skipped;\n }\n dispose(skipped.value);\n }\n return this.upstream.next();\n }\n};\nvar TakeIterator = class extends LazyIterator {\n constructor(upstream, maxCount) {\n super();\n this.upstream = upstream;\n this.maxCount = maxCount;\n this.count = 0;\n }\n summary() {\n return `${this.upstream.summary()} -> Take`;\n }\n async next() {\n if (this.count++ >= this.maxCount) {\n return { value: null, done: true };\n }\n return this.upstream.next();\n }\n};\nvar RowMajorBatchIterator = class extends LazyIterator {\n constructor(upstream, batchSize, enableSmallLastBatch = true) {\n super();\n this.upstream = upstream;\n this.batchSize = batchSize;\n this.enableSmallLastBatch = enableSmallLastBatch;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> RowMajorBatch`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n const batch = [];\n while (batch.length < this.batchSize) {\n const item = await this.upstream.next();\n if (item.done) {\n if (this.enableSmallLastBatch && batch.length > 0) {\n return { value: batch, done: false };\n }\n return { value: null, done: true };\n }\n batch.push(item.value);\n }\n return { value: batch, done: false };\n }\n};\nvar FilterIterator = class extends LazyIterator {\n constructor(upstream, predicate) {\n super();\n this.upstream = upstream;\n this.predicate = predicate;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> Filter`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n while (true) {\n const item = await this.upstream.next();\n if (item.done || this.predicate(item.value)) {\n return item;\n }\n dispose(item.value);\n }\n }\n};\nvar MapIterator = class extends LazyIterator {\n constructor(upstream, transform6) {\n super();\n this.upstream = upstream;\n this.transform = transform6;\n }\n summary() {\n return `${this.upstream.summary()} -> Map`;\n }\n async next() {\n const item = await this.upstream.next();\n if (item.done) {\n return { value: null, done: true };\n }\n const inputTensors = tensor_util_exports.getTensorsInContainer(item.value);\n const mapped = this.transform(item.value);\n const outputTensors = tensor_util_exports.getTensorsInContainer(mapped);\n for (const t2 of inputTensors) {\n if (!tensor_util_exports.isTensorInList(t2, outputTensors)) {\n t2.dispose();\n }\n }\n return { value: mapped, done: false };\n }\n};\nvar ErrorHandlingLazyIterator = class extends LazyIterator {\n constructor(upstream, handler) {\n super();\n this.upstream = upstream;\n this.handler = handler;\n this.count = 0;\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n summary() {\n return `${this.upstream.summary()} -> handleErrors`;\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n while (true) {\n try {\n return await this.upstream.next();\n } catch (e2) {\n if (!this.handler(e2)) {\n return { value: null, done: true };\n }\n }\n }\n }\n};\nvar AsyncMapIterator = class extends LazyIterator {\n constructor(upstream, transform6) {\n super();\n this.upstream = upstream;\n this.transform = transform6;\n }\n summary() {\n return `${this.upstream.summary()} -> AsyncMap`;\n }\n async next() {\n const item = await this.upstream.next();\n if (item.done) {\n return { value: null, done: true };\n }\n const inputTensors = tensor_util_exports.getTensorsInContainer(item.value);\n const mapped = await this.transform(item.value);\n const outputTensors = tensor_util_exports.getTensorsInContainer(mapped);\n for (const t2 of inputTensors) {\n if (!tensor_util_exports.isTensorInList(t2, outputTensors)) {\n t2.dispose();\n }\n }\n return { value: mapped, done: false };\n }\n};\nvar OneToManyIterator = class extends LazyIterator {\n constructor() {\n super();\n this.outputQueue = new GrowingRingBuffer();\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n async serialNext() {\n while (this.outputQueue.length() === 0) {\n if (!await this.pump()) {\n return { value: null, done: true };\n }\n }\n return { value: this.outputQueue.shift(), done: false };\n }\n};\nvar FlatmapIterator = class extends OneToManyIterator {\n constructor(upstream, transform6) {\n super();\n this.upstream = upstream;\n this.transform = transform6;\n }\n summary() {\n return `${this.upstream.summary()} -> Flatmap`;\n }\n async pump() {\n const item = await this.upstream.next();\n if (item.done) {\n return false;\n }\n const inputTensors = tensor_util_exports.getTensorsInContainer(item.value);\n const mappedArray = this.transform(item.value);\n const outputTensors = tensor_util_exports.getTensorsInContainer(mappedArray);\n this.outputQueue.pushAll(mappedArray);\n for (const t2 of inputTensors) {\n if (!tensor_util_exports.isTensorInList(t2, outputTensors)) {\n t2.dispose();\n }\n }\n return true;\n }\n};\nvar ChainedIterator = class extends LazyIterator {\n constructor(iterators, baseErrorHandler) {\n super();\n this.baseErrorHandler = baseErrorHandler;\n this.lastRead = null;\n this.iterator = null;\n this.moreIterators = iterators;\n }\n summary() {\n const upstreamSummaries = \"TODO: fill in upstream of chained summaries\";\n return `${upstreamSummaries} -> Chained`;\n }\n async next() {\n this.lastRead = this.readFromChain(this.lastRead);\n return this.lastRead;\n }\n async readFromChain(lastRead) {\n await lastRead;\n if (this.iterator == null) {\n const iteratorResult = await this.moreIterators.next();\n if (iteratorResult.done) {\n return { value: null, done: true };\n }\n this.iterator = iteratorResult.value;\n if (this.baseErrorHandler != null) {\n this.iterator = this.iterator.handleErrors(this.baseErrorHandler);\n }\n }\n const itemResult = await this.iterator.next();\n if (itemResult.done) {\n this.iterator = null;\n return this.readFromChain(lastRead);\n }\n return itemResult;\n }\n};\nvar ZipMismatchMode;\n(function(ZipMismatchMode2) {\n ZipMismatchMode2[ZipMismatchMode2[\"FAIL\"] = 0] = \"FAIL\";\n ZipMismatchMode2[ZipMismatchMode2[\"SHORTEST\"] = 1] = \"SHORTEST\";\n ZipMismatchMode2[ZipMismatchMode2[\"LONGEST\"] = 2] = \"LONGEST\";\n})(ZipMismatchMode || (ZipMismatchMode = {}));\nvar ZipIterator = class extends LazyIterator {\n constructor(iterators, mismatchMode = ZipMismatchMode.FAIL) {\n super();\n this.iterators = iterators;\n this.mismatchMode = mismatchMode;\n this.count = 0;\n this.currentPromise = null;\n }\n summary() {\n const upstreamSummaries = \"TODO: fill in upstream of zip summaries\";\n return `{${upstreamSummaries}} -> Zip`;\n }\n async nextState(afterState) {\n await afterState;\n let numIterators = 0;\n let iteratorsDone = 0;\n function getNext(container) {\n if (container instanceof LazyIterator) {\n const result = container.next();\n return {\n value: result.then((x) => {\n numIterators++;\n if (x.done) {\n iteratorsDone++;\n }\n return x.value;\n }),\n recurse: false\n };\n } else {\n return { value: null, recurse: true };\n }\n }\n const mapped = await deepMapAndAwaitAll(this.iterators, getNext);\n if (numIterators === iteratorsDone) {\n return { value: null, done: true };\n }\n if (iteratorsDone > 0) {\n switch (this.mismatchMode) {\n case ZipMismatchMode.FAIL:\n throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);\n case ZipMismatchMode.SHORTEST:\n return { value: null, done: true };\n case ZipMismatchMode.LONGEST:\n default:\n }\n }\n this.count++;\n return { value: mapped, done: false };\n }\n async next() {\n this.currentPromise = this.nextState(this.currentPromise);\n return this.currentPromise;\n }\n};\nvar PrefetchIterator = class extends LazyIterator {\n constructor(upstream, bufferSize) {\n super();\n this.upstream = upstream;\n this.bufferSize = bufferSize;\n this.buffer = new RingBuffer(bufferSize);\n }\n summary() {\n return `${this.upstream.summary()} -> Prefetch`;\n }\n refill() {\n while (!this.buffer.isFull()) {\n const v = this.upstream.next();\n this.buffer.push(v);\n }\n }\n next() {\n this.refill();\n return this.buffer.shift();\n }\n};\nvar ShuffleIterator = class extends PrefetchIterator {\n constructor(upstream, windowSize, seed) {\n super(upstream, windowSize);\n this.upstream = upstream;\n this.windowSize = windowSize;\n this.upstreamExhausted = false;\n this.random = seedrandom2.alea(seed || util_exports.now().toString());\n this.lastRead = Promise.resolve({ value: null, done: false });\n }\n async next() {\n this.lastRead = this.lastRead.then(() => this.serialNext());\n return this.lastRead;\n }\n randomInt(max7) {\n return Math.floor(this.random() * max7);\n }\n chooseIndex() {\n return this.randomInt(this.buffer.length());\n }\n async serialNext() {\n if (!this.upstreamExhausted) {\n this.refill();\n }\n while (!this.buffer.isEmpty()) {\n const chosenIndex = this.chooseIndex();\n const result = await this.buffer.shuffleExcise(chosenIndex);\n if (result.done) {\n this.upstreamExhausted = true;\n } else {\n this.refill();\n return result;\n }\n }\n return { value: null, done: true };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/dataset.js\nvar Dataset = class {\n constructor() {\n this.size = null;\n }\n batch(batchSize, smallLastBatch = true) {\n const base = this;\n util_exports.assert(batchSize > 0, () => `batchSize needs to be positive, but it is\n ${batchSize}`);\n let size;\n if (this.size === Infinity || this.size == null) {\n size = this.size;\n } else if (smallLastBatch) {\n size = Math.ceil(this.size / batchSize);\n } else {\n size = Math.floor(this.size / batchSize);\n }\n return datasetFromIteratorFn(async () => {\n return (await base.iterator()).columnMajorBatch(batchSize, smallLastBatch, deepBatchConcat);\n }, size);\n }\n concatenate(dataset) {\n const base = this;\n let size;\n if (this.size === Infinity || dataset.size === Infinity) {\n size = Infinity;\n } else if (this.size != null && dataset.size != null) {\n size = this.size + dataset.size;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => (await base.iterator()).concatenate(await dataset.iterator()), size);\n }\n filter(predicate) {\n const base = this;\n let size;\n if (this.size === Infinity) {\n size = Infinity;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => {\n return (await base.iterator()).filter((x) => tidy(() => predicate(x)));\n }, size);\n }\n async forEachAsync(f) {\n return (await this.iterator()).forEachAsync(f);\n }\n map(transform6) {\n const base = this;\n return datasetFromIteratorFn(async () => {\n return (await base.iterator()).map((x) => tidy(() => transform6(x)));\n }, this.size);\n }\n mapAsync(transform6) {\n const base = this;\n return datasetFromIteratorFn(async () => {\n return (await base.iterator()).mapAsync(transform6);\n }, this.size);\n }\n prefetch(bufferSize) {\n if (bufferSize == null) {\n throw new RangeError(\"`Dataset.prefetch()` requires bufferSize to be specified.\");\n }\n const base = this;\n return datasetFromIteratorFn(async () => (await base.iterator()).prefetch(bufferSize), this.size);\n }\n repeat(count2) {\n const base = this;\n let size;\n if (this.size != null && count2 > 0) {\n size = this.size * count2;\n } else if (count2 === 0) {\n size = 0;\n } else if (this.size != null && (count2 === void 0 || count2 < 0)) {\n size = Infinity;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => {\n const iteratorIterator = iteratorFromFunction(async () => ({ value: await base.iterator(), done: false }));\n return iteratorFromConcatenated(iteratorIterator.take(count2));\n }, size);\n }\n skip(count2) {\n const base = this;\n let size;\n if (this.size != null && count2 >= 0 && this.size >= count2) {\n size = this.size - count2;\n } else if (this.size != null && (this.size < count2 || count2 === void 0 || count2 < 0)) {\n size = 0;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => (await base.iterator()).skip(count2), size);\n }\n shuffle(bufferSize, seed, reshuffleEachIteration = true) {\n if (bufferSize == null || bufferSize < 0) {\n if (this.size == null) {\n throw new RangeError(\"`Dataset.shuffle()` requires bufferSize to be specified.\");\n } else {\n throw new RangeError(`\\`Dataset.shuffle()\\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \\`tf.Tensor\\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);\n }\n }\n const base = this;\n const random = seedrandom3.alea(seed || util_exports.now().toString());\n return datasetFromIteratorFn(async () => {\n let seed2 = random.int32();\n if (reshuffleEachIteration) {\n seed2 += random.int32();\n }\n return (await base.iterator()).shuffle(bufferSize, seed2.toString());\n }, this.size);\n }\n take(count2) {\n const base = this;\n let size;\n if (this.size != null && this.size > count2) {\n size = count2;\n } else if (this.size != null && this.size <= count2) {\n size = this.size;\n } else {\n size = null;\n }\n return datasetFromIteratorFn(async () => (await base.iterator()).take(count2), size);\n }\n async toArray() {\n if (this.size === Infinity) {\n throw new Error(\"Can not convert infinite data stream to array.\");\n }\n return (await this.iterator()).toArray();\n }\n async toArrayForTest() {\n if (this.size === Infinity) {\n throw new Error(\"Can not convert infinite data stream to array.\");\n }\n return (await this.iterator()).toArrayForTest();\n }\n};\nDataset.MAX_BUFFER_SIZE = 1e4;\nfunction datasetFromIteratorFn(iteratorFn, size = null) {\n return new class extends Dataset {\n constructor() {\n super(...arguments);\n this.size = size;\n }\n async iterator() {\n return iteratorFn();\n }\n }();\n}\nfunction array(items) {\n return datasetFromIteratorFn(async () => iteratorFromItems(items), items.length);\n}\nfunction zip(datasets) {\n if (!isIterable2(datasets)) {\n throw new Error(\"The argument to zip() must be an object or array.\");\n }\n let size;\n if (Array.isArray(datasets)) {\n for (let i2 = 0; i2 < datasets.length; i2++) {\n size = size == null ? datasets[i2].size : Math.min(size, datasets[i2].size);\n }\n } else if (datasets instanceof Object) {\n for (const ds in datasets) {\n size = size == null ? datasets[ds].size : Math.min(size, datasets[ds].size);\n }\n }\n return datasetFromIteratorFn(async () => {\n const streams = await deepMapAndAwaitAll(datasets, (d) => {\n if (d instanceof Dataset) {\n return { value: d.iterator(), recurse: false };\n } else if (isIterable2(d)) {\n return { value: null, recurse: true };\n } else {\n throw new Error(\"Leaves of the structure passed to zip() must be Datasets, not primitives.\");\n }\n });\n return iteratorFromZipped(streams, ZipMismatchMode.SHORTEST);\n }, size);\n}\nfunction deepBatchConcat(rows) {\n if (rows === null) {\n return null;\n }\n const exampleRow = rows[0];\n if (canTensorify(exampleRow)) {\n const value = batchConcat(rows);\n return { value, recurse: false };\n }\n return { value: null, recurse: true };\n}\nfunction batchConcat(arrays) {\n if (arrays.length === 0) {\n throw new Error(\"Can't make a batch of zero elements.\");\n }\n if (arrays[0] instanceof Tensor) {\n return stack(arrays);\n } else {\n return tensor(arrays);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/datasets/text_line_dataset.js\nvar TextLineDataset = class extends Dataset {\n constructor(input2) {\n super();\n this.input = input2;\n }\n async iterator() {\n const inputIterator = await this.input.iterator();\n const utf8Iterator = inputIterator.decodeUTF8();\n const lineIterator = utf8Iterator.split(\"\\n\").map((line) => {\n if (line.endsWith(\"\\r\")) {\n line = line.slice(0, -1);\n }\n return line;\n });\n return lineIterator;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/datasets/csv_dataset.js\nvar CODE_QUOTE = '\"';\nvar STATE_OUT = Symbol(\"out\");\nvar STATE_FIELD = Symbol(\"field\");\nvar STATE_QUOTE = Symbol(\"quote\");\nvar STATE_QUOTE_AFTER_QUOTE = Symbol(\"quoteafterquote\");\nvar STATE_WITHIN_QUOTE_IN_QUOTE = Symbol(\"quoteinquote\");\nvar CSVDataset = class extends Dataset {\n constructor(input2, csvConfig) {\n super();\n this.input = input2;\n this.hasHeader = true;\n this.fullColumnNames = null;\n this.columnNamesValidated = false;\n this.columnConfigs = null;\n this.configuredColumnsOnly = false;\n this.delimiter = \",\";\n this.delimWhitespace = false;\n this.base = new TextLineDataset(input2);\n if (!csvConfig) {\n csvConfig = {};\n }\n this.hasHeader = csvConfig.hasHeader === false ? false : true;\n this.fullColumnNames = csvConfig.columnNames;\n this.columnConfigs = csvConfig.columnConfigs;\n this.configuredColumnsOnly = csvConfig.configuredColumnsOnly;\n if (csvConfig.delimWhitespace) {\n util_exports.assert(csvConfig.delimiter == null, () => \"Delimiter should not be provided when delimWhitespace is true.\");\n this.delimWhitespace = true;\n this.delimiter = \" \";\n } else {\n this.delimiter = csvConfig.delimiter ? csvConfig.delimiter : \",\";\n }\n }\n async columnNames() {\n if (!this.columnNamesValidated) {\n await this.setColumnNames();\n }\n return this.configuredColumnsOnly ? Object.keys(this.columnConfigs) : this.fullColumnNames;\n }\n async setColumnNames() {\n const columnNamesFromFile = await this.maybeReadHeaderLine();\n if (!this.fullColumnNames && !columnNamesFromFile) {\n throw new Error(\"Column names must be provided if there is no header line.\");\n } else if (this.fullColumnNames && columnNamesFromFile) {\n util_exports.assert(columnNamesFromFile.length === this.fullColumnNames.length, () => \"The length of provided columnNames (\" + this.fullColumnNames.length.toString() + \") does not match the length of the header line read from file (\" + columnNamesFromFile.length.toString() + \").\");\n }\n if (!this.fullColumnNames) {\n this.fullColumnNames = columnNamesFromFile;\n }\n const counts = this.fullColumnNames.reduce((countAcc, name) => {\n countAcc[name] = countAcc[name] + 1 || 1;\n return countAcc;\n }, {});\n const duplicateNames = Object.keys(counts).filter((name) => counts[name] > 1);\n util_exports.assert(duplicateNames.length === 0, () => \"Duplicate column names found: \" + duplicateNames.toString());\n if (this.columnConfigs) {\n for (const key of Object.keys(this.columnConfigs)) {\n const index = this.fullColumnNames.indexOf(key);\n if (index === -1) {\n throw new Error('The key \"' + key + '\" provided in columnConfigs does not match any of the column names (' + this.fullColumnNames.toString() + \").\");\n }\n }\n }\n this.columnNamesValidated = true;\n }\n async maybeReadHeaderLine() {\n if (this.hasHeader) {\n const iter = await this.base.iterator();\n const firstElement = await iter.next();\n if (firstElement.done) {\n throw new Error(\"No data was found for CSV parsing.\");\n }\n const firstLine = firstElement.value;\n const headers = this.parseRow(firstLine, false);\n return headers;\n } else {\n return null;\n }\n }\n async iterator() {\n if (!this.columnNamesValidated) {\n await this.setColumnNames();\n }\n let lines = await this.base.iterator();\n if (this.hasHeader) {\n lines = lines.skip(1);\n }\n return lines.map((x) => this.makeDataElement(x));\n }\n makeDataElement(line) {\n const values = this.parseRow(line);\n const features = {};\n const labels = {};\n for (let i2 = 0; i2 < this.fullColumnNames.length; i2++) {\n const key = this.fullColumnNames[i2];\n const config = this.columnConfigs ? this.columnConfigs[key] : null;\n if (this.configuredColumnsOnly && !config) {\n continue;\n } else {\n const value = values[i2];\n let parsedValue = null;\n if (value === \"\") {\n if (config && config.default !== void 0) {\n parsedValue = config.default;\n } else if (config && (config.required || config.isLabel)) {\n throw new Error(`Required column ${key} is empty in this line: ${line}`);\n } else {\n parsedValue = void 0;\n }\n } else {\n const valueAsNum = Number(value);\n if (isNaN(valueAsNum)) {\n if (config && config.dtype === \"bool\") {\n parsedValue = this.getBoolean(value);\n } else {\n parsedValue = value;\n }\n } else if (!config || !config.dtype) {\n parsedValue = valueAsNum;\n } else {\n switch (config.dtype) {\n case \"float32\":\n parsedValue = valueAsNum;\n break;\n case \"int32\":\n parsedValue = Math.floor(valueAsNum);\n break;\n case \"bool\":\n parsedValue = this.getBoolean(value);\n break;\n default:\n parsedValue = valueAsNum;\n }\n }\n }\n config && config.isLabel ? labels[key] = parsedValue : features[key] = parsedValue;\n }\n }\n if (Object.keys(labels).length === 0) {\n return features;\n } else {\n return { xs: features, ys: labels };\n }\n }\n getBoolean(value) {\n if (value === \"1\" || value.toLowerCase() === \"true\") {\n return 1;\n } else {\n return 0;\n }\n }\n parseRow(line, validateElementCount = true) {\n const result = [];\n let readOffset = 0;\n const readLength = line.length;\n let currentState = STATE_OUT;\n for (let i2 = 0; i2 < readLength; i2++) {\n switch (currentState) {\n case STATE_OUT:\n switch (line.charAt(i2)) {\n case CODE_QUOTE:\n readOffset = i2 + 1;\n currentState = STATE_QUOTE;\n break;\n case this.delimiter:\n readOffset = i2 + 1;\n if (this.delimiter === \" \" && this.delimWhitespace) {\n break;\n }\n result.push(\"\");\n currentState = STATE_OUT;\n break;\n default:\n currentState = STATE_FIELD;\n readOffset = i2;\n break;\n }\n break;\n case STATE_FIELD:\n switch (line.charAt(i2)) {\n case this.delimiter:\n result.push(line.substring(readOffset, i2));\n currentState = STATE_OUT;\n readOffset = i2 + 1;\n break;\n default:\n }\n break;\n case STATE_QUOTE:\n switch (line.charAt(i2)) {\n case CODE_QUOTE:\n currentState = STATE_QUOTE_AFTER_QUOTE;\n break;\n default:\n }\n break;\n case STATE_QUOTE_AFTER_QUOTE:\n switch (line.charAt(i2)) {\n case this.delimiter:\n result.push(line.substring(readOffset, i2 - 1));\n currentState = STATE_OUT;\n readOffset = i2 + 1;\n break;\n case CODE_QUOTE:\n currentState = STATE_QUOTE;\n break;\n default:\n currentState = STATE_WITHIN_QUOTE_IN_QUOTE;\n break;\n }\n break;\n case STATE_WITHIN_QUOTE_IN_QUOTE:\n switch (line.charAt(i2)) {\n case CODE_QUOTE:\n currentState = STATE_QUOTE;\n break;\n default:\n }\n break;\n default:\n }\n }\n if (currentState === STATE_QUOTE_AFTER_QUOTE) {\n result.push(line.substring(readOffset, readLength - 1));\n } else {\n result.push(line.substring(readOffset));\n }\n if (validateElementCount && result.length !== this.fullColumnNames.length) {\n throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${result}`);\n }\n return result;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/microphone_iterator.js\nvar MicrophoneIterator = class extends LazyIterator {\n constructor(microphoneConfig) {\n super();\n this.microphoneConfig = microphoneConfig;\n this.isClosed = false;\n this.fftSize = microphoneConfig.fftSize || 1024;\n const fftSizeLog2 = Math.log2(this.fftSize);\n if (this.fftSize < 0 || fftSizeLog2 < 4 || fftSizeLog2 > 14 || !Number.isInteger(fftSizeLog2)) {\n throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);\n }\n this.numFrames = microphoneConfig.numFramesPerSpectrogram || 43;\n this.sampleRateHz = microphoneConfig.sampleRateHz;\n this.columnTruncateLength = microphoneConfig.columnTruncateLength || this.fftSize;\n this.audioTrackConstraints = microphoneConfig.audioTrackConstraints;\n this.smoothingTimeConstant = microphoneConfig.smoothingTimeConstant || 0;\n this.includeSpectrogram = microphoneConfig.includeSpectrogram === false ? false : true;\n this.includeWaveform = microphoneConfig.includeWaveform === true ? true : false;\n if (!this.includeSpectrogram && !this.includeWaveform) {\n throw new Error(\"Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.\");\n }\n }\n summary() {\n return `microphone`;\n }\n static async create(microphoneConfig = {}) {\n if (!env().get(\"IS_BROWSER\")) {\n throw new Error(\"microphone API is only supported in browser environment.\");\n }\n const microphoneIterator = new MicrophoneIterator(microphoneConfig);\n await microphoneIterator.start();\n return microphoneIterator;\n }\n async start() {\n try {\n this.stream = await navigator.mediaDevices.getUserMedia({\n audio: this.audioTrackConstraints == null ? true : this.audioTrackConstraints,\n video: false\n });\n } catch (e2) {\n throw new Error(`Error thrown while initializing video stream: ${e2.message}`);\n }\n if (!this.stream) {\n throw new Error(\"Could not obtain audio from microphone.\");\n }\n const ctxConstructor = window.AudioContext || window.webkitAudioContext;\n this.audioContext = new ctxConstructor();\n if (!this.sampleRateHz) {\n this.sampleRateHz = this.audioContext.sampleRate;\n } else if (this.audioContext.sampleRate !== this.sampleRateHz) {\n throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);\n }\n const streamSource = this.audioContext.createMediaStreamSource(this.stream);\n this.analyser = this.audioContext.createAnalyser();\n this.analyser.fftSize = this.fftSize * 2;\n this.analyser.smoothingTimeConstant = this.smoothingTimeConstant;\n streamSource.connect(this.analyser);\n this.freqData = new Float32Array(this.fftSize);\n this.timeData = new Float32Array(this.fftSize);\n return;\n }\n async next() {\n if (this.isClosed) {\n return { value: null, done: true };\n }\n let spectrogramTensor;\n let waveformTensor;\n const audioDataQueue = await this.getAudioData();\n if (this.includeSpectrogram) {\n const freqData = this.flattenQueue(audioDataQueue.freqDataQueue);\n spectrogramTensor = this.getTensorFromAudioDataArray(freqData, [this.numFrames, this.columnTruncateLength, 1]);\n }\n if (this.includeWaveform) {\n const timeData = this.flattenQueue(audioDataQueue.timeDataQueue);\n waveformTensor = this.getTensorFromAudioDataArray(timeData, [this.numFrames * this.fftSize, 1]);\n }\n return {\n value: { \"spectrogram\": spectrogramTensor, \"waveform\": waveformTensor },\n done: false\n };\n }\n async capture() {\n return (await this.next()).value;\n }\n async getAudioData() {\n const freqDataQueue = [];\n const timeDataQueue = [];\n let currentFrames = 0;\n return new Promise((resolve) => {\n const intervalID = setInterval(() => {\n if (this.includeSpectrogram) {\n this.analyser.getFloatFrequencyData(this.freqData);\n if (this.freqData[0] === -Infinity) {\n resolve({ freqDataQueue, timeDataQueue });\n }\n freqDataQueue.push(this.freqData.slice(0, this.columnTruncateLength));\n }\n if (this.includeWaveform) {\n this.analyser.getFloatTimeDomainData(this.timeData);\n timeDataQueue.push(this.timeData.slice());\n }\n if (++currentFrames === this.numFrames) {\n clearInterval(intervalID);\n resolve({ freqDataQueue, timeDataQueue });\n }\n }, this.fftSize / this.sampleRateHz * 1e3);\n });\n }\n stop() {\n if (!this.isClosed) {\n this.isClosed = true;\n this.analyser.disconnect();\n this.audioContext.close();\n if (this.stream != null && this.stream.getTracks().length > 0) {\n this.stream.getTracks()[0].stop();\n }\n }\n }\n toArray() {\n throw new Error(\"Can not convert infinite audio stream to array.\");\n }\n getSampleRate() {\n return this.sampleRateHz;\n }\n flattenQueue(queue) {\n const frameSize = queue[0].length;\n const freqData = new Float32Array(queue.length * frameSize);\n queue.forEach((data, i2) => freqData.set(data, i2 * frameSize));\n return freqData;\n }\n getTensorFromAudioDataArray(freqData, shape) {\n const vals = new Float32Array(util_exports.sizeFromShape(shape));\n vals.set(freqData, vals.length - freqData.length);\n return tensor(vals, shape);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/webcam_iterator.js\nvar WebcamIterator = class extends LazyIterator {\n constructor(webcamVideoElement, webcamConfig) {\n super();\n this.webcamVideoElement = webcamVideoElement;\n this.webcamConfig = webcamConfig;\n this.isClosed = true;\n this.resize = false;\n if (this.needToResize()) {\n this.resize = true;\n this.cropSize = [this.webcamConfig.resizeHeight, this.webcamConfig.resizeWidth];\n this.cropBoxInd = tensor1d([0], \"int32\");\n if (this.webcamConfig.centerCrop) {\n const widthCroppingRatio = this.webcamConfig.resizeWidth * 1 / this.webcamVideoElement.width;\n const heightCroppingRatio = this.webcamConfig.resizeHeight * 1 / this.webcamVideoElement.height;\n const widthCropStart = (1 - widthCroppingRatio) / 2;\n const heightCropStart = (1 - heightCroppingRatio) / 2;\n const widthCropEnd = widthCropStart + widthCroppingRatio;\n const heightCropEnd = heightCroppingRatio + heightCropStart;\n this.cropBox = tensor2d([heightCropStart, widthCropStart, heightCropEnd, widthCropEnd], [1, 4]);\n } else {\n this.cropBox = tensor2d([0, 0, 1, 1], [1, 4]);\n }\n }\n }\n summary() {\n return `webcam`;\n }\n static async create(webcamVideoElement, webcamConfig = {}) {\n if (!env().get(\"IS_BROWSER\")) {\n throw new Error(\"tf.data.webcam is only supported in browser environment.\");\n }\n if (!webcamVideoElement) {\n webcamVideoElement = document.createElement(\"video\");\n if (!webcamConfig.resizeWidth || !webcamConfig.resizeHeight) {\n throw new Error(\"Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.\");\n }\n webcamVideoElement.width = webcamConfig.resizeWidth;\n webcamVideoElement.height = webcamConfig.resizeHeight;\n }\n const webcamIterator = new WebcamIterator(webcamVideoElement, webcamConfig);\n await webcamIterator.start();\n return webcamIterator;\n }\n async start() {\n if (this.webcamConfig.facingMode) {\n util_exports.assert(this.webcamConfig.facingMode === \"user\" || this.webcamConfig.facingMode === \"environment\", () => `Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);\n }\n try {\n this.stream = await navigator.mediaDevices.getUserMedia({\n video: {\n deviceId: this.webcamConfig.deviceId,\n facingMode: this.webcamConfig.facingMode ? this.webcamConfig.facingMode : \"user\",\n width: this.webcamVideoElement.width,\n height: this.webcamVideoElement.height\n }\n });\n } catch (e2) {\n e2.message = `Error thrown while initializing video stream: ${e2.message}`;\n throw e2;\n }\n if (!this.stream) {\n throw new Error(\"Could not obtain video from webcam.\");\n }\n try {\n this.webcamVideoElement.srcObject = this.stream;\n } catch (error) {\n console.log(error);\n this.webcamVideoElement.src = window.URL.createObjectURL(this.stream);\n }\n this.webcamVideoElement.play();\n this.isClosed = false;\n return new Promise((resolve) => {\n this.webcamVideoElement.onloadedmetadata = () => {\n resolve();\n };\n });\n }\n async next() {\n if (this.isClosed) {\n return { value: null, done: true };\n }\n let img;\n try {\n img = browser_exports.fromPixels(this.webcamVideoElement);\n } catch (e2) {\n throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e2)}`);\n }\n if (this.resize) {\n try {\n return { value: this.cropAndResizeFrame(img), done: false };\n } catch (e2) {\n throw new Error(`Error thrown cropping the video: ${e2.message}`);\n } finally {\n img.dispose();\n }\n } else {\n return { value: img, done: false };\n }\n }\n needToResize() {\n if (this.webcamConfig.resizeWidth && this.webcamConfig.resizeHeight && (this.webcamVideoElement.width !== this.webcamConfig.resizeWidth || this.webcamVideoElement.height !== this.webcamConfig.resizeHeight)) {\n return true;\n }\n return false;\n }\n cropAndResizeFrame(img) {\n return tidy(() => {\n const expandedImage = expandDims(cast(img, \"float32\"), 0);\n let resizedImage;\n resizedImage = image.cropAndResize(expandedImage, this.cropBox, this.cropBoxInd, this.cropSize, \"bilinear\");\n const shape = resizedImage.shape;\n return reshape(resizedImage, shape.slice(1));\n });\n }\n async capture() {\n return (await this.next()).value;\n }\n stop() {\n const tracks = this.stream.getTracks();\n tracks.forEach((track) => track.stop());\n try {\n this.webcamVideoElement.srcObject = null;\n } catch (error) {\n console.log(error);\n this.webcamVideoElement.src = null;\n }\n this.isClosed = true;\n }\n toArray() {\n throw new Error(\"Can not convert infinite video stream to array.\");\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/datasource.js\nvar DataSource = class {\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/string_iterator.js\nvar StringIterator = class extends LazyIterator {\n split(separator) {\n return new SplitIterator(this, separator);\n }\n};\nvar SplitIterator = class extends StringIterator {\n constructor(upstream, separator) {\n super();\n this.upstream = upstream;\n this.impl = new SplitIteratorImpl(upstream, separator);\n }\n summary() {\n return this.impl.summary();\n }\n async next() {\n return this.impl.next();\n }\n};\nvar SplitIteratorImpl = class extends OneToManyIterator {\n constructor(upstream, separator) {\n super();\n this.upstream = upstream;\n this.separator = separator;\n this.carryover = \"\";\n }\n summary() {\n return `${this.upstream.summary()} -> Split('${this.separator}')`;\n }\n async pump() {\n const chunkResult = await this.upstream.next();\n if (chunkResult.done) {\n if (this.carryover === \"\") {\n return false;\n }\n this.outputQueue.push(this.carryover);\n this.carryover = \"\";\n return true;\n }\n const lines = chunkResult.value.split(this.separator);\n lines[0] = this.carryover + lines[0];\n for (const line of lines.slice(0, -1)) {\n this.outputQueue.push(line);\n }\n this.carryover = lines[lines.length - 1];\n return true;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/byte_chunk_iterator.js\nvar ByteChunkIterator = class extends LazyIterator {\n decodeUTF8() {\n return new Utf8Iterator(this);\n }\n};\nvar Utf8Iterator = class extends StringIterator {\n constructor(upstream) {\n super();\n this.upstream = upstream;\n this.impl = new Utf8IteratorImpl(upstream);\n }\n summary() {\n return this.impl.summary();\n }\n async next() {\n return this.impl.next();\n }\n};\nvar Utf8IteratorImpl = class extends OneToManyIterator {\n constructor(upstream) {\n super();\n this.upstream = upstream;\n if (env().get(\"IS_BROWSER\")) {\n this.decoder = new TextDecoder(\"utf-8\");\n } else {\n const { StringDecoder } = require_string_decoder();\n this.decoder = new StringDecoder(\"utf8\");\n }\n }\n summary() {\n return `${this.upstream.summary()} -> Utf8`;\n }\n async pump() {\n const chunkResult = await this.upstream.next();\n let chunk;\n if (chunkResult.done) {\n return false;\n } else {\n chunk = chunkResult.value;\n }\n let text;\n if (env().get(\"IS_BROWSER\")) {\n text = this.decoder.decode(chunk, { stream: true });\n } else {\n text = this.decoder.write(Buffer.from(chunk.buffer));\n }\n this.outputQueue.push(text);\n return true;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/file_chunk_iterator.js\nvar FileChunkIterator = class extends ByteChunkIterator {\n constructor(file, options = {}) {\n super();\n this.file = file;\n this.options = options;\n util_exports.assert(file instanceof Uint8Array || (env().get(\"IS_BROWSER\") ? file instanceof File || file instanceof Blob : false), () => \"FileChunkIterator only supports File, Blob and Uint8Array right now.\");\n this.offset = options.offset || 0;\n this.chunkSize = options.chunkSize || 1024 * 1024;\n }\n summary() {\n return `FileChunks ${this.file}`;\n }\n async next() {\n if (this.offset >= (this.file instanceof Uint8Array ? this.file.byteLength : this.file.size)) {\n return { value: null, done: true };\n }\n const chunk = new Promise((resolve, reject) => {\n const end = this.offset + this.chunkSize;\n if (this.file instanceof Uint8Array) {\n resolve(new Uint8Array(this.file.slice(this.offset, end)));\n } else {\n const fileReader = new FileReader();\n fileReader.onload = (event) => {\n let data = fileReader.result;\n if (data instanceof ArrayBuffer) {\n data = new Uint8Array(data);\n }\n if (!(data instanceof Uint8Array)) {\n return reject(new TypeError(\"FileReader returned unknown type.\"));\n }\n resolve(data);\n };\n fileReader.onabort = (event) => {\n return reject(new Error(\"Aborted\"));\n };\n fileReader.onerror = (event) => {\n return reject(new Error(event.type));\n };\n const slice6 = this.file.slice(this.offset, end);\n fileReader.readAsArrayBuffer(slice6);\n }\n this.offset = end;\n });\n return { value: await chunk, done: false };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/iterators/url_chunk_iterator.js\nasync function urlChunkIterator(url, options = {}, fetchFunc) {\n let urlString;\n let requestInit;\n if (typeof url === \"string\") {\n urlString = url;\n } else {\n urlString = url.url;\n requestInit = getRequestInitFromRequest(url);\n }\n const response = await (fetchFunc || util_exports.fetch)(urlString, requestInit);\n if (response.ok) {\n const uint8Array = new Uint8Array(await response.arrayBuffer());\n return new FileChunkIterator(uint8Array, options);\n } else {\n throw new Error(response.statusText);\n }\n}\nvar getRequestInitFromRequest = (request) => {\n const init2 = {\n method: request.method,\n headers: request.headers,\n body: request.body,\n mode: request.mode,\n credentials: request.credentials,\n cache: request.cache,\n redirect: request.redirect,\n referrer: request.referrer,\n integrity: request.integrity\n };\n return init2;\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/util/source_util.js\nfunction isLocalPath(source) {\n return typeof source === \"string\" && source.slice(0, 7) === \"file://\";\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/sources/file_data_source.js\nvar FileDataSource = class extends DataSource {\n constructor(input2, options = {}) {\n super();\n this.input = input2;\n this.options = options;\n }\n async iterator() {\n if (isLocalPath(this.input) && env().get(\"IS_NODE\")) {\n const fs = require_fs();\n this.input = fs.readFileSync(this.input.slice(7));\n }\n return new FileChunkIterator(this.input, this.options);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/sources/url_data_source.js\nvar URLDataSource = class extends DataSource {\n constructor(url, fileOptions = {}) {\n super();\n this.url = url;\n this.fileOptions = fileOptions;\n }\n async iterator() {\n if (isLocalPath(this.url)) {\n return new FileDataSource(this.url, this.fileOptions).iterator();\n } else {\n return urlChunkIterator(this.url, this.fileOptions);\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/readers.js\nfunction csv(source, csvConfig = {}) {\n return new CSVDataset(new URLDataSource(source), csvConfig);\n}\nfunction func(f) {\n const iter = iteratorFromFunction(f);\n return datasetFromIteratorFn(async () => iter);\n}\nfunction generator(generator2) {\n return datasetFromIteratorFn(async () => {\n const gen = await generator2();\n return iteratorFromFunction(() => gen.next());\n });\n}\nasync function webcam(webcamVideoElement, webcamConfig) {\n return WebcamIterator.create(webcamVideoElement, webcamConfig);\n}\nasync function microphone(microphoneConfig) {\n return MicrophoneIterator.create(microphoneConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-data@3.20.0_k7dauiu3y265wd6lcplf62oi7i/node_modules/@tensorflow/tfjs-data/dist/version.js\nvar version4 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/cpu_util.js\nfunction assertNotComplex(tensor2, opName) {\n if (!Array.isArray(tensor2)) {\n tensor2 = [tensor2];\n }\n tensor2.forEach((t2) => {\n if (t2 != null) {\n util_exports.assert(t2.dtype !== \"complex64\", () => `${opName} does not support complex64 tensors in the CPU backend.`);\n }\n });\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/backend_cpu.js\nvar whereImpl2 = kernel_impls_exports.whereImpl;\nvar MathBackendCPU = class extends KernelBackend {\n constructor() {\n super();\n this.blockSize = 48;\n this.firstUse = true;\n this.data = new DataStorage(this, engine());\n }\n nextDataId() {\n return MathBackendCPU.nextDataId++;\n }\n write(values, shape, dtype) {\n if (this.firstUse) {\n this.firstUse = false;\n if (env().get(\"IS_NODE\")) {\n backend_util_exports.warn(\"\\n============================\\nHi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details. \\n============================\");\n }\n }\n const dataId = { id: this.nextDataId() };\n this.data.set(dataId, { values, dtype, refCount: 1 });\n return dataId;\n }\n makeTensorInfo(shape, dtype, values) {\n let outId;\n if (dtype === \"string\" && values != null && values.length > 0 && util_exports.isString(values[0])) {\n const encodedValues = values.map((d) => util_exports.encodeString(d));\n outId = this.write(encodedValues, shape, dtype);\n } else {\n outId = this.write(values, shape, dtype);\n }\n return { dataId: outId, shape, dtype };\n }\n refCount(dataId) {\n if (this.data.has(dataId)) {\n const tensorData = this.data.get(dataId);\n return tensorData.refCount;\n }\n return 0;\n }\n incRef(dataId) {\n const tensorData = this.data.get(dataId);\n tensorData.refCount++;\n }\n decRef(dataId) {\n if (this.data.has(dataId)) {\n const tensorData = this.data.get(dataId);\n tensorData.refCount--;\n }\n }\n move(dataId, values, shape, dtype, refCount) {\n this.data.set(dataId, { values, dtype, refCount });\n }\n numDataIds() {\n return this.data.numDataIds();\n }\n async read(dataId) {\n return this.readSync(dataId);\n }\n readSync(dataId) {\n const { dtype, complexTensorInfos } = this.data.get(dataId);\n if (dtype === \"complex64\") {\n const realValues = this.readSync(complexTensorInfos.real.dataId);\n const imagValues = this.readSync(complexTensorInfos.imag.dataId);\n return backend_util_exports.mergeRealAndImagArrays(realValues, imagValues);\n }\n return this.data.get(dataId).values;\n }\n bufferSync(t2) {\n const data = this.readSync(t2.dataId);\n if (t2.dtype === \"string\") {\n try {\n const strings = data.map((d) => util_exports.decodeString(d));\n return buffer(t2.shape, t2.dtype, strings);\n } catch (_a) {\n throw new Error(\"Failed to decode encoded string bytes into utf-8\");\n }\n }\n return buffer(t2.shape, t2.dtype, data);\n }\n makeOutput(values, shape, dtype) {\n return engine().makeTensorFromTensorInfo(this.makeTensorInfo(shape, dtype, values), this);\n }\n disposeData(dataId, force = false) {\n if (this.data.has(dataId)) {\n this.data.get(dataId).refCount--;\n if (!force && this.data.get(dataId).refCount > 0) {\n return false;\n }\n const { complexTensorInfos } = this.data.get(dataId);\n if (complexTensorInfos != null) {\n this.disposeData(complexTensorInfos.real.dataId, true);\n this.disposeData(complexTensorInfos.imag.dataId, true);\n }\n this.data.delete(dataId);\n }\n return true;\n }\n disposeIntermediateTensorInfo(tensorInfo) {\n this.disposeData(tensorInfo.dataId);\n }\n async time(f) {\n const start = util_exports.now();\n f();\n const kernelMs = util_exports.now() - start;\n return { kernelMs };\n }\n memory() {\n return {\n unreliable: true,\n reasons: [\"The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less.\"]\n };\n }\n where(condition) {\n assertNotComplex([condition], \"where\");\n const condVals = this.readSync(condition.dataId);\n return whereImpl2(condition.shape, condVals);\n }\n dispose() {\n }\n floatPrecision() {\n return 32;\n }\n epsilon() {\n return super.epsilon();\n }\n};\nMathBackendCPU.nextDataId = 0;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/shared.js\nvar shared_exports = {};\n__export(shared_exports, {\n addImpl: () => addImpl,\n bincountImpl: () => bincountImpl,\n bincountReduceImpl: () => bincountReduceImpl,\n castImpl: () => castImpl,\n ceilImpl: () => ceilImpl,\n concatImpl: () => concatImpl,\n equalImpl: () => equalImpl,\n expImpl: () => expImpl,\n expm1Impl: () => expm1Impl,\n floorImpl: () => floorImpl,\n gatherNdImpl: () => gatherNdImpl,\n gatherV2Impl: () => gatherV2Impl,\n greaterEqualImpl: () => greaterEqualImpl,\n greaterImpl: () => greaterImpl,\n lessEqualImpl: () => lessEqualImpl,\n lessImpl: () => lessImpl,\n linSpaceImpl: () => linSpaceImpl,\n logImpl: () => logImpl,\n maxImpl: () => maxImpl,\n maximumImpl: () => maximumImpl,\n minimumImpl: () => minimumImpl,\n multiplyImpl: () => multiplyImpl,\n negImpl: () => negImpl,\n notEqualImpl: () => notEqualImpl,\n prodImpl: () => prodImpl,\n raggedTensorToTensorImpl: () => raggedTensorToTensorImpl,\n rangeImpl: () => rangeImpl,\n rsqrtImpl: () => rsqrtImpl,\n scatterImpl: () => scatterImpl,\n sigmoidImpl: () => sigmoidImpl,\n simpleAbsImpl: () => simpleAbsImpl,\n sliceImpl: () => sliceImpl,\n sparseFillEmptyRowsImpl: () => sparseFillEmptyRowsImpl,\n sparseReshapeImpl: () => sparseReshapeImpl,\n sparseSegmentReductionImpl: () => sparseSegmentReductionImpl,\n sqrtImpl: () => sqrtImpl,\n squaredDifferenceImpl: () => squaredDifferenceImpl,\n stridedSliceImpl: () => stridedSliceImpl,\n stringNGramsImpl: () => stringNGramsImpl,\n stringSplitImpl: () => stringSplitImpl,\n stringToHashBucketFastImpl: () => stringToHashBucketFastImpl,\n subImpl: () => subImpl,\n tileImpl: () => tileImpl,\n topKImpl: () => topKImpl,\n transposeImpl: () => transposeImpl,\n uniqueImpl: () => uniqueImpl\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Abs.js\nfunction simpleAbsImpl(vals) {\n const resultValues = new Float32Array(vals.length);\n for (let i2 = 0; i2 < vals.length; ++i2) {\n resultValues[i2] = Math.abs(vals[i2]);\n }\n return resultValues;\n}\nvar abs2 = (args) => {\n const { x } = args.inputs;\n const cpuBackend = args.backend;\n assertNotComplex(x, \"abs\");\n let resultValues = new Float32Array(util_exports.sizeFromShape(x.shape));\n const values = cpuBackend.data.get(x.dataId).values;\n resultValues = simpleAbsImpl(values);\n return cpuBackend.makeOutput(resultValues, x.shape, x.dtype);\n};\nvar absConfig = {\n kernelName: Abs,\n backendName: \"cpu\",\n kernelFunc: abs2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/binary_impl.js\nfunction createSimpleBinaryKernelImpl(op2) {\n return (aShape, bShape, aVals, bVals, dtype) => {\n const newShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n const resultRank = newShape.length;\n const resultStrides = util_exports.computeStrides(newShape);\n const resultSize = util_exports.sizeFromShape(newShape);\n const result = util_exports.getTypedArrayFromDType(dtype, resultSize);\n const aRank = aShape.length;\n const bRank = bShape.length;\n const aStrides = util_exports.computeStrides(aShape);\n const bStrides = util_exports.computeStrides(bShape);\n const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, newShape);\n const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, newShape);\n if (aBroadcastDims.length + bBroadcastDims.length === 0) {\n for (let i2 = 0; i2 < result.length; ++i2) {\n result[i2] = op2(aVals[i2 % aVals.length], bVals[i2 % bVals.length]);\n }\n } else {\n for (let i2 = 0; i2 < result.length; ++i2) {\n const loc = util_exports.indexToLoc(i2, resultRank, resultStrides);\n const aLoc = loc.slice(-aRank);\n aBroadcastDims.forEach((d) => aLoc[d] = 0);\n const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides);\n const bLoc = loc.slice(-bRank);\n bBroadcastDims.forEach((d) => bLoc[d] = 0);\n const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides);\n result[i2] = op2(aVals[aIndex], bVals[bIndex]);\n }\n }\n return [result, newShape];\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Complex.js\nfunction complex2(args) {\n const { inputs, backend: backend2 } = args;\n const { real: real5, imag: imag5 } = inputs;\n const realVals = backend2.data.get(real5.dataId).values;\n const imagVals = backend2.data.get(imag5.dataId).values;\n const complexInfo = backend2.makeTensorInfo(real5.shape, \"complex64\");\n const complex5 = backend2.data.get(complexInfo.dataId);\n complex5.complexTensorInfos = {\n real: backend2.makeTensorInfo(real5.shape, \"float32\", realVals),\n imag: backend2.makeTensorInfo(imag5.shape, \"float32\", imagVals)\n };\n return complexInfo;\n}\nvar complexConfig = {\n kernelName: Complex,\n backendName: \"cpu\",\n kernelFunc: complex2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/zeros_impl.js\nfunction zeros3(backend2, shape, dtype = \"float32\") {\n if (dtype === \"complex64\") {\n const real5 = zeros3(backend2, shape, \"float32\");\n const imag5 = zeros3(backend2, shape, \"float32\");\n return complex2({ inputs: { real: real5, imag: imag5 }, backend: backend2 });\n }\n const values = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(shape), dtype);\n return backend2.makeTensorInfo(shape, dtype, values);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Identity.js\nfunction identity2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n backend2.incRef(x.dataId);\n return { dataId: x.dataId, shape: x.shape, dtype: x.dtype };\n}\nvar identityConfig = {\n kernelName: Identity,\n backendName: \"cpu\",\n kernelFunc: identity2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Real.js\nfunction real2(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const real5 = backend2.data.get(input2.dataId).complexTensorInfos.real;\n const realVal = backend2.data.get(real5.dataId).values;\n return backend2.makeTensorInfo(real5.shape, real5.dtype, realVal);\n}\nvar realConfig = {\n kernelName: Real,\n backendName: \"cpu\",\n kernelFunc: real2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cast.js\nfunction castImpl(values, shape, inputType, dtype) {\n if (dtype === \"int32\") {\n const resultValues = Int32Array.from(values);\n return [shape, \"int32\", resultValues];\n }\n if (dtype === \"bool\") {\n const zero = util_exports.toTypedArray([0], inputType);\n const [resultData, resultShape] = createSimpleBinaryKernelImpl((a, b) => a !== b ? 1 : 0)(shape, [], values, zero, \"bool\");\n return [resultShape, \"bool\", resultData];\n }\n throw new Error(`Error in Cast: failed to cast ${inputType} to ${dtype}`);\n}\nfunction cast3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dtype } = attrs;\n if (dtype === \"complex64\") {\n if (x.dtype === \"complex64\") {\n return identity2({ inputs: { x }, backend: backend2 });\n }\n const zerosTensorInfo = zeros3(backend2, x.shape, x.dtype);\n const floatX = cast3({ inputs: { x }, backend: backend2, attrs: { dtype: \"float32\" } });\n const result = complex2({ inputs: { real: floatX, imag: zerosTensorInfo }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(zerosTensorInfo);\n backend2.disposeIntermediateTensorInfo(floatX);\n return result;\n }\n if (x.dtype === \"complex64\") {\n const realPart = real2({ inputs: { input: x }, backend: backend2 });\n const result = cast3({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } });\n backend2.disposeIntermediateTensorInfo(realPart);\n return result;\n }\n if (!util_exports.hasEncodingLoss(x.dtype, dtype)) {\n const result = identity2({ inputs: { x }, backend: backend2 });\n return { dataId: result.dataId, shape: result.shape, dtype };\n }\n const values = backend2.data.get(x.dataId).values;\n const [resultShape, resultType, resultData] = castImpl(values, x.shape, x.dtype, dtype);\n return backend2.makeTensorInfo(resultShape, resultType, resultData);\n}\nvar castConfig = {\n kernelName: Cast,\n backendName: \"cpu\",\n kernelFunc: cast3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/binary_utils.js\nfunction binaryKernelFunc(name, simpleImpl, complexImpl, dtype) {\n if (complexImpl == null) {\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const cpuBackend = backend2;\n assertNotComplex([a, b], name);\n const aVals = cpuBackend.data.get(a.dataId).values;\n const bVals = cpuBackend.data.get(b.dataId).values;\n const decodedAVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals;\n const decodedBVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals;\n const $dtype = dtype || a.dtype;\n const [resultData, resultShape] = simpleImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype);\n return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData);\n };\n }\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const cpuBackend = backend2;\n if (a.dtype === \"complex64\" || b.dtype === \"complex64\") {\n const $aComplex = cast3({ inputs: { x: a }, backend: cpuBackend, attrs: { dtype: \"complex64\" } });\n const $aComplexVals = cpuBackend.data.get($aComplex.dataId);\n const aReal = $aComplexVals.complexTensorInfos.real;\n const aImag = $aComplexVals.complexTensorInfos.imag;\n const aRealVals = cpuBackend.data.get(aReal.dataId).values;\n const aImagVals = cpuBackend.data.get(aImag.dataId).values;\n const $bComplex = cast3({ inputs: { x: b }, backend: cpuBackend, attrs: { dtype: \"complex64\" } });\n const $bComplexVals = cpuBackend.data.get($bComplex.dataId);\n const bReal = $bComplexVals.complexTensorInfos.real;\n const bImag = $bComplexVals.complexTensorInfos.imag;\n const bRealVals = cpuBackend.data.get(bReal.dataId).values;\n const bImagVals = cpuBackend.data.get(bImag.dataId).values;\n const [resultRealData, resultImagData, resultShape] = complexImpl(a.shape, b.shape, aRealVals, aImagVals, bRealVals, bImagVals);\n const resultReal = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultRealData);\n const resultImag = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultImagData);\n const result = complex2({ inputs: { real: resultReal, imag: resultImag }, backend: cpuBackend });\n cpuBackend.disposeIntermediateTensorInfo($aComplex);\n cpuBackend.disposeIntermediateTensorInfo($bComplex);\n cpuBackend.disposeIntermediateTensorInfo(resultReal);\n cpuBackend.disposeIntermediateTensorInfo(resultImag);\n return result;\n } else {\n const aVals = cpuBackend.data.get(a.dataId).values;\n const bVals = cpuBackend.data.get(b.dataId).values;\n const $dtype = dtype || a.dtype;\n const [resultData, resultShape] = simpleImpl(a.shape, b.shape, aVals, bVals, $dtype);\n return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData);\n }\n };\n}\nfunction createComplexBinaryKernelImpl(op2) {\n return (aShape, bShape, aRealVals, aImagVals, bRealVals, bImagVals) => {\n const resultShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n const resultSize = util_exports.sizeFromShape(resultShape);\n const resultRank = resultShape.length;\n const resultStrides = util_exports.computeStrides(resultShape);\n const resultRealVals = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n const resultImagVals = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, resultShape);\n const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, resultShape);\n const aVals = backend_util_exports.mergeRealAndImagArrays(aRealVals, aImagVals);\n const bVals = backend_util_exports.mergeRealAndImagArrays(bRealVals, bImagVals);\n const aRank = aShape.length;\n const aStrides = util_exports.computeStrides(aShape);\n const bRank = bShape.length;\n const bStrides = util_exports.computeStrides(bShape);\n if (aBroadcastDims.length + bBroadcastDims.length === 0) {\n for (let i2 = 0; i2 < resultRealVals.length; i2++) {\n const aIdx = i2 % aVals.length;\n const bIdx = i2 % bVals.length;\n const result = op2(aVals[aIdx * 2], aVals[aIdx * 2 + 1], bVals[bIdx * 2], bVals[bIdx * 2 + 1]);\n resultRealVals[i2] = result.real;\n resultImagVals[i2] = result.imag;\n }\n } else {\n for (let i2 = 0; i2 < resultRealVals.length; i2++) {\n const loc = util_exports.indexToLoc(i2, resultRank, resultStrides);\n const aLoc = loc.slice(-aRank);\n aBroadcastDims.forEach((d) => aLoc[d] = 0);\n const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides);\n const bLoc = loc.slice(-bRank);\n bBroadcastDims.forEach((d) => bLoc[d] = 0);\n const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides);\n const opResult = op2(aVals[aIndex * 2], aVals[aIndex * 2 + 1], bVals[bIndex * 2], bVals[bIndex * 2 + 1]);\n resultRealVals[i2] = opResult.real;\n resultImagVals[i2] = opResult.imag;\n }\n }\n return [resultRealVals, resultImagVals, resultShape];\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Add.js\nvar addImpl = createSimpleBinaryKernelImpl((a, b) => a + b);\nvar addComplexImpl = createComplexBinaryKernelImpl((aReal, aImag, bReal, bImag) => {\n return { real: aReal + bReal, imag: aImag + bImag };\n});\nvar add4 = binaryKernelFunc(Add, addImpl, addComplexImpl);\nvar addConfig = {\n kernelName: Add,\n backendName: \"cpu\",\n kernelFunc: add4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Bincount_impl.js\nfunction bincountImpl(xVals, weightsVals, weightsDtype, weightsShape, size) {\n const weightsSize = util_exports.sizeFromShape(weightsShape);\n const outVals = util_exports.makeZerosTypedArray(size, weightsDtype);\n for (let i2 = 0; i2 < xVals.length; i2++) {\n const value = xVals[i2];\n if (value < 0) {\n throw new Error(\"Input x must be non-negative!\");\n }\n if (value >= size) {\n continue;\n }\n if (weightsSize > 0) {\n outVals[value] += weightsVals[i2];\n } else {\n outVals[value] += 1;\n }\n }\n return outVals;\n}\nfunction bincountReduceImpl(xBuf, weightsBuf, size, binaryOutput = false) {\n const numRows = xBuf.shape[0];\n const numCols = xBuf.shape[1];\n const outBuf = buffer([numRows, size], weightsBuf.dtype);\n for (let i2 = 0; i2 < numRows; i2++) {\n for (let j = 0; j < numCols; j++) {\n const value = xBuf.get(i2, j);\n if (value < 0) {\n throw new Error(\"Input x must be non-negative!\");\n }\n if (value >= size) {\n continue;\n }\n if (binaryOutput) {\n outBuf.set(1, i2, value);\n } else {\n if (weightsBuf.size > 0) {\n outBuf.set(outBuf.get(i2, value) + weightsBuf.get(i2, j), i2, value);\n } else {\n outBuf.set(outBuf.get(i2, value) + 1, i2, value);\n }\n }\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/unary_impl.js\nfunction createSimpleUnaryImpl(op2) {\n return (values, dtype, attrs) => {\n const newValues = util_exports.getTypedArrayFromDType(dtype, values.length);\n for (let i2 = 0; i2 < values.length; ++i2) {\n newValues[i2] = op2(values[i2], attrs);\n }\n return newValues;\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/unary_utils.js\nfunction unaryKernelFunc(name, op2, dtype) {\n return ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n assertNotComplex(x, name);\n if (x.dtype === \"string\" || dtype === \"string\") {\n throw new Error(\"unaryKernelFunc does not support string input/output\");\n }\n const cpuBackend = backend2;\n const values = cpuBackend.data.get(x.dataId).values;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $dtype = dtype || x.dtype;\n const newValues = util_exports.getArrayFromDType($dtype, xSize);\n for (let i2 = 0; i2 < xSize; ++i2) {\n newValues[i2] = op2(values[i2], attrs);\n }\n return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues);\n };\n}\nfunction unaryKernelFuncFromImpl(name, unaryImpl, dtype) {\n return ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n assertNotComplex(x, name);\n if (x.dtype === \"string\" || dtype === \"string\") {\n throw new Error(\"unaryKernelFunc does not support string input/output\");\n }\n const cpuBackend = backend2;\n const values = cpuBackend.data.get(x.dataId).values;\n const $dtype = dtype || x.dtype;\n const newValues = unaryImpl(values, $dtype, attrs);\n return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues);\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Ceil.js\nvar ceilImpl = createSimpleUnaryImpl((xi) => Math.ceil(xi));\nvar ceil2 = unaryKernelFuncFromImpl(Ceil, ceilImpl);\nvar ceilConfig = {\n kernelName: Ceil,\n backendName: \"cpu\",\n kernelFunc: ceil2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Concat_impl.js\nfunction concatImpl(inputs, outShape, dtype, simplyConcat) {\n const outVals = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(outShape));\n if (simplyConcat && dtype !== \"string\") {\n let offset = 0;\n inputs.forEach((input2) => {\n const size = util_exports.sizeFromShape(input2.shape);\n outVals.set(input2.vals, offset);\n offset += size;\n });\n } else {\n let colOffset = 0;\n inputs.forEach((input2) => {\n const decodedData = dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(input2.vals) : input2.vals;\n let tIdx = 0;\n for (let row = 0; row < input2.shape[0]; ++row) {\n const resIdx = row * outShape[1] + colOffset;\n for (let col = 0; col < input2.shape[1]; ++col) {\n outVals[resIdx + col] = decodedData[tIdx++];\n }\n }\n colOffset += input2.shape[1];\n });\n }\n return outVals;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Equal.js\nvar equalImpl = createSimpleBinaryKernelImpl((a, b) => a === b ? 1 : 0);\nvar equal2 = binaryKernelFunc(Equal, equalImpl, null, \"bool\");\nvar equalConfig = {\n kernelName: Equal,\n backendName: \"cpu\",\n kernelFunc: equal2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Exp.js\nvar expImpl = createSimpleUnaryImpl((xi) => Math.exp(xi));\nvar exp2 = unaryKernelFuncFromImpl(Exp, expImpl, \"float32\");\nvar expConfig = {\n kernelName: Exp,\n backendName: \"cpu\",\n kernelFunc: exp2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Expm1.js\nvar expm1Impl = createSimpleUnaryImpl((xi) => Math.expm1(xi));\nvar expm12 = unaryKernelFuncFromImpl(Expm1, expm1Impl);\nvar expm1Config = {\n kernelName: Expm1,\n backendName: \"cpu\",\n kernelFunc: expm12\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Floor.js\nvar floorImpl = createSimpleUnaryImpl((xi) => Math.floor(xi));\nvar floor2 = unaryKernelFuncFromImpl(Floor, floorImpl);\nvar floorConfig = {\n kernelName: Floor,\n backendName: \"cpu\",\n kernelFunc: floor2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherNd_Impl.js\nfunction gatherNdImpl(indicesData, paramsBuf, dtype, numSlices, sliceRank, sliceSize, strides, paramsShape, paramsSize) {\n const outBuf = buffer([numSlices, sliceSize], dtype);\n for (let i2 = 0; i2 < numSlices; i2++) {\n const index = [];\n let flattenIndex = 0;\n for (let j = 0; j < sliceRank; j++) {\n const dim = indicesData[i2 * sliceRank + j];\n flattenIndex += dim * strides[j];\n index.push(dim);\n }\n if (flattenIndex < 0 || flattenIndex >= paramsSize / sliceSize) {\n throw new Error(`Invalid indices: ${index} does not index into ${paramsShape}`);\n }\n for (let k = 0; k < sliceSize; k++) {\n outBuf.values[i2 * sliceSize + k] = paramsBuf.get(...paramsBuf.indexToLoc(flattenIndex * sliceSize + k));\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherV2_impl.js\nfunction gatherV2Impl(xBuf, indicesBuf, flattenOutputShape) {\n const outBuf = buffer(flattenOutputShape, xBuf.dtype);\n for (let i2 = 0; i2 < outBuf.size; ++i2) {\n const newLoc = outBuf.indexToLoc(i2);\n const originalLoc = newLoc.slice();\n const batchIdx = originalLoc[0];\n const indicesIdx = originalLoc[2];\n const indicesIndex = indicesBuf.locToIndex([batchIdx, indicesIdx]);\n originalLoc[2] = indicesBuf.values[indicesIndex];\n const originalIndex = xBuf.locToIndex(originalLoc);\n if (0 <= originalIndex && originalIndex < xBuf.values.length) {\n outBuf.values[i2] = xBuf.values[originalIndex];\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Greater.js\nvar greaterImpl = createSimpleBinaryKernelImpl((a, b) => a > b ? 1 : 0);\nvar greater3 = binaryKernelFunc(Greater, greaterImpl, null, \"bool\");\nvar greaterConfig = {\n kernelName: Greater,\n backendName: \"cpu\",\n kernelFunc: greater3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GreaterEqual.js\nvar greaterEqualImpl = createSimpleBinaryKernelImpl((a, b) => a >= b ? 1 : 0);\nvar greaterEqual2 = binaryKernelFunc(GreaterEqual, greaterEqualImpl, null, \"bool\");\nvar greaterEqualConfig = {\n kernelName: GreaterEqual,\n backendName: \"cpu\",\n kernelFunc: greaterEqual2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Less.js\nvar lessImpl = createSimpleBinaryKernelImpl((a, b) => a < b ? 1 : 0);\nvar less3 = binaryKernelFunc(Less, lessImpl, null, \"bool\");\nvar lessConfig = {\n kernelName: Less,\n backendName: \"cpu\",\n kernelFunc: less3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LessEqual.js\nvar lessEqualImpl = createSimpleBinaryKernelImpl((a, b) => a <= b ? 1 : 0);\nvar lessEqual2 = binaryKernelFunc(LessEqual, lessEqualImpl, null, \"bool\");\nvar lessEqualConfig = {\n kernelName: LessEqual,\n backendName: \"cpu\",\n kernelFunc: lessEqual2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LinSpace_impl.js\nfunction linSpaceImpl(start, stop, num) {\n const step5 = (stop - start) / (num - 1);\n const values = util_exports.makeZerosTypedArray(num, \"float32\");\n values[0] = start;\n for (let i2 = 1; i2 < values.length; i2++) {\n values[i2] = values[i2 - 1] + step5;\n }\n return values;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Log.js\nvar logImpl = createSimpleUnaryImpl((xi) => Math.log(xi));\nvar log3 = unaryKernelFuncFromImpl(Log, logImpl);\nvar logConfig = {\n kernelName: Log,\n backendName: \"cpu\",\n kernelFunc: log3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Max_impl.js\nfunction maxImpl(aVals, reduceSize, outShape, dtype) {\n const vals = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(outShape));\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let max7 = aVals[offset];\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n if (Number.isNaN(value) || value > max7) {\n max7 = value;\n }\n }\n vals[i2] = max7;\n }\n return vals;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Maximum.js\nvar maximumImpl = createSimpleBinaryKernelImpl((aValue, bValue) => Math.max(aValue, bValue));\nvar maximum3 = binaryKernelFunc(Maximum, maximumImpl);\nvar maximumConfig = {\n kernelName: Maximum,\n backendName: \"cpu\",\n kernelFunc: maximum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Minimum.js\nvar minimumImpl = createSimpleBinaryKernelImpl((aValue, bValue) => Math.min(aValue, bValue));\nvar minimum3 = binaryKernelFunc(Minimum, minimumImpl);\nvar minimumConfig = {\n kernelName: Minimum,\n backendName: \"cpu\",\n kernelFunc: minimum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Multiply.js\nvar multiplyImpl = createSimpleBinaryKernelImpl((aValue, bValue) => aValue * bValue);\nvar multiplyComplexImpl = createComplexBinaryKernelImpl((aReal, aImag, bReal, bImag) => {\n return {\n real: aReal * bReal - aImag * bImag,\n imag: aReal * bImag + aImag * bReal\n };\n});\nvar multiply2 = binaryKernelFunc(Multiply, multiplyImpl, multiplyComplexImpl);\nvar multiplyConfig = {\n kernelName: Multiply,\n backendName: \"cpu\",\n kernelFunc: multiply2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Neg.js\nfunction negImpl(xVals, xShape, xDtype) {\n const minusOne = util_exports.createScalarValue(-1, xDtype);\n return multiplyImpl([], xShape, minusOne, xVals, xDtype);\n}\nfunction neg2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n assertNotComplex(x, \"neg\");\n const xVals = backend2.data.get(x.dataId).values;\n const [res, newShape] = negImpl(xVals, x.shape, x.dtype);\n return backend2.makeTensorInfo(newShape, x.dtype, res);\n}\nvar negConfig = {\n kernelName: Neg,\n backendName: \"cpu\",\n kernelFunc: neg2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NotEqual.js\nvar notEqualImpl = createSimpleBinaryKernelImpl((a, b) => a !== b ? 1 : 0);\nvar notEqual2 = binaryKernelFunc(NotEqual, notEqualImpl, null, \"bool\");\nvar notEqualConfig = {\n kernelName: NotEqual,\n backendName: \"cpu\",\n kernelFunc: notEqual2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Transpose_impl.js\nfunction transposeImpl(xVals, xShape, dtype, perm, newShape) {\n const xRank = xShape.length;\n const xSize = util_exports.sizeFromShape(xShape);\n const xStrides = util_exports.computeStrides(xShape);\n const newStrides = util_exports.computeStrides(newShape);\n const result = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(newShape));\n for (let i2 = 0; i2 < xSize; ++i2) {\n const loc = util_exports.indexToLoc(i2, xRank, xStrides);\n const newLoc = new Array(loc.length);\n for (let i3 = 0; i3 < newLoc.length; i3++) {\n newLoc[i3] = loc[perm[i3]];\n }\n const newIndex = util_exports.locToIndex(newLoc, xRank, newStrides);\n result[newIndex] = xVals[i2];\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Transpose.js\nfunction transpose2(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x } = inputs;\n const { perm } = attrs;\n assertNotComplex(x, \"transpose\");\n const xRank = x.shape.length;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[perm[i2]];\n }\n const values = backend2.data.get(x.dataId).values;\n const result = transposeImpl(values, x.shape, x.dtype, perm, newShape);\n const dataId = backend2.write(result, newShape, x.dtype);\n return { dataId, shape: newShape, dtype: x.dtype };\n}\nvar transposeConfig = {\n kernelName: Transpose,\n backendName: \"cpu\",\n kernelFunc: transpose2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Prod.js\nfunction prodImpl(xShape, xDtype, xVals, reductionAxes) {\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(xShape, reductionAxes);\n const outDtype = upcastType(xDtype, \"int32\");\n const outVals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), outDtype);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n for (let i2 = 0; i2 < outVals.length; ++i2) {\n const offset = i2 * reduceSize;\n let prod6 = 1;\n for (let j = 0; j < reduceSize; ++j) {\n prod6 *= xVals[offset + j];\n }\n outVals[i2] = prod6;\n }\n return { outVals, outShape, outDtype };\n}\nfunction prod2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"prod\");\n const xRank = x.shape.length;\n const axes = util_exports.parseAxisParam(axis, x.shape);\n const permutation = backend_util_exports.getAxesPermutation(axes, xRank);\n let reductionAxes = axes;\n let permutedX = x;\n const intermediateTensorInfos = [];\n if (permutation != null) {\n permutedX = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n intermediateTensorInfos.push(permutedX);\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, xRank);\n }\n const xVals = backend2.data.get(permutedX.dataId).values;\n const { outVals, outShape, outDtype } = prodImpl(permutedX.shape, permutedX.dtype, xVals, reductionAxes);\n let resultShape = outShape;\n if (keepDims) {\n resultShape = backend_util_exports.expandShapeToKeepDim(outShape, axes);\n }\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return backend2.makeTensorInfo(resultShape, outDtype, outVals);\n}\nvar prodConfig = {\n kernelName: Prod,\n backendName: \"cpu\",\n kernelFunc: prod2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/RaggedTensorToTensor_impl.js\nvar RowPartitionType2 = backend_util_exports.RowPartitionType;\nvar RaggedTensorToTensorOp = class {\n constructor(shape, shapeShape, values, valuesShape, valuesDType, defaultValue, defaultValueShape, rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypeStrings) {\n this.shape = shape;\n this.shapeShape = shapeShape;\n this.values = values;\n this.valuesShape = valuesShape;\n this.valuesDType = valuesDType;\n this.defaultValue = defaultValue;\n this.defaultValueShape = defaultValueShape;\n this.rowPartitionValues = rowPartitionValues;\n this.rowPartitionValuesShapes = rowPartitionValuesShapes;\n this.rowPartitionTypes = backend_util_exports.getRowPartitionTypesHelper(rowPartitionTypeStrings);\n this.raggedRank = backend_util_exports.getRaggedRank(this.rowPartitionTypes);\n }\n getRowPartitionTypeByDimension(dimension) {\n if (this.rowPartitionTypes[0] === RowPartitionType2.FIRST_DIM_SIZE) {\n return this.rowPartitionTypes[dimension + 1];\n } else {\n return this.rowPartitionTypes[dimension];\n }\n }\n getRowPartitionTensor(dimension) {\n if (this.rowPartitionTypes[0] === RowPartitionType2.FIRST_DIM_SIZE) {\n return this.rowPartitionValues[dimension + 1];\n } else {\n return this.rowPartitionValues[dimension];\n }\n }\n getMaxWidth(dimension) {\n const rowPartitionTensor = this.getRowPartitionTensor(dimension - 1);\n switch (this.getRowPartitionTypeByDimension(dimension - 1)) {\n case RowPartitionType2.VALUE_ROWIDS:\n return RaggedTensorToTensorOp.getMaxWidthValueRowID(rowPartitionTensor);\n case RowPartitionType2.ROW_SPLITS:\n return RaggedTensorToTensorOp.getMaxWidthRowSplit(rowPartitionTensor);\n default:\n throw new Error(`Cannot handle partition type ${RowPartitionType2[this.getRowPartitionTypeByDimension(dimension - 1)]}`);\n }\n }\n static getMaxWidthRowSplit(rowSplit) {\n const tensorLength = rowSplit.length;\n if (tensorLength === 0 || tensorLength === 1) {\n return 0;\n }\n let maxWidth = 0;\n for (let i2 = 0; i2 < tensorLength - 1; ++i2) {\n const currentWidth = rowSplit[i2 + 1] - rowSplit[i2];\n if (currentWidth > maxWidth) {\n maxWidth = currentWidth;\n }\n }\n return maxWidth;\n }\n static getMaxWidthValueRowID(valueRowIds) {\n const indexLength = valueRowIds.length;\n if (indexLength === 0) {\n return 0;\n }\n let firstEqualIndex = 0;\n let firstEqualIndexValue = valueRowIds[0];\n let maxWidth = 0;\n for (let i2 = 1; i2 < indexLength; ++i2) {\n const value = valueRowIds[i2];\n if (value !== firstEqualIndexValue) {\n firstEqualIndexValue = value;\n maxWidth = Math.max(i2 - firstEqualIndex, maxWidth);\n firstEqualIndex = i2;\n }\n }\n return Math.max(indexLength - firstEqualIndex, maxWidth);\n }\n tensorShapeFromTensor(t2, tShape, isPartial = true) {\n if (tShape.length === 0) {\n if (t2[0] === -1) {\n return [];\n }\n throw new Error(`The only valid scalar shape tensor is the fully unknown shape specified as -1.`);\n }\n return makeShape(t2, isPartial);\n }\n calculateOutputSize(firstDim) {\n const valueShape = this.valuesShape;\n const defaultValueShape = this.defaultValueShape;\n backend_util_exports.validateDefaultValueShape(defaultValueShape, valueShape);\n const shape = this.tensorShapeFromTensor(this.shape, this.shapeShape);\n const outputShape = backend_util_exports.combineRaggedTensorToTensorShapes(this.raggedRank, shape, valueShape);\n const result = outputShape;\n if (result[0] < 0) {\n result[0] = firstDim;\n }\n for (let i2 = 1; i2 <= this.raggedRank; ++i2) {\n if (result[i2] < 0) {\n result[i2] = this.getMaxWidth(i2);\n }\n }\n return result;\n }\n calculateFirstParentOutputIndex(firstDimension, outputIndexMultiplier, firstDimensionOutput) {\n const minDimension = Math.min(firstDimension, firstDimensionOutput);\n const result = [];\n let currentOutputIndex = 0;\n for (let i2 = 0; i2 < minDimension; ++i2, currentOutputIndex += outputIndexMultiplier) {\n result.push(currentOutputIndex);\n }\n for (let i2 = minDimension; i2 < firstDimension; ++i2) {\n result.push(-1);\n }\n util_exports.assert(result.length === firstDimension, () => \"Final length of result must be equal to firstDimension.\");\n return result;\n }\n calculateOutputIndexRowSplit(rowSplit, parentOutputIndex, outputIndexMultiplier, outputSize) {\n const rowSplitSize = rowSplit.length;\n const result = [];\n for (let i2 = 0; i2 < rowSplitSize - 1; ++i2) {\n const rowLength = rowSplit[i2 + 1] - rowSplit[i2];\n let realLength = Math.min(outputSize, rowLength);\n let parentOutputIndexCurrent = parentOutputIndex[i2];\n if (parentOutputIndexCurrent === -1) {\n realLength = 0;\n }\n for (let j = 0; j < realLength; ++j) {\n result.push(parentOutputIndexCurrent);\n parentOutputIndexCurrent += outputIndexMultiplier;\n }\n for (let j = 0; j < rowLength - realLength; ++j) {\n result.push(-1);\n }\n }\n if (rowSplitSize > 0 && result.length !== rowSplit[rowSplitSize - 1]) {\n throw new Error(\"Invalid row split size.\");\n }\n return result;\n }\n calculateOutputIndexValueRowID(valueRowIds, parentOutputIndex, outputIndexMultiplier, outputSize) {\n const indexSize = valueRowIds.length;\n const result = [];\n if (indexSize === 0) {\n return [];\n }\n let currentOutputColumn = 0;\n let currentValueRowId = valueRowIds[0];\n if (currentValueRowId >= parentOutputIndex.length) {\n throw new Error(`Got currentValueRowId=${currentValueRowId}, which is not less than ${parentOutputIndex.length}`);\n }\n let currentOutputIndex = parentOutputIndex[currentValueRowId];\n result.push(currentOutputIndex);\n for (let i2 = 1; i2 < indexSize; ++i2) {\n const nextValueRowId = valueRowIds[i2];\n if (nextValueRowId === currentValueRowId) {\n if (currentOutputIndex >= 0) {\n ++currentOutputColumn;\n if (currentOutputColumn < outputSize) {\n currentOutputIndex += outputIndexMultiplier;\n } else {\n currentOutputIndex = -1;\n }\n }\n } else {\n currentOutputColumn = 0;\n currentValueRowId = nextValueRowId;\n if (nextValueRowId >= parentOutputIndex.length) {\n throw new Error(`Got nextValueRowId=${nextValueRowId} which is not less than ${parentOutputIndex.length}`);\n }\n currentOutputIndex = parentOutputIndex[nextValueRowId];\n }\n result.push(currentOutputIndex);\n }\n if (result.length !== valueRowIds.length) {\n throw new Error(\"Invalid row ids.\");\n }\n return result;\n }\n calculateOutputIndex(dimension, parentOutputIndex, outputIndexMultiplier, outputSize) {\n const rowPartitionTensor = this.getRowPartitionTensor(dimension);\n const partitionType = this.getRowPartitionTypeByDimension(dimension);\n switch (partitionType) {\n case RowPartitionType2.VALUE_ROWIDS:\n return this.calculateOutputIndexValueRowID(rowPartitionTensor, parentOutputIndex, outputIndexMultiplier, outputSize);\n case RowPartitionType2.ROW_SPLITS:\n if (rowPartitionTensor.length - 1 > parentOutputIndex.length) {\n throw new Error(`Row partition size is greater than output size: ${rowPartitionTensor.length - 1} > ${parentOutputIndex.length}`);\n }\n return this.calculateOutputIndexRowSplit(rowPartitionTensor, parentOutputIndex, outputIndexMultiplier, outputSize);\n default:\n throw new Error(`Unsupported partition type: ${RowPartitionType2[partitionType]}`);\n }\n }\n getFirstDimensionSize() {\n const firstPartitionTensor = this.rowPartitionValues[0];\n if (this.rowPartitionTypes.length === 0) {\n throw new Error(\"No row_partition_types given.\");\n }\n const firstPartitionType = this.rowPartitionTypes[0];\n switch (firstPartitionType) {\n case RowPartitionType2.FIRST_DIM_SIZE:\n return firstPartitionTensor[0];\n case RowPartitionType2.VALUE_ROWIDS:\n throw new Error(\"Cannot handle VALUE_ROWIDS in first dimension.\");\n case RowPartitionType2.ROW_SPLITS:\n return this.rowPartitionValuesShapes[0][0] - 1;\n default:\n throw new Error(`Cannot handle type ${RowPartitionType2[firstPartitionType]}`);\n }\n }\n compute() {\n const firstPartitionTensor = this.rowPartitionValues[0];\n if (firstPartitionTensor.length <= 0) {\n throw new Error(\"Invalid first partition input. Tensor requires at least one element.\");\n }\n const firstDimension = this.getFirstDimensionSize();\n const outputSize = this.calculateOutputSize(firstDimension);\n const multiplier = new Array(this.raggedRank + 1);\n multiplier[multiplier.length - 1] = 1;\n for (let i2 = multiplier.length - 2; i2 >= 0; --i2) {\n multiplier[i2] = multiplier[i2 + 1] * outputSize[i2 + 1];\n }\n const outputShape = makeShape(outputSize, false);\n const outputTensor = util_exports.getArrayFromDType(this.valuesDType, util_exports.sizeFromShape(outputShape));\n const fullSize = multiplier[0] * outputSize[0];\n if (fullSize > 0) {\n let outputIndex = this.calculateFirstParentOutputIndex(firstDimension, multiplier[0], outputSize[0]);\n for (let i2 = 1; i2 <= this.raggedRank; ++i2) {\n const newOutputIndex = this.calculateOutputIndex(i2 - 1, outputIndex, multiplier[i2], outputSize[i2]);\n outputIndex = newOutputIndex;\n }\n this.setOutput(this.raggedRank, outputIndex, outputTensor, outputShape);\n }\n return [outputShape, outputTensor];\n }\n setOutput(raggedRank, outputIndex, outputTensor, outputShape) {\n if (outputTensor.length === 0) {\n return;\n }\n const valuesBase = this.values;\n const outputBase = outputTensor;\n let elementShape = outputShape.slice();\n elementShape = elementShape.slice(raggedRank + 1);\n const valueElementSize = util_exports.sizeFromShape(elementShape);\n const outputIndexSize = outputIndex.length;\n let defaultValue = this.defaultValue;\n if (defaultValue.length !== valueElementSize && defaultValue.length !== 1) {\n const srcShape = this.defaultValueShape;\n tidy(() => {\n const defaultValueTensor = reshape(defaultValue, srcShape);\n const bCastDefault = broadcastTo(defaultValueTensor, elementShape);\n defaultValue = bCastDefault.dataSync();\n });\n }\n let srcStart = 0;\n let dstStart = 0;\n let dstEnd = 0;\n for (let srcI = 0; srcI <= outputIndexSize; ++srcI) {\n let dstI = srcI < outputIndexSize ? outputIndex[srcI] : -1;\n if (dstI === dstEnd) {\n ++dstEnd;\n continue;\n }\n if (dstStart < dstEnd) {\n const src = valuesBase.subarray(srcStart * valueElementSize);\n const dst = outputBase.subarray(dstStart * valueElementSize);\n const nVals = (dstEnd - dstStart) * valueElementSize;\n copyArray(dst, src, nVals);\n }\n if (srcI >= outputIndexSize) {\n const outputSize = outputTensor.length;\n dstI = Math.floor(outputSize / valueElementSize);\n }\n if (dstI > dstEnd) {\n if (this.defaultValue.length === 1) {\n outputBase.subarray(dstEnd * valueElementSize, dstI * valueElementSize).fill(this.defaultValue[0]);\n dstEnd = dstI;\n } else {\n while (dstI > dstEnd) {\n const dst = outputBase.slice(dstEnd * valueElementSize);\n copyArray(dst, defaultValue, valueElementSize);\n ++dstEnd;\n }\n }\n }\n if (dstI < 0) {\n srcStart = srcI + 1;\n dstStart = dstEnd;\n } else {\n srcStart = srcI;\n dstStart = dstEnd;\n dstEnd = dstStart + 1;\n }\n }\n }\n};\nfunction copyArray(dst, src, size) {\n for (let i2 = 0; i2 < size; i2++) {\n dst[i2] = src[i2];\n }\n}\nfunction makeShape(shape, isPartial) {\n const out = [];\n for (let dim of shape) {\n if (dim < 0) {\n if (!isPartial) {\n throw new Error(`Dimension ${dim} must be >= 0`);\n }\n if (dim < -1) {\n throw new Error(`Dimension ${dim} must be >= -1`);\n }\n dim = -1;\n }\n out.push(dim);\n }\n return out;\n}\nfunction raggedTensorToTensorImpl(shape, shapesShape, values, valuesShape, valuesDType, defaultValue, defaultValueShape, rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypes) {\n return new RaggedTensorToTensorOp(shape, shapesShape, values, valuesShape, valuesDType, defaultValue, defaultValueShape, rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypes).compute();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Range_impl.js\nfunction rangeImpl(start, stop, step5, dtype) {\n const sameStartStop = start === stop;\n const increasingRangeNegativeStep = start < stop && step5 < 0;\n const decreasingRangePositiveStep = stop < start && step5 > 1;\n if (sameStartStop || increasingRangeNegativeStep || decreasingRangePositiveStep) {\n return util_exports.makeZerosTypedArray(0, dtype);\n }\n const numElements = Math.abs(Math.ceil((stop - start) / step5));\n const values = util_exports.makeZerosTypedArray(numElements, dtype);\n if (stop < start && step5 === 1) {\n step5 = -1;\n }\n values[0] = start;\n for (let i2 = 1; i2 < values.length; i2++) {\n values[i2] = values[i2 - 1] + step5;\n }\n return values;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Rsqrt.js\nvar rsqrtImpl = createSimpleUnaryImpl((xi) => 1 / Math.sqrt(xi));\nvar rsqrt2 = unaryKernelFuncFromImpl(Rsqrt, rsqrtImpl);\nvar rsqrtConfig = {\n kernelName: Rsqrt,\n backendName: \"cpu\",\n kernelFunc: rsqrt2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Scatter_impl.js\nfunction scatterImpl(indices, updates, shape, outputSize, sliceSize, numUpdates, sliceRank, strides, defaultValue, sumDupeIndices) {\n const flattenShape = [outputSize / sliceSize, sliceSize];\n const indicesData = indices.values;\n const updatesData = updates.values;\n if (outputSize === 0) {\n return buffer(shape, updates.dtype);\n }\n const outBuf = buffer(flattenShape, updates.dtype);\n if (typeof defaultValue === \"string\") {\n outBuf.values.fill(defaultValue);\n } else if (typeof defaultValue === \"number\") {\n outBuf.values.fill(defaultValue);\n } else if (typeof defaultValue === \"boolean\") {\n outBuf.values.fill(+defaultValue);\n }\n for (let i2 = 0; i2 < numUpdates; i2++) {\n const index = [];\n let flattenIndex = 0;\n for (let j = 0; j < sliceRank; j++) {\n const dim = indicesData[i2 * sliceRank + j];\n index.push(dim);\n flattenIndex += dim * strides[j];\n }\n if (flattenIndex < 0 || flattenIndex >= outputSize / sliceSize) {\n throw new Error(`Invalid indices: ${index} does not index into ${shape}`);\n }\n for (let k = 0; k < sliceSize; k++) {\n if (sumDupeIndices) {\n outBuf.values[flattenIndex * sliceSize + k] += updatesData[i2 * sliceSize + k];\n } else {\n outBuf.values[flattenIndex * sliceSize + k] = updates.rank === 0 ? updatesData[0] : updatesData[i2 * sliceSize + k];\n }\n }\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sigmoid.js\nvar sigmoidImpl = createSimpleUnaryImpl((xi) => 1 / (1 + Math.exp(-xi)));\nvar sigmoid2 = unaryKernelFunc(Sigmoid, (xi) => 1 / (1 + Math.exp(-xi)));\nvar sigmoidConfig = {\n kernelName: Sigmoid,\n backendName: \"cpu\",\n kernelFunc: sigmoid2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Slice.js\nfunction sliceImpl(vals, begin, size, shape, dtype) {\n const isContinous = slice_util_exports.isSliceContinous(shape, begin, size);\n const length = util_exports.sizeFromShape(size);\n const xStrides = util_exports.computeStrides(shape);\n if (isContinous) {\n const flatOffset = slice_util_exports.computeFlatOffset(begin, xStrides);\n if (dtype === \"string\") {\n return vals.slice(flatOffset, flatOffset + length);\n }\n return vals.subarray(flatOffset, flatOffset + length);\n }\n const decodedData = dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(vals) : vals;\n const inBuf = buffer(shape, dtype, decodedData);\n const outBuf = buffer(size, dtype);\n for (let i2 = 0; i2 < outBuf.size; ++i2) {\n const outLoc = outBuf.indexToLoc(i2);\n const inLoc = outLoc.map((idx, j) => idx + begin[j]);\n outBuf.set(inBuf.get(...inLoc), ...outLoc);\n }\n if (dtype === \"string\") {\n return backend_util_exports.fromStringArrayToUint8(outBuf.values);\n }\n return outBuf.values;\n}\nfunction slice2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, size } = attrs;\n assertNotComplex(x, \"slice\");\n const [$begin, $size] = slice_util_exports.parseSliceParams(x, begin, size);\n slice_util_exports.assertParamsValid(x, $begin, $size);\n const vals = backend2.data.get(x.dataId).values;\n const outVals = sliceImpl(vals, $begin, $size, x.shape, x.dtype);\n return backend2.makeTensorInfo($size, x.dtype, outVals);\n}\nvar sliceConfig = {\n kernelName: Slice,\n backendName: \"cpu\",\n kernelFunc: slice2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseFillEmptyRows_impl.js\nfunction sparseFillEmptyRowsImpl(indices, indicesShape, indicesDType, values, valuesDType, denseShape, defaultValue) {\n const indicesCount = indicesShape[0];\n const denseRows = denseShape[0];\n const emptyRowIndicator = new Array(denseRows);\n const reverseIndexMap = new Array(indicesCount);\n const rank = indicesShape[1];\n if (denseRows === 0) {\n if (indicesCount !== 0) {\n throw new Error(backend_util_exports.getSparseFillEmptyRowsIndicesDenseShapeMismatch(indicesCount));\n }\n const outputIndices = util_exports.getArrayFromDType(indicesDType, 0);\n const outputValues = util_exports.getArrayFromDType(valuesDType, 0);\n return [\n outputIndices,\n [0, rank],\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n }\n let rowsAreOrdered = true;\n let lastIndicesRow = 0;\n const csrOffset = new Array(denseRows).fill(0);\n for (let i2 = 0; i2 < indicesCount; ++i2) {\n const row = indices[i2 * rank];\n if (row < 0) {\n throw new Error(backend_util_exports.getSparseFillEmptyRowsNegativeIndexErrorMessage(i2, row));\n }\n if (row >= denseRows) {\n throw new Error(backend_util_exports.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(i2, row, denseRows));\n }\n ++csrOffset[row];\n rowsAreOrdered = rowsAreOrdered && row >= lastIndicesRow;\n lastIndicesRow = row;\n }\n let allRowsFull = true;\n for (let row = 0; row < denseRows; ++row) {\n const rowEmpty = csrOffset[row] === 0;\n emptyRowIndicator[row] = rowEmpty;\n allRowsFull = allRowsFull && !rowEmpty;\n csrOffset[row] = Math.max(csrOffset[row], 1);\n if (row > 0) {\n csrOffset[row] += csrOffset[row - 1];\n }\n }\n if (allRowsFull && rowsAreOrdered) {\n const outputIndices = indices;\n const outputValues = values;\n for (let i2 = 0; i2 < indicesCount; ++i2) {\n reverseIndexMap[i2] = i2;\n }\n return [\n outputIndices,\n [indicesCount, rank],\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n } else {\n const fullIndicesCount = csrOffset[denseRows - 1];\n const outputIndices = util_exports.getArrayFromDType(indicesDType, fullIndicesCount * rank);\n const outputValues = util_exports.getArrayFromDType(valuesDType, fullIndicesCount);\n const filledCount = new Array(denseRows).fill(0);\n for (let i2 = 0; i2 < indicesCount; ++i2) {\n const row = indices[i2 * rank];\n const offset = filledCount[row];\n const outputI = (row === 0 ? 0 : csrOffset[row - 1]) + offset;\n filledCount[row]++;\n for (let j = 0; j < rank; ++j) {\n outputIndices[outputI * rank + j] = indices[i2 * rank + j];\n }\n outputValues[outputI] = values[i2];\n reverseIndexMap[i2] = outputI;\n }\n for (let row = 0; row < denseRows; ++row) {\n const rowCount = filledCount[row];\n if (rowCount === 0) {\n const startingIndex = row === 0 ? 0 : csrOffset[row - 1];\n outputIndices[startingIndex * rank + 0] = row;\n for (let col = 1; col < rank; ++col) {\n outputIndices[startingIndex * rank + col] = 0;\n }\n outputValues[startingIndex] = defaultValue;\n }\n }\n return [\n outputIndices,\n [fullIndicesCount, rank],\n outputValues,\n emptyRowIndicator,\n reverseIndexMap\n ];\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseReshape_impl.js\nfunction sparseReshapeImpl(inputIndices, inputIndicesShape, inputDType, inputShape, targetShape) {\n const denseSize = util_exports.sizeFromShape(inputShape);\n const nnz = inputIndicesShape[0];\n const outputRank = targetShape.length;\n const outputShape = [];\n let product = 1;\n let unknownIndex = -1;\n for (let d = 0; d < outputRank; ++d) {\n const size = targetShape[d];\n if (size === -1) {\n if (unknownIndex !== -1) {\n throw new Error(backend_util_exports.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(unknownIndex, d));\n }\n unknownIndex = d;\n outputShape.push(1);\n } else {\n if (size < 0) {\n throw new Error(backend_util_exports.getSparseReshapeNegativeOutputDimErrorMessage(d, size));\n }\n product *= size;\n outputShape.push(size);\n }\n }\n if (unknownIndex !== -1) {\n if (product <= 0) {\n throw new Error(backend_util_exports.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());\n }\n const missing = Math.trunc(denseSize / product);\n if (product * missing !== denseSize) {\n throw new Error(backend_util_exports.getSparseReshapeInputOutputMultipleErrorMessage(inputShape, outputShape));\n }\n outputShape[unknownIndex] = missing;\n }\n const outputSize = util_exports.sizeFromShape(outputShape);\n if (outputSize !== denseSize) {\n throw new Error(backend_util_exports.getSparseReshapeInputOutputMismatchErrorMessage(inputShape, outputShape));\n }\n const inputRank = inputShape.length;\n const inputStrides = [];\n if (inputRank > 0) {\n inputStrides[inputRank - 1] = 1;\n for (let d = inputRank - 2; d >= 0; --d) {\n inputStrides[d] = inputStrides[d + 1] * inputShape[d + 1];\n }\n }\n const outputStrides = [];\n if (outputRank > 0) {\n outputStrides[outputRank - 1] = 1;\n for (let d = outputRank - 2; d >= 0; --d) {\n outputStrides[d] = outputStrides[d + 1] * outputShape[d + 1];\n }\n }\n const newIndices = util_exports.getArrayFromDType(inputDType, nnz * outputRank);\n for (let i2 = 0; i2 < nnz; ++i2) {\n let id = 0;\n for (let j = 0; j < inputRank; ++j) {\n id += inputIndices[i2 * inputRank + j] * inputStrides[j];\n }\n for (let j = 0; j < outputRank; ++j) {\n newIndices[i2 * outputRank + j] = Math.trunc(id / outputStrides[j]);\n id %= outputStrides[j];\n }\n }\n return [newIndices, [nnz, outputRank], outputShape];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseSegmentReduction_impl.js\nfunction sparseSegmentReductionImpl(input2, inputShape, inputDType, indices, segmentIds, isMean = false, defaultValue = 0) {\n const numIndices = indices.length;\n const inputFlat = [inputShape[0], input2.length / inputShape[0]];\n const numCol = inputFlat[1];\n const lastSegmentIdPlusOne = numIndices > 0 ? segmentIds[numIndices - 1] + 1 : 0;\n const outputRows = lastSegmentIdPlusOne;\n if (outputRows < 0) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());\n }\n const outputShape = inputShape.slice();\n outputShape[0] = outputRows;\n const outputLength = outputShape.reduce((product, value) => product * value, 1);\n const output = util_exports.getArrayFromDType(inputDType, outputLength);\n if (numIndices === 0) {\n if (outputRows > 0) {\n output.fill(defaultValue);\n }\n return [output, outputShape];\n }\n if (outputRows <= 0) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());\n }\n let start = 0, end = 1;\n let uninitializedIndex = 0;\n let outIndex = segmentIds[start];\n while (true) {\n let nextIndex = 0;\n if (end < numIndices) {\n nextIndex = segmentIds[end];\n if (outIndex === nextIndex) {\n ++end;\n continue;\n }\n if (outIndex >= nextIndex) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage());\n }\n }\n if (outIndex < 0 || outIndex >= outputRows) {\n throw new Error(backend_util_exports.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(outIndex, outputRows));\n }\n if (outIndex > uninitializedIndex) {\n output.fill(defaultValue, uninitializedIndex * numCol, outIndex * numCol);\n }\n for (let i2 = start; i2 < end; ++i2) {\n const index = indices[i2];\n if (index < 0 || index >= inputFlat[0]) {\n throw new Error(backend_util_exports.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(i2, indices[i2], inputFlat[0]));\n }\n for (let j = 0; j < numCol; j++) {\n output[outIndex * numCol + j] += input2[index * numCol + j];\n }\n }\n if (isMean) {\n for (let j = 0; j < numCol; j++) {\n output[outIndex * numCol + j] /= end - start;\n }\n }\n start = end;\n ++end;\n uninitializedIndex = outIndex + 1;\n outIndex = nextIndex;\n if (end > numIndices) {\n break;\n }\n }\n if (uninitializedIndex < outputRows) {\n output.fill(defaultValue, uninitializedIndex * numCol, outputRows * numCol);\n }\n return [output, outputShape];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sqrt.js\nvar sqrtImpl = createSimpleUnaryImpl((xi) => Math.sqrt(xi));\nvar sqrt2 = unaryKernelFunc(Sqrt, (xi) => Math.sqrt(xi));\nvar sqrtConfig = {\n kernelName: Sqrt,\n backendName: \"cpu\",\n kernelFunc: sqrt2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SquaredDifference.js\nvar squaredDifferenceImpl = createSimpleBinaryKernelImpl((a, b) => {\n const diff = a - b;\n return diff * diff;\n});\nvar squaredDifference2 = binaryKernelFunc(SquaredDifference, squaredDifferenceImpl);\nvar squaredDifferenceConfig = {\n kernelName: SquaredDifference,\n backendName: \"cpu\",\n kernelFunc: squaredDifference2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StridedSlice_impl.js\nfunction stridedSliceImpl(outShape, xBuf, strides, begin) {\n const outBuf = buffer(outShape, xBuf.dtype);\n for (let i2 = 0; i2 < outBuf.size; i2++) {\n const loc = outBuf.indexToLoc(i2);\n const newLoc = new Array(loc.length);\n for (let j = 0; j < newLoc.length; j++) {\n newLoc[j] = loc[j] * strides[j] + begin[j];\n }\n outBuf.set(xBuf.get(...newLoc), ...loc);\n }\n return outBuf;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringNGrams_impl.js\nvar StringNGramsOp = class {\n constructor(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) {\n this.separator = util_exports.encodeString(separator);\n this.nGramWidths = nGramWidths;\n this.leftPad = util_exports.encodeString(leftPad);\n this.rightPad = util_exports.encodeString(rightPad2);\n this.padWidth = padWidth;\n this.preserveShort = preserveShortSequences;\n }\n getPadWidth(nGramWidth) {\n return Math.min(this.padWidth < 0 ? nGramWidth - 1 : this.padWidth, nGramWidth - 1);\n }\n getNumNGrams(length, nGramWidth) {\n const padWidth = this.getPadWidth(nGramWidth);\n return Math.max(0, length + 2 * padWidth - nGramWidth + 1);\n }\n createNGrams(data, splitIndex, output, outputStartIndex, numNGrams, nGramWidth) {\n for (let nGramIndex = 0; nGramIndex < numNGrams; ++nGramIndex) {\n const padWidth = this.getPadWidth(nGramWidth);\n const leftPadding = Math.max(0, padWidth - nGramIndex);\n const rightPadding = Math.max(0, padWidth - (numNGrams - (nGramIndex + 1)));\n const numTokens = nGramWidth - (leftPadding + rightPadding);\n const dataStartIndex = splitIndex + (leftPadding > 0 ? 0 : nGramIndex - padWidth);\n let nGramSize = 0;\n nGramSize += leftPadding * this.leftPad.length;\n for (let n2 = 0; n2 < numTokens; ++n2) {\n nGramSize += data[dataStartIndex + n2].length;\n }\n nGramSize += rightPadding * this.rightPad.length;\n const numSeparators = leftPadding + rightPadding + numTokens - 1;\n nGramSize += numSeparators * this.separator.length;\n output[outputStartIndex + nGramIndex] = new Uint8Array(nGramSize);\n const nGram = output[outputStartIndex + nGramIndex];\n let nextNGramIndex = 0;\n const appendToNGram = (str) => str.forEach((value) => nGram[nextNGramIndex++] = value);\n for (let n2 = 0; n2 < leftPadding; ++n2) {\n appendToNGram(this.leftPad);\n appendToNGram(this.separator);\n }\n for (let n2 = 0; n2 < numTokens - 1; ++n2) {\n appendToNGram(data[dataStartIndex + n2]);\n appendToNGram(this.separator);\n }\n if (numTokens > 0) {\n appendToNGram(data[dataStartIndex + numTokens - 1]);\n for (let n2 = 0; n2 < rightPadding; ++n2) {\n appendToNGram(this.separator);\n appendToNGram(this.rightPad);\n }\n } else {\n for (let n2 = 0; n2 < rightPadding - 1; ++n2) {\n appendToNGram(this.rightPad);\n appendToNGram(this.separator);\n }\n appendToNGram(this.rightPad);\n }\n }\n }\n compute(data, splits) {\n const inputDataSize = data.length;\n const splitsSize = splits.length;\n if (splitsSize > 0) {\n let prevSplit = splits[0];\n if (prevSplit !== 0) {\n throw new Error(`First split value must be 0, got ${prevSplit}`);\n }\n for (let i2 = 1; i2 < splitsSize; ++i2) {\n let validSplits = splits[i2] >= prevSplit;\n validSplits = validSplits && splits[i2] <= inputDataSize;\n if (!validSplits) {\n throw new Error(`Invalid split value ${splits[i2]}, must be in [${prevSplit}, ${inputDataSize}]`);\n }\n prevSplit = splits[i2];\n }\n if (prevSplit !== inputDataSize) {\n throw new Error(`Last split value must be data size. Expected ${inputDataSize}, got ${prevSplit}`);\n }\n }\n const numBatchItems = splitsSize - 1;\n const nGramsSplits = util_exports.getArrayFromDType(\"int32\", splitsSize);\n if (inputDataSize === 0 || splitsSize === 0) {\n const empty = new Array(inputDataSize);\n for (let i2 = 0; i2 <= numBatchItems; ++i2) {\n nGramsSplits[i2] = 0;\n }\n return [empty, nGramsSplits];\n }\n nGramsSplits[0] = 0;\n for (let i2 = 1; i2 <= numBatchItems; ++i2) {\n const length = splits[i2] - splits[i2 - 1];\n let numNGrams = 0;\n this.nGramWidths.forEach((nGramWidth) => {\n numNGrams += this.getNumNGrams(length, nGramWidth);\n });\n if (this.preserveShort && length > 0 && numNGrams === 0) {\n numNGrams = 1;\n }\n nGramsSplits[i2] = nGramsSplits[i2 - 1] + numNGrams;\n }\n const nGrams = new Array(nGramsSplits[numBatchItems]);\n for (let i2 = 0; i2 < numBatchItems; ++i2) {\n const splitIndex = splits[i2];\n let outputStartIdx = nGramsSplits[i2];\n this.nGramWidths.forEach((nGramWidth) => {\n const length = splits[i2 + 1] - splits[i2];\n const numNGrams = this.getNumNGrams(length, nGramWidth);\n this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth);\n outputStartIdx += numNGrams;\n });\n if (this.preserveShort && outputStartIdx === nGramsSplits[i2]) {\n const dataLength = splits[i2 + 1] - splits[i2];\n if (dataLength === 0) {\n continue;\n }\n const nGramWidth = dataLength + 2 * this.padWidth;\n const numNGrams = 1;\n this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth);\n }\n }\n return [nGrams, nGramsSplits];\n }\n};\nfunction stringNGramsImpl(data, dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) {\n return new StringNGramsOp(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences).compute(data, dataSplits);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringSplit_impl.js\nfunction split3(str, delimiters, skipEmpty, result) {\n if (!str.length) {\n return;\n }\n if (delimiters.length === 0) {\n for (let i2 = 0; i2 < str.length; ++i2) {\n result.push(str.subarray(i2, i2 + 1));\n }\n return;\n }\n if (delimiters.length === 1) {\n const delimiter = delimiters[0];\n let f = str.indexOf(delimiter);\n while (f !== -1) {\n const token = str.subarray(0, f);\n if (!skipEmpty || token.length !== 0) {\n result.push(token);\n }\n str = str.subarray(f + 1);\n f = str.indexOf(delimiter);\n }\n if (!skipEmpty || str.length !== 0) {\n result.push(str);\n }\n return;\n }\n let tokenStart = 0;\n for (let i2 = 0; i2 < str.length + 1; i2++) {\n if (i2 === str.length || delimiters.indexOf(str[i2]) !== -1) {\n const token = str.subarray(tokenStart, i2);\n if (!skipEmpty || token.length !== 0) {\n result.push(token);\n }\n tokenStart = i2 + 1;\n }\n }\n}\nfunction stringSplitImpl(input2, delimiter, skipEmpty) {\n const batchSize = input2.length;\n const tokens = [];\n let outputSize = 0;\n let maxNumEntries = 0;\n const numIndices = new Array(batchSize);\n for (let i2 = 0; i2 < batchSize; ++i2) {\n const prevTokensLength = tokens.length;\n split3(input2[i2], delimiter, skipEmpty, tokens);\n const nEntries = tokens.length - prevTokensLength;\n numIndices[i2] = nEntries;\n outputSize += nEntries;\n maxNumEntries = Math.max(maxNumEntries, nEntries);\n }\n const indices = util_exports.getArrayFromDType(\"int32\", outputSize * 2);\n const values = new Array(outputSize);\n const shape = [batchSize, maxNumEntries];\n let c = 0;\n for (let i2 = 0; i2 < batchSize; ++i2) {\n for (let j = 0; j < numIndices[i2]; ++j) {\n indices[c * 2] = i2;\n indices[c * 2 + 1] = j;\n values[c] = tokens[c];\n ++c;\n }\n }\n return [indices, values, shape];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringToHashBucketFast_impl.js\nfunction stringToHashBucketFastImpl(input2, numBuckets) {\n const output = util_exports.getArrayFromDType(\"int32\", input2.length);\n for (let i2 = 0; i2 < input2.length; ++i2) {\n output[i2] = util_exports.fingerPrint64(input2[i2]).modulo(numBuckets).getLowBitsUnsigned();\n }\n return output;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sub.js\nvar subImpl = createSimpleBinaryKernelImpl((aValue, bValue) => aValue - bValue);\nvar subComplexImpl = createComplexBinaryKernelImpl((aReal, aImag, bReal, bImag) => {\n return { real: aReal - bReal, imag: aImag - bImag };\n});\nvar sub2 = binaryKernelFunc(Sub, subImpl, subComplexImpl);\nvar subConfig = {\n kernelName: Sub,\n backendName: \"cpu\",\n kernelFunc: sub2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tile_impl.js\nfunction tileImpl(xBuf, reps) {\n const newShape = new Array(xBuf.rank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = xBuf.shape[i2] * reps[i2];\n }\n const result = buffer(newShape, xBuf.dtype);\n for (let i2 = 0; i2 < result.values.length; ++i2) {\n const newLoc = result.indexToLoc(i2);\n const originalLoc = new Array(xBuf.rank);\n for (let j = 0; j < originalLoc.length; j++) {\n originalLoc[j] = newLoc[j] % xBuf.shape[j];\n }\n const originalIndex = xBuf.locToIndex(originalLoc);\n result.values[i2] = xBuf.values[originalIndex];\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/TopK_impl.js\nvar comparePair = (a, b) => {\n const valueDiff = b.value - a.value;\n return valueDiff === 0 ? a.index - b.index : valueDiff;\n};\nfunction select(array2, k, left = 0, right = array2.length - 1) {\n while (right > left) {\n if (right - left > 600) {\n const n2 = right - left + 1;\n const i3 = k - left + 1;\n const z = Math.log(n2);\n const s2 = 0.5 * Math.exp(2 * z / 3);\n const sd = 0.5 * Math.sqrt(z * s2 * (n2 - s2) / n2) * Math.sign(i3 - n2 / 2);\n const newLeft = Math.max(left, Math.floor(k - i3 * s2 / n2 + sd));\n const newRight = Math.min(right, Math.floor(k + (n2 - i3) * s2 / n2 + sd));\n select(array2, k, newLeft, newRight);\n }\n const t2 = array2[k];\n let i2 = left;\n let j = right;\n util_exports.swap(array2, left, k);\n if (comparePair(array2[right], t2) > 0) {\n util_exports.swap(array2, left, right);\n }\n while (i2 < j) {\n util_exports.swap(array2, i2, j);\n i2++;\n j--;\n while (comparePair(array2[i2], t2) < 0) {\n i2 = i2 + 1;\n }\n while (comparePair(array2[j], t2) > 0) {\n j = j - 1;\n }\n }\n if (comparePair(array2[left], t2) === 0) {\n util_exports.swap(array2, left, j);\n } else {\n j = j + 1;\n util_exports.swap(array2, j, right);\n }\n if (j <= k) {\n left = j + 1;\n }\n if (k <= j) {\n right = j - 1;\n }\n }\n}\nfunction topKImpl(x, xShape, xDtype, k, sorted) {\n const lastDim = xShape[xShape.length - 1];\n const [batch, size] = [x.length / lastDim, lastDim];\n const allTopKVals = util_exports.getTypedArrayFromDType(xDtype, batch * k);\n const allTopKIndices = util_exports.getTypedArrayFromDType(\"int32\", batch * k);\n for (let b = 0; b < batch; b++) {\n const offset = b * size;\n const vals = x.subarray(offset, offset + size);\n let valAndInd = new Array(vals.length);\n vals.forEach((value, index) => valAndInd[index] = { value, index });\n if (k < valAndInd.length) {\n select(valAndInd, k);\n valAndInd = valAndInd.slice(0, k);\n }\n if (sorted) {\n valAndInd.sort(comparePair);\n }\n const outOffset = b * k;\n const topKVals = allTopKVals.subarray(outOffset, outOffset + k);\n const topKIndices = allTopKIndices.subarray(outOffset, outOffset + k);\n for (let i2 = 0; i2 < k; i2++) {\n topKVals[i2] = valAndInd[i2].value;\n topKIndices[i2] = valAndInd[i2].index;\n }\n }\n const outputShape = xShape.slice();\n outputShape[outputShape.length - 1] = k;\n return [\n buffer(outputShape, xDtype, allTopKVals),\n buffer(outputShape, \"int32\", allTopKIndices)\n ];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Unique_impl.js\nfunction uniqueImpl(values, axis, shape, dtype) {\n const $axis = util_exports.parseAxisParam(axis, shape)[0];\n const newShape = [1, shape[0], 1];\n for (let i2 = 0; i2 < $axis; i2++) {\n newShape[0] *= shape[i2];\n }\n newShape[1] = shape[$axis];\n for (let i2 = $axis + 1; i2 < shape.length; i2++) {\n newShape[2] *= shape[i2];\n }\n const uniqueElements = {};\n const indices = new Int32Array(shape[$axis]);\n const inputBuffer = new TensorBuffer(newShape, dtype, values);\n const uniqueIndices = [];\n const is1DTensor = newShape[0] === 1 && newShape[2] === 1;\n for (let i2 = 0; i2 < shape[$axis]; i2++) {\n let element;\n if (is1DTensor) {\n element = values[i2].toString();\n } else {\n const axisValues = [];\n for (let m = 0; m < newShape[0]; m++) {\n for (let n2 = 0; n2 < newShape[2]; n2++) {\n axisValues.push(inputBuffer.get(m, i2, n2));\n }\n }\n element = axisValues.join(\",\");\n }\n if (uniqueElements[element] !== void 0) {\n indices[i2] = uniqueElements[element];\n } else {\n const uniqueIndex = Object.keys(uniqueElements).length;\n uniqueElements[element] = uniqueIndex;\n indices[i2] = uniqueIndex;\n uniqueIndices.push(i2);\n }\n }\n const outputTmpShape = newShape.slice();\n outputTmpShape[1] = Object.keys(uniqueElements).length;\n const outputBuffer = new TensorBuffer(outputTmpShape, dtype);\n uniqueIndices.forEach((uniqueElementIndex, i2) => {\n for (let m = 0; m < newShape[0]; m++) {\n for (let n2 = 0; n2 < newShape[2]; n2++) {\n outputBuffer.set(inputBuffer.get(m, uniqueElementIndex, n2), m, i2, n2);\n }\n }\n });\n const outputShape = shape.slice();\n outputShape[$axis] = outputTmpShape[1];\n return {\n outputValues: outputBuffer.values,\n outputShape,\n indices\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/base.js\nregisterBackend(\"cpu\", () => new MathBackendCPU(), 1);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Elu.js\nvar elu4 = unaryKernelFunc(Elu, (xi) => xi >= 0 ? xi : Math.exp(xi) - 1);\nvar eluConfig = {\n kernelName: Elu,\n backendName: \"cpu\",\n kernelFunc: elu4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LeakyRelu.js\nfunction leakyRelu2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { alpha } = attrs;\n assertNotComplex([x], \"leakyRelu\");\n const xSize = util_exports.sizeFromShape(x.shape);\n const xVals = backend2.data.get(x.dataId).values;\n const outVals = util_exports.getTypedArrayFromDType(\"float32\", xSize);\n for (let i2 = 0; i2 < xVals.length; i2++) {\n outVals[i2] = xVals[i2] < 0 ? alpha * xVals[i2] : xVals[i2];\n }\n return backend2.makeTensorInfo(x.shape, \"float32\", outVals);\n}\nvar leakyReluConfig = {\n kernelName: LeakyRelu,\n backendName: \"cpu\",\n kernelFunc: leakyRelu2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Prelu.js\nvar preluImpl = createSimpleBinaryKernelImpl((xValue, aValue) => xValue < 0 ? aValue * xValue : xValue);\nfunction prelu3(args) {\n const { inputs, backend: backend2 } = args;\n const { x, alpha } = inputs;\n assertNotComplex([x, alpha], \"prelu\");\n const aVals = backend2.data.get(x.dataId).values;\n const bVals = backend2.data.get(alpha.dataId).values;\n const [resultData, resultShape] = preluImpl(x.shape, alpha.shape, aVals, bVals, \"float32\");\n return backend2.makeTensorInfo(resultShape, \"float32\", resultData);\n}\nvar preluConfig = {\n kernelName: Prelu,\n backendName: \"cpu\",\n kernelFunc: prelu3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Relu.js\nvar relu2 = unaryKernelFunc(Relu, (xi) => Math.max(0, xi));\nvar reluConfig = {\n kernelName: Relu,\n backendName: \"cpu\",\n kernelFunc: relu2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Relu6.js\nvar relu62 = unaryKernelFunc(Relu6, (xi) => Math.min(Math.max(0, xi), 6));\nvar relu6Config = {\n kernelName: Relu6,\n backendName: \"cpu\",\n kernelFunc: relu62\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/fused_utils.js\nfunction applyActivation2(backend2, x, activation2, preluActivationWeights, leakyreluAlpha) {\n if (activation2 === \"linear\") {\n return identity2({ inputs: { x }, backend: backend2 });\n } else if (activation2 === \"relu\") {\n return relu2({ inputs: { x }, backend: backend2 });\n } else if (activation2 === \"elu\") {\n return elu4({ inputs: { x }, backend: backend2 });\n } else if (activation2 === \"relu6\") {\n return relu62({ inputs: { x }, backend: backend2 });\n } else if (activation2 === \"prelu\") {\n return prelu3({ inputs: { x, alpha: preluActivationWeights }, backend: backend2 });\n } else if (activation2 === \"leakyrelu\") {\n return leakyRelu2({ inputs: { x }, backend: backend2, attrs: { alpha: leakyreluAlpha } });\n } else if (activation2 === \"sigmoid\") {\n return sigmoid2({ inputs: { x }, backend: backend2 });\n }\n throw new Error(`Activation ${activation2} has not been implemented for the CPU backend.`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Reshape.js\nfunction reshape3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { shape } = attrs;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $shape = util_exports.inferFromImplicitShape(shape, xSize);\n const $xSize = util_exports.sizeFromShape($shape);\n util_exports.assert(xSize === $xSize, () => `The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`);\n backend2.incRef(x.dataId);\n const xData = backend2.data.get(x.dataId);\n if (xData.complexTensorInfos != null) {\n const real5 = xData.complexTensorInfos.real;\n const imag5 = xData.complexTensorInfos.imag;\n real5.shape = $shape;\n imag5.shape = $shape;\n }\n return { dataId: x.dataId, shape: $shape, dtype: x.dtype };\n}\nvar reshapeConfig = {\n kernelName: Reshape,\n backendName: \"cpu\",\n kernelFunc: reshape3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/BatchMatMul.js\nfunction batchMatMul(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b } = inputs;\n const { transposeA, transposeB } = attrs;\n assertNotComplex([a, b], \"matMul\");\n const aRank = a.shape.length;\n const bRank = b.shape.length;\n const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1];\n const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2];\n const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2];\n const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1];\n const outerDimsA = a.shape.slice(0, -2);\n const outerDimsB = b.shape.slice(0, -2);\n const batchDimA = util_exports.sizeFromShape(outerDimsA);\n const batchDimB = util_exports.sizeFromShape(outerDimsB);\n const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA];\n const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB];\n const a3d = reshape3({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } });\n const b3d = reshape3({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } });\n const sharedDim = transposeA ? a3d.shape[1] : a3d.shape[2];\n const leftDim = transposeA ? a3d.shape[2] : a3d.shape[1];\n const rightDim = transposeB ? b3d.shape[1] : b3d.shape[2];\n const batchDim = Math.max(batchDimA, batchDimB);\n const a3dValues = backend2.data.get(a3d.dataId).values;\n const b3dValues = backend2.data.get(b3d.dataId).values;\n const a3dStrides = util_exports.computeStrides(a3d.shape);\n const b3dStrides = util_exports.computeStrides(b3d.shape);\n const [aBatch, aOuterStep, aInnerStep] = transposeA ? [a3dStrides[0], 1, a3dStrides[1]] : [a3dStrides[0], a3dStrides[1], 1];\n const [bInnerStep, bOuterStep, bBatch] = transposeB ? [1, b3dStrides[1], b3dStrides[0]] : [b3dStrides[1], 1, b3dStrides[0]];\n const size = leftDim * rightDim;\n const result = buffer([batchDim, leftDim, rightDim], a3d.dtype);\n const resVals = result.values;\n const blockSize = backend2.blockSize;\n for (let bi = 0; bi < batchDim; bi++) {\n for (let i0 = 0; i0 < leftDim; i0 += blockSize) {\n for (let j0 = 0; j0 < rightDim; j0 += blockSize) {\n for (let k02 = 0; k02 < sharedDim; k02 += blockSize) {\n const iBlock = Math.min(i0 + blockSize, leftDim);\n const jBlock = Math.min(j0 + blockSize, rightDim);\n const kBlock = Math.min(k02 + blockSize, sharedDim);\n for (let i2 = i0; i2 < iBlock; i2++) {\n for (let j = j0; j < jBlock; j++) {\n let sum7 = 0;\n for (let k = k02; k < kBlock; k++) {\n const batchOffsetA = Math.min(bi, batchDimA - 1) * aBatch;\n const batchOffsetB = Math.min(bi, batchDimB - 1) * bBatch;\n const aVal = a3dValues[batchOffsetA + i2 * aOuterStep + k * aInnerStep];\n const bVal = b3dValues[k * bInnerStep + j * bOuterStep + batchOffsetB];\n sum7 += aVal * bVal;\n }\n resVals[bi * size + (i2 * rightDim + j)] += sum7;\n }\n }\n }\n }\n }\n }\n backend2.disposeIntermediateTensorInfo(a3d);\n backend2.disposeIntermediateTensorInfo(b3d);\n return backend2.makeTensorInfo(outShape, result.dtype, result.values);\n}\nvar batchMatMulConfig = {\n kernelName: BatchMatMul,\n backendName: \"cpu\",\n kernelFunc: batchMatMul\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/_FusedMatMul.js\nfunction _fusedMatMul(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b, bias, preluActivationWeights } = inputs;\n const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs;\n let current;\n let addRes;\n let activationRes;\n const intermediates = [];\n const matMulRes = batchMatMul({ inputs: { a, b }, attrs: { transposeA, transposeB }, backend: backend2 });\n current = matMulRes;\n if (bias) {\n addRes = add4({ inputs: { a: current, b: bias }, backend: backend2 });\n intermediates.push(current);\n current = addRes;\n }\n if (activation2) {\n activationRes = applyActivation2(backend2, current, activation2, preluActivationWeights, leakyreluAlpha);\n intermediates.push(current);\n current = activationRes;\n }\n for (const i2 of intermediates) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return current;\n}\nvar _fusedMatMulConfig = {\n kernelName: _FusedMatMul,\n backendName: \"cpu\",\n kernelFunc: _fusedMatMul\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Acos.js\nvar acos2 = unaryKernelFunc(Acos, (xi) => Math.acos(xi));\nvar acosConfig = {\n kernelName: Acos,\n backendName: \"cpu\",\n kernelFunc: acos2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Acosh.js\nvar acosh2 = unaryKernelFunc(Acosh, (xi) => Math.acosh(xi));\nvar acoshConfig = {\n kernelName: Acosh,\n backendName: \"cpu\",\n kernelFunc: acosh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AddN.js\nfunction addN2(args) {\n const { inputs, backend: backend2 } = args;\n const tensors = inputs;\n assertNotComplex(inputs, \"addN\");\n const vals = tensors.map((t2) => backend2.data.get(t2.dataId).values);\n const outBuf = buffer(tensors[0].shape, tensors[0].dtype);\n const outVals = outBuf.values;\n for (let i2 = 0; i2 < tensors.length; i2++) {\n const currVals = vals[i2];\n for (let j = 0; j < outVals.length; j++) {\n outVals[j] += currVals[j];\n }\n }\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n}\nvar addNConfig = {\n kernelName: AddN,\n backendName: \"cpu\",\n kernelFunc: addN2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/All.js\nfunction all2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"all\");\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"all\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const vals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), $x.dtype);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let all5 = aVals[offset];\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n all5 = all5 && value;\n }\n vals[i2] = all5;\n }\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo($x);\n }\n const result = backend2.makeTensorInfo(outShape, $x.dtype, vals);\n if (keepDims) {\n const expandedShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n const reshapedResult = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: expandedShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return reshapedResult;\n }\n return result;\n}\nvar allConfig = {\n kernelName: All,\n backendName: \"cpu\",\n kernelFunc: all2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Any.js\nfunction any2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"any\");\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"any\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const vals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), $x.dtype);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let anyVal = aVals[offset];\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n anyVal = anyVal || value;\n }\n vals[i2] = anyVal;\n }\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo($x);\n }\n const result = backend2.makeTensorInfo(outShape, $x.dtype, vals);\n if (keepDims) {\n const expandedShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n const reshapedResult = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: expandedShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return reshapedResult;\n }\n return result;\n}\nvar anyConfig = {\n kernelName: Any,\n backendName: \"cpu\",\n kernelFunc: any2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ArgMax.js\nfunction argMax2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n assertNotComplex(x, \"argMax\");\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n axes = [axes[0]];\n backend_util_exports.assertAxesAreInnerMostDims(\"argMax\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const outSize = util_exports.sizeFromShape(outShape);\n const vals = util_exports.makeZerosTypedArray(outSize, \"int32\");\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let max7 = aVals[offset];\n let maxIndex = 0;\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n if (value > max7) {\n max7 = value;\n maxIndex = j;\n }\n }\n vals[i2] = maxIndex;\n }\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return backend2.makeTensorInfo(outShape, \"int32\", vals);\n}\nvar argMaxConfig = {\n kernelName: ArgMax,\n backendName: \"cpu\",\n kernelFunc: argMax2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ArgMin.js\nfunction argMin2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n assertNotComplex(x, \"argMin\");\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n axes = [axes[0]];\n backend_util_exports.assertAxesAreInnerMostDims(\"argMin\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const outSize = util_exports.sizeFromShape(outShape);\n const vals = util_exports.makeZerosTypedArray(outSize, \"int32\");\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let min7 = aVals[offset];\n let minIndex = 0;\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n if (value < min7) {\n min7 = value;\n minIndex = j;\n }\n }\n vals[i2] = minIndex;\n }\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return backend2.makeTensorInfo(outShape, \"int32\", vals);\n}\nvar argMinConfig = {\n kernelName: ArgMin,\n backendName: \"cpu\",\n kernelFunc: argMin2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Asin.js\nvar asin2 = unaryKernelFunc(Asin, (xi) => Math.asin(xi));\nvar asinConfig = {\n kernelName: Asin,\n backendName: \"cpu\",\n kernelFunc: asin2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Asinh.js\nvar asinh2 = unaryKernelFunc(Asinh, (xi) => Math.asinh(xi));\nvar asinhConfig = {\n kernelName: Asinh,\n backendName: \"cpu\",\n kernelFunc: asinh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Atan.js\nvar atan3 = unaryKernelFunc(Atan, (xi) => Math.atan(xi));\nvar atanConfig = {\n kernelName: Atan,\n backendName: \"cpu\",\n kernelFunc: atan3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Atan2.js\nvar atan2Impl = createSimpleBinaryKernelImpl((aValue, bValue) => Math.atan2(aValue, bValue));\nvar atan22 = binaryKernelFunc(Atan2, atan2Impl);\nvar atan2Config = {\n kernelName: Atan2,\n backendName: \"cpu\",\n kernelFunc: atan22\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Atanh.js\nvar atanh2 = unaryKernelFunc(Atanh, (xi) => Math.atanh(xi));\nvar atanhConfig = {\n kernelName: Atanh,\n backendName: \"cpu\",\n kernelFunc: atanh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/pool_utils.js\nfunction pool2(xValues, xShape, dtype, strides, convInfo, poolType) {\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const initialValue = poolType === \"max\" ? Number.NEGATIVE_INFINITY : Number.POSITIVE_INFINITY;\n const output = buffer(convInfo.outShape, dtype);\n const outputVals = output.values;\n const outputBatchStrides = convInfo.outShape[1] * convInfo.outShape[2] * convInfo.outShape[3];\n const outputRowStrides = convInfo.outShape[2] * convInfo.outShape[3];\n const outputColStrides = convInfo.outShape[3];\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const outputBatchOffset = b * outputBatchStrides;\n const inputBatchOffset = b * strides[0];\n for (let d = 0; d < convInfo.inChannels; ++d) {\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const xRCorner = yR * strideHeight - padTop;\n const xRMin = Math.max(0, xRCorner);\n const xRMax = Math.min(convInfo.inHeight, effectiveFilterHeight + xRCorner);\n const outputRowOffset = outputBatchOffset + yR * outputRowStrides;\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const xCCorner = yC * strideWidth - padLeft;\n const xCMin = Math.max(0, xCCorner);\n const xCMax = Math.min(convInfo.inWidth, effectiveFilterWidth + xCCorner);\n let minMaxValue = initialValue;\n let avgValue = 0;\n let count2 = 0;\n for (let xR = xRMin; xR < xRMax; xR += dilationHeight) {\n const xROffset = inputBatchOffset + xR * strides[1];\n for (let xC = xCMin; xC < xCMax; xC += dilationWidth) {\n const xCOffset = xROffset + xC * strides[2];\n const pixel = xValues[xCOffset + d];\n if (poolType === \"max\" && pixel > minMaxValue) {\n minMaxValue = pixel;\n } else if (poolType === \"avg\") {\n avgValue += pixel;\n count2++;\n }\n }\n if (isNaN(minMaxValue)) {\n break;\n }\n }\n const outputOffset = outputRowOffset + yC * outputColStrides + d;\n outputVals[outputOffset] = poolType === \"avg\" ? avgValue / count2 : minMaxValue;\n }\n }\n }\n }\n return output;\n}\nfunction maxPoolPositions(xValues, xShape, dtype, convInfo, flattenPositions = false, includeBatchInIndex = false) {\n const maxPositions = buffer(convInfo.outShape, \"int32\");\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const xBuf = buffer(xShape, dtype, xValues);\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let d = 0; d < convInfo.inChannels; ++d) {\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const xRCorner = yR * strideHeight - padTop;\n let xRMin = xRCorner;\n while (xRMin < 0) {\n xRMin += dilationHeight;\n }\n const xRMax = Math.min(convInfo.inHeight, effectiveFilterHeight + xRCorner);\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const xCCorner = yC * strideWidth - padLeft;\n let xCMin = xCCorner;\n while (xCMin < 0) {\n xCMin += dilationWidth;\n }\n const xCMax = Math.min(convInfo.inWidth, effectiveFilterWidth + xCCorner);\n let maxValue = Number.NEGATIVE_INFINITY;\n let maxPosition = -1;\n for (let xR = xRMin; xR < xRMax; xR += dilationHeight) {\n const wR = xR - xRCorner;\n for (let xC = xCMin; xC < xCMax; xC += dilationWidth) {\n const wC = xC - xCCorner;\n const pixel = xBuf.get(b, xR, xC, d);\n if (pixel > maxValue) {\n maxValue = pixel;\n if (flattenPositions) {\n maxPosition = includeBatchInIndex ? ((b * convInfo.inHeight + xR) * convInfo.inWidth + xC) * convInfo.inChannels + d : (xR * convInfo.inWidth + xC) * convInfo.inChannels + d;\n } else {\n maxPosition = wR * effectiveFilterWidth + wC;\n }\n }\n }\n }\n maxPositions.set(maxPosition, b, yR, yC, d);\n }\n }\n }\n }\n return maxPositions;\n}\nfunction pool3d2(xValues, xShape, dtype, strides, convInfo, poolType) {\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const initialValue = poolType === \"max\" ? Number.NEGATIVE_INFINITY : Number.POSITIVE_INFINITY;\n const output = buffer(convInfo.outShape, dtype);\n const outputVals = output.values;\n const outputBatchStrides = convInfo.outShape[1] * convInfo.outShape[2] * convInfo.outShape[3] * convInfo.outShape[4];\n const outputDepthStrides = convInfo.outShape[2] * convInfo.outShape[3] * convInfo.outShape[4];\n const outputRowStrides = convInfo.outShape[3] * convInfo.outShape[4];\n const outputColStrides = convInfo.outShape[4];\n for (let batch = 0; batch < convInfo.batchSize; ++batch) {\n const outputBatchOffset = batch * outputBatchStrides;\n const inputBatchOffset = batch * strides[0];\n for (let channel = 0; channel < convInfo.inChannels; ++channel) {\n for (let yDepth = 0; yDepth < convInfo.outDepth; ++yDepth) {\n const xDepthCorner = yDepth * strideDepth - padFront;\n let xDepthMin = xDepthCorner;\n while (xDepthMin < 0) {\n xDepthMin += dilationDepth;\n }\n const xDepthMax = Math.min(convInfo.inDepth, effectiveFilterDepth + xDepthCorner);\n const outputDepthOffset = outputBatchOffset + yDepth * outputDepthStrides;\n for (let yRow = 0; yRow < convInfo.outHeight; ++yRow) {\n const xRowCorner = yRow * strideHeight - padTop;\n let xRowMin = xRowCorner;\n while (xRowMin < 0) {\n xRowMin += dilationHeight;\n }\n const xRowMax = Math.min(convInfo.inHeight, effectiveFilterHeight + xRowCorner);\n const outputRowOffset = outputDepthOffset + yRow * outputRowStrides;\n for (let yCol = 0; yCol < convInfo.outWidth; ++yCol) {\n const xColCorner = yCol * strideWidth - padLeft;\n let xColMin = xColCorner;\n while (xColMin < 0) {\n xColMin += dilationWidth;\n }\n const xColMax = Math.min(convInfo.inWidth, effectiveFilterWidth + xColCorner);\n const outputColOffset = outputRowOffset + yCol * outputColStrides;\n let minMaxValue = initialValue;\n let avgValue = 0;\n let count2 = 0;\n for (let xDepth = xDepthMin; xDepth < xDepthMax; xDepth += dilationDepth) {\n const xDepthOffset = inputBatchOffset + xDepth * strides[1];\n for (let xRow = xRowMin; xRow < xRowMax; xRow += dilationHeight) {\n const xRowOffset = xDepthOffset + xRow * strides[2];\n for (let xCol = xColMin; xCol < xColMax; xCol += dilationWidth) {\n const xColOffset = xRowOffset + xCol * strides[3];\n const pixel = xValues[xColOffset + channel];\n if (poolType === \"max\" && pixel > minMaxValue) {\n minMaxValue = pixel;\n } else if (poolType === \"avg\") {\n avgValue += pixel;\n count2++;\n }\n if (isNaN(minMaxValue)) {\n break;\n }\n }\n if (isNaN(minMaxValue)) {\n break;\n }\n }\n if (isNaN(minMaxValue)) {\n break;\n }\n }\n const outputOffset = outputColOffset + channel;\n outputVals[outputOffset] = poolType === \"avg\" ? avgValue / count2 : minMaxValue;\n }\n }\n }\n }\n }\n return output;\n}\nfunction maxPool3dPositions(xBuf, convInfo) {\n const maxPositions = buffer(convInfo.outShape, \"int32\");\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n for (let batch = 0; batch < convInfo.batchSize; ++batch) {\n for (let channel = 0; channel < convInfo.inChannels; ++channel) {\n for (let yDepth = 0; yDepth < convInfo.outDepth; ++yDepth) {\n const xDepthCorner = yDepth * strideDepth - padFront;\n let xDepthMin = xDepthCorner;\n while (xDepthMin < 0) {\n xDepthMin += dilationDepth;\n }\n const xDepthMax = Math.min(convInfo.inDepth, effectiveFilterDepth + xDepthCorner);\n for (let yRow = 0; yRow < convInfo.outHeight; ++yRow) {\n const xRowCorner = yRow * strideHeight - padTop;\n let xRowMin = xRowCorner;\n while (xRowMin < 0) {\n xRowMin += dilationHeight;\n }\n const xRowMax = Math.min(convInfo.inHeight, effectiveFilterHeight + xRowCorner);\n for (let yCol = 0; yCol < convInfo.outWidth; ++yCol) {\n const xColCorner = yCol * strideWidth - padLeft;\n let xColMin = xColCorner;\n while (xColMin < 0) {\n xColMin += dilationWidth;\n }\n const xColMax = Math.min(convInfo.inWidth, effectiveFilterWidth + xColCorner);\n let maxValue = Number.NEGATIVE_INFINITY;\n let maxPosition = -1;\n for (let xDepth = xDepthMin; xDepth < xDepthMax; xDepth += dilationDepth) {\n const wDepth = xDepth - xDepthCorner;\n for (let xRow = xRowMin; xRow < xRowMax; xRow += dilationHeight) {\n const wRow = xRow - xRowCorner;\n for (let xCol = xColMin; xCol < xColMax; xCol += dilationWidth) {\n const wCol = xCol - xColCorner;\n const pixel = xBuf.get(batch, xDepth, xRow, xCol, channel);\n if (pixel >= maxValue) {\n maxValue = pixel;\n maxPosition = wDepth * effectiveFilterHeight * effectiveFilterWidth + wRow * effectiveFilterHeight + wCol;\n }\n }\n }\n }\n maxPositions.set(maxPosition, batch, yDepth, yRow, yCol, channel);\n }\n }\n }\n }\n }\n return maxPositions;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AvgPool.js\nfunction avgPool2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n assertNotComplex(x, \"avgPool\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n let res;\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n res = identity2({ inputs: { x }, backend: backend2 });\n } else {\n const xValues = backend2.data.get(x.dataId).values;\n const strides2 = util_exports.computeStrides(x.shape);\n const buffer2 = pool2(xValues, x.shape, x.dtype, strides2, convInfo, \"avg\");\n res = backend2.makeTensorInfo(convInfo.outShape, x.dtype, buffer2.values);\n }\n return res;\n}\nvar avgPoolConfig = {\n kernelName: AvgPool,\n backendName: \"cpu\",\n kernelFunc: avgPool2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AvgPool3D.js\nfunction avgPool3D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat } = attrs;\n assertNotComplex(x, \"avgPool3d\");\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode, dataFormat);\n const xValues = backend2.data.get(x.dataId).values;\n const outBuf = pool3d2(xValues, x.shape, x.dtype, util_exports.computeStrides(x.shape), convInfo, \"avg\");\n return backend2.makeTensorInfo(outBuf.shape, \"float32\", outBuf.values);\n}\nvar avgPool3DConfig = {\n kernelName: AvgPool3D,\n backendName: \"cpu\",\n kernelFunc: avgPool3D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AvgPool3DGrad.js\nfunction avgPool3DGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n assertNotComplex([dy, input2], \"avgPool3DGrad\");\n const convInfo = backend_util_exports.computePool3DInfo(input2.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = effectiveFilterDepth - 1 - convInfo.padInfo.front;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const dx = buffer(input2.shape, \"float32\");\n const avgMultiplier = 1 / (filterDepth * filterHeight * filterWidth);\n const dyBuf = backend2.bufferSync(dy);\n for (let batch = 0; batch < convInfo.batchSize; ++batch) {\n for (let channel = 0; channel < convInfo.inChannels; ++channel) {\n for (let dxDepth = 0; dxDepth < convInfo.inDepth; ++dxDepth) {\n for (let dxRow = 0; dxRow < convInfo.inHeight; ++dxRow) {\n for (let dxCol = 0; dxCol < convInfo.inWidth; ++dxCol) {\n const dyDepthCorner = dxDepth - padFront;\n const dyRowCorner = dxRow - padTop;\n const dyColCorner = dxCol - padLeft;\n let dotProd = 0;\n for (let wDepth = 0; wDepth < effectiveFilterDepth; wDepth += dilationDepth) {\n const dyDepth = (dyDepthCorner + wDepth) / strideDepth;\n if (dyDepth < 0 || dyDepth >= convInfo.outDepth || Math.floor(dyDepth) !== dyDepth) {\n continue;\n }\n for (let wRow = 0; wRow < effectiveFilterHeight; wRow += dilationHeight) {\n const dyRow = (dyRowCorner + wRow) / strideHeight;\n if (dyRow < 0 || dyRow >= convInfo.outHeight || Math.floor(dyRow) !== dyRow) {\n continue;\n }\n for (let wCol = 0; wCol < effectiveFilterWidth; wCol += dilationWidth) {\n const dyCol = (dyColCorner + wCol) / strideWidth;\n if (dyCol < 0 || dyCol >= convInfo.outWidth || Math.floor(dyCol) !== dyCol) {\n continue;\n }\n const pixel = dyBuf.get(batch, dyDepth, dyRow, dyCol, channel);\n dotProd += pixel;\n }\n }\n }\n dx.set(dotProd * avgMultiplier, batch, dxDepth, dxRow, dxCol, channel);\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar avgPool3DGradConfig2 = {\n kernelName: AvgPool3DGrad,\n backendName: \"cpu\",\n kernelFunc: avgPool3DGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/AvgPoolGrad.js\nfunction avgPoolGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const x = input2;\n assertNotComplex([dy, input2], \"avgPoolGrad\");\n const { filterSize, strides, pad: pad3 } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3);\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const dx = buffer(x.shape, \"float32\");\n const avgMultiplier = 1 / (filterHeight * filterWidth);\n const dyData = backend2.data.get(dy.dataId).values;\n const dyBuf = buffer(dy.shape, \"float32\", dyData);\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let d = 0; d < convInfo.inChannels; ++d) {\n for (let dxR = 0; dxR < convInfo.inHeight; ++dxR) {\n for (let dxC = 0; dxC < convInfo.inWidth; ++dxC) {\n const dyRCorner = dxR - padTop;\n const dyCCorner = dxC - padLeft;\n let dotProd = 0;\n for (let wR = 0; wR < effectiveFilterHeight; wR += dilationHeight) {\n const dyR = (dyRCorner + wR) / strideHeight;\n if (dyR < 0 || dyR >= convInfo.outHeight || Math.floor(dyR) !== dyR) {\n continue;\n }\n for (let wC = 0; wC < effectiveFilterWidth; wC += dilationWidth) {\n const dyC = (dyCCorner + wC) / strideWidth;\n if (dyC < 0 || dyC >= convInfo.outWidth || Math.floor(dyC) !== dyC) {\n continue;\n }\n const pixel = dyBuf.get(b, dyR, dyC, d);\n dotProd += pixel;\n }\n }\n dx.set(dotProd * avgMultiplier, b, dxR, dxC, d);\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar avgPoolGradConfig2 = {\n kernelName: AvgPoolGrad,\n backendName: \"cpu\",\n kernelFunc: avgPoolGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/BatchNorm.js\nfunction batchNorm2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, scale: scale2, offset, mean: mean5, variance } = inputs;\n util_exports.assert(mean5.shape.length === variance.shape.length, () => \"Batch normalization gradient requires mean and variance to have equal ranks.\");\n util_exports.assert(offset == null || mean5.shape.length === offset.shape.length, () => \"Batch normalization gradient requires mean and offset to have equal ranks.\");\n util_exports.assert(scale2 == null || mean5.shape.length === scale2.shape.length, () => \"Batch normalization gradient requires mean and scale to have equal ranks.\");\n assertNotComplex([x, mean5, variance, scale2, offset], \"batchNorm\");\n let { varianceEpsilon } = attrs;\n if (varianceEpsilon == null) {\n varianceEpsilon = 1e-3;\n }\n const xVals = backend2.data.get(x.dataId).values;\n const mVals = backend2.data.get(mean5.dataId).values;\n const varVals = backend2.data.get(variance.dataId).values;\n const sVals = scale2 ? backend2.data.get(scale2.dataId).values : new Float32Array([1]);\n const offVals = offset ? backend2.data.get(offset.dataId).values : new Float32Array([0]);\n const outVals = new Float32Array(xVals.length);\n const offValsLength = offVals.length;\n const sValsLength = sVals.length;\n const varValsLength = varVals.length;\n const mValsLength = mVals.length;\n let offi = 0;\n let mi = 0;\n let si = 0;\n let vi = 0;\n for (let i2 = 0; i2 < xVals.length; ++i2) {\n outVals[i2] = offVals[offi++] + (xVals[i2] - mVals[mi++]) * sVals[si++] / Math.sqrt(varVals[vi++] + varianceEpsilon);\n if (offi >= offValsLength) {\n offi = 0;\n }\n if (mi >= mValsLength) {\n mi = 0;\n }\n if (si >= sValsLength) {\n si = 0;\n }\n if (vi >= varValsLength) {\n vi = 0;\n }\n }\n return backend2.makeTensorInfo(x.shape, x.dtype, outVals);\n}\nvar batchNormConfig = {\n kernelName: FusedBatchNorm,\n backendName: \"cpu\",\n kernelFunc: batchNorm2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/BatchToSpaceND.js\nfunction batchToSpaceND2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, crops } = attrs;\n assertNotComplex([x], \"batchToSpaceND\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6);\n const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length);\n const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6);\n const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length);\n const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length);\n const xReshaped = reshape3({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } });\n const xTransposed = transpose2({ inputs: { x: xReshaped }, backend: backend2, attrs: { perm: permuted } });\n const xTransposedReshaped = reshape3({ inputs: { x: xTransposed }, backend: backend2, attrs: { shape: reshapedPermuted } });\n const result = slice2({\n inputs: { x: xTransposedReshaped },\n backend: backend2,\n attrs: { begin: sliceBeginCoords, size: sliceSize }\n });\n backend2.disposeIntermediateTensorInfo(xReshaped);\n backend2.disposeIntermediateTensorInfo(xTransposed);\n backend2.disposeIntermediateTensorInfo(xTransposedReshaped);\n return result;\n}\nvar batchToSpaceNDConfig = {\n kernelName: BatchToSpaceND,\n backendName: \"cpu\",\n kernelFunc: batchToSpaceND2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Bincount.js\nfunction bincount2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, weights } = inputs;\n const { size } = attrs;\n const xVals = backend2.data.get(x.dataId).values;\n const weightsVals = backend2.data.get(weights.dataId).values;\n const outVals = bincountImpl(xVals, weightsVals, weights.dtype, weights.shape, size);\n return backend2.makeTensorInfo([size], weights.dtype, outVals);\n}\nvar bincountConfig = {\n kernelName: Bincount,\n backendName: \"cpu\",\n kernelFunc: bincount2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/BroadcastArgs.js\nfunction broadcastArgs2(args) {\n const { inputs, backend: backend2 } = args;\n const { s0, s1 } = inputs;\n const s0Vals = backend2.data.get(s0.dataId).values;\n const s1Vals = backend2.data.get(s1.dataId).values;\n const broadcastShape = backend_util_exports.assertAndGetBroadcastShape(Array.from(s0Vals), Array.from(s1Vals));\n return backend2.makeTensorInfo([broadcastShape.length], \"int32\", Int32Array.from(broadcastShape));\n}\nvar broadcastArgsConfig = {\n kernelName: BroadcastArgs,\n backendName: \"cpu\",\n kernelFunc: broadcastArgs2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ClipByValue.js\nvar clipByValue2 = unaryKernelFunc(ClipByValue, (xi, attrs) => {\n const clipAttrs = attrs;\n if (xi > clipAttrs.clipValueMax) {\n return clipAttrs.clipValueMax;\n }\n return xi < clipAttrs.clipValueMin ? clipAttrs.clipValueMin : xi;\n});\nvar clipByValueConfig = {\n kernelName: ClipByValue,\n backendName: \"cpu\",\n kernelFunc: clipByValue2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ComplexAbs.js\nvar complexAbs = (args) => {\n const { x } = args.inputs;\n const cpuBackend = args.backend;\n const resultValues = new Float32Array(util_exports.sizeFromShape(x.shape));\n const complexVals = cpuBackend.data.get(x.dataId);\n const real5 = complexVals.complexTensorInfos.real;\n const imag5 = complexVals.complexTensorInfos.imag;\n const realVals = cpuBackend.data.get(real5.dataId).values;\n const imagVals = cpuBackend.data.get(imag5.dataId).values;\n for (let i2 = 0; i2 < realVals.length; i2++) {\n const real6 = realVals[i2];\n const imag6 = imagVals[i2];\n resultValues[i2] = Math.hypot(real6, imag6);\n }\n return cpuBackend.makeOutput(resultValues, x.shape, \"float32\");\n};\nvar complexAbsConfig = {\n kernelName: ComplexAbs,\n backendName: \"cpu\",\n kernelFunc: complexAbs\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Imag.js\nfunction imag2(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const imag5 = backend2.data.get(input2.dataId).complexTensorInfos.imag;\n const imagVal = backend2.data.get(imag5.dataId).values;\n return backend2.makeTensorInfo(imag5.shape, imag5.dtype, imagVal);\n}\nvar imagConfig = {\n kernelName: Imag,\n backendName: \"cpu\",\n kernelFunc: imag2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Concat.js\nfunction concat2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, inputs[0].shape)[0];\n let outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), $axis);\n if (util_exports.sizeFromShape(outShape) === 0) {\n return backend2.makeTensorInfo(outShape, inputs[0].dtype, []);\n }\n const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0);\n if ($inputs.length === 1) {\n return identity2({ inputs: { x: $inputs[0] }, backend: backend2 });\n }\n const shapes = $inputs.map((t2) => t2.shape);\n backend_util_exports.assertParamsConsistent(shapes, $axis);\n if ($inputs[0].dtype === \"complex64\") {\n const reals = $inputs.map((t2) => real2({ inputs: { input: t2 }, backend: backend2 }));\n const imags = $inputs.map((t2) => imag2({ inputs: { input: t2 }, backend: backend2 }));\n const realConcated = concat2({ inputs: reals, backend: backend2, attrs: { axis: $axis } });\n const imagConcated = concat2({ inputs: imags, backend: backend2, attrs: { axis: $axis } });\n const result = complex2({ inputs: { real: realConcated, imag: imagConcated }, backend: backend2 });\n reals.forEach((r2) => backend2.disposeIntermediateTensorInfo(r2));\n imags.forEach((i2) => backend2.disposeIntermediateTensorInfo(i2));\n backend2.disposeIntermediateTensorInfo(realConcated);\n backend2.disposeIntermediateTensorInfo(imagConcated);\n return result;\n }\n const inputs2D = $inputs.map((t2) => {\n const innerSize = util_exports.sizeFromShape(t2.shape.slice($axis));\n const shape = [-1, innerSize];\n return reshape3({ inputs: { x: t2 }, backend: backend2, attrs: { shape } });\n });\n const inputsValShapes = inputs2D.map((t2) => {\n return { vals: backend2.data.get(t2.dataId).values, shape: t2.shape };\n });\n outShape = backend_util_exports.computeOutShape(inputs2D.map((t2) => t2.shape), 1);\n const simplyConcat = inputs2D[0].shape[0] === 1;\n const outVals = concatImpl(inputsValShapes, outShape, inputs[0].dtype, simplyConcat);\n const finalOutShape = backend_util_exports.computeOutShape($inputs.map((t2) => t2.shape), $axis);\n const outInfo = backend2.makeTensorInfo(finalOutShape, inputs[0].dtype, outVals);\n inputs2D.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return outInfo;\n}\nvar concatConfig = {\n kernelName: Concat,\n backendName: \"cpu\",\n kernelFunc: concat2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv2D.js\nfunction conv2D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs;\n assertNotComplex([x, filter], \"conv2d\");\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const padLeft = convInfo.padInfo.left;\n const padTop = convInfo.padInfo.top;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const y = new TensorBuffer(convInfo.outShape, x.dtype);\n const xStrides = util_exports.computeStrides(x.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n const xBatchStride = xStrides[0];\n const xRowStride = isChannelsLast ? xStrides[1] : xStrides[2];\n const xColStride = isChannelsLast ? xStrides[2] : 1;\n const xChannelStride = isChannelsLast ? 1 : xStrides[1];\n const yBatchStride = y.strides[0];\n const yRowStride = isChannelsLast ? y.strides[1] : y.strides[2];\n const yColStride = isChannelsLast ? y.strides[2] : 1;\n const yChannelStride = isChannelsLast ? 1 : y.strides[1];\n const xVals = backend2.data.get(x.dataId).values;\n const wVals = backend2.data.get(filter.dataId).values;\n const yVals = y.values;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const xOffset1 = b * xBatchStride;\n const yOffset1 = b * yBatchStride;\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const yOffset2 = yOffset1 + yR * yRowStride;\n const xRCorner = yR * convInfo.strideHeight - padTop;\n for (let wR = 0; wR < filterHeight; ++wR) {\n const xR = xRCorner + wR * dilationHeight;\n if (xR < 0 || xR >= convInfo.inHeight) {\n continue;\n }\n const wOffset1 = wR * filterStrides[0];\n const xOffset2 = xOffset1 + xR * xRowStride;\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const yOffset3 = yOffset2 + yC * yColStride;\n const xCCorner = yC * convInfo.strideWidth - padLeft;\n for (let wC = 0; wC < filterWidth; ++wC) {\n const xC = xCCorner + wC * dilationWidth;\n if (xC < 0 || xC >= convInfo.inWidth) {\n continue;\n }\n const wOffset2 = wOffset1 + wC * filterStrides[1];\n const xOffset3 = xOffset2 + xC * xColStride;\n let wOffset3 = wOffset2;\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n const xVal = xVals[xOffset3 + d1 * xChannelStride];\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n yVals[yOffset3 + d2 * yChannelStride] += xVal * wVals[wOffset3 + d2];\n }\n wOffset3 += convInfo.outChannels;\n }\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(y.shape, y.dtype, yVals);\n}\nvar conv2DConfig = {\n kernelName: Conv2D,\n backendName: \"cpu\",\n kernelFunc: conv2D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv2DBackpropFilter.js\nfunction conv2DBackpropFilter2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, pad: pad3, dataFormat, dimRoundingMode, filterShape } = attrs;\n assertNotComplex([x, dy], \"conv2dBackpropFilter\");\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filterShape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const { strideHeight, strideWidth, filterHeight, filterWidth } = convInfo;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const dW = new TensorBuffer(convInfo.filterShape, \"float32\");\n const leftPad = convInfo.padInfo.left;\n const topPad = convInfo.padInfo.top;\n const xVals = backend2.data.get(x.dataId).values;\n const dyVals = backend2.data.get(dy.dataId).values;\n const xBuf = new TensorBuffer(x.shape, x.dtype, xVals);\n const dyBuf = new TensorBuffer(dy.shape, dy.dtype, dyVals);\n for (let wR = 0; wR < filterHeight; ++wR) {\n const yRMin = Math.max(0, Math.ceil((topPad - wR) / strideHeight));\n const yRMax = Math.min(convInfo.outHeight, (convInfo.inHeight + topPad - wR) / strideHeight);\n for (let wC = 0; wC < filterWidth; ++wC) {\n const yCMin = Math.max(0, Math.ceil((leftPad - wC) / strideWidth));\n const yCMax = Math.min(convInfo.outWidth, (convInfo.inWidth + leftPad - wC) / strideWidth);\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n let dotProd = 0;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let yR = yRMin; yR < yRMax; ++yR) {\n const xR = wR + yR * strideHeight - topPad;\n for (let yC = yCMin; yC < yCMax; ++yC) {\n const xC = wC + yC * strideWidth - leftPad;\n if (isChannelsLast) {\n dotProd += xBuf.get(b, xR, xC, d1) * dyBuf.get(b, yR, yC, d2);\n } else {\n dotProd += xBuf.get(b, d1, xR, xC) * dyBuf.get(b, d2, yR, yC);\n }\n }\n }\n }\n dW.set(dotProd, wR, wC, d1, d2);\n }\n }\n }\n }\n return backend2.makeTensorInfo(dW.shape, dW.dtype, dW.values);\n}\nvar conv2DBackpropFilterConfig = {\n kernelName: Conv2DBackpropFilter,\n backendName: \"cpu\",\n kernelFunc: conv2DBackpropFilter2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv2DBackpropInput.js\nfunction conv2DBackpropInput2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { inputShape, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n assertNotComplex([dy, filter], \"conv2dBackpropInput\");\n const filterStrides = util_exports.computeStrides(filter.shape);\n const dyStrides = util_exports.computeStrides(dy.shape);\n let $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const dx = new TensorBuffer(convInfo.inShape, \"float32\");\n const dxValues = dx.values;\n const dyValues = backend2.data.get(dy.dataId).values;\n const fltValues = backend2.data.get(filter.dataId).values;\n const [fltS0, fltS1, fltS2] = filterStrides;\n const { batchSize, filterHeight, filterWidth, inChannels, inHeight, inWidth, outChannels, outHeight, outWidth, strideHeight, strideWidth } = convInfo;\n $dataFormat = convInfo.dataFormat;\n const topPad = filterHeight - 1 - convInfo.padInfo.top;\n const leftPad = filterWidth - 1 - convInfo.padInfo.left;\n const isChannelsLast = $dataFormat === \"channelsLast\";\n const xBatchStride = dx.strides[0];\n const xRowStride = isChannelsLast ? dx.strides[1] : dx.strides[2];\n const xColStride = isChannelsLast ? dx.strides[2] : 1;\n const xChannelStride = isChannelsLast ? 1 : dx.strides[1];\n const yBatchStride = dyStrides[0];\n const yRowStride = isChannelsLast ? dyStrides[1] : dyStrides[2];\n const yColStride = isChannelsLast ? dyStrides[2] : 1;\n const yChannelStride = isChannelsLast ? 1 : dyStrides[1];\n for (let b = 0; b < batchSize; ++b) {\n for (let d1 = 0; d1 < inChannels; ++d1) {\n for (let xR = 0; xR < inHeight; ++xR) {\n const xRCorner = xR - topPad;\n const xRMin = Math.max(0, Math.ceil(xRCorner / strideHeight));\n const yRMax = Math.min(outHeight, (filterHeight + xRCorner) / strideHeight);\n for (let xC = 0; xC < inWidth; ++xC) {\n const xCCorner = xC - leftPad;\n const xCMin = Math.max(0, Math.ceil(xCCorner / strideWidth));\n const yCMax = Math.min(outWidth, (filterWidth + xCCorner) / strideWidth);\n let dotProd = 0;\n for (let yR = xRMin; yR < yRMax; ++yR) {\n const wR = yR * strideHeight - xRCorner;\n for (let yC = xCMin; yC < yCMax; ++yC) {\n const wC = yC * strideWidth - xCCorner;\n const dyOffset = yBatchStride * b + yRowStride * yR + yColStride * yC;\n const fltOffset = fltS0 * (filterHeight - 1 - wR) + fltS1 * (filterWidth - 1 - wC) + fltS2 * d1;\n for (let d2 = 0; d2 < outChannels; ++d2) {\n const pixel = dyValues[dyOffset + yChannelStride * d2];\n const weight = fltValues[fltOffset + d2];\n dotProd += pixel * weight;\n }\n }\n }\n const dxOffset = xBatchStride * b + xRowStride * xR + xColStride * xC + xChannelStride * d1;\n dxValues[dxOffset] = dotProd;\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar conv2DBackpropInputConfig = {\n kernelName: Conv2DBackpropInput,\n backendName: \"cpu\",\n kernelFunc: conv2DBackpropInput2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv3D.js\nfunction conv3D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n assertNotComplex([x, filter], \"conv3d\");\n const convInfo = backend_util_exports.computeConv3DInfo(x.shape, filter.shape, strides, dilations, pad3);\n const { filterDepth, filterHeight, filterWidth, dilationDepth, dilationHeight, dilationWidth, padInfo } = convInfo;\n const padFront = padInfo.front;\n const padLeft = padInfo.left;\n const padTop = padInfo.top;\n const y = new TensorBuffer(convInfo.outShape, x.dtype);\n const xVals = backend2.data.get(x.dataId).values;\n const wVals = backend2.data.get(filter.dataId).values;\n const yVals = y.values;\n const xStrides = util_exports.computeStrides(x.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const xOffset1 = b * xStrides[0];\n const yOffset1 = b * y.strides[0];\n for (let yF = 0; yF < convInfo.outDepth; ++yF) {\n const yOffset2 = yOffset1 + yF * y.strides[1];\n const xFCorner = yF * convInfo.strideDepth - padFront;\n for (let wF = 0; wF < filterDepth; ++wF) {\n const xF = xFCorner + wF * dilationDepth;\n if (xF < 0 || xF >= convInfo.inDepth) {\n continue;\n }\n const wOffset1 = wF * filterStrides[0];\n const xOffset2 = xOffset1 + xF * xStrides[1];\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const yOffset3 = yOffset2 + yR * y.strides[2];\n const xRCorner = yR * convInfo.strideHeight - padTop;\n for (let wR = 0; wR < filterHeight; ++wR) {\n const xR = xRCorner + wR * dilationHeight;\n if (xR < 0 || xR >= convInfo.inHeight) {\n continue;\n }\n const wOffset2 = wOffset1 + wR * filterStrides[1];\n const xOffset3 = xOffset2 + xR * xStrides[2];\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const yOffset4 = yOffset3 + yC * convInfo.outChannels;\n const xCCorner = yC * convInfo.strideWidth - padLeft;\n for (let wC = 0; wC < filterWidth; ++wC) {\n const xC = xCCorner + wC * dilationWidth;\n if (xC < 0 || xC >= convInfo.inWidth) {\n continue;\n }\n const wOffset3 = wOffset2 + wC * filterStrides[2];\n const xOffset4 = xOffset3 + xC * convInfo.inChannels;\n let wOffset4 = wOffset3;\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n const xVal = xVals[xOffset4 + d1];\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n yVals[yOffset4 + d2] += xVal * wVals[wOffset4 + d2];\n }\n wOffset4 += convInfo.outChannels;\n }\n }\n }\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(y.shape, y.dtype, y.values);\n}\nvar conv3DConfig = {\n kernelName: Conv3D,\n backendName: \"cpu\",\n kernelFunc: conv3D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv3DBackpropFilterV2.js\nfunction conv3DBackpropFilterV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, pad: pad3, filterShape } = attrs;\n assertNotComplex([x, dy], \"conv3dBackpropFilterV2\");\n const xStrides = util_exports.computeStrides(x.shape);\n const dyStrides = util_exports.computeStrides(dy.shape);\n const convInfo = backend_util_exports.computeConv3DInfo(x.shape, filterShape, strides, 1, pad3);\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const dw = new TensorBuffer(convInfo.filterShape, \"float32\");\n const dwValues = dw.values;\n const [dwS0, dwS1, dwS2, dwS3] = dw.strides;\n const dyValues = backend2.data.get(dy.dataId).values;\n const [dyS0, dyS1, dyS2, dyS3] = dyStrides;\n const xValues = backend2.data.get(x.dataId).values;\n const [xS0, xS1, xS2, xS3] = xStrides;\n const frontPad = convInfo.padInfo.front;\n const leftPad = convInfo.padInfo.left;\n const topPad = convInfo.padInfo.top;\n for (let wF = 0; wF < filterDepth; ++wF) {\n const yFMin = Math.max(0, Math.ceil((frontPad - wF) / strideDepth));\n const yFMax = Math.min(convInfo.outDepth, (convInfo.inDepth + frontPad - wF) / strideDepth);\n const wOffset1 = wF * dwS0;\n for (let wR = 0; wR < filterHeight; ++wR) {\n const yRMin = Math.max(0, Math.ceil((topPad - wR) / strideHeight));\n const yRMax = Math.min(convInfo.outHeight, (convInfo.inHeight + topPad - wR) / strideHeight);\n const wOffset2 = wR * dwS1 + wOffset1;\n for (let wC = 0; wC < filterWidth; ++wC) {\n const yCMin = Math.max(0, Math.ceil((leftPad - wC) / strideWidth));\n const yCMax = Math.min(convInfo.outWidth, (convInfo.inWidth + leftPad - wC) / strideWidth);\n const wOffset3 = wC * dwS2 + wOffset2;\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n const wOffset4 = d1 * dwS3 + wOffset3;\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n let dotProd = 0;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const xOffset1 = b * xS0;\n const yOffset1 = b * dyS0;\n for (let yF = yFMin; yF < yFMax; ++yF) {\n const xF = wF + yF * strideDepth - frontPad;\n const xOffset2 = xF * xS1 + xOffset1;\n const yOffset2 = yF * dyS1 + yOffset1;\n for (let yR = yRMin; yR < yRMax; ++yR) {\n const xR = wR + yR * strideHeight - topPad;\n const xOffset3 = xR * xS2 + xOffset2;\n const yOffset3 = yR * dyS2 + yOffset2;\n for (let yC = yCMin; yC < yCMax; ++yC) {\n const xC = wC + yC * strideWidth - leftPad;\n const xOffset4 = xC * xS3 + xOffset3;\n const yOffset4 = yC * dyS3 + yOffset3;\n dotProd += xValues[xOffset4 + d1] * dyValues[yOffset4 + d2];\n }\n }\n }\n }\n dwValues[wOffset4 + d2] = dotProd;\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(dw.shape, dw.dtype, dw.values);\n}\nvar conv3DBackpropFilterV2Config = {\n kernelName: Conv3DBackpropFilterV2,\n backendName: \"cpu\",\n kernelFunc: conv3DBackpropFilterV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Conv3DBackpropInputV2.js\nfunction conv3DBackpropInputV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { pad: pad3, strides, inputShape } = attrs;\n assertNotComplex([dy], \"conv3dBackpropInputV2\");\n const dyStrides = util_exports.computeStrides(dy.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n const convInfo = backend_util_exports.computeConv3DInfo(inputShape, filter.shape, strides, 1, pad3);\n const dx = new TensorBuffer(convInfo.inShape, \"float32\");\n const dxValues = dx.values;\n const [dxS0, dxS1, dxS2, dxS3] = dx.strides;\n const dyValues = backend2.data.get(dy.dataId).values;\n const [dyS0, dyS1, dyS2, dyS3] = dyStrides;\n const fltValues = backend2.data.get(filter.dataId).values;\n const [fltS0, fltS1, fltS2, fltS3] = filterStrides;\n const { batchSize, filterDepth, filterHeight, filterWidth, inChannels, inDepth, inHeight, inWidth, outChannels, outDepth, outHeight, outWidth, strideDepth, strideHeight, strideWidth } = convInfo;\n const frontPad = filterDepth - 1 - convInfo.padInfo.front;\n const topPad = filterHeight - 1 - convInfo.padInfo.top;\n const leftPad = filterWidth - 1 - convInfo.padInfo.left;\n for (let b = 0; b < batchSize; ++b) {\n for (let d1 = 0; d1 < inChannels; ++d1) {\n for (let xF = 0; xF < inDepth; ++xF) {\n const xFCorner = xF - frontPad;\n const xFMin = Math.max(0, Math.ceil(xFCorner / strideDepth));\n const yFMax = Math.min(outDepth, (filterDepth + xFCorner) / strideDepth);\n for (let xR = 0; xR < inHeight; ++xR) {\n const xRCorner = xR - topPad;\n const xRMin = Math.max(0, Math.ceil(xRCorner / strideHeight));\n const yRMax = Math.min(outHeight, (filterHeight + xRCorner) / strideHeight);\n for (let xC = 0; xC < inWidth; ++xC) {\n const xCCorner = xC - leftPad;\n const xCMin = Math.max(0, Math.ceil(xCCorner / strideWidth));\n const yCMax = Math.min(outWidth, (filterWidth + xCCorner) / strideWidth);\n let dotProd = 0;\n for (let yF = xFMin; yF < yFMax; ++yF) {\n const wF = yF * strideDepth - xFCorner;\n for (let yR = xRMin; yR < yRMax; ++yR) {\n const wR = yR * strideHeight - xRCorner;\n for (let yC = xCMin; yC < yCMax; ++yC) {\n const wC = yC * strideWidth - xCCorner;\n const dyOffset = dyS0 * b + dyS1 * yF + dyS2 * yR + dyS3 * yC;\n const fltOffset = fltS0 * (filterDepth - 1 - wF) + fltS1 * (filterHeight - 1 - wR) + fltS2 * (filterWidth - 1 - wC) + fltS3 * d1;\n for (let d2 = 0; d2 < outChannels; ++d2) {\n const pixel = dyValues[dyOffset + d2];\n const weight = fltValues[fltOffset + d2];\n dotProd += pixel * weight;\n }\n }\n }\n }\n dxValues[dxS0 * b + dxS1 * xF + dxS2 * xR + dxS3 * xC + d1] = dotProd;\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar conv3DBackpropInputV2Config = {\n kernelName: Conv3DBackpropInputV2,\n backendName: \"cpu\",\n kernelFunc: conv3DBackpropInputV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cos.js\nvar cos2 = unaryKernelFunc(Cos, (xi) => Math.cos(xi));\nvar cosConfig = {\n kernelName: Cos,\n backendName: \"cpu\",\n kernelFunc: cos2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cosh.js\nvar cosh2 = unaryKernelFunc(Cosh, (xi) => Math.cosh(xi));\nvar coshConfig = {\n kernelName: Cosh,\n backendName: \"cpu\",\n kernelFunc: cosh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/CropAndResize.js\nfunction cropAndResize2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, boxes, boxInd } = inputs;\n const { cropSize, method, extrapolationValue } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const numBoxes = boxes.shape[0];\n const [cropHeight, cropWidth] = cropSize;\n const output = buffer([numBoxes, cropHeight, cropWidth, numChannels], \"float32\");\n const boxVals = backend2.data.get(boxes.dataId).values;\n const boxIndVals = backend2.data.get(boxInd.dataId).values;\n const imageVals = backend2.data.get(image2.dataId).values;\n const inStride = util_exports.computeStrides(image2.shape);\n const outStride = util_exports.computeStrides(output.shape);\n for (let b = 0; b < numBoxes; b++) {\n const startInd = b * 4;\n const y1 = boxVals[startInd];\n const x1 = boxVals[startInd + 1];\n const y2 = boxVals[startInd + 2];\n const x2 = boxVals[startInd + 3];\n const bInd = boxIndVals[b];\n if (bInd >= batch) {\n continue;\n }\n const heightScale = cropHeight > 1 ? (y2 - y1) * (imageHeight - 1) / (cropHeight - 1) : 0;\n const widthScale = cropWidth > 1 ? (x2 - x1) * (imageWidth - 1) / (cropWidth - 1) : 0;\n for (let y = 0; y < cropHeight; y++) {\n const yInd = cropHeight > 1 ? y1 * (imageHeight - 1) + y * heightScale : 0.5 * (y1 + y2) * (imageHeight - 1);\n if (yInd < 0 || yInd > imageHeight - 1) {\n for (let x = 0; x < cropWidth; x++) {\n for (let c = 0; c < numChannels; c++) {\n const ind = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[ind] = extrapolationValue;\n }\n }\n continue;\n }\n if (method === \"bilinear\") {\n const topInd = Math.floor(yInd);\n const bottomInd = Math.ceil(yInd);\n const yLerp = yInd - topInd;\n for (let x = 0; x < cropWidth; x++) {\n const xInd = cropWidth > 1 ? x1 * (imageWidth - 1) + x * widthScale : 0.5 * (x1 + x2) * (imageWidth - 1);\n if (xInd < 0 || xInd > imageWidth - 1) {\n for (let c = 0; c < numChannels; c++) {\n const ind = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[ind] = extrapolationValue;\n }\n continue;\n }\n const leftInd = Math.floor(xInd);\n const rightInd = Math.ceil(xInd);\n const xLerp = xInd - leftInd;\n for (let c = 0; c < numChannels; c++) {\n let ind = c + leftInd * inStride[2] + topInd * inStride[1] + bInd * inStride[0];\n const topLeft = imageVals[ind];\n ind = c + rightInd * inStride[2] + topInd * inStride[1] + bInd * inStride[0];\n const topRight = imageVals[ind];\n ind = c + leftInd * inStride[2] + bottomInd * inStride[1] + bInd * inStride[0];\n const bottomLeft = imageVals[ind];\n ind = c + rightInd * inStride[2] + bottomInd * inStride[1] + bInd * inStride[0];\n const bottomRight = imageVals[ind];\n const top = topLeft + (topRight - topLeft) * xLerp;\n const bottom = bottomLeft + (bottomRight - bottomLeft) * xLerp;\n ind = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[ind] = top + (bottom - top) * yLerp;\n }\n }\n } else {\n for (let x = 0; x < cropWidth; ++x) {\n const xInd = cropWidth > 1 ? x1 * (imageWidth - 1) + x * widthScale : 0.5 * (x1 + x2) * (imageWidth - 1);\n if (xInd < 0 || xInd > imageWidth - 1) {\n for (let c = 0; c < numChannels; c++) {\n const ind = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[ind] = extrapolationValue;\n }\n continue;\n }\n const closestX = Math.round(xInd);\n const closestY = Math.round(yInd);\n for (let c = 0; c < numChannels; c++) {\n const inInd = c + closestX * inStride[2] + closestY * inStride[1] + bInd * inStride[0];\n const outInd = c + x * outStride[2] + y * outStride[1] + b * outStride[0];\n output.values[outInd] = imageVals[inInd];\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(output.shape, output.dtype, output.values);\n}\nvar cropAndResizeConfig = {\n kernelName: CropAndResize,\n backendName: \"cpu\",\n kernelFunc: cropAndResize2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cumprod.js\nfunction cumprod2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n assertNotComplex(x, \"cumprod\");\n const permutation = backend_util_exports.getAxesPermutation([axis], x.shape.length);\n let $x = x;\n if (permutation != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, x.shape.length)[0];\n if (permutedAxis !== $x.shape.length - 1) {\n throw new Error(`backend.cumprod in CPU expects an inner-most axis=${$x.shape.length - 1} but got axis=${permutedAxis}`);\n }\n const resultDtype = upcastType($x.dtype, \"int32\");\n const vals = util_exports.makeOnesTypedArray(util_exports.sizeFromShape($x.shape), resultDtype);\n const aVals = backend2.data.get($x.dataId).values;\n const finalDim = $x.shape[$x.shape.length - 1];\n const indexAdjuster = reverse5 ? (i2, j) => i2 + finalDim - j - 1 : (i2, j) => i2 + j;\n for (let i2 = 0; i2 < aVals.length; i2 += finalDim) {\n for (let j = 0; j < finalDim; j++) {\n const idx = indexAdjuster(i2, j);\n if (j === 0) {\n vals[idx] = exclusive ? 1 : aVals[idx];\n } else {\n const prevIdx = indexAdjuster(i2, j - 1);\n vals[idx] = exclusive ? aVals[prevIdx] * vals[prevIdx] : aVals[idx] * vals[prevIdx];\n }\n }\n }\n const result = backend2.makeTensorInfo($x.shape, resultDtype, vals);\n if (permutation != null) {\n const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n const reverseTransposedResult = transpose2({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } });\n backend2.disposeIntermediateTensorInfo(result);\n backend2.disposeIntermediateTensorInfo($x);\n return reverseTransposedResult;\n }\n return result;\n}\nvar cumprodConfig = {\n kernelName: Cumprod,\n backendName: \"cpu\",\n kernelFunc: cumprod2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cumsum.js\nfunction cumsum2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n assertNotComplex(x, \"cumsum\");\n const permutation = backend_util_exports.getAxesPermutation([axis], x.shape.length);\n let $x = x;\n if (permutation != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, x.shape.length)[0];\n if (permutedAxis !== $x.shape.length - 1) {\n throw new Error(`backend.cumsum in CPU expects an inner-most axis=${$x.shape.length - 1} but got axis=${permutedAxis}`);\n }\n const resultDtype = upcastType($x.dtype, \"int32\");\n const vals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape($x.shape), resultDtype);\n const aVals = backend2.data.get($x.dataId).values;\n const finalDim = $x.shape[$x.shape.length - 1];\n const indexAdjuster = reverse5 ? (i2, j) => i2 + finalDim - j - 1 : (i2, j) => i2 + j;\n for (let i2 = 0; i2 < aVals.length; i2 += finalDim) {\n for (let j = 0; j < finalDim; j++) {\n const idx = indexAdjuster(i2, j);\n if (j === 0) {\n vals[idx] = exclusive ? 0 : aVals[idx];\n } else {\n const prevIdx = indexAdjuster(i2, j - 1);\n vals[idx] = exclusive ? aVals[prevIdx] + vals[prevIdx] : aVals[idx] + vals[prevIdx];\n }\n }\n }\n const result = backend2.makeTensorInfo($x.shape, resultDtype, vals);\n if (permutation != null) {\n const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n const reverseTransposedResult = transpose2({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } });\n backend2.disposeIntermediateTensorInfo(result);\n backend2.disposeIntermediateTensorInfo($x);\n return reverseTransposedResult;\n }\n return result;\n}\nvar cumsumConfig = {\n kernelName: Cumsum,\n backendName: \"cpu\",\n kernelFunc: cumsum2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DenseBincount.js\nfunction denseBincount2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, weights } = inputs;\n const { size, binaryOutput } = attrs;\n if (x.shape.length === 1) {\n const xVals = backend2.data.get(x.dataId).values;\n const weightsVals = backend2.data.get(weights.dataId).values;\n const outVals = bincountImpl(xVals, weightsVals, weights.dtype, weights.shape, size);\n return backend2.makeTensorInfo([size], weights.dtype, outVals);\n } else if (x.shape.length === 2) {\n const xBuf = backend2.bufferSync(x);\n const weightsBuf = backend2.bufferSync(weights);\n const outBuf = bincountReduceImpl(xBuf, weightsBuf, size, binaryOutput);\n return backend2.makeTensorInfo(outBuf.shape, weights.dtype, outBuf.values);\n }\n throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${x.shape.length}.`);\n}\nvar denseBincountConfig = {\n kernelName: DenseBincount,\n backendName: \"cpu\",\n kernelFunc: denseBincount2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DepthToSpace.js\nfunction depthToSpace2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockSize, dataFormat } = attrs;\n util_exports.assert(dataFormat === \"NHWC\", () => `Only NHWC dataFormat supported on CPU for depthToSpace. Got ${dataFormat}`);\n const batchSize = x.shape[0];\n const inputHeight = x.shape[1];\n const inputWidth = x.shape[2];\n const inputDepth = x.shape[3];\n const outputHeight = inputHeight * blockSize;\n const outputWidth = inputWidth * blockSize;\n const outputDepth = inputDepth / (blockSize * blockSize);\n const xValues = backend2.data.get(x.dataId).values;\n const result = new Float32Array(batchSize * outputHeight * outputWidth * outputDepth);\n let outputIdx = 0;\n for (let b = 0; b < batchSize; ++b) {\n for (let h = 0; h < outputHeight; ++h) {\n const inH = Math.floor(h / blockSize);\n const offsetH = h % blockSize;\n for (let w = 0; w < outputWidth; ++w) {\n const inW = Math.floor(w / blockSize);\n const offsetW = w % blockSize;\n const offsetD = (offsetH * blockSize + offsetW) * outputDepth;\n for (let d = 0; d < outputDepth; ++d) {\n const inD = d + offsetD;\n const inputIdx = inD + inputDepth * (inW + inputWidth * (inH + inputHeight * b));\n result[outputIdx++] = xValues[inputIdx];\n }\n }\n }\n }\n return backend2.makeTensorInfo([batchSize, outputHeight, outputWidth, outputDepth], x.dtype, result);\n}\nvar depthToSpaceConfig = {\n kernelName: DepthToSpace,\n backendName: \"cpu\",\n kernelFunc: depthToSpace2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DepthwiseConv2dNative.js\nfunction depthwiseConv2dNative(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations, dimRoundingMode } = attrs;\n assertNotComplex([x, filter], \"depthwiseConv2DNative\");\n const xStrides = util_exports.computeStrides(x.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n const { filterHeight, filterWidth, dilationHeight, dilationWidth, padInfo } = convInfo;\n const padLeft = padInfo.left;\n const padTop = padInfo.top;\n const chMul = convInfo.outChannels / convInfo.inChannels;\n const y = new TensorBuffer(convInfo.outShape, x.dtype);\n const xVals = backend2.data.get(x.dataId).values;\n const wVals = backend2.data.get(filter.dataId).values;\n const yVals = y.values;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n const xOffset1 = b * xStrides[0];\n const yOffset1 = b * y.strides[0];\n for (let yR = 0; yR < convInfo.outHeight; ++yR) {\n const yOffset2 = yOffset1 + yR * y.strides[1];\n const xRCorner = yR * convInfo.strideHeight - padTop;\n for (let wR = 0; wR < filterHeight; ++wR) {\n const xR = xRCorner + wR * dilationHeight;\n if (xR < 0 || xR >= convInfo.inHeight) {\n continue;\n }\n const wOffset1 = wR * filterStrides[0];\n const xOffset2 = xOffset1 + xR * xStrides[1];\n for (let yC = 0; yC < convInfo.outWidth; ++yC) {\n const yOffset3 = yOffset2 + yC * y.strides[2];\n const xCCorner = yC * convInfo.strideWidth - padLeft;\n for (let wC = 0; wC < filterWidth; ++wC) {\n const xC = xCCorner + wC * dilationWidth;\n if (xC < 0 || xC >= convInfo.inWidth) {\n continue;\n }\n const wOffset2 = wOffset1 + wC * filterStrides[1];\n const xOffset3 = xOffset2 + xC * convInfo.inChannels;\n let yOffset4 = yOffset3;\n let wOffset3 = wOffset2;\n for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {\n const xVal = xVals[xOffset3 + d1];\n for (let q = 0; q < chMul; ++q) {\n yVals[yOffset4 + q] += xVal * wVals[wOffset3 + q];\n }\n yOffset4 += chMul;\n wOffset3 += chMul;\n }\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(y.shape, y.dtype, y.values);\n}\nvar depthwiseConv2dNativeConfig = {\n kernelName: DepthwiseConv2dNative,\n backendName: \"cpu\",\n kernelFunc: depthwiseConv2dNative\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DepthwiseConv2dNativeBackpropFilter.js\nfunction depthwiseConv2dNativeBackpropFilter2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, dilations, pad: pad3, dimRoundingMode, filterShape } = attrs;\n assertNotComplex([x, dy], \"depthwiseConv2dNativeBackpropFilter\");\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filterShape, strides, dilations, pad3, dimRoundingMode, true);\n const { strideHeight, strideWidth, filterHeight, filterWidth } = convInfo;\n const dW = new TensorBuffer(convInfo.filterShape, \"float32\");\n const leftPad = convInfo.padInfo.left;\n const topPad = convInfo.padInfo.top;\n const chMul = convInfo.outChannels / convInfo.inChannels;\n const xVals = backend2.data.get(x.dataId).values;\n const xBuf = new TensorBuffer(x.shape, x.dtype, xVals);\n const dyVals = backend2.data.get(dy.dataId).values;\n const dyBuf = new TensorBuffer(dy.shape, dy.dtype, dyVals);\n for (let wR = 0; wR < filterHeight; ++wR) {\n const yRMin = Math.max(0, Math.ceil((topPad - wR) / strideHeight));\n const yRMax = Math.min(convInfo.outHeight, (convInfo.inHeight + topPad - wR) / strideHeight);\n for (let wC = 0; wC < filterWidth; ++wC) {\n const yCMin = Math.max(0, Math.ceil((leftPad - wC) / strideWidth));\n const yCMax = Math.min(convInfo.outWidth, (convInfo.inWidth + leftPad - wC) / strideWidth);\n for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {\n const d1 = Math.trunc(d2 / chMul);\n const dm = d2 % chMul;\n let dotProd = 0;\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let yR = yRMin; yR < yRMax; ++yR) {\n const xR = wR + yR * strideHeight - topPad;\n for (let yC = yCMin; yC < yCMax; ++yC) {\n const xC = wC + yC * strideWidth - leftPad;\n dotProd += xBuf.get(b, xR, xC, d1) * dyBuf.get(b, yR, yC, d2);\n }\n }\n }\n dW.set(dotProd, wR, wC, d1, dm);\n }\n }\n }\n return backend2.makeTensorInfo(dW.shape, dW.dtype, dW.values);\n}\nvar depthwiseConv2dNativeBackpropFilterConfig = {\n kernelName: DepthwiseConv2dNativeBackpropFilter,\n backendName: \"cpu\",\n kernelFunc: depthwiseConv2dNativeBackpropFilter2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/DepthwiseConv2dNativeBackpropInput.js\nfunction depthwiseConv2dNativeBackpropInput2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { strides, dilations, pad: pad3, dimRoundingMode, inputShape } = attrs;\n assertNotComplex([dy, filter], \"depthwiseConv2DNativeBackpropInput\");\n const dyStrides = util_exports.computeStrides(dy.shape);\n const filterStrides = util_exports.computeStrides(filter.shape);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, dilations, pad3, dimRoundingMode, true);\n const dx = new TensorBuffer(convInfo.inShape, \"float32\");\n const dxValues = dx.values;\n const [dxS0, dxS1, dxS2] = dx.strides;\n const dyValues = backend2.data.get(dy.dataId).values;\n const [dyS0, dyS1, dyS2] = dyStrides;\n const fltValues = backend2.data.get(filter.dataId).values;\n const [fltS0, fltS1, fltS2] = filterStrides;\n const { batchSize, filterHeight, filterWidth, inChannels, inHeight, inWidth, outChannels, outHeight, outWidth, strideHeight, strideWidth } = convInfo;\n const topPad = filterHeight - 1 - convInfo.padInfo.top;\n const leftPad = filterWidth - 1 - convInfo.padInfo.left;\n const chMul = outChannels / inChannels;\n for (let b = 0; b < batchSize; ++b) {\n for (let d1 = 0; d1 < inChannels; ++d1) {\n for (let xR = 0; xR < inHeight; ++xR) {\n const xRCorner = xR - topPad;\n const xRMin = Math.max(0, Math.ceil(xRCorner / strideHeight));\n const yRMax = Math.min(outHeight, (filterHeight + xRCorner) / strideHeight);\n for (let xC = 0; xC < inWidth; ++xC) {\n const xCCorner = xC - leftPad;\n const xCMin = Math.max(0, Math.ceil(xCCorner / strideWidth));\n const yCMax = Math.min(outWidth, (filterWidth + xCCorner) / strideWidth);\n let dotProd = 0;\n for (let yR = xRMin; yR < yRMax; ++yR) {\n const wR = yR * strideHeight - xRCorner;\n for (let yC = xCMin; yC < yCMax; ++yC) {\n const wC = yC * strideWidth - xCCorner;\n const dyOffset = dyS0 * b + dyS1 * yR + dyS2 * yC;\n const fltOffset = fltS0 * (filterHeight - 1 - wR) + fltS1 * (filterWidth - 1 - wC) + fltS2 * d1;\n for (let dm = 0; dm < chMul; ++dm) {\n const d2 = d1 * chMul + dm;\n const pixel = dyValues[dyOffset + d2];\n const weight = fltValues[fltOffset + dm];\n dotProd += pixel * weight;\n }\n }\n }\n dxValues[dxS0 * b + dxS1 * xR + dxS2 * xC + d1] = dotProd;\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar depthwiseConv2dNativeBackpropInputConfig = {\n kernelName: DepthwiseConv2dNativeBackpropInput,\n backendName: \"cpu\",\n kernelFunc: depthwiseConv2dNativeBackpropInput2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Diag.js\nfunction diag2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n const xSize = util_exports.sizeFromShape(x.shape);\n const xVals = backend2.data.get(x.dataId).values;\n const outBuf = buffer([xSize, xSize], x.dtype);\n const vals = outBuf.values;\n for (let i2 = 0; i2 < xVals.length; i2++) {\n vals[i2 * xSize + i2] = xVals[i2];\n }\n const outShape = [...x.shape, ...x.shape];\n return backend2.makeTensorInfo(outShape, outBuf.dtype, outBuf.values);\n}\nvar diagConfig = {\n kernelName: Diag,\n backendName: \"cpu\",\n kernelFunc: diag2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Dilation2D.js\nvar dilation2DConfig = {\n kernelName: Dilation2D,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, backend: backend2, attrs }) => {\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const cpuBackend = backend2;\n const xVals = cpuBackend.data.get(x.dataId).values;\n const xRank = x.shape.length;\n const filterVals = cpuBackend.data.get(filter.dataId).values;\n const filterRank = filter.shape.length;\n const { batchSize, inHeight, inWidth, inChannels, outHeight, outWidth, padInfo, strideHeight, strideWidth, filterHeight, filterWidth, dilationHeight, dilationWidth, outShape } = backend_util_exports.computeDilation2DInfo(x.shape, filter.shape, strides, pad3, \"NHWC\", dilations);\n const outSize = util_exports.sizeFromShape(outShape);\n const outRank = outShape.length;\n const outputVals = util_exports.getArrayFromDType(x.dtype, outSize);\n for (let b = 0; b < batchSize; ++b) {\n for (let hOut = 0; hOut < outHeight; ++hOut) {\n const hBeg = hOut * strideHeight - padInfo.top;\n for (let wOut = 0; wOut < outWidth; ++wOut) {\n const wBeg = wOut * strideWidth - padInfo.left;\n for (let d = 0; d < inChannels; ++d) {\n let curVal = Number.MIN_SAFE_INTEGER;\n for (let h = 0; h < filterHeight; ++h) {\n const hIn = hBeg + h * dilationHeight;\n if (hIn >= 0 && hIn < inHeight) {\n for (let w = 0; w < filterWidth; ++w) {\n const wIn = wBeg + w * dilationWidth;\n if (wIn >= 0 && wIn < inWidth) {\n const xIndex = util_exports.locToIndex([b, hIn, wIn, d], xRank, util_exports.computeStrides(x.shape));\n const filterIndex = util_exports.locToIndex([h, w, d], filterRank, util_exports.computeStrides(filter.shape));\n const val = xVals[xIndex] + filterVals[filterIndex];\n if (val > curVal) {\n curVal = val;\n }\n }\n }\n }\n }\n const outputIndex = util_exports.locToIndex([b, hOut, wOut, d], outRank, util_exports.computeStrides(outShape));\n outputVals[outputIndex] = curVal;\n }\n }\n }\n }\n const dataId = cpuBackend.write(util_exports.toTypedArray(outputVals, x.dtype), outShape, x.dtype);\n return { dataId, shape: outShape, dtype: x.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Dilation2DBackpropFilter.js\nvar dilation2DBackpropFilterConfig = {\n kernelName: Dilation2DBackpropFilter,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, backend: backend2, attrs }) => {\n const { x, filter, dy } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const cpuBackend = backend2;\n const $x = util_exports.toNestedArray(x.shape, cpuBackend.data.get(x.dataId).values);\n const $filter = util_exports.toNestedArray(filter.shape, cpuBackend.data.get(filter.dataId).values);\n const { batchSize, inHeight, inWidth, inChannels, outHeight, outWidth, padInfo, strideHeight, strideWidth, filterHeight, filterWidth, dilationHeight, dilationWidth, outShape } = backend_util_exports.computeDilation2DInfo(x.shape, filter.shape, strides, pad3, \"NHWC\", dilations);\n util_exports.assert(dy.rank === outShape.length, () => `Error in ${Dilation2DBackpropFilter}, dy must have the same rank as output ${outShape.length}, but got ${dy.rank}`);\n const $dy = util_exports.toNestedArray(outShape, cpuBackend.data.get(dy.dataId).values);\n const gradients = util_exports.makeZerosNestedTypedArray(filter.shape, filter.dtype);\n for (let b = 0; b < batchSize; ++b) {\n for (let hOut = 0; hOut < outHeight; ++hOut) {\n const hBeg = hOut * strideHeight - padInfo.top;\n for (let wOut = 0; wOut < outWidth; ++wOut) {\n const wBeg = wOut * strideWidth - padInfo.left;\n for (let d = 0; d < inChannels; ++d) {\n let curVal = Number.MIN_SAFE_INTEGER;\n let hMax = 0;\n let wMax = 0;\n for (let h = 0; h < filterHeight; ++h) {\n const hIn = hBeg + h * dilationHeight;\n if (hIn >= 0 && hIn < inHeight) {\n for (let w = 0; w < filterWidth; ++w) {\n const wIn = wBeg + w * dilationWidth;\n if (wIn >= 0 && wIn < inWidth) {\n const val = $x[b][hIn][wIn][d] + $filter[h][w][d];\n if (val > curVal) {\n curVal = val;\n hMax = h;\n wMax = w;\n }\n }\n }\n }\n }\n gradients[hMax][wMax][d] += $dy[b][hOut][wOut][d];\n }\n }\n }\n }\n const dataId = cpuBackend.write(util_exports.toTypedArray(gradients, x.dtype), filter.shape, filter.dtype);\n return { dataId, shape: filter.shape, dtype: filter.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Dilation2DBackpropInput.js\nvar dilation2DBackpropInputConfig = {\n kernelName: Dilation2DBackpropInput,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, backend: backend2, attrs }) => {\n const { x, filter, dy } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const cpuBackend = backend2;\n const $x = util_exports.toNestedArray(x.shape, cpuBackend.data.get(x.dataId).values);\n const $filter = util_exports.toNestedArray(filter.shape, cpuBackend.data.get(filter.dataId).values);\n const { batchSize, inHeight, inWidth, inChannels, outHeight, outWidth, padInfo, strideHeight, strideWidth, filterHeight, filterWidth, dilationHeight, dilationWidth, outShape } = backend_util_exports.computeDilation2DInfo(x.shape, filter.shape, strides, pad3, \"NHWC\", dilations);\n util_exports.assert(dy.rank === outShape.length, () => `Error in ${Dilation2DBackpropInput}, dy must have the same rank as output ${outShape.length}, but got ${dy.rank}`);\n const $dy = util_exports.toNestedArray(outShape, cpuBackend.data.get(dy.dataId).values);\n const gradients = util_exports.makeZerosNestedTypedArray(x.shape, x.dtype);\n for (let b = 0; b < batchSize; ++b) {\n for (let hOut = 0; hOut < outHeight; ++hOut) {\n const hBeg = hOut * strideHeight - padInfo.top;\n for (let wOut = 0; wOut < outWidth; ++wOut) {\n const wBeg = wOut * strideWidth - padInfo.left;\n for (let d = 0; d < inChannels; ++d) {\n let curVal = Number.MIN_SAFE_INTEGER;\n let hInMax = hBeg < 0 ? 0 : hBeg;\n let wInMax = wBeg < 0 ? 0 : wBeg;\n for (let h = 0; h < filterHeight; ++h) {\n const hIn = hBeg + h * dilationHeight;\n if (hIn >= 0 && hIn < inHeight) {\n for (let w = 0; w < filterWidth; ++w) {\n const wIn = wBeg + w * dilationWidth;\n if (wIn >= 0 && wIn < inWidth) {\n const val = $x[b][hIn][wIn][d] + $filter[h][w][d];\n if (val > curVal) {\n curVal = val;\n hInMax = hIn;\n wInMax = wIn;\n }\n }\n }\n }\n }\n gradients[b][hInMax][wInMax][d] += $dy[b][hOut][wOut][d];\n }\n }\n }\n }\n const dataId = cpuBackend.write(util_exports.toTypedArray(gradients, x.dtype), x.shape, x.dtype);\n return { dataId, shape: x.shape, dtype: x.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sum.js\nfunction sum3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"sum\");\n let $x;\n if (x.dtype === \"bool\") {\n $x = cast3({ inputs: { x }, backend: backend2, attrs: { dtype: \"int32\" } });\n } else {\n $x = identity2({ inputs: { x }, backend: backend2 });\n }\n const xRank = $x.shape.length;\n const axes = util_exports.parseAxisParam(axis, $x.shape);\n const permutation = backend_util_exports.getAxesPermutation(axes, xRank);\n let reductionAxes = axes;\n let permutedX = $x;\n if (permutation != null) {\n permutedX = transpose2({ inputs: { x: $x }, backend: backend2, attrs: { perm: permutation } });\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"sum\", reductionAxes, permutedX.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, reductionAxes);\n const resultDtype = backend_util_exports.upcastType(permutedX.dtype, \"int32\");\n let result = zeros3(backend2, outShape, resultDtype);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const vals = backend2.data.get(result.dataId).values;\n const aVals = backend2.data.get(permutedX.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let sum7 = 0;\n for (let j = 0; j < reduceSize; ++j) {\n sum7 += aVals[offset + j];\n }\n vals[i2] = sum7;\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(result.shape, axes);\n const oldResult = result;\n result = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: newShape } });\n backend2.disposeIntermediateTensorInfo(oldResult);\n }\n backend2.disposeIntermediateTensorInfo($x);\n if (permutation != null) {\n backend2.disposeIntermediateTensorInfo(permutedX);\n }\n return result;\n}\nvar sumConfig = {\n kernelName: Sum,\n backendName: \"cpu\",\n kernelFunc: sum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Einsum.js\nfunction einsum2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { equation } = attrs;\n const tensors = inputs;\n const { allDims, summedDims, idDims } = backend_util_exports.decodeEinsumEquation(equation, tensors.length);\n backend_util_exports.checkEinsumDimSizes(allDims.length, idDims, tensors);\n const { path, steps } = backend_util_exports.getEinsumComputePath(summedDims, idDims);\n const nSteps = steps.length;\n let out = null;\n let numDimsRemaining = allDims.length;\n const tensorsToDispose = [];\n for (let i2 = 0; i2 < nSteps; ++i2) {\n for (const idTerm of steps[i2]) {\n const { permutationIndices: perm, expandDims: dimsToExpand } = backend_util_exports.getEinsumPermutation(numDimsRemaining, idDims[idTerm]);\n let x;\n if (backend_util_exports.isIdentityPermutation(perm)) {\n x = tensors[idTerm];\n } else {\n x = transpose2({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } });\n tensorsToDispose.push(x);\n }\n const targetShape = x.shape.slice();\n for (let k = 0; k < dimsToExpand.length; ++k) {\n targetShape.splice(dimsToExpand[k], 0, 1);\n }\n if (!util_exports.arraysEqual(x.shape, targetShape)) {\n x = reshape3({ inputs: { x }, backend: backend2, attrs: { shape: targetShape } });\n tensorsToDispose.push(x);\n }\n if (out === null) {\n out = x;\n } else {\n out = multiply2({ inputs: { a: x, b: out }, backend: backend2 });\n tensorsToDispose.push(out);\n }\n }\n if (i2 < nSteps - 1) {\n if (path[i2] >= 0) {\n out = sum3({\n inputs: { x: out },\n backend: backend2,\n attrs: {\n axis: path[i2] - (allDims.length - numDimsRemaining),\n keepDims: false\n }\n });\n tensorsToDispose.push(out);\n }\n numDimsRemaining--;\n }\n }\n for (const tensorInfo of tensorsToDispose) {\n if (tensorInfo === out) {\n continue;\n }\n backend2.disposeIntermediateTensorInfo(tensorInfo);\n }\n return out;\n}\nvar einsumConfig = {\n kernelName: Einsum,\n backendName: \"cpu\",\n kernelFunc: einsum2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/EluGrad.js\nfunction eluGrad(args) {\n const { inputs, backend: backend2 } = args;\n const { dy, y } = inputs;\n assertNotComplex([dy, y], \"eluGrad\");\n const resultValues = new Float32Array(util_exports.sizeFromShape(y.shape));\n const values = backend2.data.get(y.dataId).values;\n const dyValues = backend2.data.get(dy.dataId).values;\n for (let i2 = 0; i2 < values.length; ++i2) {\n const v = values[i2];\n if (v >= 1) {\n resultValues[i2] = dyValues[i2];\n } else {\n resultValues[i2] = dyValues[i2] * (v + 1);\n }\n }\n return backend2.makeTensorInfo(y.shape, \"float32\", resultValues);\n}\nvar eluGradConfig2 = {\n kernelName: EluGrad,\n backendName: \"cpu\",\n kernelFunc: eluGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Erf.js\nvar p = backend_util_exports.ERF_P;\nvar a1 = backend_util_exports.ERF_A1;\nvar a2 = backend_util_exports.ERF_A2;\nvar a3 = backend_util_exports.ERF_A3;\nvar a4 = backend_util_exports.ERF_A4;\nvar a5 = backend_util_exports.ERF_A5;\nvar erf2 = unaryKernelFunc(Erf, (xi) => {\n const sign4 = Math.sign(xi);\n const v = Math.abs(xi);\n const t2 = 1 / (1 + p * v);\n return sign4 * (1 - ((((a5 * t2 + a4) * t2 + a3) * t2 + a2) * t2 + a1) * t2 * Math.exp(-v * v));\n});\nvar erfConfig = {\n kernelName: Erf,\n backendName: \"cpu\",\n kernelFunc: erf2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ExpandDims.js\nfunction expandDims3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { input: input2 } = inputs;\n const { dim } = attrs;\n const inputRank = input2.shape.length;\n const newShape = input2.shape.slice();\n let $dim = dim;\n if (dim < 0) {\n util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`);\n $dim = inputRank + dim + 1;\n }\n newShape.splice($dim, 0, 1);\n return reshape3({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } });\n}\nvar expandDimsConfig = {\n kernelName: ExpandDims,\n backendName: \"cpu\",\n kernelFunc: expandDims3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/RealDiv.js\nvar realDivImpl = createSimpleBinaryKernelImpl((a, b) => a / b);\nvar div2 = binaryKernelFunc(RealDiv, realDivImpl);\nvar realDivConfig = {\n kernelName: RealDiv,\n backendName: \"cpu\",\n kernelFunc: div2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/fft_utils.js\nfunction fftBatch(input2, inverse, cpuBackend) {\n const inputShape = input2.shape;\n const batch = inputShape[0];\n const innerDim = inputShape[1];\n const inputVals = cpuBackend.data.get(input2.dataId);\n const real2D = inputVals.complexTensorInfos.real;\n const imag2D = inputVals.complexTensorInfos.imag;\n const resultShape = [batch, innerDim];\n const resultSize = util_exports.sizeFromShape(resultShape);\n const resultReal = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n const resultImag = util_exports.getTypedArrayFromDType(\"float32\", resultSize);\n for (let b = 0; b < batch; b++) {\n const r2 = slice2({\n inputs: { x: real2D },\n backend: cpuBackend,\n attrs: { begin: [b, 0], size: [1, innerDim] }\n });\n const i2 = slice2({\n inputs: { x: imag2D },\n backend: cpuBackend,\n attrs: { begin: [b, 0], size: [1, innerDim] }\n });\n const input3 = complex2({ inputs: { real: r2, imag: i2 }, backend: cpuBackend });\n const { real: real5, imag: imag5 } = fftImpl(input3, inverse, cpuBackend);\n const res = backend_util_exports.mergeRealAndImagArrays(real5, imag5);\n for (let d = 0; d < innerDim; d++) {\n const c = backend_util_exports.getComplexWithIndex(res, d);\n resultReal[b * innerDim + d] = c.real;\n resultImag[b * innerDim + d] = c.imag;\n }\n cpuBackend.disposeIntermediateTensorInfo(r2);\n cpuBackend.disposeIntermediateTensorInfo(i2);\n cpuBackend.disposeIntermediateTensorInfo(input3);\n }\n const $realInfo = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultReal);\n const $imagInfo = cpuBackend.makeTensorInfo(resultShape, \"float32\", resultImag);\n const result = complex2({ inputs: { real: $realInfo, imag: $imagInfo }, backend: cpuBackend });\n cpuBackend.disposeIntermediateTensorInfo($realInfo);\n cpuBackend.disposeIntermediateTensorInfo($imagInfo);\n return result;\n}\nfunction fftImpl(input2, inverse, cpuBackend) {\n const inputSize = util_exports.sizeFromShape(input2.shape);\n const inputVals = cpuBackend.data.get(input2.dataId);\n const realVals = cpuBackend.data.get(inputVals.complexTensorInfos.real.dataId).values;\n const imagVals = cpuBackend.data.get(inputVals.complexTensorInfos.imag.dataId).values;\n if (isExponentOf2(inputSize)) {\n const result = fftRadix2(realVals, imagVals, inputSize, inverse, cpuBackend);\n const resultShape = [input2.shape[0], input2.shape[1]];\n if (inverse) {\n const realInfo = cpuBackend.makeTensorInfo(resultShape, \"float32\", result.real);\n const imagInfo = cpuBackend.makeTensorInfo(resultShape, \"float32\", result.imag);\n const sizeInfo = cpuBackend.makeTensorInfo([], \"float32\", util_exports.createScalarValue(inputSize, \"float32\"));\n const sizeInfoCopy = identity2({ inputs: { x: sizeInfo }, backend: cpuBackend });\n const divRealInfo = realDivConfig.kernelFunc({ inputs: { a: realInfo, b: sizeInfo }, backend: cpuBackend });\n const divImagInfo = realDivConfig.kernelFunc({ inputs: { a: imagInfo, b: sizeInfoCopy }, backend: cpuBackend });\n const divRealVals = cpuBackend.data.get(divRealInfo.dataId).values;\n const divImagVals = cpuBackend.data.get(divImagInfo.dataId).values;\n cpuBackend.disposeIntermediateTensorInfo(realInfo);\n cpuBackend.disposeIntermediateTensorInfo(imagInfo);\n cpuBackend.disposeIntermediateTensorInfo(sizeInfo);\n cpuBackend.disposeIntermediateTensorInfo(sizeInfoCopy);\n cpuBackend.disposeIntermediateTensorInfo(divRealInfo);\n cpuBackend.disposeIntermediateTensorInfo(divImagInfo);\n return { real: divRealVals, imag: divImagVals };\n }\n return result;\n } else {\n const data = backend_util_exports.mergeRealAndImagArrays(realVals, imagVals);\n const rawOutput = fourierTransformByMatmul(data, inputSize, inverse);\n return backend_util_exports.splitRealAndImagArrays(rawOutput);\n }\n}\nfunction isExponentOf2(size) {\n return (size & size - 1) === 0;\n}\nfunction fftRadix2(realVals, imagVals, size, inverse, cpuBackend) {\n if (size === 1) {\n return { real: realVals, imag: imagVals };\n }\n const data = backend_util_exports.mergeRealAndImagArrays(realVals, imagVals);\n const half = size / 2;\n const evenComplex = backend_util_exports.complexWithEvenIndex(data);\n const evenRealVals = evenComplex.real;\n const evenImagVals = evenComplex.imag;\n const evenShape = [evenRealVals.length];\n const evenRealInfo = cpuBackend.makeTensorInfo(evenShape, \"float32\", evenRealVals);\n const evenImagInfo = cpuBackend.makeTensorInfo(evenShape, \"float32\", evenImagVals);\n const evenTensorInfo = complex2({ inputs: { real: evenRealInfo, imag: evenImagInfo }, backend: cpuBackend });\n const oddComplex = backend_util_exports.complexWithOddIndex(data);\n const oddRealVals = oddComplex.real;\n const oddImagVals = oddComplex.imag;\n const oddShape = [oddRealVals.length];\n const oddRealInfo = cpuBackend.makeTensorInfo(oddShape, \"float32\", oddRealVals);\n const oddImagInfo = cpuBackend.makeTensorInfo(oddShape, \"float32\", oddImagVals);\n const oddTensorInfo = complex2({ inputs: { real: oddRealInfo, imag: oddImagInfo }, backend: cpuBackend });\n const $evenComplex = fftRadix2(evenRealVals, evenImagVals, half, inverse, cpuBackend);\n const $evenRealVals = $evenComplex.real;\n const $evenImagVals = $evenComplex.imag;\n const $evenShape = [$evenRealVals.length];\n const $evenRealInfo = cpuBackend.makeTensorInfo($evenShape, \"float32\", $evenRealVals);\n const $evenImagInfo = cpuBackend.makeTensorInfo($evenShape, \"float32\", $evenImagVals);\n const $evenTensorInfo = complex2({\n inputs: { real: $evenRealInfo, imag: $evenImagInfo },\n backend: cpuBackend\n });\n const $oddComplex = fftRadix2(oddRealVals, oddImagVals, half, inverse, cpuBackend);\n const $oddRealVals = $oddComplex.real;\n const $oddImagVals = $oddComplex.imag;\n const $oddShape = [$oddRealVals.length];\n const $oddRealInfo = cpuBackend.makeTensorInfo($oddShape, \"float32\", $oddRealVals);\n const $oddImagInfo = cpuBackend.makeTensorInfo($oddShape, \"float32\", $oddImagVals);\n const $oddTensorInfo = complex2({ inputs: { real: $oddRealInfo, imag: $oddImagInfo }, backend: cpuBackend });\n const e2 = backend_util_exports.exponents(size, inverse);\n const eShape = [e2.real.length];\n const eRealInfo = cpuBackend.makeTensorInfo(eShape, \"float32\", e2.real);\n const eImagInfo = cpuBackend.makeTensorInfo(eShape, \"float32\", e2.imag);\n const complexInfo = complex2({ inputs: { real: eRealInfo, imag: eImagInfo }, backend: cpuBackend });\n const exponentInfo = multiply2({ inputs: { a: complexInfo, b: $oddTensorInfo }, backend: cpuBackend });\n const addPart = add4({\n inputs: { a: $evenTensorInfo, b: exponentInfo },\n backend: cpuBackend\n });\n const subPart = sub2({\n inputs: { a: $evenTensorInfo, b: exponentInfo },\n backend: cpuBackend\n });\n const addPartReal = real2({ inputs: { input: addPart }, backend: cpuBackend });\n const subPartReal = real2({ inputs: { input: subPart }, backend: cpuBackend });\n const addPartImag = imag2({ inputs: { input: addPart }, backend: cpuBackend });\n const subPartImag = imag2({ inputs: { input: subPart }, backend: cpuBackend });\n const $real = concat2({\n inputs: [addPartReal, subPartReal],\n backend: cpuBackend,\n attrs: { axis: 0 }\n });\n const $imag = concat2({\n inputs: [addPartImag, subPartImag],\n backend: cpuBackend,\n attrs: { axis: 0 }\n });\n const $realVals = cpuBackend.data.get($real.dataId).values;\n const $imagVals = cpuBackend.data.get($imag.dataId).values;\n cpuBackend.disposeIntermediateTensorInfo(evenRealInfo);\n cpuBackend.disposeIntermediateTensorInfo(evenImagInfo);\n cpuBackend.disposeIntermediateTensorInfo(evenTensorInfo);\n cpuBackend.disposeIntermediateTensorInfo(oddRealInfo);\n cpuBackend.disposeIntermediateTensorInfo(oddImagInfo);\n cpuBackend.disposeIntermediateTensorInfo(oddTensorInfo);\n cpuBackend.disposeIntermediateTensorInfo($evenRealInfo);\n cpuBackend.disposeIntermediateTensorInfo($evenImagInfo);\n cpuBackend.disposeIntermediateTensorInfo($evenTensorInfo);\n cpuBackend.disposeIntermediateTensorInfo($oddRealInfo);\n cpuBackend.disposeIntermediateTensorInfo($oddImagInfo);\n cpuBackend.disposeIntermediateTensorInfo($oddTensorInfo);\n cpuBackend.disposeIntermediateTensorInfo(eRealInfo);\n cpuBackend.disposeIntermediateTensorInfo(eImagInfo);\n cpuBackend.disposeIntermediateTensorInfo(complexInfo);\n cpuBackend.disposeIntermediateTensorInfo(exponentInfo);\n cpuBackend.disposeIntermediateTensorInfo(addPart);\n cpuBackend.disposeIntermediateTensorInfo(subPart);\n cpuBackend.disposeIntermediateTensorInfo(addPartReal);\n cpuBackend.disposeIntermediateTensorInfo(addPartImag);\n cpuBackend.disposeIntermediateTensorInfo(subPartReal);\n cpuBackend.disposeIntermediateTensorInfo(subPartImag);\n cpuBackend.disposeIntermediateTensorInfo($real);\n cpuBackend.disposeIntermediateTensorInfo($imag);\n return { real: $realVals, imag: $imagVals };\n}\nfunction fourierTransformByMatmul(data, size, inverse) {\n const ret = new Float32Array(size * 2);\n for (let r2 = 0; r2 < size; r2++) {\n let real5 = 0;\n let imag5 = 0;\n for (let c = 0; c < size; c++) {\n const e2 = backend_util_exports.exponent(r2 * c, size, inverse);\n const term = backend_util_exports.getComplexWithIndex(data, c);\n real5 += term.real * e2.real - term.imag * e2.imag;\n imag5 += term.real * e2.imag + term.imag * e2.real;\n }\n if (inverse) {\n real5 /= size;\n imag5 /= size;\n }\n backend_util_exports.assignToTypedArray(ret, real5, imag5, r2);\n }\n return ret;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FFT.js\nfunction fft2(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputSize = util_exports.sizeFromShape(input2.shape);\n const innerDimensionSize = input2.shape[input2.shape.length - 1];\n const batch = inputSize / innerDimensionSize;\n const input2D = reshape3({\n inputs: { x: input2 },\n backend: backend2,\n attrs: { shape: [batch, innerDimensionSize] }\n });\n const result = fftBatch(input2D, false, backend2);\n const resultReshaped = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: input2.shape } });\n backend2.disposeIntermediateTensorInfo(input2D);\n backend2.disposeIntermediateTensorInfo(result);\n return resultReshaped;\n}\nvar fftConfig = {\n kernelName: FFT,\n backendName: \"cpu\",\n kernelFunc: fft2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Fill.js\nfunction fill2(args) {\n const { backend: backend2, attrs } = args;\n const { shape, value, dtype } = attrs;\n const $dtype = dtype || util_exports.inferDtype(value);\n const values = util_exports.getArrayFromDType($dtype, util_exports.sizeFromShape(shape));\n fillValues(values, value, $dtype);\n return backend2.makeTensorInfo(shape, $dtype, values);\n}\nvar fillConfig = {\n kernelName: Fill,\n backendName: \"cpu\",\n kernelFunc: fill2\n};\nfunction fillValues(values, value, dtype) {\n if (dtype === \"string\") {\n values.fill(value);\n } else {\n values.fill(value);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FlipLeftRight.js\nvar flipLeftRightConfig = {\n kernelName: FlipLeftRight,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const cpuBackend = backend2;\n const output = util_exports.getTypedArrayFromDType(image2.dtype, util_exports.sizeFromShape(image2.shape));\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const imageVals = cpuBackend.data.get(image2.dataId).values;\n for (let batchIdx = 0; batchIdx < batch; batchIdx++) {\n const batchOffset = batchIdx * imageWidth * imageHeight * numChannels;\n for (let row = 0; row < imageHeight; row++) {\n const rowOffset = row * (imageWidth * numChannels);\n for (let col = 0; col < imageWidth; col++) {\n const colOffset = col * numChannels;\n for (let channel = 0; channel < numChannels; channel++) {\n const coordX = Math.round(imageWidth - col - 1);\n const outIdx = batchOffset + rowOffset + colOffset + channel;\n let outputValue = imageVals[outIdx];\n if (coordX >= 0 && coordX < imageWidth) {\n const rotatedColOffset = coordX * numChannels;\n const imageIdx = batchOffset + rowOffset + rotatedColOffset + channel;\n outputValue = imageVals[imageIdx];\n }\n output[outIdx] = outputValue;\n }\n }\n }\n }\n const dataId = cpuBackend.write(output, image2.shape, image2.dtype);\n return { dataId, shape: image2.shape, dtype: image2.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FloorDiv.js\nvar floorDivImpl = createSimpleBinaryKernelImpl((a, b) => Math.floor(a / b));\nvar floorDiv2 = binaryKernelFunc(FloorDiv, floorDivImpl, null, \"int32\");\nvar floorDivConfig = {\n kernelName: FloorDiv,\n backendName: \"cpu\",\n kernelFunc: floorDiv2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FusedConv2D.js\nfunction fusedConv2D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n let result = conv2D({\n inputs: { x, filter },\n backend: backend2,\n attrs: { strides, pad: pad3, dataFormat, dilations, dimRoundingMode }\n });\n if (bias) {\n const resultOld = result;\n if (dataFormat === \"NCHW\" && bias.shape.length === 1 && bias.shape[0] !== 1) {\n const reshapedBias = reshape3({ inputs: { x: bias }, backend: backend2, attrs: { shape: [bias.shape[0], 1, 1] } });\n result = add4({ inputs: { a: result, b: reshapedBias }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(reshapedBias);\n } else {\n result = add4({ inputs: { a: result, b: bias }, backend: backend2 });\n }\n backend2.disposeIntermediateTensorInfo(resultOld);\n }\n if (activation2) {\n const resultOld = result;\n if (dataFormat === \"NCHW\" && activation2 === \"prelu\" && preluActivationWeights.shape.length === 1 && preluActivationWeights.shape[0] !== 1) {\n const reshapedAlpha = reshape3({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: [preluActivationWeights.shape[0], 1, 1] }\n });\n result = applyActivation2(backend2, result, activation2, reshapedAlpha, leakyreluAlpha);\n backend2.disposeIntermediateTensorInfo(reshapedAlpha);\n } else {\n result = applyActivation2(backend2, result, activation2, preluActivationWeights, leakyreluAlpha);\n }\n backend2.disposeIntermediateTensorInfo(resultOld);\n }\n return result;\n}\nvar fusedConv2DConfig = {\n kernelName: FusedConv2D,\n backendName: \"cpu\",\n kernelFunc: fusedConv2D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/FusedDepthwiseConv2D.js\nfunction fusedDepthwiseConv2D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n let result = depthwiseConv2dNative({\n inputs: { x, filter },\n backend: backend2,\n attrs: { strides, pad: pad3, dataFormat, dilations, dimRoundingMode }\n });\n if (bias) {\n const oldResult = result;\n result = add4({ inputs: { a: result, b: bias }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(oldResult);\n }\n if (activation2) {\n const oldResult = result;\n result = applyActivation2(backend2, result, activation2, preluActivationWeights, leakyreluAlpha);\n backend2.disposeIntermediateTensorInfo(oldResult);\n }\n return result;\n}\nvar fusedDepthwiseConv2DConfig = {\n kernelName: FusedDepthwiseConv2D,\n backendName: \"cpu\",\n kernelFunc: fusedDepthwiseConv2D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherNd.js\nfunction gatherNd(args) {\n const { inputs, backend: backend2 } = args;\n const { params, indices } = inputs;\n const paramsSize = util_exports.sizeFromShape(params.shape);\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n const [resultShape, numSlices, sliceSize, strides] = backend_util_exports.prepareAndValidate(params, indices);\n if (numSlices === 0) {\n return backend2.makeTensorInfo(resultShape, params.dtype, []);\n }\n const indicesData = backend2.data.get(indices.dataId).values;\n const paramsBuf = backend2.bufferSync(params);\n const outBuf = gatherNdImpl(indicesData, paramsBuf, params.dtype, numSlices, sliceRank, sliceSize, strides, params.shape, paramsSize);\n return backend2.makeTensorInfo(resultShape, params.dtype, outBuf.values);\n}\nvar gatherNdConfig = {\n kernelName: GatherNd,\n backendName: \"cpu\",\n kernelFunc: gatherNd\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherV2.js\nfunction gatherV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, indices } = inputs;\n const { axis, batchDims } = attrs;\n assertNotComplex([x, indices], \"gatherV2\");\n const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0];\n const indicesVals = backend2.data.get(indices.dataId).values;\n const axisDim = x.shape[parsedAxis];\n for (let i2 = 0; i2 < indicesVals.length; ++i2) {\n const index = indicesVals[i2];\n util_exports.assert(index <= axisDim - 1 && index >= 0, () => `GatherV2: the index value ${index} is not in [0, ${axisDim - 1}]`);\n }\n let $batchDims = batchDims;\n if (batchDims == null) {\n $batchDims = 0;\n }\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, $batchDims);\n const flattenX = reshape3({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n shapeInfo.dimSize,\n shapeInfo.sliceSize\n ]\n }\n });\n const flattenIndex = reshape3({\n inputs: { x: indices },\n backend: backend2,\n attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] }\n });\n const flattenOutputShape = [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n indicesSize / shapeInfo.batchSize,\n shapeInfo.sliceSize\n ];\n const indicesBuf = backend2.bufferSync(flattenIndex);\n const xBuf = backend2.bufferSync(flattenX);\n const outBuf = gatherV2Impl(xBuf, indicesBuf, flattenOutputShape);\n backend2.disposeIntermediateTensorInfo(flattenX);\n backend2.disposeIntermediateTensorInfo(flattenIndex);\n return backend2.makeTensorInfo(shapeInfo.outputShape, outBuf.dtype, outBuf.values);\n}\nvar gatherV2Config = {\n kernelName: GatherV2,\n backendName: \"cpu\",\n kernelFunc: gatherV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/IFFT.js\nfunction ifft2(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputSize = util_exports.sizeFromShape(input2.shape);\n const innerDimensionSize = input2.shape[input2.shape.length - 1];\n const batch = inputSize / innerDimensionSize;\n const input2D = reshape3({\n inputs: { x: input2 },\n backend: backend2,\n attrs: { shape: [batch, innerDimensionSize] }\n });\n const result = fftBatch(input2D, true, backend2);\n const resultReshaped = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: input2.shape } });\n backend2.disposeIntermediateTensorInfo(input2D);\n backend2.disposeIntermediateTensorInfo(result);\n return resultReshaped;\n}\nvar ifftConfig = {\n kernelName: IFFT,\n backendName: \"cpu\",\n kernelFunc: ifft2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/IsFinite.js\nvar isFinite3 = unaryKernelFunc(IsFinite, (xi) => Number.isFinite(xi) ? 1 : 0, \"bool\");\nvar isFiniteConfig = {\n kernelName: IsFinite,\n backendName: \"cpu\",\n kernelFunc: isFinite3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/IsInf.js\nvar isInf2 = unaryKernelFunc(IsInf, (xi) => Math.abs(xi) === Infinity ? 1 : 0, \"bool\");\nvar isInfConfig = {\n kernelName: IsInf,\n backendName: \"cpu\",\n kernelFunc: isInf2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/IsNaN.js\nvar isNaN3 = unaryKernelFunc(IsNan, (xi) => Number.isNaN(xi) ? 1 : 0, \"bool\");\nvar isNaNConfig = {\n kernelName: IsNan,\n backendName: \"cpu\",\n kernelFunc: isNaN3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LinSpace.js\nfunction linSpace(args) {\n const { backend: backend2, attrs } = args;\n const { start, stop, num } = attrs;\n const outVals = linSpaceImpl(start, stop, num);\n return backend2.makeTensorInfo([outVals.length], \"float32\", outVals);\n}\nvar linSpaceConfig = {\n kernelName: LinSpace,\n backendName: \"cpu\",\n kernelFunc: linSpace\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Log1p.js\nvar log1p2 = unaryKernelFunc(Log1p, (xi) => Math.log1p(xi));\nvar log1pConfig = {\n kernelName: Log1p,\n backendName: \"cpu\",\n kernelFunc: log1p2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LogicalAnd.js\nvar logicalAndImpl = createSimpleBinaryKernelImpl((a, b) => a && b);\nvar logicalAnd2 = binaryKernelFunc(LogicalAnd, logicalAndImpl, null, \"bool\");\nvar logicalAndConfig = {\n kernelName: LogicalAnd,\n backendName: \"cpu\",\n kernelFunc: logicalAnd2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LogicalNot.js\nvar logicalNot2 = unaryKernelFunc(LogicalNot, (xi) => xi ? 0 : 1, \"bool\");\nvar logicalNotConfig = {\n kernelName: LogicalNot,\n backendName: \"cpu\",\n kernelFunc: logicalNot2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LogicalOr.js\nvar logicalOrImpl = createSimpleBinaryKernelImpl((a, b) => a || b);\nvar logicalOr2 = binaryKernelFunc(LogicalOr, logicalOrImpl, null, \"bool\");\nvar logicalOrConfig = {\n kernelName: LogicalOr,\n backendName: \"cpu\",\n kernelFunc: logicalOr2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LRN.js\nfunction lRN(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { depthRadius, bias, alpha, beta } = attrs;\n assertNotComplex(x, \"LRN\");\n const channels = x.shape[3];\n const maxD = channels - 1;\n const xValues = backend2.data.get(x.dataId).values;\n const size = util_exports.sizeFromShape(x.shape);\n const result = new Float32Array(size);\n function sumAcrossChannels(offset) {\n const currentChannel = offset % channels;\n let beginSumOffset = offset - currentChannel + Math.max(0, currentChannel - depthRadius);\n const endSumOffset = offset - currentChannel + Math.min(currentChannel + depthRadius, maxD);\n let sum7 = 0;\n for (; beginSumOffset <= endSumOffset; beginSumOffset++) {\n const z = xValues[beginSumOffset];\n sum7 += z * z;\n }\n return sum7;\n }\n for (let offset = 0; offset < size; offset++) {\n const sum7 = sumAcrossChannels(offset);\n const val = xValues[offset] * Math.pow(bias + alpha * sum7, -beta);\n result[offset] = val;\n }\n return backend2.makeTensorInfo(x.shape, x.dtype, result);\n}\nvar LRNConfig = {\n kernelName: LRN,\n backendName: \"cpu\",\n kernelFunc: lRN\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LRNGrad.js\nfunction lRNGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, y, dy } = inputs;\n const { depthRadius, bias, alpha, beta } = attrs;\n assertNotComplex(dy, \"LRNGrad\");\n const dySize = util_exports.sizeFromShape(dy.shape);\n const channels = dy.shape[3];\n const dyValues = backend2.data.get(dy.dataId).values;\n const xValues = backend2.data.get(x.dataId).values;\n const yValues = backend2.data.get(y.dataId).values;\n const result = new Float32Array(dySize);\n const size = dySize;\n for (let offset = 0; offset < size; offset++) {\n const currentChannel = offset % channels;\n const depthBegin = offset - currentChannel + Math.max(0, currentChannel - depthRadius);\n const depthEnd = offset - currentChannel + Math.min(channels, currentChannel + depthRadius + 1);\n let norm2 = 0;\n for (let k = depthBegin; k < depthEnd; k++) {\n norm2 += Math.pow(xValues[k], 2);\n }\n norm2 = alpha * norm2 + bias;\n for (let k = depthBegin; k < depthEnd; k++) {\n let dyi = -2 * alpha * beta * xValues[k] * yValues[offset] / norm2;\n if (offset === k) {\n dyi += Math.pow(norm2, -beta);\n }\n dyi *= dyValues[offset];\n result[k] += dyi;\n }\n }\n return backend2.makeTensorInfo(dy.shape, x.dtype, result);\n}\nvar LRNGradConfig = {\n kernelName: LRNGrad,\n backendName: \"cpu\",\n kernelFunc: lRNGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Max.js\nfunction max3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { reductionIndices, keepDims } = attrs;\n const cpuBackend = backend2;\n let xShape = x.shape;\n const xRank = xShape.length;\n const origAxes = util_exports.parseAxisParam(reductionIndices, xShape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let xVals = cpuBackend.data.get(x.dataId).values;\n if (permutedAxes != null) {\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = xShape[permutedAxes[i2]];\n }\n xVals = transposeImpl(xVals, xShape, x.dtype, permutedAxes, newShape);\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n xShape = newShape;\n }\n assertNotComplex(x, \"max\");\n backend_util_exports.assertAxesAreInnerMostDims(\"max\", axes, xRank);\n const [maxOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(xShape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const result = maxImpl(xVals, reduceSize, maxOutShape, x.dtype);\n const dataId = cpuBackend.write(result, maxOutShape, x.dtype);\n let outShape = maxOutShape;\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(maxOutShape, origAxes);\n outShape = newShape;\n }\n return { dataId, shape: outShape, dtype: x.dtype };\n}\nvar maxConfig = {\n kernelName: Max,\n backendName: \"cpu\",\n kernelFunc: max3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPool.js\nfunction maxPool2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n assertNotComplex(x, \"maxPool\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n let res;\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n res = identity2({ inputs: { x }, backend: backend2 });\n } else {\n const xValues = backend2.data.get(x.dataId).values;\n const strides2 = util_exports.computeStrides(x.shape);\n const buffer2 = pool2(xValues, x.shape, x.dtype, strides2, convInfo, \"max\");\n res = backend2.makeTensorInfo(convInfo.outShape, x.dtype, buffer2.values);\n }\n return res;\n}\nvar maxPoolConfig = {\n kernelName: MaxPool,\n backendName: \"cpu\",\n kernelFunc: maxPool2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPool3D.js\nfunction maxPool3D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat } = attrs;\n assertNotComplex(x, \"maxPool3d\");\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode, dataFormat);\n const xValues = backend2.data.get(x.dataId).values;\n const outBuf = pool3d2(xValues, x.shape, x.dtype, util_exports.computeStrides(x.shape), convInfo, \"max\");\n return backend2.makeTensorInfo(outBuf.shape, \"float32\", outBuf.values);\n}\nvar maxPool3DConfig = {\n kernelName: MaxPool3D,\n backendName: \"cpu\",\n kernelFunc: maxPool3D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPool3DGrad.js\nfunction maxPool3DGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n assertNotComplex([dy, input2], \"maxPool3DGrad\");\n const convInfo = backend_util_exports.computePool3DInfo(input2.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const inputBuf = backend2.bufferSync(input2);\n const maxPosBuf = maxPool3dPositions(inputBuf, convInfo);\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = effectiveFilterDepth - 1 - convInfo.padInfo.front;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const dx = buffer(input2.shape, \"float32\");\n const dyBuf = backend2.bufferSync(dy);\n for (let batch = 0; batch < convInfo.batchSize; ++batch) {\n for (let channel = 0; channel < convInfo.inChannels; ++channel) {\n for (let dxDepth = 0; dxDepth < convInfo.inDepth; ++dxDepth) {\n for (let dxRow = 0; dxRow < convInfo.inHeight; ++dxRow) {\n for (let dxCol = 0; dxCol < convInfo.inWidth; ++dxCol) {\n const dyDepthCorner = dxDepth - padFront;\n const dyRowCorner = dxRow - padTop;\n const dyColCorner = dxCol - padLeft;\n let dotProd = 0;\n for (let wDepth = 0; wDepth < effectiveFilterDepth; wDepth += dilationDepth) {\n const dyDepth = (dyDepthCorner + wDepth) / strideDepth;\n if (dyDepth < 0 || dyDepth >= convInfo.outDepth || Math.floor(dyDepth) !== dyDepth) {\n continue;\n }\n for (let wRow = 0; wRow < effectiveFilterHeight; wRow += dilationHeight) {\n const dyRow = (dyRowCorner + wRow) / strideHeight;\n if (dyRow < 0 || dyRow >= convInfo.outHeight || Math.floor(dyRow) !== dyRow) {\n continue;\n }\n for (let wCol = 0; wCol < effectiveFilterWidth; wCol += dilationWidth) {\n const dyCol = (dyColCorner + wCol) / strideWidth;\n if (dyCol < 0 || dyCol >= convInfo.outWidth || Math.floor(dyCol) !== dyCol) {\n continue;\n }\n const maxPos = effectiveFilterDepth * effectiveFilterHeight * effectiveFilterWidth - 1 - maxPosBuf.get(batch, dyDepth, dyRow, dyCol, channel);\n const curPos = wDepth * effectiveFilterHeight * effectiveFilterWidth + wRow * effectiveFilterWidth + wCol;\n const mask = maxPos === curPos ? 1 : 0;\n if (mask === 0) {\n continue;\n }\n const pixel = dyBuf.get(batch, dyDepth, dyRow, dyCol, channel);\n dotProd += pixel * mask;\n }\n }\n }\n dx.set(dotProd, batch, dxDepth, dxRow, dxCol, channel);\n }\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar maxPool3DGradConfig2 = {\n kernelName: MaxPool3DGrad,\n backendName: \"cpu\",\n kernelFunc: maxPool3DGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPoolGrad.js\nfunction maxPoolGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2, output } = inputs;\n const x = input2;\n assertNotComplex([input2, output], \"maxPoolGrad\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const xValues = backend2.data.get(x.dataId).values;\n const maxPosBuf = buffer(convInfo.outShape, x.dtype, maxPoolPositions(xValues, x.shape, x.dtype, convInfo).values);\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const dx = buffer(x.shape, \"float32\");\n const dyData = backend2.data.get(dy.dataId).values;\n const dyBuf = buffer(dy.shape, \"float32\", dyData);\n for (let b = 0; b < convInfo.batchSize; ++b) {\n for (let d = 0; d < convInfo.inChannels; ++d) {\n for (let dxR = 0; dxR < convInfo.inHeight; ++dxR) {\n for (let dxC = 0; dxC < convInfo.inWidth; ++dxC) {\n const dyRCorner = dxR - padTop;\n const dyCCorner = dxC - padLeft;\n let dotProd = 0;\n for (let wR = 0; wR < effectiveFilterHeight; wR += dilationHeight) {\n const dyR = (dyRCorner + wR) / strideHeight;\n if (dyR < 0 || dyR >= convInfo.outHeight || Math.floor(dyR) !== dyR) {\n continue;\n }\n for (let wC = 0; wC < effectiveFilterWidth; wC += dilationWidth) {\n const dyC = (dyCCorner + wC) / strideWidth;\n if (dyC < 0 || dyC >= convInfo.outWidth || Math.floor(dyC) !== dyC) {\n continue;\n }\n const maxPos = effectiveFilterHeight * effectiveFilterWidth - 1 - maxPosBuf.get(b, dyR, dyC, d);\n const curPos = wR * effectiveFilterWidth + wC;\n const mask = maxPos === curPos ? 1 : 0;\n if (mask === 0) {\n continue;\n }\n const pixel = dyBuf.get(b, dyR, dyC, d);\n dotProd += pixel * mask;\n }\n }\n dx.set(dotProd, b, dxR, dxC, d);\n }\n }\n }\n }\n return backend2.makeTensorInfo(dx.shape, dx.dtype, dx.values);\n}\nvar maxPoolGradConfig2 = {\n kernelName: MaxPoolGrad,\n backendName: \"cpu\",\n kernelFunc: maxPoolGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPoolWithArgmax_impl.js\nfunction maxPoolWithArgmaxImpl(xValues, xShape, dtype, includeBatchInIndex, convInfo) {\n const strides = util_exports.computeStrides(xShape);\n const maxPools = pool2(xValues, xShape, dtype, strides, convInfo, \"max\");\n const maxPositions = maxPoolPositions(xValues, xShape, dtype, convInfo, true, includeBatchInIndex);\n return [maxPools.values, maxPositions.values];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MaxPoolWithArgmax.js\nvar maxPoolWithArgmaxConfig = {\n kernelName: MaxPoolWithArgmax,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, includeBatchInIndex } = attrs;\n const cpuBackend = backend2;\n assertNotComplex(x, \"MaxPoolWithArgmax\");\n const values = cpuBackend.data.get(x.dataId).values;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, [1, 1], pad3);\n const [pooled, indexes] = maxPoolWithArgmaxImpl(values, x.shape, x.dtype, includeBatchInIndex, convInfo);\n const pooledDataId = cpuBackend.write(pooled, convInfo.outShape, x.dtype);\n const indexesDataId = cpuBackend.write(indexes, convInfo.outShape, x.dtype);\n return [\n { dataId: pooledDataId, shape: convInfo.outShape, dtype: x.dtype },\n { dataId: indexesDataId, shape: convInfo.outShape, dtype: \"int32\" }\n ];\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Mean.js\nfunction mean2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const axes = util_exports.parseAxisParam(axis, x.shape);\n const shapes = backend_util_exports.computeOutAndReduceShapes(x.shape, axes);\n const reduceShape = shapes[1];\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const toDispose = [];\n const reduceSizeScalar = backend2.makeTensorInfo([], \"float32\", new Float32Array([reduceSize]));\n toDispose.push(reduceSizeScalar);\n const $x = cast3({ inputs: { x }, backend: backend2, attrs: { dtype: \"float32\" } });\n toDispose.push($x);\n const res = div2({ inputs: { a: $x, b: reduceSizeScalar }, backend: backend2 });\n toDispose.push(res);\n const result = sum3({ inputs: { x: res }, backend: backend2, attrs: { axis, keepDims } });\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar meanConfig = {\n kernelName: Mean,\n backendName: \"cpu\",\n kernelFunc: mean2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Min.js\nfunction min3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n assertNotComplex(x, \"min\");\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n if (permutedAxes != null) {\n $x = transpose2({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"min\", axes, $x.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes($x.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const vals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), $x.dtype);\n const aVals = backend2.data.get($x.dataId).values;\n for (let i2 = 0; i2 < vals.length; ++i2) {\n const offset = i2 * reduceSize;\n let min7 = aVals[offset];\n for (let j = 0; j < reduceSize; ++j) {\n const value = aVals[offset + j];\n if (Number.isNaN(value) || value < min7) {\n min7 = value;\n }\n }\n vals[i2] = min7;\n }\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo($x);\n }\n const result = backend2.makeTensorInfo(outShape, $x.dtype, vals);\n if (keepDims) {\n const expandedShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n const reshapedResult = reshape3({ inputs: { x: result }, backend: backend2, attrs: { shape: expandedShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return reshapedResult;\n }\n return result;\n}\nvar minConfig = {\n kernelName: Min,\n backendName: \"cpu\",\n kernelFunc: min3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/MirrorPad.js\nfunction mirrorPad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { paddings, mode } = attrs;\n assertNotComplex(x, \"mirrorPad\");\n const outShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n const start = paddings.map((p2) => p2[0]);\n const end = paddings.map((p2, i2) => p2[0] + x.shape[i2]);\n const offset = mode === \"reflect\" ? 0 : 1;\n const xVals = backend2.data.get(x.dataId).values;\n const xRank = x.shape.length;\n const xStrides = util_exports.computeStrides(x.shape);\n const resultSize = util_exports.sizeFromShape(outShape);\n const resultRank = outShape.length;\n const resultStrides = util_exports.computeStrides(outShape);\n const resVals = util_exports.getTypedArrayFromDType(x.dtype, resultSize);\n for (let i2 = 0; i2 < resultSize; i2++) {\n let coords3 = util_exports.indexToLoc(i2, resultRank, resultStrides);\n for (let i3 = 0; i3 < resultRank; i3++) {\n if (coords3[i3] < start[i3]) {\n coords3[i3] = start[i3] * 2 - coords3[i3] - offset;\n } else if (coords3[i3] >= end[i3]) {\n coords3[i3] = (end[i3] - 1) * 2 - coords3[i3] + offset;\n }\n }\n coords3 = coords3.map((c, i3) => c - start[i3]);\n const inIndex = util_exports.locToIndex(coords3, xRank, xStrides);\n resVals[i2] = xVals[inIndex];\n }\n const outId = backend2.write(resVals, outShape, x.dtype);\n return { dataId: outId, shape: outShape, dtype: x.dtype };\n}\nvar mirrorPadConfig = {\n kernelName: MirrorPad,\n backendName: \"cpu\",\n kernelFunc: mirrorPad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Mod.js\nvar modImpl = createSimpleBinaryKernelImpl((aValue, bValue) => {\n const rem = aValue % bValue;\n if (aValue < 0 && bValue < 0 || aValue >= 0 && bValue >= 0) {\n return rem;\n } else {\n return (rem + bValue) % bValue;\n }\n});\nvar mod2 = binaryKernelFunc(Mod, modImpl);\nvar modConfig = {\n kernelName: Mod,\n backendName: \"cpu\",\n kernelFunc: mod2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Multinomial.js\nvar seedrandom4 = __toESM(require_seedrandom2());\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Softmax.js\nfunction softmax3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { dim } = attrs;\n const logitsRank = logits.shape.length;\n let $dim = dim;\n if ($dim === -1) {\n $dim = logitsRank - 1;\n }\n if ($dim !== logitsRank - 1) {\n throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${logitsRank} and dim was ${$dim}`);\n }\n const axes = util_exports.parseAxisParam([$dim], logits.shape);\n const maxLogit = max3({\n inputs: { x: logits },\n backend: backend2,\n attrs: { reductionIndices: axes, keepDims: false }\n });\n const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes);\n const maxLogitReshaped = reshape3({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } });\n const a = sub2({ inputs: { a: logits, b: maxLogitReshaped }, backend: backend2 });\n const b = exp2({ inputs: { x: a }, backend: backend2 });\n const sumExp = sum3({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } });\n const sumReshaped = reshape3({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } });\n const result = div2({ inputs: { a: b, b: sumReshaped }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(maxLogit);\n backend2.disposeIntermediateTensorInfo(maxLogitReshaped);\n backend2.disposeIntermediateTensorInfo(a);\n backend2.disposeIntermediateTensorInfo(b);\n backend2.disposeIntermediateTensorInfo(sumExp);\n backend2.disposeIntermediateTensorInfo(sumReshaped);\n return result;\n}\nvar softmaxConfig = {\n kernelName: Softmax,\n backendName: \"cpu\",\n kernelFunc: softmax3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Multinomial.js\nfunction multinomial2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { numSamples, seed, normalized } = attrs;\n assertNotComplex(logits, \"multinomial\");\n const probabilities = normalized ? logits : softmax3({ inputs: { logits }, backend: backend2, attrs: { dim: -1 } });\n const batchSize = probabilities.shape[0];\n const numEvents = probabilities.shape[1];\n const probVals = backend2.data.get(probabilities.dataId).values;\n const resShape = [batchSize, numSamples];\n const resVals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(resShape), \"int32\");\n for (let b = 0; b < batchSize; ++b) {\n const offset = b * numEvents;\n const cdf = new Float32Array(numEvents - 1);\n cdf[0] = probVals[offset];\n for (let event = 1; event < cdf.length; ++event) {\n cdf[event] = cdf[event - 1] + probVals[offset + event];\n }\n const random = seedrandom4.alea(seed.toString());\n const outOffset = b * numSamples;\n for (let sampleId = 0; sampleId < numSamples; ++sampleId) {\n const r2 = random();\n resVals[outOffset + sampleId] = cdf.length;\n for (let event = 0; event < cdf.length; event++) {\n if (r2 < cdf[event]) {\n resVals[outOffset + sampleId] = event;\n break;\n }\n }\n }\n }\n if (!normalized) {\n backend2.disposeIntermediateTensorInfo(probabilities);\n }\n return backend2.makeTensorInfo(resShape, \"int32\", resVals);\n}\nvar multinomialConfig = {\n kernelName: Multinomial,\n backendName: \"cpu\",\n kernelFunc: multinomial2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NonMaxSuppressionV3.js\nvar nonMaxSuppressionV3Impl2 = kernel_impls_exports.nonMaxSuppressionV3Impl;\nfunction nonMaxSuppressionV3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold } = attrs;\n assertNotComplex(boxes, \"NonMaxSuppression\");\n const boxesVals = backend2.data.get(boxes.dataId).values;\n const scoresVals = backend2.data.get(scores.dataId).values;\n const { selectedIndices } = nonMaxSuppressionV3Impl2(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold);\n return backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices));\n}\nvar nonMaxSuppressionV3Config = {\n kernelName: NonMaxSuppressionV3,\n backendName: \"cpu\",\n kernelFunc: nonMaxSuppressionV3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NonMaxSuppressionV4.js\nvar nonMaxSuppressionV4Impl2 = kernel_impls_exports.nonMaxSuppressionV4Impl;\nfunction nonMaxSuppressionV4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize } = attrs;\n assertNotComplex(boxes, \"NonMaxSuppressionPadded\");\n const boxesVals = backend2.data.get(boxes.dataId).values;\n const scoresVals = backend2.data.get(scores.dataId).values;\n const { selectedIndices, validOutputs } = nonMaxSuppressionV4Impl2(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([], \"int32\", new Int32Array([validOutputs]))\n ];\n}\nvar nonMaxSuppressionV4Config = {\n kernelName: NonMaxSuppressionV4,\n backendName: \"cpu\",\n kernelFunc: nonMaxSuppressionV4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NonMaxSuppressionV5.js\nvar nonMaxSuppressionV5Impl2 = kernel_impls_exports.nonMaxSuppressionV5Impl;\nfunction nonMaxSuppressionV5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = attrs;\n assertNotComplex(boxes, \"NonMaxSuppressionWithScore\");\n const boxesVals = backend2.data.get(boxes.dataId).values;\n const scoresVals = backend2.data.get(scores.dataId).values;\n const maxOutputSizeVal = maxOutputSize;\n const iouThresholdVal = iouThreshold;\n const scoreThresholdVal = scoreThreshold;\n const softNmsSigmaVal = softNmsSigma;\n const { selectedIndices, selectedScores } = nonMaxSuppressionV5Impl2(boxesVals, scoresVals, maxOutputSizeVal, iouThresholdVal, scoreThresholdVal, softNmsSigmaVal);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([selectedScores.length], \"float32\", new Float32Array(selectedScores))\n ];\n}\nvar nonMaxSuppressionV5Config = {\n kernelName: NonMaxSuppressionV5,\n backendName: \"cpu\",\n kernelFunc: nonMaxSuppressionV5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/OneHot.js\nfunction oneHot2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices } = inputs;\n const { dtype, depth, onValue, offValue } = attrs;\n assertNotComplex(indices, \"oneHot\");\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const res = new Float32Array(indicesSize * depth);\n res.fill(offValue);\n const indicesVal = backend2.data.get(indices.dataId).values;\n for (let event = 0; event < indicesSize; ++event) {\n if (indicesVal[event] >= 0 && indicesVal[event] < depth) {\n res[event * depth + indicesVal[event]] = onValue;\n }\n }\n return backend2.makeTensorInfo([...indices.shape, depth], dtype, res);\n}\nvar oneHotConfig = {\n kernelName: OneHot,\n backendName: \"cpu\",\n kernelFunc: oneHot2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ZerosLike.js\nfunction zerosLike2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"string\") {\n throw new Error(\"zerosLike is not supported for string tensors\");\n } else if (x.dtype === \"complex64\") {\n const realPart = real2({ inputs: { input: x }, backend: backend2 });\n const r2 = zerosLike2({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag2({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike2({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex2({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(r2);\n backend2.disposeIntermediateTensorInfo(imagPart);\n backend2.disposeIntermediateTensorInfo(i2);\n return result;\n } else {\n return fill2({ backend: backend2, attrs: { shape: x.shape, value: 0, dtype: x.dtype } });\n }\n}\nvar zerosLikeConfig = {\n kernelName: ZerosLike,\n backendName: \"cpu\",\n kernelFunc: zerosLike2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/OnesLike.js\nfunction onesLike2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"string\") {\n throw new Error(\"onesLike is not supported for string tensors\");\n } else if (x.dtype === \"complex64\") {\n const realPart = real2({ inputs: { input: x }, backend: backend2 });\n const r2 = onesLike2({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag2({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike2({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex2({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(r2);\n backend2.disposeIntermediateTensorInfo(imagPart);\n backend2.disposeIntermediateTensorInfo(i2);\n return result;\n } else {\n return fill2({ backend: backend2, attrs: { shape: x.shape, value: 1, dtype: x.dtype } });\n }\n}\nvar onesLikeConfig = {\n kernelName: OnesLike,\n backendName: \"cpu\",\n kernelFunc: onesLike2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Pack.js\nfunction pack(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n if (inputs.length === 1) {\n return expandDims3({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } });\n }\n const shape = inputs[0].shape;\n const dtype = inputs[0].dtype;\n inputs.forEach((t2) => {\n util_exports.assertShapesMatch(shape, t2.shape, \"All tensors passed to stack must have matching shapes\");\n util_exports.assert(dtype === t2.dtype, () => \"All tensors passed to stack must have matching dtypes\");\n });\n const intermediateTensorInfos = [];\n const expandedTensors = inputs.map((t2) => {\n const expandedT = expandDims3({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } });\n intermediateTensorInfos.push(expandedT);\n return expandedT;\n });\n const result = concat2({ inputs: expandedTensors, backend: backend2, attrs: { axis } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar packConfig = {\n kernelName: Pack,\n backendName: \"cpu\",\n kernelFunc: pack\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/PadV2.js\nfunction padV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { paddings, constantValue } = attrs;\n assertNotComplex(x, \"pad\");\n const outShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n const start = paddings.map((p2) => p2[0]);\n const xVals = backend2.data.get(x.dataId).values;\n const xSize = util_exports.sizeFromShape(x.shape);\n const xRank = x.shape.length;\n const xStrides = util_exports.computeStrides(x.shape);\n const resultSize = util_exports.sizeFromShape(outShape);\n const resultRank = outShape.length;\n const resultStrides = util_exports.computeStrides(outShape);\n const resVals = util_exports.getTypedArrayFromDType(x.dtype, resultSize);\n if (constantValue !== 0) {\n resVals.fill(constantValue);\n }\n for (let i2 = 0; i2 < xSize; i2++) {\n const coords3 = util_exports.indexToLoc(i2, xRank, xStrides);\n const outCoords = coords3.map((c, i3) => c + start[i3]);\n const outIndex = util_exports.locToIndex(outCoords, resultRank, resultStrides);\n resVals[outIndex] = xVals[i2];\n }\n const outId = backend2.write(resVals, outShape, x.dtype);\n return { dataId: outId, shape: outShape, dtype: x.dtype };\n}\nvar padV2Config = {\n kernelName: PadV2,\n backendName: \"cpu\",\n kernelFunc: padV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Pow.js\nvar powImpl = createSimpleBinaryKernelImpl((a, b) => Math.pow(a, b));\nvar pow2 = binaryKernelFunc(Pow, powImpl);\nvar powConfig = {\n kernelName: Pow,\n backendName: \"cpu\",\n kernelFunc: pow2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/RaggedTensorToTensor.js\nfunction raggedTensorToTensor2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { shape, values, defaultValue, rowPartitionTensors } = inputs;\n const { rowPartitionTypes } = attrs;\n const $shape = backend2.data.get(shape.dataId).values;\n const $values = backend2.data.get(values.dataId).values;\n const $defaultValue = backend2.data.get(defaultValue.dataId).values;\n const $rowPartitionValues = rowPartitionTensors.map((t2) => backend2.data.get(t2.dataId).values);\n const rowPartitionValuesShapes = rowPartitionTensors.map((t2) => t2.shape);\n const [outputShape, output] = raggedTensorToTensorImpl($shape, shape.shape, $values, values.shape, values.dtype, $defaultValue, defaultValue.shape, $rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypes);\n return backend2.makeTensorInfo(outputShape, values.dtype, output);\n}\nvar raggedTensorToTensorConfig = {\n kernelName: RaggedTensorToTensor,\n backendName: \"cpu\",\n kernelFunc: raggedTensorToTensor2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Range.js\nfunction range3(args) {\n const { backend: backend2, attrs } = args;\n const { start, stop, dtype, step: step5 } = attrs;\n const values = rangeImpl(start, stop, step5, dtype);\n return backend2.makeTensorInfo([values.length], dtype, values);\n}\nvar rangeConfig = {\n kernelName: Range,\n backendName: \"cpu\",\n kernelFunc: range3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Reciprocal.js\nvar reciprocal2 = unaryKernelFunc(Reciprocal, (xi) => 1 / xi);\nvar reciprocalConfig = {\n kernelName: Reciprocal,\n backendName: \"cpu\",\n kernelFunc: reciprocal2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ResizeBilinear.js\nfunction resizeBilinear2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n assertNotComplex(images, \"resizeBilinear\");\n const imagesStrides = util_exports.computeStrides(images.shape);\n const [newHeight, newWidth] = size;\n const [batch, oldHeight, oldWidth, numChannels] = images.shape;\n const xValues = backend2.data.get(images.dataId).values;\n const result = new Float32Array(util_exports.sizeFromShape([batch, newHeight, newWidth, numChannels]));\n const effectiveInputSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutputSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n let outputIdx = 0;\n const effectiveRowSizeRatio = effectiveInputSize[0] / effectiveOutputSize[0];\n const effectiveColSizeRatio = effectiveInputSize[1] / effectiveOutputSize[1];\n for (let b = 0; b < batch; b++) {\n for (let r2 = 0; r2 < newHeight; r2++) {\n let sourceFracRow;\n if (halfPixelCenters) {\n sourceFracRow = effectiveRowSizeRatio * (r2 + 0.5) - 0.5;\n } else {\n sourceFracRow = effectiveRowSizeRatio * r2;\n }\n const sourceRowFloor = Math.max(0, Math.floor(sourceFracRow));\n const rowFrac = sourceFracRow - sourceRowFloor;\n const sourceRowCeil = Math.min(oldHeight - 1, Math.ceil(sourceFracRow));\n const topRowOffset = b * imagesStrides[0] + sourceRowFloor * imagesStrides[1];\n const botRowOffset = b * imagesStrides[0] + sourceRowCeil * imagesStrides[1];\n for (let c = 0; c < newWidth; c++) {\n let sourceFracCol;\n if (halfPixelCenters) {\n sourceFracCol = effectiveColSizeRatio * (c + 0.5) - 0.5;\n } else {\n sourceFracCol = effectiveColSizeRatio * c;\n }\n const sourceColFloor = Math.max(0, Math.floor(sourceFracCol));\n const colFrac = sourceFracCol - sourceColFloor;\n const sourceColCeil = Math.min(oldWidth - 1, Math.ceil(sourceFracCol));\n const topLeftOffest = topRowOffset + sourceColFloor * imagesStrides[2];\n const botLeftOffset = botRowOffset + sourceColFloor * imagesStrides[2];\n const topRightOffset = topRowOffset + sourceColCeil * imagesStrides[2];\n const botRightOffest = botRowOffset + sourceColCeil * imagesStrides[2];\n for (let d = 0; d < numChannels; d++) {\n const topLeft = xValues[topLeftOffest + d];\n const bottomLeft = xValues[botLeftOffset + d];\n const topRight = xValues[topRightOffset + d];\n const bottomRight = xValues[botRightOffest + d];\n const top = topLeft + (topRight - topLeft) * colFrac;\n const bottom = bottomLeft + (bottomRight - bottomLeft) * colFrac;\n const newValue = top + (bottom - top) * rowFrac;\n result[outputIdx++] = newValue;\n }\n }\n }\n }\n return backend2.makeTensorInfo([batch, newHeight, newWidth, numChannels], \"float32\", result);\n}\nvar resizeBilinearConfig = {\n kernelName: ResizeBilinear,\n backendName: \"cpu\",\n kernelFunc: resizeBilinear2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ResizeBilinearGrad.js\nfunction resizeBilinearGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images, dy } = inputs;\n const { alignCorners } = attrs;\n assertNotComplex([dy, images], \"resizeBilinearGrad\");\n const imagesStrides = util_exports.computeStrides(images.shape);\n const [batch, xHeight, xWidth, depth] = images.shape;\n const [, yHeight, yWidth] = dy.shape;\n const output = new Float32Array(batch * xHeight * xWidth * depth);\n const effectiveXSize = [\n alignCorners && yHeight > 1 ? xHeight - 1 : xHeight,\n alignCorners && yWidth > 1 ? xWidth - 1 : xWidth\n ];\n const effectiveYSize = [\n alignCorners && yHeight > 1 ? yHeight - 1 : yHeight,\n alignCorners && yWidth > 1 ? yWidth - 1 : yWidth\n ];\n const heightScale = effectiveXSize[0] / effectiveYSize[0];\n const widthScale = effectiveXSize[1] / effectiveYSize[1];\n const dyValues = backend2.data.get(dy.dataId).values;\n let offset = 0;\n for (let b = 0; b < batch; b++) {\n const bOffset = b * imagesStrides[0];\n for (let r2 = 0; r2 < yHeight; r2++) {\n const dxR = r2 * heightScale;\n const topDxRIndex = Math.floor(dxR);\n const bottomDxRIndex = Math.min(Math.ceil(dxR), xHeight - 1);\n const topDxROffset = bOffset + topDxRIndex * imagesStrides[1];\n const bottomDxROffset = bOffset + bottomDxRIndex * imagesStrides[1];\n const dxRLerp = dxR - topDxRIndex;\n const inverseDxRLerp = 1 - dxRLerp;\n for (let c = 0; c < yWidth; c++) {\n const dxC = c * widthScale;\n const leftDxCIndex = Math.floor(dxC);\n const rightDxCIndex = Math.min(Math.ceil(dxC), xWidth - 1);\n const dxCLerp = dxC - leftDxCIndex;\n const inverseDxCLerp = 1 - dxCLerp;\n const topLeftRCOffset = topDxROffset + leftDxCIndex * imagesStrides[2];\n const topRightRCOffset = topDxROffset + rightDxCIndex * imagesStrides[2];\n const bottomLeftRCOffset = bottomDxROffset + leftDxCIndex * imagesStrides[2];\n const bottomRightRCOffset = bottomDxROffset + rightDxCIndex * imagesStrides[2];\n const inverseDxRLerpTimesInverseDxCLerp = inverseDxRLerp * inverseDxCLerp;\n const inverseDxRLerpTimesDxCLerp = inverseDxRLerp * dxCLerp;\n const dxRLerpTimesInverseDxCLerp = dxRLerp * inverseDxCLerp;\n const dxRLerpTimesDxCLerp = dxRLerp * dxCLerp;\n for (let d = 0; d < depth; d++) {\n const dyVal = dyValues[offset++];\n output[topLeftRCOffset + d] += dyVal * inverseDxRLerpTimesInverseDxCLerp;\n output[topRightRCOffset + d] += dyVal * inverseDxRLerpTimesDxCLerp;\n output[bottomLeftRCOffset + d] += dyVal * dxRLerpTimesInverseDxCLerp;\n output[bottomRightRCOffset + d] += dyVal * dxRLerpTimesDxCLerp;\n }\n }\n }\n }\n return backend2.makeTensorInfo([batch, xWidth, xHeight, depth], \"float32\", output);\n}\nvar resizeBilinearGradConfig2 = {\n kernelName: ResizeBilinearGrad,\n backendName: \"cpu\",\n kernelFunc: resizeBilinearGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ResizeNearestNeighbor.js\nfunction resizeNearestNeighbor2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n assertNotComplex(images, \"resizeNearestNeighbor\");\n const imagesStrides = util_exports.computeStrides(images.shape);\n const [newHeight, newWidth] = size;\n const [batch, oldHeight, oldWidth, numChannels] = images.shape;\n const xValues = backend2.data.get(images.dataId).values;\n const output = new Float32Array(batch * newHeight * newWidth * numChannels);\n const effectiveInputSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutputSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n const effectiveRowSizeRatio = effectiveInputSize[0] / effectiveOutputSize[0];\n const effectiveColSizeRatio = effectiveInputSize[1] / effectiveOutputSize[1];\n let outputOffset = 0;\n for (let b = 0; b < batch; b++) {\n const batchOffset = b * imagesStrides[0];\n for (let r2 = 0; r2 < newHeight; r2++) {\n const sourceFracRow = halfPixelCenters ? effectiveRowSizeRatio * (r2 + 0.5) : effectiveRowSizeRatio * r2;\n let sourceNearestRow = Math.min(oldHeight - 1, alignCorners ? Math.round(sourceFracRow) : Math.floor(sourceFracRow));\n if (halfPixelCenters) {\n sourceNearestRow = Math.max(0, sourceNearestRow);\n }\n const rowOffset = batchOffset + sourceNearestRow * imagesStrides[1];\n for (let c = 0; c < newWidth; c++) {\n const sourceFracCol = halfPixelCenters ? effectiveColSizeRatio * (c + 0.5) : effectiveColSizeRatio * c;\n let sourceNearestCol = Math.min(oldWidth - 1, alignCorners ? Math.round(sourceFracCol) : Math.floor(sourceFracCol));\n if (halfPixelCenters) {\n sourceNearestCol = Math.max(0, sourceNearestCol);\n }\n const colOffset = rowOffset + sourceNearestCol * imagesStrides[2];\n for (let d = 0; d < numChannels; d++) {\n const newVal = xValues[colOffset + d];\n output[outputOffset++] = newVal;\n }\n }\n }\n }\n return backend2.makeTensorInfo([batch, newHeight, newWidth, numChannels], images.dtype, output);\n}\nvar resizeNearestNeighborConfig = {\n kernelName: ResizeNearestNeighbor,\n backendName: \"cpu\",\n kernelFunc: resizeNearestNeighbor2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ResizeNearestNeighborGrad.js\nfunction resizeNearestNeighborGrad(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images, dy } = inputs;\n const { alignCorners } = attrs;\n assertNotComplex([dy, images], \"resizeNearestNeighborGrad\");\n const imagesStrides = util_exports.computeStrides(images.shape);\n const dyStrides = util_exports.computeStrides(dy.shape);\n const [batch, xHeight, xWidth, depth] = images.shape;\n const [, yHeight, yWidth] = dy.shape;\n const output = new Float32Array(batch * xHeight * xWidth * depth);\n const dyValues = backend2.data.get(dy.dataId).values;\n const effectiveXSize = [\n alignCorners && yHeight > 1 ? xHeight - 1 : xHeight,\n alignCorners && yWidth > 1 ? xWidth - 1 : xWidth\n ];\n const effectiveYSize = [\n alignCorners && yHeight > 1 ? yHeight - 1 : yHeight,\n alignCorners && yWidth > 1 ? yWidth - 1 : yWidth\n ];\n const heightScale = effectiveXSize[0] / effectiveYSize[0];\n const widthScale = effectiveXSize[1] / effectiveYSize[1];\n const invHeightScale = 1 / heightScale;\n const invWidthScale = 1 / widthScale;\n const winHeight = Math.ceil(invHeightScale) * 2 + 2;\n const winWidth = Math.ceil(invWidthScale) * 2 + 2;\n for (let b = 0; b < batch; b++) {\n const batchOffset = b * imagesStrides[0];\n for (let r2 = 0; r2 < xHeight; r2++) {\n const rowOffset = batchOffset + r2 * imagesStrides[1];\n const startRLerp = Math.floor(r2 * invHeightScale);\n const startDyR = Math.floor(startRLerp - winHeight / 2);\n for (let c = 0; c < xWidth; c++) {\n const colOffset = rowOffset + c * imagesStrides[2];\n const startCLerp = Math.floor(c * invWidthScale);\n const startDyC = Math.floor(startCLerp - winWidth / 2);\n for (let d = 0; d < depth; d++) {\n let accum = 0;\n for (let dyRIndex = 0; dyRIndex < winHeight; dyRIndex++) {\n const dyR = dyRIndex + startDyR;\n if (dyR < 0 || dyR >= yHeight) {\n continue;\n }\n const dyROffset = batchOffset + dyR * dyStrides[1];\n const sourceFracRow = dyR * heightScale;\n const sourceNearestRow = Math.min(xHeight - 1, alignCorners ? Math.round(sourceFracRow) : Math.floor(sourceFracRow));\n if (r2 !== sourceNearestRow) {\n continue;\n }\n for (let dyCIndex = 0; dyCIndex < winWidth; dyCIndex++) {\n const dyC = dyCIndex + startDyC;\n if (dyC < 0 || dyC >= yWidth) {\n continue;\n }\n const dyCOffset = dyROffset + dyC * dyStrides[2];\n const sourceFracCol = dyC * widthScale;\n const sourceNearestCol = Math.min(xWidth - 1, alignCorners ? Math.round(sourceFracCol) : Math.floor(sourceFracCol));\n if (c === sourceNearestCol) {\n accum += dyValues[dyCOffset + d];\n }\n }\n }\n output[colOffset + d] = accum;\n }\n }\n }\n }\n return backend2.makeTensorInfo(images.shape, images.dtype, output);\n}\nvar resizeNearestNeighborGradConfig2 = {\n kernelName: ResizeNearestNeighborGrad,\n backendName: \"cpu\",\n kernelFunc: resizeNearestNeighborGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Reverse.js\nfunction reverse2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dims } = attrs;\n assertNotComplex(x, \"reverse\");\n const xRank = x.shape.length;\n const $dims = util_exports.parseAxisParam(dims, x.shape);\n if (xRank === 0) {\n return identity2({ inputs: { x }, backend: backend2 });\n }\n const outBuf = new TensorBuffer(x.shape, x.dtype);\n const xBuf = backend2.bufferSync(x);\n for (let i2 = 0; i2 < outBuf.size; i2++) {\n const outLoc = outBuf.indexToLoc(i2);\n const inLoc = outLoc.slice();\n $dims.forEach((d) => inLoc[d] = x.shape[d] - 1 - inLoc[d]);\n outBuf.set(xBuf.get(...inLoc), ...outLoc);\n }\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n}\nvar reverseConfig = {\n kernelName: Reverse,\n backendName: \"cpu\",\n kernelFunc: reverse2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/RotateWithOffset.js\nvar rotateWithOffsetConfig = {\n kernelName: RotateWithOffset,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const { radians, fillValue, center } = attrs;\n const cpuBackend = backend2;\n const output = util_exports.getTypedArrayFromDType(image2.dtype, util_exports.sizeFromShape(image2.shape));\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [centerX, centerY] = backend_util_exports.getImageCenter(center, imageHeight, imageWidth);\n const fullOpacityValue = 255;\n const sinFactor = Math.sin(radians);\n const cosFactor = Math.cos(radians);\n const imageVals = cpuBackend.data.get(image2.dataId).values;\n for (let batchIdx = 0; batchIdx < batch; batchIdx++) {\n const batchOffset = batchIdx * imageWidth * imageHeight * numChannels;\n for (let row = 0; row < imageHeight; row++) {\n const rowOffset = row * (imageWidth * numChannels);\n for (let col = 0; col < imageWidth; col++) {\n const colOffset = col * numChannels;\n for (let channel = 0; channel < numChannels; channel++) {\n const coords3 = [batch, row, col, channel];\n const x = coords3[2];\n const y = coords3[1];\n let coordX = (x - centerX) * cosFactor - (y - centerY) * sinFactor;\n let coordY = (x - centerX) * sinFactor + (y - centerY) * cosFactor;\n coordX = Math.round(coordX + centerX);\n coordY = Math.round(coordY + centerY);\n let outputValue = fillValue;\n if (typeof fillValue !== \"number\") {\n if (channel === 3) {\n outputValue = fullOpacityValue;\n } else {\n outputValue = fillValue[channel];\n }\n }\n if (coordX >= 0 && coordX < imageWidth && coordY >= 0 && coordY < imageHeight) {\n const rotatedRowOffset = coordY * (imageWidth * numChannels);\n const rotatedColOffset = coordX * numChannels;\n const imageIdx = batchOffset + rotatedRowOffset + rotatedColOffset + channel;\n outputValue = imageVals[imageIdx];\n }\n const outIdx = batchOffset + rowOffset + colOffset + channel;\n output[outIdx] = outputValue;\n }\n }\n }\n }\n const dataId = cpuBackend.write(output, image2.shape, image2.dtype);\n return { dataId, shape: image2.shape, dtype: image2.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Round.js\nvar round3 = unaryKernelFunc(Round, (xi) => {\n const base = Math.floor(xi);\n if (xi - base < 0.5) {\n return Math.floor(xi);\n } else if (xi - base > 0.5) {\n return Math.ceil(xi);\n } else {\n if (base % 2 === 0) {\n return base;\n } else {\n return base + 1;\n }\n }\n});\nvar roundConfig = {\n kernelName: Round,\n backendName: \"cpu\",\n kernelFunc: round3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/ScatterNd.js\nfunction scatterNd(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices, updates } = inputs;\n const { shape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(updates, indices, shape);\n const sumDupeIndices = true;\n const indicesBuf = backend2.bufferSync(indices);\n const updatesBuf = backend2.bufferSync(updates);\n const outBuf = scatterImpl(indicesBuf, updatesBuf, shape, outputSize, sliceSize, numUpdates, sliceRank, strides, 0, sumDupeIndices);\n return backend2.makeTensorInfo(shape, outBuf.dtype, outBuf.values);\n}\nvar scatterNdConfig = {\n kernelName: ScatterNd,\n backendName: \"cpu\",\n kernelFunc: scatterNd\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SearchSorted_impl.js\nfunction lowerBound2(array2, value) {\n let left = 0;\n let right = array2.length;\n let mid = 0;\n while (left < right) {\n mid = Math.floor((left + right) / 2);\n if (array2[mid] < value) {\n left = mid + 1;\n } else {\n right = mid;\n }\n }\n return right;\n}\nfunction upperBound2(array2, value) {\n let left = 0;\n let right = array2.length;\n let mid = 0;\n while (left < right) {\n mid = Math.floor((left + right) / 2);\n if (array2[mid] <= value) {\n left = mid + 1;\n } else {\n right = mid;\n }\n }\n return right;\n}\nfunction searchSortedImpl(sortedInputs, values, batchSize, numInputs, numValues, side) {\n const output = util_exports.getArrayFromDType(\"int32\", batchSize * numValues);\n for (let b = 0; b < batchSize; ++b) {\n const sortedInputsSlice = sortedInputs.slice(b * numInputs, (b + 1) * numInputs);\n const outputOffset = b * numValues;\n for (let i2 = 0; i2 < numValues; ++i2) {\n output[outputOffset + i2] = side === \"left\" ? lowerBound2(sortedInputsSlice, values[i2 + outputOffset]) : upperBound2(sortedInputsSlice, values[i2 + outputOffset]);\n }\n }\n return output;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SearchSorted.js\nfunction searchSorted2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sortedSequence, values } = inputs;\n const { side } = attrs;\n const $sortedSequence = backend2.data.get(sortedSequence.dataId).values;\n const $values = backend2.data.get(values.dataId).values;\n const output = searchSortedImpl($sortedSequence, $values, sortedSequence.shape[0], sortedSequence.shape[1], values.shape[1], side);\n return backend2.makeTensorInfo(values.shape, \"int32\", output);\n}\nvar searchSortedConfig = {\n kernelName: SearchSorted,\n backendName: \"cpu\",\n kernelFunc: searchSorted2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Select.js\nfunction select2(args) {\n const { inputs, backend: backend2 } = args;\n const { condition, t: t2, e: e2 } = inputs;\n assertNotComplex([condition, t2, e2], \"select\");\n const conditionRank = condition.shape.length;\n const values = backend2.data.get(condition.dataId).values;\n const tValues = backend2.data.get(t2.dataId).values;\n const eValues = backend2.data.get(e2.dataId).values;\n const resultDtype = upcastType(t2.dtype, e2.dtype);\n const newValues = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(t2.shape), resultDtype);\n let index = 0;\n const offset = conditionRank === 0 || conditionRank > 1 || t2.shape.length === 1 ? 1 : util_exports.sizeFromShape(t2.shape.slice(1));\n for (let i2 = 0; i2 < values.length; i2++) {\n for (let j = 0; j < offset; j++) {\n if (values[i2] === 1) {\n newValues[index++] = tValues[i2];\n } else {\n newValues[index++] = eValues[i2];\n }\n }\n }\n return backend2.makeTensorInfo(t2.shape, resultDtype, newValues);\n}\nvar selectConfig = {\n kernelName: Select,\n backendName: \"cpu\",\n kernelFunc: select2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Selu.js\nvar scaleAlpha = backend_util_exports.SELU_SCALEALPHA;\nvar scale = backend_util_exports.SELU_SCALE;\nvar selu2 = unaryKernelFunc(Selu, (xi) => {\n if (xi >= 0) {\n return scale * xi;\n } else {\n return scaleAlpha * (Math.exp(xi) - 1);\n }\n});\nvar seluConfig = {\n kernelName: Selu,\n backendName: \"cpu\",\n kernelFunc: selu2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sign.js\nvar sign2 = unaryKernelFunc(Sign, (xi) => {\n if (xi < 0) {\n return -1;\n } else if (xi > 0) {\n return 1;\n } else {\n return 0;\n }\n});\nvar signConfig = {\n kernelName: Sign,\n backendName: \"cpu\",\n kernelFunc: sign2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sin.js\nvar sin2 = unaryKernelFunc(Sin, (xi) => Math.sin(xi));\nvar sinConfig = {\n kernelName: Sin,\n backendName: \"cpu\",\n kernelFunc: sin2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sinh.js\nvar sinh2 = unaryKernelFunc(Sinh, (xi) => Math.sinh(xi));\nvar sinhConfig = {\n kernelName: Sinh,\n backendName: \"cpu\",\n kernelFunc: sinh2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Softplus.js\nvar epsilon2 = 11920928955078125e-23;\nvar threshold2 = Math.log(epsilon2) + 2;\nvar softplus2 = unaryKernelFunc(Softplus, (xi) => {\n const tooLarge = xi > -threshold2;\n const tooSmall = xi < threshold2;\n const expX = Math.exp(xi);\n let result;\n if (tooSmall) {\n result = expX;\n } else if (tooLarge) {\n result = xi;\n } else {\n result = Math.log(1 + expX);\n }\n return result;\n});\nvar softplusConfig = {\n kernelName: Softplus,\n backendName: \"cpu\",\n kernelFunc: softplus2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SpaceToBatchND.js\nfunction spaceToBatchND2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, paddings } = attrs;\n assertNotComplex([x], \"spaceToBatchND\");\n const prod6 = util_exports.sizeFromShape(blockShape);\n const completePaddings = [[0, 0]];\n completePaddings.push(...paddings);\n for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) {\n completePaddings.push([0, 0]);\n }\n const paddedX = padV2Config.kernelFunc({\n inputs: { x },\n backend: backend2,\n attrs: { paddings: completePaddings, constantValue: 0 }\n });\n const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false);\n const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false);\n const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false);\n const reshapeInputs = { x: paddedX };\n const reshapeAttrs = { shape: reshapedPaddedShape };\n const paddedXReshaped = reshape3({ inputs: reshapeInputs, backend: backend2, attrs: reshapeAttrs });\n const transposeInputs = { x: paddedXReshaped };\n const transposeAttrs = { perm: permutedReshapedPaddedPermutation };\n const paddedXT = transpose2({ inputs: transposeInputs, backend: backend2, attrs: transposeAttrs });\n const resultReshapeInputs = { x: paddedXT };\n const resultReshapeAttrs = { shape: flattenShape };\n const result = reshape3({ inputs: resultReshapeInputs, backend: backend2, attrs: resultReshapeAttrs });\n backend2.disposeIntermediateTensorInfo(paddedX);\n backend2.disposeIntermediateTensorInfo(paddedXReshaped);\n backend2.disposeIntermediateTensorInfo(paddedXT);\n return result;\n}\nvar spaceToBatchNDConfig = {\n kernelName: SpaceToBatchND,\n backendName: \"cpu\",\n kernelFunc: spaceToBatchND2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseFillEmptyRows.js\nfunction sparseFillEmptyRows2(args) {\n const { inputs, backend: backend2 } = args;\n const { indices, values, denseShape, defaultValue } = inputs;\n if (denseShape.shape.length !== 1) {\n throw new Error(`Dense shape must be a vector, saw:\n ${denseShape.shape}`);\n }\n if (indices.shape.length !== 2) {\n throw new Error(`Indices must be a matrix, saw:\n ${indices.shape}`);\n }\n if (values.shape.length !== 1) {\n throw new Error(`Values must be a vector, saw:\n ${values.shape}`);\n }\n if (defaultValue.shape.length !== 0) {\n throw new Error(`Default value must be a scalar, saw:\n ${defaultValue.shape}`);\n }\n const $indices = backend2.data.get(indices.dataId).values;\n const $values = backend2.data.get(values.dataId).values;\n const $denseShape = backend2.data.get(denseShape.dataId).values;\n const $defaultValue = backend2.data.get(defaultValue.dataId).values[0];\n const [outputIndices, outputIndicesShape, outputValues, emptyRowIndicator, reverseIndexMap] = sparseFillEmptyRowsImpl($indices, indices.shape, indices.dtype, $values, values.dtype, $denseShape, $defaultValue);\n return [\n backend2.makeTensorInfo(outputIndicesShape, indices.dtype, outputIndices),\n backend2.makeTensorInfo([outputIndicesShape[0]], values.dtype, outputValues),\n backend2.makeTensorInfo([emptyRowIndicator.length], \"bool\", new Uint8Array(emptyRowIndicator.map((value) => Number(value)))),\n backend2.makeTensorInfo([reverseIndexMap.length], indices.dtype, new Int32Array(reverseIndexMap))\n ];\n}\nvar sparseFillEmptyRowsConfig = {\n kernelName: SparseFillEmptyRows,\n backendName: \"cpu\",\n kernelFunc: sparseFillEmptyRows2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseReshape.js\nfunction sparseReshape2(args) {\n const { inputs, backend: backend2 } = args;\n const { inputIndices, inputShape, newShape } = inputs;\n if (inputIndices.shape.length !== 2) {\n throw new Error(`Input indices should be a matrix but received shape\n ${inputIndices.shape}`);\n }\n if (inputShape.shape.length !== 1) {\n throw new Error(`Input shape should be a vector but received shape\n ${inputShape.shape}`);\n }\n if (newShape.shape.length !== 1) {\n throw new Error(`Target shape should be a vector but received shape ${newShape.shape}`);\n }\n const $inputShape = Array.from(backend2.data.get(inputShape.dataId).values);\n const $inputIndices = backend2.data.get(inputIndices.dataId).values;\n const targetShape = Array.from(backend2.data.get(newShape.dataId).values);\n const [newIndices, indicesShape, outputShape] = sparseReshapeImpl($inputIndices, inputIndices.shape, inputIndices.dtype, $inputShape, targetShape);\n return [\n backend2.makeTensorInfo(indicesShape, inputIndices.dtype, newIndices),\n backend2.makeTensorInfo([outputShape.length], newShape.dtype, new Int32Array(outputShape))\n ];\n}\nvar sparseReshapeConfig = {\n kernelName: SparseReshape,\n backendName: \"cpu\",\n kernelFunc: sparseReshape2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseSegmentMean.js\nfunction sparseSegmentMean2(args) {\n const { inputs, backend: backend2 } = args;\n const { data, indices, segmentIds } = inputs;\n if (data.shape.length < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if (indices.shape.length !== 1) {\n throw new Error(`Indices should be a vector but received shape\n ${indices.shape}`);\n }\n if (segmentIds.shape.length !== 1) {\n throw new Error(`Segment ids should be a vector but received shape\n ${segmentIds.shape}`);\n }\n if (indices.shape[0] !== segmentIds.shape[0]) {\n throw new Error(`segmentIds and indices should have same size.`);\n }\n const $data = backend2.data.get(data.dataId).values;\n const $indices = backend2.data.get(indices.dataId).values;\n const $segmentIds = backend2.data.get(segmentIds.dataId).values;\n const [outputData, outputDataShape] = sparseSegmentReductionImpl($data, data.shape, data.dtype, $indices, $segmentIds, true);\n return backend2.makeTensorInfo(outputDataShape, data.dtype, outputData);\n}\nvar sparseSegmentMeanConfig = {\n kernelName: SparseSegmentMean,\n backendName: \"cpu\",\n kernelFunc: sparseSegmentMean2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseSegmentSum.js\nfunction sparseSegmentSum2(args) {\n const { inputs, backend: backend2 } = args;\n const { data, indices, segmentIds } = inputs;\n if (data.shape.length < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if (indices.shape.length !== 1) {\n throw new Error(`Indices should be a vector but received shape\n ${indices.shape}`);\n }\n if (segmentIds.shape.length !== 1) {\n throw new Error(`Segment ids should be a vector but received shape\n ${segmentIds.shape}`);\n }\n if (indices.shape[0] !== segmentIds.shape[0]) {\n throw new Error(`segmentIds and indices should have same size.`);\n }\n const $data = backend2.data.get(data.dataId).values;\n const $indices = backend2.data.get(indices.dataId).values;\n const $segmentIds = backend2.data.get(segmentIds.dataId).values;\n const [outputData, outputDataShape] = sparseSegmentReductionImpl($data, data.shape, data.dtype, $indices, $segmentIds);\n return backend2.makeTensorInfo(outputDataShape, data.dtype, outputData);\n}\nvar sparseSegmentSumConfig = {\n kernelName: SparseSegmentSum,\n backendName: \"cpu\",\n kernelFunc: sparseSegmentSum2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseToDense.js\nfunction sparseToDense2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sparseIndices, sparseValues, defaultValue } = inputs;\n const { outputShape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(sparseValues, sparseIndices, outputShape);\n const sumDupeIndices = false;\n const indicesBuf = backend2.bufferSync(sparseIndices);\n let outBuf;\n switch (sparseValues.dtype) {\n case \"bool\": {\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = Boolean(backend2.data.get(defaultValue.dataId).values[0]);\n outBuf = scatterImpl(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n break;\n }\n case \"float32\": {\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = backend2.data.get(defaultValue.dataId).values[0];\n outBuf = scatterImpl(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n break;\n }\n case \"int32\": {\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = backend2.data.get(defaultValue.dataId).values[0];\n outBuf = scatterImpl(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n break;\n }\n case \"string\": {\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = util_exports.decodeString(backend2.data.get(defaultValue.dataId).values[0]);\n outBuf = scatterImpl(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n break;\n }\n default:\n throw new Error(`Unsupported type ${sparseValues.dtype}`);\n }\n return backend2.makeTensorInfo(outputShape, outBuf.dtype, outBuf.values);\n}\nvar sparseToDenseConfig = {\n kernelName: SparseToDense,\n backendName: \"cpu\",\n kernelFunc: sparseToDense2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SplitV.js\nfunction splitV(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { numOrSizeSplits, axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, x.shape)[0];\n const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis);\n const begin = new Array(x.shape.length).fill(0);\n const size = x.shape.slice();\n return splitSizes.map((s2) => {\n const sliceSize = [...size];\n sliceSize[$axis] = s2;\n const sliceT = slice2({ inputs: { x }, backend: backend2, attrs: { begin, size: sliceSize } });\n begin[$axis] += s2;\n return sliceT;\n });\n}\nvar splitVConfig = {\n kernelName: SplitV,\n backendName: \"cpu\",\n kernelFunc: splitV\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Square.js\nvar squareConfig = {\n kernelName: Square,\n backendName: \"cpu\",\n kernelFunc: ({ inputs, backend: backend2 }) => {\n const { x } = inputs;\n const cpuBackend = backend2;\n assertNotComplex(x, \"square\");\n const values = cpuBackend.data.get(x.dataId).values;\n const newValues = new Float32Array(values.length);\n for (let i2 = 0; i2 < values.length; ++i2) {\n const value = values[i2];\n newValues[i2] = value * value;\n }\n const dataId = cpuBackend.write(newValues, x.shape, x.dtype);\n return { dataId, shape: x.shape, dtype: x.dtype };\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Step.js\nvar step2 = unaryKernelFunc(Step, (xi, attrs) => {\n const stepAttrs = attrs;\n if (isNaN(xi)) {\n return NaN;\n } else {\n return xi > 0 ? 1 : stepAttrs.alpha;\n }\n});\nvar stepConfig = {\n kernelName: Step,\n backendName: \"cpu\",\n kernelFunc: step2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StridedSlice.js\nfunction stridedSlice2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs;\n assertNotComplex(x, \"stridedSlice\");\n const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n let result;\n if (isIdentity) {\n result = reshape3({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } });\n } else if (sliceDim0 || isSimpleSlice) {\n util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`);\n const size = slice_util_exports.computeOutShape($begin, $end, $strides);\n const sliced = slice2({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } });\n result = reshape3({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeIntermediateTensorInfo(sliced);\n } else {\n const xBuf = backend2.bufferSync(x);\n const outBuf = stridedSliceImpl(finalShapeSparse, xBuf, $strides, $begin);\n result = backend2.makeTensorInfo(finalShape, outBuf.dtype, outBuf.values);\n }\n return result;\n}\nvar stridedSliceConfig = {\n kernelName: StridedSlice,\n backendName: \"cpu\",\n kernelFunc: stridedSlice2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringNGrams.js\nfunction stringNGrams2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs;\n const { data, dataSplits } = inputs;\n const $data = backend2.data.get(data.dataId).values;\n const $dataSplits = backend2.data.get(dataSplits.dataId).values;\n const [nGrams, nGramsSplits] = stringNGramsImpl($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences);\n return [\n backend2.makeTensorInfo([nGrams.length], \"string\", nGrams),\n backend2.makeTensorInfo(dataSplits.shape, \"int32\", nGramsSplits)\n ];\n}\nvar stringNGramsConfig = {\n kernelName: StringNGrams,\n backendName: \"cpu\",\n kernelFunc: stringNGrams2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringSplit.js\nfunction stringSplit2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { skipEmpty } = attrs;\n const { input: input2, delimiter } = inputs;\n if (input2.dtype !== \"string\") {\n throw new Error(\"Input must be of datatype string\");\n }\n if (input2.shape.length !== 1) {\n throw new Error(`Input must be a vector, got shape: ${input2.shape}`);\n }\n if (delimiter.shape.length !== 0) {\n throw new Error(`Delimiter must be a scalar, got shape: ${delimiter.shape}`);\n }\n const $input = backend2.data.get(input2.dataId).values;\n const $delimiter = backend2.data.get(delimiter.dataId).values[0];\n const [indices, values, shape] = stringSplitImpl($input, $delimiter, skipEmpty);\n const outputSize = values.length;\n return [\n backend2.makeTensorInfo([outputSize, 2], \"int32\", indices),\n backend2.makeTensorInfo([outputSize], \"string\", values),\n backend2.makeTensorInfo([2], \"int32\", new Int32Array(shape))\n ];\n}\nvar stringSplitConfig = {\n kernelName: StringSplit,\n backendName: \"cpu\",\n kernelFunc: stringSplit2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringToHashBucketFast.js\nfunction stringToHashBucketFast2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { numBuckets } = attrs;\n const { input: input2 } = inputs;\n if (input2.dtype !== \"string\") {\n throw new Error(\"Input must be of datatype string\");\n }\n if (numBuckets <= 0) {\n throw new Error(`Number of buckets must be at least 1`);\n }\n const $input = backend2.data.get(input2.dataId).values;\n const output = stringToHashBucketFastImpl($input, numBuckets);\n return backend2.makeTensorInfo(input2.shape, \"int32\", output);\n}\nvar stringToHashBucketFastConfig = {\n kernelName: StringToHashBucketFast,\n backendName: \"cpu\",\n kernelFunc: stringToHashBucketFast2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tan.js\nvar tan2 = unaryKernelFunc(Tan, (xi) => Math.tan(xi));\nvar tanConfig = {\n kernelName: Tan,\n backendName: \"cpu\",\n kernelFunc: tan2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tanh.js\nvar tanh3 = unaryKernelFunc(Tanh, (xi) => Math.tanh(xi));\nvar tanhConfig = {\n kernelName: Tanh,\n backendName: \"cpu\",\n kernelFunc: tanh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tile.js\nfunction tile3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { reps } = attrs;\n assertNotComplex(x, \"tile\");\n const outBuf = tileImpl(backend2.bufferSync(x), reps);\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n}\nvar tileConfig = {\n kernelName: Tile,\n backendName: \"cpu\",\n kernelFunc: tile3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/TopK.js\nfunction topK(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { k, sorted } = attrs;\n assertNotComplex(x, \"topk\");\n const xVals = backend2.data.get(x.dataId).values;\n const [allTopKVals, allTopKIndices] = topKImpl(xVals, x.shape, x.dtype, k, sorted);\n return [\n backend2.makeTensorInfo(allTopKVals.shape, allTopKVals.dtype, allTopKVals.values),\n backend2.makeTensorInfo(allTopKIndices.shape, allTopKIndices.dtype, allTopKIndices.values)\n ];\n}\nvar topKConfig = {\n kernelName: TopK,\n backendName: \"cpu\",\n kernelFunc: topK\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Transform.js\nfunction transform2(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { image: image2, transforms } = inputs;\n const { interpolation, fillMode, fillValue, outputShape } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth];\n const outShape = [batch, outHeight, outWidth, numChannels];\n const inStrides = util_exports.computeStrides(image2.shape);\n const batchInStride = inStrides[0];\n const rowInStride = inStrides[1];\n const colInStride = inStrides[2];\n const outStrides = util_exports.computeStrides(outShape);\n const batchOutStride = outStrides[0];\n const rowOutStride = outStrides[1];\n const colOutStride = outStrides[2];\n const outVals = util_exports.getTypedArrayFromDType(image2.dtype, util_exports.sizeFromShape(outShape));\n outVals.fill(fillValue);\n const imageVals = backend2.data.get(image2.dataId).values;\n const transformVals = backend2.data.get(transforms.dataId).values;\n for (let b = 0; b < batch; ++b) {\n const transform6 = transforms.shape[0] === 1 ? transformVals : transformVals.subarray(b * 8, b * 8 + 8);\n for (let outY = 0; outY < outHeight; ++outY) {\n for (let outX = 0; outX < outWidth; ++outX) {\n for (let channel = 0; channel < numChannels; ++channel) {\n let val;\n const projection = transform6[6] * outX + transform6[7] * outY + 1;\n if (projection === 0) {\n continue;\n }\n const inX = (transform6[0] * outX + transform6[1] * outY + transform6[2]) / projection;\n const inY = (transform6[3] * outX + transform6[4] * outY + transform6[5]) / projection;\n const x = mapCoord(inX, imageWidth, fillMode);\n const y = mapCoord(inY, imageHeight, fillMode);\n switch (interpolation) {\n case \"nearest\":\n val = nearestInterpolation(imageVals, imageHeight, imageWidth, batchInStride, rowInStride, colInStride, b, y, x, channel, fillValue);\n break;\n case \"bilinear\":\n val = bilinearInterpolation(imageVals, imageHeight, imageWidth, batchInStride, rowInStride, colInStride, b, y, x, channel, fillValue);\n break;\n default:\n throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${interpolation}`);\n }\n const ind = b * batchOutStride + outY * rowOutStride + outX * colOutStride + channel;\n outVals[ind] = val;\n }\n }\n }\n return backend2.makeTensorInfo(outShape, image2.dtype, outVals);\n }\n const dataId = backend2.write(outVals, outShape, image2.dtype);\n return { dataId, shape: image2.shape, dtype: image2.dtype };\n}\nvar transformConfig = {\n kernelName: Transform,\n backendName: \"cpu\",\n kernelFunc: transform2\n};\nfunction mapCoord(outCoord, len, mode) {\n switch (mode) {\n case \"reflect\":\n return mapCoordReflect(outCoord, len);\n case \"wrap\":\n return mapCoordWrap(outCoord, len);\n case \"nearest\":\n return mapCoordNearest(outCoord, len);\n case \"constant\":\n default:\n return mapCoordConstant(outCoord, len);\n }\n}\nfunction mapCoordReflect(outCoord, len) {\n let inCoord = outCoord;\n if (inCoord < 0) {\n if (len <= 1) {\n inCoord = 0;\n } else {\n const sz2 = 2 * len;\n if (inCoord < sz2) {\n inCoord = sz2 * Math.trunc(-inCoord / sz2) + inCoord;\n }\n inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1;\n }\n } else if (inCoord > len - 1) {\n if (len <= 1) {\n inCoord = 0;\n } else {\n const sz2 = 2 * len;\n inCoord -= sz2 * Math.trunc(inCoord / sz2);\n if (inCoord >= len) {\n inCoord = sz2 - inCoord - 1;\n }\n }\n }\n return util_exports.clamp(0, inCoord, len - 1);\n}\nfunction mapCoordWrap(outCoord, len) {\n let inCoord = outCoord;\n if (inCoord < 0) {\n if (len <= 1) {\n inCoord = 0;\n } else {\n const sz = len - 1;\n inCoord += len * (Math.trunc(-inCoord / sz) + 1);\n }\n } else if (inCoord > len - 1) {\n if (len <= 1) {\n inCoord = 0;\n } else {\n const sz = len - 1;\n inCoord -= len * Math.trunc(inCoord / sz);\n }\n }\n return util_exports.clamp(0, inCoord, len - 1);\n}\nfunction mapCoordConstant(outCoord, len) {\n return outCoord;\n}\nfunction mapCoordNearest(outCoord, len) {\n return util_exports.clamp(0, outCoord, len - 1);\n}\nfunction readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, y, x, channel, fillValue) {\n const ind = batch * batchStride + y * rowStride + x * colStride + channel;\n if (0 <= y && y < imageHeight && 0 <= x && x < imageWidth) {\n return imageVals[ind];\n } else {\n return fillValue;\n }\n}\nfunction nearestInterpolation(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, y, x, channel, fillValue) {\n const $y = Math.round(y);\n const $x = Math.round(x);\n return readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, $y, $x, channel, fillValue);\n}\nfunction bilinearInterpolation(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, y, x, channel, fillValue) {\n const yFloor = Math.floor(y);\n const xFloor = Math.floor(x);\n const yCeil = yFloor + 1;\n const xCeil = xFloor + 1;\n const valueYFloor = (xCeil - x) * readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, yFloor, xFloor, channel, fillValue) + (x - xFloor) * readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, yFloor, xCeil, channel, fillValue);\n const valueYCeil = (xCeil - x) * readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, yCeil, xFloor, channel, fillValue) + (x - xFloor) * readWithFillValue(imageVals, imageHeight, imageWidth, batchStride, rowStride, colStride, batch, yCeil, xCeil, channel, fillValue);\n return (yCeil - y) * valueYFloor + (y - yFloor) * valueYCeil;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Unique.js\nfunction unique3(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { axis } = attrs;\n const { x } = inputs;\n assertNotComplex(x, \"unique\");\n const values = backend2.data.get(x.dataId).values;\n const { outputValues, outputShape, indices } = uniqueImpl(values, axis, x.shape, x.dtype);\n return [\n backend2.makeTensorInfo(outputShape, x.dtype, outputValues),\n backend2.makeTensorInfo([indices.length], \"int32\", indices)\n ];\n}\nvar uniqueConfig = {\n kernelName: Unique,\n backendName: \"cpu\",\n kernelFunc: unique3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Unpack.js\nfunction unpack(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { value } = inputs;\n let { axis } = attrs;\n if (axis < 0) {\n axis += value.shape.length;\n }\n const valueRank = value.shape.length;\n const num = value.shape[axis];\n const outShape = new Array(valueRank - 1);\n let outIndex = 0;\n for (let i2 = 0; i2 < valueRank; i2++) {\n if (i2 !== axis) {\n outShape[outIndex++] = value.shape[i2];\n }\n }\n const begin = new Array(valueRank).fill(0);\n const size = value.shape.slice();\n size[axis] = 1;\n const res = new Array(num);\n for (let i2 = 0; i2 < res.length; i2++) {\n begin[axis] = i2;\n const tempRes = slice2({ inputs: { x: value }, backend: backend2, attrs: { begin, size } });\n res[i2] = reshape3({ inputs: { x: tempRes }, backend: backend2, attrs: { shape: outShape } });\n backend2.disposeIntermediateTensorInfo(tempRes);\n }\n return res;\n}\nvar unpackConfig = {\n kernelName: Unpack,\n backendName: \"cpu\",\n kernelFunc: unpack\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/UnsortedSegmentSum.js\nfunction unsortedSegmentSum2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, segmentIds } = inputs;\n const { numSegments } = attrs;\n assertNotComplex(x, \"unsortedSegmentSum\");\n const xRank = x.shape.length;\n const segmentIdsRank = segmentIds.shape.length;\n const res = [];\n const intermediates = [];\n const numIters = xRank - segmentIdsRank;\n let $segmentIds = segmentIds;\n for (let i2 = 0; i2 < numIters; ++i2) {\n const expanded = expandDims3({ inputs: { input: $segmentIds }, backend: backend2, attrs: { dim: i2 + 1 } });\n $segmentIds = expanded;\n intermediates.push(expanded);\n }\n for (let i2 = 0; i2 < numSegments; ++i2) {\n const scalarValue = util_exports.createScalarValue(i2, \"int32\");\n const segmentId = backend2.makeTensorInfo([], \"int32\", scalarValue);\n const mask = equal2({ inputs: { a: segmentId, b: $segmentIds }, backend: backend2 });\n const maskCasted = cast3({ inputs: { x: mask }, backend: backend2, attrs: { dtype: \"float32\" } });\n const mul2 = multiply2({ inputs: { a: maskCasted, b: x }, backend: backend2 });\n const sumTensorInfo = sum3({ inputs: { x: mul2 }, backend: backend2, attrs: { axis: 0, keepDims: false } });\n res.push(sumTensorInfo);\n intermediates.push(segmentId);\n intermediates.push(mask);\n intermediates.push(maskCasted);\n intermediates.push(mul2);\n intermediates.push(sumTensorInfo);\n }\n const result = pack({ inputs: res, backend: backend2, attrs: { axis: 0 } });\n intermediates.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar unsortedSegmentSumConfig = {\n kernelName: UnsortedSegmentSum,\n backendName: \"cpu\",\n kernelFunc: unsortedSegmentSum2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/register_all_kernels.js\nvar kernelConfigs = [\n _fusedMatMulConfig,\n absConfig,\n acosConfig,\n acoshConfig,\n addConfig,\n addNConfig,\n allConfig,\n anyConfig,\n argMaxConfig,\n argMinConfig,\n asinConfig,\n asinhConfig,\n atanConfig,\n atan2Config,\n atanhConfig,\n avgPoolConfig,\n avgPool3DConfig,\n avgPool3DGradConfig2,\n avgPoolGradConfig2,\n batchMatMulConfig,\n batchNormConfig,\n batchToSpaceNDConfig,\n bincountConfig,\n broadcastArgsConfig,\n castConfig,\n ceilConfig,\n clipByValueConfig,\n complexConfig,\n complexAbsConfig,\n concatConfig,\n conv2DConfig,\n conv2DBackpropFilterConfig,\n conv2DBackpropInputConfig,\n conv3DConfig,\n conv3DBackpropFilterV2Config,\n conv3DBackpropInputV2Config,\n cosConfig,\n coshConfig,\n cropAndResizeConfig,\n cumprodConfig,\n cumsumConfig,\n denseBincountConfig,\n depthToSpaceConfig,\n depthwiseConv2dNativeConfig,\n depthwiseConv2dNativeBackpropFilterConfig,\n depthwiseConv2dNativeBackpropInputConfig,\n diagConfig,\n dilation2DConfig,\n dilation2DBackpropFilterConfig,\n dilation2DBackpropInputConfig,\n einsumConfig,\n eluConfig,\n eluGradConfig2,\n equalConfig,\n erfConfig,\n expConfig,\n expandDimsConfig,\n expm1Config,\n fftConfig,\n fillConfig,\n flipLeftRightConfig,\n floorConfig,\n floorDivConfig,\n fusedConv2DConfig,\n fusedDepthwiseConv2DConfig,\n gatherNdConfig,\n gatherV2Config,\n greaterConfig,\n greaterEqualConfig,\n identityConfig,\n ifftConfig,\n imagConfig,\n isFiniteConfig,\n isInfConfig,\n isNaNConfig,\n leakyReluConfig,\n lessConfig,\n lessEqualConfig,\n linSpaceConfig,\n logConfig,\n log1pConfig,\n logicalAndConfig,\n logicalNotConfig,\n logicalOrConfig,\n LRNConfig,\n LRNGradConfig,\n maxConfig,\n maximumConfig,\n maxPoolConfig,\n maxPool3DConfig,\n maxPool3DGradConfig2,\n maxPoolGradConfig2,\n maxPoolWithArgmaxConfig,\n meanConfig,\n minConfig,\n minimumConfig,\n mirrorPadConfig,\n modConfig,\n multinomialConfig,\n multiplyConfig,\n negConfig,\n nonMaxSuppressionV3Config,\n nonMaxSuppressionV4Config,\n nonMaxSuppressionV5Config,\n notEqualConfig,\n oneHotConfig,\n onesLikeConfig,\n packConfig,\n padV2Config,\n powConfig,\n preluConfig,\n prodConfig,\n raggedTensorToTensorConfig,\n rangeConfig,\n realConfig,\n realDivConfig,\n reciprocalConfig,\n reluConfig,\n relu6Config,\n reshapeConfig,\n resizeBilinearConfig,\n resizeBilinearGradConfig2,\n resizeNearestNeighborConfig,\n resizeNearestNeighborGradConfig2,\n reverseConfig,\n rotateWithOffsetConfig,\n roundConfig,\n rsqrtConfig,\n scatterNdConfig,\n searchSortedConfig,\n selectConfig,\n seluConfig,\n sigmoidConfig,\n signConfig,\n sinConfig,\n sinhConfig,\n sliceConfig,\n softmaxConfig,\n softplusConfig,\n spaceToBatchNDConfig,\n sparseFillEmptyRowsConfig,\n sparseReshapeConfig,\n sparseSegmentMeanConfig,\n sparseSegmentSumConfig,\n sparseToDenseConfig,\n splitVConfig,\n sqrtConfig,\n squareConfig,\n squaredDifferenceConfig,\n stepConfig,\n stridedSliceConfig,\n stringNGramsConfig,\n stringSplitConfig,\n stringToHashBucketFastConfig,\n subConfig,\n sumConfig,\n tanConfig,\n tanhConfig,\n tileConfig,\n topKConfig,\n transformConfig,\n transposeConfig,\n uniqueConfig,\n unpackConfig,\n unsortedSegmentSumConfig,\n zerosLikeConfig\n];\nfor (const kernelConfig of kernelConfigs) {\n registerKernel(kernelConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/webgl_util.js\nvar webgl_util_exports = {};\n__export(webgl_util_exports, {\n assertNotComplex: () => assertNotComplex2,\n bindCanvasToFramebuffer: () => bindCanvasToFramebuffer,\n bindColorTextureToFramebuffer: () => bindColorTextureToFramebuffer,\n bindTextureToProgramUniformSampler: () => bindTextureToProgramUniformSampler,\n bindTextureUnit: () => bindTextureUnit,\n bindVertexBufferToProgramAttribute: () => bindVertexBufferToProgramAttribute,\n callAndCheck: () => callAndCheck,\n canBeRepresented: () => canBeRepresented,\n createFragmentShader: () => createFragmentShader,\n createFramebuffer: () => createFramebuffer,\n createProgram: () => createProgram,\n createStaticIndexBuffer: () => createStaticIndexBuffer,\n createStaticVertexBuffer: () => createStaticVertexBuffer,\n createTexture: () => createTexture,\n createVertexShader: () => createVertexShader,\n getBatchDim: () => getBatchDim,\n getExtensionOrThrow: () => getExtensionOrThrow,\n getFramebufferErrorMessage: () => getFramebufferErrorMessage,\n getMaxTexturesInShader: () => getMaxTexturesInShader,\n getNumChannels: () => getNumChannels,\n getProgramUniformLocation: () => getProgramUniformLocation,\n getProgramUniformLocationOrThrow: () => getProgramUniformLocationOrThrow,\n getRowsCols: () => getRowsCols,\n getShapeAs3D: () => getShapeAs3D,\n getTextureShapeFromLogicalShape: () => getTextureShapeFromLogicalShape,\n getWebGLDisjointQueryTimerVersion: () => getWebGLDisjointQueryTimerVersion,\n getWebGLErrorMessage: () => getWebGLErrorMessage,\n getWebGLMaxTextureSize: () => getWebGLMaxTextureSize,\n hasExtension: () => hasExtension,\n isCapableOfRenderingToFloatTexture: () => isCapableOfRenderingToFloatTexture,\n isDownloadFloatTextureEnabled: () => isDownloadFloatTextureEnabled,\n isReshapeFree: () => isReshapeFree,\n isWebGLFenceEnabled: () => isWebGLFenceEnabled,\n isWebGLVersionEnabled: () => isWebGLVersionEnabled,\n linkProgram: () => linkProgram,\n logShaderSourceAndInfoLog: () => logShaderSourceAndInfoLog,\n resetMaxTextureSize: () => resetMaxTextureSize,\n resetMaxTexturesInShader: () => resetMaxTexturesInShader,\n unbindColorTextureFromFramebuffer: () => unbindColorTextureFromFramebuffer,\n unbindTextureUnit: () => unbindTextureUnit,\n validateFramebuffer: () => validateFramebuffer,\n validateProgram: () => validateProgram,\n validateTextureSize: () => validateTextureSize\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/canvas_util.js\nvar contexts = {};\nvar WEBGL_ATTRIBUTES = {\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: true\n};\nfunction setWebGLContext(webGLVersion, gl) {\n contexts[webGLVersion] = gl;\n}\nfunction getWebGLContext(webGLVersion, customCanvas) {\n if (!(webGLVersion in contexts) || customCanvas != null) {\n const newCtx = getWebGLRenderingContext(webGLVersion, customCanvas);\n if (newCtx !== null) {\n contexts[webGLVersion] = newCtx;\n } else {\n console.log(\"Could not get context for WebGL version\", webGLVersion);\n return null;\n }\n }\n const gl = contexts[webGLVersion];\n if (gl == null || gl.isContextLost()) {\n delete contexts[webGLVersion];\n return getWebGLContext(webGLVersion);\n }\n gl.disable(gl.DEPTH_TEST);\n gl.disable(gl.STENCIL_TEST);\n gl.disable(gl.BLEND);\n gl.disable(gl.DITHER);\n gl.disable(gl.POLYGON_OFFSET_FILL);\n gl.disable(gl.SAMPLE_COVERAGE);\n gl.enable(gl.SCISSOR_TEST);\n gl.enable(gl.CULL_FACE);\n gl.cullFace(gl.BACK);\n return contexts[webGLVersion];\n}\nfunction createCanvas(webGLVersion) {\n if (typeof OffscreenCanvas !== \"undefined\" && webGLVersion === 2) {\n return new OffscreenCanvas(300, 150);\n } else if (typeof document !== \"undefined\") {\n return document.createElement(\"canvas\");\n } else {\n throw new Error(\"Cannot create a canvas in this context\");\n }\n}\nfunction getWebGLRenderingContext(webGLVersion, customCanvas) {\n if (webGLVersion !== 1 && webGLVersion !== 2) {\n throw new Error(\"Cannot get WebGL rendering context, WebGL is disabled.\");\n }\n const canvas = customCanvas == null ? createCanvas(webGLVersion) : customCanvas;\n canvas.addEventListener(\"webglcontextlost\", (ev) => {\n ev.preventDefault();\n delete contexts[webGLVersion];\n }, false);\n if (env().getBool(\"SOFTWARE_WEBGL_ENABLED\")) {\n WEBGL_ATTRIBUTES.failIfMajorPerformanceCaveat = false;\n }\n if (webGLVersion === 1) {\n return canvas.getContext(\"webgl\", WEBGL_ATTRIBUTES) || canvas.getContext(\"experimental-webgl\", WEBGL_ATTRIBUTES);\n }\n return canvas.getContext(\"webgl2\", WEBGL_ATTRIBUTES);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/tex_util.js\nvar PackingScheme;\n(function(PackingScheme2) {\n PackingScheme2[PackingScheme2[\"DENSE\"] = 0] = \"DENSE\";\n PackingScheme2[PackingScheme2[\"SHARED_BATCH\"] = 1] = \"SHARED_BATCH\";\n})(PackingScheme || (PackingScheme = {}));\nvar TextureUsage;\n(function(TextureUsage2) {\n TextureUsage2[TextureUsage2[\"RENDER\"] = 0] = \"RENDER\";\n TextureUsage2[TextureUsage2[\"UPLOAD\"] = 1] = \"UPLOAD\";\n TextureUsage2[TextureUsage2[\"PIXELS\"] = 2] = \"PIXELS\";\n TextureUsage2[TextureUsage2[\"DOWNLOAD\"] = 3] = \"DOWNLOAD\";\n})(TextureUsage || (TextureUsage = {}));\nvar PhysicalTextureType;\n(function(PhysicalTextureType2) {\n PhysicalTextureType2[PhysicalTextureType2[\"UNPACKED_FLOAT16\"] = 0] = \"UNPACKED_FLOAT16\";\n PhysicalTextureType2[PhysicalTextureType2[\"UNPACKED_FLOAT32\"] = 1] = \"UNPACKED_FLOAT32\";\n PhysicalTextureType2[PhysicalTextureType2[\"PACKED_4X1_UNSIGNED_BYTE\"] = 2] = \"PACKED_4X1_UNSIGNED_BYTE\";\n PhysicalTextureType2[PhysicalTextureType2[\"PACKED_2X2_FLOAT32\"] = 3] = \"PACKED_2X2_FLOAT32\";\n PhysicalTextureType2[PhysicalTextureType2[\"PACKED_2X2_FLOAT16\"] = 4] = \"PACKED_2X2_FLOAT16\";\n})(PhysicalTextureType || (PhysicalTextureType = {}));\nfunction getUnpackedMatrixTextureShapeWidthHeight(rows, columns) {\n return [columns, rows];\n}\nfunction getUnpackedArraySizeFromMatrixSize(matrixSize, channelsPerTexture) {\n return matrixSize * channelsPerTexture;\n}\nfunction getDenseTexShape(shape) {\n const size = util_exports.sizeFromShape(shape);\n const texelsNeeded = Math.ceil(size / 4);\n return util_exports.sizeToSquarishShape(texelsNeeded);\n}\nfunction getPackedMatrixTextureShapeWidthHeight(rows, columns) {\n return [\n Math.max(1, Math.ceil(columns / 2)),\n Math.max(1, Math.ceil(rows / 2))\n ];\n}\nfunction getPackedRGBAArraySizeFromMatrixShape(rows, columns) {\n const [w, h] = getPackedMatrixTextureShapeWidthHeight(rows, columns);\n return w * h * 4;\n}\nfunction getTextureConfig(gl, textureHalfFloatExtension) {\n const glany = gl;\n let internalFormatFloat;\n let internalFormatHalfFloat;\n let internalFormatPackedHalfFloat;\n let internalFormatPackedFloat;\n let textureFormatFloat;\n let downloadTextureFormat;\n let downloadUnpackNumChannels;\n let defaultNumChannels;\n let textureTypeHalfFloat;\n let textureTypeFloat;\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n internalFormatFloat = glany.R32F;\n internalFormatHalfFloat = glany.R16F;\n internalFormatPackedHalfFloat = glany.RGBA16F;\n internalFormatPackedFloat = glany.RGBA32F;\n textureFormatFloat = glany.RED;\n downloadUnpackNumChannels = 4;\n defaultNumChannels = 1;\n textureTypeHalfFloat = glany.HALF_FLOAT;\n textureTypeFloat = glany.FLOAT;\n downloadTextureFormat = glany.RGBA8;\n } else {\n internalFormatFloat = gl.RGBA;\n internalFormatHalfFloat = gl.RGBA;\n internalFormatPackedHalfFloat = gl.RGBA;\n internalFormatPackedFloat = glany.RGBA;\n textureFormatFloat = gl.RGBA;\n downloadUnpackNumChannels = 4;\n defaultNumChannels = 4;\n textureTypeHalfFloat = textureHalfFloatExtension != null ? textureHalfFloatExtension.HALF_FLOAT_OES : null;\n textureTypeFloat = gl.FLOAT;\n downloadTextureFormat = gl.RGBA;\n }\n return {\n internalFormatFloat,\n internalFormatHalfFloat,\n internalFormatPackedHalfFloat,\n internalFormatPackedFloat,\n textureFormatFloat,\n downloadTextureFormat,\n downloadUnpackNumChannels,\n defaultNumChannels,\n textureTypeHalfFloat,\n textureTypeFloat\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/webgl_util.js\nfunction callAndCheck(gl, func2) {\n const returnValue = func2();\n if (env().getBool(\"DEBUG\")) {\n checkWebGLError(gl);\n }\n return returnValue;\n}\nfunction checkWebGLError(gl) {\n const error = gl.getError();\n if (error !== gl.NO_ERROR) {\n throw new Error(\"WebGL Error: \" + getWebGLErrorMessage(gl, error));\n }\n}\nvar MIN_FLOAT16 = 596e-10;\nvar MAX_FLOAT16 = 65504;\nfunction canBeRepresented(num) {\n if (env().getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\") || num === 0 || MIN_FLOAT16 < Math.abs(num) && Math.abs(num) < MAX_FLOAT16) {\n return true;\n }\n return false;\n}\nfunction getWebGLErrorMessage(gl, status) {\n switch (status) {\n case gl.NO_ERROR:\n return \"NO_ERROR\";\n case gl.INVALID_ENUM:\n return \"INVALID_ENUM\";\n case gl.INVALID_VALUE:\n return \"INVALID_VALUE\";\n case gl.INVALID_OPERATION:\n return \"INVALID_OPERATION\";\n case gl.INVALID_FRAMEBUFFER_OPERATION:\n return \"INVALID_FRAMEBUFFER_OPERATION\";\n case gl.OUT_OF_MEMORY:\n return \"OUT_OF_MEMORY\";\n case gl.CONTEXT_LOST_WEBGL:\n return \"CONTEXT_LOST_WEBGL\";\n default:\n return `Unknown error code ${status}`;\n }\n}\nfunction getExtensionOrThrow(gl, extensionName) {\n return throwIfNull(gl, () => gl.getExtension(extensionName), 'Extension \"' + extensionName + '\" not supported on this browser.');\n}\nfunction createVertexShader(gl, vertexShaderSource) {\n const vertexShader = throwIfNull(gl, () => gl.createShader(gl.VERTEX_SHADER), \"Unable to create vertex WebGLShader.\");\n callAndCheck(gl, () => gl.shaderSource(vertexShader, vertexShaderSource));\n callAndCheck(gl, () => gl.compileShader(vertexShader));\n if (gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS) === false) {\n console.log(gl.getShaderInfoLog(vertexShader));\n throw new Error(\"Failed to compile vertex shader.\");\n }\n return vertexShader;\n}\nfunction createFragmentShader(gl, fragmentShaderSource) {\n const fragmentShader = throwIfNull(gl, () => gl.createShader(gl.FRAGMENT_SHADER), \"Unable to create fragment WebGLShader.\");\n callAndCheck(gl, () => gl.shaderSource(fragmentShader, fragmentShaderSource));\n callAndCheck(gl, () => gl.compileShader(fragmentShader));\n if (env().get(\"ENGINE_COMPILE_ONLY\")) {\n return fragmentShader;\n }\n if (gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS) === false) {\n logShaderSourceAndInfoLog(fragmentShaderSource, gl.getShaderInfoLog(fragmentShader));\n throw new Error(\"Failed to compile fragment shader.\");\n }\n return fragmentShader;\n}\nvar lineNumberRegex = /ERROR: [0-9]+:([0-9]+):/g;\nfunction logShaderSourceAndInfoLog(shaderSource, shaderInfoLog) {\n const lineNumberRegexResult = lineNumberRegex.exec(shaderInfoLog);\n if (lineNumberRegexResult == null) {\n console.log(`Couldn't parse line number in error: ${shaderInfoLog}`);\n console.log(shaderSource);\n return;\n }\n const lineNumber = +lineNumberRegexResult[1];\n const shaderLines = shaderSource.split(\"\\n\");\n const pad3 = shaderLines.length.toString().length + 2;\n const linesWithLineNumbers = shaderLines.map((line, lineNumber2) => util_exports.rightPad((lineNumber2 + 1).toString(), pad3) + line);\n let maxLineLength = 0;\n for (let i2 = 0; i2 < linesWithLineNumbers.length; i2++) {\n maxLineLength = Math.max(linesWithLineNumbers[i2].length, maxLineLength);\n }\n const beforeErrorLines = linesWithLineNumbers.slice(0, lineNumber - 1);\n const errorLine = linesWithLineNumbers.slice(lineNumber - 1, lineNumber);\n const afterErrorLines = linesWithLineNumbers.slice(lineNumber);\n console.log(beforeErrorLines.join(\"\\n\"));\n console.log(shaderInfoLog.split(\"\\n\")[0]);\n console.log(`%c ${util_exports.rightPad(errorLine[0], maxLineLength)}`, \"border:1px solid red; background-color:#e3d2d2; color:#a61717\");\n console.log(afterErrorLines.join(\"\\n\"));\n}\nfunction createProgram(gl) {\n return throwIfNull(gl, () => gl.createProgram(), \"Unable to create WebGLProgram.\");\n}\nfunction linkProgram(gl, program) {\n callAndCheck(gl, () => gl.linkProgram(program));\n if (env().get(\"ENGINE_COMPILE_ONLY\")) {\n return;\n }\n if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) {\n console.log(gl.getProgramInfoLog(program));\n throw new Error(\"Failed to link vertex and fragment shaders.\");\n }\n}\nfunction validateProgram(gl, program) {\n callAndCheck(gl, () => gl.validateProgram(program));\n if (gl.getProgramParameter(program, gl.VALIDATE_STATUS) === false) {\n console.log(gl.getProgramInfoLog(program));\n throw new Error(\"Shader program validation failed.\");\n }\n}\nfunction createStaticVertexBuffer(gl, data) {\n const buffer2 = throwIfNull(gl, () => gl.createBuffer(), \"Unable to create WebGLBuffer\");\n callAndCheck(gl, () => gl.bindBuffer(gl.ARRAY_BUFFER, buffer2));\n callAndCheck(gl, () => gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW));\n return buffer2;\n}\nfunction createStaticIndexBuffer(gl, data) {\n const buffer2 = throwIfNull(gl, () => gl.createBuffer(), \"Unable to create WebGLBuffer\");\n callAndCheck(gl, () => gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffer2));\n callAndCheck(gl, () => gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, data, gl.STATIC_DRAW));\n return buffer2;\n}\nfunction getNumChannels() {\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n return 1;\n }\n return 4;\n}\nfunction createTexture(gl) {\n return throwIfNull(gl, () => gl.createTexture(), \"Unable to create WebGLTexture.\");\n}\nfunction validateTextureSize(width, height) {\n const maxTextureSize = env().getNumber(\"WEBGL_MAX_TEXTURE_SIZE\");\n if (width <= 0 || height <= 0) {\n const requested = `[${width}x${height}]`;\n throw new Error(\"Requested texture size \" + requested + \" is invalid.\");\n }\n if (width > maxTextureSize || height > maxTextureSize) {\n const requested = `[${width}x${height}]`;\n const max7 = `[${maxTextureSize}x${maxTextureSize}]`;\n throw new Error(\"Requested texture size \" + requested + \" greater than WebGL maximum on this browser / GPU \" + max7 + \".\");\n }\n}\nfunction createFramebuffer(gl) {\n return throwIfNull(gl, () => gl.createFramebuffer(), \"Unable to create WebGLFramebuffer.\");\n}\nfunction bindVertexBufferToProgramAttribute(gl, program, attribute, buffer2, arrayEntriesPerItem, itemStrideInBytes, itemOffsetInBytes) {\n const loc = gl.getAttribLocation(program, attribute);\n if (loc === -1) {\n return false;\n }\n callAndCheck(gl, () => gl.bindBuffer(gl.ARRAY_BUFFER, buffer2));\n callAndCheck(gl, () => gl.vertexAttribPointer(loc, arrayEntriesPerItem, gl.FLOAT, false, itemStrideInBytes, itemOffsetInBytes));\n callAndCheck(gl, () => gl.enableVertexAttribArray(loc));\n return true;\n}\nfunction bindTextureUnit(gl, texture, textureUnit) {\n validateTextureUnit(gl, textureUnit);\n callAndCheck(gl, () => gl.activeTexture(gl.TEXTURE0 + textureUnit));\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, texture));\n}\nfunction unbindTextureUnit(gl, textureUnit) {\n validateTextureUnit(gl, textureUnit);\n callAndCheck(gl, () => gl.activeTexture(gl.TEXTURE0 + textureUnit));\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, null));\n}\nfunction getProgramUniformLocationOrThrow(gl, program, uniformName) {\n return throwIfNull(gl, () => gl.getUniformLocation(program, uniformName), 'uniform \"' + uniformName + '\" not present in program.');\n}\nfunction getProgramUniformLocation(gl, program, uniformName) {\n return gl.getUniformLocation(program, uniformName);\n}\nfunction bindTextureToProgramUniformSampler(gl, texture, uniformSamplerLocation, textureUnit) {\n callAndCheck(gl, () => bindTextureUnit(gl, texture, textureUnit));\n callAndCheck(gl, () => gl.uniform1i(uniformSamplerLocation, textureUnit));\n}\nfunction bindCanvasToFramebuffer(gl) {\n callAndCheck(gl, () => gl.bindFramebuffer(gl.FRAMEBUFFER, null));\n callAndCheck(gl, () => gl.viewport(0, 0, gl.canvas.width, gl.canvas.height));\n callAndCheck(gl, () => gl.scissor(0, 0, gl.canvas.width, gl.canvas.height));\n}\nfunction bindColorTextureToFramebuffer(gl, texture, framebuffer) {\n callAndCheck(gl, () => gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer));\n callAndCheck(gl, () => gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0));\n}\nfunction unbindColorTextureFromFramebuffer(gl, framebuffer) {\n callAndCheck(gl, () => gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer));\n callAndCheck(gl, () => gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, null, 0));\n}\nfunction validateFramebuffer(gl) {\n const status = gl.checkFramebufferStatus(gl.FRAMEBUFFER);\n if (status !== gl.FRAMEBUFFER_COMPLETE) {\n throw new Error(\"Error binding framebuffer: \" + getFramebufferErrorMessage(gl, status));\n }\n}\nfunction getFramebufferErrorMessage(gl, status) {\n switch (status) {\n case gl.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:\n return \"FRAMEBUFFER_INCOMPLETE_ATTACHMENT\";\n case gl.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:\n return \"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT\";\n case gl.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:\n return \"FRAMEBUFFER_INCOMPLETE_DIMENSIONS\";\n case gl.FRAMEBUFFER_UNSUPPORTED:\n return \"FRAMEBUFFER_UNSUPPORTED\";\n default:\n return `unknown error ${status}`;\n }\n}\nfunction throwIfNull(gl, returnTOrNull, failureMessage) {\n const tOrNull = callAndCheck(gl, () => returnTOrNull());\n if (tOrNull == null) {\n throw new Error(failureMessage);\n }\n return tOrNull;\n}\nfunction validateTextureUnit(gl, textureUnit) {\n const maxTextureUnit = gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1;\n const glTextureUnit = textureUnit + gl.TEXTURE0;\n if (glTextureUnit < gl.TEXTURE0 || glTextureUnit > maxTextureUnit) {\n const textureUnitRange = `[gl.TEXTURE0, gl.TEXTURE${maxTextureUnit}]`;\n throw new Error(`textureUnit must be in ${textureUnitRange}.`);\n }\n}\nfunction getBatchDim(shape, dimsToSkip = 2) {\n return util_exports.sizeFromShape(shape.slice(0, shape.length - dimsToSkip));\n}\nfunction getRowsCols(shape) {\n if (shape.length === 0) {\n throw Error(\"Cannot get rows and columns of an empty shape array.\");\n }\n return [\n shape.length > 1 ? shape[shape.length - 2] : 1,\n shape[shape.length - 1]\n ];\n}\nfunction getShapeAs3D(shape) {\n let shapeAs3D = [1, 1, 1];\n const isScalar = shape.length === 0 || shape.length === 1 && shape[0] === 1;\n if (!isScalar) {\n shapeAs3D = [getBatchDim(shape), ...getRowsCols(shape)];\n }\n return shapeAs3D;\n}\nfunction getTextureShapeFromLogicalShape(logShape, isPacked = false) {\n let maxTexSize = env().getNumber(\"WEBGL_MAX_TEXTURE_SIZE\");\n if (isPacked) {\n maxTexSize = maxTexSize * 2;\n logShape = logShape.map((d, i2) => i2 >= logShape.length - 2 ? util_exports.nearestLargerEven(logShape[i2]) : logShape[i2]);\n if (logShape.length === 1) {\n logShape = [2, logShape[0]];\n }\n }\n if (logShape.length !== 2) {\n const squeezeResult = util_exports.squeezeShape(logShape);\n logShape = squeezeResult.newShape;\n }\n let size = util_exports.sizeFromShape(logShape);\n if (logShape.length <= 1 && size <= maxTexSize) {\n return [1, size];\n } else if (logShape.length === 2 && logShape[0] <= maxTexSize && logShape[1] <= maxTexSize) {\n return logShape;\n } else if (logShape.length === 3 && logShape[0] * logShape[1] <= maxTexSize && logShape[2] <= maxTexSize) {\n return [logShape[0] * logShape[1], logShape[2]];\n } else if (logShape.length === 3 && logShape[0] <= maxTexSize && logShape[1] * logShape[2] <= maxTexSize) {\n return [logShape[0], logShape[1] * logShape[2]];\n } else if (logShape.length === 4 && logShape[0] * logShape[1] * logShape[2] <= maxTexSize && logShape[3] <= maxTexSize) {\n return [logShape[0] * logShape[1] * logShape[2], logShape[3]];\n } else if (logShape.length === 4 && logShape[0] <= maxTexSize && logShape[1] * logShape[2] * logShape[3] <= maxTexSize) {\n return [logShape[0], logShape[1] * logShape[2] * logShape[3]];\n } else {\n if (isPacked) {\n const batchDim = getBatchDim(logShape);\n let rows = 2, cols = 2;\n if (logShape.length) {\n [rows, cols] = getRowsCols(logShape);\n }\n size = batchDim * (rows / 2) * (cols / 2);\n return util_exports.sizeToSquarishShape(size).map((d) => d * 2);\n }\n return util_exports.sizeToSquarishShape(size);\n }\n}\nfunction isEven(n2) {\n return n2 % 2 === 0;\n}\nfunction isReshapeFree(shape1, shape2) {\n shape1 = shape1.slice(-2);\n shape2 = shape2.slice(-2);\n if (util_exports.arraysEqual(shape1, shape2)) {\n return true;\n }\n if (!shape1.length || !shape2.length) {\n return true;\n }\n if (shape1[0] === 0 || shape1[1] === 0 || shape2[0] === 0 || shape2[1] === 0) {\n return true;\n }\n if (shape1.length !== shape2.length) {\n const shape1Cols = shape1.slice(-1)[0];\n const shape2Cols = shape2.slice(-1)[0];\n if (shape1Cols === shape2Cols) {\n return true;\n }\n if (isEven(shape1Cols) && isEven(shape2Cols) && (shape1[0] === 1 || shape2[0] === 1)) {\n return true;\n }\n }\n return shape1[1] === shape2[1] && isEven(shape1[0]) && isEven(shape2[0]);\n}\nvar MAX_TEXTURE_SIZE;\nvar MAX_TEXTURES_IN_SHADER;\nfunction getWebGLMaxTextureSize(webGLVersion) {\n if (MAX_TEXTURE_SIZE == null) {\n const gl = getWebGLContext(webGLVersion);\n MAX_TEXTURE_SIZE = gl.getParameter(gl.MAX_TEXTURE_SIZE);\n }\n return MAX_TEXTURE_SIZE;\n}\nfunction resetMaxTextureSize() {\n MAX_TEXTURE_SIZE = null;\n}\nfunction resetMaxTexturesInShader() {\n MAX_TEXTURES_IN_SHADER = null;\n}\nfunction getMaxTexturesInShader(webGLVersion) {\n if (MAX_TEXTURES_IN_SHADER == null) {\n const gl = getWebGLContext(webGLVersion);\n MAX_TEXTURES_IN_SHADER = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS);\n }\n return Math.min(16, MAX_TEXTURES_IN_SHADER);\n}\nfunction getWebGLDisjointQueryTimerVersion(webGLVersion) {\n if (webGLVersion === 0) {\n return 0;\n }\n let queryTimerVersion;\n const gl = getWebGLContext(webGLVersion);\n if (hasExtension(gl, \"EXT_disjoint_timer_query_webgl2\") && webGLVersion === 2) {\n queryTimerVersion = 2;\n } else if (hasExtension(gl, \"EXT_disjoint_timer_query\")) {\n queryTimerVersion = 1;\n } else {\n queryTimerVersion = 0;\n }\n return queryTimerVersion;\n}\nfunction hasExtension(gl, extensionName) {\n const ext = gl.getExtension(extensionName);\n return ext != null;\n}\nfunction isWebGLVersionEnabled(webGLVersion) {\n try {\n const gl = getWebGLContext(webGLVersion);\n if (gl != null) {\n return true;\n }\n } catch (e2) {\n console.log(\"Error when getting WebGL context: \", e2);\n return false;\n }\n return false;\n}\nfunction isCapableOfRenderingToFloatTexture(webGLVersion) {\n if (webGLVersion === 0) {\n return false;\n }\n const gl = getWebGLContext(webGLVersion);\n if (webGLVersion === 1) {\n if (!hasExtension(gl, \"OES_texture_float\")) {\n return false;\n }\n } else {\n if (!hasExtension(gl, \"EXT_color_buffer_float\")) {\n return false;\n }\n }\n const isFrameBufferComplete = createFloatTextureAndBindToFramebuffer(gl);\n return isFrameBufferComplete;\n}\nfunction isDownloadFloatTextureEnabled(webGLVersion) {\n if (webGLVersion === 0) {\n return false;\n }\n const gl = getWebGLContext(webGLVersion);\n if (webGLVersion === 1) {\n if (!hasExtension(gl, \"OES_texture_float\")) {\n return false;\n }\n if (!hasExtension(gl, \"WEBGL_color_buffer_float\")) {\n return false;\n }\n } else {\n if (hasExtension(gl, \"EXT_color_buffer_float\")) {\n return createFloatTextureAndBindToFramebuffer(gl);\n }\n const COLOR_BUFFER_HALF_FLOAT = \"EXT_color_buffer_half_float\";\n if (hasExtension(gl, COLOR_BUFFER_HALF_FLOAT)) {\n const textureHalfFloatExtension = gl.getExtension(COLOR_BUFFER_HALF_FLOAT);\n return createHalfFloatTextureAndBindToFramebuffer(gl, textureHalfFloatExtension);\n }\n return false;\n }\n const isFrameBufferComplete = createFloatTextureAndBindToFramebuffer(gl);\n return isFrameBufferComplete;\n}\nfunction createFloatTextureAndBindToFramebuffer(gl) {\n const texConfig = getTextureConfig(gl);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n const width = 1;\n const height = 1;\n gl.texImage2D(gl.TEXTURE_2D, 0, texConfig.internalFormatFloat, width, height, 0, texConfig.textureFormatFloat, texConfig.textureTypeFloat, null);\n const frameBuffer = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, frameBuffer);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n const isFrameBufferComplete = gl.checkFramebufferStatus(gl.FRAMEBUFFER) === gl.FRAMEBUFFER_COMPLETE;\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n gl.deleteTexture(texture);\n gl.deleteFramebuffer(frameBuffer);\n return isFrameBufferComplete;\n}\nfunction createHalfFloatTextureAndBindToFramebuffer(gl, textureHalfFloatExtension) {\n const texConfig = getTextureConfig(gl, textureHalfFloatExtension);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n const width = 1;\n const height = 1;\n gl.texImage2D(gl.TEXTURE_2D, 0, texConfig.internalFormatHalfFloat, width, height, 0, texConfig.textureFormatFloat, texConfig.textureTypeHalfFloat, null);\n const frameBuffer = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, frameBuffer);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n const isFrameBufferComplete = gl.checkFramebufferStatus(gl.FRAMEBUFFER) === gl.FRAMEBUFFER_COMPLETE;\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n gl.deleteTexture(texture);\n gl.deleteFramebuffer(frameBuffer);\n return isFrameBufferComplete;\n}\nfunction isWebGLFenceEnabled(webGLVersion) {\n if (webGLVersion !== 2) {\n return false;\n }\n const gl = getWebGLContext(webGLVersion);\n const isEnabled = gl.fenceSync != null;\n return isEnabled;\n}\nfunction assertNotComplex2(tensor2, opName) {\n if (!Array.isArray(tensor2)) {\n tensor2 = [tensor2];\n }\n tensor2.forEach((t2) => {\n if (t2 != null) {\n util_exports.assert(t2.dtype !== \"complex64\", () => `${opName} does not support complex64 tensors in the WebGL backend.`);\n }\n });\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/flags_webgl.js\nvar ENV5 = env();\nENV5.registerFlag(\"HAS_WEBGL\", () => ENV5.getNumber(\"WEBGL_VERSION\") > 0);\nENV5.registerFlag(\"WEBGL_VERSION\", () => {\n if (isWebGLVersionEnabled(2)) {\n return 2;\n } else if (isWebGLVersionEnabled(1)) {\n return 1;\n }\n return 0;\n});\nENV5.registerFlag(\"WEBGL_CHECK_NUMERICAL_PROBLEMS\", () => false);\nENV5.registerFlag(\"WEBGL_BUFFER_SUPPORTED\", () => ENV5.get(\"WEBGL_VERSION\") === 2);\nENV5.registerFlag(\"WEBGL_CPU_FORWARD\", () => true);\nENV5.registerFlag(\"WEBGL_FORCE_F16_TEXTURES\", () => false);\nENV5.registerFlag(\"WEBGL_PACK\", () => ENV5.getBool(\"HAS_WEBGL\"));\nENV5.registerFlag(\"WEBGL_PACK_NORMALIZATION\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_CLIP\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_DEPTHWISECONV\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_BINARY_OPERATIONS\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_UNARY_OPERATIONS\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_ARRAY_OPERATIONS\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_IMAGE_OPERATIONS\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_PACK_REDUCE\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_LAZILY_UNPACK\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_CONV_IM2COL\", () => ENV5.getBool(\"WEBGL_PACK\"));\nENV5.registerFlag(\"WEBGL_MAX_TEXTURE_SIZE\", () => getWebGLMaxTextureSize(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_MAX_TEXTURES_IN_SHADER\", () => getMaxTexturesInShader(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\", () => {\n const webGLVersion = ENV5.getNumber(\"WEBGL_VERSION\");\n if (webGLVersion === 0) {\n return 0;\n }\n return getWebGLDisjointQueryTimerVersion(webGLVersion);\n});\nENV5.registerFlag(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\", () => ENV5.getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") > 0 && !device_util_exports.isMobile());\nENV5.registerFlag(\"WEBGL_RENDER_FLOAT32_CAPABLE\", () => isCapableOfRenderingToFloatTexture(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_RENDER_FLOAT32_ENABLED\", () => {\n return ENV5.getBool(\"WEBGL_FORCE_F16_TEXTURES\") ? false : ENV5.getBool(\"WEBGL_RENDER_FLOAT32_CAPABLE\");\n});\nENV5.registerFlag(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\", () => isDownloadFloatTextureEnabled(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_FENCE_API_ENABLED\", () => isWebGLFenceEnabled(ENV5.getNumber(\"WEBGL_VERSION\")));\nENV5.registerFlag(\"WEBGL_SIZE_UPLOAD_UNIFORM\", () => {\n const useUniforms = ENV5.getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\");\n return useUniforms ? 4 : 0;\n});\nENV5.registerFlag(\"WEBGL_DELETE_TEXTURE_THRESHOLD\", () => {\n return -1;\n}, (threshold3) => {\n if (threshold3 < 0 && threshold3 !== -1) {\n throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${threshold3}.`);\n }\n});\nENV5.registerFlag(\"WEBGL_FLUSH_THRESHOLD\", () => {\n return device_util_exports.isMobile() ? 1 : -1;\n}, (threshold3) => {\n if (threshold3 < 0 && threshold3 !== -1) {\n throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${threshold3}.`);\n }\n});\nENV5.registerFlag(\"CPU_HANDOFF_SIZE_THRESHOLD\", () => 128);\nENV5.registerFlag(\"WEBGL_USE_SHAPES_UNIFORMS\", () => false);\nENV5.registerFlag(\"TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD\", () => 1e5);\nENV5.registerFlag(\"TOPK_K_CPU_HANDOFF_THRESHOLD\", () => 128);\nENV5.registerFlag(\"WEBGL_EXP_CONV\", () => false);\nENV5.registerFlag(\"SOFTWARE_WEBGL_ENABLED\", () => ENV5.getBool(\"IS_TEST\"));\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/glsl_version.js\nfunction getGlslDifferences() {\n let version9;\n let attribute;\n let varyingVs;\n let varyingFs;\n let texture2D;\n let output;\n let defineOutput;\n let defineSpecialNaN;\n let defineSpecialInf;\n let defineRound;\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n version9 = \"#version 300 es\";\n attribute = \"in\";\n varyingVs = \"out\";\n varyingFs = \"in\";\n texture2D = \"texture\";\n output = \"outputColor\";\n defineOutput = \"out vec4 outputColor;\";\n defineSpecialNaN = `\n bool isnan_custom(float val) {\n uint floatToUint = floatBitsToUint(val);\n return (floatToUint & 0x7fffffffu) > 0x7f800000u;\n }\n\n bvec4 isnan_custom(vec4 val) {\n return bvec4(isnan_custom(val.x),\n isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));\n }\n\n #define isnan(value) isnan_custom(value)\n `;\n defineSpecialInf = ``;\n defineRound = `\n #define round(value) newRound(value)\n int newRound(float value) {\n return int(floor(value + 0.5));\n }\n\n ivec4 newRound(vec4 value) {\n return ivec4(floor(value + vec4(0.5)));\n }\n `;\n } else {\n version9 = \"\";\n attribute = \"attribute\";\n varyingVs = \"varying\";\n varyingFs = \"varying\";\n texture2D = \"texture2D\";\n output = \"gl_FragColor\";\n defineOutput = \"\";\n defineSpecialNaN = `\n #define isnan(value) isnan_custom(value)\n bool isnan_custom(float val) {\n return (val > 0. || val < 1. || val == 0.) ? false : true;\n }\n bvec4 isnan_custom(vec4 val) {\n return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));\n }\n `;\n defineSpecialInf = `\n uniform float INFINITY;\n\n bool isinf(float val) {\n return abs(val) == INFINITY;\n }\n bvec4 isinf(vec4 val) {\n return equal(abs(val), vec4(INFINITY));\n }\n `;\n defineRound = `\n int round(float value) {\n return int(floor(value + 0.5));\n }\n\n ivec4 round(vec4 value) {\n return ivec4(floor(value + vec4(0.5)));\n }\n `;\n }\n return {\n version: version9,\n attribute,\n varyingVs,\n varyingFs,\n texture2D,\n output,\n defineOutput,\n defineSpecialNaN,\n defineSpecialInf,\n defineRound\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/shader_compiler_util.js\nfunction getLogicalCoordinatesFromFlatIndex(coords3, shape, index = \"index\") {\n const strides = util_exports.computeStrides(shape);\n return strides.map((stride, i2) => {\n const line1 = `int ${coords3[i2]} = ${index} / ${stride}`;\n const line2 = i2 === strides.length - 1 ? `int ${coords3[i2 + 1]} = ${index} - ${coords3[i2]} * ${stride}` : `index -= ${coords3[i2]} * ${stride}`;\n return `${line1}; ${line2};`;\n }).join(\"\");\n}\nfunction getOutputLogicalCoordinatesFromFlatIndexByUniform(coords3, shape, index = \"index\") {\n const strides = util_exports.computeStrides(shape);\n return strides.map((_, i2) => {\n const line1 = `int ${coords3[i2]} = ${index} / outShapeStrides[${i2}]`;\n const line2 = i2 === strides.length - 1 ? `int ${coords3[i2 + 1]} = ${index} - ${coords3[i2]} * outShapeStrides[${i2}]` : `index -= ${coords3[i2]} * outShapeStrides[${i2}]`;\n return `${line1}; ${line2};`;\n }).join(\"\");\n}\nfunction symbolicallyComputeStrides(indicesArr, variableName) {\n const numCoords = indicesArr.length;\n const shape = indicesArr.map((d) => `${variableName}[${d}]`);\n const strides = new Array(numCoords - 1);\n strides[numCoords - 2] = shape[numCoords - 1];\n for (let i2 = numCoords - 3; i2 >= 0; --i2) {\n strides[i2] = `(${strides[i2 + 1]} * ${shape[i2 + 1]})`;\n }\n return strides;\n}\nfunction getLogicalCoordinatesFromFlatIndexByUniform(coords3, variableName, index = \"index\") {\n const indicesArray = coords3.map((_, i2) => i2);\n const strides = symbolicallyComputeStrides(indicesArray, variableName);\n return strides.map((_, i2) => {\n const line1 = `int ${coords3[i2]} = ${index} / ${strides[i2]}`;\n const line2 = i2 === strides.length - 1 ? `int ${coords3[i2 + 1]} = ${index} - ${coords3[i2]} * ${strides[i2]}` : `index -= ${coords3[i2]} * ${strides[i2]}`;\n return `${line1}; ${line2};`;\n }).join(\"\");\n}\nfunction getFlatIndexFrom3D(shape) {\n const strides = util_exports.computeStrides(shape).map((d) => d.toString());\n return `\n int getFlatIndex(ivec3 coords) {\n return coords.x * ${strides[0]} + coords.y * ${strides[1]} + coords.z;\n }\n`;\n}\nfunction getFlatIndexFrom3DOutput() {\n return `\n int getFlatIndex(ivec3 coords) {\n return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;\n }\n`;\n}\nvar ENCODE_FLOAT_SNIPPET = `\n const float FLOAT_MAX = 1.70141184e38;\n const float FLOAT_MIN = 1.17549435e-38;\n\n lowp vec4 encode_float(highp float v) {\n if (isnan(v)) {\n return vec4(255, 255, 255, 255);\n }\n\n highp float av = abs(v);\n\n if(av < FLOAT_MIN) {\n return vec4(0.0, 0.0, 0.0, 0.0);\n } else if(v > FLOAT_MAX) {\n return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;\n } else if(v < -FLOAT_MAX) {\n return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;\n }\n\n highp vec4 c = vec4(0,0,0,0);\n\n highp float e = floor(log2(av));\n highp float m = exp2(fract(log2(av))) - 1.0;\n\n c[2] = floor(128.0 * m);\n m -= c[2] / 128.0;\n c[1] = floor(32768.0 * m);\n m -= c[1] / 32768.0;\n c[0] = floor(8388608.0 * m);\n\n highp float ebias = e + 127.0;\n c[3] = floor(ebias / 2.0);\n ebias -= c[3] * 2.0;\n c[2] += floor(ebias) * 128.0;\n\n c[3] += 128.0 * step(0.0, -v);\n\n return c / 255.0;\n }\n`;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/shader_compiler.js\nvar { getBroadcastDims: getBroadcastDims2 } = backend_util_exports;\nfunction makeShader(inputsInfo, outputShape, program) {\n const prefixSnippets = [];\n inputsInfo.forEach((x) => {\n const size = util_exports.sizeFromShape(x.shapeInfo.logicalShape);\n if (x.shapeInfo.isUniform) {\n prefixSnippets.push(`uniform float ${x.name}${size > 1 ? `[${size}]` : \"\"};`);\n } else {\n prefixSnippets.push(`uniform sampler2D ${x.name};`);\n prefixSnippets.push(`uniform int offset${x.name};`);\n }\n if (program.enableShapeUniforms) {\n const { uniformShape } = getUniformInfoFromShape(program.packedInputs, x.shapeInfo.logicalShape, x.shapeInfo.texShape);\n switch (uniformShape.length) {\n case 1:\n prefixSnippets.push(`uniform int ${x.name}Shape;`);\n break;\n case 2:\n prefixSnippets.push(`uniform ivec2 ${x.name}Shape;`);\n break;\n case 3:\n prefixSnippets.push(`uniform ivec3 ${x.name}Shape;`);\n break;\n case 4:\n prefixSnippets.push(`uniform ivec4 ${x.name}Shape;`);\n break;\n default:\n break;\n }\n prefixSnippets.push(`uniform ivec2 ${x.name}TexShape;`);\n }\n });\n if (program.enableShapeUniforms) {\n switch (outputShape.logicalShape.length) {\n case 1:\n prefixSnippets.push(`uniform int outShape;`);\n break;\n case 2:\n prefixSnippets.push(`uniform ivec2 outShape;`);\n prefixSnippets.push(`uniform int outShapeStrides;`);\n break;\n case 3:\n prefixSnippets.push(`uniform ivec3 outShape;`);\n prefixSnippets.push(`uniform ivec2 outShapeStrides;`);\n break;\n case 4:\n prefixSnippets.push(`uniform ivec4 outShape;`);\n prefixSnippets.push(`uniform ivec3 outShapeStrides;`);\n break;\n default:\n break;\n }\n prefixSnippets.push(`uniform ivec2 outTexShape;`);\n }\n if (program.customUniforms) {\n program.customUniforms.forEach((d) => {\n prefixSnippets.push(`uniform ${d.type} ${d.name}${d.arrayIndex ? `[${d.arrayIndex}]` : \"\"};`);\n });\n }\n const inputPrefixSnippet = prefixSnippets.join(\"\\n\");\n const inputSamplingSnippet = inputsInfo.map((x) => getInputSamplingSnippet(x, outputShape, program.packedInputs, program.enableShapeUniforms)).join(\"\\n\");\n const outTexShape = outputShape.texShape;\n const glsl = getGlslDifferences();\n const floatTextureSampleSnippet = getFloatTextureSampleSnippet(glsl);\n let outputSamplingSnippet;\n let floatTextureSetOutputSnippet;\n let shaderPrefix = getShaderPrefix(glsl);\n if (outputShape.isPacked) {\n outputSamplingSnippet = getPackedOutputSamplingSnippet(outputShape.logicalShape, outTexShape, program.enableShapeUniforms);\n floatTextureSetOutputSnippet = getFloatTextureSetRGBASnippet(glsl);\n } else {\n outputSamplingSnippet = getOutputSamplingSnippet(outputShape.logicalShape, outTexShape, program.enableShapeUniforms);\n floatTextureSetOutputSnippet = getFloatTextureSetRSnippet(glsl);\n }\n if (program.packedInputs) {\n shaderPrefix += SHADER_PACKED_PREFIX;\n }\n const source = [\n shaderPrefix,\n floatTextureSampleSnippet,\n floatTextureSetOutputSnippet,\n inputPrefixSnippet,\n outputSamplingSnippet,\n inputSamplingSnippet,\n program.userCode\n ].join(\"\\n\");\n return source;\n}\nfunction getSamplerFromInInfo(inInfo, enableShapeUniforms = false) {\n const shape = inInfo.shapeInfo.logicalShape;\n switch (shape.length) {\n case 0:\n return getSamplerScalar(inInfo, enableShapeUniforms);\n case 1:\n return getSampler1D(inInfo, enableShapeUniforms);\n case 2:\n return getSampler2D(inInfo, enableShapeUniforms);\n case 3:\n return getSampler3D(inInfo, enableShapeUniforms);\n case 4:\n return getSampler4D(inInfo, enableShapeUniforms);\n case 5:\n return getSampler5D(inInfo);\n case 6:\n return getSampler6D(inInfo);\n default:\n throw new Error(`${shape.length}-D input sampling is not yet supported`);\n }\n}\nfunction getPackedSamplerFromInInfo(inInfo, enableShapeUniforms) {\n const shape = inInfo.shapeInfo.logicalShape;\n switch (shape.length) {\n case 0:\n return getPackedSamplerScalar(inInfo);\n case 1:\n return getPackedSampler1D(inInfo, enableShapeUniforms);\n case 2:\n return getPackedSampler2D(inInfo, enableShapeUniforms);\n case 3:\n return getPackedSampler3D(inInfo, enableShapeUniforms);\n default:\n return getPackedSamplerND(inInfo, enableShapeUniforms);\n }\n}\nfunction getInputSamplingSnippet(inInfo, outShapeInfo, usesPackedTextures = false, enableShapeUniforms) {\n let res = \"\";\n if (usesPackedTextures) {\n res += getPackedSamplerFromInInfo(inInfo, enableShapeUniforms);\n } else {\n res += getSamplerFromInInfo(inInfo, enableShapeUniforms);\n }\n const inShape = inInfo.shapeInfo.logicalShape;\n const outShape = outShapeInfo.logicalShape;\n if (inShape.length <= outShape.length) {\n if (usesPackedTextures) {\n res += getPackedSamplerAtOutputCoords(inInfo, outShapeInfo);\n } else {\n res += getSamplerAtOutputCoords(inInfo, outShapeInfo);\n }\n }\n return res;\n}\nfunction getPackedOutputSamplingSnippet(outShape, outTexShape, enableShapeUniforms) {\n switch (outShape.length) {\n case 0:\n return getOutputScalarCoords();\n case 1:\n return getOutputPacked1DCoords(outShape, outTexShape, enableShapeUniforms);\n case 2:\n return getOutputPacked2DCoords(outShape, outTexShape, enableShapeUniforms);\n case 3:\n return getOutputPacked3DCoords(outShape, outTexShape, enableShapeUniforms);\n default:\n return getOutputPackedNDCoords(outShape, outTexShape, enableShapeUniforms);\n }\n}\nfunction getOutputSamplingSnippet(outShape, outTexShape, enableShapeUniforms) {\n switch (outShape.length) {\n case 0:\n return getOutputScalarCoords();\n case 1:\n return getOutput1DCoords(outShape, outTexShape, enableShapeUniforms);\n case 2:\n return getOutput2DCoords(outShape, outTexShape, enableShapeUniforms);\n case 3:\n return getOutput3DCoords(outShape, outTexShape, enableShapeUniforms);\n case 4:\n return getOutput4DCoords(outShape, outTexShape, enableShapeUniforms);\n case 5:\n return getOutput5DCoords(outShape, outTexShape);\n case 6:\n return getOutput6DCoords(outShape, outTexShape);\n default:\n throw new Error(`${outShape.length}-D output sampling is not yet supported`);\n }\n}\nfunction getFloatTextureSampleSnippet(glsl) {\n return `\n float sampleTexture(sampler2D textureSampler, vec2 uv) {\n return ${glsl.texture2D}(textureSampler, uv).r;\n }\n `;\n}\nfunction getFloatTextureSetRSnippet(glsl) {\n return `\n void setOutput(float val) {\n ${glsl.output} = vec4(val, 0, 0, 0);\n }\n `;\n}\nfunction getFloatTextureSetRGBASnippet(glsl) {\n return `\n void setOutput(vec4 val) {\n ${glsl.output} = val;\n }\n `;\n}\nfunction getShaderPrefix(glsl) {\n const SHADER_PREFIX = `${glsl.version}\n precision highp float;\n precision highp int;\n precision highp sampler2D;\n ${glsl.varyingFs} vec2 resultUV;\n ${glsl.defineOutput}\n const vec2 halfCR = vec2(0.5, 0.5);\n\n struct ivec5\n {\n int x;\n int y;\n int z;\n int w;\n int u;\n };\n\n struct ivec6\n {\n int x;\n int y;\n int z;\n int w;\n int u;\n int v;\n };\n\n uniform float NAN;\n ${glsl.defineSpecialNaN}\n ${glsl.defineSpecialInf}\n ${glsl.defineRound}\n\n int imod(int x, int y) {\n return x - y * (x / y);\n }\n\n int idiv(int a, int b, float sign) {\n int res = a / b;\n int mod = imod(a, b);\n if (sign < 0. && mod != 0) {\n res -= 1;\n }\n return res;\n }\n\n //Based on the work of Dave Hoskins\n //https://www.shadertoy.com/view/4djSRW\n #define HASHSCALE1 443.8975\n float random(float seed){\n vec2 p = resultUV * seed;\n vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);\n p3 += dot(p3, p3.yzx + 19.19);\n return fract((p3.x + p3.y) * p3.z);\n }\n\n ${SAMPLE_1D_SNIPPET}\n ${SAMPLE_2D_SNIPPET}\n ${SAMPLE_3D_SNIPPET}\n `;\n return SHADER_PREFIX;\n}\nvar SAMPLE_1D_SNIPPET = `\nvec2 uvFromFlat(int texNumR, int texNumC, int index) {\n int texR = index / texNumC;\n int texC = index - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\nvec2 packedUVfrom1D(int texNumR, int texNumC, int index) {\n int texelIndex = index / 2;\n int texR = texelIndex / texNumC;\n int texC = texelIndex - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`;\nvar SAMPLE_2D_SNIPPET = `\nvec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,\n int texNumC, int row, int col) {\n int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);\n int texR = texelIndex / texNumC;\n int texC = texelIndex - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`;\nvar SAMPLE_3D_SNIPPET = `\nvec2 packedUVfrom3D(int texNumR, int texNumC,\n int texelsInBatch, int texelsInLogicalRow, int b,\n int row, int col) {\n int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);\n int texR = index / texNumC;\n int texC = index - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`;\nvar SHADER_PACKED_PREFIX = `\n float getChannel(vec4 frag, vec2 innerDims) {\n vec2 modCoord = mod(innerDims, 2.);\n return modCoord.x == 0. ?\n (modCoord.y == 0. ? frag.r : frag.g) :\n (modCoord.y == 0. ? frag.b : frag.a);\n }\n float getChannel(vec4 frag, int dim) {\n float modCoord = mod(float(dim), 2.);\n return modCoord == 0. ? frag.r : frag.g;\n }\n`;\nfunction getOutputScalarCoords() {\n return `\n int getOutputCoords() {\n return 0;\n }\n `;\n}\nfunction getOutputPacked1DCoords(shape, texShape, enableShapeUniforms) {\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n if (packedTexShape[0] === 1) {\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));\n }\n `;\n }\n return `\n int getOutputCoords() {\n return 2 * int(resultUV.x * ${packedTexShape[1]}.0);\n }\n `;\n }\n if (packedTexShape[1] === 1) {\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));\n }\n `;\n }\n return `\n int getOutputCoords() {\n return 2 * int(resultUV.y * ${packedTexShape[0]}.0);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);\n }\n `;\n }\n return `\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n return 2 * (resTexRC.x * ${packedTexShape[1]} + resTexRC.y);\n }\n `;\n}\nfunction getOutput1DCoords(shape, texShape, enableShapeUniforms) {\n if (texShape[0] === 1) {\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n return int(resultUV.x * float(outTexShape[1]));\n }\n `;\n }\n return `\n int getOutputCoords() {\n return int(resultUV.x * ${texShape[1]}.0);\n }\n `;\n }\n if (texShape[1] === 1) {\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n return int(resultUV.y * float(outTexShape[0]));\n }\n `;\n }\n return `\n int getOutputCoords() {\n return int(resultUV.y * ${texShape[0]}.0);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n return resTexRC.x * outTexShape[1] + resTexRC.y;\n }\n `;\n }\n return `\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n return resTexRC.x * ${texShape[1]} + resTexRC.y;\n }\n `;\n}\nfunction getOutputPacked3DCoords(shape, texShape, enableShapeUniforms) {\n if (enableShapeUniforms) {\n return `\n ivec3 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));\n int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n\n int b = index / texelsInBatch;\n index -= b * texelsInBatch;\n\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec3(b, r, c);\n }\n `;\n }\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n const texelsInLogicalRow = Math.ceil(shape[2] / 2);\n const texelsInBatch = texelsInLogicalRow * Math.ceil(shape[1] / 2);\n return `\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y;\n\n int b = index / ${texelsInBatch};\n index -= b * ${texelsInBatch};\n\n int r = 2 * (index / ${texelsInLogicalRow});\n int c = imod(index, ${texelsInLogicalRow}) * 2;\n\n return ivec3(b, r, c);\n }\n `;\n}\nfunction getOutput3DCoords(shape, texShape, enableShapeUniforms) {\n if (enableShapeUniforms) {\n const coordsFromIndexSnippet2 = getOutputLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\"], shape);\n return `\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n ${coordsFromIndexSnippet2}\n return ivec3(r, c, d);\n }\n`;\n }\n const coordsFromIndexSnippet = getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\"], shape);\n return `\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n ${coordsFromIndexSnippet}\n return ivec3(r, c, d);\n }\n `;\n}\nfunction getOutputPackedNDCoords(shape, texShape, enableShapeUniforms) {\n if (enableShapeUniforms) {\n return `\n ivec4 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n\n int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));\n int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));\n int texelsInBatchN = texelsInBatch * outShape[1];\n\n int b2 = index / texelsInBatchN;\n index -= b2 * texelsInBatchN;\n\n int b = index / texelsInBatch;\n index -= b * texelsInBatch;\n\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec4(b2, b, r, c);\n }\n `;\n }\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n const texelsInLogicalRow = Math.ceil(shape[shape.length - 1] / 2);\n const texelsInBatch = texelsInLogicalRow * Math.ceil(shape[shape.length - 2] / 2);\n let texelsInBatchN = texelsInBatch;\n let batches = ``;\n let coords3 = \"b, r, c\";\n for (let b = 2; b < shape.length - 1; b++) {\n texelsInBatchN *= shape[shape.length - b - 1];\n batches = `\n int b${b} = index / ${texelsInBatchN};\n index -= b${b} * ${texelsInBatchN};\n ` + batches;\n coords3 = `b${b}, ` + coords3;\n }\n return `\n ivec${shape.length} getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y;\n\n ${batches}\n\n int b = index / ${texelsInBatch};\n index -= b * ${texelsInBatch};\n\n int r = 2 * (index / ${texelsInLogicalRow});\n int c = imod(index, ${texelsInLogicalRow}) * 2;\n\n return ivec${shape.length}(${coords3});\n }\n `;\n}\nfunction getOutput4DCoords(shape, texShape, enableShapeUniforms) {\n if (enableShapeUniforms) {\n const coordsFromIndexSnippet2 = getOutputLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\", \"d2\"], shape);\n return `\n ivec4 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n ${coordsFromIndexSnippet2}\n return ivec4(r, c, d, d2);\n }\n `;\n }\n const coordsFromIndexSnippet = getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\", \"d2\"], shape);\n return `\n ivec4 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n ${coordsFromIndexSnippet}\n return ivec4(r, c, d, d2);\n }\n `;\n}\nfunction getOutput5DCoords(shape, texShape) {\n const coordsFromIndexSnippet = getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\", \"d2\", \"d3\"], shape);\n return `\n ivec5 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(${texShape[0]},\n ${texShape[1]}));\n\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n\n ${coordsFromIndexSnippet}\n\n ivec5 outShape = ivec5(r, c, d, d2, d3);\n return outShape;\n }\n `;\n}\nfunction getOutput6DCoords(shape, texShape) {\n const coordsFromIndexSnippet = getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\", \"d2\", \"d3\", \"d4\"], shape);\n return `\n ivec6 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n\n ${coordsFromIndexSnippet}\n\n ivec6 result = ivec6(r, c, d, d2, d3, d4);\n return result;\n }\n `;\n}\nfunction getOutputPacked2DCoords(shape, texShape, enableShapeUniforms) {\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n if (util_exports.arraysEqual(shape, texShape)) {\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n return 2 * ivec2(resultUV.yx * vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n }\n `;\n }\n const texelsInLogicalRow = Math.ceil(shape[1] / 2);\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec2(r, c);\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${packedTexShape[0]}, ${packedTexShape[1]}));\n\n int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y;\n int r = 2 * (index / ${texelsInLogicalRow});\n int c = imod(index, ${texelsInLogicalRow}) * 2;\n\n return ivec2(r, c);\n }\n `;\n}\nfunction getOutput2DCoords(shape, texShape, enableShapeUniforms) {\n if (util_exports.arraysEqual(shape, texShape)) {\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n return ivec2(resultUV.yx * vec2(${texShape[0]}, ${texShape[1]}));\n }\n `;\n }\n if (shape[1] === 1) {\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n return ivec2(index, 0);\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n return ivec2(index, 0);\n }\n `;\n }\n if (shape[0] === 1) {\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n return ivec2(0, index);\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n return ivec2(0, index);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n int r = index / outShape[1];\n int c = index - r * outShape[1];\n return ivec2(r, c);\n }\n `;\n }\n return `\n ivec2 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${texShape[0]}, ${texShape[1]}));\n int index = resTexRC.x * ${texShape[1]} + resTexRC.y;\n int r = index / ${shape[1]};\n int c = index - r * ${shape[1]};\n return ivec2(r, c);\n }\n `;\n}\nfunction getFlatOffsetUniformName(texName) {\n return `offset${texName}`;\n}\nfunction getPackedSamplerScalar(inputInfo) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const glsl = getGlslDifferences();\n return `\n vec4 ${funcName}() {\n return ${glsl.texture2D}(${texName}, halfCR);\n }\n `;\n}\nfunction getSamplerScalar(inputInfo, enableShapeUniforms) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n if (inputInfo.shapeInfo.isUniform) {\n return `float ${funcName}() {return ${texName};}`;\n }\n const [texNumR, texNumC] = inputInfo.shapeInfo.texShape;\n if (texNumR === 1 && texNumC === 1) {\n return `\n float ${funcName}() {\n return sampleTexture(${texName}, halfCR);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n if (enableShapeUniforms) {\n return `\n float ${funcName}() {\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const [tNumR, tNumC] = inputInfo.shapeInfo.texShape;\n return `\n float ${funcName}() {\n vec2 uv = uvFromFlat(${tNumR}, ${tNumC}, ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getPackedSampler1D(inputInfo, enableShapeUniforms) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const texShape = inputInfo.shapeInfo.texShape;\n const glsl = getGlslDifferences();\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int index) {\n ivec2 packedTexShape = ivec2(ceil(float(${texName}TexShape[0]) / 2.0), ceil(float(${texName}TexShape[1]) / 2.0));\n vec2 uv = packedUVfrom1D(\n packedTexShape[0], packedTexShape[1], index);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n return `\n vec4 ${funcName}(int index) {\n vec2 uv = packedUVfrom1D(\n ${packedTexShape[0]}, ${packedTexShape[1]}, index);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n}\nfunction getSampler1D(inputInfo, enableShapeUniforms) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int index) {\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const texShape = inputInfo.shapeInfo.texShape;\n const tNumR = texShape[0];\n const tNumC = texShape[1];\n if (tNumC === 1 && tNumR === 1) {\n return `\n float ${funcName}(int index) {\n return sampleTexture(${texName}, halfCR);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n if (tNumC === 1) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int index) {\n vec2 uv = vec2(0.5, (float(index + ${offset}) + 0.5) / float(${texName}TexShape[0]));\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int index) {\n vec2 uv = vec2(0.5, (float(index + ${offset}) + 0.5) / ${tNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (tNumR === 1) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int index) {\n vec2 uv = vec2((float(index + ${offset}) + 0.5) / float(${texName}TexShape[1]), 0.5);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int index) {\n vec2 uv = vec2((float(index + ${offset}) + 0.5) / ${tNumC}.0, 0.5);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int index) {\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], index + ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int index) {\n vec2 uv = uvFromFlat(${tNumR}, ${tNumC}, index + ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getPackedSampler2D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n const glsl = getGlslDifferences();\n if (texShape != null && util_exports.arraysEqual(shape, texShape)) {\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int row, int col) {\n vec2 uv = (vec2(col, row) + halfCR) / vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n return `\n vec4 ${funcName}(int row, int col) {\n vec2 uv = (vec2(col, row) + halfCR) / vec2(${texNumC}.0, ${texNumR}.0);\n\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int row, int col) {\n ivec2 packedTexShape = ivec2(ceil(float(${texName}TexShape[0]) / 2.0), ceil(float(${texName}TexShape[1]) / 2.0));\n int valuesPerRow = int(ceil(float(${texName}Shape[1]) / 2.0));\n vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n const valuesPerRow = Math.ceil(shape[1] / 2);\n return `\n vec4 ${funcName}(int row, int col) {\n vec2 uv = packedUVfrom2D(${valuesPerRow}, ${packedTexShape[0]}, ${packedTexShape[1]}, row, col);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n}\nfunction getSampler2D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const texShape = inputInfo.shapeInfo.texShape;\n if (texShape != null && util_exports.arraysEqual(shape, texShape)) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col) {\n vec2 uv = (vec2(col, row) + halfCR) / vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const texNumR2 = texShape[0];\n const texNumC2 = texShape[1];\n return `\n float ${funcName}(int row, int col) {\n vec2 uv = (vec2(col, row) + halfCR) / vec2(${texNumC2}.0, ${texNumR2}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n const squeezedShape = newShape;\n if (squeezedShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, squeezedShape);\n const params = [\"row\", \"col\"];\n return `\n ${getSamplerFromInInfo(newInputInfo, enableShapeUniforms)}\n float ${funcName}(int row, int col) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col) {\n int index = round(dot(vec2(row, col), vec2(${shape[1]}, 1)));\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n const offset = getFlatOffsetUniformName(texName);\n if (texNumC === 1) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col) {\n float index = dot(vec3(row, col, ${offset}), vec3(${texName}Shape[1], 1, 1));\n vec2 uv = vec2(0.5, (index + 0.5) / float(${texName}TexShape[0]));\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col) {\n float index = dot(vec3(row, col, ${offset}), vec3(${shape[1]}, 1, 1));\n vec2 uv = vec2(0.5, (index + 0.5) / ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumR === 1) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col) {\n float index = dot(vec3(row, col, ${offset}), vec3(${texName}Shape[1], 1, 1));\n vec2 uv = vec2((index + 0.5) / float(${texName}TexShape[1]), 0.5);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col) {\n float index = dot(vec3(row, col, ${offset}), vec3(${shape[1]}, 1, 1));\n vec2 uv = vec2((index + 0.5) / ${texNumC}.0, 0.5);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${texName}Shape[1] + col + ${offset};\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], index);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${shape[1]} + col + ${offset};\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);\n return sampleTexture(${texName}, uv);\n }\n`;\n}\nfunction getPackedSampler3D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const texShape = inputInfo.shapeInfo.texShape;\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n if (shape[0] === 1) {\n const squeezedShape = shape.slice(1);\n const keptDims = [1, 2];\n const newInputInfo = squeezeInputInfo(inputInfo, squeezedShape);\n const params = [\"b\", \"row\", \"col\"];\n return `\n ${getPackedSamplerFromInInfo(newInputInfo, enableShapeUniforms)}\n vec4 ${funcName}(int b, int row, int col) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n const glsl = getGlslDifferences();\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int b, int row, int col) {\n ivec2 packedTexShape = ivec2(ceil(float(${texName}TexShape[0]) / 2.0), ceil(float(${texName}TexShape[1]) / 2.0));\n int valuesPerRow = int(ceil(float(${texName}Shape[2]) / 2.0));\n int texelsInBatch = valuesPerRow * int(ceil(float(${texName}Shape[1]) / 2.0));\n vec2 uv = packedUVfrom3D(\n packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n const texNumR = packedTexShape[0];\n const texNumC = packedTexShape[1];\n const valuesPerRow = Math.ceil(shape[2] / 2);\n const texelsInBatch = valuesPerRow * Math.ceil(shape[1] / 2);\n return `\n vec4 ${funcName}(int b, int row, int col) {\n vec2 uv = packedUVfrom3D(\n ${texNumR}, ${texNumC}, ${texelsInBatch}, ${valuesPerRow}, b, row, col);\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n}\nfunction getSampler3D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const stride0 = shape[1] * shape[2];\n const stride1 = shape[2];\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n const squeezedShape = newShape;\n if (squeezedShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, squeezedShape);\n const params = [\"row\", \"col\", \"depth\"];\n return `\n ${getSamplerFromInInfo(newInputInfo, enableShapeUniforms)}\n float ${funcName}(int row, int col, int depth) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col, int depth) {\n int index = round(dot(vec3(row, col, depth),\n vec3(${stride0}, ${stride1}, 1)));\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n const flatOffset = inputInfo.shapeInfo.flatOffset;\n if (texNumC === stride0 && flatOffset == null) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth) {\n int stride1 = ${texName}Shape[2];\n float texR = float(row);\n float texC = dot(vec2(col, depth), vec2(stride1, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth) {\n float texR = float(row);\n float texC = dot(vec2(col, depth), vec2(${stride1}, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumC === stride1 && flatOffset == null) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth) {\n float texR = dot(vec2(row, col), vec2(${texName}Shape[1], 1));\n float texC = float(depth);\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth) {\n float texR = dot(vec2(row, col), vec2(${shape[1]}, 1));\n float texC = float(depth);\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth) {\n // Explicitly use integer operations as dot() only works on floats.\n int stride0 = ${texName}Shape[1] * ${texName}Shape[2];\n int stride1 = ${texName}Shape[2];\n int index = row * ${stride0} + col * ${stride1} + depth + ${offset};\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], index);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${stride0} + col * ${stride1} + depth + ${offset};\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getPackedSamplerND(inputInfo, enableShapeUniforms) {\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const glsl = getGlslDifferences();\n if (enableShapeUniforms) {\n return `\n vec4 ${funcName}(int b2, int b, int row, int col) {\n int valuesPerRow = int(ceil(float(${texName}Shape[3]) / 2.0));\n int texelsInBatch = valuesPerRow * int(ceil(float(${texName}Shape[2]) / 2.0));\n int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);\n texelsInBatch *= ${texName}Shape[1];\n index = b2 * texelsInBatch + index;\n ivec2 packedTexShape = ivec2(ceil(float(${texName}TexShape[0]) / 2.0), ceil(float(${texName}TexShape[1]) / 2.0));\n int texR = index / packedTexShape[1];\n int texC = index - texR * packedTexShape[1];\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n }\n const shape = inputInfo.shapeInfo.logicalShape;\n const rank = shape.length;\n const texShape = inputInfo.shapeInfo.texShape;\n const packedTexShape = [Math.ceil(texShape[0] / 2), Math.ceil(texShape[1] / 2)];\n const texNumR = packedTexShape[0];\n const texNumC = packedTexShape[1];\n const valuesPerRow = Math.ceil(shape[rank - 1] / 2);\n let texelsInBatch = valuesPerRow * Math.ceil(shape[rank - 2] / 2);\n let params = `int b, int row, int col`;\n let index = `b * ${texelsInBatch} + (row / 2) * ${valuesPerRow} + (col / 2)`;\n for (let b = 2; b < rank - 1; b++) {\n params = `int b${b}, ` + params;\n texelsInBatch *= shape[rank - b - 1];\n index = `b${b} * ${texelsInBatch} + ` + index;\n }\n return `\n vec4 ${funcName}(${params}) {\n int index = ${index};\n int texR = index / ${texNumC};\n int texC = index - texR * ${texNumC};\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${texNumC}, ${texNumR});\n return ${glsl.texture2D}(${texName}, uv);\n }\n `;\n}\nfunction getSampler4D(inputInfo, enableShapeUniforms) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const stride2 = shape[3];\n const stride1 = shape[2] * stride2;\n const stride0 = shape[1] * stride1;\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n if (newShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, newShape);\n const params = [\"row\", \"col\", \"depth\", \"depth2\"];\n return `\n ${getSamplerFromInInfo(newInputInfo, enableShapeUniforms)}\n float ${funcName}(int row, int col, int depth, int depth2) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n int index = round(dot(vec4(row, col, depth, depth2),\n vec4(${stride0}, ${stride1}, ${stride2}, 1)));\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const flatOffset = inputInfo.shapeInfo.flatOffset;\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n const stride2Str = `int stride2 = ${texName}Shape[3];`;\n const stride1Str = `int stride1 = ${texName}Shape[2] * stride2;`;\n const stride0Str = `int stride0 = ${texName}Shape[1] * stride1;`;\n if (texNumC === stride0 && flatOffset == null) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n ${stride2Str}\n ${stride1Str}\n float texR = float(row);\n float texC =\n dot(vec3(col, depth, depth2),\n vec3(stride1, stride2, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n float texR = float(row);\n float texC =\n dot(vec3(col, depth, depth2),\n vec3(${stride1}, ${stride2}, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumC === stride2 && flatOffset == null) {\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n float texR = dot(vec3(row, col, depth),\n vec3(${texName}Shape[1] * ${texName}Shape[2], ${texName}Shape[2], 1));\n float texC = float(depth2);\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texName}TexShape[1], ${texName}TexShape[0]);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n float texR = dot(vec3(row, col, depth),\n vec3(${shape[1] * shape[2]}, ${shape[2]}, 1));\n float texC = float(depth2);\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n if (enableShapeUniforms) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n // Explicitly use integer operations as dot() only works on floats.\n ${stride2Str}\n ${stride1Str}\n ${stride0Str}\n int index = row * stride0 + col * stride1 +\n depth * stride2 + depth2;\n vec2 uv = uvFromFlat(${texName}TexShape[0], ${texName}TexShape[1], index + ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n return `\n float ${funcName}(int row, int col, int depth, int depth2) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${stride0} + col * ${stride1} +\n depth * ${stride2} + depth2;\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index + ${offset});\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getSampler5D(inputInfo) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const stride3 = shape[4];\n const stride2 = shape[3] * stride3;\n const stride1 = shape[2] * stride2;\n const stride0 = shape[1] * stride1;\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n if (newShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, newShape);\n const params = [\"row\", \"col\", \"depth\", \"depth2\", \"depth3\"];\n return `\n ${getSamplerFromInInfo(newInputInfo)}\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n float index = dot(\n vec4(row, col, depth, depth2),\n vec4(${stride0}, ${stride1}, ${stride2}, ${stride3})) +\n depth3;\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const flatOffset = inputInfo.shapeInfo.flatOffset;\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n if (texNumC === stride0 && flatOffset == null) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n int texR = row;\n float texC = dot(vec4(col, depth, depth2, depth3),\n vec4(${stride1}, ${stride2}, ${stride3}, 1));\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumC === stride3 && flatOffset == null) {\n return `\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n float texR = dot(\n vec4(row, col, depth, depth2),\n vec4(${shape[1] * shape[2] * shape[3]},\n ${shape[2] * shape[3]}, ${shape[3]}, 1));\n int texC = depth3;\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n return `\n float ${funcName}(int row, int col, int depth, int depth2, int depth3) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${stride0} + col * ${stride1} + depth * ${stride2} +\n depth2 * ${stride3} + depth3 + ${offset};\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getSampler6D(inputInfo) {\n const shape = inputInfo.shapeInfo.logicalShape;\n const texName = inputInfo.name;\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n if (newShape.length < shape.length) {\n const newInputInfo = squeezeInputInfo(inputInfo, newShape);\n const params = [\"row\", \"col\", \"depth\", \"depth2\", \"depth3\", \"depth4\"];\n return `\n ${getSamplerFromInInfo(newInputInfo)}\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n return ${funcName}(${getSqueezedParams(params, keptDims)});\n }\n `;\n }\n const stride4 = shape[5];\n const stride3 = shape[4] * stride4;\n const stride2 = shape[3] * stride3;\n const stride1 = shape[2] * stride2;\n const stride0 = shape[1] * stride1;\n if (inputInfo.shapeInfo.isUniform) {\n return `\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n int index = round(dot(\n vec4(row, col, depth, depth2),\n vec4(${stride0}, ${stride1}, ${stride2}, ${stride3})) +\n dot(\n vec2(depth3, depth4),\n vec2(${stride4}, 1)));\n ${getUniformSampler(inputInfo)}\n }\n `;\n }\n const flatOffset = inputInfo.shapeInfo.flatOffset;\n const texShape = inputInfo.shapeInfo.texShape;\n const texNumR = texShape[0];\n const texNumC = texShape[1];\n if (texNumC === stride0 && flatOffset == null) {\n return `\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n int texR = row;\n float texC = dot(vec4(col, depth, depth2, depth3),\n vec4(${stride1}, ${stride2}, ${stride3}, ${stride4})) +\n float(depth4);\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n if (texNumC === stride4 && flatOffset == null) {\n return `\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n float texR = dot(vec4(row, col, depth, depth2),\n vec4(${shape[1] * shape[2] * shape[3] * shape[4]},\n ${shape[2] * shape[3] * shape[4]},\n ${shape[3] * shape[4]},\n ${shape[4]})) + float(depth3);\n int texC = depth4;\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${texNumC}.0, ${texNumR}.0);\n return sampleTexture(${texName}, uv);\n }\n `;\n }\n const offset = getFlatOffsetUniformName(texName);\n return `\n float ${funcName}(int row, int col, int depth,\n int depth2, int depth3, int depth4) {\n // Explicitly use integer operations as dot() only works on floats.\n int index = row * ${stride0} + col * ${stride1} + depth * ${stride2} +\n depth2 * ${stride3} + depth3 * ${stride4} + depth4 + ${offset};\n vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);\n return sampleTexture(${texName}, uv);\n }\n `;\n}\nfunction getUniformSampler(inputInfo) {\n const texName = inputInfo.name;\n const inSize = util_exports.sizeFromShape(inputInfo.shapeInfo.logicalShape);\n if (inSize < 2) {\n return `return ${texName};`;\n }\n return `\n for (int i = 0; i < ${inSize}; i++) {\n if (i == index) {\n return ${texName}[i];\n }\n }\n `;\n}\nfunction getPackedSamplerAtOutputCoords(inputInfo, outShapeInfo) {\n const texName = inputInfo.name;\n const texFuncSnippet = texName.charAt(0).toUpperCase() + texName.slice(1);\n const funcName = \"get\" + texFuncSnippet + \"AtOutCoords\";\n const inRank = inputInfo.shapeInfo.logicalShape.length;\n const outRank = outShapeInfo.logicalShape.length;\n const broadcastDims = getBroadcastDims2(inputInfo.shapeInfo.logicalShape, outShapeInfo.logicalShape);\n const type = getCoordsDataType(outRank);\n const rankDiff = outRank - inRank;\n let coordsSnippet;\n const fields = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"];\n if (inRank === 0) {\n coordsSnippet = \"\";\n } else if (outRank < 2 && broadcastDims.length >= 1) {\n coordsSnippet = \"coords = 0;\";\n } else {\n coordsSnippet = broadcastDims.map((d) => `coords.${fields[d + rankDiff]} = 0;`).join(\"\\n\");\n }\n let unpackedCoordsSnippet = \"\";\n if (outRank < 2 && inRank > 0) {\n unpackedCoordsSnippet = \"coords\";\n } else {\n unpackedCoordsSnippet = inputInfo.shapeInfo.logicalShape.map((s2, i2) => `coords.${fields[i2 + rankDiff]}`).join(\", \");\n }\n let output = `return outputValue;`;\n const inSize = util_exports.sizeFromShape(inputInfo.shapeInfo.logicalShape);\n const isInputScalar = inSize === 1;\n const outSize = util_exports.sizeFromShape(outShapeInfo.logicalShape);\n const isOutputScalar = outSize === 1;\n if (inRank === 1 && !isInputScalar && !isOutputScalar) {\n output = `\n return vec4(outputValue.xy, outputValue.xy);\n `;\n } else if (isInputScalar && !isOutputScalar) {\n if (outRank === 1) {\n output = `\n return vec4(outputValue.x, outputValue.x, 0., 0.);\n `;\n } else {\n output = `\n return vec4(outputValue.x);\n `;\n }\n } else if (broadcastDims.length) {\n const rows = inRank - 2;\n const cols = inRank - 1;\n if (broadcastDims.indexOf(rows) > -1 && broadcastDims.indexOf(cols) > -1) {\n output = `return vec4(outputValue.x);`;\n } else if (broadcastDims.indexOf(rows) > -1) {\n output = `return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);`;\n } else if (broadcastDims.indexOf(cols) > -1) {\n output = `return vec4(outputValue.xx, outputValue.zz);`;\n }\n }\n return `\n vec4 ${funcName}() {\n ${type} coords = getOutputCoords();\n ${coordsSnippet}\n vec4 outputValue = get${texFuncSnippet}(${unpackedCoordsSnippet});\n ${output}\n }\n `;\n}\nfunction getSamplerAtOutputCoords(inputInfo, outShapeInfo) {\n const texName = inputInfo.name;\n const texFuncSnippet = texName.charAt(0).toUpperCase() + texName.slice(1);\n const funcName = \"get\" + texFuncSnippet + \"AtOutCoords\";\n const outTexShape = outShapeInfo.texShape;\n const inTexShape = inputInfo.shapeInfo.texShape;\n const inRank = inputInfo.shapeInfo.logicalShape.length;\n const outRank = outShapeInfo.logicalShape.length;\n if (!inputInfo.shapeInfo.isUniform && inRank === outRank && inputInfo.shapeInfo.flatOffset == null && util_exports.arraysEqual(inTexShape, outTexShape)) {\n return `\n float ${funcName}() {\n return sampleTexture(${texName}, resultUV);\n }\n `;\n }\n const type = getCoordsDataType(outRank);\n const broadcastDims = getBroadcastDims2(inputInfo.shapeInfo.logicalShape, outShapeInfo.logicalShape);\n const rankDiff = outRank - inRank;\n let coordsSnippet;\n const fields = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"];\n if (inRank === 0) {\n coordsSnippet = \"\";\n } else if (outRank < 2 && broadcastDims.length >= 1) {\n coordsSnippet = \"coords = 0;\";\n } else {\n coordsSnippet = broadcastDims.map((d) => `coords.${fields[d + rankDiff]} = 0;`).join(\"\\n\");\n }\n let unpackedCoordsSnippet = \"\";\n if (outRank < 2 && inRank > 0) {\n unpackedCoordsSnippet = \"coords\";\n } else {\n unpackedCoordsSnippet = inputInfo.shapeInfo.logicalShape.map((s2, i2) => `coords.${fields[i2 + rankDiff]}`).join(\", \");\n }\n return `\n float ${funcName}() {\n ${type} coords = getOutputCoords();\n ${coordsSnippet}\n return get${texFuncSnippet}(${unpackedCoordsSnippet});\n }\n `;\n}\nfunction getCoordsDataType(rank) {\n if (rank <= 1) {\n return \"int\";\n } else if (rank === 2) {\n return \"ivec2\";\n } else if (rank === 3) {\n return \"ivec3\";\n } else if (rank === 4) {\n return \"ivec4\";\n } else if (rank === 5) {\n return \"ivec5\";\n } else if (rank === 6) {\n return \"ivec6\";\n } else {\n throw Error(`GPU for rank ${rank} is not yet supported`);\n }\n}\nfunction getUniformInfoFromShape(isPacked, shape, texShape) {\n const { newShape, keptDims } = util_exports.squeezeShape(shape);\n const rank = shape.length;\n const useSqueezePackedShape = isPacked && rank === 3 && shape[0] === 1;\n const squeezeShape2 = useSqueezePackedShape ? shape.slice(1) : newShape;\n const useSqueezeShape = !isPacked && rank > 1 && !util_exports.arraysEqual(shape, texShape) && newShape.length < rank || useSqueezePackedShape;\n const uniformShape = useSqueezeShape ? squeezeShape2 : shape;\n return { useSqueezeShape, uniformShape, keptDims };\n}\nfunction squeezeInputInfo(inInfo, squeezedShape) {\n const newInputInfo = JSON.parse(JSON.stringify(inInfo));\n newInputInfo.shapeInfo.logicalShape = squeezedShape;\n return newInputInfo;\n}\nfunction getSqueezedParams(params, keptDims) {\n return keptDims.map((d) => params[d]).join(\", \");\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gpgpu_math.js\nfunction compileProgram(gpgpu, program, inputs, output) {\n const inputInfos = inputs.map((input2, i2) => {\n const shapeInfo = {\n logicalShape: input2.shape,\n texShape: input2.isUniform ? null : input2.texData.texShape,\n isUniform: input2.isUniform,\n isPacked: input2.isUniform ? false : input2.texData.isPacked,\n flatOffset: null\n };\n if (input2.texData != null && input2.texData.slice != null && input2.texData.slice.flatOffset > 0) {\n shapeInfo.flatOffset = input2.texData.slice.flatOffset;\n }\n return { name: program.variableNames[i2], shapeInfo };\n });\n const inShapeInfos = inputInfos.map((x) => x.shapeInfo);\n const outShapeInfo = {\n logicalShape: output.shape,\n texShape: output.texData.texShape,\n isUniform: false,\n isPacked: output.texData.isPacked,\n flatOffset: null\n };\n const source = makeShader(inputInfos, outShapeInfo, program);\n const fragmentShader = createFragmentShader(gpgpu.gl, source);\n const webGLProgram = gpgpu.createProgram(fragmentShader);\n if (!env().get(\"ENGINE_COMPILE_ONLY\")) {\n return Object.assign({\n program,\n fragmentShader,\n source,\n webGLProgram,\n inShapeInfos,\n outShapeInfo\n }, getUniformLocations(gpgpu, program, webGLProgram));\n } else {\n return {\n program,\n fragmentShader,\n source,\n webGLProgram,\n inShapeInfos,\n outShapeInfo,\n uniformLocations: null,\n customUniformLocations: null,\n infLoc: null,\n nanLoc: null,\n inShapesLocations: null,\n inTexShapesLocations: null,\n outShapeLocation: null,\n outShapeStridesLocation: null,\n outTexShapeLocation: null\n };\n }\n}\nfunction getUniformLocations(gpgpu, program, webGLProgram) {\n const uniformLocations = {};\n const inShapesLocations = {};\n const inTexShapesLocations = {};\n const customUniformLocations = [];\n let outShapeLocation;\n let outTexShapeLocation;\n let outShapeStridesLocation;\n let infLoc = null;\n let nanLoc = null;\n nanLoc = gpgpu.getUniformLocation(webGLProgram, \"NAN\", false);\n if (env().getNumber(\"WEBGL_VERSION\") === 1) {\n infLoc = gpgpu.getUniformLocation(webGLProgram, \"INFINITY\", false);\n }\n const shouldThrow = false;\n for (let i2 = 0; i2 < program.variableNames.length; i2++) {\n const varName = program.variableNames[i2];\n uniformLocations[varName] = gpgpu.getUniformLocation(webGLProgram, varName, shouldThrow);\n uniformLocations[`offset${varName}`] = gpgpu.getUniformLocation(webGLProgram, `offset${varName}`, shouldThrow);\n if (program.enableShapeUniforms) {\n inShapesLocations[`${varName}Shape`] = gpgpu.getUniformLocation(webGLProgram, `${varName}Shape`, shouldThrow);\n inTexShapesLocations[`${varName}TexShape`] = gpgpu.getUniformLocation(webGLProgram, `${varName}TexShape`, shouldThrow);\n }\n }\n if (program.enableShapeUniforms) {\n outShapeLocation = gpgpu.getUniformLocation(webGLProgram, \"outShape\", shouldThrow);\n outShapeStridesLocation = gpgpu.getUniformLocation(webGLProgram, \"outShapeStrides\", shouldThrow);\n outTexShapeLocation = gpgpu.getUniformLocation(webGLProgram, \"outTexShape\", shouldThrow);\n }\n if (program.customUniforms) {\n program.customUniforms.forEach((d, i2) => {\n customUniformLocations[i2] = gpgpu.getUniformLocation(webGLProgram, d.name, shouldThrow);\n });\n }\n return {\n uniformLocations,\n customUniformLocations,\n infLoc,\n nanLoc,\n inShapesLocations,\n inTexShapesLocations,\n outShapeLocation,\n outShapeStridesLocation,\n outTexShapeLocation\n };\n}\nfunction validateBinaryAndProgram(shapeInfos, inputs) {\n if (shapeInfos.length !== inputs.length) {\n throw Error(`Binary was compiled with ${shapeInfos.length} inputs, but was executed with ${inputs.length} inputs`);\n }\n shapeInfos.forEach((s2, i2) => {\n const shapeA = s2.logicalShape;\n const input2 = inputs[i2];\n const shapeB = input2.shape;\n if (!util_exports.arraysEqual(shapeA, shapeB)) {\n throw Error(`Binary was compiled with different shapes than the current args. Shapes ${shapeA} and ${shapeB} must match`);\n }\n if (s2.isUniform && input2.isUniform) {\n return;\n }\n const texShapeA = s2.texShape;\n const texShapeB = input2.isUniform ? null : input2.texData.texShape;\n if (!util_exports.arraysEqual(texShapeA, texShapeB)) {\n throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${texShapeA} and ${texShapeB} must match`);\n }\n });\n}\nfunction runProgram(gpgpu, binary, inputs, output, customUniformValues) {\n if (!binary.program.enableShapeUniforms) {\n validateBinaryAndProgram(binary.inShapeInfos, inputs);\n validateBinaryAndProgram([binary.outShapeInfo], [output]);\n }\n const outTex = output.texData.texture;\n const outTexShape = output.texData.texShape;\n if (output.texData.isPacked) {\n gpgpu.setOutputPackedMatrixTexture(outTex.texture, outTexShape[0], outTexShape[1]);\n } else {\n gpgpu.setOutputMatrixTexture(outTex.texture, outTexShape[0], outTexShape[1]);\n }\n gpgpu.setProgram(binary.webGLProgram);\n if (env().getNumber(\"WEBGL_VERSION\") === 1) {\n if (binary.infLoc !== null) {\n gpgpu.gl.uniform1f(binary.infLoc, Infinity);\n }\n }\n if (binary.nanLoc !== null) {\n gpgpu.gl.uniform1f(binary.nanLoc, NaN);\n }\n inputs.forEach((input2, i2) => {\n const varName = binary.program.variableNames[i2];\n const varLoc = binary.uniformLocations[varName];\n const varOffsetLoc = binary.uniformLocations[`offset${varName}`];\n const varShapeLoc = binary.inShapesLocations[`${varName}Shape`];\n const varTexShapeLoc = binary.inTexShapesLocations[`${varName}TexShape`];\n if (varShapeLoc) {\n const { uniformShape } = getUniformInfoFromShape(binary.program.packedInputs, input2.shape, input2.texData.texShape);\n switch (uniformShape.length) {\n case 1:\n gpgpu.gl.uniform1iv(varShapeLoc, new Int32Array(uniformShape));\n break;\n case 2:\n gpgpu.gl.uniform2iv(varShapeLoc, new Int32Array(uniformShape));\n break;\n case 3:\n gpgpu.gl.uniform3iv(varShapeLoc, new Int32Array(uniformShape));\n break;\n case 4:\n gpgpu.gl.uniform4iv(varShapeLoc, new Int32Array(uniformShape));\n break;\n default:\n break;\n }\n }\n if (varTexShapeLoc) {\n gpgpu.gl.uniform2i(varTexShapeLoc, input2.texData.texShape[0], input2.texData.texShape[1]);\n }\n if (varLoc == null) {\n return;\n }\n if (input2.isUniform) {\n if (util_exports.sizeFromShape(input2.shape) < 2) {\n gpgpu.gl.uniform1f(varLoc, input2.uniformValues[0]);\n } else {\n let vals = input2.uniformValues;\n if (!(vals instanceof Float32Array)) {\n vals = new Float32Array(vals);\n }\n gpgpu.gl.uniform1fv(varLoc, vals);\n }\n return;\n }\n if (input2.texData.slice != null && varOffsetLoc != null) {\n gpgpu.gl.uniform1i(varOffsetLoc, input2.texData.slice.flatOffset);\n }\n gpgpu.setInputMatrixTexture(input2.texData.texture.texture, varLoc, i2);\n });\n const outShapeLoc = binary.outShapeLocation;\n if (outShapeLoc) {\n switch (output.shape.length) {\n case 1:\n gpgpu.gl.uniform1iv(outShapeLoc, new Int32Array(output.shape));\n break;\n case 2:\n gpgpu.gl.uniform2iv(outShapeLoc, new Int32Array(output.shape));\n break;\n case 3:\n gpgpu.gl.uniform3iv(outShapeLoc, new Int32Array(output.shape));\n break;\n case 4:\n gpgpu.gl.uniform4iv(outShapeLoc, new Int32Array(output.shape));\n break;\n default:\n break;\n }\n }\n if (binary.outShapeStridesLocation) {\n const strides = util_exports.computeStrides(output.shape);\n switch (output.shape.length) {\n case 2:\n gpgpu.gl.uniform1iv(binary.outShapeStridesLocation, new Int32Array(strides));\n break;\n case 3:\n gpgpu.gl.uniform2iv(binary.outShapeStridesLocation, new Int32Array(strides));\n break;\n case 4:\n gpgpu.gl.uniform3iv(binary.outShapeStridesLocation, new Int32Array(strides));\n break;\n default:\n break;\n }\n }\n if (binary.outTexShapeLocation) {\n gpgpu.gl.uniform2i(binary.outTexShapeLocation, output.texData.texShape[0], output.texData.texShape[1]);\n }\n if (binary.program.customUniforms && customUniformValues) {\n binary.program.customUniforms.forEach((d, i2) => {\n const customLoc = binary.customUniformLocations[i2];\n const customValue = customUniformValues[i2];\n if (d.type === \"float\") {\n gpgpu.gl.uniform1fv(customLoc, customValue);\n } else if (d.type === \"vec2\") {\n gpgpu.gl.uniform2fv(customLoc, customValue);\n } else if (d.type === \"vec3\") {\n gpgpu.gl.uniform3fv(customLoc, customValue);\n } else if (d.type === \"vec4\") {\n gpgpu.gl.uniform4fv(customLoc, customValue);\n } else if (d.type === \"int\") {\n gpgpu.gl.uniform1iv(customLoc, customValue);\n } else if (d.type === \"ivec2\") {\n gpgpu.gl.uniform2iv(customLoc, customValue);\n } else if (d.type === \"ivec3\") {\n gpgpu.gl.uniform3iv(customLoc, customValue);\n } else if (d.type === \"ivec4\") {\n gpgpu.gl.uniform4iv(customLoc, customValue);\n } else {\n throw Error(`uniform type ${d.type} is not supported yet.`);\n }\n });\n }\n gpgpu.executeProgram();\n}\nfunction makeShaderKey(program, inputs, output) {\n let keyInputs = \"\";\n inputs.concat(output).forEach((x) => {\n const hasOffset = x.texData != null && x.texData.slice != null && x.texData.slice.flatOffset > 0;\n if (program.enableShapeUniforms && !x.isUniform) {\n const xTexShape = x.texData.texShape;\n const { useSqueezeShape, uniformShape, keptDims } = getUniformInfoFromShape(program.packedInputs, x.shape, xTexShape);\n let rank1 = \"\", rank2 = \"\", rank34 = \"\";\n if (uniformShape.length === 1 && program.packedInputs) {\n const packedTexShape = [Math.ceil(xTexShape[0] / 2), Math.ceil(xTexShape[1] / 2)];\n rank1 = `${packedTexShape[0] > 1}_${packedTexShape[1] > 1}`;\n } else if (uniformShape.length === 2 && !program.packedInputs) {\n rank2 = `${uniformShape[0] > 1}_${uniformShape[1] > 1}`;\n } else if (uniformShape.length > 2 && !program.packedInputs) {\n const strides = util_exports.computeStrides(uniformShape);\n rank34 = `${strides[0] === xTexShape[1]}_${strides[strides.length - 1] === xTexShape[1]}`;\n }\n const xRank = x.shape.length;\n const isLogicalShapTexShapeEqual = uniformShape.length === 2 && util_exports.arraysEqual(x.shape, xTexShape);\n const isScalar = util_exports.sizeFromShape(x.shape) === 1;\n const broadcastDims = backend_util_exports.getBroadcastDims(x.shape, output.shape);\n const isInOutTexShapeEqual = !program.packedInputs && xRank === output.shape.length && util_exports.arraysEqual(xTexShape, output.texData.texShape);\n const isTexShapeGreaterThanOne = program.packedInputs || uniformShape.length > 2 ? \"\" : `${xTexShape[0] > 1}_${xTexShape[1] > 1}`;\n keyInputs += `${xRank}_${isInOutTexShapeEqual}_${useSqueezeShape ? keptDims : \"\"}_${uniformShape.length}_${isScalar}_${broadcastDims}_${isLogicalShapTexShapeEqual}_${rank1}_${rank2}_${rank34}_${isTexShapeGreaterThanOne}_${hasOffset}`;\n } else {\n const texShape = x.isUniform ? \"uniform\" : x.texData.texShape;\n keyInputs += `${x.shape}_${texShape}_${hasOffset}`;\n }\n });\n const keyUserCode = program.userCode;\n let key = program.constructor.name;\n key += \"_\" + keyInputs + \"_\" + keyUserCode + `${env().getNumber(\"WEBGL_VERSION\")}`;\n return key;\n}\nfunction useShapeUniforms(rank) {\n return env().getBool(\"WEBGL_USE_SHAPES_UNIFORMS\") && rank <= 4;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/decode_matrix_gpu.js\nvar DecodeMatrixProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = false;\n this.packedOutput = true;\n this.outPackingScheme = PackingScheme.DENSE;\n this.customUniforms = [{ name: \"texShape\", type: \"ivec2\" }];\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n ivec3 outCoordsFromFlatIndex(int index) {\n ${this.enableShapeUniforms ? getOutputLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\"], outputShape) : getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\"], outputShape)}\n return ivec3(r, c, d);\n }\n\n void main() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));\n int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);\n\n vec4 result = vec4(0.);\n\n for (int i=0; i<4; i++) {\n int flatIndex = index + i;\n ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n result[i] = getA(rc.x, rc.y, rc.z);\n }\n\n ${glsl.output} = result;\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/decode_matrix_packed_gpu.js\nvar DecodeMatrixPackedProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outPackingScheme = PackingScheme.DENSE;\n this.customUniforms = [{ name: \"texShape\", type: \"ivec2\" }];\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n ivec3 outCoordsFromFlatIndex(int index) {\n ${this.enableShapeUniforms ? getOutputLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\"], outputShape) : getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\"], outputShape)}\n return ivec3(r, c, d);\n }\n\n void main() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));\n int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);\n\n vec4 result = vec4(0.);\n\n for (int i=0; i<4; i++) {\n int flatIndex = index + i;\n ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));\n }\n\n ${glsl.output} = result;\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/encode_float_gpu.js\nvar EncodeFloatProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.outTexUsage = TextureUsage.DOWNLOAD;\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.userCode = `\n ${ENCODE_FLOAT_SNIPPET}\n\n void main() {\n float x = getAAtOutCoords();\n ${glsl.output} = encode_float(x);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/encode_float_packed_gpu.js\nvar EncodeFloatPackedProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = false;\n this.outTexUsage = TextureUsage.DOWNLOAD;\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.userCode = `\n ${ENCODE_FLOAT_SNIPPET}\n\n void main() {\n ivec3 coords = getOutputCoords();\n float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));\n ${glsl.output} = encode_float(x);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/encode_matrix_gpu.js\nvar EncodeMatrixProgram = class {\n constructor(outputShape, inputIsUnsignedByte = false) {\n this.variableNames = [\"A\"];\n this.customUniforms = [{ name: \"texShape\", type: \"ivec2\" }];\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n let output = `result`;\n if (inputIsUnsignedByte) {\n output = `floor(result * 255. + 0.5)`;\n }\n this.userCode = `\n ${this.enableShapeUniforms ? getFlatIndexFrom3DOutput() : getFlatIndexFrom3D(outputShape)}\n\n void main() {\n ivec3 coords = getOutputCoords();\n\n int flatIndex = getFlatIndex(coords);\n int offset = imod(flatIndex, 4);\n\n flatIndex = idiv(flatIndex, 4, 1.);\n\n int r = flatIndex / texShape[1];\n int c = imod(flatIndex, texShape[1]);\n vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);\n vec4 values = ${glsl.texture2D}(A, uv);\n\n float result;\n\n if(offset == 0) {\n result = values[0];\n } else if(offset == 1) {\n result = values[1];\n } else if(offset == 2) {\n result = values[2];\n } else {\n result = values[3];\n }\n\n ${glsl.output} = vec4(${output}, 0., 0., 0.);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/encode_matrix_packed_gpu.js\nvar EncodeMatrixPackedProgram = class {\n constructor(outputShape, inputIsUnsignedByte = false) {\n this.variableNames = [\"A\"];\n this.packedInputs = false;\n this.packedOutput = true;\n this.customUniforms = [{ name: \"texShape\", type: \"ivec2\" }];\n const glsl = getGlslDifferences();\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n let mainLoop = \"\";\n let output = \"result\";\n if (inputIsUnsignedByte) {\n output = \"floor(result * 255. + 0.5)\";\n }\n for (let row = 0; row <= 1; row++) {\n for (let col = 0; col <= 1; col++) {\n const channel = row * 2 + col;\n mainLoop += `\n localCoords = coords;\n if(localCoords[2] + ${col} < ${this.enableShapeUniforms ? \"outShape[2]\" : `${outputShape[2]}`}) {\n localCoords[2] += ${col};\n if (localCoords[1] + ${row} < ${this.enableShapeUniforms ? \"outShape[1]\" : `${outputShape[1]}`}) {\n localCoords[1] += ${row};\n\n flatIndex = getFlatIndex(localCoords);\n offset = imod(flatIndex, 4);\n\n flatIndex = idiv(flatIndex, 4, 1.);\n\n int r = flatIndex / texShape[1];\n int c = imod(flatIndex, texShape[1]);\n vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);\n values = ${glsl.texture2D}(A, uv);\n\n if (offset == 0) {\n result[${channel}] = values[0];\n } else if (offset == 1) {\n result[${channel}] = values[1];\n } else if (offset == 2) {\n result[${channel}] = values[2];\n } else {\n result[${channel}] = values[3];\n }\n }\n }\n `;\n }\n }\n this.userCode = `\n ${this.enableShapeUniforms ? getFlatIndexFrom3DOutput() : getFlatIndexFrom3D(outputShape)}\n\n void main() {\n ivec3 coords = getOutputCoords();\n\n vec4 result = vec4(0.);\n int flatIndex, r, c, offset;\n ivec3 localCoords;\n vec2 uv;\n vec4 values;\n\n ${mainLoop}\n\n ${glsl.output} = ${output};\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gpgpu_util.js\nvar gpgpu_util_exports = {};\n__export(gpgpu_util_exports, {\n bindVertexProgramAttributeStreams: () => bindVertexProgramAttributeStreams,\n createBufferFromOutputTexture: () => createBufferFromOutputTexture,\n createFloat16MatrixTexture: () => createFloat16MatrixTexture,\n createFloat16PackedMatrixTexture: () => createFloat16PackedMatrixTexture,\n createFloat32MatrixTexture: () => createFloat32MatrixTexture,\n createIndexBuffer: () => createIndexBuffer,\n createPackedMatrixTexture: () => createPackedMatrixTexture,\n createUnsignedBytesMatrixTexture: () => createUnsignedBytesMatrixTexture,\n createVertexBuffer: () => createVertexBuffer,\n createVertexShader: () => createVertexShader2,\n downloadByteEncodedFloatMatrixFromOutputTexture: () => downloadByteEncodedFloatMatrixFromOutputTexture,\n downloadFloat32MatrixFromBuffer: () => downloadFloat32MatrixFromBuffer,\n downloadMatrixFromPackedOutputTexture: () => downloadMatrixFromPackedOutputTexture,\n downloadPackedMatrixFromBuffer: () => downloadPackedMatrixFromBuffer,\n getInternalFormatForFloat16MatrixTexture: () => getInternalFormatForFloat16MatrixTexture,\n getInternalFormatForFloat16PackedMatrixTexture: () => getInternalFormatForFloat16PackedMatrixTexture,\n getInternalFormatForFloat32MatrixTexture: () => getInternalFormatForFloat32MatrixTexture,\n getInternalFormatForPackedMatrixTexture: () => getInternalFormatForPackedMatrixTexture,\n getInternalFormatForUnsignedBytesMatrixTexture: () => getInternalFormatForUnsignedBytesMatrixTexture,\n uploadDenseMatrixToTexture: () => uploadDenseMatrixToTexture,\n uploadPixelDataToTexture: () => uploadPixelDataToTexture\n});\nfunction createVertexShader2(gl) {\n const glsl = getGlslDifferences();\n const vertexShaderSource = `${glsl.version}\n precision highp float;\n ${glsl.attribute} vec3 clipSpacePos;\n ${glsl.attribute} vec2 uv;\n ${glsl.varyingVs} vec2 resultUV;\n\n void main() {\n gl_Position = vec4(clipSpacePos, 1);\n resultUV = uv;\n }`;\n return createVertexShader(gl, vertexShaderSource);\n}\nfunction createVertexBuffer(gl) {\n const vertexArray = new Float32Array([-1, 1, 0, 0, 1, -1, -1, 0, 0, 0, 1, 1, 0, 1, 1, 1, -1, 0, 1, 0]);\n return createStaticVertexBuffer(gl, vertexArray);\n}\nfunction createIndexBuffer(gl) {\n const triangleVertexIndices = new Uint16Array([0, 1, 2, 2, 1, 3]);\n return createStaticIndexBuffer(gl, triangleVertexIndices);\n}\nfunction createAndConfigureTexture(gl, width, height, internalFormat, textureFormat, textureType) {\n validateTextureSize(width, height);\n const texture = createTexture(gl);\n const tex2d = gl.TEXTURE_2D;\n callAndCheck(gl, () => gl.bindTexture(tex2d, texture));\n callAndCheck(gl, () => gl.texParameteri(tex2d, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE));\n callAndCheck(gl, () => gl.texParameteri(tex2d, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE));\n callAndCheck(gl, () => gl.texParameteri(tex2d, gl.TEXTURE_MIN_FILTER, gl.NEAREST));\n callAndCheck(gl, () => gl.texParameteri(tex2d, gl.TEXTURE_MAG_FILTER, gl.NEAREST));\n if (env().getNumber(\"WEBGL_VERSION\") === 1) {\n callAndCheck(gl, () => gl.texImage2D(tex2d, 0, internalFormat, width, height, 0, textureFormat, textureType, null));\n } else {\n callAndCheck(gl, () => gl.texStorage2D(tex2d, 1, internalFormat, width, height));\n }\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, null));\n return { texture, texShape: [height, width] };\n}\nfunction getInternalFormatForFloat32MatrixTexture(textureConfig) {\n return textureConfig.internalFormatFloat;\n}\nfunction createFloat32MatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getUnpackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForFloat32MatrixTexture(textureConfig), textureConfig.textureFormatFloat, gl.FLOAT);\n}\nfunction getInternalFormatForFloat16MatrixTexture(textureConfig) {\n return textureConfig.internalFormatHalfFloat;\n}\nfunction createFloat16MatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getUnpackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForFloat16MatrixTexture(textureConfig), textureConfig.textureFormatFloat, textureConfig.textureTypeHalfFloat);\n}\nfunction getInternalFormatForUnsignedBytesMatrixTexture(textureConfig) {\n return textureConfig.downloadTextureFormat;\n}\nfunction createUnsignedBytesMatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getUnpackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForUnsignedBytesMatrixTexture(textureConfig), gl.RGBA, gl.UNSIGNED_BYTE);\n}\nfunction getInternalFormatForPackedMatrixTexture(textureConfig) {\n return textureConfig.internalFormatPackedFloat;\n}\nfunction createPackedMatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getPackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForPackedMatrixTexture(textureConfig), gl.RGBA, gl.FLOAT);\n}\nfunction getInternalFormatForFloat16PackedMatrixTexture(textureConfig) {\n return textureConfig.internalFormatPackedHalfFloat;\n}\nfunction createFloat16PackedMatrixTexture(gl, rows, columns, textureConfig) {\n const [width, height] = getPackedMatrixTextureShapeWidthHeight(rows, columns);\n return createAndConfigureTexture(gl, width, height, getInternalFormatForFloat16PackedMatrixTexture(textureConfig), gl.RGBA, textureConfig.textureTypeHalfFloat);\n}\nfunction bindVertexProgramAttributeStreams(gl, program, vertexBuffer) {\n const posOffset = 0;\n const uvOffset = 3 * 4;\n const stride = 3 * 4 + 2 * 4;\n callAndCheck(gl, () => gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer));\n const success = bindVertexBufferToProgramAttribute(gl, program, \"clipSpacePos\", vertexBuffer, 3, stride, posOffset);\n return success && bindVertexBufferToProgramAttribute(gl, program, \"uv\", vertexBuffer, 2, stride, uvOffset);\n}\nfunction uploadDenseMatrixToTexture(gl, texture, width, height, data, textureConfig) {\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, texture));\n let dataForUpload, texelDataType, internalFormat;\n if (data instanceof Uint8Array) {\n dataForUpload = new Uint8Array(width * height * 4);\n texelDataType = gl.UNSIGNED_BYTE;\n internalFormat = gl.RGBA;\n } else {\n dataForUpload = new Float32Array(width * height * 4);\n texelDataType = gl.FLOAT;\n internalFormat = textureConfig.internalFormatPackedFloat;\n }\n dataForUpload.set(data);\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n callAndCheck(gl, () => gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, width, height, gl.RGBA, texelDataType, dataForUpload));\n } else {\n callAndCheck(gl, () => gl.texImage2D(gl.TEXTURE_2D, 0, internalFormat, width, height, 0, gl.RGBA, texelDataType, dataForUpload));\n }\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, null));\n}\nfunction uploadPixelDataToTexture(gl, texture, pixels) {\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, texture));\n if (pixels.data instanceof Uint8Array) {\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n callAndCheck(gl, () => gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, pixels.width, pixels.height, gl.RGBA, gl.UNSIGNED_BYTE, pixels.data));\n } else {\n callAndCheck(gl, () => gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, pixels.width, pixels.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, pixels.data));\n }\n } else {\n if (env().getNumber(\"WEBGL_VERSION\") === 2) {\n callAndCheck(gl, () => gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, gl.RGBA, gl.UNSIGNED_BYTE, pixels));\n } else {\n callAndCheck(gl, () => gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, pixels));\n }\n }\n callAndCheck(gl, () => gl.bindTexture(gl.TEXTURE_2D, null));\n}\nfunction createBufferFromOutputTexture(gl2, rows, columns, textureConfig) {\n const buffer2 = gl2.createBuffer();\n callAndCheck(gl2, () => gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, buffer2));\n const bytesPerFloat = 4;\n const valuesPerTexel = 4;\n const bufferSizeBytes = bytesPerFloat * valuesPerTexel * rows * columns;\n callAndCheck(gl2, () => gl2.bufferData(gl2.PIXEL_PACK_BUFFER, bufferSizeBytes, gl2.STREAM_READ));\n callAndCheck(gl2, () => gl2.readPixels(0, 0, columns, rows, gl2.RGBA, gl2.FLOAT, 0));\n callAndCheck(gl2, () => gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, null));\n return buffer2;\n}\nfunction downloadFloat32MatrixFromBuffer(gl, buffer2, size) {\n const gl2 = gl;\n const downloadTarget = new Float32Array(size);\n gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, buffer2);\n gl2.getBufferSubData(gl2.PIXEL_PACK_BUFFER, 0, downloadTarget);\n gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, null);\n return downloadTarget;\n}\nfunction downloadByteEncodedFloatMatrixFromOutputTexture(gl, rows, columns, textureConfig) {\n const [w, h] = getUnpackedMatrixTextureShapeWidthHeight(rows, columns);\n const numChannels = 4;\n const downloadTarget = new Uint8Array(getUnpackedArraySizeFromMatrixSize(rows * columns, numChannels));\n callAndCheck(gl, () => gl.readPixels(0, 0, w, h, textureConfig.downloadTextureFormat, gl.UNSIGNED_BYTE, downloadTarget));\n return new Float32Array(downloadTarget.buffer);\n}\nfunction downloadPackedMatrixFromBuffer(gl, buffer2, batch, rows, cols, physicalRows, physicalCols, textureConfig) {\n const gl2 = gl;\n const downloadTarget = new Float32Array(getPackedRGBAArraySizeFromMatrixShape(physicalRows, physicalCols));\n gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, buffer2);\n gl2.getBufferSubData(gl2.PIXEL_PACK_BUFFER, 0, downloadTarget);\n gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER, null);\n return downloadTarget;\n}\nfunction downloadMatrixFromPackedOutputTexture(gl, physicalRows, physicalCols) {\n const packedRGBA = new Float32Array(physicalRows * physicalCols * 4);\n callAndCheck(gl, () => gl.readPixels(0, 0, physicalCols, physicalRows, gl.RGBA, gl.FLOAT, packedRGBA));\n return packedRGBA;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gpgpu_context.js\nvar GPGPUContext = class {\n constructor(gl) {\n this.outputTexture = null;\n this.program = null;\n this.disposed = false;\n this.vertexAttrsAreBound = false;\n this.itemsToPoll = [];\n const glVersion = env().getNumber(\"WEBGL_VERSION\");\n if (gl != null) {\n this.gl = gl;\n setWebGLContext(glVersion, gl);\n } else {\n this.gl = getWebGLContext(glVersion);\n }\n let COLOR_BUFFER_FLOAT = \"WEBGL_color_buffer_float\";\n const COLOR_BUFFER_HALF_FLOAT = \"EXT_color_buffer_half_float\";\n this.parallelCompilationExtension = this.gl.getExtension(\"KHR_parallel_shader_compile\");\n if (env().getNumber(\"WEBGL_VERSION\") === 1) {\n const TEXTURE_FLOAT = \"OES_texture_float\";\n const TEXTURE_HALF_FLOAT = \"OES_texture_half_float\";\n this.textureFloatExtension = getExtensionOrThrow(this.gl, TEXTURE_FLOAT);\n if (hasExtension(this.gl, TEXTURE_HALF_FLOAT)) {\n this.textureHalfFloatExtension = getExtensionOrThrow(this.gl, TEXTURE_HALF_FLOAT);\n } else if (env().get(\"WEBGL_FORCE_F16_TEXTURES\")) {\n throw new Error(\"GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.\");\n }\n this.colorBufferFloatExtension = this.gl.getExtension(COLOR_BUFFER_FLOAT);\n if (hasExtension(this.gl, COLOR_BUFFER_HALF_FLOAT)) {\n this.colorBufferHalfFloatExtension = getExtensionOrThrow(this.gl, COLOR_BUFFER_HALF_FLOAT);\n } else if (env().get(\"WEBGL_FORCE_F16_TEXTURES\")) {\n throw new Error(\"GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.\");\n }\n } else {\n COLOR_BUFFER_FLOAT = \"EXT_color_buffer_float\";\n if (hasExtension(this.gl, COLOR_BUFFER_FLOAT)) {\n this.colorBufferFloatExtension = this.gl.getExtension(COLOR_BUFFER_FLOAT);\n } else if (hasExtension(this.gl, COLOR_BUFFER_HALF_FLOAT)) {\n this.colorBufferHalfFloatExtension = this.gl.getExtension(COLOR_BUFFER_HALF_FLOAT);\n } else {\n throw new Error(\"GL context does not support color renderable floats\");\n }\n }\n this.vertexBuffer = createVertexBuffer(this.gl);\n this.indexBuffer = createIndexBuffer(this.gl);\n this.framebuffer = createFramebuffer(this.gl);\n this.textureConfig = getTextureConfig(this.gl, this.textureHalfFloatExtension);\n }\n get debug() {\n return env().getBool(\"DEBUG\");\n }\n dispose() {\n if (this.disposed) {\n return;\n }\n if (this.program != null) {\n console.warn(\"Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing.\");\n }\n if (this.outputTexture != null) {\n console.warn(\"Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.\");\n }\n const gl = this.gl;\n callAndCheck(gl, () => gl.finish());\n callAndCheck(gl, () => gl.bindFramebuffer(gl.FRAMEBUFFER, null));\n callAndCheck(gl, () => gl.deleteFramebuffer(this.framebuffer));\n callAndCheck(gl, () => gl.bindBuffer(gl.ARRAY_BUFFER, null));\n callAndCheck(gl, () => gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null));\n callAndCheck(gl, () => gl.deleteBuffer(this.indexBuffer));\n this.disposed = true;\n }\n createFloat32MatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createFloat32MatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n createFloat16MatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createFloat16MatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n createUnsignedBytesMatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createUnsignedBytesMatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n uploadPixelDataToTexture(texture, pixels) {\n this.throwIfDisposed();\n uploadPixelDataToTexture(this.gl, texture, pixels);\n }\n uploadDenseMatrixToTexture(texture, width, height, data) {\n this.throwIfDisposed();\n uploadDenseMatrixToTexture(this.gl, texture, width, height, data, this.textureConfig);\n }\n createFloat16PackedMatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createFloat16PackedMatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n createPackedMatrixTexture(rows, columns) {\n this.throwIfDisposed();\n return createPackedMatrixTexture(this.gl, rows, columns, this.textureConfig);\n }\n deleteMatrixTexture(texture) {\n this.throwIfDisposed();\n if (this.outputTexture === texture) {\n unbindColorTextureFromFramebuffer(this.gl, this.framebuffer);\n this.outputTexture = null;\n }\n callAndCheck(this.gl, () => this.gl.deleteTexture(texture));\n }\n downloadByteEncodedFloatMatrixFromOutputTexture(texture, rows, columns) {\n return this.downloadMatrixDriver(texture, () => downloadByteEncodedFloatMatrixFromOutputTexture(this.gl, rows, columns, this.textureConfig));\n }\n downloadPackedMatrixFromBuffer(buffer2, batch, rows, columns, physicalRows, physicalCols) {\n return downloadPackedMatrixFromBuffer(this.gl, buffer2, batch, rows, columns, physicalRows, physicalCols, this.textureConfig);\n }\n downloadFloat32MatrixFromBuffer(buffer2, size) {\n return downloadFloat32MatrixFromBuffer(this.gl, buffer2, size);\n }\n createBufferFromTexture(texture, rows, columns) {\n this.bindTextureToFrameBuffer(texture);\n const result = createBufferFromOutputTexture(this.gl, rows, columns, this.textureConfig);\n this.unbindTextureToFrameBuffer();\n return result;\n }\n createAndWaitForFence() {\n const fenceContext = this.createFence(this.gl);\n return this.pollFence(fenceContext);\n }\n createFence(gl) {\n let query;\n let isFencePassed;\n if (env().getBool(\"WEBGL_FENCE_API_ENABLED\")) {\n const gl2 = gl;\n const sync = gl2.fenceSync(gl2.SYNC_GPU_COMMANDS_COMPLETE, 0);\n gl.flush();\n isFencePassed = () => {\n const status = gl2.clientWaitSync(sync, 0, 0);\n return status === gl2.ALREADY_SIGNALED || status === gl2.CONDITION_SATISFIED;\n };\n query = sync;\n } else if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") > 0) {\n query = this.beginQuery();\n this.endQuery();\n isFencePassed = () => this.isQueryAvailable(query, env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"));\n } else {\n isFencePassed = () => true;\n }\n return { query, isFencePassed };\n }\n downloadMatrixFromPackedTexture(texture, physicalRows, physicalCols) {\n return this.downloadMatrixDriver(texture, () => downloadMatrixFromPackedOutputTexture(this.gl, physicalRows, physicalCols));\n }\n createProgram(fragmentShader) {\n this.throwIfDisposed();\n const gl = this.gl;\n if (this.vertexShader == null) {\n this.vertexShader = createVertexShader2(gl);\n }\n const program = createProgram(gl);\n callAndCheck(gl, () => gl.attachShader(program, this.vertexShader));\n callAndCheck(gl, () => gl.attachShader(program, fragmentShader));\n linkProgram(gl, program);\n if (this.debug) {\n validateProgram(gl, program);\n }\n if (!this.vertexAttrsAreBound) {\n this.setProgram(program);\n this.vertexAttrsAreBound = bindVertexProgramAttributeStreams(gl, this.program, this.vertexBuffer);\n }\n return program;\n }\n deleteProgram(program) {\n this.throwIfDisposed();\n if (program === this.program) {\n this.program = null;\n }\n if (program != null) {\n callAndCheck(this.gl, () => this.gl.deleteProgram(program));\n }\n }\n setProgram(program) {\n this.throwIfDisposed();\n this.program = program;\n if (this.program != null && this.debug) {\n validateProgram(this.gl, this.program);\n }\n callAndCheck(this.gl, () => this.gl.useProgram(program));\n }\n getUniformLocation(program, uniformName, shouldThrow = true) {\n this.throwIfDisposed();\n if (shouldThrow) {\n return getProgramUniformLocationOrThrow(this.gl, program, uniformName);\n } else {\n return getProgramUniformLocation(this.gl, program, uniformName);\n }\n }\n getAttributeLocation(program, attribute) {\n this.throwIfDisposed();\n return callAndCheck(this.gl, () => this.gl.getAttribLocation(program, attribute));\n }\n getUniformLocationNoThrow(program, uniformName) {\n this.throwIfDisposed();\n return this.gl.getUniformLocation(program, uniformName);\n }\n setInputMatrixTexture(inputMatrixTexture, uniformLocation, textureUnit) {\n this.throwIfDisposed();\n this.throwIfNoProgram();\n bindTextureToProgramUniformSampler(this.gl, inputMatrixTexture, uniformLocation, textureUnit);\n }\n setOutputMatrixTexture(outputMatrixTexture, rows, columns) {\n this.setOutputMatrixTextureDriver(outputMatrixTexture, columns, rows);\n }\n setOutputPackedMatrixTexture(outputPackedMatrixTexture, rows, columns) {\n this.throwIfDisposed();\n const [width, height] = getPackedMatrixTextureShapeWidthHeight(rows, columns);\n this.setOutputMatrixTextureDriver(outputPackedMatrixTexture, width, height);\n }\n setOutputMatrixWriteRegion(startRow, numRows, startColumn, numColumns) {\n this.setOutputMatrixWriteRegionDriver(startColumn, startRow, numColumns, numRows);\n }\n setOutputPackedMatrixWriteRegion(startRow, numRows, startColumn, numColumns) {\n throw new Error(\"setOutputPackedMatrixWriteRegion not implemented.\");\n }\n debugValidate() {\n if (this.program != null) {\n validateProgram(this.gl, this.program);\n }\n validateFramebuffer(this.gl);\n }\n executeProgram() {\n this.throwIfDisposed();\n this.throwIfNoProgram();\n const gl = this.gl;\n if (this.debug) {\n this.debugValidate();\n }\n callAndCheck(gl, () => gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0));\n }\n blockUntilAllProgramsCompleted() {\n this.throwIfDisposed();\n callAndCheck(this.gl, () => this.gl.finish());\n }\n getQueryTimerExtension() {\n if (this.disjointQueryTimerExtension == null) {\n this.disjointQueryTimerExtension = getExtensionOrThrow(this.gl, env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") === 2 ? \"EXT_disjoint_timer_query_webgl2\" : \"EXT_disjoint_timer_query\");\n }\n return this.disjointQueryTimerExtension;\n }\n getQueryTimerExtensionWebGL2() {\n return this.getQueryTimerExtension();\n }\n getQueryTimerExtensionWebGL1() {\n return this.getQueryTimerExtension();\n }\n beginQuery() {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") === 2) {\n const gl2 = this.gl;\n const ext2 = this.getQueryTimerExtensionWebGL2();\n const query2 = gl2.createQuery();\n gl2.beginQuery(ext2.TIME_ELAPSED_EXT, query2);\n return query2;\n }\n const ext = this.getQueryTimerExtensionWebGL1();\n const query = ext.createQueryEXT();\n ext.beginQueryEXT(ext.TIME_ELAPSED_EXT, query);\n return query;\n }\n endQuery() {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\") === 2) {\n const gl2 = this.gl;\n const ext2 = this.getQueryTimerExtensionWebGL2();\n gl2.endQuery(ext2.TIME_ELAPSED_EXT);\n return;\n }\n const ext = this.getQueryTimerExtensionWebGL1();\n ext.endQueryEXT(ext.TIME_ELAPSED_EXT);\n }\n async waitForQueryAndGetTime(query) {\n await util_exports.repeatedTry(() => this.disposed || this.isQueryAvailable(query, env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")));\n return this.getQueryTime(query, env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"));\n }\n getQueryTime(query, queryTimerVersion) {\n if (queryTimerVersion === 0) {\n return null;\n }\n if (queryTimerVersion === 2) {\n const gl2 = this.gl;\n const timeElapsedNanos = gl2.getQueryParameter(query, gl2.QUERY_RESULT);\n return timeElapsedNanos / 1e6;\n } else {\n const ext = this.getQueryTimerExtensionWebGL1();\n const timeElapsedNanos = ext.getQueryObjectEXT(query, ext.QUERY_RESULT_EXT);\n return timeElapsedNanos / 1e6;\n }\n }\n isQueryAvailable(query, queryTimerVersion) {\n if (queryTimerVersion === 0) {\n return true;\n }\n if (queryTimerVersion === 2) {\n const gl2 = this.gl;\n const ext = this.getQueryTimerExtensionWebGL2();\n const available = gl2.getQueryParameter(query, gl2.QUERY_RESULT_AVAILABLE);\n if (this.disjoint == null) {\n this.disjoint = this.gl.getParameter(ext.GPU_DISJOINT_EXT);\n }\n return available && !this.disjoint;\n } else {\n const ext = this.getQueryTimerExtensionWebGL1();\n const available = ext.getQueryObjectEXT(query, ext.QUERY_RESULT_AVAILABLE_EXT);\n if (this.disjoint == null) {\n this.disjoint = this.gl.getParameter(ext.GPU_DISJOINT_EXT);\n }\n return available && !this.disjoint;\n }\n }\n pollFence(fenceContext) {\n return new Promise((resolve) => {\n this.addItemToPoll(() => fenceContext.isFencePassed(), () => resolve());\n });\n }\n pollItems() {\n const index = linearSearchLastTrue(this.itemsToPoll.map((x) => x.isDoneFn));\n for (let i2 = 0; i2 <= index; ++i2) {\n const { resolveFn } = this.itemsToPoll[i2];\n resolveFn();\n }\n this.itemsToPoll = this.itemsToPoll.slice(index + 1);\n }\n addItemToPoll(isDoneFn, resolveFn) {\n this.itemsToPoll.push({ isDoneFn, resolveFn });\n if (this.itemsToPoll.length > 1) {\n return;\n }\n util_exports.repeatedTry(() => {\n this.pollItems();\n return this.itemsToPoll.length === 0;\n });\n }\n bindTextureToFrameBuffer(texture) {\n this.throwIfDisposed();\n bindColorTextureToFramebuffer(this.gl, texture, this.framebuffer);\n if (this.debug) {\n validateFramebuffer(this.gl);\n }\n }\n unbindTextureToFrameBuffer() {\n if (this.outputTexture != null) {\n bindColorTextureToFramebuffer(this.gl, this.outputTexture, this.framebuffer);\n if (this.debug) {\n validateFramebuffer(this.gl);\n }\n } else {\n unbindColorTextureFromFramebuffer(this.gl, this.framebuffer);\n }\n }\n downloadMatrixDriver(texture, downloadAndDecode) {\n this.bindTextureToFrameBuffer(texture);\n const result = downloadAndDecode();\n this.unbindTextureToFrameBuffer();\n return result;\n }\n setOutputMatrixTextureDriver(outputMatrixTextureMaybePacked, width, height) {\n this.throwIfDisposed();\n const gl = this.gl;\n bindColorTextureToFramebuffer(gl, outputMatrixTextureMaybePacked, this.framebuffer);\n if (this.debug) {\n validateFramebuffer(gl);\n }\n this.outputTexture = outputMatrixTextureMaybePacked;\n callAndCheck(gl, () => gl.viewport(0, 0, width, height));\n callAndCheck(gl, () => gl.scissor(0, 0, width, height));\n }\n setOutputMatrixWriteRegionDriver(x, y, width, height) {\n this.throwIfDisposed();\n callAndCheck(this.gl, () => this.gl.scissor(x, y, width, height));\n }\n throwIfDisposed() {\n if (this.disposed) {\n throw new Error(\"Attempted to use disposed GPGPUContext.\");\n }\n }\n throwIfNoProgram() {\n if (this.program == null) {\n throw new Error(\"No GPU program is currently set.\");\n }\n }\n};\nfunction linearSearchLastTrue(arr) {\n let i2 = 0;\n for (; i2 < arr.length; ++i2) {\n const isDone = arr[i2]();\n if (!isDone) {\n break;\n }\n }\n return i2 - 1;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/shared.js\nvar { addImpl: addImplCPU, bincountImpl: bincountImplCPU, bincountReduceImpl: bincountReduceImplCPU, castImpl: castImplCPU, ceilImpl: ceilImplCPU, concatImpl: concatImplCPU, equalImpl: equalImplCPU, expImpl: expImplCPU, expm1Impl: expm1ImplCPU, floorImpl: floorImplCPU, gatherNdImpl: gatherNdImplCPU, gatherV2Impl: gatherV2ImplCPU, greaterImpl: greaterImplCPU, greaterEqualImpl: greaterEqualImplCPU, lessImpl: lessImplCPU, lessEqualImpl: lessEqualImplCPU, linSpaceImpl: linSpaceImplCPU, logImpl: logImplCPU, maxImpl: maxImplCPU, maximumImpl: maximumImplCPU, minimumImpl: minimumImplCPU, multiplyImpl: multiplyImplCPU, negImpl: negImplCPU, notEqualImpl: notEqualImplCPU, prodImpl: prodImplCPU, raggedTensorToTensorImpl: raggedTensorToTensorImplCPU, rangeImpl: rangeImplCPU, rsqrtImpl: rsqrtImplCPU, scatterImpl: scatterImplCPU, sigmoidImpl: sigmoidImplCPU, simpleAbsImpl: simpleAbsImplCPU, sliceImpl: sliceImplCPU, sparseFillEmptyRowsImpl: sparseFillEmptyRowsImplCPU, sparseReshapeImpl: sparseReshapeImplCPU, sparseSegmentReductionImpl: sparseSegmentReductionImplCPU, sqrtImpl: sqrtImplCPU, stridedSliceImpl: stridedSliceImplCPU, stringNGramsImpl: stringNGramsImplCPU, stringSplitImpl: stringSplitImplCPU, stringToHashBucketFastImpl: stringToHashBucketFastImplCPU, subImpl: subImplCPU, tileImpl: tileImplCPU, topKImpl: topKImplCPU, transposeImpl: transposeImplCPU, uniqueImpl: uniqueImplCPU } = shared_exports;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/packing_util.js\nfunction getVecChannels(name, rank) {\n return [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"].slice(0, rank).map((d) => `${name}.${d}`);\n}\nfunction getChannels(name, rank) {\n if (rank === 1) {\n return [name];\n }\n return getVecChannels(name, rank);\n}\nfunction getSourceCoords(rank, dims) {\n if (rank === 1) {\n return \"rc\";\n }\n let coords3 = \"\";\n for (let i2 = 0; i2 < rank; i2++) {\n coords3 += dims[i2];\n if (i2 < rank - 1) {\n coords3 += \",\";\n }\n }\n return coords3;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/pack_gpu.js\nvar PackProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = false;\n this.packedOutput = true;\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n if (this.rank === 0) {\n this.userCode = `\n void main() {\n setOutput(vec4(getA(), 0., 0., 0.));\n }\n `;\n } else {\n const channels = getChannels(\"rc\", this.rank);\n const dtype = getCoordsDataType(this.rank);\n const outOfBoundsCondition = this.getOutOfBoundsCondition(channels);\n const setup51 = this.getSetup(channels);\n const output = this.getOutput(channels);\n this.userCode = `\n void main() {\n ${dtype} rc = getOutputCoords();\n\n if(${outOfBoundsCondition}) {\n setOutput(vec4(0));\n } else {\n ${setup51}\n\n setOutput(vec4(${output}));\n }\n }\n `;\n }\n }\n getSourceCoordsArr(dims) {\n const coords3 = [];\n for (let row = 0; row <= 1; row++) {\n for (let col = 0; col <= 1; col++) {\n let coord = `${row === 0 ? \"r\" : \"rp1\"}, ${col === 0 ? \"c\" : \"cp1\"}`;\n for (let d = 2; d < this.rank; d++) {\n coord = `${dims[dims.length - 1 - d]},` + coord;\n }\n coords3.push(coord);\n }\n }\n return coords3;\n }\n getOutOfBoundsCondition(dims) {\n if (this.rank === 1) {\n return `rc > ${this.enableShapeUniforms ? \"outShape\" : this.outputShape[0]}`;\n }\n let cond = \"\";\n for (let i2 = this.rank - 2; i2 < this.rank; i2++) {\n cond += `${dims[i2]} >= ${this.enableShapeUniforms ? `outShape[${i2}]` : this.outputShape[i2]}`;\n if (i2 < this.rank - 1) {\n cond += \"||\";\n }\n }\n return cond;\n }\n getSetup(dims) {\n if (this.rank === 1) {\n return \"\";\n }\n const innerDims = dims.slice(-2);\n const col = this.enableShapeUniforms ? `outShape[${this.rank} - 1]` : this.outputShape[this.rank - 1];\n const row = this.enableShapeUniforms ? `outShape[${this.rank} - 2]` : this.outputShape[this.rank - 2];\n return `\n int r = ${innerDims[0]};\n int c = ${innerDims[1]};\n int rp1 = r + 1;\n int cp1 = c + 1;\n\n bool cEdge = cp1 >= ${col};\n bool rEdge = rp1 >= ${row};\n `;\n }\n getOutput(dims) {\n const sourceCoords = this.getSourceCoordsArr(dims);\n if (this.rank === 1) {\n const outShape = this.enableShapeUniforms ? \"outShape\" : this.outputShape[0];\n return `getA(rc), (rc + 1 >= ${outShape} ? 0. : getA(rc + 1)), 0, 0`;\n }\n return `getA(${sourceCoords[0]}),\n cEdge ? 0. : getA(${sourceCoords[1]}),\n rEdge ? 0. : getA(${sourceCoords[2]}),\n rEdge || cEdge ? 0. : getA(${sourceCoords[3]})`;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/reshape_packed_gpu.js\nvar ReshapePackedProgram = class {\n constructor(outputShape, inputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [{ name: \"inputShape\", type: \"ivec3\" }];\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n let mainLoop = ``;\n for (let i2 = 0; i2 < 4; i2++) {\n let thisRC = `thisRC = rc;`;\n if (i2 % 2 === 1) {\n thisRC += `thisRC.z += 1;`;\n }\n if (i2 > 1) {\n thisRC += `thisRC.y += 1;`;\n }\n mainLoop += `\n ${thisRC}\n ${i2 > 0 ? `if(thisRC.y < rows && thisRC.z < cols){` : \"\"}\n int flatIndex = getFlatIndex(thisRC);\n\n ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);\n vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));\n\n result[${i2}] =\n getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);\n ${i2 > 0 ? \"}\" : \"\"}\n `;\n }\n this.userCode = `\n ${getReshapedInputCoords(inputShape, this.enableShapeUniforms)}\n ${this.enableShapeUniforms ? getFlatIndexFrom3DOutput() : getFlatIndexFrom3D(outputShape)}\n\n void main() {\n ivec3 rc = getOutputCoords();\n\n vec4 result = vec4(0.);\n\n ivec3 thisRC;\n int rows = ${this.enableShapeUniforms ? \"outShape[1]\" : outputShape[1]};\n int cols = ${this.enableShapeUniforms ? \"outShape[2]\" : outputShape[2]};\n\n ${mainLoop}\n\n setOutput(result);\n }\n `;\n }\n};\nfunction getReshapedInputCoords(shape, enableShapeUniforms) {\n const coordsFromIndexSnippet = enableShapeUniforms ? getLogicalCoordinatesFromFlatIndexByUniform([\"r\", \"c\", \"d\"], \"inputShape\") : getLogicalCoordinatesFromFlatIndex([\"r\", \"c\", \"d\"], shape);\n return `\n ivec3 inputCoordsFromReshapedOutCoords(int index) {\n ${coordsFromIndexSnippet}\n return ivec3(r, c, d);\n }\n `;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/texture_manager.js\nvar TextureManager = class {\n constructor(gpgpu) {\n this.gpgpu = gpgpu;\n this.numUsedTextures = 0;\n this.numFreeTextures = 0;\n this._numBytesAllocated = 0;\n this._numBytesFree = 0;\n this.freeTextures = {};\n this.logEnabled = false;\n this.usedTextures = {};\n }\n acquireTexture(shapeRC, usage, isPacked) {\n const physicalTexType = getPhysicalFromLogicalTextureType(usage, isPacked);\n const shapeKey = getKeyFromTextureShape(shapeRC, physicalTexType, isPacked);\n if (!(shapeKey in this.freeTextures)) {\n this.freeTextures[shapeKey] = [];\n }\n if (!(shapeKey in this.usedTextures)) {\n this.usedTextures[shapeKey] = [];\n }\n const texBytes = computeBytes(shapeRC, physicalTexType, this.gpgpu.gl, this.gpgpu.textureConfig, isPacked);\n if (this.freeTextures[shapeKey].length > 0) {\n this.numFreeTextures--;\n this.numUsedTextures++;\n this._numBytesFree -= texBytes;\n this.log();\n const newTexture2 = this.freeTextures[shapeKey].shift();\n this.usedTextures[shapeKey].push(newTexture2);\n return newTexture2;\n }\n let newTexture;\n if (physicalTexType === PhysicalTextureType.PACKED_2X2_FLOAT32) {\n newTexture = this.gpgpu.createPackedMatrixTexture(shapeRC[0], shapeRC[1]);\n } else if (physicalTexType === PhysicalTextureType.PACKED_2X2_FLOAT16) {\n newTexture = this.gpgpu.createFloat16PackedMatrixTexture(shapeRC[0], shapeRC[1]);\n } else if (physicalTexType === PhysicalTextureType.UNPACKED_FLOAT32) {\n newTexture = this.gpgpu.createFloat32MatrixTexture(shapeRC[0], shapeRC[1]);\n } else if (physicalTexType === PhysicalTextureType.UNPACKED_FLOAT16) {\n newTexture = this.gpgpu.createFloat16MatrixTexture(shapeRC[0], shapeRC[1]);\n } else if (physicalTexType === PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE) {\n newTexture = this.gpgpu.createUnsignedBytesMatrixTexture(shapeRC[0], shapeRC[1]);\n }\n this.usedTextures[shapeKey].push(newTexture);\n this.numUsedTextures++;\n this._numBytesAllocated += texBytes;\n this.log();\n return newTexture;\n }\n releaseTexture(texture, shape, logicalTexType, isPacked) {\n if (this.freeTextures == null) {\n return;\n }\n const physicalTexType = getPhysicalFromLogicalTextureType(logicalTexType, isPacked);\n const shapeKey = getKeyFromTextureShape(shape, physicalTexType, isPacked);\n if (!(shapeKey in this.freeTextures)) {\n this.freeTextures[shapeKey] = [];\n }\n const texBytes = computeBytes(shape, physicalTexType, this.gpgpu.gl, this.gpgpu.textureConfig, isPacked);\n const deleteTexThreshold = env().get(\"WEBGL_DELETE_TEXTURE_THRESHOLD\");\n if (deleteTexThreshold !== -1 && this._numBytesAllocated > deleteTexThreshold) {\n this.gpgpu.deleteMatrixTexture(texture.texture);\n this._numBytesAllocated -= texBytes;\n } else {\n this.freeTextures[shapeKey].push(texture);\n this.numFreeTextures++;\n this._numBytesFree += texBytes;\n }\n this.numUsedTextures--;\n const texList = this.usedTextures[shapeKey];\n const texIndex = texList.indexOf(texture);\n if (texIndex < 0) {\n throw new Error(\"Cannot release a texture that was never provided by this texture manager\");\n }\n texList.splice(texIndex, 1);\n this.log();\n }\n log() {\n if (!this.logEnabled) {\n return;\n }\n const total = this.numFreeTextures + this.numUsedTextures;\n console.log(\"Free/Used\", `${this.numFreeTextures} / ${this.numUsedTextures}`, `(${total})`);\n const freeRatio = this._numBytesFree / this._numBytesAllocated;\n console.log(`Bytes allocated: ${this._numBytesAllocated}`);\n console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100 * freeRatio)}%)`);\n }\n get numBytesAllocated() {\n return this._numBytesAllocated;\n }\n get numBytesFree() {\n return this._numBytesFree;\n }\n getNumUsedTextures() {\n return this.numUsedTextures;\n }\n getNumFreeTextures() {\n return this.numFreeTextures;\n }\n dispose() {\n if (this.freeTextures == null) {\n return;\n }\n for (const texShape in this.freeTextures) {\n this.freeTextures[texShape].forEach((tex) => {\n this.gpgpu.deleteMatrixTexture(tex.texture);\n });\n }\n for (const texShape in this.usedTextures) {\n this.usedTextures[texShape].forEach((tex) => {\n this.gpgpu.deleteMatrixTexture(tex.texture);\n });\n }\n this.freeTextures = null;\n this.usedTextures = null;\n this.numUsedTextures = 0;\n this.numFreeTextures = 0;\n this._numBytesAllocated = 0;\n this._numBytesFree = 0;\n }\n};\nfunction numBytesForInternalFormat(gl, internalFormat) {\n const glany = gl;\n if (internalFormat === glany.R32F) {\n return 4;\n } else if (internalFormat === glany.R16F) {\n return 2;\n } else if (internalFormat === glany.RGBA32F) {\n return 16;\n } else if (internalFormat === gl.RGBA) {\n return 16;\n } else if (internalFormat === glany.RGBA16F) {\n return 8;\n } else if (internalFormat === glany.RGBA8) {\n return 4;\n }\n throw new Error(`Unknown internal format ${internalFormat}`);\n}\nfunction computeBytes(shape, physicalTexType, gl, textureConfig, isPacked) {\n const internalFormat = internalFormatForPhysicalTexType(physicalTexType, textureConfig);\n let numElements;\n if (isPacked) {\n const [packedWidth, packedHeight] = getPackedMatrixTextureShapeWidthHeight(shape[0], shape[1]);\n numElements = packedWidth * packedHeight;\n } else {\n const [width, height] = getUnpackedMatrixTextureShapeWidthHeight(shape[0], shape[1]);\n numElements = width * height;\n }\n const bytesPerElement2 = numBytesForInternalFormat(gl, internalFormat);\n return numElements * bytesPerElement2;\n}\nfunction internalFormatForPhysicalTexType(physicalTexType, textureConfig) {\n switch (physicalTexType) {\n case PhysicalTextureType.PACKED_2X2_FLOAT32:\n return getInternalFormatForPackedMatrixTexture(textureConfig);\n case PhysicalTextureType.PACKED_2X2_FLOAT16:\n return getInternalFormatForFloat16PackedMatrixTexture(textureConfig);\n case PhysicalTextureType.UNPACKED_FLOAT32:\n return getInternalFormatForFloat32MatrixTexture(textureConfig);\n case PhysicalTextureType.UNPACKED_FLOAT16:\n return getInternalFormatForFloat16MatrixTexture(textureConfig);\n case PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE:\n return getInternalFormatForUnsignedBytesMatrixTexture(textureConfig);\n default:\n throw new Error(`Unknown physical texture type ${physicalTexType}`);\n }\n}\nfunction getPhysicalTextureForRendering(isPacked) {\n if (env().getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\")) {\n if (isPacked) {\n return PhysicalTextureType.PACKED_2X2_FLOAT32;\n }\n return PhysicalTextureType.UNPACKED_FLOAT32;\n }\n if (isPacked) {\n return PhysicalTextureType.PACKED_2X2_FLOAT16;\n }\n return PhysicalTextureType.UNPACKED_FLOAT16;\n}\nfunction getPhysicalFromLogicalTextureType(logicalTexType, isPacked) {\n if (logicalTexType === TextureUsage.UPLOAD) {\n return PhysicalTextureType.PACKED_2X2_FLOAT32;\n } else if (logicalTexType === TextureUsage.RENDER || logicalTexType == null) {\n return getPhysicalTextureForRendering(isPacked);\n } else if (logicalTexType === TextureUsage.DOWNLOAD || logicalTexType === TextureUsage.PIXELS) {\n return PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE;\n }\n throw new Error(`Unknown logical texture type ${logicalTexType}`);\n}\nfunction getKeyFromTextureShape(shapeRowsCol, physicalTexType, isPacked) {\n return `${shapeRowsCol[0]}_${shapeRowsCol[1]}_${physicalTexType}_${isPacked}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/unaryop_gpu.js\nvar UnaryOpProgram = class {\n constructor(aShape, opSnippet) {\n this.variableNames = [\"A\"];\n this.outputShape = aShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n float unaryOperation(float x) {\n ${opSnippet}\n }\n\n void main() {\n float x = getAAtOutCoords();\n float y = unaryOperation(x);\n\n setOutput(y);\n }\n `;\n }\n};\nvar CHECK_NAN_SNIPPET = `if (isnan(x)) return x;`;\nvar LINEAR = `return x;`;\nvar ABS = `return abs(x);`;\nvar ELU2 = `return (x >= 0.0) ? x : (exp(x) - 1.0);`;\nvar RELU = CHECK_NAN_SNIPPET + `\n return (x < 0.0) ? 0.0 : x;\n`;\nvar RELU6 = CHECK_NAN_SNIPPET + `\n return (x < 0.0) ? 0.0 : min(6.0, x);\n`;\nvar CLONE = \"return x;\";\nvar SIGMOID = `return 1.0 / (1.0 + exp(-1.0 * x));`;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/unaryop_packed_gpu.js\nvar LINEAR2 = `return x;`;\nvar ELU3 = `\n vec4 result;\n\n result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);\n result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);\n result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);\n result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);\n\n return result;\n`;\nvar RELU2 = `\n vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar RELU62 = `\n vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar SIGMOID2 = `return 1.0 / (1.0 + exp(-1.0 * x));`;\nvar UnaryOpPackedProgram = class {\n constructor(aShape, opSnippet) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = aShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n vec4 unaryOperation(vec4 x) {\n ${opSnippet}\n }\n\n void main() {\n vec4 x = getAAtOutCoords();\n vec4 y = unaryOperation(x);\n\n setOutput(y);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/unpack_gpu.js\nvar UnpackProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = false;\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const rank = outputShape.length;\n const channels = getChannels(\"rc\", rank);\n const dtype = getCoordsDataType(rank);\n const sourceCoords = getSourceCoords(rank, channels);\n const innerDims = channels.slice(-2);\n const coords3 = rank <= 1 ? \"rc\" : `vec2(${innerDims.join(\",\")})`;\n this.userCode = `\n void main() {\n ${dtype} rc = getOutputCoords();\n vec4 packedInput = getA(${sourceCoords});\n\n setOutput(getChannel(packedInput, ${coords3}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/backend_webgl.js\nvar whereImpl3 = kernel_impls_exports.whereImpl;\nvar EPSILON_FLOAT322 = 1e-7;\nvar EPSILON_FLOAT162 = 1e-4;\nvar binaryCaches = {};\nfunction getBinaryCache(webGLVersion) {\n if (webGLVersion in binaryCaches) {\n return binaryCaches[webGLVersion];\n }\n binaryCaches[webGLVersion] = {};\n return binaryCaches[webGLVersion];\n}\nvar CPU_HANDOFF_SIZE_THRESHOLD = env().getNumber(\"CPU_HANDOFF_SIZE_THRESHOLD\");\nvar BEFORE_PAGING_CONSTANT = 600;\nfunction numMBBeforeWarning() {\n if (env().global.screen == null) {\n return 1024;\n }\n return env().global.screen.height * env().global.screen.width * window.devicePixelRatio * BEFORE_PAGING_CONSTANT / 1024 / 1024;\n}\nvar MathBackendWebGL = class extends KernelBackend {\n constructor(gpuResource) {\n super();\n this.pendingRead = /* @__PURE__ */ new WeakMap();\n this.pendingDisposal = /* @__PURE__ */ new WeakSet();\n this.dataRefCount = /* @__PURE__ */ new WeakMap();\n this.numBytesInGPU = 0;\n this.uploadWaitMs = 0;\n this.downloadWaitMs = 0;\n this.lastGlFlushTime = 0;\n this.warnedAboutMemory = false;\n this.pendingDeletes = 0;\n this.disposed = false;\n if (!env().getBool(\"HAS_WEBGL\")) {\n throw new Error(\"WebGL is not supported on this device\");\n }\n let newGPGPU;\n if (gpuResource != null) {\n if (gpuResource instanceof GPGPUContext) {\n newGPGPU = gpuResource;\n } else {\n const gl = getWebGLContext(env().getNumber(\"WEBGL_VERSION\"), gpuResource);\n newGPGPU = new GPGPUContext(gl);\n }\n this.binaryCache = {};\n this.gpgpuCreatedLocally = false;\n } else {\n const gl = getWebGLContext(env().getNumber(\"WEBGL_VERSION\"));\n newGPGPU = new GPGPUContext(gl);\n this.binaryCache = getBinaryCache(env().getNumber(\"WEBGL_VERSION\"));\n this.gpgpuCreatedLocally = true;\n }\n this.gpgpu = newGPGPU;\n this.canvas = this.gpgpu.gl.canvas;\n this.textureManager = new TextureManager(this.gpgpu);\n this.numMBBeforeWarning = numMBBeforeWarning();\n this.texData = new DataStorage(this, engine());\n }\n nextDataId() {\n return MathBackendWebGL.nextDataId++;\n }\n numDataIds() {\n return this.texData.numDataIds() - this.pendingDeletes;\n }\n write(values, shape, dtype) {\n if (env().getBool(\"WEBGL_CHECK_NUMERICAL_PROBLEMS\") || env().getBool(\"DEBUG\")) {\n this.checkNumericalProblems(values);\n }\n if (dtype === \"complex64\" && values != null) {\n throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`);\n }\n const dataId = { id: this.nextDataId() };\n this.texData.set(dataId, { shape, dtype, values, usage: TextureUsage.UPLOAD, refCount: 1 });\n return dataId;\n }\n refCount(dataId) {\n if (this.texData.has(dataId)) {\n const tensorData = this.texData.get(dataId);\n return tensorData.refCount;\n }\n return 0;\n }\n incRef(dataId) {\n const texData = this.texData.get(dataId);\n texData.refCount++;\n }\n decRef(dataId) {\n if (this.texData.has(dataId)) {\n const texData = this.texData.get(dataId);\n texData.refCount--;\n }\n }\n move(dataId, values, shape, dtype, refCount) {\n if (env().getBool(\"DEBUG\")) {\n this.checkNumericalProblems(values);\n }\n if (dtype === \"complex64\") {\n throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`);\n }\n this.texData.set(dataId, { shape, dtype, values, usage: TextureUsage.UPLOAD, refCount });\n }\n disposeIntermediateTensorInfo(tensorInfo) {\n this.disposeData(tensorInfo.dataId);\n }\n readSync(dataId) {\n const texData = this.texData.get(dataId);\n const { values, dtype, complexTensorInfos, slice: slice6, shape, isPacked } = texData;\n if (slice6 != null) {\n let program;\n if (isPacked) {\n program = new UnaryOpPackedProgram(shape, CLONE);\n } else {\n program = new UnaryOpProgram(shape, CLONE);\n }\n const res = this.runWebGLProgram(program, [{ dataId, shape, dtype }], dtype);\n const data = this.readSync(res.dataId);\n this.disposeIntermediateTensorInfo(res);\n return data;\n }\n if (values != null) {\n return this.convertAndCacheOnCPU(dataId);\n }\n if (dtype === \"string\") {\n return values;\n }\n const shouldTimeProgram = this.activeTimers != null;\n let start;\n if (shouldTimeProgram) {\n start = util_exports.now();\n }\n let result;\n if (dtype === \"complex64\") {\n const realValues = this.readSync(complexTensorInfos.real.dataId);\n const imagValues = this.readSync(complexTensorInfos.imag.dataId);\n result = backend_util_exports.mergeRealAndImagArrays(realValues, imagValues);\n } else {\n result = this.getValuesFromTexture(dataId);\n }\n if (shouldTimeProgram) {\n this.downloadWaitMs += util_exports.now() - start;\n }\n return this.convertAndCacheOnCPU(dataId, result);\n }\n async read(dataId) {\n if (this.pendingRead.has(dataId)) {\n const subscribers2 = this.pendingRead.get(dataId);\n return new Promise((resolve) => subscribers2.push(resolve));\n }\n const texData = this.texData.get(dataId);\n const { values, shape, slice: slice6, dtype, complexTensorInfos, isPacked } = texData;\n if (slice6 != null) {\n let program;\n if (isPacked) {\n program = new UnaryOpPackedProgram(shape, CLONE);\n } else {\n program = new UnaryOpProgram(shape, CLONE);\n }\n const res = this.runWebGLProgram(program, [{ dataId, shape, dtype }], dtype);\n const data = this.read(res.dataId);\n this.disposeIntermediateTensorInfo(res);\n return data;\n }\n if (values != null) {\n return this.convertAndCacheOnCPU(dataId);\n }\n if (env().getBool(\"DEBUG\")) {\n if (!env().getBool(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\") && env().getNumber(\"WEBGL_VERSION\") === 2) {\n throw new Error(`tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.`);\n }\n }\n let buffer2 = null;\n let tmpDownloadTarget;\n if (dtype !== \"complex64\" && env().get(\"WEBGL_BUFFER_SUPPORTED\")) {\n tmpDownloadTarget = this.decode(dataId);\n const tmpData = this.texData.get(tmpDownloadTarget.dataId);\n buffer2 = this.gpgpu.createBufferFromTexture(tmpData.texture.texture, ...getDenseTexShape(shape));\n }\n this.pendingRead.set(dataId, []);\n if (dtype !== \"complex64\") {\n await this.gpgpu.createAndWaitForFence();\n }\n let vals;\n if (dtype === \"complex64\") {\n const ps = await Promise.all([\n this.read(complexTensorInfos.real.dataId),\n this.read(complexTensorInfos.imag.dataId)\n ]);\n const realValues = ps[0];\n const imagValues = ps[1];\n vals = backend_util_exports.mergeRealAndImagArrays(realValues, imagValues);\n } else if (buffer2 == null) {\n vals = this.getValuesFromTexture(dataId);\n } else {\n const size = util_exports.sizeFromShape(shape);\n vals = this.gpgpu.downloadFloat32MatrixFromBuffer(buffer2, size);\n }\n if (tmpDownloadTarget != null) {\n this.disposeIntermediateTensorInfo(tmpDownloadTarget);\n }\n if (buffer2 != null) {\n const gl = this.gpgpu.gl;\n callAndCheck(gl, () => gl.deleteBuffer(buffer2));\n }\n const dTypeVals = this.convertAndCacheOnCPU(dataId, vals);\n const subscribers = this.pendingRead.get(dataId);\n this.pendingRead.delete(dataId);\n subscribers.forEach((resolve) => resolve(dTypeVals));\n if (this.pendingDisposal.has(dataId)) {\n this.pendingDisposal.delete(dataId);\n if (this.disposeData(dataId)) {\n engine().removeDataId(dataId, this);\n }\n this.pendingDeletes--;\n }\n return dTypeVals;\n }\n readToGPU(dataId, options = {}) {\n const texData = this.texData.get(dataId);\n const { values, shape, slice: slice6, dtype, isPacked, texture } = texData;\n if (dtype === \"complex64\") {\n throw new Error(\"Does not support reading texture for complex64 dtype.\");\n }\n if (slice6 != null) {\n let program;\n if (isPacked) {\n program = new UnaryOpPackedProgram(shape, CLONE);\n } else {\n program = new UnaryOpProgram(shape, CLONE);\n }\n const res = this.runWebGLProgram(program, [{ dataId, shape, dtype }], dtype);\n const gpuResouorce = this.readToGPU(res, options);\n this.disposeIntermediateTensorInfo(res);\n return gpuResouorce;\n }\n if (texture == null) {\n if (values != null) {\n throw new Error(\"Data is not on GPU but on CPU.\");\n } else {\n throw new Error(\"There is no data on GPU or CPU.\");\n }\n }\n const tmpTarget = this.decode(dataId, options.customTexShape);\n const tensorRef = engine().makeTensorFromTensorInfo(tmpTarget);\n const tmpData = this.texData.get(tmpTarget.dataId);\n return Object.assign({ tensorRef }, tmpData.texture);\n }\n bufferSync(t2) {\n const data = this.readSync(t2.dataId);\n if (t2.dtype === \"string\") {\n try {\n const strings = data.map((d) => util_exports.decodeString(d));\n return buffer(t2.shape, t2.dtype, strings);\n } catch (_a) {\n throw new Error(\"Failed to decode encoded string bytes into utf-8\");\n }\n }\n return buffer(t2.shape, t2.dtype, data);\n }\n checkNumericalProblems(values) {\n if (values == null) {\n return;\n }\n for (let i2 = 0; i2 < values.length; i2++) {\n const num = values[i2];\n if (!canBeRepresented(num)) {\n if (env().getBool(\"WEBGL_RENDER_FLOAT32_CAPABLE\")) {\n throw Error(`The value ${num} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`);\n }\n throw Error(`The value ${num} cannot be represented on this device.`);\n }\n }\n }\n getValuesFromTexture(dataId) {\n const { shape, dtype, isPacked } = this.texData.get(dataId);\n const size = util_exports.sizeFromShape(shape);\n if (env().getBool(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\")) {\n const tmpTarget = this.decode(dataId);\n const tmpData2 = this.texData.get(tmpTarget.dataId);\n const vals2 = this.gpgpu.downloadMatrixFromPackedTexture(tmpData2.texture.texture, ...getDenseTexShape(shape)).subarray(0, size);\n this.disposeIntermediateTensorInfo(tmpTarget);\n return vals2;\n }\n const shouldUsePackedProgram = env().getBool(\"WEBGL_PACK\") && isPacked === true;\n const outputShape = shouldUsePackedProgram ? getShapeAs3D(shape) : shape;\n const program = shouldUsePackedProgram ? new EncodeFloatPackedProgram(outputShape) : new EncodeFloatProgram(outputShape);\n const output = this.runWebGLProgram(program, [{ shape: outputShape, dtype, dataId }], \"float32\");\n const tmpData = this.texData.get(output.dataId);\n const vals = this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(tmpData.texture.texture, tmpData.texShape[0], tmpData.texShape[1]).subarray(0, size);\n this.disposeIntermediateTensorInfo(output);\n return vals;\n }\n timerAvailable() {\n return env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0;\n }\n time(f) {\n const oldActiveTimers = this.activeTimers;\n const newActiveTimers = [];\n let outerMostTime = false;\n if (this.programTimersStack == null) {\n this.programTimersStack = newActiveTimers;\n outerMostTime = true;\n } else {\n this.activeTimers.push(newActiveTimers);\n }\n this.activeTimers = newActiveTimers;\n f();\n const flattenedActiveTimerQueries = util_exports.flatten(this.activeTimers.map((d) => d.query)).filter((d) => d != null);\n const flattenedActiveTimerNames = util_exports.flatten(this.activeTimers.map((d) => d.name)).filter((d) => d != null);\n this.activeTimers = oldActiveTimers;\n if (outerMostTime) {\n this.programTimersStack = null;\n }\n const res = {\n uploadWaitMs: this.uploadWaitMs,\n downloadWaitMs: this.downloadWaitMs,\n kernelMs: null,\n wallMs: null\n };\n return (async () => {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0) {\n const kernelMs = await Promise.all(flattenedActiveTimerQueries);\n res[\"kernelMs\"] = util_exports.sum(kernelMs);\n res[\"getExtraProfileInfo\"] = () => kernelMs.map((d, i2) => ({ name: flattenedActiveTimerNames[i2], ms: d })).map((d) => `${d.name}: ${d.ms}`).join(\", \");\n } else {\n res[\"kernelMs\"] = {\n error: \"WebGL query timers are not supported in this environment.\"\n };\n }\n this.uploadWaitMs = 0;\n this.downloadWaitMs = 0;\n return res;\n })();\n }\n memory() {\n return {\n unreliable: false,\n numBytesInGPU: this.numBytesInGPU,\n numBytesInGPUAllocated: this.textureManager.numBytesAllocated,\n numBytesInGPUFree: this.textureManager.numBytesFree\n };\n }\n startTimer() {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0) {\n return this.gpgpu.beginQuery();\n }\n return { startMs: util_exports.now(), endMs: null };\n }\n endTimer(query) {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0) {\n this.gpgpu.endQuery();\n return query;\n }\n query.endMs = util_exports.now();\n return query;\n }\n async getQueryTime(query) {\n if (env().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\") > 0) {\n return this.gpgpu.waitForQueryAndGetTime(query);\n }\n const timerQuery = query;\n return timerQuery.endMs - timerQuery.startMs;\n }\n disposeData(dataId, force = false) {\n if (this.pendingDisposal.has(dataId)) {\n return false;\n }\n if (!this.texData.has(dataId)) {\n return true;\n }\n if (force) {\n this.texData.get(dataId).refCount = 0;\n } else {\n this.texData.get(dataId).refCount--;\n }\n if (!force && this.texData.get(dataId).refCount > 0) {\n return false;\n }\n if (this.pendingRead.has(dataId)) {\n this.pendingDisposal.add(dataId);\n this.pendingDeletes++;\n return false;\n }\n this.releaseGPUData(dataId);\n const { complexTensorInfos } = this.texData.get(dataId);\n if (complexTensorInfos != null) {\n this.disposeData(complexTensorInfos.real.dataId, force);\n this.disposeData(complexTensorInfos.imag.dataId, force);\n }\n this.texData.delete(dataId);\n return true;\n }\n releaseGPUData(dataId) {\n const { texture, dtype, texShape, usage, isPacked, slice: slice6 } = this.texData.get(dataId);\n const key = slice6 && slice6.origDataId || dataId;\n const refCount = this.dataRefCount.get(key);\n if (refCount > 1) {\n this.dataRefCount.set(key, refCount - 1);\n } else {\n this.dataRefCount.delete(key);\n if (texture != null) {\n this.numBytesInGPU -= this.computeBytes(texShape, dtype);\n this.textureManager.releaseTexture(texture, texShape, usage, isPacked);\n }\n }\n const texData = this.texData.get(dataId);\n texData.texture = null;\n texData.texShape = null;\n texData.isPacked = false;\n texData.slice = null;\n }\n getTexture(dataId) {\n this.uploadToGPU(dataId);\n return this.texData.get(dataId).texture.texture;\n }\n getDataInfo(dataId) {\n return this.texData.get(dataId);\n }\n shouldExecuteOnCPU(inputs, sizeThreshold = CPU_HANDOFF_SIZE_THRESHOLD) {\n return env().getBool(\"WEBGL_CPU_FORWARD\") && inputs.every((input2) => this.texData.get(input2.dataId).texture == null && util_exports.sizeFromShape(input2.shape) < sizeThreshold);\n }\n getGPGPUContext() {\n return this.gpgpu;\n }\n where(condition) {\n backend_util_exports.warn(\"tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead\");\n const condVals = condition.dataSync();\n return whereImpl3(condition.shape, condVals);\n }\n packedUnaryOp(x, op2, dtype) {\n const program = new UnaryOpPackedProgram(x.shape, op2);\n const outInfo = this.compileAndRun(program, [x], dtype);\n return engine().makeTensorFromTensorInfo(outInfo);\n }\n abs(x) {\n if (this.shouldExecuteOnCPU([x]) && x.dtype !== \"complex64\") {\n const outValues = simpleAbsImplCPU(this.texData.get(x.dataId).values);\n return this.makeOutput(x.shape, x.dtype, outValues);\n }\n if (env().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")) {\n return this.packedUnaryOp(x, ABS, x.dtype);\n }\n const program = new UnaryOpProgram(x.shape, ABS);\n const outInfo = this.compileAndRun(program, [x]);\n return engine().makeTensorFromTensorInfo(outInfo);\n }\n makeTensorInfo(shape, dtype, values) {\n let dataId;\n if (dtype === \"string\" && values != null && values.length > 0 && util_exports.isString(values[0])) {\n const encodedValues = values.map((d) => util_exports.encodeString(d));\n dataId = this.write(encodedValues, shape, dtype);\n } else {\n dataId = this.write(values, shape, dtype);\n }\n this.texData.get(dataId).usage = null;\n return { dataId, shape, dtype };\n }\n makeOutput(shape, dtype, values) {\n return engine().makeTensorFromTensorInfo(this.makeTensorInfo(shape, dtype, values), this);\n }\n unpackTensor(input2) {\n const program = new UnpackProgram(input2.shape);\n return this.runWebGLProgram(program, [input2], input2.dtype);\n }\n packTensor(input2) {\n const program = new PackProgram(input2.shape);\n const preventEagerUnpackingOutput = true;\n return this.runWebGLProgram(program, [input2], input2.dtype, null, preventEagerUnpackingOutput);\n }\n packedReshape(input2, afterShape) {\n const input3DShape = [\n getBatchDim(input2.shape),\n ...getRowsCols(input2.shape)\n ];\n const input3D = {\n dtype: input2.dtype,\n shape: input3DShape,\n dataId: input2.dataId\n };\n const afterShapeAs3D = [\n getBatchDim(afterShape),\n ...getRowsCols(afterShape)\n ];\n const program = new ReshapePackedProgram(afterShapeAs3D, input3DShape);\n const preventEagerUnpackingOfOutput = true;\n const customValues = [input3DShape];\n const output = this.runWebGLProgram(program, [input3D], input2.dtype, customValues, preventEagerUnpackingOfOutput);\n return { dataId: output.dataId, shape: afterShape, dtype: output.dtype };\n }\n decode(dataId, customTexShape) {\n const texData = this.texData.get(dataId);\n const { isPacked, shape, dtype } = texData;\n if (customTexShape != null) {\n const size = util_exports.sizeFromShape(shape);\n const texSize = customTexShape[0] * customTexShape[1] * 4;\n util_exports.assert(size <= texSize, () => \"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.\");\n }\n const shapeAs3D = getShapeAs3D(shape);\n let program;\n if (isPacked) {\n program = new DecodeMatrixPackedProgram(shapeAs3D);\n } else {\n program = new DecodeMatrixProgram(shapeAs3D);\n }\n const preventEagerUnpackingOfOutput = true;\n const customValues = [customTexShape != null ? customTexShape : getDenseTexShape(shapeAs3D)];\n const out = this.runWebGLProgram(program, [{ shape: shapeAs3D, dtype, dataId }], dtype, customValues, preventEagerUnpackingOfOutput, customTexShape);\n return { dtype, shape, dataId: out.dataId };\n }\n runWebGLProgram(program, inputs, outputDtype, customUniformValues, preventEagerUnpackingOfOutput = false, customTexShape) {\n const output = this.makeTensorInfo(program.outputShape, outputDtype);\n const outData = this.texData.get(output.dataId);\n if (program.packedOutput) {\n outData.isPacked = true;\n }\n if (program.outPackingScheme === PackingScheme.DENSE) {\n const texelShape = customTexShape != null ? customTexShape : getDenseTexShape(program.outputShape);\n outData.texShape = texelShape.map((d) => d * 2);\n }\n if (program.outTexUsage != null) {\n outData.usage = program.outTexUsage;\n }\n if (util_exports.sizeFromShape(output.shape) === 0) {\n outData.values = util_exports.getTypedArrayFromDType(output.dtype, 0);\n return output;\n }\n const dataToDispose = [];\n const inputsData = inputs.map((input2) => {\n if (input2.dtype === \"complex64\") {\n throw new Error(`GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.`);\n }\n let texData = this.texData.get(input2.dataId);\n if (texData.texture == null) {\n if (!program.packedInputs && util_exports.sizeFromShape(input2.shape) <= env().getNumber(\"WEBGL_SIZE_UPLOAD_UNIFORM\")) {\n return {\n shape: input2.shape,\n texData: null,\n isUniform: true,\n uniformValues: texData.values\n };\n }\n if (program.packedInputs) {\n texData.isPacked = true;\n texData.shape = input2.shape;\n }\n }\n this.uploadToGPU(input2.dataId);\n if (!!texData.isPacked !== !!program.packedInputs) {\n input2 = texData.isPacked ? this.unpackTensor(input2) : this.packTensor(input2);\n dataToDispose.push(input2);\n texData = this.texData.get(input2.dataId);\n } else if (texData.isPacked && !isReshapeFree(texData.shape, input2.shape)) {\n const savedInput = input2;\n const targetShape = input2.shape;\n input2.shape = texData.shape;\n input2 = this.packedReshape(input2, targetShape);\n dataToDispose.push(input2);\n texData = this.texData.get(input2.dataId);\n savedInput.shape = targetShape;\n }\n return { shape: input2.shape, texData, isUniform: false };\n });\n this.uploadToGPU(output.dataId);\n const outputData = { shape: output.shape, texData: outData, isUniform: false };\n const key = makeShaderKey(program, inputsData, outputData);\n const binary = this.getAndSaveBinary(key, () => {\n return compileProgram(this.gpgpu, program, inputsData, outputData);\n });\n const shouldTimeProgram = this.activeTimers != null;\n let query;\n if (shouldTimeProgram) {\n query = this.startTimer();\n }\n if (!env().get(\"ENGINE_COMPILE_ONLY\")) {\n runProgram(this.gpgpu, binary, inputsData, outputData, customUniformValues);\n }\n dataToDispose.forEach((info) => this.disposeIntermediateTensorInfo(info));\n if (shouldTimeProgram) {\n query = this.endTimer(query);\n this.activeTimers.push({ name: program.constructor.name, query: this.getQueryTime(query) });\n }\n const glFlushThreshold = env().get(\"WEBGL_FLUSH_THRESHOLD\");\n if (glFlushThreshold > 0) {\n const time2 = util_exports.now();\n if (time2 - this.lastGlFlushTime > glFlushThreshold) {\n this.gpgpu.gl.flush();\n this.lastGlFlushTime = time2;\n }\n }\n if (!env().getBool(\"WEBGL_LAZILY_UNPACK\") && outData.isPacked && preventEagerUnpackingOfOutput === false) {\n const unpacked = this.unpackTensor(output);\n this.disposeIntermediateTensorInfo(output);\n return unpacked;\n }\n return output;\n }\n compileAndRun(program, inputs, outputDtype, customUniformValues, preventEagerUnpackingOfOutput = false) {\n outputDtype = outputDtype || inputs[0].dtype;\n const outInfo = this.runWebGLProgram(program, inputs, outputDtype, customUniformValues, preventEagerUnpackingOfOutput);\n return outInfo;\n }\n getAndSaveBinary(key, getBinary) {\n if (!(key in this.binaryCache)) {\n this.binaryCache[key] = getBinary();\n }\n return this.binaryCache[key];\n }\n getTextureManager() {\n return this.textureManager;\n }\n dispose() {\n if (this.disposed) {\n return;\n }\n if (!env().getBool(\"IS_TEST\")) {\n const allKeys = Object.keys(this.binaryCache);\n allKeys.forEach((key) => {\n this.gpgpu.deleteProgram(this.binaryCache[key].webGLProgram);\n delete this.binaryCache[key];\n });\n }\n this.textureManager.dispose();\n if (this.canvas != null && (typeof HTMLCanvasElement !== \"undefined\" && this.canvas instanceof HTMLCanvasElement)) {\n this.canvas.remove();\n } else {\n this.canvas = null;\n }\n if (this.gpgpuCreatedLocally) {\n this.gpgpu.program = null;\n this.gpgpu.dispose();\n }\n this.disposed = true;\n }\n floatPrecision() {\n if (this.floatPrecisionValue == null) {\n this.floatPrecisionValue = tidy(() => {\n if (!env().get(\"WEBGL_RENDER_FLOAT32_ENABLED\")) {\n const debugFlag = env().getBool(\"DEBUG\");\n env().set(\"DEBUG\", false);\n const underflowCheckValue = this.abs(scalar(1e-8)).dataSync()[0];\n env().set(\"DEBUG\", debugFlag);\n if (underflowCheckValue > 0) {\n return 32;\n }\n }\n return 16;\n });\n }\n return this.floatPrecisionValue;\n }\n epsilon() {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT322 : EPSILON_FLOAT162;\n }\n uploadToGPU(dataId) {\n const texData = this.texData.get(dataId);\n const { shape, dtype, values, texture, usage, isPacked } = texData;\n if (texture != null) {\n return;\n }\n const shouldTimeProgram = this.activeTimers != null;\n let start;\n if (shouldTimeProgram) {\n start = util_exports.now();\n }\n let texShape = texData.texShape;\n if (texShape == null) {\n texShape = getTextureShapeFromLogicalShape(shape, isPacked);\n texData.texShape = texShape;\n }\n if (values != null) {\n const shapeAs3D = getShapeAs3D(shape);\n let program;\n let width = texShape[1], height = texShape[0];\n const isByteArray = values instanceof Uint8Array || values instanceof Uint8ClampedArray;\n if (isPacked || !isByteArray) {\n [width, height] = getPackedMatrixTextureShapeWidthHeight(texShape[0], texShape[1]);\n }\n if (isPacked) {\n program = new EncodeMatrixPackedProgram(shapeAs3D, isByteArray);\n } else {\n program = new EncodeMatrixProgram(shapeAs3D, isByteArray);\n }\n const tempDenseInputTexShape = isByteArray ? [height, width] : texShape;\n const tempDenseInputHandle = this.makeTensorInfo(tempDenseInputTexShape, dtype);\n const tempDenseInputTexData = this.texData.get(tempDenseInputHandle.dataId);\n if (isByteArray) {\n tempDenseInputTexData.usage = TextureUsage.PIXELS;\n } else {\n tempDenseInputTexData.usage = TextureUsage.UPLOAD;\n }\n tempDenseInputTexData.texShape = tempDenseInputTexShape;\n this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(tempDenseInputHandle.dataId), width, height, values);\n const customValues = [[height, width]];\n const preventEagerUnpacking = true;\n const encodedOutputTarget = this.runWebGLProgram(program, [tempDenseInputHandle], dtype, customValues, preventEagerUnpacking);\n const outputTexData = this.texData.get(encodedOutputTarget.dataId);\n texData.texShape = outputTexData.texShape;\n texData.isPacked = outputTexData.isPacked;\n texData.usage = outputTexData.usage;\n if (!env().get(\"ENGINE_COMPILE_ONLY\")) {\n texData.texture = outputTexData.texture;\n texData.values = null;\n this.texData.delete(encodedOutputTarget.dataId);\n } else {\n this.disposeData(encodedOutputTarget.dataId);\n }\n this.disposeIntermediateTensorInfo(tempDenseInputHandle);\n if (shouldTimeProgram) {\n this.uploadWaitMs += util_exports.now() - start;\n }\n } else {\n const newTexture = this.acquireTexture(texShape, usage, dtype, isPacked);\n texData.texture = newTexture;\n }\n }\n convertAndCacheOnCPU(dataId, float32Values) {\n const texData = this.texData.get(dataId);\n const { dtype } = texData;\n this.releaseGPUData(dataId);\n if (float32Values != null) {\n texData.values = float32ToTypedArray(float32Values, dtype);\n }\n return texData.values;\n }\n acquireTexture(texShape, texType, dtype, isPacked) {\n this.numBytesInGPU += this.computeBytes(texShape, dtype);\n if (!this.warnedAboutMemory && this.numBytesInGPU > this.numMBBeforeWarning * 1024 * 1024) {\n const mb = (this.numBytesInGPU / 1024 / 1024).toFixed(2);\n this.warnedAboutMemory = true;\n console.warn(`High memory usage in GPU: ${mb} MB, most likely due to a memory leak`);\n }\n return this.textureManager.acquireTexture(texShape, texType, isPacked);\n }\n computeBytes(shape, dtype) {\n return shape[0] * shape[1] * util_exports.bytesPerElement(dtype);\n }\n checkCompileCompletion() {\n for (const [, binary] of Object.entries(this.binaryCache)) {\n this.checkCompletion_(binary);\n }\n }\n async checkCompileCompletionAsync() {\n const ps = [];\n if (this.gpgpu.parallelCompilationExtension) {\n for (const [, binary] of Object.entries(this.binaryCache)) {\n ps.push(this.checkCompletionAsync_(binary));\n }\n return Promise.all(ps);\n } else {\n for (const [, binary] of Object.entries(this.binaryCache)) {\n const p2 = new Promise((resolve) => {\n try {\n this.checkCompletion_(binary);\n resolve(true);\n } catch (error) {\n throw error;\n }\n });\n ps.push(p2);\n }\n return Promise.all(ps);\n }\n }\n async checkCompletionAsync_(binary) {\n if (this.gpgpu.gl.getProgramParameter(binary.webGLProgram, this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)) {\n return this.checkCompletion_(binary);\n } else {\n await nextFrame();\n return this.checkCompletionAsync_(binary);\n }\n }\n checkCompletion_(binary) {\n if (this.gpgpu.gl.getProgramParameter(binary.webGLProgram, this.gpgpu.gl.LINK_STATUS) === false) {\n console.log(this.gpgpu.gl.getProgramInfoLog(binary.webGLProgram));\n if (this.gpgpu.gl.getShaderParameter(binary.fragmentShader, this.gpgpu.gl.COMPILE_STATUS) === false) {\n logShaderSourceAndInfoLog(binary.source, this.gpgpu.gl.getShaderInfoLog(binary.fragmentShader));\n throw new Error(\"Failed to compile fragment shader.\");\n }\n throw new Error(\"Failed to link vertex and fragment shaders.\");\n }\n return true;\n }\n getUniformLocations() {\n for (const [, binary] of Object.entries(this.binaryCache)) {\n const { uniformLocations, customUniformLocations, infLoc, nanLoc, inShapesLocations, inTexShapesLocations, outShapeLocation, outShapeStridesLocation, outTexShapeLocation } = getUniformLocations(this.gpgpu, binary.program, binary.webGLProgram);\n binary.uniformLocations = uniformLocations;\n binary.customUniformLocations = customUniformLocations;\n binary.infLoc = infLoc;\n binary.nanLoc = nanLoc;\n binary.inShapesLocations = inShapesLocations;\n binary.inTexShapesLocations = inTexShapesLocations;\n binary.outShapeLocation = outShapeLocation;\n binary.outShapeStridesLocation = outShapeStridesLocation;\n binary.outTexShapeLocation = outTexShapeLocation;\n }\n }\n};\nMathBackendWebGL.nextDataId = 0;\nfunction float32ToTypedArray(a, dtype) {\n if (dtype === \"float32\" || dtype === \"complex64\") {\n return a;\n } else if (dtype === \"int32\" || dtype === \"bool\") {\n const result = dtype === \"int32\" ? new Int32Array(a.length) : new Uint8Array(a.length);\n for (let i2 = 0; i2 < result.length; ++i2) {\n result[i2] = Math.round(a[i2]);\n }\n return result;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/version.js\nvar version6 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/webgl.js\nfunction forceHalfFloat() {\n env().set(\"WEBGL_FORCE_F16_TEXTURES\", true);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/base.js\nif (device_util_exports.isBrowser()) {\n registerBackend(\"webgl\", () => new MathBackendWebGL(), 2);\n}\nvar webgl = { forceHalfFloat };\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/binaryop_gpu.js\nvar CHECK_NAN_SNIPPET2 = `\n if (isnan(a)) return a;\n if (isnan(b)) return b;\n`;\nvar BinaryOpProgram = class {\n constructor(op2, aShape, bShape) {\n this.variableNames = [\"A\", \"B\"];\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n this.userCode = `\n float binaryOperation(float a, float b) {\n ${op2}\n }\n\n void main() {\n float a = getAAtOutCoords();\n float b = getBAtOutCoords();\n setOutput(binaryOperation(a, b));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/binaryop_packed_gpu.js\nvar CHECK_NAN_SNIPPET3 = `\n result.r = isNaN.r > 0. ? NAN : result.r;\n result.g = isNaN.g > 0. ? NAN : result.g;\n result.b = isNaN.b > 0. ? NAN : result.b;\n result.a = isNaN.a > 0. ? NAN : result.a;\n`;\nvar BinaryOpPackedProgram = class {\n constructor(op2, aShape, bShape, checkOutOfBounds = false) {\n this.variableNames = [\"A\", \"B\"];\n this.supportsBroadcasting = true;\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n const rank = this.outputShape.length;\n this.enableShapeUniforms = useShapeUniforms(rank);\n let checkOutOfBoundsString = \"\";\n if (checkOutOfBounds) {\n if (rank === 0 || util_exports.sizeFromShape(this.outputShape) === 1) {\n checkOutOfBoundsString = `\n result.y = 0.;\n result.z = 0.;\n result.w = 0.;\n `;\n } else {\n const dtype = getCoordsDataType(rank);\n checkOutOfBoundsString = `\n ${dtype} coords = getOutputCoords();\n `;\n if (rank === 1) {\n if (this.enableShapeUniforms) {\n checkOutOfBoundsString += `\n result.y = (coords + 1) >= outShape ? 0. : result.y;\n result.z = 0.;\n result.w = 0.;\n `;\n } else {\n checkOutOfBoundsString += `\n result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;\n result.z = 0.;\n result.w = 0.;\n `;\n }\n } else {\n const channels = getChannels(\"coords\", rank);\n if (this.enableShapeUniforms) {\n checkOutOfBoundsString += `\n bool nextRowOutOfBounds =\n (${channels[rank - 2]} + 1) >= outShape[${rank} - 2];\n bool nextColOutOfBounds =\n (${channels[rank - 1]} + 1) >= outShape[${rank} - 1];\n result.y = nextColOutOfBounds ? 0. : result.y;\n result.z = nextRowOutOfBounds ? 0. : result.z;\n result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;\n `;\n } else {\n checkOutOfBoundsString += `\n bool nextRowOutOfBounds =\n (${channels[rank - 2]} + 1) >= ${this.outputShape[rank - 2]};\n bool nextColOutOfBounds =\n (${channels[rank - 1]} + 1) >= ${this.outputShape[rank - 1]};\n result.y = nextColOutOfBounds ? 0. : result.y;\n result.z = nextRowOutOfBounds ? 0. : result.z;\n result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;\n `;\n }\n }\n }\n }\n this.userCode = `\n vec4 binaryOperation(vec4 a, vec4 b) {\n ${op2}\n }\n\n void main() {\n vec4 a = getAAtOutCoords();\n vec4 b = getBAtOutCoords();\n\n vec4 result = binaryOperation(a, b);\n ${checkOutOfBoundsString}\n\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Identity.js\nfunction identity3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n backend2.incRef(x.dataId);\n return { dataId: x.dataId, shape: x.shape, dtype: x.dtype };\n}\nvar identityConfig2 = {\n kernelName: Identity,\n backendName: \"webgl\",\n kernelFunc: identity3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Complex.js\nfunction complex3(args) {\n const { inputs, backend: backend2 } = args;\n const { real: real5, imag: imag5 } = inputs;\n const complexInfo = backend2.makeTensorInfo(real5.shape, \"complex64\");\n const complex5 = backend2.texData.get(complexInfo.dataId);\n const realTensorInfo = identity3({ inputs: { x: real5 }, backend: backend2 });\n const imagTensorInfo = identity3({ inputs: { x: imag5 }, backend: backend2 });\n complex5.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo };\n return complexInfo;\n}\nvar complexConfig2 = {\n kernelName: Complex,\n backendName: \"webgl\",\n kernelFunc: complex3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LeakyRelu.js\nvar LEAKYRELU = `return (a < 0.) ? b * a : a;`;\nvar LEAKYRELU_PACKED = `\n vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;\nfunction leakyRelu3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { alpha } = attrs;\n const $alpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(alpha, \"float32\"));\n const program = env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\") ? new BinaryOpPackedProgram(LEAKYRELU_PACKED, x.shape, $alpha.shape) : new BinaryOpProgram(LEAKYRELU, x.shape, $alpha.shape);\n const result = backend2.runWebGLProgram(program, [x, $alpha], \"float32\");\n backend2.disposeIntermediateTensorInfo($alpha);\n return result;\n}\nvar leakyReluConfig2 = {\n kernelName: LeakyRelu,\n backendName: \"webgl\",\n kernelFunc: leakyRelu3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Prelu.js\nvar PRELU = `return (a < 0.) ? b * a : a;`;\nvar PRELU_PACKED = `\n vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;\nfunction prelu4(args) {\n const { inputs, backend: backend2 } = args;\n const { x, alpha } = inputs;\n const program = env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\") ? new BinaryOpPackedProgram(PRELU_PACKED, x.shape, alpha.shape) : new BinaryOpProgram(PRELU, x.shape, alpha.shape);\n return backend2.runWebGLProgram(program, [x, alpha], \"float32\");\n}\nvar preluConfig2 = {\n kernelName: Prelu,\n backendName: \"webgl\",\n kernelFunc: prelu4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/kernel_funcs_utils.js\nvar CHECK_NAN_SNIPPET_UNARY = `if (isnan(x)) return x;`;\nvar CHECK_NAN_SNIPPET_BINARY = `\n if (isnan(a)) return a;\n if (isnan(b)) return b;\n`;\nvar CHECK_NAN_SNIPPET_BINARY_PACKED = `\n result.r = isNaN.r > 0. ? NAN : result.r;\n result.g = isNaN.g > 0. ? NAN : result.g;\n result.b = isNaN.b > 0. ? NAN : result.b;\n result.a = isNaN.a > 0. ? NAN : result.a;\n`;\nfunction unaryKernelFunc2({ opSnippet, packedOpSnippet, cpuKernelImpl, dtype }) {\n return ({ inputs, backend: backend2 }) => {\n const { x } = inputs;\n const webglBackend = backend2;\n const $dtype = dtype || x.dtype;\n if (webglBackend.shouldExecuteOnCPU([x]) && cpuKernelImpl != null) {\n const xData = webglBackend.texData.get(x.dataId);\n const outValues = cpuKernelImpl(xData.values, $dtype);\n return webglBackend.makeTensorInfo(x.shape, $dtype, outValues);\n }\n const shouldUsePackedProgram = env().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\") && packedOpSnippet != null;\n let program;\n if (shouldUsePackedProgram) {\n program = new UnaryOpPackedProgram(x.shape, packedOpSnippet);\n } else {\n program = new UnaryOpProgram(x.shape, opSnippet);\n }\n return webglBackend.runWebGLProgram(program, [x], $dtype);\n };\n}\nfunction binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = false, supportsComplex = false, cpuKernelImpl, dtype }) {\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const webglBackend = backend2;\n if (supportsComplex && a.dtype === \"complex64\") {\n const aData = webglBackend.texData.get(a.dataId);\n const bData = webglBackend.texData.get(b.dataId);\n const [real5, imag5] = [\n [aData.complexTensorInfos.real, bData.complexTensorInfos.real],\n [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag]\n ].map((complexParts) => {\n const [aPart, bPart] = complexParts;\n const aHandle = {\n dataId: aPart.dataId,\n dtype: aPart.dtype,\n shape: a.shape\n };\n const bHandle = {\n dataId: bPart.dataId,\n dtype: bPart.dtype,\n shape: b.shape\n };\n const program2 = new BinaryOpProgram(opSnippet, a.shape, b.shape);\n return webglBackend.runWebGLProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype));\n });\n const complexOutput = complex3({ inputs: { real: real5, imag: imag5 }, backend: webglBackend });\n webglBackend.disposeIntermediateTensorInfo(real5);\n webglBackend.disposeIntermediateTensorInfo(imag5);\n return complexOutput;\n }\n const $dtype = dtype || upcastType(a.dtype, b.dtype);\n if ((a.dtype === \"string\" || b.dtype === \"string\" || webglBackend.shouldExecuteOnCPU([a, b])) && cpuKernelImpl != null) {\n const aVals = webglBackend.texData.get(a.dataId).values;\n const bVals = webglBackend.texData.get(b.dataId).values;\n const decodedAVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals;\n const decodedBVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals;\n const [outValues, outShape] = cpuKernelImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype);\n const out = webglBackend.makeTensorInfo(outShape, $dtype);\n const outData = webglBackend.texData.get(out.dataId);\n outData.values = outValues;\n return out;\n }\n const shouldUsePackedProgram = env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\") && packedOpSnippet != null;\n let program;\n if (shouldUsePackedProgram) {\n program = new BinaryOpPackedProgram(packedOpSnippet, a.shape, b.shape, checkOutOfBounds);\n } else {\n program = new BinaryOpProgram(opSnippet, a.shape, b.shape);\n }\n return webglBackend.runWebGLProgram(program, [a, b], $dtype);\n };\n}\nfunction mapActivationToShaderProgram(activation2, packed = false) {\n if (activation2 === \"linear\") {\n if (packed) {\n return LINEAR2;\n }\n return LINEAR;\n } else if (activation2 === \"relu\") {\n if (packed) {\n return RELU2;\n }\n return RELU;\n } else if (activation2 === \"elu\") {\n if (packed) {\n return ELU3;\n }\n return ELU2;\n } else if (activation2 === \"relu6\") {\n if (packed) {\n return RELU62;\n }\n return RELU6;\n } else if (activation2 === \"prelu\") {\n if (packed) {\n return PRELU_PACKED;\n }\n return PRELU;\n } else if (activation2 === \"leakyrelu\") {\n if (packed) {\n return LEAKYRELU_PACKED;\n }\n return LEAKYRELU;\n } else if (activation2 === \"sigmoid\") {\n if (packed) {\n return SIGMOID2;\n }\n return SIGMOID;\n }\n throw new Error(`Activation ${activation2} has not been implemented for the WebGL backend.`);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/mulmat_packed_gpu.js\nvar MatMulPackedProgram = class {\n constructor(aShape, bShape, outputShape, transposeA = false, transposeB = false, addBias = false, activation2 = null, hasPreluActivation = false, hasLeakyreluActivation = false) {\n this.variableNames = [\"matrixA\", \"matrixB\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const sharedDim = transposeA ? aShape[1] : aShape[2];\n const sharedDimensionPacked = Math.ceil(sharedDim / 2);\n const aSample = transposeA ? \"i * 2, rc.y\" : \"rc.y, i * 2\";\n const bSample = transposeB ? \"rc.z, i * 2\" : \"i * 2, rc.z\";\n const aSwizzle = transposeA ? [\"a.xxyy\", \"a.zzww\"] : [\"a.xxzz\", \"a.yyww\"];\n const bSwizzle = transposeB ? [\"b.xzxz\", \"b.ywyw\"] : [\"b.xyxy\", \"b.zwzw\"];\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivation) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyreluActivation) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `vec4 activation(vec4 x) {\n ${activation2}\n }`;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyreluActivation) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n let batchASnippet = \"rc.x\";\n let batchBSnippet = \"rc.x\";\n if (aShape[0] < bShape[0]) {\n batchASnippet = `int(min(float(rc.x), ${aShape[0] - 1}.))`;\n } else if (bShape[0] < aShape[0]) {\n batchBSnippet = `int(min(float(rc.x), ${bShape[0] - 1}.))`;\n }\n this.userCode = `\n ${activationSnippet}\n // Don't use uniform for sharedDimensionPacked for performance.\n const float sharedDimension = ${sharedDimensionPacked}.0;\n\n vec4 dot2x2ARowBCol(ivec3 rc) {\n vec4 result = vec4(0);\n for (int i = 0; i < ${sharedDimensionPacked}; i++) {\n int batchA = ${batchASnippet};\n int batchB = ${batchBSnippet};\n vec4 a = getMatrixA(batchA, ${aSample});\n vec4 b = getMatrixB(batchB, ${bSample});\n\n // These swizzled products need to be separately added.\n // See: https://github.com/tensorflow/tfjs/issues/1735\n result += (${aSwizzle[0]} * ${bSwizzle[0]});\n result += (${aSwizzle[1]} * ${bSwizzle[1]});\n }\n return result;\n }\n\n void main() {\n ivec3 rc = getOutputCoords();\n vec4 result = dot2x2ARowBCol(rc);\n\n ${addBiasSnippet}\n\n ${applyActivationSnippet}\n\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/binaryop_complex_gpu.js\nvar COMPLEX_MULTIPLY = {\n REAL: \"return areal * breal - aimag * bimag;\",\n IMAG: \"return areal * bimag + aimag * breal;\"\n};\nvar BinaryOpComplexProgram = class {\n constructor(op2, aShape, bShape) {\n this.variableNames = [\"AReal\", \"AImag\", \"BReal\", \"BImag\"];\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n this.userCode = `\n float binaryOpComplex(\n float areal, float aimag, float breal, float bimag) {\n ${op2}\n }\n\n void main() {\n float areal = getARealAtOutCoords();\n float aimag = getAImagAtOutCoords();\n float breal = getBRealAtOutCoords();\n float bimag = getBImagAtOutCoords();\n setOutput(binaryOpComplex(areal, aimag, breal, bimag));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Multiply.js\nvar MUL = \"return a * b;\";\nfunction multiply3(args) {\n const { inputs, backend: backend2 } = args;\n const { a, b } = inputs;\n const dtype = backend_util_exports.upcastType(a.dtype, b.dtype);\n if (a.dtype === \"complex64\") {\n const aData = backend2.texData.get(a.dataId);\n const bData = backend2.texData.get(b.dataId);\n const realProgram = new BinaryOpComplexProgram(COMPLEX_MULTIPLY.REAL, a.shape, b.shape);\n const imagProgram = new BinaryOpComplexProgram(COMPLEX_MULTIPLY.IMAG, a.shape, b.shape);\n const inputs2 = [\n {\n dataId: aData.complexTensorInfos.real.dataId,\n dtype: aData.complexTensorInfos.real.dtype,\n shape: a.shape\n },\n {\n dataId: aData.complexTensorInfos.imag.dataId,\n dtype: aData.complexTensorInfos.imag.dtype,\n shape: a.shape\n },\n {\n dataId: bData.complexTensorInfos.real.dataId,\n dtype: bData.complexTensorInfos.real.dtype,\n shape: b.shape\n },\n {\n dataId: bData.complexTensorInfos.imag.dataId,\n dtype: bData.complexTensorInfos.imag.dtype,\n shape: b.shape\n }\n ];\n const realPart = backend2.runWebGLProgram(realProgram, inputs2, \"float32\");\n const imagPart = backend2.runWebGLProgram(imagProgram, inputs2, \"float32\");\n const complexOutput = complex3({ inputs: { real: realPart, imag: imagPart }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(imagPart);\n return complexOutput;\n }\n if (backend2.shouldExecuteOnCPU([a, b])) {\n const aData = backend2.texData.get(a.dataId);\n const bData = backend2.texData.get(b.dataId);\n const [outValues, outShape] = multiplyImplCPU(a.shape, b.shape, aData.values, bData.values, dtype);\n const out = backend2.makeTensorInfo(outShape, dtype);\n const outData = backend2.texData.get(out.dataId);\n outData.values = outValues;\n return out;\n }\n let program;\n if (env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")) {\n program = new BinaryOpPackedProgram(MUL, a.shape, b.shape);\n } else {\n program = new BinaryOpProgram(MUL, a.shape, b.shape);\n }\n return backend2.runWebGLProgram(program, [a, b], dtype);\n}\nvar multiplyConfig2 = {\n kernelName: Multiply,\n backendName: \"webgl\",\n kernelFunc: multiply3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/reshape.js\nfunction packedReshape(input2, afterShape, backend2) {\n const input3DShape = [\n getBatchDim(input2.shape),\n ...getRowsCols(input2.shape)\n ];\n const input3D = {\n dtype: input2.dtype,\n shape: input3DShape,\n dataId: input2.dataId\n };\n const afterShapeAs3D = [\n getBatchDim(afterShape),\n ...getRowsCols(afterShape)\n ];\n const program = new ReshapePackedProgram(afterShapeAs3D, input3DShape);\n const preventEagerUnpackingOfOutput = true;\n const customValues = [input3DShape];\n const output = backend2.runWebGLProgram(program, [input3D], input2.dtype, customValues, preventEagerUnpackingOfOutput);\n return { dataId: output.dataId, shape: afterShape, dtype: output.dtype };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Reshape.js\nfunction reshape4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { shape } = attrs;\n const webglBackend = backend2;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $shape = util_exports.inferFromImplicitShape(shape, xSize);\n const $xSize = util_exports.sizeFromShape($shape);\n util_exports.assert(xSize === $xSize, () => `The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`);\n const xTexData = webglBackend.texData.get(x.dataId);\n if (xTexData.isPacked && !isReshapeFree(x.shape, $shape) && !(xTexData.texture !== null && isReshapeFree(xTexData.shape, $shape))) {\n return packedReshape(x, $shape, webglBackend);\n }\n webglBackend.incRef(x.dataId);\n return { dataId: x.dataId, shape: $shape, dtype: x.dtype };\n}\nvar reshapeConfig2 = {\n kernelName: Reshape,\n backendName: \"webgl\",\n kernelFunc: reshape4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/mean_gpu.js\nvar MeanProgram = class {\n constructor(reduceInfo, divisor) {\n this.variableNames = [\"x\"];\n const { windowSize, batchSize, inSize, outSize } = reduceInfo;\n this.outputShape = [batchSize, outSize];\n const windowSizeNearestVec4 = Math.floor(windowSize / 4) * 4;\n const windowSizeVec4Remainder = windowSize % 4;\n let updateSnippet = `sumValue += dot(values, ones);`;\n if (divisor != null) {\n const denominator = 1 / divisor;\n updateSnippet = `sumValue += dot(values * ${util_exports.isInt(denominator) ? denominator.toPrecision(2) : denominator}, ones);`;\n }\n let checkOutOfBounds = \"\";\n if (inSize % windowSize > 0) {\n checkOutOfBounds = `\n if (inIdx < 0 || inIdx >= ${inSize}) {\n return 0.0;\n }\n `;\n }\n this.userCode = `\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float getValue(int batch, int inIdx) {\n ${checkOutOfBounds}\n return getX(batch, inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${windowSize};\n\n float sumValue = 0.0;\n\n for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) {\n int inIdx = inOffset + i;\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n ${updateSnippet}\n }\n\n int inIdx = inOffset + ${windowSizeNearestVec4};\n if (${windowSizeVec4Remainder === 1}) {\n vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 2}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1), 0.0, 0.0);\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 3}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2), 0.0);\n\n ${updateSnippet}\n }\n setOutput(sumValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/reduce_gpu.js\nvar ReduceProgram = class {\n constructor(reduceInfo, reduceType) {\n this.variableNames = [\"x\"];\n const { windowSize, batchSize, inSize, outSize } = reduceInfo;\n this.outputShape = [batchSize, outSize];\n let initializationValue = \"0.0\";\n let compareOp = ``;\n if (reduceType === \"prod\") {\n initializationValue = \"1.0\";\n } else if (reduceType === \"min\") {\n initializationValue = \"1.0 / 1e-20\";\n compareOp = `min`;\n } else if (reduceType === \"max\") {\n initializationValue = \"-1.0 / 1e-20\";\n compareOp = `max`;\n }\n let returnValue = `${reduceType}(${reduceType}(${reduceType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;\n if (reduceType === \"sum\") {\n returnValue = `sumValue`;\n } else if (reduceType === \"prod\") {\n returnValue = `prodValue`;\n } else if (reduceType === \"all\") {\n returnValue = `allValue`;\n } else if (reduceType === \"any\") {\n returnValue = `anyValue`;\n }\n const windowSizeNearestVec4 = Math.floor(windowSize / 4) * 4;\n const windowSizeVec4Remainder = windowSize % 4;\n let updateSnippet = `\n if (${reduceType === \"sum\"}) {\n sumValue += dot(values, ones);\n } else if (${reduceType === \"prod\"}) {\n vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);\n prodValue *= tmp[0] * tmp[1];\n } else {\n minMaxValue = ${compareOp}(values, minMaxValue);\n if (${reduceType === \"min\"} || ${reduceType === \"max\"}) {\n minMaxValue = ${compareOp}(values, minMaxValue);\n bvec4 isNaN = isnan(values);\n if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {\n minMaxValue = vec4(NAN);\n }\n }\n }\n `;\n let vecType = `vec4`;\n if (reduceType === \"all\") {\n initializationValue = \"1.0\";\n updateSnippet = `\n bool reducedAllValue = all(values);\n float floatedReducedAllValue = float(reducedAllValue);\n allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);\n `;\n vecType = `bvec4`;\n } else if (reduceType === \"any\") {\n initializationValue = \"0.0\";\n updateSnippet = `\n bool reducedAnyValue = any(values);\n float floatedReducedAnyValue = float(reducedAnyValue);\n anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);\n `;\n vecType = `bvec4`;\n }\n let checkOutOfBounds = \"\";\n if (inSize % windowSize > 0) {\n checkOutOfBounds = `\n if (inIdx < 0 || inIdx >= ${inSize}) {\n return initializationValue;\n }\n `;\n }\n this.userCode = `\n const float initializationValue = ${initializationValue};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float getValue(int batch, int inIdx) {\n ${checkOutOfBounds}\n return getX(batch, inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${windowSize};\n\n vec4 minMaxValue = vec4(${initializationValue});\n float prodValue = 1.0;\n float sumValue = 0.0;\n float allValue = 1.0;\n float anyValue = 0.0;\n\n for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) {\n int inIdx = inOffset + i;\n ${vecType} values = ${vecType}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n ${updateSnippet}\n }\n\n int inIdx = inOffset + ${windowSizeNearestVec4};\n if (${windowSizeVec4Remainder === 1}) {\n ${vecType} values = ${vecType}(\n getValue(batch, inIdx),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 2}) {\n ${vecType} values = ${vecType}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 3}) {\n ${vecType} values = ${vecType}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n initializationValue\n );\n\n ${updateSnippet}\n }\n setOutput(${returnValue});\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/reduce.js\nfunction getReductionStages(inShape) {\n const stages = [];\n while (stages.length === 0 || stages[stages.length - 1].outSize !== 1) {\n const outSize = stages.length ? stages[stages.length - 1].outSize : inShape[1];\n const windowSize = backend_util_exports.computeOptimalWindowSize(outSize);\n stages.push({\n inSize: outSize,\n windowSize,\n outSize: Math.ceil(outSize / windowSize)\n });\n }\n return stages;\n}\nfunction reduce(x, dtype, reductionType, backend2) {\n const reductionStages = getReductionStages(x.shape);\n let result = x;\n for (let i2 = 0; i2 < reductionStages.length; i2++) {\n const { inSize, windowSize, outSize } = reductionStages[i2];\n let program;\n let previousResult;\n if (reductionType === \"mean\") {\n program = i2 === 0 ? new MeanProgram({ windowSize, inSize, batchSize: x.shape[0], outSize }, inSize) : new MeanProgram({ windowSize, inSize, batchSize: x.shape[0], outSize });\n } else {\n program = new ReduceProgram({ windowSize, inSize, batchSize: x.shape[0], outSize }, reductionType);\n }\n previousResult = result;\n result = backend2.runWebGLProgram(program, [result], dtype);\n if (previousResult.dataId !== x.dataId) {\n backend2.disposeIntermediateTensorInfo(previousResult);\n }\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/transpose_gpu.js\nvar TransposeProgram = class {\n constructor(aShape, newDim) {\n this.variableNames = [\"A\"];\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[newDim[i2]];\n }\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n const dtype = getCoordsDataType(this.rank);\n const switched = getSwitchedCoords(newDim);\n this.userCode = `\n void main() {\n ${dtype} resRC = getOutputCoords();\n setOutput(getA(${switched}));\n }\n `;\n }\n};\nfunction getSwitchedCoords(newDim) {\n const rank = newDim.length;\n if (rank > 6) {\n throw Error(`Transpose for rank ${rank} is not yet supported`);\n }\n const originalOrder = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\", \"resRC.u\", \"resRC.v\"];\n const switchedCoords = new Array(rank);\n for (let i2 = 0; i2 < newDim.length; i2++) {\n switchedCoords[newDim[i2]] = originalOrder[i2];\n }\n return switchedCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/transpose_packed_gpu.js\nvar TransposePackedProgram = class {\n constructor(aShape, newDim) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[newDim[i2]];\n }\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n if (this.rank > 6) {\n throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);\n }\n const dtype = getCoordsDataType(this.rank);\n const outputOrder = getVecChannels(\"rc\", this.rank);\n const switchedOrder = new Array(this.rank);\n for (let i2 = 0; i2 < newDim.length; i2++) {\n switchedOrder[newDim[i2]] = outputOrder[i2];\n }\n const innerDims = `vec2(${switchedOrder.slice(-2).join()})`;\n const nextColumn = `++${outputOrder[this.rank - 1]} < ${outputShape[this.rank - 1]}`;\n const getc = `getChannel(getA(${switchedOrder.join()}), ${innerDims})`;\n this.userCode = `\n void main() {\n ${dtype} rc = getOutputCoords();\n vec4 result = vec4(0.);\n result[0] = ${getc};\n if(${nextColumn}) {\n result[1] = ${getc};\n }\n --${outputOrder[this.rank - 1]};\n if(++${outputOrder[this.rank - 2]} < ${outputShape[this.rank - 2]}) {\n result[2] = ${getc};\n if(${nextColumn}) {\n result[3] = ${getc};\n }\n }\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Transpose_impl.js\nfunction transposeImpl2(x, perm, backend2) {\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new TransposePackedProgram(x.shape, perm) : new TransposeProgram(x.shape, perm);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sum_impl.js\nfunction sumImpl(x, axis, keepDims, backend2) {\n const reductionIndices = axis;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(reductionIndices, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n const sumInputIsTransposed = permutedAxes != null;\n let sumInput = x;\n if (sumInputIsTransposed) {\n sumInput = transposeImpl2(x, permutedAxes, backend2);\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"sum\", axes, xRank);\n const [sumOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(sumInput.shape, axes);\n let outShape = sumOutShape;\n if (keepDims) {\n outShape = backend_util_exports.expandShapeToKeepDim(sumOutShape, origAxes);\n }\n const inSize = util_exports.sizeFromShape(reduceShape);\n const xSize = util_exports.sizeFromShape(x.shape);\n const batchSize = xSize / inSize;\n const reshapedInput = reshape4({ inputs: { x: sumInput }, attrs: { shape: [batchSize, inSize] }, backend: backend2 });\n const outType = sumOutType(x.dtype);\n const reduced = reduce(reshapedInput, outType, \"sum\", backend2);\n const out = reshape4({ inputs: { x: reduced }, attrs: { shape: outShape }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(reshapedInput);\n backend2.disposeIntermediateTensorInfo(reduced);\n if (sumInputIsTransposed) {\n backend2.disposeIntermediateTensorInfo(sumInput);\n }\n return out;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sum.js\nfunction sum4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n return sumImpl(x, axis, keepDims, backend2);\n}\nvar sumConfig2 = {\n kernelName: Sum,\n backendName: \"webgl\",\n kernelFunc: sum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Transpose.js\nfunction transpose3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { perm } = attrs;\n const webglBackend = backend2;\n const xRank = x.shape.length;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[perm[i2]];\n }\n let out;\n if (webglBackend.shouldExecuteOnCPU([x])) {\n const xTexData = webglBackend.texData.get(x.dataId);\n const values = xTexData.values;\n const outValues = transposeImplCPU(values, x.shape, x.dtype, perm, newShape);\n out = webglBackend.makeTensorInfo(newShape, x.dtype);\n const outData = webglBackend.texData.get(out.dataId);\n outData.values = outValues;\n } else {\n out = transposeImpl2(x, perm, webglBackend);\n }\n return out;\n}\nvar transposeConfig2 = {\n kernelName: Transpose,\n backendName: \"webgl\",\n kernelFunc: transpose3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BatchMatMul_impl.js\nvar MATMUL_SHARED_DIM_THRESHOLD = 1e3;\nfunction batchMatMulImpl({ a, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const aRank = a.shape.length;\n const bRank = b.shape.length;\n const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1];\n const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2];\n const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2];\n const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1];\n const outerDimsA = a.shape.slice(0, -2);\n const outerDimsB = b.shape.slice(0, -2);\n const batchDimA = util_exports.sizeFromShape(outerDimsA);\n const batchDimB = util_exports.sizeFromShape(outerDimsB);\n const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA];\n const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB];\n const a3d = reshape4({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } });\n const b3d = reshape4({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } });\n const intermediates = [a3d, b3d];\n const batchDim = Math.max(batchDimA, batchDimB);\n const sharedDim = transposeA ? a3d.shape[1] : a3d.shape[2];\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const hasLeakyreluAlpha = activation2 === \"leakyrelu\";\n const fusedActivation = activation2 != null ? mapActivationToShaderProgram(activation2, true) : null;\n const containsFusedOps = hasBias || hasPreluActivationWeights || hasLeakyreluAlpha || fusedActivation != null;\n let out;\n if ((outerShapeA === 1 || outerShapeB === 1) && sharedDim > MATMUL_SHARED_DIM_THRESHOLD && containsFusedOps === false) {\n let aVec = a3d;\n let bVec = b3d;\n if (transposeA) {\n aVec = transpose3({ inputs: { x: a3d }, backend: backend2, attrs: { perm: [0, 2, 1] } });\n intermediates.push(aVec);\n }\n if (transposeB) {\n bVec = transpose3({ inputs: { x: b3d }, backend: backend2, attrs: { perm: [0, 2, 1] } });\n intermediates.push(bVec);\n }\n const shouldReshapeA = outerShapeB !== 1;\n const shouldReshapeB = outerShapeB === 1;\n let aVec3d = aVec;\n if (shouldReshapeA) {\n aVec3d = reshape4({\n inputs: { x: aVec },\n backend: backend2,\n attrs: { shape: [batchDim, sharedDim, 1] }\n });\n intermediates.push(aVec3d);\n }\n const axis = outerShapeB === 1 ? 2 : 1;\n let bVec3d = bVec;\n if (shouldReshapeB) {\n bVec3d = reshape4({\n inputs: { x: bVec },\n backend: backend2,\n attrs: { shape: [batchDim, 1, sharedDim] }\n });\n intermediates.push(bVec3d);\n }\n const product = multiply3({ inputs: { a: aVec3d, b: bVec3d }, backend: backend2 });\n out = sum4({ inputs: { x: product }, backend: backend2, attrs: { axis, keepDims: true } });\n intermediates.push(product);\n } else {\n const dtype = upcastType(a.dtype, b.dtype);\n const program = new MatMulPackedProgram(a3dShape, b3dShape, [batchDim, outerShapeA, outerShapeB], transposeA, transposeB, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n const inputs = [a3d, b3d];\n if (bias != null) {\n inputs.push(bias);\n }\n if (hasPreluActivationWeights) {\n inputs.push(preluActivationWeights);\n }\n if (hasLeakyreluAlpha) {\n const $leakyreluAlpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(leakyreluAlpha, \"float32\"));\n inputs.push($leakyreluAlpha);\n intermediates.push($leakyreluAlpha);\n }\n out = backend2.runWebGLProgram(program, inputs, dtype);\n }\n const outReshaped = reshape4({ inputs: { x: out }, backend: backend2, attrs: { shape: outShape } });\n intermediates.push(out);\n for (const i2 of intermediates) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return outReshaped;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/_FusedMatMul.js\nfunction _fusedMatMul2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b, bias, preluActivationWeights } = inputs;\n const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs;\n return batchMatMulImpl({\n a,\n b,\n transposeA,\n transposeB,\n backend: backend2,\n bias,\n preluActivationWeights,\n leakyreluAlpha,\n activation: activation2\n });\n}\nvar _fusedMatMulConfig2 = {\n kernelName: _FusedMatMul,\n backendName: \"webgl\",\n kernelFunc: _fusedMatMul2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Abs.js\nvar ABS2 = `return abs(x);`;\nfunction abs3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (backend2.shouldExecuteOnCPU([x]) && x.dtype !== \"complex64\") {\n const xData = backend2.texData.get(x.dataId);\n const outValues = simpleAbsImplCPU(xData.values);\n return backend2.makeTensorInfo(x.shape, x.dtype, outValues);\n }\n let program;\n if (env().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")) {\n program = new UnaryOpPackedProgram(x.shape, ABS2);\n } else {\n program = new UnaryOpProgram(x.shape, ABS2);\n }\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar absConfig2 = {\n kernelName: Abs,\n backendName: \"webgl\",\n kernelFunc: abs3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Acos.js\nvar ACOS = CHECK_NAN_SNIPPET + `\n if (abs(x) > 1.) {\n return NAN;\n }\n return acos(x);\n`;\nvar acos3 = unaryKernelFunc2({ opSnippet: ACOS });\nvar acosConfig2 = {\n kernelName: Acos,\n backendName: \"webgl\",\n kernelFunc: acos3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Acosh.js\nvar ACOSH = CHECK_NAN_SNIPPET + `\n if (x < 1.0) return NAN;\nreturn log(x + sqrt(x * x - 1.0));`;\nvar acosh3 = unaryKernelFunc2({ opSnippet: ACOSH });\nvar acoshConfig2 = {\n kernelName: Acosh,\n backendName: \"webgl\",\n kernelFunc: acosh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Add.js\nvar ADD = \"return a + b;\";\nvar addKernelFunc = binaryKernelFunc2({\n opSnippet: ADD,\n packedOpSnippet: ADD,\n supportsComplex: true,\n cpuKernelImpl: addImplCPU\n});\nvar addConfig2 = {\n kernelName: Add,\n backendName: \"webgl\",\n kernelFunc: addKernelFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/addn_gpu.js\nvar AddNProgram = class {\n constructor(outputShape, shapes) {\n this.outputShape = [];\n this.outputShape = outputShape;\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n const snippets = [];\n this.variableNames.forEach((variable2) => {\n snippets.push(`float v${variable2} = get${variable2}AtOutCoords();`);\n });\n const operation = this.variableNames.map((variable2) => {\n return `v${variable2}`;\n }).join(\" + \");\n this.userCode = `\n void main() {\n ${snippets.join(\"\\n \")}\n\n float result = ${operation};\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/addn_packed_gpu.js\nvar AddNPackedProgram = class {\n constructor(outputShape, shapes) {\n this.outputShape = [];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = outputShape;\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n const snippets = [];\n this.variableNames.forEach((variable2) => {\n snippets.push(`vec4 v${variable2} = get${variable2}AtOutCoords();`);\n });\n const operation = this.variableNames.map((variable2) => {\n return `v${variable2}`;\n }).join(\" + \");\n this.userCode = `\n void main() {\n ${snippets.join(\"\\n \")}\n\n vec4 result = ${operation};\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AddN.js\nfunction addN3(args) {\n const { inputs, backend: backend2 } = args;\n const tensors = inputs;\n if (tensors.length === 1) {\n return identity3({ inputs: { x: tensors[0] }, backend: backend2 });\n }\n if (tensors.length > env().get(\"WEBGL_MAX_TEXTURES_IN_SHADER\")) {\n const midIndex = Math.floor(tensors.length / 2);\n const leftSide = addN3({ inputs: tensors.slice(0, midIndex), backend: backend2 });\n const rightSide = addN3({ inputs: tensors.slice(midIndex), backend: backend2 });\n return addN3({ inputs: [leftSide, rightSide], backend: backend2 });\n }\n const dtype = tensors.map((t2) => t2.dtype).reduce((d1, d2) => upcastType(d1, d2));\n const shapes = tensors.map((t2) => t2.shape);\n const usePackedOp = env().getBool(\"WEBGL_PACK\");\n const program = usePackedOp ? new AddNPackedProgram(tensors[0].shape, shapes) : new AddNProgram(tensors[0].shape, shapes);\n return backend2.runWebGLProgram(program, tensors, dtype);\n}\nvar addNConfig2 = {\n kernelName: AddN,\n backendName: \"webgl\",\n kernelFunc: addN3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/All.js\nfunction all3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let permutedX = x;\n if (permutedAxes != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"all\", axes, xRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n const reduced = reduce(a2D, a2D.dtype, \"all\", backend2);\n let res;\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: newShape } });\n } else {\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n }\n backend2.disposeIntermediateTensorInfo(a2D);\n backend2.disposeIntermediateTensorInfo(reduced);\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo(permutedX);\n }\n return res;\n}\nvar allConfig2 = {\n kernelName: All,\n backendName: \"webgl\",\n kernelFunc: all3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Any.js\nfunction any3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let permutedX = x;\n if (permutedAxes != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"any\", axes, xRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n const reduced = reduce(a2D, a2D.dtype, \"any\", backend2);\n let res;\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: newShape } });\n } else {\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n }\n backend2.disposeIntermediateTensorInfo(a2D);\n backend2.disposeIntermediateTensorInfo(reduced);\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo(permutedX);\n }\n return res;\n}\nvar anyConfig2 = {\n kernelName: Any,\n backendName: \"webgl\",\n kernelFunc: any3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/argminmax_gpu.js\nvar ArgMinMaxProgram = class {\n constructor(reduceInfo, op2, firstPass) {\n this.variableNames = [\"A\"];\n const { windowSize, batchSize, outSize } = reduceInfo;\n if (!firstPass) {\n this.variableNames.push(\"bestIndicesA\");\n }\n this.outputShape = [batchSize, outSize];\n const compOp = op2 === \"max\" ? \">\" : \"<\";\n const indexSnippet = firstPass ? \"inOffset + i;\" : \"round(getBestIndicesA(batch, inOffset + i));\";\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${windowSize};\n\n int bestIndex = inOffset;\n float bestValue = getA(batch, bestIndex);\n\n for (int i = 0; i < ${windowSize}; i++) {\n int inIdx = ${indexSnippet};\n float candidate = getA(batch, inIdx);\n if (candidate ${compOp} bestValue) {\n bestValue = candidate;\n bestIndex = inIdx;\n }\n }\n setOutput(float(bestIndex));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/argminmax_packed_gpu.js\nvar ArgMinMaxPackedProgram = class {\n constructor(shape, windowSize, op2, firstPass) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n util_exports.assert(shape.length > 2, () => `Packed arg${op2.charAt(0).toUpperCase() + op2.slice(1)} supports only inputs with rank above 2.`);\n const inSize = shape[shape.length - 1];\n const outSize = Math.ceil(inSize / windowSize);\n this.outputShape = shape.slice(0, -1);\n if (outSize > 1) {\n this.outputShape.push(outSize);\n }\n if (!firstPass) {\n this.variableNames.push(\"bestIndicesA\");\n }\n const outShape = this.outputShape;\n const rank = outShape.length;\n const dtype = getCoordsDataType(rank);\n const coords3 = getChannels(\"coords\", rank);\n let sourceLocSetup;\n let sourceRank;\n if (outSize === 1) {\n sourceRank = rank + 1;\n const sourceLocDType = getCoordsDataType(sourceRank);\n sourceLocSetup = `\n ${sourceLocDType} sourceLocR = ${sourceLocDType}(${coords3.join()}, 0);\n ++${coords3[rank - 1]};\n ${sourceLocDType} sourceLocG = ${sourceLocDType}(${coords3.join()}, 0);\n ++${coords3[rank - 2]};\n ${sourceLocDType} sourceLocA = ${sourceLocDType}(${coords3.join()}, 0);\n --${coords3[rank - 1]};\n ${sourceLocDType} sourceLocB = ${sourceLocDType}(${coords3.join()}, 0);\n --${coords3[rank - 2]};`;\n } else {\n sourceRank = rank;\n sourceLocSetup = `\n ${dtype} sourceLocR = coords;\n ++${coords3[rank - 1]};\n ${dtype} sourceLocG = coords;\n ++${coords3[rank - 2]};\n ${dtype} sourceLocA = coords;\n --${coords3[rank - 1]};\n ${dtype} sourceLocB = coords;\n --${coords3[rank - 2]};`;\n }\n const channels = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"].slice(0, sourceRank);\n const inChannel = \".\" + channels[sourceRank - 1];\n const intChannels = channels.map((x) => \"int \" + x);\n const srcRCoords = getChannels(\"sourceLocR\", sourceRank - 1).concat(\"inIdx.r\");\n const srcGCoords = getChannels(\"sourceLocG\", sourceRank - 1).concat(\"inIdx.g\");\n const srcBCoords = getChannels(\"sourceLocB\", sourceRank - 1).concat(\"inIdx.b\");\n const srcACoords = getChannels(\"sourceLocA\", sourceRank - 1).concat(\"inIdx.a\");\n const compOp = op2 === \"max\" ? \"greaterThan\" : \"lessThan\";\n const fetchCandidateIdx = firstPass ? \"\" : `\n inIdx = round(vec4(getBestIndicesAChannel(${srcRCoords.join()}),\n getBestIndicesAChannel(${srcGCoords.join()}),\n getBestIndicesAChannel(${srcBCoords.join()}),\n getBestIndicesAChannel(${srcACoords.join()})));`;\n const fetchValue = `vec4(\n getAChannel(${srcRCoords.join()}),\n hasNextCol ? getAChannel(${srcGCoords.join()}) : 0.,\n hasNextRow ? getAChannel(${srcBCoords.join()}) : 0.,\n hasNextRow && hasNextCol ? getAChannel(${srcACoords.join()}) : 0.)`;\n const getBestIndicesAChannelSnippet = firstPass ? \"\" : `\n float getBestIndicesAChannel(${intChannels.join()}) {\n return getChannel(getBestIndicesA(${channels.join()}),\n vec2(${channels.slice(-2).join()}));\n }`;\n this.userCode = `\n float getAChannel(${intChannels.join()}) {\n return getChannel(getA(${channels.join()}),\n vec2(${channels.slice(-2).join()}));\n }\n ${getBestIndicesAChannelSnippet}\n void main() {\n ${dtype} coords = getOutputCoords();\n bool hasNextCol = ${coords3[rank - 1]} < ${outShape[rank - 1] - 1};\n bool hasNextRow = ${coords3[rank - 2]} < ${outShape[rank - 2] - 1};\n ${sourceLocSetup}\n ivec4 srcIdx = ivec4(sourceLocR${inChannel}, sourceLocG${inChannel},\n sourceLocB${inChannel}, sourceLocA${inChannel}) * ${windowSize};\n ivec4 inIdx = srcIdx;\n vec4 bestIndex = vec4(inIdx);\n vec4 bestValue = ${fetchValue};\n\n for (int i = 0; i < ${windowSize}; i++) {\n inIdx = srcIdx;\n ${fetchCandidateIdx}\n vec4 candidate = ${fetchValue};\n bvec4 nan = isnan(candidate);\n bvec4 replace = bvec4(\n vec4(${compOp}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));\n\n bestValue = vec4(replace.x ? candidate.x : bestValue.x,\n replace.y ? candidate.y : bestValue.y,\n replace.z ? candidate.z : bestValue.z,\n replace.w ? candidate.w : bestValue.w);\n bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));\n srcIdx++;\n }\n setOutput(bestIndex);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/arg_min_max.js\nfunction argReduce(backend2, x, reduceType, bestIndicesA = null) {\n let batchSize = x.shape[0];\n let inSize = x.shape[1];\n if (bestIndicesA != null) {\n batchSize = bestIndicesA.shape[0];\n inSize = bestIndicesA.shape[1];\n }\n const windowSize = backend_util_exports.computeOptimalWindowSize(inSize);\n const reduceInfo = { windowSize, inSize, batchSize, outSize: Math.ceil(inSize / windowSize) };\n const program = new ArgMinMaxProgram(reduceInfo, reduceType, bestIndicesA == null);\n const inputs = [x];\n if (bestIndicesA != null) {\n inputs.push(bestIndicesA);\n }\n const output = backend2.runWebGLProgram(program, inputs, \"int32\");\n if (output.shape[1] === 1) {\n return output;\n }\n const result = argReduce(backend2, x, reduceType, output);\n backend2.disposeIntermediateTensorInfo(output);\n return result;\n}\nfunction argReducePacked(backend2, x, reduceType, bestIndicesA = null) {\n const inShape = bestIndicesA != null ? bestIndicesA.shape : x.shape;\n const inSize = inShape[inShape.length - 1];\n const windowSize = backend_util_exports.computeOptimalWindowSize(inSize);\n const program = new ArgMinMaxPackedProgram(inShape, windowSize, reduceType, bestIndicesA == null);\n const inputs = bestIndicesA == null ? [x] : [x, bestIndicesA];\n const output = backend2.runWebGLProgram(program, inputs, \"int32\");\n if (output.shape.length === x.shape.length) {\n const result = argReducePacked(backend2, x, reduceType, output);\n backend2.disposeIntermediateTensorInfo(output);\n return result;\n }\n return output;\n}\nfunction argMinMaxReduce(backend2, x, axis, reduceType) {\n const axes = [axis];\n backend_util_exports.assertAxesAreInnerMostDims(\"arg\" + reduceType.charAt(0).toUpperCase() + reduceType.slice(1), axes, x.shape.length);\n if (!env().getBool(\"WEBGL_PACK_REDUCE\") || x.shape.length <= 2) {\n const intermediateTensorInfos = [];\n const xtexData = backend2.texData.get(x.dataId);\n const xIsPacked = xtexData !== null && xtexData.isPacked;\n let xUnPacked = x;\n if (xIsPacked) {\n xUnPacked = backend2.unpackTensor(x);\n intermediateTensorInfos.push(xUnPacked);\n }\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(xUnPacked.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: xUnPacked }, backend: backend2, attrs: { shape: [-1, inSize] } });\n intermediateTensorInfos.push(a2D);\n const reduced = argReduce(backend2, a2D, reduceType);\n intermediateTensorInfos.push(reduced);\n const reshaped = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return reshaped;\n }\n return argReducePacked(backend2, x, reduceType);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ArgMax.js\nfunction argMax3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"argMax\", [axes[0]], $x.shape.length);\n const out = argMinMaxReduce(backend2, $x, axes[0], \"max\");\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return out;\n}\nvar argMaxConfig2 = {\n kernelName: ArgMax,\n backendName: \"webgl\",\n kernelFunc: argMax3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ArgMin.js\nfunction argMin3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"argMin\", [axes[0]], $x.shape.length);\n const out = argMinMaxReduce(backend2, $x, axes[0], \"min\");\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return out;\n}\nvar argMinConfig2 = {\n kernelName: ArgMin,\n backendName: \"webgl\",\n kernelFunc: argMin3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Asin.js\nvar ASIN = CHECK_NAN_SNIPPET + `\n if (abs(x) > 1.) {\n return NAN;\n }\n return asin(x);\n`;\nvar asin3 = unaryKernelFunc2({ opSnippet: ASIN });\nvar asinConfig2 = {\n kernelName: Asin,\n backendName: \"webgl\",\n kernelFunc: asin3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Asinh.js\nvar ASINH = CHECK_NAN_SNIPPET + `return log(x + sqrt(x * x + 1.0));`;\nvar asinh3 = unaryKernelFunc2({ opSnippet: ASINH });\nvar asinhConfig2 = {\n kernelName: Asinh,\n backendName: \"webgl\",\n kernelFunc: asinh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Atan.js\nvar ATAN = CHECK_NAN_SNIPPET + `\n return atan(x);\n`;\nvar atan4 = unaryKernelFunc2({ opSnippet: ATAN });\nvar atanConfig2 = {\n kernelName: Atan,\n backendName: \"webgl\",\n kernelFunc: atan4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Atan2.js\nvar ATAN2 = CHECK_NAN_SNIPPET_BINARY + `\n return atan(a, b);\n`;\nvar ATAN2_PACKED = `\n vec4 result = atan(a, b);\n vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));\n ` + CHECK_NAN_SNIPPET_BINARY_PACKED + `\n return result;\n`;\nvar atan23 = binaryKernelFunc2({ opSnippet: ATAN2, packedOpSnippet: ATAN2_PACKED });\nvar atan2Config2 = {\n kernelName: Atan2,\n backendName: \"webgl\",\n kernelFunc: atan23\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Atanh.js\nvar ATANH = CHECK_NAN_SNIPPET + `\n if ((x < -1.0) || (x > 1.0)) return NAN;\nreturn (log(1.0 + x) - log(1.0 - x)) / 2.0;`;\nvar atanh3 = unaryKernelFunc2({ opSnippet: ATANH });\nvar atanhConfig2 = {\n kernelName: Atanh,\n backendName: \"webgl\",\n kernelFunc: atanh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/pool_gpu.js\nvar Pool2DProgram = class {\n constructor(convInfo, poolType, computePositions, flattenPositions = false, includeBatchInIndex = false) {\n this.variableNames = [\"x\"];\n if (poolType === \"avg\" && computePositions) {\n throw new Error(\"Cannot compute positions for average pool.\");\n }\n const filterWidth = convInfo.filterWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n this.outputShape = convInfo.outShape;\n const isAvgPool = poolType === \"avg\";\n const batchFlattenPositionStr = `((batch * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + d`;\n const flattenPositionStr = `(xR * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + d`;\n let initializationValue = \"0.0\";\n if (!isAvgPool) {\n initializationValue = \"-1.0 / 1e-20\";\n }\n if (computePositions) {\n const compareOp2 = \">=\";\n this.userCode = `\n const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d = coords[3];\n\n ivec2 xRCCorner = coords.yz * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // max/min x(?, ?, d) to get y(yR, yC, d).\n // ? = to be determined\n float minMaxValue = 0.0;\n float minMaxValueFound = 0.0;\n int minMaxPosition = 0;\n float avgValue = 0.0;\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC += ${dilationWidth}) {\n int xC = xCCorner + wC;\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n float value = getX(batch, xR, xC, d);\n\n // If a min / max value has already been found, use it. If not,\n // use the current value.\n float currMinMaxValue = mix(\n value, minMaxValue, minMaxValueFound);\n if (value ${compareOp2} currMinMaxValue) {\n minMaxValue = value;\n minMaxValueFound = 1.0;\n minMaxPosition = ${flattenPositions ? includeBatchInIndex ? batchFlattenPositionStr : flattenPositionStr : `wR * ${effectiveFilterWidth} + wC`};\n }\n }\n }\n setOutput(float(minMaxPosition));\n }\n `;\n return;\n }\n const compareOp = \"max\";\n let returnValue = `${poolType}(${poolType}(${poolType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;\n if (poolType === \"avg\") {\n returnValue = `avgValue / count`;\n }\n const filterWidthNearestVec4 = Math.floor(filterWidth / 4) * 4;\n const filterWidthVec4Remainder = filterWidth % 4;\n const updateSnippet = `\n if (${isAvgPool}) {\n avgValue += dot(values, ones);\n } else {\n minMaxValue = ${compareOp}(values, minMaxValue);\n }\n `;\n this.userCode = `\n const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n const float initializationValue = ${initializationValue};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float count = 0.0;\n\n float getValue(int batch, int xR, int xC, int d) {\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n return initializationValue;\n }\n count += 1.0;\n return getX(batch, xR, xC, d);\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d = coords[3];\n\n ivec2 xRCCorner = coords.yz * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // max/min x(?, ?, d) to get y(yR, yC, d).\n // ? = to be determined\n vec4 minMaxValue = vec4(${initializationValue});\n float avgValue = 0.0;\n count = 0.0;\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidthNearestVec4}; wC += 4) {\n int xC = xCCorner + wC * ${dilationWidth};\n\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${dilationWidth}, d),\n getValue(batch, xR, xC + 2 * ${dilationWidth}, d),\n getValue(batch, xR, xC + 3 * ${dilationWidth}, d)\n );\n\n ${updateSnippet}\n }\n\n int xC = xCCorner + ${filterWidthNearestVec4};\n if (${filterWidthVec4Remainder === 1}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${filterWidthVec4Remainder === 2}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${dilationWidth}, d),\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${filterWidthVec4Remainder === 3}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${dilationWidth}, d),\n getValue(batch, xR, xC + 2 * ${dilationWidth}, d),\n initializationValue\n );\n\n ${updateSnippet}\n }\n }\n setOutput(${returnValue});\n }\n `;\n }\n};\nvar Pool3DProgram = class {\n constructor(convInfo, poolType, computePositions, flattenPositions = false, includeBatchInIndex = false) {\n this.variableNames = [\"x\"];\n if (poolType === \"avg\" && computePositions) {\n throw new Error(\"Cannot compute positions for average pool.\");\n }\n const filterWidth = convInfo.filterWidth;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n this.outputShape = convInfo.outShape;\n const isAvgPool = poolType === \"avg\";\n let initializationValue = \"0.0\";\n if (!isAvgPool) {\n initializationValue = \"-1.0 / 1e-20\";\n }\n if (computePositions) {\n const compareOp2 = \">=\";\n this.userCode = `\n const ivec3 strides =\n ivec3(${strideDepth}, ${strideHeight}, ${strideWidth});\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xDCorner = xCorner.x;\n int xRCorner = xCorner.y;\n int xCCorner = xCorner.z;\n\n // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).\n // ? = to be determined\n float minMaxValue = 0.0;\n float minMaxValueFound = 0.0;\n int minMaxPosition = 0;\n\n for (int wD = 0; wD < ${effectiveFilterDepth};\n wD += ${dilationDepth}) {\n int xD = xDCorner + wD;\n\n if (xD < 0 || xD >= ${convInfo.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC += ${dilationWidth}) {\n int xC = xCCorner + wC;\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n float value = getX(batch, xD, xR, xC, ch);\n\n // If a min / max value has already been found, use it. If not,\n // use the current value.\n float currMinMaxValue = mix(\n value, minMaxValue, minMaxValueFound);\n if (value ${compareOp2} currMinMaxValue) {\n minMaxValue = value;\n minMaxValueFound = 1.0;\n minMaxPosition = ${flattenPositions ? includeBatchInIndex ? `(((batch * ${convInfo.inDepth} + xD) * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + ch` : `((xD * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + ch` : `wD * ${effectiveFilterHeight} * ${effectiveFilterWidth} +\n wR * ${effectiveFilterWidth} + wC`};\n }\n }\n }\n }\n setOutput(float(minMaxPosition));\n }\n `;\n return;\n }\n const compareOp = \"max\";\n let returnValue = `${poolType}(${poolType}(${poolType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;\n if (poolType === \"avg\") {\n returnValue = `avgValue / count`;\n }\n const filterWidthNearestVec4 = Math.floor(filterWidth / 4) * 4;\n const filterWidthVec4Remainder = filterWidth % 4;\n const updateSnippet = `\n if (${isAvgPool}) {\n avgValue += dot(values, ones);\n } else {\n minMaxValue = ${compareOp}(values, minMaxValue);\n }\n `;\n this.userCode = `\n const ivec3 strides =\n ivec3(${strideDepth}, ${strideHeight}, ${strideWidth});\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n const float initializationValue = ${initializationValue};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float count = 0.0;\n\n float getValue(int batch, int xD, int xR, int xC, int ch) {\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n return initializationValue;\n }\n count += 1.0;\n return getX(batch, xD, xR, xC, ch);\n }\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xDCorner = xCorner.x;\n int xRCorner = xCorner.y;\n int xCCorner = xCorner.z;\n\n // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).\n // ? = to be determined\n vec4 minMaxValue = vec4(${initializationValue});\n float avgValue = 0.0;\n count = 0.0;\n\n for (int wD = 0; wD < ${effectiveFilterDepth};\n wD += ${dilationDepth}) {\n int xD = xDCorner + wD;\n\n if (xD < 0 || xD >= ${convInfo.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidthNearestVec4}; wC += 4) {\n int xC = xCCorner + wC * ${dilationWidth};\n\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${dilationWidth}, ch),\n getValue(batch, xD, xR, xC + 2 * ${dilationWidth}, ch),\n getValue(batch, xD, xR, xC + 3 * ${dilationWidth}, ch)\n );\n\n ${updateSnippet}\n }\n\n int xC = xCCorner + ${filterWidthNearestVec4};\n if (${filterWidthVec4Remainder === 1}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${filterWidthVec4Remainder === 2}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${dilationWidth}, ch),\n initializationValue,\n initializationValue\n );\n\n ${updateSnippet}\n } else if (${filterWidthVec4Remainder === 3}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${dilationWidth}, ch),\n getValue(batch, xD, xR, xC + 2 * ${dilationWidth}, ch),\n initializationValue\n );\n\n ${updateSnippet}\n }\n }\n setOutput(${returnValue});\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AvgPool.js\nfunction avgPool3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n assertNotComplex2(x, \"avgPool\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n return identity3({ inputs: { x }, backend: backend2 });\n }\n const avgPoolProgram = new Pool2DProgram(convInfo, \"avg\", false);\n return backend2.runWebGLProgram(avgPoolProgram, [x], \"float32\");\n}\nvar avgPoolConfig2 = {\n kernelName: AvgPool,\n backendName: \"webgl\",\n kernelFunc: avgPool3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AvgPool3D.js\nfunction avgPool3D2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode, dataFormat } = attrs;\n const dilations = [1, 1, 1];\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode, dataFormat);\n const avgPoolProgram = new Pool3DProgram(convInfo, \"avg\", false);\n return backend2.runWebGLProgram(avgPoolProgram, [x], \"float32\");\n}\nvar avgPool3DConfig2 = {\n kernelName: AvgPool3D,\n backendName: \"webgl\",\n kernelFunc: avgPool3D2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/avg_pool_backprop_gpu.js\nvar AvgPool2DBackpropProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\"];\n this.outputShape = convInfo.inShape;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const avgMultiplier = 1 / (filterHeight * filterWidth);\n this.userCode = `\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n const float avgMultiplier = float(${avgMultiplier});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n\n ivec2 dyRCCorner = coords.yz - pads;\n int dyRCorner = dyRCCorner.x;\n int dyCCorner = dyRCCorner.y;\n\n // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC+= ${dilationWidth}) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(b, idyR, idyC, d);\n\n dotProd += dyValue * avgMultiplier;\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar AvgPool3DBackpropProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\"];\n this.outputShape = convInfo.inShape;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = effectiveFilterDepth - 1 - convInfo.padInfo.front;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const avgMultiplier = 1 / (filterDepth * filterHeight * filterWidth);\n this.userCode = `\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n const float avgMultiplier = float(${avgMultiplier});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyDCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get\n // dx(xD, xR, xC, ch).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int wD = 0; wD < ${effectiveFilterDepth};\n wD += ${dilationDepth}) {\n float dyD = float(dyDCorner + wD) / ${strideDepth}.0;\n\n if (dyD < 0.0 || dyD >= ${convInfo.outDepth}.0 || fract(dyD) > 0.0) {\n continue;\n }\n int idyD = int(dyD);\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC += ${dilationWidth}) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n\n dotProd += dyValue * avgMultiplier;\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AvgPool3DGrad.js\nfunction avgPool3DGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const x = input2;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = [1, 1, 1];\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n const avgPoolBackpropProgram = new AvgPool3DBackpropProgram(convInfo);\n return backend2.runWebGLProgram(avgPoolBackpropProgram, [dy], x.dtype);\n}\nvar avgPool3DGradConfig3 = {\n kernelName: AvgPool3DGrad,\n backendName: \"webgl\",\n kernelFunc: avgPool3DGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/AvgPoolGrad.js\nfunction avgPoolGrad3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const x = input2;\n assertNotComplex2([dy, input2], \"avgPoolGrad\");\n const { filterSize, strides, pad: pad3 } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3);\n const avgPoolBackpropProgram = new AvgPool2DBackpropProgram(convInfo);\n return backend2.runWebGLProgram(avgPoolBackpropProgram, [dy], x.dtype);\n}\nvar avgPoolGradConfig3 = {\n kernelName: AvgPoolGrad,\n backendName: \"webgl\",\n kernelFunc: avgPoolGrad3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BatchMatMul.js\nfunction batchMatMul2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b } = inputs;\n const { transposeA, transposeB } = attrs;\n return batchMatMulImpl({ a, b, transposeA, transposeB, backend: backend2 });\n}\nvar batchMatMulConfig2 = {\n kernelName: BatchMatMul,\n backendName: \"webgl\",\n kernelFunc: batchMatMul2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/batchnorm_gpu.js\nvar BatchNormProgram = class {\n constructor(xShape, meanShape, varianceShape, offsetShape, scaleShape, varianceEpsilon) {\n this.outputShape = [];\n this.variableNames = [\"x\", \"mean\", \"variance\"];\n backend_util_exports.assertAndGetBroadcastShape(xShape, meanShape);\n backend_util_exports.assertAndGetBroadcastShape(xShape, varianceShape);\n let offsetSnippet = \"0.0\";\n if (offsetShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, offsetShape);\n this.variableNames.push(\"offset\");\n offsetSnippet = \"getOffsetAtOutCoords()\";\n }\n let scaleSnippet = \"1.0\";\n if (scaleShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, scaleShape);\n this.variableNames.push(\"scale\");\n scaleSnippet = \"getScaleAtOutCoords()\";\n }\n this.outputShape = xShape;\n this.userCode = `\n void main() {\n float x = getXAtOutCoords();\n float mean = getMeanAtOutCoords();\n float variance = getVarianceAtOutCoords();\n float offset = ${offsetSnippet};\n float scale = ${scaleSnippet};\n float inv = scale * inversesqrt(variance + float(${varianceEpsilon}));\n setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/batchnorm_packed_gpu.js\nvar BatchNormPackedProgram = class {\n constructor(xShape, meanShape, varianceShape, offsetShape, scaleShape, varianceEpsilon) {\n this.packedInputs = true;\n this.packedOutput = true;\n this.variableNames = [\"x\", \"mean\", \"variance\"];\n backend_util_exports.assertAndGetBroadcastShape(xShape, meanShape);\n backend_util_exports.assertAndGetBroadcastShape(xShape, varianceShape);\n let offsetSnippet = \"vec4(0.0)\";\n if (offsetShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, offsetShape);\n this.variableNames.push(\"offset\");\n offsetSnippet = \"getOffsetAtOutCoords()\";\n }\n let scaleSnippet = \"vec4(1.0)\";\n if (scaleShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, scaleShape);\n this.variableNames.push(\"scale\");\n scaleSnippet = \"getScaleAtOutCoords()\";\n }\n this.outputShape = xShape;\n this.userCode = `\n void main() {\n vec4 offset = ${offsetSnippet};\n vec4 scale = ${scaleSnippet};\n\n vec4 x = getXAtOutCoords();\n vec4 mean = getMeanAtOutCoords();\n vec4 variance = getVarianceAtOutCoords();\n\n vec4 inv = scale * inversesqrt(variance + vec4(${varianceEpsilon}));\n\n setOutput((x - mean) * inv + offset);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BatchNorm.js\nvar batchNorm3 = ({ inputs, backend: backend2, attrs }) => {\n const { x, mean: mean5, variance, offset, scale: scale2 } = inputs;\n util_exports.assert(mean5.shape.length === variance.shape.length, () => \"Batch normalization gradient requires mean and variance to have equal ranks.\");\n util_exports.assert(offset == null || mean5.shape.length === offset.shape.length, () => \"Batch normalization gradient requires mean and offset to have equal ranks.\");\n util_exports.assert(scale2 == null || mean5.shape.length === scale2.shape.length, () => \"Batch normalization gradient requires mean and scale to have equal ranks.\");\n let { varianceEpsilon } = attrs;\n if (varianceEpsilon == null) {\n varianceEpsilon = 1e-3;\n }\n const finalInputs = [x, mean5, variance];\n let offsetShape = null;\n if (offset != null) {\n offsetShape = offset.shape;\n finalInputs.push(offset);\n }\n let scaleShape = null;\n if (scale2 != null) {\n scaleShape = scale2.shape;\n finalInputs.push(scale2);\n }\n const program = env().getBool(\"WEBGL_PACK_NORMALIZATION\") ? new BatchNormPackedProgram(x.shape, mean5.shape, variance.shape, offsetShape, scaleShape, varianceEpsilon) : new BatchNormProgram(x.shape, mean5.shape, variance.shape, offsetShape, scaleShape, varianceEpsilon);\n const output = backend2.runWebGLProgram(program, finalInputs, finalInputs[0].dtype);\n return output;\n};\nvar batchNormConfig2 = {\n kernelName: FusedBatchNorm,\n backendName: \"webgl\",\n kernelFunc: batchNorm3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/slice_gpu.js\nvar SliceProgram = class {\n constructor(destSize) {\n this.variableNames = [\"source\"];\n this.outputShape = destSize;\n this.rank = destSize.length;\n const dtype = getCoordsDataType(this.rank);\n this.customUniforms = [{ name: \"start\", arrayIndex: this.rank, type: \"int\" }];\n const sourceCoords = getCoords(this.rank);\n let body;\n const coordSum = destSize.map((_, i2) => {\n return `sourceLoc.${coords[i2]} = start[${i2}] + coords.${coords[i2]};`;\n });\n body = `\n ${dtype} sourceLoc;\n ${dtype} coords = getOutputCoords();\n ${coordSum.join(\"\\n\")}\n `;\n this.userCode = `\n void main() {\n ${body}\n setOutput(getSource(${sourceCoords}));\n }\n `;\n }\n};\nvar coords = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"];\nfunction getCoords(rank) {\n if (rank === 1) {\n return \"sourceLoc\";\n } else if (rank <= 6) {\n return coords.slice(0, rank).map((x) => \"sourceLoc.\" + x).join(\",\");\n } else {\n throw Error(`Slicing for rank ${rank} is not yet supported`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/slice_packed_gpu.js\nvar SlicePackedProgram = class {\n constructor(destSize) {\n this.variableNames = [\"source\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = destSize;\n this.rank = destSize.length;\n this.customUniforms = [{ name: \"start\", arrayIndex: this.rank, type: \"int\" }];\n const dtype = getCoordsDataType(this.rank);\n const coords3 = getChannels(\"coords\", this.rank);\n const sourceLoc = getChannels(\"sourceLoc\", this.rank);\n const innerDims = this.rank === 1 ? \"sourceLoc\" : `vec2(${sourceLoc.slice(-2).join()})`;\n const getChannel = `getChannel(getSource(${sourceLoc.join()}), ${innerDims})`;\n const upperRow = `\n result.x = ${getChannel};\n if (++${coords3[this.rank - 1]} < ${destSize[this.rank - 1]}) {\n ++${sourceLoc[this.rank - 1]};\n result.y = ${getChannel};\n --${sourceLoc[this.rank - 1]};\n }\n `;\n const lowerRow = this.rank === 1 ? \"\" : `\n --${coords3[this.rank - 1]};\n if (++${coords3[this.rank - 2]} < ${destSize[this.rank - 2]}) {\n ++${sourceLoc[this.rank - 2]};\n result.z = ${getChannel};\n if (++${coords3[this.rank - 1]} < ${destSize[this.rank - 1]}) {\n ++${sourceLoc[this.rank - 1]};\n result.w = ${getChannel};\n }\n }\n `;\n const sourceLocSetup = this.rank <= 4 ? `sourceLoc = coords +\n ${dtype}(${destSize.map((_, i2) => `start[${i2}]`).join()});` : destSize.map((_, i2) => `${sourceLoc[i2]} = ${coords3[i2]} + start[${i2}];`).join(\"\\n\");\n this.userCode = `\n void main() {\n ${dtype} coords = getOutputCoords();\n ${dtype} sourceLoc;\n ${sourceLocSetup}\n vec4 result = vec4(0.);\n ${upperRow}\n ${lowerRow}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Slice.js\nfunction shallowSlice(x, begin, size, backend2) {\n const xTexData = backend2.texData.get(x.dataId);\n const t2 = backend2.makeTensorInfo(size, x.dtype);\n const newTexData = backend2.texData.get(t2.dataId);\n Object.assign(newTexData, xTexData);\n newTexData.refCount = 1;\n newTexData.shape = size;\n newTexData.dtype = x.dtype;\n let flatOffset = slice_util_exports.computeFlatOffset(begin, util_exports.computeStrides(x.shape));\n if (xTexData.slice) {\n flatOffset += xTexData.slice.flatOffset;\n }\n newTexData.slice = {\n flatOffset,\n origDataId: xTexData.slice && xTexData.slice.origDataId || x.dataId\n };\n const refCount = backend2.dataRefCount.get(newTexData.slice.origDataId) || 1;\n backend2.dataRefCount.set(newTexData.slice.origDataId, refCount + 1);\n return t2;\n}\nfunction slice3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, size } = attrs;\n const [$begin, $size] = slice_util_exports.parseSliceParams(x, begin, size);\n slice_util_exports.assertParamsValid(x, $begin, $size);\n if (util_exports.sizeFromShape($size) === 0) {\n return backend2.makeTensorInfo($size, x.dtype, []);\n }\n if (backend2.shouldExecuteOnCPU([x]) || x.dtype === \"string\") {\n const xTexData = backend2.texData.get(x.dataId);\n const outValues = sliceImplCPU(xTexData.values, $begin, $size, x.shape, x.dtype);\n return backend2.makeTensorInfo($size, x.dtype, outValues);\n }\n const { isPacked } = backend2.texData.get(x.dataId);\n const isContinous = slice_util_exports.isSliceContinous(x.shape, $begin, $size);\n if (isPacked || !isContinous) {\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new SlicePackedProgram($size) : new SliceProgram($size);\n const customValues = [$begin];\n return backend2.runWebGLProgram(program, [x], x.dtype, customValues);\n }\n backend2.uploadToGPU(x.dataId);\n return shallowSlice(x, $begin, $size, backend2);\n}\nvar sliceConfig2 = {\n kernelName: Slice,\n backendName: \"webgl\",\n kernelFunc: slice3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BatchToSpaceND.js\nvar batchToSpaceND3 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, crops } = attrs;\n util_exports.assert(x.shape.length <= 4, () => \"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6);\n const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length);\n const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6);\n const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length);\n const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length);\n const toDispose = [];\n const reshapedIntermediate = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } });\n const transposedIntermediate = transpose3({ inputs: { x: reshapedIntermediate }, backend: backend2, attrs: { perm: permuted } });\n const reshapedIntermediate2 = reshape4({\n inputs: { x: transposedIntermediate },\n backend: backend2,\n attrs: { shape: reshapedPermuted }\n });\n const sliced = slice3({\n inputs: { x: reshapedIntermediate2 },\n backend: backend2,\n attrs: { begin: sliceBeginCoords, size: sliceSize }\n });\n toDispose.push(reshapedIntermediate);\n toDispose.push(transposedIntermediate);\n toDispose.push(reshapedIntermediate2);\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return sliced;\n};\nvar batchToSpaceNDConfig2 = {\n kernelName: BatchToSpaceND,\n backendName: \"webgl\",\n kernelFunc: batchToSpaceND3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Bincount.js\nfunction bincount3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, weights } = inputs;\n const { size } = attrs;\n const xVals = backend2.readSync(x.dataId);\n const weightsVals = backend2.readSync(weights.dataId);\n const outVals = bincountImplCPU(xVals, weightsVals, weights.dtype, weights.shape, size);\n return backend2.makeTensorInfo([size], weights.dtype, outVals);\n}\nvar bincountConfig2 = {\n kernelName: Bincount,\n backendName: \"webgl\",\n kernelFunc: bincount3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/BroadcastArgs.js\nfunction broadcastArgs3(args) {\n const { inputs, backend: backend2 } = args;\n const { s0, s1 } = inputs;\n const s0Vals = backend2.readSync(s0.dataId);\n const s1Vals = backend2.readSync(s1.dataId);\n const broadcastShape = backend_util_exports.assertAndGetBroadcastShape(Array.from(s0Vals), Array.from(s1Vals));\n return backend2.makeTensorInfo([broadcastShape.length], \"int32\", Int32Array.from(broadcastShape));\n}\nvar broadcastArgsConfig2 = {\n kernelName: BroadcastArgs,\n backendName: \"webgl\",\n kernelFunc: broadcastArgs3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/NotEqual.js\nvar NOT_EQUAL = `return float(a != b);`;\nvar notEqual3 = binaryKernelFunc2({ opSnippet: NOT_EQUAL, cpuKernelImpl: notEqualImplCPU, dtype: \"bool\" });\nvar notEqualConfig2 = {\n kernelName: NotEqual,\n backendName: \"webgl\",\n kernelFunc: notEqual3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Real.js\nfunction real3(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputData = backend2.texData.get(input2.dataId);\n return identity3({ inputs: { x: inputData.complexTensorInfos.real }, backend: backend2 });\n}\nvar realConfig2 = {\n kernelName: Real,\n backendName: \"webgl\",\n kernelFunc: real3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernel_utils/int.js\nvar TO_INT = `return float(int(x));`;\nfunction int(input2, backend2) {\n const program = new UnaryOpProgram(input2.shape, TO_INT);\n const output = backend2.runWebGLProgram(program, [input2], \"int32\");\n return { dataId: output.dataId, shape: output.shape, dtype: output.dtype };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cast.js\nfunction cast4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dtype } = attrs;\n if (dtype === \"complex64\") {\n if (x.dtype === \"complex64\") {\n return identity3({ inputs: { x }, backend: backend2 });\n }\n const zerosTensor = zeros(x.shape);\n const floatX = cast4({ inputs: { x }, backend: backend2, attrs: { dtype: \"float32\" } });\n const result = complex3({ inputs: { real: floatX, imag: zerosTensor }, backend: backend2 });\n zerosTensor.dispose();\n backend2.disposeIntermediateTensorInfo(floatX);\n return result;\n }\n if (x.dtype === \"complex64\") {\n const realPart = real3({ inputs: { input: x }, backend: backend2 });\n const result = cast4({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } });\n backend2.disposeIntermediateTensorInfo(realPart);\n return result;\n }\n if (!util_exports.hasEncodingLoss(x.dtype, dtype)) {\n const result = identity3({ inputs: { x }, backend: backend2 });\n return { dataId: result.dataId, shape: result.shape, dtype };\n }\n if (backend2.shouldExecuteOnCPU([x])) {\n const values = backend2.texData.get(x.dataId).values;\n const [resultShape, resultType, resultData] = castImplCPU(values, x.shape, x.dtype, dtype);\n return backend2.makeTensorInfo(resultShape, resultType, resultData);\n }\n if (dtype === \"int32\") {\n return int(x, backend2);\n }\n if (dtype === \"bool\") {\n const zerosTensorInfo = backend2.makeTensorInfo([], \"bool\", util_exports.getTypedArrayFromDType(\"bool\", 1));\n const binaryInputs = { a: x, b: zerosTensorInfo };\n const result = notEqual3({ inputs: binaryInputs, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(zerosTensorInfo);\n return result;\n }\n throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`);\n}\nvar castConfig2 = {\n kernelName: Cast,\n backendName: \"webgl\",\n kernelFunc: cast4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Ceil.js\nvar CEIL = `return ceil(x);`;\nvar ceil3 = unaryKernelFunc2({ opSnippet: CEIL, packedOpSnippet: CEIL, cpuKernelImpl: ceilImplCPU });\nvar ceilConfig2 = {\n kernelName: Ceil,\n backendName: \"webgl\",\n kernelFunc: ceil3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/clip_gpu.js\nvar ClipProgram = class {\n constructor(aShape) {\n this.variableNames = [\"A\"];\n this.customUniforms = [\n { name: \"minVal\", type: \"float\" },\n { name: \"maxVal\", type: \"float\" }\n ];\n this.outputShape = aShape;\n this.userCode = `\n\n void main() {\n float value = getAAtOutCoords();\n if (isnan(value)) {\n setOutput(value);\n return;\n }\n\n setOutput(clamp(value, minVal, maxVal));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/clip_packed_gpu.js\nvar ClipPackedProgram = class {\n constructor(aShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [\n { name: \"minVal\", type: \"float\" },\n { name: \"maxVal\", type: \"float\" }\n ];\n this.outputShape = aShape;\n this.userCode = `\n void main() {\n vec4 value = getAAtOutCoords();\n\n if (any(isnan(value))) {\n setOutput(value);\n return;\n }\n\n setOutput(clamp(value, vec4(minVal), vec4(maxVal)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ClipByValue.js\nfunction clipByValue3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { clipValueMin, clipValueMax } = attrs;\n let program;\n if (env().getBool(\"WEBGL_PACK_CLIP\")) {\n program = new ClipPackedProgram(x.shape);\n } else {\n program = new ClipProgram(x.shape);\n }\n const customValues = [[clipValueMin], [clipValueMax]];\n return backend2.runWebGLProgram(program, [x], x.dtype, customValues);\n}\nvar clipByValueConfig2 = {\n kernelName: ClipByValue,\n backendName: \"webgl\",\n kernelFunc: clipByValue3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/complex_abs_gpu.js\nvar ComplexAbsProgram = class {\n constructor(shape) {\n this.variableNames = [\"real\", \"imag\"];\n this.outputShape = shape;\n this.userCode = `\n void main() {\n float re = abs(getRealAtOutCoords());\n float im = abs(getImagAtOutCoords());\n float mx = max(re, im);\n\n // sadly the length function in glsl is not underflow-safe\n // (at least not on Intel GPUs). So the safe solution is\n // to ensure underflow-safety in all cases.\n setOutput(\n mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))\n );\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ComplexAbs.js\nfunction makeComplexComponentTensorInfo(complexTensor, complexPart) {\n return {\n dataId: complexPart.dataId,\n dtype: complexPart.dtype,\n shape: complexTensor.shape\n };\n}\nfunction complexAbs2(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n const xData = backend2.texData.get(x.dataId);\n const program = new ComplexAbsProgram(x.shape);\n const programInputs = [\n makeComplexComponentTensorInfo(x, xData.complexTensorInfos.real),\n makeComplexComponentTensorInfo(x, xData.complexTensorInfos.imag)\n ];\n return backend2.runWebGLProgram(program, programInputs, programInputs[0].dtype);\n}\nvar complexAbsConfig2 = {\n kernelName: ComplexAbs,\n backendName: \"webgl\",\n kernelFunc: complexAbs2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/concat_gpu.js\nvar ConcatProgram = class {\n constructor(shapes) {\n this.outputShape = [];\n this.outputShape = backend_util_exports.computeOutShape(shapes, 1);\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n const offsets = new Array(shapes.length - 1);\n offsets[0] = shapes[0][1];\n for (let i2 = 1; i2 < offsets.length; i2++) {\n offsets[i2] = offsets[i2 - 1] + shapes[i2][1];\n }\n const snippets = [`if (yC < ${offsets[0]}) setOutput(getT0(yR, yC));`];\n for (let i2 = 1; i2 < offsets.length; i2++) {\n const shift = offsets[i2 - 1];\n snippets.push(`else if (yC < ${offsets[i2]}) setOutput(getT${i2}(yR, yC-${shift}));`);\n }\n const lastIndex = offsets.length;\n const lastShift = offsets[offsets.length - 1];\n snippets.push(`else setOutput(getT${lastIndex}(yR, yC-${lastShift}));`);\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int yR = coords.x;\n int yC = coords.y;\n\n ${snippets.join(\"\\n \")}\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/concat_packed_gpu.js\nvar ConcatPackedProgram = class {\n constructor(shapes, axis) {\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = [];\n this.outputShape = backend_util_exports.computeOutShape(shapes, axis);\n const shape = this.outputShape;\n const rank = shape.length;\n const dtype = getCoordsDataType(rank);\n const coords3 = getChannels(\"coords\", rank);\n const channels = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"].slice(0, rank);\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n const offsets = new Array(shapes.length - 1);\n offsets[0] = shapes[0][axis];\n for (let i2 = 1; i2 < offsets.length; i2++) {\n offsets[i2] = offsets[i2 - 1] + shapes[i2][axis];\n }\n const channel = channels[axis];\n const lastChannels = channels.slice(-2);\n const allChannels = channels.join();\n let getValueSnippet = `if (${channel} < ${offsets[0]}) {\n return getChannel(\n getT0(${allChannels}), vec2(${lastChannels.join()}));\n }`;\n for (let i2 = 1; i2 < offsets.length; i2++) {\n const shift2 = offsets[i2 - 1];\n getValueSnippet += `\n if (${channel} < ${offsets[i2]} && ${channel} >= ${offsets[i2 - 1]}) {\n return getChannel(\n getT${i2}(${shiftedChannels(channels, channel, shift2)}),\n vec2(${shiftedChannels(lastChannels, channel, shift2)}));\n }`;\n }\n const lastIndex = offsets.length;\n const shift = offsets[offsets.length - 1];\n getValueSnippet += `\n return getChannel(\n getT${lastIndex}(${shiftedChannels(channels, channel, shift)}),\n vec2(${shiftedChannels(lastChannels, channel, shift)}));`;\n this.userCode = `\n float getValue(${channels.map((x) => \"int \" + x)}) {\n ${getValueSnippet}\n }\n\n void main() {\n ${dtype} coords = getOutputCoords();\n vec4 result = vec4(getValue(${coords3}), 0., 0., 0.);\n\n ${coords3[rank - 1]} = ${coords3[rank - 1]} + 1;\n if (${coords3[rank - 1]} < ${shape[rank - 1]}) {\n result.g = getValue(${coords3});\n }\n\n ${coords3[rank - 2]} = ${coords3[rank - 2]} + 1;\n if (${coords3[rank - 2]} < ${shape[rank - 2]}) {\n result.a = getValue(${coords3});\n }\n\n ${coords3[rank - 1]} = ${coords3[rank - 1]} - 1;\n if (${coords3[rank - 2]} < ${shape[rank - 2]} &&\n ${coords3[rank - 1]} < ${shape[rank - 1]}) {\n result.b = getValue(${coords3});\n }\n setOutput(result);\n }\n `;\n }\n};\nfunction shiftedChannels(channels, channel, shift) {\n const channelIdx = channels.indexOf(channel);\n const res = channels.map((c, idx) => {\n if (idx === channelIdx) {\n return `${c} - ${shift}`;\n } else {\n return c;\n }\n });\n return res.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Imag.js\nfunction imag3(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputData = backend2.texData.get(input2.dataId);\n return identity3({ inputs: { x: inputData.complexTensorInfos.imag }, backend: backend2 });\n}\nvar imagConfig2 = {\n kernelName: Imag,\n backendName: \"webgl\",\n kernelFunc: imag3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Concat_impl.js\nfunction concatImpl2(inputs, axis, backend2) {\n const dtype = inputs[0].dtype;\n if (dtype === \"complex64\") {\n const reals = inputs.map((t2) => real3({ inputs: { input: t2 }, backend: backend2 }));\n const imags = inputs.map((t2) => imag3({ inputs: { input: t2 }, backend: backend2 }));\n const realConcated = concatImpl2(reals, axis, backend2);\n const imagConcated = concatImpl2(imags, axis, backend2);\n const result2 = complex3({ inputs: { real: realConcated, imag: imagConcated }, backend: backend2 });\n reals.forEach((r2) => backend2.disposeIntermediateTensorInfo(r2));\n imags.forEach((i2) => backend2.disposeIntermediateTensorInfo(i2));\n backend2.disposeIntermediateTensorInfo(realConcated);\n backend2.disposeIntermediateTensorInfo(imagConcated);\n return result2;\n }\n let runOnCpu = backend2.shouldExecuteOnCPU(inputs);\n if (dtype === \"string\") {\n runOnCpu = true;\n }\n if (runOnCpu) {\n const tensors2D2 = inputs.map((t2) => {\n const innerSize = util_exports.sizeFromShape(t2.shape.slice(axis));\n const shape = [-1, innerSize];\n return reshape4({ inputs: { x: t2 }, backend: backend2, attrs: { shape } });\n });\n const inputsValShapes = tensors2D2.map((t2) => {\n return { vals: backend2.readSync(t2.dataId), shape: t2.shape };\n });\n const outShape2 = backend_util_exports.computeOutShape(tensors2D2.map((t2) => t2.shape), 1);\n const simplyConcat = tensors2D2[0].shape[0] === 1;\n const outVals = concatImplCPU(inputsValShapes, outShape2, dtype, simplyConcat);\n const finalOutShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const outInfo = backend2.makeTensorInfo(finalOutShape, dtype, outVals);\n tensors2D2.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return outInfo;\n }\n const maxTexturesInShader = env().getNumber(\"WEBGL_MAX_TEXTURES_IN_SHADER\");\n if (inputs.length > maxTexturesInShader) {\n const reducedInputs = [];\n for (let i2 = 0; i2 < inputs.length; i2 += maxTexturesInShader) {\n const subArray = inputs.slice(i2, i2 + maxTexturesInShader);\n reducedInputs.push(concatImpl2(subArray, axis, backend2));\n }\n const result2 = concatImpl2(reducedInputs, axis, backend2);\n for (const i2 of reducedInputs) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return result2;\n }\n if (env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") && inputs[0].shape.length > 1) {\n const program2 = new ConcatPackedProgram(inputs.map((t2) => t2.shape), axis);\n return backend2.runWebGLProgram(program2, inputs, dtype);\n }\n const { tensors2D, outShape } = computeTensors2D(inputs, axis, backend2);\n const program = new ConcatProgram(tensors2D.map((t2) => t2.shape));\n const result = backend2.runWebGLProgram(program, tensors2D, dtype);\n tensors2D.forEach((r2) => backend2.disposeIntermediateTensorInfo(r2));\n const reshapedResult = reshape4({ inputs: { x: result }, attrs: { shape: outShape }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(result);\n return reshapedResult;\n}\nfunction computeTensors2D(inputs, axis, backend2) {\n const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const tensors2D = inputs.map((x) => reshape4({\n inputs: { x },\n attrs: { shape: [-1, util_exports.sizeFromShape(x.shape.slice(axis))] },\n backend: backend2\n }));\n return { tensors2D, outShape };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Concat.js\nfunction concat3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, inputs[0].shape)[0];\n const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), $axis);\n if (util_exports.sizeFromShape(outShape) === 0) {\n return backend2.makeTensorInfo(outShape, inputs[0].dtype, []);\n }\n const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0);\n if ($inputs.length === 1) {\n return identity3({ inputs: { x: $inputs[0] }, backend: backend2 });\n }\n const shapes = $inputs.map((t2) => t2.shape);\n backend_util_exports.assertParamsConsistent(shapes, $axis);\n return concatImpl2($inputs, $axis, backend2);\n}\nvar concatConfig2 = {\n kernelName: Concat,\n backendName: \"webgl\",\n kernelFunc: concat3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_gpu.js\nvar Conv2DProgram = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivationWeights = false, hasLeakyreluAlpha = false) {\n this.variableNames = [\"x\", \"W\"];\n this.outputShape = convInfo.outShape;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const inputDepthNearestVec4 = Math.floor(convInfo.inChannels / 4) * 4;\n const inputDepthVec4Remainder = convInfo.inChannels % 4;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const rowDim = isChannelsLast ? 1 : 2;\n const colDim = isChannelsLast ? 2 : 3;\n const channelDim = isChannelsLast ? 3 : 1;\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivationWeights) {\n activationSnippet = `float activation(float a) {\n float b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyreluAlpha) {\n activationSnippet = `float activation(float a) {\n float b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `\n float activation(float x) {\n ${activation2}\n }\n `;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyreluAlpha) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n this.userCode = `\n ${activationSnippet}\n\n const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d2 = coords[${channelDim}];\n\n ivec2 xRCCorner =\n ivec2(coords[${rowDim}], coords[${colDim}]) * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n int xR = xRCorner + wR * ${dilationHeight};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n int xC = xCCorner + wC * ${dilationWidth};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n for (int d1 = 0; d1 < ${inputDepthNearestVec4}; d1 += 4) {\n vec4 wValues = vec4(\n getW(wR, wC, d1, d2),\n getW(wR, wC, d1 + 1, d2),\n getW(wR, wC, d1 + 2, d2),\n getW(wR, wC, d1 + 3, d2)\n );\n\n if (${isChannelsLast}) {\n vec4 xValues = vec4(\n getX(batch, xR, xC, d1),\n getX(batch, xR, xC, d1 + 1),\n getX(batch, xR, xC, d1 + 2),\n getX(batch, xR, xC, d1 + 3)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec4 xValues = vec4(\n getX(batch, d1, xR, xC),\n getX(batch, d1 + 1, xR, xC),\n getX(batch, d1 + 2, xR, xC),\n getX(batch, d1 + 3, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n }\n\n if (${inputDepthVec4Remainder === 1}) {\n\n if (${isChannelsLast}) {\n dotProd +=\n getX(batch, xR, xC, ${inputDepthNearestVec4}) *\n getW(wR, wC, ${inputDepthNearestVec4}, d2);\n } else {\n dotProd +=\n getX(batch, ${inputDepthNearestVec4}, xR, xC) *\n getW(wR, wC, ${inputDepthNearestVec4}, d2);\n }\n\n } else if (${inputDepthVec4Remainder === 2}) {\n vec2 wValues = vec2(\n getW(wR, wC, ${inputDepthNearestVec4}, d2),\n getW(wR, wC, ${inputDepthNearestVec4} + 1, d2)\n );\n\n if (${isChannelsLast}) {\n vec2 xValues = vec2(\n getX(batch, xR, xC, ${inputDepthNearestVec4}),\n getX(batch, xR, xC, ${inputDepthNearestVec4} + 1)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec2 xValues = vec2(\n getX(batch, ${inputDepthNearestVec4}, xR, xC),\n getX(batch, ${inputDepthNearestVec4} + 1, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n\n } else if (${inputDepthVec4Remainder === 3}) {\n vec3 wValues = vec3(\n getW(wR, wC, ${inputDepthNearestVec4}, d2),\n getW(wR, wC, ${inputDepthNearestVec4} + 1, d2),\n getW(wR, wC, ${inputDepthNearestVec4} + 2, d2)\n );\n\n if (${isChannelsLast}) {\n vec3 xValues = vec3(\n getX(batch, xR, xC, ${inputDepthNearestVec4}),\n getX(batch, xR, xC, ${inputDepthNearestVec4} + 1),\n getX(batch, xR, xC, ${inputDepthNearestVec4} + 2)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec3 xValues = vec3(\n getX(batch, ${inputDepthNearestVec4}, xR, xC),\n getX(batch, ${inputDepthNearestVec4} + 1, xR, xC),\n getX(batch, ${inputDepthNearestVec4} + 2, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n\n }\n }\n }\n\n float result = dotProd;\n ${addBiasSnippet}\n ${applyActivationSnippet}\n setOutput(result);\n }\n `;\n }\n};\nvar Conv3DProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"W\"];\n this.outputShape = convInfo.outShape;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const inputDepthNearestVec4 = Math.floor(convInfo.inChannels / 4) * 4;\n const inputDepthVec4Remainder = convInfo.inChannels % 4;\n this.userCode = `\n const ivec3 strides = ivec3(${strideDepth}, ${strideHeight}, ${strideWidth});\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int d2 = coords.u;\n\n ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xFCorner = xFRCCorner.x;\n int xRCorner = xFRCCorner.y;\n int xCCorner = xFRCCorner.z;\n\n // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get\n // y(yF, yR, yC, d2). ? = to be determined. : = across all\n // values in that axis.\n float dotProd = 0.0;\n for (int wF = 0; wF < ${filterDepth}; wF++) {\n int xF = xFCorner + wF * ${dilationDepth};\n\n if (xF < 0 || xF >= ${convInfo.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n int xR = xRCorner + wR * ${dilationHeight};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n int xC = xCCorner + wC * ${dilationWidth};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n for (int d1 = 0; d1 < ${inputDepthNearestVec4}; d1 += 4) {\n vec4 xValues = vec4(\n getX(batch, xF, xR, xC, d1),\n getX(batch, xF, xR, xC, d1 + 1),\n getX(batch, xF, xR, xC, d1 + 2),\n getX(batch, xF, xR, xC, d1 + 3)\n );\n vec4 wValues = vec4(\n getW(wF, wR, wC, d1, d2),\n getW(wF, wR, wC, d1 + 1, d2),\n getW(wF, wR, wC, d1 + 2, d2),\n getW(wF, wR, wC, d1 + 3, d2)\n );\n\n dotProd += dot(xValues, wValues);\n }\n\n if (${inputDepthVec4Remainder === 1}) {\n dotProd +=\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4}) *\n getW(wF, wR, wC, ${inputDepthNearestVec4}, d2);\n } else if (${inputDepthVec4Remainder === 2}) {\n vec2 xValues = vec2(\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4}),\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 1)\n );\n vec2 wValues = vec2(\n getW(wF, wR, wC, ${inputDepthNearestVec4}, d2),\n getW(wF, wR, wC, ${inputDepthNearestVec4} + 1, d2)\n );\n dotProd += dot(xValues, wValues);\n } else if (${inputDepthVec4Remainder === 3}) {\n vec3 xValues = vec3(\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4}),\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 1),\n getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 2)\n );\n vec3 wValues = vec3(\n getW(wF, wR, wC, ${inputDepthNearestVec4}, d2),\n getW(wF, wR, wC, ${inputDepthNearestVec4} + 1, d2),\n getW(wF, wR, wC, ${inputDepthNearestVec4} + 2, d2)\n );\n dotProd += dot(xValues, wValues);\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_packed_gpu.js\nvar Conv2DPackedProgram = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false, hasLeakyReluAlpha = false) {\n this.variableNames = [\"x\", \"W\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [\n { name: \"pads\", type: \"ivec2\" },\n { name: \"strides\", type: \"ivec2\" },\n { name: \"dilations\", type: \"ivec2\" },\n { name: \"inDims\", type: \"ivec2\" }\n ];\n this.outputShape = convInfo.outShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const padLeft = convInfo.padInfo.left;\n const strideWidth = convInfo.strideWidth;\n const dilationWidth = convInfo.dilationWidth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const texelsAcross = filterWidth;\n let mainLoop = `\n int xR; int xC; int xCOffset;\n vec4 wTexel; vec4 previous; vec4 final;`;\n for (let c = 0; c < filterWidth; c++) {\n mainLoop += `\n vec4 xTexelC${c * 2};\n int xTexelC${c * 2}Ready;\n vec4 xTexelC${c * 2 + 1};\n int xTexelC${c * 2 + 1}Ready;\n vec4 xC${c};`;\n }\n mainLoop += `\n for (int r = 0; r < ${filterHeight}; r++) {\n for (int d1 = 0; d1 < ${convInfo.inChannels}; d1 += 2) {\n `;\n for (let c = 0; c < filterWidth; c++) {\n mainLoop += `\n xTexelC${c * 2} = vec4(0.0);\n xTexelC${c * 2}Ready = 0;\n xTexelC${c * 2 + 1} = vec4(0.0);\n xTexelC${c * 2 + 1}Ready = 0;\n xC${c} = vec4(0.0);`;\n }\n mainLoop += `\n xR = xRCorner + r * dilations[0];\n if (xR >=0 && xR < inDims[0]) {\n `;\n for (let texelC = 0; texelC < (texelsAcross + 1) / 2; texelC++) {\n const colIndex = texelC * 2;\n mainLoop += `\n xC = xCCorner + ${colIndex * dilationWidth};\n `;\n if (strideWidth === 1) {\n if (colIndex < filterWidth) {\n if (padLeft % 2 === 1) {\n mainLoop += `\n xCOffset = xC + 1;\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n `;\n if (dilationWidth === 1 && colIndex > 0) {\n mainLoop += `\n xC${colIndex} = vec4(xTexelC${colIndex - 2}.zw, xTexelC${colIndex}.xy);\n `;\n } else {\n mainLoop += `\n xCOffset = xC + 1 - 2;\n\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n previous.zw = vec2(0.0);\n }\n\n xC${colIndex} = vec4(previous.zw, xTexelC${colIndex}.xy);\n } else {\n xC${colIndex} = vec4(0.0, 0.0, xTexelC${colIndex}.xy);\n }\n `;\n }\n } else {\n mainLoop += `\n if (xC >= 0 && xC < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n xC${colIndex} = xTexelC${colIndex};\n `;\n }\n if (colIndex + 1 < filterWidth) {\n const nextTexelOffset = padLeft % 2 === 0 ? util_exports.nearestLargerEven(dilationWidth) : dilationWidth;\n if (dilationWidth % 2 === 0 && padLeft % 2 === 1 || dilationWidth % 2 !== 0 && padLeft % 2 !== 1) {\n mainLoop += `\n xCOffset = xC + imod(pads[1], 2) + ${nextTexelOffset};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n `;\n if (dilationWidth > 1) {\n mainLoop += `\n xCOffset -= 2;\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n xC${colIndex + 1} = vec4(previous.zw, xTexelC${colIndex + 1}.xy);\n } else {\n xC${colIndex + 1} = vec4(0.0, 0.0, xTexelC${colIndex + 1}.xy);\n }\n `;\n } else {\n mainLoop += `\n xC${colIndex + 1} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.xy);\n `;\n }\n } else {\n if (nextTexelOffset === 1) {\n mainLoop += `\n xC${colIndex + 1} = xTexelC${colIndex};\n `;\n } else {\n mainLoop += `\n xCOffset = xC + ${nextTexelOffset};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex + 1} = xTexelC${colIndex + 1};\n `;\n }\n }\n }\n }\n } else {\n if (colIndex < filterWidth) {\n if (padLeft % 2 === 1) {\n mainLoop += `\n xCOffset = xC + 1 - strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xCOffset, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xC + 1, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xC + 2 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.zw);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n final = vec4(0.0);\n xCOffset = xC + 1 + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1]) {\n final = getX(batch, xR, xCOffset, d1);\n }\n xC${colIndex + 1} = vec4(xTexelC${colIndex + 1}.xy, final.xy);\n `;\n }\n } else {\n mainLoop += `\n if(xC >= 0 && xC < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n xCOffset = xC + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex} = vec4(\n xTexelC${colIndex}.xy, xTexelC${colIndex + 1}.xy);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n xC${colIndex + 1} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.zw);\n `;\n }\n }\n }\n }\n if (colIndex < filterWidth) {\n mainLoop += `\n wTexel = getW(r, ${colIndex}, d1, d2);\n dotProd += xC${colIndex}.xxzz * vec4(wTexel.xy, wTexel.xy);\n if(d1 + 1 < ${convInfo.inChannels}) {\n dotProd += xC${colIndex}.yyww * vec4(wTexel.zw, wTexel.zw);\n }\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n wTexel = getW(r, ${colIndex + 1}, d1, d2);\n dotProd += xC${colIndex + 1}.xxzz * vec4(wTexel.xy, wTexel.xy);\n if(d1 + 1 < ${convInfo.inChannels}) {\n dotProd += xC${colIndex + 1}.yyww * vec4(wTexel.zw, wTexel.zw);\n }\n `;\n }\n }\n }\n mainLoop += `\n }\n `;\n mainLoop += `\n }\n `;\n mainLoop += `\n }\n `;\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivation) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyReluAlpha) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `vec4 activation(vec4 x) {\n ${activation2}\n }`;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyReluAlpha) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n this.userCode = `\n ${activationSnippet}\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n ivec2 xRCCorner = coords.yz * strides - pads;\n int d2 = coords.w;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n //intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.\n vec4 dotProd = vec4(0.000000000000001);\n\n ${mainLoop}\n\n vec4 result = dotProd - vec4(0.000000000000001);\n ${addBiasSnippet}\n ${applyActivationSnippet}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/im2col_packed_gpu.js\nvar Im2ColPackedProgram = class {\n constructor(outputShape, convInfo) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [\n { name: \"inputShape\", type: \"ivec4\" },\n { name: \"pad\", type: \"ivec2\" },\n { name: \"stride\", type: \"ivec2\" },\n { name: \"dilation\", type: \"ivec2\" },\n { name: \"inChannels\", type: \"int\" },\n { name: \"itemsPerBlockRow\", type: \"int\" },\n { name: \"outWidth\", type: \"int\" }\n ];\n this.outputShape = outputShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const { dataFormat } = convInfo;\n const glsl = getGlslDifferences();\n const isChannelsLast = dataFormat === \"channelsLast\";\n const rowDim = isChannelsLast ? 1 : 2;\n const colDim = isChannelsLast ? 2 : 3;\n const boundsCheckingSnippet = this.enableShapeUniforms ? \"if(blockIndex < outShape[2] && pos < outShape[1]) {\" : `if(blockIndex < ${outputShape[2]} && pos < ${outputShape[1]}) {`;\n let unrolled = ``;\n for (let row = 0; row <= 1; row++) {\n for (let col = 0; col <= 1; col++) {\n unrolled += `\n blockIndex = rc.z + ${col};\n pos = rc.y + ${row};\n\n ${boundsCheckingSnippet}\n offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];\n d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);\n\n if(d0 < inputShape[${rowDim}] && d0 >= 0) {\n // Use custom imod instead mod. On Intel GPU, mod may generate\n // unexpected value.\n // https://github.com/tensorflow/tfjs/issues/5447\n offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];\n d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /\n inChannels);\n\n if(d1 < inputShape[${colDim}] && d1 >= 0) {\n\n ch = imod(pos, inChannels);\n\n if (${isChannelsLast}) {\n innerDims = vec2(d1, ch);\n result[${row * 2 + col}] = getChannel(\n getA(rc.x, d0, int(innerDims.x),\n int(innerDims.y)), innerDims);\n } else {\n innerDims = vec2(d0, d1);\n result[${row * 2 + col}] = getChannel(\n getA(rc.x, ch, int(innerDims.x),\n int(innerDims.y)), innerDims);\n }\n }\n }\n }\n `;\n }\n }\n this.userCode = `\n void main() {\n ivec3 rc = getOutputCoords();\n\n vec4 result = vec4(0);\n\n int blockIndex, pos, offsetY, d0, offsetX, d1, ch;\n vec2 innerDims;\n\n ${unrolled}\n\n ${glsl.output} = result;\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv2D_impl.js\nfunction getShapeForBatchMatMul(shape, isChannelsLast) {\n const length = shape.length;\n if (length >= 3) {\n return isChannelsLast ? [\n ...shape.slice(0, -3),\n shape[length - 3] * shape[length - 2],\n shape[length - 1]\n ] : [\n ...shape.slice(0, -3),\n shape[length - 3],\n shape[length - 2] * shape[length - 1]\n ];\n } else if (!isChannelsLast && length === 1 && shape[0] > 1) {\n return [shape[0], 1];\n } else {\n return null;\n }\n}\nfunction conv2dByMatMul({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const xShape = x.shape;\n const xTexData = backend2.texData.get(x.dataId);\n const sharedMatMulDim = convInfo.inChannels;\n const outerShapeX = xShape[0] * xShape[1] * xShape[2];\n const outerShapeFilter = convInfo.outChannels;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const transposeA = false;\n const transposeB = false;\n let out;\n const intermediates = [];\n if (preluActivationWeights != null) {\n const targetShape = getShapeForBatchMatMul(preluActivationWeights.shape, isChannelsLast);\n if (targetShape != null) {\n preluActivationWeights = reshape4({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: targetShape }\n });\n intermediates.push(preluActivationWeights);\n }\n }\n if (bias != null) {\n const targetShape = getShapeForBatchMatMul(bias.shape, isChannelsLast);\n if (targetShape != null) {\n bias = reshape4({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } });\n intermediates.push(bias);\n }\n }\n const batchMatMulWillBeUnpacked = (outerShapeX === 1 || outerShapeFilter === 1) && sharedMatMulDim > MATMUL_SHARED_DIM_THRESHOLD;\n const canOptimize = !batchMatMulWillBeUnpacked && xTexData.isPacked && isChannelsLast && xTexData.texture != null && xShape[2] % 2 !== 0 && util_exports.arraysEqual(xTexData.shape.slice(-3), xShape.slice(-3));\n if (canOptimize) {\n const targetShape = xShape[0] * xShape[1] * (xShape[2] + 1);\n const xReshaped = {\n dataId: x.dataId,\n shape: [1, targetShape, convInfo.inChannels],\n dtype: x.dtype\n };\n const originalXTexDataShape = xTexData.shape;\n xTexData.shape = xTexData.shape.slice();\n xTexData.shape[xTexData.shape.length - 2]++;\n util_exports.assert(isReshapeFree(xTexData.shape, xReshaped.shape), () => `packed reshape ${xTexData.shape} to ${xReshaped.shape} isn't free`);\n const filterReshaped = reshape4({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] }\n });\n intermediates.push(filterReshaped);\n const pointwiseConv = batchMatMulImpl({\n a: xReshaped,\n b: filterReshaped,\n backend: backend2,\n transposeA,\n transposeB,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n const pointwiseConvTexData = backend2.texData.get(pointwiseConv.dataId);\n util_exports.assert(pointwiseConvTexData.isPacked, () => \"batchMatMul result is expected to be packed\");\n xTexData.shape = originalXTexDataShape;\n pointwiseConvTexData.shape = convInfo.outShape;\n out = identity3({ inputs: { x: pointwiseConv }, backend: backend2 });\n out.shape = convInfo.outShape;\n intermediates.push(pointwiseConv);\n } else {\n const numCols = convInfo.outHeight * convInfo.outWidth;\n const xReshaped = reshape4({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: isChannelsLast ? [convInfo.batchSize, numCols, convInfo.inChannels] : [convInfo.batchSize, convInfo.inChannels, numCols]\n }\n });\n const filterReshaped = reshape4({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] }\n });\n const result = batchMatMulImpl({\n a: isChannelsLast ? xReshaped : filterReshaped,\n b: isChannelsLast ? filterReshaped : xReshaped,\n transposeA: !isChannelsLast,\n transposeB,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n out = reshape4({ inputs: { x: result }, backend: backend2, attrs: { shape: convInfo.outShape } });\n intermediates.push(xReshaped);\n intermediates.push(filterReshaped);\n intermediates.push(result);\n }\n for (const i2 of intermediates) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return out;\n}\nfunction conv2dWithIm2Row({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const { filterWidth, filterHeight, inChannels, outWidth, outHeight, dataFormat } = convInfo;\n const isChannelsLast = dataFormat === \"channelsLast\";\n const sharedDim = filterWidth * filterHeight * inChannels;\n const numCols = outHeight * outWidth;\n const x2ColShape = [convInfo.batchSize, sharedDim, numCols];\n const transposeA = true;\n const transposeB = false;\n const intermediates = [];\n if (preluActivationWeights != null) {\n const targetShape = getShapeForBatchMatMul(preluActivationWeights.shape, isChannelsLast);\n if (targetShape != null) {\n preluActivationWeights = reshape4({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: targetShape }\n });\n intermediates.push(preluActivationWeights);\n }\n }\n if (bias != null) {\n const targetShape = getShapeForBatchMatMul(bias.shape, isChannelsLast);\n if (targetShape != null) {\n bias = reshape4({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } });\n intermediates.push(bias);\n }\n }\n const w2Row = reshape4({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, sharedDim, util_exports.sizeFromShape(filter.shape) / sharedDim] }\n });\n intermediates.push(w2Row);\n const im2ColProgram = new Im2ColPackedProgram(x2ColShape, convInfo);\n const customValues = [\n x.shape,\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inChannels],\n [convInfo.filterWidth * convInfo.inChannels],\n [convInfo.outWidth]\n ];\n const im2Col = backend2.runWebGLProgram(im2ColProgram, [x], \"float32\", customValues);\n const im2ColReshaped = reshape4({ inputs: { x: im2Col }, backend: backend2, attrs: { shape: x2ColShape } });\n intermediates.push(im2Col);\n intermediates.push(im2ColReshaped);\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const hasLeakyreluAlpha = activation2 === \"leakyrelu\";\n const fusedActivation = activation2 ? mapActivationToShaderProgram(activation2, true) : null;\n const matmulProgram = new MatMulPackedProgram(isChannelsLast ? im2ColReshaped.shape : w2Row.shape, isChannelsLast ? w2Row.shape : im2ColReshaped.shape, isChannelsLast ? [convInfo.batchSize, numCols, convInfo.outChannels] : [convInfo.batchSize, convInfo.outChannels, numCols], transposeA, transposeB, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n const inputs = isChannelsLast ? [im2ColReshaped, w2Row] : [w2Row, im2ColReshaped];\n if (bias) {\n inputs.push(bias);\n }\n if (hasPreluActivationWeights) {\n inputs.push(preluActivationWeights);\n }\n if (hasLeakyreluAlpha) {\n const $leakyreluAlpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(leakyreluAlpha, \"float32\"));\n inputs.push($leakyreluAlpha);\n intermediates.push($leakyreluAlpha);\n }\n const product = backend2.runWebGLProgram(matmulProgram, inputs, \"float32\");\n const out = reshape4({ inputs: { x: product }, backend: backend2, attrs: { shape: convInfo.outShape } });\n intermediates.push(product);\n for (const i2 of intermediates) {\n backend2.disposeIntermediateTensorInfo(i2);\n }\n return out;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv2D.js\nfunction conv2d4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n let out;\n if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === \"SAME\" || convInfo.padInfo.type === \"VALID\")) {\n out = conv2dByMatMul({ x, filter, convInfo, backend: backend2 });\n } else if (convInfo.strideWidth <= 2 && $dataFormat === \"channelsLast\" && env().getBool(\"WEBGL_EXP_CONV\")) {\n const program = new Conv2DPackedProgram(convInfo);\n const customValues = [\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inHeight, convInfo.inWidth]\n ];\n out = backend2.runWebGLProgram(program, [x, filter], \"float32\", customValues);\n } else if (env().getBool(\"WEBGL_CONV_IM2COL\")) {\n out = conv2dWithIm2Row({ x, filter, convInfo, backend: backend2 });\n } else {\n const program = new Conv2DProgram(convInfo);\n out = backend2.runWebGLProgram(program, [x, filter], \"float32\");\n }\n const outReshaped = reshape4({ inputs: { x: out }, backend: backend2, attrs: { shape: convInfo.outShape } });\n backend2.disposeIntermediateTensorInfo(out);\n return outReshaped;\n}\nvar conv2DConfig2 = {\n kernelName: Conv2D,\n backendName: \"webgl\",\n kernelFunc: conv2d4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_backprop_gpu.js\nvar Conv2DDerFilterProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"dy\"];\n this.outputShape = convInfo.filterShape;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int wR = coords.x;\n int wC = coords.y;\n int d1 = coords.z;\n int d2 = coords.w;\n\n // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int b = 0; b < ${convInfo.batchSize}; b++) {\n for (int yR = 0; yR < ${convInfo.outHeight}; yR++) {\n int xR = wR + yR * ${strideHeight} - ${padTop};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${convInfo.outWidth}; yC++) {\n int xC = wC + yC * ${strideWidth} - ${padLeft};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n if (${isChannelsLast}) {\n float dyValue = getDy(b, yR, yC, d2);\n float xValue = getX(b, xR, xC, d1);\n dotProd += (xValue * dyValue);\n } else {\n float dyValue = getDy(b, d2, yR, yC);\n float xValue = getX(b, d1, xR, xC);\n dotProd += (xValue * dyValue);\n }\n\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar Conv2DDerInputProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"W\"];\n this.outputShape = convInfo.inShape;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const padTop = filterHeight - 1 - convInfo.padInfo.top;\n const padLeft = filterWidth - 1 - convInfo.padInfo.left;\n const rowDim = isChannelsLast ? 1 : 2;\n const colDim = isChannelsLast ? 2 : 3;\n const channelDim = isChannelsLast ? 3 : 1;\n this.userCode = `\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[${channelDim}];\n\n ivec2 dyCorner = ivec2(coords[${rowDim}], coords[${colDim}]) - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${filterHeight} - 1 - wR;\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${filterWidth} - 1 - wC;\n\n for (int d2 = 0; d2 < ${convInfo.outChannels}; d2++) {\n\n if (${isChannelsLast}) {\n float xValue = getDy(batch, idyR, idyC, d2);\n float wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n } else {\n float xValue = getDy(batch, d2, idyR, idyC);\n float wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n }\n\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar Conv3DDerFilterProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"dy\"];\n this.outputShape = convInfo.filterShape;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padFront = convInfo.padInfo.front;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n this.userCode = `\n void main() {\n ivec5 coords = getOutputCoords();\n int wF = coords.x;\n int wR = coords.y;\n int wC = coords.z;\n int d1 = coords.w;\n int d2 = coords.u;\n\n float dotProd = 0.0;\n\n for (int b = 0; b < ${convInfo.batchSize}; b++) {\n for (int yF = 0; yF < ${convInfo.outDepth}; yF++) {\n int xF = wF + yF * ${strideDepth} - ${padFront};\n\n if (xF < 0 || xF >= ${convInfo.inDepth}) {\n continue;\n }\n\n for (int yR = 0; yR < ${convInfo.outHeight}; yR++) {\n int xR = wR + yR * ${strideHeight} - ${padTop};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${convInfo.outWidth}; yC++) {\n int xC = wC + yC * ${strideWidth} - ${padLeft};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n float dyValue = getDy(b, yF, yR, yC, d2);\n float xValue = getX(b, xF, xR, xC, d1);\n dotProd += (xValue * dyValue);\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar Conv3DDerInputProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"W\"];\n this.outputShape = convInfo.inShape;\n const filterDepth = convInfo.filterDepth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padFront = filterDepth - 1 - convInfo.padInfo.front;\n const padTop = filterHeight - 1 - convInfo.padInfo.top;\n const padLeft = filterWidth - 1 - convInfo.padInfo.left;\n this.userCode = `\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int d1 = coords.u;\n\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyFCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n float dotProd = 0.0;\n for (int wF = 0; wF < ${filterDepth}; wF++) {\n float dyF = float(dyFCorner + wF) / ${strideDepth}.0;\n\n if (dyF < 0.0 || dyF >= ${convInfo.outDepth}.0 || fract(dyF) > 0.0) {\n continue;\n }\n int idyF = int(dyF);\n\n int wFPerm = ${filterDepth} - 1 - wF;\n\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${filterHeight} - 1 - wR;\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${filterWidth} - 1 - wC;\n\n for (int d2 = 0; d2 < ${convInfo.outChannels}; d2++) {\n float xValue = getDy(batch, idyF, idyR, idyC, d2);\n float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv2DBackpropFilter.js\nfunction conv2DBackpropFilter3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, pad: pad3, dataFormat, dimRoundingMode, filterShape } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filterShape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const program = new Conv2DDerFilterProgram(convInfo);\n return backend2.runWebGLProgram(program, [x, dy], \"float32\");\n}\nvar conv2DBackpropFilterConfig2 = {\n kernelName: Conv2DBackpropFilter,\n backendName: \"webgl\",\n kernelFunc: conv2DBackpropFilter3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv2DBackpropInput.js\nfunction conv2DBackpropInput3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { inputShape, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const program = new Conv2DDerInputProgram(convInfo);\n return backend2.runWebGLProgram(program, [dy, filter], \"float32\");\n}\nvar conv2DBackpropInputConfig2 = {\n kernelName: Conv2DBackpropInput,\n backendName: \"webgl\",\n kernelFunc: conv2DBackpropInput3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv3D.js\nfunction conv3D2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const convInfo = backend_util_exports.computeConv3DInfo(x.shape, filter.shape, strides, dilations, pad3);\n const program = new Conv3DProgram(convInfo);\n return backend2.runWebGLProgram(program, [x, filter], \"float32\");\n}\nvar conv3DConfig2 = {\n kernelName: Conv3D,\n backendName: \"webgl\",\n kernelFunc: conv3D2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv3DBackpropFilterV2.js\nfunction conv3DBackpropFilterV22(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, pad: pad3, filterShape } = attrs;\n const convInfo = backend_util_exports.computeConv3DInfo(x.shape, filterShape, strides, 1, pad3);\n const program = new Conv3DDerFilterProgram(convInfo);\n return backend2.runWebGLProgram(program, [x, dy], \"float32\");\n}\nvar conv3DBackpropFilterV2Config2 = {\n kernelName: Conv3DBackpropFilterV2,\n backendName: \"webgl\",\n kernelFunc: conv3DBackpropFilterV22\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Conv3DBackpropInputV2.js\nfunction conv3DBackpropInput2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { pad: pad3, strides, inputShape } = attrs;\n const convInfo = backend_util_exports.computeConv3DInfo(inputShape, filter.shape, strides, 1, pad3);\n const program = new Conv3DDerInputProgram(convInfo);\n return backend2.runWebGLProgram(program, [dy, filter], \"float32\");\n}\nvar conv3DBackpropInputConfig = {\n kernelName: Conv3DBackpropInputV2,\n backendName: \"webgl\",\n kernelFunc: conv3DBackpropInput2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cos.js\nvar COS = CHECK_NAN_SNIPPET_UNARY + `\n return cos(x);\n`;\nvar cos3 = unaryKernelFunc2({ opSnippet: COS });\nvar cosConfig2 = {\n kernelName: Cos,\n backendName: \"webgl\",\n kernelFunc: cos3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cosh.js\nvar COSH = `\n float e2x = exp(-x);\n return (e2x + 1.0 / e2x) / 2.0;\n`;\nvar cosh3 = unaryKernelFunc2({ opSnippet: COSH });\nvar coshConfig2 = {\n kernelName: Cosh,\n backendName: \"webgl\",\n kernelFunc: cosh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/crop_and_resize_gpu.js\nvar CropAndResizeProgram = class {\n constructor(imageShape, boxShape, cropSize, method, extrapolationValue) {\n this.variableNames = [\"Image\", \"Boxes\", \"BoxInd\"];\n this.outputShape = [];\n const [batch, imageHeight, imageWidth, depth] = imageShape;\n const [numBoxes] = boxShape;\n const [cropHeight, cropWidth] = cropSize;\n this.outputShape = [numBoxes, cropHeight, cropWidth, depth];\n const methodId = method === \"bilinear\" ? 1 : 0;\n const [inputHeightFloat, inputWidthFloat] = [`${imageHeight - 1}.0`, `${imageWidth - 1}.0`];\n const [heightRatio, heightScale, inY] = cropHeight > 1 ? [\n `${(imageHeight - 1) / (cropHeight - 1)}`,\n \"(y2-y1) * height_ratio\",\n `y1*${inputHeightFloat} + float(y)*(height_scale)`\n ] : [\n \"0.0\",\n \"0.0\",\n `0.5 * (y1+y2) * ${inputHeightFloat}`\n ];\n const [widthRatio, widthScale, inX] = cropWidth > 1 ? [\n `${(imageWidth - 1) / (cropWidth - 1)}`,\n \"(x2-x1) * width_ratio\",\n `x1*${inputWidthFloat} + float(x)*(width_scale)`\n ] : [\n \"0.0\",\n \"0.0\",\n `0.5 * (x1+x2) * ${inputWidthFloat}`\n ];\n this.userCode = `\n const float height_ratio = float(${heightRatio});\n const float width_ratio = float(${widthRatio});\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int y = coords[1];\n int x = coords[2];\n int d = coords[3];\n\n // get box vals\n float y1 = getBoxes(b,0);\n float x1 = getBoxes(b,1);\n float y2 = getBoxes(b,2);\n float x2 = getBoxes(b,3);\n\n // get image in batch index\n int bInd = round(getBoxInd(b));\n if(bInd < 0 || bInd >= ${batch}) {\n return;\n }\n\n float height_scale = ${heightScale};\n float width_scale = ${widthScale};\n\n float in_y = ${inY};\n if( in_y < 0.0 || in_y > ${inputHeightFloat} ) {\n setOutput(float(${extrapolationValue}));\n return;\n }\n float in_x = ${inX};\n if( in_x < 0.0 || in_x > ${inputWidthFloat} ) {\n setOutput(float(${extrapolationValue}));\n return;\n }\n\n vec2 sourceFracIndexCR = vec2(in_x,in_y);\n if(${methodId} == 1) {\n // Compute the four integer indices.\n ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);\n ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));\n\n float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);\n float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);\n float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);\n float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);\n\n vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);\n\n float top = topLeft + (topRight - topLeft) * fracCR.x;\n float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;\n float newValue = top + (bottom - top) * fracCR.y;\n setOutput(newValue);\n } else {\n // Compute the coordinators of nearest neighbor point.\n ivec2 sourceNearestCR = ivec2(floor(\n sourceFracIndexCR + vec2(0.5,0.5)));\n float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);\n setOutput(newValue);\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/CropAndResize.js\nvar cropAndResize3 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, boxes, boxInd } = inputs;\n const { cropSize, method, extrapolationValue } = attrs;\n const program = new CropAndResizeProgram(image2.shape, boxes.shape, cropSize, method, extrapolationValue);\n return backend2.runWebGLProgram(program, [image2, boxes, boxInd], \"float32\");\n};\nvar cropAndResizeConfig2 = {\n kernelName: CropAndResize,\n backendName: \"webgl\",\n kernelFunc: cropAndResize3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/cum_gpu.js\nvar CumOpType;\n(function(CumOpType3) {\n CumOpType3[\"Prod\"] = \"*\";\n CumOpType3[\"Sum\"] = \"+\";\n})(CumOpType || (CumOpType = {}));\nvar CumProgram = class {\n constructor(op2, outputShape, exclusive, reverse5) {\n this.op = op2;\n this.outputShape = outputShape;\n this.variableNames = [\"x\"];\n this.customUniforms = [{ name: \"index\", type: \"float\" }];\n const rank = this.outputShape.length;\n const initVal = this.op === CumOpType.Prod ? \"1.0\" : \"0.0\";\n const val = exclusive ? initVal : `getX(${getCoords2(rank, \"coords\", this.op)})`;\n const length = this.outputShape[this.outputShape.length - 1];\n let condition = \"\";\n let idxString = \"\";\n if (exclusive) {\n condition = reverse5 ? `end != ${length - 1}` : \"end != 0\";\n idxString = reverse5 ? \"end + 1\" : \"end - 1\";\n } else {\n condition = reverse5 ? `end + pow2 < ${length}` : \"end >= pow2\";\n idxString = reverse5 ? \"end + pow2\" : \"end - pow2\";\n }\n this.userCode = `\n void main() {\n ${getCoordsDataType(rank)} coords = getOutputCoords();\n int end = ${getFinalCoord(rank, \"coords\", this.op)};\n float val = ${val};\n int pow2 = int(pow(2.0, index));\n if (${condition}) {\n int idx = ${idxString};\n ${getFinalCoord(rank, \"coords\", this.op)} = idx;\n val ${this.op}= getX(${getCoords2(rank, \"coords\", this.op)});\n }\n setOutput(val);\n }\n `;\n }\n};\nfunction getCoords2(rank, name, op2) {\n if (rank === 1) {\n return `${name}`;\n } else if (rank === 2) {\n return `${name}.x, ${name}.y`;\n } else if (rank === 3) {\n return `${name}.x, ${name}.y, ${name}.z`;\n } else if (rank === 4) {\n return `${name}.x, ${name}.y, ${name}.z, ${name}.w`;\n } else {\n throw new Error(`Cumulative ${op2} for rank ${rank} is not yet supported`);\n }\n}\nfunction getFinalCoord(rank, name, op2) {\n if (rank === 1) {\n return `${name}`;\n } else if (rank === 2) {\n return `${name}.y`;\n } else if (rank === 3) {\n return `${name}.z`;\n } else if (rank === 4) {\n return `${name}.w`;\n } else {\n throw new Error(`Cumulative ${op2} for rank ${rank} is not yet supported`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cum_impl.js\nfunction cumImpl(op2, x, backend2, axis, exclusive, reverse5) {\n const xRank = x.shape.length;\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n if (permutedAxis !== xRank - 1) {\n throw new Error(`WebGL cumprod shader expects an inner-most axis=${x.shape.length - 1} but got axis=${axis}`);\n }\n const size = permutedX.shape[permutedAxis];\n let result = identity3({ inputs: { x: permutedX }, backend: backend2 });\n for (let i2 = 0; i2 <= Math.ceil(Math.log2(size)) - 1; i2++) {\n const program = new CumProgram(op2, permutedX.shape, false, reverse5);\n const customValues = [[i2]];\n const prevResult = result;\n result = backend2.runWebGLProgram(program, [result], result.dtype, customValues);\n backend2.disposeIntermediateTensorInfo(prevResult);\n }\n if (exclusive) {\n const program = new CumProgram(op2, permutedX.shape, exclusive, reverse5);\n const prevResult = result;\n result = backend2.runWebGLProgram(program, [result], result.dtype);\n backend2.disposeIntermediateTensorInfo(prevResult);\n }\n if (permutation != null) {\n const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n const reverseTransposedResult = transpose3({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } });\n backend2.disposeIntermediateTensorInfo(result);\n backend2.disposeIntermediateTensorInfo(permutedX);\n return reverseTransposedResult;\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cumprod.js\nfunction cumprod3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return cumImpl(CumOpType.Prod, x, backend2, axis, exclusive, reverse5);\n}\nvar cumprodConfig2 = {\n kernelName: Cumprod,\n backendName: \"webgl\",\n kernelFunc: cumprod3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Cumsum.js\nfunction cumsum3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return cumImpl(CumOpType.Sum, x, backend2, axis, exclusive, reverse5);\n}\nvar cumsumConfig2 = {\n kernelName: Cumsum,\n backendName: \"webgl\",\n kernelFunc: cumsum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DenseBincount.js\nfunction denseBincount3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, weights } = inputs;\n const { size, binaryOutput } = attrs;\n if (x.shape.length === 1) {\n const xVals = backend2.readSync(x.dataId);\n const weightsVals = backend2.readSync(weights.dataId);\n const outVals = bincountImplCPU(xVals, weightsVals, weights.dtype, weights.shape, size);\n return backend2.makeTensorInfo([size], weights.dtype, outVals);\n } else if (x.shape.length === 2) {\n const xBuf = backend2.bufferSync(x);\n const weightsBuf = backend2.bufferSync(weights);\n const outBuf = bincountReduceImplCPU(xBuf, weightsBuf, size, binaryOutput);\n return backend2.makeTensorInfo(outBuf.shape, weights.dtype, outBuf.values);\n }\n throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${x.shape.length}.`);\n}\nvar denseBincountConfig2 = {\n kernelName: DenseBincount,\n backendName: \"webgl\",\n kernelFunc: denseBincount3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/depth_to_space_gpu.js\nvar DepthToSpaceProgram = class {\n constructor(outputShape, blockSize, dataFormat) {\n this.variableNames = [\"x\"];\n this.outputShape = [];\n this.outputShape = outputShape;\n this.blockSize = blockSize;\n this.dataFormat = dataFormat;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int h = ${this.getHeightCoordString()};\n int w = ${this.getWidthCoordString()};\n int d = ${this.getDepthCoordString()};\n\n int in_h = h / ${blockSize};\n int offset_h = imod(h, ${blockSize});\n int in_w = w / ${blockSize};\n int offset_w = imod(w, ${blockSize});\n int offset_d = (offset_h * ${blockSize} + offset_w) *\n ${this.getOutputDepthSize()};\n int in_d = d + offset_d;\n\n float result = ${this.getInputSamplingString()};\n setOutput(result);\n }\n `;\n }\n getHeightCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[1]`;\n } else {\n return `coords[2]`;\n }\n }\n getWidthCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[2]`;\n } else {\n return `coords[3]`;\n }\n }\n getDepthCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[3]`;\n } else {\n return `coords[1]`;\n }\n }\n getOutputDepthSize() {\n if (this.dataFormat === \"NHWC\") {\n return this.outputShape[3];\n } else {\n return this.outputShape[1];\n }\n }\n getInputSamplingString() {\n if (this.dataFormat === \"NHWC\") {\n return `getX(b, in_h, in_w, in_d)`;\n } else {\n return `getX(b, in_d, in_h, in_w)`;\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DepthToSpace.js\nfunction depthToSpace3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockSize, dataFormat } = attrs;\n const batchSize = x.shape[0];\n const inputHeight = dataFormat === \"NHWC\" ? x.shape[1] : x.shape[2];\n const inputWidth = dataFormat === \"NHWC\" ? x.shape[2] : x.shape[3];\n const inputDepth = dataFormat === \"NHWC\" ? x.shape[3] : x.shape[1];\n const outputHeight = inputHeight * blockSize;\n const outputWidth = inputWidth * blockSize;\n const outputDepth = inputDepth / (blockSize * blockSize);\n const outputShape = dataFormat === \"NHWC\" ? [batchSize, outputHeight, outputWidth, outputDepth] : [batchSize, outputDepth, outputHeight, outputWidth];\n const program = new DepthToSpaceProgram(outputShape, blockSize, dataFormat);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar depthToSpaceConfig2 = {\n kernelName: DepthToSpace,\n backendName: \"webgl\",\n kernelFunc: depthToSpace3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_gpu_depthwise.js\nvar DepthwiseConv2DProgram = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false, hasLeakyReluAlpha = false) {\n this.variableNames = [\"x\", \"W\"];\n this.customUniforms = [\n { name: \"pads\", type: \"ivec2\" },\n { name: \"strides\", type: \"ivec2\" },\n { name: \"dilations\", type: \"ivec2\" },\n { name: \"inDims\", type: \"ivec2\" }\n ];\n this.outputShape = convInfo.outShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const channelMul = convInfo.outChannels / convInfo.inChannels;\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivation) {\n activationSnippet = `float activation(float a) {\n float b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyReluAlpha) {\n activationSnippet = `float activation(float a) {\n float b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `\n float activation(float x) {\n ${activation2}\n }\n `;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyReluAlpha) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n this.userCode = `\n ${activationSnippet}\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n ivec2 xRCCorner = coords.yz * strides - pads;\n int d2 = coords.w;\n int d1 = d2 / ${channelMul};\n int q = d2 - d1 * ${channelMul};\n\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n int xR = xRCorner + wR * dilations[0];\n\n if (xR < 0 || xR >= inDims[0]) {\n continue;\n }\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n int xC = xCCorner + wC * dilations[1];\n\n if (xC < 0 || xC >= inDims[1]) {\n continue;\n }\n\n float xVal = getX(batch, xR, xC, d1);\n float wVal = getW(wR, wC, d1, q);\n dotProd += xVal * wVal;\n }\n }\n\n float result = dotProd;\n ${addBiasSnippet}\n ${applyActivationSnippet}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_packed_gpu_depthwise.js\nvar DepthwiseConvPacked2DProgram = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false, hasLeakyReluAlpha = false) {\n this.variableNames = [\"x\", \"W\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [\n { name: \"pads\", type: \"ivec2\" },\n { name: \"strides\", type: \"ivec2\" },\n { name: \"dilations\", type: \"ivec2\" },\n { name: \"inDims\", type: \"ivec2\" }\n ];\n this.outputShape = convInfo.outShape;\n this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);\n const channelMul = convInfo.outChannels / convInfo.inChannels;\n const padLeft = convInfo.padInfo.left;\n const strideWidth = convInfo.strideWidth;\n const dilationWidth = convInfo.dilationWidth;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const texelsAcross = filterWidth;\n let mainLoop = `\n int xR; int xC; int xCOffset;\n vec4 wTexel; vec4 previous; vec4 final;`;\n for (let c = 0; c < filterWidth; c++) {\n mainLoop += `\n vec4 xTexelC${c * 2};\n int xTexelC${c * 2}Ready;\n vec4 xTexelC${c * 2 + 1};\n int xTexelC${c * 2 + 1}Ready;\n vec4 xC${c};`;\n }\n mainLoop += `\n for (int r = 0; r < ${filterHeight}; r++) {\n `;\n for (let c = 0; c < filterWidth; c++) {\n mainLoop += `\n xTexelC${c * 2} = vec4(0.0);\n xTexelC${c * 2}Ready = 0;\n xTexelC${c * 2 + 1} = vec4(0.0);\n xTexelC${c * 2 + 1}Ready = 0;\n xC${c} = vec4(0.0);`;\n }\n mainLoop += `\n xR = xRCorner + r * dilations[0];\n if (xR >=0 && xR < inDims[0]) {\n `;\n for (let texelC = 0; texelC < (texelsAcross + 1) / 2; texelC++) {\n const colIndex = texelC * 2;\n mainLoop += `\n xC = xCCorner + ${colIndex * dilationWidth};\n `;\n if (strideWidth === 1) {\n if (colIndex < filterWidth) {\n if (padLeft % 2 === 1) {\n mainLoop += `\n xCOffset = xC + 1;\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n `;\n if (dilationWidth === 1 && colIndex > 0) {\n mainLoop += `\n xC${colIndex} = vec4(xTexelC${colIndex - 2}.zw, xTexelC${colIndex}.xy);\n `;\n } else {\n mainLoop += `\n xCOffset = xC + 1 - 2;\n\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n previous.zw = vec2(0.0);\n }\n\n xC${colIndex} = vec4(previous.zw, xTexelC${colIndex}.xy);\n } else {\n xC${colIndex} = vec4(0.0, 0.0, xTexelC${colIndex}.xy);\n }\n `;\n }\n } else {\n mainLoop += `\n if (xC >= 0 && xC < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n xC${colIndex} = xTexelC${colIndex};\n `;\n }\n if (colIndex + 1 < filterWidth) {\n const nextTexelOffset = padLeft % 2 === 0 ? util_exports.nearestLargerEven(dilationWidth) : dilationWidth;\n if (dilationWidth % 2 === 0 && padLeft % 2 === 1 || dilationWidth % 2 !== 0 && padLeft % 2 !== 1) {\n mainLoop += `\n xCOffset = xC + imod(pads[1], 2) + ${nextTexelOffset};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n `;\n if (dilationWidth > 1) {\n mainLoop += `\n xCOffset -= 2;\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n xC${colIndex + 1} = vec4(previous.zw, xTexelC${colIndex + 1}.xy);\n } else {\n xC${colIndex + 1} = vec4(0.0, 0.0, xTexelC${colIndex + 1}.xy);\n }\n `;\n } else {\n mainLoop += `\n xC${colIndex + 1} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.xy);\n `;\n }\n } else {\n if (nextTexelOffset === 1) {\n mainLoop += `\n xC${colIndex + 1} = xTexelC${colIndex};\n `;\n } else {\n mainLoop += `\n xCOffset = xC + ${nextTexelOffset};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex + 1} = xTexelC${colIndex + 1};\n `;\n }\n }\n }\n }\n } else {\n if (colIndex < filterWidth) {\n if (padLeft % 2 === 1) {\n mainLoop += `\n xCOffset = xC + 1 - strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xCOffset, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xC + 1, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xC + 2 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.0);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.zw);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n final = vec4(0.0);\n xCOffset = xC + 1 + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1]) {\n final = getX(batch, xR, xCOffset, d1);\n }\n xC${colIndex + 1} = vec4(xTexelC${colIndex + 1}.xy, final.xy);\n `;\n }\n } else {\n mainLoop += `\n if(xC >= 0 && xC < inDims[1] && xTexelC${colIndex}Ready == 0) {\n xTexelC${colIndex} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${colIndex}.zw = vec2(0.0);\n }\n xTexelC${colIndex}Ready = 1;\n }\n\n xCOffset = xC + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${colIndex + 1}Ready == 0) {\n xTexelC${colIndex + 1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${colIndex + 1}.zw = vec2(0.);\n }\n xTexelC${colIndex + 1}Ready = 1;\n }\n\n xC${colIndex} = vec4(\n xTexelC${colIndex}.xy, xTexelC${colIndex + 1}.xy);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n xC${colIndex + 1} = vec4(xTexelC${colIndex}.zw, xTexelC${colIndex + 1}.zw);\n `;\n }\n }\n }\n }\n if (colIndex < filterWidth) {\n mainLoop += `\n wTexel = getW(r, ${colIndex}, d1, q);\n dotProd += xC${colIndex} * vec4(wTexel.xz, wTexel.xz);\n `;\n if (colIndex + 1 < filterWidth) {\n mainLoop += `\n wTexel = getW(r, ${colIndex + 1}, d1, q);\n dotProd += xC${colIndex + 1} * vec4(wTexel.xz, wTexel.xz);\n `;\n }\n }\n }\n mainLoop += `\n }\n `;\n mainLoop += `\n }\n `;\n let activationSnippet = \"\", applyActivationSnippet = \"\";\n if (activation2) {\n if (hasPreluActivation) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getPreluActivationWeightsAtOutCoords();\n ${activation2}\n }`;\n } else if (hasLeakyReluAlpha) {\n activationSnippet = `vec4 activation(vec4 a) {\n vec4 b = getLeakyreluAlphaAtOutCoords();\n ${activation2}\n }`;\n } else {\n activationSnippet = `vec4 activation(vec4 x) {\n ${activation2}\n }`;\n }\n applyActivationSnippet = `result = activation(result);`;\n }\n const addBiasSnippet = addBias ? \"result += getBiasAtOutCoords();\" : \"\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n if (hasLeakyReluAlpha) {\n this.variableNames.push(\"leakyreluAlpha\");\n }\n this.userCode = `\n ${activationSnippet}\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n ivec2 xRCCorner = coords.yz * strides - pads;\n int d2 = coords.w;\n int d1 = d2 / ${channelMul};\n int q = d2 - d1 * ${channelMul};\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n //intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.\n vec4 dotProd = vec4(0.000000000000001);\n\n ${mainLoop}\n\n vec4 result = dotProd - vec4(0.000000000000001);\n ${addBiasSnippet}\n ${applyActivationSnippet}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DepthwiseConv2dNative.js\nfunction depthwiseConv2dNative2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations, dimRoundingMode } = attrs;\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n let program;\n if (env().getBool(\"WEBGL_PACK_DEPTHWISECONV\") && convInfo.strideWidth <= 2 && convInfo.outChannels / convInfo.inChannels === 1) {\n program = new DepthwiseConvPacked2DProgram(convInfo);\n } else {\n program = new DepthwiseConv2DProgram(convInfo);\n }\n const customValues = [\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inHeight, convInfo.inWidth]\n ];\n return backend2.runWebGLProgram(program, [x, filter], \"float32\", customValues);\n}\nvar depthwiseConv2dNativeConfig2 = {\n kernelName: DepthwiseConv2dNative,\n backendName: \"webgl\",\n kernelFunc: depthwiseConv2dNative2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/conv_backprop_gpu_depthwise.js\nvar DepthwiseConv2DDerFilterProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"dy\"];\n this.outputShape = convInfo.filterShape;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padTop = convInfo.padInfo.top;\n const padLeft = convInfo.padInfo.left;\n const channelMul = convInfo.outChannels / convInfo.inChannels;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int wR = coords.x;\n int wC = coords.y;\n int d1 = coords.z;\n int dm = coords.w;\n int d2 = d1 * ${channelMul} + dm;\n\n float dotProd = 0.0;\n\n // TO DO: Vec4 over the batch size\n for (int b = 0; b < ${convInfo.batchSize}; b++) {\n for (int yR = 0; yR < ${convInfo.outHeight}; yR++) {\n int xR = wR + yR * ${strideHeight} - ${padTop};\n\n if (xR < 0 || xR >= ${convInfo.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${convInfo.outWidth}; yC++) {\n int xC = wC + yC * ${strideWidth} - ${padLeft};\n\n if (xC < 0 || xC >= ${convInfo.inWidth}) {\n continue;\n }\n\n float dyValue = getDy(b, yR, yC, d2);\n float xValue = getX(b, xR, xC, d1);\n dotProd += (xValue * dyValue);\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar DepthwiseConv2DDerInputProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"W\"];\n this.outputShape = convInfo.inShape;\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const padTop = filterHeight - 1 - convInfo.padInfo.top;\n const padLeft = filterWidth - 1 - convInfo.padInfo.left;\n const channelMul = convInfo.outChannels / convInfo.inChannels;\n this.userCode = `\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[3];\n ivec2 dyCorner = coords.yz - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n float dotProd = 0.0;\n\n for (int wR = 0; wR < ${filterHeight}; wR++) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${filterHeight} - 1 - wR;\n\n for (int wC = 0; wC < ${filterWidth}; wC++) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${filterWidth} - 1 - wC;\n\n // TO DO: Vec4 over the channelMul\n for (int dm = 0; dm < ${channelMul}; dm++) {\n int d2 = d1 * ${channelMul} + dm;\n float xValue = getDy(batch, idyR, idyC, d2);\n float wValue = getW(wRPerm, wCPerm, d1, dm);\n dotProd += xValue * wValue;\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DepthwiseConv2dNativeBackpropFilter.js\nfunction depthwiseConv2dNativeBackpropFilter3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, dy } = inputs;\n const { strides, dilations, pad: pad3, dimRoundingMode, filterShape } = attrs;\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filterShape, strides, dilations, pad3, dimRoundingMode, true);\n const program = new DepthwiseConv2DDerFilterProgram(convInfo);\n return backend2.runWebGLProgram(program, [x, dy], \"float32\");\n}\nvar depthwiseConv2dNativeBackpropFilterConfig2 = {\n kernelName: DepthwiseConv2dNativeBackpropFilter,\n backendName: \"webgl\",\n kernelFunc: depthwiseConv2dNativeBackpropFilter3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/DepthwiseConv2dNativeBackpropInput.js\nfunction depthwiseConv2dNativeBackpropInput3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { strides, dilations, pad: pad3, dimRoundingMode, inputShape } = attrs;\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, dilations, pad3, dimRoundingMode, true);\n const program = new DepthwiseConv2DDerInputProgram(convInfo);\n return backend2.runWebGLProgram(program, [dy, filter], \"float32\");\n}\nvar depthwiseConv2dNativeBackpropInputConfig2 = {\n kernelName: DepthwiseConv2dNativeBackpropInput,\n backendName: \"webgl\",\n kernelFunc: depthwiseConv2dNativeBackpropInput3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/diag_gpu.js\nvar DiagProgram = class {\n constructor(size) {\n this.variableNames = [\"X\"];\n this.outputShape = [size, size];\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;\n setOutput(val);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Diag.js\nfunction diag3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n const outShape = [...x.shape, ...x.shape];\n const xSize = util_exports.sizeFromShape(x.shape);\n const flat = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: [xSize] } });\n const program = new DiagProgram(xSize);\n const res = backend2.runWebGLProgram(program, [flat], flat.dtype);\n const out = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: outShape } });\n backend2.disposeIntermediateTensorInfo(flat);\n backend2.disposeIntermediateTensorInfo(res);\n return out;\n}\nvar diagConfig2 = {\n kernelName: Diag,\n backendName: \"webgl\",\n kernelFunc: diag3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/dilation_gpu.js\nvar Dilation2DProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"W\"];\n this.outputShape = convInfo.outShape;\n const { inHeight, inWidth, padInfo, strideHeight, strideWidth, filterHeight, filterWidth, dilationHeight, dilationWidth } = convInfo;\n const { top: padTop, left: padLeft } = padInfo;\n this.userCode = `\n const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n const float neg_infinity = -3.4e38;\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n int d1 = coords.w;\n ivec2 outTopLeftCorner =\n coords.yz * strides - pads;\n int hBeg = outTopLeftCorner.x;\n int wBeg = outTopLeftCorner.y;\n\n float curVal = neg_infinity;\n for (int h = 0; h < ${filterHeight}; h++) {\n int hIn = hBeg + h * ${dilationHeight};\n\n if (hIn >= 0 && hIn < ${inHeight}) {\n for (int w = 0; w < ${filterWidth}; w++) {\n int wIn = wBeg + w * ${dilationWidth};\n\n if (wIn >= 0 && wIn < ${inWidth}) {\n float xVal = getX(batch, hIn, wIn, d1);\n float wVal = getW(h, w, d1);\n\n float val = xVal + wVal;\n if (val > curVal) {\n curVal = val;\n }\n }\n }\n }\n }\n\n float result = curVal;\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Dilation2D.js\nfunction dilation2D(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dilations } = attrs;\n const convInfo = backend_util_exports.computeDilation2DInfo(x.shape, filter.shape, strides, pad3, \"NHWC\", dilations);\n let out;\n const program = new Dilation2DProgram(convInfo);\n out = backend2.runWebGLProgram(program, [x, filter], \"float32\");\n const outReshaped = reshape4({ inputs: { x: out }, backend: backend2, attrs: { shape: convInfo.outShape } });\n backend2.disposeIntermediateTensorInfo(out);\n return outReshaped;\n}\nvar dilation2DConfig2 = {\n kernelName: Dilation2D,\n backendName: \"webgl\",\n kernelFunc: dilation2D\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Einsum.js\nfunction einsum3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { equation } = attrs;\n const tensors = inputs;\n const { allDims, summedDims, idDims } = backend_util_exports.decodeEinsumEquation(equation, tensors.length);\n backend_util_exports.checkEinsumDimSizes(allDims.length, idDims, tensors);\n const { path, steps } = backend_util_exports.getEinsumComputePath(summedDims, idDims);\n const nSteps = steps.length;\n let out = null;\n let numDimsRemaining = allDims.length;\n const tensorsToDispose = [];\n for (let i2 = 0; i2 < nSteps; ++i2) {\n for (const idTerm of steps[i2]) {\n const { permutationIndices: perm, expandDims: dimsToExpand } = backend_util_exports.getEinsumPermutation(numDimsRemaining, idDims[idTerm]);\n let x;\n if (backend_util_exports.isIdentityPermutation(perm)) {\n x = tensors[idTerm];\n } else {\n x = transpose3({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } });\n tensorsToDispose.push(x);\n }\n const targetShape = x.shape.slice();\n for (let k = 0; k < dimsToExpand.length; ++k) {\n targetShape.splice(dimsToExpand[k], 0, 1);\n }\n if (!util_exports.arraysEqual(x.shape, targetShape)) {\n x = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: targetShape } });\n tensorsToDispose.push(x);\n }\n if (out === null) {\n out = x;\n } else {\n out = multiply3({ inputs: { a: x, b: out }, backend: backend2 });\n tensorsToDispose.push(out);\n }\n }\n if (i2 < nSteps - 1) {\n if (path[i2] >= 0) {\n out = sum4({\n inputs: { x: out },\n backend: backend2,\n attrs: {\n axis: path[i2] - (allDims.length - numDimsRemaining),\n keepDims: false\n }\n });\n tensorsToDispose.push(out);\n }\n numDimsRemaining--;\n }\n }\n for (const tensorInfo of tensorsToDispose) {\n if (tensorInfo === out) {\n continue;\n }\n backend2.disposeIntermediateTensorInfo(tensorInfo);\n }\n return out;\n}\nvar einsumConfig2 = {\n kernelName: Einsum,\n backendName: \"webgl\",\n kernelFunc: einsum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Elu.js\nvar ELU4 = `return (x >= 0.0) ? x : (exp(x) - 1.0);`;\nvar ELU_PACKED = `\n vec4 result;\n\n result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);\n result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);\n result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);\n result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);\n\n return result;\n`;\nvar elu5 = unaryKernelFunc2({ opSnippet: ELU4, packedOpSnippet: ELU_PACKED });\nvar eluConfig2 = {\n kernelName: Elu,\n backendName: \"webgl\",\n kernelFunc: elu5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/EluGrad.js\nvar ELU_DER = `return (b >= 1.0) ? a : a * (b + 1.0);`;\nvar ELU_DER_PACKED = `\n vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));\n return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));\n`;\nvar eluGrad2 = (args) => {\n const { inputs, backend: backend2 } = args;\n const { dy, y } = inputs;\n const program = env().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\") ? new BinaryOpPackedProgram(ELU_DER_PACKED, dy.shape, y.shape) : new BinaryOpProgram(ELU_DER, dy.shape, y.shape);\n return backend2.runWebGLProgram(program, [dy, y], dy.dtype);\n};\nvar eluGradConfig3 = {\n kernelName: EluGrad,\n backendName: \"webgl\",\n kernelFunc: eluGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Equal.js\nvar PACKED_EQUAL = `\n return vec4(equal(a, b));\n`;\nvar EQUAL = `return float(a == b);`;\nvar equal3 = binaryKernelFunc2({\n opSnippet: EQUAL,\n packedOpSnippet: PACKED_EQUAL,\n dtype: \"bool\",\n cpuKernelImpl: equalImplCPU\n});\nvar equalConfig2 = {\n kernelName: Equal,\n backendName: \"webgl\",\n kernelFunc: equal3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Erf.js\nvar ERF = `\n // Error function is calculated approximately with elementary function.\n // See \"Handbook of Mathematical Functions with Formulas,\n // Graphs, and Mathematical Tables\", Abramowitz and Stegun.\n float p = ${backend_util_exports.ERF_P};\n float a1 = ${backend_util_exports.ERF_A1};\n float a2 = ${backend_util_exports.ERF_A2};\n float a3 = ${backend_util_exports.ERF_A3};\n float a4 = ${backend_util_exports.ERF_A4};\n float a5 = ${backend_util_exports.ERF_A5};\n\n float sign = sign(x);\n x = abs(x);\n float t = 1.0 / (1.0 + p * x);\n return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));\n`;\nvar erf3 = unaryKernelFunc2({ opSnippet: ERF });\nvar erfConfig2 = {\n kernelName: Erf,\n backendName: \"webgl\",\n kernelFunc: erf3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Exp.js\nvar EXP = CHECK_NAN_SNIPPET_UNARY + `\n return exp(x);\n`;\nvar EXP_PACKED = `\n vec4 result = exp(x);\n bvec4 isNaN = isnan(x);\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar exp3 = unaryKernelFunc2({\n opSnippet: EXP,\n packedOpSnippet: EXP_PACKED,\n cpuKernelImpl: expImplCPU,\n dtype: \"float32\"\n});\nvar expConfig2 = {\n kernelName: Exp,\n backendName: \"webgl\",\n kernelFunc: exp3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ExpandDims.js\nfunction expandDims4(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { dim } = attrs;\n const { input: input2 } = inputs;\n const inputRank = input2.shape.length;\n const newShape = input2.shape.slice();\n let $dim = dim;\n if (dim < 0) {\n util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`);\n $dim = inputRank + dim + 1;\n }\n newShape.splice($dim, 0, 1);\n return reshape4({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } });\n}\nvar expandDimsConfig2 = {\n kernelName: ExpandDims,\n backendName: \"webgl\",\n kernelFunc: expandDims4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Expm1.js\nvar EXPM1 = `return exp(x) - 1.0;`;\nvar expm13 = unaryKernelFunc2({ opSnippet: EXPM1, packedOpSnippet: EXPM1, cpuKernelImpl: expm1ImplCPU });\nvar expm1Config2 = {\n kernelName: Expm1,\n backendName: \"webgl\",\n kernelFunc: expm13\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/fft_gpu.js\nvar FFTProgram = class {\n constructor(component, inputShape, inverse) {\n this.variableNames = [\"real\", \"imag\"];\n const innerDim = inputShape[1];\n this.outputShape = inputShape;\n const exponentMultiplierSnippet = inverse ? `2.0 * ${Math.PI}` : `-2.0 * ${Math.PI}`;\n const resultDenominator = inverse ? `${innerDim}.0` : \"1.0\";\n let opString;\n if (component === \"real\") {\n opString = \"return real * expR - imag * expI;\";\n } else if (component === \"imag\") {\n opString = \"return real * expI + imag * expR;\";\n } else {\n throw new Error(`FFT component must be either \"real\" or \"imag\", got ${component}.`);\n }\n this.userCode = `\n const float exponentMultiplier = ${exponentMultiplierSnippet};\n\n float unaryOpComplex(float real, float expR, float imag, float expI) {\n ${opString}\n }\n\n float mulMatDFT(int batch, int index) {\n float indexRatio = float(index) / float(${innerDim});\n float exponentMultiplierTimesIndexRatio =\n exponentMultiplier * indexRatio;\n\n float result = 0.0;\n\n for (int i = 0; i < ${innerDim}; i++) {\n // x = (-2|2 * PI / N) * index * i;\n float x = exponentMultiplierTimesIndexRatio * float(i);\n float expR = cos(x);\n float expI = sin(x);\n float real = getReal(batch, i);\n float imag = getImag(batch, i);\n\n result +=\n unaryOpComplex(real, expR, imag, expI) / ${resultDenominator};\n }\n\n return result;\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n setOutput(mulMatDFT(coords[0], coords[1]));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FFT_impl.js\nfunction fftImpl2(x, inverse, backend2) {\n const xData = backend2.texData.get(x.dataId);\n const inputSize = util_exports.sizeFromShape(x.shape);\n const innerDimensionSize = x.shape[x.shape.length - 1];\n const batch = inputSize / innerDimensionSize;\n const input2D = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: [batch, innerDimensionSize] } });\n const xShape = input2D.shape;\n const realProgram = new FFTProgram(\"real\", xShape, inverse);\n const imagProgram = new FFTProgram(\"imag\", xShape, inverse);\n const inputs = [\n {\n dataId: xData.complexTensorInfos.real.dataId,\n dtype: xData.complexTensorInfos.real.dtype,\n shape: xShape\n },\n {\n dataId: xData.complexTensorInfos.imag.dataId,\n dtype: xData.complexTensorInfos.imag.dtype,\n shape: xShape\n }\n ];\n const realPart = backend2.runWebGLProgram(realProgram, inputs, \"float32\");\n const imagPart = backend2.runWebGLProgram(imagProgram, inputs, \"float32\");\n const complexOutput = complex3({ inputs: { real: realPart, imag: imagPart }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(imagPart);\n const complexOutputReshaped = reshape4({ inputs: { x: complexOutput }, backend: backend2, attrs: { shape: x.shape } });\n backend2.disposeIntermediateTensorInfo(input2D);\n backend2.disposeIntermediateTensorInfo(complexOutput);\n return complexOutputReshaped;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FFT.js\nfunction fft3(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n return fftImpl2(input2, false, backend2);\n}\nvar fftConfig2 = {\n kernelName: FFT,\n backendName: \"webgl\",\n kernelFunc: fft3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/fill_gpu.js\nvar FillProgram = class {\n constructor(shape, value) {\n this.outputShape = [];\n this.customUniforms = [{ name: \"value\", type: \"float\" }];\n this.variableNames = [\"x\"];\n this.outputShape = shape;\n this.userCode = `\n void main() {\n // Input can be obtained from uniform value.\n setOutput(value);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Fill.js\nfunction fill3(args) {\n const { backend: backend2, attrs } = args;\n const { shape, value } = attrs;\n let { dtype } = attrs;\n dtype = dtype || util_exports.inferDtype(value);\n if (dtype === \"string\") {\n const values = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(shape));\n values.fill(value);\n return backend2.makeTensorInfo(shape, dtype, values);\n } else {\n const program = new FillProgram(shape, value);\n const customValues = [[value]];\n return backend2.runWebGLProgram(program, [], dtype, customValues);\n }\n}\nvar fillConfig2 = {\n kernelName: Fill,\n backendName: \"webgl\",\n kernelFunc: fill3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/flip_left_right_gpu.js\nvar FlipLeftRightProgram = class {\n constructor(imageShape) {\n this.variableNames = [\"Image\"];\n this.outputShape = [];\n const imageWidth = imageShape[2];\n this.outputShape = imageShape;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int x = coords[2];\n\n int coordX = ${imageWidth} - x - 1;\n float outputValue;\n if(coordX >= 0 && coordX < ${imageWidth}) {\n outputValue = getImage(coords[0], coords[1], coordX, coords[3]);\n } else {\n outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);\n }\n setOutput(outputValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FlipLeftRight.js\nvar flipLeftRightConfig2 = {\n kernelName: FlipLeftRight,\n backendName: \"webgl\",\n kernelFunc: ({ inputs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const webglBackend = backend2;\n const program = new FlipLeftRightProgram(image2.shape);\n const output = webglBackend.runWebGLProgram(program, [image2], image2.dtype);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Floor.js\nvar FLOOR = `return floor(x);`;\nvar floor3 = unaryKernelFunc2({ opSnippet: FLOOR, packedOpSnippet: FLOOR, cpuKernelImpl: floorImplCPU });\nvar floorConfig2 = {\n kernelName: Floor,\n backendName: \"webgl\",\n kernelFunc: floor3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FloorDiv.js\nvar INT_DIV = `\n float s = sign(a) * sign(b);\n int ia = round(a);\n int ib = round(b);\n if (ib != 0) {\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n return float(idiv(ia, ib, s));\n } else {\n return NAN;\n }\n`;\nvar INT_DIV_PACKED = `\n ivec4 ia = round(a);\n ivec4 ib = round(b);\n bvec4 cond = notEqual(ib, ivec4(0));\n ivec4 result = ivec4(0);\n vec4 s = sign(a) * sign(b);\n\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n if (cond[0]) {\n result[0] = idiv(ia[0], ib[0], s[0]);\n }\n if (cond[1]) {\n result[1] = idiv(ia[1], ib[1], s[1]);\n }\n if (cond[2]) {\n result[2] = idiv(ia[2], ib[2], s[2]);\n }\n if (cond[3]) {\n result[3] = idiv(ia[3], ib[3], s[3]);\n }\n return vec4(result);\n`;\nvar floorDiv3 = binaryKernelFunc2({ opSnippet: INT_DIV, packedOpSnippet: INT_DIV_PACKED, dtype: \"int32\" });\nvar floorDivConfig2 = {\n kernelName: FloorDiv,\n backendName: \"webgl\",\n kernelFunc: floorDiv3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FromPixels_utils/from_pixels_gpu.js\nvar FromPixelsProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n const glsl = getGlslDifferences();\n const [height, width] = outputShape;\n this.outputShape = outputShape;\n this.userCode = `\n void main() {\n ivec3 coords = getOutputCoords();\n int texR = coords[0];\n int texC = coords[1];\n int depth = coords[2];\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${width}.0, ${height}.0);\n\n vec4 values = ${glsl.texture2D}(A, uv);\n float value;\n if (depth == 0) {\n value = values.r;\n } else if (depth == 1) {\n value = values.g;\n } else if (depth == 2) {\n value = values.b;\n } else if (depth == 3) {\n value = values.a;\n }\n\n setOutput(floor(value * 255.0 + 0.5));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FromPixels_utils/from_pixels_packed_gpu.js\nvar FromPixelsPackedProgram = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.packedInputs = false;\n this.packedOutput = true;\n const glsl = getGlslDifferences();\n const [height, width] = outputShape;\n this.outputShape = outputShape;\n this.userCode = `\n void main() {\n ivec3 coords = getOutputCoords();\n int texR = coords[0];\n int texC = coords[1];\n int depth = coords[2];\n\n vec4 result = vec4(0.);\n\n for(int row=0; row<=1; row++) {\n for(int col=0; col<=1; col++) {\n texC = coords[1] + row;\n depth = coords[2] + col;\n\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${width}.0, ${height}.0);\n vec4 values = ${glsl.texture2D}(A, uv);\n float value;\n if (depth == 0) {\n value = values.r;\n } else if (depth == 1) {\n value = values.g;\n } else if (depth == 2) {\n value = values.b;\n } else if (depth == 3) {\n value = values.a;\n }\n\n result[row * 2 + col] = floor(value * 255.0 + 0.5);\n }\n }\n\n ${glsl.output} = result;\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FromPixels.js\nvar fromPixelsConfig = {\n kernelName: FromPixels,\n backendName: \"webgl\",\n kernelFunc: fromPixels2\n};\nvar fromPixels2DContext2;\nvar willReadFrequently = env().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");\nfunction fromPixels2(args) {\n const { inputs, backend: backend2, attrs } = args;\n let { pixels } = inputs;\n const { numChannels } = attrs;\n const isVideo = typeof HTMLVideoElement !== \"undefined\" && pixels instanceof HTMLVideoElement;\n const isImage = typeof HTMLImageElement !== \"undefined\" && pixels instanceof HTMLImageElement;\n const [width, height] = isVideo ? [\n pixels.videoWidth,\n pixels.videoHeight\n ] : [pixels.width, pixels.height];\n const texShape = [height, width];\n const outShape = [height, width, numChannels];\n if (isImage || isVideo) {\n const newWillReadFrequently = env().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");\n if (fromPixels2DContext2 == null || newWillReadFrequently !== willReadFrequently) {\n willReadFrequently = newWillReadFrequently;\n fromPixels2DContext2 = document.createElement(\"canvas\").getContext(\"2d\", { willReadFrequently });\n }\n fromPixels2DContext2.canvas.width = width;\n fromPixels2DContext2.canvas.height = height;\n fromPixels2DContext2.drawImage(pixels, 0, 0, width, height);\n pixels = fromPixels2DContext2.canvas;\n }\n const tempPixelHandle = backend2.makeTensorInfo(texShape, \"int32\");\n backend2.texData.get(tempPixelHandle.dataId).usage = TextureUsage.PIXELS;\n backend2.gpgpu.uploadPixelDataToTexture(backend2.getTexture(tempPixelHandle.dataId), pixels);\n const program = env().getBool(\"WEBGL_PACK\") ? new FromPixelsPackedProgram(outShape) : new FromPixelsProgram(outShape);\n const res = backend2.runWebGLProgram(program, [tempPixelHandle], \"int32\");\n backend2.disposeData(tempPixelHandle.dataId);\n return res;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FusedConv2D.js\nfunction fusedConv2d(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n let out;\n const intermediates = [];\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const hasLeakyreluAlpha = activation2 === \"leakyrelu\";\n const prepareInputs = () => {\n const inputs2 = [x, filter];\n const alignInputWithDataFormat = (input2, dataFormat2) => {\n if (dataFormat2 === \"NCHW\" && input2.shape.length === 1 && input2.shape[0] !== 1) {\n const alignedInput = reshape4({\n inputs: { x: input2 },\n backend: backend2,\n attrs: { shape: [input2.shape[0], 1, 1] }\n });\n intermediates.push(alignedInput);\n return alignedInput;\n }\n return input2;\n };\n if (hasBias) {\n inputs2.push(alignInputWithDataFormat(bias, dataFormat));\n }\n if (hasPreluActivationWeights) {\n inputs2.push(alignInputWithDataFormat(preluActivationWeights, dataFormat));\n }\n if (hasLeakyreluAlpha) {\n const $leakyreluAlpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(leakyreluAlpha, \"float32\"));\n inputs2.push($leakyreluAlpha);\n intermediates.push($leakyreluAlpha);\n }\n return inputs2;\n };\n if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === \"SAME\" || convInfo.padInfo.type === \"VALID\")) {\n out = conv2dByMatMul({\n x,\n filter,\n convInfo,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n } else if (convInfo.strideWidth <= 2 && $dataFormat === \"channelsLast\" && env().getBool(\"WEBGL_EXP_CONV\")) {\n const fusedActivation = activation2 ? mapActivationToShaderProgram(activation2, true) : null;\n const program = new Conv2DPackedProgram(convInfo, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n const customValues = [\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inHeight, convInfo.inWidth]\n ];\n const inputs2 = prepareInputs();\n out = backend2.runWebGLProgram(program, inputs2, \"float32\", customValues);\n } else if (env().getBool(\"WEBGL_CONV_IM2COL\")) {\n out = conv2dWithIm2Row({\n x,\n filter,\n convInfo,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n } else {\n const fusedActivation = activation2 ? mapActivationToShaderProgram(activation2, false) : null;\n const program = new Conv2DProgram(convInfo, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n const inputs2 = prepareInputs();\n out = backend2.runWebGLProgram(program, inputs2, \"float32\");\n }\n const outReshaped = reshape4({ inputs: { x: out }, backend: backend2, attrs: { shape: convInfo.outShape } });\n intermediates.push(out);\n intermediates.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return outReshaped;\n}\nvar fusedConv2DConfig2 = {\n kernelName: FusedConv2D,\n backendName: \"webgl\",\n kernelFunc: fusedConv2d\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/FusedDepthwiseConv2D.js\nfunction fusedDepthwiseConv2D2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const intermediates = [];\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n const shouldPackDepthwiseConv = env().getBool(\"WEBGL_PACK_DEPTHWISECONV\") && convInfo.strideWidth <= 2 && convInfo.outChannels / convInfo.inChannels === 1;\n const fusedActivation = activation2 ? mapActivationToShaderProgram(activation2, shouldPackDepthwiseConv) : null;\n const programInputs = [x, filter];\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const hasLeakyreluAlpha = activation2 === \"leakyrelu\";\n if (hasBias) {\n programInputs.push(bias);\n }\n if (hasPreluActivationWeights) {\n programInputs.push(preluActivationWeights);\n }\n if (hasLeakyreluAlpha) {\n const $leakyreluAlpha = backend2.makeTensorInfo([], \"float32\", util_exports.createScalarValue(leakyreluAlpha, \"float32\"));\n programInputs.push($leakyreluAlpha);\n intermediates.push($leakyreluAlpha);\n }\n let program;\n if (shouldPackDepthwiseConv) {\n program = new DepthwiseConvPacked2DProgram(convInfo, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n } else {\n program = new DepthwiseConv2DProgram(convInfo, hasBias, fusedActivation, hasPreluActivationWeights, hasLeakyreluAlpha);\n }\n const customValues = [\n [convInfo.padInfo.top, convInfo.padInfo.left],\n [convInfo.strideHeight, convInfo.strideWidth],\n [convInfo.dilationHeight, convInfo.dilationWidth],\n [convInfo.inHeight, convInfo.inWidth]\n ];\n const result = backend2.runWebGLProgram(program, programInputs, \"float32\", customValues);\n intermediates.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar fusedDepthwiseConv2DConfig2 = {\n kernelName: FusedDepthwiseConv2D,\n backendName: \"webgl\",\n kernelFunc: fusedDepthwiseConv2D2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gather_nd_gpu.js\nvar GatherNDProgram = class {\n constructor(sliceDim, strides, shape, paramsShape) {\n this.sliceDim = sliceDim;\n this.strides = strides;\n this.paramsShape = paramsShape;\n this.variableNames = [\"x\", \"indices\"];\n this.outputShape = shape;\n const stridesType = getCoordsDataType(strides.length);\n const dtype = getCoordsDataType(shape.length);\n const strideString = this.sliceDim > 1 ? \"strides[j]\" : \"strides\";\n const paramsShapeType = getCoordsDataType(paramsShape.length);\n const paramsShapeString = paramsShape.length > 1 ? \"paramsShape[j]\" : \"paramsShape\";\n this.userCode = `\n ${stridesType} strides = ${stridesType}(${this.strides});\n ${paramsShapeType} paramsShape = ${paramsShapeType}(${this.paramsShape});\n void main() {\n ${dtype} coords = getOutputCoords();\n int flattenIndex = 0;\n bool out_of_bounds = false;\n for (int j = 0; j < ${this.sliceDim}; j++) {\n int index = round(getIndices(coords[0], j));\n out_of_bounds = out_of_bounds || index < 0;\n out_of_bounds = out_of_bounds || index >= ${paramsShapeString};\n flattenIndex += index * ${strideString};\n }\n setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/GatherNd.js\nfunction gatherNd2(args) {\n const { inputs, backend: backend2 } = args;\n const { params, indices } = inputs;\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n const paramsSize = util_exports.sizeFromShape(params.shape);\n const [resultShape, numSlices, sliceSize, strides] = backend_util_exports.prepareAndValidate(params, indices);\n const flattenIndices = reshape4({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numSlices, sliceRank] } });\n const flattenX = reshape4({\n inputs: { x: params },\n backend: backend2,\n attrs: { shape: [util_exports.sizeFromShape(params.shape) / sliceSize, sliceSize] }\n });\n if (backend2.shouldExecuteOnCPU([params, indices]) || params.dtype === \"string\") {\n const indicesData = backend2.readSync(indices.dataId);\n const paramsBuf = backend2.bufferSync(params);\n const outValue = gatherNdImplCPU(indicesData, paramsBuf, params.dtype, numSlices, sliceRank, sliceSize, strides, params.shape, paramsSize);\n return backend2.makeTensorInfo(resultShape, params.dtype, outValue.values);\n }\n const program = new GatherNDProgram(sliceRank, strides, [numSlices, sliceSize], params.shape);\n const res = backend2.runWebGLProgram(program, [flattenX, flattenIndices], flattenX.dtype);\n const reshaped = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: resultShape } });\n backend2.disposeIntermediateTensorInfo(flattenIndices);\n backend2.disposeIntermediateTensorInfo(flattenX);\n backend2.disposeIntermediateTensorInfo(res);\n return reshaped;\n}\nvar gatherNdConfig2 = {\n kernelName: GatherNd,\n backendName: \"webgl\",\n kernelFunc: gatherNd2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/gather_gpu.js\nvar GatherProgram = class {\n constructor(aShape, outputShape) {\n this.variableNames = [\"A\", \"indices\"];\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n const dtype = getCoordsDataType(this.rank);\n const sourceCoords = getSourceCoords2(aShape, 2);\n this.userCode = `\n void main() {\n ${dtype} resRC = getOutputCoords();\n int index = int(getIndices(resRC.x, resRC.z));\n float inBounds = (index >= 0) && (index < ${aShape[2]}) ? 1.0 : 0.0;\n setOutput(inBounds * getA(${sourceCoords}));\n }\n `;\n }\n};\nfunction getSourceCoords2(aShape, axis) {\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const sourceCoords = [];\n for (let i2 = 0; i2 < aShape.length; i2++) {\n if (i2 === 2) {\n sourceCoords.push(\"index\");\n } else {\n sourceCoords.push(`${currentCoords[i2]}`);\n }\n }\n return sourceCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/GatherV2.js\nfunction gatherV22(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, indices } = inputs;\n const { axis, batchDims } = attrs;\n const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0];\n if (env().get(\"DEBUG\")) {\n const indicesVals = backend2.readSync(indices.dataId);\n const axisDim = x.shape[parsedAxis];\n for (let i2 = 0; i2 < indicesVals.length; ++i2) {\n const index = indicesVals[i2];\n util_exports.assert(index <= axisDim - 1 && index >= 0, () => `GatherV2: the index value ${index} is not in [0, ${axisDim - 1}]`);\n }\n }\n const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, batchDims);\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const toDispose = [];\n const flattenX = reshape4({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n shapeInfo.dimSize,\n shapeInfo.sliceSize\n ]\n }\n });\n const flattenIndex = reshape4({\n inputs: { x: indices },\n backend: backend2,\n attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] }\n });\n toDispose.push(flattenX);\n toDispose.push(flattenIndex);\n const flattenOutputShape = [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n indicesSize / shapeInfo.batchSize,\n shapeInfo.sliceSize\n ];\n if (backend2.shouldExecuteOnCPU([x, indices]) || x.dtype === \"string\") {\n const indicesBuf = backend2.bufferSync(flattenIndex);\n const xBuf = backend2.bufferSync(flattenX);\n const outBuf = gatherV2ImplCPU(xBuf, indicesBuf, flattenOutputShape);\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return backend2.makeTensorInfo(shapeInfo.outputShape, outBuf.dtype, outBuf.values);\n }\n const program = new GatherProgram(flattenX.shape, flattenOutputShape);\n const res = backend2.runWebGLProgram(program, [flattenX, flattenIndex], flattenX.dtype);\n toDispose.push(res);\n const reshaped = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: shapeInfo.outputShape } });\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return reshaped;\n}\nvar gatherV2Config2 = {\n kernelName: GatherV2,\n backendName: \"webgl\",\n kernelFunc: gatherV22\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Greater.js\nvar GREATER = `return float(a > b);`;\nvar GREATER_PACKED = `\n return vec4(greaterThan(a, b));\n`;\nvar greater4 = binaryKernelFunc2({\n opSnippet: GREATER,\n packedOpSnippet: GREATER_PACKED,\n cpuKernelImpl: greaterImplCPU,\n dtype: \"bool\"\n});\nvar greaterConfig2 = {\n kernelName: Greater,\n backendName: \"webgl\",\n kernelFunc: greater4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/GreaterEqual.js\nvar GREATER_EQUAL = `return float(a >= b);`;\nvar GREATER_EQUAL_PACKED = `\n return vec4(greaterThanEqual(a, b));\n`;\nvar greaterEqual3 = binaryKernelFunc2({\n opSnippet: GREATER_EQUAL,\n packedOpSnippet: GREATER_EQUAL_PACKED,\n dtype: \"bool\",\n cpuKernelImpl: greaterEqualImplCPU\n});\nvar greaterEqualConfig2 = {\n kernelName: GreaterEqual,\n backendName: \"webgl\",\n kernelFunc: greaterEqual3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/IFFT.js\nfunction ifft3(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n return fftImpl2(input2, true, backend2);\n}\nvar ifftConfig2 = {\n kernelName: IFFT,\n backendName: \"webgl\",\n kernelFunc: ifft3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/IsFinite.js\nvar IS_FINITE = `return float(!isnan(x) && !isinf(x));`;\nvar isFinite4 = unaryKernelFunc2({ opSnippet: IS_FINITE, dtype: \"bool\" });\nvar isFiniteConfig2 = {\n kernelName: IsFinite,\n backendName: \"webgl\",\n kernelFunc: isFinite4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/IsInf.js\nvar IS_INF = `return float(isinf(x));`;\nvar isInf3 = unaryKernelFunc2({ opSnippet: IS_INF, dtype: \"bool\" });\nvar isInfConfig2 = {\n kernelName: IsInf,\n backendName: \"webgl\",\n kernelFunc: isInf3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/IsNaN.js\nvar IS_NAN = `return float(isnan(x));`;\nvar isNaN4 = unaryKernelFunc2({ opSnippet: IS_NAN, dtype: \"bool\" });\nvar isNaNConfig2 = {\n kernelName: IsNan,\n backendName: \"webgl\",\n kernelFunc: isNaN4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Less.js\nvar LESS = `return float(a < b);`;\nvar LESS_PACKED = `\n return vec4(lessThan(a, b));\n`;\nvar less4 = binaryKernelFunc2({\n opSnippet: LESS,\n packedOpSnippet: LESS_PACKED,\n cpuKernelImpl: lessImplCPU,\n dtype: \"bool\"\n});\nvar lessConfig2 = {\n kernelName: Less,\n backendName: \"webgl\",\n kernelFunc: less4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LessEqual.js\nvar LESS_EQUAL = `return float(a <= b);`;\nvar LESS_EQUAL_PACKED = `\n return vec4(lessThanEqual(a, b));\n`;\nvar lessEqual3 = binaryKernelFunc2({\n opSnippet: LESS_EQUAL,\n packedOpSnippet: LESS_EQUAL_PACKED,\n cpuKernelImpl: lessEqualImplCPU,\n dtype: \"bool\"\n});\nvar lessEqualConfig2 = {\n kernelName: LessEqual,\n backendName: \"webgl\",\n kernelFunc: lessEqual3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LinSpace.js\nfunction linSpace2(args) {\n const { backend: backend2, attrs } = args;\n const { start, stop, num } = attrs;\n const outVals = linSpaceImplCPU(start, stop, num);\n return backend2.makeTensorInfo([outVals.length], \"float32\", outVals);\n}\nvar linSpaceConfig2 = {\n kernelName: LinSpace,\n backendName: \"webgl\",\n kernelFunc: linSpace2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Log.js\nvar LOG = CHECK_NAN_SNIPPET_UNARY + `\n return x < 0.0 ? 0./0. : log(x);\n`;\nvar LOG_PACKED = `\n vec4 result = log(x);\n bvec4 isNaN = isnan(x);\n result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);\n result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);\n result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);\n result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);\n return result;\n`;\nvar log4 = unaryKernelFunc2({ opSnippet: LOG, packedOpSnippet: LOG_PACKED, cpuKernelImpl: logImplCPU });\nvar logConfig2 = {\n kernelName: Log,\n backendName: \"webgl\",\n kernelFunc: log4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Log1p.js\nvar LOG1P = CHECK_NAN_SNIPPET_UNARY + `\n return log(1.0 + x);\n`;\nvar log1p3 = unaryKernelFunc2({ opSnippet: LOG1P });\nvar log1pConfig2 = {\n kernelName: Log1p,\n backendName: \"webgl\",\n kernelFunc: log1p3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LogicalAnd.js\nvar LOGICAL_AND = `return float(a >= 1.0 && b >= 1.0);`;\nvar LOGICAL_AND_PACKED = `\n return vec4(\n vec4(greaterThanEqual(a, vec4(1.0))) *\n vec4(greaterThanEqual(b, vec4(1.0))));\n`;\nvar logicalAnd3 = binaryKernelFunc2({\n opSnippet: LOGICAL_AND,\n packedOpSnippet: LOGICAL_AND_PACKED,\n dtype: \"bool\"\n});\nvar logicalAndConfig2 = {\n kernelName: LogicalAnd,\n backendName: \"webgl\",\n kernelFunc: logicalAnd3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LogicalNot.js\nvar LOGICAL_NOT = `return float(!(x >= 1.0));`;\nvar logicalNot3 = unaryKernelFunc2({ opSnippet: LOGICAL_NOT });\nvar logicalNotConfig2 = {\n kernelName: LogicalNot,\n backendName: \"webgl\",\n kernelFunc: logicalNot3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LogicalOr.js\nvar LOGICAL_OR = `return float(a >= 1.0 || b >= 1.0);`;\nvar LOGICAL_OR_PACKED = `\n return min(\n vec4(greaterThanEqual(a, vec4(1.0))) +\n vec4(greaterThanEqual(b, vec4(1.0))),\n vec4(1.0));\n`;\nvar logicalOr3 = binaryKernelFunc2({ opSnippet: LOGICAL_OR, packedOpSnippet: LOGICAL_OR_PACKED, dtype: \"bool\" });\nvar logicalOrConfig2 = {\n kernelName: LogicalOr,\n backendName: \"webgl\",\n kernelFunc: logicalOr3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/lrn_gpu.js\nvar LRNProgram = class {\n constructor(xShape, radius, bias, alpha, beta) {\n this.variableNames = [\"x\"];\n this.outputShape = [];\n const rad = radius;\n const maxD = xShape[3] - 1;\n this.outputShape = xShape;\n let powOperator;\n const basis = `float(${bias}) + float(${alpha}) * sum`;\n if (beta === 0.5) {\n powOperator = `inversesqrt(${basis})`;\n } else if (beta === 1) {\n powOperator = `1.0/(${basis})`;\n } else {\n powOperator = `exp(log(${basis}) * float(-${beta}));`;\n }\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int r = coords[1];\n int c = coords[2];\n int d = coords[3];\n float x = getX(b, r, c, d);\n float sum = 0.0;\n for (int j = -${rad}; j <= ${rad}; j++) {\n int idx = d + j;\n if (idx >= 0 && idx <= ${maxD}) {\n float z = getX(b, r, c, idx);\n sum += z * z;\n }\n }\n float val = x * ${powOperator};\n setOutput(val);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/lrn_packed_gpu.js\nvar LRNPackedProgram = class {\n constructor(xShape, radius, bias, alpha, beta) {\n this.variableNames = [\"x\"];\n this.outputShape = [];\n this.packedInputs = true;\n this.packedOutput = true;\n const rad = radius;\n const maxD = xShape[3] - 1;\n this.outputShape = xShape;\n let powOperator;\n const basis = `float(${bias}) + float(${alpha}) * sum`;\n if (beta === 0.5) {\n powOperator = `inversesqrt(${basis})`;\n } else if (beta === 1) {\n powOperator = `1.0/(${basis})`;\n } else {\n powOperator = `exp(log(${basis}) * float(-${beta}));`;\n }\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords.x;\n int r = coords.y;\n int c = coords.z;\n int d = coords.w;\n\n bool hasNextCol = d < ${this.outputShape[3]};\n bool hasNextRow = c < ${this.outputShape[2]};\n\n vec4 sum = vec4(0.);\n vec4 xFragAtOutputCoords = getX(b, r, c, d);\n\n vec4 xAtOutputCoords = vec4(\n getChannel(xFragAtOutputCoords, vec2(c, d)),\n hasNextCol ?\n getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,\n hasNextRow ?\n getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,\n (hasNextRow && hasNextCol) ?\n getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0\n );\n\n int firstChannel = d - ${rad};\n vec2 cache = vec2(0.);\n if(firstChannel >= 0){\n vec4 firstChannelFrag = getX(b, r, c, firstChannel);\n cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));\n if(hasNextRow){\n cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));\n }\n }\n\n ivec2 depth = ivec2(d, d + 1);\n for (int j = - ${rad}; j <= ${rad}; j++) {\n ivec2 idx = depth + j;\n bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));\n bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${maxD}));\n\n bool depthInRange = aboveLowerBound.x && belowUpperBound.x;\n bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;\n\n if(depthInRange || depthPlusOneInRange){\n vec4 z = vec4(0.);\n vec4 xFragAtCurrentDepth;\n z.xz = cache.xy;\n if(depthPlusOneInRange && hasNextCol){\n xFragAtCurrentDepth = idx.y != d ?\n getX(b, r, c, idx.y) : xFragAtOutputCoords;\n z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));\n if(hasNextRow){\n z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));\n }\n }\n cache.xy = z.yw;\n sum += z * z;\n }\n }\n vec4 result = xAtOutputCoords * ${powOperator};\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LRN.js\nvar lrn = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { depthRadius, bias, alpha, beta } = attrs;\n const program = env().getBool(\"WEBGL_PACK_NORMALIZATION\") ? new LRNPackedProgram(x.shape, depthRadius, bias, alpha, beta) : new LRNProgram(x.shape, depthRadius, bias, alpha, beta);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n};\nvar LRNConfig2 = {\n kernelName: LRN,\n backendName: \"webgl\",\n kernelFunc: lrn\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/lrn_grad_gpu.js\nvar LRNGradProgram = class {\n constructor(inputShape, depthRadius, bias, alpha, beta) {\n this.variableNames = [\"inputImage\", \"outputImage\", \"dy\"];\n this.outputShape = [];\n this.outputShape = inputShape;\n this.depth = inputShape[3];\n this.depthRadius = depthRadius;\n this.bias = bias;\n this.alpha = alpha;\n this.beta = beta;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int r = coords[1];\n int c = coords[2];\n\n float result = 0.0;\n for (int d = 0; d < ${this.depth}; ++d) {\n int depthBegin = int(max(0.0, float(d - ${depthRadius})));\n int depthEnd = int(min(float(${this.depth}),\n float(d + ${depthRadius} + 1)));\n\n const int MIN_DEPTH_BEGIN = 0;\n const int MAX_DEPTH_END = ${this.depth};\n\n float norm = 0.0;\n for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {\n if (k < depthBegin){\n continue;\n }\n else if (k >= depthBegin && k < depthEnd) {\n norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);\n }\n else {\n break;\n }\n }\n\n norm = float(${alpha}) * norm + float(${bias});\n\n for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){\n if (k < depthBegin){\n continue;\n }\n else if (k >= depthBegin && k < depthEnd){\n float dyi = -2.0 * float(${alpha})\n * float(${beta})\n * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)\n / norm;\n if (k == d) {\n dyi += pow(norm, -1.0 * ${beta});\n }\n if (k == coords[3]) {\n dyi *= getDy(b, r, c, d);\n result += dyi;\n }\n }\n else {\n break;\n }\n }\n }\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/LRNGrad.js\nvar lrnGrad = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x, y, dy } = inputs;\n const { depthRadius, bias, alpha, beta } = attrs;\n const program = new LRNGradProgram(x.shape, depthRadius, bias, alpha, beta);\n return backend2.runWebGLProgram(program, [x, y, dy], x.dtype);\n};\nvar LRNGradConfig2 = {\n kernelName: LRNGrad,\n backendName: \"webgl\",\n kernelFunc: lrnGrad\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Max_impl.js\nfunction maxImpl2(x, reduceShape, outShape, backend2) {\n const inSize = util_exports.sizeFromShape(reduceShape);\n const xSize = util_exports.sizeFromShape(x.shape);\n const batchSize = xSize / inSize;\n const reshapedInput = reshape4({ inputs: { x }, attrs: { shape: [batchSize, inSize] }, backend: backend2 });\n const reduced = reduce(reshapedInput, x.dtype, \"max\", backend2);\n const reshapedOutput = reshape4({ inputs: { x: reduced }, attrs: { shape: outShape }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(reshapedInput);\n backend2.disposeIntermediateTensorInfo(reduced);\n return reshapedOutput;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Max.js\nfunction max4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { reductionIndices, keepDims } = attrs;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(reductionIndices, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n const maxInputIsTransposed = permutedAxes != null;\n const shouldExecuteOnCPU = backend2.shouldExecuteOnCPU([x]);\n let maxInput = x;\n if (maxInputIsTransposed) {\n if (shouldExecuteOnCPU) {\n const xTexData = backend2.texData.get(maxInput.dataId);\n const values = xTexData.values;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[permutedAxes[i2]];\n }\n const maxInputValues = transposeImplCPU(values, x.shape, x.dtype, permutedAxes, newShape);\n maxInput = backend2.makeTensorInfo(newShape, x.dtype);\n const maxInputData = backend2.texData.get(maxInput.dataId);\n maxInputData.values = maxInputValues;\n } else {\n maxInput = transposeImpl2(x, permutedAxes, backend2);\n }\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"max\", axes, xRank);\n const [maxOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(maxInput.shape, axes);\n let outShape = maxOutShape;\n if (keepDims) {\n outShape = backend_util_exports.expandShapeToKeepDim(maxOutShape, origAxes);\n }\n let out;\n if (shouldExecuteOnCPU) {\n const xTexData = backend2.texData.get(maxInput.dataId);\n const values = xTexData.values;\n const outValues = maxImplCPU(values, util_exports.sizeFromShape(reduceShape), outShape, x.dtype);\n out = backend2.makeTensorInfo(outShape, x.dtype);\n const outData = backend2.texData.get(out.dataId);\n outData.values = outValues;\n } else {\n out = maxImpl2(maxInput, reduceShape, outShape, backend2);\n }\n if (maxInputIsTransposed) {\n backend2.disposeIntermediateTensorInfo(maxInput);\n }\n return out;\n}\nvar maxConfig2 = {\n kernelName: Max,\n backendName: \"webgl\",\n kernelFunc: max4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Maximum.js\nvar MAXIMUM = CHECK_NAN_SNIPPET2 + `\n return max(a, b);\n`;\nvar MAXIMUM_PACKED = `\n vec4 result = vec4(max(a, b));\n vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));\n ` + CHECK_NAN_SNIPPET3 + `\n return result;\n`;\nvar maximum4 = binaryKernelFunc2({\n opSnippet: MAXIMUM,\n packedOpSnippet: MAXIMUM_PACKED,\n cpuKernelImpl: maximumImplCPU\n});\nvar maximumConfig2 = {\n kernelName: Maximum,\n backendName: \"webgl\",\n kernelFunc: maximum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPool.js\nfunction maxPool3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n assertNotComplex2(x, \"maxPool\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n return identity3({ inputs: { x }, backend: backend2 });\n }\n const maxPoolProgram = new Pool2DProgram(convInfo, \"max\", false);\n return backend2.runWebGLProgram(maxPoolProgram, [x], x.dtype);\n}\nvar maxPoolConfig2 = {\n kernelName: MaxPool,\n backendName: \"webgl\",\n kernelFunc: maxPool3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPool3D.js\nfunction maxPool3d2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n const dilations = [1, 1, 1];\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode, dataFormat);\n const maxPoolProgram = new Pool3DProgram(convInfo, \"max\", false);\n return backend2.runWebGLProgram(maxPoolProgram, [x], x.dtype);\n}\nvar maxPool3DConfig2 = {\n kernelName: MaxPool3D,\n backendName: \"webgl\",\n kernelFunc: maxPool3d2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/max_pool_backprop_gpu.js\nvar MaxPool2DBackpropProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"maxPos\"];\n this.outputShape = convInfo.inShape;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationHeight = convInfo.dilationHeight;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const lastIndex = effectiveFilterHeight * effectiveFilterWidth - 1;\n this.userCode = `\n const ivec2 pads = ivec2(${padTop}, ${padLeft});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n\n ivec2 dyRCCorner = coords.yz - pads;\n int dyRCorner = dyRCCorner.x;\n int dyCCorner = dyRCCorner.y;\n\n // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${effectiveFilterWidth}; wC++) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(b, idyR, idyC, d);\n int maxPosValue = ${lastIndex} - int(getMaxPos(b, idyR, idyC, d));\n\n // Get the current value, check it against the value from the\n // position matrix.\n int curPosValue = wR * ${effectiveFilterWidth} + wC;\n float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n dotProd += dyValue * mask;\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\nvar MaxPool3DBackpropProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"maxPos\"];\n this.outputShape = convInfo.inShape;\n const strideDepth = convInfo.strideDepth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const dilationDepth = convInfo.dilationDepth;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const effectiveFilterDepth = convInfo.effectiveFilterDepth;\n const effectiveFilterHeight = convInfo.effectiveFilterHeight;\n const effectiveFilterWidth = convInfo.effectiveFilterWidth;\n const padFront = effectiveFilterDepth - 1 - convInfo.padInfo.front;\n const padTop = effectiveFilterHeight - 1 - convInfo.padInfo.top;\n const padLeft = effectiveFilterWidth - 1 - convInfo.padInfo.left;\n const lastIndex = effectiveFilterDepth * effectiveFilterHeight * effectiveFilterWidth - 1;\n this.userCode = `\n const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyDCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get\n // dx(xD, xR, xC, ch).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int wD = 0; wD < ${effectiveFilterDepth};\n wD += ${dilationDepth}) {\n float dyD = float(dyDCorner + wD) / ${strideDepth}.0;\n\n if (dyD < 0.0 || dyD >= ${convInfo.outDepth}.0 || fract(dyD) > 0.0) {\n continue;\n }\n int idyD = int(dyD);\n\n for (int wR = 0; wR < ${effectiveFilterHeight};\n wR += ${dilationHeight}) {\n float dyR = float(dyRCorner + wR) / ${strideHeight}.0;\n\n if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${effectiveFilterWidth};\n wC += ${dilationWidth}) {\n float dyC = float(dyCCorner + wC) / ${strideWidth}.0;\n\n if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n int maxPosValue = ${lastIndex} -\n int(getMaxPos(batch, idyD, idyR, idyC, ch));\n\n // Get the current value, check it against the value from the\n // position matrix.\n int curPosValue =\n wD * ${effectiveFilterHeight} * ${effectiveFilterWidth} +\n wR * ${effectiveFilterWidth} + wC;\n float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n dotProd += dyValue * mask;\n }\n }\n }\n setOutput(dotProd);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPool3DGrad.js\nfunction maxPool3DGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2 } = inputs;\n const x = input2;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = [1, 1, 1];\n const convInfo = backend_util_exports.computePool3DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n const maxPool3dPositionsProgram = new Pool3DProgram(convInfo, \"max\", true);\n const maxPool3dPositions2 = backend2.runWebGLProgram(maxPool3dPositionsProgram, [x], x.dtype);\n const maxPoolBackpropProgram = new MaxPool3DBackpropProgram(convInfo);\n const result = backend2.runWebGLProgram(maxPoolBackpropProgram, [dy, maxPool3dPositions2], x.dtype);\n backend2.disposeIntermediateTensorInfo(maxPool3dPositions2);\n return result;\n}\nvar maxPool3DGradConfig3 = {\n kernelName: MaxPool3DGrad,\n backendName: \"webgl\",\n kernelFunc: maxPool3DGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPoolGrad.js\nfunction maxPoolGrad3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, input: input2, output } = inputs;\n const x = input2;\n assertNotComplex2([input2, output], \"maxPoolGrad\");\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const getPositions = true;\n const maxPoolPositionsProgram = new Pool2DProgram(convInfo, \"max\", getPositions);\n const maxPoolPositions2 = backend2.runWebGLProgram(maxPoolPositionsProgram, [x], x.dtype);\n const maxPoolBackPropProgram = new MaxPool2DBackpropProgram(convInfo);\n const result = backend2.runWebGLProgram(maxPoolBackPropProgram, [dy, maxPoolPositions2], x.dtype);\n backend2.disposeIntermediateTensorInfo(maxPoolPositions2);\n return result;\n}\nvar maxPoolGradConfig3 = {\n kernelName: MaxPoolGrad,\n backendName: \"webgl\",\n kernelFunc: maxPoolGrad3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPoolWithArgmax_impl.js\nfunction maxPoolWithArgmaxImpl2(x, includeBatchInIndex, convInfo, backend2) {\n let program = new Pool2DProgram(convInfo, \"max\", false);\n const poolOutput = backend2.runWebGLProgram(program, [x], \"float32\");\n program = new Pool2DProgram(convInfo, \"max\", true, true, includeBatchInIndex);\n const indexOutput = backend2.runWebGLProgram(program, [x], \"float32\");\n return [poolOutput, indexOutput];\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MaxPoolWithArgmax.js\nvar maxPoolWithArgmaxConfig2 = {\n kernelName: MaxPoolWithArgmax,\n backendName: \"webgl\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, includeBatchInIndex } = attrs;\n const webglBackend = backend2;\n util_exports.assert(x.shape.length === 4, () => `Error in maxPool: input must be rank 4 but got rank ${x.shape.length}.`);\n const dilations = [1, 1];\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, dilations), () => `Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3);\n const [result, indexes] = maxPoolWithArgmaxImpl2(x, includeBatchInIndex, convInfo, webglBackend);\n return [result, indexes];\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Mean_impl.js\nfunction meanImpl(x, reduceShape, outShape, backend2) {\n const inSize = util_exports.sizeFromShape(reduceShape);\n const xSize = util_exports.sizeFromShape(x.shape);\n const batchSize = xSize / inSize;\n const reshapedInput = reshape4({ inputs: { x }, attrs: { shape: [batchSize, inSize] }, backend: backend2 });\n const reduced = reduce(reshapedInput, \"float32\", \"mean\", backend2);\n const reshapedOutput = reshape4({ inputs: { x: reduced }, attrs: { shape: outShape }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(reshapedInput);\n backend2.disposeIntermediateTensorInfo(reduced);\n return reshapedOutput;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Mean.js\nvar meanConfig2 = {\n kernelName: Mean,\n backendName: \"webgl\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n const { keepDims, axis } = attrs;\n const webglBackend = backend2;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n const meanInputIsTransposed = permutedAxes != null;\n const shouldExecuteOnCPU = webglBackend.shouldExecuteOnCPU([x]);\n const intermediates = [];\n let meanInput = x;\n if (meanInputIsTransposed) {\n if (shouldExecuteOnCPU) {\n const xTexData = webglBackend.texData.get(meanInput.dataId);\n const values = xTexData.values;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[permutedAxes[i2]];\n }\n const meanInputValues = transposeImplCPU(values, x.shape, x.dtype, permutedAxes, newShape);\n meanInput = webglBackend.makeTensorInfo(newShape, x.dtype);\n const meanInputData = webglBackend.texData.get(meanInput.dataId);\n meanInputData.values = meanInputValues;\n } else {\n meanInput = transposeImpl2(x, permutedAxes, webglBackend);\n }\n intermediates.push(meanInput);\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"sum\", axes, xRank);\n const [meanOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(meanInput.shape, axes);\n let outShape = meanOutShape;\n if (keepDims) {\n outShape = backend_util_exports.expandShapeToKeepDim(meanOutShape, origAxes);\n }\n const out = meanImpl(meanInput, reduceShape, outShape, webglBackend);\n for (const i2 of intermediates) {\n webglBackend.disposeIntermediateTensorInfo(i2);\n }\n return out;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Min.js\nfunction min4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const xRank = x.shape.length;\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let permutedX = x;\n if (permutedAxes != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"min\", axes, xRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n const reduced = reduce(a2D, a2D.dtype, \"min\", backend2);\n let res;\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(outShape, origAxes);\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: newShape } });\n } else {\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n }\n backend2.disposeIntermediateTensorInfo(a2D);\n backend2.disposeIntermediateTensorInfo(reduced);\n if (permutedAxes != null) {\n backend2.disposeIntermediateTensorInfo(permutedX);\n }\n return res;\n}\nvar minConfig2 = {\n kernelName: Min,\n backendName: \"webgl\",\n kernelFunc: min4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Minimum.js\nvar MINIMUM = CHECK_NAN_SNIPPET2 + `\n return min(a, b);\n`;\nvar MINIMUM_PACKED = `\n vec4 result = vec4(min(a, b));\n vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));\n ` + CHECK_NAN_SNIPPET3 + `\n return result;\n`;\nvar minimum4 = binaryKernelFunc2({\n opSnippet: MINIMUM,\n packedOpSnippet: MINIMUM_PACKED,\n cpuKernelImpl: minimumImplCPU\n});\nvar minimumConfig2 = {\n kernelName: Minimum,\n backendName: \"webgl\",\n kernelFunc: minimum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/mirror_pad_gpu.js\nvar MirrorPadProgram = class {\n constructor(xShape, paddings, mode) {\n this.variableNames = [\"x\"];\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n const rank = xShape.length;\n const dtype = getCoordsDataType(rank);\n const start = paddings.map((p2) => p2[0]).join(\",\");\n const end = paddings.map((p2, i2) => p2[0] + xShape[i2]).join(\",\");\n const unpackedCoords = [\"coords[0]\", \"coords[1]\", \"coords[2]\", \"coords[3]\"].slice(0, rank);\n const offset = mode === \"reflect\" ? 0 : 1;\n if (rank === 1) {\n this.userCode = `\n int start = ${start};\n int end = ${end};\n\n void main() {\n int outC = getOutputCoords();\n if (outC < start) {\n outC = start * 2 - outC - ${offset};\n } else if(outC >= end) {\n outC = (end - 1) * 2 - outC + ${offset};\n }\n setOutput(getX(outC - start));\n }\n `;\n return;\n }\n this.userCode = `\n ${dtype} start = ${dtype}(${start});\n ${dtype} end = ${dtype}(${end});\n\n void main() {\n ${dtype} outC = getOutputCoords();\n for (int i = 0; i < ${rank}; i++) {\n if (outC[i] < start[i]) {\n outC[i] = start[i] * 2 - outC[i] - ${offset};\n } else if(outC[i] >= end[i]) {\n outC[i] = (end[i] - 1) * 2 - outC[i] + ${offset};\n }\n }\n ${dtype} coords = outC - start;\n setOutput(getX(${unpackedCoords}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/mirror_pad_packed_gpu.js\nvar MirrorPadPackedProgram = class {\n constructor(xShape, paddings, mode) {\n this.variableNames = [\"x\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n const rank = xShape.length;\n const dtype = getCoordsDataType(rank);\n const start = paddings.map((p2) => p2[0]).join(\",\");\n const end = paddings.map((p2, i2) => p2[0] + xShape[i2]).join(\",\");\n const coords3 = getChannels(\"rc\", rank);\n const source = getChannels(\"source\", rank);\n const cLimit = `${coords3[rank - 1]} < ${this.outputShape[rank - 1]}`;\n const innerDims = rank === 1 ? \"source\" : `vec2(${source.slice(-2).join()})`;\n const offset = mode === \"reflect\" ? 0 : 1;\n let mainLoop = \"\";\n if (rank === 1) {\n const padSetup = `\n ${dtype} source = rc;\n if (source < start) {\n source = start * 2 - source - ${offset};\n } else if (source >= end) {\n source = (end - 1) * 2 - source + ${offset};\n }\n source -= start;\n `;\n mainLoop = `\n ${dtype} rc = outputLoc;\n ${padSetup}\n result[0] = getChannel(getX(${source.join()}), ${innerDims});\n ${coords3[rank - 1]} += 1;\n if(${cLimit}) {\n ${padSetup}\n result[1] = getChannel(getX(${source.join()}), ${innerDims});\n }\n `;\n } else {\n const padSetup = `\n ${dtype} source = rc;\n ${dtype} lt = ${dtype}(lessThan(source, start));\n ${dtype} gte = ${dtype}(greaterThanEqual(source, end));\n ${dtype} orig = 1 - (lt + gte);\n source = orig * source +\n lt * (start * 2 - source - ${offset}) +\n gte * ((end - 1) * 2 - source + ${offset});\n source -= start;\n `;\n mainLoop = `\n ${dtype} rc = outputLoc;\n ${padSetup}\n result[0] = getChannel(getX(${source.join()}), ${innerDims});\n ${coords3[rank - 1]} += 1;\n if(${cLimit}) {\n ${padSetup}\n result[1] = getChannel(getX(${source.join()}), ${innerDims});\n }\n rc = outputLoc;\n ${coords3[rank - 2]} += 1;\n if(${coords3[rank - 2]} < ${this.outputShape[rank - 2]}) {\n ${padSetup}\n result[2] = getChannel(getX(${source.join()}), ${innerDims});\n ${coords3[rank - 1]} += 1;\n if(${cLimit}) {\n ${padSetup}\n result[3] = getChannel(getX(${source.join()}), ${innerDims});\n }\n }\n `;\n }\n this.userCode = `\n const ${dtype} start = ${dtype}(${start});\n const ${dtype} end = ${dtype}(${end});\n\n void main() {\n ${dtype} outputLoc = getOutputCoords();\n vec4 result = vec4(0.);\n ${mainLoop}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/MirrorPad.js\nvar mirrorPadKernelFunc = ({ inputs, backend: backend2, attrs }) => {\n const { x } = inputs;\n const { paddings, mode } = attrs;\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new MirrorPadPackedProgram(x.shape, paddings, mode) : new MirrorPadProgram(x.shape, paddings, mode);\n const output = backend2.runWebGLProgram(program, [x], x.dtype);\n return output;\n};\nvar mirrorPadConfig2 = {\n kernelName: MirrorPad,\n backendName: \"webgl\",\n kernelFunc: mirrorPadKernelFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Mod.js\nvar MOD = `if (b == 0.0) return NAN;\n return mod(a, b);`;\nvar MOD_PACKED = `\n vec4 result = mod(a, b);\n vec4 isNaN = vec4(equal(b, vec4(0.0)));\n ` + CHECK_NAN_SNIPPET3 + `\n return result;\n`;\nvar mod3 = binaryKernelFunc2({\n opSnippet: MOD,\n packedOpSnippet: MOD_PACKED\n});\nvar modConfig2 = {\n kernelName: Mod,\n backendName: \"webgl\",\n kernelFunc: mod3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/multinomial_gpu.js\nvar MultinomialProgram = class {\n constructor(batchSize, numOutcomes, numSamples) {\n this.variableNames = [\"probs\"];\n this.customUniforms = [{ name: \"seed\", type: \"float\" }];\n this.outputShape = [batchSize, numSamples];\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n\n float r = random(seed);\n float cdf = 0.0;\n\n for (int i = 0; i < ${numOutcomes - 1}; i++) {\n cdf += getProbs(batch, i);\n\n if (r < cdf) {\n setOutput(float(i));\n return;\n }\n }\n\n // If no other event happened, last event happened.\n setOutput(float(${numOutcomes - 1}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/RealDiv.js\nvar DIV = `\nif (a == b) {\n return 1.0;\n};\nreturn a / b;`;\nvar DIV_PACKED = `\n // vec4 one = vec4(equal(a, b));\n // return one + (vec4(1.0) - one) * a / b;\n vec4 result = a / b;\n if(a.x == b.x) {\n result.x = 1.;\n }\n if(a.y == b.y) {\n result.y = 1.;\n }\n if(a.z == b.z) {\n result.z = 1.;\n }\n if(a.w == b.w) {\n result.w = 1.;\n }\n\n return result;\n`;\nvar realDiv = binaryKernelFunc2({ opSnippet: DIV, packedOpSnippet: DIV_PACKED, checkOutOfBounds: true });\nvar realDivConfig2 = {\n kernelName: RealDiv,\n backendName: \"webgl\",\n kernelFunc: realDiv\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sub.js\nvar SUB = \"return a - b;\";\nvar sub3 = binaryKernelFunc2({\n opSnippet: SUB,\n packedOpSnippet: SUB,\n supportsComplex: true,\n cpuKernelImpl: subImplCPU\n});\nvar subConfig2 = {\n kernelName: Sub,\n backendName: \"webgl\",\n kernelFunc: sub3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Softmax.js\nfunction softmax4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { dim } = attrs;\n const axes = util_exports.parseAxisParam([dim], logits.shape);\n const maxLogit = max4({\n inputs: { x: logits },\n backend: backend2,\n attrs: { reductionIndices: axes, keepDims: false }\n });\n const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes);\n const maxLogitsReshaped = reshape4({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } });\n const a = sub3({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 });\n const b = exp3({ inputs: { x: a }, backend: backend2 });\n const sumExp = sum4({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } });\n const sumExpReshaped = reshape4({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } });\n const res = realDiv({ inputs: { a: b, b: sumExpReshaped }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(maxLogit);\n backend2.disposeIntermediateTensorInfo(maxLogitsReshaped);\n backend2.disposeIntermediateTensorInfo(a);\n backend2.disposeIntermediateTensorInfo(b);\n backend2.disposeIntermediateTensorInfo(sumExp);\n backend2.disposeIntermediateTensorInfo(sumExpReshaped);\n return res;\n}\nvar softmaxConfig2 = {\n kernelName: Softmax,\n backendName: \"webgl\",\n kernelFunc: softmax4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Multinomial.js\nfunction multinomial3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { numSamples, seed, normalized } = attrs;\n const probs = normalized ? logits : softmax4({ inputs: { logits }, backend: backend2, attrs: { dim: logits.shape.length - 1 } });\n const batchSize = probs.shape[0];\n const numOutcomes = probs.shape[1];\n const program = new MultinomialProgram(batchSize, numOutcomes, numSamples);\n const customValues = [[seed]];\n const res = backend2.runWebGLProgram(program, [probs], \"int32\", customValues);\n if (!normalized) {\n backend2.disposeIntermediateTensorInfo(probs);\n }\n return res;\n}\nvar multinomialConfig2 = {\n kernelName: Multinomial,\n backendName: \"webgl\",\n kernelFunc: multinomial3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Neg.js\nvar NEG = CHECK_NAN_SNIPPET + `\n return -x;\n`;\nvar NEG_PACKED = `\n vec4 result = -x;\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nfunction neg3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (backend2.shouldExecuteOnCPU([x])) {\n const xData = backend2.texData.get(x.dataId);\n const [outValues, newShape] = negImplCPU(xData.values, x.shape, x.dtype);\n return backend2.makeTensorInfo(newShape, x.dtype, outValues);\n }\n let program;\n if (env().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")) {\n program = new UnaryOpPackedProgram(x.shape, NEG_PACKED);\n } else {\n program = new UnaryOpProgram(x.shape, NEG);\n }\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar negConfig2 = {\n kernelName: Neg,\n backendName: \"webgl\",\n kernelFunc: neg3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/NonMaxSuppressionV3.js\nvar nonMaxSuppressionV3Impl3 = kernel_impls_exports.nonMaxSuppressionV3Impl;\nfunction nonMaxSuppressionV32(args) {\n backend_util_exports.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const { selectedIndices } = nonMaxSuppressionV3Impl3(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold);\n return backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices));\n}\nvar nonMaxSuppressionV3Config2 = {\n kernelName: NonMaxSuppressionV3,\n backendName: \"webgl\",\n kernelFunc: nonMaxSuppressionV32\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/NonMaxSuppressionV4.js\nvar nonMaxSuppressionV4Impl3 = kernel_impls_exports.nonMaxSuppressionV4Impl;\nfunction nonMaxSuppressionV42(args) {\n backend_util_exports.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const { selectedIndices, validOutputs } = nonMaxSuppressionV4Impl3(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([], \"int32\", new Int32Array([validOutputs]))\n ];\n}\nvar nonMaxSuppressionV4Config2 = {\n kernelName: NonMaxSuppressionV4,\n backendName: \"webgl\",\n kernelFunc: nonMaxSuppressionV42\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/NonMaxSuppressionV5.js\nvar nonMaxSuppressionV5Impl3 = kernel_impls_exports.nonMaxSuppressionV5Impl;\nfunction nonMaxSuppressionV52(args) {\n backend_util_exports.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const maxOutputSizeVal = maxOutputSize;\n const iouThresholdVal = iouThreshold;\n const scoreThresholdVal = scoreThreshold;\n const softNmsSigmaVal = softNmsSigma;\n const { selectedIndices, selectedScores } = nonMaxSuppressionV5Impl3(boxesVals, scoresVals, maxOutputSizeVal, iouThresholdVal, scoreThresholdVal, softNmsSigmaVal);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([selectedScores.length], \"float32\", new Float32Array(selectedScores))\n ];\n}\nvar nonMaxSuppressionV5Config2 = {\n kernelName: NonMaxSuppressionV5,\n backendName: \"webgl\",\n kernelFunc: nonMaxSuppressionV52\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/onehot_gpu.js\nvar OneHotProgram = class {\n constructor(numIndices, depth, onValue, offValue) {\n this.variableNames = [\"indices\"];\n this.outputShape = [numIndices, depth];\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int index = round(getIndices(coords.x));\n setOutput(mix(float(${offValue}), float(${onValue}),\n float(index == coords.y)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/OneHot.js\nvar oneHot3 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { indices } = inputs;\n const { dtype, depth, onValue, offValue } = attrs;\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const program = new OneHotProgram(indicesSize, depth, onValue, offValue);\n const reshaped = reshape4({ inputs: { x: indices }, backend: backend2, attrs: { shape: [indicesSize] } });\n const result = backend2.runWebGLProgram(program, [reshaped], dtype);\n backend2.disposeIntermediateTensorInfo(reshaped);\n const outShape = [...indices.shape, depth];\n const out = reshape4({ inputs: { x: result }, backend: backend2, attrs: { shape: outShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return out;\n};\nvar oneHotConfig2 = {\n kernelName: OneHot,\n backendName: \"webgl\",\n kernelFunc: oneHot3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ZerosLike.js\nfunction zerosLike3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"complex64\") {\n const realPart = real3({ inputs: { input: x }, backend: backend2 });\n const r2 = zerosLike3({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag3({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike3({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex3({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(r2);\n backend2.disposeIntermediateTensorInfo(imagPart);\n backend2.disposeIntermediateTensorInfo(i2);\n return result;\n } else {\n return fill3({\n attrs: {\n shape: x.shape,\n dtype: x.dtype,\n value: x.dtype === \"string\" ? \"\" : 0\n },\n backend: backend2\n });\n }\n}\nvar zerosLikeConfig2 = {\n kernelName: ZerosLike,\n backendName: \"webgl\",\n kernelFunc: zerosLike3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/OnesLike.js\nfunction onesLike3(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"string\") {\n throw new Error(\"onesLike is not supported under string dtype\");\n } else if (x.dtype === \"complex64\") {\n const realPart = real3({ inputs: { input: x }, backend: backend2 });\n const r2 = onesLike3({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag3({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike3({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex3({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeIntermediateTensorInfo(realPart);\n backend2.disposeIntermediateTensorInfo(r2);\n backend2.disposeIntermediateTensorInfo(imagPart);\n backend2.disposeIntermediateTensorInfo(i2);\n return result;\n } else {\n return fill3({ attrs: { shape: x.shape, dtype: x.dtype, value: 1 }, backend: backend2 });\n }\n}\nvar onesLikeConfig2 = {\n kernelName: OnesLike,\n backendName: \"webgl\",\n kernelFunc: onesLike3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Pack.js\nfunction pack2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n if (inputs.length === 1) {\n return expandDims4({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } });\n }\n const shape = inputs[0].shape;\n const dtype = inputs[0].dtype;\n inputs.forEach((t2) => {\n util_exports.assertShapesMatch(shape, t2.shape, \"All tensors passed to stack must have matching shapes\");\n util_exports.assert(dtype === t2.dtype, () => \"All tensors passed to stack must have matching dtypes\");\n });\n const intermediateTensorInfos = [];\n const expandedTensors = inputs.map((t2) => {\n const expandedT = expandDims4({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } });\n intermediateTensorInfos.push(expandedT);\n return expandedT;\n });\n const result = concat3({ inputs: expandedTensors, backend: backend2, attrs: { axis } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar packConfig2 = {\n kernelName: Pack,\n backendName: \"webgl\",\n kernelFunc: pack2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/pad_gpu.js\nvar PadProgram = class {\n constructor(xShape, paddings, constantValue) {\n this.variableNames = [\"x\"];\n this.customUniforms = [{ name: \"value\", type: \"float\" }];\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n const rank = xShape.length;\n const type = getCoordsDataType(rank);\n const start = paddings.map((p2) => p2[0]).join(\",\");\n const end = paddings.map((p2, i2) => p2[0] + xShape[i2]).join(\",\");\n const unpackedCoords = [\"coords[0]\", \"coords[1]\", \"coords[2]\", \"coords[3]\"].slice(0, rank);\n if (rank === 1) {\n this.userCode = `\n int start = ${start};\n int end = ${end};\n\n void main() {\n int outC = getOutputCoords();\n if (outC < start || outC >= end) {\n setOutput(value);\n } else {\n setOutput(getX(outC - start));\n }\n }\n `;\n return;\n }\n this.userCode = `\n ${type} start = ${type}(${start});\n ${type} end = ${type}(${end});\n\n void main() {\n ${type} outC = getOutputCoords();\n if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {\n setOutput(value);\n } else {\n ${type} coords = outC - start;\n setOutput(getX(${unpackedCoords}));\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/pad_packed_gpu.js\nvar PadPackedProgram = class {\n constructor(xShape, paddings, constantValue) {\n this.variableNames = [\"x\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.customUniforms = [{ name: \"value\", type: \"float\" }];\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n const rank = xShape.length;\n const dtype = getCoordsDataType(rank);\n const start = paddings.map((p2) => p2[0]).join(\",\");\n const end = paddings.map((p2, i2) => p2[0] + xShape[i2]).join(\",\");\n const coords3 = getChannels(\"rc\", rank);\n const source = getChannels(\"source\", rank);\n const cLimit = `${coords3[rank - 1]} < ${this.outputShape[rank - 1]}`;\n const innerDims = rank === 1 ? \"source\" : `vec2(${source.slice(-2).join()})`;\n const componentSetup = [\n `${dtype} rc = outputLoc;`,\n `${coords3[rank - 1]} += 1;\n if(${cLimit}) {\n `,\n rank === 1 ? \"\" : `}\n rc = outputLoc;\n ${coords3[rank - 2]} += 1;\n if(${coords3[rank - 2]} < ${this.outputShape[rank - 2]}) {`,\n rank === 1 ? \"\" : ` ${coords3[rank - 1]} += 1;\n if(${cLimit}) {`\n ];\n const paddingArea = rank === 1 ? \"rc < start || rc >= end\" : \"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))\";\n let mainLoop = \"\";\n for (let i2 = 0, j = rank === 1 ? 2 : 4; i2 < j; i2++) {\n mainLoop += `\n ${componentSetup[i2]}\n if (${paddingArea}) {\n result[${i2}] = float(value);\n } else {\n ${dtype} source = rc - start;\n result[${i2}] = getChannel(getX(${source.join()}), ${innerDims});\n }\n `;\n }\n mainLoop += rank === 1 ? `} ` : `}}`;\n this.userCode = `\n const ${dtype} start = ${dtype}(${start});\n const ${dtype} end = ${dtype}(${end});\n\n void main() {\n ${dtype} outputLoc = getOutputCoords();\n vec4 result = vec4(0.);\n ${mainLoop}\n setOutput(result);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/PadV2.js\nvar padV22 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { paddings, constantValue } = attrs;\n if (util_exports.sizeFromShape(x.shape) === 0) {\n const outputShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n return fill3({\n backend: backend2,\n attrs: { shape: outputShape, value: constantValue, dtype: x.dtype }\n });\n }\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new PadPackedProgram(x.shape, paddings, constantValue) : new PadProgram(x.shape, paddings, constantValue);\n const customValues = [[constantValue]];\n return backend2.runWebGLProgram(program, [x], x.dtype, customValues);\n};\nvar padV2Config2 = {\n kernelName: PadV2,\n backendName: \"webgl\",\n kernelFunc: padV22\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Pow.js\nvar POW = `\n if(a < 0.0 && floor(b) < b){\n return NAN;\n }\n if (b == 0.0) {\n return 1.0;\n }\n return (round(mod(b, 2.0)) != 1) ?\n pow(abs(a), b) : sign(a) * pow(abs(a), b);\n`;\nvar POW_PACKED = `\n // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.\n vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));\n vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);\n vec4 result = multiplier * pow(abs(a), b);\n\n // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS\n bvec4 isExpZero = equal(b, vec4(0.0));\n result.r = isExpZero.r ? 1.0 : result.r;\n result.g = isExpZero.g ? 1.0 : result.g;\n result.b = isExpZero.b ? 1.0 : result.b;\n result.a = isExpZero.a ? 1.0 : result.a;\n\n vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));\n ` + CHECK_NAN_SNIPPET3 + `\n return result;\n`;\nvar pow3 = binaryKernelFunc2({ opSnippet: POW, packedOpSnippet: POW_PACKED });\nvar powConfig2 = {\n kernelName: Pow,\n backendName: \"webgl\",\n kernelFunc: pow3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Prod.js\nfunction prod3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n const xRank = x.shape.length;\n const toDispose = [];\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let permutedX = x;\n if (permutedAxes != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n toDispose.push(permutedX);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"prod\", axes, xRank);\n let res;\n if (backend2.shouldExecuteOnCPU([permutedX])) {\n const xVals = backend2.texData.get(permutedX.dataId).values;\n const { outVals, outShape, outDtype } = prodImplCPU(permutedX.shape, permutedX.dtype, xVals, axes);\n res = backend2.makeTensorInfo(outShape, outDtype, outVals);\n } else {\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(permutedX.shape, axes);\n const inSize = util_exports.sizeFromShape(reduceShape);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n const outputDType = sumOutType(x.dtype);\n const reduced = reduce(a2D, outputDType, \"prod\", backend2);\n res = reshape4({ inputs: { x: reduced }, backend: backend2, attrs: { shape: outShape } });\n toDispose.push(a2D);\n toDispose.push(reduced);\n }\n if (keepDims) {\n toDispose.push(res);\n const newShape = backend_util_exports.expandShapeToKeepDim(res.shape, origAxes);\n res = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: newShape } });\n }\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return res;\n}\nvar prodConfig2 = {\n kernelName: Prod,\n backendName: \"webgl\",\n kernelFunc: prod3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/RaggedTensorToTensor.js\nfunction raggedTensorToTensor3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { shape, values, defaultValue, rowPartitionTensors } = inputs;\n const { rowPartitionTypes } = attrs;\n const $shape = backend2.readSync(shape.dataId);\n const $values = backend2.readSync(values.dataId);\n const $defaultValue = backend2.readSync(defaultValue.dataId);\n const $rowPartitionValues = rowPartitionTensors.map((t2) => backend2.readSync(t2.dataId));\n const rowPartitionValuesShapes = rowPartitionTensors.map((t2) => t2.shape);\n const [outputShape, output] = raggedTensorToTensorImplCPU($shape, shape.shape, $values, values.shape, values.dtype, $defaultValue, defaultValue.shape, $rowPartitionValues, rowPartitionValuesShapes, rowPartitionTypes);\n return backend2.makeTensorInfo(outputShape, values.dtype, output);\n}\nvar raggedTensorToTensorConfig2 = {\n kernelName: RaggedTensorToTensor,\n backendName: \"webgl\",\n kernelFunc: raggedTensorToTensor3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Range.js\nvar range4 = (args) => {\n const { backend: backend2, attrs } = args;\n const { start, stop, step: step5, dtype } = attrs;\n const values = rangeImplCPU(start, stop, step5, dtype);\n return backend2.makeTensorInfo([values.length], dtype, values);\n};\nvar rangeConfig2 = {\n kernelName: Range,\n backendName: \"webgl\",\n kernelFunc: range4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Reciprocal.js\nvar RECIPROCAL = `return 1.0 / x;`;\nvar reciprocal3 = unaryKernelFunc2({ opSnippet: RECIPROCAL });\nvar reciprocalConfig2 = {\n kernelName: Reciprocal,\n backendName: \"webgl\",\n kernelFunc: reciprocal3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Relu.js\nvar RELU3 = CHECK_NAN_SNIPPET + `\n return (x < 0.0) ? 0.0 : x;\n`;\nvar RELU_PACKED = `\n vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar relu3 = unaryKernelFunc2({ opSnippet: RELU3, packedOpSnippet: RELU_PACKED });\nvar reluConfig2 = {\n kernelName: Relu,\n backendName: \"webgl\",\n kernelFunc: relu3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Relu6.js\nvar RELU63 = CHECK_NAN_SNIPPET + `\n return (x < 0.0) ? 0.0 : min(6.0, x);\n`;\nvar RELU6_PACKED = `\n vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar relu63 = unaryKernelFunc2({ opSnippet: RELU63, packedOpSnippet: RELU6_PACKED });\nvar relu6Config2 = {\n kernelName: Relu6,\n backendName: \"webgl\",\n kernelFunc: relu63\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_bilinear_gpu.js\nvar ResizeBilinearProgram = class {\n constructor(inputShape, newHeight, newWidth, alignCorners, halfPixelCenters) {\n this.variableNames = [\"A\"];\n this.outputShape = [];\n const [batch, oldHeight, oldWidth, depth] = inputShape;\n this.outputShape = [batch, newHeight, newWidth, depth];\n const effectiveInSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n let sourceFracIndexRC;\n if (halfPixelCenters) {\n sourceFracIndexRC = `(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)`;\n } else {\n sourceFracIndexRC = `vec2(yRC) * effectiveInputOverOutputRatioRC`;\n }\n this.userCode = `\n const vec2 effectiveInputOverOutputRatioRC = vec2(\n ${effectiveInSize[0] / effectiveOutSize[0]},\n ${effectiveInSize[1] / effectiveOutSize[1]});\n const vec2 inputShapeRC = vec2(${oldHeight}.0, ${oldWidth}.0);\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n ivec2 yRC = coords.yz;\n\n // Fractional source index.\n vec2 sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the four integer indices.\n ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));\n ivec2 sourceCeilRC = ivec2(\n min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);\n float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);\n float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);\n float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);\n\n vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);\n\n float top = topLeft + (topRight - topLeft) * fracRC.y;\n float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;\n float newValue = top + (bottom - top) * fracRC.x;\n\n setOutput(newValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_bilinear_packed_gpu.js\nvar ResizeBilinearPackedProgram = class {\n constructor(inputShape, newHeight, newWidth, alignCorners, halfPixelCenters) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = [];\n const [batch, oldHeight, oldWidth, depth] = inputShape;\n this.outputShape = [batch, newHeight, newWidth, depth];\n const effectiveInSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n let sourceFracIndexRC;\n if (halfPixelCenters) {\n sourceFracIndexRC = `(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)`;\n } else {\n sourceFracIndexRC = `vec3(yRC) * effectiveInputOverOutputRatioRC`;\n }\n this.userCode = `\n const vec3 effectiveInputOverOutputRatioRC = vec3(\n ${effectiveInSize[0] / effectiveOutSize[0]},\n ${effectiveInSize[1] / effectiveOutSize[1]},\n ${effectiveInSize[1] / effectiveOutSize[1]});\n const vec3 inputShapeRC = vec3(${oldHeight}.0, ${oldWidth}.0,\n ${oldWidth}.0);\n\n float getAValue(int b, int r, int c, int d) {\n return getChannel(getA(b, r, c, d), vec2(c, d));\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n // Calculate values for next column in yRC.z.\n ivec3 yRC = coords.yzz + ivec3(0, 0, 1);\n\n // Fractional source index.\n vec3 sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the four integer indices.\n ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));\n ivec3 sourceCeilRC = ivec3(\n min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n // Should we calculate next column and row elements in 2x2 packed cell.\n bool hasNextCol = d < ${depth - 1};\n bool hasNextRow = coords.z < ${newWidth - 1};\n\n // In parallel, construct four corners for all four components in\n // packed 2x2 cell.\n vec4 topLeft = vec4(\n getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),\n hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n vec4 bottomLeft = vec4(\n getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),\n hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n vec4 topRight = vec4(\n getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),\n hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n vec4 bottomRight = vec4(\n getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),\n hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);\n\n vec4 top = mix(topLeft, topRight, fracRC.yyzz);\n vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);\n vec4 newValue = mix(top, bottom, fracRC.x);\n\n setOutput(newValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ResizeBilinear.js\nfunction resizeBilinear3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const program = env().getBool(\"WEBGL_PACK_IMAGE_OPERATIONS\") ? new ResizeBilinearPackedProgram(images.shape, newHeight, newWidth, alignCorners, halfPixelCenters) : new ResizeBilinearProgram(images.shape, newHeight, newWidth, alignCorners, halfPixelCenters);\n return backend2.runWebGLProgram(program, [images], \"float32\");\n}\nvar resizeBilinearConfig2 = {\n kernelName: ResizeBilinear,\n backendName: \"webgl\",\n kernelFunc: resizeBilinear3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_bilinear_backprop_gpu.js\nvar ResizeBilinearBackpropProgram = class {\n constructor(dyShape, inputShape, alignCorners) {\n this.variableNames = [\"dy\"];\n this.outputShape = [];\n this.outputShape = inputShape;\n const [, xHeight, xWidth] = inputShape;\n const [, yHeight, yWidth] = dyShape;\n const effectiveXSize = [\n alignCorners && yHeight > 1 ? xHeight - 1 : xHeight,\n alignCorners && yWidth > 1 ? xWidth - 1 : xWidth\n ];\n const effectiveYSize = [\n alignCorners && yHeight > 1 ? yHeight - 1 : yHeight,\n alignCorners && yWidth > 1 ? yWidth - 1 : yWidth\n ];\n const heightScale = effectiveXSize[0] / effectiveYSize[0];\n const widthScale = effectiveXSize[1] / effectiveYSize[1];\n const invHeightScale = 1 / heightScale;\n const invWidthScale = 1 / widthScale;\n const winHeight = Math.ceil(invHeightScale) * 2 + 2;\n const winWidth = Math.ceil(invWidthScale) * 2 + 2;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n int r = coords[1];\n int c = coords[2];\n\n float accumulator = 0.0;\n\n const float heightScale = float(${heightScale});\n const float widthScale = float(${widthScale});\n\n const float invHeightScale = float(${invHeightScale});\n const float invWidthScale = float(${invWidthScale});\n\n const int winHeight = int(${winHeight});\n const int winWidth = int(${winWidth});\n\n // Compute bounds for where in dy we will look\n float startRLerp = floor(float(r) * invHeightScale);\n int startDyR = int(startRLerp - float(winHeight / 2));\n\n float startCLerp = floor(float(c) * invWidthScale);\n int startDyC = int(startCLerp - float(winWidth / 2));\n\n // Loop over dy\n for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n int dyR = dyROffset + startDyR;\n\n // Guard against the window exceeding the bounds of dy\n if (dyR < 0 || dyR >= ${yHeight}) {\n continue;\n }\n\n for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n int dyC = dyCOffset + startDyC;\n\n // Guard against the window exceeding the bounds of dy\n if (dyC < 0 || dyC >= ${yWidth}) {\n continue;\n }\n\n float dxR = float(dyR) * heightScale;\n int topDxRIndex = int(floor(dxR));\n int bottomDxRIndex = int(min(ceil(dxR), ${xHeight - 1}.0));\n float dxRLerp = dxR - float(topDxRIndex);\n float inverseDxRLerp = 1.0 - dxRLerp;\n\n float dxC = float(dyC) * widthScale;\n int leftDxCIndex = int(floor(dxC));\n int rightDxCIndex = int(min(ceil(dxC), ${xWidth - 1}.0));\n float dxCLerp = dxC - float(leftDxCIndex);\n float inverseDxCLerp = 1.0 - dxCLerp;\n\n if (r == topDxRIndex && c == leftDxCIndex) {\n // topLeft\n accumulator +=\n getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;\n }\n\n if (r == topDxRIndex && c == rightDxCIndex) {\n // topRight\n accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;\n }\n\n if (r == bottomDxRIndex && c == leftDxCIndex) {\n // bottomLeft\n accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;\n }\n\n if (r == bottomDxRIndex && c == rightDxCIndex) {\n // bottomRight\n accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;\n }\n }\n }\n // End loop over dy\n\n setOutput(accumulator);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ResizeBilinearGrad.js\nfunction resizeBilinearGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images, dy } = inputs;\n const { alignCorners } = attrs;\n const program = new ResizeBilinearBackpropProgram(dy.shape, images.shape, alignCorners);\n return backend2.runWebGLProgram(program, [dy], dy.dtype);\n}\nvar resizeBilinearGradConfig3 = {\n kernelName: ResizeBilinearGrad,\n backendName: \"webgl\",\n kernelFunc: resizeBilinearGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_nearest_neighbor_gpu.js\nvar ResizeNearestNeighborProgram = class {\n constructor(inputShape, newHeight, newWidth, alignCorners, halfPixelCenters) {\n this.variableNames = [\"A\"];\n this.outputShape = [];\n const [batch, oldHeight, oldWidth, depth] = inputShape;\n this.outputShape = [batch, newHeight, newWidth, depth];\n const effectiveInSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n const roundBase = alignCorners ? \"0.5\" : \"0.0\";\n let sourceFracIndexRC;\n if (halfPixelCenters) {\n sourceFracIndexRC = `max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))`;\n } else {\n sourceFracIndexRC = `vec2(yRC) * effectiveInputOverOutputRatioRC`;\n }\n this.userCode = `\n const vec2 effectiveInputOverOutputRatioRC = vec2(\n ${effectiveInSize[0] / effectiveOutSize[0]},\n ${effectiveInSize[1] / effectiveOutSize[1]});\n const vec2 inputShapeRC = vec2(${oldHeight}.0, ${oldWidth}.0);\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n ivec2 yRC = coords.yz;\n\n // Fractional source index.\n vec2 sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the coordinators of nearest neighbor point.\n ivec2 sourceNearestRC = ivec2(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${roundBase})));\n float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);\n\n setOutput(newValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_nearest_neighbor_packed_gpu.js\nvar ResizeNearestNeighborPackedProgram = class {\n constructor(inputShape, newHeight, newWidth, alignCorners, halfPixelCenters) {\n this.variableNames = [\"A\"];\n this.packedInputs = true;\n this.packedOutput = true;\n this.outputShape = [];\n const [batch, oldHeight, oldWidth, depth] = inputShape;\n this.outputShape = [batch, newHeight, newWidth, depth];\n const effectiveInSize = [\n alignCorners && newHeight > 1 ? oldHeight - 1 : oldHeight,\n alignCorners && newWidth > 1 ? oldWidth - 1 : oldWidth\n ];\n const effectiveOutSize = [\n alignCorners && newHeight > 1 ? newHeight - 1 : newHeight,\n alignCorners && newWidth > 1 ? newWidth - 1 : newWidth\n ];\n const roundBase = alignCorners ? \"0.5\" : \"0.0\";\n let sourceFracIndexRC;\n if (halfPixelCenters) {\n sourceFracIndexRC = `max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))`;\n } else {\n sourceFracIndexRC = `vec3(yRC) * effectiveInputOverOutputRatioRC`;\n }\n this.userCode = `\n const vec3 effectiveInputOverOutputRatioRC = vec3(\n ${effectiveInSize[0] / effectiveOutSize[0]},\n ${effectiveInSize[1] / effectiveOutSize[1]},\n ${effectiveInSize[1] / effectiveOutSize[1]});\n const vec3 inputShapeRC = vec3(${oldHeight}.0, ${oldWidth}.0,\n ${oldWidth}.0);\n\n float getAValue(int b, int r, int c, int d) {\n return getChannel(getA(b, r, c, d), vec2(c, d));\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n // Calculate values for next column in yRC.z.\n ivec3 yRC = coords.yzz + ivec3(0, 0, 1);\n\n // Fractional source index.\n vec3 sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the coordinators of nearest neighbor point.\n ivec3 sourceNearestRC = ivec3(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${roundBase})));\n\n // Should we calculate next column and row elements in 2x2 packed cell.\n bool hasNextCol = d < ${depth - 1};\n bool hasNextRow = coords.z < ${newWidth - 1};\n\n vec4 newValue = vec4(\n getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),\n hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);\n\n setOutput(newValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ResizeNearestNeighbor.js\nfunction resizeNearestNeighbor3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const program = env().getBool(\"WEBGL_PACK_IMAGE_OPERATIONS\") ? new ResizeNearestNeighborPackedProgram(images.shape, newHeight, newWidth, alignCorners, halfPixelCenters) : new ResizeNearestNeighborProgram(images.shape, newHeight, newWidth, alignCorners, halfPixelCenters);\n return backend2.runWebGLProgram(program, [images], images.dtype);\n}\nvar resizeNearestNeighborConfig2 = {\n kernelName: ResizeNearestNeighbor,\n backendName: \"webgl\",\n kernelFunc: resizeNearestNeighbor3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/resize_nearest_neighbor_backprop_gpu.js\nvar ResizeNearestNeigborBackpropProgram = class {\n constructor(dyShape, inputShape, alignCorners) {\n this.variableNames = [\"dy\"];\n this.outputShape = [];\n this.outputShape = inputShape;\n const [, xHeight, xWidth] = inputShape;\n const [, yHeight, yWidth] = dyShape;\n const effectiveXSize = [\n alignCorners && yHeight > 1 ? xHeight - 1 : xHeight,\n alignCorners && yWidth > 1 ? xWidth - 1 : xWidth\n ];\n const effectiveYSize = [\n alignCorners && yHeight > 1 ? yHeight - 1 : yHeight,\n alignCorners && yWidth > 1 ? yWidth - 1 : yWidth\n ];\n const heightScale = effectiveXSize[0] / effectiveYSize[0];\n const widthScale = effectiveXSize[1] / effectiveYSize[1];\n const invHeightScale = 1 / heightScale;\n const invWidthScale = 1 / widthScale;\n const winHeight = Math.ceil(invHeightScale) * 2 + 2;\n const winWidth = Math.ceil(invWidthScale) * 2 + 2;\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n int r = coords[1];\n int c = coords[2];\n\n float accumulator = 0.0;\n\n const float heightScale = float(${heightScale});\n const float widthScale = float(${widthScale});\n\n const float invHeightScale = float(${invHeightScale});\n const float invWidthScale = float(${invWidthScale});\n\n const int winHeight = int(${winHeight});\n const int winWidth = int(${winWidth});\n\n // Compute bounds for where in dy we will look\n float startRLerp = floor(float(r) * invHeightScale);\n int startDyR = int(floor(startRLerp - float(winHeight / 2)));\n\n float startCLerp = floor(float(c) * invWidthScale);\n int startDyC = int(floor(startCLerp - float(winWidth / 2)));\n\n // Loop over dy\n for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n int dyR = dyROffset + startDyR;\n\n // Guard against the window exceeding the bounds of dy\n if (dyR < 0 || dyR >= ${yHeight}) {\n continue;\n }\n\n for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n int dyC = dyCOffset + startDyC;\n\n // Guard against the window exceeding the bounds of dy\n if (dyC < 0 || dyC >= ${yWidth}) {\n continue;\n }\n\n float sourceFracRow =\n float(${effectiveXSize[0]}) *\n (float(dyR) / float(${effectiveYSize[0]}));\n\n float sourceFracCol =\n float(${effectiveXSize[1]}) *\n (float(dyC) / float(${effectiveYSize[1]}));\n\n int sourceNearestRow = int(min(\n float(int(${xHeight}) - 1),\n ${alignCorners} ? float(round(sourceFracRow)) :\n float(floor(sourceFracRow))));\n\n int sourceNearestCol = int(min(\n float(int(${xWidth}) - 1),\n ${alignCorners} ? float(round(sourceFracCol)) :\n float(floor(sourceFracCol))));\n\n if (r == sourceNearestRow && c == sourceNearestCol) {\n accumulator += getDy(b, dyR, dyC, d);\n }\n }\n }\n // End loop over dy\n\n setOutput(accumulator);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ResizeNearestNeighborGrad.js\nfunction resizeNearestNeighborGrad2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images, dy } = inputs;\n const { alignCorners } = attrs;\n const program = new ResizeNearestNeigborBackpropProgram(dy.shape, images.shape, alignCorners);\n return backend2.runWebGLProgram(program, [dy], dy.dtype);\n}\nvar resizeNearestNeighborGradConfig3 = {\n kernelName: ResizeNearestNeighborGrad,\n backendName: \"webgl\",\n kernelFunc: resizeNearestNeighborGrad2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/reverse_gpu.js\nvar ReverseProgram = class {\n constructor(xShape, axis) {\n this.variableNames = [\"x\"];\n const rank = xShape.length;\n if (rank > 4) {\n throw new Error(`WebGL backend: Reverse of rank-${rank} tensor is not yet supported`);\n }\n this.outputShape = xShape;\n if (rank === 1) {\n this.userCode = `\n void main() {\n int coord = getOutputCoords();\n setOutput(getX(${xShape[0]} - coord - 1));\n }\n `;\n return;\n }\n const getInCoord = (i2) => {\n if (axis.indexOf(i2) !== -1 && xShape[i2] !== 1) {\n return `${xShape[i2]} - coords[${i2}] - 1`;\n }\n return `coords[${i2}]`;\n };\n const inCoords = xShape.map((_, i2) => getInCoord(i2)).join(\",\");\n const type = getCoordsDataType(rank);\n this.userCode = `\n void main() {\n ${type} coords = getOutputCoords();\n setOutput(getX(${inCoords}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/reverse_packed_gpu.js\nvar ReversePackedProgram = class {\n constructor(xShape, axis) {\n this.variableNames = [\"x\"];\n this.packedInputs = true;\n this.packedOutput = true;\n const rank = xShape.length;\n if (rank > 4) {\n throw new Error(`WebGL backend: Reverse of rank-${rank} tensor is not yet supported`);\n }\n this.outputShape = xShape;\n const channels = getChannels(\"rc\", rank);\n const nextColumn = `${channels[rank - 1]} + 1 < ${this.outputShape[rank - 1]}`;\n const nextRow = `${channels[rank - 2]} + 1 < ${this.outputShape[rank - 2]}`;\n const type = getCoordsDataType(rank);\n if (rank === 1) {\n this.userCode = `\n void main(){\n int rc = getOutputCoords();\n vec4 result = vec4(0.);\n result.r = getChannel(getX(${xShape[0]} - rc - 1),\n ${xShape[0]} - rc - 1);\n if(${nextColumn}){\n result.g = getChannel(getX(${xShape[0]} - (rc + 1) - 1),\n ${xShape[0]} - (rc + 1) - 1);\n }\n setOutput(result);\n }\n `;\n } else {\n this.userCode = `\n void main() {\n ${type} rc = getOutputCoords();\n vec4 result = vec4(0.);\n result.r = ${getR(channels.slice())};\n if(${nextColumn}){\n result.g = ${getG(channels.slice())};\n }\n if(${nextRow}) {\n result.b = ${getB(channels.slice())};\n if(${nextColumn}) {\n result.a = ${getA(channels.slice())};\n }\n }\n setOutput(result);\n }\n `;\n }\n function getR(channels2) {\n return getChannel(channels2);\n }\n function getG(channels2) {\n channels2[rank - 1] = \"(\" + channels2[rank - 1] + ` + 1)`;\n return getChannel(channels2);\n }\n function getB(channels2) {\n channels2[rank - 2] = \"(\" + channels2[rank - 2] + ` + 1)`;\n return getChannel(channels2);\n }\n function getA(channels2) {\n channels2[rank - 1] = \"(\" + channels2[rank - 1] + ` + 1)`;\n channels2[rank - 2] = \"(\" + channels2[rank - 2] + ` + 1)`;\n return getChannel(channels2);\n }\n function getChannel(channels2) {\n const inCoordsArray = xShape.map((_, i2) => getInCoord(i2, channels2));\n const inCoords = inCoordsArray.join(\",\");\n const innerDims = inCoordsArray.slice(-2).join(\",\");\n return `getChannel(getX(${inCoords}), vec2(${innerDims}))`;\n }\n function getInCoord(i2, channels1) {\n if (axis.indexOf(i2) !== -1 && xShape[i2] !== 1) {\n return `${xShape[i2]} - ${channels1[i2]} - 1`;\n } else {\n return `${channels1[i2]}`;\n }\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Reverse.js\nfunction reverse3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dims } = attrs;\n const xRank = x.shape.length;\n const $dims = util_exports.parseAxisParam(dims, x.shape);\n if (xRank === 0) {\n return identity3({ inputs: { x }, backend: backend2 });\n }\n const program = env().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\") ? new ReversePackedProgram(x.shape, $dims) : new ReverseProgram(x.shape, $dims);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar reverseConfig2 = {\n kernelName: Reverse,\n backendName: \"webgl\",\n kernelFunc: reverse3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/rotate_gpu.js\nvar RotateProgram = class {\n constructor(imageShape, fillValue) {\n this.variableNames = [\"Image\"];\n this.outputShape = [];\n this.customUniforms = [{ name: \"params\", type: \"vec4\" }];\n const imageHeight = imageShape[1];\n const imageWidth = imageShape[2];\n this.outputShape = imageShape;\n let fillSnippet = \"\";\n if (typeof fillValue === \"number\") {\n fillSnippet = `float outputValue = ${fillValue.toFixed(2)};`;\n } else {\n fillSnippet = `\n vec3 fill = vec3(${fillValue.join(\",\")});\n float outputValue = fill[coords[3]];`;\n }\n this.userCode = `\n void main() {\n ivec4 coords = getOutputCoords();\n int x = coords[2];\n int y = coords[1];\n float coordXFloat = (float(x) - params[0]) * params[3] -\n (float(y) - params[1]) * params[2];\n float coordYFloat = (float(x) - params[0]) * params[2] +\n (float(y) - params[1]) * params[3];\n int coordX = int(round(coordXFloat + params[0]));\n int coordY = int(round(coordYFloat + params[1]));\n ${fillSnippet}\n if(coordX >= 0 && coordX < ${imageWidth} && coordY >= 0 && coordY < ${imageHeight}) {\n outputValue = getImage(coords[0], coordY, coordX, coords[3]);\n }\n setOutput(outputValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/RotateWithOffset.js\nvar rotateWithOffsetConfig2 = {\n kernelName: RotateWithOffset,\n backendName: \"webgl\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const { radians, fillValue, center } = attrs;\n const webglBackend = backend2;\n const program = new RotateProgram(image2.shape, fillValue);\n const [centerX, centerY] = backend_util_exports.getImageCenter(center, image2.shape[1], image2.shape[2]);\n const customValues = [[centerX, centerY, Math.sin(radians), Math.cos(radians)]];\n const output = webglBackend.runWebGLProgram(program, [image2], image2.dtype, customValues);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Round.js\nvar ROUND = `\n // OpenGL ES does not support round function.\n // The algorithm is based on banker's rounding.\n float base = floor(x);\n if ((x - base) < 0.5) {\n return floor(x);\n } else if ((x - base) > 0.5) {\n return ceil(x);\n } else {\n if (mod(base, 2.0) == 0.0) {\n return base;\n } else {\n return base + 1.0;\n }\n }\n`;\nvar round4 = unaryKernelFunc2({ opSnippet: ROUND });\nvar roundConfig2 = {\n kernelName: Round,\n backendName: \"webgl\",\n kernelFunc: round4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Rsqrt.js\nvar RSQRT = `return inversesqrt(x);`;\nvar rsqrt3 = unaryKernelFunc2({ opSnippet: RSQRT, cpuKernelImpl: rsqrtImplCPU });\nvar rsqrtConfig2 = {\n kernelName: Rsqrt,\n backendName: \"webgl\",\n kernelFunc: rsqrt3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/scatter_gpu.js\nvar ScatterProgram = class {\n constructor(updateSize, sliceDim, indicesRank, updatesRank, strides, shape, summingDupeIndex = true) {\n this.variableNames = [\"updates\", \"indices\", \"defaultValue\"];\n this.outputShape = shape;\n const stridesType = getCoordsDataType(strides.length);\n const dtype = getCoordsDataType(shape.length);\n let indicesString = \"\";\n if (indicesRank === 1) {\n indicesString = \"i\";\n } else if (indicesRank === 2) {\n indicesString = \"i, j\";\n }\n const indicesSnippet = `getIndices(${indicesString})`;\n let updatesString = \"\";\n if (updatesRank === 1) {\n updatesString = \"i\";\n } else if (updatesRank === 2) {\n updatesString = \"i, coords[1]\";\n }\n const updatesSnippet = `getUpdates(${updatesString})`;\n const strideString = sliceDim > 1 ? \"strides[j]\" : \"strides\";\n this.userCode = `\n ${stridesType} strides = ${stridesType}(${strides});\n\n void main() {\n ${dtype} coords = getOutputCoords();\n float sum = 0.0;\n bool found = false;\n for (int i = 0; i < ${updateSize}; i++) {\n int flattenedIndex = 0;\n for (int j = 0; j < ${sliceDim}; j++) {\n int index = round(${indicesSnippet});\n flattenedIndex += index * ${strideString};\n }\n if (flattenedIndex == coords[0]) {\n sum += ${updatesSnippet};\n found = true;\n }\n }\n setOutput(mix(getDefaultValue(), sum, float(found)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/ScatterNd.js\nfunction scatterNd2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices, updates } = inputs;\n const { shape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(updates, indices, shape);\n const flattenShape = [outputSize / sliceSize, sliceSize];\n if (outputSize === 0) {\n return backend2.makeTensorInfo(shape, indices.dtype);\n }\n const flattenIndices = reshape4({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numUpdates, sliceRank] } });\n const flattenX = reshape4({ inputs: { x: updates }, backend: backend2, attrs: { shape: [numUpdates, sliceSize] } });\n const defaultValue = backend2.makeTensorInfo([], \"float32\", new Float32Array([0]));\n const program = new ScatterProgram(numUpdates, sliceRank, flattenIndices.shape.length, flattenX.shape.length, strides, flattenShape);\n const res = backend2.runWebGLProgram(program, [flattenX, flattenIndices, defaultValue], flattenX.dtype);\n const reshaped = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape } });\n backend2.disposeIntermediateTensorInfo(flattenIndices);\n backend2.disposeIntermediateTensorInfo(flattenX);\n backend2.disposeIntermediateTensorInfo(res);\n backend2.disposeIntermediateTensorInfo(defaultValue);\n return reshaped;\n}\nvar scatterNdConfig2 = {\n kernelName: ScatterNd,\n backendName: \"webgl\",\n kernelFunc: scatterNd2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/search_sorted_gpu.js\nvar SearchSortedProgram = class {\n constructor(batchSize, numInputs, numValues, side) {\n this.variableNames = [\"sortedSequence\", \"values\"];\n this.customUniforms = [{ name: \"numInputs\", type: \"int\" }];\n this.outputShape = [batchSize, numValues];\n const webGL2LoopHead = \"while (left < right) {\";\n const webGL1LoopHead = `for (int i = 0; i < ${Math.ceil(Math.log2(numInputs + 1))}; ++i) { if (left >= right) break;`;\n const loopHead = env().getNumber(\"WEBGL_VERSION\") === 2 ? webGL2LoopHead : webGL1LoopHead;\n const boundComparator = side === \"left\" ? \"<\" : \"<=\";\n this.userCode = `\n int findBound(int batch, float value) {\n int left = 0;\n int right = numInputs;\n int mid;\n ${loopHead}\n mid = (left + right) / 2;\n if (getSortedSequence(batch, mid) ${boundComparator} value) {\n left = mid + 1;\n } else {\n right = mid;\n }\n }\n return right;\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int valueIndex = coords[1];\n\n float value = getValues(batch, valueIndex);\n\n setOutput(float(findBound(batch, value)));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SearchSorted.js\nfunction searchSorted3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sortedSequence, values } = inputs;\n const { side } = attrs;\n const program = new SearchSortedProgram(sortedSequence.shape[0], sortedSequence.shape[1], values.shape[1], side);\n const customValues = [[sortedSequence.shape[1]]];\n return backend2.runWebGLProgram(program, [sortedSequence, values], \"int32\", customValues);\n}\nvar searchSortedConfig2 = {\n kernelName: SearchSorted,\n backendName: \"webgl\",\n kernelFunc: searchSorted3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/select_gpu.js\nvar SelectProgram = class {\n constructor(cRank, shape, rank) {\n this.variableNames = [\"c\", \"a\", \"b\"];\n this.outputShape = shape;\n let cCoords;\n let abCoords;\n if (rank > 4) {\n throw Error(`Where for rank ${rank} is not yet supported`);\n }\n if (rank === 1) {\n abCoords = `resRC`;\n cCoords = `resRC`;\n } else {\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const cCoordVars = [];\n const abCoordVars = [];\n for (let i2 = 0; i2 < shape.length; i2++) {\n abCoordVars.push(`${currentCoords[i2]}`);\n if (i2 < cRank) {\n cCoordVars.push(`${currentCoords[i2]}`);\n }\n }\n cCoords = cCoordVars.join();\n abCoords = abCoordVars.join();\n }\n const dtype = getCoordsDataType(rank);\n this.userCode = `\n void main() {\n ${dtype} resRC = getOutputCoords();\n float cVal = getC(${cCoords});\n if (cVal >= 1.0) {\n setOutput(getA(${abCoords}));\n } else {\n setOutput(getB(${abCoords}));\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Select.js\nfunction select3(args) {\n const { inputs, backend: backend2 } = args;\n const { condition, t: t2, e: e2 } = inputs;\n const program = new SelectProgram(condition.shape.length, t2.shape, t2.shape.length);\n return backend2.runWebGLProgram(program, [condition, t2, e2], upcastType(t2.dtype, e2.dtype));\n}\nvar selectConfig2 = {\n kernelName: Select,\n backendName: \"webgl\",\n kernelFunc: select3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Selu.js\nvar SELU = `\n // Stable and Attracting Fixed Point (0, 1) for Normalized Weights.\n // see: https://arxiv.org/abs/1706.02515\n float scaleAlpha = ${backend_util_exports.SELU_SCALEALPHA};\n float scale = ${backend_util_exports.SELU_SCALE};\n return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);\n`;\nvar selu3 = unaryKernelFunc2({ opSnippet: SELU });\nvar seluConfig2 = {\n kernelName: Selu,\n backendName: \"webgl\",\n kernelFunc: selu3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sigmoid.js\nvar SIGMOID3 = CHECK_NAN_SNIPPET_UNARY + `\n return 1.0 / (1.0 + exp(-1.0 * x));\n`;\nvar SIGMOID_PACKED = `\n vec4 result = 1.0 / (1.0 + exp(-1.0 * x));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;\nvar sigmoid3 = unaryKernelFunc2({\n opSnippet: SIGMOID3,\n packedOpSnippet: SIGMOID_PACKED,\n cpuKernelImpl: sigmoidImplCPU\n});\nvar sigmoidConfig2 = {\n kernelName: Sigmoid,\n backendName: \"webgl\",\n kernelFunc: sigmoid3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sign.js\nvar SIGN = `\n if (isnan(x)) { return 0.0; }\n return sign(x);\n`;\nvar sign3 = unaryKernelFunc2({ opSnippet: SIGN });\nvar signConfig2 = {\n kernelName: Sign,\n backendName: \"webgl\",\n kernelFunc: sign3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sin.js\nvar SIN = CHECK_NAN_SNIPPET_UNARY + `\n return sin(x);\n`;\nvar sin3 = unaryKernelFunc2({ opSnippet: SIN });\nvar sinConfig2 = {\n kernelName: Sin,\n backendName: \"webgl\",\n kernelFunc: sin3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sinh.js\nvar SINH = `\n float e2x = exp(x);\n return (e2x - 1.0 / e2x) / 2.0;\n`;\nvar sinh3 = unaryKernelFunc2({ opSnippet: SINH });\nvar sinhConfig2 = {\n kernelName: Sinh,\n backendName: \"webgl\",\n kernelFunc: sinh3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Softplus.js\nvar SOFTPLUS = `\n float epsilon = 1.1920928955078125e-7;\n float threshold = log(epsilon) + 2.0;\n\n bool too_large = x > -threshold;\n bool too_small = x < threshold;\n\n float result;\n float exp_x = exp(x);\n\n if (too_large){\n result = x;\n }\n else if (too_small){\n result = exp_x;\n }\n else{\n result = log(exp_x + 1.0);\n }\n return result;\n`;\nvar softplus3 = unaryKernelFunc2({ opSnippet: SOFTPLUS });\nvar softplusConfig2 = {\n kernelName: Softplus,\n backendName: \"webgl\",\n kernelFunc: softplus3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SpaceToBatchND.js\nvar spaceToBatchND3 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, paddings } = attrs;\n util_exports.assert(x.shape.length <= 4, () => \"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const completePaddings = [[0, 0]];\n completePaddings.push(...paddings);\n for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) {\n completePaddings.push([0, 0]);\n }\n const toDispose = [];\n const paddedX = padV22({\n inputs: { x },\n backend: backend2,\n attrs: { paddings: completePaddings, constantValue: 0 }\n });\n const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false);\n const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false);\n const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false);\n const reshapedPaddedX = reshape4({ inputs: { x: paddedX }, backend: backend2, attrs: { shape: reshapedPaddedShape } });\n const paddedXT = transpose3({\n inputs: { x: reshapedPaddedX },\n backend: backend2,\n attrs: { perm: permutedReshapedPaddedPermutation }\n });\n const result = reshape4({ inputs: { x: paddedXT }, backend: backend2, attrs: { shape: flattenShape } });\n toDispose.push(paddedX);\n toDispose.push(reshapedPaddedX);\n toDispose.push(paddedXT);\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n};\nvar spaceToBatchNDConfig2 = {\n kernelName: SpaceToBatchND,\n backendName: \"webgl\",\n kernelFunc: spaceToBatchND3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseFillEmptyRows.js\nfunction sparseFillEmptyRows3(args) {\n const { inputs, backend: backend2 } = args;\n const { indices, values, denseShape, defaultValue } = inputs;\n if (denseShape.shape.length !== 1) {\n throw new Error(`Dense shape must be a vector, saw:\n ${denseShape.shape}`);\n }\n if (indices.shape.length !== 2) {\n throw new Error(`Indices must be a matrix, saw:\n ${indices.shape}`);\n }\n if (values.shape.length !== 1) {\n throw new Error(`Values must be a vector, saw:\n ${values.shape}`);\n }\n if (defaultValue.shape.length !== 0) {\n throw new Error(`Default value must be a scalar, saw:\n ${defaultValue.shape}`);\n }\n const $indices = backend2.readSync(indices.dataId);\n const $values = backend2.readSync(values.dataId);\n const $denseShape = backend2.readSync(denseShape.dataId);\n const $defaultValue = backend2.readSync(defaultValue.dataId)[0];\n const [outputIndices, outputIndicesShape, outputValues, emptyRowIndicator, reverseIndexMap] = sparseFillEmptyRowsImplCPU($indices, indices.shape, indices.dtype, $values, values.dtype, $denseShape, $defaultValue);\n return [\n backend2.makeTensorInfo(outputIndicesShape, indices.dtype, outputIndices),\n backend2.makeTensorInfo([outputIndicesShape[0]], values.dtype, outputValues),\n backend2.makeTensorInfo([emptyRowIndicator.length], \"bool\", new Uint8Array(emptyRowIndicator.map((value) => Number(value)))),\n backend2.makeTensorInfo([reverseIndexMap.length], indices.dtype, new Int32Array(reverseIndexMap))\n ];\n}\nvar sparseFillEmptyRowsConfig2 = {\n kernelName: SparseFillEmptyRows,\n backendName: \"webgl\",\n kernelFunc: sparseFillEmptyRows3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseReshape.js\nfunction sparseReshape3(args) {\n const { inputs, backend: backend2 } = args;\n const { inputIndices, inputShape, newShape } = inputs;\n if (inputIndices.shape.length !== 2) {\n throw new Error(`Input indices should be a matrix but received shape ${inputIndices.shape}`);\n }\n if (inputShape.shape.length !== 1) {\n throw new Error(`Input shape should be a vector but received shape ${inputShape.shape}`);\n }\n if (newShape.shape.length !== 1) {\n throw new Error(`Target shape should be a vector but received shape ${newShape.shape}`);\n }\n const $inputShape = Array.from(backend2.readSync(inputShape.dataId));\n const $inputIndices = backend2.readSync(inputIndices.dataId);\n const targetShape = Array.from(backend2.readSync(newShape.dataId));\n const [newIndices, indicesShape, outputShape] = sparseReshapeImplCPU($inputIndices, inputIndices.shape, inputIndices.dtype, $inputShape, targetShape);\n return [\n backend2.makeTensorInfo(indicesShape, inputIndices.dtype, newIndices),\n backend2.makeTensorInfo([outputShape.length], newShape.dtype, new Int32Array(outputShape))\n ];\n}\nvar sparseReshapeConfig2 = {\n kernelName: SparseReshape,\n backendName: \"webgl\",\n kernelFunc: sparseReshape3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseSegmentMean.js\nfunction sparseSegmentMean3(args) {\n const { inputs, backend: backend2 } = args;\n const { data, indices, segmentIds } = inputs;\n if (data.shape.length < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if (indices.shape.length !== 1) {\n throw new Error(`Indices should be a vector but received shape\n ${indices.shape}`);\n }\n if (segmentIds.shape.length !== 1) {\n throw new Error(`Segment ids should be a vector but received shape\n ${segmentIds.shape}`);\n }\n const $data = backend2.readSync(data.dataId);\n const $indices = backend2.readSync(indices.dataId);\n const $segmentIds = backend2.readSync(segmentIds.dataId);\n const [outputData, outputDataShape] = sparseSegmentReductionImplCPU($data, data.shape, data.dtype, $indices, $segmentIds, true);\n return backend2.makeTensorInfo(outputDataShape, data.dtype, outputData);\n}\nvar sparseSegmentMeanConfig2 = {\n kernelName: SparseSegmentMean,\n backendName: \"webgl\",\n kernelFunc: sparseSegmentMean3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseSegmentSum.js\nfunction sparseSegmentSum3(args) {\n const { inputs, backend: backend2 } = args;\n const { data, indices, segmentIds } = inputs;\n if (data.shape.length < 1) {\n throw new Error(`Data should be at least 1 dimensional but received scalar`);\n }\n if (indices.shape.length !== 1) {\n throw new Error(`Indices should be a vector but received shape\n ${indices.shape}`);\n }\n if (segmentIds.shape.length !== 1) {\n throw new Error(`Segment ids should be a vector but received shape\n ${segmentIds.shape}`);\n }\n const $data = backend2.readSync(data.dataId);\n const $indices = backend2.readSync(indices.dataId);\n const $segmentIds = backend2.readSync(segmentIds.dataId);\n const [outputData, outputDataShape] = sparseSegmentReductionImplCPU($data, data.shape, data.dtype, $indices, $segmentIds);\n return backend2.makeTensorInfo(outputDataShape, data.dtype, outputData);\n}\nvar sparseSegmentSumConfig2 = {\n kernelName: SparseSegmentSum,\n backendName: \"webgl\",\n kernelFunc: sparseSegmentSum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SparseToDense.js\nfunction sparseToDense3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sparseIndices, sparseValues, defaultValue } = inputs;\n const { outputShape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(sparseValues, sparseIndices, outputShape);\n const sumDupeIndices = false;\n if (sparseValues.dtype === \"string\") {\n const indicesBuf = backend2.bufferSync(sparseIndices);\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue = util_exports.decodeString(backend2.readSync(defaultValue.dataId)[0]);\n const outBuf = scatterImplCPU(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue, sumDupeIndices);\n return backend2.makeTensorInfo(outputShape, outBuf.dtype, outBuf.values);\n }\n const program = new ScatterProgram(numUpdates, sliceRank, sparseIndices.shape.length, sparseValues.shape.length, strides, [outputSize, 1], sumDupeIndices);\n const res = backend2.runWebGLProgram(program, [sparseValues, sparseIndices, defaultValue], sparseValues.dtype);\n const reshaped = reshape4({ inputs: { x: res }, backend: backend2, attrs: { shape: outputShape } });\n backend2.disposeIntermediateTensorInfo(res);\n return reshaped;\n}\nvar sparseToDenseConfig2 = {\n kernelName: SparseToDense,\n backendName: \"webgl\",\n kernelFunc: sparseToDense3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SplitV.js\nfunction splitV2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { numOrSizeSplits, axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, x.shape)[0];\n const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis);\n const xRank = x.shape.length;\n const begin = new Array(xRank).fill(0);\n const size = x.shape.slice();\n return splitSizes.map((s2) => {\n const sliceSize = [...size];\n sliceSize[$axis] = s2;\n const sliceT = slice3({ inputs: { x }, backend: backend2, attrs: { begin, size: sliceSize } });\n begin[$axis] += s2;\n return sliceT;\n });\n}\nvar splitVConfig2 = {\n kernelName: SplitV,\n backendName: \"webgl\",\n kernelFunc: splitV2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Sqrt.js\nvar SQRT = `return sqrt(x);`;\nvar sqrt3 = unaryKernelFunc2({ opSnippet: SQRT, packedOpSnippet: SQRT, cpuKernelImpl: sqrtImplCPU });\nvar sqrtConfig2 = {\n kernelName: Sqrt,\n backendName: \"webgl\",\n kernelFunc: sqrt3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Square.js\nvar SQUARE = `return x * x;`;\nvar square3 = unaryKernelFunc2({ opSnippet: SQUARE });\nvar squareConfig2 = {\n kernelName: Square,\n backendName: \"webgl\",\n kernelFunc: square3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/SquaredDifference.js\nvar SQUARED_DIFFERENCE = \"return (a - b) * (a - b);\";\nvar squaredDifference3 = binaryKernelFunc2({ opSnippet: SQUARED_DIFFERENCE, packedOpSnippet: SQUARED_DIFFERENCE });\nvar squaredDifferenceConfig2 = {\n kernelName: SquaredDifference,\n backendName: \"webgl\",\n kernelFunc: squaredDifference3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Step.js\nfunction step3({ inputs, attrs, backend: backend2 }) {\n const { x } = inputs;\n const opSnippet = CHECK_NAN_SNIPPET + `\n return x > 0.0 ? 1.0 : float(${attrs.alpha});\n `;\n const program = new UnaryOpProgram(x.shape, opSnippet);\n return backend2.runWebGLProgram(program, [x], x.dtype);\n}\nvar stepConfig2 = {\n kernelName: Step,\n backendName: \"webgl\",\n kernelFunc: step3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/strided_slice_gpu.js\nvar StridedSliceProgram = class {\n constructor(begin, strides, size) {\n this.variableNames = [\"x\"];\n this.outputShape = size;\n const rank = size.length;\n const inputDtype = getCoordsDataType(size.length);\n const dtype = getCoordsDataType(size.length);\n let newCoords = \"\";\n if (rank === 1) {\n newCoords = \"coords * strides + begin\";\n } else {\n let outputAxis = 0;\n newCoords = size.map((_, i2) => {\n outputAxis++;\n return size.length === 1 ? `coords * strides[${i2}] + begin[${i2}]` : `coords[${outputAxis - 1}] * strides[${i2}] + begin[${i2}]`;\n }).join(\",\");\n }\n this.userCode = `\n ${inputDtype} begin = ${inputDtype}(${begin});\n ${inputDtype} strides = ${inputDtype}(${strides});\n\n void main() {\n ${dtype} coords = getOutputCoords();\n setOutput(getX(${newCoords}));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/StridedSlice.js\nfunction stridedSlice3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs;\n const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n let result;\n if (isIdentity) {\n result = reshape4({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } });\n } else if (sliceDim0 || isSimpleSlice) {\n util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`);\n const size = slice_util_exports.computeOutShape($begin, $end, $strides);\n const sliced = slice3({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } });\n result = reshape4({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeIntermediateTensorInfo(sliced);\n } else {\n const shouldExecuteOnCPU = backend2.shouldExecuteOnCPU([x]);\n if (shouldExecuteOnCPU) {\n const values = backend2.readSync(x.dataId);\n const xBuf = buffer(x.shape, x.dtype, values);\n const resultValues = stridedSliceImplCPU(finalShapeSparse, xBuf, $strides, $begin);\n result = backend2.makeTensorInfo(finalShape, x.dtype, resultValues.values);\n } else {\n const program = new StridedSliceProgram($begin, $strides, finalShapeSparse);\n result = backend2.runWebGLProgram(program, [x], x.dtype);\n }\n }\n const resultReshaped = reshape4({ inputs: { x: result }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeIntermediateTensorInfo(result);\n return resultReshaped;\n}\nvar stridedSliceConfig2 = {\n kernelName: StridedSlice,\n backendName: \"webgl\",\n kernelFunc: stridedSlice3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/StringNGrams.js\nfunction stringNGrams3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs;\n const { data, dataSplits } = inputs;\n const $data = backend2.readSync(data.dataId);\n const $dataSplits = backend2.readSync(dataSplits.dataId);\n const [nGrams, nGramsSplits] = stringNGramsImplCPU($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences);\n return [\n backend2.makeTensorInfo([nGrams.length], \"string\", nGrams),\n backend2.makeTensorInfo(dataSplits.shape, \"int32\", nGramsSplits)\n ];\n}\nvar stringNGramsConfig2 = {\n kernelName: StringNGrams,\n backendName: \"webgl\",\n kernelFunc: stringNGrams3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/StringSplit.js\nfunction stringSplit3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { skipEmpty } = attrs;\n const { input: input2, delimiter } = inputs;\n if (input2.dtype !== \"string\") {\n throw new Error(\"Input must be of datatype string\");\n }\n if (input2.shape.length !== 1) {\n throw new Error(`Input must be a vector, got shape: ${input2.shape}`);\n }\n if (delimiter.shape.length !== 0) {\n throw new Error(`Delimiter must be a scalar, got shape: ${delimiter.shape}`);\n }\n const $input = backend2.readSync(input2.dataId);\n const $delimiter = backend2.readSync(delimiter.dataId)[0];\n const [indices, values, shape] = stringSplitImplCPU($input, $delimiter, skipEmpty);\n const outputSize = values.length;\n return [\n backend2.makeTensorInfo([outputSize, 2], \"int32\", indices),\n backend2.makeTensorInfo([outputSize], \"string\", values),\n backend2.makeTensorInfo([2], \"int32\", new Int32Array(shape))\n ];\n}\nvar stringSplitConfig2 = {\n kernelName: StringSplit,\n backendName: \"webgl\",\n kernelFunc: stringSplit3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/StringToHashBucketFast.js\nfunction stringToHashBucketFast3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { numBuckets } = attrs;\n const { input: input2 } = inputs;\n if (input2.dtype !== \"string\") {\n throw new Error(\"Input must be of datatype string\");\n }\n if (numBuckets <= 0) {\n throw new Error(`Number of buckets must be at least 1`);\n }\n const $input = backend2.readSync(input2.dataId);\n const output = stringToHashBucketFastImplCPU($input, numBuckets);\n return backend2.makeTensorInfo(input2.shape, \"int32\", output);\n}\nvar stringToHashBucketFastConfig2 = {\n kernelName: StringToHashBucketFast,\n backendName: \"webgl\",\n kernelFunc: stringToHashBucketFast3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Tan.js\nvar TAN = `return tan(x);`;\nvar tan3 = unaryKernelFunc2({ opSnippet: TAN });\nvar tanConfig2 = {\n kernelName: Tan,\n backendName: \"webgl\",\n kernelFunc: tan3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Tanh.js\nvar TANH = `\n float e2x = exp(-2.0 * abs(x));\n return sign(x) * (1.0 - e2x) / (1.0 + e2x);\n`;\nvar tanh4 = unaryKernelFunc2({ opSnippet: TANH });\nvar tanhConfig2 = {\n kernelName: Tanh,\n backendName: \"webgl\",\n kernelFunc: tanh4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/tile_gpu.js\nvar TileProgram = class {\n constructor(aShape, reps) {\n this.variableNames = [\"A\"];\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[i2] * reps[i2];\n }\n this.outputShape = outputShape;\n this.rank = outputShape.length;\n const dtype = getCoordsDataType(this.rank);\n const sourceCoords = getSourceCoords3(aShape);\n this.userCode = `\n void main() {\n ${dtype} resRC = getOutputCoords();\n setOutput(getA(${sourceCoords}));\n }\n `;\n }\n};\nfunction getSourceCoords3(aShape) {\n const rank = aShape.length;\n if (rank > 5) {\n throw Error(`Tile for rank ${rank} is not yet supported`);\n }\n if (rank === 1) {\n return `imod(resRC, ${aShape[0]})`;\n }\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\", \"resRC.u\"];\n const sourceCoords = [];\n for (let i2 = 0; i2 < aShape.length; i2++) {\n sourceCoords.push(`imod(${currentCoords[i2]}, ${aShape[i2]})`);\n }\n return sourceCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Tile.js\nfunction tile4(params) {\n const { inputs, backend: backend2, attrs } = params;\n const { x } = inputs;\n const { reps } = attrs;\n if (x.dtype === \"string\" || x.shape.length > 5) {\n const data = backend2.readSync(x.dataId);\n const value = x.dtype === \"string\" ? data.map((d) => util_exports.decodeString(d)) : data;\n const buf = buffer(x.shape, x.dtype, value);\n const outBuf = tileImplCPU(buf, reps);\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n }\n const program = new TileProgram(x.shape, reps);\n const output = backend2.runWebGLProgram(program, [x], x.dtype);\n return output;\n}\nvar tileConfig2 = {\n kernelName: Tile,\n backendName: \"webgl\",\n kernelFunc: tile4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/top_k_gpu.js\nvar SwapProgram = class {\n constructor(shape) {\n this.variableNames = [\"x\", \"indices\"];\n this.customUniforms = [\n { name: \"n\", type: \"int\" },\n { name: \"firstPass\", type: \"int\" },\n { name: \"negativeInf\", type: \"float\" },\n { name: \"dir\", type: \"int\" },\n { name: \"inc\", type: \"int\" }\n ];\n this.outputShape = shape;\n this.userCode = `\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int elemIdx = coords[1];\n\n // We compare elements pair-wise within a group of size 2 * inc.\n // The comparing rule for each group alternates between ascending\n // and descending. Within each group, we compare each pair at\n // positions i and i+inc. To decide whether an element at position i\n // is x0 or x1, we mod it by 2 * inc, if the result is smaller than\n // inc, it is in the first half of the group, we denote it as x0,\n // otherwise we denote it as x1.\n // For example, as shown in the Bitonic top K paper referenced above,\n // Figure5(a) shows that element[1] is in the\n // second half of the group when group size is 2, but it is in the\n // first half of the group when group size is 4.\n\n bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;\n int i = isFirstInPair ? elemIdx : elemIdx - inc;\n\n int i0 = firstPass == 1 ? i : int(getIndices(batch, i));\n int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));\n float x0 = i0 < n ? getX(batch, i0) : negativeInf;\n float x1 = i1 < n ? getX(batch, i1) : negativeInf;\n\n // Denotes which direction indices are in (ascending or descending).\n bool reverse = imod(elemIdx, 2 * dir) >= dir;\n bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);\n if (reverse == isGreater) { // Elements in opposite order of direction\n int iTemp = i0;\n i0 = i1;\n i1 = iTemp;\n }\n if (isFirstInPair) {\n setOutput(float(i0));\n } else {\n setOutput(float(i1));\n }\n }\n `;\n }\n};\nvar MergeProgram = class {\n constructor(shape) {\n this.variableNames = [\"x\", \"indices\"];\n this.customUniforms = [\n { name: \"n\", type: \"int\" },\n { name: \"firstPass\", type: \"int\" },\n { name: \"k\", type: \"int\" }\n ];\n this.outputShape = shape;\n this.userCode = `\n void main() {\n // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int elemIdx = coords[1];\n\n // The output size is half of the previous size.\n // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),\n // we only need to output the indices at positions |, the indices at\n // positions _ can be thrown away, see Figure5(b) After Phase 2\n // (Merge phase) in the Bitonic Top K paper referenced above.\n // For example, the paper shows we only need to output the orange bars.\n // The output sequence should look like this | | | | | | | |.\n // Because the sequence is halved, to map the output index back\n // to the previous sequence to find the corresponding value,\n // we need to double the index. When we double the index,\n // we basically interpolate a position, so 2i looks like\n // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position\n // of each 2k positions by - elemIdx % k. E.g. for output at\n // index 4,5,6,7, we want to get the corresponding element at\n // original index 8,9,10,11, for output at index 8,9,10,11,\n // we want to get the corresponding element at original index\n // 16,17,18,19, so on and so forth.\n\n int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));\n int i0 = firstPass == 1 ? i : int(getIndices(batch, i));\n int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));\n\n float x0 = getX(batch, i0);\n float x1 = i1 < n ? getX(batch, i1) : x0;\n\n setOutput(x0 >= x1 ? float(i0) : float(i1));\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/TopK.js\nfunction disposeIntermediateTensorInfoOrNull(backend2, tensorInfo) {\n if (tensorInfo !== null) {\n backend2.disposeIntermediateTensorInfo(tensorInfo);\n }\n}\nfunction roundUpToPow2(num) {\n let pow22 = 1;\n while (pow22 < num) {\n pow22 *= 2;\n }\n return pow22;\n}\nfunction topK2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { k, sorted } = attrs;\n const TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD = env().getNumber(\"TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD\");\n const TOPK_K_CPU_HANDOFF_THRESHOLD = env().getNumber(\"TOPK_K_CPU_HANDOFF_THRESHOLD\");\n const xShape = x.shape;\n const lastDim = xShape[xShape.length - 1];\n if (backend2.shouldExecuteOnCPU([x]) || lastDim < TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD || k > TOPK_K_CPU_HANDOFF_THRESHOLD) {\n const xVals = backend2.readSync(x.dataId);\n const [allTopKVals, allTopKIndices] = topKImplCPU(xVals, xShape, x.dtype, k, sorted);\n return [\n backend2.makeTensorInfo(allTopKVals.shape, allTopKVals.dtype, allTopKVals.values),\n backend2.makeTensorInfo(allTopKIndices.shape, allTopKIndices.dtype, allTopKIndices.values)\n ];\n }\n if (k === 0) {\n xShape[xShape.length - 1] = 0;\n return [\n backend2.makeTensorInfo(xShape, x.dtype, []),\n backend2.makeTensorInfo(xShape, \"int32\", [])\n ];\n }\n if (lastDim === 1) {\n return [\n x,\n fill3({ attrs: { shape: xShape, dtype: \"int32\", value: 0 }, backend: backend2 })\n ];\n }\n const xtexData = backend2.texData.get(x.dataId);\n const xIsPacked = xtexData !== null && xtexData.isPacked;\n const xUnPacked = xIsPacked ? backend2.unpackTensor(x) : x;\n const xSize = util_exports.sizeFromShape(xShape);\n const batch = xSize / lastDim;\n const x2D = reshape4({ inputs: { x: xUnPacked }, attrs: { shape: [batch, lastDim] }, backend: backend2 });\n if (xIsPacked) {\n disposeIntermediateTensorInfoOrNull(backend2, xUnPacked);\n }\n const kPow2 = roundUpToPow2(k);\n const lastDimPow2 = roundUpToPow2(lastDim);\n let indices = null;\n const getInputs = () => indices === null ? [x2D, x2D] : [x2D, indices];\n const runSwap = (dir, inc, shape) => {\n const inputs2 = getInputs();\n const program = new SwapProgram(shape);\n const fistPass = indices === null ? 1 : 0;\n const customValues = [[lastDim], [fistPass], [Number.NEGATIVE_INFINITY], [dir], [inc]];\n const prevIndices2 = indices;\n indices = backend2.runWebGLProgram(program, inputs2, \"int32\", customValues);\n disposeIntermediateTensorInfoOrNull(backend2, prevIndices2);\n };\n for (let len = 1; len < kPow2; len *= 2) {\n const dir = len * 2;\n for (let inc = len; inc >= 1; inc /= 2) {\n runSwap(dir, inc, [batch, lastDimPow2]);\n }\n }\n for (let indicesSize = lastDimPow2; indicesSize > kPow2; indicesSize /= 2) {\n const inputs2 = getInputs();\n const mergeProgram = new MergeProgram([batch, indicesSize / 2]);\n const firstPass = indices === null ? 1 : 0;\n const customValues = [[lastDim], [firstPass], [kPow2]];\n const prevIndices2 = indices;\n indices = backend2.runWebGLProgram(mergeProgram, inputs2, \"int32\", customValues);\n disposeIntermediateTensorInfoOrNull(backend2, prevIndices2);\n const len = kPow2 / 2;\n const dir = len * 2;\n for (let inc = len; inc >= 1; inc /= 2) {\n runSwap(dir, inc, indices.shape);\n }\n }\n let prevIndices = indices;\n indices = slice3({ inputs: { x: indices }, backend: backend2, attrs: { begin: 0, size: [batch, k] } });\n disposeIntermediateTensorInfoOrNull(backend2, prevIndices);\n let values = gatherV22({ inputs: { x: x2D, indices }, backend: backend2, attrs: { axis: 1, batchDims: 1 } });\n disposeIntermediateTensorInfoOrNull(backend2, x2D);\n const newShape = xShape.slice(0, -1);\n newShape.push(k);\n prevIndices = indices;\n indices = reshape4({ inputs: { x: indices }, attrs: { shape: newShape }, backend: backend2 });\n disposeIntermediateTensorInfoOrNull(backend2, prevIndices);\n const prevValues = values;\n values = reshape4({ inputs: { x: values }, attrs: { shape: newShape }, backend: backend2 });\n disposeIntermediateTensorInfoOrNull(backend2, prevValues);\n return [values, indices];\n}\nvar topKConfig2 = {\n kernelName: TopK,\n backendName: \"webgl\",\n kernelFunc: topK2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/transform_gpu.js\nvar TransformProgram = class {\n constructor(imageHeight, imageWidth, interpolation, fillMode, fillValue, outShape) {\n this.variableNames = [\"Image\", \"Transforms\"];\n this.outputShape = outShape;\n const interpolationModeId = interpolation === \"nearest\" ? 1 : 2;\n let fillModeId;\n switch (fillMode) {\n case \"constant\":\n fillModeId = 1;\n break;\n case \"reflect\":\n fillModeId = 2;\n break;\n case \"wrap\":\n fillModeId = 3;\n break;\n case \"nearest\":\n fillModeId = 4;\n break;\n default:\n fillModeId = 1;\n break;\n }\n this.userCode = `\n float mapCoord(float outCoord, float len) {\n float inCoord = outCoord;\n if(${fillModeId} == 2) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz2 = 2.0 * len;\n if (inCoord < sz2) {\n inCoord = sz2 * float(int(float(-inCoord / sz2))) +\n inCoord;\n }\n inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz2 = 2.0 * len;\n inCoord -= sz2 * float(int(float(inCoord / sz2)));\n if (inCoord >= len) {\n inCoord = sz2 - inCoord - 1.0;\n }\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (${fillModeId} == 3) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz = len - 1.0;\n inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz = len - 1.0;\n inCoord -= len * float(int(float(inCoord / sz)));\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (${fillModeId} == 4) {\n return clamp(outCoord, 0.0, len - 1.0);\n } else {\n return outCoord;\n }\n }\n\n float readWithFillValue(int batch, int coordY, int coordX,\n int channel) {\n float outputValue;\n if (0 <= coordY && coordY < ${imageHeight} && 0 <= coordX && coordX < ${imageWidth}) {\n outputValue = getImage(batch, coordY, coordX, channel);\n } else {\n outputValue = float(${fillValue});\n }\n return outputValue;\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n float outputValue;\n int batch = coords[0];\n int x = coords[2];\n int y = coords[1];\n int channel = coords[3];\n float xf = float(x);\n float yf = float(y);\n float a1 = getTransforms(batch, 0);\n float a2 = getTransforms(batch, 1);\n float a3 = getTransforms(batch, 2);\n float b1 = getTransforms(batch, 3);\n float b2 = getTransforms(batch, 4);\n float b3 = getTransforms(batch, 5);\n float c1 = getTransforms(batch, 6);\n float c2 = getTransforms(batch, 7);\n float projection = c1 * xf + c2 * yf + 1.0;\n if (projection == 0.0) {\n outputValue = float(${fillValue});\n } else {\n float inX = (a1 * xf + a2 * yf + a3) / projection;\n float inY = (b1 * xf + b2 * yf + b3) / projection;\n float mapX = mapCoord(inX, float(${imageWidth}));\n float mapY = mapCoord(inY, float(${imageHeight}));\n\n if (${interpolationModeId} == 1) {\n int coordY = int(round(mapY));\n int coordX = int(round(mapX));\n outputValue = readWithFillValue(batch, coordY, coordX,\n channel);\n } else {\n float yFloor = floor(mapY);\n float xFloor = floor(mapX);\n float yCeil = yFloor + 1.0;\n float xCeil = xFloor + 1.0;\n float valueYFloor = (xCeil - mapX) *\n readWithFillValue(batch, int(yFloor), int(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, int(yFloor), int(xCeil), channel);\n float valueYCeil = (xCeil - mapX) *\n readWithFillValue(batch, int(yCeil), int(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, int(yCeil), int(xCeil), channel);\n outputValue = (yCeil - mapY) * valueYFloor +\n (mapY - yFloor) * valueYCeil;\n }\n }\n setOutput(outputValue);\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Transform.js\nfunction transform3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, transforms } = inputs;\n const { interpolation, fillMode, fillValue, outputShape } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth];\n const outShape = [\n batch,\n outHeight,\n outWidth,\n numChannels\n ];\n const program = new TransformProgram(imageHeight, imageWidth, interpolation, fillMode, fillValue, outShape);\n return backend2.runWebGLProgram(program, [image2, transforms], \"float32\");\n}\nvar transformConfig2 = {\n kernelName: Transform,\n backendName: \"webgl\",\n kernelFunc: transform3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Unique.js\nfunction unique4(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { axis } = attrs;\n const { x } = inputs;\n assertNotComplex2(x, \"unique\");\n console.warn(\"WARNING: \", \"UI might be locked temporarily as data is being downloaded\");\n const values = backend2.readSync(x.dataId);\n const { outputValues, outputShape, indices } = uniqueImplCPU(values, axis, x.shape, x.dtype);\n return [\n backend2.makeTensorInfo(outputShape, x.dtype, outputValues),\n backend2.makeTensorInfo([indices.length], \"int32\", indices)\n ];\n}\nvar uniqueConfig2 = {\n kernelName: Unique,\n backendName: \"webgl\",\n kernelFunc: unique4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Unpack.js\nfunction unpack2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { value } = inputs;\n let { axis } = attrs;\n if (axis < 0) {\n axis += value.shape.length;\n }\n const x = value;\n const xRank = x.shape.length;\n const num = value.shape[axis];\n const outShape = new Array(xRank - 1);\n let outIndex = 0;\n for (let i2 = 0; i2 < xRank; i2++) {\n if (i2 !== axis) {\n outShape[outIndex++] = x.shape[i2];\n }\n }\n const toDispose = [];\n const begin = new Array(xRank).fill(0);\n const size = x.shape.slice();\n size[axis] = 1;\n const res = new Array(num);\n for (let i2 = 0; i2 < res.length; i2++) {\n begin[axis] = i2;\n const sliced = slice3({ inputs: { x }, backend: backend2, attrs: { begin, size } });\n const reshaped = reshape4({ inputs: { x: sliced }, backend: backend2, attrs: { shape: outShape } });\n res[i2] = reshaped;\n toDispose.push(sliced);\n }\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return res;\n}\nvar unpackConfig2 = {\n kernelName: Unpack,\n backendName: \"webgl\",\n kernelFunc: unpack2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/segment_gpu.js\nvar SegmentOpProgram = class {\n constructor(segOpInfo, segOpType) {\n this.variableNames = [\"x\", \"segmentIds\"];\n const windowSize = segOpInfo.windowSize;\n const batchSize = segOpInfo.batchSize;\n const inSize = segOpInfo.inSize;\n const numSegments = segOpInfo.numSegments;\n const outSize = numSegments * Math.ceil(inSize / windowSize);\n this.outputShape = [batchSize, outSize];\n const initializationValue = \"0.0\";\n const returnValue = `sumValue`;\n const windowSizeNearestVec4 = Math.floor(windowSize / 4) * 4;\n const windowSizeVec4Remainder = windowSize % 4;\n const updateSnippet = `\n sumValue += dot(values, segFilter);\n `;\n let checkValueOutOfBounds = \"\";\n if (inSize % windowSize > 0) {\n checkValueOutOfBounds = `\n if (inIdx < 0 || inIdx >= ${inSize}) {\n return initializationValue;\n }\n `;\n }\n let checkSegmentIdOutOfBounds = \"\";\n if (inSize % windowSize > 0) {\n checkSegmentIdOutOfBounds = `\n if (inIdx < 0 || inIdx >= ${inSize}) {\n return -1.0;\n }\n `;\n }\n this.userCode = `\n const float initializationValue = ${initializationValue};\n\n float getValue(int batch, int inIdx) {\n ${checkValueOutOfBounds}\n return getX(batch, inIdx);\n }\n\n float getSegmentIdAtIndex(int inIdx) {\n ${checkSegmentIdOutOfBounds}\n return getSegmentIds(inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = int(floor(float(outIdx) / float(\n ${numSegments})) * float(${windowSize}));\n int currentSeg = int(mod(float(outIdx), float(${numSegments})));\n\n float sumValue = 0.0;\n\n for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) {\n int inIdx = inOffset + i;\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0\n );\n\n ${updateSnippet}\n }\n\n int inIdx = inOffset + ${windowSizeNearestVec4};\n if (${windowSizeVec4Remainder === 1}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n int inIdxSeg = int(getSegmentIdAtIndex(inIdx));\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n 0,\n 0,\n 0\n );\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 2}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n initializationValue,\n initializationValue\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n 0,\n 0\n );\n\n ${updateSnippet}\n } else if (${windowSizeVec4Remainder === 3}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n initializationValue\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n 0\n );\n\n ${updateSnippet}\n }\n setOutput(${returnValue});\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/UnsortedSegmentSum.js\nfunction unsortedSegmentSum3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, segmentIds } = inputs;\n const { numSegments } = attrs;\n const xRank = x.shape.length;\n const toDispose = [];\n let axis = 0;\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation != null) {\n permutedX = transpose3({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n toDispose.push(permutedX);\n axis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n }\n const outShape = backend_util_exports.segment_util.computeOutShape(permutedX.shape, axis, numSegments);\n const inSize = util_exports.sizeFromShape([permutedX.shape[axis]]);\n const a2D = reshape4({ inputs: { x: permutedX }, backend: backend2, attrs: { shape: [-1, inSize] } });\n toDispose.push(a2D);\n const outputDType = sumOutType(x.dtype);\n const segOpCompute = (x2, segOpType, segmentIds2, dtype, numSegments2) => {\n const batchSize = x2.shape[0];\n const inSize2 = x2.shape[1];\n const windowSize = backend_util_exports.segment_util.segOpComputeOptimalWindowSize(inSize2, numSegments2);\n const segOpInfo = { windowSize, inSize: inSize2, batchSize, numSegments: numSegments2 };\n const program = new SegmentOpProgram(segOpInfo, segOpType);\n const output = backend2.compileAndRun(program, [x2, segmentIds2], dtype);\n toDispose.push(output);\n if (output.shape[1] === numSegments2) {\n return output;\n }\n const rangeInfo = range4({\n backend: backend2,\n attrs: { start: 0, stop: numSegments2, step: 1, dtype: \"float32\" }\n });\n const tileInfo = tile4({\n inputs: { x: rangeInfo },\n backend: backend2,\n attrs: { reps: [inSize2 / windowSize] }\n });\n toDispose.push(rangeInfo);\n toDispose.push(tileInfo);\n const result2 = segOpCompute(output, segOpType, tileInfo, dtype, numSegments2);\n return result2;\n };\n const segOpResult = segOpCompute(a2D, \"unsortedSegmentSum\", segmentIds, outputDType, numSegments);\n const reshaped = reshape4({ inputs: { x: segOpResult }, backend: backend2, attrs: { shape: outShape } });\n let result = reshaped;\n if (permutation != null) {\n toDispose.push(reshaped);\n const perm = backend_util_exports.getUndoAxesPermutation(permutation);\n result = transpose3({ inputs: { x: result }, backend: backend2, attrs: { perm } });\n }\n toDispose.forEach((t2) => backend2.disposeIntermediateTensorInfo(t2));\n return result;\n}\nvar unsortedSegmentSumConfig2 = {\n kernelName: UnsortedSegmentSum,\n backendName: \"webgl\",\n kernelFunc: unsortedSegmentSum3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/register_all_kernels.js\nvar kernelConfigs2 = [\n _fusedMatMulConfig2,\n absConfig2,\n acosConfig2,\n acoshConfig2,\n addConfig2,\n addNConfig2,\n allConfig2,\n anyConfig2,\n argMaxConfig2,\n argMinConfig2,\n asinConfig2,\n asinhConfig2,\n atanConfig2,\n atan2Config2,\n atanhConfig2,\n avgPoolConfig2,\n avgPool3DConfig2,\n avgPool3DGradConfig3,\n avgPoolGradConfig3,\n batchMatMulConfig2,\n batchNormConfig2,\n batchToSpaceNDConfig2,\n bincountConfig2,\n broadcastArgsConfig2,\n castConfig2,\n ceilConfig2,\n clipByValueConfig2,\n complexConfig2,\n complexAbsConfig2,\n concatConfig2,\n conv2DConfig2,\n conv2DBackpropFilterConfig2,\n conv2DBackpropInputConfig2,\n conv3DConfig2,\n conv3DBackpropFilterV2Config2,\n conv3DBackpropInputConfig,\n cosConfig2,\n coshConfig2,\n cropAndResizeConfig2,\n cumprodConfig2,\n cumsumConfig2,\n denseBincountConfig2,\n depthToSpaceConfig2,\n depthwiseConv2dNativeConfig2,\n depthwiseConv2dNativeBackpropFilterConfig2,\n depthwiseConv2dNativeBackpropInputConfig2,\n diagConfig2,\n dilation2DConfig2,\n einsumConfig2,\n eluConfig2,\n eluGradConfig3,\n equalConfig2,\n erfConfig2,\n expConfig2,\n expandDimsConfig2,\n expm1Config2,\n fftConfig2,\n fillConfig2,\n flipLeftRightConfig2,\n floorConfig2,\n floorDivConfig2,\n fromPixelsConfig,\n fusedConv2DConfig2,\n fusedDepthwiseConv2DConfig2,\n gatherNdConfig2,\n gatherV2Config2,\n greaterConfig2,\n greaterEqualConfig2,\n identityConfig2,\n ifftConfig2,\n imagConfig2,\n isFiniteConfig2,\n isInfConfig2,\n isNaNConfig2,\n leakyReluConfig2,\n lessConfig2,\n lessEqualConfig2,\n linSpaceConfig2,\n logConfig2,\n log1pConfig2,\n logicalAndConfig2,\n logicalNotConfig2,\n logicalOrConfig2,\n LRNConfig2,\n LRNGradConfig2,\n maxConfig2,\n maximumConfig2,\n maxPoolConfig2,\n maxPool3DConfig2,\n maxPool3DGradConfig3,\n maxPoolGradConfig3,\n maxPoolWithArgmaxConfig2,\n meanConfig2,\n minConfig2,\n minimumConfig2,\n mirrorPadConfig2,\n modConfig2,\n multinomialConfig2,\n multiplyConfig2,\n negConfig2,\n nonMaxSuppressionV3Config2,\n nonMaxSuppressionV4Config2,\n nonMaxSuppressionV5Config2,\n notEqualConfig2,\n oneHotConfig2,\n onesLikeConfig2,\n packConfig2,\n padV2Config2,\n powConfig2,\n preluConfig2,\n prodConfig2,\n raggedTensorToTensorConfig2,\n rangeConfig2,\n realConfig2,\n realDivConfig2,\n reciprocalConfig2,\n reluConfig2,\n relu6Config2,\n reshapeConfig2,\n resizeBilinearConfig2,\n resizeBilinearGradConfig3,\n resizeNearestNeighborConfig2,\n resizeNearestNeighborGradConfig3,\n reverseConfig2,\n rotateWithOffsetConfig2,\n roundConfig2,\n rsqrtConfig2,\n scatterNdConfig2,\n searchSortedConfig2,\n selectConfig2,\n seluConfig2,\n sigmoidConfig2,\n signConfig2,\n sinConfig2,\n sinhConfig2,\n sliceConfig2,\n softmaxConfig2,\n softplusConfig2,\n spaceToBatchNDConfig2,\n sparseFillEmptyRowsConfig2,\n sparseReshapeConfig2,\n sparseSegmentMeanConfig2,\n sparseSegmentSumConfig2,\n sparseToDenseConfig2,\n splitVConfig2,\n sqrtConfig2,\n squareConfig2,\n squaredDifferenceConfig2,\n stepConfig2,\n stridedSliceConfig2,\n stringNGramsConfig2,\n stringSplitConfig2,\n stringToHashBucketFastConfig2,\n subConfig2,\n sumConfig2,\n tanConfig2,\n tanhConfig2,\n tileConfig2,\n topKConfig2,\n transformConfig2,\n transposeConfig2,\n uniqueConfig2,\n unpackConfig2,\n unsortedSegmentSumConfig2,\n zerosLikeConfig2\n];\nfor (const kernelConfig of kernelConfigs2) {\n registerKernel(kernelConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/types.js\nvar CppDType;\n(function(CppDType2) {\n CppDType2[CppDType2[\"float32\"] = 0] = \"float32\";\n CppDType2[CppDType2[\"int32\"] = 1] = \"int32\";\n CppDType2[CppDType2[\"bool\"] = 2] = \"bool\";\n CppDType2[CppDType2[\"string\"] = 3] = \"string\";\n CppDType2[CppDType2[\"complex64\"] = 4] = \"complex64\";\n})(CppDType || (CppDType = {}));\nvar FusableActivation;\n(function(FusableActivation2) {\n FusableActivation2[FusableActivation2[\"linear\"] = 0] = \"linear\";\n FusableActivation2[FusableActivation2[\"relu\"] = 1] = \"relu\";\n FusableActivation2[FusableActivation2[\"relu6\"] = 2] = \"relu6\";\n FusableActivation2[FusableActivation2[\"prelu\"] = 3] = \"prelu\";\n FusableActivation2[FusableActivation2[\"leakyrelu\"] = 4] = \"leakyrelu\";\n FusableActivation2[FusableActivation2[\"sigmoid\"] = 5] = \"sigmoid\";\n FusableActivation2[FusableActivation2[\"elu\"] = 6] = \"elu\";\n})(FusableActivation || (FusableActivation = {}));\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/_FusedMatMul.js\nvar wasmFusedMatMul;\nfunction setup(backend2) {\n wasmFusedMatMul = backend2.wasm.cwrap(_FusedMatMul, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction fusedBatchMatMul(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b, bias, preluActivationWeights } = inputs;\n if (a.dtype !== \"float32\" || b.dtype !== \"float32\") {\n throw new Error(`_FusedMatMul for non non-float32 tensors not yet supported.`);\n }\n const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs;\n const aId = backend2.dataIdMap.get(a.dataId).id;\n const bId = backend2.dataIdMap.get(b.dataId).id;\n let biasId = 0;\n if (bias != null) {\n const biasData = backend2.dataIdMap.get(bias.dataId);\n if (biasData.shape.length !== 1) {\n throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${biasData.shape.length}.`);\n }\n biasId = biasData.id;\n }\n const preluActivationWeightsId = preluActivationWeights == null ? 0 : backend2.dataIdMap.get(preluActivationWeights.dataId).id;\n const fusedActivation = FusableActivation[activation2];\n if (fusedActivation == null) {\n throw new Error(`${activation2} activation not yet supported for FusedConv2D in the wasm backend.`);\n }\n const leftDim = transposeA ? a.shape[2] : a.shape[1];\n const rightDim = transposeB ? b.shape[1] : b.shape[2];\n const batchDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const out = backend2.makeOutput([...batchDims, leftDim, rightDim], a.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const aShapeBytes = new Uint8Array(new Int32Array(a.shape).buffer);\n const bShapeBytes = new Uint8Array(new Int32Array(b.shape).buffer);\n wasmFusedMatMul(aId, aShapeBytes, a.shape.length, bId, bShapeBytes, b.shape.length, transposeA, transposeB, fusedActivation, biasId, preluActivationWeightsId, leakyreluAlpha || 0, outId);\n return out;\n}\nvar _fusedMatMulConfig3 = {\n kernelName: _FusedMatMul,\n backendName: \"wasm\",\n setupFunc: setup,\n kernelFunc: fusedBatchMatMul\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/unary_kernel.js\nfunction createUnaryKernelConfig(kernelName, outType) {\n let wasmFunc9;\n function setupFunc3(backend2) {\n wasmFunc9 = backend2.wasm.cwrap(kernelName, null, [\n \"number\",\n \"number\",\n \"number\"\n ]);\n }\n function kernelFunc3(args) {\n const { backend: backend2, inputs: { x } } = args;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, outType || x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n if (util_exports.sizeFromShape(out.shape) === 0) {\n return out;\n }\n wasmFunc9(xId, CppDType[x.dtype], outId);\n return out;\n }\n return { kernelName, backendName: \"wasm\", setupFunc: setupFunc3, kernelFunc: kernelFunc3 };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Abs.js\nvar absConfig3 = createUnaryKernelConfig(Abs);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/binary_kernel.js\nfunction createBinaryKernelConfig(kernelName, supportsFullBroadcast19, dtype) {\n let wasmFunc9;\n function setupFunc3(backend2) {\n wasmFunc9 = backend2.wasm.cwrap(kernelName, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n }\n function kernelFunc3(args) {\n const { backend: backend2, inputs } = args;\n const { a, b } = inputs;\n const aId = backend2.dataIdMap.get(a.dataId).id;\n const bId = backend2.dataIdMap.get(b.dataId).id;\n const outputType = dtype != null ? dtype : a.dtype;\n const newShape = backend_util_exports.assertAndGetBroadcastShape(a.shape, b.shape);\n const out = backend2.makeOutput(newShape, outputType);\n if (util_exports.sizeFromShape(newShape) === 0) {\n return out;\n }\n const aShapeBytes = new Uint8Array(new Int32Array(a.shape).buffer);\n const bShapeBytes = new Uint8Array(new Int32Array(b.shape).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const kernelFunc4 = () => wasmFunc9(aId, aShapeBytes, a.shape.length, bId, bShapeBytes, b.shape.length, CppDType[a.dtype], outId);\n kernelFunc4();\n return out;\n }\n return { kernelName, backendName: \"wasm\", setupFunc: setupFunc3, kernelFunc: kernelFunc3 };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Add.js\nvar supportsFullBroadcast = true;\nvar addConfig3 = createBinaryKernelConfig(Add, supportsFullBroadcast);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/AddN.js\nvar wasmFunc;\nfunction setupFunc(backend2) {\n wasmFunc = backend2.wasm.cwrap(AddN, null, [\n \"array\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction addn(args) {\n const { inputs, backend: backend2 } = args;\n const out = backend2.makeOutput(inputs[0].shape, inputs[0].dtype);\n if (util_exports.sizeFromShape(out.shape) === 0) {\n return out;\n }\n const inputIds = inputs.map((x) => backend2.dataIdMap.get(x.dataId).id);\n const inputIdsBytes = new Uint8Array(new Int32Array(inputIds).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmFunc(inputIdsBytes, inputIds.length, CppDType[out.dtype], outId);\n return out;\n}\nvar addNConfig3 = {\n kernelName: AddN,\n backendName: \"wasm\",\n setupFunc,\n kernelFunc: addn\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Identity.js\nfunction identity4(args) {\n const { inputs: { x }, backend: backend2 } = args;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const inVals = backend2.typedArrayFromHeap(x);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.set(inVals);\n return out;\n}\nvar identityConfig3 = {\n kernelName: Identity,\n backendName: \"wasm\",\n kernelFunc: identity4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Transpose.js\nvar wasmTranspose;\nfunction setup2(backend2) {\n wasmTranspose = backend2.wasm.cwrap(Transpose, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\"\n ]);\n}\nfunction transpose4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const [reducedShape, perm] = removeOneSizeDims(inputs.x.shape, attrs.perm);\n let permIsNoOp = true;\n for (let i2 = 0; i2 < perm.length; i2++) {\n if (perm[i2] !== i2) {\n permIsNoOp = false;\n }\n }\n const outShape = computeOutShape4(inputs.x.shape, attrs.perm);\n const x = {\n dataId: inputs.x.dataId,\n shape: reducedShape,\n dtype: inputs.x.dtype\n };\n if (permIsNoOp) {\n const cloned = identity4({ inputs, backend: backend2 });\n cloned.shape = outShape;\n return cloned;\n }\n const out = backend2.makeOutput(outShape, x.dtype);\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const permBytes = new Uint8Array(new Int32Array(perm).buffer);\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n wasmTranspose(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], outId, permBytes, perm.length);\n return out;\n}\nfunction computeOutShape4(inShape, perm) {\n const outShape = new Array(inShape.length);\n for (let i2 = 0; i2 < outShape.length; i2++) {\n outShape[i2] = inShape[perm[i2]];\n }\n return outShape;\n}\nfunction removeOneSizeDims(shape, perm) {\n const newShape = [];\n const newPerm = [];\n for (let i2 = 0; i2 < shape.length; ++i2) {\n if (shape[i2] !== 1) {\n newShape.push(shape[i2]);\n }\n if (shape[perm[i2]] !== 1) {\n newPerm.push(perm[i2]);\n }\n }\n for (let i2 = 0; i2 < newPerm.length; ++i2) {\n let minValIdx = -1;\n for (let j = 0; j < newPerm.length; ++j) {\n if (newPerm[j] >= i2 && (minValIdx === -1 || newPerm[minValIdx] > newPerm[j])) {\n minValIdx = j;\n }\n }\n newPerm[minValIdx] = i2;\n }\n return [newShape, newPerm];\n}\nvar transposeConfig3 = {\n kernelName: Transpose,\n backendName: \"wasm\",\n kernelFunc: transpose4,\n setupFunc: setup2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/kernel_utils.js\nfunction permuteAxesAndTranspose(x, axis, backend2) {\n const xShape = x.shape;\n const xRank = x.shape.length;\n const originalAxes = util_exports.parseAxisParam(axis, xShape);\n let axes = originalAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let xTransposed = null;\n let inputWasTransposed = false;\n if (permutedAxes != null) {\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = xShape[permutedAxes[i2]];\n }\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n xTransposed = transpose4({ inputs: { x }, attrs: { perm: permutedAxes }, backend: backend2 });\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const transposedId = backend2.dataIdMap.get(xTransposed.dataId).id;\n if (transposedId !== xId) {\n inputWasTransposed = true;\n }\n }\n return { transposed: xTransposed, originalAxes, axes, inputWasTransposed };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/All.js\nvar wasmAll;\nfunction setup3(backend2) {\n wasmAll = backend2.wasm.cwrap(All, null, [\"number, number, number\"]);\n}\nfunction all4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n input2 = transposed;\n inputId = transposedId;\n }\n const inputRank = input2.shape.length;\n backend_util_exports.assertAxesAreInnerMostDims(\"all\", axes, inputRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, x.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmAll(inputId, reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar allConfig3 = {\n kernelName: All,\n backendName: \"wasm\",\n setupFunc: setup3,\n kernelFunc: all4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Any.js\nvar wasmAny;\nfunction setup4(backend2) {\n wasmAny = backend2.wasm.cwrap(Any, null, [\"number, number, number\"]);\n}\nfunction any4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n input2 = transposed;\n inputId = transposedId;\n }\n const inputRank = input2.shape.length;\n backend_util_exports.assertAxesAreInnerMostDims(\"any\", axes, inputRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, x.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmAny(inputId, reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar anyConfig3 = {\n kernelName: Any,\n backendName: \"wasm\",\n setupFunc: setup4,\n kernelFunc: any4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ArgMax.js\nvar wasmFunc2;\nfunction setup5(backend2) {\n wasmFunc2 = backend2.wasm.cwrap(ArgMax, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction argmax(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n }\n }\n const outShape = input2.shape.slice(0, -1);\n const out = backend2.makeOutput(outShape, \"int32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const outerSize = util_exports.sizeFromShape(out.shape);\n const innerSize = input2.shape[axes[0]];\n wasmFunc2(inputId, CppDType[input2.dtype], outerSize, innerSize, outId);\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n return out;\n}\nvar argMaxConfig3 = {\n kernelName: ArgMax,\n backendName: \"wasm\",\n kernelFunc: argmax,\n setupFunc: setup5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/AvgPool.js\nvar wasmAvgPool;\nfunction setup6(backend2) {\n wasmAvgPool = backend2.wasm.cwrap(AvgPool, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction avgPool4(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const x = inputs.x;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const channels = convInfo.inChannels;\n if (convInfo.dataFormat !== \"channelsLast\") {\n throw new Error(`wasm backend does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);\n }\n if (convInfo.dilationWidth !== 1 || convInfo.dilationHeight !== 1) {\n throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${convInfo.dilationHeight}, ${convInfo.dilationWidth}].`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmAvgPool(xId, x.shape[0], x.shape[1], x.shape[2], filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, strideHeight, strideWidth, channels, outId);\n return out;\n}\nvar avgPoolConfig3 = {\n kernelName: AvgPool,\n backendName: \"wasm\",\n setupFunc: setup6,\n kernelFunc: avgPool4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Reshape.js\nfunction reshape5(args) {\n const { inputs, attrs } = args;\n const { x } = inputs;\n const { shape } = attrs;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $shape = util_exports.inferFromImplicitShape(shape, xSize);\n util_exports.assert(xSize === util_exports.sizeFromShape($shape), () => `new shape: ${$shape}, old shape: ${x.shape}. New shape and old shape must have the same number of elements.`);\n args.backend.incRef(x.dataId);\n return { dataId: x.dataId, shape: $shape, dtype: x.dtype };\n}\nvar reshapeConfig3 = {\n kernelName: Reshape,\n backendName: \"wasm\",\n kernelFunc: reshape5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/BatchMatMul.js\nvar wasmBatchMatMul;\nfunction setup7(backend2) {\n wasmBatchMatMul = backend2.wasm.cwrap(BatchMatMul, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction batchMatMul3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b } = inputs;\n const { transposeA, transposeB } = attrs;\n if (a.dtype !== \"float32\" || b.dtype !== \"float32\") {\n throw new Error(`BatchMatMul for non non-float32 tensors not yet supported.`);\n }\n const aRank = a.shape.length;\n const bRank = b.shape.length;\n const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1];\n const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2];\n const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2];\n const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1];\n const outerDimsA = a.shape.slice(0, -2);\n const outerDimsB = b.shape.slice(0, -2);\n const batchDimA = util_exports.sizeFromShape(outerDimsA);\n const batchDimB = util_exports.sizeFromShape(outerDimsB);\n const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA];\n const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB];\n const a3d = reshape5({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } });\n const b3d = reshape5({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } });\n const a3dId = backend2.dataIdMap.get(a3d.dataId).id;\n const b3dId = backend2.dataIdMap.get(b3d.dataId).id;\n const leftDim = transposeA ? a3d.shape[2] : a3d.shape[1];\n const rightDim = transposeB ? b3d.shape[1] : b3d.shape[2];\n const batchDim = Math.max(batchDimA, batchDimB);\n const out = backend2.makeOutput([batchDim, leftDim, rightDim], a3d.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const aShapeBytes = new Uint8Array(new Int32Array(a3d.shape).buffer);\n const bShapeBytes = new Uint8Array(new Int32Array(b3d.shape).buffer);\n wasmBatchMatMul(a3dId, aShapeBytes, a3d.shape.length, b3dId, bShapeBytes, b3d.shape.length, transposeA, transposeB, outId);\n backend2.disposeData(a3d.dataId);\n backend2.disposeData(b3d.dataId);\n out.shape = outShape;\n return out;\n}\nvar batchMatMulConfig3 = {\n kernelName: BatchMatMul,\n backendName: \"wasm\",\n setupFunc: setup7,\n kernelFunc: batchMatMul3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Slice.js\nfunction slice4(args) {\n const { inputs: { x }, attrs: { begin, size }, backend: backend2 } = args;\n const [begin_, size_] = slice_util_exports.parseSliceParams(x, begin, size);\n const isContinous = slice_util_exports.isSliceContinous(x.shape, begin_, size_);\n const xVals = backend2.readSync(x.dataId);\n const out = backend2.makeOutput(size_, x.dtype);\n const xStrides = util_exports.computeStrides(x.shape);\n const outData = backend2.dataIdMap.get(out.dataId);\n if (isContinous) {\n const flatOffset = slice_util_exports.computeFlatOffset(begin_, xStrides);\n if (x.dtype === \"string\") {\n outData.stringBytes = xVals.slice(flatOffset, flatOffset + util_exports.sizeFromShape(size_));\n } else {\n const outVals2 = backend2.typedArrayFromHeap(out);\n outVals2.set(xVals.subarray(flatOffset, flatOffset + util_exports.sizeFromShape(size_)));\n }\n return out;\n }\n if (x.dtype === \"string\") {\n const res = sliceImpl(xVals, begin_, size_, x.shape, x.dtype);\n outData.stringBytes = res;\n return out;\n }\n const outVals = backend2.typedArrayFromHeap(out);\n const rank = x.shape.length;\n if (rank === 2) {\n slice2d2(xVals, xStrides[0], outVals, begin_, size_);\n } else if (rank === 3) {\n slice3d2(xVals, xStrides[0], xStrides[1], outVals, begin_, size_);\n } else if (rank === 4) {\n slice4d2(xVals, xStrides[0], xStrides[1], xStrides[2], outVals, begin_, size_);\n } else {\n const res = sliceImpl(xVals, begin_, size_, x.shape, x.dtype);\n outVals.set(res);\n }\n return out;\n}\nfunction slice2d2(xVals, xStride, outVals, begin, size) {\n let outOffset = 0;\n const beginI = begin[0];\n const beginJ = begin[1];\n const endI = beginI + size[0];\n for (let i2 = beginI; i2 < endI; i2++) {\n const xOffset = i2 * xStride + beginJ;\n outVals.set(xVals.subarray(xOffset, xOffset + size[1]), outOffset);\n outOffset += size[1];\n }\n}\nfunction slice3d2(xVals, xStride1, xStride2, outVals, begin, size) {\n let outOffset = 0;\n const beginI = begin[0];\n const beginJ = begin[1];\n const beginK = begin[2];\n const endI = beginI + size[0];\n const endJ = beginJ + size[1];\n for (let i2 = beginI; i2 < endI; i2++) {\n for (let j = beginJ; j < endJ; j++) {\n const xOffset = i2 * xStride1 + j * xStride2 + beginK;\n outVals.set(xVals.subarray(xOffset, xOffset + size[2]), outOffset);\n outOffset += size[2];\n }\n }\n}\nfunction slice4d2(xVals, xStride1, xStride2, xStride3, outVals, begin, size) {\n let outOffset = 0;\n const beginI = begin[0];\n const beginJ = begin[1];\n const beginK = begin[2];\n const endI = beginI + size[0];\n const endJ = beginJ + size[1];\n const endK = beginK + size[2];\n const beginL = begin[3];\n for (let i2 = beginI; i2 < endI; i2++) {\n for (let j = beginJ; j < endJ; j++) {\n for (let k = beginK; k < endK; k++) {\n const xOffset = i2 * xStride1 + j * xStride2 + k * xStride3 + beginL;\n outVals.set(xVals.subarray(xOffset, xOffset + size[3]), outOffset);\n outOffset += size[3];\n }\n }\n }\n}\nvar sliceConfig3 = {\n kernelName: Slice,\n backendName: \"wasm\",\n kernelFunc: slice4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/BatchToSpaceND.js\nfunction batchToSpaceND4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, crops } = attrs;\n const prod6 = blockShape.reduce((a, b) => a * b);\n const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6);\n const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length);\n const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6);\n const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length);\n const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length);\n const xReshaped = reshape5({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } });\n const xTransposed = transpose4({ inputs: { x: xReshaped }, backend: backend2, attrs: { perm: permuted } });\n const xTransposedReshaped = reshape5({ inputs: { x: xTransposed }, backend: backend2, attrs: { shape: reshapedPermuted } });\n const result = slice4({\n inputs: { x: xTransposedReshaped },\n backend: backend2,\n attrs: { begin: sliceBeginCoords, size: sliceSize }\n });\n backend2.disposeData(xReshaped.dataId);\n backend2.disposeData(xTransposed.dataId);\n backend2.disposeData(xReshaped.dataId);\n return result;\n}\nvar batchToSpaceNDConfig3 = {\n kernelName: BatchToSpaceND,\n backendName: \"wasm\",\n kernelFunc: batchToSpaceND4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cast.js\nfunction cast5(args) {\n const { inputs: { x }, attrs: { dtype }, backend: backend2 } = args;\n const out = backend2.makeOutput(x.shape, dtype);\n const inVals = backend2.typedArrayFromHeap(x);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.set(inVals);\n return out;\n}\nvar castConfig3 = {\n kernelName: Cast,\n backendName: \"wasm\",\n kernelFunc: cast5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Ceil.js\nvar ceilConfig3 = createUnaryKernelConfig(Ceil);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ClipByValue.js\nvar wasmClip;\nfunction setup8(backend2) {\n wasmClip = backend2.wasm.cwrap(ClipByValue, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction clip(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { clipValueMin, clipValueMax } = attrs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmClip(xId, clipValueMin, clipValueMax, outId);\n return out;\n}\nvar clipByValueConfig3 = {\n kernelName: ClipByValue,\n backendName: \"wasm\",\n setupFunc: setup8,\n kernelFunc: clip\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Concat.js\nfunction concat4(args) {\n const { inputs, backend: backend2 } = args;\n const axis = util_exports.parseAxisParam(args.attrs.axis, inputs[0].shape)[0];\n let outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0);\n if ($inputs.length === 1) {\n return identity4({ inputs: { x: $inputs[0] }, backend: backend2 });\n }\n const out = backend2.makeOutput(outShape, inputs[0].dtype);\n if (util_exports.sizeFromShape(outShape) === 0) {\n return out;\n }\n const shapes = $inputs.map((t2) => t2.shape);\n backend_util_exports.assertParamsConsistent(shapes, axis);\n if ($inputs[0].dtype === \"string\") {\n const inputs2D = $inputs.map((t2) => {\n const innerSize = util_exports.sizeFromShape(t2.shape.slice(axis));\n const shape = [-1, innerSize];\n return reshape5({ inputs: { x: t2 }, backend: backend2, attrs: { shape } });\n });\n const inputsValShapes = inputs2D.map((t2) => {\n return { vals: backend2.readSync(t2.dataId), shape: t2.shape };\n });\n outShape = backend_util_exports.computeOutShape(inputs2D.map((t2) => t2.shape), 1);\n const simplyConcat = inputs2D[0].shape[0] === 1;\n const outVals2 = concatImpl(inputsValShapes, outShape, inputs[0].dtype, simplyConcat);\n const finalOutShape = backend_util_exports.computeOutShape($inputs.map((t2) => t2.shape), axis);\n out.shape = finalOutShape;\n const outData = backend2.dataIdMap.get(out.dataId);\n outData.stringBytes = backend_util_exports.fromStringArrayToUint8(outVals2);\n inputs2D.forEach((t2) => backend2.disposeData(t2.dataId));\n return out;\n }\n const batchDim = util_exports.sizeFromShape($inputs[0].shape.slice(0, axis));\n let sumInnerDims = 0;\n const innerDims = $inputs.map((input2) => {\n const innerDim = util_exports.sizeFromShape(input2.shape.slice(axis));\n sumInnerDims += innerDim;\n return innerDim;\n });\n const inVals = $inputs.map((input2) => backend2.typedArrayFromHeap(input2));\n const outVals = backend2.typedArrayFromHeap(out);\n for (let b = 0; b < batchDim; b++) {\n let outOffset = b * sumInnerDims;\n for (let i2 = 0; i2 < inVals.length; i2++) {\n const innerDim = innerDims[i2];\n const inOffset = b * innerDim;\n const vals = inVals[i2].subarray(inOffset, inOffset + innerDim);\n outVals.set(vals, outOffset);\n outOffset += innerDim;\n }\n }\n return out;\n}\nvar concatConfig3 = {\n kernelName: Concat,\n backendName: \"wasm\",\n kernelFunc: concat4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Conv2D.js\nvar wasmConv2d;\nfunction setup9(backend2) {\n wasmConv2d = backend2.wasm.cwrap(Conv2D, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction conv2d5(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n const { strides, dilations, pad: pad3, dimRoundingMode, dataFormat } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const outputChannels = convInfo.outChannels;\n const isSamePad = convInfo.padInfo.type === \"SAME\" ? 1 : 0;\n if (convInfo.dataFormat !== \"channelsLast\") {\n throw new Error(`wasm backend Conv2D does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmConv2d(xId, x.shape[0], x.shape[1], x.shape[2], filterId, filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, outId);\n return out;\n}\nvar conv2DConfig3 = {\n kernelName: Conv2D,\n backendName: \"wasm\",\n setupFunc: setup9,\n kernelFunc: conv2d5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Conv2DBackpropInput.js\nvar wasmConv2DBackpropInput;\nfunction setup10(backend2) {\n wasmConv2DBackpropInput = backend2.wasm.cwrap(Conv2DBackpropInput, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction conv2DBackpropInput4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { dy, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dimRoundingMode, inputShape } = attrs;\n const dilations = 1;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n const { batchSize, filterHeight, filterWidth, inChannels, inHeight, inWidth, outChannels, outHeight, outWidth, strideHeight, strideWidth } = convInfo;\n const topPad = filterHeight - 1 - convInfo.padInfo.top;\n const leftPad = filterWidth - 1 - convInfo.padInfo.left;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const dxStrides = util_exports.computeStrides(convInfo.inShape);\n const dyStrides = util_exports.computeStrides(dy.shape);\n const [fltS0, fltS1, fltS2] = util_exports.computeStrides(filter.shape);\n const xBatchStride = dxStrides[0];\n const xRowStride = isChannelsLast ? dxStrides[1] : dxStrides[2];\n const xColStride = isChannelsLast ? dxStrides[2] : 1;\n const xChannelStride = isChannelsLast ? 1 : dxStrides[1];\n const yBatchStride = dyStrides[0];\n const yRowStride = isChannelsLast ? dyStrides[1] : dyStrides[2];\n const yColStride = isChannelsLast ? dyStrides[2] : 1;\n const yChannelStride = isChannelsLast ? 1 : dyStrides[1];\n const out = backend2.makeOutput(convInfo.inShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const dyId = backend2.dataIdMap.get(dy.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n wasmConv2DBackpropInput(dyId, filterId, batchSize, filterHeight, filterWidth, inHeight, inWidth, inChannels, outHeight, outWidth, outChannels, strideHeight, strideWidth, topPad, leftPad, fltS0, fltS1, fltS2, xBatchStride, xRowStride, xColStride, xChannelStride, yBatchStride, yRowStride, yColStride, yChannelStride, outId);\n return out;\n}\nvar conv2DBackpropInputConfig3 = {\n kernelName: Conv2DBackpropInput,\n backendName: \"wasm\",\n setupFunc: setup10,\n kernelFunc: conv2DBackpropInput4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cos.js\nvar cosConfig3 = createUnaryKernelConfig(Cos);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cosh.js\nvar coshConfig3 = createUnaryKernelConfig(Cosh);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/CropAndResize.js\nvar InterpolationMethod;\n(function(InterpolationMethod2) {\n InterpolationMethod2[InterpolationMethod2[\"bilinear\"] = 0] = \"bilinear\";\n InterpolationMethod2[InterpolationMethod2[\"nearest\"] = 1] = \"nearest\";\n})(InterpolationMethod || (InterpolationMethod = {}));\nvar wasmCropAndResize;\nfunction setup11(backend2) {\n wasmCropAndResize = backend2.wasm.cwrap(CropAndResize, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction cropAndResize4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { method, extrapolationValue, cropSize } = attrs;\n const { image: image2, boxes, boxInd } = inputs;\n const numBoxes = boxes.shape[0];\n const [cropHeight, cropWidth] = cropSize;\n const outShape = [numBoxes, cropHeight, cropWidth, image2.shape[3]];\n let imagesData = backend2.dataIdMap.get(image2.dataId);\n let castedData;\n if (image2.dtype !== \"float32\") {\n castedData = cast5({ backend: backend2, inputs: { x: image2 }, attrs: { dtype: \"float32\" } });\n imagesData = backend2.dataIdMap.get(castedData.dataId);\n }\n const imagesId = imagesData.id;\n const boxesId = backend2.dataIdMap.get(boxes.dataId).id;\n const boxIndId = backend2.dataIdMap.get(boxInd.dataId).id;\n const out = backend2.makeOutput(outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const imagesShapeBytes = new Uint8Array(new Int32Array(image2.shape).buffer);\n wasmCropAndResize(imagesId, boxesId, boxIndId, numBoxes, imagesShapeBytes, cropHeight, cropWidth, InterpolationMethod[method], extrapolationValue, outId);\n if (castedData != null) {\n backend2.disposeData(castedData.dataId);\n }\n return out;\n}\nvar cropAndResizeConfig3 = {\n kernelName: CropAndResize,\n backendName: \"wasm\",\n setupFunc: setup11,\n kernelFunc: cropAndResize4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cumprod.js\nvar wasmCumprod;\nfunction setup12(backend2) {\n wasmCumprod = backend2.wasm.cwrap(Cumprod, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction cumprod4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n const xRank = x.shape.length;\n util_exports.assert(x.dtype === \"float32\" || x.dtype === \"int32\", () => `cumprod does not support ${x.dtype} tensors in the WASM backend`);\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation !== null) {\n permutedX = transpose4({ inputs: { x }, attrs: { perm: permutation }, backend: backend2 });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n backend_util_exports.assertAxesAreInnerMostDims(\"cumprod\", [permutedAxis], xRank);\n const permutedOut = backend2.makeOutput(permutedX.shape, permutedX.dtype);\n const finalDim = permutedX.shape[permutedAxis];\n const permutedXId = backend2.dataIdMap.get(permutedX.dataId).id;\n const permutedOutId = backend2.dataIdMap.get(permutedOut.dataId).id;\n wasmCumprod(permutedXId, exclusive ? 1 : 0, reverse5 ? 1 : 0, finalDim, permutedOutId, CppDType[x.dtype]);\n let out = permutedOut;\n if (permutation !== null) {\n const undoPermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n out = transpose4({ inputs: { x: permutedOut }, attrs: { perm: undoPermutation }, backend: backend2 });\n backend2.disposeData(permutedX.dataId);\n backend2.disposeData(permutedOut.dataId);\n }\n return out;\n}\nvar cumprodConfig3 = {\n kernelName: Cumprod,\n backendName: \"wasm\",\n setupFunc: setup12,\n kernelFunc: cumprod4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Cumsum.js\nvar wasmCumsum;\nfunction setup13(backend2) {\n wasmCumsum = backend2.wasm.cwrap(Cumsum, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction cumsum4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n const xRank = x.shape.length;\n util_exports.assert(x.dtype === \"float32\" || x.dtype === \"int32\", () => `cumsum does not support ${x.dtype} tensors in the WASM backend`);\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation !== null) {\n permutedX = transpose4({ inputs: { x }, attrs: { perm: permutation }, backend: backend2 });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n backend_util_exports.assertAxesAreInnerMostDims(\"cumsum\", [permutedAxis], xRank);\n const permutedOut = backend2.makeOutput(permutedX.shape, permutedX.dtype);\n const finalDim = permutedX.shape[permutedAxis];\n const permutedXId = backend2.dataIdMap.get(permutedX.dataId).id;\n const permutedOutId = backend2.dataIdMap.get(permutedOut.dataId).id;\n wasmCumsum(permutedXId, exclusive ? 1 : 0, reverse5 ? 1 : 0, finalDim, permutedOutId, CppDType[x.dtype]);\n let out = permutedOut;\n if (permutation !== null) {\n const undoPermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n out = transpose4({ inputs: { x: permutedOut }, attrs: { perm: undoPermutation }, backend: backend2 });\n backend2.disposeData(permutedX.dataId);\n backend2.disposeData(permutedOut.dataId);\n }\n return out;\n}\nvar cumsumConfig3 = {\n kernelName: Cumsum,\n backendName: \"wasm\",\n setupFunc: setup13,\n kernelFunc: cumsum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/DepthToSpace.js\nvar wasmDepthToSpace;\nfunction setup14(backend2) {\n wasmDepthToSpace = backend2.wasm.cwrap(DepthToSpace, null, [\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction depthToSpace4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { x } = inputs;\n const { blockSize, dataFormat } = attrs;\n const batchSize = x.shape[0];\n const inputHeight = dataFormat === \"NHWC\" ? x.shape[1] : x.shape[2];\n const inputWidth = dataFormat === \"NHWC\" ? x.shape[2] : x.shape[3];\n const inputDepth = dataFormat === \"NHWC\" ? x.shape[3] : x.shape[1];\n const outputHeight = inputHeight * blockSize;\n const outputWidth = inputWidth * blockSize;\n const outputDepth = inputDepth / (blockSize * blockSize);\n const outputShape = dataFormat === \"NHWC\" ? [batchSize, outputHeight, outputWidth, outputDepth] : [batchSize, outputDepth, outputHeight, outputWidth];\n const out = backend2.makeOutput(outputShape, \"float32\");\n const xData = backend2.dataIdMap.get(x.dataId);\n const xId = xData.id;\n const xStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(x.shape)).buffer);\n const outputShapeBytes = new Uint8Array(new Int32Array(outputShape).buffer);\n const outStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(outputShape)).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const channelsLast = dataFormat === \"NHWC\" ? 1 : 0;\n wasmDepthToSpace(xId, blockSize, channelsLast, xStridesBytes, x.shape.length - 1, outputShapeBytes, outStridesBytes, outputShape.length, outId);\n return out;\n}\nvar depthToSpaceConfig3 = {\n kernelName: DepthToSpace,\n backendName: \"wasm\",\n setupFunc: setup14,\n kernelFunc: depthToSpace4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/DepthwiseConv2dNative.js\nvar wasmDepthwiseConv2d;\nfunction setup15(backend2) {\n wasmDepthwiseConv2d = backend2.wasm.cwrap(DepthwiseConv2dNative, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction depthwiseConv2d5(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n const { strides, dilations, pad: pad3, dimRoundingMode } = attrs;\n const $dilations = dilations == null ? [1, 1] : dilations;\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const outputChannels = convInfo.outChannels;\n const isSamePad = convInfo.padInfo.type === \"SAME\" ? 1 : 0;\n if (convInfo.dataFormat !== \"channelsLast\") {\n throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmDepthwiseConv2d(xId, x.shape[0], x.shape[1], x.shape[2], filterId, filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, outId);\n return out;\n}\nvar depthwiseConv2dNativeConfig3 = {\n kernelName: DepthwiseConv2dNative,\n backendName: \"wasm\",\n setupFunc: setup15,\n kernelFunc: depthwiseConv2d5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Elu.js\nvar eluConfig3 = createUnaryKernelConfig(Elu);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Equal.js\nvar supportsFullBroadcast2 = false;\nvar equalConfig3 = createBinaryKernelConfig(Equal, supportsFullBroadcast2, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Exp.js\nvar expConfig3 = createUnaryKernelConfig(Exp, \"float32\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ExpandDims.js\nfunction expandDims5(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const { dim } = attrs;\n const inputRank = input2.shape.length;\n const newShape = input2.shape.slice();\n let $dim = dim;\n if (dim < 0) {\n util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`);\n $dim = inputRank + dim + 1;\n }\n newShape.splice($dim, 0, 1);\n return reshape5({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } });\n}\nvar expandDimsConfig3 = {\n kernelName: ExpandDims,\n backendName: \"wasm\",\n kernelFunc: expandDims5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Fill.js\nfunction fill4(args) {\n const { attrs: { shape, value, dtype }, backend: backend2 } = args;\n const out = backend2.makeOutput(shape, dtype);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.fill(value);\n return out;\n}\nvar fillConfig3 = {\n kernelName: Fill,\n backendName: \"wasm\",\n kernelFunc: fill4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FlipLeftRight.js\nvar wasmFlipLeftRight;\nfunction setup16(backend2) {\n wasmFlipLeftRight = backend2.wasm.cwrap(FlipLeftRight, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction flipLeftRight2(args) {\n const { inputs, backend: backend2 } = args;\n const { image: image2 } = inputs;\n const out = backend2.makeOutput(image2.shape, image2.dtype);\n const imageId = backend2.dataIdMap.get(image2.dataId).id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n wasmFlipLeftRight(imageId, batch, imageHeight, imageWidth, numChannels, outId);\n return out;\n}\nvar flipLeftRightConfig3 = {\n kernelName: FlipLeftRight,\n backendName: \"wasm\",\n kernelFunc: flipLeftRight2,\n setupFunc: setup16\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Floor.js\nvar floorConfig3 = createUnaryKernelConfig(Floor);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FloorDiv.js\nvar supportsFullBroadcast3 = false;\nvar floorDivConfig3 = createBinaryKernelConfig(FloorDiv, supportsFullBroadcast3);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FusedBatchNorm.js\nvar wasmBatchNorm;\nfunction setup17(backend2) {\n wasmBatchNorm = backend2.wasm.cwrap(FusedBatchNorm, null, [\"number\", \"number\", \"number\", \"number\", \"number\", \"number\", \"number\"]);\n}\nfunction fusedBatchNorm(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { varianceEpsilon } = attrs;\n const { x, mean: mean5, variance, offset, scale: scale2 } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const meanId = backend2.dataIdMap.get(mean5.dataId).id;\n const varianceId = backend2.dataIdMap.get(variance.dataId).id;\n const offsetId = offset != null ? backend2.dataIdMap.get(offset.dataId).id : 0;\n const scaleId = scale2 != null ? backend2.dataIdMap.get(scale2.dataId).id : 0;\n const out = backend2.makeOutput(x.shape, x.dtype);\n if (util_exports.sizeFromShape(x.shape) === 0) {\n return out;\n }\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmBatchNorm(xId, meanId, varianceId, offsetId, scaleId, varianceEpsilon, outId);\n return out;\n}\nvar fusedBatchNormConfig = {\n kernelName: FusedBatchNorm,\n backendName: \"wasm\",\n setupFunc: setup17,\n kernelFunc: fusedBatchNorm\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FusedConv2D.js\nvar wasmFusedConv2d;\nfunction setup18(backend2) {\n wasmFusedConv2d = backend2.wasm.cwrap(FusedConv2D, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction fusedConv2d2(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dilations, dataFormat, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode);\n const fusedActivation = FusableActivation[activation2];\n if (fusedActivation == null) {\n throw new Error(`${activation2} activation not yet supported for FusedConv2D in the wasm backend.`);\n }\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n const outputChannels = convInfo.outChannels;\n let biasId = 0;\n if (bias != null) {\n const biasData = backend2.dataIdMap.get(bias.dataId);\n if (biasData.shape.length !== 1) {\n throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${biasData.shape.length}.`);\n }\n if (biasData.shape[0] !== outputChannels) {\n throw new Error(`FusedConv2D bias shape (${biasData.shape}) does not match the number of output channels (${outputChannels})`);\n }\n biasId = biasData.id;\n }\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const isSamePad = convInfo.padInfo.type === \"SAME\" ? 1 : 0;\n const batchSize = convInfo.batchSize;\n const inHeight = convInfo.inHeight;\n const inWidth = convInfo.inWidth;\n if (dataFormat !== \"NHWC\") {\n throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${dataFormat}'. Please use 'NHWC'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const preluActivationWeightsId = preluActivationWeights == null ? 0 : backend2.dataIdMap.get(preluActivationWeights.dataId).id;\n wasmFusedConv2d(xId, batchSize, inHeight, inWidth, filterId, filterHeight, filterWidth, biasId, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, fusedActivation, preluActivationWeightsId, leakyreluAlpha || 0, outId);\n return out;\n}\nvar fusedConv2DConfig3 = {\n kernelName: FusedConv2D,\n backendName: \"wasm\",\n setupFunc: setup18,\n kernelFunc: fusedConv2d2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/FusedDepthwiseConv2D.js\nvar wasmFusedDepthwiseConv2d;\nfunction setup19(backend2) {\n wasmFusedDepthwiseConv2d = backend2.wasm.cwrap(FusedDepthwiseConv2D, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction fusedDepthwiseConv2d(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dilations, dataFormat, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, true);\n const fusedActivation = FusableActivation[activation2];\n if (fusedActivation == null) {\n throw new Error(`${activation2} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);\n }\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const filterId = backend2.dataIdMap.get(filter.dataId).id;\n const outputChannels = convInfo.outChannels;\n let biasId = 0;\n if (bias != null) {\n const biasData = backend2.dataIdMap.get(bias.dataId);\n if (biasData.shape.length !== 1) {\n throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${biasData.shape.length}.`);\n }\n if (biasData.shape[0] !== outputChannels) {\n throw new Error(`FusedDepthwiseConv2D bias shape (${biasData.shape}) does not match the number of output channels (${outputChannels})`);\n }\n biasId = biasData.id;\n }\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const isSamePad = convInfo.padInfo.type === \"SAME\" ? 1 : 0;\n const batchSize = convInfo.batchSize;\n const inHeight = convInfo.inHeight;\n const inWidth = convInfo.inWidth;\n if (dataFormat !== \"NHWC\") {\n throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${dataFormat}'. Please use 'NHWC'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const preluActivationWeightsId = preluActivationWeights == null ? 0 : backend2.dataIdMap.get(preluActivationWeights.dataId).id;\n wasmFusedDepthwiseConv2d(xId, batchSize, inHeight, inWidth, filterId, filterHeight, filterWidth, biasId, padTop, padRight, padBottom, padLeft, isSamePad, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, fusedActivation, preluActivationWeightsId, leakyreluAlpha || 0, outId);\n return out;\n}\nvar fusedDepthwiseConv2DConfig3 = {\n kernelName: FusedDepthwiseConv2D,\n backendName: \"wasm\",\n setupFunc: setup19,\n kernelFunc: fusedDepthwiseConv2d\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/GatherNd.js\nvar wasmGatherNd;\nfunction setup20(backend2) {\n wasmGatherNd = backend2.wasm.cwrap(GatherNd, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\"\n ]);\n}\nfunction gatherNd3(args) {\n const { backend: backend2, inputs } = args;\n const { params, indices } = inputs;\n const [resultShape, numSlices, sliceSize, strides] = gather_nd_util_exports.prepareAndValidate(params, indices);\n const out = backend2.makeOutput(resultShape, params.dtype);\n if (numSlices === 0) {\n return out;\n }\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n const xData = backend2.dataIdMap.get(params.dataId);\n const xId = xData.id;\n const indicesData = backend2.dataIdMap.get(indices.dataId);\n const indicesId = indicesData.id;\n const stridesBytes = new Uint8Array(new Int32Array(strides).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmGatherNd(xId, CppDType[params.dtype], indicesId, numSlices, sliceRank, sliceSize, stridesBytes, outId);\n return out;\n}\nvar gatherNdConfig3 = {\n kernelName: GatherNd,\n backendName: \"wasm\",\n setupFunc: setup20,\n kernelFunc: gatherNd3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/GatherV2.js\nvar wasmGather;\nfunction setup21(backend2) {\n wasmGather = backend2.wasm.cwrap(\"Gather\", null, [\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\"\n ]);\n}\nfunction gatherV23(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { x, indices } = inputs;\n const { axis, batchDims } = attrs;\n const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0];\n const indicesVals = backend2.readSync(indices.dataId);\n const axisDim = x.shape[parsedAxis];\n for (let i2 = 0; i2 < indicesVals.length; ++i2) {\n const index = indicesVals[i2];\n util_exports.assert(index <= axisDim - 1 && index >= 0, () => `GatherV2: the index value ${index} is not in [0, ${axisDim - 1}]`);\n }\n const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, batchDims);\n const flattenX = reshape5({\n inputs: { x },\n attrs: {\n shape: [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n shapeInfo.dimSize,\n shapeInfo.sliceSize\n ]\n },\n backend: backend2\n });\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const flattenIndex = reshape5({\n inputs: { x: indices },\n attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] },\n backend: backend2\n });\n const flattenOutputShape = [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n indicesSize / shapeInfo.batchSize,\n shapeInfo.sliceSize\n ];\n const out = backend2.makeOutput(flattenOutputShape, x.dtype);\n if (util_exports.sizeFromShape(x.shape) === 0) {\n return out;\n }\n const stridesSize = flattenX.shape.length - 1;\n const xData = backend2.dataIdMap.get(flattenX.dataId);\n const xId = xData.id;\n const indicesData = backend2.dataIdMap.get(flattenIndex.dataId);\n const indicesId = indicesData.id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const xStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(flattenX.shape)).buffer);\n const outStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(flattenOutputShape)).buffer);\n wasmGather(xId, CppDType[x.dtype], xStridesBytes, stridesSize, indicesId, shapeInfo.batchSize, outStridesBytes, outId);\n backend2.disposeData(flattenX.dataId);\n backend2.disposeData(flattenIndex.dataId);\n out.shape = shapeInfo.outputShape;\n return out;\n}\nvar gatherV2Config3 = {\n kernelName: GatherV2,\n backendName: \"wasm\",\n setupFunc: setup21,\n kernelFunc: gatherV23\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Greater.js\nvar supportsFullBroadcast4 = false;\nvar greaterConfig3 = createBinaryKernelConfig(Greater, supportsFullBroadcast4, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/GreaterEqual.js\nvar supportsFullBroadcast5 = false;\nvar greaterEqualConfig3 = createBinaryKernelConfig(GreaterEqual, supportsFullBroadcast5, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LeakyRelu.js\nvar wasmFunc3;\nfunction setupFunc2(backend2) {\n wasmFunc3 = backend2.wasm.cwrap(LeakyRelu, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction leakyRelu4(args) {\n const { inputs: { x }, attrs: { alpha }, backend: backend2 } = args;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, \"float32\");\n if (util_exports.sizeFromShape(x.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmFunc3(xId, CppDType[x.dtype], alpha, outId);\n }\n return out;\n}\nvar leakyReluConfig3 = {\n kernelName: LeakyRelu,\n backendName: \"wasm\",\n setupFunc: setupFunc2,\n kernelFunc: leakyRelu4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Less.js\nvar supportsFullBroadcast6 = false;\nvar lessConfig3 = createBinaryKernelConfig(Less, supportsFullBroadcast6, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LessEqual.js\nvar supportsFullBroadcast7 = false;\nvar lessEqualConfig3 = createBinaryKernelConfig(LessEqual, supportsFullBroadcast7, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Log.js\nvar logConfig3 = createUnaryKernelConfig(Log);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LogicalAnd.js\nvar supportsFullBroadcast8 = false;\nvar logicalAndConfig3 = createBinaryKernelConfig(LogicalAnd, supportsFullBroadcast8, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LogicalNot.js\nvar logicalNotConfig3 = createUnaryKernelConfig(LogicalNot);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LogicalOr.js\nvar supportsFullBroadcast9 = false;\nvar logicalOrConfig3 = createBinaryKernelConfig(LogicalOr, supportsFullBroadcast9, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/LogicalXor.js\nvar supportsFullBroadcast10 = false;\nvar logicalXorConfig = createBinaryKernelConfig(LogicalXor, supportsFullBroadcast10, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Max.js\nvar wasmMax;\nfunction setup22(backend2) {\n wasmMax = backend2.wasm.cwrap(Max, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction max5(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { reductionIndices: axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n input2 = transposed;\n inputId = transposedId;\n }\n const inputRank = input2.shape.length;\n backend_util_exports.assertAxesAreInnerMostDims(\"max\", axes, inputRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, x.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmMax(inputId, CppDType[x.dtype], reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar maxConfig3 = {\n kernelName: Max,\n backendName: \"wasm\",\n setupFunc: setup22,\n kernelFunc: max5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Maximum.js\nvar supportsFullBroadcast11 = false;\nvar maximumConfig3 = createBinaryKernelConfig(Maximum, supportsFullBroadcast11);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/MaxPool.js\nvar wasmMaxPool;\nfunction setup23(backend2) {\n wasmMaxPool = backend2.wasm.cwrap(MaxPool, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction maxPool4(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const x = inputs.x;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n util_exports.assert(x.dtype === \"float32\", () => `Error in MaxPool: only float32 input is supported. Got ${x.dtype}.`);\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, 1, pad3, dimRoundingMode);\n const filterHeight = convInfo.filterHeight;\n const filterWidth = convInfo.filterWidth;\n const padTop = convInfo.padInfo.top;\n const padRight = convInfo.padInfo.right;\n const padBottom = convInfo.padInfo.bottom;\n const padLeft = convInfo.padInfo.left;\n const dilationHeight = convInfo.dilationHeight;\n const dilationWidth = convInfo.dilationWidth;\n const strideHeight = convInfo.strideHeight;\n const strideWidth = convInfo.strideWidth;\n const inputChannels = convInfo.inChannels;\n const outputChannels = convInfo.outChannels;\n if (convInfo.dataFormat !== \"channelsLast\") {\n throw new Error(`wasm backend does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);\n }\n const out = backend2.makeOutput(convInfo.outShape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmMaxPool(xId, x.shape[0], x.shape[1], x.shape[2], filterHeight, filterWidth, padTop, padRight, padBottom, padLeft, dilationHeight, dilationWidth, strideHeight, strideWidth, inputChannels, outputChannels, outId);\n return out;\n}\nvar maxPoolConfig3 = {\n kernelName: MaxPool,\n backendName: \"wasm\",\n setupFunc: setup23,\n kernelFunc: maxPool4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Mean.js\nvar wasmMean;\nfunction setup24(backend2) {\n wasmMean = backend2.wasm.cwrap(Mean, null, [\"number, number, number\"]);\n}\nfunction mean3(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n let reductionAxes = axes;\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, input2.shape.length);\n }\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"mean\", reductionAxes, input2.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, reductionAxes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n let castedInput = input2;\n if (input2.dtype !== \"float32\") {\n castedInput = cast5({ backend: backend2, inputs: { x: input2 }, attrs: { dtype: \"float32\" } });\n inputId = backend2.dataIdMap.get(castedInput.dataId).id;\n }\n const out = backend2.makeOutput(outShape, \"float32\");\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmMean(inputId, reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n if (input2.dtype !== \"float32\") {\n backend2.disposeData(castedInput.dataId);\n }\n return out;\n}\nvar meanConfig3 = {\n kernelName: Mean,\n backendName: \"wasm\",\n setupFunc: setup24,\n kernelFunc: mean3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Min.js\nvar wasmMin;\nfunction setup25(backend2) {\n wasmMin = backend2.wasm.cwrap(Min, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction min5(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n }\n }\n const inputRank = input2.shape.length;\n backend_util_exports.assertAxesAreInnerMostDims(\"min\", axes, inputRank);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, input2.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmMin(inputId, CppDType[x.dtype], reduceSize, outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar minConfig3 = {\n kernelName: Min,\n backendName: \"wasm\",\n setupFunc: setup25,\n kernelFunc: min5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Minimum.js\nvar supportsFullBroadcast12 = false;\nvar minimumConfig3 = createBinaryKernelConfig(Minimum, supportsFullBroadcast12);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/MirrorPad.js\nvar MirrorPaddingMode;\n(function(MirrorPaddingMode2) {\n MirrorPaddingMode2[MirrorPaddingMode2[\"reflect\"] = 0] = \"reflect\";\n MirrorPaddingMode2[MirrorPaddingMode2[\"symmetric\"] = 1] = \"symmetric\";\n})(MirrorPaddingMode || (MirrorPaddingMode = {}));\nvar wasmMirrorPad;\nfunction setup26(backend2) {\n wasmMirrorPad = backend2.wasm.cwrap(MirrorPad, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction mirrorPad3(args) {\n const { inputs: { x }, backend: backend2, attrs: { paddings, mode } } = args;\n const outShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(outShape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n const prePaddingsFlat = paddings.map((padTuple) => padTuple[0]);\n const postPaddingsFlat = paddings.map((padTuple) => padTuple[1]);\n const prePaddingsBytes = new Uint8Array(new Int32Array(prePaddingsFlat).buffer);\n const postPaddingsBytes = new Uint8Array(new Int32Array(postPaddingsFlat).buffer);\n wasmMirrorPad(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], prePaddingsBytes, postPaddingsBytes, MirrorPaddingMode[mode], outId);\n return out;\n}\nvar mirrorPadConfig3 = {\n kernelName: MirrorPad,\n backendName: \"wasm\",\n kernelFunc: mirrorPad3,\n setupFunc: setup26\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Multiply.js\nvar supportsFullBroadcast13 = true;\nvar multiplyConfig3 = createBinaryKernelConfig(Multiply, supportsFullBroadcast13);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Neg.js\nvar negConfig3 = createUnaryKernelConfig(Neg);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NonMaxSuppression_util.js\nfunction parseResultStruct(backend2, resOffset) {\n const result = new Int32Array(backend2.wasm.HEAPU8.buffer, resOffset, 4);\n const pSelectedIndices = result[0];\n const selectedSize = result[1];\n const pSelectedScores = result[2];\n const pValidOutputs = result[3];\n backend2.wasm._free(resOffset);\n return { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NonMaxSuppressionV3.js\nvar wasmFunc4;\nfunction setup27(backend2) {\n wasmFunc4 = backend2.wasm.cwrap(\n NonMaxSuppressionV3,\n \"number\",\n [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]\n );\n}\nfunction kernelFunc(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { iouThreshold, maxOutputSize, scoreThreshold } = attrs;\n const { boxes, scores } = inputs;\n const boxesId = backend2.dataIdMap.get(boxes.dataId).id;\n const scoresId = backend2.dataIdMap.get(scores.dataId).id;\n const resOffset = wasmFunc4(boxesId, scoresId, maxOutputSize, iouThreshold, scoreThreshold);\n const { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs } = parseResultStruct(backend2, resOffset);\n backend2.wasm._free(pSelectedScores);\n backend2.wasm._free(pValidOutputs);\n const selectedIndicesTensor = backend2.makeOutput([selectedSize], \"int32\", pSelectedIndices);\n return selectedIndicesTensor;\n}\nvar nonMaxSuppressionV3Config3 = {\n kernelName: NonMaxSuppressionV3,\n backendName: \"wasm\",\n setupFunc: setup27,\n kernelFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NonMaxSuppressionV4.js\nvar wasmFunc5;\nfunction setup28(backend2) {\n wasmFunc5 = backend2.wasm.cwrap(\n NonMaxSuppressionV4,\n \"number\",\n [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"bool\"\n ]\n );\n}\nfunction nonMaxSuppressionV43(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { iouThreshold, maxOutputSize, scoreThreshold, padToMaxOutputSize } = attrs;\n const { boxes, scores } = inputs;\n const boxesId = backend2.dataIdMap.get(boxes.dataId).id;\n const scoresId = backend2.dataIdMap.get(scores.dataId).id;\n const resOffset = wasmFunc5(boxesId, scoresId, maxOutputSize, iouThreshold, scoreThreshold, padToMaxOutputSize);\n const { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs } = parseResultStruct(backend2, resOffset);\n backend2.wasm._free(pSelectedScores);\n const selectedIndicesTensor = backend2.makeOutput([selectedSize], \"int32\", pSelectedIndices);\n const validOutputsTensor = backend2.makeOutput([], \"int32\", pValidOutputs);\n return [selectedIndicesTensor, validOutputsTensor];\n}\nvar nonMaxSuppressionV4Config3 = {\n kernelName: NonMaxSuppressionV4,\n backendName: \"wasm\",\n setupFunc: setup28,\n kernelFunc: nonMaxSuppressionV43\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NonMaxSuppressionV5.js\nvar wasmFunc6;\nfunction setup29(backend2) {\n wasmFunc6 = backend2.wasm.cwrap(\n NonMaxSuppressionV5,\n \"number\",\n [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]\n );\n}\nfunction kernelFunc2(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { iouThreshold, maxOutputSize, scoreThreshold, softNmsSigma } = attrs;\n const { boxes, scores } = inputs;\n const boxesId = backend2.dataIdMap.get(boxes.dataId).id;\n const scoresId = backend2.dataIdMap.get(scores.dataId).id;\n const resOffset = wasmFunc6(boxesId, scoresId, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma);\n const { pSelectedIndices, selectedSize, pSelectedScores, pValidOutputs } = parseResultStruct(backend2, resOffset);\n backend2.wasm._free(pValidOutputs);\n const selectedIndicesTensor = backend2.makeOutput([selectedSize], \"int32\", pSelectedIndices);\n const selectedScoresTensor = backend2.makeOutput([selectedSize], \"float32\", pSelectedScores);\n return [selectedIndicesTensor, selectedScoresTensor];\n}\nvar nonMaxSuppressionV5Config3 = {\n kernelName: NonMaxSuppressionV5,\n backendName: \"wasm\",\n setupFunc: setup29,\n kernelFunc: kernelFunc2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/NotEqual.js\nvar supportsFullBroadcast14 = false;\nvar notEqualConfig3 = createBinaryKernelConfig(NotEqual, supportsFullBroadcast14, \"bool\");\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/OneHot.js\nvar wasmOneHot;\nfunction setup30(backend2) {\n wasmOneHot = backend2.wasm.cwrap(OneHot, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction oneHot4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices } = inputs;\n const { dtype, depth, onValue, offValue } = attrs;\n const out = backend2.makeOutput([...indices.shape, depth], dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const indicesData = backend2.dataIdMap.get(indices.dataId);\n const indicesId = indicesData.id;\n wasmOneHot(indicesId, depth, onValue, offValue, outId);\n return out;\n}\nvar oneHotConfig3 = {\n kernelName: OneHot,\n backendName: \"wasm\",\n setupFunc: setup30,\n kernelFunc: oneHot4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/OnesLike.js\nfunction onesLike4(args) {\n const { inputs: { x }, backend: backend2 } = args;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.fill(1);\n return out;\n}\nvar onesLikeConfig3 = {\n kernelName: OnesLike,\n backendName: \"wasm\",\n kernelFunc: onesLike4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Pack.js\nfunction pack3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n if (inputs.length === 1) {\n return expandDims5({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } });\n }\n const shape = inputs[0].shape;\n const dtype = inputs[0].dtype;\n inputs.forEach((t2) => {\n util_exports.assertShapesMatch(shape, t2.shape, \"All tensors passed to stack must have matching shapes\");\n util_exports.assert(dtype === t2.dtype, () => \"All tensors passed to stack must have matching dtypes\");\n });\n const intermediateTensorInfos = [];\n const expandedTensors = inputs.map((t2) => {\n const expandedT = expandDims5({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } });\n intermediateTensorInfos.push(expandedT);\n return expandedT;\n });\n const result = concat4({ inputs: expandedTensors, backend: backend2, attrs: { axis } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId));\n return result;\n}\nvar packConfig3 = {\n kernelName: Pack,\n backendName: \"wasm\",\n kernelFunc: pack3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/PadV2.js\nvar wasmPadV2;\nfunction setup31(backend2) {\n wasmPadV2 = backend2.wasm.cwrap(PadV2, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"array\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction pad2(args) {\n const { inputs: { x }, backend: backend2, attrs: { paddings, constantValue } } = args;\n const outShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n if (util_exports.sizeFromShape(x.shape) === 0) {\n return fill4({\n backend: backend2,\n attrs: { shape: outShape, value: constantValue, dtype: x.dtype }\n });\n }\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(outShape, x.dtype);\n const outTensorData = backend2.dataIdMap.get(out.dataId);\n const outId = outTensorData.id;\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n const prePaddingsFlat = paddings.map((padTuple) => padTuple[0]);\n const postPaddingsFlat = paddings.map((padTuple) => padTuple[1]);\n const prePaddingsBytes = new Uint8Array(new Int32Array(prePaddingsFlat).buffer);\n const postPaddingsBytes = new Uint8Array(new Int32Array(postPaddingsFlat).buffer);\n wasmPadV2(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], prePaddingsBytes, postPaddingsBytes, constantValue, outId);\n return out;\n}\nvar padV2Config3 = {\n kernelName: PadV2,\n backendName: \"wasm\",\n kernelFunc: pad2,\n setupFunc: setup31\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Pow.js\nvar supportsFullBroadcast15 = false;\nvar powConfig3 = createBinaryKernelConfig(Pow, supportsFullBroadcast15);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Prelu.js\nvar wasmPrelu;\nfunction setup32(backend2) {\n wasmPrelu = backend2.wasm.cwrap(Prelu, null, [\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction prelu5(args) {\n const { inputs, backend: backend2 } = args;\n const { x, alpha } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const weightsId = backend2.dataIdMap.get(alpha.dataId).id;\n let inputId = xId;\n const input2 = x;\n let castedInput = input2;\n if (input2.dtype !== \"float32\") {\n castedInput = cast5({ backend: backend2, inputs: { x }, attrs: { dtype: \"float32\" } });\n inputId = backend2.dataIdMap.get(castedInput.dataId).id;\n }\n const out = backend2.makeOutput(x.shape, \"float32\");\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmPrelu(inputId, weightsId, outId);\n if (input2.dtype !== \"float32\") {\n backend2.disposeData(castedInput.dataId);\n }\n return out;\n}\nvar preluConfig3 = {\n kernelName: Prelu,\n backendName: \"wasm\",\n setupFunc: setup32,\n kernelFunc: prelu5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Prod.js\nvar wasmProd;\nfunction setup33(backend2) {\n wasmProd = backend2.wasm.cwrap(Prod, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction prod4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n let reductionAxes = axes;\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, input2.shape.length);\n }\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"prod\", reductionAxes, input2.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, reductionAxes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, input2.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmProd(inputId, reduceSize, CppDType[out.dtype], outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar prodConfig3 = {\n kernelName: Prod,\n backendName: \"wasm\",\n setupFunc: setup33,\n kernelFunc: prod4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Range.js\nvar range5 = (args) => {\n const { backend: backend2, attrs } = args;\n const { start, stop, step: step5, dtype } = attrs;\n const values = rangeImpl(start, stop, step5, dtype);\n const out = backend2.makeOutput([values.length], dtype);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.set(values);\n return out;\n};\nvar rangeConfig3 = {\n kernelName: Range,\n backendName: \"wasm\",\n kernelFunc: range5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/RealDiv.js\nvar supportsFullBroadcast16 = true;\nvar realDivConfig3 = createBinaryKernelConfig(RealDiv, supportsFullBroadcast16);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Relu.js\nvar reluConfig3 = createUnaryKernelConfig(Relu);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Relu6.js\nvar relu6Config3 = createUnaryKernelConfig(Relu6);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ResizeBilinear.js\nvar wasmResizeBilinear;\nfunction setup34(backend2) {\n wasmResizeBilinear = backend2.wasm.cwrap(ResizeBilinear, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction resizeBilinear4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const [batch, oldHeight, oldWidth, numChannels] = images.shape;\n const outShape = [batch, newHeight, newWidth, numChannels];\n let xData = backend2.dataIdMap.get(images.dataId);\n let castedData;\n if (xData.dtype !== \"float32\") {\n castedData = cast5({ backend: backend2, inputs: { x: images }, attrs: { dtype: \"float32\" } });\n xData = backend2.dataIdMap.get(castedData.dataId);\n }\n const xId = xData.id;\n const out = backend2.makeOutput(outShape, \"float32\");\n if (util_exports.sizeFromShape(images.shape) === 0) {\n return out;\n }\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmResizeBilinear(xId, batch, oldHeight, oldWidth, numChannels, newHeight, newWidth, alignCorners ? 1 : 0, halfPixelCenters ? 1 : 0, outId);\n if (castedData != null) {\n backend2.disposeData(castedData.dataId);\n }\n return out;\n}\nvar resizeBilinearConfig3 = {\n kernelName: ResizeBilinear,\n backendName: \"wasm\",\n setupFunc: setup34,\n kernelFunc: resizeBilinear4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ResizeNearestNeighbor.js\nvar wasmResizeNearestNeighbor;\nfunction setup35(backend2) {\n wasmResizeNearestNeighbor = backend2.wasm.cwrap(ResizeNearestNeighbor, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction resizeNearestNeighbor4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const [batch, oldHeight, oldWidth, numChannels] = images.shape;\n const outShape = [batch, newHeight, newWidth, numChannels];\n const out = backend2.makeOutput(outShape, \"float32\");\n if (util_exports.sizeFromShape(images.shape) === 0) {\n return out;\n }\n let xData = backend2.dataIdMap.get(images.dataId);\n let castedData;\n if (xData.dtype !== \"float32\") {\n castedData = cast5({\n backend: backend2,\n inputs: { x: images },\n attrs: { dtype: \"float32\" }\n });\n xData = backend2.dataIdMap.get(castedData.dataId);\n }\n const xId = xData.id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmResizeNearestNeighbor(xId, batch, oldHeight, oldWidth, numChannels, newHeight, newWidth, alignCorners ? 1 : 0, halfPixelCenters ? 1 : 0, outId);\n if (castedData != null) {\n backend2.disposeData(castedData.dataId);\n }\n return out;\n}\nvar resizeNearestNeighborConfig3 = {\n kernelName: ResizeNearestNeighbor,\n backendName: \"wasm\",\n setupFunc: setup35,\n kernelFunc: resizeNearestNeighbor4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Reverse.js\nvar wasmReverse;\nfunction setup36(backend2) {\n wasmReverse = backend2.wasm.cwrap(Reverse, null, [\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction reverse4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dims } = attrs;\n const axes = util_exports.parseAxisParam(dims, x.shape);\n if (x.shape.length === 0) {\n return identity4({ inputs: { x }, backend: backend2 });\n }\n const out = backend2.makeOutput(x.shape, x.dtype);\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const axesBytes = new Uint8Array(new Int32Array(axes).buffer);\n const outShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n wasmReverse(xId, axesBytes, axes.length, outShapeBytes, x.shape.length, outId);\n const reshaped = reshape5({ inputs: { x: out }, attrs: { shape: x.shape }, backend: backend2 });\n backend2.disposeData(out.dataId);\n return reshaped;\n}\nvar reverseConfig3 = {\n kernelName: Reverse,\n backendName: \"wasm\",\n kernelFunc: reverse4,\n setupFunc: setup36\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/RotateWithOffset.js\nvar wasmRotate;\nfunction setup37(backend2) {\n wasmRotate = backend2.wasm.cwrap(RotateWithOffset, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction rotateWithOffset2(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2 } = inputs;\n const { radians, fillValue, center } = attrs;\n const out = backend2.makeOutput(image2.shape, image2.dtype);\n const imageId = backend2.dataIdMap.get(image2.dataId).id;\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [centerX, centerY] = backend_util_exports.getImageCenter(center, imageHeight, imageWidth);\n const fillIsBlack = fillValue === 0;\n const fullOpacityValue = 255;\n const fillValues2 = typeof fillValue === \"number\" ? [fillValue, fillValue, fillValue, fillIsBlack ? 0 : fullOpacityValue] : [...fillValue, fullOpacityValue];\n const fillBytes = new Uint8Array(new Int32Array(fillValues2).buffer);\n wasmRotate(imageId, batch, imageHeight, imageWidth, numChannels, radians, centerX, centerY, fillBytes, fillValues2.length, outId);\n return out;\n}\nvar rotateWithOffsetConfig3 = {\n kernelName: RotateWithOffset,\n backendName: \"wasm\",\n kernelFunc: rotateWithOffset2,\n setupFunc: setup37\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Round.js\nvar roundConfig3 = createUnaryKernelConfig(Round);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Rsqrt.js\nvar rsqrtConfig3 = createUnaryKernelConfig(Rsqrt);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ScatterNd.js\nvar wasmScatterNd;\nfunction setup38(backend2) {\n wasmScatterNd = backend2.wasm.cwrap(ScatterNd, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction scatterNd3(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { indices, updates } = inputs;\n const { shape } = attrs;\n const out = backend2.makeOutput(shape, updates.dtype);\n if (util_exports.sizeFromShape(shape) === 0) {\n return out;\n }\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = scatter_nd_util_exports.calculateShapes(updates, indices, shape);\n const indicesData = backend2.dataIdMap.get(indices.dataId);\n const indicesId = indicesData.id;\n const updatesData = backend2.dataIdMap.get(updates.dataId);\n const updatesId = updatesData.id;\n const stridesBytes = new Uint8Array(new Int32Array(strides).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmScatterNd(indicesId, updatesId, CppDType[updates.dtype], sliceRank, numUpdates, sliceSize, stridesBytes, outputSize, outId);\n return out;\n}\nvar scatterNdConfig3 = {\n kernelName: ScatterNd,\n backendName: \"wasm\",\n setupFunc: setup38,\n kernelFunc: scatterNd3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Select.js\nvar wasmSelect;\nfunction setup39(backend2) {\n wasmSelect = backend2.wasm.cwrap(\"SelectV2\", null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction select4(args) {\n const { inputs, backend: backend2 } = args;\n const { condition, t: t2, e: e2 } = inputs;\n const conditionId = backend2.dataIdMap.get(condition.dataId).id;\n const tId = backend2.dataIdMap.get(t2.dataId).id;\n const eId = backend2.dataIdMap.get(e2.dataId).id;\n const out = backend2.makeOutput(t2.shape, t2.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const cRank = condition.shape.length;\n const tRank = t2.shape.length;\n const offset = cRank === 0 || cRank > 1 || tRank === 1 ? 1 : util_exports.sizeFromShape(t2.shape.slice(1));\n wasmSelect(conditionId, tId, eId, offset, outId);\n return out;\n}\nvar selectConfig3 = {\n kernelName: Select,\n backendName: \"wasm\",\n kernelFunc: select4,\n setupFunc: setup39\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sigmoid.js\nvar wasmFunc7;\nfunction setup40(backend2) {\n wasmFunc7 = backend2.wasm.cwrap(Sigmoid, null, [\"number\", \"number\"]);\n}\nfunction sigmoid4(args) {\n const { backend: backend2, inputs: { x } } = args;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n if (util_exports.sizeFromShape(out.shape) === 0) {\n return out;\n }\n wasmFunc7(xId, outId);\n return out;\n}\nvar sigmoidConfig3 = {\n kernelName: \"Sigmoid\",\n backendName: \"wasm\",\n setupFunc: setup40,\n kernelFunc: sigmoid4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sin.js\nvar sinConfig3 = createUnaryKernelConfig(Sin);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Softmax.js\nvar wasmFunc8;\nfunction setup41(backend2) {\n wasmFunc8 = backend2.wasm.cwrap(Softmax, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction softmax5(args) {\n const { backend: backend2, inputs: { logits }, attrs: { dim } } = args;\n const xId = backend2.dataIdMap.get(logits.dataId).id;\n const out = backend2.makeOutput(logits.shape, logits.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const channels = logits.shape[dim];\n const batch = util_exports.sizeFromShape(logits.shape) / channels;\n if (util_exports.sizeFromShape(out.shape) === 0) {\n return out;\n }\n wasmFunc8(xId, outId, channels, batch);\n return out;\n}\nvar softmaxConfig3 = {\n kernelName: Softmax,\n backendName: \"wasm\",\n setupFunc: setup41,\n kernelFunc: softmax5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SpaceToBatchND.js\nfunction spaceToBatchND4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, paddings } = attrs;\n const prod6 = util_exports.sizeFromShape(blockShape);\n const completePaddings = [[0, 0]];\n completePaddings.push(...paddings);\n for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) {\n completePaddings.push([0, 0]);\n }\n const paddedX = padV2Config3.kernelFunc({\n inputs: { x },\n backend: backend2,\n attrs: { paddings: completePaddings, constantValue: 0 }\n });\n const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false);\n const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false);\n const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false);\n const reshapeInputs = { x: paddedX };\n const reshapeAttrs = { shape: reshapedPaddedShape };\n const paddedXReshaped = reshape5({ inputs: reshapeInputs, backend: backend2, attrs: reshapeAttrs });\n const transposeInputs = { x: paddedXReshaped };\n const transposeAttrs = { perm: permutedReshapedPaddedPermutation };\n const paddedXT = transpose4({ inputs: transposeInputs, backend: backend2, attrs: transposeAttrs });\n const resultReshapeInputs = { x: paddedXT };\n const resultReshapeAttrs = { shape: flattenShape };\n const result = reshape5({ inputs: resultReshapeInputs, backend: backend2, attrs: resultReshapeAttrs });\n backend2.disposeData(paddedX.dataId);\n backend2.disposeData(paddedXReshaped.dataId);\n backend2.disposeData(paddedXT.dataId);\n return result;\n}\nvar spaceToBatchNDConfig3 = {\n kernelName: SpaceToBatchND,\n backendName: \"wasm\",\n kernelFunc: spaceToBatchND4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseFillEmptyRows.js\nvar wasmSparseFillEmptyRows;\nfunction setup42(backend2) {\n wasmSparseFillEmptyRows = backend2.wasm.cwrap(\"SparseFillEmptyRows\", \"number\", [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction sparseFillEmptyRows4(args) {\n const { backend: backend2, inputs } = args;\n const { indices, values, denseShape, defaultValue } = inputs;\n const indicesCount = indices.shape[0];\n const rank = indices.shape[1];\n const denseRows = backend2.readSync(denseShape.dataId)[0];\n const maxOutputIndicesShape = [indicesCount + denseRows, rank];\n const indicesId = backend2.dataIdMap.get(indices.dataId).id;\n const valuesId = backend2.dataIdMap.get(values.dataId).id;\n const defaultValueId = backend2.dataIdMap.get(defaultValue.dataId).id;\n const outputIndices = backend2.makeOutput(maxOutputIndicesShape, indices.dtype);\n const outputIndicesId = backend2.dataIdMap.get(outputIndices.dataId).id;\n const outputValues = backend2.makeOutput(maxOutputIndicesShape.slice(0, 1), values.dtype);\n const outputValuesId = backend2.dataIdMap.get(outputValues.dataId).id;\n const emptyRowIndicator = backend2.makeOutput([denseRows], \"bool\");\n const emptyRowIndicatorId = backend2.dataIdMap.get(emptyRowIndicator.dataId).id;\n const reverseIndexMap = backend2.makeOutput([indicesCount], indices.dtype);\n const reverseIndexMapId = backend2.dataIdMap.get(reverseIndexMap.dataId).id;\n const exceptionValues = backend2.makeOutput([4], \"int32\");\n const exceptionValuesId = backend2.dataIdMap.get(exceptionValues.dataId).id;\n const outputRows = wasmSparseFillEmptyRows(indicesId, valuesId, CppDType[values.dtype], indicesCount, denseRows, rank, defaultValueId, outputIndicesId, outputValuesId, emptyRowIndicatorId, reverseIndexMapId, exceptionValuesId);\n const exceptionValuesArray = backend2.readSync(exceptionValues.dataId);\n let exceptionMessage;\n switch (exceptionValuesArray[0]) {\n case 1: {\n exceptionMessage = backend_util_exports.getSparseFillEmptyRowsIndicesDenseShapeMismatch(exceptionValuesArray[1]);\n break;\n }\n case 2: {\n exceptionMessage = backend_util_exports.getSparseFillEmptyRowsNegativeIndexErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2]);\n break;\n }\n case 3:\n exceptionMessage = backend_util_exports.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2], exceptionValuesArray[3]);\n break;\n default:\n exceptionMessage = \"\";\n }\n backend2.disposeData(exceptionValues.dataId);\n if (exceptionMessage) {\n backend2.disposeData(outputIndices.dataId);\n backend2.disposeData(outputValues.dataId);\n backend2.disposeData(emptyRowIndicator.dataId);\n backend2.disposeData(reverseIndexMap.dataId);\n throw new Error(exceptionMessage);\n }\n let resizedIndices = outputIndices;\n let resizedValues = outputValues;\n if (outputRows !== maxOutputIndicesShape[0]) {\n resizedIndices = slice4({\n inputs: { x: outputIndices },\n attrs: { begin: 0, size: [outputRows, rank] },\n backend: backend2\n });\n resizedValues = slice4({\n inputs: { x: outputValues },\n attrs: { begin: 0, size: outputRows },\n backend: backend2\n });\n backend2.disposeData(outputIndices.dataId);\n backend2.disposeData(outputValues.dataId);\n }\n return [resizedIndices, resizedValues, emptyRowIndicator, reverseIndexMap];\n}\nvar sparseFillEmptyRowsConfig3 = {\n kernelName: SparseFillEmptyRows,\n backendName: \"wasm\",\n setupFunc: setup42,\n kernelFunc: sparseFillEmptyRows4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseReshape.js\nvar wasmSparseReshape;\nfunction setup43(backend2) {\n wasmSparseReshape = backend2.wasm.cwrap(SparseReshape, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction sparseReshape4(args) {\n const { backend: backend2, inputs } = args;\n const { inputIndices, inputShape, newShape } = inputs;\n if (inputIndices.shape.length !== 2) {\n throw new Error(`Input indices should be a matrix but received shape\n ${inputIndices.shape}`);\n }\n if (inputShape.shape.length !== 1) {\n throw new Error(`Input shape should be a vector but received shape\n ${inputShape.shape}`);\n }\n if (newShape.shape.length !== 1) {\n throw new Error(`Target shape should be a vector but received shape ${newShape.shape}`);\n }\n const inputIndicesId = backend2.dataIdMap.get(inputIndices.dataId).id;\n const inputShapeId = backend2.dataIdMap.get(inputShape.dataId).id;\n const newShapeId = backend2.dataIdMap.get(newShape.dataId).id;\n const nnz = inputIndices.shape[0];\n const outputRank = util_exports.sizeFromShape(newShape.shape);\n const newIndices = backend2.makeOutput([nnz, outputRank], inputIndices.dtype);\n const newIndicesId = backend2.dataIdMap.get(newIndices.dataId).id;\n const outputShape = backend2.makeOutput([outputRank], newShape.dtype);\n const outputShapeId = backend2.dataIdMap.get(outputShape.dataId).id;\n const exceptionValues = backend2.makeOutput([3], \"int32\");\n const exceptionValuesId = backend2.dataIdMap.get(exceptionValues.dataId).id;\n wasmSparseReshape(inputIndicesId, inputShapeId, newShapeId, nnz, newIndicesId, outputShapeId, exceptionValuesId);\n const exceptionValuesArray = backend2.readSync(exceptionValues.dataId);\n let exceptionMessage;\n switch (exceptionValuesArray[0]) {\n case 0: {\n exceptionMessage = backend_util_exports.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2]);\n break;\n }\n case 1: {\n exceptionMessage = backend_util_exports.getSparseReshapeNegativeOutputDimErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2]);\n break;\n }\n case 2:\n exceptionMessage = backend_util_exports.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();\n break;\n case 3: {\n const inputShapeValues = Array.from(backend2.readSync(inputShape.dataId)), outputShapeValues = Array.from(backend2.readSync(outputShape.dataId));\n exceptionMessage = backend_util_exports.getSparseReshapeInputOutputMultipleErrorMessage(inputShapeValues, outputShapeValues);\n break;\n }\n case 4: {\n const inputShapeValues = Array.from(backend2.readSync(inputShape.dataId)), outputShapeValues = Array.from(backend2.readSync(outputShape.dataId));\n exceptionMessage = backend_util_exports.getSparseReshapeInputOutputMismatchErrorMessage(inputShapeValues, outputShapeValues);\n break;\n }\n default:\n exceptionMessage = \"\";\n }\n backend2.disposeData(exceptionValues.dataId);\n if (exceptionMessage) {\n backend2.disposeData(newIndices.dataId);\n backend2.disposeData(outputShape.dataId);\n throw new Error(exceptionMessage);\n }\n return [newIndices, outputShape];\n}\nvar sparseReshapeConfig3 = {\n kernelName: SparseReshape,\n backendName: \"wasm\",\n setupFunc: setup43,\n kernelFunc: sparseReshape4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseSegmentReduction.js\nvar wasmSparseSegmentReduction;\nfunction setup44(backend2) {\n wasmSparseSegmentReduction = backend2.wasm.cwrap(\"SparseSegmentReduction\", null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction sparseSegmentReduction(args, isMean) {\n const { backend: backend2, inputs } = args;\n const { data, indices, segmentIds } = inputs;\n const numIndices = indices.shape[0];\n const segmentIdsBack = backend2.readSync(segmentIds.dataId, numIndices - 1, numIndices)[0];\n const lastSegmentIdPlusOne = numIndices > 0 ? segmentIdsBack + 1 : 0;\n const outputRows = lastSegmentIdPlusOne;\n if (outputRows < 0) {\n throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());\n }\n const outputShape = data.shape.slice();\n outputShape[0] = outputRows;\n const dataId = backend2.dataIdMap.get(data.dataId).id;\n const indicesId = backend2.dataIdMap.get(indices.dataId).id;\n const segmentIdsId = backend2.dataIdMap.get(segmentIds.dataId).id;\n const output = backend2.makeOutput(outputShape, data.dtype);\n const outputId = backend2.dataIdMap.get(output.dataId).id;\n const exceptionValues = backend2.makeOutput([4], \"int32\");\n const exceptionValuesId = backend2.dataIdMap.get(exceptionValues.dataId).id;\n wasmSparseSegmentReduction(dataId, CppDType[data.dtype], data.shape[0], indicesId, segmentIdsId, outputId, exceptionValuesId, isMean, 0);\n const exceptionValuesArray = backend2.readSync(exceptionValues.dataId);\n let exceptionMessage;\n switch (exceptionValuesArray[0]) {\n case 0: {\n exceptionMessage = backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();\n break;\n }\n case 1: {\n exceptionMessage = backend_util_exports.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();\n break;\n }\n case 2:\n exceptionMessage = backend_util_exports.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2]);\n break;\n case 3:\n exceptionMessage = backend_util_exports.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(exceptionValuesArray[1], exceptionValuesArray[2], exceptionValuesArray[3]);\n break;\n default:\n exceptionMessage = \"\";\n }\n backend2.disposeData(exceptionValues.dataId);\n if (exceptionMessage) {\n backend2.disposeData(output.dataId);\n throw new Error(exceptionMessage);\n }\n return output;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseSegmentMean.js\nfunction sparseSegmentMean4(args) {\n return sparseSegmentReduction(args, true);\n}\nvar sparseSegmentMeanConfig3 = {\n kernelName: SparseSegmentMean,\n backendName: \"wasm\",\n setupFunc: setup44,\n kernelFunc: sparseSegmentMean4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SparseSegmentSum.js\nfunction sparseSegmentSum4(args) {\n return sparseSegmentReduction(args, false);\n}\nvar sparseSegmentSumConfig3 = {\n kernelName: SparseSegmentSum,\n backendName: \"wasm\",\n setupFunc: setup44,\n kernelFunc: sparseSegmentSum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SplitV.js\nfunction splitV3(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x } = inputs;\n const { numOrSizeSplits, axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, x.shape)[0];\n const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis);\n const begin = new Array(x.shape.length).fill(0);\n const size = x.shape.slice();\n return splitSizes.map((s2) => {\n const xSliceSize = [...size];\n xSliceSize[$axis] = s2;\n const xSlice = slice4({ inputs: { x }, attrs: { begin, size: xSliceSize }, backend: backend2 });\n begin[$axis] += s2;\n return xSlice;\n });\n}\nvar splitVConfig3 = {\n kernelName: SplitV,\n backendName: \"wasm\",\n kernelFunc: splitV3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sqrt.js\nvar sqrtConfig3 = createUnaryKernelConfig(Sqrt);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Square.js\nvar squareConfig3 = createUnaryKernelConfig(Square);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/SquaredDifference.js\nvar supportsFullBroadcast17 = true;\nvar squaredDifferenceConfig3 = createBinaryKernelConfig(SquaredDifference, supportsFullBroadcast17);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Step.js\nvar wasmStep;\nfunction setup45(backend2) {\n wasmStep = backend2.wasm.cwrap(Step, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction step4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { alpha } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmStep(xId, alpha, CppDType[x.dtype], outId);\n return out;\n}\nvar stepConfig3 = {\n kernelName: Step,\n backendName: \"wasm\",\n setupFunc: setup45,\n kernelFunc: step4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/StridedSlice.js\nvar wasmStridedSlice;\nfunction setup46(backend2) {\n wasmStridedSlice = backend2.wasm.cwrap(StridedSlice, null, [\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"array\",\n \"array\",\n \"array\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction stridedSlice4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { x } = inputs;\n const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs;\n const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n let result;\n if (isIdentity) {\n result = reshape5({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } });\n } else if (sliceDim0 || isSimpleSlice) {\n util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`);\n const size = slice_util_exports.computeOutShape($begin, $end, $strides);\n const sliced = slice4({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } });\n result = reshape5({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeData(sliced.dataId);\n } else {\n const out = backend2.makeOutput(finalShapeSparse, \"float32\");\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const xStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(x.shape)).buffer);\n const beginBytes = new Uint8Array(new Int32Array($begin).buffer);\n const endBytes = new Uint8Array(new Int32Array($end).buffer);\n const stridesBytes = new Uint8Array(new Int32Array($strides).buffer);\n const outputShapeBytes = new Uint8Array(new Int32Array(finalShapeSparse).buffer);\n const outStridesBytes = new Uint8Array(new Int32Array(util_exports.computeStrides(finalShapeSparse)).buffer);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmStridedSlice(xId, xStridesBytes, x.shape.length, beginBytes, endBytes, stridesBytes, outputShapeBytes, outStridesBytes, finalShapeSparse.length, outId);\n result = reshape5({ inputs: { x: out }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeData(out.dataId);\n }\n return result;\n}\nvar stridedSliceConfig3 = {\n kernelName: StridedSlice,\n backendName: \"wasm\",\n setupFunc: setup46,\n kernelFunc: stridedSlice4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/StringNGrams.js\nfunction stringNGrams4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { data, dataSplits } = inputs;\n const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs;\n const $data = backend2.readSync(data.dataId);\n const $dataSplits = backend2.readSync(dataSplits.dataId);\n const [nGrams, nGramsSplits] = stringNGramsImpl($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences);\n const nGramsOut = backend2.makeOutput([nGrams.length], \"string\");\n const nGramsOutData = backend2.dataIdMap.get(nGramsOut.dataId);\n nGramsOutData.stringBytes = nGrams;\n const nGramsSplitsOut = backend2.makeOutput(dataSplits.shape, \"int32\");\n const nGramsSplitsOutVals = backend2.typedArrayFromHeap(nGramsSplitsOut);\n nGramsSplitsOutVals.set(nGramsSplits);\n return [nGramsOut, nGramsSplitsOut];\n}\nvar stringNGramsConfig3 = {\n kernelName: StringNGrams,\n backendName: \"wasm\",\n kernelFunc: stringNGrams4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/StringSplit.js\nfunction stringSplit4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { input: input2, delimiter } = inputs;\n const { skipEmpty } = attrs;\n const inputVals = backend2.readSync(input2.dataId);\n const delimiterVals = backend2.readSync(delimiter.dataId);\n const [indices, values, shape] = stringSplitImpl(inputVals, delimiterVals[0], skipEmpty);\n const outputSize = values.length;\n const indicesOut = backend2.makeOutput([outputSize, 2], \"int32\");\n const indicesOutVals = backend2.typedArrayFromHeap(indicesOut);\n indicesOutVals.set(indices);\n const valuesOut = backend2.makeOutput([outputSize], \"string\");\n const valuesOutData = backend2.dataIdMap.get(valuesOut.dataId);\n valuesOutData.stringBytes = values;\n const shapeOut = backend2.makeOutput([2], \"int32\");\n const shapeOutVals = backend2.typedArrayFromHeap(shapeOut);\n shapeOutVals.set(shape);\n return [indicesOut, valuesOut, shapeOut];\n}\nvar stringSplitConfig3 = {\n kernelName: StringSplit,\n backendName: \"wasm\",\n kernelFunc: stringSplit4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/StringToHashBucketFast.js\nfunction stringToHashBucketFast4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { input: input2 } = inputs;\n const { numBuckets } = attrs;\n const inputVals = backend2.readSync(input2.dataId);\n const values = stringToHashBucketFastImpl(inputVals, numBuckets);\n const out = backend2.makeOutput(input2.shape, \"int32\");\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.set(values);\n return out;\n}\nvar stringToHashBucketFastConfig3 = {\n kernelName: StringToHashBucketFast,\n backendName: \"wasm\",\n kernelFunc: stringToHashBucketFast4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sub.js\nvar supportsFullBroadcast18 = true;\nvar subConfig3 = createBinaryKernelConfig(Sub, supportsFullBroadcast18);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Sum.js\nvar wasmSum;\nfunction setup47(backend2) {\n wasmSum = backend2.wasm.cwrap(Sum, null, [\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction sum5(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { axis, keepDims } = attrs;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n let inputId = xId;\n let input2 = x;\n const { transposed, axes, originalAxes, inputWasTransposed } = permuteAxesAndTranspose(x, axis, backend2);\n let reductionAxes = axes;\n if (inputWasTransposed) {\n const transposedId = backend2.dataIdMap.get(transposed.dataId).id;\n if (transposedId !== xId) {\n input2 = transposed;\n inputId = transposedId;\n reductionAxes = backend_util_exports.getInnerMostAxes(reductionAxes.length, input2.shape.length);\n }\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"sum\", reductionAxes, input2.shape.length);\n const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, reductionAxes);\n const reduceSize = util_exports.sizeFromShape(reduceShape);\n const out = backend2.makeOutput(outShape, input2.dtype);\n if (util_exports.sizeFromShape(input2.shape) !== 0) {\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmSum(inputId, reduceSize, CppDType[out.dtype], outId);\n }\n if (inputWasTransposed) {\n backend2.disposeData(transposed.dataId);\n }\n if (keepDims) {\n const newShape = backend_util_exports.expandShapeToKeepDim(out.shape, originalAxes);\n out.shape = newShape;\n }\n return out;\n}\nvar sumConfig3 = {\n kernelName: Sum,\n backendName: \"wasm\",\n setupFunc: setup47,\n kernelFunc: sum5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Tan.js\nvar tanConfig3 = createUnaryKernelConfig(Tan);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Tanh.js\nvar tanhConfig3 = createUnaryKernelConfig(Tanh);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Tile.js\nvar wasmTile;\nfunction setup48(backend2) {\n wasmTile = backend2.wasm.cwrap(Tile, null, [\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"number\",\n \"number\"\n ]);\n}\nfunction tile5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const { reps } = attrs;\n const newShape = new Array(x.shape.length);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[i2] * reps[i2];\n }\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n const newShapeBytes = new Uint8Array(new Int32Array(newShape).buffer);\n const out = backend2.makeOutput(newShape, x.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n wasmTile(xId, xShapeBytes, x.shape.length, newShapeBytes, newShape.length, CppDType[out.dtype], outId);\n return out;\n}\nvar tileConfig3 = {\n kernelName: Tile,\n backendName: \"wasm\",\n setupFunc: setup48,\n kernelFunc: tile5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/TopK.js\nvar wasmTopK;\nfunction setup49(backend2) {\n wasmTopK = backend2.wasm.cwrap(TopK, null, [\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"bool\",\n \"number\",\n \"number\"\n ]);\n}\nvar topk2 = ({ inputs, backend: backend2, attrs }) => {\n const { x } = inputs;\n const { k, sorted } = attrs;\n const xId = backend2.dataIdMap.get(x.dataId).id;\n const xShapeBytes = new Uint8Array(new Int32Array(x.shape).buffer);\n const outputShape = x.shape.slice();\n outputShape[outputShape.length - 1] = k;\n const outValues = backend2.makeOutput(outputShape, x.dtype);\n const outValuesId = backend2.dataIdMap.get(outValues.dataId).id;\n const outIndices = backend2.makeOutput(outputShape, \"int32\");\n const outIndicesId = backend2.dataIdMap.get(outIndices.dataId).id;\n wasmTopK(xId, xShapeBytes, x.shape.length, CppDType[x.dtype], k, sorted, outValuesId, outIndicesId);\n return [outValues, outIndices];\n};\nvar topKConfig3 = {\n kernelName: TopK,\n backendName: \"wasm\",\n setupFunc: setup49,\n kernelFunc: topk2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Transform.js\nvar wasmTransform;\nfunction setup50(backend2) {\n wasmTransform = backend2.wasm.cwrap(Transform, null, [\n \"number\",\n \"number\",\n \"bool\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"array\",\n \"number\",\n \"array\",\n \"number\",\n \"number\",\n \"number\",\n \"number\",\n \"number\"\n ]);\n}\nfunction transform4(args) {\n const { backend: backend2, inputs, attrs } = args;\n const { image: image2, transforms } = inputs;\n const { interpolation, fillMode, fillValue, outputShape } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth];\n const outShape = [\n batch,\n outHeight,\n outWidth,\n numChannels\n ];\n const inputStrides = new Uint8Array(new Int32Array(util_exports.computeStrides(image2.shape)).buffer);\n const outputStrides = new Uint8Array(new Int32Array(util_exports.computeStrides(outShape)).buffer);\n const out = backend2.makeOutput(outShape, image2.dtype);\n const outId = backend2.dataIdMap.get(out.dataId).id;\n const imageData = backend2.dataIdMap.get(image2.dataId);\n const imageId = imageData.id;\n const transformsData = backend2.dataIdMap.get(transforms.dataId);\n const transformsId = transformsData.id;\n const interpolationModeId = interpolation === \"nearest\" ? 1 : 2;\n let fillModeId;\n switch (fillMode) {\n case \"constant\":\n fillModeId = 1;\n break;\n case \"reflect\":\n fillModeId = 2;\n break;\n case \"wrap\":\n fillModeId = 3;\n break;\n case \"nearest\":\n fillModeId = 4;\n break;\n default:\n fillModeId = 1;\n break;\n }\n wasmTransform(imageId, transformsId, transforms.shape[0] > 1, batch, outHeight, outWidth, numChannels, imageWidth, imageHeight, inputStrides, image2.shape.length - 1, outputStrides, outShape.length - 1, interpolationModeId, fillModeId, fillValue, outId);\n return out;\n}\nvar transformConfig3 = {\n kernelName: Transform,\n backendName: \"wasm\",\n setupFunc: setup50,\n kernelFunc: transform4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/Unpack.js\nfunction unpack3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { value } = inputs;\n let { axis } = attrs;\n if (axis < 0) {\n axis += value.shape.length;\n }\n const numOutputs = value.shape[axis];\n const rank = value.shape.length;\n const outShape = new Array(rank - 1);\n let outIndex = 0;\n for (let i2 = 0; i2 < rank; i2++) {\n if (i2 !== axis) {\n outShape[outIndex++] = value.shape[i2];\n }\n }\n const outs = new Array(numOutputs);\n const begin = new Array(rank).fill(0);\n const size = value.shape.slice();\n size[axis] = 1;\n for (let i2 = 0; i2 < outs.length; i2++) {\n begin[axis] = i2;\n outs[i2] = slice4({ inputs: { x: value }, attrs: { begin, size }, backend: backend2 });\n }\n return outs.map(({ dataId, dtype }) => ({ dataId, dtype, shape: outShape }));\n}\nvar unpackConfig3 = {\n kernelName: Unpack,\n backendName: \"wasm\",\n kernelFunc: unpack3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/kernels/ZerosLike.js\nfunction zerosLike4(args) {\n const { inputs: { x }, backend: backend2 } = args;\n const out = backend2.makeOutput(x.shape, x.dtype);\n const outVals = backend2.typedArrayFromHeap(out);\n outVals.fill(0);\n return out;\n}\nvar zerosLikeConfig3 = {\n kernelName: ZerosLike,\n backendName: \"wasm\",\n kernelFunc: zerosLike4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/register_all_kernels.js\nvar kernelConfigs3 = [\n _fusedMatMulConfig3,\n absConfig3,\n addConfig3,\n addNConfig3,\n allConfig3,\n anyConfig3,\n argMaxConfig3,\n avgPoolConfig3,\n batchMatMulConfig3,\n batchToSpaceNDConfig3,\n castConfig3,\n ceilConfig3,\n clipByValueConfig3,\n concatConfig3,\n conv2DConfig3,\n conv2DBackpropInputConfig3,\n cosConfig3,\n coshConfig3,\n cropAndResizeConfig3,\n cumprodConfig3,\n cumsumConfig3,\n depthToSpaceConfig3,\n depthwiseConv2dNativeConfig3,\n eluConfig3,\n equalConfig3,\n expConfig3,\n expandDimsConfig3,\n fillConfig3,\n flipLeftRightConfig3,\n floorConfig3,\n floorDivConfig3,\n fusedBatchNormConfig,\n fusedConv2DConfig3,\n fusedDepthwiseConv2DConfig3,\n gatherNdConfig3,\n gatherV2Config3,\n greaterConfig3,\n greaterEqualConfig3,\n identityConfig3,\n leakyReluConfig3,\n lessConfig3,\n lessEqualConfig3,\n logConfig3,\n logicalAndConfig3,\n logicalNotConfig3,\n logicalOrConfig3,\n logicalXorConfig,\n maxConfig3,\n maximumConfig3,\n maxPoolConfig3,\n meanConfig3,\n minConfig3,\n minimumConfig3,\n mirrorPadConfig3,\n multiplyConfig3,\n negConfig3,\n nonMaxSuppressionV3Config3,\n nonMaxSuppressionV4Config3,\n nonMaxSuppressionV5Config3,\n notEqualConfig3,\n oneHotConfig3,\n onesLikeConfig3,\n packConfig3,\n padV2Config3,\n powConfig3,\n preluConfig3,\n prodConfig3,\n rangeConfig3,\n realDivConfig3,\n reluConfig3,\n relu6Config3,\n reshapeConfig3,\n resizeBilinearConfig3,\n resizeNearestNeighborConfig3,\n reverseConfig3,\n rotateWithOffsetConfig3,\n roundConfig3,\n rsqrtConfig3,\n scatterNdConfig3,\n selectConfig3,\n sigmoidConfig3,\n sinConfig3,\n sliceConfig3,\n softmaxConfig3,\n spaceToBatchNDConfig3,\n sparseFillEmptyRowsConfig3,\n sparseReshapeConfig3,\n sparseSegmentMeanConfig3,\n sparseSegmentSumConfig3,\n splitVConfig3,\n sqrtConfig3,\n squareConfig3,\n squaredDifferenceConfig3,\n stepConfig3,\n stridedSliceConfig3,\n stringNGramsConfig3,\n stringSplitConfig3,\n stringToHashBucketFastConfig3,\n subConfig3,\n sumConfig3,\n tanConfig3,\n tanhConfig3,\n tileConfig3,\n topKConfig3,\n transformConfig3,\n transposeConfig3,\n unpackConfig3,\n zerosLikeConfig3\n];\nfor (const kernelConfig of kernelConfigs3) {\n registerKernel(kernelConfig);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/flags_wasm.js\nvar ENV6 = env();\nENV6.registerFlag(\n \"WASM_HAS_SIMD_SUPPORT\",\n async () => WebAssembly.validate(new Uint8Array([\n 0,\n 97,\n 115,\n 109,\n 1,\n 0,\n 0,\n 0,\n 1,\n 4,\n 1,\n 96,\n 0,\n 0,\n 3,\n 2,\n 1,\n 0,\n 10,\n 9,\n 1,\n 7,\n 0,\n 65,\n 0,\n 253,\n 15,\n 26,\n 11\n ]))\n);\nENV6.registerFlag(\"WASM_HAS_MULTITHREAD_SUPPORT\", async () => {\n if (ENV6.get(\"IS_NODE\")) {\n return false;\n }\n try {\n new MessageChannel().port1.postMessage(new SharedArrayBuffer(1));\n return WebAssembly.validate(new Uint8Array([\n 0,\n 97,\n 115,\n 109,\n 1,\n 0,\n 0,\n 0,\n 1,\n 4,\n 1,\n 96,\n 0,\n 0,\n 3,\n 2,\n 1,\n 0,\n 5,\n 4,\n 1,\n 3,\n 1,\n 1,\n 10,\n 11,\n 1,\n 9,\n 0,\n 65,\n 0,\n 254,\n 16,\n 2,\n 0,\n 26,\n 11\n ]));\n } catch (e2) {\n return false;\n }\n});\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/backend_wasm.js\nvar wasmFactoryThreadedSimd_import = __toESM(require_tfjs_backend_wasm_threaded_simd());\nvar import_tfjs_backend_wasm_threaded_simd_worker = __toESM(require_tfjs_backend_wasm_threaded_simd_worker());\nvar wasmFactory_import = __toESM(require_tfjs_backend_wasm());\nvar wasmFactoryThreadedSimd = wasmFactoryThreadedSimd_import.default || wasmFactoryThreadedSimd_import;\nvar wasmFactory = wasmFactory_import.default || wasmFactory_import;\nvar BackendWasm = class extends KernelBackend {\n constructor(wasm) {\n super();\n this.wasm = wasm;\n this.dataIdNextNumber = 1;\n this.wasm.tfjs.initWithThreadsCount(threadsCount);\n actualThreadsCount = this.wasm.tfjs.getThreadsCount();\n this.dataIdMap = new DataStorage(this, engine());\n }\n write(values, shape, dtype) {\n const dataId = { id: this.dataIdNextNumber++ };\n this.move(dataId, values, shape, dtype, 1);\n return dataId;\n }\n numDataIds() {\n return this.dataIdMap.numDataIds();\n }\n async time(f) {\n const start = util_exports.now();\n f();\n const kernelMs = util_exports.now() - start;\n return { kernelMs };\n }\n move(dataId, values, shape, dtype, refCount) {\n const id = this.dataIdNextNumber++;\n if (dtype === \"string\") {\n const stringBytes = values;\n this.dataIdMap.set(dataId, { id, stringBytes, shape, dtype, memoryOffset: null, refCount });\n return;\n }\n const size = util_exports.sizeFromShape(shape);\n const numBytes = size * util_exports.bytesPerElement(dtype);\n const memoryOffset = this.wasm._malloc(numBytes);\n this.dataIdMap.set(dataId, { id, memoryOffset, shape, dtype, refCount });\n this.wasm.tfjs.registerTensor(id, size, memoryOffset);\n if (values != null) {\n this.wasm.HEAPU8.set(new Uint8Array(values.buffer, values.byteOffset, numBytes), memoryOffset);\n }\n }\n async read(dataId) {\n return this.readSync(dataId);\n }\n readSync(dataId, start, end) {\n const { memoryOffset, dtype, shape, stringBytes } = this.dataIdMap.get(dataId);\n if (dtype === \"string\") {\n if ((start == null || start === 0) && (end == null || end >= stringBytes.length)) {\n return stringBytes;\n }\n return stringBytes.slice(start, end);\n }\n start = start || 0;\n end = end || util_exports.sizeFromShape(shape);\n const bytesPerElement2 = util_exports.bytesPerElement(dtype);\n const bytes = this.wasm.HEAPU8.slice(memoryOffset + start * bytesPerElement2, memoryOffset + end * bytesPerElement2);\n return typedArrayFromBuffer(bytes.buffer, dtype);\n }\n disposeData(dataId, force = false) {\n if (this.dataIdMap.has(dataId)) {\n const data = this.dataIdMap.get(dataId);\n data.refCount--;\n if (!force && data.refCount > 0) {\n return false;\n }\n this.wasm._free(data.memoryOffset);\n this.wasm.tfjs.disposeData(data.id);\n this.dataIdMap.delete(dataId);\n }\n return true;\n }\n refCount(dataId) {\n if (this.dataIdMap.has(dataId)) {\n const tensorData = this.dataIdMap.get(dataId);\n return tensorData.refCount;\n }\n return 0;\n }\n incRef(dataId) {\n const data = this.dataIdMap.get(dataId);\n if (data != null) {\n data.refCount++;\n }\n }\n floatPrecision() {\n return 32;\n }\n getMemoryOffset(dataId) {\n return this.dataIdMap.get(dataId).memoryOffset;\n }\n dispose() {\n this.wasm.tfjs.dispose();\n if (\"PThread\" in this.wasm) {\n this.wasm.PThread.terminateAllThreads();\n }\n this.wasm = null;\n }\n memory() {\n return { unreliable: false };\n }\n makeOutput(shape, dtype, memoryOffset) {\n let dataId;\n if (memoryOffset == null) {\n dataId = this.write(null, shape, dtype);\n } else {\n const id = this.dataIdNextNumber++;\n dataId = { id };\n this.dataIdMap.set(dataId, { id, memoryOffset, shape, dtype, refCount: 1 });\n const size = util_exports.sizeFromShape(shape);\n this.wasm.tfjs.registerTensor(id, size, memoryOffset);\n }\n return { dataId, shape, dtype };\n }\n typedArrayFromHeap({ shape, dtype, dataId }) {\n const buffer2 = this.wasm.HEAPU8.buffer;\n const { memoryOffset } = this.dataIdMap.get(dataId);\n const size = util_exports.sizeFromShape(shape);\n switch (dtype) {\n case \"float32\":\n return new Float32Array(buffer2, memoryOffset, size);\n case \"int32\":\n return new Int32Array(buffer2, memoryOffset, size);\n case \"bool\":\n return new Uint8Array(buffer2, memoryOffset, size);\n default:\n throw new Error(`Unknown dtype ${dtype}`);\n }\n }\n};\nfunction createInstantiateWasmFunc(path) {\n return (imports, callback) => {\n util_exports.fetch(path, { credentials: \"same-origin\" }).then((response) => {\n if (!response[\"ok\"]) {\n imports.env.a(`failed to load wasm binary file at '${path}'`);\n }\n response.arrayBuffer().then((binary) => {\n WebAssembly.instantiate(binary, imports).then((output) => {\n callback(output.instance, output.module);\n });\n });\n });\n return {};\n };\n}\nfunction getPathToWasmBinary(simdSupported, threadsSupported, wasmModuleFolder) {\n if (wasmPath != null) {\n return wasmPath;\n }\n let path = \"tfjs-backend-wasm.wasm\";\n if (simdSupported && threadsSupported) {\n path = \"tfjs-backend-wasm-threaded-simd.wasm\";\n } else if (simdSupported) {\n path = \"tfjs-backend-wasm-simd.wasm\";\n }\n if (wasmFileMap != null) {\n if (wasmFileMap[path] != null) {\n return wasmFileMap[path];\n }\n }\n return wasmModuleFolder + path;\n}\nasync function init() {\n const [simdSupported, threadsSupported] = await Promise.all([\n env().getAsync(\"WASM_HAS_SIMD_SUPPORT\"),\n env().getAsync(\"WASM_HAS_MULTITHREAD_SUPPORT\")\n ]);\n return new Promise((resolve, reject) => {\n const factoryConfig = {};\n factoryConfig.locateFile = (path, prefix) => {\n if (path.endsWith(\".worker.js\")) {\n const response = import_tfjs_backend_wasm_threaded_simd_worker.wasmWorkerContents.replace(/\\n/g, \"\\\\n\");\n const blob = new Blob([response], { type: \"application/javascript\" });\n return URL.createObjectURL(blob);\n }\n if (path.endsWith(\".wasm\")) {\n return getPathToWasmBinary(simdSupported, threadsSupported, wasmPathPrefix != null ? wasmPathPrefix : prefix);\n }\n return prefix + path;\n };\n if (customFetch) {\n factoryConfig.instantiateWasm = createInstantiateWasmFunc(getPathToWasmBinary(simdSupported, threadsSupported, wasmPathPrefix != null ? wasmPathPrefix : \"\"));\n }\n let initialized = false;\n factoryConfig.onAbort = () => {\n if (initialized) {\n return;\n }\n if (initAborted) {\n return;\n }\n initAborted = true;\n const rejectMsg = \"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers\";\n reject({ message: rejectMsg });\n };\n let wasm;\n if (threadsSupported && simdSupported && wasmPath == null) {\n factoryConfig.mainScriptUrlOrBlob = new Blob([`var WasmBackendModuleThreadedSimd = ` + wasmFactoryThreadedSimd.toString()], { type: \"text/javascript\" });\n wasm = wasmFactoryThreadedSimd(factoryConfig);\n } else {\n wasm = wasmFactory(factoryConfig);\n }\n wasm.then((module) => {\n initialized = true;\n initAborted = false;\n const voidReturnType = null;\n module.tfjs = {\n init: module.cwrap(\"init\", null, []),\n initWithThreadsCount: module.cwrap(\"init_with_threads_count\", null, [\"number\"]),\n getThreadsCount: module.cwrap(\"get_threads_count\", \"number\", []),\n registerTensor: module.cwrap(\"register_tensor\", null, [\n \"number\",\n \"number\",\n \"number\"\n ]),\n disposeData: module.cwrap(\"dispose_data\", voidReturnType, [\"number\"]),\n dispose: module.cwrap(\"dispose\", voidReturnType, [])\n };\n resolve({ wasm: module });\n }).catch(reject);\n });\n}\nfunction typedArrayFromBuffer(buffer2, dtype) {\n switch (dtype) {\n case \"float32\":\n return new Float32Array(buffer2);\n case \"int32\":\n return new Int32Array(buffer2);\n case \"bool\":\n return new Uint8Array(buffer2);\n default:\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\nvar wasmBinaryNames = [\n \"tfjs-backend-wasm.wasm\",\n \"tfjs-backend-wasm-simd.wasm\",\n \"tfjs-backend-wasm-threaded-simd.wasm\"\n];\nvar wasmPath = null;\nvar wasmPathPrefix = null;\nvar wasmFileMap = {};\nvar initAborted = false;\nvar customFetch = false;\nfunction setWasmPath(path, usePlatformFetch = false) {\n deprecationWarn(\"setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release.\");\n if (initAborted) {\n throw new Error(\"The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`\");\n }\n wasmPath = path;\n customFetch = usePlatformFetch;\n}\nfunction setWasmPaths(prefixOrFileMap, usePlatformFetch = false) {\n if (initAborted) {\n throw new Error(\"The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`\");\n }\n if (typeof prefixOrFileMap === \"string\") {\n wasmPathPrefix = prefixOrFileMap;\n } else {\n wasmFileMap = prefixOrFileMap;\n const missingPaths = wasmBinaryNames.filter((name) => wasmFileMap[name] == null);\n if (missingPaths.length > 0) {\n throw new Error(`There were no entries found for the following binaries: ${missingPaths.join(\",\")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`);\n }\n }\n customFetch = usePlatformFetch;\n}\nvar threadsCount = -1;\nvar actualThreadsCount = -1;\nfunction setThreadsCount(numThreads) {\n threadsCount = numThreads;\n}\nfunction getThreadsCount() {\n if (actualThreadsCount === -1) {\n throw new Error(`WASM backend not initialized.`);\n }\n return actualThreadsCount;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/version.js\nvar version8 = \"3.20.0\";\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/dist/base.js\nvar WASM_PRIORITY = 2;\nregisterBackend(\"wasm\", async () => {\n const { wasm } = await init();\n return new BackendWasm(wasm);\n}, WASM_PRIORITY);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/flags_webgpu.js\nvar ENV7 = env();\nENV7.registerFlag(\"WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE\", () => 15);\nENV7.registerFlag(\"WEBGPU_CPU_FORWARD\", () => true);\nENV7.registerFlag(\"WEBGPU_MATMUL_PROGRAM_TYPE\", () => -1);\nENV7.registerFlag(\"WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE\", () => false);\nENV7.registerFlag(\"WEBGPU_USE_LOW_POWER_GPU\", () => false);\nENV7.registerFlag(\"WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD\", () => 1e3);\nENV7.registerFlag(\"WEBGPU_USE_PROFILE_TOOL\", () => false);\nENV7.registerFlag(\"WEBGPU_IMPORT_EXTERNAL_TEXTURE\", () => true);\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/buffer_manager.js\nvar BufferManager = class {\n constructor(device) {\n this.device = device;\n this.numUsedBuffers = 0;\n this.numFreeBuffers = 0;\n this.freeBuffers = /* @__PURE__ */ new Map();\n this.usedBuffers = /* @__PURE__ */ new Map();\n this.numBytesUsed = 0;\n this.numBytesAllocated = 0;\n }\n acquireUploadBuffer(size, usage) {\n return this.acquireBuffer(size, usage, true);\n }\n acquireBuffer(size, usage, mappedAtCreation = false) {\n const key = getBufferKey(size, usage);\n if (!this.freeBuffers.has(key)) {\n this.freeBuffers.set(key, []);\n }\n if (!this.usedBuffers.has(key)) {\n this.usedBuffers.set(key, []);\n }\n this.numBytesUsed += size;\n this.numUsedBuffers++;\n if (this.freeBuffers.get(key).length > 0) {\n this.numFreeBuffers--;\n const newBuffer2 = this.freeBuffers.get(key).shift();\n this.usedBuffers.get(key).push(newBuffer2);\n return newBuffer2;\n }\n this.numBytesAllocated += size;\n const newBuffer = this.device.createBuffer({ size, usage, mappedAtCreation });\n this.usedBuffers.get(key).push(newBuffer);\n return newBuffer;\n }\n releaseBuffer(buffer2, size, usage) {\n if (this.freeBuffers.size === 0) {\n return;\n }\n const key = getBufferKey(size, usage);\n if (!this.freeBuffers.has(key)) {\n this.freeBuffers.set(key, []);\n }\n this.freeBuffers.get(key).push(buffer2);\n this.numFreeBuffers++;\n this.numUsedBuffers--;\n const bufferList = this.usedBuffers.get(key);\n const bufferIndex = bufferList.indexOf(buffer2);\n if (bufferIndex < 0) {\n throw new Error(\"Cannot release a buffer that was never provided by this buffer manager\");\n }\n bufferList.splice(bufferIndex, 1);\n this.numBytesUsed -= size;\n }\n releaseUploadBuffer(buffer2, size, usage) {\n buffer2.mapAsync(GPUMapMode.WRITE).then(() => {\n this.releaseBuffer(buffer2, size, usage);\n }, (err) => {\n });\n }\n getNumUsedBuffers() {\n return this.numUsedBuffers;\n }\n getNumFreeBuffers() {\n return this.numFreeBuffers;\n }\n dispose() {\n this.freeBuffers.forEach((buffers, key) => {\n buffers.forEach((buffer2) => {\n buffer2.destroy();\n });\n });\n this.usedBuffers.forEach((buffers, key) => {\n buffers.forEach((buffer2) => {\n buffer2.destroy();\n });\n });\n this.freeBuffers = /* @__PURE__ */ new Map();\n this.usedBuffers = /* @__PURE__ */ new Map();\n this.numUsedBuffers = 0;\n this.numFreeBuffers = 0;\n this.numBytesUsed = 0;\n this.numBytesAllocated = 0;\n }\n};\nfunction getBufferKey(size, usage) {\n return `${size}_${usage}`;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/texture_manager.js\nvar TextureManager2 = class {\n constructor(device) {\n this.device = device;\n this.numUsedTextures = 0;\n this.numFreeTextures = 0;\n this.freeTextures = /* @__PURE__ */ new Map();\n this.usedTextures = /* @__PURE__ */ new Map();\n this.numBytesUsed = 0;\n this.numBytesAllocated = 0;\n }\n acquireTexture(width, height, format, usage) {\n const bytesPerElement2 = getBytesPerElement(format);\n const byteSize = width * height * bytesPerElement2;\n const key = getTextureKey(width, height, format, usage);\n if (!this.freeTextures.has(key)) {\n this.freeTextures.set(key, []);\n }\n if (!this.usedTextures.has(key)) {\n this.usedTextures.set(key, []);\n }\n this.numBytesUsed += byteSize;\n this.numUsedTextures++;\n if (this.freeTextures.get(key).length > 0) {\n this.numFreeTextures--;\n const newTexture2 = this.freeTextures.get(key).shift();\n this.usedTextures.get(key).push(newTexture2);\n return newTexture2;\n }\n this.numBytesAllocated += byteSize;\n const newTexture = this.device.createTexture({\n size: [width, height],\n format,\n usage\n });\n this.usedTextures.get(key).push(newTexture);\n return newTexture;\n }\n releaseTexture(texture, width, height, format, usage) {\n if (this.freeTextures.size === 0) {\n return;\n }\n const key = getTextureKey(width, height, format, usage);\n if (!this.freeTextures.has(key)) {\n this.freeTextures.set(key, []);\n }\n this.freeTextures.get(key).push(texture);\n this.numFreeTextures++;\n this.numUsedTextures--;\n const textureList = this.usedTextures.get(key);\n const textureIndex = textureList.indexOf(texture);\n if (textureIndex < 0) {\n throw new Error(\"Cannot release a texture that was never provided by this texture manager\");\n }\n textureList.splice(textureIndex, 1);\n const bytesPerElement2 = getBytesPerElement(format);\n const byteSize = width * height * bytesPerElement2;\n this.numBytesUsed -= byteSize;\n }\n getNumUsedTextures() {\n return this.numUsedTextures;\n }\n getNumFreeTextures() {\n return this.numFreeTextures;\n }\n dispose() {\n this.freeTextures.forEach((textures, key) => {\n textures.forEach((texture) => {\n texture.destroy();\n });\n });\n this.usedTextures.forEach((textures, key) => {\n textures.forEach((texture) => {\n texture.destroy();\n });\n });\n this.freeTextures = /* @__PURE__ */ new Map();\n this.usedTextures = /* @__PURE__ */ new Map();\n this.numUsedTextures = 0;\n this.numFreeTextures = 0;\n this.numBytesUsed = 0;\n this.numBytesAllocated = 0;\n }\n};\nfunction getTextureKey(width, height, format, usage) {\n return `${width}_${height}_${format}_${usage}`;\n}\nfunction getBytesPerElement(format) {\n if (format === \"rgba8unorm\") {\n return 16;\n } else {\n throw new Error(`${format} is not supported!`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/shader_util.js\nfunction symbolicallyComputeStrides2(indicesArr, variableName) {\n if (Math.max(...indicesArr) > 3) {\n throw new Error(\"Cannot symbolically compute strides for rank > 4 tensor.\");\n }\n const numCoords = indicesArr.length;\n const shape = indicesArr.map((d) => `${variableName}[${d}]`);\n const strides = new Array(numCoords - 1);\n strides[numCoords - 2] = shape[numCoords - 1];\n for (let i2 = numCoords - 3; i2 >= 0; --i2) {\n strides[i2] = `(${strides[i2 + 1]} * ${shape[i2 + 1]})`;\n }\n return strides;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu_program.js\nvar compileProgram2 = (device, program, inputsData, output) => {\n const outputData = { dtype: output.dtype, shape: output.shape };\n const source = makeShader2(inputsData, outputData, program);\n const module = device.createShaderModule({ code: source, label: program.constructor.name });\n const pipeline = device.createComputePipeline({\n compute: { module, entryPoint: \"_start\" },\n label: program.constructor.name,\n layout: \"auto\"\n });\n return pipeline;\n};\nfunction getCoordsDataType2(rank) {\n if (rank <= 1) {\n return \"i32\";\n } else if (rank === 2) {\n return `vec2`;\n } else if (rank === 3) {\n return `vec3`;\n } else if (rank === 4) {\n return `vec4`;\n } else if (rank === 5) {\n return `vec5`;\n } else if (rank === 6) {\n return `vec6`;\n } else {\n throw Error(`GPU for rank ${rank} is not yet supported`);\n }\n}\nfunction getCoordsXYZ(index) {\n if (index === 0) {\n return \"x\";\n } else if (index === 1) {\n return \"y\";\n } else if (index === 2) {\n return \"z\";\n } else if (index === 3) {\n return \"w\";\n } else if (index === 4) {\n return \"u\";\n } else if (index === 5) {\n return \"v\";\n } else {\n throw Error(`Index ${index} is not yet supported`);\n }\n}\nfunction getMainHeaderString(...params) {\n let snippet;\n switch (params.length) {\n case 0:\n snippet = `\n ${getWorkGroupSizeString()}\n fn _start(@builtin(local_invocation_id) LocalId : vec3,\n @builtin(global_invocation_id) GlobalId : vec3,\n @builtin(num_workgroups) NumWorkgroups : vec3) {\n localId = LocalId;\n globalId = GlobalId;\n numWorkgroups = NumWorkgroups;\n main();\n }\n\n fn main()\n `;\n break;\n case 1:\n snippet = `\n ${getWorkGroupSizeString()}\n fn _start(@builtin(local_invocation_id) LocalId : vec3,\n @builtin(global_invocation_id) GlobalId : vec3,\n @builtin(num_workgroups) NumWorkgroups : vec3) {\n localId = LocalId;\n globalId = GlobalId;\n numWorkgroups = NumWorkgroups;\n main(getGlobalIndex());\n }\n\n fn main(${params[0]} : i32)\n `;\n break;\n default:\n throw Error(\"Unreachable\");\n }\n return snippet;\n}\nfunction getWorkGroupSizeString() {\n return `\n @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)\n`;\n}\nfunction makeShader2(inputInfo, outputData, program) {\n const prefixSnippets = [];\n prefixSnippets.push(`\n const workGroupSizeX = ${program.workGroupSize[0]}u;\n const workGroupSizeY = ${program.workGroupSize[1]}u;\n const workGroupSizeZ = ${program.workGroupSize[2]}u;\n\n var localId: vec3;\n var globalId: vec3;\n var numWorkgroups: vec3;\n\n // Only used when the y/z dimension of workgroup size is 1.\n fn getGlobalIndex() -> i32 {\n ${isFlatDispatch(program) ? ` return i32(globalId.x);` : ` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +\n localId.y * workGroupSizeX + localId.x;\n let workGroupID = (globalId - localId)/vec3(\n workGroupSizeX, workGroupSizeY, workGroupSizeZ);\n\n return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +\n workGroupID.y * numWorkgroups.x + workGroupID.x) *\n (workGroupSizeX * workGroupSizeY * workGroupSizeZ) +\n localInvocationIndex);\n `}\n }\n `);\n if (program.isFromPixels) {\n prefixSnippets.push(`\n struct Uniform {\n size : i32,\n numChannels : i32,\n outShapeStrides : vec2,\n };\n\n @group(0) @binding(0) var result: array<${mapToWgslTypes(outputData.dtype, program.isVec4)}>;\n @group(0) @binding(2) var uniforms: Uniform;\n `);\n return [\n commonSnippet,\n prefixSnippets.join(\"\\n\"),\n getCoordsFromIndexSnippet(outputData.shape),\n program.getUserCode()\n ].join(\"\\n\");\n }\n let uniformDeclaration = \"struct Uniforms { NAN : f32, \";\n program.variableNames.forEach((x, i2) => {\n const perDataType = getCoordsDataType2(inputInfo[i2].shape.length);\n uniformDeclaration += `${x.charAt(0).toLowerCase() + x.slice(1)}Shape : ${perDataType}, `;\n });\n const outputDataType = getCoordsDataType2(outputData.shape.length);\n uniformDeclaration += `outShape : ${outputDataType}, `;\n const stridesLength = outputData.shape.length - 1;\n const stridesDataType = getCoordsDataType2(stridesLength);\n uniformDeclaration += `\n outShapeStrides: ${stridesDataType}, `;\n if (program.size) {\n uniformDeclaration += \"size : i32, \";\n }\n if (program.uniforms) {\n uniformDeclaration += program.uniforms;\n }\n uniformDeclaration += \"};\";\n uniformDeclaration = insertAlignment(uniformDeclaration);\n prefixSnippets.push(uniformDeclaration);\n if (program.atomic) {\n prefixSnippets.push(`\n @group(0) @binding(0) var result: array>;\n `);\n } else {\n prefixSnippets.push(`\n @group(0) @binding(0) var result: array<${mapToWgslTypes(outputData.dtype, program.isVec4)}>;\n `);\n }\n program.variableNames.forEach((x, i2) => {\n prefixSnippets.push(`\n @group(0) @binding(${1 + i2}) var ${x}: array<${program.variableTypes ? program.variableTypes[i2] : mapToWgslTypes(inputInfo[i2].dtype, program.isVec4)}>;\n `);\n });\n if (uniformDeclaration !== \"\") {\n prefixSnippets.push(`\n @group(0) @binding(${1 + program.variableNames.length}) var uniforms: Uniforms;\n `);\n }\n const coordsSnippet = getOutputCoordsSnippet(outputData.shape, program.dispatchLayout);\n const sources = [\n commonSnippet,\n prefixSnippets.join(\"\\n\"),\n getCoordsFromIndexSnippet(outputData.shape),\n coordsSnippet,\n getOutputIndexFromCoordsSnippet(outputData.shape.length)\n ];\n if (!program.atomic) {\n sources.push(setOutputSnippet(outputData.shape, outputData.dtype, program.isVec4));\n }\n const inputSnippet = inputInfo.map((x, i2) => getInputSnippet(x, outputData.shape, program.variableTypes ? program.variableTypes[i2] === \"vec4\" : program.isVec4, program.dispatchLayout.x.length === outputData.shape.length)).join(\"\\n\");\n sources.push(inputSnippet);\n sources.push(program.getUserCode());\n const source = sources.join(\"\\n\");\n return source;\n}\nfunction makeShaderKey2(program, shapes, inputsData, output) {\n let key = program.shaderKey;\n if (program.isFromPixels) {\n return key;\n }\n const types = inputsData.map((d) => d.dtype).concat(output.dtype);\n const broadcastDims = inputsData.map((d) => backend_util_exports.getBroadcastDims(d.shape, output.shape));\n const inputShapesEqualsOutShape = inputsData.map((d) => util_exports.arraysEqual(d.shape, output.shape)).join(\"_\");\n const broadcastDimsKey = broadcastDims.map((d) => d.join(\"_\")).join(\";\");\n const flatDispatchString = isFlatDispatch(program) ? \"flatDispatch\" : \"\";\n key += \"_\" + (program.workGroupSize ? program.workGroupSize.join(\",\") : \"\") + shapes.map((shape) => shape.length).join(\",\") + types.join(\",\") + program.variableNames.join(\",\") + broadcastDimsKey + inputShapesEqualsOutShape + flatDispatchString;\n return key;\n}\nvar commonSnippet = `\n struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};\n struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};\n\n // Checks whether coordinates lie within the bounds of the shape.\n fn coordsInBounds2D(coord : vec2, shape : vec2) -> bool {\n return all(coord >= vec2(0)) && all(coord < shape);\n }\n fn coordsInBounds3D(coord : vec3, shape : vec3) -> bool {\n return all(coord >= vec3(0)) && all(coord < shape);\n }\n fn coordsInBounds4D(coord : vec4, shape : vec4) -> bool {\n return all(coord >= vec4(0)) && all(coord < shape);\n }\n\n fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {\n return coord;\n }\n fn getIndexFromCoords2D(coords : vec2, shape : vec2) -> i32 {\n return dot(coords, vec2(shape.y, 1));\n }\n fn getIndexFromCoords3D(coords : vec3, shape : vec3) -> i32 {\n return dot(coords, vec3(shape.y * shape.z, shape.z, 1));\n }\n fn getIndexFromCoords4D(coords : vec4, shape : vec4) -> i32 {\n return dot(coords, vec4(\n shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));\n }\n fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {\n let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);\n return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;\n }\n fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {\n let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);\n return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;\n }\n\n fn idiv(a: i32, b: i32, sign: f32) -> i32 {\n var res: i32 = a / b;\n let modulo: i32 = a % b;\n if (sign < 0. && modulo != 0) {\n res = res - 1;\n }\n return res;\n }\n\n // NaN defination in IEEE 754-1985 is :\n // - sign = either 0 or 1.\n // - biased exponent = all 1 bits.\n // - fraction = anything except all 0 bits (since all 0 bits represents infinity).\n // https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers\n fn isnan(val: f32) -> bool {\n let floatToUint: u32 = bitcast(val);\n return (floatToUint & 0x7fffffffu) > 0x7f800000u;\n }\n fn isnanVec4(val : vec4) -> vec4 {\n return vec4(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));\n }\n`;\nfunction getCoordsFromIndexSnippet(shape) {\n const rank = shape.length;\n if (rank <= 1) {\n return `fn getCoordsFromIndex(index : i32) -> i32 { return index; }`;\n }\n const strides = util_exports.computeStrides(shape);\n const dtype = getCoordsDataType2(rank);\n const coords3 = [];\n for (let i2 = 0; i2 < rank; i2++) {\n coords3.push(`d${i2}`);\n }\n if (strides.length === 1) {\n return ` fn getCoordsFromIndex(index : i32) -> vec2 {\n let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;\n return vec2(d0, d1);\n }`;\n }\n let snippet;\n snippet = \"var index2 = index;\" + strides.map((_, i2) => {\n const line1 = `let ${coords3[i2]} = index2 / uniforms.outShapeStrides.${getCoordsXYZ(i2)}`;\n const line2 = i2 === strides.length - 1 ? `let ${coords3[i2 + 1]} = index2 - ${coords3[i2]} * uniforms.outShapeStrides.${getCoordsXYZ(i2)}` : `index2 = index2 - ${coords3[i2]} * uniforms.outShapeStrides.${getCoordsXYZ(i2)}`;\n return `${line1}; ${line2};`;\n }).join(\"\");\n return `\n fn getCoordsFromIndex(index : i32) -> ${dtype} {\n ${snippet}\n return ${dtype}(${coords3.join(\",\")});\n }\n `;\n}\nfunction getInputAtCoordsSnippet(inputInfo, isVec4) {\n const texName = inputInfo.name;\n const rank = inputInfo.shape.length;\n const type = getCoordsDataType2(rank);\n const funcName = \"get\" + texName.charAt(0).toUpperCase() + texName.slice(1);\n const dims = [\"d0\", \"d1\", \"d2\", \"d3\", \"d4\", \"d5\"].slice(0, rank);\n const inputs = dims.map((d) => `${d} : i32`).join(\", \");\n if (rank < 1) {\n if (isVec4) {\n return `\n fn ${funcName}() -> vec4 {\n return vec4(${texName}[0]);\n }\n `;\n }\n return `\n fn ${funcName}() ->f32 {\n return f32(${texName}[0]);\n }\n `;\n }\n const shapeStr = `uniforms.${texName.charAt(0).toLowerCase() + texName.slice(1)}Shape`;\n let rankStr = `${rank}D`;\n if (rank === 0) {\n rankStr = \"1D\";\n }\n if (isVec4) {\n return `\n fn ${funcName}(${inputs}) -> vec4 {\n return vec4(${texName}[getIndexFromCoords${rankStr}(${type}(${dims.join(\",\")}),\n ${shapeStr}) / 4]);\n }\n `;\n }\n return `\n fn ${funcName}(${inputs}) -> f32 {\n return f32(${texName}[getIndexFromCoords${rankStr}(${type}(${dims.join(\",\")}),\n ${shapeStr})]);\n }\n `;\n}\nfunction getInputByOutputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout) {\n const texName = inputInfo.name;\n const texFuncSnippet = texName.charAt(0).toUpperCase() + texName.slice(1);\n const funcName = \"get\" + texFuncSnippet + \"ByOutput\";\n const inRank = inputInfo.shape.length;\n const outRank = outShape.length;\n const type = getCoordsDataType2(outRank);\n if (util_exports.arraysEqual(inputInfo.shape, outShape) && isFlatDispatchLayout) {\n if (isVec4) {\n return `\n fn ${funcName}Index(globalIndex : i32) -> vec4 {\n return vec4(${texName}[globalIndex]);\n }\n\n fn ${funcName}Coords(coords : ${type}) -> vec4 {\n return vec4(${texName}[${outRank > 1 ? \"getOutputIndexFromCoords(coords)\" : \"coords\"} / 4]);\n }\n `;\n } else {\n return `\n fn ${funcName}Index(globalIndex : i32) -> f32 {\n return f32(${texName}[globalIndex]);\n }\n\n fn ${funcName}Coords(coords : ${type}) -> f32 {\n return f32(${texName}[${outRank > 1 ? \"getOutputIndexFromCoords(coords)\" : \"coords\"}]);\n }\n `;\n }\n }\n const broadcastDims = backend_util_exports.getBroadcastDims(inputInfo.shape, outShape);\n const rankDiff = outRank - inRank;\n let coordsSnippet = \"\";\n if (inRank === 0) {\n if (isVec4) {\n return `\n fn ${funcName}Index(globalIndex : i32) -> vec4 {\n return get${texFuncSnippet}();\n }\n\n fn ${funcName}Coords(coords : ${type}) -> vec4 {\n return get${texFuncSnippet}();\n }\n `;\n }\n return `\n fn ${funcName}Index(globalIndex : i32) -> f32{\n return get${texFuncSnippet}();\n }\n\n fn ${funcName}Coords(coords : ${type}) -> f32{\n return get${texFuncSnippet}();\n }\n `;\n } else {\n if (outRank < 2 && broadcastDims.length >= 1) {\n coordsSnippet = \"coords = 0;\";\n } else {\n coordsSnippet = broadcastDims.map((d) => `coords.${getCoordsXYZ(d + rankDiff)} = 0;`).join(\"\\n\");\n }\n }\n let unpackedCoordsSnippet = \"\";\n if (outRank < 2 && inRank > 0) {\n unpackedCoordsSnippet = \"coords\";\n } else {\n if (outRank > 1) {\n const coordsType = getCoordsDataType2(inRank);\n const coordsValues = inputInfo.shape.map((s2, i2) => `coords.${getCoordsXYZ(i2 + rankDiff)}`).join(\", \");\n unpackedCoordsSnippet = `${coordsType}(${coordsValues})`;\n } else {\n unpackedCoordsSnippet = \"coords\";\n }\n }\n const shapeStr = `uniforms.${texName.charAt(0).toLowerCase() + texName.slice(1)}Shape`;\n const rankStr = `${inRank}D`;\n if (isVec4) {\n return `\n fn ${funcName}Index(globalIndex : i32) -> vec4 {\n var coords = getCoordsFromIndex(globalIndex);\n ${coordsSnippet}\n return ${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr}) / 4];\n }\n\n fn ${funcName}Coords(coordsIn : ${type}) -> vec4 {\n var coords = coordsIn;\n ${coordsSnippet}\n return ${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr}) / 4];\n }\n `;\n }\n return `\n fn ${funcName}Index(globalIndex : i32) -> f32 {\n var coords = getCoordsFromIndex(globalIndex);\n ${coordsSnippet}\n return f32(${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr})]);\n }\n\n fn ${funcName}Coords(coordsIn : ${type}) -> f32 {\n var coords = coordsIn;\n ${coordsSnippet}\n return f32(${texName}[getIndexFromCoords${rankStr}(${unpackedCoordsSnippet}, ${shapeStr})]);\n }\n`;\n}\nfunction getInputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout) {\n let res = getInputAtCoordsSnippet(inputInfo, isVec4);\n const inShape = inputInfo.shape;\n if (inShape.length <= outShape.length) {\n res += getInputByOutputSnippet(inputInfo, outShape, isVec4, isFlatDispatchLayout);\n }\n return res;\n}\nfunction getOutputCoordsSnippet(outShape, dispatchLayout) {\n const { x, y = [], z = [] } = dispatchLayout;\n const outRank = outShape.length;\n if (x.length === outRank) {\n const dtype2 = getCoordsDataType2(outRank);\n const snippet2 = `fn getOutputCoords() -> ${dtype2}{\n let globalIndex = getGlobalIndex();\n return getCoordsFromIndex(globalIndex);\n }\n `;\n return snippet2;\n }\n let gatherDimensionsStr = \"\";\n const dims = [x, y, z];\n let rank = 0;\n for (let i2 = 0; i2 < dims.length; i2++) {\n const arr = dims[i2];\n if (arr.length === 0) {\n continue;\n }\n rank += arr.length;\n if (arr.length === 1) {\n gatherDimensionsStr += `let d${arr[0]} = i32(globalId[${i2}]);`;\n } else {\n const strides = symbolicallyComputeStrides2(arr, \"uniforms.outShape\");\n gatherDimensionsStr += `var index${i2} = i32(globalId[${i2}]);`;\n for (let j = 0; j < strides.length; j++) {\n gatherDimensionsStr += `let d${arr[j]} = index${i2} / ${strides[j]};`;\n if (j === strides.length - 1) {\n gatherDimensionsStr += `let d${arr[j + 1]} = index${i2} - d${arr[j]} * ${strides[j]};`;\n } else {\n gatherDimensionsStr += `index${i2} = index${i2} - d${arr[j]} * ${strides[j]};`;\n }\n }\n }\n }\n const dimensions = [];\n for (let i2 = 0; i2 < rank; i2++) {\n dimensions.push(`d${i2}`);\n }\n const dtype = getCoordsDataType2(rank);\n let snippet = `fn getOutputCoords() -> ${dtype} {\n ${gatherDimensionsStr}\n`;\n if (dimensions.length === 0) {\n snippet += `return ${dtype}(0); }`;\n } else {\n snippet += `return ${dtype}(${dimensions.join(\",\")}); }`;\n }\n return snippet;\n}\nfunction getOutputIndexFromCoordsSnippet(outRank) {\n let snippet = \"\";\n switch (outRank) {\n case 0:\n case 1:\n snippet += `\n fn getOutputIndexFromCoords(coords : i32) -> i32 {\n return coords;\n }\n `;\n break;\n case 2:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec2) -> i32 {\n return dot(coords, vec2(uniforms.outShapeStrides, 1));\n }\n `;\n break;\n case 3:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec3) -> i32 {\n return dot(coords, vec3(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));\n }\n `;\n break;\n case 4:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec4) -> i32 {\n return dot(coords, vec4(\n uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));\n }\n `;\n break;\n case 5:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec5) -> i32 {\n return coords.x * uniforms.outShapeStrides.x +\n coords.y * uniforms.outShapeStrides.y +\n coords.z * uniforms.outShapeStrides.z +\n coords.w * uniforms.outShapeStrides.w +\n coords.u;\n }\n `;\n break;\n case 6:\n snippet += `\n fn getOutputIndexFromCoords(coords : vec6) -> i32 {\n return coords.x * uniforms.outShapeStrides.x +\n coords.y * uniforms.outShapeStrides.y +\n coords.z * uniforms.outShapeStrides.z +\n coords.w * uniforms.outShapeStrides.w +\n coords.u * uniforms.outShapeStrides.u +\n coords.v;\n }\n `;\n break;\n default:\n util_exports.assert(false, () => `Unsupported ${outRank}D shape`);\n break;\n }\n return snippet;\n}\nfunction isFlatDispatch(program) {\n return program.dispatch[1] === 1 && program.dispatch[2] === 1;\n}\nfunction mapToWgslTypes(type, isVec4) {\n if (type === \"float32\") {\n return isVec4 ? \"vec4\" : \"f32\";\n } else if (type === \"int32\") {\n return isVec4 ? \"vec4\" : \"i32\";\n } else if (type === \"bool\") {\n return isVec4 ? \"vec4\" : \"i32\";\n }\n return type;\n}\nfunction setOutputSnippet(outShape, outBufferType, isVec4) {\n const outRank = outShape.length;\n const wgslType = mapToWgslTypes(outBufferType, isVec4);\n let snippet;\n if (isVec4) {\n snippet = `fn setOutputAtIndex(flatIndex : i32, value : vec4) {\n result[flatIndex] = ${wgslType}(value);\n }\n fn setOutputAtIndexI32(flatIndex : i32, value : vec4) {\n result[flatIndex] = ${wgslType}(value);\n }`;\n } else {\n snippet = `fn setOutputAtIndex(flatIndex : i32, value : f32) {\n result[flatIndex] = ${wgslType}(value);\n }\n fn setOutputAtIndexI32(flatIndex : i32, value : i32) {\n result[flatIndex] = ${wgslType}(value);\n }`;\n }\n if (outRank >= 2) {\n const dims = [\"d0\", \"d1\", \"d2\", \"d3\", \"d4\", \"d5\"].slice(0, outRank);\n const type = getCoordsDataType2(outRank);\n if (isVec4) {\n snippet += `\n fn setOutputAtCoords(${dims.map((d) => `${d} : i32`).join(\", \")}, value : vec4) {\n let flatIndex = getOutputIndexFromCoords(${type}(${dims.join(\", \")}));\n setOutputAtIndex(flatIndex / 4, value);\n }\n fn setOutputAtCoordsI32(${dims.map((d) => `${d} : i32`).join(\", \")}, value : vec4) {\n let flatIndex = getOutputIndexFromCoords(${type}(${dims.join(\", \")}));\n setOutputAtIndexI32(flatIndex / 4, value);\n }\n `;\n } else {\n snippet += `\n fn setOutputAtCoords(${dims.map((d) => `${d} : i32`).join(\", \")}, value : f32) {\n let flatIndex = getOutputIndexFromCoords(${type}(${dims.join(\", \")}));\n setOutputAtIndex(flatIndex, value);\n }\n fn setOutputAtCoordsI32(${dims.map((d) => `${d} : i32`).join(\", \")}, value : i32) {\n let flatIndex = getOutputIndexFromCoords(${type}(${dims.join(\", \")}));\n setOutputAtIndexI32(flatIndex, value);\n }\n `;\n }\n }\n return snippet;\n}\nfunction insertAlignment(uniformShader) {\n const curInsertRe = /(\\w+)\\s*:\\s*vec(5|6)/g;\n uniformShader = uniformShader.replace(curInsertRe, (match) => {\n return \"@align(16) \" + match;\n });\n const preInsertRe = /vec(5|6)\\s*,\\s*(\\w+)/g;\n uniformShader = uniformShader.replace(preInsertRe, (_, p1, p2) => {\n return `vec${p1}, @align(16) ${p2}`;\n });\n return uniformShader;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu_util.js\nvar webgpu_util_exports = {};\n__export(webgpu_util_exports, {\n ArrayBufferToTypedArray: () => ArrayBufferToTypedArray,\n GPUBytesPerElement: () => GPUBytesPerElement,\n MatMulProgramType: () => MatMulProgramType,\n computeDispatch: () => computeDispatch,\n computeWorkGroupInfoForMatMul: () => computeWorkGroupInfoForMatMul,\n computeWorkGroupSizeForConv2d: () => computeWorkGroupSizeForConv2d,\n computeWorkPerThreadForConv2d: () => computeWorkPerThreadForConv2d,\n flatDispatchLayout: () => flatDispatchLayout,\n isWebGPUSupported: () => isWebGPUSupported,\n tilesFitEvenlyIntoShape: () => tilesFitEvenlyIntoShape\n});\nvar arrayProduct = (arr) => {\n let product = 1;\n for (let i2 = 0; i2 < arr.length; i2++) {\n product *= arr[i2];\n }\n return product;\n};\nfunction tilesFitEvenlyIntoShape(tileSize, shape) {\n if (tileSize.length !== shape.length) {\n throw new Error(`Cannot compute whether rank ${tileSize.length} tiles fit evenly into rank ${shape.length} shape - ranks must match.`);\n }\n return shape.every((dim, dimIdx) => dim % tileSize[dimIdx] === 0);\n}\nfunction computeDispatch(layout, outputShape, workGroupSize = [1, 1, 1], elementsPerThread = [1, 1, 1]) {\n const [dispatchX, dispatchY, dispatchZ] = [\n Math.ceil(arrayProduct(layout.x.map((d) => outputShape[d])) / (workGroupSize[0] * elementsPerThread[0])),\n layout.y ? Math.ceil(arrayProduct(layout.y.map((d) => outputShape[d])) / (workGroupSize[1] * elementsPerThread[1])) : 1,\n layout.z ? Math.ceil(arrayProduct(layout.z.map((d) => outputShape[d])) / (workGroupSize[2] * elementsPerThread[2])) : 1\n ];\n return [dispatchX, dispatchY, dispatchZ];\n}\nfunction computeWorkGroupInfoForMatMul(dimAOuter, dimInner, dimBOuter, transposeA = false) {\n const workGroupSize = [8, 8, 1];\n const elementsPerThread = [4, 4, 1];\n if (!transposeA) {\n if (dimAOuter <= 8) {\n elementsPerThread[1] = 1;\n }\n if (dimInner <= 16 && dimBOuter <= 16) {\n workGroupSize[0] = 4;\n }\n }\n return { workGroupSize, elementsPerThread };\n}\nfunction computeWorkGroupSizeForConv2d(layout, outputShape, isVec4 = false) {\n if (isVec4) {\n return [8, 8, 1];\n }\n const dim0 = arrayProduct(layout.x.map((d) => outputShape[d]));\n const dim1 = arrayProduct(layout.y.map((d) => outputShape[d]));\n if (dim0 <= 4) {\n return [4, 16, 1];\n }\n if (dim1 <= 4) {\n return [16, 4, 1];\n }\n return [16, 16, 1];\n}\nfunction computeWorkPerThreadForConv2d(layout, outputShape, isVec4 = false) {\n if (isVec4) {\n return [4, 4, 1];\n }\n const dim0 = arrayProduct(layout.x.map((d) => outputShape[d]));\n const dim1 = arrayProduct(layout.y.map((d) => outputShape[d]));\n if (dim0 <= 4) {\n return [1, 2, 1];\n }\n if (dim1 <= 4) {\n return [2, 1, 1];\n }\n return [2, 2, 1];\n}\nfunction flatDispatchLayout(shape) {\n return { x: shape.map((d, i2) => i2) };\n}\nfunction GPUBytesPerElement(dtype) {\n if (dtype === \"float32\" || dtype === \"int32\" || dtype === \"bool\" || dtype === \"string\") {\n return 4;\n } else if (dtype === \"complex64\") {\n return 8;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\nfunction ArrayBufferToTypedArray(data, dtype) {\n if (dtype === \"float32\") {\n return new Float32Array(data);\n } else if (dtype === \"int32\") {\n return new Int32Array(data);\n } else if (dtype === \"bool\" || dtype === \"string\") {\n return Uint8Array.from(new Int32Array(data));\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\nfunction isWebGPUSupported() {\n return (typeof window !== \"undefined\" || typeof WorkerGlobalScope !== \"undefined\") && !!navigator.gpu;\n}\nvar MatMulProgramType;\n(function(MatMulProgramType2) {\n MatMulProgramType2[MatMulProgramType2[\"MatMulReduceProgram\"] = 0] = \"MatMulReduceProgram\";\n MatMulProgramType2[MatMulProgramType2[\"MatMulSplitKProgram\"] = 1] = \"MatMulSplitKProgram\";\n MatMulProgramType2[MatMulProgramType2[\"MatMulSmallOutputSizeProgram\"] = 2] = \"MatMulSmallOutputSizeProgram\";\n MatMulProgramType2[MatMulProgramType2[\"MatMulPackedProgram\"] = 3] = \"MatMulPackedProgram\";\n MatMulProgramType2[MatMulProgramType2[\"MatMulMax\"] = 4] = \"MatMulMax\";\n})(MatMulProgramType || (MatMulProgramType = {}));\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/backend_webgpu.js\nvar CPU_HANDOFF_SIZE_THRESHOLD2 = env().getNumber(\"WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD\");\nvar reshapeDispatch = (device, program) => {\n const MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE = device.limits.maxComputeWorkgroupsPerDimension;\n const layout = program[\"dispatchLayout\"];\n const dispatch = program[\"dispatch\"];\n if (dispatch.every((d) => d <= MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE)) {\n return dispatch;\n }\n util_exports.assert(dispatch[0] > MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE && layout.y === void 0 && layout.z === void 0, () => \"Dispatch size exceeds WebGPU limits in Y or Z dimension.\");\n let dispatchAverage = Math.ceil(Math.sqrt(dispatch[0]));\n if (dispatchAverage > MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE) {\n dispatchAverage = Math.ceil(Math.cbrt(dispatch[0]));\n util_exports.assert(dispatchAverage <= MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE, () => \"Total dispatch size exceeds WebGPU maximum.\");\n return [dispatchAverage, dispatchAverage, dispatchAverage];\n } else {\n return [dispatchAverage, dispatchAverage, 1];\n }\n};\nvar WebGPUBackend = class extends KernelBackend {\n constructor(device) {\n super();\n this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet();\n this.dispatchNumberInEncoder = 0;\n this.disposed = false;\n this.downloadWaitMs = 0;\n this.tensorDataPendingDisposal = [];\n this.stagingPendingDisposal = [];\n this.uniformPendingDisposal = [];\n this.uploadWaitMs = 0;\n if (!isWebGPUSupported()) {\n throw new Error(\"WebGPU is not supported on this device\");\n }\n this.pipelineCache = {};\n this.device = device;\n this.queue = device.queue;\n this.currentCommandEncoder = null;\n this.currentComputePass = null;\n this.supportTimeQuery = device.features.has(\"timestamp-query\");\n this.bufferManager = new BufferManager(this.device);\n this.textureManager = new TextureManager2(this.device);\n this.tensorMap = new DataStorage(this, engine());\n if (this.supportTimeQuery) {\n this.querySet = this.device.createQuerySet({\n type: \"timestamp\",\n count: 2\n });\n }\n if (env().getBool(\"WEBGPU_USE_PROFILE_TOOL\")) {\n this.dummyCanvas = document.createElement(\"canvas\");\n this.dummyCanvas.width = 1;\n this.dummyCanvas.height = 1;\n this.dummyContext = this.dummyCanvas.getContext(\"webgpu\");\n this.dummyContext.configure({\n device,\n format: \"bgra8unorm\"\n });\n document.body.appendChild(this.dummyCanvas);\n }\n }\n nextDataId() {\n return WebGPUBackend.nextDataId++;\n }\n floatPrecision() {\n return 32;\n }\n defaultGpuBufferUsage() {\n return GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST;\n }\n disposeData(dataId, force = false) {\n if (this.tensorDataPendingDisposal.indexOf(dataId) >= 0) {\n return false;\n }\n if (!this.tensorMap.has(dataId)) {\n return true;\n }\n const tensorData = this.tensorMap.get(dataId);\n this.decRef(dataId);\n if (!force && tensorData.refCount > 0) {\n return false;\n }\n if (this.commandQueueOwnedIds.has(dataId)) {\n this.tensorDataPendingDisposal.push(dataId);\n return false;\n }\n const { complexTensorInfos } = this.tensorMap.get(dataId);\n if (complexTensorInfos != null) {\n this.disposeData(complexTensorInfos.real.dataId, force);\n this.disposeData(complexTensorInfos.imag.dataId, force);\n }\n this.releaseResource(dataId);\n this.tensorMap.delete(dataId);\n return true;\n }\n memory() {\n return {\n numBytesInGPU: this.bufferManager.numBytesUsed,\n numBytesAllocatedInGPU: this.bufferManager.numBytesAllocated,\n unreliable: false\n };\n }\n releaseResource(dataId) {\n const tensorData = this.tensorMap.get(dataId);\n if (!tensorData || !tensorData.resourceInfo) {\n return;\n }\n if (\"texture\" in tensorData.resourceInfo) {\n const textureInfo = tensorData.resourceInfo;\n if (textureInfo.texture instanceof GPUTexture) {\n this.textureManager.releaseTexture(textureInfo.texture, textureInfo.width, textureInfo.height, textureInfo.format, textureInfo.usage);\n }\n textureInfo.texture = null;\n } else {\n const bufferInfo = tensorData.resourceInfo;\n this.bufferManager.releaseBuffer(bufferInfo.buffer, bufferInfo.size, bufferInfo.usage);\n bufferInfo.buffer = null;\n }\n tensorData.resourceInfo = null;\n }\n refCount(dataId) {\n if (this.tensorMap.has(dataId)) {\n const tensorData = this.tensorMap.get(dataId);\n return tensorData.refCount;\n }\n return 0;\n }\n incRef(dataId) {\n const tensorData = this.tensorMap.get(dataId);\n tensorData.refCount++;\n }\n decRef(dataId) {\n if (this.tensorMap.has(dataId)) {\n const tensorData = this.tensorMap.get(dataId);\n tensorData.refCount--;\n }\n }\n write(values, shape, dtype) {\n if (dtype === \"complex64\" && values != null) {\n throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`);\n }\n const dataId = { id: this.nextDataId() };\n this.tensorMap.set(dataId, { dtype, shape, values, refCount: 1 });\n return dataId;\n }\n move(dataId, values, shape, dtype, refCount) {\n if (dtype === \"complex64\") {\n throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`);\n }\n this.tensorMap.set(dataId, { dtype, shape, values, refCount });\n }\n submitQueue() {\n this.ensureComputePassEnded();\n this.queue.submit([this.currentCommandEncoder.finish()]);\n this.currentCommandEncoder = null;\n this.dispatchNumberInEncoder = 0;\n this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet();\n this.tensorDataPendingDisposal.forEach((d) => {\n this.releaseResource(d);\n this.tensorMap.delete(d);\n });\n this.uniformPendingDisposal.forEach((d) => this.bufferManager.releaseBuffer(d.buffer, d.size, d.usage));\n this.stagingPendingDisposal.forEach((d) => this.bufferManager.releaseUploadBuffer(d.buffer, d.size, d.usage));\n this.tensorDataPendingDisposal = [];\n this.uniformPendingDisposal = [];\n this.stagingPendingDisposal = [];\n }\n ensureCommandEncoderReady() {\n if (!this.currentCommandEncoder) {\n this.currentCommandEncoder = this.device.createCommandEncoder();\n }\n }\n ensureComputePassEnded() {\n if (this.currentComputePass) {\n this.currentComputePass.end();\n this.currentComputePass = null;\n }\n }\n getComputePass() {\n if (!this.currentComputePass) {\n this.currentComputePass = this.currentCommandEncoder.beginComputePass();\n }\n return this.currentComputePass;\n }\n async getBufferData(buffer2, size) {\n const staging = this.bufferManager.acquireBuffer(size, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ);\n this.ensureCommandEncoderReady();\n this.ensureComputePassEnded();\n this.currentCommandEncoder.copyBufferToBuffer(buffer2, 0, staging, 0, size);\n this.submitQueue();\n await staging.mapAsync(GPUMapMode.READ);\n const values = staging.getMappedRange().slice(0);\n staging.unmap();\n if (staging != null) {\n this.bufferManager.releaseBuffer(staging, size, GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ);\n }\n if (env().getBool(\"WEBGPU_USE_PROFILE_TOOL\")) {\n util_exports.assert(this.dummyContext !== void 0, () => `Fail to get context for profiling tool`);\n this.dummyContext.getCurrentTexture();\n }\n return values;\n }\n convertAndCacheOnCPU(dataId, data) {\n const tensorData = this.tensorMap.get(dataId);\n this.releaseResource(dataId);\n tensorData.values = data;\n return tensorData.values;\n }\n readSync(dataId) {\n const tensorData = this.tensorMap.get(dataId);\n const { values } = tensorData;\n if (values == null) {\n throw new Error(\"WebGPU readSync is only available for CPU-resident tensors.\");\n }\n return values;\n }\n async read(dataId) {\n if (!this.tensorMap.has(dataId)) {\n throw new Error(`Tensor ${dataId} was not registered!`);\n }\n const tensorData = this.tensorMap.get(dataId);\n const { values } = tensorData;\n if (values != null) {\n return this.convertAndCacheOnCPU(dataId, values);\n }\n let vals;\n if (tensorData.dtype === \"complex64\") {\n const ps = await Promise.all([\n this.read(tensorData.complexTensorInfos.real.dataId),\n this.read(tensorData.complexTensorInfos.imag.dataId)\n ]);\n const realValues = ps[0];\n const imagValues = ps[1];\n vals = backend_util_exports.mergeRealAndImagArrays(realValues, imagValues);\n } else {\n const bufferInfo = tensorData.resourceInfo;\n const data = await this.getBufferData(bufferInfo.buffer, bufferInfo.size);\n vals = ArrayBufferToTypedArray(data, tensorData.dtype);\n }\n this.convertAndCacheOnCPU(dataId, vals);\n return vals;\n }\n readToGPU(dataId) {\n const srcTensorData = this.tensorMap.get(dataId);\n const { values, dtype, shape, resourceInfo } = srcTensorData;\n if (dtype === \"complex64\") {\n throw new Error(\"Does not support reading buffer for complex64 dtype.\");\n }\n if (resourceInfo == null) {\n if (values != null) {\n throw new Error(\"Data is not on GPU but on CPU.\");\n } else {\n throw new Error(\"There is no data on GPU or CPU.\");\n }\n }\n const size = resourceInfo.size;\n const buffer2 = this.bufferManager.acquireBuffer(size, resourceInfo.usage);\n this.ensureCommandEncoderReady();\n this.ensureComputePassEnded();\n this.currentCommandEncoder.copyBufferToBuffer(resourceInfo.buffer, 0, buffer2, 0, size);\n this.submitQueue();\n const tensorInfo = this.makeTensorInfo(shape, dtype);\n const tensorRef = engine().makeTensorFromTensorInfo(tensorInfo);\n const tensorData = this.tensorMap.get(tensorInfo.dataId);\n tensorData.resourceInfo = { size, usage: this.defaultGpuBufferUsage(), buffer: buffer2 };\n return { tensorRef, buffer: buffer2, bufSize: size };\n }\n bufferSync(t2) {\n const data = this.readSync(t2.dataId);\n if (t2.dtype === \"string\") {\n try {\n const strings = data.map((d) => util_exports.decodeString(d));\n return buffer(t2.shape, t2.dtype, strings);\n } catch (_a) {\n throw new Error(\"Failed to decode encoded string bytes into utf-8\");\n }\n }\n return buffer(t2.shape, t2.dtype, data);\n }\n async time(f) {\n if (!this.supportTimeQuery) {\n console.warn(`This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Otherwise, zero will be shown for the kernel time when profiling mode is enabled. Using performance.now is not workable for webgpu since it doesn't support synchronous data read from GPU.`);\n }\n const oldActiveTimers = this.activeTimers;\n const newActiveTimers = [];\n let outerMostTime = false;\n if (this.programTimersStack == null) {\n this.programTimersStack = newActiveTimers;\n outerMostTime = true;\n } else {\n this.activeTimers.push(newActiveTimers);\n }\n this.activeTimers = newActiveTimers;\n f();\n const flattenedActiveTimerQueries = util_exports.flatten(this.activeTimers.map((d) => d.query)).filter((d) => d != null);\n const flattenedActiveTimerNames = util_exports.flatten(this.activeTimers.map((d) => d.name)).filter((d) => d != null);\n this.activeTimers = oldActiveTimers;\n if (outerMostTime) {\n this.programTimersStack = null;\n }\n const res = {\n uploadWaitMs: this.uploadWaitMs,\n downloadWaitMs: this.downloadWaitMs,\n kernelMs: null,\n wallMs: null\n };\n const kernelMs = await Promise.all(flattenedActiveTimerQueries);\n res[\"kernelMs\"] = util_exports.sum(kernelMs);\n res[\"getExtraProfileInfo\"] = () => kernelMs.map((d, i2) => ({ name: flattenedActiveTimerNames[i2], ms: d })).map((d) => `${d.name}: ${d.ms}`).join(\", \");\n this.uploadWaitMs = 0;\n this.downloadWaitMs = 0;\n return res;\n }\n makeTensorInfo(shape, dtype, values) {\n if (dtype === \"string\" && values != null && values.length > 0 && util_exports.isString(values[0])) {\n values = values.map((d) => util_exports.encodeString(d));\n }\n const dataId = this.write(values, shape, dtype);\n return { dataId, shape, dtype };\n }\n tensorToBinding(tensor2) {\n if (!tensor2) {\n return null;\n }\n const tensorData = this.tensorMap.get(tensor2.dataId);\n if (\"texture\" in tensorData.resourceInfo) {\n const info = tensorData.resourceInfo;\n if (info.texture instanceof GPUExternalTexture) {\n return info.texture;\n } else {\n return info.texture.createView();\n }\n }\n const bufferInfo = tensorData.resourceInfo;\n return { offset: 0, size: bufferInfo.size, buffer: bufferInfo.buffer };\n }\n async getQueryTime(query) {\n if (this.supportTimeQuery) {\n return this.getTimeFromQuerySet(query);\n } else {\n return 0;\n }\n }\n uploadToGPU(dataId) {\n const tensorData = this.tensorMap.get(dataId);\n if (tensorData.resourceInfo) {\n return;\n }\n const size = GPUBytesPerElement(tensorData.dtype) * util_exports.sizeFromShape(tensorData.shape);\n const buffer2 = this.bufferManager.acquireBuffer(size, this.defaultGpuBufferUsage());\n tensorData.resourceInfo = { size, usage: this.defaultGpuBufferUsage(), buffer: buffer2 };\n if (tensorData.values) {\n const stagingBuffer = this.bufferManager.acquireUploadBuffer(size, GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC);\n const arrayBuffer = stagingBuffer.getMappedRange();\n if (tensorData.dtype === \"int32\" || tensorData.dtype === \"bool\") {\n new Int32Array(arrayBuffer).set(tensorData.values);\n } else {\n new Float32Array(arrayBuffer).set(tensorData.values);\n }\n stagingBuffer.unmap();\n this.ensureCommandEncoderReady();\n this.ensureComputePassEnded();\n this.currentCommandEncoder.copyBufferToBuffer(stagingBuffer, 0, buffer2, 0, size);\n const stagingInfo = {\n size,\n usage: GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC,\n buffer: stagingBuffer\n };\n this.stagingPendingDisposal.push(stagingInfo);\n }\n }\n makeUniforms(programUniform) {\n let currentOffset = 0;\n let preLength = 0;\n const offsets = [];\n programUniform.forEach((d) => {\n if (d.data.length === 0) {\n d.data = [1];\n }\n let baseAlignment;\n switch (d.data.length) {\n case 1:\n baseAlignment = 4;\n break;\n case 2:\n baseAlignment = 8;\n break;\n case 3:\n baseAlignment = 16;\n break;\n case 4:\n baseAlignment = 16;\n break;\n case 5:\n baseAlignment = 16;\n break;\n case 6:\n baseAlignment = 16;\n break;\n default:\n util_exports.assert(false, () => `Unsupported ${d.data.length}D shape`);\n }\n if (preLength === 5 || preLength === 6) {\n baseAlignment = 16;\n }\n currentOffset = Math.ceil(currentOffset / baseAlignment) * baseAlignment;\n preLength = d.data.length;\n offsets.push(currentOffset);\n currentOffset += d.data.length * 4;\n });\n const arrayBuffer = new ArrayBuffer(currentOffset);\n programUniform.forEach((d, i2) => {\n const offset = offsets[i2];\n if (d.type === \"int32\") {\n new Int32Array(arrayBuffer, offset, d.data.length).set(d.data);\n } else if (d.type === \"uint32\") {\n new Uint32Array(arrayBuffer, offset, d.data.length).set(d.data);\n } else {\n new Float32Array(arrayBuffer, offset, d.data.length).set(d.data);\n }\n });\n const uniformBuffer = this.bufferManager.acquireBuffer(currentOffset, GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM);\n this.queue.writeBuffer(uniformBuffer, 0, arrayBuffer, 0, currentOffset);\n const uniformInfo = {\n size: currentOffset,\n usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.UNIFORM,\n buffer: uniformBuffer\n };\n this.uniformPendingDisposal.push(uniformInfo);\n return { offset: 0, size: currentOffset, buffer: uniformBuffer };\n }\n runWebGPUProgram(program, inputs, outputDtype, programDefinedUniform, output) {\n if (!output) {\n output = this.makeTensorInfo(program.outputShape, outputDtype);\n }\n if (util_exports.sizeFromShape(output.shape) === 0) {\n this.tensorMap.get(output.dataId).values = util_exports.getTypedArrayFromDType(output.dtype, 0);\n return output;\n }\n this.uploadToGPU(output.dataId);\n program.dispatch = reshapeDispatch(this.device, program);\n let programUniform = [];\n let bufferShapes = [];\n if (!program.isFromPixels) {\n programUniform.push({ type: \"float32\", data: [NaN] });\n bufferShapes = inputs.concat(output).map((d) => d.shape);\n const uniformsType = \"int32\";\n bufferShapes.map((d) => {\n programUniform.push({ type: uniformsType, data: d });\n });\n const strides = util_exports.computeStrides(output.shape);\n programUniform.push({ type: uniformsType, data: strides });\n if (program.size) {\n const size = util_exports.sizeFromShape(program.outputShape);\n programUniform.push({ type: uniformsType, data: [program.isVec4 ? size / 4 : size] });\n }\n }\n const inputsData = inputs.map((input2, i2) => {\n if (input2.dtype === \"complex64\") {\n throw new Error(`GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.`);\n }\n this.uploadToGPU(input2.dataId);\n return {\n dtype: this.tensorMap.get(input2.dataId).dtype,\n shape: input2.shape,\n name: program.variableNames[i2]\n };\n });\n const key = makeShaderKey2(program, bufferShapes, inputsData, output);\n let pipeline;\n if (key in this.pipelineCache) {\n pipeline = this.pipelineCache[key];\n } else {\n pipeline = compileProgram2(this.device, program, inputsData, output);\n this.pipelineCache[key] = pipeline;\n }\n if (programDefinedUniform) {\n programUniform = [...programUniform, ...programDefinedUniform];\n }\n const bindings = [\n this.tensorToBinding(output),\n ...inputs.map((t2) => this.tensorToBinding(t2)),\n this.makeUniforms(programUniform)\n ];\n const bindGroup = this.device.createBindGroup({\n layout: pipeline.getBindGroupLayout(0),\n entries: bindings.map((b, i2) => ({ binding: i2, resource: b }))\n });\n this.ensureCommandEncoderReady();\n const pass = this.getComputePass();\n const shouldTimeProgram = this.activeTimers != null;\n if (shouldTimeProgram) {\n if (this.supportTimeQuery) {\n pass.writeTimestamp(this.querySet, 0);\n }\n }\n pass.setPipeline(pipeline);\n pass.setBindGroup(0, bindGroup);\n pass.dispatchWorkgroups(program.dispatch[0], program.dispatch[1], program.dispatch[2]);\n if (shouldTimeProgram) {\n if (this.supportTimeQuery) {\n pass.writeTimestamp(this.querySet, 1);\n }\n }\n this.dispatchNumberInEncoder++;\n inputs.forEach((input2) => {\n this.commandQueueOwnedIds.add(input2.dataId);\n });\n this.commandQueueOwnedIds.add(output.dataId);\n if (env().get(\"WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE\") <= this.dispatchNumberInEncoder) {\n this.submitQueue();\n }\n if (shouldTimeProgram) {\n this.activeTimers.push({\n name: program.constructor.name,\n query: this.getQueryTime(this.querySet)\n });\n }\n return output;\n }\n async getTimeFromQuerySet(querySet) {\n const queryBuffer = this.bufferManager.acquireBuffer(16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE);\n const dst = this.bufferManager.acquireBuffer(16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST);\n this.ensureCommandEncoderReady();\n this.ensureComputePassEnded();\n this.currentCommandEncoder.resolveQuerySet(querySet, 0, 2, queryBuffer, 0);\n this.currentCommandEncoder.copyBufferToBuffer(queryBuffer, 0, dst, 0, 16);\n this.submitQueue();\n await dst.mapAsync(GPUMapMode.READ);\n const arrayBuf = new BigUint64Array(dst.getMappedRange());\n const timeElapsedNanos = Number(arrayBuf[1] - arrayBuf[0]);\n dst.unmap();\n this.bufferManager.releaseBuffer(dst, 16, GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST);\n this.bufferManager.releaseBuffer(queryBuffer, 16, GPUBufferUsage.COPY_SRC | GPUBufferUsage.QUERY_RESOLVE);\n return timeElapsedNanos / 1e6;\n }\n shouldExecuteOnCPU(inputs, sizeThreshold = CPU_HANDOFF_SIZE_THRESHOLD2) {\n return env().getBool(\"WEBGPU_CPU_FORWARD\") && inputs.every((input2) => this.tensorMap.get(input2.dataId).resourceInfo == null && util_exports.sizeFromShape(input2.shape) < sizeThreshold);\n }\n numDataIds() {\n return this.tensorMap.numDataIds() - this.tensorDataPendingDisposal.length;\n }\n dispose() {\n if (this.disposed) {\n return;\n }\n this.bufferManager.dispose();\n this.textureManager.dispose();\n this.disposed = true;\n }\n};\nWebGPUBackend.nextDataId = 0;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/base.js\nif (isWebGPUSupported()) {\n registerBackend(\"webgpu\", async () => {\n env().set(\"CHECK_COMPUTATION_FOR_ERRORS\", false);\n const gpuDescriptor = {\n powerPreference: env().get(\"WEBGPU_USE_LOW_POWER_GPU\") ? \"low-power\" : \"high-performance\"\n };\n const adapter = await navigator.gpu.requestAdapter(gpuDescriptor);\n const adapterLimits = adapter.limits;\n const deviceDescriptor = {};\n const supportTimeQuery = adapter.features.has(\"timestamp-query\");\n deviceDescriptor.requiredLimits = {\n \"maxComputeWorkgroupStorageSize\": adapterLimits.maxComputeWorkgroupStorageSize,\n \"maxComputeWorkgroupsPerDimension\": adapterLimits.maxComputeWorkgroupsPerDimension,\n \"maxStorageBufferBindingSize\": adapterLimits.maxStorageBufferBindingSize\n };\n if (supportTimeQuery) {\n deviceDescriptor.requiredFeatures = [\"timestamp-query\"];\n }\n const device = await adapter.requestDevice(deviceDescriptor);\n return new WebGPUBackend(device);\n }, 3);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_util.js\nvar BinaryOpType;\n(function(BinaryOpType2) {\n BinaryOpType2[BinaryOpType2[\"MUL\"] = 0] = \"MUL\";\n BinaryOpType2[BinaryOpType2[\"ADD\"] = 1] = \"ADD\";\n BinaryOpType2[BinaryOpType2[\"ATAN2\"] = 2] = \"ATAN2\";\n BinaryOpType2[BinaryOpType2[\"SUB\"] = 3] = \"SUB\";\n BinaryOpType2[BinaryOpType2[\"DIV\"] = 4] = \"DIV\";\n BinaryOpType2[BinaryOpType2[\"EQUAL\"] = 5] = \"EQUAL\";\n BinaryOpType2[BinaryOpType2[\"GREATER\"] = 6] = \"GREATER\";\n BinaryOpType2[BinaryOpType2[\"GREATER_EQUAL\"] = 7] = \"GREATER_EQUAL\";\n BinaryOpType2[BinaryOpType2[\"LESS\"] = 8] = \"LESS\";\n BinaryOpType2[BinaryOpType2[\"LESS_EQUAL\"] = 9] = \"LESS_EQUAL\";\n BinaryOpType2[BinaryOpType2[\"LOGICAL_AND\"] = 10] = \"LOGICAL_AND\";\n BinaryOpType2[BinaryOpType2[\"NOT_EQUAL\"] = 11] = \"NOT_EQUAL\";\n BinaryOpType2[BinaryOpType2[\"SQUARED_DIFFERENCE\"] = 12] = \"SQUARED_DIFFERENCE\";\n BinaryOpType2[BinaryOpType2[\"INT_DIV\"] = 13] = \"INT_DIV\";\n BinaryOpType2[BinaryOpType2[\"POW\"] = 14] = \"POW\";\n BinaryOpType2[BinaryOpType2[\"PRELU\"] = 15] = \"PRELU\";\n BinaryOpType2[BinaryOpType2[\"MAX\"] = 16] = \"MAX\";\n BinaryOpType2[BinaryOpType2[\"MIN\"] = 17] = \"MIN\";\n BinaryOpType2[BinaryOpType2[\"COMPLEX_MULTIPLY_REAL\"] = 18] = \"COMPLEX_MULTIPLY_REAL\";\n BinaryOpType2[BinaryOpType2[\"COMPLEX_MULTIPLY_IMAG\"] = 19] = \"COMPLEX_MULTIPLY_IMAG\";\n})(BinaryOpType || (BinaryOpType = {}));\nvar CHECK_NAN_SNIPPET4 = `\n if (isnan(a)) { return a; }\n if (isnan(b)) { return b; }\n `;\nvar CHECK_NAN_SNIPPET_VEC4_INNER = `\n if (isNaN.r) {\n resultTemp.r = valueForNaN;\n }\n if (isNaN.g) {\n resultTemp.g = valueForNaN;\n }\n if (isNaN.b) {\n resultTemp.b = valueForNaN;\n }\n if (isNaN.a) {\n resultTemp.a = valueForNaN;\n }\n `;\nvar CHECK_NAN_SNIPPET_VEC4 = `\n let isNaN = isnanVec4(a) | isnanVec4(b);\n ${CHECK_NAN_SNIPPET_VEC4_INNER}\n `;\nvar ADD2 = \"return a + b;\";\nvar COMPLEX_MULTIPLY_REAL = \"return areal * breal - aimag * bimag;\";\nvar COMPLEX_MULTIPLY_IMAG = \"return areal * bimag + aimag * breal;\";\nvar DIV2 = \"return a / b;\";\nvar MUL2 = \"return a * b;\";\nvar SQUARED_DIFFERENCE2 = \"return (a - b) * (a - b);\";\nvar SUB2 = \"return a - b;\";\nvar EQUAL2 = \"return f32(a == b);\";\nvar EQUAL_VEC4 = \"return vec4(a == b);\";\nvar GREATER2 = \"return f32(a > b);\";\nvar GREATER_VEC4 = \"return vec4(a > b);\";\nvar GREATER_EQUAL2 = \"return f32(a >= b);\";\nvar GREATER_EQUAL_VEC4 = \"return vec4(a >= b);\";\nvar LESS2 = \"return f32(a < b);\";\nvar LESS_VEC4 = \"return vec4(a < b);\";\nvar LESS_EQUAL2 = \"return f32(a <= b);\";\nvar LESS_EQUAL_VEC4 = \"return vec4(a <= b);\";\nvar LOGICAL_AND2 = \"return f32(f32(a) >= 1.0 && f32(b) >= 1.0);\";\nvar LOGICAL_AND_VEC4 = `return (vec4(a >= vec4(1.0)) *\n vec4(b >= vec4(1.0)));`;\nvar INT_DIV2 = `\n let s = sign(a) * sign(b);\n let ia = i32(round(a));\n let ib = i32(round(b));\n return f32(idiv(ia, ib, s));\n `;\nvar INT_DIV_VEC4 = `\n let ia = vec4(round(a));\n let ib = vec4(round(b));\n let cond = ib != vec4(0);\n var resultTemp = vec4(0);\n let s = sign(a) * sign(b);\n\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n if (cond[0]) {\n resultTemp[0] = idiv(ia[0], ib[0], s[0]);\n }\n if (cond[1]) {\n resultTemp[1] = idiv(ia[1], ib[1], s[1]);\n }\n if (cond[2]) {\n resultTemp[2] = idiv(ia[2], ib[2], s[2]);\n }\n if (cond[3]) {\n resultTemp[3] = idiv(ia[3], ib[3], s[3]);\n }\n return vec4(resultTemp);\n `;\nvar NOT_EQUAL2 = `\n if (isnan(a) || isnan(b)) {\n return 1.0;\n }\n return f32(a != b);\n`;\nvar NOT_EQUAL_VEC4 = `\n var resultTemp = vec4(a != b);\n let valueForNaN = 1.0;\n ${CHECK_NAN_SNIPPET_VEC4}\n\n return resultTemp;\n`;\nvar POW2 = `\n if(a < 0.0 && floor(b) < b) {\n return uniforms.NAN;\n }\n if (b == 0.0) {\n return 1.0;\n }\n if (round(abs(b) % 2.0) != 1.0) {\n return pow(abs(a), b);\n }\n return sign(a) * pow(abs(a), b);\n `;\nvar POW_VEC4 = `\n let isModRound1Bool = vec4(round(abs(b) % vec4(2.0))) == vec4(1);\n let isModRound1 = vec4(isModRound1Bool);\n let multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);\n var resultTemp = multiplier * pow(abs(a), b);\n\n // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS\n let isExpZero = b == vec4(0.0);\n if (isExpZero.r) {\n resultTemp.r = 1.0;\n }\n if (isExpZero.g) {\n resultTemp.g = 1.0;\n }\n if (isExpZero.b) {\n resultTemp.b = 1.0;\n }\n if (isExpZero.a) {\n resultTemp.a = 1.0;\n }\n let isNaN = a < vec4(0.0) & floor(b) < b;\n let valueForNaN = uniforms.NAN;\n ${CHECK_NAN_SNIPPET_VEC4_INNER}\n return resultTemp;\n `;\nvar PRELU2 = `if (a < 0.0) { return b * a; } return a;`;\nvar PRELU_VEC4 = `\n let aLessThanZero = vec4(a < vec4(0.0));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n `;\nfunction getBinaryWithNanString(op2, useVec4, valueForNaN = \"uniforms.NAN\") {\n const checkNanSnippet = useVec4 ? CHECK_NAN_SNIPPET_VEC4 : CHECK_NAN_SNIPPET4;\n return useVec4 ? `\n let valueForNaN = ${valueForNaN};\n var resultTemp = vec4(${op2}(a, b));\n ` + checkNanSnippet + `\n return resultTemp;\n ` : checkNanSnippet + `\n return ${op2}(a, b);\n `;\n}\nfunction getBinaryOpString(type, useVec4) {\n switch (type) {\n case BinaryOpType.MUL:\n return MUL2;\n case BinaryOpType.ADD:\n return ADD2;\n case BinaryOpType.ATAN2:\n return getBinaryWithNanString(\"atan2\", useVec4);\n case BinaryOpType.SUB:\n return SUB2;\n case BinaryOpType.DIV:\n return DIV2;\n case BinaryOpType.EQUAL:\n return useVec4 ? EQUAL_VEC4 : EQUAL2;\n case BinaryOpType.GREATER:\n return useVec4 ? GREATER_VEC4 : GREATER2;\n case BinaryOpType.GREATER_EQUAL:\n return useVec4 ? GREATER_EQUAL_VEC4 : GREATER_EQUAL2;\n case BinaryOpType.LESS:\n return useVec4 ? LESS_VEC4 : LESS2;\n case BinaryOpType.LESS_EQUAL:\n return useVec4 ? LESS_EQUAL_VEC4 : LESS_EQUAL2;\n case BinaryOpType.LOGICAL_AND:\n return useVec4 ? LOGICAL_AND_VEC4 : LOGICAL_AND2;\n case BinaryOpType.NOT_EQUAL:\n return useVec4 ? NOT_EQUAL_VEC4 : NOT_EQUAL2;\n case BinaryOpType.SQUARED_DIFFERENCE:\n return SQUARED_DIFFERENCE2;\n case BinaryOpType.INT_DIV:\n return useVec4 ? INT_DIV_VEC4 : INT_DIV2;\n case BinaryOpType.PRELU:\n return useVec4 ? PRELU_VEC4 : PRELU2;\n case BinaryOpType.MAX:\n return getBinaryWithNanString(\"max\", useVec4);\n case BinaryOpType.MIN:\n return getBinaryWithNanString(\"min\", useVec4);\n case BinaryOpType.POW:\n return useVec4 ? POW_VEC4 : POW2;\n case BinaryOpType.COMPLEX_MULTIPLY_REAL:\n return COMPLEX_MULTIPLY_REAL;\n case BinaryOpType.COMPLEX_MULTIPLY_IMAG:\n return COMPLEX_MULTIPLY_IMAG;\n default:\n throw new Error(`BinaryType ${type} is not implemented!`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/unary_op_util.js\nvar UnaryOpType;\n(function(UnaryOpType2) {\n UnaryOpType2[UnaryOpType2[\"ABS\"] = 0] = \"ABS\";\n UnaryOpType2[UnaryOpType2[\"CEIL\"] = 1] = \"CEIL\";\n UnaryOpType2[UnaryOpType2[\"COS\"] = 2] = \"COS\";\n UnaryOpType2[UnaryOpType2[\"COSH\"] = 3] = \"COSH\";\n UnaryOpType2[UnaryOpType2[\"ELU\"] = 4] = \"ELU\";\n UnaryOpType2[UnaryOpType2[\"EXP\"] = 5] = \"EXP\";\n UnaryOpType2[UnaryOpType2[\"EXPM1\"] = 6] = \"EXPM1\";\n UnaryOpType2[UnaryOpType2[\"FLOOR\"] = 7] = \"FLOOR\";\n UnaryOpType2[UnaryOpType2[\"IS_NAN\"] = 8] = \"IS_NAN\";\n UnaryOpType2[UnaryOpType2[\"LINEAR\"] = 9] = \"LINEAR\";\n UnaryOpType2[UnaryOpType2[\"LOG\"] = 10] = \"LOG\";\n UnaryOpType2[UnaryOpType2[\"LOGICAL_NOT\"] = 11] = \"LOGICAL_NOT\";\n UnaryOpType2[UnaryOpType2[\"NEG\"] = 12] = \"NEG\";\n UnaryOpType2[UnaryOpType2[\"RELU\"] = 13] = \"RELU\";\n UnaryOpType2[UnaryOpType2[\"RELU6\"] = 14] = \"RELU6\";\n UnaryOpType2[UnaryOpType2[\"LEAKYRELU\"] = 15] = \"LEAKYRELU\";\n UnaryOpType2[UnaryOpType2[\"RECIPROCAL\"] = 16] = \"RECIPROCAL\";\n UnaryOpType2[UnaryOpType2[\"RSQRT\"] = 17] = \"RSQRT\";\n UnaryOpType2[UnaryOpType2[\"SIN\"] = 18] = \"SIN\";\n UnaryOpType2[UnaryOpType2[\"SINH\"] = 19] = \"SINH\";\n UnaryOpType2[UnaryOpType2[\"SIGMOID\"] = 20] = \"SIGMOID\";\n UnaryOpType2[UnaryOpType2[\"SQRT\"] = 21] = \"SQRT\";\n UnaryOpType2[UnaryOpType2[\"SQUARE\"] = 22] = \"SQUARE\";\n UnaryOpType2[UnaryOpType2[\"TANH\"] = 23] = \"TANH\";\n UnaryOpType2[UnaryOpType2[\"TO_INT\"] = 24] = \"TO_INT\";\n})(UnaryOpType || (UnaryOpType = {}));\nvar ABS3 = `return abs(a);`;\nvar CEIL2 = `return ceil(a);`;\nvar COS2 = `return cos(a);`;\nvar COSH2 = `\n let e2x = exp(-a);\n return (e2x + 1.0 / e2x) / 2.0;\n`;\nvar EXPM12 = `return exp(a) - 1.0;`;\nvar ELU5 = `if (a >= 0.0) { return a; } return (exp(a) - 1.0);`;\nvar ELU_VEC4 = `\n var resFloat = exp(a) - vec4(1.0);\n if (a.r >= 0.0) {\n resFloat.r = a.r;\n }\n if (a.g >= 0.0) {\n resFloat.g = a.g;\n }\n if (a.b >= 0.0) {\n resFloat.b = a.b;\n }\n if (a.a >= 0.0) {\n resFloat.a = a.a;\n }\n return resFloat;\n`;\nvar EXP2 = `return exp(a);`;\nvar FLOOR2 = `return floor(a);`;\nvar IS_NAN2 = `return f32(isnan(a));`;\nvar LINEAR3 = `return a;`;\nvar LOG2 = `if (a < 0.0) { return 1.0/0.0; }\n return log(a);`;\nvar LOGICAL_NOT2 = `return f32(!(a >= 1.0));`;\nvar NEG2 = `return -a;`;\nvar LEAKYRELU2 = `if (a < 0.0) { return uniforms.alpha * a; } return a;`;\nvar LEAKYRELU_VEC4 = `\n let aLessThanZero = vec4(a < vec4(0.0));\n return (aLessThanZero * (uniforms.alpha * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;\nvar RECIPROCAL2 = `return 1.0 / a;`;\nvar RELU4 = `return select(a, 0.0, a < 0.0);`;\nvar RELU64 = \"return clamp(a, 0.0, 6.0);\";\nvar RELU6_VEC4 = \"return clamp(a, vec4(0.0, 0.0, 0.0, 0.0), vec4(6.0, 6.0, 6.0, 6.0));\";\nvar RELU_VEC4 = `\n return select(a, vec4(0.0), a < vec4(0.0));\n`;\nvar RSQRT2 = `return 1.0/sqrt(a);`;\nvar SIGMOID4 = `return 1.0 / (1.0 + exp(-1.0 * a));`;\nvar SIN2 = `return sin(a);`;\nvar SINH2 = `\n let e2x = exp(a);\n return (e2x - 1.0 / e2x) / 2.0;\n`;\nvar SQRT2 = `return sqrt(a);`;\nvar SQUARE2 = `return a * a;`;\nvar TANH2 = `\n let e2x = exp(-2.0 * abs(a));\n return sign(a) * (1.0 - e2x) / (1.0 + e2x);\n`;\nvar TO_INT2 = `return f32(i32((a)));`;\nfunction getUnaryOpString(type, useVec4) {\n switch (type) {\n case UnaryOpType.ABS:\n return ABS3;\n case UnaryOpType.COS:\n return COS2;\n case UnaryOpType.COSH:\n return COSH2;\n case UnaryOpType.CEIL:\n return CEIL2;\n case UnaryOpType.ELU:\n return useVec4 ? ELU_VEC4 : ELU5;\n case UnaryOpType.EXP:\n return EXP2;\n case UnaryOpType.EXPM1:\n return EXPM12;\n case UnaryOpType.FLOOR:\n return FLOOR2;\n case UnaryOpType.IS_NAN:\n return IS_NAN2;\n case UnaryOpType.LINEAR:\n return LINEAR3;\n case UnaryOpType.LOG:\n return LOG2;\n case UnaryOpType.LOGICAL_NOT:\n return LOGICAL_NOT2;\n case UnaryOpType.NEG:\n return NEG2;\n case UnaryOpType.LEAKYRELU:\n return useVec4 ? LEAKYRELU_VEC4 : LEAKYRELU2;\n case UnaryOpType.RECIPROCAL:\n return RECIPROCAL2;\n case UnaryOpType.RELU:\n return useVec4 ? RELU_VEC4 : RELU4;\n case UnaryOpType.RELU6:\n return useVec4 ? RELU6_VEC4 : RELU64;\n case UnaryOpType.RSQRT:\n return RSQRT2;\n case UnaryOpType.SIGMOID:\n return SIGMOID4;\n case UnaryOpType.SIN:\n return SIN2;\n case UnaryOpType.SINH:\n return SINH2;\n case UnaryOpType.SQRT:\n return SQRT2;\n case UnaryOpType.SQUARE:\n return SQUARE2;\n case UnaryOpType.TANH:\n return TANH2;\n case UnaryOpType.TO_INT:\n return TO_INT2;\n default:\n throw new Error(`BinaryType ${type} is not implemented!`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/activation_util.js\nvar typeSnippet = (component) => {\n switch (component) {\n case 1:\n return \"f32\";\n case 2:\n return \"vec2\";\n case 3:\n return \"vec3\";\n case 4:\n return \"vec4\";\n default:\n throw new Error(`${component}-component is not supported.`);\n }\n};\nfunction activationFnSnippet(activation2, hasPreluActivationWeights = false, packed = false, coordsLength = 3) {\n if (activation2 === null) {\n return \"\";\n }\n let activationOpSnippet = \"\";\n if (activation2 === \"linear\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.LINEAR);\n } else if (activation2 === \"relu\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.RELU, packed);\n } else if (activation2 === \"elu\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.ELU, packed);\n } else if (activation2 === \"relu6\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.RELU6, packed);\n } else if (activation2 === \"prelu\") {\n activationOpSnippet = getBinaryOpString(BinaryOpType.PRELU, packed);\n } else if (activation2 === \"sigmoid\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.SIGMOID, packed);\n } else if (activation2 === \"leakyrelu\") {\n activationOpSnippet = getUnaryOpString(UnaryOpType.LEAKYRELU, packed);\n } else {\n throw new Error(`Activation ${activation2} has not been implemented for the WebGPU backend.`);\n }\n const elementSize = packed ? 4 : 1;\n const dataType = typeSnippet(elementSize);\n let activationFnSnippet2 = \"\";\n if (hasPreluActivationWeights) {\n activationFnSnippet2 = `\n fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} {\n let b = getPreluActivationWeightsByOutputCoords(coords);\n ${activationOpSnippet}\n }`;\n } else {\n activationFnSnippet2 = `\n fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} {\n ${activationOpSnippet}\n }`;\n }\n return activationFnSnippet2;\n}\nfunction biasActivationSnippet(hasBias, activation2) {\n return `\n ${hasBias ? \"value = value + getBiasByOutputCoords(coords);\" : \"\"}\n ${activation2 ? \"value = activation(value, coords);\" : \"\"}\n `;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_packed_webgpu.js\nfunction matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) {\n util_exports.assert(transposeA && component === 1 || !transposeA, () => `transposeA ${transposeA} is not compatible with component size ${component}`);\n const sampleA = `\n let batch = ${batchAEqualOne ? \"0\" : \"batchIn\"};\n let batchASize = uniforms.aShape[1] * uniforms.aShape[2];\n ${transposeA ? `value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${component}];` : `value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${component}];`}\n\n `;\n let sampleB;\n if (transposeB === false) {\n sampleB = `value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${component}];`;\n } else {\n sampleB = `value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${component}];`;\n }\n return `\n fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} {\n var value = ${typeSnippet(component)}(0.0);\n let col = colIn * ${component};\n ${fitAOuter && fitInner ? sampleA : `\n ${transposeA ? `if(row < uniforms.dimAOuter && col < uniforms.dimInner)` : `if(row < uniforms.aShape[1] && col < uniforms.aShape[2])`}\n {\n ${sampleA}\n }\n `}\n return value;\n }\n\n fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} {\n let col = colIn * ${component};\n let batch = ${batchBEqualOne ? \"0\" : \"batchIn\"};\n let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];\n var value = ${typeSnippet(component)}(0.0);\n ${sampleB}\n return value;\n }\n `;\n}\nfunction matMulReadWriteFnSource(hasBias, activation2, batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) {\n return `\n ${matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter, fitBOuter, fitInner, component)}\n fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${typeSnippet(component)}) {\n let col = colIn * ${component};\n ${fitAOuter && fitBOuter ? \"\" : \"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)\"}\n {\n var value = valueIn;\n let coords = vec3(batch, row, col);\n ${biasActivationSnippet(hasBias, activation2)}\n setOutputAtCoords(coords[0], coords[1], coords[2], value);\n }\n }\n `;\n}\nvar writeDataToSubAVec4Snippet = (transpose6) => {\n if (transpose6) {\n return `\n mm_Asub[inputRow][inputCol] = mm_readA(batch,\n kStart + inputRow,\n globalRowStart / InnerElementSize + inputCol);\n `;\n } else {\n return `\n mm_Asub[inputRow][inputCol] = mm_readA(batch,\n globalRow + innerRow,\n kStart / InnerElementSize + inputCol);\n `;\n }\n};\nvar calculateResultSnippet = (transposeA, innerElementSize) => {\n if (transposeA) {\n return `\n let ACached0 = mm_Asub[k * InnerElementSize][localRow];\n let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow];\n let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow];\n ${innerElementSize === 3 ? \"\" : \"let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];\"}\n for (var i = 0; i < RowPerThread; i = i + 1) {\n acc[i] = BCached0 * ACached0[i] + acc[i];\n acc[i] = BCached1 * ACached1[i] + acc[i];\n acc[i] = BCached2 * ACached2[i] + acc[i];\n ${innerElementSize === 3 ? \"\" : \"acc[i] = BCached3 * ACached3[i] + acc[i];\"}\n }`;\n } else {\n return `\n for (var i = 0; i < RowPerThread; i = i + 1) {\n let ACached = mm_Asub[tileRow + i][k];\n acc[i] = BCached0 * ACached.x + acc[i];\n acc[i] = BCached1 * ACached.y + acc[i];\n acc[i] = BCached2 * ACached.z + acc[i];\n ${innerElementSize === 3 ? \"\" : \"acc[i] = BCached3 * ACached.w + acc[i];\"}\n }`;\n }\n};\nfunction makeMatMulPackedVec4Source(workPerThread, workGroupSize, transposeA = false, tileInner = 32, splitK = false, splitedDimInner = 32, isVectorA = false) {\n const tileAOuter = workGroupSize[1] * workPerThread[1];\n const tileBOuter = workGroupSize[0] * workPerThread[0];\n const tileAWidth = transposeA ? tileAOuter : tileInner;\n const tileAHight = transposeA ? tileInner : tileAOuter;\n const innerElementSize = tileAWidth / workGroupSize[0];\n const rowPerThreadB = tileInner / workGroupSize[1];\n util_exports.assert((transposeA && innerElementSize === 4 && workPerThread[1] === 4 || !transposeA && (innerElementSize === 3 || innerElementSize === 4)) && tileAWidth % workGroupSize[0] === 0 && tileInner % workGroupSize[1] === 0 && workPerThread[0] === 4, () => `If transposeA ${transposeA} is true, innerElementSize ${innerElementSize} and workPerThread[1] ${workPerThread[1]} must be 4.\n Otherwise, innerElementSize ${innerElementSize} must be 3 or 4.\n tileAWidth ${tileAWidth} must be divisible by workGroupSize[0]${workGroupSize[0]}. tileInner ${tileInner} must be divisible by workGroupSize[1] ${workGroupSize[1]}. ColPerThread ${workPerThread[0]} must be 4.`);\n return `\n var mm_Asub : array, ${tileAWidth / innerElementSize}>, ${tileAHight}>;\n var mm_Bsub : array, ${tileBOuter / workPerThread[0]}>, ${tileInner}>;\n\n const RowPerThread = ${workPerThread[1]};\n const ColPerThread = ${workPerThread[0]};\n const InnerElementSize = ${innerElementSize};\n const TileInner = ${tileInner};\n\n @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)\n fn _start(@builtin(local_invocation_id) LocalId : vec3,\n @builtin(global_invocation_id) GlobalId : vec3,\n @builtin(num_workgroups) NumWorkgroups: vec3,\n @builtin(workgroup_id) workgroupId: vec3) {\n localId = LocalId;\n globalId = GlobalId;\n numWorkgroups = NumWorkgroups;\n\n let localRow = i32(localId.y);\n let tileRow = ${isVectorA ? \"0\" : \"localRow * RowPerThread\"};\n let tileCol = i32(localId.x);\n\n let globalRow = ${isVectorA ? \"0\" : \"i32(globalId.y) * RowPerThread\"};\n let globalCol = i32(globalId.x);\n let batch = ${splitK ? \"0\" : \"i32(globalId.z)\"};\n let globalRowStart = i32(workgroupId.y) * ${tileAOuter};\n\n let numTiles = ${splitK ? `${Math.ceil(splitedDimInner / tileInner)}` : \"(uniforms.dimInner - 1) / TileInner + 1\"};\n var kStart = ${splitK ? `i32(globalId.z) * ${splitedDimInner}` : \"0\"};\n\n var acc: array, RowPerThread>;\n\n // Loop over shared dimension.\n let tileRowB = localRow * ${rowPerThreadB};\n for (var t = 0; t < numTiles; t = t + 1) {\n // Load one tile of A into local memory.\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n let inputRow = tileRow + innerRow;\n let inputCol = tileCol;\n ${writeDataToSubAVec4Snippet(transposeA)}\n }\n\n // Load one tile of B into local memory.\n for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) {\n let inputRow = tileRowB + innerRow;\n let inputCol = tileCol;\n mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalCol);\n }\n kStart = kStart + TileInner;\n workgroupBarrier();\n\n // Compute acc values for a single thread.\n for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {\n let BCached0 = mm_Bsub[k * InnerElementSize][tileCol];\n let BCached1 = mm_Bsub[k * InnerElementSize + 1][tileCol];\n let BCached2 = mm_Bsub[k * InnerElementSize + 2][tileCol];\n ${innerElementSize === 3 ? \"\" : \"let BCached3 = mm_Bsub[k * InnerElementSize + 3][tileCol];\"}\n\n ${calculateResultSnippet(transposeA, innerElementSize)}\n }\n\n workgroupBarrier();\n }\n\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]);\n }\n }`;\n}\nvar writeDataToSubASnippet = (transpose6) => {\n if (transpose6) {\n return `\n mm_Asub[inputRow][inputCol] = mm_readA(batch,\n kStart + inputRow,\n globalRowStart + inputCol);\n `;\n } else {\n return `\n mm_Asub[inputRow][inputCol] = mm_readA(batch,\n globalRowStart + inputRow,\n kStart + inputCol);\n `;\n }\n};\nvar readDataFromSubASnippet = (transposeA) => {\n return transposeA ? \"let ACached = mm_Asub[k][tileRow + innerRow];\" : \"let ACached = mm_Asub[tileRow + innerRow][k];\";\n};\nfunction makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false, tileInner = 32, splitK = false, splitedDimInner = 32) {\n const tileAOuter = workPerThread[1] * workGroupSize[1];\n const tileBOuter = workPerThread[0] * workGroupSize[0];\n const tileAWidth = transposeA ? tileAOuter : tileInner;\n const tileAHight = transposeA ? tileInner : tileAOuter;\n util_exports.assert(tileAHight % workGroupSize[1] === 0 && tileAWidth % workGroupSize[0] === 0 && tileInner % workGroupSize[1] === 0, () => `tileAHight ${tileAHight} must be divisible by workGroupSize[1]${workGroupSize[1]}, tileAWidth ${tileAWidth} must be divisible by workGroupSize[0]${workGroupSize[0]}, tileInner ${tileInner} must be divisible by workGroupSize[1]${workGroupSize[1]}`);\n const rowPerThreadA = tileAHight / workGroupSize[1];\n const colPerThreadA = tileAWidth / workGroupSize[0];\n const rowPerThreadB = tileInner / workGroupSize[1];\n return `\n var mm_Asub : array, ${tileAHight}>;\n var mm_Bsub : array, ${tileInner}>;\n const RowPerThread = ${workPerThread[1]};\n const ColPerThread = ${workPerThread[0]};\n const TileInner = ${tileInner};\n\n @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)\n fn _start(@builtin(local_invocation_id) LocalId : vec3,\n @builtin(global_invocation_id) GlobalId : vec3,\n @builtin(num_workgroups) NumWorkgroups: vec3,\n @builtin(workgroup_id) workgroupId: vec3) {\n localId = LocalId;\n globalId = GlobalId;\n numWorkgroups = NumWorkgroups;\n\n let tileRow = i32(localId.y) * RowPerThread;\n let tileCol = i32(localId.x) * ColPerThread;\n\n let globalRow = i32(globalId.y) * RowPerThread;\n let globalCol = i32(globalId.x) * ColPerThread;\n let batch = ${splitK ? \"0\" : \"i32(globalId.z)\"};\n let globalRowStart = i32(workgroupId.y) * ${tileAOuter};\n\n let numTiles = ${splitK ? `${Math.ceil(splitedDimInner / tileInner)}` : \"(uniforms.dimInner - 1) / TileInner + 1\"};\n var kStart = ${splitK ? `i32(globalId.z) * ${splitedDimInner}` : \"0\"};\n\n var acc : array, RowPerThread>;\n\n // Without this initialization strange values show up in acc.\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {\n acc[innerRow][innerCol] = 0.0;\n }\n }\n\n let tileRowA = i32(localId.y) * ${rowPerThreadA};\n let tileColA = i32(localId.x) * ${colPerThreadA};\n let tileRowB = i32(localId.y) * ${rowPerThreadB};\n // Loop over shared dimension.\n for (var t = 0; t < numTiles; t = t + 1) {\n // Load one tile of A into local memory.\n for (var innerRow = 0; innerRow < ${rowPerThreadA}; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ${colPerThreadA}; innerCol = innerCol + 1) {\n let inputRow = tileRowA + innerRow;\n let inputCol = tileColA + innerCol;\n ${writeDataToSubASnippet(transposeA)}\n }\n }\n\n // Load one tile of B into local memory.\n for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {\n let inputRow = tileRowB + innerRow;\n let inputCol = tileCol + innerCol;\n mm_Bsub[inputRow][inputCol] = mm_readB(batch,\n kStart + inputRow,\n globalCol + innerCol);\n }\n }\n kStart = kStart + TileInner;\n workgroupBarrier();\n\n // Compute acc values for a single thread.\n var BCached : array;\n for (var k = 0; k < TileInner; k = k + 1) {\n for (var inner = 0; inner < ColPerThread; inner = inner + 1) {\n BCached[inner] = mm_Bsub[k][tileCol + inner];\n }\n\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n ${readDataFromSubASnippet(transposeA)}\n for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {\n acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];\n }\n }\n }\n\n workgroupBarrier();\n }\n\n for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {\n for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {\n mm_write(batch, globalRow + innerRow, globalCol + innerCol,\n acc[innerRow][innerCol]);\n }\n }\n }\n `;\n}\nvar readVectorASnippet = (transpose6) => {\n return transpose6 ? `\n mm_readA(batch, colA, globalRow),\n mm_readA(batch, colA + 1, globalRow),\n mm_readA(batch, colA + 2, globalRow),\n mm_readA(batch, colA + 3, globalRow)\n ` : `\n mm_readA(batch, globalRow, colA),\n mm_readA(batch, globalRow, colA + 1),\n mm_readA(batch, globalRow, colA + 2),\n mm_readA(batch, globalRow, colA + 3)\n `;\n};\nfunction makeVectorMatrixProductSource(workGroupSize, transposeA = false) {\n util_exports.assert(workGroupSize[1] === 1 && workGroupSize[2] === 1, () => `A linear work group size is required. But got ${workGroupSize}.`);\n return `\n const TileSize = ${workGroupSize[0] * 4};\n var mm_Asub : array, ${workGroupSize[0]}>;\n\n ${getMainHeaderString()} {\n let tileCol = i32(localId.x);\n let globalCol = i32(globalId.x);\n let globalRow = i32(globalId.y);\n\n let numTiles = (uniforms.dimInner - 1) / TileSize + 1;\n let batch = i32(globalId.z);\n // Without this initialization strange values show up in acc.\n var acc = 0.0;\n\n // Loop over shared dimension.\n for (var t = 0; t < numTiles; t = t + 1) {\n // Load one tile of A into local memory.\n let colA = t * TileSize + tileCol * 4;\n mm_Asub[tileCol] = vec4(${readVectorASnippet(transposeA)});\n workgroupBarrier();\n\n // Compute acc values for a single thread.\n for (var k = 0; k < TileSize / 4; k = k + 1) {\n let rowB = t * TileSize + k * 4;\n let BCached = vec4(mm_readB(batch, rowB, globalCol),\n mm_readB(batch, rowB + 1, globalCol),\n mm_readB(batch, rowB + 2, globalCol),\n mm_readB(batch, rowB + 3, globalCol));\n\n let ACached = mm_Asub[k];\n acc = acc + dot(ACached, BCached);\n }\n\n workgroupBarrier();\n }\n\n mm_write(batch, globalRow, globalCol, acc);\n }\n `;\n}\nvar MatMulPackedProgram2 = class {\n constructor(aShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) {\n this.variableNames = [\"A\", \"B\"];\n this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [2], y: [1], z: [0] };\n const dimInner = transposeA ? aShape[1] : aShape[2];\n this.isVec4 = (dimInner % 4 === 0 && !transposeA || outputShape[1] % 4 === 0 && transposeA) && outputShape[2] % 4 === 0 && !transposeB;\n this.isVectorA = outputShape[1] === 1 && !transposeA;\n if (!this.isVec4 && this.isVectorA) {\n this.elementsPerThread = [1, 1, 1];\n this.workGroupSize = [32, 1, 1];\n } else {\n const workGroupInfo = computeWorkGroupInfoForMatMul(outputShape[1], dimInner, outputShape[2], transposeA);\n this.workGroupSize = workGroupInfo.workGroupSize;\n this.elementsPerThread = workGroupInfo.elementsPerThread;\n }\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread);\n const addBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.transposeA = transposeA;\n this.transposeB = transposeB;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivationWeights = hasPreluActivationWeights;\n this.batchAEqualOne = batchAEqualOne;\n this.batchBEqualOne = batchBEqualOne;\n [this.fitAOuter, this.fitBOuter, this.fitInner] = this.getShapeFit(outputShape[1], outputShape[2], dimInner);\n this.shaderKey = `matMulPacked_${this.elementsPerThread}_${transposeA}_${transposeB}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.isVectorA}_${this.batchAEqualOne}_${this.batchBEqualOne}`;\n }\n getShapeFit(dimAOuter, dimBOuter, dimInner) {\n const tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1];\n const tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0];\n if (!this.isVec4 && this.isVectorA) {\n this.tileInner = this.workGroupSize[0] * 4;\n } else {\n this.tileInner = tileBOuter;\n }\n const fitAOuter = dimAOuter % tileAOuter === 0;\n const fitBOuter = dimBOuter % tileBOuter === 0;\n const fitInner = dimInner % this.tileInner === 0;\n return [fitAOuter, fitBOuter, fitInner];\n }\n getUserCode() {\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivationWeights, this.isVec4)}\n ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, this.fitAOuter, this.fitBOuter, this.fitInner, this.isVec4 ? 4 : 1)}\n ${this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize, this.transposeA, this.tileInner, false, null, this.isVectorA) : this.isVectorA ? makeVectorMatrixProductSource(this.workGroupSize, this.transposeA) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, this.transposeA, this.tileInner)}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_reduce_webgpu.js\nfunction makeMatMulReduceSource() {\n return `\n var sumValues : array;\n ${getMainHeaderString()} {\n let coords = getOutputCoords();\n let batch = coords[0];\n let row = coords[1];\n let col = coords[2];\n var sum = 0.0;\n let Length = uniforms.dimInner;\n for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {\n let dataA = mm_readA(batch, row, k);\n let dataB = mm_readB(batch, k, col);\n sum = sum + dataA * dataB;\n }\n sumValues[localId.x] = sum;\n workgroupBarrier();\n\n for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;\n currentSize = currentSize / 2u) {\n if (localId.x < currentSize)\n {\n sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];\n }\n workgroupBarrier();\n }\n\n if (localId.x == 0u) {\n sum = sumValues[0] + sumValues[1];\n mm_write(batch, row, col, sum);\n }\n }\n `;\n}\nvar MatMulReduceProgram = class {\n constructor(outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) {\n this.variableNames = [\"A\", \"B\"];\n this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.workGroupSize = [256, 1, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [], y: [1, 2], z: [0] };\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n const addBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.transposeA = transposeA;\n this.transposeB = transposeB;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivationWeights = hasPreluActivationWeights;\n this.batchAEqualOne = batchAEqualOne;\n this.batchBEqualOne = batchBEqualOne;\n this.shaderKey = `matMulReduce_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`;\n }\n getUserCode() {\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)}\n ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)}\n ${makeMatMulReduceSource()}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_small_output_size_webgpu.js\nfunction makeMatMulSmallOutputSizeSource(workGroupSize) {\n const tileAOuter = workGroupSize[1];\n const tileBOuter = workGroupSize[0];\n const tileInner = tileAOuter > tileBOuter ? tileAOuter : tileBOuter;\n return `\n var mm_Asub : array, ${tileAOuter}>;\n var mm_Bsub : array, ${tileInner}>;\n\n // If the output size is small for matrix multiplication, avoid to use vec4\n // and handle some elements per thread to optimally utilize the ALU.\n // Read data from global memory to registers firstly, then store them into\n // shared memory, so it is instruction-Level parallelism for arithmetic\n // operations and others handle IO operations between barrier api, makes ALU\n // and load/store units work simultaneously, could improves the performance.\n ${getMainHeaderString()} {\n let tileRow = i32(localId.y);\n let tileCol = i32(localId.x);\n let globalRow = i32(globalId.y);\n let globalCol = i32(globalId.x);\n let batch = i32(globalId.z);\n\n // uniforms.dimInner should be greater than 0.\n let numTiles = (uniforms.dimInner - 1) / ${tileInner} + 1;\n var acc = 0.0;\n\n var globalColA = tileCol;\n var globalRowB = 0;\n var regA = mm_readA(batch, globalRow, globalColA);\n var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);\n var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);\n globalColA = globalColA + ${tileInner};\n globalRowB = globalRowB + ${tileInner};\n\n for (var t = 0; t < numTiles; t = t + 1) {\n mm_Asub[tileRow][tileCol] = regA;\n mm_Bsub[2 * tileRow][tileCol] = regB0;\n mm_Bsub[2 * tileRow + 1][tileCol] = regB1;\n\n workgroupBarrier();\n\n regA = mm_readA(batch, globalRow, globalColA);\n regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);\n regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);\n globalColA = globalColA + ${tileInner};\n globalRowB = globalRowB + ${tileInner};\n\n for (var k = 0; k < ${tileInner}; k = k + 1) {\n acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol];\n }\n workgroupBarrier();\n }\n\n mm_write(batch, globalRow, globalCol, acc);\n }\n `;\n}\nvar MatMulSmallOutputSizeProgram = class {\n constructor(aShape, bShape, outputShape, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) {\n this.variableNames = [\"A\", \"B\"];\n this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.workGroupSize = [16, 8, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [2], y: [1], z: [0] };\n this.dispatch = [\n Math.ceil(outputShape[2] / this.workGroupSize[0]),\n Math.ceil(outputShape[1] / this.workGroupSize[1]),\n outputShape[0]\n ];\n const addBias = bias != null;\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n const hasPreluActivationWeights = preluActivationWeights != null;\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.transposeA = transposeA;\n this.transposeB = transposeB;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivationWeights = hasPreluActivationWeights;\n this.batchAEqualOne = aShape[0] === 1;\n this.batchBEqualOne = bShape[0] === 1;\n this.shaderKey = `matMulSmallOutputSize_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`;\n }\n getUserCode() {\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)}\n ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)}\n ${makeMatMulSmallOutputSizeSource(this.workGroupSize)}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_splitK_webgpu.js\nvar MatMulSplitKProgram = class {\n constructor(outputShape, dimInner, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false) {\n this.variableNames = [\"A\", \"B\"];\n this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.workGroupSize = [8, 8, 1];\n this.atomic = true;\n this.isVec4 = false;\n this.splitedDimInner = 128;\n util_exports.assert(outputShape[0] === 1, () => \"MatMulSplitKProgram only supports batch = 1.\");\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [2], y: [1], z: [0, 3] };\n this.isVec4 = (transposeA && this.outputShape[1] % 4 === 0 || !transposeA && dimInner % 4 === 0) && this.outputShape[2] % 4 === 0;\n this.elementsPerThread = [4, 4, this.splitedDimInner];\n if (!this.isVec4) {\n if (this.outputShape[1] < 16) {\n this.elementsPerThread[1] = 1;\n }\n if (this.outputShape[2] < 16) {\n this.elementsPerThread[0] = 1;\n }\n }\n this.dispatch = computeDispatch(this.dispatchLayout, [\n this.outputShape[0],\n this.outputShape[1],\n this.outputShape[2],\n dimInner\n ], this.workGroupSize, this.elementsPerThread);\n this.transposeA = transposeA;\n this.transposeB = transposeB;\n this.batchAEqualOne = batchAEqualOne;\n this.batchBEqualOne = batchBEqualOne;\n this.shaderKey = `matMulSplitK_${transposeA}_${transposeB}_${batchAEqualOne}_${batchBEqualOne}_${this.elementsPerThread}_${this.isVec4}`;\n }\n getUserCode() {\n const atomicAddSnippet = (component2) => {\n return `\n for (var i = 0; i < ${component2}; i = i + 1)\n {\n var oldValue = atomicLoad(&(result[flatIndex + i]));\n var exchanged = false;\n for (; !exchanged;) {\n let newValueF32 = bitcast(oldValue) + ${component2 > 1 ? \"value[i]\" : \"value\"};\n let newValue = bitcast(newValueF32);\n let res = atomicCompareExchangeWeak(&(result[flatIndex + i]), oldValue, newValue);\n oldValue = res.old_value;\n exchanged = res.exchanged;\n }\n }\n `;\n };\n const component = this.isVec4 ? 4 : 1;\n const userCode = `\n ${matMulReadFnSource(this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, false, false, false, component)}\n fn mm_write(batch: i32, row : i32, colIn : i32, value : ${typeSnippet(component)}) {\n let col = colIn * ${component};\n if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {\n let coords = vec3(batch, row, col);\n let flatIndex = getOutputIndexFromCoords(coords);\n // The problem is that we should initialize output to zero before using.\n // Otherwise, the original value will be added to the result.\n ${atomicAddSnippet(component)}\n }\n }\n ${this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize, this.transposeA, 32, true, this.splitedDimInner) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, this.transposeA, 32, true, this.splitedDimInner)}\n `;\n return userCode;\n }\n};\nvar BiasActivationProgram = class {\n constructor(outputShape, bias = null, activation2 = null, preluActivationWeights = null) {\n this.uniforms = \"\";\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.addBias = bias != null;\n this.hasPreluActivationWeights = preluActivationWeights != null;\n this.activation = activation2;\n if (this.addBias) {\n this.variableNames.push(\"bias\");\n }\n if (this.hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.shaderKey = `biasActivation_${activation2}`;\n }\n getUserCode() {\n return `\n ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)}\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n var value = getXByOutputIndex(index);\n ${biasActivationSnippet(this.addBias, this.activation)}\n setOutputAtIndex(index, value);\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/fill_webgpu.js\nvar FillProgram2 = class {\n constructor(shape) {\n this.variableNames = [];\n this.outputShape = [];\n this.uniforms = \"value : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"fill\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n setOutputAtIndex(index, uniforms.value);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Fill.js\nfunction fill5(args) {\n const { backend: backend2, attrs } = args;\n const { shape, value } = attrs;\n let { dtype } = attrs;\n dtype = dtype || util_exports.inferDtype(value);\n if (dtype === \"string\") {\n const values = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(shape));\n values.fill(value);\n return backend2.makeTensorInfo(shape, dtype, values);\n } else {\n const program = new FillProgram2(shape);\n const uniformData = [{ type: \"float32\", data: [value] }];\n return backend2.runWebGPUProgram(program, [], dtype, uniformData);\n }\n}\nvar fillConfig4 = {\n kernelName: Fill,\n backendName: \"webgpu\",\n kernelFunc: fill5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Reshape.js\nfunction reshape6(args) {\n const { inputs, attrs } = args;\n const { x } = inputs;\n const { shape } = attrs;\n const xSize = util_exports.sizeFromShape(x.shape);\n const $shape = util_exports.inferFromImplicitShape(shape, xSize);\n const $xSize = util_exports.sizeFromShape($shape);\n util_exports.assert(xSize === $xSize, () => `The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`);\n args.backend.incRef(x.dataId);\n return { dataId: x.dataId, shape: $shape, dtype: x.dtype };\n}\nvar reshapeConfig4 = {\n kernelName: Reshape,\n backendName: \"webgpu\",\n kernelFunc: reshape6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchMatMul_impl.js\nfunction batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const aRank = a.shape.length;\n const bRank = b.shape.length;\n const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1];\n const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2];\n const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2];\n const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1];\n const outerDimsA = a.shape.slice(0, -2);\n const outerDimsB = b.shape.slice(0, -2);\n const batchDimA = util_exports.sizeFromShape(outerDimsA);\n const batchDimB = util_exports.sizeFromShape(outerDimsB);\n const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2));\n const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]);\n util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);\n const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA];\n const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB];\n const a3d = reshape6({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } });\n const b3d = reshape6({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } });\n const intermediates = [a3d, b3d];\n const batchDim = Math.max(batchDimA, batchDimB);\n const batchAEqualOne = batchDimA === 1;\n const batchBEqualOne = batchDimB === 1;\n const inputs = [a3d, b3d];\n const dimensions = [\n { type: \"int32\", data: [outerShapeA] },\n { type: \"int32\", data: [outerShapeB] },\n { type: \"int32\", data: [innerShapeA] }\n ];\n let program;\n let out;\n const outputShape = [batchDim, outerShapeA, outerShapeB];\n let matmulProgramType = env().get(\"WEBGPU_MATMUL_PROGRAM_TYPE\");\n if (matmulProgramType < 0) {\n if (outerShapeA * outerShapeB <= 128) {\n matmulProgramType = MatMulProgramType.MatMulReduceProgram;\n } else if (batchDim === 1 && outerShapeA <= 128 && outerShapeB <= 48 && innerShapeB >= 2e3) {\n matmulProgramType = MatMulProgramType.MatMulSplitKProgram;\n } else if (outerShapeA <= 16 && (outerShapeB <= 512 || innerShapeB >= 2 * outerShapeB) || outerShapeB <= 16 && (outerShapeA <= 512 || innerShapeA >= 2 * outerShapeA)) {\n matmulProgramType = MatMulProgramType.MatMulSmallOutputSizeProgram;\n } else {\n matmulProgramType = MatMulProgramType.MatMulPackedProgram;\n }\n }\n switch (matmulProgramType) {\n case MatMulProgramType.MatMulReduceProgram:\n program = new MatMulReduceProgram(outputShape, batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights);\n break;\n case MatMulProgramType.MatMulSplitKProgram: {\n out = fill5({ backend: backend2, attrs: { shape: outputShape, value: 0, dtype: a.dtype } });\n program = new MatMulSplitKProgram(outputShape, innerShapeB, batchAEqualOne, batchBEqualOne, transposeA, transposeB);\n if (bias || activation2) {\n out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out);\n const biasActivationProgram = new BiasActivationProgram(out.shape, bias, activation2, preluActivationWeights);\n let uniformData = null;\n const activationInputs = [out];\n if (bias) {\n activationInputs.push(bias);\n }\n if (preluActivationWeights) {\n activationInputs.push(preluActivationWeights);\n }\n if (activation2 === \"leakyrelu\") {\n uniformData = [{ type: \"float32\", data: [leakyreluAlpha] }];\n biasActivationProgram.uniforms += \" alpha : f32,\";\n }\n const outActivated = backend2.runWebGPUProgram(biasActivationProgram, activationInputs, out.dtype, uniformData);\n intermediates.push(out);\n const outReshaped2 = reshape6({ inputs: { x: outActivated }, backend: backend2, attrs: { shape: outShape } });\n intermediates.push(outActivated);\n for (const i2 of intermediates) {\n backend2.disposeData(i2.dataId);\n }\n return outReshaped2;\n }\n break;\n }\n case MatMulProgramType.MatMulSmallOutputSizeProgram:\n program = new MatMulSmallOutputSizeProgram(a3dShape, b3dShape, outputShape, transposeA, transposeB, bias, activation2, preluActivationWeights);\n break;\n case MatMulProgramType.MatMulPackedProgram:\n program = new MatMulPackedProgram2(a3dShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights);\n break;\n default:\n throw new Error(`Unsupported MatMulProgramType ${matmulProgramType}.`);\n }\n if (bias) {\n inputs.push(bias);\n }\n if (preluActivationWeights) {\n inputs.push(preluActivationWeights);\n }\n if (activation2 === \"leakyrelu\") {\n dimensions.push({ type: \"float32\", data: [leakyreluAlpha] });\n program.uniforms += \" alpha : f32,\";\n }\n out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out);\n const outReshaped = reshape6({ inputs: { x: out }, backend: backend2, attrs: { shape: outShape } });\n intermediates.push(out);\n for (const i2 of intermediates) {\n backend2.disposeData(i2.dataId);\n }\n return outReshaped;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/_FusedMatMul.js\nfunction _fusedMatMul3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b, bias, preluActivationWeights } = inputs;\n const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs;\n return batchMatMulImpl2({\n a,\n b,\n transposeA,\n transposeB,\n backend: backend2,\n bias,\n preluActivationWeights,\n leakyreluAlpha,\n activation: activation2\n });\n}\nvar _fusedMatMulConfig4 = {\n kernelName: _FusedMatMul,\n backendName: \"webgpu\",\n kernelFunc: _fusedMatMul3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_complex_webgpu.js\nvar BinaryOpComplexProgram2 = class {\n constructor(op2, aShape, bShape) {\n this.variableNames = [\"AReal\", \"AImag\", \"BReal\", \"BImag\"];\n this.workGroupSize = [128, 1, 1];\n this.size = true;\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `binaryOpComplex_${op2}`;\n this.op = op2;\n }\n getUserCode() {\n const opStr = getBinaryOpString(this.op, false);\n const userCode = `\n fn binaryOpComplex(\n areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {\n ${opStr}\n }\n\n ${getMainHeaderString(\"index\")} {\n if(index < uniforms.size) {\n let areal = getARealByOutputIndex(index);\n let aimag = getAImagByOutputIndex(index);\n let breal = getBRealByOutputIndex(index);\n let bimag = getBImagByOutputIndex(index);\n setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_webgpu.js\nvar BinaryOpProgram2 = class {\n constructor(op2, aShape, bShape) {\n this.size = true;\n this.variableNames = [\"A\", \"B\"];\n this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.op = op2;\n this.useSharedMemoryWithA = aShape.length === 1 && bShape.length > 1 && aShape[0] < 1024;\n this.useSharedMemoryWithB = bShape.length === 1 && aShape.length > 1 && bShape[0] < 1024;\n if (this.useSharedMemoryWithA || this.useSharedMemoryWithB) {\n this.isVec4 = false;\n this.lastDimensionSize = this.useSharedMemoryWithB ? bShape[0] : aShape[0];\n this.shaderKey = `binary_${this.type}_${op2}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`;\n this.type = \"shared\";\n this.workGroupSize = [256, 1, 1];\n if (this.lastDimensionSize < 256) {\n this.workPerThread = 1;\n } else if (this.lastDimensionSize < 512) {\n this.workPerThread = 2;\n } else {\n this.workPerThread = 4;\n }\n } else {\n if (util_exports.arraysEqual(aShape, bShape) && util_exports.sizeFromShape(aShape) % 4 === 0) {\n this.isVec4 = true;\n this.type = \"vec4\";\n this.workPerThread = 4;\n } else {\n this.isVec4 = false;\n this.type = \"plain\";\n this.workPerThread = 1;\n }\n this.shaderKey = `binary_${this.type}_${op2}`;\n this.workGroupSize = [128, 1, 1];\n }\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n }\n getUserCode() {\n let userCode;\n if (this.type === \"shared\") {\n const sharedIndexSnippet = this.lastDimensionSize > 1 ? `coords[${this.outputShape.length - 1}]` : \"0\";\n const accessDataSnippet = this.useSharedMemoryWithB ? `let a = getAByOutputCoords(coords);\n let b = sharedBuf[${sharedIndexSnippet}];` : `let a = sharedBuf[${sharedIndexSnippet}];\n let b = getBByOutputCoords(coords);`;\n const opStr = getBinaryOpString(this.op, this.isVec4);\n userCode = `\n fn binaryOperation(a : f32, b : f32) -> f32 {\n ${opStr}\n }\n var sharedBuf : array;\n ${getMainHeaderString(\"index\")} {\n // Fill in the shared memory buffer. Here we need a loop to make sure\n // that all data in A|B are uploaded when |sharedMemorySize| is larger\n // than work group size.\n for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {\n sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB ? \"B\" : \"A\"}[localIndex]);\n }\n workgroupBarrier();\n\n for(var i = 0; i < ${this.workPerThread}; i = i + 1) {\n let flatIndex = index * ${this.workPerThread} + i;\n if(flatIndex < uniforms.size) {\n let coords = getCoordsFromIndex(flatIndex);\n\n ${accessDataSnippet}\n setOutputAtIndex(flatIndex, binaryOperation(a, b));\n }\n }\n }\n `;\n } else {\n const dType = this.type === \"vec4\" ? \"vec4\" : \"f32\";\n const opStr = getBinaryOpString(this.op, this.isVec4);\n userCode = `\n fn binaryOperation(a : ${dType}, b : ${dType}) -> ${dType} {\n ${opStr}\n }\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let a = getAByOutputIndex(index);\n let b = getBByOutputIndex(index);\n setOutputAtIndex(index, binaryOperation(a, b));\n }\n }\n `;\n }\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Identity.js\nfunction identity5(args) {\n const { inputs } = args;\n const { x } = inputs;\n args.backend.incRef(x.dataId);\n return { dataId: x.dataId, shape: x.shape, dtype: x.dtype };\n}\nvar identityConfig4 = {\n kernelName: Identity,\n backendName: \"webgpu\",\n kernelFunc: identity5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Complex.js\nfunction complex4(args) {\n const { inputs, backend: backend2 } = args;\n const { real: real5, imag: imag5 } = inputs;\n const complexInfo = backend2.makeTensorInfo(real5.shape, \"complex64\");\n const complex5 = backend2.tensorMap.get(complexInfo.dataId);\n const realTensorInfo = identity5({ inputs: { x: real5 }, backend: backend2 });\n const imagTensorInfo = identity5({ inputs: { x: imag5 }, backend: backend2 });\n complex5.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo };\n return complexInfo;\n}\nvar complexConfig3 = {\n kernelName: Complex,\n backendName: \"webgpu\",\n kernelFunc: complex4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/unary_op_webgpu.js\nvar UnaryOpProgram2 = class {\n constructor(outputShape, op2) {\n this.variableNames = [\"A\"];\n this.size = true;\n const workGroupSizeX = 128;\n this.workGroupSize = [workGroupSizeX, 1, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.op = op2;\n this.shaderKey = `unary_${op2}`;\n }\n getUserCode() {\n return `\n fn unaryOperation(a : f32) -> f32 {\n ${getUnaryOpString(this.op, false)}\n }\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let a = getAByOutputIndex(index);\n setOutputAtIndex(index, unaryOperation(a));\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/kernel_funcs_utils.js\nfunction unaryKernelFunc3({ opType, cpuKernelImpl, dtype }) {\n return ({ inputs, backend: backend2 }) => {\n const { x } = inputs;\n const webgpuBackend = backend2;\n const $dtype = dtype || x.dtype;\n if (webgpuBackend.shouldExecuteOnCPU([x]) && cpuKernelImpl != null) {\n const xData = webgpuBackend.tensorMap.get(x.dataId);\n const outValues = cpuKernelImpl(xData.values, $dtype);\n return webgpuBackend.makeTensorInfo(x.shape, $dtype, outValues);\n }\n const program = new UnaryOpProgram2(x.shape, opType);\n return webgpuBackend.runWebGPUProgram(program, [x], $dtype);\n };\n}\nfunction binaryKernelFunc3({ opType, cpuKernelImpl, supportsComplex = false, dtype }) {\n return ({ inputs, backend: backend2 }) => {\n const { a, b } = inputs;\n const webgpuBackend = backend2;\n if (supportsComplex && a.dtype === \"complex64\") {\n const aData = webgpuBackend.tensorMap.get(a.dataId);\n const bData = webgpuBackend.tensorMap.get(b.dataId);\n let real5, imag5;\n if (opType !== BinaryOpType.MUL) {\n [real5, imag5] = [\n [aData.complexTensorInfos.real, bData.complexTensorInfos.real],\n [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag]\n ].map((complexParts) => {\n const [aPart, bPart] = complexParts;\n const aHandle = {\n dataId: aPart.dataId,\n dtype: aPart.dtype,\n shape: a.shape\n };\n const bHandle = {\n dataId: bPart.dataId,\n dtype: bPart.dtype,\n shape: b.shape\n };\n const program2 = new BinaryOpProgram2(opType, a.shape, b.shape);\n return webgpuBackend.runWebGPUProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype));\n });\n } else {\n const realProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_REAL, a.shape, b.shape);\n const imagProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_IMAG, a.shape, b.shape);\n const inputs2 = [\n {\n dataId: aData.complexTensorInfos.real.dataId,\n dtype: aData.complexTensorInfos.real.dtype,\n shape: a.shape\n },\n {\n dataId: aData.complexTensorInfos.imag.dataId,\n dtype: aData.complexTensorInfos.imag.dtype,\n shape: a.shape\n },\n {\n dataId: bData.complexTensorInfos.real.dataId,\n dtype: bData.complexTensorInfos.real.dtype,\n shape: b.shape\n },\n {\n dataId: bData.complexTensorInfos.imag.dataId,\n dtype: bData.complexTensorInfos.imag.dtype,\n shape: b.shape\n }\n ];\n real5 = webgpuBackend.runWebGPUProgram(realProgram, inputs2, \"float32\");\n imag5 = webgpuBackend.runWebGPUProgram(imagProgram, inputs2, \"float32\");\n }\n const complexOutput = complex4({ inputs: { real: real5, imag: imag5 }, backend: webgpuBackend });\n webgpuBackend.disposeData(real5.dataId);\n webgpuBackend.disposeData(imag5.dataId);\n return complexOutput;\n }\n const $dtype = dtype || upcastType(a.dtype, b.dtype);\n if ((a.dtype === \"string\" || b.dtype === \"string\" || webgpuBackend.shouldExecuteOnCPU([a, b])) && cpuKernelImpl != null) {\n const aData = webgpuBackend.tensorMap.get(a.dataId).values;\n const bData = webgpuBackend.tensorMap.get(b.dataId).values;\n const decodedAVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(aData) : aData;\n const decodedBVals = a.dtype === \"string\" ? backend_util_exports.fromUint8ToStringArray(bData) : bData;\n const [outValues, outShape] = cpuKernelImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype);\n return webgpuBackend.makeTensorInfo(outShape, $dtype, outValues);\n }\n const program = new BinaryOpProgram2(opType, a.shape, b.shape);\n return webgpuBackend.runWebGPUProgram(program, [a, b], $dtype);\n };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/shared.js\nvar { addImpl: addImplCPU2, castImpl: castImplCPU2, ceilImpl: ceilImplCPU2, concatImpl: concatImplCPU2, equalImpl: equalImplCPU2, expImpl: expImplCPU2, expm1Impl: expm1ImplCPU2, floorImpl: floorImplCPU2, gatherNdImpl: gatherNdImplCPU2, gatherV2Impl: gatherV2ImplCPU2, greaterEqualImpl: greaterEqualImplCPU2, greaterImpl: greaterImplCPU2, lessEqualImpl: lessEqualImplCPU2, lessImpl: lessImplCPU2, logImpl: logImplCPU2, maxImpl: maxImplCPU2, maximumImpl: maximumImplCPU2, minimumImpl: minimumImplCPU2, multiplyImpl: multiplyImplCPU2, negImpl: negImplCPU2, notEqualImpl: notEqualImplCPU2, prodImpl: prodImplCPU2, rangeImpl: rangeImplCPU2, rsqrtImpl: rsqrtImplCPU2, scatterImpl: scatterImplCPU2, simpleAbsImpl: simpleAbsImplCPU2, sliceImpl: sliceImplCPU2, stridedSliceImpl: stridedSliceImplCPU2, stringNGramsImpl: stringNGramsImplCPU2, subImpl: subImplCPU2, tileImpl: tileImplCPU2, topKImpl: topKImplCPU2, transposeImpl: transposeImplCPU2, uniqueImpl: uniqueImplCPU2 } = shared_exports;\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Abs.js\nvar abs4 = unaryKernelFunc3({ opType: UnaryOpType.ABS, cpuKernelImpl: simpleAbsImplCPU2 });\nvar absConfig4 = {\n kernelName: Abs,\n backendName: \"webgpu\",\n kernelFunc: abs4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Add.js\nvar addKernelFunc2 = binaryKernelFunc3({ opType: BinaryOpType.ADD, cpuKernelImpl: addImplCPU2, supportsComplex: true });\nvar addConfig4 = {\n kernelName: Add,\n backendName: \"webgpu\",\n kernelFunc: addKernelFunc2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/addn_packed_webgpu.js\nvar AddNPackedProgram2 = class {\n constructor(shapes) {\n this.workPerThread = 4;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = shapes[0];\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.shaderKey = \"addN\";\n }\n getUserCode() {\n const snippets = [];\n this.variableNames.forEach((variable2) => {\n snippets.push(`let v${variable2} = get${variable2}ByOutputCoords(coords);`);\n });\n const operation = this.variableNames.map((variable2) => {\n return `v${variable2}`;\n }).join(\" + \");\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n for (var i = 0; i < ${this.workPerThread}; i = i + 1) {\n let flatIndex = index * ${this.workPerThread} + i;\n if (flatIndex < uniforms.size) {\n let coords = getCoordsFromIndex(flatIndex);\n ${snippets.join(\"\\n \")}\n setOutputAtIndex(flatIndex, ${operation});\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/AddN.js\nfunction addN4(args) {\n const { inputs, backend: backend2 } = args;\n const tensors = inputs;\n if (tensors.length === 1) {\n return identity5({ inputs: { x: tensors[0] }, backend: backend2 });\n }\n const dtype = tensors.map((t2) => t2.dtype).reduce((d1, d2) => upcastType(d1, d2));\n const shapes = tensors.map((t2) => t2.shape);\n const program = new AddNPackedProgram2(shapes);\n return backend2.runWebGPUProgram(program, tensors, dtype);\n}\nvar addNConfig4 = {\n kernelName: AddN,\n backendName: \"webgpu\",\n kernelFunc: addN4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/argminmax_webgpu.js\nvar ArgMinMaxProgram2 = class {\n constructor(inputShape, axis, reduceType) {\n this.workGroupSize = [64, 1, 1];\n this.variableNames = [\"x\"];\n this.uniforms = \"infinityValue : f32,\";\n this.size = true;\n const axes = [axis];\n this.op = reduceType === \"min\" ? \"<\" : \">\";\n const [outputShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(inputShape, axes);\n this.outputShape = outputShape.length === 0 ? [1] : outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n if (util_exports.sizeFromShape(reduceShape) < 32 || util_exports.sizeFromShape(outputShape) > 1e3) {\n this.type = \"plain\";\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n } else {\n this.type = \"shared\";\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]);\n }\n this.inputShape = inputShape;\n this.shaderKey = `argMinMax_${this.op}_${this.type}`;\n }\n getUserCode() {\n const getInputShapeLastDim = () => {\n if (this.inputShape.length === 1) {\n return \"uniforms.xShape\";\n } else {\n return `uniforms.xShape.${getCoordsXYZ(this.inputShape.length - 1)}`;\n }\n };\n const splitOutputCoords = () => {\n let snippet = \"\";\n if (this.outputShape.length === 1) {\n if (this.inputShape.length !== 1) {\n snippet += \"outputCoords,\";\n }\n } else {\n for (let i2 = 0; i2 < this.outputShape.length; i2++) {\n snippet += `outputCoords.${getCoordsXYZ(i2)},`;\n }\n }\n return snippet;\n };\n if (this.type === \"shared\") {\n const sharedMemorySnippet = `\n var xBestIndices : array;\n var xBestValues : array;\n `;\n const userCode = `\n fn DIV_CEIL(a : u32, b : u32) -> u32 {\n return ((a - 1u) / b + 1u);\n }\n\n ${sharedMemorySnippet}\n\n ${getMainHeaderString(\"index\")} {\n let outputIndex = index / i32(workGroupSizeX);\n let reduceLength = ${getInputShapeLastDim()};\n\n var bestIndex = i32(localId.x);\n var bestValue = uniforms.infinityValue;\n let outputCoords = getCoordsFromIndex(outputIndex);\n for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;\n k = k + i32(workGroupSizeX)) {\n let candidate = getX(${splitOutputCoords()} k);\n if (!isnan(candidate) && candidate ${this.op} bestValue) {\n bestValue = candidate;\n bestIndex = k;\n }\n }\n xBestValues[localId.x] = bestValue;\n xBestIndices[localId.x] = bestIndex;\n workgroupBarrier();\n\n var reduceSize = min(u32(reduceLength), workGroupSizeX);\n for (var currentSize = reduceSize / 2u; reduceSize > 1u;\n currentSize = reduceSize / 2u) {\n let interval = DIV_CEIL(reduceSize, 2u);\n if (localId.x < currentSize) {\n let candidate = xBestValues[localId.x + interval];\n if (candidate ${this.op} bestValue) {\n bestValue = candidate;\n xBestValues[localId.x] = bestValue;\n xBestIndices[localId.x] = xBestIndices[localId.x + interval];\n }\n }\n reduceSize = interval;\n workgroupBarrier();\n }\n\n if (localId.x == 0u && outputIndex < uniforms.size) {\n setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);\n }\n }\n `;\n return userCode;\n } else {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let outputCoords = getCoordsFromIndex(index);\n var bestIndex = 0;\n var bestValue = getX(${splitOutputCoords()} 0);\n let reduceLength = ${getInputShapeLastDim()};\n for (var i = 1; i < reduceLength; i++) {\n let candidate = getX(${splitOutputCoords()} i);\n if (candidate ${this.op} bestValue) {\n bestValue = candidate;\n bestIndex = i;\n }\n }\n setOutputAtIndexI32(index, bestIndex);\n }\n }\n `;\n return userCode;\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transpose_shared_webgpu.js\nvar TransposeSharedProgram = class {\n constructor(aShape, newDim) {\n this.variableNames = [\"A\"];\n this.workGroupSize = [16, 16, 1];\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[newDim[i2]];\n }\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [0], y: [1] };\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [1, 1, 1]);\n this.shaderKey = \"transposeShared\";\n }\n getUserCode() {\n const userCode = `\n const TILE_DIM = ${this.workGroupSize[0]};\n var tile : array, ${this.workGroupSize[0]}>;\n ${getWorkGroupSizeString()}\n fn _start(@builtin(local_invocation_id) localId : vec3,\n @builtin(workgroup_id) workgroupId : vec3) {\n var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);\n var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);\n let width = uniforms.outShape[0];\n let height = uniforms.outShape[1];\n if (x < width && y < height) {\n tile[localId.y][localId.x] = A[y * width + x];\n }\n workgroupBarrier();\n\n x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);\n y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);\n if (x < height && y < width) {\n setOutputAtIndex((y * height + x), tile[localId.x]\n [localId.y]);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transpose_webgpu.js\nvar TransposeProgram2 = class {\n constructor(aShape, newDim) {\n this.variableNames = [\"A\"];\n this.workPerThread = 4;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[newDim[i2]];\n }\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.newDim = newDim;\n this.shaderKey = `transpose_${newDim}`;\n }\n getUserCode() {\n const dtype = getCoordsDataType2(this.outputShape.length);\n const switched = getSwitchedCoords2(this.newDim);\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n for(var i = 0; i < ${this.workPerThread}; i = i + 1) {\n let flatIndex = index * ${this.workPerThread} + i;\n if(flatIndex < uniforms.size) {\n let resRC = getCoordsFromIndex(flatIndex);\n setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(\n ${dtype}(${switched}), uniforms.aShape)]);\n }\n }\n }\n `;\n return userCode;\n }\n};\nfunction getSwitchedCoords2(newDim) {\n const rank = newDim.length;\n if (rank > 6) {\n throw Error(`Transpose for rank ${rank} is not yet supported`);\n }\n const switchedCoords = new Array(rank);\n for (let i2 = 0; i2 < newDim.length; i2++) {\n switchedCoords[newDim[i2]] = `resRC.${getCoordsXYZ(i2)}`;\n }\n return switchedCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Transpose.js\nfunction transpose5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { perm } = attrs;\n const webgpuBackend = backend2;\n const xRank = x.shape.length;\n const newShape = new Array(xRank);\n for (let i2 = 0; i2 < newShape.length; i2++) {\n newShape[i2] = x.shape[perm[i2]];\n }\n if (backend2.shouldExecuteOnCPU([x])) {\n const xData = webgpuBackend.tensorMap.get(x.dataId);\n const values = xData.values;\n const outValues = transposeImplCPU2(values, x.shape, x.dtype, perm, newShape);\n return backend2.makeTensorInfo(newShape, x.dtype, outValues);\n }\n if (x.shape.length === 2 && util_exports.arraysEqual(perm, [1, 0])) {\n const program2 = new TransposeSharedProgram(x.shape, perm);\n return webgpuBackend.runWebGPUProgram(program2, [x], x.dtype);\n }\n const program = new TransposeProgram2(x.shape, perm);\n return webgpuBackend.runWebGPUProgram(program, [x], x.dtype);\n}\nvar transposeConfig4 = {\n kernelName: Transpose,\n backendName: \"webgpu\",\n kernelFunc: transpose5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ArgMax.js\nfunction argMax4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose5({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"argMax\", [axes[0]], $x.shape.length);\n const program = new ArgMinMaxProgram2($x.shape, axes[0], \"max\");\n const uniformData = [{ type: \"float32\", data: [Number.NEGATIVE_INFINITY] }];\n const out = backend2.runWebGPUProgram(program, [$x], \"int32\", uniformData);\n intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId));\n return out;\n}\nvar argMaxConfig4 = {\n kernelName: ArgMax,\n backendName: \"webgpu\",\n kernelFunc: argMax4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ArgMin.js\nfunction argMin4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis } = attrs;\n let axes = util_exports.parseAxisParam(axis, x.shape);\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length);\n let $x = x;\n const intermediateTensorInfos = [];\n if (permutedAxes != null) {\n $x = transpose5({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } });\n intermediateTensorInfos.push($x);\n axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length);\n }\n backend_util_exports.assertAxesAreInnerMostDims(\"argMin\", [axes[0]], $x.shape.length);\n const program = new ArgMinMaxProgram2($x.shape, axes[0], \"min\");\n const uniformData = [{ type: \"float32\", data: [Number.POSITIVE_INFINITY] }];\n const out = backend2.runWebGPUProgram(program, [$x], \"int32\", uniformData);\n intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId));\n return out;\n}\nvar argMinConfig3 = {\n kernelName: ArgMin,\n backendName: \"webgpu\",\n kernelFunc: argMin4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Atan2.js\nvar atan24 = binaryKernelFunc3({ opType: BinaryOpType.ATAN2 });\nvar atan2Config3 = {\n kernelName: Atan2,\n backendName: \"webgpu\",\n kernelFunc: atan24\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pool2d_webgpu.js\nvar Pool2DProgram2 = class {\n constructor(convInfo, poolType) {\n this.variableNames = [\"x\"];\n this.uniforms = `stride : vec2, pad : vec2, dilation : vec2, convDims : vec2, filterDims : vec2,`;\n this.workGroupSize = [128, 1, 1];\n this.size = true;\n this.outputShape = convInfo.outShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `pool2D_${poolType}`;\n this.poolType = poolType;\n }\n getUserCode() {\n let updateSnippet = `resultValue = max(value, resultValue);`;\n if (this.poolType === \"avg\") {\n updateSnippet = `resultValue = resultValue + value; count = count + 1.0;`;\n }\n let returnValue = `resultValue`;\n if (this.poolType === \"avg\") {\n returnValue = `resultValue / count`;\n }\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let batch = coords[0];\n let xRCCorner = vec2(coords.yz) * uniforms.stride - uniforms.pad;\n let xRCorner = xRCCorner.x;\n let xCCorner = xRCCorner.y;\n\n var resultValue = ${this.poolType === \"avg\" ? \"0.0\" : \"-1.0 / pow(10.0, -20.0)\"};\n var count = 0.0;\n\n for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {\n let xR = xRCorner + wR;\n\n if (xR < 0 || xR >= uniforms.convDims.x) {\n continue;\n }\n\n for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {\n let xC = xCCorner + wC;\n if (xC < 0 || xC >= uniforms.convDims.y) {\n continue;\n }\n\n let value = getX(batch, xR, xC, coords[3]);\n ${updateSnippet}\n }\n }\n\n setOutputAtIndex(index, ${returnValue});\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pool_filtersizeone_webgpu.js\nvar PoolWithFilterSizeEqualsOneProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\"];\n this.uniforms = `stride : vec2,`;\n this.workGroupSize = [256, 1, 1];\n this.size = true;\n this.outputShape = convInfo.outShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"poolWithFilterSizeEqualsOne\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let batch = coords[0];\n let d = coords[3];\n\n let xRCCorner = coords.yz * uniforms.stride;\n let xRCorner = xRCCorner.x;\n let xCCorner = xRCCorner.y;\n\n let value = getX(batch, xRCorner, xCCorner, d);\n setOutputAtIndex(index, value);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/reduce_webgpu.js\nvar ReduceProgram2 = class {\n constructor(reduceInfo, reduceType) {\n this.workGroupSize = [64, 1, 1];\n this.variableNames = [\"x\"];\n this.uniforms = \"reduceSize : i32,\";\n this.size = true;\n this.inputShape = [reduceInfo.batchSize, reduceInfo.inSize];\n const [outputShape] = backend_util_exports.computeOutAndReduceShapes(this.inputShape, [1]);\n this.outputShape = outputShape.length === 0 ? [1] : outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]);\n this.reduceType = reduceType;\n this.shaderKey = `reduce_${reduceType}`;\n }\n getUserCode() {\n let reduceOp = ``;\n let initValue = \"0.0\";\n if (this.reduceType === \"min\" || this.reduceType === \"max\") {\n reduceOp = `\n if (isnan(candidate)) {\n bestValue = uniforms.NAN;\n } else if (!isnan(bestValue) && candidate ${this.reduceType === \"min\" ? \"<\" : \">\"} bestValue)\n { bestValue = candidate; }`;\n initValue = \"f32(x[offset])\";\n } else if (this.reduceType === \"sum\" || this.reduceType === \"mean\") {\n reduceOp = \" bestValue = bestValue + candidate; \";\n } else if (this.reduceType === \"prod\") {\n reduceOp = \" bestValue = bestValue * candidate; \";\n initValue = \"1.0\";\n }\n const outputSnippet = this.reduceType === \"mean\" ? `setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));` : `setOutputAtIndex(outputIndex, bestValue);`;\n const sharedMemorySnippet = `\n var xBestValues : array;\n `;\n const userCode = `\n fn DIV_CEIL(a : u32, b : u32) -> u32 {\n return ((a - 1u) / b + 1u);\n }\n\n ${sharedMemorySnippet}\n fn getOffset(outputIndex : i32) -> i32 {\n let outputCoords = getCoordsFromIndex(outputIndex);\n let offset = ${this.outputShape.length === 1 ? \"outputCoords\" : \"outputCoords[0]\"} * uniforms.reduceSize;\n return offset;\n }\n ${getMainHeaderString(\"index\")} {\n let outputIndex = index / i32(workGroupSizeX);\n let offset = getOffset(outputIndex);\n var bestValue = ${initValue};\n let Length = uniforms.reduceSize;\n let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);\n for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;\n k = k + i32(workGroupSizeX)) {\n let candidate = f32(x[offset + k]);\n ${reduceOp}\n }\n xBestValues[localId.x] = bestValue;\n workgroupBarrier();\n\n var reduceSize = min(u32(Length), workGroupSizeX);\n for (var currentSize = reduceSize / 2u; reduceSize > 1u;\n currentSize = reduceSize / 2u) {\n let interval = DIV_CEIL(reduceSize, 2u);\n if (localId.x < currentSize) {\n let candidate = xBestValues[localId.x + interval];\n ${reduceOp}\n xBestValues[localId.x] = bestValue;\n }\n reduceSize = interval;\n workgroupBarrier();\n }\n\n if (localId.x == 0u && outputIndex < uniforms.size) {\n ${outputSnippet}\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/reduce.js\nfunction reduce2(x, axis, keepDims, reduceType, backend2) {\n const xRank = x.shape.length;\n const toDispose = [];\n const origAxes = util_exports.parseAxisParam(axis, x.shape);\n let axes = origAxes;\n const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank);\n let input2 = x;\n if (permutedAxes != null) {\n input2 = transpose5({ inputs: { x }, attrs: { perm: permutedAxes }, backend: backend2 });\n axes = backend_util_exports.getInnerMostAxes(axes.length, xRank);\n toDispose.push(input2);\n }\n backend_util_exports.assertAxesAreInnerMostDims(reduceType, axes, xRank);\n const [reduceOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes);\n let resOutShape = reduceOutShape;\n if (keepDims) {\n resOutShape = backend_util_exports.expandShapeToKeepDim(reduceOutShape, origAxes);\n }\n let res;\n if ((reduceType === \"max\" || reduceType === \"prod\") && backend2.shouldExecuteOnCPU([input2])) {\n const xVals = backend2.tensorMap.get(input2.dataId).values;\n switch (reduceType) {\n case \"max\":\n const outValues = maxImplCPU2(xVals, util_exports.sizeFromShape(reduceShape), resOutShape, x.dtype);\n res = backend2.makeTensorInfo(resOutShape, x.dtype, outValues);\n break;\n case \"prod\":\n const { outVals, outShape, outDtype } = prodImplCPU2(input2.shape, input2.dtype, xVals, axes);\n res = backend2.makeTensorInfo(outShape, outDtype, outVals);\n break;\n default:\n throw new Error(`${reduceType} CPU implementation is not yet supported.`);\n }\n } else {\n const inSize = util_exports.sizeFromShape(reduceShape);\n const xSize = util_exports.sizeFromShape(input2.shape);\n const batchSize = xSize / inSize;\n const reduceInfo = { windowSize: inSize, inSize, batchSize, outSize: 1 };\n const dtype = reduceType === \"mean\" ? \"float32\" : sumOutType(x.dtype);\n const uniformData = [\n { type: \"int32\", data: [inSize] }\n ];\n const program = new ReduceProgram2(reduceInfo, reduceType);\n const reduced = backend2.runWebGPUProgram(program, [input2], dtype, uniformData);\n toDispose.push(reduced);\n res = reshape6({ inputs: { x: reduced }, attrs: { shape: resOutShape }, backend: backend2 });\n }\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return res;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Max.js\nfunction max6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { reductionIndices, keepDims } = attrs;\n return reduce2(x, reductionIndices, keepDims, \"max\", backend2);\n}\nvar maxConfig4 = {\n kernelName: Max,\n backendName: \"webgpu\",\n kernelFunc: max6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Mean.js\nfunction mean4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { keepDims, axis } = attrs;\n return reduce2(x, axis, keepDims, \"mean\", backend2);\n}\nvar meanConfig4 = {\n kernelName: Mean,\n backendName: \"webgpu\",\n kernelFunc: mean4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pool_impl.js\nfunction poolImpl(x, convInfo, poolType, backend2) {\n if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) {\n return identity5({ inputs: { x }, backend: backend2 });\n }\n if (convInfo.filterWidth === convInfo.inWidth && convInfo.filterHeight === convInfo.inHeight && convInfo.batchSize === 1 && convInfo.padInfo.type === \"VALID\") {\n const length = x.shape.length;\n const reshapeX = reshape6({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: [\n x.shape[length - 3] * x.shape[length - 2],\n x.shape[length - 1]\n ]\n }\n });\n let reduceX;\n if (poolType === \"avg\") {\n reduceX = mean4({ inputs: { x: reshapeX }, backend: backend2, attrs: { axis: 0, keepDims: false } });\n } else {\n util_exports.assert(poolType === \"max\", () => `Invalid pool type ${poolType}`);\n reduceX = max6({\n inputs: { x: reshapeX },\n backend: backend2,\n attrs: { reductionIndices: 0, keepDims: false }\n });\n }\n const result = reshape6({ inputs: { x: reduceX }, backend: backend2, attrs: { shape: convInfo.outShape } });\n backend2.disposeData(reshapeX.dataId);\n backend2.disposeData(reduceX.dataId);\n return result;\n }\n let program;\n const dimensions = [{ type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] }];\n if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1) {\n program = new PoolWithFilterSizeEqualsOneProgram(convInfo);\n } else {\n if (poolType === \"avg\") {\n program = new Pool2DProgram2(convInfo, \"avg\");\n } else {\n util_exports.assert(poolType === \"max\", () => `Invalid pool type ${poolType}`);\n program = new Pool2DProgram2(convInfo, \"max\");\n }\n dimensions.push({ type: \"int32\", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, {\n type: \"int32\",\n data: [convInfo.dilationHeight, convInfo.dilationWidth]\n }, { type: \"int32\", data: [convInfo.inHeight, convInfo.inWidth] }, {\n type: \"int32\",\n data: [convInfo.effectiveFilterHeight, convInfo.effectiveFilterWidth]\n });\n }\n return backend2.runWebGPUProgram(program, [x], x.dtype, dimensions);\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/AvgPool.js\nfunction avgPool5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n return poolImpl(x, convInfo, \"avg\", backend2);\n}\nvar avgPoolConfig4 = {\n kernelName: AvgPool,\n backendName: \"webgpu\",\n kernelFunc: avgPool5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchMatMul.js\nfunction batchMatMul4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { a, b } = inputs;\n const { transposeA, transposeB } = attrs;\n return batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2 });\n}\nvar batchMatMulConfig4 = {\n kernelName: BatchMatMul,\n backendName: \"webgpu\",\n kernelFunc: batchMatMul4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/slice_webgpu.js\nvar SliceProgram2 = class {\n constructor(start, destSize) {\n this.variableNames = [\"source\"];\n this.workPerThread = 1;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = destSize;\n this.rank = destSize.length;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.start = start;\n this.uniforms = `start : ${getCoordsDataType2(start.length)}, `;\n this.shaderKey = \"slice\";\n }\n getUserCode() {\n const dtype = getCoordsDataType2(this.rank);\n const sourceCoords = getCoords3(this.rank);\n let coordSum;\n if (this.start.length === 1) {\n coordSum = this.outputShape.map((_, i2) => {\n return `sourceLoc = uniforms.start + coords;`;\n });\n } else {\n coordSum = this.outputShape.map((_, i2) => {\n return `sourceLoc.${coords2[i2]} = uniforms.start.${getCoordsXYZ(i2)} + coords.${coords2[i2]};`;\n });\n }\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n var sourceLoc : ${dtype};\n let coords = getCoordsFromIndex(index);\n ${coordSum.join(\"\\n\")}\n setOutputAtIndex(index, getSource(${sourceCoords}));\n }\n }\n `;\n return userCode;\n }\n};\nvar coords2 = [\"x\", \"y\", \"z\", \"w\", \"u\", \"v\"];\nfunction getCoords3(rank) {\n if (rank === 1) {\n return \"sourceLoc\";\n } else if (rank <= 6) {\n return coords2.slice(0, rank).map((coord) => `sourceLoc.${coord}`).join(\",\");\n } else {\n throw Error(`Slicing for rank ${rank} is not yet supported`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Slice.js\nfunction slice5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, size } = attrs;\n const [$begin, $size] = slice_util_exports.parseSliceParams(x, begin, size);\n slice_util_exports.assertParamsValid(x, $begin, $size);\n if (backend2.shouldExecuteOnCPU([x]) || x.dtype === \"string\") {\n const xBufferInfo = backend2.tensorMap.get(x.dataId);\n const outValues = sliceImplCPU2(xBufferInfo.values, $begin, $size, x.shape, x.dtype);\n return backend2.makeTensorInfo($size, x.dtype, outValues);\n }\n if (util_exports.sizeFromShape($size) === 0) {\n return backend2.makeTensorInfo($size, x.dtype, []);\n }\n const program = new SliceProgram2($begin, $size);\n const uniformData = [{ type: \"int32\", data: $begin }];\n return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n}\nvar sliceConfig4 = {\n kernelName: Slice,\n backendName: \"webgpu\",\n kernelFunc: slice5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchToSpaceND.js\nvar batchToSpaceND5 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, crops } = attrs;\n util_exports.assert(x.shape.length <= 4, () => \"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6);\n const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length);\n const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6);\n const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length);\n const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length);\n const toDispose = [];\n const reshapedIntermediate = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } });\n const transposedIntermediate = transpose5({ inputs: { x: reshapedIntermediate }, backend: backend2, attrs: { perm: permuted } });\n const reshapedIntermediate2 = reshape6({\n inputs: { x: transposedIntermediate },\n backend: backend2,\n attrs: { shape: reshapedPermuted }\n });\n const sliced = slice5({\n inputs: { x: reshapedIntermediate2 },\n backend: backend2,\n attrs: { begin: sliceBeginCoords, size: sliceSize }\n });\n toDispose.push(reshapedIntermediate);\n toDispose.push(transposedIntermediate);\n toDispose.push(reshapedIntermediate2);\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return sliced;\n};\nvar batchToSpaceNDConfig4 = {\n kernelName: BatchToSpaceND,\n backendName: \"webgpu\",\n kernelFunc: batchToSpaceND5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NotEqual.js\nvar notEqual4 = binaryKernelFunc3({\n opType: BinaryOpType.NOT_EQUAL,\n dtype: \"bool\",\n cpuKernelImpl: notEqualImplCPU2\n});\nvar notEqualConfig4 = {\n kernelName: NotEqual,\n backendName: \"webgpu\",\n kernelFunc: notEqual4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Real.js\nfunction real4(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputData = backend2.tensorMap.get(input2.dataId);\n return identity5({ inputs: { x: inputData.complexTensorInfos.real }, backend: backend2 });\n}\nvar realConfig3 = {\n kernelName: Real,\n backendName: \"webgpu\",\n kernelFunc: real4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/int.js\nfunction int2(input2, backend2) {\n const program = new UnaryOpProgram2(input2.shape, UnaryOpType.TO_INT);\n const output = backend2.runWebGPUProgram(program, [input2], \"int32\");\n return { dataId: output.dataId, shape: output.shape, dtype: output.dtype };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cast.js\nfunction cast6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { dtype } = attrs;\n if (dtype === \"complex64\") {\n if (x.dtype === \"complex64\") {\n return identity5({ inputs: { x }, backend: backend2 });\n }\n const zerosTensor = zeros(x.shape);\n const floatX = cast6({ inputs: { x }, backend: backend2, attrs: { dtype: \"float32\" } });\n const result = complex4({ inputs: { real: floatX, imag: zerosTensor }, backend: backend2 });\n zerosTensor.dispose();\n backend2.disposeData(floatX.dataId);\n return result;\n }\n if (x.dtype === \"complex64\") {\n const realPart = real4({ inputs: { input: x }, backend: backend2 });\n const result = cast6({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } });\n backend2.disposeData(realPart.dataId);\n return result;\n }\n if (!util_exports.hasEncodingLoss(x.dtype, dtype)) {\n const result = identity5({ inputs: { x }, backend: backend2 });\n return { dataId: result.dataId, shape: result.shape, dtype };\n }\n if (backend2.shouldExecuteOnCPU([x])) {\n const values = backend2.tensorMap.get(x.dataId).values;\n const [resultShape, resultType, resultData] = castImplCPU2(values, x.shape, x.dtype, dtype);\n return backend2.makeTensorInfo(resultShape, resultType, resultData);\n }\n if (dtype === \"int32\") {\n return int2(x, backend2);\n }\n if (dtype === \"bool\") {\n const zerosTensorInfo = backend2.makeTensorInfo([], \"bool\", util_exports.getTypedArrayFromDType(\"bool\", 1));\n const binaryInputs = { a: x, b: zerosTensorInfo };\n const result = notEqual4({ inputs: binaryInputs, backend: backend2 });\n backend2.disposeData(zerosTensorInfo.dataId);\n return result;\n }\n throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`);\n}\nvar castConfig4 = {\n kernelName: Cast,\n backendName: \"webgpu\",\n kernelFunc: cast6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Ceil.js\nvar ceil4 = unaryKernelFunc3({ opType: UnaryOpType.CEIL, cpuKernelImpl: ceilImplCPU2 });\nvar ceilConfig4 = {\n kernelName: Ceil,\n backendName: \"webgpu\",\n kernelFunc: ceil4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/clip_vec4_webgpu.js\nvar ClipVec4Program = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.uniforms = \"minVal : f32, maxVal : f32,\";\n this.workPerThread = 4;\n this.workGroupSize = [64, 1, 1];\n this.isVec4 = true;\n this.size = true;\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.shaderKey = \"clipVec4\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if(index < uniforms.size) {\n let value = getAByOutputIndex(index);\n var clampedValue : vec4;\n for (var i = 0; i < 4; i = i + 1) {\n if (isnan(value[i])) {\n clampedValue[i] = value[i];\n } else {\n clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);\n }\n }\n\n setOutputAtIndex(index, clampedValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/clip_webgpu.js\nvar ClipProgram2 = class {\n constructor(outputShape) {\n this.variableNames = [\"A\"];\n this.uniforms = \"minVal : f32, maxVal : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"clip\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if(index < uniforms.size) {\n let value = getAByOutputIndex(index);\n if (isnan(value)) {\n setOutputAtIndex(index, value);\n return;\n }\n setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ClipByValue.js\nfunction clipByValue4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { clipValueMin, clipValueMax } = attrs;\n let program;\n const uniformData = [\n { type: \"float32\", data: [clipValueMin] },\n { type: \"float32\", data: [clipValueMax] }\n ];\n if (util_exports.sizeFromShape(x.shape) % 4 === 0) {\n program = new ClipVec4Program(x.shape);\n } else {\n program = new ClipProgram2(x.shape);\n }\n return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n}\nvar clipByValueConfig4 = {\n kernelName: ClipByValue,\n backendName: \"webgpu\",\n kernelFunc: clipByValue4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/concat_webgpu.js\nvar ConcatProgram2 = class {\n constructor(shapes) {\n this.uniforms = \"\";\n this.workPerThread = 4;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = backend_util_exports.computeOutShape(shapes, 1);\n this.variableNames = shapes.map((_, i2) => `T${i2}`);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n this.offsetLength = shapes.length - 1;\n for (let i2 = 0; i2 < this.offsetLength; i2++) {\n this.uniforms += `offset${i2} : i32,`;\n }\n this.shaderKey = \"concat\";\n }\n getUserCode() {\n const snippets = [];\n if (this.offsetLength > 0) {\n snippets.push(`if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }`);\n for (let i2 = 1; i2 < this.offsetLength; i2++) {\n snippets.push(`else if (yC < uniforms.offset${[i2]}){ setOutputAtCoords(coords.x, coords.y, getT${i2}(yR, yC - uniforms.offset${i2 - 1})); }`);\n }\n const lastIndex = this.offsetLength;\n const lastShiftIndex = this.offsetLength - 1;\n snippets.push(`else { setOutputAtCoords(coords.x, coords.y, getT${lastIndex}(yR, yC - uniforms.offset${lastShiftIndex})); }`);\n } else {\n snippets.push(`setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));`);\n }\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n for(var i = 0; i < ${this.workPerThread}; i = i + 1) {\n let flatIndex = index * ${this.workPerThread} + i;\n if(flatIndex < uniforms.size) {\n let coords = getCoordsFromIndex(flatIndex);\n let yR = coords.x;\n let yC = coords.y;\n\n ${snippets.join(\"\\n \")}\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Imag.js\nfunction imag4(args) {\n const { inputs, backend: backend2 } = args;\n const { input: input2 } = inputs;\n const inputData = backend2.tensorMap.get(input2.dataId);\n return identity5({ inputs: { x: inputData.complexTensorInfos.imag }, backend: backend2 });\n}\nvar imagConfig3 = {\n kernelName: Imag,\n backendName: \"webgpu\",\n kernelFunc: imag4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Concat_impl.js\nfunction concatImpl3(inputs, axis, backend2) {\n const dtype = inputs[0].dtype;\n if (dtype === \"complex64\") {\n const reals = inputs.map((t2) => real4({ inputs: { input: t2 }, backend: backend2 }));\n const imags = inputs.map((t2) => imag4({ inputs: { input: t2 }, backend: backend2 }));\n const realConcated = concatImpl3(reals, axis, backend2);\n const imagConcated = concatImpl3(imags, axis, backend2);\n const result = complex4({ inputs: { real: realConcated, imag: imagConcated }, backend: backend2 });\n reals.forEach((r2) => backend2.disposeData(r2.dataId));\n imags.forEach((i2) => backend2.disposeData(i2.dataId));\n backend2.disposeData(realConcated.dataId);\n backend2.disposeData(imagConcated.dataId);\n return result;\n }\n let runOnCpu = backend2.shouldExecuteOnCPU(inputs);\n if (dtype === \"string\") {\n runOnCpu = true;\n }\n if (runOnCpu) {\n const tensors2D2 = inputs.map((t2) => {\n const innerSize = util_exports.sizeFromShape(t2.shape.slice(axis));\n const shape = [-1, innerSize];\n return reshape6({ inputs: { x: t2 }, backend: backend2, attrs: { shape } });\n });\n const inputsValShapes = tensors2D2.map((t2) => {\n return { vals: backend2.readSync(t2.dataId), shape: t2.shape };\n });\n const outShape2 = backend_util_exports.computeOutShape(tensors2D2.map((t2) => t2.shape), 1);\n const simplyConcat = tensors2D2[0].shape[0] === 1;\n const outVals = concatImplCPU2(inputsValShapes, outShape2, dtype, simplyConcat);\n const finalOutShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const outInfo = backend2.makeTensorInfo(finalOutShape, dtype, outVals);\n tensors2D2.forEach((t2) => backend2.disposeData(t2.dataId));\n return outInfo;\n }\n const maxInputNum = backend2.device.limits.maxStorageBuffersPerShaderStage - 1;\n if (inputs.length > maxInputNum) {\n const reducedInputs = [];\n for (let i2 = 0; i2 < inputs.length; i2 += maxInputNum) {\n const subArray = inputs.slice(i2, i2 + maxInputNum);\n reducedInputs.push(concatImpl3(subArray, axis, backend2));\n }\n const result = concatImpl3(reducedInputs, axis, backend2);\n for (const i2 of reducedInputs) {\n backend2.disposeData(i2.dataId);\n }\n return result;\n }\n const { tensors2D, outShape } = computeTensors2D2(inputs, axis, backend2);\n const shapes = tensors2D.map((t2) => t2.shape);\n const program = new ConcatProgram2(shapes);\n const uniformData = [];\n const offsets = new Array(shapes.length - 1);\n if (offsets.length > 0) {\n offsets[0] = shapes[0][1];\n uniformData.push({ type: \"int32\", data: [offsets[0]] });\n for (let i2 = 1; i2 < offsets.length; i2++) {\n offsets[i2] = offsets[i2 - 1] + shapes[i2][1];\n uniformData.push({ type: \"int32\", data: [offsets[i2]] });\n }\n }\n const res = backend2.runWebGPUProgram(program, tensors2D, tensors2D[0].dtype, uniformData);\n tensors2D.forEach((r2) => backend2.disposeData(r2.dataId));\n const reshapedResult = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: outShape } });\n backend2.disposeData(res.dataId);\n return reshapedResult;\n}\nfunction computeTensors2D2(inputs, axis, backend2) {\n const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis);\n const tensors2D = inputs.map((t2) => reshape6({\n inputs: { x: t2 },\n backend: backend2,\n attrs: {\n shape: [\n util_exports.sizeFromShape(t2.shape.slice(0, axis)),\n util_exports.sizeFromShape(t2.shape.slice(axis))\n ]\n }\n }));\n return { tensors2D, outShape };\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Concat.js\nfunction concat5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, inputs[0].shape)[0];\n const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), $axis);\n if (util_exports.sizeFromShape(outShape) === 0) {\n return backend2.makeTensorInfo(outShape, inputs[0].dtype, []);\n }\n const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0);\n if ($inputs.length === 1) {\n return identity5({ inputs: { x: $inputs[0] }, backend: backend2 });\n }\n const shapes = $inputs.map((t2) => t2.shape);\n backend_util_exports.assertParamsConsistent(shapes, $axis);\n return concatImpl3($inputs, $axis, backend2);\n}\nvar concatConfig4 = {\n kernelName: Concat,\n backendName: \"webgpu\",\n kernelFunc: concat5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv2d_mm_webgpu.js\nfunction conv2dCommonSnippet(isChannelsLast, fitAOuter, fitBOuter, fitInner, addBias = false, activation2 = null, hasPreluActivationWeights = false, innerElementSizeX = 4, innerElementSizeW = 4, innerElementSize = 4) {\n const getXSnippet = (innerElementSize2) => {\n switch (innerElementSize2) {\n case 1:\n return \"resData = x[xIndex];\";\n case 3:\n return \"resData = vec3(x[xIndex], x[xIndex + 1], x[xIndex + 2]);\";\n case 4:\n return \"resData = x[xIndex / 4];\";\n default:\n throw new Error(`innerElementSize ${innerElementSize2} is not supported.`);\n }\n };\n const getWSnippet = (innerElementSize2) => {\n switch (innerElementSize2) {\n case 1:\n return \"return W[row * uniforms.wShape[3] + colIn];\";\n case 4:\n return \"return W[row * uniforms.wShape[3] / 4 + colIn];\";\n default:\n throw new Error(`innerElementSize ${innerElementSize2} is not supported.`);\n }\n };\n const coordASnippet = isChannelsLast ? `\n let coord = vec4(batch, xRow, xCol, xCh);\n ` : `\n let coord = vec4(batch, xCh, xRow, xCol);\n `;\n const coordResSnippet = isChannelsLast ? `\n let coords = vec4(\n batch,\n row / outWidth,\n row % outWidth,\n col);\n ` : `\n let coords = vec4(\n batch,\n row,\n col / outWidth,\n col % outWidth);\n `;\n const xHight = isChannelsLast ? \"uniforms.xShape[1]\" : \"uniforms.xShape[2]\";\n const xWidth = isChannelsLast ? \"uniforms.xShape[2]\" : \"uniforms.xShape[3]\";\n const row = isChannelsLast ? \"row\" : \"col\";\n const col = isChannelsLast ? \"col\" : \"row\";\n const readXSnippet = `\n let inChannels = uniforms.wShape[2];\n let outWidth = ${isChannelsLast ? \"uniforms.outShape[2]\" : \"uniforms.outShape[3]\"};\n let outRow = ${row} / outWidth;\n let outCol = ${row} % outWidth;\n\n let WRow = ${col} / (uniforms.filterDims[1] * inChannels);\n let WCol = ${col} / inChannels % uniforms.filterDims[1];\n let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];\n let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];\n let xCh = ${col} % inChannels;\n var resData = ${typeSnippet(innerElementSizeX)}(0.0);\n // The bounds checking is always needed since we use it to pad zero for\n // the 'same' padding type.\n if (xRow >= 0 && xRow < ${xHight} && xCol >= 0 && xCol < ${xWidth}) {\n ${coordASnippet}\n let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);\n ${getXSnippet(innerElementSizeX)}\n }\n return resData;`;\n const sampleX = isChannelsLast ? fitAOuter && fitInner ? `\n let col = colIn * ${innerElementSizeX};\n ${readXSnippet}` : `\n let col = colIn * ${innerElementSizeX};\n if (row < uniforms.dimAOuter && col < uniforms.dimInner) {\n ${readXSnippet}\n }\n return ${typeSnippet(innerElementSizeX)}(0.0);` : fitInner && fitBOuter ? `\n let col = colIn * ${innerElementSizeX};\n ${readXSnippet}` : `\n let col = colIn * ${innerElementSizeX};\n if (row < uniforms.dimInner && col < uniforms.dimBOuter) {\n ${readXSnippet}\n }\n return ${typeSnippet(innerElementSizeX)}(0.0);`;\n const sampleW = `${getWSnippet(innerElementSizeW)}`;\n const resType = typeSnippet(innerElementSize);\n const aType = isChannelsLast ? typeSnippet(innerElementSizeX) : typeSnippet(innerElementSizeW);\n const bType = isChannelsLast ? typeSnippet(innerElementSizeW) : typeSnippet(innerElementSizeX);\n const userCode = `\n ${activationFnSnippet(activation2, hasPreluActivationWeights, innerElementSize === 4, 4)}\n fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${aType} {\n ${isChannelsLast ? sampleX : sampleW}\n }\n\n fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${bType} {\n ${isChannelsLast ? sampleW : sampleX}\n }\n\n fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${resType}) {\n let col = colIn * ${innerElementSize};\n if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)\n {\n var value = valueIn;\n let outWidth = ${isChannelsLast ? \"uniforms.outShape[2]\" : \"uniforms.outShape[3]\"};\n ${coordResSnippet}\n ${biasActivationSnippet(addBias, activation2)}\n setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);\n }\n }`;\n return userCode;\n}\nvar Conv2DMMProgram = class {\n constructor(convInfo, dimAOuter, dimBOuter, dimInner, addBias = false, activation2 = null, hasPreluActivationWeights = false) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = `filterDims : vec2, pad : vec2, stride : vec2, dilation : vec2, dimAOuter : i32, dimBOuter : i32, dimInner : i32,`;\n this.outputShape = convInfo.outShape;\n this.isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n this.isVec4 = ((convInfo.inChannels % 4 === 0 || convInfo.inChannels % 3 === 0) && this.isChannelsLast || convInfo.outWidth % 4 === 0 && !this.isChannelsLast) && convInfo.outChannels % 4 === 0;\n this.dispatchLayout = this.isChannelsLast ? { x: [3], y: [1, 2], z: [0] } : { x: [2, 3], y: [1], z: [0] };\n this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4);\n this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread);\n if (this.isVec4) {\n if (this.isChannelsLast && convInfo.inChannels % 4 !== 0) {\n this.innerElementSize = 3;\n this.variableTypes = [\"f32\", \"vec4\"];\n } else {\n this.innerElementSize = 4;\n this.variableTypes = [\"vec4\", \"vec4\"];\n }\n if (addBias) {\n this.variableNames.push(\"bias\");\n this.variableTypes.push(\"vec4\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n this.variableTypes.push(\"vec4\");\n }\n } else {\n this.innerElementSize = this.elementsPerThread[0];\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivationWeights) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n }\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivationWeights = hasPreluActivationWeights;\n this.tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1];\n this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0];\n this.tileInner = Math.max(this.workGroupSize[0] * this.innerElementSize, this.workGroupSize[1]);\n this.fitAOuter = dimAOuter % this.tileAOuter === 0;\n this.fitBOuter = dimBOuter % this.tileBOuter === 0;\n this.fitInner = dimInner % this.tileInner === 0;\n this.shaderKey = `conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`;\n }\n getUserCode() {\n const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner);\n const elementsSize = this.isVec4 ? [this.innerElementSize, 4, 4] : [1, 1, 1];\n const userCode = `\n ${conv2dCommonSnippet(this.isChannelsLast, this.fitAOuter, this.fitBOuter, this.fitInner, this.addBias, this.activation, this.hasPreluActivationWeights, elementsSize[0], elementsSize[1], elementsSize[2])}\n ${matMulSource}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2D_impl.js\nfunction getShapeForBatchMatMul2(shape, isChannelsLast) {\n const length = shape.length;\n if (length >= 3) {\n return isChannelsLast ? [\n ...shape.slice(0, -3),\n shape[length - 3] * shape[length - 2],\n shape[length - 1]\n ] : [\n ...shape.slice(0, -3),\n shape[length - 3],\n shape[length - 2] * shape[length - 1]\n ];\n } else if (!isChannelsLast && length === 1 && shape[0] > 1) {\n return [shape[0], 1];\n } else {\n return null;\n }\n}\nfunction conv2dByMatMul2({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const transposeA = isChannelsLast ? false : true;\n const transposeB = false;\n const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === \"VALID\";\n const intermediates = [];\n let xReshaped;\n let filterReshaped;\n if (sameSize) {\n const sharedDim = convInfo.inHeight * convInfo.inWidth * convInfo.inChannels;\n xReshaped = reshape6({\n inputs: { x },\n backend: backend2,\n attrs: { shape: [1, convInfo.batchSize, sharedDim] }\n });\n filterReshaped = reshape6({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, sharedDim, convInfo.outChannels] }\n });\n } else {\n xReshaped = reshape6({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: isChannelsLast ? [\n convInfo.batchSize,\n convInfo.inHeight * convInfo.inWidth,\n convInfo.inChannels\n ] : [\n convInfo.batchSize,\n convInfo.inChannels,\n convInfo.inHeight * convInfo.inWidth\n ]\n }\n });\n filterReshaped = reshape6({\n inputs: { x: filter },\n backend: backend2,\n attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] }\n });\n }\n intermediates.push(xReshaped);\n intermediates.push(filterReshaped);\n if (preluActivationWeights != null) {\n const targetShape = getShapeForBatchMatMul2(preluActivationWeights.shape, isChannelsLast);\n if (targetShape != null) {\n preluActivationWeights = reshape6({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: targetShape }\n });\n intermediates.push(preluActivationWeights);\n }\n }\n if (bias != null) {\n const targetShape = getShapeForBatchMatMul2(bias.shape, isChannelsLast);\n if (targetShape != null) {\n bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } });\n intermediates.push(bias);\n }\n }\n const result = batchMatMulImpl2({\n a: isChannelsLast ? xReshaped : filterReshaped,\n b: isChannelsLast ? filterReshaped : xReshaped,\n transposeA,\n transposeB,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n const out = reshape6({ inputs: { x: result }, backend: backend2, attrs: { shape: convInfo.outShape } });\n intermediates.push(result);\n for (const i2 of intermediates) {\n backend2.disposeData(i2.dataId);\n }\n return out;\n}\nfunction conv2DImpl({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) {\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === \"VALID\";\n if (sameSize || convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === \"SAME\" || convInfo.padInfo.type === \"VALID\")) {\n return conv2dByMatMul2({\n x,\n filter,\n convInfo,\n backend: backend2,\n bias,\n activation: activation2,\n preluActivationWeights,\n leakyreluAlpha\n });\n }\n const dimAOuter = isChannelsLast ? convInfo.outHeight * convInfo.outWidth : convInfo.outChannels;\n const dimBOuter = isChannelsLast ? convInfo.outChannels : convInfo.outHeight * convInfo.outWidth;\n const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.inChannels;\n const padInfo = [convInfo.padInfo.top, convInfo.padInfo.left];\n const dimensions = [\n { type: \"int32\", data: [convInfo.filterHeight, convInfo.filterWidth] },\n { type: \"int32\", data: [...padInfo] },\n { type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] },\n { type: \"int32\", data: [convInfo.dilationHeight, convInfo.dilationWidth] },\n { type: \"int32\", data: [dimAOuter] },\n { type: \"int32\", data: [dimBOuter] },\n { type: \"int32\", data: [dimInner] }\n ];\n const program = new Conv2DMMProgram(convInfo, dimAOuter, dimBOuter, dimInner, hasBias, activation2, hasPreluActivationWeights);\n const intermediates = [];\n const inputVar = [x, filter];\n if (hasBias) {\n if (!isChannelsLast && bias.shape.length === 1) {\n bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: [bias.shape[0], 1, 1] } });\n intermediates.push(bias);\n }\n inputVar.push(bias);\n }\n if (hasPreluActivationWeights) {\n if (!isChannelsLast && preluActivationWeights.shape.length === 1) {\n preluActivationWeights = reshape6({\n inputs: { x: preluActivationWeights },\n backend: backend2,\n attrs: { shape: [preluActivationWeights.shape[0], 1, 1] }\n });\n intermediates.push(preluActivationWeights);\n }\n inputVar.push(preluActivationWeights);\n }\n if (activation2 === \"leakyrelu\") {\n dimensions.push({ type: \"float32\", data: [leakyreluAlpha] });\n program.uniforms += \" alpha : f32,\";\n }\n const out = backend2.runWebGPUProgram(program, inputVar, x.dtype, dimensions);\n for (const i2 of intermediates) {\n backend2.disposeData(i2.dataId);\n }\n return out;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2D.js\nfunction conv2d6(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n return conv2DImpl({ x, filter, convInfo, backend: backend2 });\n}\nvar conv2DConfig4 = {\n kernelName: Conv2D,\n backendName: \"webgpu\",\n kernelFunc: conv2d6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv_backprop_mm_webgpu.js\nfunction conv2dTransposeCommonSnippet(innerElementSize = 4) {\n const getWSnippet = (innerElementSize2) => {\n switch (innerElementSize2) {\n case 1:\n return \"return W[getIndexFromCoords4D(coord, uniforms.wShape)];\";\n case 4:\n return `\n let coord1 = vec4(coordX, coordY, col + 1, rowInner);\n let coord2 = vec4(coordX, coordY, col + 2, rowInner);\n let coord3 = vec4(coordX, coordY, col + 3, rowInner);\n let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)];\n let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)];\n let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)];\n let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)];\n return vec4(v0, v1, v2, v3);\n `;\n default:\n throw new Error(`innerElementSize ${innerElementSize2} is not supported.`);\n }\n };\n const readASnippet = `\n let outRow = row / uniforms.outShape[2];\n let outCol = row % uniforms.outShape[2];\n\n let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);\n let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];\n let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);\n let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);\n if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {\n return ${typeSnippet(innerElementSize)}(0.0);\n }\n if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {\n return ${typeSnippet(innerElementSize)}(0.0);\n }\n let coord = vec4(\n batch,\n i32(xR),\n i32(xC),\n col % uniforms.outBackprop[3]);\n return x[getIndexFromCoords4D(coord, uniforms.xShape)/${innerElementSize}];`;\n const sampleA = `if (row < uniforms.dimAOuter && col < uniforms.dimInner) {\n ${readASnippet}\n }\n return ${typeSnippet(innerElementSize)}(0.0);`;\n const userCode = `\n fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} {\n let col = colIn * ${innerElementSize};\n ${sampleA}\n }\n\n fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} {\n let col = colIn * ${innerElementSize};\n let coordX = uniforms.filterDims.x - 1 -\n row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);\n let coordY = uniforms.filterDims.y - 1 -\n (row / uniforms.outBackprop[3]) % uniforms.filterDims[1];\n if (row < uniforms.dimInner && col < uniforms.dimBOuter &&\n coordX >= 0 && coordY >= 0) {\n let rowInner = row % uniforms.outBackprop[3];\n let coord = vec4(coordX, coordY, col, rowInner);\n ${getWSnippet(innerElementSize)}\n }\n return ${typeSnippet(innerElementSize)}(0.0);\n }\n\n fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${typeSnippet(innerElementSize)}) {\n let col = colIn * ${innerElementSize};\n if (row < uniforms.dimAOuter && (col + ${innerElementSize - 1}) < uniforms.dimBOuter) {\n var value = valueInput;\n let outCoord = vec4(\n batch,\n row / uniforms.outShape[2],\n row % uniforms.outShape[2],\n col);\n result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${innerElementSize}] = value;\n }\n }`;\n return userCode;\n}\nvar Conv2DDerInputMMProgram = class {\n constructor(convInfo) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = \"filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4, dimAOuter : i32, dimBOuter : i32, dimInner : i32,\";\n this.outputShape = convInfo.inShape;\n util_exports.assert(convInfo.dataFormat === \"channelsLast\", () => \"TODO: NCHW is unimplemented\");\n this.isVec4 = convInfo.inChannels % 4 === 0 && convInfo.outChannels % 4 === 0;\n this.dispatchLayout = { x: [3], y: [1, 2], z: [0] };\n this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4);\n this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread);\n if (this.isVec4) {\n this.variableTypes = [\"vec4\", \"f32\"];\n }\n this.shaderKey = `conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`;\n }\n getUserCode() {\n const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize);\n const userCode = `\n ${conv2dTransposeCommonSnippet(this.isVec4 ? 4 : 1)}\n ${matMulSource}\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv_backprop_webgpu.js\nvar Conv2DDerInputProgram2 = class {\n constructor(convInfo) {\n this.variableNames = [\"dy\", \"W\"];\n this.uniforms = \"filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = convInfo.inShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n this.shaderKey = `conv2DDerInput_${this.isChannelsLast}`;\n }\n getUserCode() {\n const rowDim = this.isChannelsLast ? 1 : 2;\n const colDim = this.isChannelsLast ? 2 : 3;\n const channelDim = this.isChannelsLast ? 3 : 1;\n return `\n ${getMainHeaderString(\"index\")} {\n if(index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let batch = coords[0];\n let d1 = coords[${channelDim}];\n\n let dyCorner = vec2(coords[${rowDim}]), coords[${colDim}]) - uniforms.pads;\n let dyRCorner = dyCorner.x;\n let dyCCorner = dyCorner.y;\n\n // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).\n // ? = to be determined. : = across all values in that axis.\n var dotProd = 0.0;\n for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {\n let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);\n let wRPerm = uniforms.filterDims.x - 1 - wR;\n if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||\n wRPerm < 0) {\n continue;\n }\n let idyR = dyR;\n\n for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {\n let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);\n let wCPerm = uniforms.filterDims.y - 1 - wC;\n if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||\n fract(dyC) > 0.0 || wCPerm < 0) {\n continue;\n }\n let idyC = dyC;\n\n for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {\n if (${this.isChannelsLast}) {\n let xValue = getDy(batch, idyR, idyC, d2);\n let wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd = dotProd + xValue * wValue;\n } else {\n let xValue = getDy(batch, d2, idyR, idyC);\n let wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd = dotProd + xValue * wValue;\n }\n\n }\n }\n }\n setOutputAtIndex(index, dotProd);\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2DBackpropInput.js\nfunction conv2DBackpropInput5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { dy, filter } = inputs;\n const { inputShape, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, 1, pad3, dimRoundingMode, false, $dataFormat);\n const dimensions = [\n { type: \"int32\", data: [convInfo.filterHeight, convInfo.filterWidth] },\n {\n type: \"int32\",\n data: [\n convInfo.filterHeight - 1 - convInfo.padInfo.top,\n convInfo.filterWidth - 1 - convInfo.padInfo.left\n ]\n },\n { type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] },\n {\n type: \"int32\",\n data: [\n convInfo.batchSize,\n convInfo.outHeight,\n convInfo.outWidth,\n convInfo.outChannels\n ]\n }\n ];\n let program;\n if (env().getBool(\"WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE\")) {\n program = new Conv2DDerInputProgram2(convInfo);\n } else {\n program = new Conv2DDerInputMMProgram(convInfo);\n const dimAOuter = convInfo.inShape[1] * convInfo.inShape[2];\n const dimBOuter = convInfo.inShape[3];\n const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.outChannels;\n dimensions.push({ type: \"uint32\", data: [dimAOuter] }, { type: \"uint32\", data: [dimBOuter] }, { type: \"uint32\", data: [dimInner] });\n }\n return backend2.runWebGPUProgram(program, [dy, filter], \"float32\", dimensions);\n}\nvar conv2DBackpropInputConfig4 = {\n kernelName: Conv2DBackpropInput,\n backendName: \"webgpu\",\n kernelFunc: conv2DBackpropInput5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cos.js\nvar cos4 = unaryKernelFunc3({ opType: UnaryOpType.COS });\nvar cosConfig4 = {\n kernelName: Cos,\n backendName: \"webgpu\",\n kernelFunc: cos4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cosh.js\nvar cosh4 = unaryKernelFunc3({ opType: UnaryOpType.COSH });\nvar coshConfig4 = {\n kernelName: Cosh,\n backendName: \"webgpu\",\n kernelFunc: cosh4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/crop_and_resize_webgpu.js\nvar CropAndResizeProgram2 = class {\n constructor(channnel, boxShape, cropSize, method) {\n this.variableNames = [\"Image\", \"Boxes\", \"BoxInd\"];\n this.uniforms = \"extrapolationValue : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n const [numBoxes] = boxShape;\n this.outputShape = [numBoxes, cropSize[0], cropSize[1], channnel];\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.methodId = method === \"bilinear\" ? 1 : 0;\n this.cropHeightBiggerThan1 = this.outputShape[1] > 1;\n this.cropWidthBiggerThan1 = this.outputShape[2] > 1;\n this.shaderKey = `cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`;\n }\n getUserCode() {\n const [inputHeightFloat, inputWidthFloat] = [`f32(uniforms.imageShape[1] - 1)`, `f32(uniforms.imageShape[2] - 1)`];\n const [heightRatio, heightScale, inY] = this.cropHeightBiggerThan1 ? [\n `(${inputHeightFloat} / f32(uniforms.outShape[1] - 1))`,\n \"(y2-y1) * height_ratio\",\n `y1*${inputHeightFloat} + f32(y)*(height_scale)`\n ] : [\n \"0.0\",\n \"0.0\",\n `0.5 * (y1+y2) * ${inputHeightFloat}`\n ];\n const [widthRatio, widthScale, inX] = this.cropWidthBiggerThan1 ? [\n `(${inputWidthFloat} / f32(uniforms.outShape[2] - 1))`,\n \"(x2-x1) * width_ratio\",\n `x1*${inputWidthFloat} + f32(x)*(width_scale)`\n ] : [\n \"0.0\",\n \"0.0\",\n `0.5 * (x1+x2) * ${inputWidthFloat}`\n ];\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let height_ratio = f32(${heightRatio});\n let width_ratio = f32(${widthRatio});\n let b = coords[0];\n let y = coords[1];\n let x = coords[2];\n let d = coords[3];\n // get box vals\n let y1 = getBoxes(b, 0);\n let x1 = getBoxes(b, 1);\n let y2 = getBoxes(b, 2);\n let x2 = getBoxes(b, 3);\n // get image in batch index\n let bInd = i32(round(getBoxInd(b)));\n if(bInd < 0 || bInd >= uniforms.outShape[0]) {\n return;\n }\n let height_scale = ${heightScale};\n let width_scale = ${widthScale};\n let in_y = ${inY};\n if( in_y < 0.0 || in_y > ${inputHeightFloat} ) {\n setOutputAtIndex(index, uniforms.extrapolationValue);\n return;\n }\n let in_x = ${inX};\n if( in_x < 0.0 || in_x > ${inputWidthFloat} ) {\n setOutputAtIndex(index, uniforms.extrapolationValue);\n return;\n }\n let sourceFracIndexCR = vec2(in_x,in_y);\n if(${this.methodId} == 1) {\n // Compute the four integer indices.\n let sourceFloorCR = vec2(sourceFracIndexCR);\n let sourceCeilCR = vec2(ceil(sourceFracIndexCR));\n let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);\n let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);\n let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);\n let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);\n let fracCR = sourceFracIndexCR - vec2(sourceFloorCR);\n let top = topLeft + (topRight - topLeft) * fracCR.x;\n let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;\n let newValue = top + (bottom - top) * fracCR.y;\n setOutputAtIndex(index, newValue);\n } else {\n // Compute the coordinators of nearest neighbor point.\n let sourceNearestCR = vec2(floor(\n sourceFracIndexCR + vec2(0.5,0.5)));\n let newValue = getImage(\n bInd, sourceNearestCR.y, sourceNearestCR.x, d);\n setOutputAtIndex(index, newValue);\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/CropAndResize.js\nvar cropAndResize5 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, boxes, boxInd } = inputs;\n const { cropSize, method, extrapolationValue } = attrs;\n const program = new CropAndResizeProgram2(image2.shape[3], boxes.shape, cropSize, method);\n const uniformData = [{ type: \"float32\", data: [extrapolationValue] }];\n return backend2.runWebGPUProgram(program, [image2, boxes, boxInd], \"float32\", uniformData);\n};\nvar cropAndResizeConfig4 = {\n kernelName: CropAndResize,\n backendName: \"webgpu\",\n kernelFunc: cropAndResize5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/cum_webgpu.js\nvar CumOpType2;\n(function(CumOpType3) {\n CumOpType3[\"Prod\"] = \"*\";\n CumOpType3[\"Sum\"] = \"+\";\n})(CumOpType2 || (CumOpType2 = {}));\nvar CumProgram2 = class {\n constructor(op2, shape, exclusive, reverse5) {\n this.variableNames = [\"x\"];\n this.uniforms = \"index : f32,\";\n this.size = true;\n const workGroupSizeX = 128;\n this.workGroupSize = [workGroupSizeX, 1, 1];\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.exclusive = exclusive;\n this.reverse = reverse5;\n this.op = op2;\n this.shaderKey = `cum_${this.op}_${this.exclusive}_${this.reverse}`;\n }\n getUserCode() {\n const rank = this.outputShape.length;\n const initVal = this.op === CumOpType2.Prod ? \"1.0\" : \"0.0\";\n const val = this.exclusive ? initVal : `getX(${getCoords4(rank, \"coords\", this.op)})`;\n const length = this.outputShape[this.outputShape.length - 1];\n let condition = \"\";\n let idxString = \"\";\n if (this.exclusive) {\n condition = this.reverse ? `end != ${length - 1}` : \"end != 0\";\n idxString = this.reverse ? \"end + 1\" : \"end - 1\";\n } else {\n condition = this.reverse ? `end + pow2 < ${length}` : \"end >= pow2\";\n idxString = this.reverse ? \"end + pow2\" : \"end - pow2\";\n }\n return `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n var coords = getCoordsFromIndex(index);\n\n let end = ${getFinalCoord2(rank, \"coords\", this.op)};\n var val = ${val};\n let pow2 = i32(pow(2.0, uniforms.index));\n if (${condition}) {\n let idx = ${idxString};\n ${getFinalCoord2(rank, \"coords\", this.op)} = idx;\n val ${this.op}= getX(${getCoords4(rank, \"coords\", this.op)});\n }\n setOutputAtIndex(index, val);\n }\n }\n `;\n }\n};\nfunction getCoords4(rank, name, op2) {\n if (rank === 1) {\n return `${name}`;\n } else if (rank === 2) {\n return `${name}.x, ${name}.y`;\n } else if (rank === 3) {\n return `${name}.x, ${name}.y, ${name}.z`;\n } else if (rank === 4) {\n return `${name}.x, ${name}.y, ${name}.z, ${name}.w`;\n } else {\n throw Error(`Cumulative ${op2} for rank ${rank} is not yet supported`);\n }\n}\nfunction getFinalCoord2(rank, name, op2) {\n if (rank === 1) {\n return `${name}`;\n } else if (rank === 2) {\n return `${name}.y`;\n } else if (rank === 3) {\n return `${name}.z`;\n } else if (rank === 4) {\n return `${name}.w`;\n } else {\n throw Error(`Cumulative ${op2} for rank ${rank} is not yet supported`);\n }\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cum_impl.js\nfunction cumImpl2(op2, x, backend2, axis, exclusive, reverse5) {\n const xRank = x.shape.length;\n const permutation = backend_util_exports.getAxesPermutation([axis], xRank);\n let permutedX = x;\n if (permutation != null) {\n permutedX = transpose5({ inputs: { x }, backend: backend2, attrs: { perm: permutation } });\n }\n const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0];\n if (permutedAxis !== xRank - 1) {\n throw new Error(`WebGPU cumprod shader expects an inner-most axis=${x.shape.length - 1} but got axis=${axis}`);\n }\n const size = permutedX.shape[permutedAxis];\n let result = identity5({ inputs: { x: permutedX }, backend: backend2 });\n for (let i2 = 0; i2 <= Math.ceil(Math.log2(size)) - 1; i2++) {\n const program = new CumProgram2(op2, permutedX.shape, false, reverse5);\n const prevResult = result;\n const uniformData = [{ type: \"float32\", data: [i2] }];\n result = backend2.runWebGPUProgram(program, [result], result.dtype, uniformData);\n backend2.disposeData(prevResult.dataId);\n }\n if (exclusive) {\n const program = new CumProgram2(op2, permutedX.shape, exclusive, reverse5);\n const prevResult = result;\n const uniformData = [{ type: \"float32\", data: [0] }];\n result = backend2.runWebGPUProgram(program, [result], result.dtype, uniformData);\n backend2.disposeData(prevResult.dataId);\n }\n if (permutation != null) {\n const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation);\n const reverseTransposedResult = transpose5({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } });\n backend2.disposeData(result.dataId);\n backend2.disposeData(permutedX.dataId);\n return reverseTransposedResult;\n }\n return result;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cumprod.js\nfunction cumprod5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return cumImpl2(CumOpType2.Prod, x, backend2, axis, exclusive, reverse5);\n}\nvar cumprodConfig4 = {\n kernelName: Cumprod,\n backendName: \"webgpu\",\n kernelFunc: cumprod5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cumsum.js\nfunction cumsum5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, exclusive, reverse: reverse5 } = attrs;\n return cumImpl2(CumOpType2.Sum, x, backend2, axis, exclusive, reverse5);\n}\nvar cumsumConfig4 = {\n kernelName: Cumsum,\n backendName: \"webgpu\",\n kernelFunc: cumsum5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depth_to_space_webgpu.js\nvar DepthToSpaceProgram2 = class {\n constructor(outputShape, dataFormat) {\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.uniforms = \"blockSize : i32,\";\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `depthToSpace_${dataFormat}`;\n this.dataFormat = dataFormat;\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let b = coords[0];\n let h = ${this.getHeightCoordString()};\n let w = ${this.getWidthCoordString()};\n let d = ${this.getDepthCoordString()};\n\n let in_h = h / uniforms.blockSize;\n let offset_h = h % uniforms.blockSize;\n let in_w = w / uniforms.blockSize;\n let offset_w = w % uniforms.blockSize;\n let offset_d = (offset_h * uniforms.blockSize + offset_w) *\n ${this.getOutputDepthSize()};\n let in_d = d + offset_d;\n\n let rlt = ${this.getInputSamplingString()};\n setOutputAtIndex(index, rlt);\n }\n }`;\n return userCode;\n }\n getHeightCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[1]`;\n } else {\n return `coords[2]`;\n }\n }\n getWidthCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[2]`;\n } else {\n return `coords[3]`;\n }\n }\n getDepthCoordString() {\n if (this.dataFormat === \"NHWC\") {\n return `coords[3]`;\n } else {\n return `coords[1]`;\n }\n }\n getOutputDepthSize() {\n if (this.dataFormat === \"NHWC\") {\n return `uniforms.outShape[3]`;\n } else {\n return `uniforms.outShape[1]`;\n }\n }\n getInputSamplingString() {\n if (this.dataFormat === \"NHWC\") {\n return `getX(b, in_h, in_w, in_d)`;\n } else {\n return `getX(b, in_d, in_h, in_w)`;\n }\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/DepthToSpace.js\nfunction depthToSpace5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockSize, dataFormat } = attrs;\n const batchSize = x.shape[0];\n const inputHeight = dataFormat === \"NHWC\" ? x.shape[1] : x.shape[2];\n const inputWidth = dataFormat === \"NHWC\" ? x.shape[2] : x.shape[3];\n const inputDepth = dataFormat === \"NHWC\" ? x.shape[3] : x.shape[1];\n const outputHeight = inputHeight * blockSize;\n const outputWidth = inputWidth * blockSize;\n const outputDepth = inputDepth / (blockSize * blockSize);\n const outputShape = dataFormat === \"NHWC\" ? [batchSize, outputHeight, outputWidth, outputDepth] : [batchSize, outputDepth, outputHeight, outputWidth];\n const uniformData = [\n { type: \"int32\", data: [blockSize] }\n ];\n const program = new DepthToSpaceProgram2(outputShape, dataFormat);\n return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n}\nvar depthToSpaceConfig4 = {\n kernelName: DepthToSpace,\n backendName: \"webgpu\",\n kernelFunc: depthToSpace5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_nchw_shared_webgpu.js\nvar DepthwiseConv2DNCHWSharedProgram = class {\n constructor(outputShape, filterHeight, filterWidth, addBias = false, activation2 = null, hasPreluActivation = false) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = `pad : vec2, inDims : vec2,`;\n this.workGroupSize = [16, 16, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = { x: [3], y: [2], z: [0, 1] };\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivation = hasPreluActivation;\n this.filterHeight = filterHeight;\n this.filterWidth = filterWidth;\n this.shaderKey = `depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`;\n }\n getUserCode() {\n const filterSize = this.filterWidth * this.filterHeight;\n const workGroupSize = this.workGroupSize[0] * this.workGroupSize[1] * this.workGroupSize[2];\n const tileAHeight = this.workGroupSize[1] + this.filterHeight - 1;\n const tileAWidth = this.workGroupSize[0] + this.filterWidth - 1;\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)}\n\n var mm_Asub : array, ${tileAHeight}>;\n var mm_Bsub : array, ${this.filterHeight}>;\n fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 {\n var value = 0.0;\n if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])\n {\n value = getX(batch, channel, row, col);\n }\n return value;\n }\n\n ${getWorkGroupSizeString()}\n fn _start(@builtin(local_invocation_id) LocalId : vec3,\n @builtin(global_invocation_id) GlobalId : vec3,\n @builtin(local_invocation_index) LocalIndex: u32,\n @builtin(num_workgroups) NumWorkgroups: vec3) {\n localId = LocalId;\n globalId = GlobalId;\n let localIndex = i32(LocalIndex);\n numWorkgroups = NumWorkgroups;\n let coords = getOutputCoords();\n let batch = coords[0];\n let xRCCorner = vec2(coords.zw) - uniforms.pad;\n let channelMul = uniforms.wShape[3];\n let d1 = coords[1] / channelMul;\n let q = coords[1] % channelMul;\n\n let inputRowStart = xRCCorner.x;\n let inputColStart = xRCCorner.y;\n\n let localRow = i32(localId.y);\n let localCol = i32(localId.x);\n\n // Load one tile of X into local memory.\n for (var inputRow = localRow; inputRow < ${tileAHeight}; inputRow = inputRow + ${this.workGroupSize[1]}) {\n for (var inputCol = localCol; inputCol < ${tileAWidth}; inputCol = inputCol + ${this.workGroupSize[0]}) {\n let rowOffset = inputRow - localRow;\n let colOffset = inputCol - localCol;\n mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset);\n }\n }\n\n // Load one tile of W into local memory.\n var wIndex = localIndex;\n ${filterSize < workGroupSize ? `if (wIndex < ${filterSize})` : `for(; wIndex < ${filterSize}; wIndex = wIndex + ${workGroupSize})`}\n\n {\n let wRow = wIndex / ${this.filterWidth};\n let wCol = wIndex % ${this.filterWidth};\n mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q);\n }\n\n workgroupBarrier();\n\n var value = 0.0;\n for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) {\n for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) {\n let xVal = mm_Asub[localRow + wR][localCol + wC];\n let wVal = mm_Bsub[wR][wC];\n value = fma(xVal, wVal, value);\n }\n }\n ${biasActivationSnippet(this.addBias, this.activation)}\n if (coordsInBounds4D(coords, uniforms.outShape)) {\n setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_vec4_webgpu.js\nvar DepthwiseConv2DVec4Program = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = \"pad : vec2, inDims : vec2,\";\n this.workGroupSize = [4, 4, 4];\n this.isVec4 = true;\n this.outputShape = convInfo.outShape;\n this.dispatchLayout = { x: [3], y: [2], z: [0, 1] };\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [4, 4, 1]);\n util_exports.assert(convInfo.dataFormat === \"channelsLast\", () => \"TODO: NCHW is unimplemented\");\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.convInfo = convInfo;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivation = hasPreluActivation;\n this.shaderKey = `depthwiseVec4_${activation2}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`;\n }\n getUserCode() {\n const xNumber = 4 + this.convInfo.filterWidth - 1;\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivation, true, 4)}\n fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4 {\n var value = vec4(0.0);\n if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])\n {\n value = getX(batch, row, col, channel);\n }\n return value;\n }\n ${getWorkGroupSizeString()}\n fn _start(@builtin(global_invocation_id) globalId: vec3) {\n let batch = i32(globalId.z) / uniforms.outShape[1];\n let r = i32(globalId.z) % uniforms.outShape[1];\n let c = i32(globalId.y) * 4;\n let d1 = i32(globalId.x) * 4;\n let xRCCorner = vec2(r, c) - uniforms.pad;\n\n let xRCorner = xRCCorner.x;\n let xCCorner = xRCCorner.y;\n var xVals : array, ${xNumber}>;\n var dotProd : array, 4>;\n dotProd[0] = vec4(0.0);\n dotProd[1] = vec4(0.0);\n dotProd[2] = vec4(0.0);\n dotProd[3] = vec4(0.0);\n\n // Use constant instead of uniform can give better performance.\n for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {\n let xR = xRCorner + wR;\n for (var i = 0; i < ${xNumber}; i++)\n {\n xVals[i] = readX(batch, xR, xCCorner + i, d1);\n }\n for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {\n let wValue = getW(wR, wC, d1, 0);\n dotProd[0] = dotProd[0] + xVals[0 + wC] * wValue;\n dotProd[1] = dotProd[1] + xVals[1 + wC] * wValue;\n dotProd[2] = dotProd[2] + xVals[2 + wC] * wValue;\n dotProd[3] = dotProd[3] + xVals[3 + wC] * wValue;\n }\n }\n\n for (var i = 0; i < 4; i = i + 1) {\n let coords = vec4(batch, r, c + i, d1);\n if (coordsInBounds4D(coords, uniforms.outShape)) {\n var value = dotProd[i];\n ${biasActivationSnippet(this.addBias, this.activation)}\n setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_webgpu.js\nvar DepthwiseConv2DProgram2 = class {\n constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) {\n this.variableNames = [\"x\", \"W\"];\n this.uniforms = `pad : vec2, inDims : vec2, filterHeight : i32,\n filterWidth : i32, stride : vec2, dilation : vec2,`;\n this.workGroupSize = [256, 1, 1];\n this.outputShape = convInfo.outShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n if (addBias) {\n this.variableNames.push(\"bias\");\n }\n if (hasPreluActivation) {\n this.variableNames.push(\"preluActivationWeights\");\n }\n this.convInfo = convInfo;\n this.addBias = addBias;\n this.activation = activation2;\n this.hasPreluActivation = hasPreluActivation;\n this.shaderKey = `depthwise_${this.activation}_${this.isChannelsLast}`;\n }\n getUserCode() {\n const getXSnippet = this.isChannelsLast ? \"getX(batch, xR, xC, d1);\" : \"getX(batch, d1, xR, xC);\";\n const userCode = `\n ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)}\n\n ${getMainHeaderString()} {\n let coords = getOutputCoords();\n let batch = coords[0];\n let xRCCorner = vec2(coords.${this.isChannelsLast ? \"yz\" : \"zw\"}) * uniforms.stride - uniforms.pad;\n let d2 = coords[${this.isChannelsLast ? 3 : 1}];\n let channelMul = uniforms.wShape[3];\n let d1 = d2 / channelMul;\n let q = d2 % channelMul;\n\n let inputRowStart = xRCCorner.x;\n let inputColStart = xRCCorner.y;\n let inputRowEnd = inputRowStart + uniforms.filterHeight *\n uniforms.dilation[0];\n let inputColEnd = inputColStart + uniforms.filterWidth *\n uniforms.dilation[1];\n\n // Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get\n // y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all\n // values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC.\n // x(d1, ?, ?) and y(d2, yR, yC) is for NCHW.\n var value = 0.0;\n\n // Extract if checking out of for loop for performance.\n if (inputRowStart >= 0 && inputColStart >= 0 &&\n inputRowEnd < uniforms.inDims[0] &&\n inputColEnd < uniforms.inDims[1]) {\n for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {\n let xR = inputRowStart + wR * uniforms.dilation[0];\n\n for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {\n let xC = inputColStart + wC * uniforms.dilation[1];\n\n let xVal = ${getXSnippet};\n let wVal = getW(wR, wC, d1, q);\n value = value + xVal * wVal;\n }\n }\n } else {\n for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {\n let xR = inputRowStart + wR * uniforms.dilation[0];\n\n if (xR < 0 || xR >= uniforms.inDims[0]) {\n continue;\n }\n\n for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {\n let xC = inputColStart + wC * uniforms.dilation[1];\n\n if (xC < 0 || xC >= uniforms.inDims[1]) {\n continue;\n }\n\n let xVal = ${getXSnippet};\n let wVal = getW(wR, wC, d1, q);\n value = value + xVal * wVal;\n }\n }\n }\n ${biasActivationSnippet(this.addBias, this.activation)}\n if (coordsInBounds4D(coords, uniforms.outShape)) {\n setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/DepthwiseConv2dNative.js\nfunction depthwiseConv2dNative3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true, $dataFormat);\n const dimensions = [\n { type: \"int32\", data: [convInfo.padInfo.top, convInfo.padInfo.left] },\n { type: \"int32\", data: [convInfo.inHeight, convInfo.inWidth] }\n ];\n const isChannelsLast = convInfo.dataFormat === \"channelsLast\";\n let program;\n if (!isChannelsLast && convInfo.inHeight > 16 && convInfo.inWidth > 16 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.dilationWidth === 1 && convInfo.dilationHeight === 1 && convInfo.inChannels === convInfo.outChannels) {\n program = new DepthwiseConv2DNCHWSharedProgram(convInfo.outShape, convInfo.filterHeight, convInfo.filterWidth);\n } else if (isChannelsLast && convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) {\n program = new DepthwiseConv2DVec4Program(convInfo);\n } else {\n program = new DepthwiseConv2DProgram2(convInfo);\n dimensions.push({ type: \"int32\", data: [convInfo.filterHeight] }, { type: \"int32\", data: [convInfo.filterWidth] }, { type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] }, {\n type: \"int32\",\n data: [convInfo.dilationHeight, convInfo.dilationWidth]\n });\n }\n return backend2.runWebGPUProgram(program, [x, filter], x.dtype, dimensions);\n}\nvar depthwiseConv2dNativeConfig4 = {\n kernelName: DepthwiseConv2dNative,\n backendName: \"webgpu\",\n kernelFunc: depthwiseConv2dNative3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Multiply.js\nvar multiplyKernelFunc = binaryKernelFunc3({\n opType: BinaryOpType.MUL,\n cpuKernelImpl: multiplyImplCPU2,\n supportsComplex: true\n});\nvar multiplyConfig4 = {\n kernelName: Multiply,\n backendName: \"webgpu\",\n kernelFunc: multiplyKernelFunc\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sum.js\nfunction sum6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n return reduce2(x, axis, keepDims, \"sum\", backend2);\n}\nvar sumConfig4 = {\n kernelName: Sum,\n backendName: \"webgpu\",\n kernelFunc: sum6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Einsum.js\nfunction einsum4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { equation } = attrs;\n const tensors = inputs;\n const { allDims, summedDims, idDims } = backend_util_exports.decodeEinsumEquation(equation, tensors.length);\n backend_util_exports.checkEinsumDimSizes(allDims.length, idDims, tensors);\n const { path, steps } = backend_util_exports.getEinsumComputePath(summedDims, idDims);\n const nSteps = steps.length;\n let out = null;\n let numDimsRemaining = allDims.length;\n const tensorsToDispose = [];\n for (let i2 = 0; i2 < nSteps; ++i2) {\n for (const idTerm of steps[i2]) {\n const { permutationIndices: perm, expandDims: dimsToExpand } = backend_util_exports.getEinsumPermutation(numDimsRemaining, idDims[idTerm]);\n let x;\n if (backend_util_exports.isIdentityPermutation(perm)) {\n x = tensors[idTerm];\n } else {\n x = transpose5({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } });\n tensorsToDispose.push(x);\n }\n const targetShape = x.shape.slice();\n for (let k = 0; k < dimsToExpand.length; ++k) {\n targetShape.splice(dimsToExpand[k], 0, 1);\n }\n if (!util_exports.arraysEqual(x.shape, targetShape)) {\n x = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: targetShape } });\n tensorsToDispose.push(x);\n }\n if (out === null) {\n out = x;\n } else {\n out = multiplyKernelFunc({ inputs: { a: x, b: out }, backend: backend2 });\n tensorsToDispose.push(out);\n }\n }\n if (i2 < nSteps - 1) {\n if (path[i2] >= 0) {\n out = sum6({\n inputs: { x: out },\n backend: backend2,\n attrs: {\n axis: path[i2] - (allDims.length - numDimsRemaining),\n keepDims: false\n }\n });\n tensorsToDispose.push(out);\n }\n numDimsRemaining--;\n }\n }\n for (const tensorInfo of tensorsToDispose) {\n if (tensorInfo === out) {\n continue;\n }\n backend2.disposeData(tensorInfo.dataId);\n }\n return out;\n}\nvar einsumConfig3 = {\n kernelName: Einsum,\n backendName: \"webgpu\",\n kernelFunc: einsum4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Elu.js\nvar elu6 = unaryKernelFunc3({ opType: UnaryOpType.ELU });\nvar eluConfig4 = {\n kernelName: Elu,\n backendName: \"webgpu\",\n kernelFunc: elu6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Equal.js\nvar equal4 = binaryKernelFunc3({ opType: BinaryOpType.EQUAL, dtype: \"bool\", cpuKernelImpl: equalImplCPU2 });\nvar equalConfig4 = {\n kernelName: Equal,\n backendName: \"webgpu\",\n kernelFunc: equal4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Exp.js\nvar exp4 = unaryKernelFunc3({\n opType: UnaryOpType.EXP,\n cpuKernelImpl: expImplCPU2,\n dtype: \"float32\"\n});\nvar expConfig4 = {\n kernelName: Exp,\n backendName: \"webgpu\",\n kernelFunc: exp4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ExpandDims.js\nfunction expandDims6(args) {\n const { inputs, attrs, backend: backend2 } = args;\n const { dim } = attrs;\n const { input: input2 } = inputs;\n const inputRank = input2.shape.length;\n const newShape = input2.shape.slice();\n let $dim = dim;\n if (dim < 0) {\n util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`);\n $dim = inputRank + dim + 1;\n }\n newShape.splice($dim, 0, 1);\n return reshape6({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } });\n}\nvar expandDimsConfig4 = {\n kernelName: ExpandDims,\n backendName: \"webgpu\",\n kernelFunc: expandDims6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Expm1.js\nvar expm14 = unaryKernelFunc3({ opType: UnaryOpType.EXPM1, cpuKernelImpl: expm1ImplCPU2 });\nvar expm1Config3 = {\n kernelName: Expm1,\n backendName: \"webgpu\",\n kernelFunc: expm14\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/flip_left_right_webgpu.js\nvar FlipLeftRightProgram2 = class {\n constructor(imageShape) {\n this.outputShape = [];\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = imageShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"flipLeftRight\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let coordX = uniforms.xShape[2] - coords[2] - 1;\n let outputValue = getX(coords[0], coords[1], coordX, coords[3]);\n setOutputAtIndex(index, outputValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FlipLeftRight.js\nvar flipLeftRightConfig4 = {\n kernelName: FlipLeftRight,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const webgpuBackend = backend2;\n const program = new FlipLeftRightProgram2(image2.shape);\n const output = webgpuBackend.runWebGPUProgram(program, [image2], image2.dtype);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Floor.js\nvar floor4 = unaryKernelFunc3({ opType: UnaryOpType.FLOOR, cpuKernelImpl: floorImplCPU2 });\nvar floorConfig4 = {\n kernelName: Floor,\n backendName: \"webgpu\",\n kernelFunc: floor4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FloorDiv.js\nvar floorDiv4 = binaryKernelFunc3({ opType: BinaryOpType.INT_DIV, dtype: \"int32\" });\nvar floorDivConfig4 = {\n kernelName: FloorDiv,\n backendName: \"webgpu\",\n kernelFunc: floorDiv4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/from_pixels_webgpu.js\nvar FromPixelsProgram2 = class {\n constructor(outputShape, numChannels, importVideo = false) {\n this.isFromPixels = true;\n this.outputShape = [0];\n this.variableNames = [];\n this.workGroupSize = [256, 1, 1];\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [numChannels, 1, 1]);\n this.importVideo = importVideo;\n this.shaderKey = `fromPixels_${this.importVideo}`;\n }\n getUserCode() {\n const textureLoad = this.importVideo ? \"textureLoad(src, vec2(coords.yx));\" : \"textureLoad(src, vec2(coords.yx), 0)\";\n const textureType = this.importVideo ? \"texture_external\" : \"texture_2d\";\n return `\n @binding(1) @group(0) var src: ${textureType};\n ${getMainHeaderString(\"index\")} {\n let flatIndex = index * uniforms.numChannels;\n if (flatIndex < uniforms.size) {\n let coords = getCoordsFromIndex(flatIndex);\n let values = ${textureLoad};\n for (var i = 0; i < uniforms.numChannels; i = i + 1) {\n result[flatIndex + i] = i32(floor(255.0 * values[i]));\n }\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FromPixels.js\nvar fromPixelsConfig2 = {\n kernelName: FromPixels,\n backendName: \"webgpu\",\n kernelFunc: fromPixels3\n};\nvar fromPixels2DContext3;\nvar willReadFrequently2 = env().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");\nvar videoToTextureMap = /* @__PURE__ */ new Map();\nfunction fromPixels3(args) {\n const { inputs, backend: backend2, attrs } = args;\n let { pixels } = inputs;\n const { numChannels } = attrs;\n if (pixels == null) {\n throw new Error(\"pixels passed to tf.browser.fromPixels() can not be null\");\n }\n const isVideo = typeof HTMLVideoElement !== \"undefined\" && pixels instanceof HTMLVideoElement;\n const isImage = typeof HTMLImageElement !== \"undefined\" && pixels instanceof HTMLImageElement;\n const isCanvas = typeof HTMLCanvasElement !== \"undefined\" && pixels instanceof HTMLCanvasElement || typeof OffscreenCanvas !== \"undefined\" && pixels instanceof OffscreenCanvas;\n const isImageBitmap = typeof ImageBitmap !== \"undefined\" && pixels instanceof ImageBitmap;\n const [width, height] = isVideo ? [\n pixels.videoWidth,\n pixels.videoHeight\n ] : [pixels.width, pixels.height];\n const outputShape = [height, width, numChannels];\n const importVideo = env().getBool(\"WEBGPU_IMPORT_EXTERNAL_TEXTURE\") && isVideo;\n const isVideoOrImage = isVideo || isImage;\n if (isImageBitmap || isCanvas || isVideoOrImage) {\n let textureInfo;\n if (importVideo) {\n const videoElement = pixels;\n if (!videoToTextureMap.has(videoElement) || videoToTextureMap.get(videoElement).expired) {\n const externalTextureDescriptor = { source: videoElement };\n videoToTextureMap.set(videoElement, backend2.device.importExternalTexture(externalTextureDescriptor));\n }\n textureInfo = {\n width,\n height,\n format: null,\n usage: null,\n texture: videoToTextureMap.get(videoElement)\n };\n } else {\n if (isVideoOrImage) {\n const newWillReadFrequently = env().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");\n if (fromPixels2DContext3 == null || newWillReadFrequently !== willReadFrequently2) {\n willReadFrequently2 = newWillReadFrequently;\n fromPixels2DContext3 = document.createElement(\"canvas\").getContext(\"2d\", { willReadFrequently: willReadFrequently2 });\n }\n fromPixels2DContext3.canvas.width = width;\n fromPixels2DContext3.canvas.height = height;\n fromPixels2DContext3.drawImage(pixels, 0, 0, width, height);\n pixels = fromPixels2DContext3.canvas;\n }\n const usage = GPUTextureUsage.COPY_DST | GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING;\n const format = \"rgba8unorm\";\n const texture = backend2.textureManager.acquireTexture(outputShape[1], outputShape[0], format, usage);\n backend2.queue.copyExternalImageToTexture({ source: pixels }, { texture }, [outputShape[1], outputShape[0]]);\n textureInfo = { width, height, format, usage, texture };\n }\n const size = util_exports.sizeFromShape(outputShape);\n const strides = util_exports.computeStrides(outputShape);\n const program = new FromPixelsProgram2(outputShape, numChannels, importVideo);\n const uniformData = [\n { type: \"uint32\", data: [size] },\n { type: \"uint32\", data: [numChannels] },\n { type: \"uint32\", data: [...strides] }\n ];\n const input2 = backend2.makeTensorInfo([height, width], \"int32\");\n const info = backend2.tensorMap.get(input2.dataId);\n info.resourceInfo = textureInfo;\n const result = backend2.runWebGPUProgram(program, [input2], \"int32\", uniformData);\n backend2.disposeData(input2.dataId);\n return result;\n }\n const imageData = pixels.data;\n let pixelArray = imageData;\n if (numChannels != null && numChannels !== 4) {\n pixelArray = new Uint8Array(pixels.width * pixels.height * numChannels);\n const dataLength = imageData.length;\n let j = 0;\n for (let i2 = 0; i2 < dataLength; i2++) {\n if (i2 % 4 < numChannels) {\n pixelArray[j++] = imageData[i2];\n }\n }\n }\n const output = backend2.makeTensorInfo(outputShape, \"int32\", new Int32Array(pixelArray));\n backend2.uploadToGPU(output.dataId);\n return output;\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/batchnorm_webgpu.js\nvar BatchNormProgram2 = class {\n constructor(xShape, meanShape, varianceShape, offsetShape, scaleShape) {\n this.uniforms = \"varianceEpsilon : f32,\";\n this.workGroupSize = [128, 1, 1];\n this.size = true;\n this.variableNames = [\"x\", \"mean\", \"variance\"];\n backend_util_exports.assertAndGetBroadcastShape(xShape, meanShape);\n backend_util_exports.assertAndGetBroadcastShape(xShape, varianceShape);\n this.outputShape = xShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n if (offsetShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, offsetShape);\n this.variableNames.push(\"offset\");\n }\n if (scaleShape != null) {\n backend_util_exports.assertAndGetBroadcastShape(xShape, scaleShape);\n this.variableNames.push(\"scale\");\n }\n this.offsetShape = offsetShape;\n this.scaleShape = scaleShape;\n this.shaderKey = \"batchNorm\";\n }\n getUserCode() {\n let offsetSnippet = \"0.0\";\n if (this.offsetShape != null) {\n offsetSnippet = \"getOffsetByOutputIndex(index)\";\n }\n let scaleSnippet = \"1.0\";\n if (this.scaleShape != null) {\n scaleSnippet = \"getScaleByOutputIndex(index)\";\n }\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size)\n {\n let xValue = getXByOutputIndex(index);\n let meanValue = getMeanByOutputIndex(index);\n let varianValue = getVarianceByOutputIndex(index);\n let offsetValue = ${offsetSnippet};\n let scaleValue = ${scaleSnippet};\n let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));\n setOutputAtIndex(index,dot(vec3(xValue, -meanValue, offsetValue), vec3(inv, inv, 1.0)));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedBatchNorm.js\nvar fusedBatchNormConfig2 = {\n kernelName: FusedBatchNorm,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x, scale: scale2, offset, mean: mean5, variance } = inputs;\n const { varianceEpsilon } = attrs;\n const webGPUBackend = backend2;\n const batchNormInputs = [x, mean5, variance];\n let offsetShape = null;\n if (offset != null) {\n offsetShape = offset.shape;\n batchNormInputs.push(offset);\n }\n let scaleShape = null;\n if (scale2 != null) {\n scaleShape = scale2.shape;\n batchNormInputs.push(scale2);\n }\n const program = new BatchNormProgram2(x.shape, mean5.shape, variance.shape, offsetShape, scaleShape);\n const uniformData = [{ type: \"float32\", data: [varianceEpsilon] }];\n return webGPUBackend.runWebGPUProgram(program, batchNormInputs, x.dtype, uniformData);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedConv2D.js\nfunction fusedConv2d3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat);\n return conv2DImpl({\n x,\n filter,\n convInfo,\n backend: backend2,\n bias,\n preluActivationWeights,\n leakyreluAlpha,\n activation: activation2\n });\n}\nvar fusedConv2DConfig4 = {\n kernelName: FusedConv2D,\n backendName: \"webgpu\",\n kernelFunc: fusedConv2d3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedDepthwiseConv2D.js\nfunction fusedDepthwiseConv2D3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, filter, bias, preluActivationWeights } = inputs;\n const { strides, pad: pad3, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs;\n let $dilations = dilations;\n if ($dilations == null) {\n $dilations = [1, 1];\n }\n util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);\n const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true);\n const programInputs = [x, filter];\n const hasBias = bias != null;\n const hasPreluActivationWeights = preluActivationWeights != null;\n if (hasBias) {\n programInputs.push(bias);\n }\n if (hasPreluActivationWeights) {\n programInputs.push(preluActivationWeights);\n }\n const dimensions = [\n { type: \"int32\", data: [convInfo.padInfo.top, convInfo.padInfo.left] },\n { type: \"int32\", data: [convInfo.inHeight, convInfo.inWidth] }\n ];\n let program;\n if (convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) {\n program = new DepthwiseConv2DVec4Program(convInfo, hasBias, activation2, hasPreluActivationWeights);\n } else {\n program = new DepthwiseConv2DProgram2(convInfo, hasBias, activation2, hasPreluActivationWeights);\n dimensions.push({ type: \"int32\", data: [convInfo.filterHeight] }, { type: \"int32\", data: [convInfo.filterWidth] }, { type: \"int32\", data: [convInfo.strideHeight, convInfo.strideWidth] }, {\n type: \"int32\",\n data: [convInfo.dilationHeight, convInfo.dilationWidth]\n });\n }\n if (activation2 === \"leakyrelu\") {\n dimensions.push({ type: \"float32\", data: [leakyreluAlpha] });\n program.uniforms += \" alpha : f32,\";\n }\n const result = backend2.runWebGPUProgram(program, programInputs, \"float32\", dimensions);\n return result;\n}\nvar fusedDepthwiseConv2DConfig4 = {\n kernelName: FusedDepthwiseConv2D,\n backendName: \"webgpu\",\n kernelFunc: fusedDepthwiseConv2D3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/gather_nd_webgpu.js\nvar GatherNDProgram2 = class {\n constructor(sliceDim, shape) {\n this.variableNames = [\"A\", \"indices\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `gathernd_${sliceDim}`;\n this.sliceDim = sliceDim;\n this.uniforms = `sliceDim : i32, strides : ${getCoordsDataType2(sliceDim)},`;\n }\n getUserCode() {\n let strideString;\n if (this.sliceDim > 1) {\n strideString = \"uniforms.strides[j]\";\n } else {\n strideString = \"uniforms.strides\";\n }\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n var flattenIndex = 0;\n for (var j = 0; j < uniforms.sliceDim; j = j + 1) {\n let indexTemp = i32(round(getIndices(coords[0], j)));\n let strideNum = ${strideString};\n flattenIndex = flattenIndex + indexTemp * strideNum;\n }\n\n setOutputAtIndex(index, getA(flattenIndex, coords[1]));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GatherNd.js\nfunction gatherNd4(args) {\n const { inputs, backend: backend2 } = args;\n const { params, indices } = inputs;\n const indicesShape = indices.shape;\n const sliceRank = indicesShape[indicesShape.length - 1];\n const paramsSize = util_exports.sizeFromShape(params.shape);\n const [resultShape, numSlices, sliceSize, strides] = backend_util_exports.prepareAndValidate(params, indices);\n const flattenIndices = reshape6({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numSlices, sliceRank] } });\n const flattenX = reshape6({\n inputs: { x: params },\n backend: backend2,\n attrs: { shape: [util_exports.sizeFromShape(params.shape) / sliceSize, sliceSize] }\n });\n if (backend2.shouldExecuteOnCPU([params, indices]) || params.dtype === \"string\") {\n const indicesData = backend2.readSync(indices.dataId);\n const paramsBuf = backend2.bufferSync(params);\n const outValue = gatherNdImplCPU2(indicesData, paramsBuf, params.dtype, numSlices, sliceRank, sliceSize, strides, params.shape, paramsSize);\n return backend2.makeTensorInfo(resultShape, params.dtype, outValue.values);\n }\n const program = new GatherNDProgram2(sliceRank, [numSlices, sliceSize]);\n const uniformData = [{ type: \"int32\", data: [sliceRank] }, { type: \"int32\", data: strides }];\n const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndices], flattenX.dtype, uniformData);\n const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: resultShape } });\n backend2.disposeData(flattenIndices.dataId);\n backend2.disposeData(flattenX.dataId);\n backend2.disposeData(res.dataId);\n return reshaped;\n}\nvar gatherNdConfig4 = {\n kernelName: GatherNd,\n backendName: \"webgpu\",\n kernelFunc: gatherNd4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/gather_webgpu.js\nvar GatherProgram2 = class {\n constructor(aShape, outputShape) {\n this.variableNames = [\"A\", \"indices\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = aShape.slice();\n this.aShape = aShape;\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `gather`;\n }\n getUserCode() {\n const sourceCoords = getSourceCoords4(this.aShape);\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let resRC = getCoordsFromIndex(index);\n let indexZ = i32(getIndices(resRC.x, resRC.z));\n let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);\n setOutputAtIndex(index, inBounds * getA(${sourceCoords}));\n }\n }\n `;\n return userCode;\n }\n};\nfunction getSourceCoords4(aShape) {\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const sourceCoords = [];\n for (let i2 = 0; i2 < aShape.length; i2++) {\n if (i2 === 2) {\n sourceCoords.push(\"indexZ\");\n } else {\n sourceCoords.push(`${currentCoords[i2]}`);\n }\n }\n return sourceCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GatherV2.js\nfunction gatherV24(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x, indices } = inputs;\n const { axis, batchDims } = attrs;\n const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0];\n const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, batchDims);\n const indicesSize = util_exports.sizeFromShape(indices.shape);\n const toDispose = [];\n const flattenX = reshape6({\n inputs: { x },\n backend: backend2,\n attrs: {\n shape: [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n shapeInfo.dimSize,\n shapeInfo.sliceSize\n ]\n }\n });\n const flattenIndex = reshape6({\n inputs: { x: indices },\n backend: backend2,\n attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] }\n });\n toDispose.push(flattenX);\n toDispose.push(flattenIndex);\n const flattenOutputShape = [\n shapeInfo.batchSize,\n shapeInfo.outerSize,\n indicesSize / shapeInfo.batchSize,\n shapeInfo.sliceSize\n ];\n if (backend2.shouldExecuteOnCPU([x, indices])) {\n const indicesBufferInfo = backend2.tensorMap.get(flattenIndex.dataId);\n const indicesValues = indicesBufferInfo.values;\n const indicesBuf = buffer(flattenIndex.shape, flattenIndex.dtype, indicesValues);\n const xBufferInfo = backend2.tensorMap.get(flattenX.dataId);\n const xValues = xBufferInfo.values;\n const xBuf = buffer(flattenX.shape, flattenX.dtype, xValues);\n const outBuf = gatherV2ImplCPU2(xBuf, indicesBuf, flattenOutputShape);\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return backend2.makeTensorInfo(shapeInfo.outputShape, outBuf.dtype, outBuf.values);\n }\n const program = new GatherProgram2(flattenX.shape, flattenOutputShape);\n const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndex], flattenX.dtype);\n toDispose.push(res);\n const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: shapeInfo.outputShape } });\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return reshaped;\n}\nvar gatherV2Config4 = {\n kernelName: GatherV2,\n backendName: \"webgpu\",\n kernelFunc: gatherV24\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Greater.js\nvar greater5 = binaryKernelFunc3({\n opType: BinaryOpType.GREATER,\n cpuKernelImpl: greaterImplCPU2,\n dtype: \"bool\"\n});\nvar greaterConfig4 = {\n kernelName: Greater,\n backendName: \"webgpu\",\n kernelFunc: greater5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GreaterEqual.js\nvar greaterEqual4 = binaryKernelFunc3({\n opType: BinaryOpType.GREATER_EQUAL,\n dtype: \"bool\",\n cpuKernelImpl: greaterEqualImplCPU2\n});\nvar greaterEqualConfig4 = {\n kernelName: GreaterEqual,\n backendName: \"webgpu\",\n kernelFunc: greaterEqual4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/IsNaN.js\nvar isNaN5 = unaryKernelFunc3({ opType: UnaryOpType.IS_NAN, dtype: \"bool\" });\nvar isNaNConfig3 = {\n kernelName: IsNan,\n backendName: \"webgpu\",\n kernelFunc: isNaN5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LeakyRelu.js\nfunction leakyRelu5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { alpha } = attrs;\n const uniformData = [{ type: \"float32\", data: [alpha] }];\n const program = new UnaryOpProgram2(x.shape, UnaryOpType.LEAKYRELU);\n program.uniforms = \"alpha : f32,\";\n return backend2.runWebGPUProgram(program, [x], \"float32\", uniformData);\n}\nvar leakyReluConfig4 = {\n kernelName: LeakyRelu,\n backendName: \"webgpu\",\n kernelFunc: leakyRelu5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Less.js\nvar less5 = binaryKernelFunc3({ opType: BinaryOpType.LESS, dtype: \"bool\", cpuKernelImpl: lessImplCPU2 });\nvar lessConfig4 = {\n kernelName: Less,\n backendName: \"webgpu\",\n kernelFunc: less5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LessEqual.js\nvar lessEqual4 = binaryKernelFunc3({\n opType: BinaryOpType.LESS_EQUAL,\n dtype: \"bool\",\n cpuKernelImpl: lessEqualImplCPU2\n});\nvar lessEqualConfig4 = {\n kernelName: LessEqual,\n backendName: \"webgpu\",\n kernelFunc: lessEqual4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Log.js\nvar log5 = unaryKernelFunc3({ opType: UnaryOpType.LOG, cpuKernelImpl: logImplCPU2 });\nvar logConfig4 = {\n kernelName: Log,\n backendName: \"webgpu\",\n kernelFunc: log5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LogicalAnd.js\nvar logicalAnd4 = binaryKernelFunc3({ opType: BinaryOpType.LOGICAL_AND, dtype: \"bool\" });\nvar logicalAndConfig4 = {\n kernelName: LogicalAnd,\n backendName: \"webgpu\",\n kernelFunc: logicalAnd4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LogicalNot.js\nvar logicalNot4 = unaryKernelFunc3({ opType: UnaryOpType.LOGICAL_NOT });\nvar logicalNotConfig4 = {\n kernelName: LogicalNot,\n backendName: \"webgpu\",\n kernelFunc: logicalNot4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Maximum.js\nvar maximum5 = binaryKernelFunc3({\n opType: BinaryOpType.MAX,\n cpuKernelImpl: maximumImplCPU2\n});\nvar maximumConfig4 = {\n kernelName: Maximum,\n backendName: \"webgpu\",\n kernelFunc: maximum5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/MaxPool.js\nfunction maxPool5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs;\n const dilations = 1;\n const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode);\n return poolImpl(x, convInfo, \"max\", backend2);\n}\nvar maxPoolConfig4 = {\n kernelName: MaxPool,\n backendName: \"webgpu\",\n kernelFunc: maxPool5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Min.js\nfunction min6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n return reduce2(x, axis, keepDims, \"min\", backend2);\n}\nvar minConfig4 = {\n kernelName: Min,\n backendName: \"webgpu\",\n kernelFunc: min6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Minimum.js\nvar minimum5 = binaryKernelFunc3({\n opType: BinaryOpType.MIN,\n cpuKernelImpl: minimumImplCPU2\n});\nvar minimumConfig4 = {\n kernelName: Minimum,\n backendName: \"webgpu\",\n kernelFunc: minimum5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/mirror_pad_webgpu.js\nvar MirrorPadProgram2 = class {\n constructor(xShape, paddings, mode) {\n this.uniforms = \"\";\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.xShape = xShape;\n paddings.map((_, i2) => {\n this.uniforms += ` pad${i2} : vec2,`;\n });\n this.offset = mode === \"reflect\" ? 0 : 1;\n this.shaderKey = `mirrorPad_${mode}`;\n }\n getUserCode() {\n const rank = this.xShape.length;\n const start = this.xShape.map((_, i2) => `uniforms.pad${i2}[0]`).join(\",\");\n const end = this.xShape.map((_, i2) => `uniforms.pad${i2}[0] + uniforms.xShape${rank > 1 ? `[${i2}]` : \"\"}`).join(\",\");\n const shaderStart = rank === 1 ? \"start\" : \"start[i]\";\n const shaderEnd = rank === 1 ? \"end\" : \"end[i]\";\n const shaderOutC = rank === 1 ? \"outC\" : \"outC[i]\";\n const dtype = getCoordsDataType2(rank);\n const unpackedCoords = rank > 1 ? [\"coords[0]\", \"coords[1]\", \"coords[2]\", \"coords[3]\"].slice(0, rank) : \"coords\";\n return `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let start = ${dtype}(${start});\n let end = ${dtype}(${end});\n var outC = getCoordsFromIndex(index);\n for (var i = 0; i < ${rank}; i = i + 1) {\n if (${shaderOutC} < ${shaderStart}) {\n ${shaderOutC} = ${shaderStart} * 2 - ${shaderOutC} - ${this.offset};\n } else if(${shaderOutC} >= ${shaderEnd}) {\n ${shaderOutC} = (${shaderEnd} - 1) * 2 - ${shaderOutC} + ${this.offset};\n }\n }\n let coords = outC - start;\n setOutputAtIndex(index, getX(${unpackedCoords}));\n }\n }\n `;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/MirrorPad.js\nvar mirrorPadConfig4 = {\n kernelName: MirrorPad,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { x } = inputs;\n const { paddings, mode } = attrs;\n const webGPUBackend = backend2;\n const uniformData = paddings.map((p2) => {\n return { type: \"int32\", data: [p2[0], p2[1]] };\n });\n const program = new MirrorPadProgram2(x.shape, paddings, mode);\n const output = webGPUBackend.runWebGPUProgram(program, [x], x.dtype, uniformData);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Neg.js\nfunction neg4(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (backend2.shouldExecuteOnCPU([x])) {\n const xData = backend2.tensorMap.get(x.dataId);\n const [outValues, newShape] = negImplCPU2(xData.values, x.shape, x.dtype);\n return backend2.makeTensorInfo(newShape, x.dtype, outValues);\n }\n const program = new UnaryOpProgram2(x.shape, UnaryOpType.NEG);\n return backend2.runWebGPUProgram(program, [x], x.dtype);\n}\nvar negConfig4 = {\n kernelName: Neg,\n backendName: \"webgpu\",\n kernelFunc: neg4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NonMaxSuppressionV3.js\nfunction nonMaxSuppressionV33(args) {\n console.warn(\"tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const { selectedIndices } = kernel_impls_exports.nonMaxSuppressionV3Impl(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold);\n return backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices));\n}\nvar nonMaxSuppressionV3Config4 = {\n kernelName: NonMaxSuppressionV3,\n backendName: \"webgpu\",\n kernelFunc: nonMaxSuppressionV33\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NonMaxSuppressionV5.js\nfunction nonMaxSuppressionV53(args) {\n console.warn(\"tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");\n const { inputs, backend: backend2, attrs } = args;\n const { boxes, scores } = inputs;\n const { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = attrs;\n const boxesVals = backend2.readSync(boxes.dataId);\n const scoresVals = backend2.readSync(scores.dataId);\n const maxOutputSizeVal = maxOutputSize;\n const iouThresholdVal = iouThreshold;\n const scoreThresholdVal = scoreThreshold;\n const softNmsSigmaVal = softNmsSigma;\n const { selectedIndices, selectedScores } = kernel_impls_exports.nonMaxSuppressionV5Impl(boxesVals, scoresVals, maxOutputSizeVal, iouThresholdVal, scoreThresholdVal, softNmsSigmaVal);\n return [\n backend2.makeTensorInfo([selectedIndices.length], \"int32\", new Int32Array(selectedIndices)),\n backend2.makeTensorInfo([selectedScores.length], \"float32\", new Float32Array(selectedScores))\n ];\n}\nvar nonMaxSuppressionV5Config4 = {\n kernelName: NonMaxSuppressionV5,\n backendName: \"webgpu\",\n kernelFunc: nonMaxSuppressionV53\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ZerosLike.js\nfunction zerosLike5(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"complex64\") {\n const realPart = real4({ inputs: { input: x }, backend: backend2 });\n const r2 = zerosLike5({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag4({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex4({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeData(realPart.dataId);\n backend2.disposeData(r2.dataId);\n backend2.disposeData(imagPart.dataId);\n backend2.disposeData(i2.dataId);\n return result;\n } else {\n return fill5({\n attrs: {\n shape: x.shape,\n dtype: x.dtype,\n value: x.dtype === \"string\" ? \"\" : 0\n },\n backend: backend2\n });\n }\n}\nvar zerosLikeConfig4 = {\n kernelName: ZerosLike,\n backendName: \"webgpu\",\n kernelFunc: zerosLike5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/OnesLike.js\nfunction onesLike5(args) {\n const { inputs, backend: backend2 } = args;\n const { x } = inputs;\n if (x.dtype === \"string\") {\n throw new Error(\"onesLike is not supported under string dtype\");\n } else if (x.dtype === \"complex64\") {\n const realPart = real4({ inputs: { input: x }, backend: backend2 });\n const r2 = onesLike5({ inputs: { x: realPart }, backend: backend2 });\n const imagPart = imag4({ inputs: { input: x }, backend: backend2 });\n const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 });\n const result = complex4({ inputs: { real: r2, imag: i2 }, backend: backend2 });\n backend2.disposeData(realPart.dataId);\n backend2.disposeData(r2.dataId);\n backend2.disposeData(imagPart.dataId);\n backend2.disposeData(i2.dataId);\n return result;\n } else {\n return fill5({ attrs: { shape: x.shape, dtype: x.dtype, value: 1 }, backend: backend2 });\n }\n}\nvar onesLikeConfig4 = {\n kernelName: OnesLike,\n backendName: \"webgpu\",\n kernelFunc: onesLike5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pack.js\nfunction pack4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { axis } = attrs;\n if (inputs.length === 1) {\n return expandDims6({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } });\n }\n const shape = inputs[0].shape;\n const dtype = inputs[0].dtype;\n inputs.forEach((t2) => {\n util_exports.assertShapesMatch(shape, t2.shape, \"All tensors passed to stack must have matching shapes\");\n util_exports.assert(dtype === t2.dtype, () => \"All tensors passed to stack must have matching dtypes\");\n });\n const intermediateTensorInfos = [];\n const expandedTensors = inputs.map((t2) => {\n const expandedT = expandDims6({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } });\n intermediateTensorInfos.push(expandedT);\n return expandedT;\n });\n const result = concat5({ inputs: expandedTensors, backend: backend2, attrs: { axis } });\n intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId));\n return result;\n}\nvar packConfig4 = {\n kernelName: Pack,\n backendName: \"webgpu\",\n kernelFunc: pack4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pad_webgpu.js\nvar PadProgram2 = class {\n constructor(xShape, paddings) {\n this.variableNames = [\"x\"];\n this.uniforms = \"constantValue : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]);\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n paddings.map((_, i2) => {\n this.uniforms += ` pad${i2} : vec2,`;\n });\n this.xShape = xShape;\n this.shaderKey = \"pad\";\n }\n getUserCode() {\n const rank = this.xShape.length;\n const type = getCoordsDataType2(rank);\n const start = this.xShape.map((_, i2) => `uniforms.pad${i2}[0]`).join(\",\");\n const end = this.xShape.map((_, i2) => `uniforms.pad${i2}[0] + uniforms.xShape${rank > 1 ? `[${i2}]` : \"\"}`).join(\",\");\n const startValue = rank > 1 ? `${type}(${start})` : `${start}`;\n const endValue = rank > 1 ? `${type}(${end})` : `${end}`;\n const leftPadCondition = rank > 1 ? `any(outC < start)` : `outC < start`;\n const rightPadCondition = rank > 1 ? `any(outC >= end)` : `outC >= end`;\n const unpackedCoords = rank > 1 ? [\"coords[0]\", \"coords[1]\", \"coords[2]\", \"coords[3]\"].slice(0, rank) : \"coords\";\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let start = ${startValue};\n let end = ${endValue};\n let outC = getCoordsFromIndex(index);\n\n if (${leftPadCondition} || ${rightPadCondition}) {\n setOutputAtIndex(index, uniforms.constantValue);\n } else {\n let coords = outC - start;\n setOutputAtIndex(index, getX(${unpackedCoords}));\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/PadV2.js\nvar padV23 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { paddings, constantValue } = attrs;\n if (paddings.every((p2) => util_exports.arraysEqual(p2, [0, 0]))) {\n return identity5({ inputs: { x }, backend: backend2 });\n }\n if (util_exports.sizeFromShape(x.shape) === 0) {\n const outputShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]);\n return fill5({\n backend: backend2,\n attrs: { shape: outputShape, value: constantValue, dtype: x.dtype }\n });\n }\n const uniformData = [{ type: \"float32\", data: [constantValue] }];\n paddings.map((p2) => uniformData.push({ type: \"int32\", data: [p2[0], p2[1]] }));\n const program = new PadProgram2(x.shape, paddings);\n return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n};\nvar padV2Config4 = {\n kernelName: PadV2,\n backendName: \"webgpu\",\n kernelFunc: padV23\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pow.js\nvar pow4 = binaryKernelFunc3({\n opType: BinaryOpType.POW\n});\nvar powConfig4 = {\n kernelName: Pow,\n backendName: \"webgpu\",\n kernelFunc: pow4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Prelu.js\nfunction prelu6(args) {\n const { inputs, backend: backend2 } = args;\n const { x, alpha } = inputs;\n const program = new BinaryOpProgram2(BinaryOpType.PRELU, x.shape, alpha.shape);\n return backend2.runWebGPUProgram(program, [x, alpha], \"float32\");\n}\nvar preluConfig4 = {\n kernelName: Prelu,\n backendName: \"webgpu\",\n kernelFunc: prelu6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Prod.js\nfunction prod5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { axis, keepDims } = attrs;\n return reduce2(x, axis, keepDims, \"prod\", backend2);\n}\nvar prodConfig4 = {\n kernelName: Prod,\n backendName: \"webgpu\",\n kernelFunc: prod5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Range.js\nvar range6 = (args) => {\n const { backend: backend2, attrs } = args;\n const { start, stop, step: step5, dtype } = attrs;\n const values = rangeImplCPU2(start, stop, step5, dtype);\n return backend2.makeTensorInfo([values.length], dtype, values);\n};\nvar rangeConfig4 = {\n kernelName: Range,\n backendName: \"webgpu\",\n kernelFunc: range6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/RealDiv.js\nvar realDiv2 = binaryKernelFunc3({ opType: BinaryOpType.DIV });\nvar realDivConfig4 = {\n kernelName: RealDiv,\n backendName: \"webgpu\",\n kernelFunc: realDiv2\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Reciprocal.js\nvar reciprocal4 = unaryKernelFunc3({ opType: UnaryOpType.RECIPROCAL });\nvar reciprocalConfig3 = {\n kernelName: Reciprocal,\n backendName: \"webgpu\",\n kernelFunc: reciprocal4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Relu.js\nvar relu4 = unaryKernelFunc3({ opType: UnaryOpType.RELU });\nvar reluConfig4 = {\n kernelName: Relu,\n backendName: \"webgpu\",\n kernelFunc: relu4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Relu6.js\nvar relu64 = unaryKernelFunc3({ opType: UnaryOpType.RELU6 });\nvar relu6Config4 = {\n kernelName: Relu6,\n backendName: \"webgpu\",\n kernelFunc: relu64\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/resize_bilinear_webgpu.js\nvar ResizeBilinearProgram2 = class {\n constructor(inputShape, newHeight, newWidth) {\n this.variableNames = [\"x\"];\n this.uniforms = \"adjustHeightWidth : vec2, halfPixelCenters : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = [inputShape[0], newHeight, newWidth, inputShape[3]];\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = `resizeBilinear`;\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let b = coords[0];\n let d = coords[3];\n let rc = coords.yz;\n\n let effectiveInSize = vec2(\n f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],\n f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);\n\n let effectiveOutSize = vec2(\n f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],\n f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);\n\n let effectiveInputOverOutputRatioRC =\n effectiveInSize / effectiveOutSize;\n\n // Fractional source index\n let sourceFracIndexRC =\n (vec2(rc) + vec2(uniforms.halfPixelCenters)) *\n effectiveInputOverOutputRatioRC - vec2(uniforms.halfPixelCenters);\n\n // Compute the four integer indices.\n let sourceFloorRC = vec2(sourceFracIndexRC);\n let sourceCeilRC = vec2(\n min(vec2(uniforms.xShape.yz) - vec2(1.0), ceil(sourceFracIndexRC)));\n\n let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);\n let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);\n let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);\n let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);\n\n let fracRC = sourceFracIndexRC - vec2(sourceFloorRC);\n\n let top = topLeft + (topRight - topLeft) * fracRC.y;\n let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;\n let newValue = top + (bottom - top) * fracRC.x;\n\n setOutputAtIndex(index, newValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ResizeBilinear.js\nfunction resizeBilinear5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, size, halfPixelCenters } = attrs;\n const [newHeight, newWidth] = size;\n const adjustHeight = alignCorners && newHeight > 1 ? 1 : 0;\n const adjustWidth = alignCorners && newWidth > 1 ? 1 : 0;\n const halfPixelCentersValue = halfPixelCenters ? 0.5 : 0;\n const uniformData = [\n { type: \"float32\", data: [adjustHeight, adjustWidth] },\n { type: \"float32\", data: [halfPixelCentersValue] }\n ];\n const program = new ResizeBilinearProgram2(images.shape, newHeight, newWidth);\n return backend2.runWebGPUProgram(program, [images], \"float32\", uniformData);\n}\nvar resizeBilinearConfig4 = {\n kernelName: ResizeBilinear,\n backendName: \"webgpu\",\n kernelFunc: resizeBilinear5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/resize_nearest_neighbor_webgpu.js\nvar ResizeNearestNeighborProgram2 = class {\n constructor(inputShape, newHeight, newWidth, halfPixelCenters) {\n this.variableNames = [\"x\"];\n this.uniforms = \"adjustHeightWidth : vec2, roundBase : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = [inputShape[0], newHeight, newWidth, inputShape[3]];\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.halfPixelCenters = halfPixelCenters;\n this.shaderKey = `resizeNearest_${halfPixelCenters}`;\n }\n getUserCode() {\n let sourceFracIndexRC;\n if (this.halfPixelCenters) {\n sourceFracIndexRC = `max((vec2(rc) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))`;\n } else {\n sourceFracIndexRC = `vec2(rc) * effectiveInputOverOutputRatioRC`;\n }\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let b = coords[0];\n let d = coords[3];\n let rc = coords.yz;\n\n let effectiveInSize = vec2(\n f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],\n f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);\n\n let effectiveOutSize = vec2(\n f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],\n f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);\n\n let effectiveInputOverOutputRatioRC =\n effectiveInSize / effectiveOutSize;\n\n // Fractional source index\n let sourceFracIndexRC = ${sourceFracIndexRC};\n\n // Compute the coordinators of nearest neighbor point.\n let inputShapeRC = vec2(f32(uniforms.xShape.y), f32(uniforms.xShape.z));\n let sourceNearestRC = vec2(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));\n let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);\n\n setOutputAtIndex(index, newValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ResizeNearestNeighbor.js\nfunction resizeNearestNeighbor5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { images } = inputs;\n const { alignCorners, halfPixelCenters, size } = attrs;\n const [newHeight, newWidth] = size;\n const adjustHeight = alignCorners && newHeight > 1 ? 1 : 0;\n const adjustWidth = alignCorners && newWidth > 1 ? 1 : 0;\n const roundBase = alignCorners ? 0.5 : 0;\n const uniformData = [\n { type: \"float32\", data: [adjustHeight, adjustWidth] },\n { type: \"float32\", data: [roundBase] }\n ];\n const program = new ResizeNearestNeighborProgram2(images.shape, newHeight, newWidth, halfPixelCenters);\n return backend2.runWebGPUProgram(program, [images], images.dtype, uniformData);\n}\nvar resizeNearestNeighborConfig4 = {\n kernelName: ResizeNearestNeighbor,\n backendName: \"webgpu\",\n kernelFunc: resizeNearestNeighbor5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/rotate_webgpu.js\nvar RotateProgram2 = class {\n constructor(imageShape, fillValue) {\n this.outputShape = [];\n this.variableNames = [\"x\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = imageShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.uniforms = `centerX : f32, centerY : f32, sinRadians : f32,\n cosRadians : f32,`;\n this.shaderKey = \"rotate\";\n this.outputShape = imageShape;\n if (typeof fillValue === \"number\") {\n this.uniforms += ` fillValue : f32,`;\n this.fillSnippet = `var outputValue = uniforms.fillValue;`;\n this.shaderKey += \"_float\";\n } else {\n this.uniforms += ` fillValue : vec3,`;\n this.fillSnippet = `var outputValue = uniforms.fillValue[coords[3]];`;\n this.shaderKey += \"_vec3\";\n }\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n let coordXFloat = (f32(coords[2]) - uniforms.centerX) *\n uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *\n uniforms.sinRadians;\n let coordYFloat = (f32(coords[2]) - uniforms.centerX) *\n uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *\n uniforms.cosRadians;\n let coordX = i32(round(coordXFloat + uniforms.centerX));\n let coordY = i32(round(coordYFloat + uniforms.centerY));\n ${this.fillSnippet}\n if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&\n coordY < uniforms.xShape[1]) {\n outputValue = getX(coords[0], coordY, coordX, coords[3]);\n }\n setOutputAtIndex(index, outputValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/RotateWithOffset.js\nvar rotateWithOffsetConfig4 = {\n kernelName: RotateWithOffset,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, attrs, backend: backend2 }) => {\n const { image: image2 } = inputs;\n const { radians, fillValue, center } = attrs;\n const webgpuBackend = backend2;\n const program = new RotateProgram2(image2.shape, fillValue);\n const [centerX, centerY] = backend_util_exports.getImageCenter(center, image2.shape[1], image2.shape[2]);\n const uniformData = [\n { type: \"float32\", data: [centerX] },\n { type: \"float32\", data: [centerY] },\n { type: \"float32\", data: [Math.sin(radians)] },\n { type: \"float32\", data: [Math.cos(radians)] }\n ];\n if (typeof fillValue === \"number\") {\n uniformData.push({ type: \"float32\", data: [Number.parseFloat(fillValue.toFixed(2))] });\n } else {\n uniformData.push({ type: \"float32\", data: fillValue });\n }\n const output = webgpuBackend.runWebGPUProgram(program, [image2], image2.dtype, uniformData);\n return output;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Rsqrt.js\nvar rsqrt4 = unaryKernelFunc3({ opType: UnaryOpType.RSQRT, cpuKernelImpl: rsqrtImplCPU2 });\nvar rsqrtConfig4 = {\n kernelName: Rsqrt,\n backendName: \"webgpu\",\n kernelFunc: rsqrt4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/scatter_webgpu.js\nvar ScatterProgram2 = class {\n constructor(flattenXShape, sliceDim, indicesRank, updatesRank, strides, shape, outputDtype, sumDupeIndices = true) {\n this.variableNames = [\"updates\", \"indices\"];\n this.workGroupSize = [64, 1, 1];\n this.atomic = true;\n this.outputShape = shape;\n this.type = outputDtype;\n this.sumDupeIndices = sumDupeIndices;\n this.dispatchLayout = flatDispatchLayout(flattenXShape);\n this.dispatch = computeDispatch(this.dispatchLayout, flattenXShape, this.workGroupSize);\n this.sliceDimGreaterThanOne = sliceDim > 1;\n this.shaderKey = `scatter_${indicesRank}_${updatesRank}_${this.sliceDimGreaterThanOne}_${outputDtype}_${sumDupeIndices}`;\n const stridesType = getCoordsDataType2(strides.length);\n this.uniforms = `sliceDim : i32, strides: ${stridesType}, size: i32,`;\n this.updatesRank = updatesRank;\n this.indicesRank = indicesRank;\n }\n getUserCode() {\n let indicesString = \"\";\n if (this.indicesRank === 1) {\n indicesString = \"coords[0]\";\n } else if (this.indicesRank === 2) {\n indicesString = \"coords[0], j\";\n }\n const indicesSnippet = `getIndices(${indicesString})`;\n const strideString = this.sliceDimGreaterThanOne ? \"uniforms.strides[j]\" : \"uniforms.strides\";\n let outCoordsString = \"\";\n let getUpdatesCoordsFromFlatIndex = \"\";\n if (this.dispatchLayout.x.length === 1) {\n outCoordsString = \"flattenedIndex\";\n getUpdatesCoordsFromFlatIndex = `\n fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {\n return index;\n }\n `;\n } else if (this.dispatchLayout.x.length === 2) {\n outCoordsString = \"vec2(flattenedIndex, coords[1])\";\n getUpdatesCoordsFromFlatIndex = `\n fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2 {\n // N.B. |updates| could be a scalar tensor, conceptually representing a\n // 2D tensor with all values equal to that. By design, its size must be\n // the same as |outShape[1]| in one dimension, and |indicesShape[0]|\n // gives the other.\n let sliceSize = uniforms.outShape[1];\n let d0 = index / sliceSize;\n let d1 = index - d0 * sliceSize;\n return vec2(d0, d1);\n }\n `;\n }\n const updatesString = Array.from({ length: this.updatesRank }, (_, idx) => `coords[${idx}]`);\n const updatesSnippet = `getUpdates(${updatesString.join(\", \")})`;\n const atomicRMW = (ptr, val) => {\n let atomicAddSnippet = `atomicAdd(${ptr}, bitcast(${val}))`;\n if (this.type === \"float32\") {\n atomicAddSnippet = `\n {\n var oldBits = 0;\n var newBits = bitcast(${val});\n loop {\n let info = atomicCompareExchangeWeak(${ptr}, oldBits, newBits);\n if (info.exchanged) {\n break;\n }\n oldBits = info.old_value;\n let oldValue = bitcast(oldBits);\n let newValue = oldValue + (${val});\n newBits = bitcast(newValue);\n }\n }\n `;\n }\n const atomicStoreSnippet = `atomicStore(${ptr}, bitcast(${val}));`;\n return this.sumDupeIndices ? atomicAddSnippet : atomicStoreSnippet;\n };\n const userCode = `\n ${getUpdatesCoordsFromFlatIndex}\n\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getUpdatesCoordsFromFlatIndex(index);\n var flattenedIndex = 0;\n for (var j = 0; j < uniforms.sliceDim; j = j + 1) {\n let indexInside = i32(round(${indicesSnippet}));\n flattenedIndex = flattenedIndex + indexInside * ${strideString};\n }\n let updateValue =\n ${mapToWgslTypes(this.type, false)}(${updatesSnippet});\n let flatIndex = getOutputIndexFromCoords(${outCoordsString});\n\n ${atomicRMW(\"&result[flatIndex]\", \"updateValue\")};\n }\n }`;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ScatterNd.js\nfunction scatterNd4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { indices, updates } = inputs;\n const { shape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(updates, indices, shape);\n const flattenShape = [outputSize / sliceSize, sliceSize];\n if (outputSize === 0) {\n return backend2.makeTensorInfo(shape, indices.dtype);\n }\n const flattenIndices = reshape6({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numUpdates, sliceRank] } });\n const flattenX = reshape6({ inputs: { x: updates }, backend: backend2, attrs: { shape: [numUpdates, sliceSize] } });\n const type = flattenX.dtype;\n const output = fill5({ backend: backend2, attrs: { shape: flattenShape, value: 0, dtype: type } });\n const size = util_exports.sizeFromShape(flattenX.shape);\n const uniformData = [\n { type: \"int32\", data: [sliceRank] },\n { type: \"int32\", data: strides },\n { type: \"int32\", data: [size] }\n ];\n const program = new ScatterProgram2(flattenX.shape, sliceRank, flattenIndices.shape.length, flattenX.shape.length, strides, flattenShape, type);\n const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndices], type, uniformData, output);\n const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape } });\n backend2.disposeData(flattenIndices.dataId);\n backend2.disposeData(flattenX.dataId);\n backend2.disposeData(res.dataId);\n return reshaped;\n}\nvar scatterNdConfig4 = {\n kernelName: ScatterNd,\n backendName: \"webgpu\",\n kernelFunc: scatterNd4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/select_webgpu.js\nvar SelectProgram2 = class {\n constructor(cRank, shape, rank) {\n this.variableNames = [\"c\", \"a\", \"b\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.cRank = cRank;\n this.rank = rank;\n this.shaderKey = \"select\";\n }\n getUserCode() {\n let cCoords;\n let abCoords;\n if (this.rank > 4) {\n throw Error(`Where for rank ${this.rank} is not yet supported`);\n }\n if (this.rank === 1) {\n abCoords = `resRC`;\n cCoords = `resRC`;\n } else {\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const cCoordVars = [];\n const abCoordVars = [];\n for (let i2 = 0; i2 < this.outputShape.length; i2++) {\n abCoordVars.push(`${currentCoords[i2]}`);\n if (i2 < this.cRank) {\n cCoordVars.push(`${currentCoords[i2]}`);\n }\n }\n cCoords = cCoordVars.join();\n abCoords = abCoordVars.join();\n }\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let resRC = getCoordsFromIndex(index);\n let cVal = getC(${cCoords});\n if (cVal >= 1.0) {\n setOutputAtIndex(index, getA(${abCoords}));\n } else {\n setOutputAtIndex(index, getB(${abCoords}));\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Select.js\nfunction select5(args) {\n const { inputs, backend: backend2 } = args;\n const { condition, t: t2, e: e2 } = inputs;\n const program = new SelectProgram2(condition.shape.length, t2.shape, t2.shape.length);\n return backend2.runWebGPUProgram(program, [condition, t2, e2], upcastType(t2.dtype, e2.dtype));\n}\nvar selectConfig4 = {\n kernelName: Select,\n backendName: \"webgpu\",\n kernelFunc: select5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sigmoid.js\nvar sigmoid5 = unaryKernelFunc3({ opType: UnaryOpType.SIGMOID });\nvar sigmoidConfig4 = {\n kernelName: Sigmoid,\n backendName: \"webgpu\",\n kernelFunc: sigmoid5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sin.js\nvar sin4 = unaryKernelFunc3({ opType: UnaryOpType.SIN });\nvar sinConfig4 = {\n kernelName: Sin,\n backendName: \"webgpu\",\n kernelFunc: sin4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sinh.js\nvar sinh4 = unaryKernelFunc3({ opType: UnaryOpType.SINH });\nvar sinhConfig3 = {\n kernelName: Sinh,\n backendName: \"webgpu\",\n kernelFunc: sinh4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sub.js\nvar sub4 = binaryKernelFunc3({ opType: BinaryOpType.SUB, cpuKernelImpl: subImplCPU2, supportsComplex: true });\nvar subConfig4 = {\n kernelName: Sub,\n backendName: \"webgpu\",\n kernelFunc: sub4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Softmax.js\nfunction softmax6(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { logits } = inputs;\n const { dim } = attrs;\n const axes = util_exports.parseAxisParam([dim], logits.shape);\n const maxLogit = max6({\n inputs: { x: logits },\n backend: backend2,\n attrs: { reductionIndices: axes, keepDims: false }\n });\n const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes);\n const maxLogitsReshaped = reshape6({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } });\n const a = sub4({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 });\n const b = exp4({ inputs: { x: a }, backend: backend2 });\n const sumExp = sum6({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } });\n const sumExpReshaped = reshape6({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } });\n const res = realDiv2({ inputs: { a: b, b: sumExpReshaped }, backend: backend2 });\n backend2.disposeData(maxLogit.dataId);\n backend2.disposeData(maxLogitsReshaped.dataId);\n backend2.disposeData(a.dataId);\n backend2.disposeData(b.dataId);\n backend2.disposeData(sumExp.dataId);\n backend2.disposeData(sumExpReshaped.dataId);\n return res;\n}\nvar softmaxConfig4 = {\n kernelName: Softmax,\n backendName: \"webgpu\",\n kernelFunc: softmax6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SpaceToBatchND.js\nvar spaceToBatchND5 = (args) => {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { blockShape, paddings } = attrs;\n util_exports.assert(x.shape.length <= 4, () => \"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet\");\n const prod6 = blockShape.reduce((a, b) => a * b);\n const completePaddings = [[0, 0]];\n completePaddings.push(...paddings);\n for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) {\n completePaddings.push([0, 0]);\n }\n const toDispose = [];\n const paddedX = padV23({\n inputs: { x },\n backend: backend2,\n attrs: { paddings: completePaddings, constantValue: 0 }\n });\n const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false);\n const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false);\n const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false);\n const reshapedPaddedX = reshape6({ inputs: { x: paddedX }, backend: backend2, attrs: { shape: reshapedPaddedShape } });\n const paddedXT = transpose5({\n inputs: { x: reshapedPaddedX },\n backend: backend2,\n attrs: { perm: permutedReshapedPaddedPermutation }\n });\n const result = reshape6({ inputs: { x: paddedXT }, backend: backend2, attrs: { shape: flattenShape } });\n toDispose.push(paddedX);\n toDispose.push(reshapedPaddedX);\n toDispose.push(paddedXT);\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return result;\n};\nvar spaceToBatchNDConfig4 = {\n kernelName: SpaceToBatchND,\n backendName: \"webgpu\",\n kernelFunc: spaceToBatchND5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/tile_webgpu.js\nvar TileProgram2 = class {\n constructor(aShape, reps) {\n this.variableNames = [\"A\"];\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n const outputShape = new Array(aShape.length);\n for (let i2 = 0; i2 < outputShape.length; i2++) {\n outputShape[i2] = aShape[i2] * reps[i2];\n }\n this.outputShape = outputShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.rank = this.outputShape.length;\n this.shaderKey = \"tile\";\n }\n getUserCode() {\n const sourceCoords = getSourceCoords5(this.rank, \"uniforms.\");\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let resRC = getCoordsFromIndex(index);\n setOutputAtIndex(index, getA(${sourceCoords}));\n }\n }\n `;\n return userCode;\n }\n};\nfunction getSourceCoords5(rank, uniformPrefix = \"\") {\n if (rank >= 5) {\n throw Error(`Tile for rank ${rank} is not yet supported`);\n }\n if (rank === 1) {\n return `(resRC % ${uniformPrefix}aShape)`;\n }\n const currentCoords = [\"resRC.x\", \"resRC.y\", \"resRC.z\", \"resRC.w\"];\n const sourceCoords = [];\n for (let i2 = 0; i2 < rank; i2++) {\n sourceCoords.push(`(${currentCoords[i2]} % ${uniformPrefix}aShape[${i2}])`);\n }\n return sourceCoords.join();\n}\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Tile.js\nfunction tile6(params) {\n const { inputs, backend: backend2, attrs } = params;\n const { x } = inputs;\n const { reps } = attrs;\n if (backend2.shouldExecuteOnCPU([x]) || x.dtype === \"string\" || x.shape.length >= 5) {\n const data = backend2.readSync(x.dataId);\n const value = x.dtype === \"string\" ? data.map((d) => util_exports.decodeString(d)) : data;\n const buf = buffer(x.shape, x.dtype, value);\n const outBuf = tileImplCPU2(buf, reps);\n return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values);\n }\n const program = new TileProgram2(x.shape, reps);\n const output = backend2.runWebGPUProgram(program, [x], x.dtype);\n return output;\n}\nvar tileConfig4 = {\n kernelName: Tile,\n backendName: \"webgpu\",\n kernelFunc: tile6\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SparseToDense.js\nfunction sparseToDense4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { sparseIndices, sparseValues, defaultValue } = inputs;\n const { outputShape } = attrs;\n const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(sparseValues, sparseIndices, outputShape);\n const sumDupeIndices = false;\n if (sparseValues.dtype === \"string\") {\n const indicesBuf = backend2.bufferSync(sparseIndices);\n const updatesBuf = backend2.bufferSync(sparseValues);\n const $defaultValue2 = util_exports.decodeString(backend2.readSync(defaultValue.dataId)[0]);\n const outBuf = scatterImplCPU2(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue2, sumDupeIndices);\n return backend2.makeTensorInfo(outputShape, outBuf.dtype, outBuf.values);\n }\n const flattenShape = [outputSize / sliceSize, sliceSize];\n const $sparseIndices = reshape6({\n inputs: { x: sparseIndices },\n backend: backend2,\n attrs: { shape: [numUpdates, sliceRank] }\n });\n const $sparseValues = sparseValues.shape.length ? reshape6({\n inputs: { x: sparseValues },\n backend: backend2,\n attrs: { shape: [numUpdates, sliceSize] }\n }) : identity5({ inputs: { x: sparseValues }, backend: backend2 });\n const type = $sparseValues.dtype;\n const zero = backend2.makeTensorInfo([], type, util_exports.makeZerosTypedArray(1, type));\n const $defaultValue = reshape6({\n inputs: { x: defaultValue },\n backend: backend2,\n attrs: { shape: Array(flattenShape.length).fill(1) }\n });\n const $denseValues = tile6({ inputs: { x: $defaultValue }, backend: backend2, attrs: { reps: flattenShape } });\n const size = util_exports.sizeFromShape([numUpdates, sliceSize]);\n const uniformData = [\n { type: \"int32\", data: [sliceRank] },\n { type: \"int32\", data: strides },\n { type: \"int32\", data: [size] }\n ];\n switch (numUpdates) {\n case 0:\n break;\n case 1:\n if (true) {\n const program = new ScatterProgram2([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides, flattenShape, type, sumDupeIndices);\n backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues);\n }\n break;\n default:\n if (true) {\n const program = new ScatterProgram2([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, zero.shape.length, strides, flattenShape, type, sumDupeIndices);\n backend2.runWebGPUProgram(program, [zero, $sparseIndices], type, uniformData, $denseValues);\n }\n {\n const program = new ScatterProgram2([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides, flattenShape, type);\n backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues);\n }\n }\n const denseValues = reshape6({ inputs: { x: $denseValues }, backend: backend2, attrs: { shape: outputShape } });\n backend2.disposeData($sparseIndices.dataId);\n backend2.disposeData($sparseValues.dataId);\n backend2.disposeData($defaultValue.dataId);\n backend2.disposeData(zero.dataId);\n backend2.disposeData($denseValues.dataId);\n return denseValues;\n}\nvar sparseToDenseConfig3 = {\n kernelName: SparseToDense,\n backendName: \"webgpu\",\n kernelFunc: sparseToDense4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SplitV.js\nfunction splitV4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { numOrSizeSplits, axis } = attrs;\n const $axis = util_exports.parseAxisParam(axis, x.shape)[0];\n const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis);\n const xRank = x.shape.length;\n const begin = new Array(xRank).fill(0);\n const size = x.shape.slice();\n return splitSizes.map((s2) => {\n const sliceSize = [...size];\n sliceSize[$axis] = s2;\n const sliceT = slice5({ inputs: { x }, backend: backend2, attrs: { begin, size: sliceSize } });\n begin[$axis] += s2;\n return sliceT;\n });\n}\nvar splitVConfig4 = {\n kernelName: SplitV,\n backendName: \"webgpu\",\n kernelFunc: splitV4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sqrt.js\nvar sqrt4 = unaryKernelFunc3({ opType: UnaryOpType.SQRT });\nvar sqrtConfig4 = {\n kernelName: Sqrt,\n backendName: \"webgpu\",\n kernelFunc: sqrt4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Square.js\nvar squareConfig4 = {\n kernelName: Square,\n backendName: \"webgpu\",\n kernelFunc: ({ inputs, backend: backend2 }) => {\n const { x } = inputs;\n const webGPUBackend = backend2;\n const program = new UnaryOpProgram2(x.shape, UnaryOpType.SQUARE);\n return webGPUBackend.runWebGPUProgram(program, [x], x.dtype);\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SquaredDifference.js\nvar squaredDifference4 = binaryKernelFunc3({\n opType: BinaryOpType.SQUARED_DIFFERENCE\n});\nvar squaredDifferenceConfig4 = {\n kernelName: SquaredDifference,\n backendName: \"webgpu\",\n kernelFunc: squaredDifference4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/strided_slice_webgpu.js\nvar StridedSliceProgram2 = class {\n constructor(destSize) {\n this.variableNames = [\"x\"];\n this.workPerThread = 1;\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = destSize;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]);\n const dtype = getCoordsDataType2(this.outputShape.length);\n this.uniforms = `begin : ${dtype}, strides : ${dtype}, `;\n this.shaderKey = \"stridedSlice\";\n }\n getUserCode() {\n const rank = this.outputShape.length;\n let newCoords = \"\";\n if (rank === 1) {\n newCoords = \"coords * uniforms.strides + uniforms.begin\";\n } else {\n let outputAxis = 0;\n newCoords = this.outputShape.map((_, i2) => {\n outputAxis++;\n return this.outputShape.length === 1 ? `coords * uniforms.strides[${i2}] + uniforms.begin[${i2}]` : `coords[${outputAxis - 1}] * uniforms.strides[${i2}] + uniforms.begin[${i2}]`;\n }).join(\",\");\n }\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n setOutputAtIndex(index, getX(${newCoords}));\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/StridedSlice.js\nfunction stridedSlice5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs;\n const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask);\n let result;\n if (isIdentity) {\n result = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } });\n } else if (sliceDim0 || isSimpleSlice) {\n util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`);\n const size = slice_util_exports.computeOutShape($begin, $end, $strides);\n const sliced = slice5({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } });\n result = reshape6({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeData(sliced.dataId);\n } else {\n const shouldExecuteOnCPU = backend2.shouldExecuteOnCPU([x]);\n if (shouldExecuteOnCPU) {\n const values = backend2.readSync(x.dataId);\n const xBuf = buffer(x.shape, x.dtype, values);\n const resultValues = stridedSliceImplCPU2(finalShapeSparse, xBuf, $strides, $begin);\n result = backend2.makeTensorInfo(finalShape, x.dtype, resultValues.values);\n } else {\n const program = new StridedSliceProgram2(finalShapeSparse);\n const uniformData = [{ type: \"int32\", data: $begin }, { type: \"int32\", data: $strides }];\n const resultValues = backend2.runWebGPUProgram(program, [x], x.dtype, uniformData);\n result = reshape6({ inputs: { x: resultValues }, backend: backend2, attrs: { shape: finalShape } });\n backend2.disposeData(resultValues.dataId);\n }\n }\n return result;\n}\nvar stridedSliceConfig4 = {\n kernelName: StridedSlice,\n backendName: \"webgpu\",\n kernelFunc: stridedSlice5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/StringNGrams.js\nfunction stringNGrams5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs;\n const { data, dataSplits } = inputs;\n const $data = backend2.readSync(data.dataId);\n const $dataSplits = backend2.readSync(dataSplits.dataId);\n const [nGrams, nGramsSplits] = stringNGramsImplCPU2($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences);\n return [\n backend2.makeTensorInfo([nGrams.length], \"string\", nGrams),\n backend2.makeTensorInfo(dataSplits.shape, \"int32\", nGramsSplits)\n ];\n}\nvar stringNGramsConfig4 = {\n kernelName: StringNGrams,\n backendName: \"webgpu\",\n kernelFunc: stringNGrams5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Tanh.js\nvar tanh5 = unaryKernelFunc3({ opType: UnaryOpType.TANH });\nvar tanhConfig4 = {\n kernelName: Tanh,\n backendName: \"webgpu\",\n kernelFunc: tanh5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/top_k_webgpu.js\nvar SwapProgram2 = class {\n constructor(shape) {\n this.variableNames = [\"x\", \"indices\"];\n this.workGroupSize = [256, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.uniforms = `inputSize : i32, firstPass : i32, negativeInf : f32,\n dir : i32, inc : i32,`;\n this.shaderKey = \"swap\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let outC = getCoordsFromIndex(index);\n let batch = outC[0];\n let elemIdx = outC[1];\n // We compare elements pair-wise within a group of size 2 * inc.\n // The comparing rule for each group alternates between ascending\n // and descending. Within each group, we compare each pair at\n // positions i and i+inc. To decide whether an element at position i\n // is x0 or x1, we mod it by 2 * inc, if the result is smaller than\n // inc, it is in the first half of the group, we denote it as x0,\n // otherwise we denote it as x1.\n // For example, as shown in the Bitonic top K paper referenced\n // above, Figure5(a) shows that element[1] is in the second half of\n // the group when group size is 2, but it is in the first half of\n // the group when group size is 4.\n let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;\n var i = 0;\n if (isFirstInPair) {\n i = elemIdx;\n } else {\n i = elemIdx - uniforms.inc;\n }\n\n var i0 = 0;\n if (uniforms.firstPass == 1) {\n i0 = i;\n } else {\n i0 = i32(getIndices(batch, i));\n }\n\n var i1 = 0;\n if (uniforms.firstPass == 1) {\n i1 = i + uniforms.inc;\n } else {\n i1 = i32(getIndices(batch, i + uniforms.inc));\n }\n\n var x0 = f32(0.0);\n var x1 = f32(0.0);\n if (i0 < uniforms.inputSize) {\n x0 = getX(batch, i0);\n } else {\n x0 = uniforms.negativeInf;\n }\n if (i1 < uniforms.inputSize) {\n x1 = getX(batch, i1);\n } else {\n x1 = uniforms.negativeInf;\n }\n\n let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;\n let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);\n if (reverse == isGreater) {\n // Elements in opposite order of direction\n let iTemp = i0;\n i0 = i1;\n i1 = iTemp;\n }\n if (isFirstInPair) {\n setOutputAtIndex(index, f32(i0));\n } else {\n setOutputAtIndex(index, f32(i1));\n }\n }\n }\n `;\n return userCode;\n }\n};\nvar MergeProgram2 = class {\n constructor(shape) {\n this.variableNames = [\"x\", \"indices\"];\n this.workGroupSize = [256, 1, 1];\n this.size = true;\n this.outputShape = shape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.uniforms = `inputSize : i32, firstPass : i32, k : i32,`;\n this.shaderKey = \"merge\";\n }\n getUserCode() {\n const userCode = `\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let outC = getCoordsFromIndex(index);\n let batch = outC[0];\n let elemIdx = outC[1];\n // The output size is half of the previous size.\n // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _\n // (k=4), we only need to output the indices at positions |, the\n // indices at positions _ can be thrown away, see Figure5(b) After\n // Phase 2 (Merge phase) in the Bitonic Top K paper referenced\n // above.\n // For example, the paper shows we only need to output the orange\n // bars. The output sequence should look like this | | | | | | | |.\n // Because the sequence is halved, to map the output index back to\n // the previous sequence to find the corresponding value, we need\n // to double the index. When we double the index, we basically\n // interpolate a position, so 2i looks like\n // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k\n // position of each 2k positions by - elemIdx % k. E.g. for output\n // at index 4,5,6,7, we want to get the corresponding element at\n // original index 8,9,10,11, for output at index 8,9,10,11,\n // we want to get the corresponding element at original index\n // 16,17,18,19, so on and so forth.\n\n var i = 0;\n if (elemIdx < uniforms.k) {\n i = elemIdx;\n } else {\n i = elemIdx * 2 - elemIdx % uniforms.k;\n }\n var i0 = 0;\n if (uniforms.firstPass == 1) {\n i0 = i;\n } else {\n i0 = i32(getIndices(batch, i));\n }\n var i1 = 0;\n if (uniforms.firstPass == 1) {\n i1 = i + uniforms.k;\n } else {\n i1 = i32(getIndices(batch, i + uniforms.k));\n }\n\n let x0 = getX(batch, i0);\n var x1 = f32(0.0);\n if (i1 < uniforms.inputSize) {\n x1 = getX(batch, i1);\n } else {\n x1 = x0;\n }\n\n if (x0 >= x1) {\n setOutputAtIndex(index, f32(i0));\n } else {\n setOutputAtIndex(index, f32(i1));\n }\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/TopK.js\nfunction disposeIntermediateTensorInfoOrNull2(backend2, tensorInfo) {\n if (tensorInfo !== null) {\n backend2.disposeData(tensorInfo.dataId);\n }\n}\nfunction roundUpToPow22(num) {\n let pow22 = 1;\n while (pow22 < num) {\n pow22 *= 2;\n }\n return pow22;\n}\nfunction topK3(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { x } = inputs;\n const { k, sorted } = attrs;\n const xShape = x.shape;\n const lastDim = xShape[xShape.length - 1];\n if (backend2.shouldExecuteOnCPU([x])) {\n const xVals = backend2.readSync(x.dataId);\n const [allTopKVals, allTopKIndices] = topKImplCPU2(xVals, xShape, x.dtype, k, sorted);\n return [\n backend2.makeTensorInfo(allTopKVals.shape, allTopKVals.dtype, allTopKVals.values),\n backend2.makeTensorInfo(allTopKIndices.shape, allTopKIndices.dtype, allTopKIndices.values)\n ];\n }\n if (k === 0) {\n xShape[xShape.length - 1] = 0;\n return [\n backend2.makeTensorInfo(xShape, x.dtype, []),\n backend2.makeTensorInfo(xShape, \"int32\", [])\n ];\n }\n if (lastDim === 1) {\n return [\n x,\n fill5({ attrs: { shape: xShape, dtype: \"int32\", value: 0 }, backend: backend2 })\n ];\n }\n const xSize = util_exports.sizeFromShape(xShape);\n const batch = xSize / lastDim;\n const x2D = reshape6({ inputs: { x }, attrs: { shape: [batch, lastDim] }, backend: backend2 });\n const kPow2 = roundUpToPow22(k);\n const lastDimPow2 = roundUpToPow22(lastDim);\n let indices = null;\n const getInputs = () => indices === null ? [x2D, x2D] : [x2D, indices];\n const runSwap = (dir, inc, shape) => {\n const inputs2 = getInputs();\n const program = new SwapProgram2(shape);\n const firstPass = indices === null ? 1 : 0;\n const uniformDataSwap = [\n { type: \"int32\", data: [lastDim] },\n { type: \"int32\", data: [firstPass] },\n { type: \"float32\", data: [Number.NEGATIVE_INFINITY] },\n { type: \"int32\", data: [dir] },\n { type: \"int32\", data: [inc] }\n ];\n const prevIndices2 = indices;\n indices = backend2.runWebGPUProgram(program, inputs2, \"int32\", uniformDataSwap);\n disposeIntermediateTensorInfoOrNull2(backend2, prevIndices2);\n };\n for (let len = 1; len < kPow2; len *= 2) {\n const dir = len * 2;\n for (let inc = len; inc >= 1; inc /= 2) {\n runSwap(dir, inc, [batch, lastDimPow2]);\n }\n }\n for (let indicesSize = lastDimPow2; indicesSize > kPow2; indicesSize /= 2) {\n const inputs2 = getInputs();\n const mergeProgram = new MergeProgram2([batch, indicesSize / 2]);\n const firstPass = indices === null ? 1 : 0;\n const uniformDataMerge = [\n { type: \"int32\", data: [lastDim] },\n { type: \"int32\", data: [firstPass] },\n { type: \"int32\", data: [kPow2] }\n ];\n const prevIndices2 = indices;\n indices = backend2.runWebGPUProgram(mergeProgram, inputs2, \"int32\", uniformDataMerge);\n disposeIntermediateTensorInfoOrNull2(backend2, prevIndices2);\n const len = kPow2 / 2;\n const dir = len * 2;\n for (let inc = len; inc >= 1; inc /= 2) {\n runSwap(dir, inc, indices.shape);\n }\n }\n let prevIndices = indices;\n indices = slice5({ inputs: { x: indices }, backend: backend2, attrs: { begin: 0, size: [batch, k] } });\n disposeIntermediateTensorInfoOrNull2(backend2, prevIndices);\n let values = gatherV24({ inputs: { x: x2D, indices }, backend: backend2, attrs: { axis: 1, batchDims: 1 } });\n disposeIntermediateTensorInfoOrNull2(backend2, x2D);\n const newShape = xShape.slice(0, -1);\n newShape.push(k);\n prevIndices = indices;\n indices = reshape6({ inputs: { x: indices }, attrs: { shape: newShape }, backend: backend2 });\n disposeIntermediateTensorInfoOrNull2(backend2, prevIndices);\n const prevValues = values;\n values = reshape6({ inputs: { x: values }, attrs: { shape: newShape }, backend: backend2 });\n disposeIntermediateTensorInfoOrNull2(backend2, prevValues);\n return [values, indices];\n}\nvar topKConfig4 = {\n kernelName: TopK,\n backendName: \"webgpu\",\n kernelFunc: topK3\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transform_webgpu.js\nvar TransformProgram2 = class {\n constructor(outShape) {\n this.variableNames = [\"Image\", \"Transforms\"];\n this.uniforms = \"interpolationModeId : i32, fillModeId : i32, fillValue : f32,\";\n this.workGroupSize = [64, 1, 1];\n this.size = true;\n this.outputShape = outShape;\n this.dispatchLayout = flatDispatchLayout(this.outputShape);\n this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize);\n this.shaderKey = \"transform\";\n }\n getUserCode() {\n const userCode = `\n fn mapCoord(outCoord : f32, len : f32) -> f32{\n var inCoord = outCoord;\n if(uniforms.fillModeId == 2) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n let sz2 = 2.0 * len;\n if (inCoord < sz2) {\n inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +\n inCoord;\n }\n if (inCoord < -len) {\n inCoord = inCoord + sz2;\n } else {\n inCoord = -inCoord - 1.0;\n }\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n let sz2 = 2.0 * len;\n inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));\n if (inCoord >= len) {\n inCoord = sz2 - inCoord - 1.0;\n }\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (uniforms.fillModeId == 3) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n let sz = len - 1.0;\n inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n let sz = len - 1.0;\n inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (uniforms.fillModeId == 4) {\n return clamp(outCoord, 0.0, len - 1.0);\n }\n return outCoord;\n }\n fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,\n channel : i32) -> f32 {\n var outputValue : f32;\n if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {\n outputValue = getImage(batch, coordY, coordX, channel);\n } else {\n outputValue = uniforms.fillValue;\n }\n return outputValue;\n }\n\n ${getMainHeaderString(\"index\")} {\n if (index < uniforms.size) {\n let coords = getCoordsFromIndex(index);\n var outputValue : f32;\n let batch = coords[0];\n let x = coords[2];\n let y = coords[1];\n let channel = coords[3];\n let xf = f32(x);\n let yf = f32(y);\n let a1 = getTransforms(batch, 0);\n let a2 = getTransforms(batch, 1);\n let a3 = getTransforms(batch, 2);\n let b1 = getTransforms(batch, 3);\n let b2 = getTransforms(batch, 4);\n let b3 = getTransforms(batch, 5);\n let c1 = getTransforms(batch, 6);\n let c2 = getTransforms(batch, 7);\n let projection = c1 * xf + c2 * yf + 1.0;\n if (projection == 0.0) {\n outputValue = uniforms.fillValue;\n } else {\n let inX = (a1 * xf + a2 * yf + a3) / projection;\n let inY = (b1 * xf + b2 * yf + b3) / projection;\n let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));\n let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));\n\n if (uniforms.interpolationModeId == 1) {\n let coordY = i32(round(mapY));\n let coordX = i32(round(mapX));\n outputValue = readWithFillValue(batch, coordY, coordX,\n channel);\n } else {\n let yFloor = floor(mapY);\n let xFloor = floor(mapX);\n let yCeil = yFloor + 1.0;\n let xCeil = xFloor + 1.0;\n let valueYFloor = (xCeil - mapX) *\n readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);\n let valueYCeil = (xCeil - mapX) *\n readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);\n outputValue = (yCeil - mapY) * valueYFloor +\n (mapY - yFloor) * valueYCeil;\n }\n }\n setOutputAtIndex(index, outputValue);\n }\n }\n `;\n return userCode;\n }\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Transform.js\nfunction transform5(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { image: image2, transforms } = inputs;\n const { interpolation, fillMode, fillValue, outputShape } = attrs;\n const [batch, imageHeight, imageWidth, numChannels] = image2.shape;\n const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth];\n const outShape = [\n batch,\n outHeight,\n outWidth,\n numChannels\n ];\n const program = new TransformProgram2(outShape);\n const interpolationModeId = interpolation === \"nearest\" ? 1 : 2;\n let fillModeId;\n switch (fillMode) {\n case \"constant\":\n fillModeId = 1;\n break;\n case \"reflect\":\n fillModeId = 2;\n break;\n case \"wrap\":\n fillModeId = 3;\n break;\n case \"nearest\":\n fillModeId = 4;\n break;\n default:\n fillModeId = 1;\n break;\n }\n const uniformData = [\n { type: \"int32\", data: [interpolationModeId] },\n { type: \"int32\", data: [fillModeId] },\n { type: \"float32\", data: [fillValue] }\n ];\n return backend2.runWebGPUProgram(program, [image2, transforms], \"float32\", uniformData);\n}\nvar transformConfig4 = {\n kernelName: Transform,\n backendName: \"webgpu\",\n kernelFunc: transform5\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Unpack.js\nfunction unpack4(args) {\n const { inputs, backend: backend2, attrs } = args;\n const { value } = inputs;\n let { axis } = attrs;\n if (axis < 0) {\n axis += value.shape.length;\n }\n const x = value;\n const xRank = x.shape.length;\n const num = value.shape[axis];\n const outShape = new Array(xRank - 1);\n let outIndex = 0;\n for (let i2 = 0; i2 < xRank; i2++) {\n if (i2 !== axis) {\n outShape[outIndex++] = x.shape[i2];\n }\n }\n const toDispose = [];\n const begin = new Array(xRank).fill(0);\n const size = x.shape.slice();\n size[axis] = 1;\n const res = new Array(num);\n for (let i2 = 0; i2 < res.length; i2++) {\n begin[axis] = i2;\n const sliced = slice5({ inputs: { x }, backend: backend2, attrs: { begin, size } });\n const reshaped = reshape6({ inputs: { x: sliced }, backend: backend2, attrs: { shape: outShape } });\n res[i2] = reshaped;\n toDispose.push(sliced);\n }\n toDispose.forEach((t2) => backend2.disposeData(t2.dataId));\n return res;\n}\nvar unpackConfig4 = {\n kernelName: Unpack,\n backendName: \"webgpu\",\n kernelFunc: unpack4\n};\n\n// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/register_all_kernels.js\nvar kernelConfigs4 = [\n _fusedMatMulConfig4,\n absConfig4,\n addConfig4,\n addNConfig4,\n argMaxConfig4,\n argMinConfig3,\n atan2Config3,\n avgPoolConfig4,\n batchMatMulConfig4,\n batchToSpaceNDConfig4,\n castConfig4,\n ceilConfig4,\n clipByValueConfig4,\n complexConfig3,\n concatConfig4,\n conv2DConfig4,\n conv2DBackpropInputConfig4,\n cosConfig4,\n coshConfig4,\n cropAndResizeConfig4,\n cumprodConfig4,\n cumsumConfig4,\n depthToSpaceConfig4,\n depthwiseConv2dNativeConfig4,\n einsumConfig3,\n eluConfig4,\n equalConfig4,\n expConfig4,\n expandDimsConfig4,\n expm1Config3,\n fillConfig4,\n flipLeftRightConfig4,\n fromPixelsConfig2,\n floorConfig4,\n floorDivConfig4,\n fusedBatchNormConfig2,\n fusedConv2DConfig4,\n fusedDepthwiseConv2DConfig4,\n gatherNdConfig4,\n gatherV2Config4,\n greaterConfig4,\n greaterEqualConfig4,\n identityConfig4,\n imagConfig3,\n isNaNConfig3,\n leakyReluConfig4,\n lessConfig4,\n lessEqualConfig4,\n logConfig4,\n logicalAndConfig4,\n logicalNotConfig4,\n maxConfig4,\n maximumConfig4,\n maxPoolConfig4,\n meanConfig4,\n minConfig4,\n minimumConfig4,\n mirrorPadConfig4,\n multiplyConfig4,\n negConfig4,\n nonMaxSuppressionV3Config4,\n nonMaxSuppressionV5Config4,\n notEqualConfig4,\n onesLikeConfig4,\n packConfig4,\n padV2Config4,\n powConfig4,\n preluConfig4,\n prodConfig4,\n rangeConfig4,\n realConfig3,\n realDivConfig4,\n reciprocalConfig3,\n reluConfig4,\n relu6Config4,\n reshapeConfig4,\n resizeBilinearConfig4,\n resizeNearestNeighborConfig4,\n rotateWithOffsetConfig4,\n rsqrtConfig4,\n scatterNdConfig4,\n selectConfig4,\n sigmoidConfig4,\n sinConfig4,\n sinhConfig3,\n sliceConfig4,\n stridedSliceConfig4,\n stringNGramsConfig4,\n softmaxConfig4,\n spaceToBatchNDConfig4,\n sparseToDenseConfig3,\n splitVConfig4,\n sqrtConfig4,\n squareConfig4,\n squaredDifferenceConfig4,\n subConfig4,\n sumConfig4,\n tanhConfig4,\n tileConfig4,\n topKConfig4,\n transformConfig4,\n transposeConfig4,\n unpackConfig4,\n zerosLikeConfig4\n];\nfor (const kernelConfig of kernelConfigs4) {\n registerKernel(kernelConfig);\n}\n\n// dist/tfjs.version.js\nvar e = \"3.20.0\";\nvar s = \"3.20.0\";\nvar t = \"3.20.0\";\nvar i = \"3.20.0\";\nvar n = \"3.20.0\";\nvar r = \"3.20.0\";\nvar l = \"3.20.0\";\nvar V = { tfjs: e, \"tfjs-core\": s, \"tfjs-data\": t, \"tfjs-layers\": i, \"tfjs-converter\": n, \"tfjs-backend-webgl\": r, \"tfjs-backend-wasm\": l };\nexport {\n Abs,\n Acos,\n Acosh,\n AdadeltaOptimizer,\n AdagradOptimizer,\n AdamOptimizer,\n AdamaxOptimizer,\n Add,\n AddN,\n All,\n Any,\n ArgMax,\n ArgMin,\n Asin,\n Asinh,\n Atan,\n Atan2,\n Atanh,\n AvgPool,\n AvgPool3D,\n AvgPool3DGrad,\n AvgPoolGrad,\n BackendWasm,\n BatchMatMul,\n BatchToSpaceND,\n Bincount,\n BroadcastArgs,\n BroadcastTo,\n Callback,\n CallbackList,\n Cast,\n Ceil,\n ClipByValue,\n Complex,\n ComplexAbs,\n Concat,\n Conv2D,\n Conv2DBackpropFilter,\n Conv2DBackpropInput,\n Conv3D,\n Conv3DBackpropFilterV2,\n Conv3DBackpropInputV2,\n Cos,\n Cosh,\n CropAndResize,\n Cumprod,\n Cumsum,\n CustomCallback,\n DataStorage,\n DenseBincount,\n DepthToSpace,\n DepthwiseConv2dNative,\n DepthwiseConv2dNativeBackpropFilter,\n DepthwiseConv2dNativeBackpropInput,\n Diag,\n Dilation2D,\n Dilation2DBackpropFilter,\n Dilation2DBackpropInput,\n ENV,\n EarlyStopping,\n Einsum,\n Elu,\n EluGrad,\n Environment,\n Equal,\n Erf,\n Exp,\n ExpandDims,\n Expm1,\n FFT,\n Fill,\n FlipLeftRight,\n Floor,\n FloorDiv,\n FromPixels,\n FusedBatchNorm,\n FusedConv2D,\n FusedDepthwiseConv2D,\n GPGPUContext,\n GatherNd,\n GatherV2,\n GraphModel,\n Greater,\n GreaterEqual,\n History,\n IFFT,\n Identity,\n Imag,\n InputSpec,\n IsFinite,\n IsInf,\n IsNan,\n KernelBackend,\n LRN,\n LRNGrad,\n LayerVariable,\n LayersModel,\n LeakyRelu,\n Less,\n LessEqual,\n LinSpace,\n Log,\n Log1p,\n LogSoftmax,\n LogicalAnd,\n LogicalNot,\n LogicalOr,\n LogicalXor,\n LowerBound,\n MathBackendWebGL,\n Max,\n MaxPool,\n MaxPool3D,\n MaxPool3DGrad,\n MaxPoolGrad,\n MaxPoolWithArgmax,\n Maximum,\n Mean,\n Min,\n Minimum,\n MirrorPad,\n Mod,\n MomentumOptimizer,\n Multinomial,\n Multiply,\n Neg,\n NonMaxSuppressionV3,\n NonMaxSuppressionV4,\n NonMaxSuppressionV5,\n NotEqual,\n OP_SCOPE_SUFFIX,\n OneHot,\n OnesLike,\n Optimizer,\n OptimizerConstructors,\n Pack,\n PadV2,\n Pool,\n Pow,\n Prelu,\n Prod,\n RMSPropOptimizer,\n RNN,\n RaggedTensorToTensor,\n Range,\n Rank,\n Real,\n RealDiv,\n Reciprocal,\n Reduction,\n Relu,\n Relu6,\n Reshape,\n ResizeBilinear,\n ResizeBilinearGrad,\n ResizeNearestNeighbor,\n ResizeNearestNeighborGrad,\n Reverse,\n RotateWithOffset,\n Round,\n Rsqrt,\n SGDOptimizer,\n ScatterNd,\n SearchSorted,\n Select,\n Selu,\n Sequential,\n Sigmoid,\n Sign,\n Sin,\n Sinh,\n Slice,\n Softmax,\n Softplus,\n SpaceToBatchND,\n SparseFillEmptyRows,\n SparseReshape,\n SparseSegmentMean,\n SparseSegmentSum,\n SparseToDense,\n SplitV,\n Sqrt,\n Square,\n SquaredDifference,\n Step,\n StridedSlice,\n StringNGrams,\n StringSplit,\n StringToHashBucketFast,\n Sub,\n Sum,\n SymbolicTensor,\n Tan,\n Tanh,\n Tensor,\n TensorBuffer,\n Tile,\n TopK,\n Transform,\n Transpose,\n Unique,\n Unpack,\n UnsortedSegmentSum,\n UpperBound,\n Variable,\n WebGPUBackend,\n ZerosLike,\n _FusedMatMul,\n abs,\n acos,\n acosh,\n add2 as add,\n addN,\n all,\n any,\n argMax,\n argMin,\n asin,\n asinh,\n atan,\n atan2,\n atanh,\n avgPool,\n avgPool3d,\n backend,\n backend_util_exports as backend_util,\n basicLSTMCell,\n batchNorm,\n batchNorm2d,\n batchNorm3d,\n batchNorm4d,\n batchToSpaceND,\n bincount,\n booleanMaskAsync,\n broadcastArgs,\n broadcastTo,\n broadcast_util_exports as broadcast_util,\n browser_exports as browser,\n buffer,\n callbacks,\n cast,\n ceil,\n clipByValue,\n clone,\n complex,\n concat,\n concat1d,\n concat2d,\n concat3d,\n concat4d,\n exports_constraints_exports as constraints,\n conv1d,\n conv2d,\n conv2dTranspose,\n conv3d,\n conv3dTranspose,\n copyRegisteredKernels,\n cos,\n cosh,\n cosineWindow,\n cumprod,\n cumsum,\n customGrad,\n dist_exports2 as data,\n denseBincount,\n deprecationWarn,\n depthToSpace,\n depthwiseConv2d,\n deregisterOp,\n device_util_exports as device_util,\n diag,\n dilation2d,\n disableDeprecationWarnings,\n dispose,\n disposeVariables,\n div,\n divNoNan,\n dot,\n dropout,\n einsum,\n elu,\n enableDebugMode,\n enableProdMode,\n enclosingPowerOfTwo,\n engine,\n env,\n equal,\n erf,\n euclideanNorm,\n exp,\n expandDims,\n expm1,\n eye,\n fft,\n fill,\n findBackend,\n findBackendFactory,\n floor,\n floorDiv,\n forceHalfFloat,\n fused_ops_exports as fused,\n gather,\n gatherND,\n gather_nd_util_exports as gather_util,\n getBackend,\n getGradient,\n getKernel,\n getKernelsForBackend,\n getThreadsCount,\n gpgpu_util_exports as gpgpu_util,\n grad,\n grads,\n greater,\n greaterEqual,\n ifft,\n imag,\n image,\n inTopKAsync,\n exports_initializers_exports as initializers,\n input,\n io_exports as io,\n irfft,\n isFinite2 as isFinite,\n isInf,\n isNaN2 as isNaN,\n keep,\n kernel_impls_exports as kernel_impls,\n exports_layers_exports as layers,\n leakyRelu,\n less,\n lessEqual,\n linalg,\n linspace,\n loadGraphModel,\n loadGraphModelSync,\n loadLayersModel,\n localResponseNormalization,\n log2 as log,\n log1p,\n logSigmoid,\n logSoftmax,\n logSumExp,\n logicalAnd,\n logicalNot,\n logicalOr,\n logicalXor,\n losses,\n lowerBound,\n matMul,\n math_exports as math,\n max,\n maxPool,\n maxPool3d,\n maxPoolWithArgmax,\n maximum,\n mean,\n memory,\n meshgrid,\n exports_metrics_exports as metrics,\n min,\n minimum,\n mirrorPad,\n mod,\n model,\n exports_models_exports as models,\n moments,\n movingAverage,\n mul,\n multiRNNCell,\n multinomial,\n neg,\n nextFrame,\n norm,\n notEqual,\n oneHot,\n ones2 as ones,\n onesLike,\n op,\n outerProduct,\n pad,\n pad1d,\n pad2d,\n pad3d,\n pad4d,\n pool,\n pow,\n prelu,\n print,\n prod,\n profile,\n raggedTensorToTensor,\n rand,\n randomGamma,\n randomNormal,\n randomStandardNormal,\n randomUniform,\n range,\n ready,\n real,\n reciprocal,\n registerBackend,\n registerCallbackConstructor,\n registerGradient,\n registerKernel,\n registerOp,\n exports_regularizers_exports as regularizers,\n relu,\n relu6,\n removeBackend,\n reshape,\n reverse,\n reverse1d,\n reverse2d,\n reverse3d,\n reverse4d,\n rfft,\n round2 as round,\n rsqrt,\n scalar,\n scatterND,\n scatter_nd_util_exports as scatter_util,\n searchSorted,\n selu,\n separableConv2d,\n sequential,\n serialization_exports as serialization,\n setBackend,\n setPlatform,\n setThreadsCount,\n setWasmPath,\n setWasmPaths,\n setWebGLContext,\n setdiff1dAsync,\n sigmoid,\n sign,\n signal,\n sin,\n sinh,\n slice,\n slice1d,\n slice2d,\n slice3d,\n slice4d,\n slice_util_exports as slice_util,\n softmax,\n softplus,\n spaceToBatchND,\n sparse,\n sparseToDense,\n spectral,\n split,\n sqrt,\n square,\n squaredDifference,\n squeeze,\n stack,\n step,\n stridedSlice,\n string,\n sub,\n sum2 as sum,\n sumOutType,\n tan,\n tanh2 as tanh,\n tensor,\n tensor1d,\n tensor2d,\n tensor3d,\n tensor4d,\n tensor5d,\n tensor6d,\n tensor_util_exports as tensor_util,\n test_util_exports as test_util,\n tidy,\n tile,\n time,\n topk,\n train,\n transpose,\n truncatedNormal,\n unique,\n unregisterGradient,\n unregisterKernel,\n unsortedSegmentSum,\n unstack,\n upcastType,\n upperBound,\n util_exports as util,\n valueAndGrad,\n valueAndGrads,\n variable,\n variableGrads,\n V as version,\n version3 as version_converter,\n version as version_core,\n version2 as version_layers,\n version8 as version_wasm,\n version6 as version_webgl,\n webgl,\n webgl_util_exports as webgl_util,\n webgpu_util_exports as webgpu_util,\n where,\n whereAsync,\n zeros,\n zerosLike\n};\n", "export const vertexIdentity = `\n precision highp float;\n attribute vec2 pos;\n attribute vec2 uv;\n varying vec2 vUv;\n uniform float flipY;\n void main(void) {\n vUv = uv;\n gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);\n }\n`;\n\nexport const fragmentIdentity = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n void main(void) {\n gl_FragColor = texture2D(texture, vUv);\n }\n`;\n\nexport const colorMatrixWithAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];\n gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];\n }\n`;\n\nexport const colorMatrixWithoutAlpha = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform float m[20];\n void main(void) {\n vec4 c = texture2D(texture, vUv);\n gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];\n gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];\n gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];\n gl_FragColor.a = c.a;\n }\n`;\n\nexport const pixelate = `\n precision highp float;\n varying vec2 vUv;\n uniform vec2 size;\n uniform sampler2D texture;\n vec2 pixelate(vec2 coord, vec2 size) {\n return floor( coord / size ) * size;\n }\n void main(void) {\n gl_FragColor = vec4(0.0);\n vec2 coord = pixelate(vUv, size);\n gl_FragColor += texture2D(texture, coord);\n }\n`;\n\nexport const blur = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n void main(void) {\n gl_FragColor = vec4(0.0);\n gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;\n gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv )*0.159576912161;\n gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;\n gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;\n gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;\n gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;\n gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;\n gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;\n gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;\n }\n`;\n\nexport const convolution = `\n precision highp float;\n varying vec2 vUv;\n uniform sampler2D texture;\n uniform vec2 px;\n uniform float m[9];\n void main(void) {\n vec4 c11 = texture2D(texture, vUv - px); // top left\n vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center\n vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right\n vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left\n vec4 c22 = texture2D(texture, vUv); // mid center\n vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right\n vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left\n vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center\n vec4 c33 = texture2D(texture, vUv + px ); // bottom right\n gl_FragColor = \n c11 * m[0] + c12 * m[1] + c22 * m[2] +\n c21 * m[3] + c22 * m[4] + c23 * m[5] +\n c31 * m[6] + c32 * m[7] + c33 * m[8];\n gl_FragColor.a = c22.a;\n }\n`;\n", "/**\n * Image Filters in WebGL algoritm implementation\n * Based on: [WebGLImageFilter](https://github.com/phoboslab/WebGLImageFilter)\n */\n\n/* eslint-disable func-names */\n\nimport * as shaders from './imagefxshaders';\nimport { canvas } from './image';\nimport { log } from '../util/util';\n\nconst collect = (source, prefix: string, collection) => {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n};\n\nclass GLProgram {\n uniform = {};\n attribute = {};\n gl: WebGLRenderingContext;\n id: WebGLProgram;\n\n constructor(gl, vertexSource, fragmentSource) {\n this.gl = gl;\n const vertexShader = this.compile(vertexSource, this.gl.VERTEX_SHADER);\n const fragmentShader = this.compile(fragmentSource, this.gl.FRAGMENT_SHADER);\n this.id = this.gl.createProgram() as WebGLProgram;\n if (!vertexShader || !fragmentShader) return;\n if (!this.id) {\n log('filter: could not create webgl program');\n return;\n }\n this.gl.attachShader(this.id, vertexShader);\n this.gl.attachShader(this.id, fragmentShader);\n this.gl.linkProgram(this.id);\n if (!this.gl.getProgramParameter(this.id, this.gl.LINK_STATUS)) {\n log(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id) || 'unknown'}`);\n return;\n }\n this.gl.useProgram(this.id);\n collect(vertexSource, 'attribute', this.attribute); // Collect attributes\n for (const a in this.attribute) this.attribute[a] = this.gl.getAttribLocation(this.id, a);\n collect(vertexSource, 'uniform', this.uniform); // Collect uniforms\n collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = this.gl.getUniformLocation(this.id, u);\n }\n\n compile = (source, type): WebGLShader | null => {\n const shader = this.gl.createShader(type);\n if (!shader) {\n log('filter: could not create shader');\n return null;\n }\n this.gl.shaderSource(shader, source);\n this.gl.compileShader(shader);\n if (!this.gl.getShaderParameter(shader, this.gl.COMPILE_STATUS)) {\n log(`filter: gl compile failed: ${this.gl.getShaderInfoLog(shader) || 'unknown'}`);\n return null;\n }\n return shader;\n };\n}\n\n// function that is instantiated as class so it has private this members\n/**\n * @class GLImageFilter\n * @property {function} reset reset current filter chain\n * @property {function} add add specified filter to filter chain\n * @property {function} apply execute filter chain and draw result\n * @property {function} draw just draw input to result\n */\n\nexport function GLImageFilter() {\n let drawCount = 0;\n let sourceTexture: WebGLTexture | null = null;\n let lastInChain = false;\n let currentFramebufferIndex = -1;\n let tempFramebuffers: [null, null] | [{ fbo: WebGLFramebuffer | null, texture: WebGLTexture | null }] = [null, null];\n let filterChain: Record[] = [];\n let vertexBuffer: WebGLBuffer | null = null;\n let currentProgram: GLProgram | null = null;\n const fxcanvas = canvas(100, 100);\n const shaderProgramCache = { }; // key is the shader program source, value is the compiled program\n const DRAW = { INTERMEDIATE: 1 };\n const gl = fxcanvas.getContext('webgl') as WebGLRenderingContext;\n if (!gl) {\n log('filter: cannot get webgl context');\n return;\n }\n // @ts-ignore used for sanity checks outside of imagefx\n this.gl = gl;\n\n function resize(width, height) {\n if (width === fxcanvas.width && height === fxcanvas.height) return; // Same width/height? Nothing to do here\n fxcanvas.width = width;\n fxcanvas.height = height;\n if (!vertexBuffer) { // Create the context if we don't have it yet\n const vertices = new Float32Array([-1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0]); // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n vertexBuffer = gl.createBuffer();\n gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, fxcanvas.width, fxcanvas.height);\n tempFramebuffers = [null, null]; // Delete old temp framebuffers\n }\n\n function createFramebufferTexture(width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n }\n\n function getTempFramebuffer(index): { fbo: WebGLFramebuffer | null, texture: WebGLTexture | null } {\n tempFramebuffers[index] = tempFramebuffers[index] || createFramebufferTexture(fxcanvas.width, fxcanvas.height);\n return tempFramebuffers[index] as { fbo: WebGLFramebuffer, texture: WebGLTexture };\n }\n\n function draw(flags = 0) {\n if (!currentProgram) return;\n let source: WebGLTexture | null = null;\n let target: WebGLFramebuffer | null = null;\n let flipY = false;\n if (drawCount === 0) source = sourceTexture; // First draw call - use the source texture\n else source = getTempFramebuffer(currentFramebufferIndex).texture || null; // All following draw calls use the temp buffer last drawn to\n drawCount++;\n if (lastInChain && !(flags & DRAW.INTERMEDIATE)) { // Last filter in our chain - draw directly to the WebGL Canvas. We may also have to flip the image vertically now\n target = null;\n flipY = drawCount % 2 === 0;\n } else {\n currentFramebufferIndex = (currentFramebufferIndex + 1) % 2;\n target = getTempFramebuffer(currentFramebufferIndex).fbo || null; // Intermediate draw call - get a temp buffer to draw to\n }\n gl.bindTexture(gl.TEXTURE_2D, source); // Bind the source and target and draw the two triangles\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(currentProgram.uniform['flipY'], (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n }\n\n function compileShader(fragmentSource): GLProgram | null {\n if (shaderProgramCache[fragmentSource]) {\n currentProgram = shaderProgramCache[fragmentSource];\n gl.useProgram((currentProgram ? currentProgram.id : null) || null);\n return currentProgram;\n }\n currentProgram = new GLProgram(gl, shaders.vertexIdentity, fragmentSource);\n if (!currentProgram) {\n log('filter: could not get webgl program');\n return null;\n }\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(currentProgram.attribute['pos']);\n gl.vertexAttribPointer(currentProgram.attribute['pos'], 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(currentProgram.attribute['uv']);\n gl.vertexAttribPointer(currentProgram.attribute['uv'], 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n shaderProgramCache[fragmentSource] = currentProgram;\n return currentProgram;\n }\n\n const filter = {\n colorMatrix: (matrix: number[]) => { // general color matrix filter\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0) // Can we ignore the alpha value? Makes things a bit faster.\n ? shaders.colorMatrixWithoutAlpha\n : shaders.colorMatrixWithAlpha;\n const program = compileShader(shader);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n draw();\n },\n\n brightness: (brightness: number) => {\n const b = (brightness || 0) + 1;\n filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n saturation: (amount: number) => {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturate: () => {\n filter.saturation(-1);\n },\n\n contrast: (amount: number) => {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n negative: () => {\n filter.contrast(-2);\n },\n\n hue: (rotation: number) => {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n desaturateLuminance: () => {\n filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n sepia: () => {\n filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n brownie: () => {\n filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n vintagePinhole: () => {\n filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n kodachrome: () => {\n filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n technicolor: () => {\n filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n polaroid: () => {\n filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n shiftToBGR: () => {\n filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n },\n\n convolution: (matrix: number[]) => { // general convolution Filter\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / fxcanvas.width;\n const pixelSizeY = 1 / fxcanvas.height;\n const program = compileShader(shaders.convolution);\n if (!program) return;\n gl.uniform1fv(program.uniform['m'], m);\n gl.uniform2f(program.uniform['px'], pixelSizeX, pixelSizeY);\n draw();\n },\n\n detectEdges: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n },\n\n sobelX: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n },\n\n sobelY: () => {\n // @ts-ignore this\n filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n },\n\n sharpen: (amount) => {\n const a = amount || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n },\n\n emboss: (size: number) => {\n const s = size || 1;\n // @ts-ignore this\n filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n },\n\n blur: (size: number) => {\n const blurSizeX = (size / 7) / fxcanvas.width;\n const blurSizeY = (size / 7) / fxcanvas.height;\n const program = compileShader(shaders.blur);\n if (!program) return;\n // Vertical\n gl.uniform2f(program.uniform['px'], 0, blurSizeY);\n draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform['px'], blurSizeX, 0);\n draw();\n },\n\n pixelate: (size: number) => {\n const blurSizeX = (size) / fxcanvas.width;\n const blurSizeY = (size) / fxcanvas.height;\n const program = compileShader(shaders.pixelate);\n if (!program) return;\n gl.uniform2f(program.uniform['size'], blurSizeX, blurSizeY);\n draw();\n },\n };\n\n // @ts-ignore this\n this.add = function (name) {\n const args = Array.prototype.slice.call(arguments, 1); // eslint-disable-line prefer-rest-params\n const func = filter[name];\n filterChain.push({ func, args });\n };\n\n // @ts-ignore this\n this.reset = function () {\n filterChain = [];\n };\n\n // @ts-ignore this\n this.get = function () {\n return filterChain;\n };\n\n // @ts-ignore this\n this.apply = function (image) {\n resize(image.width, image.height);\n drawCount = 0;\n if (!sourceTexture) sourceTexture = gl.createTexture(); // Create the texture for the input image if we haven't yet\n gl.bindTexture(gl.TEXTURE_2D, sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n for (let i = 0; i < filterChain.length; i++) {\n lastInChain = (i === filterChain.length - 1);\n const f = filterChain[i];\n // @ts-ignore function assigment\n f.func.apply(this, f.args || []);\n }\n return fxcanvas;\n };\n\n // @ts-ignore this\n this.draw = function (image) {\n this.add('brightness', 0);\n return this.apply(image);\n };\n}\n", "/**\n * Image enhancements\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../exports';\n\nexport async function histogramEqualization(inputImage: Tensor): Promise {\n // const maxValue = 254; // using 255 results in values slightly larger than 1 due to math rounding errors\n const squeeze = inputImage.shape.length === 4 ? tf.squeeze(inputImage) : inputImage;\n const channels = tf.split(squeeze, 3, 2);\n const min: Tensor[] = [tf.min(channels[0]), tf.min(channels[1]), tf.min(channels[2])];\n const max: Tensor[] = [tf.max(channels[0]), tf.max(channels[1]), tf.max(channels[2])];\n const absMax = await Promise.all(max.map((channel) => channel.data()));\n const maxValue = 0.99 * Math.max(absMax[0][0], absMax[1][0], absMax[2][0]);\n const sub = [tf.sub(channels[0], min[0]), tf.sub(channels[1], min[1]), tf.sub(channels[2], min[2])];\n const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])];\n const fact = [tf.div(maxValue, range[0]), tf.div(maxValue, range[1]), tf.div(maxValue, range[2])];\n const enh = [tf.mul(sub[0], fact[0]), tf.mul(sub[1], fact[1]), tf.mul(sub[2], fact[2])];\n const rgb = tf.stack([enh[0], enh[1], enh[2]], 2);\n const reshape = tf.reshape(rgb, [1, squeeze.shape[0], squeeze.shape[1], 3]);\n tf.dispose([...channels, ...min, ...max, ...sub, ...range, ...fact, ...enh, rgb, squeeze]);\n return reshape as Tensor; // output shape is [1, height, width, 3]\n}\n", "/**\n * Image Processing algorithm implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport type { Input, AnyCanvas, Tensor, Config } from '../exports';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport * as enhance from './enhance';\n\nconst maxSize = 3840;\n// internal temp canvases\nlet inCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet outCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\nlet tmpCanvas: AnyCanvas | null = null; // use global variable to avoid recreating canvas on each frame\n// @ts-ignore // imagefx is js module that should be converted to a class\nlet fx: fxImage.GLImageFilter | null; // instance of imagefx\n\nconst last: { inputSum: number, cacheDiff: number, sumMethod: number, inputTensor: undefined | Tensor } = {\n inputSum: 0,\n cacheDiff: 1,\n sumMethod: 0,\n inputTensor: undefined,\n};\n\nexport function reset() {\n last.inputSum = 0;\n last.cacheDiff = 1;\n last.sumMethod = 0;\n last.inputTensor = undefined;\n}\n\nexport function canvas(width: number, height: number): AnyCanvas {\n let c: AnyCanvas;\n if (env.browser) { // browser defines canvas object\n if (env.worker) { // if runing in web worker use OffscreenCanvas\n if (typeof OffscreenCanvas === 'undefined') throw new Error('canvas error: attempted to run in web worker but OffscreenCanvas is not supported');\n c = new OffscreenCanvas(width, height);\n } else { // otherwise use DOM canvas\n if (typeof document === 'undefined') throw new Error('canvas error: attempted to run in browser but DOM is not defined');\n c = document.createElement('canvas');\n c.width = width;\n c.height = height;\n }\n } else { // if not running in browser, there is no \"default\" canvas object, so we need monkey patch or fail\n // @ts-ignore // env.canvas is an external monkey-patch\n if (typeof env.Canvas !== 'undefined') c = new env.Canvas(width, height);\n else if (typeof globalThis.Canvas !== 'undefined') c = new globalThis.Canvas(width, height);\n // else throw new Error('canvas error: attempted to use canvas in nodejs without canvas support installed');\n }\n // @ts-ignore its either defined or we already threw an error\n return c;\n}\n\n// helper function to copy canvas from input to output\nexport function copy(input: AnyCanvas, output?: AnyCanvas) {\n const outputCanvas = output || canvas(input.width, input.height);\n const ctx = outputCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctx.drawImage(input, 0, 0);\n return outputCanvas;\n}\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport async function process(input: Input, config: Config, getTensor: boolean = true): Promise<{ tensor: Tensor | null, canvas: AnyCanvas | null }> {\n if (!input) {\n // throw new Error('input is missing');\n if (config.debug) log('input error: input is missing');\n return { tensor: null, canvas: null }; // video may become temporarily unavailable due to onresize\n }\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof env.Canvas !== 'undefined' && input instanceof env.Canvas)\n && !(typeof globalThis.Canvas !== 'undefined' && input instanceof globalThis.Canvas)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('input error: type is not recognized');\n }\n if (input instanceof tf.Tensor) { // if input is tensor use as-is without filters but correct shape as needed\n let tensor: Tensor | null = null;\n if ((input as Tensor)['isDisposedInternal']) throw new Error('input error: attempted to use tensor but it is disposed');\n if (!(input as Tensor).shape) throw new Error('input error: attempted to use tensor without a shape');\n if ((input as Tensor).shape.length === 3) { // [height, width, 3 || 4]\n if ((input as Tensor).shape[2] === 3) { // [height, width, 3] so add batch\n tensor = tf.expandDims(input, 0);\n } else if ((input as Tensor).shape[2] === 4) { // [height, width, 4] so strip alpha and add batch\n const rgb = tf.slice3d(input, [0, 0, 0], [-1, -1, 3]);\n tensor = tf.expandDims(rgb, 0);\n tf.dispose(rgb);\n }\n } else if ((input as Tensor).shape.length === 4) { // [1, width, height, 3 || 4]\n if ((input as Tensor).shape[3] === 3) { // [1, width, height, 3] just clone\n tensor = tf.clone(input);\n } else if ((input as Tensor).shape[3] === 4) { // [1, width, height, 4] so strip alpha\n tensor = tf.slice4d(input, [0, 0, 0, 0], [-1, -1, -1, 3]);\n }\n }\n // at the end shape must be [1, height, width, 3]\n if (tensor == null || tensor.shape.length !== 4 || tensor.shape[0] !== 1 || tensor.shape[3] !== 3) throw new Error(`input error: attempted to use tensor with unrecognized shape: ${((input as Tensor).shape).toString()}`);\n if ((tensor).dtype === 'int32') {\n const cast = tf.cast(tensor, 'float32');\n tf.dispose(tensor);\n tensor = cast;\n }\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n }\n // check if resizing will be needed\n if (typeof input['readyState'] !== 'undefined' && (input as HTMLMediaElement).readyState <= 2) {\n if (config.debug) log('input stream is not ready');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n const originalWidth: number = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight: number = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) {\n if (config.debug) log('cannot determine input dimensions');\n return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n }\n let targetWidth: number = originalWidth;\n let targetHeight: number = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = Math.trunc(targetWidth * originalHeight / originalWidth);\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = Math.trunc(targetHeight * originalWidth / originalHeight);\n }\n\n // create our canvas and resize it if needed\n if ((config.filter?.width || 0) > 0) targetWidth = config.filter.width as number;\n else if ((config.filter?.height || 0) > 0) targetWidth = originalWidth * ((config.filter.height || 0) / originalHeight);\n if ((config.filter.height || 0) > 0) targetHeight = config.filter.height as number;\n else if ((config.filter.width || 0) > 0) targetHeight = originalHeight * ((config.filter.width || 0) / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('input error: cannot determine dimension');\n if (!inCanvas || (inCanvas.width !== targetWidth) || (inCanvas.height !== targetHeight)) inCanvas = canvas(targetWidth, targetHeight);\n\n // draw input to our canvas\n const inCtx = inCanvas.getContext('2d') as CanvasRenderingContext2D;\n if ((typeof ImageData !== 'undefined') && (input instanceof ImageData)) {\n inCtx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof inCtx.translate !== 'undefined') {\n inCtx.translate(originalWidth, 0);\n inCtx.scale(-1, 1);\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas.width, inCanvas.height);\n inCtx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n inCtx.drawImage(input as AnyCanvas, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas.width, inCanvas.height);\n }\n }\n\n if (!outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas.height !== outCanvas.height)) outCanvas = canvas(inCanvas.width, inCanvas.height); // init output canvas\n\n // imagefx transforms using gl from input canvas to output canvas\n if (config.filter.enabled && env.webgl.supported) {\n if (!fx) fx = env.browser ? new fxImage.GLImageFilter() : null; // && (typeof document !== 'undefined')\n env.filter = !!fx;\n if (!fx?.add) {\n if (config.debug) log('input process error: cannot initialize filters');\n env.webgl.supported = false;\n config.filter.enabled = false;\n copy(inCanvas, outCanvas); // filter failed to initialize\n // return { tensor: null, canvas: inCanvas };\n } else {\n fx.reset();\n if (config.filter.brightness !== 0) fx.add('brightness', config.filter.brightness);\n if (config.filter.contrast !== 0) fx.add('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.add('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.add('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.add('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.add('hue', config.filter.hue);\n if (config.filter.negative) fx.add('negative');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.vintage) fx.add('brownie');\n if (config.filter.sepia) fx.add('sepia');\n if (config.filter.kodachrome) fx.add('kodachrome');\n if (config.filter.technicolor) fx.add('technicolor');\n if (config.filter.polaroid) fx.add('polaroid');\n if (config.filter.pixelate !== 0) fx.add('pixelate', config.filter.pixelate);\n if (fx.get() > 0) outCanvas = fx.apply(inCanvas);\n else outCanvas = fx.draw(inCanvas);\n }\n } else {\n copy(inCanvas, outCanvas); // if no filters applied, output canvas is input canvas\n if (fx) fx = null;\n env.filter = !!fx;\n }\n\n if (!getTensor) return { tensor: null, canvas: outCanvas }; // just canvas was requested\n if (!outCanvas) throw new Error('canvas error: cannot create output');\n\n // create tensor from image unless input was a tensor already\n let pixels;\n let depth = 3;\n if ((typeof ImageData !== 'undefined' && input instanceof ImageData) || ((input as ImageData).data && (input as ImageData).width && (input as ImageData).height)) { // if input is imagedata, just use it\n if (env.browser && tf.browser) {\n pixels = tf.browser ? tf.browser.fromPixels(input) : null;\n } else {\n depth = (input as ImageData).data.length / (input as ImageData).height / (input as ImageData).width;\n // const arr = Uint8Array.from(input['data']);\n const arr = new Uint8Array((input as ImageData).data.buffer);\n pixels = tf.tensor(arr, [(input as ImageData).height, (input as ImageData).width, depth], 'int32');\n }\n } else {\n if (!tmpCanvas || (outCanvas.width !== tmpCanvas.width) || (outCanvas.height !== tmpCanvas.height)) tmpCanvas = canvas(outCanvas.width, outCanvas.height); // init output canvas\n if (tf.browser && env.browser) {\n if (config.backend === 'webgl' || config.backend === 'humangl' || config.backend === 'webgpu') {\n pixels = tf.browser.fromPixels(outCanvas); // safe to reuse since both backend and context are gl based\n } else {\n tmpCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n pixels = tf.browser.fromPixels(tmpCanvas);\n }\n } else {\n const tempCanvas = copy(outCanvas); // cannot use output canvas as it already has gl context so we do a silly one more canvas\n const tempCtx = tempCanvas.getContext('2d') as CanvasRenderingContext2D;\n const tempData = tempCtx.getImageData(0, 0, targetWidth, targetHeight);\n depth = tempData.data.length / targetWidth / targetHeight;\n const arr = new Uint8Array(tempData.data.buffer);\n pixels = tf.tensor(arr, [targetWidth, targetHeight, depth]);\n }\n }\n if (depth === 4) { // rgba to rgb\n const rgb = tf.slice3d(pixels, [0, 0, 0], [-1, -1, 3]); // strip alpha channel\n tf.dispose(pixels);\n pixels = rgb;\n }\n if (!pixels) throw new Error('input error: cannot create tensor');\n const casted: Tensor = tf.cast(pixels, 'float32');\n const tensor: Tensor = config.filter.equalization ? await enhance.histogramEqualization(casted) : tf.expandDims(casted, 0);\n tf.dispose([pixels, casted]);\n return { tensor, canvas: (config.filter.return ? outCanvas : null) };\n}\n\n/*\nconst checksum = async (input: Tensor): Promise => { // use tf sum or js based sum loop depending on which is faster\n const resizeFact = 48;\n const reduced: Tensor = tf.image.resizeBilinear(input, [Math.trunc((input.shape[1] || 1) / resizeFact), Math.trunc((input.shape[2] || 1) / resizeFact)]);\n const tfSum = async (): Promise => {\n const sumT = tf.sum(reduced);\n const sum0 = await sumT.data();\n tf.dispose(sumT);\n return sum0[0];\n };\n const jsSum = async (): Promise => {\n const reducedData = await reduced.data(); // raw image rgb array\n let sum0 = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum0 += reducedData[3 * i + 2]; // look only at green value of each pixel\n return sum0;\n };\n if (last.sumMethod === 0) {\n const t0 = now();\n await jsSum();\n const t1 = now();\n await tfSum();\n const t2 = now();\n last.sumMethod = t1 - t0 < t2 - t1 ? 1 : 2;\n }\n const res = last.sumMethod === 1 ? await jsSum() : await tfSum();\n tf.dispose(reduced);\n return res;\n};\n*/\n\nexport async function skip(config: Partial, input: Tensor) {\n let skipFrame = false;\n if (config.cacheSensitivity === 0 || !input.shape || input.shape.length !== 4 || input.shape[1] > 2048 || input.shape[2] > 2048) return skipFrame; // cache disabled or input is invalid or too large for cache analysis\n\n /*\n const checkSum = await checksum(input);\n const diff = 100 * (Math.max(checkSum, last.inputSum) / Math.min(checkSum, last.inputSum) - 1);\n last.inputSum = checkSum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n let skipFrame = diff < Math.max(config.cacheSensitivity, last.cacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n last.cacheDiff = diff > 10 * config.cacheSensitivity ? 0 : diff;\n skipFrame = skipFrame && (last.cacheDiff > 0); // if no cached diff value then force no skip\n */\n\n if (!last.inputTensor) {\n last.inputTensor = tf.clone(input);\n } else if (last.inputTensor.shape[1] !== input.shape[1] || last.inputTensor.shape[2] !== input.shape[2]) { // input resolution changed\n tf.dispose(last.inputTensor);\n last.inputTensor = tf.clone(input);\n } else {\n const t: Record = {};\n t.diff = tf.sub(input, last.inputTensor);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input.shape[1] || 1) / (input.shape[2] || 1) / 255 / 3; // squared difference relative to input resolution and averaged per channel\n tf.dispose([last.inputTensor, t.diff, t.squared, t.sum]);\n last.inputTensor = tf.clone(input);\n skipFrame = diffRelative <= (config.cacheSensitivity || 0);\n }\n return skipFrame;\n}\n\nexport async function compare(config: Partial, input1: Tensor, input2: Tensor): Promise {\n const t: Record = {};\n if (!input1 || !input2 || input1.shape.length !== 4 || input1.shape.length !== input2.shape.length) {\n if (!config.debug) log('invalid input tensor or tensor shapes do not match:', input1.shape, input2.shape);\n return 0;\n }\n if (input1.shape[0] !== 1 || input2.shape[0] !== 1 || input1.shape[3] !== 3 || input2.shape[3] !== 3) {\n if (!config.debug) log('input tensors must be of shape [1, height, width, 3]:', input1.shape, input2.shape);\n return 0;\n }\n t.input1 = tf.clone(input1);\n t.input2 = (input1.shape[1] !== input2.shape[1] || input1.shape[2] !== input2.shape[2]) ? tf.image.resizeBilinear(input2, [input1.shape[1], input1.shape[2]]) : tf.clone(input2);\n t.diff = tf.sub(t.input1, t.input2);\n t.squared = tf.mul(t.diff, t.diff);\n t.sum = tf.sum(t.squared);\n const diffSum = await t.sum.data();\n const diffRelative = diffSum[0] / (input1.shape[1] || 1) / (input1.shape[2] || 1) / 255 / 3;\n tf.dispose([t.input1, t.input2, t.diff, t.squared, t.sum]);\n return diffRelative;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\n\n/** Env class that holds detected capabilities */\nexport class Env {\n /** Running in Browser */\n browser: boolean;\n /** Running in NodeJS */\n node: boolean;\n /** Running in WebWorker thread */\n worker: boolean;\n /** Detected platform */\n platform: string = '';\n /** Detected agent */\n agent: string = '';\n /** List of supported backends */\n backends: string[] = [];\n /** Has any work been performed so far */\n initial: boolean;\n /** Are image filters supported? */\n filter: boolean | undefined;\n /** TFJS instance details */\n tfjs: {\n version: undefined | string,\n };\n /** Is offscreenCanvas supported? */\n offscreen: undefined | boolean;\n /** Are performance counter instant values or additive */\n perfadd: boolean = false;\n /** If using tfjs-node get version of underlying tensorflow shared library and if gpu acceleration is enabled */\n tensorflow: {\n version: undefined | string,\n gpu: undefined | boolean,\n } = {\n version: undefined,\n gpu: undefined,\n };\n /** WASM detected capabilities */\n wasm: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n simd: undefined | boolean,\n multithread: undefined | boolean,\n } = {\n supported: undefined,\n backend: undefined,\n simd: undefined,\n multithread: undefined,\n };\n /** WebGL detected capabilities */\n webgl: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n version: undefined | string,\n renderer: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n version: undefined,\n renderer: undefined,\n };\n /** WebGPU detected capabilities */\n webgpu: {\n supported: undefined | boolean,\n backend: undefined | boolean,\n adapter: undefined | string,\n } = {\n supported: undefined,\n backend: undefined,\n adapter: undefined,\n };\n /** CPU info */\n cpu: {\n model: undefined | string,\n flags: string[],\n } = {\n model: undefined,\n flags: [],\n };\n /** List of supported kernels for current backend */\n kernels: string[] = [];\n /** MonkeyPatch for Canvas */\n Canvas: undefined;\n /** MonkeyPatch for Image */\n Image: undefined;\n /** MonkeyPatch for ImageData */\n ImageData: undefined;\n\n constructor() {\n this.browser = typeof navigator !== 'undefined';\n this.node = (typeof process !== 'undefined') && (typeof process.versions !== 'undefined') && (typeof process.versions.node !== 'undefined');\n this.tfjs = { version: tf.version['tfjs-core'] };\n this.offscreen = typeof OffscreenCanvas !== 'undefined';\n this.initial = true;\n\n // @ts-ignore WorkerGlobalScope evaluated in browser only\n this.worker = this.browser && this.offscreen ? (typeof WorkerGlobalScope !== 'undefined') : undefined;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw?.[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n this.platform = (platformMatch?.[0]) ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n this.agent = navigator.userAgent.replace(raw[0], '');\n if (this.platform[1]) this.agent = this.agent.replace(raw[1], '');\n this.agent = this.agent.replace(/ /g, ' ');\n // chrome offscreencanvas gpu memory leak\n /*\n const isChrome = env.agent.match(/Chrome\\/.[0-9]/g);\n const verChrome = isChrome && isChrome[0] ? isChrome[0].split('/')[1] : 0;\n if (verChrome > 92 && verChrome < 96) {\n log('disabling offscreenCanvas due to browser error:', isChrome ? isChrome[0] : 'unknown');\n this.offscreen = false;\n }\n */\n }\n } else if (typeof process !== 'undefined') {\n this.platform = `${process.platform} ${process.arch}`;\n this.agent = `NodeJS ${process.version}`;\n }\n }\n\n /** update backend information */\n async updateBackend() {\n // analyze backends\n this.backends = Object.keys(tf.engine().registryFactory);\n this.tensorflow = {\n version: (tf.backend().binding ? tf.backend().binding.TF_Version : undefined),\n gpu: (tf.backend().binding ? tf.backend().binding.isUsingGpuDevice() : undefined),\n };\n this.wasm.supported = typeof WebAssembly !== 'undefined';\n this.wasm.backend = this.backends.includes('wasm');\n if (this.wasm.supported && this.wasm.backend && tf.getBackend() === 'wasm') {\n this.wasm.simd = tf.env().get('WASM_HAS_SIMD_SUPPORT');\n this.wasm.multithread = tf.env().get('WASM_HAS_MULTITHREAD_SUPPORT');\n }\n const c = image.canvas(100, 100);\n const ctx = c ? c.getContext('webgl2') : undefined; // causes too many gl contexts\n // const ctx = typeof tf.backend().getGPGPUContext !== undefined ? tf.backend().getGPGPUContext : null;\n this.webgl.supported = typeof ctx !== 'undefined';\n this.webgl.backend = this.backends.includes('webgl');\n if (this.webgl.supported && this.webgl.backend && (tf.getBackend() === 'webgl' || tf.getBackend() === 'humangl')) {\n const gl = tf.backend().gpgpu !== 'undefined' ? await tf.backend().getGPGPUContext().gl : null;\n if (gl) {\n this.webgl.version = gl.getParameter(gl.VERSION);\n this.webgl.renderer = gl.getParameter(gl.RENDERER);\n }\n }\n this.webgpu.supported = this.browser && typeof navigator.gpu !== 'undefined';\n this.webgpu.backend = this.backends.includes('webgpu');\n try {\n if (this.webgpu.supported) {\n const adapter = await navigator.gpu.requestAdapter();\n this.webgpu.adapter = adapter ? adapter.name : undefined;\n }\n } catch {\n this.webgpu.supported = false;\n }\n try {\n this.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => (kernel.kernelName as string).toLowerCase());\n } catch { /**/ }\n }\n\n /** update cpu information */\n updateCPU() {\n const cpu = { model: '', flags: [] };\n if (this.node && this.platform.startsWith('linux')) {\n /*\n const fs = require('fs');\n try {\n const data = fs.readFileSync('/proc/cpuinfo').toString();\n for (const line of data.split('\\n')) {\n if (line.startsWith('model name')) cpu.model = line.match(/:(.*)/g)[0].replace(':', '').trim();\n if (line.startsWith('flags')) cpu.flags = line.match(/:(.*)/g)[0].replace(':', '').trim().split(' ').sort();\n }\n } catch { }\n */\n }\n if (!this.cpu) Object.defineProperty(this, 'cpu', { value: cpu });\n else this.cpu = cpu;\n }\n}\n\nexport const env = new Env();\n", "/**\n * Loader and Validator for all models used by Human\n */\n\nimport { env } from './util/env';\nimport { log } from './util/util';\nimport * as gear from './gear/gear';\nimport * as ssrnetAge from './gear/ssrnet-age';\nimport * as ssrnetGender from './gear/ssrnet-gender';\nimport * as antispoof from './face/antispoof';\nimport * as blazeface from './face/blazeface';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as efficientpose from './body/efficientpose';\nimport * as emotion from './gear/emotion';\nimport * as mobilefacenet from './face/mobilefacenet';\nimport * as insightface from './face/insightface';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as iris from './face/iris';\nimport * as liveness from './face/liveness';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport { modelStats, ModelInfo } from './tfjs/load';\nimport type { GraphModel } from './tfjs/types';\nimport type { Human } from './human';\n\n/** Instances of all possible TFJS Graph Models used by Human\n * - loaded as needed based on configuration\n * - initialized explictly with `human.load()` method\n * - initialized implicity on first call to `human.detect()`\n * - each model can be `null` if not loaded, instance of `GraphModel` if loaded or `Promise` if loading\n */\nexport class Models {\n ssrnetage: null | GraphModel | Promise = null;\n gear: null | GraphModel | Promise = null;\n blazeposedetect: null | GraphModel | Promise = null;\n blazepose: null | GraphModel | Promise = null;\n centernet: null | GraphModel | Promise = null;\n efficientpose: null | GraphModel | Promise = null;\n mobilefacenet: null | GraphModel | Promise = null;\n insightface: null | GraphModel | Promise = null;\n emotion: null | GraphModel | Promise = null;\n facedetect: null | GraphModel | Promise = null;\n faceiris: null | GraphModel | Promise = null;\n facemesh: null | GraphModel | Promise = null;\n faceres: null | GraphModel | Promise = null;\n ssrnetgender: null | GraphModel | Promise = null;\n handpose: null | GraphModel | Promise = null;\n handskeleton: null | GraphModel | Promise = null;\n handtrack: null | GraphModel | Promise = null;\n liveness: null | GraphModel | Promise = null;\n movenet: null | GraphModel | Promise = null;\n nanodet: null | GraphModel | Promise = null;\n posenet: null | GraphModel | Promise = null;\n segmentation: null | GraphModel | Promise = null;\n antispoof: null | GraphModel | Promise = null;\n}\n\nexport interface ModelStats {\n numLoadedModels: number,\n numEnabledModels: undefined,\n numDefinedModels: number,\n percentageLoaded: number,\n totalSizeFromManifest: number,\n totalSizeWeights: number,\n totalSizeLoading: number,\n totalSizeEnabled: undefined,\n modelStats: ModelInfo[],\n}\n\nexport const getModelStats = (instance: Human): ModelStats => {\n let totalSizeFromManifest = 0;\n let totalSizeWeights = 0;\n let totalSizeLoading = 0;\n for (const m of Object.values(modelStats)) {\n totalSizeFromManifest += m.sizeFromManifest;\n totalSizeWeights += m.sizeLoadedWeights;\n totalSizeLoading += m.sizeDesired;\n }\n const percentageLoaded = totalSizeLoading > 0 ? totalSizeWeights / totalSizeLoading : 0;\n return {\n numLoadedModels: Object.values(modelStats).length,\n numEnabledModels: undefined,\n numDefinedModels: Object.keys(instance.models).length,\n percentageLoaded,\n totalSizeFromManifest,\n totalSizeWeights,\n totalSizeLoading,\n totalSizeEnabled: undefined,\n modelStats: Object.values(modelStats),\n };\n};\n\nexport function reset(instance: Human): void {\n // if (instance.config.debug) log('resetting loaded models');\n for (const model of Object.keys(instance.models)) instance.models[model as keyof Models] = null;\n}\n\n/** Load method preloads all instance.configured models on-demand */\nexport async function load(instance: Human): Promise {\n if (env.initial) reset(instance);\n if (instance.config.hand.enabled) { // handpose model is a combo that must be loaded as a whole\n if (!instance.models.handpose && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n if (!instance.models.handskeleton && instance.config.hand.landmarks && instance.config.hand.detector?.modelPath?.includes('handdetect')) {\n [instance.models.handpose, instance.models.handskeleton] = await handpose.load(instance.config);\n }\n }\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body.modelPath?.includes('blazepose')) instance.models.blazepose = blazepose.loadPose(instance.config);\n if (instance.config.body.enabled && !instance.models.blazeposedetect && instance.config.body['detector'] && instance.config.body['detector'].modelPath) instance.models.blazeposedetect = blazepose.loadDetect(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body.modelPath?.includes('efficientpose')) instance.models.efficientpose = efficientpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body.modelPath?.includes('movenet')) instance.models.movenet = movenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body.modelPath?.includes('posenet')) instance.models.posenet = posenet.load(instance.config);\n if (instance.config.face.enabled && !instance.models.facedetect) instance.models.facedetect = blazeface.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.antispoof?.enabled && !instance.models.antispoof) instance.models.antispoof = antispoof.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.liveness?.enabled && !instance.models.liveness) instance.models.liveness = liveness.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description?.enabled && !instance.models.faceres) instance.models.faceres = faceres.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion?.enabled && !instance.models.emotion) instance.models.emotion = emotion.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.iris?.enabled && !instance.config.face.attention?.enabled && !instance.models.faceiris) instance.models.faceiris = iris.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.mesh?.enabled && (!instance.models.facemesh)) instance.models.facemesh = facemesh.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['gear']?.enabled && !instance.models.gear) instance.models.gear = gear.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetage) instance.models.ssrnetage = ssrnetAge.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetgender) instance.models.ssrnetgender = ssrnetGender.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['mobilefacenet']?.enabled && !instance.models.mobilefacenet) instance.models.mobilefacenet = mobilefacenet.load(instance.config);\n if (instance.config.face.enabled && instance.config.face['insightface']?.enabled && !instance.models.insightface) instance.models.insightface = insightface.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handtrack && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handtrack = handtrack.loadDetect(instance.config);\n if (instance.config.hand.enabled && instance.config.hand.landmarks && !instance.models.handskeleton && instance.config.hand.detector?.modelPath?.includes('handtrack')) instance.models.handskeleton = handtrack.loadSkeleton(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object.modelPath?.includes('centernet')) instance.models.centernet = centernet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object.modelPath?.includes('nanodet')) instance.models.nanodet = nanodet.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = segmentation.load(instance.config);\n\n // models are loaded in parallel asynchronously so lets wait until they are actually loaded\n for await (const model of Object.keys(instance.models)) {\n if (instance.models[model as keyof Models] && typeof instance.models[model as keyof Models] !== 'undefined') {\n instance.models[model as keyof Models] = await instance.models[model as keyof Models];\n }\n }\n}\n\nlet instance: Human;\nexport interface KernelOps { name: string, url: string, missing: string[], ops: string[] }\n\nexport function validateModel(newInstance: Human | null, model: GraphModel | null, name: string): KernelOps | null {\n if (newInstance) instance = newInstance;\n if (!model) return null;\n if (!instance) log('instance not registred');\n if (!instance.config.validateModels) return null;\n const simpleOps = ['const', 'placeholder', 'noop', 'pad', 'squeeze', 'add', 'sub', 'mul', 'div'];\n const ignoreOps = ['biasadd', 'fusedbatchnormv3', 'matmul'];\n const ops: string[] = [];\n const missing: string[] = [];\n interface Op { name: string, category: string, op: string }\n const url = model['modelUrl'] as string;\n const executor = model['executor'];\n if (executor?.graph?.nodes) {\n for (const kernel of Object.values(executor.graph.nodes)) {\n const op = (kernel as Op).op.toLowerCase();\n if (!ops.includes(op)) ops.push(op);\n }\n } else {\n if (!executor && instance.config.debug) {\n log('model not loaded', name);\n }\n }\n for (const op of ops) {\n if (!simpleOps.includes(op) // exclude simple ops\n && !ignoreOps.includes(op) // exclude specific ops\n && !instance.env.kernels.includes(op) // check actual kernel ops\n && !instance.env.kernels.includes(op.replace('_', '')) // check variation without _\n && !instance.env.kernels.includes(op.replace('native', '')) // check standard variation\n && !instance.env.kernels.includes(op.replace('v2', ''))) { // check non-versioned variation\n missing.push(op);\n }\n }\n if (instance.config.debug && missing.length > 0) log('model validation failed:', name, missing);\n return missing.length > 0 ? { name, missing, ops, url } : null;\n}\n\nexport function validate(newInstance: Human): { name: string, missing: string[] }[] {\n instance = newInstance;\n const missing: KernelOps[] = [];\n for (const defined of Object.keys(instance.models)) {\n const model: GraphModel | null = instance.models[defined as keyof Models] as GraphModel | null;\n if (!model) continue;\n const res = validateModel(instance, model, defined);\n if (res) missing.push(res);\n }\n return missing;\n}\n", "/**\n * GEAR [gender/emotion/age/race] model implementation\n *\n * Based on: [**GEAR Predictor**](https://github.com/Udolf15/GEAR-Predictor)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Gender, Race } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nexport interface GearType { age: number, gender: Gender, genderScore: number, race: { score: number, race: Race }[] }\nlet model: GraphModel | null;\nconst last: GearType[] = [];\nconst raceNames = ['white', 'black', 'asian', 'indian', 'other'];\nconst ageWeights = [15, 23, 28, 35.5, 45.5, 55.5, 65];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.gear?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model) return { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n const skipFrame = skipped < (config.face.gear?.skipFrames || 0);\n const skipTime = (config.face.gear?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n // t.resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape[2], model?.inputs[0].shape[1]], false);\n const box = [[0.0, 0.10, 0.90, 0.90]]; // empyrical values for top, left, bottom, right\n t.resize = tf.image.cropAndResize(image, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const obj: GearType = { age: 0, gender: 'unknown', genderScore: 0, race: [] };\n if (config.face.gear?.enabled) [t.age, t.gender, t.race] = model.execute(t.resize, ['age_output', 'gender_output', 'race_output']) as Tensor[];\n const gender = await t.gender.data();\n obj.gender = gender[0] > gender[1] ? 'male' : 'female';\n obj.genderScore = Math.round(100 * (gender[0] > gender[1] ? gender[0] : gender[1])) / 100;\n const race = await t.race.data();\n for (let i = 0; i < race.length; i++) {\n if (race[i] > (config.face.gear?.minConfidence || 0.2)) obj.race.push({ score: Math.round(100 * race[i]) / 100, race: raceNames[i] as Race });\n }\n obj.race.sort((a, b) => b.score - a.score);\n // {0: 'Below20', 1: '21-25', 2: '26-30', 3: '31-40',4: '41-50', 5: '51-60', 6: 'Above60'}\n const ageDistribution = Array.from(await t.age.data());\n const ageSorted = ageDistribution.map((a, i) => [ageWeights[i], a]).sort((a, b) => b[1] - a[1]);\n let age = ageSorted[0][0]; // pick best starting point\n for (let i = 1; i < ageSorted.length; i++) age += ageSorted[i][1] * (ageSorted[i][0] - age); // adjust with each other choice by weight\n obj.age = Math.round(10 * age) / 10;\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from './types';\n\nexport const constants: Record = {\n tf255: 255,\n tf1: 1,\n tf2: 2,\n tf05: 0.5,\n tf127: 127.5,\n rgb: [0.2989, 0.5870, 0.1140],\n};\n\nexport function init() {\n constants.tf255 = tf.scalar(255, 'float32');\n constants.tf1 = tf.scalar(1, 'float32');\n constants.tf2 = tf.scalar(2, 'float32');\n constants.tf05 = tf.scalar(0.5, 'float32');\n constants.tf127 = tf.scalar(127.5, 'float32');\n constants.rgb = tf.tensor1d([0.2989, 0.5870, 0.1140], 'float32'); // factors for red/green/blue colors when converting to grayscale\n}\n", "/**\n * Age model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\n\nlet model: GraphModel | null;\nconst last: { age: number }[] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet'].modelPathAge);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ age: number }> {\n if (!model) return { age: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs || !model.inputs[0] || !model.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.mul(t.resize, constants.tf255);\n const obj = { age: 0 };\n if (config.face['ssrnet']?.enabled) t.age = model.execute(t.enhance) as Tensor;\n if (t.age) {\n const data = await t.age.data();\n obj.age = Math.trunc(10 * data[0]) / 10;\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Gender model implementation\n *\n * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Gender } from '../result';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: { gender: Gender, genderScore: number }[] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config: Config) {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['ssrnet']?.modelPathGender);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count): Promise<{ gender: Gender, genderScore: number }> {\n if (!model) return { gender: 'unknown', genderScore: 0 };\n const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);\n const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.gender && (last[idx]?.genderScore > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n if (!model?.inputs[0].shape) return;\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n t.enhance = tf.tidy(() => {\n const [red, green, blue] = tf.split(t.resize, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const normalize = tf.mul(tf.sub(grayscale, constants.tf05), 2); // range grayscale:-1..1\n return normalize;\n });\n const obj: { gender: Gender, genderScore: number } = { gender: 'unknown', genderScore: 0 };\n if (config.face['ssrnet']?.enabled) t.gender = model.execute(t.enhance) as Tensor;\n const data = await t.gender.data();\n obj.gender = data[0] > data[1] ? 'female' : 'male'; // returns two values 0..1, bigger one is prediction\n obj.genderScore = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n last[idx] = obj;\n lastCount = count;\n lastTime = now();\n resolve(obj);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: number[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.antispoof?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model || !model?.['executor']) return 0;\n const skipTime = (config.face.antispoof?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.antispoof?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nexport const meshAnnotations: Record = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n // lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291], // 11\n // lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291], // 10\n // lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308], // 11\n // lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308], // 11\n lipsUpperOuter: [185, 40, 39, 37, 0, 267, 269, 270, 409],\n lipsLowerOuter: [61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [191, 80, 81, 82, 13, 312, 311, 310, 415],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n lipsLowerSemiOuter: [76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306],\n lipsUpperSemiOuter: [184, 74, 73, 72, 11, 302, 303, 304, 408],\n lipsLowerSemiInner: [62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292],\n lipsUpperSemiInner: [183, 42, 41, 38, 12, 268, 271, 272, 407],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173], // 7\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133], // 9\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190], // 7\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243], // 9\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189], // 7\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244], // 9\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245], // 9\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193], // 8\n rightEyebrowLower: [35, 124, 46, 53, 52, 65], // 6\n rightEyeIris: [473, 474, 475, 476, 477], // 5\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const meshLandmarks: Record = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, meshAnnotations.midwayBetweenEyes[0]],\n};\n\nexport const blazeFaceLandmarks: Record = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nexport const irisIndices: { key: string, indices: number[] }[] = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] }, // 7 x 3d\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] }, // 7 x 3d\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] }, // 7 x 3d\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] }, // 7 x 3d\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] }, // 9 x 3d\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] }, // 9 x 3d\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] }, // 9 x 3d\n { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] }, // 8 x 3d\n { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] }, // 6 x 3d\n];\n\nexport const UV468: [number, number][] = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468: number[] = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68: number[] = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33: number[] = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7: number[] = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68: number[] = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33: number[] = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7: number[] = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n\n// https://github.com/tensorflow/tfjs-models/blob/master/face-landmarks-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = [number, number][];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const pairsLips: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nexport const pairsLeftEye: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nexport const pairsLeftEyebrow: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nexport const pairsLeftIris: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nexport const pairsRightEye: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nexport const pairsRightEyebrow: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nexport const pairsRightIris: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nexport const pairsFaceContour: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389],\n [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397],\n [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172],\n [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162],\n [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const contourKeypoints = {\n lips: connectionsToIndices(pairsLips),\n leftEye: connectionsToIndices(pairsLeftEye),\n leftEyebrow: connectionsToIndices(pairsLeftEyebrow),\n leftIris: connectionsToIndices(pairsLeftIris),\n rightEye: connectionsToIndices(pairsRightEye),\n rightEyebrow: connectionsToIndices(pairsRightEyebrow),\n rightIris: connectionsToIndices(pairsRightIris),\n faceOval: connectionsToIndices(pairsFaceContour),\n};\n\nexport const pairsFaceMesh: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11],\n [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72],\n [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175],\n [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73],\n [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74],\n [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40],\n [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76],\n [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56],\n [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21],\n [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144],\n [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91],\n [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85],\n [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193],\n [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247],\n [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117],\n [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98],\n [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209],\n [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47],\n [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67],\n [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230],\n [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46],\n [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46],\n [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236],\n [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154],\n [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57],\n [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28],\n [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113],\n [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62],\n [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64],\n [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41],\n [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170],\n [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122],\n [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89],\n [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63],\n [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14],\n [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100],\n [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88],\n [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215],\n [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43],\n [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81],\n [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229],\n [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107],\n [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129],\n [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117],\n [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3],\n [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220],\n [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71],\n [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188],\n [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164],\n [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38],\n [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206],\n [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165],\n [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214],\n [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171],\n [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84],\n [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201],\n [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57],\n [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214],\n [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44],\n [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64],\n [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2],\n [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24],\n [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26],\n [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189],\n [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29],\n [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247],\n [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147],\n [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187],\n [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114],\n [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217],\n [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110],\n [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356],\n [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357],\n [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333],\n [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9],\n [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418],\n [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450],\n [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313],\n [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335],\n [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423],\n [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307],\n [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421],\n [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426],\n [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322],\n [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456],\n [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417],\n [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355],\n [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382],\n [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443],\n [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431],\n [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446],\n [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458],\n [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372],\n [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274],\n [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269],\n [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266],\n [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265],\n [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424],\n [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366],\n [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423],\n [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432],\n [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394],\n [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352],\n [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295],\n [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323],\n [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358],\n [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374],\n [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6],\n [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344],\n [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195],\n [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283],\n [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282],\n [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338],\n [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292],\n [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442],\n [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441],\n [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300],\n [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263],\n [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436],\n [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370],\n [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293],\n [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330],\n [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440],\n [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459],\n [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354],\n [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315],\n [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366],\n [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291],\n [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264],\n [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352],\n [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433],\n [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462],\n [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255],\n [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252],\n [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441],\n [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257],\n [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459],\n [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290],\n [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341],\n [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357],\n [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420],\n [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372],\n [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133],\n [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33],\n [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263],\n [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466],\n [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72],\n [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73],\n [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152],\n [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74],\n [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184],\n [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185],\n [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77],\n [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190],\n [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54],\n [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145],\n [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181],\n [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16],\n [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245],\n [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30],\n [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111],\n [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240],\n [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198],\n [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114],\n [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109],\n [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231],\n [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124],\n [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70],\n [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3],\n [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26],\n [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43],\n [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56],\n [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124],\n [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96],\n [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235],\n [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42],\n [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140],\n [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193],\n [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179],\n [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68],\n [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15],\n [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120],\n [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89],\n [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138],\n [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57],\n [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41],\n [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118],\n [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66],\n [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142],\n [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118],\n [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196],\n [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156],\n [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122],\n [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164],\n [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12],\n [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31],\n [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98],\n [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237],\n [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179],\n [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181],\n [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184],\n [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186],\n [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218],\n [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45],\n [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235],\n [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97],\n [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230],\n [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232],\n [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222],\n [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224],\n [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213],\n [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192],\n [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188],\n [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174],\n [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25],\n [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264],\n [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350],\n [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299],\n [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151],\n [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424],\n [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449],\n [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18],\n [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434],\n [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301],\n [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280],\n [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335],\n [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396],\n [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413],\n [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168],\n [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417],\n [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381],\n [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365],\n [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395],\n [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335],\n [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250],\n [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292],\n [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354],\n [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426],\n [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371],\n [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290],\n [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422],\n [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422],\n [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358],\n [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331],\n [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395],\n [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296],\n [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285],\n [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329],\n [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331],\n [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8],\n [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351],\n [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397],\n [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248],\n [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175],\n [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295],\n [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356],\n [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308],\n [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265],\n [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285],\n [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457],\n [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394],\n [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410],\n [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268],\n [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298],\n [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420],\n [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344],\n [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274],\n [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316],\n [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323],\n [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306],\n [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372],\n [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366],\n [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435],\n [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328],\n [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359],\n [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253],\n [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286],\n [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258],\n [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309],\n [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305],\n [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453],\n [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343],\n [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360],\n [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265],\n [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './facemeshcoords';\nimport { constants } from '../tfjs/constants';\nimport type { Box, Point } from '../result';\nimport { env } from '../util/env';\n\nexport const createBox = (startEndTensor) => ({ startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]), endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]) });\n\nexport const disposeBox = (t) => tf.dispose([t.startPoint, t.endPoint]);\n\nexport const getBoxSize = (box): [number, number] => [Math.abs(box.endPoint[0] - box.startPoint[0]), Math.abs(box.endPoint[1] - box.startPoint[1])];\n\nexport const getBoxCenter = (box): [number, number, number] => [box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2, box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2, 1];\n\nexport const clampBox = (box, input): Box => (box ? [\n Math.trunc(Math.max(0, box.startPoint[0])),\n Math.trunc(Math.max(0, box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), box.endPoint[0]) - Math.max(0, box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), box.endPoint[1]) - Math.max(0, box.startPoint[1])),\n] : [0, 0, 0, 0]);\n\nexport const getRawBox = (box, input): Box => (box ? [\n box.startPoint[0] / (input.shape[2] || 0),\n box.startPoint[1] / (input.shape[1] || 0),\n (box.endPoint[0] - box.startPoint[0]) / (input.shape[2] || 0),\n (box.endPoint[1] - box.startPoint[1]) / (input.shape[1] || 0),\n] : [0, 0, 0, 0]);\n\nexport const scaleBoxCoordinates = (box, factor) => {\n const startPoint: Point = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint: Point = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const cutAndResize = (box, image, cropSize) => {\n const h = image.shape[1];\n const w = image.shape[2];\n const cutBox = [box.startPoint[1] / h, box.startPoint[0] / w, box.endPoint[1] / h, box.endPoint[0] / w];\n const crop = tf.image.cropAndResize(image, [cutBox], [0], cropSize);\n const norm = tf.div(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n};\n\nexport const enlargeBox = (box, factor) => {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize: [number, number] = [factor * size[0] / 2, factor * size[1] / 2];\n return { startPoint: [center[0] - halfSize[0], center[1] - halfSize[1]] as Point, endPoint: [center[0] + halfSize[0], center[1] + halfSize[1]] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const squarifyBox = (box) => {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const halfSize = Math.max(...size) / 2;\n return { startPoint: [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)] as Point, endPoint: [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)] as Point, landmarks: box.landmarks, confidence: box.confidence };\n};\n\nexport const calculateLandmarksBoundingBox = (landmarks) => {\n const x = landmarks.map((d) => d[0]);\n const y = landmarks.map((d) => d[1]);\n return { startPoint: [Math.min(...x), Math.min(...y)] as Point, endPoint: [Math.max(...x), Math.max(...y)] as Point, landmarks };\n};\n\nexport const fixedRotationMatrix = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n\nexport const normalizeRadians = (angle: number) => angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n\nexport const computeRotation = (point1, point2) => normalizeRadians(Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]));\n\nexport const radToDegrees = (rad) => rad * 180 / Math.PI;\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport const dot = (v1: number[], v2: number[]) => {\n let product = 0;\n for (let i = 0; i < v1.length; i++) product += v1[i] * v2[i];\n return product;\n};\n\nexport const getColumnFrom2DArr = (arr, columnIndex) => {\n const column: number[] = [];\n for (let i = 0; i < arr.length; i++) column.push(arr[i][columnIndex]);\n return column;\n};\n\nexport const multiplyTransformMatrices = (mat1, mat2) => {\n const product: number[][] = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n return product;\n};\n\nexport const buildRotationMatrix = (rotation, center) => {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n};\n\nexport const invertTransformMatrix = (matrix) => {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [-dot(rotationComponent[0], translationComponent), -dot(rotationComponent[1], translationComponent)];\n return [rotationComponent[0].concat(invertedTranslation[0]), rotationComponent[1].concat(invertedTranslation[1]), [0, 0, 1]];\n};\n\nexport const rotatePoint = (homogeneousCoordinate, rotationMatrix) => [dot(homogeneousCoordinate, rotationMatrix[0]), dot(homogeneousCoordinate, rotationMatrix[1])];\n\nexport const xyDistanceBetweenPoints = (a, b) => Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n\nexport function generateAnchors(inputSize: number) {\n const spec = inputSize === 192\n ? { strides: [4], anchors: [1] } // facemesh-detector\n : { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] }; // blazeface\n const anchors: [number, number][] = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) anchors.push([anchorX, anchorY]);\n }\n }\n }\n return anchors;\n}\n\nexport function transformRawCoords(coordsRaw, box, angle, rotationMatrix, inputSize) {\n const boxSize = getBoxSize(box);\n const coordsScaled = coordsRaw.map((coord) => ([ // scaled around zero-point\n (boxSize[0] / inputSize) * (coord[0] - (inputSize / 2)),\n (boxSize[1] / inputSize) * (coord[1] - (inputSize / 2)),\n (coord[2] || 0),\n ]));\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n const coordsRotationMatrix = largeAngle ? buildRotationMatrix(angle, [0, 0]) : fixedRotationMatrix;\n const coordsRotated = largeAngle ? coordsScaled.map((coord) => ([...rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = largeAngle ? invertTransformMatrix(rotationMatrix) : fixedRotationMatrix;\n const boxCenter = getBoxCenter(box);\n const offsets = [dot(boxCenter, inverseRotationMatrix[0]), dot(boxCenter, inverseRotationMatrix[1])];\n return coordsRotated.map((coord) => ([\n Math.trunc(coord[0] + offsets[0]),\n Math.trunc(coord[1] + offsets[1]),\n Math.trunc(coord[2] || 0),\n ]));\n}\n\nexport function correctFaceRotation(rotate, box, input, inputSize) {\n const symmetryLine = (box.landmarks.length >= coords.meshLandmarks.count)\n ? coords.meshLandmarks.symmetryLine\n : coords.blazeFaceLandmarks.symmetryLine;\n let angle = 0; // default\n let rotationMatrix = fixedRotationMatrix; // default\n let face; // default\n\n if (rotate && env.kernels.includes('rotatewithoffset')) {\n angle = computeRotation(box.landmarks[symmetryLine[0]], box.landmarks[symmetryLine[1]]);\n const largeAngle = angle && (angle !== 0) && (Math.abs(angle) > 0.2);\n if (largeAngle) { // perform rotation only if angle is sufficiently high\n const center: Point = getBoxCenter(box);\n const centerRaw: Point = [center[0] / input.shape[2], center[1] / input.shape[1]];\n const rotated = tf.image.rotateWithOffset(input, angle, 0, centerRaw);\n rotationMatrix = buildRotationMatrix(-angle, center);\n face = cutAndResize(box, rotated, [inputSize, inputSize]);\n tf.dispose(rotated);\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n } else {\n face = cutAndResize(box, input, [inputSize, inputSize]);\n }\n return [angle, rotationMatrix, face];\n}\n\nexport const findFaceCenter = (mesh) => {\n const x = mesh.map((m) => m[0]);\n const y = mesh.map((m) => m[1]);\n // weighted center\n /*\n const sum = (arr: number[]) => arr.reduce((prev, curr) => prev + curr, 0);\n return [sum(x) / mesh.length, sum(y) / mesh.length];\n */\n // absolute center\n return [Math.min(...x) + (Math.max(...x) - Math.min(...x)) / 2, Math.min(...y) + (Math.max(...y) - Math.min(...y)) / 2];\n};\n\nexport const calculateFaceBox = (mesh, previousBox) => {\n const center = findFaceCenter(mesh);\n const boxSize = getBoxSize(previousBox);\n const calculatedBox = {\n startPoint: [center[0] - boxSize[0] / 2, center[1] - boxSize[1] / 2] as Point,\n endPoint: [center[0] + boxSize[0] / 2, center[1] + boxSize[1] / 2] as Point,\n };\n return calculatedBox;\n};\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n * See `facemesh.ts` for entry point\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './facemeshutil';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Config } from '../config';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport type { Point } from '../result';\n\nconst keypointsCount = 6;\nconst faceBoxScaleFactor = 1.4;\nlet model: GraphModel | null;\nlet anchors: Tensor | null = null;\nlet inputSize = 0;\nlet inputSizeT: Tensor | null = null;\n\ninterface DetectBox { startPoint: Point, endPoint: Point, landmarks: Point[], confidence: number }\n\nexport const size = () => inputSize;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.detector?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model['executor'] && model.inputs[0].shape) ? model.inputs[0].shape[2] : 256;\n inputSizeT = tf.scalar(inputSize, 'int32') as Tensor;\n anchors = tf.tensor2d(util.generateAnchors(inputSize)) as Tensor;\n return model;\n}\n\nfunction decodeBoxes(boxOutputs: Tensor) {\n const t: Record = {};\n t.boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n t.centers = tf.add(t.boxStarts, anchors);\n t.boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n t.boxSizesNormalized = tf.div(t.boxSizes, inputSizeT);\n t.centersNormalized = tf.div(t.centers, inputSizeT);\n t.halfBoxSize = tf.div(t.boxSizesNormalized, constants.tf2);\n t.starts = tf.sub(t.centersNormalized, t.halfBoxSize);\n t.ends = tf.add(t.centersNormalized, t.halfBoxSize);\n t.startNormalized = tf.mul(t.starts, inputSizeT);\n t.endNormalized = tf.mul(t.ends, inputSizeT);\n const boxes = tf.concat2d([t.startNormalized, t.endNormalized], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n\nexport async function getBoxes(inputImage: Tensor, config: Config) {\n // sanity check on input\n if ((!inputImage) || (inputImage['isDisposedInternal']) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return [];\n const t: Record = {};\n t.resized = tf.image.resizeBilinear(inputImage, [inputSize, inputSize]);\n t.div = tf.div(t.resized, constants.tf127);\n t.normalized = tf.sub(t.div, constants.tf05);\n const res = model?.execute(t.normalized) as Tensor[];\n if (Array.isArray(res) && res.length > 2) { // pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n t.concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n t.concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n t.concat = tf.concat([t.concat512, t.concat384], 1);\n t.batch = tf.squeeze(t.concat, 0);\n } else if (Array.isArray(res)) { // new facemesh-detection tfhub model\n t.batch = tf.squeeze(res[0]);\n } else { // original blazeface tfhub model\n t.batch = tf.squeeze(res);\n }\n tf.dispose(res);\n t.boxes = decodeBoxes(t.batch);\n t.logits = tf.slice(t.batch, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.logits);\n t.scores = tf.squeeze(t.sigmoid);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0));\n const nms = await t.nms.array() as number[];\n const boxes: DetectBox[] = [];\n const scores = await t.scores.data();\n for (let i = 0; i < nms.length; i++) {\n const confidence = scores[nms[i]];\n if (confidence > (config.face.detector?.minConfidence || 0)) {\n const b: Record = {};\n b.bbox = tf.slice(t.boxes, [nms[i], 0], [1, -1]);\n b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]);\n b.squeeze = tf.squeeze(b.slice);\n b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]);\n const points = await b.bbox.data();\n const rawBox = {\n startPoint: [points[0], points[1]] as Point,\n endPoint: [points[2], points[3]] as Point,\n landmarks: (await b.landmarks.array()) as Point[],\n confidence,\n };\n const scaledBox = util.scaleBoxCoordinates(rawBox, [(inputImage.shape[2] || 0) / inputSize, (inputImage.shape[1] || 0) / inputSize]);\n const enlargedBox = util.enlargeBox(scaledBox, config.face['scale'] || faceBoxScaleFactor);\n const squaredBox = util.squarifyBox(enlargedBox);\n boxes.push(squaredBox);\n Object.keys(b).forEach((tensor) => tf.dispose(b[tensor]));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n", "/* eslint-disable no-multi-spaces */\n\nexport const kpt: string[] = [\n 'nose', // 0\n 'leftEyeInside', // 1\n 'leftEye', // 2\n 'leftEyeOutside', // 3\n 'rightEyeInside', // 4\n 'rightEye', // 5\n 'rightEyeOutside', // 6\n 'leftEar', // 7\n 'rightEar', // 8\n 'leftMouth', // 9\n 'rightMouth', // 10\n 'leftShoulder', // 11\n 'rightShoulder', // 12\n 'leftElbow', // 13\n 'rightElbow', // 14\n 'leftWrist', // 15\n 'rightWrist', // 16\n 'leftPinky', // 17\n 'rightPinky', // 18\n 'leftIndex', // 19\n 'rightIndex', // 20\n 'leftThumb', // 21\n 'rightThumb', // 22\n 'leftHip', // 23\n 'rightHip', // 24\n 'leftKnee', // 25\n 'rightKnee', // 26\n 'leftAnkle', // 27\n 'rightAnkle', // 28\n 'leftHeel', // 29\n 'rightHeel', // 30\n 'leftFoot', // 31\n 'rightFoot', // 32\n 'bodyCenter', // 33\n 'bodyTop', // 34\n 'leftPalm', // 35 // z-coord not ok\n 'leftHand', // 36 // similar to wrist but z-coord not ok\n 'rightPalm', // 37 // z-coord not ok\n 'rightHand', // 38 // similar to wrist but z-coord not ok\n];\n\nexport const connected: Record = {\n shoulders: ['leftShoulder', 'rightShoulder'],\n hips: ['rightHip', 'leftHip'],\n mouth: ['leftMouth', 'rightMouth'],\n leftLegUpper: ['leftHip', 'leftKnee'],\n leftLegLower: ['leftKnee', 'leftAnkle'],\n leftFoot: ['leftAnkle', 'leftHeel', 'leftFoot'],\n leftTorso: ['leftShoulder', 'leftHip'],\n leftArmUpper: ['leftShoulder', 'leftElbow'],\n leftArmLower: ['leftElbow', 'leftWrist'],\n leftHand: ['leftWrist', 'leftPalm'],\n leftHandPinky: ['leftPalm', 'leftPinky'],\n leftHandIndex: ['leftPalm', 'leftIndex'],\n leftHandThumb: ['leftPalm', 'leftThumb'],\n leftEyeOutline: ['leftEyeInside', 'leftEyeOutside'],\n rightLegUpper: ['rightHip', 'rightKnee'],\n rightLegLower: ['rightKnee', 'rightAnkle'],\n rightFoot: ['rightAnkle', 'rightHeel', 'rightFoot'],\n rightTorso: ['rightShoulder', 'rightHip'],\n rightArmUpper: ['rightShoulder', 'rightElbow'],\n rightArmLower: ['rightElbow', 'rightWrist'],\n rightHand: ['rightWrist', 'rightPalm'],\n rightHandPinky: ['rightPalm', 'rightPinky'],\n rightHandIndex: ['rightPalm', 'rightIndex'],\n rightHandThumb: ['rightPalm', 'rightThumb'],\n rightEyeOutline: ['rightEyeInside', 'rightEyeOutside'],\n};\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\nimport type { Box } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nconst inputSize = 224;\nlet anchorTensor: { x, y };\nconst numLayers = 5;\nconst strides = [8, 16, 32, 32, 32];\n\nexport function createAnchors() {\n const anchors: { x: number, y: number }[] = [];\n let layerId = 0;\n while (layerId < numLayers) {\n let anchorCount = 0;\n let lastSameStrideLayer = layerId;\n while (lastSameStrideLayer < strides.length && strides[lastSameStrideLayer] === strides[layerId]) {\n anchorCount += 2;\n lastSameStrideLayer++;\n }\n const stride = strides[layerId];\n const featureMapHeight = Math.ceil(inputSize / stride);\n const featureMapWidth = Math.ceil(inputSize / stride);\n for (let y = 0; y < featureMapHeight; ++y) {\n for (let x = 0; x < featureMapWidth; ++x) {\n for (let anchorId = 0; anchorId < anchorCount; ++anchorId) {\n anchors.push({ x: (x + 0.5) / featureMapWidth, y: (y + 0.5) / featureMapHeight });\n }\n }\n }\n layerId = lastSameStrideLayer;\n }\n anchorTensor = { x: tf.tensor1d(anchors.map((a) => a.x)), y: tf.tensor1d(anchors.map((a) => a.y)) };\n}\n\nconst cropFactor = [5.0, 5.0];\nfunction decodeBoxes(boxesTensor, anchor): Tensor {\n return tf.tidy(() => {\n const split = tf.split(boxesTensor, 12, 1); // first 4 are box data [x,y,w,h] and 4 are keypoints data [x,y] for total of 12\n let xCenter = tf.squeeze(split[0]);\n let yCenter = tf.squeeze(split[1]);\n let width = tf.squeeze(split[2]);\n let height = tf.squeeze(split[3]);\n xCenter = tf.add(tf.div(xCenter, inputSize), anchor.x);\n yCenter = tf.add(tf.div(yCenter, inputSize), anchor.y);\n width = tf.mul(tf.div(width, inputSize), cropFactor[0]);\n height = tf.mul(tf.div(height, inputSize), cropFactor[1]);\n const xMin = tf.sub(xCenter, tf.div(width, 2));\n const yMin = tf.sub(yCenter, tf.div(height, 2));\n const boxes = tf.stack([xMin, yMin, width, height], 1);\n return boxes;\n });\n}\n\nexport async function decode(boxesTensor: Tensor, logitsTensor: Tensor, config: Config, outputSize: [number, number]): Promise {\n const t: Record = {};\n t.boxes = decodeBoxes(boxesTensor, anchorTensor);\n t.scores = tf.sigmoid(logitsTensor);\n t.argmax = tf.argMax(t.scores);\n const i = (await t.argmax.data())[0];\n const scores = await t.scores.data();\n const detected: { box: Box, boxRaw: Box, score: number }[] = [];\n const minScore = config.body?.['detector']?.minConfidence || 0;\n if (scores[i] >= minScore) {\n const boxes = await t.boxes.array();\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[1] * outputSize[1], boxRaw[2] * outputSize[0], boxRaw[3] * outputSize[1]];\n // console.log(box);\n detected.push({ box, boxRaw, score: scores[i] });\n }\n /*\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, 1, config.body.detector?.minConfidence || 0.1, config.body.detector?.iouThreshold || 0.1);\n const boxes = t.boxes.arraySync();\n const scores = t.scores.dataSync();\n const nms = t.nms.dataSync();\n const detected: Array = [];\n for (const i of Array.from(nms)) {\n const boxRaw: Box = boxes[i];\n const box: Box = [boxRaw[0] * outputSize[0], boxRaw[0] * outputSize[1], boxRaw[3] * outputSize[0], boxRaw[2] * outputSize[1]];\n detected.push({ box, boxRaw, score: scores[i] });\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return detected;\n}\n", "import type { Point, Box } from '../result';\n\nexport function calc(keypoints: Point[], outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const box: Box = [min[0], min[1], max[0] - min[0], max[1] - min[1]];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function square(keypoints: Point[], outputSize: [number, number] = [1, 1]) {\n const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords\n const min = [Math.min(...coords[0]), Math.min(...coords[1])];\n const max = [Math.max(...coords[0]), Math.max(...coords[1])];\n const center = [(min[0] + max[0]) / 2, (min[1] + max[1]) / 2]; // find center x and y coord of all fingers\n const dist = Math.max(center[0] - min[0], center[1] - min[1], -center[0] + max[0], -center[1] + max[1]); // largest distance from center in any direction\n const box: Box = [Math.trunc(center[0] - dist), Math.trunc(center[1] - dist), Math.trunc(2 * dist), Math.trunc(2 * dist)];\n const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];\n return { box, boxRaw };\n}\n\nexport function scale(box: Box, scaleFact: number) {\n const dist = [box[2] * scaleFact, box[3] * scaleFact];\n const newBox: Box = [\n box[0] - (dist[0] - box[2]) / 2,\n box[1] - (dist[1] - box[3]) / 2,\n dist[0],\n dist[1],\n ];\n return newBox;\n}\n\nexport function crop(box: Box) { // [y1, x1, y2, x2] clamped to 0..1\n const yxBox: Box = [Math.max(0, box[1]), Math.max(0, box[0]), Math.min(1, box[3] + box[1]), Math.min(1, box[2] + box[0])];\n return yxBox;\n}\n", "/**\n * BlazePose model implementation\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { log, now } from '../util/util';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, Box, Point, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport * as coords from './blazeposecoords';\nimport * as detect from './blazeposedetector';\nimport * as box from '../util/box';\n\nconst env = { initial: true };\n// const models: [GraphModel | null, GraphModel | null] = [null, null];\nconst models: { detector: GraphModel | null, landmarks: GraphModel | null } = { detector: null, landmarks: null };\nconst inputSize: { detector: [number, number], landmarks: [number, number] } = { detector: [224, 224], landmarks: [256, 256] };\nlet skipped = Number.MAX_SAFE_INTEGER;\nconst outputNodes: { detector: string[], landmarks: string[] } = {\n landmarks: ['ld_3d', 'activation_segmentation', 'activation_heatmap', 'world_3d', 'output_poseflag'],\n detector: [],\n};\n\nlet cache: BodyResult | null = null;\nlet cropBox: Box | undefined;\nlet padding: [number, number][] = [[0, 0], [0, 0], [0, 0], [0, 0]];\nlet lastTime = 0;\n\nconst sigmoid = (x) => (1 - (1 / (1 + Math.exp(x))));\n\nexport async function loadDetect(config: Config): Promise {\n if (env.initial) models.detector = null;\n if (!models.detector && config.body['detector'] && config.body['detector'].modelPath || '') {\n models.detector = await loadModel(config.body['detector'].modelPath);\n const inputs = models.detector?.['executor'] ? Object.values(models.detector.modelSignature['inputs']) : undefined;\n inputSize.detector[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.detector[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug && models.detector) log('cached model:', models.detector['modelUrl']);\n detect.createAnchors();\n return models.detector as GraphModel;\n}\n\nexport async function loadPose(config: Config): Promise {\n if (env.initial) models.landmarks = null;\n if (!models.landmarks) {\n models.landmarks = await loadModel(config.body.modelPath);\n const inputs = models.landmarks?.['executor'] ? Object.values(models.landmarks.modelSignature['inputs']) : undefined;\n inputSize.landmarks[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize.landmarks[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models.landmarks['modelUrl']);\n return models.landmarks;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models.detector) await loadDetect(config);\n if (!models.landmarks) await loadPose(config);\n return [models.detector, models.landmarks];\n}\n\nfunction prepareImage(input: Tensor, size: number): Tensor {\n const t: Record = {};\n if (!input?.shape?.[1] || !input?.shape?.[2]) return input;\n let final: Tensor;\n if (cropBox) {\n t.cropped = tf.image.cropAndResize(input, [cropBox], [0], [input.shape[1], input.shape[2]]); // if we have cached box use it to crop input\n }\n if (input.shape[1] !== input.shape[2]) { // only pad if width different than height\n const height: [number, number] = [\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0,\n ];\n const width: [number, number] = [\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0,\n ];\n padding = [\n [0, 0], // dont touch batch\n height, // height before&after\n width, // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(t.cropped || input, padding); // use cropped box if it exists\n t.resize = tf.image.resizeBilinear(t.pad, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else if (input.shape[1] !== size) { // if input needs resizing\n t.resize = tf.image.resizeBilinear(t.cropped || input, [size, size]);\n final = tf.div(t.resize, constants.tf255);\n } else { // if input is already in a correct resolution just normalize it\n final = tf.div(t.cropped || input, constants.tf255);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nfunction rescaleKeypoints(keypoints: BodyKeypoint[], outputSize: [number, number]): BodyKeypoint[] {\n for (const kpt of keypoints) { // first rescale due to padding\n kpt.position = [\n Math.trunc(kpt.position[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0] - padding[2][0]),\n Math.trunc(kpt.position[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1] - padding[1][0]),\n kpt.position[2] as number,\n ];\n kpt.positionRaw = [kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1], 2 * (kpt.position[2] as number) / (outputSize[0] + outputSize[1])];\n }\n if (cropBox) { // second rescale due to cropping\n for (const kpt of keypoints) {\n kpt.positionRaw = [\n kpt.positionRaw[0] + cropBox[1], // correct offset due to crop\n kpt.positionRaw[1] + cropBox[0], // correct offset due to crop\n kpt.positionRaw[2] as number,\n ];\n kpt.position = [\n Math.trunc(kpt.positionRaw[0] * outputSize[0]),\n Math.trunc(kpt.positionRaw[1] * outputSize[1]),\n kpt.positionRaw[2] as number,\n ];\n }\n }\n return keypoints;\n}\n\nfunction fixKeypoints(keypoints: BodyKeypoint[]) {\n // palm z-coord is incorrect around near-zero so we approximate it\n const leftPalm = keypoints.find((k) => k.part === 'leftPalm') as BodyKeypoint;\n const leftWrist = keypoints.find((k) => k.part === 'leftWrist') as BodyKeypoint;\n const leftIndex = keypoints.find((k) => k.part === 'leftIndex') as BodyKeypoint;\n leftPalm.position[2] = ((leftWrist.position[2] || 0) + (leftIndex.position[2] || 0)) / 2;\n const rightPalm = keypoints.find((k) => k.part === 'rightPalm') as BodyKeypoint;\n const rightWrist = keypoints.find((k) => k.part === 'rightWrist') as BodyKeypoint;\n const rightIndex = keypoints.find((k) => k.part === 'rightIndex') as BodyKeypoint;\n rightPalm.position[2] = ((rightWrist.position[2] || 0) + (rightIndex.position[2] || 0)) / 2;\n}\n\nasync function detectLandmarks(input: Tensor, config: Config, outputSize: [number, number]): Promise {\n /**\n * t.ld: 39 keypoints [x,y,z,score,presence] normalized to input size\n * t.segmentation:\n * t.heatmap:\n * t.world: 39 keypoints [x,y,z] normalized to -1..1\n * t.poseflag: body score\n */\n if (!models.landmarks?.['executor']) return null;\n const t: Record = {};\n [t.ld/* 1,195(39*5) */, t.segmentation/* 1,256,256,1 */, t.heatmap/* 1,64,64,39 */, t.world/* 1,117(39*3) */, t.poseflag/* 1,1 */] = models.landmarks?.execute(input, outputNodes.landmarks) as Tensor[]; // run model\n const poseScore = (await t.poseflag.data())[0];\n const points = await t.ld.data();\n const distances = await t.world.data();\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); // dont need tensors after this\n const keypointsRelative: BodyKeypoint[] = [];\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n const score = sigmoid(points[depth * i + 3]);\n const presence = sigmoid(points[depth * i + 4]);\n const adjScore = Math.trunc(100 * score * presence * poseScore) / 100;\n const positionRaw: Point = [points[depth * i + 0] / inputSize.landmarks[0], points[depth * i + 1] / inputSize.landmarks[1], points[depth * i + 2] + 0];\n const position: Point = [Math.trunc(outputSize[0] * positionRaw[0]), Math.trunc(outputSize[1] * positionRaw[1]), positionRaw[2] as number];\n const distance: Point = [distances[depth * i + 0], distances[depth * i + 1], distances[depth * i + 2] + 0];\n keypointsRelative.push({ part: coords.kpt[i] as BodyLandmark, positionRaw, position, distance, score: adjScore });\n }\n if (poseScore < (config.body.minConfidence || 0)) return null;\n fixKeypoints(keypointsRelative);\n const keypoints: BodyKeypoint[] = rescaleKeypoints(keypointsRelative, outputSize); // keypoints were relative to input image which is padded\n const kpts = keypoints.map((k) => k.position);\n const boxes = box.calc(kpts, [outputSize[0], outputSize[1]]); // now find boxes based on rescaled keypoints\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body = { id: 0, score: Math.trunc(100 * poseScore) / 100, box: boxes.box, boxRaw: boxes.boxRaw, keypoints, annotations };\n return body;\n}\n\n/*\ninterface DetectedBox { box: Box, boxRaw: Box, score: number }\n\nfunction rescaleBoxes(boxes: Array, outputSize: [number, number]): Array {\n for (const b of boxes) {\n b.box = [\n Math.trunc(b.box[0] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[1] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n Math.trunc(b.box[2] * (outputSize[0] + padding[2][0] + padding[2][1]) / outputSize[0]),\n Math.trunc(b.box[3] * (outputSize[1] + padding[1][0] + padding[1][1]) / outputSize[1]),\n ];\n b.boxRaw = [b.box[0] / outputSize[0], b.box[1] / outputSize[1], b.box[2] / outputSize[0], b.box[3] / outputSize[1]];\n }\n return boxes;\n}\n\nasync function detectBoxes(input: Tensor, config: Config, outputSize: [number, number]) {\n const t: Record = {};\n t.res = models.detector?.execute(input, ['Identity']) as Tensor; //\n t.logitsRaw = tf.slice(t.res, [0, 0, 0], [1, -1, 1]);\n t.boxesRaw = tf.slice(t.res, [0, 0, 1], [1, -1, -1]);\n t.logits = tf.squeeze(t.logitsRaw);\n t.boxes = tf.squeeze(t.boxesRaw);\n const boxes = await detect.decode(t.boxes, t.logits, config, outputSize);\n rescaleBoxes(boxes, outputSize);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return boxes;\n}\n*/\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const outputSize: [number, number] = [input.shape[2] || 0, input.shape[1] || 0];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && cache !== null) {\n skipped++;\n } else {\n const t: Record = {};\n /*\n if (config.body['detector'] && config.body['detector']['enabled']) {\n t.detector = await prepareImage(input, 224);\n const boxes = await detectBoxes(t.detector, config, outputSize);\n }\n */\n t.landmarks = prepareImage(input, 256); // padded and resized\n cache = await detectLandmarks(t.landmarks, config, outputSize);\n /*\n cropBox = [0, 0, 1, 1]; // reset crop coordinates\n if (cache?.boxRaw && config.skipAllowed) {\n const cx = (2.0 * cache.boxRaw[0] + cache.boxRaw[2]) / 2;\n const cy = (2.0 * cache.boxRaw[1] + cache.boxRaw[3]) / 2;\n let size = cache.boxRaw[2] > cache.boxRaw[3] ? cache.boxRaw[2] : cache.boxRaw[3];\n size = (size * 1.0) / 2; // enlarge and half it\n if (cx > 0.1 && cx < 0.9 && cy > 0.1 && cy < 0.9 && size > 0.1) { // only update if box is sane\n const y = 0; // cy - size;\n const x = cx - size;\n cropBox = [y, x, y + 1, x + 1]; // [y0,x0,y1,x1] used for cropping but width/height are not yet implemented so we only reposition image to center of body\n }\n }\n */\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n lastTime = now();\n skipped = 0;\n }\n return cache ? [cache] : [];\n}\n", "/**\n * CoCo Labels used by object detection implementations\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * CenterNet object detection model implementation\n *\n * Based on: [**NanoDet**](https://github.com/RangiLyu/nanodet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n // fakeOps(['floormod'], config);\n model = await loadModel(config.object.modelPath);\n const inputs = model?.['executor'] ? Object.values(model.modelSignature['inputs']) : undefined;\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor | null, outputShape: [number, number], config: Config) {\n if (!res) return [];\n const t: Record = {};\n const results: ObjectResult[] = [];\n const detections = await res.array() as number[][][];\n t.squeeze = tf.squeeze(res);\n const arr = tf.split(t.squeeze, 6, 1) as Tensor[]; // x1, y1, x2, y2, score, class\n t.stack = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n t.boxes = tf.squeeze(t.stack);\n t.scores = tf.squeeze(arr[4]);\n t.classes = tf.squeeze(arr[5]);\n tf.dispose([res, ...arr]);\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, config.object.maxDetected, config.object.iouThreshold, (config.object.minConfidence || 0));\n const nms = await t.nms.data();\n let i = 0;\n for (const id of Array.from(nms)) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n if (Number.isNaN(classVal)) continue;\n const label = labels[classVal].label as ObjectType;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw: Box = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ];\n const box: Box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2] || 0, input.shape[1] || 0] as [number, number];\n const resize = tf.image.resizeBilinear(input, [inputSize, inputSize]);\n const objectT = config.object.enabled ? model?.execute(resize, ['tower_0/detections']) as Tensor : null;\n lastTime = now();\n tf.dispose(resize);\n\n const obj = await process(objectT, outputSize, config);\n last = obj;\n\n resolve(obj);\n });\n}\n", "export const kpt: string[] = [\n 'head',\n 'neck',\n 'rightShoulder',\n 'rightElbow',\n 'rightWrist',\n 'chest',\n 'leftShoulder',\n 'leftElbow',\n 'leftWrist',\n 'bodyCenter',\n 'rightHip',\n 'rightKnee',\n 'rightAnkle',\n 'leftHip',\n 'leftKnee',\n 'leftAnkle',\n];\n\nexport const connected: Record = {\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "/**\n * EfficientPose model implementation\n *\n * Based on: [**EfficientPose**](https://github.com/daniegr/EfficientPose)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as coords from './efficientposecoords';\nimport { constants } from '../tfjs/constants';\nimport type { BodyResult, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet lastTime = 0;\nconst cache: BodyResult = { id: 0, keypoints: [], box: [0, 0, 0, 0], boxRaw: [0, 0, 0, 0], score: 0, annotations: {} as Record };\n\n// const keypoints: Array = [];\n// let box: Box = [0, 0, 0, 0];\n// let boxRaw: Box = [0, 0, 0, 0];\n// let score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nasync function max2d(inputs, minScore): Promise<[number, number, number]> {\n const [width, height] = inputs.shape;\n const reshaped = tf.reshape(inputs, [height * width]); // combine all data\n const max = tf.max(reshaped, 0);\n const newScore: number = (await max.data())[0]; // get highest score\n if (newScore > minScore) { // skip coordinate calculation is score is too low\n const coordinates = tf.argMax(reshaped, 0);\n const mod = tf.mod(coordinates, width);\n const x = (await mod.data())[0];\n const div = tf.div(coordinates, width);\n const y: number = (await div.data())[0];\n tf.dispose([reshaped, max, coordinates, mod, div]);\n return [x, y, newScore];\n }\n tf.dispose([reshaped, max]);\n return [0, 0, newScore];\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.body.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && Object.keys(cache.keypoints).length > 0) {\n skipped++;\n return [cache];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model?.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, constants.tf2);\n const norm = tf.sub(enhance, constants.tf1);\n return norm;\n });\n let resT;\n if (config.body.enabled) resT = model?.execute(tensor);\n lastTime = now();\n tf.dispose(tensor);\n\n if (resT) {\n cache.keypoints.length = 0;\n const squeeze = tf.squeeze(resT);\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = tf.unstack(squeeze, 2);\n tf.dispose(squeeze);\n\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = await max2d(stack[id], config.body.minConfidence);\n if (partScore > (config.body.minConfidence || 0)) {\n cache.keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n cache.score = cache.keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = cache.keypoints.map((a) => a.position[0]);\n const y = cache.keypoints.map((a) => a.position[1]);\n cache.box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = cache.keypoints.map((a) => a.positionRaw[0]);\n const yRaw = cache.keypoints.map((a) => a.positionRaw[1]);\n cache.boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = cache.keypoints.find((kpt) => kpt.part === indexes[i]);\n const pt1 = cache.keypoints.find((kpt) => kpt.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n cache.annotations[name] = pt;\n }\n resolve([cache]);\n });\n}\n", "/**\n * Emotion model implementation\n *\n * [**Oarriaga**](https://github.com/oarriaga/face_classification)\n */\n\nimport type { Emotion } from '../result';\nimport { log, now } from '../util/util';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { env } from '../util/env';\nimport { constants } from '../tfjs/constants';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model: GraphModel | null;\nconst last: { score: number, emotion: Emotion }[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.emotion?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise<{ score: number, emotion: Emotion }[]> {\n if (!model) return [];\n const skipFrame = skipped < (config.face.emotion?.skipFrames || 0);\n const skipTime = (config.face.emotion?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj: { score: number, emotion: Emotion }[] = [];\n if (config.face.emotion?.enabled) {\n const t: Record = {};\n const inputSize = model?.inputs[0].shape ? model.inputs[0].shape[2] : 0;\n t.resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n // const box = [[0.15, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const resize = tf.image.cropAndResize(image, box, [0], [inputSize, inputSize]);\n // [t.red, t.green, t.blue] = tf.split(t.resize, 3, 3);\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n // t.redNorm = tf.mul(t.red, rgb[0]);\n // t.greenNorm = tf.mul(t.green, rgb[1]);\n // t.blueNorm = tf.mul(t.blue, rgb[2]);\n // t.grayscale = tf.addN([t.redNorm, t.greenNorm, t.blueNorm]);\n t.channels = tf.mul(t.resize, constants.rgb);\n t.grayscale = tf.sum(t.channels, 3, true);\n t.grayscaleSub = tf.sub(t.grayscale, constants.tf05);\n t.grayscaleMul = tf.mul(t.grayscaleSub, constants.tf2);\n t.emotion = model?.execute(t.grayscaleMul) as Tensor; // result is already in range 0..1, no need for additional activation\n lastTime = now();\n const data = await t.emotion.data();\n for (let i = 0; i < data.length; i++) {\n if (data[i] > (config.face.emotion.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] as Emotion });\n }\n obj.sort((a, b) => b.score - a.score);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * MobileFaceNet model implementation\n *\n * Based on: [**BecauseofAI MobileFace**](https://github.com/becauseofAI/MobileFace)\n *\n * Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: number[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['mobilefacenet']?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n/*\n// convert to black&white to avoid colorization impact\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\nconst [red, green, blue] = tf.split(crop, 3, 3);\nconst redNorm = tf.mul(red, rgb[0]);\nconst greenNorm = tf.mul(green, rgb[1]);\nconst blueNorm = tf.mul(blue, rgb[2]);\nconst grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\nconst merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n\n// optional increase image contrast\n// or do it per-channel so mean is done on each channel\n// or do it based on histogram\nconst mean = merge.mean();\nconst factor = 5;\nconst contrast = merge.sub(mean).mul(factor).add(mean);\n*/\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model?.['executor']) return [];\n const skipFrame = skipped < (config.face['mobilefacenet']?.skipFrames || 0);\n const skipTime = (config.face['mobilefacenet']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: number[] = [];\n if (config.face['mobilefacenet']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model.execute(t.crop) as Tensor;\n /*\n // optional normalize outputs with l2 normalization\n const scaled = tf.tidy(() => {\n const l2 = res.norm('euclidean');\n const scale = res.div(l2);\n return scale;\n });\n\n // optional reduce feature vector complexity\n const reshape = tf.reshape(res, [128, 2]); // split 256 vectors into 128 x 2\n const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it\n */\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "/**\n * InsightFace model implementation\n *\n * Based on: [**DeepInsight InsightFace**](https://github.com/deepinsight/insightface)\n *\n * Alternative face embedding detection\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst last: number[][] = [];\nlet lastCount = 0;\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face['insightface'].modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(input: Tensor, config: Config, idx, count): Promise {\n if (!model?.['executor']) return [];\n const skipFrame = skipped < (config.face['insightface']?.skipFrames || 0);\n const skipTime = (config.face['insightface']?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {\n skipped++;\n return last[idx];\n }\n return new Promise(async (resolve) => {\n let data: number[] = [];\n if (config.face['insightface']?.enabled && model?.inputs[0].shape) {\n const t: Record = {};\n t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model\n // do a tight crop of image and resize it to fit the model\n // const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n t.data = model.execute(t.crop) as Tensor;\n const output = await t.data.data();\n data = Array.from(output); // convert typed array to simple array\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n last[idx] = data;\n lastCount = count;\n lastTime = now();\n resolve(data);\n });\n}\n", "import * as coords from './facemeshcoords';\nimport * as util from './facemeshutil';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { log } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { Point } from '../result';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\n\nconst irisEnlarge = 2.3;\n\nconst leftOutline = coords.meshAnnotations.leftEyeLower0;\nconst rightOutline = coords.meshAnnotations.rightEyeLower0;\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.iris?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model?.['executor'] && model.inputs?.[0].shape) ? model.inputs[0].shape[2] : 0;\n if (inputSize === -1) inputSize = 64;\n return model;\n}\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates and update the z coordinate to be an average of the original and the new.\nexport function replaceIrisCoords(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.irisIndices.length; i++) {\n const { key, indices } = coords.irisIndices[i];\n const originalIndices = coords.meshAnnotations[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0],\n newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n\nexport const getLeftToRightEyeDepthDifference = (rawCoords) => {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n};\n\n// Returns a box describing a cropped region around the eye fit for passing to the iris model.\nexport const getEyeBox = (rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, meshSize, flip = false) => {\n const box = util.squarifyBox(util.enlargeBox(util.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), irisEnlarge));\n const boxSize = util.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / meshSize,\n box.startPoint[0] / meshSize, box.endPoint[1] / meshSize,\n box.endPoint[0] / meshSize,\n ]], [0], [inputSize, inputSize]);\n if (flip && env.kernels.includes('flipleftright')) {\n const flipped = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n tf.dispose(crop);\n crop = flipped;\n }\n return { box, boxSize, crop };\n};\n\n// Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\nexport const getEyeCoords = (eyeData, eyeBox, eyeBoxSize, flip = false) => {\n const eyeRawCoords: Point[] = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / inputSize)) : (x / inputSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / inputSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n};\n\n// The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\nexport const getAdjustedIrisCoords = (rawCoords, irisCoords, direction) => {\n const upperCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.meshAnnotations[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n};\n\nexport async function augmentIris(rawCoords, face, meshSize) {\n if (!model?.['executor']) return rawCoords;\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], meshSize, true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1], meshSize, true);\n const combined = tf.concat([leftEyeCrop, rightEyeCrop]);\n tf.dispose(leftEyeCrop);\n tf.dispose(rightEyeCrop);\n const eyePredictions = model.execute(combined) as Tensor;\n tf.dispose(combined);\n const eyePredictionsData = await eyePredictions.data();\n tf.dispose(eyePredictions);\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize, false);\n const leftToRightEyeDepthDifference = getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', null);\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged so we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceIrisCoords(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceIrisCoords(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n const newCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n return newCoords;\n}\n", "// @tensorflow/tfjs-models/face-landmark-detection/src/constants.ts\n// https://github.com/google/mediapipe/mediapipe/python/solutions/face_mesh_connections.py\n\ntype PairArray = [number, number][];\n\nconst LIPS_CONNECTIONS: PairArray = [\n [61, 146], [146, 91], [91, 181], [181, 84], [84, 17], [17, 314], [314, 405], [405, 321], [321, 375], [375, 291], [61, 185], [185, 40], [40, 39], [39, 37], [37, 0], [0, 267], [267, 269], [269, 270], [270, 409], [409, 291],\n [78, 95], [95, 88], [88, 178], [178, 87], [87, 14], [14, 317], [317, 402], [402, 318], [318, 324], [324, 308], [78, 191], [191, 80], [80, 81], [81, 82], [82, 13], [13, 312], [312, 311], [311, 310], [310, 415], [415, 308],\n];\n\nconst LEFT_EYE_CONNECTIONS: PairArray = [[263, 249], [249, 390], [390, 373], [373, 374], [374, 380], [380, 381], [381, 382], [382, 362], [263, 466], [466, 388], [388, 387], [387, 386], [386, 385], [385, 384], [384, 398], [398, 362]];\n\nconst LEFT_EYEBROW_CONNECTIONS: PairArray = [[276, 283], [283, 282], [282, 295], [295, 285], [300, 293], [293, 334], [334, 296], [296, 336]];\n\nconst LEFT_IRIS_CONNECTIONS: PairArray = [[474, 475], [475, 476], [476, 477], [477, 474]];\n\nconst RIGHT_EYE_CONNECTIONS: PairArray = [[33, 7], [7, 163], [163, 144], [144, 145], [145, 153], [153, 154], [154, 155], [155, 133], [33, 246], [246, 161], [161, 160], [160, 159], [159, 158], [158, 157], [157, 173], [173, 133]];\n\nconst RIGHT_EYEBROW_CONNECTIONS: PairArray = [[46, 53], [53, 52], [52, 65], [65, 55], [70, 63], [63, 105], [105, 66], [66, 107]];\n\nconst RIGHT_IRIS_CONNECTIONS: PairArray = [[469, 470], [470, 471], [471, 472], [472, 469]];\n\nconst FACE_OVAL_CONNECTIONS: PairArray = [\n [10, 338], [338, 297], [297, 332], [332, 284], [284, 251], [251, 389], [389, 356], [356, 454], [454, 323], [323, 361], [361, 288], [288, 397], [397, 365], [365, 379], [379, 378], [378, 400], [400, 377], [377, 152],\n [152, 148], [148, 176], [176, 149], [149, 150], [150, 136], [136, 172], [172, 58], [58, 132], [132, 93], [93, 234], [234, 127], [127, 162], [162, 21], [21, 54], [54, 103], [103, 67], [67, 109], [109, 10],\n];\n\nexport const MEDIAPIPE_FACE_MESH_CONNECTED_KEYPOINTS_PAIRS: PairArray = [\n [127, 34], [34, 139], [139, 127], [11, 0], [0, 37], [37, 11], [232, 231], [231, 120], [120, 232], [72, 37], [37, 39], [39, 72], [128, 121], [121, 47], [47, 128], [232, 121], [121, 128], [128, 232],\n [104, 69], [69, 67], [67, 104], [175, 171], [171, 148], [148, 175], [118, 50], [50, 101], [101, 118], [73, 39], [39, 40], [40, 73], [9, 151], [151, 108], [108, 9], [48, 115], [115, 131], [131, 48],\n [194, 204], [204, 211], [211, 194], [74, 40], [40, 185], [185, 74], [80, 42], [42, 183], [183, 80], [40, 92], [92, 186], [186, 40], [230, 229], [229, 118], [118, 230], [202, 212], [212, 214], [214, 202],\n [83, 18], [18, 17], [17, 83], [76, 61], [61, 146], [146, 76], [160, 29], [29, 30], [30, 160], [56, 157], [157, 173], [173, 56], [106, 204], [204, 194], [194, 106], [135, 214], [214, 192], [192, 135],\n [203, 165], [165, 98], [98, 203], [21, 71], [71, 68], [68, 21], [51, 45], [45, 4], [4, 51], [144, 24], [24, 23], [23, 144], [77, 146], [146, 91], [91, 77], [205, 50], [50, 187], [187, 205],\n [201, 200], [200, 18], [18, 201], [91, 106], [106, 182], [182, 91], [90, 91], [91, 181], [181, 90], [85, 84], [84, 17], [17, 85], [206, 203], [203, 36], [36, 206], [148, 171], [171, 140], [140, 148],\n [92, 40], [40, 39], [39, 92], [193, 189], [189, 244], [244, 193], [159, 158], [158, 28], [28, 159], [247, 246], [246, 161], [161, 247], [236, 3], [3, 196], [196, 236], [54, 68], [68, 104], [104, 54],\n [193, 168], [168, 8], [8, 193], [117, 228], [228, 31], [31, 117], [189, 193], [193, 55], [55, 189], [98, 97], [97, 99], [99, 98], [126, 47], [47, 100], [100, 126], [166, 79], [79, 218], [218, 166],\n [155, 154], [154, 26], [26, 155], [209, 49], [49, 131], [131, 209], [135, 136], [136, 150], [150, 135], [47, 126], [126, 217], [217, 47], [223, 52], [52, 53], [53, 223], [45, 51], [51, 134], [134, 45],\n [211, 170], [170, 140], [140, 211], [67, 69], [69, 108], [108, 67], [43, 106], [106, 91], [91, 43], [230, 119], [119, 120], [120, 230], [226, 130], [130, 247], [247, 226], [63, 53], [53, 52], [52, 63],\n [238, 20], [20, 242], [242, 238], [46, 70], [70, 156], [156, 46], [78, 62], [62, 96], [96, 78], [46, 53], [53, 63], [63, 46], [143, 34], [34, 227], [227, 143], [123, 117], [117, 111], [111, 123],\n [44, 125], [125, 19], [19, 44], [236, 134], [134, 51], [51, 236], [216, 206], [206, 205], [205, 216], [154, 153], [153, 22], [22, 154], [39, 37], [37, 167], [167, 39], [200, 201], [201, 208], [208, 200],\n [36, 142], [142, 100], [100, 36], [57, 212], [212, 202], [202, 57], [20, 60], [60, 99], [99, 20], [28, 158], [158, 157], [157, 28], [35, 226], [226, 113], [113, 35], [160, 159], [159, 27], [27, 160],\n [204, 202], [202, 210], [210, 204], [113, 225], [225, 46], [46, 113], [43, 202], [202, 204], [204, 43], [62, 76], [76, 77], [77, 62], [137, 123], [123, 116], [116, 137], [41, 38], [38, 72], [72, 41],\n [203, 129], [129, 142], [142, 203], [64, 98], [98, 240], [240, 64], [49, 102], [102, 64], [64, 49], [41, 73], [73, 74], [74, 41], [212, 216], [216, 207], [207, 212], [42, 74], [74, 184], [184, 42],\n [169, 170], [170, 211], [211, 169], [170, 149], [149, 176], [176, 170], [105, 66], [66, 69], [69, 105], [122, 6], [6, 168], [168, 122], [123, 147], [147, 187], [187, 123], [96, 77], [77, 90], [90, 96],\n [65, 55], [55, 107], [107, 65], [89, 90], [90, 180], [180, 89], [101, 100], [100, 120], [120, 101], [63, 105], [105, 104], [104, 63], [93, 137], [137, 227], [227, 93], [15, 86], [86, 85], [85, 15],\n [129, 102], [102, 49], [49, 129], [14, 87], [87, 86], [86, 14], [55, 8], [8, 9], [9, 55], [100, 47], [47, 121], [121, 100], [145, 23], [23, 22], [22, 145], [88, 89], [89, 179], [179, 88],\n [6, 122], [122, 196], [196, 6], [88, 95], [95, 96], [96, 88], [138, 172], [172, 136], [136, 138], [215, 58], [58, 172], [172, 215], [115, 48], [48, 219], [219, 115], [42, 80], [80, 81], [81, 42],\n [195, 3], [3, 51], [51, 195], [43, 146], [146, 61], [61, 43], [171, 175], [175, 199], [199, 171], [81, 82], [82, 38], [38, 81], [53, 46], [46, 225], [225, 53], [144, 163], [163, 110], [110, 144],\n [52, 65], [65, 66], [66, 52], [229, 228], [228, 117], [117, 229], [34, 127], [127, 234], [234, 34], [107, 108], [108, 69], [69, 107], [109, 108], [108, 151], [151, 109], [48, 64], [64, 235], [235, 48],\n [62, 78], [78, 191], [191, 62], [129, 209], [209, 126], [126, 129], [111, 35], [35, 143], [143, 111], [117, 123], [123, 50], [50, 117], [222, 65], [65, 52], [52, 222], [19, 125], [125, 141], [141, 19],\n [221, 55], [55, 65], [65, 221], [3, 195], [195, 197], [197, 3], [25, 7], [7, 33], [33, 25], [220, 237], [237, 44], [44, 220], [70, 71], [71, 139], [139, 70], [122, 193], [193, 245], [245, 122],\n [247, 130], [130, 33], [33, 247], [71, 21], [21, 162], [162, 71], [170, 169], [169, 150], [150, 170], [188, 174], [174, 196], [196, 188], [216, 186], [186, 92], [92, 216], [2, 97], [97, 167], [167, 2],\n [141, 125], [125, 241], [241, 141], [164, 167], [167, 37], [37, 164], [72, 38], [38, 12], [12, 72], [38, 82], [82, 13], [13, 38], [63, 68], [68, 71], [71, 63], [226, 35], [35, 111], [111, 226],\n [101, 50], [50, 205], [205, 101], [206, 92], [92, 165], [165, 206], [209, 198], [198, 217], [217, 209], [165, 167], [167, 97], [97, 165], [220, 115], [115, 218], [218, 220], [133, 112], [112, 243], [243, 133],\n [239, 238], [238, 241], [241, 239], [214, 135], [135, 169], [169, 214], [190, 173], [173, 133], [133, 190], [171, 208], [208, 32], [32, 171], [125, 44], [44, 237], [237, 125], [86, 87], [87, 178], [178, 86],\n [85, 86], [86, 179], [179, 85], [84, 85], [85, 180], [180, 84], [83, 84], [84, 181], [181, 83], [201, 83], [83, 182], [182, 201], [137, 93], [93, 132], [132, 137], [76, 62], [62, 183], [183, 76],\n [61, 76], [76, 184], [184, 61], [57, 61], [61, 185], [185, 57], [212, 57], [57, 186], [186, 212], [214, 207], [207, 187], [187, 214], [34, 143], [143, 156], [156, 34], [79, 239], [239, 237], [237, 79],\n [123, 137], [137, 177], [177, 123], [44, 1], [1, 4], [4, 44], [201, 194], [194, 32], [32, 201], [64, 102], [102, 129], [129, 64], [213, 215], [215, 138], [138, 213], [59, 166], [166, 219], [219, 59],\n [242, 99], [99, 97], [97, 242], [2, 94], [94, 141], [141, 2], [75, 59], [59, 235], [235, 75], [24, 110], [110, 228], [228, 24], [25, 130], [130, 226], [226, 25], [23, 24], [24, 229], [229, 23],\n [22, 23], [23, 230], [230, 22], [26, 22], [22, 231], [231, 26], [112, 26], [26, 232], [232, 112], [189, 190], [190, 243], [243, 189], [221, 56], [56, 190], [190, 221], [28, 56], [56, 221], [221, 28],\n [27, 28], [28, 222], [222, 27], [29, 27], [27, 223], [223, 29], [30, 29], [29, 224], [224, 30], [247, 30], [30, 225], [225, 247], [238, 79], [79, 20], [20, 238], [166, 59], [59, 75], [75, 166],\n [60, 75], [75, 240], [240, 60], [147, 177], [177, 215], [215, 147], [20, 79], [79, 166], [166, 20], [187, 147], [147, 213], [213, 187], [112, 233], [233, 244], [244, 112], [233, 128], [128, 245], [245, 233],\n [128, 114], [114, 188], [188, 128], [114, 217], [217, 174], [174, 114], [131, 115], [115, 220], [220, 131], [217, 198], [198, 236], [236, 217], [198, 131], [131, 134], [134, 198], [177, 132], [132, 58], [58, 177],\n [143, 35], [35, 124], [124, 143], [110, 163], [163, 7], [7, 110], [228, 110], [110, 25], [25, 228], [356, 389], [389, 368], [368, 356], [11, 302], [302, 267], [267, 11], [452, 350], [350, 349], [349, 452],\n [302, 303], [303, 269], [269, 302], [357, 343], [343, 277], [277, 357], [452, 453], [453, 357], [357, 452], [333, 332], [332, 297], [297, 333], [175, 152], [152, 377], [377, 175], [347, 348], [348, 330], [330, 347],\n [303, 304], [304, 270], [270, 303], [9, 336], [336, 337], [337, 9], [278, 279], [279, 360], [360, 278], [418, 262], [262, 431], [431, 418], [304, 408], [408, 409], [409, 304], [310, 415], [415, 407], [407, 310],\n [270, 409], [409, 410], [410, 270], [450, 348], [348, 347], [347, 450], [422, 430], [430, 434], [434, 422], [313, 314], [314, 17], [17, 313], [306, 307], [307, 375], [375, 306], [387, 388], [388, 260], [260, 387],\n [286, 414], [414, 398], [398, 286], [335, 406], [406, 418], [418, 335], [364, 367], [367, 416], [416, 364], [423, 358], [358, 327], [327, 423], [251, 284], [284, 298], [298, 251], [281, 5], [5, 4], [4, 281],\n [373, 374], [374, 253], [253, 373], [307, 320], [320, 321], [321, 307], [425, 427], [427, 411], [411, 425], [421, 313], [313, 18], [18, 421], [321, 405], [405, 406], [406, 321], [320, 404], [404, 405], [405, 320],\n [315, 16], [16, 17], [17, 315], [426, 425], [425, 266], [266, 426], [377, 400], [400, 369], [369, 377], [322, 391], [391, 269], [269, 322], [417, 465], [465, 464], [464, 417], [386, 257], [257, 258], [258, 386],\n [466, 260], [260, 388], [388, 466], [456, 399], [399, 419], [419, 456], [284, 332], [332, 333], [333, 284], [417, 285], [285, 8], [8, 417], [346, 340], [340, 261], [261, 346], [413, 441], [441, 285], [285, 413],\n [327, 460], [460, 328], [328, 327], [355, 371], [371, 329], [329, 355], [392, 439], [439, 438], [438, 392], [382, 341], [341, 256], [256, 382], [429, 420], [420, 360], [360, 429], [364, 394], [394, 379], [379, 364],\n [277, 343], [343, 437], [437, 277], [443, 444], [444, 283], [283, 443], [275, 440], [440, 363], [363, 275], [431, 262], [262, 369], [369, 431], [297, 338], [338, 337], [337, 297], [273, 375], [375, 321], [321, 273],\n [450, 451], [451, 349], [349, 450], [446, 342], [342, 467], [467, 446], [293, 334], [334, 282], [282, 293], [458, 461], [461, 462], [462, 458], [276, 353], [353, 383], [383, 276], [308, 324], [324, 325], [325, 308],\n [276, 300], [300, 293], [293, 276], [372, 345], [345, 447], [447, 372], [352, 345], [345, 340], [340, 352], [274, 1], [1, 19], [19, 274], [456, 248], [248, 281], [281, 456], [436, 427], [427, 425], [425, 436],\n [381, 256], [256, 252], [252, 381], [269, 391], [391, 393], [393, 269], [200, 199], [199, 428], [428, 200], [266, 330], [330, 329], [329, 266], [287, 273], [273, 422], [422, 287], [250, 462], [462, 328], [328, 250],\n [258, 286], [286, 384], [384, 258], [265, 353], [353, 342], [342, 265], [387, 259], [259, 257], [257, 387], [424, 431], [431, 430], [430, 424], [342, 353], [353, 276], [276, 342], [273, 335], [335, 424], [424, 273],\n [292, 325], [325, 307], [307, 292], [366, 447], [447, 345], [345, 366], [271, 303], [303, 302], [302, 271], [423, 266], [266, 371], [371, 423], [294, 455], [455, 460], [460, 294], [279, 278], [278, 294], [294, 279],\n [271, 272], [272, 304], [304, 271], [432, 434], [434, 427], [427, 432], [272, 407], [407, 408], [408, 272], [394, 430], [430, 431], [431, 394], [395, 369], [369, 400], [400, 395], [334, 333], [333, 299], [299, 334],\n [351, 417], [417, 168], [168, 351], [352, 280], [280, 411], [411, 352], [325, 319], [319, 320], [320, 325], [295, 296], [296, 336], [336, 295], [319, 403], [403, 404], [404, 319], [330, 348], [348, 349], [349, 330],\n [293, 298], [298, 333], [333, 293], [323, 454], [454, 447], [447, 323], [15, 16], [16, 315], [315, 15], [358, 429], [429, 279], [279, 358], [14, 15], [15, 316], [316, 14], [285, 336], [336, 9], [9, 285],\n [329, 349], [349, 350], [350, 329], [374, 380], [380, 252], [252, 374], [318, 402], [402, 403], [403, 318], [6, 197], [197, 419], [419, 6], [318, 319], [319, 325], [325, 318], [367, 364], [364, 365], [365, 367],\n [435, 367], [367, 397], [397, 435], [344, 438], [438, 439], [439, 344], [272, 271], [271, 311], [311, 272], [195, 5], [5, 281], [281, 195], [273, 287], [287, 291], [291, 273], [396, 428], [428, 199], [199, 396],\n [311, 271], [271, 268], [268, 311], [283, 444], [444, 445], [445, 283], [373, 254], [254, 339], [339, 373], [282, 334], [334, 296], [296, 282], [449, 347], [347, 346], [346, 449], [264, 447], [447, 454], [454, 264],\n [336, 296], [296, 299], [299, 336], [338, 10], [10, 151], [151, 338], [278, 439], [439, 455], [455, 278], [292, 407], [407, 415], [415, 292], [358, 371], [371, 355], [355, 358], [340, 345], [345, 372], [372, 340],\n [346, 347], [347, 280], [280, 346], [442, 443], [443, 282], [282, 442], [19, 94], [94, 370], [370, 19], [441, 442], [442, 295], [295, 441], [248, 419], [419, 197], [197, 248], [263, 255], [255, 359], [359, 263],\n [440, 275], [275, 274], [274, 440], [300, 383], [383, 368], [368, 300], [351, 412], [412, 465], [465, 351], [263, 467], [467, 466], [466, 263], [301, 368], [368, 389], [389, 301], [395, 378], [378, 379], [379, 395],\n [412, 351], [351, 419], [419, 412], [436, 426], [426, 322], [322, 436], [2, 164], [164, 393], [393, 2], [370, 462], [462, 461], [461, 370], [164, 0], [0, 267], [267, 164], [302, 11], [11, 12], [12, 302],\n [268, 12], [12, 13], [13, 268], [293, 300], [300, 301], [301, 293], [446, 261], [261, 340], [340, 446], [330, 266], [266, 425], [425, 330], [426, 423], [423, 391], [391, 426], [429, 355], [355, 437], [437, 429],\n [391, 327], [327, 326], [326, 391], [440, 457], [457, 438], [438, 440], [341, 382], [382, 362], [362, 341], [459, 457], [457, 461], [461, 459], [434, 430], [430, 394], [394, 434], [414, 463], [463, 362], [362, 414],\n [396, 369], [369, 262], [262, 396], [354, 461], [461, 457], [457, 354], [316, 403], [403, 402], [402, 316], [315, 404], [404, 403], [403, 315], [314, 405], [405, 404], [404, 314], [313, 406], [406, 405], [405, 313],\n [421, 418], [418, 406], [406, 421], [366, 401], [401, 361], [361, 366], [306, 408], [408, 407], [407, 306], [291, 409], [409, 408], [408, 291], [287, 410], [410, 409], [409, 287], [432, 436], [436, 410], [410, 432],\n [434, 416], [416, 411], [411, 434], [264, 368], [368, 383], [383, 264], [309, 438], [438, 457], [457, 309], [352, 376], [376, 401], [401, 352], [274, 275], [275, 4], [4, 274], [421, 428], [428, 262], [262, 421],\n [294, 327], [327, 358], [358, 294], [433, 416], [416, 367], [367, 433], [289, 455], [455, 439], [439, 289], [462, 370], [370, 326], [326, 462], [2, 326], [326, 370], [370, 2], [305, 460], [460, 455], [455, 305],\n [254, 449], [449, 448], [448, 254], [255, 261], [261, 446], [446, 255], [253, 450], [450, 449], [449, 253], [252, 451], [451, 450], [450, 252], [256, 452], [452, 451], [451, 256], [341, 453], [453, 452], [452, 341],\n [413, 464], [464, 463], [463, 413], [441, 413], [413, 414], [414, 441], [258, 442], [442, 441], [441, 258], [257, 443], [443, 442], [442, 257], [259, 444], [444, 443], [443, 259], [260, 445], [445, 444], [444, 260],\n [467, 342], [342, 445], [445, 467], [459, 458], [458, 250], [250, 459], [289, 392], [392, 290], [290, 289], [290, 328], [328, 460], [460, 290], [376, 433], [433, 435], [435, 376], [250, 290], [290, 392], [392, 250],\n [411, 416], [416, 433], [433, 411], [341, 463], [463, 464], [464, 341], [453, 464], [464, 465], [465, 453], [357, 465], [465, 412], [412, 357], [343, 412], [412, 399], [399, 343], [360, 363], [363, 440], [440, 360],\n [437, 399], [399, 456], [456, 437], [420, 456], [456, 363], [363, 420], [401, 435], [435, 288], [288, 401], [372, 383], [383, 353], [353, 372], [339, 255], [255, 249], [249, 339], [448, 261], [261, 255], [255, 448],\n [133, 243], [243, 190], [190, 133], [133, 155], [155, 112], [112, 133], [33, 246], [246, 247], [247, 33], [33, 130], [130, 25], [25, 33], [398, 384], [384, 286], [286, 398], [362, 398], [398, 414], [414, 362],\n [362, 463], [463, 341], [341, 362], [263, 359], [359, 467], [467, 263], [263, 249], [249, 255], [255, 263], [466, 467], [467, 260], [260, 466], [75, 60], [60, 166], [166, 75], [238, 239], [239, 79], [79, 238],\n [162, 127], [127, 139], [139, 162], [72, 11], [11, 37], [37, 72], [121, 232], [232, 120], [120, 121], [73, 72], [72, 39], [39, 73], [114, 128], [128, 47], [47, 114], [233, 232], [232, 128], [128, 233],\n [103, 104], [104, 67], [67, 103], [152, 175], [175, 148], [148, 152], [119, 118], [118, 101], [101, 119], [74, 73], [73, 40], [40, 74], [107, 9], [9, 108], [108, 107], [49, 48], [48, 131], [131, 49],\n [32, 194], [194, 211], [211, 32], [184, 74], [74, 185], [185, 184], [191, 80], [80, 183], [183, 191], [185, 40], [40, 186], [186, 185], [119, 230], [230, 118], [118, 119], [210, 202], [202, 214], [214, 210],\n [84, 83], [83, 17], [17, 84], [77, 76], [76, 146], [146, 77], [161, 160], [160, 30], [30, 161], [190, 56], [56, 173], [173, 190], [182, 106], [106, 194], [194, 182], [138, 135], [135, 192], [192, 138],\n [129, 203], [203, 98], [98, 129], [54, 21], [21, 68], [68, 54], [5, 51], [51, 4], [4, 5], [145, 144], [144, 23], [23, 145], [90, 77], [77, 91], [91, 90], [207, 205], [205, 187], [187, 207],\n [83, 201], [201, 18], [18, 83], [181, 91], [91, 182], [182, 181], [180, 90], [90, 181], [181, 180], [16, 85], [85, 17], [17, 16], [205, 206], [206, 36], [36, 205], [176, 148], [148, 140], [140, 176],\n [165, 92], [92, 39], [39, 165], [245, 193], [193, 244], [244, 245], [27, 159], [159, 28], [28, 27], [30, 247], [247, 161], [161, 30], [174, 236], [236, 196], [196, 174], [103, 54], [54, 104], [104, 103],\n [55, 193], [193, 8], [8, 55], [111, 117], [117, 31], [31, 111], [221, 189], [189, 55], [55, 221], [240, 98], [98, 99], [99, 240], [142, 126], [126, 100], [100, 142], [219, 166], [166, 218], [218, 219],\n [112, 155], [155, 26], [26, 112], [198, 209], [209, 131], [131, 198], [169, 135], [135, 150], [150, 169], [114, 47], [47, 217], [217, 114], [224, 223], [223, 53], [53, 224], [220, 45], [45, 134], [134, 220],\n [32, 211], [211, 140], [140, 32], [109, 67], [67, 108], [108, 109], [146, 43], [43, 91], [91, 146], [231, 230], [230, 120], [120, 231], [113, 226], [226, 247], [247, 113], [105, 63], [63, 52], [52, 105],\n [241, 238], [238, 242], [242, 241], [124, 46], [46, 156], [156, 124], [95, 78], [78, 96], [96, 95], [70, 46], [46, 63], [63, 70], [116, 143], [143, 227], [227, 116], [116, 123], [123, 111], [111, 116],\n [1, 44], [44, 19], [19, 1], [3, 236], [236, 51], [51, 3], [207, 216], [216, 205], [205, 207], [26, 154], [154, 22], [22, 26], [165, 39], [39, 167], [167, 165], [199, 200], [200, 208], [208, 199],\n [101, 36], [36, 100], [100, 101], [43, 57], [57, 202], [202, 43], [242, 20], [20, 99], [99, 242], [56, 28], [28, 157], [157, 56], [124, 35], [35, 113], [113, 124], [29, 160], [160, 27], [27, 29],\n [211, 204], [204, 210], [210, 211], [124, 113], [113, 46], [46, 124], [106, 43], [43, 204], [204, 106], [96, 62], [62, 77], [77, 96], [227, 137], [137, 116], [116, 227], [73, 41], [41, 72], [72, 73],\n [36, 203], [203, 142], [142, 36], [235, 64], [64, 240], [240, 235], [48, 49], [49, 64], [64, 48], [42, 41], [41, 74], [74, 42], [214, 212], [212, 207], [207, 214], [183, 42], [42, 184], [184, 183],\n [210, 169], [169, 211], [211, 210], [140, 170], [170, 176], [176, 140], [104, 105], [105, 69], [69, 104], [193, 122], [122, 168], [168, 193], [50, 123], [123, 187], [187, 50], [89, 96], [96, 90], [90, 89],\n [66, 65], [65, 107], [107, 66], [179, 89], [89, 180], [180, 179], [119, 101], [101, 120], [120, 119], [68, 63], [63, 104], [104, 68], [234, 93], [93, 227], [227, 234], [16, 15], [15, 85], [85, 16],\n [209, 129], [129, 49], [49, 209], [15, 14], [14, 86], [86, 15], [107, 55], [55, 9], [9, 107], [120, 100], [100, 121], [121, 120], [153, 145], [145, 22], [22, 153], [178, 88], [88, 179], [179, 178],\n [197, 6], [6, 196], [196, 197], [89, 88], [88, 96], [96, 89], [135, 138], [138, 136], [136, 135], [138, 215], [215, 172], [172, 138], [218, 115], [115, 219], [219, 218], [41, 42], [42, 81], [81, 41],\n [5, 195], [195, 51], [51, 5], [57, 43], [43, 61], [61, 57], [208, 171], [171, 199], [199, 208], [41, 81], [81, 38], [38, 41], [224, 53], [53, 225], [225, 224], [24, 144], [144, 110], [110, 24],\n [105, 52], [52, 66], [66, 105], [118, 229], [229, 117], [117, 118], [227, 34], [34, 234], [234, 227], [66, 107], [107, 69], [69, 66], [10, 109], [109, 151], [151, 10], [219, 48], [48, 235], [235, 219],\n [183, 62], [62, 191], [191, 183], [142, 129], [129, 126], [126, 142], [116, 111], [111, 143], [143, 116], [118, 117], [117, 50], [50, 118], [223, 222], [222, 52], [52, 223], [94, 19], [19, 141], [141, 94],\n [222, 221], [221, 65], [65, 222], [196, 3], [3, 197], [197, 196], [45, 220], [220, 44], [44, 45], [156, 70], [70, 139], [139, 156], [188, 122], [122, 245], [245, 188], [139, 71], [71, 162], [162, 139],\n [149, 170], [170, 150], [150, 149], [122, 188], [188, 196], [196, 122], [206, 216], [216, 92], [92, 206], [164, 2], [2, 167], [167, 164], [242, 141], [141, 241], [241, 242], [0, 164], [164, 37], [37, 0],\n [11, 72], [72, 12], [12, 11], [12, 38], [38, 13], [13, 12], [70, 63], [63, 71], [71, 70], [31, 226], [226, 111], [111, 31], [36, 101], [101, 205], [205, 36], [203, 206], [206, 165], [165, 203],\n [126, 209], [209, 217], [217, 126], [98, 165], [165, 97], [97, 98], [237, 220], [220, 218], [218, 237], [237, 239], [239, 241], [241, 237], [210, 214], [214, 169], [169, 210], [140, 171], [171, 32], [32, 140],\n [241, 125], [125, 237], [237, 241], [179, 86], [86, 178], [178, 179], [180, 85], [85, 179], [179, 180], [181, 84], [84, 180], [180, 181], [182, 83], [83, 181], [181, 182], [194, 201], [201, 182], [182, 194],\n [177, 137], [137, 132], [132, 177], [184, 76], [76, 183], [183, 184], [185, 61], [61, 184], [184, 185], [186, 57], [57, 185], [185, 186], [216, 212], [212, 186], [186, 216], [192, 214], [214, 187], [187, 192],\n [139, 34], [34, 156], [156, 139], [218, 79], [79, 237], [237, 218], [147, 123], [123, 177], [177, 147], [45, 44], [44, 4], [4, 45], [208, 201], [201, 32], [32, 208], [98, 64], [64, 129], [129, 98],\n [192, 213], [213, 138], [138, 192], [235, 59], [59, 219], [219, 235], [141, 242], [242, 97], [97, 141], [97, 2], [2, 141], [141, 97], [240, 75], [75, 235], [235, 240], [229, 24], [24, 228], [228, 229],\n [31, 25], [25, 226], [226, 31], [230, 23], [23, 229], [229, 230], [231, 22], [22, 230], [230, 231], [232, 26], [26, 231], [231, 232], [233, 112], [112, 232], [232, 233], [244, 189], [189, 243], [243, 244],\n [189, 221], [221, 190], [190, 189], [222, 28], [28, 221], [221, 222], [223, 27], [27, 222], [222, 223], [224, 29], [29, 223], [223, 224], [225, 30], [30, 224], [224, 225], [113, 247], [247, 225], [225, 113],\n [99, 60], [60, 240], [240, 99], [213, 147], [147, 215], [215, 213], [60, 20], [20, 166], [166, 60], [192, 187], [187, 213], [213, 192], [243, 112], [112, 244], [244, 243], [244, 233], [233, 245], [245, 244],\n [245, 128], [128, 188], [188, 245], [188, 114], [114, 174], [174, 188], [134, 131], [131, 220], [220, 134], [174, 217], [217, 236], [236, 174], [236, 198], [198, 134], [134, 236], [215, 177], [177, 58], [58, 215],\n [156, 143], [143, 124], [124, 156], [25, 110], [110, 7], [7, 25], [31, 228], [228, 25], [25, 31], [264, 356], [356, 368], [368, 264], [0, 11], [11, 267], [267, 0], [451, 452], [452, 349], [349, 451],\n [267, 302], [302, 269], [269, 267], [350, 357], [357, 277], [277, 350], [350, 452], [452, 357], [357, 350], [299, 333], [333, 297], [297, 299], [396, 175], [175, 377], [377, 396], [280, 347], [347, 330], [330, 280],\n [269, 303], [303, 270], [270, 269], [151, 9], [9, 337], [337, 151], [344, 278], [278, 360], [360, 344], [424, 418], [418, 431], [431, 424], [270, 304], [304, 409], [409, 270], [272, 310], [310, 407], [407, 272],\n [322, 270], [270, 410], [410, 322], [449, 450], [450, 347], [347, 449], [432, 422], [422, 434], [434, 432], [18, 313], [313, 17], [17, 18], [291, 306], [306, 375], [375, 291], [259, 387], [387, 260], [260, 259],\n [424, 335], [335, 418], [418, 424], [434, 364], [364, 416], [416, 434], [391, 423], [423, 327], [327, 391], [301, 251], [251, 298], [298, 301], [275, 281], [281, 4], [4, 275], [254, 373], [373, 253], [253, 254],\n [375, 307], [307, 321], [321, 375], [280, 425], [425, 411], [411, 280], [200, 421], [421, 18], [18, 200], [335, 321], [321, 406], [406, 335], [321, 320], [320, 405], [405, 321], [314, 315], [315, 17], [17, 314],\n [423, 426], [426, 266], [266, 423], [396, 377], [377, 369], [369, 396], [270, 322], [322, 269], [269, 270], [413, 417], [417, 464], [464, 413], [385, 386], [386, 258], [258, 385], [248, 456], [456, 419], [419, 248],\n [298, 284], [284, 333], [333, 298], [168, 417], [417, 8], [8, 168], [448, 346], [346, 261], [261, 448], [417, 413], [413, 285], [285, 417], [326, 327], [327, 328], [328, 326], [277, 355], [355, 329], [329, 277],\n [309, 392], [392, 438], [438, 309], [381, 382], [382, 256], [256, 381], [279, 429], [429, 360], [360, 279], [365, 364], [364, 379], [379, 365], [355, 277], [277, 437], [437, 355], [282, 443], [443, 283], [283, 282],\n [281, 275], [275, 363], [363, 281], [395, 431], [431, 369], [369, 395], [299, 297], [297, 337], [337, 299], [335, 273], [273, 321], [321, 335], [348, 450], [450, 349], [349, 348], [359, 446], [446, 467], [467, 359],\n [283, 293], [293, 282], [282, 283], [250, 458], [458, 462], [462, 250], [300, 276], [276, 383], [383, 300], [292, 308], [308, 325], [325, 292], [283, 276], [276, 293], [293, 283], [264, 372], [372, 447], [447, 264],\n [346, 352], [352, 340], [340, 346], [354, 274], [274, 19], [19, 354], [363, 456], [456, 281], [281, 363], [426, 436], [436, 425], [425, 426], [380, 381], [381, 252], [252, 380], [267, 269], [269, 393], [393, 267],\n [421, 200], [200, 428], [428, 421], [371, 266], [266, 329], [329, 371], [432, 287], [287, 422], [422, 432], [290, 250], [250, 328], [328, 290], [385, 258], [258, 384], [384, 385], [446, 265], [265, 342], [342, 446],\n [386, 387], [387, 257], [257, 386], [422, 424], [424, 430], [430, 422], [445, 342], [342, 276], [276, 445], [422, 273], [273, 424], [424, 422], [306, 292], [292, 307], [307, 306], [352, 366], [366, 345], [345, 352],\n [268, 271], [271, 302], [302, 268], [358, 423], [423, 371], [371, 358], [327, 294], [294, 460], [460, 327], [331, 279], [279, 294], [294, 331], [303, 271], [271, 304], [304, 303], [436, 432], [432, 427], [427, 436],\n [304, 272], [272, 408], [408, 304], [395, 394], [394, 431], [431, 395], [378, 395], [395, 400], [400, 378], [296, 334], [334, 299], [299, 296], [6, 351], [351, 168], [168, 6], [376, 352], [352, 411], [411, 376],\n [307, 325], [325, 320], [320, 307], [285, 295], [295, 336], [336, 285], [320, 319], [319, 404], [404, 320], [329, 330], [330, 349], [349, 329], [334, 293], [293, 333], [333, 334], [366, 323], [323, 447], [447, 366],\n [316, 15], [15, 315], [315, 316], [331, 358], [358, 279], [279, 331], [317, 14], [14, 316], [316, 317], [8, 285], [285, 9], [9, 8], [277, 329], [329, 350], [350, 277], [253, 374], [374, 252], [252, 253],\n [319, 318], [318, 403], [403, 319], [351, 6], [6, 419], [419, 351], [324, 318], [318, 325], [325, 324], [397, 367], [367, 365], [365, 397], [288, 435], [435, 397], [397, 288], [278, 344], [344, 439], [439, 278],\n [310, 272], [272, 311], [311, 310], [248, 195], [195, 281], [281, 248], [375, 273], [273, 291], [291, 375], [175, 396], [396, 199], [199, 175], [312, 311], [311, 268], [268, 312], [276, 283], [283, 445], [445, 276],\n [390, 373], [373, 339], [339, 390], [295, 282], [282, 296], [296, 295], [448, 449], [449, 346], [346, 448], [356, 264], [264, 454], [454, 356], [337, 336], [336, 299], [299, 337], [337, 338], [338, 151], [151, 337],\n [294, 278], [278, 455], [455, 294], [308, 292], [292, 415], [415, 308], [429, 358], [358, 355], [355, 429], [265, 340], [340, 372], [372, 265], [352, 346], [346, 280], [280, 352], [295, 442], [442, 282], [282, 295],\n [354, 19], [19, 370], [370, 354], [285, 441], [441, 295], [295, 285], [195, 248], [248, 197], [197, 195], [457, 440], [440, 274], [274, 457], [301, 300], [300, 368], [368, 301], [417, 351], [351, 465], [465, 417],\n [251, 301], [301, 389], [389, 251], [394, 395], [395, 379], [379, 394], [399, 412], [412, 419], [419, 399], [410, 436], [436, 322], [322, 410], [326, 2], [2, 393], [393, 326], [354, 370], [370, 461], [461, 354],\n [393, 164], [164, 267], [267, 393], [268, 302], [302, 12], [12, 268], [312, 268], [268, 13], [13, 312], [298, 293], [293, 301], [301, 298], [265, 446], [446, 340], [340, 265], [280, 330], [330, 425], [425, 280],\n [322, 426], [426, 391], [391, 322], [420, 429], [429, 437], [437, 420], [393, 391], [391, 326], [326, 393], [344, 440], [440, 438], [438, 344], [458, 459], [459, 461], [461, 458], [364, 434], [434, 394], [394, 364],\n [428, 396], [396, 262], [262, 428], [274, 354], [354, 457], [457, 274], [317, 316], [316, 402], [402, 317], [316, 315], [315, 403], [403, 316], [315, 314], [314, 404], [404, 315], [314, 313], [313, 405], [405, 314],\n [313, 421], [421, 406], [406, 313], [323, 366], [366, 361], [361, 323], [292, 306], [306, 407], [407, 292], [306, 291], [291, 408], [408, 306], [291, 287], [287, 409], [409, 291], [287, 432], [432, 410], [410, 287],\n [427, 434], [434, 411], [411, 427], [372, 264], [264, 383], [383, 372], [459, 309], [309, 457], [457, 459], [366, 352], [352, 401], [401, 366], [1, 274], [274, 4], [4, 1], [418, 421], [421, 262], [262, 418],\n [331, 294], [294, 358], [358, 331], [435, 433], [433, 367], [367, 435], [392, 289], [289, 439], [439, 392], [328, 462], [462, 326], [326, 328], [94, 2], [2, 370], [370, 94], [289, 305], [305, 455], [455, 289],\n [339, 254], [254, 448], [448, 339], [359, 255], [255, 446], [446, 359], [254, 253], [253, 449], [449, 254], [253, 252], [252, 450], [450, 253], [252, 256], [256, 451], [451, 252], [256, 341], [341, 452], [452, 256],\n [414, 413], [413, 463], [463, 414], [286, 441], [441, 414], [414, 286], [286, 258], [258, 441], [441, 286], [258, 257], [257, 442], [442, 258], [257, 259], [259, 443], [443, 257], [259, 260], [260, 444], [444, 259],\n [260, 467], [467, 445], [445, 260], [309, 459], [459, 250], [250, 309], [305, 289], [289, 290], [290, 305], [305, 290], [290, 460], [460, 305], [401, 376], [376, 435], [435, 401], [309, 250], [250, 392], [392, 309],\n [376, 411], [411, 433], [433, 376], [453, 341], [341, 464], [464, 453], [357, 453], [453, 465], [465, 357], [343, 357], [357, 412], [412, 343], [437, 343], [343, 399], [399, 437], [344, 360], [360, 440], [440, 344],\n [420, 437], [437, 456], [456, 420], [360, 420], [420, 363], [363, 360], [361, 401], [401, 288], [288, 361], [265, 372], [372, 353], [353, 265], [390, 339], [339, 249], [249, 390], [339, 448], [448, 255], [255, 339],\n];\n\nfunction connectionsToIndices(connections: PairArray) {\n const indices = connections.map((connection) => connection[0]);\n indices.push(connections[connections.length - 1][1]);\n return indices;\n}\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR = {\n lips: connectionsToIndices(LIPS_CONNECTIONS),\n leftEye: connectionsToIndices(LEFT_EYE_CONNECTIONS),\n leftEyebrow: connectionsToIndices(LEFT_EYEBROW_CONNECTIONS),\n leftIris: connectionsToIndices(LEFT_IRIS_CONNECTIONS),\n rightEye: connectionsToIndices(RIGHT_EYE_CONNECTIONS),\n rightEyebrow: connectionsToIndices(RIGHT_EYEBROW_CONNECTIONS),\n rightIris: connectionsToIndices(RIGHT_IRIS_CONNECTIONS),\n faceOval: connectionsToIndices(FACE_OVAL_CONNECTIONS),\n};\n\nconst indexLabelPairs: [number, string][] = Object.entries(MEDIAPIPE_FACE_MESH_KEYPOINTS_BY_CONTOUR)\n .map(([label, indices]) => indices.map((index) => [index, label] as [number, string]))\n .flat();\n\nexport const MEDIAPIPE_FACE_MESH_KEYPOINTS = new Map(indexLabelPairs);\n\ntype AssignAverage = number[];\nexport interface LandmarksRefinementConfig {\n indexesMapping: number[]; // Maps indexes of the given set of landmarks to indexes of the resulting set of landmarks. Should be non empty and contain the same amount of indexes as landmarks in the corresponding input\n zRefinement: 'none'|'copy'|AssignAverage; // Z refinement instructions.\n}\n\nexport const LANDMARKS_REFINEMENT_LIPS_CONFIG = [\n 61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291, // Lower outer.\n 185, 40, 39, 37, 0, 267, 269, 270, 409, // Upper outer(excluding corners).\n 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, // Lower inner.\n 191, 80, 81, 82, 13, 312, 311, 310, 415, // Upper inner(excluding corners).\n 76, 77, 90, 180, 85, 16, 315, 404, 320, 307, 306, // Lower semi - outer.\n 184, 74, 73, 72, 11, 302, 303, 304, 408, // Upper semi - outer(excluding corners).\n 62, 96, 89, 179, 86, 15, 316, 403, 319, 325, 292, // Lower semi - inner.\n 183, 42, 41, 38, 12, 268, 271, 272, 407, // Upper semi - inner(excluding corners).\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG = [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // upper contour (excluding corners).\n 130, 25, 110, 24, 23, 22, 26, 112, 243, // Halo x2 lower contour.\n 247, 30, 29, 27, 28, 56, 190, // Halo x2 upper contour (excluding corners).\n 226, 31, 228, 229, 230, 231, 232, 233, 244, // Halo x3 lower contour.\n 113, 225, 224, 223, 222, 221, 189, // Halo x3 upper contour (excluding corners).\n 35, 124, 46, 53, 52, 65, // Halo x4 upper contour (no lower because of mesh structure) or eyebrow inner contour.\n 143, 111, 117, 118, 119, 120, 121, 128, 245, // Halo x5 lower contour.\n 156, 70, 63, 105, 66, 107, 55, 193, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG = [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n 359, 255, 339, 254, 253, 252, 256, 341, 463, // Halo x2 lower contour.\n 467, 260, 259, 257, 258, 286, 414, // Halo x2 upper contour (excluding corners).\n 446, 261, 448, 449, 450, 451, 452, 453, 464, // Halo x3 lower contour.\n 342, 445, 444, 443, 442, 441, 413, // Halo x3 upper contour (excluding corners).\n 265, 353, 276, 283, 282, 295, // Halo x4 upper contour (no lower because of mesh structure) or/ eyebrow inner contour.\n 372, 340, 346, 347, 348, 349, 350, 357, 465, // Halo x5 lower contour.\n 383, 300, 293, 334, 296, 336, 285, 417, // Halo x5 upper contour (excluding corners) or eyebrow outer contour.\n];\n\nexport const LANDMARKS_REFINEMENT_LEFT_IRIS_CONFIG = [\n 468, // Center.\n 469, // Iris right edge.\n 470, // Iris top edge.\n 471, // Iris left edge.\n 472, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 33, 7, 163, 144, 145, 153, 154, 155, 133, // Lower contour.\n 246, 161, 160, 159, 158, 157, 173, // Upper contour (excluding corners).\n];\n*/\n\nexport const LANDMARKS_REFINEMENT_RIGHT_IRIS_CONFIG = [\n 473, // Center.\n 474, // Iris right edge.\n 475, // Iris top edge.\n 476, // Iris left edge.\n 477, // Iris bottom edge.\n];\n/*\nzRefinement: [\n 263, 249, 390, 373, 374, 380, 381, 382, 362, // Lower contour.\n 466, 388, 387, 386, 385, 384, 398, // Upper contour (excluding corners).\n];\n*/\n", "import * as constants from './constants';\nimport type { Tensor } from '../tfjs/types';\n\nexport async function augment(rawCoords, results: Tensor[]) {\n const t: Record = { // all attention models produce 2d results so it needs to be later augmented with correct z-coords\n // mesh: results[0], // already have it in rawCoords // output_mesh_identity\n // flag: results[1], // already processed in parent // conv_faceflag\n lips: await results.filter((r) => r.size === 160)?.[0]?.data() as Float32Array, // 80 x 2d = 160 // output_lips\n irisL: await results.filter((r) => r.size === 10)?.[0]?.data() as Float32Array, // 5 x 2d = 10 // output_right_iris\n eyeL: await results.filter((r) => r.size === 142)?.[0]?.data() as Float32Array, // 71 x 2d = 142 // output_right_eye\n irisR: await results.filter((r) => r.size === 10)?.[1]?.data() as Float32Array, // 5 x 2d = 10 // output_left_iris\n eyeR: await results.filter((r) => r.size === 142)?.[1]?.data() as Float32Array, // 71 x 2d = 142// output_left_eye\n };\n for (const val of Object.values(t)) {\n if (!val) return rawCoords; // could not find tensor\n }\n\n // augment iris: adds additional 5 keypoints per eye\n const irisLDepth = constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisL.length / 2; i++) rawCoords.push([t.irisL[2 * i + 0], t.irisL[2 * i + 1], irisLDepth]);\n const irisRDepth = constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.length; // get average z-coord for iris\n for (let i = 0; i < t.irisR.length / 2; i++) rawCoords.push([t.irisR[2 * i + 0], t.irisR[2 * i + 1], irisRDepth]);\n\n // augment eyes: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.eyeL.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]] = [t.eyeL[2 * i + 0], t.eyeL[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG[i]][2]];\n for (let i = 0; i < t.eyeR.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]] = [t.eyeR[2 * i + 0], t.eyeR[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG[i]][2]];\n\n // augment lips: replaces eye keypoints based on heuristic mapping\n for (let i = 0; i < t.lips.length / 2; i++) rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]] = [t.lips[2 * i + 0], t.lips[2 * i + 1], rawCoords[constants.LANDMARKS_REFINEMENT_LIPS_CONFIG[i]][2]];\n\n return rawCoords;\n}\n", "/**\n * BlazeFace, FaceMesh & Iris model implementation\n *\n * Based on:\n * - [**MediaPipe BlazeFace**](https://drive.google.com/file/d/1f39lSzU5Oq-j_OXgS67KfN5wNsoeAZ4V/view)\n * - Facial Spacial Geometry: [**MediaPipe FaceMesh**](https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view)\n * - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view)\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as util from './facemeshutil';\nimport * as coords from './facemeshcoords';\nimport * as iris from './iris';\nimport * as attention from './attention';\nimport { histogramEqualization } from '../image/enhance';\nimport { env } from '../util/env';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { FaceResult, FaceLandmark, Point } from '../result';\nimport type { Config } from '../config';\n\ninterface DetectBox { startPoint: Point, endPoint: Point, landmarks: Point[], confidence: number }\n\nconst cache = {\n boxes: [] as DetectBox[],\n skipped: Number.MAX_SAFE_INTEGER,\n timestamp: 0,\n};\n\nlet model: GraphModel | null = null;\nlet inputSize = 0;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n // reset cached boxes\n const skipTime = (config.face.detector?.skipTime || 0) > (now() - cache.timestamp);\n const skipFrame = cache.skipped < (config.face.detector?.skipFrames || 0);\n if (!config.skipAllowed || !skipTime || !skipFrame || cache.boxes.length === 0) {\n cache.boxes = await blazeface.getBoxes(input, config); // get results from blazeface detector\n cache.timestamp = now();\n cache.skipped = 0;\n } else {\n cache.skipped++;\n }\n const faces: FaceResult[] = [];\n const newCache: DetectBox[] = [];\n let id = 0;\n const size = inputSize;\n for (let i = 0; i < cache.boxes.length; i++) {\n const box = cache.boxes[i];\n let angle = 0;\n let rotationMatrix;\n const face: FaceResult = { // init face result\n id: id++,\n mesh: [],\n meshRaw: [],\n box: [0, 0, 0, 0],\n boxRaw: [0, 0, 0, 0],\n score: 0,\n boxScore: 0,\n faceScore: 0,\n // contoursRaw: [],\n // contours: [],\n annotations: {} as Record,\n };\n\n // optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop\n [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size());\n if (config.filter.equalization) {\n const equilized = face.tensor ? await histogramEqualization(face.tensor) : undefined;\n tf.dispose(face.tensor);\n if (equilized) face.tensor = equilized;\n }\n face.boxScore = Math.round(100 * box.confidence) / 100;\n if (!config.face.mesh?.enabled) { // mesh not enabled, return resuts from detector only\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n } else if (!model) { // mesh enabled, but not loaded\n if (config.debug) log('face mesh detection requested, but model is not loaded');\n } else { // mesh enabled\n if (config.face.attention?.enabled && !env.kernels.includes('atan2')) {\n config.face.attention.enabled = false;\n tf.dispose(face.tensor);\n return faces;\n }\n const results = model.execute(face.tensor as Tensor) as Tensor[];\n const confidenceT = results.find((t) => t.shape[t.shape.length - 1] === 1) as Tensor;\n const faceConfidence = await confidenceT.data();\n face.faceScore = Math.round(100 * faceConfidence[0]) / 100;\n if (face.faceScore < (config.face.detector?.minConfidence || 1)) { // low confidence in detected mesh\n box.confidence = face.faceScore; // reset confidence of cached box\n if (config.face.mesh.keepInvalid) {\n face.box = util.clampBox(box, input);\n face.boxRaw = util.getRawBox(box, input);\n face.score = face.boxScore;\n face.mesh = box.landmarks.map((pt) => [\n ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),\n ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),\n ]);\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 1), pt[1] / (input.shape[1] || 1), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.blazeFaceLandmarks)) {\n face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations\n }\n }\n } else {\n const meshT = results.find((t) => t.shape[t.shape.length - 1] === 1404) as Tensor;\n const coordsReshaped = tf.reshape(meshT, [-1, 3]);\n let rawCoords = await coordsReshaped.array();\n tf.dispose(coordsReshaped);\n if (config.face.attention?.enabled) {\n rawCoords = await attention.augment(rawCoords, results); // augment iris results using attention model results\n } else if (config.face.iris?.enabled) {\n rawCoords = await iris.augmentIris(rawCoords, face.tensor, inputSize); // run iris model and augment results\n }\n face.mesh = util.transformRawCoords(rawCoords, box, angle, rotationMatrix, inputSize); // get processed mesh\n face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / size]);\n for (const key of Object.keys(coords.meshAnnotations)) face.annotations[key] = coords.meshAnnotations[key].map((index) => face.mesh[index]); // add annotations\n face.score = face.faceScore;\n const calculatedBox = { ...util.calculateFaceBox(face.mesh, box), confidence: box.confidence, landmarks: box.landmarks };\n face.box = util.clampBox(calculatedBox, input);\n face.boxRaw = util.getRawBox(calculatedBox, input);\n /*\n const contoursT = results.find((t) => t.shape[t.shape.length - 1] === 266) as Tensor;\n const contoursData = contoursT && await contoursT.data(); // 133 x 2d points\n face.contoursRaw = [];\n for (let j = 0; j < contoursData.length / 2; j++) face.contoursRaw.push([contoursData[2 * j + 0] / inputSize, contoursData[2 * j + 1] / inputSize]);\n face.contours = face.contoursRaw.map((c) => [Math.trunc((input.shape[2] || 1) * c[0]), Math.trunc((input.shape[1] || 1) * c[1])]);\n */\n newCache.push(calculatedBox);\n }\n tf.dispose(results);\n }\n if (face.score > (config.face.detector?.minConfidence || 1)) faces.push(face);\n else tf.dispose(face.tensor);\n }\n cache.boxes = newCache; // reset cache\n return faces;\n}\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (config.face.attention?.enabled && model?.['signature']) {\n if (Object.keys(model?.['signature']?.outputs || {}).length < 6) model = null;\n }\n if (!model) {\n if (config.face.attention?.enabled) model = await loadModel(config.face.attention.modelPath);\n else model = await loadModel(config.face.mesh?.modelPath);\n } else if (config.debug) {\n log('cached model:', model['modelUrl']);\n }\n inputSize = (model['executor'] && model?.inputs?.[0].shape) ? model?.inputs?.[0].shape[2] : 256;\n return model;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * FaceRes model implementation\n *\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n *\n * Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport type { Gender, Race } from '../result';\n\nexport interface FaceRes { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] }\n\nlet model: GraphModel | null;\nconst last: {\n age: number,\n gender: Gender,\n genderScore: number,\n descriptor: number[],\n}[] = [];\n\nlet lastTime = 0;\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.description?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport function enhance(input): Tensor {\n const tensor = (input.image || input.tensor || input) as Tensor; // input received from detector is already normalized to 0..1, input is also assumed to be straightened\n if (!model?.inputs[0].shape) return tensor; // model has no shape so no point continuing\n const crop: Tensor = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const norm: Tensor = tf.mul(crop, constants.tf255);\n tf.dispose(crop);\n return norm;\n /*\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n */\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model?.['executor']) return { age: 0, gender: 'unknown', genderScore: 0, descriptor: [] };\n const skipFrame = skipped < (config.face.description?.skipFrames || 0);\n const skipTime = (config.face.description?.skipTime || 0) > (now() - lastTime);\n if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const obj = {\n age: 0 as number,\n gender: 'unknown' as Gender,\n genderScore: 0 as number,\n descriptor: [] as number[],\n };\n\n if (config.face.description?.enabled) {\n const enhanced = enhance(image);\n const resT = model?.execute(enhanced) as Tensor[];\n lastTime = now();\n tf.dispose(enhanced);\n const genderT = resT.find((t) => t.shape[1] === 1) as Tensor;\n const gender = await genderT.data();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > (config.face.description.minConfidence || 0)) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);\n const age: number = (await argmax.data())[0];\n tf.dispose(argmax);\n const ageT = resT.find((t) => t.shape[1] === 100) as Tensor;\n const all = await ageT.data();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n const descriptor = desc ? await desc.data() : [] as number[];\n obj.descriptor = Array.from(descriptor);\n resT.forEach((t) => tf.dispose(t));\n }\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport type { Point } from '../result';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]] as Point;\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]] as Point;\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]] as Point;\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize] as Point;\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]] as Point;\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]] as Point;\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: number[] = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: number[][] = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "/**\n * HandPose model implementation constants\n * See `handpose.ts` for entry point\n */\n\nexport const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport * as anchors from './handposeanchors';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Point } from '../result';\nimport type { Config } from '../config';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model: GraphModel) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = this?.model?.inputs?.[0]?.shape?.[2] || 0;\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n const t: Record = {};\n t.boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n t.boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n t.div = tf.div(t.boxOffsets, this.inputSizeTensor);\n t.boxCenterPoints = tf.add(t.div, this.anchorsTensor);\n t.halfBoxSizes = tf.div(t.boxSizes, this.doubleInputSizeTensor);\n t.sub = tf.sub(t.boxCenterPoints, t.halfBoxSizes);\n t.startPoints = tf.mul(t.sub, this.inputSizeTensor);\n t.add = tf.add(t.boxCenterPoints, t.halfBoxSizes);\n t.endPoints = tf.mul(t.add, this.inputSizeTensor);\n const res = tf.concat2d([t.startPoints, t.endPoints], 1);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res as Tensor;\n }\n\n normalizeLandmarks(rawPalmLandmarks, index: number) {\n const t: Record = {};\n t.reshape = tf.reshape(rawPalmLandmarks, [-1, 7, 2]);\n t.div = tf.div(t.reshape, this.inputSizeTensor);\n t.landmarks = tf.add(t.div, this.anchors[index] ? this.anchors[index] : 0);\n const res = tf.mul(t.landmarks, this.inputSizeTensor);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return res as Tensor;\n }\n\n async predict(input: Tensor, config: Config): Promise<{ startPoint: Point; endPoint: Point, palmLandmarks: Point[]; confidence: number }[]> {\n const t: Record = {};\n t.resize = tf.image.resizeBilinear(input, [this.inputSize, this.inputSize]);\n t.div = tf.div(t.resize, constants.tf127);\n t.image = tf.sub(t.div, constants.tf1);\n t.batched = this.model.execute(t.image) as Tensor;\n t.predictions = tf.squeeze(t.batched);\n t.slice = tf.slice(t.predictions, [0, 0], [-1, 1]);\n t.sigmoid = tf.sigmoid(t.slice);\n t.scores = tf.squeeze(t.sigmoid);\n const scores = await t.scores.data();\n t.boxes = tf.slice(t.predictions, [0, 1], [-1, 4]);\n t.norm = this.normalizeBoxes(t.boxes);\n // box detection is flaky so we look for 3x boxes than we need results\n t.nms = await tf.image.nonMaxSuppressionAsync(t.norm, t.scores, 3 * (config.hand?.maxDetected || 1), config.hand.iouThreshold, config.hand.minConfidence);\n const nms = await t.nms.array() as number[];\n const hands: { startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number }[] = [];\n for (const index of nms) {\n const p: Record = {};\n p.box = tf.slice(t.norm, [index, 0], [1, -1]);\n p.slice = tf.slice(t.predictions, [index, 5], [1, 14]);\n p.norm = this.normalizeLandmarks(p.slice, index);\n p.palmLandmarks = tf.reshape(p.norm, [-1, 2]);\n const box = await p.box.data();\n const startPoint = box.slice(0, 2) as unknown as Point;\n const endPoint = box.slice(2, 4) as unknown as Point;\n const palmLandmarks = await p.palmLandmarks.array();\n const hand = { startPoint, endPoint, palmLandmarks, confidence: scores[index] };\n const scaled = util.scaleBoxCoordinates(hand, [(input.shape[2] || 1) / this.inputSize, (input.shape[1] || 0) / this.inputSize]);\n hands.push(scaled);\n Object.keys(p).forEach((tensor) => tf.dispose(p[tensor]));\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return hands;\n }\n}\n", "/**\n * HandPose model implementation\n * See `handpose.ts` for entry point\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as util from './handposeutil';\nimport type * as detector from './handposedetector';\nimport { constants } from '../tfjs/constants';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport { env } from '../util/env';\nimport { now } from '../util/util';\nimport type { Point } from '../result';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\nlet lastTime = 0;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: ({ startPoint: Point; endPoint: Point; palmLandmarks: Point[]; confidence: number } | null)[];\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n this.inputSize = this.handPoseModel?.inputs?.[0].shape?.[2] || 0;\n this.storedBoxes = [];\n this.skipped = Number.MAX_SAFE_INTEGER;\n this.detectedHands = 0;\n }\n\n calculateLandmarksBoundingBox(landmarks) { // eslint-disable-line class-methods-use-this\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return util.enlargeBox(util.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = util.enlargeBox(util.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = util.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...util.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames\n let boxes;\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = this.skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n boxes = await this.handDetector.predict(image, config);\n this.skipped = 0;\n }\n if (config.skipAllowed) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: { landmarks: Point[], confidence: number, boxConfidence: number, fingerConfidence: number, box: { topLeft: Point, bottomRight: Point } }[] = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = util.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && env.kernels.includes('rotatewithoffset') ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = util.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = tf.div(croppedInput, constants.tf255);\n tf.dispose(croppedInput);\n tf.dispose(rotatedImage);\n const [confidenceT, keypoints] = this.handPoseModel.execute(handImage) as Tensor[];\n lastTime = now();\n tf.dispose(handImage);\n const confidence = (await confidenceT.data())[0];\n tf.dispose(confidenceT);\n if (confidence >= config.hand.minConfidence / 4) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = await keypointsReshaped.array();\n tf.dispose(keypoints);\n tf.dispose(keypointsReshaped);\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n tf.dispose(keypoints);\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = util.enlargeBox(util.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n boxConfidence: currentBox.confidence,\n fingerConfidence: 0,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n landmarks: [],\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n if (hands.length > config.hand.maxDetected) hands.length = config.hand.maxDetected;\n return hands;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nexport const Finger = {\n thumb: 0,\n index: 1,\n middle: 2,\n ring: 3,\n pinky: 4,\n all: [0, 1, 2, 3, 4], // just for convenience\n nameMapping: { 0: 'thumb', 1: 'index', 2: 'middle', 3: 'ring', 4: 'pinky' },\n // Describes mapping of joints based on the 21 points returned by handpose.\n // [0] Palm\n // [1-4] Thumb\n // [5-8] Index\n // [9-12] Middle\n // [13-16] Ring\n // [17-20] Pinky\n pointsMapping: {\n 0: [[0, 1], [1, 2], [2, 3], [3, 4]],\n 1: [[0, 5], [5, 6], [6, 7], [7, 8]],\n 2: [[0, 9], [9, 10], [10, 11], [11, 12]],\n 3: [[0, 13], [13, 14], [14, 15], [15, 16]],\n 4: [[0, 17], [17, 18], [18, 19], [19, 20]],\n },\n getName: (value) => Finger.nameMapping[value],\n getPoints: (value) => Finger.pointsMapping[value],\n};\n\nexport const FingerCurl = {\n none: 0,\n half: 1,\n full: 2,\n nameMapping: { 0: 'none', 1: 'half', 2: 'full' },\n getName: (value) => FingerCurl.nameMapping[value],\n};\n\nexport const FingerDirection = {\n verticalUp: 0,\n verticalDown: 1,\n horizontalLeft: 2,\n horizontalRight: 3,\n diagonalUpRight: 4,\n diagonalUpLeft: 5,\n diagonalDownRight: 6,\n diagonalDownLeft: 7,\n nameMapping: { 0: 'verticalUp', 1: 'verticalDown', 2: 'horizontalLeft', 3: 'horizontalRight', 4: 'diagonalUpRight', 5: 'diagonalUpLeft', 6: 'diagonalDownRight', 7: 'diagonalDownLeft' },\n getName: (value) => FingerDirection.nameMapping[value],\n};\n\nexport class FingerGesture {\n name;\n curls;\n directions;\n weights;\n weightsRelative;\n\n constructor(name) {\n // name (should be unique)\n this.name = name;\n this.curls = {};\n this.directions = {};\n this.weights = [1.0, 1.0, 1.0, 1.0, 1.0];\n this.weightsRelative = [1.0, 1.0, 1.0, 1.0, 1.0];\n }\n\n curl(finger, curl, confidence) {\n if (typeof this.curls[finger] === 'undefined') this.curls[finger] = [];\n this.curls[finger].push([curl, confidence]);\n }\n\n direction(finger, position, confidence) {\n if (!this.directions[finger]) this.directions[finger] = [];\n this.directions[finger].push([position, confidence]);\n }\n\n weight(finger, weight) {\n this.weights[finger] = weight;\n // recalculate relative weights\n const total = this.weights.reduce((a, b) => a + b, 0);\n this.weightsRelative = this.weights.map((el) => el * 5 / total);\n }\n\n matchAgainst(detectedCurls, detectedDirections) {\n let confidence = 0.0;\n // look at the detected curl of each finger and compare with\n // the expected curl of this finger inside current gesture\n for (const fingerIdx in detectedCurls) {\n const detectedCurl = detectedCurls[fingerIdx];\n const expectedCurls = this.curls[fingerIdx];\n if (typeof expectedCurls === 'undefined') {\n // no curl description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible curl of this specific finger\n for (const [expectedCurl, score] of expectedCurls) {\n if (detectedCurl === expectedCurl) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n // same for detected direction of each finger\n for (const fingerIdx in detectedDirections) {\n const detectedDirection = detectedDirections[fingerIdx];\n const expectedDirections = this.directions[fingerIdx];\n if (typeof expectedDirections === 'undefined') {\n // no direction description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible direction of this specific finger\n for (const [expectedDirection, score] of expectedDirections) {\n if (detectedDirection === expectedDirection) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n return confidence / 10;\n }\n}\n", "/**\n * FingerPose algorithm implementation\n * See `fingerpose.ts` for entry point\n */\n\nimport { Finger, FingerCurl, FingerDirection, FingerGesture } from './fingerdef';\n\nexport const { thumb, index, middle, ring, pinky } = Finger;\nexport const { none, half, full } = FingerCurl;\nexport const { verticalUp, verticalDown, horizontalLeft, horizontalRight, diagonalUpRight, diagonalUpLeft, diagonalDownRight, diagonalDownLeft } = FingerDirection;\n\n// describe thumbs up gesture \uD83D\uDC4D\nconst ThumbsUp = new FingerGesture('thumbs up');\nThumbsUp.curl(thumb, none, 1.0);\nThumbsUp.direction(thumb, verticalUp, 1.0);\nThumbsUp.direction(thumb, diagonalUpLeft, 0.25);\nThumbsUp.direction(thumb, diagonalUpRight, 0.25);\nfor (const finger of [Finger.index, Finger.middle, Finger.ring, Finger.pinky]) {\n ThumbsUp.curl(finger, full, 1.0);\n ThumbsUp.direction(finger, horizontalLeft, 1.0);\n ThumbsUp.direction(finger, horizontalRight, 1.0);\n}\n\n// describe Victory gesture \u270C\uFE0F\nconst Victory = new FingerGesture('victory');\nVictory.curl(thumb, half, 0.5);\nVictory.curl(thumb, none, 0.5);\nVictory.direction(thumb, verticalUp, 1.0);\nVictory.direction(thumb, diagonalUpLeft, 1.0);\nVictory.curl(index, none, 1.0);\nVictory.direction(index, verticalUp, 0.75);\nVictory.direction(index, diagonalUpLeft, 1.0);\nVictory.curl(middle, none, 1.0);\nVictory.direction(middle, verticalUp, 1.0);\nVictory.direction(middle, diagonalUpLeft, 0.75);\nVictory.curl(ring, full, 1.0);\nVictory.direction(ring, verticalUp, 0.2);\nVictory.direction(ring, diagonalUpLeft, 1.0);\nVictory.direction(ring, horizontalLeft, 0.2);\nVictory.curl(pinky, full, 1.0);\nVictory.direction(pinky, verticalUp, 0.2);\nVictory.direction(pinky, diagonalUpLeft, 1.0);\nVictory.direction(pinky, horizontalLeft, 0.2);\nVictory.weight(index, 2);\nVictory.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst Point = new FingerGesture('point');\nPoint.curl(thumb, full, 1.0);\nPoint.curl(index, none, 0.5);\nPoint.curl(middle, full, 0.5);\nPoint.curl(ring, full, 0.5);\nPoint.curl(pinky, full, 0.5);\nPoint.weight(index, 2);\nPoint.weight(middle, 2);\n\n// describe Point gesture \u270C\uFE0F\nconst MiddleFinger = new FingerGesture('middle finger');\nMiddleFinger.curl(thumb, none, 1.0);\nMiddleFinger.curl(index, full, 0.5);\nMiddleFinger.curl(middle, full, 0.5);\nMiddleFinger.curl(ring, full, 0.5);\nMiddleFinger.curl(pinky, full, 0.5);\nMiddleFinger.weight(index, 2);\nMiddleFinger.weight(middle, 2);\n\n// describe Open Palm gesture \u270C\uFE0F\nconst OpenPalm = new FingerGesture('open palm');\nOpenPalm.curl(thumb, none, 0.75);\nOpenPalm.curl(index, none, 0.75);\nOpenPalm.curl(middle, none, 0.75);\nOpenPalm.curl(ring, none, 0.75);\nOpenPalm.curl(pinky, none, 0.75);\n\nexport default [ThumbsUp, Victory, Point, MiddleFinger, OpenPalm];\n", "/**\n * FingerPose algorithm implementation constants\n *\n * Based on: [**FingerPose***](https://github.com/andypotato/fingerpose)\n */\n\n/* eslint-disable camelcase */\n\nimport { Finger, FingerCurl, FingerDirection } from './fingerdef';\nimport Gestures from '../hand/fingergesture';\n\nconst minConfidence = 0.7;\nconst options = {\n // curl estimation\n HALF_CURL_START_LIMIT: 60.0,\n NO_CURL_START_LIMIT: 130.0,\n // direction estimation\n DISTANCE_VOTE_POWER: 1.1,\n SINGLE_ANGLE_VOTE_POWER: 0.9,\n TOTAL_ANGLE_VOTE_POWER: 1.6,\n};\n\nfunction calculateSlope(point1x, point1y, point2x, point2y) {\n const value = (point1y - point2y) / (point1x - point2x);\n let slope = Math.atan(value) * 180 / Math.PI;\n if (slope <= 0) slope = -slope;\n else if (slope > 0) slope = 180 - slope;\n return slope;\n}\n\n// point1, point2 are 2d or 3d point arrays (xy[z])\n// returns either a single scalar (2d) or array of two slopes (3d)\nfunction getSlopes(point1, point2) {\n if (!point1 || !point2) return [0, 0];\n const slopeXY = calculateSlope(point1[0], point1[1], point2[0], point2[1]);\n if (point1.length === 2) return slopeXY;\n const slopeYZ = calculateSlope(point1[1], point1[2], point2[1], point2[2]);\n return [slopeXY, slopeYZ];\n}\n\nfunction angleOrientationAt(angle, weightageAt = 1.0) {\n let isVertical = 0;\n let isDiagonal = 0;\n let isHorizontal = 0;\n if (angle >= 75.0 && angle <= 105.0) isVertical = 1 * weightageAt;\n else if (angle >= 25.0 && angle <= 155.0) isDiagonal = 1 * weightageAt;\n else isHorizontal = 1 * weightageAt;\n return [isVertical, isDiagonal, isHorizontal];\n}\n\nfunction estimateFingerCurl(startPoint, midPoint, endPoint) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const start_mid_z_dist = startPoint[2] - midPoint[2];\n const start_end_z_dist = startPoint[2] - endPoint[2];\n const mid_end_z_dist = midPoint[2] - endPoint[2];\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist + start_mid_z_dist * start_mid_z_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist + start_end_z_dist * start_end_z_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist + mid_end_z_dist * mid_end_z_dist);\n let cos_in = (mid_end_dist * mid_end_dist + start_mid_dist * start_mid_dist - start_end_dist * start_end_dist) / (2 * mid_end_dist * start_mid_dist);\n if (cos_in > 1.0) cos_in = 1.0;\n else if (cos_in < -1.0) cos_in = -1.0;\n let angleOfCurve = Math.acos(cos_in);\n angleOfCurve = (57.2958 * angleOfCurve) % 180;\n let fingerCurl;\n if (angleOfCurve > options.NO_CURL_START_LIMIT) fingerCurl = FingerCurl.none;\n else if (angleOfCurve > options.HALF_CURL_START_LIMIT) fingerCurl = FingerCurl.half;\n else fingerCurl = FingerCurl.full;\n return fingerCurl;\n}\n\nfunction estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n if (max_dist_x === Math.abs(start_end_x_dist)) {\n if (start_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else if (max_dist_x === Math.abs(start_mid_x_dist)) {\n if (start_mid_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else {\n if (mid_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n }\n return estimatedDirection;\n}\n\nfunction estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y) {\n let estimatedDirection;\n if (max_dist_y === Math.abs(start_end_y_dist)) {\n if (start_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else if (max_dist_y === Math.abs(start_mid_y_dist)) {\n if (start_mid_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else {\n if (mid_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n }\n return estimatedDirection;\n}\n\nfunction estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n const reqd_vertical_direction = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n const reqd_horizontal_direction = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n if (reqd_vertical_direction === FingerDirection.verticalUp) {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalUpLeft;\n else estimatedDirection = FingerDirection.diagonalUpRight;\n } else {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalDownLeft;\n else estimatedDirection = FingerDirection.diagonalDownRight;\n }\n return estimatedDirection;\n}\n\nfunction calculateFingerDirection(startPoint, midPoint, endPoint, fingerSlopes) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const max_dist_x = Math.max(Math.abs(start_mid_x_dist), Math.abs(start_end_x_dist), Math.abs(mid_end_x_dist));\n const max_dist_y = Math.max(Math.abs(start_mid_y_dist), Math.abs(start_end_y_dist), Math.abs(mid_end_y_dist));\n let voteVertical = 0.0;\n let voteDiagonal = 0.0;\n let voteHorizontal = 0.0;\n const start_end_x_y_dist_ratio = max_dist_y / (max_dist_x + 0.00001);\n if (start_end_x_y_dist_ratio > 1.5) voteVertical += options.DISTANCE_VOTE_POWER;\n else if (start_end_x_y_dist_ratio > 0.66) voteDiagonal += options.DISTANCE_VOTE_POWER;\n else voteHorizontal += options.DISTANCE_VOTE_POWER;\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist);\n const max_dist = Math.max(start_mid_dist, start_end_dist, mid_end_dist);\n let calc_start_point_x = startPoint[0];\n let calc_start_point_y = startPoint[1];\n let calc_end_point_x = endPoint[0];\n let calc_end_point_y = endPoint[1];\n if (max_dist === start_mid_dist) {\n calc_end_point_x = endPoint[0];\n calc_end_point_y = endPoint[1];\n } else if (max_dist === mid_end_dist) {\n calc_start_point_x = midPoint[0];\n calc_start_point_y = midPoint[1];\n }\n const calcStartPoint = [calc_start_point_x, calc_start_point_y];\n const calcEndPoint = [calc_end_point_x, calc_end_point_y];\n const totalAngle = getSlopes(calcStartPoint, calcEndPoint);\n const votes = angleOrientationAt(totalAngle, options.TOTAL_ANGLE_VOTE_POWER);\n voteVertical += votes[0];\n voteDiagonal += votes[1];\n voteHorizontal += votes[2];\n for (const fingerSlope of fingerSlopes) {\n const fingerVotes = angleOrientationAt(fingerSlope, options.SINGLE_ANGLE_VOTE_POWER);\n voteVertical += fingerVotes[0];\n voteDiagonal += fingerVotes[1];\n voteHorizontal += fingerVotes[2];\n }\n // in case of tie, highest preference goes to Vertical,\n // followed by horizontal and then diagonal\n let estimatedDirection;\n if (voteVertical === Math.max(voteVertical, voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n } else if (voteHorizontal === Math.max(voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n } else {\n estimatedDirection = estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n }\n return estimatedDirection;\n}\n\nfunction estimate(landmarks) {\n // step 1: calculate slopes\n const slopesXY: number[][] = [];\n const slopesYZ: number[][] = [];\n const fingerCurls: number[] = [];\n const fingerDirections: number[] = [];\n if (!landmarks) return { curls: fingerCurls, directions: fingerDirections };\n\n // step 1: calculate slopes\n for (const finger of Finger.all) {\n const points = Finger.getPoints(finger);\n const slopeAtXY: number[] = [];\n const slopeAtYZ: number[] = [];\n for (const point of points) {\n const point1 = landmarks[point[0]];\n const point2 = landmarks[point[1]];\n // calculate single slope\n const slopes = getSlopes(point1, point2);\n const slopeXY = slopes[0];\n const slopeYZ = slopes[1];\n slopeAtXY.push(slopeXY);\n slopeAtYZ.push(slopeYZ);\n }\n slopesXY.push(slopeAtXY);\n slopesYZ.push(slopeAtYZ);\n }\n\n // step 2: calculate orientations\n for (const finger of Finger.all) {\n // start finger predictions from palm - except for thumb\n const pointIndexAt = (finger === Finger.thumb) ? 1 : 0;\n const fingerPointsAt = Finger.getPoints(finger);\n const startPoint = landmarks[fingerPointsAt[pointIndexAt][0]];\n const midPoint = landmarks[fingerPointsAt[pointIndexAt + 1][1]];\n const endPoint = landmarks[fingerPointsAt[3][1]];\n // check if finger is curled\n const fingerCurled = estimateFingerCurl(startPoint, midPoint, endPoint);\n const fingerPosition = calculateFingerDirection(startPoint, midPoint, endPoint, slopesXY[finger].slice(pointIndexAt));\n fingerCurls[finger] = fingerCurled;\n fingerDirections[finger] = fingerPosition;\n }\n return { curls: fingerCurls, directions: fingerDirections };\n}\n\nexport function analyze(keypoints) { // get estimations of curl / direction for each finger\n if (!keypoints || keypoints.length === 0) return null;\n const estimatorRes = estimate(keypoints);\n const landmarks = {};\n for (const fingerIdx of Finger.all) {\n landmarks[Finger.getName(fingerIdx)] = {\n curl: FingerCurl.getName(estimatorRes.curls[fingerIdx]),\n direction: FingerDirection.getName(estimatorRes.directions[fingerIdx]),\n };\n }\n return landmarks;\n}\n\nexport function match(keypoints) { // compare gesture description to each known gesture\n const poses: { name: string, confidence: number }[] = [];\n if (!keypoints || keypoints.length === 0) return poses;\n const estimatorRes = estimate(keypoints);\n for (const gesture of Gestures) {\n const confidence = gesture.matchAgainst(estimatorRes.curls, estimatorRes.directions);\n if (confidence >= minConfidence) poses.push({ name: gesture.name, confidence });\n }\n return poses;\n}\n", "/**\n * HandPose model implementation\n *\n * Based on: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n */\n\nimport { log } from '../util/util';\nimport * as handdetector from './handposedetector';\nimport * as handpipeline from './handposepipeline';\nimport * as fingerPose from './fingerpose';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, Box, Point } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palm: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: HandResult[] = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n const keypoints = predictions[i].landmarks as unknown as Point[];\n let box: Box = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: Box = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n const landmarks = fingerPose.analyze(keypoints);\n hands.push({\n id: i,\n score: Math.round(100 * predictions[i].confidence) / 100,\n boxScore: Math.round(100 * predictions[i].boxConfidence) / 100,\n fingerScore: Math.round(100 * predictions[i].fingerConfidence) / 100,\n label: 'hand',\n box,\n boxRaw,\n keypoints,\n annotations: annotations as HandResult['annotations'],\n landmarks: landmarks as HandResult['landmarks'],\n });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (env.initial) {\n handDetectorModel = null;\n handPoseModel = null;\n }\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? loadModel(config.hand.detector?.modelPath) : null,\n config.hand.landmarks ? loadModel(config.hand.skeleton?.modelPath) : null,\n ]);\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = handDetectorModel ? new handdetector.HandDetector(handDetectorModel) : undefined;\n if (handDetector && handPoseModel) handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "/** TFJS custom backend registration */\n\nimport type { Human } from '../human';\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport * as models from '../models';\nimport type { AnyCanvas } from '../exports';\n// import { env } from '../env';\n\nexport const config = {\n name: 'humangl',\n priority: 999,\n canvas: null as null | AnyCanvas,\n gl: null as null | WebGL2RenderingContext,\n extensions: [] as string[] | null,\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions();\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport function register(instance: Human): void {\n // force backend reload if gl context is not valid\n if (instance.config.backend !== 'humangl') return;\n if ((config.name in tf.engine().registry) && !config?.gl?.getParameter(config.gl.VERSION)) {\n log('error: humangl backend invalid context');\n models.reset(instance);\n /*\n log('resetting humangl backend');\n await tf.removeBackend(config.name);\n await register(instance); // re-register\n */\n }\n if (!tf.findBackend(config.name)) {\n try {\n config.canvas = image.canvas(100, 100);\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr);\n if (!config.gl) {\n log('error: cannot get WebGL context');\n return;\n }\n const glv2 = config.gl.getParameter(config.gl.VERSION).includes('2.0');\n if (!glv2) {\n log('override: using fallback webgl backend as webgl 2.0 is not detected');\n instance.config.backend = 'webgl';\n return;\n }\n if (config.canvas) {\n config.canvas.addEventListener('webglcontextlost', (e) => {\n log('error: humangl:', e.type);\n log('possible browser memory leak using webgl or conflict with multiple backend registrations');\n instance.emit('error');\n throw new Error('backend error: webgl context lost');\n // log('resetting humangl backend');\n // env.initial = true;\n // models.reset(instance);\n // await tf.removeBackend(config.name);\n // await register(instance); // re-register\n });\n config.canvas.addEventListener('webglcontextrestored', (e) => {\n log('error: humangl context restored:', e);\n });\n config.canvas.addEventListener('webglcontextcreationerror', (e) => {\n log('error: humangl context create:', e);\n });\n }\n } catch (err) {\n log('error: cannot get WebGL context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n const current = tf.backend().getGPGPUContext ? tf.backend().getGPGPUContext().gl : null;\n if (current) {\n log(`humangl webgl version:${current.getParameter(current.VERSION) as string} renderer:${current.getParameter(current.RENDERER) as string}`);\n } else {\n log('error: no current gl context:', current, config.gl);\n return;\n }\n try {\n if (tf.env().flagRegistry.WEBGL_VERSION) tf.env().set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "/** TFJS backend initialization and customization */\n\nimport type { Human, Config } from '../human';\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as humangl from './humangl';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as constants from './constants';\n\nfunction registerCustomOps(config: Config) {\n if (!env.kernels.includes('mod')) {\n const kernelMod = {\n kernelName: 'Mod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.sub(op.inputs.a, tf.mul(tf.div(op.inputs.a, op.inputs.b), op.inputs.b))),\n };\n if (config.debug) log('registered kernel:', 'Mod');\n tf.registerKernel(kernelMod);\n env.kernels.push('mod');\n }\n if (!env.kernels.includes('floormod')) {\n const kernelFloorMod = {\n kernelName: 'FloorMod',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => tf.add(tf.mul(tf.floorDiv(op.inputs.a / op.inputs.b), op.inputs.b), tf.mod(op.inputs.a, op.inputs.b))),\n };\n if (config.debug) log('registered kernel:', 'FloorMod');\n tf.registerKernel(kernelFloorMod);\n env.kernels.push('floormod');\n }\n /*\n if (!env.kernels.includes('atan2') && config.softwareKernels) {\n const kernelAtan2 = {\n kernelName: 'Atan2',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => {\n const backend = tf.getBackend();\n tf.setBackend('cpu');\n const t = tf.atan2(op.inputs.a, op.inputs.b);\n tf.setBackend(backend);\n return t;\n }),\n };\n if (config.debug) log('registered kernel:', 'atan2');\n log('registered kernel:', 'atan2');\n tf.registerKernel(kernelAtan2);\n env.kernels.push('atan2');\n }\n */\n if (!env.kernels.includes('rotatewithoffset') && config.softwareKernels) {\n const kernelRotateWithOffset = {\n kernelName: 'RotateWithOffset',\n backendName: tf.getBackend(),\n kernelFunc: (op) => tf.tidy(() => {\n const backend = tf.getBackend();\n tf.setBackend('cpu');\n const t = tf.image.rotateWithOffset(op.inputs.image, op.attrs.radians, op.attrs.fillValue, op.attrs.center);\n tf.setBackend(backend);\n return t;\n }),\n };\n if (config.debug) log('registered kernel:', 'RotateWithOffset');\n tf.registerKernel(kernelRotateWithOffset);\n env.kernels.push('rotatewithoffset');\n }\n}\n\nexport async function check(instance: Human, force = false) {\n instance.state = 'backend';\n if (force || env.initial || (instance.config.backend && (instance.config.backend.length > 0) && (tf.getBackend() !== instance.config.backend))) {\n const timeStamp = now();\n\n if (instance.config.backend && instance.config.backend.length > 0) {\n // detect web worker\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && instance.config.debug) {\n if (instance.config.debug) log('running inside web worker');\n }\n\n // force browser vs node backend\n if (env.browser && instance.config.backend === 'tensorflow') {\n if (instance.config.debug) log('override: backend set to tensorflow while running in browser');\n instance.config.backend = 'humangl';\n }\n if (env.node && (instance.config.backend === 'webgl' || instance.config.backend === 'humangl')) {\n if (instance.config.debug) log(`override: backend set to ${instance.config.backend} while running in nodejs`);\n instance.config.backend = 'tensorflow';\n }\n\n // handle webgpu\n if (env.browser && instance.config.backend === 'webgpu') {\n if (typeof navigator === 'undefined' || typeof navigator.gpu === 'undefined') {\n log('override: backend set to webgpu but browser does not support webgpu');\n instance.config.backend = 'humangl';\n } else {\n const adapter = await navigator.gpu.requestAdapter();\n if (instance.config.debug) log('enumerated webgpu adapter:', adapter);\n if (!adapter) {\n log('override: backend set to webgpu but browser reports no available gpu');\n instance.config.backend = 'humangl';\n } else {\n // @ts-ignore requestAdapterInfo is not in tslib\n const adapterInfo = 'requestAdapterInfo' in adapter ? await (adapter as GPUAdapter).requestAdapterInfo() : undefined;\n // if (adapter.features) adapter.features.forEach((feature) => log('webgpu features:', feature));\n log('webgpu adapter info:', adapterInfo);\n }\n }\n }\n\n // check available backends\n if (instance.config.backend === 'humangl') humangl.register(instance);\n const available = Object.keys(tf.engine().registryFactory as Record);\n if (instance.config.debug) log('available backends:', available);\n\n if (!available.includes(instance.config.backend)) {\n log(`error: backend ${instance.config.backend} not found in registry`);\n instance.config.backend = env.node ? 'tensorflow' : 'webgl';\n if (instance.config.debug) log(`override: setting backend ${instance.config.backend}`);\n }\n\n if (instance.config.debug) log('setting backend:', instance.config.backend);\n\n // customize wasm\n if (instance.config.backend === 'wasm') {\n if (tf.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY) tf.env().set('CANVAS2D_WILL_READ_FREQUENTLY', true);\n if (instance.config.debug) log('wasm path:', instance.config.wasmPath);\n if (typeof tf.setWasmPaths !== 'undefined') tf.setWasmPaths(instance.config.wasmPath, instance.config.wasmPlatformFetch);\n else throw new Error('backend error: attempting to use wasm backend but wasm path is not set');\n let mt = false;\n let simd = false;\n try {\n mt = await tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n simd = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n if (instance.config.debug) log(`wasm execution: ${simd ? 'simd' : 'no simd'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (instance.config.debug && !simd) log('warning: wasm simd support is not enabled');\n } catch {\n log('wasm detection failed');\n }\n }\n\n try {\n await tf.setBackend(instance.config.backend);\n await tf.ready();\n constants.init();\n } catch (err) {\n log('error: cannot set backend:', instance.config.backend, err);\n return false;\n }\n }\n\n // customize humangl\n if (tf.getBackend() === 'humangl') {\n if (tf.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS) tf.env().set('CHECK_COMPUTATION_FOR_ERRORS', false);\n if (tf.env().flagRegistry.WEBGL_CPU_FORWARD) tf.env().set('WEBGL_CPU_FORWARD', true);\n if (tf.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS) tf.env().set('WEBGL_USE_SHAPES_UNIFORMS', true);\n if (tf.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD) tf.env().set('CPU_HANDOFF_SIZE_THRESHOLD', 256);\n if (tf.env().flagRegistry.WEBGL_EXP_CONV) tf.env().set('WEBGL_EXP_CONV', true); // \n if (tf.env().flagRegistry.USE_SETTIMEOUTCUSTOM) tf.env().set('USE_SETTIMEOUTCUSTOM', true); // \n // if (tf.env().flagRegistry['WEBGL_PACK_DEPTHWISECONV']) tf.env().set('WEBGL_PACK_DEPTHWISECONV', false);\n // if (if (tf.env().flagRegistry['WEBGL_FORCE_F16_TEXTURES']) && !instance.config.object.enabled) tf.env().set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof instance.config.deallocate !== 'undefined' && instance.config.deallocate) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n tf.env().set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n if (tf.backend().getGPGPUContext) {\n const gl = await tf.backend().getGPGPUContext().gl;\n if (instance.config.debug) log(`gl version:${gl.getParameter(gl.VERSION) as string} renderer:${gl.getParameter(gl.RENDERER) as string}`);\n }\n }\n\n // customize webgpu\n if (tf.getBackend() === 'webgpu') {\n // if (tf.env().flagRegistry['WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD']) tf.env().set('WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD', 512);\n // if (tf.env().flagRegistry['WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE']) tf.env().set('WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE', 0);\n // if (tf.env().flagRegistry['WEBGPU_CPU_FORWARD']) tf.env().set('WEBGPU_CPU_FORWARD', true);\n }\n\n // wait for ready\n tf.enableProdMode();\n await tf.ready();\n\n instance.performance.initBackend = Math.trunc(now() - timeStamp);\n instance.config.backend = tf.getBackend();\n\n await env.updateBackend(); // update env on backend init\n registerCustomOps(instance.config);\n // await env.updateBackend(); // update env on backend init\n }\n return true;\n}\n\n// register fake missing tfjs ops\nexport function fakeOps(kernelNames: string[], config) {\n // if (config.debug) log('registerKernel:', kernelNames);\n for (const kernelName of kernelNames) {\n const kernelConfig = {\n kernelName,\n backendName: config.backend,\n kernelFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // setupFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n // disposeFunc: () => { if (config.debug) log('kernelFunc', kernelName, config.backend); },\n };\n tf.registerKernel(kernelConfig);\n }\n env.kernels = tf.getKernelsForBackend(tf.getBackend()).map((kernel) => (kernel.kernelName as string).toLowerCase()); // re-scan registered ops\n}\n", "/**\n * HandTrack model implementation\n *\n * Based on:\n * - Hand Detection & Skeleton: [**MediaPipe HandPose**](https://drive.google.com/file/d/1sv4sSb9BSNVZhLzxXJ0jBv9DqD-4jnAz/view)\n * - Hand Tracking: [**HandTracking**](https://github.com/victordibia/handtracking)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { HandResult, HandType, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as fingerPose from './fingerpose';\nimport { fakeOps } from '../tfjs/backend';\nimport { constants } from '../tfjs/constants';\n\nconst models: [GraphModel | null, GraphModel | null] = [null, null];\nconst modelOutputNodes = ['StatefulPartitionedCall/Postprocessor/Slice', 'StatefulPartitionedCall/Postprocessor/ExpandDims_1'];\n\nconst inputSize = [[0, 0], [0, 0]];\n\nconst classes = ['hand', 'fist', 'pinch', 'point', 'face', 'tip', 'pinchtip'];\nconst faceIndex = 4;\n\nconst boxExpandFact = 1.6;\nconst maxDetectorResolution = 512;\nconst detectorExpandFact = 1.4;\n\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastTime = 0;\nlet outputSize: [number, number] = [0, 0];\n\ninterface HandDetectResult {\n id: number,\n score: number,\n box: Box,\n boxRaw: Box,\n label: HandType,\n}\n\nconst cache: {\n boxes: HandDetectResult[],\n hands: HandResult[];\n} = {\n boxes: [],\n hands: [],\n};\n\nconst fingerMap = {\n /*\n thumb: [0, 1, 2, 3, 4],\n index: [0, 5, 6, 7, 8],\n middle: [0, 9, 10, 11, 12],\n ring: [0, 13, 14, 15, 16],\n pinky: [0, 17, 18, 19, 20],\n palm: [0],\n */\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n base: [0],\n palm: [0, 17, 13, 9, 5, 1, 0],\n};\n\nexport async function loadDetect(config: Config): Promise {\n // HandTrack Model: Original: TFJS Port: \n if (env.initial) models[0] = null;\n if (!models[0]) {\n // handtrack model has some kernel ops defined in model but those are never referenced and non-existent in tfjs\n // ideally need to prune the model itself\n fakeOps(['tensorlistreserve', 'enter', 'tensorlistfromtensor', 'merge', 'loopcond', 'switch', 'exit', 'tensorliststack', 'nextiteration', 'tensorlistsetitem', 'tensorlistgetitem', 'reciprocal', 'shape', 'split', 'where'], config);\n models[0] = await loadModel(config.hand.detector?.modelPath);\n const inputs = models[0]['executor'] ? Object.values(models[0].modelSignature['inputs']) : undefined;\n inputSize[0][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[0][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[0]['modelUrl']);\n return models[0];\n}\n\nexport async function loadSkeleton(config: Config): Promise {\n if (env.initial) models[1] = null;\n if (!models[1]) {\n models[1] = await loadModel(config.hand.skeleton?.modelPath);\n const inputs = models[1]['executor'] ? Object.values(models[1].modelSignature['inputs']) : undefined;\n inputSize[1][0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[1].size) : 0;\n inputSize[1][1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0;\n } else if (config.debug) log('cached model:', models[1]['modelUrl']);\n return models[1];\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!models[0]) await loadDetect(config);\n if (!models[1]) await loadSkeleton(config);\n return models;\n}\n\nasync function detectHands(input: Tensor, config: Config): Promise {\n const hands: HandDetectResult[] = [];\n if (!input || !models[0]) return hands;\n const t: Record = {};\n const ratio = (input.shape[2] || 1) / (input.shape[1] || 1);\n const height = Math.min(Math.round((input.shape[1] || 0) / 8) * 8, maxDetectorResolution); // use dynamic input size but cap at 512\n const width = Math.round(height * ratio / 8) * 8;\n t.resize = tf.image.resizeBilinear(input, [height, width]); // todo: resize with padding\n t.cast = tf.cast(t.resize, 'int32');\n [t.rawScores, t.rawBoxes] = await models[0].executeAsync(t.cast, modelOutputNodes) as Tensor[];\n t.boxes = tf.squeeze(t.rawBoxes, [0, 2]);\n t.scores = tf.squeeze(t.rawScores, [0]);\n const classScores: Tensor[] = tf.unstack(t.scores, 1); // unstack scores based on classes\n tf.dispose(classScores[faceIndex]);\n classScores.splice(faceIndex, 1); // remove faces\n t.filtered = tf.stack(classScores, 1); // restack\n tf.dispose(classScores);\n // t.filtered = t.scores;\n t.max = tf.max(t.filtered, 1); // max overall score\n t.argmax = tf.argMax(t.filtered, 1); // class index of max overall score\n let id = 0;\n t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, (config.hand.maxDetected || 0) + 1, config.hand.iouThreshold || 0, config.hand.minConfidence || 1);\n const nms = await t.nms.data();\n const scores = await t.max.data();\n const classNum = await t.argmax.data();\n for (const nmsIndex of Array.from(nms)) { // generates results for each class\n const boxSlice = tf.slice(t.boxes, nmsIndex, 1);\n const boxYX = await boxSlice.data();\n tf.dispose(boxSlice);\n const boxData: Box = [boxYX[1], boxYX[0], boxYX[3] - boxYX[1], boxYX[2] - boxYX[0]]; // yx box reshaped to standard box\n const boxRaw: Box = box.scale(boxData, detectorExpandFact);\n const boxFull: Box = [Math.trunc(boxData[0] * outputSize[0]), Math.trunc(boxData[1] * outputSize[1]), Math.trunc(boxData[2] * outputSize[0]), Math.trunc(boxData[3] * outputSize[1])];\n const score = scores[nmsIndex];\n const label = classes[classNum[nmsIndex]] as HandType;\n const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, label };\n hands.push(hand);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n hands.sort((a, b) => b.score - a.score);\n if (hands.length > (config.hand.maxDetected || 1)) hands.length = (config.hand.maxDetected || 1);\n return hands;\n}\n\nasync function detectFingers(input: Tensor, h: HandDetectResult, config: Config): Promise {\n const hand: HandResult = { // initial values inherited from hand detect\n id: h.id,\n score: Math.round(100 * h.score) / 100,\n boxScore: Math.round(100 * h.score) / 100,\n fingerScore: 0,\n box: h.box,\n boxRaw: h.boxRaw,\n label: h.label,\n keypoints: [],\n landmarks: {} as HandResult['landmarks'],\n annotations: {} as HandResult['annotations'],\n };\n if (input && models[1] && config.hand.landmarks && h.score > (config.hand.minConfidence || 0)) {\n const t: Record = {};\n const boxCrop = [h.boxRaw[1], h.boxRaw[0], h.boxRaw[3] + h.boxRaw[1], h.boxRaw[2] + h.boxRaw[0]] as Box;\n t.crop = tf.image.cropAndResize(input, [boxCrop], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');\n t.div = tf.div(t.crop, constants.tf255);\n [t.score, t.keypoints] = models[1].execute(t.div, ['Identity_1', 'Identity']) as Tensor[];\n const rawScore = (await t.score.data())[0];\n const score = (100 - Math.trunc(100 / (1 + Math.exp(rawScore)))) / 100; // reverse sigmoid value\n if (score >= (config.hand.minConfidence || 0)) {\n hand.fingerScore = score;\n t.reshaped = tf.reshape(t.keypoints, [-1, 3]);\n const coordsData: Point[] = await t.reshaped.array() as Point[];\n const coordsRaw: Point[] = coordsData.map((kpt) => [kpt[0] / inputSize[1][1], kpt[1] / inputSize[1][0], (kpt[2] || 0)]);\n const coordsNorm: Point[] = coordsRaw.map((kpt) => [kpt[0] * h.boxRaw[2], kpt[1] * h.boxRaw[3], (kpt[2] || 0)]);\n hand.keypoints = (coordsNorm).map((kpt) => [outputSize[0] * (kpt[0] + h.boxRaw[0]), outputSize[1] * (kpt[1] + h.boxRaw[1]), (kpt[2] || 0)]);\n hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger gestures\n for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations\n hand.annotations[key] = fingerMap[key].map((index: number) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null));\n }\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n return hand;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!models[0]?.['executor'] || !models[1]?.['executor'] || !models[0].inputs[0].shape || !models[1].inputs[0].shape) return []; // something is wrong with the model\n outputSize = [input.shape[2] || 0, input.shape[1] || 0];\n skipped++; // increment skip frames\n const skipTime = (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.hand.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.hands; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const skipTimeExtended = 3 * (config.hand.skipTime || 0) > (now() - lastTime);\n const skipFrameExtended = skipped < 3 * (config.hand.skipFrames || 0);\n if (config.skipAllowed && cache.hands.length === config.hand.maxDetected) { // we have all detected hands so we're definitely skipping\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else if (config.skipAllowed && skipTimeExtended && skipFrameExtended && cache.hands.length > 0) { // we have some cached results: maybe not enough but anyhow continue for bit longer\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n } else { // finally rerun detector\n cache.boxes = await detectHands(input, config);\n lastTime = now();\n cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));\n skipped = 0;\n }\n\n const oldCache = [...cache.boxes];\n cache.boxes.length = 0; // reset cache\n if (config.cacheSensitivity > 0) {\n for (let i = 0; i < cache.hands.length; i++) {\n const boxKpt = box.square(cache.hands[i].keypoints, outputSize);\n if (boxKpt.box[2] / (input.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config.hand.minConfidence || 0)) {\n const boxScale = box.scale(boxKpt.box, boxExpandFact);\n const boxScaleRaw = box.scale(boxKpt.boxRaw, boxExpandFact);\n // const boxCrop = box.crop(boxScaleRaw);\n cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw });\n }\n }\n }\n for (let i = 0; i < cache.hands.length; i++) { // replace detected boxes with calculated boxes in final output\n const bbox = box.calc(cache.hands[i].keypoints, outputSize);\n cache.hands[i].box = bbox.box;\n cache.hands[i].boxRaw = bbox.boxRaw;\n }\n resolve(cache.hands);\n });\n}\n", "/**\n * Anti-spoofing model implementation\n */\n\nimport { log, now } from '../util/util';\nimport { loadModel } from '../tfjs/load';\nimport type { Config } from '../config';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nconst cached: number[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet lastCount = 0;\nlet lastTime = 0;\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) model = await loadModel(config.face.liveness?.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx: number, count: number): Promise {\n if (!model?.['executor']) return 0;\n const skipTime = (config.face.liveness?.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.face.liveness?.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && cached[idx]) {\n skipped++;\n return cached[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);\n const res = model?.execute(resize) as Tensor;\n const num = (await res.data())[0];\n cached[idx] = Math.round(100 * num) / 100;\n lastCount = count;\n lastTime = now();\n tf.dispose([resize, res]);\n resolve(cached[idx]);\n });\n}\n", "export const kpt: string[] = [ // used to create part labels\n 'nose',\n 'leftEye',\n 'rightEye',\n 'leftEar',\n 'rightEar',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n];\n\nexport const horizontal: string[][] = [ // used to fix left vs right\n ['leftEye', 'rightEye'],\n ['leftEar', 'rightEar'],\n ['leftShoulder', 'rightShoulder'],\n ['leftElbow', 'rightElbow'],\n ['leftWrist', 'rightWrist'],\n ['leftHip', 'rightHip'],\n ['leftKnee', 'rightKnee'],\n ['leftAnkle', 'rightAnkle'],\n];\n\nexport const vertical: string[][] = [ // used to remove unlikely keypoint positions\n ['leftKnee', 'leftShoulder'],\n ['rightKnee', 'rightShoulder'],\n ['leftAnkle', 'leftKnee'],\n ['rightAnkle', 'rightKnee'],\n];\n\nexport const relative: string[][][] = [ // used to match relative body parts\n [['leftHip', 'rightHip'], ['leftShoulder', 'rightShoulder']],\n [['leftElbow', 'rightElbow'], ['leftShoulder', 'rightShoulder']],\n];\n\nexport const connected: Record = { // used to create body outline in annotations\n leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],\n rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],\n torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],\n leftArm: ['leftShoulder', 'leftElbow', 'leftWrist'],\n rightArm: ['rightShoulder', 'rightElbow', 'rightWrist'],\n head: [],\n};\n", "import type { BodyKeypoint, BodyResult } from '../result';\nimport * as box from '../util/box';\nimport * as coords from './movenetcoords';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { Tensor } from '../tfjs/types';\n\nconst maxJitter = 0.005; // default allowed jitter is within 0.5%\n\nconst cache: {\n keypoints: BodyKeypoint[],\n padding: [number, number][];\n} = {\n keypoints: [],\n padding: [[0, 0], [0, 0], [0, 0], [0, 0]],\n};\n\nexport function bodyParts(body: BodyResult) { // model sometimes mixes up left vs right keypoints so we fix them\n for (const pair of coords.horizontal) { // fix body parts left vs right\n const left = body.keypoints.findIndex((kp) => kp.part === pair[0]);\n const right = body.keypoints.findIndex((kp) => kp.part === pair[1]);\n if (body.keypoints[left] && body.keypoints[right]) {\n if (body.keypoints[left].position[0] < body.keypoints[right].position[0]) {\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n }\n for (const pair of coords.vertical) { // remove body parts with improbable vertical position\n const lower = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const higher = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n if (body.keypoints[lower] && body.keypoints[higher]) {\n if (body.keypoints[lower].position[1] < body.keypoints[higher].position[1]) {\n body.keypoints.splice(lower, 1);\n }\n }\n }\n for (const [pair, compare] of coords.relative) { // rearrange body parts according to their relative position\n const left = body.keypoints.findIndex((kp) => (kp && kp.part === pair[0]));\n const right = body.keypoints.findIndex((kp) => (kp && kp.part === pair[1]));\n const leftTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[0]));\n const rightTo = body.keypoints.findIndex((kp) => (kp && kp.part === compare[1]));\n if (!body.keypoints[leftTo] || !body.keypoints[rightTo]) continue; // only if we have both compare points\n const distanceLeft = body.keypoints[left] ? [\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[left].position[0]),\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[left].position[0]),\n ] : [0, 0];\n const distanceRight = body.keypoints[right] ? [\n Math.abs(body.keypoints[rightTo].position[0] - body.keypoints[right].position[0]),\n Math.abs(body.keypoints[leftTo].position[0] - body.keypoints[right].position[0]),\n ] : [0, 0];\n if (distanceLeft[0] > distanceLeft[1] || distanceRight[0] > distanceRight[1]) { // should flip keypoints\n const tmp = body.keypoints[left];\n body.keypoints[left] = body.keypoints[right];\n body.keypoints[right] = tmp;\n }\n }\n}\n\nexport function jitter(keypoints: BodyKeypoint[]): BodyKeypoint[] {\n for (let i = 0; i < keypoints.length; i++) {\n if (keypoints[i] && cache.keypoints[i]) {\n const diff = [Math.abs(keypoints[i].positionRaw[0] - cache.keypoints[i].positionRaw[0]), Math.abs(keypoints[i].positionRaw[1] - cache.keypoints[i].positionRaw[1])];\n if (diff[0] < maxJitter && diff[1] < maxJitter) {\n keypoints[i] = cache.keypoints[i]; // below jitter so replace keypoint\n } else {\n cache.keypoints[i] = keypoints[i]; // above jitter so update cache\n }\n } else {\n cache.keypoints[i] = keypoints[i]; // cache for keypoint doesnt exist so create it here\n }\n }\n return keypoints;\n}\n\nexport function padInput(input: Tensor, inputSize: number): Tensor {\n const t: Record = {};\n if (!input?.shape?.[1] || !input?.shape?.[2]) return input;\n cache.padding = [\n [0, 0], // dont touch batch\n [input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0, input.shape[2] > input.shape[1] ? Math.trunc((input.shape[2] - input.shape[1]) / 2) : 0], // height before&after\n [input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0, input.shape[1] > input.shape[2] ? Math.trunc((input.shape[1] - input.shape[2]) / 2) : 0], // width before&after\n [0, 0], // dont touch rbg\n ];\n t.pad = tf.pad(input, cache.padding);\n t.resize = tf.image.resizeBilinear(t.pad, [inputSize, inputSize]);\n const final = tf.cast(t.resize, 'int32');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return final;\n}\n\nexport function rescaleBody(body: BodyResult, outputSize: [number, number]): BodyResult {\n body.keypoints = body.keypoints.filter((kpt) => kpt?.position); // filter invalid keypoints\n for (const kpt of body.keypoints) {\n kpt.position = [\n kpt.position[0] * (outputSize[0] + cache.padding[2][0] + cache.padding[2][1]) / outputSize[0] - cache.padding[2][0],\n kpt.position[1] * (outputSize[1] + cache.padding[1][0] + cache.padding[1][1]) / outputSize[1] - cache.padding[1][0],\n ];\n kpt.positionRaw = [\n kpt.position[0] / outputSize[0], kpt.position[1] / outputSize[1],\n ];\n }\n const rescaledBoxes = box.calc(body.keypoints.map((pt) => pt.position), outputSize);\n body.box = rescaledBoxes.box;\n body.boxRaw = rescaledBoxes.boxRaw;\n return body;\n}\n", "/**\n * MoveNet model implementation\n *\n * Based on: [**MoveNet**](https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html)\n */\n\nimport { log, now } from '../util/util';\nimport * as box from '../util/box';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as coords from './movenetcoords';\nimport * as fix from './movenetfix';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyKeypoint, BodyResult, BodyLandmark, BodyAnnotation, Box, Point } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { fakeOps } from '../tfjs/backend';\nimport { env } from '../util/env';\n\nlet model: GraphModel | null;\nlet inputSize = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n// const boxExpandFact = 1.5; // increase to 150%\n\nconst cache: {\n boxes: Box[], // unused\n bodies: BodyResult[];\n last: number,\n} = {\n boxes: [],\n bodies: [],\n last: 0,\n};\n\nexport async function load(config: Config): Promise {\n if (env.initial) model = null;\n if (!model) {\n fakeOps(['size'], config);\n model = await loadModel(config.body.modelPath);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n inputSize = (model?.['executor'] && model?.inputs?.[0].shape) ? model.inputs[0].shape[2] : 0;\n if (inputSize < 64) inputSize = 256;\n return model;\n}\n\nfunction parseSinglePose(res, config, image) {\n const kpt = res[0][0];\n const keypoints: BodyKeypoint[] = [];\n let score = 0;\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[id][1], kpt[id][0]];\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: coords.kpt[id] as BodyLandmark,\n positionRaw,\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * positionRaw[0]),\n Math.round((image.shape[1] || 0) * positionRaw[1]),\n ],\n });\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const bodies: BodyResult[] = [];\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n const annotations: Record = {};\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id: 0, score, box: newBox.box, boxRaw: newBox.boxRaw, keypoints, annotations };\n fix.bodyParts(body);\n bodies.push(body);\n return bodies;\n}\n\nfunction parseMultiPose(res, config, image) {\n const bodies: BodyResult[] = [];\n for (let id = 0; id < res[0].length; id++) {\n const kpt = res[0][id];\n const totalScore = Math.round(100 * kpt[51 + 4]) / 100;\n if (totalScore > config.body.minConfidence) {\n const keypoints: BodyKeypoint[] = [];\n for (let i = 0; i < 17; i++) {\n const score = kpt[3 * i + 2];\n if (score > config.body.minConfidence) {\n const positionRaw: Point = [kpt[3 * i + 1], kpt[3 * i + 0]];\n keypoints.push({\n part: coords.kpt[i] as BodyLandmark,\n score: Math.round(100 * score) / 100,\n positionRaw,\n position: [Math.round((image.shape[2] || 0) * positionRaw[0]), Math.round((image.shape[1] || 0) * positionRaw[1])],\n });\n }\n }\n const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);\n // movenet-multipose has built-in box details\n // const boxRaw: Box = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];\n // const box: Box = [Math.trunc(boxRaw[0] * (image.shape[2] || 0)), Math.trunc(boxRaw[1] * (image.shape[1] || 0)), Math.trunc(boxRaw[2] * (image.shape[2] || 0)), Math.trunc(boxRaw[3] * (image.shape[1] || 0))];\n const annotations: Record = {} as Record;\n for (const [name, indexes] of Object.entries(coords.connected)) {\n const pt: Point[][] = [];\n for (let i = 0; i < indexes.length - 1; i++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[i]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[i + 1]);\n if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n const body: BodyResult = { id, score: totalScore, box: newBox.box, boxRaw: newBox.boxRaw, keypoints: [...keypoints], annotations };\n fix.bodyParts(body);\n bodies.push(body);\n }\n }\n bodies.sort((a, b) => b.score - a.score);\n if (bodies.length > config.body.maxDetected) bodies.length = config.body.maxDetected;\n return bodies;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if (!model?.['executor'] || !model?.inputs?.[0].shape) return []; // something is wrong with the model\n if (!config.skipAllowed) cache.boxes.length = 0; // allowed to use cache or not\n skipped++; // increment skip frames\n const skipTime = (config.body.skipTime || 0) > (now() - cache.last);\n const skipFrame = skipped < (config.body.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame) {\n return cache.bodies; // return cached results without running anything\n }\n return new Promise(async (resolve) => {\n const t: Record = {};\n skipped = 0;\n // run detection on squared input and cached boxes\n /*\n cache.bodies = []; // reset bodies result\n if (cache.boxes.length >= (config.body.maxDetected || 0)) { // if we have enough cached boxes run detection using cache\n for (let i = 0; i < cache.boxes.length; i++) { // run detection based on cached boxes\n t.crop = tf.image.cropAndResize(input, [cache.boxes[i]], [0], [inputSize, inputSize], 'bilinear');\n t.cast = tf.cast(t.crop, 'int32');\n // t.input = prepareImage(input);\n t.res = model?.execute(t.cast) as Tensor;\n const res = await t.res.array();\n const newBodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, cache.boxes[i]) : await parseMultiPose(res, config, input, cache.boxes[i]);\n cache.bodies = cache.bodies.concat(newBodies);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n }\n if (cache.bodies.length !== config.body.maxDetected) { // did not find enough bodies based on cached boxes so run detection on full frame\n t.input = prepareImage(input);\n t.res = model?.execute(t.input) as Tensor;\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, [0, 0, 1, 1]) : await parseMultiPose(res, config, input, [0, 0, 1, 1]);\n for (const body of cache.bodies) rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n }\n cache.boxes.length = 0; // reset cache\n for (let i = 0; i < cache.bodies.length; i++) {\n if (cache.bodies[i].keypoints.length > (coords.kpt.length / 2)) { // only update cache if we detected at least half keypoints\n const scaledBox = box.scale(cache.bodies[i].boxRaw, boxExpandFact);\n const cropBox = box.crop(scaledBox);\n cache.boxes.push(cropBox);\n }\n }\n */\n\n // run detection on squared input and no cached boxes\n t.input = fix.padInput(input, inputSize);\n t.res = model?.execute(t.input) as Tensor;\n cache.last = now();\n const res = await t.res.array();\n cache.bodies = (t.res.shape[2] === 17)\n ? parseSinglePose(res, config, input)\n : parseMultiPose(res, config, input);\n for (const body of cache.bodies) {\n fix.rescaleBody(body, [input.shape[2] || 1, input.shape[1] || 1]);\n fix.jitter(body.keypoints);\n }\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n\n resolve(cache.bodies);\n });\n}\n", "/**\n * NanoDet object detection model implementation\n *\n * Based on: [**MB3-CenterNet**](https://github.com/610265158/mobilenetv3_centernet)\n */\n\nimport { log, now } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport { constants } from '../tfjs/constants';\nimport { labels } from './labels';\nimport type { ObjectResult, ObjectType, Box } from '../result';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\n\nlet model: GraphModel;\nlet last: ObjectResult[] = [];\nlet lastTime = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\nlet inputSize = 0;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) {\n model = await loadModel(config.object.modelPath);\n const inputs = model?.['executor'] ? Object.values(model.modelSignature['inputs']) : undefined;\n inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 416;\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function process(res: Tensor[], outputShape: [number, number], config: Config) {\n let id = 0;\n let results: ObjectResult[] = [];\n const size = inputSize;\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) === labels.length)));\n const scores = await scoresT.array(); // optionally use exponential scores or just as-is\n const featuresT = tf.squeeze(res.find((a: Tensor) => (a.shape[1] === (baseSize ** 2) && (a.shape[2] || 0) < labels.length)));\n const boxesMaxT = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdxT = boxesMaxT.argMax(2); // what we need is indexes of features with highest scores, not values itself\n const boxIdx = await boxIdxT.array(); // what we need is indexes of features with highest scores, not values itself\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > (config.object.minConfidence || 0) && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a: number) => a * (baseSize / strideSize / (size))); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw: Box = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))) as Box; // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label as ObjectType,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: box.map((a) => Math.trunc(a)) as Box,\n boxRaw,\n };\n results.push(result);\n }\n }\n }\n tf.dispose([scoresT, featuresT, boxesMaxT, boxIdxT]);\n }\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: number[] = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = await nms.data();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model?.['executor']) return [];\n const skipTime = (config.object.skipTime || 0) > (now() - lastTime);\n const skipFrame = skipped < (config.object.skipFrames || 0);\n if (config.skipAllowed && skipTime && skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n if (!env.kernels.includes('mod') || !env.kernels.includes('sparsetodense')) return last;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2] || 0, image.shape[1] || 0];\n const resizeT = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n const normT = tf.div(resizeT, constants.tf255);\n const transposeT = tf.transpose(normT, [0, 3, 1, 2]);\n\n let objectT;\n if (config.object.enabled) objectT = model.execute(transposeT);\n lastTime = now();\n\n const obj = await process(objectT as Tensor[], outputSize as [number, number], config);\n last = obj;\n tf.dispose([resizeT, normT, transposeT, ...objectT]);\n resolve(obj);\n });\n}\n", "/**\n * PoseNet body detection model implementation constants\n * See `posenet.ts` for entry point\n */\n\nimport type { Point, BodyResult, BodyAnnotation, BodyLandmark } from '../result';\n\nexport const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n\nexport function eitherPointDoesntMeetConfidence(a: number, b: number, minConfidence: number) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence: number) {\n return connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): BodyResult[] {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i): BodyResult => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score: score as number,\n part: part as BodyLandmark,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)] as Point,\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight] as Point,\n })),\n annotations: {} as Record,\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: unknown[]; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint: number, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + count),\n };\n}\n\nexport function getImageCoords(part, outputStride: number, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a: { x: number, y: number }, b: { x: number, y: number }) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "/**\n * PoseNet body detection model implementation\n *\n * Based on: [**PoseNet**](https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport type { BodyResult, BodyLandmark, Box } from '../result';\nimport type { Tensor, GraphModel } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport * as utils from './posenetutils';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId: number, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: utils.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = utils.poseChain.map(([parentJoinName, childJoinName]) => ([utils.partIds[parentJoinName], utils.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: utils.partNames[root.part.id] as BodyLandmark,\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score: number, heatmapY: number, heatmapX: number, scores) {\n const [height, width]: [number, number] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: { keypoints, box: Box, score: number }[] = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n /** posenet is mostly obsolete\n * caching is not implemented\n */\n if (!model?.['executor']) return [];\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = tf.sub(tf.div(tf.cast(resized, 'float32'), 127.5), 1.0);\n const results: Tensor[] = model.execute(normalized, poseNetOutputs) as Tensor[];\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = tf.sigmoid(results3d[1]); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor: Tensor) => tensor.buffer()));\n for (const t of res) tf.dispose(t);\n\n const decoded = decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = utils.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.body.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "/**\n * Image segmentation for body detection model\n *\n * Based on:\n * - [**MediaPipe Meet**](https://drive.google.com/file/d/1lnP1bRi9CSqQQXUHa13159vLELYDgDu0/preview)\n * - [**MediaPipe Selfie**](https://drive.google.com/file/d/1dCfozqknMa068vVsO2j_1FgZkW_e3VWv/preview)\n */\n\nimport { log } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { loadModel } from '../tfjs/load';\nimport * as image from '../image/image';\nimport { constants } from '../tfjs/constants';\nimport type { GraphModel, Tensor } from '../tfjs/types';\nimport type { Config } from '../config';\nimport { env } from '../util/env';\nimport type { Input, AnyCanvas } from '../exports';\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model || env.initial) model = await loadModel(config.segmentation.modelPath);\n else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config)\n: Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n if (busy) return { data: [], canvas: null, alpha: null };\n busy = true;\n if (!model) await load(config);\n const inputImage = await image.process(input, config);\n const width = inputImage.tensor?.shape[2] || 0;\n const height = inputImage.tensor?.shape[1] || 0;\n if (!inputImage.tensor) return { data: [], canvas: null, alpha: null };\n const t: Record = {};\n\n t.resize = tf.image.resizeBilinear(inputImage.tensor, [model.inputs[0].shape ? model.inputs[0].shape[1] : 0, model.inputs[0].shape ? model.inputs[0].shape[2] : 0], false);\n tf.dispose(inputImage.tensor);\n t.norm = tf.div(t.resize, constants.tf255);\n t.res = model.execute(t.norm) as Tensor;\n\n t.squeeze = tf.squeeze(t.res, 0); // meet.shape:[1,256,256,1], selfie.shape:[1,144,256,2]\n if (t.squeeze.shape[2] === 2) {\n t.softmax = tf.softmax(t.squeeze); // model meet has two channels for fg and bg\n [t.bg, t.fg] = tf.unstack(t.softmax, 2);\n t.expand = tf.expandDims(t.fg, 2);\n t.pad = tf.expandDims(t.expand, 0);\n t.crop = tf.image.cropAndResize(t.pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n t.data = tf.squeeze(t.crop, 0);\n } else {\n t.data = tf.image.resizeBilinear(t.squeeze, [height, width]); // model selfie has a single channel that we can use directly\n }\n const data = Array.from(await t.data.data());\n\n if (env.node && !env.Canvas && (typeof ImageData === 'undefined')) {\n if (config.debug) log('canvas support missing');\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n return { data, canvas: null, alpha: null }; // running in nodejs so return alpha array as-is\n }\n\n const alphaCanvas = image.canvas(width, height);\n if (tf.browser) await tf.browser.toPixels(t.data, alphaCanvas);\n const alphaCtx = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (config.segmentation.blur && config.segmentation.blur > 0) alphaCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n const alphaData = alphaCtx.getImageData(0, 0, width, height);\n\n const compositeCanvas = image.canvas(width, height);\n const compositeCtx = compositeCanvas.getContext('2d') as CanvasRenderingContext2D;\n if (inputImage.canvas) compositeCtx.drawImage(inputImage.canvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'darken'; // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n if (config.segmentation.blur && config.segmentation.blur > 0) compositeCtx.filter = `blur(${config.segmentation.blur}px)`; // use css filter for bluring, can be done with gaussian blur manually instead\n compositeCtx.drawImage(alphaCanvas, 0, 0);\n compositeCtx.globalCompositeOperation = 'source-over'; // reset composite operation\n compositeCtx.filter = 'none'; // reset css filter\n const compositeData = compositeCtx.getImageData(0, 0, width, height);\n for (let i = 0; i < width * height; i++) compositeData.data[4 * i + 3] = alphaData.data[4 * i + 0]; // copy original alpha value to new composite canvas\n compositeCtx.putImageData(compositeData, 0, 0);\n\n let mergedCanvas: AnyCanvas | null = null;\n if (background && compositeCanvas) { // draw background with segmentation as overlay if background is present\n mergedCanvas = image.canvas(width, height);\n const bgImage = await image.process(background, config);\n tf.dispose(bgImage.tensor);\n const ctxMerge = mergedCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxMerge.drawImage(bgImage.canvas as HTMLCanvasElement, 0, 0, mergedCanvas.width, mergedCanvas.height);\n ctxMerge.drawImage(compositeCanvas, 0, 0);\n }\n\n Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));\n busy = false;\n // return { data, canvas: mergedCanvas || compositeCanvas, alpha: alphaCanvas };\n return { data, canvas: compositeCanvas, alpha: alphaCanvas };\n}\n", "import { log, join } from '../util/util';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport type { GraphModel } from './types';\nimport type { Config } from '../config';\nimport * as modelsDefs from '../../models/models.json';\nimport { validateModel } from '../models';\n\nconst options = {\n cacheModels: true,\n cacheSupported: true,\n verbose: true,\n debug: false,\n modelBasePath: '',\n};\n\nexport interface ModelInfo {\n name: string,\n inCache: boolean,\n sizeDesired: number,\n sizeFromManifest: number,\n sizeLoadedWeights: number,\n}\n\nexport const modelStats: Record = {};\n\nasync function httpHandler(url: string, init?: RequestInit): Promise {\n if (options.debug) log('load model fetch:', url, init);\n return fetch(url, init);\n}\n\nexport function setModelLoadOptions(config: Config) {\n options.cacheModels = config.cacheModels;\n options.verbose = config.debug;\n options.modelBasePath = config.modelBasePath;\n}\n\nexport async function loadModel(modelPath: string | undefined): Promise {\n let modelUrl = join(options.modelBasePath, modelPath || '');\n if (!modelUrl.toLowerCase().endsWith('.json')) modelUrl += '.json';\n const modelPathSegments = modelUrl.includes('/') ? modelUrl.split('/') : modelUrl.split('\\\\');\n const shortModelName = modelPathSegments[modelPathSegments.length - 1].replace('.json', '');\n const cachedModelName = 'indexeddb://' + shortModelName; // generate short model name for cache\n modelStats[shortModelName] = {\n name: shortModelName,\n sizeFromManifest: 0,\n sizeLoadedWeights: 0,\n sizeDesired: modelsDefs[shortModelName],\n inCache: false,\n };\n options.cacheSupported = (typeof window !== 'undefined') && (typeof window.localStorage !== 'undefined') && (typeof window.indexedDB !== 'undefined'); // check if running in browser and if indexedb is available\n let cachedModels = {};\n try {\n cachedModels = (options.cacheSupported && options.cacheModels) ? await tf.io.listModels() : {}; // list all models already in cache // this fails for webview although localStorage is defined\n } catch {\n options.cacheSupported = false;\n }\n modelStats[shortModelName].inCache = (options.cacheSupported && options.cacheModels) && Object.keys(cachedModels).includes(cachedModelName); // is model found in cache\n const tfLoadOptions = typeof fetch === 'undefined' ? {} : { fetchFunc: (url: string, init?: RequestInit) => httpHandler(url, init) };\n const model: GraphModel = new tf.GraphModel(modelStats[shortModelName].inCache ? cachedModelName : modelUrl, tfLoadOptions) as unknown as GraphModel; // create model prototype and decide if load from cache or from original modelurl\n let loaded = false;\n try {\n // @ts-ignore private function\n model.findIOHandler(); // decide how to actually load a model\n if (options.debug) log('model load handler:', model['handler']);\n // @ts-ignore private property\n const artifacts = await model.handler.load(); // load manifest\n modelStats[shortModelName].sizeFromManifest = artifacts?.weightData?.byteLength || 0;\n model.loadSync(artifacts); // load weights\n // @ts-ignore private property\n modelStats[shortModelName].sizeLoadedWeights = model.artifacts?.weightData?.byteLength || 0;\n if (options.verbose) log('load model:', model['modelUrl'], { bytes: modelStats[shortModelName].sizeLoadedWeights }, options);\n loaded = true;\n } catch (err) {\n log('error loading model:', modelUrl, err);\n }\n if (loaded && options.cacheModels && options.cacheSupported && !modelStats[shortModelName].inCache) { // save model to cache\n try {\n const saveResult = await model.save(cachedModelName);\n log('model saved:', cachedModelName, saveResult);\n } catch (err) {\n log('error saving model:', modelUrl, err);\n }\n }\n validateModel(null, model, `${modelPath || ''}`);\n return model;\n}\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { mergeDeep, now } from '../util/util';\nimport { env } from '../util/env';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport { face } from './face';\nimport { body } from './body';\nimport { hand } from './hand';\nimport { object } from './object';\nimport { gesture } from './gesture';\nimport type { Result, PersonResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet drawTime = 0;\n\nexport { options } from './options';\nexport { face } from './face';\nexport { body } from './body';\nexport { hand } from './hand';\nexport { object } from './object';\nexport { gesture } from './gesture';\n\n/** draw combined person results instead of individual detection result objects */\nexport function person(inCanvas: AnyCanvas, result: PersonResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\n/** draw processed canvas */\nexport function canvas(input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) {\n if (!input || !output) return;\n const ctx = getCanvasContext(output);\n if (!ctx) return;\n ctx.drawImage(input, 0, 0);\n}\n\n/** meta-function that performs draw for: canvas, face, body, hand */\nexport async function all(inCanvas: AnyCanvas, result: Result, drawOptions?: Partial) {\n if (!result?.performance || !inCanvas) return null;\n const timeStamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n const promise = Promise.all([\n face(inCanvas, result.face, localOptions),\n body(inCanvas, result.body, localOptions),\n hand(inCanvas, result.hand, localOptions),\n object(inCanvas, result.object, localOptions),\n gesture(inCanvas, result.gesture, localOptions), // gestures do not have buffering\n // person(inCanvas, result.persons, localOptions); // already included above\n ]);\n drawTime = env.perfadd ? drawTime + Math.round(now() - timeStamp) : Math.round(now() - timeStamp);\n result.performance.draw = drawTime;\n return promise;\n}\n", "import { log } from '../util/util';\nimport type { AnyCanvas } from '../exports';\nimport type { Point } from '../result';\nimport type { DrawOptions } from './options';\n\nexport const getCanvasContext = (input: AnyCanvas) => {\n if (!input) log('draw error: invalid canvas');\n else if (!input.getContext) log('draw error: canvas context not defined');\n else {\n const ctx = input.getContext('2d');\n if (!ctx) log('draw error: cannot get canvas context');\n else return ctx;\n }\n return null;\n};\n\nexport const rad2deg = (theta: number) => Math.round((theta * 180) / Math.PI);\n\nexport const colorDepth = (z: number | undefined, opt: DrawOptions): string => { // performance optimization needed\n if (!opt.useDepth || typeof z === 'undefined') return opt.color;\n const rgb = Uint8ClampedArray.from([127 + (2 * z), 127 - (2 * z), 255]);\n return `rgba(${rgb[0]}, ${rgb[1]}, ${rgb[2]}, ${opt.alpha})`;\n};\n\nexport function point(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, z: number | undefined, localOptions: DrawOptions) {\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nexport function rect(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, x: number, y: number, width: number, height: number, localOptions: DrawOptions) {\n ctx.beginPath();\n ctx.lineWidth = localOptions.lineWidth;\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nexport function lines(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n ctx.strokeStyle = colorDepth(pt[2] || 0, localOptions);\n ctx.lineTo(Math.trunc(pt[0]), Math.trunc(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function curves(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, points: Point[], localOptions: DrawOptions) {\n if (points.length < 2) return;\n ctx.lineWidth = localOptions.lineWidth;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport function arrow(ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, from: Point, to: Point, radius = 5) {\n let angle;\n let x;\n let y;\n ctx.beginPath();\n ctx.moveTo(from[0], from[1]);\n ctx.lineTo(to[0], to[1]);\n angle = Math.atan2(to[1] - from[1], to[0] - from[0]);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.moveTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n angle += (1.0 / 3.0) * (2 * Math.PI);\n x = radius * Math.cos(angle) + to[0];\n y = radius * Math.sin(angle) + to[1];\n ctx.lineTo(x, y);\n ctx.closePath();\n ctx.stroke();\n ctx.fill();\n}\n", "/** Draw Options\n * - Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n */\nexport interface DrawOptions {\n /** draw line color */\n color: string,\n /** alpha value used for lines */\n alpha: number,\n /** label color */\n labelColor: string,\n /** label shadow color */\n shadowColor: string,\n /** label font */\n font: string,\n /** line spacing between labels */\n lineHeight: number,\n /** line width for drawn lines */\n lineWidth: number,\n /** size of drawn points */\n pointSize: number,\n /** draw rounded boxes by n pixels */\n roundRect: number,\n /** should points be drawn? */\n drawPoints: boolean,\n /** should labels be drawn? */\n drawLabels: boolean,\n /** should face attention keypoints be highlighted */\n drawAttention: boolean;\n /** should detected gestures be drawn? */\n drawGestures: boolean,\n /** should draw boxes around detection results? */\n drawBoxes: boolean,\n /** should draw polygons from detection points? */\n drawPolygons: boolean,\n /** should draw gaze arrows? */\n drawGaze: boolean,\n /** should fill polygons? */\n fillPolygons: boolean,\n /** use z-coordinate when available */\n useDepth: boolean,\n /** should lines be curved? */\n useCurves: boolean,\n}\n\n/** currently set draw options {@link DrawOptions} */\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)' as string, // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)' as string, // 'lightblue' with dark alpha channel\n shadowColor: 'black' as string,\n alpha: 0.5 as number,\n font: 'small-caps 16px \"Segoe UI\"' as string,\n lineHeight: 18 as number,\n lineWidth: 4 as number,\n pointSize: 2 as number,\n roundRect: 8 as number,\n drawPoints: false as boolean,\n drawLabels: true as boolean,\n drawBoxes: true as boolean,\n drawAttention: true as boolean,\n drawGestures: true as boolean,\n drawPolygons: true as boolean,\n drawGaze: true as boolean,\n fillPolygons: false as boolean,\n useDepth: true as boolean,\n useCurves: false as boolean,\n};\n", "import { TRI468 as triangulation } from '../face/facemeshcoords';\nimport { mergeDeep } from '../util/util';\nimport { getCanvasContext, rad2deg, rect, point, lines, arrow } from './primitives';\nimport { options } from './options';\nimport * as facemeshConstants from '../face/constants';\nimport type { FaceResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\nlet opt: DrawOptions;\n\nfunction drawLabels(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawLabels) {\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.real) labels.push(`real: ${Math.trunc(100 * f.real)}%`);\n if (f.live) labels.push(`live: ${Math.trunc(100 * f.live)}%`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation?.angle && f.rotation?.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = opt.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * opt.lineHeight + f.box[1];\n if (opt.shadowColor && opt.shadowColor !== '') {\n ctx.fillStyle = opt.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = opt.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n }\n}\n\nfunction drawIrisElipse(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n // iris: array[center, left, top, right, bottom]\n if (f.annotations?.leftEyeIris && f.annotations?.leftEyeIris[0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.leftEyeIris[3][0] - f.annotations.leftEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.leftEyeIris[4][1] - f.annotations.leftEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n if (f.annotations?.rightEyeIris && f.annotations?.rightEyeIris[0]) {\n ctx.strokeStyle = opt.useDepth ? 'rgba(255, 200, 255, 0.3)' : opt.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations.rightEyeIris[3][0] - f.annotations.rightEyeIris[1][0]) / 2;\n const sizeY = Math.abs(f.annotations.rightEyeIris[4][1] - f.annotations.rightEyeIris[2][1]) / 2;\n ctx.ellipse(f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (opt.fillPolygons) {\n ctx.fillStyle = opt.useDepth ? 'rgba(255, 255, 200, 0.3)' : opt.color;\n ctx.fill();\n }\n }\n}\n\nfunction drawGazeSpheres(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.angle && typeof Path2D !== 'undefined') {\n ctx.strokeStyle = 'pink';\n const valX = (f.box[0] + f.box[2] / 2) - (f.box[3] * rad2deg(f.rotation.angle.yaw) / 90);\n const valY = (f.box[1] + f.box[3] / 2) + (f.box[2] * rad2deg(f.rotation.angle.pitch) / 90);\n const pathV = new Path2D(`\n M ${f.box[0] + f.box[2] / 2} ${f.box[1]}\n C\n ${valX} ${f.box[1]},\n ${valX} ${f.box[1] + f.box[3]},\n ${f.box[0] + f.box[2] / 2} ${f.box[1] + f.box[3]}\n `);\n const pathH = new Path2D(`\n M ${f.box[0]} ${f.box[1] + f.box[3] / 2}\n C \n ${f.box[0]} ${valY},\n ${f.box[0] + f.box[2]} ${valY},\n ${f.box[0] + f.box[2]} ${f.box[1] + f.box[3] / 2}\n `);\n ctx.stroke(pathH);\n ctx.stroke(pathV);\n }\n}\n\nfunction drawGazeArrows(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawGaze && f.rotation?.gaze.strength && f.rotation.gaze.bearing && f.annotations.leftEyeIris && f.annotations.rightEyeIris && f.annotations.leftEyeIris[0] && f.annotations.rightEyeIris[0]) {\n ctx.strokeStyle = 'pink';\n ctx.fillStyle = 'pink';\n const leftGaze = [\n f.annotations.leftEyeIris[0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations.leftEyeIris[0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations.leftEyeIris[0][0], f.annotations.leftEyeIris[0][1]], [leftGaze[0], leftGaze[1]], 4);\n const rightGaze = [\n f.annotations.rightEyeIris[0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations.rightEyeIris[0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n arrow(ctx, [f.annotations.rightEyeIris[0][0], f.annotations.rightEyeIris[0][1]], [rightGaze[0], rightGaze[1]], 4);\n }\n}\n\nfunction drawFacePolygons(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPolygons && f.mesh.length >= 468) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [triangulation[i * 3 + 0], triangulation[i * 3 + 1], triangulation[i * 3 + 2]].map((index) => f.mesh[index]);\n lines(ctx, points, opt);\n }\n drawIrisElipse(f, ctx);\n }\n /*\n if (opt.drawPolygons && f.contours.length > 1) {\n ctx.lineWidth = 5;\n lines(ctx, f.contours, opt);\n }\n ctx.lineWidth = 1;\n */\n}\n\nfunction drawFacePoints(f: FaceResult, ctx: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D) {\n if (opt.drawPoints && f.mesh.length >= 468) {\n for (let i = 0; i < f.mesh.length; i++) {\n point(ctx, f.mesh[i][0], f.mesh[i][1], f.mesh[i][2], opt);\n if (opt.drawAttention) {\n if (facemeshConstants.LANDMARKS_REFINEMENT_LIPS_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) + 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n if (facemeshConstants.LANDMARKS_REFINEMENT_RIGHT_EYE_CONFIG.includes(i)) point(ctx, f.mesh[i][0], f.mesh[i][1], (f.mesh[i][2] as number) - 127, opt);\n }\n }\n }\n}\n\nfunction drawFaceBoxes(f: FaceResult, ctx) {\n if (opt.drawBoxes) {\n rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], opt);\n }\n}\n\n/** draw detected faces */\nexport function face(inCanvas: AnyCanvas, result: FaceResult[], drawOptions?: Partial) {\n opt = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = opt.font;\n ctx.strokeStyle = opt.color;\n ctx.fillStyle = opt.color;\n for (const f of result) {\n drawFaceBoxes(f, ctx);\n drawLabels(f, ctx);\n if (f.mesh && f.mesh.length > 0) {\n drawFacePoints(f, ctx);\n drawFacePolygons(f, ctx);\n drawGazeSpheres(f, ctx);\n drawGazeArrows(f, ctx);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, curves, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { BodyResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected bodies */\nexport function body(inCanvas: AnyCanvas, result: BodyResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box.length === 4) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints && result[i].keypoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n if (!result[i].keypoints[pt].score || (result[i].keypoints[pt].score === 0)) continue;\n ctx.fillStyle = colorDepth(result[i].keypoints[pt].position[2], localOptions);\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels && result[i].keypoints) {\n ctx.font = localOptions.font;\n for (const pt of result[i].keypoints) {\n if (!pt.score || (pt.score === 0)) continue;\n ctx.fillStyle = colorDepth(pt.position[2], localOptions);\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints && result[i].annotations) {\n for (const part of Object.values(result[i].annotations)) {\n for (const connected of part) curves(ctx, connected, localOptions);\n }\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect, point, colorDepth } from './primitives';\nimport { options } from './options';\nimport type { HandResult } from '../result';\nimport type { AnyCanvas, DrawOptions, Point } from '../exports';\n\n/** draw detected hands */\nexport function hand(inCanvas: AnyCanvas, result: HandResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`hand:${Math.trunc(100 * h.score)}%`, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]); // can use h.label\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = colorDepth(pt[2], localOptions);\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels && h.annotations) {\n const addHandLabel = (part: Point[], title: string) => {\n if (!part || part.length === 0 || !part[0]) return;\n const z = part[part.length - 1][2] || -256;\n ctx.fillStyle = colorDepth(z, localOptions);\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations.index, 'index');\n addHandLabel(h.annotations.middle, 'middle');\n addHandLabel(h.annotations.ring, 'ring');\n addHandLabel(h.annotations.pinky, 'pinky');\n addHandLabel(h.annotations.thumb, 'thumb');\n addHandLabel(h.annotations.palm, 'palm');\n }\n if (localOptions.drawPolygons && h.annotations) {\n const addHandLine = (part: Point[]) => {\n if (!part || part.length === 0 || !part[0]) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n const z = part[i][2] || 0;\n ctx.strokeStyle = colorDepth(i * z, localOptions);\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations.index);\n addHandLine(h.annotations.middle);\n addHandLine(h.annotations.ring);\n addHandLine(h.annotations.pinky);\n addHandLine(h.annotations.thumb);\n // addPart(h.annotations.palm);\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext, rect } from './primitives';\nimport { options } from './options';\nimport type { ObjectResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected objects */\nexport function object(inCanvas: AnyCanvas, result: ObjectResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n", "import { mergeDeep } from '../util/util';\nimport { getCanvasContext } from './primitives';\nimport { options } from './options';\nimport type { GestureResult } from '../result';\nimport type { AnyCanvas, DrawOptions } from '../exports';\n\n/** draw detected gestures */\nexport function gesture(inCanvas: AnyCanvas, result: GestureResult[], drawOptions?: Partial) {\n const localOptions: DrawOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (localOptions.drawGestures) {\n const ctx = getCanvasContext(inCanvas);\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n }\n}\n", "import type { Tensor } from '../tfjs/types';\nimport type { FaceResult } from '../result';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { meshAnnotations } from './facemeshcoords';\n\nconst expandFact = 0.1;\nconst alpha = 0.5;\n\n// point inclusion in polygon based on https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html\nfunction insidePoly(x: number, y: number, polygon: { x: number, y: number }[]): boolean {\n let inside = false;\n let j = polygon.length - 1;\n for (let i = 0; i < polygon.length; j = i++) {\n if (((polygon[i].y > y) !== (polygon[j].y > y)) && (x < (polygon[j].x - polygon[i].x) * (y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x)) inside = !inside;\n }\n return inside;\n}\n\nexport async function mask(face: FaceResult): Promise {\n if (!face.tensor) return face.tensor;\n if (!face.mesh || face.mesh.length < 100) return face.tensor;\n const width = face.tensor.shape[2] || 0;\n const height = face.tensor.shape[1] || 0;\n const buffer = await face.tensor.buffer();\n let silhouette: { x: number, y: number }[] = [];\n for (const pt of meshAnnotations.silhouette) silhouette.push({ x: (face.mesh[pt][0] - face.box[0]) / face.box[2], y: (face.mesh[pt][1] - face.box[1]) / face.box[3] }); // add all silhouette points scaled to local box\n if (expandFact && expandFact > 0) silhouette = silhouette.map((pt) => ({ x: pt.x > 0.5 ? pt.x + expandFact : pt.x - expandFact, y: pt.y > 0.5 ? pt.y + expandFact : pt.y - expandFact })); // expand silhouette\n for (let x = 0; x < width; x++) {\n for (let y = 0; y < height; y++) {\n const inside = insidePoly(x / width, y / width, silhouette);\n if (!inside) {\n buffer.set(alpha * buffer.get(0, y, x, 0), 0, y, x, 0);\n buffer.set(alpha * buffer.get(0, y, x, 1), 0, y, x, 1);\n buffer.set(alpha * buffer.get(0, y, x, 2), 0, y, x, 2);\n }\n }\n }\n const output = buffer.toTensor();\n tf.dispose(buffer);\n return output;\n}\n", "import type { Point, FaceResult } from '../result';\n\ntype Vector = [number, number, number];\n\nconst calculateGaze = (face: FaceResult): { bearing: number, strength: number } => {\n const radians = (pt1: Point, pt2: Point) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations.rightEyeIris || !face.annotations.leftEyeIris) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = (face.mesh[33][2] || 0) > (face.mesh[263][2] || 0); // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n const eyeDiff: Point = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] * eyeDiff[0]) + (eyeDiff[1] * eyeDiff[1])); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n return { bearing, strength };\n};\n\nexport const calculateFaceAngle = (face: FaceResult, imageSize: [number, number]): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v: Vector): Vector => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a: Vector, b: Vector): Vector => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a: Vector, b: Vector): Vector => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r: number[]): { pitch: number, yaw: number, roll: number } => {\n const [r00, _r01, _r02, r10, r11, r12, r20, r21, r22] = r; // eslint-disable-line @typescript-eslint/no-unused-vars\n let thetaX: number;\n let thetaY: number;\n let thetaZ: number;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n if (Number.isNaN(thetaX)) thetaX = 0;\n if (Number.isNaN(thetaY)) thetaY = 0;\n if (Number.isNaN(thetaZ)) thetaZ = 0;\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n\n /*\n const meshToEulerAngle = (mesh) => { // simple Euler angle calculation based existing 3D mesh\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n return { // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face // pitch is face move up/down\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye // yaw is face turn left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye // roll is face lean left/right\n };\n };\n */\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts: Point[] = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [pt[0] * imageSize[0] / size, pt[1] * imageSize[1] / size, pt[2]] as Point); // make the xyz coordinates proportional, independent of the image/box size\n\n const yAxis = normalize(subVectors(pts[1] as Vector, pts[0] as Vector));\n let xAxis = normalize(subVectors(pts[3] as Vector, pts[2] as Vector));\n const zAxis = normalize(crossVectors(xAxis, yAxis));\n // adjust xAxis to make sure that all axes are perpendicular to each other\n xAxis = crossVectors(yAxis, zAxis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n xAxis[0], xAxis[1], xAxis[2],\n yAxis[0], yAxis[1], yAxis[2],\n zAxis[0], zAxis[1], zAxis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n", "/**\n * Face algorithm implementation\n * Uses FaceMesh, Emotion and FaceRes models to create a unified pipeline\n */\n\nimport { log, now } from '../util/util';\nimport { env } from '../util/env';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as facemesh from './facemesh';\nimport * as emotion from '../gear/emotion';\nimport * as faceres from './faceres';\nimport * as mask from './mask';\nimport * as antispoof from './antispoof';\nimport * as liveness from './liveness';\nimport * as gear from '../gear/gear';\nimport * as ssrnetAge from '../gear/ssrnet-age';\nimport * as ssrnetGender from '../gear/ssrnet-gender';\nimport * as mobilefacenet from './mobilefacenet';\nimport * as insightface from './insightface';\nimport type { FaceResult, Emotion, Gender, Race } from '../result';\nimport type { Tensor } from '../tfjs/types';\nimport type { Human } from '../human';\nimport { calculateFaceAngle } from './angles';\n\ninterface DescRes { age: number, gender: Gender, genderScore: number, descriptor: number[], race?: { score: number, race: Race }[] }\n\nexport const detectFace = async (instance: Human /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n let timeStamp: number = now();\n let ageRes: { age: number } | Promise<{ age: number }> | null;\n let gearRes: gear.GearType | Promise | null;\n let genderRes: { gender: string, genderScore: number } | Promise<{ gender: string, genderScore: number }> | null;\n let emotionRes: { score: number, emotion: Emotion }[] | Promise<{ score: number, emotion: Emotion }[]>;\n let mobilefacenetRes: number[] | Promise | null;\n let insightfaceRes: number[] | Promise | null;\n let antispoofRes: number | Promise | null;\n let livenessRes: number | Promise | null;\n let descRes: DescRes | Promise | null;\n\n const faceRes: FaceResult[] = [];\n instance.state = 'run:face';\n\n const faces = await facemesh.predict(input, instance.config);\n instance.performance.face = env.perfadd ? (instance.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n instance.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefied\n if (!faces[i].tensor || faces[i].tensor.isDisposedInternal) {\n log('Face object is disposed:', faces[i].tensor);\n continue;\n }\n\n // optional face mask\n if (instance.config.face.detector?.mask) {\n const masked = await mask.mask(faces[i]);\n tf.dispose(faces[i].tensor);\n if (masked) faces[i].tensor = masked;\n }\n\n // calculate face angles\n const rotation = faces[i].mesh && (faces[i].mesh.length > 200) ? calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]) : null;\n\n // run emotion, inherits face from blazeface\n instance.analyze('Start Emotion:');\n if (instance.config.async) {\n emotionRes = instance.config.face.emotion?.enabled ? emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n } else {\n instance.state = 'run:emotion';\n timeStamp = now();\n emotionRes = instance.config.face.emotion?.enabled ? await emotion.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : [];\n instance.performance.emotion = env.perfadd ? (instance.performance.emotion || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Emotion:');\n\n // run antispoof, inherits face from blazeface\n instance.analyze('Start AntiSpoof:');\n if (instance.config.async) {\n antispoofRes = instance.config.face.antispoof?.enabled ? antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:antispoof';\n timeStamp = now();\n antispoofRes = instance.config.face.antispoof?.enabled ? await antispoof.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.antispoof = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End AntiSpoof:');\n\n // run liveness, inherits face from blazeface\n instance.analyze('Start Liveness:');\n if (instance.config.async) {\n livenessRes = instance.config.face.liveness?.enabled ? liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n } else {\n instance.state = 'run:liveness';\n timeStamp = now();\n livenessRes = instance.config.face.liveness?.enabled ? await liveness.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : 0;\n instance.performance.liveness = env.perfadd ? (instance.performance.antispoof || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Liveness:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start GEAR:');\n if (instance.config.async) {\n gearRes = instance.config.face.gear?.enabled ? gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:gear';\n timeStamp = now();\n gearRes = instance.config.face.gear?.enabled ? await gear.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.gear = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End GEAR:');\n\n // run gear, inherits face from blazeface\n instance.analyze('Start SSRNet:');\n if (instance.config.async) {\n ageRes = instance.config.face['ssrnet']?.enabled ? ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:ssrnet';\n timeStamp = now();\n ageRes = instance.config.face['ssrnet']?.enabled ? await ssrnetAge.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n genderRes = instance.config.face['ssrnet']?.enabled ? await ssrnetGender.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.ssrnet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End SSRNet:');\n\n // run mobilefacenet alternative, inherits face from blazeface\n instance.analyze('Start MobileFaceNet:');\n if (instance.config.async) {\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n mobilefacenetRes = instance.config.face['mobilefacenet']?.enabled ? await mobilefacenet.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End MobileFaceNet:');\n\n // run insightface alternative, inherits face from blazeface\n instance.analyze('Start InsightFace:');\n if (instance.config.async) {\n insightfaceRes = instance.config.face['insightface']?.enabled ? insightface.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n } else {\n instance.state = 'run:mobilefacenet';\n timeStamp = now();\n insightfaceRes = instance.config.face['insightface']?.enabled ? await insightface.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length) : null;\n instance.performance.mobilefacenet = Math.trunc(now() - timeStamp);\n }\n instance.analyze('End InsightFace:');\n\n // run faceres, inherits face from blazeface\n instance.analyze('Start Description:');\n if (instance.config.async) {\n descRes = faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length);\n } else {\n instance.state = 'run:description';\n timeStamp = now();\n descRes = await faceres.predict(faces[i].tensor || tf.tensor([]), instance.config, i, faces.length);\n instance.performance.description = env.perfadd ? (instance.performance.description || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n instance.analyze('End Description:');\n\n // if async wait for results\n if (instance.config.async) {\n [ageRes, genderRes, emotionRes, mobilefacenetRes, insightfaceRes, descRes, gearRes, antispoofRes, livenessRes] = await Promise.all([ageRes, genderRes, emotionRes, mobilefacenetRes, insightfaceRes, descRes, gearRes, antispoofRes, livenessRes]);\n }\n instance.analyze('Finish Face:');\n\n if (instance.config.face['ssrnet']?.enabled && ageRes && genderRes) { // override age/gender if ssrnet model is used\n descRes = {\n ...(descRes as DescRes),\n age: (ageRes as { age: number}).age,\n gender: (genderRes as { gender: Gender, genderScore: number }).gender,\n genderScore: (genderRes as { gender: Gender, genderScore: number }).genderScore,\n };\n }\n if (instance.config.face.gear?.enabled && gearRes) { // override age/gender/race if gear model is used\n descRes = {\n ...(descRes as DescRes),\n age: (gearRes as gear.GearType).age,\n gender: (gearRes as gear.GearType).gender,\n genderScore: (gearRes as gear.GearType).genderScore,\n race: (gearRes as gear.GearType).race,\n };\n }\n if (instance.config.face['mobilefacenet']?.enabled && mobilefacenetRes) { // override descriptor if mobilefacenet model is used\n (descRes as DescRes).descriptor = mobilefacenetRes as number[];\n }\n\n if (instance.config.face['insightface']?.enabled && insightfaceRes) { // override descriptor if insightface model is used\n (descRes as DescRes).descriptor = insightfaceRes as number[];\n }\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!instance.config.face.iris?.enabled) {\n // if (faces[i]?.annotations?.leftEyeIris) delete faces[i].annotations.leftEyeIris;\n // if (faces[i]?.annotations?.rightEyeIris) delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i]?.annotations?.leftEyeIris?.[0] && faces[i]?.annotations?.rightEyeIris?.[0]\n && (faces[i].annotations.leftEyeIris.length > 0) && (faces[i].annotations.rightEyeIris.length > 0)\n && (faces[i].annotations.leftEyeIris[0] !== null) && (faces[i].annotations.rightEyeIris[0] !== null))\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0; // note: average human iris size is 11.7mm\n\n // optionally return tensor\n const tensor = instance.config.face.detector?.return ? tf.squeeze(faces[i].tensor) : null;\n // dispose original face tensor\n tf.dispose(faces[i].tensor);\n // delete temp face image\n if (faces[i].tensor) delete faces[i].tensor;\n // combine results\n const res: FaceResult = {\n ...faces[i],\n id: i,\n };\n if ((descRes as DescRes).age) res.age = (descRes as DescRes).age;\n if ((descRes as DescRes).gender) res.gender = (descRes as DescRes).gender;\n if ((descRes as DescRes).genderScore) res.genderScore = (descRes as DescRes).genderScore;\n if ((descRes as DescRes).descriptor) res.embedding = (descRes as DescRes).descriptor;\n if ((descRes as DescRes).race) res.race = (descRes as DescRes).race as { score: number, race: Race }[];\n if (emotionRes) res.emotion = emotionRes as { score: number, emotion: Emotion }[];\n if (antispoofRes) res.real = antispoofRes as number;\n if (livenessRes) res.live = livenessRes as number;\n if (irisSize && irisSize !== 0) res.iris = Math.trunc(500 / irisSize / 11.7) / 100;\n if (rotation) res.rotation = rotation;\n if (tensor) res.tensor = tensor;\n faceRes.push(res);\n instance.analyze('End Face');\n }\n instance.analyze('End FaceMesh:');\n if (instance.config.async) {\n if (instance.performance.face) delete instance.performance.face;\n if (instance.performance.age) delete instance.performance.age;\n if (instance.performance.gender) delete instance.performance.gender;\n if (instance.performance.emotion) delete instance.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection algorithm\n */\n\nimport type { GestureResult, BodyResult, FaceResult, HandResult, Point } from '../result';\nimport * as fingerPose from '../hand/fingerpose';\n\n/** face gesture type */\nexport type FaceGesture =\n `facing ${'left' | 'center' | 'right'}`\n | `blink ${'left' | 'right'} eye`\n | `mouth ${number}% open`\n | `head ${'up' | 'down'}`;\n\n/** iris gesture type */\nexport type IrisGesture =\n 'facing center'\n | `looking ${'left' | 'right' | 'up' | 'down'}`\n | 'looking center';\n\n/** body gesture type */\nexport type BodyGesture =\n `leaning ${'left' | 'right'}`\n | `raise ${'left' | 'right'} hand`\n | 'i give up';\n\n/** hand gesture type */\nexport type HandGesture =\n `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} forward`\n | `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} up`\n | 'victory'\n | 'thumbs up';\n\nexport const body = (res: BodyResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { body: number, gesture: BodyGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position[1] < nose.position[1]) && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position[1] < nose.position[1])) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder && Math.abs(leftShoulder.positionRaw[1] - rightShoulder.positionRaw[1]) > 0.1) {\n gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position[1] > rightShoulder.position[1]) ? 'left' : 'right'}` });\n }\n }\n return gestures;\n};\n\nexport const face = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { face: number, gesture: FaceGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 450) {\n const zDiff = (res[i].mesh[33][2] || 0) - (res[i].mesh[263][2] || 0);\n const xDiff = res[i].mesh[33][0] - res[i].mesh[263][0];\n if (Math.abs(zDiff / xDiff) <= 0.15) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${zDiff < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2] || 0;\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res: FaceResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { iris: number, gesture: IrisGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations?.leftEyeIris?.[0] || !res[i].annotations?.rightEyeIris?.[0]) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > rightIrisCenterX) { // check eye with bigger offset\n if (leftIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking right' });\n } else {\n if (rightIrisCenterX > 0.05) gestures.push({ iris: i, gesture: 'looking left' });\n }\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res: HandResult[]): GestureResult[] => {\n if (!res) return [];\n const gestures: { hand: number, gesture: HandGesture }[] = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: { name: string, position: Point }[] = [];\n if (res[i].annotations) {\n for (const [finger, pos] of Object.entries(res[i].annotations)) {\n if (finger !== 'palmBase' && Array.isArray(pos) && pos[0]) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => ((best.position[2] || 0) < (a.position[2] || 0) ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward` as HandGesture });\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${highest.name} up` as HandGesture });\n }\n if (res[i].keypoints) {\n const poses = fingerPose.match(res[i].keypoints);\n for (const pose of poses) gestures.push({ hand: i, gesture: pose.name as HandGesture });\n }\n }\n return gestures;\n};\n", "/**\n * Results interpolation for smoothening of video detection results inbetween detected frames\n */\n\nimport type { Result, FaceResult, BodyResult, HandResult, ObjectResult, PersonResult, Box, Point, BodyLandmark, BodyAnnotation } from '../result';\nimport type { Config } from '../config';\n\nimport * as moveNetCoords from '../body/movenetcoords';\nimport * as blazePoseCoords from '../body/blazeposecoords';\nimport * as efficientPoseCoords from '../body/efficientposecoords';\nimport { now } from './util';\nimport { env } from './env';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\nlet interpolateTime = 0;\n\nexport function calc(newResult: Result, config: Config): Result {\n const t0 = now();\n if (!newResult) return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0, error: null };\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed + 1) : 1;\n\n if (newResult.canvas) bufferedResult.canvas = newResult.canvas;\n if (newResult.error) bufferedResult.error = newResult.error;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body)) as BodyResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + newBoxCoord) / bufferedFactor) as Box;\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((newBoxCoord, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + newBoxCoord) / bufferedFactor) as Box;\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((newKpt, j) => ({\n score: newKpt.score,\n part: newKpt.part,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[0] || 0) + (newKpt.position[0] || 0)) / bufferedFactor : newKpt.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[1] || 0) + (newKpt.position[1] || 0)) / bufferedFactor : newKpt.position[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].position[2] || 0) + (newKpt.position[2] || 0)) / bufferedFactor : newKpt.position[2],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[0] || 0) + (newKpt.positionRaw[0] || 0)) / bufferedFactor : newKpt.positionRaw[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[1] || 0) + (newKpt.positionRaw[1] || 0)) / bufferedFactor : newKpt.positionRaw[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].positionRaw[2] || 0) + (newKpt.positionRaw[2] || 0)) / bufferedFactor : newKpt.positionRaw[2],\n ],\n distance: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[0] || 0) + (newKpt.distance?.[0] || 0)) / bufferedFactor : newKpt.distance?.[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[1] || 0) + (newKpt.distance?.[1] || 0)) / bufferedFactor : newKpt.distance?.[1],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * (bufferedResult.body[i].keypoints[j].distance?.[2] || 0) + (newKpt.distance?.[2] || 0)) / bufferedFactor : newKpt.distance?.[2],\n ],\n }))) as { score: number, part: BodyLandmark, position: [number, number, number?], positionRaw: [number, number, number?] }[];\n\n const annotations: Record = {} as Record; // recreate annotations\n let coords = { connected: {} };\n if (config.body.modelPath?.includes('efficientpose')) coords = efficientPoseCoords;\n else if (config.body.modelPath?.includes('blazepose')) coords = blazePoseCoords;\n else if (config.body.modelPath?.includes('movenet')) coords = moveNetCoords;\n for (const [name, indexes] of Object.entries(coords.connected as Record)) {\n const pt: Point[][] = [];\n for (let j = 0; j < indexes.length - 1; j++) {\n const pt0 = keypoints.find((kp) => kp.part === indexes[j]);\n const pt1 = keypoints.find((kp) => kp.part === indexes[j + 1]);\n // if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);\n if (pt0 && pt1) pt.push([pt0.position, pt1.position]);\n }\n annotations[name] = pt;\n }\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints, annotations }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand)); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (bufferedResult.hand[i].keypoints.length !== newResult.hand[i].keypoints.length) bufferedResult.hand[i].keypoints = newResult.hand[i].keypoints; // reset keypoints as previous frame did not have them\n const keypoints = newResult.hand[i].keypoints && newResult.hand[i].keypoints.length > 0 ? newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * (bufferedResult.hand[i].keypoints[j][k] || 1) + (coord || 0)) / bufferedFactor)) as Point)\n : [];\n let annotations = {};\n if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length) {\n bufferedResult.hand[i].annotations = newResult.hand[i].annotations; // reset annotations as previous frame did not have them\n annotations = bufferedResult.hand[i].annotations;\n } else if (newResult.hand[i].annotations) {\n for (const key of Object.keys(newResult.hand[i].annotations)) { // update annotations\n annotations[key] = newResult.hand[i]?.annotations?.[key]?.[0]\n ? newResult.hand[i].annotations[key]\n .map((val, j: number) => val\n .map((coord: number, k: number) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor))\n : null;\n }\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations: annotations as HandResult['annotations'] }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face)) as FaceResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n if (newResult.face[i].rotation) {\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.roll || 0) + (newResult.face[i].rotation?.angle.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.yaw || 0) + (newResult.face[i].rotation?.angle.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle.pitch || 0) + (newResult.face[i].rotation?.angle.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze.bearing || 0) + (newResult.face[i].rotation?.gaze.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze.strength || 0) + (newResult.face[i].rotation?.gaze.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n bufferedResult.face[i] = { ...newResult.face[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object)) as ObjectResult[]; // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as Box;\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as Box;\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons)) as PersonResult[];\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as Box;\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture;\n\n // append interpolation performance data\n const t1 = now();\n interpolateTime = env.perfadd ? interpolateTime + Math.round(t1 - t0) : Math.round(t1 - t0);\n if (newResult.performance) bufferedResult.performance = { ...newResult.performance, interpolate: interpolateTime };\n\n return bufferedResult;\n}\n", "/** Face descriptor type as number array */\nexport type Descriptor = number[]\nexport type MatchOptions = { order?: number, threshold?: number, multiplier?: number, min?: number, max?: number } | undefined;\n\n/** Calculates distance between two descriptors\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n */\nexport function distance(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25 }) {\n // general minkowski distance, euclidean distance is limited case where order is 2\n if (!descriptor1 || !descriptor1) return Number.MAX_SAFE_INTEGER;\n let sum = 0;\n for (let i = 0; i < descriptor1.length; i++) {\n const diff = (!options.order || options.order === 2) ? (descriptor1[i] - descriptor2[i]) : (Math.abs(descriptor1[i] - descriptor2[i]));\n sum += (!options.order || options.order === 2) ? (diff * diff) : (diff ** options.order);\n }\n return (options.multiplier || 20) * sum;\n}\n\n// invert distance to similarity, normalize to given range and clamp\nconst normalizeDistance = (dist, order, min, max) => {\n if (dist === 0) return 1; // short circuit for identical inputs\n const root = order === 2 ? Math.sqrt(dist) : dist ** (1 / order); // take root of distance\n const norm = (1 - (root / 100) - min) / (max - min); // normalize to range\n const clamp = Math.max(Math.min(norm, 1), 0); // clamp to 0..1\n return clamp;\n};\n\n/** Calculates normalized similarity between two face descriptors based on their `distance`\n * @param options - calculation options\n * - order - algorithm to use\n * Euclidean distance if `order` is 2 (default), Minkowski distance algorithm of nth order if `order` is higher than 2\n * - multiplier - by how much to enhance difference analysis in range of 1..100\n * default is 20 which normalizes results to similarity above 0.5 can be considered a match\n * - min - normalize similarity result to a given range\n * - max - normalzie similarity resutl to a given range\n * default is 0.2...0.8\n * Returns similarity between two face descriptors normalized to 0..1 range where 0 is no similarity and 1 is perfect similarity\n */\nexport function similarity(descriptor1: Descriptor, descriptor2: Descriptor, options: MatchOptions = { order: 2, multiplier: 25, min: 0.2, max: 0.8 }) {\n const dist = distance(descriptor1, descriptor2, options);\n return normalizeDistance(dist, options.order || 2, options.min || 0, options.max || 1);\n}\n\n/** Matches given descriptor to a closest entry in array of descriptors\n * @param descriptor - face descriptor\n * @param descriptors - array of face descriptors to commpare given descriptor to\n * @param options - see `similarity` method for options description\n * Returns\n * - `index` index array index where best match was found or -1 if no matches\n * - `distance` calculated `distance` of given descriptor to the best match\n * - `similarity` calculated normalized `similarity` of given descriptor to the best match\n*/\nexport function match(descriptor: Descriptor, descriptors: Descriptor[], options: MatchOptions = { order: 2, multiplier: 25, threshold: 0, min: 0.2, max: 0.8 }) {\n if (!Array.isArray(descriptor) || !Array.isArray(descriptors) || descriptor.length < 64 || descriptors.length === 0) { // validate input\n return { index: -1, distance: Number.POSITIVE_INFINITY, similarity: 0 };\n }\n let lowestDistance = Number.MAX_SAFE_INTEGER;\n let index = -1;\n for (let i = 0; i < descriptors.length; i++) {\n const res = descriptors[i].length === descriptor.length ? distance(descriptor, descriptors[i], options) : Number.MAX_SAFE_INTEGER;\n if (res < lowestDistance) {\n lowestDistance = res;\n index = i;\n }\n if (lowestDistance < (options.threshold || 0)) break;\n }\n const normalizedSimilarity = normalizeDistance(lowestDistance, options.order || 2, options.min || 0, options.max || 1);\n return { index, distance: lowestDistance, similarity: normalizedSimilarity };\n}\n", "/**\n * Analyze detection Results and sort&combine them into per-person view\n */\n\nimport type { FaceResult, BodyResult, HandResult, GestureResult, PersonResult, Box } from '../result';\n\nexport function join(faces: FaceResult[], bodies: BodyResult[], hands: HandResult[], gestures: GestureResult[], shape: number[] | undefined): PersonResult[] {\n let id = 0;\n const persons: PersonResult[] = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: PersonResult = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands.left?.id) person.gestures.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands.right?.id) person.gestures.push(gesture);\n }\n\n // create new overarching box from all boxes belonging to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box: Box | undefined) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face.box);\n extractXY(person.body?.box);\n extractXY(person.hands.left?.box);\n extractXY(person.hands.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape?.[1] && shape?.[2]) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Warmup algorithm that uses embedded images to exercise loaded models for faster future inference\n */\n\nimport { log, now, mergeDeep } from './util/util';\nimport * as sample from './sample';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as image from './image/image';\nimport { env } from './util/env';\nimport type { Config } from './config';\nimport type { Result } from './result';\nimport type { Human, Models } from './human';\nimport type { Tensor } from './exports';\n\nasync function warmupBitmap(instance: Human): Promise {\n const b64toBlob = (base64: string, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob: Blob | null;\n let res: Result | undefined;\n switch (instance.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'body':\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await instance.detect(bitmap, instance.config);\n bitmap.close();\n }\n return res;\n}\n\nasync function warmupCanvas(instance: Human): Promise {\n return new Promise((resolve) => {\n let src: string;\n // let size = 0;\n switch (instance.config.warmup) {\n case 'face':\n // size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n // size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = '';\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n let img: HTMLImageElement;\n if (typeof Image !== 'undefined') img = new Image();\n // @ts-ignore env.image is an external monkey-patch\n else if (env.Image) img = new env.Image();\n else return;\n img.onload = async () => {\n const canvas = image.canvas(img.naturalWidth, img.naturalHeight);\n if (!canvas) {\n log('Warmup: Canvas not found');\n resolve(undefined);\n } else {\n const ctx = canvas.getContext('2d');\n if (ctx) ctx.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const tensor = await instance.image(canvas);\n const res = tensor.tensor ? await instance.detect(tensor.tensor, instance.config) : undefined;\n resolve(res);\n }\n };\n if (src) img.src = src;\n else resolve(undefined);\n });\n}\n\nasync function warmupNode(instance: Human): Promise {\n const atob = (str: string) => Buffer.from(str, 'base64');\n let img;\n if (instance.config.warmup === 'face') img = atob(sample.face);\n else img = atob(sample.body);\n let res: Result;\n if (('node' in tf) && (tf.getBackend() === 'tensorflow')) {\n const data: Tensor = tf['node'].decodeJpeg(img); // eslint-disable-line import/namespace\n const expanded: Tensor = tf.expandDims(data, 0);\n instance.tf.dispose(data);\n // log('Input:', expanded);\n res = await instance.detect(expanded, instance.config);\n instance.tf.dispose(expanded);\n } else {\n if (instance.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await instance.detect(input, instance.config);\n */\n }\n // @ts-ignore\n return res;\n}\n\nasync function runInference(instance: Human) {\n let res: Result | undefined;\n if (typeof createImageBitmap === 'function') res = await warmupBitmap(instance);\n else if (typeof Image !== 'undefined' || env.Canvas !== undefined) res = await warmupCanvas(instance);\n else res = await warmupNode(instance);\n return res;\n}\n\n/** Runs pre-compile on all loaded models */\nexport async function runCompile(allModels: Models) {\n if (!tf.env().flagRegistry.ENGINE_COMPILE_ONLY) return; // tfjs does not support compile-only inference\n const backendType = tf.getBackend();\n const webGLBackend = tf.backend();\n if ((backendType !== 'webgl' && backendType !== 'humangl') || !webGLBackend?.checkCompileCompletion) {\n // log('compile pass: skip');\n return;\n }\n tf.env().set('ENGINE_COMPILE_ONLY', true);\n const numTensorsStart = tf.engine().state.numTensors;\n const compiledModels: string[] = [];\n for (const [modelName, model] of Object.entries(allModels).filter(([key, val]) => (key !== null && val !== null))) {\n const shape = (model.inputs?.[0]?.shape) ? [...model.inputs[0].shape] : [1, 64, 64, 3];\n const dtype: string = (model.inputs?.[0]?.dtype) ? model.inputs[0].dtype : 'float32';\n for (let dim = 0; dim < shape.length; dim++) {\n if (shape[dim] === -1) shape[dim] = dim === 0 ? 1 : 64; // override batch number and any dynamic dimensions\n }\n const tensor = tf.zeros(shape, dtype);\n try {\n const res = model.execute(tensor);\n compiledModels.push(modelName);\n if (Array.isArray(res)) res.forEach((t) => tf.dispose(t));\n else tf.dispose(res);\n } catch {\n log('compile fail model:', modelName);\n }\n tf.dispose(tensor);\n }\n const kernels = await webGLBackend.checkCompileCompletionAsync();\n webGLBackend.getUniformLocations();\n log('compile pass models:', compiledModels);\n log('compile pass kernels:', kernels.length);\n tf.env().set('ENGINE_COMPILE_ONLY', false);\n const numTensorsEnd = tf.engine().state.numTensors;\n if ((numTensorsEnd - numTensorsStart) > 0) log('tensor leak:', numTensorsEnd - numTensorsStart);\n}\n\n/** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used in browser environments for `webgl` and `humangl` backends\n * @param userConfig?: Config\n*/\nexport async function warmup(instance: Human, userConfig?: Partial): Promise {\n const t0 = now();\n instance.state = 'warmup';\n if (userConfig) instance.config = mergeDeep(instance.config, userConfig) as Config;\n if (!instance.config.warmup || instance.config.warmup.length === 0 || instance.config.warmup === 'none') {\n return { face: [], body: [], hand: [], gesture: [], object: [], performance: instance.performance, timestamp: now(), persons: [], error: null };\n }\n return new Promise(async (resolve) => {\n await runCompile(instance.models);\n const res = await runInference(instance);\n const t1 = now();\n if (instance.config.debug) log('warmup', instance.config.warmup, Math.round(t1 - t0), 'ms');\n instance.emit('warmup');\n resolve(res);\n });\n}\n", "/**\n * Human main module\n * @default Human Library\n * @summary \n * @author \n * @copyright \n * @license MIT\n */\n\n// module imports\nimport { log, now, mergeDeep, validate } from './util/util';\nimport { defaults } from './config';\nimport { env, Env } from './util/env';\nimport { setModelLoadOptions } from './tfjs/load';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as app from '../package.json';\nimport * as backend from './tfjs/backend';\nimport * as blazepose from './body/blazepose';\nimport * as centernet from './object/centernet';\nimport * as draw from './draw/draw';\nimport * as efficientpose from './body/efficientpose';\nimport * as face from './face/face';\nimport * as facemesh from './face/facemesh';\nimport * as faceres from './face/faceres';\nimport * as gesture from './gesture/gesture';\nimport * as handpose from './hand/handpose';\nimport * as handtrack from './hand/handtrack';\nimport * as humangl from './tfjs/humangl';\nimport * as image from './image/image';\nimport * as interpolate from './util/interpolate';\nimport * as match from './face/match';\nimport * as models from './models';\nimport * as movenet from './body/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as persons from './util/persons';\nimport * as posenet from './body/posenet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as warmups from './warmup';\n// type definitions\nimport type { Input, Tensor, DrawOptions, Config, Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult, AnyCanvas, ModelStats } from './exports';\n// type exports\nexport * from './exports';\n\n/** **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig - {@link Config}\n * @returns instance of {@link Human}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n\n /** Current configuration\n * - Defaults: [config](https://github.com/vladmandic/human/blob/main/src/config.ts#L262)\n */\n config: Config;\n\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n\n /** currenty processed image tensor and canvas */\n process: { tensor: Tensor | null, canvas: AnyCanvas | null };\n\n /** Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n * [TFJS API](https://js.tensorflow.org/api/latest/)\n */\n tf;\n\n /** Object containing environment information used for diagnostics */\n env: Env;\n\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - canvas: draws input to canvas\n * - options: are global settings for all draw operations, can be overriden for each draw method {@link DrawOptions}\n * - face, body, hand, gesture, object, person: draws detected results as overlays on canvas\n */\n draw: { canvas: typeof draw.canvas, face: typeof draw.face, body: typeof draw.body, hand: typeof draw.hand, gesture: typeof draw.gesture, object: typeof draw.object, person: typeof draw.person, all: typeof draw.all, options: DrawOptions };\n\n /** Currently loaded models\n * @internal\n * {@link Models}\n */\n models: models.Models;\n\n /** Container for events dispatched by Human\n * Possible events:\n * - `create`: triggered when Human object is instantiated\n * - `load`: triggered when models are loaded (explicitly or on-demand)\n * - `image`: triggered when input image is processed\n * - `result`: triggered when detection is complete\n * - `warmup`: triggered when warmup is complete\n * - `error`: triggered on some errors\n */\n events: EventTarget | undefined;\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: number[];\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: [number, number][];\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n /** WebGL debug info */\n gl: Record;\n // definition end\n\n /** Constructor for **Human** library that is futher used for all operations\n * @param userConfig - user configuration object {@link Config}\n */\n constructor(userConfig?: Partial) {\n this.env = env;\n /*\n defaults.wasmPath = tf.version['tfjs-core'].includes('-') // custom build or official build\n ? 'https://vladmandic.github.io/tfjs/dist/'\n : `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tf.version_core}/dist/`;\n */\n const tfVersion = (tf.version.tfjs || tf.version_core).replace(/-(.*)/, '');\n defaults.wasmPath = `https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${tfVersion}/dist/`;\n defaults.modelBasePath = env.browser ? '../models/' : 'file://models/';\n defaults.backend = env.browser ? 'humangl' : 'tensorflow';\n this.version = app.version; // expose version property on instance of class\n Object.defineProperty(this, 'version', { value: app.version }); // expose version property directly on class itself\n this.config = JSON.parse(JSON.stringify(defaults));\n Object.seal(this.config);\n this.config.cacheModels = typeof indexedDB !== 'undefined';\n if (userConfig) this.config = mergeDeep(this.config, userConfig);\n setModelLoadOptions(this.config);\n this.tf = tf;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.performance = {};\n this.events = (typeof EventTarget !== 'undefined') ? new EventTarget() : undefined;\n // object that contains all initialized models\n this.models = new models.Models();\n // reexport draw methods\n this.draw = {\n options: draw.options,\n canvas: (input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) => draw.canvas(input, output),\n face: (output: AnyCanvas, result: FaceResult[], options?: Partial) => draw.face(output, result, options),\n body: (output: AnyCanvas, result: BodyResult[], options?: Partial) => draw.body(output, result, options),\n hand: (output: AnyCanvas, result: HandResult[], options?: Partial) => draw.hand(output, result, options),\n gesture: (output: AnyCanvas, result: GestureResult[], options?: Partial) => draw.gesture(output, result, options),\n object: (output: AnyCanvas, result: ObjectResult[], options?: Partial) => draw.object(output, result, options),\n person: (output: AnyCanvas, result: PersonResult[], options?: Partial) => draw.person(output, result, options),\n all: (output: AnyCanvas, result: Result, options?: Partial) => draw.all(output, result, options),\n };\n this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [], error: null };\n // export access to image processing\n this.process = { tensor: null, canvas: null };\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // set gl info\n this.gl = humangl.config;\n // init model validation\n models.validateModel(this, null, '');\n // include platform info\n this.emit('create');\n }\n\n /** internal function to measure tensor leaks */\n analyze = (...msg: string[]) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n };\n\n /** internal function for quick sanity check on inputs @hidden */\n #sanity = (input: Input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.env.node && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n };\n\n /** Reset configuration to default values */\n reset(): void {\n const currentBackend = this.config.backend; // save backend;\n this.config = JSON.parse(JSON.stringify(defaults));\n this.config.backend = currentBackend;\n image.reset();\n env.initial = true;\n }\n\n /** Validate current configuration schema */\n validate(userConfig?: Partial) {\n const msgs = validate(defaults, userConfig || this.config);\n if (msgs.length === 0) this.config = mergeDeep(this.config, userConfig) as Config;\n return msgs;\n }\n\n /** Check model for invalid kernel ops for current backend */\n check() {\n return models.validate(this);\n }\n\n /** Exports face matching methods {@link match#similarity} */\n public similarity = match.similarity;\n /** Exports face matching methods {@link match#distance} */\n public distance = match.distance;\n /** Exports face matching methods {@link match#match} */\n public match = match.match;\n\n /** Utility wrapper for performance.now() */\n now(): number { // eslint-disable-line class-methods-use-this\n return now();\n }\n\n /** Process input as return canvas and tensor\n *\n * @param input - any input {@link Input}\n * @param getTensor - should image processing also return tensor or just canvas\n * Returns object with `tensor` and `canvas`\n */\n image(input: Input, getTensor: boolean = true) {\n return image.process(input, this.config, getTensor);\n }\n\n /** Segmentation method takes any input and returns processed canvas with body segmentation\n * - Segmentation is not triggered as part of detect process\n * @param input - {@link Input}\n * @param background - {@link Input}\n * - Optional parameter background is used to fill the background with specific input\n * Returns:\n * - `data` as raw data array with per-pixel segmentation values\n * - `canvas` as canvas which is input image filtered with segementation data and optionally merged with background image. canvas alpha values are set to segmentation values for easy merging\n * - `alpha` as grayscale canvas that represents segmentation alpha values\n */\n async segmentation(input: Input, background?: Input): Promise<{ data: number[] | Tensor, canvas: AnyCanvas | null, alpha: AnyCanvas | null }> {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n *\n * @param input - Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n enhance(input: Tensor): Tensor | null { // eslint-disable-line class-methods-use-this\n return faceres.enhance(input);\n }\n\n /** Compare two input tensors for pixel simmilarity\n * - use `human.image` to process any valid input and get a tensor that can be used for compare\n * - when passing manually generated tensors:\n * - both input tensors must be in format [1, height, width, 3]\n * - if resolution of tensors does not match, second tensor will be resized to match resolution of the first tensor\n * - return value is pixel similarity score normalized by input resolution and rgb channels\n */\n compare(firstImageTensor: Tensor, secondImageTensor: Tensor): Promise {\n return image.compare(this.config, firstImageTensor, secondImageTensor);\n }\n\n /** Explicit backend initialization\n * - Normally done implicitly during initial load phase\n * - Call to explictly register and initialize TFJS backend without any other operations\n * - Use when changing backend during runtime\n */\n async init(): Promise {\n await backend.check(this, true);\n await this.tf.ready();\n image.reset();\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n *\n * @param userConfig - {@link Config}\n */\n async load(userConfig?: Partial): Promise {\n this.state = 'load';\n const timeStamp = now();\n const count = Object.values(this.models).filter((model) => model).length;\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.env.initial) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version['tfjs-core'] as string}`);\n if (!await backend.check(this)) log('error: backend check failed');\n await tf.ready();\n if (this.env.browser) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('environment:', this.env);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n\n await models.load(this); // actually loads models\n if (this.env.initial && this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors'); // print memory stats on first run\n this.env.initial = false;\n\n const loaded = Object.values(this.models).filter((model) => model).length;\n if (loaded !== count) { // number of loaded models changed\n models.validate(this); // validate kernel ops used by model against current backend\n this.emit('load');\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.loadModels || 0)) this.performance.loadModels = this.env.perfadd ? (this.performance.loadModels || 0) + current : current;\n }\n\n /** emit event */\n emit = (event: string) => {\n if (this.events?.dispatchEvent) this.events.dispatchEvent(new Event(event));\n };\n\n /** Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result - {@link Result} optional use specific result set to run interpolation on\n * @returns result - {@link Result}\n */\n next(result: Result = this.result): Result {\n return interpolate.calc(result, this.config);\n }\n\n /** get model loading/loaded stats */\n getModelStats(): ModelStats { return models.getModelStats(this); }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async warmup(userConfig?: Partial) {\n const t0 = now();\n const res = await warmups.warmup(this, userConfig);\n const t1 = now();\n this.performance.warmup = Math.trunc(t1 - t0);\n return res;\n }\n\n /** Run detect with tensorflow profiling\n * - result object will contain total exeuction time information for top-20 kernels\n * - actual detection object can be accessed via `human.result`\n */\n async profile(input: Input, userConfig?: Partial): Promise<{ kernel: string, time: number, perc: number }[]> {\n const profile = await this.tf.profile(() => this.detect(input, userConfig));\n const kernels: Record = {};\n let total = 0;\n for (const kernel of profile.kernels) { // sum kernel time values per kernel\n if (kernels[kernel.name]) kernels[kernel.name] += kernel.kernelTimeMs;\n else kernels[kernel.name] = kernel.kernelTimeMs;\n total += kernel.kernelTimeMs;\n }\n const kernelArr: { kernel: string, time: number, perc: number }[] = [];\n Object.entries(kernels).forEach((key) => kernelArr.push({ kernel: key[0], time: key[1] as unknown as number, perc: 0 })); // convert to array\n for (const kernel of kernelArr) {\n kernel.perc = Math.round(1000 * kernel.time / total) / 1000;\n kernel.time = Math.round(1000 * kernel.time) / 1000;\n }\n kernelArr.sort((a, b) => b.time - a.time); // sort\n kernelArr.length = 20; // crop\n return kernelArr;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input - {@link Input}\n * @param userConfig - {@link Config}\n * @returns result - {@link Result}\n */\n async detect(input: Input, userConfig?: Partial): Promise {\n // detection happens inside a promise\n this.state = 'detect';\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error });\n }\n\n const timeStart = now();\n\n // configure backend if needed\n await backend.check(this);\n\n // load models if enabled\n await this.load();\n\n timeStamp = now();\n this.state = 'image';\n const img = await image.process(input, this.config) as { canvas: AnyCanvas, tensor: Tensor };\n this.process = img;\n this.performance.inputProcess = this.env.perfadd ? (this.performance.inputProcess || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n if (!img.tensor) {\n if (this.config.debug) log('could not convert input to tensor');\n this.emit('error');\n resolve({ face: [], body: [], hand: [], gesture: [], object: [], performance: this.performance, timestamp: now(), persons: [], error: 'could not convert input to tensor' });\n return;\n }\n this.emit('image');\n\n timeStamp = now();\n this.config.skipAllowed = await image.skip(this.config, img.tensor);\n if (!this.performance.totalFrames) this.performance.totalFrames = 0;\n if (!this.performance.cachedFrames) this.performance.cachedFrames = 0;\n (this.performance.totalFrames)++;\n if (this.config.skipAllowed) this.performance.cachedFrames++;\n this.performance.cacheCheck = this.env.perfadd ? (this.performance.cacheCheck || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes: FaceResult[] | Promise | never[] = [];\n let bodyRes: BodyResult[] | Promise | never[] = [];\n let handRes: HandResult[] | Promise | never[] = [];\n let objectRes: ObjectResult[] | Promise | never[] = [];\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n this.state = 'detect:face';\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, img.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, img.tensor) : [];\n this.performance.face = this.env.perfadd ? (this.performance.face || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n\n if (this.config.async && (this.config.body.maxDetected === -1 || this.config.hand.maxDetected === -1)) faceRes = await faceRes; // need face result for auto-detect number of hands or bodies\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n this.state = 'detect:body';\n const bodyConfig = this.config.body.maxDetected === -1 ? mergeDeep(this.config, { body: { maxDetected: this.config.face.enabled ? 1 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of bodies\n if (this.config.async) {\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(img.tensor, bodyConfig) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n timeStamp = now();\n if (this.config.body.modelPath?.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(img.tensor, bodyConfig) : [];\n else if (this.config.body.modelPath?.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(img.tensor, bodyConfig) : [];\n this.performance.body = this.env.perfadd ? (this.performance.body || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n this.state = 'detect:hand';\n const handConfig = this.config.hand.maxDetected === -1 ? mergeDeep(this.config, { hand: { maxDetected: this.config.face.enabled ? 2 * (faceRes as FaceResult[]).length : 1 } }) : this.config; // autodetect number of hands\n if (this.config.async) {\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? handtrack.predict(img.tensor, handConfig) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n timeStamp = now();\n if (this.config.hand.detector?.modelPath?.includes('handdetect')) handRes = this.config.hand.enabled ? await handpose.predict(img.tensor, handConfig) : [];\n else if (this.config.hand.detector?.modelPath?.includes('handtrack')) handRes = this.config.hand.enabled ? await handtrack.predict(img.tensor, handConfig) : [];\n this.performance.hand = this.env.perfadd ? (this.performance.hand || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Hand:');\n\n // run object detection\n this.analyze('Start Object:');\n this.state = 'detect:object';\n if (this.config.async) {\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(img.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n timeStamp = now();\n if (this.config.object.modelPath?.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(img.tensor, this.config) : [];\n else if (this.config.object.modelPath?.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(img.tensor, this.config) : [];\n this.performance.object = this.env.perfadd ? (this.performance.object || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n }\n this.analyze('End Object:');\n\n // if async wait for results\n this.state = 'detect:await';\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n this.state = 'detect:gesture';\n let gestureRes: GestureResult[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes as FaceResult[]), ...gesture.body(bodyRes as BodyResult[]), ...gesture.hand(handRes as HandResult[]), ...gesture.iris(faceRes as FaceResult[])];\n if (!this.config.async) this.performance.gesture = this.env.perfadd ? (this.performance.gesture || 0) + Math.trunc(now() - timeStamp) : Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = this.env.perfadd ? (this.performance.total || 0) + Math.trunc(now() - timeStart) : Math.trunc(now() - timeStart);\n const shape = this.process.tensor?.shape || [];\n this.result = {\n face: faceRes as FaceResult[],\n body: bodyRes as BodyResult[],\n hand: handRes as HandResult[],\n gesture: gestureRes,\n object: objectRes as ObjectResult[],\n performance: this.performance,\n canvas: this.process.canvas,\n timestamp: Date.now(),\n error: null,\n get persons() { return persons.join(faceRes as FaceResult[], bodyRes as BodyResult[], handRes as HandResult[], gestureRes, shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(img.tensor);\n\n // log('Result:', result);\n this.emit('detect');\n this.state = 'idle';\n resolve(this.result);\n });\n }\n}\n\n/** Class Human as default export */\n/* eslint no-restricted-exports: [\"off\", { \"restrictedNamedExports\": [\"default\"] }] */\nexport { Human as default, match, draw, models };\n"], + "mappings": ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAOO,SAAS,OAAO,KAAW;AAChC,QAAM,KAAK,IAAI,KAAK;AACpB,QAAM,KAAK,GAAG,GAAG,SAAS,EAAE,SAAS,EAAE,SAAS,GAAG,GAAG,KAAK,GAAG,WAAW,EAAE,SAAS,EAAE,SAAS,GAAG,GAAG,KAAK,GAAG,WAAW,EAAE,SAAS,EAAE,SAAS,GAAG,GAAG,KAAK,GAAG,gBAAgB,EAAE,SAAS,EAAE,SAAS,GAAG,GAAG;AACxM,MAAI;AAAK,YAAQ,IAAI,IAAI,UAAU,GAAG,GAAG;AAC3C;AAGO,SAAS,KAAK,QAAgB,MAAsB;AACzD,QAAM,YAAY,OAAO,SAAS,GAAG,IAAI,KAAK;AAC9C,QAAM,WAAW,KAAK,WAAW,GAAG,KAAK,KAAK,WAAW,GAAG,KAAK,KAAK,WAAW,OAAO,KAAK,KAAK,WAAW,QAAQ,KAAK,KAAK,WAAW,OAAO;AACjJ,QAAM,OAAO,WAAW,GAAG,SAAS,GAAG,SAAS,YAAY;AAC5D,MAAI,CAAC,KAAK,kBAAkB,EAAE,SAAS,OAAO;AAAG,UAAM,IAAI,MAAM,yCAAyC,MAAM;AAChH,SAAO;AACT;AAGO,IAAM,MAAM,MAAM;AACvB,MAAI,OAAO,gBAAgB;AAAa,WAAO,YAAY,IAAI;AAC/D,SAAO,UAAU,OAAO,QAAQ,OAAO,OAAO,CAAC,IAAI,MAAO,KAAM,SAAS,CAAC;AAC5E;AAGO,SAAS,SAAS,UAA2BA,SAAyB,SAAS,UAAU,OAA+D,CAAC,GAAG;AACjK,aAAW,OAAO,OAAO,KAAKA,OAAM,GAAG;AACrC,QAAI,OAAOA,QAAO,SAAS,UAAU;AACnC,eAAS,SAAS,MAAMA,QAAO,MAAM,KAAK,IAAI;AAAA,IAChD,OAAO;AACL,YAAM,UAAU,YAAa,OAAO,SAAS,SAAS;AACtD,UAAI,CAAC;AAAS,aAAK,KAAK,EAAE,QAAQ,oBAAoB,OAAO,GAAG,UAAU,SAASA,QAAO,OAAO,CAAC;AAClG,YAAM,OAAO,YAAY,OAAO,SAAS,SAAS,OAAOA,QAAO;AAChE,UAAI,WAAW,CAAC;AAAM,aAAK,KAAK,EAAE,QAAQ,0BAA0B,OAAO,GAAG,UAAU,SAASA,QAAO,QAAQ,UAAU,OAAO,SAAS,KAAK,CAAC;AAAA,IAClJ;AAAA,EAEF;AACA,MAAIA,QAAO,SAAS,WAAW,YAAY,KAAK,SAAS;AAAG,QAAI,yBAAyB,IAAI;AAC7F,SAAO;AACT;AAGO,SAAS,aAAa,SAAS;AACpC,QAAM,WAAW,CAAC,QAAQ,OAAO,OAAO,QAAQ;AAChD,SAAO,QAAQ,OAAO,CAAC,MAAM,QAAQ;AACnC,WAAO,KAAK,OAAO,CAAC,CAAC,EAAE,QAAQ,CAAC,QAAQ;AACtC,YAAM,OAAO,KAAK;AAClB,YAAM,OAAO,IAAI;AACjB,UAAI,MAAM,QAAQ,IAAI,KAAK,MAAM,QAAQ,IAAI;AAAG,aAAK,OAAO,KAAK,OAAO,GAAG,IAAI;AAAA,eACtE,SAAS,IAAI,KAAK,SAAS,IAAI;AAAG,aAAK,OAAO,UAAU,MAAM,IAAI;AAAA;AACtE,aAAK,OAAO;AAAA,IACnB,CAAC;AACD,WAAO;AAAA,EACT,GAAG,CAAC,CAAC;AACP;;;ACwQA,IAAM,SAAiB;AAAA,EACrB,SAAS;AAAA,EACT,eAAe;AAAA,EACf,aAAa;AAAA,EACb,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,OAAO;AAAA,EACP,OAAO;AAAA,EACP,QAAQ;AAAA,EACR,kBAAkB;AAAA,EAClB,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,iBAAiB;AAAA,EACjB,QAAQ;AAAA,IACN,SAAS;AAAA,IACT,cAAc;AAAA,IACd,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,MAAM;AAAA,IACN,QAAQ;AAAA,IACR,YAAY;AAAA,IACZ,UAAU;AAAA,IACV,WAAW;AAAA,IACX,MAAM;AAAA,IACN,YAAY;AAAA,IACZ,KAAK;AAAA,IACL,UAAU;AAAA,IACV,OAAO;AAAA,IACP,SAAS;AAAA,IACT,YAAY;AAAA,IACZ,aAAa;AAAA,IACb,UAAU;AAAA,IACV,UAAU;AAAA,EACZ;AAAA,EACA,SAAS;AAAA,IACP,SAAS;AAAA,EACX;AAAA,EACA,MAAM;AAAA,IACJ,SAAS;AAAA,IACT,UAAU;AAAA,MACR,WAAW;AAAA,MACX,UAAU;AAAA,MACV,aAAa;AAAA,MACb,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,eAAe;AAAA,MACf,cAAc;AAAA,MACd,MAAM;AAAA,MACN,QAAQ;AAAA,IACV;AAAA,IACA,MAAM;AAAA,MACJ,SAAS;AAAA,MACT,WAAW;AAAA,MACX,aAAa;AAAA,IACf;AAAA,IACA,WAAW;AAAA,MACT,SAAS;AAAA,MACT,WAAW;AAAA,IACb;AAAA,IACA,MAAM;AAAA,MACJ,SAAS;AAAA,MACT,WAAW;AAAA,IACb;AAAA,IACA,SAAS;AAAA,MACP,SAAS;AAAA,MACT,eAAe;AAAA,MACf,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,WAAW;AAAA,IACb;AAAA,IACA,aAAa;AAAA,MACX,SAAS;AAAA,MACT,WAAW;AAAA,MACX,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,eAAe;AAAA,IACjB;AAAA,IACA,WAAW;AAAA,MACT,SAAS;AAAA,MACT,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,WAAW;AAAA,IACb;AAAA,IACA,UAAU;AAAA,MACR,SAAS;AAAA,MACT,YAAY;AAAA,MACZ,UAAU;AAAA,MACV,WAAW;AAAA,IACb;AAAA,EACF;AAAA,EACA,MAAM;AAAA,IACJ,SAAS;AAAA,IACT,WAAW;AAAA,IACX,aAAa;AAAA,IACb,eAAe;AAAA,IACf,YAAY;AAAA,IACZ,UAAU;AAAA,EACZ;AAAA,EACA,MAAM;AAAA,IACJ,SAAS;AAAA,IACT,UAAU;AAAA,IACV,YAAY;AAAA,IACZ,UAAU;AAAA,IACV,eAAe;AAAA,IACf,cAAc;AAAA,IACd,aAAa;AAAA,IACb,WAAW;AAAA,IACX,UAAU;AAAA,MACR,WAAW;AAAA,IACb;AAAA,IACA,UAAU;AAAA,MACR,WAAW;AAAA,IACb;AAAA,EACF;AAAA,EACA,QAAQ;AAAA,IACN,SAAS;AAAA,IACT,WAAW;AAAA,IACX,eAAe;AAAA,IACf,cAAc;AAAA,IACd,aAAa;AAAA,IACb,YAAY;AAAA,IACZ,UAAU;AAAA,EACZ;AAAA,EACA,cAAc;AAAA,IACZ,SAAS;AAAA,IACT,WAAW;AAAA,IACX,MAAM;AAAA,EACR;AACF;;;ACncA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,aAAAC;AAAA,EAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAMA,IAAI,WAAW,OAAO;AACtB,IAAIC,aAAY,OAAO;AACvB,IAAI,mBAAmB,OAAO;AAC9B,IAAI,oBAAoB,OAAO;AAC/B,IAAI,eAAe,OAAO;AAC1B,IAAI,eAAe,OAAO,UAAU;AACpC,IAAI,aAAa,CAAC,IAAI,SAAS,SAAS,YAAY;AAClD,SAAO,SAAS,GAAG,GAAG,kBAAkB,EAAE,EAAE,MAAM,OAAO,EAAE,SAAS,CAAC,EAAE,GAAG,SAAS,IAAI,GAAG,KAAK;AACjG;AACA,IAAIC,YAAW,CAAC,QAAQC,UAAS;AAC/B,WAAS,QAAQA;AACf,IAAAF,WAAU,QAAQ,MAAM,EAAE,KAAKE,MAAK,OAAO,YAAY,KAAK,CAAC;AACjE;AACA,IAAI,cAAc,CAAC,IAAI,MAAM,QAAQ,SAAS;AAC5C,MAAI,QAAQ,OAAO,SAAS,YAAY,OAAO,SAAS,YAAY;AAClE,aAAS,OAAO,kBAAkB,IAAI;AACpC,UAAI,CAAC,aAAa,KAAK,IAAI,GAAG,KAAK,QAAQ;AACzC,QAAAF,WAAU,IAAI,KAAK,EAAE,KAAK,MAAM,KAAK,MAAM,YAAY,EAAE,OAAO,iBAAiB,MAAM,GAAG,MAAM,KAAK,WAAW,CAAC;AAAA,EACvH;AACA,SAAO;AACT;AACA,IAAI,UAAU,CAAC,MAAM,YAAY,YAAY,SAAS,QAAQ,OAAO,SAAS,aAAa,IAAI,CAAC,IAAI,CAAC,GAAG;AAAA,EACtG,cAAc,CAAC,QAAQ,CAAC,KAAK,aAAaA,WAAU,QAAQ,WAAW,EAAE,OAAO,MAAM,YAAY,KAAK,CAAC,IAAI;AAAA,EAC5G;AACF;AAGA,IAAI,eAAe,WAAW;AAAA,EAC5B,8DAA8D,SAAS,QAAQ;AAC7E,WAAO,UAAU;AACjB,QAAI,OAAO;AACX,QAAI;AACF,aAAO,IAAI,YAAY,SAAS,IAAI,YAAY,OAAO,IAAI,WAAW;AAAA,QACpE;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,MACF,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE;AAAA,IACX,SAAS,IAAP;AAAA,IACF;AACA,aAAS,MAAM,KAAK,MAAM,UAAU;AAClC,WAAK,MAAM,MAAM;AACjB,WAAK,OAAO,OAAO;AACnB,WAAK,WAAW,CAAC,CAAC;AAAA,IACpB;AACA,UAAM,UAAU;AAChB,WAAO,eAAe,MAAM,WAAW,cAAc,EAAE,OAAO,KAAK,CAAC;AACpE,aAAS,OAAO,KAAK;AACnB,cAAQ,OAAO,IAAI,mBAAmB;AAAA,IACxC;AACA,UAAM,SAAS;AACf,QAAI,YAAY,CAAC;AACjB,QAAI,aAAa,CAAC;AAClB,aAAS,QAAQ,OAAO,UAAU;AAChC,UAAI,KAAK,WAAWG;AACpB,UAAI,UAAU;AACZ,mBAAW;AACX,YAAIA,SAAQ,KAAK,SAAS,QAAQ,KAAK;AACrC,sBAAY,WAAW;AACvB,cAAI;AACF,mBAAO;AAAA,QACX;AACA,cAAM,SAAS,QAAQ,QAAQ,KAAK,IAAI,KAAK,GAAG,IAAI;AACpD,YAAIA;AACF,qBAAW,SAAS;AACtB,eAAO;AAAA,MACT,OAAO;AACL,iBAAS;AACT,YAAIA,SAAQ,QAAQ,SAAS,QAAQ,KAAK;AACxC,sBAAY,UAAU;AACtB,cAAI;AACF,mBAAO;AAAA,QACX;AACA,cAAM,SAAS,OAAO,QAAQ,IAAI,KAAK,GAAG,KAAK;AAC/C,YAAIA;AACF,oBAAU,SAAS;AACrB,eAAO;AAAA,MACT;AAAA,IACF;AACA,UAAM,UAAU;AAChB,aAAS,WAAW,OAAO,UAAU;AACnC,UAAI,MAAM,KAAK;AACb,eAAO,WAAW,QAAQ;AAC5B,UAAI,UAAU;AACZ,YAAI,QAAQ;AACV,iBAAO;AACT,YAAI,SAAS;AACX,iBAAO;AAAA,MACX,OAAO;AACL,YAAI,SAAS,CAAC;AACZ,iBAAO;AACT,YAAI,QAAQ,KAAK;AACf,iBAAO;AAAA,MACX;AACA,UAAI,QAAQ;AACV,eAAO,WAAW,CAAC,OAAO,QAAQ,EAAE,IAAI;AAC1C,aAAO,SAAS,QAAQ,iBAAiB,GAAG,QAAQ,iBAAiB,GAAG,QAAQ;AAAA,IAClF;AACA,UAAM,aAAa;AACnB,aAAS,SAAS,SAAS,UAAU,UAAU;AAC7C,aAAO,IAAI,MAAM,SAAS,UAAU,QAAQ;AAAA,IAC9C;AACA,UAAM,WAAW;AACjB,QAAI,UAAU,KAAK;AACnB,aAAS,WAAW,KAAK,UAAU,OAAO;AACxC,UAAI,IAAI,WAAW;AACjB,cAAM,MAAM,cAAc;AAC5B,UAAI,QAAQ,SAAS,QAAQ,cAAc,QAAQ,eAAe,QAAQ;AACxE,eAAO;AACT,UAAI,OAAO,aAAa,UAAU;AAChC,gBAAQ,UAAU,WAAW;AAAA,MAC/B,OAAO;AACL,mBAAW,CAAC,CAAC;AAAA,MACf;AACA,cAAQ,SAAS;AACjB,UAAI,QAAQ,KAAK,KAAK;AACpB,cAAM,WAAW,OAAO;AAC1B,UAAI;AACJ,WAAK,KAAK,IAAI,QAAQ,GAAG,KAAK;AAC5B,cAAM,MAAM,iBAAiB;AAAA,eACtB,OAAO,GAAG;AACjB,eAAO,WAAW,IAAI,UAAU,CAAC,GAAG,UAAU,KAAK,EAAE,IAAI;AAAA,MAC3D;AACA,UAAI,eAAe,WAAW,QAAQ,OAAO,CAAC,CAAC;AAC/C,UAAI,SAAS;AACb,eAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM,GAAG;AACzC,YAAIC,QAAO,KAAK,IAAI,GAAG,IAAI,SAAS,EAAE,GAAG,QAAQ,SAAS,IAAI,UAAU,IAAI,KAAKA,KAAI,GAAG,KAAK;AAC7F,YAAIA,QAAO,GAAG;AACZ,cAAI,QAAQ,WAAW,QAAQ,OAAOA,KAAI,CAAC;AAC3C,mBAAS,OAAO,IAAI,KAAK,EAAE,IAAI,WAAW,KAAK,CAAC;AAAA,QAClD,OAAO;AACL,mBAAS,OAAO,IAAI,YAAY;AAChC,mBAAS,OAAO,IAAI,WAAW,KAAK,CAAC;AAAA,QACvC;AAAA,MACF;AACA,aAAO,WAAW;AAClB,aAAO;AAAA,IACT;AACA,UAAM,aAAa;AACnB,aAAS,UAAU,KAAK,UAAU;AAChC,UAAI,OAAO,QAAQ;AACjB,eAAO,WAAW,KAAK,QAAQ;AACjC,UAAI,OAAO,QAAQ;AACjB,eAAO,WAAW,KAAK,QAAQ;AACjC,aAAO,SAAS,IAAI,KAAK,IAAI,MAAM,OAAO,aAAa,YAAY,WAAW,IAAI,QAAQ;AAAA,IAC5F;AACA,UAAM,YAAY;AAClB,QAAI,iBAAiB,KAAK;AAC1B,QAAI,iBAAiB,KAAK;AAC1B,QAAI,iBAAiB,iBAAiB;AACtC,QAAI,iBAAiB,iBAAiB;AACtC,QAAI,iBAAiB,iBAAiB;AACtC,QAAI,aAAa,QAAQ,cAAc;AACvC,QAAI,OAAO,QAAQ,CAAC;AACpB,UAAM,OAAO;AACb,QAAI,QAAQ,QAAQ,GAAG,IAAI;AAC3B,UAAM,QAAQ;AACd,QAAI,MAAM,QAAQ,CAAC;AACnB,UAAM,MAAM;AACZ,QAAI,OAAO,QAAQ,GAAG,IAAI;AAC1B,UAAM,OAAO;AACb,QAAI,UAAU,QAAQ,EAAE;AACxB,UAAM,UAAU;AAChB,QAAI,YAAY,SAAS,aAAa,GAAG,aAAa,GAAG,KAAK;AAC9D,UAAM,YAAY;AAClB,QAAI,qBAAqB,SAAS,aAAa,GAAG,aAAa,GAAG,IAAI;AACtE,UAAM,qBAAqB;AAC3B,QAAI,YAAY,SAAS,GAAG,aAAa,GAAG,KAAK;AACjD,UAAM,YAAY;AAClB,QAAI,gBAAgB,MAAM;AAC1B,kBAAc,QAAQ,SAAS,QAAQ;AACrC,aAAO,KAAK,WAAW,KAAK,QAAQ,IAAI,KAAK;AAAA,IAC/C;AACA,kBAAc,WAAW,SAAS,WAAW;AAC3C,UAAI,KAAK;AACP,gBAAQ,KAAK,SAAS,KAAK,kBAAkB,KAAK,QAAQ;AAC5D,aAAO,KAAK,OAAO,kBAAkB,KAAK,QAAQ;AAAA,IACpD;AACA,kBAAc,WAAW,SAAS,SAAS,OAAO;AAChD,cAAQ,SAAS;AACjB,UAAI,QAAQ,KAAK,KAAK;AACpB,cAAM,WAAW,OAAO;AAC1B,UAAI,KAAK,OAAO;AACd,eAAO;AACT,UAAI,KAAK,WAAW,GAAG;AACrB,YAAI,KAAK,GAAG,SAAS,GAAG;AACtB,cAAI,YAAY,WAAW,KAAK,GAAG,OAAO,KAAK,IAAI,SAAS,GAAG,OAAO,KAAK,IAAI,SAAS,EAAE,IAAI,IAAI;AAClG,iBAAO,KAAK,SAAS,KAAK,IAAI,KAAK,MAAM,EAAE,SAAS,KAAK;AAAA,QAC3D;AACE,iBAAO,MAAM,KAAK,IAAI,EAAE,SAAS,KAAK;AAAA,MAC1C;AACA,UAAI,eAAe,WAAW,QAAQ,OAAO,CAAC,GAAG,KAAK,QAAQ,GAAG,MAAM;AACvE,UAAI,SAAS;AACb,aAAO,MAAM;AACX,YAAI,SAAS,IAAI,IAAI,YAAY,GAAG,SAAS,IAAI,IAAI,OAAO,IAAI,YAAY,CAAC,EAAE,MAAM,MAAM,GAAG,SAAS,OAAO,SAAS,KAAK;AAC5H,cAAM;AACN,YAAI,IAAI,OAAO;AACb,iBAAO,SAAS;AAAA,aACb;AACH,iBAAO,OAAO,SAAS;AACrB,qBAAS,MAAM;AACjB,mBAAS,KAAK,SAAS;AAAA,QACzB;AAAA,MACF;AAAA,IACF;AACA,kBAAc,cAAc,SAAS,cAAc;AACjD,aAAO,KAAK;AAAA,IACd;AACA,kBAAc,sBAAsB,SAAS,sBAAsB;AACjE,aAAO,KAAK,SAAS;AAAA,IACvB;AACA,kBAAc,aAAa,SAAS,aAAa;AAC/C,aAAO,KAAK;AAAA,IACd;AACA,kBAAc,qBAAqB,SAAS,qBAAqB;AAC/D,aAAO,KAAK,QAAQ;AAAA,IACtB;AACA,kBAAc,gBAAgB,SAAS,gBAAgB;AACrD,UAAI,KAAK,WAAW;AAClB,eAAO,KAAK,GAAG,SAAS,IAAI,KAAK,KAAK,IAAI,EAAE,cAAc;AAC5D,UAAI,MAAM,KAAK,QAAQ,IAAI,KAAK,OAAO,KAAK;AAC5C,eAAS,MAAM,IAAI,MAAM,GAAG;AAC1B,aAAK,MAAM,KAAK,QAAQ;AACtB;AACJ,aAAO,KAAK,QAAQ,IAAI,MAAM,KAAK,MAAM;AAAA,IAC3C;AACA,kBAAc,SAAS,SAAS,SAAS;AACvC,aAAO,KAAK,SAAS,KAAK,KAAK,QAAQ;AAAA,IACzC;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,aAAa,SAAS,aAAa;AAC/C,aAAO,CAAC,KAAK,YAAY,KAAK,OAAO;AAAA,IACvC;AACA,kBAAc,aAAa,SAAS,aAAa;AAC/C,aAAO,KAAK,YAAY,KAAK,QAAQ;AAAA,IACvC;AACA,kBAAc,QAAQ,SAAS,QAAQ;AACrC,cAAQ,KAAK,MAAM,OAAO;AAAA,IAC5B;AACA,kBAAc,SAAS,SAAS,UAAU;AACxC,cAAQ,KAAK,MAAM,OAAO;AAAA,IAC5B;AACA,kBAAc,SAAS,SAAS,OAAO,OAAO;AAC5C,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,UAAI,KAAK,aAAa,MAAM,YAAY,KAAK,SAAS,OAAO,KAAK,MAAM,SAAS,OAAO;AACtF,eAAO;AACT,aAAO,KAAK,SAAS,MAAM,QAAQ,KAAK,QAAQ,MAAM;AAAA,IACxD;AACA,kBAAc,KAAK,cAAc;AACjC,kBAAc,YAAY,SAAS,UAAU,OAAO;AAClD,aAAO,CAAC,KAAK,GAAG,KAAK;AAAA,IACvB;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,KAAK,cAAc;AACjC,kBAAc,WAAW,SAAS,SAAS,OAAO;AAChD,aAAO,KAAK,KAAK,KAAK,IAAI;AAAA,IAC5B;AACA,kBAAc,KAAK,cAAc;AACjC,kBAAc,kBAAkB,SAAS,gBAAgB,OAAO;AAC9D,aAAO,KAAK,KAAK,KAAK,KAAK;AAAA,IAC7B;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,KAAK,cAAc;AACjC,kBAAc,cAAc,SAAS,YAAY,OAAO;AACtD,aAAO,KAAK,KAAK,KAAK,IAAI;AAAA,IAC5B;AACA,kBAAc,KAAK,cAAc;AACjC,kBAAc,qBAAqB,SAAS,mBAAmB,OAAO;AACpE,aAAO,KAAK,KAAK,KAAK,KAAK;AAAA,IAC7B;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,KAAK,cAAc;AACjC,kBAAc,UAAU,SAASC,SAAQ,OAAO;AAC9C,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,UAAI,KAAK,GAAG,KAAK;AACf,eAAO;AACT,UAAI,UAAU,KAAK,WAAW,GAAG,WAAW,MAAM,WAAW;AAC7D,UAAI,WAAW,CAAC;AACd,eAAO;AACT,UAAI,CAAC,WAAW;AACd,eAAO;AACT,UAAI,CAAC,KAAK;AACR,eAAO,KAAK,IAAI,KAAK,EAAE,WAAW,IAAI,KAAK;AAC7C,aAAO,MAAM,SAAS,IAAI,KAAK,SAAS,KAAK,MAAM,SAAS,KAAK,QAAQ,MAAM,QAAQ,IAAI,KAAK,QAAQ,IAAI,KAAK;AAAA,IACnH;AACA,kBAAc,OAAO,cAAc;AACnC,kBAAc,SAAS,SAAS,SAAS;AACvC,UAAI,CAAC,KAAK,YAAY,KAAK,GAAG,SAAS;AACrC,eAAO;AACT,aAAO,KAAK,IAAI,EAAE,IAAI,GAAG;AAAA,IAC3B;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,MAAM,SAAS,KAAK,QAAQ;AACxC,UAAI,CAAC,OAAO,MAAM;AAChB,iBAAS,UAAU,MAAM;AAC3B,UAAI,MAAM,KAAK,SAAS;AACxB,UAAI,MAAM,KAAK,OAAO;AACtB,UAAI,MAAM,KAAK,QAAQ;AACvB,UAAI,MAAM,KAAK,MAAM;AACrB,UAAI,MAAM,OAAO,SAAS;AAC1B,UAAI,MAAM,OAAO,OAAO;AACxB,UAAI,MAAM,OAAO,QAAQ;AACzB,UAAI,MAAM,OAAO,MAAM;AACvB,UAAI,MAAM,GAAG,MAAM,GAAG,MAAM,GAAG,MAAM;AACrC,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO;AACP,aAAO,SAAS,OAAO,KAAK,KAAK,OAAO,KAAK,KAAK,KAAK,QAAQ;AAAA,IACjE;AACA,kBAAc,WAAW,SAAS,SAAS,YAAY;AACrD,UAAI,CAAC,OAAO,UAAU;AACpB,qBAAa,UAAU,UAAU;AACnC,aAAO,KAAK,IAAI,WAAW,IAAI,CAAC;AAAA,IAClC;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,WAAW,SAAS,UAAU,YAAY;AACtD,UAAI,KAAK,OAAO;AACd,eAAO;AACT,UAAI,CAAC,OAAO,UAAU;AACpB,qBAAa,UAAU,UAAU;AACnC,UAAI,MAAM;AACR,YAAI,MAAM,KAAK;AAAA,UACb,KAAK;AAAA,UACL,KAAK;AAAA,UACL,WAAW;AAAA,UACX,WAAW;AAAA,QACb;AACA,eAAO,SAAS,KAAK,KAAK,SAAS,GAAG,KAAK,QAAQ;AAAA,MACrD;AACA,UAAI,WAAW,OAAO;AACpB,eAAO;AACT,UAAI,KAAK,GAAG,SAAS;AACnB,eAAO,WAAW,MAAM,IAAI,YAAY;AAC1C,UAAI,WAAW,GAAG,SAAS;AACzB,eAAO,KAAK,MAAM,IAAI,YAAY;AACpC,UAAI,KAAK,WAAW,GAAG;AACrB,YAAI,WAAW,WAAW;AACxB,iBAAO,KAAK,IAAI,EAAE,IAAI,WAAW,IAAI,CAAC;AAAA;AAEtC,iBAAO,KAAK,IAAI,EAAE,IAAI,UAAU,EAAE,IAAI;AAAA,MAC1C,WAAW,WAAW,WAAW;AAC/B,eAAO,KAAK,IAAI,WAAW,IAAI,CAAC,EAAE,IAAI;AACxC,UAAI,KAAK,GAAG,UAAU,KAAK,WAAW,GAAG,UAAU;AACjD,eAAO,WAAW,KAAK,SAAS,IAAI,WAAW,SAAS,GAAG,KAAK,QAAQ;AAC1E,UAAI,MAAM,KAAK,SAAS;AACxB,UAAI,MAAM,KAAK,OAAO;AACtB,UAAI,MAAM,KAAK,QAAQ;AACvB,UAAI,MAAM,KAAK,MAAM;AACrB,UAAI,MAAM,WAAW,SAAS;AAC9B,UAAI,MAAM,WAAW,OAAO;AAC5B,UAAI,MAAM,WAAW,QAAQ;AAC7B,UAAI,MAAM,WAAW,MAAM;AAC3B,UAAI,MAAM,GAAG,MAAM,GAAG,MAAM,GAAG,MAAM;AACrC,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM;AACb,aAAO,QAAQ;AACf,aAAO;AACP,aAAO,MAAM,MAAM,MAAM,MAAM,MAAM,MAAM,MAAM;AACjD,aAAO;AACP,aAAO,SAAS,OAAO,KAAK,KAAK,OAAO,KAAK,KAAK,KAAK,QAAQ;AAAA,IACjE;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,SAAS,SAAS,OAAO,SAAS;AAC9C,UAAI,CAAC,OAAO,OAAO;AACjB,kBAAU,UAAU,OAAO;AAC7B,UAAI,QAAQ,OAAO;AACjB,cAAM,MAAM,kBAAkB;AAChC,UAAI,MAAM;AACR,YAAI,CAAC,KAAK,YAAY,KAAK,SAAS,eAAe,QAAQ,QAAQ,MAAM,QAAQ,SAAS,IAAI;AAC5F,iBAAO;AAAA,QACT;AACA,YAAI,OAAO,KAAK,WAAW,KAAK,QAAQ,KAAK;AAAA,UAC3C,KAAK;AAAA,UACL,KAAK;AAAA,UACL,QAAQ;AAAA,UACR,QAAQ;AAAA,QACV;AACA,eAAO,SAAS,KAAK,KAAK,SAAS,GAAG,KAAK,QAAQ;AAAA,MACrD;AACA,UAAI,KAAK,OAAO;AACd,eAAO,KAAK,WAAW,QAAQ;AACjC,UAAI,QAAQ,KAAK;AACjB,UAAI,CAAC,KAAK,UAAU;AAClB,YAAI,KAAK,GAAG,SAAS,GAAG;AACtB,cAAI,QAAQ,GAAG,GAAG,KAAK,QAAQ,GAAG,OAAO;AACvC,mBAAO;AAAA,mBACA,QAAQ,GAAG,SAAS;AAC3B,mBAAO;AAAA,eACJ;AACH,gBAAI,WAAW,KAAK,IAAI,CAAC;AACzB,qBAAS,SAAS,IAAI,OAAO,EAAE,IAAI,CAAC;AACpC,gBAAI,OAAO,GAAG,IAAI,GAAG;AACnB,qBAAO,QAAQ,WAAW,IAAI,MAAM;AAAA,YACtC,OAAO;AACL,oBAAM,KAAK,IAAI,QAAQ,IAAI,MAAM,CAAC;AAClC,oBAAM,OAAO,IAAI,IAAI,IAAI,OAAO,CAAC;AACjC,qBAAO;AAAA,YACT;AAAA,UACF;AAAA,QACF,WAAW,QAAQ,GAAG,SAAS;AAC7B,iBAAO,KAAK,WAAW,QAAQ;AACjC,YAAI,KAAK,WAAW,GAAG;AACrB,cAAI,QAAQ,WAAW;AACrB,mBAAO,KAAK,IAAI,EAAE,IAAI,QAAQ,IAAI,CAAC;AACrC,iBAAO,KAAK,IAAI,EAAE,IAAI,OAAO,EAAE,IAAI;AAAA,QACrC,WAAW,QAAQ,WAAW;AAC5B,iBAAO,KAAK,IAAI,QAAQ,IAAI,CAAC,EAAE,IAAI;AACrC,cAAM;AAAA,MACR,OAAO;AACL,YAAI,CAAC,QAAQ;AACX,oBAAU,QAAQ,WAAW;AAC/B,YAAI,QAAQ,GAAG,IAAI;AACjB,iBAAO;AACT,YAAI,QAAQ,GAAG,KAAK,KAAK,CAAC,CAAC;AACzB,iBAAO;AACT,cAAM;AAAA,MACR;AACA,YAAM;AACN,aAAO,IAAI,IAAI,OAAO,GAAG;AACvB,iBAAS,KAAK,IAAI,GAAG,KAAK,MAAM,IAAI,SAAS,IAAI,QAAQ,SAAS,CAAC,CAAC;AACpE,YAAIC,SAAQ,KAAK,KAAK,KAAK,IAAI,MAAM,IAAI,KAAK,GAAG,GAAG,QAAQA,UAAS,KAAK,IAAI,QAAQ,GAAGA,SAAQ,EAAE,GAAG,YAAY,WAAW,MAAM,GAAG,YAAY,UAAU,IAAI,OAAO;AACvK,eAAO,UAAU,WAAW,KAAK,UAAU,GAAG,GAAG,GAAG;AAClD,oBAAU;AACV,sBAAY,WAAW,QAAQ,KAAK,QAAQ;AAC5C,sBAAY,UAAU,IAAI,OAAO;AAAA,QACnC;AACA,YAAI,UAAU,OAAO;AACnB,sBAAY;AACd,cAAM,IAAI,IAAI,SAAS;AACvB,cAAM,IAAI,IAAI,SAAS;AAAA,MACzB;AACA,aAAO;AAAA,IACT;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,SAAS,SAAS,OAAO,SAAS;AAC9C,UAAI,CAAC,OAAO,OAAO;AACjB,kBAAU,UAAU,OAAO;AAC7B,UAAI,MAAM;AACR,YAAI,OAAO,KAAK,WAAW,KAAK,QAAQ,KAAK;AAAA,UAC3C,KAAK;AAAA,UACL,KAAK;AAAA,UACL,QAAQ;AAAA,UACR,QAAQ;AAAA,QACV;AACA,eAAO,SAAS,KAAK,KAAK,SAAS,GAAG,KAAK,QAAQ;AAAA,MACrD;AACA,aAAO,KAAK,IAAI,KAAK,IAAI,OAAO,EAAE,IAAI,OAAO,CAAC;AAAA,IAChD;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,MAAM,cAAc;AAClC,kBAAc,MAAM,SAAS,MAAM;AACjC,aAAO,SAAS,CAAC,KAAK,KAAK,CAAC,KAAK,MAAM,KAAK,QAAQ;AAAA,IACtD;AACA,kBAAc,MAAM,SAAS,IAAI,OAAO;AACtC,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,aAAO,SAAS,KAAK,MAAM,MAAM,KAAK,KAAK,OAAO,MAAM,MAAM,KAAK,QAAQ;AAAA,IAC7E;AACA,kBAAc,KAAK,SAAS,GAAG,OAAO;AACpC,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,aAAO,SAAS,KAAK,MAAM,MAAM,KAAK,KAAK,OAAO,MAAM,MAAM,KAAK,QAAQ;AAAA,IAC7E;AACA,kBAAc,MAAM,SAAS,IAAI,OAAO;AACtC,UAAI,CAAC,OAAO,KAAK;AACf,gBAAQ,UAAU,KAAK;AACzB,aAAO,SAAS,KAAK,MAAM,MAAM,KAAK,KAAK,OAAO,MAAM,MAAM,KAAK,QAAQ;AAAA,IAC7E;AACA,kBAAc,YAAY,SAAS,UAAU,SAAS;AACpD,UAAI,OAAO,OAAO;AAChB,kBAAU,QAAQ,MAAM;AAC1B,WAAK,WAAW,QAAQ;AACtB,eAAO;AAAA,eACA,UAAU;AACjB,eAAO,SAAS,KAAK,OAAO,SAAS,KAAK,QAAQ,UAAU,KAAK,QAAQ,KAAK,SAAS,KAAK,QAAQ;AAAA;AAEpG,eAAO,SAAS,GAAG,KAAK,OAAO,UAAU,IAAI,KAAK,QAAQ;AAAA,IAC9D;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,aAAa,SAAS,WAAW,SAAS;AACtD,UAAI,OAAO,OAAO;AAChB,kBAAU,QAAQ,MAAM;AAC1B,WAAK,WAAW,QAAQ;AACtB,eAAO;AAAA,eACA,UAAU;AACjB,eAAO,SAAS,KAAK,QAAQ,UAAU,KAAK,QAAQ,KAAK,SAAS,KAAK,QAAQ,SAAS,KAAK,QAAQ;AAAA;AAErG,eAAO,SAAS,KAAK,QAAQ,UAAU,IAAI,KAAK,QAAQ,IAAI,IAAI,IAAI,KAAK,QAAQ;AAAA,IACrF;AACA,kBAAc,MAAM,cAAc;AAClC,kBAAc,qBAAqB,SAAS,mBAAmB,SAAS;AACtE,UAAI,OAAO,OAAO;AAChB,kBAAU,QAAQ,MAAM;AAC1B,iBAAW;AACX,UAAI,YAAY;AACd,eAAO;AAAA,WACJ;AACH,YAAI,OAAO,KAAK;AAChB,YAAI,UAAU,IAAI;AAChB,cAAI,MAAM,KAAK;AACf,iBAAO,SAAS,QAAQ,UAAU,QAAQ,KAAK,SAAS,SAAS,SAAS,KAAK,QAAQ;AAAA,QACzF,WAAW,YAAY;AACrB,iBAAO,SAAS,MAAM,GAAG,KAAK,QAAQ;AAAA;AAEtC,iBAAO,SAAS,SAAS,UAAU,IAAI,GAAG,KAAK,QAAQ;AAAA,MAC3D;AAAA,IACF;AACA,kBAAc,OAAO,cAAc;AACnC,kBAAc,QAAQ,cAAc;AACpC,kBAAc,WAAW,SAAS,WAAW;AAC3C,UAAI,CAAC,KAAK;AACR,eAAO;AACT,aAAO,SAAS,KAAK,KAAK,KAAK,MAAM,KAAK;AAAA,IAC5C;AACA,kBAAc,aAAa,SAAS,aAAa;AAC/C,UAAI,KAAK;AACP,eAAO;AACT,aAAO,SAAS,KAAK,KAAK,KAAK,MAAM,IAAI;AAAA,IAC3C;AACA,kBAAc,UAAU,SAAS,QAAQ,IAAI;AAC3C,aAAO,KAAK,KAAK,UAAU,IAAI,KAAK,UAAU;AAAA,IAChD;AACA,kBAAc,YAAY,SAAS,YAAY;AAC7C,UAAI,KAAK,KAAK,MAAM,KAAK,KAAK;AAC9B,aAAO;AAAA,QACL,KAAK;AAAA,QACL,OAAO,IAAI;AAAA,QACX,OAAO,KAAK;AAAA,QACZ,OAAO;AAAA,QACP,KAAK;AAAA,QACL,OAAO,IAAI;AAAA,QACX,OAAO,KAAK;AAAA,QACZ,OAAO;AAAA,MACT;AAAA,IACF;AACA,kBAAc,YAAY,SAAS,YAAY;AAC7C,UAAI,KAAK,KAAK,MAAM,KAAK,KAAK;AAC9B,aAAO;AAAA,QACL,OAAO;AAAA,QACP,OAAO,KAAK;AAAA,QACZ,OAAO,IAAI;AAAA,QACX,KAAK;AAAA,QACL,OAAO;AAAA,QACP,OAAO,KAAK;AAAA,QACZ,OAAO,IAAI;AAAA,QACX,KAAK;AAAA,MACP;AAAA,IACF;AACA,UAAM,YAAY,SAAS,UAAU,OAAO,UAAU,IAAI;AACxD,aAAO,KAAK,MAAM,YAAY,OAAO,QAAQ,IAAI,MAAM,YAAY,OAAO,QAAQ;AAAA,IACpF;AACA,UAAM,cAAc,SAAS,YAAY,OAAO,UAAU;AACxD,aAAO,IAAI;AAAA,QACT,MAAM,KAAK,MAAM,MAAM,IAAI,MAAM,MAAM,KAAK,MAAM,MAAM;AAAA,QACxD,MAAM,KAAK,MAAM,MAAM,IAAI,MAAM,MAAM,KAAK,MAAM,MAAM;AAAA,QACxD;AAAA,MACF;AAAA,IACF;AACA,UAAM,cAAc,SAAS,YAAY,OAAO,UAAU;AACxD,aAAO,IAAI;AAAA,QACT,MAAM,MAAM,KAAK,MAAM,MAAM,KAAK,MAAM,MAAM,IAAI,MAAM;AAAA,QACxD,MAAM,MAAM,KAAK,MAAM,MAAM,KAAK,MAAM,MAAM,IAAI,MAAM;AAAA,QACxD;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF,CAAC;AAGD,IAAI,kBAAkB,WAAW;AAAA,EAC/B,sFAAsF;AAAA,EACtF;AACF,CAAC;AAGD,IAAI,eAAe,WAAW;AAAA,EAC5B,oBAAoB;AAAA,EACpB;AACF,CAAC;AAGD,IAAI,eAAe,WAAW;AAAA,EAC5B,0EAA0E,SAAS,QAAQ;AACzF,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,KAAK,MAAM;AAClB,YAAI,KAAK,MAAM,OAAO,KAAK;AAC3B,WAAG,OAAO,WAAW;AACnB,cAAI,KAAK,UAAU,GAAG,KAAK,GAAG,IAAI;AAClC,aAAG,KAAK,GAAG;AACX,aAAG,KAAK,GAAG;AACX,iBAAO,GAAG,KAAK,MAAM,GAAG,IAAI,KAAK;AAAA,QACnC;AACA,WAAG,IAAI;AACP,WAAG,KAAK,KAAK,GAAG;AAChB,WAAG,KAAK,KAAK,GAAG;AAChB,WAAG,KAAK,KAAK,GAAG;AAChB,WAAG,MAAM,KAAK,IAAI;AAClB,YAAI,GAAG,KAAK,GAAG;AACb,aAAG,MAAM;AAAA,QACX;AACA,WAAG,MAAM,KAAK,IAAI;AAClB,YAAI,GAAG,KAAK,GAAG;AACb,aAAG,MAAM;AAAA,QACX;AACA,WAAG,MAAM,KAAK,IAAI;AAClB,YAAI,GAAG,KAAK,GAAG;AACb,aAAG,MAAM;AAAA,QACX;AACA,eAAO;AAAA,MACT;AACA,eAASC,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,KAAK,EAAE;AACV,WAAG,KAAK,EAAE;AACV,WAAG,KAAK,EAAE;AACV,eAAO;AAAA,MACT;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,KAAK,IAAI,KAAK,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,GAAG;AAC/D,aAAK,QAAQ,WAAW;AACtB,iBAAO,GAAG,KAAK,IAAI,aAAa;AAAA,QAClC;AACA,aAAK,SAAS,WAAW;AACvB,iBAAO,KAAK,KAAK,KAAK,IAAI,UAAU,KAAK;AAAA,QAC3C;AACA,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,OAAO,SAAS;AAClB,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,eAAS,OAAO;AACd,YAAI,KAAK;AACT,YAAI,OAAO,SAAS,MAAM;AACxB,iBAAO,OAAO,IAAI;AAClB,mBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,kBAAM,KAAK,WAAW,EAAE;AACxB,gBAAI,IAAI,sBAAsB;AAC9B,iBAAK,MAAM;AACX,iBAAK;AACL,iBAAK;AACL,iBAAK,MAAM;AACX,iBAAK;AACL,kBAAM,IAAI;AAAA,UACZ;AACA,kBAAQ,OAAO,KAAK;AAAA,QACtB;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,OAAO;AAAA,MACd;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,iBAAiB,WAAW;AAAA,EAC9B,4EAA4E,SAAS,QAAQ;AAC3F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK,MAAM,UAAU;AACzB,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,OAAO,WAAW;AACnB,cAAI,KAAK,GAAG,IAAI,GAAG,KAAK;AACxB,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,iBAAO,GAAG,KAAK,GAAG,MAAM,KAAK,KAAK,OAAO;AAAA,QAC3C;AACA,YAAI,UAAU,OAAO,IAAI;AACvB,aAAG,IAAI;AAAA,QACT,OAAO;AACL,qBAAW;AAAA,QACb;AACA,iBAAS,IAAI,GAAG,IAAI,QAAQ,SAAS,IAAI,KAAK;AAC5C,aAAG,KAAK,QAAQ,WAAW,CAAC,IAAI;AAChC,aAAG,KAAK;AAAA,QACV;AAAA,MACF;AACA,eAASA,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,eAAO;AAAA,MACT;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,OAAO,SAAS;AAClB,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,SAAS;AAAA,MAChB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,iBAAiB,WAAW;AAAA,EAC9B,4EAA4E,SAAS,QAAQ;AAC3F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK,MAAM,UAAU;AACzB,WAAG,OAAO,WAAW;AACnB,cAAI,KAAK,GAAG,IAAI,GAAG,MAAM;AACzB,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,aAAG,IAAI,GAAG;AACV,kBAAQ,GAAG,IAAI,GAAG,IAAI,SAAS,MAAM,GAAG,IAAI,GAAG,IAAI,GAAG,KAAK,KAAK,KAAK,MAAM,MAAM;AAAA,QACnF;AACA,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI;AACP,YAAI,UAAU,OAAO,IAAI;AACvB,aAAG,IAAI;AAAA,QACT,OAAO;AACL,qBAAW;AAAA,QACb;AACA,iBAAS,IAAI,GAAG,IAAI,QAAQ,SAAS,IAAI,KAAK;AAC5C,aAAG,KAAK,QAAQ,WAAW,CAAC,IAAI;AAChC,cAAI,KAAK,QAAQ,QAAQ;AACvB,eAAG,IAAI,GAAG,KAAK,KAAK,GAAG,MAAM;AAAA,UAC/B;AACA,aAAG,KAAK;AAAA,QACV;AAAA,MACF;AACA,eAASA,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,eAAO;AAAA,MACT;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,OAAO,SAAS;AAClB,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,SAAS;AAAA,MAChB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,oBAAoB,WAAW;AAAA,EACjC,+EAA+E,SAAS,QAAQ;AAC9F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK;AACT,WAAG,OAAO,WAAW;AACnB,cAAI,IAAI,GAAG,GAAG,KAAK,GAAG,GAAG,IAAI,GAAG;AAChC,eAAK,EAAE;AACP,gBAAM,OAAO;AACb,cAAI,KAAK,MAAM;AACf,eAAK,EAAE,KAAK,IAAI;AAChB,eAAK,KAAK,OAAO;AACjB,eAAK,EAAE,KAAK,IAAI;AAChB,eAAK,KAAK,OAAO;AACjB,eAAK,EAAE,KAAK,IAAI;AAChB,eAAK,KAAK,MAAM;AAChB,eAAK,EAAE,KAAK,IAAI;AAChB,eAAK,KAAK,MAAM;AAChB,eAAK,KAAK,MAAM;AAChB,YAAE,MAAM;AACR,aAAG,IAAI,KAAK,IAAI;AAChB,iBAAO;AAAA,QACT;AACA,iBAASC,OAAM,KAAK,OAAO;AACzB,cAAI,GAAG,GAAG,IAAI,CAAC;AACf,cAAI,WAAW,QAAQ,IAAI;AACzB,gBAAI,EAAE,KAAK;AAAA,UACb,OAAO;AACL,oBAAQ,KAAK;AACb,iBAAK,IAAI,GAAG,IAAI,MAAM,QAAQ,EAAE,GAAG;AACjC,gBAAE,IAAI,KAAK,EAAE,IAAI,MAAM,KAAK,MAAM,WAAW,CAAC,IAAI,EAAE,IAAI,IAAI,MAAM;AAAA,YACpE;AAAA,UACF;AACA,iBAAO,EAAE,SAAS;AAChB,cAAE,KAAK,CAAC;AACV,eAAK,IAAI,GAAG,IAAI,KAAK,EAAE,OAAO,GAAG,EAAE;AACjC;AACF,cAAI,KAAK;AACP,gBAAI,EAAE,KAAK;AAAA;AAEX,gBAAI,EAAE;AACR,cAAI,IAAI;AACR,cAAI,IAAI;AACR,eAAK,IAAI,KAAK,IAAI,GAAG,EAAE,GAAG;AACxB,gBAAI,KAAK;AAAA,UACX;AAAA,QACF;AACA,QAAAA,OAAM,IAAI,IAAI;AAAA,MAChB;AACA,eAASD,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE,EAAE,MAAM;AACjB,WAAG,IAAI,EAAE;AACT,eAAO;AAAA,MACT;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,QAAQ;AACV,iBAAO,CAAC,IAAI,KAAK;AACnB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,MAAM;AACR,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,YAAY;AAAA,MACnB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,kBAAkB,WAAW;AAAA,EAC/B,6EAA6E,SAAS,QAAQ;AAC5F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK;AACT,WAAG,OAAO,WAAW;AACnB,cAAI,IAAI,GAAG,GAAG,IAAI,GAAG,GAAG,KAAK,GAAG,GAAG,IAAI;AACvC,aAAG,IAAI,IAAI,IAAI,aAAa;AAC5B,cAAI,EAAE,KAAK,KAAK;AAChB,eAAK,EAAE,KAAK,KAAK,IAAI;AACrB,eAAK,KAAK;AACV,gBAAM,MAAM;AACZ,eAAK,MAAM;AACX,gBAAM,OAAO;AACb,cAAI,EAAE,MAAM,IAAI;AAChB,aAAG,IAAI;AACP,iBAAO,KAAK,IAAI,MAAM,MAAM;AAAA,QAC9B;AACA,iBAASC,OAAM,KAAK,OAAO;AACzB,cAAI,IAAI,GAAG,IAAI,GAAG,GAAG,IAAI,CAAC,GAAG,QAAQ;AACrC,cAAI,WAAW,QAAQ,IAAI;AACzB,gBAAI;AACJ,oBAAQ;AAAA,UACV,OAAO;AACL,oBAAQ,QAAQ;AAChB,gBAAI;AACJ,oBAAQ,KAAK,IAAI,OAAO,MAAM,MAAM;AAAA,UACtC;AACA,eAAK,KAAK,GAAG,IAAI,KAAK,IAAI,OAAO,EAAE,GAAG;AACpC,gBAAI;AACF,mBAAK,MAAM,YAAY,IAAI,MAAM,MAAM,MAAM;AAC/C,gBAAI,MAAM;AACR,kBAAI;AACN,iBAAK,KAAK;AACV,iBAAK,MAAM;AACX,iBAAK,KAAK;AACV,iBAAK,MAAM;AACX,gBAAI,KAAK,GAAG;AACV,kBAAI,IAAI,aAAa;AACrB,mBAAK,EAAE,IAAI,QAAQ,IAAI;AACvB,mBAAK,KAAK,KAAK,KAAK,IAAI;AAAA,YAC1B;AAAA,UACF;AACA,cAAI,MAAM,KAAK;AACb,eAAG,SAAS,MAAM,UAAU,KAAK,OAAO;AAAA,UAC1C;AACA,eAAK;AACL,eAAK,IAAI,IAAI,KAAK,IAAI,GAAG,EAAE,GAAG;AAC5B,gBAAI,EAAE,KAAK,KAAK;AAChB,iBAAK,EAAE,KAAK,KAAK,IAAI;AACrB,iBAAK,KAAK;AACV,kBAAM,MAAM;AACZ,iBAAK,MAAM;AACX,kBAAM,OAAO;AACb,cAAE,MAAM,IAAI;AAAA,UACd;AACA,cAAI,IAAI;AACR,cAAI,IAAI;AACR,cAAI,IAAI;AAAA,QACV;AACA,QAAAA,OAAM,IAAI,IAAI;AAAA,MAChB;AACA,eAASD,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE,EAAE,MAAM;AACjB,eAAO;AAAA,MACT;AACA;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,QAAQ;AACV,iBAAO,CAAC,IAAI,KAAK;AACnB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,MAAM;AACR,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,UAAU;AAAA,MACjB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,iBAAiB,WAAW;AAAA,EAC9B,4EAA4E,SAAS,QAAQ;AAC3F,KAAC,SAAS,SAAS,SAAS,SAAS;AACnC,eAAS,OAAO,MAAM;AACpB,YAAI,KAAK,MAAM,UAAU;AACzB,WAAG,OAAO,WAAW;AACnB,cAAI,IAAI,GAAG,GAAG,IAAI,GAAG,GAAG,IAAI,GAAG,GAAG,IAAI,GAAG;AACzC,cAAI,KAAK,KAAK,MAAM,IAAI;AACxB,cAAI,IAAI,IAAI;AACZ,cAAI,KAAK,KAAK,MAAM,IAAI;AACxB,cAAI,IAAI,IAAI;AACZ,aAAG,IAAI,IAAI,KAAK,KAAK,MAAM,KAAK;AAChC,aAAG,IAAI,IAAI,IAAI,IAAI;AACnB,aAAG,IAAI,KAAK,KAAK,MAAM,KAAK;AAC5B,iBAAO,GAAG,IAAI,IAAI,IAAI;AAAA,QACxB;AACA,WAAG,IAAI;AACP,WAAG,IAAI;AACP,WAAG,IAAI,aAAa;AACpB,WAAG,IAAI;AACP,YAAI,SAAS,KAAK,MAAM,IAAI,GAAG;AAC7B,aAAG,IAAI,OAAO,aAAa;AAC3B,aAAG,IAAI,OAAO;AAAA,QAChB,OAAO;AACL,qBAAW;AAAA,QACb;AACA,iBAAS,IAAI,GAAG,IAAI,QAAQ,SAAS,IAAI,KAAK;AAC5C,aAAG,KAAK,QAAQ,WAAW,CAAC,IAAI;AAChC,aAAG,KAAK;AAAA,QACV;AAAA,MACF;AACA,eAASA,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,eAAO;AAAA,MACT;AACA;AACA,eAAS,KAAK,MAAM,MAAM;AACxB,YAAI,KAAK,IAAI,OAAO,IAAI,GAAG,QAAQ,QAAQ,KAAK,OAAO,OAAO,WAAW;AACvE,kBAAQ,GAAG,KAAK,MAAM,KAAK;AAAA,QAC7B;AACA,aAAK,SAAS,WAAW;AACvB,aAAG;AACD,gBAAI,MAAM,GAAG,KAAK,MAAM,IAAI,OAAO,GAAG,KAAK,MAAM,KAAK,YAAY,UAAU,MAAM,QAAQ,KAAK;AAAA,UACjG,SAAS,WAAW;AACpB,iBAAO;AAAA,QACT;AACA,aAAK,QAAQ,GAAG;AAChB,aAAK,QAAQ;AACb,YAAI,OAAO;AACT,cAAI,OAAO,SAAS;AAClB,YAAAA,MAAK,OAAO,EAAE;AAChB,eAAK,QAAQ,WAAW;AACtB,mBAAOA,MAAK,IAAI,CAAC,CAAC;AAAA,UACpB;AAAA,QACF;AACA,eAAO;AAAA,MACT;AACA,UAAI,WAAW,QAAQ,SAAS;AAC9B,gBAAQ,UAAU;AAAA,MACpB,WAAW,WAAW,QAAQ,KAAK;AACjC,gBAAQ,WAAW;AACjB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,SAAS;AAAA,MAChB;AAAA,IACF;AAAA,MACE;AAAA,MACA,OAAO,UAAU,YAAY;AAAA,MAC7B,OAAO,UAAU,cAAc;AAAA,IACjC;AAAA,EACF;AACF,CAAC;AAGD,IAAI,iBAAiB,WAAW;AAAA,EAC9B,sBAAsB;AAAA,EACtB;AACF,CAAC;AAGD,IAAI,qBAAqB,WAAW;AAAA,EAClC,4EAA4E,SAAS,QAAQ;AAC3F,KAAC,SAAS,SAAS,OAAO,MAAM;AAC9B,UAAI,QAAQ,KAAK,SAAS,GAAG,SAAS,IAAI,UAAU,UAAU,aAAa,KAAK,IAAI,OAAO,MAAM,GAAG,eAAe,KAAK,IAAI,GAAG,MAAM,GAAG,WAAW,eAAe,GAAGE,QAAO,QAAQ,GAAG;AACvL,eAAS,YAAY,MAAMC,UAAS,UAAU;AAC5C,YAAI,MAAM,CAAC;AACX,QAAAA,WAAUA,YAAW,OAAO,EAAE,SAAS,KAAK,IAAIA,YAAW,CAAC;AAC5D,YAAI,YAAY,OAAO;AAAA,UACrBA,SAAQ,UAAU,CAAC,MAAM,SAAS,KAAK,CAAC,IAAI,QAAQ,OAAO,SAAS,IAAI;AAAA,UACxE;AAAA,QACF,GAAG,GAAG;AACN,YAAI,OAAO,IAAI,KAAK,GAAG;AACvB,YAAI,OAAO,WAAW;AACpB,cAAI,KAAK,KAAK,EAAE,MAAM,GAAG,IAAI,YAAY,IAAI;AAC7C,iBAAO,KAAK,cAAc;AACxB,kBAAM,KAAK,KAAK;AAChB,iBAAK;AACL,gBAAI,KAAK,EAAE,CAAC;AAAA,UACd;AACA,iBAAO,MAAM,UAAU;AACrB,kBAAM;AACN,iBAAK;AACL,mBAAO;AAAA,UACT;AACA,kBAAQ,KAAK,KAAK;AAAA,QACpB;AACA,aAAK,QAAQ,WAAW;AACtB,iBAAO,KAAK,EAAE,CAAC,IAAI;AAAA,QACrB;AACA,aAAK,QAAQ,WAAW;AACtB,iBAAO,KAAK,EAAE,CAAC,IAAI;AAAA,QACrB;AACA,aAAK,SAAS;AACd,eAAO,SAAS,KAAK,CAAC,GAAG,KAAK;AAC9B,gBAAQA,SAAQ,QAAQ,YAAY,SAAS,OAAO,OAAO,cAAc,OAAO;AAC9E,cAAI,OAAO;AACT,gBAAI,MAAM,GAAG;AACX,cAAAH,MAAK,OAAO,IAAI;AAAA,YAClB;AACA,kBAAM,QAAQ,WAAW;AACvB,qBAAOA,MAAK,MAAM,CAAC,CAAC;AAAA,YACtB;AAAA,UACF;AACA,cAAI,cAAc;AAChB,iBAAK,WAAW;AAChB,mBAAO;AAAA,UACT;AACE,mBAAO;AAAA,QACX;AAAA,UACE;AAAA,UACA;AAAA,UACA,YAAYG,WAAUA,SAAQ,SAAS,QAAQ;AAAA,UAC/CA,SAAQ;AAAA,QACV;AAAA,MACF;AACA,eAAS,KAAK,KAAK;AACjB,YAAI,IAAI,SAAS,IAAI,QAAQ,KAAK,MAAM,KAAK,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,KAAK,GAAG,IAAI,CAAC;AAClF,YAAI,CAAC,QAAQ;AACX,gBAAM,CAAC,QAAQ;AAAA,QACjB;AACA,eAAO,KAAK,OAAO;AACjB,aAAG,MAAM;AAAA,QACX;AACA,aAAK,KAAK,GAAG,KAAK,OAAO,MAAM;AAC7B,aAAG,MAAM,GAAG,IAAID,QAAO,IAAI,IAAI,KAAK,WAAW,KAAK,GAAG;AACvD,aAAG,KAAK;AAAA,QACV;AACA,SAAC,GAAG,IAAI,SAASE,SAAQ;AACvB,cAAI,IAAI,KAAK,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG;AAC9C,iBAAOA,WAAU;AACf,iBAAK,GAAG,KAAKF,QAAO,KAAK;AACzB,iBAAK,KAAK,QAAQ,GAAGA,SAAQ,GAAG,MAAM,GAAG,KAAKA,QAAO,KAAK,QAAQ,GAAG,MAAM;AAAA,UAC7E;AACA,aAAG,IAAI;AACP,aAAG,IAAI;AACP,iBAAO;AAAA,QACT,GAAG,KAAK;AAAA,MACV;AACA,eAASF,MAAK,GAAG,IAAI;AACnB,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE;AACT,WAAG,IAAI,EAAE,EAAE,MAAM;AACjB,eAAO;AAAA,MACT;AACA;AACA,eAAS,SAAS,KAAK,OAAO;AAC5B,YAAI,SAAS,CAAC,GAAG,MAAM,OAAO,KAAK;AACnC,YAAI,SAAS,OAAO,UAAU;AAC5B,eAAK,QAAQ,KAAK;AAChB,gBAAI;AACF,qBAAO,KAAK,SAAS,IAAI,OAAO,QAAQ,CAAC,CAAC;AAAA,YAC5C,SAAS,IAAP;AAAA,YACF;AAAA,UACF;AAAA,QACF;AACA,eAAO,OAAO,SAAS,SAAS,OAAO,WAAW,MAAM,MAAM;AAAA,MAChE;AACA,eAAS,OAAO,MAAM,KAAK;AACzB,YAAI,aAAa,OAAO,IAAI,OAAO,IAAI;AACvC,eAAO,IAAI,WAAW,QAAQ;AAC5B,cAAIE,QAAO,KAAKA,SAAQ,SAAS,IAAIA,QAAO,KAAK,MAAM,WAAW,WAAW,GAAG;AAAA,QAClF;AACA,eAAO,SAAS,GAAG;AAAA,MACrB;AACA,eAAS,WAAW;AAClB,YAAI;AACF,cAAI;AACJ,cAAI,eAAe,MAAM,WAAW,cAAc;AAChD,kBAAM,IAAI,KAAK;AAAA,UACjB,OAAO;AACL,kBAAM,IAAI,WAAW,KAAK;AAC1B,aAAC,QAAQ,UAAU,QAAQ,UAAU,gBAAgB,GAAG;AAAA,UAC1D;AACA,iBAAO,SAAS,GAAG;AAAA,QACrB,SAAS,IAAP;AACA,cAAI,UAAU,QAAQ,WAAW,UAAU,WAAW,QAAQ;AAC9D,iBAAO,CAAC,CAAC,IAAI,KAAK,GAAG,SAAS,SAAS,QAAQ,QAAQ,SAAS,KAAK,CAAC;AAAA,QACxE;AAAA,MACF;AACA,eAAS,SAAS,GAAG;AACnB,eAAO,OAAO,aAAa,MAAM,GAAG,CAAC;AAAA,MACvC;AACA,aAAO,KAAK,OAAO,GAAG,KAAK;AAC3B,UAAI,OAAO,UAAU,YAAY,OAAO,SAAS;AAC/C,eAAO,UAAU;AACjB,YAAI;AACF,uBAAa,eAAe;AAAA,QAC9B,SAAS,IAAP;AAAA,QACF;AAAA,MACF,WAAW,OAAO,UAAU,cAAc,OAAO,KAAK;AACpD,eAAO,WAAW;AAChB,iBAAO;AAAA,QACT,CAAC;AAAA,MACH,OAAO;AACL,aAAK,SAAS,WAAW;AAAA,MAC3B;AAAA,IACF;AAAA,MACE,OAAO,SAAS,cAAc,OAAO;AAAA,MACrC,CAAC;AAAA,MACD;AAAA,IACF;AAAA,EACF;AACF,CAAC;AAGD,IAAI,sBAAsB,WAAW;AAAA,EACnC,uEAAuE,SAAS,QAAQ;AACtF,QAAI,QAAQ,aAAa;AACzB,QAAI,SAAS,eAAe;AAC5B,QAAI,SAAS,eAAe;AAC5B,QAAI,YAAY,kBAAkB;AAClC,QAAI,UAAU,gBAAgB;AAC9B,QAAI,SAAS,eAAe;AAC5B,QAAI,KAAK,mBAAmB;AAC5B,OAAG,OAAO;AACV,OAAG,SAAS;AACZ,OAAG,SAAS;AACZ,OAAG,YAAY;AACf,OAAG,UAAU;AACb,OAAG,SAAS;AACZ,WAAO,UAAU;AAAA,EACnB;AACF,CAAC;AAGD,IAAI,yBAAyB,WAAW;AAAA,EACtC,yGAAyG;AAAA,EACzG;AACF,CAAC;AAGD,IAAI,aAAa,WAAW;AAAA,EAC1B,kBAAkB;AAAA,EAClB;AACF,CAAC;AAGD,IAAI,eAAe,WAAW;AAAA,EAC5B,oBAAoB;AAAA,EACpB;AACF,CAAC;AAGD,IAAI,yBAAyB,WAAW;AAAA,EACtC,8BAA8B;AAAA,EAC9B;AACF,CAAC;AAGD,IAAI,qBAAqB,WAAW;AAAA,EAClC,0BAA0B;AAAA,EAC1B;AACF,CAAC;AAGD,IAAI,aAAa,WAAW;AAAA,EAC1B,kBAAkB;AAAA,EAClB;AACF,CAAC;AAGD,IAAI,0CAA0C,WAAW;AAAA,EACvD,4KAA4K,SAAS,QAAQ;AAC3L,QAAI,kCAAkC,MAAM;AAC1C,UAAI,aAAa,OAAO,aAAa,eAAe,SAAS,gBAAgB,SAAS,cAAc,MAAM;AAC1G,UAAI,OAAO,eAAe;AACxB,qBAAa,cAAc;AAC7B,aAAO,SAAS,gCAAgC;AAC9C,yCAAiC,kCAAkC,CAAC;AACpE,iBAAS,mBAAmB;AAC1B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,mBAAmB;AAC1B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,oBAAoB;AAC3B,cAAI,WAAW,UAAU,SAAS;AAChC,uCAA2B,WAAW,MAAM;AAAA,UAC9C;AACA,iBAAO;AAAA,QACT;AACA,YAAI,SAAS,OAAO,mCAAmC,cAAc,iCAAiC,CAAC;AACvG,YAAI,qBAAqB;AACzB,eAAO,WAAW,IAAI,QAAQ,SAAS,SAAS,QAAQ;AACtD,gCAAsB;AACtB,+BAAqB;AAAA,QACvB,CAAC;AACD,YAAI;AACJ,YAAI,OAAO,YAAY,eAAe,QAAQ,WAAW;AACvD,4BAAkB,EAAE,mBAAmB,QAAQ,UAAU,mBAAmB,GAAG,oBAAoB,QAAQ,UAAU,oBAAoB,EAAE;AAAA,QAC7I;AACA,YAAI,kBAAkB,OAAO,OAAO,CAAC,GAAG,MAAM;AAC9C,YAAI,aAAa,CAAC;AAClB,YAAI,cAAc;AAClB,YAAI,QAAQ,CAAC,QAAQ,YAAY;AAC/B,gBAAM;AAAA,QACR;AACA,YAAI,qBAAqB,OAAO,WAAW;AAC3C,YAAI,wBAAwB,OAAO,kBAAkB;AACrD,YAAI,sBAAsB,OAAO,YAAY,YAAY,OAAO,QAAQ,aAAa,YAAY,OAAO,QAAQ,SAAS,SAAS;AAClI,YAAI,yBAAyB,OAAO,6BAA6B;AACjE,YAAI,kBAAkB;AACtB,iBAAS,WAAW,MAAM;AACxB,cAAI,OAAO,eAAe;AACxB,mBAAO,OAAO,cAAc,MAAM,eAAe;AAAA,UACnD;AACA,iBAAO,kBAAkB;AAAA,QAC3B;AACA,YAAI,OAAO,WAAW,YAAY;AAClC,iBAAS,mBAAmB,IAAI;AAC9B,cAAI,cAAc;AAChB;AACF,cAAI,QAAQ;AACZ,cAAI,+BAA+B,KAAK;AAAA,QAC1C;AACA,YAAI;AACJ,YAAI;AACJ,YAAI;AACJ,YAAI,qBAAqB;AACvB,cAAI,uBAAuB;AACzB,8BAAkB,aAAa,EAAE,QAAQ,eAAe,IAAI;AAAA,UAC9D,OAAO;AACL,8BAAkB,YAAY;AAAA,UAChC;AACA,0BAAgB,MAAM;AACpB,gBAAI,CAAC,UAAU;AACb,mBAAK,WAAW;AAChB,yBAAW,aAAa;AAAA,YAC1B;AAAA,UACF;AACA,kBAAQ,SAAS,WAAW,UAAU,QAAQ;AAC5C,0BAAc;AACd,uBAAW,SAAS,aAAa,QAAQ;AACzC,mBAAO,GAAG,aAAa,UAAU,SAAS,SAAS,MAAM;AAAA,UAC3D;AACA,uBAAa,CAAC,aAAa;AACzB,gBAAI,MAAM,MAAM,UAAU,IAAI;AAC9B,gBAAI,CAAC,IAAI,QAAQ;AACf,oBAAM,IAAI,WAAW,GAAG;AAAA,YAC1B;AACA,mBAAO;AAAA,UACT;AACA,sBAAY,CAAC,UAAU,QAAQ,YAAY;AACzC,0BAAc;AACd,uBAAW,SAAS,aAAa,QAAQ;AACzC,eAAG,SAAS,UAAU,SAAS,MAAM,MAAM;AACzC,kBAAI;AACF,wBAAQ,IAAI;AAAA;AAEZ,uBAAO,KAAK,MAAM;AAAA,YACtB,CAAC;AAAA,UACH;AACA,cAAI,QAAQ,QAAQ,SAAS,GAAG;AAC9B,0BAAc,QAAQ,QAAQ,GAAG,QAAQ,OAAO,GAAG;AAAA,UACrD;AACA,uBAAa,QAAQ,QAAQ,MAAM,CAAC;AACpC,kBAAQ,MAAM,qBAAqB,SAAS,IAAI;AAC9C,gBAAI,EAAE,cAAc,aAAa;AAC/B,oBAAM;AAAA,YACR;AAAA,UACF,CAAC;AACD,kBAAQ,MAAM,sBAAsB,SAAS,QAAQ;AACnD,kBAAM;AAAA,UACR,CAAC;AACD,kBAAQ,CAAC,QAAQ,YAAY;AAC3B,gBAAI,iBAAiB,GAAG;AACtB,sBAAQ,cAAc;AACtB,oBAAM;AAAA,YACR;AACA,+BAAmB,OAAO;AAC1B,oBAAQ,QAAQ,MAAM;AAAA,UACxB;AACA,iBAAO,aAAa,WAAW;AAC7B,mBAAO;AAAA,UACT;AACA,cAAI;AACJ,cAAI;AACF,gCAAoB,uBAAuB;AAAA,UAC7C,SAAS,IAAP;AACA,oBAAQ,MAAM,yGAAyG;AACvH,kBAAM;AAAA,UACR;AACA,iBAAO,SAAS,kBAAkB;AAAA,QACpC,WAAW,sBAAsB,uBAAuB;AACtD,cAAI,uBAAuB;AACzB,8BAAkB,KAAK,SAAS;AAAA,UAClC,WAAW,OAAO,aAAa,eAAe,SAAS,eAAe;AACpE,8BAAkB,SAAS,cAAc;AAAA,UAC3C;AACA,cAAI,OAAO,eAAe,eAAe,YAAY;AACnD,8BAAkB;AAAA,UACpB;AACA,cAAI,gBAAgB,QAAQ,OAAO,MAAM,GAAG;AAC1C,8BAAkB,gBAAgB,OAAO,GAAG,gBAAgB,QAAQ,UAAU,EAAE,EAAE,YAAY,GAAG,IAAI,CAAC;AAAA,UACxG,OAAO;AACL,8BAAkB;AAAA,UACpB;AACA,cAAI,CAAC,qBAAqB;AACxB,oBAAQ,CAAC,QAAQ;AACf,kBAAI,MAAM,IAAI,eAAe;AAC7B,kBAAI,KAAK,OAAO,KAAK,KAAK;AAC1B,kBAAI,KAAK,IAAI;AACb,qBAAO,IAAI;AAAA,YACb;AACA,gBAAI,uBAAuB;AACzB,2BAAa,CAAC,QAAQ;AACpB,oBAAI,MAAM,IAAI,eAAe;AAC7B,oBAAI,KAAK,OAAO,KAAK,KAAK;AAC1B,oBAAI,eAAe;AACnB,oBAAI,KAAK,IAAI;AACb,uBAAO,IAAI,WAAW,IAAI,QAAQ;AAAA,cACpC;AAAA,YACF;AACA,wBAAY,CAAC,KAAK,QAAQ,YAAY;AACpC,kBAAI,MAAM,IAAI,eAAe;AAC7B,kBAAI,KAAK,OAAO,KAAK,IAAI;AACzB,kBAAI,eAAe;AACnB,kBAAI,SAAS,MAAM;AACjB,oBAAI,IAAI,UAAU,OAAO,IAAI,UAAU,KAAK,IAAI,UAAU;AACxD,yBAAO,IAAI,QAAQ;AACnB;AAAA,gBACF;AACA,wBAAQ;AAAA,cACV;AACA,kBAAI,UAAU;AACd,kBAAI,KAAK,IAAI;AAAA,YACf;AAAA,UACF;AACA,2BAAiB,CAAC,UAAU,SAAS,QAAQ;AAAA,QAC/C,OAAO;AAAA,QACP;AACA,YAAI,qBAAqB;AACvB,cAAI,OAAO,gBAAgB,aAAa;AACtC,mBAAO,cAAc,mBAAmB,EAAE;AAAA,UAC5C;AAAA,QACF;AACA,YAAI,eAAe,QAAQ,IAAI,KAAK,OAAO;AAC3C,YAAI,kBAAkB,QAAQ,KAAK,KAAK,OAAO;AAC/C,YAAI,qBAAqB;AACvB,wBAAc;AACd,yBAAe,CAAC,QAAQ,GAAG,UAAU,GAAG,MAAM,IAAI;AAClD,4BAAkB,CAAC,QAAQ,GAAG,UAAU,GAAG,MAAM,IAAI;AAAA,QACvD;AACA,YAAI,MAAM,OAAO,YAAY;AAC7B,YAAI,MAAM,OAAO,eAAe;AAChC,eAAO,OAAO,QAAQ,eAAe;AACrC,0BAAkB;AAClB,YAAI,OAAO;AACT,uBAAa,OAAO;AACtB,YAAI,OAAO;AACT,wBAAc,OAAO;AACvB,YAAI,OAAO;AACT,kBAAQ,OAAO;AACjB,YAAI,eAAe;AACnB,iBAAS,SAAS,MAAM;AACtB,cAAI,CAAC,SAAS;AACZ,qBAAS,QAAQ,CAAC;AACpB,cAAI,CAAC,SAAS,MAAM,OAAO;AACzB,qBAAS,MAAM,QAAQ;AACvB,gBAAI,IAAI;AAAA,UACV;AAAA,QACF;AACA,iBAAS,wBAAwB,OAAO,KAAK;AAC3C,cAAI,OAAO,YAAY,aAAa,YAAY;AAC9C,gBAAI,YAAY,EAAE,KAAK,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,MAAM;AACjE,gBAAI,OAAO,EAAE,YAAY,CAAC,GAAG,SAAS,IAAI,MAAM,MAAM,CAAC,IAAI,CAAC,UAAU,IAAI,GAAG,EAAE;AAC/E,qBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,mBAAK,WAAW,KAAK,UAAU,IAAI,IAAI;AAAA,YACzC;AACA,mBAAO,IAAI,YAAY,SAAS,MAAM,KAAK;AAAA,UAC7C;AACA,cAAI,cAAc,CAAC,GAAG,GAAG,GAAG,EAAE;AAC9B,cAAI,SAAS,IAAI,MAAM,GAAG,CAAC;AAC3B,cAAI,WAAW,IAAI,MAAM,CAAC;AAC1B,cAAI,YAAY,EAAE,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,IAAI;AACzD,sBAAY,KAAK,SAAS,MAAM;AAChC,mBAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,EAAE,IAAI;AAC3C,wBAAY,KAAK,UAAU,SAAS,IAAI;AAAA,UAC1C;AACA,cAAI,UAAU,KAAK;AACjB,wBAAY,KAAK,CAAC;AAAA,UACpB,OAAO;AACL,0BAAc,YAAY,OAAO,CAAC,GAAG,UAAU,OAAO,CAAC;AAAA,UACzD;AACA,sBAAY,KAAK,YAAY,SAAS;AACtC,cAAI,QAAQ,IAAI,WAAW,CAAC,GAAG,IAAI,KAAK,KAAK,GAAG,GAAG,GAAG,CAAC,EAAE,OAAO,aAAa,CAAC,GAAG,GAAG,GAAG,GAAG,KAAK,GAAG,KAAK,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC;AACpI,cAAI,UAAU,IAAI,YAAY,OAAO,KAAK;AAC1C,cAAIG,YAAW,IAAI,YAAY,SAAS,SAAS,EAAE,KAAK,EAAE,KAAK,MAAM,EAAE,CAAC;AACxE,cAAI,cAAcA,UAAS,QAAQ;AACnC,iBAAO;AAAA,QACT;AACA,YAAI,mBAAmB,CAAC;AACxB,YAAI;AACJ,iBAAS,oBAAoB;AAC3B,cAAI,iBAAiB,QAAQ;AAC3B,mBAAO,iBAAiB,IAAI;AAAA,UAC9B;AACA,cAAI;AACF,sBAAU,KAAK,CAAC;AAAA,UAClB,SAAS,MAAP;AACA,gBAAI,EAAE,gBAAgB,aAAa;AACjC,oBAAM;AAAA,YACR;AACA,kBAAM;AAAA,UACR;AACA,iBAAO,UAAU,SAAS;AAAA,QAC5B;AACA,iBAAS,eAAe,QAAQD,SAAQ;AACtC,mBAAS,KAAK,QAAQ,KAAK,SAASA,SAAQ,MAAM;AAChD,gBAAI,OAAO,kBAAkB,EAAE;AAC/B,gBAAI,MAAM;AACR,kCAAoB,IAAI,MAAM,EAAE;AAAA,YAClC;AAAA,UACF;AAAA,QACF;AACA,YAAI,WAAW;AACf,YAAI,cAAc,CAAC,UAAU;AAC3B,qBAAW;AAAA,QACb;AACA,YAAI,eAAe,QAAQ;AAC3B,YAAI,gBAAgB,QAAQ;AAC5B,YAAI,0BAA0B,QAAQ;AACtC,YAAI;AACJ,YAAI,OAAO;AACT,uBAAa,OAAO;AACtB,YAAI,gBAAgB,OAAO,oBAAoB;AAC/C,YAAI,OAAO,gBAAgB,UAAU;AACnC,gBAAM,iCAAiC;AAAA,QACzC;AACA,YAAI;AACJ,YAAI;AACJ,YAAI,QAAQ;AACZ,YAAI;AACJ,iBAAS,QAAQ,WAAW,MAAM;AAChC,cAAI,CAAC,WAAW;AACd,kBAAM,IAAI;AAAA,UACZ;AAAA,QACF;AACA,iBAAS,SAAS,OAAO;AACvB,cAAI,QAAQ,OAAO,MAAM;AACzB,iBAAO;AAAA,QACT;AACA,iBAAS,MAAM,OAAO,YAAY,UAAU,MAAM,MAAM;AACtD,cAAI,MAAM,EAAE,UAAU,SAAS,KAAK;AAClC,gBAAI,OAAO;AACX,gBAAI,QAAQ,QAAQ,QAAQ,UAAU,QAAQ,GAAG;AAC/C,kBAAI,OAAO,IAAI,UAAU,KAAK;AAC9B,qBAAO,WAAW,GAAG;AACrB,2BAAa,KAAK,MAAM,GAAG;AAAA,YAC7B;AACA,mBAAO;AAAA,UACT,GAAG,SAAS,SAAS,KAAK;AACxB,gBAAI,OAAO,WAAW,IAAI,MAAM;AAChC,+BAAmB,KAAK,IAAI;AAC5B,mBAAO;AAAA,UACT,EAAE;AACF,mBAAS,mBAAmB,MAAM;AAChC,gBAAI,eAAe;AACjB,qBAAO,aAAa,IAAI;AAC1B,gBAAI,eAAe;AACjB,qBAAO,QAAQ,IAAI;AACrB,mBAAO;AAAA,UACT;AACA,cAAI,QAAQ,SAAS,KAAK;AAC1B,cAAI,QAAQ,CAAC;AACb,cAAI,SAAS;AACb,cAAI,MAAM;AACR,qBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,kBAAI,YAAY,IAAI,SAAS;AAC7B,kBAAI,WAAW;AACb,oBAAI,WAAW;AACb,2BAAS,UAAU;AACrB,sBAAM,MAAM,UAAU,KAAK,GAAG;AAAA,cAChC,OAAO;AACL,sBAAM,MAAM,KAAK;AAAA,cACnB;AAAA,YACF;AAAA,UACF;AACA,cAAI,MAAM,MAAM,MAAM,MAAM,KAAK;AACjC,mBAAS,OAAO,MAAM;AACpB,gBAAI,WAAW;AACb,2BAAa,MAAM;AACrB,mBAAO,mBAAmB,IAAI;AAAA,UAChC;AACA,gBAAM,OAAO,GAAG;AAChB,iBAAO;AAAA,QACT;AACA,iBAAS,MAAM,OAAO,YAAY,UAAU,MAAM;AAChD,qBAAW,YAAY,CAAC;AACxB,cAAI,cAAc,SAAS,MAAM,SAAS,MAAM;AAC9C,mBAAO,SAAS;AAAA,UAClB,CAAC;AACD,cAAI,aAAa,eAAe;AAChC,cAAI,cAAc,eAAe,CAAC,MAAM;AACtC,mBAAO,SAAS,KAAK;AAAA,UACvB;AACA,iBAAO,WAAW;AAChB,mBAAO,MAAM,OAAO,YAAY,UAAU,WAAW,IAAI;AAAA,UAC3D;AAAA,QACF;AACA,YAAI,cAAc;AAClB,iBAAS,mBAAmB,UAAU;AACpC,cAAI,cAAc,IAAI,YAAY,QAAQ;AAC1C,eAAK,SAAS,CAAC,SAAS;AACtB,gBAAI,KAAK,kBAAkB,mBAAmB;AAC5C,qBAAO,IAAI,WAAW,IAAI;AAAA,YAC5B;AACA,mBAAO,YAAY,OAAO,KAAK,aAAa,IAAI;AAAA,UAClD;AAAA,QACF;AACA,YAAI,cAAc,OAAO,gBAAgB,cAAc,IAAI,mBAAmB,MAAM,IAAI;AACxF,iBAAS,kBAAkB,MAAM,KAAK,gBAAgB;AACpD,cAAI,SAAS,MAAM;AACnB,cAAI,SAAS;AACb,iBAAO,KAAK,WAAW,EAAE,UAAU;AACjC,cAAE;AACJ,cAAI,SAAS,MAAM,MAAM,KAAK,YAAY,aAAa;AACrD,mBAAO,YAAY,OAAO,KAAK,SAAS,KAAK,MAAM,CAAC;AAAA,UACtD,OAAO;AACL,gBAAI,MAAM;AACV,mBAAO,MAAM,QAAQ;AACnB,kBAAI,KAAK,KAAK;AACd,kBAAI,EAAE,KAAK,MAAM;AACf,uBAAO,OAAO,aAAa,EAAE;AAC7B;AAAA,cACF;AACA,kBAAI,KAAK,KAAK,SAAS;AACvB,mBAAK,KAAK,QAAQ,KAAK;AACrB,uBAAO,OAAO,cAAc,KAAK,OAAO,IAAI,EAAE;AAC9C;AAAA,cACF;AACA,kBAAI,KAAK,KAAK,SAAS;AACvB,mBAAK,KAAK,QAAQ,KAAK;AACrB,sBAAM,KAAK,OAAO,KAAK,MAAM,IAAI;AAAA,cACnC,OAAO;AACL,sBAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,KAAK,SAAS;AAAA,cAC3D;AACA,kBAAI,KAAK,OAAO;AACd,uBAAO,OAAO,aAAa,EAAE;AAAA,cAC/B,OAAO;AACL,oBAAI,KAAK,KAAK;AACd,uBAAO,OAAO,aAAa,QAAQ,MAAM,IAAI,QAAQ,KAAK,IAAI;AAAA,cAChE;AAAA,YACF;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,aAAa,KAAK,gBAAgB;AACzC,iBAAO,MAAM,kBAAkB,iBAAiB,GAAG,KAAK,cAAc,IAAI;AAAA,QAC5E;AACA,iBAAS,kBAAkB,KAAK,MAAM,QAAQ,iBAAiB;AAC7D,cAAI,EAAE,kBAAkB;AACtB,mBAAO;AACT,cAAI,WAAW;AACf,cAAI,SAAS,SAAS,kBAAkB;AACxC,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,gBAAI,IAAI,IAAI,WAAW,EAAE;AACzB,gBAAI,KAAK,SAAS,KAAK,OAAO;AAC5B,kBAAI,KAAK,IAAI,WAAW,EAAE,EAAE;AAC5B,kBAAI,UAAU,IAAI,SAAS,MAAM,KAAK;AAAA,YACxC;AACA,gBAAI,KAAK,KAAK;AACZ,kBAAI,UAAU;AACZ;AACF,mBAAK,YAAY;AAAA,YACnB,WAAW,KAAK,MAAM;AACpB,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B,WAAW,KAAK,OAAO;AACrB,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,KAAK,IAAI;AAChC,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B,OAAO;AACL,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,KAAK,KAAK;AACjC,mBAAK,YAAY,MAAM,KAAK,IAAI;AAChC,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B;AAAA,UACF;AACA,eAAK,UAAU;AACf,iBAAO,SAAS;AAAA,QAClB;AACA,iBAAS,aAAa,KAAK,QAAQ,iBAAiB;AAClD,iBAAO,kBAAkB,KAAK,iBAAiB,GAAG,QAAQ,eAAe;AAAA,QAC3E;AACA,iBAAS,gBAAgB,KAAK;AAC5B,cAAI,MAAM;AACV,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,gBAAI,IAAI,IAAI,WAAW,EAAE;AACzB,gBAAI,KAAK,SAAS,KAAK;AACrB,kBAAI,UAAU,IAAI,SAAS,MAAM,IAAI,WAAW,EAAE,EAAE,IAAI;AAC1D,gBAAI,KAAK;AACP,gBAAE;AAAA,qBACK,KAAK;AACZ,qBAAO;AAAA,qBACA,KAAK;AACZ,qBAAO;AAAA;AAEP,qBAAO;AAAA,UACX;AACA,iBAAO;AAAA,QACT;AACA,YAAI,eAAe,OAAO,gBAAgB,cAAc,IAAI,mBAAmB,UAAU,IAAI;AAC7F,iBAAS,mBAAmB,QAAQ,SAAS;AAC3C,2BAAiB,EAAE,IAAI,QAAQ,OAAO;AAAA,QACxC;AACA,iBAAS,mBAAmB,KAAK,SAAS,aAAa;AACrD,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,6BAAiB,EAAE,aAAa,KAAK,IAAI,WAAW,EAAE;AAAA,UACxD;AACA,cAAI,CAAC;AACH,6BAAiB,EAAE,WAAW,KAAK;AAAA,QACvC;AACA,iBAAS,QAAQ,GAAG,UAAU;AAC5B,cAAI,IAAI,WAAW,GAAG;AACpB,iBAAK,WAAW,IAAI;AAAA,UACtB;AACA,iBAAO;AAAA,QACT;AACA,YAAI,SAAS,OAAO,QAAQ,QAAQ,SAAS,QAAQ,SAAS,SAAS;AACvE,YAAI,wBAAwB;AAC1B,oBAAU,OAAO;AAAA,QACnB;AACA,iBAAS,2BAA2B,KAAK;AACvC,oBAAU;AACV,iBAAO,WAAW,QAAQ,IAAI,UAAU,GAAG;AAC3C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,aAAa,UAAU,IAAI,YAAY,GAAG;AACjD,iBAAO,aAAa,UAAU,IAAI,YAAY,GAAG;AACjD,iBAAO,aAAa,UAAU,IAAI,aAAa,GAAG;AAClD,iBAAO,aAAa,UAAU,IAAI,aAAa,GAAG;AAAA,QACpD;AACA,YAAI,iBAAiB,OAAO,qBAAqB;AACjD,YAAI,wBAAwB;AAC1B,uBAAa,OAAO;AACpB,oBAAU,OAAO;AAAA,QACnB,OAAO;AACL,cAAI,OAAO,eAAe;AACxB,yBAAa,OAAO;AAAA,UACtB,OAAO;AACL,yBAAa,IAAI,YAAY,OAAO,EAAE,WAAW,iBAAiB,OAAO,WAAW,aAAa,OAAO,UAAU,KAAK,CAAC;AACxH,gBAAI,EAAE,WAAW,kBAAkB,oBAAoB;AACrD,kBAAI,6NAA6N;AACjO,kBAAI,qBAAqB;AACvB,wBAAQ,IAAI,mHAAmH;AAAA,cACjI;AACA,oBAAM,MAAM,YAAY;AAAA,YAC1B;AAAA,UACF;AAAA,QACF;AACA,YAAI,YAAY;AACd,oBAAU,WAAW;AAAA,QACvB;AACA,yBAAiB,QAAQ;AACzB,mCAA2B,OAAO;AAClC,YAAI;AACJ,YAAI,eAAe,CAAC;AACpB,YAAI,aAAa,CAAC;AAClB,YAAI,aAAa,CAAC;AAClB,YAAI,gBAAgB,CAAC;AACrB,YAAI,qBAAqB;AACzB,YAAI,gBAAgB;AACpB,YAAI,0BAA0B;AAC9B,iBAAS,mBAAmB;AAC1B,iBAAO,iBAAiB,0BAA0B;AAAA,QACpD;AACA,iBAAS,SAAS;AAChB,cAAI,OAAO,WAAW;AACpB,gBAAI,OAAO,OAAO,aAAa;AAC7B,qBAAO,YAAY,CAAC,OAAO,SAAS;AACtC,mBAAO,OAAO,UAAU,QAAQ;AAC9B,0BAAY,OAAO,UAAU,MAAM,CAAC;AAAA,YACtC;AAAA,UACF;AACA,+BAAqB,YAAY;AAAA,QACnC;AACA,iBAAS,cAAc;AACrB,+BAAqB;AACrB,cAAI;AACF;AACF,+BAAqB,UAAU;AAAA,QACjC;AACA,iBAAS,cAAc;AACrB,cAAI;AACF;AACF,kBAAQ,oBAAoB;AAC5B,0BAAgB;AAAA,QAClB;AACA,iBAAS,UAAU;AACjB,cAAI;AACF;AACF,cAAI,OAAO,YAAY;AACrB,gBAAI,OAAO,OAAO,cAAc;AAC9B,qBAAO,aAAa,CAAC,OAAO,UAAU;AACxC,mBAAO,OAAO,WAAW,QAAQ;AAC/B,2BAAa,OAAO,WAAW,MAAM,CAAC;AAAA,YACxC;AAAA,UACF;AACA,+BAAqB,aAAa;AAAA,QACpC;AACA,iBAAS,YAAY,IAAI;AACvB,uBAAa,QAAQ,EAAE;AAAA,QACzB;AACA,iBAAS,UAAU,IAAI;AACrB,qBAAW,QAAQ,EAAE;AAAA,QACvB;AACA,iBAAS,aAAa,IAAI;AACxB,wBAAc,QAAQ,EAAE;AAAA,QAC1B;AACA,YAAI,kBAAkB;AACtB,YAAI,uBAAuB;AAC3B,YAAI,wBAAwB;AAC5B,iBAAS,iBAAiB,IAAI;AAC5B;AACA,cAAI,OAAO,2BAA2B;AACpC,mBAAO,0BAA0B,eAAe;AAAA,UAClD;AAAA,QACF;AACA,iBAAS,oBAAoB,IAAI;AAC/B;AACA,cAAI,OAAO,2BAA2B;AACpC,mBAAO,0BAA0B,eAAe;AAAA,UAClD;AACA,cAAI,mBAAmB,GAAG;AACxB,gBAAI,yBAAyB,MAAM;AACjC,4BAAc,oBAAoB;AAClC,qCAAuB;AAAA,YACzB;AACA,gBAAI,uBAAuB;AACzB,kBAAI,WAAW;AACf,sCAAwB;AACxB,uBAAS;AAAA,YACX;AAAA,UACF;AAAA,QACF;AACA,eAAO,qBAAqB,CAAC;AAC7B,eAAO,qBAAqB,CAAC;AAC7B,iBAAS,MAAM,MAAM;AACnB,cAAI,wBAAwB;AAC1B,wBAAY,EAAE,OAAO,WAAW,OAAO,KAAK,CAAC;AAAA,UAC/C,OAAO;AACL,gBAAI,OAAO,YAAY;AACrB,qBAAO,WAAW,IAAI;AAAA,YACxB;AAAA,UACF;AACA,iBAAO,aAAa,OAAO;AAC3B,cAAI,IAAI;AACR,kBAAQ;AACR,uBAAa;AACb,kBAAQ;AACR,cAAI,KAAK,IAAI,YAAY,aAAa,IAAI;AAC1C,6BAAmB,EAAE;AACrB,gBAAM;AAAA,QACR;AACA,YAAI,gBAAgB;AACpB,iBAAS,UAAU,UAAU;AAC3B,iBAAO,SAAS,WAAW,aAAa;AAAA,QAC1C;AACA,iBAAS,UAAU,UAAU;AAC3B,iBAAO,SAAS,WAAW,SAAS;AAAA,QACtC;AACA,YAAI;AACJ,yBAAiB;AACjB,YAAI,CAAC,UAAU,cAAc,GAAG;AAC9B,2BAAiB,WAAW,cAAc;AAAA,QAC5C;AACA,iBAAS,UAAU,MAAM;AACvB,cAAI;AACF,gBAAI,QAAQ,kBAAkB,YAAY;AACxC,qBAAO,IAAI,WAAW,UAAU;AAAA,YAClC;AACA,gBAAI,YAAY;AACd,qBAAO,WAAW,IAAI;AAAA,YACxB,OAAO;AACL,oBAAM;AAAA,YACR;AAAA,UACF,SAAS,MAAP;AACA,kBAAM,IAAI;AAAA,UACZ;AAAA,QACF;AACA,iBAAS,mBAAmB;AAC1B,cAAI,CAAC,eAAe,sBAAsB,wBAAwB;AAChE,gBAAI,OAAO,UAAU,cAAc,CAAC,UAAU,cAAc,GAAG;AAC7D,qBAAO,MAAM,gBAAgB,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,SAAS,UAAU;AACnF,oBAAI,CAAC,SAAS,OAAO;AACnB,wBAAM,yCAAyC,iBAAiB;AAAA,gBAClE;AACA,uBAAO,SAAS,eAAe;AAAA,cACjC,CAAC,EAAE,MAAM,WAAW;AAClB,uBAAO,UAAU,cAAc;AAAA,cACjC,CAAC;AAAA,YACH,OAAO;AACL,kBAAI,WAAW;AACb,uBAAO,IAAI,QAAQ,SAAS,SAAS,QAAQ;AAC3C,4BAAU,gBAAgB,SAAS,UAAU;AAC3C,4BAAQ,IAAI,WAAW,QAAQ,CAAC;AAAA,kBAClC,GAAG,MAAM;AAAA,gBACX,CAAC;AAAA,cACH;AAAA,YACF;AAAA,UACF;AACA,iBAAO,QAAQ,QAAQ,EAAE,KAAK,WAAW;AACvC,mBAAO,UAAU,cAAc;AAAA,UACjC,CAAC;AAAA,QACH;AACA,iBAAS,aAAa;AACpB,cAAI,OAAO,EAAE,OAAO,eAAe,0BAA0B,cAAc;AAC3E,mBAAS,gBAAgBC,WAAU,SAAS;AAC1C,gBAAI,WAAWA,UAAS;AACxB,mBAAO,SAAS;AAChB,4BAAgB,OAAO,OAAO,sBAAsB;AACpD,wBAAY,OAAO,OAAO;AAC1B,sBAAU,OAAO,OAAO,oBAAoB;AAC5C,yBAAa;AACb,gBAAI,CAAC,wBAAwB;AAC3B,kBAAI,mBAAmB,QAAQ,cAAc;AAC7C,sBAAQ,cAAc,QAAQ,SAAS,GAAG;AACxC,wBAAQ,uBAAuB,GAAG,WAAW;AAC3C,sBAAI,CAAC,EAAE;AACL,wCAAoB,kBAAkB;AAAA,gBAC1C,CAAC;AAAA,cACH,CAAC;AAAA,YACH;AAAA,UACF;AACA,cAAI,CAAC,wBAAwB;AAC3B,6BAAiB,kBAAkB;AAAA,UACrC;AACA,mBAAS,2BAA2B,QAAQ;AAC1C,4BAAgB,OAAO,aAAa,OAAO,SAAS;AAAA,UACtD;AACA,mBAAS,uBAAuB,UAAU;AACxC,mBAAO,iBAAiB,EAAE,KAAK,SAAS,QAAQ;AAC9C,qBAAO,YAAY,YAAY,QAAQ,IAAI;AAAA,YAC7C,CAAC,EAAE,KAAK,SAASA,WAAU;AACzB,qBAAOA;AAAA,YACT,CAAC,EAAE,KAAK,UAAU,SAAS,QAAQ;AACjC,kBAAI,4CAA4C,MAAM;AACtD,oBAAM,MAAM;AAAA,YACd,CAAC;AAAA,UACH;AACA,mBAAS,mBAAmB;AAC1B,gBAAI,CAAC,cAAc,OAAO,YAAY,yBAAyB,cAAc,CAAC,UAAU,cAAc,KAAK,CAAC,UAAU,cAAc,KAAK,OAAO,UAAU,YAAY;AACpK,qBAAO,MAAM,gBAAgB,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,SAAS,UAAU;AACnF,oBAAI,SAAS,YAAY,qBAAqB,UAAU,IAAI;AAC5D,uBAAO,OAAO,KAAK,4BAA4B,SAAS,QAAQ;AAC9D,sBAAI,oCAAoC,MAAM;AAC9C,sBAAI,2CAA2C;AAC/C,yBAAO,uBAAuB,0BAA0B;AAAA,gBAC1D,CAAC;AAAA,cACH,CAAC;AAAA,YACH,OAAO;AACL,qBAAO,uBAAuB,0BAA0B;AAAA,YAC1D;AAAA,UACF;AACA,cAAI,OAAO,oBAAoB;AAC7B,gBAAI;AACF,kBAAI,WAAW,OAAO,mBAAmB,MAAM,eAAe;AAC9D,qBAAO;AAAA,YACT,SAAS,IAAP;AACA,kBAAI,wDAAwD,EAAE;AAC9D,qBAAO;AAAA,YACT;AAAA,UACF;AACA,2BAAiB,EAAE,MAAM,kBAAkB;AAC3C,iBAAO,CAAC;AAAA,QACV;AACA,YAAI;AACJ,YAAI;AACJ,YAAI,aAAa,CAAC;AAClB,iBAAS,qBAAqB,YAAY;AACxC,iBAAO,WAAW,SAAS,GAAG;AAC5B,gBAAI,WAAW,WAAW,MAAM;AAChC,gBAAI,OAAO,YAAY,YAAY;AACjC,uBAAS,MAAM;AACf;AAAA,YACF;AACA,gBAAI,QAAQ,SAAS;AACrB,gBAAI,OAAO,UAAU,UAAU;AAC7B,kBAAI,SAAS,QAAQ,QAAQ;AAC3B,kCAAkB,KAAK,EAAE;AAAA,cAC3B,OAAO;AACL,kCAAkB,KAAK,EAAE,SAAS,GAAG;AAAA,cACvC;AAAA,YACF,OAAO;AACL,oBAAM,SAAS,QAAQ,SAAS,OAAO,SAAS,GAAG;AAAA,YACrD;AAAA,UACF;AAAA,QACF;AACA,iBAAS,cAAc,GAAG;AACxB,cAAI,SAAS,UAAU;AACvB,cAAI,MAAM,EAAE;AACZ,uBAAa,MAAM;AACnB,iBAAO;AAAA,QACT;AACA,iBAAS,SAAS,OAAO;AACvB,iBAAO;AAAA,QACT;AACA,iBAAS,YAAY,MAAM;AACzB,cAAI,QAAQ;AACZ,iBAAO,KAAK,QAAQ,OAAO,SAAS,GAAG;AACrC,gBAAI,IAAI,SAAS,CAAC;AAClB,mBAAO,MAAM,IAAI,IAAI,IAAI,OAAO,IAAI;AAAA,UACtC,CAAC;AAAA,QACH;AACA,iBAAS,WAAW,aAAa;AAC/B,4BAAkB,EAAE,eAAe,KAAK;AACxC,cAAI,UAAU,QAAQ,SAAS;AAC/B,iBAAO,QAAQ,SAAS;AACxB,kBAAQ,OAAO,UAAU;AACzB,wCAA8B,WAAW;AACzC,kBAAQ,eAAe,OAAO,QAAQ,eAAe,QAAQ,QAAQ,MAAM,GAAG,CAAC;AAC/E,kBAAQ,OAAO,UAAU;AAAA,QAC3B;AACA,iBAAS,aAAa,aAAa;AACjC,cAAI,UAAU,QAAQ,SAAS;AAC/B,kBAAQ,OAAO,YAAY,EAAE,OAAO,SAAS,CAAC;AAAA,QAChD;AACA,iBAAS,cAAc,aAAa;AAClC,cAAI,UAAU,QAAQ,SAAS;AAC/B,cAAI,SAAS;AACX,8BAAkB,EAAE,eAAe,KAAK;AACxC,gBAAI,SAAS,QAAQ;AACrB,oBAAQ,mBAAmB,MAAM;AAAA,UACnC;AAAA,QACF;AACA,iBAAS,MAAM,QAAQ;AACrB,eAAK,MAAM;AAAA,QACb;AACA,iBAAS,gBAAgB,IAAI;AAC3B,cAAI,cAAc,cAAc,MAAM,UAAU;AAC9C,mBAAO;AAAA,UACT;AACA,gBAAM,GAAG,EAAE;AAAA,QACb;AACA,YAAI,UAAU,EAAE,eAAe,CAAC,GAAG,gBAAgB,CAAC,GAAG,kBAAkB,CAAC,GAAG,MAAM,WAAW;AAC5F,cAAI,wBAAwB;AAC1B,oBAAQ,WAAW;AAAA,UACrB,OAAO;AACL,oBAAQ,eAAe;AAAA,UACzB;AAAA,QACF,GAAG,gBAAgB,WAAW;AAC5B,cAAI,kBAAkB;AACtB,mBAAS,KAAK,GAAG,KAAK,iBAAiB,EAAE,IAAI;AAC3C,oBAAQ,qBAAqB;AAAA,UAC/B;AAAA,QACF,GAAG,YAAY,WAAW;AACxB,0BAAgB;AAAA,QAClB,GAAG,UAAU,CAAC,GAAG,eAAe,SAAS,QAAQ;AAC/C,uBAAa;AAAA,QACf,GAAG,qBAAqB,WAAW;AACjC,mBAAS,MAAM,QAAQ,UAAU;AAC/B,gBAAI,UAAU,QAAQ,SAAS;AAC/B,gBAAI,WAAW,QAAQ,QAAQ;AAC7B,sBAAQ,mBAAmB,QAAQ,MAAM;AAAA,YAC3C;AAAA,UACF;AACA,mBAAS,KAAK,GAAG,KAAK,QAAQ,cAAc,QAAQ,EAAE,IAAI;AACxD,gBAAI,SAAS,QAAQ,cAAc;AACnC,mBAAO,UAAU;AAAA,UACnB;AACA,kBAAQ,gBAAgB,CAAC;AAAA,QAC3B,GAAG,oBAAoB,SAAS,QAAQ;AACtC,kBAAQ,gCAAgC,WAAW;AACjD,mBAAO,QAAQ,SAAS,OAAO,QAAQ;AACvC,oBAAQ,cAAc,KAAK,MAAM;AACjC,oBAAQ,eAAe,OAAO,QAAQ,eAAe,QAAQ,MAAM,GAAG,CAAC;AACvE,0CAA8B,OAAO,QAAQ,gBAAgB;AAC7D,mBAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH,GAAG,iCAAiC,SAAS,OAAO;AAClD,4BAAkB,EAAE,gDAAgD,KAAK;AACzE,cAAI;AACF,kBAAM;AAAA,UACR,UAAE;AACA,8BAAkB,EAAE,gDAAgD,KAAK;AAAA,UAC3E;AAAA,QACF,GAAG,uBAAuB,SAAS,MAAM;AAAA,QACzC,GAAG,YAAY,WAAW;AACxB,mBAAS,MAAM,QAAQ,kBAAkB;AACvC,oBAAQ,iBAAiB,IAAI;AAAA,UAC/B;AAAA,QACF,GAAG,wBAAwB,SAAS,QAAQ,mBAAmB;AAC7D,iBAAO,YAAY,CAAC,OAAO;AACzB,gBAAI,IAAI,GAAG;AACX,gBAAI,MAAM,EAAE;AACZ,gBAAI,OAAO;AACT,sBAAQ,sCAAsC,OAAO,QAAQ;AAC/D,gBAAI,EAAE,mBAAmB,EAAE,mBAAmB,cAAc,GAAG;AAC7D,kBAAI,SAAS,QAAQ,SAAS,EAAE;AAChC,kBAAI,QAAQ;AACV,uBAAO,OAAO,YAAY,GAAG,EAAE,eAAe;AAAA,cAChD,OAAO;AACL,oBAAI,4CAA4C,MAAM,yBAAyB,EAAE,kBAAkB,qCAAqC;AAAA,cAC1I;AACA,sBAAQ,sCAAsC;AAC9C;AAAA,YACF;AACA,gBAAI,QAAQ,+BAA+B;AACzC,2DAA6C;AAAA,YAC/C,WAAW,QAAQ,eAAe;AAChC,0BAAY,CAAC;AAAA,YACf,WAAW,QAAQ,iBAAiB;AAClC,4BAAc,EAAE,SAAS;AAAA,YAC3B,WAAW,QAAQ,cAAc;AAC/B,yBAAW,EAAE,SAAS;AAAA,YACxB,WAAW,QAAQ,gBAAgB;AACjC,2BAAa,EAAE,SAAS;AAAA,YAC1B,WAAW,QAAQ,UAAU;AAC3B,qBAAO,SAAS;AAChB,kBAAI;AACF,kCAAkB,MAAM;AAC1B,kBAAI,OAAO,YAAY;AACrB,uBAAO,WAAW;AAClB,uBAAO,OAAO;AAAA,cAChB;AAAA,YACF,WAAW,QAAQ,SAAS;AAC1B,kBAAI,YAAY,EAAE,cAAc,OAAO,EAAE,OAAO;AAAA,YAClD,WAAW,QAAQ,YAAY;AAC7B,kBAAI,YAAY,EAAE,cAAc,OAAO,EAAE,OAAO;AAAA,YAClD,WAAW,QAAQ,SAAS;AAC1B,oBAAM,YAAY,EAAE,cAAc,OAAO,EAAE,OAAO;AAAA,YACpD,WAAW,EAAE,WAAW,gBAAgB;AACtC,qBAAO,YAAY,CAAC;AAAA,YACtB,WAAW,QAAQ,WAAW;AAC5B,kBAAI,OAAO,YAAY;AACrB,uBAAO,WAAW,EAAE,MAAM;AAAA,cAC5B;AAAA,YACF,OAAO;AACL,kBAAI,oCAAoC,GAAG;AAAA,YAC7C;AACA,oBAAQ,sCAAsC;AAAA,UAChD;AACA,iBAAO,UAAU,CAAC,OAAO;AACvB,gBAAI,UAAU;AACd,gBAAI,UAAU,MAAM,GAAG,WAAW,MAAM,GAAG,SAAS,OAAO,GAAG,OAAO;AACrE,kBAAM;AAAA,UACR;AACA,cAAI,qBAAqB;AACvB,mBAAO,GAAG,WAAW,SAAS,MAAM;AAClC,qBAAO,UAAU,EAAE,KAAK,CAAC;AAAA,YAC3B,CAAC;AACD,mBAAO,GAAG,SAAS,SAAS,IAAI;AAC9B,qBAAO,QAAQ,EAAE;AAAA,YACnB,CAAC;AACD,mBAAO,GAAG,gBAAgB,WAAW;AAAA,YACrC,CAAC;AAAA,UACH;AACA,iBAAO,YAAY,EAAE,OAAO,QAAQ,aAAa,OAAO,0BAA0B,YAAY,cAAc,YAAY,cAAc,WAAW,CAAC;AAAA,QACpJ,GAAG,sBAAsB,WAAW;AAClC,cAAI,gBAAgB,WAAW,2CAA2C;AAC1E,kBAAQ,cAAc,KAAK,IAAI,OAAO,aAAa,CAAC;AAAA,QACtD,GAAG,cAAc,WAAW;AAC1B,cAAI,QAAQ,cAAc,UAAU,GAAG;AACrC,oBAAQ,qBAAqB;AAC7B,oBAAQ,uBAAuB,QAAQ,cAAc,EAAE;AAAA,UACzD;AACA,iBAAO,QAAQ,cAAc,IAAI;AAAA,QACnC,EAAE;AACF,iBAAS,sBAAsB;AAC7B,cAAI,cAAc,cAAc;AAChC,cAAI,WAAW,kBAAkB,EAAE,cAAc,MAAM;AACvD,cAAI,YAAY,kBAAkB,EAAE,cAAc,MAAM;AACxD,cAAI,WAAW,WAAW;AAC1B,uCAA6B,UAAU,QAAQ;AAC/C,uBAAa,QAAQ;AAAA,QACvB;AACA,eAAO,yBAAyB;AAChC,iBAAS,iBAAiB,YAAY;AACpC,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,UAAU;AAC7D,cAAI;AACF,kBAAM,UAAU;AAAA,UAClB,SAAS,IAAP;AACA,4BAAgB,EAAE;AAAA,UACpB;AAAA,QACF;AACA,YAAI,kBAAkB,CAAC;AACvB,iBAAS,kBAAkB,SAAS;AAClC,cAAI,QAAQ,gBAAgB;AAC5B,cAAI,CAAC,OAAO;AACV,gBAAI,WAAW,gBAAgB;AAC7B,8BAAgB,SAAS,UAAU;AACrC,4BAAgB,WAAW,QAAQ,UAAU,IAAI,OAAO;AAAA,UAC1D;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,iBAAiB,KAAK,KAAK;AAClC,iBAAO,kBAAkB,GAAG,EAAE,GAAG;AAAA,QACnC;AACA,eAAO,sBAAsB;AAC7B,iBAAS,eAAe;AACtB,cAAI,QAAQ,IAAI,MAAM;AACtB,cAAI,CAAC,MAAM,OAAO;AAChB,gBAAI;AACF,oBAAM,IAAI,MAAM;AAAA,YAClB,SAAS,IAAP;AACA,sBAAQ;AAAA,YACV;AACA,gBAAI,CAAC,MAAM,OAAO;AAChB,qBAAO;AAAA,YACT;AAAA,UACF;AACA,iBAAO,MAAM,MAAM,SAAS;AAAA,QAC9B;AACA,iBAAS,gBAAgB,aAAa,eAAe,UAAU;AAC7D,kBAAQ,iBAAiB,KAAK,WAAW;AAAA,QAC3C;AACA,iBAAS,kBAAkB,KAAK,OAAO;AACrC,oBAAU,IAAI,KAAK,KAAK;AACxB,0BAAgB,OAAO;AAAA,QACzB;AACA,YAAI;AACJ,YAAI,qBAAqB;AACvB,gCAAsB,MAAM;AAC1B,gBAAI,KAAK,QAAQ,UAAU;AAC3B,mBAAO,GAAG,KAAK,MAAM,GAAG,KAAK;AAAA,UAC/B;AAAA,QACF,WAAW,wBAAwB;AACjC,gCAAsB,MAAM,YAAY,IAAI,IAAI,OAAO;AAAA,QACzD;AACE,gCAAsB,MAAM,YAAY,IAAI;AAC9C,YAAI,mCAAmC;AACvC,iBAAS,SAAS,OAAO;AACvB,4BAAkB,EAAE,kBAAkB,KAAK,KAAK;AAChD,iBAAO;AAAA,QACT;AACA,iBAAS,eAAe,QAAQ,IAAI;AAClC,cAAIC;AACJ,cAAI,WAAW,GAAG;AAChB,YAAAA,QAAO,KAAK,IAAI;AAAA,UAClB,YAAY,WAAW,KAAK,WAAW,MAAM,kCAAkC;AAC7E,YAAAA,QAAO,oBAAoB;AAAA,UAC7B,OAAO;AACL,qBAAS,EAAE;AACX,mBAAO;AAAA,UACT;AACA,4BAAkB,EAAE,MAAM,KAAKA,QAAO,MAAM;AAC5C,4BAAkB,EAAE,KAAK,KAAK,KAAKA,QAAO,MAAM,MAAM,MAAM;AAC5D,iBAAO;AAAA,QACT;AACA,iBAAS,iBAAiB,IAAI,KAAK;AACjC,iBAAO,eAAe,IAAI,GAAG;AAAA,QAC/B;AACA,iBAAS,kCAAkC,IAAI;AAC7C,mCAAyB,IAAI,CAAC,uBAAuB,GAAG,CAAC,kBAAkB;AAC3E,kBAAQ,WAAW;AAAA,QACrB;AACA,iBAAS,6BAA6B,QAAQ;AAC5C,cAAI,CAAC;AACH,0BAAc,MAAM;AAAA;AAEpB,wBAAY,EAAE,OAAO,iBAAiB,UAAU,OAAO,CAAC;AAAA,QAC5D;AACA,iBAAS,YAAY,cAAc;AACjC,cAAI,SAAS,QAAQ,aAAa;AAClC,cAAI,CAAC,QAAQ;AACX,mBAAO;AAAA,UACT;AACA,kBAAQ,eAAe,KAAK,MAAM;AAClC,cAAI,UAAU,QAAQ,SAAS,aAAa,eAAe,EAAE,QAAQ,kBAAkB,aAAa,YAAY;AAChH,iBAAO,UAAU;AACjB,cAAI,MAAM,EAAE,OAAO,OAAO,iBAAiB,aAAa,cAAc,OAAO,aAAa,KAAK,oBAAoB,aAAa,YAAY;AAC5I,iBAAO,aAAa,MAAM;AACxB,gBAAI,OAAO,YAAY,IAAI;AAC3B,mBAAO,YAAY,KAAK,aAAa,YAAY;AAAA,UACnD;AACA,cAAI,OAAO,QAAQ;AACjB,mBAAO,WAAW;AAClB,mBAAO,OAAO;AAAA,UAChB;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,qBAAqB,aAAa,MAAM,eAAe,KAAK;AACnE,cAAI,OAAO,sBAAsB,aAAa;AAC5C,gBAAI,qFAAqF;AACzF,mBAAO;AAAA,UACT;AACA,cAAI,eAAe,CAAC;AACpB,cAAI,QAAQ;AACZ,cAAI,2BAA2B,aAAa,WAAW,KAAK,QAAQ;AAClE,mBAAO,sCAAsC,WAAW,aAAa,MAAM,eAAe,GAAG;AAAA,UAC/F;AACA,cAAI;AACF,mBAAO;AACT,cAAI,eAAe,EAAE,cAAc,eAAe,aAAa,KAAK,aAAa;AACjF,cAAI,wBAAwB;AAC1B,yBAAa,MAAM;AACnB,wBAAY,cAAc,YAAY;AACtC,mBAAO;AAAA,UACT;AACA,iBAAO,YAAY,YAAY;AAAA,QACjC;AACA,iBAAS,0CAA0C;AACjD,iBAAO;AAAA,QACT;AACA,iBAAS,iCAAiC,gBAAgB,cAAc;AACtE,cAAI,kBAAkB,cAAc;AAClC,wBAAY,EAAE,OAAO,8BAA8B,CAAC;AAAA,UACtD,WAAW,wBAAwB;AACjC,wBAAY,EAAE,gBAAgB,gBAAgB,OAAO,qBAAqB,CAAC;AAAA,UAC7E,OAAO;AACL,gBAAI,UAAU,QAAQ,SAAS;AAC/B,gBAAI,SAAS,WAAW,QAAQ;AAChC,gBAAI,CAAC,QAAQ;AACX;AAAA,YACF;AACA,mBAAO,YAAY,EAAE,OAAO,qBAAqB,CAAC;AAAA,UACpD;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,SAAS;AAChB,gBAAM,EAAE;AAAA,QACV;AACA,iBAAS,qCAAqC;AAC5C,cAAI;AACF;AACF,cAAI;AACF;AACF,mBAAS,0IAA0I;AAAA,QACrJ;AACA,iBAAS,2BAA2B;AAClC,iBAAO;AAAA,QACT;AACA,iBAAS,uBAAuB,MAAM,KAAK,KAAK;AAC9C,2BAAiB,EAAE,WAAW,MAAM,KAAK,MAAM,GAAG;AAAA,QACpD;AACA,iBAAS,gCAAgC;AACvC,cAAI;AACF,mBAAO,WAAW,EAAE,KAAK,EAAE;AAC7B,iBAAO,UAAU;AAAA,QACnB;AACA,iBAAS,oCAAoCC,QAAO,MAAM;AACxD,cAAI,cAAc,UAAU,SAAS;AACrC,cAAI,YAAY;AAChB,iBAAO,cAAc,WAAW;AAC9B,gBAAI,wBAAwB;AAC5B,gBAAI,OAAO,WAAW,wBAAwB,CAAC;AAC/C,gBAAI,IAAI,QAAQ;AAChB,qBAAS,KAAK,GAAG,KAAK,aAAa,MAAM;AACvC,kBAAI,MAAM,UAAU,IAAI;AACxB,gCAAkB,EAAE,IAAI,MAAM;AAAA,YAChC;AACA,mBAAO,0CAA0CA,QAAO,uBAAuB,MAAM,IAAI;AAAA,UAC3F,CAAC;AAAA,QACH;AACA,YAAI,iDAAiD,CAAC;AACtD,iBAAS,sCAAsCA,QAAO,aAAa,MAAM;AACvE,yDAA+C,SAAS;AACxD,cAAI,IAAI,QAAQ;AAChB,mBAAS,KAAK,GAAG,KAAK,aAAa,MAAM;AACvC,2DAA+C,MAAM,kBAAkB,EAAE,IAAI;AAAA,UAC/E;AACA,cAAI,eAAeA,SAAQ;AAC3B,cAAI,QAAQ,CAAC,eAAe,qBAAqBA,UAAS,WAAW,CAACA,SAAQ;AAC9E,iBAAO,MAAM,MAAM,MAAM,8CAA8C;AAAA,QACzE;AACA,iBAAS,0BAA0BV,OAAM;AACvC,cAAI;AACF,uBAAW,KAAKA,QAAO,QAAQ,aAAa,UAAU,EAAE;AACxD,uCAA2B,WAAW,MAAM;AAC5C,mBAAO;AAAA,UACT,SAAS,IAAP;AAAA,UACF;AAAA,QACF;AACA,iBAAS,wBAAwB,eAAe;AAC9C,cAAI,UAAU,iBAAiB,EAAE;AACjC,0BAAgB,kBAAkB;AAClC,cAAI,iBAAiB,SAAS;AAC5B,mBAAO;AAAA,UACT;AACA,cAAI,cAAc,yBAAyB;AAC3C,cAAI,gBAAgB,aAAa;AAC/B,mBAAO;AAAA,UACT;AACA,mBAAS,UAAU,GAAG,WAAW,GAAG,WAAW,GAAG;AAChD,gBAAI,oBAAoB,WAAW,IAAI,MAAM;AAC7C,gCAAoB,KAAK,IAAI,mBAAmB,gBAAgB,SAAS;AACzE,gBAAI,UAAU,KAAK,IAAI,aAAa,QAAQ,KAAK,IAAI,eAAe,iBAAiB,GAAG,KAAK,CAAC;AAC9F,gBAAI,cAAc,0BAA0B,OAAO;AACnD,gBAAI,aAAa;AACf,qBAAO;AAAA,YACT;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AACA,YAAI,WAAW,EAAE,gBAAgB,GAAG,yBAAyB,WAAW;AACtE,mBAAS,KAAK,SAAS,cAAc,SAAS,GAAG,MAAM,GAAG,EAAE,IAAI;AAC9D,qBAAS,eAAe,EAAE;AAAA,UAC5B;AACA,mBAAS,gBAAgB,CAAC;AAC1B,mBAAS,gBAAgB,CAAC;AAAA,QAC5B,GAAG,8BAA8B,WAAW;AAC1C,cAAI,CAAC,SAAS,gCAAgC;AAC5C,uBAAW,KAAK,SAAS,uBAAuB;AAChD,qBAAS,iCAAiC;AAAA,UAC5C;AAAA,QACF,GAAG,eAAe,CAAC,GAAG,WAAW,SAAS,gBAAgB,YAAY,UAAU;AAC9E,mBAAS,uBAAuB,MAAM,MAAM;AAC1C,gBAAI,KAAK,UAAU,KAAK;AACtB,qBAAO;AACT,qBAAS,MAAM,MAAM;AACnB,kBAAI,KAAK,OAAO,KAAK;AACnB,uBAAO;AAAA,YACX;AACA,mBAAO;AAAA,UACT;AACA,mBAAS,MAAM,SAAS,eAAe;AACrC,gBAAI,OAAO,SAAS,cAAc;AAClC,gBAAI,KAAK,kBAAkB,kBAAkB,uBAAuB,KAAK,UAAU,QAAQ,GAAG;AAC5F;AAAA,YACF;AAAA,UACF;AACA,mBAAS,cAAc,KAAK,EAAE,gBAAgB,YAAY,SAAS,CAAC;AACpE,mBAAS,cAAc,KAAK,SAAS,GAAG,GAAG;AACzC,mBAAO,EAAE,aAAa,EAAE;AAAA,UAC1B,CAAC;AAAA,QACH,GAAG,qBAAqB,SAAS,gBAAgB;AAC/C,mBAAS,KAAK,GAAG,KAAK,SAAS,cAAc,QAAQ,EAAE,IAAI;AACzD,gBAAI,SAAS,cAAc,IAAI,kBAAkB,gBAAgB;AAC/D,uBAAS,cAAc,OAAO,IAAI,CAAC;AACnC,gBAAE;AAAA,YACJ;AAAA,UACF;AAAA,QACF,GAAG,gCAAgC,WAAW;AAC5C,iBAAO,SAAS,kBAAkB,SAAS,oBAAoB;AAAA,QACjE,GAAG,kBAAkB,WAAW;AAC9B,cAAI,CAAC,SAAS,+BAA+B,GAAG;AAC9C;AAAA,UACF;AACA,mBAAS,KAAK,GAAG,KAAK,SAAS,cAAc,QAAQ,EAAE,IAAI;AACzD,gBAAI,OAAO,SAAS,cAAc;AAClC,qBAAS,cAAc,OAAO,IAAI,CAAC;AACnC,cAAE;AACF,iBAAK,eAAe,MAAM,MAAM,KAAK,QAAQ;AAAA,UAC/C;AAAA,QACF,GAAG,eAAe,CAAC,GAAG,2BAA2B,SAAS,QAAQ,iBAAiB;AACjF,mBAAS,KAAK,GAAG,KAAK,SAAS,cAAc,QAAQ,EAAE,IAAI;AACzD,gBAAI,SAAS,cAAc,IAAI,UAAU,WAAW,CAAC,mBAAmB,mBAAmB,SAAS,cAAc,IAAI,kBAAkB;AACtI,uBAAS,eAAe,IAAI;AAAA,YAC9B;AAAA,UACF;AAAA,QACF,GAAG,gBAAgB,SAAS,IAAI;AAC9B,cAAI,IAAI,SAAS,cAAc;AAC/B,YAAE,OAAO,oBAAoB,EAAE,iBAAiB,EAAE,mBAAmB,EAAE,UAAU;AACjF,mBAAS,cAAc,OAAO,IAAI,CAAC;AAAA,QACrC,GAAG,yBAAyB,SAAS,cAAc;AACjD,cAAI,iBAAiB,SAAS,gBAAgB,OAAO;AACnD,cAAE,SAAS;AACX,qBAAS,sBAAsB;AAC/B,qBAAS,iBAAiB;AAC1B,yBAAa,YAAY,KAAK;AAC9B,qBAAS,iBAAiB;AAC1B,cAAE,SAAS;AAAA,UACb;AACA,cAAI,aAAa,cAAc;AAC7B,yBAAa,oBAAoB;AACjC,yBAAa,OAAO,iBAAiB,aAAa,iBAAiB,gBAAgB,aAAa,UAAU;AAC1G,qBAAS,cAAc,KAAK,YAAY;AACxC,qBAAS,6BAA6B;AAAA,UACxC,OAAO;AACL,qBAAS,KAAK,GAAG,KAAK,SAAS,cAAc,QAAQ,EAAE,IAAI;AACzD,kBAAI,SAAS,cAAc,IAAI,UAAU,aAAa,UAAU,SAAS,cAAc,IAAI,mBAAmB,aAAa,iBAAiB;AAC1I,yBAAS,eAAe,IAAI;AAAA,cAC9B;AAAA,YACF;AAAA,UACF;AAAA,QACF,GAAG,gCAAgC,SAAS,cAAc,kBAAkB,aAAa,WAAW,UAAU;AAC5G,wBAAc,WAAW;AACvB,gBAAI,UAAU,WAAW,EAAE;AAC3B,8BAAkB,EAAE,WAAW,KAAK;AACpC,8BAAkB,EAAE,UAAU,KAAK,KAAK;AACxC,8BAAkB,EAAE,UAAU,KAAK,KAAK;AACxC,4CAAgC,cAAc,WAAW,kBAAkB,WAAW,OAAO;AAAA,UAC/F,CAAC;AAAA,QACH,GAAG,iCAAiC,SAAS,cAAc;AACzD,kBAAQ;AAAA,iBACD;AACH,qBAAO;AAAA,iBACJ;AACH,qBAAO,QAAQ;AAAA;AAEf,qBAAO;AAAA;AAAA,QAEb,GAAG,sBAAsB,SAAS,QAAQ;AACxC,cAAI,CAAC;AACH,mBAAO;AACT,cAAI,UAAU;AACZ,mBAAO;AACT,cAAI,UAAU;AACZ,mBAAO;AACT,iBAAO,UAAU,OAAO,WAAW,OAAO,WAAW;AAAA,QACvD,GAAG,mBAAmB,WAAW;AAC/B,iBAAO,SAAS,qBAAqB,SAAS;AAAA,QAChD,EAAE;AACF,iBAAS,gBAAgB,UAAU;AACjC,cAAI,SAAS,gBAAgB,QAAQ,IAAI;AACzC,cAAI,UAAU,QAAQ,MAAM;AAC5B,uBAAa,UAAU,SAAS,MAAM;AACtC,iBAAO;AAAA,QACT;AACA,iBAAS,yDAAyD,cAAc,cAAc,OAAO,QAAQ;AAC3G,wBAAc,WAAW;AACvB,gBAAI,UAAU,WAAW,EAAE;AAC3B,gBAAI,kBAAkB;AACtB,gBAAI,cAAc;AAChB,gCAAkB,gBAAgB,YAAY;AAAA,YAChD;AACA,8BAAkB,EAAE,WAAW,KAAK;AACpC,8BAAkB,EAAE,UAAU,KAAK,KAAK;AACxC,8BAAkB,EAAE,UAAU,KAAK,KAAK;AACxC,4CAAgC,cAAc,WAAW,GAAG,iBAAiB,OAAO;AAAA,UACtF,CAAC;AAAA,QACH;AACA,iBAAS,sDAAsD,cAAc,cAAc,OAAO,QAAQ;AACxG,yBAAe,eAAe,aAAa,YAAY,IAAI;AAC3D,mEAAyD,cAAc,cAAc,OAAO,MAAM;AAAA,QACpG;AACA,iBAAS,uBAAuB,SAAS;AACvC,iBAAO,UAAU,IAAI,aAAa,OAAO,IAAI;AAAA,QAC/C;AACA,YAAI,qBAAqB,CAAC,GAAG,OAAO,aAAa,cAAc,WAAW,GAAG,OAAO,WAAW,cAAc,SAAS,CAAC;AACvH,iBAAS,gBAAgB,QAAQ;AAC/B,mBAAS,uBAAuB,MAAM;AACtC,cAAI,aAAa,mBAAmB,YAAY,OAAO,aAAa,cAAc,SAAS,cAAc,MAAM,IAAI;AACnH,iBAAO;AAAA,QACT;AACA,iBAAS,sBAAsB,QAAQ;AACrC,iBAAO,gBAAgB,MAAM;AAAA,QAC/B;AACA,iBAAS,mDAAmD,QAAQ,OAAO,QAAQ;AACjF,cAAIW,UAAS,sBAAsB,MAAM;AACzC,cAAI,CAACA;AACH,mBAAO;AACT,cAAIA,QAAO,iBAAiB;AAC1B,8BAAkB,EAAEA,QAAO,mBAAmB,KAAK;AACnD,8BAAkB,EAAEA,QAAO,kBAAkB,KAAK,KAAK;AAAA,UACzD;AACA,cAAIA,QAAO,mBAAmB,CAACA,QAAO,6BAA6B;AACjE,gBAAIA,QAAO;AACT,cAAAA,UAASA,QAAO;AAClB,gBAAI,qBAAqB;AACzB,gBAAIA,QAAO,eAAeA,QAAO,YAAY,OAAO;AAClD,kBAAI,eAAeA,QAAO,YAAY,MAAM,aAAa,IAAI;AAC7D,mCAAqB,aAAa,OAAO,KAAK,aAAa,OAAO,KAAK,aAAa,OAAOA,QAAO,SAAS,aAAa,OAAOA,QAAO;AAAA,YACxI;AACA,YAAAA,QAAO,QAAQ;AACf,YAAAA,QAAO,SAAS;AAChB,gBAAI,oBAAoB;AACtB,cAAAA,QAAO,YAAY,MAAM,SAAS,GAAG,GAAG,OAAO,MAAM;AAAA,YACvD;AAAA,UACF,WAAWA,QAAO,iBAAiB;AACjC,gBAAI,eAAe,kBAAkB,EAAEA,QAAO,kBAAkB,KAAK;AACrE,kEAAsD,cAAc,QAAQ,OAAO,MAAM;AACzF,mBAAO;AAAA,UACT,OAAO;AACL,mBAAO;AAAA,UACT;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,gDAAgD,QAAQ,OAAO,QAAQ;AAC9E,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,QAAQ,OAAO,MAAM;AACxE,iBAAO,mDAAmD,QAAQ,OAAO,MAAM;AAAA,QACjF;AACA,iBAAS,oCAAoC,QAAQ,OAAO,QAAQ;AAClE,cAAIA,UAAS,sBAAsB,MAAM;AACzC,cAAIA,SAAQ;AACV,mBAAO,mDAAmD,QAAQ,OAAO,MAAM;AAAA,UACjF,OAAO;AACL,mBAAO,gDAAgD,QAAQ,OAAO,MAAM;AAAA,UAC9E;AAAA,QACF;AACA,iBAAS,sCAAsC;AAC7C,gBAAM;AAAA,QACR;AACA,iBAAS,sCAAsC,KAAK;AAClD,cAAI,MAAM,IAAI,aAAa,wBAAwB;AACnD,cAAI,KAAK;AACP,gBAAI,yBAAyB,SAASD,QAAO,SAAS;AACpD,kBAAI,4BAA4BA,QAAO,OAAO;AAAA,YAChD;AACA,gBAAI,yBAAyB,SAAS,MAAM,OAAOH,SAAQ,WAAW;AACpE,kBAAI,4BAA4B,MAAM,OAAOA,SAAQ,SAAS;AAAA,YAChE;AACA,gBAAI,2BAA2B,SAAS,MAAMA,SAAQ,MAAM,SAAS,WAAW;AAC9E,kBAAI,8BAA8B,MAAMA,SAAQ,MAAM,SAAS,SAAS;AAAA,YAC1E;AACA,mBAAO;AAAA,UACT;AAAA,QACF;AACA,iBAAS,uCAAuC,KAAK;AACnD,cAAI,MAAM,IAAI,aAAa,yBAAyB;AACpD,cAAI,KAAK;AACP,gBAAI,uBAAuB,WAAW;AACpC,qBAAO,IAAI,wBAAwB;AAAA,YACrC;AACA,gBAAI,uBAAuB,SAAS,KAAK;AACvC,kBAAI,wBAAwB,GAAG;AAAA,YACjC;AACA,gBAAI,qBAAqB,SAAS,KAAK;AACrC,kBAAI,sBAAsB,GAAG;AAAA,YAC/B;AACA,gBAAI,mBAAmB,SAAS,KAAK;AACnC,qBAAO,IAAI,oBAAoB,GAAG;AAAA,YACpC;AACA,mBAAO;AAAA,UACT;AAAA,QACF;AACA,iBAAS,kCAAkC,KAAK;AAC9C,cAAI,MAAM,IAAI,aAAa,oBAAoB;AAC/C,cAAI,KAAK;AACP,gBAAI,iBAAiB,SAAS,IAAI,MAAM;AACtC,kBAAI,oBAAoB,IAAI,IAAI;AAAA,YAClC;AACA,mBAAO;AAAA,UACT;AAAA,QACF;AACA,iBAAS,gCAAgC,KAAK;AAC5C,iBAAO,CAAC,EAAE,IAAI,iBAAiB,IAAI,aAAa,kBAAkB;AAAA,QACpE;AACA,YAAI,KAAK,EAAE,SAAS,GAAG,SAAS,CAAC,GAAG,UAAU,CAAC,GAAG,cAAc,CAAC,GAAG,eAAe,CAAC,GAAG,UAAU,CAAC,GAAG,SAAS,CAAC,GAAG,MAAM,CAAC,GAAG,UAAU,CAAC,GAAG,mBAAmB,CAAC,GAAG,SAAS,CAAC,GAAG,aAAa,CAAC,GAAG,iBAAiB,GAAG,aAAa,SAAS,YAAY,WAAW;AAC9P,cAAI,CAAC,GAAG,WAAW;AACjB,eAAG,YAAY;AAAA,UACjB;AAAA,QACF,GAAG,UAAU,SAAS,OAAO;AAC3B,cAAI,MAAM,GAAG;AACb,mBAAS,KAAK,MAAM,QAAQ,KAAK,KAAK,MAAM;AAC1C,kBAAM,MAAM;AAAA,UACd;AACA,iBAAO;AAAA,QACT,GAAG,WAAW,SAAS,QAAQA,SAAQ,SAAS,QAAQ;AACtD,cAAI,SAAS;AACb,mBAAS,KAAK,GAAG,KAAKA,SAAQ,EAAE,IAAI;AAClC,gBAAI,MAAM,SAAS,kBAAkB,EAAE,SAAS,KAAK,KAAK,KAAK;AAC/D,sBAAU,aAAa,kBAAkB,EAAE,UAAU,KAAK,KAAK,IAAI,MAAM,IAAI,SAAS,GAAG;AAAA,UAC3F;AACA,iBAAO;AAAA,QACT,GAAG,eAAe,SAASI,SAAQ,wBAAwB;AACzD,cAAI,CAACA,QAAO,6BAA6B;AACvC,YAAAA,QAAO,8BAA8BA,QAAO;AAC5C,YAAAA,QAAO,aAAa,SAAS,KAAK,OAAO;AACvC,kBAAI,KAAKA,QAAO,4BAA4B,KAAK,KAAK;AACtD,qBAAO,OAAO,WAAW,cAAc,wBAAwB,KAAK;AAAA,YACtE;AAAA,UACF;AACA,cAAI,MAAMA,QAAO,WAAW,SAAS,sBAAsB;AAC3D,cAAI,CAAC;AACH,mBAAO;AACT,cAAI,SAAS,GAAG,gBAAgB,KAAK,sBAAsB;AAC3D,iBAAO;AAAA,QACT,GAAG,iBAAiB,SAAS,KAAK,wBAAwB;AACxD,cAAI,SAAS,QAAQ,CAAC;AACtB,4BAAkB,EAAE,SAAS,KAAK,KAAK,cAAc;AACrD,cAAI,UAAU,EAAE,QAAQ,YAAY,wBAAwB,SAAS,uBAAuB,cAAc,OAAO,IAAI;AACrH,cAAI,IAAI;AACN,gBAAI,OAAO,cAAc;AAC3B,aAAG,SAAS,UAAU;AACtB,cAAI,OAAO,uBAAuB,8BAA8B,eAAe,uBAAuB,2BAA2B;AAC/H,eAAG,eAAe,OAAO;AAAA,UAC3B;AACA,iBAAO;AAAA,QACT,GAAG,oBAAoB,SAAS,eAAe;AAC7C,aAAG,iBAAiB,GAAG,SAAS;AAChC,iBAAO,MAAM,QAAQ,GAAG,kBAAkB,GAAG,eAAe;AAC5D,iBAAO,EAAE,iBAAiB,CAAC;AAAA,QAC7B,GAAG,YAAY,SAAS,eAAe;AACrC,iBAAO,GAAG,SAAS;AAAA,QACrB,GAAG,eAAe,SAAS,eAAe;AACxC,cAAI,GAAG,mBAAmB,GAAG,SAAS;AACpC,eAAG,iBAAiB;AACtB,cAAI,OAAO,aAAa;AACtB,qBAAS,0BAA0B,GAAG,SAAS,eAAe,MAAM,MAAM;AAC5E,cAAI,GAAG,SAAS,kBAAkB,GAAG,SAAS,eAAe,MAAM;AACjE,eAAG,SAAS,eAAe,MAAM,OAAO,cAAc;AACxD,gBAAM,GAAG,SAAS,eAAe,MAAM;AACvC,aAAG,SAAS,iBAAiB;AAAA,QAC/B,GAAG,gBAAgB,SAAS,SAAS;AACnC,cAAI,CAAC;AACH,sBAAU,GAAG;AACf,cAAI,QAAQ;AACV;AACF,kBAAQ,qBAAqB;AAC7B,cAAI,SAAS,QAAQ;AACrB,gDAAsC,MAAM;AAC5C,iDAAuC,MAAM;AAC7C,4CAAkC,MAAM;AACxC;AACE,mBAAO,wBAAwB,OAAO,aAAa,0BAA0B;AAAA,UAC/E;AACA,0CAAgC,MAAM;AACtC,cAAI,OAAO,OAAO,uBAAuB,KAAK,CAAC;AAC/C,eAAK,QAAQ,SAAS,KAAK;AACzB,gBAAI,CAAC,IAAI,SAAS,cAAc,KAAK,CAAC,IAAI,SAAS,OAAO,GAAG;AAC3D,qBAAO,aAAa,GAAG;AAAA,YACzB;AAAA,UACF,CAAC;AAAA,QACH,EAAE;AACF,YAAI,uCAAuC,CAAC,WAAW,aAAa,kBAAkB;AACtF,iBAAS,oCAAoC,QAAQ,YAAY;AAC/D,cAAI,IAAI,cAAc;AACtB,cAAI,kBAAkB,kBAAkB,EAAE,KAAK,MAAM;AACrD,cAAI,oBAAoB,EAAE,SAAS,CAAC,CAAC,kBAAkB,EAAE,KAAK,KAAK,KAAK,SAAS,CAAC,CAAC,kBAAkB,EAAE,KAAK,KAAK,KAAK,WAAW,CAAC,CAAC,kBAAkB,EAAE,KAAK,KAAK,KAAK,aAAa,CAAC,CAAC,kBAAkB,EAAE,KAAK,MAAM,KAAK,sBAAsB,CAAC,CAAC,kBAAkB,EAAE,KAAK,MAAM,KAAK,yBAAyB,CAAC,CAAC,kBAAkB,EAAE,KAAK,MAAM,KAAK,mBAAmB,qCAAqC,kBAAkB,gCAAgC,CAAC,CAAC,kBAAkB,EAAE,KAAK,MAAM,KAAK,cAAc,kBAAkB,EAAE,KAAK,MAAM,KAAK,cAAc,kBAAkB,EAAE,KAAK,MAAM,KAAK,2BAA2B,kBAAkB,EAAE,KAAK,MAAM,KAAK,qBAAqB,kBAAkB,EAAE,KAAK,MAAM,KAAK,0BAA0B,kBAAkB,EAAE,KAAK,MAAM,KAAK,8BAA8B,kBAAkB,EAAE,KAAK,MAAM,IAAI;AAC/zB,cAAIA,UAAS,sBAAsB,MAAM;AACzC,cAAI,CAACA,SAAQ;AACX,mBAAO;AAAA,UACT;AACA,cAAI,kBAAkB,qBAAqB;AACzC,mBAAO;AAAA,UACT;AACA,cAAI,gBAAgB,GAAG,cAAcA,SAAQ,iBAAiB;AAC9D,iBAAO;AAAA,QACT;AACA,iBAAS,iCAAiC,IAAI,KAAK;AACjD,iBAAO,oCAAoC,IAAI,GAAG;AAAA,QACpD;AACA,YAAI,WAAW,EAAE,UAAU,CAAC,GAAG,SAAS,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,GAAG,WAAW,SAAS,QAAQ,MAAM;AACxF,cAAI,UAAU,SAAS,QAAQ;AAC/B,cAAI,SAAS,KAAK,SAAS,IAAI;AAC7B,aAAC,WAAW,IAAI,MAAM,KAAK,kBAAkB,SAAS,CAAC,CAAC;AACxD,oBAAQ,SAAS;AAAA,UACnB,OAAO;AACL,oBAAQ,KAAK,IAAI;AAAA,UACnB;AAAA,QACF,GAAG,SAAS,QAAQ,KAAK,WAAW;AAClC,mBAAS,WAAW;AACpB,cAAI,MAAM,kBAAkB,EAAE,SAAS,UAAU,KAAK;AACtD,iBAAO;AAAA,QACT,GAAG,QAAQ,SAAS,KAAK;AACvB,cAAI,MAAM,aAAa,GAAG;AAC1B,iBAAO;AAAA,QACT,GAAG,OAAO,SAAS,KAAK,MAAM;AAC5B,iBAAO;AAAA,QACT,EAAE;AACF,iBAAS,UAAU,IAAI;AACrB,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,EAAE;AACrD,iBAAO;AAAA,QACT;AACA,iBAAS,SAAS,IAAI,YAAY,aAAa,QAAQ,WAAW;AAChE,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,IAAI,YAAY,aAAa,QAAQ,SAAS;AAAA,QACnG;AACA,iBAAS,UAAU,IAAI,KAAK,QAAQ,MAAM;AACxC,cAAI;AACF,mBAAO,oCAAoC,GAAG,GAAG,IAAI,KAAK,QAAQ,IAAI;AACxE,cAAI,MAAM;AACV,mBAAS,KAAK,GAAG,KAAK,QAAQ,MAAM;AAClC,gBAAI,MAAM,kBAAkB,EAAE,OAAO;AACrC,gBAAI,MAAM,kBAAkB,EAAE,MAAM,KAAK;AACzC,mBAAO;AACP,qBAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC5B,uBAAS,UAAU,IAAI,iBAAiB,EAAE,MAAM,EAAE;AAAA,YACpD;AACA,mBAAO;AAAA,UACT;AACA,4BAAkB,EAAE,QAAQ,KAAK;AACjC,iBAAO;AAAA,QACT;AACA,iBAAS,aAAa,KAAK;AACzB,sBAAY,GAAG;AAAA,QACjB;AACA,gBAAQ,KAAK;AACb,YAAI;AACJ,YAAI,uBAAuB,CAAC,MAAM,kBAAkB,iDAAiD,WAAW,UAAU,SAAS;AACnI,YAAI,aAAa;AACjB,YAAI,gBAAgB,EAAE,mBAAmB,kBAAkB,oCAAoC,mCAAmC,+BAA+B,8BAA8B,uBAAuB,sBAAsB,0CAA0C,yCAAyC,mCAAmC,kCAAkC,SAAS,QAAQ,qCAAqC,oCAAoC,2BAA2B,0BAA0B,sBAAsB,qBAAqB,yBAAyB,wBAAwB,gCAAgC,+BAA+B,wCAAwC,uCAAuC,0BAA0B,yBAAyB,sCAAsC,qCAAqC,sCAAsC,qCAAqC,mCAAmC,kCAAkC,QAAQ,OAAO,YAAY,WAAW,WAAW,UAAU,YAAY,WAAW,UAAU,cAAc,OAAO,eAAe,eAAe,aAAa;AACvqC,YAAI,MAAM,WAAW;AACrB,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,2BAA2B,OAAO,8BAA8B,WAAW;AAC7E,kBAAQ,2BAA2B,OAAO,8BAA8B,OAAO,OAAO,4BAA4B,MAAM,MAAM,SAAS;AAAA,QACzI;AACA,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,mBAAmB,OAAO,sBAAsB,WAAW;AAC7D,kBAAQ,mBAAmB,OAAO,sBAAsB,OAAO,OAAO,oBAAoB,MAAM,MAAM,SAAS;AAAA,QACjH;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,yBAAyB,OAAO,4BAA4B,WAAW;AACzE,kBAAQ,yBAAyB,OAAO,4BAA4B,OAAO,OAAO,0BAA0B,MAAM,MAAM,SAAS;AAAA,QACnI;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,kBAAkB,OAAO,qBAAqB,WAAW;AAC3D,kBAAQ,kBAAkB,OAAO,qBAAqB,OAAO,OAAO,mBAAmB,MAAM,MAAM,SAAS;AAAA,QAC9G;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,wBAAwB,OAAO,2BAA2B,WAAW;AACvE,kBAAQ,wBAAwB,OAAO,2BAA2B,OAAO,OAAO,yBAAyB,MAAM,MAAM,SAAS;AAAA,QAChI;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,kBAAkB,OAAO,qBAAqB,WAAW;AAC3D,kBAAQ,kBAAkB,OAAO,qBAAqB,OAAO,OAAO,mBAAmB,MAAM,MAAM,SAAS;AAAA,QAC9G;AACA,YAAI,yBAAyB,OAAO,4BAA4B,WAAW;AACzE,kBAAQ,yBAAyB,OAAO,4BAA4B,OAAO,OAAO,0BAA0B,MAAM,MAAM,SAAS;AAAA,QACnI;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,oBAAoB,OAAO,uBAAuB,WAAW;AAC/D,kBAAQ,oBAAoB,OAAO,uBAAuB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QACpH;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,0BAA0B,OAAO,6BAA6B,WAAW;AAC3E,kBAAQ,0BAA0B,OAAO,6BAA6B,OAAO,OAAO,2BAA2B,MAAM,MAAM,SAAS;AAAA,QACtI;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,oBAAoB,OAAO,uBAAuB,WAAW;AAC/D,kBAAQ,oBAAoB,OAAO,uBAAuB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QACpH;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,+CAA+C,OAAO,kDAAkD,WAAW;AACrH,kBAAQ,+CAA+C,OAAO,kDAAkD,OAAO,OAAO,gDAAgD,MAAM,MAAM,SAAS;AAAA,QACrM;AACA,YAAI,8BAA8B,OAAO,iCAAiC,WAAW;AACnF,kBAAQ,8BAA8B,OAAO,iCAAiC,OAAO,OAAO,+BAA+B,MAAM,MAAM,SAAS;AAAA,QAClJ;AACA,YAAI,2BAA2B,OAAO,8BAA8B,WAAW;AAC7E,kBAAQ,2BAA2B,OAAO,8BAA8B,OAAO,OAAO,4BAA4B,MAAM,MAAM,SAAS;AAAA,QACzI;AACA,YAAI,kDAAkD,OAAO,qDAAqD,WAAW;AAC3H,kBAAQ,kDAAkD,OAAO,qDAAqD,OAAO,OAAO,mDAAmD,MAAM,MAAM,SAAS;AAAA,QAC9M;AACA,YAAI,qCAAqC,OAAO,wCAAwC,WAAW;AACjG,kBAAQ,qCAAqC,OAAO,wCAAwC,OAAO,OAAO,sCAAsC,MAAM,MAAM,SAAS;AAAA,QACvK;AACA,YAAI,wCAAwC,OAAO,2CAA2C,WAAW;AACvG,kBAAQ,wCAAwC,OAAO,2CAA2C,OAAO,OAAO,yCAAyC,MAAM,MAAM,SAAS;AAAA,QAChL;AACA,YAAI,wCAAwC,OAAO,2CAA2C,WAAW;AACvG,kBAAQ,wCAAwC,OAAO,2CAA2C,OAAO,OAAO,yCAAyC,MAAM,MAAM,SAAS;AAAA,QAChL;AACA,YAAI,4CAA4C,OAAO,+CAA+C,WAAW;AAC/G,kBAAQ,4CAA4C,OAAO,+CAA+C,OAAO,OAAO,6CAA6C,MAAM,MAAM,SAAS;AAAA,QAC5L;AACA,YAAI,kCAAkC,OAAO,qCAAqC,WAAW;AAC3F,kBAAQ,kCAAkC,OAAO,qCAAqC,OAAO,OAAO,mCAAmC,MAAM,MAAM,SAAS;AAAA,QAC9J;AACA,YAAI,gCAAgC,OAAO,mCAAmC,WAAW;AACvF,kBAAQ,gCAAgC,OAAO,mCAAmC,OAAO,OAAO,iCAAiC,MAAM,MAAM,SAAS;AAAA,QACxJ;AACA,YAAI,2BAA2B,OAAO,8BAA8B,WAAW;AAC7E,kBAAQ,2BAA2B,OAAO,8BAA8B,OAAO,OAAO,4BAA4B,MAAM,MAAM,SAAS;AAAA,QACzI;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,+BAA+B,OAAO,kCAAkC,WAAW;AACrF,kBAAQ,+BAA+B,OAAO,kCAAkC,OAAO,OAAO,gCAAgC,MAAM,MAAM,SAAS;AAAA,QACrJ;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC7F;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACtG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAChG;AACA,YAAI,mBAAmB,OAAO,sBAAsB,WAAW;AAC7D,kBAAQ,mBAAmB,OAAO,sBAAsB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QAClH;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACtG;AACA,YAAI,+CAA+C,OAAO,kDAAkD;AAC5G,eAAO,WAAW;AAClB,eAAO,sBAAsB;AAC7B,eAAO,aAAa;AACpB,eAAO,aAAa;AACpB,eAAO,gBAAgB;AACvB,eAAO,gBAAgB;AACvB,YAAI;AACJ,iBAAS,WAAW,QAAQ;AAC1B,eAAK,OAAO;AACZ,eAAK,UAAU,kCAAkC,SAAS;AAC1D,eAAK,SAAS;AAAA,QAChB;AACA,gCAAwB,SAAS,YAAY;AAC3C,cAAI,CAAC;AACH,gBAAI;AACN,cAAI,CAAC;AACH,oCAAwB;AAAA,QAC5B;AACA,iBAAS,IAAI,MAAM;AACjB,iBAAO,QAAQ;AACf,cAAI,kBAAkB,GAAG;AACvB;AAAA,UACF;AACA,cAAI,wBAAwB;AAC1B,gCAAoB,MAAM;AAC1B,wBAAY;AACZ,wBAAY,EAAE,OAAO,SAAS,CAAC;AAC/B;AAAA,UACF;AACA,iBAAO;AACP,cAAI,kBAAkB,GAAG;AACvB;AAAA,UACF;AACA,mBAAS,QAAQ;AACf,gBAAI;AACF;AACF,wBAAY;AACZ,mBAAO,eAAe;AACtB,gBAAI;AACF;AACF,wBAAY;AACZ,gCAAoB,MAAM;AAC1B,gBAAI,OAAO;AACT,qBAAO,wBAAwB;AACjC,oBAAQ;AAAA,UACV;AACA,cAAI,OAAO,cAAc;AACvB,mBAAO,aAAa,YAAY;AAChC,uBAAW,WAAW;AACpB,yBAAW,WAAW;AACpB,uBAAO,aAAa,EAAE;AAAA,cACxB,GAAG,CAAC;AACJ,oBAAM;AAAA,YACR,GAAG,CAAC;AAAA,UACN,OAAO;AACL,kBAAM;AAAA,UACR;AAAA,QACF;AACA,eAAO,SAAS;AAChB,iBAAS,KAAK,QAAQ,UAAU;AAC9B,uBAAa;AACb,cAAI,CAAC,UAAU;AACb,gBAAI,wBAAwB;AAC1B,+BAAiB,MAAM;AACvB,oBAAM;AAAA,YACR,OAAO;AAAA,YACP;AAAA,UACF;AACA,cAAI,iBAAiB,GAAG;AAAA,UACxB,OAAO;AACL,wBAAY;AAAA,UACd;AACA,mBAAS,MAAM;AAAA,QACjB;AACA,iBAAS,SAAS,MAAM;AACtB,uBAAa;AACb,cAAI,CAAC,iBAAiB,GAAG;AACvB,oBAAQ,oBAAoB;AAC5B,gBAAI,OAAO;AACT,qBAAO,UAAU,IAAI;AACvB,oBAAQ;AAAA,UACV;AACA,gBAAM,MAAM,IAAI,WAAW,IAAI,CAAC;AAAA,QAClC;AACA,YAAI,OAAO,YAAY;AACrB,cAAI,OAAO,OAAO,cAAc;AAC9B,mBAAO,aAAa,CAAC,OAAO,UAAU;AACxC,iBAAO,OAAO,WAAW,SAAS,GAAG;AACnC,mBAAO,WAAW,IAAI,EAAE;AAAA,UAC1B;AAAA,QACF;AACA,YAAI;AACJ,YAAI;AACJ,YAAI,iBAAiB;AACnB,2BAAiB,EAAE,mBAAmB,QAAQ,UAAU,mBAAmB,EAAE,OAAO,SAAS,UAAU;AACrG,mBAAO,CAAC,gBAAgB,kBAAkB,QAAQ,QAAQ,IAAI;AAAA,UAChE,CAAC,GAAG,oBAAoB,QAAQ,UAAU,oBAAoB,EAAE,OAAO,SAAS,UAAU;AACxF,mBAAO,CAAC,gBAAgB,mBAAmB,QAAQ,QAAQ,IAAI;AAAA,UACjE,CAAC,EAAE;AAAA,QACL;AACA,YAAI;AACJ,YAAI,OAAO,sBAAsB,aAAa;AAC5C,yBAAe;AAAA,QACjB,WAAW,OAAO,mCAAmC,aAAa;AAChE,yBAAe;AAAA,QACjB,OAAO;AACL,gBAAM,IAAI,MAAM,uCAAuC;AAAA,QACzD;AACA,YAAI,gBAAgB;AAClB,cAAI,aAAa,aAAa;AAC9B,uBAAa,cAAc,WAAW;AACpC,uBAAW;AACX,2BAAe,kBAAkB,QAAQ,SAAS,UAAU;AAC1D,sBAAQ,eAAe,qBAAqB,QAAQ;AAAA,YACtD,CAAC;AACD,2BAAe,mBAAmB,QAAQ,SAAS,UAAU;AAC3D,sBAAQ,eAAe,sBAAsB,QAAQ;AAAA,YACvD,CAAC;AAAA,UACH;AAAA,QACF;AACA,eAAO,+BAA+B;AAAA,MACxC;AAAA,IACF,GAAG;AACH,QAAI,OAAO,YAAY,YAAY,OAAO,WAAW;AACnD,aAAO,UAAU;AAAA,aACV,OAAO,WAAW,cAAc,OAAO;AAC9C,aAAO,CAAC,GAAG,WAAW;AACpB,eAAO;AAAA,MACT,CAAC;AAAA,aACM,OAAO,YAAY;AAC1B,cAAQ,mCAAmC;AAAA,EAC/C;AACF,CAAC;AAGD,IAAI,iDAAiD,WAAW;AAAA,EAC9D,mLAAmL,SAAS,QAAQ;AAClM,WAAO,QAAQ,qBAAqB;AAAA;AAAA,EAEtC;AACF,CAAC;AAGD,IAAI,4BAA4B,WAAW;AAAA,EACzC,8JAA8J,SAAS,QAAQ;AAC7K,QAAI,sBAAsB,MAAM;AAC9B,UAAI,aAAa,OAAO,aAAa,eAAe,SAAS,gBAAgB,SAAS,cAAc,MAAM;AAC1G,UAAI,OAAO,eAAe;AACxB,qBAAa,cAAc;AAC7B,aAAO,SAAS,oBAAoB;AAClC,6BAAqB,sBAAsB,CAAC;AAC5C,YAAI,SAAS,OAAO,uBAAuB,cAAc,qBAAqB,CAAC;AAC/E,YAAI,qBAAqB;AACzB,eAAO,WAAW,IAAI,QAAQ,SAAS,SAAS,QAAQ;AACtD,gCAAsB;AACtB,+BAAqB;AAAA,QACvB,CAAC;AACD,YAAI;AACJ,YAAI,OAAO,YAAY,eAAe,QAAQ,WAAW;AACvD,4BAAkB,EAAE,mBAAmB,QAAQ,UAAU,mBAAmB,GAAG,oBAAoB,QAAQ,UAAU,oBAAoB,EAAE;AAAA,QAC7I;AACA,YAAI,kBAAkB,OAAO,OAAO,CAAC,GAAG,MAAM;AAC9C,YAAI,aAAa,CAAC;AAClB,YAAI,cAAc;AAClB,YAAI,QAAQ,CAAC,QAAQ,YAAY;AAC/B,gBAAM;AAAA,QACR;AACA,YAAI,qBAAqB,OAAO,WAAW;AAC3C,YAAI,wBAAwB,OAAO,kBAAkB;AACrD,YAAI,sBAAsB,OAAO,YAAY,YAAY,OAAO,QAAQ,aAAa,YAAY,OAAO,QAAQ,SAAS,SAAS;AAClI,YAAI,kBAAkB;AACtB,iBAAS,WAAW,MAAM;AACxB,cAAI,OAAO,eAAe;AACxB,mBAAO,OAAO,cAAc,MAAM,eAAe;AAAA,UACnD;AACA,iBAAO,kBAAkB;AAAA,QAC3B;AACA,YAAI,OAAO,WAAW,YAAY;AAClC,iBAAS,mBAAmB,IAAI;AAC9B,cAAI,cAAc;AAChB;AACF,cAAI,QAAQ;AACZ,cAAI,+BAA+B,KAAK;AAAA,QAC1C;AACA,YAAI;AACJ,YAAI;AACJ,YAAI;AACJ,YAAI,qBAAqB;AACvB,cAAI,uBAAuB;AACzB,8BAAkB,aAAa,EAAE,QAAQ,eAAe,IAAI;AAAA,UAC9D,OAAO;AACL,8BAAkB,YAAY;AAAA,UAChC;AACA,0BAAgB,MAAM;AACpB,gBAAI,CAAC,UAAU;AACb,mBAAK,WAAW;AAChB,yBAAW,aAAa;AAAA,YAC1B;AAAA,UACF;AACA,kBAAQ,SAAS,WAAW,UAAU,QAAQ;AAC5C,0BAAc;AACd,uBAAW,SAAS,aAAa,QAAQ;AACzC,mBAAO,GAAG,aAAa,UAAU,SAAS,SAAS,MAAM;AAAA,UAC3D;AACA,uBAAa,CAAC,aAAa;AACzB,gBAAI,MAAM,MAAM,UAAU,IAAI;AAC9B,gBAAI,CAAC,IAAI,QAAQ;AACf,oBAAM,IAAI,WAAW,GAAG;AAAA,YAC1B;AACA,mBAAO;AAAA,UACT;AACA,sBAAY,CAAC,UAAU,QAAQ,YAAY;AACzC,0BAAc;AACd,uBAAW,SAAS,aAAa,QAAQ;AACzC,eAAG,SAAS,UAAU,SAAS,MAAM,MAAM;AACzC,kBAAI;AACF,wBAAQ,IAAI;AAAA;AAEZ,uBAAO,KAAK,MAAM;AAAA,YACtB,CAAC;AAAA,UACH;AACA,cAAI,QAAQ,QAAQ,SAAS,GAAG;AAC9B,0BAAc,QAAQ,QAAQ,GAAG,QAAQ,OAAO,GAAG;AAAA,UACrD;AACA,uBAAa,QAAQ,QAAQ,MAAM,CAAC;AACpC,kBAAQ,MAAM,qBAAqB,SAAS,IAAI;AAC9C,gBAAI,EAAE,cAAc,aAAa;AAC/B,oBAAM;AAAA,YACR;AAAA,UACF,CAAC;AACD,kBAAQ,MAAM,sBAAsB,SAAS,QAAQ;AACnD,kBAAM;AAAA,UACR,CAAC;AACD,kBAAQ,CAAC,QAAQ,YAAY;AAC3B,gBAAI,iBAAiB,GAAG;AACtB,sBAAQ,cAAc;AACtB,oBAAM;AAAA,YACR;AACA,+BAAmB,OAAO;AAC1B,oBAAQ,QAAQ,MAAM;AAAA,UACxB;AACA,iBAAO,aAAa,WAAW;AAC7B,mBAAO;AAAA,UACT;AAAA,QACF,WAAW,sBAAsB,uBAAuB;AACtD,cAAI,uBAAuB;AACzB,8BAAkB,KAAK,SAAS;AAAA,UAClC,WAAW,OAAO,aAAa,eAAe,SAAS,eAAe;AACpE,8BAAkB,SAAS,cAAc;AAAA,UAC3C;AACA,cAAI,YAAY;AACd,8BAAkB;AAAA,UACpB;AACA,cAAI,gBAAgB,QAAQ,OAAO,MAAM,GAAG;AAC1C,8BAAkB,gBAAgB,OAAO,GAAG,gBAAgB,QAAQ,UAAU,EAAE,EAAE,YAAY,GAAG,IAAI,CAAC;AAAA,UACxG,OAAO;AACL,8BAAkB;AAAA,UACpB;AACA;AACE,oBAAQ,CAAC,QAAQ;AACf,kBAAI,MAAM,IAAI,eAAe;AAC7B,kBAAI,KAAK,OAAO,KAAK,KAAK;AAC1B,kBAAI,KAAK,IAAI;AACb,qBAAO,IAAI;AAAA,YACb;AACA,gBAAI,uBAAuB;AACzB,2BAAa,CAAC,QAAQ;AACpB,oBAAI,MAAM,IAAI,eAAe;AAC7B,oBAAI,KAAK,OAAO,KAAK,KAAK;AAC1B,oBAAI,eAAe;AACnB,oBAAI,KAAK,IAAI;AACb,uBAAO,IAAI,WAAW,IAAI,QAAQ;AAAA,cACpC;AAAA,YACF;AACA,wBAAY,CAAC,KAAK,QAAQ,YAAY;AACpC,kBAAI,MAAM,IAAI,eAAe;AAC7B,kBAAI,KAAK,OAAO,KAAK,IAAI;AACzB,kBAAI,eAAe;AACnB,kBAAI,SAAS,MAAM;AACjB,oBAAI,IAAI,UAAU,OAAO,IAAI,UAAU,KAAK,IAAI,UAAU;AACxD,yBAAO,IAAI,QAAQ;AACnB;AAAA,gBACF;AACA,wBAAQ;AAAA,cACV;AACA,kBAAI,UAAU;AACd,kBAAI,KAAK,IAAI;AAAA,YACf;AAAA,UACF;AACA,2BAAiB,CAAC,UAAU,SAAS,QAAQ;AAAA,QAC/C,OAAO;AAAA,QACP;AACA,YAAI,MAAM,OAAO,YAAY,QAAQ,IAAI,KAAK,OAAO;AACrD,YAAI,MAAM,OAAO,eAAe,QAAQ,KAAK,KAAK,OAAO;AACzD,eAAO,OAAO,QAAQ,eAAe;AACrC,0BAAkB;AAClB,YAAI,OAAO;AACT,uBAAa,OAAO;AACtB,YAAI,OAAO;AACT,wBAAc,OAAO;AACvB,YAAI,OAAO;AACT,kBAAQ,OAAO;AACjB,YAAI,eAAe;AACnB,iBAAS,SAAS,MAAM;AACtB,cAAI,CAAC,SAAS;AACZ,qBAAS,QAAQ,CAAC;AACpB,cAAI,CAAC,SAAS,MAAM,OAAO;AACzB,qBAAS,MAAM,QAAQ;AACvB,gBAAI,IAAI;AAAA,UACV;AAAA,QACF;AACA,iBAAS,wBAAwB,OAAO,KAAK;AAC3C,cAAI,OAAO,YAAY,aAAa,YAAY;AAC9C,gBAAI,YAAY,EAAE,KAAK,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,MAAM;AACjE,gBAAI,OAAO,EAAE,YAAY,CAAC,GAAG,SAAS,IAAI,MAAM,MAAM,CAAC,IAAI,CAAC,UAAU,IAAI,GAAG,EAAE;AAC/E,qBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,mBAAK,WAAW,KAAK,UAAU,IAAI,IAAI;AAAA,YACzC;AACA,mBAAO,IAAI,YAAY,SAAS,MAAM,KAAK;AAAA,UAC7C;AACA,cAAI,cAAc,CAAC,GAAG,GAAG,GAAG,EAAE;AAC9B,cAAI,SAAS,IAAI,MAAM,GAAG,CAAC;AAC3B,cAAI,WAAW,IAAI,MAAM,CAAC;AAC1B,cAAI,YAAY,EAAE,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,IAAI;AACzD,sBAAY,KAAK,SAAS,MAAM;AAChC,mBAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,EAAE,IAAI;AAC3C,wBAAY,KAAK,UAAU,SAAS,IAAI;AAAA,UAC1C;AACA,cAAI,UAAU,KAAK;AACjB,wBAAY,KAAK,CAAC;AAAA,UACpB,OAAO;AACL,0BAAc,YAAY,OAAO,CAAC,GAAG,UAAU,OAAO,CAAC;AAAA,UACzD;AACA,sBAAY,KAAK,YAAY,SAAS;AACtC,cAAI,QAAQ,IAAI,WAAW,CAAC,GAAG,IAAI,KAAK,KAAK,GAAG,GAAG,GAAG,CAAC,EAAE,OAAO,aAAa,CAAC,GAAG,GAAG,GAAG,GAAG,KAAK,GAAG,KAAK,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC;AACpI,cAAI,UAAU,IAAI,YAAY,OAAO,KAAK;AAC1C,cAAIH,YAAW,IAAI,YAAY,SAAS,SAAS,EAAE,KAAK,EAAE,KAAK,MAAM,EAAE,CAAC;AACxE,cAAI,cAAcA,UAAS,QAAQ;AACnC,iBAAO;AAAA,QACT;AACA,YAAI,mBAAmB,CAAC;AACxB,YAAI;AACJ,iBAAS,oBAAoB;AAC3B,cAAI,iBAAiB,QAAQ;AAC3B,mBAAO,iBAAiB,IAAI;AAAA,UAC9B;AACA,cAAI;AACF,sBAAU,KAAK,CAAC;AAAA,UAClB,SAAS,MAAP;AACA,gBAAI,EAAE,gBAAgB,aAAa;AACjC,oBAAM;AAAA,YACR;AACA,kBAAM;AAAA,UACR;AACA,iBAAO,UAAU,SAAS;AAAA,QAC5B;AACA,iBAAS,eAAe,QAAQD,SAAQ;AACtC,mBAAS,KAAK,QAAQ,KAAK,SAASA,SAAQ,MAAM;AAChD,gBAAI,OAAO,kBAAkB,EAAE;AAC/B,gBAAI,MAAM;AACR,kCAAoB,IAAI,MAAM,EAAE;AAAA,YAClC;AAAA,UACF;AAAA,QACF;AACA,YAAI,WAAW;AACf,YAAI,cAAc,CAAC,UAAU;AAC3B,qBAAW;AAAA,QACb;AACA,YAAI;AACJ,YAAI,OAAO;AACT,uBAAa,OAAO;AACtB,YAAI,gBAAgB,OAAO,oBAAoB;AAC/C,YAAI,OAAO,gBAAgB,UAAU;AACnC,gBAAM,iCAAiC;AAAA,QACzC;AACA,YAAI;AACJ,YAAI,QAAQ;AACZ,YAAI;AACJ,iBAAS,QAAQ,WAAW,MAAM;AAChC,cAAI,CAAC,WAAW;AACd,kBAAM,IAAI;AAAA,UACZ;AAAA,QACF;AACA,iBAAS,SAAS,OAAO;AACvB,cAAI,QAAQ,OAAO,MAAM;AACzB,iBAAO;AAAA,QACT;AACA,iBAAS,MAAM,OAAO,YAAY,UAAU,MAAM,MAAM;AACtD,cAAI,MAAM,EAAE,UAAU,SAAS,KAAK;AAClC,gBAAI,OAAO;AACX,gBAAI,QAAQ,QAAQ,QAAQ,UAAU,QAAQ,GAAG;AAC/C,kBAAI,OAAO,IAAI,UAAU,KAAK;AAC9B,qBAAO,WAAW,GAAG;AACrB,2BAAa,KAAK,MAAM,GAAG;AAAA,YAC7B;AACA,mBAAO;AAAA,UACT,GAAG,SAAS,SAAS,KAAK;AACxB,gBAAI,OAAO,WAAW,IAAI,MAAM;AAChC,+BAAmB,KAAK,IAAI;AAC5B,mBAAO;AAAA,UACT,EAAE;AACF,mBAAS,mBAAmB,MAAM;AAChC,gBAAI,eAAe;AACjB,qBAAO,aAAa,IAAI;AAC1B,gBAAI,eAAe;AACjB,qBAAO,QAAQ,IAAI;AACrB,mBAAO;AAAA,UACT;AACA,cAAI,QAAQ,SAAS,KAAK;AAC1B,cAAI,QAAQ,CAAC;AACb,cAAI,SAAS;AACb,cAAI,MAAM;AACR,qBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,kBAAI,YAAY,IAAI,SAAS;AAC7B,kBAAI,WAAW;AACb,oBAAI,WAAW;AACb,2BAAS,UAAU;AACrB,sBAAM,MAAM,UAAU,KAAK,GAAG;AAAA,cAChC,OAAO;AACL,sBAAM,MAAM,KAAK;AAAA,cACnB;AAAA,YACF;AAAA,UACF;AACA,cAAI,MAAM,MAAM,MAAM,MAAM,KAAK;AACjC,mBAAS,OAAO,MAAM;AACpB,gBAAI,WAAW;AACb,2BAAa,MAAM;AACrB,mBAAO,mBAAmB,IAAI;AAAA,UAChC;AACA,gBAAM,OAAO,GAAG;AAChB,iBAAO;AAAA,QACT;AACA,iBAAS,MAAM,OAAO,YAAY,UAAU,MAAM;AAChD,qBAAW,YAAY,CAAC;AACxB,cAAI,cAAc,SAAS,MAAM,SAAS,MAAM;AAC9C,mBAAO,SAAS;AAAA,UAClB,CAAC;AACD,cAAI,aAAa,eAAe;AAChC,cAAI,cAAc,eAAe,CAAC,MAAM;AACtC,mBAAO,SAAS,KAAK;AAAA,UACvB;AACA,iBAAO,WAAW;AAChB,mBAAO,MAAM,OAAO,YAAY,UAAU,WAAW,IAAI;AAAA,UAC3D;AAAA,QACF;AACA,YAAI,cAAc;AAClB,YAAI,cAAc,OAAO,gBAAgB,cAAc,IAAI,YAAY,MAAM,IAAI;AACjF,iBAAS,kBAAkB,MAAM,KAAK,gBAAgB;AACpD,cAAI,SAAS,MAAM;AACnB,cAAI,SAAS;AACb,iBAAO,KAAK,WAAW,EAAE,UAAU;AACjC,cAAE;AACJ,cAAI,SAAS,MAAM,MAAM,KAAK,YAAY,aAAa;AACrD,mBAAO,YAAY,OAAO,KAAK,SAAS,KAAK,MAAM,CAAC;AAAA,UACtD,OAAO;AACL,gBAAI,MAAM;AACV,mBAAO,MAAM,QAAQ;AACnB,kBAAI,KAAK,KAAK;AACd,kBAAI,EAAE,KAAK,MAAM;AACf,uBAAO,OAAO,aAAa,EAAE;AAC7B;AAAA,cACF;AACA,kBAAI,KAAK,KAAK,SAAS;AACvB,mBAAK,KAAK,QAAQ,KAAK;AACrB,uBAAO,OAAO,cAAc,KAAK,OAAO,IAAI,EAAE;AAC9C;AAAA,cACF;AACA,kBAAI,KAAK,KAAK,SAAS;AACvB,mBAAK,KAAK,QAAQ,KAAK;AACrB,sBAAM,KAAK,OAAO,KAAK,MAAM,IAAI;AAAA,cACnC,OAAO;AACL,sBAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,KAAK,SAAS;AAAA,cAC3D;AACA,kBAAI,KAAK,OAAO;AACd,uBAAO,OAAO,aAAa,EAAE;AAAA,cAC/B,OAAO;AACL,oBAAI,KAAK,KAAK;AACd,uBAAO,OAAO,aAAa,QAAQ,MAAM,IAAI,QAAQ,KAAK,IAAI;AAAA,cAChE;AAAA,YACF;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,aAAa,KAAK,gBAAgB;AACzC,iBAAO,MAAM,kBAAkB,QAAQ,KAAK,cAAc,IAAI;AAAA,QAChE;AACA,iBAAS,kBAAkB,KAAK,MAAM,QAAQ,iBAAiB;AAC7D,cAAI,EAAE,kBAAkB;AACtB,mBAAO;AACT,cAAI,WAAW;AACf,cAAI,SAAS,SAAS,kBAAkB;AACxC,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,gBAAI,IAAI,IAAI,WAAW,EAAE;AACzB,gBAAI,KAAK,SAAS,KAAK,OAAO;AAC5B,kBAAI,KAAK,IAAI,WAAW,EAAE,EAAE;AAC5B,kBAAI,UAAU,IAAI,SAAS,MAAM,KAAK;AAAA,YACxC;AACA,gBAAI,KAAK,KAAK;AACZ,kBAAI,UAAU;AACZ;AACF,mBAAK,YAAY;AAAA,YACnB,WAAW,KAAK,MAAM;AACpB,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B,WAAW,KAAK,OAAO;AACrB,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,KAAK,IAAI;AAChC,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B,OAAO;AACL,kBAAI,SAAS,KAAK;AAChB;AACF,mBAAK,YAAY,MAAM,KAAK;AAC5B,mBAAK,YAAY,MAAM,KAAK,KAAK;AACjC,mBAAK,YAAY,MAAM,KAAK,IAAI;AAChC,mBAAK,YAAY,MAAM,IAAI;AAAA,YAC7B;AAAA,UACF;AACA,eAAK,UAAU;AACf,iBAAO,SAAS;AAAA,QAClB;AACA,iBAAS,aAAa,KAAK,QAAQ,iBAAiB;AAClD,iBAAO,kBAAkB,KAAK,QAAQ,QAAQ,eAAe;AAAA,QAC/D;AACA,iBAAS,gBAAgB,KAAK;AAC5B,cAAI,MAAM;AACV,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,gBAAI,IAAI,IAAI,WAAW,EAAE;AACzB,gBAAI,KAAK,SAAS,KAAK;AACrB,kBAAI,UAAU,IAAI,SAAS,MAAM,IAAI,WAAW,EAAE,EAAE,IAAI;AAC1D,gBAAI,KAAK;AACP,gBAAE;AAAA,qBACK,KAAK;AACZ,qBAAO;AAAA,qBACA,KAAK;AACZ,qBAAO;AAAA;AAEP,qBAAO;AAAA,UACX;AACA,iBAAO;AAAA,QACT;AACA,YAAI,eAAe,OAAO,gBAAgB,cAAc,IAAI,YAAY,UAAU,IAAI;AACtF,iBAAS,mBAAmB,QAAQ,SAAS;AAC3C,gBAAM,IAAI,QAAQ,OAAO;AAAA,QAC3B;AACA,iBAAS,mBAAmB,KAAK,SAAS,aAAa;AACrD,mBAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,kBAAM,aAAa,KAAK,IAAI,WAAW,EAAE;AAAA,UAC3C;AACA,cAAI,CAAC;AACH,kBAAM,WAAW,KAAK;AAAA,QAC1B;AACA,iBAAS,QAAQ,GAAG,UAAU;AAC5B,cAAI,IAAI,WAAW,GAAG;AACpB,iBAAK,WAAW,IAAI;AAAA,UACtB;AACA,iBAAO;AAAA,QACT;AACA,YAAI,SAAS,OAAO,QAAQ,QAAQ,SAAS,QAAQ,SAAS,SAAS;AACvE,iBAAS,2BAA2B,KAAK;AACvC,oBAAU;AACV,iBAAO,WAAW,QAAQ,IAAI,UAAU,GAAG;AAC3C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,YAAY,SAAS,IAAI,WAAW,GAAG;AAC9C,iBAAO,aAAa,UAAU,IAAI,YAAY,GAAG;AACjD,iBAAO,aAAa,UAAU,IAAI,YAAY,GAAG;AACjD,iBAAO,aAAa,UAAU,IAAI,aAAa,GAAG;AAClD,iBAAO,aAAa,UAAU,IAAI,aAAa,GAAG;AAAA,QACpD;AACA,YAAI,iBAAiB,OAAO,qBAAqB;AACjD,YAAI;AACJ,YAAI,eAAe,CAAC;AACpB,YAAI,aAAa,CAAC;AAClB,YAAI,gBAAgB,CAAC;AACrB,YAAI,qBAAqB;AACzB,YAAI,gBAAgB;AACpB,YAAI,0BAA0B;AAC9B,iBAAS,mBAAmB;AAC1B,iBAAO,iBAAiB,0BAA0B;AAAA,QACpD;AACA,iBAAS,SAAS;AAChB,cAAI,OAAO,WAAW;AACpB,gBAAI,OAAO,OAAO,aAAa;AAC7B,qBAAO,YAAY,CAAC,OAAO,SAAS;AACtC,mBAAO,OAAO,UAAU,QAAQ;AAC9B,0BAAY,OAAO,UAAU,MAAM,CAAC;AAAA,YACtC;AAAA,UACF;AACA,+BAAqB,YAAY;AAAA,QACnC;AACA,iBAAS,cAAc;AACrB,+BAAqB;AACrB,+BAAqB,UAAU;AAAA,QACjC;AACA,iBAAS,cAAc;AACrB,0BAAgB;AAAA,QAClB;AACA,iBAAS,UAAU;AACjB,cAAI,OAAO,YAAY;AACrB,gBAAI,OAAO,OAAO,cAAc;AAC9B,qBAAO,aAAa,CAAC,OAAO,UAAU;AACxC,mBAAO,OAAO,WAAW,QAAQ;AAC/B,2BAAa,OAAO,WAAW,MAAM,CAAC;AAAA,YACxC;AAAA,UACF;AACA,+BAAqB,aAAa;AAAA,QACpC;AACA,iBAAS,YAAY,IAAI;AACvB,uBAAa,QAAQ,EAAE;AAAA,QACzB;AACA,iBAAS,UAAU,IAAI;AACrB,qBAAW,QAAQ,EAAE;AAAA,QACvB;AACA,iBAAS,aAAa,IAAI;AACxB,wBAAc,QAAQ,EAAE;AAAA,QAC1B;AACA,YAAI,kBAAkB;AACtB,YAAI,uBAAuB;AAC3B,YAAI,wBAAwB;AAC5B,iBAAS,iBAAiB,IAAI;AAC5B;AACA,cAAI,OAAO,2BAA2B;AACpC,mBAAO,0BAA0B,eAAe;AAAA,UAClD;AAAA,QACF;AACA,iBAAS,oBAAoB,IAAI;AAC/B;AACA,cAAI,OAAO,2BAA2B;AACpC,mBAAO,0BAA0B,eAAe;AAAA,UAClD;AACA,cAAI,mBAAmB,GAAG;AACxB,gBAAI,yBAAyB,MAAM;AACjC,4BAAc,oBAAoB;AAClC,qCAAuB;AAAA,YACzB;AACA,gBAAI,uBAAuB;AACzB,kBAAI,WAAW;AACf,sCAAwB;AACxB,uBAAS;AAAA,YACX;AAAA,UACF;AAAA,QACF;AACA,eAAO,qBAAqB,CAAC;AAC7B,eAAO,qBAAqB,CAAC;AAC7B,iBAAS,MAAM,MAAM;AACnB;AACE,gBAAI,OAAO,YAAY;AACrB,qBAAO,WAAW,IAAI;AAAA,YACxB;AAAA,UACF;AACA,iBAAO,aAAa,OAAO;AAC3B,cAAI,IAAI;AACR,kBAAQ;AACR,uBAAa;AACb,kBAAQ;AACR,cAAI,KAAK,IAAI,YAAY,aAAa,IAAI;AAC1C,6BAAmB,EAAE;AACrB,gBAAM;AAAA,QACR;AACA,YAAI,gBAAgB;AACpB,iBAAS,UAAU,UAAU;AAC3B,iBAAO,SAAS,WAAW,aAAa;AAAA,QAC1C;AACA,iBAAS,UAAU,UAAU;AAC3B,iBAAO,SAAS,WAAW,SAAS;AAAA,QACtC;AACA,YAAI;AACJ,yBAAiB;AACjB,YAAI,CAAC,UAAU,cAAc,GAAG;AAC9B,2BAAiB,WAAW,cAAc;AAAA,QAC5C;AACA,iBAAS,UAAU,MAAM;AACvB,cAAI;AACF,gBAAI,QAAQ,kBAAkB,YAAY;AACxC,qBAAO,IAAI,WAAW,UAAU;AAAA,YAClC;AACA,gBAAI,YAAY;AACd,qBAAO,WAAW,IAAI;AAAA,YACxB,OAAO;AACL,oBAAM;AAAA,YACR;AAAA,UACF,SAAS,MAAP;AACA,kBAAM,IAAI;AAAA,UACZ;AAAA,QACF;AACA,iBAAS,mBAAmB;AAC1B,cAAI,CAAC,eAAe,sBAAsB,wBAAwB;AAChE,gBAAI,OAAO,UAAU,cAAc,CAAC,UAAU,cAAc,GAAG;AAC7D,qBAAO,MAAM,gBAAgB,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,SAAS,UAAU;AACnF,oBAAI,CAAC,SAAS,OAAO;AACnB,wBAAM,yCAAyC,iBAAiB;AAAA,gBAClE;AACA,uBAAO,SAAS,eAAe;AAAA,cACjC,CAAC,EAAE,MAAM,WAAW;AAClB,uBAAO,UAAU,cAAc;AAAA,cACjC,CAAC;AAAA,YACH,OAAO;AACL,kBAAI,WAAW;AACb,uBAAO,IAAI,QAAQ,SAAS,SAAS,QAAQ;AAC3C,4BAAU,gBAAgB,SAAS,UAAU;AAC3C,4BAAQ,IAAI,WAAW,QAAQ,CAAC;AAAA,kBAClC,GAAG,MAAM;AAAA,gBACX,CAAC;AAAA,cACH;AAAA,YACF;AAAA,UACF;AACA,iBAAO,QAAQ,QAAQ,EAAE,KAAK,WAAW;AACvC,mBAAO,UAAU,cAAc;AAAA,UACjC,CAAC;AAAA,QACH;AACA,iBAAS,aAAa;AACpB,cAAI,OAAO,EAAE,OAAO,eAAe,0BAA0B,cAAc;AAC3E,mBAAS,gBAAgBC,WAAU,SAAS;AAC1C,gBAAI,WAAWA,UAAS;AACxB,mBAAO,SAAS;AAChB,yBAAa,OAAO,OAAO;AAC3B,uCAA2B,WAAW,MAAM;AAC5C,wBAAY,OAAO,OAAO;AAC1B,sBAAU,OAAO,OAAO,oBAAoB;AAC5C,gCAAoB,kBAAkB;AAAA,UACxC;AACA,2BAAiB,kBAAkB;AACnC,mBAAS,2BAA2B,QAAQ;AAC1C,4BAAgB,OAAO,WAAW;AAAA,UACpC;AACA,mBAAS,uBAAuB,UAAU;AACxC,mBAAO,iBAAiB,EAAE,KAAK,SAAS,QAAQ;AAC9C,qBAAO,YAAY,YAAY,QAAQ,IAAI;AAAA,YAC7C,CAAC,EAAE,KAAK,SAASA,WAAU;AACzB,qBAAOA;AAAA,YACT,CAAC,EAAE,KAAK,UAAU,SAAS,QAAQ;AACjC,kBAAI,4CAA4C,MAAM;AACtD,oBAAM,MAAM;AAAA,YACd,CAAC;AAAA,UACH;AACA,mBAAS,mBAAmB;AAC1B,gBAAI,CAAC,cAAc,OAAO,YAAY,yBAAyB,cAAc,CAAC,UAAU,cAAc,KAAK,CAAC,UAAU,cAAc,KAAK,OAAO,UAAU,YAAY;AACpK,qBAAO,MAAM,gBAAgB,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,SAAS,UAAU;AACnF,oBAAI,SAAS,YAAY,qBAAqB,UAAU,IAAI;AAC5D,uBAAO,OAAO,KAAK,4BAA4B,SAAS,QAAQ;AAC9D,sBAAI,oCAAoC,MAAM;AAC9C,sBAAI,2CAA2C;AAC/C,yBAAO,uBAAuB,0BAA0B;AAAA,gBAC1D,CAAC;AAAA,cACH,CAAC;AAAA,YACH,OAAO;AACL,qBAAO,uBAAuB,0BAA0B;AAAA,YAC1D;AAAA,UACF;AACA,cAAI,OAAO,oBAAoB;AAC7B,gBAAI;AACF,kBAAI,WAAW,OAAO,mBAAmB,MAAM,eAAe;AAC9D,qBAAO;AAAA,YACT,SAAS,IAAP;AACA,kBAAI,wDAAwD,EAAE;AAC9D,qBAAO;AAAA,YACT;AAAA,UACF;AACA,2BAAiB,EAAE,MAAM,kBAAkB;AAC3C,iBAAO,CAAC;AAAA,QACV;AACA,YAAI;AACJ,YAAI;AACJ,iBAAS,qBAAqB,YAAY;AACxC,iBAAO,WAAW,SAAS,GAAG;AAC5B,gBAAI,WAAW,WAAW,MAAM;AAChC,gBAAI,OAAO,YAAY,YAAY;AACjC,uBAAS,MAAM;AACf;AAAA,YACF;AACA,gBAAI,QAAQ,SAAS;AACrB,gBAAI,OAAO,UAAU,UAAU;AAC7B,kBAAI,SAAS,QAAQ,QAAQ;AAC3B,kCAAkB,KAAK,EAAE;AAAA,cAC3B,OAAO;AACL,kCAAkB,KAAK,EAAE,SAAS,GAAG;AAAA,cACvC;AAAA,YACF,OAAO;AACL,oBAAM,SAAS,QAAQ,SAAS,OAAO,SAAS,GAAG;AAAA,YACrD;AAAA,UACF;AAAA,QACF;AACA,iBAAS,SAAS,OAAO;AACvB,iBAAO;AAAA,QACT;AACA,iBAAS,YAAY,MAAM;AACzB,cAAI,QAAQ;AACZ,iBAAO,KAAK,QAAQ,OAAO,SAAS,GAAG;AACrC,gBAAI,IAAI,SAAS,CAAC;AAClB,mBAAO,MAAM,IAAI,IAAI,IAAI,OAAO,IAAI;AAAA,UACtC,CAAC;AAAA,QACH;AACA,YAAI,kBAAkB,CAAC;AACvB,iBAAS,kBAAkB,SAAS;AAClC,cAAI,QAAQ,gBAAgB;AAC5B,cAAI,CAAC,OAAO;AACV,gBAAI,WAAW,gBAAgB;AAC7B,8BAAgB,SAAS,UAAU;AACrC,4BAAgB,WAAW,QAAQ,UAAU,IAAI,OAAO;AAAA,UAC1D;AACA,iBAAO;AAAA,QACT;AACA,iBAAS,eAAe;AACtB,cAAI,QAAQ,IAAI,MAAM;AACtB,cAAI,CAAC,MAAM,OAAO;AAChB,gBAAI;AACF,oBAAM,IAAI,MAAM;AAAA,YAClB,SAAS,IAAP;AACA,sBAAQ;AAAA,YACV;AACA,gBAAI,CAAC,MAAM,OAAO;AAChB,qBAAO;AAAA,YACT;AAAA,UACF;AACA,iBAAO,MAAM,MAAM,SAAS;AAAA,QAC9B;AACA,iBAAS,kBAAkB,KAAK,OAAO;AACrC,oBAAU,IAAI,KAAK,KAAK;AACxB,0BAAgB,OAAO;AAAA,QACzB;AACA,iBAAS,SAAS;AAChB,gBAAM,EAAE;AAAA,QACV;AACA,iBAAS,2BAA2B;AAClC,iBAAO;AAAA,QACT;AACA,iBAAS,uBAAuB,MAAM,KAAK,KAAK;AAC9C,iBAAO,WAAW,MAAM,KAAK,MAAM,GAAG;AAAA,QACxC;AACA,iBAAS,0BAA0BR,OAAM;AACvC,cAAI;AACF,uBAAW,KAAKA,QAAO,QAAQ,aAAa,UAAU,EAAE;AACxD,uCAA2B,WAAW,MAAM;AAC5C,mBAAO;AAAA,UACT,SAAS,IAAP;AAAA,UACF;AAAA,QACF;AACA,iBAAS,wBAAwB,eAAe;AAC9C,cAAI,UAAU,OAAO;AACrB,0BAAgB,kBAAkB;AAClC,cAAI,cAAc,yBAAyB;AAC3C,cAAI,gBAAgB,aAAa;AAC/B,mBAAO;AAAA,UACT;AACA,mBAAS,UAAU,GAAG,WAAW,GAAG,WAAW,GAAG;AAChD,gBAAI,oBAAoB,WAAW,IAAI,MAAM;AAC7C,gCAAoB,KAAK,IAAI,mBAAmB,gBAAgB,SAAS;AACzE,gBAAI,UAAU,KAAK,IAAI,aAAa,QAAQ,KAAK,IAAI,eAAe,iBAAiB,GAAG,KAAK,CAAC;AAC9F,gBAAI,cAAc,0BAA0B,OAAO;AACnD,gBAAI,aAAa;AACf,qBAAO;AAAA,YACT;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AACA,YAAI,WAAW,EAAE,UAAU,CAAC,GAAG,SAAS,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,GAAG,WAAW,SAAS,QAAQ,MAAM;AACxF,cAAI,UAAU,SAAS,QAAQ;AAC/B,cAAI,SAAS,KAAK,SAAS,IAAI;AAC7B,aAAC,WAAW,IAAI,MAAM,KAAK,kBAAkB,SAAS,CAAC,CAAC;AACxD,oBAAQ,SAAS;AAAA,UACnB,OAAO;AACL,oBAAQ,KAAK,IAAI;AAAA,UACnB;AAAA,QACF,GAAG,SAAS,QAAQ,KAAK,WAAW;AAClC,mBAAS,WAAW;AACpB,cAAI,MAAM,OAAO,SAAS,UAAU,KAAK;AACzC,iBAAO;AAAA,QACT,GAAG,QAAQ,SAAS,KAAK;AACvB,cAAI,MAAM,aAAa,GAAG;AAC1B,iBAAO;AAAA,QACT,GAAG,OAAO,SAAS,KAAK,MAAM;AAC5B,iBAAO;AAAA,QACT,EAAE;AACF,iBAAS,UAAU,IAAI;AACrB,iBAAO;AAAA,QACT;AACA,iBAAS,SAAS,IAAI,YAAY,aAAa,QAAQ,WAAW;AAAA,QAClE;AACA,iBAAS,UAAU,IAAI,KAAK,QAAQ,MAAM;AACxC,cAAI,MAAM;AACV,mBAAS,KAAK,GAAG,KAAK,QAAQ,MAAM;AAClC,gBAAI,MAAM,OAAO,OAAO;AACxB,gBAAI,MAAM,OAAO,MAAM,KAAK;AAC5B,mBAAO;AACP,qBAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC5B,uBAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AAAA,YACxC;AACA,mBAAO;AAAA,UACT;AACA,iBAAO,QAAQ,KAAK;AACpB,iBAAO;AAAA,QACT;AACA,iBAAS,aAAa,KAAK;AACzB,sBAAY,GAAG;AAAA,QACjB;AACA,YAAI,aAAa;AACjB,YAAI,gBAAgB,EAAE,SAAS,QAAQ,2BAA2B,0BAA0B,yBAAyB,wBAAwB,0BAA0B,yBAAyB,YAAY,WAAW,WAAW,UAAU,YAAY,WAAW,eAAe,aAAa;AAC/R,YAAI,MAAM,WAAW;AACrB,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,2BAA2B,OAAO,8BAA8B,WAAW;AAC7E,kBAAQ,2BAA2B,OAAO,8BAA8B,OAAO,OAAO,4BAA4B,MAAM,MAAM,SAAS;AAAA,QACzI;AACA,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,mBAAmB,OAAO,sBAAsB,WAAW;AAC7D,kBAAQ,mBAAmB,OAAO,sBAAsB,OAAO,OAAO,oBAAoB,MAAM,MAAM,SAAS;AAAA,QACjH;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,yBAAyB,OAAO,4BAA4B,WAAW;AACzE,kBAAQ,yBAAyB,OAAO,4BAA4B,OAAO,OAAO,0BAA0B,MAAM,MAAM,SAAS;AAAA,QACnI;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,kBAAkB,OAAO,qBAAqB,WAAW;AAC3D,kBAAQ,kBAAkB,OAAO,qBAAqB,OAAO,OAAO,mBAAmB,MAAM,MAAM,SAAS;AAAA,QAC9G;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,gBAAgB,MAAM,MAAM,SAAS;AAAA,QACrG;AACA,YAAI,wBAAwB,OAAO,2BAA2B,WAAW;AACvE,kBAAQ,wBAAwB,OAAO,2BAA2B,OAAO,OAAO,yBAAyB,MAAM,MAAM,SAAS;AAAA,QAChI;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,cAAc,OAAO,iBAAiB,WAAW;AACnD,kBAAQ,cAAc,OAAO,iBAAiB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAClG;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,kBAAkB,OAAO,qBAAqB,WAAW;AAC3D,kBAAQ,kBAAkB,OAAO,qBAAqB,OAAO,OAAO,mBAAmB,MAAM,MAAM,SAAS;AAAA,QAC9G;AACA,YAAI,yBAAyB,OAAO,4BAA4B,WAAW;AACzE,kBAAQ,yBAAyB,OAAO,4BAA4B,OAAO,OAAO,0BAA0B,MAAM,MAAM,SAAS;AAAA,QACnI;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,oBAAoB,OAAO,uBAAuB,WAAW;AAC/D,kBAAQ,oBAAoB,OAAO,uBAAuB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QACpH;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,SAAS,OAAO,YAAY,WAAW;AACzC,kBAAQ,SAAS,OAAO,YAAY,OAAO,OAAO,UAAU,MAAM,MAAM,SAAS;AAAA,QACnF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,aAAa,MAAM,MAAM,SAAS;AAAA,QAC5F;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,WAAW,OAAO,cAAc,WAAW;AAC7C,kBAAQ,WAAW,OAAO,cAAc,OAAO,OAAO,YAAY,MAAM,MAAM,SAAS;AAAA,QACzF;AACA,YAAI,uBAAuB,OAAO,0BAA0B,WAAW;AACrE,kBAAQ,uBAAuB,OAAO,0BAA0B,OAAO,OAAO,wBAAwB,MAAM,MAAM,SAAS;AAAA,QAC7H;AACA,YAAI,iBAAiB,OAAO,oBAAoB,WAAW;AACzD,kBAAQ,iBAAiB,OAAO,oBAAoB,OAAO,OAAO,kBAAkB,MAAM,MAAM,SAAS;AAAA,QAC3G;AACA,YAAI,0BAA0B,OAAO,6BAA6B,WAAW;AAC3E,kBAAQ,0BAA0B,OAAO,6BAA6B,OAAO,OAAO,2BAA2B,MAAM,MAAM,SAAS;AAAA,QACtI;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,qBAAqB,OAAO,wBAAwB,WAAW;AACjE,kBAAQ,qBAAqB,OAAO,wBAAwB,OAAO,OAAO,sBAAsB,MAAM,MAAM,SAAS;AAAA,QACvH;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,OAAO,OAAO,UAAU,WAAW;AACrC,kBAAQ,OAAO,OAAO,UAAU,OAAO,OAAO,QAAQ,MAAM,MAAM,SAAS;AAAA,QAC7E;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC/F;AACA,YAAI,gBAAgB,OAAO,mBAAmB,WAAW;AACvD,kBAAQ,gBAAgB,OAAO,mBAAmB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACxG;AACA,YAAI,UAAU,OAAO,aAAa,WAAW;AAC3C,kBAAQ,UAAU,OAAO,aAAa,OAAO,OAAO,WAAW,MAAM,MAAM,SAAS;AAAA,QACtF;AACA,YAAI,QAAQ,OAAO,WAAW,WAAW;AACvC,kBAAQ,QAAQ,OAAO,WAAW,OAAO,OAAO,SAAS,MAAM,MAAM,SAAS;AAAA,QAChF;AACA,YAAI,oBAAoB,OAAO,uBAAuB,WAAW;AAC/D,kBAAQ,oBAAoB,OAAO,uBAAuB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QACpH;AACA,YAAI,+CAA+C,OAAO,kDAAkD,WAAW;AACrH,kBAAQ,+CAA+C,OAAO,kDAAkD,OAAO,OAAO,gDAAgD,MAAM,MAAM,SAAS;AAAA,QACrM;AACA,YAAI,YAAY,OAAO,eAAe,WAAW;AAC/C,kBAAQ,YAAY,OAAO,eAAe,OAAO,OAAO,cAAc,MAAM,MAAM,SAAS;AAAA,QAC7F;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACtG;AACA,YAAI,aAAa,OAAO,gBAAgB,WAAW;AACjD,kBAAQ,aAAa,OAAO,gBAAgB,OAAO,OAAO,eAAe,MAAM,MAAM,SAAS;AAAA,QAChG;AACA,YAAI,mBAAmB,OAAO,sBAAsB,WAAW;AAC7D,kBAAQ,mBAAmB,OAAO,sBAAsB,OAAO,OAAO,qBAAqB,MAAM,MAAM,SAAS;AAAA,QAClH;AACA,YAAI,eAAe,OAAO,kBAAkB,WAAW;AACrD,kBAAQ,eAAe,OAAO,kBAAkB,OAAO,OAAO,iBAAiB,MAAM,MAAM,SAAS;AAAA,QACtG;AACA,eAAO,WAAW;AAClB,YAAI;AACJ,iBAAS,WAAW,QAAQ;AAC1B,eAAK,OAAO;AACZ,eAAK,UAAU,kCAAkC,SAAS;AAC1D,eAAK,SAAS;AAAA,QAChB;AACA,gCAAwB,SAAS,YAAY;AAC3C,cAAI,CAAC;AACH,gBAAI;AACN,cAAI,CAAC;AACH,oCAAwB;AAAA,QAC5B;AACA,iBAAS,IAAI,MAAM;AACjB,iBAAO,QAAQ;AACf,cAAI,kBAAkB,GAAG;AACvB;AAAA,UACF;AACA,iBAAO;AACP,cAAI,kBAAkB,GAAG;AACvB;AAAA,UACF;AACA,mBAAS,QAAQ;AACf,gBAAI;AACF;AACF,wBAAY;AACZ,mBAAO,eAAe;AACtB,gBAAI;AACF;AACF,wBAAY;AACZ,gCAAoB,MAAM;AAC1B,gBAAI,OAAO;AACT,qBAAO,wBAAwB;AACjC,oBAAQ;AAAA,UACV;AACA,cAAI,OAAO,cAAc;AACvB,mBAAO,aAAa,YAAY;AAChC,uBAAW,WAAW;AACpB,yBAAW,WAAW;AACpB,uBAAO,aAAa,EAAE;AAAA,cACxB,GAAG,CAAC;AACJ,oBAAM;AAAA,YACR,GAAG,CAAC;AAAA,UACN,OAAO;AACL,kBAAM;AAAA,UACR;AAAA,QACF;AACA,eAAO,SAAS;AAChB,iBAAS,SAAS,MAAM;AACtB,uBAAa;AACb,cAAI,CAAC,iBAAiB,GAAG;AACvB,gBAAI,OAAO;AACT,qBAAO,UAAU,IAAI;AACvB,oBAAQ;AAAA,UACV;AACA,gBAAM,MAAM,IAAI,WAAW,IAAI,CAAC;AAAA,QAClC;AACA,YAAI,OAAO,YAAY;AACrB,cAAI,OAAO,OAAO,cAAc;AAC9B,mBAAO,aAAa,CAAC,OAAO,UAAU;AACxC,iBAAO,OAAO,WAAW,SAAS,GAAG;AACnC,mBAAO,WAAW,IAAI,EAAE;AAAA,UAC1B;AAAA,QACF;AACA,YAAI;AACJ,YAAI;AACJ,YAAI,iBAAiB;AACnB,2BAAiB,EAAE,mBAAmB,QAAQ,UAAU,mBAAmB,EAAE,OAAO,SAAS,UAAU;AACrG,mBAAO,CAAC,gBAAgB,kBAAkB,QAAQ,QAAQ,IAAI;AAAA,UAChE,CAAC,GAAG,oBAAoB,QAAQ,UAAU,oBAAoB,EAAE,OAAO,SAAS,UAAU;AACxF,mBAAO,CAAC,gBAAgB,mBAAmB,QAAQ,QAAQ,IAAI;AAAA,UACjE,CAAC,EAAE;AAAA,QACL;AACA,YAAI;AACJ,YAAI,OAAO,uBAAuB,aAAa;AAC7C,yBAAe;AAAA,QACjB,WAAW,OAAO,kCAAkC,aAAa;AAC/D,yBAAe;AAAA,QACjB,OAAO;AACL,gBAAM,IAAI,MAAM,uCAAuC;AAAA,QACzD;AACA,YAAI,gBAAgB;AAClB,cAAI,aAAa,aAAa;AAC9B,uBAAa,cAAc,WAAW;AACpC,uBAAW;AACX,2BAAe,kBAAkB,QAAQ,SAAS,UAAU;AAC1D,sBAAQ,eAAe,qBAAqB,QAAQ;AAAA,YACtD,CAAC;AACD,2BAAe,mBAAmB,QAAQ,SAAS,UAAU;AAC3D,sBAAQ,eAAe,sBAAsB,QAAQ;AAAA,YACvD,CAAC;AAAA,UACH;AAAA,QACF;AACA,eAAO,mBAAmB;AAAA,MAC5B;AAAA,IACF,GAAG;AACH,QAAI,OAAO,YAAY,YAAY,OAAO,WAAW;AACnD,aAAO,UAAU;AAAA,aACV,OAAO,WAAW,cAAc,OAAO;AAC9C,aAAO,CAAC,GAAG,WAAW;AACpB,eAAO;AAAA,MACT,CAAC;AAAA,aACM,OAAO,YAAY;AAC1B,cAAQ,uBAAuB;AAAA,EACnC;AACF,CAAC;AAGD,IAAI,kBAAkB;AACtB,IAAI,kBAAkB;AACtB,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,UAAU,WAAW;AAC/B,SAAK,UAAU;AACf,SAAK,YAAY;AACjB,SAAK,OAAuB,oBAAI,QAAQ;AACxC,SAAK,eAAe;AAAA,EACtB;AAAA,EACA,IAAI,QAAQ;AACV,QAAI,CAAC,KAAK,KAAK,IAAI,MAAM,GAAG;AAC1B,WAAK,UAAU,SAAS,KAAK,SAAS,MAAM;AAAA,IAC9C;AACA,WAAO,KAAK,KAAK,IAAI,MAAM;AAAA,EAC7B;AAAA,EACA,IAAI,QAAQ,OAAO;AACjB,SAAK;AACL,SAAK,KAAK,IAAI,QAAQ,KAAK;AAAA,EAC7B;AAAA,EACA,IAAI,QAAQ;AACV,WAAO,KAAK,KAAK,IAAI,MAAM;AAAA,EAC7B;AAAA,EACA,OAAO,QAAQ;AACb,SAAK;AACL,WAAO,KAAK,KAAK,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,aAAa;AACX,WAAO,KAAK;AAAA,EACd;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,SAAS,QAAQ;AACf,WAAO,kBAAkB,UAAU;AAAA,EACrC;AAAA,EACA,OAAO,QAAQ;AACb,WAAO,kBAAkB,QAAQ;AAAA,EACnC;AAAA,EACA,iBAAiB;AACf,WAAO;AAAA,EACT;AAAA,EACA,KAAK,GAAG;AACN,WAAO,kBAAkB,MAAM;AAAA,EACjC;AAAA,EACA,KAAK,QAAQ;AACX,WAAO,kBAAkB,MAAM;AAAA,EACjC;AAAA,EACA,SAAS,QAAQ;AACf,WAAO,kBAAkB,UAAU;AAAA,EACrC;AAAA,EACA,UAAU,QAAQM,UAAS;AACzB,WAAO,kBAAkB,WAAW;AAAA,EACtC;AAAA,EACA,aAAa;AACX,WAAO,kBAAkB,YAAY;AAAA,EACvC;AAAA,EACA,YAAY,QAAQ,OAAO;AACzB,WAAO,kBAAkB,aAAa;AAAA,EACxC;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,WAAO,kBAAkB,OAAO;AAAA,EAClC;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,WAAO,kBAAkB,MAAM;AAAA,EACjC;AAAA,EACA,SAAS;AACP,WAAO,kBAAkB,QAAQ;AAAA,EACnC;AAAA,EACA,iBAAiB;AACf,WAAO,kBAAkB,gBAAgB;AAAA,EAC3C;AAAA,EACA,UAAU;AACR,WAAO,KAAK,eAAe,MAAM,KAAK,kBAAkB;AAAA,EAC1D;AAAA,EACA,UAAU;AACR,WAAO,kBAAkB,SAAS;AAAA,EACpC;AACF;AACA,SAAS,kBAAkB,YAAY;AACrC,QAAM,IAAI,MAAM,IAAI,oIAAoI;AAC1J;AAGA,SAAS,QAAQ,QAAQ;AACvB,MAAI,UAAU,OAAO;AACrB,MAAII,SAAQ;AACZ,SAAO,UAAU,GAAG;AAClB,IAAAA,SAAQ,KAAK,OAAO,IAAI,UAAU;AAClC;AACA,SAAK,QAAQ,SAASA,MAAK;AAAA,EAC7B;AACF;AACA,SAAS,aAAa,QAAQ,SAAS;AACrC,MAAI,OAAO,WAAW,QAAQ,QAAQ;AACpC,UAAM,IAAI,MAAM,yEAAyE,OAAO,iCAAiC,QAAQ,QAAQ;AAAA,EACnJ;AACA,MAAI,UAAU,OAAO;AACrB,MAAIA,SAAQ;AACZ,SAAO,UAAU,GAAG;AAClB,IAAAA,SAAQ,KAAK,OAAO,IAAI,UAAU;AAClC;AACA,SAAK,QAAQ,SAASA,MAAK;AAC3B,SAAK,SAAS,SAASA,MAAK;AAAA,EAC9B;AACF;AACA,SAAS,MAAM,MAAM,GAAG,MAAM;AAC5B,SAAO,KAAK,IAAI,MAAM,KAAK,IAAI,GAAG,IAAI,CAAC;AACzC;AACA,SAAS,kBAAkB,KAAK;AAC9B,SAAO,MAAM,MAAM,IAAI,MAAM,MAAM;AACrC;AACA,SAAS,KAAKE,SAAQ,MAAM,OAAO;AACjC,QAAM,OAAOA,QAAO;AACpB,EAAAA,QAAO,QAAQA,QAAO;AACtB,EAAAA,QAAO,SAAS;AAClB;AACA,SAAS,IAAI,KAAK;AAChB,MAAI,OAAO;AACX,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,YAAQ,IAAI;AAAA,EACd;AACA,SAAO;AACT;AACA,SAAS,YAAY,GAAG,GAAG;AACzB,QAAM,KAAK,KAAK,OAAO;AACvB,SAAO,IAAI,MAAM,IAAI,MAAM;AAC7B;AACA,SAAS,YAAY,GAAG,GAAG;AACzB,MAAI,SAAS;AACb,WAAS,KAAK,GAAG,KAAK,EAAE,QAAQ,MAAM;AACpC,UAAM,OAAO,OAAO,EAAE,GAAG,IAAI,OAAO,EAAE,GAAG;AACzC,cAAU,OAAO;AAAA,EACnB;AACA,SAAO;AACT;AACA,SAAS,OAAO,MAAM,KAAK;AACzB,MAAI,CAAC,MAAM;AACT,UAAM,IAAI,MAAM,OAAO,QAAQ,WAAW,MAAM,IAAI,CAAC;AAAA,EACvD;AACF;AACA,SAAS,kBAAkB,QAAQ,QAAQ,qBAAqB,IAAI;AAClE,SAAO,YAAY,QAAQ,MAAM,GAAG,MAAM,qBAAqB,WAAW,cAAc,mBAAmB;AAC7G;AACA,SAAS,cAAc,GAAG;AACxB,SAAO,KAAK,MAAM,MAAM,+DAA+D;AACzF;AACA,SAAS,QAAQ,KAAK,SAAS,CAAC,GAAG,iBAAiB,OAAO;AACzD,MAAI,UAAU,MAAM;AAClB,aAAS,CAAC;AAAA,EACZ;AACA,MAAI,MAAM,QAAQ,GAAG,KAAK,aAAa,GAAG,KAAK,CAAC,gBAAgB;AAC9D,aAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,cAAQ,IAAI,KAAK,QAAQ,cAAc;AAAA,IACzC;AAAA,EACF,OAAO;AACL,WAAO,KAAK,GAAG;AAAA,EACjB;AACA,SAAO;AACT;AACA,SAAS,cAAc,OAAO;AAC5B,MAAI,MAAM,WAAW,GAAG;AACtB,WAAO;AAAA,EACT;AACA,MAAIZ,QAAO,MAAM;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,IAAAA,SAAQ,MAAM;AAAA,EAChB;AACA,SAAOA;AACT;AACA,SAAS,cAAc,OAAO;AAC5B,SAAO,MAAM,WAAW;AAC1B;AACA,SAAS,YAAY,IAAI,IAAI;AAC3B,MAAI,OAAO,IAAI;AACb,WAAO;AAAA,EACT;AACA,MAAI,MAAM,QAAQ,MAAM,MAAM;AAC5B,WAAO;AAAA,EACT;AACA,MAAI,GAAG,WAAW,GAAG,QAAQ;AAC3B,WAAO;AAAA,EACT;AACA,WAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,MAAM;AACrC,QAAI,GAAG,QAAQ,GAAG,KAAK;AACrB,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,MAAM,GAAG;AAChB,SAAO,IAAI,MAAM;AACnB;AACA,SAAS,KAAK,GAAG;AACf,MAAI,KAAK,QAAQ,MAAM;AACrB,WAAO,KAAK,KAAK,CAAC;AAAA,EACpB;AACA,MAAI,MAAM,UAAU;AAClB,WAAO;AAAA,EACT,WAAW,MAAM,WAAW;AAC1B,WAAO;AAAA,EACT,OAAO;AACL,UAAM,MAAM,KAAK,IAAI,IAAI,CAAC;AAC1B,YAAQ,MAAM,MAAM,MAAM;AAAA,EAC5B;AACF;AACA,SAAS,oBAAoBA,OAAM;AACjC,QAAM,QAAQ,KAAK,KAAK,KAAK,KAAKA,KAAI,CAAC;AACvC,SAAO,CAAC,OAAO,KAAK,KAAKA,QAAO,KAAK,CAAC;AACxC;AACA,SAAS,sBAAsB,IAAI;AACjC,QAAM,kBAAkB,IAAI,YAAY,EAAE;AAC1C,WAAS,KAAK,GAAG,KAAK,IAAI,EAAE,IAAI;AAC9B,oBAAgB,MAAM;AAAA,EACxB;AACA,UAAQ,eAAe;AACvB,SAAO;AACT;AACA,SAAS,SAAS,GAAGA,OAAM;AACzB,MAAIA,SAAQ,EAAE,QAAQ;AACpB,WAAO;AAAA,EACT;AACA,SAAO,IAAI,IAAI,OAAOA,QAAO,EAAE,MAAM;AACvC;AACA,SAAS,YAAY,SAAS,UAAU,CAAC,YAAY,GAAG,YAAY;AAClE,SAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,QAAI,WAAW;AACf,UAAM,QAAQ,MAAM;AAClB,UAAI,QAAQ,GAAG;AACb,gBAAQ;AACR;AAAA,MACF;AACA;AACA,YAAM,cAAc,QAAQ,QAAQ;AACpC,UAAI,cAAc,QAAQ,YAAY,YAAY;AAChD,eAAO;AACP;AAAA,MACF;AACA,iBAAW,OAAO,WAAW;AAAA,IAC/B;AACA,UAAM;AAAA,EACR,CAAC;AACH;AACA,SAAS,uBAAuB,OAAOA,OAAM;AAC3C,MAAI,YAAY;AAChB,MAAI,cAAc;AAClB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,QAAI,MAAM,OAAO,GAAG;AAClB,mBAAa,MAAM;AAAA,IACrB,WAAW,MAAM,QAAQ,IAAI;AAC3B,UAAI,gBAAgB,IAAI;AACtB,cAAM,MAAM,yDAAyD,uBAAuB,IAAI;AAAA,MAClG;AACA,oBAAc;AAAA,IAChB,WAAW,MAAM,MAAM,GAAG;AACxB,YAAM,MAAM,gCAAgC,MAAM,cAAc,IAAI;AAAA,IACtE;AAAA,EACF;AACA,MAAI,gBAAgB,IAAI;AACtB,QAAIA,QAAO,KAAKA,UAAS,WAAW;AAClC,YAAM,MAAM,QAAQA,0CAAyC,OAAO;AAAA,IACtE;AACA,WAAO;AAAA,EACT;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,MAAM,qCAAqC,kCAAkC;AAAA,EACrF;AACA,MAAIA,QAAO,cAAc,GAAG;AAC1B,UAAM,MAAM,wDAAwDA,WAAU,WAAW;AAAA,EAC3F;AACA,QAAM,WAAW,MAAM,MAAM;AAC7B,WAAS,eAAeA,QAAO;AAC/B,SAAO;AACT;AACA,SAAS,eAAe,MAAM,OAAO;AACnC,QAAM,OAAO,MAAM;AACnB,SAAO,QAAQ,OAAO,MAAM,IAAI,CAAC,IAAI,OAAO,EAAE,IAAI,CAAC,EAAE,OAAO,IAAI;AAChE,SAAO,KAAK,MAAM,CAAC,OAAO,MAAM,CAAC,QAAQ,KAAK,IAAI,GAAG,MAAM,+CAA+C,SAAS,sBAAsB,MAAM;AAC/I,SAAO,KAAK,MAAM,CAAC,OAAO,MAAM,EAAE,CAAC,GAAG,MAAM,0DAA0D,MAAM;AAC5G,SAAO,KAAK,IAAI,CAAC,MAAM,IAAI,IAAI,OAAO,IAAI,CAAC;AAC7C;AACA,SAAS,aAAa,OAAO,MAAM;AACjC,QAAM,WAAW,CAAC;AAClB,QAAM,WAAW,CAAC;AAClB,QAAM,eAAe,QAAQ,QAAQ,MAAM,QAAQ,IAAI,KAAK,KAAK,WAAW;AAC5E,QAAM,OAAO,QAAQ,QAAQ,eAAe,OAAO,eAAe,MAAM,KAAK,EAAE,KAAK;AACpF,MAAI,IAAI;AACR,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,QAAI,QAAQ,MAAM;AAChB,UAAI,KAAK,OAAO,MAAM,MAAM,QAAQ,GAAG;AACrC,cAAM,IAAI,MAAM,sBAAsB,qBAAqB,MAAM,eAAe;AAAA,MAClF;AACA,WAAK,KAAK,MAAM,QAAQ,KAAK,KAAK,OAAO,MAAM,QAAQ,GAAG;AACxD,iBAAS,KAAK,MAAM,GAAG;AACvB,iBAAS,KAAK,EAAE;AAAA,MAClB;AACA,UAAI,KAAK,MAAM,IAAI;AACjB;AAAA,MACF;AAAA,IACF;AACA,QAAI,MAAM,QAAQ,GAAG;AACnB,eAAS,KAAK,MAAM,GAAG;AACvB,eAAS,KAAK,EAAE;AAAA,IAClB;AAAA,EACF;AACA,SAAO,EAAE,UAAU,SAAS;AAC9B;AACA,SAAS,uBAAuB,OAAOA,OAAM;AAC3C,MAAI,SAAS;AACb,MAAI,SAAS,QAAQ,UAAU,WAAW;AACxC,aAAS,IAAI,aAAaA,KAAI;AAAA,EAChC,WAAW,UAAU,SAAS;AAC5B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,WAAW,UAAU,QAAQ;AAC3B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,OAAOA,OAAM;AACtC,MAAI,SAAS;AACb,MAAI,SAAS,QAAQ,UAAU,WAAW;AACxC,aAAS,IAAI,aAAaA,KAAI;AAAA,EAChC,WAAW,UAAU,SAAS;AAC5B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,WAAW,UAAU,QAAQ;AAC3B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,WAAW,UAAU,UAAU;AAC7B,aAAS,IAAI,MAAMA,KAAI;AAAA,EACzB,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACA,SAAO;AACT;AACA,SAAS,yBAAyB,MAAM,OAAO;AAC7C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAM,MAAM,KAAK;AACjB,QAAI,MAAM,GAAG,KAAK,CAAC,SAAS,GAAG,GAAG;AAChC,YAAM,MAAM,oBAAoB,iCAAiC,MAAM;AAAA,IACzE;AAAA,EACF;AACF;AACA,SAAS,aAAa,OAAO;AAC3B,SAAO,UAAU,UAAU,UAAU,eAAe,UAAU,aAAa,UAAU,WAAW,UAAU;AAC5G;AACA,SAAS,gBAAgB,SAAS,SAAS;AACzC,MAAI,YAAY,aAAa;AAC3B,WAAO;AAAA,EACT;AACA,MAAI,YAAY,aAAa,YAAY,aAAa;AACpD,WAAO;AAAA,EACT;AACA,MAAI,YAAY,WAAW,YAAY,aAAa,YAAY,aAAa;AAC3E,WAAO;AAAA,EACT;AACA,MAAI,YAAY,UAAU,YAAY,QAAQ;AAC5C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,aAAa,GAAG;AACvB,SAAO,aAAa,gBAAgB,aAAa,cAAc,aAAa,cAAc,aAAa;AACzG;AACA,SAAS,gBAAgB,OAAO;AAC9B,MAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,WAAO;AAAA,EACT,WAAW,UAAU,aAAa;AAChC,WAAO;AAAA,EACT,WAAW,UAAU,QAAQ;AAC3B,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA,EAC1C;AACF;AACA,SAAS,qBAAqB,KAAK;AACjC,MAAI,OAAO,MAAM;AACf,WAAO;AAAA,EACT;AACA,MAAI,QAAQ;AACZ,MAAI,QAAQ,CAAC,MAAM,SAAS,EAAE,MAAM;AACpC,SAAO;AACT;AACA,SAAS,SAAS,OAAO;AACvB,SAAO,OAAO,UAAU,YAAY,iBAAiB;AACvD;AACA,SAAS,UAAU,OAAO;AACxB,SAAO,OAAO,UAAU;AAC1B;AACA,SAAS,SAAS,OAAO;AACvB,SAAO,OAAO,UAAU;AAC1B;AACA,SAAS,WAAW,QAAQ;AAC1B,MAAI,MAAM,QAAQ,MAAM,GAAG;AACzB,WAAO,WAAW,OAAO,EAAE;AAAA,EAC7B;AACA,MAAI,kBAAkB,cAAc;AAClC,WAAO;AAAA,EACT,WAAW,kBAAkB,cAAc,kBAAkB,cAAc,kBAAkB,mBAAmB;AAC9G,WAAO;AAAA,EACT,WAAW,SAAS,MAAM,GAAG;AAC3B,WAAO;AAAA,EACT,WAAW,SAAS,MAAM,GAAG;AAC3B,WAAO;AAAA,EACT,WAAW,UAAU,MAAM,GAAG;AAC5B,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,WAAW,GAAG;AACrB,SAAO,CAAC,EAAE,KAAK,EAAE,eAAe,EAAE,QAAQ,EAAE;AAC9C;AACA,SAAS,eAAeA,OAAM,OAAO;AACnC,WAAS,KAAK,OAAO,KAAKA,OAAM,EAAE,IAAI;AACpC,QAAIA,QAAO,OAAO,GAAG;AACnB,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAOA;AACT;AACA,SAAS,eAAe,OAAO;AAC7B,QAAM,OAAO,MAAM;AACnB,MAAI,OAAO,GAAG;AACZ,WAAO,CAAC;AAAA,EACV;AACA,QAAMa,WAAU,IAAI,MAAM,OAAO,CAAC;AAClC,EAAAA,SAAQ,OAAO,KAAK,MAAM,OAAO;AACjC,WAAS,KAAK,OAAO,GAAG,MAAM,GAAG,EAAE,IAAI;AACrC,IAAAA,SAAQ,MAAMA,SAAQ,KAAK,KAAK,MAAM,KAAK;AAAA,EAC7C;AACA,SAAOA;AACT;AACA,SAAS,kBAAkB,QAAQ,OAAO,GAAG,YAAY,OAAO;AAC9D,QAAM,MAAM,IAAI,MAAM;AACtB,MAAI,MAAM,WAAW,GAAG;AACtB,UAAM,IAAI,MAAM,MAAM,YAAY,IAAI;AACtC,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,UAAI,MAAM,EAAE,SAAS;AAAA,IACvB;AAAA,EACF,OAAO;AACL,UAAM,IAAI,MAAM;AAChB,UAAM,OAAO,MAAM,MAAM,CAAC;AAC1B,UAAM,MAAM,KAAK,OAAO,CAAC,KAAK,MAAM,MAAM,CAAC,KAAK,YAAY,IAAI;AAChE,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,UAAI,MAAM,kBAAkB,SAAS,KAAK,KAAK,MAAM,GAAG,SAAS;AAAA,IACnE;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,cAAc,OAAO,GAAG,YAAY,OAAO;AAClD,MAAI,MAAM,WAAW,GAAG;AACtB,WAAO,EAAE;AAAA,EACX;AACA,QAAMb,QAAO,MAAM,OAAO,CAAC,KAAK,MAAM,MAAM,CAAC,KAAK,YAAY,IAAI;AAClE,MAAIA,UAAS,GAAG;AACd,WAAO,CAAC;AAAA,EACV;AACA,MAAIA,UAAS,EAAE,QAAQ;AACrB,UAAM,IAAI,MAAM,IAAI,wCAAwC,EAAE,SAAS,YAAY,0BAA0B,KAAK;AAAA,EACpH;AACA,SAAO,kBAAkB,GAAG,OAAO,GAAG,SAAS;AACjD;AACA,SAAS,mBAAmBA,OAAM,OAAO;AACvC,QAAM,SAAS,oBAAoBA,OAAM,KAAK;AAC9C,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,WAAO,MAAM;AAAA,EACf;AACA,SAAO;AACT;AACA,SAAS,oBAAoBA,OAAM,OAAO;AACxC,MAAI,SAAS,QAAQ,UAAU,aAAa,UAAU,aAAa;AACjE,WAAO,IAAI,aAAaA,KAAI;AAAA,EAC9B,WAAW,UAAU,SAAS;AAC5B,WAAO,IAAI,WAAWA,KAAI;AAAA,EAC5B,WAAW,UAAU,QAAQ;AAC3B,WAAO,IAAI,WAAWA,KAAI;AAAA,EAC5B,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACF;AACA,SAAS,0BAA0B,OAAO,OAAO;AAC/C,QAAMA,QAAO,MAAM,OAAO,CAAC,MAAM,SAAS,OAAO,MAAM,CAAC;AACxD,MAAI,SAAS,QAAQ,UAAU,WAAW;AACxC,WAAO,cAAc,OAAO,IAAI,aAAaA,KAAI,CAAC;AAAA,EACpD,WAAW,UAAU,SAAS;AAC5B,WAAO,cAAc,OAAO,IAAI,WAAWA,KAAI,CAAC;AAAA,EAClD,WAAW,UAAU,QAAQ;AAC3B,WAAO,cAAc,OAAO,IAAI,WAAWA,KAAI,CAAC;AAAA,EAClD,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACF;AACA,SAAS,mCAAmC,OAAO;AACjD,QAAM,QAAQ,CAAC,YAAY;AACzB,WAAO,OAAO,UAAU,OAAO,KAAK,WAAW,GAAG,MAAM,0EAA0E,SAAS;AAAA,EAC7I,CAAC;AACH;AACA,SAAS,WAAW,MAAM,MAAMa,UAAS;AACvC,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO,KAAK;AAAA,EACd;AACA,MAAIH,SAAQ,KAAK,KAAK,SAAS;AAC/B,WAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,IAAAA,UAASG,SAAQ,MAAM,KAAK;AAAA,EAC9B;AACA,SAAOH;AACT;AACA,SAAS,WAAWA,QAAO,MAAMG,UAAS;AACxC,MAAI,SAAS,GAAG;AACd,WAAO,CAAC;AAAA,EACV,WAAW,SAAS,GAAG;AACrB,WAAO,CAACH,MAAK;AAAA,EACf;AACA,QAAM,OAAO,IAAI,MAAM,IAAI;AAC3B,WAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,SAAK,MAAM,KAAK,MAAMA,SAAQG,SAAQ,GAAG;AACzC,IAAAH,UAAS,KAAK,MAAMG,SAAQ;AAAA,EAC9B;AACA,OAAK,KAAK,SAAS,KAAKH;AACxB,SAAO;AACT;AACA,SAAS,UAAUE,SAAQ;AACzB,SAAOA,WAAUA,QAAO,QAAQ,OAAOA,QAAO,SAAS;AACzD;AAGA,IAAI,4BAA4B;AAChC,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,SAAS;AACnB,SAAK,SAAS;AACd,SAAK,QAAQ,CAAC;AACd,SAAK,eAAe,CAAC;AACrB,SAAK,WAAW,CAAC;AACjB,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,YAAY,cAAc,UAAU;AAClC,QAAI,KAAK,YAAY,MAAM;AACzB,UAAI,EAAE,IAAI,EAAE,QAAQ,SAAS,KAAK,IAAI,EAAE,QAAQ,MAAM,IAAI;AACxD,gBAAQ,KAAK,YAAY,KAAK,oEAAoE,eAAe;AAAA,MACnH;AAAA,IACF;AACA,SAAK,eAAe;AACpB,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,aAAa,UAAU,cAAc,SAAS;AAC5C,SAAK,aAAa,YAAY,EAAE,cAAc,QAAQ;AACtD,QAAI,KAAK,SAAS,aAAa,MAAM;AACnC,YAAM,YAAY,KAAK,SAAS;AAChC,UAAI,EAAE,IAAI,EAAE,QAAQ,SAAS,KAAK,IAAI,EAAE,QAAQ,MAAM,IAAI;AACxD,gBAAQ,KAAK,qCAAqC,aAAa,YAAY;AAAA,MAC7E;AACA,WAAK,IAAI,UAAU,SAAS;AAAA,IAC9B;AAAA,EACF;AAAA,EACA,MAAM,SAAS,UAAU;AACvB,QAAI,YAAY,KAAK,OAAO;AAC1B,aAAO,KAAK,MAAM;AAAA,IACpB;AACA,SAAK,MAAM,YAAY,MAAM,KAAK,aAAa,QAAQ;AACvD,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,IAAI,UAAU;AACZ,QAAI,YAAY,KAAK,OAAO;AAC1B,aAAO,KAAK,MAAM;AAAA,IACpB;AACA,UAAM,YAAY,KAAK,aAAa,QAAQ;AAC5C,QAAI,UAAU,SAAS,GAAG;AACxB,YAAM,IAAI,MAAM,QAAQ,4EAA4E;AAAA,IACtG;AACA,SAAK,MAAM,YAAY;AACvB,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,UAAU,UAAU;AAClB,WAAO,KAAK,IAAI,QAAQ;AAAA,EAC1B;AAAA,EACA,QAAQ,UAAU;AAChB,WAAO,KAAK,IAAI,QAAQ;AAAA,EAC1B;AAAA,EACA,WAAW;AACT,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,WAAW;AACb,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,OAAO;AACnB,QAAI,KAAK,aAAa,aAAa,MAAM;AACvC,YAAM,IAAI,MAAM,mBAAmB,yCAAyC;AAAA,IAC9E;AACA,SAAK,MAAM,YAAY;AACvB,QAAI,KAAK,aAAa,UAAU,WAAW,MAAM;AAC/C,WAAK,aAAa,UAAU,QAAQ,KAAK;AAAA,IAC3C;AAAA,EACF;AAAA,EACA,aAAa,UAAU;AACrB,QAAI,KAAK,aAAa,aAAa,MAAM;AACvC,YAAM,IAAI,MAAM,yBAAyB,0CAA0C;AAAA,IACrF;AACA,WAAO,KAAK,aAAa,UAAU,aAAa;AAAA,EAClD;AAAA,EACA,SAAS,OAAO;AACd,SAAK,QAAQ,OAAO,OAAO,CAAC,GAAG,KAAK;AAAA,EACtC;AAAA,EACA,QAAQ;AACN,SAAK,QAAQ,CAAC;AACd,SAAK,WAAW,CAAC;AACjB,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,mBAAmB;AACjB,QAAI,OAAO,KAAK,WAAW,eAAe,OAAO,KAAK,OAAO,aAAa,eAAe,OAAO,KAAK,OAAO,SAAS,WAAW,aAAa;AAC3I;AAAA,IACF;AACA,UAAM,YAAY,KAAK,eAAe,KAAK,OAAO,SAAS,MAAM;AACjE,QAAI,6BAA6B,WAAW;AAC1C,YAAM,YAAY,UAAU,2BAA2B,MAAM,GAAG;AAChE,gBAAU,QAAQ,CAAC,aAAa;AAC9B,cAAM,CAAC,KAAK,KAAK,IAAI,SAAS,MAAM,GAAG;AACvC,aAAK,SAAS,OAAO,WAAW,KAAK,KAAK;AAAA,MAC5C,CAAC;AAAA,IACH;AAAA,EACF;AACF;AACA,SAAS,eAAe,aAAa;AACnC,QAAM,SAAS,CAAC;AAChB,cAAY,QAAQ,+BAA+B,CAAC,OAAO,OAAO;AAChE,gBAAY,QAAQ,GAAG,IAAI,GAAG,EAAE;AAChC,WAAO,GAAG,KAAK,GAAG;AAAA,EACpB,CAAC;AACD,SAAO;AACT;AACA,SAAS,YAAY,QAAQ,MAAM,OAAO;AACxC,SAAO,mBAAmB,IAAI,KAAK,mBAAmB,SAAS,EAAE;AACnE;AACA,SAAS,WAAW,UAAU,OAAO;AACnC,UAAQ,MAAM,YAAY;AAC1B,MAAI,UAAU,UAAU,UAAU,SAAS;AACzC,WAAO,UAAU;AAAA,EACnB,WAAW,GAAG,CAAC,YAAY,OAAO;AAChC,WAAO,CAAC;AAAA,EACV;AACA,QAAM,IAAI,MAAM,oCAAoC,kBAAkB,WAAW;AACnF;AACA,SAAS,MAAM;AACb,SAAO;AACT;AACA,IAAI,MAAM;AACV,SAAS,qBAAqB,aAAa;AACzC,QAAM;AACR;AAGA,IAAI;AACJ,SAAS,qBAAqB;AAC5B,MAAI,mBAAmB,MAAM;AAC3B,QAAI;AACJ,QAAI,OAAO,WAAW,aAAa;AACjC,WAAK;AAAA,IACP,WAAW,OAAO,WAAW,aAAa;AACxC,WAAK;AAAA,IACP,WAAW,OAAO,YAAY,aAAa;AACzC,WAAK;AAAA,IACP,WAAW,OAAO,SAAS,aAAa;AACtC,WAAK;AAAA,IACP,OAAO;AACL,YAAM,IAAI,MAAM,gCAAgC;AAAA,IAClD;AACA,sBAAkB;AAAA,EACpB;AACA,SAAO;AACT;AACA,SAAS,eAAe;AACtB,QAAM,KAAK,mBAAmB;AAC9B,MAAI,GAAG,cAAc,MAAM;AACzB,OAAG,aAA6B,oBAAI,IAAI;AAAA,EAC1C;AACA,SAAO,GAAG;AACZ;AACA,SAAS,UAAU,KAAKR,QAAO;AAC7B,QAAM,YAAY,aAAa;AAC/B,MAAI,UAAU,IAAI,GAAG,GAAG;AACtB,WAAO,UAAU,IAAI,GAAG;AAAA,EAC1B,OAAO;AACL,UAAM,YAAYA,OAAM;AACxB,cAAU,IAAI,KAAK,SAAS;AAC5B,WAAO,UAAU,IAAI,GAAG;AAAA,EAC1B;AACF;AAGA,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,QAAQ;AACZ,IAAI,UAAU;AACd,IAAI,cAAc;AAClB,IAAI,YAAY;AAChB,IAAI,gBAAgB;AACpB,IAAI,cAAc;AAClB,IAAI,iBAAiB;AACrB,IAAI,WAAW;AACf,IAAI,cAAc;AAClB,IAAI,gBAAgB;AACpB,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,cAAc;AAClB,IAAI,UAAU;AACd,IAAI,aAAa;AACjB,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,uBAAuB;AAC3B,IAAI,sBAAsB;AAC1B,IAAI,SAAS;AACb,IAAI,yBAAyB;AAC7B,IAAI,wBAAwB;AAC5B,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,UAAU;AACd,IAAI,SAAS;AACb,IAAI,gBAAgB;AACpB,IAAI,gBAAgB;AACpB,IAAI,eAAe;AACnB,IAAI,wBAAwB;AAC5B,IAAI,sCAAsC;AAC1C,IAAI,qCAAqC;AACzC,IAAI,OAAO;AACX,IAAI,aAAa;AACjB,IAAI,0BAA0B;AAC9B,IAAI,2BAA2B;AAC/B,IAAI,UAAU;AACd,IAAI,SAAS;AACb,IAAI,MAAM;AACV,IAAI,UAAU;AACd,IAAI,MAAM;AACV,IAAI,QAAQ;AACZ,IAAI,MAAM;AACV,IAAI,aAAa;AACjB,IAAI,QAAQ;AACZ,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,gBAAgB;AACpB,IAAI,QAAQ;AACZ,IAAI,WAAW;AACf,IAAI,iBAAiB;AACrB,IAAI,WAAW;AACf,IAAI,WAAW;AACf,IAAI,UAAU;AACd,IAAI,eAAe;AACnB,IAAI,WAAW;AACf,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,WAAW;AACf,IAAI,QAAQ;AACZ,IAAI,QAAQ;AACZ,IAAI,YAAY;AAChB,IAAI,OAAO;AACX,IAAI,YAAY;AAChB,IAAI,WAAW;AACf,IAAI,MAAM;AACV,IAAI,QAAQ;AACZ,IAAI,aAAa;AACjB,IAAI,aAAa;AACjB,IAAI,YAAY;AAChB,IAAI,aAAa;AACjB,IAAI,aAAa;AACjB,IAAI,aAAa;AACjB,IAAI,MAAM;AACV,IAAI,UAAU;AACd,IAAI,MAAM;AACV,IAAI,UAAU;AACd,IAAI,UAAU;AACd,IAAI,cAAc;AAClB,IAAI,YAAY;AAChB,IAAI,gBAAgB;AACpB,IAAI,oBAAoB;AACxB,IAAI,OAAO;AACX,IAAI,MAAM;AACV,IAAI,UAAU;AACd,IAAI,YAAY;AAChB,IAAI,MAAM;AACV,IAAI,cAAc;AAClB,IAAI,WAAW;AACf,IAAI,MAAM;AACV,IAAI,WAAW;AACf,IAAI,sBAAsB;AAC1B,IAAI,sBAAsB;AAC1B,IAAI,sBAAsB;AAC1B,IAAI,WAAW;AACf,IAAI,SAAS;AACb,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,MAAM;AACV,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,uBAAuB;AAC3B,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,aAAa;AACjB,IAAI,OAAO;AACX,IAAI,UAAU;AACd,IAAI,wBAAwB;AAC5B,IAAI,4BAA4B;AAChC,IAAI,iBAAiB;AACrB,IAAI,qBAAqB;AACzB,IAAI,QAAQ;AACZ,IAAI,UAAU;AACd,IAAI,QAAQ;AACZ,IAAI,QAAQ;AACZ,IAAI,YAAY;AAChB,IAAI,eAAe;AACnB,IAAI,SAAS;AACb,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,UAAU;AACd,IAAI,WAAW;AACf,IAAI,OAAO;AACX,IAAI,MAAM;AACV,IAAI,iBAAiB;AACrB,IAAI,SAAS;AACb,IAAI,UAAU;AACd,IAAI,sBAAsB;AAC1B,IAAI,gBAAgB;AACpB,IAAI,oBAAoB;AACxB,IAAI,mBAAmB;AACvB,IAAI,gBAAgB;AACpB,IAAI,oBAAoB;AACxB,IAAI,SAAS;AACb,IAAI,eAAe;AACnB,IAAI,eAAe;AACnB,IAAI,cAAc;AAClB,IAAI,yBAAyB;AAC7B,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,YAAY;AAChB,IAAI,YAAY;AAChB,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,qBAAqB;AACzB,IAAI,aAAa;AACjB,IAAI,YAAY;AAChB,IAAI,OAAO;AACX,IAAI,aAAa;AACjB,IAAI,mBAAmB;AACvB,IAAI,eAAe;AACnB,IAAI,cAAc;AAClB,IAAI,uBAAuB;AAG3B,SAAS,QAAQ,KAAK;AACpB,MAAI,EAAE,IAAI,EAAE,QAAQ,SAAS,KAAK,IAAI,EAAE,QAAQ,MAAM,IAAI;AACxD,YAAQ,KAAK,GAAG,GAAG;AAAA,EACrB;AACF;AACA,SAASU,QAAO,KAAK;AACnB,MAAI,EAAE,IAAI,EAAE,QAAQ,SAAS,KAAK,IAAI,EAAE,QAAQ,MAAM,IAAI;AACxD,YAAQ,IAAI,GAAG,GAAG;AAAA,EACpB;AACF;AAGA,IAAI,iBAAiB,UAAU,kBAAkB,MAAsB,oBAAI,IAAI,CAAC;AAChF,IAAI,eAAe,UAAU,gBAAgB,MAAsB,oBAAI,IAAI,CAAC;AAC5E,SAAS,UAAU,YAAY,aAAa;AAC1C,QAAM,MAAM,QAAQ,YAAY,WAAW;AAC3C,SAAO,eAAe,IAAI,GAAG;AAC/B;AACA,SAAS,YAAY,YAAY;AAC/B,SAAO,aAAa,IAAI,UAAU;AACpC;AACA,SAAS,qBAAqB,aAAa;AACzC,QAAM,KAAK,eAAe,QAAQ;AAClC,QAAM,SAAS,CAAC;AAChB,SAAO,MAAM;AACX,UAAM,EAAE,MAAM,MAAM,IAAI,GAAG,KAAK;AAChC,QAAI,MAAM;AACR;AAAA,IACF;AACA,UAAM,CAAC,KAAKC,OAAM,IAAI;AACtB,UAAM,CAAC,QAAQ,IAAI,IAAI,MAAM,GAAG;AAChC,QAAI,aAAa,aAAa;AAC5B,aAAO,KAAKA,OAAM;AAAA,IACpB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,eAAeA,SAAQ;AAC9B,QAAM,EAAE,YAAY,YAAY,IAAIA;AACpC,QAAM,MAAM,QAAQ,YAAY,WAAW;AAC3C,MAAI,eAAe,IAAI,GAAG,GAAG;AAC3B,SAAK,eAAe,4BAA4B,oCAAoC;AAAA,EACtF;AACA,iBAAe,IAAI,KAAKA,OAAM;AAChC;AACA,SAAS,iBAAiBA,SAAQ;AAChC,QAAM,EAAE,WAAW,IAAIA;AACvB,MAAI,aAAa,IAAI,UAAU,GAAG;AAChC,QAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,WAAK,gCAAgC,aAAa;AAAA,IACpD;AAAA,EACF;AACA,eAAa,IAAI,YAAYA,OAAM;AACrC;AACA,SAAS,iBAAiB,YAAY,aAAa;AACjD,QAAM,MAAM,QAAQ,YAAY,WAAW;AAC3C,MAAI,CAAC,eAAe,IAAI,GAAG,GAAG;AAC5B,UAAM,IAAI,MAAM,eAAe,4BAA4B,gCAAgC;AAAA,EAC7F;AACA,iBAAe,OAAO,GAAG;AAC3B;AACA,SAAS,mBAAmB,YAAY;AACtC,MAAI,CAAC,aAAa,IAAI,UAAU,GAAG;AACjC,UAAM,IAAI,MAAM,iBAAiB,2CAA2C;AAAA,EAC9E;AACA,eAAa,OAAO,UAAU;AAChC;AACA,SAAS,sBAAsB,uBAAuB,gBAAgB;AACpE,QAAM,UAAU,qBAAqB,qBAAqB;AAC1D,UAAQ,QAAQ,CAAC,iBAAiB;AAChC,UAAM,kBAAkB,OAAO,OAAO,CAAC,GAAG,cAAc,EAAE,aAAa,eAAe,CAAC;AACvF,mBAAe,eAAe;AAAA,EAChC,CAAC;AACH;AACA,SAAS,QAAQ,YAAY,aAAa;AACxC,SAAO,GAAG,eAAe;AAC3B;AAGA,IAAI,eAAe,CAAC;AACpBlB,UAAS,cAAc;AAAA,EACrB,aAAa,MAAM;AAAA,EACnB,QAAQ,MAAM;AAAA,EACd,oCAAoC,MAAM;AAAA,EAC1C,eAAe,MAAM;AAAA,EACrB,mBAAmB,MAAM;AAAA,EACzB,sBAAsB,MAAM;AAAA,EAC5B,iBAAiB,MAAM;AAAA,EACvB,0BAA0B,MAAM;AAAA,EAChC,OAAO,MAAM;AAAA,EACb,gBAAgB,MAAM;AAAA,EACtB,mBAAmB,MAAM;AAAA,EACzB,uBAAuB,MAAM;AAAA,EAC7B,cAAc,MAAM;AAAA,EACpB,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,OAAO,MAAM;AAAA,EACb,eAAe,MAAM;AAAA,EACrB,SAAS,MAAM;AAAA,EACf,mBAAmB,MAAM;AAAA,EACzB,wBAAwB,MAAM;AAAA,EAC9B,iBAAiB,MAAM;AAAA,EACvB,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,YAAY,MAAM;AAAA,EAClB,wBAAwB,MAAM;AAAA,EAC9B,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,OAAO,MAAM;AAAA,EACb,UAAU,MAAM;AAAA,EAChB,WAAW,MAAM;AAAA,EACjB,eAAe,MAAM;AAAA,EACrB,UAAU,MAAM;AAAA,EAChB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,YAAY,MAAM;AAAA,EAClB,oBAAoB,MAAM;AAAA,EAC1B,2BAA2B,MAAM;AAAA,EACjC,qBAAqB,MAAM;AAAA,EAC3B,gBAAgB,MAAM;AAAA,EACtB,mBAAmB,MAAM;AAAA,EACzB,KAAK,MAAMmB;AAAA,EACX,gBAAgB,MAAM;AAAA,EACtB,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,UAAU,MAAM;AAAA,EAChB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,eAAe,MAAM;AAAA,EACrB,qBAAqB,MAAM;AAAA,EAC3B,cAAc,MAAM;AAAA,EACpB,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,MAAM,MAAM;AAAA,EACZ,eAAe,MAAM;AAAA,EACrB,cAAc,MAAM;AACtB,CAAC;AAGD,IAAI,cAAc,QAAQ,aAAa,CAAC;AACxC,IAAI,OAAO,YAAY,WAAW;AAClC,SAAS,UAAU,KAAK;AACtB,SAAO,KAAK,WAAW,KAAK,MAAM,EAAE;AACtC;AACA,IAAI,KAAK,UAAU,kBAAkB;AACrC,IAAI,KAAK,UAAU,kBAAkB;AACrC,IAAI,KAAK,UAAU,kBAAkB;AACrC,SAAS,SAAS,KAAK;AACrB,SAAO,IAAI,IAAI,IAAI,KAAK,EAAE,CAAC;AAC7B;AACA,SAAS,OAAO,IAAI,QAAQ,UAAU;AACpC,QAAM,QAAQ,GAAG,MAAM,QAAQ,SAAS,QAAQ;AAChD,SAAO,KAAK,UAAU,MAAM,KAAK,KAAK,GAAG,MAAM,IAAI;AACrD;AACA,SAAS,QAAQ,IAAI,QAAQ;AAC3B,SAAO,OAAO,IAAI,QAAQ,CAAC;AAC7B;AACA,SAAS,QAAQ,IAAI,QAAQ;AAC3B,SAAO,OAAO,IAAI,QAAQ,CAAC;AAC7B;AACA,SAAS,SAAS,KAAK,OAAO;AAC5B,SAAO,UAAU,IAAI,MAAM,IAAI,KAAK,KAAK,EAAE,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AACnE;AACA,SAAS,UAAU,GAAG,GAAG,OAAO,UAAU,kBAAkB,GAAG;AAC7D,MAAI,IAAI,EAAE,IAAI,CAAC,EAAE,IAAI,IAAI;AACzB,MAAI,EAAE,IAAI,EAAE,KAAK,EAAE,CAAC;AACpB,MAAI,IAAI,EAAE,IAAI,CAAC,EAAE,IAAI,IAAI;AACzB,MAAI,EAAE,IAAI,EAAE,KAAK,EAAE,CAAC;AACpB,MAAI,EAAE,IAAI,IAAI;AACd,SAAO;AACT;AACA,SAAS,uBAAuB,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG;AAChD,MAAI,EAAE,IAAI,CAAC;AACX,MAAI,SAAS,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE;AAChC,QAAM,IAAI;AACV,MAAI,EAAE,IAAI,CAAC;AACX,MAAI,EAAE,IAAI,CAAC;AACX,MAAI,EAAE,IAAI,SAAS,GAAG,EAAE,CAAC;AACzB,SAAO,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE,IAAI,CAAC,CAAC;AAC5B;AACA,SAAS,0BAA0B,IAAI,QAAQ,GAAG,GAAG;AACnD,SAAO,uBAAuB,QAAQ,IAAI,MAAM,GAAG,QAAQ,IAAI,SAAS,CAAC,GAAG,QAAQ,IAAI,SAAS,EAAE,GAAG,QAAQ,IAAI,SAAS,EAAE,GAAG,GAAG,CAAC;AACtI;AACA,SAAS,aAAa,IAAI,MAAM,GAAG,QAAQ;AACzC,MAAI,OAAO,GAAG;AACZ,UAAM,OAAO,GAAG,IAAI,MAAM,CAAC;AAC3B,UAAM,IAAI,QAAQ,IAAI,CAAC,EAAE,IAAI,EAAE;AAC/B,UAAM,IAAI,QAAQ,IAAI,MAAM,CAAC;AAC7B,UAAM,IAAI,SAAS,GAAG,EAAE,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AACzC,UAAM,IAAI,SAAS,GAAG,EAAE,EAAE,IAAI,CAAC,EAAE,IAAI,IAAI;AACzC,WAAO,UAAU,GAAG,GAAG,IAAI;AAAA,EAC7B;AACA,MAAI,OAAO,GAAG;AACZ,UAAM,OAAO,GAAG,IAAI,MAAM,CAAC;AAC3B,UAAM,IAAI,QAAQ,IAAI,CAAC;AACvB,WAAO,UAAU,EAAE,IAAI,CAAC,EAAE,IAAI,GAAG,GAAG,QAAQ,IAAI,MAAM,CAAC,GAAG,IAAI;AAAA,EAChE;AACA,MAAI,MAAM,GAAG;AACX,UAAM,IAAI,GAAG;AACb,UAAM,IAAI,GAAG,OAAO;AACpB,UAAM,IAAI,GAAG,MAAM;AACnB,UAAM,IAAI,KAAK,KAAK;AACpB,UAAM,IAAI,OAAO,KAAK;AACtB,WAAO,SAAS,GAAG,IAAI,CAAC,EAAE,IAAI,GAAG,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,EAAE;AAAA,EAClD;AACA,SAAO;AACT;AACA,SAAS,cAAc,IAAI,MAAM,GAAG,QAAQ;AAC1C,QAAM,OAAO,GAAG,IAAI,MAAM,CAAC;AAC3B,QAAM,IAAI,QAAQ,IAAI,CAAC,EAAE,IAAI,EAAE;AAC/B,QAAM,IAAI,QAAQ,IAAI,CAAC;AACvB,QAAM,IAAI,QAAQ,IAAI,MAAM,CAAC,EAAE,IAAI,IAAI;AACvC,QAAM,IAAI,QAAQ,IAAI,MAAM,EAAE,EAAE,IAAI,EAAE;AACtC,SAAO,UAAU,SAAS,EAAE,IAAI,CAAC,GAAG,EAAE,EAAE,IAAI,SAAS,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,EAAE,IAAI,SAAS,EAAE,IAAI,EAAE,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,IAAI;AAClH;AACA,SAAS,cAAc,IAAI,MAAM,GAAG,QAAQ;AAC1C,QAAM,OAAO,GAAG,IAAI,MAAM,CAAC;AAC3B,QAAM,IAAI,QAAQ,IAAI,CAAC,EAAE,IAAI,EAAE;AAC/B,QAAM,IAAI,QAAQ,IAAI,CAAC;AACvB,QAAM,IAAI,QAAQ,IAAI,MAAM,CAAC,EAAE,IAAI,IAAI;AACvC,QAAM,IAAI,QAAQ,IAAI,MAAM,EAAE,EAAE,IAAI,EAAE;AACtC,QAAM,IAAI,SAAS,EAAE,IAAI,CAAC,GAAG,EAAE,EAAE,IAAI,SAAS,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC;AAC3D,QAAM,IAAI,UAAU,GAAG,EAAE,IAAI,SAAS,EAAE,IAAI,EAAE,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,IAAI;AAClE,QAAM,KAAK,QAAQ,IAAI,EAAE,EAAE,IAAI,IAAI;AACnC,QAAM,IAAI,QAAQ,IAAI,EAAE;AACxB,QAAM,IAAI,EAAE,IAAI,QAAQ,IAAI,MAAM,EAAE,CAAC,EAAE,IAAI,IAAI;AAC/C,QAAM,IAAI,EAAE,IAAI,QAAQ,IAAI,MAAM,EAAE,CAAC,EAAE,IAAI,IAAI;AAC/C,SAAO,UAAU,SAAS,GAAG,IAAI,CAAC,GAAG,EAAE,EAAE,IAAI,SAAS,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,GAAG,IAAI,SAAS,EAAE,IAAI,CAAC,GAAG,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,IAAI;AACnH;AACA,SAAS,cAAc,IAAI,MAAM,GAAG,QAAQ;AAC1C,QAAM,OAAO,KAAK,WAAW,IAAI,IAAI;AACrC,MAAI,OAAO,IAAI;AACb,QAAI,OAAO,IAAI;AACb,aAAO,aAAa,IAAI,GAAG;AAAA,IAC7B,OAAO;AACL,aAAO,cAAc,IAAI,GAAG;AAAA,IAC9B;AAAA,EACF,WAAW,OAAO,IAAI;AACpB,WAAO,cAAc,IAAI,GAAG;AAAA,EAC9B;AACA,MAAI,IAAI;AACR,MAAI,IAAI,KAAK,IAAI,EAAE,EAAE,IAAI,GAAG;AAC5B,MAAI,IAAI,SAAS,EAAE,IAAI,EAAE,EAAE,IAAI,GAAG,CAAC,EAAE,IAAI,EAAE;AAC3C,MAAI,IAAI,CAAC,KAAK,OAAO,KAAK,KAAK;AAC/B,MAAI,IAAI,CAAC,KAAK,OAAO,KAAK,KAAK;AAC/B,MAAI,EAAE,IAAI,EAAE,EAAE,IAAI,QAAQ,IAAI,CAAC,CAAC;AAChC,MAAI,SAAS;AACb,QAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,QAAM,SAAS,OAAO,MAAM,IAAI,MAAM;AACtC,KAAG;AACD,QAAI,SAAS,EAAE,IAAI,CAAC,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,CAAC,CAAC,GAAG,EAAE,EAAE,IAAI,EAAE;AACxE,QAAI,SAAS,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,GAAG,EAAE,EAAE,IAAI,EAAE;AAClE,QAAI,EAAE,IAAI,EAAE,EAAE;AACd,QAAI,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC;AAC5C,QAAI,SAAS,EAAE,IAAI,EAAE,EAAE,GAAG,EAAE,EAAE,IAAI,EAAE;AACpC,QAAI,0BAA0B,IAAI,QAAQ,EAAE,GAAG,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,EAAE,CAAC;AACnE,QAAI,0BAA0B,IAAI,SAAS,IAAI,EAAE,IAAI,EAAE,EAAE,GAAG,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,CAAC;AAC3F,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AACd,cAAU;AAAA,EACZ,SAAS,WAAW;AACpB,QAAM,OAAO,GAAG,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC,CAAC;AACrC,WAAS;AACT,IAAE,KAAK,EAAE,GAAG,IAAI,MAAM,IAAI,EAAE;AAC5B,IAAE,KAAK,EAAE,GAAG,IAAI,EAAE,EAAE;AACpB,IAAE,KAAK,EAAE,GAAG,IAAI,EAAE,EAAE;AACpB,MAAI,SAAS,EAAE,IAAI,CAAC,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,CAAC,CAAC,GAAG,EAAE,EAAE,IAAI,IAAI;AAC1E,MAAI,SAAS,EAAE,IAAI,EAAE,EAAE,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,GAAG,EAAE,EAAE,IAAI,IAAI;AACpE,MAAI,EAAE,IAAI,EAAE,GAAG,IAAI,CAAC,CAAC;AACrB,MAAI,EAAE,IAAI,EAAE,GAAG,IAAI,CAAC,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,CAAC;AACnD,MAAI,SAAS,EAAE,IAAI,EAAE,EAAE,GAAG,EAAE,EAAE,IAAI,IAAI;AACtC,MAAI,0BAA0B,IAAI,QAAQ,EAAE,GAAG,IAAI,IAAI,GAAG,EAAE,IAAI,EAAE,EAAE,CAAC;AACrE,MAAI,0BAA0B,IAAI,SAAS,IAAI,EAAE,IAAI,EAAE,EAAE,GAAG,EAAE,IAAI,QAAQ,IAAI,SAAS,EAAE,CAAC,CAAC;AAC3F,GAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AACd,SAAO,UAAU,UAAU,EAAE,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,SAAS,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,CAAC,GAAG,UAAU,EAAE,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC,GAAG,IAAI;AACxH;AAGA,SAAS,kBAAkB,OAAO,OAAO;AACvC,MAAI,UAAU,UAAU;AACtB,WAAO,aAAa,KAAK;AAAA,EAC3B;AACA,SAAO,aAAa,CAAC,KAAK,GAAG,KAAK;AACpC;AACA,SAAS,mBAAmB,GAAG,OAAO;AACpC,SAAO,aAAa,gBAAgB,UAAU,aAAa,aAAa,cAAc,UAAU,WAAW,aAAa,cAAc,UAAU;AAClJ;AACA,SAAS,aAAa,GAAG,OAAO;AAC9B,MAAI,UAAU,UAAU;AACtB,UAAM,IAAI,MAAM,2CAA2C;AAAA,EAC7D;AACA,MAAI,MAAM,QAAQ,CAAC,GAAG;AACpB,QAAI,QAAQ,CAAC;AAAA,EACf;AACA,MAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,6BAAyB,GAAG,KAAK;AAAA,EACnC;AACA,MAAI,mBAAmB,GAAG,KAAK,GAAG;AAChC,WAAO;AAAA,EACT;AACA,MAAI,SAAS,QAAQ,UAAU,aAAa,UAAU,aAAa;AACjE,WAAO,IAAI,aAAa,CAAC;AAAA,EAC3B,WAAW,UAAU,SAAS;AAC5B,WAAO,IAAI,WAAW,CAAC;AAAA,EACzB,WAAW,UAAU,QAAQ;AAC3B,UAAM,OAAO,IAAI,WAAW,EAAE,MAAM;AACpC,aAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAI,KAAK,MAAM,EAAE,GAAG,MAAM,GAAG;AAC3B,aAAK,MAAM;AAAA,MACb;AAAA,IACF;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACF;AACA,SAASA,OAAM;AACb,SAAO,IAAI,EAAE,SAAS,IAAI;AAC5B;AACA,SAAS,OAAO,MAAM,cAAc;AAClC,SAAO,IAAI,EAAE,SAAS,MAAM,MAAM,YAAY;AAChD;AACA,SAAS,aAAa,IAAI,WAAW,SAAS;AAC5C,aAAW,YAAY;AACvB,SAAO,IAAI,EAAE,SAAS,OAAO,IAAI,QAAQ;AAC3C;AACA,SAAS,aAAa,OAAO,WAAW,SAAS;AAC/C,aAAW,YAAY;AACvB,SAAO,IAAI,EAAE,SAAS,OAAO,OAAO,QAAQ;AAC9C;AAGA,IAAI,WAAW,MAAM;AAAA,EACnB,YAAY,cAAc,QAAQ;AAChC,SAAK,eAAe;AACpB,SAAK,SAAS;AACd,QAAI,UAAU,MAAM;AAClB,WAAK,SAAS,IAAI,OAAO;AAAA,IAC3B;AAAA,EACF;AAAA,EACA,cAAc,YAAY,QAAQ,GAAG;AACnC,QAAI;AACJ,UAAM,sBAAsB,MAAM;AAChC,gBAAU,EAAE;AAAA,IACd;AACA,QAAI;AACJ,UAAM,QAAQA,KAAI;AAClB,QAAI,KAAK,aAAa,eAAe,GAAG;AACtC,cAAQ,KAAK,aAAa,KAAK,mBAAmB;AAAA,IACpD,OAAO;AACL,0BAAoB;AACpB,iBAAW,UAAU,SAAS;AAC5B,eAAO,SAAS;AAAA,MAClB;AACA,cAAQ,QAAQ,QAAQ,EAAE,UAAUA,KAAI,IAAI,MAAM,CAAC;AAAA,IACrD;AACA,QAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,eAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,cAAM,SAAS,QAAQ;AACvB,eAAO,KAAK,EAAE,KAAK,CAAC,eAAe;AACjC,oCAA0B,YAAY,OAAO,OAAO,UAAU;AAAA,QAChE,CAAC;AAAA,MACH;AAAA,IACF;AACA,UAAM,gBAAgB;AAAA,MACpB;AAAA,MACA;AAAA,MACA;AAAA,MACA,QAAQ,MAAM,KAAK,CAAC,WAAW,OAAO,QAAQ;AAAA,MAC9C,WAAW,MAAM,KAAK,CAAC,WAAW,OAAO,uBAAuB,OAAO,OAAO,oBAAoB,IAAI,EAAE;AAAA,IAC1G;AACA,WAAO;AAAA,EACT;AAAA,EACA,iBAAiB,eAAe;AAC9B,UAAM,EAAE,YAAY,SAAS,QAAQ,QAAQ,UAAU,IAAI;AAC3D,YAAQ,QAAQ,CAAC,WAAW;AAC1B,cAAQ,IAAI,CAAC,OAAO,KAAK,GAAG,QAAQ,SAAS,CAAC,EAAE,KAAK,CAAC,mBAAmB;AACvE,aAAK,OAAO,iBAAiB,YAAY,QAAQ,eAAe,IAAI,eAAe,IAAI,QAAQ,eAAe,EAAE;AAAA,MAClH,CAAC;AAAA,IACH,CAAC;AAAA,EACH;AACF;AACA,SAAS,0BAA0B,MAAM,OAAO,YAAY;AAC1D,MAAI,UAAU,WAAW;AACvB,WAAO;AAAA,EACT;AACA,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAM,MAAM,KAAK;AACjB,QAAI,MAAM,GAAG,KAAK,CAAC,SAAS,GAAG,GAAG;AAChC,cAAQ,KAAK,SAAS,yBAAyB,aAAa;AAC5D,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,IAAI,SAAS,MAAM;AAAA,EACjB,iBAAiB,MAAM,QAAQ,MAAM,QAAQ,QAAQ,WAAW;AAC9D,UAAM,QAAQ,OAAO,WAAW,WAAW,SAAS,GAAG,YAAY,CAAC,IAAI,OAAO;AAC/E,UAAM,aAAa,SAAS,MAAM,EAAE;AACpC,UAAM,OAAO,OAAO;AACpB,UAAMhB,QAAO,OAAO;AACpB,UAAM,QAAQ,SAAS,OAAO,MAAM,SAAS,GAAG,EAAE;AAClD,QAAI,yBAAyB;AAC7B,eAAW,SAAS,QAAQ;AAC1B,YAAM,SAAS,OAAO;AACtB,UAAI,UAAU,MAAM;AAClB,cAAM,aAAa,OAAO,SAAS,OAAO;AAC1C,cAAM,YAAY,WAAW;AAC7B,kCAA0B,GAAG,UAAU,cAAc,YAAY,IAAI,aAAa;AAAA,MACpF;AAAA,IACF;AACA,YAAQ,IAAI,KAAK,gBAAgB,WAAW,SAAS,WAAWA,WAAU,4BAA4B,aAAa,oBAAoB,aAAa,cAAc,iBAAiB,gBAAgB,kBAAkB;AAAA,EACvN;AACF;AAGA,SAAS,qBAAqB,MAAM,IAAI,GAAG;AACzC,QAAM,eAAe,CAAC;AACtB,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,MAAM;AACrC,iBAAa,GAAG,IAAI,MAAM;AAAA,EAC5B;AACA,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAMiB,QAAO,KAAK;AAClB,UAAM,aAAaA,MAAK;AACxB,eAAW,aAAa,YAAY;AAClC,YAAM,SAAS,WAAW;AAC1B,UAAI,gBAAgB;AACpB,eAAS,IAAI,GAAG,IAAI,GAAG,QAAQ,KAAK;AAClC,YAAI,aAAa,OAAO,KAAK;AAC3B,UAAAA,MAAK,QAAQ,QAAQ,CAAC,WAAW,aAAa,OAAO,MAAM,IAAI;AAC/D,0BAAgB;AAChB,qBAAWA,MAAK,MAAM;AACtB;AAAA,QACF;AAAA,MACF;AACA,UAAI,eAAe;AACjB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,QAAM,iBAAiB,CAAC;AACxB,iBAAe,EAAE,MAAM;AACvB,QAAM,WAAW,CAAC;AAClB,WAAS,KAAK,KAAK,SAAS,GAAG,MAAM,GAAG,MAAM;AAC5C,UAAMA,QAAO,KAAK;AAClB,UAAM,aAAaA,MAAK;AACxB,aAAS,IAAI,GAAG,IAAIA,MAAK,QAAQ,QAAQ,KAAK;AAC5C,UAAI,eAAeA,MAAK,QAAQ,GAAG,KAAK;AACtC,mBAAW,aAAa,YAAY;AAClC,yBAAe,WAAW,WAAW,MAAM;AAC3C,mBAASA,MAAK,MAAM;AAAA,QACtB;AACA;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAMA,QAAO,KAAK;AAClB,QAAI,WAAWA,MAAK,OAAO,SAASA,MAAK,KAAK;AAC5C,YAAM,eAAe,CAAC;AACtB,iBAAW,aAAaA,MAAK,QAAQ;AACnC,cAAM,YAAYA,MAAK,OAAO;AAC9B,YAAI,aAAa,UAAU,KAAK;AAC9B,uBAAa,aAAa;AAAA,QAC5B;AAAA,MACF;AACA,YAAM,aAAa,OAAO,OAAO,CAAC,GAAGA,KAAI;AACzC,iBAAW,SAAS;AACpB,iBAAW,UAAUA,MAAK;AAC1B,mBAAa,KAAK,UAAU;AAAA,IAC9B;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,uBAAuB,8BAA8B,cAAc,OAAO,MAAM;AACvF,WAAS,KAAK,aAAa,SAAS,GAAG,MAAM,GAAG,MAAM;AACpD,UAAMA,QAAO,aAAa;AAC1B,UAAM,MAAM,CAAC;AACb,IAAAA,MAAK,QAAQ,QAAQ,CAAC,MAAM;AAC1B,YAAM,aAAa,6BAA6B,EAAE;AAClD,UAAI,cAAc,MAAM;AACtB,YAAI,KAAK,UAAU;AAAA,MACrB,OAAO;AACL,YAAI,KAAK,IAAI;AAAA,MACf;AAAA,IACF,CAAC;AACD,QAAIA,MAAK,YAAY,MAAM;AACzB,YAAM,IAAI,MAAM,4DAA4DA,MAAK,aAAa;AAAA,IAChG;AACA,UAAM,iBAAiBA,MAAK,SAAS,GAAG;AACxC,eAAW,aAAaA,MAAK,QAAQ;AACnC,UAAI,EAAE,aAAa,iBAAiB;AAClC,cAAM,IAAI,MAAM,iCAAiC,yCAAyC,OAAO,KAAK,cAAc,IAAI;AAAA,MAC1H;AACA,YAAM,KAAK,MAAM,MAAM,eAAe,WAAW,CAAC;AAClD,UAAI,GAAG,UAAU,WAAW;AAC1B,cAAM,IAAI,MAAM,4BAA4BA,MAAK,qCAAqC,iDAAiD,GAAG,QAAQ;AAAA,MACpJ;AACA,YAAM,IAAIA,MAAK,OAAO;AACtB,UAAI,CAAC,YAAY,GAAG,OAAO,EAAE,KAAK,GAAG;AACnC,cAAM,IAAI,MAAM,4BAA4BA,MAAK,sCAAsC,yBAAyB,GAAG,wDAAwD,EAAE,QAAQ;AAAA,MACvL;AACA,UAAI,6BAA6B,EAAE,OAAO,MAAM;AAC9C,qCAA6B,EAAE,MAAM;AAAA,MACvC,OAAO;AACL,cAAM,cAAc,6BAA6B,EAAE;AACnD,qCAA6B,EAAE,MAAM,KAAK,aAAa,EAAE;AACzD,oBAAY,QAAQ;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,wBAAwB;AAC5B,IAAI,6BAA6B;AACjC,IAAI,wBAAwB;AAC5B,SAAS,eAAe,MAAM,OAAO,OAAO,SAAS;AACnD,QAAMJ,WAAU,eAAe,KAAK;AACpC,QAAM,YAAY,wBAAwB,MAAM,OAAO,OAAOA,QAAO;AACrE,QAAM,OAAO,MAAM;AACnB,QAAM,YAAY,kBAAkB,MAAM,OAAO,OAAOA,UAAS,SAAS;AAC1E,QAAMK,SAAQ,CAAC,QAAQ;AACvB,MAAI,SAAS;AACX,IAAAA,OAAM,KAAK,YAAY,OAAO;AAC9B,IAAAA,OAAM,KAAK,WAAW,MAAM;AAC5B,IAAAA,OAAM,KAAK,aAAa,QAAQ;AAChC,IAAAA,OAAM,KAAK,WAAW;AAAA,EACxB;AACA,EAAAA,OAAM,KAAK,UAAU,IAAI,CAAC,OAAO,SAAS,EAAE,EAAE,KAAK,IAAI,CAAC;AACxD,SAAOA,OAAM,KAAK,IAAI;AACxB;AACA,SAAS,wBAAwB,MAAM,OAAO,OAAOL,UAAS;AAC5D,QAAM,KAAK,cAAc,KAAK;AAC9B,QAAM,UAAUA,SAAQA,SAAQ,SAAS;AACzC,QAAM,YAAY,IAAI,MAAM,OAAO,EAAE,KAAK,CAAC;AAC3C,QAAM,OAAO,MAAM;AACnB,QAAM,iBAAiB,UAAU,cAAc,oBAAoB,IAAI,IAAI;AAC3E,MAAI,OAAO,GAAG;AACZ,aAAS,MAAM,GAAG,MAAM,KAAK,SAAS,OAAO;AAC3C,YAAM,SAAS,MAAM;AACrB,eAAS,IAAI,GAAG,IAAI,SAAS,KAAK;AAChC,kBAAU,KAAK,KAAK,IAAI,UAAU,IAAI,YAAY,eAAe,SAAS,IAAI,GAAG,KAAK,EAAE,MAAM;AAAA,MAChG;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,YAAY,KAAK,MAAM,OAAO;AACrC,MAAI;AACJ,MAAI,MAAM,QAAQ,GAAG,GAAG;AACtB,aAAS,GAAG,WAAW,IAAI,GAAG,QAAQ,qBAAqB,CAAC,OAAO,WAAW,IAAI,GAAG,QAAQ,qBAAqB,CAAC;AAAA,EACrH,WAAW,SAAS,GAAG,GAAG;AACxB,aAAS,IAAI;AAAA,EACf,WAAW,UAAU,QAAQ;AAC3B,aAAS,gBAAgB,GAAG;AAAA,EAC9B,OAAO;AACL,aAAS,WAAW,IAAI,QAAQ,qBAAqB,CAAC,EAAE,SAAS;AAAA,EACnE;AACA,SAAO,SAAS,QAAQ,IAAI;AAC9B;AACA,SAAS,gBAAgB,GAAG;AAC1B,SAAO,MAAM,IAAI,UAAU;AAC7B;AACA,SAAS,kBAAkB,MAAM,OAAO,OAAOA,UAAS,WAAW,SAAS,MAAM;AAChF,QAAM,oBAAoB,UAAU,cAAc,IAAI;AACtD,QAAMb,QAAO,MAAM;AACnB,QAAM,OAAO,MAAM;AACnB,MAAI,SAAS,GAAG;AACd,QAAI,UAAU,aAAa;AACzB,YAAM,eAAe,oBAAoB,IAAI;AAC7C,aAAO,CAAC,YAAY,aAAa,IAAI,GAAG,KAAK,CAAC;AAAA,IAChD;AACA,QAAI,UAAU,QAAQ;AACpB,aAAO,CAAC,gBAAgB,KAAK,EAAE,CAAC;AAAA,IAClC;AACA,WAAO,CAAC,KAAK,GAAG,SAAS,CAAC;AAAA,EAC5B;AACA,MAAI,SAAS,GAAG;AACd,QAAIA,QAAO,uBAAuB;AAChC,YAAM,gBAAgB,6BAA6B;AACnD,UAAI,YAAY,MAAM,KAAK,KAAK,MAAM,GAAG,aAAa,CAAC;AACvD,UAAI,WAAW,MAAM,KAAK,KAAK,OAAOA,QAAO,8BAA8B,mBAAmBA,QAAO,iBAAiB,CAAC;AACvH,UAAI,UAAU,aAAa;AACzB,oBAAY,oBAAoB,SAAS;AACzC,mBAAW,oBAAoB,QAAQ;AAAA,MACzC;AACA,aAAO;AAAA,QACL,MAAM,UAAU,IAAI,CAAC,GAAG,OAAO,YAAY,GAAG,UAAU,KAAK,KAAK,CAAC,EAAE,KAAK,IAAI,IAAI,YAAY,SAAS,IAAI,CAAC,GAAG,OAAO,YAAY,GAAG,UAAUA,QAAO,6BAA6B,KAAK,KAAK,CAAC,EAAE,KAAK,IAAI,IAAI;AAAA,MAC/M;AAAA,IACF;AACA,UAAM,cAAc,UAAU,cAAc,oBAAoB,IAAI,IAAI,MAAM,KAAK,IAAI;AACvF,WAAO;AAAA,MACL,MAAM,YAAY,IAAI,CAAC,GAAG,OAAO,YAAY,GAAG,UAAU,KAAK,KAAK,CAAC,EAAE,KAAK,IAAI,IAAI;AAAA,IACtF;AAAA,EACF;AACA,QAAM,WAAW,MAAM,MAAM,CAAC;AAC9B,QAAM,aAAaa,SAAQ,MAAM,CAAC;AAClC,QAAM,SAASA,SAAQ,KAAK;AAC5B,QAAMK,SAAQ,CAAC;AACf,MAAIlB,QAAO,uBAAuB;AAChC,aAAS,KAAK,GAAG,KAAK,4BAA4B,MAAM;AACtD,YAAM,QAAQ,KAAK;AACnB,YAAM,MAAM,QAAQ;AACpB,MAAAkB,OAAM,KAAK,GAAG,kBAAkB,KAAK,MAAM,OAAO,GAAG,GAAG,UAAU,OAAO,YAAY,WAAW,KAAK,CAAC;AAAA,IACxG;AACA,IAAAA,OAAM,KAAK,KAAK;AAChB,aAAS,KAAKlB,QAAO,4BAA4B,KAAKA,OAAM,MAAM;AAChE,YAAM,QAAQ,KAAK;AACnB,YAAM,MAAM,QAAQ;AACpB,MAAAkB,OAAM,KAAK,GAAG,kBAAkB,KAAK,MAAM,OAAO,GAAG,GAAG,UAAU,OAAO,YAAY,WAAW,OAAOlB,QAAO,CAAC,CAAC;AAAA,IAClH;AAAA,EACF,OAAO;AACL,aAAS,KAAK,GAAG,KAAKA,OAAM,MAAM;AAChC,YAAM,QAAQ,KAAK;AACnB,YAAM,MAAM,QAAQ;AACpB,MAAAkB,OAAM,KAAK,GAAG,kBAAkB,KAAK,MAAM,OAAO,GAAG,GAAG,UAAU,OAAO,YAAY,WAAW,OAAOlB,QAAO,CAAC,CAAC;AAAA,IAClH;AAAA,EACF;AACA,QAAM,MAAM,SAAS,IAAI,MAAM;AAC/B,EAAAkB,OAAM,KAAK,MAAMA,OAAM,KAAK;AAC5B,WAAS,KAAK,GAAG,KAAKA,OAAM,SAAS,GAAG,MAAM;AAC5C,IAAAA,OAAM,MAAM,MAAMA,OAAM,MAAM;AAAA,EAChC;AACA,MAAI,aAAa;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,kBAAc;AAAA,EAChB;AACA,EAAAA,OAAMA,OAAM,SAAS,KAAK,MAAMA,OAAMA,OAAM,SAAS,KAAK,OAAO,SAAS,KAAK;AAC/E,SAAOA;AACT;AACA,SAAS,oBAAoB,MAAM;AACjC,QAAM,gBAAgB,CAAC;AACvB,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM,GAAG;AAC1C,kBAAc,KAAK,CAAC,KAAK,KAAK,KAAK,KAAK,EAAE,CAAC;AAAA,EAC7C;AACA,SAAO;AACT;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO,OAAO,QAAQ;AAChC,SAAK,QAAQ;AACb,SAAK,QAAQ,MAAM,MAAM;AACzB,SAAK,OAAO,cAAc,KAAK;AAC/B,QAAI,UAAU,MAAM;AAClB,YAAM,KAAK,OAAO;AAClB,aAAO,OAAO,KAAK,MAAM,MAAM,qBAAqB,sDAAsD,KAAK,QAAQ;AAAA,IACzH;AACA,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,4JAA4J;AAAA,IAC9K;AACA,SAAK,SAAS,UAAU,kBAAkB,OAAO,KAAK,IAAI;AAC1D,SAAK,UAAU,eAAe,KAAK;AAAA,EACrC;AAAA,EACA,IAAI,UAAU,MAAM;AAClB,QAAI,KAAK,WAAW,GAAG;AACrB,aAAO,CAAC,CAAC;AAAA,IACX;AACA,WAAO,KAAK,WAAW,KAAK,MAAM,MAAM,uCAAuC,KAAK,gCAAgC,KAAK,OAAO;AAChI,UAAMR,SAAQ,KAAK,WAAW,IAAI;AAClC,SAAK,OAAOA,UAAS;AAAA,EACvB;AAAA,EACA,OAAO,MAAM;AACX,QAAI,KAAK,WAAW,GAAG;AACrB,aAAO,CAAC,CAAC;AAAA,IACX;AACA,QAAI,KAAK;AACT,eAAW,OAAO,MAAM;AACtB,UAAI,MAAM,KAAK,OAAO,KAAK,MAAM,KAAK;AACpC,cAAM,MAAM,qCAAqC,wBAAwB,KAAK;AAC9E,cAAM,IAAI,MAAM,GAAG;AAAA,MACrB;AACA;AAAA,IACF;AACA,QAAIA,SAAQ,KAAK,KAAK,SAAS;AAC/B,aAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,MAAAA,UAAS,KAAK,QAAQ,MAAM,KAAK;AAAA,IACnC;AACA,WAAO,KAAK,OAAOA;AAAA,EACrB;AAAA,EACA,WAAW,MAAM;AACf,QAAI,KAAK,SAAS,GAAG;AACnB,aAAO;AAAA,IACT,WAAW,KAAK,SAAS,GAAG;AAC1B,aAAO,KAAK;AAAA,IACd;AACA,QAAIA,SAAQ,KAAK,KAAK,SAAS;AAC/B,aAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,MAAAA,UAAS,KAAK,QAAQ,MAAM,KAAK;AAAA,IACnC;AACA,WAAOA;AAAA,EACT;AAAA,EACA,WAAWA,QAAO;AAChB,QAAI,KAAK,SAAS,GAAG;AACnB,aAAO,CAAC;AAAA,IACV,WAAW,KAAK,SAAS,GAAG;AAC1B,aAAO,CAACA,MAAK;AAAA,IACf;AACA,UAAM,OAAO,IAAI,MAAM,KAAK,MAAM,MAAM;AACxC,aAAS,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,WAAK,MAAM,KAAK,MAAMA,SAAQ,KAAK,QAAQ,GAAG;AAC9C,MAAAA,UAAS,KAAK,MAAM,KAAK,QAAQ;AAAA,IACnC;AACA,SAAK,KAAK,SAAS,KAAKA;AACxB,WAAO;AAAA,EACT;AAAA,EACA,IAAI,OAAO;AACT,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,WAAW;AACT,WAAO,UAAU,EAAE,WAAW,KAAK,QAAQ,KAAK,OAAO,KAAK,KAAK;AAAA,EACnE;AACF;AACA,IAAI,YAAY;AAChB,IAAI,YAAY;AAChB,IAAI,uBAAuB;AAC3B,SAAS,iBAAiB,IAAI;AAC5B,cAAY;AACd;AACA,SAAS,aAAa,SAAS;AAC7B,cAAY;AACd;AACA,SAAS,wBAAwB,IAAI;AACnC,yBAAuB;AACzB;AACA,IAAI,SAAS,MAAM;AAAA,EACjB,YAAY,OAAO,OAAO,QAAQ,IAAI;AACpC,SAAK,OAAO;AACZ,SAAK,qBAAqB;AAC1B,SAAK,QAAQ,MAAM,MAAM;AACzB,SAAK,QAAQ,SAAS;AACtB,SAAK,OAAO,cAAc,KAAK;AAC/B,SAAK,UAAU,eAAe,KAAK;AACnC,SAAK,SAAS;AACd,SAAK,KAAK;AACV,SAAK,WAAW,KAAK,OAAO,IAAI,KAAK,KAAK,SAAS,IAAI;AAAA,EACzD;AAAA,EACA,IAAI,OAAO;AACT,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,MAAM,SAAS;AACb,UAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,WAAO,UAAU,OAAO,KAAK,OAAO,KAAK,OAAO,IAAI;AAAA,EACtD;AAAA,EACA,aAAa;AACX,WAAO,UAAU,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,SAAS,CAAC;AAAA,EACjE;AAAA,EACA,MAAM,QAAQ;AACZ,UAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,WAAO,cAAc,KAAK,OAAO,MAAM,KAAK,UAAU,WAAW;AAAA,EACnE;AAAA,EACA,YAAY;AACV,WAAO,cAAc,KAAK,OAAO,KAAK,SAAS,GAAG,KAAK,UAAU,WAAW;AAAA,EAC9E;AAAA,EACA,MAAM,OAAO;AACX,SAAK,gBAAgB;AACrB,UAAM,OAAO,UAAU,EAAE,KAAK,KAAK,MAAM;AACzC,QAAI,KAAK,UAAU,UAAU;AAC3B,YAAM,QAAQ,MAAM;AACpB,UAAI;AACF,eAAO,MAAM,IAAI,CAAC,MAAM,aAAa,CAAC,CAAC;AAAA,MACzC,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,+FAA+F;AAAA,MACjH;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,UAAUJ,UAAS;AACjB,SAAK,gBAAgB;AACrB,WAAO,UAAU,EAAE,UAAU,KAAK,QAAQA,QAAO;AAAA,EACnD;AAAA,EACA,WAAW;AACT,SAAK,gBAAgB;AACrB,UAAM,OAAO,UAAU,EAAE,SAAS,KAAK,MAAM;AAC7C,QAAI,KAAK,UAAU,UAAU;AAC3B,UAAI;AACF,eAAO,KAAK,IAAI,CAAC,MAAM,aAAa,CAAC,CAAC;AAAA,MACxC,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,+FAA+F;AAAA,MACjH;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ;AACZ,SAAK,gBAAgB;AACrB,UAAM,OAAO,MAAM,UAAU,EAAE,KAAK,KAAK,MAAM;AAC/C,QAAI,KAAK,UAAU,UAAU;AAC3B,aAAO;AAAA,IACT,OAAO;AACL,aAAO,IAAI,WAAW,KAAK,MAAM;AAAA,IACnC;AAAA,EACF;AAAA,EACA,UAAU;AACR,QAAI,KAAK,YAAY;AACnB;AAAA,IACF;AACA,cAAU,EAAE,cAAc,IAAI;AAC9B,SAAK,qBAAqB;AAAA,EAC5B;AAAA,EACA,IAAI,aAAa;AACf,WAAO,KAAK;AAAA,EACd;AAAA,EACA,kBAAkB;AAChB,QAAI,KAAK,YAAY;AACnB,YAAM,IAAI,MAAM,qBAAqB;AAAA,IACvC;AAAA,EACF;AAAA,EACA,MAAM,UAAU,OAAO;AACrB,WAAO,UAAU,MAAM,MAAM,OAAO;AAAA,EACtC;AAAA,EACA,QAAQ;AACN,SAAK,gBAAgB;AACrB,WAAO,UAAU,MAAM,IAAI;AAAA,EAC7B;AAAA,EACA,SAAS,UAAU,OAAO;AACxB,UAAM,OAAO,KAAK,SAAS;AAC3B,WAAO,eAAe,MAAM,KAAK,OAAO,KAAK,OAAO,OAAO;AAAA,EAC7D;AAAA,EACA,KAAK,OAAO;AACV,SAAK,gBAAgB;AACrB,WAAO,UAAU,KAAK,MAAM,KAAK;AAAA,EACnC;AAAA,EACA,SAAS,YAAY,MAAM,MAAM,OAAO;AACtC,SAAK,gBAAgB;AACrB,WAAO,UAAU,EAAE,aAAa,MAAM,WAAW,MAAM,KAAK;AAAA,EAC9D;AACF;AACA,OAAO,eAAe,QAAQ,OAAO,aAAa;AAAA,EAChD,OAAO,CAACE,cAAa;AACnB,WAAO,CAAC,CAACA,aAAYA,UAAS,QAAQ,QAAQA,UAAS,YAAY,QAAQA,UAAS,mBAAmB;AAAA,EACzG;AACF,CAAC;AACD,SAAS,uBAAuB;AAC9B,SAAO,UAAU,UAAU,MAAM;AAC/B,WAAO;AAAA,EACT,CAAC;AACH;AACA,qBAAqB;AACrB,IAAI,WAAW,cAAc,OAAO;AAAA,EAClC,YAAY,cAAc,WAAW,MAAM,UAAU;AACnD,UAAM,aAAa,OAAO,aAAa,OAAO,aAAa,QAAQ,QAAQ;AAC3E,SAAK,YAAY;AACjB,SAAK,OAAO;AAAA,EACd;AAAA,EACA,OAAO,UAAU;AACf,QAAI,SAAS,UAAU,KAAK,OAAO;AACjC,YAAM,IAAI,MAAM,2BAA2B,SAAS,8BAA8B,KAAK,mBAAmB;AAAA,IAC5G;AACA,QAAI,CAAC,YAAY,SAAS,OAAO,KAAK,KAAK,GAAG;AAC5C,YAAM,IAAI,MAAM,2BAA2B,SAAS,8BAA8B,KAAK,mBAAmB;AAAA,IAC5G;AACA,cAAU,EAAE,cAAc,IAAI;AAC9B,SAAK,SAAS,SAAS;AACvB,cAAU,EAAE,OAAO,MAAM,IAAI;AAAA,EAC/B;AAAA,EACA,UAAU;AACR,cAAU,EAAE,gBAAgB,IAAI;AAChC,SAAK,qBAAqB;AAAA,EAC5B;AACF;AACA,OAAO,eAAe,UAAU,OAAO,aAAa;AAAA,EAClD,OAAO,CAACA,cAAa;AACnB,WAAOA,qBAAoB,UAAUA,UAAS,UAAU,QAAQA,UAAS,kBAAkB;AAAA,EAC7F;AACF,CAAC;AAGD,IAAI,sBAAsB,CAAC;AAC3BX,UAAS,qBAAqB;AAAA,EAC5B,kBAAkB,MAAM;AAAA,EACxB,uBAAuB,MAAM;AAAA,EAC7B,gBAAgB,MAAM;AAAA,EACtB,gBAAgB,MAAM;AACxB,CAAC;AAGD,IAAI;AAAA,CACH,SAAS,OAAO;AACf,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AACd,QAAM,QAAQ;AAChB,GAAG,SAAS,OAAO,CAAC,EAAE;AACtB,IAAI;AAAA,CACH,SAAS,oBAAoB;AAC5B,qBAAmB,aAAa;AAChC,qBAAmB,WAAW;AAC9B,qBAAmB,UAAU;AAC7B,qBAAmB,eAAe;AACpC,GAAG,sBAAsB,oBAAoB,CAAC,EAAE;AAChD,IAAI;AAAA,CACH,SAAS,mBAAmB;AAC3B,oBAAkB,aAAa;AAC/B,oBAAkB,WAAW;AAC7B,oBAAkB,UAAU;AAC5B,oBAAkB,eAAe;AACnC,GAAG,qBAAqB,mBAAmB,CAAC,EAAE;AAC9C,IAAI;AAAA,CACH,SAAS,sBAAsB;AAC9B,uBAAqB,aAAa;AAClC,uBAAqB,WAAW;AAChC,uBAAqB,UAAU;AAC/B,uBAAqB,eAAe;AACtC,GAAG,wBAAwB,sBAAsB,CAAC,EAAE;AACpD,IAAI;AAAA,CACH,SAAS,wBAAwB;AAChC,yBAAuB,aAAa;AACpC,yBAAuB,WAAW;AAClC,yBAAuB,UAAU;AACjC,yBAAuB,eAAe;AACxC,GAAG,0BAA0B,wBAAwB,CAAC,EAAE;AACxD,IAAI,gBAAgB;AAAA,EAClB,WAAW;AAAA,EACX,SAAS;AAAA,EACT,QAAQ;AAAA,EACR,aAAa;AACf;AACA,SAAS,WAAW,OAAO,OAAO;AAChC,MAAI,UAAU,YAAY,UAAU,UAAU;AAC5C,QAAI,UAAU,YAAY,UAAU,UAAU;AAC5C,aAAO;AAAA,IACT;AACA,UAAM,IAAI,MAAM,kBAAkB,cAAc,OAAO;AAAA,EACzD;AACA,SAAO,cAAc,OAAO;AAC9B;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,WAAW,MAAM,OAAO;AACjC;AAGA,SAAS,eAAe,GAAG,GAAG;AAC5B,MAAI,EAAE,UAAU,EAAE,OAAO;AACvB,WAAO,CAAC,GAAG,CAAC;AAAA,EACd;AACA,QAAM,QAAQ,WAAW,EAAE,OAAO,EAAE,KAAK;AACzC,SAAO,CAAC,EAAE,KAAK,KAAK,GAAG,EAAE,KAAK,KAAK,CAAC;AACtC;AACA,SAAS,iBAAiB,GAAG,GAAG;AAC9B,SAAO,EAAE,UAAU,EAAE,OAAO,MAAM,2BAA2B,EAAE,qBAAqB,EAAE,yBAAyB;AACjH;AACA,SAAS,eAAe,SAAS,YAAY;AAC3C,SAAO,WAAW,KAAK,CAAC,MAAM,EAAE,OAAO,QAAQ,EAAE;AACnD;AACA,SAAS,sBAAsB,QAAQ;AACrC,QAAM,OAAO,CAAC;AACd,QAAM,OAAuB,oBAAI,IAAI;AACrC,sBAAoB,QAAQ,MAAM,IAAI;AACtC,SAAO;AACT;AACA,SAAS,oBAAoB,WAAW,MAAM,MAAM;AAClD,MAAI,aAAa,MAAM;AACrB;AAAA,EACF;AACA,MAAI,qBAAqB,QAAQ;AAC/B,SAAK,KAAK,SAAS;AACnB;AAAA,EACF;AACA,MAAI,CAAC,WAAW,SAAS,GAAG;AAC1B;AAAA,EACF;AACA,QAAM,WAAW;AACjB,aAAW,KAAK,UAAU;AACxB,UAAM,MAAM,SAAS;AACrB,QAAI,CAAC,KAAK,IAAI,GAAG,GAAG;AAClB,WAAK,IAAI,GAAG;AACZ,0BAAoB,KAAK,MAAM,IAAI;AAAA,IACrC;AAAA,EACF;AACF;AACA,SAAS,WAAW,KAAK;AACvB,SAAO,MAAM,QAAQ,GAAG,KAAK,OAAO,QAAQ;AAC9C;AAGA,SAAS,6BAA6B,kBAAkB;AACtD,SAAO,iBAAiB,cAAc;AACxC;AACA,IAAI,cAAc,MAAM;AAAA,EACtB,cAAc;AACZ,SAAK,sBAAsB,CAAC;AAC5B,SAAK,iBAAiB;AACtB,SAAK,WAAW;AAChB,SAAK,aAAa;AAClB,SAAK,mBAAmB;AACxB,SAAK,iBAAiB;AACtB,SAAK,gBAAgB;AACrB,SAAK,cAAc;AACnB,SAAK,aAAa,CAAC;AACnB,SAAK,oBAAoB,CAAC;AAC1B,SAAK,cAAc;AACnB,SAAK,aAA6B,oBAAI,QAAQ;AAC9C,SAAK,YAAY;AACjB,SAAK,gBAAgB;AAAA,MACnB,UAAU;AAAA,MACV,YAAY;AAAA,MACZ,WAAW;AAAA,MACX,SAAS,CAAC;AAAA,MACV,QAAQ;AAAA,MACR,IAAI,cAAc;AAChB,eAAO,MAAM,KAAK,IAAI,IAAI,KAAK,QAAQ,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,CAAC;AAAA,MAC5D;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU;AACR,eAAW,gBAAgB,KAAK,qBAAqB;AACnD,WAAK,oBAAoB,cAAc,QAAQ;AAAA,IACjD;AAAA,EACF;AACF;AACA,IAAI,SAAS,MAAM;AAAA,EACjB,YAAY,MAAM;AAChB,SAAK,MAAM;AACX,SAAK,WAAW,CAAC;AACjB,SAAK,kBAAkB,CAAC;AACxB,SAAK,uBAAuB;AAC5B,SAAK,QAAQ,IAAI,YAAY;AAAA,EAC/B;AAAA,EACA,MAAM,QAAQ;AACZ,QAAI,KAAK,sBAAsB,MAAM;AACnC,aAAO,KAAK,mBAAmB,KAAK,MAAM;AAAA,MAC1C,CAAC;AAAA,IACH;AACA,QAAI,KAAK,mBAAmB,MAAM;AAChC;AAAA,IACF;AACA,UAAM,iBAAiB,KAAK,kBAAkB;AAC9C,aAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,YAAM,cAAc,eAAe;AACnC,YAAM,UAAU,MAAM,KAAK,kBAAkB,WAAW,EAAE;AAC1D,UAAI,SAAS;AACX,cAAM,KAAK,WAAW,WAAW;AACjC;AAAA,MACF;AAAA,IACF;AACA,UAAM,IAAI,MAAM,wEAAwE;AAAA,EAC1F;AAAA,EACA,IAAI,UAAU;AACZ,QAAI,KAAK,sBAAsB,MAAM;AACnC,YAAM,IAAI,MAAM,YAAY,KAAK,gIAAgI;AAAA,IACnK;AACA,QAAI,KAAK,mBAAmB,MAAM;AAChC,YAAM,EAAE,MAAM,UAAU,IAAI,KAAK,gCAAgC;AACjE,UAAI,WAAW;AACb,cAAM,IAAI,MAAM,iCAAiC,yHAAyH;AAAA,MAC5K;AACA,WAAK,WAAW,IAAI;AAAA,IACtB;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,eAAe;AACb,WAAO,OAAO,KAAK,KAAK,eAAe;AAAA,EACzC;AAAA,EACA,YAAY,aAAa;AACvB,QAAI,EAAE,eAAe,KAAK,WAAW;AACnC,UAAI,eAAe,KAAK,iBAAiB;AACvC,cAAM,EAAE,UAAU,IAAI,KAAK,kBAAkB,WAAW;AACxD,YAAI,WAAW;AACb,iBAAO;AAAA,QACT;AAAA,MACF,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF;AACA,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,mBAAmB,aAAa;AAC9B,QAAI,EAAE,eAAe,KAAK,kBAAkB;AAC1C,aAAO;AAAA,IACT;AACA,WAAO,KAAK,gBAAgB,aAAa;AAAA,EAC3C;AAAA,EACA,gBAAgB,aAAa,SAAS,WAAW,GAAG;AAClD,QAAI,eAAe,KAAK,iBAAiB;AACvC,WAAK,GAAG,+EAA+E;AACvF,aAAO;AAAA,IACT;AACA,SAAK,gBAAgB,eAAe,EAAE,SAAS,SAAS;AACxD,WAAO;AAAA,EACT;AAAA,EACA,MAAM,WAAW,aAAa;AAC5B,QAAI,KAAK,gBAAgB,gBAAgB,MAAM;AAC7C,YAAM,IAAI,MAAM,iBAAiB,oCAAoC;AAAA,IACvE;AACA,SAAK,cAAc;AACnB,QAAI,KAAK,SAAS,gBAAgB,MAAM;AACtC,WAAK,kBAAkB;AACvB,YAAM,EAAE,SAAS,UAAU,IAAI,KAAK,kBAAkB,WAAW;AACjE,YAAM,SAAS,YAAY,MAAM,UAAU;AAC3C,UAAI,CAAC,QAAQ;AACX,eAAO;AAAA,MACT;AAAA,IACF;AACA,SAAK,kBAAkB,KAAK,SAAS;AACrC,SAAK,uBAAuB;AAC5B,SAAK,WAAW,IAAI,SAAS,KAAK,eAAe;AACjD,WAAO;AAAA,EACT;AAAA,EACA,yBAAyB;AACvB,UAAM,UAAU,qBAAqB,KAAK,WAAW;AACrD,YAAQ,QAAQ,CAAC,WAAW;AAC1B,UAAI,OAAO,aAAa,MAAM;AAC5B,eAAO,UAAU,KAAK,eAAe;AAAA,MACvC;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB,aAAa;AACpC,UAAM,UAAU,qBAAqB,WAAW;AAChD,YAAQ,QAAQ,CAAC,WAAW;AAC1B,UAAI,OAAO,eAAe,MAAM;AAC9B,eAAO,YAAY,KAAK,SAAS,YAAY;AAAA,MAC/C;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,kBAAkB,aAAa;AAC7B,UAAM,uBAAuB,KAAK,gBAAgB;AAClD,QAAI,wBAAwB,MAAM;AAChC,YAAM,IAAI,MAAM,6BAA6B,qCAAqC;AAAA,IACpF;AACA,QAAI;AACF,YAAM,WAAW,qBAAqB,QAAQ;AAC9C,UAAI,YAAY,EAAE,oBAAoB,kBAAkB,OAAO,SAAS,SAAS,YAAY;AAC3F,cAAM,YAAY,EAAE,KAAK;AACzB,cAAM,UAAU,SAAS,KAAK,CAAC,oBAAoB;AACjD,cAAI,YAAY,KAAK,sBAAsB;AACzC,mBAAO;AAAA,UACT;AACA,eAAK,SAAS,eAAe;AAC7B,eAAK,qBAAqB;AAC1B,iBAAO;AAAA,QACT,CAAC,EAAE,MAAM,CAAC,QAAQ;AAChB,cAAI,YAAY,KAAK,sBAAsB;AACzC,mBAAO;AAAA,UACT;AACA,eAAK,qBAAqB;AAC1B,eAAK,6BAA6B,oBAAoB;AACtD,eAAK,IAAI,SAAS,IAAI,OAAO;AAC7B,iBAAO;AAAA,QACT,CAAC;AACD,aAAK,qBAAqB;AAC1B,eAAO,EAAE,SAAS,WAAW,KAAK;AAAA,MACpC,OAAO;AACL,aAAK,SAAS,eAAe;AAC7B,eAAO,EAAE,SAAS,MAAM,WAAW,MAAM;AAAA,MAC3C;AAAA,IACF,SAAS,KAAP;AACA,WAAK,6BAA6B,oBAAoB;AACtD,WAAK,IAAI,SAAS,IAAI,OAAO;AAC7B,aAAO,EAAE,SAAS,OAAO,WAAW,MAAM;AAAA,IAC5C;AAAA,EACF;AAAA,EACA,cAAc,aAAa;AACzB,QAAI,EAAE,eAAe,KAAK,kBAAkB;AAC1C,YAAM,IAAI,MAAM,GAAG,2CAA2C;AAAA,IAChE;AACA,QAAI,KAAK,gBAAgB,eAAe,KAAK,sBAAsB,MAAM;AACvE,WAAK;AAAA,IACP;AACA,QAAI,eAAe,KAAK,UAAU;AAChC,WAAK,yBAAyB,WAAW;AACzC,WAAK,SAAS,aAAa,QAAQ;AACnC,aAAO,KAAK,SAAS;AAAA,IACvB;AACA,WAAO,KAAK,gBAAgB;AAC5B,QAAI,KAAK,gBAAgB,aAAa;AACpC,WAAK,qBAAqB;AAC1B,WAAK,cAAc;AACnB,WAAK,kBAAkB;AAAA,IACzB;AAAA,EACF;AAAA,EACA,oBAAoB;AAClB,QAAI,OAAO,KAAK,KAAK,eAAe,EAAE,WAAW,GAAG;AAClD,YAAM,IAAI,MAAM,+BAA+B;AAAA,IACjD;AACA,WAAO,OAAO,KAAK,KAAK,eAAe,EAAE,KAAK,CAAC,GAAG,MAAM;AACtD,aAAO,KAAK,gBAAgB,GAAG,WAAW,KAAK,gBAAgB,GAAG;AAAA,IACpE,CAAC;AAAA,EACH;AAAA,EACA,kCAAkC;AAChC,UAAM,iBAAiB,KAAK,kBAAkB;AAC9C,aAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,YAAM,cAAc,eAAe;AACnC,YAAM,EAAE,SAAS,UAAU,IAAI,KAAK,kBAAkB,WAAW;AACjE,UAAI,aAAa,SAAS;AACxB,eAAO,EAAE,MAAM,aAAa,UAAU;AAAA,MACxC;AAAA,IACF;AACA,UAAM,IAAI,MAAM,wEAAwE;AAAA,EAC1F;AAAA,EACA,SAAS,UAAU,QAAQ;AACzB,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,UAAM,aAAa,KAAK;AACxB,UAAM,SAAS,KAAK,SAAS,MAAM;AACnC,UAAM,WAAW,WAAW,SAAS,MAAM;AAC3C,eAAW,YAAY,QAAQ,IAAI;AACnC,SAAK,UAAU;AACf,aAAS,KAAK,QAAQ,QAAQ,KAAK,OAAO,KAAK,OAAO,QAAQ;AAC9D,QAAI,KAAK,uBAAuB,GAAG;AACjC,WAAK,MAAM,kBAAkB,KAAK,MAAM,kBAAkB,SAAS;AAAA,IACrE;AAAA,EACF;AAAA,EACA,KAAK,UAAU,IAAI;AACjB,QAAI,OAAO;AACX,QAAI,MAAM,MAAM;AACd,UAAI,OAAO,aAAa,YAAY;AAClC,cAAM,IAAI,MAAM,qCAAqC;AAAA,MACvD;AACA,WAAK;AAAA,IACP,OAAO;AACL,UAAI,OAAO,aAAa,YAAY,EAAE,oBAAoB,SAAS;AACjE,cAAM,IAAI,MAAM,gFAAgF;AAAA,MAClG;AACA,UAAI,OAAO,OAAO,YAAY;AAC5B,cAAM,IAAI,MAAM,gFAAgF;AAAA,MAClG;AACA,aAAO;AAAA,IACT;AACA,QAAI;AACJ,WAAO,KAAK,UAAU,MAAM,KAAK,WAAW,IAAI,GAAG,MAAM,KAAK,SAAS,MAAM,GAAG,MAAM;AACpF,eAAS,GAAG;AACZ,UAAI,kBAAkB,SAAS;AAC7B,gBAAQ,MAAM,yCAAyC;AAAA,MACzD;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,UAAU,OAAO,KAAK,GAAG;AACvB,UAAM;AACN,QAAI;AACF,YAAM,MAAM,EAAE;AACd,UAAI;AACJ,aAAO;AAAA,IACT,SAAS,IAAP;AACA,UAAI;AACJ,YAAM;AAAA,IACR;AAAA,EACF;AAAA,EACA,eAAe;AACb,WAAO,OAAO;AAAA,EAChB;AAAA,EACA,iBAAiB;AACf,WAAO,OAAO;AAAA,EAChB;AAAA,EACA,MAAM,GAAG;AACP,UAAM,IAAI,OAAO,UAAU,UAAU,EAAE,EAAE,CAAC;AAC1C,UAAM,SAAS,EAAE,EAAE;AACnB,UAAM,QAAQ,CAAC,QAAQ;AAAA,MACrB,GAAG,MAAM;AACP,cAAM,QAAQ;AACd,cAAM,aAAa,EAAE,GAAG,GAAG;AAC3B,cAAM,QAAQ,EAAE,MAAM;AACtB,eAAO,OAAO;AAAA,UACZ;AAAA,UACA;AAAA,UACA;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,QAAQ,CAAC;AACf,SAAK,YAAY,KAAK,MAAM,YAAY,MAAM,QAAQ,CAAC,CAAC,GAAG,OAAO,OAAO,CAAC,CAAC;AAC3E,WAAO;AAAA,EACT;AAAA,EACA,UAAU,YAAY,QAAQ,OAAO;AACnC,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK;AAAA,IACP;AACA,UAAM,YAAY,UAAU,YAAY,KAAK,WAAW,KAAK;AAC7D,QAAI,CAAC,WAAW;AACd,YAAM,IAAI,MAAM,WAAW,2CAA2C,KAAK,cAAc;AAAA,IAC3F;AACA,WAAO,KAAK,cAAc,EAAE,YAAY,QAAQ,MAAM,CAAC;AAAA,EACzD;AAAA,EACA,yBAAyB;AACvB,WAAO,KAAK,IAAI,QAAQ,SAAS;AAAA,EACnC;AAAA,EACA,sBAAsB,YAAY,kBAAkB,UAAU;AAC5D,UAAM,kBAAkB,KAAK,QAAQ,WAAW;AAChD,QAAI,mBAAmB;AACvB,aAAS,QAAQ,CAAC,SAAS;AACzB,0BAAoB,KAAK,UAAU,cAAc,IAAI;AAAA,IACvD,CAAC;AACD,UAAM,WAAW,KAAK,MAAM,kBAAkB,KAAK,MAAM,kBAAkB,SAAS;AACpF,UAAM,gBAAgB,kBAAkB,mBAAmB,mBAAmB;AAC9E,QAAI,gBAAgB,GAAG;AACrB,YAAM,IAAI,MAAM,YAAY,KAAK,6CAA6C,0CAA0C,aAAa;AAAA,IACvI;AAAA,EACF;AAAA,EACA,cAAc,cAAc;AAC1B,QAAI;AACJ,QAAI,QAAQ,CAAC;AACb,UAAM,WAAW,KAAK,SAAS;AAC/B,UAAM,oBAAoB,KAAK,MAAM;AACrC,UAAM,qBAAqB,KAAK,MAAM;AACtC,QAAI,KAAK,uBAAuB,GAAG;AACjC,WAAK,MAAM,kBAAkB,KAAK,CAAC;AAAA,IACrC;AACA,QAAI;AACJ,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK;AAAA,IACP;AACA,QAAI;AACJ,UAAM,oBAAoB,6BAA6B,YAAY,IAAI,aAAa,aAAa,KAAK,MAAM,eAAe,OAAO,KAAK,MAAM,YAAY,OAAO;AAChK,QAAI,6BAA6B,YAAY,GAAG;AAC9C,YAAM,EAAE,YAAY,QAAQ,SAAS,OAAO,OAAO,IAAI;AACvD,UAAI,KAAK,eAAe,MAAM;AAC5B,aAAK;AAAA,MACP;AACA,YAAM,SAAS,UAAU,YAAY,KAAK,WAAW;AACrD,aAAO,UAAU,MAAM,MAAM,kCAAkC,4BAA4B,KAAK,cAAc;AAC9G,oBAAc,MAAM;AAClB,cAAM,mBAAmB,KAAK,QAAQ,WAAW;AACjD,cAAM,OAAO,WAAW,EAAE,QAAQ,SAAS,OAAO,QAAQ,SAAS,KAAK,QAAQ,CAAC;AACjF,cAAM,WAAW,MAAM,QAAQ,GAAG,IAAI,MAAM,CAAC,GAAG;AAChD,YAAI,KAAK,uBAAuB,GAAG;AACjC,eAAK,sBAAsB,YAAY,kBAAkB,QAAQ;AAAA,QACnE;AACA,cAAM,aAAa,SAAS,IAAI,CAAC,YAAY;AAC3C,cAAI,QAAQ,QAAQ,MAAM;AACxB,mBAAO;AAAA,UACT;AACA,iBAAO,KAAK,yBAAyB,OAAO;AAAA,QAC9C,CAAC;AACD,YAAI,UAAU;AACZ,gBAAM,gBAAgB,KAAK,sBAAsB,YAAY,SAAS,UAAU;AAChF,kBAAQ,KAAK,2BAA2B,aAAa;AAAA,QACvD;AACA,eAAO;AAAA,MACT;AAAA,IACF,OAAO;AACL,YAAM,EAAE,YAAY,IAAI;AACxB,YAAM,WAAW,CAAC,YAAY;AAC5B,YAAI,CAAC,UAAU;AACb;AAAA,QACF;AACA,gBAAQ,QAAQ,IAAI,CAAC,YAAY,KAAK,KAAK,KAAK,MAAM,OAAO,CAAC,CAAC;AAAA,MACjE;AACA,oBAAc,MAAM;AAClB,cAAM,mBAAmB,KAAK,QAAQ,WAAW;AACjD,cAAM,KAAK,KAAK,MAAM,YAAY,KAAK,SAAS,QAAQ,CAAC;AACzD,cAAM,OAAO,MAAM,QAAQ,GAAG,IAAI,MAAM,CAAC,GAAG;AAC5C,YAAI,KAAK,uBAAuB,GAAG;AACjC,eAAK,sBAAsB,mBAAmB,kBAAkB,IAAI;AAAA,QACtE;AACA,eAAO;AAAA,MACT;AAAA,IACF;AACA,UAAM,EAAE,QAAQ,MAAM,IAAI;AAC1B,UAAM,gBAAgB,6BAA6B,YAAY,IAAI,OAAO,aAAa;AACvF,QAAI;AACJ,SAAK;AAAA,MACH,MAAM,KAAK,MAAM;AAAA,MACjB,MAAM,KAAK,MAAM;AAAA,MACjB,MAAM;AACJ,YAAI,CAAC,KAAK,IAAI,QAAQ,OAAO,KAAK,CAAC,KAAK,MAAM,WAAW;AACvD,oBAAU,YAAY;AAAA,QACxB,OAAO;AACL,0BAAgB,KAAK,SAAS,cAAc,mBAAmB,QAAQ,MAAM,YAAY,CAAC;AAC1F,cAAI,KAAK,IAAI,QAAQ,OAAO,GAAG;AAC7B,iBAAK,SAAS,iBAAiB,aAAa;AAAA,UAC9C;AACA,oBAAU,cAAc;AAAA,QAC1B;AAAA,MACF;AAAA,IACF;AACA,QAAI,UAAU;AACZ,WAAK,YAAY,mBAAmB,QAAQ,SAAS,eAAe,OAAO,KAAK;AAAA,IAClF;AACA,QAAI,KAAK,MAAM,WAAW;AACxB,WAAK,MAAM,cAAc,QAAQ,KAAK;AAAA,QACpC,MAAM;AAAA,QACN,YAAY,KAAK,MAAM,WAAW;AAAA,QAClC,oBAAoB,KAAK,MAAM;AAAA,QAC/B,cAAc,KAAK,MAAM,aAAa;AAAA,QACtC,sBAAsB,KAAK,MAAM;AAAA,QACjC,aAAa,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,QAAQ,OAAO,QAAQ,OAAO,OAAO,KAAK,QAAQ,IAAI;AAAA,QAC5F,cAAc,QAAQ,IAAI,CAAC,SAAS,KAAK,KAAK;AAAA,QAC9C,cAAc,cAAc;AAAA,QAC5B,WAAW,cAAc;AAAA,MAC3B,CAAC;AAAA,IACH;AACA,WAAO,MAAM,QAAQ,GAAG,IAAI,UAAU,QAAQ;AAAA,EAChD;AAAA,EACA,2BAA2B,SAAS;AAClC,UAAM,QAAQ,QAAQ,IAAI,CAAC,YAAY,KAAK,KAAK,KAAK,MAAM,OAAO,CAAC,CAAC;AACrE,WAAO;AAAA,EACT;AAAA,EACA,sBAAsB,YAAY,QAAQ,SAAS;AACjD,UAAM,aAAa,YAAY,UAAU;AACzC,QAAI,cAAc,MAAM;AACtB,YAAM,eAAe,WAAW,gBAAgB,CAAC;AACjD,YAAM,gBAAgB,WAAW,iBAAiB,CAAC;AACnD,UAAI;AACJ,UAAI,WAAW,eAAe;AAC5B,eAAO,MAAM,QAAQ,MAAM,GAAG,MAAM,wDAAwD;AAC5F,6BAAqB,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,QAAQ,OAAO,IAAI;AAAA,MACnE,OAAO;AACL,6BAAqB,aAAa,IAAI,CAAC,cAAc,OAAO,UAAU;AAAA,MACxE;AACA,YAAM,sBAAsB,QAAQ,OAAO,CAAC,GAAG,OAAO,cAAc,GAAG;AACvE,aAAO,mBAAmB,OAAO,mBAAmB;AAAA,IACtD;AACA,WAAO,CAAC;AAAA,EACV;AAAA,EACA,WAAW,QAAQ,OAAO,OAAO,UAAU;AACzC,QAAI,UAAU,MAAM;AAClB,YAAM,IAAI,MAAM,+CAA+C;AAAA,IACjE;AACA,YAAQ,SAAS;AACjB,eAAW,YAAY,KAAK;AAC5B,QAAI,cAAc;AAClB,QAAI,UAAU,YAAY,SAAS,OAAO,EAAE,GAAG;AAC7C,oBAAc,OAAO,IAAI,CAAC,MAAM,aAAa,CAAC,CAAC;AAAA,IACjD;AACA,UAAM,SAAS,SAAS,MAAM,aAAa,OAAO,KAAK;AACvD,UAAM,KAAK,IAAI,OAAO,OAAO,OAAO,QAAQ,KAAK,aAAa,CAAC;AAC/D,SAAK,YAAY,IAAI,QAAQ;AAC7B,QAAI,UAAU,UAAU;AACtB,YAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,YAAM,WAAW,qBAAqB,WAAW;AACjD,WAAK,MAAM,YAAY,WAAW,KAAK;AACvC,WAAK,QAAQ;AAAA,IACf;AACA,WAAO;AAAA,EACT;AAAA,EACA,qBAAqB,QAAQ,OAAO,OAAO,UAAU;AACnD,YAAQ,SAAS;AACjB,UAAM,aAAa,EAAE,QAAQ,OAAO,MAAM;AAC1C,WAAO,KAAK,yBAAyB,YAAY,QAAQ;AAAA,EAC3D;AAAA,EACA,yBAAyB,YAAY,UAAU;AAC7C,UAAM,EAAE,QAAQ,OAAO,MAAM,IAAI;AACjC,UAAM,KAAK,IAAI,OAAO,OAAO,OAAO,QAAQ,KAAK,aAAa,CAAC;AAC/D,SAAK,YAAY,IAAI,QAAQ;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,aAAa,cAAc,YAAY,MAAM,MAAM,OAAO;AACxD,WAAO,QAAQ,KAAK,eAAe,EAAE,SAAS;AAC9C,QAAI,SAAS,QAAQ,UAAU,aAAa,OAAO;AACjD,qBAAe,aAAa,KAAK,KAAK;AAAA,IACxC;AACA,UAAM,IAAI,IAAI,SAAS,cAAc,WAAW,MAAM,KAAK,aAAa,CAAC;AACzE,QAAI,KAAK,MAAM,oBAAoB,EAAE,SAAS,MAAM;AAClD,YAAM,IAAI,MAAM,sBAAsB,EAAE,6BAA6B;AAAA,IACvE;AACA,SAAK,MAAM,oBAAoB,EAAE,QAAQ;AACzC,SAAK,OAAO,GAAG,KAAK,OAAO;AAC3B,WAAO;AAAA,EACT;AAAA,EACA,YAAY,GAAG,UAAU;AACvB,SAAK,MAAM;AACX,QAAI,EAAE,UAAU,UAAU;AACxB,WAAK,MAAM;AAAA,IACb;AACA,QAAI,QAAQ;AACZ,QAAI,EAAE,UAAU,eAAe,EAAE,UAAU,UAAU;AACnD,cAAQ,EAAE,OAAO,gBAAgB,EAAE,KAAK;AAAA,IAC1C;AACA,SAAK,MAAM,YAAY;AACvB,QAAI,CAAC,KAAK,MAAM,WAAW,IAAI,EAAE,MAAM,GAAG;AACxC,WAAK,MAAM;AACX,WAAK,MAAM,WAAW,IAAI,EAAE,QAAQ;AAAA,QAClC,SAAS,YAAY,KAAK;AAAA,QAC1B,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,QACT;AAAA,MACF,CAAC;AAAA,IACH;AACA,QAAI,EAAE,aAAa,WAAW;AAC5B,WAAK,MAAM,CAAC;AAAA,IACd;AAAA,EACF;AAAA,EACA,OAAO,GAAG,UAAU;AAClB,SAAK,YAAY,GAAG,QAAQ;AAC5B,SAAK,QAAQ,OAAO,EAAE,MAAM;AAAA,EAC9B;AAAA,EACA,aAAa,QAAQ,UAAU;AAC7B,QAAI,KAAK,MAAM,WAAW,IAAI,MAAM,KAAK,KAAK,MAAM,WAAW,IAAI,MAAM,EAAE,YAAY,UAAU;AAC/F,WAAK,MAAM,WAAW,OAAO,MAAM;AACnC,WAAK,MAAM;AAAA,IACb;AAAA,EACF;AAAA,EACA,cAAc,GAAG;AACf,QAAI,CAAC,KAAK,MAAM,WAAW,IAAI,EAAE,MAAM,GAAG;AACxC;AAAA,IACF;AACA,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,EAAE,MAAM;AAC/C,SAAK,MAAM;AACX,QAAI,EAAE,UAAU,UAAU;AACxB,WAAK,MAAM;AACX,WAAK,MAAM,YAAY,KAAK;AAAA,IAC9B;AACA,QAAI,EAAE,UAAU,eAAe,EAAE,UAAU,UAAU;AACnD,YAAM,QAAQ,EAAE,OAAO,gBAAgB,EAAE,KAAK;AAC9C,WAAK,MAAM,YAAY;AAAA,IACzB;AACA,QAAI,KAAK,QAAQ,YAAY,EAAE,MAAM,GAAG;AACtC,WAAK,aAAa,EAAE,QAAQ,KAAK,OAAO;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,mBAAmB;AACjB,eAAW,WAAW,KAAK,MAAM,qBAAqB;AACpD,YAAM,IAAI,KAAK,MAAM,oBAAoB;AACzC,WAAK,gBAAgB,CAAC;AAAA,IACxB;AAAA,EACF;AAAA,EACA,gBAAgB,GAAG;AACjB,SAAK,cAAc,CAAC;AACpB,QAAI,KAAK,MAAM,oBAAoB,EAAE,SAAS,MAAM;AAClD,aAAO,KAAK,MAAM,oBAAoB,EAAE;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,SAAS;AACP,UAAM,OAAO,KAAK,QAAQ,OAAO;AACjC,SAAK,aAAa,KAAK,MAAM;AAC7B,SAAK,iBAAiB,KAAK,MAAM;AACjC,SAAK,WAAW,KAAK,MAAM;AAC3B,QAAI,KAAK,MAAM,mBAAmB,GAAG;AACnC,WAAK,aAAa;AAClB,UAAI,KAAK,WAAW,MAAM;AACxB,aAAK,UAAU,CAAC;AAAA,MAClB;AACA,WAAK,QAAQ,KAAK,uEAAuE;AAAA,IAC3F;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ,OAAO;AACnB,SAAK,MAAM,YAAY;AACvB,UAAM,aAAa,KAAK,MAAM;AAC9B,UAAM,kBAAkB,KAAK,MAAM;AACnC,SAAK,MAAM,cAAc,UAAU,CAAC;AACpC,SAAK,MAAM,cAAc,SAAS,MAAM,MAAM;AAC9C,SAAK,MAAM,YAAY;AACvB,SAAK,MAAM,cAAc,YAAY,KAAK,IAAI,GAAG,KAAK,MAAM,cAAc,QAAQ,IAAI,CAAC,MAAM,EAAE,kBAAkB,CAAC;AAClH,SAAK,MAAM,cAAc,WAAW,KAAK,MAAM,WAAW;AAC1D,SAAK,MAAM,cAAc,aAAa,KAAK,MAAM,aAAa;AAC9D,eAAW,UAAU,KAAK,MAAM,cAAc,SAAS;AACrD,aAAO,eAAe,MAAM,OAAO;AACnC,aAAO,YAAY,MAAM,OAAO;AAAA,IAClC;AACA,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,WAAW;AACT,WAAO,KAAK,MAAM,gBAAgB,KAAK,KAAK,MAAM,gBAAgB;AAAA,EACpE;AAAA,EACA,YAAY,YAAY,QAAQ,SAAS,eAAe,OAAO,OAAO;AACpE,UAAM,WAAW,EAAE,IAAI,KAAK,MAAM,kBAAkB,YAAY,QAAQ,SAAS,MAAM;AACvF,UAAM,aAAa,YAAY,UAAU;AACzC,QAAI,cAAc,MAAM;AACtB,sBAAgB,WAAW;AAAA,IAC7B;AACA,QAAI,iBAAiB,MAAM;AACzB,eAAS,WAAW,CAAC,QAAQ;AAC3B,cAAM,IAAI,IAAI,CAAC,IAAI,OAAO;AACxB,cAAI,MAAM,MAAM;AACd,kBAAM,SAAS,QAAQ;AACvB,kBAAM,OAAO,oBAAoB,OAAO,MAAM,OAAO,KAAK;AAC1D,mBAAO,KAAK,WAAW,MAAM,OAAO,OAAO,OAAO,KAAK;AAAA,UACzD;AACA,iBAAO;AAAA,QACT,CAAC;AACD,eAAO,cAAc,IAAI,SAAS,IAAI,MAAM,IAAI,IAAI,OAAO,KAAK;AAAA,MAClE;AAAA,IACF;AACA,SAAK,MAAM,WAAW,KAAK,QAAQ;AAAA,EACrC;AAAA,EACA,KAAK,QAAQ;AACX,WAAO,OAAO;AACd,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,QAAI,KAAK,MAAM,kBAAkB,GAAG;AAClC,WAAK,MAAM,aAAa,CAAC;AAAA,IAC3B;AACA,SAAK,MAAM;AAAA,EACb;AAAA,EACA,UAAU;AACR,SAAK,MAAM;AAAA,EACb;AAAA,EACA,WAAW,MAAM;AACf,UAAM,YAAY;AAAA,MAChB,OAAO,CAAC;AAAA,MACR,MAAM;AAAA,MACN,IAAI,KAAK,MAAM;AAAA,IACjB;AACA,QAAI,MAAM;AACR,gBAAU,OAAO;AAAA,IACnB;AACA,SAAK,MAAM,WAAW,KAAK,SAAS;AACpC,SAAK,MAAM,cAAc;AAAA,EAC3B;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,yBAAyB,sBAAsB,MAAM;AAC3D,UAAM,4BAA4B,IAAI,IAAI,uBAAuB,IAAI,CAAC,OAAO,GAAG,EAAE,CAAC;AACnF,aAAS,KAAK,GAAG,KAAK,KAAK,MAAM,YAAY,MAAM,QAAQ,MAAM;AAC/D,YAAM,UAAU,KAAK,MAAM,YAAY,MAAM;AAC7C,UAAI,CAAC,QAAQ,QAAQ,CAAC,0BAA0B,IAAI,QAAQ,EAAE,GAAG;AAC/D,gBAAQ,QAAQ;AAAA,MAClB;AAAA,IACF;AACA,UAAM,WAAW,KAAK,MAAM,WAAW,IAAI;AAC3C,SAAK,MAAM,cAAc,KAAK,MAAM,WAAW,WAAW,IAAI,OAAO,KAAK,MAAM,WAAW,KAAK,MAAM,WAAW,SAAS;AAC1H,2BAAuB,QAAQ,CAAC,YAAY;AAC1C,UAAI,CAAC,QAAQ,QAAQ,QAAQ,YAAY,SAAS,IAAI;AACpD,aAAK,MAAM,OAAO;AAAA,MACpB;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,UAAU,GAAG,IAAI,IAAI,mBAAmB,OAAO;AAC7C,WAAO,GAAG,SAAS,GAAG,MAAM,2CAA2C;AACvE,QAAI,MAAM,QAAQ,GAAG,UAAU,WAAW;AACxC,YAAM,IAAI,MAAM,0CAA0C,GAAG,QAAQ;AAAA,IACvE;AACA,UAAM,IAAI,KAAK,UAAU,MAAM,KAAK,UAAU,GAAG,MAAM,KAAK,QAAQ,GAAG,MAAM,KAAK,KAAK,WAAW,CAAC,CAAC;AACpG,WAAO,aAAa,QAAQ,MAAM,gDAAgD;AAClF,UAAM,eAAe,qBAAqB,KAAK,MAAM,YAAY,IAAI,CAAC;AACtE,QAAI,CAAC,oBAAoB,aAAa,WAAW,KAAK,GAAG,SAAS,GAAG;AACnE,YAAM,IAAI,MAAM,qIAAqI;AAAA,IACvJ;AACA,WAAO,KAAK,KAAK,YAAY,MAAM;AACjC,YAAM,yBAAyB,CAAC;AAChC,6BAAuB,EAAE,MAAM,MAAM,OAAO,KAAK,EAAE,KAAK,IAAI;AAC5D;AAAA,QACE;AAAA,QACA;AAAA,QACA,CAAC,OAAO,KAAK,KAAK,EAAE;AAAA,QACpB;AAAA,MACF;AACA,YAAM,SAAS,GAAG,IAAI,CAAC,MAAM,uBAAuB,EAAE,GAAG;AACzD,UAAI,KAAK,MAAM,kBAAkB,GAAG;AAClC,aAAK,MAAM,WAAW,QAAQ,CAACoB,UAAS;AACtC,qBAAW,WAAWA,MAAK,OAAO;AAChC,oBAAQ,QAAQ;AAAA,UAClB;AAAA,QACF,CAAC;AACD,aAAK,MAAM,aAAa;AAAA,MAC1B;AACA,aAAO,EAAE,OAAO,GAAG,OAAO,OAAO;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,WAAW,GAAG;AACZ,WAAO,WAAW,CAAC,GAAG,MAAM,mDAAmD;AAC/E,WAAO,IAAI,WAAW;AACpB,aAAO,OAAO,MAAM,CAAC,OAAO,cAAc,MAAM,GAAG,MAAM,kEAAkE;AAC3H,UAAI;AACJ,YAAM,WAAW,CAAC;AAClB,aAAO,QAAQ,CAAC,QAAQ,OAAO;AAC7B,iBAAS,MAAM;AAAA,MACjB,CAAC;AACD,YAAM,cAAc,CAAC,GAAG,SAAS;AAC/B,cAAM,EAAE,GAAG,CAAC,GAAG,QAAQ,IAAI,CAAC;AAC5B,eAAO,IAAI,iBAAiB,QAAQ,MAAM,4FAA4F;AACtI,eAAO,WAAW,IAAI,QAAQ,GAAG,MAAM,kGAAkG;AACzI,eAAO,IAAI;AAAA,MACb;AACA,YAAM,gBAAgB,CAAC,IAAI,UAAU;AACnC,cAAM,UAAU,IAAI,SAAS,IAAI,KAAK;AACtC,cAAM,SAAS,MAAM,QAAQ,OAAO,IAAI,UAAU,CAAC,OAAO;AAC1D,eAAO,OAAO,WAAW,OAAO,QAAQ,MAAM,qKAAqK;AACnN,eAAO,OAAO,MAAM,CAAC,OAAO,cAAc,MAAM,GAAG,MAAM,sIAAsI;AAC/L,cAAM,UAAU,CAAC;AACjB,eAAO,QAAQ,CAAC,OAAO,OAAO;AAC5B,kBAAQ,MAAM,MAAM;AAAA,QACtB,CAAC;AACD,eAAO;AAAA,MACT;AACA,aAAO,KAAK,cAAc;AAAA,QACxB;AAAA,QACA;AAAA,QACA,QAAQ;AAAA,MACV,CAAC;AAAA,IACH;AAAA,EACF;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,WAAO,KAAK,QAAQ,SAAS,MAAM;AAAA,EACrC;AAAA,EACA,KAAK,QAAQ;AACX,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,WAAO,KAAK,QAAQ,KAAK,MAAM;AAAA,EACjC;AAAA,EACA,UAAU,QAAQX,UAAS;AACzB,UAAM,OAAO,KAAK,MAAM,WAAW,IAAI,MAAM;AAC7C,WAAO,KAAK,QAAQ,UAAU,QAAQA,QAAO;AAAA,EAC/C;AAAA,EACA,MAAM,KAAK,OAAO;AAChB,UAAM,QAAQU,KAAI;AAClB,UAAM,aAAa,MAAM,KAAK,QAAQ,KAAK,KAAK;AAChD,eAAW,SAASA,KAAI,IAAI;AAC5B,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ;AACZ,QAAI,KAAK,MAAM,eAAe,MAAM;AAClC,aAAO,UAAU,KAAK,MAAM,YAAY;AACxC,WAAK,MAAM,YAAY,MAAM,KAAK,MAAM;AAAA,IAC1C;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,sBAAsB;AACxB,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,QAAQ;AACN,SAAK;AACL,SAAK,MAAM,QAAQ;AACnB,SAAK,IAAI,MAAM;AACf,SAAK,QAAQ,IAAI,YAAY;AAC7B,eAAW,eAAe,KAAK,UAAU;AACvC,WAAK,yBAAyB,WAAW;AACzC,WAAK,SAAS,aAAa,QAAQ;AACnC,aAAO,KAAK,SAAS;AAAA,IACvB;AACA,SAAK,cAAc;AACnB,SAAK,kBAAkB;AACvB,SAAK,qBAAqB;AAAA,EAC5B;AACF;AACA,OAAO,eAAe;AACtB,OAAO,iBAAiB;AACxB,SAAS,KAAK,OAAO;AACnB,QAAM,SAAS,mBAAmB,cAAc,KAAK,GAAG,SAAS;AACjE,SAAO,OAAO,WAAW,QAAQ,OAAO,SAAS;AACnD;AACA,SAAS,kBAAkB;AACzB,QAAM,KAAK,mBAAmB;AAC9B,MAAI,GAAG,aAAa,MAAM;AACxB,UAAM,cAAc,IAAI,YAAY,EAAE;AACtC,OAAG,YAAY,IAAI,OAAO,WAAW;AAAA,EACvC;AACA,uBAAqB,GAAG,UAAU,GAAG;AACrC,mBAAiB,MAAM,GAAG,SAAS;AACnC,SAAO,GAAG;AACZ;AACA,IAAI,SAAS,gBAAgB;AAC7B,SAAS,IAAI,GAAG,GAAG;AACjB,QAAM,SAAS,EAAE,GAAG,EAAE;AACtB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AAGA,IAAI,sBAAsB,CAAC;AAC3BnB,UAAS,qBAAqB;AAAA,EAC5B,WAAW,MAAM;AAAA,EACjB,UAAU,MAAM;AAAA,EAChB,cAAc,MAAM;AACtB,CAAC;AACD,SAAS,sBAAsB;AAC7B,SAAO,OAAO,cAAc,eAAe,aAAa;AAC1D;AACA,IAAI;AACJ,SAAS,aAAa,OAAO;AAC3B,sBAAoB;AACtB;AACA,SAAS,SAAS,KAAK;AACrB,MAAI,sBAAsB,QAAQ;AAChC,WAAO;AAAA,EACT;AACA,MAAI,OAAO,oBAAoB,GAAG;AAChC,QAAI,CAAC,KAAK;AACR,YAAM;AAAA,IACR;AACA,QAAI,IAAI,YAAY,eAAe;AACjC,aAAO;AAAA,IACT;AACA,UAAM,IAAI,IAAI,aAAa,IAAI,WAAW,OAAO,WAAW,cAAc,OAAO,QAAQ;AACzF,QAAI,CAAC,GAAG;AACN,YAAM,SAAS;AACf,aAAO,OAAO,iBAAiB,OAAO,cAAc;AAAA,IACtD;AACA,WAAO,2TAA2T,KAAK,CAAC,KAAK,0kDAA0kD,KAAK,EAAE,OAAO,GAAG,CAAC,CAAC;AAAA,EAC56D;AACA,SAAO;AACT;AACA,SAAS,YAAY;AACnB,SAAO,OAAO,WAAW,eAAe,OAAO,YAAY,QAAQ,OAAO,sBAAsB;AAClG;AAGA,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,SAAS,MAAM,OAAO,CAAC,eAAe;AACtD,MAAI,YAAY;AACd,YAAQ,KAAK,6IAA6I;AAAA,EAC5J;AACF,CAAC;AACD,KAAK,aAAa,cAAc,MAAM,UAAU,CAAC;AACjD,KAAK,aAAa,WAAW,MAAM,OAAO,YAAY,eAAe,OAAO,QAAQ,aAAa,eAAe,OAAO,QAAQ,SAAS,SAAS,WAAW;AAC5J,KAAK,aAAa,aAAa,MAAM,OAAO,cAAc,eAAe,aAAa,QAAQ,UAAU,aAAa,QAAQ,SAAS,KAAK,UAAU,SAAS,KAAK,aAAa,KAAK,UAAU,MAAM,CAAC;AACtM,KAAK,aAAa,QAAQ,MAAM,KAAK;AACrC,KAAK,aAAa,sCAAsC,MAAM,KAAK,QAAQ,OAAO,CAAC;AACnF,KAAK,aAAa,gCAAgC,MAAM,IAAI;AAC5D,KAAK,aAAa,WAAW,MAAM,KAAK;AACxC,KAAK,aAAa,gCAAgC,MAAM,IAAI;AAC5D,KAAK,aAAa,uBAAuB,MAAM,KAAK;AACpD,KAAK,aAAa,uBAAuB,MAAM,KAAK;AACpD,KAAK,aAAa,yCAAyC,MAAM,KAAK;AAGtE,SAAS,WAAW,KAAK,OAAO;AAC9B,MAAI,YAAY;AAChB,MAAI,aAAa,GAAG,GAAG;AACrB,WAAO,UAAU,WAAW,CAAC,IAAI,CAAC,IAAI,MAAM;AAAA,EAC9C;AACA,MAAI,CAAC,MAAM,QAAQ,GAAG,GAAG;AACvB,WAAO,CAAC;AAAA,EACV;AACA,QAAM,QAAQ,CAAC;AACf,SAAO,MAAM,QAAQ,SAAS,KAAK,aAAa,SAAS,KAAK,UAAU,UAAU;AAChF,UAAM,KAAK,UAAU,MAAM;AAC3B,gBAAY,UAAU;AAAA,EACxB;AACA,MAAI,MAAM,QAAQ,GAAG,KAAK,IAAI,EAAE,QAAQ,oCAAoC,GAAG;AAC7E,+BAA2B,KAAK,OAAO,CAAC,CAAC;AAAA,EAC3C;AACA,SAAO;AACT;AACA,SAAS,2BAA2B,KAAK,OAAO,SAAS;AACvD,YAAU,WAAW,CAAC;AACtB,MAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,CAAC,aAAa,GAAG,GAAG;AAC7C,WAAO,MAAM,WAAW,GAAG,MAAM,eAAe,QAAQ,KAAK,IAAI,2DAA2D,MAAM,aAAa;AAC/I;AAAA,EACF;AACA,SAAO,MAAM,SAAS,GAAG,MAAM,eAAe,QAAQ,KAAK,IAAI,gDAAgD,IAAI,iBAAiB;AACpI,SAAO,IAAI,WAAW,MAAM,IAAI,MAAM,eAAe,QAAQ,KAAK,IAAI,kBAAkB,MAAM,wBAAwB,IAAI,iBAAiB;AAC3I,QAAM,WAAW,MAAM,MAAM,CAAC;AAC9B,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,+BAA2B,IAAI,KAAK,UAAU,QAAQ,OAAO,EAAE,CAAC;AAAA,EAClE;AACF;AACA,SAAS,YAAY,eAAe,aAAa,SAAS,cAAc;AACtE,MAAI,kBAAkB,qBAAqB;AACzC;AAAA,EACF;AACA,MAAI,iBAAiB,MAAM;AACzB,UAAM,IAAI,MAAM,gCAAgC;AAAA,EAClD;AACA,MAAI,kBAAkB,aAAa,kBAAkB,eAAe,kBAAkB,aAAa,gBAAgB,UAAU;AAC3H,UAAM,IAAI,MAAM,aAAa,uBAAuB,yBAAyB,iCAAiC,oBAAoB;AAAA,EACpI;AACF;AACA,SAAS,gBAAgB,GAAG,SAAS,cAAc,eAAe,WAAW;AAC3E,MAAI,aAAa,QAAQ;AACvB,gBAAY,cAAc,EAAE,OAAO,SAAS,YAAY;AACxD,WAAO;AAAA,EACT;AACA,MAAI,gBAAgB,WAAW,CAAC;AAChC,MAAI,kBAAkB,YAAY,CAAC,QAAQ,SAAS,SAAS,EAAE,QAAQ,YAAY,KAAK,GAAG;AACzF,oBAAgB;AAAA,EAClB;AACA,cAAY,cAAc,eAAe,SAAS,YAAY;AAC9D,MAAI,KAAK,QAAQ,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,QAAQ,CAAC,KAAK,OAAO,MAAM,YAAY,OAAO,MAAM,aAAa,OAAO,MAAM,UAAU;AAClI,UAAM,OAAO,KAAK,OAAO,SAAS,EAAE,YAAY;AAChD,UAAM,IAAI,MAAM,aAAa,uBAAuB,0DAA0D,OAAO;AAAA,EACvH;AACA,QAAM,gBAAgB,WAAW,GAAG,aAAa;AACjD,MAAI,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,QAAQ,CAAC,GAAG;AACzC,QAAI,CAAC,CAAC;AAAA,EACR;AACA,QAAM,iBAAiB;AACvB,QAAM,SAAS,kBAAkB,WAAW,aAAa,GAAG,aAAa,IAAI,QAAQ,GAAG,CAAC,GAAG,cAAc;AAC1G,SAAO,OAAO,WAAW,QAAQ,eAAe,aAAa;AAC/D;AACA,SAAS,qBAAqB,KAAK,SAAS,cAAc,eAAe,WAAW;AAClF,MAAI,CAAC,MAAM,QAAQ,GAAG,GAAG;AACvB,UAAM,IAAI,MAAM,YAAY,qBAAqB,yDAAyD;AAAA,EAC5G;AACA,QAAM,UAAU;AAChB,SAAO,QAAQ,IAAI,CAAC,IAAI,OAAO,gBAAgB,IAAI,GAAG,WAAW,OAAO,cAAc,YAAY,CAAC;AACrG;AAGA,IAAI,kBAAkB;AACtB,SAAS,GAAG,GAAG;AACb,QAAM,OAAO,OAAO,KAAK,CAAC;AAC1B,MAAI,KAAK,WAAW,GAAG;AACrB,UAAM,IAAI,MAAM,yGAAyG,KAAK,cAAc;AAAA,EAC9I;AACA,MAAI,SAAS,KAAK;AAClB,QAAM,KAAK,EAAE;AACb,MAAI,OAAO,SAAS,GAAG,GAAG;AACxB,aAAS,OAAO,UAAU,GAAG,OAAO,SAAS,CAAC;AAAA,EAChD;AACA,WAAS,SAAS;AAClB,QAAM,KAAK,IAAI,SAAS;AACtB,WAAO,WAAW,MAAM;AACxB,QAAI;AACF,YAAM,SAAS,GAAG,GAAG,IAAI;AACzB,UAAI,UAAU,MAAM,GAAG;AACrB,gBAAQ,MAAM,yCAAyC;AAAA,MACzD;AACA,aAAO,SAAS,MAAM;AACtB,aAAO;AAAA,IACT,SAAS,IAAP;AACA,aAAO,SAAS,IAAI;AACpB,YAAM;AAAA,IACR;AAAA,EACF;AACA,SAAO,eAAe,IAAI,QAAQ,EAAE,OAAO,QAAQ,cAAc,KAAK,CAAC;AACvE,SAAO;AACT;AAGA,SAAS,SAAS,OAAO,OAAO;AAC9B,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,SAAS;AACtD,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,SAAS;AACtD,oBAAkB,MAAM,OAAO,MAAM,OAAO,yBAAyB,MAAM,aAAa,MAAM,4CAA4C;AAC1I,QAAM,SAAS,EAAE,MAAM,OAAO,MAAM,MAAM;AAC1C,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,QAAQ,OAAO,eAAe,OAAO;AACvD,MAAI,SAAS,MAAM;AACjB,YAAQ,WAAW,MAAM;AAAA,EAC3B;AACA,MAAI,UAAU,aAAa;AACzB,UAAM,IAAI,MAAM,kFAAkF;AAAA,EACpG;AACA,MAAI,CAAC,aAAa,MAAM,KAAK,CAAC,MAAM,QAAQ,MAAM,KAAK,OAAO,WAAW,YAAY,OAAO,WAAW,aAAa,OAAO,WAAW,UAAU;AAC9I,UAAM,IAAI,MAAM,0HAA0H;AAAA,EAC5I;AACA,MAAI,SAAS,MAAM;AACjB,uCAAmC,KAAK;AACxC,UAAM,eAAe,cAAc,KAAK;AACxC,UAAM,eAAe,cAAc,aAAa;AAChD,WAAO,iBAAiB,cAAc,MAAM,iCAAiC,kCAAkC,+BAA+B,cAAc;AAC5J,aAAS,KAAK,GAAG,KAAK,cAAc,QAAQ,EAAE,IAAI;AAChD,YAAM,WAAW,cAAc;AAC/B,YAAM,oBAAoB,OAAO,cAAc,SAAS,IAAI,aAAa,cAAc,MAAM,MAAM,EAAE,CAAC,IAAI;AAC1G,aAAO,cAAc,QAAQ,MAAM,OAAO,CAAC,mBAAmB,MAAM,gDAAgD,qDAAqD,UAAU;AAAA,IACrL;AAAA,EACF;AACA,MAAI,CAAC,aAAa,MAAM,KAAK,CAAC,MAAM,QAAQ,MAAM,GAAG;AACnD,aAAS,CAAC,MAAM;AAAA,EAClB;AACA,UAAQ,SAAS;AACjB,WAAS,UAAU,WAAW,aAAa,QAAQ,KAAK,IAAI,QAAQ,QAAQ,CAAC,GAAG,IAAI;AACpF,SAAO,OAAO,WAAW,QAAQ,OAAO,KAAK;AAC/C;AAGA,SAAS,OAAO,QAAQ,OAAO,OAAO;AACpC,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,IAAI,uBAAuB;AAAA,EACzB,WAAW;AAAA,EACX,WAAW;AAAA,EACX,SAAS;AAAA,EACT,UAAU;AAAA,EACV,SAAS;AAAA,EACT,QAAQ;AAAA,EACR,aAAa;AACf;AAGA,IAAI,0BAA0B;AAC9B,eAAe,cAAc,SAAS,OAAO;AAC3C,QAAM,QAAQ,CAAC;AACf,QAAM,eAAe,CAAC;AACtB,QAAM,QAAQ,MAAM,QAAQ,OAAO,IAAI,QAAQ,IAAI,CAAC,YAAY,QAAQ,IAAI,IAAI,OAAO,KAAK,OAAO;AACnG,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,UAAM,OAAO,MAAM;AACnB,UAAM,KAAK,MAAM,QAAQ,OAAO,IAAI,QAAQ,IAAI,SAAS,QAAQ;AACjE,QAAI,GAAG,UAAU,aAAa,GAAG,UAAU,WAAW,GAAG,UAAU,UAAU,GAAG,UAAU,YAAY,GAAG,UAAU,aAAa;AAC9H,YAAM,IAAI,MAAM,gCAAgC,UAAU,GAAG,OAAO;AAAA,IACtE;AACA,UAAM,OAAO,EAAE,MAAM,OAAO,GAAG,OAAO,OAAO,GAAG,MAAM;AACtD,QAAI,GAAG,UAAU,UAAU;AACzB,YAAM,YAAY,IAAI,QAAQ,OAAO,YAAY;AAC/C,cAAM,OAAO,MAAM,GAAG,MAAM;AAC5B,cAAM,gBAAgB,KAAK,OAAO,CAAC,IAAI,MAAM,KAAK,EAAE,QAAQ,CAAC,IAAI,0BAA0B,KAAK;AAChG,cAAM,QAAQ,IAAI,WAAW,aAAa;AAC1C,YAAI,SAAS;AACb,iBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,gBAAM,MAAM,KAAK;AACjB,gBAAM,gBAAgB,IAAI,WAAW,IAAI,YAAY,CAAC,IAAI,MAAM,CAAC,EAAE,MAAM;AACzE,gBAAM,IAAI,eAAe,MAAM;AAC/B,oBAAU;AACV,gBAAM,IAAI,KAAK,MAAM;AACrB,oBAAU,IAAI;AAAA,QAChB;AACA,gBAAQ,KAAK;AAAA,MACf,CAAC;AACD,mBAAa,KAAK,SAAS;AAAA,IAC7B,OAAO;AACL,mBAAa,KAAK,GAAG,KAAK,CAAC;AAAA,IAC7B;AACA,QAAI,SAAS,MAAM;AACjB,WAAK,QAAQ;AAAA,IACf;AACA,UAAM,KAAK,IAAI;AAAA,EACjB;AACA,QAAM,eAAe,MAAM,QAAQ,IAAI,YAAY;AACnD,SAAO,EAAE,MAAM,uBAAuB,YAAY,GAAG,MAAM;AAC7D;AACA,SAAS,cAAc,SAAS,OAAO;AACrC,QAAM,MAAM,CAAC;AACb,MAAI;AACJ,MAAI,SAAS;AACb,aAAW,QAAQ,OAAO;AACxB,UAAM,OAAO,KAAK;AAClB,UAAM,QAAQ,KAAK;AACnB,UAAM,QAAQ,KAAK;AACnB,UAAMG,QAAO,cAAc,KAAK;AAChC,QAAI;AACJ,QAAI,kBAAkB,MAAM;AAC1B,YAAM,eAAe,KAAK;AAC1B,UAAI,aAAa,UAAU,WAAW,aAAa,UAAU,UAAU;AACrE,YAAI,EAAE,SAAS,gBAAgB,WAAW,eAAe;AACvD,gBAAM,IAAI,MAAM,UAAU,KAAK,0BAA0B,aAAa,0DAA0D;AAAA,QAClI;AAAA,MACF,WAAW,aAAa,UAAU,WAAW;AAC3C,YAAI,UAAU,WAAW;AACvB,gBAAM,IAAI,MAAM,UAAU,KAAK,0BAA0B,aAAa,yDAAyD,QAAQ;AAAA,QACzI;AAAA,MACF,OAAO;AACL,cAAM,IAAI,MAAM,UAAU,KAAK,uCAAuC,aAAa,6EAA6E;AAAA,MAClK;AACA,YAAM,yBAAyB,qBAAqB,aAAa;AACjE,YAAM,aAAa,QAAQ,MAAM,QAAQ,SAASA,QAAO,sBAAsB;AAC/E,YAAM,iBAAiB,aAAa,UAAU,UAAU,IAAI,WAAW,UAAU,IAAI,IAAI,YAAY,UAAU;AAC/G,UAAI,UAAU,WAAW;AACvB,YAAI,aAAa,UAAU,WAAW,aAAa,UAAU,UAAU;AACrE,mBAAS,IAAI,aAAa,eAAe,MAAM;AAC/C,mBAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,kBAAM,IAAI,eAAe;AACzB,mBAAO,MAAM,IAAI,aAAa,QAAQ,aAAa;AAAA,UACrD;AAAA,QACF,WAAW,aAAa,UAAU,WAAW;AAC3C,cAAI,kBAAkB,QAAQ;AAC5B,4BAAgB,kBAAkB;AAAA,UACpC;AACA,mBAAS,cAAc,cAAc;AAAA,QACvC,OAAO;AACL,gBAAM,IAAI,MAAM,iCAAiC,aAAa,gCAAgC;AAAA,QAChG;AAAA,MACF,WAAW,UAAU,SAAS;AAC5B,YAAI,aAAa,UAAU,WAAW,aAAa,UAAU,UAAU;AACrE,gBAAM,IAAI,MAAM,iCAAiC,aAAa,8BAA8B;AAAA,QAC9F;AACA,iBAAS,IAAI,WAAW,eAAe,MAAM;AAC7C,iBAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,gBAAM,IAAI,eAAe;AACzB,iBAAO,MAAM,KAAK,MAAM,IAAI,aAAa,QAAQ,aAAa,GAAG;AAAA,QACnE;AAAA,MACF,OAAO;AACL,cAAM,IAAI,MAAM,gCAAgC,UAAU,OAAO;AAAA,MACnE;AACA,gBAAUA,QAAO;AAAA,IACnB,WAAW,UAAU,UAAU;AAC7B,YAAMmB,SAAQ,cAAc,KAAK,KAAK;AACtC,eAAS,CAAC;AACV,eAAS,KAAK,GAAG,KAAKA,QAAO,MAAM;AACjC,cAAM,aAAa,IAAI,YAAY,QAAQ,MAAM,QAAQ,SAAS,uBAAuB,CAAC,EAAE;AAC5F,kBAAU;AACV,cAAM,QAAQ,IAAI,WAAW,QAAQ,MAAM,QAAQ,SAAS,UAAU,CAAC;AACvE,eAAO,KAAK,KAAK;AACjB,kBAAU;AAAA,MACZ;AAAA,IACF,OAAO;AACL,YAAM,cAAc,qBAAqB;AACzC,YAAM,aAAa,QAAQ,MAAM,QAAQ,SAASnB,QAAO,WAAW;AACpE,UAAI,UAAU,WAAW;AACvB,iBAAS,IAAI,aAAa,UAAU;AAAA,MACtC,WAAW,UAAU,SAAS;AAC5B,iBAAS,IAAI,WAAW,UAAU;AAAA,MACpC,WAAW,UAAU,QAAQ;AAC3B,iBAAS,IAAI,WAAW,UAAU;AAAA,MACpC,WAAW,UAAU,aAAa;AAChC,iBAAS,IAAI,aAAa,UAAU;AACpC,cAAM,QAAQ,IAAI,aAAa,OAAO,SAAS,CAAC;AAChD,cAAM,SAAS,IAAI,aAAa,OAAO,SAAS,CAAC;AACjD,iBAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,gBAAM,MAAM,OAAO,KAAK;AACxB,iBAAO,MAAM,OAAO,KAAK,IAAI;AAAA,QAC/B;AACA,cAAM,aAAa,OAAO,OAAO,OAAO,SAAS;AACjD,cAAM,cAAc,OAAO,QAAQ,OAAO,SAAS;AACnD,YAAI,QAAQ,QAAQ,YAAY,WAAW;AAC3C,mBAAW,QAAQ;AACnB,oBAAY,QAAQ;AAAA,MACtB,OAAO;AACL,cAAM,IAAI,MAAM,gCAAgC,UAAU,OAAO;AAAA,MACnE;AACA,gBAAUA,QAAO;AAAA,IACnB;AACA,QAAI,UAAU,aAAa;AACzB,UAAI,QAAQ,OAAO,QAAQ,OAAO,KAAK;AAAA,IACzC;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,uBAAuB,IAAI;AAClC,MAAI,OAAO,MAAM;AACf,UAAM,IAAI,MAAM,wBAAwB,KAAK,UAAU,EAAE,GAAG;AAAA,EAC9D;AACA,MAAI,kBAAkB;AACtB,QAAM,eAAe,CAAC;AACtB,KAAG,QAAQ,CAAC,MAAM;AAChB,uBAAmB,EAAE;AACrB,iBAAa,KAAK,EAAE,eAAe,EAAE,OAAO,aAAa,IAAI,IAAI,EAAE,YAAY,CAAC,CAAC;AACjF,QAAI,EAAE,aAAa,gBAAgB,aAAa,cAAc,aAAa,aAAa;AACtF,YAAM,IAAI,MAAM,mCAAmC,EAAE,YAAY,MAAM;AAAA,IACzE;AAAA,EACF,CAAC;AACD,QAAM,IAAI,IAAI,WAAW,eAAe;AACxC,MAAI,SAAS;AACb,eAAa,QAAQ,CAAC,MAAM;AAC1B,MAAE,IAAI,IAAI,WAAW,EAAE,MAAM,GAAG,MAAM;AACtC,cAAU,EAAE;AAAA,EACd,CAAC;AACD,SAAO,EAAE;AACX;AACA,IAAI,gBAAgB,OAAO,WAAW,gBAAgB,OAAO,SAAS,eAAe,OAAO,SAAS,eAAe,OAAO,SAAS;AACpI,SAAS,iBAAiB,KAAK;AAC7B,MAAI,eAAe;AACjB,WAAO,OAAO,WAAW,GAAG;AAAA,EAC9B;AACA,SAAO,IAAI,KAAK,CAAC,GAAG,CAAC,EAAE;AACzB;AACA,SAAS,0BAA0B,SAAS;AAC1C,MAAI,eAAe;AACjB,WAAO,OAAO,KAAK,OAAO,EAAE,SAAS,QAAQ;AAAA,EAC/C;AACA,QAAM,MAAM,IAAI,WAAW,OAAO;AAClC,MAAI,KAAK;AACT,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,KAAK,IAAI,MAAM;AAC/C,UAAM,OAAO,aAAa,IAAI,GAAG;AAAA,EACnC;AACA,SAAO,KAAK,EAAE;AAChB;AACA,SAAS,0BAA0B,KAAK;AACtC,MAAI,eAAe;AACjB,UAAM,MAAM,OAAO,KAAK,KAAK,QAAQ;AACrC,WAAO,IAAI,OAAO,MAAM,IAAI,YAAY,IAAI,aAAa,IAAI,UAAU;AAAA,EACzE;AACA,QAAM,KAAK,KAAK,GAAG;AACnB,QAAM,UAAU,IAAI,WAAW,GAAG,MAAM;AACxC,WAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,EAAE,IAAI;AACrC,YAAQ,IAAI,CAAC,GAAG,WAAW,EAAE,CAAC,GAAG,EAAE;AAAA,EACrC;AACA,SAAO,QAAQ;AACjB;AACA,SAAS,wBAAwB,SAAS;AACxC,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,QAAQ;AAAA,EACjB;AACA,MAAI,kBAAkB;AACtB,UAAQ,QAAQ,CAAC,YAAY;AAC3B,uBAAmB,QAAQ;AAAA,EAC7B,CAAC;AACD,QAAM,OAAO,IAAI,WAAW,eAAe;AAC3C,MAAI,SAAS;AACb,UAAQ,QAAQ,CAAC,YAAY;AAC3B,SAAK,IAAI,IAAI,WAAW,OAAO,GAAG,MAAM;AACxC,cAAU,QAAQ;AAAA,EACpB,CAAC;AACD,SAAO,KAAK;AACd;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,YAAY;AAClB,SAAO,KAAK,KAAK;AACjB,SAAO,KAAK,SAAS,SAAS,GAAG;AAC/B,WAAO,KAAK,MAAM,GAAG,KAAK,SAAS,CAAC;AAAA,EACtC;AACA,QAAM,QAAQ,KAAK,MAAM,SAAS;AAClC,SAAO,MAAM,MAAM,SAAS;AAC9B;AACA,SAAS,8BAA8B,WAAW,UAAU;AAC1D,QAAM,SAAS;AAAA,IACb,eAAe,UAAU;AAAA,IACzB,QAAQ,UAAU;AAAA,IAClB,aAAa,UAAU;AAAA,IACvB,aAAa,UAAU;AAAA,IACvB,iBAAiB;AAAA,EACnB;AACA,MAAI,UAAU,aAAa,MAAM;AAC/B,WAAO,YAAY,UAAU;AAAA,EAC/B;AACA,MAAI,UAAU,uBAAuB,MAAM;AACzC,WAAO,sBAAsB,UAAU;AAAA,EACzC;AACA,MAAI,UAAU,oBAAoB,MAAM;AACtC,WAAO,mBAAmB,UAAU;AAAA,EACtC;AACA,MAAI,UAAU,kBAAkB,MAAM;AACpC,WAAO,iBAAiB,UAAU;AAAA,EACpC;AACA,SAAO;AACT;AACA,eAAe,yBAAyB,WAAW,cAAc;AAC/D,QAAM,iBAAiB;AAAA,IACrB,eAAe,UAAU;AAAA,IACzB,QAAQ,UAAU;AAAA,IAClB,aAAa,UAAU;AAAA,IACvB,aAAa,UAAU;AAAA,EACzB;AACA,MAAI,UAAU,kBAAkB,MAAM;AACpC,mBAAe,iBAAiB,UAAU;AAAA,EAC5C;AACA,MAAI,UAAU,mBAAmB,MAAM;AACrC,UAAM,CAAC,aAAa,UAAU,IAAI,MAAM,aAAa,UAAU,eAAe;AAC9E,mBAAe,cAAc;AAC7B,mBAAe,aAAa;AAAA,EAC9B;AACA,MAAI,UAAU,aAAa,MAAM;AAC/B,mBAAe,YAAY,UAAU;AAAA,EACvC;AACA,MAAI,UAAU,uBAAuB,MAAM;AACzC,mBAAe,sBAAsB,UAAU;AAAA,EACjD;AACA,MAAI,UAAU,oBAAoB,MAAM;AACtC,mBAAe,mBAAmB,UAAU;AAAA,EAC9C;AACA,SAAO;AACT;AACA,SAAS,6BAA6B,gBAAgB;AACpD,MAAI,eAAe,yBAAyB,aAAa;AACvD,UAAM,IAAI,MAAM,qDAAqD;AAAA,EACvE;AACA,SAAO;AAAA,IACL,WAAW,IAAI,KAAK;AAAA,IACpB,mBAAmB;AAAA,IACnB,oBAAoB,eAAe,iBAAiB,OAAO,IAAI,iBAAiB,KAAK,UAAU,eAAe,aAAa,CAAC;AAAA,IAC5H,kBAAkB,eAAe,eAAe,OAAO,IAAI,iBAAiB,KAAK,UAAU,eAAe,WAAW,CAAC;AAAA,IACtH,iBAAiB,eAAe,cAAc,OAAO,IAAI,eAAe,WAAW;AAAA,EACrF;AACF;AACA,SAAS,6BAA6B;AACpC,QAAM,kBAAkB,CAAC,OAAO;AAC9B,QAAI,IAAI,MAAM;AACd,QAAI,KAAK;AACT,YAAQ,IAAI,aAAa,GAAG;AAC1B,YAAM;AACN,YAAM;AAAA,IACR;AACA,SAAK,CAAC;AACN,UAAM;AACN,WAAO,IAAI;AAAA,EACb;AACA,QAAM,eAAe,IAAI,YAAY,IAAI;AACzC,eAAa,KAAK;AAClB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,iBAAa,MAAM,gBAAgB,EAAE;AAAA,EACvC;AACA,WAAS,KAAK,MAAM,KAAK,MAAM,MAAM;AACnC,iBAAa,MAAM,aAAa,KAAK,QAAQ;AAAA,EAC/C;AACA,SAAO;AACT;AACA,SAAS,8BAA8B;AACrC,QAAM,gBAAgB,IAAI,YAAY,EAAE;AACxC,gBAAc,KAAK;AACnB,gBAAc,MAAM;AACpB,gBAAc,MAAM;AACpB,gBAAc,MAAM;AACpB,WAAS,KAAK,GAAG,KAAK,IAAI,MAAM;AAC9B,kBAAc,MAAM,MAAM;AAAA,EAC5B;AACA,WAAS,KAAK,IAAI,KAAK,IAAI,MAAM;AAC/B,kBAAc,MAAM,cAAc,KAAK,MAAM;AAAA,EAC/C;AACA,SAAO;AACT;AACA,SAAS,4BAA4B;AACnC,QAAM,cAAc,IAAI,YAAY,EAAE;AACtC,WAAS,KAAK,GAAG,KAAK,IAAI,MAAM;AAC9B,gBAAY,MAAM;AAAA,EACpB;AACA,cAAY,KAAK,YAAY,MAAM;AACnC,SAAO;AACT;AACA,SAAS,oBAAoB;AAC3B,QAAM,eAAe,2BAA2B;AAChD,QAAM,gBAAgB,4BAA4B;AAClD,QAAM,cAAc,0BAA0B;AAC9C,SAAO,CAAC,mBAAmB;AACzB,UAAM,UAAU,IAAI,YAAY,IAAI,eAAe,MAAM;AACzD,UAAM,mBAAmB,IAAI,YAAY,OAAO;AAChD,aAASU,SAAQ,GAAGA,SAAQ,eAAe,QAAQA,UAAS;AAC1D,YAAM,cAAc,eAAeA;AACnC,YAAM,cAAc,aAAa,YAAY,eAAe,OAAO,cAAc,SAAS,cAAc,eAAe;AACvH,uBAAiBA,UAAS;AAAA,IAC5B;AACA,WAAO,IAAI,aAAa,OAAO;AAAA,EACjC;AACF;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,cAAc;AACZ,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc,CAAC;AAAA,EACtB;AAAA,EACA,OAAO,cAAc;AACnB,QAAI,iBAAiB,YAAY,MAAM;AACrC,uBAAiB,WAAW,IAAI,iBAAiB;AAAA,IACnD;AACA,WAAO,iBAAiB;AAAA,EAC1B;AAAA,EACA,OAAO,mBAAmB,YAAY;AACpC,qBAAiB,YAAY,EAAE,YAAY,KAAK,UAAU;AAAA,EAC5D;AAAA,EACA,OAAO,mBAAmB,YAAY;AACpC,qBAAiB,YAAY,EAAE,YAAY,KAAK,UAAU;AAAA,EAC5D;AAAA,EACA,OAAO,gBAAgB,KAAK;AAC1B,WAAO,iBAAiB,YAAY,KAAK,MAAM;AAAA,EACjD;AAAA,EACA,OAAO,gBAAgB,KAAK,aAAa;AACvC,WAAO,iBAAiB,YAAY,KAAK,QAAQ,WAAW;AAAA,EAC9D;AAAA,EACA,OAAO,YAAY,KAAK,aAAa,aAAa;AAChD,UAAM,gBAAgB,CAAC;AACvB,UAAM,UAAU,gBAAgB,SAAS,iBAAiB,YAAY,EAAE,cAAc,iBAAiB,YAAY,EAAE;AACrH,YAAQ,QAAQ,CAAC,WAAW;AAC1B,YAAM,UAAU,OAAO,KAAK,WAAW;AACvC,UAAI,YAAY,MAAM;AACpB,sBAAc,KAAK,OAAO;AAAA,MAC5B;AAAA,IACF,CAAC;AACD,WAAO;AAAA,EACT;AACF;AACA,IAAI,qBAAqB,CAAC,eAAe,iBAAiB,mBAAmB,UAAU;AACvF,IAAI,qBAAqB,CAAC,eAAe,iBAAiB,mBAAmB,UAAU;AACvF,IAAI,kBAAkB,CAAC,QAAQ,iBAAiB,gBAAgB,GAAG;AACnE,IAAI,kBAAkB,CAAC,KAAK,gBAAgB,iBAAiB,gBAAgB,KAAK,WAAW;AAG7F,IAAI,gBAAgB;AACpB,IAAI,mBAAmB;AACvB,IAAI,mBAAmB;AACvB,IAAI,kBAAkB;AACtB,SAAS,sBAAsB;AAC7B,MAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,UAAM,IAAI,MAAM,yFAAyF;AAAA,EAC3G;AACA,QAAM,YAAY,OAAO,WAAW,cAAc,OAAO;AACzD,QAAM,UAAU,UAAU,aAAa,UAAU,gBAAgB,UAAU,mBAAmB,UAAU,eAAe,UAAU;AACjI,MAAI,WAAW,MAAM;AACnB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,SAAO;AACT;AACA,SAAS,cAAc,aAAa;AAClC,QAAM,KAAK,YAAY;AACvB,KAAG,kBAAkB,kBAAkB,EAAE,SAAS,YAAY,CAAC;AAC/D,KAAG,kBAAkB,iBAAiB,EAAE,SAAS,YAAY,CAAC;AAChE;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,WAAW;AACrB,SAAK,YAAY,oBAAoB;AACrC,QAAI,aAAa,QAAQ,CAAC,WAAW;AACnC,YAAM,IAAI,MAAM,gEAAgE;AAAA,IAClF;AACA,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,MAAM,KAAK,gBAAgB;AACzB,QAAI,eAAe,yBAAyB,aAAa;AACvD,YAAM,IAAI,MAAM,0FAA0F;AAAA,IAC5G;AACA,WAAO,KAAK,eAAe,KAAK,WAAW,cAAc;AAAA,EAC3D;AAAA,EACA,MAAM,OAAO;AACX,WAAO,KAAK,eAAe,KAAK,SAAS;AAAA,EAC3C;AAAA,EACA,eAAe,WAAW,gBAAgB;AACxC,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,cAAc,KAAK,UAAU,KAAK,eAAe,gBAAgB;AACvE,kBAAY,kBAAkB,MAAM,cAAc,WAAW;AAC7D,kBAAY,YAAY,MAAM;AAC5B,cAAM,KAAK,YAAY;AACvB,YAAI,kBAAkB,MAAM;AAC1B,gBAAM,UAAU,GAAG,YAAY,kBAAkB,UAAU;AAC3D,gBAAM,aAAa,QAAQ,YAAY,gBAAgB;AACvD,gBAAM,aAAa,WAAW,IAAI,KAAK,SAAS;AAChD,qBAAW,YAAY,MAAM;AAC3B,gBAAI,WAAW,UAAU,MAAM;AAC7B,iBAAG,MAAM;AACT,qBAAO,OAAO,IAAI,MAAM,gCAAgC,KAAK,0BAA0B,CAAC;AAAA,YAC1F,OAAO;AACL,sBAAQ,WAAW,OAAO,cAAc;AAAA,YAC1C;AAAA,UACF;AACA,qBAAW,UAAU,CAAC,UAAU;AAC9B,eAAG,MAAM;AACT,mBAAO,OAAO,WAAW,KAAK;AAAA,UAChC;AACA,kBAAQ,aAAa,MAAM,GAAG,MAAM;AAAA,QACtC,OAAO;AACL,gBAAM,qBAAqB,6BAA6B,cAAc;AACtE,gBAAM,SAAS,GAAG,YAAY,iBAAiB,WAAW;AAC1D,cAAI,YAAY,OAAO,YAAY,eAAe;AAClD,gBAAM,iBAAiB,UAAU,IAAI,EAAE,WAAW,KAAK,WAAW,mBAAmB,CAAC;AACtF,cAAI;AACJ,yBAAe,YAAY,MAAM;AAC/B,sBAAU,GAAG,YAAY,kBAAkB,WAAW;AACtD,kBAAM,aAAa,QAAQ,YAAY,gBAAgB;AACvD,kBAAM,kBAAkB,WAAW,IAAI;AAAA,cACrC,WAAW,KAAK;AAAA,cAChB;AAAA,cACA;AAAA,YACF,CAAC;AACD,4BAAgB,YAAY,MAAM,QAAQ,EAAE,mBAAmB,CAAC;AAChE,4BAAgB,UAAU,CAAC,UAAU;AACnC,0BAAY,OAAO,YAAY,eAAe;AAC9C,oBAAM,oBAAoB,UAAU,OAAO,KAAK,SAAS;AACzD,gCAAkB,YAAY,MAAM;AAClC,mBAAG,MAAM;AACT,uBAAO,OAAO,gBAAgB,KAAK;AAAA,cACrC;AACA,gCAAkB,UAAU,CAAC,WAAW;AACtC,mBAAG,MAAM;AACT,uBAAO,OAAO,gBAAgB,KAAK;AAAA,cACrC;AAAA,YACF;AAAA,UACF;AACA,yBAAe,UAAU,CAAC,UAAU;AAClC,eAAG,MAAM;AACT,mBAAO,OAAO,eAAe,KAAK;AAAA,UACpC;AACA,iBAAO,aAAa,MAAM;AACxB,gBAAI,WAAW,MAAM;AACnB,iBAAG,MAAM;AAAA,YACX,OAAO;AACL,sBAAQ,aAAa,MAAM,GAAG,MAAM;AAAA,YACtC;AAAA,UACF;AAAA,QACF;AAAA,MACF;AACA,kBAAY,UAAU,CAAC,UAAU,OAAO,YAAY,KAAK;AAAA,IAC3D,CAAC;AAAA,EACH;AACF;AACA,iBAAiB,aAAa;AAC9B,IAAI,kBAAkB,CAAC,QAAQ;AAC7B,MAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,WAAO;AAAA,EACT,OAAO;AACL,QAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,IAAI,WAAW,iBAAiB,UAAU,GAAG;AACtE,aAAO,iBAAiB,IAAI,MAAM,iBAAiB,WAAW,MAAM,CAAC;AAAA,IACvE,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AACA,iBAAiB,mBAAmB,eAAe;AACnD,iBAAiB,mBAAmB,eAAe;AACnD,SAAS,iBAAiB,WAAW;AACnC,SAAO,IAAI,iBAAiB,SAAS;AACvC;AACA,SAAS,iBAAiB,KAAK;AAC7B,SAAO,IAAI,WAAW,iBAAiB,UAAU,IAAI,IAAI,MAAM,iBAAiB,WAAW,MAAM,IAAI;AACvG;AACA,IAAI,0BAA0B,MAAM;AAAA,EAClC,cAAc;AACZ,SAAK,YAAY,oBAAoB;AAAA,EACvC;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,cAAc,KAAK,UAAU,KAAK,eAAe,gBAAgB;AACvE,kBAAY,kBAAkB,MAAM,cAAc,WAAW;AAC7D,kBAAY,YAAY,MAAM;AAC5B,cAAM,KAAK,YAAY;AACvB,cAAM,KAAK,GAAG,YAAY,iBAAiB,UAAU;AACrD,cAAM,QAAQ,GAAG,YAAY,eAAe;AAC5C,cAAM,oBAAoB,MAAM,OAAO;AACvC,0BAAkB,YAAY,MAAM;AAClC,gBAAM,MAAM,CAAC;AACb,qBAAW,QAAQ,kBAAkB,QAAQ;AAC3C,gBAAI,KAAK,aAAa,KAAK;AAAA,UAC7B;AACA,kBAAQ,GAAG;AAAA,QACb;AACA,0BAAkB,UAAU,CAAC,UAAU;AACrC,aAAG,MAAM;AACT,iBAAO,OAAO,kBAAkB,KAAK;AAAA,QACvC;AACA,WAAG,aAAa,MAAM,GAAG,MAAM;AAAA,MACjC;AACA,kBAAY,UAAU,CAAC,UAAU,OAAO,YAAY,KAAK;AAAA,IAC3D,CAAC;AAAA,EACH;AAAA,EACA,MAAM,YAAY,MAAM;AACtB,WAAO,iBAAiB,IAAI;AAC5B,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,cAAc,KAAK,UAAU,KAAK,eAAe,gBAAgB;AACvE,kBAAY,kBAAkB,MAAM,cAAc,WAAW;AAC7D,kBAAY,YAAY,MAAM;AAC5B,cAAM,KAAK,YAAY;AACvB,cAAM,SAAS,GAAG,YAAY,iBAAiB,WAAW;AAC1D,cAAM,YAAY,OAAO,YAAY,eAAe;AACpD,cAAM,iBAAiB,UAAU,IAAI,IAAI;AACzC,YAAI;AACJ,uBAAe,YAAY,MAAM;AAC/B,cAAI,eAAe,UAAU,MAAM;AACjC,eAAG,MAAM;AACT,mBAAO,OAAO,IAAI,MAAM,gCAAgC,qBAAqB,CAAC;AAAA,UAChF,OAAO;AACL,kBAAM,oBAAoB,UAAU,OAAO,IAAI;AAC/C,kBAAM,kBAAkB,MAAM;AAC5B,wBAAU,GAAG,YAAY,kBAAkB,WAAW;AACtD,oBAAM,aAAa,QAAQ,YAAY,gBAAgB;AACvD,oBAAM,qBAAqB,WAAW,OAAO,IAAI;AACjD,iCAAmB,YAAY,MAAM,QAAQ,eAAe,OAAO,kBAAkB;AACrF,iCAAmB,UAAU,CAAC,UAAU,OAAO,eAAe,KAAK;AAAA,YACrE;AACA,8BAAkB,YAAY;AAC9B,8BAAkB,UAAU,CAAC,UAAU;AACrC,8BAAgB;AAChB,iBAAG,MAAM;AACT,qBAAO,OAAO,eAAe,KAAK;AAAA,YACpC;AAAA,UACF;AAAA,QACF;AACA,uBAAe,UAAU,CAAC,UAAU;AAClC,aAAG,MAAM;AACT,iBAAO,OAAO,eAAe,KAAK;AAAA,QACpC;AACA,eAAO,aAAa,MAAM;AACxB,cAAI,WAAW,MAAM;AACnB,eAAG,MAAM;AAAA,UACX,OAAO;AACL,oBAAQ,aAAa,MAAM,GAAG,MAAM;AAAA,UACtC;AAAA,QACF;AAAA,MACF;AACA,kBAAY,UAAU,CAAC,UAAU,OAAO,YAAY,KAAK;AAAA,IAC3D,CAAC;AAAA,EACH;AACF;AAGA,IAAI,iBAAiB;AACrB,IAAI,cAAc;AAClB,IAAI,cAAc;AAClB,IAAI,wBAAwB;AAC5B,IAAI,sBAAsB;AAC1B,IAAI,qBAAqB;AACzB,IAAI,wBAAwB;AAC5B,SAAS,aAAa,MAAM;AAC1B,SAAO;AAAA,IACL,MAAM,CAAC,aAAa,MAAM,WAAW,EAAE,KAAK,cAAc;AAAA,IAC1D,UAAU,CAAC,aAAa,MAAM,qBAAqB,EAAE,KAAK,cAAc;AAAA,IACxE,aAAa,CAAC,aAAa,MAAM,mBAAmB,EAAE,KAAK,cAAc;AAAA,IACzE,YAAY,CAAC,aAAa,MAAM,kBAAkB,EAAE,KAAK,cAAc;AAAA,IACvE,eAAe,CAAC,aAAa,MAAM,qBAAqB,EAAE,KAAK,cAAc;AAAA,EAC/E;AACF;AACA,SAAS,YAAY,MAAM;AACzB,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,WAAO,aAAa,WAAW,GAAG;AAAA,EACpC;AACF;AACA,SAAS,oBAAoB,KAAK;AAChC,QAAM,QAAQ,IAAI,MAAM,cAAc;AACtC,MAAI,MAAM,SAAS,GAAG;AACpB,UAAM,IAAI,MAAM,uBAAuB,KAAK;AAAA,EAC9C;AACA,SAAO,MAAM,MAAM,GAAG,MAAM,SAAS,CAAC,EAAE,KAAK,cAAc;AAC7D;AACA,SAAS,kBAAkB,KAAK;AAC9B,SAAO,IAAI,WAAW,oBAAoB,UAAU,IAAI,IAAI,MAAM,oBAAoB,WAAW,MAAM,IAAI;AAC7G;AACA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,WAAW;AACrB,QAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,KAAK,OAAO,WAAW,eAAe,OAAO,OAAO,iBAAiB,aAAa;AAC/G,YAAM,IAAI,MAAM,yDAAyD;AAAA,IAC3E;AACA,SAAK,KAAK,OAAO;AACjB,QAAI,aAAa,QAAQ,CAAC,WAAW;AACnC,YAAM,IAAI,MAAM,oEAAoE;AAAA,IACtF;AACA,SAAK,YAAY;AACjB,SAAK,OAAO,aAAa,KAAK,SAAS;AAAA,EACzC;AAAA,EACA,MAAM,KAAK,gBAAgB;AACzB,QAAI,eAAe,yBAAyB,aAAa;AACvD,YAAM,IAAI,MAAM,0FAA0F;AAAA,IAC5G,OAAO;AACL,YAAM,WAAW,KAAK,UAAU,eAAe,aAAa;AAC5D,YAAM,cAAc,KAAK,UAAU,eAAe,WAAW;AAC7D,YAAM,qBAAqB,6BAA6B,cAAc;AACtE,UAAI;AACF,aAAK,GAAG,QAAQ,KAAK,KAAK,MAAM,KAAK,UAAU,kBAAkB,CAAC;AAClE,aAAK,GAAG,QAAQ,KAAK,KAAK,UAAU,QAAQ;AAC5C,aAAK,GAAG,QAAQ,KAAK,KAAK,aAAa,WAAW;AAClD,aAAK,GAAG,QAAQ,KAAK,KAAK,YAAY,0BAA0B,eAAe,UAAU,CAAC;AAC1F,cAAM,WAAW;AAAA,UACf,QAAQ,eAAe;AAAA,UACvB,aAAa,eAAe;AAAA,UAC5B,aAAa,eAAe;AAAA,UAC5B,WAAW,eAAe,aAAa,OAAO,eAAe,YAAY;AAAA,UACzE,qBAAqB,eAAe,uBAAuB,OAAO,eAAe,sBAAsB;AAAA,UACvG,kBAAkB,eAAe,oBAAoB,OAAO,eAAe,mBAAmB;AAAA,UAC9F,gBAAgB,eAAe,kBAAkB,OAAO,eAAe,iBAAiB;AAAA,QAC1F;AACA,aAAK,GAAG,QAAQ,KAAK,KAAK,eAAe,KAAK,UAAU,QAAQ,CAAC;AACjE,eAAO,EAAE,mBAAmB;AAAA,MAC9B,SAAS,KAAP;AACA,oBAAY,KAAK,IAAI;AACrB,cAAM,IAAI,MAAM,yBAAyB,KAAK,kHAAkH,mBAAmB,wCAAwC,mBAAmB,qCAAqC,mBAAmB,kBAAkB;AAAA,MAC1T;AAAA,IACF;AAAA,EACF;AAAA,EACA,MAAM,OAAO;AACX,UAAM,OAAO,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,KAAK,IAAI,CAAC;AACvD,QAAI,QAAQ,MAAM;AAChB,YAAM,IAAI,MAAM,kDAAkD,KAAK,YAAY;AAAA,IACrF;AACA,QAAI,KAAK,sBAAsB,QAAQ;AACrC,YAAM,IAAI,MAAM,2EAA2E;AAAA,IAC7F;AACA,UAAM,MAAM,CAAC;AACb,UAAM,WAAW,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,KAAK,QAAQ,CAAC;AAC/D,QAAI,YAAY,MAAM;AACpB,YAAM,IAAI,MAAM,4CAA4C,KAAK,wBAAwB;AAAA,IAC3F;AACA,QAAI,gBAAgB;AACpB,UAAM,cAAc,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,KAAK,WAAW,CAAC;AACrE,QAAI,eAAe,MAAM;AACvB,YAAM,IAAI,MAAM,gDAAgD,KAAK,yBAAyB;AAAA,IAChG;AACA,QAAI,cAAc;AAClB,UAAM,iBAAiB,KAAK,GAAG,QAAQ,KAAK,KAAK,aAAa;AAC9D,QAAI,kBAAkB,MAAM;AAC1B,YAAM,WAAW,KAAK,MAAM,cAAc;AAC1C,UAAI,SAAS,SAAS;AACtB,UAAI,cAAc,SAAS;AAC3B,UAAI,cAAc,SAAS;AAC3B,UAAI,SAAS,aAAa,MAAM;AAC9B,YAAI,YAAY,SAAS;AAAA,MAC3B;AACA,UAAI,SAAS,uBAAuB,MAAM;AACxC,YAAI,sBAAsB,SAAS;AAAA,MACrC;AACA,UAAI,SAAS,oBAAoB,MAAM;AACrC,YAAI,mBAAmB,SAAS;AAAA,MAClC;AACA,UAAI,SAAS,kBAAkB,MAAM;AACnC,YAAI,iBAAiB,SAAS;AAAA,MAChC;AAAA,IACF;AACA,UAAM,mBAAmB,KAAK,GAAG,QAAQ,KAAK,KAAK,UAAU;AAC7D,QAAI,oBAAoB,MAAM;AAC5B,YAAM,IAAI,MAAM,wDAAwD,KAAK,yBAAyB;AAAA,IACxG;AACA,QAAI,aAAa,0BAA0B,gBAAgB;AAC3D,WAAO;AAAA,EACT;AACF;AACA,oBAAoB,aAAa;AACjC,IAAI,qBAAqB,CAAC,QAAQ;AAChC,MAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,WAAO;AAAA,EACT,OAAO;AACL,QAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,IAAI,WAAW,oBAAoB,UAAU,GAAG;AACzE,aAAO,oBAAoB,IAAI,MAAM,oBAAoB,WAAW,MAAM,CAAC;AAAA,IAC7E,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AACA,iBAAiB,mBAAmB,kBAAkB;AACtD,iBAAiB,mBAAmB,kBAAkB;AACtD,SAAS,oBAAoB,WAAW;AACtC,SAAO,IAAI,oBAAoB,SAAS;AAC1C;AACA,IAAI,6BAA6B,MAAM;AAAA,EACrC,cAAc;AACZ,WAAO,IAAI,EAAE,QAAQ,YAAY,GAAG,MAAM,0CAA0C;AACpF,WAAO,OAAO,WAAW,eAAe,OAAO,OAAO,iBAAiB,aAAa,MAAM,yDAAyD;AACnJ,SAAK,KAAK,OAAO;AAAA,EACnB;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,MAAM,CAAC;AACb,UAAM,SAAS,cAAc;AAC7B,UAAM,SAAS,iBAAiB;AAChC,aAAS,KAAK,GAAG,KAAK,KAAK,GAAG,QAAQ,EAAE,IAAI;AAC1C,YAAM,MAAM,KAAK,GAAG,IAAI,EAAE;AAC1B,UAAI,IAAI,WAAW,MAAM,KAAK,IAAI,SAAS,MAAM,GAAG;AAClD,cAAM,YAAY,oBAAoB,GAAG;AACzC,YAAI,aAAa,KAAK,MAAM,KAAK,GAAG,QAAQ,GAAG,CAAC;AAAA,MAClD;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,YAAY,MAAM;AACtB,WAAO,kBAAkB,IAAI;AAC7B,UAAM,OAAO,aAAa,IAAI;AAC9B,QAAI,KAAK,GAAG,QAAQ,KAAK,IAAI,KAAK,MAAM;AACtC,YAAM,IAAI,MAAM,8BAA8B,OAAO;AAAA,IACvD;AACA,UAAM,OAAO,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,IAAI,CAAC;AAClD,gBAAY,IAAI;AAChB,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB;AACxB,IAAI,4BAA4B,MAAM;AAAA,EACpC,cAAc;AACZ,SAAK,WAAW,CAAC;AAAA,EACnB;AAAA,EACA,OAAO,cAAc;AACnB,QAAI,0BAA0B,YAAY,MAAM;AAC9C,gCAA0B,WAAW,IAAI,0BAA0B;AAAA,IACrE;AACA,WAAO,0BAA0B;AAAA,EACnC;AAAA,EACA,OAAO,gBAAgB,QAAQ,SAAS;AACtC,WAAO,UAAU,MAAM,MAAM,uCAAuC;AACpE,QAAI,OAAO,SAAS,iBAAiB,GAAG;AACtC,eAAS,OAAO,MAAM,GAAG,OAAO,QAAQ,iBAAiB,CAAC;AAAA,IAC5D;AACA,WAAO,OAAO,SAAS,GAAG,MAAM,qCAAqC;AACrE,UAAM,WAAW,0BAA0B,YAAY;AACvD,WAAO,SAAS,SAAS,WAAW,MAAM,MAAM,2DAA2D,UAAU;AACrH,aAAS,SAAS,UAAU;AAAA,EAC9B;AAAA,EACA,OAAO,WAAW,QAAQ;AACxB,UAAM,UAAU,0BAA0B,YAAY,EAAE,SAAS;AACjE,QAAI,WAAW,MAAM;AACnB,YAAM,IAAI,MAAM,yCAAyC,SAAS;AAAA,IACpE;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,aAAa;AAClB,WAAO,OAAO,KAAK,0BAA0B,YAAY,EAAE,QAAQ;AAAA,EACrE;AACF;AACA,SAAS,SAAS,KAAK;AACrB,MAAI,IAAI,QAAQ,iBAAiB,MAAM,IAAI;AACzC,UAAM,IAAI,MAAM,6EAA6E,0BAA0B,WAAW,EAAE,KAAK,GAAG,GAAG;AAAA,EACjJ;AACA,SAAO;AAAA,IACL,QAAQ,IAAI,MAAM,iBAAiB,EAAE;AAAA,IACrC,MAAM,IAAI,MAAM,iBAAiB,EAAE;AAAA,EACrC;AACF;AACA,eAAe,mBAAmB,WAAW,SAAS,eAAe,OAAO;AAC1E,SAAO,cAAc,SAAS,MAAM,wCAAwC,YAAY;AACxF,QAAM,eAAe,iBAAiB,gBAAgB,SAAS;AAC/D,SAAO,aAAa,SAAS,GAAG,MAAM,kEAAkE,YAAY;AACpH,SAAO,aAAa,SAAS,GAAG,MAAM,yCAAyC,aAAa,wCAAwC,YAAY;AAChJ,QAAM,cAAc,aAAa;AACjC,QAAM,eAAe,iBAAiB,gBAAgB,OAAO;AAC7D,SAAO,aAAa,SAAS,GAAG,MAAM,uEAAuE,UAAU;AACvH,SAAO,aAAa,SAAS,GAAG,MAAM,yCAAyC,aAAa,6CAA6C,UAAU;AACnJ,QAAM,cAAc,aAAa;AACjC,QAAM,eAAe,SAAS,SAAS,EAAE;AACzC,QAAM,aAAa,SAAS,SAAS,EAAE;AACvC,QAAM,aAAa,iBAAiB,SAAS,SAAS,EAAE;AACxD,QAAM,iBAAiB,MAAM,YAAY,KAAK;AAC9C,MAAI,gBAAgB,YAAY;AAC9B,UAAM,0BAA0B,WAAW,YAAY,EAAE,YAAY,UAAU;AAAA,EACjF;AACA,QAAM,aAAa,MAAM,YAAY,KAAK,cAAc;AACxD,MAAI,gBAAgB,CAAC,YAAY;AAC/B,UAAM,0BAA0B,WAAW,YAAY,EAAE,YAAY,UAAU;AAAA,EACjF;AACA,SAAO,WAAW;AACpB;AACA,eAAe,aAAa;AAC1B,QAAM,UAAU,0BAA0B,WAAW;AACrD,QAAM,MAAM,CAAC;AACb,aAAW,UAAU,SAAS;AAC5B,UAAM,YAAY,MAAM,0BAA0B,WAAW,MAAM,EAAE,WAAW;AAChF,eAAW,QAAQ,WAAW;AAC5B,YAAM,MAAM,SAAS,oBAAoB;AACzC,UAAI,OAAO,UAAU;AAAA,IACvB;AAAA,EACF;AACA,SAAO;AACT;AACA,eAAe,YAAY,KAAK;AAC9B,QAAM,gBAAgB,SAAS,GAAG;AAClC,QAAM,UAAU,0BAA0B,WAAW,cAAc,MAAM;AACzE,SAAO,QAAQ,YAAY,cAAc,IAAI;AAC/C;AACA,eAAe,UAAU,WAAW,SAAS;AAC3C,QAAM,eAAe;AACrB,SAAO,mBAAmB,WAAW,SAAS,YAAY;AAC5D;AACA,eAAe,UAAU,WAAW,SAAS;AAC3C,QAAM,eAAe;AACrB,SAAO,mBAAmB,WAAW,SAAS,YAAY;AAC5D;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,MAAM,MAAMN,QAAO;AACjB,WAAO,MAAM,MAAMA,MAAK;AAAA,EAC1B;AAAA,EACA,MAAM;AACJ,WAAO,YAAY,IAAI;AAAA,EACzB;AAAA,EACA,OAAO,MAAM,UAAU;AACrB,QAAI,aAAa,WAAW,aAAa,QAAQ;AAC/C,YAAM,IAAI,MAAM,kDAAkD,UAAU;AAAA,IAC9E;AACA,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK,cAAc,IAAI,YAAY;AAAA,IACrC;AACA,WAAO,KAAK,YAAY,OAAO,IAAI;AAAA,EACrC;AAAA,EACA,OAAO,OAAO,UAAU;AACtB,WAAO,IAAI,YAAY,QAAQ,EAAE,OAAO,KAAK;AAAA,EAC/C;AACF;AACA,IAAI,IAAI,EAAE,IAAI,YAAY,GAAG;AAC3B,MAAI,EAAE,YAAY,WAAW,IAAI,gBAAgB,CAAC;AAClD,MAAI;AACF,8BAA0B,gBAAgB,oBAAoB,YAAY,IAAI,2BAA2B,CAAC;AAAA,EAC5G,SAAS,KAAP;AAAA,EACF;AACA,MAAI;AACF,8BAA0B,gBAAgB,iBAAiB,YAAY,IAAI,wBAAwB,CAAC;AAAA,EACtG,SAAS,KAAP;AAAA,EACF;AACF;AAGA,IAAI,eAAe;AAAA,EACjB,aAAa,MAAM,gBAAgB;AACrC;AACA,IAAI;AACJ,IAAI,eAAe,MAAM;AAAA,EACvB,cAAc;AACZ,SAAK,OAAO,aAAa;AACzB,SAAK,cAAc,IAAI,KAAK,KAAK,YAAY;AAAA,EAC/C;AAAA,EACA,MAAM,MAAM,cAAc;AACxB,QAAI,IAAI,EAAE,OAAO,SAAS,MAAM;AAC9B,aAAO,IAAI,EAAE,OAAO,MAAM,MAAM,YAAY;AAAA,IAC9C;AACA,QAAI,eAAe,MAAM;AACvB,oBAAc,aAAa,YAAY;AAAA,IACzC;AACA,WAAO,YAAY,MAAM,YAAY;AAAA,EACvC;AAAA,EACA,MAAM;AACJ,UAAM,QAAQ,QAAQ,OAAO;AAC7B,WAAO,MAAM,KAAK,MAAM,MAAM,KAAK;AAAA,EACrC;AAAA,EACA,OAAO,MAAM,UAAU;AACrB,QAAI,aAAa,WAAW,aAAa,QAAQ;AAC/C,YAAM,IAAI,MAAM,sDAAsD,UAAU;AAAA,IAClF;AACA,WAAO,KAAK,YAAY,OAAO,IAAI;AAAA,EACrC;AAAA,EACA,OAAO,OAAO,UAAU;AACtB,QAAI,MAAM,WAAW,GAAG;AACtB,aAAO;AAAA,IACT;AACA,WAAO,IAAI,KAAK,KAAK,YAAY,QAAQ,EAAE,OAAO,KAAK;AAAA,EACzD;AACF;AACA,IAAI,IAAI,EAAE,IAAI,SAAS,KAAK,CAAC,IAAI,EAAE,IAAI,YAAY,GAAG;AACpD,MAAI,EAAE,YAAY,QAAQ,IAAI,aAAa,CAAC;AAC9C;AAGA,SAAS,OAAO,OAAO,QAAQ,WAAW,QAAQ;AAChD,UAAQ,SAAS;AACjB,qCAAmC,KAAK;AACxC,SAAO,IAAI,aAAa,OAAO,OAAO,MAAM;AAC9C;AAGA,SAAS,MAAM,GAAG,OAAO;AACvB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,MAAI,CAAC,aAAa,KAAK,GAAG;AACxB,UAAM,IAAI,MAAM,mCAAmC,OAAO;AAAA,EAC5D;AACA,MAAI,UAAU,YAAY,GAAG,UAAU,YAAY,UAAU,YAAY,GAAG,UAAU,UAAU;AAC9F,UAAM,IAAI,MAAM,uCAAuC;AAAA,EACzD;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM;AACtB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS,mBAAmB;AAC/D,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG,UAAU,OAAO;AACjC,UAAQ,IAAI,EAAE,SAAS,OAAO,CAAC;AACjC;AAGA,gBAAgB;AAChB,IAAI,aAAa;AAAA,EACf;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,aAAa,UAAU;AAGvB,IAAI,aAAa,CAAC;AAClBP,UAAS,YAAY;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,oBAAoB,MAAM;AAAA,EAC1B,yBAAyB,MAAM;AAAA,EAC/B,WAAW,MAAM;AAAA,EACjB,eAAe,MAAM;AAAA,EACrB,eAAe,MAAM;AAAA,EACrB,YAAY,MAAM;AAAA,EAClB,gBAAgB,MAAM;AAAA,EACtB,iBAAiB,MAAM;AAAA,EACvB,0BAA0B,MAAM;AAAA,EAChC,8BAA8B,MAAM;AAAA,EACpC,iBAAiB,MAAM;AAAA,EACvB,MAAM,MAAM;AAAA,EACZ,cAAc,MAAM;AAAA,EACpB,YAAY,MAAM;AAAA,EAClB,aAAa,MAAM;AAAA,EACnB,WAAW,MAAM;AAAA,EACjB,oBAAoB,MAAM;AAAA,EAC1B,oBAAoB,MAAM;AAAA,EAC1B,aAAa,MAAM;AAAA,EACnB,sBAAsB,MAAM;AAAA,EAC5B,iBAAiB,MAAM;AAAA,EACvB,qBAAqB,MAAM;AAC7B,CAAC;AAGD,IAAI,2BAA2B;AAC/B,IAAI,8BAA8B;AAClC,IAAI,qCAAqC;AACzC,SAAS,MAAM,GAAG;AAChB,SAAO,IAAI,QAAQ,CAAC,YAAY,WAAW,OAAO,CAAC,EAAE,KAAK,CAAC;AAC7D;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,gBAAgB;AAC1B,QAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,YAAM,IAAI,MAAM,qFAAqF;AAAA,IACvG;AACA,QAAI,eAAe,WAAW,iBAAiB,UAAU,GAAG;AAC1D,uBAAiB,eAAe,MAAM,iBAAiB,WAAW,MAAM;AAAA,IAC1E;AACA,QAAI,kBAAkB,QAAQ,eAAe,WAAW,GAAG;AACzD,uBAAiB;AAAA,IACnB;AACA,SAAK,oBAAoB,iBAAiB;AAC1C,SAAK,qBAAqB,iBAAiB;AAAA,EAC7C;AAAA,EACA,MAAM,KAAK,gBAAgB;AACzB,QAAI,OAAO,aAAa,aAAa;AACnC,YAAM,IAAI,MAAM,yFAAyF;AAAA,IAC3G;AACA,UAAM,aAAa,OAAO,IAAI,gBAAgB,IAAI,KAAK,CAAC,eAAe,UAAU,GAAG,EAAE,MAAM,2BAA2B,CAAC,CAAC;AACzH,QAAI,eAAe,yBAAyB,aAAa;AACvD,YAAM,IAAI,MAAM,uFAAuF;AAAA,IACzG,OAAO;AACL,YAAM,kBAAkB,CAAC;AAAA,QACvB,OAAO,CAAC,OAAO,KAAK,kBAAkB;AAAA,QACtC,SAAS,eAAe;AAAA,MAC1B,CAAC;AACD,YAAM,YAAY,8BAA8B,gBAAgB,eAAe;AAC/E,YAAM,eAAe,OAAO,IAAI,gBAAgB,IAAI,KAAK,CAAC,KAAK,UAAU,SAAS,CAAC,GAAG,EAAE,MAAM,mBAAmB,CAAC,CAAC;AACnH,YAAM,aAAa,KAAK,mBAAmB,OAAO,SAAS,cAAc,GAAG,IAAI,KAAK;AACrF,iBAAW,WAAW,KAAK;AAC3B,iBAAW,OAAO;AAClB,YAAM,MAAM,MAAM,WAAW,cAAc,IAAI,WAAW,OAAO,CAAC,CAAC;AACnE,UAAI,eAAe,cAAc,MAAM;AACrC,cAAM,mBAAmB,KAAK,oBAAoB,OAAO,SAAS,cAAc,GAAG,IAAI,KAAK;AAC5F,yBAAiB,WAAW,KAAK;AACjC,yBAAiB,OAAO;AACxB,cAAM,MAAM,MAAM,iBAAiB,cAAc,IAAI,WAAW,OAAO,CAAC,CAAC;AAAA,MAC3E;AACA,aAAO,EAAE,oBAAoB,6BAA6B,cAAc,EAAE;AAAA,IAC5E;AAAA,EACF;AACF;AACA,iBAAiB,aAAa;AAC9B,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO;AACjB,QAAI,SAAS,QAAQ,MAAM,SAAS,GAAG;AACrC,YAAM,IAAI,MAAM,wEAAwE,OAAO;AAAA,IACjG;AACA,SAAK,WAAW,MAAM;AACtB,SAAK,eAAe,MAAM,MAAM,CAAC;AAAA,EACnC;AAAA,EACA,MAAM,OAAO;AACX,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,aAAa,IAAI,WAAW;AAClC,iBAAW,SAAS,CAAC,UAAU;AAC7B,cAAM,YAAY,KAAK,MAAM,MAAM,OAAO,MAAM;AAChD,cAAM,gBAAgB,UAAU;AAChC,YAAI,iBAAiB,MAAM;AACzB,iBAAO,IAAI,MAAM,4CAA4C,KAAK,SAAS,MAAM,CAAC;AAClF;AAAA,QACF;AACA,cAAM,kBAAkB,UAAU;AAClC,YAAI,mBAAmB,MAAM;AAC3B,iBAAO,IAAI,MAAM,6CAA6C,KAAK,SAAS,MAAM,CAAC;AACnF;AAAA,QACF;AACA,YAAI,KAAK,aAAa,WAAW,GAAG;AAClC,kBAAQ,EAAE,cAAc,CAAC;AACzB;AAAA,QACF;AACA,cAAM,wBAAwB,yBAAyB,WAAW,CAAC,qBAAqB,KAAK,YAAY,gBAAgB,CAAC;AAC1H,gBAAQ,qBAAqB;AAAA,MAC/B;AACA,iBAAW,UAAU,CAAC,UAAU,OAAO,sEAAsE,KAAK,SAAS,2EAA2E;AACtM,iBAAW,WAAW,KAAK,QAAQ;AAAA,IACrC,CAAC;AAAA,EACH;AAAA,EACA,YAAY,iBAAiB;AAC3B,UAAM,cAAc,CAAC;AACrB,UAAM,QAAQ,CAAC;AACf,eAAW,SAAS,iBAAiB;AACnC,kBAAY,KAAK,GAAG,MAAM,OAAO;AACjC,YAAM,KAAK,GAAG,MAAM,KAAK;AAAA,IAC3B;AACA,UAAM,aAAa,KAAK,4BAA4B,eAAe;AACnE,UAAM,WAAW,MAAM,IAAI,CAAC,SAAS,KAAK,gBAAgB,MAAM,WAAW,KAAK,CAAC;AACjF,WAAO,QAAQ,IAAI,QAAQ,EAAE,KAAK,CAAC,YAAY,CAAC,aAAa,wBAAwB,OAAO,CAAC,CAAC;AAAA,EAChG;AAAA,EACA,gBAAgB,MAAM,MAAM;AAC1B,WAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,YAAM,mBAAmB,IAAI,WAAW;AACxC,uBAAiB,SAAS,CAAC,UAAU;AACnC,cAAM,aAAa,MAAM,OAAO;AAChC,gBAAQ,UAAU;AAAA,MACpB;AACA,uBAAiB,UAAU,CAAC,UAAU,OAAO,6CAA6C,QAAQ;AAClG,uBAAiB,kBAAkB,IAAI;AAAA,IACzC,CAAC;AAAA,EACH;AAAA,EACA,4BAA4B,UAAU;AACpC,UAAM,YAAY,CAAC;AACnB,UAAM,YAAY,KAAK,aAAa,IAAI,CAAC,SAAS,SAAS,KAAK,IAAI,CAAC;AACrE,UAAM,aAAa,CAAC;AACpB,eAAW,SAAS,UAAU;AAC5B,YAAM,MAAM,QAAQ,CAAC,SAAS;AAC5B,cAAM,eAAe,SAAS,IAAI;AAClC,YAAI,UAAU,QAAQ,YAAY,MAAM,IAAI;AAC1C,gBAAM,IAAI,MAAM,uDAAuD,eAAe;AAAA,QACxF;AACA,kBAAU,KAAK,YAAY;AAC3B,YAAI,UAAU,QAAQ,YAAY,MAAM,IAAI;AAC1C,gBAAM,IAAI,MAAM,8BAA8B,gCAAgC;AAAA,QAChF,OAAO;AACL,qBAAW,QAAQ,KAAK,aAAa,UAAU,QAAQ,YAAY;AAAA,QACrE;AAAA,MACF,CAAC;AAAA,IACH;AACA,QAAI,UAAU,WAAW,KAAK,aAAa,QAAQ;AACjD,YAAM,IAAI,MAAM,wDAAwD,UAAU,oDAAoD,KAAK,aAAa,UAAU;AAAA,IACpK;AACA,WAAO;AAAA,EACT;AACF;AACA,IAAI,yBAAyB,CAAC,QAAQ;AACpC,MAAI,CAAC,IAAI,EAAE,QAAQ,YAAY,GAAG;AAChC,WAAO;AAAA,EACT,OAAO;AACL,QAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,IAAI,WAAW,iBAAiB,UAAU,GAAG;AACtE,aAAO,iBAAiB,IAAI,MAAM,iBAAiB,WAAW,MAAM,CAAC;AAAA,IACvE,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AACA,iBAAiB,mBAAmB,sBAAsB;AAC1D,SAAS,iBAAiB,iBAAiB,SAAS;AAClD,SAAO,IAAI,iBAAiB,cAAc;AAC5C;AACA,SAAS,aAAa,OAAO;AAC3B,SAAO,IAAI,aAAa,KAAK;AAC/B;AAGA,SAAS,wBAAwB,UAAU,YAAY,eAAe,aAAa;AACjF,gBAAc,QAAQ;AACtB,kBAAgB,iBAAiB,OAAO,IAAI;AAC5C,gBAAc,eAAe,OAAO,IAAI;AACxC,gBAAc,eAAe,WAAW;AACxC,MAAI,kBAAkB;AACtB,QAAM,kBAAkB,CAAC,YAAY;AACnC,YAAQ,KAAK,CAAC,UAAU;AACtB,YAAM,WAAW,gBAAgB,EAAE,kBAAkB,SAAS,UAAU,cAAc;AACtF,iBAAW,QAAQ;AACnB,aAAO;AAAA,IACT,CAAC;AACD,WAAO;AAAA,EACT;AACA,WAAS,cAAc,WAAW;AAChC,WAAO,aAAa,QAAQ,MAAM,QAAQ,SAAS,KAAK,UAAU,SAAS,GAAG,MAAM,qCAAqC;AAAA,EAC3H;AACA,WAAS,cAAc,gBAAgB,cAAc;AACnD,WAAO,kBAAkB,KAAK,kBAAkB,GAAG,MAAM,oEAAoE,gBAAgB;AAC7I,WAAO,gBAAgB,KAAK,gBAAgB,GAAG,MAAM,kEAAkE,cAAc;AACrI,WAAO,gBAAgB,gBAAgB,MAAM,yEAAyE,kCAAkC,cAAc;AAAA,EACxK;AACA,SAAO,QAAQ,IAAI,SAAS,IAAI,eAAe,CAAC;AAClD;AAGA,eAAe,yBAAyB,WAAW,aAAa;AAC9D,MAAI,eAAe,MAAM;AACvB,kBAAc,CAAC;AAAA,EACjB;AACA,QAAM,YAAY,YAAY,aAAa,OAAO,IAAI,EAAE,SAAS,QAAQ,YAAY;AACrF,QAAM,WAAW,UAAU,IAAI,CAAC,aAAa,UAAU,UAAU,YAAY,aAAa,EAAE,UAAU,KAAK,CAAC,CAAC;AAC7G,QAAM,qBAAqB;AAC3B,QAAM,mBAAmB;AACzB,QAAM,YAAY,YAAY,cAAc,OAAO,MAAM,QAAQ,IAAI,QAAQ,IAAI,MAAM,wBAAwB,UAAU,YAAY,YAAY,oBAAoB,gBAAgB;AACrL,QAAM,iBAAiB,UAAU,IAAI,CAAC,aAAa,SAAS,YAAY,CAAC;AACzE,QAAM,sBAAsB;AAC5B,QAAM,oBAAoB;AAC1B,QAAM,UAAU,YAAY,cAAc,OAAO,MAAM,QAAQ,IAAI,cAAc,IAAI,MAAM,wBAAwB,gBAAgB,YAAY,YAAY,qBAAqB,iBAAiB;AACjM,SAAO;AACT;AACA,eAAe,YAAY,UAAU,iBAAiB,IAAI,aAAa,aAAa;AAClF,QAAM,eAAe,CAAC,cAAc,yBAAyB,WAAW,EAAE,YAAY,CAAC;AACvF,QAAM,eAAe,qBAAqB,YAAY;AACtD,SAAO,aAAa,UAAU,gBAAgB,WAAW;AAC3D;AACA,SAAS,qBAAqB,sBAAsB;AAClD,SAAO,OAAO,UAAU,iBAAiB,IAAI,gBAAgB;AAC3D,UAAM,yBAAyB,SAAS,IAAI,MAAM,KAAK;AACvD,UAAM,sBAAsB,CAAC;AAC7B,UAAM,eAAe,eAAe,OAAO,YAAY,IAAI,MAAM,KAAK,IAAI,CAAC;AAC3E,UAAM,yBAAyB,CAAC;AAChC,aAAS,QAAQ,CAAC,qBAAqB,eAAe;AACpD,UAAI,cAAc;AAClB,0BAAoB,QAAQ,QAAQ,CAAC,iBAAiB;AACpD,cAAM,WAAW,kBAAkB,eAAe,aAAa,aAAa,QAAQ,aAAa;AACjG,cAAM,eAAe,qBAAqB,YAAY,cAAc,aAAa,KAAK;AACtF,cAAM,8BAA8B,MAAM;AACxC,iCAAuB,cAAc;AACrC,cAAI,oBAAoB,eAAe,MAAM;AAC3C,gCAAoB,cAAc,CAAC;AAAA,UACrC;AACA,8BAAoB,YAAY,KAAK;AAAA,YACnC,eAAe;AAAA,YACf;AAAA,YACA,WAAW;AAAA,UACb,CAAC;AAAA,QACH;AACA,YAAI,eAAe,MAAM;AACvB,sBAAY,QAAQ,CAAC,YAAY,gBAAgB;AAC/C,gBAAI,eAAe,aAAa,MAAM;AACpC,0CAA4B;AAC5B,2BAAa,eAAe;AAAA,YAC9B;AAAA,UACF,CAAC;AAAA,QACH,OAAO;AACL,sCAA4B;AAAA,QAC9B;AACA,+BAAuB,KAAK,aAAa,IAAI;AAC7C,uBAAe;AAAA,MACjB,CAAC;AAAA,IACH,CAAC;AACD,QAAI,CAAC,aAAa,MAAM,CAAC,UAAU,KAAK,GAAG;AACzC,YAAM,kBAAkB,YAAY,OAAO,CAAC,GAAG,OAAO,CAAC,aAAa,GAAG;AACvE,YAAM,IAAI,MAAM,kDAAkD,gBAAgB,KAAK,IAAI;AAAA,wCACzD,uBAAuB,KAAK,IAAI,IAAI;AAAA,IACxE;AACA,UAAM,sBAAsB,uBAAuB,OAAO,CAAC,aAAa,aAAa,OAAO;AAC1F,UAAI,aAAa;AACf,oBAAY,KAAK,EAAE;AAAA,MACrB;AACA,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AACL,UAAM,YAAY,CAAC;AACnB,wBAAoB,QAAQ,CAAC,OAAO;AAClC,eAAS,IAAI,MAAM,QAAQ,CAAC,aAAa;AACvC,cAAM,WAAW,kBAAkB,CAAC,eAAe,SAAS,GAAG,IAAI,MAAM,MAAM;AAC/E,kBAAU,KAAK,QAAQ;AAAA,MACzB,CAAC;AAAA,IACH,CAAC;AACD,UAAM,UAAU,MAAM,qBAAqB,SAAS;AACpD,UAAM,mBAAmB,CAAC;AAC1B,QAAI,oBAAoB;AACxB,wBAAoB,QAAQ,CAAC,OAAO;AAClC,YAAM,aAAa,SAAS,IAAI,MAAM;AACtC,UAAI,aAAa;AACjB,eAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,sBAAc,QAAQ,oBAAoB,IAAI;AAAA,MAChD;AACA,YAAM,cAAc,IAAI,YAAY,UAAU;AAC9C,YAAM,kBAAkB,IAAI,WAAW,WAAW;AAClD,UAAI,oBAAoB;AACxB,eAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,cAAM,UAAU,IAAI,WAAW,QAAQ,oBAAoB,GAAG;AAC9D,wBAAgB,IAAI,SAAS,iBAAiB;AAC9C,6BAAqB,QAAQ;AAAA,MAC/B;AACA,YAAM,iBAAiB,oBAAoB;AAC3C,qBAAe,QAAQ,CAAC,iBAAiB;AACvC,cAAM,aAAa,YAAY,MAAM,aAAa,aAAa,aAAa,cAAc,aAAa,SAAS;AAChH,cAAM,kBAAkB,cAAc,YAAY,CAAC,aAAa,aAAa,CAAC;AAC9E,mBAAW,QAAQ,iBAAiB;AAClC,2BAAiB,QAAQ,gBAAgB;AAAA,QAC3C;AAAA,MACF,CAAC;AACD,2BAAqB;AAAA,IACvB,CAAC;AACD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,yBAAyB;AAC7B,IAAI,YAAY;AAChB,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,MAAM,aAAa;AAC7B,SAAK,iBAAiB;AACtB,QAAI,eAAe,MAAM;AACvB,oBAAc,CAAC;AAAA,IACjB;AACA,SAAK,mBAAmB,YAAY;AACpC,SAAK,aAAa,YAAY;AAC9B,SAAK,qBAAqB,YAAY;AACtC,QAAI,YAAY,aAAa,MAAM;AACjC,aAAO,OAAO,YAAY,cAAc,YAAY,MAAM,6HAA6H;AACvL,WAAK,QAAQ,YAAY;AAAA,IAC3B,OAAO;AACL,WAAK,QAAQ,IAAI,EAAE,SAAS;AAAA,IAC9B;AACA,WAAO,QAAQ,QAAQ,KAAK,SAAS,GAAG,MAAM,yDAAyD;AACvG,QAAI,MAAM,QAAQ,IAAI,GAAG;AACvB,aAAO,KAAK,WAAW,GAAG,MAAM,iEAAiE,KAAK,UAAU;AAAA,IAClH;AACA,SAAK,OAAO;AACZ,QAAI,YAAY,eAAe,QAAQ,YAAY,YAAY,QAAQ,MAAM;AAC3E,YAAM,IAAI,MAAM,oEAAoE;AAAA,IACtF;AACA,SAAK,cAAc,YAAY,eAAe,CAAC;AAAA,EACjD;AAAA,EACA,MAAM,KAAK,gBAAgB;AACzB,QAAI,eAAe,yBAAyB,aAAa;AACvD,YAAM,IAAI,MAAM,yFAAyF;AAAA,IAC3G;AACA,UAAMO,SAAQ,OAAO,OAAO,EAAE,QAAQ,KAAK,eAAe,GAAG,KAAK,WAAW;AAC7E,IAAAA,OAAM,OAAO,IAAI,SAAS;AAC1B,UAAM,kBAAkB,CAAC;AAAA,MACvB,OAAO,CAAC,qBAAqB;AAAA,MAC7B,SAAS,eAAe;AAAA,IAC1B,CAAC;AACD,UAAM,iCAAiC,8BAA8B,gBAAgB,eAAe;AACpG,IAAAA,OAAM,KAAK,OAAO,cAAc,IAAI,KAAK,CAAC,KAAK,UAAU,8BAA8B,CAAC,GAAG,EAAE,MAAM,UAAU,CAAC,GAAG,YAAY;AAC7H,QAAI,eAAe,cAAc,MAAM;AACrC,MAAAA,OAAM,KAAK,OAAO,qBAAqB,IAAI,KAAK,CAAC,eAAe,UAAU,GAAG,EAAE,MAAM,uBAAuB,CAAC,GAAG,mBAAmB;AAAA,IACrI;AACA,UAAM,WAAW,MAAM,KAAK,MAAM,KAAK,MAAMA,MAAK;AAClD,QAAI,SAAS,IAAI;AACf,aAAO;AAAA,QACL,oBAAoB,6BAA6B,cAAc;AAAA,QAC/D,WAAW,CAAC,QAAQ;AAAA,MACtB;AAAA,IACF,OAAO;AACL,YAAM,IAAI,MAAM,gEAAgE,SAAS,SAAS;AAAA,IACpG;AAAA,EACF;AAAA,EACA,MAAM,OAAO;AACX,UAAM,qBAAqB,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,WAAW;AACvE,QAAI,CAAC,mBAAmB,IAAI;AAC1B,YAAM,IAAI,MAAM,cAAc,KAAK,gCAAgC,mBAAmB,+EAA+E;AAAA,IACvK;AACA,QAAI;AACJ,QAAI;AACF,kBAAY,MAAM,mBAAmB,KAAK;AAAA,IAC5C,SAAS,IAAP;AACA,UAAI,UAAU,+CAA+C,KAAK;AAClE,UAAI,KAAK,KAAK,SAAS,KAAK,GAAG;AAC7B,mBAAW;AAAA,MACb,OAAO;AACL,mBAAW;AAAA,MACb;AACA,YAAM,IAAI,MAAM,OAAO;AAAA,IACzB;AACA,UAAM,gBAAgB,UAAU;AAChC,UAAM,kBAAkB,UAAU;AAClC,QAAI,iBAAiB,QAAQ,mBAAmB,MAAM;AACpD,YAAM,IAAI,MAAM,2BAA2B,KAAK,+DAA+D;AAAA,IACjH;AACA,WAAO,yBAAyB,WAAW,CAAC,qBAAqB,KAAK,YAAY,gBAAgB,CAAC;AAAA,EACrG;AAAA,EACA,MAAM,YAAY,iBAAiB;AACjC,UAAM,aAAa,MAAM,QAAQ,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK;AAClE,UAAM,CAAC,QAAQ,MAAM,IAAI,SAAS,UAAU;AAC5C,UAAM,aAAa,KAAK,oBAAoB;AAC5C,UAAM,cAAc,CAAC;AACrB,eAAW,SAAS,iBAAiB;AACnC,kBAAY,KAAK,GAAG,MAAM,OAAO;AAAA,IACnC;AACA,UAAM,YAAY,CAAC;AACnB,UAAM,cAAc,CAAC;AACrB,eAAW,gBAAgB,iBAAiB;AAC1C,iBAAW,QAAQ,aAAa,OAAO;AACrC,YAAI,KAAK,sBAAsB,MAAM;AACnC,sBAAY,KAAK,KAAK,mBAAmB,IAAI,CAAC;AAAA,QAChD,OAAO;AACL,oBAAU,KAAK,aAAa,OAAO,MAAM;AAAA,QAC3C;AAAA,MACF;AAAA,IACF;AACA,QAAI,KAAK,oBAAoB;AAC3B,gBAAU,KAAK,GAAG,MAAM,QAAQ,IAAI,WAAW,CAAC;AAAA,IAClD;AACA,UAAM,UAAU,MAAM,yBAAyB,WAAW;AAAA,MACxD,aAAa,KAAK;AAAA,MAClB,WAAW,KAAK;AAAA,MAChB,YAAY,KAAK;AAAA,IACnB,CAAC;AACD,WAAO,CAAC,aAAa,wBAAwB,OAAO,CAAC;AAAA,EACvD;AACF;AACA,YAAY,mBAAmB;AAC/B,SAAS,SAAS,KAAK;AACrB,QAAM,YAAY,IAAI,YAAY,GAAG;AACrC,QAAM,kBAAkB,IAAI,YAAY,GAAG;AAC3C,QAAM,SAAS,IAAI,UAAU,GAAG,SAAS;AACzC,QAAM,SAAS,kBAAkB,YAAY,IAAI,UAAU,eAAe,IAAI;AAC9E,SAAO,CAAC,SAAS,KAAK,MAAM;AAC9B;AACA,SAAS,aAAa,KAAK;AACzB,SAAO,IAAI,MAAM,YAAY,gBAAgB,KAAK;AACpD;AACA,IAAI,aAAa,CAAC,KAAK,gBAAgB;AACrC,MAAI,OAAO,UAAU,gBAAgB,eAAe,QAAQ,YAAY,aAAa,OAAO;AAC1F,WAAO;AAAA,EACT,OAAO;AACL,QAAI,SAAS;AACb,QAAI,MAAM,QAAQ,GAAG,GAAG;AACtB,eAAS,IAAI,MAAM,CAAC,YAAY,aAAa,OAAO,CAAC;AAAA,IACvD,OAAO;AACL,eAAS,aAAa,GAAG;AAAA,IAC3B;AACA,QAAI,QAAQ;AACV,aAAO,KAAK,KAAK,WAAW;AAAA,IAC9B;AAAA,EACF;AACA,SAAO;AACT;AACA,iBAAiB,mBAAmB,UAAU;AAC9C,iBAAiB,mBAAmB,UAAU;AAC9C,SAAS,KAAK,MAAM,aAAa;AAC/B,SAAO,IAAI,YAAY,MAAM,WAAW;AAC1C;AACA,SAAS,mBAAmB,MAAM,aAAa;AAC7C,SAAO,KAAK,MAAM,WAAW;AAC/B;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,gBAAgB;AAC1B,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,OAAO;AACL,WAAO,KAAK;AAAA,EACd;AACF;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,aAAa;AACvB,SAAK,cAAc;AAAA,EACrB;AAAA,EACA,KAAK,gBAAgB;AACnB,WAAO,KAAK,YAAY,cAAc;AAAA,EACxC;AACF;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,SAAS;AACnB,QAAI,QAAQ,MAAM;AAChB,WAAK,OAAO,MAAM,QAAQ,QAAQ,QAAQ,KAAK,CAAC;AAAA,IAClD;AACA,QAAI,QAAQ,MAAM;AAChB,WAAK,OAAO,CAAC,mBAAmB,QAAQ,QAAQ,QAAQ,KAAK,cAAc,CAAC;AAAA,IAC9E;AAAA,EACF;AACF;AACA,SAAS,WAAW,gBAAgB,aAAa,YAAY,gBAAgB;AAC3E,QAAM,OAAO;AACb,SAAO,IAAI,iBAAiB,eAAe,GAAG,IAAI,CAAC;AACrD;AACA,SAAS,eAAe,gBAAgB,aAAa,YAAY,gBAAgB;AAC/E,MAAI,UAAU,WAAW,GAAG;AAC1B,UAAM,mBAAmB,eAAe,iBAAiB,QAAQ,eAAe,eAAe;AAC/F,QAAI,kBAAkB;AACpB,aAAO,IAAI,kBAAkB,cAAc;AAAA,IAC7C,OAAO;AACL,cAAQ,KAAK,uNAAuN;AACpO,aAAO,IAAI,kBAAkB,EAAE,eAAe,eAAe,CAAC;AAAA,IAChE;AAAA,EACF,OAAO;AACL,YAAQ,KAAK,uNAAuN;AACpO,WAAO,IAAI,kBAAkB;AAAA,MAC3B,eAAe;AAAA,MACf;AAAA,MACA;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH;AACF;AACA,SAAS,gBAAgB,aAAa;AACpC,SAAO,IAAI,iBAAiB,WAAW;AACzC;AACA,SAAS,oBAAoB,aAAa;AACxC,SAAO,IAAI,iBAAiB,WAAW;AACzC;AAGA,IAAI,eAAe,CAAC;AACpBP,UAAS,cAAc;AAAA,EACrB,iBAAiB,MAAM;AACzB,CAAC;AAGD,SAAS,QAAQ,GAAG,GAAG,aAAa,OAAO,aAAa,OAAO;AAC7D,MAAI,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AACzC,MAAI,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AACzC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,QAAM,QAAQ,EAAE,YAAY,WAAW;AACvC,SAAO,OAAO,UAAU,aAAa,QAAQ,KAAK;AACpD;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,QAAQ,SAAS,OAAO,UAAU,GAAG,WAAW,GAAG,QAAQ,SAAS;AAC3E,MAAI,QAAQ,GAAG;AACb,UAAM,IAAI,MAAM,iDAAiD,OAAO;AAAA,EAC1E;AACA,QAAM,WAAW,gBAAgB,SAAS,WAAW,UAAU,OAAO;AACtE,QAAM,SAAS,EAAE,SAAS,SAAS;AACnC,QAAM,QAAQ,EAAE,OAAO,OAAO,SAAS,SAAS;AAChD,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,iBAAiB;AACxB,MAAI,EAAE,IAAI,QAAQ,IAAI;AACxB;AACA,SAAS,kBAAkB;AACzB,MAAI,EAAE,IAAI,SAAS,IAAI;AACzB;AACA,SAAS,6BAA6B;AACpC,MAAI,EAAE,IAAI,gCAAgC,KAAK;AAC/C,UAAQ,KAAK,wDAAwD;AACvE;AACA,SAAS,gBAAgB,KAAK;AAC5B,MAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,YAAQ,KAAK,MAAM,6EAA6E;AAAA,EAClG;AACF;AACA,wBAAwB,eAAe;AACvC,SAAS,mBAAmB;AAC1B,SAAO,iBAAiB;AAC1B;AACA,SAAS,SAAS;AAChB,SAAO;AACT;AACA,SAAS,SAAS;AAChB,SAAO,OAAO,OAAO;AACvB;AACA,SAAS,QAAQ,GAAG;AAClB,SAAO,OAAO,QAAQ,CAAC;AACzB;AACA,SAAS,KAAK,UAAU,IAAI;AAC1B,SAAO,OAAO,KAAK,UAAU,EAAE;AACjC;AACA,SAAS,QAAQ,WAAW;AAC1B,QAAM,UAAU,sBAAsB,SAAS;AAC/C,UAAQ,QAAQ,CAAC,YAAY,QAAQ,QAAQ,CAAC;AAChD;AACA,SAAS,KAAK,QAAQ;AACpB,SAAO,OAAO,KAAK,MAAM;AAC3B;AACA,SAAS,KAAK,GAAG;AACf,SAAO,OAAO,KAAK,CAAC;AACtB;AACA,SAAS,WAAW,aAAa;AAC/B,SAAO,OAAO,WAAW,WAAW;AACtC;AACA,SAAS,QAAQ;AACf,SAAO,OAAO,MAAM;AACtB;AACA,SAAS,aAAa;AACpB,SAAO,OAAO;AAChB;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,cAAc,IAAI;AAC3B;AACA,SAAS,YAAY,MAAM;AACzB,SAAO,OAAO,YAAY,IAAI;AAChC;AACA,SAAS,mBAAmB,MAAM;AAChC,SAAO,OAAO,mBAAmB,IAAI;AACvC;AACA,SAAS,gBAAgB,MAAM,SAAS,WAAW,GAAG;AACpD,SAAO,OAAO,gBAAgB,MAAM,SAAS,QAAQ;AACvD;AACA,SAAS,UAAU;AACjB,SAAO,OAAO;AAChB;AACA,SAAS,YAAY,cAAc,UAAU;AAC3C,MAAI,EAAE,YAAY,cAAc,QAAQ;AAC1C;AAGA,SAAS,MAAM,QAAQ;AACrB,QAAM,SAAS,gBAAgB,QAAQ,SAAS,MAAM;AACtD,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,QAAQ;AACrB,QAAM,SAAS,gBAAgB,QAAQ,SAAS,MAAM;AACtD,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,WAAW,GAAG,MAAM,WAAW;AACtC,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,MAAI,QAAQ,MAAM;AAChB,WAAO,GAAG,MAAM,IAAI,CAAC,IAAI,OAAO,EAAE,EAAE,QAAQ;AAAA,EAC9C;AACA,SAAO,GAAG,SAAS,KAAK,QAAQ,MAAM,qCAAqC,GAAG,kCAAkC,OAAO;AACvH,OAAK,QAAQ,CAAC,SAAS;AACrB,WAAO,QAAQ,KAAK,OAAO,GAAG,MAAM,MAAM,+CAA+C,GAAG,OAAO,aAAa,MAAM;AAAA,EACxH,CAAC;AACD,MAAI,GAAG,QAAQ,GAAG;AAChB,WAAO,GAAG,MAAM;AAAA,EAClB;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,MAAI,GAAG,UAAU,aAAa;AAC5B,WAAO,KAAK,MAAM;AAChB,UAAI,QAAQ,KAAK,EAAE;AACnB,UAAI,QAAQ,KAAK,EAAE;AACnB,cAAQ,OAAO,UAAU,WAAW,EAAE,GAAG,MAAM,GAAG,KAAK;AACvD,cAAQ,OAAO,UAAU,WAAW,EAAE,GAAG,MAAM,GAAG,KAAK;AACvD,UAAI,WAAW;AACb,gBAAQ,IAAI,KAAK;AAAA,MACnB;AACA,aAAO,QAAQ,OAAO,KAAK;AAAA,IAC7B,CAAC;AAAA,EACH;AACA,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,iBAAiBuB,SAAQ,aAAa,YAAY;AACzD,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,iBAAiB;AACnE,QAAM,eAAe,gBAAgB,aAAa,eAAe,iBAAiB;AAClF,SAAO,cAAc,QAAQ,aAAa,KAAK,OAAO,UAAU,UAAU,GAAG,MAAM,+DAA+D,YAAY;AAC9J,SAAO,QAAQ,SAAS,GAAG,MAAM,gDAAgD,QAAQ,MAAM;AAC/F,SAAO,aAAa,SAAS,GAAG,MAAM,qDAAqD,aAAa,MAAM;AAC9G,SAAO,QAAQ,MAAM,OAAO,aAAa,MAAM,IAAI,MAAM,uCAAuC,QAAQ,MAAM,UAAU,aAAa,MAAM,qEAAqE;AAChN,SAAO,aAAa,KAAK,OAAO,UAAU,UAAU,GAAG,MAAM,4DAA4D,YAAY;AACrI,QAAM,eAAe,OAAO,KAAK,SAAS,OAAO,GAAG,UAAU;AAC9D,QAAM,oBAAoB,OAAO,KAAK,cAAc,OAAO,GAAG,UAAU;AACxE,QAAM,gBAAgB,UAAU,YAAY;AAC5C,QAAM,UAAU,OAAO,eAAe,iBAAiB;AACvD,SAAO,KAAK,SAAS,OAAO;AAC9B;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,IAAI,yBAAyB,CAAC;AAC9BvB,UAAS,wBAAwB;AAAA,EAC/B,4BAA4B,MAAM;AAAA,EAClC,kBAAkB,MAAM;AAAA,EACxB,kBAAkB,MAAM;AAC1B,CAAC;AACD,SAAS,iBAAiB,SAAS,UAAU;AAC3C,QAAM,SAAS,QAAQ;AACvB,QAAM,OAAO,CAAC;AACd,WAAS,KAAK,GAAG,KAAK,QAAQ,MAAM;AAClC,UAAM,MAAM,SAAS,IAAI;AACzB,UAAM,IAAI,QAAQ,QAAQ;AAC1B,UAAM,IAAI,SAAS,SAAS,SAAS,IAAI,OAAO;AAChD,QAAI,IAAI,KAAK,MAAM,GAAG;AACpB,WAAK,QAAQ,GAAG;AAAA,IAClB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,SAAS,UAAU;AAC3C,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,UAAM,QAAQ,QAAQ,QAAQ,SAAS,KAAK;AAC5C,UAAM,UAAU,SAAS,SAAS,KAAK;AACvC,UAAM,SAAS,SAAS;AACxB,QAAI,SAAS,QAAQ,UAAU,KAAK,SAAS,GAAG;AAC9C,aAAO,QAAQ,OAAO;AAAA,IACxB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,2BAA2B,QAAQ,QAAQ;AAClD,QAAM,SAAS,CAAC;AAChB,QAAM,KAAK,KAAK,IAAI,OAAO,QAAQ,OAAO,MAAM;AAChD,WAAS,KAAK,GAAG,KAAK,IAAI,MAAM;AAC9B,QAAI,IAAI,OAAO,OAAO,SAAS,KAAK;AACpC,QAAI,KAAK,MAAM;AACb,UAAI;AAAA,IACN;AACA,QAAI,IAAI,OAAO,OAAO,SAAS,KAAK;AACpC,QAAI,KAAK,MAAM;AACb,UAAI;AAAA,IACN;AACA,QAAI,MAAM,GAAG;AACX,aAAO,QAAQ,CAAC;AAAA,IAClB,WAAW,MAAM,GAAG;AAClB,aAAO,QAAQ,CAAC;AAAA,IAClB,WAAW,MAAM,GAAG;AAClB,YAAM,SAAS,wDAAwD,cAAc;AACrF,YAAM,MAAM,MAAM;AAAA,IACpB,OAAO;AACL,aAAO,QAAQ,CAAC;AAAA,IAClB;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,kBAAkB,CAAC;AACvBA,UAAS,iBAAiB;AAAA,EACxB,YAAY,MAAM;AAAA,EAClB,iBAAiB,MAAM;AAAA,EACvB,UAAU,MAAM;AAClB,CAAC;AAGD,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,kEAAkE;AAAA,EACpF;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,yEAAyE;AAAA,EAC3F;AACA,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,IAAI;AACJ,SAAS,YAAY,QAAQ,cAAc,GAAG;AAC5C,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,gEAAgE;AAAA,EAClF;AACA,MAAI,UAAU,MAAM;AAClB,UAAM,IAAI,MAAM,0DAA0D;AAAA,EAC5E;AACA,MAAI,eAAe;AACnB,MAAI,cAAc;AAClB,MAAI,UAAU;AACd,MAAI,UAAU;AACd,MAAI,eAAe;AACnB,MAAI,gBAAgB;AACpB,MAAI,OAAO,gBAAgB,YAAY;AACrC,mBAAe;AAAA,EACjB,WAAW,OAAO,cAAc,eAAe,kBAAkB,WAAW;AAC1E,kBAAc;AAAA,EAChB,WAAW,OAAO,qBAAqB,eAAe,kBAAkB,kBAAkB;AACxF,cAAU;AAAA,EACZ,WAAW,OAAO,qBAAqB,eAAe,kBAAkB,kBAAkB;AACxF,cAAU;AAAA,EACZ,WAAW,OAAO,cAAc,MAAM;AACpC,mBAAe;AAAA,EACjB,WAAW,OAAO,gBAAgB,eAAe,kBAAkB,aAAa;AAC9E,oBAAgB;AAAA,EAClB,OAAO;AACL,UAAM,IAAI,MAAM,qPAAqP,OAAO,YAAY,MAAM;AAAA,EAChS;AACA,QAAM,SAAS,UAAU,YAAY,OAAO,WAAW;AACvD,MAAI,UAAU,MAAM;AAClB,UAAM,SAAS,EAAE,OAAO;AACxB,UAAM,QAAQ,EAAE,YAAY;AAC5B,WAAO,OAAO,UAAU,YAAY,QAAQ,KAAK;AAAA,EACnD;AACA,QAAM,CAAC,OAAO,MAAM,IAAI,UAAU;AAAA,IAChC,OAAO;AAAA,IACP,OAAO;AAAA,EACT,IAAI,CAAC,OAAO,OAAO,OAAO,MAAM;AAChC,MAAI;AACJ,MAAI,cAAc;AAChB,WAAO,OAAO,WAAW,IAAI,EAAE,aAAa,GAAG,GAAG,OAAO,MAAM,EAAE;AAAA,EACnE,WAAW,eAAe,cAAc;AACtC,WAAO,OAAO;AAAA,EAChB,WAAW,WAAW,WAAW,eAAe;AAC9C,QAAI,uBAAuB,MAAM;AAC/B,UAAI,OAAO,aAAa,aAAa;AACnC,YAAI,OAAO,oBAAoB,eAAe,OAAO,sCAAsC,aAAa;AACtG,gCAAsB,IAAI,gBAAgB,GAAG,CAAC,EAAE,WAAW,IAAI;AAAA,QACjE,OAAO;AACL,gBAAM,IAAI,MAAM,sGAAsG;AAAA,QACxH;AAAA,MACF,OAAO;AACL,8BAAsB,SAAS,cAAc,QAAQ,EAAE,WAAW,MAAM,EAAE,oBAAoB,KAAK,CAAC;AAAA,MACtG;AAAA,IACF;AACA,wBAAoB,OAAO,QAAQ;AACnC,wBAAoB,OAAO,SAAS;AACpC,wBAAoB,UAAU,QAAQ,GAAG,GAAG,OAAO,MAAM;AACzD,WAAO,oBAAoB,aAAa,GAAG,GAAG,OAAO,MAAM,EAAE;AAAA,EAC/D;AACA,MAAI;AACJ,MAAI,gBAAgB,GAAG;AACrB,aAAS,IAAI,WAAW,IAAI;AAAA,EAC9B,OAAO;AACL,UAAM,YAAY,QAAQ;AAC1B,aAAS,IAAI,WAAW,YAAY,WAAW;AAC/C,aAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,eAAS,UAAU,GAAG,UAAU,aAAa,EAAE,SAAS;AACtD,eAAO,KAAK,cAAc,WAAW,KAAK,KAAK,IAAI;AAAA,MACrD;AAAA,IACF;AAAA,EACF;AACA,QAAM,WAAW,CAAC,QAAQ,OAAO,WAAW;AAC5C,SAAO,SAAS,QAAQ,UAAU,OAAO;AAC3C;AACA,SAAS,YAAY,QAAQ;AAC3B,SAAO,UAAU,QAAQ,OAAO,gBAAgB;AAClD;AACA,SAAS,8BAA8B;AACrC,SAAO,OAAO,WAAW,eAAe,OAAO,gBAAgB,eAAe,OAAO,eAAe,mBAAmB;AACzH;AACA,SAAS,iBAAiB,QAAQ;AAChC,SAAO,UAAU,QAAQ,OAAO,UAAU,KAAK,OAAO,WAAW;AACnE;AACA,SAAS,2BAA2B,QAAQ;AAC1C,SAAO,4BAA4B,KAAK,EAAE,kBAAkB,gBAAgB,iBAAiB,MAAM,KAAK,CAAC,YAAY,MAAM;AAC7H;AACA,eAAe,gBAAgB,QAAQ,cAAc,GAAG;AACtD,MAAI,SAAS;AACb,MAAI,IAAI,EAAE,QAAQ,qBAAqB,KAAK,2BAA2B,MAAM,GAAG;AAC9E,QAAI;AACJ,QAAI;AACF,oBAAc,MAAM,kBAAkB,QAAQ,EAAE,kBAAkB,OAAO,CAAC;AAAA,IAC5E,SAAS,IAAP;AACA,oBAAc;AAAA,IAChB;AACA,QAAI,eAAe,QAAQ,YAAY,UAAU,OAAO,SAAS,YAAY,WAAW,OAAO,QAAQ;AACrG,eAAS;AAAA,IACX,OAAO;AACL,eAAS;AAAA,IACX;AAAA,EACF,OAAO;AACL,aAAS;AAAA,EACX;AACA,SAAO,YAAY,QAAQ,WAAW;AACxC;AACA,eAAe,SAAS,KAAKc,SAAQ;AACnC,MAAI,OAAO,gBAAgB,KAAK,OAAO,UAAU;AACjD,MAAI,EAAE,eAAe,SAAS;AAC5B,UAAM,oBAAoB;AAC1B,WAAO,KAAK,mBAAmB,OAAO;AACtC,sBAAkB,QAAQ;AAAA,EAC5B;AACA,MAAI,KAAK,SAAS,KAAK,KAAK,SAAS,GAAG;AACtC,UAAM,IAAI,MAAM,wDAAwD,KAAK,OAAO;AAAA,EACtF;AACA,QAAM,CAAC,QAAQ,KAAK,IAAI,KAAK,MAAM,MAAM,GAAG,CAAC;AAC7C,QAAM,QAAQ,KAAK,SAAS,IAAI,IAAI,KAAK,MAAM;AAC/C,MAAI,QAAQ,KAAK,UAAU,GAAG;AAC5B,UAAM,IAAI,MAAM,0DAA0D,OAAO;AAAA,EACnF;AACA,MAAI,KAAK,UAAU,aAAa,KAAK,UAAU,SAAS;AACtD,UAAM,IAAI,MAAM,kCAAkC,KAAK,6CAA6C;AAAA,EACtG;AACA,QAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,QAAM,aAAa,KAAK,UAAU,YAAY,MAAM;AACpD,QAAM,QAAQ,IAAI,kBAAkB,QAAQ,SAAS,CAAC;AACtD,WAAS,KAAK,GAAG,KAAK,SAAS,OAAO,EAAE,IAAI;AAC1C,UAAM,OAAO,CAAC,GAAG,GAAG,GAAG,GAAG;AAC1B,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,YAAM,QAAQ,KAAK,KAAK,QAAQ;AAChC,UAAI,KAAK,UAAU,WAAW;AAC5B,YAAI,QAAQ,KAAK,QAAQ,GAAG;AAC1B,gBAAM,IAAI,MAAM,mFAAmF,QAAQ;AAAA,QAC7G;AAAA,MACF,WAAW,KAAK,UAAU,SAAS;AACjC,YAAI,QAAQ,KAAK,QAAQ,KAAK;AAC5B,gBAAM,IAAI,MAAM,mFAAmF,QAAQ;AAAA,QAC7G;AAAA,MACF;AACA,UAAI,UAAU,GAAG;AACf,aAAK,KAAK,QAAQ;AAClB,aAAK,KAAK,QAAQ;AAClB,aAAK,KAAK,QAAQ;AAAA,MACpB,OAAO;AACL,aAAK,KAAK,QAAQ;AAAA,MACpB;AAAA,IACF;AACA,UAAM,IAAI,KAAK;AACf,UAAM,IAAI,KAAK,KAAK,MAAM,KAAK,EAAE;AACjC,UAAM,IAAI,KAAK,KAAK,MAAM,KAAK,EAAE;AACjC,UAAM,IAAI,KAAK,KAAK,MAAM,KAAK,EAAE;AACjC,UAAM,IAAI,KAAK,KAAK,MAAM,KAAK,EAAE;AAAA,EACnC;AACA,MAAIA,WAAU,MAAM;AAClB,IAAAA,QAAO,QAAQ;AACf,IAAAA,QAAO,SAAS;AAChB,UAAM,MAAMA,QAAO,WAAW,IAAI;AAClC,UAAM,YAAY,IAAI,UAAU,OAAO,OAAO,MAAM;AACpD,QAAI,aAAa,WAAW,GAAG,CAAC;AAAA,EAClC;AACA,MAAI,SAAS,KAAK;AAChB,SAAK,QAAQ;AAAA,EACf;AACA,SAAO;AACT;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,IAAI,yBAAyB,CAAC;AAC9Bd,UAAS,wBAAwB;AAAA,EAC/B,oBAAoB,MAAM;AAC5B,CAAC;AACD,SAAS,mBAAmB,SAAS,SAAS;AAC5C,QAAM,aAAa,QAAQ,MAAM;AACjC,QAAM,cAAc,QAAQ,MAAM;AAClC,MAAI,aAAa,GAAG;AAClB,UAAM,IAAI,MAAM,4EAA4E,aAAa;AAAA,EAC3G;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,8EAA8E,cAAc;AAAA,EAC9G;AACA,MAAI,QAAQ,UAAU,SAAS;AAC7B,UAAM,IAAI,MAAM,yEAAyE,QAAQ,QAAQ;AAAA,EAC3G;AACA,MAAI,QAAQ,MAAM,cAAc,KAAK,YAAY;AAC/C,UAAM,IAAI,MAAM,iEAAiE,QAAQ,MAAM,cAAc,UAAU,YAAY;AAAA,EACrI;AACA,MAAI,cAAc,QAAQ,KAAK,MAAM,GAAG;AACtC,UAAM,IAAI,MAAM,mEAAmE,QAAQ,QAAQ;AAAA,EACrG;AACA,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,MAAI,UAAU;AACd,WAAS,KAAK,GAAG,KAAK,aAAa,SAAS,GAAG,EAAE,IAAI;AACnD,eAAW,aAAa;AAAA,EAC1B;AACA,QAAM,aAAa,QAAQ;AAC3B,QAAM,cAAc,aAAa,MAAM;AACvC,cAAY,IAAI;AAChB,MAAI,YAAY;AAChB,WAAS,KAAK,WAAW,KAAK,YAAY,EAAE,IAAI;AAC9C,iBAAa,WAAW;AACxB,gBAAY,KAAK,WAAW,GAAG;AAAA,EACjC;AACA,QAAMgB,WAAU;AAAA,IACd,GAAG,eAAe,QAAQ,KAAK,EAAE,IAAI,CAAC,WAAW,SAAS,SAAS;AAAA,IACnE;AAAA,EACF,EAAE,MAAM,GAAG,SAAS;AACpB,SAAO,CAAC,aAAa,SAAS,WAAWA,QAAO;AAClD;AAGA,IAAI,0BAA0B,CAAC;AAC/BhB,UAAS,yBAAyB;AAAA,EAChC,iBAAiB,MAAM;AAAA,EACvB,eAAe,MAAM;AAAA,EACrB,qBAAqB,MAAM;AAC7B,CAAC;AACD,SAAS,oBAAoB,OAAO,SAAS,SAAS;AACpD,QAAM,WAAW,QAAQ,OAAO,IAAI,QAAQ,MAAM,QAAQ,OAAO,KAAK;AACtE,QAAM,WAAW,QAAQ,OAAO,IAAI,QAAQ,OAAO,IAAI;AACvD,QAAM,aAAa,6FAA6F,QAAQ,yBAAyB,QAAQ,iBAAiB,oBAAoB,2BAA2B;AACzN,MAAI,QAAQ,OAAO,UAAU;AAC3B,UAAM,IAAI,MAAM,aAAa,kBAAkB,YAAY;AAAA,EAC7D;AACA,MAAI,MAAM,SAAS,YAAY,QAAQ,OAAO,WAAW;AACvD,UAAM,IAAI,MAAM,aAAa,0BAA0B,YAAY,QAAQ,OAAO,WAAW;AAAA,EAC/F;AACA,MAAI,QAAQ,SAAS,WAAW,MAAM,SAAS,UAAU;AACvD,UAAM,IAAI,MAAM,aAAa,mBAAmB,WAAW,MAAM,SAAS,UAAU;AAAA,EACtF;AACA,WAAS,IAAI,GAAG,IAAI,UAAU,EAAE,GAAG;AACjC,QAAI,QAAQ,MAAM,OAAO,QAAQ,MAAM,IAAI;AACzC,YAAM,IAAI,MAAM,aAAa,kBAAkB,OAAO,QAAQ,MAAM,wBAAwB,OAAO,QAAQ,MAAM,MAAM;AAAA,IACzH;AAAA,EACF;AACA,WAAS,IAAI,GAAG,IAAI,QAAQ,OAAO,UAAU,EAAE,GAAG;AAChD,QAAI,QAAQ,MAAM,IAAI,cAAc,MAAM,IAAI,WAAW;AACvD,YAAM,IAAI,MAAM,aAAa,kBAAkB,IAAI,cAAc,QAAQ,MAAM,IAAI,uBAAuB,IAAI,cAAc,MAAM,IAAI,YAAY;AAAA,IACpJ;AAAA,EACF;AACF;AACA,SAAS,cAAc,SAAS,SAAS,OAAO;AAC9C,MAAI,QAAQ,OAAO,GAAG;AACpB,UAAM,IAAI,MAAM,+EAA+E,QAAQ,OAAO;AAAA,EAChH;AACA,MAAI,QAAQ,OAAO,GAAG;AACpB,UAAM,IAAI,MAAM,+EAA+E,QAAQ,OAAO;AAAA,EAChH;AACA,MAAI,QAAQ,UAAU,SAAS;AAC7B,UAAM,IAAI,MAAM,0DAA0D,QAAQ,OAAO;AAAA,EAC3F;AACA,MAAI,MAAM,SAAS,GAAG;AACpB,UAAM,IAAI,MAAM,6DAA6D,OAAO;AAAA,EACtF;AACA,MAAI,MAAM,WAAW,GAAG;AACtB,QAAI,QAAQ,SAAS,GAAG;AACtB,YAAM,IAAI,MAAM,sDAAsD,QAAQ,OAAO;AAAA,IACvF;AACA,QAAI,QAAQ,SAAS,GAAG;AACtB,YAAM,IAAI,MAAM,sDAAsD,QAAQ,OAAO;AAAA,IACvF;AAAA,EACF;AACA,sBAAoB,OAAO,SAAS,OAAO;AAC7C;AACA,SAAS,gBAAgB,SAAS,SAAS,OAAO;AAChD,QAAM,cAAc,QAAQ,MAAM;AAClC,QAAM,YAAY,cAAc,IAAI,QAAQ,MAAM,cAAc,KAAK;AACrE,QAAM,UAAU,MAAM;AACtB,MAAI,YAAY;AAChB,WAAS,KAAK,WAAW,KAAK,SAAS,EAAE,IAAI;AAC3C,iBAAa,MAAM;AAAA,EACrB;AACA,QAAM,eAAe,YAAY,IAAI,IAAI;AACzC,QAAM,aAAa,cAAc,QAAQ,KAAK,IAAI;AAClD,QAAMgB,WAAU,CAAC,GAAG,eAAe,MAAM,MAAM,GAAG,SAAS,CAAC,GAAG,CAAC;AAChE,QAAMQ,cAAa,cAAc,KAAK;AACtC,SAAO,EAAE,WAAW,YAAY,WAAW,SAAAR,UAAS,YAAAQ,YAAW;AACjE;AAGA,IAAI,qBAAqB,CAAC;AAC1BxB,UAAS,oBAAoB;AAAA,EAC3B,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,iBAAiB,MAAM;AAAA,EACvB,mBAAmB,MAAM;AAAA,EACzB,kBAAkB,MAAM;AAAA,EACxB,YAAY,MAAM;AAAA,EAClB,kBAAkB,MAAM;AAAA,EACxB,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,4BAA4B,MAAM;AAAA,EAClC,aAAa,MAAM;AAAA,EACnB,2BAA2B,MAAM;AAAA,EACjC,gBAAgB,MAAM;AAAA,EACtB,uBAAuB,MAAM;AAC/B,CAAC;AACD,IAAI,WAAW;AACf,IAAI,cAAc;AAClB,SAAS,kBAAkB,QAAQ,OAAOG,OAAM;AAC9C,QAAM,YAAY,OAAO,MAAM;AAC/B,SAAO,cAAc,MAAM,QAAQ,MAAM,iBAAiB,+BAA+B,2CAA2C,aAAa;AACjJ,SAAO,cAAcA,MAAK,QAAQ,MAAM,iBAAiB,8BAA8BA,2CAA0C,aAAa;AAC9I,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,WAAO,MAAM,MAAMA,MAAK,OAAO,OAAO,MAAM,KAAK,MAAM,iBAAiB,qBAAqB,cAAc,QAAQ,MAAM,MAAMA,MAAK,mCAAmC,QAAQ,OAAO,MAAM,MAAM;AAAA,EACpM;AACF;AACA,SAAS,WAAWK,OAAM;AACxB,QAAM,OAAO,CAAC;AACd,MAAI,OAAO;AACX,SAAOA,QAAO,GAAG;AACf,QAAIA,QAAO,GAAG;AACZ,WAAK,KAAK,IAAI;AAAA,IAChB;AACA,IAAAA,SAAQ;AACR;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,OAAO,KAAKQ,UAAS;AAC5C,QAAMb,QAAO,CAAC;AACd,WAAS,OAAO,GAAG,OAAO,MAAM,QAAQ,QAAQ;AAC9C,IAAAA,MAAK,QAAQ,KAAK,MAAM,IAAI,QAAQ,MAAM,SAASa,SAAQ,KAAK;AAAA,EAClE;AACA,SAAOb;AACT;AACA,SAAS,sBAAsBa,UAAS,wBAAwB,eAAe,YAAY;AACzF,QAAM,aAAa,CAAC,GAAGA,QAAO;AAC9B,WAAS,KAAK,WAAW,QAAQ,KAAK,WAAW,QAAQ,MAAM;AAC7D,eAAW,KAAK,CAAC;AAAA,EACnB;AACA,WAAS,KAAK,GAAG,KAAK,eAAe,MAAM;AACzC,QAAI,OAAO,GAAG;AACZ,iBAAW,0BAA0B;AAAA,IACvC,OAAO;AACL,iBAAW,OAAO,wBAAwB,GAAG,CAAC;AAC9C,iBAAW,IAAI;AAAA,IACjB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,wBAAwB,eAAe,gBAAgB;AAC9E,MAAI,kBAAkB,wBAAwB;AAC5C,WAAO;AAAA,EACT;AACA,SAAO,kBAAkB,gBAAgB;AAC3C;AACA,SAAS,cAAc,eAAe,wBAAwB;AAC5D,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,eAAe,MAAM;AACzC,eAAW,KAAK,yBAAyB,EAAE;AAAA,EAC7C;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,YAAY,cAAc,qBAAqB,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc;AAC/H,QAAM,YAAY,WAAW;AAC7B,MAAI,kBAAkB,IAAI,MAAM,SAAS,GAAG,gBAAgB,IAAI,MAAM,SAAS,GAAG,oBAAoB,IAAI,MAAM,SAAS;AACzH,MAAI,aAAa,UAAU,sBAAsB,GAAG;AAClD,UAAM,YAAY,aAAa;AAC/B,UAAM,gBAAgB,sBAAsB;AAC5C,sBAAkB,2BAA2B,WAAW,WAAW,eAAe,OAAO,UAAU;AACnG,oBAAgB,0BAA0B,SAAS,WAAW,eAAe,KAAK,UAAU;AAC5F,wBAAoB,sBAAsBA,UAAS,WAAW,eAAe,UAAU;AAAA,EACzF,OAAO;AACL,aAAS,OAAO,GAAG,OAAO,WAAW,QAAQ;AAC3C,sBAAgB,QAAQ,aAAa,WAAW,OAAOA,UAAS,YAAY,MAAM,YAAY;AAC9F,oBAAc,QAAQ,YAAY,SAAS,KAAKA,UAAS,YAAY,MAAM,YAAY;AACvF,wBAAkB,QAAQ,eAAeA,UAAS,MAAM,YAAY;AAAA,IACtE;AAAA,EACF;AACA,SAAO;AAAA,IACL,OAAO;AAAA,IACP,KAAK;AAAA,IACL,SAAS;AAAA,EACX;AACF;AACA,SAAS,2BAA2B,WAAW,wBAAwB,eAAe,eAAe,YAAY;AAC/G,QAAM,aAAa,CAAC,GAAG,UAAU;AACjC,QAAM,aAAa,cAAc,eAAe,sBAAsB;AACtE,WAAS,OAAO,GAAG,OAAO,WAAW,QAAQ,QAAQ;AACnD,QAAI,WAAW,QAAQ,IAAI,IAAI,IAAI;AACjC,iBAAW,QAAQ;AAAA,IACrB,OAAO;AACL,YAAM,eAAe,gBAAgB,wBAAwB,eAAe,IAAI;AAChF,UAAI,gBAAgB,cAAc;AAClC,UAAI,YAAY,KAAK,cAAc;AACjC,wBAAgB;AAAA,MAClB;AACA,iBAAW,QAAQ;AAAA,IACrB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,0BAA0B,SAAS,wBAAwB,eAAe,aAAa,YAAY;AAC1G,QAAM,aAAa,CAAC,GAAG,UAAU;AACjC,QAAM,aAAa,cAAc,eAAe,sBAAsB;AACtE,WAAS,OAAO,GAAG,OAAO,WAAW,QAAQ,QAAQ;AACnD,QAAI,WAAW,QAAQ,IAAI,IAAI,IAAI;AACjC,iBAAW,QAAQ,OAAO;AAAA,IAC5B,OAAO;AACL,YAAM,eAAe,gBAAgB,wBAAwB,eAAe,IAAI;AAChF,UAAI,gBAAgB,YAAY;AAChC,UAAI,UAAU,KAAK,cAAc;AAC/B,wBAAgB,OAAO;AAAA,MACzB;AACA,iBAAW,QAAQ;AAAA,IACrB;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,MAAM;AAC7C,UAAM,WAAW,WAAW;AAC5B,QAAI,WAAW,MAAM,GAAG;AACtB,iBAAW,OAAO;AAAA,IACpB;AACA,eAAW,MAAM,MAAM,GAAG,WAAW,KAAK,WAAW,GAAG;AAAA,EAC1D;AACA,SAAO;AACT;AACA,SAAS,eAAeA,UAAS,MAAM,cAAc;AACnD,MAAI,SAASA,SAAQ;AACrB,MAAI,eAAe,KAAK,QAAQ,UAAU,MAAM;AAC9C,aAAS;AAAA,EACX;AACA,SAAO;AACT;AACA,SAAS,aAAa,WAAW,cAAcA,UAAS,YAAY,MAAM,cAAc;AACtF,MAAI,QAAQ,aAAa;AACzB,QAAM,SAASA,SAAQ,SAAS;AAChC,MAAI,YAAY,KAAK,QAAQ,eAAe,KAAK,QAAQ,SAAS,MAAM;AACtE,QAAI,SAAS,GAAG;AACd,cAAQ,OAAO;AAAA,IACjB,OAAO;AACL,cAAQ,OAAO;AAAA,IACjB;AAAA,EACF;AACA,QAAM,WAAW,WAAW;AAC5B,MAAI,QAAQ,GAAG;AACb,aAAS;AAAA,EACX;AACA,UAAQ,MAAM,GAAG,OAAO,WAAW,CAAC;AACpC,SAAO;AACT;AACA,SAAS,YAAY,SAAS,aAAaA,UAAS,YAAY,MAAM,cAAc;AAClF,MAAI,OAAO,YAAY;AACvB,QAAM,SAASA,SAAQ,SAAS;AAChC,MAAI,UAAU,KAAK,QAAQ,eAAe,KAAK,QAAQ,QAAQ,MAAM;AACnE,QAAI,SAAS,GAAG;AACd,aAAO,OAAO;AAAA,IAChB,OAAO;AACL,aAAO,OAAO;AAAA,IAChB;AAAA,EACF;AACA,QAAM,WAAW,WAAW;AAC5B,MAAI,OAAO,GAAG;AACZ,YAAQ;AAAA,EACV;AACA,MAAI,SAAS,GAAG;AACd,WAAO,MAAM,GAAG,MAAM,QAAQ;AAAA,EAChC,OAAO;AACL,WAAO,MAAM,IAAI,MAAM,WAAW,CAAC;AAAA,EACrC;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,OAAO,OAAOb,OAAM;AAC5C,MAAI,kBAAkBA,MAAK;AAC3B,WAAS,KAAK,GAAG,KAAKA,MAAK,QAAQ,MAAM;AACvC,QAAIA,MAAK,MAAM,GAAG;AAChB,wBAAkB;AAClB;AAAA,IACF;AAAA,EACF;AACA,WAAS,KAAK,kBAAkB,GAAG,KAAKA,MAAK,QAAQ,MAAM;AACzD,QAAI,MAAM,MAAM,KAAKA,MAAK,QAAQ,MAAM,KAAK;AAC3C,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,OAAOa,UAAS;AACzC,MAAI,aAAa,MAAM,SAAS,IAAI,MAAM,MAAM,SAAS,KAAK;AAC9D,WAAS,KAAK,GAAG,KAAK,MAAM,SAAS,GAAG,MAAM;AAC5C,kBAAc,MAAM,MAAMA,SAAQ;AAAA,EACpC;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,GAAG,OAAOb,OAAM;AACxC,MAAI;AACJ,QAAM,QAAQ,EAAE,MAAM;AACtB,MAAI,OAAO,UAAU,UAAU;AAC7B,aAAS,CAAC,OAAO,GAAG,IAAI,MAAM,QAAQ,CAAC,EAAE,KAAK,CAAC,CAAC;AAAA,EAClD,WAAW,MAAM,SAAS,OAAO;AAC/B,aAAS,MAAM,OAAO,IAAI,MAAM,QAAQ,MAAM,MAAM,EAAE,KAAK,CAAC,CAAC;AAAA,EAC/D,OAAO;AACL,aAAS,MAAM,MAAM;AAAA,EACvB;AACA,SAAO,QAAQ,CAAC,MAAM;AACpB,WAAO,MAAM,IAAI,MAAM,mDAAmD;AAAA,EAC5E,CAAC;AACD,MAAI;AACJ,MAAIA,SAAQ,MAAM;AAChB,YAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,EAAE;AAAA,EAClC,WAAW,OAAOA,UAAS,UAAU;AACnC,YAAQ,CAACA,OAAM,GAAG,IAAI,MAAM,QAAQ,CAAC,EAAE,KAAK,EAAE,CAAC;AAAA,EACjD,WAAWA,MAAK,SAAS,OAAO;AAC9B,YAAQA,MAAK,OAAO,IAAI,MAAM,QAAQA,MAAK,MAAM,EAAE,KAAK,EAAE,CAAC;AAAA,EAC7D,OAAO;AACL,YAAQA;AAAA,EACV;AACA,UAAQ,MAAM,IAAI,CAAC,GAAG,OAAO;AAC3B,QAAI,KAAK,GAAG;AACV,aAAO;AAAA,IACT,OAAO;AACL,aAAO,MAAM,IAAI,MAAM,qDAAqD,mCAAmC,KAAK;AACpH,aAAO,EAAE,MAAM,MAAM,OAAO;AAAA,IAC9B;AAAA,EACF,CAAC;AACD,SAAO,CAAC,QAAQ,KAAK;AACvB;AACA,SAAS,UAAU,QAAQ,OAAO,KAAKa,UAAS,WAAW,SAAS,cAAc,aAAa,gBAAgB;AAC7G,MAAI;AACJ,MAAIA,YAAW,MAAM;AACnB,qBAAiB,IAAI,MAAM,MAAM,MAAM;AACvC,mBAAe,KAAK,CAAC;AAAA,EACvB,OAAO;AACL,qBAAiBA;AAAA,EACnB;AACA,MAAI,gBAAgB,SAAS,eAAe,eAAe,OAAO,GAAG;AACnE,UAAM,IAAI,MAAM,4CAA4C;AAAA,EAC9D;AACA,MAAI,eAAe;AACnB,QAAM,aAAa;AAAA,IACjB,MAAM,eAAe;AAAA,IACrB,yBAAyB;AAAA,IACzB,OAAO,MAAM,MAAM;AAAA,IACnB,KAAK,IAAI,MAAM;AAAA,IACf,SAAS,eAAe,MAAM;AAAA,IAC9B;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,MAAM,MAAM;AAC3C,QAAI,iBAAiB,KAAK,KAAK,iBAAiB,GAAG;AACjD,iBAAW;AAAA,IACb;AACA,QAAI,KAAK,KAAK,cAAc;AAC1B,qBAAe;AAAA,IACjB;AAAA,EACF;AACA,MAAI,CAAC,cAAc;AACjB,eAAW,gBAAgB,KAAK,WAAW;AAC3C,eAAW;AAAA,EACb;AACA,QAAM,YAAY;AAAA,IAChB,MAAM,OAAO;AAAA,IACb,WAAW;AAAA,IACX,SAAS;AAAA,IACT,YAAY;AAAA,IACZ,UAAU;AAAA,EACZ;AACA,iBAAe,YAAY,SAAS;AACpC,MAAI,aAAa;AACjB,MAAI,YAAY;AAChB,MAAI,gBAAgB;AACpB,QAAM,kBAAkB,CAAC;AACzB,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,UAAU,QAAQ,QAAQ,GAAG;AAC/B,YAAM,MAAM,WAAW,sBAAsB;AAAA,IAC/C;AACA,UAAM,UAAU,CAAC,EAAE,UAAU,iBAAiB,KAAK;AACnD,UAAM,OAAO,OAAO;AACpB,QAAI,SAAS,IAAI;AACf,sBAAgB,KAAK,UAAU,IAAI,EAAE;AACrC;AAAA,IACF;AACA,UAAM,QAAQ,CAAC,UAAU,YAAY,KAAK,IAAI,UAAU,UAAU,KAAK,EAAE;AACzE,UAAM,aAAa;AAAA,MACjB,UAAU,QAAQ,MAAM,IAAI,IAAI;AAAA,MAChC,UAAU,QAAQ,MAAM,IAAI,OAAO,OAAO;AAAA,IAC5C;AACA,QAAI,WAAW,UAAU,QAAQ,OAAO,GAAG;AACzC,YAAM,MAAM,8CAA8C;AAAA,IAC5D;AACA,oBAAgB,iBAAiB,UAAU,QAAQ,QAAQ;AAC3D,UAAM,oBAAoB,CAAC,EAAE,UAAU,YAAY,KAAK,MAAM,UAAU,UAAU,KAAK;AACvF,QAAI,UAAU,cAAc,UAAU,UAAU;AAC9C,UAAI,SAAS;AACX,cAAM,OAAO,UAAU,MAAM,MAAM,IAAI,OAAO,UAAU,MAAM,MAAM,UAAU,MAAM;AACpF,kBAAU,MAAM,MAAM;AACtB,kBAAU,IAAI,MAAM,UAAU,MAAM,MAAM;AAC1C,YAAI,OAAO,KAAK,QAAQ,MAAM;AAC5B,gBAAM,MAAM,eAAe,UAAU,MAAM,oBAAoB,mBAAmB;AAAA,QACpF;AAAA,MACF,OAAO;AACL,kBAAU,MAAM,MAAM,UAAU,UAAU,MAAM,KAAK,GAAG,UAAU,QAAQ,KAAK,MAAM,OAAO,UAAU;AACtG,kBAAU,IAAI,MAAM,UAAU,UAAU,IAAI,KAAK,GAAG,UAAU,QAAQ,KAAK,MAAM,OAAO,UAAU;AAAA,MACpG;AACA,YAAM,qBAAqB,UAAU,QAAQ,QAAQ,KAAK,UAAU,MAAM,QAAQ,KAAK,UAAU,IAAI,QAAQ;AAC7G,mBAAa,cAAc;AAC3B,kBAAY,cAAc,OAAO,KAAK,UAAU,QAAQ,QAAQ,KAAK;AAAA,IACvE,OAAO;AACL,mBAAa,eAAe,UAAU,QAAQ,QAAQ,KAAK;AAC3D,kBAAY,cAAc,OAAO,KAAK,UAAU,QAAQ,QAAQ,KAAK;AAAA,IACvE;AACA,QAAI;AACJ,QAAI,gBAAgB;AACpB,QAAI,UAAU,cAAc,UAAU,UAAU;AAC9C,uBAAiB,UAAU,IAAI,MAAM,UAAU,MAAM;AACrD,sBAAgB;AAAA,IAClB,WAAW,SAAS;AAClB,uBAAiB;AACjB,sBAAgB;AAAA,IAClB,WAAW,mBAAmB;AAC5B,UAAI,QAAQ,GAAG;AACb,YAAI,UAAU,QAAQ,MAAM,GAAG;AAC7B,2BAAiB,CAAC;AAAA,QACpB,OAAO;AACL,2BAAiB;AAAA,QACnB;AACA,wBAAgB;AAAA,MAClB;AAAA,IACF;AACA,QAAI,eAAe;AACjB,UAAI;AACJ,UAAI,mBAAmB,KAAK,iBAAiB,MAAM,UAAU,QAAQ,MAAM,GAAG;AAC5E,gBAAQ;AAAA,MACV,OAAO;AACL,gBAAQ,KAAK,MAAM,iBAAiB,UAAU,QAAQ,GAAG,KAAK,iBAAiB,UAAU,QAAQ,QAAQ,IAAI,IAAI;AAAA,MACnH;AACA,sBAAgB,KAAK,KAAK;AAAA,IAC5B,OAAO;AACL,sBAAgB,KAAK,EAAE;AAAA,IACzB;AAAA,EACF;AACA,WAAS,WAAW,GAAG,WAAW,UAAU,wBAAwB,QAAQ,EAAE,UAAU;AACtF,UAAM,cAAc,UAAU,wBAAwB;AACtD,QAAI,eAAe,GAAG;AACpB,iBAAW,KAAK,gBAAgB,YAAY;AAAA,IAC9C,WAAW,gBAAgB,UAAU;AACnC,iBAAW,KAAK,CAAC;AAAA,IACnB;AAAA,EACF;AACA,QAAM,mBAAmB,WAAW,OAAO,CAAC,KAAK,OAAO,UAAU,wBAAwB,QAAQ,QAAQ;AAC1G,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,OAAO,UAAU;AAAA,IACjB,KAAK,UAAU;AAAA,IACf,SAAS,UAAU;AAAA,EACrB;AACF;AACA,SAAS,eAAe,SAAS,QAAQ;AACvC,SAAO,YAAY;AACnB,SAAO,UAAU;AACjB,SAAO,iBAAiB;AACxB,MAAI,YAAY;AAChB,SAAO,aAAa,QAAQ,SAAS;AACrC,SAAO,WAAW,QAAQ,OAAO;AACjC,SAAO,QAAQ,IAAI,MAAM,OAAO,IAAI;AACpC,SAAO,MAAM,IAAI,MAAM,OAAO,IAAI;AAClC,SAAO,UAAU,IAAI,MAAM,OAAO,IAAI;AACtC,SAAO,0BAA0B,CAAC;AAClC,SAAO,gCAAgC,CAAC;AACxC,SAAO,gCAAgC,IAAI,MAAM,OAAO,IAAI;AAC5D,WAAS,KAAK,GAAG,KAAK,QAAQ,MAAM,MAAM;AACxC,QAAI,KAAK,KAAK,QAAQ,cAAc;AAClC,YAAM,YAAY,KAAK,IAAI,OAAO,QAAQ,QAAQ,OAAO,MAAM,IAAI,QAAQ,yBAAyB,OAAO,IAAI;AAC/G,aAAO,YAAY,WAAW,aAAa;AACzC,eAAO,MAAM,aAAa;AAC1B,eAAO,IAAI,aAAa;AACxB,eAAO,QAAQ,aAAa;AAC5B,eAAO,aAAa,KAAK;AACzB,eAAO,WAAW,KAAK;AACvB,eAAO,wBAAwB,KAAK,SAAS;AAC7C,eAAO,8BAA8B,KAAK,EAAE;AAC5C,eAAO,8BAA8B,aAAa;AAAA,MACpD;AAAA,IACF,WAAW,KAAK,KAAK,QAAQ,aAAa;AACxC,aAAO,wBAAwB,KAAK,QAAQ;AAC5C,aAAO,8BAA8B,KAAK,EAAE;AAAA,IAC9C,OAAO;AACL,UAAI,cAAc,OAAO,MAAM,QAAQ;AACrC,cAAM,MAAM,sCAAsC,6BAA6B,OAAO,cAAc,OAAO,MAAM,SAAS;AAAA,MAC5H;AACA,UAAI,QAAQ,SAAS,MAAM;AACzB,eAAO,MAAM,aAAa,QAAQ,MAAM;AAAA,MAC1C;AACA,UAAI,QAAQ,OAAO,MAAM;AACvB,eAAO,IAAI,aAAa,QAAQ,IAAI;AAAA,MACtC;AACA,aAAO,QAAQ,aAAa,QAAQ,QAAQ;AAC5C,UAAI,QAAQ,YAAY,KAAK,IAAI;AAC/B,eAAO,aAAa,KAAK;AAAA,MAC3B;AACA,UAAI,QAAQ,UAAU,KAAK,IAAI;AAC7B,eAAO,WAAW,KAAK;AAAA,MACzB;AACA,UAAI,QAAQ,iBAAiB,KAAK,IAAI;AACpC,eAAO,wBAAwB,KAAK,WAAW;AAC/C,eAAO,8BAA8B,KAAK,EAAE;AAC5C,eAAO,kBAAkB,KAAK;AAAA,MAChC,OAAO;AACL,eAAO,wBAAwB,KAAK,SAAS;AAC7C,eAAO,8BAA8B,KAAK,EAAE;AAAA,MAC9C;AACA,aAAO,8BAA8B,aAAa;AAClD;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,UAAU,GAAG,GAAG,SAAS,MAAM,OAAO,YAAY;AACzD,MAAI,MAAM,IAAI;AACZ,WAAO,UAAU,IAAI,WAAW,KAAK,WAAW,IAAI,IAAI;AAAA,EAC1D,OAAO;AACL,UAAM,OAAO,IAAI,IAAI,OAAO,IAAI;AAChC,WAAO,OAAO,WAAW,KAAK,WAAW,KAAK,OAAO,WAAW,KAAK,WAAW,KAAK;AAAA,EACvF;AACF;AAGA,IAAI,wBAAwB,CAAC;AAC7BhB,UAAS,uBAAuB;AAAA,EAC9B,cAAc,MAAM;AAAA,EACpB,kBAAkB,MAAM;AAAA,EACxB,eAAe,MAAM;AACvB,CAAC;AACD,IAAI,eAAe,MAAM;AAAA,EACvB,eAAe;AACb,WAAO,KAAK,YAAY;AAAA,EAC1B;AAAA,EACA,OAAO,WAAW,KAAKkB,SAAQ;AAC7B,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,cAAc;AACZ,SAAK,eAAe,CAAC;AAAA,EACvB;AAAA,EACA,OAAO,SAAS;AACd,QAAI,iBAAiB,YAAY,MAAM;AACrC,uBAAiB,WAAW,IAAI,iBAAiB;AAAA,IACnD;AACA,WAAO,iBAAiB;AAAA,EAC1B;AAAA,EACA,OAAO,SAAS,KAAK;AACnB,qBAAiB,OAAO,EAAE,aAAa,IAAI,aAAa,CAAC,KAAK,IAAI,UAAU;AAAA,EAC9E;AACF;AACA,SAAS,cAAc,KAAK;AAC1B,SAAO,IAAI,aAAa,MAAM,MAAM,6EAA6E;AACjH,SAAO,OAAO,IAAI,cAAc,UAAU,MAAM,wDAAwD,OAAO,IAAI,SAAS;AAC5H,SAAO,IAAI,UAAU,SAAS,GAAG,MAAM,mFAAmF;AAC1H,mBAAiB,SAAS,GAAG;AAC/B;AAGA,IAAI,oBAAoB,CAAC;AACzBlB,UAAS,mBAAmB;AAAA,EAC1B,sBAAsB,MAAM;AAAA,EAC5B,oBAAoB,MAAM;AAAA,EAC1B,eAAe,MAAM;AAAA,EACrB,yBAAyB,MAAM;AAAA,EAC/B,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,oBAAoB,MAAM;AAAA,EAC1B,qBAAqB,MAAM;AAAA,EAC3B,qBAAqB,MAAM;AAAA,EAC3B,MAAM,MAAM;AAAA,EACZ,aAAa,MAAM;AACrB,CAAC;AACD,IAAI,uBAAuB;AAC3B,IAAI,uBAAuB;AAC3B,SAAS,kBAAkB,QAAQ,UAAU,UAAU;AACrD,MAAI,YAAY,MAAM;AACpB,eAAW,YAAY;AAAA,EACzB;AACA,SAAO,sBAAsB,QAAQ,UAAU,CAAC,GAAG,MAAM,SAAS,GAAG,GAAG,QAAQ,CAAC;AACnF;AACA,SAAS,cAAc;AACrB,SAAO,OAAO,QAAQ,eAAe,MAAM,KAAK,uBAAuB;AACzE;AACA,SAAS,sBAAsB,QAAQ,UAAU,WAAW;AAC1D,MAAI,iBAAiB;AACrB,MAAI,aAAa,MAAM,KAAK,aAAa,QAAQ,GAAG;AAClD,qBAAiB;AAAA,EACnB;AACA,MAAI,aAAa,MAAM,KAAK,aAAa,QAAQ,GAAG;AAClD,qBAAiB;AAAA,EACnB;AACA,MAAI,gBAAgB;AAClB,UAAM,QAAQ,OAAO,YAAY;AACjC,UAAM,QAAQ,SAAS,YAAY;AACnC,QAAI,UAAU,OAAO;AACnB,YAAM,IAAI,MAAM,yCAAyC,oBAAoB,OAAO;AAAA,IACtF;AAAA,EACF;AACA,MAAI,MAAM,QAAQ,MAAM,KAAK,MAAM,QAAQ,QAAQ,GAAG;AACpD,UAAM,cAAc,WAAW,MAAM;AACrC,UAAM,gBAAgB,WAAW,QAAQ;AACzC,QAAI,CAAC,YAAY,aAAa,aAAa,GAAG;AAC5C,YAAM,IAAI,MAAM,0CAA0C,4BAA4B,gBAAgB;AAAA,IACxG;AAAA,EACF;AACA,QAAM,aAAa,aAAa,MAAM,IAAI,SAAS,QAAQ,MAAM;AACjE,QAAM,eAAe,aAAa,QAAQ,IAAI,WAAW,QAAQ,QAAQ;AACzE,MAAI,WAAW,WAAW,aAAa,QAAQ;AAC7C,UAAM,IAAI,MAAM,yCAAyC,WAAW,uBAAuB,aAAa;AAAA,YAChG;AAAA,YACA,eAAe;AAAA,EACzB;AACA,WAAS,KAAK,GAAG,KAAK,aAAa,QAAQ,EAAE,IAAI;AAC/C,UAAM,IAAI,WAAW;AACrB,UAAM,KAAK,aAAa;AACxB,QAAI,CAAC,UAAU,GAAG,EAAE,GAAG;AACrB,YAAM,IAAI,MAAM,yBAAyB,SAAS,eAAe,SAAS;AAAA,YACpE;AAAA,YACA,eAAe;AAAA,IACvB;AAAA,EACF;AACA,MAAI,OAAO,WAAW,aAAa;AACjC,WAAO,EAAE,QAAQ;AAAA,EACnB;AACF;AACA,SAAS,oBAAoB,IAAI,MAAM;AACrC,KAAG,EAAE,KAAK,MAAM,KAAK,KAAK,GAAG,MAAM,KAAK,CAAC;AACzC,MAAI,OAAO,WAAW,aAAa;AACjC,WAAO,EAAE,QAAQ;AAAA,EACnB;AACF;AACA,SAAS,kBAAkB,QAAQ,UAAU;AAC3C,QAAM,OAAO,OAAO,aAAa,YAAY,OAAO,aAAa,YAAY,OAAO,aAAa,YAAY,CAAC,QAAQ,IAAI;AAC1H,MAAI,SAAS,MAAM,KAAK,SAAS,OAAO,EAAE,KAAK,SAAS,QAAQ,KAAK,SAAS,SAAS,EAAE,GAAG;AAC1F,WAAO,sBAAsB,QAAQ,MAAM,CAAC,GAAG,MAAM,KAAK,CAAC;AAAA,EAC7D;AACA,SAAO,sBAAsB,QAAQ,UAAU,CAAC,GAAG,MAAM,SAAS,GAAG,GAAG,CAAC,CAAC;AAC5E;AACA,SAAS,mBAAmB,GAAG,IAAI,UAAU;AAC3C,MAAI,YAAY,MAAM;AACpB,eAAW,YAAY;AAAA,EACzB;AACA,MAAI,CAAC,SAAS,GAAG,IAAI,QAAQ,GAAG;AAC9B,UAAM,IAAI,MAAM,8BAA8B,mBAAmB,IAAI;AAAA,EACvE;AACA,MAAI,OAAO,WAAW,aAAa;AACjC,WAAO,EAAE,QAAQ;AAAA,EACnB;AACF;AACA,SAAS,SAAS,GAAG,IAAI,UAAU;AACjC,MAAI,CAAC,SAAS,CAAC,KAAK,CAAC,SAAS,EAAE,GAAG;AACjC,WAAO;AAAA,EACT;AACA,MAAI,MAAM,CAAC,KAAK,MAAM,EAAE,KAAK,KAAK,IAAI,IAAI,EAAE,IAAI,UAAU;AACxD,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,QAAQ,KAAK,MAAM;AAC9C,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,QAAI,OAAO,MAAM,OAAO,OAAO,MAAM,MAAM;AACzC,YAAM,IAAI,MAAM,sBAAsB,OAAO,YAAY,cAAc,MAAM;AAAA,IAC/E;AAAA,EACF;AACF;AACA,SAAS,wBAAwB,QAAQ,UAAU;AACjD,QAAM,cAAc,IAAI,aAAa,MAAM;AAC3C,QAAM,gBAAgB,IAAI,aAAa,QAAQ;AAC/C,MAAI,YAAY,WAAW,cAAc,QAAQ;AAC/C,UAAM,IAAI,MAAM,wCAAwC,cAAc,sBAAsB,YAAY,QAAQ;AAAA,EAClH;AACA,WAAS,KAAK,GAAG,KAAK,cAAc,QAAQ,MAAM;AAChD,QAAI,YAAY,QAAQ,cAAc,KAAK;AACzC,YAAM,IAAI,MAAM,iCAAiC,YAAY,cAAc,eAAe,YAAY,aAAa;AAAA,IACrH;AAAA,EACF;AACF;AACA,SAAS,cAAc,GAAG;AACxB,WAAS,KAAK,GAAG,KAAK,EAAE,QAAQ,MAAM;AACpC,UAAM,MAAM,EAAE;AACd,QAAI,MAAM,QAAQ,GAAG,GAAG;AACtB,oBAAc,GAAG;AAAA,IACnB,OAAO;AACL,QAAE,MAAM,aAAa,GAAG;AAAA,IAC1B;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,QAAQ;AAClC,QAAM,QAAQ,SAAS,cAAc,OAAO;AAC5C,MAAI,iBAAiB,OAAO;AAC1B,UAAM,cAAc;AAAA,EACtB;AACA,QAAM,QAAQ;AACd,QAAM,OAAO;AACb,QAAM,MAAM,WAAW;AACvB,QAAM,MAAM,OAAO;AACnB,QAAM,MAAM,MAAM;AAClB,QAAM,UAAU;AAChB,QAAM,YAAY,MAAM;AACxB,SAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,UAAM,iBAAiB,cAAc,CAAC,MAAM,QAAQ,KAAK,CAAC;AAC1D,UAAM,KAAK;AAAA,EACb,CAAC;AACH;AACA,eAAe,KAAK,OAAO;AACzB,QAAM,MAAM,KAAK;AACjB,MAAI,+BAA+B,OAAO;AACxC,UAAM,IAAI,QAAQ,CAAC,YAAY;AAC7B,YAAM,0BAA0B,OAAO;AAAA,IACzC,CAAC;AAAA,EACH;AACF;AAGA,IAAI,UAAU;AAGd,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,OAAO,GAAG,EAAE,KAAK,CAAC;AAGtB,SAAS,UAAU,GAAG,GAAG;AACvB,MAAI,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC3C,MAAI,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC3C,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,MAAI,GAAG,UAAU,WAAW,GAAG,UAAU,SAAS;AAChD,WAAO,SAAS,IAAI,EAAE;AAAA,EACxB;AACA,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,QAAM,QAAQ,CAAC;AACf,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,MAAI,GAAG,UAAU,aAAa;AAC5B,UAAM,SAAS,EAAE,GAAG,GAAG;AACvB,WAAO,OAAO,UAAU,YAAY,MAAM;AAAA,EAC5C,OAAO;AACL,UAAM,SAAS,EAAE,GAAG,GAAG;AACvB,WAAO,OAAO,UAAU,KAAK,MAAM;AAAA,EACrC;AACF;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,SAAS;AACtB,SAAO,MAAM,QAAQ,OAAO,GAAG,MAAM,4DAA4D;AACjG,SAAO,QAAQ,UAAU,GAAG,MAAM,uDAAuD,QAAQ,QAAQ;AACzG,QAAM,WAAW,QAAQ,IAAI,CAAC,IAAI,OAAO,gBAAgB,IAAI,UAAU,MAAM,MAAM,CAAC;AACpF,QAAM,cAAc,SAAS;AAC7B,WAAS,QAAQ,CAAC,OAAO;AACvB,QAAI,GAAG,UAAU,YAAY,OAAO;AAClC,YAAM,IAAI,MAAM,0DAA0D;AAAA,IAC5E;AAAA,EACF,CAAC;AACD,WAAS,QAAQ,CAAC,OAAO;AACvB,QAAI,CAAC,YAAY,GAAG,OAAO,YAAY,KAAK,GAAG;AAC7C,YAAM,IAAI,MAAM,0DAA0D;AAAA,IAC5E;AAAA,EACF,CAAC;AACD,QAAM,SAAS;AACf,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,MAAM;AAChD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,MAAM;AAChD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,QAAQ,GAAG,OAAO,GAAG;AAC5B,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,QAAQ,GAAG,OAAO,GAAG;AAC5B,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG,GAAG;AACpB,MAAI,KAAK,gBAAgB,GAAG,KAAK,OAAO;AACxC,MAAI,KAAK,gBAAgB,GAAG,KAAK,OAAO;AACxC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,sBAAsB,YAAY,aAAagB,UAAS,MAAM,aAAa,QAAQ,WAAW;AACrG,QAAM,gBAAgB,WAAW;AACjC,QAAM,eAAe,CAAC,GAAG,aAAa,aAAa;AACnD,QAAM,cAAc,wBAAwB,UAAU;AACtD,SAAO,kBAAkB,YAAY,cAAcA,UAAS,WAAW,MAAM,MAAM,MAAM,WAAW;AACtG;AACA,SAAS,kBAAkB,SAAS,YAAYA,UAAS,WAAW,MAAM,cAAc,aAAa,gBAAgB;AACnH,QAAM,CAAC,cAAc,WAAW,IAAI,gBAAgB,UAAU;AAC9D,MAAI;AACJ,MAAI,eAAe,gBAAgB;AACjC,kBAAc,CAAC,cAAc,aAAa,QAAQ,IAAI,QAAQ,EAAE;AAAA,EAClE,WAAW,eAAe,iBAAiB;AACzC,kBAAc,CAAC,cAAc,aAAa,QAAQ,IAAI,QAAQ,EAAE;AAAA,EAClE,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACA,SAAO,kBAAkB,SAAS,aAAaA,UAAS,WAAW,MAAM,cAAc,OAAO,UAAU;AAC1G;AACA,SAAS,kBAAkB,SAAS,YAAYA,UAAS,WAAW,MAAM,cAAc,aAAa,SAAS;AAC5G,QAAM,CAAC,aAAa,cAAc,WAAW,IAAI,iBAAiB,UAAU;AAC5E,MAAI;AACJ,MAAI;AACJ,MAAI,eAAe,SAAS;AAC1B,kBAAc;AACd,kBAAc,CAAC,aAAa,cAAc,aAAa,QAAQ,IAAI,QAAQ,EAAE;AAAA,EAC/E,WAAW,eAAe,SAAS;AACjC,kBAAc;AACd,kBAAc,CAAC,aAAa,cAAc,aAAa,QAAQ,IAAI,QAAQ,EAAE;AAAA,EAC/E,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACA,SAAO,kBAAkB,SAAS,aAAaA,UAAS,WAAW,MAAM,OAAO,aAAa,YAAY;AAC3G;AACA,SAAS,kBAAkB,SAAS,aAAaA,UAAS,WAAW,MAAM,cAAc,YAAY,OAAO,aAAa,gBAAgB;AACvI,MAAI,CAAC,WAAW,UAAU,SAAS,UAAU,IAAI,CAAC,IAAI,IAAI,IAAI,EAAE;AAChE,MAAI,eAAe,gBAAgB;AACjC,KAAC,WAAW,UAAU,SAAS,UAAU,IAAI;AAAA,EAC/C,WAAW,eAAe,iBAAiB;AACzC,KAAC,WAAW,YAAY,UAAU,OAAO,IAAI;AAAA,EAC/C,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACA,QAAM,CAAC,cAAc,aAAa,EAAE,cAAc,IAAI;AACtD,QAAM,CAAC,cAAc,WAAW,IAAI,gBAAgBA,QAAO;AAC3D,QAAM,CAAC,gBAAgB,aAAa,IAAI,gBAAgB,SAAS;AACjE,QAAM,wBAAwB,uBAAuB,cAAc,cAAc;AACjF,QAAM,uBAAuB,uBAAuB,aAAa,aAAa;AAC9E,QAAM,EAAE,SAAS,WAAW,SAAS,IAAI,iBAAiB,MAAM,UAAU,SAAS,cAAc,aAAa,uBAAuB,sBAAsB,cAAc,UAAU;AACnL,QAAM,cAAc,YAAY,iBAAiB,aAAa;AAC9D,MAAI;AACJ,MAAI,eAAe,iBAAiB;AAClC,eAAW,CAAC,WAAW,aAAa,WAAW,QAAQ;AAAA,EACzD,WAAW,eAAe,gBAAgB;AACxC,eAAW,CAAC,WAAW,WAAW,UAAU,WAAW;AAAA,EACzD;AACA,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,kBAAkB,SAAS,aAAaA,UAAS,WAAW,MAAM,YAAY,OAAO,aAAa,gBAAgB,cAAc;AACvI,MAAI,CAAC,WAAW,SAAS,UAAU,SAAS,UAAU,IAAI,CAAC,IAAI,IAAI,IAAI,IAAI,EAAE;AAC7E,MAAI,eAAe,gBAAgB;AACjC,KAAC,WAAW,SAAS,UAAU,SAAS,UAAU,IAAI;AAAA,EACxD,WAAW,eAAe,iBAAiB;AACzC,KAAC,WAAW,YAAY,SAAS,UAAU,OAAO,IAAI;AAAA,EACxD,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACA,QAAM,CAAC,aAAa,cAAc,aAAa,EAAE,cAAc,IAAI;AACnE,QAAM,CAAC,aAAa,cAAc,WAAW,IAAI,iBAAiBA,QAAO;AACzE,QAAM,CAAC,eAAe,gBAAgB,aAAa,IAAI,iBAAiB,SAAS;AACjF,QAAM,uBAAuB,uBAAuB,aAAa,aAAa;AAC9E,QAAM,wBAAwB,uBAAuB,cAAc,cAAc;AACjF,QAAM,uBAAuB,uBAAuB,aAAa,aAAa;AAC9E,QAAM,EAAE,SAAS,UAAU,WAAW,SAAS,IAAI,mBAAmB,MAAM,SAAS,UAAU,SAAS,aAAa,cAAc,aAAa,sBAAsB,uBAAuB,sBAAsB,YAAY;AAC/N,QAAM,cAAc,YAAY,iBAAiB,aAAa;AAC9D,MAAI;AACJ,MAAI,eAAe,iBAAiB;AAClC,eAAW,CAAC,WAAW,aAAa,UAAU,WAAW,QAAQ;AAAA,EACnE,WAAW,eAAe,gBAAgB;AACxC,eAAW,CAAC,WAAW,UAAU,WAAW,UAAU,WAAW;AAAA,EACnE;AACA,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,SAAS,WAAW,QAAQ,SAAS,cAAc;AAC/E,MAAI,WAAW,MAAM;AACnB,cAAU,kBAAkB,SAAS,WAAW,MAAM;AAAA,EACxD;AACA,QAAM,YAAY,QAAQ;AAC1B,QAAM,YAAY,QAAQ;AAC1B,QAAM,aAAa,OAAO,YAAY,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AACzF,QAAM,aAAa,OAAO,YAAY,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AACzF,SAAO,CAAC,YAAY,UAAU;AAChC;AACA,SAAS,qBAAqB,SAAS,WAAW,aAAa,QAAQ,SAAS,cAAc;AAC5F,MAAI,WAAW,MAAM;AACnB,cAAU,kBAAkB,SAAS,WAAW,MAAM;AAAA,EACxD;AACA,QAAM,aAAa,QAAQ;AAC3B,QAAM,YAAY,QAAQ;AAC1B,QAAM,YAAY,QAAQ;AAC1B,QAAM,eAAe,OAAO,aAAa,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AAC5F,QAAM,aAAa,OAAO,YAAY,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AACzF,QAAM,aAAa,OAAO,YAAY,YAAY,IAAI,WAAW,SAAS,GAAG,YAAY;AACzF,SAAO,CAAC,cAAc,YAAY,YAAY,WAAW;AAC3D;AACA,SAAS,kBAAkB,YAAY,WAAW,QAAQ,WAAW,GAAG;AACtE,QAAM,qBAAqB,uBAAuB,WAAW,QAAQ;AACrE,SAAO,KAAK,OAAO,WAAW,MAAM,SAAS,KAAK,SAAS,sBAAsB,CAAC;AACpF;AACA,SAAS,gBAAgB,OAAO;AAC9B,MAAI,OAAO,UAAU,UAAU;AAC7B,WAAO,CAAC,OAAO,OAAO,KAAK;AAAA,EAC7B;AACA,MAAI,MAAM,WAAW,GAAG;AACtB,WAAO,CAAC,MAAM,IAAI,MAAM,IAAI,CAAC;AAAA,EAC/B;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,OAAO;AAC/B,SAAO,OAAO,UAAU,WAAW,CAAC,OAAO,OAAO,KAAK,IAAI;AAC7D;AACA,SAAS,uBAAuB,YAAY,UAAU;AACpD,MAAI,YAAY,GAAG;AACjB,WAAO;AAAA,EACT;AACA,SAAO,cAAc,aAAa,MAAM,WAAW;AACrD;AACA,SAAS,iBAAiB,MAAM,UAAU,SAAS,cAAc,aAAa,cAAc,aAAa,cAAc,YAAY;AACjI,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,OAAO,SAAS,UAAU;AAC5B,UAAM,UAAU,SAAS,IAAI,UAAU;AACvC,cAAU,EAAE,KAAK,MAAM,QAAQ,MAAM,MAAM,MAAM,OAAO,MAAM,MAAM,QAAQ;AAC5E,UAAM,WAAW,qBAAqB,CAAC,UAAU,OAAO,GAAG,cAAc,cAAc,MAAM,YAAY;AACzG,gBAAY,SAAS;AACrB,eAAW,SAAS;AAAA,EACtB,WAAW,SAAS,QAAQ;AAC1B,gBAAY,KAAK,KAAK,WAAW,YAAY;AAC7C,eAAW,KAAK,KAAK,UAAU,WAAW;AAC1C,UAAM,iBAAiB,KAAK,IAAI,IAAI,YAAY,KAAK,eAAe,eAAe,QAAQ;AAC3F,UAAM,gBAAgB,KAAK,IAAI,IAAI,WAAW,KAAK,cAAc,cAAc,OAAO;AACtF,UAAM,MAAM,KAAK,MAAM,iBAAiB,CAAC;AACzC,UAAM,SAAS,iBAAiB;AAChC,UAAM,OAAO,KAAK,MAAM,gBAAgB,CAAC;AACzC,UAAM,QAAQ,gBAAgB;AAC9B,cAAU,EAAE,KAAK,QAAQ,MAAM,OAAO,MAAM,OAAO;AAAA,EACrD,WAAW,SAAS,SAAS;AAC3B,cAAU,EAAE,KAAK,GAAG,QAAQ,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM,QAAQ;AAChE,gBAAY,KAAK,MAAM,WAAW,eAAe,KAAK,YAAY;AAClE,eAAW,KAAK,MAAM,UAAU,cAAc,KAAK,WAAW;AAAA,EAChE,WAAW,OAAO,SAAS,UAAU;AACnC,UAAM,MAAM,eAAe,iBAAiB,KAAK,GAAG,KAAK,KAAK,GAAG;AACjE,UAAM,SAAS,eAAe,iBAAiB,KAAK,GAAG,KAAK,KAAK,GAAG;AACpE,UAAM,OAAO,eAAe,iBAAiB,KAAK,GAAG,KAAK,KAAK,GAAG;AAClE,UAAM,QAAQ,eAAe,iBAAiB,KAAK,GAAG,KAAK,KAAK,GAAG;AACnE,UAAM,UAAU,QAAQ,KAAK,WAAW,KAAK,SAAS,KAAK,UAAU,IAAI,UAAU;AACnF,cAAU,EAAE,KAAK,QAAQ,MAAM,OAAO,MAAM,QAAQ;AACpD,gBAAY,OAAO,WAAW,eAAe,MAAM,UAAU,eAAe,GAAG,YAAY;AAC3F,eAAW,OAAO,UAAU,cAAc,OAAO,SAAS,cAAc,GAAG,YAAY;AAAA,EACzF,OAAO;AACL,UAAM,MAAM,8BAA8B,MAAM;AAAA,EAClD;AACA,SAAO,EAAE,SAAS,WAAW,SAAS;AACxC;AACA,SAAS,mBAAmB,MAAM,SAAS,UAAU,SAAS,aAAa,cAAc,aAAa,aAAa,cAAc,aAAa,cAAc;AAC1J,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,OAAO,SAAS,UAAU;AAC5B,UAAM,UAAU,SAAS,IAAI,UAAU;AACvC,cAAU;AAAA,MACR,KAAK;AAAA,MACL,QAAQ;AAAA,MACR,MAAM;AAAA,MACN,OAAO;AAAA,MACP,OAAO;AAAA,MACP,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AACA,UAAM,WAAW,qBAAqB,CAAC,SAAS,UAAU,SAAS,CAAC,GAAG,aAAa,GAAG,aAAa,MAAM,YAAY;AACtH,eAAW,SAAS;AACpB,gBAAY,SAAS;AACrB,eAAW,SAAS;AAAA,EACtB,WAAW,SAAS,QAAQ;AAC1B,eAAW,KAAK,KAAK,UAAU,WAAW;AAC1C,gBAAY,KAAK,KAAK,WAAW,YAAY;AAC7C,eAAW,KAAK,KAAK,UAAU,WAAW;AAC1C,UAAM,iBAAiB,WAAW,KAAK,cAAc,cAAc;AACnE,UAAM,kBAAkB,YAAY,KAAK,eAAe,eAAe;AACvE,UAAM,iBAAiB,WAAW,KAAK,cAAc,cAAc;AACnE,UAAM,QAAQ,KAAK,MAAM,gBAAgB,CAAC;AAC1C,UAAM,OAAO,gBAAgB;AAC7B,UAAM,MAAM,KAAK,MAAM,iBAAiB,CAAC;AACzC,UAAM,SAAS,iBAAiB;AAChC,UAAM,OAAO,KAAK,MAAM,gBAAgB,CAAC;AACzC,UAAM,QAAQ,gBAAgB;AAC9B,cAAU,EAAE,KAAK,QAAQ,MAAM,OAAO,OAAO,MAAM,MAAM,OAAO;AAAA,EAClE,WAAW,SAAS,SAAS;AAC3B,cAAU;AAAA,MACR,KAAK;AAAA,MACL,QAAQ;AAAA,MACR,MAAM;AAAA,MACN,OAAO;AAAA,MACP,OAAO;AAAA,MACP,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AACA,eAAW,KAAK,MAAM,UAAU,cAAc,KAAK,WAAW;AAC9D,gBAAY,KAAK,MAAM,WAAW,eAAe,KAAK,YAAY;AAClE,eAAW,KAAK,MAAM,UAAU,cAAc,KAAK,WAAW;AAAA,EAChE,OAAO;AACL,UAAM,MAAM,8BAA8B,MAAM;AAAA,EAClD;AACA,SAAO,EAAE,SAAS,UAAU,WAAW,SAAS;AAClD;AACA,SAAS,MAAM,OAAO,cAAc;AAClC,MAAI,CAAC,cAAc;AACjB,WAAO,KAAK,MAAM,KAAK;AAAA,EACzB;AACA,UAAQ;AAAA,SACD;AACH,aAAO,KAAK,MAAM,KAAK;AAAA,SACpB;AACH,aAAO,KAAK,KAAK,KAAK;AAAA,SACnB;AACH,aAAO,KAAK,MAAM,KAAK;AAAA;AAEvB,YAAM,IAAI,MAAM,wBAAwB,cAAc;AAAA;AAE5D;AACA,SAAS,kBAAkB,OAAO;AAChC,QAAM,CAAC,MAAM,MAAM,IAAI,IAAI,gBAAgB,KAAK;AAChD,SAAO,SAAS,KAAK,SAAS,KAAK,SAAS;AAC9C;AACA,SAAS,+BAA+BA,UAAS,WAAW;AAC1D,SAAO,kBAAkBA,QAAO,KAAK,kBAAkB,SAAS;AAClE;AACA,SAAS,wBAAwB,YAAY;AAC3C,MAAI,eAAe,QAAQ;AACzB,WAAO;AAAA,EACT,WAAW,eAAe,QAAQ;AAChC,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,sBAAsB,YAAY;AAAA,EACpD;AACF;AACA,SAAS,0BAA0B,QAAQ,MAAM,iBAAiB;AAChE,MAAI,mBAAmB,MAAM;AAC3B,QAAI,OAAO,SAAS,UAAU;AAC5B,YAAM,MAAM,YAAY,6DAA6D,+BAA+B,OAAO;AAAA,IAC7H,WAAW,OAAO,SAAS,UAAU;AACnC,aAAO,MAAM,IAAI,GAAG,MAAM,YAAY,6DAA6D,+BAA+B,OAAO;AAAA,IAC3I,WAAW,OAAO,SAAS,UAAU;AACnC,WAAK,QAAQ,CAAC,OAAO;AACnB,WAAG,QAAQ,CAAC,MAAM;AAChB,iBAAO,MAAM,CAAC,GAAG,MAAM,YAAY,6DAA6D,+BAA+B,IAAI;AAAA,QACrI,CAAC;AAAA,MACH,CAAC;AAAA,IACH,OAAO;AACL,YAAM,MAAM,YAAY,sCAAsC,MAAM;AAAA,IACtE;AAAA,EACF;AACF;AAGA,SAAS,SAAS,GAAG,OAAO;AAC1B,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AACjE,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM;AACtB,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,GAAG,YAAYA,UAAS,MAAM,iBAAiB;AAC/D,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,SAAS;AACvD,QAAM,YAAY;AAClB,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AAC/K,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,mDAAmD,IAAI,OAAO;AAC3F,4BAA0B,WAAW,MAAM,eAAe;AAC1D,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,MAAI,MAAM,OAAO,UAAU,SAAS,QAAQ,KAAK;AACjD,QAAM,KAAK,KAAK,GAAG,KAAK;AACxB,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,GAAG,YAAYA,UAAS,MAAM,iBAAiB,aAAa,SAAS;AACvF,QAAM,KAAK,gBAAgB,GAAG,KAAK,aAAa,SAAS;AACzD,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC3E;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,qDAAqD,IAAI,OAAO;AAC7F,SAAO,eAAe,SAAS,MAAM,gFAAgF,YAAY;AACjI,4BAA0B,aAAa,MAAM,eAAe;AAC5D,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW;AAC5E,MAAI,MAAM,OAAO,UAAU,WAAW,QAAQ,KAAK;AACnD,QAAM,KAAK,KAAK,IAAI,KAAK;AACzB,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,QAAQ,SAAS,OAAO,GAAG;AAClC,SAAO,QAAQ,UAAU,GAAG,MAAM,oCAAoC;AACtE,QAAM,WAAW,qBAAqB,SAAS,WAAW,UAAU,mBAAmB;AACvF,MAAI,SAAS,GAAG,UAAU,aAAa;AACrC,aAAS,QAAQ,CAAC,YAAY;AAC5B,UAAI,QAAQ,UAAU,aAAa;AACjC,cAAM,IAAI,MAAM;AAAA,uBACD,QAAQ,SAAS;AAAA,MAClC;AAAA,IACF,CAAC;AAAA,EACH;AACA,MAAI,SAAS,WAAW,GAAG;AACzB,WAAO,MAAM,SAAS,EAAE;AAAA,EAC1B;AACA,QAAM,SAAS;AACf,QAAM,OAAO,EAAE,KAAK;AACpB,SAAO,OAAO,UAAU,QAAQ,QAAQ,IAAI;AAC9C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,SAAS,GAAG;AACnB,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,SAAS;AACvD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,OAAO,GAAG,OAAOb,OAAM;AAC9B,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS,mBAAmB;AAC/D,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,IAAI,MAAM,gCAAgC;AAAA,EAClD;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,OAAO,MAAAA,MAAK;AAC5B,SAAO,OAAO,UAAU,OAAO,QAAQ,KAAK;AAC9C;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,SAAS;AACpD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,QAAQ,GAAG,EAAE,MAAM,CAAC;AAGxB,SAAS,eAAe,YAAY,YAAY,UAAU,MAAM,GAAG,GAAG;AACpE,QAAM,cAAc,gBAAgB,YAAY,cAAc,eAAe;AAC7E,QAAM,cAAc,gBAAgB,YAAY,cAAc,eAAe;AAC7E,QAAM,YAAY,gBAAgB,UAAU,YAAY,eAAe;AACvE,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,eAAe;AAC3D,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,WAAW,OAAO,CAAC,OAAO,EAAE,GAAG,CAAC;AACtC,QAAM,WAAW,OAAO,UAAU,WAAW;AAC7C,QAAM,MAAM,KAAK,UAAU,SAAS;AACpC,QAAM,YAAY,IAAI,MAAM;AAC5B,QAAM,YAAY,IAAI,MAAM,KAAK;AACjC,QAAM,YAAY,CAAC,WAAW,SAAS;AACvC,QAAM,KAAK,MAAM,KAAK,CAAC,GAAG,CAAC,GAAG,SAAS;AACvC,QAAM,IAAI,MAAM,KAAK,CAAC,GAAG,SAAS,GAAG,SAAS;AAC9C,QAAM,IAAI,MAAM,KAAK,CAAC,GAAG,YAAY,CAAC,GAAG,SAAS;AAClD,QAAM,IAAI,MAAM,KAAK,CAAC,GAAG,YAAY,CAAC,GAAG,SAAS;AAClD,QAAM,OAAO,KAAK,IAAI,QAAQ,EAAE,GAAG,MAAM,CAAC,CAAC,GAAG,IAAI,IAAI,QAAQ,KAAK,aAAa,CAAC,CAAC,CAAC,CAAC;AACpF,QAAM,OAAO,IAAI,MAAM,IAAI,GAAG,QAAQ,CAAC,CAAC;AACxC,SAAO,CAAC,MAAM,IAAI;AACpB;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,gBAAgB,GAAG,YAAY,OAAO;AAC7C,QAAM,KAAK,gBAAgB,GAAG,KAAK,gBAAgB;AACnD,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,SAAO,GAAG,QAAQ,IAAI,WAAW,QAAQ,MAAM,iBAAiB,GAAG,+CAA+C,WAAW,QAAQ;AACrI,SAAO,MAAM,WAAW,WAAW,QAAQ,MAAM,mBAAmB,MAAM,oDAAoD,WAAW,QAAQ;AACjJ,SAAO,GAAG,MAAM,KAAK,UAAU,GAAG,MAAM,yBAAyB,GAAG,MAAM,wEAAwE,WAAW,KAAK,KAAK,SAAS,OAAO;AACvL,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,YAAY,MAAM;AAClC,SAAO,OAAO,UAAU,gBAAgB,QAAQ,KAAK;AACvD;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,MAAM,GAAG;AAChB,MAAI;AACJ,MAAI,EAAE,SAAS,KAAK,EAAE,SAAS,GAAG;AAChC,UAAM,QAAQ,GAAG,CAAC,GAAG,GAAG,GAAG,EAAE,IAAI,CAAC;AAAA,EACpC,WAAW,EAAE,SAAS,GAAG;AACvB,UAAM,QAAQ,GAAG,CAAC,GAAG,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EACjD,WAAW,EAAE,SAAS,GAAG;AACvB,UAAM,QAAQ,GAAG,CAAC,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EAC1D,OAAO;AACL,UAAM;AAAA,EACR;AACA,SAAO;AACT;AAGA,SAAS,WAAW,GAAG,OAAO,UAAU,QAAQsB,SAAQ,iBAAiB;AACvE,MAAI,mBAAmB,MAAM;AAC3B,sBAAkB;AAAA,EACpB;AACA,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,WAAW;AACxD,QAAM,YAAY,gBAAgB,UAAU,YAAY,WAAW;AACnE,MAAI;AACJ,MAAIA,WAAU,MAAM;AAClB,aAAS,gBAAgBA,SAAQ,SAAS,WAAW;AAAA,EACvD;AACA,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,cAAU,gBAAgB,QAAQ,UAAU,WAAW;AAAA,EACzD;AACA,SAAO,MAAM,SAAS,UAAU,MAAM,MAAM,8EAA8E;AAC1H,SAAO,WAAW,QAAQ,MAAM,SAAS,QAAQ,MAAM,MAAM,4EAA4E;AACzI,SAAO,UAAU,QAAQ,MAAM,SAAS,OAAO,MAAM,MAAM,2EAA2E;AACtI,QAAM,MAAM,MAAM,EAAE;AACpB,QAAM,SAAS;AAAA,IACb,GAAG;AAAA,IACH,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,MAAM;AAAA,IACN,UAAU;AAAA,EACZ;AACA,QAAM,QAAQ,EAAE,gBAAgB;AAChC,QAAM,MAAM,OAAO,UAAU,gBAAgB,QAAQ,KAAK;AAC1D,SAAO,QAAQ,KAAK,GAAG,KAAK;AAC9B;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,aAAa,GAAG,OAAO,UAAU,QAAQA,SAAQ,iBAAiB;AACzE,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,WAAW;AACxD,QAAM,YAAY,gBAAgB,UAAU,YAAY,WAAW;AACnE,MAAI;AACJ,MAAIA,WAAU,MAAM;AAClB,aAAS,gBAAgBA,SAAQ,SAAS,WAAW;AAAA,EACvD;AACA,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,cAAU,gBAAgB,QAAQ,UAAU,WAAW;AAAA,EACzD;AACA,SAAO,GAAG,SAAS,GAAG,MAAM,uDAAuD,GAAG,OAAO;AAC7F,SAAO,MAAM,SAAS,KAAK,MAAM,SAAS,GAAG,MAAM,oEAAoE,MAAM,OAAO;AACpI,SAAO,UAAU,SAAS,KAAK,UAAU,SAAS,GAAG,MAAM,wEAAwE,UAAU,OAAO;AACpJ,MAAI,UAAU,MAAM;AAClB,WAAO,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG,MAAM,qEAAqE,OAAO,OAAO;AAAA,EAC1I;AACA,MAAI,WAAW,MAAM;AACnB,WAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,sEAAsE,QAAQ,OAAO;AAAA,EAC9I;AACA,SAAO,UAAU,IAAI,OAAO,WAAW,SAAS,QAAQ,eAAe;AACzE;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,aAAa,GAAG,OAAO,UAAU,QAAQA,SAAQ,iBAAiB;AACzE,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,WAAW;AACxD,QAAM,YAAY,gBAAgB,UAAU,YAAY,WAAW;AACnE,MAAI;AACJ,MAAIA,WAAU,MAAM;AAClB,aAAS,gBAAgBA,SAAQ,SAAS,WAAW;AAAA,EACvD;AACA,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,cAAU,gBAAgB,QAAQ,UAAU,WAAW;AAAA,EACzD;AACA,SAAO,GAAG,SAAS,GAAG,MAAM,uDAAuD,GAAG,OAAO;AAC7F,SAAO,MAAM,SAAS,KAAK,MAAM,SAAS,GAAG,MAAM,oEAAoE,MAAM,OAAO;AACpI,SAAO,UAAU,SAAS,KAAK,UAAU,SAAS,GAAG,MAAM,wEAAwE,UAAU,OAAO;AACpJ,MAAI,UAAU,MAAM;AAClB,WAAO,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG,MAAM,qEAAqE,OAAO,OAAO;AAAA,EAC1I;AACA,MAAI,WAAW,MAAM;AACnB,WAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,sEAAsE,QAAQ,OAAO;AAAA,EAC9I;AACA,SAAO,UAAU,IAAI,OAAO,WAAW,SAAS,QAAQ,eAAe;AACzE;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,aAAa,GAAG,OAAO,UAAU,QAAQA,SAAQ,iBAAiB;AACzE,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,QAAQ,gBAAgB,OAAO,QAAQ,WAAW;AACxD,QAAM,YAAY,gBAAgB,UAAU,YAAY,WAAW;AACnE,MAAI;AACJ,MAAIA,WAAU,MAAM;AAClB,aAAS,gBAAgBA,SAAQ,SAAS,WAAW;AAAA,EACvD;AACA,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,cAAU,gBAAgB,QAAQ,UAAU,WAAW;AAAA,EACzD;AACA,SAAO,GAAG,SAAS,GAAG,MAAM,uDAAuD,GAAG,OAAO;AAC7F,SAAO,MAAM,SAAS,KAAK,MAAM,SAAS,GAAG,MAAM,oEAAoE,MAAM,OAAO;AACpI,SAAO,UAAU,SAAS,KAAK,UAAU,SAAS,GAAG,MAAM,wEAAwE,UAAU,OAAO;AACpJ,MAAI,UAAU,MAAM;AAClB,WAAO,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG,MAAM,qEAAqE,OAAO,OAAO;AAAA,EAC1I;AACA,MAAI,WAAW,MAAM;AACnB,WAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,sEAAsE,QAAQ,OAAO;AAAA,EAC9I;AACA,SAAO,UAAU,IAAI,OAAO,WAAW,SAAS,QAAQ,eAAe;AACzE;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,UAAU,GAAG,SAAStB,OAAM;AACnC,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,QAAM,WAAW,gBAAgB,SAAS,WAAW,UAAU;AAC/D,SAAO,GAAG,UAAU,SAAS,MAAM,yDAAyD,GAAG,OAAO;AACtG,SAAOA,SAAQ,GAAG,MAAM,sCAAsCA,QAAO;AACrE,SAAO,SAAS,SAAS,GAAG,QAAQ,SAAS,SAAS,GAAG,MAAM,gGAAgG,GAAG,yBAAyB,SAAS,QAAQ;AAC5M,QAAM,SAAS,EAAE,GAAG,IAAI,SAAS,SAAS;AAC1C,QAAM,QAAQ,EAAE,MAAAA,MAAK;AACrB,SAAO,OAAO,UAAU,UAAU,QAAQ,KAAK;AACjD;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,eAAe,IAAI,IAAI;AAC9B,QAAM,cAAc,gBAAgB,IAAI,MAAM,iBAAiB,OAAO;AACtE,QAAM,cAAc,gBAAgB,IAAI,MAAM,iBAAiB,OAAO;AACtE,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM,oEAAoE,YAAY,MAAM;AAAA,EACxG;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM,qEAAqE,YAAY,MAAM;AAAA,EACzG;AACA,QAAM,SAAS,EAAE,IAAI,aAAa,IAAI,YAAY;AAClD,SAAO,OAAO,UAAU,eAAe,MAAM;AAC/C;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,aAAa,GAAG,OAAO;AAC9B,MAAI,SAAS,gBAAgB,GAAG,eAAe,GAAG;AAClD,QAAM,SAAS,OAAO;AACtB,MAAI,MAAM,KAAK,CAAC,MAAM,EAAE,IAAI,MAAM,IAAI,MAAM,CAAC,GAAG;AAC9C,UAAM,IAAI,MAAM,2CAA2C,SAAS;AAAA,EACtE;AACA,MAAI,MAAM,SAAS,OAAO,MAAM;AAC9B,UAAM,IAAI,MAAM,+BAA+B,MAAM,uBAAuB,OAAO,OAAO;AAAA,EAC5F;AACA,MAAI,MAAM,SAAS,OAAO,MAAM;AAC9B,UAAM,WAAW,OAAO,MAAM,MAAM;AACpC,WAAO,SAAS,SAAS,MAAM,QAAQ;AACrC,eAAS,QAAQ,CAAC;AAAA,IACpB;AACA,aAAS,QAAQ,QAAQ,QAAQ;AAAA,EACnC;AACA,QAAM,aAAa,OAAO;AAC1B,QAAM,OAAO,MAAM,KAAK,KAAK;AAC7B,WAAS,KAAK,MAAM,SAAS,GAAG,MAAM,GAAG,MAAM;AAC7C,QAAI,WAAW,QAAQ,MAAM,KAAK;AAChC,WAAK,MAAM;AAAA,IACb,WAAW,OAAO,MAAM,QAAQ,GAAG;AACjC,YAAM,IAAI,MAAM,mBAAmB,mCAAmC,SAAS;AAAA,IACjF;AAAA,EACF;AACA,QAAM,OAAO,KAAK,IAAI,CAAC,IAAI,OAAO,KAAK,IAAI,KAAK,EAAE,EAAE,OAAO,CAAC,OAAO,MAAM,CAAC;AAC1E,MAAI,KAAK,WAAW,GAAG;AACrB,WAAO,MAAM,MAAM;AAAA,EACrB;AACA,QAAM,SAAS,EAAE,GAAG,OAAO;AAC3B,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,SAAS;AACpD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,aAAa,GAAG,cAAc,cAAc;AACnD,QAAM,KAAK,gBAAgB,GAAG,KAAK,aAAa;AAChD,SAAO,gBAAgB,cAAc,MAAM,uBAAuB,oDAAoD,gBAAgB;AACtI,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,cAAc,aAAa;AAC3C,SAAO,OAAO,UAAU,aAAa,QAAQ,KAAK;AACpD;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,UAAU,SAAS;AAC1B,SAAO,OAAO,SAAS,CAAC;AAC1B;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,UAAU,SAAS,MAAM;AAChC,SAAO,OAAO,SAAS,IAAI;AAC7B;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,UAAU,SAAS,MAAM;AAChC,SAAO,OAAO,SAAS,IAAI;AAC7B;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,UAAU,SAAS,MAAM;AAChC,SAAO,OAAO,SAAS,IAAI;AAC7B;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,QAAQ,GAAG,QAAQa,UAAS,MAAM,aAAa,QAAQ,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB;AACnG,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU,SAAS;AACtD,QAAM,UAAU,gBAAgB,QAAQ,UAAU,UAAU,SAAS;AACrE,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,uDAAuD,IAAI,OAAO;AAC/F,SAAO,QAAQ,SAAS,GAAG,MAAM,wDAAwD,QAAQ,OAAO;AACxG,4BAA0B,UAAU,MAAM,eAAe;AACzD,QAAM,UAAU,eAAe,SAAS,IAAI,MAAM,KAAK,IAAI,MAAM;AACjE,SAAO,YAAY,QAAQ,MAAM,IAAI,MAAM,oCAAoC,8CAA8C,QAAQ,MAAM,KAAK;AAChJ,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,uEAAuEA,2BAA0B,YAAY;AAC9K,QAAM,SAAS,EAAE,GAAG,KAAK,QAAQ,QAAQ;AACzC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB;AAC3E,QAAM,MAAM,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAClD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,QAAQ,GAAG,QAAQ,QAAQ,MAAM,aAAa,OAAO,WAAW,GAAG,iBAAiB;AAC3F,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,UAAU,gBAAgB,QAAQ,UAAU,QAAQ;AAC1D,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EACjD;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,uDAAuD,IAAI,OAAO;AAC/F,SAAO,QAAQ,SAAS,GAAG,MAAM,wDAAwD,QAAQ,OAAO;AACxG,4BAA0B,UAAU,MAAM,eAAe;AACzD,SAAO,IAAI,MAAM,OAAO,QAAQ,MAAM,IAAI,MAAM,oCAAoC,IAAI,MAAM,yCAAyC,QAAQ,MAAM,KAAK;AAC1J,SAAO,+BAA+B,QAAQ,QAAQ,GAAG,MAAM,oEAAoE,wBAAwB,WAAW;AACtK,SAAO,eAAe,OAAO,MAAM,sCAAsC,iDAAiD;AAC1H,QAAM,WAAW,QAAQ,SAAS,CAAC,GAAG,QAAQ,MAAM,IAAI,QAAQ,MAAM,IAAI,QAAQ,MAAM,EAAE,CAAC;AAC3F,QAAM,UAAU,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,GAAG,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAC1E,QAAMA,WAAU,CAAC,GAAG,MAAM;AAC1B,QAAM,YAAY,CAAC,GAAG,QAAQ;AAC9B,QAAM,mBAAmB;AACzB,QAAM,MAAM,OAAO,SAAS,UAAUA,UAAS,MAAM,kBAAkB,WAAW,eAAe;AACjG,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAClD;AACA,SAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAChE;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,qBAAqB,QAAQ,IAAI,QAAQA,UAAS,MAAM,aAAa,QAAQ,iBAAiB;AACrG,SAAO,OAAO,WAAW,GAAG,MAAM,MAAM,sBAAsB,OAAO,2BAA2B,GAAG,kBAAkB;AACrH,MAAI,WAAW;AACf,MAAI,OAAO;AACX,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAC7D,eAAW,CAAC,GAAG,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE;AAAA,EAChD;AACA,SAAO,SAAS,WAAW,GAAG,MAAM,qEAAqE,SAAS,SAAS;AAC3H,SAAO,KAAK,SAAS,GAAG,MAAM,4DAA4D,KAAK,MAAM;AACrG,SAAO,OAAO,SAAS,GAAG,MAAM,gEAAgE,OAAO,MAAM;AAC7G,QAAM,UAAU,eAAe,SAAS,SAAS,KAAK,SAAS;AAC/D,QAAM,WAAW,eAAe,SAAS,KAAK,MAAM,KAAK,KAAK,MAAM;AACpE,SAAO,YAAY,OAAO,MAAM,IAAI,MAAM,4CAA4C,8CAA8C,OAAO,MAAM,KAAK;AACtJ,SAAO,aAAa,OAAO,MAAM,IAAI,MAAM,6CAA6C,gDAAgD,OAAO,MAAM,KAAK;AAC1J,4BAA0B,kBAAkB,MAAM,eAAe;AACjE,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,YAAY,SAAS;AACtF,QAAM,MAAM,OAAO,UAAU,qBAAqB,QAAQ,KAAK;AAC/D,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,iBAAiB,GAAG,QAAQ,aAAaA,UAAS,MAAM,iBAAiB;AAChF,QAAM,KAAK,gBAAgB,GAAG,KAAK,iBAAiB;AACpD,QAAM,UAAU,gBAAgB,QAAQ,UAAU,iBAAiB;AACnE,SAAO,oBAAoB,aAAa,IAAI,SAASA,UAAS,MAAM,QAAQ,eAAe;AAC7F;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,SAAS,QAAQ,GAAG,QAAQA,UAAS,MAAM,aAAa,SAAS,YAAY,CAAC,GAAG,GAAG,CAAC,GAAG;AACtF,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,UAAU,gBAAgB,QAAQ,UAAU,QAAQ;AAC1D,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC3E;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,uDAAuD,IAAI,OAAO;AAC/F,SAAO,QAAQ,SAAS,GAAG,MAAM,wDAAwD,QAAQ,OAAO;AACxG,SAAO,IAAI,MAAM,OAAO,QAAQ,MAAM,IAAI,MAAM,oCAAoC,IAAI,MAAM,yCAAyC,QAAQ,MAAM,KAAK;AAC1J,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,uEAAuEA,2BAA0B,YAAY;AAC9K,SAAO,eAAe,SAAS,MAAM,sCAAsC,mDAAmD;AAC9H,QAAM,SAAS,EAAE,GAAG,KAAK,QAAQ,QAAQ;AACzC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,UAAU;AAC1D,QAAM,MAAM,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAClD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,qBAAqB,QAAQ,IAAI,QAAQA,UAAS,MAAM;AAC/D,SAAO,OAAO,WAAW,GAAG,MAAM,MAAM,sBAAsB,OAAO,2BAA2B,GAAG,kBAAkB;AACrH,MAAI,WAAW;AACf,MAAI,OAAO;AACX,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAC1E,eAAW,CAAC,GAAG,OAAO,IAAI,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE;AAAA,EAC3D;AACA,QAAM,UAAU,SAAS;AACzB,QAAM,WAAW,KAAK,MAAM;AAC5B,SAAO,SAAS,WAAW,GAAG,MAAM,qEAAqE,SAAS,SAAS;AAC3H,SAAO,KAAK,SAAS,GAAG,MAAM,4DAA4D,KAAK,MAAM;AACrG,SAAO,OAAO,SAAS,GAAG,MAAM,gEAAgE,OAAO,MAAM;AAC7G,SAAO,YAAY,OAAO,MAAM,IAAI,MAAM,4CAA4C,8CAA8C,OAAO,MAAM,KAAK;AACtJ,SAAO,aAAa,OAAO,MAAM,IAAI,MAAM,6CAA6C,gDAAgD,OAAO,MAAM,KAAK;AAC1J,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO;AAClC,QAAM,QAAQ,EAAE,KAAK,MAAM,SAAAA,UAAS,YAAY,SAAS;AACzD,QAAM,MAAM,OAAO,UAAU,uBAAuB,QAAQ,KAAK;AACjE,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,iBAAiB,GAAG,QAAQ,aAAaA,UAAS,MAAM;AAC/D,QAAM,KAAK,gBAAgB,GAAG,KAAK,iBAAiB;AACpD,QAAM,UAAU,gBAAgB,QAAQ,UAAU,iBAAiB;AACnE,SAAO,oBAAoB,aAAa,IAAI,SAASA,UAAS,IAAI;AACpE;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,SAAS;AACpD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,SAAS,GAAG,OAAO,GAAG,YAAY,OAAO,WAAW,OAAO;AAClE,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,WAAW,SAAS,SAAS;AACnD,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,QAAQ,GAAG,OAAO,GAAG,YAAY,OAAO,WAAW,OAAO;AACjE,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,WAAW,SAAS,SAAS;AACnD,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,eAAe,GAAG,SAASb,OAAM,eAAe,OAAO;AAC9D,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,WAAW,gBAAgB,SAAS,WAAW,eAAe;AACpE,SAAO,GAAG,UAAU,SAAS,MAAM,8DAA8D,GAAG,OAAO;AAC3G,SAAO,GAAG,QAAQ,GAAG,MAAM,sEAAsE,GAAG,OAAO;AAC3G,SAAOA,SAAQ,GAAG,MAAM,sCAAsCA,QAAO;AACrE,SAAO,SAAS,SAAS,GAAG,QAAQ,SAAS,SAAS,GAAG,MAAM,+FAA+F,GAAG,yBAAyB,SAAS,QAAQ;AAC3M,QAAM,SAAS,EAAE,GAAG,IAAI,SAAS,SAAS;AAC1C,QAAM,QAAQ,EAAE,MAAAA,OAAM,aAAa;AACnC,SAAO,OAAO,UAAU,eAAe,QAAQ,KAAK;AACtD;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,cAAc,GAAG,WAAW,aAAa,QAAQ;AACxD,QAAM,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,SAAS;AAC5D,QAAM,cAAc,eAAe,SAAS,GAAG,MAAM,KAAK,GAAG,MAAM;AACnE,QAAM,aAAa,eAAe,SAAS,GAAG,MAAM,KAAK,GAAG,MAAM;AAClE,QAAM,aAAa,eAAe,SAAS,GAAG,MAAM,KAAK,GAAG,MAAM;AAClE,SAAO,YAAY,GAAG,MAAM,sDAAsD,WAAW;AAC7F,SAAO,cAAc,aAAa,GAAG,MAAM;AAAA,MACvC,mBAAmB;AAAA,MACnB,GAAG,OAAO;AACd,SAAO,aAAa,aAAa,GAAG,MAAM;AAAA,MACtC,kBAAkB;AAAA,UACd,GAAG,OAAO;AAClB,SAAO,cAAc,YAAY,eAAe,GAAG,MAAM,8CAA8C,YAAY,oBAAoB,gDAAgD,GAAG,OAAO;AACjM,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,WAAW,WAAW;AACtC,SAAO,OAAO,UAAU,cAAc,QAAQ,KAAK;AACrD;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,iBAAiB,GAAG,QAAQa,UAAS,MAAM,aAAa,QAAQ,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB;AAC5G,QAAM,KAAK,gBAAgB,GAAG,KAAK,mBAAmB,SAAS;AAC/D,QAAM,UAAU,gBAAgB,QAAQ,UAAU,mBAAmB,SAAS;AAC9E,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,gEAAgE,IAAI,OAAO;AACxG,SAAO,QAAQ,SAAS,GAAG,MAAM,iEAAiE,QAAQ,OAAO;AACjH,QAAM,aAAa,eAAe,SAAS,IAAI,MAAM,KAAK,IAAI,MAAM;AACpE,SAAO,eAAe,QAAQ,MAAM,IAAI,MAAM,uDAAuD,6DAA6D,QAAQ,MAAM,KAAK;AACrL,4BAA0B,mBAAmB,MAAM,eAAe;AAClE,QAAM,SAAS,EAAE,GAAG,KAAK,QAAQ,QAAQ;AACzC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB;AAC3E,QAAM,MAAM,OAAO,UAAU,uBAAuB,QAAQ,KAAK;AACjE,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,YAAY,GAAG,QAAQA,UAAS,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,aAAa,QAAQ;AACtF,QAAM,KAAK,gBAAgB,GAAG,KAAK,YAAY;AAC/C,QAAM,UAAU,gBAAgB,QAAQ,UAAU,YAAY;AAC9D,SAAO,GAAG,SAAS,KAAK,GAAG,SAAS,GAAG,MAAM,gEAAgE,GAAG,OAAO;AACvH,SAAO,QAAQ,SAAS,GAAG,MAAM,4DAA4D,QAAQ,OAAO;AAC5G,SAAO,eAAe,QAAQ,MAAM,gFAAgF,YAAY;AAChI,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAC5D,mBAAe;AAAA,EACjB;AACA,QAAM,SAAS,EAAE,GAAG,KAAK,QAAQ,QAAQ;AACzC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU;AAC9C,QAAM,MAAM,OAAO,UAAU,YAAY,QAAQ,KAAK;AACtD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,OAAO,GAAG,GAAG;AACpB,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS,mBAAmB;AAC7D,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS,mBAAmB;AAC7D,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,WAAW,GAAG,GAAG;AAC/B,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,aAAa,gBAAgB,WAAW,aAAa,SAAS,MAAM;AAC1E,QAAM,iBAAiB,2BAA2B,2BAA2B,WAAW,OAAO,GAAG,KAAK,GAAG,GAAG,KAAK;AAClH,QAAM,wBAAwB,YAAY,YAAY,cAAc;AACpE,QAAM,gBAAgB,YAAY,IAAI,cAAc;AACpD,QAAM,gBAAgB,YAAY,IAAI,cAAc;AACpD,QAAM,SAAS;AAAA,IACb,WAAW;AAAA,IACX,GAAG;AAAA,IACH,GAAG;AAAA,EACL;AACA,SAAO,OAAO,UAAU,QAAQ,MAAM;AACxC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,WAAW,GAAG;AACrB,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,WAAW,MAAM;AAC3C;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,UAAU,GAAG,GAAG;AACvB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,YAAY,IAAI,IAAI,EAAE;AAC5B,QAAM,SAAS,UAAU,SAAS;AAClC,QAAM,cAAc,MAAM,IAAI,MAAM;AACpC,SAAO,MAAM,aAAa,QAAQ,SAAS;AAC7C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,KAAK,IAAI,IAAI;AACpB,QAAM,MAAM,gBAAgB,IAAI,MAAM,KAAK;AAC3C,QAAM,MAAM,gBAAgB,IAAI,MAAM,KAAK;AAC3C,UAAQ,IAAI,SAAS,KAAK,IAAI,SAAS,OAAO,IAAI,SAAS,KAAK,IAAI,SAAS,IAAI,MAAM,+DAA+D,IAAI,YAAY,IAAI,OAAO;AACjL,QAAM,UAAU,IAAI,SAAS,IAAI,IAAI,OAAO,IAAI,MAAM;AACtD,QAAM,UAAU,IAAI,SAAS,IAAI,IAAI,OAAO,IAAI,MAAM;AACtD,SAAO,YAAY,SAAS,MAAM,gEAAgE,eAAe,UAAU;AAC3H,MAAI,IAAI,SAAS,KAAK,IAAI,SAAS,GAAG;AACpC,UAAM,OAAO,QAAQ,KAAK,CAAC,GAAG,EAAE,CAAC;AACjC,UAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,CAAC,CAAC;AACjC,UAAM,OAAO,OAAO,MAAM,IAAI;AAC9B,WAAO,QAAQ,MAAM,CAAC,CAAC;AAAA,EACzB,WAAW,IAAI,SAAS,KAAK,IAAI,SAAS,GAAG;AAC3C,UAAM,OAAO,QAAQ,KAAK,CAAC,GAAG,EAAE,CAAC;AACjC,UAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AACtD,UAAM,OAAO,OAAO,MAAM,IAAI;AAC9B,WAAO,QAAQ,MAAM,CAAC,KAAK,IAAI,CAAC;AAAA,EAClC,WAAW,IAAI,SAAS,KAAK,IAAI,SAAS,GAAG;AAC3C,UAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,CAAC,CAAC;AACjC,UAAM,OAAO,OAAO,KAAK,IAAI;AAC7B,WAAO,QAAQ,MAAM,CAAC,KAAK,IAAI,CAAC;AAAA,EAClC,OAAO;AACL,UAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AACtD,UAAM,OAAO,OAAO,KAAK,IAAI;AAC7B,WAAO;AAAA,EACT;AACF;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,QAAQ,aAAa,SAAS;AACrC,QAAM,WAAW,QAAQ,IAAI,CAAC,IAAI,OAAO,gBAAgB,IAAI,UAAU,MAAM,QAAQ,CAAC;AACtF,QAAM,QAAQ,EAAE,SAAS;AACzB,SAAO,OAAO,UAAU,QAAQ,UAAU,KAAK;AACjD;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG;AACf,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,SAAO,GAAG,UAAU,WAAW,GAAG,UAAU,WAAW,MAAM,2CAA2C;AACxG,MAAI,GAAG,UAAU,SAAS;AACxB,SAAK,KAAK,IAAI,SAAS;AAAA,EACzB;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,qBAAqB,MAAM,MAAM;AACxC,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,QAAI,KAAK,KAAK,SAAS,KAAK,OAAO,OAAO,IAAI,IAAI;AAChD,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,WAAW,WAAW,MAAM;AACpD,QAAM,OAAO,UAAU,SAAS,UAAU;AAC1C,QAAM,MAAM,CAAC;AACb,MAAI,SAAS;AACb,MAAI,YAAY;AAChB,WAAS,MAAM,GAAG,MAAM,MAAM,OAAO;AACnC,QAAI,KAAK,QAAQ,GAAG,MAAM,IAAI;AAC5B,UAAI,KAAK,UAAU,SAAS;AAAA,IAC9B,OAAO;AACL,UAAI,KAAK,UAAU,YAAY;AAAA,IACjC;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,0BAA0B,QAAQ,MAAM;AAC/C,QAAM,WAAW,CAAC;AAClB,QAAM,OAAO,OAAO;AACpB,WAAS,MAAM,GAAG,MAAM,MAAM,OAAO;AACnC,QAAI,KAAK,QAAQ,GAAG,MAAM,IAAI;AAC5B,eAAS,KAAK,OAAO,IAAI;AAAA,IAC3B;AAAA,EACF;AACA,QAAM,cAAc,KAAK,IAAI,CAAC,QAAQ,OAAO,IAAI;AACjD,SAAO,CAAC,UAAU,WAAW;AAC/B;AACA,SAAS,qBAAqB,OAAO,MAAM;AACzC,QAAM,iBAAiB,KAAK,IAAI,CAAC,MAAM,CAAC;AACxC,SAAO,iBAAiB,OAAO,gBAAgB,IAAI;AACrD;AACA,SAAS,2BAA2B,KAAK,MAAM,MAAM;AACnD,SAAO,qBAAqB,MAAM,IAAI,GAAG,MAAM,GAAG,uDAAuD,iBAAiB,aAAa;AACzI;AACA,SAAS,mBAAmB,MAAM,MAAM;AACtC,MAAI,qBAAqB,MAAM,IAAI,GAAG;AACpC,WAAO;AAAA,EACT;AACA,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,GAAG,KAAK,MAAM,EAAE,IAAI;AAChC,QAAI,KAAK,QAAQ,EAAE,MAAM,IAAI;AAC3B,aAAO,KAAK,EAAE;AAAA,IAChB;AAAA,EACF;AACA,OAAK,QAAQ,CAAC,SAAS,OAAO,KAAK,IAAI,CAAC;AACxC,SAAO;AACT;AACA,SAAS,uBAAuB,MAAM;AACpC,SAAO,KAAK,IAAI,CAAC,MAAM,OAAO,CAAC,IAAI,IAAI,CAAC,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,KAAK,EAAE,EAAE,EAAE,IAAI,CAAC,MAAM,EAAE,EAAE;AACvF;AACA,SAAS,iBAAiB,SAAS,MAAM;AACvC,QAAM,MAAM,CAAC;AACb,WAAS,KAAK,OAAO,SAAS,KAAK,MAAM,EAAE,IAAI;AAC7C,QAAI,KAAK,EAAE;AAAA,EACb;AACA,SAAO;AACT;AAGA,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,kBAAkB,MAAM,SAAS;AACjD,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,MAAM,MAAM;AACxB,MAAI,QAAQ,gBAAgB,MAAM,QAAQ,KAAK;AAC/C,MAAI,OAAO,gBAAgB,MAAM,OAAO,KAAK;AAC7C,GAAC,OAAO,IAAI,IAAI,eAAe,OAAO,IAAI;AAC1C,QAAM,SAAS,EAAE,GAAG,OAAO,GAAG,KAAK;AACnC,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,OAAO,OAAO,OAAO;AAC5B,OAAK,aAAa,KAAK,KAAK,UAAU,YAAY,MAAM,QAAQ,KAAK,MAAM,UAAU,aAAa;AAChG,UAAM,IAAI,MAAM,gFAAgF;AAAA,EAClG;AACA,MAAI,UAAU,YAAY,aAAa,KAAK,KAAK,EAAE,iBAAiB,aAAa;AAC/E,UAAM,IAAI,MAAM,2EAA2E;AAAA,EAC7F;AACA,QAAM,QAAQ,CAAC;AACf,QAAM,gBAAgB,CAAC;AACvB,SAAO,WAAW,OAAO,OAAO,eAAe,KAAK;AACtD;AAGA,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,SAAS;AACpD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,QAAQ,GAAG;AAClB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,QAAQ,CAAC;AACf,SAAO,OAAO,UAAU,UAAU,EAAE,GAAG,GAAG,GAAG,KAAK;AACpD;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,KAAK,GAAG,OAAO,MAAM,WAAW,OAAO;AAC9C,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,GAAG,UAAU,QAAQ;AACvB,SAAK,KAAK,IAAI,OAAO;AAAA,EACvB;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC5C;AACA,IAAI,OAAO,GAAG,EAAE,KAAK,CAAC;AAGtB,SAAS,MAAM,GAAG,MAAM,aAAa,OAAO,MAAM,WAAW,OAAO;AAClE,MAAI,gBAAgB,GAAG,KAAK,MAAM;AAClC,QAAM,QAAQ,SAAS,GAAG,KAAK,IAAI;AACnC,MAAI,gBAAgB,MAAM;AAC1B,MAAI,UAAU;AACZ,UAAM,OAAO,eAAe,MAAM,EAAE,KAAK;AACzC,oBAAgB,qBAAqB,MAAM,OAAO,IAAI;AAAA,EACxD;AACA,SAAO,QAAQ,OAAO,aAAa;AACrC;AACA,SAAS,SAAS,GAAG,IAAI,OAAO,MAAM;AACpC,MAAI,EAAE,SAAS,GAAG;AAChB,WAAO,IAAI,CAAC;AAAA,EACd;AACA,MAAI,EAAE,SAAS,KAAK,SAAS,MAAM;AACjC,WAAO,SAAS,QAAQ,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,IAAI;AAAA,EAC5C;AACA,MAAI,EAAE,SAAS,KAAK,OAAO,SAAS,YAAY,MAAM,QAAQ,IAAI,KAAK,KAAK,WAAW,GAAG;AACxF,QAAI,OAAO,GAAG;AACZ,aAAO,KAAK,IAAI,CAAC,GAAG,IAAI;AAAA,IAC1B;AACA,QAAI,OAAO,UAAU;AACnB,aAAO,IAAI,IAAI,CAAC,GAAG,IAAI;AAAA,IACzB;AACA,QAAI,OAAO,WAAW;AACpB,aAAO,IAAI,IAAI,CAAC,GAAG,IAAI;AAAA,IACzB;AACA,QAAI,OAAO,eAAe,OAAO,GAAG;AAClC,aAAO,KAAK,KAAK,IAAI,IAAI,CAAC,GAAG,OAAO,GAAG,OAAO,CAAC,GAAG,IAAI,CAAC;AAAA,IACzD;AACA,UAAM,IAAI,MAAM,qCAAqC,IAAI;AAAA,EAC3D;AACA,MAAI,MAAM,QAAQ,IAAI,KAAK,KAAK,WAAW,GAAG;AAC5C,QAAI,OAAO,GAAG;AACZ,aAAO,IAAI,KAAK,IAAI,CAAC,GAAG,KAAK,EAAE,GAAG,KAAK,KAAK,CAAC;AAAA,IAC/C;AACA,QAAI,OAAO,UAAU;AACnB,aAAO,IAAI,KAAK,IAAI,CAAC,GAAG,KAAK,EAAE,GAAG,KAAK,EAAE;AAAA,IAC3C;AACA,QAAI,OAAO,WAAW;AACpB,aAAO,IAAI,KAAK,IAAI,CAAC,GAAG,KAAK,EAAE,GAAG,KAAK,EAAE;AAAA,IAC3C;AACA,QAAI,OAAO,SAAS,OAAO,aAAa;AACtC,aAAO,KAAK,KAAK,OAAO,CAAC,GAAG,IAAI,CAAC;AAAA,IACnC;AACA,UAAM,IAAI,MAAM,qCAAqC,IAAI;AAAA,EAC3D;AACA,QAAM,IAAI,MAAM,gCAAgC,MAAM;AACxD;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,eAAe,GAAG,OAAO,MAAM,WAAW,OAAO;AACxD,SAAO,KAAK,GAAG,aAAa,MAAM,QAAQ;AAC5C;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,YAAY,GAAG,OAAO,GAAG;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,mBAAmB;AACpE,SAAO,QAAQ,GAAG,MAAM,MAAM,oCAAoC;AAClE,QAAM,SAAS,EAAE,OAAO,GAAG;AAC3B,QAAM,QAAQ,EAAE,KAAK,KAAK;AAC1B,SAAO,OAAO,UAAU,YAAY,QAAQ,KAAK;AACnD;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG,MAAM;AACtB,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ,mBAAmB;AAC9D,SAAO,GAAG,SAAS,KAAK,QAAQ,MAAM,qCAAqC,GAAG,kCAAkC,OAAO;AACvH,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,KAAK,SAAS,YAAY,YAAY,QAAQ,WAAW;AAChE,MAAI,cAAc,MAAM;AACtB,iBAAa;AAAA,EACf;AACA,QAAM,OAAO,OAAO,CAAC,SAAS,UAAU,GAAG,KAAK;AAChD,QAAM,KAAK,WAAW,aAAa,UAAU;AAC7C,WAAS,KAAK,GAAG,KAAK,IAAI,EAAE,IAAI;AAC9B,SAAK,IAAI,GAAG,IAAI,EAAE;AAAA,EACpB;AACA,QAAM,MAAM,QAAQ,KAAK,SAAS,GAAG,CAAC,SAAS,UAAU,CAAC;AAC1D,MAAI,cAAc,MAAM;AACtB,WAAO;AAAA,EACT,OAAO;AACL,QAAI,WAAW,WAAW,GAAG;AAC3B,aAAO,KAAK,WAAW,KAAK,CAAC,GAAG,CAAC,WAAW,IAAI,GAAG,CAAC,CAAC;AAAA,IACvD,WAAW,WAAW,WAAW,GAAG;AAClC,aAAO,KAAK,WAAW,WAAW,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,WAAW,IAAI,WAAW,IAAI,GAAG,CAAC,CAAC;AAAA,IACrF,WAAW,WAAW,WAAW,GAAG;AAClC,aAAO,KAAK,WAAW,WAAW,WAAW,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG;AAAA,QAC5D,WAAW;AAAA,QACX,WAAW;AAAA,QACX,WAAW;AAAA,QACX;AAAA,QACA;AAAA,MACF,CAAC;AAAA,IACH,OAAO;AACL,YAAM,IAAI,MAAM,qEAAqE,WAAW,UAAU;AAAA,IAC5G;AAAA,EACF;AACF;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,KAAK,OAAO,OAAO,OAAO;AACjC,QAAM,QAAQ,EAAE,OAAO,OAAO,MAAM;AACpC,SAAO,OAAO,UAAU,MAAM,CAAC,GAAG,KAAK;AACzC;AAGA,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS,SAAS;AACrD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,QAAQ,GAAG,SAAS,OAAO,GAAG,YAAY,GAAG;AACpD,QAAM,KAAK,gBAAgB,GAAG,KAAK,QAAQ;AAC3C,QAAM,WAAW,gBAAgB,SAAS,WAAW,UAAU,OAAO;AACtE,QAAM,SAAS,EAAE,GAAG,IAAI,SAAS,SAAS;AAC1C,QAAM,QAAQ,EAAE,MAAM,UAAU;AAChC,SAAO,OAAO,UAAU,UAAU,QAAQ,KAAK;AACjD;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,SAAS,GAAG,GAAG;AACtB,MAAI,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AAC/D,MAAI,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AAC/D,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,cAAc,GAAG,GAAG;AAC3B,MAAI,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,mBAAmB;AACpE,MAAI,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,mBAAmB;AACpE,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,cAAc,MAAM;AAC9C;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,UAAU,GAAG;AACpB,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,YAAY,GAAG,EAAE,UAAU,CAAC;AAGhC,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,SAAS,GAAG,EAAE,OAAO,CAAC;AAG1B,SAAS,WAAW,GAAGU,SAAQ,KAAK;AAClC,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,OAAAA,OAAM;AACtB,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,MAAM,GAAG,GAAG;AACnB,MAAI,KAAK,gBAAgB,GAAG,KAAK,QAAQ,mBAAmB;AAC5D,MAAI,KAAK,gBAAgB,GAAG,KAAK,QAAQ,mBAAmB;AAC5D,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,WAAW,GAAG,GAAG;AACxB,MAAI,KAAK,gBAAgB,GAAG,KAAK,aAAa,mBAAmB;AACjE,MAAI,KAAK,gBAAgB,GAAG,KAAK,aAAa,mBAAmB;AACjE,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,WAAW,MAAM;AAC3C;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,SAAS,OAAO,MAAM,KAAK;AAClC,MAAI,OAAO,GAAG;AACZ,UAAM,IAAI,MAAM,0CAA0C;AAAA,EAC5D;AACA,QAAM,QAAQ,EAAE,OAAO,MAAM,IAAI;AACjC,SAAO,OAAO,UAAU,UAAU,CAAC,GAAG,KAAK;AAC7C;AAGA,SAAS,4BAA4B,GAAG,cAAc,GAAG,OAAO,GAAGA,SAAQ,GAAG,OAAO,KAAK;AACxF,QAAM,KAAK,gBAAgB,GAAG,KAAK,4BAA4B;AAC/D,SAAO,GAAG,SAAS,KAAK,GAAG,SAAS,GAAG,MAAM;AAAA,sBACzB,GAAG,OAAO;AAC9B,SAAO,MAAM,WAAW,GAAG,MAAM,2FAA2F,cAAc;AAC1I,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK;AAC/C,QAAM,MAAM,OAAO,UAAU,KAAK,QAAQ,KAAK;AAC/C,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,IAAI,6BAA6B,GAAG,EAAE,4BAA4B,CAAC;AAGnE,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI5B,QAAO,GAAG,EAAE,KAAK,CAAC;AAGtB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,KAAK,GAAG;AACf,SAAO,WAAW,CAAC,GAAG,MAAM,4CAA4C;AACxE,SAAO,CAAC,GAAG,OAAO;AAChB,UAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AACjE,UAAM,MAAM,MAAM,OAAO,gBAAgB,IAAI,MAAM,SAAS,IAAI;AAChE,WAAO,OAAO,KAAK,MAAM;AACvB,YAAM,EAAE,OAAO,OAAO,OAAO,IAAI,OAAO,UAAU,MAAM,EAAE,EAAE,GAAG,CAAC,EAAE,GAAG,GAAG;AACxE,UAAI,OAAO,MAAM;AACf,0BAAkB,MAAM,OAAO,IAAI,OAAO,gFAAgF;AAAA,MAC5H;AACA,iBAAW,MAAM;AACjB,aAAO,OAAO;AAAA,IAChB,CAAC;AAAA,EACH;AACF;AACA,SAAS,MAAM,GAAG;AAChB,SAAO,WAAW,CAAC,GAAG,MAAM,6CAA6C;AACzE,SAAO,CAAC,MAAM,OAAO;AACnB,WAAO,MAAM,QAAQ,IAAI,GAAG,MAAM,kFAAkF;AACpH,UAAM,QAAQ,qBAAqB,MAAM,QAAQ,YAAY,mBAAmB;AAChF,UAAM,MAAM,MAAM,OAAO,gBAAgB,IAAI,MAAM,UAAU,IAAI;AACjE,WAAO,OAAO,KAAK,MAAM;AACvB,YAAM,EAAE,OAAO,OAAO,OAAO,IAAI,OAAO,UAAU,MAAM,EAAE,GAAG,KAAK,GAAG,OAAO,GAAG;AAC/E,UAAI,OAAO,MAAM;AACf,0BAAkB,MAAM,OAAO,IAAI,OAAO,+FAA+F;AAAA,MAC3I;AACA,iBAAW,MAAM;AACjB,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,SAAS,aAAa,GAAG;AACvB,SAAO,WAAW,CAAC,GAAG,MAAM,oDAAoD;AAChF,SAAO,CAAC,GAAG,OAAO;AAChB,WAAO,aAAa,QAAQ,MAAM,qDAAqD;AACvF,WAAO,MAAM,QAAQ,cAAc,QAAQ,MAAM,0DAA0D;AAC3G,UAAM,EAAE,OAAO,QAAQ,MAAM,IAAI,OAAO,UAAU,MAAM,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE;AACrE,eAAW,MAAM;AACjB,WAAO,EAAE,MAAM,OAAO,IAAI,MAAM;AAAA,EAClC;AACF;AACA,SAAS,cAAc,GAAG;AACxB,SAAO,WAAW,CAAC,GAAG,MAAM,qDAAqD;AACjF,SAAO,CAAC,MAAM,OAAO;AACnB,WAAO,MAAM,QAAQ,IAAI,KAAK,KAAK,MAAM,CAAC,QAAQ,eAAe,MAAM,GAAG,MAAM,oEAAoE;AACpJ,WAAO,MAAM,QAAQ,cAAc,QAAQ,MAAM,8DAA8D;AAC/G,UAAM,MAAM,OAAO,UAAU,MAAM,EAAE,GAAG,IAAI,GAAG,MAAM,EAAE;AACvD,QAAI,MAAM,MAAM;AACd,wBAAkB,IAAI,MAAM,OAAO,GAAG,OAAO,uGAAuG;AAAA,IACtJ;AACA,eAAW,IAAI,KAAK;AACpB,WAAO;AAAA,EACT;AACF;AACA,SAAS,cAAc,GAAG,SAAS;AACjC,SAAO,WAAW,CAAC,GAAG,MAAM,qDAAqD;AACjF,SAAO,WAAW,QAAQ,MAAM,QAAQ,OAAO,KAAK,QAAQ,MAAM,CAAC,MAAM,aAAa,QAAQ,GAAG,MAAM,+EAA+E;AACtL,QAAM,mBAAmB,WAAW;AACpC,MAAI,CAAC,kBAAkB;AACrB,cAAU,CAAC;AACX,eAAW,WAAW,OAAO,qBAAqB;AAChD,cAAQ,KAAK,OAAO,oBAAoB,QAAQ;AAAA,IAClD;AAAA,EACF;AACA,QAAM,wBAAwB,mBAAmB,QAAQ,OAAO,CAAC,cAAc,CAAC,UAAU,SAAS,IAAI;AACvG,QAAM,mBAAmB,QAAQ;AACjC,YAAU,QAAQ,OAAO,CAAC,cAAc,UAAU,SAAS;AAC3D,SAAO,QAAQ,SAAS,GAAG,MAAM,gGAAgG,0CAA0C;AAC3K,QAAM,mBAAmB;AACzB,QAAM,EAAE,OAAO,OAAO,OAAO,IAAI,OAAO,UAAU,GAAG,SAAS,MAAM,gBAAgB;AACpF,SAAO,OAAO,KAAK,CAAC,MAAM,KAAK,IAAI,GAAG,MAAM,8LAA8L;AAC1O,SAAO,MAAM,SAAS,GAAG,MAAM,iFAAiF,MAAM,aAAa;AACnI,QAAM,aAAa,CAAC;AACpB,UAAQ,QAAQ,CAAC,GAAG,OAAO;AACzB,QAAI,OAAO,OAAO,MAAM;AACtB,iBAAW,EAAE,QAAQ,OAAO;AAAA,IAC9B;AAAA,EACF,CAAC;AACD,MAAI,yBAAyB,MAAM;AACjC,0BAAsB,QAAQ,CAAC,MAAM,WAAW,EAAE,QAAQ,IAAI;AAAA,EAChE;AACA,SAAO,EAAE,OAAO,OAAO,WAAW;AACpC;AACA,SAAS,WAAW,GAAG;AACrB,SAAO,OAAO,WAAW,CAAC;AAC5B;AACA,SAAS,WAAW,QAAQ;AAC1B,QAAM,mBAAmB,OAAO,OAAO,CAAC,MAAM,KAAK,IAAI,EAAE;AACzD,MAAI,mBAAmB,GAAG;AACxB,UAAM,IAAI,MAAM;AAAA,oEACgD;AAAA,EAClE;AACF;AAGA,SAAS,UAAU,GAAG;AACpB,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,YAAY,GAAG;AACtB,QAAM,KAAK,gBAAgB,GAAG,KAAK,YAAY;AAC/C,QAAM,WAAW,WAAW,CAAC,OAAO;AAClC,UAAM,QAAQ,IAAI,SAAS,IAAI,EAAE,CAAC,CAAC;AACnC,UAAM,WAAW,CAAC,OAAO;AACvB,YAAM,OAAO,IAAI,IAAI,QAAQ,IAAI,EAAE,CAAC,CAAC;AACrC,aAAO;AAAA,IACT;AACA,WAAO,EAAE,OAAO,SAAS;AAAA,EAC3B,CAAC;AACD,SAAO,SAAS,EAAE;AACpB;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,YAAY,QAAQ,OAAO,IAAI;AACtC,QAAM,UAAU,gBAAgB,QAAQ,UAAU,YAAY;AAC9D,MAAI,SAAS,IAAI;AACf,WAAO,QAAQ,OAAO;AAAA,EACxB;AACA,MAAI,SAAS,QAAQ,OAAO,GAAG;AAC7B,UAAM,MAAM,gFAAgF,QAAQ,qBAAqB,MAAM;AAAA,EACjI;AACA,QAAM,WAAW,WAAW,CAAC,SAAS,SAAS;AAC7C,UAAM,WAAW;AACjB,UAAM,OAAO,IAAI,SAAS,MAAM,IAAI;AACpC,UAAM,UAAU,IAAI,SAAS,IAAI;AACjC,UAAM,QAAQ,IAAI,KAAK,SAAS,SAAS,GAAGA,MAAK,KAAK,IAAI,OAAO,GAAG,MAAM,QAAQ,CAAC,CAAC;AACpF,SAAK,CAAC,KAAK,CAAC;AACZ,UAAM,WAAW,CAAC,IAAI,UAAU;AAC9B,YAAM,CAAC,MAAM,IAAI;AACjB,YAAM,YAAY;AAClB,YAAM,WAAW,IAAI,MAAM;AAC3B,aAAO,IAAI,IAAI,IAAI,KAAK,IAAI,MAAM,SAAS,GAAG,QAAQ,CAAC;AAAA,IACzD;AACA,WAAO,EAAE,OAAO,SAAS;AAAA,EAC3B,CAAC;AACD,SAAO,SAAS,OAAO;AACzB;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,WAAW,GAAG,OAAO,MAAM,WAAW,OAAO;AACpD,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,OAAO,eAAe,MAAM,GAAG,KAAK;AAC1C,QAAM,OAAO,IAAI,IAAI,MAAM,IAAI;AAC/B,QAAM,IAAI,IAAI,IAAI,IAAI;AACtB,QAAM,IAAI,IAAI,CAAC;AACf,QAAM,IAAI,KAAK,GAAG,IAAI;AACtB,QAAM,IAAIA,MAAK,CAAC;AAChB,QAAM,MAAM,KAAK,QAAQ,MAAM,EAAE,KAAK,GAAG,CAAC;AAC1C,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,IAAI,OAAO,IAAI;AACrD,WAAO,QAAQ,KAAK,QAAQ;AAAA,EAC9B;AACA,SAAO;AACT;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,YAAY,GAAG,GAAG;AACzB,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,YAAY,MAAM;AAC5C;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,YAAY,GAAG;AACtB,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,YAAY,MAAM;AAC5C;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,WAAW,GAAG,GAAG;AACxB,QAAM,KAAK,gBAAgB,GAAG,KAAK,aAAa,MAAM;AACtD,QAAM,KAAK,gBAAgB,GAAG,KAAK,aAAa,MAAM;AACtD,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,WAAW,MAAM;AAC3C;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,YAAY,GAAG,GAAG;AACzB,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,QAAM,KAAK,gBAAgB,GAAG,KAAK,cAAc,MAAM;AACvD,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,SAAO,WAAW,UAAU,GAAG,CAAC,GAAG,WAAW,WAAW,GAAG,CAAC,CAAC,CAAC;AACjE;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,IAAI,YAAY;AAChB,SAAS,cAAc,gBAAgB,QAAQ,OAAO,QAAQ;AAC5D,QAAM,kBAAkB,gBAAgB,gBAAgB,kBAAkB,cAAc;AACxF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,cAAc;AAChE,QAAM,eAAe,gBAAgB,MAAM,gBAAgB,MAAM,SAAS;AAC1E,QAAM,aAAa,QAAQ,MAAM,QAAQ,MAAM,SAAS;AACxD,QAAM,oBAAoB,QAAQ,iBAAiB,CAAC,IAAI,YAAY,CAAC;AACrE,QAAM,YAAY,QAAQ,SAAS,CAAC,IAAI,UAAU,CAAC;AACnD,MAAI,kBAAkB,OAAO,GAAG;AAC9B,UAAM,IAAI,MAAM,sDAAsD;AAAA,EACxE;AACA,MAAI,kBAAkB,MAAM,OAAO,UAAU,MAAM,IAAI;AACrD,UAAM,IAAI,MAAM,gEAAgE;AAAA,EAClF;AACA,MAAI,cAAc,UAAU,KAAK,KAAK,WAAW;AAC/C,UAAM,IAAI,MAAM,qCAAqC,WAAW;AAAA,EAClE;AACA,MAAI,kBAAkB,MAAM,MAAM,WAAW;AAC3C,UAAM,IAAI,MAAM,oCAAoC,wCAAwC,kBAAkB,MAAM,IAAI;AAAA,EAC1H;AACA,QAAM,SAAS;AAAA,IACb,gBAAgB;AAAA,IAChB,QAAQ;AAAA,EACV;AACA,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,cAAc,QAAQ,KAAK;AACrD;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,WAAW,gBAAgB,QAAQ;AAC1C,SAAO,aAAa,gBAAgB,QAAQ,MAAM;AACpD;AAGA,SAAS,SAAS,GAAG,YAAYkB,UAAS,MAAM,iBAAiB;AAC/D,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,QAAM,YAAY;AAClB,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,uDAAuD,IAAI,OAAO;AAC/F,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AAC/K,4BAA0B,WAAW,MAAM,eAAe;AAC1D,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,QAAM,MAAM,OAAO,UAAU,SAAS,QAAQ,KAAK;AACnD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,GAAG,aAAa,CAAC,GAAG,GAAG,CAAC,GAAGA,UAAS,MAAM,iBAAiB,aAAa,SAAS;AACnG,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC3E;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,qDAAqD,IAAI,OAAO;AAC7F,SAAO,eAAe,SAAS,MAAM,gFAAgF,YAAY;AACjI,4BAA0B,aAAa,MAAM,eAAe;AAC5D,QAAM,SAAS,EAAE,GAAG,IAAI;AACxB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW;AAC5E,QAAM,MAAM,OAAO,UAAU,WAAW,QAAQ,KAAK;AACrD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,mBAAmB,GAAG,YAAYA,UAAS,MAAM,sBAAsB,OAAO;AACrF,QAAM,KAAK,gBAAgB,GAAG,KAAK,mBAAmB;AACtD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,oBAAoB;AACpE,QAAM,SAAS,OAAO,UAAU,mBAAmB,QAAQ,KAAK;AAChE,SAAO,EAAE,QAAQ,OAAO,IAAI,SAAS,OAAO,GAAG;AACjD;AACA,IAAI,oBAAoB,GAAG,EAAE,mBAAmB,CAAC;AAGjD,SAAS,SAAS,GAAG,GAAG;AACtB,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC1C,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC1C,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,MAAI,GAAG,UAAU,QAAQ;AACvB,SAAK,KAAK,IAAI,OAAO;AACrB,SAAK,KAAK,IAAI,OAAO;AAAA,EACvB;AACA,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,MAAM,GAAG,OAAO,MAAM,WAAW,OAAO;AAC/C,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,MAAM,OAAO,QAAQ,WAAW;AACvC,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,MAAM,OAAO,SAAS;AACpC,UAAM,QAAQ,MAAM,OAAO,SAAS;AACpC,WAAO,QAAQ,OAAO,KAAK;AAAA,EAC7B;AACA,QAAM,SAAS,oBAAoB,cAAc,KAAK,GAAG,KAAK;AAC9D,SAAO,OAAO,WAAW,QAAQ,OAAO,KAAK;AAC/C;AAGA,SAAS,MAAM,OAAO,QAAQ,WAAW;AACvC,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,MAAM,OAAO,SAAS;AACpC,UAAM,QAAQ,MAAM,OAAO,SAAS;AACpC,WAAO,QAAQ,OAAO,KAAK;AAAA,EAC7B;AACA,QAAM,SAAS,mBAAmB,cAAc,KAAK,GAAG,KAAK;AAC7D,SAAO,OAAO,WAAW,QAAQ,OAAO,KAAK;AAC/C;AAGA,SAAS,SAAS,GAAG,GAAG,EAAE,WAAW,KAAK,IAAI,CAAC,GAAG;AAChD,MAAI,aAAa,QAAQ,aAAa,MAAM;AAC1C,UAAM,IAAI,UAAU,GAAG,oDAAoD;AAAA,EAC7E;AACA,MAAI,MAAM,QAAQ;AAChB,WAAO,CAAC;AAAA,EACV;AACA,MAAI,KAAK,gBAAgB,GAAG,KAAK,YAAY,aAAa,SAAS,EAAE,QAAQ,SAAS;AACtF,MAAI,MAAM,QAAQ;AAChB,WAAO,CAAC,EAAE;AAAA,EACZ;AACA,MAAI,KAAK,gBAAgB,GAAG,KAAK,YAAY,aAAa,SAAS,EAAE,QAAQ,SAAS;AACtF,QAAM,IAAI,cAAc,GAAG,KAAK;AAChC,QAAM,IAAI,cAAc,GAAG,KAAK;AAChC,MAAI,aAAa,MAAM;AACrB,SAAK,QAAQ,IAAI,CAAC,GAAG,EAAE,CAAC;AACxB,SAAK,QAAQ,IAAI,CAAC,IAAI,CAAC,CAAC;AACxB,WAAO;AAAA,MACL,OAAO,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK,GAAG,EAAE;AAAA,MAClC,OAAO,IAAI,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK,CAAC;AAAA,IACpC;AAAA,EACF;AACA,OAAK,QAAQ,IAAI,CAAC,IAAI,CAAC,CAAC;AACxB,OAAK,QAAQ,IAAI,CAAC,GAAG,EAAE,CAAC;AACxB,SAAO;AAAA,IACL,OAAO,IAAI,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK,CAAC;AAAA,IAClC,OAAO,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK,GAAG,EAAE;AAAA,EACpC;AACF;AAGA,SAAS,SAAS,GAAG,GAAG;AACtB,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC1C,MAAI,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC1C,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,MAAI,GAAG,UAAU,QAAQ;AACvB,SAAK,KAAK,IAAI,OAAO;AACrB,SAAK,KAAK,IAAI,OAAO;AAAA,EACvB;AACA,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,SAAS,MAAM;AACzC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,GAAG,UAAU,MAAM;AACrC,SAAO,SAAS,aAAa,SAAS,aAAa,MAAM,+DAA+D,OAAO;AAC/H,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,IAAI,MAAM,gEAAgE;AAAA,EAClF;AACA,SAAO,SAAS,WAAW,GAAG,MAAM,MAAM,wCAAwC,GAAG,aAAa,SAAS,SAAS;AACpH,QAAM,cAAc,SAAS,YAAY,IAAI;AAC7C,WAAS,KAAK,GAAG,KAAK,GAAG,MAAM,MAAM;AACnC,WAAO,SAAS,IAAI,WAAW,GAAG,MAAM,uDAAuD;AAC/F,WAAO,SAAS,IAAI,MAAM,KAAK,SAAS,IAAI,MAAM,GAAG,MAAM,MAAM,eAAe,SAAS,IAAI,MAAM,KAAK,SAAS,IAAI,MAAM,GAAG,MAAM,MAAM,aAAa,MAAM,wBAAwB,yCAAyC,GAAG,MAAM,MAAM,iDAAiD,GAAG,OAAO;AAAA,EAC1S;AACA,QAAM,QAAQ,EAAE,UAAU,KAAK;AAC/B,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,KAAK,GAAG,GAAG;AAClB,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,MAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACtC,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,SAAS,GAAG,OAAO,MAAM,WAAW,OAAO;AAClD,MAAI,gBAAgB,GAAG,KAAK,SAAS;AACrC,QAAM,OAAO,eAAe,MAAM,EAAE,KAAK;AACzC,QAAM,QAAQ,KAAK,GAAG,MAAM,QAAQ;AACpC,MAAI,gBAAgB,MAAM;AAC1B,MAAI,CAAC,UAAU;AACb,oBAAgB,qBAAqB,MAAM,OAAO,IAAI;AAAA,EACxD;AACA,QAAM,aAAa,OAAO,IAAI,KAAK,GAAG,SAAS,GAAG,QAAQ,OAAO,aAAa,CAAC,CAAC;AAChF,QAAM,WAAW,KAAK,YAAY,MAAM,QAAQ;AAChD,SAAO,EAAE,MAAM,OAAO,SAAS;AACjC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,cAAc,WAAW,MAAM,GAAG,GAAG;AAC5C,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,cAAc;AAC1D,QAAM,KAAK,qBAAqB,GAAG,KAAK,cAAc;AACtD,QAAM,KAAK,qBAAqB,GAAG,KAAK,cAAc;AACtD,MAAI,SAAS;AACb,QAAM,YAAY,CAAC;AACnB,WAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,MAAM;AAC5C,UAAM,SAAS,UAAU,IAAI,QAAQ,GAAG,KAAK,GAAG,GAAG;AACnD,cAAU,KAAK,OAAO,EAAE;AACxB,cAAU,KAAK,OAAO,EAAE;AACxB,aAAS,OAAO;AAAA,EAClB;AACA,QAAM,OAAO,CAAC;AACd,QAAM,OAAO,CAAC;AACd,WAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,MAAM,GAAG;AAC/C,SAAK,KAAK,UAAU,GAAG;AACvB,SAAK,KAAK,UAAU,KAAK,EAAE;AAAA,EAC7B;AACA,SAAO,CAAC,MAAM,IAAI;AACpB;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,aAAa,QAAQ,YAAY,MAAM,aAAa,OAAO;AAClE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,aAAa;AAC/D,QAAM,cAAc,QAAQ;AAC5B,QAAM,WAAW,QAAQ;AACzB,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,+DAA+D,cAAc;AAAA,EAC/F;AACA,MAAI,WAAW,GAAG;AAChB,UAAM,IAAI,MAAM,gDAAgD,UAAU;AAAA,EAC5E;AACA,SAAO,QAAQ,KAAK,OAAO;AAC3B,QAAM,WAAW,aAAa,IAAI,QAAQ,SAAS,CAAC,GAAG,EAAE,CAAC,IAAI;AAC9D,QAAM,SAAS,EAAE,QAAQ,SAAS;AAClC,QAAM,QAAQ,EAAE,YAAY,MAAM,WAAW;AAC7C,QAAM,MAAM,OAAO,UAAU,aAAa,QAAQ,KAAK;AACvD,SAAO,aAAa,IAAI,QAAQ,KAAK,CAAC,IAAI,IAAI,CAAC,IAAI;AACrD;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,UAAU,GAAG,GAAG;AACvB,MAAI,KAAK,gBAAgB,GAAG,KAAK,YAAY,mBAAmB;AAChE,MAAI,KAAK,gBAAgB,GAAG,KAAK,YAAY,mBAAmB;AAChE,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,UAAU,GAAG;AACpB,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,cAAc,IAAI,IAAI;AAC7B,QAAM,MAAM,gBAAgB,IAAI,MAAM,cAAc;AACpD,QAAM,MAAM,gBAAgB,IAAI,MAAM,cAAc;AACpD,SAAO,IAAI,SAAS,KAAK,IAAI,SAAS,GAAG,MAAM,+DAA+D,IAAI,YAAY,IAAI,OAAO;AACzI,QAAM,OAAO,QAAQ,KAAK,CAAC,IAAI,CAAC,CAAC;AACjC,QAAM,OAAO,QAAQ,KAAK,CAAC,GAAG,EAAE,CAAC;AACjC,SAAO,OAAO,MAAM,IAAI;AAC1B;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,KAAK,GAAG,UAAU,gBAAgB,GAAG;AAC5C,QAAM,KAAK,gBAAgB,GAAG,KAAK,KAAK;AACxC,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,IAAI,MAAM,oDAAoD;AAAA,EACtE;AACA,QAAM,QAAQ,EAAE,UAAU,cAAc;AACxC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,QAAQ,KAAK;AAC9C;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,OAAO,GAAG,UAAU,gBAAgB,GAAG;AAC9C,SAAO,SAAS,WAAW,GAAG,MAAM,kDAAkD;AACtF,SAAO,IAAI,GAAG,CAAC,QAAQ,GAAG,aAAa;AACzC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG,UAAU,gBAAgB,GAAG;AAC9C,SAAO,SAAS,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,GAAG,MAAM,uDAAuD;AACnJ,SAAO,IAAI,GAAG,UAAU,aAAa;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG,UAAU,gBAAgB,GAAG;AAC9C,SAAO,SAAS,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,GAAG,MAAM,uDAAuD;AAC/K,SAAO,IAAI,GAAG,UAAU,aAAa;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG,UAAU,gBAAgB,GAAG;AAC9C,SAAO,SAAS,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,KAAK,SAAS,GAAG,WAAW,GAAG,MAAM,uDAAuD;AAC3M,SAAO,IAAI,GAAG,UAAU,aAAa;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,gBAAgB,GAAG,YAAY,UAAU;AAChD,QAAM,KAAK,gBAAgB,GAAG,KAAK,gBAAgB;AACnD,SAAO,GAAG,QAAQ,IAAI,WAAW,QAAQ,MAAM,cAAc,GAAG,sCAAsC,WAAW,QAAQ;AACzH,SAAO,SAAS,WAAW,WAAW,QAAQ,MAAM,qBAAqB,SAAS,wCAAwC,WAAW,QAAQ;AAC7I,SAAO,GAAG,MAAM,OAAO,CAAC,GAAG,GAAG,OAAO;AACnC,QAAI,KAAK,KAAK,MAAM,WAAW,QAAQ;AACrC,aAAO,MAAM,IAAI,SAAS,KAAK,GAAG,KAAK,SAAS,KAAK,GAAG,MAAM,WAAW,KAAK,OAAO;AAAA,IACvF;AACA,WAAO;AAAA,EACT,GAAG,IAAI,GAAG,MAAM,4BAA4B,GAAG,MAAM,MAAM,CAAC,mBAAmB,SAAS,SAAS,sCAAsC,WAAW,SAAS,GAAG;AAC9J,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,YAAY,SAAS;AACrC,SAAO,OAAO,UAAU,gBAAgB,QAAQ,KAAK;AACvD;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,MAAM,QAAQ,aAAa,aAAa,MAAM,WAAWA,UAAS,iBAAiB;AAC1F,MAAI,aAAa,MAAM;AACrB,gBAAY,CAAC,GAAG,CAAC;AAAA,EACnB;AACA,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU;AAAA,EACZ;AACA,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT;AACA,QAAM,KAAK,gBAAgB,QAAQ,KAAK,SAAS;AACjD,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,qEAAqEA,2BAA0B,YAAY;AAC5K,QAAM,WAAW,kBAAkB,IAAI,OAAO,aAAaA,UAAS,WAAW,IAAI;AACnF,QAAM,WAAW,CAAC,SAAS,gBAAgB,SAAS,aAAa;AACjE,MAAI;AACJ,MAAI,SAAS,QAAQ;AACnB,kBAAc,6BAA6B,CAAC,SAAS,cAAc,SAAS,WAAW,GAAG,QAAQ;AAAA,EACpG,OAAO;AACL,kBAAc,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,EAC/B;AACA,QAAM,gBAAgB,SAAS,OAAO,KAAK,SAAS,OAAO;AAC3D,QAAM,CAAC,iBAAiB,aAAa,IAAI,6BAA6B,CAAC,SAAS,UAAU,SAAS,OAAO,GAAG,UAAU,WAAW;AAClI,QAAM,eAAe,gBAAgB,OAAO;AAC5C,QAAM,aAAa,gBAAgB,MAAM,eAAe,KAAK,UAAU,eAAe;AACtF,QAAM,YAAY,gBAAgB,QAAQ,MAAM,QAAQ,YAAY,aAAaA,UAAS,cAAc,eAAe,IAAI,MAAM,QAAQ,YAAY,aAAaA,UAAS,cAAc,eAAe;AACxM,QAAM,IAAI,UAAU;AACpB,QAAM,MAAM,gBAAgB,IAAI,eAAe,GAAG,UAAU,aAAa;AACzE,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,SAAS,6BAA6B,YAAY,YAAY,aAAa;AACzE,QAAM,WAAW,YAAY,IAAI,CAAC,MAAM,EAAE,EAAE;AAC5C,QAAM,aAAa,YAAY,IAAI,CAAC,MAAM,EAAE,EAAE;AAC9C,QAAM,iBAAiB,WAAW,OAAO,UAAU,UAAU;AAC7D,QAAM,cAAc,WAAW,IAAI,CAAC,GAAG,QAAQ,IAAI,eAAe,MAAM,KAAK,CAAC;AAC9E,QAAM,SAAS,WAAW,IAAI,CAAC,IAAI,OAAO,KAAK,YAAY,GAAG;AAC9D,QAAM,WAAW,WAAW,IAAI,CAAC,GAAG,OAAO,CAAC,SAAS,KAAK,OAAO,GAAG,CAAC;AACrE,QAAM,QAAQ,WAAW,IAAI,CAAC,GAAG,OAAO,CAAC,GAAG,YAAY,GAAG,CAAC;AAC5D,SAAO,CAAC,UAAU,KAAK;AACzB;AACA,SAAS,6BAA6B,aAAa,UAAU;AAC3D,QAAM,qBAAqB,YAAY,IAAI,CAAC,IAAI,OAAO;AACrD,WAAO,MAAM,KAAK,MAAM,SAAS,MAAM;AAAA,EACzC,CAAC;AACD,QAAM,gBAAgB,mBAAmB,IAAI,CAAC,OAAO,KAAK,CAAC;AAC3D,QAAM,gBAAgB,cAAc,IAAI,CAAC,OAAO,KAAK,MAAM,KAAK,CAAC,CAAC;AAClE,QAAM,cAAc,cAAc,IAAI,CAAC,IAAI,OAAO,KAAK,cAAc,GAAG;AACxE,SAAO,cAAc,IAAI,CAAC,GAAG,OAAO;AAClC,WAAO,CAAC,cAAc,KAAK,YAAY,GAAG;AAAA,EAC5C,CAAC;AACH;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAGU,QAAO;AACxB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,gBAAgBA,QAAO,SAAS,OAAO;AACtD,QAAM,SAAS,EAAE,GAAG,IAAI,OAAO,OAAO;AACtC,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG,OAAO,MAAM,WAAW,OAAO;AAC/C,MAAI,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACvC,MAAI,GAAG,UAAU,QAAQ;AACvB,SAAK,KAAK,IAAI,OAAO;AAAA,EACvB;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,SAAS;AAC/B,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,sBAAsB,OAAO,QAAQ,cAAc,qBAAqB,mBAAmB;AAClG,QAAM,SAAS,gBAAgB,OAAO,SAAS,wBAAwB,OAAO;AAC9E,QAAM,UAAU,gBAAgB,QAAQ,UAAU,sBAAsB;AACxE,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,wBAAwB,QAAQ,KAAK;AACzG,QAAM,uBAAuB,oBAAoB,IAAI,CAAC,IAAI,OAAO,gBAAgB,IAAI,UAAU,MAAM,wBAAwB,OAAO,CAAC;AACrI,QAAM,SAAS;AAAA,IACb,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,cAAc;AAAA,IACd,qBAAqB;AAAA,EACvB;AACA,QAAM,QAAQ,EAAE,kBAAkB;AAClC,SAAO,OAAO,UAAU,sBAAsB,QAAQ,KAAK;AAC7D;AACA,IAAI,uBAAuB,GAAG,EAAE,sBAAsB,CAAC;AAGvD,SAAS,MAAM,OAAO,cAAc,OAAO;AACzC,QAAMvB,QAAO,cAAc,KAAK;AAChC,MAAI,SAAS;AACb,MAAI,SAAS,QAAQ,UAAU,WAAW;AACxC,aAAS,IAAI,aAAaA,KAAI;AAAA,EAChC,WAAW,UAAU,SAAS;AAC5B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,WAAW,UAAU,QAAQ;AAC3B,aAAS,IAAI,WAAWA,KAAI;AAAA,EAC9B,OAAO;AACL,UAAM,IAAI,MAAM,qBAAqB,OAAO;AAAA,EAC9C;AACA,WAAS,KAAK,GAAG,KAAKA,OAAM,MAAM;AAChC,WAAO,MAAM,aAAa;AAAA,EAC5B;AACA,SAAO,OAAO,WAAW,QAAQ,OAAO,KAAK;AAC/C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,IAAI,aAAa,QAAQ,oBAAoB,CAAC;AAC9C,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,OAAO,cAAc,OAAO,WAAW,MAAM;AACvD,SAAK,OAAO;AACZ,SAAK,SAAS;AACd,SAAK,QAAQ;AACb,SAAK,UAAU;AACf,SAAK,YAAY;AACjB,QAAI,KAAK,WAAW;AAClB,WAAK,QAAQ,KAAK,OAAO,KAAK,SAAS;AACvC,WAAK,QAAQ,KAAK,OAAO,KAAK,SAAS;AAAA,IACzC;AACA,UAAM,YAAY,OAAO,OAAO,KAAK,OAAO;AAC5C,SAAK,SAAS,WAAW,KAAK,UAAU,SAAS,CAAC;AAAA,EACpD;AAAA,EACA,YAAY;AACV,QAAI,CAAC,MAAM,KAAK,OAAO,GAAG;AACxB,YAAM,QAAQ,KAAK;AACnB,WAAK,UAAU;AACf,aAAO;AAAA,IACT;AACA,QAAI,SAAS;AACb,QAAI,UAAU;AACd,WAAO,CAAC,SAAS;AACf,UAAI,IAAI,IAAI;AACZ,SAAG;AACD,aAAK,IAAI,KAAK,OAAO,IAAI;AACzB,aAAK,IAAI,KAAK,OAAO,IAAI;AACzB,aAAK,KAAK,KAAK,KAAK;AAAA,MACtB,SAAS,MAAM,KAAK,OAAO;AAC3B,YAAM,OAAO,KAAK,KAAK,KAAK,KAAK,IAAI,EAAE,IAAI,EAAE;AAC7C,gBAAU,KAAK,OAAO,KAAK,SAAS,KAAK;AACzC,gBAAU,KAAK,OAAO,KAAK,SAAS,KAAK;AACzC,UAAI,CAAC,KAAK,aAAa,KAAK,iBAAiB,OAAO,GAAG;AACrD,kBAAU;AAAA,MACZ;AAAA,IACF;AACA,QAAI,CAAC,KAAK,aAAa,KAAK,iBAAiB,OAAO,GAAG;AACrD,WAAK,UAAU,KAAK,aAAa,OAAO;AAAA,IAC1C;AACA,WAAO,KAAK,aAAa,OAAO;AAAA,EAClC;AAAA,EACA,aAAa,OAAO;AAClB,QAAI,KAAK,SAAS,QAAQ,KAAK,UAAU,WAAW;AAClD,aAAO;AAAA,IACT;AACA,WAAO,KAAK,MAAM,KAAK;AAAA,EACzB;AAAA,EACA,iBAAiB,OAAO;AACtB,WAAO,SAAS,KAAK,SAAS,SAAS,KAAK;AAAA,EAC9C;AACF;AACA,IAAI,YAAY,MAAM;AAAA,EACpB,YAAYuB,QAAO,MAAM,OAAO,MAAM;AACpC,SAAK,QAAQA;AACb,SAAK,OAAO,IAAI;AAChB,SAAK,QAAQ;AACb,UAAM,YAAY,OAAO,OAAO,KAAK,OAAO;AAC5C,SAAK,QAAQ,WAAW,KAAK,UAAU,SAAS,CAAC;AACjD,SAAK,QAAQ,IAAI,YAAY,GAAG,GAAG,OAAO,OAAO,KAAK,MAAM,CAAC;AAC7D,QAAIA,SAAQ,GAAG;AACb,WAAK,IAAIA,SAAQ,IAAI;AAAA,IACvB,OAAO;AACL,WAAK,IAAIA,SAAQ,IAAI;AAAA,IACvB;AACA,SAAK,IAAI,IAAI,KAAK,KAAK,IAAI,KAAK,CAAC;AAAA,EACnC;AAAA,EACA,YAAY;AACV,QAAI,IAAI,IAAI,IAAI,GAAG,GAAG;AACtB,WAAO,MAAM;AACX,SAAG;AACD,YAAI,KAAK,MAAM,UAAU;AACzB,YAAI,IAAI,KAAK,IAAI;AAAA,MACnB,SAAS,KAAK;AACd,WAAK,IAAI;AACT,WAAK,IAAI;AACT,WAAK,IAAI,QAAQ,KAAK;AACtB,WAAK,MAAM,KAAK,KAAK,KAAK,IAAI,IAAI,KAAK,IAAI,CAAC;AAC5C,UAAI,KAAK,MAAM;AACf,UAAI,IAAI,MAAM,KAAK,IAAI,CAAC,IAAI,IAAI;AAC9B;AAAA,MACF;AAAA,IACF;AACA,QAAI,IAAI,KAAK,OAAO,KAAK,IAAI;AAC7B,QAAI,KAAK,QAAQ,GAAG;AAClB,WAAK,KAAK,IAAI,KAAK,MAAM,GAAG,IAAI,KAAK,KAAK;AAAA,IAC5C;AACA,WAAO,KAAK,aAAa,CAAC;AAAA,EAC5B;AAAA,EACA,aAAa,OAAO;AAClB,QAAI,KAAK,UAAU,WAAW;AAC5B,aAAO;AAAA,IACT;AACA,WAAO,KAAK,MAAM,KAAK;AAAA,EACzB;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO,GAAG,OAAO,GAAG,OAAO,MAAM;AAC3C,SAAK,iBAAiB,MAAM,KAAK,SAAS,QAAQ,KAAK,UAAU;AACjE,SAAK,MAAM;AACX,SAAK,QAAQ,OAAO;AACpB,SAAK,QAAQ;AACb,QAAI,QAAQ,MAAM;AAChB,aAAO,KAAK,OAAO;AAAA,IACrB;AACA,QAAI,OAAO,SAAS,UAAU;AAC5B,aAAO,KAAK,SAAS;AAAA,IACvB;AACA,QAAI,CAAC,KAAK,eAAe,KAAK,KAAK,SAAS,GAAG;AAC7C,YAAM,IAAI,MAAM,0BAA0B,UAAU,kCAAkC;AAAA,IACxF;AACA,SAAK,SAAS,WAAW,KAAK,IAAI;AAAA,EACpC;AAAA,EACA,aAAa,OAAO;AAClB,QAAI,KAAK,eAAe,GAAG;AACzB,aAAO;AAAA,IACT;AACA,WAAO,KAAK,MAAM,KAAK;AAAA,EACzB;AAAA,EACA,YAAY;AACV,WAAO,KAAK,aAAa,KAAK,MAAM,KAAK,QAAQ,KAAK,OAAO,CAAC;AAAA,EAChE;AACF;AAGA,SAAS,aAAa,OAAOA,QAAO,OAAO,GAAG,QAAQ,WAAW,MAAM;AACrE,MAAI,QAAQ,MAAM;AAChB,WAAO;AAAA,EACT;AACA,MAAI,SAAS,MAAM;AACjB,YAAQ;AAAA,EACV;AACA,MAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,UAAM,IAAI,MAAM,yBAAyB,OAAO;AAAA,EAClD;AACA,QAAM,SAAS,IAAI,UAAUA,QAAO,MAAM,OAAO,IAAI;AACrD,QAAM,MAAM,OAAO,OAAO,KAAK;AAC/B,WAAS,KAAK,GAAG,KAAK,IAAI,OAAO,QAAQ,MAAM;AAC7C,QAAI,OAAO,MAAM,OAAO,UAAU;AAAA,EACpC;AACA,SAAO,IAAI,SAAS;AACtB;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,cAAc,OAAO,QAAQ,GAAG,SAAS,GAAG,OAAO,MAAM;AAChE,MAAI,SAAS,QAAQ,UAAU,QAAQ;AACrC,UAAM,IAAI,MAAM,yBAAyB,OAAO;AAAA,EAClD;AACA,QAAM,YAAY,IAAI,YAAY,OAAO,QAAQ,OAAO,OAAO,IAAI;AACnE,QAAM,MAAM,OAAO,OAAO,KAAK;AAC/B,WAAS,KAAK,GAAG,KAAK,IAAI,OAAO,QAAQ,MAAM;AAC7C,QAAI,OAAO,MAAM,UAAU,UAAU;AAAA,EACvC;AACA,SAAO,IAAI,SAAS;AACtB;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,sBAAsB,OAAO,OAAO,MAAM;AACjD,MAAI,SAAS,QAAQ,UAAU,QAAQ;AACrC,UAAM,IAAI,MAAM,yBAAyB,OAAO;AAAA,EAClD;AACA,SAAO,aAAa,OAAO,GAAG,GAAG,OAAO,IAAI;AAC9C;AACA,IAAI,uBAAuB,GAAG,EAAE,sBAAsB,CAAC;AAGvD,SAAS,eAAe,OAAO,SAAS,GAAG,SAAS,GAAG,QAAQ,WAAW,MAAM;AAC9E,QAAM,MAAM,OAAO,OAAO,KAAK;AAC/B,QAAM,SAAS,IAAI,cAAc,QAAQ,QAAQ,MAAM,IAAI;AAC3D,WAAS,KAAK,GAAG,KAAK,IAAI,OAAO,QAAQ,MAAM;AAC7C,QAAI,OAAO,MAAM,OAAO,UAAU;AAAA,EACpC;AACA,SAAO,IAAI,SAAS;AACtB;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,MAAM,OAAO,MAAM,QAAQ,GAAG,QAAQ,WAAW;AACxD,MAAI,UAAU,GAAG;AACf,UAAM,IAAI,MAAM,4BAA4B;AAAA,EAC9C;AACA,QAAM,QAAQ,EAAE,OAAO,MAAM,MAAM,OAAO,MAAM;AAChD,SAAO,OAAO,UAAU,OAAO,CAAC,GAAG,KAAK;AAC1C;AAGA,SAAS,YAAY,GAAG;AACtB,QAAM,KAAK,gBAAgB,GAAG,KAAK,YAAY;AAC/C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,YAAY,MAAM;AAC5C;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,SAAS,GAAG,MAAM;AACzB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,MAAM,KAAK;AAC3B,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,GAAG;AACrB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,qDAAqD,GAAG,OAAO;AAC3F,SAAO,QAAQ,IAAI,CAAC;AACtB;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAW,GAAG,MAAM;AAC3B,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,qDAAqD,GAAG,OAAO;AAC3F,SAAO,QAAQ,IAAI,IAAI;AACzB;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAW,GAAG,MAAM;AAC3B,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,qDAAqD,GAAG,OAAO;AAC3F,SAAO,QAAQ,IAAI,IAAI;AACzB;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAW,GAAG,MAAM;AAC3B,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,qDAAqD,GAAG,OAAO;AAC3F,SAAO,QAAQ,IAAI,IAAI;AACzB;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,SAAS,GAAG,EAAE,OAAO,CAAC;AAG1B,SAAS,OAAO,GAAG;AACjB,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS,SAAS;AACrD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,OAAO,MAAM;AACvC;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,iBAAiB,GAAG,iBAAiB,iBAAiBV,UAAS,MAAM,WAAW,CAAC,GAAG,CAAC,GAAG,aAAa,QAAQ;AACpH,QAAM,KAAK,gBAAgB,GAAG,KAAK,iBAAiB;AACpD,QAAM,mBAAmB,gBAAgB,iBAAiB,mBAAmB,iBAAiB;AAC9F,QAAM,mBAAmB,gBAAgB,iBAAiB,mBAAmB,iBAAiB;AAC9F,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,MAAI,eAAe,QAAQ;AACzB,UAAM,IAAI,MAAM,oFAAoF;AAAA,EACtG;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,gEAAgE,IAAI,OAAO;AACxG,SAAO,iBAAiB,SAAS,GAAG,MAAM,2EAA2E,iBAAiB,OAAO;AAC7I,SAAO,iBAAiB,SAAS,GAAG,MAAM,2EAA2E,iBAAiB,OAAO;AAC7I,SAAO,iBAAiB,MAAM,OAAO,GAAG,MAAM,yFAAyF,iBAAiB,MAAM,KAAK;AACnK,SAAO,iBAAiB,MAAM,OAAO,GAAG,MAAM,yFAAyF,iBAAiB,MAAM,KAAK;AACnK,QAAM,aAAa,iBAAiB,MAAM;AAC1C,QAAM,oBAAoB,iBAAiB,MAAM;AACjD,SAAO,iBAAiB,MAAM,OAAO,aAAa,mBAAmB,MAAM,6EAA6E,aAAa,8BAA8B,iBAAiB,MAAM,KAAK;AAC/N,QAAM,YAAY,gBAAgB,KAAK,kBAAkBA,UAAS,MAAM,YAAY,QAAQ;AAC5F,QAAM,kBAAkB;AACxB,QAAM,MAAM,OAAO,WAAW,kBAAkB,iBAAiB,SAAS,UAAU;AACpF,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,eAAe,gBAAgB,GAAG,GAAG;AACnC,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW;AAC9C,SAAO,GAAG,UAAU,GAAG,OAAO,MAAM,kDAAkD,GAAG,iBAAiB,GAAG,SAAS;AACtH,SAAO,GAAG,SAAS,GAAG,MAAM,qCAAqC,GAAG,SAAS;AAC7E,SAAO,GAAG,SAAS,GAAG,MAAM,qCAAqC,GAAG,SAAS;AAC7E,QAAM,QAAQ,MAAM,GAAG,KAAK;AAC5B,QAAM,QAAQ,MAAM,GAAG,KAAK;AAC5B,QAAM,OAAO,IAAI,IAAI,KAAK;AAC1B,MAAIQ,cAAa;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,QAAI,CAAC,KAAK,IAAI,MAAM,GAAG,GAAG;AACxB,MAAAA;AAAA,IACF;AAAA,EACF;AACA,QAAM,UAAU,IAAI,aAAa,CAACA,WAAU,GAAG,GAAG,KAAK;AACvD,QAAM,UAAU,IAAI,aAAa,CAACA,WAAU,GAAG,OAAO;AACtD,WAAS,KAAK,GAAG,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AAChD,QAAI,CAAC,KAAK,IAAI,MAAM,GAAG,GAAG;AACxB,cAAQ,OAAO,MAAM,MAAM;AAC3B,cAAQ,OAAO,MAAM;AACrB;AAAA,IACF;AAAA,EACF;AACA,SAAO,CAAC,QAAQ,SAAS,GAAG,QAAQ,SAAS,CAAC;AAChD;AACA,IAAI,iBAAiB;AAGrB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,GAAG;AAChB,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,SAAS,GAAG,OAAOrB,OAAM;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,mDAAmD,GAAG,aAAa;AAC/F,SAAO,MAAM,IAAI,CAAC,KAAK,GAAG,CAACA,KAAI,CAAC;AAClC;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,GAAG,OAAOA,OAAM;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,mDAAmD,GAAG,aAAa;AAC/F,SAAO,MAAM,IAAI,OAAOA,KAAI;AAC9B;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,GAAG,OAAOA,OAAM;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,mDAAmD,GAAG,aAAa;AAC/F,SAAO,MAAM,IAAI,OAAOA,KAAI;AAC9B;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,GAAG,OAAOA,OAAM;AAChC,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,SAAS,GAAG,MAAM,mDAAmD,GAAG,aAAa;AAC/F,SAAO,MAAM,IAAI,OAAOA,KAAI;AAC9B;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,SAAS,QAAQ,MAAM,IAAI;AAClC,QAAM,UAAU,gBAAgB,QAAQ,UAAU,WAAW,SAAS;AACtE,MAAI,QAAQ,IAAI;AACd,UAAM,QAAQ,OAAO;AAAA,EACvB;AACA,MAAI,QAAQ,QAAQ,OAAO,GAAG;AAC5B,UAAM,MAAM,4EAA4E,QAAQ,oBAAoB,KAAK;AAAA,EAC3H;AACA,QAAM,SAAS,EAAE,QAAQ,QAAQ;AACjC,QAAM,QAAQ,EAAE,IAAI;AACpB,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,KAAK,QAAQ;AACpB,SAAO,OAAO,UAAU,aAAa,MAAM,6DAA6D,OAAO,QAAQ;AACvH,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,MAAM,QAAQ;AACrB,SAAO,OAAO,UAAU,aAAa,MAAM,8DAA8D,OAAO,QAAQ;AACxH,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,MAAM,MAAM;AACtC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,OAAO,QAAQ;AACtB,QAAM,qBAAqB,OAAO,MAAM,OAAO,MAAM,SAAS;AAC9D,QAAM,QAAQ,OAAO,OAAO;AAC5B,MAAI;AACJ,MAAI,sBAAsB,GAAG;AAC3B,UAAM,eAAe,QAAQ,QAAQ,CAAC,OAAO,kBAAkB,CAAC;AAChE,UAAM,KAAK,YAAY;AAAA,EACzB,OAAO;AACL,UAAM,cAAc,CAAC,OAAO,KAAK,qBAAqB,EAAE;AACxD,UAAM,YAAY,QAAQ,KAAK,MAAM,GAAG,CAAC,OAAO,kBAAkB,CAAC;AACnE,UAAM,YAAY,QAAQ,KAAK,MAAM,GAAG,CAAC,OAAO,kBAAkB,CAAC;AACnE,UAAM,gBAAgB,QAAQ,MAAM,WAAW,CAAC,GAAG,CAAC,GAAG,CAAC,OAAO,qBAAqB,CAAC,CAAC,GAAG,CAAC;AAC1F,UAAM,gBAAgB,IAAI,QAAQ,MAAM,WAAW,CAAC,GAAG,CAAC,GAAG,CAAC,OAAO,qBAAqB,CAAC,CAAC,GAAG,CAAC,GAAG,OAAO,EAAE,CAAC;AAC3G,UAAM,KAAK,OAAO,CAAC,WAAW,aAAa,GAAG,CAAC;AAC/C,UAAM,KAAK,OAAO,CAAC,WAAW,aAAa,GAAG,CAAC;AAC/C,UAAM,eAAe,QAAQ,QAAQ,IAAI,EAAE,GAAG,CAAC,YAAY,IAAI,YAAY,EAAE,CAAC;AAC9E,UAAM,KAAK,YAAY;AAAA,EACzB;AACA,QAAM,KAAK,GAAG;AACd,MAAI,OAAO,SAAS,KAAK,OAAO,MAAM,OAAO,GAAG;AAC9C,UAAM,OAAO;AACb,UAAM,SAAS,OAAO,MAAM;AAC5B,UAAM,QAAQ,KAAK,CAAC,QAAQ,IAAI,MAAM,KAAK,QAAQ,IAAI,MAAM,EAAE,CAAC;AAChE,SAAK,QAAQ;AAAA,EACf;AACA,SAAO;AACT;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,OAAO,GAAG,iBAAiB,OAAO,GAAG;AAC5C,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO;AAC1C,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,OAAO,EAAE,iBAAiB,KAAK;AACrC,SAAO,OAAO,UAAU,QAAQ,QAAQ,IAAI;AAC9C;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,QAAQ,WAAW;AAChC,SAAO,OAAO,UAAU,WAAW,MAAM,mDAAmD,OAAO,OAAO;AAC1G,MAAI,qBAAqB,OAAO,MAAM,OAAO,MAAM,SAAS;AAC5D,QAAM,QAAQ,OAAO,OAAO;AAC5B,MAAI;AACJ,MAAI,aAAa,QAAQ,YAAY,oBAAoB;AACvD,UAAM,QAAQ,OAAO,MAAM,IAAI,CAAC,MAAM,CAAC;AACvC,UAAMA,QAAO,OAAO,MAAM,IAAI,CAAC,MAAM,CAAC;AACtC,IAAAA,MAAK,OAAO,MAAM,SAAS,KAAK;AAChC,oBAAgB,MAAM,QAAQ,OAAOA,KAAI;AACzC,yBAAqB;AAAA,EACvB,WAAW,aAAa,QAAQ,YAAY,oBAAoB;AAC9D,UAAM,aAAa,OAAO,MAAM,IAAI,CAAC,MAAM,CAAC;AAC5C,eAAW,OAAO,MAAM,SAAS,KAAK,YAAY;AAClD,oBAAgB,OAAO,CAAC,QAAQ,MAAM,UAAU,CAAC,GAAG,OAAO,MAAM,SAAS,CAAC;AAC3E,yBAAqB;AAAA,EACvB,OAAO;AACL,oBAAgB;AAAA,EAClB;AACA,QAAM,aAAa,UAAU,aAAa;AAC1C,QAAM,eAAe,QAAQ,QAAQ,eAAe,UAAU,GAAG,CAAC,OAAO,kBAAkB,CAAC;AAC5F,QAAM,MAAM,IAAI,YAAY;AAC5B,QAAMwB,QAAO,KAAK,MAAM,qBAAqB,CAAC,IAAI;AAClD,QAAM,aAAa,KAAK,GAAG;AAC3B,QAAM,aAAa,KAAK,GAAG;AAC3B,QAAM,uBAAuB,MAAM,YAAY,CAACA,OAAM,qBAAqBA,KAAI,GAAG,WAAW,MAAM,SAAS,CAAC;AAC7G,QAAM,uBAAuB,MAAM,YAAY,CAACA,OAAM,qBAAqBA,KAAI,GAAG,WAAW,MAAM,SAAS,CAAC;AAC7G,QAAM,cAAc,cAAc,MAAM,MAAM;AAC9C,cAAY,cAAc,MAAM,SAAS,KAAKA;AAC9C,SAAO,QAAQ,QAAQ,qBAAqB,IAAI,qBAAqB,EAAE,GAAG,WAAW;AACvF;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,mBAAmB,GAAG,GAAG;AAChC,MAAI,KAAK,gBAAgB,GAAG,KAAK,mBAAmB;AACpD,MAAI,KAAK,gBAAgB,GAAG,KAAK,mBAAmB;AACpD,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,6BAA2B,GAAG,OAAO,GAAG,KAAK;AAC7C,QAAM,SAAS,EAAE,GAAG,IAAI,GAAG,GAAG;AAC9B,QAAM,QAAQ,CAAC;AACf,SAAO,OAAO,UAAU,mBAAmB,QAAQ,KAAK;AAC1D;AACA,IAAI,oBAAoB,GAAG,EAAE,mBAAmB,CAAC;AAGjD,SAAS,SAAS,GAAG,MAAM;AACzB,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AACjE,SAAO,QAAQ,IAAI,aAAa,GAAG,OAAO,IAAI,EAAE,QAAQ;AAC1D;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,OAAO,SAAS,OAAO,GAAG;AACjC,QAAM,WAAW,qBAAqB,SAAS,WAAW,SAAS,mBAAmB;AACtF,SAAO,SAAS,UAAU,GAAG,MAAM,sCAAsC;AACzE,MAAI,SAAS,SAAS,GAAG;AACvB,WAAO,QAAQ,SAAS,GAAG,MAAM,MAAM,oCAAoC;AAAA,EAC7E;AACA,QAAM,SAAS;AACf,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,GAAGD,SAAQ,GAAG;AAC3B,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,OAAAA,OAAM;AACtB,SAAO,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC7C;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,cAAc,GAAG,OAAO,KAAKV,UAAS,YAAY,GAAG,UAAU,GAAG,eAAe,GAAG,cAAc,GAAG,iBAAiB,GAAG;AAChI,QAAM,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,mBAAmB;AACtE,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ;AAAA,IACZ;AAAA,IACA;AAAA,IACA,SAAAA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,SAAO,OAAO,UAAU,cAAc,QAAQ,KAAK;AACrD;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,KAAK,GAAG;AACf,QAAM,KAAK,gBAAgB,GAAG,KAAK,OAAO,SAAS;AACnD,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,SAAO,OAAO,UAAU,KAAK,MAAM;AACrC;AACA,IAAI,MAAM,GAAG,EAAE,KAAK,CAAC;AAGrB,SAAS,SAAS,QAAQ,OAAO;AAC/B,gBAAc,MAAM;AACpB,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM,oDAAoD;AAAA,EACtE;AACA,QAAM,QAAQ;AACd,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,gEAAgE;AAAA,EAClF;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,8EAA8E;AAAA,EAChG;AACA,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,gDAAgD;AAAA,EAClE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,oEAAoE;AAAA,EACtF;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,yEAAyE;AAAA,EAC3F;AACA,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,gDAAgD;AAAA,EAClE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,sEAAsE;AAAA,EACxF;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,yEAAyE;AAAA,EAC3F;AACA,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,SAAS,QAAQ,OAAO,OAAO;AACtC,gBAAc,MAAM;AACpB,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE;AACA,QAAM,gBAAgB,WAAW,QAAQ,KAAK;AAC9C,MAAI,cAAc,WAAW,KAAK,cAAc,WAAW,GAAG;AAC5D,UAAM,IAAI,MAAM,wEAAwE;AAAA,EAC1F;AACA,MAAI,cAAc,WAAW,KAAK,SAAS,MAAM;AAC/C,UAAM,IAAI,MAAM,yEAAyE;AAAA,EAC3F;AACA,UAAQ,SAAS;AACjB,SAAO,WAAW,QAAQ,OAAO,eAAe,KAAK;AACvD;AAGA,SAAS,MAAM,GAAG,IAAI,GAAG,SAAS,MAAM;AACtC,QAAM,KAAK,gBAAgB,GAAG,KAAK,MAAM;AACzC,MAAI,GAAG,SAAS,GAAG;AACjB,UAAM,IAAI,MAAM,oDAAoD;AAAA,EACtE;AACA,QAAM,UAAU,GAAG,MAAM,GAAG,MAAM,SAAS;AAC3C,MAAI,IAAI,GAAG;AACT,UAAM,IAAI,MAAM,6CAA6C,GAAG;AAAA,EAClE;AACA,MAAI,IAAI,SAAS;AACf,UAAM,IAAI,MAAM,uDAAuD,oBAAoB,GAAG;AAAA,EAChG;AACA,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,GAAG,OAAO;AAC1B,QAAM,CAAC,QAAQ,OAAO,IAAI,OAAO,UAAU,MAAM,QAAQ,KAAK;AAC9D,SAAO,EAAE,QAAQ,QAAQ;AAC3B;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,iBAAiB,OAAO,QAAQ,GAAG,SAAS,GAAG,OAAO,MAAM;AACnE,MAAI,SAAS,QAAQ,UAAU,QAAQ;AACrC,UAAM,IAAI,MAAM,mCAAmC;AAAA,EACrD;AACA,QAAM,YAAY,IAAI,YAAY,OAAO,QAAQ,OAAO,MAAM,IAAI;AAClE,QAAM,MAAM,OAAO,OAAO,KAAK;AAC/B,WAAS,KAAK,GAAG,KAAK,IAAI,OAAO,QAAQ,MAAM;AAC7C,QAAI,OAAO,MAAM,UAAU,UAAU;AAAA,EACvC;AACA,SAAO,IAAI,SAAS;AACtB;AACA,IAAI,kBAAkB,GAAG,EAAE,iBAAiB,CAAC;AAG7C,SAAS,QAAQ,GAAG,OAAO,GAAG;AAC5B,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU,mBAAmB;AAChE,SAAO,GAAG,OAAO,GAAG,MAAM,sCAAsC;AAChE,QAAM,SAAS,EAAE,GAAG,GAAG;AACvB,QAAM,QAAQ,EAAE,KAAK;AACrB,QAAM,CAAC,QAAQ,OAAO,IAAI,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAChE,SAAO,EAAE,QAAQ,QAAQ;AAC3B;AACA,IAAI,SAAS,GAAG,EAAE,QAAQ,CAAC;AAG3B,SAAS,oBAAoB,GAAG,YAAY,aAAa;AACvD,QAAM,KAAK,gBAAgB,GAAG,KAAK,oBAAoB;AACvD,QAAM,cAAc,gBAAgB,YAAY,cAAc,sBAAsB,OAAO;AAC3F,SAAO,MAAM,WAAW,GAAG,MAAM,kCAAkC;AACnE,QAAM,SAAS,EAAE,GAAG,IAAI,YAAY,YAAY;AAChD,QAAM,QAAQ,EAAE,YAAY;AAC5B,SAAO,OAAO,UAAU,oBAAoB,QAAQ,KAAK;AAC3D;AACA,IAAI,qBAAqB,GAAG,EAAE,oBAAoB,CAAC;AAGnD,SAAS,SAAS,GAAG,OAAO,GAAG;AAC7B,QAAM,KAAK,gBAAgB,GAAG,KAAK,WAAW,mBAAmB;AACjE,SAAO,QAAQ,CAAC,GAAG,MAAM,UAAU,OAAO,GAAG,MAAM,QAAQ,MAAM,UAAU,oBAAoB,GAAG,MAAM,WAAW,GAAG,MAAM,SAAS;AACrI,QAAM,SAAS,EAAE,OAAO,GAAG;AAC3B,QAAM,QAAQ,EAAE,KAAK;AACrB,SAAO,OAAO,UAAU,QAAQ,QAAQ,KAAK;AAC/C;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,WAAW,gBAAgB,QAAQ;AAC1C,SAAO,aAAa,gBAAgB,QAAQ,OAAO;AACrD;AAGA,SAAS,SAAS,cAAc,YAAY,MAAM,MAAM,OAAO;AAC7D,SAAO,OAAO,aAAa,cAAc,WAAW,MAAM,KAAK;AACjE;AAGA,SAAS,UAAU,WAAW,UAAU;AACtC,QAAM,UAAU,CAAC;AACjB,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,QAAI,SAAS,KAAK;AAChB,cAAQ,KAAK,EAAE;AAAA,IACjB;AAAA,EACF;AACA,QAAM,WAAW,OAAO,WAAW,OAAO;AAC1C,QAAM,MAAM,OAAO,CAAC,QAAQ,QAAQ,UAAU,MAAM,GAAG,OAAO;AAC9D,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,UAAM,MAAM,SAAS,WAAW,QAAQ,GAAG;AAC3C,UAAM,SAAS,KAAK,UAAU;AAC9B,QAAI,OAAO,IAAI,KAAK,MAAM;AAAA,EAC5B;AACA,SAAO,IAAI,SAAS;AACtB;AAGA,eAAe,YAAY,WAAW;AACpC,QAAM,aAAa,gBAAgB,WAAW,aAAa,cAAc,MAAM;AAC/E,QAAM,OAAO,MAAM,WAAW,KAAK;AACnC,QAAM,MAAM,UAAU,WAAW,OAAO,IAAI;AAC5C,MAAI,cAAc,YAAY;AAC5B,eAAW,QAAQ;AAAA,EACrB;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAGjB,eAAe,kBAAkB,SAASR,OAAM,MAAM;AACpD,QAAM,UAAU,gBAAgB,SAAS,UAAU,UAAU;AAC7D,QAAM,QAAQ,gBAAgBA,OAAM,QAAQ,YAAY,MAAM;AAC9D,QAAM,WAAW,QAAQ,OAAO,IAAI;AACpC,QAAM,UAAU,MAAM;AACtB,QAAM,cAAc,QAAQ;AAC5B,SAAO,UAAU,GAAG,MAAM,uBAAuB;AACjD,oBAAkB,YAAY,MAAM,UAAU,WAAW,OAAO,GAAG,MAAM,OAAO,mEAAmE;AACnJ,MAAI,cAAc;AAClB,WAAS,KAAK,UAAU,KAAK,WAAW,SAAS,MAAM;AACrD,mBAAe,YAAY;AAAA,EAC7B;AACA,QAAM,oBAAoB,YAAY,MAAM,GAAG,QAAQ,EAAE,OAAO,CAAC,WAAW,GAAG,YAAY,MAAM,WAAW,OAAO,CAAC;AACpH,QAAM,iBAAiB,QAAQ,SAAS,iBAAiB;AACzD,QAAM,eAAe,QAAQ,OAAO,CAAC,EAAE,CAAC;AACxC,QAAM,oBAAoB,MAAM,WAAW,YAAY;AACvD,QAAM,UAAU,QAAQ,mBAAmB,CAAC,CAAC,CAAC;AAC9C,QAAM,MAAM,OAAO,gBAAgB,SAAS,QAAQ;AACpD,MAAI,YAAY,SAAS;AACvB,YAAQ,QAAQ;AAAA,EAClB;AACA,MAAIA,UAAS,OAAO;AAClB,UAAM,QAAQ;AAAA,EAChB;AACA,UAAQ,QAAQ;AAChB,iBAAe,QAAQ;AACvB,eAAa,QAAQ;AACrB,oBAAkB,QAAQ;AAC1B,SAAO;AACT;AACA,IAAI,mBAAmB;AAGvB,SAAS,eAAe,GAAG,GAAG,OAAO,OAAO,aAAa,MAAM;AAC7D,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,KAAK,gBAAgB,GAAG,KAAK,eAAe;AAClD,QAAM,SAAS,gBAAgB,OAAO,SAAS,eAAe;AAC9D,mBAAiB,IAAI,EAAE;AACvB,SAAO,YAAY,GAAG,OAAO,GAAG,KAAK,GAAG,MAAM,2BAA2B;AACzE,QAAM,MAAM,OAAO,CAAC;AACpB,QAAM,gBAAgB,IAAI,KAAK,MAAM;AACrC,MAAI,SAAS,IAAI,IAAI,IAAI,EAAE,GAAG,aAAa;AAC3C,MAAI,YAAY;AACd,WAAO,SAAS,MAAM,MAAM,gDAAgD;AAC5E,UAAM,QAAQ,gBAAgB,OAAO,QAAQ,eAAe;AAC5D,aAAS,IAAI,QAAQ,IAAI,KAAK,IAAI,QAAQ,KAAK,CAAC,CAAC;AAAA,EACnD;AACA,SAAO,KAAK,IAAI,MAAM;AACxB;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,WAAW,SAAS,SAAS,OAAO;AAC3C,QAAM,WAAW,gBAAgB,SAAS,WAAW,aAAa,OAAO;AACzE,QAAM,WAAW,gBAAgB,SAAS,WAAW,WAAW;AAChE,gBAAc,UAAU,UAAU,KAAK;AACvC,QAAM,SAAS,EAAE,SAAS,UAAU,SAAS,SAAS;AACtD,QAAM,QAAQ,EAAE,MAAM;AACtB,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,eAAe,eAAe,cAAc,aAAa,eAAe;AAC/E,MAAI,cAAc,UAAU,SAAS;AACnC,UAAM,IAAI,MAAM,8EAA8E,cAAc,QAAQ;AAAA,EACtH;AACA,MAAI,cAAc,OAAO,GAAG;AAC1B,UAAM,IAAI,MAAM,sEAAsE,cAAc,QAAQ;AAAA,EAC9G;AACA,QAAM,WAAW,cAAc,OAAO,IAAI,cAAc,MAAM,KAAK;AACnE,QAAM,UAAU,cAAc,OAAO,IAAI,cAAc,MAAM,KAAK;AAClE,MAAI,YAAY,WAAW,SAAS;AAClC,UAAM,IAAI,MAAM,kDAAkD,YAAY,sBAAsB,UAAU;AAAA,EAChH;AACA,QAAM,YAAY,aAAa;AAC/B,MAAI,EAAE,aAAa,SAAS,KAAK,aAAa,SAAS,KAAK,cAAc,WAAW;AACnF,UAAM,IAAI,MAAM,oCAAoC,aAAa,2BAA2B,WAAW;AAAA,EACzG;AACA,MAAI,aAAa,UAAU,cAAc,OAAO;AAC9C,UAAM,IAAI,MAAM,mDAAmD;AAAA,EACrE;AACF;AAGA,SAAS,eAAe,eAAe,cAAc,aAAa,eAAe,GAAG;AAClF,QAAM,iBAAiB,gBAAgB,eAAe,iBAAiB,iBAAiB,OAAO;AAC/F,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,iBAAiB,mBAAmB;AACxG,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,iBAAiB,cAAc,KAAK;AACxG,iBAAe,gBAAgB,eAAe,aAAa,aAAa;AACxE,QAAM,SAAS;AAAA,IACb,eAAe;AAAA,IACf,cAAc;AAAA,IACd,cAAc;AAAA,EAChB;AACA,QAAM,QAAQ,EAAE,YAAY;AAC5B,SAAO,OAAO,UAAU,eAAe,QAAQ,KAAK;AACtD;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,UAAU,GAAG,SAAS;AAC7B,QAAM,WAAW,gBAAgB,SAAS,WAAW,YAAY,OAAO;AACxE,QAAM,KAAK,gBAAgB,GAAG,KAAK,YAAY,mBAAmB;AAClE,QAAM,SAAS,EAAE,QAAQ,IAAI,SAAS,SAAS;AAC/C,SAAO,OAAO,UAAU,UAAU,MAAM;AAC1C;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,cAAc,GAAG,YAAY;AACpC,MAAI,cAAc,MAAM;AACtB,WAAO,EAAE,MAAM,MAAM;AAAA,EACvB;AACA,MAAI,YAAY,EAAE,OAAO,UAAU,GAAG;AACpC,WAAO;AAAA,EACT;AACA,MAAI,EAAE,MAAM,WAAW,WAAW,QAAQ;AACxC,UAAM,eAAe,CAAC;AACtB,aAAS,KAAK,GAAG,KAAK,EAAE,MAAM,QAAQ,MAAM;AAC1C,UAAI,WAAW,OAAO,QAAQ,EAAE,MAAM,OAAO,MAAM;AACjD,qBAAa,KAAK,EAAE,MAAM,GAAG;AAAA,MAC/B,OAAO;AACL,qBAAa,KAAK,WAAW,GAAG;AAAA,MAClC;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACA,SAAO;AACT;AAGA,SAAS,SAAS,GAAG,MAAM,YAAY,MAAM;AAC3C,QAAM,KAAK,gBAAgB,GAAG,KAAK,SAAS;AAC5C,SAAO,GAAG,UAAU,WAAW,MAAM,gFAAgF,GAAG,uBAAuB;AAC/I,SAAO,QAAQ,KAAK,OAAO,GAAG,MAAM,qDAAqD,OAAO;AAChG,MAAI,SAAS,GAAG;AACd,WAAO,aAAa,SAAS,GAAG,MAAM,IAAI;AAAA,EAC5C;AACA,QAAM,cAAc,cAAc,IAAI,UAAU;AAChD,QAAM,WAAW,IAAI;AACrB,QAAM,aAAa,IAAI,MAAM,KAAK,cAAc,aAAa,GAAG,GAAG,WAAW,IAAI,GAAG,QAAQ,CAAC,GAAG,QAAQ;AACzG,SAAO,IAAI,IAAI,UAAU;AAC3B;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,oBAAoB,OAAO;AAClC,SAAO,KAAK,MAAM,KAAK,IAAI,GAAG,KAAK,KAAK,KAAK,IAAI,KAAK,IAAI,KAAK,IAAI,CAAC,CAAC,CAAC,CAAC;AACzE;AACA,SAAS,aAAa,cAAc,GAAG,GAAG;AACxC,QAAM,OAAO,IAAI,eAAe;AAChC,QAAM,YAAY,IAAI,aAAa,YAAY;AAC/C,WAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAM,SAAS,IAAI,KAAK,KAAK,MAAM,eAAe,OAAO;AACzD,cAAU,MAAM,IAAI,IAAI,KAAK,IAAI,MAAM;AAAA,EACzC;AACA,SAAO,SAAS,WAAW,SAAS;AACtC;AAGA,eAAe,aAAa,aAAa,SAAS,IAAI,GAAG;AACvD,QAAM,eAAe,gBAAgB,aAAa,eAAe,QAAQ;AACzE,QAAM,WAAW,gBAAgB,SAAS,WAAW,QAAQ;AAC7D,SAAO,aAAa,OAAO,GAAG,MAAM,uEAAuE,aAAa,MAAM;AAC9H,SAAO,aAAa,OAAO,MAAM,SAAS,MAAM,MAAM,mFAAmF,aAAa,yBAAyB,SAAS,MAAM;AAC9L,oBAAkB,aAAa,MAAM,MAAM,GAAG,aAAa,MAAM,SAAS,CAAC,GAAG,SAAS,OAAO,yFAAyF;AACvL,QAAM,UAAU,aAAa,MAAM,aAAa,MAAM,SAAS;AAC/D,SAAO,IAAI,KAAK,KAAK,SAAS,MAAM,4EAA4E,qBAAqB,GAAG;AACxI,QAAM,kBAAkB,MAAM,aAAa,KAAK;AAChD,QAAM,cAAc,MAAM,SAAS,KAAK;AACxC,QAAM,CAAC,OAAOL,KAAI,IAAI,CAAC,gBAAgB,SAAS,SAAS,OAAO;AAChE,QAAM,aAAa,uBAAuB,QAAQ,KAAK;AACvD,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,SAAS,IAAIA;AACnB,UAAM,OAAO,gBAAgB,SAAS,QAAQ,SAASA,KAAI;AAC3D,UAAM,YAAY,CAAC;AACnB,aAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,gBAAU,KAAK,EAAE,OAAO,KAAK,KAAK,OAAO,GAAG,CAAC;AAAA,IAC/C;AACA,cAAU,KAAK,CAAC,GAAG,OAAO,GAAG,QAAQ,EAAE,KAAK;AAC5C,eAAW,KAAK;AAChB,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,UAAI,UAAU,IAAI,UAAU,YAAY,IAAI;AAC1C,mBAAW,KAAK;AAChB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,MAAI,gBAAgB,cAAc;AAChC,iBAAa,QAAQ;AAAA,EACvB;AACA,MAAI,YAAY,UAAU;AACxB,aAAS,QAAQ;AAAA,EACnB;AACA,SAAO,OAAO,YAAY,SAAS,OAAO,MAAM;AAClD;AACA,IAAI,cAAc;AAGlB,IAAI,oBAAoB,CAAC;AACzBH,UAAS,mBAAmB;AAAA,EAC1B,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,QAAQ,MAAM;AAChB,CAAC;AAGD,SAAS,sBAAsB,GAAG,IAAI,aAAagB,UAAS,MAAM,aAAa,QAAQ,iBAAiB;AACtG,MAAI,MAAM;AACV,MAAI,EAAE,SAAS,GAAG;AAChB,UAAM,QAAQ,GAAG,CAAC,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EAC1D;AACA,MAAI,OAAO;AACX,MAAI,KAAK,SAAS,GAAG;AACnB,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC/D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,iEAAiE,IAAI,QAAQ;AAC1G,SAAO,KAAK,SAAS,GAAG,MAAM,8DAA8D,KAAK,QAAQ;AACzG,SAAO,YAAY,WAAW,GAAG,MAAM,mEAAmE,cAAc;AACxH,QAAM,UAAU,eAAe,SAAS,IAAI,MAAM,KAAK,IAAI,MAAM;AACjE,QAAM,WAAW,eAAe,SAAS,KAAK,MAAM,KAAK,KAAK,MAAM;AACpE,SAAO,YAAY,YAAY,IAAI,MAAM,4CAA4C,8CAA8C,YAAY,KAAK;AACpJ,SAAO,aAAa,YAAY,IAAI,MAAM,0CAA0C,iDAAiD,YAAY,MAAM;AACvJ,4BAA0B,mBAAmB,MAAM,eAAe;AAClE,QAAM,SAAS,EAAE,GAAG,KAAK,IAAI,KAAK;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,YAAY;AAC7E,SAAO,OAAO,UAAU,sBAAsB,QAAQ,KAAK;AAC7D;AACA,IAAI,uBAAuB,GAAG,EAAE,sBAAsB,CAAC;AAGvD,SAAS,qBAAqB,IAAI,GAAG,aAAa;AAChD,MAAI,eAAe,QAAQ,gBAAgB,UAAU;AACnD,WAAO;AAAA,EACT;AACA,MAAI,gBAAgB,QAAQ;AAC1B,WAAO,IAAI,IAAI,KAAK,CAAC,CAAC;AAAA,EACxB;AACA,QAAM,IAAI,MAAM,gDAAgD,cAAc;AAChF;AACA,SAAS,qBAAqB,MAAM,cAAc;AAChD,MAAI,MAAM;AACV,QAAM,aAAa,iBAAiB,KAAK,OAAO,aAAa,KAAK;AAClE,MAAI,WAAW,SAAS,GAAG;AACzB,UAAM,KAAK,KAAK,UAAU;AAAA,EAC5B;AACA,SAAO,QAAQ,KAAK,KAAK,KAAK;AAChC;AACA,SAAS,gBAAgB,GAAG,aAAa,wBAAwB,gBAAgB;AAC/E,MAAI,gBAAgB,UAAU;AAC5B,WAAO;AAAA,EACT,WAAW,gBAAgB,QAAQ;AACjC,WAAO,KAAK,CAAC;AAAA,EACf,WAAW,gBAAgB,OAAO;AAChC,WAAO,IAAI,CAAC;AAAA,EACd,WAAW,gBAAgB,SAAS;AAClC,WAAO,MAAM,CAAC;AAAA,EAChB,WAAW,gBAAgB,SAAS;AAClC,WAAO,MAAM,GAAG,sBAAsB;AAAA,EACxC,WAAW,gBAAgB,aAAa;AACtC,WAAO,UAAU,GAAG,cAAc;AAAA,EACpC,WAAW,gBAAgB,WAAW;AACpC,WAAO,QAAQ,CAAC;AAAA,EAClB;AACA,QAAM,IAAI,MAAM,4BAA4B,cAAc;AAC5D;AACA,IAAI,aAAa,CAAC,eAAe,gBAAgB;AAC/C,QAAM,eAAe,gBAAgB;AACrC,SAAO,CAAC,gBAAgB,gBAAgB;AAC1C;AAGA,SAAS,aAAa,EAAE,GAAG,QAAQ,SAAAA,UAAS,KAAK,MAAM,aAAa,QAAQ,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB,MAAM,YAAY,cAAc,UAAU,wBAAwB,eAAe,GAAG;AACnM,gBAAc,eAAe;AAC7B,MAAI,WAAW,OAAO,MAAM,eAAe,WAAW,MAAM,OAAO;AACjE,WAAO,eAAe,QAAQ,MAAM,4CAA4C,uHAAuH;AACvM,QAAI,SAAS,OAAO,GAAG,QAAQA,UAAS,MAAM,YAAY,WAAW,eAAe;AACpF,QAAI,QAAQ,MAAM;AAChB,eAAS,KAAK,QAAQ,IAAI;AAAA,IAC5B;AACA,WAAO,gBAAgB,QAAQ,aAAa,wBAAwB,cAAc;AAAA,EACpF;AACA,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU,SAAS;AACtD,QAAM,UAAU,gBAAgB,QAAQ,UAAU,UAAU,SAAS;AACrE,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,6DAA6D,IAAI,OAAO;AACrG,SAAO,QAAQ,SAAS,GAAG,MAAM,8DAA8D,QAAQ,OAAO;AAC9G,4BAA0B,gBAAgB,MAAM,eAAe;AAC/D,QAAM,gBAAgB,eAAe,SAAS,IAAI,MAAM,KAAK,IAAI,MAAM;AACvE,SAAO,QAAQ,MAAM,OAAO,eAAe,MAAM,oCAAoC,oDAAoD,QAAQ,MAAM,KAAK;AAC5J,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,uEAAuEA,2BAA0B,YAAY;AAC9K,QAAM,WAAW,kBAAkB,IAAI,OAAO,QAAQ,OAAOA,UAAS,WAAW,MAAM,eAAe;AACtG,MAAI;AACJ,MAAI,QAAQ,MAAM;AAChB,YAAQ,gBAAgB,MAAM,QAAQ,cAAc;AACpD,KAAC,KAAK,IAAI,eAAe,OAAO,EAAE;AAClC,QAAI,eAAe,QAAQ;AACzB,iCAA2B,SAAS,UAAU,MAAM,KAAK;AAAA,IAC3D,OAAO;AACL,aAAO,MAAM,MAAM,UAAU,GAAG,MAAM,2GAA2G,MAAM,MAAM,SAAS;AACtK,aAAO,MAAM,MAAM,WAAW,KAAK,MAAM,MAAM,OAAO,SAAS,eAAe,MAAM,MAAM,OAAO,GAAG,MAAM,sCAAsC,MAAM,gEAAgE,SAAS,cAAc;AAAA,IAC/O;AAAA,EACF;AACA,MAAI;AACJ,MAAI,0BAA0B,MAAM;AAClC,UAAM,aAAa,uBAAuB;AAC1C,WAAO,WAAW,UAAU,KAAK,WAAW,WAAW,GAAG,MAAM,2HAA2H,WAAW,SAAS;AAC/M,QAAI,WAAW,WAAW,GAAG;AAC3B,aAAO,WAAW,OAAO,KAAK,WAAW,OAAO,SAAS,aAAa,MAAM,oDAAoD,qEAAqE,SAAS,eAAe;AAAA,IAC/N,WAAW,WAAW,WAAW,GAAG;AAClC,UAAI;AACF,mCAA2B,YAAY,SAAS,QAAQ;AAAA,MAC1D,SAAS,IAAP;AACA,cAAM,SAAS,oDAAoD,sEAAsE,SAAS;AAClJ,cAAM,MAAM,MAAM;AAAA,MACpB;AAAA,IACF;AACA,8BAA0B,gBAAgB,wBAAwB,iBAAiB,cAAc;AAAA,EACnG;AACA,QAAM,QAAQ,CAAC,IAAI,UAAU;AAC3B,WAAO,eAAe,QAAQ,MAAM,wDAAwD,kDAAkD;AAC9I,UAAM,CAAC,UAAU,MAAM,GAAG,MAAM,IAAI;AACpC,UAAM,eAAe,qBAAqB,IAAI,GAAG,WAAW;AAC5D,WAAO,kBAAkB,SAAS,GAAG,MAAM,uHAAuH,YAAY;AAC9K,UAAM,OAAO,oBAAoB,KAAK,OAAO,cAAc,UAAUA,UAAS,IAAI;AAClF,UAAM,YAAY,qBAAqB,MAAM,cAAc,SAAS,OAAOA,UAAS,IAAI;AACxF,UAAM,MAAM,CAAC,MAAM,SAAS;AAC5B,QAAI,UAAU,MAAM;AAClB,YAAM,UAAU,qBAAqB,QAAQ,YAAY;AACzD,UAAI,KAAK,OAAO;AAAA,IAClB;AACA,WAAO;AAAA,EACT;AACA,QAAM,SAAS;AAAA,IACb,GAAG;AAAA,IACH,QAAQ;AAAA,IACR,MAAM;AAAA,IACN,wBAAwB;AAAA,EAC1B;AACA,QAAM,QAAQ;AAAA,IACZ,SAAAA;AAAA,IACA,KAAK;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,IACZ;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,WAAW,CAAC,MAAM,SAAS,SAAS;AACnD,UAAI,MAAM,OAAO,UAAU,aAAa,QAAQ,KAAK;AACrD,WAAK,CAAC,SAAS,MAAM,GAAG,CAAC;AACzB,UAAI,cAAc;AAChB,cAAM,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,MAC/D;AACA,aAAO,EAAE,OAAO,KAAK,UAAU,MAAM;AAAA,IACvC,CAAC;AACD,WAAO,SAAS,KAAK,OAAO;AAAA,EAC9B,OAAO;AACL,UAAM,mBAAmB,WAAW,CAAC,MAAM,SAAS,OAAO,SAAS;AAClE,UAAI,MAAM,OAAO,UAAU,aAAa,QAAQ,KAAK;AACrD,WAAK,CAAC,SAAS,MAAM,KAAK,KAAK,CAAC;AAChC,UAAI,cAAc;AAChB,cAAM,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,MAC/D;AACA,aAAO,EAAE,OAAO,KAAK,UAAU,MAAM;AAAA,IACvC,CAAC;AACD,WAAO,iBAAiB,KAAK,SAAS,KAAK;AAAA,EAC7C;AACF;AACA,IAAI,UAAU,GAAG,EAAE,aAAa,CAAC;AAGjC,SAAS,qCAAqC,GAAG,IAAI,aAAaA,UAAS,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB;AACpH,MAAI,MAAM;AACV,MAAI,EAAE,SAAS,GAAG;AAChB,UAAM,QAAQ,GAAG,CAAC,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EAC1D;AACA,MAAI,OAAO;AACX,MAAI,KAAK,SAAS,GAAG;AACnB,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC/D;AACA,QAAM,SAAS,EAAE,GAAG,KAAK,IAAI,KAAK;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW,YAAY;AAC5E,SAAO,OAAO,UAAU,qCAAqC,QAAQ,KAAK;AAC5E;AACA,IAAI,sCAAsC,GAAG,EAAE,qCAAqC,CAAC;AAGrF,SAAS,oCAAoC,QAAQ,IAAI,QAAQA,UAAS,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB;AACnH,MAAI,OAAO;AACX,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC/D;AACA,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW,YAAY,OAAO;AACnF,QAAM,MAAM,OAAO,UAAU,oCAAoC,QAAQ,KAAK;AAC9E,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,qCAAqC,GAAG,EAAE,oCAAoC,CAAC;AAGnF,SAAS,sBAAsB,EAAE,GAAG,QAAQ,SAAAA,UAAS,KAAK,MAAM,aAAa,QAAQ,YAAY,CAAC,GAAG,CAAC,GAAG,iBAAiB,MAAM,YAAY,cAAc,UAAU,wBAAwB,eAAe,GAAG;AAC5M,MAAI,WAAW,OAAO,MAAM,eAAe,WAAW,MAAM,OAAO;AACjE,QAAI,SAAS,gBAAgB,GAAG,QAAQA,UAAS,MAAM,YAAY,WAAW,eAAe;AAC7F,QAAI,QAAQ,MAAM;AAChB,eAAS,KAAK,QAAQ,IAAI;AAAA,IAC5B;AACA,WAAO,gBAAgB,QAAQ,aAAa,wBAAwB,cAAc;AAAA,EACpF;AACA,QAAM,KAAK,gBAAgB,GAAG,KAAK,mBAAmB,SAAS;AAC/D,QAAM,UAAU,gBAAgB,QAAQ,UAAU,mBAAmB,SAAS;AAC9E,MAAI,MAAM;AACV,MAAI,eAAe;AACnB,MAAI,GAAG,SAAS,GAAG;AACjB,mBAAe;AACf,UAAM,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC9D;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,sEAAsE,IAAI,OAAO;AAC9G,SAAO,QAAQ,SAAS,GAAG,MAAM,uEAAuE,QAAQ,OAAO;AACvH,SAAO,IAAI,MAAM,OAAO,QAAQ,MAAM,IAAI,MAAM,6DAA6D,IAAI,MAAM,qDAAqD,QAAQ,MAAM,KAAK;AAC/L,MAAI,aAAa,MAAM;AACrB,gBAAY,CAAC,GAAG,CAAC;AAAA,EACnB;AACA,SAAO,+BAA+BA,UAAS,SAAS,GAAG,MAAM,sFAAsFA,2BAA0B,YAAY;AAC7L,4BAA0B,yBAAyB,MAAM,eAAe;AACxE,QAAM,WAAW,kBAAkB,IAAI,OAAO,QAAQ,OAAOA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AAC5G,MAAI;AACJ,MAAI,QAAQ,MAAM;AAChB,YAAQ,gBAAgB,MAAM,QAAQ,cAAc;AACpD,KAAC,KAAK,IAAI,eAAe,OAAO,EAAE;AAClC,+BAA2B,SAAS,UAAU,MAAM,KAAK;AAAA,EAC3D;AACA,MAAI;AACJ,MAAI,0BAA0B,MAAM;AAClC,8BAA0B,gBAAgB,wBAAwB,iBAAiB,uBAAuB;AAAA,EAC5G;AACA,QAAM,QAAQ,CAAC,IAAI,UAAU;AAC3B,WAAO,kBAAkB,SAAS,GAAG,MAAM,mHAAmH,YAAY;AAC1K,UAAM,CAAC,UAAU,MAAM,GAAG,KAAK,IAAI;AACnC,UAAM,eAAe,qBAAqB,IAAI,GAAG,WAAW;AAC5D,UAAM,OAAO,mCAAmC,KAAK,OAAO,cAAc,UAAUA,UAAS,MAAM,WAAW,eAAe;AAC7H,UAAM,YAAY,oCAAoC,MAAM,cAAc,SAAS,OAAOA,UAAS,MAAM,WAAW,eAAe;AACnI,QAAI,SAAS,MAAM;AACjB,YAAM,UAAU,qBAAqB,OAAO,YAAY;AACxD,aAAO,CAAC,MAAM,WAAW,OAAO;AAAA,IAClC;AACA,WAAO,CAAC,MAAM,SAAS;AAAA,EACzB;AACA,QAAM,SAAS;AAAA,IACb,GAAG;AAAA,IACH,QAAQ;AAAA,IACR,MAAM;AAAA,IACN,wBAAwB;AAAA,EAC1B;AACA,QAAM,QAAQ;AAAA,IACZ,SAAAA;AAAA,IACA,KAAK;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,IACZ;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,WAAW,CAAC,MAAM,SAAS,SAAS;AACnD,UAAI,MAAM,OAAO,UAAU,sBAAsB,QAAQ,KAAK;AAC9D,WAAK,CAAC,SAAS,MAAM,GAAG,CAAC;AACzB,UAAI,cAAc;AAChB,cAAM,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,MAC/D;AACA,aAAO,EAAE,OAAO,KAAK,UAAU,MAAM;AAAA,IACvC,CAAC;AACD,WAAO,SAAS,KAAK,OAAO;AAAA,EAC9B,OAAO;AACL,UAAM,mBAAmB,WAAW,CAAC,MAAM,SAAS,OAAO,SAAS;AAClE,UAAI,MAAM,OAAO,UAAU,sBAAsB,QAAQ,KAAK;AAC9D,WAAK,CAAC,SAAS,MAAM,KAAK,KAAK,CAAC;AAChC,UAAI,cAAc;AAChB,cAAM,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,MAC/D;AACA,aAAO,EAAE,OAAO,KAAK,UAAU,MAAM;AAAA,IACvC,CAAC;AACD,WAAO,iBAAiB,KAAK,SAAS,KAAK;AAAA,EAC7C;AACF;AACA,IAAI,mBAAmB,GAAG,EAAE,sBAAsB,CAAC;AAGnD,SAAS,aAAa,EAAE,GAAG,GAAG,aAAa,OAAO,aAAa,OAAO,MAAM,YAAY,cAAc,UAAU,wBAAwB,iBAAiB,IAAI,GAAG;AAC9J,MAAI,WAAW,OAAO,MAAM,eAAe,WAAW,MAAM,OAAO;AACjE,QAAI,SAAS,OAAO,GAAG,GAAG,YAAY,UAAU;AAChD,QAAI,QAAQ,MAAM;AAChB,eAAS,KAAK,QAAQ,IAAI;AAAA,IAC5B;AACA,WAAO,gBAAgB,QAAQ,aAAa,wBAAwB,cAAc;AAAA,EACpF;AACA,MAAI,KAAK,gBAAgB,GAAG,KAAK,cAAc;AAC/C,MAAI,KAAK,gBAAgB,GAAG,KAAK,cAAc;AAC/C,GAAC,IAAI,EAAE,IAAI,eAAe,IAAI,EAAE;AAChC,QAAM,cAAc,aAAa,GAAG,MAAM,GAAG,OAAO,KAAK,GAAG,MAAM,GAAG,OAAO;AAC5E,QAAM,cAAc,aAAa,GAAG,MAAM,GAAG,OAAO,KAAK,GAAG,MAAM,GAAG,OAAO;AAC5E,QAAM,cAAc,aAAa,GAAG,MAAM,GAAG,OAAO,KAAK,GAAG,MAAM,GAAG,OAAO;AAC5E,QAAM,cAAc,aAAa,GAAG,MAAM,GAAG,OAAO,KAAK,GAAG,MAAM,GAAG,OAAO;AAC5E,QAAM,aAAa,GAAG,MAAM,MAAM,GAAG,EAAE;AACvC,QAAM,aAAa,GAAG,MAAM,MAAM,GAAG,EAAE;AACvC,QAAM,YAAY,cAAc,UAAU;AAC1C,QAAM,YAAY,cAAc,UAAU;AAC1C,SAAO,gBAAgB,aAAa,MAAM,wCAAwC,qBAAqB,uCAAuC,GAAG,aAAa,GAAG,wBAAwB,6BAA6B,wBAAwB;AAC9O,QAAM,oBAAoB,2BAA2B,GAAG,MAAM,MAAM,GAAG,EAAE,GAAG,GAAG,MAAM,MAAM,GAAG,EAAE,CAAC;AACjG,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,QAAM,MAAM,aAAa,QAAQ,IAAI,CAAC,WAAW,aAAa,WAAW,CAAC,IAAI,QAAQ,IAAI,CAAC,WAAW,aAAa,WAAW,CAAC;AAC/H,QAAM,MAAM,aAAa,QAAQ,IAAI,CAAC,WAAW,aAAa,WAAW,CAAC,IAAI,QAAQ,IAAI,CAAC,WAAW,aAAa,WAAW,CAAC;AAC/H,MAAI;AACJ,MAAI,QAAQ,MAAM;AAChB,YAAQ,gBAAgB,MAAM,QAAQ,cAAc;AACpD,KAAC,KAAK,IAAI,eAAe,OAAO,EAAE;AAClC,+BAA2B,UAAU,MAAM,KAAK;AAAA,EAClD;AACA,MAAI;AACJ,MAAI,0BAA0B,MAAM;AAClC,8BAA0B,gBAAgB,wBAAwB,iBAAiB,cAAc;AAAA,EACnG;AACA,QAAM,QAAQ,CAAC,IAAI,UAAU;AAC3B,UAAM,CAAC,MAAM,MAAM,GAAG,MAAM,IAAI;AAChC,UAAM,eAAe,qBAAqB,QAAQ,IAAI,EAAE,KAAK,GAAG,GAAG,WAAW;AAC9E,QAAI;AACJ,QAAI;AACJ,QAAI,CAAC,cAAc,CAAC,YAAY;AAC9B,aAAO,OAAO,cAAc,MAAM,OAAO,IAAI;AAC7C,aAAO,OAAO,MAAM,cAAc,MAAM,KAAK;AAAA,IAC/C,WAAW,CAAC,cAAc,YAAY;AACpC,aAAO,OAAO,cAAc,MAAM,OAAO,KAAK;AAC9C,aAAO,OAAO,cAAc,MAAM,MAAM,KAAK;AAAA,IAC/C,WAAW,cAAc,CAAC,YAAY;AACpC,aAAO,OAAO,MAAM,cAAc,OAAO,IAAI;AAC7C,aAAO,OAAO,MAAM,cAAc,OAAO,KAAK;AAAA,IAChD,OAAO;AACL,aAAO,OAAO,MAAM,cAAc,MAAM,IAAI;AAC5C,aAAO,OAAO,cAAc,MAAM,MAAM,IAAI;AAAA,IAC9C;AACA,QAAI,QAAQ,MAAM;AAChB,YAAM,UAAU,qBAAqB,QAAQ,YAAY;AACzD,aAAO,CAAC,MAAM,MAAM,OAAO;AAAA,IAC7B,OAAO;AACL,aAAO,CAAC,MAAM,IAAI;AAAA,IACpB;AAAA,EACF;AACA,QAAM,SAAS;AAAA,IACb,GAAG;AAAA,IACH,GAAG;AAAA,IACH,MAAM;AAAA,IACN,wBAAwB;AAAA,EAC1B;AACA,QAAM,QAAQ,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe;AAChF,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,WAAW,CAAC,MAAM,MAAM,SAAS;AAChD,YAAM,MAAM,OAAO,UAAU,cAAc,QAAQ,KAAK;AACxD,WAAK,CAAC,MAAM,MAAM,GAAG,CAAC;AACtB,aAAO,EAAE,OAAO,QAAQ,KAAK,QAAQ,GAAG,UAAU,MAAM;AAAA,IAC1D,CAAC;AACD,WAAO,SAAS,KAAK,GAAG;AAAA,EAC1B,OAAO;AACL,UAAM,mBAAmB,WAAW,CAAC,MAAM,MAAM,QAAQ,SAAS;AAChE,YAAM,MAAM,OAAO,UAAU,cAAc,QAAQ,KAAK;AACxD,WAAK,CAAC,MAAM,MAAM,KAAK,MAAM,CAAC;AAC9B,aAAO,EAAE,OAAO,QAAQ,KAAK,QAAQ,GAAG,UAAU,MAAM;AAAA,IAC1D,CAAC;AACD,WAAO,iBAAiB,KAAK,KAAK,KAAK;AAAA,EACzC;AACF;AACA,IAAI,UAAU,GAAG,EAAE,aAAa,CAAC;AAGjC,SAAS,eAAe,cAAc;AACpC,SAAO,aAAa,cAAc,MAAM,IAAI;AAC9C;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,YAAY,cAAc;AACjC,SAAO,aAAa,cAAc,KAAK,GAAG;AAC5C;AACA,IAAI,aAAa,GAAG,EAAE,YAAY,CAAC;AAGnC,SAAS,OAAO,SAAS,aAAa,WAAW,SAAS,OAAO,WAAW,GAAG;AAC7E,MAAI,QAAQ;AACZ,QAAM,SAAS,CAAC;AAChB,SAAO,QAAQ,eAAe,QAAQ,MAAM;AAC1C,WAAO,KAAK,MAAM,SAAS,OAAO,WAAW,CAAC;AAC9C,aAAS;AAAA,EACX;AACA,MAAI,QAAQ;AACV,WAAO,QAAQ,QAAQ,MAAM;AAC3B,YAAM,SAAS,QAAQ,cAAc,QAAQ;AAC7C,YAAM,OAAO,OAAO;AAAA,QAClB,MAAM,SAAS,OAAO,cAAc,MAAM;AAAA,QAC1C,KAAK,CAAC,MAAM,GAAG,QAAQ;AAAA,MACzB,CAAC;AACD,aAAO,KAAK,IAAI;AAChB,eAAS;AAAA,IACX;AAAA,EACF;AACA,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,SAAS,CAAC,GAAG,CAAC,GAAG,WAAW,CAAC;AAAA,EACtC;AACA,SAAO,QAAQ,OAAO,MAAM,GAAG,CAAC,OAAO,QAAQ,WAAW,CAAC;AAC7D;AACA,IAAI,QAAQ,GAAG,EAAE,OAAO,CAAC;AAGzB,SAAS,MAAM,SAAS,aAAa,WAAW,WAAW,WAAW,YAAY;AAChF,MAAI,aAAa,MAAM;AACrB,gBAAY,oBAAoB,WAAW;AAAA,EAC7C;AACA,QAAM,eAAe,MAAM,SAAS,aAAa,SAAS;AAC1D,QAAM,iBAAiB,IAAI,cAAc,SAAS,WAAW,CAAC;AAC9D,SAAO,KAAK,gBAAgB,SAAS;AACvC;AACA,IAAI,OAAO,GAAG,EAAE,MAAM,CAAC;AAGvB,SAAS,eAAe,QAAQ,OAAO,QAAQ,UAAU,SAAS,YAAY,qBAAqB,GAAG;AACpG,QAAM,SAAS,gBAAgB,QAAQ,SAAS,eAAe;AAC/D,QAAM,SAAS,gBAAgB,OAAO,SAAS,iBAAiB,SAAS;AACzE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,iBAAiB,OAAO;AAC1E,QAAM,WAAW,OAAO,MAAM;AAC9B,SAAO,OAAO,SAAS,GAAG,MAAM,6DAA6D,OAAO,OAAO;AAC3G,SAAO,OAAO,SAAS,KAAK,OAAO,MAAM,OAAO,GAAG,MAAM,oDAAoD,6BAA6B,OAAO,QAAQ;AACzJ,SAAO,QAAQ,SAAS,KAAK,QAAQ,MAAM,OAAO,UAAU,MAAM,qDAAqD,2BAA2B,OAAO,QAAQ;AACjK,SAAO,SAAS,WAAW,GAAG,MAAM,wEAAwE,SAAS,SAAS;AAC9H,SAAO,SAAS,MAAM,KAAK,SAAS,MAAM,GAAG,MAAM,2CAA2C,UAAU;AACxG,SAAO,WAAW,cAAc,WAAW,WAAW,MAAM,+CAA+C,QAAQ;AACnH,QAAM,SAAS,EAAE,OAAO,QAAQ,OAAO,QAAQ,QAAQ,QAAQ;AAC/D,QAAM,QAAQ,EAAE,QAAQ,oBAAoB,SAAS;AACrD,QAAM,MAAM,OAAO,UAAU,eAAe,QAAQ,KAAK;AACzD,SAAO;AACT;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,eAAe,QAAQ;AAC9B,QAAM,SAAS,gBAAgB,QAAQ,SAAS,iBAAiB,SAAS;AAC1E,SAAO,OAAO,SAAS,GAAG,MAAM,6DAA6D,OAAO,OAAO;AAC3G,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,QAAM,MAAM,OAAO,UAAU,eAAe,QAAQ,CAAC,CAAC;AACtD,SAAO;AACT;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,gBAAgB,QAAQ;AAC/B,QAAM,SAAS,gBAAgB,QAAQ,SAAS,gBAAgB;AAChE,QAAM,cAAc,OAAO,OAAO;AAClC,QAAM,WAAW,OAAO,MAAM;AAC9B,SAAO,OAAO,QAAQ,GAAG,MAAM,yEAAyE,OAAO,OAAO;AACtH,SAAO,aAAa,GAAG,MAAM,+FAA+F,WAAW;AACvI,QAAM,OAAO,IAAI,MAAM,OAAO,IAAI;AAClC,OAAK,KAAK,GAAG,GAAG,WAAW;AAC3B,OAAK,eAAe;AACpB,SAAO,KAAK,QAAQ,IAAI;AAC1B;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,kBAAkB,QAAQ,SAAS,YAAY,GAAG,SAAS,KAAK;AACvE,QAAM,SAAS,gBAAgB,QAAQ,SAAS,oBAAoB,SAAS;AAC7E,SAAO,OAAO,SAAS,GAAG,MAAM,gEAAgE,OAAO,OAAO;AAC9G,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,QAAM,QAAQ,EAAE,SAAS,WAAW,OAAO;AAC3C,QAAM,MAAM,OAAO,UAAU,kBAAkB,QAAQ,KAAK;AAC5D,SAAO;AACT;AACA,IAAI,mBAAmB,GAAG,EAAE,kBAAkB,CAAC;AAG/C,SAAS,sBAAsB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,cAAc;AACvG,MAAI,gBAAgB,MAAM;AACxB,mBAAe;AAAA,EACjB;AACA,MAAI,kBAAkB,MAAM;AAC1B,qBAAiB,OAAO;AAAA,EAC1B;AACA,MAAI,gBAAgB,MAAM;AACxB,mBAAe;AAAA,EACjB;AACA,QAAM,WAAW,MAAM,MAAM;AAC7B,kBAAgB,KAAK,IAAI,eAAe,QAAQ;AAChD,SAAO,KAAK,gBAAgB,gBAAgB,GAAG,MAAM,4CAA4C,eAAe;AAChH,SAAO,MAAM,SAAS,GAAG,MAAM,+CAA+C,MAAM,OAAO;AAC3F,SAAO,MAAM,MAAM,OAAO,GAAG,MAAM,oDAAoD,MAAM,MAAM,IAAI;AACvG,SAAO,OAAO,SAAS,GAAG,MAAM,4BAA4B;AAC5D,SAAO,OAAO,MAAM,OAAO,UAAU,MAAM,sDAAsD,qBAAqB,OAAO,MAAM,IAAI;AACvI,SAAO,KAAK,gBAAgB,gBAAgB,GAAG,MAAM,4CAA4C,eAAe;AAChH,SAAO,EAAE,eAAe,cAAc,gBAAgB,aAAa;AACrE;AAGA,SAAS,mBAAmB,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB;AACvH,QAAM,SAAS,gBAAgB,OAAO,SAAS,qBAAqB,SAAS;AAC7E,QAAM,UAAU,gBAAgB,QAAQ,UAAU,qBAAqB,SAAS;AAChF,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,cAAc;AACjG,kBAAgB,OAAO;AACvB,iBAAe,OAAO;AACtB,mBAAiB,OAAO;AACxB,QAAM,QAAQ,EAAE,eAAe,cAAc,eAAe;AAC5D,SAAO,OAAO,UAAU,qBAAqB,EAAE,OAAO,QAAQ,QAAQ,QAAQ,GAAG,KAAK;AACxF;AACA,IAAI,oBAAoB,GAAG,EAAE,mBAAmB,CAAC;AAGjD,SAAS,aAAa,KAAK,SAAS,YAAY;AAC9C,QAAMH,SAAQ,aAAa,KAAK,SAAS,UAAU;AACnD,QAAM,iBAAiBA,SAAQ,IAAI,EAAEA,SAAQ,KAAKA;AAClD,MAAI,OAAO,gBAAgB,GAAG,OAAO;AACvC;AACA,SAAS,aAAa,KAAK,QAAQ,YAAY;AAC7C,SAAO,cAAc,KAAK,QAAQ,cAAc,iBAAiB;AACnE;AACA,SAAS,kBAAkB,GAAG,GAAG;AAC/B,SAAO,IAAI,IAAI,IAAI,IAAI,IAAI,KAAK;AAClC;AACA,SAAS,cAAc,KAAK,QAAQ,YAAY;AAC9C,MAAI,OAAO;AACX,MAAI,QAAQ,IAAI;AAChB,MAAIe,UAAS;AACb,MAAI,QAAQ;AACZ,SAAO,OAAO,OAAO;AACnB,IAAAA,UAAS,QAAQ,QAAQ,SAAS;AAClC,UAAM,gBAAgB,WAAW,QAAQ,IAAIA,QAAO;AACpD,QAAI,gBAAgB,GAAG;AACrB,aAAOA,UAAS;AAAA,IAClB,OAAO;AACL,cAAQA;AACR,cAAQ,CAAC;AAAA,IACX;AAAA,EACF;AACA,SAAO,QAAQ,OAAO,CAAC,OAAO;AAChC;AAGA,SAAS,wBAAwB,OAAO,QAAQ,eAAe,cAAc,gBAAgB;AAC3F,SAAO,uBAAuB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,CAAC;AAC7F;AACA,SAAS,wBAAwB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,oBAAoB;AAC/G,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,wBAAwB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,cAAc;AACzG,SAAO,uBAAuB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,cAAc,IAAI;AAC9G;AACA,SAAS,uBAAuB,OAAO,QAAQ,eAAe,cAAc,gBAAgB,cAAc,qBAAqB,OAAO,qBAAqB,OAAO,qBAAqB,OAAO;AAC5L,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,QAAI,OAAO,MAAM,gBAAgB;AAC/B,iBAAW,KAAK,EAAE,OAAO,OAAO,KAAK,UAAU,IAAI,oBAAoB,EAAE,CAAC;AAAA,IAC5E;AAAA,EACF;AACA,aAAW,KAAK,mBAAmB;AACnC,QAAMH,UAAS,eAAe,IAAI,OAAO,eAAe;AACxD,QAAM,kBAAkB,CAAC;AACzB,QAAM,iBAAiB,CAAC;AACxB,SAAO,gBAAgB,SAAS,iBAAiB,WAAW,SAAS,GAAG;AACtE,UAAM,YAAY,WAAW,IAAI;AACjC,UAAM,EAAE,OAAO,eAAe,UAAU,mBAAmB,IAAI;AAC/D,QAAI,gBAAgB,gBAAgB;AAClC;AAAA,IACF;AACA,QAAI,kBAAkB;AACtB,aAAS,IAAI,gBAAgB,SAAS,GAAG,KAAK,oBAAoB,EAAE,GAAG;AACrE,YAAM,MAAM,sBAAsB,OAAO,UAAU,gBAAgB,EAAE;AACrE,UAAI,OAAO,cAAc;AACvB,0BAAkB;AAClB;AAAA,MACF;AACA,gBAAU,QAAQ,UAAU,QAAQ,eAAe,cAAcA,SAAQ,GAAG;AAC5E,UAAI,UAAU,SAAS,gBAAgB;AACrC;AAAA,MACF;AAAA,IACF;AACA,cAAU,qBAAqB,gBAAgB;AAC/C,QAAI,CAAC,iBAAiB;AACpB,UAAI,UAAU,UAAU,eAAe;AACrC,wBAAgB,KAAK,QAAQ;AAC7B,uBAAe,KAAK,UAAU,KAAK;AAAA,MACrC,WAAW,UAAU,QAAQ,gBAAgB;AAC3C,qBAAa,YAAY,WAAW,mBAAmB;AAAA,MACzD;AAAA,IACF;AAAA,EACF;AACA,QAAM,eAAe,gBAAgB;AACrC,QAAM,aAAa,gBAAgB;AACnC,MAAI,sBAAsB,aAAa,GAAG;AACxC,oBAAgB,KAAK,GAAG,IAAI,MAAM,UAAU,EAAE,KAAK,CAAC,CAAC;AACrD,mBAAe,KAAK,GAAG,IAAI,MAAM,UAAU,EAAE,KAAK,CAAC,CAAC;AAAA,EACtD;AACA,QAAM,SAAS,EAAE,gBAAgB;AACjC,MAAI,oBAAoB;AACtB,WAAO,oBAAoB;AAAA,EAC7B;AACA,MAAI,oBAAoB;AACtB,WAAO,kBAAkB;AAAA,EAC3B;AACA,SAAO;AACT;AACA,SAAS,sBAAsB,OAAO,IAAI,GAAG;AAC3C,QAAM,SAAS,MAAM,SAAS,KAAK,GAAG,KAAK,IAAI,CAAC;AAChD,QAAM,SAAS,MAAM,SAAS,IAAI,GAAG,IAAI,IAAI,CAAC;AAC9C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,QAAQ,KAAK,IAAI,OAAO,IAAI,OAAO,EAAE;AAC3C,QAAM,SAAS,QAAQ,UAAU,QAAQ;AACzC,QAAM,SAAS,QAAQ,UAAU,QAAQ;AACzC,MAAI,SAAS,KAAK,SAAS,GAAG;AAC5B,WAAO;AAAA,EACT;AACA,QAAM,mBAAmB,KAAK,IAAI,OAAO,KAAK;AAC9C,QAAM,mBAAmB,KAAK,IAAI,OAAO,KAAK;AAC9C,QAAM,mBAAmB,KAAK,IAAI,OAAO,KAAK;AAC9C,QAAM,mBAAmB,KAAK,IAAI,OAAO,KAAK;AAC9C,QAAM,mBAAmB,KAAK,IAAI,mBAAmB,kBAAkB,CAAC,IAAI,KAAK,IAAI,mBAAmB,kBAAkB,CAAC;AAC3H,SAAO,oBAAoB,QAAQ,QAAQ;AAC7C;AACA,SAAS,eAAe,cAAcA,SAAQ,KAAK;AACjD,QAAM,SAAS,KAAK,IAAIA,UAAS,MAAM,GAAG;AAC1C,SAAO,OAAO,eAAe,SAAS;AACxC;AACA,SAAS,oBAAoB,IAAI,IAAI;AACnC,SAAO,GAAG,QAAQ,GAAG,SAAS,GAAG,UAAU,GAAG,SAAS,GAAG,WAAW,GAAG;AAC1E;AAGA,eAAe,wBAAwB,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB;AAClI,QAAM,SAAS,gBAAgB,OAAO,SAAS,wBAAwB;AACvE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,wBAAwB;AAC1E,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,cAAc;AACjG,kBAAgB,OAAO;AACvB,iBAAe,OAAO;AACtB,mBAAiB,OAAO;AACxB,QAAM,iBAAiB,MAAM,QAAQ,IAAI,CAAC,OAAO,KAAK,GAAG,QAAQ,KAAK,CAAC,CAAC;AACxE,QAAM,YAAY,eAAe;AACjC,QAAM,aAAa,eAAe;AAClC,QAAM,EAAE,gBAAgB,IAAI,wBAAwB,WAAW,YAAY,eAAe,cAAc,cAAc;AACtH,MAAI,WAAW,OAAO;AACpB,WAAO,QAAQ;AAAA,EACjB;AACA,MAAI,YAAY,QAAQ;AACtB,YAAQ,QAAQ;AAAA,EAClB;AACA,SAAO,SAAS,iBAAiB,OAAO;AAC1C;AACA,IAAI,yBAAyB;AAG7B,SAAS,4BAA4B,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB,eAAe,GAAG;AAClJ,QAAM,SAAS,gBAAgB,OAAO,SAAS,mBAAmB;AAClE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,mBAAmB;AACrE,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,gBAAgB,YAAY;AAC/G,kBAAgB,OAAO;AACvB,iBAAe,OAAO;AACtB,mBAAiB,OAAO;AACxB,iBAAe,OAAO;AACtB,QAAM,SAAS,EAAE,OAAO,QAAQ,QAAQ,QAAQ;AAChD,QAAM,QAAQ,EAAE,eAAe,cAAc,gBAAgB,aAAa;AAC1E,QAAM,SAAS,OAAO,UAAU,qBAAqB,QAAQ,KAAK;AAClE,SAAO,EAAE,iBAAiB,OAAO,IAAI,gBAAgB,OAAO,GAAG;AACjE;AACA,IAAI,6BAA6B,GAAG,EAAE,4BAA4B,CAAC;AAGnE,eAAe,iCAAiC,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB,eAAe,GAAG;AAC7J,QAAM,SAAS,gBAAgB,OAAO,SAAS,wBAAwB;AACvE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,wBAAwB;AAC1E,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,gBAAgB,YAAY;AAC/G,kBAAgB,OAAO;AACvB,iBAAe,OAAO;AACtB,mBAAiB,OAAO;AACxB,iBAAe,OAAO;AACtB,QAAM,iBAAiB,MAAM,QAAQ,IAAI,CAAC,OAAO,KAAK,GAAG,QAAQ,KAAK,CAAC,CAAC;AACxE,QAAM,YAAY,eAAe;AACjC,QAAM,aAAa,eAAe;AAClC,QAAM,EAAE,iBAAiB,eAAe,IAAI,wBAAwB,WAAW,YAAY,eAAe,cAAc,gBAAgB,YAAY;AACpJ,MAAI,WAAW,OAAO;AACpB,WAAO,QAAQ;AAAA,EACjB;AACA,MAAI,YAAY,QAAQ;AACtB,YAAQ,QAAQ;AAAA,EAClB;AACA,SAAO;AAAA,IACL,iBAAiB,SAAS,iBAAiB,OAAO;AAAA,IAClD,gBAAgB,SAAS,cAAc;AAAA,EACzC;AACF;AACA,IAAI,kCAAkC;AAGtC,SAAS,yBAAyB,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB,qBAAqB,OAAO;AACzJ,QAAM,SAAS,gBAAgB,OAAO,SAAS,mBAAmB;AAClE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,mBAAmB;AACrE,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,gBAAgB,IAAI;AACvG,QAAM,iBAAiB,OAAO;AAC9B,QAAM,gBAAgB,OAAO;AAC7B,QAAM,kBAAkB,OAAO;AAC/B,QAAM,SAAS,EAAE,OAAO,QAAQ,QAAQ,QAAQ;AAChD,QAAM,QAAQ;AAAA,IACZ,eAAe;AAAA,IACf,cAAc;AAAA,IACd,gBAAgB;AAAA,IAChB;AAAA,EACF;AACA,QAAM,SAAS,OAAO,UAAU,qBAAqB,QAAQ,KAAK;AAClE,SAAO,EAAE,iBAAiB,OAAO,IAAI,cAAc,OAAO,GAAG;AAC/D;AACA,IAAI,0BAA0B,GAAG,EAAE,yBAAyB,CAAC;AAG7D,eAAe,8BAA8B,OAAO,QAAQ,eAAe,eAAe,KAAK,iBAAiB,OAAO,mBAAmB,qBAAqB,OAAO;AACpK,QAAM,SAAS,gBAAgB,OAAO,SAAS,wBAAwB;AACvE,QAAM,UAAU,gBAAgB,QAAQ,UAAU,wBAAwB;AAC1E,QAAM,SAAS,sBAAsB,QAAQ,SAAS,eAAe,cAAc,gBAAgB,IAAI;AACvG,QAAM,iBAAiB,OAAO;AAC9B,QAAM,gBAAgB,OAAO;AAC7B,QAAM,kBAAkB,OAAO;AAC/B,QAAM,CAAC,WAAW,UAAU,IAAI,MAAM,QAAQ,IAAI,CAAC,OAAO,KAAK,GAAG,QAAQ,KAAK,CAAC,CAAC;AACjF,QAAM,EAAE,iBAAiB,aAAa,IAAI,wBAAwB,WAAW,YAAY,gBAAgB,eAAe,iBAAiB,kBAAkB;AAC3J,MAAI,WAAW,OAAO;AACpB,WAAO,QAAQ;AAAA,EACjB;AACA,MAAI,YAAY,QAAQ;AACtB,YAAQ,QAAQ;AAAA,EAClB;AACA,SAAO;AAAA,IACL,iBAAiB,SAAS,iBAAiB,OAAO;AAAA,IAClD,cAAc,OAAO,cAAc,OAAO;AAAA,EAC5C;AACF;AACA,IAAI,+BAA+B;AAGnC,SAAS,gBAAgB,QAAQtB,OAAM,eAAe,OAAO,mBAAmB,OAAO;AACrF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,gBAAgB;AAClE,SAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,gEAAgE,QAAQ,OAAO;AACtI,SAAOA,MAAK,WAAW,GAAG,MAAM,6DAA6DA,QAAO;AACpG,SAAO,qBAAqB,SAAS,iBAAiB,OAAO,MAAM,mFAAmF;AACtJ,MAAI,cAAc;AAClB,MAAI,eAAe;AACnB,MAAI,QAAQ,SAAS,GAAG;AACtB,mBAAe;AACf,kBAAc,QAAQ,SAAS,CAAC,GAAG,QAAQ,MAAM,IAAI,QAAQ,MAAM,IAAI,QAAQ,MAAM,EAAE,CAAC;AAAA,EAC1F;AACA,QAAM,CAAC,IAAIA;AACX,QAAM,SAAS,EAAE,QAAQ,YAAY;AACrC,QAAM,QAAQ,EAAE,cAAc,kBAAkB,MAAAA,MAAK;AACrD,QAAM,MAAM,OAAO,UAAU,gBAAgB,QAAQ,KAAK;AAC1D,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,uBAAuB,QAAQA,OAAM,eAAe,OAAO,mBAAmB,OAAO;AAC5F,QAAM,UAAU,gBAAgB,QAAQ,UAAU,uBAAuB;AACzE,SAAO,QAAQ,SAAS,KAAK,QAAQ,SAAS,GAAG,MAAM,uEAAuE,QAAQ,OAAO;AAC7I,SAAOA,MAAK,WAAW,GAAG,MAAM,oEAAoEA,QAAO;AAC3G,SAAO,QAAQ,UAAU,aAAa,QAAQ,UAAU,SAAS,MAAM,kDAAkD;AACzH,SAAO,qBAAqB,SAAS,iBAAiB,OAAO,MAAM,0FAA0F;AAC7J,MAAI,cAAc;AAClB,MAAI,eAAe;AACnB,MAAI,QAAQ,SAAS,GAAG;AACtB,mBAAe;AACf,kBAAc,QAAQ,SAAS,CAAC,GAAG,QAAQ,MAAM,IAAI,QAAQ,MAAM,IAAI,QAAQ,MAAM,EAAE,CAAC;AAAA,EAC1F;AACA,QAAM,CAAC,IAAIA;AACX,QAAM,SAAS,EAAE,QAAQ,YAAY;AACrC,QAAM,QAAQ,EAAE,cAAc,kBAAkB,MAAAA,MAAK;AACrD,QAAM,MAAM,OAAO,UAAU,uBAAuB,QAAQ,KAAK;AACjE,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,wBAAwB,GAAG,EAAE,uBAAuB,CAAC;AAGzD,SAAS,WAAW,QAAQ,SAAS,UAAU,WAAW,OAAO,cAAc,KAAK;AAClF,QAAM,SAAS,gBAAgB,QAAQ,SAAS,WAAW;AAC3D,QAAM,qBAAqB;AAC3B,QAAM,uBAAuB;AAC7B,QAAM,sBAAsB;AAC5B,QAAM,qBAAqB,OAAO,MAAM,KAAK,OAAO,MAAM;AAC1D,MAAI,aAAa,IAAI,SAAS,CAAC,WAAW,CAAC,GAAG,GAAG;AACjD,MAAI,IAAI,GAAG,GAAG;AACd,SAAO,OAAO,SAAS,GAAG,MAAM,yDAAyD,OAAO,OAAO;AACvG,SAAO,OAAO,MAAM,OAAO,KAAK,OAAO,MAAM,OAAO,GAAG,MAAM,0EAA0E,OAAO,MAAM,KAAK;AACzJ,SAAO,OAAO,UAAU,WAAW,OAAO,UAAU,WAAW,MAAM,sEAAsE,OAAO,QAAQ;AAC1J,SAAO,WAAW,UAAU,WAAW,UAAU,MAAM,0CAA0C,QAAQ;AACzG,MAAI,OAAO,MAAM,OAAO,GAAG;AACzB,KAAC,IAAI,GAAG,CAAC,IAAI,MAAM,QAAQ,CAAC,GAAG,GAAG,CAAC,GAAG,EAAE;AACxC,UAAM,KAAK,IAAI,IAAI,kBAAkB;AACrC,UAAM,KAAK,IAAI,GAAG,oBAAoB;AACtC,UAAM,KAAK,IAAI,GAAG,mBAAmB;AACrC,gBAAY,KAAK,KAAK,IAAI,EAAE,GAAG,EAAE;AAAA,EACnC,OAAO;AACL,gBAAY;AAAA,EACd;AACA,MAAI,WAAW,QAAQ;AACrB,UAAM,aAAa,SAAS,KAAK,OAAO,SAAS,GAAG,OAAO,GAAG,OAAO,CAAC,CAAC,GAAG,GAAG;AAC7E,iBAAa,KAAK,YAAY,kBAAkB;AAAA,EAClD;AACA,QAAM,eAAe,WAAW,UAAU,WAAW,UAAU,IAAI,QAAQ,WAAW,UAAU;AAChG,QAAM,SAAS,KAAK,IAAI,cAAc,GAAG,GAAG,OAAO;AACnD,SAAO;AACT;AACA,SAAS,KAAK,WAAW,OAAO;AAC9B,MAAI,aAAa,SAAS,CAAC,EAAE,CAAC;AAC9B,MAAI,eAAe,SAAS,CAAC,CAAC,CAAC;AAC/B,MAAI,YAAY,SAAS,CAAC,CAAC,CAAC;AAC5B,MAAI,YAAY,aAAa,WAAW,SAAS,kBAAkB;AACnE,WAASU,SAAQ,GAAGA,SAAQ,UAAU,OAAO,GAAGA,UAAS;AACvD,iBAAa,MAAM,WAAW,GAAGA,SAAQ,CAAC;AAC1C,kBAAc,MAAM,WAAWA,SAAQ,CAAC;AACxC,uBAAmB,IAAI,KAAK,UAAU,GAAG,KAAK;AAC9C,iBAAa,IAAI,KAAK,WAAW,GAAG,KAAK;AACzC,UAAM,gBAAgB,KAAK,IAAI,YAAY,MAAM,GAAG,WAAW,IAAI,CAAC,CAAC;AACrE,gBAAY,IAAI,eAAe,KAAK,UAAU,CAAC;AAC/C,UAAM,cAAc,KAAK,YAAY,OAAO,WAAW,IAAI;AAC3D,UAAM,aAAa,KAAK,MAAM,GAAG,YAAY,IAAI,GAAG,WAAW;AAC/D,UAAM,aAAa,IAAI,aAAa,UAAU;AAC9C,cAAU,IAAI,KAAK,UAAU,GAAG,KAAK,WAAW,CAAC;AACjD,UAAM,gBAAgB,IAAI,WAAW,OAAO;AAC5C,UAAM,gBAAgB,IAAI,WAAW,OAAO;AAC5C,UAAM,eAAe,IAAI,kBAAkB,UAAU;AACrD,gBAAY,IAAI,IAAI,cAAc,aAAa,GAAG,aAAa;AAC/D,UAAM,YAAY,QAAQ,WAAW,YAAY;AACjD,mBAAe,MAAM,WAAW,WAAW,YAAY;AACvD,iBAAa,MAAM,WAAW,SAAS,CAACA,MAAK,CAAC,GAAG,UAAU;AAAA,EAC7D;AACA,SAAO;AACT;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAW,QAAQ,YAAY,gBAAgB,WAAW,WAAW,YAAY,YAAY,GAAG,aAAa;AACpH,QAAM,SAAS,gBAAgB,QAAQ,SAAS,aAAa,SAAS;AACtE,QAAM,cAAc,gBAAgB,YAAY,cAAc,aAAa,SAAS;AACpF,SAAO,OAAO,SAAS,GAAG,MAAM,yDAAyD,OAAO,OAAO;AACvG,SAAO,YAAY,SAAS,MAAM,YAAY,MAAM,OAAO,OAAO,MAAM,MAAM,YAAY,MAAM,OAAO,MAAM,YAAY,MAAM,OAAO,GAAG,MAAM,kEAAkE;AACjN,SAAO,eAAe,QAAQ,YAAY,WAAW,GAAG,MAAM,4EAA4E,cAAc;AACxJ,QAAM,SAAS,EAAE,OAAO,QAAQ,YAAY,YAAY;AACxD,QAAM,QAAQ,EAAE,eAAe,UAAU,WAAW,YAAY;AAChE,SAAO,OAAO,UAAU,WAAW,QAAQ,KAAK;AAClD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,UAAU,GAAG,UAAU,UAAU;AACxC,SAAO,WAAW,MAAM,GAAG,MAAM,gDAAgD,WAAW;AAC5F,SAAO,WAAW,MAAM,GAAG,MAAM,gDAAgD,WAAW;AAC5F,QAAM,KAAK,gBAAgB,GAAG,KAAK,UAAU;AAC7C,SAAO,GAAG,QAAQ,GAAG,MAAM,4CAA4C,GAAG,OAAO;AACjF,QAAM,QAAQ,GAAG;AACjB,QAAM,CAAC,GAAG,CAAC,IAAI,GAAG,MAAM,MAAM,EAAE;AAChC,MAAI,EAAE,YAAY,IAAI;AACpB,UAAM,IAAI,MAAM,yBAAyB,0DAA0D,KAAK;AAAA,EAC1G;AACA,MAAI,EAAE,YAAY,IAAI;AACpB,UAAM,IAAI,MAAM,yBAAyB,6DAA6D,KAAK;AAAA,EAC7G;AACA,MAAI,WAAW,GAAG;AAChB,eAAW;AAAA,EACb;AACA,MAAI,WAAW,GAAG;AAChB,eAAW;AAAA,EACb;AACA,QAAM,KAAK,QAAQ,MAAM,GAAG,GAAG,GAAG,OAAO,GAAG,CAAC,IAAI,CAAC,CAAC;AACnD,QAAM,IAAI,MAAM,GAAG,GAAG,GAAG,OAAO;AAChC,QAAM,KAAK,IAAI,IAAI,CAAC;AACpB,QAAM,SAAS,WAAW,UAAU,IAAI,OAAO,CAAC,UAAU,OAAO,CAAC,GAAG,aAAa,IAAI,OAAO,CAAC,UAAU,OAAO,CAAC,CAAC;AACjH,QAAM,OAAO,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,KAAK;AACnC,SAAO,QAAQ,MAAM,QAAQ,QAAQ,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,QAAQ,MAAM,QAAQ,KAAK,IAAI,CAAC,CAAC,GAAG,KAAK;AACtG;AACA,IAAI,WAAW,GAAG,EAAE,UAAU,CAAC;AAG/B,SAAS,aAAa,IAAI;AACxB,MAAI;AACJ,MAAI,MAAM,QAAQ,EAAE,GAAG;AACrB,sBAAkB;AAClB,WAAO,MAAM,QAAQ,GAAG,SAAS,GAAG,MAAM,mEAAmE;AAC7G,UAAM,MAAM,GAAG,GAAG,MAAM;AACxB,aAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,EAAE,IAAI;AACrC,aAAO,GAAG,IAAI,MAAM,OAAO,KAAK,MAAM,iEAAiE,GAAG,IAAI,MAAM,UAAU,MAAM;AAAA,IACtI;AAAA,EACF,OAAO;AACL,sBAAkB;AAClB,SAAK,MAAM,IAAI,GAAG,MAAM,IAAI,CAAC,EAAE,IAAI,CAAC,MAAM,QAAQ,GAAG,CAAC,CAAC,CAAC,CAAC;AAAA,EAC3D;AACA,SAAO,GAAG,UAAU,GAAG,GAAG,MAAM,IAAI,MAAM,oCAAoC,GAAG,yCAAyC,GAAG,GAAG,MAAM,MAAM;AAC5I,QAAM,KAAK,CAAC;AACZ,QAAM,OAAO;AACb,WAAS,KAAK,GAAG,KAAK,GAAG,QAAQ,EAAE,IAAI;AACrC,OAAG,KAAK,OAAO,KAAK,MAAM;AACxB,UAAI,IAAI,KAAK;AACb,UAAI,KAAK,GAAG;AACV,iBAAS,IAAI,GAAG,IAAI,IAAI,EAAE,GAAG;AAC3B,gBAAM,OAAO,IAAI,KAAK,IAAI,GAAG,IAAI,CAAC,CAAC,GAAG,GAAG,EAAE;AAC3C,cAAI,IAAI,GAAG,IAAI;AAAA,QACjB;AAAA,MACF;AACA,aAAO,IAAI,GAAG,KAAK,GAAG,WAAW,CAAC;AAAA,IACpC,CAAC,CAAC;AAAA,EACJ;AACA,MAAI,iBAAiB;AACnB,WAAO,MAAM,IAAI,CAAC;AAAA,EACpB,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,IAAI,GAAG,eAAe,OAAO;AACpC,SAAO,EAAE,QAAQ,GAAG,MAAM,gEAAgE,EAAE,MAAM;AAClG,MAAI,EAAE,SAAS,GAAG;AAChB,WAAO,KAAK,GAAG,YAAY;AAAA,EAC7B,OAAO;AACL,UAAM,gBAAgB,EAAE,MAAM,MAAM,GAAG,EAAE,MAAM,SAAS,CAAC,EAAE,OAAO,CAAC,OAAO,SAAS,QAAQ,IAAI;AAC/F,UAAM,OAAO,QAAQ,QAAQ,GAAG;AAAA,MAC9B;AAAA,MACA,EAAE,MAAM,EAAE,MAAM,SAAS;AAAA,MACzB,EAAE,MAAM,EAAE,MAAM,SAAS;AAAA,IAC3B,CAAC,GAAG,CAAC;AACL,UAAM,OAAO,CAAC;AACd,UAAM,OAAO,CAAC;AACd,SAAK,QAAQ,CAAC,QAAQ;AACpB,YAAM,CAAC,KAAK,GAAG,IAAI,KAAK,KAAK,YAAY;AACzC,WAAK,KAAK,GAAG;AACb,WAAK,KAAK,GAAG;AAAA,IACf,CAAC;AACD,UAAM,IAAI,QAAQ,MAAM,MAAM,CAAC,GAAG,EAAE,KAAK;AACzC,UAAM,KAAK,QAAQ,MAAM,MAAM,CAAC,GAAG,EAAE,KAAK;AAC1C,WAAO,CAAC,GAAG,EAAE;AAAA,EACf;AACF;AACA,SAAS,KAAK,GAAG,eAAe,OAAO;AACrC,SAAO,OAAO,KAAK,MAAM;AACvB,WAAO,EAAE,MAAM,WAAW,GAAG,MAAM,0CAA0C,EAAE,MAAM,iBAAiB;AACtG,UAAM,IAAI,EAAE,MAAM;AAClB,UAAM,KAAK,EAAE,MAAM;AACnB,QAAI,IAAI,IAAI,CAAC;AACb,QAAI,KAAK,MAAM,CAAC;AAChB,UAAM,QAAQ,SAAS,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACpC,QAAI,IAAI,MAAM,KAAK;AACnB,UAAM,QAAQ,KAAK,KAAK,KAAK;AAC7B,aAAS,IAAI,GAAG,IAAI,OAAO,EAAE,GAAG;AAC9B,YAAM,QAAQ;AACd,YAAM,QAAQ;AACd,YAAM,QAAQ;AACd,OAAC,GAAG,IAAI,CAAC,IAAI,OAAO,KAAK,MAAM;AAC7B,cAAM,SAAS,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC;AAC3C,cAAM,QAAQ,KAAK,MAAM;AACzB,cAAM,MAAM,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACpC,cAAM,KAAK,MAAM,QAAQ,KAAK,CAAC,GAAG,SAAS,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;AACnE,cAAM,KAAK,IAAI,KAAK,IAAI,IAAI,KAAK,CAAC;AAClC,cAAM,OAAO,IAAI,QAAQ,EAAE;AAC3B,YAAI,KAAK,MAAM,OAAO,GAAG;AACvB,cAAI,MAAM,KAAK;AAAA,QACjB,OAAO;AACL,cAAI,OAAO;AAAA,YACT;AAAA,YACA,MAAM,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,KAAK,MAAM,KAAK,GAAG,KAAK,MAAM,EAAE,CAAC;AAAA,UACxD,GAAG,CAAC;AAAA,QACN;AACA,cAAM,MAAM,IAAI,IAAI,OAAO,IAAI,EAAE,GAAG,KAAK,CAAC;AAC1C,cAAM,WAAW,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,GAAG,EAAE,CAAC;AAC9C,cAAM,YAAY,IAAI,KAAK,CAAC;AAC5B,cAAM,KAAK,UAAU,CAAC;AACtB,YAAI,MAAM,GAAG;AACX,eAAK,IAAI,UAAU,OAAO,WAAW,OAAO,IAAI,QAAQ,CAAC,CAAC;AAAA,QAC5D,OAAO;AACL,gBAAM,YAAY,IAAI,UAAU,OAAO,WAAW,OAAO,IAAI,QAAQ,CAAC,CAAC;AACvE,eAAK,OAAO,CAAC,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC,GAAG,SAAS,GAAG,CAAC;AAAA,QACxD;AACA,cAAM,aAAa,UAAU,SAAS;AACtC,cAAM,WAAW,MAAM,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,EAAE,MAAM,KAAK,CAAC,CAAC;AACrD,YAAI,MAAM,GAAG;AACX,cAAI,IAAI,UAAU,OAAO,OAAO,UAAU,CAAC,GAAG,UAAU,CAAC;AAAA,QAC3D,OAAO;AACL,gBAAM,YAAY,IAAI,UAAU,OAAO,OAAO,UAAU,CAAC,GAAG,UAAU,CAAC;AACvE,cAAI,OAAO,CAAC,MAAM,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,SAAS,GAAG,CAAC;AAAA,QACrD;AACA,eAAO,CAAC,GAAG,IAAI,CAAC;AAAA,MAClB,CAAC;AACD,cAAQ,CAAC,OAAO,OAAO,KAAK,CAAC;AAAA,IAC/B;AACA,QAAI,CAAC,gBAAgB,IAAI,IAAI;AAC3B,UAAI,MAAM,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AAC5B,WAAK,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,EAAE,CAAC;AAAA,IACjC;AACA,WAAO,CAAC,GAAG,EAAE;AAAA,EACf,CAAC;AACH;AACA,IAAI,KAAK,GAAG,EAAE,IAAI,CAAC;AAGnB,IAAI;AAAA,CACH,SAAS,YAAY;AACpB,aAAW,WAAW,UAAU,KAAK;AACrC,aAAW,WAAW,UAAU,KAAK;AACrC,aAAW,WAAW,SAAS,KAAK;AACpC,aAAW,WAAW,4BAA4B,KAAK;AACzD,GAAG,cAAc,YAAY,CAAC,EAAE;AAGhC,SAAS,qBAAqB,SAAS,SAAS,YAAY,UAAU,wBAAwB;AAC5F,QAAM,UAAU,gBAAgB,SAAS,UAAU,qBAAqB;AACxE,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,qBAAqB;AAAA,EACtE;AACA,QAAM,eAAe,YAAY,OAAO,UAAU,IAAI,SAAS,QAAQ;AACvE,MAAI,cAAc,UAAU,MAAM;AAChC,WAAO;AAAA,EACT;AACA,MAAI,cAAc,UAAU,KAAK;AAC/B,WAAO,KAAK,YAAY;AAAA,EAC1B;AACA,MAAI,cAAc,UAAU,MAAM;AAChC,QAAI,YAAY,MAAM;AACpB,aAAO,KAAK,YAAY;AAAA,IAC1B,OAAO;AACL,YAAM,kBAAkB,QAAQ,OAAO,SAAS;AAChD,YAAM,SAAS,IAAI,KAAK,YAAY,GAAG,KAAK,QAAQ,CAAC;AACrD,aAAO,kBAAkB,IAAI,IAAI,QAAQ,OAAO,eAAe,CAAC,IAAI;AAAA,IACtE;AAAA,EACF;AACA,MAAI,cAAc,UAAU,wBAAwB;AAClD,QAAI,YAAY,MAAM;AACpB,aAAO,IAAI,KAAK,YAAY,GAAG,OAAO,QAAQ,IAAI,CAAC;AAAA,IACrD,OAAO;AACL,YAAM,qBAAqB,IAAI,UAAU,MAAM,QAAQ,KAAK,CAAC;AAC7D,YAAM,cAAc,KAAK,KAAK,SAAS,oBAAoB,OAAO,CAAC,CAAC,CAAC,GAAG,SAAS;AACjF,aAAO,IAAI,KAAK,YAAY,GAAG,WAAW;AAAA,IAC5C;AAAA,EACF;AACA,QAAM,MAAM,sBAAsB,WAAW;AAC/C;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,oBAAoBU,SAAQ,aAAa,SAAS,YAAY,UAAU,wBAAwB;AACvG,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,oBAAoB;AACtE,QAAM,eAAe,gBAAgB,aAAa,eAAe,oBAAoB;AACrF,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,oBAAoB;AAAA,EACrE;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,+BAA+B;AACpF,QAAM,UAAU,IAAI,IAAI,SAAS,YAAY,CAAC;AAC9C,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,qBAAqB,GAAG,EAAE,oBAAoB,CAAC;AAGnD,SAAS,gBAAgBA,SAAQ,aAAa,MAAM,SAAS,YAAY,UAAU,wBAAwB;AACzG,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,gBAAgB;AAClE,QAAM,eAAe,gBAAgB,aAAa,eAAe,gBAAgB;AACjF,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,gBAAgB;AAAA,EACjE;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,2BAA2B;AAChF,QAAM,MAAM,OAAO,CAAC;AACpB,QAAM,UAAU,IAAI,KAAK,KAAK,IAAI,SAAS,YAAY,GAAG,MAAM,IAAI,CAAC;AACrE,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,iBAAiB,GAAG,EAAE,gBAAgB,CAAC;AAG3C,SAAS,WAAWA,SAAQ,aAAa,SAAS,YAAY,UAAU,wBAAwB;AAC9F,MAAI,UAAU,gBAAgBA,SAAQ,UAAU,WAAW;AAC3D,QAAM,eAAe,gBAAgB,aAAa,eAAe,WAAW;AAC5E,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,WAAW;AAAA,EAC5D;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,sBAAsB;AAC3E,QAAM,MAAM,OAAO,CAAC;AACpB,YAAU,IAAI,IAAI,OAAO,CAAC,GAAG,OAAO,GAAG,GAAG;AAC1C,QAAM,UAAU,KAAK,IAAI,KAAK,IAAI,SAAS,YAAY,CAAC,CAAC;AACzD,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,WAAWA,SAAQ,aAAa,SAAS,QAAQ,GAAG,YAAY,UAAU,wBAAwB;AACzG,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,WAAW;AAC7D,QAAM,eAAe,gBAAgB,aAAa,eAAe,WAAW;AAC5E,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,WAAW;AAAA,EAC5D;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,sBAAsB;AAC3E,QAAM,cAAc,OAAO,KAAK;AAChC,QAAM,QAAQ,IAAI,IAAI,cAAc,OAAO,CAAC;AAC5C,QAAM,YAAY,QAAQ,OAAO,WAAW;AAC5C,QAAM,SAAS,IAAI,OAAO,SAAS;AACnC,QAAM,UAAU,KAAK,IAAI,OAAO,GAAG,GAAG,OAAO,SAAS,CAAC,GAAG,IAAI,aAAa,MAAM,CAAC;AAClF,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,YAAY,GAAG,EAAE,WAAW,CAAC;AAGjC,SAAS,SAASA,SAAQ,aAAa,SAAS,WAAW,MAAM,YAAY,UAAU,wBAAwB;AAC7G,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,SAAS;AAC3D,QAAM,eAAe,gBAAgB,aAAa,eAAe,SAAS;AAC1E,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,SAAS;AAAA,EAC1D;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,oBAAoB;AACzE,QAAM,MAAM,OAAO,CAAC;AACpB,QAAM,gBAAgB,OAAO,QAAQ;AACrC,QAAM,MAAM,IAAI,IAAI,SAASzB,MAAK,KAAK,cAAc,aAAa,CAAC,CAAC,CAAC;AACrE,QAAM,MAAM,IAAI,IAAI,KAAK,OAAO,GAAGA,MAAK,KAAK,IAAI,KAAK,YAAY,GAAG,aAAa,CAAC,CAAC;AACpF,QAAM,UAAU,IAAI,KAAK,GAAG;AAC5B,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,UAAU,GAAG,EAAE,SAAS,CAAC;AAG7B,SAAS,kBAAkByB,SAAQ,aAAa,SAAS,YAAY,UAAU,wBAAwB;AACrG,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,kBAAkB;AACpE,QAAM,eAAe,gBAAgB,aAAa,eAAe,kBAAkB;AACnF,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,kBAAkB;AAAA,EACnE;AACA,oBAAkB,QAAQ,OAAO,aAAa,OAAO,6BAA6B;AAClF,QAAM,UAAU,kBAAkB,SAAS,YAAY;AACvD,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,mBAAmB,GAAG,EAAE,kBAAkB,CAAC;AAG/C,SAAS,+BAA+BA,SAAQ,QAAQ;AACtD,QAAM,UAAU,gBAAgBA,SAAQ,UAAU,+BAA+B;AACjF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,+BAA+B;AACjF,oBAAkB,QAAQ,OAAO,QAAQ,OAAO,0CAA0C;AAC1F,QAAM,YAAY,KAAK,OAAO;AAC9B,QAAM,gBAAgB,IAAI,SAAS,OAAO;AAC1C,QAAM,gBAAgB,MAAM,IAAI,IAAI,IAAI,OAAO,CAAC,CAAC,CAAC;AAClD,SAAO,KAAK,IAAI,WAAW,aAAa,GAAG,aAAa;AAC1D;AACA,SAAS,qBAAqB,kBAAkB,QAAQ,SAAS,iBAAiB,GAAG,YAAY,UAAU,wBAAwB;AACjI,MAAI,oBAAoB,gBAAgB,kBAAkB,oBAAoB,qBAAqB;AACnG,QAAM,UAAU,gBAAgB,QAAQ,UAAU,qBAAqB;AACvE,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,qBAAqB;AAAA,EACtE;AACA,oBAAkB,kBAAkB,OAAO,QAAQ,OAAO,gCAAgC;AAC1F,MAAI,iBAAiB,GAAG;AACtB,UAAM,uBAAuB,OAAO,cAAc;AAClD,UAAM,MAAM,OAAO,CAAC;AACpB,UAAMI,QAAO,OAAO,GAAG;AACvB,wBAAoB,KAAK,IAAI,mBAAmB,IAAI,KAAK,oBAAoB,CAAC,GAAG,IAAIA,OAAM,oBAAoB,CAAC;AAAA,EAClH;AACA,QAAM,UAAU,+BAA+B,mBAAmB,OAAO;AACzE,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,+BAA+BJ,SAAQ,QAAQ,MAAM,IAAI;AAChE,MAAI,QAAQ,IAAI;AACd,UAAM,OAAO,OAAO;AAAA,EACtB;AACA,MAAI,QAAQ,OAAO,OAAO,GAAG;AAC3B,UAAM,MAAM,mGAAmG,OAAO,oBAAoB,KAAK;AAAA,EACjJ;AACA,QAAM,WAAW,WAAW,CAACM,UAAS,SAAS,SAAS;AACtD,UAAM,WAAW;AACjB,UAAM,MAAM,UAAU,SAAS,CAAC,GAAG,GAAG,QAAQ;AAC9C,UAAM,YAAY,IAAI,KAAK,SAAS,SAAS,GAAG,GAAG;AACnD,SAAK,CAACA,UAAS,SAAS,CAAC;AACzB,UAAM,aAAa,IAAI,IAAI,WAAWA,QAAO,CAAC;AAC9C,UAAM,QAAQ,KAAK,YAAY,CAAC,GAAG,CAAC;AACpC,UAAM,WAAW,CAAC,IAAI,UAAU;AAC9B,YAAM,CAAC,SAAS,UAAU,IAAI;AAC9B,YAAM,UAAU,qBAAqB,GAAG,OAAO,CAAC,GAAG,CAAC;AACpD,aAAO;AAAA,QACL,IAAI,QAAQ,IAAI,OAAO,GAAG,IAAI,KAAK,SAAS,SAAS,GAAG,IAAI,UAAU,CAAC,CAAC;AAAA,QACxE,IAAI,QAAQ,IAAI,OAAO,GAAG,IAAI,IAAI,UAAU,GAAG,KAAK,SAAS,SAAS,CAAC,CAAC;AAAA,MAC1E;AAAA,IACF;AACA,WAAO,EAAE,OAAO,SAAS;AAAA,EAC3B,CAAC;AACD,SAAO,SAASN,SAAQ,MAAM;AAChC;AACA,SAAS,qBAAqB,cAAc,QAAQ,SAAS,iBAAiB,GAAG,YAAY,UAAU,wBAAwB;AAC7H,MAAI,gBAAgB,gBAAgB,cAAc,gBAAgB,qBAAqB;AACvF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,qBAAqB;AACvE,MAAI,WAAW;AACf,MAAI,WAAW,MAAM;AACnB,eAAW,gBAAgB,SAAS,WAAW,qBAAqB;AAAA,EACtE;AACA,oBAAkB,cAAc,OAAO,QAAQ,OAAO,gCAAgC;AACtF,MAAI,iBAAiB,GAAG;AACtB,UAAM,uBAAuB,OAAO,cAAc;AAClD,UAAM,MAAM,OAAO,CAAC;AACpB,UAAM,aAAa,OAAO,cAAc,MAAM,EAAE;AAChD,oBAAgB,KAAK,IAAI,eAAe,IAAI,KAAK,oBAAoB,CAAC,GAAG,IAAI,sBAAsB,UAAU,CAAC;AAAA,EAChH;AACA,QAAM,UAAU,+BAA+B,eAAe,OAAO;AACrE,SAAO,oBAAoB,SAAS,UAAU,SAAS;AACzD;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,qBAAqB,SAAS,QAAQ,YAAY,cAAc;AACvE,QAAM,WAAW,gBAAgB,SAAS,WAAW,uBAAuB,OAAO;AACnF,QAAM,UAAU,gBAAgB,QAAQ,UAAU,qBAAqB;AACvE,QAAM,cAAc,gBAAgB,YAAY,cAAc,uBAAuB,OAAO;AAC5F,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,uBAAuB,QAAQ,KAAK;AACxG,MAAI,SAAS,SAAS,GAAG;AACvB,UAAM,IAAI,MAAM;AAAA,UACV,SAAS,OAAO;AAAA,EACxB;AACA,MAAI,QAAQ,SAAS,GAAG;AACtB,UAAM,IAAI,MAAM,gDAAgD,QAAQ,OAAO;AAAA,EACjF;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM,qDAAqD,YAAY,OAAO;AAAA,EAC1F;AACA,MAAI,cAAc,SAAS,GAAG;AAC5B,UAAM,IAAI,MAAM,uDAAuD,cAAc,OAAO;AAAA,EAC9F;AACA,QAAM,SAAS;AAAA,IACb,SAAS;AAAA,IACT,QAAQ;AAAA,IACR,YAAY;AAAA,IACZ,cAAc;AAAA,EAChB;AACA,QAAM,SAAS,OAAO,UAAU,qBAAqB,MAAM;AAC3D,SAAO;AAAA,IACL,eAAe,OAAO;AAAA,IACtB,cAAc,OAAO;AAAA,IACrB,mBAAmB,OAAO;AAAA,IAC1B,iBAAiB,OAAO;AAAA,EAC1B;AACF;AACA,IAAI,sBAAsB,GAAG,EAAE,qBAAqB,CAAC;AAGrD,SAAS,eAAe,cAAc,YAAY,UAAU;AAC1D,QAAM,gBAAgB,gBAAgB,cAAc,gBAAgB,iBAAiB,OAAO;AAC5F,QAAM,cAAc,gBAAgB,YAAY,cAAc,iBAAiB,OAAO;AACtF,QAAM,YAAY,gBAAgB,UAAU,YAAY,iBAAiB,OAAO;AAChF,MAAI,cAAc,SAAS,GAAG;AAC5B,UAAM,IAAI,MAAM;AAAA,UACV,cAAc,OAAO;AAAA,EAC7B;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM,qDAAqD,YAAY,OAAO;AAAA,EAC1F;AACA,MAAI,UAAU,SAAS,GAAG;AACxB,UAAM,IAAI,MAAM,mDAAmD,UAAU,OAAO;AAAA,EACtF;AACA,QAAM,SAAS;AAAA,IACb,cAAc;AAAA,IACd,YAAY;AAAA,IACZ,UAAU;AAAA,EACZ;AACA,QAAM,SAAS,OAAO,UAAU,eAAe,MAAM;AACrD,SAAO,EAAE,eAAe,OAAO,IAAI,aAAa,OAAO,GAAG;AAC5D;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,SAAS,mBAAmB,MAAM,SAAS,YAAY;AACrD,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,mBAAmB;AAC/D,QAAM,WAAW,gBAAgB,SAAS,WAAW,qBAAqB,OAAO;AACjF,QAAM,cAAc,gBAAgB,YAAY,cAAc,qBAAqB,OAAO;AAC1F,MAAI,MAAM,OAAO,GAAG;AAClB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,SAAS,SAAS,GAAG;AACvB,UAAM,IAAI,MAAM;AAAA,YACR,SAAS,OAAO;AAAA,EAC1B;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM;AAAA,YACR,YAAY,OAAO;AAAA,EAC7B;AACA,QAAM,SAAS;AAAA,IACb,MAAM;AAAA,IACN,SAAS;AAAA,IACT,YAAY;AAAA,EACd;AACA,SAAO,OAAO,UAAU,mBAAmB,MAAM;AACnD;AACA,IAAI,oBAAoB,GAAG,EAAE,mBAAmB,CAAC;AAGjD,SAAS,kBAAkB,MAAM,SAAS,YAAY;AACpD,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,kBAAkB;AAC9D,QAAM,WAAW,gBAAgB,SAAS,WAAW,oBAAoB,OAAO;AAChF,QAAM,cAAc,gBAAgB,YAAY,cAAc,oBAAoB,OAAO;AACzF,MAAI,MAAM,OAAO,GAAG;AAClB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,SAAS,SAAS,GAAG;AACvB,UAAM,IAAI,MAAM;AAAA,WACT,SAAS,OAAO;AAAA,EACzB;AACA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,IAAI,MAAM;AAAA,WACT,YAAY,OAAO;AAAA,EAC5B;AACA,QAAM,SAAS;AAAA,IACb,MAAM;AAAA,IACN,SAAS;AAAA,IACT,YAAY;AAAA,EACd;AACA,SAAO,OAAO,UAAU,kBAAkB,MAAM;AAClD;AACA,IAAI,mBAAmB,GAAG,EAAE,kBAAkB,CAAC;AAG/C,SAAS,cAAc,MAAM,YAAY,WAAW,aAAa,SAAS,WAAW,UAAU,wBAAwB;AACrH,QAAM,QAAQ,gBAAgB,MAAM,QAAQ,gBAAgB,QAAQ;AACpE,MAAI,MAAM,UAAU,UAAU;AAC5B,UAAM,IAAI,MAAM,iCAAiC;AAAA,EACnD;AACA,MAAI,MAAM,MAAM,WAAW,GAAG;AAC5B,UAAM,IAAI,MAAM,+BAA+B,MAAM,OAAO;AAAA,EAC9D;AACA,QAAM,cAAc,gBAAgB,YAAY,cAAc,cAAc;AAC5E,MAAI,YAAY,UAAU,SAAS;AACjC,UAAM,IAAI,MAAM,uCAAuC;AAAA,EACzD;AACA,QAAM,QAAQ;AAAA,IACZ;AAAA,IACA;AAAA,IACA;AAAA,IACA,UAAU;AAAA,IACV;AAAA,IACA;AAAA,EACF;AACA,QAAM,SAAS,EAAE,MAAM,OAAO,YAAY,YAAY;AACtD,QAAM,SAAS,OAAO,UAAU,cAAc,QAAQ,KAAK;AAC3D,SAAO,EAAE,QAAQ,OAAO,IAAI,cAAc,OAAO,GAAG;AACtD;AACA,IAAI,eAAe,GAAG,EAAE,cAAc,CAAC;AAGvC,SAAS,aAAa,QAAQ,WAAW,YAAY,MAAM;AACzD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,eAAe,QAAQ;AACvE,QAAM,aAAa,gBAAgB,WAAW,aAAa,eAAe,QAAQ;AAClF,MAAI,OAAO,SAAS,GAAG;AACrB,UAAM,IAAI,MAAM,+CAA+C,OAAO,OAAO;AAAA,EAC/E;AACA,MAAI,WAAW,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,mDAAmD,WAAW,OAAO;AAAA,EACvF;AACA,QAAM,QAAQ,EAAE,UAAU;AAC1B,QAAM,SAAS,EAAE,OAAO,QAAQ,WAAW,WAAW;AACtD,QAAM,SAAS,OAAO,UAAU,aAAa,QAAQ,KAAK;AAC1D,SAAO,EAAE,SAAS,OAAO,IAAI,QAAQ,OAAO,IAAI,OAAO,OAAO,GAAG;AACnE;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,SAAS,wBAAwB,QAAQ,YAAY;AACnD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,0BAA0B,QAAQ;AAClF,QAAM,QAAQ,EAAE,WAAW;AAC3B,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AACA,QAAM,SAAS,EAAE,OAAO,OAAO;AAC/B,SAAO,OAAO,UAAU,wBAAwB,QAAQ,KAAK;AAC/D;AACA,IAAI,yBAAyB,GAAG,EAAE,wBAAwB,CAAC;AAG3D,IAAI,WAAW;AAAA,EACb;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,QAAQ;AAAA,EACV;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,SAAS;AAAA,EACX;AAAA,EACA;AAAA,EACA;AACF;AAGA,IAAI,YAAY,cAAc,aAAa;AAAA,EACzC,SAAS,GAAG,aAAa,OAAO,SAAS;AACvC,UAAM,EAAE,OAAO,OAAO,OAAO,IAAI,KAAK,iBAAiB,GAAG,OAAO;AACjE,QAAI,WAAW,MAAM;AACnB,YAAM,YAAY,QAAQ,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,MAAM,QAAQ,OAAO,EAAE,MAAM,EAAE;AAC/E,WAAK,eAAe,SAAS;AAAA,IAC/B,OAAO;AACL,WAAK,eAAe,MAAM;AAAA,IAC5B;AACA,YAAQ,MAAM;AACd,QAAI,YAAY;AACd,aAAO;AAAA,IACT,OAAO;AACL,YAAM,QAAQ;AACd,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,IAAI,aAAa;AACf,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK,cAAc;AAAA,IACrB;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,sBAAsB;AACpB,SAAK,cAAc,KAAK,aAAa;AAAA,EACvC;AAAA,EACA,iBAAiB,GAAG,SAAS;AAC3B,WAAO,cAAc,GAAG,OAAO;AAAA,EACjC;AAAA,EACA,UAAU;AACR,QAAI,KAAK,eAAe,MAAM;AAC5B,cAAQ,KAAK,WAAW;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,MAAM,iBAAiB;AACrB,QAAI,KAAK,eAAe,MAAM;AAC5B,WAAK,cAAc;AAAA,IACrB;AACA,WAAO;AAAA,MACL,MAAM;AAAA,MACN,QAAQ,OAAO,KAAK,aAAa,OAAO;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,IAAI,MAAM,yDAAyD;AAAA,EAC3E;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,UAAM,IAAI,MAAM,4DAA4D,KAAK,aAAa,GAAG;AAAA,EACnG;AAAA,EACA,MAAM,kBAAkB,cAAc;AACpC,SAAK,eAAe,MAAM,aAAa,GAAG,OAAO,KAAK,GAAG;AACzD,WAAO,aAAa,MAAM,CAAC;AAAA,EAC7B;AACF;AACA,OAAO,eAAe,WAAW,OAAO,aAAa;AAAA,EACnD,OAAO,CAACZ,cAAa;AACnB,WAAOA,UAAS,YAAY,QAAQA,UAAS,oBAAoB,QAAQA,UAAS,kBAAkB;AAAA,EACtG;AACF,CAAC;AAGD,IAAI,oBAAoB,cAAc,UAAU;AAAA,EAC9C,YAAY,cAAc,KAAK,WAAW,MAAM;AAC9C,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,MAAM;AACX,SAAK,UAAU;AACf,SAAK,mBAAmB,CAAC;AACzB,SAAK,qBAAqB,CAAC;AAC3B,QAAI,YAAY,MAAM;AACpB,WAAK,UAAU,OAAO,QAAQ,QAAQ;AAAA,IACxC;AAAA,EACF;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,kBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,YAAM,QAAQ,OAAO,oBAAoB;AACzC,YAAM,YAAY;AAClB,UAAI,KAAK,iBAAiB,OAAO,MAAM;AACrC,aAAK,iBAAiB,MAAM;AAAA,UAC1B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,UAAI,KAAK,mBAAmB,OAAO,MAAM;AACvC,aAAK,mBAAmB,MAAM;AAAA,UAC5B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,YAAM,kBAAkB,KAAK,iBAAiB,IAAI;AAClD,YAAM,oBAAoB,KAAK,mBAAmB,IAAI;AACtD,WAAK,MAAM;AACT,cAAM,qBAAqB,KAAK,IAAI,iBAAiB,KAAK,GAAG,GAAG,IAAI,OAAO,QAAQ,GAAG,IAAI,KAAK,GAAG,CAAC;AACnG,cAAM,UAAU,IAAI,IAAI,KAAK,KAAK,mBAAmB,KAAK,OAAO,CAAC,GAAG,KAAK,KAAK,iBAAiB,KAAK,OAAO,CAAC,CAAC,GAAG,QAAQ;AACzH,cAAM,uBAAuB,KAAK,IAAI,mBAAmB,KAAK,GAAG,GAAG,IAAI,OAAO,OAAO,GAAG,IAAI,KAAK,GAAG,CAAC;AACtG,wBAAgB,OAAO,kBAAkB;AACzC,0BAAkB,OAAO,oBAAoB;AAC7C,cAAM,WAAW,KAAK,IAAI,SAAS,CAAC,KAAK,YAAY,GAAG,KAAK;AAC7D,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,QAAI,KAAK,sBAAsB,MAAM;AACnC,cAAQ,KAAK,iBAAiB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AACpD,cAAQ,KAAK,mBAAmB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IACxD;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,YAAY,CAAC,GAAG,KAAK,kBAAkB,GAAG,KAAK,kBAAkB;AACvE,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAClH;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,UAAM,gBAAgB,aAAa,SAAS;AAC5C,UAAM,YAAY;AAClB,SAAK,mBAAmB,aAAa,MAAM,GAAG,aAAa,EAAE,IAAI,CAAC,OAAO;AAAA,MACvE,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AACF,SAAK,qBAAqB,aAAa,MAAM,eAAe,gBAAgB,CAAC,EAAE,IAAI,CAAC,OAAO;AAAA,MACzF,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AAAA,EACJ;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,OAAO,KAAK;AAAA,MACZ,WAAW,KAAK;AAAA,IAClB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKO,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,QAAQA,QAAO,UAAU;AAAA,EACzE;AACF;AACA,kBAAkB,YAAY;AAC9B,cAAc,iBAAiB;AAG/B,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,cAAc,0BAA0B,KAAK;AACvD,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,0BAA0B;AAC/B,SAAK,mBAAmB,CAAC;AAAA,EAC3B;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,kBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,YAAM,QAAQ,OAAO,oBAAoB;AACzC,UAAI,KAAK,iBAAiB,OAAO,MAAM;AACrC,cAAM,YAAY;AAClB,aAAK,iBAAiB,MAAM;AAAA,UAC1B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,KAAK,MAAM,OAAO,KAAK,uBAAuB,EAAE,SAAS,SAAS,CAAC;AAAA,QAC1F;AAAA,MACF;AACA,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,YAAM,kBAAkB,KAAK,iBAAiB,IAAI;AAClD,WAAK,MAAM;AACT,cAAM,qBAAqB,KAAK,iBAAiB,OAAO,QAAQ,CAAC;AACjE,wBAAgB,OAAO,kBAAkB;AACzC,cAAM,WAAW,KAAK,IAAI,IAAI,UAAU,KAAK,KAAK,oBAAoB,OAAO,QAAQ,QAAQ,CAAC,CAAC,CAAC,GAAG,CAAC,KAAK,YAAY,GAAG,KAAK;AAC7H,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,QAAI,KAAK,oBAAoB,MAAM;AACjC,cAAQ,KAAK,iBAAiB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IACtD;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,KAAK,iBAAiB,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAC9H;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,UAAM,YAAY;AAClB,SAAK,mBAAmB,aAAa,IAAI,CAAC,OAAO,EAAE,cAAc,EAAE,MAAM,UAAU,EAAE,OAAO,SAAS,SAAS,EAAE,EAAE;AAAA,EACpH;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,2BAA2B,KAAK;AAAA,IAClC;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,0BAA0B;AAAA,EAC1E;AACF;AACA,iBAAiB,YAAY;AAC7B,cAAc,gBAAgB;AAG9B,IAAI,gBAAgB,cAAc,UAAU;AAAA,EAC1C,YAAY,cAAc,OAAO,OAAO,WAAW,MAAM;AACvD,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,QAAQ;AACb,SAAK,QAAQ;AACb,SAAK,UAAU;AACf,SAAK,yBAAyB,CAAC;AAC/B,SAAK,0BAA0B,CAAC;AAChC,SAAK,MAAM;AACT,WAAK,WAAW,OAAO,KAAK,EAAE,SAAS;AACvC,WAAK,WAAW,OAAO,KAAK,EAAE,SAAS;AAAA,IACzC,CAAC;AACD,QAAI,YAAY,MAAM;AACpB,WAAK,UAAU,OAAO,QAAQ,QAAQ;AAAA,IACxC;AAAA,EACF;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,MAAM,EAAE,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACxH,SAAK,MAAM;AACT,YAAM,mBAAmB,IAAI,GAAG,KAAK,QAAQ;AAC7C,YAAM,mBAAmB,IAAI,GAAG,KAAK,QAAQ;AAC7C,eAAS,QAAQ,CAAC,MAAM,OAAO;AAC7B,cAAM,QAAQ,OAAO,oBAAoB;AACzC,cAAM,YAAY;AAClB,YAAI,KAAK,uBAAuB,OAAO,MAAM;AAC3C,eAAK,uBAAuB,MAAM;AAAA,YAChC,cAAc,GAAG;AAAA,YACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,UAC3D;AAAA,QACF;AACA,YAAI,KAAK,wBAAwB,OAAO,MAAM;AAC5C,eAAK,wBAAwB,MAAM;AAAA,YACjC,cAAc,GAAG;AAAA,YACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,UAC3D;AAAA,QACF;AACA,cAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,YAAI,YAAY,MAAM;AACpB;AAAA,QACF;AACA,cAAM,cAAc,KAAK,uBAAuB,IAAI;AACpD,cAAM,eAAe,KAAK,wBAAwB,IAAI;AACtD,cAAM,iBAAiB,KAAK,IAAI,aAAa,KAAK,KAAK,GAAG,IAAI,UAAU,IAAI,KAAK,KAAK,CAAC;AACvF,cAAM,kBAAkB,KAAK,IAAI,cAAc,KAAK,KAAK,GAAG,IAAI,OAAO,QAAQ,GAAG,IAAI,KAAK,KAAK,CAAC;AACjG,cAAM,2BAA2B,IAAI,gBAAgB,gBAAgB;AACrE,cAAM,4BAA4B,IAAI,iBAAiB,gBAAgB;AACvE,oBAAY,OAAO,cAAc;AACjC,qBAAa,OAAO,eAAe;AACnC,cAAM,WAAW,KAAK,IAAI,IAAI,0BAA0B,KAAK,KAAK,yBAAyB,GAAG,KAAK,OAAO,CAAC,GAAG,CAAC,KAAK,YAAY,GAAG,KAAK;AACxI,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AACD,WAAK,SAAS,OAAO,IAAI,KAAK,UAAU,KAAK,KAAK,CAAC;AACnD,WAAK,SAAS,OAAO,IAAI,KAAK,UAAU,KAAK,KAAK,CAAC;AAAA,IACrD,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,SAAK,SAAS,QAAQ;AACtB,SAAK,SAAS,QAAQ;AACtB,QAAI,KAAK,0BAA0B,MAAM;AACvC,cAAQ,KAAK,uBAAuB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC5D;AACA,QAAI,KAAK,2BAA2B,MAAM;AACxC,cAAQ,KAAK,wBAAwB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC7D;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,YAAY,CAAC,GAAG,KAAK,wBAAwB,GAAG,KAAK,uBAAuB;AAClF,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAClH;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,SAAK,MAAM;AACT,WAAK,SAAS,OAAO,IAAI,KAAK,OAAO,KAAK,cAAc,CAAC,CAAC;AAC1D,WAAK,SAAS,OAAO,IAAI,KAAK,OAAO,KAAK,cAAc,CAAC,CAAC;AAAA,IAC5D,CAAC;AACD,UAAM,gBAAgB,aAAa,SAAS;AAC5C,UAAM,YAAY;AAClB,SAAK,yBAAyB,aAAa,MAAM,GAAG,aAAa,EAAE,IAAI,CAAC,OAAO;AAAA,MAC7E,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AACF,SAAK,0BAA0B,aAAa,MAAM,eAAe,gBAAgB,CAAC,EAAE,IAAI,CAAC,OAAO;AAAA,MAC9F,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AAAA,EACJ;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,WAAW,KAAK;AAAA,IAClB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,UAAUA,QAAO,UAAUA,QAAO,UAAU;AAAA,EAC5F;AACF;AACA,cAAc,YAAY;AAC1B,cAAc,aAAa;AAG3B,IAAI,kBAAkB,cAAc,UAAU;AAAA,EAC5C,YAAY,cAAc,OAAO,OAAO,WAAW,MAAM,QAAQ,GAAG;AAClE,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,QAAQ;AACb,SAAK,QAAQ;AACb,SAAK,UAAU;AACf,SAAK,QAAQ;AACb,SAAK,yBAAyB,CAAC;AAC/B,SAAK,6BAA6B,CAAC;AACnC,SAAK,MAAM;AACT,WAAK,YAAY,OAAO,CAAC,EAAE,SAAS;AACpC,WAAK,WAAW,OAAO,KAAK,EAAE,SAAS;AAAA,IACzC,CAAC;AACD,QAAI,YAAY,MAAM;AACpB,WAAK,UAAU,OAAO,QAAQ,QAAQ;AAAA,IACxC;AAAA,EACF;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,SAAK,MAAM;AACT,YAAM,mBAAmB,IAAI,GAAG,KAAK,QAAQ;AAC7C,YAAM,KAAK,IAAI,CAAC,KAAK,cAAc,KAAK,IAAI,KAAK,WAAW,KAAK,KAAK,GAAG,CAAC,CAAC;AAC3E,oBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,cAAM,QAAQ,OAAO,oBAAoB;AACzC,cAAM,YAAY;AAClB,YAAI,KAAK,uBAAuB,OAAO,MAAM;AAC3C,eAAK,uBAAuB,MAAM;AAAA,YAChC,cAAc,GAAG;AAAA,YACjB,UAAU,UAAU,KAAK,EAAE,SAAS,SAAS;AAAA,UAC/C;AAAA,QACF;AACA,YAAI,KAAK,2BAA2B,OAAO,MAAM;AAC/C,eAAK,2BAA2B,MAAM;AAAA,YACpC,cAAc,GAAG;AAAA,YACjB,UAAU,UAAU,KAAK,EAAE,SAAS,SAAS;AAAA,UAC/C;AAAA,QACF;AACA,cAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,YAAI,YAAY,MAAM;AACpB;AAAA,QACF;AACA,cAAM,cAAc,KAAK,uBAAuB,IAAI;AACpD,cAAM,kBAAkB,KAAK,2BAA2B,IAAI;AAC5D,cAAM,iBAAiB,KAAK,IAAI,aAAa,KAAK,KAAK,GAAG,IAAI,UAAU,IAAI,KAAK,KAAK,CAAC;AACvF,cAAM,MAAM,IAAI,iBAAiB,KAAK,KAAK;AAC3C,cAAM,MAAM,IAAI,QAAQ;AACxB,cAAM,qBAAqB,QAAQ,KAAK,GAAG;AAC3C,oBAAY,OAAO,cAAc;AACjC,wBAAgB,OAAO,kBAAkB;AACzC,cAAM,WAAW,KAAK,IAAI,IAAI,IAAI,gBAAgB,GAAG,IAAI,gBAAgB,KAAK,oBAAoB,KAAK,OAAO,CAAC,CAAC,GAAG,KAAK;AACxH,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AACD,WAAK,UAAU,OAAO,KAAK,KAAK,WAAW,CAAC,CAAC;AAC7C,WAAK,SAAS,OAAO,IAAI,KAAK,UAAU,KAAK,KAAK,CAAC;AAAA,IACrD,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,SAAK,SAAS,QAAQ;AACtB,SAAK,UAAU,QAAQ;AACvB,QAAI,KAAK,0BAA0B,MAAM;AACvC,cAAQ,KAAK,uBAAuB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC5D;AACA,QAAI,KAAK,8BAA8B,MAAM;AAC3C,cAAQ,KAAK,2BAA2B,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAChE;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,WAAW,KAAK;AAAA,MAChB,SAAS,KAAK;AAAA,IAChB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,UAAUA,QAAO,UAAUA,QAAO,YAAYA,QAAO,QAAQ;AAAA,EAC7G;AACF;AACA,gBAAgB,YAAY;AAC5B,cAAc,eAAe;AAG7B,IAAI,eAAe,cAAc,UAAU;AAAA,EACzC,YAAY,cAAc;AACxB,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,gBAAgB,YAAY;AAAA,EACnC;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,MAAM,EAAE,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACxH,aAAS,QAAQ,CAAC,MAAM,OAAO;AAC7B,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,YAAM,QAAQ,OAAO,oBAAoB;AACzC,WAAK,MAAM;AACT,cAAM,WAAW,KAAK,IAAI,KAAK,GAAG,QAAQ,GAAG,KAAK;AAClD,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,gBAAgB,cAAc;AAC5B,SAAK,eAAe;AACpB,QAAI,KAAK,KAAK,MAAM;AAClB,WAAK,EAAE,QAAQ;AAAA,IACjB;AACA,SAAK,IAAI,KAAK,OAAO,CAAC,YAAY,CAAC;AAAA,EACrC;AAAA,EACA,UAAU;AACR,SAAK,EAAE,QAAQ;AAAA,EACjB;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC;AAAA,EACrC;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,QAAI,aAAa,WAAW,GAAG;AAC7B,YAAM,IAAI,MAAM,+CAA+C;AAAA,IACjE;AAAA,EACF;AAAA,EACA,YAAY;AACV,WAAO,EAAE,gBAAgB,KAAK,aAAa;AAAA,EAC7C;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,eAAe;AAAA,EACvC;AACF;AACA,aAAa,YAAY;AACzB,cAAc,YAAY;AAG1B,IAAI,oBAAoB,cAAc,aAAa;AAAA,EACjD,YAAY,cAAc,UAAU,cAAc,OAAO;AACvD,UAAM,YAAY;AAClB,SAAK,eAAe;AACpB,SAAK,WAAW;AAChB,SAAK,cAAc;AACnB,SAAK,gBAAgB,CAAC;AACtB,SAAK,IAAI,OAAO,KAAK,QAAQ;AAAA,EAC/B;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,kBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,YAAM,QAAQ,OAAO,oBAAoB;AACzC,UAAI,KAAK,cAAc,OAAO,MAAM;AAClC,cAAM,YAAY;AAClB,aAAK,cAAc,MAAM;AAAA,UACvB,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,YAAM,eAAe,KAAK,cAAc,IAAI;AAC5C,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,WAAK,MAAM;AACT,YAAI;AACJ,cAAM,kBAAkB,KAAK,IAAI,KAAK,GAAG,YAAY,GAAG,QAAQ;AAChE,YAAI,KAAK,aAAa;AACpB,qBAAW,KAAK,IAAI,KAAK,GAAG,KAAK,UAAU,IAAI,iBAAiB,KAAK,CAAC,CAAC,CAAC,GAAG,KAAK;AAAA,QAClF,OAAO;AACL,qBAAW,KAAK,IAAI,KAAK,GAAG,eAAe,GAAG,KAAK;AAAA,QACrD;AACA,qBAAa,OAAO,eAAe;AACnC,cAAM,OAAO,QAAQ;AAAA,MACvB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,SAAK,EAAE,QAAQ;AACf,QAAI,KAAK,iBAAiB,MAAM;AAC9B,cAAQ,KAAK,cAAc,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IACnD;AAAA,EACF;AAAA,EACA,YAAY,UAAU;AACpB,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,KAAK,cAAc,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAC3H;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,UAAM,YAAY;AAClB,SAAK,gBAAgB,aAAa,IAAI,CAAC,OAAO,EAAE,cAAc,EAAE,MAAM,UAAU,EAAE,OAAO,SAAS,SAAS,EAAE,EAAE;AAAA,EACjH;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,YAAY,KAAK;AAAA,MACjB,eAAe,KAAK;AAAA,IACtB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,aAAaA,QAAO,cAAc;AAAA,EAClF;AACF;AACA,kBAAkB,YAAY;AAC9B,cAAc,iBAAiB;AAG/B,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,cAAc,QAAQ,KAAK,WAAW,GAAG,WAAW,MAAM,WAAW,OAAO;AACtF,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,QAAQ;AACb,SAAK,WAAW;AAChB,SAAK,UAAU;AACf,SAAK,yBAAyB,CAAC;AAC/B,SAAK,qBAAqB,CAAC;AAC3B,SAAK,uBAAuB,CAAC;AAC7B,SAAK,WAAW;AAChB,QAAI,YAAY,MAAM;AACpB,WAAK,UAAU,OAAO,QAAQ,QAAQ;AAAA,IACxC;AACA,QAAI,gBAAgB,MAAM;AACxB,YAAM,IAAI,MAAM,oDAAoD;AAAA,IACtE;AAAA,EACF;AAAA,EACA,eAAe,mBAAmB;AAChC,UAAM,gBAAgB,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,CAAC,SAAS,KAAK,IAAI,IAAI,OAAO,KAAK,iBAAiB;AACnI,kBAAc,QAAQ,CAAC,MAAM,OAAO;AAClC,YAAM,QAAQ,OAAO,oBAAoB;AACzC,YAAM,YAAY;AAClB,UAAI,KAAK,uBAAuB,OAAO,MAAM;AAC3C,aAAK,uBAAuB,MAAM;AAAA,UAChC,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,UAAI,KAAK,mBAAmB,OAAO,MAAM;AACvC,aAAK,mBAAmB,MAAM;AAAA,UAC5B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,UAAI,KAAK,qBAAqB,OAAO,QAAQ,KAAK,UAAU;AAC1D,aAAK,qBAAqB,MAAM;AAAA,UAC9B,cAAc,GAAG;AAAA,UACjB,UAAU,KAAK,MAAM,UAAU,KAAK,EAAE,SAAS,SAAS,CAAC;AAAA,QAC3D;AAAA,MACF;AACA,YAAM,WAAW,MAAM,QAAQ,iBAAiB,IAAI,kBAAkB,IAAI,SAAS,kBAAkB;AACrG,UAAI,YAAY,MAAM;AACpB;AAAA,MACF;AACA,YAAM,wBAAwB,KAAK,uBAAuB,IAAI;AAC9D,YAAM,qBAAqB,KAAK,mBAAmB,IAAI;AACvD,WAAK,MAAM;AACT,cAAM,2BAA2B,KAAK,IAAI,uBAAuB,KAAK,KAAK,GAAG,IAAI,OAAO,QAAQ,GAAG,IAAI,KAAK,KAAK,CAAC;AACnH,YAAI,KAAK,UAAU;AACjB,gBAAM,sBAAsB,KAAK,qBAAqB,IAAI;AAC1D,gBAAM,yBAAyB,KAAK,IAAI,qBAAqB,KAAK,KAAK,GAAG,IAAI,UAAU,IAAI,KAAK,KAAK,CAAC;AACvG,gBAAM,mBAAmB,IAAI,IAAI,UAAU,KAAK,YAAY,GAAG,KAAK,IAAI,0BAA0B,KAAK,OAAO,sBAAsB,GAAG,KAAK,OAAO,CAAC,CAAC,CAAC;AACtJ,gBAAM,wBAAwB,KAAK,IAAI,oBAAoB,KAAK,QAAQ,GAAG,gBAAgB;AAC3F,gCAAsB,OAAO,wBAAwB;AACrD,8BAAoB,OAAO,sBAAsB;AACjD,6BAAmB,OAAO,qBAAqB;AAC/C,gBAAM,WAAW,IAAI,OAAO,qBAAqB;AACjD,gBAAM,OAAO,QAAQ;AAAA,QACvB,OAAO;AACL,gBAAM,4BAA4B,KAAK,IAAI,uBAAuB,KAAK,KAAK,GAAG,IAAI,OAAO,QAAQ,GAAG,IAAI,KAAK,KAAK,CAAC;AACpH,gBAAM,wBAAwB,KAAK,IAAI,oBAAoB,KAAK,QAAQ,GAAG,IAAI,IAAI,UAAU,KAAK,YAAY,GAAG,KAAK,KAAK,2BAA2B,KAAK,OAAO,CAAC,CAAC,CAAC;AACrK,gCAAsB,OAAO,yBAAyB;AACtD,6BAAmB,OAAO,qBAAqB;AAC/C,gBAAM,WAAW,IAAI,OAAO,qBAAqB;AACjD,gBAAM,OAAO,QAAQ;AAAA,QACvB;AAAA,MACF,CAAC;AAAA,IACH,CAAC;AACD,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,QAAI,KAAK,0BAA0B,MAAM;AACvC,cAAQ,KAAK,uBAAuB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC5D;AACA,QAAI,KAAK,wBAAwB,QAAQ,KAAK,UAAU;AACtD,cAAQ,KAAK,qBAAqB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IAC1D;AACA,QAAI,KAAK,sBAAsB,MAAM;AACnC,cAAQ,KAAK,mBAAmB,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAAA,IACxD;AAAA,EACF;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,YAAY,CAAC,GAAG,KAAK,wBAAwB,GAAG,KAAK,kBAAkB;AAC7E,QAAI,KAAK,UAAU;AACjB,gBAAU,KAAK,GAAG,KAAK,oBAAoB;AAAA,IAC7C;AACA,WAAO,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,EAAE,MAAM,EAAE,cAAc,QAAQ,EAAE,SAAS,EAAE,CAAC;AAAA,EAClH;AAAA,EACA,MAAM,WAAW,cAAc;AAC7B,mBAAe,MAAM,KAAK,kBAAkB,YAAY;AACxD,UAAM,gBAAgB,KAAK,WAAW,aAAa,SAAS,IAAI,aAAa,SAAS;AACtF,UAAM,YAAY;AAClB,SAAK,yBAAyB,aAAa,MAAM,GAAG,aAAa,EAAE,IAAI,CAAC,OAAO;AAAA,MAC7E,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AACF,SAAK,qBAAqB,aAAa,MAAM,eAAe,gBAAgB,CAAC,EAAE,IAAI,CAAC,OAAO;AAAA,MACzF,cAAc,EAAE;AAAA,MAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,IACvC,EAAE;AACF,QAAI,KAAK,UAAU;AACjB,WAAK,uBAAuB,aAAa,MAAM,gBAAgB,GAAG,gBAAgB,CAAC,EAAE,IAAI,CAAC,OAAO;AAAA,QAC/F,cAAc,EAAE;AAAA,QAChB,UAAU,EAAE,OAAO,SAAS,SAAS;AAAA,MACvC,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,gBAAgB,KAAK;AAAA,MACrB,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,WAAW,KAAK;AAAA,MAChB,YAAY,KAAK;AAAA,IACnB;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAIA,QAAO,iBAAiBA,QAAO,UAAUA,QAAO,aAAaA,QAAO,YAAYA,QAAO,WAAW;AAAA,EACnH;AACF;AACA,iBAAiB,YAAY;AAC7B,cAAc,gBAAgB;AAG9B,IAAI,wBAAwB,MAAM;AAAA,EAChC,OAAO,IAAI,cAAc;AACvB,WAAO,IAAI,aAAa,YAAY;AAAA,EACtC;AAAA,EACA,OAAO,SAAS,cAAc,UAAU,cAAc,OAAO;AAC3D,WAAO,IAAI,kBAAkB,cAAc,UAAU,WAAW;AAAA,EAClE;AAAA,EACA,OAAO,QAAQ,cAAc,QAAQ,KAAK,WAAW,GAAG,WAAW,MAAM,WAAW,OAAO;AACzF,WAAO,IAAI,iBAAiB,cAAc,OAAO,UAAU,UAAU,QAAQ;AAAA,EAC/E;AAAA,EACA,OAAO,KAAK,eAAe,MAAM,QAAQ,KAAK,QAAQ,OAAO,WAAW,MAAM;AAC5E,WAAO,IAAI,cAAc,cAAc,OAAO,OAAO,QAAQ;AAAA,EAC/D;AAAA,EACA,OAAO,SAAS,eAAe,MAAM,MAAM,MAAM,WAAW,MAAM;AAChE,WAAO,IAAI,kBAAkB,cAAc,KAAK,QAAQ;AAAA,EAC1D;AAAA,EACA,OAAO,OAAO,eAAe,MAAM,QAAQ,KAAK,QAAQ,OAAO,WAAW,MAAM,QAAQ,GAAG;AACzF,WAAO,IAAI,gBAAgB,cAAc,OAAO,OAAO,UAAU,KAAK;AAAA,EACxE;AAAA,EACA,OAAO,QAAQ,cAAc,0BAA0B,KAAK;AAC1D,WAAO,IAAI,iBAAiB,cAAc,uBAAuB;AAAA,EACnE;AACF;AAGA,IAAI,QAAQ;AAAA,EACV,KAAK,sBAAsB;AAAA,EAC3B,UAAU,sBAAsB;AAAA,EAChC,UAAU,sBAAsB;AAAA,EAChC,SAAS,sBAAsB;AAAA,EAC/B,SAAS,sBAAsB;AAAA,EAC/B,QAAQ,sBAAsB;AAAA,EAC9B,MAAM,sBAAsB;AAC9B;AAGA,IAAI,iBAAiB,MAAM;AACzB,MAAI,OAAO,0BAA0B,aAAa;AAChD,WAAO;AAAA,EACT,WAAW,OAAO,iBAAiB,aAAa;AAC9C,WAAO;AAAA,EACT;AACA,SAAO,CAAC,MAAM,EAAE;AAClB,GAAG;AACH,SAAS,YAAY;AACnB,SAAO,IAAI,QAAQ,CAAC,YAAY,cAAc,MAAM,QAAQ,CAAC,CAAC;AAChE;AAGA,IAAI,uBAAuB,CAAC;AAC5BlB,UAAS,sBAAsB;AAAA,EAC7B,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,OAAO,MAAM;AAAA,EACb,uBAAuB,MAAM;AAAA,EAC7B,kBAAkB,MAAM;AAAA,EACxB,YAAY,MAAM;AAAA,EAClB,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,4BAA4B,MAAM;AAAA,EAClC,4BAA4B,MAAM;AAAA,EAClC,wBAAwB,MAAM;AAAA,EAC9B,oBAAoB,MAAM;AAAA,EAC1B,sBAAsB,MAAM;AAAA,EAC5B,iBAAiB,MAAM;AAAA,EACvB,qBAAqB,MAAM;AAAA,EAC3B,2BAA2B,MAAM;AAAA,EACjC,kBAAkB,MAAM;AAAA,EACxB,mCAAmC,MAAM;AAAA,EACzC,sBAAsB,MAAM;AAAA,EAC5B,qBAAqB,MAAM;AAAA,EAC3B,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,uBAAuB,MAAM;AAAA,EAC7B,0BAA0B,MAAM;AAAA,EAChC,2BAA2B,MAAM;AAAA,EACjC,iBAAiB,MAAM;AAAA,EACvB,mBAAmB,MAAM;AAAA,EACzB,mBAAmB,MAAM;AAAA,EACzB,yBAAyB,MAAM;AAAA,EAC/B,sBAAsB,MAAM;AAAA,EAC5B,gCAAgC,MAAM;AAAA,EACtC,sBAAsB,MAAM;AAAA,EAC5B,UAAU,MAAM;AAAA,EAChB,WAAW,MAAM;AAAA,EACjB,wBAAwB,MAAM;AAAA,EAC9B,wBAAwB,MAAM;AAAA,EAC9B,oBAAoB,MAAM;AAAA,EAC1B,kBAAkB,MAAM;AAAA,EACxB,qBAAqB,MAAM;AAAA,EAC3B,sBAAsB,MAAM;AAAA,EAC5B,sBAAsB,MAAM;AAAA,EAC5B,sBAAsB,MAAM;AAAA,EAC5B,sBAAsB,MAAM;AAAA,EAC5B,gBAAgB,MAAM;AAAA,EACtB,kBAAkB,MAAM;AAAA,EACxB,aAAa,MAAM;AAAA,EACnB,eAAe,MAAM;AAAA,EACrB,kBAAkB,MAAM;AAAA,EACxB,aAAa,MAAM;AAAA,EACnB,qBAAqB,MAAM;AAAA,EAC3B,4BAA4B,MAAM;AAAA,EAClC,qBAAqB,MAAM;AAAA,EAC3B,cAAc,MAAM;AAAA,EACpB,iDAAiD,MAAM;AAAA,EACvD,iDAAiD,MAAM;AAAA,EACvD,mDAAmD,MAAM;AAAA,EACzD,sDAAsD,MAAM;AAAA,EAC5D,iDAAiD,MAAM;AAAA,EACvD,iDAAiD,MAAM;AAAA,EACvD,0DAA0D,MAAM;AAAA,EAChE,+CAA+C,MAAM;AAAA,EACrD,wDAAwD,MAAM;AAAA,EAC9D,yDAAyD,MAAM;AAAA,EAC/D,8DAA8D,MAAM;AAAA,EACpE,0DAA0D,MAAM;AAAA,EAChE,wBAAwB,MAAM;AAAA,EAC9B,uBAAuB,MAAM;AAAA,EAC7B,KAAK,MAAMiB;AAAA,EACX,wBAAwB,MAAM;AAAA,EAC9B,oBAAoB,MAAM;AAAA,EAC1B,kBAAkB,MAAM;AAAA,EACxB,cAAc,MAAM;AAAA,EACpB,YAAY,MAAM;AAAA,EAClB,YAAY,MAAM;AAAA,EAClB,wBAAwB,MAAM;AAAA,EAC9B,mBAAmB,MAAM;AAAA,EACzB,YAAY,MAAM;AAAA,EAClB,2BAA2B,MAAM;AAAA,EACjC,eAAe,MAAM;AAAA,EACrB,qBAAqB,MAAM;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AAGD,SAAS,uBAAuB,QAAQ,MAAM;AAC5C,QAAM,OAAO,OAAO,GAAG;AACvB,SAAO,QAAQ,CAAC,OAAO,OAAO;AAC5B,WAAO,MAAM,WAAW,MAAM,MAAM,kBAAkB,0BAA0B,iDAAiD,OAAO;AAAA,EAC1I,CAAC;AACD,SAAO,QAAQ,KAAK,OAAO,MAAM,MAAM,kBAAkB,qCAAqC,OAAO,IAAI;AACzG,QAAM,aAAa,OAAO;AAC1B,SAAO,QAAQ,CAAC,OAAO,OAAO;AAC5B,aAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,aAAO,OAAO,QAAQ,MAAM,QAAQ,WAAW,KAAK,MAAM,kBAAkB,2BAA2B,QAAQ,gDAAgD,+CAA+C,KAAK;AAAA,IACrN;AAAA,EACF,CAAC;AACH;AACA,SAAS,iBAAiB,QAAQ,MAAM;AACtC,QAAM,cAAc,OAAO,GAAG,MAAM;AACpC,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,gBAAY,SAAS,OAAO,IAAI;AAAA,EAClC;AACA,SAAO;AACT;AAGA,IAAI;AAAA,CACH,SAAS,mBAAmB;AAC3B,oBAAkB,kBAAkB,oBAAoB,KAAK;AAC7D,oBAAkB,kBAAkB,kBAAkB,KAAK;AAC3D,oBAAkB,kBAAkB,iBAAiB,KAAK;AAC1D,oBAAkB,kBAAkB,gBAAgB,KAAK;AACzD,oBAAkB,kBAAkB,gBAAgB,KAAK;AACzD,oBAAkB,kBAAkB,gBAAgB,KAAK;AAC3D,GAAG,qBAAqB,mBAAmB,CAAC,EAAE;AAC9C,SAAS,kCAAkC,YAAY,OAAO,YAAY;AACxE,MAAI,cAAc,IAAI,MAAM;AAC5B,MAAI,cAAc,QAAQ,SAAS,MAAM;AACvC,WAAO;AAAA,EACT;AACA,MAAI,SAAS,MAAM;AACjB,WAAO,YAAY,SAAS,aAAa,WAAW,QAAQ;AAC1D,kBAAY,KAAK,EAAE;AAAA,IACrB;AAAA,EACF,OAAO;AACL,kBAAc,MAAM,MAAM;AAAA,EAC5B;AACA,MAAI,cAAc,MAAM;AACtB,WAAO;AAAA,EACT;AACA,MAAI,aAAa,WAAW,WAAW,YAAY,QAAQ;AACzD,UAAM,IAAI,MAAM,4BAA4B,2CAA2C,aAAa,WAAW,4BAA4B,YAAY,QAAQ;AAAA,EACjK;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,UAAM,WAAW,WAAW;AAC5B,UAAM,sBAAsB,YAAY,YAAY,SAAS,WAAW,SAAS;AACjF,UAAM,iBAAiB,YAAY;AACnC,QAAI,YAAY,GAAG;AACjB,UAAI,kBAAkB,GAAG;AACvB,YAAI,mBAAmB,UAAU;AAC/B,gBAAM,IAAI,MAAM,4BAA4B,0CAA0C,KAAK,iBAAiB,sBAAsB,KAAK,iBAAiB,gBAAgB;AAAA,QAC1K;AAAA,MACF,OAAO;AACL,oBAAY,uBAAuB;AAAA,MACrC;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,2BAA2B,yBAAyB;AAC3D,QAAM,eAAe;AAAA,IACnB,kBAAkB,iBAAiB;AAAA,IACnC,gBAAgB,iBAAiB;AAAA,IACjC,eAAe,iBAAiB;AAAA,IAChC,cAAc,iBAAiB;AAAA,IAC/B,cAAc,iBAAiB;AAAA,IAC/B,cAAc,iBAAiB;AAAA,EACjC;AACA,QAAM,SAAS,CAAC;AAChB,aAAW,WAAW,yBAAyB;AAC7C,QAAI,WAAW,cAAc;AAC3B,aAAO,KAAK,aAAa,QAAQ;AAAA,IACnC,OAAO;AACL;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,cAAc,mBAAmB;AACxC,MAAI,kBAAkB,WAAW,GAAG;AAClC,WAAO;AAAA,EACT;AACA,MAAI,kBAAkB,OAAO,iBAAiB,gBAAgB;AAC5D,WAAO,kBAAkB,SAAS;AAAA,EACpC;AACA,SAAO,kBAAkB;AAC3B;AACA,SAAS,0BAA0B,mBAAmB,YAAY;AAChE,MAAI,qBAAqB,QAAQ,cAAc,MAAM;AACnD;AAAA,EACF;AACA,QAAM,eAAe,kBAAkB;AACvC,QAAM,cAAc,WAAW;AAC/B,MAAI,gBAAgB,aAAa;AAC/B,UAAM,IAAI,MAAM,sBAAsB,wDAAwD,qDAAqD,wEAAwE,cAAc;AAAA,EAC3O;AACA,WAAS,KAAK,GAAG,KAAK,KAAK,IAAI,cAAc,cAAc,CAAC,GAAG,EAAE,IAAI;AACnE,UAAM,aAAa,kBAAkB;AACrC,UAAM,WAAW,WAAW,KAAK;AACjC,QAAI,cAAc,KAAK,YAAY,KAAK,eAAe,KAAK,eAAe,UAAU;AACnF,YAAM,IAAI,MAAM,sBAAsB,+DAA+D,mDAAmD,KAAK,kBAAkB,aAAa,uDAAuD,KAAK,kBAAkB,aAAa,UAAU;AAAA,IACnS;AAAA,EACF;AACF;AAGA,IAAI,wBAAwB;AAC5B,SAAS,yBAAyB,QAAQ;AACxC,MAAI,UAAU,uBAAuB;AACnC,WAAO;AAAA,EACT;AACA,SAAO,eAAe,QAAQ,KAAK,MAAM,KAAK,KAAK,MAAM,CAAC,CAAC;AAC7D;AAGA,SAAS,eAAe,QAAQ,aAAa,YAAY;AACvD,QAAM,UAAU,cAAc,OAAO,WAAW,WAAW,SAAS,OAAO;AAC3E,QAAM,UAAU,eAAe,OAAO,WAAW,WAAW,SAAS,OAAO;AAC5E,SAAO,CAAC,SAAS,OAAO;AAC1B;AAGA,SAAS,YAAY,YAAY,YAAY,OAAO,eAAe,MAAM;AACvE,MAAI,WAAW,CAAC;AAChB,MAAI,cAAc;AAChB,eAAW,SAAS,OAAO,WAAW,MAAM,CAAC,CAAC;AAC9C,aAAS,KAAK,WAAW,KAAK,KAAK;AACnC,eAAW,SAAS,OAAO,WAAW,MAAM,CAAC,CAAC;AAAA,EAChD,OAAO;AACL,eAAW,SAAS,OAAO,WAAW,EAAE;AACxC,UAAM,gBAAgB,WAAW;AACjC,aAAS,KAAK,GAAG,KAAK,eAAe,EAAE,IAAI;AACzC,iBAAW,SAAS,OAAO,CAAC,WAAW,KAAK,KAAK,WAAW,KAAK,WAAW,GAAG,CAAC;AAAA,IAClF;AACA,eAAW,SAAS,OAAO,WAAW,MAAM,gBAAgB,CAAC,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,SAAS,YAAY,cAAc,gBAAgB,eAAe,MAAM;AACtE,QAAM,WAAW,CAAC;AAClB,MAAI,cAAc;AAChB,aAAS,KAAK,cAAc;AAC5B,aAAS,KAAK,iBAAiB,GAAG,KAAK,cAAc,EAAE,IAAI;AACzD,UAAI,MAAM,IAAI,gBAAgB;AAC5B,iBAAS,KAAK,EAAE;AAChB,iBAAS,KAAK,MAAM,iBAAiB,EAAE;AAAA,MACzC,OAAO;AACL,iBAAS,KAAK,EAAE;AAAA,MAClB;AAAA,IACF;AAAA,EACF,OAAO;AACL,UAAM,sBAAsB,CAAC;AAC7B,UAAM,qBAAqB,CAAC;AAC5B,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAI,MAAM,iBAAiB,IAAI,KAAK,KAAK,MAAM,GAAG;AAChD,2BAAmB,KAAK,EAAE;AAAA,MAC5B,OAAO;AACL,4BAAoB,KAAK,EAAE;AAAA,MAC7B;AAAA,IACF;AACA,aAAS,KAAK,GAAG,mBAAmB;AACpC,aAAS,KAAK,CAAC;AACf,aAAS,KAAK,GAAG,kBAAkB;AAAA,EACrC;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,YAAY,YAAY,OAAO,eAAe,MAAM;AAC/E,QAAM,mBAAmB,CAAC;AAC1B,MAAI,cAAc;AAChB,qBAAiB,KAAK,WAAW,KAAK,KAAK;AAAA,EAC7C,OAAO;AACL,qBAAiB,KAAK,WAAW,KAAK,KAAK;AAAA,EAC7C;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,QAAI,MAAM,WAAW,QAAQ;AAC3B,UAAI,cAAc;AAChB,yBAAiB,KAAK,WAAW,KAAK,KAAK,WAAW,GAAG;AAAA,MAC3D,OAAO;AACL,yBAAiB,KAAK,WAAW,MAAM,WAAW,KAAK,EAAE;AAAA,MAC3D;AAAA,IACF,OAAO;AACL,uBAAiB,KAAK,WAAW,GAAG;AAAA,IACtC;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,OAAO,YAAY;AAC9C,QAAM,mBAAmB,CAAC,CAAC;AAC3B,WAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,qBAAiB,KAAK,MAAM,IAAI,EAAE;AAAA,EACpC;AACA,SAAO;AACT;AACA,SAAS,aAAa,gBAAgB,OAAO,YAAY;AACvD,QAAM,YAAY,eAAe,MAAM,GAAG,CAAC;AAC3C,WAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,cAAU,KAAK,eAAe,KAAK,KAAK,MAAM,IAAI,KAAK,MAAM,IAAI,EAAE;AAAA,EACrE;AACA,SAAO;AACT;AAGA,IAAI,kBAAkB;AACtB,IAAI,aAAa;AAGjB,IAAI,QAAQ;AACZ,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,SAAS;AACb,IAAI,SAAS;AAGb,SAAS,uBAAuB,OAAO,OAAO;AAC5C,MAAI,MAAM,WAAW,MAAM,QAAQ;AACjC,UAAM,IAAI,MAAM,gEAAgE,MAAM,iBAAiB,MAAM,SAAS;AAAA,EACxH;AACA,QAAM,SAAS,IAAI,aAAa,MAAM,SAAS,CAAC;AAChD,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM,GAAG;AAC5C,WAAO,MAAM,MAAM,KAAK;AACxB,WAAO,KAAK,KAAK,MAAM,KAAK;AAAA,EAC9B;AACA,SAAO;AACT;AACA,SAAS,uBAAuB,UAAU;AACxC,QAAM,QAAQ,IAAI,aAAa,SAAS,SAAS,CAAC;AAClD,QAAM,QAAQ,IAAI,aAAa,SAAS,SAAS,CAAC;AAClD,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM,GAAG;AAC9C,UAAM,KAAK,KAAK,SAAS;AACzB,UAAM,KAAK,KAAK,SAAS,KAAK;AAAA,EAChC;AACA,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,qBAAqB,UAAU;AACtC,QAAM,MAAM,KAAK,KAAK,SAAS,SAAS,CAAC;AACzC,QAAM,QAAQ,IAAI,aAAa,GAAG;AAClC,QAAM,QAAQ,IAAI,aAAa,GAAG;AAClC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM,GAAG;AAC9C,UAAM,KAAK,MAAM,KAAK,CAAC,KAAK,SAAS;AACrC,UAAM,KAAK,MAAM,KAAK,CAAC,KAAK,SAAS,KAAK;AAAA,EAC5C;AACA,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,oBAAoB,UAAU;AACrC,QAAM,MAAM,KAAK,MAAM,SAAS,SAAS,CAAC;AAC1C,QAAM,QAAQ,IAAI,aAAa,GAAG;AAClC,QAAM,QAAQ,IAAI,aAAa,GAAG;AAClC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM,GAAG;AAC9C,UAAM,KAAK,MAAM,KAAK,CAAC,KAAK,SAAS;AACrC,UAAM,KAAK,MAAM,KAAK,CAAC,KAAK,SAAS,KAAK;AAAA,EAC5C;AACA,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,oBAAoB,UAAUJ,QAAO;AAC5C,QAAM,QAAQ,SAASA,SAAQ;AAC/B,QAAM,QAAQ,SAASA,SAAQ,IAAI;AACnC,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,mBAAmB,MAAM,OAAO,OAAOA,QAAO;AACrD,OAAKA,SAAQ,KAAK;AAClB,OAAKA,SAAQ,IAAI,KAAK;AACxB;AACA,SAAS,UAAU,IAAI,SAAS;AAC9B,QAAM,QAAQ,IAAI,aAAa,KAAK,CAAC;AACrC,QAAM,QAAQ,IAAI,aAAa,KAAK,CAAC;AACrC,WAAS,KAAK,GAAG,KAAK,KAAK,KAAK,KAAK,CAAC,GAAG,MAAM;AAC7C,UAAM,KAAK,UAAU,IAAI,MAAM,KAAK,MAAM,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,CAAC;AACtB,UAAM,MAAM,KAAK,IAAI,CAAC;AAAA,EACxB;AACA,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AACA,SAAS,SAAS,GAAG,IAAI,SAAS;AAChC,QAAM,KAAK,UAAU,IAAI,MAAM,KAAK,MAAM,IAAI;AAC9C,QAAM,QAAQ,KAAK,IAAI,CAAC;AACxB,QAAM,QAAQ,KAAK,IAAI,CAAC;AACxB,SAAO,EAAE,MAAM,OAAO,MAAM,MAAM;AACpC;AAGA,IAAI,QAAQ;AACZ,IAAI,cAAc;AAClB,IAAI,QAAQ;AACZ,IAAI,WAAW;AACf,SAAS,qBAAqB,UAAU,YAAY;AAClD,aAAW,SAAS,QAAQ,OAAO,EAAE;AACrC,QAAM,aAAa,SAAS,SAAS,SAAS,QAAQ,aAAa,EAAE,EAAE,UAAU,MAAM;AACvF,MAAI,YAAY,GAAG;AACjB,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE,WAAW,YAAY,GAAG;AACxB,UAAM,IAAI,MAAM,6CAA6C,UAAU;AAAA,EACzE;AACA,QAAM,CAAC,aAAa,YAAY,IAAI,SAAS,MAAM,KAAK;AACxD,SAAO,YAAY,QAAQ,QAAQ,MAAM,IAAI,MAAM,2BAA2B,kCAAkC;AAChH,QAAM,aAAa,YAAY,MAAM,KAAK;AAC1C,QAAM,YAAY,WAAW;AAC7B,MAAI,eAAe,WAAW;AAC5B,UAAM,IAAI,MAAM,YAAY,qCAAqC,YAAY;AAAA,EAC/E;AACA,MAAI,YAAY,GAAG;AACjB,UAAM,IAAI,MAAM,+DAA+D;AAAA,EACjF;AACA,QAAM,UAAU,CAAC;AACjB,WAAS,KAAK,GAAG,KAAK,aAAa,QAAQ,EAAE,IAAI;AAC/C,UAAM,UAAU,aAAa;AAC7B,QAAI,CAAC,WAAW,KAAK,CAAC,cAAc,UAAU,QAAQ,OAAO,MAAM,EAAE,GAAG;AACtE,YAAM,IAAI,MAAM,uCAAuC,8CAA8C;AAAA,IACvG;AACA,QAAI,QAAQ,QAAQ,OAAO,MAAM,IAAI;AACnC,cAAQ,KAAK,OAAO;AAAA,IACtB;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,UAAM,UAAU,YAAY;AAC5B,QAAI,QAAQ,QAAQ,OAAO,MAAM,MAAM,YAAY,OAAO;AACxD,cAAQ,KAAK,OAAO;AAAA,IACtB;AAAA,EACF;AACA,QAAM,SAAS,IAAI,MAAM,WAAW,MAAM;AAC1C,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,QAAI,IAAI,IAAI,WAAW,IAAI,MAAM,EAAE,CAAC,EAAE,SAAS,WAAW,IAAI,QAAQ;AACpE,YAAM,IAAI,MAAM,2CAA2C,WAAW,kEAAkE;AAAA,IAC1I;AACA,WAAO,MAAM,CAAC;AACd,aAAS,IAAI,GAAG,IAAI,WAAW,IAAI,QAAQ,EAAE,GAAG;AAC9C,aAAO,IAAI,KAAK,QAAQ,QAAQ,WAAW,IAAI,EAAE,CAAC;AAAA,IACpD;AAAA,EACF;AACA,QAAM,UAAU,QAAQ;AACxB,QAAM,aAAa,aAAa;AAChC,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,YAAY,KAAK,SAAS,EAAE,IAAI;AAC5C,eAAW,KAAK,EAAE;AAAA,EACpB;AACA,SAAO,EAAE,SAAS,YAAY,OAAO;AACvC;AACA,SAAS,qBAAqB,OAAO,QAAQ;AAC3C,MAAI,qBAAqB,IAAI,MAAM,KAAK;AACxC,qBAAmB,KAAK,EAAE;AAC1B,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,uBAAmB,OAAO,OAAO;AAAA,EACnC;AACA,QAAM,cAAc,CAAC;AACrB,WAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,QAAI,mBAAmB,QAAQ,IAAI;AACjC,kBAAY,KAAK,EAAE;AAAA,IACrB;AAAA,EACF;AACA,uBAAqB,mBAAmB,OAAO,CAAC,MAAM,MAAM,EAAE;AAC9D,SAAO,EAAE,oBAAoB,YAAY,YAAY;AACvD;AACA,SAAS,oBAAoB,OAAO,QAAQ,SAAS;AACnD,QAAM,WAAW,IAAI,MAAM,KAAK;AAChC,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAM,QAAQ,QAAQ,IAAI;AAC1B,aAAS,IAAI,GAAG,IAAI,OAAO,IAAI,QAAQ,EAAE,GAAG;AAC1C,UAAI,SAAS,OAAO,IAAI,QAAQ,QAAQ;AACtC,iBAAS,OAAO,IAAI,MAAM,MAAM;AAAA,MAClC,OAAO;AACL,eAAO,SAAS,OAAO,IAAI,QAAQ,MAAM,IAAI,MAAM,sBAAsB,SAAS,OAAO,IAAI,eAAe,qBAAqB,KAAK,UAAU,KAAK,wBAAwB,MAAM,IAAI;AAAA,MACzL;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,YAAY,QAAQ;AAChD,QAAM,OAAO;AACb,QAAM,QAAQ,CAAC;AACf,MAAI,SAAS;AACb,MAAI,WAAW,WAAW,GAAG;AAC3B,SAAK,KAAK,EAAE;AAAA,EACd;AACA,WAAS,WAAW,SAAS;AAC7B,WAAS,KAAK,GAAG,KAAK,QAAQ,EAAE,IAAI;AAClC,UAAM,KAAK,CAAC,CAAC;AAAA,EACf;AACA,QAAM,sBAAsB,CAAC;AAC7B,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,YAAY,KAAK;AACvB,UAAM,cAAc,iBAAiB,QAAQ,SAAS;AACtD,eAAW,aAAa,aAAa;AACnC,UAAI,oBAAoB,QAAQ,SAAS,MAAM,IAAI;AACjD,cAAM,IAAI,KAAK,SAAS;AACxB,4BAAoB,KAAK,SAAS;AAAA,MACpC;AAAA,IACF;AAAA,EACF;AACA,SAAO,EAAE,MAAM,MAAM;AACvB;AACA,SAAS,sBAAsB,MAAM;AACnC,SAAO,KAAK,MAAM,CAAC,KAAKA,WAAU,QAAQA,MAAK;AACjD;AACA,SAAS,iBAAiB,QAAQ,KAAK;AACrC,QAAM,cAAc,CAAC;AACrB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,OAAO,IAAI,WAAW,KAAK,OAAO,IAAI,QAAQ,GAAG,MAAM,MAAM,QAAQ,IAAI;AAC3E,kBAAY,KAAK,EAAE;AAAA,IACrB;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,iBAAiB,GAAG,iBAAiB,OAAO,GAAG;AACtD,MAAI,aAAa,CAAC;AAClB,MAAI,OAAO,oBAAoB,UAAU;AACvC,WAAO,EAAE,MAAM,QAAQ,oBAAoB,GAAG,MAAM,+CAA+C;AACnG,iBAAa,IAAI,MAAM,eAAe,EAAE,KAAK,EAAE,MAAM,QAAQ,eAAe;AAAA,EAC9E,OAAO;AACL,UAAM,YAAY,gBAAgB,OAAO,CAACH,SAAQ,UAAU;AAC1D,UAAI,UAAU,IAAI;AAChB,QAAAA,WAAU;AAAA,MACZ;AACA,aAAOA;AAAA,IACT,GAAG,CAAC;AACJ,WAAO,aAAa,GAAG,MAAM,yDAAyD;AACtF,UAAM,WAAW,gBAAgB,QAAQ,EAAE;AAC3C,QAAI,aAAa,IAAI;AACnB,YAAM,QAAQ,gBAAgB,OAAO,CAAC,GAAG,MAAM,IAAI,IAAI,IAAI,IAAI,CAAC;AAChE,sBAAgB,YAAY,EAAE,MAAM,QAAQ;AAAA,IAC9C;AACA,WAAO,EAAE,MAAM,UAAU,gBAAgB,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC,GAAG,MAAM,6DAA6D;AACrI,iBAAa;AAAA,EACf;AACA,SAAO;AACT;AAGA,SAAS,gDAAgD,eAAe;AACtE,SAAO;AAAA,uBACc;AACvB;AACA,SAAS,gDAAgDG,QAAO,OAAO;AACrE,SAAO,WAAWA,0BAAyB;AAC7C;AACA,SAAS,kDAAkDA,QAAO,OAAO,OAAO;AAC9E,SAAO,WAAWA,0BAAyB,YAAY;AACzD;AAGA,SAAS,yDAAyD,MAAM,MAAM;AAC5E,SAAO,iDAAiD,YAAY;AACtE;AACA,SAAS,8CAA8C,KAAK,OAAO;AACjE,SAAO,QAAQ,iCAAiC;AAClD;AACA,SAAS,uDAAuD;AAC9D,SAAO;AACT;AACA,SAAS,gDAAgD,YAAY,aAAa;AAChF,QAAMiB,cAAY,cAAc,UAAU;AAC1C,QAAMN,cAAa,cAAc,WAAW;AAC5C,SAAO,2CAA2CM;AAAA,iEACaN,2BAA0B,2BAA2B;AACtH;AACA,SAAS,gDAAgD,YAAY,aAAa;AAChF,QAAMM,cAAY,cAAc,UAAU;AAC1C,QAAMN,cAAa,cAAc,WAAW;AAC5C,SAAO,qCAAqCM,yDAAuDN,2BAA0B,0BAA0B;AACzJ;AAGA,SAAS,0DAA0D;AACjE,SAAO;AACT;AACA,SAAS,+DAA+D;AACtE,SAAO;AACT;AACA,SAAS,yDAAyD,WAAW,YAAY;AACvF,SAAO,cAAc,8BAA8B;AACrD;AACA,SAAS,uDAAuDX,QAAO,YAAY,WAAW;AAC5F,SAAO,gBAAgBA,cAAa,+BAA+B;AACrE;AAGA,IAAI,uBAAuB,CAAC;AAC5Bb,UAAS,sBAAsB;AAAA,EAC7B,0BAA0B,MAAM;AAAA,EAChC,iBAAiB,MAAM;AAAA,EACvB,+BAA+B,MAAM;AACvC,CAAC;AACD,SAAS,8BAA8B,QAAQ,aAAa;AAC1D,MAAI,OAAO;AACX,MAAI;AACJ,MAAI,UAAU,uBAAuB;AACnC,UAAM;AACN,WAAO;AAAA,EACT,OAAO;AACL,UAAM,eAAe,QAAQ,KAAK,MAAM,KAAK,KAAK,MAAM,CAAC,CAAC;AAAA,EAC5D;AACA,SAAO,CAAC,MAAM;AACZ,QAAI,MAAM,eAAe,QAAQ,QAAQ;AACvC,aAAO;AAAA,IACT,OAAO;AACL,YAAM,eAAe,QAAQ,MAAM,CAAC;AAAA,IACtC;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,QAAQ,MAAM,aAAa;AACnD,QAAM,WAAW,CAAC;AAClB,QAAM,OAAO,OAAO;AACpB,WAAS,MAAM,GAAG,MAAM,MAAM,OAAO;AACnC,QAAI,QAAQ,MAAM;AAChB,eAAS,KAAK,OAAO,IAAI;AAAA,IAC3B,OAAO;AACL,eAAS,KAAK,WAAW;AAAA,IAC3B;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,yBAAyB,GAAG,SAAS,MAAM,WAAW;AAC7D,QAAM,cAAc,QAAQ,MAAM;AAClC,QAAM,QAAQ,EAAE,MAAM;AACtB,MAAI,cAAc,GAAG;AACnB,QAAI,YAAY,CAAC,eAAe,YAAY,aAAa;AACvD,YAAM,IAAI,MAAM,sCAAsC,gBAAgB,yBAAyB,WAAW;AAAA,IAC5G;AAAA,EACF;AACA,MAAI,YAAY,GAAG;AACjB,iBAAa;AAAA,EACf;AACA,MAAI,YAAY,OAAO;AACrB,UAAM,IAAI,MAAM,cAAc;AAAA,MAC5B,SAAS;AAAA,EACb;AACA,MAAI,OAAO,WAAW;AACpB,UAAM,IAAI,MAAM,cAAc,kDAAkD,QAAQ;AAAA,EAC1F;AACA,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,QAAI,EAAE,MAAM,QAAQ,QAAQ,MAAM,KAAK;AACrC,YAAM,IAAI,MAAM,WAAW,QAAQ,EAAE,MAAM,wCAAwC,QAAQ,QAAQ,MAAM,MAAM;AAAA,IACjH;AAAA,EACF;AACA,QAAM,UAAU,EAAE,MAAM;AACxB,QAAM,cAAc,CAAC;AACrB,MAAI,YAAY;AAChB,MAAI,YAAY;AAChB,MAAI,YAAY;AAChB,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,gBAAY,KAAK,EAAE,MAAM,GAAG;AAC5B,iBAAa,EAAE,MAAM;AAAA,EACvB;AACA,WAAS,KAAK,WAAW,KAAK,MAAM,MAAM;AACxC,gBAAY,KAAK,EAAE,MAAM,GAAG;AAC5B,iBAAa,EAAE,MAAM;AAAA,EACvB;AACA,WAAS,KAAK,WAAW,KAAK,aAAa,MAAM;AAC/C,gBAAY,KAAK,QAAQ,MAAM,GAAG;AAAA,EACpC;AACA,WAAS,KAAK,OAAO,GAAG,KAAK,OAAO,MAAM;AACxC,gBAAY,KAAK,EAAE,MAAM,GAAG;AAC5B,iBAAa,EAAE,MAAM;AAAA,EACvB;AACA,SAAO,EAAE,WAAW,WAAW,WAAW,SAAS,YAAY;AACjE;AAGA,SAAS,uBAAuB,MAAM;AACpC,MAAI;AACF,WAAO,KAAK,IAAI,CAAC,QAAQ,aAAa,GAAG,CAAC;AAAA,EAC5C,SAAS,KAAP;AACA,UAAM,IAAI,MAAM,4DAA4D,KAAK;AAAA,EACnF;AACF;AACA,SAAS,uBAAuB,SAAS;AACvC,SAAO,QAAQ,IAAI,CAAC,OAAO,aAAa,EAAE,CAAC;AAC7C;AAGA,IAAI,uBAAuB,CAAC;AAC5BA,UAAS,sBAAsB;AAAA,EAC7B,yBAAyB,MAAM;AAAA,EAC/B,yBAAyB,MAAM;AAAA,EAC/B,yBAAyB,MAAM;AAAA,EAC/B,WAAW,MAAM;AACnB,CAAC;AAGD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,KAAK,GAAG,SAAS,GAAG,EAAE,CAAC,EAAE;AAAA,EAC1D;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAM,IAAI,OAAO,KAAK,GAAG,SAAS,CAAC;AACnC,cAAM,IAAI,KAAK,IAAI,OAAO,CAAC,GAAG,CAAC,CAAC;AAChC,eAAO,IAAI,IAAI,IAAI,CAAC,CAAC;AAAA,MACvB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAM,IAAI,KAAK,IAAI,OAAO,KAAK,GAAG,SAAS,CAAC,GAAG,CAAC,CAAC;AACjD,eAAO,IAAI,IAAI,CAAC;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM;AACV,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM;AACV,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,eAAe;AAAA,EACf,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,OAAO,CAAC;AACd,UAAM,QAAQ,CAAC,GAAG,OAAO;AACvB,WAAK,MAAM,MAAM,GAAG,MAAM;AAAA,IAC5B,CAAC;AACD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,UAAU,CAAC,EAAE;AAAA,EACjC;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,UAAU,CAAC,EAAE;AAAA,EACjC;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,IAAI,OAAO,CAAC,GAAG,OAAO,KAAK,GAAG,SAAS,CAAC,CAAC,CAAC,CAAC,EAAE;AAAA,EAC9E;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAM,IAAI,KAAK,KAAK,OAAO,CAAC,GAAG,OAAO,KAAK,GAAG,SAAS,CAAC,CAAC,CAAC;AAC1D,eAAO,IAAI,IAAI,CAAC;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,IAAI,KAAK,OAAO,CAAC,GAAG,OAAO,CAAC,CAAC;AACnC,UAAI,MAAM,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAC3B,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,UAAM,OAAO,MAAM;AACjB,YAAM,IAAI,KAAK,OAAO,CAAC,GAAG,OAAO,CAAC,CAAC;AACnC,UAAI,MAAM,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC,CAAC;AAChC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,OAAO,KAAK,GAAG,SAAS,CAAC,GAAG,CAAC,CAAC,EAAE;AAAA,EACjE;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,OAAO,CAAC,GAAG,OAAO,KAAK,GAAG,SAAS,CAAC,CAAC,CAAC,EAAE;AAAA,EACxE;AACF;AAGA,SAAS,eAAe,IAAI,QAAQ,YAAYgB,UAAS,MAAM,iBAAiB;AAC9E,QAAM,MAAM,gBAAgB,IAAI,MAAM,eAAe;AACrD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,eAAe;AAC/D,MAAI,OAAO;AACX,MAAI,UAAU;AACd,MAAI,eAAe;AACnB,MAAI,OAAO,SAAS,GAAG;AACrB,mBAAe;AACf,WAAO,QAAQ,KAAK,CAAC,GAAG,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAC/E,cAAU,QAAQ,QAAQ;AAAA,MACxB;AAAA,MACA,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,IACf,CAAC;AAAA,EACH;AACA,SAAO,KAAK,SAAS,GAAG,MAAM,0DAA0D,KAAK,OAAO;AACpG,SAAO,QAAQ,SAAS,GAAG,MAAM,6DAA6D,QAAQ,OAAO;AAC7G,4BAA0B,iBAAiB,MAAM,eAAe;AAChE,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO,QAAQ;AAC1C,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,QAAM,MAAM,OAAO,UAAU,eAAe,QAAQ,KAAK;AACzD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,WAAO;AAAA,MACL,GAAG,MAAM,cAAc,IAAI,GAAG,YAAYA,UAAS,MAAM,eAAe;AAAA,IAC1E;AAAA,EACF;AACF;AAGA,SAAS,aAAa,IAAI,QAAQ,YAAYA,UAAS,MAAM;AAC3D,QAAM,MAAM,gBAAgB,IAAI,MAAM,aAAa;AACnD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,aAAa;AAC7D,SAAO,OAAO,SAAS,IAAI,MAAM,MAAM,kBAAkB,OAAO,oCAAoC,IAAI,OAAO;AAC/G,MAAI,UAAU;AACd,MAAI,OAAO;AACX,MAAI,eAAe;AACnB,MAAI,OAAO,SAAS,GAAG;AACrB,mBAAe;AACf,cAAU,QAAQ,QAAQ,CAAC,GAAG,OAAO,MAAM,IAAI,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC;AAChF,WAAO,QAAQ,KAAK,CAAC,GAAG,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EACnE;AACA,SAAO,KAAK,SAAS,GAAG,MAAM,wDAAwD,KAAK,OAAO;AAClG,SAAO,QAAQ,SAAS,GAAG,MAAM,2DAA2D,QAAQ,OAAO;AAC3G,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO,QAAQ;AAC1C,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK;AAC/C,QAAM,MAAM,OAAO,UAAU,aAAa,QAAQ,KAAK;AACvD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC3C,WAAO,EAAE,GAAG,MAAM,YAAY,IAAI,GAAG,YAAYA,UAAS,IAAI,EAAE;AAAA,EAClE;AACF;AAGA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,EAAE,YAAY,WAAW,IAAI;AACnC,QAAI,CAAC,cAAc,CAAC,YAAY;AAC9B,aAAO;AAAA,QACL,GAAG,MAAM,OAAO,IAAI,GAAG,OAAO,IAAI;AAAA,QAClC,GAAG,MAAM,OAAO,GAAG,IAAI,MAAM,KAAK;AAAA,MACpC;AAAA,IACF,WAAW,CAAC,cAAc,YAAY;AACpC,aAAO;AAAA,QACL,GAAG,MAAM,OAAO,IAAI,GAAG,OAAO,KAAK;AAAA,QACnC,GAAG,MAAM,OAAO,IAAI,GAAG,MAAM,KAAK;AAAA,MACpC;AAAA,IACF,WAAW,cAAc,CAAC,YAAY;AACpC,aAAO;AAAA,QACL,GAAG,MAAM,OAAO,GAAG,IAAI,OAAO,IAAI;AAAA,QAClC,GAAG,MAAM,OAAO,GAAG,IAAI,OAAO,KAAK;AAAA,MACrC;AAAA,IACF,OAAO;AACL,aAAO;AAAA,QACL,GAAG,MAAM,OAAO,GAAG,IAAI,MAAM,IAAI;AAAA,QACjC,GAAG,MAAM,OAAO,IAAI,GAAG,MAAM,IAAI;AAAA,MACnC;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,WAAO,EAAE,GAAG,MAAM,eAAe,IAAI,YAAY,KAAK,EAAE;AAAA,EAC1D;AACF;AAGA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,mBAAmB;AACzB,UAAM,aAAa,iBAAiB;AACpC,UAAM,cAAc,iBAAiB;AACrC,UAAM,OAAO,MAAM,KAAK,WAAW;AACnC,aAAS,KAAK,WAAW,SAAS,GAAG,MAAM,GAAG,MAAM;AAClD,UAAI,WAAW,QAAQ,YAAY,KAAK;AACtC,aAAK,MAAM;AAAA,MACb,WAAW,WAAW,QAAQ,GAAG;AAC/B,cAAM,IAAI,MAAM,mBAAmB,uCAAuC,eAAe;AAAA,MAC3F;AAAA,IACF;AACA,UAAM,OAAO,CAAC;AACd,aAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAI,KAAK,MAAM,GAAG;AAChB,aAAK,KAAK,EAAE;AAAA,MACd;AAAA,IACF;AACA,WAAO,EAAE,GAAG,MAAM,KAAK,IAAI,MAAM,IAAI,EAAE;AAAA,EACzC;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,GAAG,MAAM,EAAE;AAAA,EAC/B;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,cAAc,aAAa,IAAI;AACvC,WAAO;AAAA,MACL,GAAG,MAAM,MAAM,WAAW,aAAa,GAAG,YAAY,GAAG,UAAU,GAAG,YAAY,CAAC,GAAG,IAAI,UAAU,EAAE,CAAC;AAAA,IACzG;AAAA,EACF;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,cAAc;AAC1B;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,eAAe;AAAA,EACf,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,SAAS,MAAM,IAAI,CAAC,OAAO,GAAG,KAAK;AACzC,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,QAAQ,eAAe,MAAM,MAAM,GAAG,KAAK,EAAE;AACnD,UAAM,aAAa,OAAO,IAAI,CAAC,OAAO,GAAG,MAAM;AAC/C,UAAM,aAAa,MAAM,IAAI,YAAY,KAAK;AAC9C,WAAO,WAAW,IAAI,CAAC,OAAO,MAAM,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ;AAAA,EAC5B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,KAAK,OAAO,IAAI;AACvB,UAAM,EAAE,WAAW,SAAAA,UAAS,KAAK,MAAM,WAAW,IAAI;AACtD,WAAO,kBAAkB,SAAS,GAAG,MAAM,iHAAiH,YAAY;AACxK,WAAO;AAAA,MACL,GAAG,MAAM,oBAAoB,IAAI,OAAO,IAAI,SAASA,UAAS,MAAM,UAAU;AAAA,MAC9E,QAAQ,MAAM,qBAAqB,KAAK,IAAI,QAAQ,OAAOA,UAAS,MAAM,UAAU;AAAA,IACtF;AAAA,EACF;AACF;AAGA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,cAAc,CAAC,MAAM,QAAQ;AAAA,EAC7B,UAAU,CAAC,KAAK,OAAO,UAAU;AAC/B,UAAM,CAAC,IAAI,MAAM,IAAI;AACrB,UAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AAC5D,WAAO;AAAA,MACL,IAAI,MAAM,OAAO,KAAK,QAAQA,UAAS,MAAM,YAAY,GAAG,eAAe;AAAA,MAC3E,QAAQ,MAAM,qBAAqB,KAAK,IAAI,OAAO,OAAOA,UAAS,MAAM,YAAY,eAAe;AAAA,IACtG;AAAA,EACF;AACF;AAGA,SAAS,sBAAsB,GAAG,IAAI,aAAaA,UAAS,MAAM;AAChE,MAAI,MAAM;AACV,MAAI,EAAE,SAAS,GAAG;AAChB,UAAM,QAAQ,GAAG,CAAC,GAAG,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC;AAAA,EACtE;AACA,MAAI,OAAO;AACX,MAAI,KAAK,SAAS,GAAG;AACnB,WAAO,QAAQ,IAAI,CAAC,GAAG,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,IAAI,GAAG,MAAM,EAAE,CAAC;AAAA,EAC5E;AACA,SAAO,IAAI,SAAS,GAAG,MAAM,iEAAiE,IAAI,QAAQ;AAC1G,SAAO,KAAK,SAAS,GAAG,MAAM,8DAA8D,KAAK,QAAQ;AACzG,SAAO,YAAY,WAAW,GAAG,MAAM,mEAAmE,cAAc;AACxH,SAAO,IAAI,MAAM,OAAO,YAAY,IAAI,MAAM,4CAA4C,IAAI,MAAM,yCAAyC,YAAY,KAAK;AAC9J,SAAO,KAAK,MAAM,OAAO,YAAY,IAAI,MAAM,0CAA0C,KAAK,MAAM,2CAA2C,YAAY,MAAM;AACjK,QAAM,SAAS,EAAE,GAAG,KAAK,IAAI,KAAK;AAClC,QAAM,QAAQ,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY;AAChD,SAAO,OAAO,UAAU,wBAAwB,QAAQ,KAAK;AAC/D;AACA,IAAI,uBAAuB,GAAG,EAAE,sBAAsB,CAAC;AAGvD,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ;AAAA,EAC5B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,WAAW,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC1C,WAAO,kBAAkB,SAAS,GAAG,MAAM,iHAAiH,YAAY;AACxK,UAAM,CAAC,KAAK,OAAO,IAAI;AACvB,WAAO;AAAA,MACL,GAAG,MAAM,oBAAoB,IAAI,OAAO,IAAI,SAASA,UAAS,IAAI;AAAA,MAClE,QAAQ,MAAM,qBAAqB,KAAK,IAAI,QAAQ,OAAOA,UAAS,IAAI;AAAA,IAC1E;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC,CAAC,GAAG,EAAE,EAAE;AAAA,EAC1D;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,KAAK,KAAK,GAAG,SAAS,CAAC,GAAG,EAAE,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAM,cAAc,mBAAmB,CAAC,IAAI,GAAG,EAAE,IAAI;AACrD,YAAI,MAAM,OAAO,IAAI,MAAM,WAAW,CAAC,QAAQ;AAC/C,YAAI,eAAe,MAAM;AACvB,gBAAM,UAAU,KAAK,WAAW;AAAA,QAClC;AACA,eAAO;AAAA,MACT;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kCAAkC;AAAA,EACpC,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ;AAAA,EAC5B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,WAAW,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC3D,UAAM,aAAa,aAAa,OAAO,CAAC,GAAG,CAAC,IAAI;AAChD,WAAO,kBAAkB,UAAU,GAAG,MAAM,mHAAmH,aAAa;AAC5K,UAAM,CAAC,GAAG,MAAM,IAAI;AACpB,WAAO,EAAE,SAAS,GAAG,MAAM,kFAAkF,EAAE,OAAO;AACtH,WAAO,OAAO,SAAS,GAAG,MAAM,mFAAmF,OAAO,OAAO;AACjI,WAAO,EAAE,MAAM,OAAO,OAAO,MAAM,IAAI,MAAM,mEAAmE,EAAE,MAAM,qDAAqD,OAAO,MAAM,KAAK;AAC/L,WAAO,+BAA+BA,UAAS,UAAU,GAAG,MAAM,6FAA6FA,2BAA0B,cAAc;AACvM,8BAA0B,mBAAmB,MAAM,eAAe;AAClE,WAAO;AAAA,MACL,GAAG,MAAM,mCAAmC,EAAE,OAAO,IAAI,QAAQA,UAAS,MAAM,YAAY,eAAe;AAAA,MAC3G,QAAQ,MAAM,oCAAoC,GAAG,IAAI,OAAO,OAAOA,UAAS,MAAM,YAAY,eAAe;AAAA,IACnH;AAAA,EACF;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ;AAAA,EAC5B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,MAAM,IAAI;AACpB,UAAM,cAAc,EAAE,GAAG,QAAQ,GAAG;AACpC,UAAM,eAAe,EAAE,GAAG,QAAQ,GAAG;AACrC,WAAO;AAAA,MACL,GAAG,MAAM,OAAO,UAAU,yBAAyB,aAAa,KAAK;AAAA,MACrE,QAAQ,MAAM,OAAO,UAAU,0BAA0B,cAAc,KAAK;AAAA,IAC9E;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,SAAS,EAAE,IAAI,EAAE;AACvB,WAAO,EAAE,GAAG,MAAM,OAAO,UAAU,SAAS,MAAM,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,IAAI,IAAI,IAAI,IAAI,OAAO,CAAC,CAAC,CAAC,GAAG,IAAI,KAAK,KAAK,KAAK,EAAE,CAAC;AACzD,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,CAAC,EAAE;AAAA,EAC/B;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,CAAC,EAAE;AAAA,EAC/B;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC,OAAO;AAAA,EACtB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,MAAM,IAAI;AACjB,WAAO,EAAE,OAAO,MAAM,QAAQ,IAAI,OAAO,KAAK,EAAE;AAAA,EAClD;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,CAAC,CAAC,EAAE;AAAA,EACpC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACtC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACpC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC9C;AACA,YAAM,MAAM,OAAO,CAAC;AACpB,aAAO,IAAI,IAAI,KAAK,KAAK,KAAK,SAAS,CAAC,CAAC;AAAA,IAC3C;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,QAAQ,YAAY,OAAO;AAAA,EAC/C,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,gBAAgB,IAAI;AAC5B,UAAM,CAAC,GAAG,OAAO,UAAUS,OAAM,IAAI;AACrC,UAAM,aAAaA,WAAU,OAAO,OAAO,CAAC,IAAIA;AAChD,UAAM,gBAAgB,iBAAiB,MAAM,OAAO,EAAE,KAAK;AAC3D,UAAM,YAAY,CAAC;AACnB,QAAI,MAAM,SAAS,GAAG;AACpB,eAAS,KAAK,GAAG,KAAK,EAAE,MAAM,SAAS,GAAG,EAAE,IAAI;AAC9C,kBAAU,KAAK,EAAE,MAAM,GAAG;AAAA,MAC5B;AACA,gBAAU,KAAK,CAAC;AAAA,IAClB;AACA,UAAM,aAAa,IAAI,GAAG,KAAK;AAC/B,UAAM,oBAAoB,IAAI,IAAI,UAAU;AAC5C,UAAM,sBAAsB,MAAM,KAAK,UAAU,OAAO,eAAe,CAAC,CAAC;AACzE,UAAM,iBAAiB,IAAI,IAAI,IAAI,qBAAqB,mBAAmB,GAAG,mBAAmB,GAAG,OAAO,IAAI,CAAC;AAChH,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM,SAAS,GAAG;AACpB,eAAO,QAAQ,IAAI,IAAI,IAAI,KAAK,QAAQ,qBAAqB,CAAC,GAAG,GAAG,GAAG,MAAM,MAAM,EAAE,CAAC,GAAG,SAAS,CAAC,GAAG,UAAU,GAAG,EAAE,KAAK;AAAA,MAC5H,OAAO;AACL,eAAO,QAAQ,IAAI,IAAI,IAAI,mBAAmB,GAAG,UAAU,GAAG,EAAE,KAAK;AAAA,MACvE;AAAA,IACF;AACA,UAAM,UAAU,MAAM;AACpB,UAAI,UAAU,IAAI,IAAI,qBAAqB,OAAO,EAAE,CAAC,GAAG,iBAAiB;AACzE,UAAI,MAAM,SAAS,GAAG;AACpB,kBAAU,KAAK,SAAS,aAAa;AAAA,MACvC;AACA,aAAO,QAAQ,SAAS,MAAM,KAAK;AAAA,IACrC;AACA,UAAM,cAAc,MAAM;AACxB,UAAI,cAAc,IAAI,IAAI,gBAAgB,UAAU,GAAG,iBAAiB;AACxE,UAAI,MAAM,SAAS,GAAG;AACpB,sBAAc,KAAK,aAAa,aAAa;AAAA,MAC/C;AACA,aAAO,QAAQ,aAAa,MAAM,KAAK;AAAA,IACzC;AACA,UAAM,WAAW,MAAM;AACrB,YAAM,wBAAwB,IAAI,YAAY,mBAAmB;AACjE,UAAI,WAAW,IAAI,IAAI,qBAAqB;AAC5C,UAAI,MAAM,SAAS,GAAG;AACpB,mBAAW,KAAK,UAAU,aAAa;AAAA,MACzC;AACA,aAAO,QAAQ,UAAU,MAAM,KAAK;AAAA,IACtC;AACA,UAAM,YAAY,MAAM;AACtB,UAAI,YAAY;AAChB,UAAI,MAAM,SAAS,GAAG;AACpB,oBAAY,KAAK,WAAW,aAAa;AAAA,MAC3C;AACA,aAAO,QAAQ,WAAW,MAAM,KAAK;AAAA,IACvC;AACA,WAAO;AAAA,MACL,GAAG;AAAA,MACH,MAAM;AAAA,MACN,UAAU;AAAA,MACV,OAAO;AAAA,MACP,QAAQ;AAAA,IACV;AAAA,EACF;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,SAAS;AAAA,EAC7B,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,OAAO,IAAI;AACrB,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACjD,UAAM,OAAO,MAAM;AACjB,YAAM,cAAc,EAAE;AACtB,YAAM,cAAc,QAAQ;AAC5B,YAAM,aAAa,YAAY,MAAM,GAAG,UAAU;AAClD,YAAM,YAAY,WAAW;AAC7B,YAAM,aAAa,YAAY,MAAM,MAAM,YAAY,MAAM,EAAE,MAAM,CAAC;AACtE,YAAM,YAAY,WAAW;AAC7B,YAAM,mBAAmB,WAAW,GAAG,SAAS;AAChD,YAAM,mBAAmB,WAAW,YAAY,GAAG,YAAY,IAAI,SAAS;AAC5E,YAAM,cAAc,YAAY,CAAC,YAAY,CAAC,WAAW,GAAG,UAAU,CAAC;AACvE,YAAM,SAAS,QAAQ,IAAI,WAAW;AACtC,YAAM,kBAAkB,QAAQ,SAAS,CAAC,WAAW,CAAC;AACtD,YAAM,gBAAgB,YAAY,CAAC,CAAC,SAAS,GAAG,kBAAkB,gBAAgB,CAAC;AACnF,YAAM,kBAAkB,UAAU,QAAQ,aAAa;AACvD,UAAI,aAAa,mBAAmB,iBAAiB,iBAAiB,EAAE,MAAM,WAAW;AACzF,YAAM,sBAAsB,uBAAuB,aAAa;AAChE,mBAAa,UAAU,YAAY,mBAAmB;AACtD,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,MAAM,SAAS,MAAM,QAAQ;AAAA,EAC3C;AACF;AACA,SAAS,WAAW,OAAO,MAAM;AAC/B,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,OAAO,KAAK,MAAM,EAAE,IAAI;AACpC,WAAO,KAAK,EAAE;AAAA,EAChB;AACA,SAAO;AACT;AACA,SAAS,YAAY,QAAQ;AAC3B,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,aAAS,IAAI,GAAG,IAAI,OAAO,IAAI,QAAQ,EAAE,GAAG;AAC1C,aAAO,KAAK,OAAO,IAAI,EAAE;AAAA,IAC3B;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,yBAAyB;AAAA,EAC3B,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,WAAO,EAAE,GAAG,MAAM,UAAU,CAAC,GAAG,GAAG,MAAM,UAAU,CAAC,EAAE;AAAA,EACxD;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,KAAK,IAAI,SAAS,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,OAAAC,OAAM,IAAI;AAClB,UAAMlB,QAAO,QAAQ,GAAG,CAAC;AACzB,WAAO,EAAE,GAAG,MAAM,MAAMA,OAAM,IAAI,IAAI,IAAIkB,MAAK,CAAC,EAAE;AAAA,EACpD;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,GAAG,CAAC,CAAC,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC,EAAE;AAAA,EAChD;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC;AAAA,EACf,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,KAAK,IAAI;AAChB,UAAM,EAAE,KAAK,IAAI;AACjB,WAAO;AAAA,MACL,QAAQ,MAAM;AACZ,cAAM,WAAW;AACjB,cAAM,WAAW,IAAI,KAAK;AAC1B,eAAO,IAAI,IAAI,IAAI,KAAK,IAAI,MAAM,QAAQ,GAAG,QAAQ,CAAC;AAAA,MACxD;AAAA,IACF;AAAA,EACF;AACF;AAGA,SAAS,oCAAoC,GAAG,GAAG,IAAI,cAAc,GAAG,OAAO,GAAGA,SAAQ,GAAG,OAAO,KAAK;AACvG,QAAM,SAAS,EAAE,GAAG,GAAG,GAAG;AAC1B,QAAM,QAAQ,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK;AAC/C,SAAO,OAAO,UAAU,SAAS,QAAQ,KAAK;AAChD;AACA,IAAI,qCAAqC,GAAG,EAAE,oCAAoC,CAAC;AAGnF,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK,IAAI;AAC3C,WAAO;AAAA,MACL,GAAG,MAAM,mCAAmC,GAAG,GAAG,IAAI,aAAa,MAAMA,QAAO,IAAI;AAAA,IACtF;AAAA,EACF;AACF;AAGA,SAAS,iBAAiB,IAAI,GAAG,OAAO,UAAU;AAChD,MAAI,EAAE,OAAO,MAAM,MAAM;AACvB,QAAI,QAAQ,GAAG,qBAAqB,EAAE,OAAO,QAAQ,CAAC;AAAA,EACxD;AACA,MAAI,GAAG,OAAO,MAAM,MAAM;AACxB,SAAK,QAAQ,IAAI,qBAAqB,GAAG,OAAO,QAAQ,CAAC;AAAA,EAC3D;AACA,SAAO;AAAA,IACL,GAAG,MAAM;AACP,YAAM,KAAK,IAAI,IAAI,KAAK,MAAM,OAAO,CAAC,GAAG,GAAG,KAAK,CAAC;AAClD,aAAO;AAAA,IACT;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,WAAW;AACjB,UAAM,EAAE,iBAAiB,IAAI;AAC7B,UAAM,IAAI,MAAM;AAChB,UAAM,IAAI,MAAM;AAChB,UAAM,WAAW,eAAe,kBAAkB,EAAE,KAAK;AACzD,UAAM,UAAU,iBAAiB,IAAI,GAAG,GAAG,QAAQ;AACnD,WAAO;AAAA,MACL,GAAG,MAAM;AACP,eAAO,QAAQ,KAAK;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,OAAO,MAAM,IAAI,IAAI,KAAK,aAAa,GAAG,CAAC,GAAG,SAAS,CAAC;AAC9D,UAAM,OAAO,MAAM,IAAI,IAAI,KAAK,KAAK,GAAG,CAAC,GAAG,SAAS,CAAC;AACtD,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,SAAS,eAAe,IAAI,QAAQ,QAAQ,YAAYV,UAAS,MAAM,iBAAiB;AACtF,QAAM,MAAM,gBAAgB,IAAI,MAAM,eAAe;AACrD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,eAAe;AAC/D,QAAM,UAAU,gBAAgB,QAAQ,UAAU,eAAe;AACjE,MAAI,OAAO;AACX,MAAI,UAAU;AACd,MAAI,WAAW;AACf,MAAI,eAAe;AACnB,MAAI,OAAO,SAAS,GAAG;AACrB,mBAAe;AACf,WAAO,QAAQ,KAAK,CAAC,GAAG,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAC/E,cAAU,QAAQ,QAAQ;AAAA,MACxB;AAAA,MACA,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,MACb,OAAO,MAAM;AAAA,IACf,CAAC;AACD,eAAW,QAAQ,SAAS;AAAA,MAC1B;AAAA,MACA,QAAQ,MAAM;AAAA,MACd,QAAQ,MAAM;AAAA,MACd,QAAQ,MAAM;AAAA,MACd,QAAQ,MAAM;AAAA,IAChB,CAAC;AAAA,EACH;AACA,SAAO,KAAK,SAAS,GAAG,MAAM,0DAA0D,KAAK,OAAO;AACpG,SAAO,QAAQ,SAAS,GAAG,MAAM,6DAA6D,QAAQ,OAAO;AAC7G,SAAO,SAAS,SAAS,GAAG,MAAM,8DAA8D,SAAS,OAAO;AAChH,4BAA0B,iBAAiB,MAAM,eAAe;AAChE,QAAM,SAAS,EAAE,IAAI,MAAM,OAAO,SAAS,QAAQ,SAAS;AAC5D,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,QAAM,MAAM,OAAO,UAAU,eAAe,QAAQ,KAAK;AACzD,MAAI,cAAc;AAChB,WAAO,QAAQ,KAAK,CAAC,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,IAAI,IAAI,MAAM,EAAE,CAAC;AAAA,EAC9E;AACA,SAAO;AACT;AACA,IAAI,gBAAgB,GAAG,EAAE,eAAe,CAAC;AAGzC,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,WAAO;AAAA,MACL,GAAG,MAAM,cAAc,IAAI,GAAG,GAAG,YAAYA,UAAS,MAAM,eAAe;AAAA,IAC7E;AAAA,EACF;AACF;AAGA,SAAS,aAAa,IAAI,QAAQ,QAAQ,YAAYA,UAAS,MAAM,iBAAiB;AACpF,QAAM,MAAM,gBAAgB,IAAI,MAAM,aAAa;AACnD,QAAM,SAAS,gBAAgB,QAAQ,SAAS,aAAa;AAC7D,QAAM,UAAU,gBAAgB,QAAQ,UAAU,aAAa;AAC/D,SAAO,OAAO,SAAS,IAAI,MAAM,MAAM,kBAAkB,OAAO,oCAAoC,IAAI,OAAO;AAC/G,SAAO,IAAI,SAAS,GAAG,MAAM,wDAAwD,IAAI,OAAO;AAChG,SAAO,OAAO,SAAS,GAAG,MAAM,2DAA2D,OAAO,OAAO;AACzG,4BAA0B,eAAe,MAAM,eAAe;AAC9D,QAAM,SAAS,EAAE,IAAI,KAAK,OAAO,QAAQ,QAAQ,QAAQ;AACzD,QAAM,QAAQ,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB;AAChE,SAAO,OAAO,UAAU,aAAa,QAAQ,KAAK;AACpD;AACA,IAAI,cAAc,GAAG,EAAE,aAAa,CAAC;AAGrC,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC3C,WAAO;AAAA,MACL,GAAG,MAAM,YAAY,IAAI,GAAG,GAAG,YAAYA,UAAS,IAAI;AAAA,IAC1D;AAAA,EACF;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,OAAO,eAAe,MAAM,EAAE,KAAK;AACzC,UAAM,SAAS,0BAA0B,EAAE,OAAO,IAAI;AACtD,UAAM,cAAc,OAAO;AAC3B,UAAM,aAAa,cAAc,WAAW;AAC5C,UAAM,OAAO,MAAM;AACjB,YAAM,kBAAkB,EAAE,MAAM,MAAM;AACtC,WAAK,QAAQ,CAAC,UAAU;AACtB,wBAAgB,SAAS;AAAA,MAC3B,CAAC;AACD,YAAM,aAAa,QAAQ,IAAI,eAAe;AAC9C,YAAM,MAAM,IAAI,IAAI,YAAY,MAAM,EAAE,OAAO,SAAS,CAAC,GAAG,UAAU;AACtE,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,KAAK;AAAA,EACnB;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,WAAW;AACjB,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,eAAe,MAAM,EAAE,KAAK;AAC7C,UAAM,UAAU,iBAAiB,IAAI,GAAG,GAAG,QAAQ;AACnD,WAAO;AAAA,MACL,GAAG,MAAM;AACP,eAAO,QAAQ,KAAK;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,OAAO,MAAM,IAAI,IAAI,KAAK,UAAU,GAAG,CAAC,GAAG,SAAS,CAAC;AAC3D,UAAM,OAAO,MAAM,IAAI,IAAI,KAAK,QAAQ,GAAG,CAAC,GAAG,SAAS,CAAC;AACzD,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,IAAI,MAAM;AAChB,UAAM,EAAE,SAAS,IAAI;AACrB,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE;AACxC,WAAO,EAAE,GAAG,MAAM,MAAM,IAAI,OAAO,EAAE,KAAK,EAAE;AAAA,EAC9C;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,IAAI,UAAU,GAAG,EAAE,KAAK;AAAA,MAC9C;AACA,aAAO;AAAA,IACT;AACA,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,CAAC;AACzC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACtC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACtC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,IAAI,EAAE,EAAE;AAAA,EAC5B;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,SAAS;AAAA,EACxB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,UAAU,MAAM;AACtB,WAAO,EAAE,SAAS,MAAM,MAAM,QAAQ,OAAO,SAAS,EAAE;AAAA,EAC1D;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,eAAe;AAAA,EACf,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,aAAa,QAAQ,IAAI,IAAI;AACnC,WAAO,WAAW,IAAI,CAAC,OAAO,MAAM,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,IAAI,MAAM;AAChB,UAAM,EAAE,SAAS,IAAI;AACrB,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE;AACxC,WAAO,EAAE,GAAG,MAAM,MAAM,IAAI,OAAO,EAAE,KAAK,EAAE;AAAA,EAC9C;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,GAAG,CAAC,IAAI;AAClB,UAAM,OAAO;AACb,UAAM,OAAO;AACb,UAAM,WAAW,2BAA2B,KAAK,OAAO,KAAK,KAAK;AAClE,UAAM,UAAU,MAAM;AACpB,YAAM,WAAW,KAAK,MAAM,SAAS;AACrC,UAAI,MAAM,IAAI,IAAI,IAAI,UAAU,IAAI,MAAM,IAAI,UAAU,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC;AACpE,YAAM,aAAa,iBAAiB,KAAK,OAAO,QAAQ;AACxD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,KAAK,KAAK;AAAA,IAChC;AACA,UAAM,SAAS,MAAM;AACnB,YAAM,YAAY,QAAQ,MAAM,CAAC;AACjC,YAAM,UAAU,MAAM,WAAWlB,MAAK,IAAI,GAAG,UAAU,IAAI,CAAC;AAC5D,UAAI,MAAM,IAAI,IAAI,IAAI,GAAG,OAAO,CAAC;AACjC,YAAM,aAAa,iBAAiB,KAAK,OAAO,QAAQ;AACxD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,KAAK,KAAK;AAAA,IAChC;AACA,WAAO,EAAE,GAAG,SAAS,GAAG,OAAO;AAAA,EACjC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,OAAO;AAAA,EAC3B,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG4B,MAAK,IAAI;AACnB,UAAMlB,QAAO,QAAQ,GAAG,CAAC;AACzB,WAAO;AAAA,MACL,GAAG,MAAM,MAAMA,OAAM,IAAI,IAAI,IAAIkB,MAAK,CAAC;AAAA,MACvC,OAAO,MAAM;AACX,YAAI,MAAM,MAAMlB,OAAM,UAAU,EAAE,GAAG,IAAI,IAAI,CAAC,CAAC;AAC/C,cAAM,aAAa,iBAAiBkB,OAAM,OAAO,GAAG,KAAK;AACzD,YAAI,WAAW,SAAS,GAAG;AACzB,gBAAM,KAAK,KAAK,UAAU;AAAA,QAC5B;AACA,eAAO,QAAQ,KAAKA,OAAM,KAAK;AAAA,MACjC;AAAA,IACF;AAAA,EACF;AACF;AAGA,SAAS,YAAY,GAAG,IAAI,MAAM;AAChC,QAAM,iBAAiB,EAAE,MAAM,MAAM;AACrC,iBAAe,QAAQ;AACvB,QAAM,aAAa,QAAQ,IAAI,cAAc;AAC7C,QAAM,WAAW,QAAQ,GAAG,MAAM,MAAM,KAAK;AAC7C,QAAM,cAAc,QAAQ,GAAG,MAAM,MAAM,IAAI;AAC/C,QAAM,KAAK,IAAI,UAAU,WAAW;AACpC,SAAO,IAAI,YAAY,EAAE;AAC3B;AACA,SAAS,aAAa,GAAG,IAAI,MAAM;AACjC,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,gBAAgB,QAAQ,KAAK;AACnC,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,UAAU,GAAG,YAAY;AAAA,EACvC;AACA,QAAM,WAAW,UAAU,MAAM,MAAM;AACvC,QAAM,eAAe,SAAS,OAAO,QAAQ,KAAK,QAAQ,KAAK,MAAM;AACrE,QAAM,eAAe,aAAa,OAAO,CAAC,IAAI,MAAM,KAAK,GAAG,CAAC;AAC7D,WAAS,KAAK,YAAY;AAC1B,QAAM,oBAAoB,UAAU,QAAQ,QAAQ;AACpD,MAAI,WAAW,YAAY,mBAAmB,IAAI,aAAa;AAC/D,aAAW,SAAS,QAAQ,UAAU,KAAK;AAC3C,MAAI,gBAAgB,MAAM;AACxB,UAAM,kBAAkB,qBAAqB,uBAAuB,YAAY;AAChF,eAAW,UAAU,UAAU,eAAe;AAAA,EAChD;AACA,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,KAAK,IAAI;AACjB,QAAI,UAAU,CAAC;AACf,QAAI,SAAS,UAAU,SAAS,MAAM;AACpC,gBAAU,EAAE,MAAM,IAAI,CAAC,GAAG,OAAO,EAAE;AAAA,IACrC,WAAW,OAAO,SAAS,UAAU;AACnC,gBAAU,CAAC,IAAI;AAAA,IACjB,OAAO;AACL,gBAAU;AAAA,IACZ;AACA,WAAO,EAAE,GAAG,MAAM,aAAa,GAAG,IAAI,OAAO,EAAE;AAAA,EACjD;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,YAAM,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACtC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,eAAO,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC/C;AACA,aAAO;AAAA,IACT;AACA,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC;AACpC,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,QAAQ,KAAK,KAAK,UAAU,GAAG,EAAE,KAAK;AAAA,MAC9C;AACA,YAAM,MAAM,OAAO,CAAC;AACpB,aAAO,IAAI,IAAI,KAAK,KAAK,KAAK,SAAS,CAAC,CAAC;AAAA,IAC3C;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,OAAO,CAAC,CAAC,CAAC,EAAE;AAAA,EAC5C;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,UAAMlB,QAAO,IAAI,UAAU,GAAG,CAAC,GAAG,KAAK,CAAC,CAAC;AACzC,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAKA,OAAM,SAAS,CAAC,EAAE;AAAA,EACnD;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,KAAK,CAAC,GAAG,SAAS,CAAC,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,QAAQ,IAAI,EAAE,KAAK,EAAE;AAAA,EACzC;AACF;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,cAAc,CAAC,QAAQ;AAAA,EACvB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,MAAM,IAAI;AACjB,UAAM,SAAS,EAAE,IAAI,OAAO;AAC5B,UAAM,YAAY,MAAM,OAAO,UAAU,oBAAoB,QAAQ,KAAK;AAC1E,WAAO,EAAE,QAAQ,UAAU;AAAA,EAC7B;AACF;AAGA,IAAI,kCAAkC;AAAA,EACpC,YAAY;AAAA,EACZ,cAAc,CAAC,QAAQ;AAAA,EACvB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,MAAM,IAAI;AACjB,UAAM,SAAS,EAAE,IAAI,OAAO;AAC5B,UAAM,YAAY,MAAM,OAAO,UAAU,2BAA2B,QAAQ,KAAK;AACjF,WAAO,EAAE,QAAQ,UAAU;AAAA,EAC7B;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,OAAO,eAAe,MAAM,GAAG,KAAK;AAC1C,WAAO,EAAE,GAAG,MAAM,QAAQ,IAAI,IAAI,EAAE;AAAA,EACtC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,WAAW;AAAA,EAC1B,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,SAAS,IAAI;AACpB,WAAO;AAAA,MACL,WAAW,MAAM,KAAK,UAAU,SAAS,GAAG,SAAS;AAAA,MACrD,GAAG,MAAM,IAAI,IAAI,KAAK,WAAW,GAAG,KAAK,CAAC;AAAA,MAC1C,GAAG,MAAM,IAAI,IAAI,KAAK,WAAW,SAAS,GAAG,GAAG,KAAK,CAAC;AAAA,IACxD;AAAA,EACF;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO;AAAA,MACL,GAAG,MAAM;AACP,cAAMA,QAAO,QAAQ,GAAG,OAAO,CAAC,CAAC;AACjC,cAAM,cAAc,OAAO,eAAe;AAC1C,cAAMiB,UAAS,OAAO,UAAU;AAChC,cAAM,qBAAqB,IAAI,IAAIA,OAAM;AACzC,cAAM,mBAAmB,IAAI,IAAI,IAAI,WAAW,GAAG,IAAI,KAAK,GAAG,SAAS,CAAC,CAAC;AAC1E,eAAO,MAAMjB,OAAM,oBAAoB,gBAAgB;AAAA,MACzD;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,GAAG,IAAI,OAAO,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE;AAAA,EACvD;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,KAAK,GAAG,SAAS,CAAC,GAAG,EAAE,EAAE;AAAA,EACrD;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,KAAK,KAAK,GAAG,SAAS,CAAC,GAAG,EAAE,EAAE;AAAA,EACtD;AACF;AAGA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,OAAO,MAAAL,MAAK,IAAI;AACxB,UAAM,aAAa,EAAE;AACrB,UAAM,CAAC,QAAQ,KAAK,IAAI,iBAAiB,GAAG,OAAOA,KAAI;AACvD,UAAM,WAAW,CAAC;AAClB,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM,MAAM;AACnC,eAAS,KAAK,CAAC,OAAO,KAAK,WAAW,MAAM,OAAO,MAAM,MAAM,GAAG,CAAC;AAAA,IACrE;AACA,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,QAAQ,EAAE;AAAA,EACtC;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,IAAI,IAAI;AAChB,UAAM,WAAW;AACjB,UAAM,WAAW,IAAI,IAAI,CAAC;AAC1B,WAAO;AAAA,MACL,QAAQ,MAAM,IAAI,UAAU,IAAI,KAAK,UAAU,CAAC,GAAG,GAAG,QAAQ,GAAG,CAAC,CAAC;AAAA,IACrE;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,QAAQ,CAAC,CAAC,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,YAAY,SAAS,IAAI;AACjC,WAAO,EAAE,GAAG,MAAM,eAAe,IAAI,YAAY,QAAQ,EAAE;AAAA,EAC7D;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,EAAE,KAAK,IAAI;AACjB,WAAO,EAAE,GAAG,MAAM,OAAO,IAAI,IAAI,EAAE;AAAA,EACrC;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,KAAK,KAAK,GAAG,SAAS,CAAC,GAAG,CAAC,CAAC,EAAE;AAAA,EAC9D;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,IAAI,KAAK,GAAG,SAAS,GAAG,CAAC,CAAC,EAAE;AAAA,EACxD;AACF;AAGA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,MAAM,OAAO,CAAC;AACpB,UAAM,OAAO,MAAM,IAAI,IAAI,IAAI,KAAK,IAAI,GAAG,CAAC,CAAC,CAAC;AAC9C,UAAM,OAAO,MAAM,IAAI,IAAI,IAAI,KAAK,IAAI,GAAG,CAAC,CAAC,CAAC;AAC9C,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,KAAK,GAAG;AAAA,EACvB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,GAAG,CAAC,IAAI;AACf,UAAM,WAAW,2BAA2B,EAAE,OAAO,EAAE,KAAK;AAC5D,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM;AACV,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,KAAK,EAAE,KAAK;AAAA,IAC7B;AACA,UAAM,OAAO,MAAM;AACjB,UAAI,MAAM;AACV,YAAM,aAAa,iBAAiB,EAAE,OAAO,QAAQ;AACrD,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,KAAK,KAAK,UAAU;AAAA,MAC5B;AACA,aAAO,QAAQ,IAAI,GAAG,GAAG,EAAE,KAAK;AAAA,IAClC;AACA,WAAO,EAAE,GAAG,MAAM,GAAG,KAAK;AAAA,EAC5B;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,kBAAkB,EAAE,MAAM,MAAM;AACtC,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,OAAO,eAAe,MAAM,EAAE,KAAK;AACzC,SAAK,QAAQ,CAAC,UAAU;AACtB,sBAAgB,SAAS;AAAA,IAC3B,CAAC;AACD,UAAM,aAAa,QAAQ,IAAI,eAAe;AAC9C,UAAM,OAAO,IAAI,YAAY,MAAM,EAAE,OAAO,SAAS,CAAC;AACtD,WAAO,EAAE,GAAG,MAAM,KAAK;AAAA,EACzB;AACF;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,OAAO,IAAI,CAAC,CAAC,CAAC,EAAE;AAAA,EAC5C;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,eAAe,CAAC,IAAI;AAAA,EACpB,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,CAAC,IAAI;AACZ,WAAO,EAAE,GAAG,MAAM,IAAI,IAAI,OAAO,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,EAAE,EAAE;AAAA,EACvD;AACF;AAGA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,cAAc,CAAC,GAAG;AAAA,EAClB,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,CAAC,CAAC,IAAI;AACZ,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,OAAO,MAAM;AACjB,UAAI,QAAQ,UAAU,CAAC;AACvB,UAAI,EAAE,SAAS,GAAG;AAChB,iBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,kBAAQ,KAAK,OAAO,MAAM,IAAI,CAAC,KAAK,EAAE,MAAM,EAAE,GAAG,CAAC,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,QAChE;AAAA,MACF,WAAW,EAAE,SAAS,GAAG;AACvB,iBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,mBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,oBAAQ,KAAK,OAAO,MAAM,IAAI,CAAC,KAAK,EAAE,MAAM,IAAI,IAAI,EAAE,MAAM,EAAE,GAAG;AAAA,cAC/D,EAAE,MAAM;AAAA,cACR,EAAE,MAAM;AAAA,YACV,CAAC,CAAC;AAAA,UACJ;AAAA,QACF;AAAA,MACF,WAAW,EAAE,SAAS,GAAG;AACvB,iBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,mBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,qBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,sBAAQ,KAAK,OAAO,MAAM,IAAI,CAAC,KAAK,EAAE,MAAM,IAAI,IAAI,EAAE,MAAM,IAAI,IAAI,EAAE,MAAM,EAAE,GAAG,CAAC,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,YACxH;AAAA,UACF;AAAA,QACF;AAAA,MACF,WAAW,EAAE,SAAS,GAAG;AACvB,iBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,mBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,qBAAS,IAAI,GAAG,IAAI,KAAK,IAAI,EAAE,GAAG;AAChC,uBAAS,KAAK,GAAG,KAAK,KAAK,IAAI,EAAE,IAAI;AACnC,wBAAQ,KAAK,OAAO,MAAM,IAAI;AAAA,kBAC5B,KAAK,EAAE,MAAM;AAAA,kBACb,IAAI,EAAE,MAAM;AAAA,kBACZ,IAAI,EAAE,MAAM;AAAA,kBACZ,KAAK,EAAE,MAAM;AAAA,gBACf,GAAG,CAAC,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,cACtD;AAAA,YACF;AAAA,UACF;AAAA,QACF;AAAA,MACF,OAAO;AACL,cAAM,IAAI,MAAM,2DAA2D,EAAE,mBAAmB;AAAA,MAClG;AACA,aAAO;AAAA,IACT;AACA,WAAO,EAAE,GAAG,KAAK;AAAA,EACnB;AACF;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,iBAAiB;AACvB,UAAM,EAAE,KAAK,IAAI;AACjB,UAAM,WAAW,uBAAuB,IAAI;AAC5C,WAAO,EAAE,GAAG,MAAM,UAAU,IAAI,QAAQ,EAAE;AAAA,EAC5C;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,UAAU,CAAC,IAAI,OAAO,UAAU;AAC9B,UAAM,cAAc;AACpB,UAAM,EAAE,KAAK,IAAI;AACjB,WAAO,EAAE,OAAO,MAAM,MAAM,IAAI,IAAI,EAAE;AAAA,EACxC;AACF;AAGA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,cAAc,CAAC,YAAY;AAAA,EAC3B,UAAU,CAAC,IAAI,UAAU;AACvB,UAAM,CAAC,UAAU,IAAI;AACrB,UAAM,OAAO,MAAM;AACjB,aAAO,oBAAoB,IAAI,UAAU;AAAA,IAC3C;AACA,WAAO,EAAE,GAAG,KAAK;AAAA,EACnB;AACF;AACA,SAAS,oBAAoB,GAAG,SAAS;AACvC,QAAM,qBAAqB,QAAQ,SAAS,UAAU,OAAO,CAAC;AAC9D,QAAM,WAAW,OAAO,GAAG,kBAAkB;AAC7C,MAAI,aAAa,aAAa,SAAS,OAAO,GAAG,OAAO,CAAC;AACzD,QAAM,WAAW,SAAS,OAAO,WAAW;AAC5C,WAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,iBAAa,WAAW,YAAY,KAAK,CAAC;AAAA,EAC5C;AACA,eAAa,WAAW,YAAY,MAAM,SAAS,OAAO,MAAM,CAAC;AACjE,QAAM,YAAY,UAAU,QAAQ;AACpC,SAAO,MAAM,YAAY,UAAU,SAAS;AAC9C;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,UAAU,CAAC,OAAO;AAChB,WAAO,EAAE,GAAG,MAAM,UAAU,EAAE,EAAE;AAAA,EAClC;AACF;AAGA,IAAI,cAAc;AAAA,EAChB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,kBAAkB,aAAa;AACxC,mBAAiB,cAAc;AACjC;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,CAAC;AACrB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,MAAM,QAAQ;AACjC;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,MAAM,QAAQ;AACjC;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,MAAM;AACvD,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,IAAI;AAC1B;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,MAAM;AACvD,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,IAAI;AAC1B;AAGA,qBAAqB,EAAE,UAAU,WAAW,WAAW;AACrD,OAAK,gBAAgB;AACrB,SAAO,KAAK,SAAS,GAAG,MAAM,qCAAqC;AACnE,SAAO,QAAQ,MAAM,CAAC,CAAC;AACzB;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,OAAO;AACxD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,KAAK;AACzB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,KAAK,IAAI,CAAC;AAClC;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,SAAS;AAC9D,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,MAAM,OAAO,CAAC;AACtC;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,SAAS,OAAO;AACrE,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,MAAM,SAAS,KAAK,CAAC;AAC7C;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,SAAS,OAAO,QAAQ;AAC7E,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,MAAM,SAAS,OAAO,MAAM,CAAC;AACrD;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,SAAS,OAAO,QAAQ,QAAQ;AACrF,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,MAAM,SAAS,OAAO,QAAQ,MAAM,CAAC;AAC7D;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,GAAG;AACnD,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAM,CAAC;AACtB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,YAAYa,UAAS,MAAM,iBAAiB;AAC9F,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,YAAYA,UAAS,MAAM,eAAe;AACjE;AAGA,qBAAqB,EAAE,UAAU,iBAAiB,SAAS,YAAY,OAAO;AAC5E,OAAK,gBAAgB;AACrB,SAAO,eAAe,MAAM,YAAY,KAAK;AAC/C;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,OAAO,UAAU,QAAQS,SAAQ,iBAAiB;AACtG,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,OAAO,UAAU,QAAQA,SAAQ,eAAe;AACzE;AAGA,qBAAqB,EAAE,UAAU,cAAc,SAAS,OAAO;AAC7D,OAAK,gBAAgB;AACrB,SAAO,YAAY,MAAM,KAAK;AAChC;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,OAAO;AACtD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,KAAK;AACzB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,cAAc,SAAS,MAAM,MAAM;AAClE,OAAK,gBAAgB;AACrB,SAAO,YAAY,MAAM,MAAM,IAAI;AACrC;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,GAAG,MAAM;AAC1D,OAAK,gBAAgB;AACrB,MAAI,aAAa,QAAQ;AACvB,QAAI,CAAC,CAAC;AAAA,EACR;AACA,SAAO,OAAO,CAAC,MAAM,GAAG,CAAC,GAAG,IAAI;AAClC;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,QAAQ,QAAQ,MAAM,YAAY,UAAU,iBAAiB;AAC9G,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,QAAQ,QAAQ,MAAM,YAAY,UAAU,eAAe;AACjF;AAGA,qBAAqB,EAAE,UAAU,kBAAkB,SAAS,QAAQ,aAAaT,UAAS,MAAM,iBAAiB;AAC/G,OAAK,gBAAgB;AACrB,SAAO,gBAAgB,MAAM,QAAQ,aAAaA,UAAS,MAAM,eAAe;AAClF;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,QAAQA,UAAS,MAAM,YAAY,WAAW,iBAAiB;AAChH,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,QAAQA,UAAS,MAAM,YAAY,WAAW,eAAe;AACnF;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,MAAM,WAAW,UAAU;AAC7E,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,MAAM,WAAW,QAAQ;AAChD;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,MAAM,WAAW,UAAU;AAC5E,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,MAAM,WAAW,QAAQ;AAC/C;AAGA,qBAAqB,EAAE,UAAU,eAAe,SAAS,WAAW,YAAY;AAC9E,OAAK,gBAAgB;AACrB,SAAO,aAAa,MAAM,WAAW,UAAU;AACjD;AAGA,qBAAqB,EAAE,UAAU,kBAAkB,SAAS,QAAQA,UAAS,MAAM,YAAY,WAAW,iBAAiB;AACzH,OAAK,gBAAgB;AACrB,SAAO,gBAAgB,MAAM,QAAQA,UAAS,MAAM,YAAY,WAAW,eAAe;AAC5F;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,QAAQA,UAAS,MAAM,WAAW,YAAY;AACnG,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,QAAQA,UAAS,MAAM,WAAW,UAAU;AACtE;AAGA,qBAAqB,EAAE,UAAU,WAAW,SAAS,GAAG;AACtD,OAAK,gBAAgB;AACrB,SAAO,SAAS,MAAM,CAAC;AACzB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,GAAG;AACnD,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAM,CAAC;AACtB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,gBAAgB,SAAS,MAAM,UAAU;AACxE,OAAK,gBAAgB;AACrB,SAAO,cAAc,MAAM,MAAM,QAAQ;AAC3C;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,MAAM;AAC3D,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,IAAI;AAC9B;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,UAAU,WAAW;AACpD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC,KAAK,IAAI,CAAC;AAClC;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,WAAW,SAAS,GAAG;AACtD,OAAK,gBAAgB;AACrB,SAAO,SAAS,MAAM,CAAC;AACzB;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,SAAS,MAAM;AAChE,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,SAAS,IAAI;AACnC;AAGA,qBAAqB,EAAE,UAAU,eAAe,SAAS,GAAG;AAC1D,OAAK,gBAAgB;AACrB,SAAO,aAAa,MAAM,CAAC;AAC7B;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,GAAG;AACrD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC;AACxB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,WAAW,WAAW;AACrD,OAAK,gBAAgB;AACrB,SAAO,UAAU,IAAI;AACvB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,OAAO,IAAI;AACpB;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAASU,QAAO;AAC3D,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAMA,MAAK;AAC9B;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,GAAG;AACvD,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,CAAC;AAC1B;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,GAAG;AAClD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,CAAC;AACrB;AAGA,qBAAqB,EAAE,UAAU,6BAA6B,SAAS,aAAa,MAAMA,QAAO,MAAM;AACrG,OAAK,gBAAgB;AACrB,SAAO,2BAA2B,MAAM,aAAa,MAAMA,QAAO,IAAI;AACxE;AAGA,qBAAqB,EAAE,UAAU,aAAa,WAAW;AACvD,OAAK,gBAAgB;AACrB,SAAO,WAAW,IAAI;AACxB;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,MAAM;AAC3D,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,IAAI;AAC9B;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,MAAM,UAAU;AACpE,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,MAAM,QAAQ;AACvC;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO5B,MAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,GAAG;AACxD,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,CAAC;AAC3B;AAGA,qBAAqB,EAAE,UAAU,aAAa,WAAW;AACvD,OAAK,gBAAgB;AACrB,SAAO,WAAW,IAAI;AACxB;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,GAAG;AACvD,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,CAAC;AAC1B;AAGA,qBAAqB,EAAE,UAAU,aAAa,SAAS,GAAG;AACxD,OAAK,gBAAgB;AACrB,SAAO,WAAW,MAAM,CAAC;AAC3B;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,GAAG,YAAY,YAAY;AAC5E,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,GAAG,YAAY,UAAU;AAC/C;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,YAAYkB,UAAS,MAAM,iBAAiB;AAC9F,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,YAAYA,UAAS,MAAM,eAAe;AACjE;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,MAAM,QAAQ;AACjC;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,GAAG;AACrD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC;AACxB;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,UAAU;AAC/D,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,MAAM,QAAQ;AAClC;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,MAAM,QAAQ;AACjC;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,GAAG;AACrD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,CAAC;AACxB;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,UAAU,MAAM;AACpE,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,UAAU,IAAI;AACvC;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,KAAK,MAAM,UAAU;AACpE,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,KAAK,MAAM,QAAQ;AACvC;AAGA,qBAAqB,EAAE,UAAU,WAAW,SAAS,GAAG;AACtD,OAAK,gBAAgB;AACrB,SAAO,SAAS,MAAM,CAAC;AACzB;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,OAAO,UAAU,GAAG,WAAW,GAAG;AACnF,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,OAAO,SAAS,QAAQ;AAC9C;AAGA,qBAAqB,EAAE,UAAU,WAAW,WAAW;AACrD,OAAK,gBAAgB;AACrB,SAAO,SAAS,IAAI;AACtB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,UAAU,eAAe;AACvE,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,UAAU,aAAa;AAC1C;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,aAAa,aAAae,UAAS,cAAcf,UAAS,iBAAiB;AAC1H,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,aAAa,aAAae,UAAS,cAAcf,UAAS,eAAe;AAC7F;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM;AACpD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,IAAI;AACvB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAASU,QAAO;AACvD,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAMA,MAAK;AAC1B;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM,UAAU;AAC/D,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,MAAM,QAAQ;AAClC;AAGA,qBAAqB,EAAE,UAAU,aAAa,WAAW;AACvD,OAAK,gBAAgB;AACrB,SAAO,WAAW,IAAI;AACxB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,GAAG;AACvD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,EAAE,KAAK;AAC9B;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,OAAO;AACzD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,KAAK;AAC5B;AAGA,qBAAqB,EAAE,UAAU,iBAAiB,SAAS,YAAY,cAAc,kBAAkB;AACrG,OAAK,gBAAgB;AACrB,SAAO,eAAe,MAAM,YAAY,cAAc,gBAAgB;AACxE;AAGA,qBAAqB,EAAE,UAAU,wBAAwB,SAAS,YAAY,cAAc,kBAAkB;AAC5G,OAAK,gBAAgB;AACrB,SAAO,sBAAsB,MAAM,YAAY,cAAc,gBAAgB;AAC/E;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,MAAM;AACxD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,IAAI;AAC3B;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,OAAO,IAAI;AACpB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,kBAAkB,SAAS,iBAAiB,iBAAiBV,UAAS,MAAM,UAAU,YAAY;AACjI,OAAK,gBAAgB;AACrB,SAAO,gBAAgB,MAAM,iBAAiB,iBAAiBA,UAAS,MAAM,UAAU,UAAU;AACpG;AAGA,qBAAqB,EAAE,UAAU,UAAU,WAAW;AACpD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,IAAI;AACrB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,OAAOb,OAAM;AAC7D,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAM,OAAOA,KAAI;AAChC;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,KAAK;AACvD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,GAAG;AAC1B;AAGA,qBAAqB,EAAE,UAAU,WAAW,WAAW;AACrD,OAAK,gBAAgB;AACrB,SAAO,SAAS,IAAI;AACtB;AAGA,qBAAqB,EAAE,UAAU,iBAAiB,SAAS,YAAY,UAAU;AAC/E,OAAK,gBAAgB;AACrB,SAAO,eAAe,MAAM,YAAY,QAAQ;AAClD;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,iBAAiB,MAAM;AACvE,OAAK,gBAAgB;AACrB,SAAO,MAAM,MAAM,iBAAiB,IAAI;AAC1C;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,KAAK,IAAI;AAClB;AAGA,qBAAqB,EAAE,UAAU,SAAS,WAAW;AACnD,OAAK,gBAAgB;AACrB,SAAO,OAAO,IAAI;AACpB;AAGA,qBAAqB,EAAE,UAAU,oBAAoB,SAAS,GAAG;AAC/D,OAAK,gBAAgB;AACrB,SAAO,kBAAkB,MAAM,CAAC;AAClC;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,MAAM;AACxD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,IAAI;AAC3B;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,GAAG,MAAM;AACzD,OAAK,gBAAgB;AACrB,QAAM,qBAAqB,aAAa,SAAS,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC;AACxE,SAAO,MAAM,oBAAoB,IAAI;AACvC;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAASuB,QAAO;AACtD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAMA,MAAK;AACzB;AAGA,qBAAqB,EAAE,UAAU,eAAe,SAAS,OAAO,KAAKV,UAAS,WAAW,SAAS,cAAc,aAAa,gBAAgB;AAC3I,OAAK,gBAAgB;AACrB,SAAO,aAAa,MAAM,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AAC9G;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,GAAG;AACjD,OAAK,gBAAgB;AACrB,SAAO,IAAI,MAAM,CAAC;AACpB;AAGA,qBAAqB,EAAE,UAAU,MAAM,SAAS,MAAM,UAAU;AAC9D,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,MAAM,QAAQ;AAClC;AAGA,qBAAqB,EAAE,UAAU,MAAM,WAAW;AAChD,OAAK,gBAAgB;AACrB,SAAO,IAAI,IAAI;AACjB;AAGA,qBAAqB,EAAE,UAAU,OAAO,WAAW;AACjD,OAAK,gBAAgB;AACrB,SAAO,MAAM,IAAI;AACnB;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,MAAM;AACrD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,IAAI;AACxB;AAGA,qBAAqB,EAAE,UAAU,SAAS,WAAW;AACnD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,MAAM;AAC1B;AAGA,qBAAqB,EAAE,UAAU,UAAU,WAAW;AACpD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,SAAS;AAC7B;AAGA,qBAAqB,EAAE,UAAU,QAAQ,WAAW;AAClD,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,OAAO;AAC3B;AAGA,qBAAqB,EAAE,UAAU,OAAO,SAAS,GAAG,QAAQ;AAC1D,OAAK,gBAAgB;AACrB,SAAO,KAAK,MAAM,GAAG,MAAM;AAC7B;AAGA,qBAAqB,EAAE,UAAU,YAAY,SAAS,MAAM;AAC1D,OAAK,gBAAgB;AACrB,SAAO,UAAU,MAAM,IAAI;AAC7B;AAGA,qBAAqB,EAAE,UAAU,SAAS,SAAS,MAAM;AACvD,OAAK,gBAAgB;AACrB,SAAO,OAAO,MAAM,IAAI;AAC1B;AAGA,qBAAqB,EAAE,UAAU,qBAAqB,SAAS,YAAY,aAAa;AACtF,OAAK,gBAAgB;AACrB,SAAO,mBAAmB,MAAM,YAAY,WAAW;AACzD;AAGA,qBAAqB,EAAE,UAAU,UAAU,SAAS,MAAM;AACxD,OAAK,gBAAgB;AACrB,SAAO,QAAQ,MAAM,IAAI;AAC3B;AAGA,qBAAqB,EAAE,UAAU,QAAQ,SAAS,WAAW,GAAG;AAC9D,OAAK,gBAAgB;AACrB,SAAO,MAAM,WAAW,MAAM,CAAC;AACjC;AAGA,qBAAqB,EAAE,UAAU,YAAY,WAAW;AACtD,OAAK,gBAAgB;AACrB,SAAO,UAAU,IAAI;AACvB;AAGA,IAAI,iBAAiB,cAAc,MAAM;AAAA,EACvC,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,eAAe,SAAS;AAAA,EACtD;AACF;AACA,IAAI,eAAe,cAAc,MAAM;AAAA,EACrC,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,aAAa,SAAS;AAAA,EACpD;AACF;AACA,IAAI,aAAa,cAAc,MAAM;AAAA,EACnC,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,WAAW,SAAS;AAAA,EAClD;AACF;AACA,IAAI,sBAAsB,cAAc,MAAM;AAAA,EAC5C,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,oBAAoB,SAAS;AAAA,EAC3D;AACF;AACA,IAAI,iBAAiB,cAAc,MAAM;AAAA,EACvC,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,WAAO,eAAe,MAAM,eAAe,SAAS;AAAA,EACtD;AACF;AAGA,IAAI,WAAW,MAAM;AAAA,EACnB,YAAY,YAAY;AACtB,SAAK,aAAa,cAAc;AAChC,SAAK,QAAwB,oBAAI,IAAI;AAAA,EACvC;AAAA,EACA,IAAI,KAAK;AACP,QAAI;AACJ,QAAI,KAAK,MAAM,IAAI,GAAG,GAAG;AACvB,cAAQ,KAAK,MAAM,IAAI,GAAG;AAC1B,WAAK,MAAM,OAAO,GAAG;AACrB,WAAK,MAAM,IAAI,KAAK,KAAK;AAAA,IAC3B;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,KAAK,OAAO;AACd,QAAI,KAAK,MAAM,IAAI,GAAG,GAAG;AACvB,WAAK,MAAM,OAAO,GAAG;AAAA,IACvB,WAAW,KAAK,MAAM,QAAQ,KAAK,YAAY;AAC7C,YAAM,cAAc,KAAK,MAAM,KAAK,EAAE,KAAK,EAAE;AAC7C,WAAK,MAAM,OAAO,WAAW;AAAA,IAC/B;AACA,SAAK,MAAM,IAAI,KAAK,KAAK;AAAA,EAC3B;AAAA,EACA,gBAAgB;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,cAAc,YAAY;AACxB,QAAI,aAAa,GAAG;AAClB,YAAM,IAAI,MAAM,4DAA4D,aAAa;AAAA,IAC3F;AACA,QAAI,KAAK,aAAa,YAAY;AAChC,eAAS,KAAK,GAAG,KAAK,KAAK,aAAa,YAAY,MAAM;AACxD,cAAM,cAAc,KAAK,MAAM,KAAK,EAAE,KAAK,EAAE;AAC7C,aAAK,MAAM,OAAO,WAAW;AAAA,MAC/B;AAAA,IACF;AACA,SAAK,aAAa;AAAA,EACpB;AACF;AAGA,SAAS,aAAa,OAAO,WAAW;AACtC,MAAI,MAAM,QAAQ,KAAK,GAAG;AACxB,QAAI,WAAW,CAAC;AAChB,aAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,iBAAW,SAAS,OAAO,KAAK;AAAA,IAClC;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,WAAW,IAAI,MAAM,SAAS;AACpC,aAAS,KAAK,KAAK;AACnB,WAAO;AAAA,EACT;AACF;AACA,SAAS,QAAQ,KAAK,SAAS;AAC7B,MAAI,CAAC,KAAK;AACR,UAAM,IAAI,eAAe,OAAO;AAAA,EAClC;AACF;AACA,SAAS,MAAM,QAAQ,UAAU;AAC/B,MAAI,UAAU;AACd,aAAW,QAAQ,QAAQ;AACzB,QAAI,SAAS,UAAU;AACrB;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,IAAI;AAC5B,MAAI,GAAG,WAAW,GAAG;AACnB,WAAO,GAAG;AAAA,EACZ;AACA,SAAO;AACT;AACA,SAAS,OAAO,GAAG;AACjB,MAAI,MAAM,QAAQ,CAAC,GAAG;AACpB,WAAO;AAAA,EACT;AACA,SAAO,CAAC,CAAC;AACX;AACA,SAAS,YAAY,MAAM;AACzB,QAAM,eAAe,KAAK,QAAQ,wBAAwB,OAAO;AACjE,QAAM,WAAW,aAAa,QAAQ,mBAAmB,OAAO,EAAE,YAAY;AAC9E,MAAI,SAAS,OAAO,KAAK;AACvB,WAAO;AAAA,EACT;AACA,SAAO,YAAY;AACrB;AACA,SAAS,YAAY,YAAY;AAC/B,MAAI,WAAW,UAAU,GAAG;AAC1B,WAAO;AAAA,EACT;AACA,MAAI,WAAW,QAAQ,GAAG,MAAM,IAAI;AAClC,WAAO;AAAA,EACT;AACA,SAAO,WAAW,QAAQ,eAAe,CAAC,GAAG,OAAO,GAAG,YAAY,CAAC;AACtE;AACA,IAAI,yBAAyB,CAAC;AAC9B,SAAS,qBAAqBL,WAAU;AACtC,MAAIA,cAAa,QAAQA,cAAa,QAAQ;AAC5C,WAAO;AAAA,EACT;AACA,QAAM,OAAO,CAAC;AACd,OAAK,eAAeA,UAAS,aAAa;AAC1C,OAAK,YAAYA,UAAS,UAAU;AACpC,SAAO;AACT;AACA,SAAS,8BAA8BO,SAAQ;AAC7C,MAAIA,WAAU,QAAQ,OAAOA,YAAW,UAAU;AAChD;AAAA,EACF,WAAW,MAAM,QAAQA,OAAM,GAAG;AAChC,IAAAA,QAAO,QAAQ,CAAC,eAAe,8BAA8B,UAAU,CAAC;AAAA,EAC1E,OAAO;AACL,UAAM,SAAS,OAAO,KAAKA,OAAM;AACjC,eAAW,SAAS,QAAQ;AAC1B,YAAM,QAAQA,QAAO;AACrB,UAAI,SAAS,QAAQ,OAAO,UAAU,UAAU;AAC9C,YAAI,CAAC,MAAM,QAAQ,KAAK,KAAK,MAAM,YAAY,aAAa,OAAO,MAAM,aAAa,UAAU;AAC9F,UAAAA,QAAO,SAAS,MAAM;AAAA,QACxB,OAAO;AACL,wCAA8B,KAAK;AAAA,QACrC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,uBAAuB,YAAY,gBAAgB,CAAC,GAAG,gBAAgB,CAAC,GAAG,sBAAsB,UAAU,iBAAiB,OAAO;AAC1I,MAAI,OAAO,eAAe,UAAU;AAClC,UAAM,eAAe;AACrB,QAAI;AACJ,QAAI,gBAAgB,eAAe;AACjC,WAAK,cAAc;AAAA,IACrB,WAAW,gBAAgB,wBAAwB;AACjD,WAAK,uBAAuB;AAAA,IAC9B,OAAO;AACL,WAAK,cAAc;AACnB,UAAI,MAAM,MAAM;AACd,cAAM,IAAI,WAAW,WAAW,wBAAwB;AAAA,SACvD;AAAA,gBACO,qHAAqH;AAAA,MAC/H;AAAA,IACF;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAMA,UAAS;AACf,QAAIA,QAAO,gBAAgB,QAAQA,QAAO,aAAa,MAAM;AAC3D,YAAM,IAAI,WAAW,GAAG,gDAAgD,KAAK,UAAUA,OAAM;AAAA,mCAChE;AAAA,IAC/B;AACA,UAAM,YAAYA,QAAO;AACzB,QAAI,KAAK;AACT,QAAI,aAAa,eAAe;AAC9B,OAAC,KAAK,UAAU,IAAI,cAAc;AAAA,IACpC,WAAW,aAAa,wBAAwB;AAC9C,OAAC,KAAK,UAAU,IAAI,uBAAuB;AAAA,IAC7C,WAAW,aAAa,eAAe;AACrC,OAAC,KAAK,UAAU,IAAI,cAAc;AAAA,IACpC;AACA,QAAI,OAAO,MAAM;AACf,YAAM,IAAI,WAAW,WAAW,wBAAwB;AAAA,SACrD;AAAA,gBACO,qHAAqH;AAAA,IACjI;AACA,QAAI,cAAc,MAAM;AACtB,YAAM,wBAAwB,CAAC;AAC/B,iBAAW,OAAO,OAAO,KAAK,sBAAsB,GAAG;AACrD,8BAAsB,OAAO,uBAAuB;AAAA,MACtD;AACA,iBAAW,OAAO,OAAO,KAAK,aAAa,GAAG;AAC5C,8BAAsB,OAAO,cAAc;AAAA,MAC7C;AACA,YAAM,eAAeA,QAAO;AAC5B,mBAAa,mBAAmB;AAChC,YAAM,sBAAsB,OAAO,OAAO,CAAC,GAAG,sBAAsB;AACpE,iBAAW,OAAO,OAAO,KAAK,aAAa,GAAG;AAC5C,+BAAuB,OAAO,cAAc;AAAA,MAC9C;AACA,oCAA8BA,QAAO,SAAS;AAC9C,YAAM,YAAY,WAAW,KAAKA,QAAO,WAAW,eAAe,cAAc;AACjF,+BAAyB,OAAO,OAAO,CAAC,GAAG,mBAAmB;AAC9D,aAAO;AAAA,IACT,OAAO;AACL,YAAM,sBAAsB,OAAO,OAAO,CAAC,GAAG,sBAAsB;AACpE,iBAAW,OAAO,OAAO,KAAK,aAAa,GAAG;AAC5C,+BAAuB,OAAO,cAAc;AAAA,MAC9C;AACA,YAAM,YAAY,IAAI,IAAIA,QAAO,SAAS;AAC1C,+BAAyB,OAAO,OAAO,CAAC,GAAG,mBAAmB;AAC9D,aAAO;AAAA,IACT;AAAA,EACF;AACF;AACA,SAAS,cAAc,GAAG,GAAG;AAC3B,SAAO,IAAI,IAAI,KAAK,IAAI,IAAI,IAAI;AAClC;AACA,SAAS,qBAAqB,GAAG,GAAG;AAClC,SAAO,KAAK,cAAc,GAAG,CAAC;AAChC;AACA,SAAS,QAAQ,IAAI;AACnB,MAAI,MAAM,MAAM;AACd,WAAO;AAAA,EACT;AACA,QAAM,MAAM,CAAC;AACb,aAAW,KAAK,IAAI;AAClB,QAAI,IAAI,QAAQ,CAAC,MAAM,IAAI;AACzB,UAAI,KAAK,CAAC;AAAA,IACZ;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,cAAc,KAAK;AAC1B,MAAI,OAAO,MAAM;AACf,UAAM,IAAI,WAAW,yBAAyB,KAAK,UAAU,GAAG,GAAG;AAAA,EACrE;AACA,aAAW,OAAO,KAAK;AACrB,QAAI,IAAI,eAAe,GAAG,GAAG;AAC3B,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,0BAA0B,QAAQ,OAAO,OAAO;AACvD,MAAI,SAAS,MAAM;AACjB;AAAA,EACF;AACA,MAAI,OAAO,QAAQ,KAAK,IAAI,GAAG;AAC7B,UAAM,IAAI,WAAW,GAAG,wBAAwB,4BAA4B,2BAA2B;AAAA,EACzG;AACF;AACA,SAAS,wBAAwB,GAAG,cAAc,YAAY,GAAG,YAAY,UAAU;AACrF,UAAQ,aAAa,CAAC;AACtB,UAAQ,aAAa,SAAS;AAC9B,SAAO,MAAM,QAAQ,CAAC,KAAK,EAAE,UAAU,aAAa,EAAE,UAAU,aAAa,EAAE,MAAM,CAAC,OAAO,OAAO,OAAO,YAAY;AACzH;AACA,SAAS,sBAAsB,OAAO,MAAM;AAC1C,MAAI,MAAM,QAAQ,KAAK,GAAG;AACxB,iBAAa,OAAO,MAAM,SAAS,GAAG,MAAM,GAAG,sCAAsC;AACrF,UAAM,QAAQ,CAAC,GAAG,OAAO,sBAAsB,GAAG,WAAW,KAAK,QAAQ,MAAM,CAAC;AAAA,EACnF,OAAO;AACL,iBAAa,OAAO,OAAO,UAAU,KAAK,KAAK,QAAQ,GAAG,MAAM,YAAY,0CAA0C,uBAAuB,KAAK,IAAI;AAAA,EACxJ;AACF;AACA,SAAS,uBAAuB,OAAO;AACrC,MAAI,UAAU,MAAM;AAClB,WAAO;AAAA,EACT,WAAW,MAAM,QAAQ,KAAK,GAAG;AAC/B,WAAO,MAAM,MAAM,IAAI,CAAC,MAAM,uBAAuB,CAAC,CAAC,EAAE,KAAK,GAAG,IAAI;AAAA,EACvE,WAAW,OAAO,UAAU,UAAU;AACpC,WAAO,IAAI;AAAA,EACb,OAAO;AACL,WAAO,GAAG;AAAA,EACZ;AACF;AACA,SAAS,SAAS,GAAG,QAAQ,SAAS;AACpC,MAAIc,aAAW,WAAW,OAAO,QAAQ,IAAI,aAAa,IAAI;AAC9D,MAAI;AACJ,QAAM,KAAK,IAAI,SAAS;AACtB,UAAMpB,QAAO,WAAW,OAAO,QAAQ,IAAI,aAAa,IAAI;AAC5D,QAAIA,QAAOoB,aAAW,QAAQ;AAC5B,aAAO;AAAA,IACT;AACA,IAAAA,aAAWpB;AACX,iBAAa,EAAE,GAAG,IAAI;AACtB,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,2BAA2B,gBAAgB;AAClD,MAAI,mBAAmB,QAAQ;AAC7B,WAAO;AAAA,EACT;AACA,MAAI,mBAAmB,UAAU;AAC/B,WAAO;AAAA,EACT;AACA,MAAI,mBAAmB,OAAO;AAC5B,WAAO;AAAA,EACT;AACA,SAAO;AACT;AAGA,IAAI,sBAAsB;AAC1B,SAAS,wBAAwB;AAC/B,SAAO;AACT;AACA,IAAI,eAAe,CAAC;AACpB,SAAS,OAAO,SAAS,IAAI;AAC3B,MAAI,EAAE,UAAU,eAAe;AAC7B,iBAAa,UAAU;AAAA,EACzB;AACA,eAAa,WAAW;AACxB,SAAO,SAAS,aAAa,QAAQ,SAAS;AAChD;AAGA,IAAI,2BAA2B,CAAC,iBAAiB,cAAc;AAC/D,IAAI,oCAAoC,CAAC,WAAW,UAAU;AAC9D,IAAI,4BAA4B,CAAC,SAAS,QAAQ,QAAQ;AAC1D,IAAI,yBAAyB,CAAC,OAAO,KAAK;AAC1C,IAAI,kCAAkC,CAAC,OAAO,OAAO,UAAU,KAAK;AAGpE,IAAI,UAA0B,oBAAI,IAAI;AACtC,SAAS,gBAAgB,OAAO;AAC9B,4BAA0B,0BAA0B,cAAc,KAAK;AACzE;AACA,SAAS,yBAAyB,OAAO;AACvC,4BAA0B,mCAAmC,uBAAuB,KAAK;AAC3F;AACA,SAAS,iBAAiB,OAAO;AAC/B,4BAA0B,2BAA2B,eAAe,KAAK;AAC3E;AACA,SAAS,cAAc,OAAO;AAC5B,4BAA0B,wBAAwB,YAAY,KAAK;AACrE;AACA,IAAI,kBAAkB,CAAC;AACvB,IAAI,oBAAoB;AACxB,SAAS,UAAU,MAAM,IAAI;AAC3B,kBAAgB,KAAK,IAAI;AACzB,MAAI;AACF,UAAM,MAAM,GAAG;AACf,oBAAgB,IAAI;AACpB,WAAO;AAAA,EACT,SAAS,IAAP;AACA,oBAAgB,IAAI;AACpB,UAAM;AAAA,EACR;AACF;AACA,SAAS,yBAAyB;AAChC,MAAI,gBAAgB,WAAW,GAAG;AAChC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,gBAAgB,KAAK,iBAAiB,IAAI;AAAA,EACnD;AACF;AACA,SAAS,oBAAoB,YAAY;AACvC,MAAI,CAAC,kBAAkB,UAAU,GAAG;AAClC,UAAM,IAAI,MAAM,+BAA+B,aAAa,GAAG;AAAA,EACjE;AACA,SAAO,uBAAuB,IAAI;AACpC;AACA,SAAS,oBAAoB,YAAY;AACvC,MAAI,CAAC,kBAAkB,UAAU,GAAG;AAClC,UAAM,IAAI,MAAM,+BAA+B,aAAa,GAAG;AAAA,EACjE;AACA,MAAI,CAAC,QAAQ,IAAI,UAAU,GAAG;AAC5B,YAAQ,IAAI,YAAY,CAAC;AAAA,EAC3B;AACA,QAAMC,SAAQ,QAAQ,IAAI,UAAU;AACpC,UAAQ,IAAI,YAAY,QAAQ,IAAI,UAAU,IAAI,CAAC;AACnD,MAAIA,SAAQ,GAAG;AACb,UAAM,SAAS,GAAG,cAAcA;AAChC,YAAQ,IAAI,QAAQ,CAAC;AACrB,WAAO;AAAA,EACT,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,IAAI,kBAAkB,IAAI,OAAO,iCAAiC;AAClE,SAAS,kBAAkB,MAAM;AAC/B,SAAO,CAAC,CAAC,KAAK,MAAM,eAAe;AACrC;AAGA,SAAS,UAAU,GAAG;AACpB,SAAO,MAAM,SAAS,EAAE,SAAS,GAAG,EAAE;AACxC;AACA,SAAS,UAAU,QAAQ,OAAO,KAAK;AACrC,MAAI,SAAS,MAAM;AACjB,YAAQ;AAAA,EACV;AACA,MAAI,OAAO,MAAM;AACf,UAAM,OAAO;AAAA,EACf;AACA,MAAI,QAAQ;AACZ,WAAS,KAAK,OAAO,KAAK,KAAK,EAAE,IAAI;AACnC,aAAS,OAAO;AAAA,EAClB;AACA,SAAO;AACT;AACA,SAAS,KAAK,QAAQ;AACpB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,OAAO;AAAA,EAChB;AACA,MAAI,OAAO,OAAO;AAClB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,UAAM,QAAQ,OAAO;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,KAAK,QAAQ;AACpB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,OAAO;AAAA,EAChB;AACA,MAAI,OAAO,OAAO;AAClB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,UAAM,QAAQ,OAAO;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,OAAO,OAAO,KAAK;AAC1B,MAAI,MAAM,OAAO;AACf,UAAM,IAAI,WAAW,QAAQ,iBAAiB,sBAAsB;AAAA,EACtE;AACA,QAAM,MAAM,CAAC;AACb,WAAS,KAAK,OAAO,KAAK,KAAK,EAAE,IAAI;AACnC,QAAI,KAAK,EAAE;AAAA,EACb;AACA,SAAO;AACT;AAGA,IAAI;AACJ,SAAS,UAAU;AACjB,MAAI,YAAY,MAAM;AACpB,eAAW,QAAQ,EAAE,QAAQ;AAAA,EAC/B;AACA,SAAO;AACT;AACA,SAAS,kBAAkB;AACzB,SAAO;AACT;AAGA,SAAS,MAAM,GAAG,OAAO;AACvB,SAAO,KAAK,GAAG,KAAK;AACtB;AACA,SAAS,YAAY,GAAG,OAAO,IAAI;AACjC,QAAM,WAAW,EAAE,MAAM,MAAM;AAC/B,MAAI,OAAO,GAAG;AACZ,WAAO,SAAS,SAAS,OAAO;AAAA,EAClC;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,QAAQ,GAAG,QAAQ;AAC5B;AACA,SAAS,OAAO,GAAG,IAAI;AACrB,SAAO,KAAK,MAAM;AAChB,QAAI,EAAE,MAAM,WAAW,GAAG;AACxB,YAAM,IAAI,WAAW,yDAAyD,EAAE,MAAM,gBAAgB;AAAA,IACxG;AACA,UAAM,IAAI,YAAY,GAAG,CAAC;AAC1B,WAAO,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,CAAC;AAAA,EAC5B,CAAC;AACH;AACA,SAAS,SAAS,GAAG;AACnB,QAAM,WAAW,CAAC,UAAU,EAAE,KAAK,CAAC;AACpC,SAAO,QAAQ,GAAG,QAAQ;AAC5B;AACA,SAAS,aAAa,GAAG;AACvB,MAAI,EAAE,QAAQ,GAAG;AACf,UAAM,IAAI,WAAW,wDAAwD,EAAE,OAAO;AAAA,EACxF;AACA,QAAM,WAAW,CAAC,EAAE,MAAM,IAAI,UAAU,EAAE,OAAO,CAAC,CAAC;AACnD,SAAO,QAAQ,GAAG,QAAQ;AAC5B;AACA,SAAS,oBAAoB,QAAQ,OAAOV,OAAM;AAChD,SAAO,KAAK,MAAM;AAChB,YAAQ,OAAO;AAAA,WACR;AACH,eAAO,QAAQ,QAAQ,OAAOA,KAAI;AAAA,WAC/B;AACH,eAAO,QAAQ,QAAQ,CAAC,OAAO,CAAC,GAAG,CAACA,OAAM,OAAO,MAAM,EAAE,CAAC;AAAA,WACvD;AACH,eAAO,QAAQ,QAAQ,CAAC,OAAO,GAAG,CAAC,GAAG,CAACA,OAAM,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC;AAAA,WAC3E;AACH,eAAO,QAAQ,QAAQ,CAAC,OAAO,GAAG,GAAG,CAAC,GAAG,CAACA,OAAM,OAAO,MAAM,IAAI,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC;AAAA,WAC/F;AACH,eAAO,MAAM,QAAQ,CAAC,OAAO,GAAG,GAAG,GAAG,CAAC,GAAG;AAAA,UACxCA;AAAA,UACA,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,QACf,CAAC;AAAA,WACE;AACH,eAAO,MAAM,QAAQ,CAAC,OAAO,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG;AAAA,UAC3CA;AAAA,UACA,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,UACb,OAAO,MAAM;AAAA,QACf,CAAC;AAAA;AAED,cAAM,IAAI,WAAW,8DAA8D,OAAO,MAAM;AAAA;AAAA,EAEtG,CAAC;AACH;AACA,SAAS,mBAAmB,QAAQ,OAAOA,OAAM;AAC/C,SAAO,KAAK,MAAM;AAChB,YAAQ,OAAO;AAAA,WACR;AACH,eAAO,QAAQ,QAAQ,OAAOA,KAAI;AAAA,WAC/B;AACH,eAAO,QAAQ,QAAQ,CAAC,GAAG,KAAK,GAAG,CAAC,OAAO,MAAM,IAAIA,KAAI,CAAC;AAAA,WACvD;AACH,eAAO,QAAQ,QAAQ,CAAC,GAAG,GAAG,KAAK,GAAG,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,IAAIA,KAAI,CAAC;AAAA,WAC3E;AACH,eAAO,QAAQ,QAAQ,CAAC,GAAG,GAAG,GAAG,KAAK,GAAG,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,IAAI,OAAO,MAAM,IAAIA,KAAI,CAAC;AAAA;AAElG,cAAM,IAAI,WAAW,6DAA6D,OAAO,MAAM;AAAA;AAAA,EAErG,CAAC;AACH;AACA,SAAS,eAAe,QAAQ,OAAOA,OAAM,MAAM;AACjD,SAAO,KAAK,MAAM;AAChB,YAAQ,OAAO;AAAA,WACR;AACH,eAAO,QAAQ,QAAQ,OAAOA,KAAI;AAAA,WAC/B;AACH,gBAAQ;AAAA,eACD;AACH,mBAAO,oBAAoB,QAAQ,OAAOA,KAAI;AAAA,eAC3C;AACH,mBAAO,mBAAmB,QAAQ,OAAOA,KAAI;AAAA;AAE7C,kBAAM,IAAI,WAAW,iDAAiD,MAAM;AAAA;AAAA,WAE7E;AACH,gBAAQ;AAAA,eACD;AACH,mBAAO,oBAAoB,QAAQ,OAAOA,KAAI;AAAA,eAC3C;AACH,mBAAO,QAAQ,QAAQ,CAAC,GAAG,OAAO,CAAC,GAAG,CAAC,OAAO,MAAM,IAAIA,OAAM,OAAO,MAAM,EAAE,CAAC;AAAA,eAC3E;AACH,mBAAO,mBAAmB,QAAQ,OAAOA,KAAI;AAAA;AAE7C,kBAAM,IAAI,WAAW,iDAAiD,MAAM;AAAA;AAAA,WAE7E;AACH,gBAAQ;AAAA,eACD;AACH,mBAAO,oBAAoB,QAAQ,OAAOA,KAAI;AAAA,eAC3C;AACH,mBAAO,QAAQ,QAAQ,CAAC,GAAG,OAAO,GAAG,CAAC,GAAG,CAAC,OAAO,MAAM,IAAIA,OAAM,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC;AAAA,eAC/F;AACH,mBAAO,QAAQ,QAAQ,CAAC,GAAG,GAAG,OAAO,CAAC,GAAG,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,IAAIA,OAAM,OAAO,MAAM,EAAE,CAAC;AAAA,eAC/F;AACH,mBAAO,mBAAmB,QAAQ,OAAOA,KAAI;AAAA;AAE7C,kBAAM,IAAI,WAAW,iDAAiD,MAAM;AAAA;AAAA;AAGhF,cAAM,IAAI,WAAW,6DAA6D,OAAO,MAAM;AAAA;AAAA,EAErG,CAAC;AACH;AACA,SAAS,YAAY,SAAS,OAAO,IAAI;AACvC,MAAI;AACJ,MAAI,OAAO,GAAG;AACZ,WAAO,QAAQ,GAAG;AAClB,QAAI,SAAS,GAAG;AACd,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACA,MAAI,SAAS,QAAQ,GAAG,MAAM;AAC5B,WAAO;AAAA,EACT;AACA,SAAO,OAAO,SAAS,IAAI;AAC7B;AACA,SAAS,qBAAqB,GAAG,GAAG;AAClC,UAAQ,EAAE;AAAA,SACH;AACH,aAAO,SAAS,CAAC,GAAG,CAAC,CAAC;AAAA,SACnB;AACH,aAAO,SAAS,CAAC,GAAG,CAAC,GAAG,CAAC;AAAA,SACtB;AACH,aAAO,SAAS,CAAC,GAAG,CAAC,GAAG,CAAC;AAAA,SACtB;AACH,aAAO,SAAS,CAAC,GAAG,CAAC,GAAG,CAAC;AAAA;AAEzB,YAAM,IAAI,WAAW,+DAA+D,EAAE,MAAM;AAAA;AAElG;AACA,SAAS,MAAM,GAAG,IAAI;AACpB,MAAI,CAAC,MAAM,QAAQ,EAAE,GAAG;AACtB,SAAK,CAAC,EAAE;AAAA,EACV;AACA,MAAI,EAAE,SAAS,GAAG,QAAQ;AACxB,UAAM,IAAI,WAAW,0BAA0B,GAAG,+DAA+D,EAAE,OAAO;AAAA,EAC5H;AACA,SAAO,KAAK,GAAG,EAAE;AACnB;AACA,SAAS,cAAc,OAAO,QAAQ,GAAG,SAAS,GAAG,OAAO,MAAM;AAChE,SAAO,aAAa,OAAO,OAAO,QAAQ,OAAO,IAAI;AACvD;AACA,SAAS,KAAK,GAAG,GAAG,aAAa,MAAM;AACrC,MAAI,EAAE,OAAO,KAAK,EAAE,OAAO,GAAG;AAC5B,UAAM,IAAI,oBAAoB,8DAA8D,EAAE,uBAAuB,EAAE,OAAO;AAAA,EAChI;AACA,MAAI,EAAE,QAAQ,GAAG;AACf,UAAM,WAAW,EAAE,MAAM,MAAM,EAAE,EAAE;AACnC,UAAM,iBAAiB,EAAE,MAAM,MAAM,EAAE,EAAE;AACzC,QAAI,aAAa,gBAAgB;AAC/B,YAAM,IAAI,oBAAoB,gGAAgG,EAAE,wBAAwB,EAAE,OAAO;AAAA,IACnK;AAAA,EACF;AACA,MAAI,EAAE,SAAS,KAAK,EAAE,SAAS,GAAG;AAChC,UAAM,aAAa;AACnB,UAAM,aAAa;AACnB,WAAO,kBAAkB,OAAO;AAAA,MAC9B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,MAAM,OAAO,YAAY,EAAE,MAAM,MAAM,gBAAgB,CAAC,IAAI;AAAA,MAC5D,YAAY;AAAA,IACd,CAAC;AAAA,EACH,OAAO;AACL,UAAM,aAAa,EAAE,MAAM,MAAM;AACjC,UAAM,WAAW,WAAW,IAAI;AAChC,QAAI,QAAQ,GAAG,CAAC,IAAI,QAAQ,CAAC;AAC7B,UAAM,SAAS,EAAE,MAAM,MAAM;AAC7B,UAAM,WAAW,OAAO,IAAI;AAC5B,UAAM,iBAAiB,OAAO,IAAI;AAClC,UAAM,aAAa,CAAC,GAAG,QAAQ,QAAQ;AACvC,UAAM,OAAO,MAAM,KAAK,EAAE,QAAQ,EAAE,KAAK,GAAG,CAAC,GAAG,OAAO;AACrD,UAAI,OAAO,GAAG;AACZ,eAAO,EAAE,OAAO;AAAA,MAClB,WAAW,MAAM,EAAE,OAAO,GAAG;AAC3B,eAAO,KAAK;AAAA,MACd;AACA,aAAO;AAAA,IACT,CAAC;AACD,QAAI,QAAQ,UAAU,GAAG,IAAI,GAAG,CAAC,gBAAgB,EAAE,CAAC;AACpD,UAAM,cAAc,CAAC,GAAG,YAAY,GAAG,UAAU;AACjD,UAAM,aAAa;AACnB,UAAM,aAAa;AACnB,WAAO,QAAQ,kBAAkB,OAAO;AAAA,MACtC;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,MAAM,OAAO,YAAY,EAAE,MAAM,MAAM,gBAAgB,CAAC,IAAI;AAAA,MAC5D,YAAY;AAAA,IACd,CAAC,GAAG,WAAW;AAAA,EACjB;AACF;AACA,SAAS,QAAQ,WAAW,SAAS,MAAM;AACzC,SAAO,KAAK,MAAM;AAChB,QAAI,MAAM,QAAQ,OAAO,GAAG;AAC1B,gBAAU,SAAS,SAAS,OAAO;AAAA,IACrC,OAAO;AACL,gBAAU,KAAK,SAAS,OAAO;AAAA,IACjC;AACA,WAAO,OAAO,WAAW,SAAS,IAAI;AAAA,EACxC,CAAC;AACH;AACA,SAAS,QAAQ,GAAG;AAClB,SAAO,IAAI,GAAG,CAAC;AACjB;AACA,SAAS,YAAY,OAAO,MAAM,YAAY;AAC5C,QAAM,YAAY,KAAK;AACvB,MAAI,KAAK,SAAS,KAAK,KAAK,SAAS,OAAO;AAC1C,UAAM,IAAI,WAAW,+BAA+B,KAAK,gCAAgC,OAAO;AAAA,EAClG;AACA,MAAI,UAAU,GAAG;AACf,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,GAAG,GAAG,CAAC,CAAC;AAAA,MACjD,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,UAAU,IAAI,UAAU,IAAI,UAAU,EAAE,CAAC;AAAA,MAClF;AAAA,IACF,WAAW,eAAe,gBAAgB;AACxC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,GAAG,GAAG,GAAG,UAAU,EAAE,CAAC;AAAA,MACjD,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,CAAC,EAAE,OAAO,SAAS,CAAC;AAAA,MAC5C;AAAA,IACF;AAAA,EACF,WAAW,UAAU,GAAG;AACtB,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,GAAG,CAAC,CAAC;AAAA,MAC9C,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,UAAU,IAAI,UAAU,EAAE,CAAC;AAAA,MACpE;AAAA,IACF,WAAW,eAAe,gBAAgB;AACxC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,GAAG,GAAG,UAAU,EAAE,CAAC;AAAA,MAC9C,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,CAAC,EAAE,OAAO,SAAS,CAAC;AAAA,MAC5C;AAAA,IACF;AAAA,EACF,WAAW,UAAU,GAAG;AACtB,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,CAAC,CAAC;AAAA,MAC3C,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,GAAG,UAAU,IAAI,UAAU,EAAE,CAAC;AAAA,MACtD;AAAA,IACF,WAAW,eAAe,gBAAgB;AACxC,UAAI,UAAU,WAAW,GAAG;AAC1B,eAAO,QAAQ,MAAM,CAAC,GAAG,GAAG,UAAU,EAAE,CAAC;AAAA,MAC3C,OAAO;AACL,eAAO,QAAQ,MAAM,CAAC,CAAC,EAAE,OAAO,SAAS,CAAC;AAAA,MAC5C;AAAA,IACF;AAAA,EACF,WAAW,QAAQ,GAAG;AACpB,WAAO;AAAA,EACT;AACA,QAAM,IAAI,WAAW,sCAAsC,KAAK,MAAM;AACxE;AACA,SAAS,QAAQ,GAAG,MAAM,YAAY;AACpC,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,WAAO,KAAK,GAAG,YAAY,EAAE,MAAM,MAAM,UAAU,CAAC;AAAA,EACtD,CAAC;AACH;AACA,SAAS,KAAK,GAAGuB,SAAQ,GAAG;AAC1B,MAAIA,WAAU,GAAG;AACf,UAAM,IAAI,oBAAoB,0CAA0CA,iCAAgC;AAAA,EAC1G;AACA,SAAO,IAAI,CAAC;AACd;AACA,SAAS,SAAS,GAAG;AACnB,SAAO,KAAK,MAAM,IAAI,GAAG,KAAK,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC;AAC3C;AACA,SAAS,SAAS,GAAG,OAAO,YAAY,MAAM;AAC5C,SAAO,KAAK,MAAM,QAAQ,GAAG,OAAO,YAAY,IAAI,CAAC;AACvD;AACA,SAAS,YAAY,GAAG;AACtB,SAAO,KAAK,MAAM;AAChB,UAAM,IAAI,KAAK,KAAK,IAAI,KAAK,CAAC,CAAC;AAC/B,WAAO,YAAY,GAAG,GAAG,CAAC;AAAA,EAC5B,CAAC;AACH;AACA,SAAS,aAAa,GAAG,KAAK,WAAW,OAAO;AAC9C,SAAO,WAAW,EAAE,IAAI,IAAI;AAC9B;AAGA,IAAI,wBAAwB,CAAC,SAAS,UAAU,QAAQ;AACxD,IAAI,4BAA4B,CAAC,UAAU,WAAW,iBAAiB;AAGvE,SAAS,aAAa,OAAO;AAC3B,4BAA0B,uBAAuB,WAAW,KAAK;AACnE;AACA,SAAS,kBAAkB,OAAO;AAChC,4BAA0B,2BAA2B,gBAAgB,KAAK;AAC5E;AACA,IAAI,cAAc,cAAc,sBAAsB,aAAa;AAAA,EACjE,8BAA8B;AAC5B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,WAAO,CAAC;AAAA,EACV;AACF;AACA,IAAI,QAAQ,cAAc,YAAY;AAAA,EACpC,MAAM,OAAO,OAAO;AAClB,WAAO,MAAM,OAAO,KAAK;AAAA,EAC3B;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,OAAO,cAAc,YAAY;AAAA,EACnC,MAAM,OAAO,OAAO;AAClB,WAAO,MAAM,OAAO,KAAK;AAAA,EAC3B;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,WAAW,cAAc,YAAY;AAAA,EACvC,YAAY,MAAM;AAChB,UAAM;AACN,QAAI,OAAO,SAAS,UAAU;AAC5B,YAAM,IAAI,WAAW,oDAAoD,MAAM;AAAA,IACjF;AACA,QAAI,KAAK,UAAU,QAAQ;AACzB,YAAM,IAAI,WAAW,sCAAsC,MAAM;AAAA,IACnE;AACA,SAAK,QAAQ,KAAK;AAAA,EACpB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,WAAO,KAAK,MAAM,IAAI,OAAO,KAAK,KAAK,GAAG,MAAM,OAAO,KAAK,CAAC,CAAC;AAAA,EAChE;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,OAAO,KAAK;AAAA,IACd;AAAA,EACF;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,gBAAgB,cAAc,YAAY;AAAA,EAC5C,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,SAAS,KAAK,UAAU,KAAK;AAClC,SAAK,SAAS,KAAK,UAAU,KAAK;AAClC,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,WAAO,cAAc,OAAO,KAAK,QAAQ,KAAK,QAAQ,KAAK;AAAA,EAC7D;AAAA,EACA,YAAY;AACV,WAAO,EAAE,QAAQ,KAAK,QAAQ,QAAQ,KAAK,QAAQ,MAAM,KAAK,KAAK;AAAA,EACrE;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AACjD,IAAI,eAAe,cAAc,YAAY;AAAA,EAC3C,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,iBAAiB;AACtB,SAAK,OAAO,KAAK,QAAQ,KAAK;AAC9B,SAAK,SAAS,KAAK,UAAU,KAAK;AAClC,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,YAAQ,SAAS;AACjB,QAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,YAAM,IAAI,oBAAoB,uCAAuC,QAAQ;AAAA,IAC/E;AACA,WAAO,cAAc,OAAO,KAAK,MAAM,KAAK,QAAQ,OAAO,KAAK,IAAI;AAAA,EACtE;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,MAAM,QAAQ,KAAK,QAAQ,MAAM,KAAK,KAAK;AAAA,EACjE;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,kBAAkB,cAAc,YAAY;AAAA,EAC9C,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,iBAAiB;AACtB,SAAK,OAAO,KAAK,QAAQ,KAAK;AAC9B,SAAK,SAAS,KAAK,UAAU,KAAK;AAClC,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,YAAQ,SAAS;AACjB,QAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,YAAM,IAAI,oBAAoB,0CAA0C,QAAQ;AAAA,IAClF;AACA,WAAO,gBAAgB,OAAO,KAAK,MAAM,KAAK,QAAQ,OAAO,KAAK,IAAI;AAAA,EACxE;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,MAAM,QAAQ,KAAK,QAAQ,MAAM,KAAK,KAAK;AAAA,EACjE;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,YAAY,cAAc,YAAY;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO;AAAA,EAC9C;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,WAAO,KAAK,MAAM;AAChB,UAAI,MAAM,WAAW,KAAK,MAAM,OAAO,MAAM,IAAI;AAC/C,cAAM,IAAI,WAAW,sEAAsE;AAAA,MAC7F,OAAO;AACL,eAAO,IAAI,KAAK,MAAM,IAAI,MAAM,EAAE,CAAC;AAAA,MACrC;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,KAAK;AAAA,EAC3B;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,SAAS,YAAY,OAAO,aAAa,gBAAgB;AACvD,MAAI;AACJ,MAAI;AACJ,kBAAgB,UAAU;AAC1B,MAAI,MAAM,WAAW,GAAG;AACtB,YAAQ,MAAM;AACd,aAAS,MAAM;AAAA,EACjB,WAAW,CAAC,GAAG,GAAG,CAAC,EAAE,QAAQ,MAAM,MAAM,MAAM,IAAI;AACjD,QAAI,eAAe,iBAAiB;AAClC,YAAM,qBAAqB,UAAU,OAAO,CAAC;AAC7C,cAAQ,MAAM,KAAK;AACnB,eAAS,MAAM,KAAK;AAAA,IACtB,WAAW,eAAe,gBAAgB;AACxC,YAAM,qBAAqB,UAAU,OAAO,GAAG,MAAM,SAAS,CAAC;AAC/D,cAAQ,MAAM,MAAM,SAAS,KAAK;AAClC,eAAS,MAAM,MAAM,SAAS,KAAK;AAAA,IACrC;AAAA,EACF,OAAO;AACL,UAAM,YAAY,UAAU,KAAK;AACjC,YAAQ,KAAK,KAAK,SAAS;AAC3B,aAAS,KAAK,KAAK,SAAS;AAAA,EAC9B;AACA,SAAO,CAAC,OAAO,MAAM;AACvB;AACA,IAAI,kBAAkB,cAAc,YAAY;AAAA,EAC9C,YAAY,MAAM;AAChB,UAAM;AACN,QAAI,KAAK,QAAQ,GAAG;AAClB,YAAM,IAAI,WAAW,wCAAwC,KAAK,OAAO;AAAA,IAC3E;AACA,SAAK,QAAQ,KAAK,SAAS,OAAO,IAAI,KAAK;AAC3C,SAAK,OAAO,KAAK,QAAQ,OAAO,UAAU,KAAK;AAC/C,iBAAa,KAAK,IAAI;AACtB,SAAK,eAAe,KAAK,gBAAgB,OAAO,WAAW,KAAK;AAChE,sBAAkB,KAAK,YAAY;AACnC,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,UAAM,OAAO,YAAY,KAAK;AAC9B,UAAM,QAAQ,KAAK;AACnB,UAAM,SAAS,KAAK;AACpB,QAAID,UAAS,KAAK;AAClB,QAAI,KAAK,SAAS,SAAS;AACzB,MAAAA,WAAU,KAAK,IAAI,GAAG,KAAK;AAAA,IAC7B,WAAW,KAAK,SAAS,UAAU;AACjC,MAAAA,WAAU,KAAK,IAAI,GAAG,MAAM;AAAA,IAC9B,OAAO;AACL,MAAAA,WAAU,KAAK,IAAI,IAAI,QAAQ,UAAU,CAAC;AAAA,IAC5C;AACA,QAAI,KAAK,iBAAiB,UAAU;AAClC,YAAM,SAAS,KAAK,KAAKA,OAAM;AAC/B,cAAQ,SAAS;AACjB,UAAI,UAAU,aAAa,UAAU,SAAS;AAC5C,cAAM,IAAI,oBAAoB,GAAG,KAAK,aAAa,4BAA4B,QAAQ;AAAA,MACzF;AACA,aAAO,gBAAgB,OAAO,GAAG,QAAQ,OAAO,KAAK,IAAI;AAAA,IAC3D,OAAO;AACL,YAAM,QAAQ,KAAK,KAAK,IAAIA,OAAM;AAClC,aAAO,cAAc,OAAO,CAAC,OAAO,OAAO,KAAK;AAAA,IAClD;AAAA,EACF;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,OAAO,KAAK;AAAA,MACZ,MAAM,KAAK;AAAA,MACX,cAAc,KAAK;AAAA,MACnB,MAAM,KAAK;AAAA,IACb;AAAA,EACF;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,gBAAgB,cAAc,gBAAgB;AAAA,EAChD,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AACjD,IAAI,eAAe,cAAc,gBAAgB;AAAA,EAC/C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,WAAW,cAAc,gBAAgB;AAAA,EAC3C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,YAAY,cAAc,gBAAgB;AAAA,EAC5C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,cAAc,cAAc,gBAAgB;AAAA,EAC9C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,eAAe,cAAc,gBAAgB;AAAA,EAC/C,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO;AAAA,MACP,MAAM;AAAA,MACN,cAAc;AAAA,MACd,MAAM,QAAQ,OAAO,OAAO,KAAK;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,eAAe;AACb,WAAO,gBAAgB;AAAA,EACzB;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,aAAa,cAAc,YAAY;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,eAAe,KAAK;AACzD,SAAK,OAAO,KAAK;AACjB,QAAI,KAAK,QAAQ,MAAM;AACrB,YAAM,IAAI,oBAAoB,gEAAgE;AAAA,IAChG;AAAA,EACF;AAAA,EACA,MAAM,OAAO,OAAO;AAClB,WAAO,KAAK,MAAM;AAChB,UAAI,MAAM,SAAS,GAAG;AACpB,cAAM,IAAI,oBAAoB,4BAA4B;AAAA,MAC5D;AACA,UAAI,MAAM,KAAK,MAAM,KAAK,KAAK;AAC7B,gBAAQ,KAAK,2EAA2E,MAAM,KAAK,MAAM,oCAAoC;AAAA,MAC/I;AACA,YAAM,kBAAkB,MAAM,KAAK,MAAM,KAAK,CAAC,MAAM,IAAI,MAAM,EAAE,IAAI;AACrE,YAAM,IAAI,cAAc,iBAAiB,GAAG,GAAG,SAAS;AACxD,UAAI,IAAI,OAAO,YAAY,CAAC;AAC5B,UAAI,MAAM,KAAK,MAAM,IAAI;AACvB,YAAI,UAAU,CAAC;AAAA,MACjB;AACA,aAAO,IAAI,KAAK,MAAM,CAAC;AAAA,IACzB,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,MAAM,KAAK;AAAA,MACX,MAAM,KAAK;AAAA,IACb;AAAA,EACF;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAC9C,IAAI,6CAA6C;AAAA,EAC/C,YAAY;AAAA,EACZ,gBAAgB;AAAA,EAChB,iBAAiB;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,eAAe;AAAA,EACf,gBAAgB;AAAA,EAChB,QAAQ;AAAA,EACR,cAAc;AAAA,EACd,gBAAgB;AAAA,EAChB,iBAAiB;AAAA,EACjB,mBAAmB;AAAA,EACnB,mBAAmB;AAAA,EACnB,SAAS;AACX;AACA,SAAS,uBAAuBP,SAAQ,gBAAgB,CAAC,GAAG;AAC1D,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,aAAa;AAClI;AACA,SAAS,qBAAqB,aAAa;AACzC,SAAO,qBAAqB,WAAW;AACzC;AACA,SAAS,eAAe,YAAY;AAClC,MAAI,OAAO,eAAe,UAAU;AAClC,UAAM,YAAY,cAAc,6CAA6C,2CAA2C,cAAc;AACtI,QAAI,cAAc,gBAAgB;AAChC,aAAO,IAAI,aAAa;AAAA,IAC1B,WAAW,cAAc,iBAAiB;AACxC,aAAO,IAAI,cAAc;AAAA,IAC3B,WAAW,cAAc,YAAY;AACnC,aAAO,IAAI,SAAS;AAAA,IACtB,WAAW,cAAc,aAAa;AACpC,aAAO,IAAI,UAAU;AAAA,IACvB,WAAW,cAAc,eAAe;AACtC,aAAO,IAAI,YAAY;AAAA,IACzB,WAAW,cAAc,gBAAgB;AACvC,aAAO,IAAI,aAAa;AAAA,IAC1B,OAAO;AACL,YAAMA,UAAS,CAAC;AAChB,MAAAA,QAAO,eAAe;AACtB,MAAAA,QAAO,YAAY,CAAC;AACpB,aAAO,uBAAuBA,OAAM;AAAA,IACtC;AAAA,EACF,WAAW,sBAAsB,aAAa;AAC5C,WAAO;AAAA,EACT,OAAO;AACL,WAAO,uBAAuB,UAAU;AAAA,EAC1C;AACF;AAGA,SAAS,gBAAgB,GAAG;AAC1B,SAAO,MAAM,QAAQ,CAAC,KAAK,MAAM,QAAQ,EAAE,EAAE;AAC/C;AACA,SAAS,mBAAmB,GAAG;AAC7B,MAAI,EAAE,WAAW,GAAG;AAClB,WAAO,CAAC;AAAA,EACV;AACA,MAAI,CAAC,MAAM,QAAQ,EAAE,EAAE,GAAG;AACxB,WAAO,CAAC,CAAC;AAAA,EACX;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,IAAI;AAC/B,MAAI;AACJ,MAAI,MAAM,QAAQ,EAAE,GAAG;AACrB,QAAI,GAAG,WAAW,GAAG;AACnB,YAAM,IAAI,WAAW,uCAAuC,GAAG,QAAQ;AAAA,IACzE;AACA,QAAI,GAAG;AAAA,EACT,OAAO;AACL,QAAI;AAAA,EACN;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,QAAQ;AAClC,MAAI,MAAM,QAAQ,MAAM,KAAK,MAAM,QAAQ,OAAO,EAAE,GAAG;AACrD,QAAI,OAAO,WAAW,GAAG;AACvB,eAAS;AACT,aAAO,OAAO;AAAA,IAChB,OAAO;AACL,YAAM,IAAI,WAAW,iCAAiC,OAAO,QAAQ;AAAA,IACvE;AAAA,EACF,OAAO;AACL,WAAO;AAAA,EACT;AACF;AAGA,SAAS,qBAAqB,SAAS;AACrC,MAAIR,UAAS;AACb,aAAW,UAAU,SAAS;AAC5B,QAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,MAAAA,WAAU;AAAA,IACZ,OAAO;AACL,MAAAA,WAAU,OAAO,MAAM,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAAA,IAC/C;AAAA,EACF;AACA,SAAOA;AACT;AAGA,IAAI,+BAA+B;AACnC,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,KAAK,QAAQ,WAAW,OAAO,8BAA8B,YAAY,MAAM,aAAa,MAAM;AAC5G,SAAK,QAAQ,SAAS,OAAO,YAAY;AACzC,SAAK,QAAQ,IAAI;AACjB,SAAK,KAAK,sBAAsB;AAChC,WAAO,QAAQ,OAAO,+BAA+B;AACrD,SAAK,eAAe,oBAAoB,IAAI;AAC5C,SAAK,OAAO,oBAAoB,KAAK,YAAY;AACjD,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,MAAM,SAAS,KAAK,KAAK,YAAY,KAAK,MAAM,KAAK,KAAK;AAAA,EACjE;AAAA,EACA,OAAO;AACL,SAAK,kBAAkB;AACvB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,QAAQ;AACZ,SAAK,kBAAkB;AACvB,qBAAiB,KAAK,KAAK,MAAM;AACjC,QAAI,KAAK,IAAI,OAAO,OAAO,IAAI;AAC7B,WAAK,IAAI,OAAO,MAAM;AACtB,UAAI,KAAK,cAAc,MAAM;AAC3B,aAAK,IAAI,OAAO,KAAK,WAAW,MAAM,KAAK,GAAG,CAAC;AAAA,MACjD;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,UAAU;AACR,SAAK,kBAAkB;AACvB,SAAK,IAAI,QAAQ;AAAA,EACnB;AAAA,EACA,oBAAoB;AAClB,QAAI,KAAK,IAAI,YAAY;AACvB,YAAM,IAAI,MAAM,kBAAkB,KAAK,2BAA2B;AAAA,IACpE;AAAA,EACF;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,SAAK,aAAa;AAClB,SAAK,IAAI,YAAY;AAAA,EACvB;AACF;AACA,SAAS,iBAAiB,GAAG,GAAG;AAC9B,MAAI,EAAE,MAAM,SAAS,MAAM,EAAE,MAAM,SAAS,GAAG;AAC7C,UAAM,IAAI,MAAM,qBAAqB,KAAK,UAAU,EAAE,KAAK,IAAI,UAAU,KAAK,UAAU,EAAE,KAAK,CAAC;AAAA,EAClG;AACF;AACA,SAAS,cAAc,IAAI;AACzB,SAAO,GAAG,IAAI,CAAC,MAAM,EAAE,KAAK,CAAC;AAC/B;AACA,SAAS,cAAc,oBAAoB;AACzC,qBAAmB,QAAQ,CAAC,qBAAqB;AAC/C,UAAM,YAAY,iBAAiB;AACnC,cAAU,MAAM,iBAAiB,EAAE;AAAA,EACrC,CAAC;AACH;AAGA,IAAI,YAAY,MAAM;AAAA,EACpB,YAAY,MAAM;AAChB,SAAK,QAAQ,KAAK;AAClB,SAAK,QAAQ,KAAK;AAClB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,OAAO,KAAK,MAAM;AAAA,IACzB,OAAO;AACL,WAAK,OAAO,KAAK;AAAA,IACnB;AACA,SAAK,UAAU,KAAK;AACpB,SAAK,UAAU,KAAK;AACpB,SAAK,OAAO,KAAK,QAAQ,CAAC;AAAA,EAC5B;AACF;AACA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,OAAO,OAAO,aAAa,QAAQ,UAAU,MAAM,mBAAmB;AAChF,SAAK,QAAQ;AACb,SAAK,QAAQ;AACb,SAAK,cAAc;AACnB,SAAK,SAAS;AACd,SAAK,WAAW;AAChB,SAAK,oBAAoB;AACzB,SAAK,KAAK,sBAAsB;AAChC,QAAI,QAAQ,MAAM;AAChB,WAAK,eAAe,oBAAoB,IAAI;AAC5C,WAAK,OAAO,oBAAoB,KAAK,YAAY;AAAA,IACnD;AACA,SAAK,OAAO,MAAM;AAAA,EACpB;AACF;AACA,IAAI,cAAc;AAClB,IAAI,OAAO,MAAM;AAAA,EACf,YAAY,MAAM,UAAU;AAC1B,SAAK,WAAW;AAChB,SAAK,KAAK;AACV,SAAK,gBAAgB,KAAK;AAC1B,SAAK,gBAAgB,KAAK;AAC1B,SAAK,cAAc,KAAK;AACxB,SAAK,gBAAgB,KAAK;AAC1B,SAAK,eAAe,KAAK;AACzB,SAAK,gBAAgB,KAAK;AAC1B,SAAK,aAAa,KAAK;AACvB,SAAK,cAAc,KAAK;AACxB,SAAK,cAAc,KAAK;AACxB,SAAK,eAAe,KAAK;AACzB,eAAW,SAAS,KAAK,eAAe;AACtC,UAAI,SAAS,MAAM;AACjB,cAAM,cAAc,KAAK,IAAI;AAAA,MAC/B;AAAA,IACF;AACA,SAAK,cAAc,aAAa,KAAK,IAAI;AAAA,EAC3C;AAAA,EACA,YAAY;AACV,UAAM,eAAe,CAAC;AACtB,eAAW,SAAS,KAAK,eAAe;AACtC,UAAI,SAAS,MAAM;AACjB,qBAAa,KAAK,MAAM,IAAI;AAAA,MAC9B,OAAO;AACL,qBAAa,KAAK,IAAI;AAAA,MACxB;AAAA,IACF;AACA,WAAO;AAAA,MACL,eAAe,KAAK,gBAAgB,KAAK,cAAc,OAAO;AAAA,MAC9D,eAAe;AAAA,MACf,aAAa,KAAK;AAAA,MAClB,eAAe,KAAK;AAAA,IACtB;AAAA,EACF;AACF;AACA,IAAI,eAAe;AACnB,IAAI,QAAQ,cAAc,sBAAsB,aAAa;AAAA,EAC3D,YAAY,OAAO,CAAC,GAAG;AACrB,UAAM;AACN,SAAK,YAAY;AACjB,SAAK,oBAAoB,CAAC;AAC1B,SAAK,YAAY;AACjB,SAAK,KAAK;AACV,SAAK,sBAAsB;AAC3B,SAAK,YAAY;AACjB,SAAK,kBAAkB;AACvB,SAAK,oBAAoB,CAAC;AAC1B,SAAK,uBAAuB,CAAC;AAC7B,SAAK,UAAU,CAAC;AAChB,SAAK,WAAW,CAAC;AACjB,SAAK,SAAS;AACd,SAAK,eAAe,CAAC;AACrB,SAAK,gBAAgB,CAAC;AACtB,QAAI,OAAO,KAAK;AAChB,QAAI,CAAC,MAAM;AACT,YAAM,SAAS,KAAK,aAAa;AACjC,aAAO,YAAY,MAAM,IAAI,MAAM,OAAO,MAAM;AAAA,IAClD;AACA,SAAK,OAAO;AACZ,SAAK,aAAa,KAAK,aAAa,OAAO,OAAO,KAAK;AACvD,QAAI,KAAK,cAAc,QAAQ,KAAK,mBAAmB,MAAM;AAC3D,UAAI;AACJ,UAAI,KAAK,mBAAmB,MAAM;AAChC,0BAAkB,KAAK;AAAA,MACzB,WAAW,KAAK,cAAc,MAAM;AAClC,YAAI,YAAY;AAChB,YAAI,KAAK,aAAa,MAAM;AAC1B,sBAAY,KAAK;AAAA,QACnB;AACA,0BAAkB,CAAC,SAAS,EAAE,OAAO,KAAK,UAAU;AAAA,MACtD;AACA,WAAK,kBAAkB;AACvB,UAAI,QAAQ,KAAK;AACjB,UAAI,SAAS,MAAM;AACjB,gBAAQ,KAAK;AAAA,MACf;AACA,UAAI,SAAS,MAAM;AACjB,gBAAQ;AAAA,MACV;AACA,WAAK,QAAQ;AAAA,IACf;AACA,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,iBAAiB,KAAK;AAAA,IAC7B,OAAO;AACL,WAAK,iBAAiB;AAAA,IACxB;AACA,SAAK,YAAY;AACjB,SAAK,4BAA4B;AAAA,EACnC;AAAA,EACA,OAAO,QAAQ,OAAO,WAAW;AAC/B,WAAO,MAAM,OAAO,SAAS,UAAU,SAAS;AAAA,EAClD;AAAA,EACA,eAAe,WAAW,UAAU;AAClC,QAAI,KAAK,aAAa,WAAW,GAAG;AAClC,YAAM,IAAI,aAAa,2DAA2D,WAAW;AAAA,IAC/F;AACA,QAAI,KAAK,aAAa,UAAU,WAAW;AACzC,YAAM,IAAI,WAAW,gBAAgB,oBAAoB,qCAAqC,KAAK,aAAa,uBAAuB;AAAA,IACzI;AACA,WAAO,KAAK,aAAa;AAAA,EAC3B;AAAA,EACA,WAAW,WAAW;AACpB,WAAO,iBAAiB,KAAK,eAAe,WAAW,OAAO,EAAE,YAAY;AAAA,EAC9E;AAAA,EACA,YAAY,WAAW;AACrB,WAAO,iBAAiB,KAAK,eAAe,WAAW,QAAQ,EAAE,aAAa;AAAA,EAChF;AAAA,EACA,IAAI,QAAQ;AACV,QAAI,KAAK,aAAa,SAAS,GAAG;AAChC,YAAM,IAAI,eAAe,SAAS,KAAK,2HAA2H;AAAA,IACpK,WAAW,KAAK,aAAa,WAAW,GAAG;AACzC,YAAM,IAAI,eAAe,SAAS,KAAK,4CAA4C;AAAA,IACrF;AACA,WAAO,iBAAiB,KAAK,eAAe,GAAG,OAAO,EAAE,YAAY;AAAA,EACtE;AAAA,EACA,IAAI,SAAS;AACX,QAAI,KAAK,aAAa,WAAW,GAAG;AAClC,YAAM,IAAI,eAAe,SAAS,KAAK,4BAA4B;AAAA,IACrE;AACA,QAAI,KAAK,aAAa,SAAS,GAAG;AAChC,YAAM,IAAI,eAAe,SAAS,KAAK,6HAA6H;AAAA,IACtK;AACA,WAAO,iBAAiB,KAAK,eAAe,GAAG,QAAQ,EAAE,aAAa;AAAA,EACxE;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK;AAAA,EACd;AAAA,EACA,kBAAkB;AAChB,WAAO,KAAK,OAAO,IAAI,CAAC,WAAW,OAAO,CAAC;AAAA,EAC7C;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,QAAQ;AACV,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,MAAM,OAAO;AACf,SAAK,SAAS;AAAA,EAChB;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,SAAK,kBAAkB,QAAQ,CAAC,MAAM,EAAE,YAAY,SAAS;AAC7D,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,IAAI,mBAAmB;AACrB,QAAI,KAAK,YAAY;AACnB,aAAO,KAAK,kBAAkB,OAAO,CAAC,MAAM,EAAE,SAAS;AAAA,IACzD,OAAO;AACL,aAAO,CAAC;AAAA,IACV;AAAA,EACF;AAAA,EACA,IAAI,iBAAiB,SAAS;AAC5B,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,IAAI,sBAAsB;AACxB,QAAI,KAAK,WAAW;AAClB,aAAO,KAAK,kBAAkB,OAAO,CAAC,MAAM,CAAC,EAAE,SAAS,EAAE,OAAO,KAAK,oBAAoB;AAAA,IAC5F,OAAO;AACL,aAAO,KAAK,kBAAkB,OAAO,KAAK,oBAAoB;AAAA,IAChE;AAAA,EACF;AAAA,EACA,IAAI,oBAAoB,SAAS;AAC/B,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,iBAAiB,OAAO,KAAK,mBAAmB;AAAA,EAC9D;AAAA,EACA,IAAI,WAAW;AACb,WAAO,KAAK;AAAA,EACd;AAAA,EACA,cAAc;AACZ,QAAI,CAAC,KAAK,UAAU;AAClB,YAAM,IAAI,MAAM,sEAAsE;AAAA,IACxF;AAAA,EACF;AAAA,EACA,yBAAyB,QAAQ;AAC/B,aAAS,OAAO,MAAM;AACtB,QAAI,KAAK,aAAa,QAAQ,KAAK,UAAU,WAAW,GAAG;AACzD;AAAA,IACF;AACA,UAAM,YAAY,OAAO,KAAK,SAAS;AACvC,QAAI,OAAO,WAAW,UAAU,QAAQ;AACtC,YAAM,IAAI,WAAW,SAAS,KAAK,gBAAgB,UAAU,kCAAkC,OAAO,yCAAyC,QAAQ;AAAA,IACzJ;AACA,aAAS,aAAa,GAAG,aAAa,OAAO,QAAQ,cAAc;AACjE,YAAM,IAAI,OAAO;AACjB,YAAM,OAAO,UAAU;AACvB,UAAI,QAAQ,MAAM;AAChB;AAAA,MACF;AACA,YAAM,OAAO,EAAE;AACf,UAAI,KAAK,QAAQ,MAAM;AACrB,YAAI,SAAS,KAAK,MAAM;AACtB,gBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,uBAAuB,KAAK,oBAAoB,MAAM;AAAA,QACpI;AAAA,MACF;AACA,UAAI,KAAK,WAAW,MAAM;AACxB,YAAI,OAAO,KAAK,SAAS;AACvB,gBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,2BAA2B,KAAK,uBAAuB,MAAM;AAAA,QAC3I;AAAA,MACF;AACA,UAAI,KAAK,WAAW,MAAM;AACxB,YAAI,OAAO,KAAK,SAAS;AACvB,gBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,2BAA2B,KAAK,uBAAuB,OAAO;AAAA,QAC5I;AAAA,MACF;AACA,UAAI,KAAK,SAAS,MAAM;AACtB,YAAI,EAAE,UAAU,KAAK,OAAO;AAC1B,gBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,yBAAyB,KAAK,sBAAsB,EAAE,QAAQ;AAAA,QAC5I;AAAA,MACF;AACA,UAAI,KAAK,MAAM;AACb,cAAM,SAAS,EAAE;AACjB,mBAAW,OAAO,KAAK,MAAM;AAC3B,gBAAM,OAAO,OAAO,GAAG;AACvB,gBAAM,QAAQ,KAAK,KAAK;AACxB,gBAAM,eAAe,QAAQ,IAAI,OAAO,QAAQ,OAAO,OAAO,SAAS;AACvE,cAAI,SAAS,QAAQ,CAAC,OAAO,IAAI,EAAE,QAAQ,YAAY,MAAM,IAAI;AAC/D,kBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,uBAAuB,qCAAqC,uBAAuB,SAAS;AAAA,UAC1K;AAAA,QACF;AAAA,MACF;AACA,UAAI,KAAK,SAAS,MAAM;AACtB,iBAAS,KAAK,GAAG,KAAK,KAAK,MAAM,QAAQ,EAAE,IAAI;AAC7C,gBAAM,UAAU,KAAK,MAAM;AAC3B,gBAAM,MAAM,EAAE,MAAM;AACpB,cAAI,WAAW,QAAQ,OAAO,MAAM;AAClC,gBAAI,YAAY,KAAK;AACnB,oBAAM,IAAI,WAAW,SAAS,yCAAyC,KAAK,wBAAwB,KAAK,sBAAsB,EAAE,QAAQ;AAAA,YAC3I;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO;AAAA,EACT;AAAA,EACA,eAAe,QAAQ,QAAQ;AAC7B,QAAI,KAAK,aAAa,MAAM;AAC1B,WAAK,UAAU,QAAQ,MAAM;AAAA,IAC/B;AAAA,EACF;AAAA,EACA,YAAY,UAAU;AACpB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,gBAAgB;AACd,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,MAAM,QAAQ,QAAQ;AACpB,aAAS,UAAU,CAAC;AACpB,SAAK,kBAAkB;AACvB,UAAM,aAAa,OAAO,MAAM;AAChC,QAAI,iBAAiB;AACrB,eAAW,UAAU,YAAY;AAC/B,UAAI,EAAE,kBAAkB,iBAAiB;AACvC,yBAAiB;AACjB;AAAA,MACF;AAAA,IACF;AACA,QAAI,kBAAkB;AACtB,eAAW,UAAU,YAAY;AAC/B,UAAI,kBAAkB,gBAAgB;AACpC,0BAAkB;AAClB;AAAA,MACF;AAAA,IACF;AACA,QAAI,mBAAmB,iBAAiB;AACtC,YAAM,IAAI,WAAW,iEAAiE;AAAA,IACxF;AACA,WAAO,UAAU,KAAK,MAAM,MAAM;AAChC,UAAI,CAAC,KAAK,OAAO;AACf,aAAK,yBAAyB,MAAM;AACpC,cAAM,cAAc,CAAC;AACrB,mBAAW,SAAS,OAAO,MAAM,GAAG;AAClC,sBAAY,KAAK,MAAM,KAAK;AAAA,QAC9B;AACA,aAAK,MAAM,iBAAiB,WAAW,CAAC;AACxC,aAAK,QAAQ;AACb,YAAI,KAAK,gBAAgB;AACvB,eAAK,WAAW,KAAK,cAAc;AAAA,QACrC;AACA,YAAI,KAAK,cAAc,QAAQ,iBAAiB;AAC9C,eAAK,YAAY;AAAA,QACnB;AAAA,MACF;AACA,WAAK,yBAAyB,MAAM;AACpC,UAAI,iBAAiB;AACnB,YAAI,SAAS,KAAK,KAAK,QAAQ,MAAM;AACrC,cAAM,aAAa,OAAO,MAAM;AAChC,cAAM,iBAAiB,CAAC;AACxB,iBAAS,KAAK,YAAY;AACxB,cAAI,WAAW,QAAQ,CAAC,MAAM,IAAI;AAChC,gBAAI,EAAE,MAAM;AAAA,UACd;AACA,yBAAe,KAAK,CAAC;AAAA,QACvB;AACA,iBAAS,iBAAiB,cAAc;AACxC,YAAI,KAAK,uBAAuB,MAAM;AACpC,gBAAM,IAAI,oBAAoB,mFAAmF;AAAA,QACnH;AACA,eAAO;AAAA,MACT,OAAO;AACL,cAAM,aAAa,kBAAkB,MAAM;AAC3C,cAAM,cAAc,KAAK,mBAAmB,UAAU;AACtD,YAAI;AACJ,cAAM,cAAc,iBAAiB,MAAM;AAC3C,aAAK,6BAA6B,MAAM,QAAQ,MAAM,IAAI,WAAW,KAAK,UAAU;AACpF,YAAI,eAAe,QAAQ,YAAY,SAAS,KAAK,MAAM,QAAQ,YAAY,EAAE,GAAG;AAClF,mBAAS,YAAY,IAAI,CAAC,OAAOG,WAAU,IAAI,eAAe,aAAa,OAAO,MAAM,OAAO,MAAM,GAAG,QAAQ,KAAK,MAAMA,MAAK,CAAC;AAAA,QACnI,OAAO;AACL,mBAAS,IAAI,eAAe,aAAa,aAAa,MAAM,OAAO,MAAM,GAAG,QAAQ,KAAK,IAAI;AAAA,QAC/F;AACA,aAAK,eAAe,QAAQ,QAAQ,MAAM,MAAM,YAAY,aAAa,MAAM;AAC/E,aAAK;AACL,YAAI,KAAK,uBAAuB,MAAM;AACpC,gBAAM,IAAI,oBAAoB,mFAAmF;AAAA,QACnH;AACA,eAAO;AAAA,MACT;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,6BAA6B,YAAY;AACvC,QAAI,KAAK,mBAAmB,MAAM;AAChC;AAAA,IACF,WAAW,WAAW,WAAW,KAAK,gBAAgB,QAAQ;AAC5D,cAAQ,KAAK,iDAAiD,KAAK,UAAU,UAAU,kDAAkD,KAAK,UAAU,KAAK,eAAe,mBAAmB,KAAK,MAAM;AAAA,IAC5M,OAAO;AACL,UAAI,cAAc;AAClB,WAAK,gBAAgB,QAAQ,CAAC,WAAW,OAAO;AAC9C,YAAI,aAAa,QAAQ,WAAW,OAAO,QAAQ,WAAW,QAAQ,WAAW;AAC/E,wBAAc;AAAA,QAChB;AAAA,MACF,CAAC;AACD,UAAI,aAAa;AACf,gBAAQ,KAAK,kCAAkC,KAAK,UAAU,UAAU,8CAA8C,KAAK,SAAS,KAAK,UAAU,KAAK,eAAe,GAAG;AAAA,MAC5K;AAAA,IACF;AAAA,EACF;AAAA,EACA,IAAI,cAAc;AAChB,QAAI,KAAK,gBAAgB,QAAQ,KAAK,aAAa,WAAW,GAAG;AAC/D,YAAM,IAAI,eAAe,aAAa,KAAK,kEAAkE;AAAA,IAC/G;AACA,UAAM,kBAAkB,CAAC;AACzB,eAAWO,SAAQ,KAAK,cAAc;AACpC,YAAM,cAAc,KAAK,UAAUA,MAAK,YAAY;AACpD,UAAI,gBAAgB,QAAQ,WAAW,MAAM,IAAI;AAC/C,wBAAgB,KAAK,WAAW;AAAA,MAClC;AAAA,IACF;AACA,QAAI,gBAAgB,WAAW,GAAG;AAChC,YAAM,eAAe,KAAK,aAAa,GAAG;AAC1C,UAAI,MAAM,QAAQ,YAAY,KAAK,MAAM,QAAQ,aAAa,EAAE,KAAK,aAAa,WAAW,GAAG;AAC9F,eAAO,aAAa;AAAA,MACtB,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF,OAAO;AACL,YAAM,IAAI,eAAe,aAAa,KAAK,gIAAgI;AAAA,IAC7K;AAAA,EACF;AAAA,EACA,cAAc;AACZ,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,sCAAsC,KAAK,yFAAyF;AAAA,IAC7J;AACA,WAAO,qBAAqB,KAAK,OAAO;AAAA,EAC1C;AAAA,EACA,MAAM,YAAY;AAChB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,WAAW,gBAAgB,OAAO;AAChC,WAAO,cAAc,gBAAgB,KAAK,mBAAmB,KAAK,OAAO;AAAA,EAC3E;AAAA,EACA,WAAW,SAAS;AAClB,SAAK,MAAM;AACT,YAAM,SAAS,KAAK;AACpB,UAAI,OAAO,WAAW,QAAQ,QAAQ;AACpC,cAAM,IAAI,WAAW,4CAA4C,KAAK,sCAAsC,QAAQ,uCAAuC,OAAO,qCAAqC,YAAY;AAAA,MACrN;AACA,UAAI,OAAO,WAAW,GAAG;AACvB;AAAA,MACF;AACA,YAAM,oBAAoB,CAAC;AAC3B,YAAM,cAAc,cAAc,MAAM;AACxC,eAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,cAAM,KAAK,YAAY;AACvB,cAAM,KAAK,OAAO;AAClB,cAAM,IAAI,QAAQ;AAClB,YAAI,CAAC,aAAa,YAAY,GAAG,OAAO,EAAE,KAAK,GAAG;AAChD,gBAAM,IAAI,WAAW,sBAAsB,GAAG,mDAAmD,EAAE,OAAO;AAAA,QAC5G;AACA,0BAAkB,KAAK,CAAC,IAAI,CAAC,CAAC;AAAA,MAChC;AACA,oBAAc,iBAAiB;AAAA,IACjC,CAAC;AAAA,EACH;AAAA,EACA,UAAU,MAAM,OAAO,OAAO,aAAa,aAAa,WAAW,YAAY,oBAAoB;AACjG,QAAI,KAAK,kBAAkB,QAAQ,IAAI,MAAM,IAAI;AAC/C,YAAM,IAAI,WAAW,yBAAyB,kBAAkB,KAAK,MAAM;AAAA,IAC7E;AACA,SAAK,kBAAkB,KAAK,IAAI;AAChC,QAAI,SAAS,MAAM;AACjB,cAAQ;AAAA,IACV;AACA,QAAI,KAAK,2BAA2B;AAClC,oBAAc,sBAAsB,OAAO,mBAAmB,IAAI,eAAe,OAAO;AAAA,IAC1F;AACA,UAAM,YAAY,YAAY,MAAM,OAAO,KAAK;AAChD,UAAM,SAAS,IAAI,cAAc,WAAW,OAAO,MAAM,WAAW,UAAU;AAC9E,cAAU,QAAQ;AAClB,QAAI,eAAe,MAAM;AACvB,WAAK,QAAQ,MAAM,YAAY,MAAM,OAAO,KAAK,CAAC,CAAC;AAAA,IACrD;AACA,QAAI,aAAa,MAAM;AACrB,kBAAY;AAAA,IACd;AACA,QAAI,WAAW;AACb,WAAK,kBAAkB,KAAK,MAAM;AAAA,IACpC,OAAO;AACL,WAAK,qBAAqB,KAAK,MAAM;AAAA,IACvC;AACA,WAAO;AAAA,EACT;AAAA,EACA,6BAA6B,OAAO;AAClC,SAAK,4BAA4B;AAAA,EACnC;AAAA,EACA,QAAQ,SAAS;AACf,QAAI,WAAW,QAAQ,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AACrE;AAAA,IACF;AACA,cAAU,OAAO,OAAO;AACxB,QAAI,KAAK,YAAY,UAAU,KAAK,YAAY,MAAM;AACpD,WAAK,OAAO,KAAK,GAAG,OAAO;AAAA,IAC7B;AAAA,EACF;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQZ,OAAM;AACxB,QAAI,CAAC,KAAK,iBAAiB;AACzB,UAAIA,SAAQ,MAAM;AAChB,YAAI,MAAM,QAAQA,KAAI,GAAG;AACvB,UAAAA,MAAK,QAAQ,CAAC,gBAAgB;AAC5B,gBAAI,eAAe,MAAM;AACvB,oBAAM,IAAI,UAAU,SAAS,KAAK,6DAA6D;AAAA,YACjG;AAAA,UACF,CAAC;AAAA,QACH,OAAO;AACL,gBAAM,IAAI,UAAU,SAAS,KAAK,6DAA6D;AAAA,QACjG;AAAA,MACF;AACA,aAAO;AAAA,IACT;AACA,WAAOA;AAAA,EACT;AAAA,EACA,eAAe,cAAc,eAAe,YAAY,aAAa,aAAa,cAAc,SAAS,MAAM;AAC7G,UAAM,kBAAkB,OAAO,YAAY;AAC3C,oBAAgB,OAAO,aAAa;AACpC,iBAAa,OAAO,UAAU;AAC9B,kBAAc,OAAO,WAAW;AAChC,kBAAc,mBAAmB,WAAW;AAC5C,mBAAe,mBAAmB,YAAY;AAC9C,UAAM,gBAAgB,CAAC;AACvB,UAAM,cAAc,CAAC;AACrB,UAAM,gBAAgB,CAAC;AACvB,eAAW,KAAK,iBAAiB;AAC/B,oBAAc,KAAK,EAAE,WAAW;AAChC,kBAAY,KAAK,EAAE,SAAS;AAC5B,oBAAc,KAAK,EAAE,WAAW;AAAA,IAClC;AACA,QAAI,KAAK;AAAA,MACP,eAAe;AAAA,MACf;AAAA,MACA;AAAA,MACA;AAAA,MACA,cAAc;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF,GAAG,MAAM;AACT,aAAS,KAAK,GAAG,KAAK,cAAc,QAAQ,MAAM;AAChD,oBAAc,IAAI,cAAc;AAChC,oBAAc,IAAI,YAAY,KAAK,aAAa,SAAS;AACzD,oBAAc,IAAI,cAAc;AAAA,IAClC;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAMU,UAAS,EAAE,MAAM,KAAK,MAAM,WAAW,KAAK,UAAU;AAC5D,QAAI,KAAK,mBAAmB,MAAM;AAChC,MAAAA,QAAO,qBAAqB,KAAK;AAAA,IACnC;AACA,QAAI,KAAK,SAAS,MAAM;AACtB,MAAAA,QAAO,WAAW,KAAK;AAAA,IACzB;AACA,WAAOA;AAAA,EACT;AAAA,EACA,iBAAiB;AACf,SAAK,QAAQ,QAAQ,CAAC,WAAW,OAAO,QAAQ,CAAC;AACjD,WAAO,KAAK,QAAQ;AAAA,EACtB;AAAA,EACA,oBAAoB;AAClB,QAAI,KAAK,cAAc,GAAG;AACxB,YAAM,IAAI,MAAM,UAAU,KAAK,4BAA4B;AAAA,IAC7D;AAAA,EACF;AAAA,EACA,UAAU;AACR,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,MAAM,wBAAwB,KAAK,yCAAyC;AAAA,IACxF;AACA,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,IAAI,MAAM,wBAAwB,KAAK,wCAAwC;AAAA,IACvF;AACA,SAAK,kBAAkB;AACvB,QAAI,uBAAuB;AAC3B,QAAI,EAAE,KAAK,cAAc,GAAG;AAC1B,6BAAuB,KAAK,eAAe;AAAA,IAC7C;AACA,WAAO,EAAE,sBAAsB,KAAK,WAAW,qBAAqB;AAAA,EACtE;AACF;AACA,SAAS,kBAAkB,cAAc;AACvC,iBAAe,OAAO,YAAY;AAClC,QAAM,SAAS,CAAC;AAChB,aAAW,KAAK,cAAc;AAC5B,WAAO,KAAK,EAAE,KAAK;AAAA,EACrB;AACA,SAAO,iBAAiB,MAAM;AAChC;AACA,SAAS,iBAAiB,cAAc;AACtC,SAAO;AACT;AACA,SAAS,gBAAgB,SAAS,OAAO,WAAW;AAClD,MAAI,SAAS,QAAQ,aAAa,QAAQ,YAAY,GAAG;AACvD,YAAQ,QAAQ;AAChB,gBAAY,QAAQ;AAAA,EACtB;AACA,MAAI,MAAM,aAAa,WAAW,GAAG;AACnC,WAAO,CAAC,OAAO;AAAA,EACjB,OAAO;AACL,UAAME,QAAO,MAAM,aAAa;AAChC,QAAIA,MAAK,cAAc,WAAW,GAAG;AACnC,aAAOA,MAAK;AAAA,IACd,OAAO;AACL,YAAM,gBAAgB,CAAC;AACvB,eAAS,KAAK,GAAG,KAAKA,MAAK,cAAc,QAAQ,MAAM;AACrD,cAAM,IAAIA,MAAK,aAAa;AAC5B,cAAM,SAASA,MAAK,cAAc;AAClC,cAAM,aAAaA,MAAK,YAAY;AACpC,cAAM,kBAAkB,gBAAgB,GAAG,QAAQ,UAAU;AAC7D,mBAAW,MAAM,iBAAiB;AAChC,cAAI,cAAc,QAAQ,EAAE,MAAM,IAAI;AACpC,0BAAc,KAAK,EAAE;AAAA,UACvB;AAAA,QACF;AAAA,MACF;AACA,aAAO;AAAA,IACT;AAAA,EACF;AACF;AAGA,IAAI,aAAa,cAAc,MAAM;AAAA,EACnC,YAAY,MAAM;AAChB,UAAM;AAAA,MACJ,OAAO,KAAK;AAAA,MACZ,MAAM,KAAK,QAAQ,OAAO,KAAK,OAAO,OAAO,OAAO,EAAE,SAAS;AAAA,IACjE,CAAC;AACD,QAAI,KAAK,aAAa,MAAM;AAC1B,WAAK,YAAY;AAAA,IACnB;AACA,QAAI,KAAK,UAAU,MAAM;AACvB,WAAK,SAAS;AAAA,IAChB;AACA,SAAK,YAAY;AACjB,SAAK,QAAQ;AACb,SAAK,SAAS,KAAK;AACnB,QAAI,KAAK,cAAc,QAAQ,KAAK,mBAAmB,MAAM;AAC3D,YAAM,IAAI,WAAW,mGAAmG;AAAA,IAC1H;AACA,QAAI,kBAAkB,KAAK;AAC3B,QAAI,mBAAmB,MAAM;AAC3B,UAAI,KAAK,cAAc,MAAM;AAC3B,cAAM,IAAI,WAAW,+EAA+E;AAAA,MACtG,OAAO;AACL,0BAAkB,CAAC,KAAK,SAAS,EAAE,OAAO,KAAK,UAAU;AAAA,MAC3D;AAAA,IACF,OAAO;AACL,UAAI,KAAK,aAAa,MAAM;AAC1B,cAAM,IAAI,WAAW,uFAAuF;AAAA,MAC9G;AAAA,IACF;AACA,UAAM,QAAQ,KAAK,SAAS;AAC5B,SAAK,kBAAkB;AACvB,SAAK,QAAQ;AACb,SAAK,YAAY,CAAC,EAAE,OAAO,gBAAgB,CAAC;AAC5C,UAAM,cAAc,IAAI,eAAe,KAAK,OAAO,KAAK,iBAAiB,MAAM,CAAC,GAAG,CAAC,GAAG,KAAK,IAAI;AAChG,gBAAY,YAAY;AACxB,gBAAY,cAAc;AAC1B,QAAI,KAAK;AAAA,MACP,eAAe;AAAA,MACf,eAAe,CAAC;AAAA,MAChB,aAAa,CAAC;AAAA,MACd,eAAe,CAAC;AAAA,MAChB,cAAc,CAAC,WAAW;AAAA,MAC1B,eAAe,CAAC,WAAW;AAAA,MAC3B,YAAY,CAAC,IAAI;AAAA,MACjB,aAAa,CAAC,IAAI;AAAA,MAClB,aAAa,CAAC,eAAe;AAAA,MAC7B,cAAc,CAAC,eAAe;AAAA,IAChC,CAAC;AAAA,EACH;AAAA,EACA,MAAM,QAAQ,QAAQ;AACpB,UAAM,IAAI,WAAW,6EAA6E,KAAK,MAAM;AAAA,EAC/G;AAAA,EACA,UAAU;AACR,WAAO,EAAE,sBAAsB,KAAK,WAAW,sBAAsB,EAAE;AAAA,EACzE;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,iBAAiB,KAAK;AAAA,MACtB,OAAO,KAAK;AAAA,MACZ,QAAQ,KAAK;AAAA,MACb,MAAM,KAAK;AAAA,IACb;AAAA,EACF;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAC9C,SAAS,MAAMF,SAAQ;AACrB,MAAIA,QAAO,cAAc,QAAQA,QAAO,SAAS,MAAM;AACrD,UAAM,IAAI,MAAM,8HAA8H;AAAA,EAChJ;AACA,MAAIA,QAAO,cAAc,QAAQA,QAAO,SAAS,MAAM;AACrD,UAAM,IAAI,WAAW,kFAAkF;AAAA,EACzG;AACA,MAAI,aAAaA,QAAO;AACxB,MAAIA,QAAO,SAAS,QAAQ,cAAc,MAAM;AAC9C,iBAAa,CAAC,IAAI,EAAE,OAAOA,QAAO,KAAK;AAAA,EACzC;AACA,MAAI,QAAQA,QAAO;AACnB,MAAI,SAAS,MAAM;AACjB,YAAQ;AAAA,EACV;AACA,QAAM,cAAc,IAAI,WAAW;AAAA,IACjC,iBAAiB;AAAA,IACjB,MAAMA,QAAO;AAAA,IACb;AAAA,IACA,QAAQA,QAAO;AAAA,EACjB,CAAC;AACD,QAAM,UAAU,YAAY,aAAa,GAAG;AAC5C,SAAO,QAAQ;AACjB;AAGA,SAAS,wBAAwB,KAAK,KAAK;AACzC,MAAI,IAAI,SAAS,QAAQ,IAAI,UAAU,IAAI,OAAO;AAChD,WAAO;AAAA,EACT;AACA,MAAI;AACF,WAAO,KAAK,KAAK,IAAI,KAAK;AAAA,EAC5B,SAAS,KAAP;AACA,UAAM,IAAI,WAAW,0BAA0B,IAAI,mDAAmD,IAAI,UAAU,IAAI,SAAS;AAAA,EACnI;AACF;AACA,IAAI,WAAW,MAAM;AAAA,EACnB,YAAY,OAAO;AACjB,SAAK,WAAW,CAAC;AACjB,SAAK,UAAU,CAAC;AAChB,SAAK,UAAU,CAAC;AAChB,QAAI,iBAAiB,UAAU;AAC7B,iBAAW,MAAM,MAAM,UAAU;AAC/B,aAAK,SAAS,MAAM,MAAM,SAAS;AACnC,YAAI,MAAM,MAAM,SAAS;AACvB,eAAK,QAAQ,MAAM,MAAM,QAAQ;AAAA,QACnC;AAAA,MACF;AAAA,IACF,OAAO;AACL,UAAI,SAAS,MAAM;AACjB;AAAA,MACF;AACA,iBAAW,QAAQ,OAAO;AACxB,aAAK,IAAI,KAAK,KAAK,KAAK,KAAK;AAAA,MAC/B;AAAA,IACF;AAAA,EACF;AAAA,EACA,IAAI,KAAK,OAAOV,OAAM;AACpB,QAAI,KAAK,SAAS,IAAI,OAAO,MAAM;AACjC,WAAK,SAAS,IAAI,MAAM,wBAAwB,KAAK,KAAK;AAC1D,WAAK,QAAQ,IAAI,QAAQ,IAAI;AAC7B,UAAIA,SAAQ,MAAM;AAChB,aAAK,QAAQ,IAAI,MAAMA;AAAA,MACzB;AAAA,IACF,OAAO;AACL,YAAM,IAAI,WAAW,uBAAuB,IAAI,YAAY,IAAI,IAAI;AAAA,IACtE;AACA,WAAO;AAAA,EACT;AAAA,EACA,QAAQ,MAAM;AACZ,SAAK,IAAI,KAAK,KAAK,KAAK,KAAK;AAAA,EAC/B;AAAA,EACA,OAAO,KAAK;AACV,WAAO,KAAK,SAAS,IAAI,OAAO;AAAA,EAClC;AAAA,EACA,QAAQ;AACN,WAAO,OAAO,KAAK,KAAK,OAAO;AAAA,EACjC;AAAA,EACA,SAAS,KAAK;AACZ,QAAI,eAAe,gBAAgB;AACjC,UAAI,KAAK,SAAS,IAAI,OAAO,MAAM;AACjC,cAAM,IAAI,WAAW,oBAAoB,IAAI,MAAM;AAAA,MACrD,OAAO;AACL,eAAO,KAAK,SAAS,IAAI;AAAA,MAC3B;AAAA,IACF,OAAO;AACL,YAAM,KAAK,KAAK,QAAQ;AACxB,UAAI,MAAM,MAAM;AACd,cAAM,IAAI,WAAW,yCAAyC,KAAK;AAAA,MACrE;AACA,aAAO,KAAK,SAAS;AAAA,IACvB;AAAA,EACF;AAAA,EACA,QAAQ,KAAK;AACX,QAAI,eAAe,gBAAgB;AACjC,UAAI,KAAK,SAAS,IAAI,OAAO,MAAM;AACjC,cAAM,IAAI,WAAW,oBAAoB,IAAI,MAAM;AAAA,MACrD,OAAO;AACL,eAAO,KAAK,QAAQ,IAAI;AAAA,MAC1B;AAAA,IACF,OAAO;AACL,YAAM,KAAK,KAAK,QAAQ;AACxB,UAAI,MAAM,MAAM;AACd,cAAM,IAAI,WAAW,yCAAyC,KAAK;AAAA,MACrE;AACA,aAAO,KAAK,QAAQ;AAAA,IACtB;AAAA,EACF;AAAA,EACA,eAAe;AACb,QAAI,KAAK,WAAW,MAAM;AACxB,cAAQ,KAAK,OAAO;AAAA,IACtB;AAAA,EACF;AACF;AACA,IAAI,eAAe,IAAI,SAAS;AAChC,IAAI,wBAAwB,IAAI,SAAS;AACzC,SAAS,sBAAsB,YAAY;AACzC,MAAI,gBAAgB,MAAM;AACxB,iBAAa,cAAc,UAAU;AAAA,EACvC;AACA,MAAI,yBAAyB,MAAM;AACjC,0BAAsB,cAAc,UAAU;AAAA,EAChD;AACF;AACA,SAAS,QAAQ,SAAS,UAAU,QAAQ,OAAO;AACjD,QAAM,WAAW,UAAU,OAAO,QAAQ,OAAO;AACjD,QAAM,eAAe,MAAM,QAAQ,OAAO;AAC1C,QAAM,aAAa,eAAe,UAAU,CAAC,OAAO;AACpD,QAAM,cAAc,WAAW,IAAI,CAAC,OAAO,GAAG,IAAI;AAClD,QAAM,eAAe,CAAC;AACtB,QAAM,YAAY,SAAS,MAAM;AACjC,aAAW,cAAc,aAAa;AACpC,QAAI,UAAU,QAAQ,UAAU,MAAM,IAAI;AACxC,mBAAa,KAAK,SAAS,SAAS,UAAU,CAAC;AAAA,IACjD,OAAO;AACL,mBAAa,KAAK,IAAI;AAAA,IACxB;AAAA,EACF;AACA,MAAI,SAAS,MAAM;AACjB,UAAM,gBAAgB;AACtB,UAAM,gBAAgB;AAAA,EACxB;AACA,QAAM,kBAAkB,YAAY,KAAK,GAAG,IAAI,MAAM,SAAS,MAAM,EAAE,KAAK,EAAE,KAAK,GAAG;AACtF,MAAI,SAAS,aAAa,IAAI,eAAe;AAC7C,MAAI;AACJ,MAAI,UAAU,MAAM;AAClB,UAAM,MAAM,qCAAqC,YAAY,QAAQ;AACrE,aAAS,IAAI;AACb,sBAAkB,IAAI;AACtB,iBAAa,IAAI,iBAAiB,MAAM;AACxC,0BAAsB,IAAI,iBAAiB,eAAe;AAAA,EAC5D;AACA,oBAAkB,CAAC;AACnB,MAAI,CAAC,UAAU;AACb,WAAO,OAAO,iBAAiB,sBAAsB,IAAI,eAAe,CAAC;AAAA,EAC3E;AACA,QAAM,mBAAmB,IAAI,SAAS,QAAQ;AAC9C,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,SAAS,MAAM;AACjB,YAAM,aAAa,OAAO,EAAE;AAC5B,UAAI,aAAa,MAAM,eAAe;AACpC,cAAM,gBAAgB;AAAA,MACxB;AACA,UAAI,aAAa,MAAM,eAAe;AACpC,cAAM,gBAAgB;AAAA,MACxB;AAAA,IACF;AACA,UAAM,WAAW,OAAO;AACxB,UAAM,WAAW,SAAS;AAC1B,QAAI,oBAAoB,YAAY;AAClC;AAAA,IACF;AACA,UAAM,cAAc,CAAC;AACrB,UAAM,aAAa,CAAC;AACpB,UAAM,mBAAmB,CAAC;AAC1B,QAAI,aAAa;AACjB,eAAW,UAAU,SAAS,QAAQ;AACpC,YAAM,QAAQ,iBAAiB,SAAS,MAAM;AAC9C,YAAMA,QAAO,iBAAiB,QAAQ,MAAM;AAC5C,kBAAY,KAAK,KAAK;AACtB,iBAAW,KAAKA,KAAI;AACpB,UAAIA,SAAQ,MAAM;AAChB,qBAAa;AAAA,MACf;AACA,UAAI,CAAC,UAAU;AACb,wBAAgB,OAAO;AACvB,YAAI,gBAAgB,OAAO,UAAU,KAAK,CAAC,SAAS,OAAO,MAAM,KAAK,YAAY,QAAQ,OAAO,IAAI,MAAM,MAAM,CAAC,MAAM,cAAc,OAAO,YAAY,aAAa,MAAM;AAC1K,2BAAiB,KAAK,KAAK;AAAA,QAC7B;AAAA,MACF;AAAA,IACF;AACA,QAAI,YAAY;AACd,eAAS,UAAU,CAAC;AACpB,aAAO,UAAU,WAAW;AAAA,IAC9B;AACA,UAAM,gBAAgB,OAAO,SAAS,MAAM,aAAa,MAAM,CAAC;AAChE,QAAI,aAAa;AACjB,QAAI,SAAS,iBAAiB;AAC5B,mBAAa,SAAS,YAAY,aAAa,UAAU;AAAA,IAC3D;AACA,UAAM,eAAe,eAAe,QAAQ;AAC5C,UAAM,wBAAwB,MAAM,QAAQ,YAAY,IAAI,eAAe,CAAC,YAAY;AACxF,aAAS,KAAK,GAAG,KAAK,sBAAsB,QAAQ,EAAE,IAAI;AACxD,UAAI,CAAC,iBAAiB,OAAO,sBAAsB,GAAG,GAAG;AACvD,yBAAiB,IAAI,sBAAsB,KAAK,cAAc,KAAK,MAAM,QAAQ,UAAU,IAAI,WAAW,KAAK,UAAU;AAAA,MAC3H;AACA,YAAMK,SAAQ,YAAY,QAAQ,sBAAsB,IAAI,IAAI;AAChE,UAAIA,WAAU,IAAI;AAChB,qBAAaA,UAAS,cAAc;AAAA,MACtC;AAAA,IACF;AACA,QAAI,CAAC,UAAU;AACb,cAAQ,gBAAgB;AAAA,IAC1B;AAAA,EACF;AACA,mBAAiB,aAAa;AAC9B,SAAO,eAAe,eAAe,aAAa;AACpD;AACA,SAAS,qCAAqC,SAAS,UAAU;AAC/D,eAAa,OAAO,WAAW,QAAQ,QAAQ,SAAS,GAAG,MAAM,uCAAuC;AACxG,MAAI,cAAc,CAAC;AACnB,MAAI,oBAAoB,CAAC;AACzB,MAAI,QAAQ,WAAW,GAAG;AACxB,UAAM,MAAM,gDAAgD,QAAQ,IAAI,QAAQ;AAChF,kBAAc,IAAI;AAClB,wBAAoB,IAAI;AAAA,EAC1B,OAAO;AACL,UAAM,UAA0B,oBAAI,IAAI;AACxC,eAAW,UAAU,SAAS;AAC5B,YAAM,EAAE,QAAQ,aAAa,IAAI,gDAAgD,QAAQ,QAAQ;AACjG,iBAAW,kBAAkB,QAAQ;AACnC,YAAI,CAAC,QAAQ,IAAI,eAAe,IAAI,GAAG;AACrC,sBAAY,KAAK,cAAc;AAC/B,kBAAQ,IAAI,eAAe,IAAI;AAAA,QACjC;AAAA,MACF;AACA,iBAAW,QAAQ,cAAc;AAC/B,YAAI,kBAAkB,SAAS,MAAM;AACnC,4BAAkB,QAAwB,oBAAI,IAAI;AAAA,QACpD;AACA,qBAAa,MAAM,QAAQ,CAAC,cAAc,kBAAkB,MAAM,IAAI,SAAS,CAAC;AAAA,MAClF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AAAA,IACL,QAAQ;AAAA,IACR,iBAAiB,oBAAoB,iBAAiB;AAAA,EACxD;AACF;AACA,SAAS,oBAAoB,cAAc;AACzC,QAAM,kBAAkB,CAAC;AACzB,aAAW,QAAQ,cAAc;AAC/B,oBAAgB,QAAQ,aAAa,MAAM;AAAA,EAC7C;AACA,SAAO;AACT;AACA,SAAS,gDAAgD,QAAQ,UAAU;AACzE,QAAM,UAA0B,oBAAI,IAAI;AACxC,QAAM,SAAS,CAAC;AAChB,QAAM,eAAe,CAAC;AACtB,aAAW,OAAO,SAAS,MAAM,GAAG;AAClC,YAAQ,IAAI,GAAG;AAAA,EACjB;AACA,QAAM,SAAS,CAAC;AAChB,QAAM,QAAQ,CAAC;AACf,SAAO,KAAK,MAAM;AAClB,SAAO,OAAO,SAAS,GAAG;AACxB,UAAM,MAAM,OAAO,OAAO,SAAS;AACnC,QAAI,QAAQ,IAAI,IAAI,IAAI,GAAG;AACzB,aAAO,IAAI;AACX;AAAA,IACF;AACA,UAAM,cAAc,MAAM,MAAM,SAAS,OAAO,OAAO,SAAS;AAChE,QAAI,IAAI,OAAO,WAAW,KAAK,aAAa;AAC1C,aAAO,IAAI;AACX,aAAO,KAAK,GAAG;AACf,cAAQ,IAAI,IAAI,IAAI;AACpB,UAAI,aAAa;AACf,cAAM,IAAI;AAAA,MACZ;AAAA,IACF,OAAO;AACL,YAAM,KAAK,OAAO,SAAS,CAAC;AAC5B,iBAAW,UAAU,IAAI,QAAQ;AAC/B,YAAI,aAAa,OAAO,SAAS,MAAM;AACrC,uBAAa,OAAO,QAAwB,oBAAI,IAAI;AAAA,QACtD;AACA,qBAAa,OAAO,MAAM,IAAI,IAAI,IAAI;AACtC,YAAI,QAAQ,IAAI,OAAO,IAAI,GAAG;AAC5B;AAAA,QACF;AACA,eAAO,KAAK,MAAM;AAAA,MACpB;AAAA,IACF;AAAA,EACF;AACA,SAAO,EAAE,QAAQ,aAAa;AAChC;AACA,SAAS,eAAe,QAAQ;AAC9B,MAAI;AACJ,MAAI,OAAO,YAAY,aAAa,WAAW,GAAG;AAChD,mBAAe,OAAO,YAAY;AAAA,EACpC,OAAO;AACL,QAAI,YAAY;AAChB,aAAS,KAAK,GAAG,KAAK,OAAO,YAAY,aAAa,QAAQ,EAAE,IAAI;AAClE,iBAAW,gBAAgB,OAAO,YAAY,aAAa,IAAI,eAAe;AAC5E,YAAI,aAAa,OAAO,OAAO,IAAI;AACjC,sBAAY;AACZ;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,mBAAe,OAAO,YAAY,YAAY,SAAS;AAAA,EACzD;AACA,SAAO;AACT;AAGA,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,sCAAsC,MAAM,KAAK,qBAAqB;AAGxF,IAAI,8BAA8B,CAAC;AACnCb,UAAS,6BAA6B;AAAA,EACpC,SAAS,MAAM;AAAA,EACf,YAAY,MAAM;AAAA,EAClB,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAClB,CAAC;AAGD,SAAS,YAAY,GAAG,MAAM;AAC5B,SAAO,KAAK,MAAM,KAAK,KAAK,IAAI,GAAG,CAAC,GAAG,MAAM,IAAI,CAAC,CAAC;AACrD;AACA,IAAI,aAAa,cAAc,sBAAsB,aAAa;AAAA,EAChE,YAAY;AACV,WAAO,CAAC;AAAA,EACV;AACF;AACA,IAAI,UAAU,cAAc,WAAW;AAAA,EACrC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,kBAAkB;AACvB,SAAK,cAAc;AACnB,SAAK,WAAW,KAAK,YAAY,OAAO,KAAK,WAAW,KAAK;AAC7D,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,KAAK;AAAA,EACnD;AAAA,EACA,MAAM,GAAG;AACP,WAAO,KAAK,MAAM;AAChB,YAAM,QAAQ,YAAY,GAAG,KAAK,IAAI;AACtC,YAAM,UAAU,YAAY,OAAO,GAAG,KAAK,QAAQ;AACnD,aAAO,IAAI,GAAG,IAAI,SAAS,KAAK,QAAQ,GAAG,KAAK,CAAC,CAAC;AAAA,IACpD,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO,EAAE,UAAU,KAAK,UAAU,MAAM,KAAK,KAAK;AAAA,EACpD;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,WAAW,cAAc,WAAW;AAAA,EACtC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,cAAc;AACnB,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,KAAK;AAAA,EACnD;AAAA,EACA,MAAM,GAAG;AACP,WAAO,KAAK,MAAM,IAAI,GAAG,KAAK,QAAQ,GAAG,YAAY,GAAG,KAAK,IAAI,CAAC,CAAC,CAAC;AAAA,EACtE;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,KAAK;AAAA,EAC3B;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,SAAS,cAAc,WAAW;AAAA,EACpC,MAAM,GAAG;AACP,WAAO,KAAK,CAAC;AAAA,EACf;AACF;AACA,OAAO,YAAY;AACnB,sBAAsB,cAAc,MAAM;AAC1C,IAAI,aAAa,cAAc,WAAW;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,cAAc;AACnB,SAAK,cAAc;AACnB,SAAK,WAAW,KAAK,YAAY,OAAO,KAAK,WAAW,KAAK;AAC7D,SAAK,WAAW,KAAK,YAAY,OAAO,KAAK,WAAW,KAAK;AAC7D,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,KAAK;AACjD,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,KAAK;AAAA,EACnD;AAAA,EACA,MAAM,GAAG;AACP,WAAO,KAAK,MAAM;AAChB,YAAM,QAAQ,YAAY,GAAG,KAAK,IAAI;AACtC,YAAM,UAAU,KAAK,IAAI,KAAK,MAAM,YAAY,OAAO,KAAK,UAAU,KAAK,QAAQ,CAAC,GAAG,IAAI,IAAI,KAAK,MAAM,KAAK,CAAC;AAChH,aAAO,IAAI,GAAG,IAAI,SAAS,KAAK,QAAQ,GAAG,KAAK,CAAC,CAAC;AAAA,IACpD,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO;AAAA,MACL,UAAU,KAAK;AAAA,MACf,UAAU,KAAK;AAAA,MACf,MAAM,KAAK;AAAA,MACX,MAAM,KAAK;AAAA,IACb;AAAA,EACF;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAC9C,IAAI,4CAA4C;AAAA,EAC9C,WAAW;AAAA,EACX,cAAc;AAAA,EACd,UAAU;AAAA,EACV,YAAY;AACd;AACA,SAAS,oBAAoB,YAAY;AACvC,SAAO,qBAAqB,UAAU;AACxC;AACA,SAAS,sBAAsBkB,SAAQ,gBAAgB,CAAC,GAAG;AACzD,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,YAAY;AACjI;AACA,SAAS,cAAc,YAAY;AACjC,MAAI,cAAc,MAAM;AACtB,WAAO;AAAA,EACT;AACA,MAAI,OAAO,eAAe,UAAU;AAClC,UAAM,YAAY,cAAc,4CAA4C,0CAA0C,cAAc;AACpI,UAAMA,UAAS,EAAE,WAAW,QAAQ,CAAC,EAAE;AACvC,WAAO,sBAAsBA,OAAM;AAAA,EACrC,WAAW,sBAAsB,YAAY;AAC3C,WAAO;AAAA,EACT,OAAO;AACL,WAAO,sBAAsB,UAAU;AAAA,EACzC;AACF;AAGA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,SAAS;AAChB,SAAO,IAAI,OAAO;AACpB;AACA,SAAS,WAAWA,SAAQ;AAC1B,SAAO,IAAI,WAAWA,OAAM;AAC9B;AAGA,IAAI,+BAA+B,CAAC;AACpClB,UAAS,8BAA8B;AAAA,EACrC,UAAU,MAAM;AAAA,EAChB,cAAc,MAAM;AAAA,EACpB,eAAe,MAAM;AAAA,EACrB,UAAU,MAAM;AAAA,EAChB,WAAW,MAAM;AAAA,EACjB,UAAU,MAAM;AAAA,EAChB,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,MAAM,MAAM;AAAA,EACZ,YAAY,MAAM;AAAA,EAClB,cAAc,MAAM;AAAA,EACpB,eAAe,MAAM;AAAA,EACrB,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,OAAO,MAAM;AACf,CAAC;AACD,SAAS,SAAS;AAChB,SAAO,IAAI,MAAM;AACnB;AACA,SAAS,QAAQ;AACf,SAAO,IAAI,KAAK;AAClB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,eAAe,MAAM;AAC5B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,gBAAgBkB,SAAQ;AAC/B,SAAO,IAAI,gBAAgBA,OAAM;AACnC;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,YAAY,MAAM;AACzB,SAAO,IAAI,YAAY,IAAI;AAC7B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,WAAW,IAAI;AAC5B;AAGA,IAAI,yBAAyB,CAAC;AAC9BlB,UAAS,wBAAwB;AAAA,EAC/B,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,YAAY,MAAM;AAAA,EAClB,KAAK,MAAM;AAAA,EACX,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,kBAAkB,MAAM;AAAA,EACxB,kBAAkB,MAAM;AAAA,EACxB,kBAAkB,MAAM;AAAA,EACxB,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,oBAAoB,MAAM;AAAA,EAC1B,eAAe,MAAM;AAAA,EACrB,aAAa,MAAM;AAAA,EACnB,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,YAAY,MAAM;AAAA,EAClB,gBAAgB,MAAM;AAAA,EACtB,YAAY,MAAM;AAAA,EAClB,OAAO,MAAM;AAAA,EACb,iBAAiB,MAAM;AAAA,EACvB,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,KAAK,MAAM;AAAA,EACX,WAAW,MAAM;AAAA,EACjB,SAAS,MAAM;AAAA,EACf,iBAAiB,MAAM;AAAA,EACvB,eAAe,MAAM;AAAA,EACrB,wBAAwB,MAAM;AAAA,EAC9B,wBAAwB,MAAM;AAAA,EAC9B,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,oBAAoB,MAAM;AAAA,EAC1B,oBAAoB,MAAM;AAAA,EAC1B,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,OAAO,MAAM;AAAA,EACb,YAAY,MAAM;AAAA,EAClB,oBAAoB,MAAM;AAAA,EAC1B,WAAW,MAAM;AAAA,EACjB,MAAM,MAAM;AAAA,EACZ,UAAU,MAAM;AAAA,EAChB,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,UAAU,MAAM;AAAA,EAChB,SAAS,MAAM;AAAA,EACf,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,KAAK,MAAM;AAAA,EACX,iBAAiB,MAAM;AAAA,EACvB,WAAW,MAAM;AAAA,EACjB,eAAe,MAAM;AAAA,EACrB,SAAS,MAAM;AAAA,EACf,kBAAkB,MAAM;AAAA,EACxB,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,iBAAiB,MAAM;AAAA,EACvB,cAAc,MAAM;AAAA,EACpB,eAAe,MAAM;AACvB,CAAC;AAGD,eAAe,qBAAqB,MAAM;AACxC,MAAI,QAAQ,MAAM;AAChB;AAAA,EACF;AACA,QAAM,WAAW,CAAC;AAClB,QAAM,OAAO,CAAC;AACd,QAAM,mBAAmB,CAAC;AAC1B,aAAW,OAAO,MAAM;AACtB,UAAM,QAAQ,KAAK;AACnB,QAAI,OAAO,UAAU,UAAU;AAC7B,YAAM,cAAc;AACpB,eAAS,KAAK,YAAY,KAAK,CAAC;AAChC,WAAK,KAAK,GAAG;AACb,uBAAiB,KAAK,WAAW;AAAA,IACnC;AAAA,EACF;AACA,MAAI,SAAS,SAAS,GAAG;AACvB,UAAM,SAAS,MAAM,QAAQ,IAAI,QAAQ;AACzC,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,WAAK,KAAK,OAAO,OAAO,IAAI;AAAA,IAC9B;AACA,YAAQ,gBAAgB;AAAA,EAC1B;AACF;AACA,SAAS,qBAAqB,MAAM;AAClC,MAAI,QAAQ,MAAM;AAChB;AAAA,EACF;AACA,aAAW,OAAO,MAAM;AACtB,UAAM,QAAQ,KAAK;AACnB,QAAI,OAAO,UAAU,UAAU;AAC7B,YAAM,QAAQ;AAAA,IAChB;AAAA,EACF;AACF;AAGA,IAAI;AAAA,CACH,SAAS,wBAAwB;AAChC,yBAAuB,uBAAuB,YAAY,KAAK;AAC/D,yBAAuB,uBAAuB,aAAa,KAAK;AAClE,GAAG,0BAA0B,wBAAwB,CAAC,EAAE;AACxD,IAAI,yBAAyB;AAC7B,IAAI,eAAe,MAAM;AAAA,EACvB,cAAc;AACZ,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,UAAU,QAAQ;AAChB,SAAK,SAAS;AAAA,EAChB;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAAA,EAC9B;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAAA,EAC9B;AAAA,EACA,MAAM,aAAa,MAAM;AAAA,EACzB;AAAA,EACA,MAAM,WAAW,MAAM;AAAA,EACvB;AAAA,EACA,SAASiC,SAAQ;AAAA,EACjB;AACF;AACA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,YAAY,cAAc,IAAI;AACxC,QAAI,cAAc,MAAM;AACtB,mBAAa,CAAC;AAAA,IAChB;AACA,SAAK,YAAY;AACjB,SAAK,cAAc;AAAA,EACrB;AAAA,EACA,OAAO,UAAU;AACf,SAAK,UAAU,KAAK,QAAQ;AAAA,EAC9B;AAAA,EACA,UAAU,QAAQ;AAChB,eAAW,YAAY,KAAK,WAAW;AACrC,eAAS,UAAU,MAAM;AAAA,IAC3B;AAAA,EACF;AAAA,EACA,SAASA,SAAQ;AACf,eAAW,YAAY,KAAK,WAAW;AACrC,eAAS,SAASA,OAAM;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAC9B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,aAAa,OAAO,IAAI;AAAA,IACzC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,WAAW,OAAO,IAAI;AAAA,IACvC;AAAA,EACF;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAC9B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,aAAa,OAAO,IAAI;AAAA,IACzC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,WAAW,OAAO,IAAI;AAAA,IACvC;AAAA,EACF;AAAA,EACA,MAAM,aAAa,MAAM;AACvB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,aAAa,IAAI;AAAA,IAClC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,MAAM;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,eAAW,YAAY,KAAK,WAAW;AACrC,YAAM,SAAS,WAAW,IAAI;AAAA,IAChC;AAAA,EACF;AACF;AACA,IAAI,aAAa,cAAc,aAAa;AAAA,EAC1C,cAAc;AACZ,UAAM;AAAA,EACR;AAAA,EACA,MAAM,aAAa,OAAO;AACxB,SAAK,OAAO;AACZ,SAAK,SAAS,CAAC;AAAA,EACjB;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,YAAY,KAAK,WAAW,OAAO,IAAI,KAAK;AAClD,SAAK,QAAQ;AACb,eAAW,OAAO,MAAM;AACtB,YAAM,QAAQ,KAAK;AACnB,UAAI,OAAO,UAAU,UAAU;AAC7B,YAAI,CAAC,KAAK,OAAO,eAAe,GAAG,GAAG;AACpC,eAAK,OAAO,OAAO;AAAA,QACrB;AACA,aAAK,OAAO,OAAO,KAAK,OAAO,OAAO,QAAQ;AAAA,MAChD,OAAO;AACL,YAAI;AACJ,YAAI,OAAO,KAAK,QAAQ;AACtB,+BAAqB,KAAK,OAAO;AAAA,QACnC,OAAO;AACL,eAAK,OAAO,OAAO;AAAA,QACrB;AACA,cAAM,QAAQ,KAAK,MAAM,KAAK,KAAK,OAAO,MAAM,IAAI,OAAO,SAAS,CAAC,CAAC;AACtE,aAAK,OAAO,OAAO;AACnB,YAAI,sBAAsB,MAAM;AAC9B,6BAAmB,QAAQ;AAAA,QAC7B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,iBAAW,OAAO,KAAK,OAAO,YAAY;AACxC,YAAI,KAAK,OAAO,QAAQ,MAAM;AAC5B;AAAA,QACF;AACA,YAAI,OAAO,KAAK,OAAO,SAAS,UAAU;AACxC,eAAK,OAAO,KAAK,OAAO,OAAO,KAAK;AAAA,QACtC,OAAO;AACL,eAAK,MAAM;AACT,kBAAM,OAAO,IAAI,IAAI,GAAG,KAAK,IAAI,GAAG,KAAK,OAAO,IAAI;AACpD,iBAAK,OAAO;AACZ,iBAAK,OAAO,KAAK,QAAQ;AACzB,iBAAK,KAAK,IAAI;AAAA,UAChB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,IAAI,UAAU,cAAc,aAAa;AAAA,EACvC,MAAM,aAAa,MAAM;AACvB,SAAK,QAAQ,CAAC;AACd,SAAK,UAAU,CAAC;AAAA,EAClB;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,MAAM,KAAK,KAAK;AACrB,eAAW,OAAO,MAAM;AACtB,UAAI,KAAK,QAAQ,QAAQ,MAAM;AAC7B,aAAK,QAAQ,OAAO,CAAC;AAAA,MACvB;AACA,WAAK,QAAQ,KAAK,KAAK,KAAK,IAAI;AAAA,IAClC;AAAA,EACF;AAAA,EACA,MAAM,WAAW;AACf,UAAM,WAAW,CAAC;AAClB,UAAM,OAAO,CAAC;AACd,UAAM,UAAU,CAAC;AACjB,eAAW,OAAO,KAAK,SAAS;AAC9B,YAAM,aAAa,KAAK,QAAQ;AAChC,eAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAI,OAAO,WAAW,QAAQ,UAAU;AACtC,gBAAM,cAAc,WAAW;AAC/B,mBAAS,KAAK,YAAY,KAAK,CAAC;AAChC,eAAK,KAAK,GAAG;AACb,kBAAQ,KAAK,EAAE;AAAA,QACjB;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,MAAM,QAAQ,IAAI,QAAQ;AACzC,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,YAAM,kBAAkB,KAAK,QAAQ,KAAK,KAAK,QAAQ;AACvD,sBAAgB,QAAQ;AACxB,WAAK,QAAQ,KAAK,KAAK,QAAQ,OAAO,OAAO,IAAI;AAAA,IACnD;AAAA,EACF;AACF;AACA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,YAAY,MAAM,YAAY;AAC5B,UAAM;AACN,SAAK,eAAe;AACpB,SAAK,UAAU,KAAK;AACpB,SAAK,gBAAgB,KAAK,iBAAiB;AAC3C,SAAK,aAAa,cAAc;AAChC,QAAI,KAAK,eAAe,QAAQ;AAC9B,WAAK,aAAa;AAAA,IACpB;AACA,QAAI,KAAK,eAAe,WAAW,KAAK,WAAW,MAAM;AACvD,YAAM,IAAI,MAAM,iHAAiH;AAAA,IACnI;AACA,QAAI,aAAa,SAAS,KAAK,UAAU,GAAG;AAC1C,WAAK,YAAY,SAAS,KAAK,UAAU,KAAK,IAAI,GAAG,KAAK,YAAY,KAAK,OAAO;AAAA,IACpF;AACA,SAAK,aAAa,KAAK;AACvB,SAAK,WAAW,KAAK;AACrB,SAAK,aAAa,KAAK;AACvB,SAAK,WAAW,KAAK;AACrB,SAAK,aAAa,KAAK;AACvB,SAAK,WAAW,KAAK;AACrB,SAAK,QAAQ,KAAK;AAAA,EACpB;AAAA,EACA,MAAM,UAAU,OAAO,OAAO,MAAM;AAClC,UAAM,KAAK,CAAC;AACZ,QAAI,KAAK,SAAS,MAAM;AACtB,YAAM,qBAAqB,IAAI;AAC/B,SAAG,KAAK,KAAK,MAAM,OAAO,OAAO,IAAI,CAAC;AAAA,IACxC;AACA,OAAG,KAAK,KAAK,cAAc,CAAC;AAC5B,UAAM,QAAQ,IAAI,EAAE;AAAA,EACtB;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAC9B,SAAK,eAAe;AACpB,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,qBAAqB,IAAI;AAC/B,YAAM,KAAK,WAAW,OAAO,IAAI;AAAA,IACnC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,UAAM,KAAK,CAAC;AACZ,QAAI,KAAK,YAAY,MAAM;AACzB,YAAM,qBAAqB,IAAI;AAC/B,SAAG,KAAK,KAAK,SAAS,OAAO,IAAI,CAAC;AAAA,IACpC;AACA,QAAI,KAAK,eAAe,SAAS;AAC/B,SAAG,KAAK,KAAK,cAAc,CAAC;AAAA,IAC9B;AACA,UAAM,QAAQ,IAAI,EAAE;AAAA,EACtB;AAAA,EACA,MAAM,aAAa,OAAO,MAAM;AAC9B,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,qBAAqB,IAAI;AAC/B,YAAM,KAAK,WAAW,OAAO,IAAI;AAAA,IACnC;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,UAAM,KAAK,CAAC;AACZ,QAAI,KAAK,YAAY,MAAM;AACzB,YAAM,qBAAqB,IAAI;AAC/B,SAAG,KAAK,KAAK,SAAS,OAAO,IAAI,CAAC;AAAA,IACpC;AACA,QAAI,KAAK,eAAe,SAAS;AAC/B,SAAG,KAAK,KAAK,cAAc,CAAC;AAAA,IAC9B,WAAW,aAAa,SAAS,KAAK,UAAU,GAAG;AACjD,SAAG,KAAK,KAAK,UAAU,KAAK,cAAc,OAAO,IAAI,CAAC;AAAA,IACxD;AACA,UAAM,QAAQ,IAAI,EAAE;AAAA,EACtB;AAAA,EACA,MAAM,aAAa,MAAM;AACvB,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,qBAAqB,IAAI;AAC/B,YAAM,KAAK,WAAW,IAAI;AAAA,IAC5B;AAAA,EACF;AAAA,EACA,MAAM,WAAW,MAAM;AACrB,QAAI,KAAK,YAAY,MAAM;AACzB,YAAM,qBAAqB,IAAI;AAC/B,YAAM,KAAK,SAAS,IAAI;AAAA,IAC1B;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,YAAY,YAAY;AACpD,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC;AAAA,EAChB;AACA,MAAI,sBAAsB,cAAc;AACtC,WAAO,CAAC,UAAU;AAAA,EACpB;AACA,MAAI,MAAM,QAAQ,UAAU,KAAK,WAAW,cAAc,cAAc;AACtE,WAAO;AAAA,EACT;AACA,QAAM,kBAAkB,OAAO,UAAU;AACzC,SAAO,gBAAgB,IAAI,CAAC,mBAAmB,IAAI,eAAe,gBAAgB,UAAU,CAAC;AAC/F;AACA,IAAI,8BAA8B,MAAM;AAAA,EACtC,cAAc;AAAA,EACd;AAAA,EACA,OAAO,4BAA4B,gBAAgB,qBAAqB;AACtE,iBAAa,OAAO,kBAAkB,KAAK,OAAO,UAAU,cAAc,GAAG,MAAM,8DAA8D,gBAAgB;AACjK,gCAA4B,kBAAkB,mBAAmB;AACjE,QAAI,4BAA4B,aAAa,mBAAmB,MAAM;AACpE,kCAA4B,aAAa,kBAAkB,CAAC;AAAA,IAC9D;AACA,gCAA4B,aAAa,gBAAgB,KAAK,mBAAmB;AAAA,EACnF;AAAA,EACA,OAAO,kBAAkB,qBAAqB;AAC5C,eAAW,aAAa,4BAA4B,cAAc;AAChE,YAAM,eAAe,4BAA4B,aAAa,CAAC;AAC/D,mBAAa,QAAQ,CAAC,SAAS;AAC7B,YAAI,SAAS,qBAAqB;AAChC,gBAAM,IAAI,WAAW,iCAAiC;AAAA,QACxD;AAAA,MACF,CAAC;AAAA,IACH;AAAA,EACF;AAAA,EACA,OAAO,QAAQ;AACb,gCAA4B,eAAe,CAAC;AAAA,EAC9C;AAAA,EACA,OAAO,gBAAgB,gBAAgB;AACrC,UAAM,eAAe,CAAC;AACtB,eAAW,aAAa,4BAA4B,cAAc;AAChE,YAAM,QAAQ,CAAC;AACf,UAAI,kBAAkB,OAAO;AAC3B,qBAAa,KAAK,GAAG,4BAA4B,aAAa,MAAM;AAAA,MACtE;AAAA,IACF;AACA,WAAO,aAAa,IAAI,CAAC,SAAS,IAAI,KAAK,CAAC;AAAA,EAC9C;AACF;AACA,4BAA4B,eAAe,CAAC;AAC5C,SAAS,mBAAmB,YAAY,SAAS,QAAQ,cAAc,iBAAiB,eAAe,WAAW,cAAc,iBAAiB;AAC/I,QAAM,UAAU,IAAI,QAAQ;AAC5B,QAAM,kBAAkB;AAAA,IACtB,IAAI,WAAW;AAAA,IACf,GAAG,4BAA4B,gBAAgB,OAAO;AAAA,EACxD;AACA,MAAI,cAAc,MAAM;AACtB,oBAAgB,KAAK,GAAG,UAAU;AAAA,EACpC;AACA,kBAAgB,KAAK,OAAO;AAC5B,QAAM,eAAe,IAAI,aAAa,eAAe;AACrD,eAAa,UAAU;AAAA,IACrB;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT,OAAO;AAAA,IACP;AAAA,IACA;AAAA,IACA;AAAA,IACA,SAAS;AAAA,EACX,CAAC;AACD,SAAO,EAAE,cAAc,QAAQ;AACjC;AAGA,SAAS,YAAYf,SAAQ,gBAAgB,CAAC,GAAG,iBAAiB,OAAO;AACvE,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,SAAS,cAAc;AAC5I;AAGA,SAAS,YAAY,GAAG,MAAM;AAC5B,SAAO,KAAK,MAAM;AAChB,QAAI,EAAE,UAAU,WAAW;AACzB,UAAI,KAAK,GAAG,SAAS;AAAA,IACvB;AACA,UAAM,YAAY,KAAK,QAAQ,CAAC,GAAG,MAAM,IAAI;AAC7C,UAAM,gBAAgB,KAAK,UAAU,OAAO,QAAQ,CAAC;AACrD,UAAM,QAAQ,KAAK,QAAQ,WAAW,aAAa,CAAC;AACpD,WAAO,IAAI,GAAG,KAAK;AAAA,EACrB,CAAC;AACH;AACA,SAAS,kBAAkB,OAAO,OAAO;AACvC,SAAO,KAAK,MAAM,KAAK,QAAQ,IAAI,OAAO,KAAK,CAAC,GAAG,EAAE,CAAC;AACxD;AACA,SAAS,kBAAkB,OAAO,OAAO;AACvC,SAAO,KAAK,MAAM,KAAK,IAAI,IAAI,OAAO,KAAK,CAAC,GAAG,EAAE,CAAC;AACpD;AACA,SAAS,4BAA4B,OAAO,OAAO;AACjD,SAAO,KAAK,MAAM;AAChB,UAAM,OAAO,IAAI,OAAO,KAAK;AAC7B,UAAM,cAAc,YAAY,IAAI,KAAK,GAAG,QAAQ,GAAG,OAAO,SAAS;AACvE,UAAM,YAAY,IAAI,IAAI,MAAM,WAAW,CAAC;AAC5C,WAAO,IAAI,KAAK,KAAK,WAAW,EAAE,CAAC;AAAA,EACrC,CAAC;AACH;AACA,SAAS,4BAA4B,OAAO,OAAO;AACjD,SAAO,KAAK,MAAM;AAChB,UAAM,cAAc,YAAY,OAAO,QAAQ,GAAG,OAAO,SAAS;AAClE,UAAM,WAAWpB,MAAK,KAAK,GAAG,WAAW,CAAC;AAC1C,UAAM,cAAc,YAAY,OAAO,QAAQ,GAAG,OAAO,SAAS;AAClE,UAAM,YAAYA,MAAK,KAAK,GAAG,WAAW,CAAC;AAC3C,WAAO,KAAK,QAAQ,IAAI,UAAU,SAAS,CAAC,GAAG,EAAE;AAAA,EACnD,CAAC;AACH;AACA,SAAS,aAAa,OAAO,OAAO;AAClC,SAAO,KAAK,MAAM;AAChB,UAAM,YAAY,QAAQ,GAAG,IAAI,GAAG,IAAI,OAAO,KAAK,CAAC,CAAC;AACtD,WAAO,KAAK,QAAQ,SAAS,GAAG,EAAE;AAAA,EACpC,CAAC;AACH;AACA,SAAS,MAAM,OAAO,OAAO;AAC3B,SAAO,KAAK,MAAM;AAChB,UAAM,YAAY,QAAQ,GAAG,IAAI,GAAG,IAAI,OAAO,KAAK,CAAC,CAAC;AACtD,WAAO,KAAK,WAAW,EAAE;AAAA,EAC3B,CAAC;AACH;AACA,SAAS,iBAAiB,OAAO,OAAO;AACtC,SAAO,KAAK,MAAM;AAChB,UAAM,MAAM,KAAK,IAAI,OAAO,KAAK,GAAG,EAAE;AACtC,UAAM,OAAO,IAAI,IAAI,IAAI,GAAG,KAAK,GAAG,KAAK,GAAG,EAAE;AAC9C,WAAO,QAAQ,GAAG,KAAK,GAAG,IAAI,MAAM,GAAG,CAAC,CAAC;AAAA,EAC3C,CAAC;AACH;AACA,SAAS,QAAQ,OAAO,OAAO;AAC7B,SAAO,KAAK,MAAM;AAChB,UAAMO,SAAQ,KAAK,IAAI,CAAC;AACxB,UAAM,iBAAiB,IAAI,OAAO,KAAK;AACvC,UAAM,gBAAgB,IAAI,KAAK,gBAAgB,SAAS,IAAI,IAAI,cAAc,CAAC,CAAC,GAAGA,MAAK;AACxF,WAAO,KAAK,eAAe,EAAE;AAAA,EAC/B,CAAC;AACH;AACA,SAAS,wBAAwB,QAAQ,QAAQ,aAAa,OAAO;AACnE,SAAO,KAAK,MAAM;AAChB,QAAI,YAAY;AACd,eAAS,QAAQ,MAAM;AAAA,IACzB,OAAO;AACL,YAAM,YAAY,KAAK,QAAQ,OAAO,MAAM,SAAS,GAAG,IAAI;AAC5D,eAAS,IAAI,QAAQ,SAAS;AAAA,IAChC;AACA,aAAS,YAAY,QAAQ,QAAQ,GAAG,IAAI,QAAQ,CAAC;AACrD,WAAO,IAAI,KAAK,IAAI,KAAK,QAAQ,SAAS,GAAGP,MAAK,MAAM,CAAC,GAAG,OAAO,MAAM,SAAS,CAAC,CAAC;AAAA,EACtF,CAAC;AACH;AACA,SAAS,8BAA8B,QAAQ,QAAQ,aAAa,OAAO;AACzE,SAAO,KAAK,MAAM;AAChB,UAAM,aAAa,KAAK,MAAM,SAAS,MAAM,CAAC,GAAG,OAAO;AACxD,aAAS,YAAY,QAAQ,QAAQ,GAAG,IAAI,QAAQ,CAAC;AACrD,UAAM,cAAc,OAAO;AAC3B,UAAM,eAAe,QAAQ,OAAO,YAAY,YAAY,YAAY,SAAS,EAAE,GAAG,WAAW;AACjG,WAAO,wBAAwB,cAAc,QAAQ,UAAU;AAAA,EACjE,CAAC;AACH;AACA,SAAS,8BAA8ByB,SAAQ,QAAQ;AACrD,MAAI,CAAC,aAAa,YAAYA,QAAO,OAAO,OAAO,KAAK,GAAG;AACzD,UAAM,IAAI,WAAW,8DAA8D,KAAK,UAAUA,QAAO,KAAK,SAAS,KAAK,UAAU,OAAO,KAAK,GAAG;AAAA,EACvJ;AACA,SAAO,KAAK,MAAM;AAChB,UAAM,aAAa,KAAK,MAAM;AAC9B,UAAM,eAAe,IAAI,IAAI,MAAM,CAAC;AACpC,WAAO,KAAK,IAAI,YAAY,IAAI,QAAQA,OAAM,CAAC,GAAG,MAAM,IAAI,YAAY,CAAC,CAAC;AAAA,EAC5E,CAAC;AACH;AACA,SAAS,mBAAmB,OAAO,OAAO;AACxC,SAAO,KAAK,MAAM;AAChB,QAAI;AACJ,QAAI,YAAY,OAAO,QAAQ,GAAG,IAAI,QAAQ,CAAC;AAC/C,QAAIzB,MAAK,IAAI,GAAG,IAAI,GAAG,CAAC,CAAC,CAAC;AAC1B,WAAO,KAAK,8BAA8B,OAAO,CAAC,GAAG,EAAE;AAAA,EACzD,CAAC;AACH;AACA,SAAS,0BAA0B,OAAO,OAAO;AAC/C,SAAO,KAAK,MAAM;AAChB,UAAM,cAAc,YAAY,OAAO,QAAQ,GAAG,CAAC;AACnD,UAAM,cAAc,YAAY,OAAO,QAAQ,GAAG,CAAC;AACnD,WAAO,KAAK,IAAI,OAAOA,MAAK,IAAI,aAAa,WAAW,CAAC,CAAC,GAAG,EAAE;AAAA,EACjE,CAAC;AACH;AACA,SAAS,QAAQ,OAAO,OAAO;AAC7B,SAAO,KAAK,MAAM;AAChB,UAAM,UAAUA,MAAK,KAAK,QAAQ,GAAG,KAAK,CAAC;AAC3C,WAAO,KAAK,IAAI,OAAO,IAAI,OAAO,OAAO,CAAC,GAAG,EAAE;AAAA,EACjD,CAAC;AACH;AACA,SAAS,gBAAgB,OAAO,OAAO;AACrC,SAAO,KAAK,MAAM;AAChB,UAAM,iBAAiB,YAAY,OAAO,EAAE;AAC5C,UAAM,iBAAiB,YAAY,OAAO,EAAE;AAC5C,UAAM,YAAY,IAAI,gBAAgB,cAAc;AACpD,WAAO,IAAI,KAAK,WAAW,EAAE,CAAC;AAAA,EAChC,CAAC;AACH;AACA,IAAI,YAAY;AAAA,EACd,kBAAkB;AAAA,EAClB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,SAAS,IAAI,gBAAgB;AAC3B,MAAI,OAAO,mBAAmB,UAAU;AACtC,QAAI,kBAAkB,WAAW;AAC/B,aAAO,UAAU;AAAA,IACnB;AACA,QAAI,SAAS,gBAAgB;AAC7B,QAAI,eAAe,YAAY,EAAE,SAAS,qBAAqB,GAAG;AAChE,eAAS,gBAAgB;AAAA,IAC3B;AACA,UAAM,IAAI,WAAW,MAAM;AAAA,EAC7B,OAAO;AACL,WAAO;AAAA,EACT;AACF;AAGA,SAAS,eAAe,OAAO,OAAO;AACpC,SAAO,KAAK,MAAM;AAChB,UAAM,aAAa,IAAI,KAAK,SAAS,KAAK,CAAC;AAC3C,UAAM,mBAAmB,MAAM,QAAQ,OAAO,UAAU,GAAG,MAAM,KAAK;AACtE,WAAO,KAAK,MAAM,OAAO,gBAAgB,GAAG,EAAE;AAAA,EAChD,CAAC;AACH;AACA,SAAS,oBAAoB,OAAO,OAAO;AACzC,SAAO,KAAK,MAAM,MAAM,MAAM,OAAO,OAAO,EAAE,GAAG,OAAO,OAAO,EAAE,CAAC,GAAG,SAAS,CAAC;AACjF;AACA,SAAS,cAAc,OAAO,OAAO;AACnC,SAAO,KAAK,MAAM;AAChB,WAAO,KAAK,KAAK,WAAW,MAAM,OAAO,CAAC,GAAG,MAAM,OAAO,CAAC,CAAC,CAAC,GAAG,SAAS;AAAA,EAC3E,CAAC;AACH;AACA,SAAS,eAAe,OAAO,OAAO;AACpC,SAAO,KAAK,MAAM;AAChB,WAAO,KAAK,KAAK,WAAW,MAAM,OAAO,CAAC,GAAG,MAAM,OAAO,CAAC,CAAC,CAAC,GAAG,SAAS;AAAA,EAC3E,CAAC;AACH;AACA,SAAS,eAAe,OAAO,OAAO;AACpC,SAAO,KAAK,MAAM;AAChB,WAAO,KAAK,KAAK,WAAW,MAAM,OAAO,CAAC,GAAG,MAAM,OAAO,CAAC,CAAC,CAAC,GAAG,SAAS;AAAA,EAC3E,CAAC;AACH;AACA,SAAS,UAAU,OAAO,OAAO;AAC/B,SAAO,KAAK,MAAM;AAChB,UAAM,KAAK,cAAc,OAAO,KAAK;AACrC,UAAM,KAAK,eAAe,OAAO,KAAK;AACtC,UAAM,cAAc,KAAK,IAAI,EAAE;AAC/B,WAAO,KAAK,MAAM,QAAQ,aAAa,CAAC,GAAG,IAAI,IAAI,WAAW,GAAG,CAAC,GAAG,SAAS;AAAA,EAChF,CAAC;AACH;AACA,SAAS,OAAO,OAAO,OAAO;AAC5B,SAAO,KAAK,MAAM;AAChB,UAAM,KAAK,cAAc,OAAO,KAAK;AACrC,UAAM,KAAK,eAAe,OAAO,KAAK;AACtC,UAAM,cAAc,KAAK,IAAI,EAAE;AAC/B,WAAO,KAAK,MAAM,QAAQ,aAAa,CAAC,GAAG,IAAI,IAAI,WAAW,GAAG,CAAC,GAAG,SAAS;AAAA,EAChF,CAAC;AACH;AACA,SAAS,oBAAoB,OAAO,OAAO;AACzC,SAAO,mBAAmB,OAAO,KAAK;AACxC;AACA,SAAS,0BAA0B,OAAO,OAAO;AAC/C,MAAI,MAAM,SAAS,MAAM,MAAM;AAC7B,YAAQ,QAAQ,OAAO,CAAC,MAAM,OAAO,CAAC,CAAC;AAAA,EACzC;AACA,UAAQ,OAAO,OAAO,EAAE;AACxB,MAAI,MAAM,UAAU,MAAM,OAAO;AAC/B,YAAQ,KAAK,OAAO,MAAM,KAAK;AAAA,EACjC;AACA,SAAO,KAAK,MAAM,OAAO,KAAK,GAAG,SAAS;AAC5C;AACA,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,2BAA2B;AAC/B,IAAI,SAAS;AACb,IAAI,iCAAiC;AACrC,IAAI,aAAa;AAAA,EACf;AAAA,EACA;AAAA,EACA;AAAA,EACA,yBAAyB;AAAA,EACzB,+BAA+B;AAAA,EAC/B;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,SAAS,KAAK,YAAY;AACxB,MAAI,OAAO,eAAe,YAAY,cAAc,YAAY;AAC9D,WAAO,WAAW;AAAA,EACpB,WAAW,OAAO,eAAe,YAAY,cAAc,MAAM;AAC/D,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,WAAW,kBAAkB,YAAY;AAAA,EACrD;AACF;AACA,SAAS,oBAAoB,IAAI;AAC/B,UAAQ,OAAO,MAAM,0BAA0B,IAAI;AACnD,MAAI,OAAO,OAAO,UAAU;AAC1B,WAAO;AAAA,EACT,OAAO;AACL,QAAI;AACJ,eAAW,OAAO,OAAO,KAAK,SAAS,GAAG;AACxC,UAAI,UAAU,SAAS,IAAI;AACzB,iBAAS;AACT;AAAA,MACF;AAAA,IACF;AACA,QAAI,WAAW,QAAQ;AACrB,aAAO;AAAA,IACT;AACA,eAAW,OAAO,OAAO,KAAK,UAAU,GAAG;AACzC,UAAI,WAAW,SAAS,IAAI;AAC1B,iBAAS;AACT;AAAA,MACF;AAAA,IACF;AACA,QAAI,WAAW,QAAQ;AACrB,aAAO;AAAA,IACT;AACA,WAAO,GAAG;AAAA,EACZ;AACF;AAGA,SAAS,aAAa,YAAY;AAChC,QAAM,eAAe;AAAA,IACnB,WAAW,MAAM,MAAM,QAAQ,IAAI;AAAA,IACnC,YAAY,MAAM,MAAM,SAAS,GAAG,MAAM,QAAQ,CAAC;AAAA,IACnD,QAAQ,MAAM,MAAM,KAAK,MAAM,KAAK,OAAO,QAAQ,CAAC;AAAA,IACpD,UAAU,MAAM,MAAM,OAAO,MAAM,KAAK,OAAO,QAAQ,GAAG,CAAC;AAAA,IAC3D,WAAW,MAAM,MAAM,QAAQ,MAAM,KAAK,GAAG,QAAQ,CAAC;AAAA,IACtD,OAAO,MAAM,MAAM,IAAI,IAAI;AAAA,EAC7B;AACA,eAAa,aAAa,aAAa;AACvC,eAAa,cAAc,aAAa;AACxC,eAAa,UAAU,aAAa;AACpC,eAAa,YAAY,aAAa;AACtC,eAAa,aAAa,aAAa;AACvC,eAAa,SAAS,aAAa;AACnC,MAAI,cAAc,cAAc;AAC9B,WAAO,aAAa,YAAY;AAAA,EAClC;AACA,QAAM,IAAI,WAAW,qBAAqB,YAAY;AACxD;AAGA,IAAI,8CAA8C,IAAI,OAAO;AAC7D,SAAS,yBAAyB,qBAAqB,WAAW,YAAY,OAAO;AACnF,MAAI,uBAAuB,QAAQ,OAAO,wBAAwB,YAAY,OAAO,eAAe,mBAAmB,MAAM,OAAO,aAAa,CAAC,iBAAiB,mBAAmB,GAAG;AACvL,UAAM,IAAI,MAAM,oEAAoE;AAAA,EACtF;AACA,MAAI,WAAW;AACb,UAAM,MAAM,KAAK,UAAU,mBAAmB;AAC9C,QAAI,IAAI,SAAS,6CAA6C;AAC5D,cAAQ,KAAK,mCAAmC,2CAA2C,IAAI,qJAAqJ,8CAA8C;AAAA,IACpS;AAAA,EACF;AACF;AACA,SAAS,iBAAiB,GAAG;AAC3B,MAAI,MAAM,MAAM;AACd,WAAO;AAAA,EACT,WAAW,OAAO,MAAM,UAAU;AAChC,QAAI,OAAO,eAAe,CAAC,MAAM,OAAO,WAAW;AACjD,YAAM,OAAO,OAAO,KAAK,CAAC;AAC1B,iBAAW,OAAO,MAAM;AACtB,YAAI,OAAO,QAAQ,UAAU;AAC3B,iBAAO;AAAA,QACT;AACA,YAAI,CAAC,iBAAiB,EAAE,IAAI,GAAG;AAC7B,iBAAO;AAAA,QACT;AAAA,MACF;AACA,aAAO;AAAA,IACT,OAAO;AACL,UAAI,MAAM,QAAQ,CAAC,GAAG;AACpB,mBAAW,QAAQ,GAAG;AACpB,cAAI,CAAC,iBAAiB,IAAI,GAAG;AAC3B,mBAAO;AAAA,UACT;AAAA,QACF;AACA,eAAO;AAAA,MACT,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF;AAAA,EACF,OAAO;AACL,UAAM,QAAQ,OAAO;AACrB,WAAO,UAAU,YAAY,UAAU,YAAY,UAAU;AAAA,EAC/D;AACF;AAGA,SAAS,aAAamC,SAAQ,YAAY,WAAW,UAAU,QAAQ,KAAK;AAC1E,QAAM,iBAAiB,sBAAsBA,OAAM;AACnD,QAAM,YAAY,CAAC,gBAAgB,eAAe,gBAAgB,SAAS;AAC3E,MAAI,gBAAgB;AAClB,iBAAa,cAAc;AAC3B,gBAAY,aAAa,CAAC,MAAM,MAAM,MAAM,CAAC;AAAA,EAC/C,OAAO;AACL,iBAAa,cAAc;AAC3B,gBAAY,aAAa,CAAC,MAAM,MAAM,KAAK,KAAK,CAAC;AAAA,EACnD;AACA,MAAI,UAAU,UAAU,SAAS,MAAM,GAAG;AACxC,gBAAY,UAAU,IAAI,CAAC,OAAO,KAAK,MAAM,aAAa,EAAE,CAAC;AAAA,EAC/D;AACA,MAAI;AACJ,MAAI,CAAC,gBAAgB;AACnB,cAAU,KAAK,iBAAiB;AAChC,oBAAgB,CAAC;AACjB,eAAW,SAASA,QAAO,cAAc;AACvC,oBAAc,KAAK,GAAGA,QAAO,aAAa,MAAM;AAAA,IAClD;AAAA,EACF;AACA,UAAQ,IAAI,OAAO,UAAU,CAAC;AAC9B,WAAS,WAAW,WAAW,OAAO;AACtC,UAAQ,IAAI,OAAO,UAAU,CAAC;AAC9B,QAAM,SAASA,QAAO;AACtB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,gBAAgB;AAClB,wBAAkB,OAAO,KAAK,WAAW,OAAO;AAAA,IAClD,OAAO;AACL,uCAAiC,OAAO,KAAK,WAAW,eAAe,OAAO;AAAA,IAChF;AACA,aAAS,OAAO,OAAO,SAAS,IAAI,MAAM,KAAK,OAAO,UAAU,CAAC;AAAA,EACnE;AACA,EAAAA,QAAO,iCAAiC;AACxC,QAAM,iBAAiB,qBAAqBA,OAAM;AAClD,QAAM,oBAAoB,qBAAqBA,QAAO,mBAAmB;AACzE,UAAQ,iBAAiB,iBAAiB,mBAAmB;AAC7D,UAAQ,qBAAqB,gBAAgB;AAC7C,UAAQ,yBAAyB,mBAAmB;AACpD,UAAQ,IAAI,OAAO,UAAU,CAAC;AAChC;AACA,SAAS,qBAAqBA,SAAQ;AACpC,MAAI;AACJ,MAAIA,QAAO,6BAA6B,MAAM;AAC5C,qBAAiB,qBAAqBA,QAAO,yBAAyB;AAAA,EACxE,OAAO;AACL,qBAAiB,qBAAqBA,QAAO,gBAAgB;AAAA,EAC/D;AACA,SAAO;AACT;AACA,SAAS,sBAAsBA,SAAQ;AACrC,MAAI,iBAAiB;AACrB,QAAM,eAAe,CAAC;AACtB,QAAM,QAAQ,CAAC;AACf,aAAW,SAASA,QAAO,cAAc;AACvC,iBAAa,KAAKA,QAAO,aAAa,MAAM;AAAA,EAC9C;AACA,aAAW,cAAc,cAAc;AACrC,QAAI,WAAW,SAAS,KAAK,WAAW,WAAW,KAAK,WAAW,GAAG,cAAc,SAAS,GAAG;AAC9F,uBAAiB;AACjB;AAAA,IACF;AACA,UAAM,KAAK,GAAG,UAAU;AAAA,EAC1B;AACA,MAAI,gBAAgB;AAClB,eAAW,SAASA,QAAO,QAAQ;AACjC,UAAI,OAAO;AACX,iBAAWb,SAAQ,MAAM,cAAc;AACrC,YAAI,MAAM,QAAQA,KAAI,MAAM,IAAI;AAC9B,cAAI,MAAM;AACR,6BAAiB;AACjB;AAAA,UACF,OAAO;AACL,mBAAO;AAAA,UACT;AAAA,QACF;AAAA,MACF;AACA,UAAI,CAAC,gBAAgB;AACnB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,SAAS,QAAQ,WAAW,UAAU,QAAQ,KAAK;AAC1D,MAAI,OAAO;AACX,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,QAAI,KAAK,GAAG;AACV,aAAO,KAAK,MAAM,GAAG,KAAK,SAAS,CAAC,IAAI;AAAA,IAC1C;AACA,YAAQ,OAAO;AACf,WAAO,KAAK,MAAM,GAAG,UAAU,GAAG;AAClC,YAAQ,IAAI,OAAO,UAAU,MAAM,KAAK,MAAM;AAAA,EAChD;AACA,UAAQ,IAAI;AACd;AACA,SAAS,kBAAkB,OAAO,WAAW,SAAS;AACpD,MAAI;AACJ,MAAI;AACJ,MAAI;AACF,iBAAa,MAAM,aAAa,IAAI,CAAC,MAAM,KAAK,UAAU,EAAE,WAAW,CAAC,EAAE,KAAK,GAAG;AAAA,EACpF,SAAS,KAAP;AACA,iBAAa;AAAA,EACf;AACA,MAAI;AACF,kBAAc,KAAK,UAAU,MAAM,WAAW;AAAA,EAChD,SAAS,KAAP;AACA,kBAAc;AAAA,EAChB;AACA,QAAM,OAAO,MAAM;AACnB,QAAM,YAAY,MAAM,aAAa;AACrC,QAAM,SAAS;AAAA,IACb,GAAG,SAAS;AAAA,IACZ;AAAA,IACA;AAAA,IACA,MAAM,YAAY,EAAE,SAAS;AAAA,EAC/B;AACA,WAAS,QAAQ,WAAW,OAAO;AACrC;AACA,SAAS,iCAAiC,OAAO,WAAW,eAAe,SAAS;AAClF,MAAI;AACJ,MAAI;AACJ,MAAI;AACF,iBAAa,MAAM,aAAa,IAAI,CAAC,MAAM,KAAK,UAAU,EAAE,WAAW,CAAC,EAAE,KAAK,GAAG;AAAA,EACpF,SAAS,KAAP;AACA,iBAAa;AAAA,EACf;AACA,MAAI;AACF,kBAAc,KAAK,UAAU,MAAM,WAAW;AAAA,EAChD,SAAS,KAAP;AACA,kBAAc;AAAA,EAChB;AACA,QAAM,cAAc,CAAC;AACrB,aAAWA,SAAQ,MAAM,cAAc;AACrC,QAAI,iBAAiB,QAAQ,cAAc,SAAS,KAAK,cAAc,QAAQA,KAAI,MAAM,IAAI;AAC3F;AAAA,IACF;AACA,aAAS,KAAK,GAAG,KAAKA,MAAK,cAAc,QAAQ,EAAE,IAAI;AACrD,YAAM,eAAeA,MAAK,cAAc,IAAI;AAC5C,YAAM,oBAAoBA,MAAK,YAAY;AAC3C,YAAM,qBAAqBA,MAAK,cAAc;AAC9C,kBAAY,KAAK,GAAG,gBAAgB,sBAAsB,qBAAqB;AAAA,IACjF;AAAA,EACF;AACA,QAAM,OAAO,MAAM;AACnB,QAAM,YAAY,MAAM,aAAa;AACrC,QAAM,kBAAkB,YAAY,WAAW,IAAI,KAAK,YAAY;AACpE,QAAM,SAAS;AAAA,IACb,GAAG,SAAS;AAAA,IACZ;AAAA,IACA;AAAA,IACA,MAAM,YAAY,EAAE,SAAS;AAAA,IAC7B;AAAA,EACF;AACA,WAAS,QAAQ,WAAW,OAAO;AACnC,WAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,aAAS,CAAC,IAAI,IAAI,IAAI,IAAI,YAAY,GAAG,GAAG,WAAW,OAAO;AAAA,EAChE;AACF;AAGA,SAAS,6BAA6B,KAAKP,QAAO,OAAO;AACvD,UAAQ,QAAQ,kBAAkB,QAAQ,kBAAkB,QAAQ,kBAAkBA,WAAU,KAAK,OAAO,UAAU;AACxH;AACA,SAAS,oBAAoB,gBAAgB,KAAK;AAChD,MAAI,mBAAmB,MAAM;AAC3B,WAAO;AAAA,EACT,WAAW,OAAO,mBAAmB,UAAU;AAC7C,WAAO,YAAY,cAAc;AAAA,EACnC,WAAW,OAAO,mBAAmB,YAAY,OAAO,mBAAmB,WAAW;AACpF,WAAO;AAAA,EACT,WAAW,0BAA0B,OAAO;AAC1C,UAAM,UAAU,CAAC;AACjB,UAAM,cAAc,eAAe;AACnC,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,OAAO,eAAe;AAC5B,UAAI,6BAA6B,KAAK,IAAI,IAAI,GAAG;AAC/C,gBAAQ,KAAK,IAAI;AAAA,MACnB,OAAO;AACL,gBAAQ,KAAK,oBAAoB,MAAM,GAAG,CAAC;AAAA,MAC7C;AAAA,IACF;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,SAAS,CAAC;AAChB,eAAW,eAAe,OAAO,KAAK,cAAc,GAAG;AACrD,YAAM,gBAAgB,eAAe;AACrC,UAAI,gBAAgB,UAAU,OAAO,kBAAkB,UAAU;AAC/D,eAAO,eAAe;AAAA,MACxB,OAAO;AACL,cAAM,QAAQ,YAAY,WAAW;AACrC,eAAO,SAAS,oBAAoB,eAAe,KAAK;AAAA,MAC1D;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AACA,SAAS,oBAAoB,UAAU,KAAK;AAC1C,MAAI,aAAa,QAAQ,aAAa,QAAQ;AAC5C,WAAO;AAAA,EACT,WAAW,OAAO,aAAa,UAAU;AACvC,WAAO,YAAY,QAAQ;AAAA,EAC7B,WAAW,OAAO,aAAa,YAAY,OAAO,aAAa,WAAW;AACxE,WAAO;AAAA,EACT,WAAW,oBAAoB,OAAO;AACpC,UAAM,UAAU,CAAC;AACjB,UAAM,cAAc,SAAS;AAC7B,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,OAAO,SAAS;AACtB,UAAI,6BAA6B,KAAK,IAAI,IAAI,GAAG;AAC/C,gBAAQ,KAAK,IAAI;AAAA,MACnB,OAAO;AACL,gBAAQ,KAAK,oBAAoB,MAAM,GAAG,CAAC;AAAA,MAC7C;AAAA,IACF;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,SAAS,CAAC;AAChB,eAAW,SAAS,OAAO,KAAK,QAAQ,GAAG;AACzC,YAAM,UAAU,SAAS;AACzB,YAAM,QAAQ,YAAY,KAAK;AAC/B,WAAK,UAAU,UAAU,UAAU,gBAAgB,OAAO,YAAY,UAAU;AAC9E,eAAO,SAAS;AAAA,MAClB,OAAO;AACL,eAAO,SAAS,oBAAoB,SAAS,KAAK;AAAA,MACpD;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AAGA,IAAI,WAAW;AAGf,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,CAAC,CAAC;AACR,SAAK,iBAAiC,oBAAI,IAAI;AAC9C,SAAK,OAAO,KAAK;AACjB,QAAI,KAAK,QAAQ,MAAM;AACrB,YAAM,SAAS,KAAK,aAAa,EAAE,YAAY;AAC/C,WAAK,OAAO,OAAO,MAAM;AAAA,IAC3B;AACA,SAAK,kBAAkB;AACvB,SAAK,aAAa;AAClB,QAAI,MAAM,QAAQ,KAAK,MAAM,GAAG;AAC9B,WAAK,SAAS,KAAK,OAAO,MAAM;AAAA,IAClC,OAAO;AACL,WAAK,SAAS,CAAC,KAAK,MAAM;AAAA,IAC5B;AACA,QAAI,MAAM,QAAQ,KAAK,OAAO,GAAG;AAC/B,WAAK,UAAU,KAAK,QAAQ,MAAM;AAAA,IACpC,OAAO;AACL,WAAK,UAAU,CAAC,KAAK,OAAO;AAAA,IAC9B;AACA,QAAI,QAAQ,KAAK,MAAM,EAAE,WAAW,KAAK,OAAO,QAAQ;AACtD,YAAM,IAAI,WAAW,mGAAmG,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,IAAI,GAAG;AAAA,IAC1J;AACA,QAAI,QAAQ,KAAK,OAAO,EAAE,WAAW,KAAK,QAAQ,QAAQ;AACxD,cAAQ,KAAK,qGAAqG,KAAK,QAAQ,IAAI,CAAC,MAAM,EAAE,IAAI,GAAG;AAAA,IACrJ;AACA,SAAK,cAAc,CAAC;AACpB,SAAK,yBAAyB,CAAC;AAC/B,SAAK,2BAA2B,CAAC;AACjC,SAAK,eAAe,CAAC;AACrB,SAAK,0BAA0B,CAAC;AAChC,SAAK,4BAA4B,CAAC;AAClC,SAAK,SAAS,CAAC;AACf,SAAK,wBAAwB,CAAC;AAC9B,eAAW,KAAK,KAAK,SAAS;AAC5B,YAAM,QAAQ,EAAE;AAChB,YAAM,YAAY,EAAE;AACpB,YAAM,cAAc,EAAE;AACtB,WAAK,aAAa,KAAK,KAAK;AAC5B,WAAK,wBAAwB,KAAK,SAAS;AAC3C,WAAK,0BAA0B,KAAK,WAAW;AAAA,IACjD;AACA,eAAW,KAAK,KAAK,QAAQ;AAC3B,YAAM,QAAQ,EAAE;AAChB,YAAM,YAAY,EAAE;AACpB,YAAM,cAAc,EAAE;AACtB,cAAQ,cAAc,GAAG,0BAA0B;AACnD,cAAQ,gBAAgB,GAAG,4BAA4B;AACvD,WAAK,YAAY,KAAK,KAAK;AAC3B,WAAK,uBAAuB,KAAK,SAAS;AAC1C,WAAK,yBAAyB,KAAK,WAAW;AAAA,IAChD;AACA,SAAK,aAAa,CAAC;AACnB,SAAK,cAAc,CAAC;AACpB,SAAK,kBAAkB,CAAC;AACxB,SAAK,iBAAiB,CAAC;AACvB,SAAK,kBAAkB,CAAC;AACxB,aAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,MAAM;AACnD,YAAM,QAAQ,KAAK,YAAY;AAC/B,UAAI,EAAE,iBAAiB,aAAa;AAClC,cAAM,IAAI,UAAU,8EAA8E,KAAK,iBAAiB,2CAA2C,MAAM,aAAa,IAAI;AAAA,MAC5L;AACA,WAAK,WAAW,KAAK,MAAM,IAAI;AAC/B,WAAK,gBAAgB,KAAK,MAAM,eAAe;AAC/C,WAAK,eAAe,KAAK,MAAM,IAAI;AAAA,IACrC;AACA,eAAW,SAAS,KAAK,cAAc;AACrC,WAAK,YAAY,KAAK,MAAM,IAAI;AAAA,IAClC;AACA,SAAK,sBAAsB,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,KAAK;AACzD,SAAK,uBAAuB,KAAK,QAAQ,IAAI,CAAC,MAAM,EAAE,KAAK;AAC3D,UAAM,cAAc,CAAC;AACrB,UAAM,eAAe,CAAC;AACtB,UAAM,eAAe,CAAC;AACtB,UAAM,iBAAiB,CAAC;AACxB,UAAM,eAAe,CAAC;AACtB,UAAM,yBAAyB,CAAC;AAChC,UAAM,kBAAkB,CAAC,SAAS,gBAAgB,kBAAkB,OAAO,WAAW,gBAAgB;AACpG,UAAI,SAAS,QAAQ,aAAa,QAAQ,eAAe,MAAM;AAC7D,gBAAQ,QAAQ;AAChB,oBAAY,QAAQ;AACpB,sBAAc,QAAQ;AAAA,MACxB;AACA,YAAMO,QAAO,MAAM,aAAa;AAChC,UAAI,iBAAiB,QAAQA,KAAI,MAAM,IAAI;AACzC,cAAM,IAAI,aAAa,cAAc,QAAQ,kBAAkB,MAAM,2BAA2B;AAAA,MAClG;AACA,UAAI,eAAe,QAAQA,KAAI,MAAM,IAAI;AACvC;AAAA,MACF;AACA,WAAK,eAAe,IAAI,UAAU,QAAQ,OAAO,SAAS,CAAC;AAC3D,UAAI,EAAE,MAAM,MAAM,eAAe;AAC/B,qBAAa,MAAM,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,MACrD;AACA,UAAI,iBAAiB,QAAQA,KAAI,MAAM,IAAI;AACzC,yBAAiB,KAAKA,KAAI;AAAA,MAC5B;AACA,YAAM,mBAAmBA,MAAK,cAAc;AAC5C,eAAS,KAAK,GAAG,KAAK,kBAAkB,MAAM;AAC5C,cAAM,IAAIA,MAAK,aAAa;AAC5B,cAAM,SAASA,MAAK,cAAc;AAClC,cAAM,aAAaA,MAAK,YAAY;AACpC,cAAM,eAAeA,MAAK,cAAc;AACxC,wBAAgB,GAAG,gBAAgB,kBAAkB,QAAQ,YAAY,YAAY;AAAA,MACvF;AACA,qBAAe,KAAKA,KAAI;AACxB,aAAO,iBAAiB,QAAQA,KAAI,KAAK,GAAG;AAC1C,yBAAiB,OAAO,iBAAiB,QAAQA,KAAI,GAAG,CAAC;AAAA,MAC3D;AACA,6BAAuB,KAAKA,KAAI;AAAA,IAClC;AACA,UAAM,gBAAgB,CAAC;AACvB,UAAM,kBAAkB,CAAC;AACzB,eAAW,KAAK,KAAK,SAAS;AAC5B,sBAAgB,GAAG,eAAe,eAAe;AAAA,IACnD;AACA,UAAM,iCAAiC,uBAAuB,MAAM,EAAE,QAAQ;AAC9E,eAAWA,SAAQ,gCAAgC;AACjD,mBAAaA,MAAK,MAAMA;AACxB,UAAI,EAAEA,MAAK,MAAM,cAAc;AAC7B,oBAAYA,MAAK,MAAM;AAAA,MACzB;AACA,UAAI,QAAQ,YAAYA,MAAK;AAC7B,YAAM,gBAAgB,aAAaA,MAAK,cAAc,OAAO,OAAO,IAAI,aAAaA,MAAK,cAAc;AACxG,cAAQ,KAAK,IAAI,OAAO,aAAa;AACrC,mBAAaA,MAAK,cAAc,MAAM;AACtC,qBAAeA,MAAK,cAAc,MAAMA,MAAK;AAC7C,kBAAYA,MAAK,MAAM;AACvB,eAAS,KAAK,GAAG,KAAKA,MAAK,cAAc,QAAQ,MAAM;AACrD,cAAM,eAAeA,MAAK,cAAc;AACxC,cAAM,YAAYA,MAAK,YAAY;AACnC,cAAM,cAAc,aAAa,aAAa;AAC9C,cAAM,iBAAiB,YAAY,YAAY,OAAO,OAAO,IAAI,YAAY,YAAY;AACzF,oBAAY,YAAY,MAAM,KAAK,IAAI,QAAQ,GAAG,cAAc;AAChE,qBAAa,YAAY,MAAM;AAAA,MACjC;AAAA,IACF;AACA,UAAM,eAAe,CAAC;AACtB,eAAW,UAAU,aAAa;AAChC,YAAM,QAAQ,YAAY;AAC1B,UAAI,EAAE,SAAS,eAAe;AAC5B,qBAAa,SAAS,CAAC;AAAA,MACzB;AACA,mBAAa,OAAO,KAAK,aAAa,OAAO;AAAA,IAC/C;AACA,UAAM,gBAAgB,CAAC;AACvB,eAAW,WAAW,cAAc;AAClC,YAAM,QAAQ,aAAa;AAC3B,UAAI,EAAE,SAAS,gBAAgB;AAC7B,sBAAc,SAAS,CAAC;AAAA,MAC1B;AACA,oBAAc,OAAO,KAAK,eAAe,QAAQ;AAAA,IACnD;AACA,QAAI,YAAY,OAAO,KAAK,aAAa,EAAE,IAAI,CAAC,MAAM,SAAS,GAAG,EAAE,CAAC,EAAE,KAAK,oBAAoB;AAChG,SAAK,SAAS,CAAC;AACf,eAAW,SAAS,WAAW;AAC7B,YAAM,iBAAiB,cAAc;AACrC,qBAAe,KAAK,CAAC,GAAG,MAAM;AAC5B,cAAM,SAAS,aAAa,EAAE;AAC9B,cAAM,SAAS,aAAa,EAAE;AAC9B,YAAI,SAAS,QAAQ;AACnB,iBAAO;AAAA,QACT;AACA,YAAI,SAAS,QAAQ;AACnB,iBAAO;AAAA,QACT;AACA,eAAO;AAAA,MACT,CAAC;AACD,iBAAW,SAAS,gBAAgB;AAClC,YAAI,iBAAiB,WAAW;AAC9B,eAAK,sBAAsB,KAAK,KAAK;AAAA,QACvC;AACA,aAAK,OAAO,KAAK,KAAK;AAAA,MACxB;AAAA,IACF;AACA,SAAK,gBAAgB;AACrB,gBAAY,OAAO,KAAK,YAAY,EAAE,IAAI,CAAC,MAAM,SAAS,GAAG,EAAE,CAAC,EAAE,KAAK,oBAAoB;AAC3F,UAAM,oBAAoB,KAAK,OAAO,MAAM;AAC5C,UAAM,0BAA0B,CAAC;AACjC,eAAW,SAAS,WAAW;AAC7B,iBAAWA,SAAQ,aAAa,QAAQ;AACtC,cAAM,QAAQA,MAAK;AACnB,YAAI,SAAS,MAAM;AACjB,qBAAW,KAAKA,MAAK,cAAc;AACjC,gBAAI,kBAAkB,QAAQ,CAAC,MAAM,IAAI;AACvC,oBAAM,IAAI,aAAa,sDAAsD,eAAe,MAAM,qEAAqE,yBAAyB;AAAA,YAClM;AAAA,UACF;AACA,qBAAW,KAAKA,MAAK,eAAe;AAClC,8BAAkB,KAAK,CAAC;AAAA,UAC1B;AACA,kCAAwB,KAAK,MAAM,IAAI;AAAA,QACzC;AAAA,MACF;AAAA,IACF;AACA,SAAK,eAAe;AACpB,UAAM,WAAW,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,IAAI;AAC9C,eAAW,QAAQ,UAAU;AAC3B,YAAM,iBAAiB,SAAS,OAAO,CAAC,MAAM,MAAM,IAAI,EAAE;AAC1D,UAAI,mBAAmB,GAAG;AACxB,cAAM,IAAI,aAAa,aAAa,iBAAiB,uFAAuF,KAAK,UAAU,QAAQ,CAAC;AAAA,MACtK;AAAA,IACF;AACA,SAAK,gBAAgB,CAAC;AACtB,SAAK,eAAe,CAAC;AACrB,QAAI,KAAK;AAAA,MACP,eAAe;AAAA,MACf,eAAe,CAAC;AAAA,MAChB,aAAa,CAAC;AAAA,MACd,eAAe,CAAC;AAAA,MAChB,cAAc,KAAK;AAAA,MACnB,eAAe,KAAK;AAAA,MACpB,YAAY,KAAK,OAAO,IAAI,CAAC,MAAM,IAAI;AAAA,MACvC,aAAa,KAAK,QAAQ,IAAI,CAAC,MAAM,IAAI;AAAA,MACzC,aAAa,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,KAAK;AAAA,MAC3C,cAAc,KAAK,QAAQ,IAAI,CAAC,MAAM,EAAE,KAAK;AAAA,IAC/C,CAAC;AACD,SAAK,QAAQ;AACb,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,oBAAoB;AAClB,QAAI,KAAK,cAAc,GAAG;AACxB,YAAM,IAAI,MAAM,cAAc,KAAK,4BAA4B;AAAA,IACjE;AAAA,EACF;AAAA,EACA,UAAU;AACR,SAAK,kBAAkB;AACvB,UAAM,SAAS,EAAE,sBAAsB,MAAM,sBAAsB,EAAE;AACrE,QAAI,EAAE,KAAK,cAAc,GAAG;AAC1B,iBAAW,SAAS,KAAK,QAAQ;AAC/B,eAAO,wBAAwB,MAAM,QAAQ,EAAE;AAAA,MACjD;AACA,iBAAW,aAAa,KAAK,uBAAuB;AAClD,eAAO,wBAAwB,UAAU,QAAQ,EAAE;AAAA,MACrD;AAAA,IACF;AACA,WAAO,uBAAuB,KAAK;AACnC,WAAO;AAAA,EACT;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,SAAK,OAAO,QAAQ,CAAC,UAAU;AAC7B,YAAM,kBAAkB,QAAQ,CAAC,MAAM,EAAE,YAAY,SAAS;AAAA,IAChE,CAAC;AACD,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,IAAI,mBAAmB;AACrB,QAAI,KAAK,kBAAkB,SAAS,GAAG;AACrC,YAAM,IAAI,WAAW,sNAAsN;AAAA,IAC7O;AACA,QAAI,CAAC,KAAK,WAAW;AACnB,aAAO,CAAC;AAAA,IACV;AACA,QAAI,UAAU,CAAC;AACf,eAAW,SAAS,KAAK,QAAQ;AAC/B,gBAAU,QAAQ,OAAO,MAAM,gBAAgB;AAAA,IACjD;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,sBAAsB;AACxB,UAAM,UAAU,CAAC;AACjB,eAAW,SAAS,KAAK,QAAQ;AAC/B,cAAQ,KAAK,GAAG,MAAM,mBAAmB;AAAA,IAC3C;AACA,QAAI,CAAC,KAAK,WAAW;AACnB,YAAM,mBAAmB,CAAC;AAC1B,iBAAW,SAAS,KAAK,QAAQ;AAC/B,yBAAiB,KAAK,GAAG,MAAM,gBAAgB;AAAA,MACjD;AACA,aAAO,iBAAiB,OAAO,OAAO;AAAA,IACxC;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,iBAAiB,OAAO,KAAK,mBAAmB;AAAA,EAC9D;AAAA,EACA,YAAY,SAAS,SAAS,MAAM;AAClC,UAAM,eAAe,CAAC;AACtB,QAAI,oBAAoB;AACxB,eAAW,SAAS,KAAK,QAAQ;AAC/B,iBAAW,UAAU,MAAM,SAAS;AAClC,YAAI,aAAa,OAAO,iBAAiB,MAAM;AAC7C,gBAAM,IAAI,WAAW,0BAA0B,OAAO,cAAc;AAAA,QACtE;AACA,qBAAa,OAAO,gBAAgB;AACpC;AAAA,MACF;AAAA,IACF;AACA,UAAM,oBAAoB,CAAC;AAC3B,eAAW,QAAQ,SAAS;AAC1B,UAAI,gBAAgB;AACpB,UAAI,aAAa,SAAS,MAAM;AAC9B,cAAM,SAAS,KAAK,MAAM,GAAG;AAC7B,cAAM,mBAAmB,OAAO,MAAM,GAAG,EAAE,EAAE,OAAO,CAAC,OAAO,OAAO,SAAS,EAAE,CAAC;AAC/E,wBAAgB,iBAAiB,KAAK,GAAG;AAAA,MAC3C;AACA,UAAI,aAAa,kBAAkB,MAAM;AACvC,0BAAkB,KAAK,CAAC,aAAa,gBAAgB,QAAQ,KAAK,CAAC;AAAA,MACrE,WAAW,QAAQ;AACjB,cAAM,IAAI,WAAW,gDAAgD,MAAM;AAAA,MAC7E;AACA,aAAO,aAAa;AAAA,IACtB;AACA,QAAI,QAAQ;AACV,YAAM,aAAa,CAAC;AACpB,iBAAW,QAAQ,cAAc;AAC/B,mBAAW,KAAK,IAAI;AAAA,MACtB;AACA,UAAI,WAAW,SAAS,GAAG;AACzB,cAAM,IAAI,WAAW,GAAG,WAAW,aAAa,0CAA0C,YAAY;AAAA,MACxG;AAAA,IACF;AACA,kBAAc,iBAAiB;AAAA,EACjC;AAAA,EACA,gBAAgB;AACd,UAAM,YAAY,KAAK,UAAU;AACjC,UAAM,cAAc,CAAC;AACrB,gBAAY,eAAe,KAAK,aAAa;AAC7C,gBAAY,YAAY;AACxB,gBAAY,kBAAkB,eAAe;AAC7C,gBAAY,aAAa;AACzB,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ,eAAe,MAAM;AAClC,UAAM,cAAc,oBAAoB,KAAK,cAAc,CAAC;AAC5D,WAAO,eAAe,KAAK,UAAU,WAAW,IAAI;AAAA,EACtD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,OAAO,MAAM;AACtB,YAAM,WAAW,IAAI,SAAS;AAC9B,eAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,iBAAS,IAAI,KAAK,OAAO,KAAK,OAAO,GAAG;AAAA,MAC1C;AACA,aAAO,QAAQ,KAAK,SAAS,UAAU,MAAM;AAAA,IAC/C,CAAC;AAAA,EACH;AAAA,EACA,YAAY,QAAQZ,OAAM;AACxB,WAAO,KAAK,MAAM;AAChB,eAAS,OAAO,MAAM;AACtB,UAAI;AACJ,UAAIA,SAAQ,MAAM;AAChB,gBAAQ,aAAa,MAAM,OAAO,MAAM;AAAA,MAC1C,OAAO;AACL,gBAAQ,OAAOA,KAAI;AAAA,MACrB;AACA,aAAO,KAAK,iBAAiB,QAAQ,KAAK,EAAE;AAAA,IAC9C,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,UAAM,cAAc,mBAAmB,UAAU;AACjD,QAAI,YAAY,WAAW,KAAK,YAAY,QAAQ;AAClD,YAAM,IAAI,WAAW,+BAA+B,yBAAyB,KAAK,YAAY,uBAAuB;AAAA,IACvH;AACA,UAAM,uBAAuB,CAAC;AAC9B,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,YAAM,QAAQ,KAAK,YAAY;AAC/B,YAAM,cAAc,YAAY;AAChC,YAAM,WAAW,MAAM,OAAO;AAC9B,2BAAqB,YAAY;AAAA,IACnC;AACA,UAAM,YAAY,OAAO,KAAK,KAAK,YAAY,EAAE,IAAI,CAAC,MAAM,SAAS,GAAG,EAAE,CAAC,EAAE,KAAK,oBAAoB;AACtG,QAAI,UAAU,SAAS,GAAG;AACxB,iBAAW,SAAS,WAAW;AAC7B,cAAM,QAAQ,KAAK,aAAa;AAChC,mBAAWY,SAAQ,OAAO;AACxB,gBAAM,QAAQA,MAAK;AACnB,cAAI,KAAK,YAAY,IAAI,CAAC,MAAM,EAAE,EAAE,EAAE,QAAQ,MAAM,EAAE,MAAM,IAAI;AAC9D;AAAA,UACF;AACA,gBAAM,eAAe,CAAC;AACtB,mBAAS,IAAI,GAAG,IAAIA,MAAK,cAAc,QAAQ,KAAK;AAClD,kBAAM,eAAeA,MAAK,cAAc;AACxC,kBAAM,aAAaA,MAAK,YAAY;AACpC,kBAAM,cAAcA,MAAK,cAAc;AACvC,kBAAM,WAAW,GAAG,aAAa,QAAQ,cAAc;AACvD,kBAAM,cAAc,qBAAqB;AACzC,yBAAa,KAAK,WAAW;AAAA,UAC/B;AACA,gBAAM,cAAc,MAAM,mBAAmB,iBAAiB,YAAY,CAAC;AAC3E,gBAAM,gBAAgB,mBAAmB,WAAW;AACpD,gBAAM,YAAY,MAAM,aAAa,QAAQA,KAAI;AACjD,mBAAS,IAAI,GAAG,IAAI,cAAc,QAAQ,KAAK;AAC7C,kBAAM,WAAW,GAAG,MAAM,QAAQ,aAAa;AAC/C,iCAAqB,YAAY,cAAc;AAAA,UACjD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,eAAe,CAAC;AACtB,UAAM,kBAAkB,CAAC;AACzB,aAAS,KAAK,GAAG,KAAK,KAAK,aAAa,QAAQ,MAAM;AACpD,YAAM,QAAQ,KAAK,aAAa;AAChC,YAAM,YAAY,KAAK,wBAAwB;AAC/C,YAAM,cAAc,KAAK,0BAA0B;AACnD,YAAM,WAAW,GAAG,MAAM,QAAQ,aAAa;AAC/C,sBAAgB,KAAK,QAAQ;AAAA,IAC/B;AACA,aAAS,KAAK,GAAG,KAAK,gBAAgB,QAAQ,MAAM;AAClD,YAAM,MAAM,gBAAgB;AAC5B,cAAQ,OAAO,oBAAoB;AACnC,mBAAa,KAAK,qBAAqB,IAAI;AAAA,IAC7C;AACA,WAAO,iBAAiB,YAAY;AAAA,EACtC;AAAA,EACA,iBAAiB,QAAQ,OAAO;AAC9B,QAAI,SAAS,MAAM;AACjB,cAAQ,aAAa,MAAM,OAAO,MAAM;AAAA,IAC1C;AACA,UAAM,YAAY,CAAC;AACnB,aAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,YAAM,IAAI,KAAK,OAAO;AACtB,YAAM,IAAI,OAAO;AACjB,YAAMZ,QAAO,MAAM;AACnB,gBAAU,EAAE,MAAM,CAAC,GAAGA,KAAI;AAAA,IAC5B;AACA,UAAM,YAAY,OAAO,KAAK,KAAK,YAAY,EAAE,IAAI,CAAC,MAAM,SAAS,GAAG,EAAE,CAAC,EAAE,KAAK,oBAAoB;AACtG,eAAW,SAAS,WAAW;AAC7B,YAAM,QAAQ,KAAK,aAAa;AAChC,iBAAWY,SAAQ,OAAO;AACxB,cAAM,QAAQA,MAAK;AACnB,cAAM,wBAAwBA,MAAK;AACnC,cAAM,yBAAyBA,MAAK;AACpC,cAAM,eAAe,IAAI,MAAM;AAC/B,mBAAW,KAAK,uBAAuB;AACrC,cAAI,EAAE,MAAM,WAAW;AACrB,yBAAa,KAAK,UAAU,EAAE,GAAG;AAAA,UACnC;AAAA,QACF;AACA,YAAI,aAAa,WAAW,sBAAsB,QAAQ;AACxD,cAAI,SAAS,CAAC;AACd,cAAI;AACJ,cAAI;AACJ,cAAI;AACJ,cAAI;AACJ,cAAIA,MAAK,YAAY,MAAM;AACzB,qBAASA,MAAK;AAAA,UAChB;AACA,cAAI,aAAa,WAAW,GAAG;AAC7B,kBAAM,CAAC,gBAAgB,YAAY,IAAI,aAAa;AACpD,gBAAI,OAAO,WAAW,MAAM;AAC1B,qBAAO,UAAU;AAAA,YACnB;AACA,6BAAiB,OAAO,MAAM,KAAK,gBAAgB,MAAM,CAAC;AAC1D,2BAAe,OAAO,MAAM,YAAY,gBAAgB,YAAY,CAAC;AACrE,8BAAkB,CAAC,cAAc;AACjC,4BAAgB,CAAC,YAAY;AAAA,UAC/B,OAAO;AACL,8BAAkB,aAAa,IAAI,CAAC,MAAM,EAAE,EAAE;AAC9C,4BAAgB,aAAa,IAAI,CAAC,MAAM,EAAE,EAAE;AAC5C,gBAAI,OAAO,WAAW,MAAM;AAC1B,qBAAO,UAAU;AAAA,YACnB;AACA,6BAAiB,OAAO,MAAM,KAAK,iBAAiB,MAAM,CAAC;AAC3D,2BAAe,OAAO,MAAM,YAAY,iBAAiB,aAAa,CAAC;AAAA,UACzE;AACA,cAAI,MAAM,qBAAqB;AAC7B,kBAAM,IAAI,oBAAoB,uHAAuH;AAAA,UACvJ;AACA,mBAAS,KAAK,GAAG,KAAK,uBAAuB,QAAQ,EAAE,IAAI;AACzD,kBAAM,IAAI,uBAAuB;AACjC,kBAAM,IAAI,eAAe;AACzB,kBAAMZ,QAAO,aAAa;AAC1B,sBAAU,EAAE,MAAM,CAAC,GAAGA,KAAI;AAAA,UAC5B;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,gBAAgB,CAAC;AACvB,UAAM,cAAc,CAAC;AACrB,UAAM,eAAe,CAAC;AACtB,eAAW,KAAK,KAAK,SAAS;AAC5B,cAAQ,EAAE,MAAM,WAAW,4BAA4B,EAAE,UAAU,EAAE,IAAI;AACzE,YAAM,CAAC,SAASA,KAAI,IAAI,UAAU,EAAE;AACpC,mBAAa,KAAK,QAAQ,KAAK;AAC/B,oBAAc,KAAK,OAAO;AAC1B,kBAAY,KAAKA,KAAI;AAAA,IACvB;AACA,WAAO,CAAC,eAAe,aAAa,YAAY;AAAA,EAClD;AAAA,EACA,uBAAuB,QAAQ;AAC7B,UAAM,oBAAoB,CAAC;AAC3B,QAAI;AACJ,eAAW,SAAS,KAAK,QAAQ;AAC/B,kBAAY,iBAAiB,YAAY,IAAI;AAC7C,eAAS,oBAAoB,GAAG,oBAAoB,MAAM,aAAa,QAAQ,qBAAqB;AAClG,cAAM,UAAU,UAAU,QAAQ,OAAO,iBAAiB;AAC1D,YAAI,KAAK,eAAe,IAAI,OAAO,GAAG;AACpC,4BAAkB,WAAW;AAC7B,uBAAa;AAAA,QACf;AAAA,MACF;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,SAAS,MAAMK,QAAO;AACpB,QAAIA,UAAS,MAAM;AACjB,UAAI,KAAK,OAAO,UAAUA,QAAO;AAC/B,cAAM,IAAI,WAAW,wCAAwCA,8BAA6B,KAAK,OAAO,kBAAkB;AAAA,MAC1H,OAAO;AACL,eAAO,KAAK,OAAOA;AAAA,MACrB;AAAA,IACF,OAAO;AACL,UAAI,QAAQ,MAAM;AAChB,cAAM,IAAI,WAAW,4CAA4C;AAAA,MACnE;AAAA,IACF;AACA,eAAW,SAAS,KAAK,QAAQ;AAC/B,UAAI,MAAM,SAAS,MAAM;AACvB,eAAO;AAAA,MACT;AAAA,IACF;AACA,UAAM,IAAI,WAAW,kBAAkB,MAAM;AAAA,EAC/C;AAAA,EACA,kBAAkB;AAChB,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,CAAC;AACjB,iBAAW,SAAS,KAAK,QAAQ;AAC/B,iBAAS,YAAY,GAAG,YAAY,MAAM,aAAa,QAAQ,EAAE,WAAW;AAC1E,gBAAM,UAAU,UAAU,QAAQ,OAAO,SAAS;AAClD,cAAI,KAAK,eAAe,IAAI,OAAO,GAAG;AACpC,oBAAQ,KAAK,GAAG,MAAM,gBAAgB,CAAC;AAAA,UACzC;AAAA,QACF;AAAA,MACF;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMK,UAAS,EAAE,MAAM,KAAK,KAAK;AACjC,UAAM,oBAAoB,KAAK,uBAAuB,KAAK,MAAM;AACjE,UAAM,eAAe,CAAC;AACtB,eAAW,SAAS,KAAK,QAAQ;AAC/B,YAAM,iBAAiB,MAAM,aAAa;AAC1C,YAAM,cAAc,MAAM,UAAU;AACpC,YAAM,uBAAuB,CAAC;AAC9B,eAAS,oBAAoB,GAAG,oBAAoB,MAAM,aAAa,QAAQ,qBAAqB;AAClG,cAAME,QAAO,MAAM,aAAa;AAChC,cAAM,UAAU,UAAU,QAAQ,OAAO,iBAAiB;AAC1D,YAAI,SAAS,CAAC;AACd,YAAI,KAAK,eAAe,IAAI,OAAO,GAAG;AACpC,cAAIA,MAAK,UAAU;AACjB,gBAAI;AACF,mBAAK,UAAUA,MAAK,QAAQ;AAC5B,uBAASA,MAAK;AAAA,YAChB,SAAS,KAAP;AACA,sBAAQ,KAAK,SAAS,MAAM,uDAAuDA,MAAK,iHAAiH;AACzM,uBAAS,CAAC;AAAA,YACZ;AAAA,UACF;AACA,cAAIA,MAAK,cAAc,SAAS,GAAG;AACjC,kBAAM,WAAW,CAAC;AAClB,qBAAS,KAAK,GAAG,KAAKA,MAAK,cAAc,QAAQ,MAAM;AACrD,oBAAM,eAAeA,MAAK,cAAc;AACxC,oBAAM,YAAYA,MAAK,YAAY;AACnC,oBAAM,cAAcA,MAAK,cAAc;AACvC,oBAAM,WAAW,UAAU,QAAQ,cAAc,SAAS;AAC1D,kBAAI,eAAe,kBAAkB;AACrC,kBAAI,gBAAgB,MAAM;AACxB,+BAAe;AAAA,cACjB;AACA,uBAAS,KAAK,CAAC,aAAa,MAAM,cAAc,aAAa,MAAM,CAAC;AAAA,YACtE;AACA,iCAAqB,KAAK,QAAQ;AAAA,UACpC;AAAA,QACF;AAAA,MACF;AACA,YAAM,OAAO,CAAC;AACd,WAAK,UAAU,MAAM;AACrB,WAAK,eAAe;AACpB,WAAK,YAAY;AACjB,WAAK,kBAAkB;AACvB,mBAAa,KAAK,IAAI;AAAA,IACxB;AACA,IAAAF,QAAO,YAAY;AACnB,UAAM,cAAc,CAAC;AACrB,aAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,MAAM;AACnD,YAAM,QAAQ,KAAK,YAAY;AAC/B,YAAM,YAAY,KAAK,uBAAuB;AAC9C,YAAM,UAAU,UAAU,QAAQ,OAAO,SAAS;AAClD,UAAI,CAAC,KAAK,eAAe,IAAI,OAAO,GAAG;AACrC;AAAA,MACF;AACA,UAAI,eAAe,kBAAkB;AACrC,UAAI,iBAAiB,QAAQ,iBAAiB,QAAQ;AACpD,uBAAe;AAAA,MACjB;AACA,YAAM,cAAc,KAAK,yBAAyB;AAClD,kBAAY,KAAK,CAAC,MAAM,MAAM,cAAc,WAAW,CAAC;AAAA,IAC1D;AACA,IAAAA,QAAO,iBAAiB;AACxB,UAAM,eAAe,CAAC;AACtB,aAAS,KAAK,GAAG,KAAK,KAAK,aAAa,QAAQ,MAAM;AACpD,YAAM,QAAQ,KAAK,aAAa;AAChC,YAAM,YAAY,KAAK,wBAAwB;AAC/C,YAAM,UAAU,UAAU,QAAQ,OAAO,SAAS;AAClD,UAAI,CAAC,KAAK,eAAe,IAAI,OAAO,GAAG;AACrC;AAAA,MACF;AACA,UAAI,eAAe,kBAAkB;AACrC,UAAI,iBAAiB,QAAQ,iBAAiB,QAAQ;AACpD,uBAAe;AAAA,MACjB;AACA,YAAM,cAAc,KAAK,0BAA0B;AACnD,mBAAa,KAAK,CAAC,MAAM,MAAM,cAAc,WAAW,CAAC;AAAA,IAC3D;AACA,IAAAA,QAAO,kBAAkB;AACzB,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ,gBAAgB,CAAC,GAAG,iBAAiB,OAAO;AACzE,UAAM,gBAAgB,CAAC;AACvB,UAAM,mBAAmB,CAAC;AAC1B,aAAS,mBAAmB,OAAO,UAAU;AAC3C,UAAI,EAAE,MAAM,QAAQ,mBAAmB;AACrC,yBAAiB,MAAM,QAAQ,CAAC,QAAQ;AAAA,MAC1C,OAAO;AACL,yBAAiB,MAAM,MAAM,KAAK,QAAQ;AAAA,MAC5C;AAAA,IACF;AACA,aAAS,YAAY,OAAO,UAAU;AACpC,YAAM,gBAAgB,CAAC;AACvB,UAAI;AACJ,iBAAW,aAAa,UAAU;AAChC,cAAM,mBAAmB,UAAU;AACnC,cAAM,mBAAmB,UAAU;AACnC,cAAM,qBAAqB,UAAU;AACrC,iBAAS,UAAU,MAAM,OAAO,CAAC,IAAI,UAAU;AAC/C,YAAI,EAAE,oBAAoB,gBAAgB;AACxC,6BAAmB,OAAO,QAAQ;AAClC;AAAA,QACF;AACA,cAAM,eAAe,cAAc;AACnC,YAAI,aAAa,aAAa,UAAU,kBAAkB;AACxD,6BAAmB,OAAO,QAAQ;AAClC;AAAA,QACF;AACA,cAAM,cAAc,aAAa,aAAa;AAC9C,sBAAc,KAAK,YAAY,cAAc,mBAAmB;AAAA,MAClE;AACA,UAAI,cAAc,SAAS,GAAG;AAC5B,cAAM,MAAM,iBAAiB,aAAa,GAAG,MAAM;AAAA,MACrD;AAAA,IACF;AACA,aAAS,aAAa,WAAW;AAC/B,YAAM,YAAY,UAAU;AAC5B,YAAM,QAAQ,YAAY,WAAWA,QAAO,oBAAoB,OAAOA,QAAO,mBAAmB,CAAC,CAAC;AACnG,YAAM,6BAA6B,cAAc;AACjD,oBAAc,aAAa;AAC3B,YAAM,mBAAmB,UAAU;AACnC,uBAAiB,QAAQ,CAAC,aAAa;AACrC,YAAI,EAAE,oBAAoB,QAAQ;AAChC,gBAAM,IAAI,WAAW,yDAAyD,UAAU;AAAA,QAC1F;AACA,2BAAmB,OAAO,QAAQ;AAAA,MACpC,CAAC;AAAA,IACH;AACA,UAAM,OAAOA,QAAO;AACpB,UAAM,mBAAmBA,QAAO;AAChC,eAAW,aAAa,kBAAkB;AACxC,mBAAa,SAAS;AAAA,IACxB;AACA,WAAO,CAAC,cAAc,gBAAgB,GAAG;AACvC,iBAAW,aAAa,kBAAkB;AACxC,cAAM,QAAQ,cAAc,UAAU;AACtC,YAAI,MAAM,QAAQ,kBAAkB;AAClC,gBAAM,kCAAkC,iBAAiB,MAAM;AAC/D,iBAAO,iBAAiB,MAAM;AAC9B,qBAAW,YAAY,iCAAiC;AACtD,wBAAY,OAAO,QAAQ;AAAA,UAC7B;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,eAAe,CAAC;AACtB,UAAM,gBAAgB,CAAC;AACvB,UAAM,wBAAwBA,QAAO;AACrC,eAAW,aAAa,uBAAuB;AAC7C,YAAM,YAAY,UAAU;AAC5B,YAAM,YAAY,UAAU;AAC5B,YAAM,cAAc,UAAU;AAC9B,cAAQ,aAAa,aAAa;AAClC,YAAM,QAAQ,cAAc;AAC5B,YAAM,qBAAqB,MAAM,aAAa,WAAW;AACzD,mBAAa,KAAK,mBAAmB,YAAY;AAAA,IACnD;AACA,UAAM,yBAAyBA,QAAO;AACtC,eAAW,aAAa,wBAAwB;AAC9C,YAAM,YAAY,UAAU;AAC5B,YAAM,YAAY,UAAU;AAC5B,YAAM,cAAc,UAAU;AAC9B,cAAQ,aAAa,aAAa;AAClC,YAAM,QAAQ,cAAc;AAC5B,YAAM,qBAAqB,MAAM,aAAa,WAAW;AACzD,oBAAc,KAAK,mBAAmB,YAAY;AAAA,IACpD;AACA,WAAO,IAAI,IAAI,EAAE,QAAQ,cAAc,SAAS,eAAe,KAAK,CAAC;AAAA,EACvE;AAAA,EACA,IAAI,WAAW;AACb,QAAI,KAAK,WAAW;AAClB,YAAM,IAAI,WAAW,sLAAsL;AAAA,IAC7M;AACA,eAAW,SAAS,KAAK,QAAQ;AAC/B,UAAI,MAAM,UAAU;AAClB,eAAO;AAAA,MACT;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,cAAc;AACZ,SAAK,MAAM;AACT,WAAK,OAAO,QAAQ,CAAC,UAAU;AAC7B,YAAI,MAAM,UAAU;AAClB,gBAAM,YAAY;AAAA,QACpB;AAAA,MACF,CAAC;AAAA,IACH,CAAC;AAAA,EACH;AACF;AAGA,SAAS,gCAAgC,SAAS,aAAa,YAAY;AACzE,QAAM,aAAa,YAAY;AAC/B,MAAI,WAAW,QAAQ,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AACrE,WAAO,YAAY,IAAI,CAAC,SAAS,IAAI;AAAA,EACvC;AACA,MAAI,eAAe,GAAG;AACpB,QAAI,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AAClD,aAAO;AAAA,IACT,WAAW,OAAO,YAAY,YAAY,YAAY,MAAM,SAAS;AACnE,aAAO,CAAC,QAAQ,YAAY,GAAG;AAAA,IACjC,OAAO;AACL,aAAO,CAAC,OAAO;AAAA,IACjB;AAAA,EACF;AACA,MAAI,MAAM,QAAQ,OAAO,GAAG;AAC1B,QAAI,QAAQ,WAAW,YAAY;AACjC,YAAM,IAAI,MAAM,YAAY,6BAA6B,QAAQ,wCAAwC,mFAAmF;AAAA,IAC9L;AACA,WAAO;AAAA,EACT,WAAW,OAAO,YAAY,YAAY,OAAO,KAAK,OAAO,EAAE,SAAS,KAAK,OAAO,QAAQ,OAAO,KAAK,OAAO,EAAE,QAAQ,UAAU;AACjI,UAAM,SAAS,CAAC;AAChB,gBAAY,QAAQ,CAAC,eAAe;AAClC,UAAI,cAAc,SAAS;AACzB,eAAO,KAAK,QAAQ,WAAW;AAAA,MACjC,OAAO;AACL,eAAO,KAAK,IAAI;AAAA,MAClB;AAAA,IACF,CAAC;AACD,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,2BAA2B,2BAA2B,2CAA2C,yCAAyC,8BAA8B,8BAA8B,KAAK,UAAU,OAAO,GAAG;AAAA,EACjP;AACF;AACA,SAAS,wBAAwB,aAAa,aAAa;AACzD,SAAO,gCAAgC,aAAa,aAAa,aAAa;AAChF;AACA,eAAe,mBAAmB,GAAG,cAAc,aAAa,kBAAkB;AAChF,MAAI,gBAAgB,QAAQ,oBAAoB,MAAM;AACpD,UAAM,IAAI,MAAM,6CAA6C;AAAA,EAC/D;AACA,MAAI,eAAe,MAAM;AACvB,UAAM,WAAW,KAAK,MAAM;AAC1B,UAAI,EAAE,MAAM,WAAW,GAAG;AACxB,eAAO,MAAM,CAAC;AAAA,MAChB,WAAW,EAAE,MAAM,WAAW,GAAG;AAC/B,YAAI,EAAE,MAAM,KAAK,GAAG;AAClB,gBAAM,OAAO;AACb,iBAAO,OAAO,GAAG,IAAI;AAAA,QACvB,WAAW,EAAE,MAAM,OAAO,GAAG;AAC3B,iBAAO,QAAQ,GAAG,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,QAChC,OAAO;AACL,gBAAM,IAAI,MAAM,+CAA+C,EAAE,MAAM,wEAAwE;AAAA,QACjJ;AAAA,MACF,OAAO;AACL,cAAM,IAAI,MAAM,yCAAyC,EAAE,4EAA4E;AAAA,MACzI;AAAA,IACF,CAAC;AACD,UAAM,gBAAgB,MAAM,KAAK,MAAM,SAAS,KAAK,CAAC;AACtD,YAAQ,QAAQ;AAChB,UAAM,oBAAoB,CAAC;AAC3B,kBAAc,QAAQ,CAAC,eAAe;AACpC,UAAI,YAAY,eAAe,MAAM;AACnC,cAAM,IAAI,MAAM,wEAAwE,sDAAsD;AAAA,MAChJ,OAAO;AACL,0BAAkB,KAAK,YAAY,WAAW;AAAA,MAChD;AAAA,IACF,CAAC;AACD,WAAO,SAAS,mBAAmB,SAAS;AAAA,EAC9C,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,SAAS,qBAAqB,SAAS,eAAe;AACpD,SAAO,IAAI,SAAS,aAAa;AACnC;AAGA,IAAI,gCAAgC;AACpC,SAAS,8BAA8Be,SAAQ,aAAa;AAC1D,MAAI;AACJ,MAAI;AACJ,QAAM,iBAAiB;AACvB,OAAK,eAAe;AACpB,OAAK,eAAe;AACpB,eAAa,OAAO,MAAM,QAAQ,MAAM,MAAM,MAAM,mPAAmP,aAAa;AACpT,QAAM,cAAc,0BAA0B,SAASA,QAAO,YAAY,EAAE;AAC5E,QAAM,cAAc,0BAA0B,UAAUA,QAAO,aAAa,EAAE;AAC9E,QAAM,YAAY,YAAY,GAAG,MAAM;AACvC,eAAa,OAAO,YAAY,WAAWA,QAAO,OAAO,QAAQ,MAAM,mBAAmBA,QAAO,OAAO,2CAA2C,YAAY,yCAAyC,KAAK,UAAUA,QAAO,UAAU,IAAI;AAC5O,eAAa,OAAO,YAAY,WAAWA,QAAO,QAAQ,QAAQ,MAAM,mBAAmBA,QAAO,QAAQ,4CAA4C,YAAY,2CAA2C,KAAK,UAAUA,QAAO,WAAW,IAAI;AAClP,WAAS,SAAS,GAAG,SAAS,YAAY,QAAQ,UAAU;AAC1D,iBAAa,OAAO,YAAY,QAAQ,MAAM,OAAO,WAAW,MAAM,8BAA8BA,QAAO,WAAW,eAAe,YAAY,QAAQ,MAAM,iBAAiB,4BAA4BA,QAAO,WAAW,KAAK;AAAA,EACrO;AACA,WAAS,SAAS,GAAG,SAAS,YAAY,QAAQ,UAAU;AAC1D,iBAAa,OAAO,YAAY,QAAQ,MAAM,OAAO,WAAW,MAAM,+BAA+BA,QAAO,YAAY,eAAe,YAAY,QAAQ,MAAM,iBAAiB,4BAA4BA,QAAO,WAAW,KAAK;AAAA,EACvO;AACA,SAAO,EAAE,IAAI,aAAa,IAAI,YAAY;AAC5C;AACA,SAAS,0BAA0B,eAAe,OAAO,QAAQ;AAC/D,MAAI,kBAAkB,QAAQ;AAC5B,WAAO,CAAC,MAAM;AAAA,EAChB,WAAW,MAAM,QAAQ,MAAM,GAAG;AAChC,iBAAa,OAAO,OAAO,WAAW,MAAM,QAAQ,MAAM,wBAAwB,OAAO,gCAAgC,MAAM,uBAAuB,sBAAsB,QAAQ;AACpL,WAAO;AAAA,EACT,OAAO;AACL,UAAM,SAAS,CAAC;AAChB,eAAW,QAAQ,OAAO;AACxB,UAAI,OAAO,SAAS,MAAM;AACxB,cAAM,IAAI,WAAW,gEAAgE,sBAAsB,QAAQ;AAAA,MACrH;AACA,aAAO,KAAK,OAAO,KAAK;AAAA,IAC1B;AACA,WAAO;AAAA,EACT;AACF;AACA,SAAS,gCAAgC,MAAM;AAC7C,MAAI,KAAK,WAAW,GAAG;AACrB,UAAM,IAAI,oBAAoB,wDAAwD;AAAA,EACxF;AACA,SAAO,EAAE,IAAI,KAAK,IAAI,IAAI,KAAK,GAAG;AACpC;AACA,eAAe,WAAWA,SAAQ,SAAS,MAAM;AAC/C,QAAM,qBAAqB,KAAK,mBAAmB;AACnD,eAAa,OAAOA,QAAO,aAAa,MAAM,MAAM,gGAAgG;AACpJ,eAAa,OAAO,QAAQ,MAAM,MAAM,+FAA+F;AACvI,eAAa,OAAO,KAAK,UAAU,QAAQ,KAAK,SAAS,KAAK,OAAO,UAAU,KAAK,MAAM,GAAG,MAAM,iFAAiF,KAAK,QAAQ;AACjM,eAAa,OAAO,CAAC,sBAAsB,KAAK,kBAAkB,KAAK,OAAO,UAAU,KAAK,eAAe,GAAG,MAAM,uGAAuG,KAAK,iBAAiB;AAClP,eAAa;AAAA,IACX,KAAK,sBAAsB;AAAA,IAC3B,MAAM;AAAA,EACR;AACA,MAAIA,QAAO,YAAY;AACrB,UAAM,IAAI,MAAM,8DAA8D;AAAA,EAChF;AACA,EAAAA,QAAO,aAAa;AACpB,MAAI;AACF,UAAM,eAAe,KAAK,kBAAkB;AAC5C,QAAI;AACJ,QAAI;AACJ,QAAI,cAAc;AAChB,UAAI,gBAAgB,KAAK,cAAc,GAAG;AACxC,qBAAa,OAAO,KAAK,qBAAqB,QAAQ,KAAK,oBAAoB,KAAK,OAAO,UAAU,KAAK,iBAAiB,GAAG,MAAM,iJAAiJ,KAAK,mBAAmB;AAAA,MAC/S,OAAO;AACL,cAAM,iBAAiB,gCAAgC,KAAK,cAAc;AAC1E,gBAAQ,eAAe;AACvB,gBAAQ,eAAe;AAAA,MACzB;AAAA,IACF;AACA,UAAM,gBAAgBA,QAAO,kBAAkB;AAC/C,UAAM,YAAYA,QAAO,uBAAuB;AAChD,QAAI;AACJ,QAAI,cAAc;AAChB,wBAAkB,UAAU,MAAM,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,SAAS,EAAE,CAAC;AAAA,IAC/E,OAAO;AACL,wBAAkB,UAAU,MAAM;AAAA,IACpC;AACA,UAAM,aAAa,qBAAqB,KAAK,WAAW,KAAK,UAAU;AACvE,UAAM,UAAU,KAAK,WAAW,OAAO,IAAI,KAAK;AAChD,UAAM,EAAE,cAAc,QAAQ,IAAI;AAAA,MAChC;AAAA,MACA;AAAA,MACA,KAAK;AAAA,MACL;AAAA,MACA;AAAA,MACA,iBAAiB,SAAS,IAAI;AAAA,MAC9B;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,iBAAa,SAASA,OAAM;AAC5B,IAAAA,QAAO,UAAU;AACjB,UAAM,aAAa,aAAa;AAChC,IAAAA,QAAO,gBAAgB;AACvB,QAAI,QAAQ,KAAK,gBAAgB,OAAO,IAAI,KAAK;AACjD,QAAI,eAAe,MAAM,QAAQ,SAAS;AAC1C,WAAO,QAAQ,KAAK,QAAQ;AAC1B,YAAM,YAAY,CAAC;AACnB,YAAM,aAAa,aAAa,KAAK;AACrC,UAAI,YAAY;AAChB,UAAI,aAAa;AACjB,UAAI,CAAC,oBAAoB;AACvB,uBAAe,MAAM,QAAQ,SAAS;AAAA,MACxC;AACA,aAAO,qBAAqB,YAAY,KAAK,kBAAkB,MAAM;AACnE,cAAM,cAAc,MAAM,aAAa,KAAK;AAC5C,YAAI,sBAAsB,YAAY,MAAM;AAC1C,kBAAQ,KAAK,uCAAuC,KAAK,oEAAoE,mJAAmJ,KAAK,kBAAkB,KAAK,wFAAwF;AACpY;AAAA,QACF;AACA,YAAI,YAAY,SAAS,MAAM;AAC7B,gBAAM,EAAE,IAAI,GAAG,IAAI,8BAA8BA,SAAQ,YAAY,KAAK;AAC1E,gBAAM,YAAY,CAAC;AACnB,oBAAU,WAAW;AACrB,oBAAU,UAAU,GAAG,GAAG,MAAM;AAChC,gBAAM,aAAa,aAAa,YAAY,SAAS;AACrD,gBAAM,gBAAgB,CAAC;AACvB,cAAI,KAAK,eAAe,MAAM;AAC5B,kBAAM,uBAAuB,wBAAwB,KAAK,aAAaA,QAAO,WAAW;AACzF,qBAAS,KAAK,GAAG,KAAK,qBAAqB,QAAQ,EAAE,IAAI;AACvD,4BAAc,KAAK,MAAM,mBAAmB,GAAG,KAAK,MAAM,qBAAqB,GAAG,CAAC;AAAA,YACrF;AAAA,UACF;AACA,gBAAM,MAAM,GAAG,OAAO,EAAE,EAAE,OAAO,aAAa;AAC9C,gBAAM,OAAO,cAAc,GAAG;AAC9B,kBAAQ,GAAG;AACX,mBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,kBAAM,QAAQ,UAAU;AACxB,kBAAM,MAAM,KAAK;AACjB,sBAAU,SAAS;AACnB,iBAAK,GAAG;AAAA,UACV;AACA,gBAAM,aAAa,WAAW,YAAY,SAAS;AACnD,+BAAqB,SAAS;AAC9B;AACA;AAAA,QACF;AACA,YAAI,qBAAqB,aAAa,KAAK,kBAAkB,YAAY,MAAM;AAC7E,cAAI,cAAc;AAChB,gBAAI;AACJ,gBAAI,gBAAgB,KAAK,cAAc,GAAG;AACxC,wBAAU,OAAO,MAAMA,QAAO,gBAAgB,KAAK,gBAAgB,EAAE,SAAS,KAAK,kBAAkB,CAAC,CAAC;AAAA,YACzG,OAAO;AACL,wBAAU,OAAOA,QAAO,SAAS,OAAO,OAAO;AAAA,gBAC7C,WAAW,KAAK,uBAAuB,OAAO,gCAAgC,KAAK;AAAA,gBACnF,SAAS;AAAA,cACX,CAAC,CAAC;AAAA,YACJ;AACA,qBAAS,KAAK,GAAG,KAAKA,QAAO,aAAa,QAAQ,EAAE,IAAI;AACtD,wBAAU,OAAOA,QAAO,aAAa,SAAS,QAAQ;AAAA,YACxD;AAAA,UACF;AACA;AAAA,QACF;AACA,YAAIA,QAAO,eAAe;AACxB;AAAA,QACF;AAAA,MACF;AACA,YAAM,aAAa,WAAW,OAAO,SAAS;AAC9C;AACA,UAAIA,QAAO,eAAe;AACxB;AAAA,MACF;AAAA,IACF;AACA,UAAM,aAAa,WAAW;AAC9B,UAAMA,QAAO,QAAQ,SAAS;AAC9B,WAAOA,QAAO;AAAA,EAChB,UAAE;AACA,IAAAA,QAAO,aAAa;AAAA,EACtB;AACF;AACA,SAAS,iBAAiB,SAAS,MAAM;AACvC,MAAI,gBAAgB;AACpB,MAAI,KAAK,mBAAmB,MAAM;AAChC,oBAAgB,KAAK;AAAA,EACvB,WAAW,OAAO,SAAS,QAAQ,IAAI,GAAG;AACxC,oBAAgB,QAAQ;AAAA,EAC1B;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,SAAS;AAChC,SAAO,OAAO,QAAQ,aAAa;AACrC;AACA,SAAS,qBAAqB,UAAU;AACtC,SAAO,OAAO,SAAS,SAAS;AAClC;AACA,eAAe,gBAAgBA,SAAQ,SAAS,MAAM;AACpD,SAAO,QAAQ,CAAC;AAChB,QAAM,aAAa,KAAK,WAAW;AACnC,QAAM,IAAIA,QAAO;AACjB,MAAI,OAAO,CAAC;AACZ,MAAI,KAAK,UAAU,GAAG;AACpB,UAAM,IAAI,oBAAoB,sCAAsC;AAAA,EACtE;AACA,eAAa,OAAO,CAAC,cAAc,KAAK,UAAU,KAAK,OAAO,UAAU,KAAK,OAAO,GAAG,MAAM,wEAAwE,KAAK,UAAU,KAAK,OAAO,GAAG;AACnM,QAAM,eAAe,qBAAqB,OAAO,IAAI,UAAU,MAAM,QAAQ,SAAS;AACtF,MAAI,cAAc;AAClB,MAAI,QAAQ;AACZ,SAAO,aAAa,QAAQ,KAAK,UAAU,MAAM;AAC/C,UAAM,cAAc,MAAM,aAAa,KAAK;AAC5C,WAAO,KAAK,MAAM;AAChB,UAAI,YAAY,OAAO;AACrB,cAAM,EAAE,IAAI,GAAG,IAAI,8BAA8BA,SAAQ,YAAY,KAAK;AAC1E,cAAM,UAAU,GAAG,OAAO,EAAE;AAC5B,cAAM,YAAY,KAAK,MAAM,EAAE,OAAO,CAAC;AACvC,gBAAQ,OAAO;AACf,YAAI,UAAU,GAAG;AACf,mBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,iBAAK,KAAK,OAAO,CAAC,CAAC;AAAA,UACrB;AAAA,QACF;AACA,cAAM,YAAY,QAAQ,GAAG,MAAM;AACnC,iBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,gBAAM,WAAW,UAAU;AAC3B,gBAAM,YAAY,KAAK;AACvB,eAAK,MAAM,KAAK,MAAM,KAAK,KAAK,KAAK,IAAI,WAAW,QAAQ,CAAC,CAAC;AAC9D,cAAI,QAAQ,GAAG;AACb,oBAAQ,SAAS;AAAA,UACnB;AAAA,QACF;AACA,gBAAQ,SAAS;AACjB,uBAAe;AACf,UAAE;AAAA,MACJ;AACA,aAAO;AAAA,IACT,CAAC;AACD,QAAI,YAAY,MAAM;AACpB,UAAI,YAAY;AACd,gBAAQ,KAAK,gLAAgL,KAAK,yFAAyF;AAAA,MAC7R;AACA;AAAA,IACF;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,YAAY,KAAK;AACvB,SAAK,MAAM,IAAI,KAAK,KAAK,WAAW;AACpC,YAAQ,SAAS;AAAA,EACnB;AACA,SAAO,iBAAiB,IAAI;AAC9B;AAGA,SAAS,eAAe,WAAW;AACjC,eAAa,OAAO,YAAY,KAAK,OAAO,UAAU,SAAS,GAAG,MAAM,2DAA2D,WAAW;AAChJ;AACA,SAAS,YAAY,QAAQ,OAAO,MAAM;AACxC,MAAI,UAAU,MAAM;AAClB,WAAO,CAAC,IAAI;AAAA,EACd,WAAW,MAAM,QAAQ,MAAM,GAAG;AAChC,WAAO,OAAO,IAAI,CAAC,WAAW,oBAAoB,QAAQ,OAAO,OAAO,KAAK,CAAC;AAAA,EAChF,OAAO;AACL,WAAO,oBAAoB,QAAQ,OAAO,OAAO,KAAK;AAAA,EACxD;AACF;AACA,SAAS,qBAAqB,QAAQ,SAAS;AAC7C,SAAO,KAAK,MAAM;AAChB,QAAI,UAAU,MAAM;AAClB,aAAO;AAAA,IACT,WAAW,MAAM,QAAQ,MAAM,GAAG;AAChC,aAAO,OAAO,IAAI,CAAC,WAAW,qBAAqB,QAAQ,OAAO,CAAC;AAAA,IACrE,OAAO;AACL,aAAO,QAAQ,QAAQ,QAAQ,UAAU,UAAU,UAAU,KAAK,SAAS,OAAO,CAAC;AAAA,IACrF;AAAA,EACF,CAAC;AACH;AACA,SAAS,YAAY9B,OAAM,WAAW;AACpC,QAAM,SAAS,CAAC;AAChB,MAAI,aAAa;AACjB,MAAI,WAAW;AACf,SAAO,aAAaA,OAAM;AACxB,eAAW,aAAa;AACxB,QAAI,YAAYA,OAAM;AACpB,iBAAWA;AAAA,IACb;AACA,WAAO,KAAK,CAAC,YAAY,QAAQ,CAAC;AAClC,iBAAa;AAAA,EACf;AACA,SAAO;AACT;AACA,eAAe,QAAQ8B,SAAQ,GAAG,KAAK,WAAW,WAAW,QAAQ,SAAS,YAAY,MAAM,QAAQ,UAAU,iBAAiB,cAAc,eAAe,iBAAiB;AAC/K,MAAI,aAAa,MAAM;AACrB,gBAAY;AAAA,EACd;AACA,MAAI,UAAU,MAAM;AAClB,aAAS;AAAA,EACX;AACA,MAAI,YAAY,MAAM;AACpB,eAAW;AAAA,EACb;AACA,MAAI,gBAAgB,MAAM;AACxB,mBAAe;AAAA,EACjB;AACA,MAAI,eAAe;AACnB,MAAI,QAAQ,QAAQ,UAAU,MAAM;AAClC,mBAAe;AAAA,EACjB;AACA,MAAI,mBAAmB,MAAM;AAC3B,mBAAe;AACf,QAAI,iBAAiB,MAAM;AACzB,YAAM,IAAI,WAAW,kGAAkG;AAAA,IACzH;AAAA,EACF;AACA,QAAM,kBAAkBA,QAAO,gBAAgB,KAAK,WAAW,eAAe,iBAAiB;AAC/F,MAAI;AACJ,MAAI,mBAAmB,MAAM;AAC3B,iBAAa,OAAO,GAAG,eAAe;AAAA,EACxC;AACA,MAAI,WAAW,MAAM;AACnB,cAAU;AAAA,EACZ;AACA,QAAM,EAAE,cAAc,QAAQ,IAAI,mBAAmB,YAAY,SAAS,QAAQ,cAAc,iBAAiB,eAAe,WAAW,cAAc,eAAe;AACxK,eAAa,SAASA,OAAM;AAC5B,EAAAA,QAAO,UAAU;AACjB,QAAM,aAAa,aAAa;AAChC,EAAAA,QAAO,gBAAgB;AACvB,WAAS,QAAQ,cAAc,QAAQ,QAAQ,EAAE,OAAO;AACtD,UAAM,aAAa,aAAa,KAAK;AACrC,UAAM,YAAY,CAAC;AACnB,QAAI,iBAAiB,MAAM;AACzB,YAAM,IAAI,oBAAoB,4CAA4C;AAAA,IAC5E,OAAO;AACL,UAAI,aAAa,SAAS;AACxB,cAAM,IAAI,oBAAoB,wCAAwC;AAAA,MACxE,WAAW,UAAU;AACnB,qBAAa,QAAQ,UAAU;AAAA,MACjC;AACA,YAAM,oBAAoB,SAAS,UAAU;AAC7C,YAAM,UAAU,YAAY,iBAAiB,SAAS;AACtD,eAAS,aAAa,GAAG,aAAa,QAAQ,QAAQ,EAAE,YAAY;AAClE,cAAM,YAAY,CAAC;AACnB,cAAM,aAAa,aAAa,YAAY,SAAS;AACrD,aAAK,MAAM;AACT,gBAAM,aAAa,QAAQ,YAAY;AACvC,gBAAM,WAAW,QAAQ,YAAY;AACrC,gBAAM,WAAW,oBAAoB,mBAAmB,YAAY,WAAW,UAAU;AACzF,oBAAU,WAAW;AACrB,oBAAU,UAAU,WAAW;AAC/B,gBAAM,WAAW,qBAAqB,KAAK,QAAQ;AACnD,gBAAM,OAAO,EAAE,QAAQ;AACvB,mBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,kBAAM,QAAQ,UAAU;AACxB,kBAAM,MAAM,KAAK;AACjB,sBAAU,SAAS;AACnB,iBAAK,GAAG;AAAA,UACV;AACA,cAAI,eAAe,QAAQ,SAAS,GAAG;AACrC,gBAAI,cAAc;AAChB,oBAAM,UAAUA,QAAO,SAAS,MAAM,QAAQ,SAAS;AACvD,uBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,sBAAM,QAAQ,UAAU;AACxB,sBAAM,MAAM,QAAQ;AACpB,qBAAK,GAAG;AACR,0BAAU,SAAS,SAAS;AAAA,cAC9B;AAAA,YACF;AAAA,UACF;AAAA,QACF,CAAC;AACD,cAAM,aAAa,WAAW,YAAY,SAAS;AACnD,6BAAqB,SAAS;AAC9B,YAAIA,QAAO,eAAe;AACxB;AAAA,QACF;AAAA,MACF;AACA,wBAAkB,QAAQ;AAAA,IAC5B;AACA,UAAM,aAAa,WAAW,OAAO,SAAS;AAC9C,QAAIA,QAAO,eAAe;AACxB;AAAA,IACF;AAAA,EACF;AACA,QAAM,aAAa,WAAW;AAC9B,QAAMA,QAAO,QAAQ,SAAS;AAC9B,SAAOA,QAAO;AAChB;AACA,eAAe,WAAWA,SAAQ,GAAG,GAAG,OAAO,CAAC,GAAG;AACjD,MAAIA,QAAO,YAAY;AACrB,UAAM,IAAI,MAAM,8DAA8D;AAAA,EAChF;AACA,EAAAA,QAAO,aAAa;AACpB,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACF,UAAM,YAAY,KAAK,aAAa,OAAO,KAAK,KAAK;AACrD,mBAAe,SAAS;AACxB,UAAM,iBAAiB;AACvB,UAAM,mBAAmB,MAAMA,QAAO,oBAAoB,GAAG,GAAG,KAAK,cAAc,KAAK,aAAa,gBAAgB,SAAS;AAC9H,aAAS,iBAAiB;AAC1B,cAAU,iBAAiB;AAC3B,oBAAgB,iBAAiB;AACjC,QAAI,eAAe;AACnB,QAAI;AACJ,QAAI,KAAK,kBAAkB,QAAQ,KAAK,eAAe,SAAS,GAAG;AACjE,qBAAe;AACf,UAAI,KAAK,eAAe,WAAW,GAAG;AACpC,oBAAY,KAAK,eAAe;AAChC,oBAAY,KAAK,eAAe;AAAA,MAClC,WAAW,KAAK,eAAe,WAAW,GAAG;AAC3C,cAAM,IAAI,oBAAoB,+DAA+D;AAAA,MAC/F,OAAO;AACL,cAAM,IAAI,WAAW,0GAA0G,KAAK,4BAA4B;AAAA,MAClK;AACA,YAAM,kBAAkB;AACxB,YAAM,kBAAkB,MAAMA,QAAO,oBAAoB,WAAW,WAAW,MAAM,MAAM,iBAAiB,SAAS;AACrH,aAAO,gBAAgB;AACvB,aAAO,gBAAgB;AACvB,eAAS,KAAK,OAAO,IAAI;AAAA,IAC3B,WAAW,KAAK,mBAAmB,QAAQ,KAAK,kBAAkB,KAAK,KAAK,kBAAkB,GAAG;AAC/F,qBAAe;AACf,YAAM,UAAU,KAAK,MAAM,OAAO,GAAG,MAAM,MAAM,IAAI,KAAK,gBAAgB;AAC1E,YAAM,oBAAoB,OAAO,GAAG,MAAM;AAC1C,aAAO,YAAY,QAAQ,SAAS,iBAAiB;AACrD,uBAAiB;AACjB,eAAS,YAAY,QAAQ,GAAG,OAAO;AACvC,aAAO,YAAY,SAAS,SAAS,iBAAiB;AACtD,wBAAkB;AAClB,gBAAU,YAAY,SAAS,GAAG,OAAO;AACzC,eAAS,KAAK,OAAO,IAAI;AAAA,IAC3B,WAAW,KAAK,mBAAmB,MAAM;AACvC,qBAAe;AAAA,IACjB;AACA,UAAM,MAAM,OAAO,OAAO,OAAO,EAAE,OAAO,aAAa;AACvD,IAAAA,QAAO,iCAAiC;AACxC,UAAM,gBAAgBA,QAAO,kBAAkB;AAC/C,UAAM,YAAYA,QAAO,uBAAuB;AAChD,QAAI;AACJ,QAAI;AACJ,QAAI,cAAc;AAChB,MAAAA,QAAO,iBAAiB;AACxB,oBAAcA,QAAO;AACrB,wBAAkB,UAAU,MAAM,EAAE,OAAO,UAAU,IAAI,CAAC,OAAO,SAAS,EAAE,CAAC;AAAA,IAC/E,OAAO;AACL,oBAAc;AACd,eAAS,CAAC;AACV,wBAAkB,UAAU,MAAM;AAAA,IACpC;AACA,UAAM,aAAa,qBAAqB,KAAK,WAAW,KAAK,UAAU;AACvE,UAAM,MAAM,MAAM,QAAQA,SAAQ,eAAe,KAAK,WAAW,WAAW,KAAK,QAAQ,KAAK,SAAS,YAAY,aAAa,QAAQ,KAAK,SAAS,iBAAiB,KAAK,cAAc,MAAM,IAAI;AACpM,WAAO;AAAA,EACT,UAAE;AACA,IAAAA,QAAO,aAAa;AACpB,sBAAkB,QAAQ,CAAC;AAC3B,sBAAkB,SAAS,CAAC;AAC5B,sBAAkB,gBAAgB,CAAC;AACnC,sBAAkB,iBAAiB,CAAC;AACpC,sBAAkB,MAAM,SAAS;AACjC,sBAAkB,MAAM,SAAS;AACjC,QAAI,iBAAiB,MAAM;AACzB,cAAQ,aAAa;AAAA,IACvB;AAAA,EACF;AACF;AACA,SAAS,2BAA2B,SAAS;AAC3C,QAAM,OAAO,CAAC;AACd,MAAI,mBAAmB,QAAQ;AAC7B,cAAU,CAAC,OAAO;AAAA,EACpB;AACA,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAM,UAAU,QAAQ;AACxB,QAAI,QAAQ,SAAS,GAAG;AACtB,WAAK,KAAK,YAAY,SAAS,CAAC,CAAC;AAAA,IACnC,WAAW,QAAQ,SAAS,GAAG;AAC7B,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF,OAAO;AACL,WAAK,KAAK,OAAO;AAAA,IACnB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,SAAS,YAAY;AAC9C,MAAI,WAAW,MAAM;AACnB;AAAA,EACF;AACA,QAAM,eAAe,CAAC;AACtB,MAAI,sBAAsB,QAAQ;AAChC,iBAAa,KAAK,WAAW,EAAE;AAAA,EACjC,WAAW,MAAM,QAAQ,UAAU,GAAG;AACpC,eAAW,QAAQ,CAAC,OAAO,aAAa,KAAK,GAAG,EAAE,CAAC;AAAA,EACrD,WAAW,cAAc,MAAM;AAC7B,eAAW,QAAQ,YAAY;AAC7B,YAAM,YAAY,WAAW;AAC7B,mBAAa,KAAK,UAAU,EAAE;AAAA,IAChC;AAAA,EACF;AACA,QAAM,mBAAmB,CAAC;AAC1B,MAAI,mBAAmB,QAAQ;AAC7B,QAAI,aAAa,QAAQ,QAAQ,EAAE,MAAM,IAAI;AAC3C,uBAAiB,KAAK,OAAO;AAAA,IAC/B;AAAA,EACF,WAAW,MAAM,QAAQ,OAAO,GAAG;AACjC,YAAQ,QAAQ,CAAC,OAAO;AACtB,UAAI,aAAa,QAAQ,GAAG,EAAE,MAAM,IAAI;AACtC,yBAAiB,KAAK,EAAE;AAAA,MAC1B;AAAA,IACF,CAAC;AAAA,EACH,WAAW,WAAW,MAAM;AAC1B,eAAW,QAAQ,SAAS;AAC1B,YAAM,UAAU,QAAQ;AACxB,UAAI,aAAa,QAAQ,QAAQ,EAAE,MAAM,IAAI;AAC3C,yBAAiB,KAAK,OAAO;AAAA,MAC/B;AAAA,IACF;AAAA,EACF;AACA,mBAAiB,QAAQ,CAAC,OAAO;AAC/B,QAAI,CAAC,GAAG,YAAY;AAClB,SAAG,QAAQ;AAAA,IACb;AAAA,EACF,CAAC;AACH;AAGA,SAAS,aAAa,GAAG;AACvB,SAAO,aAAa;AACtB;AACA,SAAS,YAAY,GAAG;AACtB,SAAO,MAAM,QAAQ,CAAC;AACxB;AACA,SAAS,WAAW,GAAG;AACrB,SAAO,CAAC,aAAa,CAAC,KAAK,CAAC,YAAY,CAAC;AAC3C;AACA,SAAS,qBAAqB,MAAM,OAAO,QAAQ,iBAAiB,MAAM,kBAAkB,IAAI;AAC9F,MAAI,SAAS,QAAQ,MAAM,WAAW,GAAG;AACvC,QAAI,QAAQ,MAAM;AAChB,UAAI,oBAAoB;AACxB,UAAI,YAAY,IAAI,KAAK,KAAK,SAAS,GAAG;AACxC,4BAAoB;AAAA,MACtB,WAAW,WAAW,IAAI,GAAG;AAC3B,mBAAW,OAAO,MAAM;AACtB,cAAI,KAAK,eAAe,GAAG,GAAG;AAC5B,gCAAoB;AACpB;AAAA,UACF;AAAA,QACF;AAAA,MACF,OAAO;AACL,4BAAoB;AAAA,MACtB;AACA,UAAI,mBAAmB;AACrB,cAAM,IAAI,WAAW,6BAA6B,6CAA6C,MAAM;AAAA,MACvG;AAAA,IACF;AACA,WAAO,CAAC;AAAA,EACV;AACA,MAAI,QAAQ,MAAM;AAChB,WAAO,MAAM,IAAI,CAAC,SAAS,IAAI;AAAA,EACjC;AACA,MAAI;AACJ,MAAI,WAAW,IAAI,GAAG;AACpB,WAAO;AACP,aAAS,CAAC;AACV,eAAW,QAAQ,OAAO;AACxB,UAAI,KAAK,SAAS,MAAM;AACtB,cAAM,IAAI,WAAW,yBAAyB,qCAAqC,OAAO;AAAA,MAC5F;AACA,aAAO,KAAK,KAAK,KAAK;AAAA,IACxB;AAAA,EACF,WAAW,YAAY,IAAI,GAAG;AAC5B,WAAO;AACP,QAAI,KAAK,WAAW,MAAM,QAAQ;AAChC,YAAM,IAAI,WAAW,6BAA6B,gIAAgI,MAAM,sEAAsE,MAAM;AAAA,IACtQ;AACA,aAAS;AAAA,EACX,OAAO;AACL,WAAO;AACP,QAAI,MAAM,SAAS,GAAG;AACpB,YAAM,IAAI,WAAW,aAAa,2BAA2B,MAAM,4EAA4E,KAAK,OAAO;AAAA,IAC7J;AACA,aAAS,CAAC,IAAI;AAAA,EAChB;AACA,WAAS,2BAA2B,MAAM;AAC1C,MAAI,UAAU,MAAM;AAClB,aAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,UAAI,OAAO,OAAO,MAAM;AACtB;AAAA,MACF;AACA,YAAM,SAAS,OAAO;AACtB,UAAI,OAAO,MAAM,WAAW,OAAO,IAAI,QAAQ;AAC7C,cAAM,IAAI,WAAW,uBAAuB,6BAA6B,MAAM,eAAe,OAAO,IAAI,iDAAiD,OAAO,OAAO;AAAA,MAC1K;AACA,eAAS,IAAI,GAAG,IAAI,OAAO,IAAI,QAAQ,EAAE,GAAG;AAC1C,YAAI,MAAM,KAAK,CAAC,gBAAgB;AAC9B;AAAA,QACF;AACA,cAAM,MAAM,OAAO,MAAM;AACzB,cAAM,SAAS,OAAO,IAAI;AAC1B,YAAI,UAAU,QAAQ,UAAU,KAAK,QAAQ,QAAQ;AACnD,gBAAM,IAAI,WAAW,GAAG,8EAA8E,OAAO,IAAI,MAAM,GAAG,OAAO,IAAI,MAAM,4BAA4B,OAAO,IAAI,MAAM,GAAG,OAAO,IAAI,MAAM,eAAe,0CAA0C,OAAO,MAAM,iCAAiC,OAAO,MAAM,MAAM,GAAG,OAAO,MAAM,MAAM,qBAAqB,OAAO,SAAS;AAAA,QACnY;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,QAAQ,SAAS,SAAS;AACnD,QAAM,OAAO,QAAQ,OAAO,IAAI,CAAC,WAAW,OAAO,MAAM,EAAE,CAAC;AAC5D,OAAK,KAAK;AACV,QAAM,OAAO,QAAQ,QAAQ,IAAI,CAAC,WAAW,OAAO,MAAM,EAAE,CAAC;AAC7D,OAAK,KAAK;AACV,MAAI,KAAK,SAAS,GAAG;AACnB,UAAM,IAAI,WAAW,mFAAmF,KAAK,UAAU,OAAO,IAAI,CAAC,WAAW,OAAO,KAAK,CAAC,GAAG;AAAA,EAChK;AACA,MAAI,KAAK,SAAS,GAAG;AACnB,UAAM,IAAI,WAAW,oFAAoF,KAAK,UAAU,QAAQ,IAAI,CAAC,WAAW,OAAO,KAAK,CAAC,GAAG;AAAA,EAClK;AACA,MAAI,KAAK,SAAS,KAAK,KAAK,SAAS,KAAK,CAAC,aAAa,YAAY,MAAM,IAAI,GAAG;AAC/E,UAAM,IAAI,WAAW,iFAAiF,KAAK,0BAA0B,KAAK,sBAAsB;AAAA,EAClK;AACF;AACA,SAAS,gCAAgC,SAAS,SAAS,cAAc;AACvE,QAAM,YAAY;AAAA,IAChB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAM,IAAI,QAAQ;AAClB,UAAM,OAAO,QAAQ;AACrB,UAAM,QAAQ,aAAa;AAC3B,QAAI,QAAQ,MAAM;AAChB;AAAA,IACF;AACA,QAAI,SAAS,yBAAyB;AACpC,UAAI,EAAE,MAAM,EAAE,MAAM,SAAS,OAAO,GAAG;AACrC,cAAM,IAAI,WAAW,2CAA2C,EAAE,+JAA+J;AAAA,MACnO;AAAA,IACF;AACA,QAAI,UAAU,QAAQ,IAAI,MAAM,IAAI;AAClC,YAAM,eAAe,EAAE,MAAM,MAAM,CAAC;AACpC,YAAM,cAAc,MAAM,MAAM,CAAC;AACjC,eAAS,IAAI,GAAG,IAAI,aAAa,QAAQ,EAAE,GAAG;AAC5C,cAAM,YAAY,aAAa;AAC/B,cAAM,SAAS,YAAY;AAC3B,YAAI,UAAU,QAAQ,cAAc,QAAQ;AAC1C,gBAAM,IAAI,WAAW,8BAA8B,EAAE,2CAA2C,+FAA+F;AAAA,QACjM;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,eAAe,MAAM,OAAO,QAAQ,iBAAiB,MAAM,kBAAkB,IAAI;AACxF,MAAI;AACJ,MAAI,MAAM,QAAQ,IAAI,GAAG;AACvB,QAAI,KAAK,WAAW,MAAM,QAAQ;AAChC,YAAM,IAAI,WAAW,6BAA6B,oIAAoI,MAAM,qCAAqC,KAAK,oBAAoB;AAAA,IAC5P;AACA,aAAS;AAAA,EACX,OAAO;AACL,QAAI,MAAM,SAAS,GAAG;AACpB,YAAM,IAAI,WAAW,qBAAqB,MAAM,UAAU,kFAAkF,KAAK,UAAU,KAAK,KAAK,IAAI;AAAA,IAC3K;AACA,aAAS,CAAC,IAAI;AAAA,EAChB;AACA,MAAI,UAAU,MAAM;AAClB,aAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,UAAI,OAAO,OAAO,MAAM;AACtB;AAAA,MACF;AACA,YAAM,SAAS,OAAO;AACtB,UAAI,OAAO,MAAM,WAAW,OAAO,IAAI,QAAQ;AAC7C,cAAM,IAAI,WAAW,uBAAuB,6BAA6B,MAAM,eAAe,OAAO,IAAI,iDAAiD,KAAK,UAAU,OAAO,KAAK,GAAG;AAAA,MAC1L;AACA,eAAS,IAAI,GAAG,IAAI,OAAO,IAAI,QAAQ,EAAE,GAAG;AAC1C,YAAI,MAAM,KAAK,CAAC,gBAAgB;AAC9B;AAAA,QACF;AACA,cAAM,MAAM,OAAO,MAAM;AACzB,cAAM,SAAS,OAAO,IAAI;AAC1B,YAAI,UAAU,MAAM;AAClB,cAAI,WAAW,KAAK;AAClB,kBAAM,IAAI,WAAW,uBAAuB,6BAA6B,MAAM,qBAAqB,KAAK,UAAU,OAAO,GAAG,8BAA8B,KAAK,UAAU,OAAO,KAAK,IAAI;AAAA,UAC5L;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,eAAe,SAAS,aAAa;AAC5C,MAAI,WAAW,QAAQ,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AACrE,WAAO,YAAY,IAAI,CAAC,SAAS,CAAC,CAAC;AAAA,EACrC;AACA,MAAI;AACJ,MAAI,OAAO,YAAY,YAAY,OAAO,YAAY,YAAY;AAChE,qBAAiB,CAAC,OAAO;AAAA,EAC3B,WAAW,MAAM,QAAQ,OAAO,KAAK,OAAO,YAAY,UAAU;AAChE,qBAAiB;AAAA,EACnB,OAAO;AACL,UAAM,IAAI,UAAU,kGAAkG,SAAS;AAAA,EACjI;AACA,MAAI,MAAM,QAAQ,cAAc,GAAG;AACjC,WAAO,YAAY,IAAI,CAAC,SAAS,cAAc;AAAA,EACjD,OAAO;AACL,UAAM,gBAAgB,CAAC;AACvB,eAAW,QAAQ,aAAa;AAC9B,UAAI,gBAAgB,eAAe,eAAe,IAAI,IAAI,eAAe,QAAQ,CAAC;AAClF,UAAI,CAAC,MAAM,QAAQ,aAAa,GAAG;AACjC,wBAAgB,CAAC,aAAa;AAAA,MAChC;AACA,oBAAc,KAAK,aAAa;AAAA,IAClC;AACA,WAAO;AAAA,EACT;AACF;AACA,IAAI,2BAA2B;AAC/B,IAAI,cAAc,cAAc,UAAU;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,QAAQ,YAAY,WAAW,UAAU,QAAQ,KAAK;AACpD,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,WAAW,8KAA8K;AAAA,IACrM;AACA,iBAAa,MAAM,YAAY,WAAW,OAAO;AAAA,EACnD;AAAA,EACA,QAAQ,MAAM;AACZ,QAAI,KAAK,QAAQ,MAAM;AACrB,WAAK,OAAO,CAAC;AAAA,IACf;AACA,SAAK,OAAO,KAAK;AACjB,QAAI,OAAO,KAAK,cAAc,UAAU;AACtC,WAAK,aAAa,aAAa,KAAK,SAAS;AAC7C,WAAK,mBAAmB;AAAA,IAC1B,OAAO;AACL,UAAI,EAAE,KAAK,qBAAqB,YAAY;AAC1C,cAAM,IAAI,WAAW,6DAA6D;AAAA,MACpF;AACA,WAAK,aAAa,KAAK;AACvB,WAAK,mBAAmB;AAAA,IAC1B;AACA,QAAI,gBAAgB,CAAC;AACrB,QAAI,CAAC,MAAM,QAAQ,KAAK,IAAI,KAAK,OAAO,KAAK,SAAS,YAAY,OAAO,KAAK,SAAS,YAAY;AACjG,WAAK,OAAO,KAAK;AACjB,iBAAW,QAAQ,KAAK,MAAM;AAC5B,YAAI,KAAK,YAAY,QAAQ,IAAI,MAAM,IAAI;AACzC,gBAAM,IAAI,WAAW,sCAAsC,4CAA4C,KAAK,aAAa;AAAA,QAC3H;AAAA,MACF;AACA,iBAAW,QAAQ,KAAK,aAAa;AACnC,YAAI,KAAK,KAAK,SAAS,MAAM;AAC3B,kBAAQ,KAAK,WAAW,gIAAgI,sBAAsB;AAAA,QAChL;AACA,sBAAc,KAAK,IAAI,KAAK,KAAK,KAAK,CAAC;AAAA,MACzC;AAAA,IACF,WAAW,MAAM,QAAQ,KAAK,IAAI,GAAG;AACnC,UAAI,KAAK,KAAK,WAAW,KAAK,QAAQ,QAAQ;AAC5C,cAAM,IAAI,WAAW,2FAA2F,KAAK,QAAQ,yCAAyC,KAAK,OAAO;AAAA,MACpL;AACA,YAAM,YAAY,KAAK;AACvB,sBAAgB,UAAU,IAAI,CAAC,OAAO,IAAI,EAAE,CAAC;AAAA,IAC/C,OAAO;AACL,YAAM,eAAe,IAAI,KAAK,IAAI;AAClC,WAAK,QAAQ,QAAQ,CAAC,MAAM;AAC1B,sBAAc,KAAK,YAAY;AAAA,MACjC,CAAC;AAAA,IACH;AACA,SAAK,gBAAgB;AACrB,SAAK,kBAAkB,CAAC;AACxB,SAAK,mBAAmB,CAAC;AACzB,SAAK,cAAc,CAAC;AACpB,aAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC/C,YAAM,QAAQ,KAAK,qBAAqB;AACxC,YAAM,OAAO,KAAK,YAAY;AAC9B,WAAK,gBAAgB,KAAK,IAAI;AAC9B,WAAK,iBAAiB,KAAK,KAAK;AAChC,WAAK,YAAY,KAAK,KAAK,cAAc,GAAG;AAAA,IAC9C;AACA,UAAM,oBAAoB,CAAC;AAC3B,SAAK,UAAU,KAAK;AACpB,SAAK,eAAe,CAAC,MAAM;AAC3B,SAAK,iBAAiB,CAAC;AACvB,cAAU,QAAQ,MAAM;AACtB,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC/C,YAAI,kBAAkB,QAAQ,EAAE,MAAM,IAAI;AACxC;AAAA,QACF;AACA,cAAM,eAAe,KAAK,cAAc;AACxC,YAAI,KAAK,QAAQ,SAAS,GAAG;AAC3B,eAAK,eAAe,KAAK,CAAC,cAAc,EAAE,CAAC;AAC3C,eAAK,aAAa,KAAK,KAAK,YAAY,MAAM,OAAO;AAAA,QACvD;AAAA,MACF;AAAA,IACF,CAAC;AACD,UAAM,gBAAgB,eAAe,KAAK,SAAS,KAAK,WAAW;AACnE,UAAM,eAAe,CAAC,aAAa,YAAY,iBAAiB;AAC9D,UAAI,KAAK,YAAY,SAAS,GAAG;AAC/B,qBAAa,KAAK,YAAY,eAAe,MAAM;AAAA,MACrD;AACA,WAAK,aAAa,KAAK,UAAU;AACjC,WAAK,eAAe,KAAK,CAAC,cAAc,WAAW,CAAC;AAAA,IACtD;AACA,cAAU,UAAU,MAAM;AACxB,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC/C,YAAI,kBAAkB,QAAQ,EAAE,MAAM,IAAI;AACxC;AAAA,QACF;AACA,cAAM,gBAAgB,cAAc;AACpC,cAAM,gBAAgB,CAAC,YAAY;AACjC,gBAAM,mBAAmB;AACzB,cAAI;AACJ,cAAI;AACJ,cAAI;AACJ,qBAAW,UAAU,SAAS;AAC5B,gBAAI,OAAO,WAAW,YAAY,CAAC,YAAY,OAAO,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AAClG,oBAAM,cAAc,KAAK,qBAAqB;AAC9C,kBAAI,YAAY,YAAY,SAAS,OAAO,KAAK,KAAK,cAAc,QAAQ,oBAAoB;AAC9F,oBAAI,CAAC,YAAY,KAAK,EAAE,QAAQ,MAAM,MAAM,IAAI;AAC9C,0BAAQ;AAAA,gBACV,WAAW,CAAC,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AACxD,0BAAQ;AAAA,gBACV;AAAA,cACF,WAAW,KAAK,cAAc,QAAQ,+BAA+B;AACnE,oBAAI,CAAC,YAAY,KAAK,EAAE,QAAQ,MAAM,MAAM,IAAI;AAC9C,0BAAQ;AAAA,gBACV,WAAW,CAAC,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AACxD,0BAAQ;AAAA,gBACV;AAAA,cACF,OAAO;AACL,oBAAI,CAAC,YAAY,KAAK,EAAE,QAAQ,MAAM,MAAM,IAAI;AAC9C,0BAAQ;AAAA,gBACV,WAAW,CAAC,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AACxD,0BAAQ;AAAA,gBACV;AAAA,cACF;AACA,kBAAI;AACJ,kBAAI,CAAC,YAAY,KAAK,EAAE,QAAQ,MAAM,MAAM,IAAI;AAC9C,yBAAS;AAAA,cACX,WAAW,CAAC,gBAAgB,IAAI,EAAE,QAAQ,MAAM,MAAM,IAAI;AACxD,yBAAS;AAAA,cACX;AACA,iCAAmB;AACnB,2BAAa,mBAAmB;AAAA,YAClC,OAAO;AACL,oBAAM,WAAW,KAAK,MAAM;AAC5B,iCAAmB;AACnB,2BAAa,mBAAmB,oBAAoB,MAAM;AAAA,YAC5D;AACA,gBAAI;AACJ,sBAAU,YAAY,MAAM;AAC1B,6BAAe;AAAA,YACjB,CAAC;AACD,yBAAa,IAAI,YAAY,YAAY;AAAA,UAC3C;AAAA,QACF;AACA,sBAAc,aAAa;AAAA,MAC7B;AAAA,IACF,CAAC;AACD,SAAK,4BAA4B,KAAK;AAAA,EACxC;AAAA,EACA,mCAAmC;AACjC,QAAI,KAAK,6BAA6B,MAAM;AAC1C;AAAA,IACF;AACA,QAAI,KAAK,iBAAiB,WAAW,KAAK,0BAA0B,QAAQ;AAC1E,cAAQ,KAAK,mJAAmJ;AAAA,IAClK;AAAA,EACF;AAAA,EACA,SAAS,GAAG,GAAG,OAAO,CAAC,GAAG;AACxB,UAAM,YAAY,KAAK,aAAa,OAAO,KAAK,KAAK;AACrD,mBAAe,SAAS;AACxB,UAAM,iBAAiB;AACvB,UAAM,mBAAmB,KAAK,sBAAsB,GAAG,GAAG,gBAAgB,SAAS;AACnF,QAAI;AACF,YAAM,MAAM,iBAAiB,GAAG,OAAO,iBAAiB,EAAE;AAC1D,WAAK,iBAAiB;AACtB,YAAM,IAAI,KAAK;AACf,YAAM,WAAW,KAAK,SAAS,GAAG,KAAK,WAAW,KAAK,SAAS,KAAK,KAAK;AAC1E,aAAO,iBAAiB,QAAQ;AAAA,IAClC,UAAE;AACA,wBAAkB,iBAAiB,IAAI,CAAC;AACxC,wBAAkB,iBAAiB,IAAI,CAAC;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,MAAM,gBAAgB,SAAS,MAAM;AACnC,SAAK,iBAAiB;AACtB,WAAO,gBAAgB,MAAM,SAAS,IAAI;AAAA,EAC5C;AAAA,EACA,gBAAgB,KAAK,WAAW,OAAO,YAAY,SAAS;AAC1D,QAAI;AACJ,QAAI,SAAS,MAAM;AACjB,mBAAa;AACb,UAAI,aAAa,MAAM;AACrB,cAAM,IAAI,WAAW,MAAM,yEAAyE,WAAW;AAAA,MACjH;AAAA,IACF,WAAW,OAAO,MAAM;AACtB,UAAI,MAAM,QAAQ,GAAG,GAAG;AACtB,qBAAa,IAAI,GAAG,MAAM;AAAA,MAC5B,OAAO;AACL,qBAAa,IAAI,MAAM;AAAA,MACzB;AAAA,IACF,OAAO;AACL,YAAM,IAAI,WAAW,yDAAyD,+BAA+B;AAAA,IAC/G;AACA,WAAO;AAAA,EACT;AAAA,EACA,QAAQ,QAAQ,SAAS;AACvB,QAAI,MAAM,QAAQ,OAAO,KAAK,QAAQ,WAAW,GAAG;AAClD,YAAM,IAAI,WAAW,oDAAoD;AAAA,IAC3E;AACA,UAAM,iBAAiB,MAAM,QAAQ,OAAO;AAC5C,UAAM,cAAc,iBAAiB,UAAU,CAAC,OAAO;AACvD,UAAM,wBAAwB,KAAK,wBAAwB,WAAW;AACtE,UAAM,WAAW,IAAI,SAAS;AAC9B,QAAI,kBAAkB,QAAQ;AAC5B,eAAS,CAAC,MAAM;AAAA,IAClB;AACA,QAAI,MAAM,QAAQ,MAAM,GAAG;AACzB,UAAI,OAAO,WAAW,KAAK,OAAO,QAAQ;AACxC,cAAM,IAAI,WAAW,kCAAkC,OAAO,8DAA8D,KAAK,OAAO,UAAU;AAAA,MACpJ;AACA,eAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,iBAAS,IAAI,KAAK,OAAO,KAAK,OAAO,GAAG;AAAA,MAC1C;AAAA,IACF,OAAO;AACL,iBAAW,UAAU,KAAK,QAAQ;AAChC,cAAM,cAAc,OAAO,OAAO;AAClC,YAAI,eAAe,MAAM;AACvB,gBAAM,IAAI,WAAW,8CAA8C,OAAO,MAAM;AAAA,QAClF;AACA,iBAAS,IAAI,QAAQ,WAAW;AAAA,MAClC;AAAA,IACF;AACA,UAAM,iBAAiB,QAAQ,uBAAuB,QAAQ;AAC9D,WAAO,iBAAiB,iBAAiB,eAAe;AAAA,EAC1D;AAAA,EACA,wBAAwB,qBAAqB;AAC3C,UAAM,wBAAwB,aAAa,MAAM,oBAAoB,MAAM;AAC3E,QAAI,mBAAmB,oBAAoB;AAC3C,eAAW,SAAS,KAAK,QAAQ;AAC/B,YAAM,eAAe,MAAM,QAAQ,MAAM,MAAM,IAAI,MAAM,SAAS,CAAC,MAAM,MAAM;AAC/E,YAAM,mBAAmB,aAAa,IAAI,CAAC,WAAW,OAAO,IAAI;AACjE,eAAS,KAAK,GAAG,KAAK,oBAAoB,QAAQ,EAAE,IAAI;AACtD,cAAMpB,SAAQ,iBAAiB,QAAQ,oBAAoB,GAAG;AAC9D,YAAIA,WAAU,IAAI;AAChB,gCAAsB,MAAM,aAAaA;AACzC;AAAA,QACF;AACA,YAAI,qBAAqB,GAAG;AAC1B;AAAA,QACF;AAAA,MACF;AACA,UAAI,qBAAqB,GAAG;AAC1B;AAAA,MACF;AAAA,IACF;AACA,QAAI,mBAAmB,GAAG;AACxB,YAAM,iBAAiB,CAAC;AACxB,4BAAsB,QAAQ,CAAC,SAAS,OAAO;AAC7C,YAAI,WAAW,MAAM;AACnB,yBAAe,KAAK,oBAAoB,GAAG;AAAA,QAC7C;AAAA,MACF,CAAC;AACD,YAAM,IAAI,WAAW,mDAAmD,KAAK,UAAU,cAAc,GAAG;AAAA,IAC1G;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,KAAK,YAAY,IAAI,UAAU,OAAO;AAChD,WAAO,KAAK,MAAM;AAChB,YAAM,aAAa,KAAK,gBAAgB,GAAG;AAC3C,UAAI,SAAS;AACX,cAAM,IAAI,oBAAoB,+CAA+C;AAAA,MAC/E;AACA,YAAM,UAAU,YAAY,YAAY,SAAS;AACjD,YAAM,cAAc,KAAK,QAAQ,IAAI,CAAC,WAAW,CAAC,CAAC;AACnD,eAAS,aAAa,GAAG,aAAa,QAAQ,QAAQ,EAAE,YAAY;AAClE,cAAM,YAAY,KAAK,MAAM;AAC3B,gBAAM,aAAa,QAAQ,YAAY;AACvC,gBAAM,WAAW,QAAQ,YAAY;AACrC,gBAAM,WAAW,YAAY,KAAK,YAAY,QAAQ;AACtD,gBAAM,QAAQ,CAAC;AACf,cAAI,MAAM,QAAQ,QAAQ,GAAG;AAC3B,qBAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,EAAE,IAAI;AAC3C,oBAAM,KAAK,EAAE,KAAK,KAAK,OAAO,KAAK,OAAO,SAAS,IAAI,CAAC;AAAA,YAC1D;AAAA,UACF,OAAO;AACL,kBAAM,KAAK,EAAE,KAAK,KAAK,OAAO,IAAI,OAAO,SAAS,CAAC;AAAA,UACrD;AACA,gBAAM,WAAW,IAAI,SAAS,KAAK;AACnC,iBAAO,QAAQ,KAAK,SAAS,QAAQ;AAAA,QACvC,CAAC;AACD,kBAAU,QAAQ,CAAC,UAAU,OAAO,YAAY,IAAI,KAAK,QAAQ,CAAC;AAAA,MACpE;AACA,aAAO,iBAAiB,YAAY,IAAI,CAAC,aAAa,OAAO,UAAU,CAAC,CAAC,CAAC;AAAA,IAC5E,CAAC;AAAA,EACH;AAAA,EACA,QAAQ,GAAG,OAAO,CAAC,GAAG;AACpB,UAAM,kBAAkB,2BAA2B,CAAC;AACpD,mBAAe,iBAAiB,KAAK,YAAY,KAAK,iBAAiB,KAAK;AAC5E,QAAI;AACF,YAAM,YAAY,KAAK,aAAa,OAAO,KAAK,KAAK;AACrD,qBAAe,SAAS;AACxB,aAAO,KAAK,YAAY,iBAAiB,SAAS;AAAA,IACpD,UAAE;AACA,wBAAkB,iBAAiB,CAAC;AAAA,IACtC;AAAA,EACF;AAAA,EACA,eAAe,GAAG;AAChB,mBAAe,GAAG,KAAK,YAAY,KAAK,iBAAiB,IAAI;AAC7D,UAAM,aAAa,MAAM,QAAQ,CAAC,IAAI,EAAE,KAAK,GAAG,MAAM;AACtD,WAAO,KAAK,YAAY,GAAG,SAAS;AAAA,EACtC;AAAA,EACA,sBAAsB,GAAG,GAAG,iBAAiB,MAAM,WAAW;AAC5D,QAAI,KAAK,cAAc,MAAM;AAC3B,YAAM,IAAI,aAAa,8FAA8F;AAAA,IACvH;AACA,UAAM,eAAe,CAAC;AACtB,aAAS,KAAK,GAAG,KAAK,KAAK,iBAAiB,QAAQ,EAAE,IAAI;AACxD,YAAM,cAAc,KAAK,iBAAiB;AAC1C,YAAM,SAAS,KAAK,YAAY;AAChC,UAAI,WAAW,+BAA+B;AAC5C,qBAAa,KAAK,YAAY,MAAM,GAAG,YAAY,SAAS,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC;AAAA,MAC5E,OAAO;AACL,qBAAa,KAAK,WAAW;AAAA,MAC/B;AAAA,IACF;AACA,QAAI,qBAAqB,GAAG,KAAK,gBAAgB,KAAK,iBAAiB,OAAO,OAAO;AACrF,QAAI,qBAAqB,GAAG,KAAK,iBAAiB,cAAc,OAAO,QAAQ;AAC/E,sBAAkB,GAAG,GAAG,IAAI;AAC5B,oCAAgC,GAAG,KAAK,aAAa,KAAK,gBAAgB;AAC1E,QAAI,KAAK,YAAY,aAAa,QAAQ,YAAY,GAAG;AACvD,UAAI,EAAE,GAAG,MAAM,KAAK,cAAc,GAAG;AACnC,cAAM,IAAI,WAAW,mHAAmH,qBAAqB,EAAE,GAAG,MAAM,eAAe;AAAA,MACzL;AAAA,IACF;AACA,WAAO,CAAC,GAAG,CAAC;AAAA,EACd;AAAA,EACA,MAAM,oBAAoB,GAAG,GAAG,cAAc,aAAa,iBAAiB,MAAM,WAAW;AAC3F,UAAM,CAAC,YAAY,UAAU,IAAI,KAAK,sBAAsB,GAAG,GAAG,gBAAgB,SAAS;AAC3F,QAAI,gBAAgB,MAAM;AACxB,YAAM,IAAI,MAAM,qCAAqC;AAAA,IACvD;AACA,QAAI,wBAAwB;AAC5B,QAAI,eAAe,MAAM;AACvB,YAAM,eAAe,wBAAwB,aAAa,KAAK,WAAW;AAC1E,8BAAwB,CAAC;AACzB,eAAS,KAAK,GAAG,KAAK,aAAa,QAAQ,EAAE,IAAI;AAC/C,8BAAsB,KAAK,MAAM,mBAAmB,WAAW,KAAK,MAAM,aAAa,GAAG,CAAC;AAAA,MAC7F;AAAA,IACF;AACA,WAAO,CAAC,YAAY,YAAY,qBAAqB;AAAA,EACvD;AAAA,EACA,SAAS,GAAG,KAAK,WAAW,UAAU,GAAG,OAAO;AAC9C,WAAO,KAAK,MAAM;AAChB,YAAM,aAAa,KAAK,gBAAgB,KAAK,WAAW,OAAO,OAAO;AACtE,YAAM,OAAO,CAAC;AACd,UAAI,UAAU,GAAG;AACf,cAAM,IAAI,oBAAoB,sCAAsC;AAAA,MACtE;AACA,UAAI,SAAS,MAAM;AACjB,cAAM,IAAI,oBAAoB,iDAAiD;AAAA,MACjF,OAAO;AACL,cAAM,UAAU,YAAY,YAAY,SAAS;AACjD,cAAM,aAAa,SAAS,OAAO,GAAG,UAAU,CAAC;AACjD,iBAAS,aAAa,GAAG,aAAa,QAAQ,QAAQ,EAAE,YAAY;AAClE,gBAAM,aAAa,QAAQ,YAAY;AACvC,gBAAM,WAAW,QAAQ,YAAY;AACrC,gBAAM,WAAW,oBAAoB,YAAY,YAAY,WAAW,UAAU;AAClF,gBAAM,WAAW,qBAAqB,KAAK,QAAQ;AACnD,gBAAM,YAAY,EAAE,QAAQ;AAC5B,cAAI,eAAe,GAAG;AACpB,qBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,mBAAK,KAAK,OAAO,CAAC,CAAC;AAAA,YACrB;AAAA,UACF;AACA,mBAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,kBAAM,WAAW,UAAU;AAC3B,iBAAK,MAAM,KAAK,KAAK,KAAK,IAAI,WAAW,YAAY,QAAQ,CAAC;AAAA,UAChE;AAAA,QACF;AACA,iBAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,eAAK,MAAM,IAAI,KAAK,KAAK,UAAU;AAAA,QACrC;AAAA,MACF;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB;AACvB,UAAM,YAAY,KAAK;AACvB,UAAM,mBAAmB,CAAC;AAC1B,aAAS,KAAK,GAAG,KAAK,UAAU,QAAQ,EAAE,IAAI;AAC5C,YAAM,QAAQ,UAAU;AACxB,UAAI,WAAW;AACf,UAAI,MAAM,WAAW,KAAK,IAAI,GAAG;AAC/B,cAAM,WAAW,MAAM,UAAU,MAAM,GAAG,EAAE,GAAG,KAAK;AACpD,oBAAY,IAAI;AAAA,MAClB;AACA,uBAAiB,KAAK,QAAQ;AAAA,IAChC;AACA,WAAO;AAAA,EACT;AAAA,EACA,oBAAoB;AAClB,WAAO,CAAC,SAAS;AACf,YAAM,aAAa,CAAC;AACpB,YAAM,SAAS,KAAK,MAAM,GAAG,KAAK,OAAO,MAAM;AAC/C,YAAM,UAAU,KAAK,MAAM,KAAK,OAAO,QAAQ,KAAK,OAAO,SAAS,KAAK,QAAQ,MAAM;AACvF,YAAM,gBAAgB,KAAK,MAAM,KAAK,OAAO,SAAS,KAAK,QAAQ,QAAQ,KAAK,OAAO,SAAS,KAAK,QAAQ,SAAS,CAAC;AACvH,YAAM,gBAAgB,CAAC;AACvB,YAAM,oBAAoB,MAAM;AAC9B,cAAM,QAAQ,CAAC;AACf,iBAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,gBAAM,KAAK,EAAE,KAAK,KAAK,OAAO,KAAK,OAAO,OAAO,IAAI,CAAC;AAAA,QACxD;AACA,cAAM,WAAW,IAAI,SAAS,KAAK;AACnC,cAAM,UAAU,QAAQ,KAAK,SAAS,UAAU,EAAE,YAAY,KAAK,CAAC;AACpE,YAAI;AACJ,iBAAS,KAAK,GAAG,KAAK,KAAK,cAAc,QAAQ,EAAE,IAAI;AACrD,gBAAM,eAAe,KAAK,cAAc;AACxC,cAAI,OAAO,aAAa,QAAQ,KAAK,QAAQ,GAAG;AAChD,cAAI,cAAc,OAAO,MAAM;AAC7B,mBAAO,qBAAqB,MAAM,cAAc,GAAG;AAAA,UACrD;AACA,gBAAM,WAAW,KAAK,IAAI;AAC1B,qBAAW,KAAK,QAAQ;AACxB,cAAI,OAAO,GAAG;AACZ,wBAAY;AAAA,UACd,OAAO;AACL,wBAAY,KAAK,WAAW,IAAI;AAAA,UAClC;AAAA,QACF;AACA,iBAAS,KAAK,GAAG,KAAK,KAAK,eAAe,QAAQ,EAAE,IAAI;AACtD,cAAI;AACJ,cAAI,KAAK,QAAQ,SAAS,KAAK,KAAK,KAAK,QAAQ,QAAQ;AACvD,6BAAiB,WAAW;AAAA,UAC9B,OAAO;AACL,kBAAM,SAAS,KAAK,eAAe,IAAI;AACvC,kBAAM,cAAc,KAAK,eAAe,IAAI;AAC5C,6BAAiB,KAAK,OAAO,QAAQ,cAAc,QAAQ,YAAY,CAAC;AAAA,UAC1E;AACA,eAAK,cAAc;AACnB,wBAAc,KAAK,cAAc;AAAA,QACnC;AACA,oBAAY,KAAK,SAAS;AAC1B,aAAK,gBAAgB,EAAE,QAAQ,CAAC,oBAAoB;AAClD,sBAAY,KAAK,WAAW,eAAe;AAAA,QAC7C,CAAC;AACD,eAAO;AAAA,MACT;AACA,YAAM,YAAY,KAAK,0BAA0B,IAAI,CAAC,UAAU,MAAM,KAAK,CAAC;AAC5E,YAAM,aAAa;AACnB,YAAM,iBAAiB,KAAK,WAAW,SAAS,mBAAmB,YAAY,SAAS;AACxF,aAAO,CAAC,cAAc,EAAE,OAAO,aAAa;AAAA,IAC9C;AAAA,EACF;AAAA,EACA,mBAAmB;AACjB,SAAK,eAAe,CAAC,SAAS;AAC5B,aAAO,KAAK,MAAM;AAChB,cAAM,aAAa,CAAC;AACpB,YAAI;AACJ,cAAM,SAAS,KAAK,MAAM,GAAG,KAAK,OAAO,MAAM;AAC/C,cAAM,UAAU,KAAK,MAAM,KAAK,OAAO,QAAQ,KAAK,OAAO,SAAS,KAAK,QAAQ,MAAM;AACvF,cAAM,QAAQ,CAAC;AACf,iBAAS,KAAK,GAAG,KAAK,KAAK,OAAO,QAAQ,EAAE,IAAI;AAC9C,gBAAM,KAAK,EAAE,KAAK,KAAK,OAAO,KAAK,OAAO,OAAO,IAAI,CAAC;AAAA,QACxD;AACA,cAAM,WAAW,IAAI,SAAS,KAAK;AACnC,cAAM,UAAU,QAAQ,KAAK,SAAS,QAAQ;AAC9C,iBAAS,KAAK,GAAG,KAAK,KAAK,cAAc,QAAQ,EAAE,IAAI;AACrD,gBAAM,eAAe,KAAK,cAAc;AACxC,gBAAM,OAAO,KAAK,aAAa,QAAQ,KAAK,QAAQ,GAAG,CAAC;AACxD,cAAI,OAAO,GAAG;AACZ,wBAAY;AAAA,UACd,OAAO;AACL,wBAAY,KAAK,WAAW,IAAI;AAAA,UAClC;AACA,qBAAW,KAAK,SAAS;AAAA,QAC3B;AACA,iBAAS,KAAK,GAAG,KAAK,KAAK,eAAe,QAAQ,EAAE,IAAI;AACtD,gBAAM,SAAS,KAAK,eAAe,IAAI;AACvC,gBAAM,cAAc,KAAK,eAAe,IAAI;AAC5C,gBAAM,aAAa,KAAK,OAAO,QAAQ,cAAc,QAAQ,YAAY,CAAC;AAC1E,qBAAW,KAAK,UAAU;AAAA,QAC5B;AACA,eAAO;AAAA,MACT,CAAC;AAAA,IACH;AAAA,EACF;AAAA,EACA,MAAM,IAAI,GAAG,GAAG,OAAO,CAAC,GAAG;AACzB,WAAO,WAAW,MAAM,GAAG,GAAG,IAAI;AAAA,EACpC;AAAA,EACA,MAAM,WAAW,SAAS,MAAM;AAC9B,WAAO,WAAW,MAAM,SAAS,IAAI;AAAA,EACvC;AAAA,EACA,MAAM,aAAa,GAAG,GAAG;AACvB,UAAM,iBAAiB,MAAM,KAAK,oBAAoB,GAAG,CAAC;AAC1D,UAAM,SAAS,eAAe;AAC9B,UAAM,UAAU,eAAe;AAC/B,UAAM,gBAAgB,KAAK,kBAAkB;AAC7C,UAAM,UAAU,cAAc,OAAO,OAAO,OAAO,CAAC;AACpD,UAAM,aAAa,CAAC;AACpB,eAAW,QAAQ,SAAS;AAC1B,YAAM,IAAI,MAAM,KAAK,KAAK;AAC1B,iBAAW,KAAK,EAAE,EAAE;AAAA,IACtB;AACA,YAAQ,OAAO;AACf,sBAAkB,eAAe,IAAI,CAAC;AACtC,sBAAkB,eAAe,IAAI,CAAC;AACtC,WAAO,iBAAiB,UAAU;AAAA,EACpC;AAAA,EACA,gBAAgBK,SAAQ;AACtB,UAAM,eAAe,CAAC;AACtB,UAAM,gBAAgBA,WAAU,QAAQA,QAAO;AAC/C,UAAM,UAAU,gBAAgB,KAAK,mBAAmB,KAAK;AAC7D,UAAM,eAAe,KAAK,WAAW,aAAa;AAClD,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAI,iBAAiB,CAAC,QAAQ,IAAI,WAAW;AAC3C;AAAA,MACF;AACA,mBAAa,KAAK,EAAE,MAAM,QAAQ,IAAI,cAAc,QAAQ,aAAa,IAAI,CAAC;AAAA,IAChF;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,aAAa,MAAM;AACrB,SAAK,gBAAgB;AAAA,EACvB;AAAA,EACA,IAAI,eAAe;AACjB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,QAAI,KAAK,eAAe,WAAW;AACjC,WAAK,aAAa;AAClB,WAAK,mBAAmB;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,UAAU;AACR,UAAM,SAAS,MAAM,QAAQ;AAC7B,QAAI,OAAO,yBAAyB,KAAK,KAAK,aAAa,QAAQ,KAAK,kBAAkB;AACxF,YAAM,mCAAmC,OAAO,EAAE;AAClD,WAAK,WAAW,QAAQ;AACxB,aAAO,wBAAwB,mCAAmC,OAAO,EAAE;AAAA,IAC7E;AACA,WAAO;AAAA,EACT;AAAA,EACA,qBAAqB;AACnB,QAAI;AACJ,QAAI,OAAO,KAAK,SAAS,UAAU;AACjC,kBAAY,YAAY,KAAK,IAAI;AAAA,IACnC,WAAW,MAAM,QAAQ,KAAK,IAAI,GAAG;AACnC,iBAAW,QAAQ,KAAK,MAAM;AAC5B,YAAI,OAAO,SAAS,UAAU;AAC5B,gBAAM,IAAI,MAAM,oDAAoD;AAAA,QACtE;AAAA,MACF;AACA,kBAAY,KAAK,KAAK,IAAI,CAAC,SAAS,YAAY,IAAI,CAAC;AAAA,IACvD,OAAO;AACL,YAAM,cAAc,OAAO,KAAK,KAAK,IAAI;AACzC,kBAAY,CAAC;AACb,YAAM,UAAU,KAAK;AACrB,iBAAW,cAAc,aAAa;AACpC,YAAI,OAAO,QAAQ,gBAAgB,UAAU;AAC3C,oBAAU,cAAc,YAAY,QAAQ,WAAW;AAAA,QACzD,OAAO;AACL,gBAAM,IAAI,MAAM,oDAAoD;AAAA,QACtE;AAAA,MACF;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,uBAAuB;AACrB,QAAI,OAAO,KAAK,YAAY,YAAY,OAAO,KAAK,YAAY,YAAY;AAC1E,aAAO,CAAC,YAAY,oBAAoB,KAAK,OAAO,CAAC,CAAC;AAAA,IACxD,WAAW,MAAM,QAAQ,KAAK,OAAO,GAAG;AACtC,aAAO,KAAK,QAAQ,IAAI,CAAC,WAAW,YAAY,oBAAoB,MAAM,CAAC,CAAC;AAAA,IAC9E,OAAO;AACL,YAAM,qBAAqB,CAAC;AAC5B,iBAAW,OAAO,KAAK,SAAS;AAC9B,2BAAmB,OAAO,YAAY,oBAAoB,KAAK,QAAQ,IAAI,CAAC;AAAA,MAC9E;AACA,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,oBAAoB;AAClB,WAAO;AAAA,MACL,MAAM,KAAK,mBAAmB;AAAA,MAC9B,SAAS,KAAK,qBAAqB;AAAA,MACnC,kBAAkB;AAAA,QAChB,YAAY,KAAK,UAAU,aAAa;AAAA,QACxC,QAAQ,KAAK,UAAU,UAAU;AAAA,MACnC;AAAA,IACF;AAAA,EACF;AAAA,EACA,mBAAmB,gBAAgB;AACjC,QAAI,eAAe,oBAAoB,MAAM;AAC3C,YAAM,IAAI,MAAM,8CAA8C;AAAA,IAChE;AACA,QAAI,eAAe,gBAAgB,MAAM;AACvC,YAAM,IAAI,MAAM,4CAA4C;AAAA,IAC9D;AACA,QAAI,eAAe,sBAAsB,MAAM;AAC7C,YAAM,IAAI,MAAM,kDAAkD;AAAA,IACpE;AACA,UAAM,WAAW,oBAAoB,eAAe,gBAAgB;AACpE,UAAM,YAAY,YAAY,QAAQ;AACtC,QAAI;AACJ,QAAI,OAAO,eAAe,SAAS,UAAU;AAC3C,aAAO,YAAY,eAAe,IAAI;AAAA,IACxC,WAAW,MAAM,QAAQ,eAAe,IAAI,GAAG;AAC7C,aAAO,eAAe,KAAK,IAAI,CAAC,cAAc,YAAY,SAAS,CAAC;AAAA,IACtE,WAAW,eAAe,QAAQ,MAAM;AACtC,aAAO,CAAC;AACR,iBAAW,OAAO,eAAe,MAAM;AACrC,aAAK,OAAO,YAAY,eAAe,KAAK,IAAI;AAAA,MAClD;AAAA,IACF;AACA,QAAI;AACJ,QAAI,MAAM,QAAQ,eAAe,OAAO,GAAG;AACzC,gBAAU,eAAe,QAAQ,IAAI,CAAC,WAAW,YAAY,MAAM,CAAC;AAAA,IACtE,WAAW,eAAe,WAAW,MAAM;AACzC,gBAAU,CAAC;AACX,iBAAW,OAAO,eAAe,SAAS;AACxC,gBAAQ,OAAO,YAAY,eAAe,QAAQ,IAAI;AAAA,MACxD;AAAA,IACF;AACA,SAAK,QAAQ,EAAE,MAAM,SAAS,UAAU,CAAC;AAAA,EAC3C;AAAA,EACA,MAAM,KAAK,cAAcA,SAAQ;AAC/B,QAAI,OAAO,iBAAiB,UAAU;AACpC,YAAM,WAAW,WAAW,gBAAgB,YAAY;AACxD,UAAI,SAAS,WAAW,GAAG;AACzB,cAAM,IAAI,WAAW,0CAA0C,eAAe;AAAA,MAChF,WAAW,SAAS,SAAS,GAAG;AAC9B,cAAM,IAAI,WAAW,wBAAwB,SAAS,kCAAkC,eAAe;AAAA,MACzG;AACA,qBAAe,SAAS;AAAA,IAC1B;AACA,QAAI,aAAa,QAAQ,MAAM;AAC7B,YAAM,IAAI,WAAW,8GAA8G;AAAA,IACrI;AACA,UAAM,qBAAqB,MAAM,WAAW,cAAc,KAAK,gBAAgBA,OAAM,CAAC;AACtF,UAAM,eAAe;AACrB,UAAM,YAAY;AAClB,UAAM,cAAc,KAAK,OAAO,WAAW,YAAY;AACvD,UAAM,iBAAiB;AAAA,MACrB,eAAe;AAAA,MACf,QAAQ;AAAA,MACR,aAAa,8BAA8B;AAAA,MAC3C,aAAa;AAAA,IACf;AACA,UAAM,mBAAmBA,WAAU,OAAO,QAAQA,QAAO;AACzD,QAAI,oBAAoB,KAAK,aAAa,MAAM;AAC9C,qBAAe,iBAAiB,KAAK,kBAAkB;AACvD,YAAM,aAAa;AACnB,YAAM,EAAE,MAAM,qBAAqB,OAAO,qBAAqB,IAAI,MAAM,WAAW,cAAc,MAAM,KAAK,UAAU,WAAW,GAAG,UAAU;AAC/I,yBAAmB,MAAM,KAAK,GAAG,oBAAoB;AACrD,yBAAmB,OAAO,WAAW,wBAAwB,CAAC,mBAAmB,MAAM,mBAAmB,CAAC;AAAA,IAC7G;AACA,QAAI,KAAK,uBAAuB,MAAM;AACpC,YAAM,YAAY;AAClB,+BAAyB,KAAK,qBAAqB,KAAK,MAAM,SAAS;AACvE,qBAAe,sBAAsB,KAAK;AAAA,IAC5C;AACA,mBAAe,aAAa,mBAAmB;AAC/C,mBAAe,cAAc,mBAAmB;AAChD,WAAO,aAAa,KAAK,cAAc;AAAA,EACzC;AAAA,EACA,uBAAuB,qBAAqB;AAC1C,6BAAyB,qBAAqB,KAAK,IAAI;AACvD,SAAK,sBAAsB;AAAA,EAC7B;AAAA,EACA,yBAAyB;AACvB,WAAO,KAAK;AAAA,EACd;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,aAAa,cAAc,YAAY;AAC3C;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAG9C,eAAe,cAAc,uBAAuB,eAAe;AACjE,MAAI,EAAE,mBAAmB,wBAAwB;AAC/C,4BAAwB,EAAE,eAAe,sBAAsB;AAAA,EACjE;AACA,0BAAwB;AACxB,MAAI,gBAAgB,sBAAsB;AAC1C,MAAI,cAAc,mBAAmB,MAAM;AACzC,oBAAgB,cAAc;AAAA,EAChC;AACA,QAAM,WAAW,oBAAoB,aAAa;AAClD,QAAMe,UAAS,YAAY,UAAU,aAAa;AAClD,MAAI,sBAAsB,mBAAmB,MAAM;AACjD,UAAM,eAAe,MAAM,WAAW,YAAY,sBAAsB,iBAAiB,sBAAsB,YAAYA,QAAO,QAAQ,IAAI,CAAC,WAAW,OAAO,YAAY,CAAC;AAC9K,UAAM,qBAAqB,CAAC;AAC5B,eAAW,UAAUA,QAAO,SAAS;AACnC,yBAAmB,OAAO,gBAAgB,aAAa,OAAO;AAAA,IAChE;AACA,IAAAA,QAAO,YAAY,kBAAkB;AACrC,YAAQ,YAAY;AAAA,EACtB;AACA,SAAOA;AACT;AACA,eAAe,wBAAwB,iBAAiBxB,UAAS;AAC/D,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU,CAAC;AAAA,EACb;AACA,MAAI,OAAO,oBAAoB,UAAU;AACvC,UAAM,WAAW,WAAW,gBAAgB,iBAAiBA,QAAO;AACpE,QAAI,SAAS,WAAW,GAAG;AACzB,eAAS,KAAK,WAAW,mBAAmB,iBAAiBA,QAAO,CAAC;AAAA,IACvE,WAAW,SAAS,SAAS,GAAG;AAC9B,YAAM,IAAI,WAAW,wBAAwB,SAAS,kCAAkC,kBAAkB;AAAA,IAC5G;AACA,sBAAkB,SAAS;AAAA,EAC7B;AACA,SAAO,6BAA6B,iBAAiB,QAAQA,QAAO;AACtE;AACA,eAAe,6BAA6B,SAAS,eAAeA,UAAS;AAC3E,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU,CAAC;AAAA,EACb;AACA,MAAI,QAAQ,QAAQ,MAAM;AACxB,UAAM,IAAI,WAAW,+GAA+G;AAAA,EACtI;AACA,QAAM,YAAY,MAAM,QAAQ,KAAK;AACrC,MAAI,gBAAgB,UAAU;AAC9B,MAAI,cAAc,mBAAmB,MAAM;AACzC,oBAAgB,cAAc;AAAA,EAChC;AACA,QAAM,SAASA,SAAQ,UAAU,OAAO,OAAOA,SAAQ;AACvD,QAAM,iBAAiB,UAAU,cAAc,QAAQ,UAAU,eAAe,QAAQ;AACxF,QAAMwB,UAAS,YAAY,oBAAoB,aAAa,GAAG,eAAe,cAAc;AAC5F,QAAM,iBAAiB,UAAU;AACjC,MAAI,kBAAkB,MAAM;AAC1B,IAAAA,QAAO,mBAAmB,cAAc;AAAA,EAC1C;AACA,MAAI,UAAU,uBAAuB,MAAM;AACzC,IAAAA,QAAO,uBAAuB,UAAU,mBAAmB;AAAA,EAC7D;AACA,MAAI,UAAU,cAAc,MAAM;AAChC,QAAI,UAAU,eAAe,MAAM;AACjC,YAAM,IAAI,WAAW,gHAAgH;AAAA,IACvI;AACA,UAAM,EAAE,cAAc,iBAAiB,IAAI,+BAA+B,UAAU,YAAY,UAAU,WAAW;AACrH,IAAAA,QAAO,YAAY,cAAc,MAAM;AACvC,QAAIA,QAAO,aAAa,QAAQ,iBAAiB,SAAS,GAAG;AAC3D,YAAMA,QAAO,UAAU,WAAW,gBAAgB;AAAA,IACpD;AACA,YAAQ,YAAY;AACpB,YAAQ,iBAAiB,IAAI,CAAC,MAAM,EAAE,MAAM,CAAC;AAAA,EAC/C;AACA,SAAOA;AACT;AACA,SAAS,+BAA+B,SAAS,OAAO;AACtD,QAAM,cAAc,WAAW,cAAc,SAAS,KAAK;AAC3D,QAAM,eAAe,CAAC;AACtB,QAAM,mBAAmB,CAAC;AAC1B,QAAM,QAAQ,CAAC,SAAS;AACtB,QAAI,KAAK,UAAU,aAAa;AAC9B,uBAAiB,KAAK,EAAE,MAAM,KAAK,MAAM,QAAQ,YAAY,KAAK,MAAM,CAAC;AAAA,IAC3E,OAAO;AACL,mBAAa,KAAK,QAAQ,YAAY,KAAK;AAAA,IAC7C;AAAA,EACF,CAAC;AACD,SAAO,EAAE,cAAc,iBAAiB;AAC1C;AACA,IAAI,aAAa,cAAc,YAAY;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM,EAAE,QAAQ,CAAC,GAAG,SAAS,CAAC,EAAE,CAAC;AACjC,WAAO,QAAQ,CAAC;AAChB,SAAK,YAAY;AACjB,SAAK,QAAQ;AACb,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,OAAO,aAAa;AAChE,QAAI,KAAK,UAAU,MAAM;AACvB,iBAAW,SAAS,KAAK,QAAQ;AAC/B,aAAK,IAAI,KAAK;AAAA,MAChB;AAAA,IACF;AAAA,EACF;AAAA,EACA,WAAW,OAAO;AAChB,UAAM,QAAQ,MAAM,aAAa,GAAG,cAAc,GAAG;AACrD,QAAI,MAAM,KAAK,CAAC,MAAM,IAAI,CAAC,GAAG;AAC5B,YAAM,IAAI,WAAW,kDAAkD,MAAM,0BAA0B,MAAM,aAAa,GAAG,aAAa,GAAG,QAAQ;AAAA,IACvJ;AAAA,EACF;AAAA,EACA,IAAI,OAAO;AACT,UAAM,uBAAuB,iBAAiB,cAAc,iBAAiB;AAC7E,QAAI;AACJ,QAAI,sBAAsB;AACxB,mBAAa;AACb,UAAI,WAAW,QAAQ,WAAW,GAAG;AACnC,cAAM,IAAI,WAAW,uHAAuH;AAAA,MAC9I;AACA,UAAI,WAAW,OAAO,WAAW,GAAG;AAClC,cAAM,IAAI,WAAW,qHAAqH;AAAA,MAC5I;AAAA,IACF;AACA,QAAI,KAAK,QAAQ,WAAW,GAAG;AAC7B,UAAI,MAAM,aAAa,WAAW,GAAG;AACnC,YAAI,MAAM,mBAAmB,MAAM;AACjC,gBAAM,IAAI,WAAW,+FAA+F;AAAA,QACtH;AACA,cAAM,IAAI,MAAM;AAAA,UACd,YAAY,MAAM;AAAA,UAClB,OAAO,MAAM;AAAA,UACb,MAAM,MAAM,OAAO;AAAA,QACrB,CAAC;AACD,cAAM,MAAM,CAAC;AAAA,MACf;AACA,UAAI,sBAAsB;AACxB,aAAK,UAAU,WAAW;AAC1B,aAAK,SAAS,WAAW;AAAA,MAC3B,OAAO;AACL,YAAI,MAAM,aAAa,WAAW,GAAG;AACnC,gBAAM,IAAI,WAAW,gHAAgH,MAAM,kBAAkB,MAAM,aAAa,0CAA0C;AAAA,QAC5N;AACA,YAAI,MAAM,aAAa,GAAG,cAAc,WAAW,GAAG;AACpD,gBAAM,IAAI,WAAW,uHAAuH;AAAA,QAC9I;AACA,aAAK,WAAW,KAAK;AACrB,aAAK,UAAU,CAAC,MAAM,aAAa,GAAG,cAAc,EAAE;AACtD,aAAK,SAAS,gBAAgB,KAAK,QAAQ,EAAE;AAAA,MAC/C;AACA,WAAK,eAAe,CAAC;AACrB,UAAI,KAAK;AAAA,QACP,eAAe;AAAA,QACf,eAAe,CAAC;AAAA,QAChB,aAAa,CAAC;AAAA,QACd,eAAe,CAAC;AAAA,QAChB,cAAc,KAAK;AAAA,QACnB,eAAe,KAAK;AAAA,QACpB,YAAY,aAAa,MAAM,KAAK,OAAO,MAAM;AAAA,QACjD,aAAa,CAAC,IAAI;AAAA,QAClB,aAAa,KAAK,OAAO,IAAI,CAAC,MAAM,EAAE,KAAK;AAAA,QAC3C,cAAc,KAAK,QAAQ,GAAG;AAAA,MAChC,CAAC;AAAA,IACH,OAAO;AACL,YAAM,eAAe,MAAM,MAAM,KAAK,QAAQ,EAAE;AAChD,UAAI,MAAM,QAAQ,YAAY,GAAG;AAC/B,cAAM,IAAI,UAAU,uHAAuH;AAAA,MAC7I;AACA,WAAK,WAAW,KAAK;AACrB,WAAK,UAAU,CAAC,YAAY;AAC5B,WAAK,aAAa,GAAG,gBAAgB,KAAK;AAC1C,WAAK,aAAa,GAAG,eAAe,CAAC,KAAK,QAAQ,GAAG,KAAK;AAAA,IAC5D;AACA,SAAK,OAAO,KAAK,KAAK;AACtB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,MAAM;AACJ,QAAI,KAAK,OAAO,WAAW,GAAG;AAC5B,YAAM,IAAI,UAAU,mCAAmC;AAAA,IACzD;AACA,SAAK,OAAO,IAAI;AAChB,QAAI,KAAK,OAAO,WAAW,GAAG;AAC5B,WAAK,UAAU,CAAC;AAChB,WAAK,eAAe,CAAC;AACrB,WAAK,gBAAgB,CAAC;AAAA,IACxB,OAAO;AACL,YAAM,iBAAiB,KAAK,OAAO,SAAS;AAC5C,WAAK,OAAO,gBAAgB,gBAAgB,CAAC;AAC7C,WAAK,UAAU,CAAC,KAAK,OAAO,gBAAgB,MAAM;AAClD,WAAK,aAAa,GAAG,gBAAgB,KAAK;AAC1C,WAAK,aAAa,GAAG,eAAe,CAAC,KAAK,QAAQ,GAAG,KAAK;AAAA,IAC5D;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM;AAAA,IACb;AACA,WAAO,KAAK,MAAM,KAAK,QAAQ,MAAM;AAAA,EACvC;AAAA,EACA,MAAM,YAAY;AAChB,uBAAmB,UAAU;AAC7B,QAAI,KAAK,OAAO,WAAW,KAAK,KAAK,QAAQ,WAAW,GAAG;AACzD,YAAM,IAAI,UAAU,0EAA0E;AAAA,IAChG;AACA,SAAK,QAAQ,IAAI,YAAY;AAAA,MAC3B,QAAQ,KAAK;AAAA,MACb,SAAS,KAAK,QAAQ;AAAA,MACtB,MAAM,KAAK,OAAO;AAAA,IACpB,CAAC;AACD,SAAK,MAAM,YAAY,KAAK;AAC5B,SAAK,kBAAkB,KAAK,MAAM;AAClC,SAAK,cAAc,KAAK,MAAM;AAC9B,SAAK,yBAAyB,KAAK,MAAM;AACzC,SAAK,2BAA2B,KAAK,MAAM;AAC3C,SAAK,eAAe,KAAK,MAAM;AAC/B,SAAK,0BAA0B,KAAK,MAAM;AAC1C,SAAK,4BAA4B,KAAK,MAAM;AAC5C,SAAK,eAAe,KAAK,MAAM;AAC/B,SAAK,iBAAiB,KAAK,MAAM;AACjC,SAAK,cAAc,KAAK,MAAM;AAC9B,SAAK,aAAa,KAAK,MAAM;AAC7B,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,cAAc;AACZ,QAAI,CAAC,KAAK,OAAO;AACf,WAAK,MAAM;AAAA,IACb;AACA,WAAO,MAAM,YAAY;AAAA,EAC3B;AAAA,EACA,QAAQ,YAAY,WAAW,UAAU,QAAQ,KAAK;AACpD,QAAI,CAAC,KAAK,OAAO;AACf,WAAK,MAAM;AAAA,IACb;AACA,UAAM,QAAQ,YAAY,WAAW,OAAO;AAAA,EAC9C;AAAA,EACA,WAAW,SAAS;AAClB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM;AAAA,IACb;AACA,SAAK,MAAM,WAAW,OAAO;AAAA,EAC/B;AAAA,EACA,SAAS,GAAG,GAAG,OAAO,CAAC,GAAG;AACxB,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,mDAAmD;AAAA,IAC5E;AACA,WAAO,KAAK,MAAM,SAAS,GAAG,GAAG,IAAI;AAAA,EACvC;AAAA,EACA,MAAM,gBAAgB,SAAS,MAAM;AACnC,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,mDAAmD;AAAA,IAC5E;AACA,WAAO,KAAK,MAAM,gBAAgB,SAAS,IAAI;AAAA,EACjD;AAAA,EACA,QAAQ,GAAG,OAAO,CAAC,GAAG;AACpB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM;AAAA,IACb;AACA,WAAO,KAAK,MAAM,QAAQ,GAAG,IAAI;AAAA,EACnC;AAAA,EACA,eAAe,GAAG;AAChB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM;AAAA,IACb;AACA,WAAO,KAAK,MAAM,eAAe,CAAC;AAAA,EACpC;AAAA,EACA,QAAQ,MAAM;AACZ,SAAK,MAAM;AACX,SAAK,MAAM,QAAQ,IAAI;AACvB,SAAK,aAAa,KAAK,MAAM;AAC7B,SAAK,mBAAmB,KAAK,MAAM;AACnC,SAAK,OAAO,KAAK,MAAM;AACvB,SAAK,UAAU,KAAK,MAAM;AAC1B,SAAK,iBAAiB,KAAK,MAAM;AACjC,SAAK,eAAe,KAAK,MAAM;AAAA,EACjC;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK,SAAS,OAAO,SAAS,KAAK,MAAM;AAAA,EAClD;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,SAAK,MAAM,YAAY;AAAA,EACzB;AAAA,EACA,MAAM,IAAI,GAAG,GAAG,OAAO,CAAC,GAAG;AACzB,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,mDAAmD;AAAA,IAC5E;AACA,WAAO,KAAK,MAAM,IAAI,GAAG,GAAG,IAAI;AAAA,EAClC;AAAA,EACA,MAAM,WAAW,SAAS,MAAM;AAC9B,QAAI,CAAC,KAAK,OAAO;AACf,YAAM,IAAI,aAAa,mDAAmD;AAAA,IAC5E;AACA,WAAO,KAAK,MAAM,WAAW,SAAS,IAAI;AAAA,EAC5C;AAAA,EACA,MAAM,aAAa,GAAG,GAAG;AACvB,WAAO,KAAK,MAAM,aAAa,GAAG,CAAC;AAAA,EACrC;AAAA,EACA,OAAO,WAAW,KAAKf,SAAQ,gBAAgB,CAAC,GAAG,iBAAiB,OAAO;AACzE,QAAI;AACJ,QAAI,mBAAmB,CAAC;AACxB,QAAIA,mBAAkB,OAAO;AAC3B,UAAI,EAAEA,QAAO,GAAG,aAAa,SAASA,QAAO,GAAG,iBAAiB,SAAS;AACxE,cAAM,IAAI,WAAW,gDAAgD;AAAA,MACvE;AACA,oBAAcA;AAAA,IAChB,OAAO;AACL,mBAAa,OAAOA,QAAO,aAAa,MAAM,MAAM,qHAAqH;AACzK,oBAAcA,QAAO;AACrB,aAAOA,QAAO;AACd,yBAAmBA;AAAA,IACrB;AACA,UAAMe,UAAS,IAAI,IAAI,gBAAgB;AACvC,QAAI,EAAEA,mBAAkB,aAAa;AACnC,YAAM,IAAI,oBAAoB,yDAAyDA,SAAQ;AAAA,IACjG;AACA,eAAW,QAAQ,aAAa;AAC9B,YAAM,iBAAiB;AACvB,YAAM,QAAQ,YAAY,MAAM,gBAAgB,cAAc;AAC9D,UAAI,gBAAgB;AAClB,cAAM,6BAA6B,IAAI;AAAA,MACzC;AACA,MAAAA,QAAO,IAAI,KAAK;AAAA,IAClB;AACA,WAAOA;AAAA,EACT;AAAA,EACA,IAAI,aAAa,MAAM;AACrB,QAAI,KAAK,SAAS,MAAM;AACtB,YAAM,IAAI,WAAW,mFAAmF;AAAA,IAC1G;AACA,SAAK,MAAM,eAAe;AAAA,EAC5B;AAAA,EACA,IAAI,eAAe;AACjB,QAAI,KAAK,SAAS,MAAM;AACtB,YAAM,IAAI,WAAW,mFAAmF;AAAA,IAC1G;AACA,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,YAAY;AACV,UAAM,SAAS,CAAC;AAChB,eAAW,SAAS,KAAK,QAAQ;AAC/B,YAAM,OAAO,CAAC;AACd,WAAK,eAAe,MAAM,aAAa;AACvC,WAAK,YAAY,MAAM,UAAU;AACjC,aAAO,KAAK,IAAI;AAAA,IAClB;AACA,WAAO,EAAE,MAAM,KAAK,MAAM,OAAO;AAAA,EACnC;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAG9C,SAAS,MAAM,MAAM;AACnB,SAAO,IAAI,YAAY,IAAI;AAC7B;AACA,SAAS,WAAWf,SAAQ;AAC1B,SAAO,IAAI,WAAWA,OAAM;AAC9B;AACA,SAAS,gBAAgB,iBAAiBT,UAAS;AACjD,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU,CAAC;AAAA,EACb;AACA,SAAO,wBAAwB,iBAAiBA,QAAO;AACzD;AACA,SAAS,MAAMS,SAAQ;AACrB,SAAO,MAAMA,OAAM;AACrB;AACA,SAAS,4BAA4B,gBAAgB,qBAAqB;AACxE,8BAA4B,4BAA4B,gBAAgB,mBAAmB;AAC7F;AAGA,IAAI,aAAa,cAAc,sBAAsB,aAAa;AAAA,EAChE,YAAY;AACV,WAAO,CAAC;AAAA,EACV;AACF;AACA,IAAI,OAAO,cAAc,WAAW;AAAA,EAClC,MAAM,GAAGQ,SAAQ,GAAG;AAClB,WAAO,KAAK,GAAGA,MAAK;AAAA,EACtB;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,QAAQ,cAAc,WAAW;AAAA,EACnC,MAAM,GAAG;AACP,WAAO,KAAK,CAAC;AAAA,EACf;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,QAAQ,cAAc,WAAW;AAAA,EACnC,MAAM,GAAG;AACP,WAAO,KAAK,CAAC;AAAA,EACf;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,SAAS,cAAc,WAAW;AAAA,EACpC,MAAM,GAAG;AACP,WAAO,KAAK,MAAM,QAAQ,GAAG,KAAK,CAAC,CAAC,CAAC;AAAA,EACvC;AACF;AACA,OAAO,YAAY;AACnB,sBAAsB,cAAc,MAAM;AAC1C,IAAI,SAAS,cAAc,WAAW;AAAA,EACpC,MAAM,GAAG;AACP,WAAO;AAAA,EACT;AACF;AACA,OAAO,YAAY;AACnB,sBAAsB,cAAc,MAAM;AAC1C,IAAI,WAAW,cAAc,WAAW;AAAA,EACtC,MAAM,GAAG;AACP,WAAO,QAAQ,CAAC;AAAA,EAClB;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,cAAc,cAAc,WAAW;AAAA,EACzC,MAAM,GAAG;AACP,WAAO,YAAY,CAAC;AAAA,EACtB;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,YAAY,cAAc,WAAW;AAAA,EACvC,MAAM,GAAG;AACP,WAAO,SAAS,CAAC;AAAA,EACnB;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,WAAW,cAAc,WAAW;AAAA,EACtC,MAAM,GAAG;AACP,WAAO,SAAS,CAAC;AAAA,EACnB;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,QAAQ,cAAc,WAAW;AAAA,EACnC,MAAM,GAAG;AACP,WAAO,MAAM,CAAC;AAAA,EAChB;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,WAAW,cAAc,WAAW;AAAA,EACtC,MAAM,GAAG,OAAO,IAAI;AAClB,WAAO,QAAQ,GAAG,IAAI;AAAA,EACxB;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,cAAc,cAAc,WAAW;AAAA,EACzC,MAAM,GAAG,OAAO,IAAI;AAClB,WAAO,WAAW,GAAG,IAAI;AAAA,EAC3B;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,QAAQ,cAAc,WAAW;AAAA,EACnC,MAAM,GAAGA,SAAQ,GAAG;AAClB,WAAO,KAAK,MAAM,IAAI,QAAQ,IAAI,GAAGA,MAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAClD;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,OAAO,cAAc,WAAW;AAAA,EAClC,MAAM,GAAG;AACP,WAAO,KAAK,MAAM,IAAI,GAAG,MAAM,SAAS,CAAC,CAAC,CAAC,CAAC;AAAA,EAC9C;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,SAAS,oBAAoB,aAAa;AACxC,SAAO,YAAY,aAAa;AAClC;AACA,SAAS,sBAAsBR,SAAQ,gBAAgB,CAAC,GAAG;AACzD,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,YAAY;AACjI;AACA,SAAS,cAAc,YAAY;AACjC,MAAI,cAAc,MAAM;AACtB,UAAMA,UAAS,CAAC;AAChB,IAAAA,QAAO,eAAe;AACtB,IAAAA,QAAO,YAAY,CAAC;AACpB,WAAO,sBAAsBA,OAAM;AAAA,EACrC;AACA,MAAI,OAAO,eAAe,UAAU;AAClC,UAAMA,UAAS,CAAC;AAChB,IAAAA,QAAO,eAAe;AACtB,IAAAA,QAAO,YAAY,CAAC;AACpB,WAAO,sBAAsBA,OAAM;AAAA,EACrC,WAAW,sBAAsB,YAAY;AAC3C,WAAO;AAAA,EACT,OAAO;AACL,WAAO,sBAAsB,UAAU;AAAA,EACzC;AACF;AAGA,SAAS,iBAAiB,MAAM;AAC9B,MAAI,QAAQ,QAAQ,OAAO,SAAS,UAAU;AAC5C,UAAM,IAAI,MAAM,yFAAyF,MAAM;AAAA,EACjH;AACF;AACA,IAAI,cAAc,cAAc,sBAAsB,aAAa;AACnE;AACA,IAAI,OAAO,cAAc,YAAY;AAAA,EACnC,YAAY,MAAM;AAChB,UAAM;AACN,qBAAiB,IAAI;AACrB,SAAK,KAAK,QAAQ,QAAQ,KAAK,MAAM,OAAO,OAAO,KAAK;AACxD,SAAK,KAAK,QAAQ,QAAQ,KAAK,MAAM,OAAO,OAAO,KAAK;AACxD,SAAK,QAAQ,KAAK,OAAO;AACzB,SAAK,QAAQ,KAAK,OAAO;AAAA,EAC3B;AAAA,EACA,MAAM,GAAG;AACP,WAAO,KAAK,MAAM;AAChB,UAAI,iBAAiB,MAAM,CAAC,CAAC,CAAC;AAC9B,UAAI,KAAK,OAAO;AACd,yBAAiB,KAAK,gBAAgB,KAAK,IAAI,KAAK,IAAI,IAAI,CAAC,CAAC,CAAC,CAAC;AAAA,MAClE;AACA,UAAI,KAAK,OAAO;AACd,yBAAiB,KAAK,gBAAgB,KAAK,IAAI,KAAK,IAAI,QAAQ,CAAC,CAAC,CAAC,CAAC;AAAA,MACtE;AACA,aAAO,QAAQ,gBAAgB,CAAC,CAAC;AAAA,IACnC,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,WAAO,EAAE,MAAM,KAAK,IAAI,MAAM,KAAK,GAAG;AAAA,EACxC;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,WAAO,IAAI,IAAI,EAAE,IAAIA,QAAO,OAAO,IAAIA,QAAO,MAAM,CAAC;AAAA,EACvD;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,SAAS,GAAG,MAAM;AAChB,mBAAiB,IAAI;AACrB,SAAO,IAAI,KAAK,EAAE,IAAI,QAAQ,OAAO,KAAK,KAAK,MAAM,IAAI,EAAE,CAAC;AAC9D;AACA,SAAS,GAAG,MAAM;AAChB,mBAAiB,IAAI;AACrB,SAAO,IAAI,KAAK,EAAE,IAAI,QAAQ,OAAO,KAAK,KAAK,MAAM,IAAI,EAAE,CAAC;AAC9D;AACA,IAAI,6CAA6C;AAAA,EAC/C,QAAQ;AACV;AACA,SAAS,qBAAqB,YAAY;AACxC,SAAO,qBAAqB,UAAU;AACxC;AACA,SAAS,uBAAuBA,SAAQ,gBAAgB,CAAC,GAAG;AAC1D,SAAO,uBAAuBA,SAAQ,sBAAsB,iBAAiB,OAAO,EAAE,cAAc,eAAe,aAAa;AAClI;AACA,SAAS,eAAe,YAAY;AAClC,MAAI,cAAc,MAAM;AACtB,WAAO;AAAA,EACT;AACA,MAAI,OAAO,eAAe,UAAU;AAClC,UAAM,YAAY,cAAc,6CAA6C,2CAA2C,cAAc;AACtI,UAAMA,UAAS,EAAE,WAAW,QAAQ,CAAC,EAAE;AACvC,WAAO,uBAAuBA,OAAM;AAAA,EACtC,WAAW,sBAAsB,aAAa;AAC5C,WAAO;AAAA,EACT,OAAO;AACL,WAAO,uBAAuB,UAAU;AAAA,EAC1C;AACF;AAGA,IAAI,OAAO,cAAc,MAAM;AAAA,EAC7B,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,kBAAkB;AACvB,QAAI,QAAQ,MAAM;AAChB,WAAK,WAAW,KAAK;AAAA,IACvB;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,aAAS,oBAAoB,MAAM;AACnC,QAAI,SAAS,KAAK,MAAM;AACxB,QAAI,KAAK,YAAY,MAAM;AACzB,eAAS,YAAY,QAAQ,GAAG,KAAK,QAAQ;AAAA,IAC/C;AACA,WAAO;AAAA,EACT;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,UAAU,KAAK,SAAS;AACzC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,gBAAgB;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,QAAQ,KAAK,SAAS,OAAO,KAAK,gBAAgB,KAAK;AAAA,EAC9D;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB,MAAM;AACpC,WAAO,UAAU,GAAG,KAAK,KAAK;AAAA,EAChC;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,OAAO,KAAK,MAAM;AACnC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,QAAQ,cAAc,MAAM;AAAA,EAC9B,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,4BAA4B;AACjC,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,kBAAkB;AACvB,SAAK,mBAAmB,eAAe,KAAK,oBAAoB,KAAK,yBAAyB;AAC9F,SAAK,mBAAmB,eAAe,KAAK,gBAAgB;AAC5D,SAAK,kBAAkB,cAAc,KAAK,eAAe;AACzD,QAAI,KAAK,cAAc,MAAM;AAC3B,WAAK,aAAa;AAAA,IACpB,WAAW,MAAM,QAAQ,KAAK,UAAU,GAAG;AACzC,WAAK,aAAa,KAAK;AAAA,IACzB,WAAW,OAAO,KAAK,eAAe,UAAU;AAC9C,WAAK,aAAa,CAAC,KAAK,UAAU;AAAA,IACpC,OAAO;AACL,YAAM,IAAI,WAAW,sEAAsE,KAAK,YAAY;AAAA,IAC9G;AAAA,EACF;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,aAAa,WAAW,MAAM,CAAC;AACrC,QAAI,KAAK,cAAc,MAAM;AAC3B,iBAAW,MAAM,KAAK,YAAY;AAChC,mBAAW,KAAK,KAAK;AAAA,MACvB;AAAA,IACF;AACA,SAAK,QAAQ,KAAK,UAAU,SAAS,YAAY,WAAW,KAAK,kBAAkB,KAAK,kBAAkB,MAAM,KAAK,eAAe;AACpI,UAAM,OAAO,CAAC;AACd,QAAI,KAAK,cAAc,MAAM;AAC3B,eAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,aAAK,MAAM,WAAW;AAAA,MACxB;AAAA,IACF;AACA,SAAK,YAAY,CAAC,IAAI,UAAU;AAAA,MAC9B,MAAM,WAAW;AAAA,MACjB;AAAA,IACF,CAAC,CAAC;AACF,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,aAAS,oBAAoB,MAAM;AACnC,WAAO,MAAM,QAAQ,KAAK,MAAM,KAAK,CAAC;AAAA,EACxC;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,iBAAiB,oBAAoB,KAAK,eAAe;AAAA,MACzD,YAAY,KAAK;AAAA,IACnB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,MAAM,cAAc,MAAM;AAAA,EAC5B,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,gBAAgB;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,QAAI,KAAK,SAAS,QAAQ,KAAK,UAAU,KAAK,eAAe;AAC3D,YAAM,IAAI,oBAAoB,4BAA4B,KAAK,+CAA+C;AAAA,IAChH;AACA,SAAK,QAAQ,KAAK,SAAS,OAAO,KAAK,gBAAgB,KAAK;AAAA,EAC9D;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB,MAAM;AACpC,WAAO,IAAI,CAAC;AAAA,EACd;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,OAAO,KAAK,MAAM;AACnC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,YAAY;AAChB,sBAAsB,cAAc,GAAG;AACvC,IAAI,kBAAkB,cAAc,MAAM;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,gBAAgB;AACrB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,QAAQ,KAAK,SAAS,OAAO,KAAK,gBAAgB,KAAK;AAAA,EAC9D;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB,MAAM;AACpC,WAAO,IAAI,GAAG,KAAK,QAAQ,GAAG,KAAK,KAAK,GAAG,SAAS,CAAC;AAAA,EACvD;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,OAAO,KAAK,MAAM;AACnC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,eAAe;AACpB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,UAAU,IAAI,SAAS,EAAE;AAC9B,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,eAAe,KAAK;AAAA,EAC3D;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB,MAAM;AACpC,WAAO,KAAK,QAAQ,GAAG,KAAK,IAAI;AAAA,EAClC;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,MAAM,KAAK,KAAK;AACjC,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAG5C,SAAS,eAAe,OAAO,IAAI,MAAM;AACvC,MAAI,OAAO,UAAU,UAAU;AAC7B,WAAO,aAAa,OAAO,EAAE;AAAA,EAC/B,OAAO;AACL,QAAI,MAAM,WAAW,IAAI;AACvB,YAAM,IAAI,WAAW,OAAO,gDAAgD,0BAA0B,MAAM,kBAAkB;AAAA,IAChI;AACA,aAAS,KAAK,GAAG,KAAK,IAAI,EAAE,IAAI;AAC9B,YAAM,cAAc,MAAM;AAC1B,UAAI,CAAC,UAAU,WAAW,GAAG;AAC3B,cAAM,IAAI,WAAW,OAAO,gDAAgD,0BAA0B,KAAK,UAAU,KAAK,oCAAoC,aAAa;AAAA,MAC7K;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AACA,SAAS,iBAAiB,aAAa,YAAYa,UAAS,QAAQ,WAAW,GAAG;AAChF,MAAI,eAAe,MAAM;AACvB,WAAO;AAAA,EACT;AACA,QAAM,oBAAoB,cAAc,aAAa,MAAM,WAAW;AACtE,MAAI;AACJ,MAAIA,aAAY,QAAQ;AACtB,mBAAe;AAAA,EACjB,OAAO;AACL,mBAAe,cAAc,oBAAoB;AAAA,EACnD;AACA,SAAO,KAAK,OAAO,eAAe,SAAS,KAAK,MAAM;AACxD;AACA,SAAS,aAAa,SAAS,YAAY,YAAYA,UAAS;AAC9D,MAAI,WAAW,MAAM;AACnB,WAAO;AAAA,EACT;AACA,MAAIA,aAAY,SAAS;AACvB,cAAU,UAAU,aAAa,KAAK,CAAC,aAAa,YAAY,CAAC,CAAC;AAAA,EACpE,WAAWA,aAAY,QAAQ;AAC7B,cAAU,UAAU;AAAA,EACtB,OAAO;AACL,UAAM,IAAI,WAAW,2BAA2BA,WAAU;AAAA,EAC5D;AACA,SAAO;AACT;AAGA,SAAS,sBAAsB,GAAG,YAAY;AAC5C,SAAO,KAAK,MAAM;AAChB,oBAAgB,UAAU;AAC1B,QAAI,eAAe,iBAAiB;AAClC,aAAO,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAClC,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF,CAAC;AACH;AACA,SAAS,sBAAsB,GAAG,YAAY;AAC5C,SAAO,KAAK,MAAM;AAChB,oBAAgB,UAAU;AAC1B,QAAI,eAAe,iBAAiB;AAClC,aAAO,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IACrC,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF,CAAC;AACH;AACA,SAAS,eAAe,GAAG,QAAQ,MAAMf,WAAU,GAAGe,WAAU,SAAS,YAAY,eAAe,GAAG;AACrG,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,QAAI,EAAE,MAAM,WAAW,GAAG;AACxB,YAAM,IAAI,WAAW,+DAA+D,EAAE,MAAM,iBAAiB;AAAA,IAC/G;AACA,QAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,YAAM,IAAI,WAAW,iEAAiE,OAAO,MAAM,gBAAgB;AAAA,IACrH;AACA,QAAI,QAAQ,QAAQ,KAAK,MAAM,WAAW,GAAG;AAC3C,YAAM,IAAI,WAAW,+DAA+D,OAAO,MAAM,gBAAgB;AAAA,IACnH;AACA,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAAA,IAC5B;AACA,QAAIA,aAAY,UAAU;AACxB,YAAM,IAAI,oBAAoB,+EAA+E;AAAA,IAC/G;AACA,QAAI,IAAI,OAAO,GAAG,QAAQf,UAASe,aAAY,SAAS,SAAS,SAAS,OAAO,YAAY;AAC7F,QAAI,QAAQ,MAAM;AAChB,UAAI,QAAQ,GAAG,IAAI;AAAA,IACrB;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,SAAS,yBAAyB,GAAG,QAAQ,MAAMf,WAAU,CAAC,GAAG,CAAC,GAAGe,WAAU,SAAS,YAAY,cAAc,cAAc,MAAM;AACpI,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,QAAI,EAAE,SAAS,KAAK,EAAE,SAAS,GAAG;AAChC,YAAM,IAAI,WAAW,6EAA6E,EAAE,OAAO;AAAA,IAC7G;AACA,QAAI,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG;AAC1C,YAAM,IAAI,WAAW,8EAA8E,EAAE,OAAO;AAAA,IAC9G;AACA,QAAI,IAAI,sBAAsB,GAAG,UAAU;AAC3C,QAAIA,aAAY,UAAU;AACxB,YAAM,IAAI,oBAAoB,+EAA+E;AAAA,IAC/G;AACA,QAAI,kBAAkB,OAAO;AAAA,MAC3B,GAAG;AAAA,MACH,QAAQ;AAAA,MACR,SAAAf;AAAA,MACA,KAAKe,aAAY,SAAS,SAAS;AAAA,MACnC,WAAW;AAAA,MACX,YAAY;AAAA,MACZ;AAAA,MACA,YAAY;AAAA,IACd,CAAC;AACD,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAC/B;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,SAAS,eAAe,GAAG,QAAQ,MAAMf,WAAU,CAAC,GAAG,GAAG,CAAC,GAAGe,WAAU,SAAS,YAAY,cAAc;AACzG,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,QAAI,EAAE,SAAS,KAAK,EAAE,SAAS,GAAG;AAChC,YAAM,IAAI,WAAW,mEAAmE,EAAE,OAAO;AAAA,IACnG;AACA,QAAI,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG;AAC1C,YAAM,IAAI,WAAW,oEAAoE,EAAE,OAAO;AAAA,IACpG;AACA,QAAI,IAAI,sBAAsB,GAAG,UAAU;AAC3C,QAAIA,aAAY,UAAU;AACxB,YAAM,IAAI,oBAAoB,+EAA+E;AAAA,IAC/G;AACA,QAAI,OAAO,GAAG,QAAQf,UAASe,aAAY,SAAS,SAAS,SAAS,SAAS,YAAY;AAC3F,QAAI,QAAQ,MAAM;AAChB,UAAI,QAAQ,GAAG,IAAI;AAAA,IACrB;AACA,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAClC;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM,MAAM;AACtB,UAAM,IAAI;AACV,SAAK,OAAO;AACZ,SAAK,6BAA6B;AAClC,SAAK,2BAA2B;AAChC,aAAS,WAAW,IAAI;AACxB,SAAK,OAAO;AACZ,0BAAsB,KAAK,MAAM,MAAM;AACvC,QAAI,KAAK,SAAS,KAAK,KAAK,SAAS,KAAK,KAAK,SAAS,GAAG;AACzD,YAAM,IAAI,oBAAoB,qDAAqD,KAAK,+BAA+B;AAAA,IACzH;AACA,SAAK,aAAa,eAAe,KAAK,YAAY,MAAM,YAAY;AACpE,SAAK,UAAU,eAAe,KAAK,WAAW,OAAO,IAAI,KAAK,SAAS,MAAM,SAAS;AACtF,SAAK,UAAU,KAAK,WAAW,OAAO,UAAU,KAAK;AACrD,qBAAiB,KAAK,OAAO;AAC7B,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,SAAK,aAAa,cAAc,KAAK,UAAU;AAC/C,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,sBAAsB,eAAe,KAAK,mBAAmB;AAClE,SAAK,eAAe,eAAe,KAAK,gBAAgB,OAAO,IAAI,KAAK,cAAc,MAAM,cAAc;AAC1G,QAAI,KAAK,SAAS,MAAM,MAAM,QAAQ,KAAK,YAAY,KAAK,KAAK,aAAa,WAAW,IAAI;AAC3F,YAAM,IAAI,WAAW,iGAAiG,KAAK,UAAU,KAAK,YAAY,GAAG;AAAA,IAC3J,WAAW,KAAK,SAAS,GAAG;AAC1B,UAAI,OAAO,KAAK,iBAAiB,UAAU;AACzC,aAAK,eAAe,CAAC,KAAK,cAAc,KAAK,YAAY;AAAA,MAC3D,WAAW,KAAK,aAAa,WAAW,GAAG;AACzC,cAAM,IAAI,WAAW,0FAA0F,KAAK,UAAU,KAAK,YAAY,GAAG;AAAA,MACpJ;AAAA,IACF,WAAW,KAAK,SAAS,GAAG;AAC1B,UAAI,OAAO,KAAK,iBAAiB,UAAU;AACzC,aAAK,eAAe,CAAC,KAAK,cAAc,KAAK,cAAc,KAAK,YAAY;AAAA,MAC9E,WAAW,KAAK,aAAa,WAAW,GAAG;AACzC,cAAM,IAAI,WAAW,4FAA4F,KAAK,UAAU,KAAK,YAAY,GAAG;AAAA,MACtJ;AAAA,IACF;AAAA,EACF;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,YAAQ,gBAAgB,MAAM,yCAAyC;AACvE,QAAI,OAAO,KAAK,eAAe,YAAY,CAAC,wBAAwB,KAAK,YAAY,UAAU,GAAG,CAAC,GAAG;AACpG,YAAM,IAAI,WAAW,oGAAoG,KAAK,UAAU,KAAK,UAAU,IAAI;AAAA,IAC7J;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAMb,UAAS;AAAA,MACb,YAAY,KAAK;AAAA,MACjB,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,cAAc,KAAK;AAAA,MACnB,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,SAAS,KAAK;AAAA,MACd,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,IACzD;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,OAAO,cAAc,SAAS;AAAA,EAChC,YAAY,MAAM,MAAM;AACtB,UAAM,MAAM,IAAI;AAChB,SAAK,SAAS;AACd,SAAK,WAAW,IAAI;AACpB,SAAK,UAAU,KAAK;AACpB,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAAA,EAChE;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,MAAM;AACnC,YAAM,IAAI,WAAW,+DAA+D,WAAW,cAAc;AAAA,IAC/G;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,cAAc,KAAK,WAAW,OAAO,CAAC,UAAU,KAAK,OAAO,CAAC;AACnE,SAAK,SAAS,KAAK,UAAU,UAAU,aAAa,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACrI,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,OAAO,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAChI;AACA,SAAK,YAAY,CAAC,EAAE,MAAM,KAAK,OAAO,GAAG,MAAM,EAAE,CAAC,cAAc,SAAS,EAAE,CAAC;AAC5E,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,UAAI;AACJ,YAAM,YAAY,KAAK,QAAQ,OAAO,OAAO,KAAK,KAAK,KAAK;AAC5D,YAAM,sBAAsB,2BAA2B,KAAK,WAAW,aAAa,CAAC;AACrF,UAAI,uBAAuB,QAAQ,KAAK,SAAS,GAAG;AAClD,kBAAU,yBAAyB,QAAQ,KAAK,OAAO,KAAK,GAAG,WAAW,KAAK,SAAS,KAAK,SAAS,KAAK,YAAY,KAAK,cAAc,mBAAmB;AAAA,MAC/J,OAAO;AACL,YAAI,KAAK,SAAS,GAAG;AACnB,oBAAU,eAAe,QAAQ,KAAK,OAAO,KAAK,GAAG,WAAW,KAAK,QAAQ,IAAI,KAAK,SAAS,KAAK,YAAY,KAAK,aAAa,EAAE;AAAA,QACtI,WAAW,KAAK,SAAS,GAAG;AAC1B,oBAAU,yBAAyB,QAAQ,KAAK,OAAO,KAAK,GAAG,WAAW,KAAK,SAAS,KAAK,SAAS,KAAK,YAAY,KAAK,YAAY;AAAA,QAC1I,WAAW,KAAK,SAAS,GAAG;AAC1B,oBAAU,eAAe,QAAQ,KAAK,OAAO,KAAK,GAAG,WAAW,KAAK,SAAS,KAAK,SAAS,KAAK,YAAY,KAAK,YAAY;AAAA,QAChI,OAAO;AACL,gBAAM,IAAI,oBAAoB,uDAAuD;AAAA,QACvF;AACA,YAAI,KAAK,cAAc,MAAM;AAC3B,oBAAU,KAAK,WAAW,MAAM,OAAO;AAAA,QACzC;AAAA,MACF;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,WAAW,CAAC;AAClB,UAAM,QAAQ,KAAK,eAAe,iBAAiB,WAAW,MAAM,GAAG,WAAW,SAAS,CAAC,IAAI,WAAW,MAAM,CAAC;AAClH,aAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,YAAM,SAAS,iBAAiB,MAAM,KAAK,KAAK,WAAW,KAAK,KAAK,SAAS,KAAK,QAAQ,KAAK,OAAO,KAAK,iBAAiB,WAAW,KAAK,eAAe,KAAK,aAAa,GAAG;AACjL,eAAS,KAAK,MAAM;AAAA,IACtB;AACA,QAAI,cAAc,CAAC,WAAW,EAAE;AAChC,QAAI,KAAK,eAAe,gBAAgB;AACtC,oBAAc,YAAY,OAAO,QAAQ;AACzC,kBAAY,KAAK,KAAK,OAAO;AAAA,IAC/B,OAAO;AACL,kBAAY,KAAK,KAAK,OAAO;AAC7B,oBAAc,YAAY,OAAO,QAAQ;AAAA,IAC3C;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,IAC7D;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,QAAI,EAAE,aAAa,SAAS,OAAO,KAAK,YAAY,YAAY,KAAK,UAAU,GAAG;AAChF,YAAM,IAAI,WAAW,0EAA0E,KAAK,UAAU,KAAK,OAAO,GAAG;AAAA,IAC/H;AAAA,EACF;AACF;AACA,IAAI,UAAU,cAAc,KAAK;AAAA,EAC/B,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AACb,YAAQ,WAAW,IAAI;AAAA,EACzB;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,QAAI,OAAO,KAAK,eAAe,YAAY,CAAC,wBAAwB,KAAK,YAAY,UAAU,GAAG,CAAC,GAAG;AACpG,YAAM,IAAI,WAAW,8FAA8F,KAAK,UAAU,KAAK,UAAU,IAAI;AAAA,IACvJ;AAAA,EACF;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,UAAU,cAAc,KAAK;AAAA,EAC/B,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AACb,YAAQ,WAAW,IAAI;AAAA,EACzB;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,QAAI,OAAO,KAAK,eAAe,UAAU;AACvC,UAAI,EAAE,MAAM,QAAQ,KAAK,UAAU,MAAM,KAAK,WAAW,WAAW,KAAK,KAAK,WAAW,WAAW,KAAK;AACvG,cAAM,IAAI,WAAW,2FAA2F,KAAK,UAAU,KAAK,UAAU,IAAI;AAAA,MACpJ;AAAA,IACF;AAAA,EACF;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAC5C,QAAI,KAAK,YAAY,UAAU,KAAK,YAAY,SAAS;AACvD,YAAM,IAAI,WAAW,uGAAuG,KAAK,SAAS;AAAA,IAC5I;AAAA,EACF;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,WAAW,GAAG;AAC3B,YAAM,IAAI,WAAW,qDAAqD,KAAK,UAAU,UAAU,CAAC;AAAA,IACtG;AACA,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,MAAM;AACnC,YAAM,IAAI,WAAW,sEAAsE;AAAA,IAC7F;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,cAAc,KAAK,WAAW,OAAO,CAAC,KAAK,SAAS,QAAQ,CAAC;AACnE,SAAK,SAAS,KAAK,UAAU,UAAU,aAAa,WAAW,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AAC1I,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,OAAO,GAAG,WAAW,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IACrI;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,GAAG,MAAM,EAAE,CAAC,cAAc,SAAS,EAAE,CAAC,CAAC;AAC/E,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,oBAAoB,MAAM;AACvC,UAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,2FAA2F,OAAO,MAAM,QAAQ;AAAA,MACvI;AACA,YAAM,aAAa,OAAO;AAC1B,YAAM,YAAY,WAAW;AAC7B,UAAI;AACJ,UAAI;AACJ,UAAI,KAAK,eAAe,iBAAiB;AACvC,gBAAQ;AACR,gBAAQ;AAAA,MACV,OAAO;AACL,gBAAQ;AACR,gBAAQ;AAAA,MACV;AACA,YAAM,SAAS,WAAW;AAC1B,YAAM,QAAQ,WAAW;AACzB,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,YAAY,aAAa,QAAQ,SAAS,SAAS,KAAK,OAAO;AACrE,YAAM,WAAW,aAAa,OAAO,SAAS,SAAS,KAAK,OAAO;AACnE,YAAM,cAAc,CAAC,WAAW,WAAW,UAAU,KAAK,OAAO;AACjE,UAAI,KAAK,eAAe,gBAAgB;AACtC,iBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MACzC;AACA,UAAI,UAAU,gBAAgB,QAAQ,KAAK,OAAO,KAAK,GAAG,aAAa,KAAK,SAAS,KAAK,OAAO;AACjG,UAAI,KAAK,eAAe,gBAAgB;AACtC,kBAAU,UAAU,SAAS,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MAC3C;AACA,UAAI,KAAK,QAAQ,MAAM;AACrB,kBAAU,QAAQ,SAAS,KAAK,KAAK,KAAK,GAAG,KAAK,UAAU;AAAA,MAC9D;AACA,UAAI,KAAK,cAAc,MAAM;AAC3B,kBAAU,KAAK,WAAW,MAAM,OAAO;AAAA,MACzC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,WAAW,MAAM;AACrC,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,eAAe,iBAAiB;AACvC,oBAAc;AACd,mBAAa;AACb,kBAAY;AAAA,IACd,OAAO;AACL,oBAAc;AACd,mBAAa;AACb,kBAAY;AAAA,IACd;AACA,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,QAAQ;AAC7B,UAAM,UAAU,KAAK,QAAQ;AAC7B,gBAAY,eAAe,KAAK;AAChC,gBAAY,cAAc,aAAa,YAAY,aAAa,SAAS,SAAS,KAAK,OAAO;AAC9F,gBAAY,aAAa,aAAa,YAAY,YAAY,SAAS,SAAS,KAAK,OAAO;AAC5F,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAC5C,QAAI,KAAK,YAAY,UAAU,KAAK,YAAY,SAAS;AACvD,YAAM,IAAI,WAAW,uGAAuG,KAAK,SAAS;AAAA,IAC5I;AAAA,EACF;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,WAAW,GAAG;AAC3B,YAAM,IAAI,WAAW,qDAAqD,KAAK,UAAU,UAAU,CAAC;AAAA,IACtG;AACA,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,MAAM;AACnC,YAAM,IAAI,WAAW,sEAAsE;AAAA,IAC7F;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,cAAc,KAAK,WAAW,OAAO,CAAC,KAAK,SAAS,QAAQ,CAAC;AACnE,SAAK,SAAS,KAAK,UAAU,UAAU,aAAa,WAAW,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AAC1I,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,OAAO,GAAG,WAAW,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IACrI;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,GAAG,MAAM,EAAE,CAAC,cAAc,SAAS,EAAE,CAAC,CAAC;AAC/E,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,oBAAoB,MAAM;AACvC,UAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,2FAA2F,OAAO,MAAM,QAAQ;AAAA,MACvI;AACA,YAAM,aAAa,OAAO;AAC1B,YAAM,YAAY,WAAW;AAC7B,UAAI;AACJ,UAAI;AACJ,UAAI;AACJ,UAAI,KAAK,eAAe,iBAAiB;AACvC,gBAAQ;AACR,gBAAQ;AACR,gBAAQ;AAAA,MACV,OAAO;AACL,gBAAQ;AACR,gBAAQ;AACR,gBAAQ;AAAA,MACV;AACA,YAAM,QAAQ,WAAW;AACzB,YAAM,SAAS,WAAW;AAC1B,YAAM,QAAQ,WAAW;AACzB,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,WAAW;AAChC,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,UAAU,KAAK,QAAQ;AAC7B,YAAM,WAAW,aAAa,OAAO,SAAS,SAAS,KAAK,OAAO;AACnE,YAAM,YAAY,aAAa,QAAQ,SAAS,SAAS,KAAK,OAAO;AACrE,YAAM,WAAW,aAAa,OAAO,SAAS,SAAS,KAAK,OAAO;AACnE,YAAM,cAAc,CAAC,WAAW,UAAU,WAAW,UAAU,KAAK,OAAO;AAC3E,UAAI,KAAK,eAAe,gBAAgB;AACtC,iBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MAC5C;AACA,UAAI,UAAU,gBAAgB,QAAQ,KAAK,OAAO,KAAK,GAAG,aAAa,KAAK,SAAS,KAAK,OAAO;AACjG,UAAI,KAAK,eAAe,gBAAgB;AACtC,kBAAU,UAAU,SAAS,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MAC9C;AACA,UAAI,KAAK,SAAS,MAAM;AACtB,kBAAU,QAAQ,SAAS,KAAK,KAAK,KAAK,GAAG,KAAK,UAAU;AAAA,MAC9D;AACA,UAAI,KAAK,eAAe,MAAM;AAC5B,kBAAU,KAAK,WAAW,MAAM,OAAO;AAAA,MACzC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,WAAW,MAAM;AACrC,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,eAAe,iBAAiB;AACvC,oBAAc;AACd,kBAAY;AACZ,mBAAa;AACb,kBAAY;AAAA,IACd,OAAO;AACL,oBAAc;AACd,kBAAY;AACZ,mBAAa;AACb,kBAAY;AAAA,IACd;AACA,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,WAAW;AAChC,UAAM,UAAU,KAAK,QAAQ;AAC7B,UAAM,UAAU,KAAK,QAAQ;AAC7B,UAAM,UAAU,KAAK,QAAQ;AAC7B,gBAAY,eAAe,KAAK;AAChC,gBAAY,aAAa,aAAa,YAAY,YAAY,SAAS,SAAS,KAAK,OAAO;AAC5F,gBAAY,cAAc,aAAa,YAAY,aAAa,SAAS,SAAS,KAAK,OAAO;AAC9F,gBAAY,aAAa,aAAa,YAAY,YAAY,SAAS,SAAS,KAAK,OAAO;AAC5F,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,gBAAgB,cAAc,KAAK;AAAA,EACrC,YAAY,MAAMA,SAAQ;AACxB,UAAM,MAAMA,OAAM;AAClB,SAAK,gCAAgC;AACrC,SAAK,gCAAgC;AACrC,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,QAAIA,QAAO,WAAW,MAAM;AAC1B,YAAM,IAAI,WAAW,qFAAqF;AAAA,IAC5G;AACA,QAAIA,QAAO,qBAAqB,QAAQA,QAAO,qBAAqB,QAAQA,QAAO,oBAAoB,MAAM;AAC3G,YAAM,IAAI,WAAW,oPAAoP;AAAA,IAC3Q;AACA,QAAIA,QAAO,WAAW,QAAQA,QAAO,YAAY,UAAUA,QAAO,YAAY,SAAS;AACrF,YAAM,IAAI,WAAW,gBAAgB,KAAK,uEAAuE,KAAK,UAAUA,QAAO,OAAO,GAAG;AAAA,IACnJ;AACA,SAAK,kBAAkBA,QAAO,mBAAmB,OAAO,IAAIA,QAAO;AACnE,SAAK,uBAAuB,eAAeA,QAAO,wBAAwB,KAAK,6BAA6B;AAC5G,SAAK,uBAAuB,eAAeA,QAAO,oBAAoB;AACtE,SAAK,sBAAsB,cAAcA,QAAO,mBAAmB;AACnE,SAAK,uBAAuB,eAAeA,QAAO,wBAAwB,KAAK,6BAA6B;AAC5G,SAAK,uBAAuB,eAAeA,QAAO,oBAAoB;AACtE,SAAK,sBAAsB,cAAcA,QAAO,mBAAmB;AAAA,EACrE;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,SAAS,KAAK,OAAO,GAAG;AACrC,YAAM,IAAI,WAAW,0BAA0B,KAAK,0BAA0B,KAAK,OAAO,gCAAgC,KAAK,UAAU,UAAU,GAAG;AAAA,IACxJ;AACA,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,QAAQ,WAAW,eAAe,GAAG;AAClE,YAAM,IAAI,WAAW,oEAAoE,KAAK,UAAU,WAAW,YAAY,GAAG;AAAA,IACpI;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,uBAAuB,KAAK,WAAW,OAAO,CAAC,UAAU,KAAK,eAAe,CAAC;AACpF,UAAM,uBAAuB,CAAC;AAC9B,aAAS,KAAK,GAAG,KAAK,KAAK,MAAM,EAAE,IAAI;AACrC,2BAAqB,KAAK,CAAC;AAAA,IAC7B;AACA,yBAAqB,KAAK,WAAW,KAAK,iBAAiB,KAAK,OAAO;AACvE,UAAM,YAAY;AAClB,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,sBAAsB,WAAW,KAAK,sBAAsB,KAAK,sBAAsB,WAAW,KAAK,mBAAmB;AACpL,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,sBAAsB,WAAW,KAAK,sBAAsB,KAAK,sBAAsB,WAAW,KAAK,mBAAmB;AACpL,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,OAAO,GAAG,WAAW,KAAK,iBAAiB,KAAK,iBAAiB,WAAW,KAAK,cAAc;AAAA,IAC1I,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,KAAK,OAAO,GAAG,MAAM,EAAE,CAAC,cAAc,SAAS,EAAE,CAAC,CAAC;AAC3F,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,UAAI;AACJ,UAAI,KAAK,SAAS,GAAG;AACnB,cAAM,IAAI,oBAAoB,kDAAkD;AAAA,MAClF,WAAW,KAAK,SAAS,GAAG;AAC1B,YAAI,KAAK,eAAe,iBAAiB;AACvC,mBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,QACzC;AACA,iBAAS,gBAAgB,QAAQ,KAAK,gBAAgB,KAAK,GAAG,KAAK,gBAAgB,KAAK,GAAG,KAAK,SAAS,KAAK,SAAS,KAAK,cAAc,MAAM;AAAA,MAClJ;AACA,UAAI,KAAK,SAAS;AAChB,iBAAS,QAAQ,QAAQ,KAAK,KAAK,KAAK,GAAG,KAAK,UAAU;AAAA,MAC5D;AACA,UAAI,KAAK,cAAc,MAAM;AAC3B,iBAAS,KAAK,WAAW,MAAM,MAAM;AAAA,MACvC;AACA,UAAI,KAAK,eAAe,iBAAiB;AACvC,iBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MACzC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA,QAAO;AACd,WAAOA,QAAO;AACd,WAAOA,QAAO;AACd,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,yBAAyB,oBAAoB,KAAK,mBAAmB;AAC5E,IAAAA,QAAO,yBAAyB,oBAAoB,KAAK,mBAAmB;AAC5E,WAAOA;AAAA,EACT;AACF;AACA,cAAc,YAAY;AAC1B,IAAI,kBAAkB,cAAc,cAAc;AAAA,EAChD,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AAAA,EACf;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,SAAS,cAAc,KAAK;AAAA,EAC9B,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AACb,WAAO,WAAW,IAAI;AACtB,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,MAAM,UAAU;AAC/B,WAAOA,QAAO;AACd,WAAOA,QAAO;AACd,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,MAAM;AACtB,QAAI,OAAO,KAAK,eAAe,YAAY,CAAC,wBAAwB,KAAK,YAAY,UAAU,GAAG,CAAC,GAAG;AACpG,YAAM,IAAI,WAAW,yFAAyF,KAAK,UAAU,KAAK,UAAU,IAAI;AAAA,IAClJ;AAAA,EACF;AACF;AACA,OAAO,YAAY;AACnB,sBAAsB,cAAc,MAAM;AAC1C,IAAI,aAAa,cAAc,MAAM;AAAA,EACnC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,QAAI,OAAO,KAAK,aAAa,UAAU;AACrC,WAAK,WAAW,CAAC,CAAC,KAAK,UAAU,KAAK,QAAQ,GAAG,CAAC,KAAK,UAAU,KAAK,QAAQ,CAAC;AAAA,IACjF,WAAW,OAAO,KAAK,SAAS,OAAO,UAAU;AAC/C,WAAK,WAAW;AAAA,QACd,CAAC,KAAK,SAAS,IAAI,KAAK,SAAS,EAAE;AAAA,QACnC,CAAC,KAAK,SAAS,IAAI,KAAK,SAAS,EAAE;AAAA,MACrC;AAAA,IACF,OAAO;AACL,WAAK,WAAW,KAAK;AAAA,IACvB;AACA,SAAK,aAAa,KAAK,eAAe,SAAS,iBAAiB,KAAK;AACrE,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,KAAK,eAAe,iBAAiB;AACvC,aAAO;AAAA,QACL,WAAW;AAAA,QACX,WAAW;AAAA,QACX,WAAW,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG;AAAA,QACvD,WAAW,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG;AAAA,MACzD;AAAA,IACF,OAAO;AACL,aAAO;AAAA,QACL,WAAW;AAAA,QACX,WAAW,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG;AAAA,QACvD,WAAW,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG;AAAA,QACvD,WAAW;AAAA,MACb;AAAA,IACF;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,UAAI,KAAK,eAAe,gBAAgB;AACtC,cAAM,UAAU,eAAe,QAAQ,KAAK,SAAS,GAAG,IAAI,OAAO,MAAM,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG,IAAI,CAAC;AAC1H,eAAO,eAAe,SAAS,KAAK,SAAS,GAAG,IAAI,OAAO,MAAM,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG,IAAI,CAAC;AAAA,MACpH,OAAO;AACL,cAAM,UAAU,eAAe,QAAQ,KAAK,SAAS,GAAG,IAAI,OAAO,MAAM,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG,IAAI,CAAC;AAC1H,eAAO,eAAe,SAAS,KAAK,SAAS,GAAG,IAAI,OAAO,MAAM,KAAK,KAAK,SAAS,GAAG,KAAK,KAAK,SAAS,GAAG,IAAI,CAAC;AAAA,MACpH;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,UAAU,KAAK,UAAU,YAAY,KAAK,WAAW;AACtE,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAC9C,IAAI,eAAe,cAAc,MAAM;AAAA,EACrC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,eAAe,CAAC,GAAG,CAAC;AACzB,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAC7B,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,eAAe,KAAK;AACzD,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,SAAK,gBAAgB,KAAK,iBAAiB,OAAO,YAAY,KAAK;AACnE,6BAAyB,KAAK,aAAa;AAAA,EAC7C;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,KAAK,eAAe,iBAAiB;AACvC,YAAM,SAAS,WAAW,MAAM,OAAO,OAAO,KAAK,KAAK,KAAK,WAAW;AACxE,YAAM,QAAQ,WAAW,MAAM,OAAO,OAAO,KAAK,KAAK,KAAK,WAAW;AACvE,aAAO,CAAC,WAAW,IAAI,WAAW,IAAI,QAAQ,KAAK;AAAA,IACrD,OAAO;AACL,YAAM,SAAS,WAAW,MAAM,OAAO,OAAO,KAAK,KAAK,KAAK,WAAW;AACxE,YAAM,QAAQ,WAAW,MAAM,OAAO,OAAO,KAAK,KAAK,KAAK,WAAW;AACvE,aAAO,CAAC,WAAW,IAAI,QAAQ,OAAO,WAAW,EAAE;AAAA,IACrD;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,oBAAoB,MAAM;AACvC,YAAM,aAAa,OAAO;AAC1B,UAAI,KAAK,eAAe,iBAAiB;AACvC,iBAAS,UAAU,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AACvC,cAAM,SAAS,KAAK,KAAK,KAAK,WAAW;AACzC,cAAM,QAAQ,KAAK,KAAK,KAAK,WAAW;AACxC,cAAM,UAAU,KAAK,kBAAkB,YAAY,MAAM,sBAAsB,QAAQ,CAAC,QAAQ,KAAK,CAAC,IAAI,MAAM,eAAe,QAAQ,CAAC,QAAQ,KAAK,CAAC;AACtJ,eAAO,UAAU,SAAS,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,MACxC,OAAO;AACL,cAAM,SAAS,KAAK,KAAK,KAAK,WAAW;AACzC,cAAM,QAAQ,KAAK,KAAK,KAAK,WAAW;AACxC,eAAO,KAAK,kBAAkB,YAAY,MAAM,sBAAsB,QAAQ,CAAC,QAAQ,KAAK,CAAC,IAAI,MAAM,eAAe,QAAQ,CAAC,QAAQ,KAAK,CAAC;AAAA,MAC/I;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,MACX,YAAY,KAAK;AAAA,MACjB,eAAe,KAAK;AAAA,IACtB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAGhD,SAAS,iBAAiB,GAAG,iBAAiBF,WAAU,CAAC,GAAG,CAAC,GAAGe,WAAU,SAAS,YAAY,cAAc;AAC3G,SAAO,KAAK,MAAM;AAChB,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,oBAAgB,UAAU;AAC1B,QAAI,IAAI,sBAAsB,GAAG,UAAU;AAC3C,QAAI,EAAE,SAAS,GAAG;AAChB,YAAM,IAAI,WAAW,mEAAmE,EAAE,QAAQ;AAAA,IACpG;AACA,QAAI,gBAAgB,SAAS,GAAG;AAC9B,YAAM,IAAI,WAAW,yDAAyD,gBAAgB,QAAQ;AAAA,IACxG;AACA,QAAI,gBAAgB,GAAG,iBAAiBf,UAASe,aAAY,SAAS,SAAS,SAAS,QAAQ,YAAY;AAC5G,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAC/B;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,kBAAkB,cAAc,SAAS;AAAA,EAC3C,YAAY,MAAM;AAChB,UAAM,GAAG,IAAI;AACb,SAAK,kBAAkB;AACvB,SAAK,kBAAkB,KAAK,mBAAmB,OAAO,IAAI,KAAK;AAC/D,SAAK,uBAAuB,eAAe,KAAK,wBAAwB,KAAK,0BAA0B;AACvG,SAAK,sBAAsB,cAAc,KAAK,mBAAmB;AACjE,SAAK,uBAAuB,eAAe,KAAK,oBAAoB;AAAA,EACtE;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,WAAW,uEAAuE,KAAK,UAAU,UAAU,IAAI;AAAA,IAC3H;AACA,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI;AAC9D,QAAI,WAAW,gBAAgB,QAAQ,WAAW,eAAe,GAAG;AAClE,YAAM,IAAI,WAAW,yFAAyF,WAAW,gBAAgB;AAAA,IAC3I;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,uBAAuB;AAAA,MAC3B,KAAK,WAAW;AAAA,MAChB,KAAK,WAAW;AAAA,MAChB;AAAA,MACA,KAAK;AAAA,IACP;AACA,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,sBAAsB,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAC1K,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,WAAW,KAAK,eAAe,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IACnJ,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,UAAI,UAAU,iBAAiB,QAAQ,KAAK,gBAAgB,KAAK,GAAG,KAAK,SAAS,KAAK,SAAS,KAAK,YAAY,IAAI;AACrH,UAAI,KAAK,SAAS;AAChB,kBAAU,QAAQ,SAAS,KAAK,KAAK,KAAK,GAAG,KAAK,UAAU;AAAA,MAC9D;AACA,UAAI,KAAK,cAAc,MAAM;AAC3B,kBAAU,KAAK,WAAW,MAAM,OAAO;AAAA,MACzC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC9E,UAAM,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC9E,UAAM,aAAa,KAAK,eAAe,kBAAkB,WAAW,KAAK,KAAK,kBAAkB,WAAW,KAAK,KAAK;AACrH,UAAM,UAAU,iBAAiB,MAAM,KAAK,WAAW,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AACxF,UAAM,UAAU,iBAAiB,MAAM,KAAK,WAAW,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AACxF,QAAI,KAAK,eAAe,iBAAiB;AACvC,aAAO,CAAC,WAAW,IAAI,YAAY,SAAS,OAAO;AAAA,IACrD,OAAO;AACL,aAAO,CAAC,WAAW,IAAI,SAAS,SAAS,UAAU;AAAA,IACrD;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAMb,UAAS,MAAM,UAAU;AAC/B,IAAAA,QAAO,qBAAqB,KAAK;AACjC,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,0BAA0B,qBAAqB,KAAK,oBAAoB;AAC/E,IAAAA,QAAO,yBAAyB,oBAAoB,KAAK,oBAAoB;AAC7E,WAAOA;AAAA,EACT;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AAGnD,SAAS,gBAAgB,QAAQ,cAAcgB,YAAW,cAAc;AACtE,MAAI,MAAM,QAAQ,MAAM,GAAG;AACzB,QAAI,gBAAgB,QAAQA,cAAa,MAAM;AAC7C,YAAM,IAAI,WAAW,+EAA+E;AAAA,IACtG;AACA,QAAI,gBAAgB,MAAM;AACxB,MAAAA,aAAY,OAAO,MAAM,OAAO,SAAS,cAAc,OAAO,MAAM;AACpE,eAAS,OAAO,MAAM,GAAG,OAAO,SAAS,YAAY;AAAA,IACvD;AACA,QAAI,OAAO,SAAS,GAAG;AACrB,qBAAe,OAAO,MAAM,GAAG,OAAO,MAAM;AAAA,IAC9C;AACA,aAAS,OAAO;AAAA,EAClB;AACA,WAAS,aAAa,GAAG;AACvB,QAAI,KAAK,QAAQ,MAAM,QAAQ,CAAC,GAAG;AACjC,aAAO;AAAA,IACT,OAAO;AACL,aAAO,CAAC,CAAC;AAAA,IACX;AAAA,EACF;AACA,iBAAe,aAAa,YAAY;AACxC,EAAAA,aAAY,aAAaA,UAAS;AAClC,SAAO,EAAE,QAAQ,cAAc,WAAAA,WAAU;AAC3C;AACA,SAAS,IAAI,cAAc,QAAQ,eAAe,cAAc,OAAO1B,OAAM0B,YAAW,SAAS,OAAO,qBAAqB,OAAO;AAClI,SAAO,KAAK,MAAM;AAChB,UAAM,OAAO,OAAO,MAAM;AAC1B,QAAI,OAAO,GAAG;AACZ,YAAM,IAAI,WAAW,uCAAuC,QAAQ;AAAA,IACtE;AACA,UAAM,OAAO,CAAC,GAAG,CAAC,EAAE,OAAO,OAAO,GAAG,IAAI,CAAC;AAC1C,aAAS,UAAU,QAAQ,IAAI;AAC/B,QAAIA,cAAa,MAAM;AACrB,YAAM,IAAI,oBAAoB,gFAAgF;AAAA,IAChH;AACA,QAAI,QAAQ;AACV,cAAQ,KAAK,mGAAmG;AAAA,IAClH;AACA,QAAI1B,SAAQ,MAAM;AAChB,MAAAA,QAAO,KAAK,KAAKA,OAAM,MAAM,GAAG,SAAS;AACzC,UAAIA,MAAK,SAAS,OAAO,GAAG;AAC1B,QAAAA,QAAO,WAAWA,OAAM,EAAE;AAAA,MAC5B;AACA,MAAAA,QAAO,UAAUA,OAAM,IAAI;AAAA,IAC7B;AACA,QAAI,aAAa;AACf,eAAS,QAAQ,QAAQ,CAAC;AAC1B,UAAIA,SAAQ,MAAM;AAChB,QAAAA,QAAO,QAAQA,OAAM,CAAC;AAAA,MACxB;AAAA,IACF;AACA,UAAM,iBAAiB,CAAC;AACxB,QAAI;AACJ,QAAI,SAAS;AACb,UAAM,YAAY,OAAO,MAAM;AAC/B,UAAM,gBAAgB,QAAQ,MAAM;AACpC,QAAI;AACJ,QAAIA,SAAQ,MAAM;AAChB,qBAAe,QAAQA,KAAI;AAAA,IAC7B;AACA,aAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,YAAM,eAAe,cAAc;AACnC,YAAM,cAAc,KAAK,MAAM,aAAa,cAAc,MAAM,CAAC;AACjE,UAAIA,SAAQ,MAAM;AAChB,qBAAa,YAAY;AACzB,iBAAS,YAAY;AAAA,MACvB,OAAO;AACL,cAAM,gBAAgB,KAAK,MAAM;AAC/B,gBAAM,WAAW,aAAa;AAC9B,gBAAM,cAAc,IAAI,SAAS,QAAQ,GAAG,QAAQ;AACpD,gBAAM,SAAS,KAAK,IAAI,YAAY,IAAI,QAAQ,GAAG,IAAI,OAAO,IAAI,WAAW,CAAC;AAC9E,gBAAM,YAAY,OAAO,IAAI,CAAC,OAAO,OAAO;AAC1C,mBAAO,KAAK,IAAI,YAAY,GAAG,KAAK,QAAQ,GAAG,IAAI,OAAO,WAAW,CAAC;AAAA,UACxE,CAAC;AACD,iBAAO,EAAE,QAAQ,UAAU;AAAA,QAC7B,CAAC;AACD,qBAAa,cAAc;AAC3B,iBAAS,cAAc;AAAA,MACzB;AACA,UAAI,oBAAoB;AACtB,uBAAe,KAAK,UAAU;AAAA,MAChC;AAAA,IACF;AACA,QAAI;AACJ,QAAI,oBAAoB;AACtB,YAAM,OAAO;AACb,gBAAU,MAAM,gBAAgB,IAAI;AAAA,IACtC;AACA,WAAO,CAAC,YAAY,SAAS,MAAM;AAAA,EACrC,CAAC;AACH;AACA,IAAI,MAAM,cAAc,MAAM;AAAA,EAC5B,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,QAAI;AACJ,QAAI,KAAK,QAAQ,MAAM;AACrB,YAAM,IAAI,WAAW,sDAAsD;AAAA,IAC7E,WAAW,MAAM,QAAQ,KAAK,IAAI,GAAG;AACnC,aAAO,IAAI,gBAAgB,EAAE,OAAO,KAAK,KAAK,CAAC;AAAA,IACjD,OAAO;AACL,aAAO,KAAK;AAAA,IACd;AACA,QAAI,KAAK,aAAa,MAAM;AAC1B,YAAM,IAAI,WAAW,mGAAmG;AAAA,IAC1H;AACA,SAAK,OAAO;AACZ,SAAK,kBAAkB,KAAK,mBAAmB,OAAO,QAAQ,KAAK;AACnE,SAAK,cAAc,KAAK,eAAe,OAAO,QAAQ,KAAK;AAC3D,SAAK,cAAc,KAAK,eAAe,OAAO,QAAQ,KAAK;AAC3D,SAAK,YAAY,KAAK,YAAY,OAAO,QAAQ,KAAK;AACtD,SAAK,SAAS,KAAK,UAAU,OAAO,QAAQ,KAAK;AACjD,SAAK,kBAAkB;AACvB,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAC5C,SAAK,YAAY;AACjB,SAAK,UAAU;AACf,SAAK,eAAe;AACpB,SAAK,aAAa,CAAC;AAAA,EACrB;AAAA,EACA,YAAY;AACV,QAAI,KAAK,WAAW,MAAM;AACxB,YAAM,YAAY,MAAM,QAAQ,KAAK,KAAK,SAAS,IAAI,KAAK,KAAK,UAAU,SAAS;AACpF,aAAO,OAAO,GAAG,SAAS,EAAE,IAAI,CAAC,MAAM,IAAI;AAAA,IAC7C,OAAO;AACL,aAAO,KAAK;AAAA,IACd;AAAA,EACF;AAAA,EACA,UAAU,QAAQ;AAChB,SAAK,UAAU;AAAA,EACjB;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,gBAAgB,UAAU,GAAG;AAC/B,mBAAa,WAAW;AAAA,IAC1B;AACA,iBAAa;AACb,QAAI,YAAY,KAAK,KAAK;AAC1B,QAAI,CAAC,MAAM,QAAQ,SAAS,GAAG;AAC7B,kBAAY,CAAC,SAAS;AAAA,IACxB;AACA,UAAM,YAAY,UAAU;AAC5B,QAAI;AACJ,QAAI,KAAK,iBAAiB;AACxB,oBAAc,CAAC,WAAW,IAAI,WAAW,IAAI,SAAS;AAAA,IACxD,OAAO;AACL,oBAAc,CAAC,WAAW,IAAI,SAAS;AAAA,IACzC;AACA,QAAI,KAAK,aAAa;AACpB,YAAM,aAAa,CAAC;AACpB,iBAAW,OAAO,WAAW;AAC3B,mBAAW,KAAK,CAAC,WAAW,IAAI,GAAG,CAAC;AAAA,MACtC;AACA,aAAO,CAAC,WAAW,EAAE,OAAO,UAAU;AAAA,IACxC,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,YAAY,QAAQA,OAAM;AACxB,WAAO,KAAK,MAAM;AAChB,UAAI,MAAM,QAAQA,KAAI,GAAG;AACvB,QAAAA,QAAOA,MAAK;AAAA,MACd;AACA,YAAM,aAAa,KAAK,kBAAkBA,QAAO;AACjD,UAAI,KAAK,aAAa;AACpB,cAAM,YAAY,KAAK,OAAO,IAAI,CAAC,OAAO,IAAI;AAC9C,eAAO,CAAC,UAAU,EAAE,OAAO,SAAS;AAAA,MACtC,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,IAAI,SAAS;AACX,QAAI,KAAK,WAAW,MAAM;AACxB,YAAM,YAAY,MAAM,QAAQ,KAAK,KAAK,SAAS,IAAI,KAAK,KAAK,UAAU,SAAS;AACpF,YAAM,SAAS,CAAC;AAChB,eAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,eAAO,KAAK,IAAI;AAAA,MAClB;AACA,aAAO;AAAA,IACT,OAAO;AACL,aAAO,KAAK;AAAA,IACd;AAAA,EACF;AAAA,EACA,IAAI,OAAO,IAAI;AACb,SAAK,UAAU;AAAA,EACjB;AAAA,EACA,MAAM,YAAY;AAChB,UAAM,gBAAgB;AACtB,QAAI,KAAK,gBAAgB,MAAM;AAC7B,YAAM,IAAI,oBAAoB,kDAAkD;AAAA,IAClF;AACA,QAAI,gBAAgB,UAAU,GAAG;AAC/B,mBAAa,WAAW;AAAA,IAC1B;AACA,iBAAa;AACb,UAAM,YAAY,KAAK,WAAW,WAAW,KAAK;AAClD,UAAM,WAAW,WAAW,MAAM,CAAC;AACnC,SAAK,UAAU,KAAK,IAAI,UAAU,EAAE,OAAO,CAAC,WAAW,MAAM,GAAG,QAAQ,EAAE,CAAC;AAC3E,UAAM,iBAAiB,CAAC,WAAW,EAAE,EAAE,OAAO,WAAW,MAAM,CAAC,CAAC;AACjE,QAAI,iBAAiB,MAAM;AACzB,YAAM,IAAI,oBAAoB,kDAAkD;AAAA,IAClF,OAAO;AACL,WAAK,KAAK,MAAM,cAAc;AAAA,IAChC;AACA,QAAI;AACJ,QAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,kBAAY,KAAK,KAAK;AAAA,IACxB,OAAO;AACL,kBAAY,CAAC,KAAK,KAAK,SAAS;AAAA,IAClC;AACA,QAAI,KAAK,aAAa,MAAM;AAC1B,UAAI,CAAC,aAAa,YAAY,KAAK,UAAU,IAAI,CAAC,SAAS,KAAK,MAAM,KAAK,MAAM,SAAS,EAAE,GAAG,SAAS,GAAG;AACzG,cAAM,IAAI,WAAW,6FAA6F,KAAK,wCAAwC,KAAK,KAAK,WAAW;AAAA,MACtL;AAAA,IACF,OAAO;AACL,WAAK,YAAY,UAAU,IAAI,CAAC,QAAQ,IAAI,UAAU,EAAE,OAAO,CAAC,MAAM,GAAG,EAAE,CAAC,CAAC;AAAA,IAC/E;AACA,QAAI,KAAK,UAAU;AACjB,WAAK,YAAY;AAAA,IACnB;AAAA,EACF;AAAA,EACA,YAAY,QAAQ,WAAW,OAAO;AACpC,SAAK,MAAM;AACT,UAAI,CAAC,KAAK,UAAU;AAClB,cAAM,IAAI,eAAe,iEAAiE;AAAA,MAC5F;AACA,YAAM,YAAY,KAAK,UAAU,GAAG,MAAM;AAC1C,UAAI,aAAa,MAAM;AACrB,cAAM,IAAI,WAAW,uUAAuU;AAAA,MAC9V;AACA,UAAI,KAAK,WAAW,MAAM;AACxB,YAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAK,UAAU,KAAK,KAAK,UAAU,IAAI,CAAC,QAAQ,MAAM,CAAC,WAAW,GAAG,CAAC,CAAC;AAAA,QACzE,OAAO;AACL,eAAK,UAAU,CAAC,MAAM,CAAC,WAAW,KAAK,KAAK,SAAS,CAAC,CAAC;AAAA,QACzD;AAAA,MACF,WAAW,UAAU,MAAM;AACzB,gBAAQ,KAAK,OAAO;AACpB,YAAI,KAAK,cAAc,MAAM;AAC3B,kBAAQ,KAAK,UAAU;AACvB,eAAK,aAAa,CAAC;AAAA,QACrB;AACA,YAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAK,UAAU,KAAK,KAAK,UAAU,IAAI,CAAC,QAAQ,MAAM,CAAC,WAAW,GAAG,CAAC,CAAC;AAAA,QACzE,OAAO;AACL,eAAK,QAAQ,KAAK,MAAM,CAAC,WAAW,KAAK,KAAK,SAAS,CAAC;AAAA,QAC1D;AAAA,MACF,OAAO;AACL,YAAI,CAAC,MAAM,QAAQ,MAAM,GAAG;AAC1B,mBAAS,CAAC,MAAM;AAAA,QAClB;AACA,YAAI,OAAO,WAAW,KAAK,QAAQ,QAAQ;AACzC,gBAAM,IAAI,WAAW,SAAS,KAAK,gBAAgB,KAAK,QAAQ,oCAAoC,OAAO,0CAA0C,QAAQ;AAAA,QAC/J;AACA,YAAI,aAAa,MAAM;AACrB,eAAK,WAAW,KAAK,KAAK,QAAQ,MAAM,CAAC;AAAA,QAC3C,OAAO;AACL,kBAAQ,KAAK,OAAO;AAAA,QACtB;AACA,iBAASK,SAAQ,GAAGA,SAAQ,KAAK,QAAQ,QAAQ,EAAEA,QAAO;AACxD,gBAAM,QAAQ,OAAOA;AACrB,gBAAM,MAAM,MAAM,QAAQ,KAAK,KAAK,SAAS,IAAI,KAAK,KAAK,UAAUA,UAAS,KAAK,KAAK;AACxF,gBAAM,gBAAgB,CAAC,WAAW,GAAG;AACrC,cAAI,CAAC,aAAa,YAAY,MAAM,OAAO,aAAa,GAAG;AACzD,kBAAM,IAAI,WAAW,SAASA,qCAAoC,KAAK,wBAAwB,iCAAiC,MAAM,OAAO;AAAA,UAC/I;AACA,eAAK,QAAQA,UAAS;AAAA,QACxB;AAAA,MACF;AACA,WAAK,UAAU,KAAK,QAAQ,IAAI,CAAC,UAAU,KAAK,MAAM,MAAM,CAAC,CAAC;AAAA,IAChE,CAAC;AAAA,EACH;AAAA,EACA,MAAM,QAAQ,QAAQ;AACpB,QAAI,eAAe,UAAU,OAAO,OAAO,OAAO;AAClD,QAAIqB,aAAY,UAAU,OAAO,OAAO,OAAO;AAC/C,QAAI,UAAU,MAAM;AAClB,eAAS,CAAC;AAAA,IACZ;AACA,UAAM,eAAe,gBAAgB,QAAQ,cAAcA,YAAW,KAAK,YAAY;AACvF,aAAS,aAAa;AACtB,mBAAe,aAAa;AAC5B,IAAAA,aAAY,aAAa;AACzB,QAAI,mBAAmB,CAAC;AACxB,QAAI,kBAAkB,CAAC;AACvB,QAAI,gBAAgB,MAAM;AACxB,aAAO,kBAAkB;AACzB,yBAAmB,iBAAiB,OAAO,YAAY;AACvD,WAAK,YAAY,CAAC;AAClB,iBAAW,SAAS,cAAc;AAChC,aAAK,UAAU,KAAK,IAAI,UAAU,EAAE,OAAO,MAAM,MAAM,CAAC,CAAC;AAAA,MAC3D;AACA,wBAAkB,gBAAgB,OAAO,KAAK,SAAS;AAAA,IACzD;AACA,QAAIA,cAAa,MAAM;AACrB,aAAO,eAAeA;AACtB,yBAAmB,iBAAiB,OAAOA,UAAS;AACpD,WAAK,eAAeA,WAAU;AAAA,IAChC;AACA,UAAM,WAAW,iBAAiB,cAAc;AAChD,QAAI,UAAU;AACZ,YAAM,YAAY,CAAC,MAAM,EAAE,OAAO,gBAAgB;AAClD,YAAM,gBAAgB,KAAK,UAAU,OAAO,eAAe;AAC3D,YAAM,oBAAoB,KAAK;AAC/B,WAAK,YAAY;AACjB,YAAM,SAAS,MAAM,MAAM,WAAW,MAAM;AAC5C,WAAK,YAAY;AACjB,aAAO;AAAA,IACT,OAAO;AACL,aAAO,MAAM,MAAM,QAAQ,MAAM;AAAA,IACnC;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM1B,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,UAAI,eAAe,UAAU,OAAO,OAAO,OAAO;AAClD,eAAS,oBAAoB,MAAM;AACnC,UAAI,gBAAgB,MAAM;AACxB,YAAI,KAAK,UAAU;AACjB,yBAAe,KAAK;AAAA,QACtB,OAAO;AACL,yBAAe,KAAK,gBAAgB,MAAM;AAAA,QAC5C;AAAA,MACF;AACA,YAAM,YAAY,MAAM,QAAQ,KAAK,KAAK,SAAS,IAAI,KAAK,KAAK,UAAU,SAAS;AACpF,UAAI,aAAa,WAAW,WAAW;AACrC,cAAM,IAAI,WAAW,iBAAiB,qCAAqC,aAAa,0BAA0B;AAAA,MACpH;AACA,UAAI,KAAK,QAAQ;AACf,gBAAQ,KAAK,kEAAkE;AAAA,MACjF;AACA,YAAM,iBAAiB,EAAE,SAAS;AAClC,YAAM,QAAQ,CAAC,SAAS,YAAY;AAClC,cAAM,WAAW,KAAK,KAAK,KAAK,CAAC,OAAO,EAAE,OAAO,OAAO,GAAG,cAAc;AACzE,eAAO,CAAC,SAAS,IAAI,SAAS,MAAM,CAAC,CAAC;AAAA,MACxC;AACA,YAAM,aAAa,IAAI,OAAO,QAAQ,cAAc,KAAK,aAAaA,OAAM,MAAM,KAAK,QAAQ,KAAK,eAAe;AACnH,YAAM,aAAa,WAAW;AAC9B,YAAM,UAAU,WAAW;AAC3B,YAAM,SAAS,WAAW;AAC1B,UAAI,KAAK,UAAU;AACjB,aAAK,YAAY,QAAQ,QAAQ;AAAA,MACnC;AACA,YAAM,SAAS,KAAK,kBAAkB,UAAU;AAChD,UAAI,KAAK,aAAa;AACpB,eAAO,CAAC,MAAM,EAAE,OAAO,MAAM;AAAA,MAC/B,OAAO;AACL,eAAO;AAAA,MACT;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,gBAAgB,QAAQ;AACtB,WAAO,KAAK,MAAM;AAChB,UAAI,eAAe,MAAM,OAAO,KAAK;AACrC,qBAAe,KAAK,cAAc,CAAC,GAAG,CAAC,CAAC;AACxC,qBAAe,YAAY,YAAY;AACvC,UAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAO,KAAK,KAAK,UAAU,IAAI,CAAC,QAAQ,MAAM,IAAI,MAAM,cAAc,CAAC,GAAG,GAAG,CAAC,IAAI,YAAY;AAAA,MAChG,OAAO;AACL,eAAO,KAAK,KAAK,YAAY,IAAI,CAAC,MAAM,cAAc,CAAC,GAAG,KAAK,KAAK,SAAS,CAAC,CAAC,IAAI,CAAC,YAAY;AAAA,MAClG;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,IAAI,mBAAmB;AACrB,QAAI,CAAC,KAAK,WAAW;AACnB,aAAO,CAAC;AAAA,IACV;AACA,WAAO,KAAK,KAAK;AAAA,EACnB;AAAA,EACA,IAAI,sBAAsB;AACxB,QAAI,CAAC,KAAK,WAAW;AACnB,aAAO,KAAK,KAAK;AAAA,IACnB;AACA,WAAO,KAAK,KAAK;AAAA,EACnB;AAAA,EACA,6BAA6B,OAAO;AAClC,UAAM,6BAA6B,KAAK;AACxC,QAAI,KAAK,QAAQ,MAAM;AACrB,WAAK,KAAK,6BAA6B,KAAK;AAAA,IAC9C;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMU,UAAS;AAAA,MACb,iBAAiB,KAAK;AAAA,MACtB,aAAa,KAAK;AAAA,MAClB,aAAa,KAAK;AAAA,MAClB,UAAU,KAAK;AAAA,MACf,QAAQ,KAAK;AAAA,IACf;AACA,QAAI,KAAK,gBAAgB,MAAM;AAC7B,MAAAA,QAAO,kBAAkB,KAAK;AAAA,IAChC;AACA,UAAM,aAAa,KAAK,KAAK,UAAU;AACvC,QAAI,KAAK,aAAa,MAAM,IAAI,WAAW;AACzC,MAAAA,QAAO,UAAU;AAAA,QACf,aAAa,KAAK,KAAK,aAAa;AAAA,QACpC,UAAU;AAAA,MACZ;AAAA,IACF;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAY,YAAYA,OAAM;AAAA,EACzD;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ,gBAAgB,CAAC,GAAG;AACjD,UAAM,aAAaA,QAAO;AAC1B,UAAM,OAAO,YAAY,YAAY,aAAa;AAClD,WAAO,IAAI,IAAI,OAAO,OAAOA,SAAQ,EAAE,KAAK,CAAC,CAAC;AAAA,EAChD;AACF;AACA,IAAI,YAAY;AAChB,sBAAsB,cAAc,GAAG;AACvC,IAAI,UAAU,cAAc,MAAM;AAClC;AACA,IAAI,gBAAgB,cAAc,QAAQ;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,qBAAqB;AAC1B,SAAK,6BAA6B;AAClC,SAAK,gCAAgC;AACrC,SAAK,2BAA2B;AAChC,SAAK,QAAQ,KAAK;AAClB,0BAAsB,KAAK,OAAO,OAAO;AACzC,SAAK,aAAa,cAAc,KAAK,cAAc,OAAO,KAAK,qBAAqB,KAAK,UAAU;AACnG,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,uBAAuB,eAAe,KAAK,wBAAwB,KAAK,6BAA6B;AAC1G,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAC9D,SAAK,uBAAuB,eAAe,KAAK,oBAAoB;AACpE,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,sBAAsB,cAAc,KAAK,mBAAmB;AACjE,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,UAAU,KAAK,CAAC,GAAG,KAAK,CAAC,GAAG,KAAK,WAAW,OAAO,IAAI,KAAK,OAAO,CAAC,CAAC,CAAC;AAC3E,SAAK,mBAAmB,KAAK;AAAA,MAC3B;AAAA,MACA,KAAK,CAAC,GAAG,KAAK,oBAAoB,OAAO,IAAI,KAAK,gBAAgB,CAAC;AAAA,IACrE,CAAC;AACD,SAAK,cAAc,KAAK;AACxB,SAAK,YAAY,KAAK;AACtB,SAAK,cAAc;AACnB,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,SAAK,SAAS,KAAK,UAAU,UAAU,CAAC,WAAW,WAAW,SAAS,IAAI,KAAK,KAAK,GAAG,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACzK,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,CAAC,KAAK,OAAO,KAAK,KAAK,GAAG,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAC9K,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,KAAK,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAC9H,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS;AACT,UAAI,OAAO,WAAW,GAAG;AACvB,cAAM,IAAI,WAAW,8CAA8C,OAAO,SAAS;AAAA,MACrF;AACA,UAAI,aAAa,OAAO;AACxB,eAAS,OAAO;AAChB,YAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,KAAK,KAAK,eAAe,MAAM;AACpE,aAAK,cAAc,oBAAoB;AAAA,UACrC,MAAM,MAAM,SAAS,MAAM;AAAA,UAC3B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,KAAK,KAAK,wBAAwB,MAAM;AAC/F,aAAK,uBAAuB,oBAAoB;AAAA,UAC9C,MAAM,MAAM,SAAS,UAAU;AAAA,UAC/B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,UAAI;AACJ,YAAM,SAAS,KAAK;AACpB,YAAM,YAAY,KAAK;AACvB,UAAI,UAAU,MAAM;AAClB,YAAI,KAAK,IAAI,QAAQ,MAAM,GAAG,KAAK,OAAO,KAAK,CAAC;AAAA,MAClD,OAAO;AACL,YAAI,KAAK,QAAQ,KAAK,OAAO,KAAK,CAAC;AAAA,MACrC;AACA,UAAI,KAAK,QAAQ,MAAM;AACrB,YAAI,QAAQ,GAAG,KAAK,KAAK,KAAK,CAAC;AAAA,MACjC;AACA,UAAI,aAAa,MAAM;AACrB,qBAAa,IAAI,YAAY,SAAS;AAAA,MACxC;AACA,UAAI,SAAS,KAAK,GAAG,KAAK,YAAY,KAAK,gBAAgB,KAAK,CAAC,CAAC;AAClE,UAAI,KAAK,cAAc,MAAM;AAC3B,iBAAS,KAAK,WAAW,MAAM,MAAM;AAAA,MACvC;AACA,aAAO,CAAC,QAAQ,MAAM;AAAA,IACxB,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,MAC3D,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,MACvD,SAAS,KAAK;AAAA,MACd,kBAAkB,KAAK;AAAA,IACzB;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AACjD,IAAI,YAAY,cAAc,IAAI;AAAA,EAChC,YAAY,MAAM;AAChB,SAAK,OAAO,IAAI,cAAc,IAAI;AAClC,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,KAAK,eAAe,MAAM;AACjC,gBAAQ,KAAK,KAAK,WAAW;AAC7B,aAAK,KAAK,cAAc;AAAA,MAC1B;AACA,UAAI,KAAK,KAAK,wBAAwB,MAAM;AAC1C,gBAAQ,KAAK,KAAK,oBAAoB;AACtC,aAAK,KAAK,uBAAuB;AAAA,MACnC;AACA,YAAMV,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,YAAM,eAAe,UAAU,OAAO,OAAO,OAAO;AACpD,aAAO,MAAM,KAAK,QAAQ,EAAE,MAAAA,OAAM,UAAU,aAAa,CAAC;AAAA,IAC5D,CAAC;AAAA,EACH;AAAA,EACA,OAAO,WAAW,KAAKU,SAAQ;AAC7B,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,UAAU,cAAc,QAAQ;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,qBAAqB;AAC1B,SAAK,+BAA+B;AACpC,SAAK,6BAA6B;AAClC,SAAK,gCAAgC;AACrC,SAAK,2BAA2B;AAChC,QAAI,KAAK,YAAY;AACnB,YAAM,IAAI,WAAW,6DAA6D;AAAA,IACpF;AACA,SAAK,QAAQ,KAAK;AAClB,0BAAsB,KAAK,OAAO,OAAO;AACzC,SAAK,aAAa,cAAc,KAAK,eAAe,SAAS,KAAK,qBAAqB,KAAK,UAAU;AACtG,SAAK,sBAAsB,cAAc,KAAK,wBAAwB,SAAS,KAAK,+BAA+B,KAAK,mBAAmB;AAC3I,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,uBAAuB,eAAe,KAAK,wBAAwB,KAAK,6BAA6B;AAC1G,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAC9D,SAAK,uBAAuB,eAAe,KAAK,oBAAoB;AACpE,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,sBAAsB,cAAc,KAAK,mBAAmB;AACjE,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,UAAU,KAAK,CAAC,GAAG,KAAK,CAAC,GAAG,KAAK,WAAW,OAAO,IAAI,KAAK,OAAO,CAAC,CAAC,CAAC;AAC3E,SAAK,mBAAmB,KAAK;AAAA,MAC3B;AAAA,MACA,KAAK,CAAC,GAAG,KAAK,oBAAoB,OAAO,IAAI,KAAK,gBAAgB,CAAC;AAAA,IACrE,CAAC;AACD,SAAK,cAAc,KAAK;AACxB,SAAK,iBAAiB,KAAK;AAC3B,SAAK,YAAY,KAAK;AACtB,SAAK,cAAc;AACnB,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,WAAW,WAAW,WAAW,SAAS;AAChD,SAAK,SAAS,KAAK,UAAU,UAAU,CAAC,UAAU,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACpJ,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,CAAC,KAAK,OAAO,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAClL,QAAI,KAAK,SAAS;AAChB,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAClI,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS;AACT,UAAI,OAAO,WAAW,GAAG;AACvB,cAAM,IAAI,WAAW,uDAAuD,OAAO,SAAS;AAAA,MAC9F;AACA,YAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,UAAI,WAAW,OAAO;AACtB,eAAS,OAAO;AAChB,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,KAAK,KAAK,eAAe,MAAM;AACpE,aAAK,cAAc,oBAAoB;AAAA,UACrC,MAAM,MAAM,SAAS,MAAM;AAAA,UAC3B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,KAAK,KAAK,wBAAwB,MAAM;AAC/F,aAAK,uBAAuB,oBAAoB;AAAA,UAC9C,MAAM,MAAM,SAAS,QAAQ;AAAA,UAC7B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,YAAM,SAAS,KAAK;AACpB,YAAM,YAAY,KAAK;AACvB,UAAI;AACJ,UAAI;AACJ,UAAI;AACJ,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,GAAG;AACxC,iBAAS,IAAI,QAAQ,OAAO,EAAE;AAAA,MAChC;AACA,UAAI,UAAU,KAAK,QAAQ,KAAK,OAAO,KAAK,CAAC;AAC7C,UAAI,KAAK,SAAS;AAChB,kBAAU,QAAQ,SAAS,KAAK,KAAK,KAAK,CAAC;AAAA,MAC7C;AACA,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,GAAG;AAC1D,mBAAW,IAAI,UAAU,UAAU,EAAE;AAAA,MACvC;AACA,YAAM,uBAAuB,KAAK,gBAAgB,KAAK;AACvD,YAAM,CAAC,KAAK,GAAG,IAAI,MAAM,sBAAsB,CAAC,IAAI,KAAK,OAAO,KAAK,KAAK,GAAG,qBAAqB,OAAO,CAAC;AAC1G,YAAM,cAAc,KAAK,UAAU,GAAG;AACtC,YAAM,CAAC,IAAI,IAAI,EAAE,IAAI,MAAM,SAAS,GAAG,QAAQ,OAAO,CAAC;AACvD,YAAM,CAAC,YAAY,UAAU,IAAI,MAAM,aAAa,GAAG,YAAY,OAAO,CAAC;AAC3E,UAAI,KAAK,oBAAoB,MAAM,KAAK,IAAI,UAAU,CAAC;AACvD,WAAK,KAAK,oBAAoB,MAAM,KAAK,IAAI,UAAU,CAAC;AACxD,YAAM,aAAa,KAAK,IAAI,IAAI,QAAQ,GAAG,GAAG;AAC9C,WAAK,KAAK,WAAW,MAAM,KAAK,IAAI,UAAU,CAAC;AAC/C,YAAM,IAAI,KAAK,IAAI,GAAG,QAAQ,GAAG,IAAI,KAAK,GAAG,IAAI,CAAC,CAAC,GAAG,EAAE,CAAC;AACzD,aAAO,CAAC,GAAG,CAAC;AAAA,IACd,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,MAC3D,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,MACvD,SAAS,KAAK;AAAA,MACd,kBAAkB,KAAK;AAAA,MACvB,gBAAgB,KAAK;AAAA,MACrB,YAAY;AAAA,IACd;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,MAAM,cAAc,IAAI;AAAA,EAC1B,YAAY,MAAM;AAChB,QAAI,KAAK,mBAAmB,GAAG;AAC7B,cAAQ,KAAK,gHAAgH;AAAA,IAC/H;AACA,SAAK,OAAO,IAAI,QAAQ,IAAI;AAC5B,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,KAAK,eAAe,MAAM;AACjC,gBAAQ,KAAK,KAAK,WAAW;AAC7B,aAAK,KAAK,cAAc;AAAA,MAC1B;AACA,UAAI,KAAK,KAAK,wBAAwB,MAAM;AAC1C,gBAAQ,KAAK,KAAK,oBAAoB;AACtC,aAAK,KAAK,uBAAuB;AAAA,MACnC;AACA,YAAMV,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,YAAM,eAAe,UAAU,OAAO,OAAO,OAAO;AACpD,aAAO,MAAM,KAAK,QAAQ,EAAE,MAAAA,OAAM,UAAU,aAAa,CAAC;AAAA,IAC5D,CAAC;AAAA,EACH;AAAA,EACA,OAAO,WAAW,KAAKU,SAAQ;AAC7B,QAAIA,QAAO,qBAAqB,GAAG;AACjC,MAAAA,QAAO,oBAAoB;AAAA,IAC7B;AACA,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,IAAI,YAAY;AAChB,sBAAsB,cAAc,GAAG;AACvC,IAAI,WAAW,cAAc,QAAQ;AAAA,EACnC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,qBAAqB;AAC1B,SAAK,+BAA+B;AACpC,SAAK,6BAA6B;AAClC,SAAK,gCAAgC;AACrC,SAAK,2BAA2B;AAChC,SAAK,QAAQ,KAAK;AAClB,0BAAsB,KAAK,OAAO,OAAO;AACzC,SAAK,aAAa,cAAc,KAAK,eAAe,SAAS,KAAK,qBAAqB,KAAK,UAAU;AACtG,SAAK,sBAAsB,cAAc,KAAK,wBAAwB,SAAS,KAAK,+BAA+B,KAAK,mBAAmB;AAC3I,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,uBAAuB,eAAe,KAAK,wBAAwB,KAAK,6BAA6B;AAC1G,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,iBAAiB,KAAK;AAC3B,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAC9D,SAAK,uBAAuB,eAAe,KAAK,oBAAoB;AACpE,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,sBAAsB,cAAc,KAAK,mBAAmB;AACjE,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,UAAU,KAAK,CAAC,GAAG,KAAK,CAAC,GAAG,KAAK,WAAW,OAAO,IAAI,KAAK,OAAO,CAAC,CAAC,CAAC;AAC3E,SAAK,mBAAmB,KAAK;AAAA,MAC3B;AAAA,MACA,KAAK,CAAC,GAAG,KAAK,oBAAoB,OAAO,IAAI,KAAK,gBAAgB,CAAC;AAAA,IACrE,CAAC;AACD,SAAK,cAAc,KAAK;AACxB,SAAK,iBAAiB,KAAK;AAC3B,SAAK,YAAY,CAAC,KAAK,OAAO,KAAK,KAAK;AACxC,SAAK,cAAc;AACnB,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,MAAM,YAAY;AAChB,QAAI;AACJ,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,WAAW,WAAW,WAAW,SAAS;AAChD,SAAK,SAAS,KAAK,UAAU,UAAU,CAAC,UAAU,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACpJ,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,CAAC,KAAK,OAAO,KAAK,QAAQ,CAAC,GAAG,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAClL,QAAI;AACJ,QAAI,KAAK,SAAS;AAChB,UAAI,KAAK,gBAAgB;AACvB,cAAM,mBAAmB,KAAK;AAC9B,cAAM,gBAAgB,KAAK;AAC3B,0BAAkB,KAAK,KAAK,MAAM,mBAAmB,YAAY;AAAA,UAC/D,MAAM,OAAO,OAAO;AAClB,kBAAM,KAAK,iBAAiB,MAAM,CAAC,aAAa,CAAC;AACjD,kBAAM,KAAK,IAAI,KAAK,EAAE,MAAM,CAAC,aAAa,CAAC;AAC3C,kBAAM,SAAS,iBAAiB,MAAM,CAAC,gBAAgB,CAAC,CAAC;AACzD,mBAAO,qBAAqB,qBAAqB,IAAI,EAAE,GAAG,MAAM;AAAA,UAClE;AAAA,QACF,GAAG,GAAG,YAAY,cAAc,IAAI;AAAA,MACtC,OAAO;AACL,0BAAkB,KAAK;AAAA,MACzB;AACA,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,QAAQ,CAAC,GAAG,MAAM,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAC7H,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,eAAS;AACT,UAAI,OAAO,WAAW,GAAG;AACvB,cAAM,IAAI,WAAW,wDAAwD,OAAO,SAAS;AAAA,MAC/F;AACA,UAAI,WAAW,OAAO;AACtB,YAAM,WAAW,OAAO;AACxB,eAAS,OAAO;AAChB,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,KAAK,KAAK,eAAe,MAAM;AACpE,aAAK,cAAc,oBAAoB;AAAA,UACrC,MAAM,MAAM,SAAS,MAAM;AAAA,UAC3B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,KAAK,KAAK,wBAAwB,MAAM;AAC/F,aAAK,uBAAuB,oBAAoB;AAAA,UAC9C,MAAM,MAAM,SAAS,QAAQ;AAAA,UAC7B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,YAAM,SAAS,KAAK;AACpB,YAAM,YAAY,KAAK;AACvB,UAAI;AACJ,UAAI;AACJ,UAAI;AACJ,UAAI;AACJ,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,GAAG;AACxC,iBAAS,IAAI,QAAQ,OAAO,EAAE;AAAA,MAChC;AACA,UAAI,IAAI,KAAK,QAAQ,KAAK,OAAO,KAAK,CAAC;AACvC,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,GAAG;AAC1D,mBAAW,IAAI,UAAU,UAAU,EAAE;AAAA,MACvC;AACA,UAAI,KAAK,GAAG,KAAK,UAAU,KAAK,gBAAgB,KAAK,CAAC,CAAC;AACvD,UAAI,KAAK,SAAS;AAChB,YAAI,QAAQ,GAAG,KAAK,KAAK,KAAK,CAAC;AAAA,MACjC;AACA,YAAM,CAAC,IAAI,IAAI,IAAI,EAAE,IAAI,MAAM,GAAG,GAAG,EAAE,OAAO,CAAC;AAC/C,WAAK,KAAK,oBAAoB,MAAM,EAAE;AACtC,UAAI,KAAK,oBAAoB,MAAM,EAAE;AACrC,UAAI,KAAK,IAAI,GAAG,QAAQ,GAAG,IAAI,IAAI,KAAK,WAAW,MAAM,EAAE,CAAC,CAAC;AAC7D,UAAI,KAAK,oBAAoB,MAAM,EAAE;AACrC,YAAM,IAAI,IAAI,GAAG,KAAK,WAAW,MAAM,CAAC,CAAC;AACzC,aAAO,CAAC,GAAG,GAAG,CAAC;AAAA,IACjB,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,gBAAgB,KAAK;AAAA,MACrB,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,sBAAsB,qBAAqB,KAAK,oBAAoB;AAAA,MACpE,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,MAC3D,qBAAqB,oBAAoB,KAAK,mBAAmB;AAAA,MACjE,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,MACvD,SAAS,KAAK;AAAA,MACd,kBAAkB,KAAK;AAAA,MACvB,gBAAgB,KAAK;AAAA,IACvB;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,OAAO,cAAc,IAAI;AAAA,EAC3B,YAAY,MAAM;AAChB,QAAI,KAAK,mBAAmB,GAAG;AAC7B,cAAQ,KAAK,gHAAgH;AAAA,IAC/H;AACA,SAAK,OAAO,IAAI,SAAS,IAAI;AAC7B,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,KAAK,eAAe,MAAM;AACjC,gBAAQ,KAAK,KAAK,WAAW;AAC7B,aAAK,KAAK,cAAc;AAAA,MAC1B;AACA,UAAI,KAAK,KAAK,wBAAwB,MAAM;AAC1C,gBAAQ,KAAK,KAAK,oBAAoB;AACtC,aAAK,KAAK,uBAAuB;AAAA,MACnC;AACA,YAAMV,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,YAAM,eAAe,UAAU,OAAO,OAAO,OAAO;AACpD,aAAO,MAAM,KAAK,QAAQ,EAAE,MAAAA,OAAM,UAAU,aAAa,CAAC;AAAA,IAC5D,CAAC;AAAA,EACH;AAAA,EACA,OAAO,WAAW,KAAKU,SAAQ;AAC7B,QAAIA,QAAO,qBAAqB,GAAG;AACjC,MAAAA,QAAO,oBAAoB;AAAA,IAC7B;AACA,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,QAAQ,KAAK;AAAA,EACpB;AAAA,EACA,IAAI,YAAY;AACd,UAAM,YAAY,CAAC;AACnB,eAAW,QAAQ,KAAK,MAAM,MAAM,EAAE,QAAQ,GAAG;AAC/C,UAAI,MAAM,QAAQ,KAAK,SAAS,GAAG;AACjC,kBAAU,KAAK,GAAG,KAAK,SAAS;AAAA,MAClC,OAAO;AACL,kBAAU,KAAK,KAAK,SAAS;AAAA,MAC/B;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS;AACT,UAAI,SAAS,OAAO,MAAM,CAAC;AAC3B,YAAM,eAAe,CAAC;AACtB,iBAAW,QAAQ,KAAK,MAAM,MAAM,EAAE,QAAQ,GAAG;AAC/C,YAAI,MAAM,QAAQ,KAAK,SAAS,GAAG;AACjC,uBAAa,KAAK,OAAO,OAAO,GAAG,KAAK,UAAU,MAAM,CAAC;AAAA,QAC3D,OAAO;AACL,uBAAa,KAAK,OAAO,OAAO,GAAG,CAAC,CAAC;AAAA,QACvC;AAAA,MACF;AACA,mBAAa,QAAQ;AACrB,YAAM,kBAAkB,CAAC;AACzB,UAAI;AACJ,eAAS,KAAK,GAAG,KAAK,KAAK,MAAM,QAAQ,EAAE,IAAI;AAC7C,cAAM,OAAO,KAAK,MAAM;AACxB,iBAAS,aAAa;AACtB,YAAI,OAAO,GAAG;AACZ,uBAAa,CAAC,OAAO,EAAE,EAAE,OAAO,MAAM;AAAA,QACxC,OAAO;AACL,uBAAa,CAAC,WAAW,EAAE,EAAE,OAAO,MAAM;AAAA,QAC5C;AACA,qBAAa,KAAK,KAAK,YAAY,MAAM;AACzC,wBAAgB,KAAK,WAAW,MAAM,CAAC,CAAC;AAAA,MAC1C;AACA,eAAS,CAAC;AACV,iBAAW,cAAc,gBAAgB,MAAM,EAAE,QAAQ,GAAG;AAC1D,eAAO,KAAK,GAAG,UAAU;AAAA,MAC3B;AACA,aAAO,CAAC,WAAW,EAAE,EAAE,OAAO,MAAM;AAAA,IACtC,CAAC;AAAA,EACH;AAAA,EACA,MAAM,YAAY;AAChB,QAAI,gBAAgB,UAAU,GAAG;AAC/B,mBAAa,WAAW;AAAA,IAC1B;AACA,iBAAa;AACb,QAAI;AACJ,SAAK,MAAM,QAAQ,CAAC,MAAM,OAAO;AAC/B,gBAAU,WAAW,MAAM,MAAM;AAC/B,aAAK,MAAM,UAAU;AACrB,YAAI,MAAM,QAAQ,KAAK,SAAS,GAAG;AACjC,sBAAY,KAAK,UAAU;AAAA,QAC7B,OAAO;AACL,sBAAY,KAAK;AAAA,QACnB;AACA,qBAAa,CAAC,WAAW,IAAI,SAAS;AAAA,MACxC,CAAC;AAAA,IACH,CAAC;AACD,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAM,gBAAgB,CAAC,SAAS;AAC9B,aAAO;AAAA,QACL,aAAa,KAAK,aAAa;AAAA,QAC/B,UAAU,KAAK,UAAU;AAAA,MAC3B;AAAA,IACF;AACA,UAAM,cAAc,KAAK,MAAM,IAAI,aAAa;AAChD,UAAMA,UAAS,EAAE,SAAS,YAAY;AACtC,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ,gBAAgB,CAAC,GAAG;AACjD,UAAM,QAAQ,CAAC;AACf,eAAW,cAAcA,QAAO,UAAU;AACxC,YAAM,KAAK,YAAY,YAAY,aAAa,CAAC;AAAA,IACnD;AACA,WAAO,IAAI,IAAI,EAAE,MAAM,CAAC;AAAA,EAC1B;AAAA,EACA,IAAI,mBAAmB;AACrB,QAAI,CAAC,KAAK,WAAW;AACnB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,UAAU,CAAC;AACjB,eAAW,QAAQ,KAAK,OAAO;AAC7B,cAAQ,KAAK,GAAG,KAAK,gBAAgB;AAAA,IACvC;AACA,WAAO;AAAA,EACT;AAAA,EACA,IAAI,sBAAsB;AACxB,UAAM,UAAU,CAAC;AACjB,eAAW,QAAQ,KAAK,OAAO;AAC7B,cAAQ,KAAK,GAAG,KAAK,mBAAmB;AAAA,IAC1C;AACA,QAAI,CAAC,KAAK,WAAW;AACnB,YAAM,mBAAmB,CAAC;AAC1B,iBAAW,QAAQ,KAAK,OAAO;AAC7B,yBAAiB,KAAK,GAAG,KAAK,gBAAgB;AAAA,MAChD;AACA,aAAO,iBAAiB,OAAO,OAAO;AAAA,IACxC;AACA,WAAO;AAAA,EACT;AAAA,EACA,aAAa;AACX,UAAM,UAAU,CAAC;AACjB,eAAW,QAAQ,KAAK,OAAO;AAC7B,cAAQ,KAAK,GAAG,KAAK,OAAO;AAAA,IAC9B;AACA,WAAO,cAAc,OAAO;AAAA,EAC9B;AAAA,EACA,WAAW,SAAS;AAClB,UAAM,SAAS,CAAC;AAChB,eAAW,QAAQ,KAAK,OAAO;AAC7B,YAAM,YAAY,KAAK,QAAQ;AAC/B,YAAM,eAAe,QAAQ,OAAO,SAAS;AAC7C,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC/C,eAAO,KAAK,CAAC,KAAK,QAAQ,KAAK,aAAa,GAAG,CAAC;AAAA,MAClD;AAAA,IACF;AACA,kBAAc,MAAM;AAAA,EACtB;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,MAAM,OAAO,MAAM,WAAW,OAAO,OAAOR,UAAS,GAAG,YAAY,IAAI;AAChF,QAAM,gBAAgB,MAAM,eAAe,OAAO,YAAY,MAAM,GAAG,IAAI,IAAI,SAAS,MAAM,GAAG,IAAI;AACrG,QAAM,aAAa,MAAM,aAAa,eAAe,OAAO,QAAQ;AACpE,MAAI,CAACA,WAAUA,WAAU,GAAG;AAC1B,WAAO,KAAK,WAAW,EAAE,MAAM,CAAC;AAAA,EAClC;AACA,QAAM,QAAQ,MAAMA,OAAM,EAAE,KAAK,MAAM,EAAE,IAAI,UAAU;AACvD,SAAO,MAAM,IAAI,CAAC,MAAM,KAAK,EAAE,MAAM,CAAC,CAAC;AACzC;AAGA,IAAI,SAAS,SAAS,IAAI,IAAI;AAC5B,MAAI,KAAK,CAAC;AACV,WAAS,MAAM;AACb,QAAI,OAAO,UAAU,eAAe,KAAK,IAAI,EAAE,KAAK,GAAG,QAAQ,EAAE,IAAI;AACnE,SAAG,MAAM,GAAG;AAChB,MAAI,MAAM,QAAQ,OAAO,OAAO,0BAA0B;AACxD,aAAS,KAAK,GAAG,KAAK,OAAO,sBAAsB,EAAE,GAAG,KAAK,GAAG,QAAQ,MAAM;AAC5E,UAAI,GAAG,QAAQ,GAAG,GAAG,IAAI,KAAK,OAAO,UAAU,qBAAqB,KAAK,IAAI,GAAG,GAAG;AACjF,WAAG,GAAG,OAAO,GAAG,GAAG;AAAA,IACvB;AACF,SAAO;AACT;AACA,IAAI,YAAY,cAAc,IAAI;AAAA,EAChC,YAAY,MAAM;AAChB,QAAI,KAAK,QAAQ;AACf,YAAM,IAAI,oBAAoB,oDAAoD;AAAA,IACpF;AACA,QAAI,MAAM,QAAQ,KAAK,IAAI,GAAG;AAC5B,YAAM,IAAI,oBAAoB,gEAAgE;AAAA,IAChG;AACA,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,KAAK,eAAe,MAAM;AACjC,gBAAQ,KAAK,KAAK,WAAW;AAC7B,aAAK,KAAK,cAAc;AAAA,MAC1B;AACA,UAAI,KAAK,KAAK,wBAAwB,MAAM;AAC1C,gBAAQ,KAAK,KAAK,oBAAoB;AACtC,aAAK,KAAK,uBAAuB;AAAA,MACnC;AACA,UAAI,UAAU,OAAO,cAAc;AACjC,cAAM,IAAI,WAAW,2CAA2C;AAAA,MAClE;AACA,YAAMF,QAAO,UAAU,OAAO,OAAO,OAAO;AAC5C,YAAM,WAAW,UAAU,OAAO,OAAO,OAAO;AAChD,YAAM,eAAe,UAAU,OAAO,OAAO,OAAO;AACpD,aAAO,MAAM,KAAK,QAAQ,EAAE,MAAAA,OAAM,UAAU,aAAa,CAAC;AAAA,IAC5D,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,WAAW,KAAK,yBAAyB,UAAU;AACvD,QAAI,CAAC,KAAK,iBAAiB;AACzB,iBAAW,CAAC,SAAS,IAAI,GAAG,SAAS,MAAM,CAAC,CAAC;AAAA,IAC/C;AACA,QAAI,KAAK,aAAa;AACpB,iBAAW,CAAC,UAAU,GAAG,MAAM,CAAC,EAAE,KAAK,CAAC,WAAW,IAAI,GAAG,SAAS,MAAM,EAAE,CAAC,CAAC,CAAC;AAAA,IAChF;AACA,WAAO;AAAA,EACT;AAAA,EACA,gBAAgB,QAAQ;AACtB,WAAO,KAAK,MAAM;AAChB,YAAM,EAAE,UAAU,IAAI,KAAK;AAC3B,YAAM,aAAa,OAAO;AAC1B,YAAM,cAAc,KAAK,yBAAyB,UAAU;AAC5D,YAAM,aAAa,CAAC,YAAY,IAAI,GAAG,YAAY,MAAM,CAAC,CAAC;AAC3D,YAAM,eAAe,MAAM,UAAU;AACrC,UAAI,MAAM,QAAQ,SAAS,GAAG;AAC5B,eAAO,MAAM,UAAU,MAAM,EAAE,KAAK,YAAY;AAAA,MAClD;AACA,aAAO,CAAC,YAAY;AAAA,IACtB,CAAC;AAAA,EACH;AAAA,EACA,YAAY,QAAQ,WAAW,OAAO;AACpC,SAAK,MAAM;AACT,UAAI,CAAC,KAAK,UAAU;AAClB,cAAM,IAAI,eAAe,iEAAiE;AAAA,MAC5F;AACA,YAAM,aAAa,KAAK,UAAU,GAAG;AACrC,YAAM,cAAc,KAAK,yBAAyB,UAAU;AAC5D,YAAM,aAAa,CAAC,YAAY,IAAI,GAAG,YAAY,MAAM,CAAC,CAAC;AAC3D,YAAM,YAAY,WAAW;AAC7B,UAAI,aAAa,MAAM;AACrB,cAAM,IAAI,WAAW,uUAAuU;AAAA,MAC9V;AACA,UAAI,KAAK,UAAU,KAAK,MAAM;AAC5B,YAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAK,UAAU,KAAK,KAAK,UAAU,IAAI,MAAM,MAAM,UAAU,CAAC;AAAA,QAChE,OAAO;AACL,eAAK,UAAU,CAAC,MAAM,UAAU,CAAC;AAAA,QACnC;AAAA,MACF,WAAW,UAAU,MAAM;AACzB,gBAAQ,KAAK,OAAO;AACpB,YAAI,KAAK,cAAc,MAAM;AAC3B,kBAAQ,KAAK,UAAU;AACvB,eAAK,aAAa,CAAC;AAAA,QACrB;AACA,YAAI,MAAM,QAAQ,KAAK,KAAK,SAAS,GAAG;AACtC,eAAK,UAAU,KAAK,KAAK,UAAU,IAAI,MAAM,MAAM,UAAU,CAAC;AAAA,QAChE,OAAO;AACL,eAAK,QAAQ,KAAK,MAAM,UAAU;AAAA,QACpC;AAAA,MACF,OAAO;AACL,YAAI,CAAC,MAAM,QAAQ,MAAM,GAAG;AAC1B,mBAAS,CAAC,MAAM;AAAA,QAClB;AACA,YAAI,OAAO,WAAW,KAAK,QAAQ,QAAQ;AACzC,gBAAM,IAAI,WAAW,SAAS,KAAK,gBAAgB,KAAK,QAAQ,oCAAoC,OAAO,0CAA0C,QAAQ;AAAA,QAC/J;AACA,YAAI,UAAU;AACZ,eAAK,WAAW,KAAK,KAAK,QAAQ,MAAM,CAAC;AAAA,QAC3C,OAAO;AACL,kBAAQ,KAAK,OAAO;AAAA,QACtB;AACA,iBAASK,SAAQ,GAAGA,SAAQ,KAAK,QAAQ,QAAQ,EAAEA,QAAO;AACxD,gBAAM,QAAQ,OAAOA;AACrB,gBAAM,gBAAgB;AACtB,cAAI,CAAC,aAAa,YAAY,MAAM,OAAO,aAAa,GAAG;AACzD,kBAAM,IAAI,WAAW,SAASA,qCAAoC,KAAK,wBAAwB,iCAAiC,MAAM,OAAO;AAAA,UAC/I;AACA,eAAK,QAAQA,UAAS;AAAA,QACxB;AAAA,MACF;AACA,WAAK,UAAU,KAAK,QAAQ,IAAI,CAAC,UAAU,KAAK,MAAM,MAAM,CAAC,CAAC;AAAA,IAChE,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB,YAAY;AACnC,UAAM,EAAE,YAAY,SAAS,YAAY,SAAAkB,UAAS,SAAAf,UAAS,aAAa,IAAI,KAAK;AACjF,UAAM,kBAAkB,eAAe;AACvC,UAAM,IAAI,WAAW,kBAAkB,IAAI;AAC3C,UAAM,IAAI,WAAW,kBAAkB,IAAI;AAC3C,UAAM,OAAO,iBAAiB,GAAG,WAAW,IAAIe,UAASf,SAAQ,IAAI,aAAa,EAAE;AACpF,UAAM,OAAO,iBAAiB,GAAG,WAAW,IAAIe,UAASf,SAAQ,IAAI,aAAa,EAAE;AACpF,UAAM,WAAW;AAAA,MACf,GAAG,WAAW,MAAM,GAAG,CAAC;AAAA,MACxB,GAAG,kBAAkB,CAAC,SAAS,MAAM,IAAI,IAAI,CAAC,MAAM,MAAM,OAAO;AAAA,IACnE;AACA,WAAO;AAAA,EACT;AACF;AACA,UAAU,YAAY;AACtB,IAAI,iBAAiB,cAAc,SAAS;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,EAAE,SAAS,YAAY,SAAAA,UAAS,SAAAe,UAAS,YAAY,aAAa,IAAI;AAC5E,UAAM,OAAO,OAAO,CAAC,GAAG,MAAM,EAAE,OAAO,QAAQ,CAAC,CAAC;AACjD,SAAK,UAAU;AACf,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,aAAa,eAAe,YAAY,GAAG,YAAY;AAC5D,SAAK,WAAW,QAAQ,CAAC5B,UAAS,sBAAsBA,OAAM,YAAY,CAAC;AAC3E,SAAK,UAAU,eAAea,YAAW,GAAG,GAAG,SAAS;AACxD,SAAK,QAAQ,QAAQ,CAAC,WAAW,sBAAsB,QAAQ,SAAS,CAAC;AACzE,SAAK,UAAUe,YAAW;AAC1B,qBAAiB,KAAK,OAAO;AAC7B,SAAK,aAAa,cAAc;AAChC,oBAAgB,KAAK,UAAU;AAC/B,SAAK,eAAe,eAAe,gBAAgB,GAAG,GAAG,cAAc;AACvE,SAAK,aAAa,QAAQ,CAAC,SAAS,sBAAsB,MAAM,cAAc,CAAC;AAAA,EACjF;AAAA,EACA,MAAM,YAAY;AAChB,QAAI;AACJ,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,KAAK,eAAe,kBAAkB,IAAI,WAAW,SAAS;AAClF,QAAI,WAAW,gBAAgB,MAAM;AACnC,YAAM,IAAI,WAAW,+DAA+D,WAAW,cAAc;AAAA,IAC/G;AACA,UAAM,WAAW,WAAW;AAC5B,UAAM,eAAe;AACrB,UAAM,cAAc,KAAK,WAAW,OAAO,CAAC,UAAU,KAAK,UAAU,YAAY,CAAC;AAClF,SAAK,SAAS,KAAK,UAAU,UAAU,aAAa,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACrI,UAAM,uBAAuB,KAAK,WAAW,OAAO,CAAC,KAAK,SAAS,KAAK,UAAU,YAAY,CAAC;AAC/F,SAAK,kBAAkB,KAAK,UAAU,oBAAoB,sBAAsB,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,MAAM,KAAK,mBAAmB;AAC1K,QAAI,KAAK,SAAS;AAChB,UAAI;AACJ,UAAI,KAAK,gBAAgB;AACvB,cAAMxB,SAAQ,KAAK;AACnB,cAAM,UAAU,KAAK;AACrB,0BAAkB,KAAK,KAAK,MAAM,mBAAmB,YAAY;AAAA,UAC/D,MAAM,OAAO,OAAO;AAClB,kBAAM,QAAQA,OAAM,MAAM,CAAC,OAAO,CAAC;AACnC,kBAAM,QAAQ,MAAM,CAAC,OAAO,CAAC;AAC7B,kBAAM,YAAYA,OAAM,MAAM,CAAC,UAAU,CAAC,CAAC;AAC3C,mBAAO,YAAY,CAAC,OAAO,OAAO,SAAS,CAAC;AAAA,UAC9C;AAAA,QACF,GAAG,GAAG,YAAY,cAAc,IAAI;AAAA,MACtC,OAAO;AACL,0BAAkB,KAAK;AAAA,MACzB;AACA,WAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,UAAU,YAAY,GAAG,MAAM,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IAC1I;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,OAAO,WAAW,GAAG;AACvB,cAAM,IAAI,WAAW,8DAA8D,OAAO,SAAS;AAAA,MACrG;AACA,YAAM,WAAW,OAAO,eAAe;AACvC,YAAM,IAAI,OAAO;AACjB,YAAM,WAAW,OAAO;AACxB,YAAM,WAAW,OAAO;AACxB,YAAM,eAAe;AACrB,UAAI,IAAI,KAAK,WAAW,KAAK,UAAU,KAAK,KAAK,eAAe,MAAM;AACpE,aAAK,cAAc,oBAAoB;AAAA,UACrC,MAAM,MAAM,SAAS,CAAC;AAAA,UACtB,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,YAAM,cAAc,KAAK;AACzB,YAAM,eAAe,CAAC,IAAIC,OAAMK,WAAU;AACxC,YAAI,CAACL,SAAQ,CAACA,MAAKK,SAAQ;AACzB,iBAAO;AAAA,QACT;AACA,eAAO,IAAIL,MAAKK,SAAQ,EAAE;AAAA,MAC5B;AACA,UAAI,KAAK,aAAa,GAAG,aAAa,CAAC;AACvC,UAAI,KAAK,aAAa,GAAG,aAAa,CAAC;AACvC,UAAI,KAAK,aAAa,GAAG,aAAa,CAAC;AACvC,UAAI,KAAK,aAAa,GAAG,aAAa,CAAC;AACvC,UAAI,IAAI,KAAK,oBAAoB,KAAK,mBAAmB,KAAK,KAAK,wBAAwB,MAAM;AAC/F,aAAK,uBAAuB,oBAAoB;AAAA,UAC9C,MAAM,MAAM,SAAS,QAAQ;AAAA,UAC7B,MAAM,KAAK;AAAA,UACX;AAAA,UACA,OAAO;AAAA,UACP,aAAa,KAAK;AAAA,QACpB,CAAC;AAAA,MACH;AACA,YAAM,iBAAiB,KAAK;AAC5B,UAAI,KAAK,aAAa,UAAU,gBAAgB,CAAC;AACjD,UAAI,KAAK,aAAa,UAAU,gBAAgB,CAAC;AACjD,UAAI,KAAK,aAAa,UAAU,gBAAgB,CAAC;AACjD,UAAI,KAAK,aAAa,UAAU,gBAAgB,CAAC;AACjD,YAAM,oBAAoB;AAC1B,YAAM,CAAC,SAAS,SAAS,SAAS,OAAO,IAAI,MAAM,KAAK,OAAO,KAAK,GAAG,cAAc,iBAAiB;AACtG,YAAM,CAAC,OAAO,OAAO,OAAO,KAAK,IAAI,KAAK,UAAU,MAAM,KAAK,KAAK,KAAK,GAAG,YAAY,IAAI,CAAC,MAAM,MAAM,MAAM,IAAI;AACnH,WAAK,KAAK,UAAU,IAAI,SAAS,OAAO,KAAK,OAAO;AACpD,WAAK,KAAK,UAAU,IAAI,SAAS,OAAO,KAAK,OAAO;AACpD,WAAK,KAAK,UAAU,IAAI,SAAS,OAAO,KAAK,OAAO;AACpD,WAAK,KAAK,UAAU,IAAI,SAAS,OAAO,KAAK,OAAO;AACpD,YAAM,CAAC,YAAY,YAAY,YAAY,UAAU,IAAI,MAAM,KAAK,gBAAgB,KAAK,GAAG,cAAc,iBAAiB;AAC3H,WAAK,KAAK,cAAc,IAAI,UAAU;AACtC,WAAK,KAAK,cAAc,IAAI,UAAU;AACtC,WAAK,KAAK,cAAc,IAAI,UAAU;AACtC,WAAK,KAAK,cAAc,IAAI,UAAU;AACtC,YAAM,KAAK,KAAK,oBAAoB,MAAM,KAAK,IAAI,EAAE,CAAC;AACtD,YAAM,IAAI,KAAK,oBAAoB,MAAM,KAAK,IAAI,EAAE,CAAC;AACrD,YAAM,IAAI,KAAK,IAAI,GAAG,QAAQ,GAAG,IAAI,IAAI,KAAK,WAAW,MAAM,KAAK,IAAI,EAAE,CAAC,CAAC,CAAC;AAC7E,YAAM,IAAI,IAAI,KAAK,oBAAoB,MAAM,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,WAAW,MAAM,CAAC,CAAC;AACpF,aAAO,CAAC,GAAG,GAAG,CAAC;AAAA,IACjB,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAM,KAAK,MAAM,UAAU,GAAG,EAAE,SAAS,EAAE,IAAI,IAAI,aAAa,OAAO,IAAI,CAAC,OAAO,CAAC;AACpF,UAAMK,UAAS;AAAA,MACb,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,cAAc,KAAK;AAAA,MACnB,SAAS,KAAK;AAAA,IAChB;AACA,WAAO,OAAO,OAAO,CAAC,GAAG,YAAYA,OAAM;AAAA,EAC7C;AAAA,EACA,UAAU,GAAG,GAAG,GAAGa,UAAS;AAC1B,UAAM,MAAM,OAAO,GAAG,GAAG,KAAK,SAASA,YAAW,SAAS,KAAK,eAAe,kBAAkB,SAAS,QAAQ,KAAK,YAAY;AACnI,QAAI,GAAG;AACL,aAAO,QAAQ,KAAK,GAAG,KAAK,UAAU;AAAA,IACxC;AACA,WAAO;AAAA,EACT;AAAA,EACA,cAAc,GAAG,GAAG;AAClB,UAAMf,WAAU;AAChB,WAAO,OAAO,GAAG,GAAGA,UAAS,QAAQ,KAAK,eAAe,kBAAkB,SAAS,MAAM;AAAA,EAC5F;AACF;AACA,eAAe,YAAY;AAC3B,sBAAsB,cAAc,cAAc;AAClD,IAAI,aAAa,cAAc,UAAU;AAAA,EACvC,YAAY,MAAM;AAChB,UAAM,OAAO,IAAI,eAAe,IAAI;AACpC,UAAM,OAAO,OAAO,CAAC,GAAG,MAAM,EAAE,KAAK,CAAC,CAAC;AAAA,EACzC;AAAA,EACA,OAAO,WAAW,KAAKE,SAAQ;AAC7B,WAAO,IAAI,IAAIA,OAAM;AAAA,EACvB;AACF;AACA,WAAW,YAAY;AACvB,sBAAsB,cAAc,UAAU;AAG9C,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,MAAM,CAAC,GAAG,CAAC;AAC9C,SAAK,aAAa,KAAK;AACvB,SAAK,OAAO,KAAK;AACjB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,cAAc,QAAQ;AACpB,QAAI,KAAK,cAAc,MAAM;AAC3B,aAAO,KAAK;AAAA,IACd;AACA,UAAM,aAAa,OAAO;AAC1B,UAAM,aAAa,CAAC;AACpB,aAAS,KAAK,GAAG,KAAK,KAAK,WAAW,QAAQ,EAAE,IAAI;AAClD,iBAAW,KAAK,KAAK,WAAW,OAAO,OAAO,WAAW,MAAM,KAAK,WAAW,GAAG;AAAA,IACpF;AACA,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,UAAI,IAAI,KAAK,QAAQ,KAAK,OAAO,GAAG;AAClC,cAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,cAAM,aAAa,KAAK,cAAc,MAAM;AAC5C,cAAM,SAAS,aAAa,MAAM,SAAS,QAAQ,KAAK,MAAM,YAAY,KAAK,IAAI,GAAG,MAAM,QAAQ,QAAQ;AAC5G,eAAO;AAAA,MACT;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,MACX,YAAY,KAAK;AAAA,MACjB,MAAM,KAAK;AAAA,IACb;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,UAAU;AACR,WAAO,MAAM,QAAQ;AAAA,EACvB;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,mBAAmB,cAAc,QAAQ;AAAA,EAC3C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EACA,cAAc,QAAQ;AACpB,UAAM,aAAa,OAAO;AAC1B,WAAO,CAAC,WAAW,IAAI,GAAG,WAAW,EAAE;AAAA,EACzC;AACF;AACA,iBAAiB,YAAY;AAC7B,sBAAsB,cAAc,gBAAgB;AACpD,IAAI,QAAQ,cAAc,MAAM;AAAA,EAC9B,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,aAAa;AAClB,SAAK,UAAU;AACf,SAAK,SAAS;AACd,SAAK,OAAO;AACZ,SAAK,6BAA6B;AAClC,SAAK,2BAA2B;AAChC,QAAI,KAAK,mBAAmB,QAAQ,KAAK,cAAc,QAAQ,KAAK,YAAY,MAAM;AACpF,UAAI,YAAY;AAChB,UAAI,KAAK,aAAa,MAAM;AAC1B,oBAAY,KAAK;AAAA,MACnB;AACA,WAAK,kBAAkB,CAAC,WAAW,KAAK,QAAQ;AAAA,IAClD;AACA,SAAK,QAAQ,KAAK;AAClB,0BAAsB,KAAK,OAAO,OAAO;AACzC,SAAK,aAAa,cAAc,KAAK,UAAU;AAC/C,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,KAAK;AAAA,IACtB;AACA,SAAK,oBAAoB,eAAe,KAAK,qBAAqB,KAAK,0BAA0B;AACjG,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,KAAK,wBAAwB;AAC3F,SAAK,mBAAmB,cAAc,KAAK,gBAAgB;AAC3D,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,oBAAoB,eAAe,KAAK,iBAAiB;AAC9D,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,sBAAsB,eAAe,KAAK,mBAAmB;AAClE,SAAK,kBAAkB;AACvB,SAAK,YAAY,CAAC,EAAE,SAAS,EAAE,CAAC;AAAA,EAClC;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,eAAe,WAAW,WAAW,SAAS;AACpD,QAAI,KAAK,UAAU,MAAM;AACvB,WAAK,SAAS,KAAK,UAAU,UAAU,CAAC,cAAc,KAAK,KAAK,GAAG,MAAM,KAAK,mBAAmB,KAAK,mBAAmB,MAAM,KAAK,gBAAgB;AACpJ,UAAI,KAAK,SAAS;AAChB,aAAK,OAAO,KAAK,UAAU,QAAQ,CAAC,KAAK,KAAK,GAAG,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,MAC9H;AAAA,IACF;AACA,SAAK,YAAY,CAAC,EAAE,SAAS,GAAG,MAAM,EAAE,CAAC,KAAK,aAAa,EAAE,CAAC;AAC9D,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,WAAW,MAAM;AACrC,gBAAY,YAAY,SAAS,KAAK,KAAK;AAC3C,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,sBAAsB,2BAA2B,KAAK,WAAW,aAAa,CAAC;AACrF,UAAI;AACJ,UAAI,uBAAuB,MAAM;AAC/B,iBAAS,KAAK,QAAQ,KAAK,OAAO,KAAK,GAAG,qBAAqB,KAAK,OAAO,KAAK,KAAK,KAAK,IAAI,IAAI;AAAA,MACpG,OAAO;AACL,iBAAS,KAAK,QAAQ,KAAK,OAAO,KAAK,CAAC;AACxC,YAAI,KAAK,QAAQ,MAAM;AACrB,mBAAS,QAAQ,QAAQ,KAAK,KAAK,KAAK,CAAC;AAAA,QAC3C;AACA,YAAI,KAAK,cAAc,MAAM;AAC3B,mBAAS,KAAK,WAAW,MAAM,MAAM;AAAA,QACvC;AAAA,MACF;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,YAAY,oBAAoB,KAAK,UAAU;AAAA,MAC/C,SAAS,KAAK;AAAA,MACd,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,mBAAmB,qBAAqB,KAAK,iBAAiB;AAAA,MAC9D,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,kBAAkB,oBAAoB,KAAK,gBAAgB;AAAA,MAC3D,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,IACzD;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,MAAM,YAAY;AAClB,sBAAsB,cAAc,KAAK;AACzC,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,WAAO,QAAQ,CAAC;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,EAAE,SAAS,EAAE,CAAC;AAChC,SAAK,aAAa,KAAK;AAAA,EACzB;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,eAAW,OAAO,WAAW,MAAM,CAAC,GAAG;AACrC,UAAI,OAAO,MAAM;AACf,cAAM,IAAI,WAAW,iEAAiE,WAAW,MAAM,CAAC,kHAAkH;AAAA,MAC5N;AAAA,IACF;AACA,WAAO,CAAC,WAAW,IAAI,UAAU,YAAY,CAAC,CAAC;AAAA,EACjD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,UAAI,SAAS,oBAAoB,MAAM;AACvC,UAAI,KAAK,eAAe,mBAAmB,OAAO,OAAO,GAAG;AAC1D,cAAM,cAAc,CAAC,CAAC;AACtB,iBAAS,KAAK,GAAG,KAAK,OAAO,MAAM,EAAE,IAAI;AACvC,sBAAY,KAAK,EAAE;AAAA,QACrB;AACA,oBAAY,KAAK,CAAC;AAClB,iBAAS,UAAU,QAAQ,WAAW;AAAA,MACxC;AACA,aAAO,aAAa,MAAM;AAAA,IAC5B,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,CAAC;AAChB,QAAI,KAAK,cAAc,MAAM;AAC3B,MAAAA,QAAO,gBAAgB,KAAK;AAAA,IAC9B;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,cAAc,cAAc,MAAM;AAAA,EACpC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,aAAa,cAAc,KAAK,UAAU;AAAA,EACjD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,aAAO,KAAK,WAAW,MAAM,MAAM;AAAA,IACrC,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS,EAAE,YAAY,oBAAoB,KAAK,UAAU,EAAE;AAClE,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,IAAI,eAAe,cAAc,MAAM;AAAA,EACrC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,IAAI,KAAK;AACd,SAAK,YAAY,CAAC,EAAE,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO,CAAC,WAAW,IAAI,KAAK,GAAG,WAAW,EAAE;AAAA,EAC9C;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,aAAO,OAAO,QAAQ,KAAK,CAAC;AAAA,IAC9B,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,GAAG,KAAK;AAAA,IACV;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,cAAc,KAAK;AACxB,aAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,EAAE,IAAI;AACnD,UAAI,KAAK,UAAU,KAAK,YAAY,GAAG,GAAG;AACxC,aAAK,YAAY,MAAM;AAAA,MACzB;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU,KAAK;AACb,WAAO,MAAM,KAAK,OAAO;AAAA,EAC3B;AAAA,EACA,oBAAoB,YAAY,aAAa;AAC3C,UAAM,WAAW;AACjB,UAAM,aAAa,YAAY,MAAM;AACrC,QAAI,QAAQ;AACZ,QAAI,UAAU;AACd,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAM,MAAM,WAAW;AACvB,UAAI,KAAK,UAAU,GAAG,GAAG;AACvB,YAAI,YAAY,MAAM;AACpB,oBAAU;AAAA,QACZ,OAAO;AACL,gBAAM,IAAI,WAAW,0CAA0C;AAAA,QACjE;AAAA,MACF,OAAO;AACL,iBAAS;AAAA,MACX;AAAA,IACF;AACA,UAAM,eAAe,UAAU,UAAU;AACzC,QAAI,YAAY,MAAM;AACpB,UAAI,UAAU,KAAK,eAAe,UAAU,GAAG;AAC7C,cAAM,IAAI,WAAW,QAAQ;AAAA,MAC/B;AACA,iBAAW,WAAW,eAAe;AAAA,IACvC,WAAW,iBAAiB,OAAO;AACjC,YAAM,IAAI,WAAW,QAAQ;AAAA,IAC/B;AACA,WAAO;AAAA,EACT;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,iBAAiB;AACrB,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,UAAI,KAAK,UAAU,WAAW,GAAG,GAAG;AAClC,yBAAiB;AACjB;AAAA,MACF;AAAA,IACF;AACA,QAAI,gBAAgB;AAClB,aAAO,WAAW,MAAM,GAAG,CAAC,EAAE,OAAO,KAAK,WAAW;AAAA,IACvD,OAAO;AACL,aAAO,WAAW,MAAM,GAAG,CAAC,EAAE,OAAO,KAAK,oBAAoB,WAAW,MAAM,CAAC,GAAG,KAAK,WAAW,CAAC;AAAA,IACtG;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,aAAa,OAAO;AAC1B,YAAM,cAAc,WAAW,MAAM,GAAG,CAAC,EAAE,OAAO,KAAK,oBAAoB,WAAW,MAAM,CAAC,GAAG,KAAK,WAAW,CAAC;AACjH,aAAO,QAAQ,QAAQ,WAAW;AAAA,IACpC,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,aAAa,KAAK;AAAA,IACpB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,QAAI,KAAK,QAAQ,MAAM;AACrB,YAAM,IAAI,MAAM,iFAAiF;AAAA,IACnG;AACA,QAAI,CAAC,MAAM,QAAQ,KAAK,IAAI,GAAG;AAC7B,YAAM,IAAI,MAAM,sEAAsE,KAAK,eAAe;AAAA,IAC5G;AACA,UAAM,wBAAwB,OAAO,GAAG,KAAK,KAAK,SAAS,CAAC;AAC5D,QAAI,CAAC,aAAa,YAAY,KAAK,KAAK,MAAM,EAAE,KAAK,GAAG,qBAAqB,GAAG;AAC9E,YAAM,IAAI,MAAM,iCAAiC,KAAK,UAAU,KAAK,IAAI,IAAI,4DAA4D;AAAA,IAC3I;AACA,SAAK,OAAO,KAAK;AACjB,SAAK,qBAAqB,CAAC,CAAC,EAAE,OAAO,KAAK,IAAI;AAC9C,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,KAAK,KAAK,SAAS,EAAE,CAAC,CAAC;AAAA,EACjE;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,cAAc,WAAW,MAAM;AACrC,SAAK,KAAK,QAAQ,CAAC,KAAK,OAAO;AAC7B,kBAAY,KAAK,KAAK,WAAW;AAAA,IACnC,CAAC;AACD,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,UAAU,oBAAoB,MAAM,GAAG,KAAK,kBAAkB;AAAA,EACvE;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,IACb;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,QAAQ,OAAO,CAAC,IAAI,IAAI;AAC9B,SAAK,kBAAkB;AACvB,QAAI,QAAQ,MAAM;AAChB,WAAK,YAAY,KAAK,aAAa,OAAO,IAAI,KAAK;AAAA,IACrD,OAAO;AACL,WAAK,YAAY;AAAA,IACnB;AAAA,EACF;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS,EAAE,WAAW,KAAK,UAAU;AAC3C,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,YAAY,QAAQV,OAAM;AACxB,UAAM,SAAS,oBAAoB,MAAM;AACzC,UAAM,OAAO;AACb,WAAO,IAAI,SAAS,QAAQ,KAAK,SAAS,GAAG,IAAI;AAAA,EACnD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,OAAO;AACb,YAAM,WAAW;AACjB,YAAM,cAAc,IAAI,SAAS,QAAQ,KAAK,SAAS,GAAG,MAAM,QAAQ;AACxE,YAAM,SAAS,IAAI,QAAQ,KAAK,aAAa,OAAO,KAAK,CAAC;AAC1D,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAG3C,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,aAAa;AAClB,SAAK,iCAAiC;AACtC,QAAI,KAAK,mBAAmB,QAAQ,KAAK,cAAc,MAAM;AAC3D,UAAI,YAAY;AAChB,UAAI,KAAK,aAAa,MAAM;AAC1B,oBAAY,KAAK;AAAA,MACnB;AACA,UAAI,KAAK,eAAe,MAAM;AAC5B,aAAK,kBAAkB,CAAC,WAAW,IAAI;AAAA,MACzC,OAAO;AACL,aAAK,kBAAkB,CAAC,SAAS,EAAE,OAAO,OAAO,KAAK,WAAW,CAAC;AAAA,MACpE;AAAA,IACF;AACA,SAAK,WAAW,KAAK;AACrB,0BAAsB,KAAK,UAAU,UAAU;AAC/C,SAAK,YAAY,KAAK;AACtB,0BAAsB,KAAK,WAAW,WAAW;AACjD,SAAK,wBAAwB,eAAe,KAAK,yBAAyB,KAAK,8BAA8B;AAC7G,SAAK,wBAAwB,eAAe,KAAK,qBAAqB;AACtE,SAAK,sBAAsB,eAAe,KAAK,mBAAmB;AAClE,SAAK,uBAAuB,cAAc,KAAK,oBAAoB;AACnE,SAAK,WAAW,KAAK;AACrB,SAAK,kBAAkB,KAAK;AAC5B,SAAK,cAAc,KAAK;AAAA,EAC1B;AAAA,EACA,MAAM,YAAY;AAChB,SAAK,aAAa,KAAK,UAAU,cAAc,CAAC,KAAK,UAAU,KAAK,SAAS,GAAG,KAAK,OAAO,KAAK,uBAAuB,KAAK,uBAAuB,MAAM,KAAK,oBAAoB;AACnL,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,6BAA6B,YAAY;AAAA,EACzC;AAAA,EACA,YAAY,QAAQA,OAAM;AACxB,WAAO,KAAK,MAAM;AAChB,UAAI,CAAC,KAAK,UAAU;AAClB,eAAO;AAAA,MACT,OAAO;AACL,iBAAS,oBAAoB,MAAM;AACnC,eAAO,SAAS,QAAQ,UAAU,MAAM,CAAC;AAAA,MAC3C;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,KAAK,eAAe,MAAM;AAC5B,aAAO,CAAC,GAAG,YAAY,KAAK,SAAS;AAAA,IACvC;AACA,UAAM,SAAS,OAAO,KAAK,WAAW;AACtC,QAAI,OAAO,WAAW,WAAW,SAAS,GAAG;AAC3C,YAAM,IAAI,WAAW,oBAAoB,KAAK,mDAAmD,YAAY;AAAA,IAC/G,OAAO;AACL,UAAI,KAAK;AACT,eAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,EAAE,GAAG;AACtC,cAAM,KAAK,OAAO;AAClB,cAAM,KAAK,WAAW,IAAI;AAC1B,YAAI,MAAM,QAAQ,MAAM,QAAQ,OAAO,IAAI;AACzC,gBAAM,IAAI,WAAW,oBAAoB,KAAK,mDAAmD,YAAY;AAAA,QAC/G,WAAW,MAAM,MAAM;AACrB,iBAAO,MAAM;AAAA,QACf;AACA;AAAA,MACF;AAAA,IACF;AACA,WAAO,CAAC,WAAW,IAAI,GAAG,QAAQ,KAAK,SAAS;AAAA,EAClD;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,UAAI,SAAS,oBAAoB,MAAM;AACvC,UAAI,OAAO,UAAU,SAAS;AAC5B,iBAAS,MAAM,QAAQ,OAAO;AAAA,MAChC;AACA,YAAM,SAAS,QAAQ,KAAK,WAAW,KAAK,GAAG,QAAQ,QAAQ,CAAC,OAAO,IAAI,CAAC,CAAC;AAC7E,aAAO,QAAQ,QAAQ,mBAAmB,KAAK,mBAAmB,OAAO,KAAK,CAAC,CAAC;AAAA,IAClF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMU,UAAS;AAAA,MACb,UAAU,KAAK;AAAA,MACf,WAAW,KAAK;AAAA,MAChB,uBAAuB,qBAAqB,KAAK,qBAAqB;AAAA,MACtE,uBAAuB,qBAAqB,KAAK,qBAAqB;AAAA,MACtE,qBAAqB,qBAAqB,KAAK,mBAAmB;AAAA,MAClE,sBAAsB,oBAAoB,KAAK,oBAAoB;AAAA,MACnE,UAAU,KAAK;AAAA,MACf,aAAa,KAAK;AAAA,IACpB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAG7C,IAAI,QAAQ,cAAc,MAAM;AAAA,EAC9B,YAAY,MAAM;AAChB,UAAM,QAAQ,CAAC,CAAC;AAChB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,cAAc,QAAQ;AACpB,UAAM,IAAI,oBAAoB;AAAA,EAChC;AAAA,EACA,gCAAgC,QAAQ,QAAQ;AAC9C,QAAI,UAAU,QAAQ,UAAU,MAAM;AACpC,aAAO;AAAA,IACT,WAAW,OAAO,SAAS,OAAO,QAAQ;AACxC,aAAO,KAAK,gCAAgC,QAAQ,MAAM;AAAA,IAC5D,WAAW,OAAO,WAAW,GAAG;AAC9B,aAAO;AAAA,IACT;AACA,UAAM,cAAc,OAAO,MAAM,GAAG,OAAO,SAAS,OAAO,MAAM;AACjE,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,EAAE,GAAG;AACtC,YAAM,KAAK,OAAO,OAAO,SAAS,OAAO,SAAS;AAClD,YAAM,IAAI,OAAO;AACjB,UAAI,MAAM,QAAQ,KAAK,QAAQ,KAAK,KAAK,IAAI,GAAG;AAC9C,oBAAY,KAAK,IAAI;AAAA,MACvB,WAAW,OAAO,GAAG;AACnB,oBAAY,KAAK,CAAC;AAAA,MACpB,WAAW,MAAM,GAAG;AAClB,oBAAY,KAAK,EAAE;AAAA,MACrB,OAAO;AACL,YAAI,OAAO,GAAG;AACZ,gBAAM,IAAI,WAAW,0DAA0D,KAAK,UAAU,MAAM,IAAI,MAAM,KAAK,UAAU,MAAM,CAAC;AAAA,QACtI;AACA,oBAAY,KAAK,EAAE;AAAA,MACrB;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,YAAY;AAChB,QAAI,MAAM,QAAQ,UAAU,KAAK,CAAC,MAAM,QAAQ,WAAW,EAAE,GAAG;AAC9D,mBAAa,CAAC,mBAAmB,UAAU,CAAC;AAAA,IAC9C;AACA,iBAAa;AACb,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,WAAW,wEAAwE,WAAW,kBAAkB;AAAA,IAC5H;AACA,QAAI,aAAa,CAAC;AAClB,eAAW,SAAS,YAAY;AAC9B,UAAI,SAAS,QAAQ,MAAM,OAAO,MAAM;AACtC,mBAAW,KAAK,MAAM,EAAE;AAAA,MAC1B;AAAA,IACF;AACA,iBAAa,QAAQ,UAAU;AAC/B,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,WAAW,8EAA8E,KAAK,UAAU,UAAU,IAAI;AAAA,IAClI;AACA,QAAI,cAAc,WAAW,MAAM,OAAO,OAAO,WAAW,GAAG,MAAM,CAAC;AACtE,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAM,QAAQ,WAAW,OAAO,OAAO,OAAO,WAAW,IAAI,MAAM,CAAC;AACpE,oBAAc,KAAK,gCAAgC,aAAa,KAAK;AAAA,IACvE;AACA,UAAM,WAAW,WAAW,IAAI,CAAC,UAAU,MAAM,MAAM;AACvD,QAAI,WAAW,QAAQ,IAAI,MAAM,MAAM,QAAQ,QAAQ,EAAE,WAAW,GAAG;AACrE,WAAK,kBAAkB;AAAA,IACzB,OAAO;AACL,WAAK,kBAAkB;AAAA,IACzB;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS;AACT,UAAI,KAAK,iBAAiB;AACxB,cAAM,iBAAiB,CAAC;AACxB,cAAM,YAAY,OAAO,IAAI,CAAC,WAAW,OAAO,IAAI;AACpD,YAAI,UAAU,QAAQ,IAAI,MAAM,IAAI;AAClC,gBAAM,UAAU,KAAK,SAAS;AAC9B,mBAAS,KAAK,QAAQ;AACpB,kBAAM,QAAQ,EAAE;AAChB,qBAAS,IAAI,GAAG,IAAI,UAAU,OAAO,EAAE,GAAG;AACxC,kBAAI,YAAY,GAAG,CAAC;AAAA,YACtB;AACA,2BAAe,KAAK,CAAC;AAAA,UACvB;AACA,iBAAO,KAAK,cAAc,cAAc;AAAA,QAC1C,OAAO;AACL,cAAI,aAAa;AACjB,qBAAW,KAAK,QAAQ;AACtB,kBAAM,QAAQ,EAAE;AAChB,gBAAI,SAAS,MAAM;AACjB,oBAAM,SAAS,EAAE;AACjB,oBAAM,YAAY,OAAO;AACzB,oBAAM,WAAW,OAAO,MAAM,CAAC,EAAE,OAAO,CAAC,SAAS,CAAC;AACnD,kBAAI,cAAc,QAAQ,GAAG,CAAC,SAAS,EAAE,OAAO,UAAU,OAAO,MAAM,CAAC,CAAC,CAAC,CAAC;AAC3E,4BAAc,UAAU,aAAa,CAAC,GAAG,CAAC,CAAC;AAC3C,4BAAc,QAAQ,aAAa,QAAQ;AAC3C,6BAAe,KAAK,WAAW;AAC/B,2BAAa;AAAA,YACf,WAAW,QAAQ,GAAG;AACpB,oBAAM,OAAO,OAAO,GAAG,KAAK,EAAE,OAAO,CAAC,CAAC,CAAC;AACxC,6BAAe,KAAK,UAAU,GAAG,IAAI,CAAC;AACtC,2BAAa;AAAA,YACf,OAAO;AACL,6BAAe,KAAK,CAAC;AAAA,YACvB;AAAA,UACF;AACA,cAAI,IAAI,KAAK,cAAc,cAAc;AACzC,gBAAM,QAAQ,EAAE;AAChB,cAAI,YAAY;AACd,gBAAI,SAAS,MAAM;AACjB,oBAAM,SAAS,EAAE;AACjB,oBAAM,SAAS,OAAO;AACtB,oBAAM,YAAY,OAAO,SAAS;AAClC,oBAAM,WAAW,CAAC,SAAS,EAAE,OAAO,OAAO,MAAM,GAAG,OAAO,SAAS,CAAC,CAAC;AACtE,kBAAI,QAAQ,UAAU,QAAQ,GAAG,CAAC,IAAI,SAAS,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,QAAQ;AAAA,YACtE,WAAW,QAAQ,GAAG;AACpB,oBAAM,OAAO,CAAC,QAAQ,CAAC,EAAE,OAAO,OAAO,GAAG,QAAQ,CAAC,CAAC;AACpD,kBAAI,UAAU,GAAG,IAAI;AAAA,YACvB;AAAA,UACF;AACA,iBAAO;AAAA,QACT;AAAA,MACF,OAAO;AACL,eAAO,KAAK,cAAc,MAAM;AAAA,MAClC;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa;AACb,QAAI;AACJ,QAAI,WAAW,MAAM,MAAM;AACzB,oBAAc;AAAA,IAChB,OAAO;AACL,oBAAc,WAAW,GAAG,MAAM,CAAC;AAAA,IACrC;AACA,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAM,QAAQ,WAAW,OAAO,OAAO,OAAO,WAAW,IAAI,MAAM,CAAC;AACpE,oBAAc,KAAK,gCAAgC,aAAa,KAAK;AAAA,IACvE;AACA,QAAI,aAAa,CAAC;AAClB,eAAW,SAAS,YAAY;AAC9B,UAAI,SAAS,QAAQ,MAAM,OAAO,MAAM;AACtC,mBAAW,KAAK,MAAM,EAAE;AAAA,MAC1B;AAAA,IACF;AACA,iBAAa,QAAQ,UAAU;AAC/B,QAAI,WAAW,WAAW,GAAG;AAC3B,oBAAc,WAAW,OAAO,WAAW;AAAA,IAC7C,OAAO;AACL,oBAAc,CAAC,IAAI,EAAE,OAAO,WAAW;AAAA,IACzC;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQV,OAAM;AACxB,WAAO,KAAK,MAAM;AAChB,UAAIA,SAAQ,MAAM;AAChB,eAAO;AAAA,MACT;AACA,UAAI,CAAC,MAAM,QAAQA,KAAI,GAAG;AACxB,cAAM,IAAI,WAAW,2BAA2B;AAAA,MAClD;AACA,UAAI,CAAC,MAAM,QAAQ,MAAM,GAAG;AAC1B,cAAM,IAAI,WAAW,6BAA6B;AAAA,MACpD;AACA,UAAIA,MAAK,WAAW,OAAO,QAAQ;AACjC,cAAM,IAAI,WAAW,mGAAmG,OAAO,aAAaA,MAAK,SAAS;AAAA,MAC5J;AACA,UAAIA,MAAK,MAAM,CAAC,MAAM,KAAK,IAAI,GAAG;AAChC,eAAO;AAAA,MACT;AACA,MAAAA,QAAOA,MAAK,IAAI,CAAC,MAAM,KAAK,OAAO,IAAI,WAAW,GAAG,CAAC,CAAC;AACvD,UAAI,SAASA,MAAK;AAClB,eAAS,KAAK,GAAG,KAAKA,MAAK,SAAS,GAAG,EAAE,IAAI;AAC3C,iBAAS,WAAW,QAAQA,MAAK,GAAG;AAAA,MACtC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,IAAI,OAAO,cAAc,MAAM;AAAA,EAC7B,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO,GAAG,MAAM;AAC7B,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,KAAK,QAAQ,OAAO,GAAG;AAAA,MAClC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,KAAK,YAAY;AACjB,sBAAsB,cAAc,IAAI;AACxC,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO,GAAG,MAAM;AAC7B,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,IAAI,QAAQ,OAAO,GAAG;AAAA,MACjC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,UAAU,YAAY;AACtB,sBAAsB,cAAc,SAAS;AAC7C,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO,GAAG,MAAM;AAC7B,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,KAAK,QAAQ,OAAO,GAAG;AAAA,MAClC;AACA,aAAO,IAAI,IAAI,OAAO,QAAQ,MAAM;AAAA,IACtC,CAAC;AAAA,EACH;AACF;AACA,QAAQ,YAAY;AACpB,sBAAsB,cAAc,OAAO;AAC3C,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO;AACpB,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,QAAQ,QAAQ,OAAO,GAAG;AAAA,MACrC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,WAAW,cAAc,MAAM;AAAA,EACjC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,UAAI,SAAS,OAAO;AACpB,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,iBAAS,QAAQ,QAAQ,OAAO,GAAG;AAAA,MACrC;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,SAAS,YAAY;AACrB,sBAAsB,cAAc,QAAQ;AAC5C,IAAI,cAAc,cAAc,MAAM;AAAA,EACpC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,eAAe;AACpB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,eAAe,KAAK;AACzD,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,MAAM,YAAY;AAChB,QAAI,EAAE,MAAM,QAAQ,UAAU,KAAK,MAAM,QAAQ,WAAW,EAAE,MAAM,WAAW,WAAW,GAAG;AAC3F,YAAM,IAAI,WAAW,uEAAuE;AAAA,IAC9F;AACA,iBAAa;AACb,QAAI,eAAe;AACnB,eAAW,SAAS,YAAY;AAC9B,UAAI,SAAS,MAAM;AACjB,uBAAe;AACf;AAAA,MACF;AAAA,IACF;AACA,QAAI,cAAc;AAChB;AAAA,IACF;AACA,UAAM,WAAW,CAAC;AAClB,aAAS,KAAK,GAAG,KAAK,WAAW,QAAQ,EAAE,IAAI;AAC7C,YAAM,yBAAyB,WAAW,IAAI,MAAM;AACpD,6BAAuB,OAAO,KAAK,MAAM,CAAC;AAC1C,UAAI,SAAS;AACb,iBAAW,SAAS,UAAU;AAC5B,YAAI,aAAa,YAAY,OAAO,sBAAsB,GAAG;AAC3D,mBAAS;AACT;AAAA,QACF;AAAA,MACF;AACA,UAAI,CAAC,QAAQ;AACX,iBAAS,KAAK,sBAAsB;AAAA,MACtC;AAAA,IACF;AACA,QAAI,SAAS,SAAS,GAAG;AACvB,YAAM,IAAI,WAAW,8GAA8G,KAAK,UAAU,UAAU,CAAC;AAAA,IAC/J;AAAA,EACF;AAAA,EACA,cAAc,QAAQ;AACpB,WAAO,KAAK,MAAM;AAChB,aAAO,YAAY,QAAQ,KAAK,IAAI;AAAA,IACtC,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,EAAE,MAAM,QAAQ,UAAU,KAAK,MAAM,QAAQ,WAAW,EAAE,IAAI;AAChE,YAAM,IAAI,WAAW,6DAA6D;AAAA,IACpF;AACA,UAAM,cAAc;AACpB,UAAM,cAAc,YAAY,GAAG,MAAM;AACzC,UAAM,OAAO,KAAK,OAAO,IAAI,YAAY,SAAS,KAAK,OAAO,KAAK;AACnE,eAAW,SAAS,YAAY,MAAM,CAAC,GAAG;AACxC,UAAI,YAAY,SAAS,QAAQ,MAAM,SAAS,MAAM;AACpD,oBAAY,QAAQ;AACpB;AAAA,MACF;AACA,kBAAY,SAAS,MAAM;AAAA,IAC7B;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQA,OAAM;AACxB,QAAIA,SAAQ,MAAM;AAChB,aAAO;AAAA,IACT;AACA,QAAI,CAAC,MAAM,QAAQA,KAAI,GAAG;AACxB,YAAM,IAAI,WAAW,2CAA2C;AAAA,IAClE;AACA,QAAI,CAAC,MAAM,QAAQ,MAAM,GAAG;AAC1B,YAAM,IAAI,WAAW,6CAA6C;AAAA,IACpE;AACA,QAAIA,MAAK,WAAW,OAAO,QAAQ;AACjC,YAAM,IAAI,WAAW,mCAAmCA,MAAK,qCAAqC,OAAO,SAAS;AAAA,IACpH;AACA,WAAO,KAAK,MAAM;AAChB,UAAI,eAAe;AACnB,MAAAA,MAAK,QAAQ,CAAC,MAAM;AAClB,YAAI,KAAK,MAAM;AACb,yBAAe;AACf;AAAA,QACF;AAAA,MACF,CAAC;AACD,UAAI,cAAc;AAChB,eAAO;AAAA,MACT;AACA,YAAM,cAAc,CAAC;AACrB,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,YAAIA,MAAK,OAAO,MAAM;AACpB,sBAAY,KAAK,KAAK,SAAS,OAAO,GAAG,GAAG,MAAM,CAAC;AAAA,QACrD,WAAWA,MAAK,IAAI,OAAO,OAAO,IAAI,MAAM;AAC1C,sBAAY,KAAK,WAAWA,MAAK,KAAK,EAAE,CAAC;AAAA,QAC3C,OAAO;AACL,sBAAY,KAAKA,MAAK,GAAG;AAAA,QAC3B;AAAA,MACF;AACA,YAAM,oBAAoB,OAAO,aAAa,KAAK,IAAI;AACvD,aAAO,IAAI,mBAAmB,IAAI,KAAK;AAAA,IACzC,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMU,UAAS;AAAA,MACb,QAAQ,KAAK;AAAA,IACf;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,YAAY,YAAY;AACxB,sBAAsB,cAAc,WAAW;AAC/C,SAAS,cAAc,MAAM,KAAK;AAChC,SAAO,OAAO,GAAG;AACf,YAAQ;AAAA,EACV;AACA,SAAO;AACT;AACA,SAAS,SAAS,GAAG,GAAG,MAAM;AAC5B,MAAI,EAAE,MAAM,SAAS,KAAK,EAAE,MAAM,SAAS,GAAG;AAC5C,UAAM,IAAI,oBAAoB,kEAAkE;AAAA,EAClG;AACA,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,uDAAuD,EAAE,MAAM,QAAQ;AACtH,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,uDAAuD,EAAE,MAAM,QAAQ;AACtH,MAAI,OAAO,SAAS,UAAU;AAC5B,WAAO,CAAC,MAAM,IAAI;AAAA,EACpB;AACA,MAAI,EAAE,UAAU,eAAe,EAAE,UAAU,aAAa;AACtD,UAAM,IAAI,oBAAoB,6DAA6D;AAAA,EAC7F;AACA,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,MAAI,QAAQ,MAAM;AAChB,WAAO,CAAC,QAAQ,GAAG,QAAQ,CAAC;AAAA,EAC9B;AACA,QAAM,YAAY;AAClB,SAAO,KAAK,MAAM;AAChB,QAAI;AACJ,QAAI,QAAQ,OAAO;AACjB,aAAO,QAAQ;AACf,YAAM,YAAY,CAAC;AACnB,eAAS,KAAK,GAAG,KAAK,MAAM,EAAE,IAAI;AAChC,kBAAU,KAAK,CAAC;AAAA,MAClB;AACA,UAAI,QAAQ,GAAG,EAAE,MAAM,OAAO,SAAS,CAAC;AAAA,IAC1C,WAAW,QAAQ,OAAO;AACxB,aAAO,QAAQ;AACf,YAAM,YAAY,CAAC;AACnB,eAAS,KAAK,GAAG,KAAK,MAAM,EAAE,IAAI;AAChC,kBAAU,KAAK,CAAC;AAAA,MAClB;AACA,UAAI,QAAQ,GAAG,EAAE,MAAM,OAAO,SAAS,CAAC;AAAA,IAC1C,OAAO;AACL,aAAO;AAAA,IACT;AACA,QAAI;AACJ,QAAI,EAAE,MAAM,WAAW,KAAK,EAAE,MAAM,WAAW,GAAG;AAChD,UAAI,UAAU,OAAO,UAAU,IAAI;AACjC,cAAM,KAAK,IAAI,GAAG,CAAC,GAAG,UAAU,EAAE;AAAA,MACpC,OAAO;AACL,cAAM,KAAK,IAAI,UAAU,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,UAAU,EAAE;AAAA,MACvD;AAAA,IACF,OAAO;AACL,YAAM,OAAO,UAAU,OAAO,EAAE,MAAM,SAAS;AAC/C,YAAM,OAAO,UAAU,OAAO,EAAE,MAAM,SAAS;AAC/C,YAAM,OAAO,GAAG,GAAG,MAAM,IAAI;AAAA,IAC/B;AACA,QAAI,OAAO,GAAG;AACZ,UAAI;AACJ,UAAI,QAAQ,OAAO;AACjB,cAAM,QAAQ,QAAQ;AAAA,MACxB,OAAO;AACL,cAAM,QAAQ;AAAA,MAChB;AACA,YAAM,cAAc,CAAC;AACrB,eAAS,KAAK,KAAK,KAAK,MAAM,MAAM,EAAE,IAAI;AACxC,oBAAY,KAAK,EAAE;AAAA,MACrB;AACA,YAAM,QAAQ,KAAK,WAAW;AAAA,IAChC;AACA,QAAI,IAAI,MAAM,WAAW,GAAG;AAC1B,YAAM,WAAW,KAAK,CAAC;AAAA,IACzB;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,MAAM,cAAc,MAAM;AAAA,EAC5B,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,OAAO,KAAK;AACjB,SAAK,YAAY,KAAK,aAAa,OAAO,QAAQ,KAAK;AACvD,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,OAAO,MAAM,QAAQ,UAAU,KAAK,WAAW,WAAW,KAAK,MAAM,QAAQ,WAAW,EAAE,KAAK,MAAM,QAAQ,WAAW,EAAE,GAAG,MAAM,+DAA+D;AAC/M,UAAM,SAAS,WAAW;AAC1B,UAAM,SAAS,WAAW;AAC1B,QAAI,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG;AAC1C,YAAM,IAAI,oBAAoB,8DAA8D;AAAA,IAC9F;AACA,UAAM,OAAO,KAAK,cAAc,QAAQ,MAAM;AAC9C,QAAI,OAAO,KAAK,QAAQ,OAAO,KAAK,KAAK;AACvC,YAAM,IAAI,WAAW,8BAA8B,OAAO,KAAK,WAAW,OAAO,KAAK,KAAK;AAAA,IAC7F;AAAA,EACF;AAAA,EACA,cAAc,QAAQ;AACpB,QAAI,OAAO,WAAW,GAAG;AACvB,YAAM,IAAI,WAAW,oEAAoE,OAAO,kBAAkB;AAAA,IACpH;AACA,QAAI,KAAK,OAAO;AAChB,QAAI,KAAK,OAAO;AAChB,QAAI;AACJ,QAAI,CAAC,MAAM,QAAQ,KAAK,IAAI,GAAG;AAC7B,aAAO;AAAA,QACL,cAAc,KAAK,MAAM,GAAG,MAAM,MAAM;AAAA,QACxC,cAAc,KAAK,MAAM,GAAG,MAAM,MAAM;AAAA,MAC1C;AAAA,IACF,OAAO;AACL,aAAO,KAAK,KAAK,IAAI,CAAC,MAAM,OAAO,cAAc,MAAM,OAAO,IAAI,MAAM,MAAM,CAAC;AAAA,IACjF;AACA,QAAI,KAAK,WAAW;AAClB,WAAK,YAAY,IAAI,KAAK,EAAE;AAC5B,WAAK,YAAY,IAAI,KAAK,EAAE;AAAA,IAC9B;AACA,WAAO,SAAS,IAAI,IAAI,IAAI;AAAA,EAC9B;AAAA,EACA,cAAc,QAAQ,QAAQ;AAC5B,QAAI;AACJ,QAAI,CAAC,MAAM,QAAQ,KAAK,IAAI,GAAG;AAC7B,aAAO;AAAA,QACL,cAAc,KAAK,MAAM,OAAO,MAAM;AAAA,QACtC,cAAc,KAAK,MAAM,OAAO,MAAM;AAAA,MACxC;AAAA,IACF,OAAO;AACL,aAAO,KAAK;AAAA,IACd;AACA,WAAO;AAAA,EACT;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,OAAO,MAAM,QAAQ,UAAU,KAAK,WAAW,WAAW,KAAK,MAAM,QAAQ,WAAW,EAAE,KAAK,MAAM,QAAQ,WAAW,EAAE,GAAG,MAAM,+DAA+D;AAC/M,UAAM,SAAS,WAAW,GAAG,MAAM;AACnC,UAAM,SAAS,WAAW,GAAG,MAAM;AACnC,QAAI,OAAO,SAAS,KAAK,OAAO,SAAS,GAAG;AAC1C,YAAM,IAAI,oBAAoB,8DAA8D;AAAA,IAC9F;AACA,UAAM,OAAO,KAAK,cAAc,QAAQ,MAAM;AAC9C,WAAO,OAAO,KAAK,IAAI,CAAC;AACxB,WAAO,OAAO,KAAK,IAAI,CAAC;AACxB,WAAO,OAAO,GAAG,CAAC;AAClB,UAAM,cAAc,OAAO,OAAO,MAAM;AACxC,QAAI,YAAY,WAAW,GAAG;AAC5B,kBAAY,KAAK,CAAC;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQV,OAAM;AACxB,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAMU,UAAS;AAAA,MACb,QAAQ,KAAK;AAAA,MACb,aAAa,KAAK;AAAA,IACpB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,YAAY;AAChB,sBAAsB,cAAc,GAAG;AAGvC,IAAI,gBAAgB,cAAc,MAAM;AAAA,EACtC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,SAAS,KAAK;AAAA,EACrB;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS,EAAE,QAAQ,KAAK,OAAO;AACrC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,SAAS,MAAM,KAAK,cAAc,OAAO,OAAO,GAAG,KAAK,MAAM,GAAG,MAAM;AAC7E,YAAM,SAAS,aAAa,QAAQ,MAAM,QAAQ,OAAO,eAAe,KAAK;AAC7E,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AACjD,IAAI,kBAAkB,cAAc,MAAM;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,OAAO,KAAK;AAAA,EACnB;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS,EAAE,MAAM,KAAK,KAAK;AACjC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,YAAM,SAAS,oBAAoB,MAAM;AACzC,UAAI,KAAK,OAAO,KAAK,KAAK,OAAO,GAAG;AAClC,cAAM,SAAS,MAAM;AACnB,gBAAM,SAAS,KAAK,KAAK,KAAK,QAAQ,IAAI,KAAK,KAAK;AACpD,iBAAO,IAAI,QAAQ,cAAc,OAAO,OAAO,GAAG,MAAM,CAAC;AAAA,QAC3D;AACA,eAAO,aAAa,QAAQ,MAAM,QAAQ,OAAO,eAAe,KAAK;AAAA,MACvE;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,IAAI,eAAe,cAAc,MAAM;AAAA,EACrC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,OAAO,KAAK;AACjB,SAAK,aAAa,KAAK;AAAA,EACzB;AAAA,EACA,eAAe,QAAQ;AACrB,WAAO,KAAK,cAAc,oBAAoB,MAAM,EAAE;AAAA,EACxD;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO;AAAA,EACT;AAAA,EACA,YAAY;AACV,UAAM,aAAa,MAAM,UAAU;AACnC,UAAMA,UAAS,EAAE,MAAM,KAAK,KAAK;AACjC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,UAAI,KAAK,OAAO,KAAK,KAAK,OAAO,GAAG;AAClC,cAAM,aAAa,KAAK,eAAe,MAAM;AAC7C,cAAM,gBAAgB,MAAM;AAC1B,gBAAM,SAAS,oBAAoB,MAAM;AACzC,gBAAMQ,SAAQ;AACd,gBAAMD,UAAS;AACf,gBAAM,SAAS,CAACC,SAAQD;AACxB,cAAI,UAAU,aAAa,cAAc,UAAU,GAAG,KAAK,IAAI;AAC/D,oBAAU,MAAM,SAAS,SAAS;AAClC,gBAAM,MAAM,IAAI,KAAK,SAAS,IAAI,KAAK,OAAO,UAAU,OAAO;AAC/D,gBAAM,IAAI,CAAC,IAAI,SAAS,KAAK;AAC7B,gBAAM,IAAI,KAAK,IAAI,QAAQ,OAAO,GAAG,IAAI,KAAK,SAAS,EAAE,GAAG,MAAM,CAAC;AACnE,iBAAO,KAAK,IAAI,GAAG,CAAC,GAAG,CAAC;AAAA,QAC1B;AACA,eAAO,aAAa,eAAe,MAAM,oBAAoB,MAAM,GAAG,OAAO,eAAe,KAAK;AAAA,MACnG;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAGhD,SAAS,mBAAmB,GAAG,OAAO,UAAU,MAAM,OAAO,WAAW,MAAM;AAC5E,MAAI;AACJ,MAAI,EAAE,SAAS,GAAG;AAChB,UAAM,YAAY,GAAG,OAAO,UAAU,MAAM,OAAO,QAAQ;AAAA,EAC7D,WAAW,EAAE,SAAS,GAAG;AACvB,UAAM,YAAY,GAAG,OAAO,UAAU,MAAM,OAAO,QAAQ;AAAA,EAC7D,WAAW,EAAE,SAAS,GAAG;AACvB,UAAM,YAAY,GAAG,OAAO,UAAU,MAAM,OAAO,QAAQ;AAAA,EAC7D,OAAO;AACL,UAAM,IAAI,oBAAoB,2DAA2D,EAAE,UAAU;AAAA,EACvG;AACA,SAAO;AACT;AACA,SAAS,gCAAgC,GAAG,OAAO,MAAM,eAAe,WAAW,MAAM;AACvF,SAAO,KAAK,MAAM;AAChB,UAAM,kBAAkB,QAAQ,GAAG,aAAa;AAChD,UAAM,QAAQ,gBAAgB;AAC9B,UAAM,WAAW,gBAAgB;AACjC,UAAM,SAAS,mBAAmB,GAAG,OAAO,UAAU,MAAM,OAAO,QAAQ;AAC3E,WAAO,CAAC,QAAQ,OAAO,QAAQ;AAAA,EACjC,CAAC;AACH;AACA,SAAS,kCAAkC,GAAG,OAAO,MAAM,eAAe,WAAW,MAAM;AACzF,SAAO,KAAK,MAAM;AAChB,UAAM,kBAAkB,QAAQ,GAAG,aAAa;AAChD,UAAM,QAAQ,gBAAgB;AAC9B,UAAM,WAAW,gBAAgB;AACjC,UAAM,cAAc,CAAC;AACrB,eAAW,QAAQ,OAAO,GAAG,EAAE,IAAI,GAAG;AACpC,UAAI,cAAc,QAAQ,IAAI,MAAM,IAAI;AACtC,oBAAY,KAAK,CAAC;AAAA,MACpB,OAAO;AACL,oBAAY,KAAK,EAAE,MAAM,KAAK;AAAA,MAChC;AAAA,IACF;AACA,UAAM,gBAAgB,QAAQ,OAAO,WAAW;AAChD,UAAM,oBAAoB,QAAQ,UAAU,WAAW;AACvD,UAAM,iBAAiB,SAAS,OAAO,OAAO,QAAQ,OAAO,WAAW;AACxE,UAAM,gBAAgB,QAAQ,OAAO,OAAO,QAAQ,MAAM,WAAW;AACrE,UAAM,SAAS,mBAAmB,GAAG,eAAe,mBAAmB,eAAe,gBAAgB,QAAQ;AAC9G,WAAO,CAAC,QAAQ,OAAO,QAAQ;AAAA,EACjC,CAAC;AACH;AACA,SAAS,yBAAyB,GAAG,OAAO,MAAM,eAAe,WAAW,MAAM;AAChF,MAAI,aAAa,YAAY,cAAc,MAAM,EAAE,KAAK,GAAG,OAAO,GAAG,EAAE,OAAO,CAAC,CAAC,GAAG;AACjF,WAAO,gCAAgC,GAAG,OAAO,MAAM,eAAe,QAAQ;AAAA,EAChF,OAAO;AACL,WAAO,kCAAkC,GAAG,OAAO,MAAM,eAAe,QAAQ;AAAA,EAClF;AACF;AACA,IAAI,qBAAqB,cAAc,MAAM;AAAA,EAC3C,YAAY,MAAM;AAChB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,IAAI;AACV,SAAK,kBAAkB;AACvB,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,KAAK;AAC1C,SAAK,WAAW,KAAK,YAAY,OAAO,OAAO,KAAK;AACpD,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,SAAS,KAAK,UAAU,OAAO,OAAO,KAAK;AAChD,SAAK,QAAQ,KAAK,SAAS,OAAO,OAAO,KAAK;AAC9C,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,OAAO;AACrE,SAAK,mBAAmB,eAAe,KAAK,oBAAoB,MAAM;AACtE,SAAK,wBAAwB,eAAe,KAAK,yBAAyB,OAAO;AACjF,SAAK,4BAA4B,eAAe,KAAK,6BAA6B,MAAM;AACxF,SAAK,iBAAiB,cAAc,KAAK,cAAc;AACvD,SAAK,kBAAkB,cAAc,KAAK,eAAe;AACzD,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,eAAe,KAAK,gBAAgB;AAAA,EAC9D;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,OAAO,KAAK,QAAQ,IAAI,KAAK,OAAO,KAAK,OAAO,WAAW;AACjE,UAAM,MAAM,WAAW;AACvB,QAAI,OAAO,MAAM;AACf,YAAM,IAAI,WAAW,QAAQ,mGAAmG,KAAK,UAAU,UAAU,IAAI;AAAA,IAC/J;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,WAAW,QAAQ,MAAM,EAAE,CAAC,OAAO,IAAI,EAAE,CAAC,CAAC;AACnF,UAAM,QAAQ,CAAC,GAAG;AAClB,QAAI,KAAK,OAAO;AACd,WAAK,QAAQ,KAAK,UAAU,SAAS,OAAO,MAAM,KAAK,kBAAkB,KAAK,kBAAkB,MAAM,KAAK,eAAe;AAAA,IAC5H;AACA,QAAI,KAAK,QAAQ;AACf,WAAK,OAAO,KAAK,UAAU,QAAQ,OAAO,MAAM,KAAK,iBAAiB,KAAK,iBAAiB,MAAM,KAAK,cAAc;AAAA,IACvH;AACA,SAAK,aAAa,KAAK,UAAU,eAAe,OAAO,MAAM,KAAK,uBAAuB,MAAM,KAAK;AACpG,SAAK,iBAAiB,KAAK,UAAU,mBAAmB,OAAO,MAAM,KAAK,2BAA2B,MAAM,KAAK;AAChH,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,WAAW,OAAO,eAAe,OAAO,QAAQ,OAAO;AAC7D,YAAM,SAAS,oBAAoB,MAAM;AACzC,YAAM,aAAa,OAAO;AAC1B,YAAM,OAAO,WAAW;AACxB,YAAM,gBAAgB,OAAO,GAAG,IAAI;AACpC,YAAM,OAAO,KAAK,QAAQ,IAAI,KAAK,OAAO,KAAK,OAAO;AACtD,oBAAc,OAAO,MAAM,CAAC;AAC5B,YAAM,iBAAiB,aAAa,GAAG,IAAI;AAC3C,qBAAe,QAAQ,WAAW;AAClC,YAAM,sBAAsB,cAAc,MAAM;AAChD,0BAAoB,KAAK;AACzB,YAAM,oBAAoB,CAAC,aAAa,YAAY,qBAAqB,OAAO,GAAG,IAAI,EAAE,MAAM,GAAG,OAAO,CAAC,CAAC;AAC3G,YAAM,qBAAqB,MAAM;AAC/B,YAAI,mBAAmB;AACrB,gBAAM,sBAAsB,QAAQ,KAAK,WAAW,KAAK,GAAG,cAAc;AAC1E,gBAAM,0BAA0B,QAAQ,KAAK,eAAe,KAAK,GAAG,cAAc;AAClF,gBAAM,gBAAgB,KAAK,SAAS,QAAQ,KAAK,KAAK,KAAK,GAAG,cAAc,IAAI;AAChF,gBAAM,iBAAiB,KAAK,QAAQ,QAAQ,KAAK,MAAM,KAAK,GAAG,cAAc,IAAI;AACjF,iBAAO,mBAAmB,QAAQ,qBAAqB,yBAAyB,eAAe,gBAAgB,KAAK,OAAO;AAAA,QAC7H,OAAO;AACL,iBAAO,mBAAmB,QAAQ,KAAK,WAAW,KAAK,GAAG,KAAK,eAAe,KAAK,GAAG,KAAK,QAAQ,OAAO,OAAO,KAAK,KAAK,KAAK,GAAG,KAAK,SAAS,OAAO,OAAO,KAAK,MAAM,KAAK,GAAG,KAAK,OAAO;AAAA,QAChM;AAAA,MACF;AACA,UAAI,CAAC,UAAU;AACb,eAAO,mBAAmB;AAAA,MAC5B;AACA,YAAM,CAAC,gBAAgB,OAAO,QAAQ,IAAI,yBAAyB,QAAQ,KAAK,MAAM,KAAK,GAAG,KAAK,KAAK,KAAK,GAAG,eAAe,KAAK,OAAO;AAC3I,YAAM,kBAAkB,CAAC,WAAW,OAAO,aAAa;AACtD,aAAK,MAAM;AACT,gBAAM,QAAQ,IAAI;AAClB,gBAAM,YAAY,UAAU,KAAK;AACjC,gBAAM,cAAc,IAAI,IAAI,WAAW,KAAK,GAAG,KAAK;AACpD,oBAAU,MAAM,IAAI,WAAW,WAAW,CAAC;AAAA,QAC7C,CAAC;AAAA,MACH;AACA,YAAM,8BAA8B,MAAM;AACxC,wBAAgB,KAAK,YAAY,OAAO,KAAK,QAAQ;AACrD,wBAAgB,KAAK,gBAAgB,UAAU,KAAK,QAAQ;AAAA,MAC9D;AACA,kCAA4B;AAC5B,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMP,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,MACX,UAAU,KAAK;AAAA,MACf,SAAS,KAAK;AAAA,MACd,QAAQ,KAAK;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,uBAAuB,qBAAqB,KAAK,qBAAqB;AAAA,MACtE,2BAA2B,qBAAqB,KAAK,yBAAyB;AAAA,MAC9E,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,gBAAgB,oBAAoB,KAAK,cAAc;AAAA,MACvD,iBAAiB,oBAAoB,KAAK,eAAe;AAAA,IAC3D;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,mBAAmB,YAAY;AAC/B,sBAAsB,cAAc,kBAAkB;AACtD,IAAI,qBAAqB,cAAc,MAAM;AAAA,EAC3C,YAAY,MAAM;AAChB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,IAAI;AACV,SAAK,OAAO,KAAK,QAAQ,OAAO,KAAK,KAAK;AAC1C,QAAI,OAAO,KAAK,SAAS,UAAU;AACjC,UAAI,CAAC,OAAO,UAAU,KAAK,IAAI,GAAG;AAChC,cAAM,IAAI,MAAM,gDAAgD,KAAK,MAAM;AAAA,MAC7E;AAAA,IACF,WAAW,MAAM,QAAQ,KAAK,IAAI,GAAG;AACnC,iBAAW,QAAQ,KAAK,MAAM;AAC5B,YAAI,CAAC,OAAO,UAAU,IAAI,GAAG;AAC3B,gBAAM,IAAI,MAAM,0DAA0D,KAAK,UAAU,KAAK,IAAI,GAAG;AAAA,QACvG;AAAA,MACF;AAAA,IACF,OAAO;AACL,YAAM,IAAI,MAAM,wEAAwE,KAAK,UAAU,KAAK,IAAI,GAAG;AAAA,IACrH;AACA,SAAK,UAAU,KAAK,WAAW,OAAO,OAAO,KAAK;AAClD,SAAK,SAAS,KAAK,UAAU,OAAO,OAAO,KAAK;AAChD,SAAK,QAAQ,KAAK,SAAS,OAAO,OAAO,KAAK;AAC9C,SAAK,kBAAkB,eAAe,KAAK,mBAAmB,OAAO;AACrE,SAAK,mBAAmB,eAAe,KAAK,oBAAoB,MAAM;AACtE,SAAK,kBAAkB,eAAe,KAAK,eAAe;AAC1D,SAAK,mBAAmB,eAAe,KAAK,gBAAgB;AAC5D,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,QAAQ,WAAW;AACzB,QAAI,OAAO,KAAK,SAAS,UAAU;AACjC,WAAK,OAAO,CAAC,KAAK,IAAI;AAAA,IACxB;AACA,aAAS,KAAK,GAAG,KAAK,KAAK,KAAK,QAAQ,EAAE,IAAI;AAC5C,UAAI,KAAK,KAAK,MAAM,GAAG;AACrB,aAAK,KAAK,OAAO;AAAA,MACnB;AAAA,IACF;AACA,eAAW,QAAQ,KAAK,MAAM;AAC5B,UAAI,OAAO,KAAK,QAAQ,OAAO;AAC7B,cAAM,IAAI,MAAM,iBAAiB,MAAM;AAAA,MACzC;AAAA,IACF;AACA,QAAI,KAAK,KAAK,WAAW,QAAQ,KAAK,IAAI,EAAE,QAAQ;AAClD,YAAM,IAAI,MAAM,4BAA4B,KAAK,MAAM;AAAA,IACzD;AACA,UAAM,aAAa,KAAK,KAAK,IAAI,CAAC,SAAS,WAAW,KAAK;AAC3D,UAAM,YAAY;AAClB,QAAI,KAAK,OAAO;AACd,WAAK,QAAQ,KAAK,UAAU,SAAS,YAAY,WAAW,KAAK,kBAAkB,KAAK,kBAAkB,SAAS;AAAA,IACrH,OAAO;AACL,WAAK,QAAQ;AAAA,IACf;AACA,QAAI,KAAK,QAAQ;AACf,WAAK,OAAO,KAAK,UAAU,QAAQ,YAAY,WAAW,KAAK,iBAAiB,KAAK,iBAAiB,SAAS;AAAA,IACjH,OAAO;AACL,WAAK,OAAO;AAAA,IACd;AACA,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,SAAS,oBAAoB,MAAM;AACzC,UAAM,aAAa,OAAO;AAC1B,UAAM,QAAQ,WAAW;AACzB,WAAO,KAAK,MAAM;AAChB,YAAM,WAAW;AACjB,UAAI,EAAE,MAAM,OAAO,SAAS,IAAI,QAAQ,QAAQ,KAAK,MAAM,QAAQ;AACnE,YAAM,iBAAiB,aAAa,GAAG,KAAK;AAC5C,iBAAW,OAAO,KAAK,MAAM;AAC3B,uBAAe,OAAO,WAAW;AAAA,MACnC;AACA,YAAM,YAAY,CAAC,MAAM;AACvB,YAAI,KAAK,QAAQ,EAAE,MAAM,WAAW,OAAO;AACzC,iBAAO,QAAQ,GAAG,cAAc;AAAA,QAClC,OAAO;AACL,iBAAO;AAAA,QACT;AAAA,MACF;AACA,UAAIO,UAAS,KAAK,QAAQ,UAAU,KAAK,MAAM,KAAK,CAAC,IAAI;AACzD,UAAI,SAAS,KAAK,SAAS,UAAU,KAAK,KAAK,KAAK,CAAC,IAAI;AACzD,YAAM,gBAAgB,CAAC;AACvB,YAAM,oBAAoB,CAAC;AAC3B,eAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,YAAI,KAAK,KAAK,QAAQ,EAAE,MAAM,IAAI;AAChC,wBAAc,KAAK,WAAW,GAAG;AACjC,4BAAkB,KAAK,CAAC;AAAA,QAC1B,OAAO;AACL,wBAAc,KAAK,CAAC;AACpB,4BAAkB,KAAK,WAAW,GAAG;AAAA,QACvC;AAAA,MACF;AACA,cAAQ,KAAK,OAAO,aAAa;AACjC,iBAAW,KAAK,UAAU,aAAa;AACvC,UAAIA,WAAU,MAAM;AAClB,QAAAA,UAAS,KAAKA,SAAQ,iBAAiB;AAAA,MACzC;AACA,UAAI,UAAU,MAAM;AAClB,iBAAS,KAAK,QAAQ,iBAAiB;AAAA,MACzC;AACA,aAAO,mBAAmB,QAAQ,OAAO,UAAU,QAAQA,SAAQ,KAAK,OAAO;AAAA,IACjF,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMP,UAAS;AAAA,MACb,MAAM,KAAK;AAAA,MACX,SAAS,KAAK;AAAA,MACd,QAAQ,KAAK;AAAA,MACb,OAAO,KAAK;AAAA,MACZ,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,MAC5D,iBAAiB,qBAAqB,KAAK,eAAe;AAAA,MAC1D,kBAAkB,qBAAqB,KAAK,gBAAgB;AAAA,IAC9D;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,mBAAmB,YAAY;AAC/B,sBAAsB,cAAc,kBAAkB;AAGtD,SAAS,iBAAiB,GAAGa,UAAS,YAAY;AAChD,SAAO,KAAK,MAAM;AAChB,QAAI,EAAE,SAAS,GAAG;AAChB,YAAM,IAAI,WAAW,kEAAkE,EAAE,gBAAgB;AAAA,IAC3G;AACA,QAAIA,YAAW,MAAM;AACnB,MAAAA,WAAU,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,IAC3B;AACA,QAAIA,SAAQ,WAAW,KAAKA,SAAQ,GAAG,WAAW,KAAKA,SAAQ,GAAG,WAAW,GAAG;AAC9E,YAAM,IAAI,WAAW,6GAA6G;AAAA,IACpI;AACA,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,QAAI,eAAe,kBAAkB,eAAe,iBAAiB;AACnE,YAAM,IAAI,WAAW,wBAAwB,2EAA2E;AAAA,IAC1H;AACA,QAAI;AACJ,QAAI,eAAe,iBAAiB;AAClC,gBAAU,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAGA,SAAQ,IAAIA,SAAQ,EAAE;AAAA,IACnD,OAAO;AACL,gBAAU,CAAC,CAAC,GAAG,CAAC,GAAGA,SAAQ,IAAIA,SAAQ,IAAI,CAAC,GAAG,CAAC,CAAC;AAAA,IACnD;AACA,WAAO,IAAI,GAAG,OAAO;AAAA,EACvB,CAAC;AACH;AACA,IAAI,gBAAgB,cAAc,MAAM;AAAA,EACtC,YAAY,MAAM;AAChB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,IAAI;AACV,SAAK,aAAa,KAAK,cAAc,OAAO,gBAAgB,IAAI,KAAK;AACrE,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,IAChC,WAAW,OAAO,KAAK,YAAY,UAAU;AAC3C,WAAK,UAAU,CAAC,CAAC,KAAK,SAAS,KAAK,OAAO,GAAG,CAAC,KAAK,SAAS,KAAK,OAAO,CAAC;AAAA,IAC5E,OAAO;AACL,WAAK,UAAU,KAAK;AACpB,UAAI,KAAK,QAAQ,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,+EAA+E,KAAK,QAAQ,eAAe;AAAA,MAClI;AACA,UAAI;AACJ,UAAI;AACJ,UAAI,OAAO,KAAK,QAAQ,OAAO,UAAU;AACvC,wBAAgB,CAAC,KAAK,QAAQ,IAAI,KAAK,QAAQ,EAAE;AACjD,uBAAe,CAAC,KAAK,QAAQ,IAAI,KAAK,QAAQ,EAAE;AAAA,MAClD,OAAO;AACL,aAAK,UAAU,KAAK;AACpB,YAAI,KAAK,QAAQ,GAAG,WAAW,GAAG;AAChC,gBAAM,IAAI,WAAW,sFAAsF,KAAK,QAAQ,GAAG,eAAe;AAAA,QAC5I;AACA,wBAAgB,KAAK,QAAQ;AAC7B,YAAI,KAAK,QAAQ,GAAG,WAAW,GAAG;AAChC,gBAAM,IAAI,WAAW,qFAAqF,KAAK,QAAQ,GAAG,eAAe;AAAA,QAC3I;AACA,uBAAe,KAAK,QAAQ;AAAA,MAC9B;AACA,WAAK,UAAU,CAAC,eAAe,YAAY;AAAA,IAC7C;AACA,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,eAAe,iBAAiB;AACvC,UAAI,WAAW,MAAM,QAAQ,WAAW,MAAM,GAAG;AAC/C,eAAO,WAAW,KAAK,KAAK,QAAQ,GAAG,KAAK,KAAK,QAAQ,GAAG;AAAA,MAC9D,OAAO;AACL,eAAO;AAAA,MACT;AACA,UAAI,WAAW,MAAM,QAAQ,WAAW,MAAM,GAAG;AAC/C,eAAO,WAAW,KAAK,KAAK,QAAQ,GAAG,KAAK,KAAK,QAAQ,GAAG;AAAA,MAC9D,OAAO;AACL,eAAO;AAAA,MACT;AACA,aAAO,CAAC,WAAW,IAAI,WAAW,IAAI,MAAM,IAAI;AAAA,IAClD,OAAO;AACL,UAAI,WAAW,MAAM,QAAQ,WAAW,MAAM,GAAG;AAC/C,eAAO,WAAW,KAAK,KAAK,QAAQ,GAAG,KAAK,KAAK,QAAQ,GAAG;AAAA,MAC9D,OAAO;AACL,eAAO;AAAA,MACT;AACA,UAAI,WAAW,MAAM,QAAQ,WAAW,MAAM,GAAG;AAC/C,eAAO,WAAW,KAAK,KAAK,QAAQ,GAAG,KAAK,KAAK,QAAQ,GAAG;AAAA,MAC9D,OAAO;AACL,eAAO;AAAA,MACT;AACA,aAAO,CAAC,WAAW,IAAI,MAAM,MAAM,WAAW,EAAE;AAAA,IAClD;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM,iBAAiB,oBAAoB,MAAM,GAAG,KAAK,SAAS,KAAK,UAAU,CAAC;AAAA,EAChG;AAAA,EACA,YAAY;AACV,UAAMb,UAAS;AAAA,MACb,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,IACnB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AAGjD,SAAS,OAAO,GAAG,UAAUF,UAASe,UAAS,YAAY,UAAU;AACnE,SAAO,KAAK,MAAM;AAChB,oBAAgB,UAAU;AAC1B,kBAAc,QAAQ;AACtB,qBAAiBA,QAAO;AACxB,QAAIf,YAAW,MAAM;AACnB,MAAAA,WAAU,CAAC,GAAG,CAAC;AAAA,IACjB;AACA,QAAIe,YAAW,MAAM;AACnB,MAAAA,WAAU;AAAA,IACZ;AACA,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,QAAI,YAAY,MAAM;AACpB,iBAAW;AAAA,IACb;AACA,QAAI,sBAAsB,GAAG,UAAU;AACvC,QAAI;AACJ,UAAM,gBAAgBA,aAAY,SAAS,SAAS;AACpD,QAAI,aAAa,OAAO;AACtB,UAAI,QAAQ,GAAG,UAAUf,UAAS,aAAa;AAAA,IACjD,OAAO;AACL,UAAI;AAAA,QACF;AAAA,QACA;AAAA,QACAA;AAAA,QACA;AAAA,MACF;AAAA,IACF;AACA,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAC/B;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,SAAS,OAAO,GAAG,UAAUA,UAASe,UAAS,YAAY,UAAU;AACnE,SAAO,KAAK,MAAM;AAChB,oBAAgB,UAAU;AAC1B,kBAAc,QAAQ;AACtB,qBAAiBA,QAAO;AACxB,QAAIf,YAAW,MAAM;AACnB,MAAAA,WAAU,CAAC,GAAG,GAAG,CAAC;AAAA,IACpB;AACA,QAAIe,YAAW,MAAM;AACnB,MAAAA,WAAU;AAAA,IACZ;AACA,QAAI,cAAc,MAAM;AACtB,mBAAa,gBAAgB;AAAA,IAC/B;AACA,QAAI,YAAY,MAAM;AACpB,iBAAW;AAAA,IACb;AACA,QAAI,sBAAsB,GAAG,UAAU;AACvC,QAAI;AACJ,UAAM,gBAAgBA,aAAY,SAAS,SAAS;AACpD,QAAI,aAAa,OAAO;AACtB,UAAI,UAAU,GAAG,UAAUf,UAAS,aAAa;AAAA,IACnD,OAAO;AACL,UAAI,UAAU,GAAG,UAAUA,UAAS,aAAa;AAAA,IACnD;AACA,QAAI,eAAe,iBAAiB;AAClC,UAAI,UAAU,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAAA,IAClC;AACA,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,QAAI,KAAK,YAAY,MAAM;AACzB,WAAK,WAAW;AAAA,IAClB;AACA,UAAM,IAAI;AACV,QAAI,OAAO,KAAK,aAAa,UAAU;AACrC,WAAK,WAAW,CAAC,KAAK,QAAQ;AAAA,IAChC,WAAW,MAAM,QAAQ,KAAK,QAAQ,KAAK,KAAK,SAAS,WAAW,KAAK,OAAO,KAAK,SAAS,OAAO,UAAU;AAC7G,WAAK,WAAW,KAAK;AAAA,IACvB,OAAO;AACL,YAAM,IAAI,WAAW,qGAAqG,KAAK,UAAU,KAAK,QAAQ,GAAG;AAAA,IAC3J;AACA,0BAAsB,KAAK,UAAU,UAAU;AAC/C,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,KAAK;AAAA,IACtB,OAAO;AACL,UAAI,OAAO,KAAK,YAAY,UAAU;AACpC,aAAK,UAAU,CAAC,KAAK,OAAO;AAAA,MAC9B,WAAW,MAAM,QAAQ,KAAK,OAAO,KAAK,KAAK,QAAQ,WAAW,KAAK,OAAO,KAAK,QAAQ,OAAO,UAAU;AAC1G,aAAK,UAAU,KAAK;AAAA,MACtB,OAAO;AACL,cAAM,IAAI,WAAW,oGAAoG,KAAK,UAAU,KAAK,OAAO,GAAG;AAAA,MACzJ;AAAA,IACF;AACA,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,UAAU,KAAK,WAAW,OAAO,UAAU,KAAK;AACrD,qBAAiB,KAAK,OAAO;AAC7B,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,SAAS,iBAAiB,WAAW,IAAI,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC9F,WAAO,CAAC,WAAW,IAAI,QAAQ,WAAW,EAAE;AAAA,EAC9C;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,eAAS,YAAY,oBAAoB,MAAM,GAAG,CAAC;AACnD,YAAM,SAAS,KAAK,gBAAgB,oBAAoB,MAAM,GAAG,CAAC,KAAK,SAAS,IAAI,CAAC,GAAG,CAAC,KAAK,QAAQ,IAAI,CAAC,GAAG,KAAK,SAAS,cAAc;AAC1I,aAAO,QAAQ,QAAQ,CAAC,CAAC,CAAC;AAAA,IAC5B,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAME,UAAS;AAAA,MACb,UAAU,KAAK;AAAA,MACf,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,IAChB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,eAAe,cAAc,UAAU;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUF,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUf,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,iBAAiB,YAAY;AAC7B,sBAAsB,cAAc,gBAAgB;AACpD,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,QAAI,KAAK,YAAY,MAAM;AACzB,WAAK,WAAW,CAAC,GAAG,CAAC;AAAA,IACvB;AACA,UAAM,IAAI;AACV,SAAK,WAAW,MAAM,QAAQ,KAAK,QAAQ,IAAI,KAAK,WAAW,CAAC,KAAK,UAAU,KAAK,QAAQ;AAC5F,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,KAAK;AAAA,IACtB,WAAW,MAAM,QAAQ,KAAK,OAAO,GAAG;AACtC,UAAI,KAAK,QAAQ,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,wHAAwH,KAAK,QAAQ,SAAS;AAAA,MACrK;AACA,WAAK,UAAU,KAAK;AAAA,IACtB,OAAO;AACL,WAAK,UAAU,CAAC,KAAK,SAAS,KAAK,OAAO;AAAA,IAC5C;AACA,0BAAsB,KAAK,UAAU,UAAU;AAC/C,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,UAAU,KAAK,WAAW,OAAO,UAAU,KAAK;AACrD,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,qBAAiB,KAAK,OAAO;AAC7B,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC5E,QAAI,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC5E,WAAO,iBAAiB,MAAM,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC7E,WAAO,iBAAiB,MAAM,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC7E,QAAI,KAAK,eAAe,iBAAiB;AACvC,aAAO,CAAC,WAAW,IAAI,WAAW,IAAI,MAAM,IAAI;AAAA,IAClD,OAAO;AACL,aAAO,CAAC,WAAW,IAAI,MAAM,MAAM,WAAW,EAAE;AAAA,IAClD;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,aAAO,KAAK,gBAAgB,oBAAoB,MAAM,GAAG,KAAK,UAAU,KAAK,SAAS,KAAK,SAAS,KAAK,UAAU;AAAA,IACrH,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMb,UAAS;AAAA,MACb,UAAU,KAAK;AAAA,MACf,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,IACnB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,eAAe,cAAc,UAAU;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUF,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUf,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,iBAAiB,YAAY;AAC7B,sBAAsB,cAAc,gBAAgB;AACpD,IAAI,YAAY,cAAc,MAAM;AAAA,EAClC,YAAY,MAAM;AAChB,QAAI,KAAK,YAAY,MAAM;AACzB,WAAK,WAAW,CAAC,GAAG,GAAG,CAAC;AAAA,IAC1B;AACA,UAAM,IAAI;AACV,SAAK,WAAW,MAAM,QAAQ,KAAK,QAAQ,IAAI,KAAK,WAAW,CAAC,KAAK,UAAU,KAAK,UAAU,KAAK,QAAQ;AAC3G,QAAI,KAAK,WAAW,MAAM;AACxB,WAAK,UAAU,KAAK;AAAA,IACtB,WAAW,MAAM,QAAQ,KAAK,OAAO,GAAG;AACtC,UAAI,KAAK,QAAQ,WAAW,GAAG;AAC7B,cAAM,IAAI,WAAW,wHAAwH,KAAK,QAAQ,SAAS;AAAA,MACrK;AACA,WAAK,UAAU,KAAK;AAAA,IACtB,OAAO;AACL,WAAK,UAAU,CAAC,KAAK,SAAS,KAAK,SAAS,KAAK,OAAO;AAAA,IAC1D;AACA,0BAAsB,KAAK,UAAU,UAAU;AAC/C,0BAAsB,KAAK,SAAS,SAAS;AAC7C,SAAK,UAAU,KAAK,WAAW,OAAO,UAAU,KAAK;AACrD,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,qBAAiB,KAAK,OAAO;AAC7B,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,SAAS,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC9E,QAAI,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC5E,QAAI,OAAO,KAAK,eAAe,kBAAkB,WAAW,KAAK,WAAW;AAC5E,aAAS,iBAAiB,QAAQ,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AACjF,WAAO,iBAAiB,MAAM,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC7E,WAAO,iBAAiB,MAAM,KAAK,SAAS,IAAI,KAAK,SAAS,KAAK,QAAQ,EAAE;AAC7E,QAAI,KAAK,eAAe,iBAAiB;AACvC,aAAO,CAAC,WAAW,IAAI,WAAW,IAAI,QAAQ,MAAM,IAAI;AAAA,IAC1D,OAAO;AACL,aAAO,CAAC,WAAW,IAAI,QAAQ,MAAM,MAAM,WAAW,EAAE;AAAA,IAC1D;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,WAAK,eAAe,QAAQ,MAAM;AAClC,aAAO,KAAK,gBAAgB,oBAAoB,MAAM,GAAG,KAAK,UAAU,KAAK,SAAS,KAAK,SAAS,KAAK,UAAU;AAAA,IACrH,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMb,UAAS;AAAA,MACb,UAAU,KAAK;AAAA,MACf,SAAS,KAAK;AAAA,MACd,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,IACnB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,eAAe,cAAc,UAAU;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUF,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,aAAa,YAAY;AACzB,sBAAsB,cAAc,YAAY;AAChD,IAAI,mBAAmB,cAAc,UAAU;AAAA,EAC7C,YAAY,MAAM;AAChB,UAAM,IAAI;AAAA,EACZ;AAAA,EACA,gBAAgB,QAAQ,UAAUf,UAASe,UAAS,YAAY;AAC9D,oBAAgB,UAAU;AAC1B,qBAAiBA,QAAO;AACxB,WAAO,OAAO,QAAQ,UAAUf,UAASe,UAAS,YAAY,KAAK;AAAA,EACrE;AACF;AACA,iBAAiB,YAAY;AAC7B,sBAAsB,cAAc,gBAAgB;AACpD,IAAI,kBAAkB,cAAc,MAAM;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,WAAO,CAAC,WAAW,IAAI,WAAW,EAAE;AAAA,EACtC;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB;AAAA,EAChC;AACF;AACA,IAAI,yBAAyB,cAAc,gBAAgB;AAAA,EACzD,YAAY,MAAM;AAChB,UAAM,QAAQ,CAAC,CAAC;AAAA,EAClB;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,oBAAoB,MAAM;AACzC,aAAO,KAAK,QAAQ,CAAC;AAAA,IACvB,CAAC;AAAA,EACH;AACF;AACA,uBAAuB,YAAY;AACnC,sBAAsB,cAAc,sBAAsB;AAC1D,IAAI,qBAAqB,cAAc,gBAAgB;AAAA,EACrD,YAAY,MAAM;AAChB,UAAM,QAAQ,CAAC,CAAC;AAAA,EAClB;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,oBAAoB,MAAM;AACzC,aAAO,IAAI,QAAQ,CAAC;AAAA,IACtB,CAAC;AAAA,EACH;AACF;AACA,mBAAmB,YAAY;AAC/B,sBAAsB,cAAc,kBAAkB;AACtD,IAAI,kBAAkB,cAAc,MAAM;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,aAAa,KAAK,cAAc,OAAO,iBAAiB,KAAK;AAClE,oBAAgB,KAAK,UAAU;AAC/B,SAAK,YAAY,CAAC,IAAI,UAAU,EAAE,MAAM,EAAE,CAAC,CAAC;AAAA,EAC9C;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa;AACb,QAAI,KAAK,eAAe,gBAAgB;AACtC,aAAO,CAAC,WAAW,IAAI,WAAW,EAAE;AAAA,IACtC,OAAO;AACL,aAAO,CAAC,WAAW,IAAI,WAAW,EAAE;AAAA,IACtC;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,UAAM,IAAI,oBAAoB;AAAA,EAChC;AAAA,EACA,YAAY;AACV,UAAMb,UAAS,EAAE,YAAY,KAAK,WAAW;AAC7C,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AACF;AACA,IAAI,yBAAyB,cAAc,gBAAgB;AAAA,EACzD,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,oBAAoB,MAAM;AACzC,UAAI,KAAK,eAAe,gBAAgB;AACtC,eAAO,KAAK,QAAQ,CAAC,GAAG,CAAC,CAAC;AAAA,MAC5B,OAAO;AACL,eAAO,KAAK,QAAQ,CAAC,GAAG,CAAC,CAAC;AAAA,MAC5B;AAAA,IACF,CAAC;AAAA,EACH;AACF;AACA,uBAAuB,YAAY;AACnC,sBAAsB,cAAc,sBAAsB;AAC1D,IAAI,qBAAqB,cAAc,gBAAgB;AAAA,EACrD,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,oBAAoB,MAAM;AACzC,UAAI,KAAK,eAAe,gBAAgB;AACtC,eAAO,IAAI,QAAQ,CAAC,GAAG,CAAC,CAAC;AAAA,MAC3B,OAAO;AACL,eAAO,IAAI,QAAQ,CAAC,GAAG,CAAC,CAAC;AAAA,MAC3B;AAAA,IACF,CAAC;AAAA,EACH;AACF;AACA,mBAAmB,YAAY;AAC/B,sBAAsB,cAAc,kBAAkB;AAGtD,IAAI,UAAU,cAAc,MAAM;AAAA,EAChC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,QAAQ,KAAK;AAAA,EACpB;AAAA,EACA,MAAM,YAAY;AAChB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,IAAI,YAAY;AACd,QAAI,KAAK,SAAS,MAAM;AACtB,aAAO,KAAK,MAAM;AAAA,IACpB,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,IAAI,UAAU,OAAO;AACnB,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM,YAAY;AAAA,IACzB;AAAA,EACF;AAAA,EACA,IAAI,mBAAmB;AACrB,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,IAAI,sBAAsB;AACxB,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK,MAAM;AAAA,EACpB;AAAA,EACA,aAAa;AACX,WAAO,KAAK,MAAM,WAAW;AAAA,EAC/B;AAAA,EACA,WAAW,SAAS;AAClB,SAAK,MAAM,WAAW,OAAO;AAAA,EAC/B;AAAA,EACA,YAAY;AACV,UAAMA,UAAS;AAAA,MACb,SAAS;AAAA,QACP,aAAa,KAAK,MAAM,aAAa;AAAA,QACrC,UAAU,KAAK,MAAM,UAAU;AAAA,MACjC;AAAA,IACF;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,6BAA6B,OAAO;AAClC,UAAM,6BAA6B,KAAK;AACxC,QAAI,KAAK,SAAS,MAAM;AACtB,WAAK,MAAM,6BAA6B,KAAK;AAAA,IAC/C;AAAA,EACF;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ,gBAAgB,CAAC,GAAG;AACjD,UAAM,cAAcA,QAAO;AAC3B,UAAM,QAAQ,YAAY,aAAa,aAAa;AACpD,WAAOA,QAAO;AACd,UAAM,YAAY,EAAE,MAAM;AAC1B,WAAO,OAAO,WAAWA,OAAM;AAC/B,WAAO,IAAI,IAAI,SAAS;AAAA,EAC1B;AACF;AACA,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,MAAM,YAAY;AAChB,iBAAa,mBAAmB,UAAU;AAC1C,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,WAAW,gFAAgF,KAAK,UAAU,UAAU,GAAG;AAAA,IACnI;AACA,SAAK,YAAY,CAAC,EAAE,OAAO,WAAW,CAAC;AACvC,UAAM,kBAAkB,CAAC,WAAW,EAAE,EAAE,OAAO,WAAW,MAAM,CAAC,CAAC;AAClE,QAAI,CAAC,KAAK,MAAM,OAAO;AACrB,WAAK,MAAM,MAAM,eAAe;AAChC,WAAK,MAAM,QAAQ;AAAA,IACrB;AACA,UAAM,MAAM,UAAU;AAAA,EACxB;AAAA,EACA,mBAAmB,YAAY;AAC7B,iBAAa,mBAAmB,UAAU;AAC1C,UAAM,kBAAkB,CAAC,WAAW,EAAE,EAAE,OAAO,WAAW,MAAM,CAAC,CAAC;AAClE,UAAM,mBAAmB,KAAK,MAAM,mBAAmB,eAAe;AACtE,UAAM,YAAY,WAAW;AAC7B,WAAO,CAAC,iBAAiB,IAAI,SAAS,EAAE,OAAO,iBAAiB,MAAM,CAAC,CAAC;AAAA,EAC1E;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,eAAS,oBAAoB,MAAM;AACnC,YAAM,QAAQ,CAAC,SAAS,WAAW;AACjC,cAAM,SAAS,oBAAoB,KAAK,MAAM,KAAK,SAAS,MAAM,CAAC;AACnE,eAAO,CAAC,QAAQ,CAAC,CAAC;AAAA,MACpB;AACA,YAAM,aAAa,IAAI,OAAO,QAAQ,CAAC,GAAG,OAAO,MAAM,MAAM,OAAO,IAAI;AACxE,YAAM,IAAI,WAAW;AACrB,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AACF;AACA,gBAAgB,YAAY;AAC5B,sBAAsB,cAAc,eAAe;AACnD,SAAS,4BAA4B,OAAO;AAC1C,4BAA0B,iCAAiC,0BAA0B,KAAK;AAC5F;AACA,IAAI,mCAAmC;AACvC,IAAI,gBAAgB,cAAc,QAAQ;AAAA,EACxC,YAAY,MAAM;AAChB,UAAM,IAAI;AACV,UAAM,cAAc,KAAK,MAAM,UAAU;AACzC,UAAM,WAAW,CAAC;AAClB,aAAS,eAAe,KAAK,MAAM,aAAa;AAChD,aAAS,YAAY;AACrB,SAAK,eAAe,YAAY,QAAQ;AACxC,gBAAY,iBAAiB,YAAY,mBAAmB,OAAO,QAAQ;AAC3E,UAAM,WAAW,CAAC;AAClB,aAAS,eAAe,KAAK,MAAM,aAAa;AAChD,aAAS,YAAY;AACrB,SAAK,gBAAgB,YAAY,QAAQ;AACzC,SAAK,aAAa,OAAO,aAAa,KAAK,aAAa;AACxD,SAAK,cAAc,OAAO,cAAc,KAAK,cAAc;AAC3D,SAAK,YAAY,KAAK,cAAc,SAAS,mCAAmC,KAAK;AACrF,gCAA4B,KAAK,SAAS;AAC1C,QAAI,KAAK,SAAS;AAChB,YAAM,IAAI,oBAAoB,iEAAiE;AAAA,IACjG;AACA,SAAK,YAAY,KAAK,MAAM;AAC5B,SAAK,kBAAkB,KAAK,MAAM;AAClC,SAAK,cAAc,KAAK,MAAM;AAC9B,SAAK,kBAAkB;AACvB,SAAK,aAAa;AAClB,SAAK,YAAY,KAAK,MAAM;AAC5B,SAAK,eAAe;AAAA,EACtB;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,UAAU,OAAO;AACnB,SAAK,aAAa;AAClB,QAAI,KAAK,gBAAgB,MAAM;AAC7B,WAAK,aAAa,YAAY;AAAA,IAChC;AACA,QAAI,KAAK,iBAAiB,MAAM;AAC9B,WAAK,cAAc,YAAY;AAAA,IACjC;AAAA,EACF;AAAA,EACA,aAAa;AACX,WAAO,KAAK,aAAa,WAAW,EAAE,OAAO,KAAK,cAAc,WAAW,CAAC;AAAA,EAC9E;AAAA,EACA,WAAW,SAAS;AAClB,UAAM,aAAa,QAAQ;AAC3B,UAAM,iBAAiB,KAAK,MAAM,aAAa,CAAC;AAChD,SAAK,aAAa,WAAW,QAAQ,MAAM,GAAG,cAAc,CAAC;AAC7D,SAAK,cAAc,WAAW,QAAQ,MAAM,cAAc,CAAC;AAAA,EAC7D;AAAA,EACA,mBAAmB,YAAY;AAC7B,QAAI,cAAc,KAAK,aAAa,mBAAmB,UAAU;AACjE,QAAI,EAAE,MAAM,QAAQ,WAAW,KAAK,MAAM,QAAQ,YAAY,EAAE,IAAI;AAClE,oBAAc,CAAC,WAAW;AAAA,IAC5B;AACA,kBAAc;AACd,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,aAAa;AACpB,mBAAa,YAAY,MAAM,CAAC;AAChC,oBAAc,YAAY;AAAA,IAC5B,OAAO;AACL,oBAAc,YAAY;AAAA,IAC5B;AACA,kBAAc;AACd,QAAI,KAAK,cAAc,UAAU;AAC/B,kBAAY,YAAY,SAAS,MAAM;AACvC,qBAAe,CAAC,WAAW;AAAA,IAC7B,WAAW,KAAK,aAAa,MAAM;AACjC,qBAAe,CAAC,aAAa,YAAY,MAAM,CAAC;AAAA,IAClD,OAAO;AACL,qBAAe,CAAC,WAAW;AAAA,IAC7B;AACA,QAAI,KAAK,aAAa;AACpB,UAAI,KAAK,aAAa,MAAM;AAC1B,eAAO,aAAa,OAAO,UAAU,EAAE,OAAO,WAAW,MAAM,CAAC;AAAA,MAClE;AACA,aAAO,CAAC,WAAW,EAAE,OAAO,UAAU,EAAE,OAAO,WAAW,MAAM,CAAC;AAAA,IACnE;AACA,WAAO,iBAAiB,YAAY;AAAA,EACtC;AAAA,EACA,MAAM,QAAQ,QAAQ;AACpB,QAAI,eAAe,UAAU,OAAO,OAAO,OAAO;AAClD,QAAIgB,aAAY,UAAU,OAAO,OAAO,OAAO;AAC/C,QAAI,UAAU,MAAM;AAClB,eAAS,CAAC;AAAA,IACZ;AACA,UAAM,eAAe,gBAAgB,QAAQ,cAAcA,YAAW,KAAK,YAAY;AACvF,aAAS,aAAa;AACtB,mBAAe,aAAa;AAC5B,IAAAA,aAAY,aAAa;AACzB,QAAI,MAAM,QAAQ,MAAM,GAAG;AACzB,qBAAe,OAAO,MAAM,CAAC;AAC7B,eAAS,OAAO;AAAA,IAClB;AACA,SAAK,gBAAgB,QAAQ,aAAa,WAAW,MAAMA,cAAa,MAAM;AAC5E,aAAO,MAAM,MAAM,QAAQ,MAAM;AAAA,IACnC;AACA,UAAM,mBAAmB,CAAC;AAC1B,UAAM,kBAAkB,CAAC;AACzB,QAAI,gBAAgB,MAAM;AACxB,YAAM,YAAY,aAAa;AAC/B,UAAI,YAAY,IAAI,GAAG;AACrB,cAAM,IAAI,WAAW,+HAA+H;AAAA,MACtJ;AACA,aAAO,kBAAkB;AACzB,uBAAiB,KAAK,GAAG,YAAY;AACrC,YAAM,aAAa,aAAa,IAAI,CAAC,UAAU,IAAI,UAAU,EAAE,OAAO,MAAM,MAAM,CAAC,CAAC;AACpF,WAAK,aAAa,YAAY,WAAW,MAAM,GAAG,YAAY,CAAC;AAC/D,WAAK,cAAc,YAAY,WAAW,MAAM,YAAY,CAAC;AAC7D,sBAAgB,KAAK,GAAG,UAAU;AAAA,IACpC;AACA,QAAIA,cAAa,MAAM;AACrB,YAAM,IAAI,oBAAoB,uEAAuE;AAAA,IACvG;AACA,UAAM,mBAAmB,iBAAiB,cAAc;AACxD,eAAW,WAAW,kBAAkB;AACtC,UAAI,mBAAmB,mBAAmB,kBAAkB;AAC1D,cAAM,IAAI,WAAW,8GAA8G;AAAA,MACrI;AAAA,IACF;AACA,QAAI,kBAAkB;AACpB,YAAM,YAAY,CAAC,MAAM,EAAE,OAAO,gBAAgB;AAClD,YAAM,gBAAgB,KAAK,UAAU,OAAO,eAAe;AAC3D,YAAM,oBAAoB,KAAK;AAC/B,WAAK,YAAY;AACjB,YAAM,SAAS,MAAM,MAAM,WAAW,MAAM;AAC5C,WAAK,YAAY;AACjB,aAAO;AAAA,IACT,OAAO;AACL,aAAO,MAAM,MAAM,QAAQ,MAAM;AAAA,IACnC;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ;AACnB,WAAO,KAAK,MAAM;AAChB,YAAM,eAAe,OAAO;AAC5B,UAAI;AACJ,UAAI;AACJ,UAAI,gBAAgB,MAAM;AACxB,YAAI,KAAK,aAAa,KAAK,QAAQ,MAAM;AACzC,eAAO,KAAK,cAAc,KAAK,QAAQ,MAAM;AAAA,MAC/C,OAAO;AACL,cAAM,eAAe,aAAa,MAAM,GAAG,aAAa,SAAS,CAAC;AAClE,cAAM,gBAAgB,aAAa,MAAM,aAAa,SAAS,CAAC;AAChE,YAAI,KAAK,aAAa,KAAK,QAAQ,OAAO,OAAO,QAAQ,EAAE,cAAc,aAAa,CAAC,CAAC;AACxF,eAAO,KAAK,cAAc,KAAK,QAAQ,OAAO,OAAO,QAAQ,EAAE,cAAc,cAAc,CAAC,CAAC;AAAA,MAC/F;AACA,UAAI;AACJ,UAAI,KAAK,aAAa;AACpB,YAAI,MAAM,QAAQ,CAAC,GAAG;AACpB,mBAAS,EAAE,MAAM,CAAC,EAAE,OAAO,KAAK,MAAM,CAAC,CAAC;AAAA,QAC1C,OAAO;AAAA,QACP;AACA,YAAI,EAAE;AACN,eAAO,KAAK;AAAA,MACd;AACA,UAAI,KAAK,iBAAiB;AACxB,eAAO,QAAQ,MAAM,CAAC;AAAA,MACxB;AACA,UAAI;AACJ,UAAI,KAAK,cAAc,UAAU;AAC/B,iBAAS,YAAY,CAAC,GAAG,IAAI,CAAC;AAAA,MAChC,WAAW,KAAK,cAAc,OAAO;AACnC,iBAAS,KAAK,GAAG,IAAI;AAAA,MACvB,WAAW,KAAK,cAAc,OAAO;AACnC,iBAAS,IAAI,KAAK,KAAK,GAAG,IAAI,CAAC;AAAA,MACjC,WAAW,KAAK,cAAc,OAAO;AACnC,iBAAS,IAAI,GAAG,IAAI;AAAA,MACtB,WAAW,KAAK,aAAa,MAAM;AACjC,iBAAS,CAAC,GAAG,IAAI;AAAA,MACnB;AACA,UAAI,KAAK,aAAa;AACpB,YAAI,KAAK,aAAa,MAAM;AAC1B,iBAAO,OAAO,OAAO,MAAM;AAAA,QAC7B;AACA,eAAO,CAAC,MAAM,EAAE,OAAO,MAAM;AAAA,MAC/B;AACA,aAAO;AAAA,IACT,CAAC;AAAA,EACH;AAAA,EACA,YAAY,QAAQ;AAClB,SAAK,aAAa,YAAY;AAC9B,SAAK,cAAc,YAAY;AAAA,EACjC;AAAA,EACA,MAAM,YAAY;AAChB,cAAU,KAAK,aAAa,MAAM,MAAM;AACtC,WAAK,aAAa,MAAM,UAAU;AAAA,IACpC,CAAC;AACD,cAAU,KAAK,cAAc,MAAM,MAAM;AACvC,WAAK,cAAc,MAAM,UAAU;AAAA,IACrC,CAAC;AACD,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,YAAY,QAAQ1B,OAAM;AACxB,QAAI,MAAM,QAAQA,KAAI,GAAG;AACvB,MAAAA,QAAOA,MAAK;AAAA,IACd;AACA,QAAI;AACJ,QAAI,KAAK,iBAAiB;AACxB,UAAI,KAAK,aAAa,MAAM;AAC1B,qBAAa,CAACA,OAAMA,KAAI;AAAA,MAC1B,OAAO;AACL,qBAAaA;AAAA,MACf;AAAA,IACF,OAAO;AACL,UAAI,KAAK,aAAa,MAAM;AAC1B,qBAAa,CAAC,MAAM,IAAI;AAAA,MAC1B,OAAO;AACL,qBAAa;AAAA,MACf;AAAA,IACF;AACA,QAAI,KAAK,aAAa;AACpB,YAAM,SAAS,KAAK,aAAa;AACjC,YAAM,YAAY,OAAO,IAAI,CAAC,UAAU,IAAI;AAC5C,UAAI,MAAM,QAAQ,UAAU,GAAG;AAC7B,eAAO,WAAW,OAAO,SAAS,EAAE,OAAO,SAAS;AAAA,MACtD,OAAO;AACL,eAAO,CAAC,UAAU,EAAE,OAAO,SAAS,EAAE,OAAO,SAAS;AAAA,MACxD;AAAA,IACF,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,IAAI,mBAAmB;AACrB,WAAO,KAAK,aAAa,iBAAiB,OAAO,KAAK,cAAc,gBAAgB;AAAA,EACtF;AAAA,EACA,IAAI,sBAAsB;AACxB,WAAO,KAAK,aAAa,oBAAoB,OAAO,KAAK,cAAc,mBAAmB;AAAA,EAC5F;AAAA,EACA,6BAA6B,OAAO;AAClC,UAAM,6BAA6B,KAAK;AACxC,QAAI,KAAK,gBAAgB,MAAM;AAC7B,WAAK,aAAa,6BAA6B,KAAK;AAAA,IACtD;AACA,QAAI,KAAK,iBAAiB,MAAM;AAC9B,WAAK,cAAc,6BAA6B,KAAK;AAAA,IACvD;AAAA,EACF;AAAA,EACA,YAAY;AACV,UAAMU,UAAS;AAAA,MACb,aAAa,KAAK;AAAA,IACpB;AACA,UAAM,aAAa,MAAM,UAAU;AACnC,WAAO,OAAOA,SAAQ,UAAU;AAChC,WAAOA;AAAA,EACT;AAAA,EACA,OAAO,WAAW,KAAKA,SAAQ;AAC7B,UAAM,WAAW,YAAYA,QAAO,QAAQ;AAC5C,WAAOA,QAAO;AACd,QAAIA,QAAO,mBAAmB,MAAM;AAClC,YAAM,IAAI,oBAAoB,0FAA0F;AAAA,IAC1H;AACA,UAAM,YAAYA;AAClB,cAAU,WAAW;AACrB,WAAO,IAAI,IAAI,SAAS;AAAA,EAC1B;AACF;AACA,cAAc,YAAY;AAC1B,sBAAsB,cAAc,aAAa;AAGjD,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,WAAW,IAAI;AAC5B;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,IAAI,IAAI;AACrB;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,KAAK,IAAI;AACtB;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,OAAO,MAAM;AACpB,SAAO,IAAI,MAAM,IAAI;AACvB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,OAAO,IAAI;AACxB;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,WAAW,IAAI;AAC5B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,YAAY,IAAI;AAC7B;AACA,SAAS,MAAM,MAAM;AACnB,SAAO,IAAI,MAAM,IAAI;AACvB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,iBAAiB,IAAI;AAClC;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,KAAK,IAAI;AACtB;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,YAAY,IAAI;AAC7B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,IAAI,IAAI;AACrB;AACA,SAAS,oBAAoB,MAAM;AACjC,SAAO,IAAI,mBAAmB,IAAI;AACpC;AACA,SAAS,mBAAmB,MAAM;AAChC,SAAO,IAAI,mBAAmB,IAAI;AACpC;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,iBAAiB,IAAI;AAClC;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,iBAAiB,IAAI;AAClC;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,iBAAiB,IAAI;AAClC;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,iBAAiB,IAAI;AAC9B;AACA,SAAS,uBAAuB,MAAM;AACpC,SAAO,IAAI,uBAAuB,IAAI;AACxC;AACA,SAAS,uBAAuB,MAAM;AACpC,SAAO,IAAI,uBAAuB,IAAI;AACxC;AACA,SAAS,mBAAmB,MAAM;AAChC,SAAO,IAAI,mBAAmB,IAAI;AACpC;AACA,SAAS,mBAAmB,MAAM;AAChC,SAAO,IAAI,mBAAmB,IAAI;AACpC;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,IAAI,MAAM;AACjB,SAAO,IAAI,IAAI,IAAI;AACrB;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,KAAK,IAAI;AACtB;AACA,SAAS,SAAS,MAAM;AACtB,SAAO,IAAI,SAAS,IAAI;AAC1B;AACA,SAAS,UAAU,MAAM;AACvB,SAAO,IAAI,UAAU,IAAI;AAC3B;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,WAAW,MAAM;AACxB,SAAO,IAAI,WAAW,IAAI;AAC5B;AACA,SAAS,eAAe,MAAM;AAC5B,SAAO,IAAI,eAAe,IAAI;AAChC;AACA,SAAS,KAAK,MAAM;AAClB,SAAO,IAAI,IAAI,IAAI;AACrB;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,IAAI,kBAAkB;AACtB,IAAI,kBAAkB;AACtB,IAAI,YAAY;AAChB,IAAI,YAAY;AAChB,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,IAAI,gBAAgB,IAAI;AACjC;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,IAAI,aAAa,IAAI;AAC9B;AACA,SAAS,QAAQ,MAAM;AACrB,SAAO,IAAI,QAAQ,IAAI;AACzB;AAGA,IAAI,0BAA0B,CAAC;AAC/BlB,UAAS,yBAAyB;AAAA,EAChC,MAAM,MAAM;AAAA,EACZ,KAAK,MAAM;AAAA,EACX,gBAAgB,MAAM;AAAA,EACtB,oBAAoB,MAAM;AAAA,EAC1B,qBAAqB,MAAM;AAAA,EAC3B,yBAAyB,MAAM;AAAA,EAC/B,iBAAiB,MAAM;AAAA,EACvB,MAAM,MAAM;AAAA,EACZ,mBAAmB,MAAM;AAAA,EACzB,6BAA6B,MAAM;AAAA,EACnC,kBAAkB,MAAM;AAAA,EACxB,KAAK,MAAM;AAAA,EACX,WAAW,MAAM;AAAA,EACjB,QAAQ,MAAM;AAAA,EACd,2BAA2B,MAAM;AACnC,CAAC;AACD,SAAS,gBAAgB,OAAO,OAAO;AACrC,SAAO,eAAe,OAAO,KAAK;AACpC;AACA,SAAS,oBAAoB,OAAO,OAAO;AACzC,SAAO,oBAAoB,OAAO,KAAK;AACzC;AACA,SAAS,2BAA2B,OAAO,OAAO;AAChD,SAAO,0BAA0B,OAAO,KAAK;AAC/C;AACA,SAAS,qBAAqB,OAAO,OAAO;AAC1C,SAAO,oBAAoB,OAAO,KAAK;AACzC;AACA,SAAS,yBAAyB,OAAO,OAAO;AAC9C,SAAO,yBAAyB,OAAO,KAAK;AAC9C;AACA,SAAS,WAAW,OAAO,OAAO;AAChC,SAAO,UAAU,OAAO,KAAK;AAC/B;AACA,SAAS,QAAQ,OAAO,OAAO;AAC7B,SAAO,OAAO,OAAO,KAAK;AAC5B;AACA,SAAS,iBAAiB,OAAO,OAAO;AACtC,SAAO,gBAAgB,OAAO,KAAK;AACrC;AACA,SAAS,mBAAmB,OAAO,OAAO;AACxC,SAAO,kBAAkB,OAAO,KAAK;AACvC;AACA,SAAS,6BAA6B,OAAO,OAAO;AAClD,SAAO,4BAA4B,OAAO,KAAK;AACjD;AACA,SAAS,MAAM,OAAO,OAAO;AAC3B,SAAO,4BAA4B,OAAO,KAAK;AACjD;AACA,SAAS,MAAM,OAAO,OAAO;AAC3B,SAAO,4BAA4B,OAAO,KAAK;AACjD;AACA,SAAS,kBAAkB,OAAO,OAAO;AACvC,SAAO,kBAAkB,OAAO,KAAK;AACvC;AACA,SAAS,KAAK,OAAO,OAAO;AAC1B,SAAO,kBAAkB,OAAO,KAAK;AACvC;AACA,SAAS,KAAK,OAAO,OAAO;AAC1B,SAAO,kBAAkB,OAAO,KAAK;AACvC;AAGA,IAAI,yBAAyB,CAAC;AAC9BA,UAAS,wBAAwB;AAAA,EAC/B,eAAe,MAAM;AACvB,CAAC;AAGD,IAAI,+BAA+B,CAAC;AACpCA,UAAS,8BAA8B;AAAA,EACrC,IAAI,MAAM;AAAA,EACV,MAAM,MAAM;AAAA,EACZ,IAAI,MAAM;AACZ,CAAC;AACD,SAAS,KAAKkB,SAAQ;AACpB,SAAO,IAAI,KAAKA,OAAM;AACxB;AACA,SAAS,IAAIA,SAAQ;AACnB,SAAO,GAAGA,OAAM;AAClB;AACA,SAAS,IAAIA,SAAQ;AACnB,SAAO,GAAGA,OAAM;AAClB;AAGA,IAAI,WAAW,cAAc,aAAa;AAAA,EACxC,cAAc;AACZ,UAAM,GAAG,SAAS;AAClB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,SAASe,SAAQ;AACf,QAAI,EAAEA,mBAAkB,cAAc;AACpC,YAAM,IAAI,MAAM,uDAAuD;AAAA,IACzE;AACA,SAAK,QAAQA;AAAA,EACf;AACF;AACA,SAAS,MAAM,SAAS,SAAS;AAC/B,SAAO,UAAU;AACnB;AACA,SAAS,SAAS,SAAS,SAAS;AAClC,SAAO,UAAU;AACnB;AACA,IAAI,gBAAgB,cAAc,SAAS;AAAA,EACzC,YAAY,MAAM;AAChB,UAAM;AACN,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,QAAI,KAAK,oBAAoB;AAC3B,YAAM,IAAI,oBAAoB,oEAAoE;AAAA,IACpG;AACA,SAAK,UAAU,KAAK,WAAW;AAC/B,SAAK,WAAW,KAAK,IAAI,KAAK,YAAY,CAAC;AAC3C,SAAK,WAAW,KAAK,YAAY;AACjC,SAAK,UAAU,KAAK,WAAW;AAC/B,SAAK,OAAO,KAAK,QAAQ;AACzB,SAAK,WAAW,KAAK;AACrB,QAAI,CAAC,QAAQ,OAAO,KAAK,EAAE,QAAQ,KAAK,IAAI,MAAM,IAAI;AACpD,cAAQ,KAAK,uBAAuB,KAAK,gDAAgD;AACzF,WAAK,OAAO;AAAA,IACd;AACA,QAAI,KAAK,SAAS,OAAO;AACvB,WAAK,cAAc;AAAA,IACrB,WAAW,KAAK,SAAS,OAAO;AAC9B,WAAK,cAAc;AAAA,IACrB,OAAO;AACL,UAAI,KAAK,QAAQ,QAAQ,KAAK,MAAM,IAAI;AACtC,aAAK,cAAc;AAAA,MACrB,OAAO;AACL,aAAK,cAAc;AAAA,MACrB;AAAA,IACF;AACA,QAAI,KAAK,gBAAgB,OAAO;AAC9B,WAAK,YAAY;AAAA,IACnB;AAAA,EACF;AAAA,EACA,MAAM,aAAa,MAAM;AACvB,SAAK,OAAO;AACZ,SAAK,eAAe;AACpB,QAAI,KAAK,YAAY,MAAM;AACzB,WAAK,OAAO,KAAK;AAAA,IACnB,OAAO;AACL,WAAK,OAAO,KAAK,gBAAgB,QAAQ,WAAW;AAAA,IACtD;AAAA,EACF;AAAA,EACA,MAAM,WAAW,OAAO,MAAM;AAC5B,UAAM,qBAAqB,IAAI;AAC/B,UAAM,UAAU,KAAK,gBAAgB,IAAI;AACzC,QAAI,WAAW,MAAM;AACnB;AAAA,IACF;AACA,QAAI,KAAK,YAAY,UAAU,KAAK,UAAU,KAAK,IAAI,GAAG;AACxD,WAAK,OAAO;AACZ,WAAK,OAAO;AAAA,IACd,OAAO;AACL,WAAK;AACL,UAAI,KAAK,QAAQ,KAAK,UAAU;AAC9B,aAAK,eAAe;AACpB,aAAK,MAAM,eAAe;AAAA,MAC5B;AAAA,IACF;AAAA,EACF;AAAA,EACA,MAAM,WAAW,MAAM;AACrB,QAAI,KAAK,eAAe,KAAK,KAAK,SAAS;AACzC,cAAQ,IAAI,SAAS,KAAK,+BAA+B;AAAA,IAC3D;AAAA,EACF;AAAA,EACA,gBAAgB,MAAM;AACpB,QAAI,QAAQ,MAAM;AAChB,aAAO,CAAC;AAAA,IACV;AACA,UAAM,eAAe,KAAK,KAAK;AAC/B,QAAI,gBAAgB,MAAM;AACxB,cAAQ,KAAK,4BAA4B,KAAK,oDAAoD,OAAO,KAAK,IAAI,GAAG;AAAA,IACvH;AACA,WAAO;AAAA,EACT;AACF;AACA,SAAS,cAAc,MAAM;AAC3B,SAAO,IAAI,cAAc,IAAI;AAC/B;AACA,IAAI,YAAY,EAAE,cAAc;AAGhC,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,6BAA6B,MAAM,OAAO,CAAC,eAAe;AAC1E,MAAI,YAAY;AACd,YAAQ,KAAK,+OAA+O;AAAA,EAC9P;AACF,CAAC;AAGD,IAAI;AAAA,CACH,SAAS,WAAW;AACnB,YAAU,UAAU,gBAAgB,KAAK;AACzC,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,eAAe,KAAK;AACxC,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,aAAa,KAAK;AACtC,YAAU,UAAU,eAAe,KAAK;AACxC,YAAU,UAAU,kBAAkB,KAAK;AAC3C,YAAU,UAAU,cAAc,KAAK;AACvC,YAAU,UAAU,aAAa,MAAM;AACvC,YAAU,UAAU,cAAc,MAAM;AACxC,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,iBAAiB,MAAM;AAC3C,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,gBAAgB,MAAM;AAC1C,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,mBAAmB,MAAM;AAC7C,YAAU,UAAU,aAAa,MAAM;AACvC,YAAU,UAAU,iBAAiB,MAAM;AAC3C,YAAU,UAAU,gBAAgB,MAAM;AAC1C,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,eAAe,MAAM;AACzC,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,iBAAiB,OAAO;AAC5C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,sBAAsB,OAAO;AACjD,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,iBAAiB,OAAO;AAC5C,YAAU,UAAU,kBAAkB,OAAO;AAC7C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,qBAAqB,OAAO;AAChD,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,oBAAoB,OAAO;AAC/C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,uBAAuB,OAAO;AAClD,YAAU,UAAU,iBAAiB,OAAO;AAC5C,YAAU,UAAU,qBAAqB,OAAO;AAChD,YAAU,UAAU,oBAAoB,OAAO;AAC/C,YAAU,UAAU,mBAAmB,OAAO;AAC9C,YAAU,UAAU,mBAAmB,OAAO;AAChD,GAAG,aAAa,WAAW,CAAC,EAAE;AAC9B,IAAI;AAAA,CACH,SAAS,WAAW;AACnB,MAAI;AACJ,GAAC,SAAS,0BAA0B;AAClC,6BAAyB,yBAAyB,YAAY,KAAK;AACnE,6BAAyB,yBAAyB,QAAQ,KAAK;AAC/D,6BAAyB,yBAAyB,QAAQ,KAAK;AAAA,EACjE,GAAG,0BAA0B,UAAU,4BAA4B,UAAU,0BAA0B,CAAC,EAAE;AAC5G,GAAG,aAAa,WAAW,CAAC,EAAE;AAG9B,IAAI,aAAa,CAAC;AAClB,SAAS,WAAW,MAAM,QAAQ;AAChC,QAAM,WAAW;AAAA,IACf,UAAU;AAAA,IACV,UAAU;AAAA,IACV,QAAQ,CAAC;AAAA,IACT,OAAO,CAAC;AAAA,IACR,gBAAgB;AAAA,EAClB;AACA,aAAW,QAAQ;AACrB;AACA,SAAS,gBAAgB,MAAM;AAC7B,SAAO,WAAW;AACpB;AACA,SAAS,aAAa,MAAM;AAC1B,SAAO,WAAW;AACpB;AAGA,SAAS,cAAc,WAAWb,OAAM,WAAW,SAAS,iBAAiB;AAC3E,QAAM,aAAaA,MAAK,YAAY;AACpC,MAAI,cAAc,WAAW,oBAAoB,QAAQ;AACvD,UAAM,QAAQ,WAAW;AACzB,UAAM,MAAM,WAAW,kBAAkB,IAAI,SAAS,WAAW,kBAAkB,SAAS,QAAQ,IAAI,WAAW;AACnH,QAAI,WAAW,SAAS,UAAU;AAChC,aAAO,UAAUA,MAAK,WAAW,WAAW,kBAAkB,WAAW,SAAS,eAAe;AAAA,IACnG;AACA,QAAI,WAAW,SAAS,WAAW;AACjC,YAAM,SAASA,MAAK,WAAW,MAAM,OAAO,GAAG;AAC/C,aAAO,OAAO,IAAI,CAAC,SAAS,UAAU,MAAM,WAAW,SAAS,eAAe,CAAC;AAAA,IAClF;AACA,UAAM,UAAU,UAAUA,MAAK,WAAW,MAAM,KAAK,EAAE,IAAI,WAAW,SAAS,eAAe;AAC9F,UAAM,OAAO,QAAQ,SAAS;AAC9B,WAAO,WAAW,SAAS,WAAW,KAAK,KAAK,aAAa,cAAc,QAAQ,OAAO,IAAI;AAAA,EAChG;AACA,QAAM,YAAYA,MAAK,WAAW;AAClC,SAAO,aAAa,UAAU;AAChC;AACA,SAAS,UAAU,MAAM,YAAY,SAAS,iBAAiB;AAC7D,QAAM,CAAC,UAAUP,MAAK,IAAI,cAAc,IAAI;AAC5C,MAAI,mBAAmB,MAAM;AAC3B,UAAM,UAAU,gBAAgB,yBAAyB,QAAQ;AACjE,QAAI,WAAW,MAAM;AACnB,aAAO;AAAA,IACT;AAAA,EACF;AACA,QAAM,YAAY,QAAQ,kBAAkB,KAAK,CAAC,eAAe;AAC/D,WAAO,CAAC,CAAC,WAAW,yBAAyB,UAAU,UAAU;AAAA,EACnE,CAAC;AACD,SAAO,cAAc,SAAS,WAAW,yBAAyB,UAAU,SAAS,GAAGA,UAAS;AACnG;AACA,SAAS,6BAA6B,MAAM,YAAY,SAAS;AAC/D,SAAO,WAAW,yBAAyB,MAAM,QAAQ,gBAAgB;AAC3E;AACA,SAAS,oBAAoB,WAAW,SAAS;AAC/C,QAAM,CAAC,UAAUA,QAAO,UAAU,IAAI,cAAc,SAAS;AAC7D,SAAO;AAAA,IACL,yBAAyB,UAAU,WAAW,QAAQ,gBAAgB;AAAA,IACtEA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,yBAAyB,MAAM,WAAW;AACjD,SAAO,CAAC,CAAC,YAAY,GAAG,QAAQ,cAAc;AAChD;AACA,SAAS,cAAc,MAAM;AAC3B,QAAM,QAAQ,KAAK,MAAM,GAAG;AAC5B,MAAI,MAAM,WAAW,GAAG;AACtB,WAAO,CAAC,MAAM,GAAG,MAAM;AAAA,EACzB;AACA,QAAM,WAAW,MAAM;AACvB,QAAM,aAAa,MAAM,WAAW,IAAI,MAAM,KAAK;AACnD,QAAMA,SAAQ,OAAO,MAAM,MAAM,SAAS,EAAE;AAC5C,SAAO,CAAC,UAAUA,QAAO,UAAU;AACrC;AACA,SAAS,WAAWO,OAAM,WAAW,SAAS;AAC5C,MAAI,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AACxD,MAAI,SAAS,YAAY;AACvB,WAAO,cAAc,oBAAoBA,OAAM,WAAW,OAAO;AACjE,UAAM,kBAAkB,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACvD,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,sBAAgB,IAAI,KAAK,KAAK,KAAK;AACnC,sBAAgB,IAAI,KAAK,KAAK,KAAK,IAAI;AAAA,IACzC;AACA,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,YAAY,SAAS;AAC5B,SAAO,QAAQ,OAAO,UAAU,MAAM,OAAO;AAC/C;AAGA,IAAI,qBAAqB,CAAC;AAC1BpB,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,OAAO;AAAA,EACT;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BA,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB,CAAC;AACvBA,UAAS,iBAAiB;AAAA,EACxB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,sBAAsB,CAAC;AAC3BA,UAAS,qBAAqB;AAAA,EAC5B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,QACjB,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,UACd;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,QACF;AAAA,MACF;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,UACd;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,QACF;AAAA,MACF;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,mBAAmB,CAAC;AACxBA,UAAS,kBAAkB;AAAA,EACzB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB,CAAC;AACvBA,UAAS,iBAAiB;AAAA,EACxB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BA,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB,CAAC;AACrBA,UAAS,eAAe;AAAA,EACtB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,EACd;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU,CAAC;AAAA,EACb;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BA,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,QAAQ;AAAA,EACV;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU,CAAC;AAAA,IACX,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU,CAAC;AAAA,IACX,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,gBAAgB,CAAC;AACrBA,UAAS,eAAe;AAAA,EACtB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,kBAAkB,CAAC;AACvBA,UAAS,iBAAiB;AAAA,EACxB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,mBAAmB,CAAC;AACxBA,UAAS,kBAAkB;AAAA,EACzB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB,CAAC;AAAA,MACnB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,wBAAwB,CAAC;AAC7BA,UAAS,uBAAuB;AAAA,EAC9B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,oBAAoB,CAAC;AACzBA,UAAS,mBAAmB;AAAA,EAC1B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BA,UAAS,oBAAoB;AAAA,EAC3B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,OAAO;AAAA,QACP,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,QAChB,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,iBAAiB,CAAC;AACtBA,UAAS,gBAAgB;AAAA,EACvB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,mBAAmB,CAAC;AACxBA,UAAS,kBAAkB;AAAA,EACzB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,iBAAiB,CAAC;AACtBA,UAAS,gBAAgB;AAAA,EACvB,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,WAAW;AAAA,MACT;AAAA,MACA;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,WAAW;AAAA,MACT;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AACF;AAGA,IAAI,yBAAyB,CAAC;AAC9BA,UAAS,wBAAwB;AAAA,EAC/B,MAAM,MAAM;AACd,CAAC;AACD,IAAI,SAAS;AAAA,EACX;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,QACR,gBAAgB;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,oBAAoB;AAAA,QACpB,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS;AAAA,MACP;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,UAAU;AAAA,QACV,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,EACF;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS,CAAC;AAAA,EACZ;AAAA,EACA;AAAA,IACE,YAAY;AAAA,IACZ,YAAY;AAAA,IACZ,UAAU;AAAA,MACR;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,MACA;AAAA,QACE,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,QAAQ;AAAA,MACV;AAAA,IACF;AAAA,IACA,SAAS,CAAC;AAAA,EACZ;AACF;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,WAAW,WAAW;AACpB,WAAO,KAAK,cAAc,KAAK,YAAY,IAAI,KAAK;AAAA,EACtD;AAAA,EACA,cAAc;AACZ,UAAM,MAAM;AAAA,MACV;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,UAAM,cAAc,CAAC,EAAE,OAAO,GAAG,IAAI,IAAI,CAAC,QAAQ,IAAI,IAAI,CAAC;AAC3D,SAAK,YAAY,YAAY,OAAO,CAAC,KAAK,WAAW;AACnD,UAAI,OAAO,YAAY;AACvB,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,eAAe,OAAO,YAAY,CAAC,GAAG;AACpC,UAAM,UAAU,MAAM;AACtB,UAAM,eAAe,CAAC;AACtB,UAAM,UAAU,CAAC;AACjB,UAAM,YAAY,CAAC;AACnB,UAAM,QAAQ,QAAQ,OAAO,CAAC,KAAKoB,UAAS;AAC1C,UAAIA,MAAK,QAAQ,KAAK,QAAQA,KAAI;AAClC,UAAIA,MAAK,GAAG,WAAW,aAAa,GAAG;AACrC,qBAAa,KAAK,IAAIA,MAAK,KAAK;AAAA,MAClC,WAAWA,MAAK,OAAO,SAAS;AAC9B,gBAAQ,KAAK,IAAIA,MAAK,KAAK;AAAA,MAC7B,WAAWA,MAAK,SAAS,QAAQA,MAAK,MAAM,WAAW,GAAG;AACxD,kBAAU,KAAK,IAAIA,MAAK,KAAK;AAAA,MAC/B;AACA,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AACL,QAAI,SAAS,CAAC;AACd,UAAM,UAAU,CAAC;AACjB,QAAI,qBAAqB,CAAC;AAC1B,QAAI,sBAAsB,CAAC;AAC3B,QAAI,aAAa,MAAM;AACrB,2BAAqB,KAAK,oBAAoB,UAAU,MAAM;AAC9D,4BAAsB,KAAK,oBAAoB,UAAU,OAAO;AAAA,IAClE;AACA,UAAM,WAAW,OAAO,KAAK,KAAK;AAClC,aAAS,QAAQ,CAAC,QAAQ;AACxB,YAAMA,QAAO,MAAM;AACnB,MAAAA,MAAK,WAAW,QAAQ,CAAC,MAAMP,WAAU;AACvC,cAAM,CAAC,UAAU,EAAE,UAAU,IAAI,oBAAoB,IAAI;AACzD,cAAM,YAAY,MAAM;AACxB,YAAI,UAAU,WAAW,MAAM;AAC7B,gBAAM,cAAc,UAAU,QAAQ,QAAQ,UAAU;AACxD,cAAI,gBAAgB,IAAI;AACtB,kBAAM,YAAY,GAAG,YAAY;AACjC,YAAAO,MAAK,WAAWP,UAAS;AAAA,UAC3B;AAAA,QACF;AACA,QAAAO,MAAK,OAAO,KAAK,SAAS;AAC1B,kBAAU,SAAS,KAAKA,KAAI;AAAA,MAC9B,CAAC;AAAA,IACH,CAAC;AACD,QAAI,OAAO,KAAK,mBAAmB,EAAE,WAAW,GAAG;AACjD,eAAS,QAAQ,CAAC,QAAQ;AACxB,cAAMA,QAAO,MAAM;AACnB,YAAIA,MAAK,SAAS,WAAW,GAAG;AAC9B,kBAAQ,KAAKA,KAAI;AAAA,QACnB;AAAA,MACF,CAAC;AAAA,IACH,OAAO;AACL,aAAO,KAAK,mBAAmB,EAAE,QAAQ,CAAC,SAAS;AACjD,cAAM,CAAC,QAAQ,IAAI,oBAAoB,IAAI;AAC3C,cAAMA,QAAO,MAAM;AACnB,YAAIA,SAAQ,MAAM;AAChB,UAAAA,MAAK,eAAe,oBAAoB;AACxC,kBAAQ,KAAKA,KAAI;AAAA,QACnB;AAAA,MACF,CAAC;AAAA,IACH;AACA,QAAI,OAAO,KAAK,kBAAkB,EAAE,SAAS,GAAG;AAC9C,aAAO,KAAK,kBAAkB,EAAE,QAAQ,CAAC,SAAS;AAChD,cAAM,CAAC,QAAQ,IAAI,oBAAoB,IAAI;AAC3C,cAAMA,QAAO,MAAM;AACnB,YAAIA,OAAM;AACR,UAAAA,MAAK,eAAe,mBAAmB;AACvC,iBAAO,KAAKA,KAAI;AAAA,QAClB;AAAA,MACF,CAAC;AAAA,IACH,OAAO;AACL,eAAS;AAAA,IACX;AACA,QAAI,YAAY,CAAC;AACjB,QAAI,MAAM,WAAW,QAAQ,MAAM,QAAQ,YAAY,MAAM;AAC3D,kBAAY,MAAM,QAAQ,SAAS,OAAO,CAAC,YAAY,UAAU;AAC/D,mBAAW,MAAM,UAAU,QAAQ,KAAK,YAAY,KAAK;AACzD,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AACA,UAAM,SAAS,EAAE,OAAO,QAAQ,SAAS,SAAS,cAAc,WAAW,UAAU;AACrF,QAAI,UAAU,SAAS,GAAG;AACxB,aAAO,YAAY;AAAA,IACrB;AACA,WAAO;AAAA,EACT;AAAA,EACA,oBAAoB,SAAS;AAC3B,WAAO,OAAO,KAAK,WAAW,CAAC,CAAC,EAAE,OAAO,CAAC,MAAM,SAAS;AACvD,WAAK,QAAQ,MAAM,QAAQ;AAC3B,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,QAAQA,OAAM;AACZ,UAAM,SAAS,gBAAgBA,MAAK,EAAE,KAAK,KAAK,UAAUA,MAAK,OAAO,CAAC;AACvE,QAAIA,MAAK,QAAQ,MAAM;AACrB,MAAAA,MAAK,OAAO,CAAC;AAAA,IACf;AACA,UAAM,UAAU;AAAA,MACd,MAAMA,MAAK;AAAA,MACX,IAAIA,MAAK;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,aAAaA,MAAK,SAAS,CAAC,GAAG,IAAI,CAAC,WAAW,OAAO,WAAW,GAAG,IAAI,OAAO,MAAM,CAAC,IAAI,MAAM;AAAA,MAChG,QAAQ,CAAC;AAAA,MACT,UAAU,CAAC;AAAA,MACX,aAAa,CAAC;AAAA,MACd,YAAY,CAAC;AAAA,MACb,UAAUA,MAAK;AAAA,MACf,SAAS,OAAO;AAAA,IAClB;AACA,QAAI,OAAO,UAAU,MAAM;AACzB,cAAQ,cAAc,OAAO,OAAO,OAAO,CAAC,KAAK,UAAU;AACzD,YAAI,MAAM,QAAQ;AAAA,UAChB,MAAM,MAAM;AAAA,UACZ,iBAAiB,MAAM;AAAA,UACvB,eAAe,MAAM;AAAA,QACvB;AACA,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AACA,QAAI,OAAO,SAAS,MAAM;AACxB,cAAQ,aAAa,OAAO,MAAM,OAAO,CAAC,KAAK,UAAU;AACvD,cAAM,OAAO,MAAM;AACnB,YAAI,QAAQ;AACZ,gBAAQ,MAAM;AAAA,eACP;AACH,oBAAQ,eAAeA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AAClE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,eAAeA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC9E;AACA;AAAA,eACG;AACH,oBAAQ,oBAAoBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACvE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,oBAAoBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACnF;AACA;AAAA,eACG;AACH,oBAAQ,eAAeA,MAAK,MAAM,MAAM,QAAQ,MAAM,gBAAgB,CAAC;AACvE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,eAAeA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC9E;AACA;AAAA,eACG;AACH,oBAAQ,qBAAqBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACxE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,qBAAqBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACpF;AACA;AAAA,eACG;AACH,oBAAQ,aAAaA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AAChE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,aAAaA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC5E;AACA;AAAA,eACG;AACH,oBAAQ,kBAAkBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACrE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,kBAAkBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACjF;AACA;AAAA,eACG;AACH,oBAAQ,oBAAoBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACvE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,oBAAoBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACnF;AACA;AAAA,eACG;AACH,oBAAQ,yBAAyBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AAC5E,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,yBAAyBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YACxF;AACA;AAAA,eACG;AACH,oBAAQ,cAAcA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACjE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,cAAcA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC7E;AACA;AAAA,eACG;AACH,oBAAQ,mBAAmBA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AACtE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,mBAAmBA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAClF;AACA;AAAA,eACG;AACH,oBAAQ,aAAaA,MAAK,MAAM,MAAM,QAAQ,MAAM,YAAY;AAChE,gBAAI,UAAU,UAAU,CAAC,CAAC,MAAM,kBAAkB;AAChD,sBAAQ,aAAaA,MAAK,MAAM,MAAM,kBAAkB,MAAM,YAAY;AAAA,YAC5E;AACA;AAAA,eACG;AAAA,eACA;AACH;AAAA;AAEA,kBAAM,IAAI,MAAM,2BAA2B,MAAM,gBAAgBA,MAAK,IAAI;AAAA;AAE9E,YAAI,MAAM,QAAQ,EAAE,OAAO,KAAK;AAChC,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,aAAa;AACvB,UAAM,UAAU,YAAY;AAC5B,UAAM,eAAe,CAAC;AACtB,UAAM,UAAU,CAAC;AACjB,QAAI,QAAQ,CAAC;AACb,QAAI,WAAW,MAAM;AACnB,cAAQ,QAAQ,OAAO,CAAC,KAAKA,UAAS;AACpC,YAAIA,MAAK,QAAQ,KAAK,QAAQA,KAAI;AAClC,YAAIA,MAAK,OAAO,SAAS;AACvB,kBAAQ,KAAK,IAAIA,MAAK,KAAK;AAAA,QAC7B;AACA,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AACA,UAAM,SAAS,CAAC;AAChB,UAAM,UAAU,CAAC;AACjB,gBAAY,UAAU,SAAS,QAAQ,CAAC,QAAQ;AAC9C,YAAM,CAAC,QAAQ,IAAI,oBAAoB,IAAI,IAAI;AAC/C,YAAMA,QAAO;AAAA,QACX,MAAM;AAAA,QACN,IAAI;AAAA,QACJ,QAAQ,CAAC;AAAA,QACT,YAAY,CAAC;AAAA,QACb,UAAU;AAAA,QACV,aAAa,CAAC;AAAA,QACd,YAAY,EAAE,OAAO,EAAE,OAAO,gBAAgB,IAAI,IAAI,GAAG,MAAM,QAAQ,EAAE;AAAA,QACzE,UAAU,CAAC;AAAA,MACb;AACA,MAAAA,MAAK,eAAe,IAAI;AACxB,aAAO,KAAKA,KAAI;AAChB,YAAM,YAAYA;AAAA,IACpB,CAAC;AACD,UAAM,WAAW,OAAO,KAAK,KAAK;AAClC,aAAS,QAAQ,CAAC,QAAQ;AACxB,YAAMA,QAAO,MAAM;AACnB,MAAAA,MAAK,WAAW,QAAQ,CAAC,MAAMP,WAAU;AACvC,cAAM,CAAC,UAAU,EAAE,UAAU,IAAI,oBAAoB,IAAI;AACzD,cAAM,YAAY,MAAM;AACxB,YAAI,UAAU,WAAW,MAAM;AAC7B,gBAAM,cAAc,UAAU,QAAQ,QAAQ,UAAU;AACxD,cAAI,gBAAgB,IAAI;AACtB,kBAAM,YAAY,GAAG,YAAY;AACjC,YAAAO,MAAK,WAAWP,UAAS;AAAA,UAC3B;AAAA,QACF;AACA,QAAAO,MAAK,OAAO,KAAK,SAAS;AAC1B,kBAAU,SAAS,KAAKA,KAAI;AAAA,MAC9B,CAAC;AAAA,IACH,CAAC;AACD,UAAM,gBAAgB,YAAY;AAClC,gBAAY,UAAU,UAAU,QAAQ,CAAC,WAAW;AAClD,YAAM,CAAC,UAAUP,MAAK,IAAI,oBAAoB,cAAc,OAAO,KAAK;AACxE,YAAMO,QAAO,MAAM;AACnB,UAAIA,SAAQ,MAAM;AAChB,QAAAA,MAAK,gBAAgBP;AACrB,gBAAQ,KAAKO,KAAI;AAAA,MACnB;AAAA,IACF,CAAC;AACD,UAAM,YAAY,KAAK,mBAAmB,WAAW;AACrD,WAAO,EAAE,OAAO,QAAQ,SAAS,SAAS,cAAc,UAAU;AAAA,EACpE;AAAA,EACA,mBAAmB,aAAa;AAC9B,WAAO;AAAA,MACL,YAAY,YAAY,UAAU;AAAA,MAClC,QAAQ,YAAY,UAAU,SAAS,OAAO,CAAC,KAAK,QAAQ;AAC1D,YAAI,IAAI,QAAQ,KAAK,mBAAmB,GAAG;AAC3C,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,MACL,SAAS,YAAY,UAAU,UAAU,OAAO,CAAC,KAAK,QAAQ;AAC5D,YAAI,IAAI,QAAQ,KAAK,mBAAmB,KAAK,YAAY,GAAG;AAC5D,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AAAA,EACF;AAAA,EACA,mBAAmB,KAAK,UAAU;AAChC,QAAI,OAAO,IAAI;AACf,QAAI,YAAY,MAAM;AACpB,aAAO,SAAS;AAAA,IAClB;AACA,WAAO,EAAE,MAAM,OAAO,IAAI,KAAK;AAAA,EACjC;AACF;AACA,SAAS,aAAa,MAAM;AAC1B,QAAM,UAAU,IAAI,EAAE;AACtB,MAAI,OAAO,QAAQ,SAAS,aAAa;AACvC,WAAO,QAAQ,KAAK,IAAI;AAAA,EAC1B,WAAW,OAAO,WAAW,aAAa;AACxC,WAAO,IAAI,OAAO,MAAM,QAAQ,EAAE,SAAS;AAAA,EAC7C,OAAO;AACL,UAAM,IAAI,MAAM,kFAAkF;AAAA,EACpG;AACF;AACA,SAAS,iBAAiB,IAAI,UAAU;AACtC,QAAM,QAAQ,MAAM,QAAQ,EAAE,IAAI,OAAO,aAAa,MAAM,MAAM,EAAE,IAAI,aAAa,EAAE;AACvF,SAAO,WAAW,QAAQ,MAAM,YAAY;AAC9C;AACA,SAAS,eAAe,OAAO,MAAM,KAAK,WAAW,OAAO;AAC1D,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM;AACjB,WAAO,iBAAiB,MAAM,GAAG,QAAQ;AAAA,EAC3C;AACA,SAAO;AACT;AACA,SAAS,aAAa,OAAO,MAAM,KAAK;AACtC,QAAM,QAAQ,MAAM;AACpB,SAAO,QAAQ,MAAM,IAAI;AAC3B;AACA,SAAS,eAAe,OAAO,MAAM,KAAK;AACxC,QAAM,QAAQ,MAAM,SAAS,CAAC;AAC9B,QAAM,QAAQ,MAAM,QAAQ,OAAO,MAAM,OAAO,MAAM,QAAQ,OAAO,MAAM,OAAO;AAClF,SAAO,OAAO,UAAU,WAAW,QAAQ,SAAS,OAAO,EAAE;AAC/D;AACA,SAAS,gBAAgB,OAAO;AAC9B,MAAI,OAAO,UAAU,UAAU;AAC7B,YAAQ,SAAS;AAAA,EACnB;AACA,UAAQ;AAAA,SACD,SAAS;AAAA,SACT,SAAS;AACZ,aAAO;AAAA,SACJ,SAAS;AAAA,SACT,SAAS;AAAA,SACT,SAAS;AAAA,SACT,SAAS;AACZ,aAAO;AAAA,SACJ,SAAS;AACZ,aAAO;AAAA,SACJ,SAAS;AACZ,aAAO;AAAA,SACJ,SAAS;AACZ,aAAO;AAAA;AAEP,aAAO;AAAA;AAEb;AACA,SAAS,aAAa,OAAO,MAAM,KAAK;AACtC,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,MAAM;AACvB,WAAO,MAAM,KAAK;AAAA,EACpB;AACA,SAAO;AACT;AACA,SAAS,cAAc,OAAO,MAAM,KAAK;AACvC,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,MAAM;AACvB,WAAO,gBAAgB,MAAM,IAAI;AAAA,EACnC;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,OAAO,MAAM,KAAK;AAC5C,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,QAAQ,MAAM,KAAK,MAAM;AAC1C,WAAO,MAAM,KAAK,KAAK,IAAI,CAAC,MAAM,gBAAgB,CAAC,CAAC;AAAA,EACtD;AACA,SAAO;AACT;AACA,SAAS,sBAAsB,OAAO;AACpC,MAAI,MAAM,aAAa;AACrB,WAAO;AAAA,EACT;AACA,MAAI,MAAM,OAAO,MAAM;AACrB,WAAO,MAAM,IAAI,IAAI,CAAC,QAAQ,OAAO,IAAI,SAAS,WAAW,IAAI,OAAO,SAAS,IAAI,MAAM,EAAE,CAAC;AAAA,EAChG;AACA,SAAO,CAAC;AACV;AACA,SAAS,oBAAoB,OAAO,MAAM,KAAK;AAC7C,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,OAAO;AACxB,WAAO,sBAAsB,MAAM,KAAK;AAAA,EAC1C;AACA,SAAO;AACT;AACA,SAAS,qBAAqB,OAAO,MAAM,KAAK;AAC9C,QAAM,QAAQ,MAAM;AACpB,MAAI,OAAO;AACT,aAAS,MAAM,KAAK,KAAK,MAAM,KAAK,EAAE,SAAS,MAAM,KAAK,IAAI,MAAM,KAAK,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,OAAO,MAAM,WAAW,IAAI,SAAS,GAAG,EAAE,CAAC;AAAA,EAC3I;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,OAAO,MAAM,KAAK,WAAW,OAAO;AAC/D,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,QAAQ,MAAM,KAAK,GAAG;AACvC,WAAO,MAAM,KAAK,EAAE,IAAI,CAAC,MAAM;AAC7B,aAAO,iBAAiB,GAAG,QAAQ;AAAA,IACrC,CAAC;AAAA,EACH;AACA,SAAO;AACT;AACA,SAAS,yBAAyB,OAAO,MAAM,KAAK;AAClD,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,QAAQ,MAAM,KAAK,OAAO;AAC3C,WAAO,MAAM,KAAK,MAAM,IAAI,CAAC,MAAM;AACjC,aAAO,sBAAsB,CAAC;AAAA,IAChC,CAAC;AAAA,EACH;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,OAAO,MAAM,KAAK;AAC3C,QAAM,QAAQ,MAAM;AACpB,MAAI,SAAS,MAAM,QAAQ,MAAM,KAAK,GAAG;AACvC,WAAO,MAAM,KAAK;AAAA,EACpB;AACA,SAAO;AACT;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAYA,OAAM,WAAW,SAAS;AACpC,SAAK,OAAOA;AACZ,SAAK,YAAY;AACjB,SAAK,UAAU;AACf,SAAK,SAAS,CAAC;AACf,SAAK,QAAQ,CAAC;AACd,SAAK,SAASA,MAAK,WAAW,IAAI,CAAC,SAAS,KAAK,SAAS,IAAI,CAAC;AAC/D,QAAIA,MAAK,YAAY,MAAM;AACzB,WAAK,QAAQ,OAAO,KAAKA,MAAK,QAAQ,EAAE,OAAO,CAAC,OAAO,QAAQ;AAC7D,cAAM,OAAO,KAAK,QAAQ,GAAG;AAC7B,eAAO;AAAA,MACT,GAAG,CAAC,CAAC;AAAA,IACP;AAAA,EACF;AAAA,EACA,SAAS,MAAM;AACb,WAAO,UAAU,MAAM,KAAK,WAAW,KAAK,OAAO;AAAA,EACrD;AAAA,EACA,QAAQ,MAAM,cAAc;AAC1B,UAAM,QAAQ,KAAK,KAAK,SAAS;AACjC,QAAI,MAAM,UAAU,MAAM;AACxB,aAAO,UAAU,MAAM,KAAK,WAAW,KAAK,OAAO;AAAA,IACrD;AACA,QAAI,MAAM,KAAK,QAAQ,MAAM,KAAK,MAAM;AACtC,aAAO,eAAe,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IAC9D;AACA,QAAI,MAAM,KAAK,MAAM;AACnB,aAAO,eAAe,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IAC9D;AACA,QAAI,MAAM,KAAK,MAAM;AACnB,aAAO,aAAa,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IAC5D;AACA,QAAI,MAAM,SAAS,MAAM;AACvB,aAAO,oBAAoB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IACnE;AACA,QAAI,MAAM,QAAQ,MAAM;AACtB,aAAO,cAAc,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,IAC7D;AACA,QAAI,MAAM,QAAQ,MAAM;AACtB,UAAI,MAAM,KAAK,KAAK,QAAQ,MAAM,KAAK,KAAK,MAAM;AAChD,eAAO,qBAAqB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MACpE;AACA,UAAI,MAAM,KAAK,KAAK,MAAM;AACxB,eAAO,oBAAoB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MACnE;AACA,UAAI,MAAM,KAAK,SAAS,MAAM;AAC5B,eAAO,yBAAyB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MACxE;AACA,UAAI,MAAM,KAAK,KAAK,MAAM;AACxB,eAAO,kBAAkB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MACjE;AACA,UAAI,MAAM,KAAK,QAAQ,MAAM;AAC3B,eAAO,mBAAmB,KAAK,KAAK,UAAU,MAAM,YAAY;AAAA,MAClE;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AAGA,IAAI,4BAA4B,CAAC;AACjCpB,UAAS,2BAA2B;AAAA,EAClC,iBAAiB,MAAM;AAAA,EACvB,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,KAAK,MAAM;AAAA,EACX,KAAK,MAAM;AAAA,EACX,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,eAAe,MAAM;AAAA,EACrB,WAAW,MAAM;AAAA,EACjB,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,gBAAgB,MAAM;AAAA,EACtB,UAAU,MAAM;AAAA,EAChB,kBAAkB,MAAM;AAAA,EACxB,eAAe,MAAM;AAAA,EACrB,aAAa,MAAM;AAAA,EACnB,QAAQ,MAAM;AAAA,EACd,MAAM,MAAM;AAAA,EACZ,MAAM,MAAM;AAAA,EACZ,aAAa,MAAM;AAAA,EACnB,OAAO,MAAM;AAAA,EACb,SAAS,MAAM;AAAA,EACf,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,QAAQ,MAAM;AAAA,EACd,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,QAAQ,MAAM;AAAA,EACd,iBAAiB,MAAM;AAAA,EACvB,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,QAAQ,MAAM;AAAA,EACd,eAAe,MAAM;AAAA,EACrB,cAAc,MAAM;AAAA,EACpB,iBAAiB,MAAM;AAAA,EACvB,MAAM,MAAM;AAAA,EACZ,YAAY,MAAM;AAAA,EAClB,KAAK,MAAM;AAAA,EACX,UAAU,MAAM;AAAA,EAChB,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AAAA,EACX,qBAAqB,MAAM;AAAA,EAC3B,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,eAAe,MAAM;AAAA,EACrB,KAAK,MAAM;AAAA,EACX,YAAY,MAAM;AAAA,EAClB,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,UAAU,MAAM;AAAA,EAChB,OAAO,MAAM;AAAA,EACb,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAAA,EAChB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,MAAM,MAAM;AAAA,EACZ,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,aAAa,MAAM;AAAA,EACnB,OAAO,MAAM;AAAA,EACb,UAAU,MAAM;AAAA,EAChB,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,WAAW,MAAM;AAAA,EACjB,MAAM,MAAM;AAAA,EACZ,WAAW,MAAM;AAAA,EACjB,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAAA,EAChB,4BAA4B,MAAM;AAAA,EAClC,KAAK,MAAMF;AAAA,EACX,OAAO,MAAM;AAAA,EACb,YAAY,MAAM;AAAA,EAClB,YAAY,MAAM;AAAA,EAClB,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,YAAY,MAAM;AAAA,EAClB,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,QAAQ,MAAM;AAAA,EACd,YAAY,MAAM;AAAA,EAClB,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,mBAAmB,MAAM;AAAA,EACzB,SAAS,MAAM;AAAA,EACf,MAAM,MAAM;AAAA,EACZ,UAAU,MAAM;AAAA,EAChB,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,KAAK,MAAM;AAAA,EACX,SAAS,MAAM;AAAA,EACf,eAAe,MAAM;AAAA,EACrB,KAAK,MAAM;AAAA,EACX,cAAc,MAAM;AAAA,EACpB,aAAa,MAAM;AAAA,EACnB,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,UAAU,MAAM;AAAA,EAChB,QAAQ,MAAM;AAAA,EACd,MAAM,MAAM;AAAA,EACZ,UAAU,MAAM;AAAA,EAChB,IAAI,MAAM;AAAA,EACV,cAAc,MAAM;AAAA,EACpB,KAAK,MAAM;AAAA,EACX,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,KAAK,MAAM;AAAA,EACX,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,sBAAsB,MAAM;AAAA,EAC5B,MAAM,MAAM;AAAA,EACZ,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,sBAAsB,MAAM;AAAA,EAC5B,eAAe,MAAM;AAAA,EACrB,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,YAAY,MAAM;AAAA,EAClB,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,OAAO,MAAM;AAAA,EACb,QAAQ,MAAM;AAAA,EACd,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,MAAM,MAAM;AAAA,EACZ,iBAAiB,MAAM;AAAA,EACvB,gBAAgB,MAAM;AAAA,EACtB,SAAS,MAAM;AAAA,EACf,MAAM,MAAM;AAAA,EACZ,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,OAAO,MAAM;AAAA,EACb,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,UAAU,MAAM;AAAA,EAChB,gBAAgB,MAAM;AAAA,EACtB,QAAQ,MAAM;AAAA,EACd,eAAe,MAAM;AAAA,EACrB,UAAU,MAAM;AAAA,EAChB,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,QAAQ,MAAM;AAAA,EACd,mBAAmB,MAAM;AAAA,EACzB,SAAS,MAAM;AAAA,EACf,OAAO,MAAM;AAAA,EACb,MAAM,MAAM;AAAA,EACZ,cAAc,MAAM;AAAA,EACpB,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AAAA,EACX,KAAK,MAAM;AAAA,EACX,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,QAAQ,MAAM;AAAA,EACd,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,MAAM,MAAM;AAAA,EACZ,MAAM,MAAM;AAAA,EACZ,WAAW,MAAM;AAAA,EACjB,iBAAiB,MAAM;AAAA,EACvB,QAAQ,MAAM;AAAA,EACd,oBAAoB,MAAM;AAAA,EAC1B,SAAS,MAAM;AAAA,EACf,YAAY,MAAM;AAAA,EAClB,UAAU,MAAM;AAAA,EAChB,OAAO,MAAM;AAAA,EACb,YAAY,MAAM;AAAA,EAClB,OAAO,MAAM;AAAA,EACb,WAAW,MAAM;AACnB,CAAC;AAGD,IAAI,YAAY,CAACsB,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC7E,UAAQA,MAAK;AAAA,SACN;AAAA,SACA;AAAA,SACA,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7G;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,WAAWA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtE;AAAA,SACK;AAAA,SACA;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACxG;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACxG;AAAA,SACA,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7G;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClH;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClH;AAAA,SACK,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7G;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjH;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjH;AAAA,SACK,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7G;AAAA,SACK,qBAAqB;AACxB,aAAO,CAAC,IAAI,kBAAkB,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC3H;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN;AAAA,SACA;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1G;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,QAAQ,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAClH;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D,cAAc;AACjB,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3D;AACH,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC9D;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpE;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,UAAU;AACb,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClE;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK;AACH,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1D;AACH,aAAO,CAAC,IAAI,YAAY,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACpL;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5D;AACH,aAAO,CAAC,IAAI,MAAM,UAAUA,MAAK,WAAW,IAAI,WAAW,OAAO,CAAC,CAAC;AAAA,SACjE;AACH,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC5G;AACH,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAClH;AACH,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC9G;AACH,aAAO,CAAC,IAAI,MAAM,UAAUA,MAAK,WAAW,IAAI,WAAW,OAAO,CAAC,CAAC;AAAA;AAEpE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,SAAS,oCAAoC,QAAQ,QAAQ,qBAAqB,IAAI;AACpF,MAAI,OAAO,WAAW,YAAY,OAAO,WAAW,UAAU;AAC5D;AAAA,EACF;AACA,eAAa,OAAO,OAAO,WAAW,OAAO,QAAQ,MAAM,qBAAqB,WAAW,cAAc,mBAAmB;AAC5H,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,UAAM,OAAO,OAAO;AACpB,UAAM,OAAO,OAAO;AACpB,iBAAa,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,MAAM,MAAM,qBAAqB,WAAW,cAAc,mBAAmB;AAAA,EACpI;AACF;AACA,SAAS,iBAAiB,cAAc;AACtC,MAAI,OAAO,iBAAiB,YAAY,aAAa,KAAK,CAAC,QAAQ,MAAM,CAAC,GAAG;AAC3E,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,kBAAkB,SAAS,cAAc;AAClE,MAAI,eAAe,kBAAkB,kBAAkB,YAAY;AACnE,QAAM,sBAAsB,CAAC,iBAAiB,YAAY;AAC1D,MAAI,uBAAuB,QAAQ,WAAW,GAAG;AAC/C,UAAM,IAAI,MAAM,qFAAqF,cAAc;AAAA,EACrH;AACA,MAAI,qBAAqB;AACvB,YAAQ,QAAQ,CAAC,YAAY;AAC3B,qBAAe,kBAAkB,QAAQ,OAAO,YAAY;AAAA,IAC9D,CAAC;AAAA,EACH;AACA,MAAI,CAAC,iBAAiB,YAAY,GAAG;AACnC,UAAM,IAAI,MAAM,mCAAmC,cAAc;AAAA,EACnE;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,eAAe,eAAe;AACvD,MAAI,OAAO,kBAAkB,UAAU;AACrC,WAAO;AAAA,EACT;AACA,MAAI,OAAO,kBAAkB,UAAU;AACrC,WAAO;AAAA,EACT;AACA,MAAI,cAAc,WAAW,cAAc,QAAQ;AACjD,UAAM,IAAI,MAAM,oCAAoC,qBAAqB,eAAe;AAAA,EAC1F;AACA,QAAM,SAAS,CAAC;AAChB,WAAS,KAAK,GAAG,KAAK,cAAc,QAAQ,EAAE,IAAI;AAChD,UAAM,OAAO,cAAc;AAC3B,UAAM,OAAO,cAAc;AAC3B,QAAI,QAAQ,KAAK,QAAQ,KAAK,SAAS,MAAM;AAC3C,YAAM,IAAI,MAAM,oCAAoC,qBAAqB,eAAe;AAAA,IAC1F;AACA,WAAO,MAAM,QAAQ,IAAI,OAAO;AAAA,EAClC;AACA,SAAO;AACT;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,MAAM,OAAOe,UAAS,cAAc,wBAAwB,aAAa,gBAAgB;AACnG,SAAK,OAAO;AACZ,SAAK,QAAQ;AACb,SAAK,UAAUA;AACf,SAAK,eAAe;AACpB,SAAK,yBAAyB;AAC9B,SAAK,cAAc;AACnB,SAAK,iBAAiB;AACtB,SAAK,UAAU,CAAC;AAChB,SAAK,UAAU;AACf,SAAK,WAAW,OAAO,CAAC;AACxB,SAAK,KAAK,QAAQ;AAAA,EACpB;AAAA,EACA,IAAI,KAAK;AACP,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK;AAAA,EACd;AAAA,EACA,cAAc,SAAS;AACrB,SAAK,QAAQ,QAAQ,CAAC,YAAY;AAChC,UAAI,WAAW,QAAQ,CAAC,QAAQ,IAAI,QAAQ,OAAO,EAAE,GAAG;AACtD,gBAAQ,OAAO,QAAQ;AAAA,MACzB;AAAA,IACF,CAAC;AACD,SAAK,UAAU,CAAC;AAChB,SAAK,UAAU;AACf,SAAK,SAAS,QAAQ;AAAA,EACxB;AAAA,EACA,OAAO;AACL,WAAO,KAAK,QAAQ;AAAA,EACtB;AAAA,EACA,KAAKtB,QAAO;AACV,QAAI,KAAK,SAAS;AAChB,YAAM,IAAI,MAAM,eAAe,KAAK,+BAA+B;AAAA,IACrE;AACA,QAAIA,SAAQ,KAAKA,UAAS,KAAK,KAAK,GAAG;AACrC,YAAM,IAAI,MAAM,4BAA4BA,8BAA6B,KAAK,KAAK,GAAG;AAAA,IACxF;AACA,UAAM,kBAAkB,KAAK,QAAQA;AACrC,QAAI,gBAAgB,SAAS;AAC3B,YAAM,IAAI,MAAM,eAAe,KAAK,8BAA8BA,4GAA2G;AAAA,IAC/K;AACA,QAAI,KAAK,gBAAgB;AACvB,sBAAgB,UAAU;AAAA,IAC5B;AACA,oBAAgB,OAAO;AACvB,WAAO,gBAAgB;AAAA,EACzB;AAAA,EACA,SAAS,SAAS;AAChB,WAAO,QAAQ,IAAI,CAACA,WAAU,KAAK,KAAKA,MAAK,CAAC;AAAA,EAChD;AAAA,EACA,MAAMA,QAAO,SAAS;AACpB,QAAI,KAAK,SAAS;AAChB,YAAM,IAAI,MAAM,eAAe,KAAK,+BAA+B;AAAA,IACrE;AACA,QAAIA,SAAQ,KAAK,CAAC,KAAK,eAAeA,UAAS,KAAK,SAAS;AAC3D,YAAM,IAAI,MAAM,2BAA2BA,oDAAmD,KAAK,SAAS;AAAA,IAC9G;AACA,UAAM,KAAK,KAAK,QAAQA,WAAU,CAAC;AACnC,QAAI,QAAQ,UAAU,KAAK,OAAO;AAChC,YAAM,IAAI,MAAM,eAAe,KAAK,8CAA8CA;AAAA,uCACjD,QAAQ,mCAAmC,KAAK,QAAQ;AAAA,IAC3F;AACA,QAAI,KAAK,KAAK,MAAM,MAAM,KAAK,gBAAgB,QAAQ,KAAK,aAAa,WAAW,IAAI;AACtF,WAAK,eAAe,QAAQ;AAAA,IAC9B;AACA,wCAAoC,KAAK,cAAc,QAAQ,OAAO,eAAe,KAAK,8CAA8CA,SAAQ;AAChJ,QAAI,GAAG,MAAM;AACX,YAAM,IAAI,MAAM,eAAe,KAAK,8CAA8CA,2CAA0C;AAAA,IAC9H;AACA,QAAI,GAAG,SAAS;AACd,YAAM,IAAI,MAAM,eAAe,KAAK,8CAA8CA,8CAA6C;AAAA,IACjI;AACA,OAAG,SAAS;AACZ,SAAK,OAAO;AACZ,OAAG,UAAU;AACb,SAAK,QAAQA,UAAS;AAAA,EACxB;AAAA,EACA,UAAU,SAAS,SAAS;AAC1B,QAAI,QAAQ,WAAW,QAAQ,QAAQ;AACrC,YAAM,IAAI,MAAM,eAAe,KAAK,kEAAkE,QAAQ,2CAA2C,QAAQ,SAAS;AAAA,IAC5K;AACA,YAAQ,QAAQ,CAAC,IAAIA,WAAU,KAAK,MAAM,IAAI,QAAQA,OAAM,CAAC;AAAA,EAC/D;AAAA,EACA,OAAO,SAAS,OAAO;AACrB,QAAI,CAAC,CAAC,SAAS,UAAU,KAAK,OAAO;AACnC,YAAM,IAAI,MAAM,wBAAwB,KAAK,oCAAoC,OAAO;AAAA,IAC1F;AACA,QAAI,CAAC,SAAS;AACZ,gBAAU,CAAC;AACX,eAAS,KAAK,GAAG,KAAK,KAAK,KAAK,GAAG,MAAM;AACvC,gBAAQ,KAAK,EAAE;AAAA,MACjB;AAAA,IACF,OAAO;AACL,gBAAU,QAAQ,MAAM,GAAG,KAAK,KAAK,CAAC;AAAA,IACxC;AACA,QAAI,QAAQ,WAAW,GAAG;AACxB,aAAO,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,OAAO,KAAK,YAAY,CAAC;AAAA,IACjD;AACA,UAAM,UAAU,KAAK,SAAS,OAAO;AACrC,wCAAoC,KAAK,cAAc,QAAQ,GAAG,OAAO,8BAA8B;AACvG,WAAO,MAAM,SAAS,CAAC;AAAA,EACzB;AAAA,EACA,OAAO,OAAO;AACZ,QAAI,CAAC,CAAC,SAAS,UAAU,KAAK,OAAO;AACnC,YAAM,IAAI,MAAM,wBAAwB,KAAK,oCAAoC,OAAO;AAAA,IAC1F;AACA,QAAI,KAAK,KAAK,MAAM,GAAG;AACrB,aAAO,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,OAAO,KAAK,YAAY,CAAC;AAAA,IACjD;AACA,UAAM,UAAU,CAAC;AACjB,aAAS,KAAK,GAAG,KAAK,KAAK,KAAK,GAAG,MAAM;AACvC,cAAQ,KAAK,EAAE;AAAA,IACjB;AACA,UAAM,UAAU,KAAK,SAAS,OAAO;AACrC,wCAAoC,KAAK,cAAc,QAAQ,GAAG,OAAO,mDAAmD,KAAK,wCAAwC,QAAQ,GAAG,QAAQ;AAC5L,WAAO,OAAO,SAAS,CAAC;AAAA,EAC1B;AAAA,EACA,QAAQ,SAAS,SAAS;AACxB,QAAI,QAAQ,UAAU,KAAK,OAAO;AAChC,YAAM,IAAI,MAAM,wBAAwB,KAAK,8BAA8B,QAAQ,OAAO;AAAA,IAC5F;AACA,QAAI,QAAQ,WAAW,QAAQ,MAAM,IAAI;AACvC,YAAM,IAAI,MAAM,sDAAsD,QAAQ,cAAc,QAAQ,MAAM,IAAI;AAAA,IAChH;AACA,UAAM,WAAW,KAAK,IAAI,GAAG,OAAO;AACpC,QAAI,CAAC,KAAK,eAAe,YAAY,KAAK,SAAS;AACjD,YAAM,IAAI,MAAM,mCAAmC,iBAAiB,KAAK,UAAU;AAAA,IACrF;AACA,SAAK,UAAU,SAAS,QAAQ,SAAS,CAAC,CAAC;AAAA,EAC7C;AAAA,EACA,MAAM,QAAQ,SAAS;AACrB,QAAI,QAAQ,UAAU,KAAK,OAAO;AAChC,YAAM,IAAI,MAAM,wBAAwB,KAAK,8BAA8B,QAAQ,OAAO;AAAA,IAC5F;AACA,QAAI,cAAc;AAClB,UAAM,oBAAoB,OAAO,IAAI,CAAC,QAAQ;AAC5C,qBAAe;AACf,aAAO;AAAA,IACT,CAAC;AACD,QAAI,gBAAgB,QAAQ,MAAM,IAAI;AACpC,YAAM,IAAI,MAAM;AAAA;AAAA,UAEZ,uCAAuC,QAAQ,OAAO;AAAA,IAC5D;AACA,QAAI,CAAC,KAAK,eAAe,OAAO,WAAW,KAAK,SAAS;AACvD,YAAM,IAAI,MAAM,2DAA2D,KAAK,eAAe,OAAO,sEAAsE;AAAA,IAC9K;AACA,UAAM,gBAAgB,gBAAgB,IAAI,IAAI,QAAQ,OAAO;AAC7D,UAAM,UAAU,CAAC;AACjB,SAAK,MAAM;AACT,gBAAU,QAAQ,SAAS,CAAC,GAAG,aAAa,aAAa,CAAC;AAC1D,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,cAAM,iBAAiB,OAAO,IAAI,IAAI,kBAAkB,KAAK;AAC7D,cAAM,WAAW,CAAC,GAAG,gBAAgB,CAAC;AACtC,cAAM,QAAQ,CAAC,GAAG,OAAO,KAAK,aAAa;AAC3C,gBAAQ,MAAM,QAAQ,MAAM,SAAS,UAAU,KAAK,GAAG,KAAK,YAAY;AAAA,MAC1E;AACA,aAAO;AAAA,IACT,CAAC;AACD,UAAM,UAAU,CAAC;AACjB,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,cAAQ,MAAM;AAAA,IAChB;AACA,SAAK,UAAU,SAAS,OAAO;AAAA,EACjC;AACF;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,SAAS,cAAc,cAAc,iBAAiB,IAAI;AACpE,SAAK,UAAU;AACf,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,QAAI,WAAW,MAAM;AACnB,cAAQ,QAAQ,CAAC,YAAY;AAC3B,YAAI,iBAAiB,QAAQ,OAAO;AAClC,gBAAM,IAAI,MAAM,mCAAmC,mCAAmC,QAAQ,OAAO;AAAA,QACvG;AACA,4CAAoC,cAAc,QAAQ,OAAO,6BAA6B;AAC9F,aAAK,OAAO;AAAA,MACd,CAAC;AAAA,IACH;AACA,SAAK,WAAW,OAAO,CAAC;AACxB,SAAK,iBAAiB;AACtB,SAAK,KAAK,QAAQ;AAAA,EACpB;AAAA,EACA,IAAI,KAAK;AACP,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,OAAO;AACL,WAAO,IAAI,WAAW,CAAC,GAAG,KAAK,OAAO,GAAG,KAAK,cAAc,KAAK,YAAY;AAAA,EAC/E;AAAA,EACA,cAAc,SAAS;AACrB,SAAK,QAAQ,QAAQ,CAAC,YAAY;AAChC,UAAI,WAAW,QAAQ,CAAC,QAAQ,IAAI,QAAQ,EAAE,GAAG;AAC/C,gBAAQ,QAAQ;AAAA,MAClB;AAAA,IACF,CAAC;AACD,SAAK,QAAQ,SAAS;AACtB,SAAK,SAAS,QAAQ;AAAA,EACxB;AAAA,EACA,OAAO;AACL,WAAO,KAAK,QAAQ;AAAA,EACtB;AAAA,EACA,MAAM,cAAc,cAAc,cAAc,IAAI;AAClD,QAAI,iBAAiB,KAAK,cAAc;AACtC,YAAM,IAAI,MAAM,mCAAmC,mCAAmC,KAAK,cAAc;AAAA,IAC3G;AACA,QAAI,gBAAgB,MAAM,KAAK,QAAQ,WAAW,aAAa;AAC7D,YAAM,IAAI,MAAM,kCAAkC,4CAA4C,KAAK,QAAQ,kBAAkB;AAAA,IAC/H;AACA,wCAAoC,cAAc,KAAK,cAAc,6BAA6B;AAClG,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,WAAO,KAAK,MAAM;AAChB,YAAM,kBAAkB,KAAK,QAAQ,IAAI,CAAC,YAAY,QAAQ,SAAS,kBAAkB,CAAC;AAC1F,aAAO,MAAM,iBAAiB,CAAC;AAAA,IACjC,CAAC;AAAA,EACH;AAAA,EACA,QAAQ,cAAc,cAAc;AAClC,QAAI,iBAAiB,KAAK,cAAc;AACtC,YAAM,IAAI,MAAM,mCAAmC,mCAAmC,KAAK,cAAc;AAAA,IAC3G;AACA,QAAI,KAAK,KAAK,MAAM,GAAG;AACrB,YAAM,IAAI,MAAM,mCAAmC;AAAA,IACrD;AACA,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,UAAM,UAAU,KAAK,QAAQ,IAAI;AACjC,YAAQ,OAAO;AACf,wCAAoC,QAAQ,OAAO,cAAc,6BAA6B;AAC9F,WAAO,QAAQ,SAAS,kBAAkB;AAAA,EAC5C;AAAA,EACA,SAAS,SAAS;AAChB,QAAI,QAAQ,UAAU,KAAK,cAAc;AACvC,YAAM,IAAI,MAAM,mCAAmC,QAAQ,4BAA4B,KAAK,cAAc;AAAA,IAC5G;AACA,wCAAoC,QAAQ,OAAO,KAAK,cAAc,6BAA6B;AACnG,QAAI,KAAK,mBAAmB,KAAK,KAAK,GAAG;AACvC,YAAM,IAAI,MAAM,0CAA0C;AAAA,IAC5D;AACA,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,OAAO;AAAA,EAC3B;AAAA,EACA,OAAOV,OAAM;AACX,QAAIA,QAAO,GAAG;AACZ,YAAM,IAAI,MAAM,0DAA0DA,OAAM;AAAA,IAClF;AACA,QAAI,KAAK,mBAAmB,MAAMA,QAAO,KAAK,gBAAgB;AAC5D,YAAM,IAAI,MAAM,+BAA+BA,kCAAiC,KAAK,iBAAiB;AAAA,IACxG;AACA,UAAM,iBAAiB,IAAI,WAAW,CAAC,GAAG,KAAK,cAAc,KAAK,cAAc,KAAK,cAAc;AACnG,mBAAe,QAAQ,SAASA;AAChC,aAAS,KAAK,GAAG,KAAK,KAAK,IAAI,KAAK,QAAQ,QAAQA,KAAI,GAAG,EAAE,IAAI;AAC/D,qBAAe,QAAQ,MAAM,KAAK,QAAQ;AAAA,IAC5C;AACA,WAAO;AAAA,EACT;AAAA,EACA,QAAQ,cAAc,cAAc,cAAc;AAChD,QAAI,iBAAiB,KAAK,cAAc;AACtC,YAAM,IAAI,MAAM,mCAAmC,mCAAmC,KAAK,cAAc;AAAA,IAC3G;AACA,QAAI,eAAe,KAAK,eAAe,KAAK,QAAQ,QAAQ;AAC1D,YAAM,IAAI,MAAM,4BAA4B,+BAA+B,KAAK,QAAQ,kBAAkB;AAAA,IAC5G;AACA,QAAI,KAAK,QAAQ,iBAAiB,MAAM;AACtC,YAAM,IAAI,MAAM,oBAAoB,uBAAuB;AAAA,IAC7D;AACA,wCAAoC,KAAK,QAAQ,cAAc,OAAO,cAAc,6BAA6B;AACjH,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,WAAO,QAAQ,KAAK,QAAQ,eAAe,kBAAkB;AAAA,EAC/D;AAAA,EACA,QAAQ,cAAc,SAAS;AAC7B,QAAI,QAAQ,UAAU,KAAK,cAAc;AACvC,YAAM,IAAI,MAAM,mCAAmC,QAAQ,4BAA4B,KAAK,cAAc;AAAA,IAC5G;AACA,QAAI,eAAe,KAAK,KAAK,mBAAmB,MAAM,gBAAgB,KAAK,gBAAgB;AACzF,YAAM,IAAI,MAAM,yBAAyB,mCAAmC,KAAK,0BAA0B;AAAA,IAC7G;AACA,wCAAoC,KAAK,cAAc,QAAQ,OAAO,6BAA6B;AACnG,SAAK,OAAO;AACZ,QAAI,KAAK,QAAQ,iBAAiB,MAAM;AACtC,WAAK,QAAQ,cAAc,OAAO;AAAA,IACpC;AACA,SAAK,QAAQ,gBAAgB;AAAA,EAC/B;AAAA,EACA,OAAO,SAAS,cAAc,cAAc;AAC1C,QAAI,iBAAiB,KAAK,cAAc;AACtC,YAAM,IAAI,MAAM,mCAAmC,mCAAmC,KAAK,cAAc;AAAA,IAC3G;AACA,wCAAoC,KAAK,cAAc,cAAc,6BAA6B;AAClG,cAAU,QAAQ,MAAM,GAAG,KAAK,KAAK,CAAC;AACtC,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,QAAI,QAAQ,WAAW,GAAG;AACxB,aAAO,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,OAAO,kBAAkB,CAAC;AAAA,IAClD;AACA,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,QAAQ,IAAI,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,kBAAkB,CAAC;AACjF,aAAO,MAAM,SAAS,CAAC;AAAA,IACzB,CAAC;AAAA,EACH;AAAA,EACA,OAAO,cAAc,cAAc;AACjC,QAAI,CAAC,CAAC,gBAAgB,iBAAiB,KAAK,cAAc;AACxD,YAAM,IAAI,MAAM,uBAAuB,KAAK,2CAA2C,cAAc;AAAA,IACvG;AACA,wCAAoC,KAAK,cAAc,cAAc,6BAA6B;AAClG,UAAM,qBAAqB,kBAAkB,KAAK,cAAc,KAAK,SAAS,YAAY;AAC1F,QAAI,KAAK,KAAK,MAAM,GAAG;AACrB,aAAO,OAAO,CAAC,GAAG,CAAC,CAAC,EAAE,OAAO,kBAAkB,CAAC;AAAA,IAClD;AACA,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,KAAK,QAAQ,IAAI,CAAC,OAAO,QAAQ,IAAI,kBAAkB,CAAC;AACxE,aAAO,OAAO,SAAS,CAAC;AAAA,IAC1B,CAAC;AAAA,EACH;AACF;AACA,SAAS,WAAW,SAAS,cAAc,cAAc;AACvD,QAAM,QAAQ,QAAQ;AACtB,MAAI,QAAQ,MAAM,SAAS,GAAG;AAC5B,UAAM,IAAI,MAAM,oDAAoD,QAAQ,OAAO;AAAA,EACrF;AACA,MAAI,QAAQ,UAAU,cAAc;AAClC,UAAM,IAAI,MAAM,mCAAmC,QAAQ,4BAA4B,cAAc;AAAA,EACvG;AACA,QAAM,qBAAqB,QAAQ,MAAM,MAAM,CAAC;AAChD,sCAAoC,oBAAoB,cAAc,6BAA6B;AACnG,QAAM,aAAa,QAAQ,OAAO;AAClC,SAAO,IAAI,WAAW,YAAY,cAAc,KAAK;AACvD;AACA,SAAS,QAAQ,cAAc,cAAc,aAAa,gBAAgB;AACxE,SAAO,IAAI,WAAW,CAAC,GAAG,cAAc,cAAc,cAAc;AACtE;AACA,SAAS,QAAQ,SAAS,SAAS,cAAc,aAAa;AAC5D,MAAI,QAAQ,WAAW,QAAQ,MAAM,IAAI;AACvC,UAAM,IAAI,MAAM,sDAAsD,QAAQ,cAAc,QAAQ,MAAM,IAAI;AAAA,EAChH;AACA,QAAM,WAAW,KAAK,IAAI,GAAG,OAAO;AACpC,MAAI,eAAe,QAAQ,gBAAgB,MAAM,YAAY,aAAa;AACxE,UAAM,IAAI,MAAM,mCAAmC,iBAAiB,cAAc;AAAA,EACpF;AACA,QAAM,OAAO,IAAI,WAAW,CAAC,GAAG,cAAc,QAAQ,OAAO,WAAW;AACxE,QAAM,UAAU,QAAQ,SAAS,CAAC;AAClC,UAAQ,QAAQ,CAAC,OAAOU,WAAU;AAChC,SAAK,QAAQ,OAAO,QAAQA,OAAM;AAAA,EACpC,CAAC;AACD,SAAO;AACT;AACA,SAAS,OAAO,SAAS,QAAQ,cAAc;AAC7C,MAAI,cAAc;AAClB,QAAM,oBAAoB,OAAO,IAAI,CAAC,QAAQ;AAC5C,mBAAe;AACf,WAAO;AAAA,EACT,CAAC;AACD,MAAI,gBAAgB,QAAQ,MAAM,IAAI;AACpC,UAAM,IAAI,MAAM;AAAA;AAAA,UAEV,uCAAuC,QAAQ,OAAO;AAAA,EAC9D;AACA,QAAM,uBAAuB,QAAQ,MAAM,MAAM,CAAC;AAClD,QAAM,qBAAqB,kBAAkB,sBAAsB,YAAY;AAC/E,QAAM,gBAAgB,gBAAgB,IAAI,IAAI,QAAQ,OAAO;AAC7D,QAAM,UAAU,KAAK,MAAM;AACzB,UAAM,WAAW,CAAC;AAClB,cAAU,QAAQ,SAAS,CAAC,GAAG,aAAa,aAAa,CAAC;AAC1D,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,YAAM,iBAAiB,OAAO,IAAI,IAAI,kBAAkB,KAAK;AAC7D,YAAM,UAAU,CAAC,GAAG,gBAAgB,CAAC;AACrC,YAAM,QAAQ,CAAC,GAAG,OAAO,KAAK,aAAa;AAC3C,eAAS,MAAM,QAAQ,MAAM,SAAS,SAAS,KAAK,GAAG,kBAAkB;AAAA,IAC3E;AACA,YAAQ,QAAQ;AAChB,WAAO;AAAA,EACT,CAAC;AACD,QAAM,OAAO,IAAI,WAAW,CAAC,GAAG,cAAc,QAAQ,OAAO,OAAO,MAAM;AAC1E,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,SAAK,QAAQ,IAAI,QAAQ,GAAG;AAAA,EAC9B;AACA,SAAO;AACT;AAGA,IAAI,aAAa,OAAOO,OAAM,WAAW,YAAY;AACnD,UAAQA,MAAK;AAAA,SACN;AAAA,SACA,eAAe;AAClB,YAAM,WAAW,cAAc,cAAcA,OAAM,WAAW,OAAO;AACrE,YAAM,WAAW,cAAc,cAAcA,OAAM,WAAW,OAAO;AACrE,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,YAAY,MAAM,KAAK,KAAK;AAClC,UAAI,UAAU,IAAI;AAChB,eAAO,QAAQ,YAAY,UAAU,qBAAqB,MAAM,QAAQ,gBAAgB,QAAQ,aAAa;AAAA,MAC/G,OAAO;AACL,eAAO,QAAQ,YAAY,UAAU,qBAAqB,MAAM,QAAQ,gBAAgB,QAAQ,aAAa;AAAA,MAC/G;AAAA,IACF;AAAA,SACK;AAAA,SACA,kBAAkB;AACrB,YAAM,WAAW,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC/D,YAAM,WAAW,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC/D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,aAAa,MAAM,QAAQ,YAAY,UAAU,qBAAqB,MAAM,QAAQ,gBAAgB,QAAQ,aAAa;AAC/H,YAAM,SAAS,KAAK,IAAI,CAAC,YAAY,QAAQ,EAAE;AAC/C,UAAI,YAAY,MAAM,WAAW,GAAG,KAAK;AACzC,iBAAW,QAAQ,CAAC,YAAY;AAC9B,YAAI,CAAC,QAAQ,QAAQ,OAAO,QAAQ,QAAQ,EAAE,MAAM,IAAI;AACtD,kBAAQ,QAAQ;AAAA,QAClB;AAAA,MACF,CAAC;AACD,UAAI,SAAS;AACb,aAAO,UAAU,IAAI;AACnB,cAAM,aAAa;AACnB,iBAAS,MAAM,QAAQ,YAAY,UAAU,qBAAqB,QAAQ,QAAQ,gBAAgB,QAAQ,aAAa;AACvH,cAAM,YAAY,OAAO,IAAI,CAAC,YAAY,QAAQ,EAAE;AACpD,mBAAW,QAAQ,CAAC,YAAY;AAC9B,cAAI,CAAC,QAAQ,QAAQ,OAAO,QAAQ,QAAQ,EAAE,MAAM,MAAM,UAAU,QAAQ,QAAQ,EAAE,MAAM,IAAI;AAC9F,oBAAQ,QAAQ;AAAA,UAClB;AAAA,QACF,CAAC;AACD,cAAM,cAAc,MAAM,QAAQ,YAAY,UAAU,qBAAqB,QAAQ,QAAQ,gBAAgB,QAAQ,aAAa;AAClI,oBAAY,MAAM,YAAY,GAAG,KAAK;AACtC,oBAAY,QAAQ,CAAC,YAAY;AAC/B,cAAI,CAAC,QAAQ,QAAQ,OAAO,QAAQ,QAAQ,EAAE,MAAM,MAAM,UAAU,QAAQ,QAAQ,EAAE,MAAM,IAAI;AAC9F,oBAAQ,QAAQ;AAAA,UAClB;AAAA,QACF,CAAC;AAAA,MACH;AACA,aAAO;AAAA,IACT;AAAA,SACK,YAAY;AACf,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,YAAY,IAAI,CAAC;AAAA,IAC3B;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,UAAI,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AACzD,UAAI,CAAC,KAAK,MAAM;AACd,eAAO,YAAY,IAAI;AAAA,MACzB;AACA,cAAQ,MAAM,KAAK,KAAK,GAAG,KAAK,CAAC,QAAQ,IAAI,IAAI,CAAC,MAAM,MAAM;AAAA,IAChE;AAAA,SACK,SAAS;AACZ,YAAM,YAAYA,MAAK,WAAW,KAAK,CAAC,SAAS,UAAU,MAAM,WAAW,OAAO,MAAM,MAAM;AAC/F,UAAI,WAAW;AACb,cAAM,OAAO,UAAU,WAAW,WAAW,OAAO;AACpD,eAAO,CAAC,YAAY,IAAI,CAAC;AAAA,MAC3B;AACA,aAAO;AAAA,IACT;AAAA,SACK,SAAS;AACZ,YAAM,UAAU,cAAc,aAAaA,OAAM,WAAW,OAAO;AACnE,YAAM,OAAO,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC7D,cAAQ,WAAW,OAAO;AAC1B,aAAO,CAAC,YAAY,IAAI,CAAC;AAAA,IAC3B;AAAA,SACK,QAAQ;AACX,YAAM,OAAO,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC7D,cAAQ,UAAU;AAClB,aAAO,CAAC,YAAY,IAAI,CAAC;AAAA,IAC3B;AAAA,SACK,iBAAiB;AACpB,YAAM,OAAO,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC7D,cAAQ,cAAc;AACtB,aAAO,CAAC,YAAY,IAAI,CAAC;AAAA,IAC3B;AAAA,SACK,iBAAiB;AACpB,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,YAAM,yBAAyB,cAAc,0BAA0BA,OAAM,WAAW,OAAO;AAC/F,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,cAAc,IAAI,YAAY,MAAM,OAAOjB,OAAM,cAAc,wBAAwB,aAAa,cAAc;AACxH,cAAQ,eAAe,WAAW;AAClC,aAAO,CAAC,YAAY,UAAU,OAAO,CAAC,CAAC;AAAA,IACzC;AAAA,SACK,sBAAsB;AACzB,YAAM,KAAK,cAAc,iBAAiBiB,OAAM,WAAW,OAAO;AAClE,YAAMP,SAAQ,cAAc,SAASO,OAAM,WAAW,OAAO;AAC7D,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,mBAAmB,QAAQ,eAAe,GAAG,EAAE;AACrD,uBAAiB,MAAMP,QAAO,WAAW;AACzC,aAAO,CAAC,iBAAiB,QAAQ;AAAA,IACnC;AAAA,SACK,qBAAqB;AACxB,YAAM,SAAS,cAAc,iBAAiBO,OAAM,WAAW,OAAO;AACtE,YAAM,YAAY,cAAc,SAASA,OAAM,WAAW,OAAO;AACjE,YAAM,kBAAkB,QAAQ,eAAe,OAAO,EAAE;AACxD,aAAO,CAAC,gBAAgB,KAAK,SAAS,CAAC;AAAA,IACzC;AAAA,SACK,uBAAuB;AAC1B,YAAM,WAAW,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACxE,YAAM,gBAAgB,cAAc,WAAWA,OAAM,WAAW,OAAO;AACvE,YAAM,cAAc,cAAc,SAASA,OAAM,WAAW,OAAO;AACnE,YAAM,oBAAoB,QAAQ,eAAe,SAAS,EAAE;AAC5D,aAAO,CAAC,kBAAkB,OAAO,eAAe,WAAW,CAAC;AAAA,IAC9D;AAAA,SACK,wBAAwB;AAC3B,YAAM,YAAY,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACzE,YAAM,iBAAiB,cAAc,WAAWA,OAAM,WAAW,OAAO;AACxE,YAAM,gBAAgB,cAAc,UAAUA,OAAM,WAAW,OAAO;AACtE,YAAM,qBAAqB,QAAQ,eAAe,UAAU,EAAE;AAC9D,yBAAmB,QAAQ,gBAAgB,aAAa;AACxD,aAAO,CAAC,mBAAmB,QAAQ;AAAA,IACrC;AAAA,SACK,uBAAuB;AAC1B,YAAM,WAAW,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACxE,YAAM,oBAAoB,QAAQ,eAAe,SAAS,EAAE;AAC5D,YAAM,cAAc,cAAc,SAASA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,kBAAkB,OAAO,WAAW,CAAC;AAAA,IAC/C;AAAA,SACK,sBAAsB;AACzB,YAAM,UAAU,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACvE,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,mBAAmB,QAAQ,eAAe,QAAQ,EAAE;AAC1D,uBAAiB,MAAM,SAAS,WAAW;AAC3C,aAAO,CAAC,iBAAiB,QAAQ;AAAA,IACnC;AAAA,SACK,qBAAqB;AACxB,YAAM,SAAS,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACtE,YAAM,kBAAkB,QAAQ,eAAe,OAAO,EAAE;AACxD,aAAO,CAAC,OAAO,gBAAgB,KAAK,GAAG,OAAO,CAAC;AAAA,IACjD;AAAA,SACK,sBAAsB;AACzB,YAAM,UAAU,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACvE,YAAM,mBAAmB,QAAQ,eAAe,QAAQ,EAAE;AAC1D,uBAAiB,cAAc;AAC/B,aAAO,CAAC,iBAAiB,QAAQ;AAAA,IACnC;AAAA,SACK,qBAAqB;AACxB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAMP,SAAQ,cAAc,SAASO,OAAM,WAAW,OAAO;AAC7D,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,iBAAW,QAAQP,QAAO,WAAW;AACrC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK,qBAAqB;AACxB,YAAM,WAAW,cAAc,gBAAgBO,OAAM,WAAW,OAAO;AACvE,YAAM,YAAY,cAAc,SAASA,OAAM,WAAW,OAAO;AACjE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,WAAW,QAAQ,WAAW,cAAc,YAAY,CAAC;AAAA,IACnE;AAAA,SACK;AAAA,SACA,qBAAqB;AACxB,YAAM,iBAAiB,cAAc,WAAWA,OAAM,WAAW,OAAO;AACxE,YAAM,gBAAgB,cAAc,UAAUA,OAAM,WAAW,OAAO;AACtE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,aAAa,QAAQ,eAAe,gBAAgB,cAAc,WAAW;AACnF,cAAQ,cAAc,UAAU;AAChC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK;AAAA,SACA,mBAAmB;AACtB,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,UAAI;AACJ,UAAIA,MAAK,OAAO,qBAAqB;AACnC,2BAAmB;AAAA,MACrB,OAAO;AACL,2BAAmB;AAAA,MACrB;AACA,YAAM,cAAc,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC5E,YAAM,iBAAiBA,MAAK,OAAO,sBAAsB,KAAK;AAC9D,YAAM,aAAa,QAAQ,cAAc,cAAc,aAAa,cAAc;AAClF,cAAQ,cAAc,UAAU;AAChC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK,oBAAoB;AACvB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,gBAAgB,cAAc,WAAWA,OAAM,WAAW,OAAO;AACvE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,WAAW,OAAO,eAAe,cAAc,YAAY,CAAC;AAAA,IACtE;AAAA,SACK,mBAAmB;AACtB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,WAAW,MAAM,cAAc,cAAc,WAAW,CAAC;AAAA,IACnE;AAAA,SACK,wBAAwB;AAC3B,YAAM,UAAU,cAAc,UAAUA,OAAM,WAAW,OAAO;AAChE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,aAAa,WAAW,SAAS,cAAc,YAAY;AACjE,cAAQ,cAAc,UAAU;AAChC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK;AAAA,SACA,sBAAsB;AACzB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,YAAM,cAAc,cAAc,SAASA,OAAM,WAAW,OAAO;AACnE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,aAAO,CAAC,WAAW,OAAO,aAAa,YAAY,CAAC;AAAA,IACtD;AAAA,SACK,sBAAsB;AACzB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,iBAAW,SAAS,WAAW;AAC/B,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK,qBAAqB;AACxB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,WAAW,QAAQ,cAAc,YAAY,CAAC;AAAA,IACxD;AAAA,SACK,mBAAmB;AACtB,YAAM,cAAc,cAAc,UAAUA,OAAM,WAAW,OAAO;AACpE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,aAAa,OAAO,aAAa,SAAS,YAAY;AAC5D,cAAQ,cAAc,UAAU;AAChC,aAAO,CAAC,WAAW,QAAQ;AAAA,IAC7B;AAAA,SACK,oBAAoB;AACvB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAM,aAAa,QAAQ,cAAc,SAAS,EAAE;AACpD,aAAO,CAAC,OAAO,WAAW,KAAK,GAAG,OAAO,CAAC;AAAA,IAC5C;AAAA,SACK,oBAAoB;AACvB,YAAM,WAAW,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AACvE,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,YAAM,gBAAgB,QAAQ,cAAc,SAAS,EAAE;AACvD,YAAM,iBAAiB,cAAc,OAAOjB,KAAI;AAChD,cAAQ,cAAc,cAAc;AACpC,aAAO,CAAC,eAAe,QAAQ;AAAA,IACjC;AAAA;AAEE,YAAM,UAAU,aAAaiB,MAAK,uBAAuB;AAAA;AAE/D;AAGA,SAAS,4BAA4BA,OAAM,WAAW,SAAS;AAC7D,QAAM,CAAC,SAAS,cAAc,IAAI,cAAc,YAAYA,OAAM,WAAW,OAAO;AACpF,QAAM,YAAY,YAAY;AAC9B,QAAM,YAAY,CAAC;AACnB,QAAM,UAAU,mBAAmB;AACnC,QAAM,cAAc,YAAY;AAChC,QAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,MAAI,WAAW;AACb,QAAI,WAAW,YAAY,GAAG;AAC5B,YAAM,IAAI,MAAM,uGAAuG;AAAA,IACzH;AACA,QAAI,CAAC,WAAW,aAAa,YAAY,GAAG;AAC1C,YAAM,IAAI,MAAM,kFAAkF;AAAA,IACpG;AAAA,EACF;AACA,MAAI,aAAa;AACf,UAAM,IAAI,MAAM,sEAAsE;AAAA,EACxF;AACA,QAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,QAAM,OAAO,WAAWA,OAAM,WAAW,OAAO;AAChD,QAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,QAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,MAAI,CAAC,SAAS,QAAQ,IAAI,cAAc,QAAQA,OAAM,WAAW,OAAO;AACxE,MAAI,WAAW;AACb,eAAW;AACX,cAAU;AAAA,EACZ;AACA,QAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,SAAO;AAAA,IACL;AAAA,IACA,KAAK;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN,UAAU;AACb,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,QAAQ,MAAM,YAAY,QAAQ,CAAC;AAAA,IACzJ;AAAA,SACK,UAAU;AACb,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,WAAWA,OAAM,WAAW,OAAO;AAChD,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,MAAM,YAAY,CAAC,UAAU,IAAI,UAAU,EAAE,CAAC,CAAC;AAAA,IAC7L;AAAA,SACK,gBAAgB;AACnB,YAAM,EAAE,QAAQ,KAAK,MAAM,YAAY,WAAW,SAAS,UAAU,gBAAgB,eAAe,IAAI,4BAA4BA,OAAM,WAAW,OAAO;AAC5J,aAAO,CAAC,IAAI,MAAM,OAAO;AAAA,QACvB,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO;AAAA,QAC9C,QAAQ,cAAc,UAAUA,OAAM,WAAW,OAAO;AAAA,QACxD,SAAS,CAAC,OAAO,IAAI,OAAO,EAAE;AAAA,QAC9B,KAAK;AAAA,QACL;AAAA,QACA,WAAW,CAAC,UAAU,IAAI,UAAU,EAAE;AAAA,QACtC,MAAM;AAAA,QACN,YAAY;AAAA,QACZ,wBAAwB;AAAA,QACxB;AAAA,MACF,CAAC,CAAC;AAAA,IACJ;AAAA,SACK,8BAA8B;AACjC,YAAM,EAAE,QAAQ,KAAK,MAAM,YAAY,WAAW,SAAS,UAAU,gBAAgB,eAAe,IAAI,4BAA4BA,OAAM,WAAW,OAAO;AAC5J,aAAO,CAAC,IAAI,MAAM,gBAAgB;AAAA,QAChC,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO;AAAA,QAC9C,QAAQ,cAAc,UAAUA,OAAM,WAAW,OAAO;AAAA,QACxD,SAAS,CAAC,OAAO,IAAI,OAAO,EAAE;AAAA,QAC9B,KAAK;AAAA,QACL;AAAA,QACA,WAAW,CAAC,UAAU,IAAI,UAAU,EAAE;AAAA,QACtC,MAAM;AAAA,QACN,YAAY;AAAA,QACZ,wBAAwB;AAAA,QACxB;AAAA,MACF,CAAC,CAAC;AAAA,IACJ;AAAA,SACK;AAAA,SACA,mBAAmB;AACtB,YAAM,QAAQ,cAAc,eAAeA,OAAM,WAAW,OAAO;AACnE,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,WAAWA,OAAM,WAAW,OAAO;AAChD,aAAO,CAAC,IAAI,gBAAgB,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,OAAO,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IACnK;AAAA,SACK;AAAA,SACA,mBAAmB;AACtB,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,WAAWA,OAAM,WAAW,OAAO;AAChD,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,aAAO,CAAC,IAAI,gBAAgB,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,MAAM,YAAY,CAAC,UAAU,IAAI,UAAU,EAAE,CAAC,CAAC;AAAA,IAC1M;AAAA,SACK,UAAU;AACb,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,CAAC,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE,GAAG,MAAM,YAAY,CAAC,UAAU,IAAI,UAAU,IAAI,UAAU,EAAE,CAAC,CAAC;AAAA,IACtN;AAAA,SACK,WAAW;AACd,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IACjI;AAAA,SACK,WAAW;AACd,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IACjI;AAAA,SACK,qBAAqB;AACxB,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,sBAAsB,cAAc,uBAAuBA,OAAM,WAAW,OAAO;AACzF,YAAM,EAAE,QAAQ,QAAQ,IAAI,IAAI,kBAAkB,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,MAAM,mBAAmB;AACjL,aAAO,CAAC,QAAQ,OAAO;AAAA,IACzB;AAAA,SACK,aAAa;AAChB,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IAC7J;AAAA,SACK,aAAa;AAChB,YAAM,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAChE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,CAAC,WAAW,IAAI,WAAW,IAAI,WAAW,EAAE,GAAG,CAAC,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE,GAAG,IAAI,CAAC;AAAA,IAC7J;AAAA,SACK,cAAc;AACjB,YAAMJ,WAAU,cAAc,WAAWI,OAAM,WAAW,OAAO;AACjE,YAAM,OAAO,cAAc,OAAOA,OAAM,WAAW,OAAO;AAC1D,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,eAAeJ,SAAQ;AAC7B,YAAM,cAAcA,SAAQ;AAC5B,YAAM,iBAAiB,UAAU;AACjC,YAAM,gBAAgB,UAAU;AAChC,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKI,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,CAAC,cAAc,WAAW,GAAG,MAAM,CAAC,gBAAgB,aAAa,GAAG,MAAM,CAAC;AAAA,IACrM;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN,QAAQ;AACX,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,IAAI,KAAK,OAAO,OAAO,KAAK,CAAC;AAAA,IACvC;AAAA,SACK,YAAY;AACf,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,MAAM,cAAc,OAAOA,OAAM,WAAW,OAAO;AACzD,aAAO,CAAC,IAAI,SAAS,OAAO,MAAM,GAAG,CAAC;AAAA,IACxC;AAAA,SACK,eAAe;AAClB,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,YAAY,QAAQ,YAAY,IAAI,CAAC;AAAA,IACnD;AAAA,SACK,UAAU;AACb,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,IAAI,OAAO,SAAS,OAAO,SAAS,UAAU,KAAK,CAAC;AAAA,IAC9D;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtH;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpE;AAAA,SACK,wBAAwB;AAC3B,aAAO,CAAC,IAAI,qBAAqB,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACvL;AAAA,SACK,iBAAiB;AACpB,aAAO,CAAC,IAAI;AAAA,QACV,cAAc,SAASA,OAAM,WAAW,OAAO;AAAA,QAC/C,cAAc,UAAUA,OAAM,WAAW,OAAO;AAAA,QAChD,cAAc,UAAUA,OAAM,WAAW,OAAO;AAAA,QAChD,cAAc,SAASA,OAAM,WAAW,OAAO;AAAA,MACjD,CAAC;AAAA,IACH;AAAA,SACK,SAAS;AACZ,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,QAAQ,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC5D,aAAO,CAAC,IAAI,MAAM,OAAO,MAAM,OAAO,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACzF;AAAA,SACK,mBAAmB;AACtB,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,QAAQ,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC5D,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,gBAAgB,OAAO,OAAO,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IAC3G;AAAA,SACK,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACvH;AAAA,SACK,aAAa;AAChB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACrE;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,SAAS,UAAUA,OAAM,WAAW,SAAS;AAC3C,QAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,QAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,QAAM,gBAAgB,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AAC7E,QAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,QAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,QAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,IAAI,aAAa,OAAOA,OAAM,WAAW,SAAS,iBAAiB,MAAM,8BAA8B;AACrG,UAAQA,MAAK;AAAA,SACN,uBAAuB;AAC1B,YAAM,EAAE,OAAO,QAAQ,eAAe,cAAc,gBAAgB,aAAa,IAAI,UAAUA,OAAM,WAAW,OAAO;AACvH,YAAM,SAAS,MAAM,IAAI,MAAM,gCAAgC,OAAO,QAAQ,eAAe,cAAc,gBAAgB,YAAY;AACvI,aAAO,CAAC,OAAO,iBAAiB,OAAO,cAAc;AAAA,IACvD;AAAA,SACK,uBAAuB;AAC1B,YAAM,EAAE,OAAO,QAAQ,eAAe,cAAc,eAAe,IAAI,UAAUA,OAAM,WAAW,OAAO;AACzG,YAAM,qBAAqB,cAAc,sBAAsBA,OAAM,WAAW,OAAO;AACvF,YAAM,SAAS,MAAM,IAAI,MAAM,6BAA6B,OAAO,QAAQ,eAAe,cAAc,gBAAgB,kBAAkB;AAC1I,aAAO,CAAC,OAAO,iBAAiB,OAAO,YAAY;AAAA,IACrD;AAAA,SACK;AAAA,SACA,uBAAuB;AAC1B,YAAM,EAAE,OAAO,QAAQ,eAAe,cAAc,eAAe,IAAI,UAAUA,OAAM,WAAW,OAAO;AACzG,aAAO,CAAC,MAAM,IAAI,MAAM,uBAAuB,OAAO,QAAQ,eAAe,cAAc,cAAc,CAAC;AAAA,IAC5G;AAAA,SACK,SAAS;AACZ,YAAM,YAAY,IAAI,KAAK,cAAc,aAAaA,OAAM,WAAW,OAAO,GAAG,MAAM;AACvF,YAAM,SAAS,CAAC,MAAM,IAAI,WAAW,SAAS,CAAC;AAC/C,gBAAU,QAAQ;AAClB,aAAO;AAAA,IACT;AAAA,SACK,YAAY;AACf,aAAO,IAAI,eAAe,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC;AAAA,IACtH;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN,cAAc;AACjB,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,aAAO,CAAC,IAAI,WAAW,gBAAgB,MAAM,CAAC;AAAA,IAChD;AAAA,SACK,UAAU;AACb,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,SAAS,IAAI,KAAK,GAAG,GAAG,MAAM;AACpC,aAAO,CAAC,OAAO,QAAQ,OAAO,OAAO;AAAA,IACvC;AAAA,SACK,cAAc;AACjB,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,aAAO,CAAC,IAAI,WAAW,gBAAgB,MAAM,CAAC;AAAA,IAChD;AAAA,SACK,UAAU;AACb,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,SAAS,IAAI,OAAO,CAAC;AAC3B,aAAO,CAAC,OAAO,QAAQ,OAAO,OAAO;AAAA,IACvC;AAAA,SACK,YAAY;AACf,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,SAAS,IAAI,OAAO,GAAG,IAAI;AACjC,aAAO,CAAC,OAAO,QAAQ,OAAO,OAAO;AAAA,IACvC;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,aAAa,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC9E,UAAQA,MAAK;AAAA,SACN,SAAS;AACZ,aAAO,UAAUA,MAAK;AAAA,IACxB;AAAA,SACK;AACH,YAAM,MAAM,cAAc,WAAWA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,UAAUA,MAAK,MAAM,WAAW,OAAO,KAAK,GAAG;AAAA,SACpD;AACH,aAAO,CAAC,UAAUA,MAAK,MAAM,WAAW,OAAO,CAAC;AAAA,SAC7C;AAAA,SACA;AAAA,SACA,2BAA2B;AAC9B,YAAM,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO;AACzD,aAAO,CAAC,YAAY,KAAK,CAAC;AAAA,IAC5B;AAAA,SACK;AACH,aAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,IAAI,CAAC,OAAO,YAAY,EAAE,CAAC;AAAA,SAC5E;AACH,YAAM,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC5D,aAAO,CAAC,YAAY,QAAQ,CAAC;AAAA,SAC1B;AACH,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,OAAO,OAAO,CAAC;AAAA,SAC9E;AACH,aAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,IAAI,CAAC,OAAO,IAAI,SAAS,GAAG,KAAK,CAAC;AAAA,SACnF;AACH,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,MAAM,OAAO,CAAC;AAAA,SAC3E;AACH,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,EAAE,MAAM,OAAO,CAAC;AAAA,SAC3E;AACH,aAAO,CAAC,IAAI,OAAO,CAAC,CAAC;AAAA,SAClB;AACH,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,cAAQ,KAAK,gGAAgG;AAC7G,cAAQ,IAAI,OAAO;AACnB,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,gBAAQ,IAAI,MAAM,UAAU,MAAM,KAAK,KAAK,IAAI,SAAS,CAAC,EAAE,MAAM,GAAG,SAAS,CAAC;AAAA,MACjF;AACA,aAAO,CAAC,MAAM;AAAA;AAEd,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,YAAY,MAAM;AAAA,EACpB,YAAY,UAAU,YAAY;AAChC,SAAK,WAAW;AAChB,SAAK,aAAa;AAClB,SAAK,SAAS,OAAO,CAAC;AACtB,SAAK,YAA4B,oBAAI,IAAI;AACzC,SAAK,KAAK,MAAM;AAAA,EAClB;AAAA,EACA,IAAI,KAAK;AACP,WAAO,KAAK,OAAO;AAAA,EACrB;AAAA,EACA,gBAAgB;AACd,SAAK,UAAU,QAAQ,CAAC,UAAU,MAAM,QAAQ,CAAC;AACjD,SAAK,UAAU,MAAM;AACrB,SAAK,OAAO,QAAQ;AAAA,EACtB;AAAA,EACA,OAAO;AACL,WAAO,KAAK,UAAU;AAAA,EACxB;AAAA,EACA,aAAa;AACX,WAAO,OAAO,KAAK,KAAK,GAAG,OAAO;AAAA,EACpC;AAAA,EACA,MAAM,OAAO,MAAM,QAAQ;AACzB,SAAK,uBAAuB,MAAM,MAAM;AACxC,UAAM,QAAQ,MAAM,KAAK,KAAK;AAC9B,SAAK,UAAU,QAAQ,CAAC,UAAU,MAAM,QAAQ,CAAC;AACjD,SAAK,UAAU,MAAM;AACrB,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,QAAQ,MAAM;AAC9B,YAAM,aAAa,MAAM;AACzB,YAAM,eAAe,QAAQ;AAC7B,mBAAa,OAAO,eAAe,cAAc,MAAM,kDAAkD,uCAAuC,wBAAwB;AACxK,eAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,cAAM,MAAM,MAAM;AAClB,cAAM,QAAQ,QAAQ;AACtB,aAAK,KAAK;AACV,aAAK,UAAU,IAAI,KAAK,KAAK;AAAA,MAC/B;AACA,aAAO,KAAK;AAAA,IACd,CAAC;AAAA,EACH;AAAA,EACA,MAAM,KAAK,MAAM,cAAc;AAC7B,SAAK,uBAAuB,MAAM,YAAY;AAC9C,UAAM,QAAQ,MAAM,KAAK,KAAK;AAC9B,WAAO,KAAK,MAAM;AAChB,YAAM,SAAS,CAAC;AAChB,eAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,cAAM,MAAM,MAAM;AAClB,cAAM,QAAQ,KAAK,gBAAgB,KAAK,YAAY;AACpD,eAAO,KAAK,KAAK;AAAA,MACnB;AACA,aAAO,MAAM,MAAM;AAAA,IACrB,CAAC;AAAA,EACH;AAAA,EACA,gBAAgB,KAAK,cAAc;AACjC,UAAM,SAAS,KAAK,UAAU,IAAI,GAAG;AACrC,WAAO,UAAU,OAAO,SAAS;AAAA,EACnC;AAAA,EACA,uBAAuB,KAAK,OAAO;AACjC,QAAI,IAAI,UAAU,KAAK,UAAU;AAC/B,YAAM,IAAI,MAAM,oBAAoB,KAAK,qBAAqB,IAAI,OAAO;AAAA,IAC3E;AACA,QAAI,MAAM,UAAU,KAAK,YAAY;AACnC,YAAM,IAAI,MAAM,sBAAsB,KAAK,uBAAuB,MAAM,OAAO;AAAA,IACjF;AAAA,EACF;AACF;AAGA,IAAI,aAAa,OAAOA,OAAM,WAAW,SAAS,oBAAoB;AACpE,UAAQA,MAAK;AAAA,SACN;AAAA,SACA,eAAe;AAClB,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,YAAY,IAAI,UAAU,UAAU,UAAU;AACpD,sBAAgB,aAAaA,MAAK,MAAM,SAAS;AACjD,aAAO,CAAC,UAAU,MAAM;AAAA,IAC1B;AAAA,SACK;AAAA,SACA,uBAAuB;AAC1B,YAAM,SAAS,cAAc,eAAeA,OAAM,WAAW,SAAS,eAAe;AACrF,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,YAAY,gBAAgB,iBAAiB,OAAO,EAAE;AAC5D,aAAO,CAAC,MAAM,UAAU,OAAO,MAAM,MAAM,CAAC;AAAA,IAC9C;AAAA,SACK;AAAA,SACA,qBAAqB;AACxB,YAAM,SAAS,cAAc,eAAeA,OAAM,WAAW,SAAS,eAAe;AACrF,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,YAAY,gBAAgB,iBAAiB,OAAO,EAAE;AAC5D,aAAO,CAAC,MAAM,UAAU,KAAK,MAAM,YAAY,CAAC;AAAA,IAClD;AAAA,SACK;AAAA,SACA,qBAAqB;AACxB,YAAM,SAAS,cAAc,eAAeA,OAAM,WAAW,SAAS,eAAe;AACrF,YAAM,YAAY,gBAAgB,iBAAiB,OAAO,EAAE;AAC5D,aAAO,CAAC,UAAU,WAAW,CAAC;AAAA,IAChC;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,kBAAkB;AACrB,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,mBAAmB,cAAc,oBAAoBA,OAAM,WAAW,OAAO;AACnF,aAAO,CAAC,IAAI,MAAM,eAAe,QAAQ,CAACjB,MAAK,IAAIA,MAAK,EAAE,GAAG,cAAc,gBAAgB,CAAC;AAAA,IAC9F;AAAA,SACK,yBAAyB;AAC5B,YAAM,SAAS,cAAc,UAAUiB,OAAM,WAAW,OAAO;AAC/D,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,mBAAmB,cAAc,oBAAoBA,OAAM,WAAW,OAAO;AACnF,aAAO,CAAC,IAAI,MAAM,sBAAsB,QAAQ,CAACjB,MAAK,IAAIA,MAAK,EAAE,GAAG,cAAc,gBAAgB,CAAC;AAAA,IACrG;AAAA,SACK,iBAAiB;AACpB,YAAM,SAAS,cAAc,SAASiB,OAAM,WAAW,OAAO;AAC9D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,qBAAqB,cAAc,sBAAsBA,OAAM,WAAW,OAAO;AACvF,aAAO,CAAC,IAAI,MAAM,cAAc,QAAQ,OAAO,QAAQ,UAAU,QAAQ,kBAAkB,CAAC;AAAA,IAC9F;AAAA,SACK,8BAA8B;AACjC,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,gBAAgB,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AAC7E,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,MAAM,UAAU,QAAQ,YAAY,cAAc,YAAY,GAAG,SAAS,YAAY,GAAG,WAAW,WAAW,CAAC;AAAA,IAC9H;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC/G;AAAA,SACK,YAAY;AACf,aAAO,CAAC,IAAI,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClH;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjH;AAAA,SACK,gBAAgB;AACnB,aAAO,CAAC,IAAI,aAAa,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtH;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC9G;AAAA,SACK,aAAa;AAChB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACnH;AAAA,SACK,cAAc;AACjB,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpH;AAAA,SACK,cAAc;AACjB,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtE;AAAA,SACK,aAAa;AAChB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACnH;AAAA,SACK;AAAA,SACA,YAAY;AACf,aAAO,CAAC,IAAI,MAAM,cAAc,aAAaA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACrK;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN;AAAA,SACA;AAAA,SACA;AACH,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACzN;AACH,aAAO,CAAC,IAAI,OAAO,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC3H;AACH,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SACjH;AACH,YAAM,CAAC,SAAS,cAAc,IAAI,cAAc,YAAYA,OAAM,WAAW,OAAO;AACpF,YAAM,YAAY,YAAY;AAC9B,YAAM,UAAU,mBAAmB;AACnC,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,UAAI,WAAW;AACb,YAAI,WAAW,YAAY,GAAG;AAC5B,gBAAM,IAAI,MAAM,oFAAoF;AAAA,QACtG;AACA,YAAI,CAAC,WAAW,YAAY,GAAG;AAC7B,gBAAM,IAAI,MAAM,+DAA+D;AAAA,QACjF;AAAA,MACF;AACA,YAAM,CAAC,SAAS,QAAQ,IAAI,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC1E,aAAO,CAAC,IAAI,MAAM,OAAO;AAAA,QACvB,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO;AAAA,QAC9C,GAAG,cAAc,KAAKA,OAAM,WAAW,OAAO;AAAA,QAC9C,YAAY,cAAc,cAAcA,OAAM,WAAW,OAAO;AAAA,QAChE,YAAY,cAAc,cAAcA,OAAM,WAAW,OAAO;AAAA,QAChE,MAAM;AAAA,QACN,YAAY;AAAA,QACZ,wBAAwB;AAAA,QACxB;AAAA,MACF,CAAC,CAAC;AAAA;AAEF,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN;AACH,aAAO,CAAC,IAAI,cAAc,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,SAC1K;AAAA,SACA,oBAAoB;AACvB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpU;AAAA,SACK,oBAAoB;AACvB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACpU;AAAA,SACK,OAAO;AACV,aAAO,CAAC,IAAI,2BAA2B,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7R;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACnE;AAAA,SACK,cAAc;AACjB,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACtE;AAAA,SACK,iBAAiB;AACpB,aAAO,CAAC,IAAI,cAAc,cAAc,iBAAiBA,OAAM,WAAW,OAAO,GAAG,cAAc,eAAeA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC/P;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,QAAQ;AACX,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAChF;AAAA,SACK,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,OAAO;AACV,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAC/E;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IACxE;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IACxE;AAAA,SACK,QAAQ;AACX,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,QAAQ,CAAC;AAAA,IAChF;AAAA,SACK,WAAW;AACd,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,WAAW,cAAc,WAAWA,OAAM,WAAW,OAAO;AAClE,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,WAAW,QAAQ,CAAC;AAAA,IAC9F;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,WAAW,cAAc,WAAWA,OAAM,WAAW,OAAO;AAClE,aAAO,CAAC,IAAI,OAAO,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,MAAM,WAAW,QAAQ,CAAC;AAAA,IAC7F;AAAA,SACK;AACH,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,SAAS,GAAG,SAASjB,KAAI,CAAC;AAAA,SACnC,iBAAiB;AACpB,YAAM,KAAK,cAAc,KAAKiB,OAAM,WAAW,OAAO;AACtD,YAAM,WAAW,cAAc,WAAWA,OAAM,WAAW,OAAO;AAClE,YAAME,SAAQ,cAAc,QAAQF,OAAM,WAAW,OAAO;AAC5D,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,aAAO,CAAC,IAAI,cAAc,IAAI,UAAUE,QAAO,YAAY,CAAC;AAAA,IAC9D;AAAA;AAEE,YAAM,UAAU,aAAaF,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN;AAAA,SACA,UAAU;AACb,YAAM,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO;AACtD,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,UAAI,SAAS,cAAc,WAAWA,OAAM,WAAW,OAAO;AAC9D,eAAS,OAAO,MAAM,GAAG,EAAE;AAC3B,aAAO,CAAC,IAAI,OAAO,QAAQ,IAAI,CAAC;AAAA,IAClC;AAAA,SACK,UAAU;AACb,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,aAAO,CAAC,IAAI,OAAO,QAAQ,IAAI,KAAK,SAAS,OAAO,GAAG,CAAC,CAAC;AAAA,IAC3D;AAAA,SACK,YAAY;AACf,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,aAAO,CAAC,IAAI,OAAO,QAAQ,IAAI,KAAK,SAAS,OAAO,GAAG,MAAM,SAAS,CAAC;AAAA,IACzE;AAAA,SACK,WAAW;AACd,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,OAAO,CAAC;AACd,eAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,YAAI,KAAK,KAAK;AACZ,eAAK,KAAK,EAAE;AAAA,QACd;AAAA,MACF;AACA,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,aAAO,CAAC,IAAI,QAAQ,QAAQ,IAAI,CAAC;AAAA,IACnC;AAAA,SACK,aAAa;AAChB,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,SAAS,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC1D,aAAO,CAAC,IAAI,QAAQ,QAAQ,IAAI,CAAC;AAAA,IACnC;AAAA,SACK,SAAS;AACZ,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,YAAMjB,QAAO,cAAc,QAAQiB,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,OAAOjB,KAAI,CAAC;AAAA,IAC9E;AAAA,SACK,gBAAgB;AACnB,YAAM,QAAQ,cAAc,SAASiB,OAAM,WAAW,OAAO;AAC7D,YAAM,MAAM,cAAc,OAAOA,OAAM,WAAW,OAAO;AACzD,YAAMJ,WAAU,cAAc,WAAWI,OAAM,WAAW,OAAO;AACjE,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,cAAc,cAAc,eAAeA,OAAM,WAAW,OAAO;AACzE,YAAM,iBAAiB,cAAc,kBAAkBA,OAAM,WAAW,OAAO;AAC/E,YAAM,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,aAAa,SAAS,OAAO,KAAKJ,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc,CAAC;AAAA,IACvH;AAAA,SACK,QAAQ;AACX,aAAO,KAAK,MAAM;AAChB,cAAM,OAAO,cAAc,QAAQI,OAAM,WAAW,OAAO;AAC3D,cAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,cAAM,QAAQ,QAAQ,GAAG;AACzB,cAAM,gBAAgB,IAAI,QAAQ,QAAQ,EAAE,EAAE;AAC9C,cAAM,SAAS,QAAQ,IAAI,CAAC,YAAY;AACtC,gBAAM,YAAY,aAAa,YAAY,QAAQ,OAAO,KAAK;AAC/D,cAAI,CAAC,aAAa,CAAC,aAAa,YAAY,IAAI,QAAQ,OAAO,EAAE,OAAO,aAAa,GAAG;AACtF,kBAAM,IAAI,MAAM,wCAAwC;AAAA,UAC1D;AACA,iBAAO,YAAY,UAAU,IAAI,QAAQ,SAAS,KAAK;AAAA,QACzD,CAAC;AACD,eAAO,CAAC,IAAI,MAAM,QAAQ,IAAI,CAAC;AAAA,MACjC,CAAC;AAAA,IACH;AAAA,SACK,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,UAAU,cAAc,UAAUA,OAAM,WAAW,OAAO;AAChE,aAAO,IAAI,QAAQ,SAAS,IAAI;AAAA,IAClC;AAAA,SACK,QAAQ;AACX,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IACtE;AAAA,SACK;AAAA,SACA,UAAU;AACb,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,YAAM,kBAAkB,cAAc,mBAAmBA,OAAM,WAAW,OAAO;AACjF,YAAM,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO;AAC3D,aAAO,IAAI,MAAM,SAAS,iBAAiB,IAAI;AAAA,IACjD;AAAA,SACK,aAAa;AAChB,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,YAAM,SAAS,cAAc,UAAUA,OAAM,WAAW,OAAO;AAC/D,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,IAAI,UAAU,SAAS,QAAQ,KAAK,CAAC;AAAA,IAC/C;AAAA,SACK,YAAY;AACf,YAAM,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO;AACrD,YAAM,UAAU,cAAc,WAAWA,OAAM,WAAW,OAAO;AACjE,aAAO,CAAC,IAAI,SAAS,GAAG,OAAO,CAAC;AAAA,IAClC;AAAA,SACK,iBAAiB;AACpB,YAAM,UAAU,cAAc,iBAAiBA,OAAM,WAAW,OAAO;AACvE,YAAM,QAAQ,cAAc,eAAeA,OAAM,WAAW,OAAO;AACnE,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,YAAM,eAAe,cAAc,gBAAgBA,OAAM,WAAW,OAAO;AAC3E,aAAO,CAAC,IAAI,cAAc,SAAS,cAAc,OAAO,aAAa,UAAU,aAAa,QAAQ,eAAe,IAAI,KAAK,cAAc,aAAa,KAAK,CAAC,CAAC;AAAA,IAChK;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,uBAAuB;AAC1B,YAAM,EAAE,eAAe,cAAc,mBAAmB,gBAAgB,IAAI,IAAI,OAAO,oBAAoB,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,UAAUA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,GAAG,cAAc,gBAAgBA,OAAM,WAAW,OAAO,CAAC;AAChU,aAAO;AAAA,QACL;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,MACF;AAAA,IACF;AAAA,SACK,iBAAiB;AACpB,YAAM,EAAE,eAAe,YAAY,IAAI,IAAI,OAAO,cAAc,cAAc,gBAAgBA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,CAAC;AACnO,aAAO,CAAC,eAAe,WAAW;AAAA,IACpC;AAAA,SACK,qBAAqB;AACxB,YAAM,aAAa,IAAI,OAAO,kBAAkB,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,CAAC;AAC1M,aAAO,CAAC,UAAU;AAAA,IACpB;AAAA,SACK,oBAAoB;AACvB,YAAM,aAAa,IAAI,OAAO,iBAAiB,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,CAAC;AACzM,aAAO,CAAC,UAAU;AAAA,IACpB;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC/D;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAChE;AAAA,SACK,SAAS;AACZ,aAAO,CAAC,IAAI,MAAM,cAAc,KAAKA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACjE;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,gBAAgB;AACnB,YAAM,EAAE,QAAQ,aAAa,IAAI,IAAI,OAAO,aAAa,cAAc,QAAQA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,GAAG,cAAc,aAAaA,OAAM,WAAW,OAAO,GAAG,cAAc,eAAeA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,cAAc,YAAYA,OAAM,WAAW,OAAO,GAAG,cAAc,0BAA0BA,OAAM,WAAW,OAAO,CAAC;AAC9e,aAAO,CAAC,QAAQ,YAAY;AAAA,IAC9B;AAAA,SACK,eAAe;AAClB,YAAM,EAAE,SAAS,QAAQ,MAAM,IAAI,IAAI,OAAO,YAAY,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,aAAaA,OAAM,WAAW,OAAO,GAAG,cAAc,aAAaA,OAAM,WAAW,OAAO,CAAC;AACtN,aAAO,CAAC,SAAS,QAAQ,KAAK;AAAA,IAChC;AAAA,SACK,0BAA0B;AAC7B,YAAM,SAAS,IAAI,OAAO,uBAAuB,cAAc,SAASA,OAAM,WAAW,OAAO,GAAG,cAAc,cAAcA,OAAM,WAAW,OAAO,CAAC;AACxJ,aAAO,CAAC,MAAM;AAAA,IAChB;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,IAAI,cAAc,CAACA,OAAM,WAAW,SAAS,MAAM,8BAA8B;AAC/E,UAAQA,MAAK;AAAA,SACN,QAAQ;AACX,aAAO,CAAC,IAAI,KAAK,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAClH;AAAA,SACK,cAAc;AACjB,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,WAAW,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IAC5E;AAAA,SACK,WAAW;AACd,YAAM,OAAO,cAAc,QAAQA,OAAM,WAAW,OAAO;AAC3D,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,IAAI,CAAC;AAAA,IACzE;AAAA,SACK,WAAW;AACd,aAAO,CAAC,IAAI,QAAQ,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACrH;AAAA,SACK,aAAa;AAChB,aAAO,CAAC,IAAI,UAAU,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,QAAQA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC1K;AAAA,SACK;AAAA,SACA,OAAO;AACV,aAAO,CAAC,IAAI,IAAI,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,WAAWA,OAAM,WAAW,OAAO,GAAG,cAAc,iBAAiBA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IAC7K;AAAA,SACK,kBAAkB;AACrB,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,WAAW,cAAc,YAAYA,OAAM,WAAW,OAAO;AACnE,aAAO,CAAC,IAAI,eAAe,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,YAAY,QAAQ,CAAC;AAAA,IAChG;AAAA,SACK,kBAAkB;AACrB,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO;AACvE,YAAM,QAAQ,cAAc,SAASA,OAAM,WAAW,OAAO;AAC7D,aAAO,CAAC,IAAI,eAAe,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,YAAY,KAAK,CAAC;AAAA,IAC7F;AAAA,SACK,gBAAgB;AACnB,YAAM,YAAY,cAAc,aAAaA,OAAM,WAAW,OAAO;AACrE,YAAM,aAAa,cAAc,cAAcA,OAAM,WAAW,OAAO,EAAE,YAAY;AACrF,aAAO,CAAC,IAAI,aAAa,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,WAAW,UAAU,CAAC;AAAA,IAC/F;AAAA,SACK,eAAe;AAClB,aAAO,CAAC,IAAI,YAAY,cAAc,KAAKA,OAAM,WAAW,OAAO,GAAG,cAAc,SAASA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACzH;AAAA,SACK,iBAAiB;AACpB,aAAO,CAAC,IAAI,cAAc,cAAc,MAAMA,OAAM,WAAW,OAAO,GAAG,cAAc,MAAMA,OAAM,WAAW,OAAO,CAAC,CAAC;AAAA,IACzH;AAAA;AAEE,YAAM,UAAU,aAAaA,MAAK,uBAAuB;AAAA;AAE/D;AAGA,SAAS,YAAYA,OAAM,WAAW,SAAS,iBAAiB,QAAQ,MAAM;AAC5E,QAAM,SAAS,CAACgB,QAAO,YAAY,aAAa;AAC9C,YAAQA,OAAM;AAAA,WACP;AACH,eAAO,MAAM,MAAM,UAAUA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACtD;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,WAAWA,QAAO,YAAY,QAAQ;AAAA,WAC1C;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,WAAWA,QAAO,YAAY,QAAQ;AAAA,WAC1C;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,WAAWA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACvD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,MAAM,MAAM,YAAYA,QAAO,YAAY,QAAQ,CAAC;AAAA,WACxD;AACH,eAAO,WAAWA,QAAO,YAAY,UAAU,eAAe;AAAA,WAC3D;AACH,cAAM,WAAW,gBAAgBA,OAAM,EAAE;AACzC,YAAI,YAAY,SAAS,gBAAgB;AACvC,iBAAO,SAAS,eAAe,IAAI,cAAcA,QAAO,YAAY,QAAQ,CAAC;AAAA,QAC/E,OAAO;AACL,gBAAM,UAAU,aAAaA,OAAM,uBAAuB;AAAA,QAC5D;AAAA;AAEA,cAAM,UAAU,eAAeA,OAAM,uIAAuI;AAAA;AAAA,EAElL,GAAGhB,OAAM,WAAW,OAAO;AAC3B,MAAI,aAAa,UAAU,KAAK,GAAG;AACjC,WAAO,MAAM,KAAK,CAAC,SAAS,CAAC,EAAE,OAAO,IAAI,CAAC;AAAA,EAC7C;AACA,SAAO,CAAC,EAAE,OAAO,KAAK;AACxB;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,YAAY,CAAC,GAAG,iBAAiB,CAAC,GAAG,gBAAgB,CAAC,GAAG,cAAc,CAAC,GAAG;AACrF,SAAK,YAAY;AACjB,SAAK,iBAAiB;AACtB,SAAK,gBAAgB;AACrB,SAAK,cAAc;AACnB,SAAK,cAAc,EAAE,IAAI,GAAG,WAAW,IAAI,aAAa,EAAE;AAC1D,SAAK,WAAW,CAAC,KAAK,WAAW;AACjC,SAAK,SAAS;AACd,SAAK,0BAA0B;AAAA,EACjC;AAAA,EACA,SAAS,IAAI,WAAW;AACtB,WAAO,EAAE,IAAI,WAAW,aAAa,EAAE;AAAA,EACzC;AAAA,EACA,IAAI,eAAe,WAAW;AAC5B,QAAI,KAAK,aAAa,WAAW;AAC/B,WAAK,WAAW;AAChB,WAAK,0BAA0B;AAAA,IACjC;AAAA,EACF;AAAA,EACA,IAAI,iBAAiB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,mBAAmB;AACrB,WAAO,KAAK,mBAAmB;AAAA,EACjC;AAAA,EACA,IAAI,oBAAoB;AACtB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,4BAA4B;AAC1B,UAAM,QAAQ,CAAC;AACf,aAAS,KAAK,GAAG,KAAK,KAAK,SAAS,SAAS,GAAG,MAAM;AACpD,YAAM,YAAY,KAAK,SAAS,MAAM,GAAG,KAAK,SAAS,SAAS,EAAE;AAClE,YAAM,KAAK,KAAK,qBAAqB,SAAS,CAAC;AAAA,IACjD;AACA,UAAM,KAAK,EAAE;AACb,SAAK,qBAAqB;AAAA,EAC5B;AAAA,EACA,qBAAqB,WAAW;AAC9B,WAAO,YAAY,UAAU,IAAI,CAAC,YAAY,QAAQ,OAAO,KAAK,QAAQ,gBAAgB,IAAI,KAAK,GAAG,QAAQ,aAAa,QAAQ,aAAa,EAAE,KAAK,GAAG,IAAI;AAAA,EAChK;AAAA,EACA,WAAW,SAAS;AAClB,QAAI,KAAK,UAAU;AACjB,WAAK;AACL,WAAK,WAAW,KAAK,SAAS,MAAM;AACpC,WAAK,SAAS,KAAK,KAAK,SAAS,KAAK,QAAQ,OAAO,CAAC;AACtD,WAAK,mBAAmB,QAAQ,KAAK,qBAAqB,KAAK,QAAQ,CAAC;AAAA,IAC1E;AAAA,EACF;AAAA,EACA,YAAY;AACV,QAAI,KAAK,YAAY,KAAK,SAAS,SAAS,GAAG;AAC7C,WAAK,WAAW,KAAK,SAAS,MAAM;AACpC,WAAK,SAAS,OAAO,EAAE;AACvB,WAAK,kBAAkB,MAAM;AAAA,IAC/B,OAAO;AACL,YAAM,IAAI,MAAM,yCAAyC;AAAA,IAC3D;AAAA,EACF;AAAA,EACA,gBAAgB;AACd,QAAI,KAAK,YAAY,KAAK,SAAS,SAAS,GAAG;AAC7C,WAAK,WAAW,KAAK,SAAS,MAAM;AACpC,WAAK;AACL,YAAM,UAAU,OAAO,OAAO,CAAC,GAAG,KAAK,SAAS,KAAK,SAAS,SAAS,EAAE;AACzE,cAAQ,eAAe;AACvB,cAAQ,KAAK,KAAK;AAClB,WAAK,SAAS,OAAO,IAAI,GAAG,OAAO;AACnC,WAAK,mBAAmB,OAAO,GAAG,GAAG,KAAK,qBAAqB,KAAK,QAAQ,CAAC;AAAA,IAC/E,OAAO;AACL,YAAM,IAAI,MAAM,uDAAuD;AAAA,IACzE;AAAA,EACF;AAAA,EACA,UAAU,MAAM;AACd,WAAO,KAAK,UAAU;AAAA,EACxB;AAAA,EACA,eAAe,aAAa;AAC1B,SAAK,eAAe,YAAY,MAAM;AAAA,EACxC;AAAA,EACA,eAAe,IAAI;AACjB,WAAO,KAAK,eAAe;AAAA,EAC7B;AAAA,EACA,cAAc,YAAY;AACxB,SAAK,cAAc,WAAW,MAAM;AAAA,EACtC;AAAA,EACA,cAAc,IAAI;AAChB,WAAO,KAAK,cAAc;AAAA,EAC5B;AAAA,EACA,QAAQ,SAAS;AACf,eAAW,OAAO,KAAK,gBAAgB;AACrC,WAAK,eAAe,KAAK,cAAc,OAAO;AAAA,IAChD;AACA,eAAW,OAAO,KAAK,eAAe;AACpC,WAAK,cAAc,KAAK,cAAc,OAAO;AAAA,IAC/C;AAAA,EACF;AACF;AAGA,SAAS,qBAAqB,QAAQ,SAAS,WAAW,WAAW;AACnE,QAAM,YAA4B,oBAAI,IAAI;AAC1C,QAAM,gBAAgB,CAAC;AACvB,MAAI,cAAc;AAClB,MAAI,aAAa;AACjB,QAAM,OAAuB,oBAAI,IAAI;AACrC,QAAM,iBAAiB,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,SAAS,cAAc,IAAI,EAAE,EAAE;AAC/E,MAAI,gBAAgB,CAAC;AACrB,MAAI,aAAa,MAAM;AACrB,oBAAgB,UAAU,IAAI,CAACA,UAAS,cAAcA,MAAK,IAAI,EAAE,EAAE;AAAA,EACrE;AACA,QAAM,WAAW,CAAC,GAAG,OAAO;AAC5B,SAAO,SAAS,SAAS,GAAG;AAC1B,UAAMA,QAAO,SAAS,IAAI;AAC1B,QAAI,cAAcA,KAAI,KAAK,eAAeA,KAAI,KAAK,YAAYA,KAAI,GAAG;AACpE,UAAI,eAAe,MAAM;AACvB,sBAAcA;AACd,qBAAa,YAAY,SAAS,IAAI,CAAC,UAAU,MAAM,IAAI,EAAE,OAAO,CAAC,SAAS,UAAU,IAAI,IAAI,CAAC;AAAA,MACnG;AAAA,IACF;AACA,cAAU,IAAIA,MAAK,IAAI;AACvB,QAAI,UAAUA,MAAK,SAAS,MAAM;AAChC;AAAA,IACF;AACA,QAAI,eAAe,QAAQA,MAAK,IAAI,MAAM,IAAI;AAC5C;AAAA,IACF;AACA,QAAI,cAAc,QAAQA,MAAK,IAAI,MAAM,IAAI;AAC3C;AAAA,IACF;AACA,QAAIA,MAAK,OAAO,WAAW,GAAG;AAC5B,oBAAc,KAAKA,MAAK,IAAI;AAC5B;AAAA,IACF;AACA,IAAAA,MAAK,OAAO,QAAQ,CAAC,WAAW;AAC9B,UAAI,KAAK,IAAI,OAAO,IAAI,GAAG;AACzB;AAAA,MACF;AACA,WAAK,IAAI,OAAO,IAAI;AACpB,eAAS,KAAK,MAAM;AAAA,IACtB,CAAC;AAAA,EACH;AACA,SAAO,EAAE,QAAQ,SAAS,WAAW,eAAe,aAAa,WAAW;AAC9E;AACA,SAAS,2BAA2B,OAAO,WAAW,eAAe;AACnE,QAAM,EAAE,WAAW,OAAO,IAAI;AAC9B,QAAM,WAAW,CAAC;AAClB,QAAM,aAAa,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,SAAS,cAAc,IAAI,EAAE,EAAE,EAAE,IAAI,CAAC,SAAS,MAAM,MAAM,KAAK;AAC5G,QAAM,YAAY,MAAM;AACxB,aAAW,QAAQ,CAAC,WAAW;AAC7B,QAAI,UAAU,IAAI,OAAO,IAAI,GAAG;AAC9B,eAAS,KAAK,MAAM;AAAA,IACtB;AAAA,EACF,CAAC;AACD,QAAM,QAAQ,QAAQ,CAAC,WAAW;AAChC,QAAI,UAAU,IAAI,OAAO,IAAI,GAAG;AAC9B,eAAS,KAAK,MAAM;AAAA,IACtB;AAAA,EACF,CAAC;AACD,MAAI,aAAa,MAAM;AACrB,cAAU,QAAQ,CAACA,UAAS;AAC1B,UAAI,UAAU,IAAIA,MAAK,IAAI,GAAG;AAC5B,iBAAS,KAAKA,KAAI;AAAA,MACpB;AAAA,IACF,CAAC;AAAA,EACH;AACA,QAAM,OAAuB,oBAAI,IAAI;AACrC,QAAM,eAAe,CAAC;AACtB,SAAO,SAAS,SAAS,GAAG;AAC1B,UAAMA,QAAO,SAAS,IAAI;AAC1B,SAAK,IAAIA,MAAK,IAAI;AAClB,QAAI,CAAC,UAAUA,MAAK,OAAO;AACzB,mBAAa,KAAKA,KAAI;AAAA,IACxB;AACA,IAAAA,MAAK,SAAS,QAAQ,CAAC,UAAU;AAC/B,UAAI,CAAC,KAAK,IAAI,MAAM,IAAI,KAAK,UAAU,IAAI,MAAM,IAAI,KAAK,MAAM,OAAO,MAAM,CAAC,WAAW,KAAK,IAAI,OAAO,IAAI,CAAC,GAAG;AAC/G,iBAAS,KAAK,KAAK;AAAA,MACrB;AAAA,IACF,CAAC;AAAA,EACH;AACA,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,oBAAoB;AAAA,EACtB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,iBAAiB;AAAA,EACnB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,SAAS,cAAcA,OAAM;AAC3B,SAAO,iBAAiB,QAAQA,MAAK,EAAE,KAAK;AAC9C;AACA,SAAS,eAAeA,OAAM;AAC5B,SAAO,kBAAkB,QAAQA,MAAK,EAAE,KAAK;AAC/C;AACA,SAAS,YAAYA,OAAM;AACzB,SAAO,eAAe,QAAQA,MAAK,EAAE,KAAK;AAC5C;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO,QAAQ;AACzB,SAAK,QAAQ;AACb,SAAK,SAAS;AACd,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,aAAa,CAAC;AACnB,SAAK,YAAY;AACjB,SAAK,aAAa,CAAC;AACnB,SAAK,uBAAuB,CAAC;AAC7B,SAAK,sBAAsB,CAAC;AAC5B,SAAK,qBAAqB;AAC1B,SAAK,WAAW,MAAM;AACtB,SAAK,UAAU,MAAM;AACrB,SAAK,aAAa,MAAM;AACxB,SAAK,aAAa,MAAM;AACxB,SAAK,aAAa,MAAM;AACxB,QAAI,MAAM,aAAa,MAAM;AAC3B,aAAO,KAAK,MAAM,SAAS,EAAE,QAAQ,CAAC,SAAS;AAC7C,aAAK,qBAAqB,QAAQ,IAAI,cAAc,MAAM,UAAU,OAAO,IAAI;AAAA,MACjF,CAAC;AAAA,IACH;AAAA,EACF;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK,SAAS,KAAK,OAAO,YAAY,KAAK;AAAA,EACpD;AAAA,EACA,IAAI,sBAAsB;AACxB,WAAO,KAAK,SAAS,KAAK,OAAO,sBAAsB,KAAK;AAAA,EAC9D;AAAA,EACA,IAAI,YAAY;AACd,WAAO,KAAK,SAAS,KAAK,OAAO,YAAY,KAAK;AAAA,EACpD;AAAA,EACA,IAAI,UAAU,WAAW;AACvB,UAAM,YAAY,OAAO,KAAK,SAAS,EAAE,IAAI,CAAC,QAAQ,UAAU,KAAK,IAAI,CAAC,YAAY,QAAQ,EAAE,CAAC;AACjG,SAAK,aAAa,CAAC,EAAE,OAAO,GAAG,SAAS;AACxC,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,IAAI,gBAAgB,iBAAiB;AACnC,SAAK,mBAAmB;AAAA,EAC1B;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK,QAAQ,IAAI,CAACA,UAAS;AAChC,aAAO;AAAA,QACL,MAAMA,MAAK;AAAA,QACX,OAAOA,MAAK,WAAW,WAAWA,MAAK,WAAW,SAAS,QAAQ;AAAA,QACnE,OAAOA,MAAK,WAAW,WAAWA,MAAK,WAAW,SAAS,QAAQ;AAAA,MACrE;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,SAAS,IAAI,CAACA,UAAS;AACjC,aAAO;AAAA,QACL,MAAMA,MAAK;AAAA,QACX,OAAOA,MAAK,WAAW,WAAWA,MAAK,WAAW,SAAS,QAAQ;AAAA,QACnE,OAAOA,MAAK,WAAW,WAAWA,MAAK,WAAW,SAAS,QAAQ;AAAA,MACrE;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,IAAI,aAAa;AACf,WAAO,KAAK,QAAQ,IAAI,CAACA,UAASA,MAAK,gBAAgBA,MAAK,IAAI;AAAA,EAClE;AAAA,EACA,IAAI,cAAc;AAChB,WAAO,KAAK,SAAS,IAAI,CAACA,UAAS;AACjC,YAAM,OAAOA,MAAK,gBAAgBA,MAAK;AACvC,aAAOA,MAAK,gBAAgB,GAAG,QAAQA,MAAK,kBAAkB;AAAA,IAChE,CAAC;AAAA,EACH;AAAA,EACA,IAAI,YAAY;AACd,WAAO,OAAO,KAAK,KAAK,UAAU,EAAE,OAAO,CAAC,KAAK,QAAQ;AACvD,UAAI,OAAO,KAAK,WAAW,KAAK;AAChC,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,kBAAkB,QAAQ,SAAS;AACjC,UAAM,eAAe,OAAO,IAAI,CAACA,UAASA,MAAK,IAAI,EAAE,KAAK;AAC1D,UAAM,gBAAgB,QAAQ,IAAI,CAACA,UAASA,MAAK,IAAI,EAAE,KAAK;AAC5D,WAAO,aAAa,KAAK,KAAK,SAAS,IAAI,OAAO,cAAc,KAAK,KAAK,SAAS;AAAA,EACrF;AAAA,EACA,QAAQ,QAAQ,SAAS;AACvB,UAAM,gBAAgB,qBAAqB,QAAQ,SAAS,KAAK,WAAW,KAAK,UAAU;AAC3F,UAAM,EAAE,eAAe,aAAa,WAAW,IAAI;AACnD,QAAI,eAAe,MAAM;AACvB,YAAM,IAAI,MAAM,qCAAqC,YAAY,oCAAoC,YAAY,8GAA8G,aAAa;AAAA,IAC9O;AACA,QAAI,cAAc,SAAS,GAAG;AAC5B,YAAM,WAAW,QAAQ,IAAI,CAAC,OAAO,GAAG,IAAI;AAC5C,YAAM,UAAU,OAAO,KAAK,MAAM;AAClC,YAAM,IAAI,MAAM,+BAA+B,uCAAuC,4CAA4C,gBAAgB;AAAA,IACpJ;AACA,WAAO,2BAA2B,KAAK,OAAO,KAAK,WAAW,aAAa;AAAA,EAC7E;AAAA,EACA,QAAQ,QAAQ,SAAS;AACvB,aAAS,KAAK,UAAU,MAAM;AAC9B,UAAM,QAAQ,OAAO,KAAK,MAAM,EAAE,KAAK;AACvC,SAAK,YAAY,MAAM;AACvB,SAAK,uBAAuB,MAAM;AAClC,cAAU,KAAK,WAAW,OAAO;AACjC,SAAK,aAAa,OAAO;AACzB,UAAM,aAAa,MAAM,IAAI,CAAC,SAAS,KAAK,MAAM,MAAM,cAAc,IAAI,EAAE,GAAG;AAC/E,UAAM,kBAAkB,QAAQ,IAAI,CAAC,SAAS,cAAc,IAAI,EAAE,EAAE;AACpE,QAAIiB,eAAc,gBAAgB,IAAI,CAAC,SAAS,KAAK,MAAM,MAAM,KAAK;AACtE,SAAK,yBAAyB;AAC9B,QAAIA,aAAY,WAAW,GAAG;AAC5B,MAAAA,eAAc,KAAK;AAAA,IACrB;AACA,UAAM,iBAAiB,KAAK,kBAAkB,YAAYA,YAAW;AACrE,QAAI,eAAe,KAAK,YAAY,IAAI,cAAc;AACtD,QAAI,gBAAgB,MAAM;AACxB,qBAAe,KAAK,QAAQ,QAAQA,YAAW;AAC/C,WAAK,YAAY,IAAI,gBAAgB,YAAY;AAAA,IACnD;AACA,UAAM,iBAAiB,CAAC;AACxB,UAAM,gBAAgB,CAAC;AACvB,WAAO,KAAK,MAAM;AAChB,YAAM,UAAU,IAAI,iBAAiB,KAAK,WAAW,gBAAgB,eAAe,KAAK,mBAAmB;AAC5G,YAAM,aAAa,OAAO,OAAO,CAAC,GAAG,KAAK,SAAS;AACnD,aAAO,KAAK,MAAM,EAAE,QAAQ,CAAC,SAAS;AACpC,cAAM,CAAC,UAAUxB,MAAK,IAAI,cAAc,IAAI;AAC5C,cAAM,UAAU,CAAC;AACjB,gBAAQA,UAAS,OAAO;AACxB,mBAAW,YAAY;AAAA,MACzB,CAAC;AACD,YAAM,gBAAgB,KAAK,mBAAmB,UAAU;AACxD,YAAM,kCAAkC,CAAC;AACzC,eAAS,KAAK,GAAG,KAAK,aAAa,QAAQ,MAAM;AAC/C,cAAMO,QAAO,aAAa;AAC1B,YAAI,CAAC,WAAWA,MAAK,OAAO;AAC1B,gBAAM,UAAU,YAAYA,OAAM,YAAY,SAAS,KAAK,gBAAgB;AAC5E,cAAI,aAAa,UAAU,OAAO,GAAG;AACnC,kBAAM,IAAI,MAAM,4BAA4BA,MAAK,kEAAkE;AAAA,UACrH;AACA,qBAAWA,MAAK,QAAQ;AACxB,eAAK,uBAAuBA,MAAK,MAAMA,OAAM,YAAY,SAAS,eAAe,iBAAiB,+BAA+B;AAAA,QACnI;AAAA,MACF;AACA,UAAI,KAAK,UAAU,MAAM;AACvB,gBAAQ,QAAQ,aAAa;AAAA,MAC/B;AACA,aAAO,QAAQ,IAAI,CAAC,SAAS,UAAU,MAAM,YAAY,OAAO,CAAC;AAAA,IACnE,CAAC;AAAA,EACH;AAAA,EACA,mBAAmB,WAAW;AAC5B,UAAM,MAAM,CAAC,EAAE,OAAO,MAAM,CAAC,GAAG,OAAO,KAAK,SAAS,EAAE,IAAI,CAAC,QAAQ,UAAU,IAAI,EAAE,IAAI,CAAC,YAAY,QAAQ,IAAI,CAAC,YAAY,QAAQ,EAAE,CAAC,CAAC;AAC1I,WAAO,IAAI,IAAI,GAAG;AAAA,EACpB;AAAA,EACA,uBAAuB,UAAUA,OAAM,WAAW,SAAS,eAAe,aAAa,iCAAiC;AACtH,QAAIA,MAAK,aAAa,aAAa,YAAY,QAAQ,QAAQ,MAAM,IAAI;AACvE;AAAA,IACF;AACA,cAAU,UAAU,QAAQ,CAAC,YAAY;AACvC,UAAI,WAAW,MAAM;AACnB,wCAAgC,QAAQ,OAAO,gCAAgC,QAAQ,OAAO,KAAKA,MAAK,SAAS;AAAA,MACnH;AAAA,IACF,CAAC;AACD,IAAAA,MAAK,OAAO,QAAQ,CAAC,WAAW;AAC9B,UAAI,OAAO,aAAa,WAAW;AACjC,cAAM,UAAU,6BAA6B,OAAO,MAAM,WAAW,OAAO;AAC5E,YAAI,WAAW,MAAM;AACnB,kBAAQ,QAAQ,CAAC,YAAY;AAC3B,gBAAI,WAAW,CAAC,QAAQ,QAAQ,CAAC,cAAc,IAAI,QAAQ,EAAE,GAAG;AAC9D,oBAAMV,UAAS,gCAAgC,QAAQ;AACvD,kBAAIA,YAAW,GAAG;AAChB,oBAAI,CAAC,KAAK,oBAAoB;AAC5B,0BAAQ,QAAQ;AAAA,gBAClB,OAAO;AACL,wBAAM,CAAC,WAAWG,MAAK,IAAI,oBAAoBO,MAAK,MAAM,OAAO;AACjE,sBAAI,KAAK,oBAAoB,YAAY;AACvC,yBAAK,oBAAoB,WAAWP,UAAS;AAAA,kBAC/C,OAAO;AACL,yBAAK,oBAAoB,aAAa,CAAC;AACvC,yBAAK,oBAAoB,WAAWA,UAAS;AAAA,kBAC/C;AAAA,gBACF;AACA,uBAAO,gCAAgC,QAAQ;AAAA,cACjD,WAAWH,WAAU,MAAM;AACzB,gDAAgC,QAAQ;AAAA,cAC1C;AAAA,YACF;AAAA,UACF,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,MAAM,aAAa,QAAQ,SAAS;AAClC,WAAO,KAAK,cAAc,QAAQ,OAAO;AAAA,EAC3C;AAAA,EACA,6BAA6B;AAC3B,QAAI,CAAC,KAAK,qBAAqB;AAC7B;AAAA,IACF;AACA,WAAO,KAAK,KAAK,mBAAmB,EAAE,QAAQ,CAAC,QAAQ,KAAK,oBAAoB,KAAK,QAAQ,CAAC,YAAY,QAAQ,QAAQ,CAAC,CAAC;AAC5H,SAAK,kBAAkB;AAAA,EACzB;AAAA,EACA,oBAAoB;AAClB,QAAI,CAAC,KAAK,YAAY;AACpB;AAAA,IACF;AACA,WAAO,KAAK,KAAK,UAAU,EAAE,QAAQ,CAAC,QAAQ;AAC5C,YAAM,cAAc,KAAK,WAAW;AACpC,kBAAY,QAAQ,CAAC,YAAY;AAC/B,YAAI,WAAW,CAAC,QAAQ,QAAQ,CAAC,QAAQ,cAAc,CAAC,KAAK,QAAQ,IAAI,QAAQ,EAAE,GAAG;AACpF,kBAAQ,QAAQ;AAAA,QAClB;AAAA,MACF,CAAC;AAAA,IACH,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB;AACvB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,2BAA2B;AACzB,eAAW,OAAO,KAAK,qBAAqB;AAC1C,WAAK,oBAAoB,KAAK,QAAQ,CAAC,YAAY,QAAQ,QAAQ,CAAC;AACpE,aAAO,KAAK,oBAAoB;AAAA,IAClC;AAAA,EACF;AAAA,EACA,MAAM,cAAc,QAAQ,SAAS,sBAAsB,OAAO,iBAAiB,CAAC,GAAG,gBAAgB,CAAC,GAAG;AACzG,QAAI,CAAC,qBAAqB;AACxB,eAAS,KAAK,UAAU,MAAM;AAC9B,WAAK,YAAY,MAAM;AACvB,WAAK,uBAAuB,MAAM;AAClC,gBAAU,KAAK,WAAW,OAAO;AACjC,WAAK,aAAa,OAAO;AAAA,IAC3B;AACA,QAAI;AACF,WAAK,qBAAqB,IAAI,EAAE,QAAQ,2BAA2B;AAAA,IACrE,SAAS,IAAP;AACA,cAAQ,KAAK,GAAG,OAAO;AAAA,IACzB;AACA,SAAK,yBAAyB;AAC9B,UAAM,UAAU,IAAI,iBAAiB,KAAK,WAAW,gBAAgB,eAAe,KAAK,mBAAmB;AAC5G,SAAK,aAAa,MAAM,KAAK,uBAAuB,QAAQ,SAAS,SAAS,mBAAmB;AACjG,UAAM,UAAU,QAAQ,IAAI,CAAC,SAAS,UAAU,MAAM,KAAK,YAAY,OAAO,CAAC;AAC/E,UAAM,YAAY,QAAQ,IAAI,CAAC,OAAO,GAAG,EAAE;AAC3C,UAAM,WAAW,OAAO,KAAK,MAAM,EAAE,IAAI,CAAC,SAAS,OAAO,MAAM,EAAE;AAClE,SAAK,UAA0B,oBAAI,IAAI,CAAC,GAAG,WAAW,GAAG,UAAU,GAAG,KAAK,SAAS,CAAC;AACrF,QAAI,CAAC,KAAK,oBAAoB;AAC5B,WAAK,kBAAkB;AAAA,IACzB;AACA,QAAI,KAAK,UAAU,MAAM;AACvB,cAAQ,QAAQ,KAAK,OAAO;AAAA,IAC9B;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,qBAAqB,QAAQ,gBAAgB,eAAe;AAChE,UAAM,eAAe,OAAO,OAAO,CAAC,KAAK,SAASG,WAAU;AAC1D,UAAI,KAAK,OAAOA,QAAO,QAAQ;AAC/B,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AACL,WAAO,KAAK,cAAc,cAAc,KAAK,aAAa,MAAM,gBAAgB,aAAa;AAAA,EAC/F;AAAA,EACA,MAAM,uBAAuB,QAAQ,SAAS,aAAa,qBAAqB;AAC9E,UAAM,QAAQ,OAAO,KAAK,MAAM;AAChC,UAAM,aAAa,MAAM,IAAI,CAAC,SAAS,KAAK,MAAM,MAAM,cAAc,IAAI,EAAE,GAAG;AAC/E,UAAM,kBAAkB,YAAY,IAAI,CAAC,SAAS,cAAc,IAAI,EAAE,EAAE;AACxE,QAAIwB,eAAc,gBAAgB,IAAI,CAAC,SAAS,KAAK,MAAM,MAAM,KAAK;AACtE,QAAIA,aAAY,WAAW,GAAG;AAC5B,MAAAA,eAAc,KAAK;AAAA,IACrB;AACA,UAAM,EAAE,WAAW,eAAe,aAAa,WAAW,IAAI,qBAAqB,QAAQA,cAAa,KAAK,WAAW,KAAK,UAAU;AACvI,UAAM,SAAS;AAAA,MACb,GAAG;AAAA,MACH,GAAG,KAAK,MAAM;AAAA,MACd,GAAG,KAAK,cAAc,CAAC;AAAA,IACzB,EAAE,IAAI,CAACjB,UAAS;AACd,aAAO,EAAE,MAAAA,OAAM,UAAU,QAAQ,eAAe;AAAA,IAClD,CAAC;AACD,UAAM,aAAa,OAAO,OAAO,CAAC,GAAG,KAAK,SAAS;AACnD,WAAO,KAAK,MAAM,EAAE,QAAQ,CAAC,SAAS;AACpC,YAAM,CAAC,UAAUP,MAAK,IAAI,cAAc,IAAI;AAC5C,YAAM,UAAU,CAAC;AACjB,cAAQA,UAAS,OAAO;AACxB,iBAAW,YAAY;AAAA,IACzB,CAAC;AACD,UAAM,kCAAkC,CAAC;AACzC,UAAM,gBAAgB,KAAK,mBAAmB,UAAU;AACxD,UAAM,QAAQ,CAAC;AACf,WAAO,OAAO,SAAS,GAAG;AACxB,YAAM,WAAW,KAAK,aAAa,YAAY,QAAQ,SAAS,YAAY,OAAO,eAAe,iBAAiB,iCAAiC,SAAS;AAC7J,YAAM,QAAQ,IAAI,QAAQ;AAAA,IAC5B;AACA,QAAI,eAAe,QAAQ,CAAC,qBAAqB;AAC/C,cAAQ,KAAK,iIAAiI;AAAA,IAChJ;AACA,UAAM,iBAAiBwB,aAAY,OAAO,CAACjB,UAAS,CAAC,cAAcA,KAAI,KAAK,CAAC,UAAUA,MAAK,MAAM,YAAY,OAAO,CAAC,EAAE,IAAI,CAACA,UAASA,MAAK,IAAI;AAC/I,QAAI,eAAe,SAAS,GAAG;AAC7B,UAAI,iBAAiB;AACrB,UAAI,eAAe,MAAM;AACvB,yBAAiB,wFAAwF;AAAA,MAC3G;AACA,YAAM,IAAI,MAAM,+BAA+B,6CAA6C,qDAAqD,mBAAmB,gBAAgB;AAAA,IACtL;AACA,WAAO;AAAA,EACT;AAAA,EACA,aAAa,YAAY,QAAQ,SAAS,WAAW,OAAO,eAAe,aAAa,iCAAiC,WAAW;AAClI,UAAM,WAAW,CAAC;AAClB,WAAO,OAAO,SAAS,GAAG;AACxB,YAAM,OAAO,OAAO,IAAI;AACxB,cAAQ,iBAAiB,KAAK;AAC9B,UAAI,WAAW;AACf,UAAI,KAAK,KAAK,OAAO,WAAW,cAAc,cAAc,KAAK,MAAM,WAAW,OAAO,GAAG;AAC1F,SAAC,QAAQ,IAAI,oBAAoB,KAAK,KAAK,MAAM,OAAO;AAAA,MAC1D;AACA,UAAI,UAAU,KAAK,KAAK,SAAS,MAAM;AACrC,cAAM,UAAU,YAAY,KAAK,MAAM,WAAW,SAAS,KAAK,gBAAgB;AAChF,YAAI,CAAC,UAAU;AACb,WAAC,QAAQ,IAAI,oBAAoB,KAAK,KAAK,MAAM,OAAO;AAAA,QAC1D;AACA,cAAM,iBAAiB,QAAQ;AAC/B,YAAI,aAAa,UAAU,OAAO,GAAG;AACnC,mBAAS,KAAK,QAAQ,KAAK,CAAC,OAAO;AACjC,sBAAU,YAAY;AACtB,oBAAQ,iBAAiB;AACzB,iBAAK,uBAAuB,UAAU,KAAK,MAAM,WAAW,SAAS,eAAe,aAAa,+BAA+B;AAChI,iBAAK,kBAAkB,KAAK,MAAM,QAAQ,SAAS,WAAW,OAAO,SAAS;AAC9E,mBAAO;AAAA,UACT,CAAC,CAAC;AAAA,QACJ,OAAO;AACL,oBAAU,YAAY;AACtB,eAAK,uBAAuB,UAAU,KAAK,MAAM,WAAW,SAAS,eAAe,aAAa,+BAA+B;AAChI,eAAK,kBAAkB,KAAK,MAAM,QAAQ,SAAS,WAAW,OAAO,SAAS;AAAA,QAChF;AAAA,MACF,OAAO;AACL,aAAK,kBAAkB,KAAK,MAAM,QAAQ,SAAS,WAAW,OAAO,SAAS;AAAA,MAChF;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,kBAAkBA,OAAM,QAAQ,SAAS,WAAW,OAAO,WAAW;AACpE,IAAAA,MAAK,SAAS,QAAQ,CAAC,cAAc;AACnC,YAAM,CAAC,QAAQ,IAAI,oBAAoB,UAAU,MAAM,OAAO;AAC9D,UAAI,MAAM,aAAa,CAAC,UAAU,IAAI,UAAU,IAAI,GAAG;AACrD;AAAA,MACF;AACA,UAAI,UAAU,OAAO,SAAS;AAC5B,YAAI,UAAU,WAAW,KAAK,CAAC,SAAS;AACtC,iBAAO,CAAC,CAAC,UAAU,MAAM,WAAW,OAAO;AAAA,QAC7C,CAAC,GAAG;AACF,gBAAM,YAAY;AAClB,iBAAO,KAAK,EAAE,UAAU,QAAQ,gBAAgB,MAAM,UAAU,CAAC;AAAA,QACnE;AAAA,MACF,WAAW,UAAU,WAAW,MAAM,CAAC,SAAS;AAC9C,eAAO,CAAC,CAAC,UAAU,MAAM,WAAW,OAAO;AAAA,MAC7C,CAAC,GAAG;AACF,cAAM,YAAY;AAClB,eAAO,KAAK,EAAE,UAAU,QAAQ,gBAAgB,MAAM,UAAU,CAAC;AAAA,MACnE;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,UAAU;AACR,WAAO,KAAK,KAAK,SAAS,EAAE,QAAQ,CAAC,QAAQ,KAAK,UAAU,KAAK,QAAQ,CAAC,YAAY,QAAQ,QAAQ,CAAC,CAAC;AAAA,EAC1G;AAAA,EACA,uBAAuB,QAAQ;AAC7B,WAAO,KAAK,MAAM,EAAE,QAAQ,CAAC,SAAS;AACpC,YAAM,SAAS,OAAO;AACtB,YAAM,CAAC,QAAQ,IAAI,cAAc,IAAI;AACrC,YAAMA,QAAO,KAAK,MAAM,MAAM;AAC9B,UAAIA,MAAK,WAAW,YAAYA,MAAK,WAAW,SAAS,OAAO;AAC9D,cAAM,QAAQA,MAAK,WAAW,SAAS;AACvC,cAAMkB,SAAQ,MAAM,WAAW,OAAO,MAAM,UAAU,OAAO,MAAM,MAAM,CAAC,KAAKzB,WAAU,MAAMA,YAAW,MAAM,MAAMA,YAAW,GAAG;AACpI,qBAAa,OAAOyB,QAAO,MAAM,sBAAsBlB,MAAK,mDAAmD,oBAAoB,OAAO,QAAQ;AAAA,MACpJ;AACA,UAAIA,MAAK,WAAW,YAAYA,MAAK,WAAW,SAAS,OAAO;AAC9D,qBAAa,OAAO,OAAO,UAAUA,MAAK,WAAW,SAAS,OAAO,MAAM,sBAAsBA,MAAK,kDAAkDA,MAAK,WAAW,SAAS,kBAAkB,OAAO,OAAO;AAAA,MACnN;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,UAAU,QAAQ;AAChB,UAAM,SAAS,CAAC;AAChB,eAAW,aAAa,QAAQ;AAC9B,UAAI,KAAK,cAAc,QAAQ,KAAK,WAAW,UAAU,QAAQ,KAAK,WAAW,OAAO,cAAc,MAAM;AAC1G,cAAM,UAAU,KAAK,WAAW,OAAO;AACvC,eAAO,QAAQ,QAAQ,OAAO;AAAA,MAChC,OAAO;AACL,eAAO,aAAa,OAAO;AAAA,MAC7B;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,YAAY,QAAQ;AAClB,UAAM,aAAa,OAAO,KAAK,MAAM,EAAE,OAAO,CAAC,SAAS;AACtD,YAAM,CAAC,QAAQ,IAAI,cAAc,IAAI;AACrC,aAAO,KAAK,MAAM,MAAM,aAAa;AAAA,IACvC,CAAC;AACD,QAAI,WAAW,SAAS,GAAG;AACzB,YAAM,IAAI,MAAM,uDAAuD,wCAAwC;AAAA,IACjH;AAAA,EACF;AAAA,EACA,WAAW,SAAS;AAClB,WAAO,QAAQ,IAAI,CAAC,SAAS;AAC3B,UAAI,KAAK,cAAc,QAAQ,KAAK,WAAW,WAAW,QAAQ,KAAK,WAAW,QAAQ,SAAS,MAAM;AACvG,cAAM,UAAU,KAAK,WAAW,QAAQ;AACxC,eAAO,QAAQ;AAAA,MACjB;AACA,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,aAAa,SAAS;AACpB,YAAQ,QAAQ,CAAC,SAAS;AACxB,YAAM,CAAC,cAAc,IAAI,cAAc,IAAI;AAC3C,UAAI,CAAC,KAAK,MAAM,MAAM,iBAAiB;AACrC,cAAM,IAAI,MAAM,eAAe,iCAAiC;AAAA,MAClE;AAAA,IACF,CAAC;AAAA,EACH;AACF;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,wBAAwB,CAAC,GAAG,eAAe,CAAC,GAAG;AACzD,SAAK,wBAAwB;AAC7B,SAAK,eAAe;AAAA,EACtB;AAAA,EACA,aAAa,MAAM,WAAW;AAC5B,SAAK,sBAAsB,QAAQ,UAAU;AAC7C,SAAK,aAAa,UAAU,MAAM;AAAA,EACpC;AAAA,EACA,yBAAyB,MAAM;AAC7B,WAAO,KAAK,sBAAsB;AAAA,EACpC;AAAA,EACA,iBAAiB,IAAI;AACnB,WAAO,KAAK,aAAa;AAAA,EAC3B;AAAA,EACA,UAAU;AACR,eAAW,OAAO,KAAK,cAAc;AACnC,WAAK,aAAa,KAAK,cAAc;AACrC,aAAO,KAAK,aAAa;AAAA,IAC3B;AACA,eAAW,QAAQ,KAAK,uBAAuB;AAC7C,WAAK,sBAAsB,MAAM,QAAQ;AACzC,aAAO,KAAK,sBAAsB;AAAA,IACpC;AAAA,EACF;AACF;AAGA,IAAI,qBAAqB;AACzB,IAAI,qBAAqB;AACzB,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,UAAU,cAAc,CAAC,GAAG,OAAO,YAAY;AACzD,SAAK,WAAW;AAChB,SAAK,cAAc;AACnB,SAAK,UAAU;AACf,SAAK,KAAK;AACV,QAAI,eAAe,MAAM;AACvB,WAAK,cAAc,CAAC;AAAA,IACtB;AACA,SAAK,kBAAkB,IAAI,gBAAgB;AAAA,EAC7C;AAAA,EACA,IAAI,eAAe;AACjB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,aAAa;AACf,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,cAAc;AAChB,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,SAAS;AACX,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,UAAU;AACZ,WAAO,KAAK,SAAS;AAAA,EACvB;AAAA,EACA,IAAI,WAAW;AACb,WAAO,KAAK,UAAU;AAAA,EACxB;AAAA,EACA,IAAI,iBAAiB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,4BAA4B;AAC9B,WAAO,KAAK;AAAA,EACd;AAAA,EACA,gBAAgB;AACd,UAAM,OAAO,KAAK;AAClB,QAAI,KAAK,QAAQ,MAAM;AACrB,WAAK,UAAU;AAAA,IACjB,WAAW,KAAK,YAAY,eAAe,MAAM;AAC/C,WAAK,UAAU,KAAK,GAAG,mBAAmB,MAAM,KAAK,WAAW;AAAA,IAClE,OAAO;AACL,YAAM,WAAW,KAAK,GAAG,gBAAgB,MAAM,KAAK,WAAW;AAC/D,UAAI,SAAS,WAAW,GAAG;AACzB,iBAAS,KAAK,KAAK,GAAG,mBAAmB,MAAM,KAAK,WAAW,CAAC;AAAA,MAClE,WAAW,SAAS,SAAS,GAAG;AAC9B,cAAM,IAAI,MAAM,wBAAwB,SAAS,kCAAkC,CAAC,IAAI,IAAI;AAAA,MAC9F;AACA,WAAK,UAAU,SAAS;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,OAAO;AACL,SAAK,cAAc;AACnB,QAAI,KAAK,QAAQ,QAAQ,MAAM;AAC7B,YAAM,IAAI,MAAM,+GAA+G;AAAA,IACjI;AACA,UAAM,aAAa,KAAK,QAAQ,KAAK;AACrC,QAAI,aAAa,UAAU,UAAU,GAAG;AACtC,aAAO,WAAW,KAAK,CAAC,cAAc,KAAK,SAAS,SAAS,CAAC;AAAA,IAChE;AACA,WAAO,KAAK,SAAS,UAAU;AAAA,EACjC;AAAA,EACA,SAAS,WAAW;AAClB,SAAK,YAAY;AACjB,UAAM,QAAQ,KAAK,UAAU;AAC7B,QAAI,YAAY,KAAK,UAAU;AAC/B,QAAI,KAAK,UAAU,uBAAuB,MAAM;AAC9C,YAAM,WAAW,KAAK,UAAU;AAChC,UAAI,SAAS,aAAa,MAAM;AAC9B,oBAAY,SAAS;AAAA,MACvB;AACA,UAAI,SAAS,wBAAwB,MAAM;AACzC,aAAK,uBAAuB,SAAS;AAAA,MACvC;AAAA,IACF;AACA,SAAK,YAAY;AACjB,SAAK,UAAU,GAAG,MAAM,SAAS,YAAY,MAAM,SAAS;AAC5D,UAAM,YAAY,KAAK,GAAG,cAAc,KAAK,UAAU,YAAY,KAAK,UAAU,WAAW;AAC7F,SAAK,WAAW,IAAI,cAAc,gBAAgB,SAAS,eAAe,OAAO,KAAK,SAAS,CAAC;AAChG,SAAK,SAAS,YAAY,KAAK,6BAA6B,SAAS;AACrE,SAAK,SAAS,kBAAkB,KAAK;AACrC,QAAI,UAAU,oBAAoB,QAAQ,UAAU,iBAAiB,QAAQ,MAAM;AACjF,YAAM,cAAc,gBAAgB,SAAS,eAAe,UAAU,gBAAgB;AACtF,WAAK,cAAc,IAAI,cAAc,WAAW;AAChD,WAAK,YAAY,YAAY,KAAK,SAAS;AAC3C,WAAK,YAAY,kBAAkB,KAAK;AACxC,WAAK,YAAY,aAAa,CAAC,GAAG,CAAC,CAAC;AAAA,IACtC;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,KAAK,cAAcF,SAAQ;AAC/B,QAAI,OAAO,iBAAiB,UAAU;AACpC,YAAM,WAAW,KAAK,GAAG,gBAAgB,YAAY;AACrD,UAAI,SAAS,WAAW,GAAG;AACzB,cAAM,IAAI,MAAM,0CAA0C,eAAe;AAAA,MAC3E,WAAW,SAAS,SAAS,GAAG;AAC9B,cAAM,IAAI,MAAM,wBAAwB,SAAS,kCAAkC,eAAe;AAAA,MACpG;AACA,qBAAe,SAAS;AAAA,IAC1B;AACA,QAAI,aAAa,QAAQ,MAAM;AAC7B,YAAM,IAAI,MAAM,6GAA6G;AAAA,IAC/H;AACA,WAAO,aAAa,KAAK,KAAK,SAAS;AAAA,EACzC;AAAA,EACA,QAAQ,QAAQA,SAAQ;AACtB,UAAM,gBAAgB,KAAK,QAAQ,QAAQ,KAAK,WAAW;AAC3D,QAAI,KAAK,sBAAsB;AAC7B,YAAM,qBAAqB,yBAAyB,SAAS,CAAC,aAAa,IAAI;AAC/E,YAAM,kBAAkB,CAAC;AACzB,yBAAmB,QAAQ,CAAC,cAAc,OAAO,gBAAgB,KAAK,qBAAqB,OAAO,YAAY;AAC9G,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA,EACA,gBAAgB,QAAQ;AACtB,QAAI,EAAE,kBAAkB,WAAW,CAAC,MAAM,QAAQ,MAAM,GAAG;AACzD,aAAO;AAAA,IACT;AACA,aAAS,MAAM,QAAQ,MAAM,IAAI,SAAS,CAAC,MAAM;AACjD,QAAI,OAAO,WAAW,KAAK,WAAW,QAAQ;AAC5C,YAAM,IAAI,MAAM,mDAAmD,KAAK,WAAW,wCAAwC,OAAO,uBAAuB;AAAA,IAC3J;AACA,WAAO,KAAK,WAAW,OAAO,CAAC,KAAK,WAAW,OAAO;AACpD,UAAI,aAAa,OAAO;AACxB,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,iBAAiB,SAAS;AACxB,cAAU,WAAW,KAAK;AAC1B,WAAO,CAAC,MAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,IAAI;AAAA,EAC/C;AAAA,EACA,QAAQ,QAAQ,SAAS;AACvB,aAAS,KAAK,gBAAgB,MAAM;AACpC,cAAU,KAAK,iBAAiB,OAAO;AACvC,UAAM,SAAS,KAAK,SAAS,QAAQ,QAAQ,OAAO;AACpD,WAAO,OAAO,SAAS,IAAI,SAAS,OAAO;AAAA,EAC7C;AAAA,EACA,MAAM,aAAa,QAAQ,SAAS;AAClC,aAAS,KAAK,gBAAgB,MAAM;AACpC,cAAU,KAAK,iBAAiB,OAAO;AACvC,UAAM,SAAS,MAAM,KAAK,SAAS,aAAa,QAAQ,OAAO;AAC/D,WAAO,OAAO,SAAS,IAAI,SAAS,OAAO;AAAA,EAC7C;AAAA,EACA,yBAAyB;AACvB,WAAO,KAAK,SAAS,uBAAuB;AAAA,EAC9C;AAAA,EACA,6BAA6B;AAC3B,SAAK,SAAS,2BAA2B;AAAA,EAC3C;AAAA,EACA,6BAA6B,KAAK;AAChC,WAAO,OAAO,KAAK,GAAG,EAAE,OAAO,CAAC,QAAQ,QAAQ;AAC9C,aAAO,OAAO,CAAC,IAAI,IAAI;AACvB,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AAAA,EACP;AAAA,EACA,UAAU;AACR,SAAK,SAAS,QAAQ;AACtB,QAAI,KAAK,aAAa;AACpB,WAAK,YAAY,QAAQ;AAAA,IAC3B;AACA,SAAK,gBAAgB,QAAQ;AAAA,EAC/B;AACF;AACA,eAAe,eAAe,UAAUT,WAAU,CAAC,GAAG,OAAO,YAAY;AACvE,MAAI,YAAY,MAAM;AACpB,UAAM,IAAI,MAAM,wGAAwG;AAAA,EAC1H;AACA,MAAIA,YAAW,MAAM;AACnB,IAAAA,WAAU,CAAC;AAAA,EACb;AACA,MAAIA,SAAQ,aAAa,OAAO,aAAa,UAAU;AACrD,eAAW,YAAY,QAAQ;AAAA,EACjC;AACA,QAAMwB,UAAS,IAAI,WAAW,UAAUxB,UAAS,IAAI;AACrD,QAAMwB,QAAO,KAAK;AAClB,SAAOA;AACT;AACA,SAAS,mBAAmB,aAAa;AACvC,MAAI,eAAe,MAAM;AACvB,UAAM,IAAI,MAAM,4GAA4G;AAAA,EAC9H;AACA,MAAI,CAAC,YAAY,MAAM;AACrB,UAAM,IAAI,MAAM,uBAAuB,kCAAkC;AAAA,EAC3E;AACA,QAAMA,UAAS,IAAI,WAAW,WAAW;AACzC,EAAAA,QAAO,KAAK;AACZ,SAAOA;AACT;AACA,SAAS,YAAY,UAAU;AAC7B,MAAI,CAAC,SAAS,SAAS,GAAG,GAAG;AAC3B,eAAW,WAAW;AAAA,EACxB;AACA,SAAO,GAAG,WAAW,qBAAqB;AAC5C;AAGA,IAAI,WAAW;AAGf,IAAI,gBAAgB,CAAC;AACrBjC,UAAS,eAAe;AAAA,EACtB,YAAY,MAAM;AAAA,EAClB,SAAS,MAAM;AAAA,EACf,gBAAgB,MAAM;AAAA,EACtB,iBAAiB,MAAM;AAAA,EACvB,eAAe,MAAM;AAAA,EACrB,OAAO,MAAM;AAAA,EACb,KAAK,MAAM;AAAA,EACX,MAAM,MAAM;AAAA,EACZ,WAAW,MAAM;AAAA,EACjB,YAAY,MAAM;AAAA,EAClB,cAAc,MAAM;AAAA,EACpB,QAAQ,MAAM;AAAA,EACd,KAAK,MAAM;AACb,CAAC;AAGD,IAAI,cAAc,QAAQ,oBAAoB,CAAC;AAG/C,IAAI,cAAc,QAAQ,oBAAoB,CAAC;AAG/C,SAAS,QAAQ,QAAQ,OAAO;AAC9B,SAAO,gBAAgB,QAAQ,KAAK;AACtC;AACA,SAAS,gBAAgB,QAAQ,OAAO,OAAuB,oBAAI,IAAI,GAAG,cAA8B,oBAAI,IAAI,GAAG;AACjH,MAAI,UAAU,MAAM;AAClB,WAAO;AAAA,EACT;AACA,MAAI,OAAO,SAAS,cAAc,kBAAkB,MAAM;AACxD,WAAO,OAAO,MAAM;AAAA,EACtB;AACA,MAAI,YAAY,IAAI,MAAM,GAAG;AAC3B,UAAM,IAAI,MAAM,wCAAwC;AAAA,EAC1D;AACA,MAAI,KAAK,IAAI,MAAM,GAAG;AACpB,WAAO,KAAK,IAAI,MAAM;AAAA,EACxB;AACA,QAAM,SAAS,MAAM,MAAM;AAC3B,MAAI,OAAO,WAAW,OAAO,UAAU,MAAM;AAC3C,UAAM,IAAI,MAAM,mEAAmE;AAAA,EACrF;AACA,MAAI,CAAC,OAAO,SAAS;AACnB,SAAK,IAAI,QAAQ,OAAO,KAAK;AAC7B,WAAO,OAAO;AAAA,EAChB,WAAW,YAAY,MAAM,GAAG;AAC9B,UAAM,iBAAiB,MAAM,QAAQ,MAAM,IAAI,CAAC,IAAI,CAAC;AACrD,gBAAY,IAAI,MAAM;AACtB,eAAW,KAAK,QAAQ;AACtB,YAAM,QAAQ,OAAO;AACrB,YAAM,cAAc,gBAAgB,OAAO,OAAO,MAAM,WAAW;AACnE,qBAAe,KAAK;AAAA,IACtB;AACA,gBAAY,OAAO,MAAM;AACzB,QAAI,OAAO,WAAW;AACpB,qBAAe,YAAY,OAAO;AAAA,IACpC;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,yCAAyC,QAAQ;AAAA,EACnE;AACF;AACA,SAAS,QAAQ,QAAQ,QAAQ,WAAW;AAC1C,SAAO,gBAAgB,QAAQ,KAAK;AACtC;AACA,SAAS,gBAAgB,QAAQ,OAAO,cAA8B,oBAAI,IAAI,GAAG;AAC/E,QAAM,SAAS,OAAO;AACtB,MAAI,YAAY,IAAI,MAAM,GAAG;AAC3B,UAAM,IAAI,MAAM,wCAAwC;AAAA,EAC1D;AACA,QAAM,SAAS,MAAM,MAAM;AAC3B,MAAI,OAAO,WAAW,OAAO,UAAU,MAAM;AAC3C,UAAM,IAAI,MAAM,mEAAmE;AAAA,EACrF;AACA,MAAI,CAAC,OAAO,SAAS;AACnB,WAAO,OAAO;AAAA,EAChB,WAAW,YAAY,MAAM,GAAG;AAC9B,UAAM,iBAAiB,MAAM,QAAQ,MAAM,IAAI,CAAC,IAAI,CAAC;AACrD,gBAAY,IAAI,MAAM;AACtB,eAAW,KAAK,QAAQ;AACtB,YAAM,WAAW,OAAO,IAAI,CAAC,MAAM,EAAE,EAAE;AACvC,YAAM,cAAc,gBAAgB,UAAU,OAAO,WAAW;AAChE,qBAAe,KAAK;AAAA,IACtB;AACA,gBAAY,OAAO,MAAM;AACzB,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,yCAAyC,QAAQ;AAAA,EACnE;AACF;AACA,SAAS,UAAU,GAAG;AACpB,MAAI,MAAM,MAAM;AACd,WAAO;AAAA,EACT;AACA,MAAI,YAAY,EAAE,EAAE,GAAG;AACrB,WAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AAAA,EACtC,OAAO;AACL,WAAO,EAAE,OAAO,GAAG,SAAS,MAAM;AAAA,EACpC;AACF;AACA,eAAe,mBAAmB,QAAQ,OAAO;AAC/C,QAAM,OAAuB,oBAAI,IAAI;AACrC,kBAAgB,QAAQ,OAAO,IAAI;AACnC,aAAW,OAAO,MAAM,KAAK,KAAK,KAAK,CAAC,GAAG;AACzC,UAAM,QAAQ,KAAK,IAAI,GAAG;AAC1B,QAAI,aAAa,UAAU,KAAK,GAAG;AACjC,YAAM,cAAc,MAAM;AAC1B,WAAK,IAAI,KAAK,WAAW;AAAA,IAC3B;AAAA,EACF;AACA,QAAM,SAAS,gBAAgB,QAAQ,OAAO,IAAI;AAClD,SAAO;AACT;AACA,SAAS,YAAY,KAAK;AACxB,MAAI,gBAAgB;AACpB,MAAI,IAAI,EAAE,IAAI,YAAY,GAAG;AAC3B,oBAAgB,eAAe;AAAA,EACjC,OAAO;AACL,UAAM,EAAE,cAAc,IAAI,uBAAuB;AACjD,oBAAgB,eAAe;AAAA,EACjC;AACA,SAAO,OAAO,QAAQ,CAAC,YAAY,OAAO,GAAG,MAAM,MAAM,QAAQ,GAAG,KAAK,OAAO,QAAQ,YAAY,EAAE,eAAe,WAAW,EAAE,eAAe,YAAY,CAAC;AAChK;AACA,SAAS,aAAa,KAAK;AACzB,SAAO,OAAO,QAAQ,YAAY,GAAG,KAAK,MAAM,QAAQ,GAAG,KAAK,OAAO,QAAQ,YAAY,eAAe,UAAU,aAAa,aAAa,GAAG;AACnJ;AACA,SAAS,YAAY,OAAO;AAC1B,SAAO,UAAU,QAAQ,OAAO,UAAU,YAAY,OAAO,UAAU;AACzE;AAGA,SAAS,UAAU,WAAW;AAC5B,SAAO,QAAQ,WAAW,aAAa;AACzC;AACA,SAAS,cAAc,MAAM;AAC3B,MAAI,gBAAgB,QAAQ;AAC1B,WAAO,EAAE,OAAO,KAAK,MAAM,GAAG,SAAS,MAAM;AAAA,EAC/C,WAAW,YAAY,IAAI,GAAG;AAC5B,WAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AAAA,EACtC,OAAO;AACL,WAAO,EAAE,OAAO,MAAM,SAAS,MAAM;AAAA,EACvC;AACF;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,UAAU;AACpB,SAAK,WAAW;AAChB,SAAK,QAAQ;AACb,SAAK,MAAM;AACX,QAAI,YAAY,MAAM;AACpB,YAAM,IAAI,WAAW,iDAAiD;AAAA,IACxE;AACA,QAAI,WAAW,GAAG;AAChB,YAAM,IAAI,WAAW,2CAA2C;AAAA,IAClE;AACA,SAAK,OAAO,IAAI,MAAM,QAAQ;AAC9B,SAAK,kBAAkB,IAAI;AAAA,EAC7B;AAAA,EACA,KAAKa,QAAO;AACV,WAAOA,SAAQ,GAAG;AAChB,MAAAA,UAAS,KAAK;AAAA,IAChB;AACA,WAAOA,SAAQ,KAAK;AAAA,EACtB;AAAA,EACA,IAAIA,QAAO;AACT,QAAIA,SAAQ,GAAG;AACb,YAAM,IAAI,WAAW,qCAAqC;AAAA,IAC5D;AACA,WAAO,KAAK,KAAKA,SAAQ,KAAK;AAAA,EAChC;AAAA,EACA,IAAIA,QAAO,OAAO;AAChB,QAAIA,SAAQ,GAAG;AACb,YAAM,IAAI,WAAW,qCAAqC;AAAA,IAC5D;AACA,SAAK,KAAKA,SAAQ,KAAK,YAAY;AAAA,EACrC;AAAA,EACA,SAAS;AACP,QAAI,SAAS,KAAK,MAAM,KAAK;AAC7B,QAAI,SAAS,GAAG;AACd,eAAS,KAAK,kBAAkB;AAAA,IAClC;AACA,WAAO;AAAA,EACT;AAAA,EACA,SAAS;AACP,WAAO,KAAK,OAAO,MAAM,KAAK;AAAA,EAChC;AAAA,EACA,UAAU;AACR,WAAO,KAAK,OAAO,MAAM;AAAA,EAC3B;AAAA,EACA,KAAK,OAAO;AACV,QAAI,KAAK,OAAO,GAAG;AACjB,YAAM,IAAI,WAAW,sBAAsB;AAAA,IAC7C;AACA,SAAK,IAAI,KAAK,KAAK,KAAK;AACxB,SAAK,MAAM,KAAK,KAAK,KAAK,MAAM,CAAC;AAAA,EACnC;AAAA,EACA,QAAQ,QAAQ;AACd,eAAW,SAAS,QAAQ;AAC1B,WAAK,KAAK,KAAK;AAAA,IACjB;AAAA,EACF;AAAA,EACA,MAAM;AACJ,QAAI,KAAK,QAAQ,GAAG;AAClB,YAAM,IAAI,WAAW,uBAAuB;AAAA,IAC9C;AACA,SAAK,MAAM,KAAK,KAAK,KAAK,MAAM,CAAC;AACjC,UAAM,SAAS,KAAK,IAAI,KAAK,GAAG;AAChC,SAAK,IAAI,KAAK,KAAK,MAAM;AACzB,WAAO;AAAA,EACT;AAAA,EACA,QAAQ,OAAO;AACb,QAAI,KAAK,OAAO,GAAG;AACjB,YAAM,IAAI,WAAW,sBAAsB;AAAA,IAC7C;AACA,SAAK,QAAQ,KAAK,KAAK,KAAK,QAAQ,CAAC;AACrC,SAAK,IAAI,KAAK,OAAO,KAAK;AAAA,EAC5B;AAAA,EACA,QAAQ;AACN,QAAI,KAAK,QAAQ,GAAG;AAClB,YAAM,IAAI,WAAW,uBAAuB;AAAA,IAC9C;AACA,UAAM,SAAS,KAAK,IAAI,KAAK,KAAK;AAClC,SAAK,IAAI,KAAK,OAAO,MAAM;AAC3B,SAAK,QAAQ,KAAK,KAAK,KAAK,QAAQ,CAAC;AACrC,WAAO;AAAA,EACT;AAAA,EACA,cAAc,eAAe;AAC3B,QAAI,KAAK,QAAQ,GAAG;AAClB,YAAM,IAAI,WAAW,uBAAuB;AAAA,IAC9C;AACA,UAAMA,SAAQ,KAAK,KAAK,KAAK,QAAQ,aAAa;AAClD,UAAM,SAAS,KAAK,IAAIA,MAAK;AAC7B,SAAK,IAAIA,QAAO,KAAK,IAAI,CAAC;AAC1B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB,cAAc,WAAW;AAAA,EAC/C,cAAc;AACZ,UAAM,kBAAkB,gBAAgB;AAAA,EAC1C;AAAA,EACA,SAAS;AACP,WAAO;AAAA,EACT;AAAA,EACA,KAAK,OAAO;AACV,QAAI,MAAM,OAAO,GAAG;AAClB,WAAK,OAAO;AAAA,IACd;AACA,UAAM,KAAK,KAAK;AAAA,EAClB;AAAA,EACA,QAAQ,OAAO;AACb,QAAI,MAAM,OAAO,GAAG;AAClB,WAAK,OAAO;AAAA,IACd;AACA,UAAM,QAAQ,KAAK;AAAA,EACrB;AAAA,EACA,SAAS;AACP,UAAM,cAAc,KAAK,WAAW;AACpC,UAAM,UAAU,IAAI,MAAM,WAAW;AACrC,UAAM,MAAM,KAAK,OAAO;AACxB,aAAS,KAAK,GAAG,KAAK,KAAK,MAAM;AAC/B,cAAQ,MAAM,KAAK,IAAI,KAAK,KAAK,KAAK,QAAQ,EAAE,CAAC;AAAA,IACnD;AACA,SAAK,OAAO;AACZ,SAAK,WAAW;AAChB,SAAK,kBAAkB,IAAI,KAAK;AAChC,SAAK,QAAQ;AACb,SAAK,MAAM;AAAA,EACb;AACF;AACA,kBAAkB,mBAAmB;AAGrC,SAAS,kBAAkB,OAAO;AAChC,SAAO,IAAI,cAAc,KAAK;AAChC;AACA,SAAS,qBAAqB,OAAO;AACnC,SAAO,IAAI,qBAAqB,KAAK;AACvC;AACA,SAAS,yBAAyB,eAAe,kBAAkB;AACjE,SAAO,IAAI,gBAAgB,eAAe,gBAAgB;AAC5D;AACA,SAAS,mBAAmB,WAAW,eAAe,gBAAgB,MAAM;AAC1E,SAAO,IAAI,YAAY,WAAW,YAAY;AAChD;AACA,IAAI,eAAe,MAAM;AAAA,EACvB,MAAM,UAAU;AACd,UAAM,SAAS,CAAC;AAChB,QAAI,IAAI,MAAM,KAAK,KAAK;AACxB,WAAO,CAAC,EAAE,MAAM;AACd,aAAO,KAAK,EAAE,KAAK;AACnB,UAAI,MAAM,KAAK,KAAK;AAAA,IACtB;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,iBAAiB;AACrB,UAAM,SAAS,KAAK,SAAS,GAAG;AAChC,UAAM,SAAS,CAAC;AAChB,QAAI,IAAI,MAAM,OAAO,KAAK;AAC1B,WAAO,CAAC,EAAE,MAAM;AACd,aAAO,KAAK,EAAE,KAAK;AACnB,UAAI,MAAM,OAAO,KAAK;AAAA,IACxB;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,eAAe;AACnB,QAAI,IAAI,MAAM,KAAK,KAAK;AACxB,WAAO,CAAC,EAAE,MAAM;AACd,UAAI,MAAM,KAAK,KAAK;AAAA,IACtB;AAAA,EACF;AAAA,EACA,MAAM,aAAa,WAAW;AAC5B,QAAI,IAAI,MAAM,KAAK,KAAK;AACxB,QAAI,iBAAiB,UAAU,EAAE,KAAK;AACtC,WAAO,CAAC,EAAE,QAAQ,gBAAgB;AAChC,UAAI,MAAM,KAAK,KAAK;AACpB,uBAAiB,UAAU,EAAE,KAAK;AAAA,IACpC;AAAA,EACF;AAAA,EACA,aAAa,SAAS;AACpB,WAAO,IAAI,0BAA0B,MAAM,OAAO;AAAA,EACpD;AAAA,EACA,OAAO,WAAW;AAChB,WAAO,IAAI,eAAe,MAAM,SAAS;AAAA,EAC3C;AAAA,EACA,IAAI,YAAY;AACd,WAAO,IAAI,YAAY,MAAM,UAAU;AAAA,EACzC;AAAA,EACA,SAAS,YAAY;AACnB,WAAO,IAAI,iBAAiB,MAAM,UAAU;AAAA,EAC9C;AAAA,EACA,eAAe,YAAY;AACzB,WAAO,IAAI,iBAAiB,MAAM,UAAU,EAAE,OAAO;AAAA,EACvD;AAAA,EACA,QAAQ,YAAY;AAClB,WAAO,IAAI,gBAAgB,MAAM,UAAU;AAAA,EAC7C;AAAA,EACA,MAAM,aAAa,GAAG;AACpB,WAAO,KAAK,IAAI,CAAC,EAAE,aAAa;AAAA,EAClC;AAAA,EACA,MAAM,cAAc,GAAG;AACrB,WAAO,KAAK,eAAe,CAAC,EAAE,aAAa,CAAC,MAAM,MAAM,IAAI;AAAA,EAC9D;AAAA,EACA,cAAc,WAAW,iBAAiB,MAAM;AAC9C,WAAO,IAAI,sBAAsB,MAAM,WAAW,cAAc;AAAA,EAClE;AAAA,EACA,iBAAiB,WAAW,iBAAiB,MAAM,QAAQ,WAAW;AACpE,UAAM,aAAa,KAAK,cAAc,WAAW,cAAc;AAC/D,WAAO,WAAW,IAAI,CAAC,MAAM,QAAQ,GAAG,KAAK,CAAC;AAAA,EAChD;AAAA,EACA,YAAY,UAAU,kBAAkB;AACtC,WAAO,IAAI,gBAAgB,kBAAkB,CAAC,MAAM,QAAQ,CAAC,GAAG,gBAAgB;AAAA,EAClF;AAAA,EACA,KAAKH,SAAQ;AACX,QAAIA,UAAS,KAAKA,WAAU,MAAM;AAChC,aAAO;AAAA,IACT;AACA,WAAO,IAAI,aAAa,MAAMA,OAAM;AAAA,EACtC;AAAA,EACA,KAAKA,SAAQ;AACX,QAAIA,UAAS,KAAKA,WAAU,MAAM;AAChC,aAAO;AAAA,IACT;AACA,WAAO,IAAI,aAAa,MAAMA,OAAM;AAAA,EACtC;AAAA,EACA,SAAS,YAAY;AACnB,WAAO,IAAI,iBAAiB,MAAM,UAAU;AAAA,EAC9C;AAAA,EACA,QAAQ,YAAY,MAAM;AACxB,WAAO,IAAI,gBAAgB,MAAM,YAAY,IAAI;AAAA,EACnD;AAAA,EACA,SAAS;AACP,WAAO,IAAI,eAAe,IAAI;AAAA,EAChC;AACF;AACA,IAAI,gBAAgB,cAAc,aAAa;AAAA,EAC7C,YAAY,OAAO;AACjB,UAAM;AACN,SAAK,QAAQ;AACb,SAAK,OAAO;AAAA,EACd;AAAA,EACA,UAAU;AACR,WAAO,YAAY,KAAK,MAAM;AAAA,EAChC;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,QAAQ,KAAK,MAAM,QAAQ;AAClC,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,UAAM,OAAO,KAAK,MAAM,KAAK;AAC7B,SAAK;AACL,WAAO,EAAE,OAAO,UAAU,IAAI,GAAG,MAAM,MAAM;AAAA,EAC/C;AACF;AACA,IAAI,uBAAuB,cAAc,aAAa;AAAA,EACpD,YAAY,QAAQ;AAClB,UAAM;AACN,SAAK,SAAS;AAAA,EAChB;AAAA,EACA,UAAU;AACR,WAAO;AAAA,EACT;AAAA,EACA,MAAM,OAAO;AACX,QAAI;AACF,aAAO,KAAK,OAAO;AAAA,IACrB,SAAS,IAAP;AACA,SAAG,UAAU,mDAAmD,GAAG;AACnE,YAAM;AAAA,IACR;AAAA,EACF;AACF;AACA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,YAAY,UAAU;AACpB,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,KAAK,SAAS,KAAK;AAAA,EAC5B;AACF;AACA,IAAI,eAAe,cAAc,aAAa;AAAA,EAC5C,YAAY,UAAU,UAAU;AAC9B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,WAAW;AAChB,SAAK,QAAQ;AACb,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,KAAK,UAAU,KAAK,UAAU;AACnC,YAAM6B,YAAU,MAAM,KAAK,SAAS,KAAK;AACzC,UAAIA,UAAQ,MAAM;AAChB,eAAOA;AAAA,MACT;AACA,cAAQA,UAAQ,KAAK;AAAA,IACvB;AACA,WAAO,KAAK,SAAS,KAAK;AAAA,EAC5B;AACF;AACA,IAAI,eAAe,cAAc,aAAa;AAAA,EAC5C,YAAY,UAAU,UAAU;AAC9B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,WAAW;AAChB,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,WAAW,KAAK,UAAU;AACjC,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,WAAO,KAAK,SAAS,KAAK;AAAA,EAC5B;AACF;AACA,IAAI,wBAAwB,cAAc,aAAa;AAAA,EACrD,YAAY,UAAU,WAAW,uBAAuB,MAAM;AAC5D,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AACjB,SAAK,uBAAuB;AAC5B,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,UAAM,QAAQ,CAAC;AACf,WAAO,MAAM,SAAS,KAAK,WAAW;AACpC,YAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,UAAI,KAAK,MAAM;AACb,YAAI,KAAK,wBAAwB,MAAM,SAAS,GAAG;AACjD,iBAAO,EAAE,OAAO,OAAO,MAAM,MAAM;AAAA,QACrC;AACA,eAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,MACnC;AACA,YAAM,KAAK,KAAK,KAAK;AAAA,IACvB;AACA,WAAO,EAAE,OAAO,OAAO,MAAM,MAAM;AAAA,EACrC;AACF;AACA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,YAAY,UAAU,WAAW;AAC/B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AACjB,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,MAAM;AACX,YAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,UAAI,KAAK,QAAQ,KAAK,UAAU,KAAK,KAAK,GAAG;AAC3C,eAAO;AAAA,MACT;AACA,cAAQ,KAAK,KAAK;AAAA,IACpB;AAAA,EACF;AACF;AACA,IAAI,cAAc,cAAc,aAAa;AAAA,EAC3C,YAAY,UAAU,YAAY;AAChC,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,UAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,QAAI,KAAK,MAAM;AACb,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,UAAM,eAAe,oBAAoB,sBAAsB,KAAK,KAAK;AACzE,UAAM,SAAS,KAAK,UAAU,KAAK,KAAK;AACxC,UAAM,gBAAgB,oBAAoB,sBAAsB,MAAM;AACtE,eAAW,MAAM,cAAc;AAC7B,UAAI,CAAC,oBAAoB,eAAe,IAAI,aAAa,GAAG;AAC1D,WAAG,QAAQ;AAAA,MACb;AAAA,IACF;AACA,WAAO,EAAE,OAAO,QAAQ,MAAM,MAAM;AAAA,EACtC;AACF;AACA,IAAI,4BAA4B,cAAc,aAAa;AAAA,EACzD,YAAY,UAAU,SAAS;AAC7B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,UAAU;AACf,SAAK,QAAQ;AACb,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,MAAM;AACX,UAAI;AACF,eAAO,MAAM,KAAK,SAAS,KAAK;AAAA,MAClC,SAAS,IAAP;AACA,YAAI,CAAC,KAAK,QAAQ,EAAE,GAAG;AACrB,iBAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,QACnC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AACA,IAAI,mBAAmB,cAAc,aAAa;AAAA,EAChD,YAAY,UAAU,YAAY;AAChC,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,UAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,QAAI,KAAK,MAAM;AACb,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,UAAM,eAAe,oBAAoB,sBAAsB,KAAK,KAAK;AACzE,UAAM,SAAS,MAAM,KAAK,UAAU,KAAK,KAAK;AAC9C,UAAM,gBAAgB,oBAAoB,sBAAsB,MAAM;AACtE,eAAW,MAAM,cAAc;AAC7B,UAAI,CAAC,oBAAoB,eAAe,IAAI,aAAa,GAAG;AAC1D,WAAG,QAAQ;AAAA,MACb;AAAA,IACF;AACA,WAAO,EAAE,OAAO,QAAQ,MAAM,MAAM;AAAA,EACtC;AACF;AACA,IAAI,oBAAoB,cAAc,aAAa;AAAA,EACjD,cAAc;AACZ,UAAM;AACN,SAAK,cAAc,IAAI,kBAAkB;AACzC,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,aAAa;AACjB,WAAO,KAAK,YAAY,OAAO,MAAM,GAAG;AACtC,UAAI,CAAC,MAAM,KAAK,KAAK,GAAG;AACtB,eAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,MACnC;AAAA,IACF;AACA,WAAO,EAAE,OAAO,KAAK,YAAY,MAAM,GAAG,MAAM,MAAM;AAAA,EACxD;AACF;AACA,IAAI,kBAAkB,cAAc,kBAAkB;AAAA,EACpD,YAAY,UAAU,YAAY;AAChC,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,UAAM,OAAO,MAAM,KAAK,SAAS,KAAK;AACtC,QAAI,KAAK,MAAM;AACb,aAAO;AAAA,IACT;AACA,UAAM,eAAe,oBAAoB,sBAAsB,KAAK,KAAK;AACzE,UAAM,cAAc,KAAK,UAAU,KAAK,KAAK;AAC7C,UAAM,gBAAgB,oBAAoB,sBAAsB,WAAW;AAC3E,SAAK,YAAY,QAAQ,WAAW;AACpC,eAAW,MAAM,cAAc;AAC7B,UAAI,CAAC,oBAAoB,eAAe,IAAI,aAAa,GAAG;AAC1D,WAAG,QAAQ;AAAA,MACb;AAAA,IACF;AACA,WAAO;AAAA,EACT;AACF;AACA,IAAI,kBAAkB,cAAc,aAAa;AAAA,EAC/C,YAAY,WAAW,kBAAkB;AACvC,UAAM;AACN,SAAK,mBAAmB;AACxB,SAAK,WAAW;AAChB,SAAK,WAAW;AAChB,SAAK,gBAAgB;AAAA,EACvB;AAAA,EACA,UAAU;AACR,UAAM,oBAAoB;AAC1B,WAAO,GAAG;AAAA,EACZ;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,cAAc,KAAK,QAAQ;AAChD,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,cAAc,UAAU;AAC5B,UAAM;AACN,QAAI,KAAK,YAAY,MAAM;AACzB,YAAM,iBAAiB,MAAM,KAAK,cAAc,KAAK;AACrD,UAAI,eAAe,MAAM;AACvB,eAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,MACnC;AACA,WAAK,WAAW,eAAe;AAC/B,UAAI,KAAK,oBAAoB,MAAM;AACjC,aAAK,WAAW,KAAK,SAAS,aAAa,KAAK,gBAAgB;AAAA,MAClE;AAAA,IACF;AACA,UAAM,aAAa,MAAM,KAAK,SAAS,KAAK;AAC5C,QAAI,WAAW,MAAM;AACnB,WAAK,WAAW;AAChB,aAAO,KAAK,cAAc,QAAQ;AAAA,IACpC;AACA,WAAO;AAAA,EACT;AACF;AACA,IAAI;AAAA,CACH,SAAS,kBAAkB;AAC1B,mBAAiB,iBAAiB,UAAU,KAAK;AACjD,mBAAiB,iBAAiB,cAAc,KAAK;AACrD,mBAAiB,iBAAiB,aAAa,KAAK;AACtD,GAAG,oBAAoB,kBAAkB,CAAC,EAAE;AAC5C,IAAI,cAAc,cAAc,aAAa;AAAA,EAC3C,YAAY,WAAW,eAAe,gBAAgB,MAAM;AAC1D,UAAM;AACN,SAAK,YAAY;AACjB,SAAK,eAAe;AACpB,SAAK,QAAQ;AACb,SAAK,iBAAiB;AAAA,EACxB;AAAA,EACA,UAAU;AACR,UAAM,oBAAoB;AAC1B,WAAO,IAAI;AAAA,EACb;AAAA,EACA,MAAM,UAAU,YAAY;AAC1B,UAAM;AACN,QAAI,eAAe;AACnB,QAAI,gBAAgB;AACpB,aAAS,QAAQ,WAAW;AAC1B,UAAI,qBAAqB,cAAc;AACrC,cAAM,SAAS,UAAU,KAAK;AAC9B,eAAO;AAAA,UACL,OAAO,OAAO,KAAK,CAAC,MAAM;AACxB;AACA,gBAAI,EAAE,MAAM;AACV;AAAA,YACF;AACA,mBAAO,EAAE;AAAA,UACX,CAAC;AAAA,UACD,SAAS;AAAA,QACX;AAAA,MACF,OAAO;AACL,eAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AAAA,MACtC;AAAA,IACF;AACA,UAAM,SAAS,MAAM,mBAAmB,KAAK,WAAW,OAAO;AAC/D,QAAI,iBAAiB,eAAe;AAClC,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,QAAI,gBAAgB,GAAG;AACrB,cAAQ,KAAK;AAAA,aACN,gBAAgB;AACnB,gBAAM,IAAI,MAAM,qEAAqE,KAAK,QAAQ;AAAA,aAC/F,gBAAgB;AACnB,iBAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,aAC9B,gBAAgB;AAAA;AAAA;AAAA,IAGzB;AACA,SAAK;AACL,WAAO,EAAE,OAAO,QAAQ,MAAM,MAAM;AAAA,EACtC;AAAA,EACA,MAAM,OAAO;AACX,SAAK,iBAAiB,KAAK,UAAU,KAAK,cAAc;AACxD,WAAO,KAAK;AAAA,EACd;AACF;AACA,IAAI,mBAAmB,cAAc,aAAa;AAAA,EAChD,YAAY,UAAU,YAAY;AAChC,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,aAAa;AAClB,SAAK,SAAS,IAAI,WAAW,UAAU;AAAA,EACzC;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,SAAS;AACP,WAAO,CAAC,KAAK,OAAO,OAAO,GAAG;AAC5B,YAAM,IAAI,KAAK,SAAS,KAAK;AAC7B,WAAK,OAAO,KAAK,CAAC;AAAA,IACpB;AAAA,EACF;AAAA,EACA,OAAO;AACL,SAAK,OAAO;AACZ,WAAO,KAAK,OAAO,MAAM;AAAA,EAC3B;AACF;AACA,IAAI,kBAAkB,cAAc,iBAAiB;AAAA,EACnD,YAAY,UAAU,YAAY,MAAM;AACtC,UAAM,UAAU,UAAU;AAC1B,SAAK,WAAW;AAChB,SAAK,aAAa;AAClB,SAAK,oBAAoB;AACzB,SAAK,SAAS,YAAY,KAAK,QAAQ,aAAa,IAAI,EAAE,SAAS,CAAC;AACpE,SAAK,WAAW,QAAQ,QAAQ,EAAE,OAAO,MAAM,MAAM,MAAM,CAAC;AAAA,EAC9D;AAAA,EACA,MAAM,OAAO;AACX,SAAK,WAAW,KAAK,SAAS,KAAK,MAAM,KAAK,WAAW,CAAC;AAC1D,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU,MAAM;AACd,WAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAAA,EACxC;AAAA,EACA,cAAc;AACZ,WAAO,KAAK,UAAU,KAAK,OAAO,OAAO,CAAC;AAAA,EAC5C;AAAA,EACA,MAAM,aAAa;AACjB,QAAI,CAAC,KAAK,mBAAmB;AAC3B,WAAK,OAAO;AAAA,IACd;AACA,WAAO,CAAC,KAAK,OAAO,QAAQ,GAAG;AAC7B,YAAM,cAAc,KAAK,YAAY;AACrC,YAAM,SAAS,MAAM,KAAK,OAAO,cAAc,WAAW;AAC1D,UAAI,OAAO,MAAM;AACf,aAAK,oBAAoB;AAAA,MAC3B,OAAO;AACL,aAAK,OAAO;AACZ,eAAO;AAAA,MACT;AAAA,IACF;AACA,WAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,EACnC;AACF;AAGA,IAAI,UAAU,MAAM;AAAA,EAClB,cAAc;AACZ,SAAK,OAAO;AAAA,EACd;AAAA,EACA,MAAM,WAAW,iBAAiB,MAAM;AACtC,UAAM,OAAO;AACb,iBAAa,OAAO,YAAY,GAAG,MAAM;AAAA,QACrC,WAAW;AACf,QAAIpC;AACJ,QAAI,KAAK,SAAS,YAAY,KAAK,QAAQ,MAAM;AAC/C,MAAAA,QAAO,KAAK;AAAA,IACd,WAAW,gBAAgB;AACzB,MAAAA,QAAO,KAAK,KAAK,KAAK,OAAO,SAAS;AAAA,IACxC,OAAO;AACL,MAAAA,QAAO,KAAK,MAAM,KAAK,OAAO,SAAS;AAAA,IACzC;AACA,WAAO,sBAAsB,YAAY;AACvC,cAAQ,MAAM,KAAK,SAAS,GAAG,iBAAiB,WAAW,gBAAgB,eAAe;AAAA,IAC5F,GAAGA,KAAI;AAAA,EACT;AAAA,EACA,YAAY,SAAS;AACnB,UAAM,OAAO;AACb,QAAIA;AACJ,QAAI,KAAK,SAAS,YAAY,QAAQ,SAAS,UAAU;AACvD,MAAAA,QAAO;AAAA,IACT,WAAW,KAAK,QAAQ,QAAQ,QAAQ,QAAQ,MAAM;AACpD,MAAAA,QAAO,KAAK,OAAO,QAAQ;AAAA,IAC7B,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,aAAa,MAAM,KAAK,SAAS,GAAG,YAAY,MAAM,QAAQ,SAAS,CAAC,GAAGA,KAAI;AAAA,EAC9G;AAAA,EACA,OAAO,WAAW;AAChB,UAAM,OAAO;AACb,QAAIA;AACJ,QAAI,KAAK,SAAS,UAAU;AAC1B,MAAAA,QAAO;AAAA,IACT,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,YAAY;AACvC,cAAQ,MAAM,KAAK,SAAS,GAAG,OAAO,CAAC,MAAM,KAAK,MAAM,UAAU,CAAC,CAAC,CAAC;AAAA,IACvE,GAAGA,KAAI;AAAA,EACT;AAAA,EACA,MAAM,aAAa,GAAG;AACpB,YAAQ,MAAM,KAAK,SAAS,GAAG,aAAa,CAAC;AAAA,EAC/C;AAAA,EACA,IAAI,YAAY;AACd,UAAM,OAAO;AACb,WAAO,sBAAsB,YAAY;AACvC,cAAQ,MAAM,KAAK,SAAS,GAAG,IAAI,CAAC,MAAM,KAAK,MAAM,WAAW,CAAC,CAAC,CAAC;AAAA,IACrE,GAAG,KAAK,IAAI;AAAA,EACd;AAAA,EACA,SAAS,YAAY;AACnB,UAAM,OAAO;AACb,WAAO,sBAAsB,YAAY;AACvC,cAAQ,MAAM,KAAK,SAAS,GAAG,SAAS,UAAU;AAAA,IACpD,GAAG,KAAK,IAAI;AAAA,EACd;AAAA,EACA,SAAS,YAAY;AACnB,QAAI,cAAc,MAAM;AACtB,YAAM,IAAI,WAAW,2DAA2D;AAAA,IAClF;AACA,UAAM,OAAO;AACb,WAAO,sBAAsB,aAAa,MAAM,KAAK,SAAS,GAAG,SAAS,UAAU,GAAG,KAAK,IAAI;AAAA,EAClG;AAAA,EACA,OAAOO,SAAQ;AACb,UAAM,OAAO;AACb,QAAIP;AACJ,QAAI,KAAK,QAAQ,QAAQO,UAAS,GAAG;AACnC,MAAAP,QAAO,KAAK,OAAOO;AAAA,IACrB,WAAWA,YAAW,GAAG;AACvB,MAAAP,QAAO;AAAA,IACT,WAAW,KAAK,QAAQ,SAASO,YAAW,UAAUA,UAAS,IAAI;AACjE,MAAAP,QAAO;AAAA,IACT,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,YAAY;AACvC,YAAM,mBAAmB,qBAAqB,aAAa,EAAE,OAAO,MAAM,KAAK,SAAS,GAAG,MAAM,MAAM,EAAE;AACzG,aAAO,yBAAyB,iBAAiB,KAAKO,OAAM,CAAC;AAAA,IAC/D,GAAGP,KAAI;AAAA,EACT;AAAA,EACA,KAAKO,SAAQ;AACX,UAAM,OAAO;AACb,QAAIP;AACJ,QAAI,KAAK,QAAQ,QAAQO,WAAU,KAAK,KAAK,QAAQA,SAAQ;AAC3D,MAAAP,QAAO,KAAK,OAAOO;AAAA,IACrB,WAAW,KAAK,QAAQ,SAAS,KAAK,OAAOA,WAAUA,YAAW,UAAUA,UAAS,IAAI;AACvF,MAAAP,QAAO;AAAA,IACT,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,aAAa,MAAM,KAAK,SAAS,GAAG,KAAKO,OAAM,GAAGP,KAAI;AAAA,EACrF;AAAA,EACA,QAAQ,YAAY,MAAM,yBAAyB,MAAM;AACvD,QAAI,cAAc,QAAQ,aAAa,GAAG;AACxC,UAAI,KAAK,QAAQ,MAAM;AACrB,cAAM,IAAI,WAAW,0DAA0D;AAAA,MACjF,OAAO;AACL,cAAM,IAAI,WAAW,mNAAmN,KAAK,gBAAgB;AAAA,MAC/P;AAAA,IACF;AACA,UAAM,OAAO;AACb,UAAM,SAAS,YAAY,KAAK,QAAQ,aAAa,IAAI,EAAE,SAAS,CAAC;AACrE,WAAO,sBAAsB,YAAY;AACvC,UAAI,QAAQ,OAAO,MAAM;AACzB,UAAI,wBAAwB;AAC1B,iBAAS,OAAO,MAAM;AAAA,MACxB;AACA,cAAQ,MAAM,KAAK,SAAS,GAAG,QAAQ,YAAY,MAAM,SAAS,CAAC;AAAA,IACrE,GAAG,KAAK,IAAI;AAAA,EACd;AAAA,EACA,KAAKO,SAAQ;AACX,UAAM,OAAO;AACb,QAAIP;AACJ,QAAI,KAAK,QAAQ,QAAQ,KAAK,OAAOO,SAAQ;AAC3C,MAAAP,QAAOO;AAAA,IACT,WAAW,KAAK,QAAQ,QAAQ,KAAK,QAAQA,SAAQ;AACnD,MAAAP,QAAO,KAAK;AAAA,IACd,OAAO;AACL,MAAAA,QAAO;AAAA,IACT;AACA,WAAO,sBAAsB,aAAa,MAAM,KAAK,SAAS,GAAG,KAAKO,OAAM,GAAGP,KAAI;AAAA,EACrF;AAAA,EACA,MAAM,UAAU;AACd,QAAI,KAAK,SAAS,UAAU;AAC1B,YAAM,IAAI,MAAM,gDAAgD;AAAA,IAClE;AACA,YAAQ,MAAM,KAAK,SAAS,GAAG,QAAQ;AAAA,EACzC;AAAA,EACA,MAAM,iBAAiB;AACrB,QAAI,KAAK,SAAS,UAAU;AAC1B,YAAM,IAAI,MAAM,gDAAgD;AAAA,IAClE;AACA,YAAQ,MAAM,KAAK,SAAS,GAAG,eAAe;AAAA,EAChD;AACF;AACA,QAAQ,kBAAkB;AAC1B,SAAS,sBAAsB,YAAYA,QAAO,MAAM;AACtD,SAAO,IAAI,cAAc,QAAQ;AAAA,IAC/B,cAAc;AACZ,YAAM,GAAG,SAAS;AAClB,WAAK,OAAOA;AAAA,IACd;AAAA,IACA,MAAM,WAAW;AACf,aAAO,WAAW;AAAA,IACpB;AAAA,EACF,EAAE;AACJ;AACA,SAAS,MAAM,OAAO;AACpB,SAAO,sBAAsB,YAAY,kBAAkB,KAAK,GAAG,MAAM,MAAM;AACjF;AACA,SAAS,IAAI,UAAU;AACrB,MAAI,CAAC,YAAY,QAAQ,GAAG;AAC1B,UAAM,IAAI,MAAM,mDAAmD;AAAA,EACrE;AACA,MAAIA;AACJ,MAAI,MAAM,QAAQ,QAAQ,GAAG;AAC3B,aAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,MAAAA,QAAOA,SAAQ,OAAO,SAAS,IAAI,OAAO,KAAK,IAAIA,OAAM,SAAS,IAAI,IAAI;AAAA,IAC5E;AAAA,EACF,WAAW,oBAAoB,QAAQ;AACrC,eAAW,MAAM,UAAU;AACzB,MAAAA,QAAOA,SAAQ,OAAO,SAAS,IAAI,OAAO,KAAK,IAAIA,OAAM,SAAS,IAAI,IAAI;AAAA,IAC5E;AAAA,EACF;AACA,SAAO,sBAAsB,YAAY;AACvC,UAAM,UAAU,MAAM,mBAAmB,UAAU,CAAC,MAAM;AACxD,UAAI,aAAa,SAAS;AACxB,eAAO,EAAE,OAAO,EAAE,SAAS,GAAG,SAAS,MAAM;AAAA,MAC/C,WAAW,YAAY,CAAC,GAAG;AACzB,eAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AAAA,MACtC,OAAO;AACL,cAAM,IAAI,MAAM,2EAA2E;AAAA,MAC7F;AAAA,IACF,CAAC;AACD,WAAO,mBAAmB,SAAS,gBAAgB,QAAQ;AAAA,EAC7D,GAAGA,KAAI;AACT;AACA,SAAS,gBAAgB,MAAM;AAC7B,MAAI,SAAS,MAAM;AACjB,WAAO;AAAA,EACT;AACA,QAAM,aAAa,KAAK;AACxB,MAAI,aAAa,UAAU,GAAG;AAC5B,UAAM,QAAQ,YAAY,IAAI;AAC9B,WAAO,EAAE,OAAO,SAAS,MAAM;AAAA,EACjC;AACA,SAAO,EAAE,OAAO,MAAM,SAAS,KAAK;AACtC;AACA,SAAS,YAAY,QAAQ;AAC3B,MAAI,OAAO,WAAW,GAAG;AACvB,UAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AACA,MAAI,OAAO,cAAc,QAAQ;AAC/B,WAAO,MAAM,MAAM;AAAA,EACrB,OAAO;AACL,WAAO,OAAO,MAAM;AAAA,EACtB;AACF;AAGA,IAAI,kBAAkB,cAAc,QAAQ;AAAA,EAC1C,YAAY,QAAQ;AAClB,UAAM;AACN,SAAK,QAAQ;AAAA,EACf;AAAA,EACA,MAAM,WAAW;AACf,UAAM,gBAAgB,MAAM,KAAK,MAAM,SAAS;AAChD,UAAM,eAAe,cAAc,WAAW;AAC9C,UAAM,eAAe,aAAa,MAAM,IAAI,EAAE,IAAI,CAAC,SAAS;AAC1D,UAAI,KAAK,SAAS,IAAI,GAAG;AACvB,eAAO,KAAK,MAAM,GAAG,EAAE;AAAA,MACzB;AACA,aAAO;AAAA,IACT,CAAC;AACD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,aAAa;AACjB,IAAI,YAAY,OAAO,KAAK;AAC5B,IAAI,cAAc,OAAO,OAAO;AAChC,IAAI,cAAc,OAAO,OAAO;AAChC,IAAI,0BAA0B,OAAO,iBAAiB;AACtD,IAAI,8BAA8B,OAAO,cAAc;AACvD,IAAI,aAAa,cAAc,QAAQ;AAAA,EACrC,YAAY,QAAQ,WAAW;AAC7B,UAAM;AACN,SAAK,QAAQ;AACb,SAAK,YAAY;AACjB,SAAK,kBAAkB;AACvB,SAAK,uBAAuB;AAC5B,SAAK,gBAAgB;AACrB,SAAK,wBAAwB;AAC7B,SAAK,YAAY;AACjB,SAAK,kBAAkB;AACvB,SAAK,OAAO,IAAI,gBAAgB,MAAM;AACtC,QAAI,CAAC,WAAW;AACd,kBAAY,CAAC;AAAA,IACf;AACA,SAAK,YAAY,UAAU,cAAc,QAAQ,QAAQ;AACzD,SAAK,kBAAkB,UAAU;AACjC,SAAK,gBAAgB,UAAU;AAC/B,SAAK,wBAAwB,UAAU;AACvC,QAAI,UAAU,iBAAiB;AAC7B,mBAAa,OAAO,UAAU,aAAa,MAAM,MAAM,gEAAgE;AACvH,WAAK,kBAAkB;AACvB,WAAK,YAAY;AAAA,IACnB,OAAO;AACL,WAAK,YAAY,UAAU,YAAY,UAAU,YAAY;AAAA,IAC/D;AAAA,EACF;AAAA,EACA,MAAM,cAAc;AAClB,QAAI,CAAC,KAAK,sBAAsB;AAC9B,YAAM,KAAK,eAAe;AAAA,IAC5B;AACA,WAAO,KAAK,wBAAwB,OAAO,KAAK,KAAK,aAAa,IAAI,KAAK;AAAA,EAC7E;AAAA,EACA,MAAM,iBAAiB;AACrB,UAAM,sBAAsB,MAAM,KAAK,oBAAoB;AAC3D,QAAI,CAAC,KAAK,mBAAmB,CAAC,qBAAqB;AACjD,YAAM,IAAI,MAAM,2DAA2D;AAAA,IAC7E,WAAW,KAAK,mBAAmB,qBAAqB;AACtD,mBAAa,OAAO,oBAAoB,WAAW,KAAK,gBAAgB,QAAQ,MAAM,yCAAyC,KAAK,gBAAgB,OAAO,SAAS,IAAI,oEAAoE,oBAAoB,OAAO,SAAS,IAAI,IAAI;AAAA,IAC1R;AACA,QAAI,CAAC,KAAK,iBAAiB;AACzB,WAAK,kBAAkB;AAAA,IACzB;AACA,UAAM,SAAS,KAAK,gBAAgB,OAAO,CAAC,UAAU,SAAS;AAC7D,eAAS,QAAQ,SAAS,QAAQ,KAAK;AACvC,aAAO;AAAA,IACT,GAAG,CAAC,CAAC;AACL,UAAM,iBAAiB,OAAO,KAAK,MAAM,EAAE,OAAO,CAAC,SAAS,OAAO,QAAQ,CAAC;AAC5E,iBAAa,OAAO,eAAe,WAAW,GAAG,MAAM,mCAAmC,eAAe,SAAS,CAAC;AACnH,QAAI,KAAK,eAAe;AACtB,iBAAW,OAAO,OAAO,KAAK,KAAK,aAAa,GAAG;AACjD,cAAMU,SAAQ,KAAK,gBAAgB,QAAQ,GAAG;AAC9C,YAAIA,WAAU,IAAI;AAChB,gBAAM,IAAI,MAAM,cAAc,MAAM,yEAAyE,KAAK,gBAAgB,SAAS,IAAI,IAAI;AAAA,QACrJ;AAAA,MACF;AAAA,IACF;AACA,SAAK,uBAAuB;AAAA,EAC9B;AAAA,EACA,MAAM,sBAAsB;AAC1B,QAAI,KAAK,WAAW;AAClB,YAAM,OAAO,MAAM,KAAK,KAAK,SAAS;AACtC,YAAM,eAAe,MAAM,KAAK,KAAK;AACrC,UAAI,aAAa,MAAM;AACrB,cAAM,IAAI,MAAM,oCAAoC;AAAA,MACtD;AACA,YAAM,YAAY,aAAa;AAC/B,YAAM,UAAU,KAAK,SAAS,WAAW,KAAK;AAC9C,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,MAAM,WAAW;AACf,QAAI,CAAC,KAAK,sBAAsB;AAC9B,YAAM,KAAK,eAAe;AAAA,IAC5B;AACA,QAAIQ,SAAQ,MAAM,KAAK,KAAK,SAAS;AACrC,QAAI,KAAK,WAAW;AAClB,MAAAA,SAAQA,OAAM,KAAK,CAAC;AAAA,IACtB;AACA,WAAOA,OAAM,IAAI,CAAC,MAAM,KAAK,gBAAgB,CAAC,CAAC;AAAA,EACjD;AAAA,EACA,gBAAgB,MAAM;AACpB,UAAM,SAAS,KAAK,SAAS,IAAI;AACjC,UAAM,WAAW,CAAC;AAClB,UAAME,UAAS,CAAC;AAChB,aAAS,KAAK,GAAG,KAAK,KAAK,gBAAgB,QAAQ,MAAM;AACvD,YAAM,MAAM,KAAK,gBAAgB;AACjC,YAAML,UAAS,KAAK,gBAAgB,KAAK,cAAc,OAAO;AAC9D,UAAI,KAAK,yBAAyB,CAACA,SAAQ;AACzC;AAAA,MACF,OAAO;AACL,cAAM,QAAQ,OAAO;AACrB,YAAI,cAAc;AAClB,YAAI,UAAU,IAAI;AAChB,cAAIA,WAAUA,QAAO,YAAY,QAAQ;AACvC,0BAAcA,QAAO;AAAA,UACvB,WAAWA,YAAWA,QAAO,YAAYA,QAAO,UAAU;AACxD,kBAAM,IAAI,MAAM,mBAAmB,8BAA8B,MAAM;AAAA,UACzE,OAAO;AACL,0BAAc;AAAA,UAChB;AAAA,QACF,OAAO;AACL,gBAAM,aAAa,OAAO,KAAK;AAC/B,cAAI,MAAM,UAAU,GAAG;AACrB,gBAAIA,WAAUA,QAAO,UAAU,QAAQ;AACrC,4BAAc,KAAK,WAAW,KAAK;AAAA,YACrC,OAAO;AACL,4BAAc;AAAA,YAChB;AAAA,UACF,WAAW,CAACA,WAAU,CAACA,QAAO,OAAO;AACnC,0BAAc;AAAA,UAChB,OAAO;AACL,oBAAQA,QAAO;AAAA,mBACR;AACH,8BAAc;AACd;AAAA,mBACG;AACH,8BAAc,KAAK,MAAM,UAAU;AACnC;AAAA,mBACG;AACH,8BAAc,KAAK,WAAW,KAAK;AACnC;AAAA;AAEA,8BAAc;AAAA;AAAA,UAEpB;AAAA,QACF;AACA,QAAAA,WAAUA,QAAO,UAAUK,QAAO,OAAO,cAAc,SAAS,OAAO;AAAA,MACzE;AAAA,IACF;AACA,QAAI,OAAO,KAAKA,OAAM,EAAE,WAAW,GAAG;AACpC,aAAO;AAAA,IACT,OAAO;AACL,aAAO,EAAE,IAAI,UAAU,IAAIA,QAAO;AAAA,IACpC;AAAA,EACF;AAAA,EACA,WAAW,OAAO;AAChB,QAAI,UAAU,OAAO,MAAM,YAAY,MAAM,QAAQ;AACnD,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,SAAS,MAAM,uBAAuB,MAAM;AAC1C,UAAM,SAAS,CAAC;AAChB,QAAI,aAAa;AACjB,UAAM,aAAa,KAAK;AACxB,QAAI,eAAe;AACnB,aAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,cAAQ;AAAA,aACD;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf;AACH,2BAAa,KAAK;AAClB,6BAAe;AACf;AAAA,iBACG,KAAK;AACR,2BAAa,KAAK;AAClB,kBAAI,KAAK,cAAc,OAAO,KAAK,iBAAiB;AAClD;AAAA,cACF;AACA,qBAAO,KAAK,EAAE;AACd,6BAAe;AACf;AAAA;AAEA,6BAAe;AACf,2BAAa;AACb;AAAA;AAEJ;AAAA,aACG;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf,KAAK;AACR,qBAAO,KAAK,KAAK,UAAU,YAAY,EAAE,CAAC;AAC1C,6BAAe;AACf,2BAAa,KAAK;AAClB;AAAA;AAAA;AAGJ;AAAA,aACG;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf;AACH,6BAAe;AACf;AAAA;AAAA;AAGJ;AAAA,aACG;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf,KAAK;AACR,qBAAO,KAAK,KAAK,UAAU,YAAY,KAAK,CAAC,CAAC;AAC9C,6BAAe;AACf,2BAAa,KAAK;AAClB;AAAA,iBACG;AACH,6BAAe;AACf;AAAA;AAEA,6BAAe;AACf;AAAA;AAEJ;AAAA,aACG;AACH,kBAAQ,KAAK,OAAO,EAAE;AAAA,iBACf;AACH,6BAAe;AACf;AAAA;AAAA;AAGJ;AAAA;AAAA;AAAA,IAGN;AACA,QAAI,iBAAiB,yBAAyB;AAC5C,aAAO,KAAK,KAAK,UAAU,YAAY,aAAa,CAAC,CAAC;AAAA,IACxD,OAAO;AACL,aAAO,KAAK,KAAK,UAAU,UAAU,CAAC;AAAA,IACxC;AACA,QAAI,wBAAwB,OAAO,WAAW,KAAK,gBAAgB,QAAQ;AACzE,YAAM,IAAI,MAAM,wCAAwC,KAAK,gBAAgB,qCAAqC,QAAQ;AAAA,IAC5H;AACA,WAAO;AAAA,EACT;AACF;AAGA,IAAI,qBAAqB,cAAc,aAAa;AAAA,EAClD,YAAY,kBAAkB;AAC5B,UAAM;AACN,SAAK,mBAAmB;AACxB,SAAK,WAAW;AAChB,SAAK,UAAU,iBAAiB,WAAW;AAC3C,UAAM,cAAc,KAAK,KAAK,KAAK,OAAO;AAC1C,QAAI,KAAK,UAAU,KAAK,cAAc,KAAK,cAAc,MAAM,CAAC,OAAO,UAAU,WAAW,GAAG;AAC7F,YAAM,IAAI,MAAM,gFAAgF,KAAK,SAAS;AAAA,IAChH;AACA,SAAK,YAAY,iBAAiB,2BAA2B;AAC7D,SAAK,eAAe,iBAAiB;AACrC,SAAK,uBAAuB,iBAAiB,wBAAwB,KAAK;AAC1E,SAAK,wBAAwB,iBAAiB;AAC9C,SAAK,wBAAwB,iBAAiB,yBAAyB;AACvE,SAAK,qBAAqB,iBAAiB,uBAAuB,QAAQ,QAAQ;AAClF,SAAK,kBAAkB,iBAAiB,oBAAoB,OAAO,OAAO;AAC1E,QAAI,CAAC,KAAK,sBAAsB,CAAC,KAAK,iBAAiB;AACrD,YAAM,IAAI,MAAM,sGAAsG;AAAA,IACxH;AAAA,EACF;AAAA,EACA,UAAU;AACR,WAAO;AAAA,EACT;AAAA,EACA,aAAa,OAAO,mBAAmB,CAAC,GAAG;AACzC,QAAI,CAAC,IAAI,EAAE,IAAI,YAAY,GAAG;AAC5B,YAAM,IAAI,MAAM,0DAA0D;AAAA,IAC5E;AACA,UAAM,qBAAqB,IAAI,mBAAmB,gBAAgB;AAClE,UAAM,mBAAmB,MAAM;AAC/B,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ;AACZ,QAAI;AACF,WAAK,SAAS,MAAM,UAAU,aAAa,aAAa;AAAA,QACtD,OAAO,KAAK,yBAAyB,OAAO,OAAO,KAAK;AAAA,QACxD,OAAO;AAAA,MACT,CAAC;AAAA,IACH,SAAS,IAAP;AACA,YAAM,IAAI,MAAM,iDAAiD,GAAG,SAAS;AAAA,IAC/E;AACA,QAAI,CAAC,KAAK,QAAQ;AAChB,YAAM,IAAI,MAAM,yCAAyC;AAAA,IAC3D;AACA,UAAM,iBAAiB,OAAO,gBAAgB,OAAO;AACrD,SAAK,eAAe,IAAI,eAAe;AACvC,QAAI,CAAC,KAAK,cAAc;AACtB,WAAK,eAAe,KAAK,aAAa;AAAA,IACxC,WAAW,KAAK,aAAa,eAAe,KAAK,cAAc;AAC7D,YAAM,IAAI,MAAM,wCAAwC,KAAK,yBAAyB,KAAK,aAAa,YAAY;AAAA,IACtH;AACA,UAAM,eAAe,KAAK,aAAa,wBAAwB,KAAK,MAAM;AAC1E,SAAK,WAAW,KAAK,aAAa,eAAe;AACjD,SAAK,SAAS,UAAU,KAAK,UAAU;AACvC,SAAK,SAAS,wBAAwB,KAAK;AAC3C,iBAAa,QAAQ,KAAK,QAAQ;AAClC,SAAK,WAAW,IAAI,aAAa,KAAK,OAAO;AAC7C,SAAK,WAAW,IAAI,aAAa,KAAK,OAAO;AAC7C;AAAA,EACF;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,UAAU;AACjB,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,QAAI;AACJ,QAAI;AACJ,UAAM,iBAAiB,MAAM,KAAK,aAAa;AAC/C,QAAI,KAAK,oBAAoB;AAC3B,YAAM,WAAW,KAAK,aAAa,eAAe,aAAa;AAC/D,0BAAoB,KAAK,4BAA4B,UAAU,CAAC,KAAK,WAAW,KAAK,sBAAsB,CAAC,CAAC;AAAA,IAC/G;AACA,QAAI,KAAK,iBAAiB;AACxB,YAAM,WAAW,KAAK,aAAa,eAAe,aAAa;AAC/D,uBAAiB,KAAK,4BAA4B,UAAU,CAAC,KAAK,YAAY,KAAK,SAAS,CAAC,CAAC;AAAA,IAChG;AACA,WAAO;AAAA,MACL,OAAO,EAAE,eAAe,mBAAmB,YAAY,eAAe;AAAA,MACtE,MAAM;AAAA,IACR;AAAA,EACF;AAAA,EACA,MAAM,UAAU;AACd,YAAQ,MAAM,KAAK,KAAK,GAAG;AAAA,EAC7B;AAAA,EACA,MAAM,eAAe;AACnB,UAAM,gBAAgB,CAAC;AACvB,UAAM,gBAAgB,CAAC;AACvB,QAAI,gBAAgB;AACpB,WAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,YAAM,aAAa,YAAY,MAAM;AACnC,YAAI,KAAK,oBAAoB;AAC3B,eAAK,SAAS,sBAAsB,KAAK,QAAQ;AACjD,cAAI,KAAK,SAAS,OAAO,WAAW;AAClC,oBAAQ,EAAE,eAAe,cAAc,CAAC;AAAA,UAC1C;AACA,wBAAc,KAAK,KAAK,SAAS,MAAM,GAAG,KAAK,oBAAoB,CAAC;AAAA,QACtE;AACA,YAAI,KAAK,iBAAiB;AACxB,eAAK,SAAS,uBAAuB,KAAK,QAAQ;AAClD,wBAAc,KAAK,KAAK,SAAS,MAAM,CAAC;AAAA,QAC1C;AACA,YAAI,EAAE,kBAAkB,KAAK,WAAW;AACtC,wBAAc,UAAU;AACxB,kBAAQ,EAAE,eAAe,cAAc,CAAC;AAAA,QAC1C;AAAA,MACF,GAAG,KAAK,UAAU,KAAK,eAAe,GAAG;AAAA,IAC3C,CAAC;AAAA,EACH;AAAA,EACA,OAAO;AACL,QAAI,CAAC,KAAK,UAAU;AAClB,WAAK,WAAW;AAChB,WAAK,SAAS,WAAW;AACzB,WAAK,aAAa,MAAM;AACxB,UAAI,KAAK,UAAU,QAAQ,KAAK,OAAO,UAAU,EAAE,SAAS,GAAG;AAC7D,aAAK,OAAO,UAAU,EAAE,GAAG,KAAK;AAAA,MAClC;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU;AACR,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AAAA,EACA,gBAAgB;AACd,WAAO,KAAK;AAAA,EACd;AAAA,EACA,aAAa,OAAO;AAClB,UAAM,YAAY,MAAM,GAAG;AAC3B,UAAM,WAAW,IAAI,aAAa,MAAM,SAAS,SAAS;AAC1D,UAAM,QAAQ,CAAC,MAAM,OAAO,SAAS,IAAI,MAAM,KAAK,SAAS,CAAC;AAC9D,WAAO;AAAA,EACT;AAAA,EACA,4BAA4B,UAAU,OAAO;AAC3C,UAAM,OAAO,IAAI,aAAa,aAAa,cAAc,KAAK,CAAC;AAC/D,SAAK,IAAI,UAAU,KAAK,SAAS,SAAS,MAAM;AAChD,WAAO,OAAO,MAAM,KAAK;AAAA,EAC3B;AACF;AAGA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,YAAY,oBAAoB,cAAc;AAC5C,UAAM;AACN,SAAK,qBAAqB;AAC1B,SAAK,eAAe;AACpB,SAAK,WAAW;AAChB,SAAK,SAAS;AACd,QAAI,KAAK,aAAa,GAAG;AACvB,WAAK,SAAS;AACd,WAAK,WAAW,CAAC,KAAK,aAAa,cAAc,KAAK,aAAa,WAAW;AAC9E,WAAK,aAAa,SAAS,CAAC,CAAC,GAAG,OAAO;AACvC,UAAI,KAAK,aAAa,YAAY;AAChC,cAAM,qBAAqB,KAAK,aAAa,cAAc,IAAI,KAAK,mBAAmB;AACvF,cAAM,sBAAsB,KAAK,aAAa,eAAe,IAAI,KAAK,mBAAmB;AACzF,cAAM,kBAAkB,IAAI,sBAAsB;AAClD,cAAM,mBAAmB,IAAI,uBAAuB;AACpD,cAAM,eAAe,iBAAiB;AACtC,cAAM,gBAAgB,sBAAsB;AAC5C,aAAK,UAAU,SAAS,CAAC,iBAAiB,gBAAgB,eAAe,YAAY,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,MAChG,OAAO;AACL,aAAK,UAAU,SAAS,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,MAC9C;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU;AACR,WAAO;AAAA,EACT;AAAA,EACA,aAAa,OAAO,oBAAoB,eAAe,CAAC,GAAG;AACzD,QAAI,CAAC,IAAI,EAAE,IAAI,YAAY,GAAG;AAC5B,YAAM,IAAI,MAAM,0DAA0D;AAAA,IAC5E;AACA,QAAI,CAAC,oBAAoB;AACvB,2BAAqB,SAAS,cAAc,OAAO;AACnD,UAAI,CAAC,aAAa,eAAe,CAAC,aAAa,cAAc;AAC3D,cAAM,IAAI,MAAM,wGAAwG;AAAA,MAC1H;AACA,yBAAmB,QAAQ,aAAa;AACxC,yBAAmB,SAAS,aAAa;AAAA,IAC3C;AACA,UAAM,iBAAiB,IAAI,eAAe,oBAAoB,YAAY;AAC1E,UAAM,eAAe,MAAM;AAC3B,WAAO;AAAA,EACT;AAAA,EACA,MAAM,QAAQ;AACZ,QAAI,KAAK,aAAa,YAAY;AAChC,mBAAa,OAAO,KAAK,aAAa,eAAe,UAAU,KAAK,aAAa,eAAe,eAAe,MAAM,+BAA+B,KAAK,aAAa,oDAAoD;AAAA,IAC5N;AACA,QAAI;AACF,WAAK,SAAS,MAAM,UAAU,aAAa,aAAa;AAAA,QACtD,OAAO;AAAA,UACL,UAAU,KAAK,aAAa;AAAA,UAC5B,YAAY,KAAK,aAAa,aAAa,KAAK,aAAa,aAAa;AAAA,UAC1E,OAAO,KAAK,mBAAmB;AAAA,UAC/B,QAAQ,KAAK,mBAAmB;AAAA,QAClC;AAAA,MACF,CAAC;AAAA,IACH,SAAS,IAAP;AACA,SAAG,UAAU,iDAAiD,GAAG;AACjE,YAAM;AAAA,IACR;AACA,QAAI,CAAC,KAAK,QAAQ;AAChB,YAAM,IAAI,MAAM,qCAAqC;AAAA,IACvD;AACA,QAAI;AACF,WAAK,mBAAmB,YAAY,KAAK;AAAA,IAC3C,SAAS,OAAP;AACA,cAAQ,IAAI,KAAK;AACjB,WAAK,mBAAmB,MAAM,OAAO,IAAI,gBAAgB,KAAK,MAAM;AAAA,IACtE;AACA,SAAK,mBAAmB,KAAK;AAC7B,SAAK,WAAW;AAChB,WAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,WAAK,mBAAmB,mBAAmB,MAAM;AAC/C,gBAAQ;AAAA,MACV;AAAA,IACF,CAAC;AAAA,EACH;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,UAAU;AACjB,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,QAAI;AACJ,QAAI;AACF,YAAM,gBAAgB,WAAW,KAAK,kBAAkB;AAAA,IAC1D,SAAS,IAAP;AACA,YAAM,IAAI,MAAM,4CAA4C,KAAK,UAAU,EAAE,GAAG;AAAA,IAClF;AACA,QAAI,KAAK,QAAQ;AACf,UAAI;AACF,eAAO,EAAE,OAAO,KAAK,mBAAmB,GAAG,GAAG,MAAM,MAAM;AAAA,MAC5D,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,oCAAoC,GAAG,SAAS;AAAA,MAClE,UAAE;AACA,YAAI,QAAQ;AAAA,MACd;AAAA,IACF,OAAO;AACL,aAAO,EAAE,OAAO,KAAK,MAAM,MAAM;AAAA,IACnC;AAAA,EACF;AAAA,EACA,eAAe;AACb,QAAI,KAAK,aAAa,eAAe,KAAK,aAAa,iBAAiB,KAAK,mBAAmB,UAAU,KAAK,aAAa,eAAe,KAAK,mBAAmB,WAAW,KAAK,aAAa,eAAe;AAC7M,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA,EACA,mBAAmB,KAAK;AACtB,WAAO,KAAK,MAAM;AAChB,YAAM,gBAAgB,WAAW,KAAK,KAAK,SAAS,GAAG,CAAC;AACxD,UAAI;AACJ,qBAAe,MAAM,cAAc,eAAe,KAAK,SAAS,KAAK,YAAY,KAAK,UAAU,UAAU;AAC1G,YAAM,QAAQ,aAAa;AAC3B,aAAO,QAAQ,cAAc,MAAM,MAAM,CAAC,CAAC;AAAA,IAC7C,CAAC;AAAA,EACH;AAAA,EACA,MAAM,UAAU;AACd,YAAQ,MAAM,KAAK,KAAK,GAAG;AAAA,EAC7B;AAAA,EACA,OAAO;AACL,UAAM,SAAS,KAAK,OAAO,UAAU;AACrC,WAAO,QAAQ,CAAC,UAAU,MAAM,KAAK,CAAC;AACtC,QAAI;AACF,WAAK,mBAAmB,YAAY;AAAA,IACtC,SAAS,OAAP;AACA,cAAQ,IAAI,KAAK;AACjB,WAAK,mBAAmB,MAAM;AAAA,IAChC;AACA,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,UAAU;AACR,UAAM,IAAI,MAAM,iDAAiD;AAAA,EACnE;AACF;AAGA,IAAI,aAAa,MAAM;AACvB;AAGA,IAAI,iBAAiB,cAAc,aAAa;AAAA,EAC9C,MAAM,WAAW;AACf,WAAO,IAAI,cAAc,MAAM,SAAS;AAAA,EAC1C;AACF;AACA,IAAI,gBAAgB,cAAc,eAAe;AAAA,EAC/C,YAAY,UAAU,WAAW;AAC/B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,OAAO,IAAI,kBAAkB,UAAU,SAAS;AAAA,EACvD;AAAA,EACA,UAAU;AACR,WAAO,KAAK,KAAK,QAAQ;AAAA,EAC3B;AAAA,EACA,MAAM,OAAO;AACX,WAAO,KAAK,KAAK,KAAK;AAAA,EACxB;AACF;AACA,IAAI,oBAAoB,cAAc,kBAAkB;AAAA,EACtD,YAAY,UAAU,WAAW;AAC/B,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,YAAY;AACjB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ,eAAe,KAAK;AAAA,EACtD;AAAA,EACA,MAAM,OAAO;AACX,UAAM,cAAc,MAAM,KAAK,SAAS,KAAK;AAC7C,QAAI,YAAY,MAAM;AACpB,UAAI,KAAK,cAAc,IAAI;AACzB,eAAO;AAAA,MACT;AACA,WAAK,YAAY,KAAK,KAAK,SAAS;AACpC,WAAK,YAAY;AACjB,aAAO;AAAA,IACT;AACA,UAAMF,SAAQ,YAAY,MAAM,MAAM,KAAK,SAAS;AACpD,IAAAA,OAAM,KAAK,KAAK,YAAYA,OAAM;AAClC,eAAW,QAAQA,OAAM,MAAM,GAAG,EAAE,GAAG;AACrC,WAAK,YAAY,KAAK,IAAI;AAAA,IAC5B;AACA,SAAK,YAAYA,OAAMA,OAAM,SAAS;AACtC,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB,cAAc,aAAa;AAAA,EACjD,aAAa;AACX,WAAO,IAAI,aAAa,IAAI;AAAA,EAC9B;AACF;AACA,IAAI,eAAe,cAAc,eAAe;AAAA,EAC9C,YAAY,UAAU;AACpB,UAAM;AACN,SAAK,WAAW;AAChB,SAAK,OAAO,IAAI,iBAAiB,QAAQ;AAAA,EAC3C;AAAA,EACA,UAAU;AACR,WAAO,KAAK,KAAK,QAAQ;AAAA,EAC3B;AAAA,EACA,MAAM,OAAO;AACX,WAAO,KAAK,KAAK,KAAK;AAAA,EACxB;AACF;AACA,IAAI,mBAAmB,cAAc,kBAAkB;AAAA,EACrD,YAAY,UAAU;AACpB,UAAM;AACN,SAAK,WAAW;AAChB,QAAI,IAAI,EAAE,IAAI,YAAY,GAAG;AAC3B,WAAK,UAAU,IAAI,YAAY,OAAO;AAAA,IACxC,OAAO;AACL,YAAM,EAAE,cAAc,IAAI,uBAAuB;AACjD,WAAK,UAAU,IAAI,cAAc,MAAM;AAAA,IACzC;AAAA,EACF;AAAA,EACA,UAAU;AACR,WAAO,GAAG,KAAK,SAAS,QAAQ;AAAA,EAClC;AAAA,EACA,MAAM,OAAO;AACX,UAAM,cAAc,MAAM,KAAK,SAAS,KAAK;AAC7C,QAAI;AACJ,QAAI,YAAY,MAAM;AACpB,aAAO;AAAA,IACT,OAAO;AACL,cAAQ,YAAY;AAAA,IACtB;AACA,QAAI;AACJ,QAAI,IAAI,EAAE,IAAI,YAAY,GAAG;AAC3B,aAAO,KAAK,QAAQ,OAAO,OAAO,EAAE,QAAQ,KAAK,CAAC;AAAA,IACpD,OAAO;AACL,aAAO,KAAK,QAAQ,MAAM,OAAO,KAAK,MAAM,MAAM,CAAC;AAAA,IACrD;AACA,SAAK,YAAY,KAAK,IAAI;AAC1B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB,cAAc,kBAAkB;AAAA,EACtD,YAAY,MAAMZ,WAAU,CAAC,GAAG;AAC9B,UAAM;AACN,SAAK,OAAO;AACZ,SAAK,UAAUA;AACf,iBAAa,OAAO,gBAAgB,eAAe,IAAI,EAAE,IAAI,YAAY,IAAI,gBAAgB,QAAQ,gBAAgB,OAAO,QAAQ,MAAM,sEAAsE;AAChN,SAAK,SAASA,SAAQ,UAAU;AAChC,SAAK,YAAYA,SAAQ,aAAa,OAAO;AAAA,EAC/C;AAAA,EACA,UAAU;AACR,WAAO,cAAc,KAAK;AAAA,EAC5B;AAAA,EACA,MAAM,OAAO;AACX,QAAI,KAAK,WAAW,KAAK,gBAAgB,aAAa,KAAK,KAAK,aAAa,KAAK,KAAK,OAAO;AAC5F,aAAO,EAAE,OAAO,MAAM,MAAM,KAAK;AAAA,IACnC;AACA,UAAM,QAAQ,IAAI,QAAQ,CAAC,SAAS,WAAW;AAC7C,YAAM,MAAM,KAAK,SAAS,KAAK;AAC/B,UAAI,KAAK,gBAAgB,YAAY;AACnC,gBAAQ,IAAI,WAAW,KAAK,KAAK,MAAM,KAAK,QAAQ,GAAG,CAAC,CAAC;AAAA,MAC3D,OAAO;AACL,cAAM,aAAa,IAAI,WAAW;AAClC,mBAAW,SAAS,CAAC,UAAU;AAC7B,cAAI,OAAO,WAAW;AACtB,cAAI,gBAAgB,aAAa;AAC/B,mBAAO,IAAI,WAAW,IAAI;AAAA,UAC5B;AACA,cAAI,EAAE,gBAAgB,aAAa;AACjC,mBAAO,OAAO,IAAI,UAAU,mCAAmC,CAAC;AAAA,UAClE;AACA,kBAAQ,IAAI;AAAA,QACd;AACA,mBAAW,UAAU,CAAC,UAAU;AAC9B,iBAAO,OAAO,IAAI,MAAM,SAAS,CAAC;AAAA,QACpC;AACA,mBAAW,UAAU,CAAC,UAAU;AAC9B,iBAAO,OAAO,IAAI,MAAM,MAAM,IAAI,CAAC;AAAA,QACrC;AACA,cAAM,SAAS,KAAK,KAAK,MAAM,KAAK,QAAQ,GAAG;AAC/C,mBAAW,kBAAkB,MAAM;AAAA,MACrC;AACA,WAAK,SAAS;AAAA,IAChB,CAAC;AACD,WAAO,EAAE,OAAO,MAAM,OAAO,MAAM,MAAM;AAAA,EAC3C;AACF;AAGA,eAAe,iBAAiB,KAAKA,WAAU,CAAC,GAAG,WAAW;AAC5D,MAAI;AACJ,MAAI;AACJ,MAAI,OAAO,QAAQ,UAAU;AAC3B,gBAAY;AAAA,EACd,OAAO;AACL,gBAAY,IAAI;AAChB,kBAAc,0BAA0B,GAAG;AAAA,EAC7C;AACA,QAAM,WAAW,OAAO,aAAa,aAAa,OAAO,WAAW,WAAW;AAC/E,MAAI,SAAS,IAAI;AACf,UAAM,aAAa,IAAI,WAAW,MAAM,SAAS,YAAY,CAAC;AAC9D,WAAO,IAAI,kBAAkB,YAAYA,QAAO;AAAA,EAClD,OAAO;AACL,UAAM,IAAI,MAAM,SAAS,UAAU;AAAA,EACrC;AACF;AACA,IAAI,4BAA4B,CAAC,YAAY;AAC3C,QAAMF,SAAQ;AAAA,IACZ,QAAQ,QAAQ;AAAA,IAChB,SAAS,QAAQ;AAAA,IACjB,MAAM,QAAQ;AAAA,IACd,MAAM,QAAQ;AAAA,IACd,aAAa,QAAQ;AAAA,IACrB,OAAO,QAAQ;AAAA,IACf,UAAU,QAAQ;AAAA,IAClB,UAAU,QAAQ;AAAA,IAClB,WAAW,QAAQ;AAAA,EACrB;AACA,SAAOA;AACT;AAGA,SAAS,YAAY,QAAQ;AAC3B,SAAO,OAAO,WAAW,YAAY,OAAO,MAAM,GAAG,CAAC,MAAM;AAC9D;AAGA,IAAI,iBAAiB,cAAc,WAAW;AAAA,EAC5C,YAAY,QAAQE,WAAU,CAAC,GAAG;AAChC,UAAM;AACN,SAAK,QAAQ;AACb,SAAK,UAAUA;AAAA,EACjB;AAAA,EACA,MAAM,WAAW;AACf,QAAI,YAAY,KAAK,KAAK,KAAK,IAAI,EAAE,IAAI,SAAS,GAAG;AACnD,YAAM,KAAK,WAAW;AACtB,WAAK,QAAQ,GAAG,aAAa,KAAK,MAAM,MAAM,CAAC,CAAC;AAAA,IAClD;AACA,WAAO,IAAI,kBAAkB,KAAK,OAAO,KAAK,OAAO;AAAA,EACvD;AACF;AAGA,IAAI,gBAAgB,cAAc,WAAW;AAAA,EAC3C,YAAY,KAAK,cAAc,CAAC,GAAG;AACjC,UAAM;AACN,SAAK,MAAM;AACX,SAAK,cAAc;AAAA,EACrB;AAAA,EACA,MAAM,WAAW;AACf,QAAI,YAAY,KAAK,GAAG,GAAG;AACzB,aAAO,IAAI,eAAe,KAAK,KAAK,KAAK,WAAW,EAAE,SAAS;AAAA,IACjE,OAAO;AACL,aAAO,iBAAiB,KAAK,KAAK,KAAK,WAAW;AAAA,IACpD;AAAA,EACF;AACF;AAGA,SAAS,IAAI,QAAQ,YAAY,CAAC,GAAG;AACnC,SAAO,IAAI,WAAW,IAAI,cAAc,MAAM,GAAG,SAAS;AAC5D;AACA,SAAS,KAAK,GAAG;AACf,QAAM,OAAO,qBAAqB,CAAC;AACnC,SAAO,sBAAsB,YAAY,IAAI;AAC/C;AACA,SAAS,UAAU,YAAY;AAC7B,SAAO,sBAAsB,YAAY;AACvC,UAAM,MAAM,MAAM,WAAW;AAC7B,WAAO,qBAAqB,MAAM,IAAI,KAAK,CAAC;AAAA,EAC9C,CAAC;AACH;AACA,eAAe,OAAO,oBAAoB,cAAc;AACtD,SAAO,eAAe,OAAO,oBAAoB,YAAY;AAC/D;AACA,eAAe,WAAW,kBAAkB;AAC1C,SAAO,mBAAmB,OAAO,gBAAgB;AACnD;AAGA,IAAI,WAAW;AAGf,SAAS,iBAAiB,SAAS,QAAQ;AACzC,MAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAC3B,cAAU,CAAC,OAAO;AAAA,EACpB;AACA,UAAQ,QAAQ,CAAC,OAAO;AACtB,QAAI,MAAM,MAAM;AACd,mBAAa,OAAO,GAAG,UAAU,aAAa,MAAM,GAAG,+DAA+D;AAAA,IACxH;AAAA,EACF,CAAC;AACH;AAGA,IAAI,aAAa,qBAAqB;AACtC,IAAI,iBAAiB,cAAc,cAAc;AAAA,EAC/C,cAAc;AACZ,UAAM;AACN,SAAK,YAAY;AACjB,SAAK,WAAW;AAChB,SAAK,OAAO,IAAI,YAAY,MAAM,OAAO,CAAC;AAAA,EAC5C;AAAA,EACA,aAAa;AACX,WAAO,eAAe;AAAA,EACxB;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,QAAI,KAAK,UAAU;AACjB,WAAK,WAAW;AAChB,UAAI,IAAI,EAAE,IAAI,SAAS,GAAG;AACxB,6BAAqB,KAAK,oPAAoP;AAAA,MAChR;AAAA,IACF;AACA,UAAM,SAAS,EAAE,IAAI,KAAK,WAAW,EAAE;AACvC,SAAK,KAAK,IAAI,QAAQ,EAAE,QAAQ,OAAO,UAAU,EAAE,CAAC;AACpD,WAAO;AAAA,EACT;AAAA,EACA,eAAe,OAAO,OAAO,QAAQ;AACnC,QAAI;AACJ,QAAI,UAAU,YAAY,UAAU,QAAQ,OAAO,SAAS,KAAK,aAAa,SAAS,OAAO,EAAE,GAAG;AACjG,YAAM,gBAAgB,OAAO,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AACpE,cAAQ,KAAK,MAAM,eAAe,OAAO,KAAK;AAAA,IAChD,OAAO;AACL,cAAQ,KAAK,MAAM,QAAQ,OAAO,KAAK;AAAA,IACzC;AACA,WAAO,EAAE,QAAQ,OAAO,OAAO,MAAM;AAAA,EACvC;AAAA,EACA,SAAS,QAAQ;AACf,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG;AACzB,YAAM,aAAa,KAAK,KAAK,IAAI,MAAM;AACvC,aAAO,WAAW;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ;AACb,UAAM,aAAa,KAAK,KAAK,IAAI,MAAM;AACvC,eAAW;AAAA,EACb;AAAA,EACA,OAAO,QAAQ;AACb,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG;AACzB,YAAM,aAAa,KAAK,KAAK,IAAI,MAAM;AACvC,iBAAW;AAAA,IACb;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,SAAK,KAAK,IAAI,QAAQ,EAAE,QAAQ,OAAO,SAAS,CAAC;AAAA,EACnD;AAAA,EACA,aAAa;AACX,WAAO,KAAK,KAAK,WAAW;AAAA,EAC9B;AAAA,EACA,MAAM,KAAK,QAAQ;AACjB,WAAO,KAAK,SAAS,MAAM;AAAA,EAC7B;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,EAAE,OAAO,mBAAmB,IAAI,KAAK,KAAK,IAAI,MAAM;AAC1D,QAAI,UAAU,aAAa;AACzB,YAAM,aAAa,KAAK,SAAS,mBAAmB,KAAK,MAAM;AAC/D,YAAM,aAAa,KAAK,SAAS,mBAAmB,KAAK,MAAM;AAC/D,aAAO,qBAAqB,uBAAuB,YAAY,UAAU;AAAA,IAC3E;AACA,WAAO,KAAK,KAAK,IAAI,MAAM,EAAE;AAAA,EAC/B;AAAA,EACA,WAAW,IAAI;AACb,UAAM,OAAO,KAAK,SAAS,GAAG,MAAM;AACpC,QAAI,GAAG,UAAU,UAAU;AACzB,UAAI;AACF,cAAM,UAAU,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AAC5D,eAAO,OAAO,GAAG,OAAO,GAAG,OAAO,OAAO;AAAA,MAC3C,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,kDAAkD;AAAA,MACpE;AAAA,IACF;AACA,WAAO,OAAO,GAAG,OAAO,GAAG,OAAO,IAAI;AAAA,EACxC;AAAA,EACA,WAAW,QAAQ,OAAO,OAAO;AAC/B,WAAO,OAAO,EAAE,yBAAyB,KAAK,eAAe,OAAO,OAAO,MAAM,GAAG,IAAI;AAAA,EAC1F;AAAA,EACA,YAAY,QAAQ,QAAQ,OAAO;AACjC,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG;AACzB,WAAK,KAAK,IAAI,MAAM,EAAE;AACtB,UAAI,CAAC,SAAS,KAAK,KAAK,IAAI,MAAM,EAAE,WAAW,GAAG;AAChD,eAAO;AAAA,MACT;AACA,YAAM,EAAE,mBAAmB,IAAI,KAAK,KAAK,IAAI,MAAM;AACnD,UAAI,sBAAsB,MAAM;AAC9B,aAAK,YAAY,mBAAmB,KAAK,QAAQ,IAAI;AACrD,aAAK,YAAY,mBAAmB,KAAK,QAAQ,IAAI;AAAA,MACvD;AACA,WAAK,KAAK,OAAO,MAAM;AAAA,IACzB;AACA,WAAO;AAAA,EACT;AAAA,EACA,8BAA8B,YAAY;AACxC,SAAK,YAAY,WAAW,MAAM;AAAA,EACpC;AAAA,EACA,MAAM,KAAK,GAAG;AACZ,UAAM,QAAQ,aAAa,IAAI;AAC/B,MAAE;AACF,UAAM,WAAW,aAAa,IAAI,IAAI;AACtC,WAAO,EAAE,SAAS;AAAA,EACpB;AAAA,EACA,SAAS;AACP,WAAO;AAAA,MACL,YAAY;AAAA,MACZ,SAAS,CAAC,oHAAoH;AAAA,IAChI;AAAA,EACF;AAAA,EACA,MAAM,WAAW;AACf,qBAAiB,CAAC,SAAS,GAAG,OAAO;AACrC,UAAM,WAAW,KAAK,SAAS,UAAU,MAAM;AAC/C,WAAO,WAAW,UAAU,OAAO,QAAQ;AAAA,EAC7C;AAAA,EACA,UAAU;AAAA,EACV;AAAA,EACA,iBAAiB;AACf,WAAO;AAAA,EACT;AAAA,EACA,UAAU;AACR,WAAO,MAAM,QAAQ;AAAA,EACvB;AACF;AACA,eAAe,aAAa;AAG5B,IAAI,iBAAiB,CAAC;AACtBT,UAAS,gBAAgB;AAAA,EACvB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,oBAAoB,MAAM;AAAA,EAC1B,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,YAAY,MAAM;AAAA,EAClB,WAAW,MAAM;AAAA,EACjB,SAAS,MAAM;AAAA,EACf,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,cAAc,MAAM;AAAA,EACpB,cAAc,MAAM;AAAA,EACpB,kBAAkB,MAAM;AAAA,EACxB,aAAa,MAAM;AAAA,EACnB,eAAe,MAAM;AAAA,EACrB,UAAU,MAAM;AAAA,EAChB,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,SAAS,MAAM;AAAA,EACf,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,SAAS,MAAM;AAAA,EACf,cAAc,MAAM;AAAA,EACpB,UAAU,MAAM;AAAA,EAChB,0BAA0B,MAAM;AAAA,EAChC,WAAW,MAAM;AAAA,EACjB,WAAW,MAAM;AAAA,EACjB,aAAa,MAAM;AAAA,EACnB,aAAa,MAAM;AAAA,EACnB,eAAe,MAAM;AAAA,EACrB,WAAW,MAAM;AAAA,EACjB,yBAAyB,MAAM;AAAA,EAC/B,mBAAmB,MAAM;AAAA,EACzB,4BAA4B,MAAM;AAAA,EAClC,UAAU,MAAM;AAAA,EAChB,uBAAuB,MAAM;AAAA,EAC7B,kBAAkB,MAAM;AAAA,EACxB,kBAAkB,MAAM;AAAA,EACxB,iBAAiB,MAAM;AAAA,EACvB,4BAA4B,MAAM;AAAA,EAClC,SAAS,MAAM;AAAA,EACf,UAAU,MAAM;AAAA,EAChB,UAAU,MAAM;AAAA,EAChB,eAAe,MAAM;AAAA,EACrB,YAAY,MAAM;AACpB,CAAC;AAGD,SAAS,cAAc,MAAM;AAC3B,QAAM,eAAe,IAAI,aAAa,KAAK,MAAM;AACjD,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,iBAAa,MAAM,KAAK,IAAI,KAAK,GAAG;AAAA,EACtC;AACA,SAAO;AACT;AACA,IAAI,OAAO,CAAC,SAAS;AACnB,QAAM,EAAE,EAAE,IAAI,KAAK;AACnB,QAAM,aAAa,KAAK;AACxB,mBAAiB,GAAG,KAAK;AACzB,MAAI,eAAe,IAAI,aAAa,aAAa,cAAc,EAAE,KAAK,CAAC;AACvE,QAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,iBAAe,cAAc,MAAM;AACnC,SAAO,WAAW,WAAW,cAAc,EAAE,OAAO,EAAE,KAAK;AAC7D;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,6BAA6B,KAAK;AACzC,SAAO,CAAC,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC9C,UAAM,WAAW,qBAAqB,2BAA2B,QAAQ,MAAM;AAC/E,UAAM,aAAa,SAAS;AAC5B,UAAM,gBAAgB,aAAa,eAAe,QAAQ;AAC1D,UAAM,aAAa,aAAa,cAAc,QAAQ;AACtD,UAAM,SAAS,aAAa,uBAAuB,OAAO,UAAU;AACpE,UAAM,QAAQ,OAAO;AACrB,UAAM,QAAQ,OAAO;AACrB,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,QAAQ;AAC7E,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,QAAQ;AAC7E,QAAI,eAAe,SAAS,eAAe,WAAW,GAAG;AACvD,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,eAAO,MAAM,IAAI,MAAM,KAAK,MAAM,SAAS,MAAM,KAAK,MAAM,OAAO;AAAA,MACrE;AAAA,IACF,OAAO;AACL,eAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,cAAM,MAAM,aAAa,WAAW,IAAI,YAAY,aAAa;AACjE,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,eAAO,MAAM,IAAI,MAAM,SAAS,MAAM,OAAO;AAAA,MAC/C;AAAA,IACF;AACA,WAAO,CAAC,QAAQ,QAAQ;AAAA,EAC1B;AACF;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,OAAO,MAAM,MAAM,IAAI;AACrC,QAAM,WAAW,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AACjD,QAAM,WAAW,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AACjD,QAAM,cAAc,SAAS,eAAe,MAAM,OAAO,WAAW;AACpE,QAAM,WAAW,SAAS,KAAK,IAAI,YAAY,MAAM;AACrD,WAAS,qBAAqB;AAAA,IAC5B,MAAM,SAAS,eAAe,MAAM,OAAO,WAAW,QAAQ;AAAA,IAC9D,MAAM,SAAS,eAAe,MAAM,OAAO,WAAW,QAAQ;AAAA,EAChE;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,UAAU,OAAO,QAAQ,WAAW;AAClD,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,OAAO,UAAU,OAAO,SAAS;AAC/C,UAAM,QAAQ,OAAO,UAAU,OAAO,SAAS;AAC/C,WAAO,SAAS,EAAE,QAAQ,EAAE,MAAM,OAAO,MAAM,MAAM,GAAG,SAAS,SAAS,CAAC;AAAA,EAC7E;AACA,QAAM,SAAS,aAAa,oBAAoB,aAAa,cAAc,KAAK,GAAG,KAAK;AACxF,SAAO,SAAS,eAAe,OAAO,OAAO,MAAM;AACrD;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,WAAS,OAAO,EAAE,MAAM;AACxB,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAC5D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE,mBAAmB;AAClE,QAAM,UAAU,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAChD,SAAO,SAAS,eAAe,MAAM,OAAO,MAAM,OAAO,OAAO;AAClE;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,QAAQ,OAAO,WAAW,OAAO;AACjD,MAAI,UAAU,SAAS;AACrB,UAAM,eAAe,WAAW,KAAK,MAAM;AAC3C,WAAO,CAAC,OAAO,SAAS,YAAY;AAAA,EACtC;AACA,MAAI,UAAU,QAAQ;AACpB,UAAM,OAAO,aAAa,aAAa,CAAC,CAAC,GAAG,SAAS;AACrD,UAAM,CAAC,YAAY,WAAW,IAAI,6BAA6B,CAAC,GAAG,MAAM,MAAM,IAAI,IAAI,CAAC,EAAE,OAAO,CAAC,GAAG,QAAQ,MAAM,MAAM;AACzH,WAAO,CAAC,aAAa,QAAQ,UAAU;AAAA,EACzC;AACA,QAAM,IAAI,MAAM,iCAAiC,gBAAgB,OAAO;AAC1E;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,UAAU,aAAa;AACzB,QAAI,EAAE,UAAU,aAAa;AAC3B,aAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACvD;AACA,UAAM,kBAAkB,OAAO,UAAU,EAAE,OAAO,EAAE,KAAK;AACzD,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AACtF,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,QAAQ,MAAM,gBAAgB,GAAG,SAAS,SAAS,CAAC;AAC9F,aAAS,8BAA8B,eAAe;AACtD,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,aAAS,8BAA8B,QAAQ;AAC/C,WAAO;AAAA,EACT;AACA,MAAI,CAAC,aAAa,gBAAgB,EAAE,OAAO,KAAK,GAAG;AACjD,UAAM,SAAS,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7D,WAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,MAAM;AAAA,EAC7D;AACA,QAAM,SAAS,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC3C,QAAM,CAAC,aAAa,YAAY,UAAU,IAAI,SAAS,QAAQ,EAAE,OAAO,EAAE,OAAO,KAAK;AACtF,SAAO,SAAS,eAAe,aAAa,YAAY,UAAU;AACpE;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,iBAAiB,MAAM,YAAY,aAAa,OAAO;AAC9D,MAAI,eAAe,MAAM;AACvB,WAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,YAAM,EAAE,GAAG,EAAE,IAAI;AACjB,YAAM,aAAa;AACnB,uBAAiB,CAAC,GAAG,CAAC,GAAG,IAAI;AAC7B,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,SAAS,SAAS,EAAE;AAC1B,YAAM,CAAC,YAAY,WAAW,IAAI,WAAW,EAAE,OAAO,EAAE,OAAO,cAAc,cAAc,MAAM;AACjG,aAAO,WAAW,eAAe,aAAa,QAAQ,UAAU;AAAA,IAClE;AAAA,EACF;AACA,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,aAAa;AACnB,QAAI,EAAE,UAAU,eAAe,EAAE,UAAU,aAAa;AACtD,YAAM,YAAY,MAAM,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,YAAY,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChG,YAAM,gBAAgB,WAAW,KAAK,IAAI,UAAU,MAAM;AAC1D,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,YAAY,MAAM,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,YAAY,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChG,YAAM,gBAAgB,WAAW,KAAK,IAAI,UAAU,MAAM;AAC1D,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,QAAQ,cAAc,mBAAmB;AAC/C,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,YAAM,CAAC,gBAAgB,gBAAgB,WAAW,IAAI,YAAY,EAAE,OAAO,EAAE,OAAO,WAAW,WAAW,WAAW,SAAS;AAC9H,YAAM,aAAa,WAAW,eAAe,aAAa,WAAW,cAAc;AACnF,YAAM,aAAa,WAAW,eAAe,aAAa,WAAW,cAAc;AACnF,YAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,YAAY,MAAM,WAAW,GAAG,SAAS,WAAW,CAAC;AAC/F,iBAAW,8BAA8B,SAAS;AAClD,iBAAW,8BAA8B,SAAS;AAClD,iBAAW,8BAA8B,UAAU;AACnD,iBAAW,8BAA8B,UAAU;AACnD,aAAO;AAAA,IACT,OAAO;AACL,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,YAAM,SAAS,SAAS,EAAE;AAC1B,YAAM,CAAC,YAAY,WAAW,IAAI,WAAW,EAAE,OAAO,EAAE,OAAO,OAAO,OAAO,MAAM;AACnF,aAAO,WAAW,eAAe,aAAa,QAAQ,UAAU;AAAA,IAClE;AAAA,EACF;AACF;AACA,SAAS,8BAA8B,KAAK;AAC1C,SAAO,CAAC,QAAQ,QAAQ,WAAW,WAAW,WAAW,cAAc;AACrE,UAAM,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AAClF,UAAM,aAAa,aAAa,cAAc,WAAW;AACzD,UAAM,aAAa,YAAY;AAC/B,UAAM,gBAAgB,aAAa,eAAe,WAAW;AAC7D,UAAM,iBAAiB,aAAa,uBAAuB,WAAW,UAAU;AAChF,UAAM,iBAAiB,aAAa,uBAAuB,WAAW,UAAU;AAChF,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,WAAW;AAChF,UAAM,iBAAiB,qBAAqB,iBAAiB,QAAQ,WAAW;AAChF,UAAM,QAAQ,qBAAqB,uBAAuB,WAAW,SAAS;AAC9E,UAAM,QAAQ,qBAAqB,uBAAuB,WAAW,SAAS;AAC9E,UAAM,QAAQ,OAAO;AACrB,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,UAAM,QAAQ,OAAO;AACrB,UAAM,WAAW,aAAa,eAAe,MAAM;AACnD,QAAI,eAAe,SAAS,eAAe,WAAW,GAAG;AACvD,eAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,cAAM,OAAO,KAAK,MAAM;AACxB,cAAM,OAAO,KAAK,MAAM;AACxB,cAAM,SAAS,IAAI,MAAM,OAAO,IAAI,MAAM,OAAO,IAAI,IAAI,MAAM,OAAO,IAAI,MAAM,OAAO,IAAI,EAAE;AAC7F,uBAAe,MAAM,OAAO;AAC5B,uBAAe,MAAM,OAAO;AAAA,MAC9B;AAAA,IACF,OAAO;AACL,eAAS,KAAK,GAAG,KAAK,eAAe,QAAQ,MAAM;AACjD,cAAM,MAAM,aAAa,WAAW,IAAI,YAAY,aAAa;AACjE,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,cAAM,OAAO,IAAI,MAAM,CAAC,KAAK;AAC7B,uBAAe,QAAQ,CAAC,MAAM,KAAK,KAAK,CAAC;AACzC,cAAM,SAAS,aAAa,WAAW,MAAM,OAAO,QAAQ;AAC5D,cAAM,WAAW,IAAI,MAAM,SAAS,IAAI,MAAM,SAAS,IAAI,IAAI,MAAM,SAAS,IAAI,MAAM,SAAS,IAAI,EAAE;AACvG,uBAAe,MAAM,SAAS;AAC9B,uBAAe,MAAM,SAAS;AAAA,MAChC;AAAA,IACF;AACA,WAAO,CAAC,gBAAgB,gBAAgB,WAAW;AAAA,EACrD;AACF;AAGA,IAAI,UAAU,6BAA6B,CAAC,GAAG,MAAM,IAAI,CAAC;AAC1D,IAAI,iBAAiB,8BAA8B,CAAC,OAAO,OAAO,OAAO,UAAU;AACjF,SAAO,EAAE,MAAM,QAAQ,OAAO,MAAM,QAAQ,MAAM;AACpD,CAAC;AACD,IAAI,OAAO,iBAAiB,KAAK,SAAS,cAAc;AACxD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,OAAO,aAAa,cAAc,cAAcG,OAAM;AAC1E,QAAM,cAAc,aAAa,cAAc,YAAY;AAC3D,QAAM,UAAU,aAAa,oBAAoBA,OAAM,YAAY;AACnE,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,UAAM,QAAQ,MAAM;AACpB,QAAI,QAAQ,GAAG;AACb,YAAM,IAAI,MAAM,+BAA+B;AAAA,IACjD;AACA,QAAI,SAASA,OAAM;AACjB;AAAA,IACF;AACA,QAAI,cAAc,GAAG;AACnB,cAAQ,UAAU,YAAY;AAAA,IAChC,OAAO;AACL,cAAQ,UAAU;AAAA,IACpB;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,MAAM,YAAYA,OAAM,eAAe,OAAO;AACxE,QAAM,UAAU,KAAK,MAAM;AAC3B,QAAM,UAAU,KAAK,MAAM;AAC3B,QAAM,SAAS,OAAO,CAAC,SAASA,KAAI,GAAG,WAAW,KAAK;AACvD,WAAS,KAAK,GAAG,KAAK,SAAS,MAAM;AACnC,aAAS,IAAI,GAAG,IAAI,SAAS,KAAK;AAChC,YAAM,QAAQ,KAAK,IAAI,IAAI,CAAC;AAC5B,UAAI,QAAQ,GAAG;AACb,cAAM,IAAI,MAAM,+BAA+B;AAAA,MACjD;AACA,UAAI,SAASA,OAAM;AACjB;AAAA,MACF;AACA,UAAI,cAAc;AAChB,eAAO,IAAI,GAAG,IAAI,KAAK;AAAA,MACzB,OAAO;AACL,YAAI,WAAW,OAAO,GAAG;AACvB,iBAAO,IAAI,OAAO,IAAI,IAAI,KAAK,IAAI,WAAW,IAAI,IAAI,CAAC,GAAG,IAAI,KAAK;AAAA,QACrE,OAAO;AACL,iBAAO,IAAI,OAAO,IAAI,IAAI,KAAK,IAAI,GAAG,IAAI,KAAK;AAAA,QACjD;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,sBAAsB,KAAK;AAClC,SAAO,CAAC,QAAQ,OAAO,UAAU;AAC/B,UAAM,YAAY,aAAa,uBAAuB,OAAO,OAAO,MAAM;AAC1E,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,gBAAU,MAAM,IAAI,OAAO,KAAK,KAAK;AAAA,IACvC;AACA,WAAO;AAAA,EACT;AACF;AAGA,SAAS,gBAAgB,MAAM,KAAK,OAAO;AACzC,SAAO,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AAC/C,UAAM,EAAE,EAAE,IAAI;AACd,qBAAiB,GAAG,IAAI;AACxB,QAAI,EAAE,UAAU,YAAY,UAAU,UAAU;AAC9C,YAAM,IAAI,MAAM,sDAAsD;AAAA,IACxE;AACA,UAAM,aAAa;AACnB,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,UAAM,SAAS,SAAS,EAAE;AAC1B,UAAM,YAAY,aAAa,kBAAkB,QAAQ,KAAK;AAC9D,aAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,gBAAU,MAAM,IAAI,OAAO,KAAK,KAAK;AAAA,IACvC;AACA,WAAO,WAAW,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,EAC7D;AACF;AACA,SAAS,wBAAwB,MAAM,WAAW,OAAO;AACvD,SAAO,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AAC/C,UAAM,EAAE,EAAE,IAAI;AACd,qBAAiB,GAAG,IAAI;AACxB,QAAI,EAAE,UAAU,YAAY,UAAU,UAAU;AAC9C,YAAM,IAAI,MAAM,sDAAsD;AAAA,IACxE;AACA,UAAM,aAAa;AACnB,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,SAAS,SAAS,EAAE;AAC1B,UAAM,YAAY,UAAU,QAAQ,QAAQ,KAAK;AACjD,WAAO,WAAW,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,EAC7D;AACF;AAGA,IAAI,WAAW,sBAAsB,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AAC1D,IAAI,QAAQ,wBAAwB,MAAM,QAAQ;AAClD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,QAAQ,UAAU,OAAO,cAAc;AACzD,QAAM,UAAU,aAAa,kBAAkB,OAAO,aAAa,cAAc,QAAQ,CAAC;AAC1F,MAAI,gBAAgB,UAAU,UAAU;AACtC,QAAI,SAAS;AACb,WAAO,QAAQ,CAAC,WAAW;AACzB,YAAMA,QAAO,aAAa,cAAc,OAAO,KAAK;AACpD,cAAQ,IAAI,OAAO,MAAM,MAAM;AAC/B,gBAAUA;AAAA,IACZ,CAAC;AAAA,EACH,OAAO;AACL,QAAI,YAAY;AAChB,WAAO,QAAQ,CAAC,WAAW;AACzB,YAAM,cAAc,UAAU,WAAW,qBAAqB,uBAAuB,OAAO,IAAI,IAAI,OAAO;AAC3G,UAAI,OAAO;AACX,eAAS,MAAM,GAAG,MAAM,OAAO,MAAM,IAAI,EAAE,KAAK;AAC9C,cAAM,SAAS,MAAM,SAAS,KAAK;AACnC,iBAAS,MAAM,GAAG,MAAM,OAAO,MAAM,IAAI,EAAE,KAAK;AAC9C,kBAAQ,SAAS,OAAO,YAAY;AAAA,QACtC;AAAA,MACF;AACA,mBAAa,OAAO,MAAM;AAAA,IAC5B,CAAC;AAAA,EACH;AACA,SAAO;AACT;AAGA,IAAI,YAAY,6BAA6B,CAAC,GAAG,MAAM,MAAM,IAAI,IAAI,CAAC;AACtE,IAAI,SAAS,iBAAiB,OAAO,WAAW,MAAM,MAAM;AAC5D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,sBAAsB,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACxD,IAAI,OAAO,wBAAwB,KAAK,SAAS,SAAS;AAC1D,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,sBAAsB,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC5D,IAAI,SAAS,wBAAwB,OAAO,SAAS;AACrD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,sBAAsB,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC5D,IAAI,SAAS,wBAAwB,OAAO,SAAS;AACrD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,aAAa,WAAW,OAAO,WAAW,WAAW,WAAWa,UAAS,aAAa,YAAY;AACtH,QAAM,SAAS,OAAO,CAAC,WAAW,SAAS,GAAG,KAAK;AACnD,WAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,UAAMH,SAAQ,CAAC;AACf,QAAI,eAAe;AACnB,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,YAAM,MAAM,YAAY,KAAK,YAAY;AACzC,sBAAgB,MAAMG,SAAQ;AAC9B,MAAAH,OAAM,KAAK,GAAG;AAAA,IAChB;AACA,QAAI,eAAe,KAAK,gBAAgB,aAAa,WAAW;AAC9D,YAAM,IAAI,MAAM,oBAAoBA,8BAA6B,aAAa;AAAA,IAChF;AACA,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,aAAO,OAAO,KAAK,YAAY,KAAK,UAAU,IAAI,GAAG,UAAU,WAAW,eAAe,YAAY,CAAC,CAAC;AAAA,IACzG;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,aAAa,MAAM,YAAY,oBAAoB;AAC1D,QAAM,SAAS,OAAO,oBAAoB,KAAK,KAAK;AACpD,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,EAAE,IAAI;AACvC,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,cAAc,OAAO,MAAM;AACjC,UAAM,WAAW,YAAY;AAC7B,UAAM,aAAa,YAAY;AAC/B,UAAM,eAAe,WAAW,WAAW,CAAC,UAAU,UAAU,CAAC;AACjE,gBAAY,KAAK,WAAW,OAAO;AACnC,UAAM,gBAAgB,KAAK,WAAW,WAAW;AACjD,QAAI,KAAK,iBAAiB,gBAAgB,KAAK,OAAO,QAAQ;AAC5D,aAAO,OAAO,MAAM,KAAK,OAAO;AAAA,IAClC;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,cAAc,6BAA6B,CAAC,GAAG,MAAM,IAAI,IAAI,IAAI,CAAC;AACtE,IAAI,WAAW,iBAAiB,SAAS,aAAa,MAAM,MAAM;AAClE,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,6BAA6B,CAAC,GAAG,MAAM,KAAK,IAAI,IAAI,CAAC;AAC5E,IAAI,gBAAgB,iBAAiB,cAAc,kBAAkB,MAAM,MAAM;AACjF,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,6BAA6B,CAAC,GAAG,MAAM,IAAI,IAAI,IAAI,CAAC;AACnE,IAAI,QAAQ,iBAAiB,MAAM,UAAU,MAAM,MAAM;AACzD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,6BAA6B,CAAC,GAAG,MAAM,KAAK,IAAI,IAAI,CAAC;AACzE,IAAI,aAAa,iBAAiB,WAAW,eAAe,MAAM,MAAM;AACxE,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,OAAO,MAAM,KAAK;AACtC,QAAM,SAAS,OAAO,UAAU,MAAM;AACtC,QAAM,SAAS,aAAa,oBAAoB,KAAK,SAAS;AAC9D,SAAO,KAAK;AACZ,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,WAAO,MAAM,OAAO,KAAK,KAAK;AAAA,EAChC;AACA,SAAO;AACT;AAGA,IAAI,UAAU,sBAAsB,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACxD,IAAI,OAAO,wBAAwB,KAAK,OAAO;AAC/C,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,OAAO,YAAY,UAAU,OAAO;AACnD,QAAM,OAAO,aAAa,uBAAuB,OAAO,aAAa,cAAc,QAAQ,CAAC;AAC5F,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO,MAAM;AACjB,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,UAAI,OAAO,MAAM,KAAK,KAAK,QAAQ,MAAM;AACvC,eAAO;AAAA,MACT;AAAA,IACF;AACA,SAAK,MAAM;AAAA,EACb;AACA,SAAO;AACT;AAGA,IAAI,cAAc,6BAA6B,CAAC,QAAQ,WAAW,KAAK,IAAI,QAAQ,MAAM,CAAC;AAC3F,IAAI,WAAW,iBAAiB,SAAS,WAAW;AACpD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,6BAA6B,CAAC,QAAQ,WAAW,KAAK,IAAI,QAAQ,MAAM,CAAC;AAC3F,IAAI,WAAW,iBAAiB,SAAS,WAAW;AACpD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,6BAA6B,CAAC,QAAQ,WAAW,SAAS,MAAM;AACnF,IAAI,sBAAsB,8BAA8B,CAAC,OAAO,OAAO,OAAO,UAAU;AACtF,SAAO;AAAA,IACL,MAAM,QAAQ,QAAQ,QAAQ;AAAA,IAC9B,MAAM,QAAQ,QAAQ,QAAQ;AAAA,EAChC;AACF,CAAC;AACD,IAAI,YAAY,iBAAiB,UAAU,cAAc,mBAAmB;AAC5E,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,OAAO,QAAQ,QAAQ;AACtC,QAAM,WAAW,aAAa,kBAAkB,IAAI,MAAM;AAC1D,SAAO,aAAa,CAAC,GAAG,QAAQ,UAAU,OAAO,MAAM;AACzD;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,mBAAiB,GAAG,KAAK;AACzB,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,CAAC,KAAK,QAAQ,IAAI,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AACvD,SAAO,SAAS,eAAe,UAAU,EAAE,OAAO,GAAG;AACvD;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,6BAA6B,CAAC,GAAG,MAAM,MAAM,IAAI,IAAI,CAAC;AACzE,IAAI,YAAY,iBAAiB,UAAU,cAAc,MAAM,MAAM;AACrE,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,OAAO,QAAQ,OAAO,MAAM,UAAU;AAC3D,QAAM,QAAQ,OAAO;AACrB,QAAM,QAAQ,aAAa,cAAc,MAAM;AAC/C,QAAM,WAAW,aAAa,eAAe,MAAM;AACnD,QAAM,aAAa,aAAa,eAAe,QAAQ;AACvD,QAAM,SAAS,aAAa,uBAAuB,OAAO,aAAa,cAAc,QAAQ,CAAC;AAC9F,WAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,UAAM,MAAM,aAAa,WAAW,IAAI,OAAO,QAAQ;AACvD,UAAM,SAAS,IAAI,MAAM,IAAI,MAAM;AACnC,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,aAAO,MAAM,IAAI,KAAK;AAAA,IACxB;AACA,UAAM,WAAW,aAAa,WAAW,QAAQ,OAAO,UAAU;AAClE,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,SAAO;AACT;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,WAAW;AAC/B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,IAAI,MAAM,KAAK;AAChC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,EAAE,MAAM,KAAK;AAAA,EAC9B;AACA,QAAM,SAAS,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC3C,QAAM,SAAS,cAAc,QAAQ,EAAE,OAAO,EAAE,OAAO,MAAM,QAAQ;AACrE,QAAM,SAAS,SAAS,MAAM,QAAQ,UAAU,EAAE,KAAK;AACvD,SAAO,EAAE,QAAQ,OAAO,UAAU,OAAO,EAAE,MAAM;AACnD;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,QAAQ,QAAQ,OAAO,eAAe;AACtD,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,QAAQ,aAAa;AACpG,QAAM,WAAW,WAAW,QAAQ,OAAO;AAC3C,QAAM,UAAU,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,QAAQ;AAC/F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,UAAM,SAAS,KAAK;AACpB,QAAI,QAAQ;AACZ,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,eAAS,MAAM,SAAS;AAAA,IAC1B;AACA,YAAQ,MAAM;AAAA,EAChB;AACA,SAAO,EAAE,SAAS,UAAU,SAAS;AACvC;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,MAAM;AAC1B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACtD,QAAM,cAAc,qBAAqB,mBAAmB,MAAM,KAAK;AACvE,MAAI,gBAAgB;AACpB,MAAI,YAAY;AAChB,QAAM,0BAA0B,CAAC;AACjC,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AACzF,4BAAwB,KAAK,SAAS;AACtC,oBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,KAAK;AAAA,EACnF;AACA,QAAM,QAAQ,SAAS,KAAK,IAAI,UAAU,MAAM,EAAE;AAClD,QAAM,EAAE,SAAS,UAAU,SAAS,IAAI,SAAS,UAAU,OAAO,UAAU,OAAO,OAAO,aAAa;AACvG,MAAI,cAAc;AAClB,MAAI,UAAU;AACZ,kBAAc,qBAAqB,qBAAqB,UAAU,IAAI;AAAA,EACxE;AACA,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO,SAAS,eAAe,aAAa,UAAU,OAAO;AAC/D;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,qBAAqB;AAC7C,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,OAAO,YAAY,QAAQ,aAAa,aAAa,cAAc,mBAAmB,oBAAoB,0BAA0B,yBAAyB;AACvK,SAAK,QAAQ;AACb,SAAK,aAAa;AAClB,SAAK,SAAS;AACd,SAAK,cAAc;AACnB,SAAK,cAAc;AACnB,SAAK,eAAe;AACpB,SAAK,oBAAoB;AACzB,SAAK,qBAAqB;AAC1B,SAAK,2BAA2B;AAChC,SAAK,oBAAoB,qBAAqB,2BAA2B,uBAAuB;AAChG,SAAK,aAAa,qBAAqB,cAAc,KAAK,iBAAiB;AAAA,EAC7E;AAAA,EACA,+BAA+B,WAAW;AACxC,QAAI,KAAK,kBAAkB,OAAO,kBAAkB,gBAAgB;AAClE,aAAO,KAAK,kBAAkB,YAAY;AAAA,IAC5C,OAAO;AACL,aAAO,KAAK,kBAAkB;AAAA,IAChC;AAAA,EACF;AAAA,EACA,sBAAsB,WAAW;AAC/B,QAAI,KAAK,kBAAkB,OAAO,kBAAkB,gBAAgB;AAClE,aAAO,KAAK,mBAAmB,YAAY;AAAA,IAC7C,OAAO;AACL,aAAO,KAAK,mBAAmB;AAAA,IACjC;AAAA,EACF;AAAA,EACA,YAAY,WAAW;AACrB,UAAM,qBAAqB,KAAK,sBAAsB,YAAY,CAAC;AACnE,YAAQ,KAAK,+BAA+B,YAAY,CAAC;AAAA,WAClD,kBAAkB;AACrB,eAAO,uBAAuB,sBAAsB,kBAAkB;AAAA,WACnE,kBAAkB;AACrB,eAAO,uBAAuB,oBAAoB,kBAAkB;AAAA;AAEpE,cAAM,IAAI,MAAM,gCAAgC,kBAAkB,KAAK,+BAA+B,YAAY,CAAC,IAAI;AAAA;AAAA,EAE7H;AAAA,EACA,OAAO,oBAAoB,UAAU;AACnC,UAAM,eAAe,SAAS;AAC9B,QAAI,iBAAiB,KAAK,iBAAiB,GAAG;AAC5C,aAAO;AAAA,IACT;AACA,QAAI,WAAW;AACf,aAAS,KAAK,GAAG,KAAK,eAAe,GAAG,EAAE,IAAI;AAC5C,YAAM,eAAe,SAAS,KAAK,KAAK,SAAS;AACjD,UAAI,eAAe,UAAU;AAC3B,mBAAW;AAAA,MACb;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,sBAAsB,aAAa;AACxC,UAAM,cAAc,YAAY;AAChC,QAAI,gBAAgB,GAAG;AACrB,aAAO;AAAA,IACT;AACA,QAAI,kBAAkB;AACtB,QAAI,uBAAuB,YAAY;AACvC,QAAI,WAAW;AACf,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,QAAQ,YAAY;AAC1B,UAAI,UAAU,sBAAsB;AAClC,+BAAuB;AACvB,mBAAW,KAAK,IAAI,KAAK,iBAAiB,QAAQ;AAClD,0BAAkB;AAAA,MACpB;AAAA,IACF;AACA,WAAO,KAAK,IAAI,cAAc,iBAAiB,QAAQ;AAAA,EACzD;AAAA,EACA,sBAAsB,IAAI,QAAQ,YAAY,MAAM;AAClD,QAAI,OAAO,WAAW,GAAG;AACvB,UAAI,GAAG,OAAO,IAAI;AAChB,eAAO,CAAC;AAAA,MACV;AACA,YAAM,IAAI,MAAM,gFAAgF;AAAA,IAClG;AACA,WAAO,UAAU,IAAI,SAAS;AAAA,EAChC;AAAA,EACA,oBAAoB,UAAU;AAC5B,UAAM,aAAa,KAAK;AACxB,UAAM,oBAAoB,KAAK;AAC/B,yBAAqB,0BAA0B,mBAAmB,UAAU;AAC5E,UAAM,QAAQ,KAAK,sBAAsB,KAAK,OAAO,KAAK,UAAU;AACpE,UAAM,cAAc,qBAAqB,kCAAkC,KAAK,YAAY,OAAO,UAAU;AAC7G,UAAM,SAAS;AACf,QAAI,OAAO,KAAK,GAAG;AACjB,aAAO,KAAK;AAAA,IACd;AACA,aAAS,KAAK,GAAG,MAAM,KAAK,YAAY,EAAE,IAAI;AAC5C,UAAI,OAAO,MAAM,GAAG;AAClB,eAAO,MAAM,KAAK,YAAY,EAAE;AAAA,MAClC;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,gCAAgC,gBAAgB,uBAAuB,sBAAsB;AAC3F,UAAM,eAAe,KAAK,IAAI,gBAAgB,oBAAoB;AAClE,UAAM,SAAS,CAAC;AAChB,QAAI,qBAAqB;AACzB,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI,sBAAsB,uBAAuB;AACrF,aAAO,KAAK,kBAAkB;AAAA,IAChC;AACA,aAAS,KAAK,cAAc,KAAK,gBAAgB,EAAE,IAAI;AACrD,aAAO,KAAK,EAAE;AAAA,IAChB;AACA,iBAAa,OAAO,OAAO,WAAW,gBAAgB,MAAM,yDAAyD;AACrH,WAAO;AAAA,EACT;AAAA,EACA,6BAA6B,UAAU,mBAAmB,uBAAuBW,aAAY;AAC3F,UAAM,eAAe,SAAS;AAC9B,UAAM,SAAS,CAAC;AAChB,aAAS,KAAK,GAAG,KAAK,eAAe,GAAG,EAAE,IAAI;AAC5C,YAAM,YAAY,SAAS,KAAK,KAAK,SAAS;AAC9C,UAAI,aAAa,KAAK,IAAIA,aAAY,SAAS;AAC/C,UAAI,2BAA2B,kBAAkB;AACjD,UAAI,6BAA6B,IAAI;AACnC,qBAAa;AAAA,MACf;AACA,eAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,eAAO,KAAK,wBAAwB;AACpC,oCAA4B;AAAA,MAC9B;AACA,eAAS,IAAI,GAAG,IAAI,YAAY,YAAY,EAAE,GAAG;AAC/C,eAAO,KAAK,EAAE;AAAA,MAChB;AAAA,IACF;AACA,QAAI,eAAe,KAAK,OAAO,WAAW,SAAS,eAAe,IAAI;AACpE,YAAM,IAAI,MAAM,yBAAyB;AAAA,IAC3C;AACA,WAAO;AAAA,EACT;AAAA,EACA,+BAA+B,aAAa,mBAAmB,uBAAuBA,aAAY;AAChG,UAAM,YAAY,YAAY;AAC9B,UAAM,SAAS,CAAC;AAChB,QAAI,cAAc,GAAG;AACnB,aAAO,CAAC;AAAA,IACV;AACA,QAAI,sBAAsB;AAC1B,QAAI,oBAAoB,YAAY;AACpC,QAAI,qBAAqB,kBAAkB,QAAQ;AACjD,YAAM,IAAI,MAAM,yBAAyB,6CAA6C,kBAAkB,QAAQ;AAAA,IAClH;AACA,QAAI,qBAAqB,kBAAkB;AAC3C,WAAO,KAAK,kBAAkB;AAC9B,aAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,YAAM,iBAAiB,YAAY;AACnC,UAAI,mBAAmB,mBAAmB;AACxC,YAAI,sBAAsB,GAAG;AAC3B,YAAE;AACF,cAAI,sBAAsBA,aAAY;AACpC,kCAAsB;AAAA,UACxB,OAAO;AACL,iCAAqB;AAAA,UACvB;AAAA,QACF;AAAA,MACF,OAAO;AACL,8BAAsB;AACtB,4BAAoB;AACpB,YAAI,kBAAkB,kBAAkB,QAAQ;AAC9C,gBAAM,IAAI,MAAM,sBAAsB,yCAAyC,kBAAkB,QAAQ;AAAA,QAC3G;AACA,6BAAqB,kBAAkB;AAAA,MACzC;AACA,aAAO,KAAK,kBAAkB;AAAA,IAChC;AACA,QAAI,OAAO,WAAW,YAAY,QAAQ;AACxC,YAAM,IAAI,MAAM,kBAAkB;AAAA,IACpC;AACA,WAAO;AAAA,EACT;AAAA,EACA,qBAAqB,WAAW,mBAAmB,uBAAuBA,aAAY;AACpF,UAAM,qBAAqB,KAAK,sBAAsB,SAAS;AAC/D,UAAM,gBAAgB,KAAK,+BAA+B,SAAS;AACnE,YAAQ;AAAA,WACD,kBAAkB;AACrB,eAAO,KAAK,+BAA+B,oBAAoB,mBAAmB,uBAAuBA,WAAU;AAAA,WAChH,kBAAkB;AACrB,YAAI,mBAAmB,SAAS,IAAI,kBAAkB,QAAQ;AAC5D,gBAAM,IAAI,MAAM,mDAAmD,mBAAmB,SAAS,OAAO,kBAAkB,QAAQ;AAAA,QAClI;AACA,eAAO,KAAK,6BAA6B,oBAAoB,mBAAmB,uBAAuBA,WAAU;AAAA;AAEjH,cAAM,IAAI,MAAM,+BAA+B,kBAAkB,gBAAgB;AAAA;AAAA,EAEvF;AAAA,EACA,wBAAwB;AACtB,UAAM,uBAAuB,KAAK,mBAAmB;AACrD,QAAI,KAAK,kBAAkB,WAAW,GAAG;AACvC,YAAM,IAAI,MAAM,+BAA+B;AAAA,IACjD;AACA,UAAM,qBAAqB,KAAK,kBAAkB;AAClD,YAAQ;AAAA,WACD,kBAAkB;AACrB,eAAO,qBAAqB;AAAA,WACzB,kBAAkB;AACrB,cAAM,IAAI,MAAM,gDAAgD;AAAA,WAC7D,kBAAkB;AACrB,eAAO,KAAK,yBAAyB,GAAG,KAAK;AAAA;AAE7C,cAAM,IAAI,MAAM,sBAAsB,kBAAkB,qBAAqB;AAAA;AAAA,EAEnF;AAAA,EACA,UAAU;AACR,UAAM,uBAAuB,KAAK,mBAAmB;AACrD,QAAI,qBAAqB,UAAU,GAAG;AACpC,YAAM,IAAI,MAAM,sEAAsE;AAAA,IACxF;AACA,UAAM,iBAAiB,KAAK,sBAAsB;AAClD,UAAMA,cAAa,KAAK,oBAAoB,cAAc;AAC1D,UAAM,aAAa,IAAI,MAAM,KAAK,aAAa,CAAC;AAChD,eAAW,WAAW,SAAS,KAAK;AACpC,aAAS,KAAK,WAAW,SAAS,GAAG,MAAM,GAAG,EAAE,IAAI;AAClD,iBAAW,MAAM,WAAW,KAAK,KAAKA,YAAW,KAAK;AAAA,IACxD;AACA,UAAM,cAAc,UAAUA,aAAY,KAAK;AAC/C,UAAM,eAAe,aAAa,kBAAkB,KAAK,aAAa,aAAa,cAAc,WAAW,CAAC;AAC7G,UAAM,WAAW,WAAW,KAAKA,YAAW;AAC5C,QAAI,WAAW,GAAG;AAChB,UAAI,cAAc,KAAK,gCAAgC,gBAAgB,WAAW,IAAIA,YAAW,EAAE;AACnG,eAAS,KAAK,GAAG,MAAM,KAAK,YAAY,EAAE,IAAI;AAC5C,cAAM,iBAAiB,KAAK,qBAAqB,KAAK,GAAG,aAAa,WAAW,KAAKA,YAAW,GAAG;AACpG,sBAAc;AAAA,MAChB;AACA,WAAK,UAAU,KAAK,YAAY,aAAa,cAAc,WAAW;AAAA,IACxE;AACA,WAAO,CAAC,aAAa,YAAY;AAAA,EACnC;AAAA,EACA,UAAU,YAAY,aAAa,cAAc,aAAa;AAC5D,QAAI,aAAa,WAAW,GAAG;AAC7B;AAAA,IACF;AACA,UAAM,aAAa,KAAK;AACxB,UAAM,aAAa;AACnB,QAAI,eAAe,YAAY,MAAM;AACrC,mBAAe,aAAa,MAAM,aAAa,CAAC;AAChD,UAAM,mBAAmB,aAAa,cAAc,YAAY;AAChE,UAAM,kBAAkB,YAAY;AACpC,QAAI,eAAe,KAAK;AACxB,QAAI,aAAa,WAAW,oBAAoB,aAAa,WAAW,GAAG;AACzE,YAAM,WAAW,KAAK;AACtB,WAAK,MAAM;AACT,cAAM,qBAAqB,QAAQ,cAAc,QAAQ;AACzD,cAAM,eAAe,YAAY,oBAAoB,YAAY;AACjE,uBAAe,aAAa,SAAS;AAAA,MACvC,CAAC;AAAA,IACH;AACA,QAAI,WAAW;AACf,QAAI,WAAW;AACf,QAAI,SAAS;AACb,aAAS,OAAO,GAAG,QAAQ,iBAAiB,EAAE,MAAM;AAClD,UAAI,OAAO,OAAO,kBAAkB,YAAY,QAAQ;AACxD,UAAI,SAAS,QAAQ;AACnB,UAAE;AACF;AAAA,MACF;AACA,UAAI,WAAW,QAAQ;AACrB,cAAM,MAAM,WAAW,SAAS,WAAW,gBAAgB;AAC3D,cAAM,MAAM,WAAW,SAAS,WAAW,gBAAgB;AAC3D,cAAM,SAAS,SAAS,YAAY;AACpC,kBAAU,KAAK,KAAK,KAAK;AAAA,MAC3B;AACA,UAAI,QAAQ,iBAAiB;AAC3B,cAAMA,cAAa,aAAa;AAChC,eAAO,KAAK,MAAMA,cAAa,gBAAgB;AAAA,MACjD;AACA,UAAI,OAAO,QAAQ;AACjB,YAAI,KAAK,aAAa,WAAW,GAAG;AAClC,qBAAW,SAAS,SAAS,kBAAkB,OAAO,gBAAgB,EAAE,KAAK,KAAK,aAAa,EAAE;AACjG,mBAAS;AAAA,QACX,OAAO;AACL,iBAAO,OAAO,QAAQ;AACpB,kBAAM,MAAM,WAAW,MAAM,SAAS,gBAAgB;AACtD,sBAAU,KAAK,cAAc,gBAAgB;AAC7C,cAAE;AAAA,UACJ;AAAA,QACF;AAAA,MACF;AACA,UAAI,OAAO,GAAG;AACZ,mBAAW,OAAO;AAClB,mBAAW;AAAA,MACb,OAAO;AACL,mBAAW;AACX,mBAAW;AACX,iBAAS,WAAW;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,UAAU,KAAK,KAAKrB,OAAM;AACjC,WAAS,KAAK,GAAG,KAAKA,OAAM,MAAM;AAChC,QAAI,MAAM,IAAI;AAAA,EAChB;AACF;AACA,SAAS,UAAU,OAAO,WAAW;AACnC,QAAM,MAAM,CAAC;AACb,WAAS,OAAO,OAAO;AACrB,QAAI,MAAM,GAAG;AACX,UAAI,CAAC,WAAW;AACd,cAAM,IAAI,MAAM,aAAa,kBAAkB;AAAA,MACjD;AACA,UAAI,MAAM,IAAI;AACZ,cAAM,IAAI,MAAM,aAAa,mBAAmB;AAAA,MAClD;AACA,YAAM;AAAA,IACR;AACA,QAAI,KAAK,GAAG;AAAA,EACd;AACA,SAAO;AACT;AACA,SAAS,yBAAyB,OAAO,aAAa,QAAQ,aAAa,aAAa,cAAc,mBAAmB,oBAAoB,0BAA0B,mBAAmB;AACxL,SAAO,IAAI,uBAAuB,OAAO,aAAa,QAAQ,aAAa,aAAa,cAAc,mBAAmB,oBAAoB,0BAA0B,iBAAiB,EAAE,QAAQ;AACpM;AAGA,SAAS,UAAU,OAAO,MAAM,OAAO,OAAO;AAC5C,QAAM,gBAAgB,UAAU;AAChC,QAAM,8BAA8B,QAAQ,QAAQ,QAAQ;AAC5D,QAAM,8BAA8B,OAAO,SAAS,QAAQ;AAC5D,MAAI,iBAAiB,+BAA+B,6BAA6B;AAC/E,WAAO,aAAa,oBAAoB,GAAG,KAAK;AAAA,EAClD;AACA,QAAM,cAAc,KAAK,IAAI,KAAK,MAAM,OAAO,SAAS,KAAK,CAAC;AAC9D,QAAM,SAAS,aAAa,oBAAoB,aAAa,KAAK;AAClE,MAAI,OAAO,SAAS,UAAU,GAAG;AAC/B,YAAQ;AAAA,EACV;AACA,SAAO,KAAK;AACZ,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,WAAO,MAAM,OAAO,KAAK,KAAK;AAAA,EAChC;AACA,SAAO;AACT;AAGA,IAAI,YAAY,sBAAsB,CAAC,OAAO,IAAI,KAAK,KAAK,EAAE,CAAC;AAC/D,IAAI,SAAS,wBAAwB,OAAO,SAAS;AACrD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,SAAS,SAAS,OAAOqB,aAAY,WAAW,YAAY,WAAWR,UAAS,cAAc,gBAAgB;AACjI,QAAM,eAAe,CAACQ,cAAa,WAAW,SAAS;AACvD,QAAM,cAAc,QAAQ;AAC5B,QAAM,cAAc,QAAQ;AAC5B,MAAIA,gBAAe,GAAG;AACpB,WAAO,OAAO,OAAO,QAAQ,KAAK;AAAA,EACpC;AACA,QAAM,SAAS,OAAO,cAAc,QAAQ,KAAK;AACjD,MAAI,OAAO,iBAAiB,UAAU;AACpC,WAAO,OAAO,KAAK,YAAY;AAAA,EACjC,WAAW,OAAO,iBAAiB,UAAU;AAC3C,WAAO,OAAO,KAAK,YAAY;AAAA,EACjC,WAAW,OAAO,iBAAiB,WAAW;AAC5C,WAAO,OAAO,KAAK,CAAC,YAAY;AAAA,EAClC;AACA,WAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,UAAMX,SAAQ,CAAC;AACf,QAAI,eAAe;AACnB,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,YAAM,MAAM,YAAY,KAAK,YAAY;AACzC,MAAAA,OAAM,KAAK,GAAG;AACd,sBAAgB,MAAMG,SAAQ;AAAA,IAChC;AACA,QAAI,eAAe,KAAK,gBAAgBQ,cAAa,WAAW;AAC9D,YAAM,IAAI,MAAM,oBAAoBX,8BAA6B,OAAO;AAAA,IAC1E;AACA,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,UAAI,gBAAgB;AAClB,eAAO,OAAO,eAAe,YAAY,MAAM,YAAY,KAAK,YAAY;AAAA,MAC9E,OAAO;AACL,eAAO,OAAO,eAAe,YAAY,KAAK,QAAQ,SAAS,IAAI,YAAY,KAAK,YAAY,KAAK,YAAY;AAAA,MACnH;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,cAAc,sBAAsB,CAAC,OAAO,KAAK,IAAI,KAAK,IAAI,CAAC,EAAE,EAAE;AACvE,IAAI,WAAW,gBAAgB,SAAS,CAAC,OAAO,KAAK,IAAI,KAAK,IAAI,CAAC,EAAE,EAAE;AACvE,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM,OAAOV,OAAM,OAAO,OAAO;AAClD,QAAM,cAAc,mBAAmB,iBAAiB,OAAO,OAAOA,KAAI;AAC1E,QAAM,SAAS,aAAa,cAAcA,KAAI;AAC9C,QAAM,WAAW,aAAa,eAAe,KAAK;AAClD,MAAI,aAAa;AACf,UAAM,aAAa,mBAAmB,kBAAkB,OAAO,QAAQ;AACvE,QAAI,UAAU,UAAU;AACtB,aAAO,KAAK,MAAM,YAAY,aAAa,MAAM;AAAA,IACnD;AACA,WAAO,KAAK,SAAS,YAAY,aAAa,MAAM;AAAA,EACtD;AACA,QAAM,cAAc,UAAU,WAAW,qBAAqB,uBAAuB,IAAI,IAAI;AAC7F,QAAM,QAAQ,OAAO,OAAO,OAAO,WAAW;AAC9C,QAAM,SAAS,OAAOA,OAAM,KAAK;AACjC,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,EAAE,IAAI;AACvC,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,QAAQ,OAAO,IAAI,CAAC,KAAK,MAAM,MAAM,MAAM,EAAE;AACnD,WAAO,IAAI,MAAM,IAAI,GAAG,KAAK,GAAG,GAAG,MAAM;AAAA,EAC3C;AACA,MAAI,UAAU,UAAU;AACtB,WAAO,qBAAqB,uBAAuB,OAAO,MAAM;AAAA,EAClE;AACA,SAAO,OAAO;AAChB;AACA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,MAAAA,MAAK,IAAI;AACxB,mBAAiB,GAAG,OAAO;AAC3B,QAAM,CAAC,QAAQ,KAAK,IAAI,mBAAmB,iBAAiB,GAAG,OAAOA,KAAI;AAC1E,qBAAmB,kBAAkB,GAAG,QAAQ,KAAK;AACrD,QAAM,OAAO,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AACzC,QAAM,UAAU,UAAU,MAAM,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AAC/D,SAAO,SAAS,eAAe,OAAO,EAAE,OAAO,OAAO;AACxD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,SAAS,cAAc,cAAc,QAAQ,aAAa,YAAY,cAAc;AACnH,QAAM,eAAe,aAAa;AAClC,QAAM,YAAY,WAAW;AAC7B,QAAM,oBAAoB,IAAI,MAAM,SAAS;AAC7C,QAAM,kBAAkB,IAAI,MAAM,YAAY;AAC9C,QAAM,OAAO,aAAa;AAC1B,MAAI,cAAc,GAAG;AACnB,QAAI,iBAAiB,GAAG;AACtB,YAAM,IAAI,MAAM,qBAAqB,gDAAgD,YAAY,CAAC;AAAA,IACpG;AACA,UAAM,gBAAgB,aAAa,kBAAkB,cAAc,CAAC;AACpE,UAAM,eAAe,aAAa,kBAAkB,aAAa,CAAC;AAClE,WAAO;AAAA,MACL;AAAA,MACA,CAAC,GAAG,IAAI;AAAA,MACR;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACA,MAAI,iBAAiB;AACrB,MAAI,iBAAiB;AACrB,QAAM,YAAY,IAAI,MAAM,SAAS,EAAE,KAAK,CAAC;AAC7C,WAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAM,MAAM,QAAQ,KAAK;AACzB,QAAI,MAAM,GAAG;AACX,YAAM,IAAI,MAAM,qBAAqB,gDAAgD,IAAI,GAAG,CAAC;AAAA,IAC/F;AACA,QAAI,OAAO,WAAW;AACpB,YAAM,IAAI,MAAM,qBAAqB,kDAAkD,IAAI,KAAK,SAAS,CAAC;AAAA,IAC5G;AACA,MAAE,UAAU;AACZ,qBAAiB,kBAAkB,OAAO;AAC1C,qBAAiB;AAAA,EACnB;AACA,MAAI,cAAc;AAClB,WAAS,MAAM,GAAG,MAAM,WAAW,EAAE,KAAK;AACxC,UAAM,WAAW,UAAU,SAAS;AACpC,sBAAkB,OAAO;AACzB,kBAAc,eAAe,CAAC;AAC9B,cAAU,OAAO,KAAK,IAAI,UAAU,MAAM,CAAC;AAC3C,QAAI,MAAM,GAAG;AACX,gBAAU,QAAQ,UAAU,MAAM;AAAA,IACpC;AAAA,EACF;AACA,MAAI,eAAe,gBAAgB;AACjC,UAAM,gBAAgB;AACtB,UAAM,eAAe;AACrB,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,sBAAgB,MAAM;AAAA,IACxB;AACA,WAAO;AAAA,MACL;AAAA,MACA,CAAC,cAAc,IAAI;AAAA,MACnB;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF,OAAO;AACL,UAAM,mBAAmB,UAAU,YAAY;AAC/C,UAAM,gBAAgB,aAAa,kBAAkB,cAAc,mBAAmB,IAAI;AAC1F,UAAM,eAAe,aAAa,kBAAkB,aAAa,gBAAgB;AACjF,UAAM,cAAc,IAAI,MAAM,SAAS,EAAE,KAAK,CAAC;AAC/C,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,YAAM,MAAM,QAAQ,KAAK;AACzB,YAAM,SAAS,YAAY;AAC3B,YAAM,WAAW,QAAQ,IAAI,IAAI,UAAU,MAAM,MAAM;AACvD,kBAAY;AACZ,eAAS,IAAI,GAAG,IAAI,MAAM,EAAE,GAAG;AAC7B,sBAAc,UAAU,OAAO,KAAK,QAAQ,KAAK,OAAO;AAAA,MAC1D;AACA,mBAAa,WAAW,OAAO;AAC/B,sBAAgB,MAAM;AAAA,IACxB;AACA,aAAS,MAAM,GAAG,MAAM,WAAW,EAAE,KAAK;AACxC,YAAM,WAAW,YAAY;AAC7B,UAAI,aAAa,GAAG;AAClB,cAAM,gBAAgB,QAAQ,IAAI,IAAI,UAAU,MAAM;AACtD,sBAAc,gBAAgB,OAAO,KAAK;AAC1C,iBAAS,MAAM,GAAG,MAAM,MAAM,EAAE,KAAK;AACnC,wBAAc,gBAAgB,OAAO,OAAO;AAAA,QAC9C;AACA,qBAAa,iBAAiB;AAAA,MAChC;AAAA,IACF;AACA,WAAO;AAAA,MACL;AAAA,MACA,CAAC,kBAAkB,IAAI;AAAA,MACvB;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AAGA,SAAS,kBAAkB,cAAc,mBAAmB,YAAY,YAAY,aAAa;AAC/F,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,MAAM,kBAAkB;AAC9B,QAAM,aAAa,YAAY;AAC/B,QAAM,cAAc,CAAC;AACrB,MAAI,UAAU;AACd,MAAI,eAAe;AACnB,WAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,UAAMA,QAAO,YAAY;AACzB,QAAIA,UAAS,IAAI;AACf,UAAI,iBAAiB,IAAI;AACvB,cAAM,IAAI,MAAM,qBAAqB,yDAAyD,cAAc,CAAC,CAAC;AAAA,MAChH;AACA,qBAAe;AACf,kBAAY,KAAK,CAAC;AAAA,IACpB,OAAO;AACL,UAAIA,QAAO,GAAG;AACZ,cAAM,IAAI,MAAM,qBAAqB,8CAA8C,GAAGA,KAAI,CAAC;AAAA,MAC7F;AACA,iBAAWA;AACX,kBAAY,KAAKA,KAAI;AAAA,IACvB;AAAA,EACF;AACA,MAAI,iBAAiB,IAAI;AACvB,QAAI,WAAW,GAAG;AAChB,YAAM,IAAI,MAAM,qBAAqB,qDAAqD,CAAC;AAAA,IAC7F;AACA,UAAM,UAAU,KAAK,MAAM,YAAY,OAAO;AAC9C,QAAI,UAAU,YAAY,WAAW;AACnC,YAAM,IAAI,MAAM,qBAAqB,gDAAgD,YAAY,WAAW,CAAC;AAAA,IAC/G;AACA,gBAAY,gBAAgB;AAAA,EAC9B;AACA,QAAMqB,cAAa,aAAa,cAAc,WAAW;AACzD,MAAIA,gBAAe,WAAW;AAC5B,UAAM,IAAI,MAAM,qBAAqB,gDAAgD,YAAY,WAAW,CAAC;AAAA,EAC/G;AACA,QAAM,YAAY,WAAW;AAC7B,QAAM,eAAe,CAAC;AACtB,MAAI,YAAY,GAAG;AACjB,iBAAa,YAAY,KAAK;AAC9B,aAAS,IAAI,YAAY,GAAG,KAAK,GAAG,EAAE,GAAG;AACvC,mBAAa,KAAK,aAAa,IAAI,KAAK,WAAW,IAAI;AAAA,IACzD;AAAA,EACF;AACA,QAAM,gBAAgB,CAAC;AACvB,MAAI,aAAa,GAAG;AAClB,kBAAc,aAAa,KAAK;AAChC,aAAS,IAAI,aAAa,GAAG,KAAK,GAAG,EAAE,GAAG;AACxC,oBAAc,KAAK,cAAc,IAAI,KAAK,YAAY,IAAI;AAAA,IAC5D;AAAA,EACF;AACA,QAAM,aAAa,aAAa,kBAAkB,YAAY,MAAM,UAAU;AAC9E,WAAS,KAAK,GAAG,KAAK,KAAK,EAAE,IAAI;AAC/B,QAAI,KAAK;AACT,aAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,YAAM,aAAa,KAAK,YAAY,KAAK,aAAa;AAAA,IACxD;AACA,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,iBAAW,KAAK,aAAa,KAAK,KAAK,MAAM,KAAK,cAAc,EAAE;AAClE,YAAM,cAAc;AAAA,IACtB;AAAA,EACF;AACA,SAAO,CAAC,YAAY,CAAC,KAAK,UAAU,GAAG,WAAW;AACpD;AAGA,SAAS,2BAA2B,QAAQ,YAAY,YAAY,SAAS,YAAY,SAAS,OAAO,eAAe,GAAG;AACzH,QAAM,aAAa,QAAQ;AAC3B,QAAM,YAAY,CAAC,WAAW,IAAI,OAAO,SAAS,WAAW,EAAE;AAC/D,QAAM,SAAS,UAAU;AACzB,QAAM,uBAAuB,aAAa,IAAI,WAAW,aAAa,KAAK,IAAI;AAC/E,QAAM,aAAa;AACnB,MAAI,aAAa,GAAG;AAClB,UAAM,IAAI,MAAM,qBAAqB,wDAAwD,CAAC;AAAA,EAChG;AACA,QAAM,cAAc,WAAW,MAAM;AACrC,cAAY,KAAK;AACjB,QAAM,eAAe,YAAY,OAAO,CAAC,SAAS,UAAU,UAAU,OAAO,CAAC;AAC9E,QAAM,SAAS,aAAa,kBAAkB,YAAY,YAAY;AACtE,MAAI,eAAe,GAAG;AACpB,QAAI,aAAa,GAAG;AAClB,aAAO,KAAK,YAAY;AAAA,IAC1B;AACA,WAAO,CAAC,QAAQ,WAAW;AAAA,EAC7B;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,qBAAqB,wDAAwD,CAAC;AAAA,EAChG;AACA,MAAI,QAAQ,GAAG,MAAM;AACrB,MAAI,qBAAqB;AACzB,MAAI,WAAW,WAAW;AAC1B,SAAO,MAAM;AACX,QAAI,YAAY;AAChB,QAAI,MAAM,YAAY;AACpB,kBAAY,WAAW;AACvB,UAAI,aAAa,WAAW;AAC1B,UAAE;AACF;AAAA,MACF;AACA,UAAI,YAAY,WAAW;AACzB,cAAM,IAAI,MAAM,qBAAqB,6DAA6D,CAAC;AAAA,MACrG;AAAA,IACF;AACA,QAAI,WAAW,KAAK,YAAY,YAAY;AAC1C,YAAM,IAAI,MAAM,qBAAqB,yDAAyD,UAAU,UAAU,CAAC;AAAA,IACrH;AACA,QAAI,WAAW,oBAAoB;AACjC,aAAO,KAAK,cAAc,qBAAqB,QAAQ,WAAW,MAAM;AAAA,IAC1E;AACA,aAAS,KAAK,OAAO,KAAK,KAAK,EAAE,IAAI;AACnC,YAAMX,SAAQ,QAAQ;AACtB,UAAIA,SAAQ,KAAKA,UAAS,UAAU,IAAI;AACtC,cAAM,IAAI,MAAM,qBAAqB,uDAAuD,IAAI,QAAQ,KAAK,UAAU,EAAE,CAAC;AAAA,MAC5H;AACA,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,eAAO,WAAW,SAAS,MAAM,OAAOA,SAAQ,SAAS;AAAA,MAC3D;AAAA,IACF;AACA,QAAI,QAAQ;AACV,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,eAAO,WAAW,SAAS,MAAM,MAAM;AAAA,MACzC;AAAA,IACF;AACA,YAAQ;AACR,MAAE;AACF,yBAAqB,WAAW;AAChC,eAAW;AACX,QAAI,MAAM,YAAY;AACpB;AAAA,IACF;AAAA,EACF;AACA,MAAI,qBAAqB,YAAY;AACnC,WAAO,KAAK,cAAc,qBAAqB,QAAQ,aAAa,MAAM;AAAA,EAC5E;AACA,SAAO,CAAC,QAAQ,WAAW;AAC7B;AAGA,IAAI,WAAW,sBAAsB,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AAC1D,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,wBAAwB,6BAA6B,CAAC,GAAG,MAAM;AACjE,QAAM,OAAO,IAAI;AACjB,SAAO,OAAO;AAChB,CAAC;AACD,IAAI,qBAAqB,iBAAiB,mBAAmB,qBAAqB;AAClF,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,iBAAiB,UAAU,MAAMG,UAAS,OAAO;AACxD,QAAM,SAAS,OAAO,UAAU,KAAK,KAAK;AAC1C,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,MAAM;AACvC,UAAM,MAAM,OAAO,WAAW,EAAE;AAChC,UAAM,SAAS,IAAI,MAAM,IAAI,MAAM;AACnC,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,KAAK;AACtC,aAAO,KAAK,IAAI,KAAKA,SAAQ,KAAK,MAAM;AAAA,IAC1C;AACA,WAAO,IAAI,KAAK,IAAI,GAAG,MAAM,GAAG,GAAG,GAAG;AAAA,EACxC;AACA,SAAO;AACT;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,WAAW,aAAa,SAAS,WAAW,UAAU,wBAAwB;AACxF,SAAK,YAAY,aAAa,aAAa,SAAS;AACpD,SAAK,cAAc;AACnB,SAAK,UAAU,aAAa,aAAa,OAAO;AAChD,SAAK,WAAW,aAAa,aAAa,SAAS;AACnD,SAAK,WAAW;AAChB,SAAK,gBAAgB;AAAA,EACvB;AAAA,EACA,YAAY,YAAY;AACtB,WAAO,KAAK,IAAI,KAAK,WAAW,IAAI,aAAa,IAAI,KAAK,UAAU,aAAa,CAAC;AAAA,EACpF;AAAA,EACA,aAAa,QAAQ,YAAY;AAC/B,UAAM,WAAW,KAAK,YAAY,UAAU;AAC5C,WAAO,KAAK,IAAI,GAAG,SAAS,IAAI,WAAW,aAAa,CAAC;AAAA,EAC3D;AAAA,EACA,aAAa,MAAM,YAAY,QAAQ,kBAAkB,WAAW,YAAY;AAC9E,aAAS,aAAa,GAAG,aAAa,WAAW,EAAE,YAAY;AAC7D,YAAM,WAAW,KAAK,YAAY,UAAU;AAC5C,YAAM,cAAc,KAAK,IAAI,GAAG,WAAW,UAAU;AACrD,YAAM,eAAe,KAAK,IAAI,GAAG,YAAY,aAAa,aAAa,GAAG;AAC1E,YAAM,YAAY,cAAc,cAAc;AAC9C,YAAM,iBAAiB,cAAc,cAAc,IAAI,IAAI,aAAa;AACxE,UAAI,YAAY;AAChB,mBAAa,cAAc,KAAK,QAAQ;AACxC,eAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,qBAAa,KAAK,iBAAiB,IAAI;AAAA,MACzC;AACA,mBAAa,eAAe,KAAK,SAAS;AAC1C,YAAM,gBAAgB,cAAc,eAAe,YAAY;AAC/D,mBAAa,gBAAgB,KAAK,UAAU;AAC5C,aAAO,mBAAmB,cAAc,IAAI,WAAW,SAAS;AAChE,YAAM,QAAQ,OAAO,mBAAmB;AACxC,UAAI,iBAAiB;AACrB,YAAM,gBAAgB,CAAC,QAAQ,IAAI,QAAQ,CAAC,UAAU,MAAM,oBAAoB,KAAK;AACrF,eAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,sBAAc,KAAK,OAAO;AAC1B,sBAAc,KAAK,SAAS;AAAA,MAC9B;AACA,eAAS,KAAK,GAAG,KAAK,YAAY,GAAG,EAAE,IAAI;AACzC,sBAAc,KAAK,iBAAiB,GAAG;AACvC,sBAAc,KAAK,SAAS;AAAA,MAC9B;AACA,UAAI,YAAY,GAAG;AACjB,sBAAc,KAAK,iBAAiB,YAAY,EAAE;AAClD,iBAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,wBAAc,KAAK,SAAS;AAC5B,wBAAc,KAAK,QAAQ;AAAA,QAC7B;AAAA,MACF,OAAO;AACL,iBAAS,KAAK,GAAG,KAAK,eAAe,GAAG,EAAE,IAAI;AAC5C,wBAAc,KAAK,QAAQ;AAC3B,wBAAc,KAAK,SAAS;AAAA,QAC9B;AACA,sBAAc,KAAK,QAAQ;AAAA,MAC7B;AAAA,IACF;AAAA,EACF;AAAA,EACA,QAAQ,MAAM,QAAQ;AACpB,UAAM,gBAAgB,KAAK;AAC3B,UAAM,aAAa,OAAO;AAC1B,QAAI,aAAa,GAAG;AAClB,UAAI,YAAY,OAAO;AACvB,UAAI,cAAc,GAAG;AACnB,cAAM,IAAI,MAAM,oCAAoC,WAAW;AAAA,MACjE;AACA,eAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,YAAI,cAAc,OAAO,OAAO;AAChC,sBAAc,eAAe,OAAO,OAAO;AAC3C,YAAI,CAAC,aAAa;AAChB,gBAAM,IAAI,MAAM,uBAAuB,OAAO,oBAAoB,cAAc,gBAAgB;AAAA,QAClG;AACA,oBAAY,OAAO;AAAA,MACrB;AACA,UAAI,cAAc,eAAe;AAC/B,cAAM,IAAI,MAAM,gDAAgD,sBAAsB,WAAW;AAAA,MACnG;AAAA,IACF;AACA,UAAM,gBAAgB,aAAa;AACnC,UAAM,eAAe,aAAa,kBAAkB,SAAS,UAAU;AACvE,QAAI,kBAAkB,KAAK,eAAe,GAAG;AAC3C,YAAM,QAAQ,IAAI,MAAM,aAAa;AACrC,eAAS,KAAK,GAAG,MAAM,eAAe,EAAE,IAAI;AAC1C,qBAAa,MAAM;AAAA,MACrB;AACA,aAAO,CAAC,OAAO,YAAY;AAAA,IAC7B;AACA,iBAAa,KAAK;AAClB,aAAS,KAAK,GAAG,MAAM,eAAe,EAAE,IAAI;AAC1C,YAAM,SAAS,OAAO,MAAM,OAAO,KAAK;AACxC,UAAI,YAAY;AAChB,WAAK,YAAY,QAAQ,CAAC,eAAe;AACvC,qBAAa,KAAK,aAAa,QAAQ,UAAU;AAAA,MACnD,CAAC;AACD,UAAI,KAAK,iBAAiB,SAAS,KAAK,cAAc,GAAG;AACvD,oBAAY;AAAA,MACd;AACA,mBAAa,MAAM,aAAa,KAAK,KAAK;AAAA,IAC5C;AACA,UAAM,SAAS,IAAI,MAAM,aAAa,cAAc;AACpD,aAAS,KAAK,GAAG,KAAK,eAAe,EAAE,IAAI;AACzC,YAAM,aAAa,OAAO;AAC1B,UAAI,iBAAiB,aAAa;AAClC,WAAK,YAAY,QAAQ,CAAC,eAAe;AACvC,cAAM,SAAS,OAAO,KAAK,KAAK,OAAO;AACvC,cAAM,YAAY,KAAK,aAAa,QAAQ,UAAU;AACtD,aAAK,aAAa,MAAM,YAAY,QAAQ,gBAAgB,WAAW,UAAU;AACjF,0BAAkB;AAAA,MACpB,CAAC;AACD,UAAI,KAAK,iBAAiB,mBAAmB,aAAa,KAAK;AAC7D,cAAM,aAAa,OAAO,KAAK,KAAK,OAAO;AAC3C,YAAI,eAAe,GAAG;AACpB;AAAA,QACF;AACA,cAAM,aAAa,aAAa,IAAI,KAAK;AACzC,cAAM,YAAY;AAClB,aAAK,aAAa,MAAM,YAAY,QAAQ,gBAAgB,WAAW,UAAU;AAAA,MACnF;AAAA,IACF;AACA,WAAO,CAAC,QAAQ,YAAY;AAAA,EAC9B;AACF;AACA,SAAS,iBAAiB,MAAM,YAAY,WAAW,aAAa,SAAS,WAAW,UAAU,wBAAwB;AACxH,SAAO,IAAI,eAAe,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB,EAAE,QAAQ,MAAM,UAAU;AAClI;AAGA,SAAS,OAAO,KAAK,YAAY,WAAW,QAAQ;AAClD,MAAI,CAAC,IAAI,QAAQ;AACf;AAAA,EACF;AACA,MAAI,WAAW,WAAW,GAAG;AAC3B,aAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,EAAE,IAAI;AACtC,aAAO,KAAK,IAAI,SAAS,IAAI,KAAK,CAAC,CAAC;AAAA,IACtC;AACA;AAAA,EACF;AACA,MAAI,WAAW,WAAW,GAAG;AAC3B,UAAM,YAAY,WAAW;AAC7B,QAAI,IAAI,IAAI,QAAQ,SAAS;AAC7B,WAAO,MAAM,IAAI;AACf,YAAM,QAAQ,IAAI,SAAS,GAAG,CAAC;AAC/B,UAAI,CAAC,aAAa,MAAM,WAAW,GAAG;AACpC,eAAO,KAAK,KAAK;AAAA,MACnB;AACA,YAAM,IAAI,SAAS,IAAI,CAAC;AACxB,UAAI,IAAI,QAAQ,SAAS;AAAA,IAC3B;AACA,QAAI,CAAC,aAAa,IAAI,WAAW,GAAG;AAClC,aAAO,KAAK,GAAG;AAAA,IACjB;AACA;AAAA,EACF;AACA,MAAI,aAAa;AACjB,WAAS,KAAK,GAAG,KAAK,IAAI,SAAS,GAAG,MAAM;AAC1C,QAAI,OAAO,IAAI,UAAU,WAAW,QAAQ,IAAI,GAAG,MAAM,IAAI;AAC3D,YAAM,QAAQ,IAAI,SAAS,YAAY,EAAE;AACzC,UAAI,CAAC,aAAa,MAAM,WAAW,GAAG;AACpC,eAAO,KAAK,KAAK;AAAA,MACnB;AACA,mBAAa,KAAK;AAAA,IACpB;AAAA,EACF;AACF;AACA,SAAS,gBAAgB,QAAQ,WAAW,WAAW;AACrD,QAAM,YAAY,OAAO;AACzB,QAAM,SAAS,CAAC;AAChB,MAAIQ,cAAa;AACjB,MAAI,gBAAgB;AACpB,QAAM,aAAa,IAAI,MAAM,SAAS;AACtC,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,UAAM,mBAAmB,OAAO;AAChC,WAAO,OAAO,KAAK,WAAW,WAAW,MAAM;AAC/C,UAAM,WAAW,OAAO,SAAS;AACjC,eAAW,MAAM;AACjB,IAAAA,eAAc;AACd,oBAAgB,KAAK,IAAI,eAAe,QAAQ;AAAA,EAClD;AACA,QAAM,UAAU,aAAa,kBAAkB,SAASA,cAAa,CAAC;AACtE,QAAM,SAAS,IAAI,MAAMA,WAAU;AACnC,QAAM,QAAQ,CAAC,WAAW,aAAa;AACvC,MAAI,IAAI;AACR,WAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,aAAS,IAAI,GAAG,IAAI,WAAW,KAAK,EAAE,GAAG;AACvC,cAAQ,IAAI,KAAK;AACjB,cAAQ,IAAI,IAAI,KAAK;AACrB,aAAO,KAAK,OAAO;AACnB,QAAE;AAAA,IACJ;AAAA,EACF;AACA,SAAO,CAAC,SAAS,QAAQ,KAAK;AAChC;AAGA,SAAS,2BAA2B,QAAQ,YAAY;AACtD,QAAM,SAAS,aAAa,kBAAkB,SAAS,OAAO,MAAM;AACpE,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,WAAO,MAAM,aAAa,cAAc,OAAO,GAAG,EAAE,OAAO,UAAU,EAAE,mBAAmB;AAAA,EAC5F;AACA,SAAO;AACT;AAGA,IAAI,UAAU,6BAA6B,CAAC,QAAQ,WAAW,SAAS,MAAM;AAC9E,IAAI,iBAAiB,8BAA8B,CAAC,OAAO,OAAO,OAAO,UAAU;AACjF,SAAO,EAAE,MAAM,QAAQ,OAAO,MAAM,QAAQ,MAAM;AACpD,CAAC;AACD,IAAI,OAAO,iBAAiB,KAAK,SAAS,cAAc;AACxD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM,MAAM;AAC5B,QAAM,WAAW,IAAI,MAAM,KAAK,IAAI;AACpC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,KAAK,MAAM,MAAM,KAAK;AAAA,EACvC;AACA,QAAM,SAAS,OAAO,UAAU,KAAK,KAAK;AAC1C,WAAS,KAAK,GAAG,KAAK,OAAO,OAAO,QAAQ,EAAE,IAAI;AAChD,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,cAAc,IAAI,MAAM,KAAK,IAAI;AACvC,aAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,kBAAY,KAAK,OAAO,KAAK,KAAK,MAAM;AAAA,IAC1C;AACA,UAAM,gBAAgB,KAAK,WAAW,WAAW;AACjD,WAAO,OAAO,MAAM,KAAK,OAAO;AAAA,EAClC;AACA,SAAO;AACT;AAGA,IAAI,cAAc,CAAC,GAAG,MAAM;AAC1B,QAAM,YAAY,EAAE,QAAQ,EAAE;AAC9B,SAAO,cAAc,IAAI,EAAE,QAAQ,EAAE,QAAQ;AAC/C;AACA,SAAS,OAAO,QAAQ,GAAG,OAAO,GAAG,QAAQ,OAAO,SAAS,GAAG;AAC9D,SAAO,QAAQ,MAAM;AACnB,QAAI,QAAQ,OAAO,KAAK;AACtB,YAAM,KAAK,QAAQ,OAAO;AAC1B,YAAM,KAAK,IAAI,OAAO;AACtB,YAAM,IAAI,KAAK,IAAI,EAAE;AACrB,YAAM,KAAK,MAAM,KAAK,IAAI,IAAI,IAAI,CAAC;AACnC,YAAM,KAAK,MAAM,KAAK,KAAK,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,KAAK,KAAK,KAAK,KAAK,CAAC;AAC3E,YAAM,UAAU,KAAK,IAAI,MAAM,KAAK,MAAM,IAAI,KAAK,KAAK,KAAK,EAAE,CAAC;AAChE,YAAM,WAAW,KAAK,IAAI,OAAO,KAAK,MAAM,KAAK,KAAK,MAAM,KAAK,KAAK,EAAE,CAAC;AACzE,aAAO,QAAQ,GAAG,SAAS,QAAQ;AAAA,IACrC;AACA,UAAM,KAAK,OAAO;AAClB,QAAI,KAAK;AACT,QAAI,IAAI;AACR,iBAAa,KAAK,QAAQ,MAAM,CAAC;AACjC,QAAI,YAAY,OAAO,QAAQ,EAAE,IAAI,GAAG;AACtC,mBAAa,KAAK,QAAQ,MAAM,KAAK;AAAA,IACvC;AACA,WAAO,KAAK,GAAG;AACb,mBAAa,KAAK,QAAQ,IAAI,CAAC;AAC/B;AACA;AACA,aAAO,YAAY,OAAO,KAAK,EAAE,IAAI,GAAG;AACtC,aAAK,KAAK;AAAA,MACZ;AACA,aAAO,YAAY,OAAO,IAAI,EAAE,IAAI,GAAG;AACrC,YAAI,IAAI;AAAA,MACV;AAAA,IACF;AACA,QAAI,YAAY,OAAO,OAAO,EAAE,MAAM,GAAG;AACvC,mBAAa,KAAK,QAAQ,MAAM,CAAC;AAAA,IACnC,OAAO;AACL,UAAI,IAAI;AACR,mBAAa,KAAK,QAAQ,GAAG,KAAK;AAAA,IACpC;AACA,QAAI,KAAK,GAAG;AACV,aAAO,IAAI;AAAA,IACb;AACA,QAAI,KAAK,GAAG;AACV,cAAQ,IAAI;AAAA,IACd;AAAA,EACF;AACF;AACA,SAAS,SAAS,GAAG,QAAQ,QAAQ,GAAG,QAAQ;AAC9C,QAAM,UAAU,OAAO,OAAO,SAAS;AACvC,QAAM,CAAC,OAAOrB,KAAI,IAAI,CAAC,EAAE,SAAS,SAAS,OAAO;AAClD,QAAM,cAAc,aAAa,uBAAuB,QAAQ,QAAQ,CAAC;AACzE,QAAM,iBAAiB,aAAa,uBAAuB,SAAS,QAAQ,CAAC;AAC7E,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,SAAS,IAAIA;AACnB,UAAM,OAAO,EAAE,SAAS,QAAQ,SAASA,KAAI;AAC7C,QAAI,YAAY,IAAI,MAAM,KAAK,MAAM;AACrC,SAAK,QAAQ,CAAC,OAAOU,WAAU,UAAUA,UAAS,EAAE,OAAO,OAAAA,OAAM,CAAC;AAClE,QAAI,IAAI,UAAU,QAAQ;AACxB,aAAO,WAAW,CAAC;AACnB,kBAAY,UAAU,MAAM,GAAG,CAAC;AAAA,IAClC;AACA,QAAI,QAAQ;AACV,gBAAU,KAAK,WAAW;AAAA,IAC5B;AACA,UAAM,YAAY,IAAI;AACtB,UAAM,WAAW,YAAY,SAAS,WAAW,YAAY,CAAC;AAC9D,UAAM,cAAc,eAAe,SAAS,WAAW,YAAY,CAAC;AACpE,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,eAAS,MAAM,UAAU,IAAI;AAC7B,kBAAY,MAAM,UAAU,IAAI;AAAA,IAClC;AAAA,EACF;AACA,QAAM,cAAc,OAAO,MAAM;AACjC,cAAY,YAAY,SAAS,KAAK;AACtC,SAAO;AAAA,IACL,OAAO,aAAa,QAAQ,WAAW;AAAA,IACvC,OAAO,aAAa,SAAS,cAAc;AAAA,EAC7C;AACF;AAGA,SAAS,WAAW,QAAQ,MAAM,OAAO,OAAO;AAC9C,QAAM,QAAQ,aAAa,eAAe,MAAM,KAAK,EAAE;AACvD,QAAM,WAAW,CAAC,GAAG,MAAM,IAAI,CAAC;AAChC,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM;AACjC,aAAS,MAAM,MAAM;AAAA,EACvB;AACA,WAAS,KAAK,MAAM;AACpB,WAAS,KAAK,QAAQ,GAAG,KAAK,MAAM,QAAQ,MAAM;AAChD,aAAS,MAAM,MAAM;AAAA,EACvB;AACA,QAAM,iBAAiB,CAAC;AACxB,QAAM,UAAU,IAAI,WAAW,MAAM,MAAM;AAC3C,QAAM,cAAc,IAAI,aAAa,UAAU,OAAO,MAAM;AAC5D,QAAM,gBAAgB,CAAC;AACvB,QAAM,aAAa,SAAS,OAAO,KAAK,SAAS,OAAO;AACxD,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,QAAI;AACJ,QAAI,YAAY;AACd,gBAAU,OAAO,IAAI,SAAS;AAAA,IAChC,OAAO;AACL,YAAM,aAAa,CAAC;AACpB,eAAS,IAAI,GAAG,IAAI,SAAS,IAAI,KAAK;AACpC,iBAAS,KAAK,GAAG,KAAK,SAAS,IAAI,MAAM;AACvC,qBAAW,KAAK,YAAY,IAAI,GAAG,IAAI,EAAE,CAAC;AAAA,QAC5C;AAAA,MACF;AACA,gBAAU,WAAW,KAAK,GAAG;AAAA,IAC/B;AACA,QAAI,eAAe,aAAa,QAAQ;AACtC,cAAQ,MAAM,eAAe;AAAA,IAC/B,OAAO;AACL,YAAM,cAAc,OAAO,KAAK,cAAc,EAAE;AAChD,qBAAe,WAAW;AAC1B,cAAQ,MAAM;AACd,oBAAc,KAAK,EAAE;AAAA,IACvB;AAAA,EACF;AACA,QAAM,iBAAiB,SAAS,MAAM;AACtC,iBAAe,KAAK,OAAO,KAAK,cAAc,EAAE;AAChD,QAAM,eAAe,IAAI,aAAa,gBAAgB,KAAK;AAC3D,gBAAc,QAAQ,CAAC,oBAAoB,OAAO;AAChD,aAAS,IAAI,GAAG,IAAI,SAAS,IAAI,KAAK;AACpC,eAAS,KAAK,GAAG,KAAK,SAAS,IAAI,MAAM;AACvC,qBAAa,IAAI,YAAY,IAAI,GAAG,oBAAoB,EAAE,GAAG,GAAG,IAAI,EAAE;AAAA,MACxE;AAAA,IACF;AAAA,EACF,CAAC;AACD,QAAM,cAAc,MAAM,MAAM;AAChC,cAAY,SAAS,eAAe;AACpC,SAAO;AAAA,IACL,cAAc,aAAa;AAAA,IAC3B;AAAA,IACA;AAAA,EACF;AACF;AAGA,gBAAgB,OAAO,MAAM,IAAI,eAAe,GAAG,CAAC;AAGpD,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO,MAAM,IAAI,KAAK,KAAK,IAAI,EAAE,IAAI,CAAC;AACvE,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAAa,OAAM,IAAI;AAClB,mBAAiB,CAAC,CAAC,GAAG,WAAW;AACjC,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,UAAU,aAAa,uBAAuB,WAAW,KAAK;AACpE,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,YAAQ,MAAM,MAAM,MAAM,IAAIA,SAAQ,MAAM,MAAM,MAAM;AAAA,EAC1D;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,WAAW,OAAO;AAC5D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,6BAA6B,CAAC,QAAQ,WAAW,SAAS,IAAI,SAAS,SAAS,MAAM;AACtG,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,OAAAA,OAAM,IAAI;AACrB,mBAAiB,CAAC,GAAGA,MAAK,GAAG,OAAO;AACpC,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAIA,OAAM,MAAM,EAAE;AAC9C,QAAM,CAAC,YAAY,WAAW,IAAI,UAAU,EAAE,OAAOA,OAAM,OAAO,OAAO,OAAO,SAAS;AACzF,SAAO,SAAS,eAAe,aAAa,WAAW,UAAU;AACnE;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,IAAI,GAAG,EAAE,CAAC;AACzD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,IAAI,KAAK,IAAI,GAAG,EAAE,GAAG,CAAC,CAAC;AACxE,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,iBAAiB,UAAU,GAAG,aAAa,wBAAwB,gBAAgB;AAC1F,MAAI,gBAAgB,UAAU;AAC5B,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD,WAAW,gBAAgB,QAAQ;AACjC,WAAO,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACnD,WAAW,gBAAgB,OAAO;AAChC,WAAO,KAAK,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EAClD,WAAW,gBAAgB,SAAS;AAClC,WAAO,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACpD,WAAW,gBAAgB,SAAS;AAClC,WAAO,OAAO,EAAE,QAAQ,EAAE,GAAG,OAAO,uBAAuB,GAAG,SAAS,SAAS,CAAC;AAAA,EACnF,WAAW,gBAAgB,aAAa;AACtC,WAAO,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,eAAe,EAAE,CAAC;AAAA,EAC1F,WAAW,gBAAgB,WAAW;AACpC,WAAO,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACtD;AACA,QAAM,IAAI,MAAM,cAAc,2DAA2D;AAC3F;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,SAAS,aAAa,uBAAuB,OAAO,KAAK;AAC/D,QAAM,SAAS,aAAa,cAAc,MAAM;AAChD,eAAa,OAAO,UAAU,QAAQ,MAAM,kBAAkB,eAAe,sCAAsC,EAAE,cAAc,oFAAoF;AACvN,WAAS,OAAO,EAAE,MAAM;AACxB,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM;AACxC,MAAI,MAAM,sBAAsB,MAAM;AACpC,UAAM,QAAQ,MAAM,mBAAmB;AACvC,UAAM,QAAQ,MAAM,mBAAmB;AACvC,UAAM,QAAQ;AACd,UAAM,QAAQ;AAAA,EAChB;AACA,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,QAAQ,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,EAAE,YAAY,WAAW,IAAI;AACnC,mBAAiB,CAAC,GAAG,CAAC,GAAG,QAAQ;AACjC,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,oBAAoB,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AACtH,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,eAAa,OAAO,gBAAgB,aAAa,MAAM,kCAAkC,qBAAqB,uCAAuC,EAAE,aAAa,EAAE,wBAAwB,6BAA6B,wBAAwB;AACnP,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,YAAY,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACxD,QAAM,UAAU,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACtD,QAAM,WAAW,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACvD,QAAM,WAAW,KAAK,IAAI,WAAW,SAAS;AAC9C,QAAM,YAAY,SAAS,KAAK,IAAI,IAAI,MAAM,EAAE;AAChD,QAAM,YAAY,SAAS,KAAK,IAAI,IAAI,MAAM,EAAE;AAChD,QAAM,aAAa,aAAa,eAAe,IAAI,KAAK;AACxD,QAAM,aAAa,aAAa,eAAe,IAAI,KAAK;AACxD,QAAM,CAAC,QAAQ,YAAY,UAAU,IAAI,aAAa,CAAC,WAAW,IAAI,GAAG,WAAW,EAAE,IAAI,CAAC,WAAW,IAAI,WAAW,IAAI,CAAC;AAC1H,QAAM,CAAC,YAAY,YAAY,MAAM,IAAI,aAAa,CAAC,GAAG,WAAW,IAAI,WAAW,EAAE,IAAI,CAAC,WAAW,IAAI,GAAG,WAAW,EAAE;AAC1H,QAAMvB,QAAO,UAAU;AACvB,QAAM,SAAS,OAAO,CAAC,UAAU,SAAS,QAAQ,GAAG,IAAI,KAAK;AAC9D,QAAM,UAAU,OAAO;AACvB,QAAM,YAAY,SAAS;AAC3B,WAAS,KAAK,GAAG,KAAK,UAAU,MAAM;AACpC,aAAS,KAAK,GAAG,KAAK,SAAS,MAAM,WAAW;AAC9C,eAAS,KAAK,GAAG,KAAK,UAAU,MAAM,WAAW;AAC/C,iBAAS,MAAM,GAAG,MAAM,WAAW,OAAO,WAAW;AACnD,gBAAM,SAAS,KAAK,IAAI,KAAK,WAAW,OAAO;AAC/C,gBAAM,SAAS,KAAK,IAAI,KAAK,WAAW,QAAQ;AAChD,gBAAM,SAAS,KAAK,IAAI,MAAM,WAAW,SAAS;AAClD,mBAAS,KAAK,IAAI,KAAK,QAAQ,MAAM;AACnC,qBAAS,IAAI,IAAI,IAAI,QAAQ,KAAK;AAChC,kBAAI,OAAO;AACX,uBAAS,IAAI,KAAK,IAAI,QAAQ,KAAK;AACjC,sBAAM,eAAe,KAAK,IAAI,IAAI,YAAY,CAAC,IAAI;AACnD,sBAAM,eAAe,KAAK,IAAI,IAAI,YAAY,CAAC,IAAI;AACnD,sBAAM,OAAO,UAAU,eAAe,KAAK,aAAa,IAAI;AAC5D,sBAAM,OAAO,UAAU,IAAI,aAAa,IAAI,aAAa;AACzD,wBAAQ,OAAO;AAAA,cACjB;AACA,sBAAQ,KAAKA,SAAQ,KAAK,WAAW,OAAO;AAAA,YAC9C;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,GAAG;AAC1C,SAAO,SAAS,eAAe,UAAU,OAAO,OAAO,OAAO,MAAM;AACtE;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,MAAM,uBAAuB,IAAI;AAC/C,QAAM,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe,IAAI;AAC5E,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,QAAM,gBAAgB,CAAC;AACvB,QAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,OAAO,EAAE,YAAY,WAAW,GAAG,SAAS,SAAS,CAAC;AACxG,YAAU;AACV,MAAI,MAAM;AACR,aAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,KAAK,GAAG,SAAS,SAAS,CAAC;AACpE,kBAAc,KAAK,OAAO;AAC1B,cAAU;AAAA,EACZ;AACA,MAAI,aAAa;AACf,oBAAgB,iBAAiB,UAAU,SAAS,aAAa,wBAAwB,cAAc;AACvG,kBAAc,KAAK,OAAO;AAC1B,cAAU;AAAA,EACZ;AACA,aAAW,MAAM,eAAe;AAC9B,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC1D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,UAAU;AAChB,mBAAiB,QAAQ,MAAM;AAC/B,QAAM,OAAO,QAAQ,IAAI,CAAC,OAAO,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE,MAAM;AACpE,QAAM,SAAS,OAAO,QAAQ,GAAG,OAAO,QAAQ,GAAG,KAAK;AACxD,QAAM,UAAU,OAAO;AACvB,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,UAAM,WAAW,KAAK;AACtB,aAAS,IAAI,GAAG,IAAI,QAAQ,QAAQ,KAAK;AACvC,cAAQ,MAAM,SAAS;AAAA,IACzB;AAAA,EACF;AACA,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC1E;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,EAAE,MAAM,MAAM;AAAA,EAC1E;AACA,uBAAqB,2BAA2B,OAAO,MAAM,GAAG,MAAM,MAAM;AAC5E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,OAAO,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,GAAG,KAAK;AAC5F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAIF,QAAO,MAAM;AACjB,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,MAAAA,QAAOA,SAAQ;AAAA,IACjB;AACA,SAAK,MAAMA;AAAA,EACb;AACA,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,QAAM,SAAS,SAAS,eAAe,UAAU,GAAG,OAAO,IAAI;AAC/D,MAAI,UAAU;AACZ,UAAM,gBAAgB,qBAAqB,qBAAqB,UAAU,QAAQ;AAClF,UAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,EAAE,MAAM,MAAM;AAAA,EAC1E;AACA,uBAAqB,2BAA2B,OAAO,MAAM,GAAG,MAAM,MAAM;AAC5E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,OAAO,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,GAAG,KAAK;AAC5F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,SAAS,MAAM;AACnB,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,eAAS,UAAU;AAAA,IACrB;AACA,SAAK,MAAM;AAAA,EACb;AACA,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,QAAM,SAAS,SAAS,eAAe,UAAU,GAAG,OAAO,IAAI;AAC/D,MAAI,UAAU;AACZ,UAAM,gBAAgB,qBAAqB,qBAAqB,UAAU,QAAQ;AAClF,UAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,QAAQ;AAC5B,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,SAAO,CAAC,KAAK,EAAE;AACf,uBAAqB,2BAA2B,UAAU,MAAM,GAAG,MAAM,MAAM;AAC/E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,UAAU,aAAa,cAAc,QAAQ;AACnD,QAAM,OAAO,aAAa,oBAAoB,SAAS,OAAO;AAC9D,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO,MAAM;AACjB,QAAI,WAAW;AACf,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,UAAI,QAAQ,MAAM;AAChB,eAAO;AACP,mBAAW;AAAA,MACb;AAAA,IACF;AACA,SAAK,MAAM;AAAA,EACb;AACA,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO,SAAS,eAAe,UAAU,SAAS,IAAI;AACxD;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,QAAQ;AAC5B,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,SAAO,CAAC,KAAK,EAAE;AACf,uBAAqB,2BAA2B,UAAU,MAAM,GAAG,MAAM,MAAM;AAC/E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,UAAU,aAAa,cAAc,QAAQ;AACnD,QAAM,OAAO,aAAa,oBAAoB,SAAS,OAAO;AAC9D,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO,MAAM;AACjB,QAAI,WAAW;AACf,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,UAAI,QAAQ,MAAM;AAChB,eAAO;AACP,mBAAW;AAAA,MACb;AAAA,IACF;AACA,SAAK,MAAM;AAAA,EACb;AACA,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO,SAAS,eAAe,UAAU,SAAS,IAAI;AACxD;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC1D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,6BAA6B,CAAC,QAAQ,WAAW,KAAK,MAAM,QAAQ,MAAM,CAAC;AAC3F,IAAI,SAAS,iBAAiB,OAAO,SAAS;AAC9C,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC1D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,SAAS,QAAQ,OAAOe,UAAS,UAAU,UAAU;AAClE,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,eAAe,aAAa,QAAQ,OAAO,oBAAoB,OAAO;AAC5E,QAAM,SAAS,OAAO,SAAS,UAAU,KAAK;AAC9C,QAAM,aAAa,OAAO;AAC1B,QAAM,qBAAqB,SAAS,SAAS,KAAK,SAAS,SAAS,KAAK,SAAS,SAAS;AAC3F,QAAM,mBAAmB,SAAS,SAAS,KAAK,SAAS,SAAS;AAClE,QAAM,mBAAmB,SAAS,SAAS;AAC3C,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,UAAM,oBAAoB,IAAI;AAC9B,UAAM,mBAAmB,IAAIA,SAAQ;AACrC,aAAS,IAAI,GAAG,IAAI,SAAS,YAAY,EAAE,GAAG;AAC5C,eAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,cAAM,WAAW,KAAK,eAAe;AACrC,cAAM,QAAQ,KAAK,IAAI,GAAG,QAAQ;AAClC,cAAM,QAAQ,KAAK,IAAI,SAAS,UAAU,wBAAwB,QAAQ;AAC1E,cAAM,kBAAkB,oBAAoB,KAAK;AACjD,iBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,gBAAM,WAAW,KAAK,cAAc;AACpC,gBAAM,QAAQ,KAAK,IAAI,GAAG,QAAQ;AAClC,gBAAM,QAAQ,KAAK,IAAI,SAAS,SAAS,uBAAuB,QAAQ;AACxE,cAAI,cAAc;AAClB,cAAI,WAAW;AACf,cAAIN,UAAS;AACb,mBAAS,KAAK,OAAO,KAAK,OAAO,MAAM,gBAAgB;AACrD,kBAAM,WAAW,mBAAmB,KAAKM,SAAQ;AACjD,qBAAS,KAAK,OAAO,KAAK,OAAO,MAAM,eAAe;AACpD,oBAAM,WAAW,WAAW,KAAKA,SAAQ;AACzC,oBAAM,QAAQ,QAAQ,WAAW;AACjC,kBAAI,aAAa,SAAS,QAAQ,aAAa;AAC7C,8BAAc;AAAA,cAChB,WAAW,aAAa,OAAO;AAC7B,4BAAY;AACZ,gBAAAN;AAAA,cACF;AAAA,YACF;AACA,gBAAI,MAAM,WAAW,GAAG;AACtB;AAAA,YACF;AAAA,UACF;AACA,gBAAM,eAAe,kBAAkB,KAAK,mBAAmB;AAC/D,qBAAW,gBAAgB,aAAa,QAAQ,WAAWA,UAAS;AAAA,QACtE;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,SAAS,QAAQ,OAAO,UAAU,mBAAmB,OAAO,sBAAsB,OAAO;AACjH,QAAM,eAAe,OAAO,SAAS,UAAU,OAAO;AACtD,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,OAAO,OAAO,QAAQ,OAAO,OAAO;AAC1C,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,aAAS,IAAI,GAAG,IAAI,SAAS,YAAY,EAAE,GAAG;AAC5C,eAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,cAAM,WAAW,KAAK,eAAe;AACrC,YAAI,QAAQ;AACZ,eAAO,QAAQ,GAAG;AAChB,mBAAS;AAAA,QACX;AACA,cAAM,QAAQ,KAAK,IAAI,SAAS,UAAU,wBAAwB,QAAQ;AAC1E,iBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,gBAAM,WAAW,KAAK,cAAc;AACpC,cAAI,QAAQ;AACZ,iBAAO,QAAQ,GAAG;AAChB,qBAAS;AAAA,UACX;AACA,gBAAM,QAAQ,KAAK,IAAI,SAAS,SAAS,uBAAuB,QAAQ;AACxE,cAAI,WAAW,OAAO;AACtB,cAAI,cAAc;AAClB,mBAAS,KAAK,OAAO,KAAK,OAAO,MAAM,gBAAgB;AACrD,kBAAM,KAAK,KAAK;AAChB,qBAAS,KAAK,OAAO,KAAK,OAAO,MAAM,eAAe;AACpD,oBAAM,KAAK,KAAK;AAChB,oBAAM,QAAQ,KAAK,IAAI,GAAG,IAAI,IAAI,CAAC;AACnC,kBAAI,QAAQ,UAAU;AACpB,2BAAW;AACX,oBAAI,kBAAkB;AACpB,gCAAc,wBAAwB,IAAI,SAAS,WAAW,MAAM,SAAS,UAAU,MAAM,SAAS,aAAa,KAAK,KAAK,SAAS,UAAU,MAAM,SAAS,aAAa;AAAA,gBAC9K,OAAO;AACL,gCAAc,KAAK,uBAAuB;AAAA,gBAC5C;AAAA,cACF;AAAA,YACF;AAAA,UACF;AACA,uBAAa,IAAI,aAAa,GAAG,IAAI,IAAI,CAAC;AAAA,QAC5C;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,QAAQ,SAAS,QAAQ,OAAOM,UAAS,UAAU,UAAU;AACpE,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,uBAAuB,SAAS;AACtC,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,eAAe,aAAa,QAAQ,OAAO,oBAAoB,OAAO;AAC5E,QAAM,SAAS,OAAO,SAAS,UAAU,KAAK;AAC9C,QAAM,aAAa,OAAO;AAC1B,QAAM,qBAAqB,SAAS,SAAS,KAAK,SAAS,SAAS,KAAK,SAAS,SAAS,KAAK,SAAS,SAAS;AAClH,QAAM,qBAAqB,SAAS,SAAS,KAAK,SAAS,SAAS,KAAK,SAAS,SAAS;AAC3F,QAAM,mBAAmB,SAAS,SAAS,KAAK,SAAS,SAAS;AAClE,QAAM,mBAAmB,SAAS,SAAS;AAC3C,WAAS,QAAQ,GAAG,QAAQ,SAAS,WAAW,EAAE,OAAO;AACvD,UAAM,oBAAoB,QAAQ;AAClC,UAAM,mBAAmB,QAAQA,SAAQ;AACzC,aAAS,UAAU,GAAG,UAAU,SAAS,YAAY,EAAE,SAAS;AAC9D,eAAS,SAAS,GAAG,SAAS,SAAS,UAAU,EAAE,QAAQ;AACzD,cAAM,eAAe,SAAS,cAAc;AAC5C,YAAI,YAAY;AAChB,eAAO,YAAY,GAAG;AACpB,uBAAa;AAAA,QACf;AACA,cAAM,YAAY,KAAK,IAAI,SAAS,SAAS,uBAAuB,YAAY;AAChF,cAAM,oBAAoB,oBAAoB,SAAS;AACvD,iBAAS,OAAO,GAAG,OAAO,SAAS,WAAW,EAAE,MAAM;AACpD,gBAAM,aAAa,OAAO,eAAe;AACzC,cAAI,UAAU;AACd,iBAAO,UAAU,GAAG;AAClB,uBAAW;AAAA,UACb;AACA,gBAAM,UAAU,KAAK,IAAI,SAAS,UAAU,wBAAwB,UAAU;AAC9E,gBAAM,kBAAkB,oBAAoB,OAAO;AACnD,mBAAS,OAAO,GAAG,OAAO,SAAS,UAAU,EAAE,MAAM;AACnD,kBAAM,aAAa,OAAO,cAAc;AACxC,gBAAI,UAAU;AACd,mBAAO,UAAU,GAAG;AAClB,yBAAW;AAAA,YACb;AACA,kBAAM,UAAU,KAAK,IAAI,SAAS,SAAS,uBAAuB,UAAU;AAC5E,kBAAM,kBAAkB,kBAAkB,OAAO;AACjD,gBAAI,cAAc;AAClB,gBAAI,WAAW;AACf,gBAAIN,UAAS;AACb,qBAAS,SAAS,WAAW,SAAS,WAAW,UAAU,eAAe;AACxE,oBAAM,eAAe,mBAAmB,SAASM,SAAQ;AACzD,uBAAS,OAAO,SAAS,OAAO,SAAS,QAAQ,gBAAgB;AAC/D,sBAAM,aAAa,eAAe,OAAOA,SAAQ;AACjD,yBAAS,OAAO,SAAS,OAAO,SAAS,QAAQ,eAAe;AAC9D,wBAAM,aAAa,aAAa,OAAOA,SAAQ;AAC/C,wBAAM,QAAQ,QAAQ,aAAa;AACnC,sBAAI,aAAa,SAAS,QAAQ,aAAa;AAC7C,kCAAc;AAAA,kBAChB,WAAW,aAAa,OAAO;AAC7B,gCAAY;AACZ,oBAAAN;AAAA,kBACF;AACA,sBAAI,MAAM,WAAW,GAAG;AACtB;AAAA,kBACF;AAAA,gBACF;AACA,oBAAI,MAAM,WAAW,GAAG;AACtB;AAAA,gBACF;AAAA,cACF;AACA,kBAAI,MAAM,WAAW,GAAG;AACtB;AAAA,cACF;AAAA,YACF;AACA,kBAAM,eAAe,kBAAkB;AACvC,uBAAW,gBAAgB,aAAa,QAAQ,WAAWA,UAAS;AAAA,UACtE;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,mBAAmB,MAAM,UAAU;AAC1C,QAAM,eAAe,OAAO,SAAS,UAAU,OAAO;AACtD,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,uBAAuB,SAAS;AACtC,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,UAAU,SAAS,QAAQ;AACjC,WAAS,QAAQ,GAAG,QAAQ,SAAS,WAAW,EAAE,OAAO;AACvD,aAAS,UAAU,GAAG,UAAU,SAAS,YAAY,EAAE,SAAS;AAC9D,eAAS,SAAS,GAAG,SAAS,SAAS,UAAU,EAAE,QAAQ;AACzD,cAAM,eAAe,SAAS,cAAc;AAC5C,YAAI,YAAY;AAChB,eAAO,YAAY,GAAG;AACpB,uBAAa;AAAA,QACf;AACA,cAAM,YAAY,KAAK,IAAI,SAAS,SAAS,uBAAuB,YAAY;AAChF,iBAAS,OAAO,GAAG,OAAO,SAAS,WAAW,EAAE,MAAM;AACpD,gBAAM,aAAa,OAAO,eAAe;AACzC,cAAI,UAAU;AACd,iBAAO,UAAU,GAAG;AAClB,uBAAW;AAAA,UACb;AACA,gBAAM,UAAU,KAAK,IAAI,SAAS,UAAU,wBAAwB,UAAU;AAC9E,mBAAS,OAAO,GAAG,OAAO,SAAS,UAAU,EAAE,MAAM;AACnD,kBAAM,aAAa,OAAO,cAAc;AACxC,gBAAI,UAAU;AACd,mBAAO,UAAU,GAAG;AAClB,yBAAW;AAAA,YACb;AACA,kBAAM,UAAU,KAAK,IAAI,SAAS,SAAS,uBAAuB,UAAU;AAC5E,gBAAI,WAAW,OAAO;AACtB,gBAAI,cAAc;AAClB,qBAAS,SAAS,WAAW,SAAS,WAAW,UAAU,eAAe;AACxE,oBAAM,SAAS,SAAS;AACxB,uBAAS,OAAO,SAAS,OAAO,SAAS,QAAQ,gBAAgB;AAC/D,sBAAM,OAAO,OAAO;AACpB,yBAAS,OAAO,SAAS,OAAO,SAAS,QAAQ,eAAe;AAC9D,wBAAM,OAAO,OAAO;AACpB,wBAAM,QAAQ,KAAK,IAAI,OAAO,QAAQ,MAAM,MAAM,OAAO;AACzD,sBAAI,SAAS,UAAU;AACrB,+BAAW;AACX,kCAAc,SAAS,wBAAwB,uBAAuB,OAAO,wBAAwB;AAAA,kBACvG;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,yBAAa,IAAI,aAAa,OAAO,QAAQ,MAAM,MAAM,OAAO;AAAA,UAClE;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,mBAAiB,GAAG,SAAS;AAC7B,QAAM,EAAE,YAAY,SAAAM,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI;AACJ,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,UAAM,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACtD,OAAO;AACL,UAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,UAAMwB,YAAW,aAAa,eAAe,EAAE,KAAK;AACpD,UAAM,UAAU,MAAM,SAAS,EAAE,OAAO,EAAE,OAAOA,WAAU,UAAU,KAAK;AAC1E,UAAM,SAAS,eAAe,SAAS,UAAU,EAAE,OAAO,QAAQ,MAAM;AAAA,EAC1E;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAxB,UAAS,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACxE,mBAAiB,GAAG,WAAW;AAC/B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,iBAAiB,UAAU;AAC1H,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,SAAS,QAAQ,SAAS,EAAE,OAAO,EAAE,OAAO,aAAa,eAAe,EAAE,KAAK,GAAG,UAAU,KAAK;AACvG,SAAO,SAAS,eAAe,OAAO,OAAO,WAAW,OAAO,MAAM;AACvE;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,mBAAiB,CAAC,IAAI,MAAM,GAAG,eAAe;AAC9C,QAAM,WAAW,qBAAqB,kBAAkB,OAAO,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AACnH,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,uBAAuB,SAAS;AACtC,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,WAAW,uBAAuB,IAAI,SAAS,QAAQ;AAC7D,QAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,QAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,QAAM,KAAK,OAAO,OAAO,OAAO,SAAS;AACzC,QAAM,gBAAgB,KAAK,cAAc,eAAe;AACxD,QAAM,QAAQ,SAAS,WAAW,EAAE;AACpC,WAAS,QAAQ,GAAG,QAAQ,SAAS,WAAW,EAAE,OAAO;AACvD,aAAS,UAAU,GAAG,UAAU,SAAS,YAAY,EAAE,SAAS;AAC9D,eAAS,UAAU,GAAG,UAAU,SAAS,SAAS,EAAE,SAAS;AAC3D,iBAAS,QAAQ,GAAG,QAAQ,SAAS,UAAU,EAAE,OAAO;AACtD,mBAAS,QAAQ,GAAG,QAAQ,SAAS,SAAS,EAAE,OAAO;AACrD,kBAAM,gBAAgB,UAAU;AAChC,kBAAM,cAAc,QAAQ;AAC5B,kBAAM,cAAc,QAAQ;AAC5B,gBAAI,UAAU;AACd,qBAAS,SAAS,GAAG,SAAS,sBAAsB,UAAU,eAAe;AAC3E,oBAAM,WAAW,gBAAgB,UAAU;AAC3C,kBAAI,UAAU,KAAK,WAAW,SAAS,YAAY,KAAK,MAAM,OAAO,MAAM,SAAS;AAClF;AAAA,cACF;AACA,uBAAS,OAAO,GAAG,OAAO,uBAAuB,QAAQ,gBAAgB;AACvE,sBAAM,SAAS,cAAc,QAAQ;AACrC,oBAAI,QAAQ,KAAK,SAAS,SAAS,aAAa,KAAK,MAAM,KAAK,MAAM,OAAO;AAC3E;AAAA,gBACF;AACA,yBAAS,OAAO,GAAG,OAAO,sBAAsB,QAAQ,eAAe;AACrE,wBAAM,SAAS,cAAc,QAAQ;AACrC,sBAAI,QAAQ,KAAK,SAAS,SAAS,YAAY,KAAK,MAAM,KAAK,MAAM,OAAO;AAC1E;AAAA,kBACF;AACA,wBAAM,QAAQ,MAAM,IAAI,OAAO,SAAS,OAAO,OAAO,OAAO;AAC7D,6BAAW;AAAA,gBACb;AAAA,cACF;AAAA,YACF;AACA,eAAG,IAAI,UAAU,eAAe,OAAO,SAAS,OAAO,OAAO,OAAO;AAAA,UACvE;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,IAAI;AACV,mBAAiB,CAAC,IAAI,MAAM,GAAG,aAAa;AAC5C,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC3C,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,IAAI;AAC7F,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,QAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,QAAM,KAAK,OAAO,EAAE,OAAO,SAAS;AACpC,QAAM,gBAAgB,KAAK,eAAe;AAC1C,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,QAAQ,OAAO,GAAG,OAAO,WAAW,MAAM;AAChD,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,aAAS,IAAI,GAAG,IAAI,SAAS,YAAY,EAAE,GAAG;AAC5C,eAAS,MAAM,GAAG,MAAM,SAAS,UAAU,EAAE,KAAK;AAChD,iBAAS,MAAM,GAAG,MAAM,SAAS,SAAS,EAAE,KAAK;AAC/C,gBAAM,YAAY,MAAM;AACxB,gBAAM,YAAY,MAAM;AACxB,cAAI,UAAU;AACd,mBAAS,KAAK,GAAG,KAAK,uBAAuB,MAAM,gBAAgB;AACjE,kBAAM,OAAO,YAAY,MAAM;AAC/B,gBAAI,MAAM,KAAK,OAAO,SAAS,aAAa,KAAK,MAAM,GAAG,MAAM,KAAK;AACnE;AAAA,YACF;AACA,qBAAS,KAAK,GAAG,KAAK,sBAAsB,MAAM,eAAe;AAC/D,oBAAM,OAAO,YAAY,MAAM;AAC/B,kBAAI,MAAM,KAAK,OAAO,SAAS,YAAY,KAAK,MAAM,GAAG,MAAM,KAAK;AAClE;AAAA,cACF;AACA,oBAAM,QAAQ,MAAM,IAAI,GAAG,KAAK,KAAK,CAAC;AACtC,yBAAW;AAAA,YACb;AAAA,UACF;AACA,aAAG,IAAI,UAAU,eAAe,GAAG,KAAK,KAAK,CAAC;AAAA,QAChD;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAOS,SAAQ,QAAQ,MAAM,OAAO,SAAS,IAAI;AAC5D,eAAa,OAAO,MAAM,MAAM,WAAW,SAAS,MAAM,QAAQ,MAAM,8EAA8E;AACtJ,eAAa,OAAO,UAAU,QAAQ,MAAM,MAAM,WAAW,OAAO,MAAM,QAAQ,MAAM,4EAA4E;AACpK,eAAa,OAAOA,WAAU,QAAQ,MAAM,MAAM,WAAWA,QAAO,MAAM,QAAQ,MAAM,2EAA2E;AACnK,mBAAiB,CAAC,GAAG,OAAO,UAAUA,SAAQ,MAAM,GAAG,WAAW;AAClE,MAAI,EAAE,gBAAgB,IAAI;AAC1B,MAAI,mBAAmB,MAAM;AAC3B,sBAAkB;AAAA,EACpB;AACA,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAC9C,QAAM,UAAU,SAAS,KAAK,IAAI,SAAS,MAAM,EAAE;AACnD,QAAM,QAAQA,UAAS,SAAS,KAAK,IAAIA,QAAO,MAAM,EAAE,SAAS,IAAI,aAAa,CAAC,CAAC,CAAC;AACrF,QAAM,UAAU,SAAS,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE,SAAS,IAAI,aAAa,CAAC,CAAC,CAAC;AACvF,QAAM,UAAU,IAAI,aAAa,MAAM,MAAM;AAC7C,QAAM,gBAAgB,QAAQ;AAC9B,QAAM,cAAc,MAAM;AAC1B,QAAM,gBAAgB,QAAQ;AAC9B,QAAM,cAAc,MAAM;AAC1B,MAAI,OAAO;AACX,MAAI,KAAK;AACT,MAAI,KAAK;AACT,MAAI,KAAK;AACT,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,YAAQ,MAAM,QAAQ,WAAW,MAAM,MAAM,MAAM,SAAS,MAAM,QAAQ,KAAK,KAAK,QAAQ,QAAQ,eAAe;AACnH,QAAI,QAAQ,eAAe;AACzB,aAAO;AAAA,IACT;AACA,QAAI,MAAM,aAAa;AACrB,WAAK;AAAA,IACP;AACA,QAAI,MAAM,aAAa;AACrB,WAAK;AAAA,IACP;AACA,QAAI,MAAM,eAAe;AACvB,WAAK;AAAA,IACP;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,OAAO;AAC1D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,mBAAiB,CAAC,CAAC,GAAG,gBAAgB;AACtC,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,WAAW,qBAAqB,YAAY,EAAE,OAAO,YAAY,KAAK;AAC5E,QAAM,WAAW,qBAAqB,YAAY,SAAS,QAAQ,WAAW,MAAM;AACpF,QAAM,mBAAmB,qBAAqB,oBAAoB,EAAE,OAAO,YAAY,KAAK;AAC5F,QAAM,mBAAmB,qBAAqB,oBAAoB,OAAO,WAAW,MAAM;AAC1F,QAAM,YAAY,qBAAqB,aAAa,kBAAkB,OAAO,WAAW,MAAM;AAC9F,QAAM,YAAY,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC3F,QAAM,cAAc,WAAW,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AACzG,QAAM,sBAAsB,SAAS,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,iBAAiB,EAAE,CAAC;AAC1H,QAAM,SAAS,OAAO;AAAA,IACpB,QAAQ,EAAE,GAAG,oBAAoB;AAAA,IACjC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,kBAAkB,MAAM,UAAU;AAAA,EACpD,CAAC;AACD,WAAS,8BAA8B,SAAS;AAChD,WAAS,8BAA8B,WAAW;AAClD,WAAS,8BAA8B,mBAAmB;AAC1D,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAAtB,MAAK,IAAI;AACjB,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,cAAc,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACtD,QAAM,UAAU,aAAa,OAAO,aAAa,QAAQ,OAAO,QAAQ,OAAOA,KAAI;AACnF,SAAO,SAAS,eAAe,CAACA,KAAI,GAAG,QAAQ,OAAO,OAAO;AAC/D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,IAAI,GAAG,IAAI;AACnB,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,iBAAiB,qBAAqB,2BAA2B,MAAM,KAAK,MAAM,GAAG,MAAM,KAAK,MAAM,CAAC;AAC7G,SAAO,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,SAAS,WAAW,KAAK,cAAc,CAAC;AAClG;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,gBAAgB,aAAa,CAAC,IAAI,UAAU;AAC7D,QAAM,YAAY;AAClB,MAAI,KAAK,UAAU,cAAc;AAC/B,WAAO,UAAU;AAAA,EACnB;AACA,SAAO,KAAK,UAAU,eAAe,UAAU,eAAe;AAChE,CAAC;AACD,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,CAAC,SAAS;AACzB,QAAM,EAAE,EAAE,IAAI,KAAK;AACnB,QAAM,aAAa,KAAK;AACxB,QAAM,eAAe,IAAI,aAAa,aAAa,cAAc,EAAE,KAAK,CAAC;AACzE,QAAM,cAAc,WAAW,KAAK,IAAI,EAAE,MAAM;AAChD,QAAM,QAAQ,YAAY,mBAAmB;AAC7C,QAAM,QAAQ,YAAY,mBAAmB;AAC7C,QAAM,WAAW,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACnD,QAAM,WAAW,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACnD,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AACvB,iBAAa,MAAM,KAAK,MAAM,OAAO,KAAK;AAAA,EAC5C;AACA,SAAO,WAAW,WAAW,cAAc,EAAE,OAAO,SAAS;AAC/D;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE,mBAAmB;AAClE,QAAM,UAAU,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAChD,SAAO,SAAS,eAAe,MAAM,OAAO,MAAM,OAAO,OAAO;AAClE;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,QAAQ,aAAa,eAAe,MAAM,OAAO,GAAG,KAAK,EAAE;AACjE,MAAI,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,KAAK;AACvF,MAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,WAAO,SAAS,eAAe,UAAU,OAAO,GAAG,OAAO,CAAC,CAAC;AAAA,EAC9D;AACA,QAAM,UAAU,OAAO,OAAO,CAAC,OAAO,aAAa,cAAc,GAAG,KAAK,IAAI,CAAC;AAC9E,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,uBAAqB,uBAAuB,QAAQ,KAAK;AACzD,MAAI,QAAQ,GAAG,UAAU,aAAa;AACpC,UAAM,QAAQ,QAAQ,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACrF,UAAM,QAAQ,QAAQ,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACrF,UAAM,eAAe,QAAQ,EAAE,QAAQ,OAAO,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,EAAE,CAAC;AACzF,UAAM,eAAe,QAAQ,EAAE,QAAQ,OAAO,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,EAAE,CAAC;AACzF,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AACjG,UAAM,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAChE,UAAM,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAChE,aAAS,8BAA8B,YAAY;AACnD,aAAS,8BAA8B,YAAY;AACnD,WAAO;AAAA,EACT;AACA,QAAM,WAAW,QAAQ,IAAI,CAAC,OAAO;AACnC,UAAM,YAAY,aAAa,cAAc,GAAG,MAAM,MAAM,KAAK,CAAC;AAClE,UAAM,QAAQ,CAAC,IAAI,SAAS;AAC5B,WAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,EAC5E,CAAC;AACD,QAAM,kBAAkB,SAAS,IAAI,CAAC,OAAO;AAC3C,WAAO,EAAE,MAAM,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE,QAAQ,OAAO,GAAG,MAAM;AAAA,EACtE,CAAC;AACD,aAAW,qBAAqB,gBAAgB,SAAS,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,CAAC;AACjF,QAAM,eAAe,SAAS,GAAG,MAAM,OAAO;AAC9C,QAAM,UAAU,WAAW,iBAAiB,UAAU,OAAO,GAAG,OAAO,YAAY;AACnF,QAAM,gBAAgB,qBAAqB,gBAAgB,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,KAAK;AAC/F,QAAM,UAAU,SAAS,eAAe,eAAe,OAAO,GAAG,OAAO,OAAO;AAC/E,WAAS,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACnE,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB,IAAI;AACvE,mBAAiB,CAAC,GAAG,MAAM,GAAG,QAAQ;AACtC,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,IAAI,IAAI,aAAa,SAAS,UAAU,EAAE,KAAK;AACrD,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,eAAe,SAAS;AAC9B,QAAM,aAAa,iBAAiB,SAAS,KAAK,SAAS;AAC3D,QAAM,aAAa,iBAAiB,SAAS,KAAK;AAClD,QAAM,iBAAiB,iBAAiB,IAAI,SAAS;AACrD,QAAM,eAAe,EAAE,QAAQ;AAC/B,QAAM,aAAa,iBAAiB,EAAE,QAAQ,KAAK,EAAE,QAAQ;AAC7D,QAAM,aAAa,iBAAiB,EAAE,QAAQ,KAAK;AACnD,QAAM,iBAAiB,iBAAiB,IAAI,EAAE,QAAQ;AACtD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAC/C,QAAM,QAAQ,EAAE;AAChB,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,UAAM,WAAW,IAAI;AACrB,UAAM,WAAW,IAAI;AACrB,aAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,YAAM,WAAW,WAAW,KAAK;AACjC,YAAM,WAAW,KAAK,SAAS,eAAe;AAC9C,eAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,cAAM,KAAK,WAAW,KAAK;AAC3B,YAAI,KAAK,KAAK,MAAM,SAAS,UAAU;AACrC;AAAA,QACF;AACA,cAAM,WAAW,KAAK,cAAc;AACpC,cAAM,WAAW,WAAW,KAAK;AACjC,iBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,gBAAM,WAAW,WAAW,KAAK;AACjC,gBAAM,WAAW,KAAK,SAAS,cAAc;AAC7C,mBAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,kBAAM,KAAK,WAAW,KAAK;AAC3B,gBAAI,KAAK,KAAK,MAAM,SAAS,SAAS;AACpC;AAAA,YACF;AACA,kBAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,kBAAM,WAAW,WAAW,KAAK;AACjC,gBAAI,WAAW;AACf,qBAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,oBAAM,OAAO,MAAM,WAAW,KAAK;AACnC,uBAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,sBAAM,WAAW,KAAK,mBAAmB,OAAO,MAAM,WAAW;AAAA,cACnE;AACA,0BAAY,SAAS;AAAA,YACvB;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,KAAK;AACxD;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,YAAY,IAAI;AACzE,mBAAiB,CAAC,GAAG,EAAE,GAAG,sBAAsB;AAChD,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACnI,QAAM,EAAE,cAAc,aAAa,cAAc,YAAY,IAAI;AACjE,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,KAAK,IAAI,aAAa,SAAS,aAAa,SAAS;AAC3D,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,OAAO,IAAI,aAAa,EAAE,OAAO,EAAE,OAAO,KAAK;AACrD,QAAM,QAAQ,IAAI,aAAa,GAAG,OAAO,GAAG,OAAO,MAAM;AACzD,WAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,SAAS,MAAM,YAAY,CAAC;AACjE,UAAM,QAAQ,KAAK,IAAI,SAAS,YAAY,SAAS,WAAW,SAAS,MAAM,YAAY;AAC3F,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,UAAU,MAAM,WAAW,CAAC;AACjE,YAAM,QAAQ,KAAK,IAAI,SAAS,WAAW,SAAS,UAAU,UAAU,MAAM,WAAW;AACzF,eAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,iBAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,cAAI,UAAU;AACd,mBAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,KAAK,eAAe;AACpC,uBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,sBAAM,KAAK,KAAK,KAAK,cAAc;AACnC,oBAAI,gBAAgB;AAClB,6BAAW,KAAK,IAAI,GAAG,IAAI,IAAI,EAAE,IAAI,MAAM,IAAI,GAAG,IAAI,IAAI,EAAE;AAAA,gBAC9D,OAAO;AACL,6BAAW,KAAK,IAAI,GAAG,IAAI,IAAI,EAAE,IAAI,MAAM,IAAI,GAAG,IAAI,IAAI,EAAE;AAAA,gBAC9D;AAAA,cACF;AAAA,YACF;AAAA,UACF;AACA,aAAG,IAAI,SAAS,IAAI,IAAI,IAAI,EAAE;AAAA,QAChC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AACxE,mBAAiB,CAAC,IAAI,MAAM,GAAG,qBAAqB;AACpD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,MAAI,cAAc,qBAAqB,wBAAwB,UAAU;AACzE,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACvI,QAAM,KAAK,IAAI,aAAa,SAAS,SAAS,SAAS;AACvD,QAAM,WAAW,GAAG;AACpB,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,CAAC,OAAO,OAAO,KAAK,IAAI;AAC9B,QAAM,EAAE,WAAW,cAAc,aAAa,YAAY,UAAU,SAAS,aAAa,WAAW,UAAU,cAAc,YAAY,IAAI;AAC7I,gBAAc,SAAS;AACvB,QAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,QAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,QAAM,iBAAiB,gBAAgB;AACvC,QAAM,eAAe,GAAG,QAAQ;AAChC,QAAM,aAAa,iBAAiB,GAAG,QAAQ,KAAK,GAAG,QAAQ;AAC/D,QAAM,aAAa,iBAAiB,GAAG,QAAQ,KAAK;AACpD,QAAM,iBAAiB,iBAAiB,IAAI,GAAG,QAAQ;AACvD,QAAM,eAAe,UAAU;AAC/B,QAAM,aAAa,iBAAiB,UAAU,KAAK,UAAU;AAC7D,QAAM,aAAa,iBAAiB,UAAU,KAAK;AACnD,QAAM,iBAAiB,iBAAiB,IAAI,UAAU;AACtD,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,aAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,eAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,cAAM,WAAW,KAAK;AACtB,cAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,YAAY,CAAC;AAC5D,cAAM,QAAQ,KAAK,IAAI,YAAY,eAAe,YAAY,YAAY;AAC1E,iBAAS,KAAK,GAAG,KAAK,SAAS,EAAE,IAAI;AACnC,gBAAM,WAAW,KAAK;AACtB,gBAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,WAAW,CAAC;AAC3D,gBAAM,QAAQ,KAAK,IAAI,WAAW,cAAc,YAAY,WAAW;AACvE,cAAI,UAAU;AACd,mBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,kBAAM,KAAK,KAAK,eAAe;AAC/B,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,cAAc;AAC9B,oBAAM,WAAW,eAAe,IAAI,aAAa,KAAK,aAAa;AACnE,oBAAM,YAAY,SAAS,eAAe,IAAI,MAAM,SAAS,cAAc,IAAI,MAAM,QAAQ;AAC7F,uBAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,sBAAM,QAAQ,SAAS,WAAW,iBAAiB;AACnD,sBAAM,SAAS,UAAU,YAAY;AACrC,2BAAW,QAAQ;AAAA,cACrB;AAAA,YACF;AAAA,UACF;AACA,gBAAM,WAAW,eAAe,IAAI,aAAa,KAAK,aAAa,KAAK,iBAAiB;AACzF,mBAAS,YAAY;AAAA,QACvB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,mBAAiB,CAAC,GAAG,MAAM,GAAG,QAAQ;AACtC,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,IAAI;AACvG,QAAM,EAAE,aAAa,cAAc,aAAa,eAAe,gBAAgB,eAAe,QAAQ,IAAI;AAC1G,QAAM,WAAW,QAAQ;AACzB,QAAM,UAAU,QAAQ;AACxB,QAAM,SAAS,QAAQ;AACvB,QAAM,IAAI,IAAI,aAAa,SAAS,UAAU,EAAE,KAAK;AACrD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAC/C,QAAM,QAAQ,EAAE;AAChB,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,UAAM,WAAW,IAAI,SAAS;AAC9B,UAAM,WAAW,IAAI,EAAE,QAAQ;AAC/B,aAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,YAAM,WAAW,WAAW,KAAK,EAAE,QAAQ;AAC3C,YAAM,WAAW,KAAK,SAAS,cAAc;AAC7C,eAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,cAAM,KAAK,WAAW,KAAK;AAC3B,YAAI,KAAK,KAAK,MAAM,SAAS,SAAS;AACpC;AAAA,QACF;AACA,cAAM,WAAW,KAAK,cAAc;AACpC,cAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,iBAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,gBAAM,WAAW,WAAW,KAAK,EAAE,QAAQ;AAC3C,gBAAM,WAAW,KAAK,SAAS,eAAe;AAC9C,mBAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,kBAAM,KAAK,WAAW,KAAK;AAC3B,gBAAI,KAAK,KAAK,MAAM,SAAS,UAAU;AACrC;AAAA,YACF;AACA,kBAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,kBAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,qBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,oBAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,oBAAM,WAAW,KAAK,SAAS,cAAc;AAC7C,uBAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,sBAAM,KAAK,WAAW,KAAK;AAC3B,oBAAI,KAAK,KAAK,MAAM,SAAS,SAAS;AACpC;AAAA,gBACF;AACA,sBAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,sBAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,oBAAI,WAAW;AACf,yBAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,wBAAM,OAAO,MAAM,WAAW;AAC9B,2BAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,0BAAM,WAAW,OAAO,OAAO,MAAM,WAAW;AAAA,kBAClD;AACA,8BAAY,SAAS;AAAA,gBACvB;AAAA,cACF;AAAA,YACF;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,IAAI;AAC5C,mBAAiB,CAAC,GAAG,EAAE,GAAG,wBAAwB;AAClD,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,GAAG,IAAI;AAC9F,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,KAAK,IAAI,aAAa,SAAS,aAAa,SAAS;AAC3D,QAAM,WAAW,GAAG;AACpB,QAAM,CAAC,MAAM,MAAM,MAAM,IAAI,IAAI,GAAG;AACpC,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,CAAC,MAAM,MAAM,MAAM,IAAI,IAAI;AACjC,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,CAAC,KAAK,KAAK,KAAK,GAAG,IAAI;AAC7B,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,SAAS,SAAS,QAAQ;AAChC,WAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,UAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,WAAW,MAAM,WAAW,CAAC;AAClE,UAAM,QAAQ,KAAK,IAAI,SAAS,WAAW,SAAS,UAAU,WAAW,MAAM,WAAW;AAC1F,UAAM,WAAW,KAAK;AACtB,aAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,YAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,SAAS,MAAM,YAAY,CAAC;AACjE,YAAM,QAAQ,KAAK,IAAI,SAAS,YAAY,SAAS,WAAW,SAAS,MAAM,YAAY;AAC3F,YAAM,WAAW,KAAK,OAAO;AAC7B,eAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,cAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,UAAU,MAAM,WAAW,CAAC;AACjE,cAAM,QAAQ,KAAK,IAAI,SAAS,WAAW,SAAS,UAAU,UAAU,MAAM,WAAW;AACzF,cAAM,WAAW,KAAK,OAAO;AAC7B,iBAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,gBAAM,WAAW,KAAK,OAAO;AAC7B,mBAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,gBAAI,UAAU;AACd,qBAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,oBAAM,WAAW,IAAI;AACrB,oBAAM,WAAW,IAAI;AACrB,uBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,sBAAM,KAAK,KAAK,KAAK,cAAc;AACnC,sBAAM,WAAW,KAAK,MAAM;AAC5B,sBAAM,WAAW,KAAK,OAAO;AAC7B,yBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,wBAAM,KAAK,KAAK,KAAK,eAAe;AACpC,wBAAM,WAAW,KAAK,MAAM;AAC5B,wBAAM,WAAW,KAAK,OAAO;AAC7B,2BAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,0BAAM,KAAK,KAAK,KAAK,cAAc;AACnC,0BAAM,WAAW,KAAK,MAAM;AAC5B,0BAAM,WAAW,KAAK,OAAO;AAC7B,+BAAW,QAAQ,WAAW,MAAM,SAAS,WAAW;AAAA,kBAC1D;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,qBAAS,WAAW,MAAM;AAAA,UAC5B;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,KAAK,MAAM,SAAAA,UAAS,WAAW,IAAI;AAC3C,mBAAiB,CAAC,EAAE,GAAG,uBAAuB;AAC9C,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,IAAI;AAClG,QAAM,KAAK,IAAI,aAAa,SAAS,SAAS,SAAS;AACvD,QAAM,WAAW,GAAG;AACpB,QAAM,CAAC,MAAM,MAAM,MAAM,IAAI,IAAI,GAAG;AACpC,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,CAAC,MAAM,MAAM,MAAM,IAAI,IAAI;AACjC,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,CAAC,OAAO,OAAO,OAAO,KAAK,IAAI;AACrC,QAAM,EAAE,WAAW,aAAa,cAAc,aAAa,YAAY,SAAS,UAAU,SAAS,aAAa,UAAU,WAAW,UAAU,aAAa,cAAc,YAAY,IAAI;AAC1L,QAAM,WAAW,cAAc,IAAI,SAAS,QAAQ;AACpD,QAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,QAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,aAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,eAAS,KAAK,GAAG,KAAK,SAAS,EAAE,IAAI;AACnC,cAAM,WAAW,KAAK;AACtB,cAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,WAAW,CAAC;AAC3D,cAAM,QAAQ,KAAK,IAAI,WAAW,cAAc,YAAY,WAAW;AACvE,iBAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,gBAAM,WAAW,KAAK;AACtB,gBAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,YAAY,CAAC;AAC5D,gBAAM,QAAQ,KAAK,IAAI,YAAY,eAAe,YAAY,YAAY;AAC1E,mBAAS,KAAK,GAAG,KAAK,SAAS,EAAE,IAAI;AACnC,kBAAM,WAAW,KAAK;AACtB,kBAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,WAAW,CAAC;AAC3D,kBAAM,QAAQ,KAAK,IAAI,WAAW,cAAc,YAAY,WAAW;AACvE,gBAAI,UAAU;AACd,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,cAAc;AAC9B,uBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,sBAAM,KAAK,KAAK,eAAe;AAC/B,yBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,wBAAM,KAAK,KAAK,cAAc;AAC9B,wBAAM,WAAW,OAAO,IAAI,OAAO,KAAK,OAAO,KAAK,OAAO;AAC3D,wBAAM,YAAY,SAAS,cAAc,IAAI,MAAM,SAAS,eAAe,IAAI,MAAM,SAAS,cAAc,IAAI,MAAM,QAAQ;AAC9H,2BAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,0BAAM,QAAQ,SAAS,WAAW;AAClC,0BAAM,SAAS,UAAU,YAAY;AACrC,+BAAW,QAAQ;AAAA,kBACrB;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,qBAAS,OAAO,IAAI,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,MAAM;AAAA,UAChE;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACpD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,OAAO,OAAO,IAAI;AACzC,QAAM,EAAE,UAAU,QAAQ,mBAAmB,IAAI;AACjD,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,WAAW,MAAM,MAAM;AAC7B,QAAM,CAAC,YAAY,SAAS,IAAI;AAChC,QAAM,SAAS,OAAO,CAAC,UAAU,YAAY,WAAW,WAAW,GAAG,SAAS;AAC/E,QAAM,UAAU,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAChD,QAAM,aAAa,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACpD,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,WAAW,aAAa,eAAe,OAAO,KAAK;AACzD,QAAM,YAAY,aAAa,eAAe,OAAO,KAAK;AAC1D,WAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,UAAM,WAAW,IAAI;AACrB,UAAM,KAAK,QAAQ;AACnB,UAAM,KAAK,QAAQ,WAAW;AAC9B,UAAM,KAAK,QAAQ,WAAW;AAC9B,UAAM,KAAK,QAAQ,WAAW;AAC9B,UAAM,OAAO,WAAW;AACxB,QAAI,QAAQ,OAAO;AACjB;AAAA,IACF;AACA,UAAM,cAAc,aAAa,KAAK,KAAK,OAAO,cAAc,MAAM,aAAa,KAAK;AACxF,UAAM,aAAa,YAAY,KAAK,KAAK,OAAO,aAAa,MAAM,YAAY,KAAK;AACpF,aAAS,IAAI,GAAG,IAAI,YAAY,KAAK;AACnC,YAAM,OAAO,aAAa,IAAI,MAAM,cAAc,KAAK,IAAI,cAAc,OAAO,KAAK,OAAO,cAAc;AAC1G,UAAI,OAAO,KAAK,OAAO,cAAc,GAAG;AACtC,iBAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,mBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAM,MAAM,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AACpE,mBAAO,OAAO,OAAO;AAAA,UACvB;AAAA,QACF;AACA;AAAA,MACF;AACA,UAAI,WAAW,YAAY;AACzB,cAAM,SAAS,KAAK,MAAM,IAAI;AAC9B,cAAM,YAAY,KAAK,KAAK,IAAI;AAChC,cAAM,QAAQ,OAAO;AACrB,iBAAS,IAAI,GAAG,IAAI,WAAW,KAAK;AAClC,gBAAM,OAAO,YAAY,IAAI,MAAM,aAAa,KAAK,IAAI,aAAa,OAAO,KAAK,OAAO,aAAa;AACtG,cAAI,OAAO,KAAK,OAAO,aAAa,GAAG;AACrC,qBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,oBAAM,MAAM,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AACpE,qBAAO,OAAO,OAAO;AAAA,YACvB;AACA;AAAA,UACF;AACA,gBAAM,UAAU,KAAK,MAAM,IAAI;AAC/B,gBAAM,WAAW,KAAK,KAAK,IAAI;AAC/B,gBAAM,QAAQ,OAAO;AACrB,mBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,gBAAI,MAAM,IAAI,UAAU,SAAS,KAAK,SAAS,SAAS,KAAK,OAAO,SAAS;AAC7E,kBAAM,UAAU,UAAU;AAC1B,kBAAM,IAAI,WAAW,SAAS,KAAK,SAAS,SAAS,KAAK,OAAO,SAAS;AAC1E,kBAAM,WAAW,UAAU;AAC3B,kBAAM,IAAI,UAAU,SAAS,KAAK,YAAY,SAAS,KAAK,OAAO,SAAS;AAC5E,kBAAM,aAAa,UAAU;AAC7B,kBAAM,IAAI,WAAW,SAAS,KAAK,YAAY,SAAS,KAAK,OAAO,SAAS;AAC7E,kBAAM,cAAc,UAAU;AAC9B,kBAAM,MAAM,WAAW,WAAW,WAAW;AAC7C,kBAAM,SAAS,cAAc,cAAc,cAAc;AACzD,kBAAM,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AAC9D,mBAAO,OAAO,OAAO,OAAO,SAAS,OAAO;AAAA,UAC9C;AAAA,QACF;AAAA,MACF,OAAO;AACL,iBAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,gBAAM,OAAO,YAAY,IAAI,MAAM,aAAa,KAAK,IAAI,aAAa,OAAO,KAAK,OAAO,aAAa;AACtG,cAAI,OAAO,KAAK,OAAO,aAAa,GAAG;AACrC,qBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,oBAAM,MAAM,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AACpE,qBAAO,OAAO,OAAO;AAAA,YACvB;AACA;AAAA,UACF;AACA,gBAAM,WAAW,KAAK,MAAM,IAAI;AAChC,gBAAM,WAAW,KAAK,MAAM,IAAI;AAChC,mBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAM,QAAQ,IAAI,WAAW,SAAS,KAAK,WAAW,SAAS,KAAK,OAAO,SAAS;AACpF,kBAAM,SAAS,IAAI,IAAI,UAAU,KAAK,IAAI,UAAU,KAAK,IAAI,UAAU;AACvE,mBAAO,OAAO,UAAU,UAAU;AAAA,UACpC;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC1E;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,mBAAiB,GAAG,SAAS;AAC7B,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,EAAE,MAAM,MAAM;AAClF,MAAI,KAAK;AACT,MAAI,eAAe,MAAM;AACvB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAAA,EACpF;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,EAAE,MAAM,MAAM,EAAE;AAC9E,MAAI,iBAAiB,GAAG,MAAM,SAAS,GAAG;AACxC,UAAM,IAAI,MAAM,qDAAqD,GAAG,MAAM,SAAS,kBAAkB,cAAc;AAAA,EACzH;AACA,QAAM,cAAc,WAAW,GAAG,OAAO,OAAO;AAChD,QAAM,OAAO,aAAa,mBAAmB,aAAa,cAAc,GAAG,KAAK,GAAG,WAAW;AAC9F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,QAAM,WAAW,GAAG,MAAM,GAAG,MAAM,SAAS;AAC5C,QAAM,gBAAgB,WAAW,CAAC,IAAI,MAAM,KAAK,WAAW,IAAI,IAAI,CAAC,IAAI,MAAM,KAAK;AACpF,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM,UAAU;AAClD,aAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,YAAM,MAAM,cAAc,IAAI,CAAC;AAC/B,UAAI,MAAM,GAAG;AACX,aAAK,OAAO,YAAY,IAAI,MAAM;AAAA,MACpC,OAAO;AACL,cAAM,UAAU,cAAc,IAAI,IAAI,CAAC;AACvC,aAAK,OAAO,YAAY,MAAM,WAAW,KAAK,WAAW,MAAM,OAAO,KAAK;AAAA,MAC7E;AAAA,IACF;AAAA,EACF;AACA,QAAM,SAAS,SAAS,eAAe,GAAG,OAAO,aAAa,IAAI;AAClE,MAAI,eAAe,MAAM;AACvB,UAAM,qBAAqB,qBAAqB,uBAAuB,WAAW;AAClF,UAAM,0BAA0B,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,mBAAmB,EAAE,CAAC;AAC5H,aAAS,8BAA8B,MAAM;AAC7C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,mBAAiB,GAAG,QAAQ;AAC5B,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,EAAE,MAAM,MAAM;AAClF,MAAI,KAAK;AACT,MAAI,eAAe,MAAM;AACvB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAAA,EACpF;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,EAAE,MAAM,MAAM,EAAE;AAC9E,MAAI,iBAAiB,GAAG,MAAM,SAAS,GAAG;AACxC,UAAM,IAAI,MAAM,oDAAoD,GAAG,MAAM,SAAS,kBAAkB,cAAc;AAAA,EACxH;AACA,QAAM,cAAc,WAAW,GAAG,OAAO,OAAO;AAChD,QAAM,OAAO,aAAa,oBAAoB,aAAa,cAAc,GAAG,KAAK,GAAG,WAAW;AAC/F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,QAAM,WAAW,GAAG,MAAM,GAAG,MAAM,SAAS;AAC5C,QAAM,gBAAgB,WAAW,CAAC,IAAI,MAAM,KAAK,WAAW,IAAI,IAAI,CAAC,IAAI,MAAM,KAAK;AACpF,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM,UAAU;AAClD,aAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,YAAM,MAAM,cAAc,IAAI,CAAC;AAC/B,UAAI,MAAM,GAAG;AACX,aAAK,OAAO,YAAY,IAAI,MAAM;AAAA,MACpC,OAAO;AACL,cAAM,UAAU,cAAc,IAAI,IAAI,CAAC;AACvC,aAAK,OAAO,YAAY,MAAM,WAAW,KAAK,WAAW,MAAM,OAAO,KAAK;AAAA,MAC7E;AAAA,IACF;AAAA,EACF;AACA,QAAM,SAAS,SAAS,eAAe,GAAG,OAAO,aAAa,IAAI;AAClE,MAAI,eAAe,MAAM;AACvB,UAAM,qBAAqB,qBAAqB,uBAAuB,WAAW;AAClF,UAAM,0BAA0B,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,mBAAmB,EAAE,CAAC;AAC5H,aAAS,8BAA8B,MAAM;AAC7C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAAb,OAAM,aAAa,IAAI;AAC/B,MAAI,EAAE,MAAM,WAAW,GAAG;AACxB,UAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,UAAM,cAAc,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACtD,UAAM,UAAU,aAAa,OAAO,aAAa,QAAQ,OAAO,QAAQ,OAAOA,KAAI;AACnF,WAAO,SAAS,eAAe,CAACA,KAAI,GAAG,QAAQ,OAAO,OAAO;AAAA,EAC/D,WAAW,EAAE,MAAM,WAAW,GAAG;AAC/B,UAAM,OAAO,SAAS,WAAW,CAAC;AAClC,UAAM,aAAa,SAAS,WAAW,OAAO;AAC9C,UAAM,SAAS,mBAAmB,MAAM,YAAYA,OAAM,YAAY;AACtE,WAAO,SAAS,eAAe,OAAO,OAAO,QAAQ,OAAO,OAAO,MAAM;AAAA,EAC3E;AACA,QAAM,IAAI,MAAM,qEAAqE,EAAE,MAAM,SAAS;AACxG;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,WAAW,WAAW,IAAI;AAClC,eAAa,OAAO,eAAe,QAAQ,MAAM,+DAA+D,YAAY;AAC5H,QAAM,YAAY,EAAE,MAAM;AAC1B,QAAM,cAAc,EAAE,MAAM;AAC5B,QAAM,aAAa,EAAE,MAAM;AAC3B,QAAM,aAAa,EAAE,MAAM;AAC3B,QAAM,eAAe,cAAc;AACnC,QAAM,cAAc,aAAa;AACjC,QAAM,cAAc,cAAc,YAAY;AAC9C,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,SAAS,IAAI,aAAa,YAAY,eAAe,cAAc,WAAW;AACpF,MAAI,YAAY;AAChB,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,aAAS,IAAI,GAAG,IAAI,cAAc,EAAE,GAAG;AACrC,YAAM,MAAM,KAAK,MAAM,IAAI,SAAS;AACpC,YAAM,UAAU,IAAI;AACpB,eAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,cAAM,MAAM,KAAK,MAAM,IAAI,SAAS;AACpC,cAAM,UAAU,IAAI;AACpB,cAAM,WAAW,UAAU,YAAY,WAAW;AAClD,iBAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,gBAAM,MAAM,IAAI;AAChB,gBAAM,WAAW,MAAM,cAAc,MAAM,cAAc,MAAM,cAAc;AAC7E,iBAAO,eAAe,QAAQ;AAAA,QAChC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,WAAW,cAAc,aAAa,WAAW,GAAG,EAAE,OAAO,MAAM;AACrG;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,WAAW,gBAAgB,IAAI;AAC3D,mBAAiB,CAAC,GAAG,MAAM,GAAG,uBAAuB;AACrD,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,UAAU,GAAG,MAAM,gFAAgFA,2BAA0B,aAAa;AAC3N,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,QAAM,EAAE,cAAc,aAAa,gBAAgB,eAAe,QAAQ,IAAI;AAC9E,QAAM,UAAU,QAAQ;AACxB,QAAM,SAAS,QAAQ;AACvB,QAAM,QAAQ,SAAS,cAAc,SAAS;AAC9C,QAAM,IAAI,IAAI,aAAa,SAAS,UAAU,EAAE,KAAK;AACrD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAC/C,QAAM,QAAQ,EAAE;AAChB,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,UAAM,WAAW,IAAI,SAAS;AAC9B,UAAM,WAAW,IAAI,EAAE,QAAQ;AAC/B,aAAS,KAAK,GAAG,KAAK,SAAS,WAAW,EAAE,IAAI;AAC9C,YAAM,WAAW,WAAW,KAAK,EAAE,QAAQ;AAC3C,YAAM,WAAW,KAAK,SAAS,eAAe;AAC9C,eAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,cAAM,KAAK,WAAW,KAAK;AAC3B,YAAI,KAAK,KAAK,MAAM,SAAS,UAAU;AACrC;AAAA,QACF;AACA,cAAM,WAAW,KAAK,cAAc;AACpC,cAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,iBAAS,KAAK,GAAG,KAAK,SAAS,UAAU,EAAE,IAAI;AAC7C,gBAAM,WAAW,WAAW,KAAK,EAAE,QAAQ;AAC3C,gBAAM,WAAW,KAAK,SAAS,cAAc;AAC7C,mBAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,kBAAM,KAAK,WAAW,KAAK;AAC3B,gBAAI,KAAK,KAAK,MAAM,SAAS,SAAS;AACpC;AAAA,YACF;AACA,kBAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,kBAAM,WAAW,WAAW,KAAK,SAAS;AAC1C,gBAAI,WAAW;AACf,gBAAI,WAAW;AACf,qBAAS,KAAK,GAAG,KAAK,SAAS,YAAY,EAAE,IAAI;AAC/C,oBAAM,OAAO,MAAM,WAAW;AAC9B,uBAAS,IAAI,GAAG,IAAI,OAAO,EAAE,GAAG;AAC9B,sBAAM,WAAW,MAAM,OAAO,MAAM,WAAW;AAAA,cACjD;AACA,0BAAY;AACZ,0BAAY;AAAA,YACd;AAAA,UACF;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qCAAqC,MAAM;AAClD,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,iBAAiB,YAAY,IAAI;AACxE,mBAAiB,CAAC,GAAG,EAAE,GAAG,qCAAqC;AAC/D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AAC7H,QAAM,EAAE,cAAc,aAAa,cAAc,YAAY,IAAI;AACjE,QAAM,KAAK,IAAI,aAAa,SAAS,aAAa,SAAS;AAC3D,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,QAAQ,SAAS,cAAc,SAAS;AAC9C,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,OAAO,IAAI,aAAa,EAAE,OAAO,EAAE,OAAO,KAAK;AACrD,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,QAAQ,IAAI,aAAa,GAAG,OAAO,GAAG,OAAO,MAAM;AACzD,WAAS,KAAK,GAAG,KAAK,cAAc,EAAE,IAAI;AACxC,UAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,SAAS,MAAM,YAAY,CAAC;AACjE,UAAM,QAAQ,KAAK,IAAI,SAAS,YAAY,SAAS,WAAW,SAAS,MAAM,YAAY;AAC3F,aAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,YAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,MAAM,UAAU,MAAM,WAAW,CAAC;AACjE,YAAM,QAAQ,KAAK,IAAI,SAAS,WAAW,SAAS,UAAU,UAAU,MAAM,WAAW;AACzF,eAAS,KAAK,GAAG,KAAK,SAAS,aAAa,EAAE,IAAI;AAChD,cAAM,KAAK,KAAK,MAAM,KAAK,KAAK;AAChC,cAAM,KAAK,KAAK;AAChB,YAAI,UAAU;AACd,iBAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,mBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,kBAAM,KAAK,KAAK,KAAK,eAAe;AACpC,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,KAAK,cAAc;AACnC,yBAAW,KAAK,IAAI,GAAG,IAAI,IAAI,EAAE,IAAI,MAAM,IAAI,GAAG,IAAI,IAAI,EAAE;AAAA,YAC9D;AAAA,UACF;AAAA,QACF;AACA,WAAG,IAAI,SAAS,IAAI,IAAI,IAAI,EAAE;AAAA,MAChC;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,4CAA4C;AAAA,EAC9C,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,oCAAoC,MAAM;AACjD,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACvE,mBAAiB,CAAC,IAAI,MAAM,GAAG,oCAAoC;AACnE,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AACjI,QAAM,KAAK,IAAI,aAAa,SAAS,SAAS,SAAS;AACvD,QAAM,WAAW,GAAG;AACpB,QAAM,CAAC,MAAM,MAAM,IAAI,IAAI,GAAG;AAC9B,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,CAAC,MAAM,MAAM,IAAI,IAAI;AAC3B,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,CAAC,OAAO,OAAO,KAAK,IAAI;AAC9B,QAAM,EAAE,WAAW,cAAc,aAAa,YAAY,UAAU,SAAS,aAAa,WAAW,UAAU,cAAc,YAAY,IAAI;AAC7I,QAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,QAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,QAAM,QAAQ,cAAc;AAC5B,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,aAAS,KAAK,GAAG,KAAK,YAAY,EAAE,IAAI;AACtC,eAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,cAAM,WAAW,KAAK;AACtB,cAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,YAAY,CAAC;AAC5D,cAAM,QAAQ,KAAK,IAAI,YAAY,eAAe,YAAY,YAAY;AAC1E,iBAAS,KAAK,GAAG,KAAK,SAAS,EAAE,IAAI;AACnC,gBAAM,WAAW,KAAK;AACtB,gBAAM,QAAQ,KAAK,IAAI,GAAG,KAAK,KAAK,WAAW,WAAW,CAAC;AAC3D,gBAAM,QAAQ,KAAK,IAAI,WAAW,cAAc,YAAY,WAAW;AACvE,cAAI,UAAU;AACd,mBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,kBAAM,KAAK,KAAK,eAAe;AAC/B,qBAAS,KAAK,OAAO,KAAK,OAAO,EAAE,IAAI;AACrC,oBAAM,KAAK,KAAK,cAAc;AAC9B,oBAAM,WAAW,OAAO,IAAI,OAAO,KAAK,OAAO;AAC/C,oBAAM,YAAY,SAAS,eAAe,IAAI,MAAM,SAAS,cAAc,IAAI,MAAM,QAAQ;AAC7F,uBAAS,KAAK,GAAG,KAAK,OAAO,EAAE,IAAI;AACjC,sBAAM,KAAK,KAAK,QAAQ;AACxB,sBAAM,QAAQ,SAAS,WAAW;AAClC,sBAAM,SAAS,UAAU,YAAY;AACrC,2BAAW,QAAQ;AAAA,cACrB;AAAA,YACF;AAAA,UACF;AACA,mBAAS,OAAO,IAAI,OAAO,KAAK,OAAO,KAAK,MAAM;AAAA,QACpD;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,2CAA2C;AAAA,EAC7C,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,SAAS,OAAO,CAAC,OAAO,KAAK,GAAG,EAAE,KAAK;AAC7C,QAAM,OAAO,OAAO;AACpB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,SAAK,KAAK,QAAQ,MAAM,MAAM;AAAA,EAChC;AACA,QAAM,WAAW,CAAC,GAAG,EAAE,OAAO,GAAG,EAAE,KAAK;AACxC,SAAO,SAAS,eAAe,UAAU,OAAO,OAAO,OAAO,MAAM;AACtE;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACpD,UAAM,EAAE,GAAG,OAAO,IAAI;AACtB,UAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,UAAM,aAAa;AACnB,UAAM,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,UAAM,QAAQ,EAAE,MAAM;AACtB,UAAM,aAAa,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE;AACtD,UAAM,aAAa,OAAO,MAAM;AAChC,UAAM,EAAE,WAAW,UAAU,SAAS,YAAY,WAAW,UAAU,SAAS,cAAc,aAAa,cAAc,aAAa,gBAAgB,eAAe,SAAS,IAAI,qBAAqB,sBAAsB,EAAE,OAAO,OAAO,OAAOA,UAAS,MAAM,QAAQ,SAAS;AACpR,UAAM,UAAU,aAAa,cAAc,QAAQ;AACnD,UAAM,UAAU,SAAS;AACzB,UAAM,aAAa,aAAa,kBAAkB,EAAE,OAAO,OAAO;AAClE,aAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,eAAS,OAAO,GAAG,OAAO,WAAW,EAAE,MAAM;AAC3C,cAAM,OAAO,OAAO,eAAe,QAAQ;AAC3C,iBAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,gBAAM,OAAO,OAAO,cAAc,QAAQ;AAC1C,mBAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,gBAAI,SAAS,OAAO;AACpB,qBAAS,IAAI,GAAG,IAAI,cAAc,EAAE,GAAG;AACrC,oBAAM,MAAM,OAAO,IAAI;AACvB,kBAAI,OAAO,KAAK,MAAM,UAAU;AAC9B,yBAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,wBAAM,MAAM,OAAO,IAAI;AACvB,sBAAI,OAAO,KAAK,MAAM,SAAS;AAC7B,0BAAM,SAAS,aAAa,WAAW,CAAC,GAAG,KAAK,KAAK,CAAC,GAAG,OAAO,aAAa,eAAe,EAAE,KAAK,CAAC;AACpG,0BAAM,cAAc,aAAa,WAAW,CAAC,GAAG,GAAG,CAAC,GAAG,YAAY,aAAa,eAAe,OAAO,KAAK,CAAC;AAC5G,0BAAM,MAAM,MAAM,UAAU,WAAW;AACvC,wBAAI,MAAM,QAAQ;AAChB,+BAAS;AAAA,oBACX;AAAA,kBACF;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,kBAAM,cAAc,aAAa,WAAW,CAAC,GAAG,MAAM,MAAM,CAAC,GAAG,SAAS,aAAa,eAAe,QAAQ,CAAC;AAC9G,uBAAW,eAAe;AAAA,UAC5B;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,aAAa,aAAa,YAAY,EAAE,KAAK,GAAG,UAAU,EAAE,KAAK;AACjG,WAAO,EAAE,QAAQ,OAAO,UAAU,OAAO,EAAE,MAAM;AAAA,EACnD;AACF;AAGA,IAAI,iCAAiC;AAAA,EACnC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACpD,UAAM,EAAE,GAAG,QAAQ,GAAG,IAAI;AAC1B,UAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,UAAM,aAAa;AACnB,UAAM,KAAK,aAAa,cAAc,EAAE,OAAO,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE,MAAM;AACnF,UAAM,UAAU,aAAa,cAAc,OAAO,OAAO,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE,MAAM;AAClG,UAAM,EAAE,WAAW,UAAU,SAAS,YAAY,WAAW,UAAU,SAAS,cAAc,aAAa,cAAc,aAAa,gBAAgB,eAAe,SAAS,IAAI,qBAAqB,sBAAsB,EAAE,OAAO,OAAO,OAAOA,UAAS,MAAM,QAAQ,SAAS;AACpR,iBAAa,OAAO,GAAG,SAAS,SAAS,QAAQ,MAAM,YAAY,kEAAkE,SAAS,mBAAmB,GAAG,MAAM;AAC1K,UAAM,MAAM,aAAa,cAAc,UAAU,WAAW,KAAK,IAAI,GAAG,MAAM,EAAE,MAAM;AACtF,UAAM,YAAY,aAAa,0BAA0B,OAAO,OAAO,OAAO,KAAK;AACnF,aAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,eAAS,OAAO,GAAG,OAAO,WAAW,EAAE,MAAM;AAC3C,cAAM,OAAO,OAAO,eAAe,QAAQ;AAC3C,iBAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,gBAAM,OAAO,OAAO,cAAc,QAAQ;AAC1C,mBAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,gBAAI,SAAS,OAAO;AACpB,gBAAI,OAAO;AACX,gBAAI,OAAO;AACX,qBAAS,IAAI,GAAG,IAAI,cAAc,EAAE,GAAG;AACrC,oBAAM,MAAM,OAAO,IAAI;AACvB,kBAAI,OAAO,KAAK,MAAM,UAAU;AAC9B,yBAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,wBAAM,MAAM,OAAO,IAAI;AACvB,sBAAI,OAAO,KAAK,MAAM,SAAS;AAC7B,0BAAM,MAAM,GAAG,GAAG,KAAK,KAAK,KAAK,QAAQ,GAAG,GAAG;AAC/C,wBAAI,MAAM,QAAQ;AAChB,+BAAS;AACT,6BAAO;AACP,6BAAO;AAAA,oBACT;AAAA,kBACF;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,sBAAU,MAAM,MAAM,MAAM,IAAI,GAAG,MAAM,MAAM;AAAA,UACjD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,aAAa,aAAa,WAAW,EAAE,KAAK,GAAG,OAAO,OAAO,OAAO,KAAK;AACzG,WAAO,EAAE,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC5D;AACF;AAGA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACpD,UAAM,EAAE,GAAG,QAAQ,GAAG,IAAI;AAC1B,UAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,UAAM,aAAa;AACnB,UAAM,KAAK,aAAa,cAAc,EAAE,OAAO,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE,MAAM;AACnF,UAAM,UAAU,aAAa,cAAc,OAAO,OAAO,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE,MAAM;AAClG,UAAM,EAAE,WAAW,UAAU,SAAS,YAAY,WAAW,UAAU,SAAS,cAAc,aAAa,cAAc,aAAa,gBAAgB,eAAe,SAAS,IAAI,qBAAqB,sBAAsB,EAAE,OAAO,OAAO,OAAOA,UAAS,MAAM,QAAQ,SAAS;AACpR,iBAAa,OAAO,GAAG,SAAS,SAAS,QAAQ,MAAM,YAAY,iEAAiE,SAAS,mBAAmB,GAAG,MAAM;AACzK,UAAM,MAAM,aAAa,cAAc,UAAU,WAAW,KAAK,IAAI,GAAG,MAAM,EAAE,MAAM;AACtF,UAAM,YAAY,aAAa,0BAA0B,EAAE,OAAO,EAAE,KAAK;AACzE,aAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,eAAS,OAAO,GAAG,OAAO,WAAW,EAAE,MAAM;AAC3C,cAAM,OAAO,OAAO,eAAe,QAAQ;AAC3C,iBAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,gBAAM,OAAO,OAAO,cAAc,QAAQ;AAC1C,mBAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,gBAAI,SAAS,OAAO;AACpB,gBAAI,SAAS,OAAO,IAAI,IAAI;AAC5B,gBAAI,SAAS,OAAO,IAAI,IAAI;AAC5B,qBAAS,IAAI,GAAG,IAAI,cAAc,EAAE,GAAG;AACrC,oBAAM,MAAM,OAAO,IAAI;AACvB,kBAAI,OAAO,KAAK,MAAM,UAAU;AAC9B,yBAAS,IAAI,GAAG,IAAI,aAAa,EAAE,GAAG;AACpC,wBAAM,MAAM,OAAO,IAAI;AACvB,sBAAI,OAAO,KAAK,MAAM,SAAS;AAC7B,0BAAM,MAAM,GAAG,GAAG,KAAK,KAAK,KAAK,QAAQ,GAAG,GAAG;AAC/C,wBAAI,MAAM,QAAQ;AAChB,+BAAS;AACT,+BAAS;AACT,+BAAS;AAAA,oBACX;AAAA,kBACF;AAAA,gBACF;AAAA,cACF;AAAA,YACF;AACA,sBAAU,GAAG,QAAQ,QAAQ,MAAM,IAAI,GAAG,MAAM,MAAM;AAAA,UACxD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,aAAa,aAAa,WAAW,EAAE,KAAK,GAAG,EAAE,OAAO,EAAE,KAAK;AAC/F,WAAO,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAAA,EAClD;AACF;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,KAAK;AACzB,MAAI;AACJ,MAAI,EAAE,UAAU,QAAQ;AACtB,SAAK,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,EAAE,CAAC;AAAA,EAC5E,OAAO;AACL,SAAK,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACrD;AACA,QAAM,QAAQ,GAAG,MAAM;AACvB,QAAM,OAAO,aAAa,eAAe,MAAM,GAAG,KAAK;AACvD,QAAM,cAAc,qBAAqB,mBAAmB,MAAM,KAAK;AACvE,MAAI,gBAAgB;AACpB,MAAI,YAAY;AAChB,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAC7F,oBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,KAAK;AAAA,EACnF;AACA,uBAAqB,2BAA2B,OAAO,eAAe,UAAU,MAAM,MAAM;AAC5F,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,aAAa;AAC7G,QAAM,cAAc,qBAAqB,WAAW,UAAU,OAAO,OAAO;AAC5E,MAAI,SAAS,OAAO,UAAU,UAAU,WAAW;AACnD,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,OAAO,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAC9C,QAAM,QAAQ,SAAS,KAAK,IAAI,UAAU,MAAM,EAAE;AAClD,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO;AACX,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,cAAQ,MAAM,SAAS;AAAA,IACzB;AACA,SAAK,MAAM;AAAA,EACb;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,OAAO,OAAO,IAAI;AAC7E,UAAM,YAAY;AAClB,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,WAAS,8BAA8B,EAAE;AACzC,MAAI,eAAe,MAAM;AACvB,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,IAAI;AACrB,QAAM,UAAU;AAChB,QAAM,EAAE,SAAS,YAAY,OAAO,IAAI,qBAAqB,qBAAqB,UAAU,QAAQ,MAAM;AAC1G,uBAAqB,oBAAoB,QAAQ,QAAQ,QAAQ,OAAO;AACxE,QAAM,EAAE,MAAM,MAAM,IAAI,qBAAqB,qBAAqB,YAAY,MAAM;AACpF,QAAM,SAAS,MAAM;AACrB,MAAI,MAAM;AACV,MAAI,mBAAmB,QAAQ;AAC/B,QAAM,mBAAmB,CAAC;AAC1B,WAAS,KAAK,GAAG,KAAK,QAAQ,EAAE,IAAI;AAClC,eAAW,UAAU,MAAM,KAAK;AAC9B,YAAM,EAAE,oBAAoB,MAAM,YAAY,aAAa,IAAI,qBAAqB,qBAAqB,kBAAkB,OAAO,OAAO;AACzI,UAAI;AACJ,UAAI,qBAAqB,sBAAsB,IAAI,GAAG;AACpD,YAAI,QAAQ;AAAA,MACd,OAAO;AACL,YAAI,WAAW,EAAE,QAAQ,EAAE,GAAG,QAAQ,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACrF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,YAAM,cAAc,EAAE,MAAM,MAAM;AAClC,eAAS,IAAI,GAAG,IAAI,aAAa,QAAQ,EAAE,GAAG;AAC5C,oBAAY,OAAO,aAAa,IAAI,GAAG,CAAC;AAAA,MAC1C;AACA,UAAI,CAAC,aAAa,YAAY,EAAE,OAAO,WAAW,GAAG;AACnD,YAAI,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,UAAI,QAAQ,MAAM;AAChB,cAAM;AAAA,MACR,OAAO;AACL,cAAM,UAAU,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,IAAI,GAAG,SAAS,SAAS,CAAC;AAC/D,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AAAA,IACF;AACA,QAAI,KAAK,SAAS,GAAG;AACnB,UAAI,KAAK,OAAO,GAAG;AACjB,cAAM,KAAK;AAAA,UACT,QAAQ,EAAE,GAAG,IAAI;AAAA,UACjB,SAAS;AAAA,UACT,OAAO;AAAA,YACL,MAAM,KAAK,OAAO,QAAQ,SAAS;AAAA,YACnC,UAAU;AAAA,UACZ;AAAA,QACF,CAAC;AACD,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AACA;AAAA,IACF;AAAA,EACF;AACA,aAAW,cAAc,kBAAkB;AACzC,QAAI,eAAe,KAAK;AACtB;AAAA,IACF;AACA,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACA,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,IAAI,EAAE,IAAI;AAClB,mBAAiB,CAAC,IAAI,CAAC,GAAG,SAAS;AACnC,QAAM,eAAe,IAAI,aAAa,aAAa,cAAc,EAAE,KAAK,CAAC;AACzE,QAAM,SAAS,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC3C,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,UAAM,IAAI,OAAO;AACjB,QAAI,KAAK,GAAG;AACV,mBAAa,MAAM,SAAS;AAAA,IAC9B,OAAO;AACL,mBAAa,MAAM,SAAS,OAAO,IAAI;AAAA,IACzC;AAAA,EACF;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,WAAW,YAAY;AACjE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,IAAI,qBAAqB;AAC7B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,KAAK,qBAAqB;AAC9B,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO;AACtC,QAAM,QAAQ,KAAK,KAAK,EAAE;AAC1B,QAAM,IAAI,KAAK,IAAI,EAAE;AACrB,QAAM,KAAK,KAAK,IAAI,IAAI;AACxB,SAAO,SAAS,QAAQ,KAAK,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,KAAK,IAAI,CAAC,IAAI,CAAC;AAC/F,CAAC;AACD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,YAAY,OAAO,MAAM;AAC/B,QAAM,WAAW,OAAO,MAAM,MAAM;AACpC,MAAI,OAAO;AACX,MAAI,MAAM,GAAG;AACX,iBAAa,OAAO,EAAE,YAAY,MAAM,KAAK,MAAM,iCAAiC,EAAE,YAAY,OAAO,YAAY;AACrH,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,6BAA6B,CAAC,GAAG,MAAM,IAAI,CAAC;AAC9D,IAAI,OAAO,iBAAiB,SAAS,WAAW;AAChD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,QAAQ,SAAS,YAAY;AAC7C,QAAM,aAAa,OAAO;AAC1B,QAAM,QAAQ,WAAW;AACzB,QAAM,WAAW,WAAW;AAC5B,QAAM,YAAY,WAAW,KAAK,IAAI,OAAO,MAAM;AACnD,QAAM,SAAS,UAAU,mBAAmB;AAC5C,QAAM,SAAS,UAAU,mBAAmB;AAC5C,QAAM,cAAc,CAAC,OAAO,QAAQ;AACpC,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,aAAa,aAAa,uBAAuB,WAAW,UAAU;AAC5E,QAAM,aAAa,aAAa,uBAAuB,WAAW,UAAU;AAC5E,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,KAAK,OAAO;AAAA,MAChB,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,CAAC,GAAG,MAAM,CAAC,GAAG,QAAQ,EAAE;AAAA,IAC9C,CAAC;AACD,UAAM,KAAK,OAAO;AAAA,MAChB,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,CAAC,GAAG,MAAM,CAAC,GAAG,QAAQ,EAAE;AAAA,IAC9C,CAAC;AACD,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,WAAW,CAAC;AAC/E,UAAM,EAAE,MAAM,OAAO,MAAM,MAAM,IAAI,QAAQ,QAAQ,SAAS,UAAU;AACxE,UAAM,MAAM,qBAAqB,uBAAuB,OAAO,KAAK;AACpE,aAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,YAAM,IAAI,qBAAqB,oBAAoB,KAAK,CAAC;AACzD,iBAAW,IAAI,WAAW,KAAK,EAAE;AACjC,iBAAW,IAAI,WAAW,KAAK,EAAE;AAAA,IACnC;AACA,eAAW,8BAA8B,EAAE;AAC3C,eAAW,8BAA8B,EAAE;AAC3C,eAAW,8BAA8B,MAAM;AAAA,EACjD;AACA,QAAM,YAAY,WAAW,eAAe,aAAa,WAAW,UAAU;AAC9E,QAAM,YAAY,WAAW,eAAe,aAAa,WAAW,UAAU;AAC9E,QAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,WAAW,MAAM,UAAU,GAAG,SAAS,WAAW,CAAC;AAC7F,aAAW,8BAA8B,SAAS;AAClD,aAAW,8BAA8B,SAAS;AAClD,SAAO;AACT;AACA,SAAS,QAAQ,QAAQ,SAAS,YAAY;AAC5C,QAAMc,cAAY,aAAa,cAAc,OAAO,KAAK;AACzD,QAAM,YAAY,WAAW,KAAK,IAAI,OAAO,MAAM;AACnD,QAAM,WAAW,WAAW,KAAK,IAAI,UAAU,mBAAmB,KAAK,MAAM,EAAE;AAC/E,QAAM,WAAW,WAAW,KAAK,IAAI,UAAU,mBAAmB,KAAK,MAAM,EAAE;AAC/E,MAAI,cAAcA,WAAS,GAAG;AAC5B,UAAM,SAAS,UAAU,UAAU,UAAUA,aAAW,SAAS,UAAU;AAC3E,UAAM,cAAc,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE;AACrD,QAAI,SAAS;AACX,YAAM,WAAW,WAAW,eAAe,aAAa,WAAW,OAAO,IAAI;AAC9E,YAAM,WAAW,WAAW,eAAe,aAAa,WAAW,OAAO,IAAI;AAC9E,YAAM,WAAW,WAAW,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkBA,aAAW,SAAS,CAAC;AAC9G,YAAM,eAAe,UAAU,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,WAAW,CAAC;AAC/E,YAAM,cAAc,cAAc,WAAW,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,GAAG,SAAS,WAAW,CAAC;AAC1G,YAAM,cAAc,cAAc,WAAW,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,aAAa,GAAG,SAAS,WAAW,CAAC;AAC9G,YAAM,cAAc,WAAW,KAAK,IAAI,YAAY,MAAM,EAAE;AAC5D,YAAM,cAAc,WAAW,KAAK,IAAI,YAAY,MAAM,EAAE;AAC5D,iBAAW,8BAA8B,QAAQ;AACjD,iBAAW,8BAA8B,QAAQ;AACjD,iBAAW,8BAA8B,QAAQ;AACjD,iBAAW,8BAA8B,YAAY;AACrD,iBAAW,8BAA8B,WAAW;AACpD,iBAAW,8BAA8B,WAAW;AACpD,aAAO,EAAE,MAAM,aAAa,MAAM,YAAY;AAAA,IAChD;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,OAAO,qBAAqB,uBAAuB,UAAU,QAAQ;AAC3E,UAAM,YAAY,yBAAyB,MAAMA,aAAW,OAAO;AACnE,WAAO,qBAAqB,uBAAuB,SAAS;AAAA,EAC9D;AACF;AACA,SAAS,cAAc3B,OAAM;AAC3B,UAAQA,QAAOA,QAAO,OAAO;AAC/B;AACA,SAAS,UAAU,UAAU,UAAUA,OAAM,SAAS,YAAY;AAChE,MAAIA,UAAS,GAAG;AACd,WAAO,EAAE,MAAM,UAAU,MAAM,SAAS;AAAA,EAC1C;AACA,QAAM,OAAO,qBAAqB,uBAAuB,UAAU,QAAQ;AAC3E,QAAMwB,QAAOxB,QAAO;AACpB,QAAM,cAAc,qBAAqB,qBAAqB,IAAI;AAClE,QAAM,eAAe,YAAY;AACjC,QAAM,eAAe,YAAY;AACjC,QAAM,YAAY,CAAC,aAAa,MAAM;AACtC,QAAM,eAAe,WAAW,eAAe,WAAW,WAAW,YAAY;AACjF,QAAM,eAAe,WAAW,eAAe,WAAW,WAAW,YAAY;AACjF,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,WAAW,CAAC;AAC3G,QAAM,aAAa,qBAAqB,oBAAoB,IAAI;AAChE,QAAM,cAAc,WAAW;AAC/B,QAAM,cAAc,WAAW;AAC/B,QAAM,WAAW,CAAC,YAAY,MAAM;AACpC,QAAM,cAAc,WAAW,eAAe,UAAU,WAAW,WAAW;AAC9E,QAAM,cAAc,WAAW,eAAe,UAAU,WAAW,WAAW;AAC9E,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,aAAa,MAAM,YAAY,GAAG,SAAS,WAAW,CAAC;AACxG,QAAM,eAAe,UAAU,cAAc,cAAcwB,OAAM,SAAS,UAAU;AACpF,QAAM,gBAAgB,aAAa;AACnC,QAAM,gBAAgB,aAAa;AACnC,QAAM,aAAa,CAAC,cAAc,MAAM;AACxC,QAAM,gBAAgB,WAAW,eAAe,YAAY,WAAW,aAAa;AACpF,QAAM,gBAAgB,WAAW,eAAe,YAAY,WAAW,aAAa;AACpF,QAAM,kBAAkB,SAAS;AAAA,IAC/B,QAAQ,EAAE,MAAM,eAAe,MAAM,cAAc;AAAA,IACnD,SAAS;AAAA,EACX,CAAC;AACD,QAAM,cAAc,UAAU,aAAa,aAAaA,OAAM,SAAS,UAAU;AACjF,QAAM,eAAe,YAAY;AACjC,QAAM,eAAe,YAAY;AACjC,QAAM,YAAY,CAAC,aAAa,MAAM;AACtC,QAAM,eAAe,WAAW,eAAe,WAAW,WAAW,YAAY;AACjF,QAAM,eAAe,WAAW,eAAe,WAAW,WAAW,YAAY;AACjF,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,WAAW,CAAC;AAC3G,QAAM,KAAK,qBAAqB,UAAUxB,OAAM,OAAO;AACvD,QAAM,SAAS,CAAC,GAAG,KAAK,MAAM;AAC9B,QAAM,YAAY,WAAW,eAAe,QAAQ,WAAW,GAAG,IAAI;AACtE,QAAM,YAAY,WAAW,eAAe,QAAQ,WAAW,GAAG,IAAI;AACtE,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,MAAM,WAAW,MAAM,UAAU,GAAG,SAAS,WAAW,CAAC;AAClG,QAAM,eAAe,UAAU,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,eAAe,GAAG,SAAS,WAAW,CAAC;AACrG,QAAM,UAAU,KAAK;AAAA,IACnB,QAAQ,EAAE,GAAG,iBAAiB,GAAG,aAAa;AAAA,IAC9C,SAAS;AAAA,EACX,CAAC;AACD,QAAM,UAAU,KAAK;AAAA,IACnB,QAAQ,EAAE,GAAG,iBAAiB,GAAG,aAAa;AAAA,IAC9C,SAAS;AAAA,EACX,CAAC;AACD,QAAM,cAAc,MAAM,EAAE,QAAQ,EAAE,OAAO,QAAQ,GAAG,SAAS,WAAW,CAAC;AAC7E,QAAM,cAAc,MAAM,EAAE,QAAQ,EAAE,OAAO,QAAQ,GAAG,SAAS,WAAW,CAAC;AAC7E,QAAM,cAAc,MAAM,EAAE,QAAQ,EAAE,OAAO,QAAQ,GAAG,SAAS,WAAW,CAAC;AAC7E,QAAM,cAAc,MAAM,EAAE,QAAQ,EAAE,OAAO,QAAQ,GAAG,SAAS,WAAW,CAAC;AAC7E,QAAM,QAAQ,QAAQ;AAAA,IACpB,QAAQ,CAAC,aAAa,WAAW;AAAA,IACjC,SAAS;AAAA,IACT,OAAO,EAAE,MAAM,EAAE;AAAA,EACnB,CAAC;AACD,QAAM,QAAQ,QAAQ;AAAA,IACpB,QAAQ,CAAC,aAAa,WAAW;AAAA,IACjC,SAAS;AAAA,IACT,OAAO,EAAE,MAAM,EAAE;AAAA,EACnB,CAAC;AACD,QAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,QAAM,YAAY,WAAW,KAAK,IAAI,MAAM,MAAM,EAAE;AACpD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,cAAc;AACvD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,aAAa;AACtD,aAAW,8BAA8B,aAAa;AACtD,aAAW,8BAA8B,aAAa;AACtD,aAAW,8BAA8B,eAAe;AACxD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,cAAc;AACvD,aAAW,8BAA8B,SAAS;AAClD,aAAW,8BAA8B,SAAS;AAClD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,YAAY;AACrD,aAAW,8BAA8B,OAAO;AAChD,aAAW,8BAA8B,OAAO;AAChD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,WAAW;AACpD,aAAW,8BAA8B,KAAK;AAC9C,aAAW,8BAA8B,KAAK;AAC9C,SAAO,EAAE,MAAM,WAAW,MAAM,UAAU;AAC5C;AACA,SAAS,yBAAyB,MAAMA,OAAM,SAAS;AACrD,QAAM,MAAM,IAAI,aAAaA,QAAO,CAAC;AACrC,WAAS,KAAK,GAAG,KAAKA,OAAM,MAAM;AAChC,QAAI,QAAQ;AACZ,QAAI,QAAQ;AACZ,aAAS,IAAI,GAAG,IAAIA,OAAM,KAAK;AAC7B,YAAM,KAAK,qBAAqB,SAAS,KAAK,GAAGA,OAAM,OAAO;AAC9D,YAAM,OAAO,qBAAqB,oBAAoB,MAAM,CAAC;AAC7D,eAAS,KAAK,OAAO,GAAG,OAAO,KAAK,OAAO,GAAG;AAC9C,eAAS,KAAK,OAAO,GAAG,OAAO,KAAK,OAAO,GAAG;AAAA,IAChD;AACA,QAAI,SAAS;AACX,eAASA;AACT,eAASA;AAAA,IACX;AACA,yBAAqB,mBAAmB,KAAK,OAAO,OAAO,EAAE;AAAA,EAC/D;AACA,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM2B,cAAY,aAAa,cAAc,OAAO,KAAK;AACzD,QAAM,qBAAqB,OAAO,MAAM,OAAO,MAAM,SAAS;AAC9D,QAAM,QAAQA,cAAY;AAC1B,QAAM,UAAU,SAAS;AAAA,IACvB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,OAAO,kBAAkB,EAAE;AAAA,EAC9C,CAAC;AACD,QAAM,SAAS,SAAS,SAAS,OAAO,QAAQ;AAChD,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,OAAO,MAAM,EAAE,CAAC;AAC5G,WAAS,8BAA8B,OAAO;AAC9C,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,OAAO,MAAM,IAAI;AAChC,QAAM,SAAS,SAAS,aAAa,WAAW,KAAK;AACrD,QAAM,SAAS,aAAa,kBAAkB,QAAQ,aAAa,cAAc,KAAK,CAAC;AACvF,aAAW,QAAQ,OAAO,MAAM;AAChC,SAAO,SAAS,eAAe,OAAO,QAAQ,MAAM;AACtD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AACA,SAAS,WAAW,QAAQ,OAAO,OAAO;AACxC,MAAI,UAAU,UAAU;AACtB,WAAO,KAAK,KAAK;AAAA,EACnB,OAAO;AACL,WAAO,KAAK,KAAK;AAAA,EACnB;AACF;AAGA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,aAAa;AACnB,UAAM,SAAS,aAAa,uBAAuB,OAAO,OAAO,aAAa,cAAc,OAAO,KAAK,CAAC;AACzG,UAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,UAAM,YAAY,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE;AACrD,aAAS,WAAW,GAAG,WAAW,OAAO,YAAY;AACnD,YAAM,cAAc,WAAW,aAAa,cAAc;AAC1D,eAAS,MAAM,GAAG,MAAM,aAAa,OAAO;AAC1C,cAAM,YAAY,OAAO,aAAa;AACtC,iBAAS,MAAM,GAAG,MAAM,YAAY,OAAO;AACzC,gBAAM,YAAY,MAAM;AACxB,mBAAS,UAAU,GAAG,UAAU,aAAa,WAAW;AACtD,kBAAM,SAAS,KAAK,MAAM,aAAa,MAAM,CAAC;AAC9C,kBAAM,SAAS,cAAc,YAAY,YAAY;AACrD,gBAAI,cAAc,UAAU;AAC5B,gBAAI,UAAU,KAAK,SAAS,YAAY;AACtC,oBAAM,mBAAmB,SAAS;AAClC,oBAAM,WAAW,cAAc,YAAY,mBAAmB;AAC9D,4BAAc,UAAU;AAAA,YAC1B;AACA,mBAAO,UAAU;AAAA,UACnB;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,QAAQ,OAAO,OAAO,OAAO,KAAK;AAClE,WAAO,EAAE,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC5D;AACF;AAGA,IAAI,eAAe,6BAA6B,CAAC,GAAG,MAAM,KAAK,MAAM,IAAI,CAAC,CAAC;AAC3E,IAAI,YAAY,iBAAiB,UAAU,cAAc,MAAM,OAAO;AACtE,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAd,UAAS,KAAK,MAAM,YAAY,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,MAAI,SAAS,OAAO;AAAA,IAClB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB;AAAA,EACtE,CAAC;AACD,MAAI,MAAM;AACR,UAAM,YAAY;AAClB,QAAI,eAAe,UAAU,KAAK,MAAM,WAAW,KAAK,KAAK,MAAM,OAAO,GAAG;AAC3E,YAAM,eAAe,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,KAAK,MAAM,IAAI,GAAG,CAAC,EAAE,EAAE,CAAC;AACjH,eAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,aAAa,GAAG,SAAS,SAAS,CAAC;AAC3E,eAAS,8BAA8B,YAAY;AAAA,IACrD,OAAO;AACL,eAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,KAAK,GAAG,SAAS,SAAS,CAAC;AAAA,IACrE;AACA,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,MAAI,aAAa;AACf,UAAM,YAAY;AAClB,QAAI,eAAe,UAAU,gBAAgB,WAAW,uBAAuB,MAAM,WAAW,KAAK,uBAAuB,MAAM,OAAO,GAAG;AAC1I,YAAM,gBAAgB,SAAS;AAAA,QAC7B,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,CAAC,uBAAuB,MAAM,IAAI,GAAG,CAAC,EAAE;AAAA,MAC1D,CAAC;AACD,eAAS,iBAAiB,UAAU,QAAQ,aAAa,eAAe,cAAc;AACtF,eAAS,8BAA8B,aAAa;AAAA,IACtD,OAAO;AACL,eAAS,iBAAiB,UAAU,QAAQ,aAAa,wBAAwB,cAAc;AAAA,IACjG;AACA,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,MAAI,SAAS,sBAAsB;AAAA,IACjC,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB;AAAA,EACtE,CAAC;AACD,MAAI,MAAM;AACR,UAAM,YAAY;AAClB,aAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,KAAK,GAAG,SAAS,SAAS,CAAC;AACnE,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,MAAI,aAAa;AACf,UAAM,YAAY;AAClB,aAAS,iBAAiB,UAAU,QAAQ,aAAa,wBAAwB,cAAc;AAC/F,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,QAAQ,QAAQ,IAAI;AAC5B,QAAM,aAAa,aAAa,cAAc,OAAO,KAAK;AAC1D,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,QAAM,CAAC,aAAa,WAAW,WAAWA,QAAO,IAAI,qBAAqB,mBAAmB,QAAQ,OAAO;AAC5G,MAAI,cAAc,GAAG;AACnB,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,CAAC,CAAC;AAAA,EAC9D;AACA,QAAM,cAAc,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACtD,QAAM,YAAY,SAAS,WAAW,MAAM;AAC5C,QAAM,SAAS,aAAa,aAAa,WAAW,OAAO,OAAO,WAAW,WAAW,WAAWA,UAAS,OAAO,OAAO,UAAU;AACpI,SAAO,SAAS,eAAe,aAAa,OAAO,OAAO,OAAO,MAAM;AACzE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAM,UAAU,IAAI;AAC5B,mBAAiB,CAAC,GAAG,OAAO,GAAG,UAAU;AACzC,QAAM,aAAa,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AAC9D,QAAM,cAAc,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACtD,QAAM,UAAU,EAAE,MAAM;AACxB,WAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,UAAMH,SAAQ,YAAY;AAC1B,iBAAa,OAAOA,UAAS,UAAU,KAAKA,UAAS,GAAG,MAAM,6BAA6BA,wBAAuB,UAAU,IAAI;AAAA,EAClI;AACA,MAAI,aAAa;AACjB,MAAI,aAAa,MAAM;AACrB,iBAAa;AAAA,EACf;AACA,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,YAAY,qBAAqB,aAAa,yBAAyB,GAAG,SAAS,YAAY,UAAU;AAC/G,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO;AAAA,MACL,OAAO;AAAA,QACL,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,MACZ;AAAA,IACF;AAAA,EACF,CAAC;AACD,QAAM,eAAe,SAAS;AAAA,IAC5B,QAAQ,EAAE,GAAG,QAAQ;AAAA,IACrB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,cAAc,UAAU,SAAS,EAAE;AAAA,EAC3E,CAAC;AACD,QAAM,qBAAqB;AAAA,IACzB,UAAU;AAAA,IACV,UAAU;AAAA,IACV,cAAc,UAAU;AAAA,IACxB,UAAU;AAAA,EACZ;AACA,QAAM,aAAa,SAAS,WAAW,YAAY;AACnD,QAAM,OAAO,SAAS,WAAW,QAAQ;AACzC,QAAM,SAAS,aAAa,MAAM,YAAY,kBAAkB;AAChE,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,YAAY;AACnD,SAAO,SAAS,eAAe,UAAU,aAAa,OAAO,OAAO,OAAO,MAAM;AACnF;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAMiB,cAAY,aAAa,cAAc,OAAO,KAAK;AACzD,QAAM,qBAAqB,OAAO,MAAM,OAAO,MAAM,SAAS;AAC9D,QAAM,QAAQA,cAAY;AAC1B,QAAM,UAAU,SAAS;AAAA,IACvB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,OAAO,kBAAkB,EAAE;AAAA,EAC9C,CAAC;AACD,QAAM,SAAS,SAAS,SAAS,MAAM,QAAQ;AAC/C,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,OAAO,MAAM,EAAE,CAAC;AAC5G,WAAS,8BAA8B,OAAO;AAC9C,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,gBAAgB,UAAU,CAAC,OAAO,OAAO,SAAS,EAAE,IAAI,IAAI,GAAG,MAAM;AACrF,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,IAAI,EAAE,MAAM,WAAW,IAAI,GAAG,MAAM;AACrF,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,OAAO,MAAM,EAAE,IAAI,IAAI,GAAG,MAAM;AAC5E,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,IAAI,IAAI;AAC7B,QAAM,UAAU,aAAa,OAAO,MAAM,GAAG;AAC7C,SAAO,SAAS,eAAe,CAAC,QAAQ,MAAM,GAAG,WAAW,OAAO;AACrE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO,KAAK,MAAM,EAAE,CAAC;AAC1D,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,6BAA6B,CAAC,GAAG,MAAM,KAAK,CAAC;AAClE,IAAI,cAAc,iBAAiB,YAAY,gBAAgB,MAAM,MAAM;AAC3E,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,gBAAgB,YAAY,CAAC,OAAO,KAAK,IAAI,GAAG,MAAM;AACxE,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,6BAA6B,CAAC,GAAG,MAAM,KAAK,CAAC;AACjE,IAAI,aAAa,iBAAiB,WAAW,eAAe,MAAM,MAAM;AACxE,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,IAAI,MAAM;AACjB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,aAAa,MAAM,OAAAJ,QAAO,KAAK,IAAI;AAC3C,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,EAAE,MAAM;AACzB,QAAM,OAAO,WAAW;AACxB,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAMvB,QAAO,aAAa,cAAc,EAAE,KAAK;AAC/C,QAAM,SAAS,IAAI,aAAaA,KAAI;AACpC,WAAS,kBAAkB,QAAQ;AACjC,UAAM,iBAAiB,SAAS;AAChC,QAAI,iBAAiB,SAAS,iBAAiB,KAAK,IAAI,GAAG,iBAAiB,WAAW;AACvF,UAAM,eAAe,SAAS,iBAAiB,KAAK,IAAI,iBAAiB,aAAa,IAAI;AAC1F,QAAI,OAAO;AACX,WAAO,kBAAkB,cAAc,kBAAkB;AACvD,YAAM,IAAI,QAAQ;AAClB,cAAQ,IAAI;AAAA,IACd;AACA,WAAO;AAAA,EACT;AACA,WAAS,SAAS,GAAG,SAASA,OAAM,UAAU;AAC5C,UAAM,OAAO,kBAAkB,MAAM;AACrC,UAAM,MAAM,QAAQ,UAAU,KAAK,IAAI,OAAOuB,SAAQ,MAAM,CAAC,IAAI;AACjE,WAAO,UAAU;AAAA,EACnB;AACA,SAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,MAAM;AACzD;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,GAAG,IAAI;AACrB,QAAM,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK,IAAI;AAC3C,mBAAiB,IAAI,SAAS;AAC9B,QAAM,SAAS,aAAa,cAAc,GAAG,KAAK;AAClD,QAAM,WAAW,GAAG,MAAM;AAC1B,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,SAAS,IAAI,aAAa,MAAM;AACtC,QAAMvB,QAAO;AACb,WAAS,SAAS,GAAG,SAASA,OAAM,UAAU;AAC5C,UAAM,iBAAiB,SAAS;AAChC,UAAM,aAAa,SAAS,iBAAiB,KAAK,IAAI,GAAG,iBAAiB,WAAW;AACrF,UAAM,WAAW,SAAS,iBAAiB,KAAK,IAAI,UAAU,iBAAiB,cAAc,CAAC;AAC9F,QAAI,QAAQ;AACZ,aAAS,IAAI,YAAY,IAAI,UAAU,KAAK;AAC1C,eAAS,KAAK,IAAI,QAAQ,IAAI,CAAC;AAAA,IACjC;AACA,YAAQuB,SAAQ,QAAQ;AACxB,aAAS,IAAI,YAAY,IAAI,UAAU,KAAK;AAC1C,UAAI,MAAM,KAAKA,SAAQ,OAAO,QAAQ,KAAK,QAAQ,UAAU;AAC7D,UAAI,WAAW,GAAG;AAChB,eAAO,KAAK,IAAI,OAAO,CAAC,IAAI;AAAA,MAC9B;AACA,aAAO,SAAS;AAChB,aAAO,MAAM;AAAA,IACf;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,EAAE,OAAO,MAAM;AAC1D;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,kBAAkB,SAAS,IAAI;AACvC,QAAM,aAAa;AACnB,MAAI,SAAS,EAAE;AACf,QAAM,QAAQ,OAAO;AACrB,QAAM,WAAW,aAAa,eAAe,kBAAkB,MAAM;AACrE,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,QAAQ,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,MAAI,gBAAgB,MAAM;AACxB,UAAM,WAAW,IAAI,MAAM,KAAK;AAChC,aAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,eAAS,MAAM,OAAO,aAAa;AAAA,IACrC;AACA,YAAQ,cAAc,OAAO,QAAQ,EAAE,OAAO,cAAc,QAAQ;AACpE,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAC/D,aAAS;AAAA,EACX;AACA,mBAAiB,GAAG,KAAK;AACzB,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,aAAa,WAAW,IAAI,qBAAqB,0BAA0B,QAAQ,IAAI;AAC9F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,SAAS,QAAQ,OAAO,YAAY,aAAa,EAAE,KAAK;AAC9D,QAAM,SAAS,WAAW,MAAM,QAAQ,aAAa,EAAE,KAAK;AAC5D,MAAI,WAAW;AACf,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,aAAa,QAAQ;AAChF,eAAW;AAAA,EACb;AACA,SAAO,EAAE,QAAQ,OAAO,UAAU,OAAO,EAAE,MAAM;AACnD;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,mBAAiB,GAAG,SAAS;AAC7B,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI;AACJ,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,UAAM,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACtD,OAAO;AACL,UAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,UAAMwB,YAAW,aAAa,eAAe,EAAE,KAAK;AACpD,UAAM,UAAU,MAAM,SAAS,EAAE,OAAO,EAAE,OAAOA,WAAU,UAAU,KAAK;AAC1E,UAAM,SAAS,eAAe,SAAS,UAAU,EAAE,OAAO,QAAQ,MAAM;AAAA,EAC1E;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAxB,UAAS,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACxE,mBAAiB,GAAG,WAAW;AAC/B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,iBAAiB,UAAU;AAC1H,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,SAAS,QAAQ,SAAS,EAAE,OAAO,EAAE,OAAO,aAAa,eAAe,EAAE,KAAK,GAAG,UAAU,KAAK;AACvG,SAAO,SAAS,eAAe,OAAO,OAAO,WAAW,OAAO,MAAM;AACvE;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,mBAAiB,CAAC,IAAI,MAAM,GAAG,eAAe;AAC9C,QAAM,WAAW,qBAAqB,kBAAkB,OAAO,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AACnH,QAAM,WAAW,SAAS,WAAW,MAAM;AAC3C,QAAM,YAAY,mBAAmB,UAAU,QAAQ;AACvD,QAAM,cAAc,SAAS;AAC7B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,uBAAuB,SAAS;AACtC,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,WAAW,uBAAuB,IAAI,SAAS,QAAQ;AAC7D,QAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,QAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,QAAM,KAAK,OAAO,OAAO,OAAO,SAAS;AACzC,QAAM,QAAQ,SAAS,WAAW,EAAE;AACpC,WAAS,QAAQ,GAAG,QAAQ,SAAS,WAAW,EAAE,OAAO;AACvD,aAAS,UAAU,GAAG,UAAU,SAAS,YAAY,EAAE,SAAS;AAC9D,eAAS,UAAU,GAAG,UAAU,SAAS,SAAS,EAAE,SAAS;AAC3D,iBAAS,QAAQ,GAAG,QAAQ,SAAS,UAAU,EAAE,OAAO;AACtD,mBAAS,QAAQ,GAAG,QAAQ,SAAS,SAAS,EAAE,OAAO;AACrD,kBAAM,gBAAgB,UAAU;AAChC,kBAAM,cAAc,QAAQ;AAC5B,kBAAM,cAAc,QAAQ;AAC5B,gBAAI,UAAU;AACd,qBAAS,SAAS,GAAG,SAAS,sBAAsB,UAAU,eAAe;AAC3E,oBAAM,WAAW,gBAAgB,UAAU;AAC3C,kBAAI,UAAU,KAAK,WAAW,SAAS,YAAY,KAAK,MAAM,OAAO,MAAM,SAAS;AAClF;AAAA,cACF;AACA,uBAAS,OAAO,GAAG,OAAO,uBAAuB,QAAQ,gBAAgB;AACvE,sBAAM,SAAS,cAAc,QAAQ;AACrC,oBAAI,QAAQ,KAAK,SAAS,SAAS,aAAa,KAAK,MAAM,KAAK,MAAM,OAAO;AAC3E;AAAA,gBACF;AACA,yBAAS,OAAO,GAAG,OAAO,sBAAsB,QAAQ,eAAe;AACrE,wBAAM,SAAS,cAAc,QAAQ;AACrC,sBAAI,QAAQ,KAAK,SAAS,SAAS,YAAY,KAAK,MAAM,KAAK,MAAM,OAAO;AAC1E;AAAA,kBACF;AACA,wBAAM,SAAS,uBAAuB,wBAAwB,uBAAuB,IAAI,UAAU,IAAI,OAAO,SAAS,OAAO,OAAO,OAAO;AAC5I,wBAAM,SAAS,SAAS,wBAAwB,uBAAuB,OAAO,uBAAuB;AACrG,wBAAMR,QAAO,WAAW,SAAS,IAAI;AACrC,sBAAIA,UAAS,GAAG;AACd;AAAA,kBACF;AACA,wBAAM,QAAQ,MAAM,IAAI,OAAO,SAAS,OAAO,OAAO,OAAO;AAC7D,6BAAW,QAAQA;AAAA,gBACrB;AAAA,cACF;AAAA,YACF;AACA,eAAG,IAAI,SAAS,OAAO,SAAS,OAAO,OAAO,OAAO;AAAA,UACvD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,QAAQ,OAAO,IAAI;AACtC,QAAM,IAAI;AACV,mBAAiB,CAAC,QAAQ,MAAM,GAAG,aAAa;AAChD,QAAM,EAAE,YAAY,SAAAQ,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AAC9G,QAAM,UAAU,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC5C,QAAM,YAAY,OAAO,SAAS,UAAU,EAAE,OAAO,iBAAiB,SAAS,EAAE,OAAO,EAAE,OAAO,QAAQ,EAAE,MAAM;AACjH,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,wBAAwB,SAAS;AACvC,QAAM,uBAAuB,SAAS;AACtC,QAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,QAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,QAAM,KAAK,OAAO,EAAE,OAAO,SAAS;AACpC,QAAM,SAAS,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC5C,QAAM,QAAQ,OAAO,GAAG,OAAO,WAAW,MAAM;AAChD,WAAS,IAAI,GAAG,IAAI,SAAS,WAAW,EAAE,GAAG;AAC3C,aAAS,IAAI,GAAG,IAAI,SAAS,YAAY,EAAE,GAAG;AAC5C,eAAS,MAAM,GAAG,MAAM,SAAS,UAAU,EAAE,KAAK;AAChD,iBAAS,MAAM,GAAG,MAAM,SAAS,SAAS,EAAE,KAAK;AAC/C,gBAAM,YAAY,MAAM;AACxB,gBAAM,YAAY,MAAM;AACxB,cAAI,UAAU;AACd,mBAAS,KAAK,GAAG,KAAK,uBAAuB,MAAM,gBAAgB;AACjE,kBAAM,OAAO,YAAY,MAAM;AAC/B,gBAAI,MAAM,KAAK,OAAO,SAAS,aAAa,KAAK,MAAM,GAAG,MAAM,KAAK;AACnE;AAAA,YACF;AACA,qBAAS,KAAK,GAAG,KAAK,sBAAsB,MAAM,eAAe;AAC/D,oBAAM,OAAO,YAAY,MAAM;AAC/B,kBAAI,MAAM,KAAK,OAAO,SAAS,YAAY,KAAK,MAAM,GAAG,MAAM,KAAK;AAClE;AAAA,cACF;AACA,oBAAM,SAAS,wBAAwB,uBAAuB,IAAI,UAAU,IAAI,GAAG,KAAK,KAAK,CAAC;AAC9F,oBAAM,SAAS,KAAK,uBAAuB;AAC3C,oBAAMR,QAAO,WAAW,SAAS,IAAI;AACrC,kBAAIA,UAAS,GAAG;AACd;AAAA,cACF;AACA,oBAAM,QAAQ,MAAM,IAAI,GAAG,KAAK,KAAK,CAAC;AACtC,yBAAW,QAAQA;AAAA,YACrB;AAAA,UACF;AACA,aAAG,IAAI,SAAS,GAAG,KAAK,KAAK,CAAC;AAAA,QAChC;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,GAAG,OAAO,GAAG,MAAM;AAC9D;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,SAAS,QAAQ,OAAO,qBAAqB,UAAU;AACpF,QAAMQ,WAAU,aAAa,eAAe,MAAM;AAClD,QAAM,WAAW,MAAM,SAAS,QAAQ,OAAOA,UAAS,UAAU,KAAK;AACvE,QAAM,eAAe,iBAAiB,SAAS,QAAQ,OAAO,UAAU,MAAM,mBAAmB;AACjG,SAAO,CAAC,SAAS,QAAQ,aAAa,MAAM;AAC9C;AAGA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,oBAAoB,IAAI;AAChE,UAAM,aAAa;AACnB,qBAAiB,GAAG,mBAAmB;AACvC,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,CAAC,GAAG,CAAC,GAAG,IAAI;AAClG,UAAM,CAAC,QAAQ,OAAO,IAAI,sBAAsB,QAAQ,EAAE,OAAO,EAAE,OAAO,qBAAqB,QAAQ;AACvG,UAAM,eAAe,WAAW,MAAM,QAAQ,SAAS,UAAU,EAAE,KAAK;AACxE,UAAM,gBAAgB,WAAW,MAAM,SAAS,SAAS,UAAU,EAAE,KAAK;AAC1E,WAAO;AAAA,MACL,EAAE,QAAQ,cAAc,OAAO,SAAS,UAAU,OAAO,EAAE,MAAM;AAAA,MACjE,EAAE,QAAQ,eAAe,OAAO,SAAS,UAAU,OAAO,QAAQ;AAAA,IACpE;AAAA,EACF;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACtD,QAAM,SAAS,qBAAqB,0BAA0B,EAAE,OAAO,IAAI;AAC3E,QAAM,cAAc,OAAO;AAC3B,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,YAAY,CAAC;AACnB,QAAM,mBAAmB,SAAS,eAAe,CAAC,GAAG,WAAW,IAAI,aAAa,CAAC,UAAU,CAAC,CAAC;AAC9F,YAAU,KAAK,gBAAgB;AAC/B,QAAM,KAAK,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAClF,YAAU,KAAK,EAAE;AACjB,QAAM,MAAM,KAAK,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,iBAAiB,GAAG,SAAS,SAAS,CAAC;AAC9E,YAAU,KAAK,GAAG;AAClB,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AACxF,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,EAAE,MAAM,MAAM;AAAA,EAC1E;AACA,uBAAqB,2BAA2B,OAAO,MAAM,GAAG,MAAM,MAAM;AAC5E,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,GAAG,OAAO,IAAI;AAC7F,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,OAAO,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,GAAG,KAAK;AAC5F,QAAM,QAAQ,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC3C,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,EAAE,IAAI;AACvC,UAAM,SAAS,KAAK;AACpB,QAAI,OAAO,MAAM;AACjB,aAAS,IAAI,GAAG,IAAI,YAAY,EAAE,GAAG;AACnC,YAAM,QAAQ,MAAM,SAAS;AAC7B,UAAI,OAAO,MAAM,KAAK,KAAK,QAAQ,MAAM;AACvC,eAAO;AAAA,MACT;AAAA,IACF;AACA,SAAK,MAAM;AAAA,EACb;AACA,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,QAAM,SAAS,SAAS,eAAe,UAAU,GAAG,OAAO,IAAI;AAC/D,MAAI,UAAU;AACZ,UAAM,gBAAgB,qBAAqB,qBAAqB,UAAU,QAAQ;AAClF,UAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,mBAAiB,GAAG,WAAW;AAC/B,QAAM,WAAW,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACrE,QAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE;AACxC,QAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,GAAG;AACxD,QAAM,SAAS,SAAS,YAAY,IAAI;AACxC,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,aAAa,aAAa,cAAc,QAAQ;AACtD,QAAM,aAAa,SAAS;AAC5B,QAAM,gBAAgB,aAAa,eAAe,QAAQ;AAC1D,QAAM,UAAU,aAAa,uBAAuB,EAAE,OAAO,UAAU;AACvE,WAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,QAAI,UAAU,aAAa,WAAW,IAAI,YAAY,aAAa;AACnE,aAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,UAAI,QAAQ,MAAM,MAAM,KAAK;AAC3B,gBAAQ,MAAM,MAAM,MAAM,IAAI,QAAQ,MAAM;AAAA,MAC9C,WAAW,QAAQ,OAAO,IAAI,KAAK;AACjC,gBAAQ,OAAO,IAAI,MAAM,KAAK,IAAI,QAAQ,MAAM;AAAA,MAClD;AAAA,IACF;AACA,cAAU,QAAQ,IAAI,CAAC,GAAG,OAAO,IAAI,MAAM,GAAG;AAC9C,UAAM,UAAU,aAAa,WAAW,SAAS,OAAO,QAAQ;AAChE,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,QAAQ,SAAS,MAAM,SAAS,UAAU,EAAE,KAAK;AACvD,SAAO,EAAE,QAAQ,OAAO,OAAO,UAAU,OAAO,EAAE,MAAM;AAC1D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,6BAA6B,CAAC,QAAQ,WAAW;AAC7D,QAAM,MAAM,SAAS;AACrB,MAAI,SAAS,KAAK,SAAS,KAAK,UAAU,KAAK,UAAU,GAAG;AAC1D,WAAO;AAAA,EACT,OAAO;AACL,YAAQ,MAAM,UAAU;AAAA,EAC1B;AACF,CAAC;AACD,IAAI,OAAO,iBAAiB,KAAK,OAAO;AACxC,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,QAAQ,oBAAoB,CAAC;AAG/C,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,aAAa,OAAO,MAAM;AAChC,MAAI,OAAO;AACX,MAAI,SAAS,IAAI;AACf,WAAO,aAAa;AAAA,EACtB;AACA,MAAI,SAAS,aAAa,GAAG;AAC3B,UAAM,MAAM,4EAA4E,0BAA0B,MAAM;AAAA,EAC1H;AACA,QAAM,OAAO,aAAa,eAAe,CAAC,IAAI,GAAG,OAAO,KAAK;AAC7D,QAAM,WAAW,KAAK;AAAA,IACpB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,kBAAkB,MAAM,UAAU,MAAM;AAAA,EACnD,CAAC;AACD,QAAM,gBAAgB,qBAAqB,qBAAqB,SAAS,OAAO,IAAI;AACpF,QAAM,mBAAmB,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AACjH,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,iBAAiB,GAAG,SAAS,SAAS,CAAC;AAChF,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,SAAS,CAAC;AACtD,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,UAAU,MAAM,EAAE,CAAC;AACnG,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC1G,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,YAAY,GAAG,SAAS,SAAS,CAAC;AAC3E,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,gBAAgB;AACvD,WAAS,8BAA8B,CAAC;AACxC,WAAS,8BAA8B,CAAC;AACxC,WAAS,8BAA8B,MAAM;AAC7C,WAAS,8BAA8B,WAAW;AAClD,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,YAAY,MAAM,WAAW,IAAI;AACzC,mBAAiB,QAAQ,aAAa;AACtC,QAAM,gBAAgB,aAAa,SAAS,SAAS,EAAE,QAAQ,EAAE,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,GAAG,EAAE,CAAC;AAClH,QAAM,YAAY,cAAc,MAAM;AACtC,QAAM,YAAY,cAAc,MAAM;AACtC,QAAM,WAAW,SAAS,KAAK,IAAI,cAAc,MAAM,EAAE;AACzD,QAAM,WAAW,CAAC,WAAW,UAAU;AACvC,QAAM,UAAU,aAAa,oBAAoB,aAAa,cAAc,QAAQ,GAAG,OAAO;AAC9F,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,UAAM,SAAS,IAAI;AACnB,UAAM,MAAM,IAAI,aAAa,YAAY,CAAC;AAC1C,QAAI,KAAK,SAAS;AAClB,aAAS,QAAQ,GAAG,QAAQ,IAAI,QAAQ,EAAE,OAAO;AAC/C,UAAI,SAAS,IAAI,QAAQ,KAAK,SAAS,SAAS;AAAA,IAClD;AACA,UAAM,SAAS,YAAY,KAAK,KAAK,SAAS,CAAC;AAC/C,UAAM,YAAY,IAAI;AACtB,aAAS,WAAW,GAAG,WAAW,YAAY,EAAE,UAAU;AACxD,YAAM,KAAK,OAAO;AAClB,cAAQ,YAAY,YAAY,IAAI;AACpC,eAAS,QAAQ,GAAG,QAAQ,IAAI,QAAQ,SAAS;AAC/C,YAAI,KAAK,IAAI,QAAQ;AACnB,kBAAQ,YAAY,YAAY;AAChC;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,MAAI,CAAC,YAAY;AACf,aAAS,8BAA8B,aAAa;AAAA,EACtD;AACA,SAAO,SAAS,eAAe,UAAU,SAAS,OAAO;AAC3D;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,eAAe,IAAI;AACxD,mBAAiB,OAAO,mBAAmB;AAC3C,QAAM,YAAY,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAClD,QAAM,aAAa,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACpD,QAAM,EAAE,gBAAgB,IAAI,yBAAyB,WAAW,YAAY,eAAe,cAAc,cAAc;AACvH,SAAO,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AACnG;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,mBAAmB,IAAI;AAC5E,mBAAiB,OAAO,yBAAyB;AACjD,QAAM,YAAY,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAClD,QAAM,aAAa,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACpD,QAAM,EAAE,iBAAiB,aAAa,IAAI,yBAAyB,WAAW,YAAY,eAAe,cAAc,gBAAgB,kBAAkB;AACzJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,GAAG,SAAS,IAAI,WAAW,CAAC,YAAY,CAAC,CAAC;AAAA,EACrE;AACF;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,aAAa,IAAI;AACtE,mBAAiB,OAAO,4BAA4B;AACpD,QAAM,YAAY,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAClD,QAAM,aAAa,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACpD,QAAM,mBAAmB;AACzB,QAAM,kBAAkB;AACxB,QAAM,oBAAoB;AAC1B,QAAM,kBAAkB;AACxB,QAAM,EAAE,iBAAiB,eAAe,IAAI,yBAAyB,WAAW,YAAY,kBAAkB,iBAAiB,mBAAmB,eAAe;AACjK,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,WAAW,IAAI,aAAa,cAAc,CAAC;AAAA,EAC9F;AACF;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,IAAI;AACpB,QAAM,EAAE,OAAO,OAAO,SAAS,SAAS,IAAI;AAC5C,mBAAiB,SAAS,QAAQ;AAClC,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,MAAM,IAAI,aAAa,cAAc,KAAK;AAChD,MAAI,KAAK,QAAQ;AACjB,QAAM,aAAa,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACrD,WAAS,QAAQ,GAAG,QAAQ,aAAa,EAAE,OAAO;AAChD,QAAI,WAAW,UAAU,KAAK,WAAW,SAAS,OAAO;AACvD,UAAI,QAAQ,QAAQ,WAAW,UAAU;AAAA,IAC3C;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,GAAG,QAAQ,OAAO,KAAK,GAAG,OAAO,GAAG;AACtE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE,WAAW,EAAE,UAAU,aAAa;AAClC,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM,EAAE,SAAS,UAAU,OAAO,EAAE,OAAO,EAAE,OAAO,OAAO,GAAG,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,EACzF;AACF;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE,WAAW,EAAE,UAAU,aAAa;AAClC,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,UAAU,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACnE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM,EAAE,SAAS,UAAU,OAAO,EAAE,OAAO,EAAE,OAAO,OAAO,GAAG,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,EACzF;AACF;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,YAAY,EAAE,QAAQ,EAAE,OAAO,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAAA,EAC9F;AACA,QAAM,QAAQ,OAAO,GAAG;AACxB,QAAM,QAAQ,OAAO,GAAG;AACxB,SAAO,QAAQ,CAAC,OAAO;AACrB,iBAAa,kBAAkB,OAAO,GAAG,OAAO,uDAAuD;AACvG,iBAAa,OAAO,UAAU,GAAG,OAAO,MAAM,uDAAuD;AAAA,EACvG,CAAC;AACD,QAAM,0BAA0B,CAAC;AACjC,QAAM,kBAAkB,OAAO,IAAI,CAAC,OAAO;AACzC,UAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAChG,4BAAwB,KAAK,SAAS;AACtC,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACtF,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,cAAc,IAAI;AACpC,mBAAiB,GAAG,KAAK;AACzB,QAAM,WAAW,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACrE,QAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE;AACxC,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,aAAa,aAAa,cAAc,QAAQ;AACtD,QAAM,aAAa,SAAS;AAC5B,QAAM,gBAAgB,aAAa,eAAe,QAAQ;AAC1D,QAAM,UAAU,aAAa,uBAAuB,EAAE,OAAO,UAAU;AACvE,MAAI,kBAAkB,GAAG;AACvB,YAAQ,KAAK,aAAa;AAAA,EAC5B;AACA,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM;AACjC,UAAM,UAAU,aAAa,WAAW,IAAI,OAAO,QAAQ;AAC3D,UAAM,YAAY,QAAQ,IAAI,CAAC,GAAG,OAAO,IAAI,MAAM,GAAG;AACtD,UAAM,WAAW,aAAa,WAAW,WAAW,YAAY,aAAa;AAC7E,YAAQ,YAAY,MAAM;AAAA,EAC5B;AACA,QAAM,QAAQ,SAAS,MAAM,SAAS,UAAU,EAAE,KAAK;AACvD,SAAO,EAAE,QAAQ,OAAO,OAAO,UAAU,OAAO,EAAE,MAAM;AAC1D;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,6BAA6B,CAAC,GAAG,MAAM,KAAK,IAAI,GAAG,CAAC,CAAC;AACnE,IAAI,OAAO,iBAAiB,KAAK,OAAO;AACxC,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,cAAc,oBAAoB,IAAI;AAC7D,QAAM,EAAE,kBAAkB,IAAI;AAC9B,QAAM,SAAS,SAAS,KAAK,IAAI,MAAM,MAAM,EAAE;AAC/C,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE;AAC7D,QAAM,sBAAsB,oBAAoB,IAAI,CAAC,OAAO,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE,MAAM;AAC/F,QAAM,2BAA2B,oBAAoB,IAAI,CAAC,OAAO,GAAG,KAAK;AACzE,QAAM,CAAC,aAAa,MAAM,IAAI,yBAAyB,QAAQ,MAAM,OAAO,SAAS,OAAO,OAAO,OAAO,OAAO,eAAe,aAAa,OAAO,qBAAqB,0BAA0B,iBAAiB;AACpN,SAAO,SAAS,eAAe,aAAa,OAAO,OAAO,MAAM;AAClE;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,OAAO,MAAM,MAAM,IAAI;AAC5C,QAAM,SAAS,UAAU,OAAO,MAAM,OAAO,KAAK;AAClD,SAAO,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,OAAO,MAAM;AAC/D;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,gBAAgB,YAAY,CAAC,OAAO,IAAI,EAAE;AAC5D,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAb,MAAK,IAAI;AACjD,mBAAiB,QAAQ,gBAAgB;AACzC,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,CAAC,OAAO,WAAW,UAAU,WAAW,IAAI,OAAO;AACzD,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,SAAS,IAAI,aAAa,aAAa,cAAc,CAAC,OAAO,WAAW,UAAU,WAAW,CAAC,CAAC;AACrG,QAAM,qBAAqB;AAAA,IACzB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,IAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,EAChD;AACA,QAAM,sBAAsB;AAAA,IAC1B,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,IAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,EAChD;AACA,MAAI,YAAY;AAChB,QAAM,wBAAwB,mBAAmB,KAAK,oBAAoB;AAC1E,QAAM,wBAAwB,mBAAmB,KAAK,oBAAoB;AAC1E,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,aAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,UAAI;AACJ,UAAI,kBAAkB;AACpB,wBAAgB,yBAAyB,KAAK,OAAO;AAAA,MACvD,OAAO;AACL,wBAAgB,wBAAwB;AAAA,MAC1C;AACA,YAAM,iBAAiB,KAAK,IAAI,GAAG,KAAK,MAAM,aAAa,CAAC;AAC5D,YAAM,UAAU,gBAAgB;AAChC,YAAM,gBAAgB,KAAK,IAAI,YAAY,GAAG,KAAK,KAAK,aAAa,CAAC;AACtE,YAAM,eAAe,IAAI,cAAc,KAAK,iBAAiB,cAAc;AAC3E,YAAM,eAAe,IAAI,cAAc,KAAK,gBAAgB,cAAc;AAC1E,eAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,YAAI;AACJ,YAAI,kBAAkB;AACpB,0BAAgB,yBAAyB,IAAI,OAAO;AAAA,QACtD,OAAO;AACL,0BAAgB,wBAAwB;AAAA,QAC1C;AACA,cAAM,iBAAiB,KAAK,IAAI,GAAG,KAAK,MAAM,aAAa,CAAC;AAC5D,cAAM,UAAU,gBAAgB;AAChC,cAAM,gBAAgB,KAAK,IAAI,WAAW,GAAG,KAAK,KAAK,aAAa,CAAC;AACrE,cAAM,gBAAgB,eAAe,iBAAiB,cAAc;AACpE,cAAM,gBAAgB,eAAe,iBAAiB,cAAc;AACpE,cAAM,iBAAiB,eAAe,gBAAgB,cAAc;AACpE,cAAM,iBAAiB,eAAe,gBAAgB,cAAc;AACpE,iBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,gBAAM,UAAU,QAAQ,gBAAgB;AACxC,gBAAM,aAAa,QAAQ,gBAAgB;AAC3C,gBAAM,WAAW,QAAQ,iBAAiB;AAC1C,gBAAM,cAAc,QAAQ,iBAAiB;AAC7C,gBAAM,MAAM,WAAW,WAAW,WAAW;AAC7C,gBAAM,SAAS,cAAc,cAAc,cAAc;AACzD,gBAAM,WAAW,OAAO,SAAS,OAAO;AACxC,iBAAO,eAAe;AAAA,QACxB;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,OAAO,WAAW,UAAU,WAAW,GAAG,WAAW,MAAM;AAC7F;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,mBAAmB,MAAM;AAChC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,GAAG,IAAI;AACvB,QAAM,EAAE,aAAa,IAAI;AACzB,mBAAiB,CAAC,IAAI,MAAM,GAAG,oBAAoB;AACnD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,CAAC,OAAO,SAAS,QAAQ,KAAK,IAAI,OAAO;AAC/C,QAAM,CAAC,EAAE,SAAS,MAAM,IAAI,GAAG;AAC/B,QAAM,SAAS,IAAI,aAAa,QAAQ,UAAU,SAAS,KAAK;AAChE,QAAM,iBAAiB;AAAA,IACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,IAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,EAC5C;AACA,QAAM,iBAAiB;AAAA,IACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,IAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,EAC5C;AACA,QAAM,cAAc,eAAe,KAAK,eAAe;AACvD,QAAM,aAAa,eAAe,KAAK,eAAe;AACtD,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,MAAI,SAAS;AACb,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,UAAU,IAAI,cAAc;AAClC,aAAS,KAAK,GAAG,KAAK,SAAS,MAAM;AACnC,YAAM,MAAM,KAAK;AACjB,YAAM,cAAc,KAAK,MAAM,GAAG;AAClC,YAAM,iBAAiB,KAAK,IAAI,KAAK,KAAK,GAAG,GAAG,UAAU,CAAC;AAC3D,YAAM,eAAe,UAAU,cAAc,cAAc;AAC3D,YAAM,kBAAkB,UAAU,iBAAiB,cAAc;AACjE,YAAM,UAAU,MAAM;AACtB,YAAM,iBAAiB,IAAI;AAC3B,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,cAAM,MAAM,IAAI;AAChB,cAAM,eAAe,KAAK,MAAM,GAAG;AACnC,cAAM,gBAAgB,KAAK,IAAI,KAAK,KAAK,GAAG,GAAG,SAAS,CAAC;AACzD,cAAM,UAAU,MAAM;AACtB,cAAM,iBAAiB,IAAI;AAC3B,cAAM,kBAAkB,eAAe,eAAe,cAAc;AACpE,cAAM,mBAAmB,eAAe,gBAAgB,cAAc;AACtE,cAAM,qBAAqB,kBAAkB,eAAe,cAAc;AAC1E,cAAM,sBAAsB,kBAAkB,gBAAgB,cAAc;AAC5E,cAAM,oCAAoC,iBAAiB;AAC3D,cAAM,6BAA6B,iBAAiB;AACpD,cAAM,6BAA6B,UAAU;AAC7C,cAAM,sBAAsB,UAAU;AACtC,iBAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,gBAAM,QAAQ,SAAS;AACvB,iBAAO,kBAAkB,MAAM,QAAQ;AACvC,iBAAO,mBAAmB,MAAM,QAAQ;AACxC,iBAAO,qBAAqB,MAAM,QAAQ;AAC1C,iBAAO,sBAAsB,MAAM,QAAQ;AAAA,QAC7C;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,OAAO,QAAQ,SAAS,KAAK,GAAG,WAAW,MAAM;AACnF;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAA,MAAK,IAAI;AACjD,mBAAiB,QAAQ,uBAAuB;AAChD,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,CAAC,OAAO,WAAW,UAAU,WAAW,IAAI,OAAO;AACzD,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,SAAS,IAAI,aAAa,QAAQ,YAAY,WAAW,WAAW;AAC1E,QAAM,qBAAqB;AAAA,IACzB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,IAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,EAChD;AACA,QAAM,sBAAsB;AAAA,IAC1B,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,IAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,EAChD;AACA,QAAM,wBAAwB,mBAAmB,KAAK,oBAAoB;AAC1E,QAAM,wBAAwB,mBAAmB,KAAK,oBAAoB;AAC1E,MAAI,eAAe;AACnB,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,cAAc,IAAI,cAAc;AACtC,aAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,YAAM,gBAAgB,mBAAmB,yBAAyB,KAAK,OAAO,wBAAwB;AACtG,UAAI,mBAAmB,KAAK,IAAI,YAAY,GAAG,eAAe,KAAK,MAAM,aAAa,IAAI,KAAK,MAAM,aAAa,CAAC;AACnH,UAAI,kBAAkB;AACpB,2BAAmB,KAAK,IAAI,GAAG,gBAAgB;AAAA,MACjD;AACA,YAAM,YAAY,cAAc,mBAAmB,cAAc;AACjE,eAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,cAAM,gBAAgB,mBAAmB,yBAAyB,IAAI,OAAO,wBAAwB;AACrG,YAAI,mBAAmB,KAAK,IAAI,WAAW,GAAG,eAAe,KAAK,MAAM,aAAa,IAAI,KAAK,MAAM,aAAa,CAAC;AAClH,YAAI,kBAAkB;AACpB,6BAAmB,KAAK,IAAI,GAAG,gBAAgB;AAAA,QACjD;AACA,cAAM,YAAY,YAAY,mBAAmB,cAAc;AAC/D,iBAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,gBAAM,SAAS,QAAQ,YAAY;AACnC,iBAAO,kBAAkB;AAAA,QAC3B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,CAAC,OAAO,WAAW,UAAU,WAAW,GAAG,OAAO,OAAO,MAAM;AAChG;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,0BAA0B,MAAM;AACvC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,GAAG,IAAI;AACvB,QAAM,EAAE,aAAa,IAAI;AACzB,mBAAiB,CAAC,IAAI,MAAM,GAAG,2BAA2B;AAC1D,QAAM,gBAAgB,aAAa,eAAe,OAAO,KAAK;AAC9D,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,CAAC,OAAO,SAAS,QAAQ,KAAK,IAAI,OAAO;AAC/C,QAAM,CAAC,EAAE,SAAS,MAAM,IAAI,GAAG;AAC/B,QAAM,SAAS,IAAI,aAAa,QAAQ,UAAU,SAAS,KAAK;AAChE,QAAM,WAAW,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,iBAAiB;AAAA,IACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,IAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,EAC5C;AACA,QAAM,iBAAiB;AAAA,IACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,IAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,EAC5C;AACA,QAAM,cAAc,eAAe,KAAK,eAAe;AACvD,QAAM,aAAa,eAAe,KAAK,eAAe;AACtD,QAAM,iBAAiB,IAAI;AAC3B,QAAM,gBAAgB,IAAI;AAC1B,QAAM,YAAY,KAAK,KAAK,cAAc,IAAI,IAAI;AAClD,QAAM,WAAW,KAAK,KAAK,aAAa,IAAI,IAAI;AAChD,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,UAAM,cAAc,IAAI,cAAc;AACtC,aAAS,KAAK,GAAG,KAAK,SAAS,MAAM;AACnC,YAAM,YAAY,cAAc,KAAK,cAAc;AACnD,YAAM,aAAa,KAAK,MAAM,KAAK,cAAc;AACjD,YAAM,WAAW,KAAK,MAAM,aAAa,YAAY,CAAC;AACtD,eAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,cAAM,YAAY,YAAY,IAAI,cAAc;AAChD,cAAM,aAAa,KAAK,MAAM,IAAI,aAAa;AAC/C,cAAM,WAAW,KAAK,MAAM,aAAa,WAAW,CAAC;AACrD,iBAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,cAAI,QAAQ;AACZ,mBAAS,WAAW,GAAG,WAAW,WAAW,YAAY;AACvD,kBAAM,MAAM,WAAW;AACvB,gBAAI,MAAM,KAAK,OAAO,SAAS;AAC7B;AAAA,YACF;AACA,kBAAM,YAAY,cAAc,MAAM,UAAU;AAChD,kBAAM,gBAAgB,MAAM;AAC5B,kBAAM,mBAAmB,KAAK,IAAI,UAAU,GAAG,eAAe,KAAK,MAAM,aAAa,IAAI,KAAK,MAAM,aAAa,CAAC;AACnH,gBAAI,OAAO,kBAAkB;AAC3B;AAAA,YACF;AACA,qBAAS,WAAW,GAAG,WAAW,UAAU,YAAY;AACtD,oBAAM,MAAM,WAAW;AACvB,kBAAI,MAAM,KAAK,OAAO,QAAQ;AAC5B;AAAA,cACF;AACA,oBAAM,YAAY,YAAY,MAAM,UAAU;AAC9C,oBAAM,gBAAgB,MAAM;AAC5B,oBAAM,mBAAmB,KAAK,IAAI,SAAS,GAAG,eAAe,KAAK,MAAM,aAAa,IAAI,KAAK,MAAM,aAAa,CAAC;AAClH,kBAAI,MAAM,kBAAkB;AAC1B,yBAAS,SAAS,YAAY;AAAA,cAChC;AAAA,YACF;AAAA,UACF;AACA,iBAAO,YAAY,KAAK;AAAA,QAC1B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,MAAM;AACnE;AACA,IAAI,mCAAmC;AAAA,EACrC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,SAAS;AAC7B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK;AACvD,MAAI,UAAU,GAAG;AACf,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,SAAS,IAAI,aAAa,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,OAAO,SAAS,WAAW,CAAC;AAClC,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM,MAAM;AACvC,UAAM,SAAS,OAAO,WAAW,EAAE;AACnC,UAAM,QAAQ,OAAO,MAAM;AAC3B,UAAM,QAAQ,CAAC,MAAM,MAAM,KAAK,EAAE,MAAM,KAAK,IAAI,MAAM,EAAE;AACzD,WAAO,IAAI,KAAK,IAAI,GAAG,KAAK,GAAG,GAAG,MAAM;AAAA,EAC1C;AACA,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC1E;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,yBAAyB;AAAA,EAC3B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,EAAE,SAAS,WAAW,OAAO,IAAI;AACvC,UAAM,aAAa;AACnB,UAAM,SAAS,aAAa,uBAAuB,OAAO,OAAO,aAAa,cAAc,OAAO,KAAK,CAAC;AACzG,UAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,UAAM,CAAC,SAAS,OAAO,IAAI,qBAAqB,eAAe,QAAQ,aAAa,UAAU;AAC9F,UAAM,mBAAmB;AACzB,UAAM,YAAY,KAAK,IAAI,OAAO;AAClC,UAAM,YAAY,KAAK,IAAI,OAAO;AAClC,UAAM,YAAY,WAAW,KAAK,IAAI,OAAO,MAAM,EAAE;AACrD,aAAS,WAAW,GAAG,WAAW,OAAO,YAAY;AACnD,YAAM,cAAc,WAAW,aAAa,cAAc;AAC1D,eAAS,MAAM,GAAG,MAAM,aAAa,OAAO;AAC1C,cAAM,YAAY,OAAO,aAAa;AACtC,iBAAS,MAAM,GAAG,MAAM,YAAY,OAAO;AACzC,gBAAM,YAAY,MAAM;AACxB,mBAAS,UAAU,GAAG,UAAU,aAAa,WAAW;AACtD,kBAAM,UAAU,CAAC,OAAO,KAAK,KAAK,OAAO;AACzC,kBAAM,IAAI,QAAQ;AAClB,kBAAM,IAAI,QAAQ;AAClB,gBAAI,UAAU,IAAI,WAAW,aAAa,IAAI,WAAW;AACzD,gBAAI,UAAU,IAAI,WAAW,aAAa,IAAI,WAAW;AACzD,qBAAS,KAAK,MAAM,SAAS,OAAO;AACpC,qBAAS,KAAK,MAAM,SAAS,OAAO;AACpC,gBAAI,cAAc;AAClB,gBAAI,OAAO,cAAc,UAAU;AACjC,kBAAI,YAAY,GAAG;AACjB,8BAAc;AAAA,cAChB,OAAO;AACL,8BAAc,UAAU;AAAA,cAC1B;AAAA,YACF;AACA,gBAAI,UAAU,KAAK,SAAS,cAAc,UAAU,KAAK,SAAS,aAAa;AAC7E,oBAAM,mBAAmB,UAAU,aAAa;AAChD,oBAAM,mBAAmB,SAAS;AAClC,oBAAM,WAAW,cAAc,mBAAmB,mBAAmB;AACrE,4BAAc,UAAU;AAAA,YAC1B;AACA,kBAAM,SAAS,cAAc,YAAY,YAAY;AACrD,mBAAO,UAAU;AAAA,UACnB;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,UAAM,SAAS,WAAW,MAAM,QAAQ,OAAO,OAAO,OAAO,KAAK;AAClE,WAAO,EAAE,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC5D;AACF;AAGA,IAAI,SAAS,gBAAgB,OAAO,CAAC,OAAO;AAC1C,QAAM,OAAO,KAAK,MAAM,EAAE;AAC1B,MAAI,KAAK,OAAO,KAAK;AACnB,WAAO,KAAK,MAAM,EAAE;AAAA,EACtB,WAAW,KAAK,OAAO,KAAK;AAC1B,WAAO,KAAK,KAAK,EAAE;AAAA,EACrB,OAAO;AACL,QAAI,OAAO,MAAM,GAAG;AAClB,aAAO;AAAA,IACT,OAAO;AACL,aAAO,OAAO;AAAA,IAChB;AAAA,EACF;AACF,CAAC;AACD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,QAAQ,IAAI;AAC7B,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAa,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,SAAS,SAAS,KAAK;AAC9H,QAAM,iBAAiB;AACvB,QAAM,aAAa,SAAS,WAAW,OAAO;AAC9C,QAAM,aAAa,SAAS,WAAW,OAAO;AAC9C,QAAM,SAAS,YAAY,YAAY,YAAY,OAAOA,aAAY,WAAW,YAAY,WAAWR,UAAS,GAAG,cAAc;AAClI,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,MAAM;AACnE;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,QAAQ,OAAO;AAClC,MAAI,OAAO;AACX,MAAI,QAAQ,OAAO;AACnB,MAAI,MAAM;AACV,SAAO,OAAO,OAAO;AACnB,UAAM,KAAK,OAAO,OAAO,SAAS,CAAC;AACnC,QAAI,OAAO,OAAO,OAAO;AACvB,aAAO,MAAM;AAAA,IACf,OAAO;AACL,cAAQ;AAAA,IACV;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,YAAY,QAAQ,OAAO;AAClC,MAAI,OAAO;AACX,MAAI,QAAQ,OAAO;AACnB,MAAI,MAAM;AACV,SAAO,OAAO,OAAO;AACnB,UAAM,KAAK,OAAO,OAAO,SAAS,CAAC;AACnC,QAAI,OAAO,QAAQ,OAAO;AACxB,aAAO,MAAM;AAAA,IACf,OAAO;AACL,cAAQ;AAAA,IACV;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,cAAc,QAAQ,WAAW,WAAW,WAAW,MAAM;AACrF,QAAM,SAAS,aAAa,kBAAkB,SAAS,YAAY,SAAS;AAC5E,WAAS,IAAI,GAAG,IAAI,WAAW,EAAE,GAAG;AAClC,UAAM,oBAAoB,aAAa,MAAM,IAAI,YAAY,IAAI,KAAK,SAAS;AAC/E,UAAM,eAAe,IAAI;AACzB,aAAS,KAAK,GAAG,KAAK,WAAW,EAAE,IAAI;AACrC,aAAO,eAAe,MAAM,SAAS,SAAS,YAAY,mBAAmB,OAAO,KAAK,aAAa,IAAI,YAAY,mBAAmB,OAAO,KAAK,aAAa;AAAA,IACpK;AAAA,EACF;AACA,SAAO;AACT;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,gBAAgB,OAAO,IAAI;AACnC,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,kBAAkB,SAAS,KAAK,IAAI,eAAe,MAAM,EAAE;AACjE,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,SAAS,iBAAiB,iBAAiB,SAAS,eAAe,MAAM,IAAI,eAAe,MAAM,IAAI,OAAO,MAAM,IAAI,IAAI;AACjI,SAAO,SAAS,eAAe,OAAO,OAAO,SAAS,MAAM;AAC9D;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,WAAW,GAAG,IAAI,GAAG,GAAG,IAAI;AACpC,mBAAiB,CAAC,WAAW,IAAI,EAAE,GAAG,QAAQ;AAC9C,QAAM,gBAAgB,UAAU,MAAM;AACtC,QAAM,SAAS,SAAS,KAAK,IAAI,UAAU,MAAM,EAAE;AACnD,QAAM,UAAU,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC7C,QAAM,UAAU,SAAS,KAAK,IAAI,GAAG,MAAM,EAAE;AAC7C,QAAM,cAAc,WAAW,GAAG,OAAO,GAAG,KAAK;AACjD,QAAM,YAAY,aAAa,oBAAoB,aAAa,cAAc,GAAG,KAAK,GAAG,WAAW;AACpG,MAAIH,SAAQ;AACZ,QAAM,SAAS,kBAAkB,KAAK,gBAAgB,KAAK,GAAG,MAAM,WAAW,IAAI,IAAI,aAAa,cAAc,GAAG,MAAM,MAAM,CAAC,CAAC;AACnI,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,aAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,UAAI,OAAO,QAAQ,GAAG;AACpB,kBAAUA,YAAW,QAAQ;AAAA,MAC/B,OAAO;AACL,kBAAUA,YAAW,QAAQ;AAAA,MAC/B;AAAA,IACF;AAAA,EACF;AACA,SAAO,SAAS,eAAe,GAAG,OAAO,aAAa,SAAS;AACjE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,qBAAqB;AACtC,IAAI,QAAQ,qBAAqB;AACjC,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO;AACxC,MAAI,MAAM,GAAG;AACX,WAAO,QAAQ;AAAA,EACjB,OAAO;AACL,WAAO,cAAc,KAAK,IAAI,EAAE,IAAI;AAAA,EACtC;AACF,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO;AACxC,MAAI,KAAK,GAAG;AACV,WAAO;AAAA,EACT,WAAW,KAAK,GAAG;AACjB,WAAO;AAAA,EACT,OAAO;AACL,WAAO;AAAA,EACT;AACF,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACpD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW;AACf,IAAI,aAAa,KAAK,IAAI,QAAQ,IAAI;AACtC,IAAI,YAAY,gBAAgB,UAAU,CAAC,OAAO;AAChD,QAAM,WAAW,KAAK,CAAC;AACvB,QAAM,WAAW,KAAK;AACtB,QAAM,OAAO,KAAK,IAAI,EAAE;AACxB,MAAI;AACJ,MAAI,UAAU;AACZ,aAAS;AAAA,EACX,WAAW,UAAU;AACnB,aAAS;AAAA,EACX,OAAO;AACL,aAAS,KAAK,IAAI,IAAI,IAAI;AAAA,EAC5B;AACA,SAAO;AACT,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAS,IAAI;AACjC,mBAAiB,CAAC,CAAC,GAAG,gBAAgB;AACtC,QAAM,QAAQ,aAAa,cAAc,UAAU;AACnD,QAAM,mBAAmB,CAAC,CAAC,GAAG,CAAC,CAAC;AAChC,mBAAiB,KAAK,GAAG,QAAQ;AACjC,WAAS,KAAK,IAAI,WAAW,QAAQ,KAAK,EAAE,MAAM,QAAQ,EAAE,IAAI;AAC9D,qBAAiB,KAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAC9B;AACA,QAAM,UAAU,YAAY,WAAW;AAAA,IACrC,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO,EAAE,UAAU,kBAAkB,eAAe,EAAE;AAAA,EACxD,CAAC;AACD,QAAM,sBAAsB,qBAAqB,YAAY,QAAQ,OAAO,YAAY,OAAO,KAAK;AACpG,QAAM,oCAAoC,qBAAqB,YAAY,oBAAoB,QAAQ,WAAW,QAAQ,KAAK;AAC/H,QAAM,eAAe,qBAAqB,oBAAoB,QAAQ,OAAO,YAAY,OAAO,KAAK;AACrG,QAAM,gBAAgB,EAAE,GAAG,QAAQ;AACnC,QAAM,eAAe,EAAE,OAAO,oBAAoB;AAClD,QAAM,kBAAkB,SAAS,EAAE,QAAQ,eAAe,SAAS,UAAU,OAAO,aAAa,CAAC;AAClG,QAAM,kBAAkB,EAAE,GAAG,gBAAgB;AAC7C,QAAM,iBAAiB,EAAE,MAAM,kCAAkC;AACjE,QAAM,WAAW,WAAW,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,eAAe,CAAC;AACjG,QAAM,sBAAsB,EAAE,GAAG,SAAS;AAC1C,QAAM,qBAAqB,EAAE,OAAO,aAAa;AACjD,QAAM,SAAS,SAAS,EAAE,QAAQ,qBAAqB,SAAS,UAAU,OAAO,mBAAmB,CAAC;AACrG,WAAS,8BAA8B,OAAO;AAC9C,WAAS,8BAA8B,eAAe;AACtD,WAAS,8BAA8B,QAAQ;AAC/C,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,SAAS,QAAQ,YAAY,aAAa,IAAI;AACtD,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,UACV,WAAW,OAAO;AAAA,EAC1B;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,UACV,QAAQ,OAAO;AAAA,EACvB;AACA,MAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,UAAM,IAAI,MAAM;AAAA,UACV,OAAO,OAAO;AAAA,EACtB;AACA,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM;AAAA,UACV,aAAa,OAAO;AAAA,EAC5B;AACA,QAAM,WAAW,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACnD,QAAM,UAAU,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACjD,QAAM,cAAc,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AACzD,QAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO;AACpE,QAAM,CAAC,eAAe,oBAAoB,cAAc,mBAAmB,eAAe,IAAI,wBAAwB,UAAU,QAAQ,OAAO,QAAQ,OAAO,SAAS,OAAO,OAAO,aAAa,aAAa;AAC/M,SAAO;AAAA,IACL,SAAS,eAAe,oBAAoB,QAAQ,OAAO,aAAa;AAAA,IACxE,SAAS,eAAe,CAAC,mBAAmB,EAAE,GAAG,OAAO,OAAO,YAAY;AAAA,IAC3E,SAAS,eAAe,CAAC,kBAAkB,MAAM,GAAG,QAAQ,IAAI,WAAW,kBAAkB,IAAI,CAAC,UAAU,OAAO,KAAK,CAAC,CAAC,CAAC;AAAA,IAC3H,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,QAAQ,OAAO,IAAI,WAAW,eAAe,CAAC;AAAA,EAClG;AACF;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,cAAc,YAAY,SAAS,IAAI;AAC/C,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM;AAAA,UACV,aAAa,OAAO;AAAA,EAC5B;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,UACV,WAAW,OAAO;AAAA,EAC1B;AACA,MAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,UAAM,IAAI,MAAM,sDAAsD,SAAS,OAAO;AAAA,EACxF;AACA,QAAM,cAAc,MAAM,KAAK,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE,MAAM;AAC1E,QAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE;AAC7D,QAAM,cAAc,MAAM,KAAK,SAAS,KAAK,IAAI,SAAS,MAAM,EAAE,MAAM;AACxE,QAAM,CAAC,YAAY,cAAc,WAAW,IAAI,kBAAkB,eAAe,aAAa,OAAO,aAAa,OAAO,aAAa,WAAW;AACjJ,SAAO;AAAA,IACL,SAAS,eAAe,cAAc,aAAa,OAAO,UAAU;AAAA,IACpE,SAAS,eAAe,CAAC,YAAY,MAAM,GAAG,SAAS,OAAO,IAAI,WAAW,WAAW,CAAC;AAAA,EAC3F;AACF;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,mBAAmB,MAAM;AAChC,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,MAAI,KAAK,MAAM,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,YACR,QAAQ,OAAO;AAAA,EACzB;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,YACR,WAAW,OAAO;AAAA,EAC5B;AACA,MAAI,QAAQ,MAAM,OAAO,WAAW,MAAM,IAAI;AAC5C,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE;AACA,QAAM,QAAQ,SAAS,KAAK,IAAI,KAAK,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACnD,QAAM,cAAc,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AACzD,QAAM,CAAC,YAAY,eAAe,IAAI,2BAA2B,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,aAAa,IAAI;AAC3H,SAAO,SAAS,eAAe,iBAAiB,KAAK,OAAO,UAAU;AACxE;AACA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,kBAAkB,MAAM;AAC/B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,MAAI,KAAK,MAAM,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,WACT,QAAQ,OAAO;AAAA,EACxB;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,WACT,WAAW,OAAO;AAAA,EAC3B;AACA,MAAI,QAAQ,MAAM,OAAO,WAAW,MAAM,IAAI;AAC5C,UAAM,IAAI,MAAM,+CAA+C;AAAA,EACjE;AACA,QAAM,QAAQ,SAAS,KAAK,IAAI,KAAK,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,KAAK,IAAI,QAAQ,MAAM,EAAE;AACnD,QAAM,cAAc,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AACzD,QAAM,CAAC,YAAY,eAAe,IAAI,2BAA2B,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,WAAW;AACrH,SAAO,SAAS,eAAe,iBAAiB,KAAK,OAAO,UAAU;AACxE;AACA,IAAI,yBAAyB;AAAA,EAC3B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,eAAe,cAAc,aAAa,IAAI;AACtD,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAG,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,cAAc,eAAe,WAAW;AAC/I,QAAM,iBAAiB;AACvB,QAAM,aAAa,SAAS,WAAW,aAAa;AACpD,MAAI;AACJ,UAAQ,aAAa;AAAA,SACd,QAAQ;AACX,YAAM,aAAa,SAAS,WAAW,YAAY;AACnD,YAAM,gBAAgB,QAAQ,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO,EAAE;AAC9E,eAAS,YAAY,YAAY,YAAY,aAAaA,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AAC9I;AAAA,IACF;AAAA,SACK,WAAW;AACd,YAAM,aAAa,SAAS,WAAW,YAAY;AACnD,YAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO;AACpE,eAAS,YAAY,YAAY,YAAY,aAAaQ,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AAC9I;AAAA,IACF;AAAA,SACK,SAAS;AACZ,YAAM,aAAa,SAAS,WAAW,YAAY;AACnD,YAAM,gBAAgB,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO;AACpE,eAAS,YAAY,YAAY,YAAY,aAAaQ,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AAC9I;AAAA,IACF;AAAA,SACK,UAAU;AACb,YAAM,aAAa,SAAS,WAAW,YAAY;AACnD,YAAM,gBAAgB,aAAa,aAAa,SAAS,KAAK,IAAI,aAAa,MAAM,EAAE,OAAO,EAAE;AAChG,eAAS,YAAY,YAAY,YAAY,aAAaQ,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AAC9I;AAAA,IACF;AAAA;AAEE,YAAM,IAAI,MAAM,oBAAoB,aAAa,OAAO;AAAA;AAE5D,SAAO,SAAS,eAAe,aAAa,OAAO,OAAO,OAAO,MAAM;AACzE;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,iBAAiB,KAAK,IAAI;AAClC,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACzD,QAAM,aAAa,qBAAqB,iBAAiB,GAAG,iBAAiB,KAAK;AAClF,QAAM,QAAQ,IAAI,MAAM,EAAE,MAAM,MAAM,EAAE,KAAK,CAAC;AAC9C,QAAMb,QAAO,EAAE,MAAM,MAAM;AAC3B,SAAO,WAAW,IAAI,CAAC,OAAO;AAC5B,UAAM,YAAY,CAAC,GAAGA,KAAI;AAC1B,cAAU,SAAS;AACnB,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAM,UAAU,EAAE,CAAC;AAC7F,UAAM,UAAU;AAChB,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AAC7C,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,aAAa;AACnB,qBAAiB,GAAG,QAAQ;AAC5B,UAAM,SAAS,WAAW,KAAK,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,YAAY,IAAI,aAAa,OAAO,MAAM;AAChD,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,YAAM,QAAQ,OAAO;AACrB,gBAAU,MAAM,QAAQ;AAAA,IAC1B;AACA,UAAM,SAAS,WAAW,MAAM,WAAW,EAAE,OAAO,EAAE,KAAK;AAC3D,WAAO,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAAA,EAClD;AACF;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,IAAI,UAAU;AAC/C,QAAM,YAAY;AAClB,MAAI,MAAM,EAAE,GAAG;AACb,WAAO;AAAA,EACT,OAAO;AACL,WAAO,KAAK,IAAI,IAAI,UAAU;AAAA,EAChC;AACF,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,KAAK,SAAAa,UAAS,WAAW,SAAS,cAAc,aAAa,eAAe,IAAI;AAC/F,mBAAiB,GAAG,cAAc;AAClC,QAAM,EAAE,kBAAkB,YAAY,YAAY,WAAW,eAAe,OAAO,QAAQ,KAAK,MAAM,SAAS,SAAS,IAAI,mBAAmB,UAAU,EAAE,OAAO,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AACpP,MAAI;AACJ,MAAI,YAAY;AACd,aAAS,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAAA,EACtF,WAAW,aAAa,eAAe;AACrC,iBAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,yCAAyC,EAAE,MAAM,QAAQ;AACxG,UAAMb,QAAO,mBAAmB,gBAAgB,QAAQ,MAAM,QAAQ;AACtE,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,MAAAA,MAAK,EAAE,CAAC;AAC1F,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC5F,aAAS,8BAA8B,MAAM;AAAA,EAC/C,OAAO;AACL,UAAM,OAAO,SAAS,WAAW,CAAC;AAClC,UAAM,SAAS,iBAAiB,kBAAkB,MAAM,UAAU,MAAM;AACxE,aAAS,SAAS,eAAe,YAAY,OAAO,OAAO,OAAO,MAAM;AAAA,EAC1E;AACA,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,aAAa,SAAS,UAAU,WAAW,UAAU,uBAAuB,IAAI;AACnG,QAAM,EAAE,MAAM,WAAW,IAAI;AAC7B,QAAM,QAAQ,SAAS,KAAK,IAAI,KAAK,MAAM,EAAE;AAC7C,QAAM,cAAc,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AACzD,QAAM,CAAC,QAAQ,YAAY,IAAI,iBAAiB,OAAO,aAAa,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB;AAChJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,UAAU,MAAM;AAAA,IACzD,SAAS,eAAe,WAAW,OAAO,SAAS,YAAY;AAAA,EACjE;AACF;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,UAAU,IAAI;AACtB,QAAM,EAAE,OAAO,QAAQ,UAAU,IAAI;AACrC,MAAI,OAAO,UAAU,UAAU;AAC7B,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,MAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,UAAM,IAAI,MAAM,sCAAsC,OAAO,OAAO;AAAA,EACtE;AACA,MAAI,UAAU,MAAM,WAAW,GAAG;AAChC,UAAM,IAAI,MAAM,0CAA0C,UAAU,OAAO;AAAA,EAC7E;AACA,QAAM,SAAS,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAChD,QAAM,aAAa,SAAS,KAAK,IAAI,UAAU,MAAM,EAAE,OAAO;AAC9D,QAAM,CAAC,SAAS,QAAQ,KAAK,IAAI,gBAAgB,QAAQ,YAAY,SAAS;AAC9E,QAAMqB,cAAa,OAAO;AAC1B,SAAO;AAAA,IACL,SAAS,eAAe,CAACA,aAAY,CAAC,GAAG,SAAS,OAAO;AAAA,IACzD,SAAS,eAAe,CAACA,WAAU,GAAG,UAAU,MAAM;AAAA,IACtD,SAAS,eAAe,CAAC,CAAC,GAAG,SAAS,IAAI,WAAW,KAAK,CAAC;AAAA,EAC7D;AACF;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,MAAM;AACrC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,IAAI;AACvB,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,MAAI,OAAO,UAAU,UAAU;AAC7B,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AACA,QAAM,SAAS,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AAChD,QAAM,SAAS,2BAA2B,QAAQ,UAAU;AAC5D,SAAO,SAAS,eAAe,OAAO,OAAO,SAAS,MAAM;AAC9D;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,gBAAgB,KAAK,CAAC,OAAO,KAAK,IAAI,EAAE,CAAC;AACpD,IAAI,YAAY;AAAA,EACd,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,gBAAgB,MAAM,CAAC,OAAO,KAAK,KAAK,EAAE,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,mBAAiB,GAAG,MAAM;AAC1B,QAAM,SAAS,SAAS,SAAS,WAAW,CAAC,GAAG,IAAI;AACpD,SAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC1E;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,mBAAiB,GAAG,MAAM;AAC1B,QAAM,QAAQ,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC1C,QAAM,CAAC,aAAa,cAAc,IAAI,SAAS,OAAO,EAAE,OAAO,EAAE,OAAO,GAAG,MAAM;AACjF,SAAO;AAAA,IACL,SAAS,eAAe,YAAY,OAAO,YAAY,OAAO,YAAY,MAAM;AAAA,IAChF,SAAS,eAAe,eAAe,OAAO,eAAe,OAAO,eAAe,MAAM;AAAA,EAC3F;AACF;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,WAAW,IAAI;AACtC,QAAM,EAAE,eAAe,UAAU,WAAW,YAAY,IAAI;AAC5D,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,WAAW,QAAQ,IAAI,eAAe,OAAO,cAAc,CAAC,aAAa,UAAU;AAC1F,QAAM,WAAW,CAAC,OAAO,WAAW,UAAU,WAAW;AACzD,QAAM,YAAY,aAAa,eAAe,OAAO,KAAK;AAC1D,QAAM,gBAAgB,UAAU;AAChC,QAAM,cAAc,UAAU;AAC9B,QAAM,cAAc,UAAU;AAC9B,QAAM,aAAa,aAAa,eAAe,QAAQ;AACvD,QAAM,iBAAiB,WAAW;AAClC,QAAM,eAAe,WAAW;AAChC,QAAM,eAAe,WAAW;AAChC,QAAM,UAAU,aAAa,uBAAuB,OAAO,OAAO,aAAa,cAAc,QAAQ,CAAC;AACtG,UAAQ,KAAK,SAAS;AACtB,QAAM,YAAY,SAAS,KAAK,IAAI,OAAO,MAAM,EAAE;AACnD,QAAM,gBAAgB,SAAS,KAAK,IAAI,WAAW,MAAM,EAAE;AAC3D,WAAS,IAAI,GAAG,IAAI,OAAO,EAAE,GAAG;AAC9B,UAAM,aAAa,WAAW,MAAM,OAAO,IAAI,gBAAgB,cAAc,SAAS,IAAI,GAAG,IAAI,IAAI,CAAC;AACtG,aAAS,OAAO,GAAG,OAAO,WAAW,EAAE,MAAM;AAC3C,eAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,iBAAS,UAAU,GAAG,UAAU,aAAa,EAAE,SAAS;AACtD,cAAI;AACJ,gBAAM,aAAa,WAAW,KAAK,OAAO,WAAW,KAAK,OAAO;AACjE,cAAI,eAAe,GAAG;AACpB;AAAA,UACF;AACA,gBAAM,OAAO,WAAW,KAAK,OAAO,WAAW,KAAK,OAAO,WAAW,MAAM;AAC5E,gBAAM,OAAO,WAAW,KAAK,OAAO,WAAW,KAAK,OAAO,WAAW,MAAM;AAC5E,gBAAM,IAAI,SAAS,KAAK,YAAY,QAAQ;AAC5C,gBAAM,IAAI,SAAS,KAAK,aAAa,QAAQ;AAC7C,kBAAQ;AAAA,iBACD;AACH,oBAAM,qBAAqB,WAAW,aAAa,YAAY,eAAe,aAAa,aAAa,GAAG,GAAG,GAAG,SAAS,SAAS;AACnI;AAAA,iBACG;AACH,oBAAM,sBAAsB,WAAW,aAAa,YAAY,eAAe,aAAa,aAAa,GAAG,GAAG,GAAG,SAAS,SAAS;AACpI;AAAA;AAEA,oBAAM,IAAI,MAAM,+DAA+D,eAAe;AAAA;AAElG,gBAAM,MAAM,IAAI,iBAAiB,OAAO,eAAe,OAAO,eAAe;AAC7E,kBAAQ,OAAO;AAAA,QACjB;AAAA,MACF;AAAA,IACF;AACA,WAAO,SAAS,eAAe,UAAU,OAAO,OAAO,OAAO;AAAA,EAChE;AACA,QAAM,SAAS,SAAS,MAAM,SAAS,UAAU,OAAO,KAAK;AAC7D,SAAO,EAAE,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC5D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AACA,SAAS,SAAS,UAAU,KAAK,MAAM;AACrC,UAAQ;AAAA,SACD;AACH,aAAO,gBAAgB,UAAU,GAAG;AAAA,SACjC;AACH,aAAO,aAAa,UAAU,GAAG;AAAA,SAC9B;AACH,aAAO,gBAAgB,UAAU,GAAG;AAAA,SACjC;AAAA;AAEH,aAAO,iBAAiB,UAAU,GAAG;AAAA;AAE3C;AACA,SAAS,gBAAgB,UAAU,KAAK;AACtC,MAAI,UAAU;AACd,MAAI,UAAU,GAAG;AACf,QAAI,OAAO,GAAG;AACZ,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,MAAM,IAAI;AAChB,UAAI,UAAU,KAAK;AACjB,kBAAU,MAAM,KAAK,MAAM,CAAC,UAAU,GAAG,IAAI;AAAA,MAC/C;AACA,gBAAU,UAAU,CAAC,MAAM,UAAU,MAAM,CAAC,UAAU;AAAA,IACxD;AAAA,EACF,WAAW,UAAU,MAAM,GAAG;AAC5B,QAAI,OAAO,GAAG;AACZ,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,MAAM,IAAI;AAChB,iBAAW,MAAM,KAAK,MAAM,UAAU,GAAG;AACzC,UAAI,WAAW,KAAK;AAClB,kBAAU,MAAM,UAAU;AAAA,MAC5B;AAAA,IACF;AAAA,EACF;AACA,SAAO,aAAa,MAAM,GAAG,SAAS,MAAM,CAAC;AAC/C;AACA,SAAS,aAAa,UAAU,KAAK;AACnC,MAAI,UAAU;AACd,MAAI,UAAU,GAAG;AACf,QAAI,OAAO,GAAG;AACZ,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,KAAK,MAAM;AACjB,iBAAW,OAAO,KAAK,MAAM,CAAC,UAAU,EAAE,IAAI;AAAA,IAChD;AAAA,EACF,WAAW,UAAU,MAAM,GAAG;AAC5B,QAAI,OAAO,GAAG;AACZ,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,KAAK,MAAM;AACjB,iBAAW,MAAM,KAAK,MAAM,UAAU,EAAE;AAAA,IAC1C;AAAA,EACF;AACA,SAAO,aAAa,MAAM,GAAG,SAAS,MAAM,CAAC;AAC/C;AACA,SAAS,iBAAiB,UAAU,KAAK;AACvC,SAAO;AACT;AACA,SAAS,gBAAgB,UAAU,KAAK;AACtC,SAAO,aAAa,MAAM,GAAG,UAAU,MAAM,CAAC;AAChD;AACA,SAAS,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,GAAG,GAAG,SAAS,WAAW;AACjI,QAAM,MAAM,QAAQ,cAAc,IAAI,YAAY,IAAI,YAAY;AAClE,MAAI,KAAK,KAAK,IAAI,eAAe,KAAK,KAAK,IAAI,YAAY;AACzD,WAAO,UAAU;AAAA,EACnB,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,SAAS,qBAAqB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,GAAG,GAAG,SAAS,WAAW;AACpI,QAAM,KAAK,KAAK,MAAM,CAAC;AACvB,QAAM,KAAK,KAAK,MAAM,CAAC;AACvB,SAAO,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,IAAI,IAAI,SAAS,SAAS;AACnI;AACA,SAAS,sBAAsB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,GAAG,GAAG,SAAS,WAAW;AACrI,QAAM,SAAS,KAAK,MAAM,CAAC;AAC3B,QAAM,SAAS,KAAK,MAAM,CAAC;AAC3B,QAAM,QAAQ,SAAS;AACvB,QAAM,QAAQ,SAAS;AACvB,QAAM,eAAe,QAAQ,KAAK,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,QAAQ,QAAQ,SAAS,SAAS,KAAK,IAAI,UAAU,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,QAAQ,OAAO,SAAS,SAAS;AACxT,QAAM,cAAc,QAAQ,KAAK,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,OAAO,QAAQ,SAAS,SAAS,KAAK,IAAI,UAAU,kBAAkB,WAAW,aAAa,YAAY,aAAa,WAAW,WAAW,OAAO,OAAO,OAAO,SAAS,SAAS;AACrT,UAAQ,QAAQ,KAAK,eAAe,IAAI,UAAU;AACpD;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,EAAE,EAAE,IAAI;AACd,mBAAiB,GAAG,QAAQ;AAC5B,QAAM,SAAS,SAAS,KAAK,IAAI,EAAE,MAAM,EAAE;AAC3C,QAAM,EAAE,cAAc,aAAa,QAAQ,IAAI,WAAW,QAAQ,MAAM,EAAE,OAAO,EAAE,KAAK;AACxF,SAAO;AAAA,IACL,SAAS,eAAe,aAAa,EAAE,OAAO,YAAY;AAAA,IAC1D,SAAS,eAAe,CAAC,QAAQ,MAAM,GAAG,SAAS,OAAO;AAAA,EAC5D;AACF;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,EAAE,KAAK,IAAI;AACf,MAAI,OAAO,GAAG;AACZ,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,YAAY,MAAM,MAAM;AAC9B,QAAM,MAAM,MAAM,MAAM;AACxB,QAAM,WAAW,IAAI,MAAM,YAAY,CAAC;AACxC,MAAI,WAAW;AACf,WAAS,KAAK,GAAG,KAAK,WAAW,MAAM;AACrC,QAAI,OAAO,MAAM;AACf,eAAS,cAAc,MAAM,MAAM;AAAA,IACrC;AAAA,EACF;AACA,QAAM,QAAQ,IAAI,MAAM,SAAS,EAAE,KAAK,CAAC;AACzC,QAAMrB,QAAO,MAAM,MAAM,MAAM;AAC/B,EAAAA,MAAK,QAAQ;AACb,QAAM,MAAM,IAAI,MAAM,GAAG;AACzB,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,UAAM,QAAQ;AACd,UAAM,UAAU,OAAO,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAAA,MAAK,EAAE,CAAC;AAC1F,QAAI,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC5F,aAAS,8BAA8B,OAAO;AAAA,EAChD;AACA,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,WAAW,IAAI;AAC1B,QAAM,EAAE,YAAY,IAAI;AACxB,mBAAiB,GAAG,oBAAoB;AACxC,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,iBAAiB,WAAW,MAAM;AACxC,QAAM,MAAM,CAAC;AACb,QAAM,gBAAgB,CAAC;AACvB,QAAM,WAAW,QAAQ;AACzB,MAAI,cAAc;AAClB,WAAS,KAAK,GAAG,KAAK,UAAU,EAAE,IAAI;AACpC,UAAM,WAAW,YAAY,EAAE,QAAQ,EAAE,OAAO,YAAY,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,EAAE,CAAC;AAC1G,kBAAc;AACd,kBAAc,KAAK,QAAQ;AAAA,EAC7B;AACA,WAAS,KAAK,GAAG,KAAK,aAAa,EAAE,IAAI;AACvC,UAAM,cAAc,aAAa,kBAAkB,IAAI,OAAO;AAC9D,UAAM,YAAY,SAAS,eAAe,CAAC,GAAG,SAAS,WAAW;AAClE,UAAMK,QAAO,OAAO,EAAE,QAAQ,EAAE,GAAG,WAAW,GAAG,YAAY,GAAG,SAAS,SAAS,CAAC;AACnF,UAAM,aAAa,MAAM,EAAE,QAAQ,EAAE,GAAGA,MAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAChG,UAAM,OAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7E,UAAM,gBAAgB,KAAK,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,GAAG,UAAU,MAAM,EAAE,CAAC;AAC1G,QAAI,KAAK,aAAa;AACtB,kBAAc,KAAK,SAAS;AAC5B,kBAAc,KAAKA,KAAI;AACvB,kBAAc,KAAK,UAAU;AAC7B,kBAAc,KAAK,IAAI;AACvB,kBAAc,KAAK,aAAa;AAAA,EAClC;AACA,QAAM,SAAS,KAAK,EAAE,QAAQ,KAAK,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,EAAE,CAAC;AAC1E,gBAAc,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACxE,SAAO;AACT;AACA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB;AAAA,EAClB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,gBAAgB,eAAe;AACxC,iBAAe,YAAY;AAC7B;AAGA,IAAI,qBAAqB,CAAC;AAC1BR,UAAS,oBAAoB;AAAA,EAC3B,kBAAkB,MAAM;AAAA,EACxB,yBAAyB,MAAM;AAAA,EAC/B,+BAA+B,MAAM;AAAA,EACrC,oCAAoC,MAAM;AAAA,EAC1C,iBAAiB,MAAM;AAAA,EACvB,oCAAoC,MAAM;AAAA,EAC1C,cAAc,MAAM;AAAA,EACpB,kBAAkB,MAAM;AAAA,EACxB,sBAAsB,MAAM;AAAA,EAC5B,mBAAmB,MAAM;AAAA,EACzB,eAAe,MAAM;AAAA,EACrB,yBAAyB,MAAM;AAAA,EAC/B,0BAA0B,MAAM;AAAA,EAChC,eAAe,MAAM;AAAA,EACrB,oBAAoB,MAAM;AAAA,EAC1B,aAAa,MAAM;AAAA,EACnB,qBAAqB,MAAM;AAAA,EAC3B,4BAA4B,MAAM;AAAA,EAClC,wBAAwB,MAAM;AAAA,EAC9B,gBAAgB,MAAM;AAAA,EACtB,2BAA2B,MAAM;AAAA,EACjC,kCAAkC,MAAM;AAAA,EACxC,aAAa,MAAM;AAAA,EACnB,cAAc,MAAM;AAAA,EACpB,iCAAiC,MAAM;AAAA,EACvC,mCAAmC,MAAM;AAAA,EACzC,sBAAsB,MAAM;AAAA,EAC5B,wBAAwB,MAAM;AAAA,EAC9B,cAAc,MAAM;AAAA,EACpB,oCAAoC,MAAM;AAAA,EAC1C,+BAA+B,MAAM;AAAA,EACrC,eAAe,MAAM;AAAA,EACrB,qBAAqB,MAAM;AAAA,EAC3B,uBAAuB,MAAM;AAAA,EAC7B,aAAa,MAAM;AAAA,EACnB,2BAA2B,MAAM;AAAA,EACjC,qBAAqB,MAAM;AAAA,EAC3B,0BAA0B,MAAM;AAAA,EAChC,mCAAmC,MAAM;AAAA,EACzC,mBAAmB,MAAM;AAAA,EACzB,qBAAqB,MAAM;AAAA,EAC3B,iBAAiB,MAAM;AAAA,EACvB,qBAAqB,MAAM;AAC7B,CAAC;AAGD,IAAI,WAAW,CAAC;AAChB,IAAI,mBAAmB;AAAA,EACrB,OAAO;AAAA,EACP,WAAW;AAAA,EACX,oBAAoB;AAAA,EACpB,uBAAuB;AAAA,EACvB,OAAO;AAAA,EACP,SAAS;AAAA,EACT,8BAA8B;AAChC;AACA,SAAS,gBAAgB,cAAc,IAAI;AACzC,WAAS,gBAAgB;AAC3B;AACA,SAAS,gBAAgB,cAAc,cAAc;AACnD,MAAI,EAAE,gBAAgB,aAAa,gBAAgB,MAAM;AACvD,UAAM,SAAS,yBAAyB,cAAc,YAAY;AAClE,QAAI,WAAW,MAAM;AACnB,eAAS,gBAAgB;AAAA,IAC3B,OAAO;AACL,cAAQ,IAAI,2CAA2C,YAAY;AACnE,aAAO;AAAA,IACT;AAAA,EACF;AACA,QAAM,KAAK,SAAS;AACpB,MAAI,MAAM,QAAQ,GAAG,cAAc,GAAG;AACpC,WAAO,SAAS;AAChB,WAAO,gBAAgB,YAAY;AAAA,EACrC;AACA,KAAG,QAAQ,GAAG,UAAU;AACxB,KAAG,QAAQ,GAAG,YAAY;AAC1B,KAAG,QAAQ,GAAG,KAAK;AACnB,KAAG,QAAQ,GAAG,MAAM;AACpB,KAAG,QAAQ,GAAG,mBAAmB;AACjC,KAAG,QAAQ,GAAG,eAAe;AAC7B,KAAG,OAAO,GAAG,YAAY;AACzB,KAAG,OAAO,GAAG,SAAS;AACtB,KAAG,SAAS,GAAG,IAAI;AACnB,SAAO,SAAS;AAClB;AACA,SAAS,aAAa,cAAc;AAClC,MAAI,OAAO,oBAAoB,eAAe,iBAAiB,GAAG;AAChE,WAAO,IAAI,gBAAgB,KAAK,GAAG;AAAA,EACrC,WAAW,OAAO,aAAa,aAAa;AAC1C,WAAO,SAAS,cAAc,QAAQ;AAAA,EACxC,OAAO;AACL,UAAM,IAAI,MAAM,wCAAwC;AAAA,EAC1D;AACF;AACA,SAAS,yBAAyB,cAAc,cAAc;AAC5D,MAAI,iBAAiB,KAAK,iBAAiB,GAAG;AAC5C,UAAM,IAAI,MAAM,wDAAwD;AAAA,EAC1E;AACA,QAAMc,UAAS,gBAAgB,OAAO,aAAa,YAAY,IAAI;AACnE,EAAAA,QAAO,iBAAiB,oBAAoB,CAAC,OAAO;AAClD,OAAG,eAAe;AAClB,WAAO,SAAS;AAAA,EAClB,GAAG,KAAK;AACR,MAAI,IAAI,EAAE,QAAQ,wBAAwB,GAAG;AAC3C,qBAAiB,+BAA+B;AAAA,EAClD;AACA,MAAI,iBAAiB,GAAG;AACtB,WAAOA,QAAO,WAAW,SAAS,gBAAgB,KAAKA,QAAO,WAAW,sBAAsB,gBAAgB;AAAA,EACjH;AACA,SAAOA,QAAO,WAAW,UAAU,gBAAgB;AACrD;AAGA,IAAI;AAAA,CACH,SAAS,gBAAgB;AACxB,iBAAe,eAAe,WAAW,KAAK;AAC9C,iBAAe,eAAe,kBAAkB,KAAK;AACvD,GAAG,kBAAkB,gBAAgB,CAAC,EAAE;AACxC,IAAI;AAAA,CACH,SAAS,eAAe;AACvB,gBAAc,cAAc,YAAY,KAAK;AAC7C,gBAAc,cAAc,YAAY,KAAK;AAC7C,gBAAc,cAAc,YAAY,KAAK;AAC7C,gBAAc,cAAc,cAAc,KAAK;AACjD,GAAG,iBAAiB,eAAe,CAAC,EAAE;AACtC,IAAI;AAAA,CACH,SAAS,sBAAsB;AAC9B,uBAAqB,qBAAqB,sBAAsB,KAAK;AACrE,uBAAqB,qBAAqB,sBAAsB,KAAK;AACrE,uBAAqB,qBAAqB,8BAA8B,KAAK;AAC7E,uBAAqB,qBAAqB,wBAAwB,KAAK;AACvE,uBAAqB,qBAAqB,wBAAwB,KAAK;AACzE,GAAG,wBAAwB,sBAAsB,CAAC,EAAE;AACpD,SAAS,yCAAyC,MAAM,SAAS;AAC/D,SAAO,CAAC,SAAS,IAAI;AACvB;AACA,SAAS,mCAAmC,YAAY,oBAAoB;AAC1E,SAAO,aAAa;AACtB;AACA,SAAS,iBAAiB,OAAO;AAC/B,QAAMX,QAAO,aAAa,cAAc,KAAK;AAC7C,QAAM,eAAe,KAAK,KAAKA,QAAO,CAAC;AACvC,SAAO,aAAa,oBAAoB,YAAY;AACtD;AACA,SAAS,uCAAuC,MAAM,SAAS;AAC7D,SAAO;AAAA,IACL,KAAK,IAAI,GAAG,KAAK,KAAK,UAAU,CAAC,CAAC;AAAA,IAClC,KAAK,IAAI,GAAG,KAAK,KAAK,OAAO,CAAC,CAAC;AAAA,EACjC;AACF;AACA,SAAS,sCAAsC,MAAM,SAAS;AAC5D,QAAM,CAAC,GAAG,CAAC,IAAI,uCAAuC,MAAM,OAAO;AACnE,SAAO,IAAI,IAAI;AACjB;AACA,SAAS,iBAAiB,IAAI,2BAA2B;AACvD,QAAM,QAAQ;AACd,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,0BAAsB,MAAM;AAC5B,8BAA0B,MAAM;AAChC,oCAAgC,MAAM;AACtC,gCAA4B,MAAM;AAClC,yBAAqB,MAAM;AAC3B,gCAA4B;AAC5B,yBAAqB;AACrB,2BAAuB,MAAM;AAC7B,uBAAmB,MAAM;AACzB,4BAAwB,MAAM;AAAA,EAChC,OAAO;AACL,0BAAsB,GAAG;AACzB,8BAA0B,GAAG;AAC7B,oCAAgC,GAAG;AACnC,gCAA4B,MAAM;AAClC,yBAAqB,GAAG;AACxB,gCAA4B;AAC5B,yBAAqB;AACrB,2BAAuB,6BAA6B,OAAO,0BAA0B,iBAAiB;AACtG,uBAAmB,GAAG;AACtB,4BAAwB,GAAG;AAAA,EAC7B;AACA,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AAGA,SAAS,aAAa,IAAI,OAAO;AAC/B,QAAM,cAAc,MAAM;AAC1B,MAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,oBAAgB,EAAE;AAAA,EACpB;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,IAAI;AAC3B,QAAM,QAAQ,GAAG,SAAS;AAC1B,MAAI,UAAU,GAAG,UAAU;AACzB,UAAM,IAAI,MAAM,kBAAkB,qBAAqB,IAAI,KAAK,CAAC;AAAA,EACnE;AACF;AACA,IAAI,cAAc;AAClB,IAAI,cAAc;AAClB,SAAS,iBAAiB,KAAK;AAC7B,MAAI,IAAI,EAAE,QAAQ,8BAA8B,KAAK,QAAQ,KAAK,cAAc,KAAK,IAAI,GAAG,KAAK,KAAK,IAAI,GAAG,IAAI,aAAa;AAC5H,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,qBAAqB,IAAI,QAAQ;AACxC,UAAQ;AAAA,SACD,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA;AAEP,aAAO,sBAAsB;AAAA;AAEnC;AACA,SAAS,oBAAoB,IAAI,eAAe;AAC9C,SAAO,YAAY,IAAI,MAAM,GAAG,aAAa,aAAa,GAAG,gBAAgB,gBAAgB,kCAAkC;AACjI;AACA,SAAS,mBAAmB,IAAI,oBAAoB;AAClD,QAAM,eAAe,YAAY,IAAI,MAAM,GAAG,aAAa,GAAG,aAAa,GAAG,sCAAsC;AACpH,eAAa,IAAI,MAAM,GAAG,aAAa,cAAc,kBAAkB,CAAC;AACxE,eAAa,IAAI,MAAM,GAAG,cAAc,YAAY,CAAC;AACrD,MAAI,GAAG,mBAAmB,cAAc,GAAG,cAAc,MAAM,OAAO;AACpE,YAAQ,IAAI,GAAG,iBAAiB,YAAY,CAAC;AAC7C,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,SAAO;AACT;AACA,SAAS,qBAAqB,IAAI,sBAAsB;AACtD,QAAM,iBAAiB,YAAY,IAAI,MAAM,GAAG,aAAa,GAAG,eAAe,GAAG,wCAAwC;AAC1H,eAAa,IAAI,MAAM,GAAG,aAAa,gBAAgB,oBAAoB,CAAC;AAC5E,eAAa,IAAI,MAAM,GAAG,cAAc,cAAc,CAAC;AACvD,MAAI,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACpC,WAAO;AAAA,EACT;AACA,MAAI,GAAG,mBAAmB,gBAAgB,GAAG,cAAc,MAAM,OAAO;AACtE,8BAA0B,sBAAsB,GAAG,iBAAiB,cAAc,CAAC;AACnF,UAAM,IAAI,MAAM,oCAAoC;AAAA,EACtD;AACA,SAAO;AACT;AACA,IAAI,kBAAkB;AACtB,SAAS,0BAA0B,cAAc,eAAe;AAC9D,QAAM,wBAAwB,gBAAgB,KAAK,aAAa;AAChE,MAAI,yBAAyB,MAAM;AACjC,YAAQ,IAAI,wCAAwC,eAAe;AACnE,YAAQ,IAAI,YAAY;AACxB;AAAA,EACF;AACA,QAAM,aAAa,CAAC,sBAAsB;AAC1C,QAAM,cAAc,aAAa,MAAM,IAAI;AAC3C,QAAM,OAAO,YAAY,OAAO,SAAS,EAAE,SAAS;AACpD,QAAM,uBAAuB,YAAY,IAAI,CAAC,MAAM,gBAAgB,aAAa,UAAU,cAAc,GAAG,SAAS,GAAG,IAAI,IAAI,IAAI;AACpI,MAAI,gBAAgB;AACpB,WAAS,KAAK,GAAG,KAAK,qBAAqB,QAAQ,MAAM;AACvD,oBAAgB,KAAK,IAAI,qBAAqB,IAAI,QAAQ,aAAa;AAAA,EACzE;AACA,QAAM,mBAAmB,qBAAqB,MAAM,GAAG,aAAa,CAAC;AACrE,QAAM,YAAY,qBAAqB,MAAM,aAAa,GAAG,UAAU;AACvE,QAAM,kBAAkB,qBAAqB,MAAM,UAAU;AAC7D,UAAQ,IAAI,iBAAiB,KAAK,IAAI,CAAC;AACvC,UAAQ,IAAI,cAAc,MAAM,IAAI,EAAE,EAAE;AACxC,UAAQ,IAAI,MAAM,aAAa,SAAS,UAAU,IAAI,aAAa,KAAK,+DAA+D;AACvI,UAAQ,IAAI,gBAAgB,KAAK,IAAI,CAAC;AACxC;AACA,SAAS,cAAc,IAAI;AACzB,SAAO,YAAY,IAAI,MAAM,GAAG,cAAc,GAAG,gCAAgC;AACnF;AACA,SAAS,YAAY,IAAI,SAAS;AAChC,eAAa,IAAI,MAAM,GAAG,YAAY,OAAO,CAAC;AAC9C,MAAI,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACpC;AAAA,EACF;AACA,MAAI,GAAG,oBAAoB,SAAS,GAAG,WAAW,MAAM,OAAO;AAC7D,YAAQ,IAAI,GAAG,kBAAkB,OAAO,CAAC;AACzC,UAAM,IAAI,MAAM,6CAA6C;AAAA,EAC/D;AACF;AACA,SAAS,gBAAgB,IAAI,SAAS;AACpC,eAAa,IAAI,MAAM,GAAG,gBAAgB,OAAO,CAAC;AAClD,MAAI,GAAG,oBAAoB,SAAS,GAAG,eAAe,MAAM,OAAO;AACjE,YAAQ,IAAI,GAAG,kBAAkB,OAAO,CAAC;AACzC,UAAM,IAAI,MAAM,mCAAmC;AAAA,EACrD;AACF;AACA,SAAS,yBAAyB,IAAI,MAAM;AAC1C,QAAM,UAAU,YAAY,IAAI,MAAM,GAAG,aAAa,GAAG,8BAA8B;AACvF,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,OAAO,CAAC;AAC9D,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,MAAM,GAAG,WAAW,CAAC;AAC3E,SAAO;AACT;AACA,SAAS,wBAAwB,IAAI,MAAM;AACzC,QAAM,UAAU,YAAY,IAAI,MAAM,GAAG,aAAa,GAAG,8BAA8B;AACvF,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,sBAAsB,OAAO,CAAC;AACtE,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,sBAAsB,MAAM,GAAG,WAAW,CAAC;AACnF,SAAO;AACT;AACA,SAAS,iBAAiB;AACxB,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,cAAc,IAAI;AACzB,SAAO,YAAY,IAAI,MAAM,GAAG,cAAc,GAAG,gCAAgC;AACnF;AACA,SAAS,oBAAoB,OAAO,QAAQ;AAC1C,QAAM,iBAAiB,IAAI,EAAE,UAAU,wBAAwB;AAC/D,MAAI,SAAS,KAAK,UAAU,GAAG;AAC7B,UAAM,YAAY,IAAI,SAAS;AAC/B,UAAM,IAAI,MAAM,4BAA4B,YAAY,cAAc;AAAA,EACxE;AACA,MAAI,QAAQ,kBAAkB,SAAS,gBAAgB;AACrD,UAAM,YAAY,IAAI,SAAS;AAC/B,UAAM,OAAO,IAAI,kBAAkB;AACnC,UAAM,IAAI,MAAM,4BAA4B,YAAY,uDAAuD,OAAO,GAAG;AAAA,EAC3H;AACF;AACA,SAAS,kBAAkB,IAAI;AAC7B,SAAO,YAAY,IAAI,MAAM,GAAG,kBAAkB,GAAG,oCAAoC;AAC3F;AACA,SAAS,mCAAmC,IAAI,SAAS,WAAW,SAAS,qBAAqB,mBAAmB,mBAAmB;AACtI,QAAM,MAAM,GAAG,kBAAkB,SAAS,SAAS;AACnD,MAAI,QAAQ,IAAI;AACd,WAAO;AAAA,EACT;AACA,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,OAAO,CAAC;AAC9D,eAAa,IAAI,MAAM,GAAG,oBAAoB,KAAK,qBAAqB,GAAG,OAAO,OAAO,mBAAmB,iBAAiB,CAAC;AAC9H,eAAa,IAAI,MAAM,GAAG,wBAAwB,GAAG,CAAC;AACtD,SAAO;AACT;AACA,SAAS,gBAAgB,IAAI,SAAS,aAAa;AACjD,sBAAoB,IAAI,WAAW;AACnC,eAAa,IAAI,MAAM,GAAG,cAAc,GAAG,WAAW,WAAW,CAAC;AAClE,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,OAAO,CAAC;AAC/D;AACA,SAAS,kBAAkB,IAAI,aAAa;AAC1C,sBAAoB,IAAI,WAAW;AACnC,eAAa,IAAI,MAAM,GAAG,cAAc,GAAG,WAAW,WAAW,CAAC;AAClE,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,IAAI,CAAC;AAC5D;AACA,SAAS,iCAAiC,IAAI,SAAS,aAAa;AAClE,SAAO,YAAY,IAAI,MAAM,GAAG,mBAAmB,SAAS,WAAW,GAAG,cAAc,cAAc,2BAA2B;AACnI;AACA,SAAS,0BAA0B,IAAI,SAAS,aAAa;AAC3D,SAAO,GAAG,mBAAmB,SAAS,WAAW;AACnD;AACA,SAAS,mCAAmC,IAAI,SAAS,wBAAwB,aAAa;AAC5F,eAAa,IAAI,MAAM,gBAAgB,IAAI,SAAS,WAAW,CAAC;AAChE,eAAa,IAAI,MAAM,GAAG,UAAU,wBAAwB,WAAW,CAAC;AAC1E;AACA,SAAS,wBAAwB,IAAI;AACnC,eAAa,IAAI,MAAM,GAAG,gBAAgB,GAAG,aAAa,IAAI,CAAC;AAC/D,eAAa,IAAI,MAAM,GAAG,SAAS,GAAG,GAAG,GAAG,OAAO,OAAO,GAAG,OAAO,MAAM,CAAC;AAC3E,eAAa,IAAI,MAAM,GAAG,QAAQ,GAAG,GAAG,GAAG,OAAO,OAAO,GAAG,OAAO,MAAM,CAAC;AAC5E;AACA,SAAS,8BAA8B,IAAI,SAAS,aAAa;AAC/D,eAAa,IAAI,MAAM,GAAG,gBAAgB,GAAG,aAAa,WAAW,CAAC;AACtE,eAAa,IAAI,MAAM,GAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,SAAS,CAAC,CAAC;AACjH;AACA,SAAS,kCAAkC,IAAI,aAAa;AAC1D,eAAa,IAAI,MAAM,GAAG,gBAAgB,GAAG,aAAa,WAAW,CAAC;AACtE,eAAa,IAAI,MAAM,GAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,MAAM,CAAC,CAAC;AAC9G;AACA,SAAS,oBAAoB,IAAI;AAC/B,QAAM,SAAS,GAAG,uBAAuB,GAAG,WAAW;AACvD,MAAI,WAAW,GAAG,sBAAsB;AACtC,UAAM,IAAI,MAAM,gCAAgC,2BAA2B,IAAI,MAAM,CAAC;AAAA,EACxF;AACF;AACA,SAAS,2BAA2B,IAAI,QAAQ;AAC9C,UAAQ;AAAA,SACD,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA,SACJ,GAAG;AACN,aAAO;AAAA;AAEP,aAAO,iBAAiB;AAAA;AAE9B;AACA,SAAS,YAAY,IAAI,eAAe,gBAAgB;AACtD,QAAM,UAAU,aAAa,IAAI,MAAM,cAAc,CAAC;AACtD,MAAI,WAAW,MAAM;AACnB,UAAM,IAAI,MAAM,cAAc;AAAA,EAChC;AACA,SAAO;AACT;AACA,SAAS,oBAAoB,IAAI,aAAa;AAC5C,QAAM,iBAAiB,GAAG,mCAAmC;AAC7D,QAAM,gBAAgB,cAAc,GAAG;AACvC,MAAI,gBAAgB,GAAG,YAAY,gBAAgB,gBAAgB;AACjE,UAAM,mBAAmB,2BAA2B;AACpD,UAAM,IAAI,MAAM,0BAA0B,mBAAmB;AAAA,EAC/D;AACF;AACA,SAAS,YAAY,OAAO,aAAa,GAAG;AAC1C,SAAO,aAAa,cAAc,MAAM,MAAM,GAAG,MAAM,SAAS,UAAU,CAAC;AAC7E;AACA,SAAS,YAAY,OAAO;AAC1B,MAAI,MAAM,WAAW,GAAG;AACtB,UAAM,MAAM,sDAAsD;AAAA,EACpE;AACA,SAAO;AAAA,IACL,MAAM,SAAS,IAAI,MAAM,MAAM,SAAS,KAAK;AAAA,IAC7C,MAAM,MAAM,SAAS;AAAA,EACvB;AACF;AACA,SAAS,aAAa,OAAO;AAC3B,MAAI,YAAY,CAAC,GAAG,GAAG,CAAC;AACxB,QAAM,WAAW,MAAM,WAAW,KAAK,MAAM,WAAW,KAAK,MAAM,OAAO;AAC1E,MAAI,CAAC,UAAU;AACb,gBAAY,CAAC,YAAY,KAAK,GAAG,GAAG,YAAY,KAAK,CAAC;AAAA,EACxD;AACA,SAAO;AACT;AACA,SAAS,gCAAgC,UAAU,WAAW,OAAO;AACnE,MAAI,aAAa,IAAI,EAAE,UAAU,wBAAwB;AACzD,MAAI,UAAU;AACZ,iBAAa,aAAa;AAC1B,eAAW,SAAS,IAAI,CAAC,GAAG,OAAO,MAAM,SAAS,SAAS,IAAI,aAAa,kBAAkB,SAAS,GAAG,IAAI,SAAS,GAAG;AAC1H,QAAI,SAAS,WAAW,GAAG;AACzB,iBAAW,CAAC,GAAG,SAAS,EAAE;AAAA,IAC5B;AAAA,EACF;AACA,MAAI,SAAS,WAAW,GAAG;AACzB,UAAM,gBAAgB,aAAa,aAAa,QAAQ;AACxD,eAAW,cAAc;AAAA,EAC3B;AACA,MAAIA,QAAO,aAAa,cAAc,QAAQ;AAC9C,MAAI,SAAS,UAAU,KAAKA,SAAQ,YAAY;AAC9C,WAAO,CAAC,GAAGA,KAAI;AAAA,EACjB,WAAW,SAAS,WAAW,KAAK,SAAS,MAAM,cAAc,SAAS,MAAM,YAAY;AAC1F,WAAO;AAAA,EACT,WAAW,SAAS,WAAW,KAAK,SAAS,KAAK,SAAS,MAAM,cAAc,SAAS,MAAM,YAAY;AACxG,WAAO,CAAC,SAAS,KAAK,SAAS,IAAI,SAAS,EAAE;AAAA,EAChD,WAAW,SAAS,WAAW,KAAK,SAAS,MAAM,cAAc,SAAS,KAAK,SAAS,MAAM,YAAY;AACxG,WAAO,CAAC,SAAS,IAAI,SAAS,KAAK,SAAS,EAAE;AAAA,EAChD,WAAW,SAAS,WAAW,KAAK,SAAS,KAAK,SAAS,KAAK,SAAS,MAAM,cAAc,SAAS,MAAM,YAAY;AACtH,WAAO,CAAC,SAAS,KAAK,SAAS,KAAK,SAAS,IAAI,SAAS,EAAE;AAAA,EAC9D,WAAW,SAAS,WAAW,KAAK,SAAS,MAAM,cAAc,SAAS,KAAK,SAAS,KAAK,SAAS,MAAM,YAAY;AACtH,WAAO,CAAC,SAAS,IAAI,SAAS,KAAK,SAAS,KAAK,SAAS,EAAE;AAAA,EAC9D,OAAO;AACL,QAAI,UAAU;AACZ,YAAM,WAAW,YAAY,QAAQ;AACrC,UAAI,OAAO,GAAG,OAAO;AACrB,UAAI,SAAS,QAAQ;AACnB,SAAC,MAAM,IAAI,IAAI,YAAY,QAAQ;AAAA,MACrC;AACA,MAAAA,QAAO,YAAY,OAAO,MAAM,OAAO;AACvC,aAAO,aAAa,oBAAoBA,KAAI,EAAE,IAAI,CAAC,MAAM,IAAI,CAAC;AAAA,IAChE;AACA,WAAO,aAAa,oBAAoBA,KAAI;AAAA,EAC9C;AACF;AACA,SAAS,OAAO,IAAI;AAClB,SAAO,KAAK,MAAM;AACpB;AACA,SAAS,cAAc,QAAQ,QAAQ;AACrC,WAAS,OAAO,MAAM,EAAE;AACxB,WAAS,OAAO,MAAM,EAAE;AACxB,MAAI,aAAa,YAAY,QAAQ,MAAM,GAAG;AAC5C,WAAO;AAAA,EACT;AACA,MAAI,CAAC,OAAO,UAAU,CAAC,OAAO,QAAQ;AACpC,WAAO;AAAA,EACT;AACA,MAAI,OAAO,OAAO,KAAK,OAAO,OAAO,KAAK,OAAO,OAAO,KAAK,OAAO,OAAO,GAAG;AAC5E,WAAO;AAAA,EACT;AACA,MAAI,OAAO,WAAW,OAAO,QAAQ;AACnC,UAAM,aAAa,OAAO,MAAM,EAAE,EAAE;AACpC,UAAM,aAAa,OAAO,MAAM,EAAE,EAAE;AACpC,QAAI,eAAe,YAAY;AAC7B,aAAO;AAAA,IACT;AACA,QAAI,OAAO,UAAU,KAAK,OAAO,UAAU,MAAM,OAAO,OAAO,KAAK,OAAO,OAAO,IAAI;AACpF,aAAO;AAAA,IACT;AAAA,EACF;AACA,SAAO,OAAO,OAAO,OAAO,MAAM,OAAO,OAAO,EAAE,KAAK,OAAO,OAAO,EAAE;AACzE;AACA,IAAI;AACJ,IAAI;AACJ,SAAS,uBAAuB,cAAc;AAC5C,MAAI,oBAAoB,MAAM;AAC5B,UAAM,KAAK,gBAAgB,YAAY;AACvC,uBAAmB,GAAG,aAAa,GAAG,gBAAgB;AAAA,EACxD;AACA,SAAO;AACT;AACA,SAAS,sBAAsB;AAC7B,qBAAmB;AACrB;AACA,SAAS,2BAA2B;AAClC,2BAAyB;AAC3B;AACA,SAAS,uBAAuB,cAAc;AAC5C,MAAI,0BAA0B,MAAM;AAClC,UAAM,KAAK,gBAAgB,YAAY;AACvC,6BAAyB,GAAG,aAAa,GAAG,uBAAuB;AAAA,EACrE;AACA,SAAO,KAAK,IAAI,IAAI,sBAAsB;AAC5C;AACA,SAAS,kCAAkC,cAAc;AACvD,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,MAAI;AACJ,QAAM,KAAK,gBAAgB,YAAY;AACvC,MAAI,aAAa,IAAI,iCAAiC,KAAK,iBAAiB,GAAG;AAC7E,wBAAoB;AAAA,EACtB,WAAW,aAAa,IAAI,0BAA0B,GAAG;AACvD,wBAAoB;AAAA,EACtB,OAAO;AACL,wBAAoB;AAAA,EACtB;AACA,SAAO;AACT;AACA,SAAS,aAAa,IAAI,eAAe;AACvC,QAAM,MAAM,GAAG,aAAa,aAAa;AACzC,SAAO,OAAO;AAChB;AACA,SAAS,sBAAsB,cAAc;AAC3C,MAAI;AACF,UAAM,KAAK,gBAAgB,YAAY;AACvC,QAAI,MAAM,MAAM;AACd,aAAO;AAAA,IACT;AAAA,EACF,SAAS,IAAP;AACA,YAAQ,IAAI,sCAAsC,EAAE;AACpD,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,mCAAmC,cAAc;AACxD,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,QAAM,KAAK,gBAAgB,YAAY;AACvC,MAAI,iBAAiB,GAAG;AACtB,QAAI,CAAC,aAAa,IAAI,mBAAmB,GAAG;AAC1C,aAAO;AAAA,IACT;AAAA,EACF,OAAO;AACL,QAAI,CAAC,aAAa,IAAI,wBAAwB,GAAG;AAC/C,aAAO;AAAA,IACT;AAAA,EACF;AACA,QAAM,wBAAwB,uCAAuC,EAAE;AACvE,SAAO;AACT;AACA,SAAS,8BAA8B,cAAc;AACnD,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,QAAM,KAAK,gBAAgB,YAAY;AACvC,MAAI,iBAAiB,GAAG;AACtB,QAAI,CAAC,aAAa,IAAI,mBAAmB,GAAG;AAC1C,aAAO;AAAA,IACT;AACA,QAAI,CAAC,aAAa,IAAI,0BAA0B,GAAG;AACjD,aAAO;AAAA,IACT;AAAA,EACF,OAAO;AACL,QAAI,aAAa,IAAI,wBAAwB,GAAG;AAC9C,aAAO,uCAAuC,EAAE;AAAA,IAClD;AACA,UAAM,0BAA0B;AAChC,QAAI,aAAa,IAAI,uBAAuB,GAAG;AAC7C,YAAM,4BAA4B,GAAG,aAAa,uBAAuB;AACzE,aAAO,2CAA2C,IAAI,yBAAyB;AAAA,IACjF;AACA,WAAO;AAAA,EACT;AACA,QAAM,wBAAwB,uCAAuC,EAAE;AACvE,SAAO;AACT;AACA,SAAS,uCAAuC,IAAI;AAClD,QAAM,YAAY,iBAAiB,EAAE;AACrC,QAAM,UAAU,GAAG,cAAc;AACjC,KAAG,YAAY,GAAG,YAAY,OAAO;AACrC,QAAM,QAAQ;AACd,QAAM,SAAS;AACf,KAAG,WAAW,GAAG,YAAY,GAAG,UAAU,qBAAqB,OAAO,QAAQ,GAAG,UAAU,oBAAoB,UAAU,kBAAkB,IAAI;AAC/I,QAAM,cAAc,GAAG,kBAAkB;AACzC,KAAG,gBAAgB,GAAG,aAAa,WAAW;AAC9C,KAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,SAAS,CAAC;AACvF,QAAM,wBAAwB,GAAG,uBAAuB,GAAG,WAAW,MAAM,GAAG;AAC/E,KAAG,YAAY,GAAG,YAAY,IAAI;AAClC,KAAG,gBAAgB,GAAG,aAAa,IAAI;AACvC,KAAG,cAAc,OAAO;AACxB,KAAG,kBAAkB,WAAW;AAChC,SAAO;AACT;AACA,SAAS,2CAA2C,IAAI,2BAA2B;AACjF,QAAM,YAAY,iBAAiB,IAAI,yBAAyB;AAChE,QAAM,UAAU,GAAG,cAAc;AACjC,KAAG,YAAY,GAAG,YAAY,OAAO;AACrC,QAAM,QAAQ;AACd,QAAM,SAAS;AACf,KAAG,WAAW,GAAG,YAAY,GAAG,UAAU,yBAAyB,OAAO,QAAQ,GAAG,UAAU,oBAAoB,UAAU,sBAAsB,IAAI;AACvJ,QAAM,cAAc,GAAG,kBAAkB;AACzC,KAAG,gBAAgB,GAAG,aAAa,WAAW;AAC9C,KAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,SAAS,CAAC;AACvF,QAAM,wBAAwB,GAAG,uBAAuB,GAAG,WAAW,MAAM,GAAG;AAC/E,KAAG,YAAY,GAAG,YAAY,IAAI;AAClC,KAAG,gBAAgB,GAAG,aAAa,IAAI;AACvC,KAAG,cAAc,OAAO;AACxB,KAAG,kBAAkB,WAAW;AAChC,SAAO;AACT;AACA,SAAS,oBAAoB,cAAc;AACzC,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,QAAM,KAAK,gBAAgB,YAAY;AACvC,QAAM,YAAY,GAAG,aAAa;AAClC,SAAO;AACT;AACA,SAAS,kBAAkB,SAAS,QAAQ;AAC1C,MAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAC3B,cAAU,CAAC,OAAO;AAAA,EACpB;AACA,UAAQ,QAAQ,CAAC,OAAO;AACtB,QAAI,MAAM,MAAM;AACd,mBAAa,OAAO,GAAG,UAAU,aAAa,MAAM,GAAG,iEAAiE;AAAA,IAC1H;AAAA,EACF,CAAC;AACH;AAGA,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,aAAa,MAAM,KAAK,UAAU,eAAe,IAAI,CAAC;AACxE,KAAK,aAAa,iBAAiB,MAAM;AACvC,MAAI,sBAAsB,CAAC,GAAG;AAC5B,WAAO;AAAA,EACT,WAAW,sBAAsB,CAAC,GAAG;AACnC,WAAO;AAAA,EACT;AACA,SAAO;AACT,CAAC;AACD,KAAK,aAAa,kCAAkC,MAAM,KAAK;AAC/D,KAAK,aAAa,0BAA0B,MAAM,KAAK,IAAI,eAAe,MAAM,CAAC;AACjF,KAAK,aAAa,qBAAqB,MAAM,IAAI;AACjD,KAAK,aAAa,4BAA4B,MAAM,KAAK;AACzD,KAAK,aAAa,cAAc,MAAM,KAAK,QAAQ,WAAW,CAAC;AAC/D,KAAK,aAAa,4BAA4B,MAAM,KAAK,QAAQ,YAAY,CAAC;AAC9E,KAAK,aAAa,mBAAmB,MAAM,KAAK,QAAQ,YAAY,CAAC;AACrE,KAAK,aAAa,4BAA4B,MAAM,KAAK,QAAQ,YAAY,CAAC;AAC9E,KAAK,aAAa,gCAAgC,MAAM,KAAK,QAAQ,YAAY,CAAC;AAClF,KAAK,aAAa,+BAA+B,MAAM,KAAK,QAAQ,YAAY,CAAC;AACjF,KAAK,aAAa,+BAA+B,MAAM,KAAK,QAAQ,YAAY,CAAC;AACjF,KAAK,aAAa,+BAA+B,MAAM,KAAK,QAAQ,YAAY,CAAC;AACjF,KAAK,aAAa,qBAAqB,MAAM,KAAK,QAAQ,YAAY,CAAC;AACvE,KAAK,aAAa,uBAAuB,MAAM,KAAK,QAAQ,YAAY,CAAC;AACzE,KAAK,aAAa,qBAAqB,MAAM,KAAK,QAAQ,YAAY,CAAC;AACvE,KAAK,aAAa,0BAA0B,MAAM,uBAAuB,KAAK,UAAU,eAAe,CAAC,CAAC;AACzG,KAAK,aAAa,gCAAgC,MAAM,uBAAuB,KAAK,UAAU,eAAe,CAAC,CAAC;AAC/G,KAAK,aAAa,gDAAgD,MAAM;AACtE,QAAM,eAAe,KAAK,UAAU,eAAe;AACnD,MAAI,iBAAiB,GAAG;AACtB,WAAO;AAAA,EACT;AACA,SAAO,kCAAkC,YAAY;AACvD,CAAC;AACD,KAAK,aAAa,iDAAiD,MAAM,KAAK,UAAU,8CAA8C,IAAI,KAAK,CAAC,oBAAoB,SAAS,CAAC;AAC9K,KAAK,aAAa,gCAAgC,MAAM,mCAAmC,KAAK,UAAU,eAAe,CAAC,CAAC;AAC3H,KAAK,aAAa,gCAAgC,MAAM;AACtD,SAAO,KAAK,QAAQ,0BAA0B,IAAI,QAAQ,KAAK,QAAQ,8BAA8B;AACvG,CAAC;AACD,KAAK,aAAa,gCAAgC,MAAM,8BAA8B,KAAK,UAAU,eAAe,CAAC,CAAC;AACtH,KAAK,aAAa,2BAA2B,MAAM,oBAAoB,KAAK,UAAU,eAAe,CAAC,CAAC;AACvG,KAAK,aAAa,6BAA6B,MAAM;AACnD,QAAM,cAAc,KAAK,QAAQ,8BAA8B;AAC/D,SAAO,cAAc,IAAI;AAC3B,CAAC;AACD,KAAK,aAAa,kCAAkC,MAAM;AACxD,SAAO;AACT,GAAG,CAAC,eAAe;AACjB,MAAI,aAAa,KAAK,eAAe,IAAI;AACvC,UAAM,IAAI,MAAM,8FAA8F,aAAa;AAAA,EAC7H;AACF,CAAC;AACD,KAAK,aAAa,yBAAyB,MAAM;AAC/C,SAAO,oBAAoB,SAAS,IAAI,IAAI;AAC9C,GAAG,CAAC,eAAe;AACjB,MAAI,aAAa,KAAK,eAAe,IAAI;AACvC,UAAM,IAAI,MAAM,2FAA2F,aAAa;AAAA,EAC1H;AACF,CAAC;AACD,KAAK,aAAa,8BAA8B,MAAM,GAAG;AACzD,KAAK,aAAa,6BAA6B,MAAM,KAAK;AAC1D,KAAK,aAAa,4CAA4C,MAAM,GAAG;AACvE,KAAK,aAAa,gCAAgC,MAAM,GAAG;AAC3D,KAAK,aAAa,kBAAkB,MAAM,KAAK;AAC/C,KAAK,aAAa,0BAA0B,MAAM,KAAK,QAAQ,SAAS,CAAC;AAGzE,SAAS,qBAAqB;AAC5B,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,eAAW;AACX,gBAAY;AACZ,gBAAY;AACZ,gBAAY;AACZ,gBAAY;AACZ,aAAS;AACT,mBAAe;AACf,uBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAanB,uBAAmB;AACnB,kBAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUhB,OAAO;AACL,eAAW;AACX,gBAAY;AACZ,gBAAY;AACZ,gBAAY;AACZ,gBAAY;AACZ,aAAS;AACT,mBAAe;AACf,uBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASnB,uBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUnB,kBAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAShB;AACA,SAAO;AAAA,IACL,SAAS;AAAA,IACT;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AAGA,SAAS,mCAAmC,SAAS,OAAOU,SAAQ,SAAS;AAC3E,QAAMG,WAAU,aAAa,eAAe,KAAK;AACjD,SAAOA,SAAQ,IAAI,CAAC,QAAQ,OAAO;AACjC,UAAM,QAAQ,OAAO,QAAQ,SAASH,YAAW;AACjD,UAAM,QAAQ,OAAOG,SAAQ,SAAS,IAAI,OAAO,QAAQ,KAAK,QAAQH,YAAW,QAAQ,SAAS,WAAW,YAAY,QAAQ,SAAS;AAC1I,WAAO,GAAG,UAAU;AAAA,EACtB,CAAC,EAAE,KAAK,EAAE;AACZ;AACA,SAAS,kDAAkD,SAAS,OAAOA,SAAQ,SAAS;AAC1F,QAAMG,WAAU,aAAa,eAAe,KAAK;AACjD,SAAOA,SAAQ,IAAI,CAAC,GAAG,OAAO;AAC5B,UAAM,QAAQ,OAAO,QAAQ,SAASH,4BAA2B;AACjE,UAAM,QAAQ,OAAOG,SAAQ,SAAS,IAAI,OAAO,QAAQ,KAAK,QAAQH,YAAW,QAAQ,yBAAyB,QAAQ,YAAY,QAAQ,yBAAyB;AACvK,WAAO,GAAG,UAAU;AAAA,EACtB,CAAC,EAAE,KAAK,EAAE;AACZ;AACA,SAAS,2BAA2B,YAAY,cAAc;AAC5D,QAAM,YAAY,WAAW;AAC7B,QAAM,QAAQ,WAAW,IAAI,CAAC,MAAM,GAAG,gBAAgB,IAAI;AAC3D,QAAMG,WAAU,IAAI,MAAM,YAAY,CAAC;AACvC,EAAAA,SAAQ,YAAY,KAAK,MAAM,YAAY;AAC3C,WAAS,KAAK,YAAY,GAAG,MAAM,GAAG,EAAE,IAAI;AAC1C,IAAAA,SAAQ,MAAM,IAAIA,SAAQ,KAAK,QAAQ,MAAM,KAAK;AAAA,EACpD;AACA,SAAOA;AACT;AACA,SAAS,4CAA4C,SAAS,cAAcH,SAAQ,SAAS;AAC3F,QAAM,eAAe,QAAQ,IAAI,CAAC,GAAG,OAAO,EAAE;AAC9C,QAAMG,WAAU,2BAA2B,cAAc,YAAY;AACrE,SAAOA,SAAQ,IAAI,CAAC,GAAG,OAAO;AAC5B,UAAM,QAAQ,OAAO,QAAQ,SAASH,YAAWG,SAAQ;AACzD,UAAM,QAAQ,OAAOA,SAAQ,SAAS,IAAI,OAAO,QAAQ,KAAK,QAAQH,YAAW,QAAQ,SAASG,SAAQ,QAAQ,YAAY,QAAQ,SAASA,SAAQ;AACvJ,WAAO,GAAG,UAAU;AAAA,EACtB,CAAC,EAAE,KAAK,EAAE;AACZ;AACA,SAAS,mBAAmB,OAAO;AACjC,QAAMA,WAAU,aAAa,eAAe,KAAK,EAAE,IAAI,CAAC,MAAM,EAAE,SAAS,CAAC;AAC1E,SAAO;AAAA;AAAA,wBAEeA,SAAQ,mBAAmBA,SAAQ;AAAA;AAAA;AAG3D;AACA,SAAS,2BAA2B;AAClC,SAAO;AAAA;AAAA;AAAA;AAAA;AAKT;AACA,IAAI,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA0C3B,IAAI,EAAE,kBAAkB,kBAAkB,IAAI;AAC9C,SAAS,WAAW,YAAY,aAAa,SAAS;AACpD,QAAM,iBAAiB,CAAC;AACxB,aAAW,QAAQ,CAAC,MAAM;AACxB,UAAMb,QAAO,aAAa,cAAc,EAAE,UAAU,YAAY;AAChE,QAAI,EAAE,UAAU,WAAW;AACzB,qBAAe,KAAK,iBAAiB,EAAE,OAAOA,QAAO,IAAI,IAAIA,WAAU,KAAK;AAAA,IAC9E,OAAO;AACL,qBAAe,KAAK,qBAAqB,EAAE,OAAO;AAClD,qBAAe,KAAK,qBAAqB,EAAE,OAAO;AAAA,IACpD;AACA,QAAI,QAAQ,qBAAqB;AAC/B,YAAM,EAAE,aAAa,IAAI,wBAAwB,QAAQ,cAAc,EAAE,UAAU,cAAc,EAAE,UAAU,QAAQ;AACrH,cAAQ,aAAa;AAAA,aACd;AACH,yBAAe,KAAK,eAAe,EAAE,YAAY;AACjD;AAAA,aACG;AACH,yBAAe,KAAK,iBAAiB,EAAE,YAAY;AACnD;AAAA,aACG;AACH,yBAAe,KAAK,iBAAiB,EAAE,YAAY;AACnD;AAAA,aACG;AACH,yBAAe,KAAK,iBAAiB,EAAE,YAAY;AACnD;AAAA;AAEA;AAAA;AAEJ,qBAAe,KAAK,iBAAiB,EAAE,eAAe;AAAA,IACxD;AAAA,EACF,CAAC;AACD,MAAI,QAAQ,qBAAqB;AAC/B,YAAQ,YAAY,aAAa;AAAA,WAC1B;AACH,uBAAe,KAAK,uBAAuB;AAC3C;AAAA,WACG;AACH,uBAAe,KAAK,yBAAyB;AAC7C,uBAAe,KAAK,8BAA8B;AAClD;AAAA,WACG;AACH,uBAAe,KAAK,yBAAyB;AAC7C,uBAAe,KAAK,gCAAgC;AACpD;AAAA,WACG;AACH,uBAAe,KAAK,yBAAyB;AAC7C,uBAAe,KAAK,gCAAgC;AACpD;AAAA;AAEA;AAAA;AAEJ,mBAAe,KAAK,4BAA4B;AAAA,EAClD;AACA,MAAI,QAAQ,gBAAgB;AAC1B,YAAQ,eAAe,QAAQ,CAAC,MAAM;AACpC,qBAAe,KAAK,WAAW,EAAE,QAAQ,EAAE,OAAO,EAAE,aAAa,IAAI,EAAE,gBAAgB,KAAK;AAAA,IAC9F,CAAC;AAAA,EACH;AACA,QAAM,qBAAqB,eAAe,KAAK,IAAI;AACnD,QAAM,uBAAuB,WAAW,IAAI,CAAC,MAAM,wBAAwB,GAAG,aAAa,QAAQ,cAAc,QAAQ,mBAAmB,CAAC,EAAE,KAAK,IAAI;AACxJ,QAAM,cAAc,YAAY;AAChC,QAAM,OAAO,mBAAmB;AAChC,QAAM,4BAA4B,6BAA6B,IAAI;AACnE,MAAI;AACJ,MAAI;AACJ,MAAI,eAAe,gBAAgB,IAAI;AACvC,MAAI,YAAY,UAAU;AACxB,4BAAwB,+BAA+B,YAAY,cAAc,aAAa,QAAQ,mBAAmB;AACzH,mCAA+B,8BAA8B,IAAI;AAAA,EACnE,OAAO;AACL,4BAAwB,yBAAyB,YAAY,cAAc,aAAa,QAAQ,mBAAmB;AACnH,mCAA+B,2BAA2B,IAAI;AAAA,EAChE;AACA,MAAI,QAAQ,cAAc;AACxB,oBAAgB;AAAA,EAClB;AACA,QAAM,SAAS;AAAA,IACb;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,QAAQ;AAAA,EACV,EAAE,KAAK,IAAI;AACX,SAAO;AACT;AACA,SAAS,qBAAqB,QAAQ,sBAAsB,OAAO;AACjE,QAAM,QAAQ,OAAO,UAAU;AAC/B,UAAQ,MAAM;AAAA,SACP;AACH,aAAO,iBAAiB,QAAQ,mBAAmB;AAAA,SAChD;AACH,aAAO,aAAa,QAAQ,mBAAmB;AAAA,SAC5C;AACH,aAAO,aAAa,QAAQ,mBAAmB;AAAA,SAC5C;AACH,aAAO,aAAa,QAAQ,mBAAmB;AAAA,SAC5C;AACH,aAAO,aAAa,QAAQ,mBAAmB;AAAA,SAC5C;AACH,aAAO,aAAa,MAAM;AAAA,SACvB;AACH,aAAO,aAAa,MAAM;AAAA;AAE1B,YAAM,IAAI,MAAM,GAAG,MAAM,8CAA8C;AAAA;AAE7E;AACA,SAAS,2BAA2B,QAAQ,qBAAqB;AAC/D,QAAM,QAAQ,OAAO,UAAU;AAC/B,UAAQ,MAAM;AAAA,SACP;AACH,aAAO,uBAAuB,MAAM;AAAA,SACjC;AACH,aAAO,mBAAmB,QAAQ,mBAAmB;AAAA,SAClD;AACH,aAAO,mBAAmB,QAAQ,mBAAmB;AAAA,SAClD;AACH,aAAO,mBAAmB,QAAQ,mBAAmB;AAAA;AAErD,aAAO,mBAAmB,QAAQ,mBAAmB;AAAA;AAE3D;AACA,SAAS,wBAAwB,QAAQ,cAAc,qBAAqB,OAAO,qBAAqB;AACtG,MAAI,MAAM;AACV,MAAI,oBAAoB;AACtB,WAAO,2BAA2B,QAAQ,mBAAmB;AAAA,EAC/D,OAAO;AACL,WAAO,qBAAqB,QAAQ,mBAAmB;AAAA,EACzD;AACA,QAAM,UAAU,OAAO,UAAU;AACjC,QAAM,WAAW,aAAa;AAC9B,MAAI,QAAQ,UAAU,SAAS,QAAQ;AACrC,QAAI,oBAAoB;AACtB,aAAO,+BAA+B,QAAQ,YAAY;AAAA,IAC5D,OAAO;AACL,aAAO,yBAAyB,QAAQ,YAAY;AAAA,IACtD;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,+BAA+B,UAAU,aAAa,qBAAqB;AAClF,UAAQ,SAAS;AAAA,SACV;AACH,aAAO,sBAAsB;AAAA,SAC1B;AACH,aAAO,wBAAwB,UAAU,aAAa,mBAAmB;AAAA,SACtE;AACH,aAAO,wBAAwB,UAAU,aAAa,mBAAmB;AAAA,SACtE;AACH,aAAO,wBAAwB,UAAU,aAAa,mBAAmB;AAAA;AAEzE,aAAO,wBAAwB,UAAU,aAAa,mBAAmB;AAAA;AAE/E;AACA,SAAS,yBAAyB,UAAU,aAAa,qBAAqB;AAC5E,UAAQ,SAAS;AAAA,SACV;AACH,aAAO,sBAAsB;AAAA,SAC1B;AACH,aAAO,kBAAkB,UAAU,aAAa,mBAAmB;AAAA,SAChE;AACH,aAAO,kBAAkB,UAAU,aAAa,mBAAmB;AAAA,SAChE;AACH,aAAO,kBAAkB,UAAU,aAAa,mBAAmB;AAAA,SAChE;AACH,aAAO,kBAAkB,UAAU,aAAa,mBAAmB;AAAA,SAChE;AACH,aAAO,kBAAkB,UAAU,WAAW;AAAA,SAC3C;AACH,aAAO,kBAAkB,UAAU,WAAW;AAAA;AAE9C,YAAM,IAAI,MAAM,GAAG,SAAS,+CAA+C;AAAA;AAEjF;AACA,SAAS,6BAA6B,MAAM;AAC1C,SAAO;AAAA;AAAA,eAEM,KAAK;AAAA;AAAA;AAGpB;AACA,SAAS,2BAA2B,MAAM;AACxC,SAAO;AAAA;AAAA,QAED,KAAK;AAAA;AAAA;AAGb;AACA,SAAS,8BAA8B,MAAM;AAC3C,SAAO;AAAA;AAAA,QAED,KAAK;AAAA;AAAA;AAGb;AACA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,gBAAgB,GAAG,KAAK;AAAA;AAAA;AAAA;AAAA,MAI1B,KAAK;AAAA,MACL,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAuBL,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAyBL;AAAA,MACA;AAAA,MACA;AAAA;AAEJ,SAAO;AACT;AACA,IAAI,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAaxB,IAAI,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASxB,IAAI,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUxB,IAAI,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAY3B,SAAS,wBAAwB;AAC/B,SAAO;AAAA;AAAA;AAAA;AAAA;AAKT;AACA,SAAS,wBAAwB,OAAO,UAAU,qBAAqB;AACrE,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,MAAI,eAAe,OAAO,GAAG;AAC3B,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,sCAE2B,eAAe;AAAA;AAAA;AAAA,EAGnD;AACA,MAAI,eAAe,OAAO,GAAG;AAC3B,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,sCAE2B,eAAe;AAAA;AAAA;AAAA,EAGnD;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQT;AACA,SAAO;AAAA;AAAA;AAAA,oCAG2B,eAAe,OAAO,eAAe;AAAA,iCACxC,eAAe;AAAA;AAAA;AAGhD;AACA,SAAS,kBAAkB,OAAO,UAAU,qBAAqB;AAC/D,MAAI,SAAS,OAAO,GAAG;AACrB,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,kCAEuB,SAAS;AAAA;AAAA;AAAA,EAGzC;AACA,MAAI,SAAS,OAAO,GAAG;AACrB,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,kCAEuB,SAAS;AAAA;AAAA;AAAA,EAGzC;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOT;AACA,SAAO;AAAA;AAAA;AAAA,oCAG2B,SAAS,OAAO,SAAS;AAAA,4BACjC,SAAS;AAAA;AAAA;AAGrC;AACA,SAAS,wBAAwB,OAAO,UAAU,qBAAqB;AACrE,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAkBT;AACA,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,QAAM,qBAAqB,KAAK,KAAK,MAAM,KAAK,CAAC;AACjD,QAAM,gBAAgB,qBAAqB,KAAK,KAAK,MAAM,KAAK,CAAC;AACjE,SAAO;AAAA;AAAA;AAAA,oCAG2B,eAAe,OAAO,eAAe;AAAA,iCACxC,eAAe;AAAA;AAAA,wBAExB;AAAA,qBACH;AAAA;AAAA,6BAEQ;AAAA,4BACD;AAAA;AAAA;AAAA;AAAA;AAK5B;AACA,SAAS,kBAAkB,OAAO,UAAU,qBAAqB;AAC/D,MAAI,qBAAqB;AACvB,UAAM,0BAA0B,kDAAkD,CAAC,KAAK,KAAK,GAAG,GAAG,KAAK;AACxG,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,MAKL;AAAA;AAAA;AAAA;AAAA,EAIJ;AACA,QAAM,yBAAyB,mCAAmC,CAAC,KAAK,KAAK,GAAG,GAAG,KAAK;AACxF,SAAO;AAAA;AAAA;AAAA,oCAG2B,SAAS,OAAO,SAAS;AAAA,iCAC5B,SAAS;AAAA,QAClC;AAAA;AAAA;AAAA;AAIR;AACA,SAAS,wBAAwB,OAAO,UAAU,qBAAqB;AACrE,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAuBT;AACA,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,QAAM,qBAAqB,KAAK,KAAK,MAAM,MAAM,SAAS,KAAK,CAAC;AAChE,QAAM,gBAAgB,qBAAqB,KAAK,KAAK,MAAM,MAAM,SAAS,KAAK,CAAC;AAChF,MAAI,iBAAiB;AACrB,MAAI,UAAU;AACd,MAAI,UAAU;AACd,WAAS,IAAI,GAAG,IAAI,MAAM,SAAS,GAAG,KAAK;AACzC,sBAAkB,MAAM,MAAM,SAAS,IAAI;AAC3C,cAAU;AAAA,aACD,eAAe;AAAA,kBACV,OAAO;AAAA,QACjB;AACJ,cAAU,IAAI,QAAQ;AAAA,EACxB;AACA,SAAO;AAAA,UACC,MAAM;AAAA;AAAA,oCAEoB,eAAe,OAAO,eAAe;AAAA,iCACxC,eAAe;AAAA;AAAA,QAExC;AAAA;AAAA,wBAEgB;AAAA,qBACH;AAAA;AAAA,6BAEQ;AAAA,4BACD;AAAA;AAAA,mBAET,MAAM,UAAU;AAAA;AAAA;AAGnC;AACA,SAAS,kBAAkB,OAAO,UAAU,qBAAqB;AAC/D,MAAI,qBAAqB;AACvB,UAAM,0BAA0B,kDAAkD,CAAC,KAAK,KAAK,KAAK,IAAI,GAAG,KAAK;AAC9G,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,QAKH;AAAA;AAAA;AAAA;AAAA,EAIN;AACA,QAAM,yBAAyB,mCAAmC,CAAC,KAAK,KAAK,KAAK,IAAI,GAAG,KAAK;AAC9F,SAAO;AAAA;AAAA;AAAA,eAGM,SAAS,OAAO,SAAS;AAAA,iCACP,SAAS;AAAA,QAClC;AAAA;AAAA;AAAA;AAIR;AACA,SAAS,kBAAkB,OAAO,UAAU;AAC1C,QAAM,yBAAyB,mCAAmC,CAAC,KAAK,KAAK,KAAK,MAAM,IAAI,GAAG,KAAK;AACpG,SAAO;AAAA;AAAA,kDAEyC,SAAS;AAAA,+BAC5B,SAAS;AAAA;AAAA,iCAEP,SAAS;AAAA;AAAA,QAElC;AAAA;AAAA;AAAA;AAAA;AAAA;AAMR;AACA,SAAS,kBAAkB,OAAO,UAAU;AAC1C,QAAM,yBAAyB,mCAAmC,CAAC,KAAK,KAAK,KAAK,MAAM,MAAM,IAAI,GAAG,KAAK;AAC1G,SAAO;AAAA;AAAA;AAAA,eAGM,SAAS,OAAO,SAAS;AAAA,iCACP,SAAS;AAAA;AAAA,QAElC;AAAA;AAAA;AAAA;AAAA;AAAA;AAMR;AACA,SAAS,wBAAwB,OAAO,UAAU,qBAAqB;AACrE,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,MAAI,aAAa,YAAY,OAAO,QAAQ,GAAG;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAMT;AACA,WAAO;AAAA;AAAA,8CAEmC,eAAe,OAAO,eAAe;AAAA;AAAA;AAAA,EAGjF;AACA,QAAM,qBAAqB,KAAK,KAAK,MAAM,KAAK,CAAC;AACjD,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAcT;AACA,SAAO;AAAA;AAAA;AAAA,oCAG2B,eAAe,OAAO,eAAe;AAAA;AAAA,iCAExC,eAAe;AAAA,6BACnB;AAAA,4BACD;AAAA;AAAA;AAAA;AAAA;AAK5B;AACA,SAAS,kBAAkB,OAAO,UAAU,qBAAqB;AAC/D,MAAI,aAAa,YAAY,OAAO,QAAQ,GAAG;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKT;AACA,WAAO;AAAA;AAAA,0CAE+B,SAAS,OAAO,SAAS;AAAA;AAAA;AAAA,EAGjE;AACA,MAAI,MAAM,OAAO,GAAG;AAClB,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAQT;AACA,WAAO;AAAA;AAAA;AAAA,sCAG2B,SAAS,OAAO,SAAS;AAAA,mCAC5B,SAAS;AAAA;AAAA;AAAA;AAAA,EAI1C;AACA,MAAI,MAAM,OAAO,GAAG;AAClB,QAAI,qBAAqB;AACvB,aAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAQT;AACA,WAAO;AAAA;AAAA;AAAA,sCAG2B,SAAS,OAAO,SAAS;AAAA,mCAC5B,SAAS;AAAA;AAAA;AAAA;AAAA,EAI1C;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUT;AACA,SAAO;AAAA;AAAA;AAAA,oCAG2B,SAAS,OAAO,SAAS;AAAA,iCAC5B,SAAS;AAAA,wBAClB,MAAM;AAAA,4BACF,MAAM;AAAA;AAAA;AAAA;AAIlC;AACA,SAAS,yBAAyB,SAAS;AACzC,SAAO,SAAS;AAClB;AACA,SAAS,uBAAuB,WAAW;AACzC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,OAAO,mBAAmB;AAChC,SAAO;AAAA,WACE;AAAA,eACI,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,iBAAiB,WAAW,qBAAqB;AACxD,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO,SAAS,sBAAsB;AAAA,EACxC;AACA,QAAM,CAAC,SAAS,OAAO,IAAI,UAAU,UAAU;AAC/C,MAAI,YAAY,KAAK,YAAY,GAAG;AAClC,WAAO;AAAA,cACG;AAAA,+BACiB;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,qBAAqB;AACvB,WAAO;AAAA,YACC;AAAA,6BACiB,uBAAuB,uBAAuB;AAAA,6BAC9C;AAAA;AAAA;AAAA,EAG3B;AACA,QAAM,CAAC,OAAO,KAAK,IAAI,UAAU,UAAU;AAC3C,SAAO;AAAA,YACG;AAAA,6BACiB,UAAU,UAAU;AAAA,6BACpB;AAAA;AAAA;AAG7B;AACA,SAAS,mBAAmB,WAAW,qBAAqB;AAC1D,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,OAAO,mBAAmB;AAChC,MAAI,qBAAqB;AACvB,WAAO;AAAA,WACA;AAAA,gDACqC,0CAA0C;AAAA;AAAA;AAAA,eAG3E,KAAK,aAAa;AAAA;AAAA;AAAA,EAG/B;AACA,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,SAAO;AAAA,WACE;AAAA;AAAA,UAED,eAAe,OAAO,eAAe;AAAA,eAChC,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,aAAa,WAAW,qBAAqB;AACpD,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA,UACJ,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,QAAQ,SAAS;AACvB,QAAM,QAAQ,SAAS;AACvB,MAAI,UAAU,KAAK,UAAU,GAAG;AAC9B,WAAO;AAAA,cACG;AAAA,+BACiB;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,UAAU,GAAG;AACf,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,6CAC+B,0BAA0B;AAAA,+BACxC;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,cACG;AAAA,6CAC+B,oBAAoB;AAAA,+BAClC;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,UAAU,GAAG;AACf,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,wCAC0B,0BAA0B;AAAA,+BACnC;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,cACG;AAAA,wCAC0B,oBAAoB;AAAA,+BAC7B;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA,YACC;AAAA,6BACiB,uBAAuB,+BAA+B;AAAA,6BACtD;AAAA;AAAA;AAAA,EAG3B;AACA,SAAO;AAAA,YACG;AAAA,6BACiB,UAAU,kBAAkB;AAAA,6BAC5B;AAAA;AAAA;AAG7B;AACA,SAAS,mBAAmB,WAAW,qBAAqB;AAC1D,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,QAAM,OAAO,mBAAmB;AAChC,MAAI,YAAY,QAAQ,aAAa,YAAY,OAAO,QAAQ,GAAG;AACjE,QAAI,qBAAqB;AACvB,aAAO;AAAA,aACA;AAAA,qDACwC,uBAAuB;AAAA;AAAA,iBAE3D,KAAK,aAAa;AAAA;AAAA;AAAA,IAG/B;AACA,WAAO;AAAA,aACE;AAAA,qDACwC,cAAc;AAAA;AAAA,iBAElD,KAAK,aAAa;AAAA;AAAA;AAAA,EAGjC;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA,WACA;AAAA,gDACqC,0CAA0C;AAAA,0CAChD;AAAA;AAAA,eAE3B,KAAK,aAAa;AAAA;AAAA;AAAA,EAG/B;AACA,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,QAAM,eAAe,KAAK,KAAK,MAAM,KAAK,CAAC;AAC3C,SAAO;AAAA,WACE;AAAA,iCACsB,iBAAiB,eAAe,OAAO,eAAe;AAAA,eACxE,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,aAAa,WAAW,qBAAqB;AACpD,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,WAAW,UAAU,UAAU;AACrC,MAAI,YAAY,QAAQ,aAAa,YAAY,OAAO,QAAQ,GAAG;AACjE,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,qDACuC,uBAAuB;AAAA,+BAC7C;AAAA;AAAA;AAAA,IAG3B;AACA,UAAM,WAAW,SAAS;AAC1B,UAAM,WAAW,SAAS;AAC1B,WAAO;AAAA,YACC;AAAA,mDACuC,eAAe;AAAA,6BACrC;AAAA;AAAA;AAAA,EAG3B;AACA,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,QAAM,gBAAgB;AACtB,MAAI,cAAc,SAAS,MAAM,QAAQ;AACvC,UAAM,eAAe,iBAAiB,WAAW,aAAa;AAC9D,UAAM,SAAS,CAAC,OAAO,KAAK;AAC5B,WAAO;AAAA,QACH,qBAAqB,cAAc,mBAAmB;AAAA,cAChD;AAAA,iBACG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG7D;AACA,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA,qDACuC,MAAM;AAAA,UACjD,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,YAAY,GAAG;AACjB,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,2CAC6B,iBAAiB;AAAA,oDACR;AAAA,+BACrB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,YACC;AAAA,yCAC6B,iBAAiB,MAAM;AAAA,4CACpB;AAAA,6BACf;AAAA;AAAA;AAAA,EAG3B;AACA,MAAI,YAAY,GAAG;AACjB,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,2CAC6B,iBAAiB;AAAA,+CACb;AAAA,+BAChB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,YACC;AAAA,yCAC6B,iBAAiB,MAAM;AAAA,uCACzB;AAAA,6BACV;AAAA;AAAA;AAAA,EAG3B;AACA,MAAI,qBAAqB;AACvB,WAAO;AAAA,cACG;AAAA;AAAA,4BAEc,2BAA2B;AAAA,+BACxB,uBAAuB;AAAA,+BACvB;AAAA;AAAA;AAAA,EAG7B;AACA,SAAO;AAAA,UACC;AAAA;AAAA,wBAEc,MAAM,cAAc;AAAA,2BACjB,YAAY;AAAA,2BACZ;AAAA;AAAA;AAG3B;AACA,SAAS,mBAAmB,WAAW,qBAAqB;AAC1D,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,MAAI,MAAM,OAAO,GAAG;AAClB,UAAM,gBAAgB,MAAM,MAAM,CAAC;AACnC,UAAM,WAAW,CAAC,GAAG,CAAC;AACtB,UAAM,eAAe,iBAAiB,WAAW,aAAa;AAC9D,UAAM,SAAS,CAAC,KAAK,OAAO,KAAK;AACjC,WAAO;AAAA,UACD,2BAA2B,cAAc,mBAAmB;AAAA,eACvD;AAAA,mBACI,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG/D;AACA,QAAM,OAAO,mBAAmB;AAChC,MAAI,qBAAqB;AACvB,WAAO;AAAA,WACA;AAAA,gDACqC,0CAA0C;AAAA,0CAChD;AAAA,0DACgB;AAAA;AAAA;AAAA,eAG3C,KAAK,aAAa;AAAA;AAAA;AAAA,EAG/B;AACA,QAAM,UAAU,eAAe;AAC/B,QAAM,UAAU,eAAe;AAC/B,QAAM,eAAe,KAAK,KAAK,MAAM,KAAK,CAAC;AAC3C,QAAM,gBAAgB,eAAe,KAAK,KAAK,MAAM,KAAK,CAAC;AAC3D,SAAO;AAAA,WACE;AAAA;AAAA,UAED,YAAY,YAAY,kBAAkB;AAAA,eACrC,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,aAAa,WAAW,qBAAqB;AACpD,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,UAAU,MAAM,KAAK,MAAM;AACjC,QAAM,UAAU,MAAM;AACtB,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,QAAM,gBAAgB;AACtB,MAAI,cAAc,SAAS,MAAM,QAAQ;AACvC,UAAM,eAAe,iBAAiB,WAAW,aAAa;AAC9D,UAAM,SAAS,CAAC,OAAO,OAAO,OAAO;AACrC,WAAO;AAAA,UACD,qBAAqB,cAAc,mBAAmB;AAAA,gBAChD;AAAA,mBACG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG/D;AACA,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA;AAAA,iCAEmB,YAAY;AAAA,UACnC,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,QAAM,aAAa,UAAU,UAAU;AACvC,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,wBACU;AAAA;AAAA;AAAA;AAAA,0BAIE,uBAAuB;AAAA,+BAClB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,gBACK;AAAA;AAAA,oDAEoC;AAAA;AAAA,4BAExB,cAAc;AAAA,iCACT;AAAA;AAAA;AAAA,EAG/B;AACA,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,gDACkC;AAAA;AAAA,uDAEO,uBAAuB;AAAA,+BAC/C;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,YACC;AAAA,8CACkC,MAAM;AAAA;AAAA,qDAEC,cAAc;AAAA,6BACtC;AAAA;AAAA;AAAA,EAG3B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,qBAAqB;AACvB,WAAO;AAAA,YACC;AAAA;AAAA,sBAEU,qBAAqB;AAAA,sBACrB;AAAA,0BACI,mBAAmB,qBAAqB;AAAA,6BACrC,uBAAuB;AAAA,6BACvB;AAAA;AAAA;AAAA,EAG3B;AACA,SAAO;AAAA,cACK;AAAA;AAAA,4BAEc,mBAAmB,qBAAqB;AAAA,+BACrC,YAAY;AAAA,+BACZ;AAAA;AAAA;AAG/B;AACA,SAAS,mBAAmB,WAAW,qBAAqB;AAC1D,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,OAAO,mBAAmB;AAChC,MAAI,qBAAqB;AACvB,WAAO;AAAA,WACA;AAAA,0CAC+B;AAAA,0DACgB;AAAA;AAAA,yBAEjC;AAAA;AAAA,gDAEuB,0CAA0C;AAAA;AAAA;AAAA,mGAGS,KAAK,aAAa;AAAA;AAAA;AAAA,EAGnH;AACA,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,OAAO,MAAM;AACnB,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,iBAAiB,CAAC,KAAK,KAAK,SAAS,KAAK,CAAC,GAAG,KAAK,KAAK,SAAS,KAAK,CAAC,CAAC;AAC9E,QAAM,UAAU,eAAe;AAC/B,QAAM,UAAU,eAAe;AAC/B,QAAM,eAAe,KAAK,KAAK,MAAM,OAAO,KAAK,CAAC;AAClD,MAAI,gBAAgB,eAAe,KAAK,KAAK,MAAM,OAAO,KAAK,CAAC;AAChE,MAAI,SAAS;AACb,MAAIU,SAAQ,OAAO,+BAA+B;AAClD,WAAS,IAAI,GAAG,IAAI,OAAO,GAAG,KAAK;AACjC,aAAS,QAAQ,QAAQ;AACzB,qBAAiB,MAAM,OAAO,IAAI;AAClC,IAAAA,SAAQ,IAAI,OAAO,qBAAqBA;AAAA,EAC1C;AACA,SAAO;AAAA,WACE,YAAY;AAAA,oBACHA;AAAA,2BACO;AAAA,kCACO;AAAA,qDACmB,YAAY;AAAA,eAClD,KAAK,aAAa;AAAA;AAAA;AAGjC;AACA,SAAS,aAAa,WAAW,qBAAqB;AACpD,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,UAAU,MAAM;AACtB,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,MAAI,SAAS,SAAS,MAAM,QAAQ;AAClC,UAAM,eAAe,iBAAiB,WAAW,QAAQ;AACzD,UAAM,SAAS,CAAC,OAAO,OAAO,SAAS,QAAQ;AAC/C,WAAO;AAAA,QACH,qBAAqB,cAAc,mBAAmB;AAAA,cAChD;AAAA,iBACG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG7D;AACA,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA;AAAA,iCAEmB,YAAY,YAAY;AAAA,UAC/C,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,aAAa,UAAU,UAAU;AACvC,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,QAAM,aAAa,iBAAiB;AACpC,QAAM,aAAa,iBAAiB;AACpC,QAAM,aAAa,iBAAiB;AACpC,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA,UACJ;AAAA,UACA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAMgB,uBAAuB;AAAA,+BAClB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,cACG;AAAA;AAAA;AAAA;AAAA,uBAIS,YAAY;AAAA;AAAA,0BAET,cAAc;AAAA,+BACT;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,QAAI,qBAAqB;AACvB,aAAO;AAAA,cACC;AAAA;AAAA,gCAEkB,qBAAqB,oBAAoB;AAAA;AAAA;AAAA,yBAGhD,uBAAuB;AAAA,+BACjB;AAAA;AAAA;AAAA,IAG3B;AACA,WAAO;AAAA,cACG;AAAA;AAAA,gCAEkB,MAAM,KAAK,MAAM,OAAO,MAAM;AAAA;AAAA;AAAA,yBAGrC,cAAc;AAAA,+BACR;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,MAAI,qBAAqB;AACvB,WAAO;AAAA,YACC;AAAA;AAAA,QAEJ;AAAA,QACA;AAAA,QACA;AAAA;AAAA;AAAA,6BAGqB,uBAAuB,+BAA+B;AAAA,6BACtD;AAAA;AAAA;AAAA,EAG3B;AACA,SAAO;AAAA,YACG;AAAA;AAAA,0BAEc,mBAAmB;AAAA,oBACzB;AAAA,6BACS,YAAY,oBAAoB;AAAA,6BAChC;AAAA;AAAA;AAG7B;AACA,SAAS,aAAa,WAAW;AAC/B,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,UAAU,MAAM;AACtB,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,MAAI,SAAS,SAAS,MAAM,QAAQ;AAClC,UAAM,eAAe,iBAAiB,WAAW,QAAQ;AACzD,UAAM,SAAS,CAAC,OAAO,OAAO,SAAS,UAAU,QAAQ;AACzD,WAAO;AAAA,QACH,qBAAqB,YAAY;AAAA,cAC3B;AAAA,iBACG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG7D;AACA,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA;AAAA;AAAA,iBAGG,YAAY,YAAY,YAAY;AAAA;AAAA,UAE3C,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,aAAa,UAAU,UAAU;AACvC,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,WAAO;AAAA,cACG;AAAA;AAAA;AAAA,gCAGkB,YAAY,YAAY;AAAA;AAAA,0BAE9B,cAAc;AAAA,+BACT;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,WAAO;AAAA,cACG;AAAA;AAAA;AAAA,iBAGG,MAAM,KAAK,MAAM,KAAK,MAAM;AAAA,iBAC5B,MAAM,KAAK,MAAM,OAAO,MAAM;AAAA;AAAA;AAAA,yBAGtB,cAAc;AAAA,+BACR;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,SAAO;AAAA,YACG;AAAA;AAAA,0BAEc,mBAAmB,qBAAqB;AAAA,qBAC7C,sBAAsB;AAAA,6BACd,YAAY;AAAA,6BACZ;AAAA;AAAA;AAG7B;AACA,SAAS,aAAa,WAAW;AAC/B,QAAM,QAAQ,UAAU,UAAU;AAClC,QAAM,UAAU,UAAU;AAC1B,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,MAAI,SAAS,SAAS,MAAM,QAAQ;AAClC,UAAM,eAAe,iBAAiB,WAAW,QAAQ;AACzD,UAAM,SAAS,CAAC,OAAO,OAAO,SAAS,UAAU,UAAU,QAAQ;AACnE,WAAO;AAAA,QACH,qBAAqB,YAAY;AAAA,cAC3B;AAAA;AAAA,iBAEG,YAAY,kBAAkB,QAAQ,QAAQ;AAAA;AAAA;AAAA,EAG7D;AACA,QAAM,UAAU,MAAM;AACtB,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,QAAM,UAAU,MAAM,KAAK;AAC3B,MAAI,UAAU,UAAU,WAAW;AACjC,WAAO;AAAA,cACG;AAAA;AAAA;AAAA;AAAA,iBAIG,YAAY,YAAY,YAAY;AAAA;AAAA;AAAA,mBAGlC;AAAA,UACT,kBAAkB,SAAS;AAAA;AAAA;AAAA,EAGnC;AACA,QAAM,aAAa,UAAU,UAAU;AACvC,QAAM,WAAW,UAAU,UAAU;AACrC,QAAM,UAAU,SAAS;AACzB,QAAM,UAAU,SAAS;AACzB,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,WAAO;AAAA,cACG;AAAA;AAAA;AAAA;AAAA,iBAIG,YAAY,YAAY,YAAY;AAAA;AAAA;AAAA,0BAG3B,cAAc;AAAA,+BACT;AAAA;AAAA;AAAA,EAG7B;AACA,MAAI,YAAY,WAAW,cAAc,MAAM;AAC7C,WAAO;AAAA,cACG;AAAA;AAAA;AAAA,iBAGG,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM;AAAA,iBACvC,MAAM,KAAK,MAAM,KAAK,MAAM;AAAA,iBAC5B,MAAM,KAAK,MAAM;AAAA,iBACjB,MAAM;AAAA;AAAA;AAAA,yBAGE,cAAc;AAAA,+BACR;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,SAAS,yBAAyB,OAAO;AAC/C,SAAO;AAAA,YACG;AAAA;AAAA;AAAA,0BAGc,mBAAmB,qBAAqB;AAAA,qBAC7C,sBAAsB,sBAAsB;AAAA,6BACpC,YAAY;AAAA,6BACZ;AAAA;AAAA;AAG7B;AACA,SAAS,kBAAkB,WAAW;AACpC,QAAM,UAAU,UAAU;AAC1B,QAAM,SAAS,aAAa,cAAc,UAAU,UAAU,YAAY;AAC1E,MAAI,SAAS,GAAG;AACd,WAAO,UAAU;AAAA,EACnB;AACA,SAAO;AAAA,0BACiB;AAAA;AAAA,iBAET;AAAA;AAAA;AAAA;AAIjB;AACA,SAAS,+BAA+B,WAAW,cAAc;AAC/D,QAAM,UAAU,UAAU;AAC1B,QAAM,iBAAiB,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AACxE,QAAM,WAAW,QAAQ,iBAAiB;AAC1C,QAAM,SAAS,UAAU,UAAU,aAAa;AAChD,QAAM,UAAU,aAAa,aAAa;AAC1C,QAAM,gBAAgB,kBAAkB,UAAU,UAAU,cAAc,aAAa,YAAY;AACnG,QAAM,OAAO,kBAAkB,OAAO;AACtC,QAAM,WAAW,UAAU;AAC3B,MAAI;AACJ,QAAM,SAAS,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAC5C,MAAI,WAAW,GAAG;AAChB,oBAAgB;AAAA,EAClB,WAAW,UAAU,KAAK,cAAc,UAAU,GAAG;AACnD,oBAAgB;AAAA,EAClB,OAAO;AACL,oBAAgB,cAAc,IAAI,CAAC,MAAM,UAAU,OAAO,IAAI,gBAAgB,EAAE,KAAK,IAAI;AAAA,EAC3F;AACA,MAAI,wBAAwB;AAC5B,MAAI,UAAU,KAAK,SAAS,GAAG;AAC7B,4BAAwB;AAAA,EAC1B,OAAO;AACL,4BAAwB,UAAU,UAAU,aAAa,IAAI,CAAC,IAAI,OAAO,UAAU,OAAO,KAAK,WAAW,EAAE,KAAK,IAAI;AAAA,EACvH;AACA,MAAI,SAAS;AACb,QAAM,SAAS,aAAa,cAAc,UAAU,UAAU,YAAY;AAC1E,QAAM,gBAAgB,WAAW;AACjC,QAAM,UAAU,aAAa,cAAc,aAAa,YAAY;AACpE,QAAM,iBAAiB,YAAY;AACnC,MAAI,WAAW,KAAK,CAAC,iBAAiB,CAAC,gBAAgB;AACrD,aAAS;AAAA;AAAA;AAAA,EAGX,WAAW,iBAAiB,CAAC,gBAAgB;AAC3C,QAAI,YAAY,GAAG;AACjB,eAAS;AAAA;AAAA;AAAA,IAGX,OAAO;AACL,eAAS;AAAA;AAAA;AAAA,IAGX;AAAA,EACF,WAAW,cAAc,QAAQ;AAC/B,UAAM,OAAO,SAAS;AACtB,UAAM,OAAO,SAAS;AACtB,QAAI,cAAc,QAAQ,IAAI,IAAI,MAAM,cAAc,QAAQ,IAAI,IAAI,IAAI;AACxE,eAAS;AAAA,IACX,WAAW,cAAc,QAAQ,IAAI,IAAI,IAAI;AAC3C,eAAS;AAAA,IACX,WAAW,cAAc,QAAQ,IAAI,IAAI,IAAI;AAC3C,eAAS;AAAA,IACX;AAAA,EACF;AACA,SAAO;AAAA,WACE;AAAA,QACH;AAAA,QACA;AAAA,8BACsB,kBAAkB;AAAA,QACxC;AAAA;AAAA;AAGR;AACA,SAAS,yBAAyB,WAAW,cAAc;AACzD,QAAM,UAAU,UAAU;AAC1B,QAAM,iBAAiB,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AACxE,QAAM,WAAW,QAAQ,iBAAiB;AAC1C,QAAM,cAAc,aAAa;AACjC,QAAM,aAAa,UAAU,UAAU;AACvC,QAAM,SAAS,UAAU,UAAU,aAAa;AAChD,QAAM,UAAU,aAAa,aAAa;AAC1C,MAAI,CAAC,UAAU,UAAU,aAAa,WAAW,WAAW,UAAU,UAAU,cAAc,QAAQ,aAAa,YAAY,YAAY,WAAW,GAAG;AACvJ,WAAO;AAAA,cACG;AAAA,+BACiB;AAAA;AAAA;AAAA,EAG7B;AACA,QAAM,OAAO,kBAAkB,OAAO;AACtC,QAAM,gBAAgB,kBAAkB,UAAU,UAAU,cAAc,aAAa,YAAY;AACnG,QAAM,WAAW,UAAU;AAC3B,MAAI;AACJ,QAAM,SAAS,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAC5C,MAAI,WAAW,GAAG;AAChB,oBAAgB;AAAA,EAClB,WAAW,UAAU,KAAK,cAAc,UAAU,GAAG;AACnD,oBAAgB;AAAA,EAClB,OAAO;AACL,oBAAgB,cAAc,IAAI,CAAC,MAAM,UAAU,OAAO,IAAI,gBAAgB,EAAE,KAAK,IAAI;AAAA,EAC3F;AACA,MAAI,wBAAwB;AAC5B,MAAI,UAAU,KAAK,SAAS,GAAG;AAC7B,4BAAwB;AAAA,EAC1B,OAAO;AACL,4BAAwB,UAAU,UAAU,aAAa,IAAI,CAAC,IAAI,OAAO,UAAU,OAAO,KAAK,WAAW,EAAE,KAAK,IAAI;AAAA,EACvH;AACA,SAAO;AAAA,YACG;AAAA,QACJ;AAAA,QACA;AAAA,kBACU,kBAAkB;AAAA;AAAA;AAGpC;AACA,SAAS,kBAAkB,MAAM;AAC/B,MAAI,QAAQ,GAAG;AACb,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,OAAO;AACL,UAAM,MAAM,gBAAgB,2BAA2B;AAAA,EACzD;AACF;AACA,SAAS,wBAAwB,UAAU,OAAO,UAAU;AAC1D,QAAM,EAAE,UAAU,SAAS,IAAI,aAAa,aAAa,KAAK;AAC9D,QAAM,OAAO,MAAM;AACnB,QAAM,wBAAwB,YAAY,SAAS,KAAK,MAAM,OAAO;AACrE,QAAM,gBAAgB,wBAAwB,MAAM,MAAM,CAAC,IAAI;AAC/D,QAAM,kBAAkB,CAAC,YAAY,OAAO,KAAK,CAAC,aAAa,YAAY,OAAO,QAAQ,KAAK,SAAS,SAAS,QAAQ;AACzH,QAAM,eAAe,kBAAkB,gBAAgB;AACvD,SAAO,EAAE,iBAAiB,cAAc,SAAS;AACnD;AACA,SAAS,iBAAiB,QAAQ,eAAe;AAC/C,QAAM,eAAe,KAAK,MAAM,KAAK,UAAU,MAAM,CAAC;AACtD,eAAa,UAAU,eAAe;AACtC,SAAO;AACT;AACA,SAAS,kBAAkB,QAAQ,UAAU;AAC3C,SAAO,SAAS,IAAI,CAAC,MAAM,OAAO,EAAE,EAAE,KAAK,IAAI;AACjD;AAGA,SAAS,eAAe,OAAO,SAAS,QAAQ,QAAQ;AACtD,QAAM,aAAa,OAAO,IAAI,CAAC,QAAQ,OAAO;AAC5C,UAAM,YAAY;AAAA,MAChB,cAAc,OAAO;AAAA,MACrB,UAAU,OAAO,YAAY,OAAO,OAAO,QAAQ;AAAA,MACnD,WAAW,OAAO;AAAA,MAClB,UAAU,OAAO,YAAY,QAAQ,OAAO,QAAQ;AAAA,MACpD,YAAY;AAAA,IACd;AACA,QAAI,OAAO,WAAW,QAAQ,OAAO,QAAQ,SAAS,QAAQ,OAAO,QAAQ,MAAM,aAAa,GAAG;AACjG,gBAAU,aAAa,OAAO,QAAQ,MAAM;AAAA,IAC9C;AACA,WAAO,EAAE,MAAM,QAAQ,cAAc,KAAK,UAAU;AAAA,EACtD,CAAC;AACD,QAAM,eAAe,WAAW,IAAI,CAAC,MAAM,EAAE,SAAS;AACtD,QAAM,eAAe;AAAA,IACnB,cAAc,OAAO;AAAA,IACrB,UAAU,OAAO,QAAQ;AAAA,IACzB,WAAW;AAAA,IACX,UAAU,OAAO,QAAQ;AAAA,IACzB,YAAY;AAAA,EACd;AACA,QAAM,SAAS,WAAW,YAAY,cAAc,OAAO;AAC3D,QAAM,iBAAiB,qBAAqB,MAAM,IAAI,MAAM;AAC5D,QAAM,eAAe,MAAM,cAAc,cAAc;AACvD,MAAI,CAAC,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACrC,WAAO,OAAO,OAAO;AAAA,MACnB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF,GAAG,oBAAoB,OAAO,SAAS,YAAY,CAAC;AAAA,EACtD,OAAO;AACL,WAAO;AAAA,MACL;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,kBAAkB;AAAA,MAClB,wBAAwB;AAAA,MACxB,QAAQ;AAAA,MACR,QAAQ;AAAA,MACR,mBAAmB;AAAA,MACnB,sBAAsB;AAAA,MACtB,kBAAkB;AAAA,MAClB,yBAAyB;AAAA,MACzB,qBAAqB;AAAA,IACvB;AAAA,EACF;AACF;AACA,SAAS,oBAAoB,OAAO,SAAS,cAAc;AACzD,QAAM,mBAAmB,CAAC;AAC1B,QAAM,oBAAoB,CAAC;AAC3B,QAAM,uBAAuB,CAAC;AAC9B,QAAM,yBAAyB,CAAC;AAChC,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,SAAS;AACb,MAAI,SAAS;AACb,WAAS,MAAM,mBAAmB,cAAc,OAAO,KAAK;AAC5D,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,aAAS,MAAM,mBAAmB,cAAc,YAAY,KAAK;AAAA,EACnE;AACA,QAAM,cAAc;AACpB,WAAS,KAAK,GAAG,KAAK,QAAQ,cAAc,QAAQ,MAAM;AACxD,UAAM,UAAU,QAAQ,cAAc;AACtC,qBAAiB,WAAW,MAAM,mBAAmB,cAAc,SAAS,WAAW;AACvF,qBAAiB,SAAS,aAAa,MAAM,mBAAmB,cAAc,SAAS,WAAW,WAAW;AAC7G,QAAI,QAAQ,qBAAqB;AAC/B,wBAAkB,GAAG,kBAAkB,MAAM,mBAAmB,cAAc,GAAG,gBAAgB,WAAW;AAC5G,2BAAqB,GAAG,qBAAqB,MAAM,mBAAmB,cAAc,GAAG,mBAAmB,WAAW;AAAA,IACvH;AAAA,EACF;AACA,MAAI,QAAQ,qBAAqB;AAC/B,uBAAmB,MAAM,mBAAmB,cAAc,YAAY,WAAW;AACjF,8BAA0B,MAAM,mBAAmB,cAAc,mBAAmB,WAAW;AAC/F,0BAAsB,MAAM,mBAAmB,cAAc,eAAe,WAAW;AAAA,EACzF;AACA,MAAI,QAAQ,gBAAgB;AAC1B,YAAQ,eAAe,QAAQ,CAAC,GAAG,OAAO;AACxC,6BAAuB,MAAM,MAAM,mBAAmB,cAAc,EAAE,MAAM,WAAW;AAAA,IACzF,CAAC;AAAA,EACH;AACA,SAAO;AAAA,IACL;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACF;AACA,SAAS,yBAAyB,YAAY,QAAQ;AACpD,MAAI,WAAW,WAAW,OAAO,QAAQ;AACvC,UAAM,MAAM,4BAA4B,WAAW,wCAAwC,OAAO,eAAe;AAAA,EACnH;AACA,aAAW,QAAQ,CAAC,IAAI,OAAO;AAC7B,UAAM,SAAS,GAAG;AAClB,UAAM,SAAS,OAAO;AACtB,UAAM,SAAS,OAAO;AACtB,QAAI,CAAC,aAAa,YAAY,QAAQ,MAAM,GAAG;AAC7C,YAAM,MAAM,2EAA2E,cAAc,mBAAmB;AAAA,IAC1H;AACA,QAAI,GAAG,aAAa,OAAO,WAAW;AACpC;AAAA,IACF;AACA,UAAM,YAAY,GAAG;AACrB,UAAM,YAAY,OAAO,YAAY,OAAO,OAAO,QAAQ;AAC3D,QAAI,CAAC,aAAa,YAAY,WAAW,SAAS,GAAG;AACnD,YAAM,MAAM,kFAAkF,iBAAiB,sBAAsB;AAAA,IACvI;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,OAAO,QAAQ,QAAQ,QAAQ,qBAAqB;AACtE,MAAI,CAAC,OAAO,QAAQ,qBAAqB;AACvC,6BAAyB,OAAO,cAAc,MAAM;AACpD,6BAAyB,CAAC,OAAO,YAAY,GAAG,CAAC,MAAM,CAAC;AAAA,EAC1D;AACA,QAAM,SAAS,OAAO,QAAQ;AAC9B,QAAM,cAAc,OAAO,QAAQ;AACnC,MAAI,OAAO,QAAQ,UAAU;AAC3B,UAAM,6BAA6B,OAAO,SAAS,YAAY,IAAI,YAAY,EAAE;AAAA,EACnF,OAAO;AACL,UAAM,uBAAuB,OAAO,SAAS,YAAY,IAAI,YAAY,EAAE;AAAA,EAC7E;AACA,QAAM,WAAW,OAAO,YAAY;AACpC,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,QAAI,OAAO,WAAW,MAAM;AAC1B,YAAM,GAAG,UAAU,OAAO,QAAQ,QAAQ;AAAA,IAC5C;AAAA,EACF;AACA,MAAI,OAAO,WAAW,MAAM;AAC1B,UAAM,GAAG,UAAU,OAAO,QAAQ,GAAG;AAAA,EACvC;AACA,SAAO,QAAQ,CAAC,QAAQ,OAAO;AAC7B,UAAM,UAAU,OAAO,QAAQ,cAAc;AAC7C,UAAM,SAAS,OAAO,iBAAiB;AACvC,UAAM,eAAe,OAAO,iBAAiB,SAAS;AACtD,UAAM,cAAc,OAAO,kBAAkB,GAAG;AAChD,UAAM,iBAAiB,OAAO,qBAAqB,GAAG;AACtD,QAAI,aAAa;AACf,YAAM,EAAE,aAAa,IAAI,wBAAwB,OAAO,QAAQ,cAAc,OAAO,OAAO,OAAO,QAAQ,QAAQ;AACnH,cAAQ,aAAa;AAAA,aACd;AACH,gBAAM,GAAG,WAAW,aAAa,IAAI,WAAW,YAAY,CAAC;AAC7D;AAAA,aACG;AACH,gBAAM,GAAG,WAAW,aAAa,IAAI,WAAW,YAAY,CAAC;AAC7D;AAAA,aACG;AACH,gBAAM,GAAG,WAAW,aAAa,IAAI,WAAW,YAAY,CAAC;AAC7D;AAAA,aACG;AACH,gBAAM,GAAG,WAAW,aAAa,IAAI,WAAW,YAAY,CAAC;AAC7D;AAAA;AAEA;AAAA;AAAA,IAEN;AACA,QAAI,gBAAgB;AAClB,YAAM,GAAG,UAAU,gBAAgB,OAAO,QAAQ,SAAS,IAAI,OAAO,QAAQ,SAAS,EAAE;AAAA,IAC3F;AACA,QAAI,UAAU,MAAM;AAClB;AAAA,IACF;AACA,QAAI,OAAO,WAAW;AACpB,UAAI,aAAa,cAAc,OAAO,KAAK,IAAI,GAAG;AAChD,cAAM,GAAG,UAAU,QAAQ,OAAO,cAAc,EAAE;AAAA,MACpD,OAAO;AACL,YAAI,OAAO,OAAO;AAClB,YAAI,EAAE,gBAAgB,eAAe;AACnC,iBAAO,IAAI,aAAa,IAAI;AAAA,QAC9B;AACA,cAAM,GAAG,WAAW,QAAQ,IAAI;AAAA,MAClC;AACA;AAAA,IACF;AACA,QAAI,OAAO,QAAQ,SAAS,QAAQ,gBAAgB,MAAM;AACxD,YAAM,GAAG,UAAU,cAAc,OAAO,QAAQ,MAAM,UAAU;AAAA,IAClE;AACA,UAAM,sBAAsB,OAAO,QAAQ,QAAQ,SAAS,QAAQ,EAAE;AAAA,EACxE,CAAC;AACD,QAAM,cAAc,OAAO;AAC3B,MAAI,aAAa;AACf,YAAQ,OAAO,MAAM;AAAA,WACd;AACH,cAAM,GAAG,WAAW,aAAa,IAAI,WAAW,OAAO,KAAK,CAAC;AAC7D;AAAA,WACG;AACH,cAAM,GAAG,WAAW,aAAa,IAAI,WAAW,OAAO,KAAK,CAAC;AAC7D;AAAA,WACG;AACH,cAAM,GAAG,WAAW,aAAa,IAAI,WAAW,OAAO,KAAK,CAAC;AAC7D;AAAA,WACG;AACH,cAAM,GAAG,WAAW,aAAa,IAAI,WAAW,OAAO,KAAK,CAAC;AAC7D;AAAA;AAEA;AAAA;AAAA,EAEN;AACA,MAAI,OAAO,yBAAyB;AAClC,UAAMG,WAAU,aAAa,eAAe,OAAO,KAAK;AACxD,YAAQ,OAAO,MAAM;AAAA,WACd;AACH,cAAM,GAAG,WAAW,OAAO,yBAAyB,IAAI,WAAWA,QAAO,CAAC;AAC3E;AAAA,WACG;AACH,cAAM,GAAG,WAAW,OAAO,yBAAyB,IAAI,WAAWA,QAAO,CAAC;AAC3E;AAAA,WACG;AACH,cAAM,GAAG,WAAW,OAAO,yBAAyB,IAAI,WAAWA,QAAO,CAAC;AAC3E;AAAA;AAEA;AAAA;AAAA,EAEN;AACA,MAAI,OAAO,qBAAqB;AAC9B,UAAM,GAAG,UAAU,OAAO,qBAAqB,OAAO,QAAQ,SAAS,IAAI,OAAO,QAAQ,SAAS,EAAE;AAAA,EACvG;AACA,MAAI,OAAO,QAAQ,kBAAkB,qBAAqB;AACxD,WAAO,QAAQ,eAAe,QAAQ,CAAC,GAAG,OAAO;AAC/C,YAAM,YAAY,OAAO,uBAAuB;AAChD,YAAM,cAAc,oBAAoB;AACxC,UAAI,EAAE,SAAS,SAAS;AACtB,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,QAAQ;AAC5B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,QAAQ;AAC5B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,QAAQ;AAC5B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,OAAO;AAC3B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,SAAS;AAC7B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,SAAS;AAC7B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,WAAW,EAAE,SAAS,SAAS;AAC7B,cAAM,GAAG,WAAW,WAAW,WAAW;AAAA,MAC5C,OAAO;AACL,cAAM,MAAM,gBAAgB,EAAE,4BAA4B;AAAA,MAC5D;AAAA,IACF,CAAC;AAAA,EACH;AACA,QAAM,eAAe;AACvB;AACA,SAAS,cAAc,SAAS,QAAQ,QAAQ;AAC9C,MAAI,YAAY;AAChB,SAAO,OAAO,MAAM,EAAE,QAAQ,CAAC,MAAM;AACnC,UAAM,YAAY,EAAE,WAAW,QAAQ,EAAE,QAAQ,SAAS,QAAQ,EAAE,QAAQ,MAAM,aAAa;AAC/F,QAAI,QAAQ,uBAAuB,CAAC,EAAE,WAAW;AAC/C,YAAM,YAAY,EAAE,QAAQ;AAC5B,YAAM,EAAE,iBAAiB,cAAc,SAAS,IAAI,wBAAwB,QAAQ,cAAc,EAAE,OAAO,SAAS;AACpH,UAAI,QAAQ,IAAI,QAAQ,IAAI,SAAS;AACrC,UAAI,aAAa,WAAW,KAAK,QAAQ,cAAc;AACrD,cAAM,iBAAiB,CAAC,KAAK,KAAK,UAAU,KAAK,CAAC,GAAG,KAAK,KAAK,UAAU,KAAK,CAAC,CAAC;AAChF,gBAAQ,GAAG,eAAe,KAAK,KAAK,eAAe,KAAK;AAAA,MAC1D,WAAW,aAAa,WAAW,KAAK,CAAC,QAAQ,cAAc;AAC7D,gBAAQ,GAAG,aAAa,KAAK,KAAK,aAAa,KAAK;AAAA,MACtD,WAAW,aAAa,SAAS,KAAK,CAAC,QAAQ,cAAc;AAC3D,cAAMA,WAAU,aAAa,eAAe,YAAY;AACxD,iBAAS,GAAGA,SAAQ,OAAO,UAAU,MAAMA,SAAQA,SAAQ,SAAS,OAAO,UAAU;AAAA,MACvF;AACA,YAAM,QAAQ,EAAE,MAAM;AACtB,YAAM,6BAA6B,aAAa,WAAW,KAAK,aAAa,YAAY,EAAE,OAAO,SAAS;AAC3G,YAAM,WAAW,aAAa,cAAc,EAAE,KAAK,MAAM;AACzD,YAAM,gBAAgB,qBAAqB,iBAAiB,EAAE,OAAO,OAAO,KAAK;AACjF,YAAM,uBAAuB,CAAC,QAAQ,gBAAgB,UAAU,OAAO,MAAM,UAAU,aAAa,YAAY,WAAW,OAAO,QAAQ,QAAQ;AAClJ,YAAM,2BAA2B,QAAQ,gBAAgB,aAAa,SAAS,IAAI,KAAK,GAAG,UAAU,KAAK,KAAK,UAAU,KAAK;AAC9H,mBAAa,GAAG,SAAS,wBAAwB,kBAAkB,WAAW,MAAM,aAAa,UAAU,YAAY,iBAAiB,8BAA8B,SAAS,SAAS,UAAU,4BAA4B;AAAA,IAChO,OAAO;AACL,YAAM,WAAW,EAAE,YAAY,YAAY,EAAE,QAAQ;AACrD,mBAAa,GAAG,EAAE,SAAS,YAAY;AAAA,IACzC;AAAA,EACF,CAAC;AACD,QAAM,cAAc,QAAQ;AAC5B,MAAI,MAAM,QAAQ,YAAY;AAC9B,SAAO,MAAM,YAAY,MAAM,cAAc,GAAG,IAAI,EAAE,UAAU,eAAe;AAC/E,SAAO;AACT;AACA,SAAS,iBAAiB,MAAM;AAC9B,SAAO,IAAI,EAAE,QAAQ,2BAA2B,KAAK,QAAQ;AAC/D;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,mBAAmB,cAAc;AACtC,SAAK,iBAAiB,CAAC,EAAE,MAAM,YAAY,MAAM,QAAQ,CAAC;AAC1D,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV,KAAK,sBAAsB,kDAAkD,CAAC,KAAK,KAAK,GAAG,GAAG,WAAW,IAAI,mCAAmC,CAAC,KAAK,KAAK,GAAG,GAAG,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAgB5K,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,4BAA4B,MAAM;AAAA,EACpC,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,mBAAmB,cAAc;AACtC,SAAK,iBAAiB,CAAC,EAAE,MAAM,YAAY,MAAM,QAAQ,CAAC;AAC1D,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV,KAAK,sBAAsB,kDAAkD,CAAC,KAAK,KAAK,GAAG,GAAG,WAAW,IAAI,mCAAmC,CAAC,KAAK,KAAK,GAAG,GAAG,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAgB5K,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,aAAa;AAChC,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA;AAAA;AAAA,UAIE,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,aAAa;AAChC,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA;AAAA;AAAA;AAAA,UAKE,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,sBAAsB,OAAO;AACpD,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,iBAAiB,CAAC,EAAE,MAAM,YAAY,MAAM,QAAQ,CAAC;AAC1D,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,QAAI,SAAS;AACb,QAAI,qBAAqB;AACvB,eAAS;AAAA,IACX;AACA,SAAK,WAAW;AAAA,QACZ,KAAK,sBAAsB,yBAAyB,IAAI,mBAAmB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAatE,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAcnB,KAAK,iBAAiB;AAAA;AAAA;AAAA,EAG9B;AACF;AAGA,IAAI,4BAA4B,MAAM;AAAA,EACpC,YAAY,aAAa,sBAAsB,OAAO;AACpD,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,YAAY,MAAM,QAAQ,CAAC;AAC1D,UAAM,OAAO,mBAAmB;AAChC,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,QAAI,WAAW;AACf,QAAI,SAAS;AACb,QAAI,qBAAqB;AACvB,eAAS;AAAA,IACX;AACA,aAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,eAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,cAAM,UAAU,MAAM,IAAI;AAC1B,oBAAY;AAAA;AAAA,gCAEY,SAAS,KAAK,sBAAsB,gBAAgB,GAAG,YAAY;AAAA,8BACrE;AAAA,iCACG,SAAS,KAAK,sBAAsB,gBAAgB,GAAG,YAAY;AAAA,gCACpE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uBAUT,KAAK;AAAA;AAAA;AAAA,uBAGL;AAAA;AAAA,uBAEA;AAAA;AAAA,uBAEA;AAAA;AAAA,uBAEA;AAAA;AAAA;AAAA;AAAA;AAAA,MAKjB;AAAA,IACF;AACA,SAAK,WAAW;AAAA,UACV,KAAK,sBAAsB,yBAAyB,IAAI,mBAAmB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAWpF;AAAA;AAAA,YAEA,KAAK,YAAY;AAAA;AAAA;AAAA,EAG3B;AACF;AAGA,IAAI,qBAAqB,CAAC;AAC1BhB,UAAS,oBAAoB;AAAA,EAC3B,mCAAmC,MAAM;AAAA,EACzC,+BAA+B,MAAM;AAAA,EACrC,4BAA4B,MAAM;AAAA,EAClC,kCAAkC,MAAM;AAAA,EACxC,4BAA4B,MAAM;AAAA,EAClC,mBAAmB,MAAM;AAAA,EACzB,2BAA2B,MAAM;AAAA,EACjC,kCAAkC,MAAM;AAAA,EACxC,oBAAoB,MAAM;AAAA,EAC1B,oBAAoB,MAAM;AAAA,EAC1B,iDAAiD,MAAM;AAAA,EACvD,iCAAiC,MAAM;AAAA,EACvC,uCAAuC,MAAM;AAAA,EAC7C,gCAAgC,MAAM;AAAA,EACtC,0CAA0C,MAAM;AAAA,EAChD,gDAAgD,MAAM;AAAA,EACtD,0CAA0C,MAAM;AAAA,EAChD,yCAAyC,MAAM;AAAA,EAC/C,gDAAgD,MAAM;AAAA,EACtD,4BAA4B,MAAM;AAAA,EAClC,0BAA0B,MAAM;AAClC,CAAC;AACD,SAAS,oBAAoB,IAAI;AAC/B,QAAM,OAAO,mBAAmB;AAChC,QAAM,qBAAqB,GAAG,KAAK;AAAA;AAAA,MAE/B,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAMT,SAAO,mBAAmB,IAAI,kBAAkB;AAClD;AACA,SAAS,mBAAmB,IAAI;AAC9B,QAAM,cAAc,IAAI,aAAa,CAAC,IAAI,GAAG,GAAG,GAAG,GAAG,IAAI,IAAI,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,CAAC,CAAC;AACrG,SAAO,yBAAyB,IAAI,WAAW;AACjD;AACA,SAAS,kBAAkB,IAAI;AAC7B,QAAM,wBAAwB,IAAI,YAAY,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAChE,SAAO,wBAAwB,IAAI,qBAAqB;AAC1D;AACA,SAAS,0BAA0B,IAAI,OAAO,QAAQ,gBAAgB,eAAe,aAAa;AAChG,sBAAoB,OAAO,MAAM;AACjC,QAAM,UAAU,cAAc,EAAE;AAChC,QAAM,QAAQ,GAAG;AACjB,eAAa,IAAI,MAAM,GAAG,YAAY,OAAO,OAAO,CAAC;AACrD,eAAa,IAAI,MAAM,GAAG,cAAc,OAAO,GAAG,gBAAgB,GAAG,aAAa,CAAC;AACnF,eAAa,IAAI,MAAM,GAAG,cAAc,OAAO,GAAG,gBAAgB,GAAG,aAAa,CAAC;AACnF,eAAa,IAAI,MAAM,GAAG,cAAc,OAAO,GAAG,oBAAoB,GAAG,OAAO,CAAC;AACjF,eAAa,IAAI,MAAM,GAAG,cAAc,OAAO,GAAG,oBAAoB,GAAG,OAAO,CAAC;AACjF,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,iBAAa,IAAI,MAAM,GAAG,WAAW,OAAO,GAAG,gBAAgB,OAAO,QAAQ,GAAG,eAAe,aAAa,IAAI,CAAC;AAAA,EACpH,OAAO;AACL,iBAAa,IAAI,MAAM,GAAG,aAAa,OAAO,GAAG,gBAAgB,OAAO,MAAM,CAAC;AAAA,EACjF;AACA,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,IAAI,CAAC;AAC1D,SAAO,EAAE,SAAS,UAAU,CAAC,QAAQ,KAAK,EAAE;AAC9C;AACA,SAAS,yCAAyC,eAAe;AAC/D,SAAO,cAAc;AACvB;AACA,SAAS,2BAA2B,IAAI,MAAM,SAAS,eAAe;AACpE,QAAM,CAAC,OAAO,MAAM,IAAI,yCAAyC,MAAM,OAAO;AAC9E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,yCAAyC,aAAa,GAAG,cAAc,oBAAoB,GAAG,KAAK;AACzJ;AACA,SAAS,yCAAyC,eAAe;AAC/D,SAAO,cAAc;AACvB;AACA,SAAS,2BAA2B,IAAI,MAAM,SAAS,eAAe;AACpE,QAAM,CAAC,OAAO,MAAM,IAAI,yCAAyC,MAAM,OAAO;AAC9E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,yCAAyC,aAAa,GAAG,cAAc,oBAAoB,cAAc,oBAAoB;AACnL;AACA,SAAS,+CAA+C,eAAe;AACrE,SAAO,cAAc;AACvB;AACA,SAAS,iCAAiC,IAAI,MAAM,SAAS,eAAe;AAC1E,QAAM,CAAC,OAAO,MAAM,IAAI,yCAAyC,MAAM,OAAO;AAC9E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,+CAA+C,aAAa,GAAG,GAAG,MAAM,GAAG,aAAa;AAC9I;AACA,SAAS,wCAAwC,eAAe;AAC9D,SAAO,cAAc;AACvB;AACA,SAAS,0BAA0B,IAAI,MAAM,SAAS,eAAe;AACnE,QAAM,CAAC,OAAO,MAAM,IAAI,uCAAuC,MAAM,OAAO;AAC5E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,wCAAwC,aAAa,GAAG,GAAG,MAAM,GAAG,KAAK;AAC/H;AACA,SAAS,+CAA+C,eAAe;AACrE,SAAO,cAAc;AACvB;AACA,SAAS,iCAAiC,IAAI,MAAM,SAAS,eAAe;AAC1E,QAAM,CAAC,OAAO,MAAM,IAAI,uCAAuC,MAAM,OAAO;AAC5E,SAAO,0BAA0B,IAAI,OAAO,QAAQ,+CAA+C,aAAa,GAAG,GAAG,MAAM,cAAc,oBAAoB;AAChK;AACA,SAAS,kCAAkC,IAAI,SAAS,cAAc;AACpE,QAAM,YAAY;AAClB,QAAM,WAAW,IAAI;AACrB,QAAM,SAAS,IAAI,IAAI,IAAI;AAC3B,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,YAAY,CAAC;AACnE,QAAM,UAAU,mCAAmC,IAAI,SAAS,gBAAgB,cAAc,GAAG,QAAQ,SAAS;AAClH,SAAO,WAAW,mCAAmC,IAAI,SAAS,MAAM,cAAc,GAAG,QAAQ,QAAQ;AAC3G;AACA,SAAS,2BAA2B,IAAI,SAAS,OAAO,QAAQ,MAAM,eAAe;AACnF,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,OAAO,CAAC;AAC7D,MAAI,eAAe,eAAe;AAClC,MAAI,gBAAgB,YAAY;AAC9B,oBAAgB,IAAI,WAAW,QAAQ,SAAS,CAAC;AACjD,oBAAgB,GAAG;AACnB,qBAAiB,GAAG;AAAA,EACtB,OAAO;AACL,oBAAgB,IAAI,aAAa,QAAQ,SAAS,CAAC;AACnD,oBAAgB,GAAG;AACnB,qBAAiB,cAAc;AAAA,EACjC;AACA,gBAAc,IAAI,IAAI;AACtB,MAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,iBAAa,IAAI,MAAM,GAAG,cAAc,GAAG,YAAY,GAAG,GAAG,GAAG,OAAO,QAAQ,GAAG,MAAM,eAAe,aAAa,CAAC;AAAA,EACvH,OAAO;AACL,iBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,YAAY,GAAG,gBAAgB,OAAO,QAAQ,GAAG,GAAG,MAAM,eAAe,aAAa,CAAC;AAAA,EACjI;AACA,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,IAAI,CAAC;AAC5D;AACA,SAAS,yBAAyB,IAAI,SAAS,QAAQ;AACrD,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,OAAO,CAAC;AAC7D,MAAI,OAAO,gBAAgB,YAAY;AACrC,QAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,mBAAa,IAAI,MAAM,GAAG,cAAc,GAAG,YAAY,GAAG,GAAG,GAAG,OAAO,OAAO,OAAO,QAAQ,GAAG,MAAM,GAAG,eAAe,OAAO,IAAI,CAAC;AAAA,IACtI,OAAO;AACL,mBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,YAAY,GAAG,GAAG,MAAM,OAAO,OAAO,OAAO,QAAQ,GAAG,GAAG,MAAM,GAAG,eAAe,OAAO,IAAI,CAAC;AAAA,IACzI;AAAA,EACF,OAAO;AACL,QAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,mBAAa,IAAI,MAAM,GAAG,cAAc,GAAG,YAAY,GAAG,GAAG,GAAG,GAAG,MAAM,GAAG,eAAe,MAAM,CAAC;AAAA,IACpG,OAAO;AACL,mBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,YAAY,GAAG,GAAG,MAAM,GAAG,MAAM,GAAG,eAAe,MAAM,CAAC;AAAA,IACpG;AAAA,EACF;AACA,eAAa,IAAI,MAAM,GAAG,YAAY,GAAG,YAAY,IAAI,CAAC;AAC5D;AACA,SAAS,8BAA8B,KAAK,MAAM,SAAS,eAAe;AACxE,QAAM,UAAU,IAAI,aAAa;AACjC,eAAa,KAAK,MAAM,IAAI,WAAW,IAAI,mBAAmB,OAAO,CAAC;AACtE,QAAM,gBAAgB;AACtB,QAAM,iBAAiB;AACvB,QAAM,kBAAkB,gBAAgB,iBAAiB,OAAO;AAChE,eAAa,KAAK,MAAM,IAAI,WAAW,IAAI,mBAAmB,iBAAiB,IAAI,WAAW,CAAC;AAC/F,eAAa,KAAK,MAAM,IAAI,WAAW,GAAG,GAAG,SAAS,MAAM,IAAI,MAAM,IAAI,OAAO,CAAC,CAAC;AACnF,eAAa,KAAK,MAAM,IAAI,WAAW,IAAI,mBAAmB,IAAI,CAAC;AACnE,SAAO;AACT;AACA,SAAS,gCAAgC,IAAI,SAASG,OAAM;AAC1D,QAAM,MAAM;AACZ,QAAM,iBAAiB,IAAI,aAAaA,KAAI;AAC5C,MAAI,WAAW,IAAI,mBAAmB,OAAO;AAC7C,MAAI,iBAAiB,IAAI,mBAAmB,GAAG,cAAc;AAC7D,MAAI,WAAW,IAAI,mBAAmB,IAAI;AAC1C,SAAO;AACT;AACA,SAAS,gDAAgD,IAAI,MAAM,SAAS,eAAe;AACzF,QAAM,CAAC,GAAG,CAAC,IAAI,yCAAyC,MAAM,OAAO;AACrE,QAAM,cAAc;AACpB,QAAM,iBAAiB,IAAI,WAAW,mCAAmC,OAAO,SAAS,WAAW,CAAC;AACrG,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,GAAG,GAAG,GAAG,cAAc,uBAAuB,GAAG,eAAe,cAAc,CAAC;AACvH,SAAO,IAAI,aAAa,eAAe,MAAM;AAC/C;AACA,SAAS,+BAA+B,IAAI,SAAS,OAAO,MAAM,MAAM,cAAc,cAAc,eAAe;AACjH,QAAM,MAAM;AACZ,QAAM,iBAAiB,IAAI,aAAa,sCAAsC,cAAc,YAAY,CAAC;AACzG,MAAI,WAAW,IAAI,mBAAmB,OAAO;AAC7C,MAAI,iBAAiB,IAAI,mBAAmB,GAAG,cAAc;AAC7D,MAAI,WAAW,IAAI,mBAAmB,IAAI;AAC1C,SAAO;AACT;AACA,SAAS,sCAAsC,IAAI,cAAc,cAAc;AAC7E,QAAM,aAAa,IAAI,aAAa,eAAe,eAAe,CAAC;AACnE,eAAa,IAAI,MAAM,GAAG,WAAW,GAAG,GAAG,cAAc,cAAc,GAAG,MAAM,GAAG,OAAO,UAAU,CAAC;AACrG,SAAO;AACT;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,IAAI;AACd,SAAK,gBAAgB;AACrB,SAAK,UAAU;AACf,SAAK,WAAW;AAChB,SAAK,sBAAsB;AAC3B,SAAK,cAAc,CAAC;AACpB,UAAM,YAAY,IAAI,EAAE,UAAU,eAAe;AACjD,QAAI,MAAM,MAAM;AACd,WAAK,KAAK;AACV,sBAAgB,WAAW,EAAE;AAAA,IAC/B,OAAO;AACL,WAAK,KAAK,gBAAgB,SAAS;AAAA,IACrC;AACA,QAAI,qBAAqB;AACzB,UAAM,0BAA0B;AAChC,SAAK,+BAA+B,KAAK,GAAG,aAAa,6BAA6B;AACtF,QAAI,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC1C,YAAM,gBAAgB;AACtB,YAAM,qBAAqB;AAC3B,WAAK,wBAAwB,oBAAoB,KAAK,IAAI,aAAa;AACvE,UAAI,aAAa,KAAK,IAAI,kBAAkB,GAAG;AAC7C,aAAK,4BAA4B,oBAAoB,KAAK,IAAI,kBAAkB;AAAA,MAClF,WAAW,IAAI,EAAE,IAAI,0BAA0B,GAAG;AAChD,cAAM,IAAI,MAAM,oHAAoH;AAAA,MACtI;AACA,WAAK,4BAA4B,KAAK,GAAG,aAAa,kBAAkB;AACxE,UAAI,aAAa,KAAK,IAAI,uBAAuB,GAAG;AAClD,aAAK,gCAAgC,oBAAoB,KAAK,IAAI,uBAAuB;AAAA,MAC3F,WAAW,IAAI,EAAE,IAAI,0BAA0B,GAAG;AAChD,cAAM,IAAI,MAAM,6HAA6H;AAAA,MAC/I;AAAA,IACF,OAAO;AACL,2BAAqB;AACrB,UAAI,aAAa,KAAK,IAAI,kBAAkB,GAAG;AAC7C,aAAK,4BAA4B,KAAK,GAAG,aAAa,kBAAkB;AAAA,MAC1E,WAAW,aAAa,KAAK,IAAI,uBAAuB,GAAG;AACzD,aAAK,gCAAgC,KAAK,GAAG,aAAa,uBAAuB;AAAA,MACnF,OAAO;AACL,cAAM,IAAI,MAAM,qDAAqD;AAAA,MACvE;AAAA,IACF;AACA,SAAK,eAAe,mBAAmB,KAAK,EAAE;AAC9C,SAAK,cAAc,kBAAkB,KAAK,EAAE;AAC5C,SAAK,cAAc,kBAAkB,KAAK,EAAE;AAC5C,SAAK,gBAAgB,iBAAiB,KAAK,IAAI,KAAK,yBAAyB;AAAA,EAC/E;AAAA,EACA,IAAI,QAAQ;AACV,WAAO,IAAI,EAAE,QAAQ,OAAO;AAAA,EAC9B;AAAA,EACA,UAAU;AACR,QAAI,KAAK,UAAU;AACjB;AAAA,IACF;AACA,QAAI,KAAK,WAAW,MAAM;AACxB,cAAQ,KAAK,sKAAsK;AAAA,IACrL;AACA,QAAI,KAAK,iBAAiB,MAAM;AAC9B,cAAQ,KAAK,oMAAoM;AAAA,IACnN;AACA,UAAM,KAAK,KAAK;AAChB,iBAAa,IAAI,MAAM,GAAG,OAAO,CAAC;AAClC,iBAAa,IAAI,MAAM,GAAG,gBAAgB,GAAG,aAAa,IAAI,CAAC;AAC/D,iBAAa,IAAI,MAAM,GAAG,kBAAkB,KAAK,WAAW,CAAC;AAC7D,iBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,cAAc,IAAI,CAAC;AAC3D,iBAAa,IAAI,MAAM,GAAG,WAAW,GAAG,sBAAsB,IAAI,CAAC;AACnE,iBAAa,IAAI,MAAM,GAAG,aAAa,KAAK,WAAW,CAAC;AACxD,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,2BAA2B,MAAM,SAAS;AACxC,SAAK,gBAAgB;AACrB,WAAO,2BAA2B,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EAC9E;AAAA,EACA,2BAA2B,MAAM,SAAS;AACxC,SAAK,gBAAgB;AACrB,WAAO,2BAA2B,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EAC9E;AAAA,EACA,iCAAiC,MAAM,SAAS;AAC9C,SAAK,gBAAgB;AACrB,WAAO,iCAAiC,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EACpF;AAAA,EACA,yBAAyB,SAAS,QAAQ;AACxC,SAAK,gBAAgB;AACrB,6BAAyB,KAAK,IAAI,SAAS,MAAM;AAAA,EACnD;AAAA,EACA,2BAA2B,SAAS,OAAO,QAAQ,MAAM;AACvD,SAAK,gBAAgB;AACrB,+BAA2B,KAAK,IAAI,SAAS,OAAO,QAAQ,MAAM,KAAK,aAAa;AAAA,EACtF;AAAA,EACA,iCAAiC,MAAM,SAAS;AAC9C,SAAK,gBAAgB;AACrB,WAAO,iCAAiC,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EACpF;AAAA,EACA,0BAA0B,MAAM,SAAS;AACvC,SAAK,gBAAgB;AACrB,WAAO,0BAA0B,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AAAA,EAC7E;AAAA,EACA,oBAAoB,SAAS;AAC3B,SAAK,gBAAgB;AACrB,QAAI,KAAK,kBAAkB,SAAS;AAClC,wCAAkC,KAAK,IAAI,KAAK,WAAW;AAC3D,WAAK,gBAAgB;AAAA,IACvB;AACA,iBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,cAAc,OAAO,CAAC;AAAA,EAC5D;AAAA,EACA,gDAAgD,SAAS,MAAM,SAAS;AACtE,WAAO,KAAK,qBAAqB,SAAS,MAAM,gDAAgD,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa,CAAC;AAAA,EAC7I;AAAA,EACA,+BAA+B,SAAS,OAAO,MAAM,SAAS,cAAc,cAAc;AACxF,WAAO,+BAA+B,KAAK,IAAI,SAAS,OAAO,MAAM,SAAS,cAAc,cAAc,KAAK,aAAa;AAAA,EAC9H;AAAA,EACA,gCAAgC,SAASA,OAAM;AAC7C,WAAO,gCAAgC,KAAK,IAAI,SAASA,KAAI;AAAA,EAC/D;AAAA,EACA,wBAAwB,SAAS,MAAM,SAAS;AAC9C,SAAK,yBAAyB,OAAO;AACrC,UAAM,SAAS,8BAA8B,KAAK,IAAI,MAAM,SAAS,KAAK,aAAa;AACvF,SAAK,2BAA2B;AAChC,WAAO;AAAA,EACT;AAAA,EACA,wBAAwB;AACtB,UAAM,eAAe,KAAK,YAAY,KAAK,EAAE;AAC7C,WAAO,KAAK,UAAU,YAAY;AAAA,EACpC;AAAA,EACA,YAAY,IAAI;AACd,QAAI;AACJ,QAAI;AACJ,QAAI,IAAI,EAAE,QAAQ,yBAAyB,GAAG;AAC5C,YAAM,MAAM;AACZ,YAAM,OAAO,IAAI,UAAU,IAAI,4BAA4B,CAAC;AAC5D,SAAG,MAAM;AACT,sBAAgB,MAAM;AACpB,cAAM,SAAS,IAAI,eAAe,MAAM,GAAG,CAAC;AAC5C,eAAO,WAAW,IAAI,oBAAoB,WAAW,IAAI;AAAA,MAC3D;AACA,cAAQ;AAAA,IACV,WAAW,IAAI,EAAE,UAAU,8CAA8C,IAAI,GAAG;AAC9E,cAAQ,KAAK,WAAW;AACxB,WAAK,SAAS;AACd,sBAAgB,MAAM,KAAK,iBAAiB,OAAO,IAAI,EAAE,UAAU,8CAA8C,CAAC;AAAA,IACpH,OAAO;AACL,sBAAgB,MAAM;AAAA,IACxB;AACA,WAAO,EAAE,OAAO,cAAc;AAAA,EAChC;AAAA,EACA,gCAAgC,SAAS,cAAc,cAAc;AACnE,WAAO,KAAK,qBAAqB,SAAS,MAAM,sCAAsC,KAAK,IAAI,cAAc,YAAY,CAAC;AAAA,EAC5H;AAAA,EACA,cAAc,gBAAgB;AAC5B,SAAK,gBAAgB;AACrB,UAAM,KAAK,KAAK;AAChB,QAAI,KAAK,gBAAgB,MAAM;AAC7B,WAAK,eAAe,oBAAoB,EAAE;AAAA,IAC5C;AACA,UAAM,UAAU,cAAc,EAAE;AAChC,iBAAa,IAAI,MAAM,GAAG,aAAa,SAAS,KAAK,YAAY,CAAC;AAClE,iBAAa,IAAI,MAAM,GAAG,aAAa,SAAS,cAAc,CAAC;AAC/D,gBAAY,IAAI,OAAO;AACvB,QAAI,KAAK,OAAO;AACd,sBAAgB,IAAI,OAAO;AAAA,IAC7B;AACA,QAAI,CAAC,KAAK,qBAAqB;AAC7B,WAAK,WAAW,OAAO;AACvB,WAAK,sBAAsB,kCAAkC,IAAI,KAAK,SAAS,KAAK,YAAY;AAAA,IAClG;AACA,WAAO;AAAA,EACT;AAAA,EACA,cAAc,SAAS;AACrB,SAAK,gBAAgB;AACrB,QAAI,YAAY,KAAK,SAAS;AAC5B,WAAK,UAAU;AAAA,IACjB;AACA,QAAI,WAAW,MAAM;AACnB,mBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,cAAc,OAAO,CAAC;AAAA,IAC5D;AAAA,EACF;AAAA,EACA,WAAW,SAAS;AAClB,SAAK,gBAAgB;AACrB,SAAK,UAAU;AACf,QAAI,KAAK,WAAW,QAAQ,KAAK,OAAO;AACtC,sBAAgB,KAAK,IAAI,KAAK,OAAO;AAAA,IACvC;AACA,iBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,WAAW,OAAO,CAAC;AAAA,EACzD;AAAA,EACA,mBAAmB,SAAS,aAAa,cAAc,MAAM;AAC3D,SAAK,gBAAgB;AACrB,QAAI,aAAa;AACf,aAAO,iCAAiC,KAAK,IAAI,SAAS,WAAW;AAAA,IACvE,OAAO;AACL,aAAO,0BAA0B,KAAK,IAAI,SAAS,WAAW;AAAA,IAChE;AAAA,EACF;AAAA,EACA,qBAAqB,SAAS,WAAW;AACvC,SAAK,gBAAgB;AACrB,WAAO,aAAa,KAAK,IAAI,MAAM,KAAK,GAAG,kBAAkB,SAAS,SAAS,CAAC;AAAA,EAClF;AAAA,EACA,0BAA0B,SAAS,aAAa;AAC9C,SAAK,gBAAgB;AACrB,WAAO,KAAK,GAAG,mBAAmB,SAAS,WAAW;AAAA,EACxD;AAAA,EACA,sBAAsB,oBAAoB,iBAAiB,aAAa;AACtE,SAAK,gBAAgB;AACrB,SAAK,iBAAiB;AACtB,uCAAmC,KAAK,IAAI,oBAAoB,iBAAiB,WAAW;AAAA,EAC9F;AAAA,EACA,uBAAuB,qBAAqB,MAAM,SAAS;AACzD,SAAK,6BAA6B,qBAAqB,SAAS,IAAI;AAAA,EACtE;AAAA,EACA,6BAA6B,2BAA2B,MAAM,SAAS;AACrE,SAAK,gBAAgB;AACrB,UAAM,CAAC,OAAO,MAAM,IAAI,uCAAuC,MAAM,OAAO;AAC5E,SAAK,6BAA6B,2BAA2B,OAAO,MAAM;AAAA,EAC5E;AAAA,EACA,2BAA2B,UAAU,SAAS,aAAa,YAAY;AACrE,SAAK,iCAAiC,aAAa,UAAU,YAAY,OAAO;AAAA,EAClF;AAAA,EACA,iCAAiC,UAAU,SAAS,aAAa,YAAY;AAC3E,UAAM,IAAI,MAAM,mDAAmD;AAAA,EACrE;AAAA,EACA,gBAAgB;AACd,QAAI,KAAK,WAAW,MAAM;AACxB,sBAAgB,KAAK,IAAI,KAAK,OAAO;AAAA,IACvC;AACA,wBAAoB,KAAK,EAAE;AAAA,EAC7B;AAAA,EACA,iBAAiB;AACf,SAAK,gBAAgB;AACrB,SAAK,iBAAiB;AACtB,UAAM,KAAK,KAAK;AAChB,QAAI,KAAK,OAAO;AACd,WAAK,cAAc;AAAA,IACrB;AACA,iBAAa,IAAI,MAAM,GAAG,aAAa,GAAG,WAAW,GAAG,GAAG,gBAAgB,CAAC,CAAC;AAAA,EAC/E;AAAA,EACA,iCAAiC;AAC/B,SAAK,gBAAgB;AACrB,iBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,OAAO,CAAC;AAAA,EAC9C;AAAA,EACA,yBAAyB;AACvB,QAAI,KAAK,+BAA+B,MAAM;AAC5C,WAAK,8BAA8B,oBAAoB,KAAK,IAAI,IAAI,EAAE,UAAU,8CAA8C,MAAM,IAAI,oCAAoC,0BAA0B;AAAA,IACxM;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,+BAA+B;AAC7B,WAAO,KAAK,uBAAuB;AAAA,EACrC;AAAA,EACA,+BAA+B;AAC7B,WAAO,KAAK,uBAAuB;AAAA,EACrC;AAAA,EACA,aAAa;AACX,QAAI,IAAI,EAAE,UAAU,8CAA8C,MAAM,GAAG;AACzE,YAAM,MAAM,KAAK;AACjB,YAAM,OAAO,KAAK,6BAA6B;AAC/C,YAAM,SAAS,IAAI,YAAY;AAC/B,UAAI,WAAW,KAAK,kBAAkB,MAAM;AAC5C,aAAO;AAAA,IACT;AACA,UAAM,MAAM,KAAK,6BAA6B;AAC9C,UAAM,QAAQ,IAAI,eAAe;AACjC,QAAI,cAAc,IAAI,kBAAkB,KAAK;AAC7C,WAAO;AAAA,EACT;AAAA,EACA,WAAW;AACT,QAAI,IAAI,EAAE,UAAU,8CAA8C,MAAM,GAAG;AACzE,YAAM,MAAM,KAAK;AACjB,YAAM,OAAO,KAAK,6BAA6B;AAC/C,UAAI,SAAS,KAAK,gBAAgB;AAClC;AAAA,IACF;AACA,UAAM,MAAM,KAAK,6BAA6B;AAC9C,QAAI,YAAY,IAAI,gBAAgB;AAAA,EACtC;AAAA,EACA,MAAM,uBAAuB,OAAO;AAClC,UAAM,aAAa,YAAY,MAAM,KAAK,YAAY,KAAK,iBAAiB,OAAO,IAAI,EAAE,UAAU,8CAA8C,CAAC,CAAC;AACnJ,WAAO,KAAK,aAAa,OAAO,IAAI,EAAE,UAAU,8CAA8C,CAAC;AAAA,EACjG;AAAA,EACA,aAAa,OAAO,mBAAmB;AACrC,QAAI,sBAAsB,GAAG;AAC3B,aAAO;AAAA,IACT;AACA,QAAI,sBAAsB,GAAG;AAC3B,YAAM,MAAM,KAAK;AACjB,YAAM,mBAAmB,IAAI,kBAAkB,OAAO,IAAI,YAAY;AACtE,aAAO,mBAAmB;AAAA,IAC5B,OAAO;AACL,YAAM,MAAM,KAAK,6BAA6B;AAC9C,YAAM,mBAAmB,IAAI,kBAAkB,OAAO,IAAI,gBAAgB;AAC1E,aAAO,mBAAmB;AAAA,IAC5B;AAAA,EACF;AAAA,EACA,iBAAiB,OAAO,mBAAmB;AACzC,QAAI,sBAAsB,GAAG;AAC3B,aAAO;AAAA,IACT;AACA,QAAI,sBAAsB,GAAG;AAC3B,YAAM,MAAM,KAAK;AACjB,YAAM,MAAM,KAAK,6BAA6B;AAC9C,YAAM,YAAY,IAAI,kBAAkB,OAAO,IAAI,sBAAsB;AACzE,UAAI,KAAK,YAAY,MAAM;AACzB,aAAK,WAAW,KAAK,GAAG,aAAa,IAAI,gBAAgB;AAAA,MAC3D;AACA,aAAO,aAAa,CAAC,KAAK;AAAA,IAC5B,OAAO;AACL,YAAM,MAAM,KAAK,6BAA6B;AAC9C,YAAM,YAAY,IAAI,kBAAkB,OAAO,IAAI,0BAA0B;AAC7E,UAAI,KAAK,YAAY,MAAM;AACzB,aAAK,WAAW,KAAK,GAAG,aAAa,IAAI,gBAAgB;AAAA,MAC3D;AACA,aAAO,aAAa,CAAC,KAAK;AAAA,IAC5B;AAAA,EACF;AAAA,EACA,UAAU,cAAc;AACtB,WAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,WAAK,cAAc,MAAM,aAAa,cAAc,GAAG,MAAM,QAAQ,CAAC;AAAA,IACxE,CAAC;AAAA,EACH;AAAA,EACA,YAAY;AACV,UAAMU,SAAQ,qBAAqB,KAAK,YAAY,IAAI,CAAC,MAAM,EAAE,QAAQ,CAAC;AAC1E,aAAS,KAAK,GAAG,MAAMA,QAAO,EAAE,IAAI;AAClC,YAAM,EAAE,UAAU,IAAI,KAAK,YAAY;AACvC,gBAAU;AAAA,IACZ;AACA,SAAK,cAAc,KAAK,YAAY,MAAMA,SAAQ,CAAC;AAAA,EACrD;AAAA,EACA,cAAc,UAAU,WAAW;AACjC,SAAK,YAAY,KAAK,EAAE,UAAU,UAAU,CAAC;AAC7C,QAAI,KAAK,YAAY,SAAS,GAAG;AAC/B;AAAA,IACF;AACA,iBAAa,YAAY,MAAM;AAC7B,WAAK,UAAU;AACf,aAAO,KAAK,YAAY,WAAW;AAAA,IACrC,CAAC;AAAA,EACH;AAAA,EACA,yBAAyB,SAAS;AAChC,SAAK,gBAAgB;AACrB,kCAA8B,KAAK,IAAI,SAAS,KAAK,WAAW;AAChE,QAAI,KAAK,OAAO;AACd,0BAAoB,KAAK,EAAE;AAAA,IAC7B;AAAA,EACF;AAAA,EACA,6BAA6B;AAC3B,QAAI,KAAK,iBAAiB,MAAM;AAC9B,oCAA8B,KAAK,IAAI,KAAK,eAAe,KAAK,WAAW;AAC3E,UAAI,KAAK,OAAO;AACd,4BAAoB,KAAK,EAAE;AAAA,MAC7B;AAAA,IACF,OAAO;AACL,wCAAkC,KAAK,IAAI,KAAK,WAAW;AAAA,IAC7D;AAAA,EACF;AAAA,EACA,qBAAqB,SAAS,mBAAmB;AAC/C,SAAK,yBAAyB,OAAO;AACrC,UAAM,SAAS,kBAAkB;AACjC,SAAK,2BAA2B;AAChC,WAAO;AAAA,EACT;AAAA,EACA,6BAA6B,gCAAgC,OAAO,QAAQ;AAC1E,SAAK,gBAAgB;AACrB,UAAM,KAAK,KAAK;AAChB,kCAA8B,IAAI,gCAAgC,KAAK,WAAW;AAClF,QAAI,KAAK,OAAO;AACd,0BAAoB,EAAE;AAAA,IACxB;AACA,SAAK,gBAAgB;AACrB,iBAAa,IAAI,MAAM,GAAG,SAAS,GAAG,GAAG,OAAO,MAAM,CAAC;AACvD,iBAAa,IAAI,MAAM,GAAG,QAAQ,GAAG,GAAG,OAAO,MAAM,CAAC;AAAA,EACxD;AAAA,EACA,iCAAiC,GAAG,GAAG,OAAO,QAAQ;AACpD,SAAK,gBAAgB;AACrB,iBAAa,KAAK,IAAI,MAAM,KAAK,GAAG,QAAQ,GAAG,GAAG,OAAO,MAAM,CAAC;AAAA,EAClE;AAAA,EACA,kBAAkB;AAChB,QAAI,KAAK,UAAU;AACjB,YAAM,IAAI,MAAM,yCAAyC;AAAA,IAC3D;AAAA,EACF;AAAA,EACA,mBAAmB;AACjB,QAAI,KAAK,WAAW,MAAM;AACxB,YAAM,IAAI,MAAM,kCAAkC;AAAA,IACpD;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,KAAK;AACjC,MAAI,KAAK;AACT,SAAO,KAAK,IAAI,QAAQ,EAAE,IAAI;AAC5B,UAAM,SAAS,IAAI,IAAI;AACvB,QAAI,CAAC,QAAQ;AACX;AAAA,IACF;AAAA,EACF;AACA,SAAO,KAAK;AACd;AAGA,IAAI,EAAE,SAAS,YAAY,cAAc,iBAAiB,oBAAoB,uBAAuB,UAAU,aAAa,UAAU,aAAa,YAAY,eAAe,WAAW,cAAc,SAAS,YAAY,WAAW,cAAc,WAAW,cAAc,cAAc,iBAAiB,cAAc,iBAAiB,aAAa,gBAAgB,kBAAkB,qBAAqB,UAAU,aAAa,eAAe,kBAAkB,cAAc,iBAAiB,SAAS,YAAY,SAAS,YAAY,aAAa,gBAAgB,aAAa,gBAAgB,cAAc,iBAAiB,SAAS,YAAY,cAAc,iBAAiB,UAAU,aAAa,0BAA0B,6BAA6B,WAAW,cAAc,WAAW,cAAc,aAAa,gBAAgB,aAAa,gBAAgB,eAAe,kBAAkB,WAAW,cAAc,yBAAyB,4BAA4B,mBAAmB,sBAAsB,4BAA4B,+BAA+B,UAAU,aAAa,kBAAkB,qBAAqB,kBAAkB,qBAAqB,iBAAiB,oBAAoB,4BAA4B,+BAA+B,SAAS,YAAY,UAAU,aAAa,UAAU,aAAa,eAAe,kBAAkB,YAAY,cAAc,IAAI;AAGl3C,SAAS,eAAe,MAAM,MAAM;AAClC,SAAO,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,EAAE,MAAM,GAAG,IAAI,EAAE,IAAI,CAAC,MAAM,GAAG,QAAQ,GAAG;AAChF;AACA,SAAS,YAAY,MAAM,MAAM;AAC/B,MAAI,SAAS,GAAG;AACd,WAAO,CAAC,IAAI;AAAA,EACd;AACA,SAAO,eAAe,MAAM,IAAI;AAClC;AACA,SAAS,gBAAgB,MAAM,MAAM;AACnC,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT;AACA,MAAI,UAAU;AACd,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,eAAW,KAAK;AAChB,QAAI,KAAK,OAAO,GAAG;AACjB,iBAAW;AAAA,IACb;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,QAAI,KAAK,SAAS,GAAG;AACnB,WAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,IAKlB,OAAO;AACL,YAAM,WAAW,YAAY,MAAM,KAAK,IAAI;AAC5C,YAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,YAAM,uBAAuB,KAAK,wBAAwB,QAAQ;AAClE,YAAM,UAAU,KAAK,SAAS,QAAQ;AACtC,YAAM,SAAS,KAAK,UAAU,QAAQ;AACtC,WAAK,WAAW;AAAA;AAAA,YAEV;AAAA;AAAA,eAEG;AAAA;AAAA;AAAA,cAGD;AAAA;AAAA,6BAEe;AAAA;AAAA;AAAA;AAAA,IAIzB;AAAA,EACF;AAAA,EACA,mBAAmB,MAAM;AACvB,UAAM,UAAU,CAAC;AACjB,aAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,eAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,YAAI,QAAQ,GAAG,QAAQ,IAAI,MAAM,UAAU,QAAQ,IAAI,MAAM;AAC7D,iBAAS,IAAI,GAAG,IAAI,KAAK,MAAM,KAAK;AAClC,kBAAQ,GAAG,KAAK,KAAK,SAAS,IAAI,QAAQ;AAAA,QAC5C;AACA,gBAAQ,KAAK,KAAK;AAAA,MACpB;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,wBAAwB,MAAM;AAC5B,QAAI,KAAK,SAAS,GAAG;AACnB,aAAO,QAAQ,KAAK,sBAAsB,aAAa,KAAK,YAAY;AAAA,IAC1E;AACA,QAAI,OAAO;AACX,aAAS,KAAK,KAAK,OAAO,GAAG,KAAK,KAAK,MAAM,MAAM;AACjD,cAAQ,GAAG,KAAK,UAAU,KAAK,sBAAsB,YAAY,QAAQ,KAAK,YAAY;AAC1F,UAAI,KAAK,KAAK,OAAO,GAAG;AACtB,gBAAQ;AAAA,MACV;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA,EACA,SAAS,MAAM;AACb,QAAI,KAAK,SAAS,GAAG;AACnB,aAAO;AAAA,IACT;AACA,UAAM,YAAY,KAAK,MAAM,EAAE;AAC/B,UAAM,MAAM,KAAK,sBAAsB,YAAY,KAAK,cAAc,KAAK,YAAY,KAAK,OAAO;AACnG,UAAM,MAAM,KAAK,sBAAsB,YAAY,KAAK,cAAc,KAAK,YAAY,KAAK,OAAO;AACnG,WAAO;AAAA,gBACK,UAAU;AAAA,gBACV,UAAU;AAAA;AAAA;AAAA;AAAA,4BAIE;AAAA,4BACA;AAAA;AAAA,EAE1B;AAAA,EACA,UAAU,MAAM;AACd,UAAM,eAAe,KAAK,mBAAmB,IAAI;AACjD,QAAI,KAAK,SAAS,GAAG;AACnB,YAAM,WAAW,KAAK,sBAAsB,aAAa,KAAK,YAAY;AAC1E,aAAO,wBAAwB;AAAA,IACjC;AACA,WAAO,QAAQ,aAAa;AAAA,gCACA,aAAa;AAAA,gCACb,aAAa;AAAA,yCACJ,aAAa;AAAA,EACpD;AACF;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,aAAa,YAAY;AACnC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,cAAc,MAAM,QAAQ,CAAC;AAC5D,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,QAAI,WAAW;AACf,aAAS,KAAK,GAAG,KAAK,GAAG,MAAM;AAC7B,UAAI,SAAS;AACb,UAAI,KAAK,MAAM,GAAG;AAChB,kBAAU;AAAA,MACZ;AACA,UAAI,KAAK,GAAG;AACV,kBAAU;AAAA,MACZ;AACA,kBAAY;AAAA,UACR;AAAA,UACA,KAAK,IAAI,4CAA4C;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mBAM5C;AAAA;AAAA,UAET,KAAK,IAAI,MAAM;AAAA;AAAA,IAErB;AACA,SAAK,WAAW;AAAA,QACZ,uBAAuB,YAAY,KAAK,mBAAmB;AAAA,QAC3D,KAAK,sBAAsB,yBAAyB,IAAI,mBAAmB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,qBAQzE,KAAK,sBAAsB,gBAAgB,YAAY;AAAA,qBACvD,KAAK,sBAAsB,gBAAgB,YAAY;AAAA;AAAA,UAElE;AAAA;AAAA;AAAA;AAAA;AAAA,EAKR;AACF;AACA,SAAS,uBAAuB,OAAO,qBAAqB;AAC1D,QAAM,yBAAyB,sBAAsB,4CAA4C,CAAC,KAAK,KAAK,GAAG,GAAG,YAAY,IAAI,mCAAmC,CAAC,KAAK,KAAK,GAAG,GAAG,KAAK;AAC3L,SAAO;AAAA;AAAA,QAED;AAAA;AAAA;AAAA;AAIR;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,OAAO;AACjB,SAAK,QAAQ;AACb,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,qBAAqB;AAC1B,SAAK,gBAAgB;AACrB,SAAK,eAAe,CAAC;AACrB,SAAK,aAAa;AAClB,SAAK,eAAe,CAAC;AAAA,EACvB;AAAA,EACA,eAAe,SAAS,OAAO,UAAU;AACvC,UAAM,kBAAkB,kCAAkC,OAAO,QAAQ;AACzE,UAAM,WAAW,uBAAuB,SAAS,iBAAiB,QAAQ;AAC1E,QAAI,EAAE,YAAY,KAAK,eAAe;AACpC,WAAK,aAAa,YAAY,CAAC;AAAA,IACjC;AACA,QAAI,EAAE,YAAY,KAAK,eAAe;AACpC,WAAK,aAAa,YAAY,CAAC;AAAA,IACjC;AACA,UAAM,WAAW,aAAa,SAAS,iBAAiB,KAAK,MAAM,IAAI,KAAK,MAAM,eAAe,QAAQ;AACzG,QAAI,KAAK,aAAa,UAAU,SAAS,GAAG;AAC1C,WAAK;AACL,WAAK;AACL,WAAK,iBAAiB;AACtB,WAAK,IAAI;AACT,YAAM,cAAc,KAAK,aAAa,UAAU,MAAM;AACtD,WAAK,aAAa,UAAU,KAAK,WAAW;AAC5C,aAAO;AAAA,IACT;AACA,QAAI;AACJ,QAAI,oBAAoB,oBAAoB,oBAAoB;AAC9D,mBAAa,KAAK,MAAM,0BAA0B,QAAQ,IAAI,QAAQ,EAAE;AAAA,IAC1E,WAAW,oBAAoB,oBAAoB,oBAAoB;AACrE,mBAAa,KAAK,MAAM,iCAAiC,QAAQ,IAAI,QAAQ,EAAE;AAAA,IACjF,WAAW,oBAAoB,oBAAoB,kBAAkB;AACnE,mBAAa,KAAK,MAAM,2BAA2B,QAAQ,IAAI,QAAQ,EAAE;AAAA,IAC3E,WAAW,oBAAoB,oBAAoB,kBAAkB;AACnE,mBAAa,KAAK,MAAM,2BAA2B,QAAQ,IAAI,QAAQ,EAAE;AAAA,IAC3E,WAAW,oBAAoB,oBAAoB,0BAA0B;AAC3E,mBAAa,KAAK,MAAM,iCAAiC,QAAQ,IAAI,QAAQ,EAAE;AAAA,IACjF;AACA,SAAK,aAAa,UAAU,KAAK,UAAU;AAC3C,SAAK;AACL,SAAK,sBAAsB;AAC3B,SAAK,IAAI;AACT,WAAO;AAAA,EACT;AAAA,EACA,eAAe,SAAS,OAAO,gBAAgB,UAAU;AACvD,QAAI,KAAK,gBAAgB,MAAM;AAC7B;AAAA,IACF;AACA,UAAM,kBAAkB,kCAAkC,gBAAgB,QAAQ;AAClF,UAAM,WAAW,uBAAuB,OAAO,iBAAiB,QAAQ;AACxE,QAAI,EAAE,YAAY,KAAK,eAAe;AACpC,WAAK,aAAa,YAAY,CAAC;AAAA,IACjC;AACA,UAAM,WAAW,aAAa,OAAO,iBAAiB,KAAK,MAAM,IAAI,KAAK,MAAM,eAAe,QAAQ;AACvG,UAAM,qBAAqB,IAAI,EAAE,IAAI,gCAAgC;AACrE,QAAI,uBAAuB,MAAM,KAAK,qBAAqB,oBAAoB;AAC7E,WAAK,MAAM,oBAAoB,QAAQ,OAAO;AAC9C,WAAK,sBAAsB;AAAA,IAC7B,OAAO;AACL,WAAK,aAAa,UAAU,KAAK,OAAO;AACxC,WAAK;AACL,WAAK,iBAAiB;AAAA,IACxB;AACA,SAAK;AACL,UAAM,UAAU,KAAK,aAAa;AAClC,UAAM,WAAW,QAAQ,QAAQ,OAAO;AACxC,QAAI,WAAW,GAAG;AAChB,YAAM,IAAI,MAAM,0EAA0E;AAAA,IAC5F;AACA,YAAQ,OAAO,UAAU,CAAC;AAC1B,SAAK,IAAI;AAAA,EACX;AAAA,EACA,MAAM;AACJ,QAAI,CAAC,KAAK,YAAY;AACpB;AAAA,IACF;AACA,UAAM,QAAQ,KAAK,kBAAkB,KAAK;AAC1C,YAAQ,IAAI,aAAa,GAAG,KAAK,qBAAqB,KAAK,mBAAmB,IAAI,QAAQ;AAC1F,UAAM,YAAY,KAAK,gBAAgB,KAAK;AAC5C,YAAQ,IAAI,oBAAoB,KAAK,oBAAoB;AACzD,YAAQ,IAAI,iBAAiB,KAAK,kBAAkB,KAAK,MAAM,MAAM,SAAS,KAAK;AAAA,EACrF;AAAA,EACA,IAAI,oBAAoB;AACtB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,IAAI,eAAe;AACjB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,qBAAqB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,qBAAqB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,QAAI,KAAK,gBAAgB,MAAM;AAC7B;AAAA,IACF;AACA,eAAW,YAAY,KAAK,cAAc;AACxC,WAAK,aAAa,UAAU,QAAQ,CAAC,QAAQ;AAC3C,aAAK,MAAM,oBAAoB,IAAI,OAAO;AAAA,MAC5C,CAAC;AAAA,IACH;AACA,eAAW,YAAY,KAAK,cAAc;AACxC,WAAK,aAAa,UAAU,QAAQ,CAAC,QAAQ;AAC3C,aAAK,MAAM,oBAAoB,IAAI,OAAO;AAAA,MAC5C,CAAC;AAAA,IACH;AACA,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,qBAAqB;AAC1B,SAAK,gBAAgB;AAAA,EACvB;AACF;AACA,SAAS,0BAA0B,IAAI,gBAAgB;AACrD,QAAM,QAAQ;AACd,MAAI,mBAAmB,MAAM,MAAM;AACjC,WAAO;AAAA,EACT,WAAW,mBAAmB,MAAM,MAAM;AACxC,WAAO;AAAA,EACT,WAAW,mBAAmB,MAAM,SAAS;AAC3C,WAAO;AAAA,EACT,WAAW,mBAAmB,GAAG,MAAM;AACrC,WAAO;AAAA,EACT,WAAW,mBAAmB,MAAM,SAAS;AAC3C,WAAO;AAAA,EACT,WAAW,mBAAmB,MAAM,OAAO;AACzC,WAAO;AAAA,EACT;AACA,QAAM,IAAI,MAAM,2BAA2B,gBAAgB;AAC7D;AACA,SAAS,aAAa,OAAO,iBAAiB,IAAI,eAAe,UAAU;AACzE,QAAM,iBAAiB,iCAAiC,iBAAiB,aAAa;AACtF,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,CAAC,aAAa,YAAY,IAAI,uCAAuC,MAAM,IAAI,MAAM,EAAE;AAC7F,kBAAc,cAAc;AAAA,EAC9B,OAAO;AACL,UAAM,CAAC,OAAO,MAAM,IAAI,yCAAyC,MAAM,IAAI,MAAM,EAAE;AACnF,kBAAc,QAAQ;AAAA,EACxB;AACA,QAAM,mBAAmB,0BAA0B,IAAI,cAAc;AACrE,SAAO,cAAc;AACvB;AACA,SAAS,iCAAiC,iBAAiB,eAAe;AACxE,UAAQ;AAAA,SACD,oBAAoB;AACvB,aAAO,wCAAwC,aAAa;AAAA,SACzD,oBAAoB;AACvB,aAAO,+CAA+C,aAAa;AAAA,SAChE,oBAAoB;AACvB,aAAO,yCAAyC,aAAa;AAAA,SAC1D,oBAAoB;AACvB,aAAO,yCAAyC,aAAa;AAAA,SAC1D,oBAAoB;AACvB,aAAO,+CAA+C,aAAa;AAAA;AAEnE,YAAM,IAAI,MAAM,iCAAiC,iBAAiB;AAAA;AAExE;AACA,SAAS,+BAA+B,UAAU;AAChD,MAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,QAAI,UAAU;AACZ,aAAO,oBAAoB;AAAA,IAC7B;AACA,WAAO,oBAAoB;AAAA,EAC7B;AACA,MAAI,UAAU;AACZ,WAAO,oBAAoB;AAAA,EAC7B;AACA,SAAO,oBAAoB;AAC7B;AACA,SAAS,kCAAkC,gBAAgB,UAAU;AACnE,MAAI,mBAAmB,aAAa,QAAQ;AAC1C,WAAO,oBAAoB;AAAA,EAC7B,WAAW,mBAAmB,aAAa,UAAU,kBAAkB,MAAM;AAC3E,WAAO,+BAA+B,QAAQ;AAAA,EAChD,WAAW,mBAAmB,aAAa,YAAY,mBAAmB,aAAa,QAAQ;AAC7F,WAAO,oBAAoB;AAAA,EAC7B;AACA,QAAM,IAAI,MAAM,gCAAgC,gBAAgB;AAClE;AACA,SAAS,uBAAuB,cAAc,iBAAiB,UAAU;AACvE,SAAO,GAAG,aAAa,MAAM,aAAa,MAAM,mBAAmB;AACrE;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,QAAQ,WAAW;AAC7B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUR;AACF;AACA,IAAI,oBAAoB;AACxB,IAAI,SAAS;AACb,IAAI,MAAM;AACV,IAAI,OAAO;AACX,IAAI,OAAO,oBAAoB;AAAA;AAAA;AAG/B,IAAI,QAAQ,oBAAoB;AAAA;AAAA;AAGhC,IAAI,QAAQ;AACZ,IAAI,UAAU;AAGd,IAAI,UAAU;AACd,IAAI,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUX,IAAI,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWZ,IAAI,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWb,IAAI,WAAW;AACf,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,QAAQ,WAAW;AAC7B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUR;AACF;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,OAAO,YAAY;AACzB,UAAM,WAAW,YAAY,MAAM,IAAI;AACvC,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,eAAe,gBAAgB,MAAM,QAAQ;AACnD,UAAM,YAAY,SAAS,MAAM,EAAE;AACnC,UAAM,UAAU,QAAQ,IAAI,OAAO,QAAQ,UAAU,KAAK,GAAG;AAC7D,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,kCACwB;AAAA;AAAA,4CAEU;AAAA;AAAA;AAAA,EAG1C;AACF;AAGA,IAAI,aAAa,qBAAqB;AACtC,IAAI,mBAAmB;AACvB,IAAI,mBAAmB;AACvB,IAAI,eAAe,CAAC;AACpB,SAAS,eAAe,cAAc;AACpC,MAAI,gBAAgB,cAAc;AAChC,WAAO,aAAa;AAAA,EACtB;AACA,eAAa,gBAAgB,CAAC;AAC9B,SAAO,aAAa;AACtB;AACA,IAAI,6BAA6B,IAAI,EAAE,UAAU,4BAA4B;AAC7E,IAAI,yBAAyB;AAC7B,SAAS,qBAAqB;AAC5B,MAAI,IAAI,EAAE,OAAO,UAAU,MAAM;AAC/B,WAAO;AAAA,EACT;AACA,SAAO,IAAI,EAAE,OAAO,OAAO,SAAS,IAAI,EAAE,OAAO,OAAO,QAAQ,OAAO,mBAAmB,yBAAyB,OAAO;AAC5H;AACA,IAAI,mBAAmB,cAAc,cAAc;AAAA,EACjD,YAAY,aAAa;AACvB,UAAM;AACN,SAAK,cAA8B,oBAAI,QAAQ;AAC/C,SAAK,kBAAkC,oBAAI,QAAQ;AACnD,SAAK,eAA+B,oBAAI,QAAQ;AAChD,SAAK,gBAAgB;AACrB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AACtB,SAAK,kBAAkB;AACvB,SAAK,oBAAoB;AACzB,SAAK,iBAAiB;AACtB,SAAK,WAAW;AAChB,QAAI,CAAC,IAAI,EAAE,QAAQ,WAAW,GAAG;AAC/B,YAAM,IAAI,MAAM,uCAAuC;AAAA,IACzD;AACA,QAAI;AACJ,QAAI,eAAe,MAAM;AACvB,UAAI,uBAAuB,cAAc;AACvC,mBAAW;AAAA,MACb,OAAO;AACL,cAAM,KAAK,gBAAgB,IAAI,EAAE,UAAU,eAAe,GAAG,WAAW;AACxE,mBAAW,IAAI,aAAa,EAAE;AAAA,MAChC;AACA,WAAK,cAAc,CAAC;AACpB,WAAK,sBAAsB;AAAA,IAC7B,OAAO;AACL,YAAM,KAAK,gBAAgB,IAAI,EAAE,UAAU,eAAe,CAAC;AAC3D,iBAAW,IAAI,aAAa,EAAE;AAC9B,WAAK,cAAc,eAAe,IAAI,EAAE,UAAU,eAAe,CAAC;AAClE,WAAK,sBAAsB;AAAA,IAC7B;AACA,SAAK,QAAQ;AACb,SAAK,SAAS,KAAK,MAAM,GAAG;AAC5B,SAAK,iBAAiB,IAAI,eAAe,KAAK,KAAK;AACnD,SAAK,qBAAqB,mBAAmB;AAC7C,SAAK,UAAU,IAAI,YAAY,MAAM,OAAO,CAAC;AAAA,EAC/C;AAAA,EACA,aAAa;AACX,WAAO,iBAAiB;AAAA,EAC1B;AAAA,EACA,aAAa;AACX,WAAO,KAAK,QAAQ,WAAW,IAAI,KAAK;AAAA,EAC1C;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,QAAI,IAAI,EAAE,QAAQ,gCAAgC,KAAK,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC7E,WAAK,uBAAuB,MAAM;AAAA,IACpC;AACA,QAAI,UAAU,eAAe,UAAU,MAAM;AAC3C,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF;AACA,UAAM,SAAS,EAAE,IAAI,KAAK,WAAW,EAAE;AACvC,SAAK,QAAQ,IAAI,QAAQ,EAAE,OAAO,OAAO,QAAQ,OAAO,aAAa,QAAQ,UAAU,EAAE,CAAC;AAC1F,WAAO;AAAA,EACT;AAAA,EACA,SAAS,QAAQ;AACf,QAAI,KAAK,QAAQ,IAAI,MAAM,GAAG;AAC5B,YAAM,aAAa,KAAK,QAAQ,IAAI,MAAM;AAC1C,aAAO,WAAW;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ;AACb,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,YAAQ;AAAA,EACV;AAAA,EACA,OAAO,QAAQ;AACb,QAAI,KAAK,QAAQ,IAAI,MAAM,GAAG;AAC5B,YAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,cAAQ;AAAA,IACV;AAAA,EACF;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,QAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,WAAK,uBAAuB,MAAM;AAAA,IACpC;AACA,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF;AACA,SAAK,QAAQ,IAAI,QAAQ,EAAE,OAAO,OAAO,QAAQ,OAAO,aAAa,QAAQ,SAAS,CAAC;AAAA,EACzF;AAAA,EACA,8BAA8B,YAAY;AACxC,SAAK,YAAY,WAAW,MAAM;AAAA,EACpC;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,QAAQ,OAAO,oBAAoB,OAAO,QAAQ,OAAO,SAAS,IAAI;AAC9E,QAAI,UAAU,MAAM;AAClB,UAAI;AACJ,UAAI,UAAU;AACZ,kBAAU,IAAI,qBAAqB,OAAO,KAAK;AAAA,MACjD,OAAO;AACL,kBAAU,IAAI,eAAe,OAAO,KAAK;AAAA,MAC3C;AACA,YAAM,MAAM,KAAK,gBAAgB,SAAS,CAAC,EAAE,QAAQ,OAAO,MAAM,CAAC,GAAG,KAAK;AAC3E,YAAM,OAAO,KAAK,SAAS,IAAI,MAAM;AACrC,WAAK,8BAA8B,GAAG;AACtC,aAAO;AAAA,IACT;AACA,QAAI,UAAU,MAAM;AAClB,aAAO,KAAK,qBAAqB,MAAM;AAAA,IACzC;AACA,QAAI,UAAU,UAAU;AACtB,aAAO;AAAA,IACT;AACA,UAAM,oBAAoB,KAAK,gBAAgB;AAC/C,QAAI;AACJ,QAAI,mBAAmB;AACrB,cAAQ,aAAa,IAAI;AAAA,IAC3B;AACA,QAAI;AACJ,QAAI,UAAU,aAAa;AACzB,YAAM,aAAa,KAAK,SAAS,mBAAmB,KAAK,MAAM;AAC/D,YAAM,aAAa,KAAK,SAAS,mBAAmB,KAAK,MAAM;AAC/D,eAAS,qBAAqB,uBAAuB,YAAY,UAAU;AAAA,IAC7E,OAAO;AACL,eAAS,KAAK,qBAAqB,MAAM;AAAA,IAC3C;AACA,QAAI,mBAAmB;AACrB,WAAK,kBAAkB,aAAa,IAAI,IAAI;AAAA,IAC9C;AACA,WAAO,KAAK,qBAAqB,QAAQ,MAAM;AAAA,EACjD;AAAA,EACA,MAAM,KAAK,QAAQ;AACjB,QAAI,KAAK,YAAY,IAAI,MAAM,GAAG;AAChC,YAAM,eAAe,KAAK,YAAY,IAAI,MAAM;AAChD,aAAO,IAAI,QAAQ,CAAC,YAAY,aAAa,KAAK,OAAO,CAAC;AAAA,IAC5D;AACA,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,QAAQ,OAAO,OAAO,QAAQ,OAAO,oBAAoB,SAAS,IAAI;AAC9E,QAAI,UAAU,MAAM;AAClB,UAAI;AACJ,UAAI,UAAU;AACZ,kBAAU,IAAI,qBAAqB,OAAO,KAAK;AAAA,MACjD,OAAO;AACL,kBAAU,IAAI,eAAe,OAAO,KAAK;AAAA,MAC3C;AACA,YAAM,MAAM,KAAK,gBAAgB,SAAS,CAAC,EAAE,QAAQ,OAAO,MAAM,CAAC,GAAG,KAAK;AAC3E,YAAM,OAAO,KAAK,KAAK,IAAI,MAAM;AACjC,WAAK,8BAA8B,GAAG;AACtC,aAAO;AAAA,IACT;AACA,QAAI,UAAU,MAAM;AAClB,aAAO,KAAK,qBAAqB,MAAM;AAAA,IACzC;AACA,QAAI,IAAI,EAAE,QAAQ,OAAO,GAAG;AAC1B,UAAI,CAAC,IAAI,EAAE,QAAQ,8BAA8B,KAAK,IAAI,EAAE,UAAU,eAAe,MAAM,GAAG;AAC5F,cAAM,IAAI,MAAM,8FAA8F;AAAA,MAChH;AAAA,IACF;AACA,QAAI,UAAU;AACd,QAAI;AACJ,QAAI,UAAU,eAAe,IAAI,EAAE,IAAI,wBAAwB,GAAG;AAChE,0BAAoB,KAAK,OAAO,MAAM;AACtC,YAAM,UAAU,KAAK,QAAQ,IAAI,kBAAkB,MAAM;AACzD,gBAAU,KAAK,MAAM,wBAAwB,QAAQ,QAAQ,SAAS,GAAG,iBAAiB,KAAK,CAAC;AAAA,IAClG;AACA,SAAK,YAAY,IAAI,QAAQ,CAAC,CAAC;AAC/B,QAAI,UAAU,aAAa;AACzB,YAAM,KAAK,MAAM,sBAAsB;AAAA,IACzC;AACA,QAAI;AACJ,QAAI,UAAU,aAAa;AACzB,YAAM,KAAK,MAAM,QAAQ,IAAI;AAAA,QAC3B,KAAK,KAAK,mBAAmB,KAAK,MAAM;AAAA,QACxC,KAAK,KAAK,mBAAmB,KAAK,MAAM;AAAA,MAC1C,CAAC;AACD,YAAM,aAAa,GAAG;AACtB,YAAM,aAAa,GAAG;AACtB,aAAO,qBAAqB,uBAAuB,YAAY,UAAU;AAAA,IAC3E,WAAW,WAAW,MAAM;AAC1B,aAAO,KAAK,qBAAqB,MAAM;AAAA,IACzC,OAAO;AACL,YAAMV,QAAO,aAAa,cAAc,KAAK;AAC7C,aAAO,KAAK,MAAM,gCAAgC,SAASA,KAAI;AAAA,IACjE;AACA,QAAI,qBAAqB,MAAM;AAC7B,WAAK,8BAA8B,iBAAiB;AAAA,IACtD;AACA,QAAI,WAAW,MAAM;AACnB,YAAM,KAAK,KAAK,MAAM;AACtB,mBAAa,IAAI,MAAM,GAAG,aAAa,OAAO,CAAC;AAAA,IACjD;AACA,UAAM,YAAY,KAAK,qBAAqB,QAAQ,IAAI;AACxD,UAAM,cAAc,KAAK,YAAY,IAAI,MAAM;AAC/C,SAAK,YAAY,OAAO,MAAM;AAC9B,gBAAY,QAAQ,CAAC,YAAY,QAAQ,SAAS,CAAC;AACnD,QAAI,KAAK,gBAAgB,IAAI,MAAM,GAAG;AACpC,WAAK,gBAAgB,OAAO,MAAM;AAClC,UAAI,KAAK,YAAY,MAAM,GAAG;AAC5B,eAAO,EAAE,aAAa,QAAQ,IAAI;AAAA,MACpC;AACA,WAAK;AAAA,IACP;AACA,WAAO;AAAA,EACT;AAAA,EACA,UAAU,QAAQM,WAAU,CAAC,GAAG;AAC9B,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,QAAQ,OAAO,OAAO,QAAQ,OAAO,UAAU,QAAQ,IAAI;AACnE,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,uDAAuD;AAAA,IACzE;AACA,QAAI,UAAU,MAAM;AAClB,UAAI;AACJ,UAAI,UAAU;AACZ,kBAAU,IAAI,qBAAqB,OAAO,KAAK;AAAA,MACjD,OAAO;AACL,kBAAU,IAAI,eAAe,OAAO,KAAK;AAAA,MAC3C;AACA,YAAM,MAAM,KAAK,gBAAgB,SAAS,CAAC,EAAE,QAAQ,OAAO,MAAM,CAAC,GAAG,KAAK;AAC3E,YAAM,eAAe,KAAK,UAAU,KAAKA,QAAO;AAChD,WAAK,8BAA8B,GAAG;AACtC,aAAO;AAAA,IACT;AACA,QAAI,WAAW,MAAM;AACnB,UAAI,UAAU,MAAM;AAClB,cAAM,IAAI,MAAM,gCAAgC;AAAA,MAClD,OAAO;AACL,cAAM,IAAI,MAAM,iCAAiC;AAAA,MACnD;AAAA,IACF;AACA,UAAM,YAAY,KAAK,OAAO,QAAQA,SAAQ,cAAc;AAC5D,UAAM,YAAY,OAAO,EAAE,yBAAyB,SAAS;AAC7D,UAAM,UAAU,KAAK,QAAQ,IAAI,UAAU,MAAM;AACjD,WAAO,OAAO,OAAO,EAAE,UAAU,GAAG,QAAQ,OAAO;AAAA,EACrD;AAAA,EACA,WAAW,IAAI;AACb,UAAM,OAAO,KAAK,SAAS,GAAG,MAAM;AACpC,QAAI,GAAG,UAAU,UAAU;AACzB,UAAI;AACF,cAAM,UAAU,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AAC5D,eAAO,OAAO,GAAG,OAAO,GAAG,OAAO,OAAO;AAAA,MAC3C,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,kDAAkD;AAAA,MACpE;AAAA,IACF;AACA,WAAO,OAAO,GAAG,OAAO,GAAG,OAAO,IAAI;AAAA,EACxC;AAAA,EACA,uBAAuB,QAAQ;AAC7B,QAAI,UAAU,MAAM;AAClB;AAAA,IACF;AACA,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,YAAM,MAAM,OAAO;AACnB,UAAI,CAAC,iBAAiB,GAAG,GAAG;AAC1B,YAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,gBAAM,MAAM,aAAa,kJAAkJ;AAAA,QAC7K;AACA,cAAM,MAAM,aAAa,2CAA2C;AAAA,MACtE;AAAA,IACF;AAAA,EACF;AAAA,EACA,qBAAqB,QAAQ;AAC3B,UAAM,EAAE,OAAO,OAAO,SAAS,IAAI,KAAK,QAAQ,IAAI,MAAM;AAC1D,UAAMN,QAAO,aAAa,cAAc,KAAK;AAC7C,QAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,YAAM,YAAY,KAAK,OAAO,MAAM;AACpC,YAAM,WAAW,KAAK,QAAQ,IAAI,UAAU,MAAM;AAClD,YAAM,QAAQ,KAAK,MAAM,gCAAgC,SAAS,QAAQ,SAAS,GAAG,iBAAiB,KAAK,CAAC,EAAE,SAAS,GAAGA,KAAI;AAC/H,WAAK,8BAA8B,SAAS;AAC5C,aAAO;AAAA,IACT;AACA,UAAM,yBAAyB,IAAI,EAAE,QAAQ,YAAY,KAAK,aAAa;AAC3E,UAAM,cAAc,yBAAyB,aAAa,KAAK,IAAI;AACnE,UAAM,UAAU,yBAAyB,IAAI,yBAAyB,WAAW,IAAI,IAAI,mBAAmB,WAAW;AACvH,UAAM,SAAS,KAAK,gBAAgB,SAAS,CAAC,EAAE,OAAO,aAAa,OAAO,OAAO,CAAC,GAAG,SAAS;AAC/F,UAAM,UAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AAC9C,UAAM,OAAO,KAAK,MAAM,gDAAgD,QAAQ,QAAQ,SAAS,QAAQ,SAAS,IAAI,QAAQ,SAAS,EAAE,EAAE,SAAS,GAAGA,KAAI;AAC3J,SAAK,8BAA8B,MAAM;AACzC,WAAO;AAAA,EACT;AAAA,EACA,iBAAiB;AACf,WAAO,IAAI,EAAE,UAAU,+CAA+C,IAAI;AAAA,EAC5E;AAAA,EACA,KAAK,GAAG;AACN,UAAM,kBAAkB,KAAK;AAC7B,UAAM,kBAAkB,CAAC;AACzB,QAAI,gBAAgB;AACpB,QAAI,KAAK,sBAAsB,MAAM;AACnC,WAAK,qBAAqB;AAC1B,sBAAgB;AAAA,IAClB,OAAO;AACL,WAAK,aAAa,KAAK,eAAe;AAAA,IACxC;AACA,SAAK,eAAe;AACpB,MAAE;AACF,UAAM,8BAA8B,aAAa,QAAQ,KAAK,aAAa,IAAI,CAAC,MAAM,EAAE,KAAK,CAAC,EAAE,OAAO,CAAC,MAAM,KAAK,IAAI;AACvH,UAAM,4BAA4B,aAAa,QAAQ,KAAK,aAAa,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,EAAE,OAAO,CAAC,MAAM,KAAK,IAAI;AACpH,SAAK,eAAe;AACpB,QAAI,eAAe;AACjB,WAAK,qBAAqB;AAAA,IAC5B;AACA,UAAM,MAAM;AAAA,MACV,cAAc,KAAK;AAAA,MACnB,gBAAgB,KAAK;AAAA,MACrB,UAAU;AAAA,MACV,QAAQ;AAAA,IACV;AACA,YAAQ,YAAY;AAClB,UAAI,IAAI,EAAE,UAAU,+CAA+C,IAAI,GAAG;AACxE,cAAM,WAAW,MAAM,QAAQ,IAAI,2BAA2B;AAC9D,YAAI,cAAc,aAAa,IAAI,QAAQ;AAC3C,YAAI,yBAAyB,MAAM,SAAS,IAAI,CAAC,GAAG,QAAQ,EAAE,MAAM,0BAA0B,KAAK,IAAI,EAAE,EAAE,EAAE,IAAI,CAAC,MAAM,GAAG,EAAE,SAAS,EAAE,IAAI,EAAE,KAAK,IAAI;AAAA,MACzJ,OAAO;AACL,YAAI,cAAc;AAAA,UAChB,OAAO;AAAA,QACT;AAAA,MACF;AACA,WAAK,eAAe;AACpB,WAAK,iBAAiB;AACtB,aAAO;AAAA,IACT,GAAG;AAAA,EACL;AAAA,EACA,SAAS;AACP,WAAO;AAAA,MACL,YAAY;AAAA,MACZ,eAAe,KAAK;AAAA,MACpB,wBAAwB,KAAK,eAAe;AAAA,MAC5C,mBAAmB,KAAK,eAAe;AAAA,IACzC;AAAA,EACF;AAAA,EACA,aAAa;AACX,QAAI,IAAI,EAAE,UAAU,+CAA+C,IAAI,GAAG;AACxE,aAAO,KAAK,MAAM,WAAW;AAAA,IAC/B;AACA,WAAO,EAAE,SAAS,aAAa,IAAI,GAAG,OAAO,KAAK;AAAA,EACpD;AAAA,EACA,SAAS,OAAO;AACd,QAAI,IAAI,EAAE,UAAU,+CAA+C,IAAI,GAAG;AACxE,WAAK,MAAM,SAAS;AACpB,aAAO;AAAA,IACT;AACA,UAAM,QAAQ,aAAa,IAAI;AAC/B,WAAO;AAAA,EACT;AAAA,EACA,MAAM,aAAa,OAAO;AACxB,QAAI,IAAI,EAAE,UAAU,+CAA+C,IAAI,GAAG;AACxE,aAAO,KAAK,MAAM,uBAAuB,KAAK;AAAA,IAChD;AACA,UAAM,aAAa;AACnB,WAAO,WAAW,QAAQ,WAAW;AAAA,EACvC;AAAA,EACA,YAAY,QAAQ,QAAQ,OAAO;AACjC,QAAI,KAAK,gBAAgB,IAAI,MAAM,GAAG;AACpC,aAAO;AAAA,IACT;AACA,QAAI,CAAC,KAAK,QAAQ,IAAI,MAAM,GAAG;AAC7B,aAAO;AAAA,IACT;AACA,QAAI,OAAO;AACT,WAAK,QAAQ,IAAI,MAAM,EAAE,WAAW;AAAA,IACtC,OAAO;AACL,WAAK,QAAQ,IAAI,MAAM,EAAE;AAAA,IAC3B;AACA,QAAI,CAAC,SAAS,KAAK,QAAQ,IAAI,MAAM,EAAE,WAAW,GAAG;AACnD,aAAO;AAAA,IACT;AACA,QAAI,KAAK,YAAY,IAAI,MAAM,GAAG;AAChC,WAAK,gBAAgB,IAAI,MAAM;AAC/B,WAAK;AACL,aAAO;AAAA,IACT;AACA,SAAK,eAAe,MAAM;AAC1B,UAAM,EAAE,mBAAmB,IAAI,KAAK,QAAQ,IAAI,MAAM;AACtD,QAAI,sBAAsB,MAAM;AAC9B,WAAK,YAAY,mBAAmB,KAAK,QAAQ,KAAK;AACtD,WAAK,YAAY,mBAAmB,KAAK,QAAQ,KAAK;AAAA,IACxD;AACA,SAAK,QAAQ,OAAO,MAAM;AAC1B,WAAO;AAAA,EACT;AAAA,EACA,eAAe,QAAQ;AACrB,UAAM,EAAE,SAAS,OAAO,UAAU,OAAO,UAAU,OAAO,OAAO,IAAI,KAAK,QAAQ,IAAI,MAAM;AAC5F,UAAM,MAAM,UAAU,OAAO,cAAc;AAC3C,UAAM,WAAW,KAAK,aAAa,IAAI,GAAG;AAC1C,QAAI,WAAW,GAAG;AAChB,WAAK,aAAa,IAAI,KAAK,WAAW,CAAC;AAAA,IACzC,OAAO;AACL,WAAK,aAAa,OAAO,GAAG;AAC5B,UAAI,WAAW,MAAM;AACnB,aAAK,iBAAiB,KAAK,aAAa,UAAU,KAAK;AACvD,aAAK,eAAe,eAAe,SAAS,UAAU,OAAO,QAAQ;AAAA,MACvE;AAAA,IACF;AACA,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,YAAQ,UAAU;AAClB,YAAQ,WAAW;AACnB,YAAQ,WAAW;AACnB,YAAQ,QAAQ;AAAA,EAClB;AAAA,EACA,WAAW,QAAQ;AACjB,SAAK,YAAY,MAAM;AACvB,WAAO,KAAK,QAAQ,IAAI,MAAM,EAAE,QAAQ;AAAA,EAC1C;AAAA,EACA,YAAY,QAAQ;AAClB,WAAO,KAAK,QAAQ,IAAI,MAAM;AAAA,EAChC;AAAA,EACA,mBAAmB,QAAQ,gBAAgB,4BAA4B;AACrE,WAAO,IAAI,EAAE,QAAQ,mBAAmB,KAAK,OAAO,MAAM,CAAC,WAAW,KAAK,QAAQ,IAAI,OAAO,MAAM,EAAE,WAAW,QAAQ,aAAa,cAAc,OAAO,KAAK,IAAI,aAAa;AAAA,EACnL;AAAA,EACA,kBAAkB;AAChB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,WAAW;AACf,yBAAqB,KAAK,uEAAuE;AACjG,UAAM,WAAW,UAAU,SAAS;AACpC,WAAO,WAAW,UAAU,OAAO,QAAQ;AAAA,EAC7C;AAAA,EACA,cAAc,GAAG,KAAK,OAAO;AAC3B,UAAM,UAAU,IAAI,qBAAqB,EAAE,OAAO,GAAG;AACrD,UAAM,UAAU,KAAK,cAAc,SAAS,CAAC,CAAC,GAAG,KAAK;AACtD,WAAO,OAAO,EAAE,yBAAyB,OAAO;AAAA,EAClD;AAAA,EACA,IAAI,GAAG;AACL,QAAI,KAAK,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,aAAa;AAC3D,YAAM,YAAY,iBAAiB,KAAK,QAAQ,IAAI,EAAE,MAAM,EAAE,MAAM;AACpE,aAAO,KAAK,WAAW,EAAE,OAAO,EAAE,OAAO,SAAS;AAAA,IACpD;AACA,QAAI,IAAI,EAAE,QAAQ,6BAA6B,GAAG;AAChD,aAAO,KAAK,cAAc,GAAG,KAAK,EAAE,KAAK;AAAA,IAC3C;AACA,UAAM,UAAU,IAAI,eAAe,EAAE,OAAO,GAAG;AAC/C,UAAM,UAAU,KAAK,cAAc,SAAS,CAAC,CAAC,CAAC;AAC/C,WAAO,OAAO,EAAE,yBAAyB,OAAO;AAAA,EAClD;AAAA,EACA,eAAe,OAAO,OAAO,QAAQ;AACnC,QAAI;AACJ,QAAI,UAAU,YAAY,UAAU,QAAQ,OAAO,SAAS,KAAK,aAAa,SAAS,OAAO,EAAE,GAAG;AACjG,YAAM,gBAAgB,OAAO,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AACpE,eAAS,KAAK,MAAM,eAAe,OAAO,KAAK;AAAA,IACjD,OAAO;AACL,eAAS,KAAK,MAAM,QAAQ,OAAO,KAAK;AAAA,IAC1C;AACA,SAAK,QAAQ,IAAI,MAAM,EAAE,QAAQ;AACjC,WAAO,EAAE,QAAQ,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,WAAW,OAAO,OAAO,QAAQ;AAC/B,WAAO,OAAO,EAAE,yBAAyB,KAAK,eAAe,OAAO,OAAO,MAAM,GAAG,IAAI;AAAA,EAC1F;AAAA,EACA,aAAa,QAAQ;AACnB,UAAM,UAAU,IAAI,cAAc,OAAO,KAAK;AAC9C,WAAO,KAAK,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AAAA,EAC7D;AAAA,EACA,WAAW,QAAQ;AACjB,UAAM,UAAU,IAAI,YAAY,OAAO,KAAK;AAC5C,UAAM,8BAA8B;AACpC,WAAO,KAAK,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,MAAM,2BAA2B;AAAA,EAChG;AAAA,EACA,cAAc,QAAQ,YAAY;AAChC,UAAM,eAAe;AAAA,MACnB,YAAY,OAAO,KAAK;AAAA,MACxB,GAAG,YAAY,OAAO,KAAK;AAAA,IAC7B;AACA,UAAM,UAAU;AAAA,MACd,OAAO,OAAO;AAAA,MACd,OAAO;AAAA,MACP,QAAQ,OAAO;AAAA,IACjB;AACA,UAAM,iBAAiB;AAAA,MACrB,YAAY,UAAU;AAAA,MACtB,GAAG,YAAY,UAAU;AAAA,IAC3B;AACA,UAAM,UAAU,IAAI,qBAAqB,gBAAgB,YAAY;AACrE,UAAM,gCAAgC;AACtC,UAAM,eAAe,CAAC,YAAY;AAClC,UAAM,SAAS,KAAK,gBAAgB,SAAS,CAAC,OAAO,GAAG,OAAO,OAAO,cAAc,6BAA6B;AACjH,WAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,YAAY,OAAO,OAAO,MAAM;AAAA,EACzE;AAAA,EACA,OAAO,QAAQ,gBAAgB;AAC7B,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,UAAU,OAAO,MAAM,IAAI;AACnC,QAAI,kBAAkB,MAAM;AAC1B,YAAMA,QAAO,aAAa,cAAc,KAAK;AAC7C,YAAM,UAAU,eAAe,KAAK,eAAe,KAAK;AACxD,mBAAa,OAAOA,SAAQ,SAAS,MAAM,2GAA2G;AAAA,IACxJ;AACA,UAAM,YAAY,aAAa,KAAK;AACpC,QAAI;AACJ,QAAI,UAAU;AACZ,gBAAU,IAAI,0BAA0B,SAAS;AAAA,IACnD,OAAO;AACL,gBAAU,IAAI,oBAAoB,SAAS;AAAA,IAC7C;AACA,UAAM,gCAAgC;AACtC,UAAM,eAAe,CAAC,kBAAkB,OAAO,iBAAiB,iBAAiB,SAAS,CAAC;AAC3F,UAAM,MAAM,KAAK,gBAAgB,SAAS,CAAC,EAAE,OAAO,WAAW,OAAO,OAAO,CAAC,GAAG,OAAO,cAAc,+BAA+B,cAAc;AACnJ,WAAO,EAAE,OAAO,OAAO,QAAQ,IAAI,OAAO;AAAA,EAC5C;AAAA,EACA,gBAAgB,SAAS,QAAQ,aAAa,qBAAqB,gCAAgC,OAAO,gBAAgB;AACxH,UAAM,SAAS,KAAK,eAAe,QAAQ,aAAa,WAAW;AACnE,UAAM,UAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AAC9C,QAAI,QAAQ,cAAc;AACxB,cAAQ,WAAW;AAAA,IACrB;AACA,QAAI,QAAQ,qBAAqB,cAAc,OAAO;AACpD,YAAM,aAAa,kBAAkB,OAAO,iBAAiB,iBAAiB,QAAQ,WAAW;AACjG,cAAQ,WAAW,WAAW,IAAI,CAAC,MAAM,IAAI,CAAC;AAAA,IAChD;AACA,QAAI,QAAQ,eAAe,MAAM;AAC/B,cAAQ,QAAQ,QAAQ;AAAA,IAC1B;AACA,QAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,cAAQ,SAAS,aAAa,uBAAuB,OAAO,OAAO,CAAC;AACpE,aAAO;AAAA,IACT;AACA,UAAM,gBAAgB,CAAC;AACvB,UAAM,aAAa,OAAO,IAAI,CAAC,WAAW;AACxC,UAAI,OAAO,UAAU,aAAa;AAChC,cAAM,IAAI,MAAM,iIAAiI;AAAA,MACnJ;AACA,UAAI,UAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AAC5C,UAAI,QAAQ,WAAW,MAAM;AAC3B,YAAI,CAAC,QAAQ,gBAAgB,aAAa,cAAc,OAAO,KAAK,KAAK,IAAI,EAAE,UAAU,2BAA2B,GAAG;AACrH,iBAAO;AAAA,YACL,OAAO,OAAO;AAAA,YACd,SAAS;AAAA,YACT,WAAW;AAAA,YACX,eAAe,QAAQ;AAAA,UACzB;AAAA,QACF;AACA,YAAI,QAAQ,cAAc;AACxB,kBAAQ,WAAW;AACnB,kBAAQ,QAAQ,OAAO;AAAA,QACzB;AAAA,MACF;AACA,WAAK,YAAY,OAAO,MAAM;AAC9B,UAAI,CAAC,CAAC,QAAQ,aAAa,CAAC,CAAC,QAAQ,cAAc;AACjD,iBAAS,QAAQ,WAAW,KAAK,aAAa,MAAM,IAAI,KAAK,WAAW,MAAM;AAC9E,sBAAc,KAAK,MAAM;AACzB,kBAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AAAA,MAC1C,WAAW,QAAQ,YAAY,CAAC,cAAc,QAAQ,OAAO,OAAO,KAAK,GAAG;AAC1E,cAAM,aAAa;AACnB,cAAM,cAAc,OAAO;AAC3B,eAAO,QAAQ,QAAQ;AACvB,iBAAS,KAAK,cAAc,QAAQ,WAAW;AAC/C,sBAAc,KAAK,MAAM;AACzB,kBAAU,KAAK,QAAQ,IAAI,OAAO,MAAM;AACxC,mBAAW,QAAQ;AAAA,MACrB;AACA,aAAO,EAAE,OAAO,OAAO,OAAO,SAAS,WAAW,MAAM;AAAA,IAC1D,CAAC;AACD,SAAK,YAAY,OAAO,MAAM;AAC9B,UAAM,aAAa,EAAE,OAAO,OAAO,OAAO,SAAS,SAAS,WAAW,MAAM;AAC7E,UAAM,MAAM,cAAc,SAAS,YAAY,UAAU;AACzD,UAAM,SAAS,KAAK,iBAAiB,KAAK,MAAM;AAC9C,aAAO,eAAe,KAAK,OAAO,SAAS,YAAY,UAAU;AAAA,IACnE,CAAC;AACD,UAAM,oBAAoB,KAAK,gBAAgB;AAC/C,QAAI;AACJ,QAAI,mBAAmB;AACrB,cAAQ,KAAK,WAAW;AAAA,IAC1B;AACA,QAAI,CAAC,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACrC,iBAAW,KAAK,OAAO,QAAQ,YAAY,YAAY,mBAAmB;AAAA,IAC5E;AACA,kBAAc,QAAQ,CAAC,SAAS,KAAK,8BAA8B,IAAI,CAAC;AACxE,QAAI,mBAAmB;AACrB,cAAQ,KAAK,SAAS,KAAK;AAC3B,WAAK,aAAa,KAAK,EAAE,MAAM,QAAQ,YAAY,MAAM,OAAO,KAAK,aAAa,KAAK,EAAE,CAAC;AAAA,IAC5F;AACA,UAAM,mBAAmB,IAAI,EAAE,IAAI,uBAAuB;AAC1D,QAAI,mBAAmB,GAAG;AACxB,YAAM,QAAQ,aAAa,IAAI;AAC/B,UAAI,QAAQ,KAAK,kBAAkB,kBAAkB;AACnD,aAAK,MAAM,GAAG,MAAM;AACpB,aAAK,kBAAkB;AAAA,MACzB;AAAA,IACF;AACA,QAAI,CAAC,IAAI,EAAE,QAAQ,qBAAqB,KAAK,QAAQ,YAAY,kCAAkC,OAAO;AACxG,YAAM,WAAW,KAAK,aAAa,MAAM;AACzC,WAAK,8BAA8B,MAAM;AACzC,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA,EACA,cAAc,SAAS,QAAQ,aAAa,qBAAqB,gCAAgC,OAAO;AACtG,kBAAc,eAAe,OAAO,GAAG;AACvC,UAAM,UAAU,KAAK,gBAAgB,SAAS,QAAQ,aAAa,qBAAqB,6BAA6B;AACrH,WAAO;AAAA,EACT;AAAA,EACA,iBAAiB,KAAK,WAAW;AAC/B,QAAI,EAAE,OAAO,KAAK,cAAc;AAC9B,WAAK,YAAY,OAAO,UAAU;AAAA,IACpC;AACA,WAAO,KAAK,YAAY;AAAA,EAC1B;AAAA,EACA,oBAAoB;AAClB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,QAAI,KAAK,UAAU;AACjB;AAAA,IACF;AACA,QAAI,CAAC,IAAI,EAAE,QAAQ,SAAS,GAAG;AAC7B,YAAM,UAAU,OAAO,KAAK,KAAK,WAAW;AAC5C,cAAQ,QAAQ,CAAC,QAAQ;AACvB,aAAK,MAAM,cAAc,KAAK,YAAY,KAAK,YAAY;AAC3D,eAAO,KAAK,YAAY;AAAA,MAC1B,CAAC;AAAA,IACH;AACA,SAAK,eAAe,QAAQ;AAC5B,QAAI,KAAK,UAAU,SAAS,OAAO,sBAAsB,eAAe,KAAK,kBAAkB,oBAAoB;AACjH,WAAK,OAAO,OAAO;AAAA,IACrB,OAAO;AACL,WAAK,SAAS;AAAA,IAChB;AACA,QAAI,KAAK,qBAAqB;AAC5B,WAAK,MAAM,UAAU;AACrB,WAAK,MAAM,QAAQ;AAAA,IACrB;AACA,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,iBAAiB;AACf,QAAI,KAAK,uBAAuB,MAAM;AACpC,WAAK,sBAAsB,KAAK,MAAM;AACpC,YAAI,CAAC,IAAI,EAAE,IAAI,8BAA8B,GAAG;AAC9C,gBAAM,YAAY,IAAI,EAAE,QAAQ,OAAO;AACvC,cAAI,EAAE,IAAI,SAAS,KAAK;AACxB,gBAAM,sBAAsB,KAAK,IAAI,OAAO,IAAI,CAAC,EAAE,SAAS,EAAE;AAC9D,cAAI,EAAE,IAAI,SAAS,SAAS;AAC5B,cAAI,sBAAsB,GAAG;AAC3B,mBAAO;AAAA,UACT;AAAA,QACF;AACA,eAAO;AAAA,MACT,CAAC;AAAA,IACH;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,WAAO,KAAK,eAAe,MAAM,KAAK,mBAAmB;AAAA,EAC3D;AAAA,EACA,YAAY,QAAQ;AAClB,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,OAAO,OAAO,QAAQ,SAAS,OAAO,SAAS,IAAI;AAC3D,QAAI,WAAW,MAAM;AACnB;AAAA,IACF;AACA,UAAM,oBAAoB,KAAK,gBAAgB;AAC/C,QAAI;AACJ,QAAI,mBAAmB;AACrB,cAAQ,aAAa,IAAI;AAAA,IAC3B;AACA,QAAI,WAAW,QAAQ;AACvB,QAAI,YAAY,MAAM;AACpB,iBAAW,gCAAgC,OAAO,QAAQ;AAC1D,cAAQ,WAAW;AAAA,IACrB;AACA,QAAI,UAAU,MAAM;AAClB,YAAM,YAAY,aAAa,KAAK;AACpC,UAAI;AACJ,UAAI,QAAQ,SAAS,IAAI,SAAS,SAAS;AAC3C,YAAM,cAAc,kBAAkB,cAAc,kBAAkB;AACtE,UAAI,YAAY,CAAC,aAAa;AAC5B,SAAC,OAAO,MAAM,IAAI,uCAAuC,SAAS,IAAI,SAAS,EAAE;AAAA,MACnF;AACA,UAAI,UAAU;AACZ,kBAAU,IAAI,0BAA0B,WAAW,WAAW;AAAA,MAChE,OAAO;AACL,kBAAU,IAAI,oBAAoB,WAAW,WAAW;AAAA,MAC1D;AACA,YAAM,yBAAyB,cAAc,CAAC,QAAQ,KAAK,IAAI;AAC/D,YAAM,uBAAuB,KAAK,eAAe,wBAAwB,KAAK;AAC9E,YAAM,wBAAwB,KAAK,QAAQ,IAAI,qBAAqB,MAAM;AAC1E,UAAI,aAAa;AACf,8BAAsB,QAAQ,aAAa;AAAA,MAC7C,OAAO;AACL,8BAAsB,QAAQ,aAAa;AAAA,MAC7C;AACA,4BAAsB,WAAW;AACjC,WAAK,MAAM,2BAA2B,KAAK,WAAW,qBAAqB,MAAM,GAAG,OAAO,QAAQ,MAAM;AACzG,YAAM,eAAe,CAAC,CAAC,QAAQ,KAAK,CAAC;AACrC,YAAM,wBAAwB;AAC9B,YAAM,sBAAsB,KAAK,gBAAgB,SAAS,CAAC,oBAAoB,GAAG,OAAO,cAAc,qBAAqB;AAC5H,YAAM,gBAAgB,KAAK,QAAQ,IAAI,oBAAoB,MAAM;AACjE,cAAQ,WAAW,cAAc;AACjC,cAAQ,WAAW,cAAc;AACjC,cAAQ,QAAQ,cAAc;AAC9B,UAAI,CAAC,IAAI,EAAE,IAAI,qBAAqB,GAAG;AACrC,gBAAQ,UAAU,cAAc;AAChC,gBAAQ,SAAS;AACjB,aAAK,QAAQ,OAAO,oBAAoB,MAAM;AAAA,MAChD,OAAO;AACL,aAAK,YAAY,oBAAoB,MAAM;AAAA,MAC7C;AACA,WAAK,8BAA8B,oBAAoB;AACvD,UAAI,mBAAmB;AACrB,aAAK,gBAAgB,aAAa,IAAI,IAAI;AAAA,MAC5C;AAAA,IACF,OAAO;AACL,YAAM,aAAa,KAAK,eAAe,UAAU,OAAO,OAAO,QAAQ;AACvE,cAAQ,UAAU;AAAA,IACpB;AAAA,EACF;AAAA,EACA,qBAAqB,QAAQ,eAAe;AAC1C,UAAM,UAAU,KAAK,QAAQ,IAAI,MAAM;AACvC,UAAM,EAAE,MAAM,IAAI;AAClB,SAAK,eAAe,MAAM;AAC1B,QAAI,iBAAiB,MAAM;AACzB,cAAQ,SAAS,oBAAoB,eAAe,KAAK;AAAA,IAC3D;AACA,WAAO,QAAQ;AAAA,EACjB;AAAA,EACA,eAAe,UAAU,SAAS,OAAO,UAAU;AACjD,SAAK,iBAAiB,KAAK,aAAa,UAAU,KAAK;AACvD,QAAI,CAAC,KAAK,qBAAqB,KAAK,gBAAgB,KAAK,qBAAqB,OAAO,MAAM;AACzF,YAAM,MAAM,KAAK,gBAAgB,OAAO,MAAM,QAAQ,CAAC;AACvD,WAAK,oBAAoB;AACzB,cAAQ,KAAK,6BAA6B,yCAAyC;AAAA,IACrF;AACA,WAAO,KAAK,eAAe,eAAe,UAAU,SAAS,QAAQ;AAAA,EACvE;AAAA,EACA,aAAa,OAAO,OAAO;AACzB,WAAO,MAAM,KAAK,MAAM,KAAK,aAAa,gBAAgB,KAAK;AAAA,EACjE;AAAA,EACA,yBAAyB;AACvB,eAAW,CAAC,EAAE,MAAM,KAAK,OAAO,QAAQ,KAAK,WAAW,GAAG;AACzD,WAAK,iBAAiB,MAAM;AAAA,IAC9B;AAAA,EACF;AAAA,EACA,MAAM,8BAA8B;AAClC,UAAM,KAAK,CAAC;AACZ,QAAI,KAAK,MAAM,8BAA8B;AAC3C,iBAAW,CAAC,EAAE,MAAM,KAAK,OAAO,QAAQ,KAAK,WAAW,GAAG;AACzD,WAAG,KAAK,KAAK,sBAAsB,MAAM,CAAC;AAAA,MAC5C;AACA,aAAO,QAAQ,IAAI,EAAE;AAAA,IACvB,OAAO;AACL,iBAAW,CAAC,EAAE,MAAM,KAAK,OAAO,QAAQ,KAAK,WAAW,GAAG;AACzD,cAAM,KAAK,IAAI,QAAQ,CAAC,YAAY;AAClC,cAAI;AACF,iBAAK,iBAAiB,MAAM;AAC5B,oBAAQ,IAAI;AAAA,UACd,SAAS,OAAP;AACA,kBAAM;AAAA,UACR;AAAA,QACF,CAAC;AACD,WAAG,KAAK,EAAE;AAAA,MACZ;AACA,aAAO,QAAQ,IAAI,EAAE;AAAA,IACvB;AAAA,EACF;AAAA,EACA,MAAM,sBAAsB,QAAQ;AAClC,QAAI,KAAK,MAAM,GAAG,oBAAoB,OAAO,cAAc,KAAK,MAAM,6BAA6B,qBAAqB,GAAG;AACzH,aAAO,KAAK,iBAAiB,MAAM;AAAA,IACrC,OAAO;AACL,YAAM,UAAU;AAChB,aAAO,KAAK,sBAAsB,MAAM;AAAA,IAC1C;AAAA,EACF;AAAA,EACA,iBAAiB,QAAQ;AACvB,QAAI,KAAK,MAAM,GAAG,oBAAoB,OAAO,cAAc,KAAK,MAAM,GAAG,WAAW,MAAM,OAAO;AAC/F,cAAQ,IAAI,KAAK,MAAM,GAAG,kBAAkB,OAAO,YAAY,CAAC;AAChE,UAAI,KAAK,MAAM,GAAG,mBAAmB,OAAO,gBAAgB,KAAK,MAAM,GAAG,cAAc,MAAM,OAAO;AACnG,kCAA0B,OAAO,QAAQ,KAAK,MAAM,GAAG,iBAAiB,OAAO,cAAc,CAAC;AAC9F,cAAM,IAAI,MAAM,oCAAoC;AAAA,MACtD;AACA,YAAM,IAAI,MAAM,6CAA6C;AAAA,IAC/D;AACA,WAAO;AAAA,EACT;AAAA,EACA,sBAAsB;AACpB,eAAW,CAAC,EAAE,MAAM,KAAK,OAAO,QAAQ,KAAK,WAAW,GAAG;AACzD,YAAM,EAAE,kBAAkB,wBAAwB,QAAQ,QAAQ,mBAAmB,sBAAsB,kBAAkB,yBAAyB,oBAAoB,IAAI,oBAAoB,KAAK,OAAO,OAAO,SAAS,OAAO,YAAY;AACjP,aAAO,mBAAmB;AAC1B,aAAO,yBAAyB;AAChC,aAAO,SAAS;AAChB,aAAO,SAAS;AAChB,aAAO,oBAAoB;AAC3B,aAAO,uBAAuB;AAC9B,aAAO,mBAAmB;AAC1B,aAAO,0BAA0B;AACjC,aAAO,sBAAsB;AAAA,IAC/B;AAAA,EACF;AACF;AACA,iBAAiB,aAAa;AAC9B,SAAS,oBAAoB,GAAG,OAAO;AACrC,MAAI,UAAU,aAAa,UAAU,aAAa;AAChD,WAAO;AAAA,EACT,WAAW,UAAU,WAAW,UAAU,QAAQ;AAChD,UAAM,SAAS,UAAU,UAAU,IAAI,WAAW,EAAE,MAAM,IAAI,IAAI,WAAW,EAAE,MAAM;AACrF,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,EAAE,IAAI;AACzC,aAAO,MAAM,KAAK,MAAM,EAAE,GAAG;AAAA,IAC/B;AACA,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA,EAC1C;AACF;AAGA,IAAI,WAAW;AAGf,SAAS,iBAAiB;AACxB,MAAI,EAAE,IAAI,4BAA4B,IAAI;AAC5C;AAGA,IAAI,oBAAoB,UAAU,GAAG;AACnC,kBAAgB,SAAS,MAAM,IAAI,iBAAiB,GAAG,CAAC;AAC1D;AACA,IAAI,QAAQ,EAAE,eAAe;AAG7B,IAAI,qBAAqB;AAAA;AAAA;AAAA;AAIzB,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,KAAK,QAAQ,QAAQ;AAC/B,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASR;AACF;AAGA,IAAI,qBAAqB;AAAA;AAAA;AAAA;AAAA;AAAA;AAMzB,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,KAAK,QAAQ,QAAQ,mBAAmB,OAAO;AACzD,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,uBAAuB;AAC5B,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,UAAM,OAAO,KAAK,YAAY;AAC9B,SAAK,sBAAsB,iBAAiB,IAAI;AAChD,QAAI,yBAAyB;AAC7B,QAAI,kBAAkB;AACpB,UAAI,SAAS,KAAK,aAAa,cAAc,KAAK,WAAW,MAAM,GAAG;AACpE,iCAAyB;AAAA;AAAA;AAAA;AAAA;AAAA,MAK3B,OAAO;AACL,cAAM,QAAQ,kBAAkB,IAAI;AACpC,iCAAyB;AAAA,YACrB;AAAA;AAEJ,YAAI,SAAS,GAAG;AACd,cAAI,KAAK,qBAAqB;AAC5B,sCAA0B;AAAA;AAAA;AAAA;AAAA;AAAA,UAK5B,OAAO;AACL,sCAA0B;AAAA,yCACG,KAAK,YAAY;AAAA;AAAA;AAAA;AAAA,UAIhD;AAAA,QACF,OAAO;AACL,gBAAM,WAAW,YAAY,UAAU,IAAI;AAC3C,cAAI,KAAK,qBAAqB;AAC5B,sCAA0B;AAAA;AAAA,iBAErB,SAAS,OAAO,uBAAuB;AAAA;AAAA,iBAEvC,SAAS,OAAO,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA,UAK9C,OAAO;AACL,sCAA0B;AAAA;AAAA,iBAErB,SAAS,OAAO,cAAc,KAAK,YAAY,OAAO;AAAA;AAAA,iBAEtD,SAAS,OAAO,cAAc,KAAK,YAAY,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA,UAK7D;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAQA;AAAA;AAAA;AAAA;AAAA;AAAA,EAKR;AACF;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,WAAS,OAAO,EAAE,MAAM;AACxB,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAC5D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,OAAO,MAAM,MAAM,IAAI;AACrC,QAAM,cAAc,SAAS,eAAe,MAAM,OAAO,WAAW;AACpE,QAAM,WAAW,SAAS,QAAQ,IAAI,YAAY,MAAM;AACxD,QAAM,iBAAiB,UAAU,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,SAAS,CAAC;AAC5E,QAAM,iBAAiB,UAAU,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,SAAS,CAAC;AAC5E,WAAS,qBAAqB,EAAE,MAAM,gBAAgB,MAAM,eAAe;AAC3E,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY;AAChB,IAAI,mBAAmB;AAAA;AAAA;AAAA;AAIvB,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAAuB,OAAM,IAAI;AAClB,QAAM,SAAS,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkBA,QAAO,SAAS,CAAC;AACtG,QAAM,UAAU,IAAI,EAAE,QAAQ,8BAA8B,IAAI,IAAI,sBAAsB,kBAAkB,EAAE,OAAO,OAAO,KAAK,IAAI,IAAI,gBAAgB,WAAW,EAAE,OAAO,OAAO,KAAK;AACzL,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,SAAS;AACvE,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ;AACZ,IAAI,eAAe;AAAA;AAAA;AAAA;AAInB,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,OAAAA,OAAM,IAAI;AACrB,QAAM,UAAU,IAAI,EAAE,QAAQ,8BAA8B,IAAI,IAAI,sBAAsB,cAAc,EAAE,OAAOA,OAAM,KAAK,IAAI,IAAI,gBAAgB,OAAO,EAAE,OAAOA,OAAM,KAAK;AAC/K,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAGA,MAAK,GAAG,SAAS;AAChE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,2BAA2B;AAAA;AAAA;AAAA;AAI/B,IAAI,kCAAkC;AAAA;AAAA;AAAA;AAAA;AAAA;AAMtC,SAAS,iBAAiB,EAAE,WAAW,iBAAiB,eAAe,MAAM,GAAG;AAC9E,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,eAAe;AACrB,UAAM,SAAS,SAAS,EAAE;AAC1B,QAAI,aAAa,mBAAmB,CAAC,CAAC,CAAC,KAAK,iBAAiB,MAAM;AACjE,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM;AAC/C,YAAM,YAAY,cAAc,MAAM,QAAQ,MAAM;AACpD,aAAO,aAAa,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,IAC/D;AACA,UAAM,yBAAyB,IAAI,EAAE,QAAQ,6BAA6B,KAAK,mBAAmB;AAClG,QAAI;AACJ,QAAI,wBAAwB;AAC1B,gBAAU,IAAI,qBAAqB,EAAE,OAAO,eAAe;AAAA,IAC7D,OAAO;AACL,gBAAU,IAAI,eAAe,EAAE,OAAO,SAAS;AAAA,IACjD;AACA,WAAO,aAAa,gBAAgB,SAAS,CAAC,CAAC,GAAG,MAAM;AAAA,EAC1D;AACF;AACA,SAAS,kBAAkB,EAAE,WAAW,iBAAiB,mBAAmB,OAAO,kBAAkB,OAAO,eAAe,MAAM,GAAG;AAClI,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,eAAe;AACrB,QAAI,mBAAmB,EAAE,UAAU,aAAa;AAC9C,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM;AAC/C,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM;AAC/C,YAAM,CAAC,OAAO,KAAK,IAAI;AAAA,QACrB,CAAC,MAAM,mBAAmB,MAAM,MAAM,mBAAmB,IAAI;AAAA,QAC7D,CAAC,MAAM,mBAAmB,MAAM,MAAM,mBAAmB,IAAI;AAAA,MAC/D,EAAE,IAAI,CAAC,iBAAiB;AACtB,cAAM,CAAC,OAAO,KAAK,IAAI;AACvB,cAAM,UAAU;AAAA,UACd,QAAQ,MAAM;AAAA,UACd,OAAO,MAAM;AAAA,UACb,OAAO,EAAE;AAAA,QACX;AACA,cAAM,UAAU;AAAA,UACd,QAAQ,MAAM;AAAA,UACd,OAAO,MAAM;AAAA,UACb,OAAO,EAAE;AAAA,QACX;AACA,cAAM,WAAW,IAAI,gBAAgB,WAAW,EAAE,OAAO,EAAE,KAAK;AAChE,eAAO,aAAa,gBAAgB,UAAU,CAAC,SAAS,OAAO,GAAG,WAAW,MAAM,OAAO,MAAM,KAAK,CAAC;AAAA,MACxG,CAAC;AACD,YAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,OAAO,MAAM,MAAM,GAAG,SAAS,aAAa,CAAC;AAC9F,mBAAa,8BAA8B,KAAK;AAChD,mBAAa,8BAA8B,KAAK;AAChD,aAAO;AAAA,IACT;AACA,UAAM,SAAS,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AACnD,SAAK,EAAE,UAAU,YAAY,EAAE,UAAU,YAAY,aAAa,mBAAmB,CAAC,GAAG,CAAC,CAAC,MAAM,iBAAiB,MAAM;AACtH,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM,EAAE;AACjD,YAAM,QAAQ,aAAa,QAAQ,IAAI,EAAE,MAAM,EAAE;AACjD,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,CAAC,WAAW,QAAQ,IAAI,cAAc,EAAE,OAAO,EAAE,OAAO,cAAc,cAAc,MAAM;AAChG,YAAM,MAAM,aAAa,eAAe,UAAU,MAAM;AACxD,YAAM,UAAU,aAAa,QAAQ,IAAI,IAAI,MAAM;AACnD,cAAQ,SAAS;AACjB,aAAO;AAAA,IACT;AACA,UAAM,yBAAyB,IAAI,EAAE,QAAQ,8BAA8B,KAAK,mBAAmB;AACnG,QAAI;AACJ,QAAI,wBAAwB;AAC1B,gBAAU,IAAI,sBAAsB,iBAAiB,EAAE,OAAO,EAAE,OAAO,gBAAgB;AAAA,IACzF,OAAO;AACL,gBAAU,IAAI,gBAAgB,WAAW,EAAE,OAAO,EAAE,KAAK;AAAA,IAC3D;AACA,WAAO,aAAa,gBAAgB,SAAS,CAAC,GAAG,CAAC,GAAG,MAAM;AAAA,EAC7D;AACF;AACA,SAAS,6BAA6B,aAAa,SAAS,OAAO;AACjE,MAAI,gBAAgB,UAAU;AAC5B,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,QAAQ;AACjC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,OAAO;AAChC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,SAAS;AAClC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,SAAS;AAClC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,aAAa;AACtC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT,WAAW,gBAAgB,WAAW;AACpC,QAAI,QAAQ;AACV,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AACA,QAAM,IAAI,MAAM,cAAc,6DAA6D;AAC7F;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,QAAQ,QAAQ,aAAa,aAAa,OAAO,aAAa,OAAO,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO,yBAAyB,OAAO;AAChL,SAAK,gBAAgB,CAAC,WAAW,SAAS;AAC1C,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,YAAY,aAAa,OAAO,KAAK,OAAO;AAClD,UAAM,wBAAwB,KAAK,KAAK,YAAY,CAAC;AACrD,UAAM,UAAU,aAAa,gBAAgB;AAC7C,UAAM,UAAU,aAAa,gBAAgB;AAC7C,UAAM,WAAW,aAAa,CAAC,UAAU,QAAQ,IAAI,CAAC,UAAU,QAAQ;AACxE,UAAM,WAAW,aAAa,CAAC,UAAU,QAAQ,IAAI,CAAC,UAAU,QAAQ;AACxE,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,oBAAoB;AACtB,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,WAAW,wBAAwB;AACjC,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,OAAO;AACL,4BAAoB;AAAA,YAChB;AAAA;AAAA,MAEN;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,wBAAwB;AAC1B,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,QAAI,gBAAgB;AACpB,QAAI,gBAAgB;AACpB,QAAI,OAAO,KAAK,OAAO,IAAI;AACzB,sBAAgB,wBAAwB,OAAO,KAAK;AAAA,IACtD,WAAW,OAAO,KAAK,OAAO,IAAI;AAChC,sBAAgB,wBAAwB,OAAO,KAAK;AAAA,IACtD;AACA,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA,sCAE8B;AAAA;AAAA;AAAA;AAAA,8BAIR;AAAA,yBACL;AAAA,yBACA;AAAA,wCACe;AAAA,wCACA;AAAA;AAAA;AAAA;AAAA,uBAIjB,SAAS,QAAQ,SAAS;AAAA,uBAC1B,SAAS,QAAQ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UASvC;AAAA;AAAA,UAEA;AAAA;AAAA;AAAA;AAAA;AAAA,EAKR;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,MAAM;AAAA,EACN,MAAM;AACR;AACA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,KAAK,QAAQ,QAAQ;AAC/B,SAAK,gBAAgB,CAAC,SAAS,SAAS,SAAS,OAAO;AACxD,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,SAAK,WAAW;AAAA;AAAA;AAAA,UAGV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAWR;AACF;AAGA,IAAI,MAAM;AACV,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,QAAQ,qBAAqB,WAAW,EAAE,OAAO,EAAE,KAAK;AAC9D,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,cAAc,IAAI,uBAAuB,iBAAiB,MAAM,EAAE,OAAO,EAAE,KAAK;AACtF,UAAM,cAAc,IAAI,uBAAuB,iBAAiB,MAAM,EAAE,OAAO,EAAE,KAAK;AACtF,UAAM,UAAU;AAAA,MACd;AAAA,QACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,QACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,QACrC,OAAO,EAAE;AAAA,MACX;AAAA,MACA;AAAA,QACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,QACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,QACrC,OAAO,EAAE;AAAA,MACX;AAAA,MACA;AAAA,QACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,QACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,QACrC,OAAO,EAAE;AAAA,MACX;AAAA,MACA;AAAA,QACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,QACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,QACrC,OAAO,EAAE;AAAA,MACX;AAAA,IACF;AACA,UAAM,WAAW,SAAS,gBAAgB,aAAa,SAAS,SAAS;AACzE,UAAM,WAAW,SAAS,gBAAgB,aAAa,SAAS,SAAS;AACzE,UAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,UAAU,MAAM,SAAS,GAAG,SAAS,SAAS,CAAC;AAChG,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,QAAQ;AAC/C,WAAO;AAAA,EACT;AACA,MAAI,SAAS,mBAAmB,CAAC,GAAG,CAAC,CAAC,GAAG;AACvC,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,CAAC,WAAW,QAAQ,IAAI,gBAAgB,EAAE,OAAO,EAAE,OAAO,MAAM,QAAQ,MAAM,QAAQ,KAAK;AACjG,UAAM,MAAM,SAAS,eAAe,UAAU,KAAK;AACnD,UAAM,UAAU,SAAS,QAAQ,IAAI,IAAI,MAAM;AAC/C,YAAQ,SAAS;AACjB,WAAO;AAAA,EACT;AACA,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,8BAA8B,GAAG;AACjD,cAAU,IAAI,sBAAsB,KAAK,EAAE,OAAO,EAAE,KAAK;AAAA,EAC3D,OAAO;AACL,cAAU,IAAI,gBAAgB,KAAK,EAAE,OAAO,EAAE,KAAK;AAAA,EACrD;AACA,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,CAAC,GAAG,KAAK;AACxD;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,QAAQ,YAAY,UAAU;AACnD,QAAM,eAAe;AAAA,IACnB,YAAY,OAAO,KAAK;AAAA,IACxB,GAAG,YAAY,OAAO,KAAK;AAAA,EAC7B;AACA,QAAM,UAAU;AAAA,IACd,OAAO,OAAO;AAAA,IACd,OAAO;AAAA,IACP,QAAQ,OAAO;AAAA,EACjB;AACA,QAAM,iBAAiB;AAAA,IACrB,YAAY,UAAU;AAAA,IACtB,GAAG,YAAY,UAAU;AAAA,EAC3B;AACA,QAAM,UAAU,IAAI,qBAAqB,gBAAgB,YAAY;AACrE,QAAM,gCAAgC;AACtC,QAAM,eAAe,CAAC,YAAY;AAClC,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,OAAO,GAAG,OAAO,OAAO,cAAc,6BAA6B;AACrH,SAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,YAAY,OAAO,OAAO,MAAM;AACzE;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,eAAe;AACrB,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,SAAS,aAAa,uBAAuB,OAAO,KAAK;AAC/D,QAAM,SAAS,aAAa,cAAc,MAAM;AAChD,eAAa,OAAO,UAAU,QAAQ,MAAM,kBAAkB,eAAe,sCAAsC,EAAE,cAAc,oFAAoF;AACvN,QAAM,WAAW,aAAa,QAAQ,IAAI,EAAE,MAAM;AAClD,MAAI,SAAS,YAAY,CAAC,cAAc,EAAE,OAAO,MAAM,KAAK,EAAE,SAAS,YAAY,QAAQ,cAAc,SAAS,OAAO,MAAM,IAAI;AACjI,WAAO,cAAc,GAAG,QAAQ,YAAY;AAAA,EAC9C;AACA,eAAa,OAAO,EAAE,MAAM;AAC5B,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,QAAQ,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,YAAY,SAAS;AAC/B,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,EAAE,YAAY,WAAW,QAAQ,QAAQ,IAAI;AACnD,SAAK,cAAc,CAAC,WAAW,OAAO;AACtC,UAAM,wBAAwB,KAAK,MAAM,aAAa,CAAC,IAAI;AAC3D,UAAM,0BAA0B,aAAa;AAC7C,QAAI,gBAAgB;AACpB,QAAI,WAAW,MAAM;AACnB,YAAM,cAAc,IAAI;AACxB,sBAAgB,4BAA4B,aAAa,MAAM,WAAW,IAAI,YAAY,YAAY,CAAC,IAAI;AAAA,IAC7G;AACA,QAAI,mBAAmB;AACvB,QAAI,SAAS,aAAa,GAAG;AAC3B,yBAAmB;AAAA,oCACW;AAAA;AAAA;AAAA;AAAA,IAIhC;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA,UAIV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAQwB;AAAA;AAAA;AAAA;AAAA,8BAIJ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YASlB;AAAA;AAAA;AAAA,iCAGqB;AAAA,cACnB,4BAA4B;AAAA;AAAA;AAAA,YAG9B;AAAA,qBACS,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA,YAKrC;AAAA,qBACS,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAMrC;AAAA;AAAA;AAAA;AAAA;AAAA,EAKV;AACF;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,YAAY,YAAY;AAClC,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,EAAE,YAAY,WAAW,QAAQ,QAAQ,IAAI;AACnD,SAAK,cAAc,CAAC,WAAW,OAAO;AACtC,QAAI,sBAAsB;AAC1B,QAAI,YAAY;AAChB,QAAI,eAAe,QAAQ;AACzB,4BAAsB;AAAA,IACxB,WAAW,eAAe,OAAO;AAC/B,4BAAsB;AACtB,kBAAY;AAAA,IACd,WAAW,eAAe,OAAO;AAC/B,4BAAsB;AACtB,kBAAY;AAAA,IACd;AACA,QAAI,cAAc,GAAG,cAAc,cAAc;AACjD,QAAI,eAAe,OAAO;AACxB,oBAAc;AAAA,IAChB,WAAW,eAAe,QAAQ;AAChC,oBAAc;AAAA,IAChB,WAAW,eAAe,OAAO;AAC/B,oBAAc;AAAA,IAChB,WAAW,eAAe,OAAO;AAC/B,oBAAc;AAAA,IAChB;AACA,UAAM,wBAAwB,KAAK,MAAM,aAAa,CAAC,IAAI;AAC3D,UAAM,0BAA0B,aAAa;AAC7C,QAAI,gBAAgB;AAAA,YACZ,eAAe;AAAA;AAAA,mBAER,eAAe;AAAA;AAAA;AAAA;AAAA,wBAIV;AAAA,cACV,eAAe,YAAY,eAAe;AAAA,0BAC9B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAQtB,QAAI,UAAU;AACd,QAAI,eAAe,OAAO;AACxB,4BAAsB;AACtB,sBAAgB;AAAA;AAAA;AAAA;AAAA;AAKhB,gBAAU;AAAA,IACZ,WAAW,eAAe,OAAO;AAC/B,4BAAsB;AACtB,sBAAgB;AAAA;AAAA;AAAA;AAAA;AAKhB,gBAAU;AAAA,IACZ;AACA,QAAI,mBAAmB;AACvB,QAAI,SAAS,aAAa,GAAG;AAC3B,yBAAmB;AAAA,oCACW;AAAA;AAAA;AAAA;AAAA,IAIhC;AACA,SAAK,WAAW;AAAA,0CACsB;AAAA;AAAA;AAAA;AAAA,UAIhC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAQwB;AAAA;AAAA,kCAEA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMJ;AAAA;AAAA,YAElB,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOpB;AAAA;AAAA;AAAA,iCAGqB;AAAA,cACnB,4BAA4B;AAAA,YAC9B,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOpB;AAAA,qBACS,4BAA4B;AAAA,YACrC,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOpB;AAAA,qBACS,4BAA4B;AAAA,YACrC,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOpB;AAAA;AAAA,oBAEQ;AAAA;AAAA;AAAA,EAGlB;AACF;AAGA,SAAS,mBAAmB,SAAS;AACnC,QAAM,SAAS,CAAC;AAChB,SAAO,OAAO,WAAW,KAAK,OAAO,OAAO,SAAS,GAAG,YAAY,GAAG;AACrE,UAAM,UAAU,OAAO,SAAS,OAAO,OAAO,SAAS,GAAG,UAAU,QAAQ;AAC5E,UAAM,aAAa,qBAAqB,yBAAyB,OAAO;AACxE,WAAO,KAAK;AAAA,MACV,QAAQ;AAAA,MACR;AAAA,MACA,SAAS,KAAK,KAAK,UAAU,UAAU;AAAA,IACzC,CAAC;AAAA,EACH;AACA,SAAO;AACT;AACA,SAAS,OAAO,GAAG,OAAO,eAAe,UAAU;AACjD,QAAM,kBAAkB,mBAAmB,EAAE,KAAK;AAClD,MAAI,SAAS;AACb,WAAS,KAAK,GAAG,KAAK,gBAAgB,QAAQ,MAAM;AAClD,UAAM,EAAE,QAAQ,YAAY,QAAQ,IAAI,gBAAgB;AACxD,QAAI;AACJ,QAAI;AACJ,QAAI,kBAAkB,QAAQ;AAC5B,gBAAU,OAAO,IAAI,IAAI,YAAY,EAAE,YAAY,QAAQ,WAAW,EAAE,MAAM,IAAI,QAAQ,GAAG,MAAM,IAAI,IAAI,YAAY,EAAE,YAAY,QAAQ,WAAW,EAAE,MAAM,IAAI,QAAQ,CAAC;AAAA,IAC/K,OAAO;AACL,gBAAU,IAAI,cAAc,EAAE,YAAY,QAAQ,WAAW,EAAE,MAAM,IAAI,QAAQ,GAAG,aAAa;AAAA,IACnG;AACA,qBAAiB;AACjB,aAAS,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,KAAK;AAC1D,QAAI,eAAe,WAAW,EAAE,QAAQ;AACtC,eAAS,8BAA8B,cAAc;AAAA,IACvD;AAAA,EACF;AACA,SAAO;AACT;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,QAAQ;AAC1B,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,OAAO;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,WAAW,kBAAkB,MAAM;AACzC,SAAK,WAAW;AAAA;AAAA,QAEZ;AAAA,uBACe;AAAA;AAAA;AAAA,EAGrB;AACF;AACA,SAAS,kBAAkB,QAAQ;AACjC,QAAM,OAAO,OAAO;AACpB,MAAI,OAAO,GAAG;AACZ,UAAM,MAAM,sBAAsB,2BAA2B;AAAA,EAC/D;AACA,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,WAAW,WAAW,SAAS;AACvF,QAAM,iBAAiB,IAAI,MAAM,IAAI;AACrC,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,mBAAe,OAAO,OAAO,cAAc;AAAA,EAC7C;AACA,SAAO,eAAe,KAAK;AAC7B;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,QAAQ,QAAQ;AAC1B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,OAAO;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,QAAI,KAAK,OAAO,GAAG;AACjB,YAAM,MAAM,6BAA6B,KAAK,4BAA4B;AAAA,IAC5E;AACA,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,cAAc,eAAe,MAAM,KAAK,IAAI;AAClD,UAAM,gBAAgB,IAAI,MAAM,KAAK,IAAI;AACzC,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,oBAAc,OAAO,OAAO,YAAY;AAAA,IAC1C;AACA,UAAM,YAAY,QAAQ,cAAc,MAAM,EAAE,EAAE,KAAK;AACvD,UAAM,aAAa,KAAK,YAAY,KAAK,OAAO,QAAQ,YAAY,KAAK,OAAO;AAChF,UAAM,OAAO,mBAAmB,cAAc,KAAK,OAAO;AAC1D,SAAK,WAAW;AAAA;AAAA,QAEZ;AAAA;AAAA,oBAEY;AAAA,WACT;AAAA,sBACW;AAAA;AAAA,UAEZ,YAAY,KAAK,OAAO;AAAA,aACrB,YAAY,KAAK,OAAO,QAAQ,YAAY,KAAK,OAAO;AAAA,sBAC/C;AAAA,aACT;AAAA,wBACW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAMtB;AACF;AAGA,SAAS,eAAe,GAAG,MAAM,UAAU;AACzC,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,uBAAuB,EAAE,OAAO,IAAI,IAAI,IAAI,iBAAiB,EAAE,OAAO,IAAI;AAC7I,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AAGA,SAAS,QAAQ,GAAG,MAAM,UAAU,UAAU;AAC5C,QAAM,mBAAmB;AACzB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,kBAAkB,EAAE,KAAK;AACtE,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,QAAM,uBAAuB,gBAAgB;AAC7C,MAAI,WAAW;AACf,MAAI,sBAAsB;AACxB,eAAW,eAAe,GAAG,cAAc,QAAQ;AACnD,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,EACjE;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,aAAa,WAAW,IAAI,qBAAqB,0BAA0B,SAAS,OAAO,IAAI;AACtG,MAAI,WAAW;AACf,MAAI,UAAU;AACZ,eAAW,qBAAqB,qBAAqB,aAAa,QAAQ;AAAA,EAC5E;AACA,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,YAAY,QAAQ;AAC1B,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,OAAO,EAAE,OAAO,CAAC,WAAW,MAAM,EAAE,GAAG,SAAS,SAAS,CAAC;AACpH,QAAM,UAAU,WAAW,EAAE,KAAK;AAClC,QAAM,UAAU,OAAO,eAAe,SAAS,OAAO,QAAQ;AAC9D,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC9F,WAAS,8BAA8B,aAAa;AACpD,WAAS,8BAA8B,OAAO;AAC9C,MAAI,sBAAsB;AACxB,aAAS,8BAA8B,QAAQ;AAAA,EACjD;AACA,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,QAAQ;AAC5C;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,eAAe;AACrB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,IAAI,MAAM,KAAK;AAChC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,EAAE,MAAM,KAAK;AAAA,EAC9B;AACA,MAAI;AACJ,MAAI,aAAa,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACxC,UAAM,WAAW,aAAa,QAAQ,IAAI,EAAE,MAAM;AAClD,UAAM,SAAS,SAAS;AACxB,UAAM,YAAY,iBAAiB,QAAQ,EAAE,OAAO,EAAE,OAAO,MAAM,QAAQ;AAC3E,UAAM,aAAa,eAAe,UAAU,EAAE,KAAK;AACnD,UAAM,UAAU,aAAa,QAAQ,IAAI,IAAI,MAAM;AACnD,YAAQ,SAAS;AAAA,EACnB,OAAO;AACL,UAAM,eAAe,GAAG,MAAM,YAAY;AAAA,EAC5C;AACA,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,8BAA8B;AAClC,SAAS,gBAAgB,EAAE,GAAG,GAAG,YAAY,YAAY,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AAC5K,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,oBAAoB,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AACtH,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,eAAa,OAAO,gBAAgB,aAAa,MAAM,kCAAkC,qBAAqB,uCAAuC,EAAE,aAAa,EAAE,wBAAwB,6BAA6B,wBAAwB;AACnP,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,gBAAgB,CAAC,KAAK,GAAG;AAC/B,QAAM,WAAW,KAAK,IAAI,WAAW,SAAS;AAC9C,QAAM,YAAY,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACxD,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,oBAAoB,gBAAgB;AAC1C,QAAM,kBAAkB,eAAe,OAAO,6BAA6B,aAAa,IAAI,IAAI;AAChG,QAAM,mBAAmB,WAAW,6BAA6B,qBAAqB,mBAAmB;AACzG,MAAI;AACJ,OAAK,gBAAgB,KAAK,gBAAgB,MAAM,YAAY,+BAA+B,qBAAqB,OAAO;AACrH,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,YAAY;AACd,aAAO,WAAW,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,CAAC,GAAG,GAAG,CAAC,EAAE,EAAE,CAAC;AACvF,oBAAc,KAAK,IAAI;AAAA,IACzB;AACA,QAAI,YAAY;AACd,aAAO,WAAW,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,CAAC,GAAG,GAAG,CAAC,EAAE,EAAE,CAAC;AACvF,oBAAc,KAAK,IAAI;AAAA,IACzB;AACA,UAAM,iBAAiB,gBAAgB;AACvC,UAAM,iBAAiB,gBAAgB;AACvC,QAAI,SAAS;AACb,QAAI,gBAAgB;AAClB,eAAS,SAAS;AAAA,QAChB,QAAQ,EAAE,GAAG,KAAK;AAAA,QAClB,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,CAAC,EAAE;AAAA,MAC3C,CAAC;AACD,oBAAc,KAAK,MAAM;AAAA,IAC3B;AACA,UAAM,OAAO,gBAAgB,IAAI,IAAI;AACrC,QAAI,SAAS;AACb,QAAI,gBAAgB;AAClB,eAAS,SAAS;AAAA,QAChB,QAAQ,EAAE,GAAG,KAAK;AAAA,QAClB,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,CAAC,UAAU,GAAG,SAAS,EAAE;AAAA,MAC3C,CAAC;AACD,oBAAc,KAAK,MAAM;AAAA,IAC3B;AACA,UAAM,UAAU,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,GAAG,SAAS,SAAS,CAAC;AACjF,UAAM,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,UAAU,KAAK,EAAE,CAAC;AACzF,kBAAc,KAAK,OAAO;AAAA,EAC5B,OAAO;AACL,UAAM,QAAQ,WAAW,EAAE,OAAO,EAAE,KAAK;AACzC,UAAM,UAAU,IAAI,oBAAoB,UAAU,UAAU,CAAC,UAAU,aAAa,WAAW,GAAG,YAAY,YAAY,SAAS,iBAAiB,2BAA2B,iBAAiB;AAChM,UAAM,SAAS,CAAC,KAAK,GAAG;AACxB,QAAI,QAAQ,MAAM;AAChB,aAAO,KAAK,IAAI;AAAA,IAClB;AACA,QAAI,2BAA2B;AAC7B,aAAO,KAAK,sBAAsB;AAAA,IACpC;AACA,QAAI,mBAAmB;AACrB,YAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkB,gBAAgB,SAAS,CAAC;AACxH,aAAO,KAAK,eAAe;AAC3B,oBAAc,KAAK,eAAe;AAAA,IACpC;AACA,UAAM,SAAS,gBAAgB,SAAS,QAAQ,KAAK;AAAA,EACvD;AACA,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAClG,gBAAc,KAAK,GAAG;AACtB,aAAW,MAAM,eAAe;AAC9B,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,SAAO;AACT;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,MAAM,uBAAuB,IAAI;AAC/C,QAAM,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe,IAAI;AAC5E,SAAO,gBAAgB;AAAA,IACrB;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,EACd,CAAC;AACH;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,aAAa;AAC/D,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,YAAY,iBAAiB,MAAM,MAAM;AAC/C,WAAO,SAAS,eAAe,EAAE,OAAO,EAAE,OAAO,SAAS;AAAA,EAC5D;AACA,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,6BAA6B,GAAG;AAChD,cAAU,IAAI,qBAAqB,EAAE,OAAO,IAAI;AAAA,EAClD,OAAO;AACL,cAAU,IAAI,eAAe,EAAE,OAAO,IAAI;AAAA,EAC5C;AACA,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAM/B,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,oBAAoB;AAAA;AAAA;AAGhC,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AACV,IAAI,gBAAgB,kBAAkB;AAAA,EACpC,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,aAAa,QAAQ;AAC/B,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,UAAM,WAAW,CAAC;AAClB,SAAK,cAAc,QAAQ,CAAC,cAAc;AACxC,eAAS,KAAK,UAAU,kBAAkB,yBAAyB;AAAA,IACrE,CAAC;AACD,UAAM,YAAY,KAAK,cAAc,IAAI,CAAC,cAAc;AACtD,aAAO,IAAI;AAAA,IACb,CAAC,EAAE,KAAK,KAAK;AACb,SAAK,WAAW;AAAA;AAAA,UAEV,SAAS,KAAK,YAAY;AAAA;AAAA,yBAEX;AAAA;AAAA;AAAA;AAAA,EAIvB;AACF;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,aAAa,QAAQ;AAC/B,SAAK,cAAc,CAAC;AACpB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,UAAM,WAAW,CAAC;AAClB,SAAK,cAAc,QAAQ,CAAC,cAAc;AACxC,eAAS,KAAK,SAAS,kBAAkB,yBAAyB;AAAA,IACpE,CAAC;AACD,UAAM,YAAY,KAAK,cAAc,IAAI,CAAC,cAAc;AACtD,aAAO,IAAI;AAAA,IACb,CAAC,EAAE,KAAK,KAAK;AACb,SAAK,WAAW;AAAA;AAAA,UAEV,SAAS,KAAK,YAAY;AAAA;AAAA,wBAEZ;AAAA;AAAA;AAAA;AAAA,EAItB;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,UAAU;AAChB,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,MAAI,QAAQ,SAAS,IAAI,EAAE,IAAI,8BAA8B,GAAG;AAC9D,UAAM,WAAW,KAAK,MAAM,QAAQ,SAAS,CAAC;AAC9C,UAAM,WAAW,MAAM,EAAE,QAAQ,QAAQ,MAAM,GAAG,QAAQ,GAAG,SAAS,SAAS,CAAC;AAChF,UAAM,YAAY,MAAM,EAAE,QAAQ,QAAQ,MAAM,QAAQ,GAAG,SAAS,SAAS,CAAC;AAC9E,WAAO,MAAM,EAAE,QAAQ,CAAC,UAAU,SAAS,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,QAAQ,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK,EAAE,OAAO,CAAC,IAAI,OAAO,WAAW,IAAI,EAAE,CAAC;AACjF,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,QAAM,cAAc,IAAI,EAAE,QAAQ,YAAY;AAC9C,QAAM,UAAU,cAAc,IAAI,kBAAkB,QAAQ,GAAG,OAAO,MAAM,IAAI,IAAI,YAAY,QAAQ,GAAG,OAAO,MAAM;AACxH,SAAO,SAAS,gBAAgB,SAAS,SAAS,KAAK;AACzD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC1F,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,EACjE;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,QAAM,UAAU,OAAO,KAAK,IAAI,OAAO,OAAO,QAAQ;AACtD,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,UAAU,QAAQ;AAC7E,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F,OAAO;AACL,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F;AACA,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,OAAO;AAC9C,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC1F,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,EACjE;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,QAAM,UAAU,OAAO,KAAK,IAAI,OAAO,OAAO,QAAQ;AACtD,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,UAAU,QAAQ;AAC7E,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F,OAAO;AACL,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F;AACA,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,OAAO;AAC9C,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,YAAY,KAAK,WAAW;AACtC,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,EAAE,YAAY,WAAW,QAAQ,IAAI;AAC3C,QAAI,CAAC,WAAW;AACd,WAAK,cAAc,KAAK,cAAc;AAAA,IACxC;AACA,SAAK,cAAc,CAAC,WAAW,OAAO;AACtC,UAAM,SAAS,QAAQ,QAAQ,MAAM;AACrC,UAAM,eAAe,YAAY,kBAAkB;AACnD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKc;AAAA;AAAA;AAAA;AAAA;AAAA,8BAKJ;AAAA,wBACN;AAAA;AAAA,0BAEE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQxB;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,OAAO,YAAY,KAAK,WAAW;AAC7C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,iBAAa,OAAO,MAAM,SAAS,GAAG,MAAM,aAAa,IAAI,OAAO,CAAC,EAAE,YAAY,IAAI,IAAI,MAAM,CAAC,2CAA2C;AAC7I,UAAM,SAAS,MAAM,MAAM,SAAS;AACpC,UAAM,UAAU,KAAK,KAAK,SAAS,UAAU;AAC7C,SAAK,cAAc,MAAM,MAAM,GAAG,EAAE;AACpC,QAAI,UAAU,GAAG;AACf,WAAK,YAAY,KAAK,OAAO;AAAA,IAC/B;AACA,QAAI,CAAC,WAAW;AACd,WAAK,cAAc,KAAK,cAAc;AAAA,IACxC;AACA,UAAM,WAAW,KAAK;AACtB,UAAM,OAAO,SAAS;AACtB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,UAAU,YAAY,UAAU,IAAI;AAC1C,QAAI;AACJ,QAAI;AACJ,QAAI,YAAY,GAAG;AACjB,mBAAa,OAAO;AACpB,YAAM,iBAAiB,kBAAkB,UAAU;AACnD,uBAAiB;AAAA,UACb,+BAA+B,kBAAkB,QAAQ,KAAK;AAAA,YAC5D,QAAQ,OAAO;AAAA,UACjB,+BAA+B,kBAAkB,QAAQ,KAAK;AAAA,YAC5D,QAAQ,OAAO;AAAA,UACjB,+BAA+B,kBAAkB,QAAQ,KAAK;AAAA,YAC5D,QAAQ,OAAO;AAAA,UACjB,+BAA+B,kBAAkB,QAAQ,KAAK;AAAA,YAC5D,QAAQ,OAAO;AAAA,IACvB,OAAO;AACL,mBAAa;AACb,uBAAiB;AAAA,UACb;AAAA,YACE,QAAQ,OAAO;AAAA,UACjB;AAAA,YACE,QAAQ,OAAO;AAAA,UACjB;AAAA,YACE,QAAQ,OAAO;AAAA,UACjB;AAAA,YACE,QAAQ,OAAO;AAAA,IACvB;AACA,UAAM,WAAW,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,EAAE,MAAM,GAAG,UAAU;AACnE,UAAM,YAAY,MAAM,SAAS,aAAa;AAC9C,UAAM,cAAc,SAAS,IAAI,CAAC,MAAM,SAAS,CAAC;AAClD,UAAM,aAAa,YAAY,cAAc,aAAa,CAAC,EAAE,OAAO,SAAS;AAC7E,UAAM,aAAa,YAAY,cAAc,aAAa,CAAC,EAAE,OAAO,SAAS;AAC7E,UAAM,aAAa,YAAY,cAAc,aAAa,CAAC,EAAE,OAAO,SAAS;AAC7E,UAAM,aAAa,YAAY,cAAc,aAAa,CAAC,EAAE,OAAO,SAAS;AAC7E,UAAM,SAAS,QAAQ,QAAQ,gBAAgB;AAC/C,UAAM,oBAAoB,YAAY,KAAK;AAAA,sDACO,WAAW,KAAK;AAAA,sDAChB,WAAW,KAAK;AAAA,sDAChB,WAAW,KAAK;AAAA,sDAChB,WAAW,KAAK;AAClE,UAAM,aAAa;AAAA,0BACG,WAAW,KAAK;AAAA,uCACH,WAAW,KAAK;AAAA,uCAChB,WAAW,KAAK;AAAA,qDACF,WAAW,KAAK;AACjE,UAAM,gCAAgC,YAAY,KAAK;AAAA,qCACtB,YAAY,KAAK;AAAA,4CACV,SAAS,KAAK;AAAA,iDACT,SAAS,MAAM,EAAE,EAAE,KAAK;AAAA;AAErE,SAAK,WAAW;AAAA,0BACM,YAAY,KAAK;AAAA,iCACV,SAAS,KAAK;AAAA,sCACT,SAAS,MAAM,EAAE,EAAE,KAAK;AAAA;AAAA,QAEtD;AAAA;AAAA,UAEE;AAAA,4BACkB,QAAQ,OAAO,QAAQ,SAAS,OAAO,KAAK;AAAA,4BAC5C,QAAQ,OAAO,QAAQ,SAAS,OAAO,KAAK;AAAA,UAC9D;AAAA,yCAC+B,wBAAwB;AAAA,sBAC3C,wBAAwB,gBAAgB;AAAA;AAAA;AAAA,2BAGnC;AAAA;AAAA,8BAEG;AAAA;AAAA,YAElB;AAAA,6BACiB;AAAA;AAAA;AAAA,mBAGV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAYjB;AACF;AAGA,SAAS,UAAU,UAAU,GAAG,YAAY,eAAe,MAAM;AAC/D,MAAI,YAAY,EAAE,MAAM;AACxB,MAAI,SAAS,EAAE,MAAM;AACrB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,aAAa,MAAM;AAC/B,aAAS,aAAa,MAAM;AAAA,EAC9B;AACA,QAAM,aAAa,qBAAqB,yBAAyB,MAAM;AACvE,QAAM,aAAa,EAAE,YAAY,QAAQ,WAAW,SAAS,KAAK,KAAK,SAAS,UAAU,EAAE;AAC5F,QAAM,UAAU,IAAI,iBAAiB,YAAY,YAAY,gBAAgB,IAAI;AACjF,QAAM,SAAS,CAAC,CAAC;AACjB,MAAI,gBAAgB,MAAM;AACxB,WAAO,KAAK,YAAY;AAAA,EAC1B;AACA,QAAM,SAAS,SAAS,gBAAgB,SAAS,QAAQ,OAAO;AAChE,MAAI,OAAO,MAAM,OAAO,GAAG;AACzB,WAAO;AAAA,EACT;AACA,QAAM,SAAS,UAAU,UAAU,GAAG,YAAY,MAAM;AACxD,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,SAAS,gBAAgB,UAAU,GAAG,YAAY,eAAe,MAAM;AACrE,QAAM,UAAU,gBAAgB,OAAO,aAAa,QAAQ,EAAE;AAC9D,QAAM,SAAS,QAAQ,QAAQ,SAAS;AACxC,QAAM,aAAa,qBAAqB,yBAAyB,MAAM;AACvE,QAAM,UAAU,IAAI,uBAAuB,SAAS,YAAY,YAAY,gBAAgB,IAAI;AAChG,QAAM,SAAS,gBAAgB,OAAO,CAAC,CAAC,IAAI,CAAC,GAAG,YAAY;AAC5D,QAAM,SAAS,SAAS,gBAAgB,SAAS,QAAQ,OAAO;AAChE,MAAI,OAAO,MAAM,WAAW,EAAE,MAAM,QAAQ;AAC1C,UAAM,SAAS,gBAAgB,UAAU,GAAG,YAAY,MAAM;AAC9D,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,UAAU,GAAG,MAAM,YAAY;AACtD,QAAM,OAAO,CAAC,IAAI;AAClB,uBAAqB,2BAA2B,QAAQ,WAAW,OAAO,CAAC,EAAE,YAAY,IAAI,WAAW,MAAM,CAAC,GAAG,MAAM,EAAE,MAAM,MAAM;AACtI,MAAI,CAAC,IAAI,EAAE,QAAQ,mBAAmB,KAAK,EAAE,MAAM,UAAU,GAAG;AAC9D,UAAM,0BAA0B,CAAC;AACjC,UAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,UAAM,YAAY,aAAa,QAAQ,SAAS;AAChD,QAAI,YAAY;AAChB,QAAI,WAAW;AACb,kBAAY,SAAS,aAAa,CAAC;AACnC,8BAAwB,KAAK,SAAS;AAAA,IACxC;AACA,UAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,UAAM,SAAS,aAAa,cAAc,WAAW;AACrD,UAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,4BAAwB,KAAK,GAAG;AAChC,UAAM,UAAU,UAAU,UAAU,KAAK,UAAU;AACnD,4BAAwB,KAAK,OAAO;AACpC,UAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACnG,4BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,WAAO;AAAA,EACT;AACA,SAAO,gBAAgB,UAAU,GAAG,UAAU;AAChD;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,uBAAqB,2BAA2B,UAAU,CAAC,KAAK,EAAE,GAAG,GAAG,MAAM,MAAM;AACpF,QAAM,MAAM,gBAAgB,UAAU,IAAI,KAAK,IAAI,KAAK;AACxD,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,uBAAqB,2BAA2B,UAAU,CAAC,KAAK,EAAE,GAAG,GAAG,MAAM,MAAM;AACpF,QAAM,MAAM,gBAAgB,UAAU,IAAI,KAAK,IAAI,KAAK;AACxD,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAM/B,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,oBAAoB;AAChC,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,oBAAoB;AAAA;AAAA;AAG/B,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,2BAA2B;AAAA;AAAA;AAGvC,IAAI,eAAe;AAAA;AAAA;AAAA,MAGb,kCAAkC;AAAA;AAAA;AAGxC,IAAI,SAAS,kBAAkB,EAAE,WAAW,OAAO,iBAAiB,aAAa,CAAC;AAClF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,oBAAoB;AAAA;AAAA;AAGhC,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,UAAU,UAAU,kBAAkB,mBAAmB,OAAO,sBAAsB,OAAO;AACvG,SAAK,gBAAgB,CAAC,GAAG;AACzB,QAAI,aAAa,SAAS,kBAAkB;AAC1C,YAAM,IAAI,MAAM,4CAA4C;AAAA,IAC9D;AACA,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,SAAK,cAAc,SAAS;AAC5B,UAAM,YAAY,aAAa;AAC/B,UAAM,0BAA0B,cAAc,SAAS,oBAAoB,SAAS,mBAAmB,SAAS;AAChH,UAAM,qBAAqB,SAAS,SAAS,mBAAmB,SAAS;AACzE,QAAI,sBAAsB;AAC1B,QAAI,CAAC,WAAW;AACd,4BAAsB;AAAA,IACxB;AACA,QAAI,kBAAkB;AACpB,YAAM,aAAa;AACnB,WAAK,WAAW;AAAA,sCACgB,iBAAiB;AAAA,mCACpB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAkBZ;AAAA,sBACZ;AAAA;AAAA;AAAA,kCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA,wBACZ;AAAA;AAAA;AAAA,oCAGY,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAUnB;AAAA;AAAA;AAAA,mCAGS,mBAAmB,sBAAsB,0BAA0B,qBAAqB,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAO7H;AAAA,IACF;AACA,UAAM,YAAY;AAClB,QAAI,cAAc,GAAG,YAAY,YAAY;AAC7C,QAAI,aAAa,OAAO;AACtB,oBAAc;AAAA,IAChB;AACA,UAAM,yBAAyB,KAAK,MAAM,cAAc,CAAC,IAAI;AAC7D,UAAM,2BAA2B,cAAc;AAC/C,UAAM,gBAAgB;AAAA,YACd;AAAA;AAAA;AAAA,wBAGY;AAAA;AAAA;AAGpB,SAAK,WAAW;AAAA,oCACgB,iBAAiB;AAAA,iCACpB,WAAW;AAAA,0CACF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAkBL;AAAA;AAAA;AAAA;AAAA,gCAIF;AAAA,oBACZ;AAAA;AAAA;AAAA,gCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,kCAIP;AAAA,uCACK;AAAA;AAAA;AAAA;AAAA,yCAIE;AAAA,6CACI;AAAA,6CACA;AAAA;AAAA;AAAA,cAG/B;AAAA;AAAA;AAAA,gCAGkB;AAAA,gBAChB,6BAA6B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAQ/B;AAAA,uBACS,6BAA6B;AAAA;AAAA;AAAA,yCAGX;AAAA;AAAA;AAAA;AAAA;AAAA,cAK3B;AAAA,uBACS,6BAA6B;AAAA;AAAA;AAAA,yCAGX;AAAA,6CACI;AAAA;AAAA;AAAA;AAAA,cAI/B;AAAA;AAAA;AAAA,oBAGM;AAAA;AAAA;AAAA,EAGlB;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,UAAU,UAAU,kBAAkB,mBAAmB,OAAO,sBAAsB,OAAO;AACvG,SAAK,gBAAgB,CAAC,GAAG;AACzB,QAAI,aAAa,SAAS,kBAAkB;AAC1C,YAAM,IAAI,MAAM,4CAA4C;AAAA,IAC9D;AACA,UAAM,cAAc,SAAS;AAC7B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,uBAAuB,SAAS;AACtC,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,WAAW,SAAS,QAAQ;AAClC,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,SAAK,cAAc,SAAS;AAC5B,UAAM,YAAY,aAAa;AAC/B,QAAI,sBAAsB;AAC1B,QAAI,CAAC,WAAW;AACd,4BAAsB;AAAA,IACxB;AACA,QAAI,kBAAkB;AACpB,YAAM,aAAa;AACnB,WAAK,WAAW;AAAA;AAAA,oBAEF,gBAAgB,iBAAiB;AAAA,mCAClB,aAAa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAkBzB;AAAA,sBACZ;AAAA;AAAA;AAAA,kCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA,wBACZ;AAAA;AAAA;AAAA,oCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,sCAIP;AAAA,0BACZ;AAAA;AAAA;AAAA,sCAGY,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,4BAUnB;AAAA;AAAA;AAAA,qCAGS,mBAAmB,sBAAsB,cAAc,SAAS,mBAAmB,SAAS,oBAAoB,SAAS,mBAAmB,SAAS,oBAAoB,UAAU,SAAS,oBAAoB,SAAS,mBAAmB,SAAS,oBAAoB,QAAQ,2BAA2B;AAAA,6BACpT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAQvB;AAAA,IACF;AACA,UAAM,YAAY;AAClB,QAAI,cAAc,GAAG,YAAY,YAAY;AAC7C,QAAI,aAAa,OAAO;AACtB,oBAAc;AAAA,IAChB;AACA,UAAM,yBAAyB,KAAK,MAAM,cAAc,CAAC,IAAI;AAC7D,UAAM,2BAA2B,cAAc;AAC/C,UAAM,gBAAgB;AAAA,YACd;AAAA;AAAA;AAAA,wBAGY;AAAA;AAAA;AAGpB,SAAK,WAAW;AAAA;AAAA,gBAEJ,gBAAgB,iBAAiB;AAAA,iCAChB,aAAa,WAAW;AAAA,0CACf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAmBL;AAAA;AAAA;AAAA;AAAA,gCAIF;AAAA,oBACZ;AAAA;AAAA;AAAA,gCAGY,SAAS;AAAA;AAAA;AAAA;AAAA,kCAIP;AAAA,oBACd;AAAA;AAAA;AAAA,kCAGc,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA,yCACK;AAAA;AAAA;AAAA;AAAA,+CAIM;AAAA,mDACI;AAAA,mDACA;AAAA;AAAA;AAAA,gBAGnC;AAAA;AAAA;AAAA,kCAGkB;AAAA,kBAChB,6BAA6B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gBAQ/B;AAAA,yBACS,6BAA6B;AAAA;AAAA;AAAA,+CAGP;AAAA;AAAA;AAAA;AAAA;AAAA,gBAK/B;AAAA,yBACS,6BAA6B;AAAA;AAAA;AAAA,+CAGP;AAAA,mDACI;AAAA;AAAA;AAAA;AAAA,gBAInC;AAAA;AAAA;AAAA,sBAGM;AAAA;AAAA;AAAA;AAAA,EAIpB;AACF;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,oBAAkB,GAAG,SAAS;AAC9B,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,iBAAiB,IAAI,cAAc,UAAU,OAAO,KAAK;AAC/D,SAAO,SAAS,gBAAgB,gBAAgB,CAAC,CAAC,GAAG,SAAS;AAChE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACxE,QAAM,YAAY,CAAC,GAAG,GAAG,CAAC;AAC1B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,iBAAiB,UAAU;AAClI,QAAM,iBAAiB,IAAI,cAAc,UAAU,OAAO,KAAK;AAC/D,SAAO,SAAS,gBAAgB,gBAAgB,CAAC,CAAC,GAAG,SAAS;AAChE;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,IAAI;AAC1B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,UAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,UAAM,gBAAgB,KAAK,eAAe;AAC1C,SAAK,WAAW;AAAA,iCACa,WAAW;AAAA,0CACF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAcV;AAAA,oBACZ;AAAA,gDAC4B;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKX;AAAA,mBACf;AAAA,kDAC+B;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAc7C;AACF;AACA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,IAAI;AAC1B,SAAK,cAAc,SAAS;AAC5B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,uBAAuB,SAAS;AACtC,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,WAAW,uBAAuB,IAAI,SAAS,QAAQ;AAC7D,UAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,UAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,UAAM,gBAAgB,KAAK,cAAc,eAAe;AACxD,SAAK,WAAW;AAAA,iCACa,aAAa,WAAW;AAAA,0CACf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAiBV;AAAA,oBACZ;AAAA,gDAC4B;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKX;AAAA,sBACZ;AAAA,kDAC4B;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAMX;AAAA,wBACZ;AAAA,oDAC4B;AAAA;AAAA,wCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAe/C;AACF;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,IAAI;AACV,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY,CAAC,GAAG,GAAG,CAAC;AAC1B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,QAAM,yBAAyB,IAAI,yBAAyB,QAAQ;AACpE,SAAO,SAAS,gBAAgB,wBAAwB,CAAC,EAAE,GAAG,EAAE,KAAK;AACvE;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,IAAI;AACV,oBAAkB,CAAC,IAAI,MAAM,GAAG,aAAa;AAC7C,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,KAAK,IAAI;AAC3C,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,IAAI;AAC7F,QAAM,yBAAyB,IAAI,yBAAyB,QAAQ;AACpE,SAAO,SAAS,gBAAgB,wBAAwB,CAAC,EAAE,GAAG,EAAE,KAAK;AACvE;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,EAAE,YAAY,WAAW,IAAI;AACnC,SAAO,gBAAgB,EAAE,GAAG,GAAG,YAAY,YAAY,SAAS,SAAS,CAAC;AAC5E;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,WAAW,eAAe,aAAa,YAAY,iBAAiB;AACtF,SAAK,cAAc,CAAC;AACpB,SAAK,gBAAgB,CAAC,KAAK,QAAQ,UAAU;AAC7C,yBAAqB,2BAA2B,QAAQ,SAAS;AACjE,yBAAqB,2BAA2B,QAAQ,aAAa;AACrE,QAAI,gBAAgB;AACpB,QAAI,eAAe,MAAM;AACvB,2BAAqB,2BAA2B,QAAQ,WAAW;AACnE,WAAK,cAAc,KAAK,QAAQ;AAChC,sBAAgB;AAAA,IAClB;AACA,QAAI,eAAe;AACnB,QAAI,cAAc,MAAM;AACtB,2BAAqB,2BAA2B,QAAQ,UAAU;AAClE,WAAK,cAAc,KAAK,OAAO;AAC/B,qBAAe;AAAA,IACjB;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKK;AAAA,wBACD;AAAA,2DACmC;AAAA;AAAA;AAAA;AAAA,EAIzD;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,QAAQ,WAAW,eAAe,aAAa,YAAY,iBAAiB;AACtF,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,gBAAgB,CAAC,KAAK,QAAQ,UAAU;AAC7C,yBAAqB,2BAA2B,QAAQ,SAAS;AACjE,yBAAqB,2BAA2B,QAAQ,aAAa;AACrE,QAAI,gBAAgB;AACpB,QAAI,eAAe,MAAM;AACvB,2BAAqB,2BAA2B,QAAQ,WAAW;AACnE,WAAK,cAAc,KAAK,QAAQ;AAChC,sBAAgB;AAAA,IAClB;AACA,QAAI,eAAe;AACnB,QAAI,cAAc,MAAM;AACtB,2BAAqB,2BAA2B,QAAQ,UAAU;AAClE,WAAK,cAAc,KAAK,OAAO;AAC/B,qBAAe;AAAA,IACjB;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA,wBAEI;AAAA,uBACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yDAMkC;AAAA;AAAA;AAAA;AAAA;AAAA,EAKvD;AACF;AAGA,IAAI,aAAa,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACzD,QAAM,EAAE,GAAG,MAAM,OAAO,UAAU,QAAQ,OAAOS,QAAO,IAAI;AAC5D,eAAa,OAAO,MAAM,MAAM,WAAW,SAAS,MAAM,QAAQ,MAAM,8EAA8E;AACtJ,eAAa,OAAO,UAAU,QAAQ,MAAM,MAAM,WAAW,OAAO,MAAM,QAAQ,MAAM,4EAA4E;AACpK,eAAa,OAAOA,WAAU,QAAQ,MAAM,MAAM,WAAWA,QAAO,MAAM,QAAQ,MAAM,2EAA2E;AACnK,MAAI,EAAE,gBAAgB,IAAI;AAC1B,MAAI,mBAAmB,MAAM;AAC3B,sBAAkB;AAAA,EACpB;AACA,QAAM,cAAc,CAAC,GAAG,OAAO,QAAQ;AACvC,MAAI,cAAc;AAClB,MAAI,UAAU,MAAM;AAClB,kBAAc,OAAO;AACrB,gBAAY,KAAK,MAAM;AAAA,EACzB;AACA,MAAI,aAAa;AACjB,MAAIA,WAAU,MAAM;AAClB,iBAAaA,QAAO;AACpB,gBAAY,KAAKA,OAAM;AAAA,EACzB;AACA,QAAM,UAAU,IAAI,EAAE,QAAQ,0BAA0B,IAAI,IAAI,uBAAuB,EAAE,OAAO,MAAM,OAAO,SAAS,OAAO,aAAa,YAAY,eAAe,IAAI,IAAI,iBAAiB,EAAE,OAAO,MAAM,OAAO,SAAS,OAAO,aAAa,YAAY,eAAe;AAC5Q,QAAM,SAAS,SAAS,gBAAgB,SAAS,aAAa,YAAY,GAAG,KAAK;AAClF,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,QAAQ;AAC9B,SAAK,cAAc;AACnB,SAAK,OAAO,SAAS;AACrB,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,YAAY,KAAK,MAAM,MAAM,MAAM,CAAC;AAC5E,UAAM,eAAe,UAAU,KAAK,IAAI;AACxC,QAAIgB;AACJ,UAAM,WAAW,SAAS,IAAI,CAAC,GAAG,OAAO;AACvC,aAAO,aAAa,OAAO,eAAe,gBAAgB,OAAO;AAAA,IACnE,CAAC;AACD,IAAAA,QAAO;AAAA,UACD;AAAA,UACA;AAAA,UACA,SAAS,KAAK,IAAI;AAAA;AAExB,SAAK,WAAW;AAAA;AAAA,UAEVA;AAAA,8BACoB;AAAA;AAAA;AAAA,EAG5B;AACF;AACA,IAAI,SAAS,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAC1C,SAAS,UAAU,MAAM;AACvB,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT,WAAW,QAAQ,GAAG;AACpB,WAAO,OAAO,MAAM,GAAG,IAAI,EAAE,IAAI,CAAC,MAAM,eAAe,CAAC,EAAE,KAAK,GAAG;AAAA,EACpE,OAAO;AACL,UAAM,MAAM,oBAAoB,2BAA2B;AAAA,EAC7D;AACF;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,QAAQ;AAC9B,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,OAAO,SAAS;AACrB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,YAAY,KAAK,MAAM,MAAM,MAAM,CAAC;AAC5E,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,UAAU,YAAY,UAAU,KAAK,IAAI;AAC/C,UAAM,YAAY,YAAY,aAAa,KAAK,IAAI;AACpD,UAAM,YAAY,KAAK,SAAS,IAAI,cAAc,QAAQ,UAAU,MAAM,EAAE,EAAE,KAAK;AACnF,UAAM,aAAa,wBAAwB,UAAU,KAAK,OAAO;AACjE,UAAM,WAAW;AAAA,mBACF;AAAA,cACL,QAAQ,KAAK,OAAO,QAAQ,SAAS,KAAK,OAAO;AAAA,YACnD,UAAU,KAAK,OAAO;AAAA,qBACb;AAAA,YACT,UAAU,KAAK,OAAO;AAAA;AAAA;AAG9B,UAAM,WAAW,KAAK,SAAS,IAAI,KAAK;AAAA,UAClC,QAAQ,KAAK,OAAO;AAAA,cAChB,QAAQ,KAAK,OAAO,QAAQ,SAAS,KAAK,OAAO;AAAA,YACnD,UAAU,KAAK,OAAO;AAAA,qBACb;AAAA,gBACL,QAAQ,KAAK,OAAO,QAAQ,SAAS,KAAK,OAAO;AAAA,cACnD,UAAU,KAAK,OAAO;AAAA,uBACb;AAAA;AAAA;AAAA;AAInB,UAAM,iBAAiB,KAAK,QAAQ,IAAI;AAAA,cAC9B,SAAS,SAAS,IAAI,CAAC,GAAG,OAAO,SAAS,KAAK,EAAE,KAAK,QAAQ,SAAS,IAAI,CAAC,GAAG,OAAO,GAAG,UAAU,SAAS,QAAQ,eAAe,MAAM,EAAE,KAAK,IAAI;AAC9J,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,UACA;AAAA,UACA;AAAA;AAAA,UAEA;AAAA,UACA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,SAAS,aAAa,GAAG,OAAOtC,OAAM,UAAU;AAC9C,QAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,QAAM,KAAK,SAAS,eAAeA,OAAM,EAAE,KAAK;AAChD,QAAM,aAAa,SAAS,QAAQ,IAAI,GAAG,MAAM;AACjD,SAAO,OAAO,YAAY,QAAQ;AAClC,aAAW,WAAW;AACtB,aAAW,QAAQA;AACnB,aAAW,QAAQ,EAAE;AACrB,MAAI,aAAa,mBAAmB,kBAAkB,OAAO,aAAa,eAAe,EAAE,KAAK,CAAC;AACjG,MAAI,SAAS,OAAO;AAClB,kBAAc,SAAS,MAAM;AAAA,EAC/B;AACA,aAAW,QAAQ;AAAA,IACjB;AAAA,IACA,YAAY,SAAS,SAAS,SAAS,MAAM,cAAc,EAAE;AAAA,EAC/D;AACA,QAAM,WAAW,SAAS,aAAa,IAAI,WAAW,MAAM,UAAU,KAAK;AAC3E,WAAS,aAAa,IAAI,WAAW,MAAM,YAAY,WAAW,CAAC;AACnE,SAAO;AACT;AACA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,MAAAA,MAAK,IAAI;AACxB,QAAM,CAAC,QAAQ,KAAK,IAAI,mBAAmB,iBAAiB,GAAG,OAAOA,KAAI;AAC1E,qBAAmB,kBAAkB,GAAG,QAAQ,KAAK;AACrD,MAAI,aAAa,cAAc,KAAK,MAAM,GAAG;AAC3C,WAAO,SAAS,eAAe,OAAO,EAAE,OAAO,CAAC,CAAC;AAAA,EACnD;AACA,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,UAAU;AAC5D,UAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,UAAM,YAAY,aAAa,SAAS,QAAQ,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AAC/E,WAAO,SAAS,eAAe,OAAO,EAAE,OAAO,SAAS;AAAA,EAC1D;AACA,QAAM,EAAE,SAAS,IAAI,SAAS,QAAQ,IAAI,EAAE,MAAM;AAClD,QAAM,cAAc,mBAAmB,iBAAiB,EAAE,OAAO,QAAQ,KAAK;AAC9E,MAAI,YAAY,CAAC,aAAa;AAC5B,UAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,mBAAmB,KAAK,IAAI,IAAI,aAAa,KAAK;AACrH,UAAM,eAAe,CAAC,MAAM;AAC5B,WAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,YAAY;AAAA,EACrE;AACA,WAAS,YAAY,EAAE,MAAM;AAC7B,SAAO,aAAa,GAAG,QAAQ,OAAO,QAAQ;AAChD;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,CAAC,SAAS;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,sEAAsE;AACrH,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,WAAW,qBAAqB,YAAY,EAAE,OAAO,YAAY,KAAK;AAC5E,QAAM,WAAW,qBAAqB,YAAY,SAAS,QAAQ,WAAW,MAAM;AACpF,QAAM,mBAAmB,qBAAqB,oBAAoB,EAAE,OAAO,YAAY,KAAK;AAC5F,QAAM,mBAAmB,qBAAqB,oBAAoB,OAAO,WAAW,MAAM;AAC1F,QAAM,YAAY,qBAAqB,aAAa,kBAAkB,OAAO,WAAW,MAAM;AAC9F,QAAM,YAAY,CAAC;AACnB,QAAM,uBAAuB,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACtG,QAAM,yBAAyB,WAAW,EAAE,QAAQ,EAAE,GAAG,qBAAqB,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AAC/H,QAAM,wBAAwB,SAAS;AAAA,IACrC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,IACpC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,iBAAiB;AAAA,EACnC,CAAC;AACD,QAAM,SAAS,OAAO;AAAA,IACpB,QAAQ,EAAE,GAAG,sBAAsB;AAAA,IACnC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,kBAAkB,MAAM,UAAU;AAAA,EACpD,CAAC;AACD,YAAU,KAAK,oBAAoB;AACnC,YAAU,KAAK,sBAAsB;AACrC,YAAU,KAAK,qBAAqB;AACpC,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAAA,MAAK,IAAI;AACjB,QAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,QAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,QAAM,UAAU,gBAAgB,OAAO,aAAa,QAAQ,OAAO,QAAQ,OAAOA,KAAI;AACtF,SAAO,SAAS,eAAe,CAACA,KAAI,GAAG,QAAQ,OAAO,OAAO;AAC/D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,IAAI,GAAG,IAAI;AACnB,QAAM,SAAS,SAAS,SAAS,GAAG,MAAM;AAC1C,QAAM,SAAS,SAAS,SAAS,GAAG,MAAM;AAC1C,QAAM,iBAAiB,qBAAqB,2BAA2B,MAAM,KAAK,MAAM,GAAG,MAAM,KAAK,MAAM,CAAC;AAC7G,SAAO,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,SAAS,WAAW,KAAK,cAAc,CAAC;AAClG;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY;AAChB,IAAI,YAAY,kBAAkB,EAAE,WAAW,WAAW,eAAe,iBAAiB,OAAO,OAAO,CAAC;AACzG,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,SAAS,QAAQ,IAAI,OAAO,MAAM;AACpD,SAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,mBAAmB,KAAK,GAAG,SAAS,SAAS,CAAC;AAC1F;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS;AACb,SAAS,IAAI,QAAQ,UAAU;AAC7B,QAAM,UAAU,IAAI,eAAe,OAAO,OAAO,MAAM;AACvD,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO;AAClE,SAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC3E;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,UAAU,aAAa;AACzB,QAAI,EAAE,UAAU,aAAa;AAC3B,aAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACvD;AACA,UAAM,cAAc,MAAM,EAAE,KAAK;AACjC,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AACtF,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,QAAQ,MAAM,YAAY,GAAG,SAAS,SAAS,CAAC;AAC1F,gBAAY,QAAQ;AACpB,aAAS,8BAA8B,MAAM;AAC7C,WAAO;AAAA,EACT;AACA,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,aAAS,8BAA8B,QAAQ;AAC/C,WAAO;AAAA,EACT;AACA,MAAI,CAAC,aAAa,gBAAgB,EAAE,OAAO,KAAK,GAAG;AACjD,UAAM,SAAS,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7D,WAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,MAAM;AAAA,EAC7D;AACA,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,SAAS,SAAS,QAAQ,IAAI,EAAE,MAAM,EAAE;AAC9C,UAAM,CAAC,aAAa,YAAY,UAAU,IAAI,YAAY,QAAQ,EAAE,OAAO,EAAE,OAAO,KAAK;AACzF,WAAO,SAAS,eAAe,aAAa,YAAY,UAAU;AAAA,EACpE;AACA,MAAI,UAAU,SAAS;AACrB,WAAO,IAAI,GAAG,QAAQ;AAAA,EACxB;AACA,MAAI,UAAU,QAAQ;AACpB,UAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,QAAQ,aAAa,uBAAuB,QAAQ,CAAC,CAAC;AAC1G,UAAM,eAAe,EAAE,GAAG,GAAG,GAAG,gBAAgB;AAChD,UAAM,SAAS,UAAU,EAAE,QAAQ,cAAc,SAAS,SAAS,CAAC;AACpE,aAAS,8BAA8B,eAAe;AACtD,WAAO;AAAA,EACT;AACA,QAAM,IAAI,MAAM,iCAAiC,EAAE,YAAY,OAAO;AACxE;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,MAAM,iBAAiB,MAAM,eAAe,YAAY,CAAC;AACnG,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,QAAQ;AAClB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,MAChC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAYlB;AACF;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,QAAQ;AAClB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,MAChC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAYlB;AACF;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,cAAc,aAAa,IAAI;AACvC,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,iBAAiB,GAAG;AACpC,cAAU,IAAI,kBAAkB,EAAE,KAAK;AAAA,EACzC,OAAO;AACL,cAAU,IAAI,YAAY,EAAE,KAAK;AAAA,EACnC;AACA,QAAM,eAAe,CAAC,CAAC,YAAY,GAAG,CAAC,YAAY,CAAC;AACpD,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,YAAY;AACrE;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,QAAQ,MAAM;AACpC,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAclB;AACF;AAGA,SAAS,+BAA+B,eAAe,aAAa;AAClE,SAAO;AAAA,IACL,QAAQ,YAAY;AAAA,IACpB,OAAO,YAAY;AAAA,IACnB,OAAO,cAAc;AAAA,EACvB;AACF;AACA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,QAAM,UAAU,IAAI,kBAAkB,EAAE,KAAK;AAC7C,QAAM,gBAAgB;AAAA,IACpB,+BAA+B,GAAG,MAAM,mBAAmB,IAAI;AAAA,IAC/D,+BAA+B,GAAG,MAAM,mBAAmB,IAAI;AAAA,EACjE;AACA,SAAO,SAAS,gBAAgB,SAAS,eAAe,cAAc,GAAG,KAAK;AAChF;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,QAAQ;AAClB,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc,qBAAqB,gBAAgB,QAAQ,CAAC;AACjE,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,UAAM,UAAU,IAAI,MAAM,OAAO,SAAS,CAAC;AAC3C,YAAQ,KAAK,OAAO,GAAG;AACvB,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,cAAQ,MAAM,QAAQ,KAAK,KAAK,OAAO,IAAI;AAAA,IAC7C;AACA,UAAM,WAAW,CAAC,YAAY,QAAQ,+BAA+B;AACrE,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,YAAM,QAAQ,QAAQ,KAAK;AAC3B,eAAS,KAAK,iBAAiB,QAAQ,sBAAsB,aAAa,UAAU;AAAA,IACtF;AACA,UAAM,YAAY,QAAQ;AAC1B,UAAM,YAAY,QAAQ,QAAQ,SAAS;AAC3C,aAAS,KAAK,sBAAsB,oBAAoB,cAAc;AACtE,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAMV,SAAS,KAAK,YAAY;AAAA;AAAA;AAAA,EAGlC;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,QAAQ,MAAM;AACxB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc,qBAAqB,gBAAgB,QAAQ,IAAI;AACpE,UAAM,QAAQ,KAAK;AACnB,UAAM,OAAO,MAAM;AACnB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,UAAU,YAAY,UAAU,IAAI;AAC1C,UAAM,WAAW,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,EAAE,MAAM,GAAG,IAAI;AAC7D,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,UAAM,UAAU,IAAI,MAAM,OAAO,SAAS,CAAC;AAC3C,YAAQ,KAAK,OAAO,GAAG;AACvB,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,cAAQ,MAAM,QAAQ,KAAK,KAAK,OAAO,IAAI;AAAA,IAC7C;AACA,UAAM,UAAU,SAAS;AACzB,UAAM,eAAe,SAAS,MAAM,EAAE;AACtC,UAAM,cAAc,SAAS,KAAK;AAClC,QAAI,kBAAkB,OAAO,aAAa,QAAQ;AAAA;AAAA,oBAElC,sBAAsB,aAAa,KAAK;AAAA;AAExD,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,YAAM,SAAS,QAAQ,KAAK;AAC5B,yBAAmB;AAAA,cACX,aAAa,QAAQ,WAAW,cAAc,QAAQ,KAAK;AAAA;AAAA,kBAEvD,MAAM,gBAAgB,UAAU,SAAS,MAAM;AAAA,mBAC9C,gBAAgB,cAAc,SAAS,MAAM;AAAA;AAAA,IAE5D;AACA,UAAM,YAAY,QAAQ;AAC1B,UAAM,QAAQ,QAAQ,QAAQ,SAAS;AACvC,uBAAmB;AAAA;AAAA,gBAEP,aAAa,gBAAgB,UAAU,SAAS,KAAK;AAAA,iBACpD,gBAAgB,cAAc,SAAS,KAAK;AACzD,SAAK,WAAW;AAAA,uBACG,SAAS,IAAI,CAAC,MAAM,SAAS,CAAC;AAAA,UAC3C;AAAA;AAAA;AAAA;AAAA,UAIA;AAAA,sCAC4B;AAAA;AAAA,UAE5B,QAAQ,OAAO,QAAQ,QAAQ,OAAO;AAAA,cAClC,QAAQ,OAAO,QAAQ,MAAM,OAAO;AAAA,gCAClB;AAAA;AAAA;AAAA,UAGtB,QAAQ,OAAO,QAAQ,QAAQ,OAAO;AAAA,cAClC,QAAQ,OAAO,QAAQ,MAAM,OAAO;AAAA,gCAClB;AAAA;AAAA;AAAA,UAGtB,QAAQ,OAAO,QAAQ,QAAQ,OAAO;AAAA,cAClC,QAAQ,OAAO,QAAQ,MAAM,OAAO;AAAA,cACpC,QAAQ,OAAO,QAAQ,MAAM,OAAO;AAAA,gCAClB;AAAA;AAAA;AAAA;AAAA;AAAA,EAK9B;AACF;AACA,SAAS,gBAAgB,UAAU,SAAS,OAAO;AACjD,QAAM,aAAa,SAAS,QAAQ,OAAO;AAC3C,QAAM,MAAM,SAAS,IAAI,CAAC,GAAG,QAAQ;AACnC,QAAI,QAAQ,YAAY;AACtB,aAAO,GAAG,OAAO;AAAA,IACnB,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF,CAAC;AACD,SAAO,IAAI,KAAK;AAClB;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,SAAS,QAAQ,IAAI,OAAO,MAAM;AACpD,SAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,mBAAmB,KAAK,GAAG,SAAS,SAAS,CAAC;AAC1F;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,QAAQ,MAAM,UAAU;AAC3C,QAAM,QAAQ,OAAO,GAAG;AACxB,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACpF,UAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACpF,UAAM,eAAe,YAAY,OAAO,MAAM,QAAQ;AACtD,UAAM,eAAe,YAAY,OAAO,MAAM,QAAQ;AACtD,UAAM,UAAU,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AAClG,UAAM,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAChE,UAAM,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAChE,aAAS,8BAA8B,YAAY;AACnD,aAAS,8BAA8B,YAAY;AACnD,WAAO;AAAA,EACT;AACA,MAAI,WAAW,SAAS,mBAAmB,MAAM;AACjD,MAAI,UAAU,UAAU;AACtB,eAAW;AAAA,EACb;AACA,MAAI,UAAU;AACZ,UAAM,aAAa,OAAO,IAAI,CAAC,OAAO;AACpC,YAAM,YAAY,aAAa,cAAc,GAAG,MAAM,MAAM,IAAI,CAAC;AACjE,YAAM,QAAQ,CAAC,IAAI,SAAS;AAC5B,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,IAC5E,CAAC;AACD,UAAM,kBAAkB,WAAW,IAAI,CAAC,OAAO;AAC7C,aAAO,EAAE,MAAM,SAAS,SAAS,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM;AAAA,IAC/D,CAAC;AACD,UAAM,YAAY,qBAAqB,gBAAgB,WAAW,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,CAAC;AAC1F,UAAM,eAAe,WAAW,GAAG,MAAM,OAAO;AAChD,UAAM,UAAU,cAAc,iBAAiB,WAAW,OAAO,YAAY;AAC7E,UAAM,gBAAgB,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AAC7F,UAAM,UAAU,SAAS,eAAe,eAAe,OAAO,OAAO;AACrE,eAAW,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACrE,WAAO;AAAA,EACT;AACA,QAAM,sBAAsB,IAAI,EAAE,UAAU,8BAA8B;AAC1E,MAAI,OAAO,SAAS,qBAAqB;AACvC,UAAM,gBAAgB,CAAC;AACvB,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM,qBAAqB;AAC9D,YAAM,WAAW,OAAO,MAAM,IAAI,KAAK,mBAAmB;AAC1D,oBAAc,KAAK,YAAY,UAAU,MAAM,QAAQ,CAAC;AAAA,IAC1D;AACA,UAAM,UAAU,YAAY,eAAe,MAAM,QAAQ;AACzD,eAAW,MAAM,eAAe;AAC9B,eAAS,8BAA8B,EAAE;AAAA,IAC3C;AACA,WAAO;AAAA,EACT;AACA,MAAI,IAAI,EAAE,QAAQ,6BAA6B,KAAK,OAAO,GAAG,MAAM,SAAS,GAAG;AAC9E,UAAM,WAAW,IAAI,oBAAoB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AAC3E,WAAO,SAAS,gBAAgB,UAAU,QAAQ,KAAK;AAAA,EACzD;AACA,QAAM,EAAE,WAAW,SAAS,IAAI,iBAAiB,QAAQ,MAAM,QAAQ;AACvE,QAAM,UAAU,IAAI,cAAc,UAAU,IAAI,CAAC,OAAO,GAAG,KAAK,CAAC;AACjE,QAAM,SAAS,SAAS,gBAAgB,SAAS,WAAW,KAAK;AACjE,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AACxG,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,SAAS,iBAAiB,QAAQ,MAAM,UAAU;AAChD,QAAM,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AACxF,QAAM,YAAY,OAAO,IAAI,CAAC,MAAM,SAAS;AAAA,IAC3C,QAAQ,EAAE,EAAE;AAAA,IACZ,OAAO,EAAE,OAAO,CAAC,IAAI,aAAa,cAAc,EAAE,MAAM,MAAM,IAAI,CAAC,CAAC,EAAE;AAAA,IACtE,SAAS;AAAA,EACX,CAAC,CAAC;AACF,SAAO,EAAE,WAAW,SAAS;AAC/B;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,QAAQ,aAAa,eAAe,MAAM,OAAO,GAAG,KAAK,EAAE;AACjE,QAAM,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,KAAK;AACzF,MAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,WAAO,SAAS,eAAe,UAAU,OAAO,GAAG,OAAO,CAAC,CAAC;AAAA,EAC9D;AACA,QAAM,UAAU,OAAO,OAAO,CAAC,OAAO,aAAa,cAAc,GAAG,KAAK,IAAI,CAAC;AAC9E,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,uBAAqB,uBAAuB,QAAQ,KAAK;AACzD,SAAO,YAAY,SAAS,OAAO,QAAQ;AAC7C;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,4BAA4B,OAAO,oBAAoB,OAAO;AACvH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,SAAS;AAC5B,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,wBAAwB,KAAK,MAAM,SAAS,aAAa,CAAC,IAAI;AACpE,UAAM,0BAA0B,SAAS,aAAa;AACtD,UAAM,iBAAiB,SAAS,eAAe;AAC/C,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,aAAa,iBAAiB,IAAI;AACxC,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,2BAA2B;AAC7B,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,WAAW,mBAAmB;AAC5B,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,OAAO;AACL,4BAAoB;AAAA;AAAA,cAEd;AAAA;AAAA;AAAA,MAGR;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,2BAA2B;AAC7B,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,mBAAmB;AACrB,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA,oCAE4B,iBAAiB;AAAA,iCACpB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,0BAKlB;AAAA;AAAA;AAAA,2BAGC,mBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAOd;AAAA,qCACK;AAAA;AAAA,gCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,kCAIP;AAAA,uCACK;AAAA;AAAA,kCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBAQhB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kBAmBF,4BAA4B;AAAA;AAAA,oBAE1B;AAAA;AAAA,0CAEsB;AAAA,mCACP;AAAA;AAAA;AAAA,kCAGD;AAAA,mCACC;AAAA;AAAA;AAAA,yBAGV,4BAA4B;AAAA;AAAA,+BAEtB;AAAA,+BACA;AAAA;AAAA;AAAA,oBAGX;AAAA;AAAA,wCAEoB;AAAA,wCACA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKR;AAAA,gCACA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKP,4BAA4B;AAAA;AAAA,+BAEtB;AAAA,+BACA;AAAA,+BACA;AAAA;AAAA;AAAA,oBAGX;AAAA;AAAA,wCAEoB;AAAA,wCACA;AAAA,wCACA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKR;AAAA,gCACA;AAAA,gCACA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAUtB;AAAA,UACA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,SAAS;AAC5B,UAAM,WAAW,SAAS,QAAQ;AAClC,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,wBAAwB,KAAK,MAAM,SAAS,aAAa,CAAC,IAAI;AACpE,UAAM,0BAA0B,SAAS,aAAa;AACtD,SAAK,WAAW;AAAA,oCACgB,gBAAgB,iBAAiB;AAAA,iCACpC,aAAa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAgBzB;AAAA,qCACK;AAAA;AAAA,gCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,kCAIP;AAAA,uCACK;AAAA;AAAA,kCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP;AAAA,yCACK;AAAA;AAAA,oCAEL,SAAS;AAAA;AAAA;AAAA;AAAA,sCAIP;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBAiBlB,4BAA4B;AAAA;AAAA,4CAEJ;AAAA,qCACP;AAAA,2BACV,4BAA4B;AAAA;AAAA,4CAEX;AAAA,4CACA;AAAA;AAAA;AAAA,qCAGP;AAAA,qCACA;AAAA;AAAA;AAAA,2BAGV,4BAA4B;AAAA;AAAA,4CAEX;AAAA,4CACA;AAAA,4CACA;AAAA;AAAA;AAAA,qCAGP;AAAA,qCACA;AAAA,qCACA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUnC;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO,oBAAoB,OAAO;AAChH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,QAAQ,MAAM,QAAQ;AAAA,MAC9B,EAAE,MAAM,WAAW,MAAM,QAAQ;AAAA,MACjC,EAAE,MAAM,aAAa,MAAM,QAAQ;AAAA,MACnC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc,SAAS;AAC5B,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe;AACrB,QAAI,WAAW;AAAA;AAAA;AAGf,aAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAY;AAAA,yBACO,IAAI;AAAA,wBACL,IAAI;AAAA,yBACH,IAAI,IAAI;AAAA,wBACT,IAAI,IAAI;AAAA,oBACZ;AAAA,IAChB;AACA,gBAAY;AAAA,2BACW;AAAA,8BACG,SAAS;AAAA;AAEnC,aAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAY;AAAA,oBACE,IAAI;AAAA,oBACJ,IAAI;AAAA,oBACJ,IAAI,IAAI;AAAA,oBACR,IAAI,IAAI;AAAA,eACb;AAAA,IACX;AACA,gBAAY;AAAA;AAAA;AAAA;AAIZ,aAAS,SAAS,GAAG,UAAU,eAAe,KAAK,GAAG,UAAU;AAC9D,YAAM,WAAW,SAAS;AAC1B,kBAAY;AAAA,6BACW,WAAW;AAAA;AAElC,UAAI,gBAAgB,GAAG;AACrB,YAAI,WAAW,aAAa;AAC1B,cAAI,UAAU,MAAM,GAAG;AACrB,wBAAY;AAAA;AAAA,uEAE+C;AAAA,4BAC3C;AAAA;AAAA;AAAA;AAAA;AAAA,8BAKE;AAAA;AAAA,4BAEF;AAAA;AAAA;AAGhB,gBAAI,kBAAkB,KAAK,WAAW,GAAG;AACvC,0BAAY;AAAA,qBACL,0BAA0B,WAAW,gBAAgB;AAAA;AAAA,YAE9D,OAAO;AACL,0BAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAYD,uCAAuC;AAAA;AAAA,yBAEvC,oCAAoC;AAAA;AAAA;AAAA,YAGjD;AAAA,UACF,OAAO;AACL,wBAAY;AAAA,2DACmC;AAAA,4BAC/B;AAAA;AAAA,8BAEE;AAAA;AAAA,4BAEF;AAAA;AAAA;AAAA,qBAGP,qBAAqB;AAAA;AAAA,UAEhC;AACA,cAAI,WAAW,IAAI,aAAa;AAC9B,kBAAM,kBAAkB,UAAU,MAAM,IAAI,aAAa,kBAAkB,aAAa,IAAI;AAC5F,gBAAI,gBAAgB,MAAM,KAAK,UAAU,MAAM,KAAK,gBAAgB,MAAM,KAAK,UAAU,MAAM,GAAG;AAChG,0BAAY;AAAA,wDAC8B;AAAA;AAAA,yEAEiB,WAAW;AAAA,8BACtD,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKT,WAAW;AAAA;AAAA,8BAEb,WAAW;AAAA;AAAA;AAG3B,kBAAI,gBAAgB,GAAG;AACrB,4BAAY;AAAA;AAAA;AAAA;AAAA,0BAIF,WAAW,gCAAgC,WAAW;AAAA;AAAA,0BAEtD,WAAW,6BAA6B,WAAW;AAAA;AAAA;AAAA,cAG/D,OAAO;AACL,4BAAY;AAAA,yBACH,WAAW,mBAAmB,uBAAuB,WAAW;AAAA;AAAA,cAE3E;AAAA,YACF,OAAO;AACL,kBAAI,oBAAoB,GAAG;AACzB,4BAAY;AAAA,yBACH,WAAW,cAAc;AAAA;AAAA,cAEpC,OAAO;AACL,4BAAY;AAAA,uCACW;AAAA;AAAA,2EAEoC,WAAW;AAAA,gCACtD,WAAW;AAAA;AAAA,kCAET,WAAW;AAAA;AAAA,gCAEb,WAAW;AAAA;AAAA;AAAA,yBAGlB,WAAW,cAAc,WAAW;AAAA;AAAA,cAE/C;AAAA,YACF;AAAA,UACF;AAAA,QACF;AAAA,MACF,OAAO;AACL,YAAI,WAAW,aAAa;AAC1B,cAAI,UAAU,MAAM,GAAG;AACrB,wBAAY;AAAA;AAAA,sEAE8C;AAAA,4BAC1C;AAAA;AAAA;AAAA;AAAA,8BAIE;AAAA;AAAA,4BAEF;AAAA;AAAA;AAAA,kEAGsC,WAAW;AAAA,4BACjD,WAAW;AAAA;AAAA;AAAA;AAAA,8BAIT,WAAW;AAAA;AAAA,4BAEb,WAAW;AAAA;AAAA;AAAA,qBAGlB,0BAA0B,uBAAuB,WAAW;AAAA;AAErE,gBAAI,WAAW,IAAI,aAAa;AAC9B,0BAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uBAMH,WAAW,mBAAmB,WAAW;AAAA;AAAA,YAEpD;AAAA,UACF,OAAO;AACL,wBAAY;AAAA,0DACkC;AAAA,4BAC9B;AAAA;AAAA,8BAEE;AAAA;AAAA,4BAEF;AAAA;AAAA;AAAA;AAAA,sEAI0C,WAAW;AAAA,4BACrD,WAAW;AAAA;AAAA,8BAET,WAAW;AAAA;AAAA,4BAEb,WAAW;AAAA;AAAA;AAAA,qBAGlB;AAAA,4BACO,uBAAuB,WAAW;AAAA;AAElD,gBAAI,WAAW,IAAI,aAAa;AAC9B,0BAAY;AAAA,uBACH,WAAW,mBAAmB,uBAAuB,WAAW;AAAA;AAAA,YAE3E;AAAA,UACF;AAAA,QACF;AAAA,MACF;AACA,UAAI,WAAW,aAAa;AAC1B,oBAAY;AAAA,gCACY;AAAA,4BACJ;AAAA,2BACD,SAAS;AAAA,8BACN;AAAA;AAAA;AAGtB,YAAI,WAAW,IAAI,aAAa;AAC9B,sBAAY;AAAA,kCACY,WAAW;AAAA,8BACf,WAAW;AAAA,6BACZ,SAAS;AAAA,gCACN,WAAW;AAAA;AAAA;AAAA,QAGnC;AAAA,MACF;AAAA,IACF;AACA,gBAAY;AAAA;AAAA;AAGZ,gBAAY;AAAA;AAAA;AAGZ,gBAAY;AAAA;AAAA;AAGZ,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,oBAAoB;AACtB,4BAAoB;AAAA;AAAA,aAEf;AAAA;AAAA,MAEP,WAAW,mBAAmB;AAC5B,4BAAoB;AAAA;AAAA,aAEf;AAAA;AAAA,MAEP,OAAO;AACL,4BAAoB;AAAA,aACf;AAAA;AAAA,MAEP;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,mBAAmB;AACrB,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,SAAK,WAAW;AAAA,SACX;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,WAaE;AAAA;AAAA;AAAA,WAGA;AAAA,WACA;AAAA;AAAA;AAAA;AAAA,EAIT;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,UAAU;AACjC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,cAAc,MAAM,QAAQ;AAAA,MACpC,EAAE,MAAM,OAAO,MAAM,QAAQ;AAAA,MAC7B,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,MAChC,EAAE,MAAM,YAAY,MAAM,QAAQ;AAAA,MAClC,EAAE,MAAM,cAAc,MAAM,MAAM;AAAA,MAClC,EAAE,MAAM,oBAAoB,MAAM,MAAM;AAAA,MACxC,EAAE,MAAM,YAAY,MAAM,MAAM;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,EAAE,WAAW,IAAI;AACvB,UAAM,OAAO,mBAAmB;AAChC,UAAM,iBAAiB,eAAe;AACtC,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,wBAAwB,KAAK,sBAAsB,wDAAwD,mBAAmB,YAAY,eAAe,YAAY;AAC3K,QAAI,WAAW;AACf,aAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,eAAS,MAAM,GAAG,OAAO,GAAG,OAAO;AACjC,oBAAY;AAAA,gCACY;AAAA,yBACP;AAAA;AAAA,YAEb;AAAA;AAAA;AAAA;AAAA,iCAIqB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCAQE;AAAA;AAAA;AAAA;AAAA,sBAIb;AAAA;AAAA,2BAEK,MAAM,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA,2BAKV,MAAM,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAQ/B;AAAA,IACF;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UASV;AAAA;AAAA,UAEA,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,SAAS,uBAAuB,OAAO,gBAAgB;AACrD,QAAM,SAAS,MAAM;AACrB,MAAI,UAAU,GAAG;AACf,WAAO,iBAAiB;AAAA,MACtB,GAAG,MAAM,MAAM,GAAG,EAAE;AAAA,MACpB,MAAM,SAAS,KAAK,MAAM,SAAS;AAAA,MACnC,MAAM,SAAS;AAAA,IACjB,IAAI;AAAA,MACF,GAAG,MAAM,MAAM,GAAG,EAAE;AAAA,MACpB,MAAM,SAAS;AAAA,MACf,MAAM,SAAS,KAAK,MAAM,SAAS;AAAA,IACrC;AAAA,EACF,WAAW,CAAC,kBAAkB,WAAW,KAAK,MAAM,KAAK,GAAG;AAC1D,WAAO,CAAC,MAAM,IAAI,CAAC;AAAA,EACrB,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,SAAS,eAAe,EAAE,GAAG,QAAQ,UAAU,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AAClK,QAAM,SAAS,EAAE;AACjB,QAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,QAAM,kBAAkB,SAAS;AACjC,QAAM,cAAc,OAAO,KAAK,OAAO,KAAK,OAAO;AACnD,QAAM,mBAAmB,SAAS;AAClC,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,aAAa;AACnB,QAAM,aAAa;AACnB,MAAI;AACJ,QAAM,gBAAgB,CAAC;AACvB,MAAI,0BAA0B,MAAM;AAClC,UAAM,cAAc,uBAAuB,uBAAuB,OAAO,cAAc;AACvF,QAAI,eAAe,MAAM;AACvB,+BAAyB,SAAS;AAAA,QAChC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,YAAY;AAAA,MAC9B,CAAC;AACD,oBAAc,KAAK,sBAAsB;AAAA,IAC3C;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,cAAc,uBAAuB,KAAK,OAAO,cAAc;AACrE,QAAI,eAAe,MAAM;AACvB,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AACzF,oBAAc,KAAK,IAAI;AAAA,IACzB;AAAA,EACF;AACA,QAAM,6BAA6B,gBAAgB,KAAK,qBAAqB,MAAM,kBAAkB;AACrG,QAAM,cAAc,CAAC,6BAA6B,SAAS,YAAY,kBAAkB,SAAS,WAAW,QAAQ,OAAO,KAAK,MAAM,KAAK,aAAa,YAAY,SAAS,MAAM,MAAM,EAAE,GAAG,OAAO,MAAM,EAAE,CAAC;AAC/M,MAAI,aAAa;AACf,UAAM,cAAc,OAAO,KAAK,OAAO,MAAM,OAAO,KAAK;AACzD,UAAM,YAAY;AAAA,MAChB,QAAQ,EAAE;AAAA,MACV,OAAO,CAAC,GAAG,aAAa,SAAS,UAAU;AAAA,MAC3C,OAAO,EAAE;AAAA,IACX;AACA,UAAM,wBAAwB,SAAS;AACvC,aAAS,QAAQ,SAAS,MAAM,MAAM;AACtC,aAAS,MAAM,SAAS,MAAM,SAAS;AACvC,iBAAa,OAAO,cAAc,SAAS,OAAO,UAAU,KAAK,GAAG,MAAM,kBAAkB,SAAS,YAAY,UAAU,kBAAkB;AAC7I,UAAM,iBAAiB,SAAS;AAAA,MAC9B,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,SAAS,YAAY,SAAS,WAAW,EAAE;AAAA,IACjE,CAAC;AACD,kBAAc,KAAK,cAAc;AACjC,UAAM,gBAAgB,gBAAgB;AAAA,MACpC,GAAG;AAAA,MACH,GAAG;AAAA,MACH,SAAS;AAAA,MACT;AAAA,MACA;AAAA,MACA;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AACD,UAAM,uBAAuB,SAAS,QAAQ,IAAI,cAAc,MAAM;AACtE,iBAAa,OAAO,qBAAqB,UAAU,MAAM,6CAA6C;AACtG,aAAS,QAAQ;AACjB,yBAAqB,QAAQ,SAAS;AACtC,UAAM,UAAU,EAAE,QAAQ,EAAE,GAAG,cAAc,GAAG,SAAS,SAAS,CAAC;AACnE,QAAI,QAAQ,SAAS;AACrB,kBAAc,KAAK,aAAa;AAAA,EAClC,OAAO;AACL,UAAM,UAAU,SAAS,YAAY,SAAS;AAC9C,UAAM,YAAY,SAAS;AAAA,MACzB,QAAQ,EAAE,EAAE;AAAA,MACZ,SAAS;AAAA,MACT,OAAO;AAAA,QACL,OAAO,iBAAiB,CAAC,SAAS,WAAW,SAAS,SAAS,UAAU,IAAI,CAAC,SAAS,WAAW,SAAS,YAAY,OAAO;AAAA,MAChI;AAAA,IACF,CAAC;AACD,UAAM,iBAAiB,SAAS;AAAA,MAC9B,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,SAAS,YAAY,SAAS,WAAW,EAAE;AAAA,IACjE,CAAC;AACD,UAAM,SAAS,gBAAgB;AAAA,MAC7B,GAAG,iBAAiB,YAAY;AAAA,MAChC,GAAG,iBAAiB,iBAAiB;AAAA,MACrC,YAAY,CAAC;AAAA,MACb;AAAA,MACA,SAAS;AAAA,MACT;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AACD,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AAChG,kBAAc,KAAK,SAAS;AAC5B,kBAAc,KAAK,cAAc;AACjC,kBAAc,KAAK,MAAM;AAAA,EAC3B;AACA,aAAW,MAAM,eAAe;AAC9B,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,EAAE,GAAG,QAAQ,UAAU,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AACpK,QAAM,EAAE,aAAa,cAAc,YAAY,UAAU,WAAW,WAAW,IAAI;AACnF,QAAM,iBAAiB,eAAe;AACtC,QAAM,YAAY,cAAc,eAAe;AAC/C,QAAM,UAAU,YAAY;AAC5B,QAAM,aAAa,CAAC,SAAS,WAAW,WAAW,OAAO;AAC1D,QAAM,aAAa;AACnB,QAAM,aAAa;AACnB,QAAM,gBAAgB,CAAC;AACvB,MAAI,0BAA0B,MAAM;AAClC,UAAM,cAAc,uBAAuB,uBAAuB,OAAO,cAAc;AACvF,QAAI,eAAe,MAAM;AACvB,+BAAyB,SAAS;AAAA,QAChC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,YAAY;AAAA,MAC9B,CAAC;AACD,oBAAc,KAAK,sBAAsB;AAAA,IAC3C;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,cAAc,uBAAuB,KAAK,OAAO,cAAc;AACrE,QAAI,eAAe,MAAM;AACvB,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AACzF,oBAAc,KAAK,IAAI;AAAA,IACzB;AAAA,EACF;AACA,QAAM,QAAQ,SAAS;AAAA,IACrB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,GAAG,WAAW,aAAa,cAAc,OAAO,KAAK,IAAI,SAAS,EAAE;AAAA,EACvF,CAAC;AACD,gBAAc,KAAK,KAAK;AACxB,QAAM,gBAAgB,IAAI,oBAAoB,YAAY,QAAQ;AAClE,QAAM,eAAe;AAAA,IACnB,EAAE;AAAA,IACF,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,IAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,IAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IAChD,CAAC,SAAS,UAAU;AAAA,IACpB,CAAC,SAAS,cAAc,SAAS,UAAU;AAAA,IAC3C,CAAC,SAAS,QAAQ;AAAA,EACpB;AACA,QAAM,SAAS,SAAS,gBAAgB,eAAe,CAAC,CAAC,GAAG,WAAW,YAAY;AACnF,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC1G,gBAAc,KAAK,MAAM;AACzB,gBAAc,KAAK,cAAc;AACjC,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,oBAAoB,gBAAgB;AAC1C,QAAM,kBAAkB,cAAc,6BAA6B,aAAa,IAAI,IAAI;AACxF,QAAM,gBAAgB,IAAI,oBAAoB,iBAAiB,eAAe,QAAQ,MAAM,OAAO,iBAAiB,MAAM,QAAQ,eAAe,OAAO,iBAAiB,CAAC,SAAS,WAAW,SAAS,SAAS,WAAW,IAAI,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,GAAG,YAAY,YAAY,SAAS,iBAAiB,2BAA2B,iBAAiB;AAClX,QAAM,SAAS,iBAAiB,CAAC,gBAAgB,KAAK,IAAI,CAAC,OAAO,cAAc;AAChF,MAAI,MAAM;AACR,WAAO,KAAK,IAAI;AAAA,EAClB;AACA,MAAI,2BAA2B;AAC7B,WAAO,KAAK,sBAAsB;AAAA,EACpC;AACA,MAAI,mBAAmB;AACrB,UAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkB,gBAAgB,SAAS,CAAC;AACxH,WAAO,KAAK,eAAe;AAC3B,kBAAc,KAAK,eAAe;AAAA,EACpC;AACA,QAAM,UAAU,SAAS,gBAAgB,eAAe,QAAQ,SAAS;AACzE,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AACvG,gBAAc,KAAK,OAAO;AAC1B,aAAW,MAAM,eAAe;AAC9B,aAAS,8BAA8B,EAAE;AAAA,EAC3C;AACA,SAAO;AACT;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB,IAAI;AACvE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,MAAI;AACJ,MAAI,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,MAAM,SAAS,QAAQ,SAAS,UAAU,SAAS,QAAQ,SAAS,UAAU;AACtQ,UAAM,eAAe,EAAE,GAAG,QAAQ,UAAU,SAAS,SAAS,CAAC;AAAA,EACjE,WAAW,SAAS,eAAe,KAAK,gBAAgB,kBAAkB,IAAI,EAAE,QAAQ,gBAAgB,GAAG;AACzG,UAAM,UAAU,IAAI,oBAAoB,QAAQ;AAChD,UAAM,eAAe;AAAA,MACnB,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,MAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,MAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,MAChD,CAAC,SAAS,UAAU,SAAS,OAAO;AAAA,IACtC;AACA,UAAM,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,WAAW,YAAY;AAAA,EAC9E,WAAW,IAAI,EAAE,QAAQ,mBAAmB,GAAG;AAC7C,UAAM,iBAAiB,EAAE,GAAG,QAAQ,UAAU,SAAS,SAAS,CAAC;AAAA,EACnE,OAAO;AACL,UAAM,UAAU,IAAI,cAAc,QAAQ;AAC1C,UAAM,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,SAAS;AAAA,EAChE;AACA,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AAC3G,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,IAAI;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,iBAAiB,SAAS,eAAe;AAC/C,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAYU,SAAS;AAAA,kCACL,SAAS;AAAA,iCACV,kBAAkB;AAAA;AAAA,kCAEjB,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP,SAAS;AAAA,mCACV,iBAAiB;AAAA;AAAA,oCAEhB,SAAS;AAAA;AAAA;AAAA;AAAA,oBAIzB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAgBlB;AACF;AACA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,GAAG;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS,eAAe;AAC/C,UAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,UAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,SAAS,iBAAiB,IAAI;AACpC,UAAM,aAAa,iBAAiB,IAAI;AACxC,SAAK,WAAW;AAAA,iCACa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,0BAKlB;AAAA;AAAA,wCAEc,mBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAO3B;AAAA,gDACgB;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKpB;AAAA;AAAA,kCAES;AAAA,kDACgB;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAMpB;AAAA;AAAA,oCAES,SAAS;AAAA;AAAA,oBAEzB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAgBlB;AACF;AACA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,IAAI;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,WAAW,SAAS,QAAQ;AAClC,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAWU,SAAS;AAAA,kCACL,SAAS;AAAA,iCACV,iBAAiB;AAAA;AAAA,kCAEhB,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP,SAAS;AAAA,mCACV,kBAAkB;AAAA;AAAA,oCAEjB,SAAS;AAAA;AAAA;AAAA;AAAA,sCAIP,SAAS;AAAA,qCACV,iBAAiB;AAAA;AAAA,sCAEhB,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAc7C;AACF;AACA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,GAAG;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,WAAW,cAAc,IAAI,SAAS,QAAQ;AACpD,UAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,UAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,SAAK,WAAW;AAAA,iCACa,aAAa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAczB;AAAA,gDACgB;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKpB;AAAA;AAAA,kCAES;AAAA,kDACgB;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAMpB;AAAA;AAAA,oCAES;AAAA,oDACgB;AAAA;AAAA,wCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,6BAMpB;AAAA;AAAA,sCAES,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAW7C;AACF;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,YAAY,IAAI;AACzE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACnI,QAAM,UAAU,IAAI,uBAAuB,QAAQ;AACnD,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,EAAE,GAAG,SAAS;AAC7D;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AACxE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACvI,QAAM,UAAU,IAAI,sBAAsB,QAAQ;AAClD,SAAO,SAAS,gBAAgB,SAAS,CAAC,IAAI,MAAM,GAAG,SAAS;AAClE;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,IAAI;AACvG,QAAM,UAAU,IAAI,cAAc,QAAQ;AAC1C,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,SAAS;AACjE;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,MAAM;AACrC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,IAAI;AAC5C,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,GAAG,IAAI;AAC9F,QAAM,UAAU,IAAI,uBAAuB,QAAQ;AACnD,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,EAAE,GAAG,SAAS;AAC7D;AACA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,KAAK,MAAM,SAAAA,UAAS,WAAW,IAAI;AAC3C,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,IAAI;AAClG,QAAM,UAAU,IAAI,sBAAsB,QAAQ;AAClD,SAAO,SAAS,gBAAgB,SAAS,CAAC,IAAI,MAAM,GAAG,SAAS;AAClE;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,0BAA0B;AAAA;AAAA;AAGpC,IAAI,OAAO,iBAAiB,EAAE,WAAW,IAAI,CAAC;AAC9C,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA;AAIX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,YAAY,UAAU,UAAU,QAAQ,oBAAoB;AACtE,SAAK,gBAAgB,CAAC,SAAS,SAAS,QAAQ;AAChD,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,aAAa,YAAY,KAAK,IAAI;AAChD,UAAM,CAAC,QAAQ,IAAI;AACnB,UAAM,CAAC,YAAY,SAAS,IAAI;AAChC,SAAK,cAAc,CAAC,UAAU,YAAY,WAAW,KAAK;AAC1D,UAAM,WAAW,WAAW,aAAa,IAAI;AAC7C,UAAM,CAAC,kBAAkB,eAAe,IAAI,CAAC,GAAG,cAAc,OAAO,GAAG,aAAa,KAAK;AAC1F,UAAM,CAAC,aAAa,aAAa,GAAG,IAAI,aAAa,IAAI;AAAA,MACvD,IAAI,cAAc,MAAM,aAAa;AAAA,MACrC;AAAA,MACA,MAAM;AAAA,IACR,IAAI;AAAA,MACF;AAAA,MACA;AAAA,MACA,mBAAmB;AAAA,IACrB;AACA,UAAM,CAAC,YAAY,YAAY,GAAG,IAAI,YAAY,IAAI;AAAA,MACpD,IAAI,aAAa,MAAM,YAAY;AAAA,MACnC;AAAA,MACA,MAAM;AAAA,IACR,IAAI;AAAA,MACF;AAAA,MACA;AAAA,MACA,mBAAmB;AAAA,IACrB;AACA,SAAK,WAAW;AAAA,yCACqB;AAAA,wCACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iCAgBP;AAAA;AAAA;AAAA;AAAA,+BAIF;AAAA,8BACD;AAAA;AAAA,uBAEP;AAAA,mCACY;AAAA,4BACP;AAAA;AAAA;AAAA,uBAGL;AAAA,mCACY;AAAA,4BACP;AAAA;AAAA;AAAA;AAAA;AAAA,aAKf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAyBX;AACF;AAGA,IAAI,iBAAiB,CAAC,SAAS;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,OAAO,OAAO,IAAI;AACzC,QAAM,EAAE,UAAU,QAAQ,mBAAmB,IAAI;AACjD,QAAM,UAAU,IAAI,qBAAqB,OAAO,OAAO,MAAM,OAAO,UAAU,QAAQ,kBAAkB;AACxG,SAAO,SAAS,gBAAgB,SAAS,CAAC,QAAQ,OAAO,MAAM,GAAG,SAAS;AAC7E;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AAAA,CACH,SAAS,YAAY;AACpB,aAAW,UAAU;AACrB,aAAW,SAAS;AACtB,GAAG,cAAc,YAAY,CAAC,EAAE;AAChC,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,KAAK,aAAa,WAAW,UAAU;AACjD,SAAK,KAAK;AACV,SAAK,cAAc;AACnB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,MAAM,QAAQ,CAAC;AACvD,UAAM,OAAO,KAAK,YAAY;AAC9B,UAAM,UAAU,KAAK,OAAO,UAAU,OAAO,QAAQ;AACrD,UAAM,MAAM,YAAY,UAAU,QAAQ,WAAW,MAAM,UAAU,KAAK,EAAE;AAC5E,UAAM,SAAS,KAAK,YAAY,KAAK,YAAY,SAAS;AAC1D,QAAI,YAAY;AAChB,QAAI,YAAY;AAChB,QAAI,WAAW;AACb,kBAAY,WAAW,UAAU,SAAS,MAAM;AAChD,kBAAY,WAAW,YAAY;AAAA,IACrC,OAAO;AACL,kBAAY,WAAW,gBAAgB,WAAW;AAClD,kBAAY,WAAW,eAAe;AAAA,IACxC;AACA,SAAK,WAAW;AAAA;AAAA,UAEV,kBAAkB,IAAI;AAAA,oBACZ,cAAc,MAAM,UAAU,KAAK,EAAE;AAAA,sBACnC;AAAA;AAAA,cAER;AAAA,sBACQ;AAAA,YACV,cAAc,MAAM,UAAU,KAAK,EAAE;AAAA,gBACjC,KAAK,YAAY,WAAW,MAAM,UAAU,KAAK,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA,EAKjE;AACF;AACA,SAAS,WAAW,MAAM,MAAM,KAAK;AACnC,MAAI,SAAS,GAAG;AACd,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW;AAAA,EACvB,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW,WAAW;AAAA,EAClC,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW,WAAW,WAAW;AAAA,EAC7C,OAAO;AACL,UAAM,IAAI,MAAM,cAAc,gBAAgB,2BAA2B;AAAA,EAC3E;AACF;AACA,SAAS,cAAc,MAAM,MAAM,KAAK;AACtC,MAAI,SAAS,GAAG;AACd,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,OAAO;AACL,UAAM,IAAI,MAAM,cAAc,gBAAgB,2BAA2B;AAAA,EAC3E;AACF;AAGA,SAAS,QAAQ,KAAK,GAAG,UAAU,MAAM,WAAW,UAAU;AAC5D,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAAA,EAC3F;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AACrE,MAAI,iBAAiB,QAAQ,GAAG;AAC9B,UAAM,IAAI,MAAM,mDAAmD,EAAE,MAAM,SAAS,kBAAkB,MAAM;AAAA,EAC9G;AACA,QAAMb,QAAO,UAAU,MAAM;AAC7B,MAAI,SAAS,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,SAAS,CAAC;AACtE,WAAS,KAAK,GAAG,MAAM,KAAK,KAAK,KAAK,KAAKA,KAAI,CAAC,IAAI,GAAG,MAAM;AAC3D,UAAM,UAAU,IAAI,WAAW,KAAK,UAAU,OAAO,OAAO,QAAQ;AACpE,UAAM,eAAe,CAAC,CAAC,EAAE,CAAC;AAC1B,UAAM,aAAa;AACnB,aAAS,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,YAAY;AAC/E,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACA,MAAI,WAAW;AACb,UAAM,UAAU,IAAI,WAAW,KAAK,UAAU,OAAO,WAAW,QAAQ;AACxE,UAAM,aAAa;AACnB,aAAS,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AACjE,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACA,MAAI,eAAe,MAAM;AACvB,UAAM,qBAAqB,qBAAqB,uBAAuB,WAAW;AAClF,UAAM,0BAA0B,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,mBAAmB,EAAE,CAAC;AAC5H,aAAS,8BAA8B,MAAM;AAC7C,aAAS,8BAA8B,SAAS;AAChD,WAAO;AAAA,EACT;AACA,SAAO;AACT;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,SAAO,QAAQ,UAAU,MAAM,GAAG,UAAU,MAAM,WAAW,QAAQ;AACvE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,SAAO,QAAQ,UAAU,KAAK,GAAG,UAAU,MAAM,WAAW,QAAQ;AACtE;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAAA,OAAM,aAAa,IAAI;AAC/B,MAAI,EAAE,MAAM,WAAW,GAAG;AACxB,UAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,UAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,UAAM,UAAU,gBAAgB,OAAO,aAAa,QAAQ,OAAO,QAAQ,OAAOA,KAAI;AACtF,WAAO,SAAS,eAAe,CAACA,KAAI,GAAG,QAAQ,OAAO,OAAO;AAAA,EAC/D,WAAW,EAAE,MAAM,WAAW,GAAG;AAC/B,UAAM,OAAO,SAAS,WAAW,CAAC;AAClC,UAAM,aAAa,SAAS,WAAW,OAAO;AAC9C,UAAM,SAAS,sBAAsB,MAAM,YAAYA,OAAM,YAAY;AACzE,WAAO,SAAS,eAAe,OAAO,OAAO,QAAQ,OAAO,OAAO,MAAM;AAAA,EAC3E;AACA,QAAM,IAAI,MAAM,qEAAqE,EAAE,MAAM,SAAS;AACxG;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,WAAW,YAAY;AAC9C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,SAAK,YAAY;AACjB,SAAK,aAAa;AAClB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA,gBAIJ,KAAK,qBAAqB;AAAA,gBAC1B,KAAK,oBAAoB;AAAA,gBACzB,KAAK,oBAAoB;AAAA;AAAA,uBAElB;AAAA,+BACQ;AAAA,uBACR;AAAA,+BACQ;AAAA,mCACI;AAAA,UACzB,KAAK,mBAAmB;AAAA;AAAA;AAAA,uBAGX,KAAK,uBAAuB;AAAA;AAAA;AAAA;AAAA,EAIjD;AAAA,EACA,uBAAuB;AACrB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,sBAAsB;AACpB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,sBAAsB;AACpB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,qBAAqB;AACnB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO,KAAK,YAAY;AAAA,IAC1B,OAAO;AACL,aAAO,KAAK,YAAY;AAAA,IAC1B;AAAA,EACF;AAAA,EACA,yBAAyB;AACvB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,WAAW,WAAW,IAAI;AAClC,QAAM,YAAY,EAAE,MAAM;AAC1B,QAAM,cAAc,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AACjE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,eAAe,cAAc;AACnC,QAAM,cAAc,aAAa;AACjC,QAAM,cAAc,cAAc,YAAY;AAC9C,QAAM,cAAc,eAAe,SAAS,CAAC,WAAW,cAAc,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,cAAc,WAAW;AACpJ,QAAM,UAAU,IAAI,oBAAoB,aAAa,WAAW,UAAU;AAC1E,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO,oBAAoB,OAAO;AAChH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,QAAQ,MAAM,QAAQ;AAAA,MAC9B,EAAE,MAAM,WAAW,MAAM,QAAQ;AAAA,MACjC,EAAE,MAAM,aAAa,MAAM,QAAQ;AAAA,MACnC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc,SAAS;AAC5B,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,aAAa,SAAS,cAAc,SAAS;AACnD,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,oBAAoB;AACtB,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,WAAW,mBAAmB;AAC5B,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,OAAO;AACL,4BAAoB;AAAA;AAAA,cAEd;AAAA;AAAA;AAAA,MAGR;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,mBAAmB;AACrB,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAOgB;AAAA,4BACI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCASI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAOE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAcxB;AAAA,UACA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,IAAI,+BAA+B,MAAM;AAAA,EACvC,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO,oBAAoB,OAAO;AAChH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,QAAQ,MAAM,QAAQ;AAAA,MAC9B,EAAE,MAAM,WAAW,MAAM,QAAQ;AAAA,MACjC,EAAE,MAAM,aAAa,MAAM,QAAQ;AAAA,MACnC,EAAE,MAAM,UAAU,MAAM,QAAQ;AAAA,IAClC;AACA,SAAK,cAAc,SAAS;AAC5B,SAAK,sBAAsB,iBAAiB,KAAK,YAAY,MAAM;AACnE,UAAM,aAAa,SAAS,cAAc,SAAS;AACnD,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe;AACrB,QAAI,WAAW;AAAA;AAAA;AAGf,aAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAY;AAAA,wBACM,IAAI;AAAA,uBACL,IAAI;AAAA,wBACH,IAAI,IAAI;AAAA,uBACT,IAAI,IAAI;AAAA,mBACZ;AAAA,IACf;AACA,gBAAY;AAAA,0BACU;AAAA;AAEtB,aAAS,IAAI,GAAG,IAAI,aAAa,KAAK;AACpC,kBAAY;AAAA,mBACC,IAAI;AAAA,mBACJ,IAAI;AAAA,mBACJ,IAAI,IAAI;AAAA,mBACR,IAAI,IAAI;AAAA,cACb;AAAA,IACV;AACA,gBAAY;AAAA;AAAA;AAAA;AAIZ,aAAS,SAAS,GAAG,UAAU,eAAe,KAAK,GAAG,UAAU;AAC9D,YAAM,WAAW,SAAS;AAC1B,kBAAY;AAAA,4BACU,WAAW;AAAA;AAEjC,UAAI,gBAAgB,GAAG;AACrB,YAAI,WAAW,aAAa;AAC1B,cAAI,UAAU,MAAM,GAAG;AACrB,wBAAY;AAAA;AAAA,sEAE8C;AAAA,2BAC3C;AAAA;AAAA;AAAA;AAAA;AAAA,6BAKE;AAAA;AAAA,2BAEF;AAAA;AAAA;AAGf,gBAAI,kBAAkB,KAAK,WAAW,GAAG;AACvC,0BAAY;AAAA,oBACN,0BAA0B,WAAW,gBAAgB;AAAA;AAAA,YAE7D,OAAO;AACL,0BAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAYF,uCAAuC;AAAA;AAAA,wBAEvC,oCAAoC;AAAA;AAAA;AAAA,YAGhD;AAAA,UACF,OAAO;AACL,wBAAY;AAAA,0DACkC;AAAA,2BAC/B;AAAA;AAAA,6BAEE;AAAA;AAAA,2BAEF;AAAA;AAAA;AAAA,oBAGP,qBAAqB;AAAA;AAAA,UAE/B;AACA,cAAI,WAAW,IAAI,aAAa;AAC9B,kBAAM,kBAAkB,UAAU,MAAM,IAAI,aAAa,kBAAkB,aAAa,IAAI;AAC5F,gBAAI,gBAAgB,MAAM,KAAK,UAAU,MAAM,KAAK,gBAAgB,MAAM,KAAK,UAAU,MAAM,GAAG;AAChG,0BAAY;AAAA,uDAC6B;AAAA;AAAA,wEAEiB,WAAW;AAAA,6BACtD,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,+BAKT,WAAW;AAAA;AAAA,6BAEb,WAAW;AAAA;AAAA;AAG1B,kBAAI,gBAAgB,GAAG;AACrB,4BAAY;AAAA;AAAA;AAAA;AAAA,yBAIH,WAAW,gCAAgC,WAAW;AAAA;AAAA,yBAEtD,WAAW,6BAA6B,WAAW;AAAA;AAAA;AAAA,cAG9D,OAAO;AACL,4BAAY;AAAA,wBACJ,WAAW,mBAAmB,uBAAuB,WAAW;AAAA;AAAA,cAE1E;AAAA,YACF,OAAO;AACL,kBAAI,oBAAoB,GAAG;AACzB,4BAAY;AAAA,wBACJ,WAAW,cAAc;AAAA;AAAA,cAEnC,OAAO;AACL,4BAAY;AAAA,sCACU;AAAA;AAAA,0EAEoC,WAAW;AAAA,+BACtD,WAAW;AAAA;AAAA,iCAET,WAAW;AAAA;AAAA,+BAEb,WAAW;AAAA;AAAA;AAAA,wBAGlB,WAAW,cAAc,WAAW;AAAA;AAAA,cAE9C;AAAA,YACF;AAAA,UACF;AAAA,QACF;AAAA,MACF,OAAO;AACL,YAAI,WAAW,aAAa;AAC1B,cAAI,UAAU,MAAM,GAAG;AACrB,wBAAY;AAAA;AAAA,qEAE6C;AAAA,2BAC1C;AAAA;AAAA;AAAA;AAAA,6BAIE;AAAA;AAAA,2BAEF;AAAA;AAAA;AAAA,iEAGsC,WAAW;AAAA,2BACjD,WAAW;AAAA;AAAA;AAAA;AAAA,6BAIT,WAAW;AAAA;AAAA,2BAEb,WAAW;AAAA;AAAA;AAAA,oBAGlB,0BAA0B,uBAAuB,WAAW;AAAA;AAEpE,gBAAI,WAAW,IAAI,aAAa;AAC9B,0BAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sBAMJ,WAAW,mBAAmB,WAAW;AAAA;AAAA,YAEnD;AAAA,UACF,OAAO;AACL,wBAAY;AAAA,yDACiC;AAAA,2BAC9B;AAAA;AAAA,6BAEE;AAAA;AAAA,2BAEF;AAAA;AAAA;AAAA;AAAA,qEAI0C,WAAW;AAAA,2BACrD,WAAW;AAAA;AAAA,6BAET,WAAW;AAAA;AAAA,2BAEb,WAAW;AAAA;AAAA;AAAA,oBAGlB;AAAA,2BACO,uBAAuB,WAAW;AAAA;AAEjD,gBAAI,WAAW,IAAI,aAAa;AAC9B,0BAAY;AAAA,sBACJ,WAAW,mBAAmB,uBAAuB,WAAW;AAAA;AAAA,YAE1E;AAAA,UACF;AAAA,QACF;AAAA,MACF;AACA,UAAI,WAAW,aAAa;AAC1B,oBAAY;AAAA,+BACW;AAAA,2BACJ;AAAA;AAEnB,YAAI,WAAW,IAAI,aAAa;AAC9B,sBAAY;AAAA,iCACW,WAAW;AAAA,6BACf,WAAW;AAAA;AAAA,QAEhC;AAAA,MACF;AAAA,IACF;AACA,gBAAY;AAAA;AAAA;AAGZ,gBAAY;AAAA;AAAA;AAGZ,QAAI,oBAAoB,IAAI,yBAAyB;AACrD,QAAI,aAAa;AACf,UAAI,oBAAoB;AACtB,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,WAAW,mBAAmB;AAC5B,4BAAoB;AAAA;AAAA,YAEhB;AAAA;AAAA,MAEN,OAAO;AACL,4BAAoB;AAAA,YAChB;AAAA;AAAA,MAEN;AACA,+BAAyB;AAAA,IAC3B;AACA,UAAM,iBAAiB,UAAU,oCAAoC;AACrE,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,QAAI,mBAAmB;AACrB,WAAK,cAAc,KAAK,gBAAgB;AAAA,IAC1C;AACA,SAAK,WAAW;AAAA,QACZ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAOgB;AAAA,4BACI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAOlB;AAAA;AAAA;AAAA,UAGA;AAAA,UACA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,WAAW,gBAAgB,IAAI;AAC3D,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,UAAU,GAAG,MAAM,gFAAgFA,2BAA0B,aAAa;AAC3N,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,0BAA0B,KAAK,SAAS,eAAe,KAAK,SAAS,cAAc,SAAS,eAAe,GAAG;AAC9H,cAAU,IAAI,6BAA6B,QAAQ;AAAA,EACrD,OAAO;AACL,cAAU,IAAI,uBAAuB,QAAQ;AAAA,EAC/C;AACA,QAAM,eAAe;AAAA,IACnB,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,IAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,IAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IAChD,CAAC,SAAS,UAAU,SAAS,OAAO;AAAA,EACtC;AACA,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,WAAW,YAAY;AAC/E;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kCAAkC,MAAM;AAAA,EAC1C,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,IAAI;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,SAAS,SAAS,QAAQ;AAChC,UAAM,UAAU,SAAS,QAAQ;AACjC,UAAM,aAAa,SAAS,cAAc,SAAS;AACnD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAOI;AAAA;AAAA;AAAA;AAAA;AAAA,8BAKM,SAAS;AAAA,kCACL,SAAS;AAAA,iCACV,kBAAkB;AAAA;AAAA,kCAEjB,SAAS;AAAA;AAAA;AAAA;AAAA,oCAIP,SAAS;AAAA,mCACV,iBAAiB;AAAA;AAAA,oCAEhB,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAa3C;AACF;AACA,IAAI,iCAAiC,MAAM;AAAA,EACzC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,GAAG;AAC/B,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,UAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,UAAM,aAAa,SAAS,cAAc,SAAS;AACnD,SAAK,WAAW;AAAA,iCACa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAYZ;AAAA,gDACgB;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKpB;AAAA;AAAA,kCAES;AAAA,kDACgB;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAMpB;AAAA;AAAA;AAAA,oCAGS;AAAA,8BACN;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAU5B;AACF;AAGA,SAAS,qCAAqC,MAAM;AAClD,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,IAAI;AAClB,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,iBAAiB,YAAY,IAAI;AACxE,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,aAAaA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AAC7H,QAAM,UAAU,IAAI,gCAAgC,QAAQ;AAC5D,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,EAAE,GAAG,SAAS;AAC7D;AACA,IAAI,6CAA6C;AAAA,EAC/C,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,oCAAoC,MAAM;AACjD,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACvE,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AACjI,QAAM,UAAU,IAAI,+BAA+B,QAAQ;AAC3D,SAAO,SAAS,gBAAgB,SAAS,CAAC,IAAI,MAAM,GAAG,SAAS;AAClE;AACA,IAAI,4CAA4C;AAAA,EAC9C,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAYb,OAAM;AAChB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAACA,OAAMA,KAAI;AAC9B,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOlB;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,WAAW,CAAC,GAAG,EAAE,OAAO,GAAG,EAAE,KAAK;AACxC,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,OAAO,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,KAAK,EAAE,EAAE,CAAC;AACrF,QAAM,UAAU,IAAI,YAAY,KAAK;AACrC,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,IAAI,GAAG,KAAK,KAAK;AAChE,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F,WAAS,8BAA8B,IAAI;AAC3C,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,SAAS;AAC5B,UAAM,EAAE,UAAU,SAAS,SAAS,cAAc,aAAa,cAAc,aAAa,gBAAgB,cAAc,IAAI;AAC5H,UAAM,EAAE,KAAK,QAAQ,MAAM,QAAQ,IAAI;AACvC,SAAK,WAAW;AAAA,oCACgB,iBAAiB;AAAA,iCACpB,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAad;AAAA,iCACG;AAAA;AAAA,kCAEC;AAAA,kCACA;AAAA,qCACG;AAAA;AAAA,sCAEC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAiBpC;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,UAAU,IAAI;AAC1C,QAAM,WAAW,qBAAqB,sBAAsB,EAAE,OAAO,OAAO,OAAOA,UAAS,MAAM,QAAQ,SAAS;AACnH,MAAI;AACJ,QAAM,UAAU,IAAI,kBAAkB,QAAQ;AAC9C,QAAM,SAAS,gBAAgB,SAAS,CAAC,GAAG,MAAM,GAAG,SAAS;AAC9D,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AAC3G,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,IAAI;AACrB,QAAM,UAAU;AAChB,QAAM,EAAE,SAAS,YAAY,OAAO,IAAI,qBAAqB,qBAAqB,UAAU,QAAQ,MAAM;AAC1G,uBAAqB,oBAAoB,QAAQ,QAAQ,QAAQ,OAAO;AACxE,QAAM,EAAE,MAAM,MAAM,IAAI,qBAAqB,qBAAqB,YAAY,MAAM;AACpF,QAAM,SAAS,MAAM;AACrB,MAAI,MAAM;AACV,MAAI,mBAAmB,QAAQ;AAC/B,QAAM,mBAAmB,CAAC;AAC1B,WAAS,KAAK,GAAG,KAAK,QAAQ,EAAE,IAAI;AAClC,eAAW,UAAU,MAAM,KAAK;AAC9B,YAAM,EAAE,oBAAoB,MAAM,YAAY,aAAa,IAAI,qBAAqB,qBAAqB,kBAAkB,OAAO,OAAO;AACzI,UAAI;AACJ,UAAI,qBAAqB,sBAAsB,IAAI,GAAG;AACpD,YAAI,QAAQ;AAAA,MACd,OAAO;AACL,YAAI,WAAW,EAAE,QAAQ,EAAE,GAAG,QAAQ,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACrF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,YAAM,cAAc,EAAE,MAAM,MAAM;AAClC,eAAS,IAAI,GAAG,IAAI,aAAa,QAAQ,EAAE,GAAG;AAC5C,oBAAY,OAAO,aAAa,IAAI,GAAG,CAAC;AAAA,MAC1C;AACA,UAAI,CAAC,aAAa,YAAY,EAAE,OAAO,WAAW,GAAG;AACnD,YAAI,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,UAAI,QAAQ,MAAM;AAChB,cAAM;AAAA,MACR,OAAO;AACL,cAAM,UAAU,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,IAAI,GAAG,SAAS,SAAS,CAAC;AAC/D,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AAAA,IACF;AACA,QAAI,KAAK,SAAS,GAAG;AACnB,UAAI,KAAK,OAAO,GAAG;AACjB,cAAM,KAAK;AAAA,UACT,QAAQ,EAAE,GAAG,IAAI;AAAA,UACjB,SAAS;AAAA,UACT,OAAO;AAAA,YACL,MAAM,KAAK,OAAO,QAAQ,SAAS;AAAA,YACnC,UAAU;AAAA,UACZ;AAAA,QACF,CAAC;AACD,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AACA;AAAA,IACF;AAAA,EACF;AACA,aAAW,cAAc,kBAAkB;AACzC,QAAI,eAAe,KAAK;AACtB;AAAA,IACF;AACA,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUjB,IAAI,OAAO,iBAAiB,EAAE,WAAW,MAAM,iBAAiB,WAAW,CAAC;AAC5E,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU;AACd,IAAI,iBAAiB;AAAA;AAAA;AAAA;AAIrB,IAAI,WAAW,CAAC,SAAS;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,IAAI,EAAE,IAAI;AAClB,QAAM,UAAU,IAAI,EAAE,QAAQ,8BAA8B,IAAI,IAAI,sBAAsB,gBAAgB,GAAG,OAAO,EAAE,KAAK,IAAI,IAAI,gBAAgB,SAAS,GAAG,OAAO,EAAE,KAAK;AAC7K,SAAO,SAAS,gBAAgB,SAAS,CAAC,IAAI,CAAC,GAAG,GAAG,KAAK;AAC5D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe;AAAA;AAAA;AAGnB,IAAI,QAAQ;AACZ,IAAI,SAAS,kBAAkB;AAAA,EAC7B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AAAA;AAAA;AAAA;AAAA,cAII,qBAAqB;AAAA,eACpB,qBAAqB;AAAA,eACrB,qBAAqB;AAAA,eACrB,qBAAqB;AAAA,eACrB,qBAAqB;AAAA,eACrB,qBAAqB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAOpC,IAAI,OAAO,iBAAiB,EAAE,WAAW,IAAI,CAAC;AAC9C,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,0BAA0B;AAAA;AAAA;AAGpC,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUjB,IAAI,OAAO,iBAAiB;AAAA,EAC1B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,OAAO,MAAM;AAC/B,QAAM,WAAW,OAAO,MAAM,MAAM;AACpC,MAAI,OAAO;AACX,MAAI,MAAM,GAAG;AACX,iBAAa,OAAO,EAAE,YAAY,MAAM,KAAK,MAAM,iCAAiC,EAAE,YAAY,OAAO,YAAY;AACrH,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ;AACZ,IAAI,SAAS,iBAAiB,EAAE,WAAW,OAAO,iBAAiB,OAAO,eAAe,aAAa,CAAC;AACvG,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,WAAW,YAAY,SAAS;AAC1C,SAAK,gBAAgB,CAAC,QAAQ,MAAM;AACpC,UAAM,WAAW,WAAW;AAC5B,SAAK,cAAc;AACnB,UAAM,4BAA4B,UAAU,SAAS,KAAK,OAAO,UAAU,KAAK;AAChF,UAAM,oBAAoB,UAAU,GAAG,eAAe;AACtD,QAAI;AACJ,QAAI,cAAc,QAAQ;AACxB,iBAAW;AAAA,IACb,WAAW,cAAc,QAAQ;AAC/B,iBAAW;AAAA,IACb,OAAO;AACL,YAAM,IAAI,MAAM,sDAAsD,YAAY;AAAA,IACpF;AACA,SAAK,WAAW;AAAA,yCACqB;AAAA;AAAA;AAAA,UAG/B;AAAA;AAAA;AAAA;AAAA,kDAIwC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMpB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yDAS2B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAWvD;AACF;AAGA,SAAS,SAAS,GAAG,SAAS,UAAU;AACtC,QAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,QAAMc,cAAY,aAAa,cAAc,EAAE,KAAK;AACpD,QAAM,qBAAqB,EAAE,MAAM,EAAE,MAAM,SAAS;AACpD,QAAM,QAAQA,cAAY;AAC1B,QAAM,UAAU,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,OAAO,kBAAkB,EAAE,EAAE,CAAC;AAC5G,QAAM,SAAS,QAAQ;AACvB,QAAM,cAAc,IAAI,WAAW,QAAQ,QAAQ,OAAO;AAC1D,QAAM,cAAc,IAAI,WAAW,QAAQ,QAAQ,OAAO;AAC1D,QAAM,SAAS;AAAA,IACb;AAAA,MACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,MACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,MACrC,OAAO;AAAA,IACT;AAAA,IACA;AAAA,MACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,MACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,MACrC,OAAO;AAAA,IACT;AAAA,EACF;AACA,QAAM,WAAW,SAAS,gBAAgB,aAAa,QAAQ,SAAS;AACxE,QAAM,WAAW,SAAS,gBAAgB,aAAa,QAAQ,SAAS;AACxE,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,UAAU,MAAM,SAAS,GAAG,SAAS,SAAS,CAAC;AAChG,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,QAAQ;AAC/C,QAAM,wBAAwB,SAAS,EAAE,QAAQ,EAAE,GAAG,cAAc,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,EAAE,MAAM,EAAE,CAAC;AACrH,WAAS,8BAA8B,OAAO;AAC9C,WAAS,8BAA8B,aAAa;AACpD,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,SAAO,SAAS,QAAQ,OAAO,QAAQ;AACzC;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,OAAO,OAAO;AACxB,SAAK,cAAc,CAAC;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,MAAM,QAAQ,CAAC;AACvD,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAMlB;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,IAAI;AACzB,MAAI,EAAE,MAAM,IAAI;AAChB,UAAQ,SAAS,aAAa,WAAW,KAAK;AAC9C,MAAI,UAAU,UAAU;AACtB,UAAM,SAAS,aAAa,kBAAkB,OAAO,aAAa,cAAc,KAAK,CAAC;AACtF,WAAO,KAAK,KAAK;AACjB,WAAO,SAAS,eAAe,OAAO,OAAO,MAAM;AAAA,EACrD,OAAO;AACL,UAAM,UAAU,IAAI,YAAY,OAAO,KAAK;AAC5C,UAAM,eAAe,CAAC,CAAC,KAAK,CAAC;AAC7B,WAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,OAAO,YAAY;AAAA,EAClE;AACF;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,YAAY;AACtB,SAAK,gBAAgB,CAAC,OAAO;AAC7B,SAAK,cAAc,CAAC;AACpB,UAAM,aAAa,WAAW;AAC9B,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKK;AAAA;AAAA,uCAEc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQrC;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AAC7C,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,eAAe;AACrB,UAAM,UAAU,IAAI,qBAAqB,OAAO,KAAK;AACrD,UAAM,SAAS,aAAa,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AAC3E,WAAO;AAAA,EACT;AACF;AAGA,IAAI,QAAQ;AACZ,IAAI,SAAS,iBAAiB,EAAE,WAAW,OAAO,iBAAiB,OAAO,eAAe,aAAa,CAAC;AACvG,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWd,IAAI,iBAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAsBrB,IAAI,YAAY,kBAAkB,EAAE,WAAW,SAAS,iBAAiB,gBAAgB,OAAO,QAAQ,CAAC;AACzG,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,OAAO,mBAAmB;AAChC,UAAM,CAAC,QAAQ,KAAK,IAAI;AACxB,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uDAMmC,YAAY;AAAA;AAAA,wBAE3C,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAe3B;AACF;AAGA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,UAAM,OAAO,mBAAmB;AAChC,UAAM,CAAC,QAAQ,KAAK,IAAI;AACxB,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAeU,YAAY;AAAA,4BACd,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAgBvB,KAAK;AAAA;AAAA;AAAA,EAGb;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AACA,IAAI;AACJ,IAAI,qBAAqB,IAAI,EAAE,QAAQ,uCAAuC;AAC9E,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,MAAI,EAAE,OAAO,IAAI;AACjB,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,UAAU,OAAO,qBAAqB,eAAe,kBAAkB;AAC7E,QAAM,UAAU,OAAO,qBAAqB,eAAe,kBAAkB;AAC7E,QAAM,CAAC,OAAO,MAAM,IAAI,UAAU;AAAA,IAChC,OAAO;AAAA,IACP,OAAO;AAAA,EACT,IAAI,CAAC,OAAO,OAAO,OAAO,MAAM;AAChC,QAAM,WAAW,CAAC,QAAQ,KAAK;AAC/B,QAAM,WAAW,CAAC,QAAQ,OAAO,WAAW;AAC5C,MAAI,WAAW,SAAS;AACtB,UAAM,wBAAwB,IAAI,EAAE,QAAQ,uCAAuC;AACnF,QAAI,wBAAwB,QAAQ,0BAA0B,oBAAoB;AAChF,2BAAqB;AACrB,6BAAuB,SAAS,cAAc,QAAQ,EAAE,WAAW,MAAM,EAAE,mBAAmB,CAAC;AAAA,IACjG;AACA,yBAAqB,OAAO,QAAQ;AACpC,yBAAqB,OAAO,SAAS;AACrC,yBAAqB,UAAU,QAAQ,GAAG,GAAG,OAAO,MAAM;AAC1D,aAAS,qBAAqB;AAAA,EAChC;AACA,QAAM,kBAAkB,SAAS,eAAe,UAAU,OAAO;AACjE,WAAS,QAAQ,IAAI,gBAAgB,MAAM,EAAE,QAAQ,aAAa;AAClE,WAAS,MAAM,yBAAyB,SAAS,WAAW,gBAAgB,MAAM,GAAG,MAAM;AAC3F,QAAM,UAAU,IAAI,EAAE,QAAQ,YAAY,IAAI,IAAI,wBAAwB,QAAQ,IAAI,IAAI,kBAAkB,QAAQ;AACpH,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,eAAe,GAAG,OAAO;AACxE,WAAS,YAAY,gBAAgB,MAAM;AAC3C,SAAO;AACT;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAd,UAAS,KAAK,MAAM,YAAY,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,MAAI;AACJ,QAAM,gBAAgB,CAAC;AACvB,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,oBAAoB,gBAAgB;AAC1C,QAAM,gBAAgB,MAAM;AAC1B,UAAM,UAAU,CAAC,GAAG,MAAM;AAC1B,UAAM,2BAA2B,CAAC,QAAQ,gBAAgB;AACxD,UAAI,gBAAgB,UAAU,OAAO,MAAM,WAAW,KAAK,OAAO,MAAM,OAAO,GAAG;AAChF,cAAM,eAAe,SAAS;AAAA,UAC5B,QAAQ,EAAE,GAAG,OAAO;AAAA,UACpB,SAAS;AAAA,UACT,OAAO,EAAE,OAAO,CAAC,OAAO,MAAM,IAAI,GAAG,CAAC,EAAE;AAAA,QAC1C,CAAC;AACD,sBAAc,KAAK,YAAY;AAC/B,eAAO;AAAA,MACT;AACA,aAAO;AAAA,IACT;AACA,QAAI,SAAS;AACX,cAAQ,KAAK,yBAAyB,MAAM,UAAU,CAAC;AAAA,IACzD;AACA,QAAI,2BAA2B;AAC7B,cAAQ,KAAK,yBAAyB,wBAAwB,UAAU,CAAC;AAAA,IAC3E;AACA,QAAI,mBAAmB;AACrB,YAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkB,gBAAgB,SAAS,CAAC;AACxH,cAAQ,KAAK,eAAe;AAC5B,oBAAc,KAAK,eAAe;AAAA,IACpC;AACA,WAAO;AAAA,EACT;AACA,MAAI,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,MAAM,SAAS,QAAQ,SAAS,UAAU,SAAS,QAAQ,SAAS,UAAU;AACtQ,UAAM,eAAe;AAAA,MACnB;AAAA,MACA;AAAA,MACA;AAAA,MACA,SAAS;AAAA,MACT;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH,WAAW,SAAS,eAAe,KAAK,gBAAgB,kBAAkB,IAAI,EAAE,QAAQ,gBAAgB,GAAG;AACzG,UAAM,kBAAkB,cAAc,6BAA6B,aAAa,IAAI,IAAI;AACxF,UAAM,UAAU,IAAI,oBAAoB,UAAU,SAAS,iBAAiB,2BAA2B,iBAAiB;AACxH,UAAM,eAAe;AAAA,MACnB,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,MAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,MAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,MAChD,CAAC,SAAS,UAAU,SAAS,OAAO;AAAA,IACtC;AACA,UAAM,UAAU,cAAc;AAC9B,UAAM,SAAS,gBAAgB,SAAS,SAAS,WAAW,YAAY;AAAA,EAC1E,WAAW,IAAI,EAAE,QAAQ,mBAAmB,GAAG;AAC7C,UAAM,iBAAiB;AAAA,MACrB;AAAA,MACA;AAAA,MACA;AAAA,MACA,SAAS;AAAA,MACT;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH,OAAO;AACL,UAAM,kBAAkB,cAAc,6BAA6B,aAAa,KAAK,IAAI;AACzF,UAAM,UAAU,IAAI,cAAc,UAAU,SAAS,iBAAiB,2BAA2B,iBAAiB;AAClH,UAAM,UAAU,cAAc;AAC9B,UAAM,SAAS,gBAAgB,SAAS,SAAS,SAAS;AAAA,EAC5D;AACA,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AAC3G,gBAAc,KAAK,GAAG;AACtB,gBAAc,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACxE,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AACpG,QAAM,gBAAgB,CAAC;AACvB,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,UAAU,GAAG,MAAM,gFAAgFA,2BAA0B,aAAa;AAC3N,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,QAAM,0BAA0B,IAAI,EAAE,QAAQ,0BAA0B,KAAK,SAAS,eAAe,KAAK,SAAS,cAAc,SAAS,eAAe;AACzJ,QAAM,kBAAkB,cAAc,6BAA6B,aAAa,uBAAuB,IAAI;AAC3G,QAAM,gBAAgB,CAAC,GAAG,MAAM;AAChC,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,oBAAoB,gBAAgB;AAC1C,MAAI,SAAS;AACX,kBAAc,KAAK,IAAI;AAAA,EACzB;AACA,MAAI,2BAA2B;AAC7B,kBAAc,KAAK,sBAAsB;AAAA,EAC3C;AACA,MAAI,mBAAmB;AACrB,UAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,WAAW,aAAa,kBAAkB,gBAAgB,SAAS,CAAC;AACxH,kBAAc,KAAK,eAAe;AAClC,kBAAc,KAAK,eAAe;AAAA,EACpC;AACA,MAAI;AACJ,MAAI,yBAAyB;AAC3B,cAAU,IAAI,6BAA6B,UAAU,SAAS,iBAAiB,2BAA2B,iBAAiB;AAAA,EAC7H,OAAO;AACL,cAAU,IAAI,uBAAuB,UAAU,SAAS,iBAAiB,2BAA2B,iBAAiB;AAAA,EACvH;AACA,QAAM,eAAe;AAAA,IACnB,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAAA,IAC5C,CAAC,SAAS,cAAc,SAAS,WAAW;AAAA,IAC5C,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IAChD,CAAC,SAAS,UAAU,SAAS,OAAO;AAAA,EACtC;AACA,QAAM,SAAS,SAAS,gBAAgB,SAAS,eAAe,WAAW,YAAY;AACvF,gBAAc,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACxE,SAAO;AACT;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,UAAUA,UAAS,OAAO,aAAa;AACjD,SAAK,WAAW;AAChB,SAAK,UAAUA;AACf,SAAK,cAAc;AACnB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,cAAc;AACnB,UAAM,cAAc,kBAAkBA,SAAQ,MAAM;AACpD,UAAM,QAAQ,kBAAkB,MAAM,MAAM;AAC5C,UAAM,eAAe,KAAK,WAAW,IAAI,eAAe;AACxD,UAAM,kBAAkB,kBAAkB,YAAY,MAAM;AAC5D,UAAM,oBAAoB,YAAY,SAAS,IAAI,mBAAmB;AACtE,SAAK,WAAW;AAAA,UACV,yBAAyB,eAAe,KAAK;AAAA,UAC7C,iCAAiC,mBAAmB,KAAK;AAAA;AAAA,YAEvD;AAAA;AAAA;AAAA,gCAGoB,KAAK;AAAA;AAAA;AAAA,wDAGmB;AAAA,sCAClB;AAAA;AAAA;AAAA;AAAA;AAAA,EAKpC;AACF;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,QAAQ,QAAQ,IAAI;AAC5B,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,QAAM,aAAa,aAAa,cAAc,OAAO,KAAK;AAC1D,QAAM,CAAC,aAAa,WAAW,WAAWA,QAAO,IAAI,qBAAqB,mBAAmB,QAAQ,OAAO;AAC5G,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,WAAW,SAAS,EAAE,EAAE,CAAC;AACvH,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,aAAa,cAAc,OAAO,KAAK,IAAI,WAAW,SAAS,EAAE;AAAA,EACpF,CAAC;AACD,MAAI,SAAS,mBAAmB,CAAC,QAAQ,OAAO,CAAC,KAAK,OAAO,UAAU,UAAU;AAC/E,UAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,UAAM,YAAY,SAAS,WAAW,MAAM;AAC5C,UAAM,WAAW,gBAAgB,aAAa,WAAW,OAAO,OAAO,WAAW,WAAW,WAAWA,UAAS,OAAO,OAAO,UAAU;AACzI,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,SAAS,MAAM;AAAA,EAC3E;AACA,QAAM,UAAU,IAAI,gBAAgB,WAAWA,UAAS,CAAC,WAAW,SAAS,GAAG,OAAO,KAAK;AAC5F,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,UAAU,cAAc,GAAG,SAAS,KAAK;AACxF,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAClG,WAAS,8BAA8B,cAAc;AACrD,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,QAAQ,aAAa;AAC/B,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,eAAe,iBAAiB,QAAQ,CAAC;AAC/C,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA;AAAA,oDAE0C,OAAO;AAAA,oCACvB;AAAA;AAAA;AAAA,EAGlC;AACF;AACA,SAAS,iBAAiB,QAAQ,MAAM;AACtC,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,QAAI,OAAO,GAAG;AACZ,mBAAa,KAAK,OAAO;AAAA,IAC3B,OAAO;AACL,mBAAa,KAAK,GAAG,cAAc,KAAK;AAAA,IAC1C;AAAA,EACF;AACA,SAAO,aAAa,KAAK;AAC3B;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAM,UAAU,IAAI;AAC5B,QAAM,aAAa,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AAC9D,MAAI,IAAI,EAAE,IAAI,OAAO,GAAG;AACtB,UAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,UAAM,UAAU,EAAE,MAAM;AACxB,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,YAAMH,SAAQ,YAAY;AAC1B,mBAAa,OAAOA,UAAS,UAAU,KAAKA,UAAS,GAAG,MAAM,6BAA6BA,wBAAuB,UAAU,IAAI;AAAA,IAClI;AAAA,EACF;AACA,QAAM,YAAY,qBAAqB,aAAa,yBAAyB,GAAG,SAAS,YAAY,SAAS;AAC9G,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,YAAY,CAAC;AACnB,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO;AAAA,MACL,OAAO;AAAA,QACL,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,MACZ;AAAA,IACF;AAAA,EACF,CAAC;AACD,QAAM,eAAe,SAAS;AAAA,IAC5B,QAAQ,EAAE,GAAG,QAAQ;AAAA,IACrB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,cAAc,UAAU,SAAS,EAAE;AAAA,EAC3E,CAAC;AACD,YAAU,KAAK,QAAQ;AACvB,YAAU,KAAK,YAAY;AAC3B,QAAM,qBAAqB;AAAA,IACzB,UAAU;AAAA,IACV,UAAU;AAAA,IACV,cAAc,UAAU;AAAA,IACxB,UAAU;AAAA,EACZ;AACA,MAAI,SAAS,mBAAmB,CAAC,GAAG,OAAO,CAAC,KAAK,EAAE,UAAU,UAAU;AACrE,UAAM,aAAa,SAAS,WAAW,YAAY;AACnD,UAAM,OAAO,SAAS,WAAW,QAAQ;AACzC,UAAM,SAAS,gBAAgB,MAAM,YAAY,kBAAkB;AACnE,cAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,WAAO,SAAS,eAAe,UAAU,aAAa,OAAO,OAAO,OAAO,MAAM;AAAA,EACnF;AACA,QAAM,UAAU,IAAI,cAAc,SAAS,OAAO,kBAAkB;AACpE,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,UAAU,YAAY,GAAG,SAAS,KAAK;AACtF,YAAU,KAAK,GAAG;AAClB,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,YAAY,EAAE,CAAC;AAC5G,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU;AACd,IAAI,iBAAiB;AAAA;AAAA;AAGrB,IAAI,WAAW,kBAAkB;AAAA,EAC/B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB;AACpB,IAAI,uBAAuB;AAAA;AAAA;AAG3B,IAAI,gBAAgB,kBAAkB;AAAA,EACpC,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,SAAO,SAAS,QAAQ,MAAM,QAAQ;AACxC;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY;AAChB,IAAI,YAAY,iBAAiB,EAAE,WAAW,WAAW,OAAO,OAAO,CAAC;AACxE,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS;AACb,IAAI,SAAS,iBAAiB,EAAE,WAAW,QAAQ,OAAO,OAAO,CAAC;AAClE,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS;AACb,IAAI,SAAS,iBAAiB,EAAE,WAAW,QAAQ,OAAO,OAAO,CAAC;AAClE,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,IAAI,cAAc;AAAA;AAAA;AAGlB,IAAI,QAAQ,kBAAkB;AAAA,EAC5B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa;AACjB,IAAI,oBAAoB;AAAA;AAAA;AAGxB,IAAI,aAAa,kBAAkB;AAAA,EACjC,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,IAAI,IAAI;AAC7B,QAAM,UAAU,gBAAgB,OAAO,MAAM,GAAG;AAChD,SAAO,SAAS,eAAe,CAAC,QAAQ,MAAM,GAAG,WAAW,OAAO;AACrE;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,0BAA0B;AAAA;AAAA;AAGpC,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASjB,IAAI,OAAO,iBAAiB,EAAE,WAAW,KAAK,iBAAiB,YAAY,eAAe,WAAW,CAAC;AACtG,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,0BAA0B;AAAA;AAAA;AAGtC,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc;AAClB,IAAI,qBAAqB;AAAA;AAAA;AAAA;AAAA;AAKzB,IAAI,cAAc,kBAAkB;AAAA,EAClC,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,OAAO;AACT,CAAC;AACD,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc;AAClB,IAAI,cAAc,iBAAiB,EAAE,WAAW,YAAY,CAAC;AAC7D,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa;AACjB,IAAI,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAMxB,IAAI,aAAa,kBAAkB,EAAE,WAAW,YAAY,iBAAiB,mBAAmB,OAAO,OAAO,CAAC;AAC/G,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,QAAQ,QAAQ,MAAMa,QAAO,MAAM;AAC7C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,UAAM,MAAM;AACZ,UAAM,OAAO,OAAO,KAAK;AACzB,SAAK,cAAc;AACnB,QAAI;AACJ,UAAM,QAAQ,SAAS,iBAAiBA;AACxC,QAAI,SAAS,KAAK;AAChB,oBAAc,eAAe;AAAA,IAC/B,WAAW,SAAS,GAAG;AACrB,oBAAc,QAAQ;AAAA,IACxB,OAAO;AACL,oBAAc,WAAW,mBAAmB;AAAA,IAC9C;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBASI,aAAa;AAAA;AAAA,oCAED;AAAA;AAAA;AAAA;AAAA;AAAA,0BAKV;AAAA;AAAA;AAAA;AAAA,EAIxB;AACF;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,QAAQ,MAAMA,QAAO,MAAM;AAC7C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,UAAM,MAAM;AACZ,UAAM,OAAO,OAAO,KAAK;AACzB,SAAK,cAAc;AACnB,QAAI;AACJ,UAAM,QAAQ,SAAS,iBAAiBA;AACxC,QAAI,SAAS,KAAK;AAChB,oBAAc,eAAe;AAAA,IAC/B,WAAW,SAAS,GAAG;AACrB,oBAAc,QAAQ;AAAA,IACxB,OAAO;AACL,oBAAc,WAAW,mBAAmB;AAAA,IAC9C;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQY,KAAK,YAAY;AAAA,gCACjB,KAAK,YAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iCAehB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAWR,aAAa;AAAA;AAAA;AAAA,6DAGuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAqBnB;AAAA;AAAA;AAAA;AAAA,EAIxC;AACF;AAGA,IAAI,MAAM,CAAC,SAAS;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK,IAAI;AAC3C,QAAM,UAAU,IAAI,EAAE,QAAQ,0BAA0B,IAAI,IAAI,iBAAiB,EAAE,OAAO,aAAa,MAAMA,QAAO,IAAI,IAAI,IAAI,WAAW,EAAE,OAAO,aAAa,MAAMA,QAAO,IAAI;AAClL,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,YAAY,aAAa,MAAMA,QAAO,MAAM;AACtD,SAAK,gBAAgB,CAAC,cAAc,eAAe,IAAI;AACvD,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,SAAK,QAAQ,WAAW;AACxB,SAAK,cAAc;AACnB,SAAK,OAAO;AACZ,SAAK,QAAQA;AACb,SAAK,OAAO;AACZ,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAQU,KAAK;AAAA,oDACiB;AAAA,yCACX,KAAK;AAAA,0BACpB;AAAA;AAAA;AAAA,sCAGY,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAelBA,0BAAyB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yCAOTA;AAAA,0BACf;AAAA;AAAA;AAAA;AAAA,0CAIgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAexC;AACF;AAGA,IAAI,UAAU,CAAC,SAAS;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,GAAG,IAAI;AACrB,QAAM,EAAE,aAAa,MAAM,OAAAA,QAAO,KAAK,IAAI;AAC3C,QAAM,UAAU,IAAI,eAAe,EAAE,OAAO,aAAa,MAAMA,QAAO,IAAI;AAC1E,SAAO,SAAS,gBAAgB,SAAS,CAAC,GAAG,GAAG,EAAE,GAAG,EAAE,KAAK;AAC9D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,GAAG,aAAa,UAAU,UAAU;AACpD,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,YAAY,QAAQ;AAC1B,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,CAAC,WAAW,MAAM,EAAE,GAAG,SAAS,SAAS,CAAC;AAC1G,QAAM,UAAU,OAAO,eAAe,EAAE,OAAO,OAAO,QAAQ;AAC9D,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AACzG,WAAS,8BAA8B,aAAa;AACpD,WAAS,8BAA8B,OAAO;AAC9C,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,kBAAkB,SAAS,IAAI;AACvC,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,kBAAkB,EAAE,KAAK;AACtE,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,QAAM,uBAAuB,gBAAgB;AAC7C,QAAM,qBAAqB,SAAS,mBAAmB,CAAC,CAAC,CAAC;AAC1D,MAAI,WAAW;AACf,MAAI,sBAAsB;AACxB,QAAI,oBAAoB;AACtB,YAAM,WAAW,SAAS,QAAQ,IAAI,SAAS,MAAM;AACrD,YAAM,SAAS,SAAS;AACxB,YAAM,WAAW,IAAI,MAAM,KAAK;AAChC,eAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,iBAAS,MAAM,EAAE,MAAM,aAAa;AAAA,MACtC;AACA,YAAM,iBAAiB,iBAAiB,QAAQ,EAAE,OAAO,EAAE,OAAO,cAAc,QAAQ;AACxF,iBAAW,SAAS,eAAe,UAAU,EAAE,KAAK;AACpD,YAAM,eAAe,SAAS,QAAQ,IAAI,SAAS,MAAM;AACzD,mBAAa,SAAS;AAAA,IACxB,OAAO;AACL,iBAAW,eAAe,GAAG,cAAc,QAAQ;AAAA,IACrD;AACA,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,EACjE;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,aAAa,WAAW,IAAI,qBAAqB,0BAA0B,SAAS,OAAO,IAAI;AACtG,MAAI,WAAW;AACf,MAAI,UAAU;AACZ,eAAW,qBAAqB,qBAAqB,aAAa,QAAQ;AAAA,EAC5E;AACA,MAAI;AACJ,MAAI,oBAAoB;AACtB,UAAM,WAAW,SAAS,QAAQ,IAAI,SAAS,MAAM;AACrD,UAAM,SAAS,SAAS;AACxB,UAAM,YAAY,WAAW,QAAQ,aAAa,cAAc,WAAW,GAAG,UAAU,EAAE,KAAK;AAC/F,UAAM,SAAS,eAAe,UAAU,EAAE,KAAK;AAC/C,UAAM,UAAU,SAAS,QAAQ,IAAI,IAAI,MAAM;AAC/C,YAAQ,SAAS;AAAA,EACnB,OAAO;AACL,UAAM,SAAS,UAAU,aAAa,UAAU,QAAQ;AAAA,EAC1D;AACA,MAAI,sBAAsB;AACxB,aAAS,8BAA8B,QAAQ;AAAA,EACjD;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,qBAAqB;AAAA;AAAA;AAGnC,IAAI,iBAAiB;AAAA;AAAA;AAAA,MAGf,qBAAqB;AAAA;AAAA;AAG3B,IAAI,WAAW,kBAAkB;AAAA,EAC/B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,oBAAkB,GAAG,SAAS;AAC9B,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,iBAAiB,IAAI,cAAc,UAAU,OAAO,KAAK;AAC/D,SAAO,SAAS,gBAAgB,gBAAgB,CAAC,CAAC,GAAG,EAAE,KAAK;AAC9D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AACxE,QAAM,YAAY,CAAC,GAAG,GAAG,CAAC;AAC1B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,iBAAiB,UAAU;AAClI,QAAM,iBAAiB,IAAI,cAAc,UAAU,OAAO,KAAK;AAC/D,SAAO,SAAS,gBAAgB,gBAAgB,CAAC,CAAC,GAAG,EAAE,KAAK;AAC9D;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,QAAQ;AACpC,SAAK,cAAc,SAAS;AAC5B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,iBAAiB,SAAS;AAChC,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,UAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,UAAM,YAAY,wBAAwB,uBAAuB;AACjE,SAAK,WAAW;AAAA,iCACa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAcZ;AAAA,kBACd;AAAA,gDAC8B;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKX;AAAA,kDACgB;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAOf;AAAA;AAAA;AAAA;AAAA,qCAIK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASnC;AACF;AACA,IAAI,2BAA2B,MAAM;AAAA,EACnC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,QAAQ;AACpC,SAAK,cAAc,SAAS;AAC5B,UAAM,cAAc,SAAS;AAC7B,UAAM,eAAe,SAAS;AAC9B,UAAM,cAAc,SAAS;AAC7B,UAAM,gBAAgB,SAAS;AAC/B,UAAM,iBAAiB,SAAS;AAChC,UAAM,gBAAgB,SAAS;AAC/B,UAAM,uBAAuB,SAAS;AACtC,UAAM,wBAAwB,SAAS;AACvC,UAAM,uBAAuB,SAAS;AACtC,UAAM,WAAW,uBAAuB,IAAI,SAAS,QAAQ;AAC7D,UAAM,SAAS,wBAAwB,IAAI,SAAS,QAAQ;AAC5D,UAAM,UAAU,uBAAuB,IAAI,SAAS,QAAQ;AAC5D,UAAM,YAAY,uBAAuB,wBAAwB,uBAAuB;AACxF,SAAK,WAAW;AAAA,iCACa,aAAa,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAiBzB;AAAA,mBACb;AAAA,gDAC6B;AAAA;AAAA,oCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKX;AAAA,sBACZ;AAAA,kDAC4B;AAAA;AAAA,sCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAMX;AAAA,wBACZ;AAAA,oDAC4B;AAAA;AAAA,wCAEZ,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAOf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAMT,2BAA2B;AAAA,yBAC3B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUvB;AACF;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,OAAO,IAAI;AAC9B,QAAM,IAAI;AACV,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY,CAAC,GAAG,GAAG,CAAC;AAC1B,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,QAAM,4BAA4B,IAAI,cAAc,UAAU,OAAO,IAAI;AACzE,QAAM,sBAAsB,SAAS,gBAAgB,2BAA2B,CAAC,CAAC,GAAG,EAAE,KAAK;AAC5F,QAAM,yBAAyB,IAAI,yBAAyB,QAAQ;AACpE,QAAM,SAAS,SAAS,gBAAgB,wBAAwB,CAAC,IAAI,mBAAmB,GAAG,EAAE,KAAK;AAClG,WAAS,8BAA8B,mBAAmB;AAC1D,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,QAAQ,OAAO,IAAI;AACtC,QAAM,IAAI;AACV,oBAAkB,CAAC,QAAQ,MAAM,GAAG,aAAa;AACjD,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AAC9G,QAAM,eAAe;AACrB,QAAM,0BAA0B,IAAI,cAAc,UAAU,OAAO,YAAY;AAC/E,QAAM,oBAAoB,SAAS,gBAAgB,yBAAyB,CAAC,CAAC,GAAG,EAAE,KAAK;AACxF,QAAM,yBAAyB,IAAI,yBAAyB,QAAQ;AACpE,QAAM,SAAS,SAAS,gBAAgB,wBAAwB,CAAC,IAAI,iBAAiB,GAAG,EAAE,KAAK;AAChG,WAAS,8BAA8B,iBAAiB;AACxD,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,uBAAuB,GAAG,qBAAqB,UAAU,UAAU;AAC1E,MAAI,UAAU,IAAI,cAAc,UAAU,OAAO,KAAK;AACtD,QAAM,aAAa,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,SAAS;AACnE,YAAU,IAAI,cAAc,UAAU,OAAO,MAAM,MAAM,mBAAmB;AAC5E,QAAM,cAAc,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,SAAS;AACpE,SAAO,CAAC,YAAY,WAAW;AACjC;AAGA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,oBAAoB,IAAI;AAChE,UAAM,eAAe;AACrB,iBAAa,OAAO,EAAE,MAAM,WAAW,GAAG,MAAM,uDAAuD,EAAE,MAAM,SAAS;AACxH,UAAM,YAAY,CAAC,GAAG,CAAC;AACvB,iBAAa,OAAO,qBAAqB,+BAA+BA,UAAS,SAAS,GAAG,MAAM,wEAAwEA,2BAA0B,YAAY;AACjN,UAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,IAAI;AACrG,UAAM,CAAC,QAAQ,OAAO,IAAI,uBAAuB,GAAG,qBAAqB,UAAU,YAAY;AAC/F,WAAO,CAAC,QAAQ,OAAO;AAAA,EACzB;AACF;AAGA,SAAS,SAAS,GAAG,aAAa,UAAU,UAAU;AACpD,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,YAAY,QAAQ;AAC1B,QAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,CAAC,WAAW,MAAM,EAAE,GAAG,SAAS,SAAS,CAAC;AAC1G,QAAM,UAAU,OAAO,eAAe,WAAW,QAAQ,QAAQ;AACjE,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AACzG,WAAS,8BAA8B,aAAa;AACpD,WAAS,8BAA8B,OAAO;AAC9C,SAAO;AACT;AAGA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,UAAM,eAAe;AACrB,UAAM,QAAQ,EAAE,MAAM;AACtB,UAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,QAAI,OAAO;AACX,UAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,UAAM,wBAAwB,gBAAgB;AAC9C,UAAM,qBAAqB,aAAa,mBAAmB,CAAC,CAAC,CAAC;AAC9D,UAAM,gBAAgB,CAAC;AACvB,QAAI,YAAY;AAChB,QAAI,uBAAuB;AACzB,UAAI,oBAAoB;AACtB,cAAM,WAAW,aAAa,QAAQ,IAAI,UAAU,MAAM;AAC1D,cAAM,SAAS,SAAS;AACxB,cAAM,WAAW,IAAI,MAAM,KAAK;AAChC,iBAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,mBAAS,MAAM,EAAE,MAAM,aAAa;AAAA,QACtC;AACA,cAAM,kBAAkB,iBAAiB,QAAQ,EAAE,OAAO,EAAE,OAAO,cAAc,QAAQ;AACzF,oBAAY,aAAa,eAAe,UAAU,EAAE,KAAK;AACzD,cAAM,gBAAgB,aAAa,QAAQ,IAAI,UAAU,MAAM;AAC/D,sBAAc,SAAS;AAAA,MACzB,OAAO;AACL,oBAAY,eAAe,GAAG,cAAc,YAAY;AAAA,MAC1D;AACA,oBAAc,KAAK,SAAS;AAC5B,aAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAAA,IACjE;AACA,yBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,UAAM,CAAC,cAAc,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACxG,QAAI,WAAW;AACf,QAAI,UAAU;AACZ,iBAAW,qBAAqB,qBAAqB,cAAc,QAAQ;AAAA,IAC7E;AACA,UAAM,MAAM,SAAS,WAAW,aAAa,UAAU,YAAY;AACnE,eAAW,MAAM,eAAe;AAC9B,mBAAa,8BAA8B,EAAE;AAAA,IAC/C;AACA,WAAO;AAAA,EACT;AACF;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC1F,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,EAAE,MAAM,MAAM;AAAA,EAC1E;AACA,uBAAqB,2BAA2B,OAAO,MAAM,KAAK;AAClE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,QAAM,SAAS,aAAa,cAAc,WAAW;AACrD,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,QAAM,UAAU,OAAO,KAAK,IAAI,OAAO,OAAO,QAAQ;AACtD,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,UAAU,QAAQ;AAC7E,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F,OAAO;AACL,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EAC1F;AACA,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,OAAO;AAC9C,MAAI,gBAAgB,MAAM;AACxB,aAAS,8BAA8B,SAAS;AAAA,EAClD;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,UAAU,qBAAqB;AAAA;AAAA;AAGnC,IAAI,iBAAiB;AAAA;AAAA;AAAA,MAGf,qBAAqB;AAAA;AAAA;AAG3B,IAAI,WAAW,kBAAkB;AAAA,EAC/B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,UAAU,MAAM;AAClC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,UAAM,OAAO,OAAO;AACpB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE,EAAE,KAAK,GAAG;AAClD,UAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,GAAG,EAAE,KAAK,GAAG;AACjE,UAAM,iBAAiB,CAAC,aAAa,aAAa,aAAa,WAAW,EAAE,MAAM,GAAG,IAAI;AACzF,UAAM,SAAS,SAAS,YAAY,IAAI;AACxC,QAAI,SAAS,GAAG;AACd,WAAK,WAAW;AAAA,sBACA;AAAA,oBACF;AAAA;AAAA;AAAA;AAAA;AAAA,wCAKoB;AAAA;AAAA,4CAEI;AAAA;AAAA;AAAA;AAAA;AAKtC;AAAA,IACF;AACA,SAAK,WAAW;AAAA,QACZ,iBAAiB,SAAS;AAAA,QAC1B,eAAe,SAAS;AAAA;AAAA;AAAA,UAGtB;AAAA,8BACoB;AAAA;AAAA,iDAEmB;AAAA;AAAA,qDAEI;AAAA;AAAA;AAAA,UAG3C;AAAA,yBACe;AAAA;AAAA;AAAA,EAGvB;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,QAAQ,UAAU,MAAM;AAClC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,UAAM,OAAO,OAAO;AACpB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE,EAAE,KAAK,GAAG;AAClD,UAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,GAAG,EAAE,KAAK,GAAG;AACjE,UAAM,UAAU,YAAY,MAAM,IAAI;AACtC,UAAM,SAAS,YAAY,UAAU,IAAI;AACzC,UAAM,SAAS,GAAG,QAAQ,OAAO,QAAQ,KAAK,YAAY,OAAO;AACjE,UAAM,YAAY,SAAS,IAAI,WAAW,QAAQ,OAAO,MAAM,EAAE,EAAE,KAAK;AACxE,UAAM,SAAS,SAAS,YAAY,IAAI;AACxC,QAAI,WAAW;AACf,QAAI,SAAS,GAAG;AACd,YAAM,WAAW;AAAA,UACb;AAAA;AAAA,0CAEgC;AAAA;AAAA,8CAEI;AAAA;AAAA;AAAA;AAIxC,iBAAW;AAAA,UACP;AAAA,UACA;AAAA,sCAC4B,OAAO,KAAK,OAAO;AAAA,UAC/C,QAAQ,OAAO;AAAA,aACZ;AAAA,YACD;AAAA,wCAC4B,OAAO,KAAK,OAAO;AAAA;AAAA;AAAA,IAGvD,OAAO;AACL,YAAM,WAAW;AAAA,UACb;AAAA,UACA,cAAc;AAAA,UACd,eAAe;AAAA,UACf;AAAA;AAAA,6CAEmC;AAAA,kDACK;AAAA;AAAA;AAG5C,iBAAW;AAAA,UACP;AAAA,UACA;AAAA,sCAC4B,OAAO,KAAK,OAAO;AAAA,UAC/C,QAAQ,OAAO;AAAA,aACZ;AAAA,YACD;AAAA,wCAC4B,OAAO,KAAK,OAAO;AAAA;AAAA;AAAA,UAGjD,QAAQ,OAAO;AAAA,aACZ,QAAQ,OAAO,QAAQ,KAAK,YAAY,OAAO;AAAA,YAChD;AAAA,wCAC4B,OAAO,KAAK,OAAO;AAAA,YAC/C,QAAQ,OAAO;AAAA,eACZ;AAAA,cACD;AAAA,0CAC4B,OAAO,KAAK,OAAO;AAAA;AAAA;AAAA;AAAA,IAIzD;AACA,SAAK,WAAW;AAAA,cACN,iBAAiB,SAAS;AAAA,cAC1B,eAAe,SAAS;AAAA;AAAA;AAAA,UAG5B;AAAA;AAAA,UAEA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,IAAI,sBAAsB,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AAClE,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,uBAAuB,EAAE,OAAO,UAAU,IAAI,IAAI,IAAI,iBAAiB,EAAE,OAAO,UAAU,IAAI;AACjK,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAC7D,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AAAA;AAEV,IAAI,aAAa;AAAA;AAAA;AAAA,MAGX,qBAAqB;AAAA;AAAA;AAG3B,IAAI,OAAO,kBAAkB;AAAA,EAC3B,WAAW;AAAA,EACX,iBAAiB;AACnB,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,WAAW,aAAa,YAAY;AAC9C,SAAK,gBAAgB,CAAC,OAAO;AAC7B,SAAK,iBAAiB,CAAC,EAAE,MAAM,QAAQ,MAAM,QAAQ,CAAC;AACtD,SAAK,cAAc,CAAC,WAAW,UAAU;AACzC,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAQU,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAUlB,cAAc;AAAA;AAAA;AAAA,EAGtC;AACF;AAGA,IAAI,MAAM;AAAA;AAAA;AAAA;AAAA;AAKV,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAmBjB,IAAI,UAAU,kBAAkB,EAAE,WAAW,KAAK,iBAAiB,YAAY,kBAAkB,KAAK,CAAC;AACvG,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AACV,IAAI,OAAO,kBAAkB;AAAA,EAC3B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,OAAO,aAAa,eAAe,CAAC,GAAG,GAAG,OAAO,KAAK;AAC5D,QAAM,WAAW,KAAK;AAAA,IACpB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,kBAAkB,MAAM,UAAU,MAAM;AAAA,EACnD,CAAC;AACD,QAAM,gBAAgB,qBAAqB,qBAAqB,SAAS,OAAO,IAAI;AACpF,QAAM,oBAAoB,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAClH,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,kBAAkB,GAAG,SAAS,SAAS,CAAC;AACjF,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,SAAS,CAAC;AACtD,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,UAAU,MAAM,EAAE,CAAC;AACnG,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,QAAM,MAAM,QAAQ,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,eAAe,GAAG,SAAS,SAAS,CAAC;AAC9E,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,iBAAiB;AACxD,WAAS,8BAA8B,CAAC;AACxC,WAAS,8BAA8B,CAAC;AACxC,WAAS,8BAA8B,MAAM;AAC7C,WAAS,8BAA8B,cAAc;AACrD,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,YAAY,MAAM,WAAW,IAAI;AACzC,QAAM,QAAQ,aAAa,SAAS,SAAS,EAAE,QAAQ,EAAE,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,OAAO,MAAM,SAAS,EAAE,EAAE,CAAC;AAC/H,QAAM,YAAY,MAAM,MAAM;AAC9B,QAAM,cAAc,MAAM,MAAM;AAChC,QAAM,UAAU,IAAI,mBAAmB,WAAW,aAAa,UAAU;AACzE,QAAM,eAAe,CAAC,CAAC,IAAI,CAAC;AAC5B,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,KAAK,GAAG,SAAS,YAAY;AAC5E,MAAI,CAAC,YAAY;AACf,aAAS,8BAA8B,KAAK;AAAA,EAC9C;AACA,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,oBAAoB;AAAA;AAAA;AAG9B,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWjB,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,QAAQ,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC3C,UAAM,CAAC,WAAW,QAAQ,IAAI,WAAW,MAAM,QAAQ,EAAE,OAAO,EAAE,KAAK;AACvE,WAAO,SAAS,eAAe,UAAU,EAAE,OAAO,SAAS;AAAA,EAC7D;AACA,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,6BAA6B,GAAG;AAChD,cAAU,IAAI,qBAAqB,EAAE,OAAO,UAAU;AAAA,EACxD,OAAO;AACL,cAAU,IAAI,eAAe,EAAE,OAAO,GAAG;AAAA,EAC3C;AACA,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,qBAAqB,MAAM;AAClC,uBAAqB,KAAK,+FAA+F;AACzH,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,eAAe,IAAI;AACxD,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,EAAE,gBAAgB,IAAI,yBAAyB,WAAW,YAAY,eAAe,cAAc,cAAc;AACvH,SAAO,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AACnG;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,qBAAqB,MAAM;AAClC,uBAAqB,KAAK,+FAA+F;AACzH,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,mBAAmB,IAAI;AAC5E,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,EAAE,iBAAiB,aAAa,IAAI,yBAAyB,WAAW,YAAY,eAAe,cAAc,gBAAgB,kBAAkB;AACzJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,GAAG,SAAS,IAAI,WAAW,CAAC,YAAY,CAAC,CAAC;AAAA,EACrE;AACF;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,2BAA2B,qBAAqB;AACpD,SAAS,qBAAqB,MAAM;AAClC,uBAAqB,KAAK,+FAA+F;AACzH,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,aAAa,IAAI;AACtE,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,mBAAmB;AACzB,QAAM,kBAAkB;AACxB,QAAM,oBAAoB;AAC1B,QAAM,kBAAkB;AACxB,QAAM,EAAE,iBAAiB,eAAe,IAAI,yBAAyB,WAAW,YAAY,kBAAkB,iBAAiB,mBAAmB,eAAe;AACjK,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,WAAW,IAAI,aAAa,cAAc,CAAC;AAAA,EAC9F;AACF;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,YAAY,OAAO,SAAS,UAAU;AAChD,SAAK,gBAAgB,CAAC,SAAS;AAC/B,SAAK,cAAc,CAAC,YAAY,KAAK;AACrC,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA,8BAIU,oBAAoB;AAAA;AAAA;AAAA;AAAA,EAIhD;AACF;AAGA,IAAI,UAAU,CAAC,SAAS;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,IAAI;AACpB,QAAM,EAAE,OAAO,OAAO,SAAS,SAAS,IAAI;AAC5C,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,UAAU,IAAI,cAAc,aAAa,OAAO,SAAS,QAAQ;AACvE,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,WAAW,EAAE,EAAE,CAAC;AACxG,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,QAAQ,GAAG,KAAK;AAClE,WAAS,8BAA8B,QAAQ;AAC/C,QAAM,WAAW,CAAC,GAAG,QAAQ,OAAO,KAAK;AACzC,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC7F,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM;AAAA,MACX,OAAO;AAAA,QACL,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,QACT,OAAO,EAAE,UAAU,WAAW,KAAK;AAAA,MACrC;AAAA,MACA,SAAS;AAAA,IACX,CAAC;AAAA,EACH;AACF;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE,WAAW,EAAE,UAAU,aAAa;AAClC,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,UAAU,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACnE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,aAAS,8BAA8B,QAAQ;AAC/C,aAAS,8BAA8B,EAAE;AACzC,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,OAAO,EAAE,OAAO,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACzF;AACF;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,YAAY,EAAE,QAAQ,EAAE,OAAO,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAAA,EAC9F;AACA,QAAM,QAAQ,OAAO,GAAG;AACxB,QAAM,QAAQ,OAAO,GAAG;AACxB,SAAO,QAAQ,CAAC,OAAO;AACrB,iBAAa,kBAAkB,OAAO,GAAG,OAAO,uDAAuD;AACvG,iBAAa,OAAO,UAAU,GAAG,OAAO,MAAM,uDAAuD;AAAA,EACvG,CAAC;AACD,QAAM,0BAA0B,CAAC;AACjC,QAAM,kBAAkB,OAAO,IAAI,CAAC,OAAO;AACzC,UAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAChG,4BAAwB,KAAK,SAAS;AACtC,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACtF,0BAAwB,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AAClF,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,MAAM;AAAA,EACrB,YAAY,QAAQ,UAAU,eAAe;AAC3C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,MAAM,QAAQ,CAAC;AACvD,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,UAAM,OAAO,OAAO;AACpB,UAAM,OAAO,kBAAkB,IAAI;AACnC,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE,EAAE,KAAK,GAAG;AAClD,UAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,GAAG,EAAE,KAAK,GAAG;AACjE,UAAM,iBAAiB,CAAC,aAAa,aAAa,aAAa,WAAW,EAAE,MAAM,GAAG,IAAI;AACzF,QAAI,SAAS,GAAG;AACd,WAAK,WAAW;AAAA,sBACA;AAAA,oBACF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWd;AAAA,IACF;AACA,SAAK,WAAW;AAAA,QACZ,gBAAgB,QAAQ;AAAA,QACxB,cAAc,QAAQ;AAAA;AAAA;AAAA,UAGpB;AAAA;AAAA;AAAA;AAAA,YAIE;AAAA,2BACe;AAAA;AAAA;AAAA;AAAA,EAIzB;AACF;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,QAAQ,UAAU,eAAe;AAC3C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,SAAS,MAAM,QAAQ,CAAC;AACvD,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,UAAM,OAAO,OAAO;AACpB,UAAM,QAAQ,kBAAkB,IAAI;AACpC,UAAM,QAAQ,SAAS,IAAI,CAAC,OAAO,GAAG,EAAE,EAAE,KAAK,GAAG;AAClD,UAAM,MAAM,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,GAAG,EAAE,KAAK,GAAG;AACjE,UAAM,UAAU,YAAY,MAAM,IAAI;AACtC,UAAM,SAAS,YAAY,UAAU,IAAI;AACzC,UAAM,SAAS,GAAG,QAAQ,OAAO,QAAQ,KAAK,YAAY,OAAO;AACjE,UAAM,YAAY,SAAS,IAAI,WAAW,QAAQ,OAAO,MAAM,EAAE,EAAE,KAAK;AACxE,UAAM,iBAAiB;AAAA,MACrB,GAAG;AAAA,MACH,GAAG,QAAQ,OAAO;AAAA,YACZ;AAAA;AAAA,MAEN,SAAS,IAAI,KAAK;AAAA;AAAA,SAEf,QAAQ,OAAO;AAAA,YACZ,QAAQ,OAAO,QAAQ,KAAK,YAAY,OAAO;AAAA,MACrD,SAAS,IAAI,KAAK,KAAK,QAAQ,OAAO;AAAA,cAC9B;AAAA,IACV;AACA,UAAM,cAAc,SAAS,IAAI,4BAA4B;AAC7D,QAAI,WAAW;AACf,aAAS,KAAK,GAAG,IAAI,SAAS,IAAI,IAAI,GAAG,KAAK,GAAG,MAAM;AACrD,kBAAY;AAAA,UACR,eAAe;AAAA,cACX;AAAA,mBACK;AAAA;AAAA,YAEP;AAAA,mBACO,yBAAyB,OAAO,KAAK,OAAO;AAAA;AAAA;AAAA,IAG3D;AACA,gBAAY,SAAS,IAAI,OAAO;AAChC,SAAK,WAAW;AAAA,cACN,iBAAiB,SAAS;AAAA,cAC1B,eAAe,SAAS;AAAA;AAAA;AAAA,UAG5B;AAAA;AAAA,UAEA;AAAA;AAAA;AAAA;AAAA,EAIR;AACF;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,cAAc,IAAI;AACpC,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,UAAM,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACxE,WAAO,MAAM;AAAA,MACX,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,aAAa,OAAO,eAAe,OAAO,EAAE,MAAM;AAAA,IACpE,CAAC;AAAA,EACH;AACA,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,iBAAiB,EAAE,OAAO,UAAU,aAAa,IAAI,IAAI,WAAW,EAAE,OAAO,UAAU,aAAa;AACvK,QAAM,eAAe,CAAC,CAAC,aAAa,CAAC;AACrC,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,YAAY;AACrE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUV,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAcX,qBAAqB;AAAA;AAAA;AAG3B,IAAI,OAAO,kBAAkB,EAAE,WAAW,KAAK,iBAAiB,WAAW,CAAC;AAC5E,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,YAAY,CAAC;AACnB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC1F,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAC/D,cAAU,KAAK,SAAS;AAAA,EAC1B;AACA,uBAAqB,2BAA2B,QAAQ,MAAM,KAAK;AACnE,MAAI;AACJ,MAAI,SAAS,mBAAmB,CAAC,SAAS,CAAC,GAAG;AAC5C,UAAM,QAAQ,SAAS,QAAQ,IAAI,UAAU,MAAM,EAAE;AACrD,UAAM,EAAE,SAAS,UAAU,SAAS,IAAI,YAAY,UAAU,OAAO,UAAU,OAAO,OAAO,IAAI;AACjG,UAAM,SAAS,eAAe,UAAU,UAAU,OAAO;AAAA,EAC3D,OAAO;AACL,UAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,UAAU,OAAO,IAAI;AACpG,UAAM,SAAS,aAAa,cAAc,WAAW;AACrD,UAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,UAAM,cAAc,WAAW,EAAE,KAAK;AACtC,UAAM,UAAU,OAAO,KAAK,aAAa,QAAQ,QAAQ;AACzD,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,cAAU,KAAK,GAAG;AAClB,cAAU,KAAK,OAAO;AAAA,EACxB;AACA,MAAI,UAAU;AACZ,cAAU,KAAK,GAAG;AAClB,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,QAAQ;AAC9E,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAAA,EACtF;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,cAAc,oBAAoB,IAAI;AAC7D,QAAM,EAAE,kBAAkB,IAAI;AAC9B,QAAM,SAAS,SAAS,SAAS,MAAM,MAAM;AAC7C,QAAM,UAAU,SAAS,SAAS,OAAO,MAAM;AAC/C,QAAM,gBAAgB,SAAS,SAAS,aAAa,MAAM;AAC3D,QAAM,sBAAsB,oBAAoB,IAAI,CAAC,OAAO,SAAS,SAAS,GAAG,MAAM,CAAC;AACxF,QAAM,2BAA2B,oBAAoB,IAAI,CAAC,OAAO,GAAG,KAAK;AACzE,QAAM,CAAC,aAAa,MAAM,IAAI,4BAA4B,QAAQ,MAAM,OAAO,SAAS,OAAO,OAAO,OAAO,OAAO,eAAe,aAAa,OAAO,qBAAqB,0BAA0B,iBAAiB;AACvN,SAAO,SAAS,eAAe,aAAa,OAAO,OAAO,MAAM;AAClE;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,MAAM,OAAO,MAAM,IAAI;AAC5C,QAAM,SAAS,aAAa,OAAO,MAAM,OAAO,KAAK;AACrD,SAAO,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,OAAO,MAAM;AAC/D;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa;AACjB,IAAI,cAAc,iBAAiB,EAAE,WAAW,WAAW,CAAC;AAC5D,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,oBAAoB;AAAA;AAAA;AAGhC,IAAI,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWlB,IAAI,QAAQ,iBAAiB,EAAE,WAAW,OAAO,iBAAiB,YAAY,CAAC;AAC/E,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,oBAAoB;AAAA;AAAA;AAGjC,IAAI,eAAe;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWnB,IAAI,SAAS,iBAAiB,EAAE,WAAW,QAAQ,iBAAiB,aAAa,CAAC;AAClF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,YAAY,WAAW,UAAU,cAAc,kBAAkB;AAC3E,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,WAAW,UAAU,KAAK,IAAI;AAC5C,SAAK,cAAc,CAAC,OAAO,WAAW,UAAU,KAAK;AACrD,UAAM,kBAAkB;AAAA,MACtB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,mBAAmB;AAAA,MACvB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,QAAI;AACJ,QAAI,kBAAkB;AACpB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,SAAK,WAAW;AAAA;AAAA,YAER,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,uCACX,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCASpB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAqBjC;AACF;AAGA,IAAI,8BAA8B,MAAM;AAAA,EACtC,YAAY,YAAY,WAAW,UAAU,cAAc,kBAAkB;AAC3E,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,WAAW,UAAU,KAAK,IAAI;AAC5C,SAAK,cAAc,CAAC,OAAO,WAAW,UAAU,KAAK;AACrD,UAAM,kBAAkB;AAAA,MACtB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,mBAAmB;AAAA,MACvB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,QAAI;AACJ,QAAI,kBAAkB;AACpB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,SAAK,WAAW;AAAA;AAAA,YAER,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,uCACX,gBAAgB;AAAA,uCAChB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCAcJ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQH,QAAQ;AAAA,uCACD,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAiDhD;AACF;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAb,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,4BAA4B,OAAO,OAAO,WAAW,UAAU,cAAc,gBAAgB,IAAI,IAAI,sBAAsB,OAAO,OAAO,WAAW,UAAU,cAAc,gBAAgB;AAC/P,SAAO,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,SAAS;AAC9D;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gCAAgC,MAAM;AAAA,EACxC,YAAY,SAAS,YAAY,cAAc;AAC7C,SAAK,gBAAgB,CAAC,IAAI;AAC1B,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,UAAM,CAAC,EAAE,SAAS,MAAM,IAAI;AAC5B,UAAM,CAAC,EAAE,SAAS,MAAM,IAAI;AAC5B,UAAM,iBAAiB;AAAA,MACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,MAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,IAC5C;AACA,UAAM,iBAAiB;AAAA,MACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,MAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,IAC5C;AACA,UAAM,cAAc,eAAe,KAAK,eAAe;AACvD,UAAM,aAAa,eAAe,KAAK,eAAe;AACtD,UAAM,iBAAiB,IAAI;AAC3B,UAAM,gBAAgB,IAAI;AAC1B,UAAM,YAAY,KAAK,KAAK,cAAc,IAAI,IAAI;AAClD,UAAM,WAAW,KAAK,KAAK,aAAa,IAAI,IAAI;AAChD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAUsB;AAAA,yCACD;AAAA;AAAA,6CAEI;AAAA,4CACD;AAAA;AAAA,oCAER;AAAA,mCACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAcD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAQE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sDAMkB,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,qDAMX,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EA+B5D;AACF;AAGA,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,GAAG,IAAI;AACvB,QAAM,EAAE,aAAa,IAAI;AACzB,QAAM,UAAU,IAAI,8BAA8B,GAAG,OAAO,OAAO,OAAO,YAAY;AACtF,SAAO,SAAS,gBAAgB,SAAS,CAAC,EAAE,GAAG,GAAG,KAAK;AACzD;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,+BAA+B,MAAM;AAAA,EACvC,YAAY,YAAY,WAAW,UAAU,cAAc,kBAAkB;AAC3E,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,WAAW,UAAU,KAAK,IAAI;AAC5C,SAAK,cAAc,CAAC,OAAO,WAAW,UAAU,KAAK;AACrD,UAAM,kBAAkB;AAAA,MACtB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,mBAAmB;AAAA,MACvB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,YAAY,eAAe,QAAQ;AACzC,QAAI;AACJ,QAAI,kBAAkB;AACpB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,SAAK,WAAW;AAAA;AAAA,YAER,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,uCACX,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCASpB;AAAA;AAAA;AAAA;AAAA,8DAI2B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAM5D;AACF;AAGA,IAAI,qCAAqC,MAAM;AAAA,EAC7C,YAAY,YAAY,WAAW,UAAU,cAAc,kBAAkB;AAC3E,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,SAAK,cAAc,CAAC;AACpB,UAAM,CAAC,OAAO,WAAW,UAAU,KAAK,IAAI;AAC5C,SAAK,cAAc,CAAC,OAAO,WAAW,UAAU,KAAK;AACrD,UAAM,kBAAkB;AAAA,MACtB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,mBAAmB;AAAA,MACvB,gBAAgB,YAAY,IAAI,YAAY,IAAI;AAAA,MAChD,gBAAgB,WAAW,IAAI,WAAW,IAAI;AAAA,IAChD;AACA,UAAM,YAAY,eAAe,QAAQ;AACzC,QAAI;AACJ,QAAI,kBAAkB;AACpB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,SAAK,WAAW;AAAA;AAAA,YAER,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,YACtC,gBAAgB,KAAK,iBAAiB;AAAA,uCACX,gBAAgB;AAAA,uCAChB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCAcJ;AAAA;AAAA;AAAA;AAAA,8DAI2B;AAAA;AAAA;AAAA,gCAG9B,QAAQ;AAAA,uCACD,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAchD;AACF;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAA,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,mCAAmC,OAAO,OAAO,WAAW,UAAU,cAAc,gBAAgB,IAAI,IAAI,6BAA6B,OAAO,OAAO,WAAW,UAAU,cAAc,gBAAgB;AAC7Q,SAAO,SAAS,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AACjE;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,sCAAsC,MAAM;AAAA,EAC9C,YAAY,SAAS,YAAY,cAAc;AAC7C,SAAK,gBAAgB,CAAC,IAAI;AAC1B,SAAK,cAAc,CAAC;AACpB,SAAK,cAAc;AACnB,UAAM,CAAC,EAAE,SAAS,MAAM,IAAI;AAC5B,UAAM,CAAC,EAAE,SAAS,MAAM,IAAI;AAC5B,UAAM,iBAAiB;AAAA,MACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,MAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,IAC5C;AACA,UAAM,iBAAiB;AAAA,MACrB,gBAAgB,UAAU,IAAI,UAAU,IAAI;AAAA,MAC5C,gBAAgB,SAAS,IAAI,SAAS,IAAI;AAAA,IAC5C;AACA,UAAM,cAAc,eAAe,KAAK,eAAe;AACvD,UAAM,aAAa,eAAe,KAAK,eAAe;AACtD,UAAM,iBAAiB,IAAI;AAC3B,UAAM,gBAAgB,IAAI;AAC1B,UAAM,YAAY,KAAK,KAAK,cAAc,IAAI,IAAI;AAClD,UAAM,WAAW,KAAK,KAAK,aAAa,IAAI,IAAI;AAChD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAUsB;AAAA,yCACD;AAAA;AAAA,6CAEI;AAAA,4CACD;AAAA;AAAA,oCAER;AAAA,mCACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAcD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAQE;AAAA;AAAA;AAAA;AAAA;AAAA,sBAKd,eAAe;AAAA,sCACC,eAAe;AAAA;AAAA;AAAA,wBAG7B,eAAe;AAAA,wCACC,eAAe;AAAA;AAAA;AAAA,4BAG3B;AAAA,kBACV;AAAA;AAAA;AAAA;AAAA,4BAIU;AAAA,kBACV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAahB;AACF;AAGA,SAAS,2BAA2B,MAAM;AACxC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,GAAG,IAAI;AACvB,QAAM,EAAE,aAAa,IAAI;AACzB,QAAM,UAAU,IAAI,oCAAoC,GAAG,OAAO,OAAO,OAAO,YAAY;AAC5F,SAAO,SAAS,gBAAgB,SAAS,CAAC,EAAE,GAAG,GAAG,KAAK;AACzD;AACA,IAAI,mCAAmC;AAAA,EACrC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,QAAQ,MAAM;AACxB,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,OAAO,OAAO;AACpB,QAAI,OAAO,GAAG;AACZ,YAAM,IAAI,MAAM,kCAAkC,kCAAkC;AAAA,IACtF;AACA,SAAK,cAAc;AACnB,QAAI,SAAS,GAAG;AACd,WAAK,WAAW;AAAA;AAAA;AAAA,2BAGK,OAAO;AAAA;AAAA;AAG5B;AAAA,IACF;AACA,UAAM,aAAa,CAAC,OAAO;AACzB,UAAI,KAAK,QAAQ,EAAE,MAAM,MAAM,OAAO,QAAQ,GAAG;AAC/C,eAAO,GAAG,OAAO,gBAAgB;AAAA,MACnC;AACA,aAAO,UAAU;AAAA,IACnB;AACA,UAAM,WAAW,OAAO,IAAI,CAAC,GAAG,OAAO,WAAW,EAAE,CAAC,EAAE,KAAK,GAAG;AAC/D,UAAM,OAAO,kBAAkB,IAAI;AACnC,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,yBACe;AAAA;AAAA;AAAA,EAGvB;AACF;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,QAAQ,MAAM;AACxB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,eAAe;AACpB,SAAK,eAAe;AACpB,UAAM,OAAO,OAAO;AACpB,QAAI,OAAO,GAAG;AACZ,YAAM,IAAI,MAAM,kCAAkC,kCAAkC;AAAA,IACtF;AACA,SAAK,cAAc;AACnB,UAAM,WAAW,YAAY,MAAM,IAAI;AACvC,UAAM,aAAa,GAAG,SAAS,OAAO,YAAY,KAAK,YAAY,OAAO;AAC1E,UAAM,UAAU,GAAG,SAAS,OAAO,YAAY,KAAK,YAAY,OAAO;AACvE,UAAM,OAAO,kBAAkB,IAAI;AACnC,QAAI,SAAS,GAAG;AACd,WAAK,WAAW;AAAA;AAAA;AAAA;AAAA,uCAIiB,OAAO;AAAA,cAChC,OAAO;AAAA,eACN;AAAA,2CAC4B,OAAO;AAAA,kBAChC,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA,IAKrB,OAAO;AACL,WAAK,WAAW;AAAA;AAAA,YAEV;AAAA;AAAA,uBAEW,KAAK,SAAS,MAAM,CAAC;AAAA,eAC7B;AAAA,yBACU,KAAK,SAAS,MAAM,CAAC;AAAA;AAAA,eAE/B;AAAA,yBACU,KAAK,SAAS,MAAM,CAAC;AAAA,iBAC7B;AAAA,2BACU,KAAK,SAAS,MAAM,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAM5C;AACA,aAAS,KAAK,WAAW;AACvB,aAAO,WAAW,SAAS;AAAA,IAC7B;AACA,aAAS,KAAK,WAAW;AACvB,gBAAU,OAAO,KAAK,MAAM,UAAU,OAAO,KAAK;AAClD,aAAO,WAAW,SAAS;AAAA,IAC7B;AACA,aAAS,KAAK,WAAW;AACvB,gBAAU,OAAO,KAAK,MAAM,UAAU,OAAO,KAAK;AAClD,aAAO,WAAW,SAAS;AAAA,IAC7B;AACA,aAAS,KAAK,WAAW;AACvB,gBAAU,OAAO,KAAK,MAAM,UAAU,OAAO,KAAK;AAClD,gBAAU,OAAO,KAAK,MAAM,UAAU,OAAO,KAAK;AAClD,aAAO,WAAW,SAAS;AAAA,IAC7B;AACA,aAAS,WAAW,WAAW;AAC7B,YAAM,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,WAAW,IAAI,SAAS,CAAC;AACrE,YAAM,WAAW,cAAc,KAAK,GAAG;AACvC,YAAM,YAAY,cAAc,MAAM,EAAE,EAAE,KAAK,GAAG;AAClD,aAAO,mBAAmB,mBAAmB;AAAA,IAC/C;AACA,aAAS,WAAW,IAAI,WAAW;AACjC,UAAI,KAAK,QAAQ,EAAE,MAAM,MAAM,OAAO,QAAQ,GAAG;AAC/C,eAAO,GAAG,OAAO,SAAS,UAAU;AAAA,MACtC,OAAO;AACL,eAAO,GAAG,UAAU;AAAA,MACtB;AAAA,IACF;AAAA,EACF;AACF;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK;AACvD,MAAI,UAAU,GAAG;AACf,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,UAAU,IAAI,EAAE,QAAQ,6BAA6B,IAAI,IAAI,qBAAqB,EAAE,OAAO,KAAK,IAAI,IAAI,eAAe,EAAE,OAAO,KAAK;AAC3I,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,YAAY,WAAW;AACjC,SAAK,gBAAgB,CAAC,OAAO;AAC7B,SAAK,cAAc,CAAC;AACpB,SAAK,iBAAiB,CAAC,EAAE,MAAM,UAAU,MAAM,OAAO,CAAC;AACvD,UAAM,cAAc,WAAW;AAC/B,UAAM,aAAa,WAAW;AAC9B,SAAK,cAAc;AACnB,QAAI,cAAc;AAClB,QAAI,OAAO,cAAc,UAAU;AACjC,oBAAc,uBAAuB,UAAU,QAAQ,CAAC;AAAA,IAC1D,OAAO;AACL,oBAAc;AAAA,2BACO,UAAU,KAAK,GAAG;AAAA;AAAA,IAEzC;AACA,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAWR;AAAA,uCAC2B,yCAAyC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAM9E;AACF;AAGA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,EAAE,SAAS,WAAW,OAAO,IAAI;AACvC,UAAM,eAAe;AACrB,UAAM,UAAU,IAAI,cAAc,OAAO,OAAO,SAAS;AACzD,UAAM,CAAC,SAAS,OAAO,IAAI,qBAAqB,eAAe,QAAQ,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE;AACvG,UAAM,eAAe,CAAC,CAAC,SAAS,SAAS,KAAK,IAAI,OAAO,GAAG,KAAK,IAAI,OAAO,CAAC,CAAC;AAC9E,UAAM,SAAS,aAAa,gBAAgB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,YAAY;AACzF,WAAO;AAAA,EACT;AACF;AAGA,IAAI,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAgBZ,IAAI,SAAS,iBAAiB,EAAE,WAAW,MAAM,CAAC;AAClD,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ;AACZ,IAAI,SAAS,iBAAiB,EAAE,WAAW,OAAO,eAAe,aAAa,CAAC;AAC/E,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,YAAY,UAAU,aAAa,aAAaa,UAAS,OAAO,mBAAmB,MAAM;AACnG,SAAK,gBAAgB,CAAC,WAAW,WAAW,cAAc;AAC1D,SAAK,cAAc;AACnB,UAAM,cAAc,kBAAkBA,SAAQ,MAAM;AACpD,UAAM,QAAQ,kBAAkB,MAAM,MAAM;AAC5C,QAAI,gBAAgB;AACpB,QAAI,gBAAgB,GAAG;AACrB,sBAAgB;AAAA,IAClB,WAAW,gBAAgB,GAAG;AAC5B,sBAAgB;AAAA,IAClB;AACA,UAAM,iBAAiB,cAAc;AACrC,QAAI,gBAAgB;AACpB,QAAI,gBAAgB,GAAG;AACrB,sBAAgB;AAAA,IAClB,WAAW,gBAAgB,GAAG;AAC5B,sBAAgB;AAAA,IAClB;AACA,UAAM,iBAAiB,cAAc;AACrC,UAAM,eAAe,WAAW,IAAI,eAAe;AACnD,SAAK,WAAW;AAAA,UACV,yBAAyB,eAAeA;AAAA;AAAA;AAAA,YAGtC;AAAA;AAAA;AAAA,gCAGoB;AAAA;AAAA,kCAEE;AAAA,kCACA;AAAA,0CACQ;AAAA;AAAA;AAAA,uBAGnB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOrB;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,QAAQ,IAAI;AAC7B,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAA,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,SAAS,SAAS,KAAK;AAC9H,QAAM,eAAe,CAACA,cAAa,WAAW,SAAS;AACvD,MAAIA,gBAAe,GAAG;AACpB,WAAO,SAAS,eAAe,OAAO,QAAQ,KAAK;AAAA,EACrD;AACA,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE,EAAE,CAAC;AACxH,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE,EAAE,CAAC;AAClH,QAAM,eAAe,SAAS,eAAe,CAAC,GAAG,WAAW,IAAI,aAAa,CAAC,CAAC,CAAC,CAAC;AACjF,QAAM,UAAU,IAAI,eAAe,YAAY,WAAW,eAAe,MAAM,QAAQ,SAAS,MAAM,QAAQR,UAAS,YAAY;AACnI,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,UAAU,gBAAgB,YAAY,GAAG,SAAS,KAAK;AACtG,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,WAAS,8BAA8B,cAAc;AACrD,WAAS,8BAA8B,QAAQ;AAC/C,WAAS,8BAA8B,GAAG;AAC1C,WAAS,8BAA8B,YAAY;AACnD,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,WAAW,WAAW,WAAW,MAAM;AACjD,SAAK,gBAAgB,CAAC,kBAAkB,QAAQ;AAChD,SAAK,iBAAiB,CAAC,EAAE,MAAM,aAAa,MAAM,MAAM,CAAC;AACzD,SAAK,cAAc,CAAC,WAAW,SAAS;AACxC,UAAM,iBAAiB;AACvB,UAAM,iBAAiB,uBAAuB,KAAK,KAAK,KAAK,KAAK,YAAY,CAAC,CAAC;AAChF,UAAM,WAAW,IAAI,EAAE,UAAU,eAAe,MAAM,IAAI,iBAAiB;AAC3E,UAAM,kBAAkB,SAAS,SAAS,MAAM;AAChD,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,WAKT;AAAA;AAAA,+CAEoC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAmB7C;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,gBAAgB,OAAO,IAAI;AACnC,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,UAAU,IAAI,oBAAoB,eAAe,MAAM,IAAI,eAAe,MAAM,IAAI,OAAO,MAAM,IAAI,IAAI;AAC/G,QAAM,eAAe,CAAC,CAAC,eAAe,MAAM,EAAE,CAAC;AAC/C,SAAO,SAAS,gBAAgB,SAAS,CAAC,gBAAgB,MAAM,GAAG,SAAS,YAAY;AAC1F;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO,OAAO,MAAM;AAC9B,SAAK,gBAAgB,CAAC,KAAK,KAAK,GAAG;AACnC,SAAK,cAAc;AACnB,QAAI;AACJ,QAAI;AACJ,QAAI,OAAO,GAAG;AACZ,YAAM,MAAM,kBAAkB,2BAA2B;AAAA,IAC3D;AACA,QAAI,SAAS,GAAG;AACd,iBAAW;AACX,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,YAAM,aAAa,CAAC;AACpB,YAAM,cAAc,CAAC;AACrB,eAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,MAAM;AACxC,oBAAY,KAAK,GAAG,cAAc,KAAK;AACvC,YAAI,KAAK,OAAO;AACd,qBAAW,KAAK,GAAG,cAAc,KAAK;AAAA,QACxC;AAAA,MACF;AACA,gBAAU,WAAW,KAAK;AAC1B,iBAAW,YAAY,KAAK;AAAA,IAC9B;AACA,UAAM,QAAQ,kBAAkB,IAAI;AACpC,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,4BACkB;AAAA;AAAA,2BAED;AAAA;AAAA,2BAEA;AAAA;AAAA;AAAA;AAAA,EAIzB;AACF;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,WAAW,GAAG,IAAI,GAAG,GAAG,IAAI;AACpC,QAAM,UAAU,IAAI,cAAc,UAAU,MAAM,QAAQ,GAAG,OAAO,GAAG,MAAM,MAAM;AACnF,SAAO,SAAS,gBAAgB,SAAS,CAAC,WAAW,IAAI,EAAE,GAAG,WAAW,GAAG,OAAO,GAAG,KAAK,CAAC;AAC9F;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA,uBAGY,qBAAqB;AAAA,kBAC1B,qBAAqB;AAAA;AAAA;AAGvC,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,0BAA0B;AAAA;AAAA;AAGzC,IAAI,iBAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWrB,IAAI,WAAW,iBAAiB;AAAA,EAC9B,WAAW;AAAA,EACX,iBAAiB;AAAA,EACjB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA;AAIX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM,0BAA0B;AAAA;AAAA;AAGpC,IAAI,OAAO,iBAAiB,EAAE,WAAW,IAAI,CAAC;AAC9C,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA;AAIX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAqBf,IAAI,YAAY,iBAAiB,EAAE,WAAW,SAAS,CAAC;AACxD,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,CAAC,SAAS;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAS,IAAI;AACjC,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,sEAAsE;AACrH,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,mBAAmB,CAAC,CAAC,GAAG,CAAC,CAAC;AAChC,mBAAiB,KAAK,GAAG,QAAQ;AACjC,WAAS,KAAK,IAAI,WAAW,QAAQ,KAAK,EAAE,MAAM,QAAQ,EAAE,IAAI;AAC9D,qBAAiB,KAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAC9B;AACA,QAAM,YAAY,CAAC;AACnB,QAAM,UAAU,OAAO;AAAA,IACrB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO,EAAE,UAAU,kBAAkB,eAAe,EAAE;AAAA,EACxD,CAAC;AACD,QAAM,sBAAsB,qBAAqB,YAAY,QAAQ,OAAO,YAAY,OAAO,KAAK;AACpG,QAAM,oCAAoC,qBAAqB,YAAY,oBAAoB,QAAQ,WAAW,QAAQ,KAAK;AAC/H,QAAM,eAAe,qBAAqB,oBAAoB,QAAQ,OAAO,YAAY,OAAO,KAAK;AACrG,QAAM,kBAAkB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,oBAAoB,EAAE,CAAC;AACrH,QAAM,WAAW,WAAW;AAAA,IAC1B,QAAQ,EAAE,GAAG,gBAAgB;AAAA,IAC7B,SAAS;AAAA,IACT,OAAO,EAAE,MAAM,kCAAkC;AAAA,EACnD,CAAC;AACD,QAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,aAAa,EAAE,CAAC;AACtG,YAAU,KAAK,OAAO;AACtB,YAAU,KAAK,eAAe;AAC9B,YAAU,KAAK,QAAQ;AACvB,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,SAAS,QAAQ,YAAY,aAAa,IAAI;AACtD,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,WACT,WAAW,OAAO;AAAA,EAC3B;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,WACT,QAAQ,OAAO;AAAA,EACxB;AACA,MAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,UAAM,IAAI,MAAM;AAAA,WACT,OAAO,OAAO;AAAA,EACvB;AACA,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM;AAAA,UACV,aAAa,OAAO;AAAA,EAC5B;AACA,QAAM,WAAW,SAAS,SAAS,QAAQ,MAAM;AACjD,QAAM,UAAU,SAAS,SAAS,OAAO,MAAM;AAC/C,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,gBAAgB,SAAS,SAAS,aAAa,MAAM,EAAE;AAC7D,QAAM,CAAC,eAAe,oBAAoB,cAAc,mBAAmB,eAAe,IAAI,2BAA2B,UAAU,QAAQ,OAAO,QAAQ,OAAO,SAAS,OAAO,OAAO,aAAa,aAAa;AAClN,SAAO;AAAA,IACL,SAAS,eAAe,oBAAoB,QAAQ,OAAO,aAAa;AAAA,IACxE,SAAS,eAAe,CAAC,mBAAmB,EAAE,GAAG,OAAO,OAAO,YAAY;AAAA,IAC3E,SAAS,eAAe,CAAC,kBAAkB,MAAM,GAAG,QAAQ,IAAI,WAAW,kBAAkB,IAAI,CAAC,UAAU,OAAO,KAAK,CAAC,CAAC,CAAC;AAAA,IAC3H,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,QAAQ,OAAO,IAAI,WAAW,eAAe,CAAC;AAAA,EAClG;AACF;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,cAAc,YAAY,SAAS,IAAI;AAC/C,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM,uDAAuD,aAAa,OAAO;AAAA,EAC7F;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM,qDAAqD,WAAW,OAAO;AAAA,EACzF;AACA,MAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,UAAM,IAAI,MAAM,sDAAsD,SAAS,OAAO;AAAA,EACxF;AACA,QAAM,cAAc,MAAM,KAAK,SAAS,SAAS,WAAW,MAAM,CAAC;AACnE,QAAM,gBAAgB,SAAS,SAAS,aAAa,MAAM;AAC3D,QAAM,cAAc,MAAM,KAAK,SAAS,SAAS,SAAS,MAAM,CAAC;AACjE,QAAM,CAAC,YAAY,cAAc,WAAW,IAAI,qBAAqB,eAAe,aAAa,OAAO,aAAa,OAAO,aAAa,WAAW;AACpJ,SAAO;AAAA,IACL,SAAS,eAAe,cAAc,aAAa,OAAO,UAAU;AAAA,IACpE,SAAS,eAAe,CAAC,YAAY,MAAM,GAAG,SAAS,OAAO,IAAI,WAAW,WAAW,CAAC;AAAA,EAC3F;AACF;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,mBAAmB,MAAM;AAChC,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,MAAI,KAAK,MAAM,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,gBACJ,QAAQ,OAAO;AAAA,EAC7B;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,gBACJ,WAAW,OAAO;AAAA,EAChC;AACA,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,WAAW,SAAS,SAAS,QAAQ,MAAM;AACjD,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,YAAY,eAAe,IAAI,8BAA8B,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,aAAa,IAAI;AAC9H,SAAO,SAAS,eAAe,iBAAiB,KAAK,OAAO,UAAU;AACxE;AACA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,kBAAkB,MAAM;AAC/B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,MAAI,KAAK,MAAM,SAAS,GAAG;AACzB,UAAM,IAAI,MAAM,2DAA2D;AAAA,EAC7E;AACA,MAAI,QAAQ,MAAM,WAAW,GAAG;AAC9B,UAAM,IAAI,MAAM;AAAA,eACL,QAAQ,OAAO;AAAA,EAC5B;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,eACL,WAAW,OAAO;AAAA,EAC/B;AACA,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,WAAW,SAAS,SAAS,QAAQ,MAAM;AACjD,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,YAAY,eAAe,IAAI,8BAA8B,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,WAAW;AACxH,SAAO,SAAS,eAAe,iBAAiB,KAAK,OAAO,UAAU;AACxE;AACA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,eAAe,cAAc,aAAa,IAAI;AACtD,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAA,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,cAAc,eAAe,WAAW;AAC/I,QAAM,iBAAiB;AACvB,MAAI,aAAa,UAAU,UAAU;AACnC,UAAM,aAAa,SAAS,WAAW,aAAa;AACpD,UAAM,aAAa,SAAS,WAAW,YAAY;AACnD,UAAM,gBAAgB,aAAa,aAAa,SAAS,SAAS,aAAa,MAAM,EAAE,EAAE;AACzF,UAAM,SAAS,eAAe,YAAY,YAAY,aAAaA,aAAY,WAAW,YAAY,WAAWR,UAAS,eAAe,cAAc;AACvJ,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,OAAO,MAAM;AAAA,EACzE;AACA,QAAM,UAAU,IAAI,eAAe,YAAY,WAAW,cAAc,MAAM,QAAQ,aAAa,MAAM,QAAQA,UAAS,CAACQ,aAAY,CAAC,GAAG,cAAc;AACzJ,QAAM,MAAM,SAAS,gBAAgB,SAAS,CAAC,cAAc,eAAe,YAAY,GAAG,aAAa,KAAK;AAC7G,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAClG,WAAS,8BAA8B,GAAG;AAC1C,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,iBAAiB,KAAK,IAAI;AAClC,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACzD,QAAM,aAAa,qBAAqB,iBAAiB,GAAG,iBAAiB,KAAK;AAClF,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,CAAC;AACrC,QAAMrB,QAAO,EAAE,MAAM,MAAM;AAC3B,SAAO,WAAW,IAAI,CAAC,OAAO;AAC5B,UAAM,YAAY,CAAC,GAAGA,KAAI;AAC1B,cAAU,SAAS;AACnB,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAM,UAAU,EAAE,CAAC;AAC7F,UAAM,UAAU;AAChB,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AACX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,MAAM,iBAAiB,MAAM,eAAe,YAAY,CAAC;AACnG,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS;AACb,IAAI,UAAU,iBAAiB,EAAE,WAAW,OAAO,CAAC;AACpD,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB;AACzB,IAAI,qBAAqB,kBAAkB,EAAE,WAAW,oBAAoB,iBAAiB,mBAAmB,CAAC;AACjH,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,GAAG;AACnD,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,YAAY,oBAAoB;AAAA,mCACL,MAAM;AAAA;AAEvC,QAAM,UAAU,IAAI,eAAe,EAAE,OAAO,SAAS;AACrD,SAAO,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACvD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,OAAOa,UAASb,OAAM;AAChC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,cAAcA;AACnB,UAAM,OAAOA,MAAK;AAClB,UAAM,aAAa,kBAAkBA,MAAK,MAAM;AAChD,UAAM,QAAQ,kBAAkBA,MAAK,MAAM;AAC3C,QAAI,YAAY;AAChB,QAAI,SAAS,GAAG;AACd,kBAAY;AAAA,IACd,OAAO;AACL,UAAI,aAAa;AACjB,kBAAYA,MAAK,IAAI,CAAC,GAAG,OAAO;AAC9B;AACA,eAAOA,MAAK,WAAW,IAAI,oBAAoB,eAAe,QAAQ,UAAU,aAAa,gBAAgB,eAAe;AAAA,MAC9H,CAAC,EAAE,KAAK,GAAG;AAAA,IACb;AACA,SAAK,WAAW;AAAA,QACZ,sBAAsB,cAAc;AAAA,QACpC,wBAAwB,cAAca;AAAA;AAAA;AAAA,UAGpC;AAAA,yBACe;AAAA;AAAA;AAAA,EAGvB;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,KAAK,SAAAA,UAAS,WAAW,SAAS,cAAc,aAAa,eAAe,IAAI;AAC/F,QAAM,EAAE,kBAAkB,YAAY,YAAY,WAAW,eAAe,OAAO,QAAQ,KAAK,MAAM,SAAS,SAAS,IAAI,mBAAmB,UAAU,EAAE,OAAO,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AACpP,MAAI;AACJ,MAAI,YAAY;AACd,aAAS,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAAA,EACtF,WAAW,aAAa,eAAe;AACrC,iBAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,yCAAyC,EAAE,MAAM,QAAQ;AACxG,UAAMb,QAAO,mBAAmB,gBAAgB,QAAQ,MAAM,QAAQ;AACtE,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,MAAAA,MAAK,EAAE,CAAC;AAC1F,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC5F,aAAS,8BAA8B,MAAM;AAAA,EAC/C,OAAO;AACL,UAAM,qBAAqB,SAAS,mBAAmB,CAAC,CAAC,CAAC;AAC1D,QAAI,oBAAoB;AACtB,YAAM,SAAS,SAAS,SAAS,EAAE,MAAM;AACzC,YAAM,OAAO,OAAO,EAAE,OAAO,EAAE,OAAO,MAAM;AAC5C,YAAM,eAAe,oBAAoB,kBAAkB,MAAM,UAAU,MAAM;AACjF,eAAS,SAAS,eAAe,YAAY,EAAE,OAAO,aAAa,MAAM;AAAA,IAC3E,OAAO;AACL,YAAM,UAAU,IAAI,oBAAoB,QAAQ,UAAU,gBAAgB;AAC1E,eAAS,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAAA,IACzD;AAAA,EACF;AACA,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC1G,WAAS,8BAA8B,MAAM;AAC7C,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,aAAa,SAAS,UAAU,WAAW,UAAU,uBAAuB,IAAI;AACnG,QAAM,EAAE,MAAM,WAAW,IAAI;AAC7B,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,QAAQ,YAAY,IAAI,oBAAoB,OAAO,aAAa,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB;AACnJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,UAAU,MAAM;AAAA,IACzD,SAAS,eAAe,WAAW,OAAO,SAAS,YAAY;AAAA,EACjE;AACF;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,UAAU,IAAI;AACtB,QAAM,EAAE,OAAO,QAAQ,UAAU,IAAI;AACrC,MAAI,OAAO,UAAU,UAAU;AAC7B,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,MAAI,OAAO,MAAM,WAAW,GAAG;AAC7B,UAAM,IAAI,MAAM,sCAAsC,OAAO,OAAO;AAAA,EACtE;AACA,MAAI,UAAU,MAAM,WAAW,GAAG;AAChC,UAAM,IAAI,MAAM,0CAA0C,UAAU,OAAO;AAAA,EAC7E;AACA,QAAM,SAAS,SAAS,SAAS,OAAO,MAAM;AAC9C,QAAM,aAAa,SAAS,SAAS,UAAU,MAAM,EAAE;AACvD,QAAM,CAAC,SAAS,QAAQ,KAAK,IAAI,mBAAmB,QAAQ,YAAY,SAAS;AACjF,QAAMqB,cAAa,OAAO;AAC1B,SAAO;AAAA,IACL,SAAS,eAAe,CAACA,aAAY,CAAC,GAAG,SAAS,OAAO;AAAA,IACzD,SAAS,eAAe,CAACA,WAAU,GAAG,UAAU,MAAM;AAAA,IACtD,SAAS,eAAe,CAAC,CAAC,GAAG,SAAS,IAAI,WAAW,KAAK,CAAC;AAAA,EAC7D;AACF;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,MAAM;AACrC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,IAAI;AACvB,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,MAAI,OAAO,UAAU,UAAU;AAC7B,UAAM,IAAI,MAAM,kCAAkC;AAAA,EACpD;AACA,MAAI,cAAc,GAAG;AACnB,UAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AACA,QAAM,SAAS,SAAS,SAAS,OAAO,MAAM;AAC9C,QAAM,SAAS,8BAA8B,QAAQ,UAAU;AAC/D,SAAO,SAAS,eAAe,OAAO,OAAO,SAAS,MAAM;AAC9D;AACA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,MAAM;AACV,IAAI,OAAO,iBAAiB,EAAE,WAAW,IAAI,CAAC;AAC9C,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO;AAAA;AAAA;AAAA;AAIX,IAAI,QAAQ,iBAAiB,EAAE,WAAW,KAAK,CAAC;AAChD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,QAAQ,MAAM;AACxB,SAAK,gBAAgB,CAAC,GAAG;AACzB,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,MAAM,KAAK;AAAA,IACtC;AACA,SAAK,cAAc;AACnB,SAAK,OAAO,YAAY;AACxB,UAAM,QAAQ,kBAAkB,KAAK,IAAI;AACzC,UAAM,eAAe,iBAAiB,MAAM;AAC5C,SAAK,WAAW;AAAA;AAAA,UAEV;AAAA,yBACe;AAAA;AAAA;AAAA,EAGvB;AACF;AACA,SAAS,iBAAiB,QAAQ;AAChC,QAAM,OAAO,OAAO;AACpB,MAAI,OAAO,GAAG;AACZ,UAAM,MAAM,iBAAiB,2BAA2B;AAAA,EAC1D;AACA,MAAI,SAAS,GAAG;AACd,WAAO,eAAe,OAAO;AAAA,EAC/B;AACA,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,WAAW,SAAS;AAC5E,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,iBAAa,KAAK,QAAQ,cAAc,QAAQ,OAAO,MAAM;AAAA,EAC/D;AACA,SAAO,aAAa,KAAK;AAC3B;AAGA,SAAS,MAAM,QAAQ;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,EAAE,UAAU,YAAY,EAAE,MAAM,SAAS,GAAG;AAC9C,UAAM,OAAO,SAAS,SAAS,EAAE,MAAM;AACvC,UAAM,QAAQ,EAAE,UAAU,WAAW,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC,IAAI;AACrF,UAAM,MAAM,OAAO,EAAE,OAAO,EAAE,OAAO,KAAK;AAC1C,UAAM,SAAS,YAAY,KAAK,IAAI;AACpC,WAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC1E;AACA,QAAM,UAAU,IAAI,YAAY,EAAE,OAAO,IAAI;AAC7C,QAAM,SAAS,SAAS,gBAAgB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAC7D,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,KAAK,MAAM,MAAM;AAAA,MACzB,EAAE,MAAM,aAAa,MAAM,MAAM;AAAA,MACjC,EAAE,MAAM,eAAe,MAAM,QAAQ;AAAA,MACrC,EAAE,MAAM,OAAO,MAAM,MAAM;AAAA,MAC3B,EAAE,MAAM,OAAO,MAAM,MAAM;AAAA,IAC7B;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAyClB;AACF;AACA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,iBAAiB;AAAA,MACpB,EAAE,MAAM,KAAK,MAAM,MAAM;AAAA,MACzB,EAAE,MAAM,aAAa,MAAM,MAAM;AAAA,MACjC,EAAE,MAAM,KAAK,MAAM,MAAM;AAAA,IAC3B;AACA,SAAK,cAAc;AACnB,SAAK,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAmClB;AACF;AAGA,SAAS,oCAAoC,UAAU,YAAY;AACjE,MAAI,eAAe,MAAM;AACvB,aAAS,8BAA8B,UAAU;AAAA,EACnD;AACF;AACA,SAAS,cAAc,KAAK;AAC1B,MAAI,QAAQ;AACZ,SAAO,QAAQ,KAAK;AAClB,aAAS;AAAA,EACX;AACA,SAAO;AACT;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,2CAA2C,IAAI,EAAE,UAAU,0CAA0C;AAC3G,QAAM,+BAA+B,IAAI,EAAE,UAAU,8BAA8B;AACnF,QAAM,SAAS,EAAE;AACjB,QAAM,UAAU,OAAO,OAAO,SAAS;AACvC,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,UAAU,4CAA4C,IAAI,8BAA8B;AAC9H,UAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,UAAM,CAAC,aAAa,cAAc,IAAI,YAAY,OAAO,QAAQ,EAAE,OAAO,GAAG,MAAM;AACnF,WAAO;AAAA,MACL,SAAS,eAAe,YAAY,OAAO,YAAY,OAAO,YAAY,MAAM;AAAA,MAChF,SAAS,eAAe,eAAe,OAAO,eAAe,OAAO,eAAe,MAAM;AAAA,IAC3F;AAAA,EACF;AACA,MAAI,MAAM,GAAG;AACX,WAAO,OAAO,SAAS,KAAK;AAC5B,WAAO;AAAA,MACL,SAAS,eAAe,QAAQ,EAAE,OAAO,CAAC,CAAC;AAAA,MAC3C,SAAS,eAAe,QAAQ,SAAS,CAAC,CAAC;AAAA,IAC7C;AAAA,EACF;AACA,MAAI,YAAY,GAAG;AACjB,WAAO;AAAA,MACL;AAAA,MACA,MAAM,EAAE,OAAO,EAAE,OAAO,QAAQ,OAAO,SAAS,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACjF;AAAA,EACF;AACA,QAAM,WAAW,SAAS,QAAQ,IAAI,EAAE,MAAM;AAC9C,QAAM,YAAY,aAAa,QAAQ,SAAS;AAChD,QAAM,YAAY,YAAY,SAAS,aAAa,CAAC,IAAI;AACzD,QAAM,QAAQ,aAAa,cAAc,MAAM;AAC/C,QAAM,QAAQ,QAAQ;AACtB,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,OAAO,EAAE,OAAO,CAAC,OAAO,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AACxG,MAAI,WAAW;AACb,wCAAoC,UAAU,SAAS;AAAA,EACzD;AACA,QAAM,QAAQ,cAAc,CAAC;AAC7B,QAAM,cAAc,cAAc,OAAO;AACzC,MAAI,UAAU;AACd,QAAM,YAAY,MAAM,YAAY,OAAO,CAAC,KAAK,GAAG,IAAI,CAAC,KAAK,OAAO;AACrE,QAAM,UAAU,CAAC,KAAK,KAAK,UAAU;AACnC,UAAM,UAAU,UAAU;AAC1B,UAAM,UAAU,IAAI,YAAY,KAAK;AACrC,UAAM,WAAW,YAAY,OAAO,IAAI;AACxC,UAAM,eAAe,CAAC,CAAC,OAAO,GAAG,CAAC,QAAQ,GAAG,CAAC,OAAO,iBAAiB,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC;AACrF,UAAM,eAAe;AACrB,cAAU,SAAS,gBAAgB,SAAS,SAAS,SAAS,YAAY;AAC1E,wCAAoC,UAAU,YAAY;AAAA,EAC5D;AACA,WAAS,MAAM,GAAG,MAAM,OAAO,OAAO,GAAG;AACvC,UAAM,MAAM,MAAM;AAClB,aAAS,MAAM,KAAK,OAAO,GAAG,OAAO,GAAG;AACtC,cAAQ,KAAK,KAAK,CAAC,OAAO,WAAW,CAAC;AAAA,IACxC;AAAA,EACF;AACA,WAAS,cAAc,aAAa,cAAc,OAAO,eAAe,GAAG;AACzE,UAAM,UAAU,UAAU;AAC1B,UAAM,eAAe,IAAI,aAAa,CAAC,OAAO,cAAc,CAAC,CAAC;AAC9D,UAAM,YAAY,YAAY,OAAO,IAAI;AACzC,UAAM,eAAe,CAAC,CAAC,OAAO,GAAG,CAAC,SAAS,GAAG,CAAC,KAAK,CAAC;AACrD,UAAM,eAAe;AACrB,cAAU,SAAS,gBAAgB,cAAc,SAAS,SAAS,YAAY;AAC/E,wCAAoC,UAAU,YAAY;AAC1D,UAAM,MAAM,QAAQ;AACpB,UAAM,MAAM,MAAM;AAClB,aAAS,MAAM,KAAK,OAAO,GAAG,OAAO,GAAG;AACtC,cAAQ,KAAK,KAAK,QAAQ,KAAK;AAAA,IACjC;AAAA,EACF;AACA,MAAI,cAAc;AAClB,YAAU,OAAO,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,GAAG,MAAM,CAAC,OAAO,CAAC,EAAE,EAAE,CAAC;AACrG,sCAAoC,UAAU,WAAW;AACzD,MAAI,SAAS,UAAU,EAAE,QAAQ,EAAE,GAAG,KAAK,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,GAAG,WAAW,EAAE,EAAE,CAAC;AAC3G,sCAAoC,UAAU,GAAG;AACjD,QAAM,WAAW,OAAO,MAAM,GAAG,EAAE;AACnC,WAAS,KAAK,CAAC;AACf,gBAAc;AACd,YAAU,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC5F,sCAAoC,UAAU,WAAW;AACzD,QAAM,aAAa;AACnB,WAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC1F,sCAAoC,UAAU,UAAU;AACxD,SAAO,CAAC,QAAQ,OAAO;AACzB;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,aAAa,YAAY,eAAe,UAAU,WAAW,UAAU;AACjF,SAAK,gBAAgB,CAAC,SAAS,YAAY;AAC3C,SAAK,cAAc;AACnB,UAAM,sBAAsB,kBAAkB,YAAY,IAAI;AAC9D,QAAI;AACJ,YAAQ;AAAA,WACD;AACH,qBAAa;AACb;AAAA,WACG;AACH,qBAAa;AACb;AAAA,WACG;AACH,qBAAa;AACb;AAAA,WACG;AACH,qBAAa;AACb;AAAA;AAEA,qBAAa;AACb;AAAA;AAEJ,SAAK,WAAW;AAAA;AAAA;AAAA,mBAGD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAwBQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAiBA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,4CAUiB,0CAA0C;AAAA;AAAA;AAAA,sCAGhD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sCAwBA;AAAA;AAAA;AAAA;AAAA,mDAIa;AAAA,mDACA;AAAA;AAAA,sBAE7B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAyBpB;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,WAAW,IAAI;AACtC,QAAM,EAAE,eAAe,UAAU,WAAW,YAAY,IAAI;AAC5D,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,WAAW,QAAQ,IAAI,eAAe,OAAO,cAAc,CAAC,aAAa,UAAU;AAC1F,QAAM,WAAW;AAAA,IACf;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,QAAM,UAAU,IAAI,iBAAiB,aAAa,YAAY,eAAe,UAAU,WAAW,QAAQ;AAC1G,SAAO,SAAS,gBAAgB,SAAS,CAAC,QAAQ,UAAU,GAAG,SAAS;AAC1E;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,EAAE,EAAE,IAAI;AACd,oBAAkB,GAAG,QAAQ;AAC7B,UAAQ,KAAK,aAAa,4DAA4D;AACtF,QAAM,SAAS,SAAS,SAAS,EAAE,MAAM;AACzC,QAAM,EAAE,cAAc,aAAa,QAAQ,IAAI,cAAc,QAAQ,MAAM,EAAE,OAAO,EAAE,KAAK;AAC3F,SAAO;AAAA,IACL,SAAS,eAAe,aAAa,EAAE,OAAO,YAAY;AAAA,IAC1D,SAAS,eAAe,CAAC,QAAQ,MAAM,GAAG,SAAS,OAAO;AAAA,EAC5D;AACF;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,EAAE,KAAK,IAAI;AACf,MAAI,OAAO,GAAG;AACZ,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,IAAI;AACV,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,MAAM,MAAM,MAAM;AACxB,QAAM,WAAW,IAAI,MAAM,QAAQ,CAAC;AACpC,MAAI,WAAW;AACf,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM;AACjC,QAAI,OAAO,MAAM;AACf,eAAS,cAAc,EAAE,MAAM;AAAA,IACjC;AAAA,EACF;AACA,QAAM,YAAY,CAAC;AACnB,QAAM,QAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,CAAC;AACrC,QAAMrB,QAAO,EAAE,MAAM,MAAM;AAC3B,EAAAA,MAAK,QAAQ;AACb,QAAM,MAAM,IAAI,MAAM,GAAG;AACzB,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,UAAM,QAAQ;AACd,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAAA,MAAK,EAAE,CAAC;AAClF,UAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAClG,QAAI,MAAM;AACV,cAAU,KAAK,MAAM;AAAA,EACvB;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,WAAW,WAAW;AAChC,SAAK,gBAAgB,CAAC,KAAK,YAAY;AACvC,UAAM,aAAa,UAAU;AAC7B,UAAM,YAAY,UAAU;AAC5B,UAAM,SAAS,UAAU;AACzB,UAAM,cAAc,UAAU;AAC9B,UAAM,UAAU,cAAc,KAAK,KAAK,SAAS,UAAU;AAC3D,SAAK,cAAc,CAAC,WAAW,OAAO;AACtC,UAAM,sBAAsB;AAC5B,UAAM,cAAc;AACpB,UAAM,wBAAwB,KAAK,MAAM,aAAa,CAAC,IAAI;AAC3D,UAAM,0BAA0B,aAAa;AAC7C,UAAM,gBAAgB;AAAA;AAAA;AAGtB,QAAI,wBAAwB;AAC5B,QAAI,SAAS,aAAa,GAAG;AAC3B,8BAAwB;AAAA,oCACM;AAAA;AAAA;AAAA;AAAA,IAIhC;AACA,QAAI,4BAA4B;AAChC,QAAI,SAAS,aAAa,GAAG;AAC3B,kCAA4B;AAAA,oCACE;AAAA;AAAA;AAAA;AAAA,IAIhC;AACA,SAAK,WAAW;AAAA,0CACsB;AAAA;AAAA;AAAA,UAGhC;AAAA;AAAA;AAAA;AAAA;AAAA,UAKA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YASE,yBAAyB;AAAA,wDACmB;AAAA;AAAA;AAAA;AAAA,8BAI1B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAgBlB;AAAA;AAAA;AAAA,iCAGqB;AAAA,cACnB,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAiB9B;AAAA,qBACS,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAerC;AAAA,qBACS,4BAA4B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAerC;AAAA;AAAA,oBAEQ;AAAA;AAAA;AAAA,EAGlB;AACF;AAGA,SAAS,oBAAoB,MAAM;AACjC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,WAAW,IAAI;AAC1B,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,YAAY,CAAC;AACnB,MAAI,OAAO;AACX,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AACzF,cAAU,KAAK,SAAS;AACxB,WAAO,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AAAA,EACzD;AACA,QAAM,WAAW,qBAAqB,aAAa,gBAAgB,UAAU,OAAO,MAAM,WAAW;AACrG,QAAM,SAAS,aAAa,cAAc,CAAC,UAAU,MAAM,KAAK,CAAC;AACjE,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,IAAI,MAAM,EAAE,EAAE,CAAC;AACpG,YAAU,KAAK,GAAG;AAClB,QAAM,cAAc,WAAW,EAAE,KAAK;AACtC,QAAM,eAAe,CAAC,IAAI,WAAW,aAAa,OAAO,iBAAiB;AACxE,UAAM,YAAY,GAAG,MAAM;AAC3B,UAAM,UAAU,GAAG,MAAM;AACzB,UAAM,aAAa,qBAAqB,aAAa,8BAA8B,SAAS,YAAY;AACxG,UAAM,YAAY,EAAE,YAAY,QAAQ,SAAS,WAAW,aAAa,aAAa;AACtF,UAAM,UAAU,IAAI,iBAAiB,WAAW,SAAS;AACzD,UAAM,SAAS,SAAS,cAAc,SAAS,CAAC,IAAI,WAAW,GAAG,KAAK;AACvE,cAAU,KAAK,MAAM;AACrB,QAAI,OAAO,MAAM,OAAO,cAAc;AACpC,aAAO;AAAA,IACT;AACA,UAAM,YAAY,OAAO;AAAA,MACvB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,GAAG,MAAM,cAAc,MAAM,GAAG,OAAO,UAAU;AAAA,IACnE,CAAC;AACD,UAAM,WAAW,MAAM;AAAA,MACrB,QAAQ,EAAE,GAAG,UAAU;AAAA,MACvB,SAAS;AAAA,MACT,OAAO,EAAE,MAAM,CAAC,UAAU,UAAU,EAAE;AAAA,IACxC,CAAC;AACD,cAAU,KAAK,SAAS;AACxB,cAAU,KAAK,QAAQ;AACvB,UAAM,UAAU,aAAa,QAAQ,WAAW,UAAU,OAAO,YAAY;AAC7E,WAAO;AAAA,EACT;AACA,QAAM,cAAc,aAAa,KAAK,sBAAsB,YAAY,aAAa,WAAW;AAChG,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACvG,MAAI,SAAS;AACb,MAAI,eAAe,MAAM;AACvB,cAAU,KAAK,QAAQ;AACvB,UAAM,OAAO,qBAAqB,uBAAuB,WAAW;AACpE,aAAS,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AAAA,EACnF;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,8BAA8B,EAAE,CAAC;AACpE,SAAO;AACT;AACA,IAAI,4BAA4B;AAAA,EAC9B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB;AAAA,EACnB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,gBAAgB,gBAAgB;AACzC,iBAAe,YAAY;AAC7B;AAGA,IAAI;AAAA,CACH,SAAS,WAAW;AACnB,YAAU,UAAU,aAAa,KAAK;AACtC,YAAU,UAAU,WAAW,KAAK;AACpC,YAAU,UAAU,UAAU,KAAK;AACnC,YAAU,UAAU,YAAY,KAAK;AACrC,YAAU,UAAU,eAAe,KAAK;AAC1C,GAAG,aAAa,WAAW,CAAC,EAAE;AAC9B,IAAI;AAAA,CACH,SAAS,oBAAoB;AAC5B,qBAAmB,mBAAmB,YAAY,KAAK;AACvD,qBAAmB,mBAAmB,UAAU,KAAK;AACrD,qBAAmB,mBAAmB,WAAW,KAAK;AACtD,qBAAmB,mBAAmB,WAAW,KAAK;AACtD,qBAAmB,mBAAmB,eAAe,KAAK;AAC1D,qBAAmB,mBAAmB,aAAa,KAAK;AACxD,qBAAmB,mBAAmB,SAAS,KAAK;AACtD,GAAG,sBAAsB,oBAAoB,CAAC,EAAE;AAGhD,IAAI;AACJ,SAAS,MAAM,UAAU;AACvB,oBAAkB,SAAS,KAAK,MAAM,cAAc,MAAM;AAAA,IACxD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,iBAAiB,MAAM;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,MAAM,uBAAuB,IAAI;AAC/C,MAAI,EAAE,UAAU,aAAa,EAAE,UAAU,WAAW;AAClD,UAAM,IAAI,MAAM,6DAA6D;AAAA,EAC/E;AACA,QAAM,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe,IAAI;AAC5E,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,SAAS;AACb,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,SAAS,UAAU,IAAI,KAAK,MAAM;AACnD,QAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,YAAM,IAAI,MAAM,uDAAuD,SAAS,MAAM,SAAS;AAAA,IACjG;AACA,aAAS,SAAS;AAAA,EACpB;AACA,QAAM,2BAA2B,0BAA0B,OAAO,IAAI,SAAS,UAAU,IAAI,uBAAuB,MAAM,EAAE;AAC5H,QAAM,kBAAkB,kBAAkB;AAC1C,MAAI,mBAAmB,MAAM;AAC3B,UAAM,IAAI,MAAM,GAAG,+EAA+E;AAAA,EACpG;AACA,QAAM,UAAU,aAAa,EAAE,MAAM,KAAK,EAAE,MAAM;AAClD,QAAM,WAAW,aAAa,EAAE,MAAM,KAAK,EAAE,MAAM;AACnD,QAAM,YAAY,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AAC9G,QAAM,MAAM,SAAS,WAAW,CAAC,GAAG,WAAW,SAAS,QAAQ,GAAG,EAAE,KAAK;AAC1E,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,kBAAgB,KAAK,aAAa,EAAE,MAAM,QAAQ,KAAK,aAAa,EAAE,MAAM,QAAQ,YAAY,YAAY,iBAAiB,QAAQ,0BAA0B,kBAAkB,GAAG,KAAK;AACzL,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,wBAAwB,YAAY,SAAS;AACpD,MAAI;AACJ,WAAS,WAAW,UAAU;AAC5B,gBAAY,SAAS,KAAK,MAAM,YAAY,MAAM;AAAA,MAChD;AAAA,MACA;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH;AACA,WAAS,YAAY,MAAM;AACzB,UAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,EAAE,EAAE,IAAI;AAC7C,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,MAAM,SAAS,WAAW,EAAE,OAAO,WAAW,EAAE,KAAK;AAC3D,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAI,aAAa,cAAc,IAAI,KAAK,MAAM,GAAG;AAC/C,aAAO;AAAA,IACT;AACA,cAAU,KAAK,SAAS,EAAE,QAAQ,KAAK;AACvC,WAAO;AAAA,EACT;AACA,SAAO,EAAE,YAAY,aAAa,QAAQ,WAAW,YAAY,YAAY,YAAY;AAC3F;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,SAAS,yBAAyB,YAAY,yBAAyB,OAAO;AAC5E,MAAI;AACJ,WAAS,WAAW,UAAU;AAC5B,gBAAY,SAAS,KAAK,MAAM,YAAY,MAAM;AAAA,MAChD;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH;AACA,WAAS,YAAY,MAAM;AACzB,UAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,aAAa,SAAS,OAAO,QAAQ,EAAE;AAC7C,UAAM,WAAW,qBAAqB,2BAA2B,EAAE,OAAO,EAAE,KAAK;AACjF,UAAM,MAAM,SAAS,WAAW,UAAU,UAAU;AACpD,QAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,aAAO;AAAA,IACT;AACA,UAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,UAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,UAAM,cAAc,MAAM,UAAU,KAAK,aAAa,EAAE,MAAM,QAAQ,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,KAAK;AAChI,gBAAY;AACZ,WAAO;AAAA,EACT;AACA,SAAO,EAAE,YAAY,aAAa,QAAQ,WAAW,YAAY,YAAY,YAAY;AAC3F;AAGA,IAAI,wBAAwB;AAC5B,IAAI,aAAa,yBAAyB,KAAK,qBAAqB;AAGpE,IAAI;AACJ,SAAS,UAAU,UAAU;AAC3B,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,MAAM,SAAS,WAAW,OAAO,GAAG,OAAO,OAAO,GAAG,KAAK;AAChE,MAAI,aAAa,cAAc,IAAI,KAAK,MAAM,GAAG;AAC/C,WAAO;AAAA,EACT;AACA,QAAM,WAAW,OAAO,IAAI,CAAC,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE,EAAE;AACtE,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,QAAQ,EAAE,MAAM;AACpE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,WAAS,eAAe,SAAS,QAAQ,SAAS,IAAI,QAAQ,KAAK;AACnE,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb;AAAA,EACA,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,IAAI;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,SAAS,SAAS,mBAAmB,CAAC;AAC5C,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,IAAI,MAAM;AAClB,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,kBAAgB,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IACnD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,CAAC,cAAc,IAAI,IAAI,kBAAkB,OAAO,EAAE,OAAO,MAAM,IAAI;AACzE,MAAI,aAAa;AACjB,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,QAAI,KAAK,QAAQ,IAAI;AACnB,mBAAa;AAAA,IACf;AAAA,EACF;AACA,QAAM,WAAW,iBAAiB,OAAO,EAAE,OAAO,MAAM,IAAI;AAC5D,QAAM,IAAI;AAAA,IACR,QAAQ,OAAO,EAAE;AAAA,IACjB,OAAO;AAAA,IACP,OAAO,OAAO,EAAE;AAAA,EAClB;AACA,MAAI,YAAY;AACd,UAAM,SAAS,UAAU,EAAE,QAAQ,SAAS,SAAS,CAAC;AACtD,WAAO,QAAQ;AACf,WAAO;AAAA,EACT;AACA,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,YAAY,IAAI,WAAW,IAAI,WAAW,IAAI,EAAE,MAAM;AAC5D,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,gBAAc,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,OAAO,WAAW,KAAK,MAAM;AAChG,SAAO;AACT;AACA,SAAS,iBAAiB,SAAS,MAAM;AACvC,QAAM,WAAW,IAAI,MAAM,QAAQ,MAAM;AACzC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,QAAQ,KAAK;AAAA,EAC9B;AACA,SAAO;AACT;AACA,SAAS,kBAAkB,OAAO,MAAM;AACtC,QAAM,WAAW,CAAC;AAClB,QAAM,UAAU,CAAC;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,QAAQ,EAAE,IAAI;AACxC,QAAI,MAAM,QAAQ,GAAG;AACnB,eAAS,KAAK,MAAM,GAAG;AAAA,IACzB;AACA,QAAI,MAAM,KAAK,SAAS,GAAG;AACzB,cAAQ,KAAK,KAAK,GAAG;AAAA,IACvB;AAAA,EACF;AACA,WAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,EAAE,IAAI;AAC1C,QAAI,YAAY;AAChB,aAAS,IAAI,GAAG,IAAI,QAAQ,QAAQ,EAAE,GAAG;AACvC,UAAI,QAAQ,MAAM,OAAO,cAAc,MAAM,QAAQ,aAAa,QAAQ,KAAK;AAC7E,oBAAY;AAAA,MACd;AAAA,IACF;AACA,YAAQ,aAAa;AAAA,EACvB;AACA,SAAO,CAAC,UAAU,OAAO;AAC3B;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,SAAS,wBAAwB,GAAG,MAAM,UAAU;AAClD,QAAM,SAAS,EAAE;AACjB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,eAAe,aAAa,eAAe,MAAM,MAAM;AAC7D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,cAAc;AAClB,MAAI,qBAAqB;AACzB,MAAI,gBAAgB,MAAM;AACxB,UAAM,WAAW,IAAI,MAAM,KAAK;AAChC,aAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,eAAS,MAAM,OAAO,aAAa;AAAA,IACrC;AACA,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAC/D,kBAAc,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AAC5F,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,eAAe,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AAChE,QAAI,iBAAiB,KAAK;AACxB,2BAAqB;AAAA,IACvB;AAAA,EACF;AACA,SAAO,EAAE,YAAY,aAAa,cAAc,MAAM,mBAAmB;AAC3E;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM,CAAC,wBAAwB,CAAC;AACrE;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,aAAS;AACT,cAAU;AAAA,EACZ;AACA,QAAM,YAAY,OAAO,MAAM;AAC/B,uBAAqB,2BAA2B,OAAO,MAAM,SAAS;AACtE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACjG,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,YAAY,KAAK;AAAA,EACpC;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM,CAAC,wBAAwB,CAAC;AACrE;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,aAAS;AACT,cAAU;AAAA,EACZ;AACA,QAAM,YAAY,OAAO,MAAM;AAC/B,uBAAqB,2BAA2B,OAAO,MAAM,SAAS;AACtE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACjG,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,YAAY,KAAK;AAAA,EACpC;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,cAAY,SAAS,KAAK,MAAM,QAAQ,MAAM;AAAA,IAC5C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AAC1F,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AAAA,IACZ;AAAA,EACF;AACA,QAAM,WAAW,OAAO,MAAM,MAAM,GAAG,EAAE;AACzC,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO;AACjD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,YAAY,aAAa,cAAc,IAAI,KAAK;AACtD,QAAM,YAAY,OAAO,MAAM,KAAK;AACpC,YAAU,SAAS,SAAS,OAAO,QAAQ,WAAW,WAAW,KAAK;AACtE,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,gBAAc,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,IAAI,OAAO;AACjB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,EAAE,YAAY,SAAAa,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AAC9G,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,WAAW,SAAS;AAC1B,MAAI,SAAS,eAAe,gBAAgB;AAC1C,UAAM,IAAI,MAAM,6CAA6C,SAAS,yCAAyC;AAAA,EACjH;AACA,MAAI,SAAS,kBAAkB,KAAK,SAAS,mBAAmB,GAAG;AACjE,UAAM,IAAI,MAAM,0EAA0E,SAAS,mBAAmB,SAAS,iBAAiB;AAAA,EAClJ;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,cAAY,KAAK,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,cAAc,aAAa,QAAQ,UAAU,WAAW,SAAS,cAAc,aAAa,UAAU,KAAK;AAChK,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,MAAM,IAAI;AAC1B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,SAAS,aAAa,uBAAuB,OAAO,KAAK;AAC/D,eAAa,OAAO,UAAU,aAAa,cAAc,MAAM,GAAG,MAAM,cAAc,sBAAsB,EAAE,uEAAuE;AACrL,OAAK,QAAQ,OAAO,EAAE,MAAM;AAC5B,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,QAAQ,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,oBAAkB,SAAS,KAAK,MAAM,aAAa,MAAM;AAAA,IACvD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,EAAE,YAAY,WAAW,IAAI;AACnC,MAAI,EAAE,UAAU,aAAa,EAAE,UAAU,WAAW;AAClD,UAAM,IAAI,MAAM,4DAA4D;AAAA,EAC9E;AACA,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,oBAAoB,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AACtH,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,eAAa,OAAO,gBAAgB,aAAa,MAAM,kCAAkC,qBAAqB,uCAAuC,EAAE,aAAa,EAAE,wBAAwB,6BAA6B,wBAAwB;AACnP,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,UAAU,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACtD,QAAM,WAAW,aAAa,IAAI,MAAM,KAAK,IAAI,MAAM;AACvD,QAAM,WAAW,KAAK,IAAI,WAAW,SAAS;AAC9C,QAAM,MAAM,SAAS,WAAW,CAAC,UAAU,SAAS,QAAQ,GAAG,IAAI,KAAK;AACxE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,IAAI,KAAK,EAAE,MAAM;AACnE,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,IAAI,KAAK,EAAE,MAAM;AACnE,kBAAgB,OAAO,aAAa,IAAI,MAAM,QAAQ,OAAO,aAAa,IAAI,MAAM,QAAQ,YAAY,YAAY,KAAK;AACzH,WAAS,YAAY,IAAI,MAAM;AAC/B,WAAS,YAAY,IAAI,MAAM;AAC/B,MAAI,QAAQ;AACZ,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,MAAAb,MAAK,GAAG,SAAS,SAAS,IAAI;AACrE,QAAM,CAAC,QAAQ,KAAK,IAAI,mBAAmB,iBAAiB,GAAG,OAAOA,KAAI;AAC1E,QAAM,cAAc,mBAAmB,iBAAiB,EAAE,OAAO,QAAQ,KAAK;AAC9E,QAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,QAAM,MAAM,SAAS,WAAW,OAAO,EAAE,KAAK;AAC9C,QAAM,WAAW,aAAa,eAAe,EAAE,KAAK;AACpD,QAAM,UAAU,SAAS,UAAU,IAAI,IAAI,MAAM;AACjD,MAAI,aAAa;AACf,UAAM,aAAa,mBAAmB,kBAAkB,QAAQ,QAAQ;AACxE,QAAI,EAAE,UAAU,UAAU;AACxB,cAAQ,cAAc,MAAM,MAAM,YAAY,aAAa,aAAa,cAAc,KAAK,CAAC;AAAA,IAC9F,OAAO;AACL,YAAM,WAAW,SAAS,mBAAmB,GAAG;AAChD,eAAS,IAAI,MAAM,SAAS,YAAY,aAAa,aAAa,cAAc,KAAK,CAAC,CAAC;AAAA,IACzF;AACA,WAAO;AAAA,EACT;AACA,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,MAAM,UAAU,OAAO,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AAC5D,YAAQ,cAAc;AACtB,WAAO;AAAA,EACT;AACA,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,QAAM,OAAO,EAAE,MAAM;AACrB,MAAI,SAAS,GAAG;AACd,aAAS,OAAO,SAAS,IAAI,SAAS,QAAQ,KAAK;AAAA,EACrD,WAAW,SAAS,GAAG;AACrB,aAAS,OAAO,SAAS,IAAI,SAAS,IAAI,SAAS,QAAQ,KAAK;AAAA,EAClE,WAAW,SAAS,GAAG;AACrB,aAAS,OAAO,SAAS,IAAI,SAAS,IAAI,SAAS,IAAI,SAAS,QAAQ,KAAK;AAAA,EAC/E,OAAO;AACL,UAAM,MAAM,UAAU,OAAO,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AAC5D,YAAQ,IAAI,GAAG;AAAA,EACjB;AACA,SAAO;AACT;AACA,SAAS,SAAS,OAAO,SAAS,SAAS,OAAOA,OAAM;AACtD,MAAI,YAAY;AAChB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,OAAO,SAASA,MAAK;AAC3B,WAAS,KAAK,QAAQ,KAAK,MAAM,MAAM;AACrC,UAAM,UAAU,KAAK,UAAU;AAC/B,YAAQ,IAAI,MAAM,SAAS,SAAS,UAAUA,MAAK,EAAE,GAAG,SAAS;AACjE,iBAAaA,MAAK;AAAA,EACpB;AACF;AACA,SAAS,SAAS,OAAO,UAAU,UAAU,SAAS,OAAOA,OAAM;AACjE,MAAI,YAAY;AAChB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,OAAO,SAASA,MAAK;AAC3B,QAAM,OAAO,SAASA,MAAK;AAC3B,WAAS,KAAK,QAAQ,KAAK,MAAM,MAAM;AACrC,aAAS,IAAI,QAAQ,IAAI,MAAM,KAAK;AAClC,YAAM,UAAU,KAAK,WAAW,IAAI,WAAW;AAC/C,cAAQ,IAAI,MAAM,SAAS,SAAS,UAAUA,MAAK,EAAE,GAAG,SAAS;AACjE,mBAAaA,MAAK;AAAA,IACpB;AAAA,EACF;AACF;AACA,SAAS,SAAS,OAAO,UAAU,UAAU,UAAU,SAAS,OAAOA,OAAM;AAC3E,MAAI,YAAY;AAChB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,SAAS,MAAM;AACrB,QAAM,OAAO,SAASA,MAAK;AAC3B,QAAM,OAAO,SAASA,MAAK;AAC3B,QAAM,OAAO,SAASA,MAAK;AAC3B,QAAM,SAAS,MAAM;AACrB,WAAS,KAAK,QAAQ,KAAK,MAAM,MAAM;AACrC,aAAS,IAAI,QAAQ,IAAI,MAAM,KAAK;AAClC,eAAS,IAAI,QAAQ,IAAI,MAAM,KAAK;AAClC,cAAM,UAAU,KAAK,WAAW,IAAI,WAAW,IAAI,WAAW;AAC9D,gBAAQ,IAAI,MAAM,SAAS,SAAS,UAAUA,MAAK,EAAE,GAAG,SAAS;AACjE,qBAAaA,MAAK;AAAA,MACpB;AAAA,IACF;AAAA,EACF;AACF;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,WAAW,qBAAqB,YAAY,EAAE,OAAO,YAAY,KAAK;AAC5E,QAAM,WAAW,qBAAqB,YAAY,SAAS,QAAQ,WAAW,MAAM;AACpF,QAAM,mBAAmB,qBAAqB,oBAAoB,EAAE,OAAO,YAAY,KAAK;AAC5F,QAAM,mBAAmB,qBAAqB,oBAAoB,OAAO,WAAW,MAAM;AAC1F,QAAM,YAAY,qBAAqB,aAAa,kBAAkB,OAAO,WAAW,MAAM;AAC9F,QAAM,YAAY,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC3F,QAAM,cAAc,WAAW,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AACzG,QAAM,sBAAsB,SAAS,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,iBAAiB,EAAE,CAAC;AAC1H,QAAM,SAAS,OAAO;AAAA,IACpB,QAAQ,EAAE,GAAG,oBAAoB;AAAA,IACjC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,kBAAkB,MAAM,UAAU;AAAA,EACpD,CAAC;AACD,WAAS,YAAY,UAAU,MAAM;AACrC,WAAS,YAAY,YAAY,MAAM;AACvC,WAAS,YAAY,UAAU,MAAM;AACrC,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,GAAG,SAAS,SAAS,IAAI;AAC/D,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,KAAK;AAC9C,QAAM,SAAS,SAAS,mBAAmB,CAAC;AAC5C,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,IAAI,MAAM;AAClB,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,aAAW,SAAS,KAAK,MAAM,aAAa,MAAM;AAAA,IAChD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,cAAc,aAAa,IAAI;AACvC,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,WAAS,KAAK,cAAc,cAAc,KAAK;AAC/C,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,OAAO,aAAa,eAAe,KAAK,MAAM,MAAM,OAAO,GAAG,KAAK,EAAE;AAC3E,MAAI,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AACtF,QAAM,UAAU,OAAO,OAAO,CAAC,OAAO,aAAa,cAAc,GAAG,KAAK,IAAI,CAAC;AAC9E,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,GAAG,KAAK;AACzD,MAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,WAAO;AAAA,EACT;AACA,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,uBAAqB,uBAAuB,QAAQ,IAAI;AACxD,MAAI,QAAQ,GAAG,UAAU,UAAU;AACjC,UAAM,WAAW,QAAQ,IAAI,CAAC,OAAO;AACnC,YAAM,YAAY,aAAa,cAAc,GAAG,MAAM,MAAM,IAAI,CAAC;AACjE,YAAM,QAAQ,CAAC,IAAI,SAAS;AAC5B,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,IAC5E,CAAC;AACD,UAAM,kBAAkB,SAAS,IAAI,CAAC,OAAO;AAC3C,aAAO,EAAE,MAAM,SAAS,SAAS,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM;AAAA,IAC/D,CAAC;AACD,eAAW,qBAAqB,gBAAgB,SAAS,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,CAAC;AACjF,UAAM,eAAe,SAAS,GAAG,MAAM,OAAO;AAC9C,UAAM,WAAW,WAAW,iBAAiB,UAAU,OAAO,GAAG,OAAO,YAAY;AACpF,UAAM,gBAAgB,qBAAqB,gBAAgB,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AAC9F,QAAI,QAAQ;AACZ,UAAM,UAAU,SAAS,UAAU,IAAI,IAAI,MAAM;AACjD,YAAQ,cAAc,qBAAqB,uBAAuB,QAAQ;AAC1E,aAAS,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACxD,WAAO;AAAA,EACT;AACA,QAAM,WAAW,aAAa,cAAc,QAAQ,GAAG,MAAM,MAAM,GAAG,IAAI,CAAC;AAC3E,MAAI,eAAe;AACnB,QAAM,YAAY,QAAQ,IAAI,CAAC,WAAW;AACxC,UAAM,WAAW,aAAa,cAAc,OAAO,MAAM,MAAM,IAAI,CAAC;AACpE,oBAAgB;AAChB,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,IAAI,CAAC,WAAW,SAAS,mBAAmB,MAAM,CAAC;AAC1E,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,WAAS,IAAI,GAAG,IAAI,UAAU,KAAK;AACjC,QAAI,YAAY,IAAI;AACpB,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,YAAM,WAAW,UAAU;AAC3B,YAAM,WAAW,IAAI;AACrB,YAAM,OAAO,OAAO,IAAI,SAAS,UAAU,WAAW,QAAQ;AAC9D,cAAQ,IAAI,MAAM,SAAS;AAC3B,mBAAa;AAAA,IACf;AAAA,EACF;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,OAAO,UAAU;AACxB,eAAa,SAAS,KAAK,MAAM,QAAQ,MAAM;AAAA,IAC7C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,EAAE,SAAAa,UAAS,WAAW,KAAK,MAAM,iBAAiB,WAAW,IAAI;AACvE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,YAAY,SAAS,QAAQ,SAAS,SAAS,IAAI;AACzD,MAAI,SAAS,eAAe,gBAAgB;AAC1C,UAAM,IAAI,MAAM,oDAAoD,SAAS,yCAAyC;AAAA,EACxH;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,aAAW,KAAK,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,UAAU,cAAc,aAAa,QAAQ,UAAU,WAAW,SAAS,WAAW,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,KAAK;AACxO,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,4BAA0B,SAAS,KAAK,MAAM,qBAAqB,MAAM;AAAA,IACvE;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,YAAY,iBAAiB,WAAW,IAAI;AACxE,QAAM,YAAY;AAClB,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC/I,QAAM,EAAE,WAAW,cAAc,aAAa,YAAY,UAAU,SAAS,aAAa,WAAW,UAAU,cAAc,YAAY,IAAI;AAC7I,QAAM,SAAS,eAAe,IAAI,SAAS,QAAQ;AACnD,QAAM,UAAU,cAAc,IAAI,SAAS,QAAQ;AACnD,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,YAAY,aAAa,eAAe,SAAS,OAAO;AAC9D,QAAM,YAAY,aAAa,eAAe,GAAG,KAAK;AACtD,QAAM,CAAC,OAAO,OAAO,KAAK,IAAI,aAAa,eAAe,OAAO,KAAK;AACtE,QAAM,eAAe,UAAU;AAC/B,QAAM,aAAa,iBAAiB,UAAU,KAAK,UAAU;AAC7D,QAAM,aAAa,iBAAiB,UAAU,KAAK;AACnD,QAAM,iBAAiB,iBAAiB,IAAI,UAAU;AACtD,QAAM,eAAe,UAAU;AAC/B,QAAM,aAAa,iBAAiB,UAAU,KAAK,UAAU;AAC7D,QAAM,aAAa,iBAAiB,UAAU,KAAK;AACnD,QAAM,iBAAiB,iBAAiB,IAAI,UAAU;AACtD,QAAM,MAAM,SAAS,WAAW,SAAS,SAAS,SAAS;AAC3D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,OAAO,SAAS,UAAU,IAAI,GAAG,MAAM,EAAE;AAC/C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,0BAAwB,MAAM,UAAU,WAAW,cAAc,aAAa,UAAU,SAAS,YAAY,WAAW,UAAU,aAAa,cAAc,aAAa,QAAQ,SAAS,OAAO,OAAO,OAAO,cAAc,YAAY,YAAY,gBAAgB,cAAc,YAAY,YAAY,gBAAgB,KAAK;AACjU,SAAO;AACT;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI;AAAA,CACH,SAAS,sBAAsB;AAC9B,uBAAqB,qBAAqB,cAAc,KAAK;AAC7D,uBAAqB,qBAAqB,aAAa,KAAK;AAC9D,GAAG,wBAAwB,sBAAsB,CAAC,EAAE;AACpD,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,sBAAoB,SAAS,KAAK,MAAM,eAAe,MAAM;AAAA,IAC3D;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,oBAAoB,SAAS,IAAI;AACjD,QAAM,EAAE,OAAO,QAAQ,OAAO,OAAO,IAAI;AACzC,QAAM,WAAW,MAAM,MAAM;AAC7B,QAAM,CAAC,YAAY,SAAS,IAAI;AAChC,QAAM,WAAW,CAAC,UAAU,YAAY,WAAW,OAAO,MAAM,EAAE;AAClE,MAAI,aAAa,SAAS,UAAU,IAAI,OAAO,MAAM;AACrD,MAAI;AACJ,MAAI,OAAO,UAAU,WAAW;AAC9B,iBAAa,MAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAC5F,iBAAa,SAAS,UAAU,IAAI,WAAW,MAAM;AAAA,EACvD;AACA,QAAM,WAAW,WAAW;AAC5B,QAAM,UAAU,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACrD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,MAAM,SAAS,WAAW,UAAU,SAAS;AACnD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,OAAO,KAAK,EAAE,MAAM;AAC3E,oBAAkB,UAAU,SAAS,UAAU,UAAU,kBAAkB,YAAY,WAAW,oBAAoB,SAAS,oBAAoB,KAAK;AACxJ,MAAI,cAAc,MAAM;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,gBAAc,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,QAAM,QAAQ,EAAE,MAAM;AACtB,eAAa,OAAO,EAAE,UAAU,aAAa,EAAE,UAAU,SAAS,MAAM,4BAA4B,EAAE,mCAAmC;AACzI,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,YAAY,GAAG,SAAS,SAAS,CAAC;AAAA,EAC3F;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AACrE,uBAAqB,2BAA2B,WAAW,CAAC,YAAY,GAAG,KAAK;AAChF,QAAM,cAAc,SAAS,WAAW,UAAU,OAAO,UAAU,KAAK;AACxE,QAAM,WAAW,UAAU,MAAM;AACjC,QAAM,cAAc,SAAS,UAAU,IAAI,UAAU,MAAM,EAAE;AAC7D,QAAM,gBAAgB,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AACjE,cAAY,aAAa,YAAY,IAAI,GAAG,WAAW,IAAI,GAAG,UAAU,eAAe,SAAS,EAAE,MAAM;AACxG,MAAI,MAAM;AACV,MAAI,gBAAgB,MAAM;AACxB,UAAM,kBAAkB,qBAAqB,uBAAuB,WAAW;AAC/E,UAAM,WAAW,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,OAAO,EAAE,MAAM,gBAAgB,GAAG,SAAS,SAAS,CAAC;AACpG,aAAS,YAAY,UAAU,MAAM;AACrC,aAAS,YAAY,YAAY,MAAM;AAAA,EACzC;AACA,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,QAAQ,MAAM;AAAA,IAC7C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,QAAM,QAAQ,EAAE,MAAM;AACtB,eAAa,OAAO,EAAE,UAAU,aAAa,EAAE,UAAU,SAAS,MAAM,2BAA2B,EAAE,mCAAmC;AACxI,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,gBAAgB,MAAM;AACxB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,YAAY,GAAG,SAAS,SAAS,CAAC;AAAA,EAC3F;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AACrE,uBAAqB,2BAA2B,UAAU,CAAC,YAAY,GAAG,KAAK;AAC/E,QAAM,cAAc,SAAS,WAAW,UAAU,OAAO,UAAU,KAAK;AACxE,QAAM,WAAW,UAAU,MAAM;AACjC,QAAM,cAAc,SAAS,UAAU,IAAI,UAAU,MAAM,EAAE;AAC7D,QAAM,gBAAgB,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AACjE,aAAW,aAAa,YAAY,IAAI,GAAG,WAAW,IAAI,GAAG,UAAU,eAAe,SAAS,EAAE,MAAM;AACvG,MAAI,MAAM;AACV,MAAI,gBAAgB,MAAM;AACxB,UAAM,kBAAkB,qBAAqB,uBAAuB,WAAW;AAC/E,UAAM,WAAW,EAAE,QAAQ,EAAE,GAAG,YAAY,GAAG,OAAO,EAAE,MAAM,gBAAgB,GAAG,SAAS,SAAS,CAAC;AACpG,aAAS,YAAY,UAAU,MAAM;AACrC,aAAS,YAAY,YAAY,MAAM;AAAA,EACzC;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,qBAAmB,SAAS,KAAK,MAAM,cAAc,MAAM;AAAA,IACzD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,WAAW,WAAW,IAAI;AAClC,QAAM,YAAY,EAAE,MAAM;AAC1B,QAAM,cAAc,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AACjE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,eAAe,cAAc;AACnC,QAAM,cAAc,aAAa;AACjC,QAAM,cAAc,cAAc,YAAY;AAC9C,QAAM,cAAc,eAAe,SAAS,CAAC,WAAW,cAAc,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,cAAc,WAAW;AACpJ,QAAM,MAAM,SAAS,WAAW,aAAa,SAAS;AACtD,QAAM,QAAQ,SAAS,UAAU,IAAI,EAAE,MAAM;AAC7C,QAAM,MAAM,MAAM;AAClB,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,EAAE,KAAK,CAAC,EAAE,MAAM;AAChG,QAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,WAAW,EAAE,MAAM;AAC1E,QAAM,kBAAkB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,WAAW,CAAC,EAAE,MAAM;AACtG,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,eAAe,eAAe,SAAS,IAAI;AACjD,mBAAiB,KAAK,WAAW,cAAc,eAAe,EAAE,MAAM,SAAS,GAAG,kBAAkB,iBAAiB,YAAY,QAAQ,KAAK;AAC9I,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,wBAAsB,SAAS,KAAK,MAAM,uBAAuB,MAAM;AAAA,IACrE;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,iBAAiB,MAAM;AAC9B,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,EAAE,SAAAA,UAAS,WAAW,KAAK,MAAM,gBAAgB,IAAI;AAC3D,QAAM,aAAa,aAAa,OAAO,CAAC,GAAG,CAAC,IAAI;AAChD,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,QAAM,YAAY,SAAS,QAAQ,SAAS,SAAS,IAAI;AACzD,MAAI,SAAS,eAAe,gBAAgB;AAC1C,UAAM,IAAI,MAAM,mEAAmE,SAAS,yCAAyC;AAAA,EACvI;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,sBAAoB,KAAK,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,UAAU,cAAc,aAAa,QAAQ,UAAU,WAAW,SAAS,WAAW,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,KAAK;AACjP,SAAO;AACT;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI,yBAAyB;AAC7B,IAAI,eAAe,yBAAyB,OAAO,wBAAwB,MAAM;AAGjF,IAAI,aAAa,wBAAwB,KAAK,SAAS;AAGvD,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,YAAY,OAAO,MAAM;AAC/B,QAAM,WAAW,OAAO,MAAM,MAAM;AACpC,MAAI,OAAO;AACX,MAAI,MAAM,GAAG;AACX,iBAAa,OAAO,EAAE,YAAY,MAAM,KAAK,MAAM,iCAAiC,EAAE,YAAY,OAAO,YAAY;AACrH,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,OAAO,EAAE,OAAO,OAAO,MAAM,GAAG,SAAS,SAAS,IAAI;AAC9D,QAAM,MAAM,SAAS,WAAW,OAAO,KAAK;AAC5C,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,KAAK,KAAK;AAClB,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,sBAAoB,SAAS,KAAK,MAAM,eAAe,MAAM;AAAA,IAC3D;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,MAAM,SAAS,WAAW,OAAO,OAAO,OAAO,KAAK;AAC1D,QAAM,UAAU,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACtD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,oBAAkB,SAAS,OAAO,aAAa,YAAY,aAAa,KAAK;AAC7E,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI,eAAe,wBAAwB,KAAK;AAGhD,IAAI,yBAAyB;AAC7B,IAAI,kBAAkB,yBAAyB,UAAU,sBAAsB;AAG/E,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,kBAAgB,SAAS,KAAK,MAAM,gBAAgB,MAAM,CAAC,UAAU,UAAU,UAAU,UAAU,UAAU,UAAU,QAAQ,CAAC;AAClI;AACA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,gBAAgB,IAAI;AAC5B,QAAM,EAAE,GAAG,MAAM,OAAO,UAAU,QAAQ,OAAOS,QAAO,IAAI;AAC5D,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,SAAS,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACpD,QAAM,aAAa,SAAS,UAAU,IAAI,SAAS,MAAM,EAAE;AAC3D,QAAM,WAAW,UAAU,OAAO,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE,KAAK;AAC7E,QAAM,UAAUA,WAAU,OAAO,SAAS,UAAU,IAAIA,QAAO,MAAM,EAAE,KAAK;AAC5E,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,WAAO;AAAA,EACT;AACA,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,gBAAc,KAAK,QAAQ,YAAY,UAAU,SAAS,iBAAiB,KAAK;AAChF,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,oBAAkB,SAAS,KAAK,MAAM,aAAa,MAAM;AAAA,IACvD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAT,UAAS,KAAK,MAAM,WAAW,YAAY,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,eAAe;AACxH,QAAM,kBAAkB,kBAAkB;AAC1C,MAAI,mBAAmB,MAAM;AAC3B,UAAM,IAAI,MAAM,GAAG,+EAA+E;AAAA,EACpG;AACA,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,iBAAiB,SAAS;AAChC,MAAI,SAAS;AACb,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,SAAS,UAAU,IAAI,KAAK,MAAM;AACnD,QAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,YAAM,IAAI,MAAM,sDAAsD,SAAS,MAAM,SAAS;AAAA,IAChG;AACA,QAAI,SAAS,MAAM,OAAO,gBAAgB;AACxC,YAAM,IAAI,MAAM,2BAA2B,SAAS,wDAAwD,iBAAiB;AAAA,IAC/H;AACA,aAAS,SAAS;AAAA,EACpB;AACA,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,YAAY,SAAS,QAAQ,SAAS,SAAS,IAAI;AACzD,QAAM,YAAY,SAAS;AAC3B,QAAM,WAAW,SAAS;AAC1B,QAAM,UAAU,SAAS;AACzB,MAAI,eAAe,QAAQ;AACzB,UAAM,IAAI,MAAM,yDAAyD,iCAAiC;AAAA,EAC5G;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,2BAA2B,0BAA0B,OAAO,IAAI,SAAS,UAAU,IAAI,uBAAuB,MAAM,EAAE;AAC5H,kBAAgB,KAAK,WAAW,UAAU,SAAS,UAAU,cAAc,aAAa,QAAQ,QAAQ,UAAU,WAAW,SAAS,WAAW,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,iBAAiB,0BAA0B,kBAAkB,GAAG,KAAK;AAC/S,SAAO;AACT;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,6BAA2B,SAAS,KAAK,MAAM,sBAAsB,MAAM;AAAA,IACzE;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,WAAW,YAAY,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,IAAI;AAC9H,QAAM,kBAAkB,kBAAkB;AAC1C,MAAI,mBAAmB,MAAM;AAC3B,UAAM,IAAI,MAAM,GAAG,wFAAwF;AAAA,EAC7G;AACA,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,iBAAiB,SAAS;AAChC,MAAI,SAAS;AACb,MAAI,QAAQ,MAAM;AAChB,UAAM,WAAW,SAAS,UAAU,IAAI,KAAK,MAAM;AACnD,QAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,YAAM,IAAI,MAAM,+DAA+D,SAAS,MAAM,SAAS;AAAA,IACzG;AACA,QAAI,SAAS,MAAM,OAAO,gBAAgB;AACxC,YAAM,IAAI,MAAM,oCAAoC,SAAS,wDAAwD,iBAAiB;AAAA,IACxI;AACA,aAAS,SAAS;AAAA,EACpB;AACA,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,YAAY,SAAS,QAAQ,SAAS,SAAS,IAAI;AACzD,QAAM,YAAY,SAAS;AAC3B,QAAM,WAAW,SAAS;AAC1B,QAAM,UAAU,SAAS;AACzB,MAAI,eAAe,QAAQ;AACzB,UAAM,IAAI,MAAM,kEAAkE,iCAAiC;AAAA,EACrH;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,2BAA2B,0BAA0B,OAAO,IAAI,SAAS,UAAU,IAAI,uBAAuB,MAAM,EAAE;AAC5H,2BAAyB,KAAK,WAAW,UAAU,SAAS,UAAU,cAAc,aAAa,QAAQ,QAAQ,UAAU,WAAW,SAAS,WAAW,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,iBAAiB,0BAA0B,kBAAkB,GAAG,KAAK;AACxT,SAAO;AACT;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,iBAAe,SAAS,KAAK,MAAM,UAAU,MAAM;AAAA,IACjD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,QAAM,EAAE,QAAQ,QAAQ,IAAI;AAC5B,QAAM,CAAC,aAAa,WAAW,WAAWA,QAAO,IAAI,uBAAuB,mBAAmB,QAAQ,OAAO;AAC9G,QAAM,MAAM,SAAS,WAAW,aAAa,OAAO,KAAK;AACzD,MAAI,cAAc,GAAG;AACnB,WAAO;AAAA,EACT;AACA,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,QAAM,QAAQ,SAAS,UAAU,IAAI,OAAO,MAAM;AAClD,QAAM,MAAM,MAAM;AAClB,QAAM,cAAc,SAAS,UAAU,IAAI,QAAQ,MAAM;AACzD,QAAM,YAAY,YAAY;AAC9B,QAAM,eAAe,IAAI,WAAW,IAAI,WAAWA,QAAO,EAAE,MAAM;AAClE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,eAAa,KAAK,SAAS,OAAO,QAAQ,WAAW,WAAW,WAAW,WAAW,cAAc,KAAK;AACzG,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,UAAU,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAM,UAAU,IAAI;AAC5B,QAAM,aAAa,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AAC9D,QAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,QAAM,UAAU,EAAE,MAAM;AACxB,WAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,EAAE,IAAI;AAC9C,UAAMH,SAAQ,YAAY;AAC1B,iBAAa,OAAOA,UAAS,UAAU,KAAKA,UAAS,GAAG,MAAM,6BAA6BA,wBAAuB,UAAU,IAAI;AAAA,EAClI;AACA,QAAM,YAAY,qBAAqB,aAAa,yBAAyB,GAAG,SAAS,YAAY,SAAS;AAC9G,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,EAAE;AAAA,IACZ,OAAO;AAAA,MACL,OAAO;AAAA,QACL,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,MACZ;AAAA,IACF;AAAA,IACA,SAAS;AAAA,EACX,CAAC;AACD,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,eAAe,SAAS;AAAA,IAC5B,QAAQ,EAAE,GAAG,QAAQ;AAAA,IACrB,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,cAAc,UAAU,SAAS,EAAE;AAAA,IACzE,SAAS;AAAA,EACX,CAAC;AACD,QAAM,qBAAqB;AAAA,IACzB,UAAU;AAAA,IACV,UAAU;AAAA,IACV,cAAc,UAAU;AAAA,IACxB,UAAU;AAAA,EACZ;AACA,QAAM,MAAM,SAAS,WAAW,oBAAoB,EAAE,KAAK;AAC3D,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,WAAO;AAAA,EACT;AACA,QAAM,cAAc,SAAS,MAAM,SAAS;AAC5C,QAAM,QAAQ,SAAS,UAAU,IAAI,SAAS,MAAM;AACpD,QAAM,MAAM,MAAM;AAClB,QAAM,cAAc,SAAS,UAAU,IAAI,aAAa,MAAM;AAC9D,QAAM,YAAY,YAAY;AAC9B,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,SAAS,KAAK,CAAC,EAAE,MAAM;AACvG,QAAM,kBAAkB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,kBAAkB,CAAC,EAAE,MAAM;AAC7G,aAAW,KAAK,SAAS,EAAE,QAAQ,eAAe,aAAa,WAAW,UAAU,WAAW,iBAAiB,KAAK;AACrH,WAAS,YAAY,SAAS,MAAM;AACpC,WAAS,YAAY,aAAa,MAAM;AACxC,MAAI,QAAQ,UAAU;AACtB,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,yBAAyB;AAC7B,IAAI,iBAAiB,yBAAyB,SAAS,wBAAwB,MAAM;AAGrF,IAAI,yBAAyB;AAC7B,IAAI,sBAAsB,yBAAyB,cAAc,wBAAwB,MAAM;AAG/F,IAAI;AACJ,SAAS,WAAW,UAAU;AAC5B,cAAY,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAAa,OAAM,GAAG,SAAS,SAAS,IAAI;AAC/D,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,SAAS;AAClD,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,cAAU,KAAK,SAAS,EAAE,QAAQA,QAAO,KAAK;AAAA,EAChD;AACA,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,yBAAyB;AAC7B,IAAI,cAAc,yBAAyB,MAAM,wBAAwB,MAAM;AAG/E,IAAI,yBAAyB;AAC7B,IAAI,mBAAmB,yBAAyB,WAAW,wBAAwB,MAAM;AAGzF,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI,yBAAyB;AAC7B,IAAI,oBAAoB,yBAAyB,YAAY,wBAAwB,MAAM;AAG3F,IAAI,oBAAoB,wBAAwB,UAAU;AAG1D,IAAI,yBAAyB;AAC7B,IAAI,mBAAmB,yBAAyB,WAAW,wBAAwB,MAAM;AAGzF,IAAI,0BAA0B;AAC9B,IAAI,mBAAmB,yBAAyB,YAAY,yBAAyB,MAAM;AAG3F,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM;AAAA,IACvC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,kBAAkB,MAAM,SAAS,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,aAAS;AACT,cAAU;AAAA,EACZ;AACA,QAAM,YAAY,OAAO,MAAM;AAC/B,uBAAqB,2BAA2B,OAAO,MAAM,SAAS;AACtE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACjG,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,SAAS,EAAE,QAAQ,YAAY,KAAK;AAAA,EACvD;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,iBAAiB,yBAAyB,SAAS,uBAAuB;AAG9E,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,gBAAc,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,IAAI,OAAO;AACjB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,eAAa,OAAO,EAAE,UAAU,WAAW,MAAM,0DAA0D,EAAE,QAAQ;AACrH,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,GAAG,MAAM,eAAe;AAC9G,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,SAAS,SAAS,QAAQ;AAChC,QAAM,WAAW,SAAS,QAAQ;AAClC,QAAM,YAAY,SAAS,QAAQ;AACnC,QAAM,UAAU,SAAS,QAAQ;AACjC,QAAM,iBAAiB,SAAS;AAChC,QAAM,gBAAgB,SAAS;AAC/B,QAAM,eAAe,SAAS;AAC9B,QAAM,cAAc,SAAS;AAC7B,QAAM,gBAAgB,SAAS;AAC/B,QAAM,iBAAiB,SAAS;AAChC,MAAI,SAAS,eAAe,gBAAgB;AAC1C,UAAM,IAAI,MAAM,6CAA6C,SAAS,yCAAyC;AAAA,EACjH;AACA,QAAM,MAAM,SAAS,WAAW,SAAS,UAAU,SAAS;AAC5D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,cAAY,KAAK,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,EAAE,MAAM,IAAI,cAAc,aAAa,QAAQ,UAAU,WAAW,SAAS,gBAAgB,eAAe,cAAc,aAAa,eAAe,gBAAgB,KAAK;AACpN,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM,CAAC,wBAAwB,CAAC;AACvE;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,gBAAgB;AACpB,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AACV,sBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,OAAO,MAAM,MAAM;AAAA,IACjG;AAAA,EACF;AACA,uBAAqB,2BAA2B,QAAQ,eAAe,OAAO,MAAM,MAAM;AAC1F,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,aAAa;AAC1G,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,MAAI,cAAc;AAClB,MAAI,OAAO,UAAU,WAAW;AAC9B,kBAAc,MAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAC7F,cAAU,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AAAA,EACvD;AACA,QAAM,MAAM,SAAS,WAAW,UAAU,SAAS;AACnD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,aAAS,SAAS,YAAY,KAAK;AAAA,EACrC;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,MAAI,OAAO,UAAU,WAAW;AAC9B,aAAS,YAAY,YAAY,MAAM;AAAA,EACzC;AACA,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM;AAAA,IACvC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AAAA,IACZ;AAAA,EACF;AACA,QAAM,YAAY,OAAO,MAAM;AAC/B,uBAAqB,2BAA2B,OAAO,MAAM,SAAS;AACtE,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACjG,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,KAAK;AACtD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,SAAS,EAAE,QAAQ,YAAY,KAAK;AAAA,EACvD;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,iBAAiB,yBAAyB,SAAS,uBAAuB;AAG9E,IAAI;AAAA,CACH,SAAS,oBAAoB;AAC5B,qBAAmB,mBAAmB,aAAa,KAAK;AACxD,qBAAmB,mBAAmB,eAAe,KAAK;AAC5D,GAAG,sBAAsB,oBAAoB,CAAC,EAAE;AAChD,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,kBAAgB,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IACnD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,UAAU,KAAK,EAAE,IAAI;AACxE,QAAM,WAAW,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACrE,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,kBAAkB,SAAS,IAAI,CAAC,aAAa,SAAS,EAAE;AAC9D,QAAM,mBAAmB,SAAS,IAAI,CAAC,aAAa,SAAS,EAAE;AAC/D,QAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,eAAe,EAAE,MAAM;AAC9E,QAAM,oBAAoB,IAAI,WAAW,IAAI,WAAW,gBAAgB,EAAE,MAAM;AAChF,gBAAc,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,kBAAkB,mBAAmB,kBAAkB,OAAO,KAAK;AACtI,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI,0BAA0B;AAC9B,IAAI,kBAAkB,yBAAyB,UAAU,uBAAuB;AAGhF,IAAI,aAAa,wBAAwB,GAAG;AAG5C,SAAS,kBAAkB,UAAU,WAAW;AAC9C,QAAM,SAAS,IAAI,WAAW,SAAS,KAAK,OAAO,QAAQ,WAAW,CAAC;AACvE,QAAM,mBAAmB,OAAO;AAChC,QAAM,eAAe,OAAO;AAC5B,QAAM,kBAAkB,OAAO;AAC/B,QAAM,gBAAgB,OAAO;AAC7B,WAAS,KAAK,MAAM,SAAS;AAC7B,SAAO,EAAE,kBAAkB,cAAc,iBAAiB,cAAc;AAC1E;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK;AAAA,IACxB;AAAA,IACA;AAAA,IACA;AAAA,MACE;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,cAAc,eAAe,eAAe,IAAI;AACxD,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,UAAU,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACrD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,YAAY,UAAU,SAAS,UAAU,eAAe,cAAc,cAAc;AAC1F,QAAM,EAAE,kBAAkB,cAAc,iBAAiB,cAAc,IAAI,kBAAkB,UAAU,SAAS;AAChH,WAAS,KAAK,MAAM,eAAe;AACnC,WAAS,KAAK,MAAM,aAAa;AACjC,QAAM,wBAAwB,SAAS,WAAW,CAAC,YAAY,GAAG,SAAS,gBAAgB;AAC3F,SAAO;AACT;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX;AACF;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK;AAAA,IACxB;AAAA,IACA;AAAA,IACA;AAAA,MACE;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,cAAc,eAAe,gBAAgB,mBAAmB,IAAI;AAC5E,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,UAAU,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACrD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,YAAY,UAAU,SAAS,UAAU,eAAe,cAAc,gBAAgB,kBAAkB;AAC9G,QAAM,EAAE,kBAAkB,cAAc,iBAAiB,cAAc,IAAI,kBAAkB,UAAU,SAAS;AAChH,WAAS,KAAK,MAAM,eAAe;AACnC,QAAM,wBAAwB,SAAS,WAAW,CAAC,YAAY,GAAG,SAAS,gBAAgB;AAC3F,QAAM,qBAAqB,SAAS,WAAW,CAAC,GAAG,SAAS,aAAa;AACzE,SAAO,CAAC,uBAAuB,kBAAkB;AACnD;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK;AAAA,IACxB;AAAA,IACA;AAAA,IACA;AAAA,MACE;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AACA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,cAAc,eAAe,gBAAgB,aAAa,IAAI;AACtE,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,UAAU,SAAS,UAAU,IAAI,MAAM,MAAM,EAAE;AACrD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,YAAY,UAAU,SAAS,UAAU,eAAe,cAAc,gBAAgB,YAAY;AACxG,QAAM,EAAE,kBAAkB,cAAc,iBAAiB,cAAc,IAAI,kBAAkB,UAAU,SAAS;AAChH,WAAS,KAAK,MAAM,aAAa;AACjC,QAAM,wBAAwB,SAAS,WAAW,CAAC,YAAY,GAAG,SAAS,gBAAgB;AAC3F,QAAM,uBAAuB,SAAS,WAAW,CAAC,YAAY,GAAG,WAAW,eAAe;AAC3F,SAAO,CAAC,uBAAuB,oBAAoB;AACrD;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,kBAAkB,yBAAyB,UAAU,yBAAyB,MAAM;AAGxF,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,QAAQ,MAAM;AAAA,IAC7C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,QAAQ,IAAI;AACpB,QAAM,EAAE,OAAO,OAAO,SAAS,SAAS,IAAI;AAC5C,QAAM,MAAM,SAAS,WAAW,CAAC,GAAG,QAAQ,OAAO,KAAK,GAAG,KAAK;AAChE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,cAAc,SAAS,UAAU,IAAI,QAAQ,MAAM;AACzD,QAAM,YAAY,YAAY;AAC9B,aAAW,WAAW,OAAO,SAAS,UAAU,KAAK;AACrD,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,IAAI;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,KAAK,CAAC;AACd,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,YAAY,EAAE,QAAQ,EAAE,OAAO,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAAA,EAC9F;AACA,QAAM,QAAQ,OAAO,GAAG;AACxB,QAAM,QAAQ,OAAO,GAAG;AACxB,SAAO,QAAQ,CAAC,OAAO;AACrB,iBAAa,kBAAkB,OAAO,GAAG,OAAO,uDAAuD;AACvG,iBAAa,OAAO,UAAU,GAAG,OAAO,MAAM,uDAAuD;AAAA,EACvG,CAAC;AACD,QAAM,0BAA0B,CAAC;AACjC,QAAM,kBAAkB,OAAO,IAAI,CAAC,OAAO;AACzC,UAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAChG,4BAAwB,KAAK,SAAS;AACtC,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACtF,0BAAwB,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACvE,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK,MAAM,OAAO,MAAM;AAAA,IAC3C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,UAAU,cAAc,EAAE,IAAI;AACjF,QAAM,WAAW,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACrE,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,WAAO,MAAM;AAAA,MACX,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,UAAU,OAAO,eAAe,OAAO,EAAE,MAAM;AAAA,IACjE,CAAC;AAAA,EACH;AACA,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,QAAM,gBAAgB,SAAS,UAAU,IAAI,IAAI,MAAM;AACvD,QAAM,QAAQ,cAAc;AAC5B,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,kBAAkB,SAAS,IAAI,CAAC,aAAa,SAAS,EAAE;AAC9D,QAAM,mBAAmB,SAAS,IAAI,CAAC,aAAa,SAAS,EAAE;AAC/D,QAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,eAAe,EAAE,MAAM;AAC9E,QAAM,oBAAoB,IAAI,WAAW,IAAI,WAAW,gBAAgB,EAAE,MAAM;AAChF,YAAU,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,kBAAkB,mBAAmB,eAAe,KAAK;AACxH,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI,0BAA0B;AAC9B,IAAI,aAAa,yBAAyB,KAAK,uBAAuB;AAGtE,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK,MAAM,OAAO,MAAM;AAAA,IAC3C;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,OAAAU,OAAM,IAAI;AACrB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,YAAY,SAAS,UAAU,IAAIA,OAAM,MAAM,EAAE;AACvD,MAAI,UAAU;AACd,QAAM,SAAS;AACf,MAAI,cAAc;AAClB,MAAI,OAAO,UAAU,WAAW;AAC9B,kBAAc,MAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AACrF,cAAU,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AAAA,EACvD;AACA,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,SAAS;AAClD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAU,SAAS,WAAW,KAAK;AACnC,MAAI,OAAO,UAAU,WAAW;AAC9B,aAAS,YAAY,YAAY,MAAM;AAAA,EACzC;AACA,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,gBAAgB;AACpB,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AACV,sBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,OAAO,MAAM,MAAM;AAAA,IACjG;AAAA,EACF;AACA,uBAAqB,2BAA2B,QAAQ,eAAe,OAAO,MAAM,MAAM;AAC1F,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,aAAa;AAC1G,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,KAAK;AACtD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,aAAS,SAAS,YAAY,SAAS,IAAI,QAAQ,KAAK;AAAA,EAC1D;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,MAAM,OAAO,MAAM,IAAI;AAC5C,QAAM,SAAS,UAAU,OAAO,MAAM,OAAO,KAAK;AAClD,QAAM,MAAM,SAAS,WAAW,CAAC,OAAO,MAAM,GAAG,KAAK;AACtD,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,IAAI,MAAM;AAClB,SAAO;AACT;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,iBAAiB,yBAAyB,SAAS,uBAAuB;AAG9E,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI,eAAe,wBAAwB,KAAK;AAGhD,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,uBAAqB,SAAS,KAAK,MAAM,gBAAgB,MAAM;AAAA,IAC7D;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAvB,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,CAAC,OAAO,WAAW,UAAU,WAAW,IAAI,OAAO;AACzD,QAAM,WAAW,CAAC,OAAO,WAAW,UAAU,WAAW;AACzD,MAAI,QAAQ,SAAS,UAAU,IAAI,OAAO,MAAM;AAChD,MAAI;AACJ,MAAI,MAAM,UAAU,WAAW;AAC7B,iBAAa,MAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AAC5F,YAAQ,SAAS,UAAU,IAAI,WAAW,MAAM;AAAA,EAClD;AACA,QAAM,MAAM,MAAM;AAClB,QAAM,MAAM,SAAS,WAAW,UAAU,SAAS;AACnD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,WAAO;AAAA,EACT;AACA,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,qBAAmB,KAAK,OAAO,WAAW,UAAU,aAAa,WAAW,UAAU,eAAe,IAAI,GAAG,mBAAmB,IAAI,GAAG,KAAK;AAC3I,MAAI,cAAc,MAAM;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,8BAA4B,SAAS,KAAK,MAAM,uBAAuB,MAAM;AAAA,IAC3E;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAA,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,CAAC,OAAO,WAAW,UAAU,WAAW,IAAI,OAAO;AACzD,QAAM,WAAW,CAAC,OAAO,WAAW,UAAU,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,SAAS;AACnD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,WAAO;AAAA,EACT;AACA,MAAI,QAAQ,SAAS,UAAU,IAAI,OAAO,MAAM;AAChD,MAAI;AACJ,MAAI,MAAM,UAAU,WAAW;AAC7B,iBAAa,MAAM;AAAA,MACjB,SAAS;AAAA,MACT,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,OAAO,EAAE,OAAO,UAAU;AAAA,IAC5B,CAAC;AACD,YAAQ,SAAS,UAAU,IAAI,WAAW,MAAM;AAAA,EAClD;AACA,QAAM,MAAM,MAAM;AAClB,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,4BAA0B,KAAK,OAAO,WAAW,UAAU,aAAa,WAAW,UAAU,eAAe,IAAI,GAAG,mBAAmB,IAAI,GAAG,KAAK;AAClJ,MAAI,cAAc,MAAM;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,gBAAc,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACtD,MAAI,EAAE,MAAM,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,YAAY,IAAI,WAAW,IAAI,WAAW,IAAI,EAAE,MAAM;AAC5D,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACnE,cAAY,KAAK,WAAW,KAAK,QAAQ,eAAe,EAAE,MAAM,QAAQ,KAAK;AAC7E,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,OAAO,EAAE,OAAO,EAAE,MAAM,GAAG,SAAS,SAAS,CAAC;AAC9F,WAAS,YAAY,IAAI,MAAM;AAC/B,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,kBAAkB,MAAM;AAAA,IACvD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,kBAAkB,MAAM;AAC/B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,SAAS,WAAW,OAAO,IAAI;AACvC,QAAM,MAAM,SAAS,WAAW,OAAO,OAAO,OAAO,KAAK;AAC1D,QAAM,UAAU,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACtD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,SAAS,OAAO,IAAI,qBAAqB,eAAe,QAAQ,aAAa,UAAU;AAC9F,QAAM,cAAc,cAAc;AAClC,QAAM,mBAAmB;AACzB,QAAM,cAAc,OAAO,cAAc,WAAW,CAAC,WAAW,WAAW,WAAW,cAAc,IAAI,gBAAgB,IAAI,CAAC,GAAG,WAAW,gBAAgB;AAC3J,QAAM,YAAY,IAAI,WAAW,IAAI,WAAW,WAAW,EAAE,MAAM;AACnE,aAAW,SAAS,OAAO,aAAa,YAAY,aAAa,SAAS,SAAS,SAAS,WAAW,YAAY,QAAQ,KAAK;AAChI,SAAO;AACT;AACA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI,eAAe,wBAAwB,KAAK;AAGhD,IAAI,eAAe,wBAAwB,KAAK;AAGhD,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,kBAAgB,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IACnD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,QAAQ,IAAI;AAC7B,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,MAAM,SAAS,WAAW,OAAO,QAAQ,KAAK;AACpD,MAAI,aAAa,cAAc,KAAK,MAAM,GAAG;AAC3C,WAAO;AAAA,EACT;AACA,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAa,UAAS,YAAAQ,YAAW,IAAI,wBAAwB,gBAAgB,SAAS,SAAS,KAAK;AACjI,QAAM,cAAc,SAAS,UAAU,IAAI,QAAQ,MAAM;AACzD,QAAM,YAAY,YAAY;AAC9B,QAAM,cAAc,SAAS,UAAU,IAAI,QAAQ,MAAM;AACzD,QAAM,YAAY,YAAY;AAC9B,QAAM,eAAe,IAAI,WAAW,IAAI,WAAWR,QAAO,EAAE,MAAM;AAClE,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,gBAAc,WAAW,WAAW,SAAS,QAAQ,QAAQ,WAAW,YAAY,WAAW,cAAcQ,aAAY,KAAK;AAC9H,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,eAAa,SAAS,KAAK,MAAM,YAAY,MAAM;AAAA,IACjD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,WAAW,GAAG,IAAI,GAAG,GAAG,IAAI;AACpC,QAAM,cAAc,SAAS,UAAU,IAAI,UAAU,MAAM,EAAE;AAC7D,QAAM,MAAM,SAAS,UAAU,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,MAAM,SAAS,UAAU,IAAI,GAAG,MAAM,EAAE;AAC9C,QAAM,MAAM,SAAS,WAAW,GAAG,OAAO,GAAG,KAAK;AAClD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,QAAQ,UAAU,MAAM;AAC9B,QAAM,QAAQ,GAAG,MAAM;AACvB,QAAM,SAAS,UAAU,KAAK,QAAQ,KAAK,UAAU,IAAI,IAAI,aAAa,cAAc,GAAG,MAAM,MAAM,CAAC,CAAC;AACzG,aAAW,aAAa,KAAK,KAAK,QAAQ,KAAK;AAC/C,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AAAA,EACZ,WAAW;AACb;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK,MAAM,SAAS,MAAM,CAAC,UAAU,QAAQ,CAAC;AACrE;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,EAAE,EAAE,IAAI;AAC7C,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,MAAI,aAAa,cAAc,IAAI,KAAK,MAAM,GAAG;AAC/C,WAAO;AAAA,EACT;AACA,YAAU,KAAK,KAAK;AACpB,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,cAAY,SAAS,KAAK,MAAM,SAAS,MAAM;AAAA,IAC7C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,SAAS,UAAU,QAAQ,EAAE,OAAO,GAAG,OAAO,EAAE,IAAI,EAAE,IAAI;AAClE,QAAM,MAAM,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AAClD,QAAM,MAAM,SAAS,WAAW,OAAO,OAAO,OAAO,KAAK;AAC1D,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,WAAW,OAAO,MAAM;AAC9B,QAAM,QAAQ,aAAa,cAAc,OAAO,KAAK,IAAI;AACzD,MAAI,aAAa,cAAc,IAAI,KAAK,MAAM,GAAG;AAC/C,WAAO;AAAA,EACT;AACA,YAAU,KAAK,OAAO,UAAU,KAAK;AACrC,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAS,IAAI;AACjC,QAAM,QAAQ,aAAa,cAAc,UAAU;AACnD,QAAM,mBAAmB,CAAC,CAAC,GAAG,CAAC,CAAC;AAChC,mBAAiB,KAAK,GAAG,QAAQ;AACjC,WAAS,KAAK,IAAI,WAAW,QAAQ,KAAK,EAAE,MAAM,QAAQ,EAAE,IAAI;AAC9D,qBAAiB,KAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAC9B;AACA,QAAM,UAAU,aAAa,WAAW;AAAA,IACtC,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO,EAAE,UAAU,kBAAkB,eAAe,EAAE;AAAA,EACxD,CAAC;AACD,QAAM,sBAAsB,qBAAqB,YAAY,QAAQ,OAAO,YAAY,OAAO,KAAK;AACpG,QAAM,oCAAoC,qBAAqB,YAAY,oBAAoB,QAAQ,WAAW,QAAQ,KAAK;AAC/H,QAAM,eAAe,qBAAqB,oBAAoB,QAAQ,OAAO,YAAY,OAAO,KAAK;AACrG,QAAM,gBAAgB,EAAE,GAAG,QAAQ;AACnC,QAAM,eAAe,EAAE,OAAO,oBAAoB;AAClD,QAAM,kBAAkB,SAAS,EAAE,QAAQ,eAAe,SAAS,UAAU,OAAO,aAAa,CAAC;AAClG,QAAM,kBAAkB,EAAE,GAAG,gBAAgB;AAC7C,QAAM,iBAAiB,EAAE,MAAM,kCAAkC;AACjE,QAAM,WAAW,WAAW,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,eAAe,CAAC;AACjG,QAAM,sBAAsB,EAAE,GAAG,SAAS;AAC1C,QAAM,qBAAqB,EAAE,OAAO,aAAa;AACjD,QAAM,SAAS,SAAS,EAAE,QAAQ,qBAAqB,SAAS,UAAU,OAAO,mBAAmB,CAAC;AACrG,WAAS,YAAY,QAAQ,MAAM;AACnC,WAAS,YAAY,gBAAgB,MAAM;AAC3C,WAAS,YAAY,SAAS,MAAM;AACpC,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,4BAA0B,SAAS,KAAK,MAAM,uBAAuB,UAAU;AAAA,IAC7E;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,QAAM,EAAE,SAAS,QAAQ,YAAY,aAAa,IAAI;AACtD,QAAM,eAAe,QAAQ,MAAM;AACnC,QAAM,OAAO,QAAQ,MAAM;AAC3B,QAAM,YAAY,SAAS,SAAS,WAAW,MAAM,EAAE;AACvD,QAAM,wBAAwB,CAAC,eAAe,WAAW,IAAI;AAC7D,QAAM,YAAY,SAAS,UAAU,IAAI,QAAQ,MAAM,EAAE;AACzD,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,iBAAiB,SAAS,UAAU,IAAI,aAAa,MAAM,EAAE;AACnE,QAAM,gBAAgB,SAAS,WAAW,uBAAuB,QAAQ,KAAK;AAC9E,QAAM,kBAAkB,SAAS,UAAU,IAAI,cAAc,MAAM,EAAE;AACrE,QAAM,eAAe,SAAS,WAAW,sBAAsB,MAAM,GAAG,CAAC,GAAG,OAAO,KAAK;AACxF,QAAM,iBAAiB,SAAS,UAAU,IAAI,aAAa,MAAM,EAAE;AACnE,QAAM,oBAAoB,SAAS,WAAW,CAAC,SAAS,GAAG,MAAM;AACjE,QAAM,sBAAsB,SAAS,UAAU,IAAI,kBAAkB,MAAM,EAAE;AAC7E,QAAM,kBAAkB,SAAS,WAAW,CAAC,YAAY,GAAG,QAAQ,KAAK;AACzE,QAAM,oBAAoB,SAAS,UAAU,IAAI,gBAAgB,MAAM,EAAE;AACzE,QAAM,kBAAkB,SAAS,WAAW,CAAC,CAAC,GAAG,OAAO;AACxD,QAAM,oBAAoB,SAAS,UAAU,IAAI,gBAAgB,MAAM,EAAE;AACzE,QAAM,aAAa,wBAAwB,WAAW,UAAU,SAAS,OAAO,QAAQ,cAAc,WAAW,MAAM,gBAAgB,iBAAiB,gBAAgB,qBAAqB,mBAAmB,iBAAiB;AACjO,QAAM,uBAAuB,SAAS,SAAS,gBAAgB,MAAM;AACrE,MAAI;AACJ,UAAQ,qBAAqB;AAAA,SACtB,GAAG;AACN,yBAAmB,qBAAqB,gDAAgD,qBAAqB,EAAE;AAC/G;AAAA,IACF;AAAA,SACK,GAAG;AACN,yBAAmB,qBAAqB,gDAAgD,qBAAqB,IAAI,qBAAqB,EAAE;AACxI;AAAA,IACF;AAAA,SACK;AACH,yBAAmB,qBAAqB,kDAAkD,qBAAqB,IAAI,qBAAqB,IAAI,qBAAqB,EAAE;AACnK;AAAA;AAEA,yBAAmB;AAAA;AAEvB,WAAS,YAAY,gBAAgB,MAAM;AAC3C,MAAI,kBAAkB;AACpB,aAAS,YAAY,cAAc,MAAM;AACzC,aAAS,YAAY,aAAa,MAAM;AACxC,aAAS,YAAY,kBAAkB,MAAM;AAC7C,aAAS,YAAY,gBAAgB,MAAM;AAC3C,UAAM,IAAI,MAAM,gBAAgB;AAAA,EAClC;AACA,MAAI,iBAAiB;AACrB,MAAI,gBAAgB;AACpB,MAAI,eAAe,sBAAsB,IAAI;AAC3C,qBAAiB,OAAO;AAAA,MACtB,QAAQ,EAAE,GAAG,cAAc;AAAA,MAC3B,OAAO,EAAE,OAAO,GAAG,MAAM,CAAC,YAAY,IAAI,EAAE;AAAA,MAC5C,SAAS;AAAA,IACX,CAAC;AACD,oBAAgB,OAAO;AAAA,MACrB,QAAQ,EAAE,GAAG,aAAa;AAAA,MAC1B,OAAO,EAAE,OAAO,GAAG,MAAM,WAAW;AAAA,MACpC,SAAS;AAAA,IACX,CAAC;AACD,aAAS,YAAY,cAAc,MAAM;AACzC,aAAS,YAAY,aAAa,MAAM;AAAA,EAC1C;AACA,SAAO,CAAC,gBAAgB,eAAe,mBAAmB,eAAe;AAC3E;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,sBAAoB,SAAS,KAAK,MAAM,eAAe,MAAM;AAAA,IAC3D;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,QAAM,EAAE,cAAc,YAAY,SAAS,IAAI;AAC/C,MAAI,aAAa,MAAM,WAAW,GAAG;AACnC,UAAM,IAAI,MAAM;AAAA,UACV,aAAa,OAAO;AAAA,EAC5B;AACA,MAAI,WAAW,MAAM,WAAW,GAAG;AACjC,UAAM,IAAI,MAAM;AAAA,UACV,WAAW,OAAO;AAAA,EAC1B;AACA,MAAI,SAAS,MAAM,WAAW,GAAG;AAC/B,UAAM,IAAI,MAAM,sDAAsD,SAAS,OAAO;AAAA,EACxF;AACA,QAAM,iBAAiB,SAAS,UAAU,IAAI,aAAa,MAAM,EAAE;AACnE,QAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAM,aAAa,SAAS,UAAU,IAAI,SAAS,MAAM,EAAE;AAC3D,QAAM,MAAM,aAAa,MAAM;AAC/B,QAAM,aAAa,aAAa,cAAc,SAAS,KAAK;AAC5D,QAAM,aAAa,SAAS,WAAW,CAAC,KAAK,UAAU,GAAG,aAAa,KAAK;AAC5E,QAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAM,cAAc,SAAS,WAAW,CAAC,UAAU,GAAG,SAAS,KAAK;AACpE,QAAM,gBAAgB,SAAS,UAAU,IAAI,YAAY,MAAM,EAAE;AACjE,QAAM,kBAAkB,SAAS,WAAW,CAAC,CAAC,GAAG,OAAO;AACxD,QAAM,oBAAoB,SAAS,UAAU,IAAI,gBAAgB,MAAM,EAAE;AACzE,oBAAkB,gBAAgB,cAAc,YAAY,KAAK,cAAc,eAAe,iBAAiB;AAC/G,QAAM,uBAAuB,SAAS,SAAS,gBAAgB,MAAM;AACrE,MAAI;AACJ,UAAQ,qBAAqB;AAAA,SACtB,GAAG;AACN,yBAAmB,qBAAqB,yDAAyD,qBAAqB,IAAI,qBAAqB,EAAE;AACjJ;AAAA,IACF;AAAA,SACK,GAAG;AACN,yBAAmB,qBAAqB,8CAA8C,qBAAqB,IAAI,qBAAqB,EAAE;AACtI;AAAA,IACF;AAAA,SACK;AACH,yBAAmB,qBAAqB,qDAAqD;AAC7F;AAAA,SACG,GAAG;AACN,YAAM,mBAAmB,MAAM,KAAK,SAAS,SAAS,WAAW,MAAM,CAAC,GAAG,oBAAoB,MAAM,KAAK,SAAS,SAAS,YAAY,MAAM,CAAC;AAC/I,yBAAmB,qBAAqB,gDAAgD,kBAAkB,iBAAiB;AAC3H;AAAA,IACF;AAAA,SACK,GAAG;AACN,YAAM,mBAAmB,MAAM,KAAK,SAAS,SAAS,WAAW,MAAM,CAAC,GAAG,oBAAoB,MAAM,KAAK,SAAS,SAAS,YAAY,MAAM,CAAC;AAC/I,yBAAmB,qBAAqB,gDAAgD,kBAAkB,iBAAiB;AAC3H;AAAA,IACF;AAAA;AAEE,yBAAmB;AAAA;AAEvB,WAAS,YAAY,gBAAgB,MAAM;AAC3C,MAAI,kBAAkB;AACpB,aAAS,YAAY,WAAW,MAAM;AACtC,aAAS,YAAY,YAAY,MAAM;AACvC,UAAM,IAAI,MAAM,gBAAgB;AAAA,EAClC;AACA,SAAO,CAAC,YAAY,WAAW;AACjC;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,+BAA6B,SAAS,KAAK,MAAM,0BAA0B,MAAM;AAAA,IAC/E;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,uBAAuB,MAAM,QAAQ;AAC5C,QAAM,EAAE,SAAS,UAAU,OAAO,IAAI;AACtC,QAAM,EAAE,MAAM,SAAS,WAAW,IAAI;AACtC,QAAM,aAAa,QAAQ,MAAM;AACjC,QAAM,iBAAiB,SAAS,SAAS,WAAW,QAAQ,aAAa,GAAG,UAAU,EAAE;AACxF,QAAM,uBAAuB,aAAa,IAAI,iBAAiB,IAAI;AACnE,QAAM,aAAa;AACnB,MAAI,aAAa,GAAG;AAClB,UAAM,IAAI,MAAM,qBAAqB,wDAAwD,CAAC;AAAA,EAChG;AACA,QAAM,cAAc,KAAK,MAAM,MAAM;AACrC,cAAY,KAAK;AACjB,QAAM,SAAS,SAAS,UAAU,IAAI,KAAK,MAAM,EAAE;AACnD,QAAM,YAAY,SAAS,UAAU,IAAI,QAAQ,MAAM,EAAE;AACzD,QAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAM,SAAS,SAAS,WAAW,aAAa,KAAK,KAAK;AAC1D,QAAM,WAAW,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACvD,QAAM,kBAAkB,SAAS,WAAW,CAAC,CAAC,GAAG,OAAO;AACxD,QAAM,oBAAoB,SAAS,UAAU,IAAI,gBAAgB,MAAM,EAAE;AACzE,6BAA2B,QAAQ,SAAS,KAAK,QAAQ,KAAK,MAAM,IAAI,WAAW,cAAc,UAAU,mBAAmB,QAAQ,CAAC;AACvI,QAAM,uBAAuB,SAAS,SAAS,gBAAgB,MAAM;AACrE,MAAI;AACJ,UAAQ,qBAAqB;AAAA,SACtB,GAAG;AACN,yBAAmB,qBAAqB,wDAAwD;AAChG;AAAA,IACF;AAAA,SACK,GAAG;AACN,yBAAmB,qBAAqB,6DAA6D;AACrG;AAAA,IACF;AAAA,SACK;AACH,yBAAmB,qBAAqB,yDAAyD,qBAAqB,IAAI,qBAAqB,EAAE;AACjJ;AAAA,SACG;AACH,yBAAmB,qBAAqB,uDAAuD,qBAAqB,IAAI,qBAAqB,IAAI,qBAAqB,EAAE;AACxK;AAAA;AAEA,yBAAmB;AAAA;AAEvB,WAAS,YAAY,gBAAgB,MAAM;AAC3C,MAAI,kBAAkB;AACpB,aAAS,YAAY,OAAO,MAAM;AAClC,UAAM,IAAI,MAAM,gBAAgB;AAAA,EAClC;AACA,SAAO;AACT;AAGA,SAAS,mBAAmB,MAAM;AAChC,SAAO,uBAAuB,MAAM,IAAI;AAC1C;AACA,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,kBAAkB,MAAM;AAC/B,SAAO,uBAAuB,MAAM,KAAK;AAC3C;AACA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,iBAAiB,KAAK,IAAI;AAClC,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACzD,QAAM,aAAa,qBAAqB,iBAAiB,GAAG,iBAAiB,KAAK;AAClF,QAAM,QAAQ,IAAI,MAAM,EAAE,MAAM,MAAM,EAAE,KAAK,CAAC;AAC9C,QAAMrB,QAAO,EAAE,MAAM,MAAM;AAC3B,SAAO,WAAW,IAAI,CAAC,OAAO;AAC5B,UAAM,aAAa,CAAC,GAAGA,KAAI;AAC3B,eAAW,SAAS;AACpB,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,MAAM,WAAW,GAAG,SAAS,SAAS,CAAC;AAC9F,UAAM,UAAU;AAChB,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI,gBAAgB,wBAAwB,MAAM;AAGlD,IAAI,0BAA0B;AAC9B,IAAI,2BAA2B,yBAAyB,mBAAmB,uBAAuB;AAGlG,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAAuB,OAAM,IAAI;AAClB,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,WAAS,KAAKA,QAAO,SAAS,EAAE,QAAQ,KAAK;AAC7C,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,qBAAmB,SAAS,KAAK,MAAM,cAAc,MAAM;AAAA,IACzD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,KAAK,SAAAV,UAAS,WAAW,SAAS,cAAc,aAAa,eAAe,IAAI;AAC/F,QAAM,EAAE,kBAAkB,YAAY,YAAY,WAAW,eAAe,OAAO,QAAQ,KAAK,MAAM,SAAS,SAAS,IAAI,mBAAmB,UAAU,EAAE,OAAO,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AACpP,MAAI;AACJ,MAAI,YAAY;AACd,aAAS,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAAA,EACtF,WAAW,aAAa,eAAe;AACrC,iBAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,yCAAyC,EAAE,MAAM,QAAQ;AACxG,UAAMb,QAAO,mBAAmB,gBAAgB,QAAQ,MAAM,QAAQ;AACtE,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,MAAAA,MAAK,EAAE,CAAC;AAC1F,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC5F,aAAS,YAAY,OAAO,MAAM;AAAA,EACpC,OAAO;AACL,UAAM,MAAM,SAAS,WAAW,kBAAkB,SAAS;AAC3D,UAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,UAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,EAAE,KAAK,CAAC,EAAE,MAAM;AAChG,UAAM,aAAa,IAAI,WAAW,IAAI,WAAW,MAAM,EAAE,MAAM;AAC/D,UAAM,WAAW,IAAI,WAAW,IAAI,WAAW,IAAI,EAAE,MAAM;AAC3D,UAAM,eAAe,IAAI,WAAW,IAAI,WAAW,QAAQ,EAAE,MAAM;AACnE,UAAM,mBAAmB,IAAI,WAAW,IAAI,WAAW,gBAAgB,EAAE,MAAM;AAC/E,UAAM,kBAAkB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,gBAAgB,CAAC,EAAE,MAAM;AAC3G,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,qBAAiB,KAAK,eAAe,EAAE,MAAM,QAAQ,YAAY,UAAU,cAAc,kBAAkB,iBAAiB,iBAAiB,QAAQ,KAAK;AAC1J,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AACzF,aAAS,YAAY,IAAI,MAAM;AAAA,EACjC;AACA,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,WAAW,IAAI;AAC7B,QAAM,EAAE,WAAW,aAAa,SAAS,UAAU,WAAW,UAAU,uBAAuB,IAAI;AACnG,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,QAAQ,YAAY,IAAI,iBAAiB,OAAO,aAAa,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB;AAChJ,QAAM,YAAY,SAAS,WAAW,CAAC,OAAO,MAAM,GAAG,QAAQ;AAC/D,QAAM,gBAAgB,SAAS,UAAU,IAAI,UAAU,MAAM;AAC7D,gBAAc,cAAc;AAC5B,QAAM,kBAAkB,SAAS,WAAW,WAAW,OAAO,OAAO;AACrE,QAAM,sBAAsB,SAAS,mBAAmB,eAAe;AACvE,sBAAoB,IAAI,YAAY;AACpC,SAAO,CAAC,WAAW,eAAe;AACpC;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,UAAU,IAAI;AACrC,QAAM,EAAE,UAAU,IAAI;AACtB,QAAM,YAAY,SAAS,SAAS,OAAO,MAAM;AACjD,QAAM,gBAAgB,SAAS,SAAS,UAAU,MAAM;AACxD,QAAM,CAAC,SAAS,QAAQ,KAAK,IAAI,gBAAgB,WAAW,cAAc,IAAI,SAAS;AACvF,QAAMqB,cAAa,OAAO;AAC1B,QAAM,aAAa,SAAS,WAAW,CAACA,aAAY,CAAC,GAAG,OAAO;AAC/D,QAAM,iBAAiB,SAAS,mBAAmB,UAAU;AAC7D,iBAAe,IAAI,OAAO;AAC1B,QAAM,YAAY,SAAS,WAAW,CAACA,WAAU,GAAG,QAAQ;AAC5D,QAAM,gBAAgB,SAAS,UAAU,IAAI,UAAU,MAAM;AAC7D,gBAAc,cAAc;AAC5B,QAAM,WAAW,SAAS,WAAW,CAAC,CAAC,GAAG,OAAO;AACjD,QAAM,eAAe,SAAS,mBAAmB,QAAQ;AACzD,eAAa,IAAI,KAAK;AACtB,SAAO,CAAC,YAAY,WAAW,QAAQ;AACzC;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,wBAAwB,MAAM;AACrC,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,WAAW,IAAI;AACvB,QAAM,YAAY,SAAS,SAAS,OAAO,MAAM;AACjD,QAAM,SAAS,2BAA2B,WAAW,UAAU;AAC/D,QAAM,MAAM,SAAS,WAAW,OAAO,OAAO,OAAO;AACrD,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,IAAI,MAAM;AAClB,SAAO;AACT;AACA,IAAI,gCAAgC;AAAA,EAClC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,0BAA0B;AAC9B,IAAI,aAAa,yBAAyB,KAAK,uBAAuB;AAGtE,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,YAAU,SAAS,KAAK,MAAM,KAAK,MAAM;AAAA,IACvC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,MAAI,UAAU;AACd,MAAI,SAAS;AACb,QAAM,EAAE,YAAY,MAAM,cAAc,mBAAmB,IAAI,wBAAwB,GAAG,MAAM,QAAQ;AACxG,MAAI,gBAAgB;AACpB,MAAI,oBAAoB;AACtB,UAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,QAAI,iBAAiB,KAAK;AACxB,eAAS;AACT,gBAAU;AACV,sBAAgB,qBAAqB,iBAAiB,cAAc,QAAQ,OAAO,MAAM,MAAM;AAAA,IACjG;AAAA,EACF;AACA,uBAAqB,2BAA2B,OAAO,eAAe,OAAO,MAAM,MAAM;AACzF,QAAM,CAAC,UAAU,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,aAAa;AAC1G,QAAM,aAAa,aAAa,cAAc,WAAW;AACzD,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,KAAK;AACtD,MAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,UAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,YAAQ,SAAS,YAAY,SAAS,IAAI,QAAQ,KAAK;AAAA,EACzD;AACA,MAAI,oBAAoB;AACtB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,UAAU;AACZ,UAAM,WAAW,qBAAqB,qBAAqB,IAAI,OAAO,YAAY;AAClF,QAAI,QAAQ;AAAA,EACd;AACA,SAAO;AACT;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI,aAAa,wBAAwB,GAAG;AAG5C,IAAI,cAAc,wBAAwB,IAAI;AAG9C,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,WAAW,IAAI,MAAM,EAAE,MAAM,MAAM;AACzC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,EAAE,MAAM,MAAM,KAAK;AAAA,EACpC;AACA,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,QAAQ,EAAE,MAAM;AACpE,QAAM,MAAM,SAAS,WAAW,UAAU,EAAE,KAAK;AACjD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,WAAS,KAAK,aAAa,EAAE,MAAM,QAAQ,eAAe,SAAS,QAAQ,SAAS,IAAI,QAAQ,KAAK;AACrG,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,aAAW,SAAS,KAAK,MAAM,MAAM,MAAM;AAAA,IACzC;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,IAAI,QAAQ,CAAC,EAAE,QAAQ,SAAS,UAAU,MAAM,MAAM;AACpD,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,MAAM,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAC7C,QAAM,cAAc,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM;AACjE,QAAM,cAAc,EAAE,MAAM,MAAM;AAClC,cAAY,YAAY,SAAS,KAAK;AACtC,QAAM,YAAY,SAAS,WAAW,aAAa,EAAE,KAAK;AAC1D,QAAM,cAAc,SAAS,UAAU,IAAI,UAAU,MAAM,EAAE;AAC7D,QAAM,aAAa,SAAS,WAAW,aAAa,OAAO;AAC3D,QAAM,eAAe,SAAS,UAAU,IAAI,WAAW,MAAM,EAAE;AAC/D,WAAS,KAAK,aAAa,EAAE,MAAM,QAAQ,SAAS,EAAE,QAAQ,GAAG,QAAQ,aAAa,YAAY;AAClG,SAAO,CAAC,WAAW,UAAU;AAC/B;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,IAAI;AACJ,SAAS,QAAQ,UAAU;AACzB,kBAAgB,SAAS,KAAK,MAAM,WAAW,MAAM;AAAA,IACnD;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC;AACH;AACA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,SAAS,UAAU,QAAQ,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,WAAW,IAAI;AACtC,QAAM,EAAE,eAAe,UAAU,WAAW,YAAY,IAAI;AAC5D,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,WAAW,QAAQ,IAAI,eAAe,OAAO,cAAc,CAAC,aAAa,UAAU;AAC1F,QAAM,WAAW;AAAA,IACf;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,QAAM,eAAe,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,OAAO,KAAK,CAAC,EAAE,MAAM;AACpG,QAAM,gBAAgB,IAAI,WAAW,IAAI,WAAW,aAAa,eAAe,QAAQ,CAAC,EAAE,MAAM;AACjG,QAAM,MAAM,SAAS,WAAW,UAAU,OAAO,KAAK;AACtD,QAAM,QAAQ,SAAS,UAAU,IAAI,IAAI,MAAM,EAAE;AACjD,QAAM,YAAY,SAAS,UAAU,IAAI,OAAO,MAAM;AACtD,QAAM,UAAU,UAAU;AAC1B,QAAM,iBAAiB,SAAS,UAAU,IAAI,WAAW,MAAM;AAC/D,QAAM,eAAe,eAAe;AACpC,QAAM,sBAAsB,kBAAkB,YAAY,IAAI;AAC9D,MAAI;AACJ,UAAQ;AAAA,SACD;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA;AAEA,mBAAa;AACb;AAAA;AAEJ,gBAAc,SAAS,cAAc,WAAW,MAAM,KAAK,GAAG,OAAO,WAAW,UAAU,aAAa,YAAY,aAAa,cAAc,OAAO,MAAM,SAAS,GAAG,eAAe,SAAS,SAAS,GAAG,qBAAqB,YAAY,WAAW,KAAK;AAC5P,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,WAAW;AAAA,EACX,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,EAAE,KAAK,IAAI;AACf,MAAI,OAAO,GAAG;AACZ,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,aAAa,MAAM,MAAM;AAC/B,QAAM,OAAO,MAAM,MAAM;AACzB,QAAM,WAAW,IAAI,MAAM,OAAO,CAAC;AACnC,MAAI,WAAW;AACf,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,QAAI,OAAO,MAAM;AACf,eAAS,cAAc,MAAM,MAAM;AAAA,IACrC;AAAA,EACF;AACA,QAAM,OAAO,IAAI,MAAM,UAAU;AACjC,QAAM,QAAQ,IAAI,MAAM,IAAI,EAAE,KAAK,CAAC;AACpC,QAAMrB,QAAO,MAAM,MAAM,MAAM;AAC/B,EAAAA,MAAK,QAAQ;AACb,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAM,QAAQ;AACd,SAAK,MAAM,OAAO,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,OAAO,EAAE,OAAO,MAAAA,MAAK,GAAG,SAAS,SAAS,CAAC;AAAA,EACvF;AACA,SAAO,KAAK,IAAI,CAAC,EAAE,QAAQ,MAAM,OAAO,EAAE,QAAQ,OAAO,OAAO,SAAS,EAAE;AAC7E;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,IAAI;AAC7C,QAAM,MAAM,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AAChD,QAAM,UAAU,SAAS,mBAAmB,GAAG;AAC/C,UAAQ,KAAK,CAAC;AACd,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB;AAAA,EACnB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,gBAAgB,gBAAgB;AACzC,iBAAe,YAAY;AAC7B;AAGA,IAAI,OAAO,IAAI;AACf,KAAK;AAAA,EACH;AAAA,EACA,YAAY,YAAY,SAAS,IAAI,WAAW;AAAA,IAC9C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF,CAAC,CAAC;AACJ;AACA,KAAK,aAAa,gCAAgC,YAAY;AAC5D,MAAI,KAAK,IAAI,SAAS,GAAG;AACvB,WAAO;AAAA,EACT;AACA,MAAI;AACF,QAAI,eAAe,EAAE,MAAM,YAAY,IAAI,kBAAkB,CAAC,CAAC;AAC/D,WAAO,YAAY,SAAS,IAAI,WAAW;AAAA,MACzC;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF,CAAC,CAAC;AAAA,EACJ,SAAS,IAAP;AACA,WAAO;AAAA,EACT;AACF,CAAC;AAGD,IAAI,iCAAiC,QAAQ,wCAAwC,CAAC;AACtF,IAAI,gDAAgD,QAAQ,+CAA+C,CAAC;AAC5G,IAAI,qBAAqB,QAAQ,0BAA0B,CAAC;AAC5D,IAAI,0BAA0B,+BAA+B,WAAW;AACxE,IAAI,cAAc,mBAAmB,WAAW;AAChD,IAAI,cAAc,cAAc,cAAc;AAAA,EAC5C,YAAY,MAAM;AAChB,UAAM;AACN,SAAK,OAAO;AACZ,SAAK,mBAAmB;AACxB,SAAK,KAAK,KAAK,qBAAqB,YAAY;AAChD,yBAAqB,KAAK,KAAK,KAAK,gBAAgB;AACpD,SAAK,YAAY,IAAI,YAAY,MAAM,OAAO,CAAC;AAAA,EACjD;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,UAAM,SAAS,EAAE,IAAI,KAAK,mBAAmB;AAC7C,SAAK,KAAK,QAAQ,QAAQ,OAAO,OAAO,CAAC;AACzC,WAAO;AAAA,EACT;AAAA,EACA,aAAa;AACX,WAAO,KAAK,UAAU,WAAW;AAAA,EACnC;AAAA,EACA,MAAM,KAAK,GAAG;AACZ,UAAM,QAAQ,aAAa,IAAI;AAC/B,MAAE;AACF,UAAM,WAAW,aAAa,IAAI,IAAI;AACtC,WAAO,EAAE,SAAS;AAAA,EACpB;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,UAAM,KAAK,KAAK;AAChB,QAAI,UAAU,UAAU;AACtB,YAAM,cAAc;AACpB,WAAK,UAAU,IAAI,QAAQ,EAAE,IAAI,aAAa,OAAO,OAAO,cAAc,MAAM,SAAS,CAAC;AAC1F;AAAA,IACF;AACA,UAAMA,QAAO,aAAa,cAAc,KAAK;AAC7C,UAAM,WAAWA,QAAO,aAAa,gBAAgB,KAAK;AAC1D,UAAM,eAAe,KAAK,KAAK,QAAQ,QAAQ;AAC/C,SAAK,UAAU,IAAI,QAAQ,EAAE,IAAI,cAAc,OAAO,OAAO,SAAS,CAAC;AACvE,SAAK,KAAK,KAAK,eAAe,IAAIA,OAAM,YAAY;AACpD,QAAI,UAAU,MAAM;AAClB,WAAK,KAAK,OAAO,IAAI,IAAI,WAAW,OAAO,QAAQ,OAAO,YAAY,QAAQ,GAAG,YAAY;AAAA,IAC/F;AAAA,EACF;AAAA,EACA,MAAM,KAAK,QAAQ;AACjB,WAAO,KAAK,SAAS,MAAM;AAAA,EAC7B;AAAA,EACA,SAAS,QAAQ,OAAO,KAAK;AAC3B,UAAM,EAAE,cAAc,OAAO,OAAO,YAAY,IAAI,KAAK,UAAU,IAAI,MAAM;AAC7E,QAAI,UAAU,UAAU;AACtB,WAAK,SAAS,QAAQ,UAAU,OAAO,OAAO,QAAQ,OAAO,YAAY,SAAS;AAChF,eAAO;AAAA,MACT;AACA,aAAO,YAAY,MAAM,OAAO,GAAG;AAAA,IACrC;AACA,YAAQ,SAAS;AACjB,UAAM,OAAO,aAAa,cAAc,KAAK;AAC7C,UAAM,mBAAmB,aAAa,gBAAgB,KAAK;AAC3D,UAAM,QAAQ,KAAK,KAAK,OAAO,MAAM,eAAe,QAAQ,kBAAkB,eAAe,MAAM,gBAAgB;AACnH,WAAO,qBAAqB,MAAM,QAAQ,KAAK;AAAA,EACjD;AAAA,EACA,YAAY,QAAQ,QAAQ,OAAO;AACjC,QAAI,KAAK,UAAU,IAAI,MAAM,GAAG;AAC9B,YAAM,OAAO,KAAK,UAAU,IAAI,MAAM;AACtC,WAAK;AACL,UAAI,CAAC,SAAS,KAAK,WAAW,GAAG;AAC/B,eAAO;AAAA,MACT;AACA,WAAK,KAAK,MAAM,KAAK,YAAY;AACjC,WAAK,KAAK,KAAK,YAAY,KAAK,EAAE;AAClC,WAAK,UAAU,OAAO,MAAM;AAAA,IAC9B;AACA,WAAO;AAAA,EACT;AAAA,EACA,SAAS,QAAQ;AACf,QAAI,KAAK,UAAU,IAAI,MAAM,GAAG;AAC9B,YAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,aAAO,WAAW;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ;AACb,UAAM,OAAO,KAAK,UAAU,IAAI,MAAM;AACtC,QAAI,QAAQ,MAAM;AAChB,WAAK;AAAA,IACP;AAAA,EACF;AAAA,EACA,iBAAiB;AACf,WAAO;AAAA,EACT;AAAA,EACA,gBAAgB,QAAQ;AACtB,WAAO,KAAK,UAAU,IAAI,MAAM,EAAE;AAAA,EACpC;AAAA,EACA,UAAU;AACR,SAAK,KAAK,KAAK,QAAQ;AACvB,QAAI,aAAa,KAAK,MAAM;AAC1B,WAAK,KAAK,QAAQ,oBAAoB;AAAA,IACxC;AACA,SAAK,OAAO;AAAA,EACd;AAAA,EACA,SAAS;AACP,WAAO,EAAE,YAAY,MAAM;AAAA,EAC7B;AAAA,EACA,WAAW,OAAO,OAAO,cAAc;AACrC,QAAI;AACJ,QAAI,gBAAgB,MAAM;AACxB,eAAS,KAAK,MAAM,MAAM,OAAO,KAAK;AAAA,IACxC,OAAO;AACL,YAAM,KAAK,KAAK;AAChB,eAAS,EAAE,GAAG;AACd,WAAK,UAAU,IAAI,QAAQ,EAAE,IAAI,cAAc,OAAO,OAAO,UAAU,EAAE,CAAC;AAC1E,YAAMA,QAAO,aAAa,cAAc,KAAK;AAC7C,WAAK,KAAK,KAAK,eAAe,IAAIA,OAAM,YAAY;AAAA,IACtD;AACA,WAAO,EAAE,QAAQ,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,mBAAmB,EAAE,OAAO,OAAO,OAAO,GAAG;AAC3C,UAAM,UAAU,KAAK,KAAK,OAAO;AACjC,UAAM,EAAE,aAAa,IAAI,KAAK,UAAU,IAAI,MAAM;AAClD,UAAMA,QAAO,aAAa,cAAc,KAAK;AAC7C,YAAQ;AAAA,WACD;AACH,eAAO,IAAI,aAAa,SAAS,cAAcA,KAAI;AAAA,WAChD;AACH,eAAO,IAAI,WAAW,SAAS,cAAcA,KAAI;AAAA,WAC9C;AACH,eAAO,IAAI,WAAW,SAAS,cAAcA,KAAI;AAAA;AAEjD,cAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA;AAAA,EAE9C;AACF;AACA,SAAS,0BAA0B,MAAM;AACvC,SAAO,CAAC,SAAS,aAAa;AAC5B,iBAAa,MAAM,MAAM,EAAE,aAAa,cAAc,CAAC,EAAE,KAAK,CAAC,aAAa;AAC1E,UAAI,CAAC,SAAS,OAAO;AACnB,gBAAQ,IAAI,EAAE,uCAAuC,OAAO;AAAA,MAC9D;AACA,eAAS,YAAY,EAAE,KAAK,CAAC,WAAW;AACtC,oBAAY,YAAY,QAAQ,OAAO,EAAE,KAAK,CAAC,WAAW;AACxD,mBAAS,OAAO,UAAU,OAAO,MAAM;AAAA,QACzC,CAAC;AAAA,MACH,CAAC;AAAA,IACH,CAAC;AACD,WAAO,CAAC;AAAA,EACV;AACF;AACA,SAAS,oBAAoB,eAAe,kBAAkB,kBAAkB;AAC9E,MAAI,YAAY,MAAM;AACpB,WAAO;AAAA,EACT;AACA,MAAI,OAAO;AACX,MAAI,iBAAiB,kBAAkB;AACrC,WAAO;AAAA,EACT,WAAW,eAAe;AACxB,WAAO;AAAA,EACT;AACA,MAAI,eAAe,MAAM;AACvB,QAAI,YAAY,SAAS,MAAM;AAC7B,aAAO,YAAY;AAAA,IACrB;AAAA,EACF;AACA,SAAO,mBAAmB;AAC5B;AACA,eAAe,OAAO;AACpB,QAAM,CAAC,eAAe,gBAAgB,IAAI,MAAM,QAAQ,IAAI;AAAA,IAC1D,IAAI,EAAE,SAAS,uBAAuB;AAAA,IACtC,IAAI,EAAE,SAAS,8BAA8B;AAAA,EAC/C,CAAC;AACD,SAAO,IAAI,QAAQ,CAAC,SAAS,WAAW;AACtC,UAAM,gBAAgB,CAAC;AACvB,kBAAc,aAAa,CAAC,MAAM,WAAW;AAC3C,UAAI,KAAK,SAAS,YAAY,GAAG;AAC/B,cAAM,WAAW,8CAA8C,mBAAmB,QAAQ,OAAO,KAAK;AACtG,cAAM,OAAO,IAAI,KAAK,CAAC,QAAQ,GAAG,EAAE,MAAM,yBAAyB,CAAC;AACpE,eAAO,IAAI,gBAAgB,IAAI;AAAA,MACjC;AACA,UAAI,KAAK,SAAS,OAAO,GAAG;AAC1B,eAAO,oBAAoB,eAAe,kBAAkB,kBAAkB,OAAO,iBAAiB,MAAM;AAAA,MAC9G;AACA,aAAO,SAAS;AAAA,IAClB;AACA,QAAI,aAAa;AACf,oBAAc,kBAAkB,0BAA0B,oBAAoB,eAAe,kBAAkB,kBAAkB,OAAO,iBAAiB,EAAE,CAAC;AAAA,IAC9J;AACA,QAAI,cAAc;AAClB,kBAAc,UAAU,MAAM;AAC5B,UAAI,aAAa;AACf;AAAA,MACF;AACA,UAAI,aAAa;AACf;AAAA,MACF;AACA,oBAAc;AACd,YAAM,YAAY;AAClB,aAAO,EAAE,SAAS,UAAU,CAAC;AAAA,IAC/B;AACA,QAAI;AACJ,QAAI,oBAAoB,iBAAiB,YAAY,MAAM;AACzD,oBAAc,sBAAsB,IAAI,KAAK,CAAC,yCAAyC,wBAAwB,SAAS,CAAC,GAAG,EAAE,MAAM,kBAAkB,CAAC;AACvJ,aAAO,wBAAwB,aAAa;AAAA,IAC9C,OAAO;AACL,aAAO,YAAY,aAAa;AAAA,IAClC;AACA,SAAK,KAAK,CAAC,WAAW;AACpB,oBAAc;AACd,oBAAc;AACd,YAAM,iBAAiB;AACvB,aAAO,OAAO;AAAA,QACZ,MAAM,OAAO,MAAM,QAAQ,MAAM,CAAC,CAAC;AAAA,QACnC,sBAAsB,OAAO,MAAM,2BAA2B,MAAM,CAAC,QAAQ,CAAC;AAAA,QAC9E,iBAAiB,OAAO,MAAM,qBAAqB,UAAU,CAAC,CAAC;AAAA,QAC/D,gBAAgB,OAAO,MAAM,mBAAmB,MAAM;AAAA,UACpD;AAAA,UACA;AAAA,UACA;AAAA,QACF,CAAC;AAAA,QACD,aAAa,OAAO,MAAM,gBAAgB,gBAAgB,CAAC,QAAQ,CAAC;AAAA,QACpE,SAAS,OAAO,MAAM,WAAW,gBAAgB,CAAC,CAAC;AAAA,MACrD;AACA,cAAQ,EAAE,MAAM,OAAO,CAAC;AAAA,IAC1B,CAAC,EAAE,MAAM,MAAM;AAAA,EACjB,CAAC;AACH;AACA,SAAS,qBAAqB,SAAS,OAAO;AAC5C,UAAQ;AAAA,SACD;AACH,aAAO,IAAI,aAAa,OAAO;AAAA,SAC5B;AACH,aAAO,IAAI,WAAW,OAAO;AAAA,SAC1B;AACH,aAAO,IAAI,WAAW,OAAO;AAAA;AAE7B,YAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA;AAE9C;AACA,IAAI,kBAAkB;AAAA,EACpB;AAAA,EACA;AAAA,EACA;AACF;AACA,IAAI,WAAW;AACf,IAAI,iBAAiB;AACrB,IAAI,cAAc,CAAC;AACnB,IAAI,cAAc;AAClB,IAAI,cAAc;AAClB,SAAS,YAAY,MAAM,mBAAmB,OAAO;AACnD,kBAAgB,mGAAmG;AACnH,MAAI,aAAa;AACf,UAAM,IAAI,MAAM,gIAAgI;AAAA,EAClJ;AACA,aAAW;AACX,gBAAc;AAChB;AACA,SAAS,aAAa,iBAAiB,mBAAmB,OAAO;AAC/D,MAAI,aAAa;AACf,UAAM,IAAI,MAAM,iIAAiI;AAAA,EACnJ;AACA,MAAI,OAAO,oBAAoB,UAAU;AACvC,qBAAiB;AAAA,EACnB,OAAO;AACL,kBAAc;AACd,UAAM,eAAe,gBAAgB,OAAO,CAAC,SAAS,YAAY,SAAS,IAAI;AAC/E,QAAI,aAAa,SAAS,GAAG;AAC3B,YAAM,IAAI,MAAM,2DAA2D,aAAa,KAAK,GAAG,gKAAgK;AAAA,IAClQ;AAAA,EACF;AACA,gBAAc;AAChB;AACA,IAAI,eAAe;AACnB,IAAI,qBAAqB;AACzB,SAAS,gBAAgB,YAAY;AACnC,iBAAe;AACjB;AACA,SAAS,kBAAkB;AACzB,MAAI,uBAAuB,IAAI;AAC7B,UAAM,IAAI,MAAM,+BAA+B;AAAA,EACjD;AACA,SAAO;AACT;AAGA,IAAI,WAAW;AAGf,IAAI,gBAAgB;AACpB,gBAAgB,QAAQ,YAAY;AAClC,QAAM,EAAE,KAAK,IAAI,MAAM,KAAK;AAC5B,SAAO,IAAI,YAAY,IAAI;AAC7B,GAAG,aAAa;AAGhB,IAAI,OAAO,IAAI;AACf,KAAK,aAAa,qCAAqC,MAAM,EAAE;AAC/D,KAAK,aAAa,sBAAsB,MAAM,IAAI;AAClD,KAAK,aAAa,8BAA8B,MAAM,EAAE;AACxD,KAAK,aAAa,qCAAqC,MAAM,KAAK;AAClE,KAAK,aAAa,4BAA4B,MAAM,KAAK;AACzD,KAAK,aAAa,qCAAqC,MAAM,GAAG;AAChE,KAAK,aAAa,2BAA2B,MAAM,KAAK;AACxD,KAAK,aAAa,kCAAkC,MAAM,IAAI;AAG9D,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,QAAQ;AAClB,SAAK,SAAS;AACd,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,eAAe;AACpB,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,oBAAoBA,OAAM,OAAO;AAC/B,WAAO,KAAK,cAAcA,OAAM,OAAO,IAAI;AAAA,EAC7C;AAAA,EACA,cAAcA,OAAM,OAAO,mBAAmB,OAAO;AACnD,UAAM,MAAM,aAAaA,OAAM,KAAK;AACpC,QAAI,CAAC,KAAK,YAAY,IAAI,GAAG,GAAG;AAC9B,WAAK,YAAY,IAAI,KAAK,CAAC,CAAC;AAAA,IAC9B;AACA,QAAI,CAAC,KAAK,YAAY,IAAI,GAAG,GAAG;AAC9B,WAAK,YAAY,IAAI,KAAK,CAAC,CAAC;AAAA,IAC9B;AACA,SAAK,gBAAgBA;AACrB,SAAK;AACL,QAAI,KAAK,YAAY,IAAI,GAAG,EAAE,SAAS,GAAG;AACxC,WAAK;AACL,YAAM,aAAa,KAAK,YAAY,IAAI,GAAG,EAAE,MAAM;AACnD,WAAK,YAAY,IAAI,GAAG,EAAE,KAAK,UAAU;AACzC,aAAO;AAAA,IACT;AACA,SAAK,qBAAqBA;AAC1B,UAAM,YAAY,KAAK,OAAO,aAAa,EAAE,MAAAA,OAAM,OAAO,iBAAiB,CAAC;AAC5E,SAAK,YAAY,IAAI,GAAG,EAAE,KAAK,SAAS;AACxC,WAAO;AAAA,EACT;AAAA,EACA,cAAc,SAASA,OAAM,OAAO;AAClC,QAAI,KAAK,YAAY,SAAS,GAAG;AAC/B;AAAA,IACF;AACA,UAAM,MAAM,aAAaA,OAAM,KAAK;AACpC,QAAI,CAAC,KAAK,YAAY,IAAI,GAAG,GAAG;AAC9B,WAAK,YAAY,IAAI,KAAK,CAAC,CAAC;AAAA,IAC9B;AACA,SAAK,YAAY,IAAI,GAAG,EAAE,KAAK,OAAO;AACtC,SAAK;AACL,SAAK;AACL,UAAM,aAAa,KAAK,YAAY,IAAI,GAAG;AAC3C,UAAM,cAAc,WAAW,QAAQ,OAAO;AAC9C,QAAI,cAAc,GAAG;AACnB,YAAM,IAAI,MAAM,wEAAwE;AAAA,IAC1F;AACA,eAAW,OAAO,aAAa,CAAC;AAChC,SAAK,gBAAgBA;AAAA,EACvB;AAAA,EACA,oBAAoB,SAASA,OAAM,OAAO;AACxC,YAAQ,SAAS,WAAW,KAAK,EAAE,KAAK,MAAM;AAC5C,WAAK,cAAc,SAASA,OAAM,KAAK;AAAA,IACzC,GAAG,CAAC,QAAQ;AAAA,IACZ,CAAC;AAAA,EACH;AAAA,EACA,oBAAoB;AAClB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,oBAAoB;AAClB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,SAAK,YAAY,QAAQ,CAAC,SAAS,QAAQ;AACzC,cAAQ,QAAQ,CAAC,YAAY;AAC3B,gBAAQ,QAAQ;AAAA,MAClB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,YAAY,QAAQ,CAAC,SAAS,QAAQ;AACzC,cAAQ,QAAQ,CAAC,YAAY;AAC3B,gBAAQ,QAAQ;AAAA,MAClB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,cAA8B,oBAAI,IAAI;AAC3C,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,eAAe;AACpB,SAAK,oBAAoB;AAAA,EAC3B;AACF;AACA,SAAS,aAAaA,OAAM,OAAO;AACjC,SAAO,GAAGA,SAAQ;AACpB;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,QAAQ;AAClB,SAAK,SAAS;AACd,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,eAA+B,oBAAI,IAAI;AAC5C,SAAK,eAA+B,oBAAI,IAAI;AAC5C,SAAK,eAAe;AACpB,SAAK,oBAAoB;AAAA,EAC3B;AAAA,EACA,eAAe,OAAO,QAAQ,QAAQ,OAAO;AAC3C,UAAM,mBAAmB,mBAAmB,MAAM;AAClD,UAAM,WAAW,QAAQ,SAAS;AAClC,UAAM,MAAM,cAAc,OAAO,QAAQ,QAAQ,KAAK;AACtD,QAAI,CAAC,KAAK,aAAa,IAAI,GAAG,GAAG;AAC/B,WAAK,aAAa,IAAI,KAAK,CAAC,CAAC;AAAA,IAC/B;AACA,QAAI,CAAC,KAAK,aAAa,IAAI,GAAG,GAAG;AAC/B,WAAK,aAAa,IAAI,KAAK,CAAC,CAAC;AAAA,IAC/B;AACA,SAAK,gBAAgB;AACrB,SAAK;AACL,QAAI,KAAK,aAAa,IAAI,GAAG,EAAE,SAAS,GAAG;AACzC,WAAK;AACL,YAAM,cAAc,KAAK,aAAa,IAAI,GAAG,EAAE,MAAM;AACrD,WAAK,aAAa,IAAI,GAAG,EAAE,KAAK,WAAW;AAC3C,aAAO;AAAA,IACT;AACA,SAAK,qBAAqB;AAC1B,UAAM,aAAa,KAAK,OAAO,cAAc;AAAA,MAC3C,MAAM,CAAC,OAAO,MAAM;AAAA,MACpB;AAAA,MACA;AAAA,IACF,CAAC;AACD,SAAK,aAAa,IAAI,GAAG,EAAE,KAAK,UAAU;AAC1C,WAAO;AAAA,EACT;AAAA,EACA,eAAe,SAAS,OAAO,QAAQ,QAAQ,OAAO;AACpD,QAAI,KAAK,aAAa,SAAS,GAAG;AAChC;AAAA,IACF;AACA,UAAM,MAAM,cAAc,OAAO,QAAQ,QAAQ,KAAK;AACtD,QAAI,CAAC,KAAK,aAAa,IAAI,GAAG,GAAG;AAC/B,WAAK,aAAa,IAAI,KAAK,CAAC,CAAC;AAAA,IAC/B;AACA,SAAK,aAAa,IAAI,GAAG,EAAE,KAAK,OAAO;AACvC,SAAK;AACL,SAAK;AACL,UAAM,cAAc,KAAK,aAAa,IAAI,GAAG;AAC7C,UAAM,eAAe,YAAY,QAAQ,OAAO;AAChD,QAAI,eAAe,GAAG;AACpB,YAAM,IAAI,MAAM,0EAA0E;AAAA,IAC5F;AACA,gBAAY,OAAO,cAAc,CAAC;AAClC,UAAM,mBAAmB,mBAAmB,MAAM;AAClD,UAAM,WAAW,QAAQ,SAAS;AAClC,SAAK,gBAAgB;AAAA,EACvB;AAAA,EACA,qBAAqB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,qBAAqB;AACnB,WAAO,KAAK;AAAA,EACd;AAAA,EACA,UAAU;AACR,SAAK,aAAa,QAAQ,CAAC,UAAU,QAAQ;AAC3C,eAAS,QAAQ,CAAC,YAAY;AAC5B,gBAAQ,QAAQ;AAAA,MAClB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,aAAa,QAAQ,CAAC,UAAU,QAAQ;AAC3C,eAAS,QAAQ,CAAC,YAAY;AAC5B,gBAAQ,QAAQ;AAAA,MAClB,CAAC;AAAA,IACH,CAAC;AACD,SAAK,eAA+B,oBAAI,IAAI;AAC5C,SAAK,eAA+B,oBAAI,IAAI;AAC5C,SAAK,kBAAkB;AACvB,SAAK,kBAAkB;AACvB,SAAK,eAAe;AACpB,SAAK,oBAAoB;AAAA,EAC3B;AACF;AACA,SAAS,cAAc,OAAO,QAAQ,QAAQ,OAAO;AACnD,SAAO,GAAG,SAAS,UAAU,UAAU;AACzC;AACA,SAAS,mBAAmB,QAAQ;AAClC,MAAI,WAAW,cAAc;AAC3B,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,GAAG,0BAA0B;AAAA,EAC/C;AACF;AAGA,SAAS,4BAA4B,YAAY,cAAc;AAC7D,MAAI,KAAK,IAAI,GAAG,UAAU,IAAI,GAAG;AAC/B,UAAM,IAAI,MAAM,0DAA0D;AAAA,EAC5E;AACA,QAAM,YAAY,WAAW;AAC7B,QAAM,QAAQ,WAAW,IAAI,CAAC,MAAM,GAAG,gBAAgB,IAAI;AAC3D,QAAMa,WAAU,IAAI,MAAM,YAAY,CAAC;AACvC,EAAAA,SAAQ,YAAY,KAAK,MAAM,YAAY;AAC3C,WAAS,KAAK,YAAY,GAAG,MAAM,GAAG,EAAE,IAAI;AAC1C,IAAAA,SAAQ,MAAM,IAAIA,SAAQ,KAAK,QAAQ,MAAM,KAAK;AAAA,EACpD;AACA,SAAOA;AACT;AAGA,IAAI,kBAAkB,CAAC,QAAQ,SAAS,YAAY,WAAW;AAC7D,QAAM,aAAa,EAAE,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC9D,QAAM,SAAS,YAAY,YAAY,YAAY,OAAO;AAC1D,QAAM,SAAS,OAAO,mBAAmB,EAAE,MAAM,QAAQ,OAAO,QAAQ,YAAY,KAAK,CAAC;AAC1F,QAAM,WAAW,OAAO,sBAAsB;AAAA,IAC5C,SAAS,EAAE,QAAQ,YAAY,SAAS;AAAA,IACxC,OAAO,QAAQ,YAAY;AAAA,IAC3B,QAAQ;AAAA,EACV,CAAC;AACD,SAAO;AACT;AACA,SAAS,mBAAmB,MAAM;AAChC,MAAI,QAAQ,GAAG;AACb,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,WAAW,SAAS,GAAG;AACrB,WAAO;AAAA,EACT,OAAO;AACL,UAAM,MAAM,gBAAgB,2BAA2B;AAAA,EACzD;AACF;AACA,SAAS,aAAaH,QAAO;AAC3B,MAAIA,WAAU,GAAG;AACf,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,WAAWA,WAAU,GAAG;AACtB,WAAO;AAAA,EACT,OAAO;AACL,UAAM,MAAM,SAASA,6BAA4B;AAAA,EACnD;AACF;AACA,SAAS,uBAAuB,QAAQ;AACtC,MAAI;AACJ,UAAQ,OAAO;AAAA,SACR;AACH,gBAAU;AAAA,UACN,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAY3B;AAAA,SACG;AACH,gBAAU;AAAA,UACN,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kBAUf,OAAO;AAAA;AAEnB;AAAA;AAEA,YAAM,MAAM,aAAa;AAAA;AAE7B,SAAO;AACT;AACA,SAAS,yBAAyB;AAChC,SAAO;AAAA;AAAA;AAGT;AACA,SAAS,YAAY,WAAW,YAAY,SAAS;AACnD,QAAM,iBAAiB,CAAC;AACxB,iBAAe,KAAK;AAAA,+BACS,QAAQ,cAAc;AAAA,+BACtB,QAAQ,cAAc;AAAA,+BACtB,QAAQ,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAQ3C,eAAe,OAAO,IAAI,8BAA8B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAW7D;AACH,MAAI,QAAQ,cAAc;AACxB,mBAAe,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uEAO+C,eAAe,WAAW,OAAO,QAAQ,MAAM;AAAA;AAAA,OAE/G;AACH,WAAO;AAAA,MACL;AAAA,MACA,eAAe,KAAK,IAAI;AAAA,MACxB,0BAA0B,WAAW,KAAK;AAAA,MAC1C,QAAQ,YAAY;AAAA,IACtB,EAAE,KAAK,IAAI;AAAA,EACb;AACA,MAAI,qBAAqB;AACzB,UAAQ,cAAc,QAAQ,CAAC,GAAG,OAAO;AACvC,UAAM,cAAc,mBAAmB,UAAU,IAAI,MAAM,MAAM;AACjE,0BAAsB,GAAG,EAAE,OAAO,CAAC,EAAE,YAAY,IAAI,EAAE,MAAM,CAAC,YAAY;AAAA,EAC5E,CAAC;AACD,QAAM,iBAAiB,mBAAmB,WAAW,MAAM,MAAM;AACjE,wBAAsB,cAAc;AACpC,QAAM,gBAAgB,WAAW,MAAM,SAAS;AAChD,QAAM,kBAAkB,mBAAmB,aAAa;AACxD,wBAAsB;AAAA,4BACI;AAC1B,MAAI,QAAQ,MAAM;AAChB,0BAAsB;AAAA,EACxB;AACA,MAAI,QAAQ,UAAU;AACpB,0BAAsB,QAAQ;AAAA,EAChC;AACA,wBAAsB;AACtB,uBAAqB,gBAAgB,kBAAkB;AACvD,iBAAe,KAAK,kBAAkB;AACtC,MAAI,QAAQ,QAAQ;AAClB,mBAAe,KAAK;AAAA;AAAA,KAEnB;AAAA,EACH,OAAO;AACL,mBAAe,KAAK;AAAA,qEAC6C,eAAe,WAAW,OAAO,QAAQ,MAAM;AAAA,KAC/G;AAAA,EACH;AACA,UAAQ,cAAc,QAAQ,CAAC,GAAG,OAAO;AACvC,mBAAe,KAAK;AAAA,2BACG,IAAI,0BAA0B,YAAY,QAAQ,gBAAgB,QAAQ,cAAc,MAAM,eAAe,UAAU,IAAI,OAAO,QAAQ,MAAM;AAAA,SAClK;AAAA,EACP,CAAC;AACD,MAAI,uBAAuB,IAAI;AAC7B,mBAAe,KAAK;AAAA,2BACG,IAAI,QAAQ,cAAc;AAAA,OAC9C;AAAA,EACL;AACA,QAAM,gBAAgB,uBAAuB,WAAW,OAAO,QAAQ,cAAc;AACrF,QAAM,UAAU;AAAA,IACd;AAAA,IACA,eAAe,KAAK,IAAI;AAAA,IACxB,0BAA0B,WAAW,KAAK;AAAA,IAC1C;AAAA,IACA,gCAAgC,WAAW,MAAM,MAAM;AAAA,EACzD;AACA,MAAI,CAAC,QAAQ,QAAQ;AACnB,YAAQ,KAAK,iBAAiB,WAAW,OAAO,WAAW,OAAO,QAAQ,MAAM,CAAC;AAAA,EACnF;AACA,QAAM,eAAe,UAAU,IAAI,CAAC,GAAG,OAAO,gBAAgB,GAAG,WAAW,OAAO,QAAQ,gBAAgB,QAAQ,cAAc,QAAQ,cAAc,QAAQ,QAAQ,QAAQ,eAAe,EAAE,WAAW,WAAW,MAAM,MAAM,CAAC,EAAE,KAAK,IAAI;AAC9O,UAAQ,KAAK,YAAY;AACzB,UAAQ,KAAK,QAAQ,YAAY,CAAC;AAClC,QAAM,SAAS,QAAQ,KAAK,IAAI;AAChC,SAAO;AACT;AACA,SAAS,eAAe,SAAS,QAAQ,YAAY,QAAQ;AAC3D,MAAI,MAAM,QAAQ;AAClB,MAAI,QAAQ,cAAc;AACxB,WAAO;AAAA,EACT;AACA,QAAM,QAAQ,WAAW,IAAI,CAAC,MAAM,EAAE,KAAK,EAAE,OAAO,OAAO,KAAK;AAChE,QAAM,gBAAgB,WAAW,IAAI,CAAC,MAAM,qBAAqB,iBAAiB,EAAE,OAAO,OAAO,KAAK,CAAC;AACxG,QAAM,4BAA4B,WAAW,IAAI,CAAC,MAAM,aAAa,YAAY,EAAE,OAAO,OAAO,KAAK,CAAC,EAAE,KAAK,GAAG;AACjH,QAAM,mBAAmB,cAAc,IAAI,CAAC,MAAM,EAAE,KAAK,GAAG,CAAC,EAAE,KAAK,GAAG;AACvE,QAAM,qBAAqB,eAAe,OAAO,IAAI,iBAAiB;AACtE,SAAO,OAAO,QAAQ,gBAAgB,QAAQ,cAAc,KAAK,GAAG,IAAI,MAAM,OAAO,IAAI,CAAC,UAAU,MAAM,MAAM,EAAE,KAAK,GAAG,IAAI,MAAM,KAAK,GAAG,IAAI,QAAQ,cAAc,KAAK,GAAG,IAAI,mBAAmB,4BAA4B;AACjO,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA2DpB,SAAS,0BAA0B,OAAO;AACxC,QAAM,OAAO,MAAM;AACnB,MAAI,QAAQ,GAAG;AACb,WAAO;AAAA,EACT;AACA,QAAMG,WAAU,aAAa,eAAe,KAAK;AACjD,QAAM,QAAQ,mBAAmB,IAAI;AACrC,QAAM,UAAU,CAAC;AACjB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,YAAQ,KAAK,IAAI,IAAI;AAAA,EACvB;AACA,MAAIA,SAAQ,WAAW,GAAG;AACxB,WAAO;AAAA;AAAA;AAAA;AAAA,EAIT;AACA,MAAI;AACJ,YAAU,wBAAwBA,SAAQ,IAAI,CAAC,GAAG,OAAO;AACvD,UAAM,QAAQ,OAAO,QAAQ,2CAA2C,aAAa,EAAE;AACvF,UAAM,QAAQ,OAAOA,SAAQ,SAAS,IAAI,OAAO,QAAQ,KAAK,iBAAiB,QAAQ,kCAAkC,aAAa,EAAE,MAAM,qBAAqB,QAAQ,kCAAkC,aAAa,EAAE;AAC5N,WAAO,GAAG,UAAU;AAAA,EACtB,CAAC,EAAE,KAAK,EAAE;AACV,SAAO;AAAA,4CACmC;AAAA,QACpC;AAAA,eACO,SAAS,QAAQ,KAAK,GAAG;AAAA;AAAA;AAGxC;AACA,SAAS,wBAAwB,WAAW,QAAQ;AAClD,QAAM,UAAU,UAAU;AAC1B,QAAM,OAAO,UAAU,MAAM;AAC7B,QAAM,OAAO,mBAAmB,IAAI;AACpC,QAAM,WAAW,QAAQ,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC1E,QAAM,OAAO,CAAC,MAAM,MAAM,MAAM,MAAM,MAAM,IAAI,EAAE,MAAM,GAAG,IAAI;AAC/D,QAAM,SAAS,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AACtD,MAAI,OAAO,GAAG;AACZ,QAAI,QAAQ;AACV,aAAO;AAAA,aACA;AAAA,6BACgB;AAAA;AAAA;AAAA,IAGzB;AACA,WAAO;AAAA,WACA;AAAA,qBACU;AAAA;AAAA;AAAA,EAGnB;AACA,QAAM,WAAW,YAAY,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC9E,MAAI,UAAU,GAAG;AACjB,MAAI,SAAS,GAAG;AACd,cAAU;AAAA,EACZ;AACA,MAAI,QAAQ;AACV,WAAO;AAAA,WACA,YAAY;AAAA,2BACI,6BAA6B,WAAW,QAAQ,KAAK,KAAK,GAAG;AAAA,YAC5E;AAAA;AAAA;AAAA,EAGV;AACA,SAAO;AAAA,SACA,YAAY;AAAA,mBACF,6BAA6B,WAAW,QAAQ,KAAK,KAAK,GAAG;AAAA,UACtE;AAAA;AAAA;AAGV;AACA,SAAS,wBAAwB,WAAW,UAAU,QAAQ,sBAAsB;AAClF,QAAM,UAAU,UAAU;AAC1B,QAAM,iBAAiB,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AACxE,QAAM,WAAW,QAAQ,iBAAiB;AAC1C,QAAM,SAAS,UAAU,MAAM;AAC/B,QAAM,UAAU,SAAS;AACzB,QAAM,OAAO,mBAAmB,OAAO;AACvC,MAAI,aAAa,YAAY,UAAU,OAAO,QAAQ,KAAK,sBAAsB;AAC/E,QAAI,QAAQ;AACV,aAAO;AAAA,WACF;AAAA,2BACgB;AAAA;AAAA;AAAA,WAGhB,2BAA2B;AAAA,2BACX,WAAW,UAAU,IAAI,qCAAqC;AAAA;AAAA;AAAA,IAGrF,OAAO;AACL,aAAO;AAAA,SACJ;AAAA,mBACU;AAAA;AAAA;AAAA,SAGV,2BAA2B;AAAA,mBACjB,WAAW,UAAU,IAAI,qCAAqC;AAAA;AAAA;AAAA,IAG7E;AAAA,EACF;AACA,QAAM,gBAAgB,qBAAqB,iBAAiB,UAAU,OAAO,QAAQ;AACrF,QAAM,WAAW,UAAU;AAC3B,MAAI,gBAAgB;AACpB,MAAI,WAAW,GAAG;AAChB,QAAI,QAAQ;AACV,aAAO;AAAA,SACJ;AAAA,kBACS;AAAA;AAAA;AAAA,SAGT,2BAA2B;AAAA,kBAClB;AAAA;AAAA;AAAA,IAGd;AACA,WAAO;AAAA,SACF;AAAA,kBACS;AAAA;AAAA;AAAA,SAGT,2BAA2B;AAAA,kBAClB;AAAA;AAAA;AAAA,EAGhB,OAAO;AACL,QAAI,UAAU,KAAK,cAAc,UAAU,GAAG;AAC5C,sBAAgB;AAAA,IAClB,OAAO;AACL,sBAAgB,cAAc,IAAI,CAAC,MAAM,UAAU,aAAa,IAAI,QAAQ,QAAQ,EAAE,KAAK,IAAI;AAAA,IACjG;AAAA,EACF;AACA,MAAI,wBAAwB;AAC5B,MAAI,UAAU,KAAK,SAAS,GAAG;AAC7B,4BAAwB;AAAA,EAC1B,OAAO;AACL,QAAI,UAAU,GAAG;AACf,YAAM,aAAa,mBAAmB,MAAM;AAC5C,YAAM,eAAe,UAAU,MAAM,IAAI,CAAC,IAAI,OAAO,UAAU,aAAa,KAAK,QAAQ,GAAG,EAAE,KAAK,IAAI;AACvG,8BAAwB,GAAG,cAAc;AAAA,IAC3C,OAAO;AACL,8BAAwB;AAAA,IAC1B;AAAA,EACF;AACA,QAAM,WAAW,YAAY,QAAQ,OAAO,CAAC,EAAE,YAAY,IAAI,QAAQ,MAAM,CAAC;AAC9E,QAAM,UAAU,GAAG;AACnB,MAAI,QAAQ;AACV,WAAO;AAAA,SACF;AAAA;AAAA,QAED;AAAA,eACO,6BAA6B,WAAW,0BAA0B;AAAA;AAAA;AAAA,SAGxE,6BAA6B;AAAA;AAAA,QAE9B;AAAA,eACO,6BAA6B,WAAW,0BAA0B;AAAA;AAAA;AAAA,EAG/E;AACA,SAAO;AAAA,OACF;AAAA;AAAA,MAED;AAAA,iBACW,6BAA6B,WAAW,0BAA0B;AAAA;AAAA;AAAA,OAG5E,6BAA6B;AAAA;AAAA,MAE9B;AAAA,iBACW,6BAA6B,WAAW,0BAA0B;AAAA;AAAA;AAGnF;AACA,SAAS,gBAAgB,WAAW,UAAU,QAAQ,sBAAsB;AAC1E,MAAI,MAAM,wBAAwB,WAAW,MAAM;AACnD,QAAM,UAAU,UAAU;AAC1B,MAAI,QAAQ,UAAU,SAAS,QAAQ;AACrC,WAAO,wBAAwB,WAAW,UAAU,QAAQ,oBAAoB;AAAA,EAClF;AACA,SAAO;AACT;AACA,SAAS,uBAAuB,UAAU,gBAAgB;AACxD,QAAM,EAAE,GAAG,IAAI,CAAC,GAAG,IAAI,CAAC,EAAE,IAAI;AAC9B,QAAM,UAAU,SAAS;AACzB,MAAI,EAAE,WAAW,SAAS;AACxB,UAAM,SAAS,mBAAmB,OAAO;AACzC,UAAM,WAAW,2BAA2B;AAAA;AAAA;AAAA;AAAA;AAK5C,WAAO;AAAA,EACT;AACA,MAAI,sBAAsB;AAC1B,QAAM,OAAO,CAAC,GAAG,GAAG,CAAC;AACrB,MAAI,OAAO;AACX,WAAS,KAAK,GAAG,KAAK,KAAK,QAAQ,MAAM;AACvC,UAAM,MAAM,KAAK;AACjB,QAAI,IAAI,WAAW,GAAG;AACpB;AAAA,IACF;AACA,YAAQ,IAAI;AACZ,QAAI,IAAI,WAAW,GAAG;AACpB,6BAAuB,QAAQ,IAAI,qBAAqB;AAAA,IAC1D,OAAO;AACL,YAAMA,WAAU,4BAA4B,KAAK,mBAAmB;AACpE,6BAAuB,YAAY,qBAAqB;AACxD,eAAS,IAAI,GAAG,IAAIA,SAAQ,QAAQ,KAAK;AACvC,+BAAuB,QAAQ,IAAI,aAAa,QAAQA,SAAQ;AAChE,YAAI,MAAMA,SAAQ,SAAS,GAAG;AAC5B,iCAAuB,QAAQ,IAAI,IAAI,aAAa,SAAS,IAAI,QAAQA,SAAQ;AAAA,QACnF,OAAO;AACL,iCAAuB,QAAQ,aAAa,SAAS,IAAI,QAAQA,SAAQ;AAAA,QAC3E;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACA,QAAM,aAAa,CAAC;AACpB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,eAAW,KAAK,IAAI,IAAI;AAAA,EAC1B;AACA,QAAM,QAAQ,mBAAmB,IAAI;AACrC,MAAI,UAAU,2BAA2B;AAAA,IACvC;AAAA;AAEF,MAAI,WAAW,WAAW,GAAG;AAC3B,eAAW,UAAU;AAAA,EACvB,OAAO;AACL,eAAW,UAAU,SAAS,WAAW,KAAK,GAAG;AAAA,EACnD;AACA,SAAO;AACT;AACA,SAAS,gCAAgC,SAAS;AAChD,MAAI,UAAU;AACd,UAAQ;AAAA,SACD;AAAA,SACA;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAKX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAKX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAKX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAMX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASX;AAAA,SACG;AACH,iBAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUX;AAAA;AAEA,mBAAa,OAAO,OAAO,MAAM,eAAe,gBAAgB;AAChE;AAAA;AAEJ,SAAO;AACT;AACA,SAAS,eAAe,SAAS;AAC/B,SAAO,QAAQ,SAAS,OAAO,KAAK,QAAQ,SAAS,OAAO;AAC9D;AACA,SAAS,eAAe,MAAM,QAAQ;AACpC,MAAI,SAAS,WAAW;AACtB,WAAO,SAAS,cAAc;AAAA,EAChC,WAAW,SAAS,SAAS;AAC3B,WAAO,SAAS,cAAc;AAAA,EAChC,WAAW,SAAS,QAAQ;AAC1B,WAAO,SAAS,cAAc;AAAA,EAChC;AACA,SAAO;AACT;AACA,SAAS,iBAAiB,UAAU,eAAe,QAAQ;AACzD,QAAM,UAAU,SAAS;AACzB,QAAM,WAAW,eAAe,eAAe,MAAM;AACrD,MAAI;AACJ,MAAI,QAAQ;AACV,cAAU;AAAA,4BACc;AAAA;AAAA;AAAA,4BAGA;AAAA;AAAA,EAE1B,OAAO;AACL,cAAU;AAAA,4BACc;AAAA;AAAA;AAAA,4BAGA;AAAA;AAAA,EAE1B;AACA,MAAI,WAAW,GAAG;AAChB,UAAM,OAAO,CAAC,MAAM,MAAM,MAAM,MAAM,MAAM,IAAI,EAAE,MAAM,GAAG,OAAO;AAClE,UAAM,OAAO,mBAAmB,OAAO;AACvC,QAAI,QAAQ;AACV,iBAAW;AAAA,6BACY,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AAAA,mDACjB,QAAQ,KAAK,KAAK,IAAI;AAAA;AAAA;AAAA,gCAGzC,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AAAA,mDACpB,QAAQ,KAAK,KAAK,IAAI;AAAA;AAAA;AAAA;AAAA,IAIrE,OAAO;AACL,iBAAW;AAAA,6BACY,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AAAA,mDACjB,QAAQ,KAAK,KAAK,IAAI;AAAA;AAAA;AAAA,gCAGzC,KAAK,IAAI,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,IAAI;AAAA,mDACpB,QAAQ,KAAK,KAAK,IAAI;AAAA;AAAA;AAAA;AAAA,IAIrE;AAAA,EACF;AACA,SAAO;AACT;AACA,SAAS,gBAAgB,eAAe;AACtC,QAAM,cAAc;AACpB,kBAAgB,cAAc,QAAQ,aAAa,CAACsB,WAAU;AAC5D,WAAO,gBAAgBA;AAAA,EACzB,CAAC;AACD,QAAM,cAAc;AACpB,kBAAgB,cAAc,QAAQ,aAAa,CAAC,GAAG,IAAI,OAAO;AAChE,WAAO,MAAM,kBAAkB;AAAA,EACjC,CAAC;AACD,SAAO;AACT;AAGA,IAAI,sBAAsB,CAAC;AAC3BtC,UAAS,qBAAqB;AAAA,EAC5B,yBAAyB,MAAM;AAAA,EAC/B,oBAAoB,MAAM;AAAA,EAC1B,mBAAmB,MAAM;AAAA,EACzB,iBAAiB,MAAM;AAAA,EACvB,+BAA+B,MAAM;AAAA,EACrC,+BAA+B,MAAM;AAAA,EACrC,+BAA+B,MAAM;AAAA,EACrC,oBAAoB,MAAM;AAAA,EAC1B,mBAAmB,MAAM;AAAA,EACzB,yBAAyB,MAAM;AACjC,CAAC;AACD,IAAI,eAAe,CAAC,QAAQ;AAC1B,MAAI,UAAU;AACd,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,eAAW,IAAI;AAAA,EACjB;AACA,SAAO;AACT;AACA,SAAS,wBAAwB,UAAU,OAAO;AAChD,MAAI,SAAS,WAAW,MAAM,QAAQ;AACpC,UAAM,IAAI,MAAM,+BAA+B,SAAS,qCAAqC,MAAM,kCAAkC;AAAA,EACvI;AACA,SAAO,MAAM,MAAM,CAAC,KAAK,WAAW,MAAM,SAAS,YAAY,CAAC;AAClE;AACA,SAAS,gBAAgB,QAAQ,aAAa,gBAAgB,CAAC,GAAG,GAAG,CAAC,GAAG,oBAAoB,CAAC,GAAG,GAAG,CAAC,GAAG;AACtG,QAAM,CAAC,WAAW,WAAW,SAAS,IAAI;AAAA,IACxC,KAAK,KAAK,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC,KAAK,cAAc,KAAK,kBAAkB,GAAG;AAAA,IACvG,OAAO,IAAI,KAAK,KAAK,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC,KAAK,cAAc,KAAK,kBAAkB,GAAG,IAAI;AAAA,IACtH,OAAO,IAAI,KAAK,KAAK,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC,KAAK,cAAc,KAAK,kBAAkB,GAAG,IAAI;AAAA,EACxH;AACA,SAAO,CAAC,WAAW,WAAW,SAAS;AACzC;AACA,SAAS,8BAA8B,WAAW,UAAU,WAAW,aAAa,OAAO;AACzF,QAAM,gBAAgB,CAAC,GAAG,GAAG,CAAC;AAC9B,QAAM,oBAAoB,CAAC,GAAG,GAAG,CAAC;AAClC,MAAI,CAAC,YAAY;AACf,QAAI,aAAa,GAAG;AAClB,wBAAkB,KAAK;AAAA,IACzB;AACA,QAAI,YAAY,MAAM,aAAa,IAAI;AACrC,oBAAc,KAAK;AAAA,IACrB;AAAA,EACF;AACA,SAAO,EAAE,eAAe,kBAAkB;AAC5C;AACA,SAAS,8BAA8B,QAAQ,aAAa,SAAS,OAAO;AAC1E,MAAI,QAAQ;AACV,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,QAAM,OAAO,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC;AAC7D,QAAM,OAAO,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC;AAC7D,MAAI,QAAQ,GAAG;AACb,WAAO,CAAC,GAAG,IAAI,CAAC;AAAA,EAClB;AACA,MAAI,QAAQ,GAAG;AACb,WAAO,CAAC,IAAI,GAAG,CAAC;AAAA,EAClB;AACA,SAAO,CAAC,IAAI,IAAI,CAAC;AACnB;AACA,SAAS,8BAA8B,QAAQ,aAAa,SAAS,OAAO;AAC1E,MAAI,QAAQ;AACV,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,QAAM,OAAO,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC;AAC7D,QAAM,OAAO,aAAa,OAAO,EAAE,IAAI,CAAC,MAAM,YAAY,EAAE,CAAC;AAC7D,MAAI,QAAQ,GAAG;AACb,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,MAAI,QAAQ,GAAG;AACb,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,SAAO,CAAC,GAAG,GAAG,CAAC;AACjB;AACA,SAAS,mBAAmB,OAAO;AACjC,SAAO,EAAE,GAAG,MAAM,IAAI,CAAC,GAAG,OAAO,EAAE,EAAE;AACvC;AACA,SAAS,mBAAmB,OAAO;AACjC,MAAI,UAAU,aAAa,UAAU,WAAW,UAAU,UAAU,UAAU,UAAU;AACtF,WAAO;AAAA,EACT,WAAW,UAAU,aAAa;AAChC,WAAO;AAAA,EACT,OAAO;AACL,UAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA,EAC1C;AACF;AACA,SAAS,wBAAwB,MAAM,OAAO;AAC5C,MAAI,UAAU,WAAW;AACvB,WAAO,IAAI,aAAa,IAAI;AAAA,EAC9B,WAAW,UAAU,SAAS;AAC5B,WAAO,IAAI,WAAW,IAAI;AAAA,EAC5B,WAAW,UAAU,UAAU,UAAU,UAAU;AACjD,WAAO,WAAW,KAAK,IAAI,WAAW,IAAI,CAAC;AAAA,EAC7C,OAAO;AACL,UAAM,IAAI,MAAM,iBAAiB,OAAO;AAAA,EAC1C;AACF;AACA,SAAS,oBAAoB;AAC3B,UAAQ,OAAO,WAAW,eAAe,OAAO,sBAAsB,gBAAgB,CAAC,CAAC,UAAU;AACpG;AACA,IAAI;AAAA,CACH,SAAS,oBAAoB;AAC5B,qBAAmB,mBAAmB,yBAAyB,KAAK;AACpE,qBAAmB,mBAAmB,yBAAyB,KAAK;AACpE,qBAAmB,mBAAmB,kCAAkC,KAAK;AAC7E,qBAAmB,mBAAmB,yBAAyB,KAAK;AACpE,qBAAmB,mBAAmB,eAAe,KAAK;AAC5D,GAAG,sBAAsB,oBAAoB,CAAC,EAAE;AAGhD,IAAI,8BAA8B,IAAI,EAAE,UAAU,mCAAmC;AACrF,IAAI,kBAAkB,CAAC,QAAQ,YAAY;AACzC,QAAM,0CAA0C,OAAO,OAAO;AAC9D,QAAM,SAAS,QAAQ;AACvB,QAAM,WAAW,QAAQ;AACzB,MAAI,SAAS,MAAM,CAAC,MAAM,KAAK,uCAAuC,GAAG;AACvE,WAAO;AAAA,EACT;AACA,eAAa,OAAO,SAAS,KAAK,2CAA2C,OAAO,MAAM,UAAU,OAAO,MAAM,QAAQ,MAAM,0DAA0D;AACzL,MAAI,kBAAkB,KAAK,KAAK,KAAK,KAAK,SAAS,EAAE,CAAC;AACtD,MAAI,kBAAkB,yCAAyC;AAC7D,sBAAkB,KAAK,KAAK,KAAK,KAAK,SAAS,EAAE,CAAC;AAClD,iBAAa,OAAO,mBAAmB,yCAAyC,MAAM,6CAA6C;AACnI,WAAO,CAAC,iBAAiB,iBAAiB,eAAe;AAAA,EAC3D,OAAO;AACL,WAAO,CAAC,iBAAiB,iBAAiB,CAAC;AAAA,EAC7C;AACF;AACA,IAAI,gBAAgB,cAAc,cAAc;AAAA,EAC9C,YAAY,QAAQ;AAClB,UAAM;AACN,SAAK,uBAAuC,oBAAI,QAAQ;AACxD,SAAK,0BAA0B;AAC/B,SAAK,WAAW;AAChB,SAAK,iBAAiB;AACtB,SAAK,4BAA4B,CAAC;AAClC,SAAK,yBAAyB,CAAC;AAC/B,SAAK,yBAAyB,CAAC;AAC/B,SAAK,eAAe;AACpB,QAAI,CAAC,kBAAkB,GAAG;AACxB,YAAM,IAAI,MAAM,wCAAwC;AAAA,IAC1D;AACA,SAAK,gBAAgB,CAAC;AACtB,SAAK,SAAS;AACd,SAAK,QAAQ,OAAO;AACpB,SAAK,wBAAwB;AAC7B,SAAK,qBAAqB;AAC1B,SAAK,mBAAmB,OAAO,SAAS,IAAI,iBAAiB;AAC7D,SAAK,gBAAgB,IAAI,cAAc,KAAK,MAAM;AAClD,SAAK,iBAAiB,IAAI,gBAAgB,KAAK,MAAM;AACrD,SAAK,YAAY,IAAI,YAAY,MAAM,OAAO,CAAC;AAC/C,QAAI,KAAK,kBAAkB;AACzB,WAAK,WAAW,KAAK,OAAO,eAAe;AAAA,QACzC,MAAM;AAAA,QACN,OAAO;AAAA,MACT,CAAC;AAAA,IACH;AACA,QAAI,IAAI,EAAE,QAAQ,yBAAyB,GAAG;AAC5C,WAAK,cAAc,SAAS,cAAc,QAAQ;AAClD,WAAK,YAAY,QAAQ;AACzB,WAAK,YAAY,SAAS;AAC1B,WAAK,eAAe,KAAK,YAAY,WAAW,QAAQ;AACxD,WAAK,aAAa,UAAU;AAAA,QAC1B;AAAA,QACA,QAAQ;AAAA,MACV,CAAC;AACD,eAAS,KAAK,YAAY,KAAK,WAAW;AAAA,IAC5C;AAAA,EACF;AAAA,EACA,aAAa;AACX,WAAO,cAAc;AAAA,EACvB;AAAA,EACA,iBAAiB;AACf,WAAO;AAAA,EACT;AAAA,EACA,wBAAwB;AACtB,WAAO,eAAe,UAAU,eAAe,WAAW,eAAe;AAAA,EAC3E;AAAA,EACA,YAAY,QAAQ,QAAQ,OAAO;AACjC,QAAI,KAAK,0BAA0B,QAAQ,MAAM,KAAK,GAAG;AACvD,aAAO;AAAA,IACT;AACA,QAAI,CAAC,KAAK,UAAU,IAAI,MAAM,GAAG;AAC/B,aAAO;AAAA,IACT;AACA,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,SAAK,OAAO,MAAM;AAClB,QAAI,CAAC,SAAS,WAAW,WAAW,GAAG;AACrC,aAAO;AAAA,IACT;AACA,QAAI,KAAK,qBAAqB,IAAI,MAAM,GAAG;AACzC,WAAK,0BAA0B,KAAK,MAAM;AAC1C,aAAO;AAAA,IACT;AACA,UAAM,EAAE,mBAAmB,IAAI,KAAK,UAAU,IAAI,MAAM;AACxD,QAAI,sBAAsB,MAAM;AAC9B,WAAK,YAAY,mBAAmB,KAAK,QAAQ,KAAK;AACtD,WAAK,YAAY,mBAAmB,KAAK,QAAQ,KAAK;AAAA,IACxD;AACA,SAAK,gBAAgB,MAAM;AAC3B,SAAK,UAAU,OAAO,MAAM;AAC5B,WAAO;AAAA,EACT;AAAA,EACA,SAAS;AACP,WAAO;AAAA,MACL,eAAe,KAAK,cAAc;AAAA,MAClC,wBAAwB,KAAK,cAAc;AAAA,MAC3C,YAAY;AAAA,IACd;AAAA,EACF;AAAA,EACA,gBAAgB,QAAQ;AACtB,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,QAAI,CAAC,cAAc,CAAC,WAAW,cAAc;AAC3C;AAAA,IACF;AACA,QAAI,aAAa,WAAW,cAAc;AACxC,YAAM,cAAc,WAAW;AAC/B,UAAI,YAAY,mBAAmB,YAAY;AAC7C,aAAK,eAAe,eAAe,YAAY,SAAS,YAAY,OAAO,YAAY,QAAQ,YAAY,QAAQ,YAAY,KAAK;AAAA,MACtI;AACA,kBAAY,UAAU;AAAA,IACxB,OAAO;AACL,YAAM,aAAa,WAAW;AAC9B,WAAK,cAAc,cAAc,WAAW,QAAQ,WAAW,MAAM,WAAW,KAAK;AACrF,iBAAW,SAAS;AAAA,IACtB;AACA,eAAW,eAAe;AAAA,EAC5B;AAAA,EACA,SAAS,QAAQ;AACf,QAAI,KAAK,UAAU,IAAI,MAAM,GAAG;AAC9B,YAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,aAAO,WAAW;AAAA,IACpB;AACA,WAAO;AAAA,EACT;AAAA,EACA,OAAO,QAAQ;AACb,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,eAAW;AAAA,EACb;AAAA,EACA,OAAO,QAAQ;AACb,QAAI,KAAK,UAAU,IAAI,MAAM,GAAG;AAC9B,YAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,iBAAW;AAAA,IACb;AAAA,EACF;AAAA,EACA,MAAM,QAAQ,OAAO,OAAO;AAC1B,QAAI,UAAU,eAAe,UAAU,MAAM;AAC3C,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF;AACA,UAAM,SAAS,EAAE,IAAI,KAAK,WAAW,EAAE;AACvC,SAAK,UAAU,IAAI,QAAQ,EAAE,OAAO,OAAO,QAAQ,UAAU,EAAE,CAAC;AAChE,WAAO;AAAA,EACT;AAAA,EACA,KAAK,QAAQ,QAAQ,OAAO,OAAO,UAAU;AAC3C,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,uEAAuE;AAAA,IACzF;AACA,SAAK,UAAU,IAAI,QAAQ,EAAE,OAAO,OAAO,QAAQ,SAAS,CAAC;AAAA,EAC/D;AAAA,EACA,cAAc;AACZ,SAAK,uBAAuB;AAC5B,SAAK,MAAM,OAAO,CAAC,KAAK,sBAAsB,OAAO,CAAC,CAAC;AACvD,SAAK,wBAAwB;AAC7B,SAAK,0BAA0B;AAC/B,SAAK,uBAAuC,oBAAI,QAAQ;AACxD,SAAK,0BAA0B,QAAQ,CAAC,MAAM;AAC5C,WAAK,gBAAgB,CAAC;AACtB,WAAK,UAAU,OAAO,CAAC;AAAA,IACzB,CAAC;AACD,SAAK,uBAAuB,QAAQ,CAAC,MAAM,KAAK,cAAc,cAAc,EAAE,QAAQ,EAAE,MAAM,EAAE,KAAK,CAAC;AACtG,SAAK,uBAAuB,QAAQ,CAAC,MAAM,KAAK,cAAc,oBAAoB,EAAE,QAAQ,EAAE,MAAM,EAAE,KAAK,CAAC;AAC5G,SAAK,4BAA4B,CAAC;AAClC,SAAK,yBAAyB,CAAC;AAC/B,SAAK,yBAAyB,CAAC;AAAA,EACjC;AAAA,EACA,4BAA4B;AAC1B,QAAI,CAAC,KAAK,uBAAuB;AAC/B,WAAK,wBAAwB,KAAK,OAAO,qBAAqB;AAAA,IAChE;AAAA,EACF;AAAA,EACA,yBAAyB;AACvB,QAAI,KAAK,oBAAoB;AAC3B,WAAK,mBAAmB,IAAI;AAC5B,WAAK,qBAAqB;AAAA,IAC5B;AAAA,EACF;AAAA,EACA,iBAAiB;AACf,QAAI,CAAC,KAAK,oBAAoB;AAC5B,WAAK,qBAAqB,KAAK,sBAAsB,iBAAiB;AAAA,IACxE;AACA,WAAO,KAAK;AAAA,EACd;AAAA,EACA,MAAM,cAAc,SAASG,OAAM;AACjC,UAAM,UAAU,KAAK,cAAc,cAAcA,OAAM,eAAe,WAAW,eAAe,QAAQ;AACxG,SAAK,0BAA0B;AAC/B,SAAK,uBAAuB;AAC5B,SAAK,sBAAsB,mBAAmB,SAAS,GAAG,SAAS,GAAGA,KAAI;AAC1E,SAAK,YAAY;AACjB,UAAM,QAAQ,SAAS,WAAW,IAAI;AACtC,UAAM,SAAS,QAAQ,eAAe,EAAE,MAAM,CAAC;AAC/C,YAAQ,MAAM;AACd,QAAI,WAAW,MAAM;AACnB,WAAK,cAAc,cAAc,SAASA,OAAM,eAAe,WAAW,eAAe,QAAQ;AAAA,IACnG;AACA,QAAI,IAAI,EAAE,QAAQ,yBAAyB,GAAG;AAC5C,mBAAa,OAAO,KAAK,iBAAiB,QAAQ,MAAM,wCAAwC;AAChG,WAAK,aAAa,kBAAkB;AAAA,IACtC;AACA,WAAO;AAAA,EACT;AAAA,EACA,qBAAqB,QAAQ,MAAM;AACjC,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,SAAK,gBAAgB,MAAM;AAC3B,eAAW,SAAS;AACpB,WAAO,WAAW;AAAA,EACpB;AAAA,EACA,SAAS,QAAQ;AACf,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,UAAM,EAAE,OAAO,IAAI;AACnB,QAAI,UAAU,MAAM;AAClB,YAAM,IAAI,MAAM,6DAA6D;AAAA,IAC/E;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,KAAK,QAAQ;AACjB,QAAI,CAAC,KAAK,UAAU,IAAI,MAAM,GAAG;AAC/B,YAAM,IAAI,MAAM,UAAU,4BAA4B;AAAA,IACxD;AACA,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,UAAM,EAAE,OAAO,IAAI;AACnB,QAAI,UAAU,MAAM;AAClB,aAAO,KAAK,qBAAqB,QAAQ,MAAM;AAAA,IACjD;AACA,QAAI;AACJ,QAAI,WAAW,UAAU,aAAa;AACpC,YAAM,KAAK,MAAM,QAAQ,IAAI;AAAA,QAC3B,KAAK,KAAK,WAAW,mBAAmB,KAAK,MAAM;AAAA,QACnD,KAAK,KAAK,WAAW,mBAAmB,KAAK,MAAM;AAAA,MACrD,CAAC;AACD,YAAM,aAAa,GAAG;AACtB,YAAM,aAAa,GAAG;AACtB,aAAO,qBAAqB,uBAAuB,YAAY,UAAU;AAAA,IAC3E,OAAO;AACL,YAAM,aAAa,WAAW;AAC9B,YAAM,OAAO,MAAM,KAAK,cAAc,WAAW,QAAQ,WAAW,IAAI;AACxE,aAAO,wBAAwB,MAAM,WAAW,KAAK;AAAA,IACvD;AACA,SAAK,qBAAqB,QAAQ,IAAI;AACtC,WAAO;AAAA,EACT;AAAA,EACA,UAAU,QAAQ;AAChB,UAAM,gBAAgB,KAAK,UAAU,IAAI,MAAM;AAC/C,UAAM,EAAE,QAAQ,OAAO,OAAO,aAAa,IAAI;AAC/C,QAAI,UAAU,aAAa;AACzB,YAAM,IAAI,MAAM,sDAAsD;AAAA,IACxE;AACA,QAAI,gBAAgB,MAAM;AACxB,UAAI,UAAU,MAAM;AAClB,cAAM,IAAI,MAAM,gCAAgC;AAAA,MAClD,OAAO;AACL,cAAM,IAAI,MAAM,iCAAiC;AAAA,MACnD;AAAA,IACF;AACA,UAAMA,QAAO,aAAa;AAC1B,UAAM,UAAU,KAAK,cAAc,cAAcA,OAAM,aAAa,KAAK;AACzE,SAAK,0BAA0B;AAC/B,SAAK,uBAAuB;AAC5B,SAAK,sBAAsB,mBAAmB,aAAa,QAAQ,GAAG,SAAS,GAAGA,KAAI;AACtF,SAAK,YAAY;AACjB,UAAM,aAAa,KAAK,eAAe,OAAO,KAAK;AACnD,UAAM,YAAY,OAAO,EAAE,yBAAyB,UAAU;AAC9D,UAAM,aAAa,KAAK,UAAU,IAAI,WAAW,MAAM;AACvD,eAAW,eAAe,EAAE,MAAAA,OAAM,OAAO,KAAK,sBAAsB,GAAG,QAAQ,QAAQ;AACvF,WAAO,EAAE,WAAW,QAAQ,SAAS,SAASA,MAAK;AAAA,EACrD;AAAA,EACA,WAAW,IAAI;AACb,UAAM,OAAO,KAAK,SAAS,GAAG,MAAM;AACpC,QAAI,GAAG,UAAU,UAAU;AACzB,UAAI;AACF,cAAM,UAAU,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AAC5D,eAAO,OAAO,GAAG,OAAO,GAAG,OAAO,OAAO;AAAA,MAC3C,SAAS,IAAP;AACA,cAAM,IAAI,MAAM,kDAAkD;AAAA,MACpE;AAAA,IACF;AACA,WAAO,OAAO,GAAG,OAAO,GAAG,OAAO,IAAI;AAAA,EACxC;AAAA,EACA,MAAM,KAAK,GAAG;AACZ,QAAI,CAAC,KAAK,kBAAkB;AAC1B,cAAQ,KAAK,gVAAgV;AAAA,IAC/V;AACA,UAAM,kBAAkB,KAAK;AAC7B,UAAM,kBAAkB,CAAC;AACzB,QAAI,gBAAgB;AACpB,QAAI,KAAK,sBAAsB,MAAM;AACnC,WAAK,qBAAqB;AAC1B,sBAAgB;AAAA,IAClB,OAAO;AACL,WAAK,aAAa,KAAK,eAAe;AAAA,IACxC;AACA,SAAK,eAAe;AACpB,MAAE;AACF,UAAM,8BAA8B,aAAa,QAAQ,KAAK,aAAa,IAAI,CAAC,MAAM,EAAE,KAAK,CAAC,EAAE,OAAO,CAAC,MAAM,KAAK,IAAI;AACvH,UAAM,4BAA4B,aAAa,QAAQ,KAAK,aAAa,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,EAAE,OAAO,CAAC,MAAM,KAAK,IAAI;AACpH,SAAK,eAAe;AACpB,QAAI,eAAe;AACjB,WAAK,qBAAqB;AAAA,IAC5B;AACA,UAAM,MAAM;AAAA,MACV,cAAc,KAAK;AAAA,MACnB,gBAAgB,KAAK;AAAA,MACrB,UAAU;AAAA,MACV,QAAQ;AAAA,IACV;AACA,UAAM,WAAW,MAAM,QAAQ,IAAI,2BAA2B;AAC9D,QAAI,cAAc,aAAa,IAAI,QAAQ;AAC3C,QAAI,yBAAyB,MAAM,SAAS,IAAI,CAAC,GAAG,QAAQ,EAAE,MAAM,0BAA0B,KAAK,IAAI,EAAE,EAAE,EAAE,IAAI,CAAC,MAAM,GAAG,EAAE,SAAS,EAAE,IAAI,EAAE,KAAK,IAAI;AACvJ,SAAK,eAAe;AACpB,SAAK,iBAAiB;AACtB,WAAO;AAAA,EACT;AAAA,EACA,eAAe,OAAO,OAAO,QAAQ;AACnC,QAAI,UAAU,YAAY,UAAU,QAAQ,OAAO,SAAS,KAAK,aAAa,SAAS,OAAO,EAAE,GAAG;AACjG,eAAS,OAAO,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC;AAAA,IACzD;AACA,UAAM,SAAS,KAAK,MAAM,QAAQ,OAAO,KAAK;AAC9C,WAAO,EAAE,QAAQ,OAAO,MAAM;AAAA,EAChC;AAAA,EACA,gBAAgB,SAAS;AACvB,QAAI,CAAC,SAAS;AACZ,aAAO;AAAA,IACT;AACA,UAAM,aAAa,KAAK,UAAU,IAAI,QAAQ,MAAM;AACpD,QAAI,aAAa,WAAW,cAAc;AACxC,YAAM,OAAO,WAAW;AACxB,UAAI,KAAK,mBAAmB,oBAAoB;AAC9C,eAAO,KAAK;AAAA,MACd,OAAO;AACL,eAAO,KAAK,QAAQ,WAAW;AAAA,MACjC;AAAA,IACF;AACA,UAAM,aAAa,WAAW;AAC9B,WAAO,EAAE,QAAQ,GAAG,MAAM,WAAW,MAAM,QAAQ,WAAW,OAAO;AAAA,EACvE;AAAA,EACA,MAAM,aAAa,OAAO;AACxB,QAAI,KAAK,kBAAkB;AACzB,aAAO,KAAK,oBAAoB,KAAK;AAAA,IACvC,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,YAAY,QAAQ;AAClB,UAAM,aAAa,KAAK,UAAU,IAAI,MAAM;AAC5C,QAAI,WAAW,cAAc;AAC3B;AAAA,IACF;AACA,UAAMA,QAAO,mBAAmB,WAAW,KAAK,IAAI,aAAa,cAAc,WAAW,KAAK;AAC/F,UAAM,UAAU,KAAK,cAAc,cAAcA,OAAM,KAAK,sBAAsB,CAAC;AACnF,eAAW,eAAe,EAAE,MAAAA,OAAM,OAAO,KAAK,sBAAsB,GAAG,QAAQ,QAAQ;AACvF,QAAI,WAAW,QAAQ;AACrB,YAAM,gBAAgB,KAAK,cAAc,oBAAoBA,OAAM,eAAe,YAAY,eAAe,QAAQ;AACrH,YAAM,cAAc,cAAc,eAAe;AACjD,UAAI,WAAW,UAAU,WAAW,WAAW,UAAU,QAAQ;AAC/D,YAAI,WAAW,WAAW,EAAE,IAAI,WAAW,MAAM;AAAA,MACnD,OAAO;AACL,YAAI,aAAa,WAAW,EAAE,IAAI,WAAW,MAAM;AAAA,MACrD;AACA,oBAAc,MAAM;AACpB,WAAK,0BAA0B;AAC/B,WAAK,uBAAuB;AAC5B,WAAK,sBAAsB,mBAAmB,eAAe,GAAG,SAAS,GAAGA,KAAI;AAChF,YAAM,cAAc;AAAA,QAClB,MAAAA;AAAA,QACA,OAAO,eAAe,YAAY,eAAe;AAAA,QACjD,QAAQ;AAAA,MACV;AACA,WAAK,uBAAuB,KAAK,WAAW;AAAA,IAC9C;AAAA,EACF;AAAA,EACA,aAAa,gBAAgB;AAC3B,QAAI,gBAAgB;AACpB,QAAI,YAAY;AAChB,UAAM,UAAU,CAAC;AACjB,mBAAe,QAAQ,CAAC,MAAM;AAC5B,UAAI,EAAE,KAAK,WAAW,GAAG;AACvB,UAAE,OAAO,CAAC,CAAC;AAAA,MACb;AACA,UAAI;AACJ,cAAQ,EAAE,KAAK;AAAA,aACR;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA,aACG;AACH,0BAAgB;AAChB;AAAA;AAEA,uBAAa,OAAO,OAAO,MAAM,eAAe,EAAE,KAAK,eAAe;AAAA;AAE1E,UAAI,cAAc,KAAK,cAAc,GAAG;AACtC,wBAAgB;AAAA,MAClB;AACA,sBAAgB,KAAK,KAAK,gBAAgB,aAAa,IAAI;AAC3D,kBAAY,EAAE,KAAK;AACnB,cAAQ,KAAK,aAAa;AAC1B,uBAAiB,EAAE,KAAK,SAAS;AAAA,IACnC,CAAC;AACD,UAAM,cAAc,IAAI,YAAY,aAAa;AACjD,mBAAe,QAAQ,CAAC,GAAG,OAAO;AAChC,YAAM,SAAS,QAAQ;AACvB,UAAI,EAAE,SAAS,SAAS;AACtB,YAAI,WAAW,aAAa,QAAQ,EAAE,KAAK,MAAM,EAAE,IAAI,EAAE,IAAI;AAAA,MAC/D,WAAW,EAAE,SAAS,UAAU;AAC9B,YAAI,YAAY,aAAa,QAAQ,EAAE,KAAK,MAAM,EAAE,IAAI,EAAE,IAAI;AAAA,MAChE,OAAO;AACL,YAAI,aAAa,aAAa,QAAQ,EAAE,KAAK,MAAM,EAAE,IAAI,EAAE,IAAI;AAAA,MACjE;AAAA,IACF,CAAC;AACD,UAAM,gBAAgB,KAAK,cAAc,cAAc,eAAe,eAAe,WAAW,eAAe,OAAO;AACtH,SAAK,MAAM,YAAY,eAAe,GAAG,aAAa,GAAG,aAAa;AACtE,UAAM,cAAc;AAAA,MAClB,MAAM;AAAA,MACN,OAAO,eAAe,WAAW,eAAe;AAAA,MAChD,QAAQ;AAAA,IACV;AACA,SAAK,uBAAuB,KAAK,WAAW;AAC5C,WAAO,EAAE,QAAQ,GAAG,MAAM,eAAe,QAAQ,cAAc;AAAA,EACjE;AAAA,EACA,iBAAiB,SAAS,QAAQ,aAAa,uBAAuB,QAAQ;AAC5E,QAAI,CAAC,QAAQ;AACX,eAAS,KAAK,eAAe,QAAQ,aAAa,WAAW;AAAA,IAC/D;AACA,QAAI,aAAa,cAAc,OAAO,KAAK,MAAM,GAAG;AAClD,WAAK,UAAU,IAAI,OAAO,MAAM,EAAE,SAAS,aAAa,uBAAuB,OAAO,OAAO,CAAC;AAC9F,aAAO;AAAA,IACT;AACA,SAAK,YAAY,OAAO,MAAM;AAC9B,YAAQ,WAAW,gBAAgB,KAAK,QAAQ,OAAO;AACvD,QAAI,iBAAiB,CAAC;AACtB,QAAI,eAAe,CAAC;AACpB,QAAI,CAAC,QAAQ,cAAc;AACzB,qBAAe,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,GAAG,EAAE,CAAC;AACpD,qBAAe,OAAO,OAAO,MAAM,EAAE,IAAI,CAAC,MAAM,EAAE,KAAK;AACvD,YAAM,eAAe;AACrB,mBAAa,IAAI,CAAC,MAAM;AACtB,uBAAe,KAAK,EAAE,MAAM,cAAc,MAAM,EAAE,CAAC;AAAA,MACrD,CAAC;AACD,YAAMa,WAAU,aAAa,eAAe,OAAO,KAAK;AACxD,qBAAe,KAAK,EAAE,MAAM,cAAc,MAAMA,SAAQ,CAAC;AACzD,UAAI,QAAQ,MAAM;AAChB,cAAMb,QAAO,aAAa,cAAc,QAAQ,WAAW;AAC3D,uBAAe,KAAK,EAAE,MAAM,cAAc,MAAM,CAAC,QAAQ,SAASA,QAAO,IAAIA,KAAI,EAAE,CAAC;AAAA,MACtF;AAAA,IACF;AACA,UAAM,aAAa,OAAO,IAAI,CAAC,QAAQ,OAAO;AAC5C,UAAI,OAAO,UAAU,aAAa;AAChC,cAAM,IAAI,MAAM,iIAAiI;AAAA,MACnJ;AACA,WAAK,YAAY,OAAO,MAAM;AAC9B,aAAO;AAAA,QACL,OAAO,KAAK,UAAU,IAAI,OAAO,MAAM,EAAE;AAAA,QACzC,OAAO,OAAO;AAAA,QACd,MAAM,QAAQ,cAAc;AAAA,MAC9B;AAAA,IACF,CAAC;AACD,UAAM,MAAM,eAAe,SAAS,cAAc,YAAY,MAAM;AACpE,QAAI;AACJ,QAAI,OAAO,KAAK,eAAe;AAC7B,iBAAW,KAAK,cAAc;AAAA,IAChC,OAAO;AACL,iBAAW,gBAAgB,KAAK,QAAQ,SAAS,YAAY,MAAM;AACnE,WAAK,cAAc,OAAO;AAAA,IAC5B;AACA,QAAI,uBAAuB;AACzB,uBAAiB,CAAC,GAAG,gBAAgB,GAAG,qBAAqB;AAAA,IAC/D;AACA,UAAM,WAAW;AAAA,MACf,KAAK,gBAAgB,MAAM;AAAA,MAC3B,GAAG,OAAO,IAAI,CAAC,OAAO,KAAK,gBAAgB,EAAE,CAAC;AAAA,MAC9C,KAAK,aAAa,cAAc;AAAA,IAClC;AACA,UAAM,YAAY,KAAK,OAAO,gBAAgB;AAAA,MAC5C,QAAQ,SAAS,mBAAmB,CAAC;AAAA,MACrC,SAAS,SAAS,IAAI,CAAC,GAAG,QAAQ,EAAE,SAAS,IAAI,UAAU,EAAE,EAAE;AAAA,IACjE,CAAC;AACD,SAAK,0BAA0B;AAC/B,UAAM,OAAO,KAAK,eAAe;AACjC,UAAM,oBAAoB,KAAK,gBAAgB;AAC/C,QAAI,mBAAmB;AACrB,UAAI,KAAK,kBAAkB;AACzB,aAAK,eAAe,KAAK,UAAU,CAAC;AAAA,MACtC;AAAA,IACF;AACA,SAAK,YAAY,QAAQ;AACzB,SAAK,aAAa,GAAG,SAAS;AAC9B,SAAK,mBAAmB,QAAQ,SAAS,IAAI,QAAQ,SAAS,IAAI,QAAQ,SAAS,EAAE;AACrF,QAAI,mBAAmB;AACrB,UAAI,KAAK,kBAAkB;AACzB,aAAK,eAAe,KAAK,UAAU,CAAC;AAAA,MACtC;AAAA,IACF;AACA,SAAK;AACL,WAAO,QAAQ,CAAC,WAAW;AACzB,WAAK,qBAAqB,IAAI,OAAO,MAAM;AAAA,IAC7C,CAAC;AACD,SAAK,qBAAqB,IAAI,OAAO,MAAM;AAC3C,QAAI,IAAI,EAAE,IAAI,mCAAmC,KAAK,KAAK,yBAAyB;AAClF,WAAK,YAAY;AAAA,IACnB;AACA,QAAI,mBAAmB;AACrB,WAAK,aAAa,KAAK;AAAA,QACrB,MAAM,QAAQ,YAAY;AAAA,QAC1B,OAAO,KAAK,aAAa,KAAK,QAAQ;AAAA,MACxC,CAAC;AAAA,IACH;AACA,WAAO;AAAA,EACT;AAAA,EACA,MAAM,oBAAoB,UAAU;AAClC,UAAM,cAAc,KAAK,cAAc,cAAc,IAAI,eAAe,WAAW,eAAe,aAAa;AAC/G,UAAM,MAAM,KAAK,cAAc,cAAc,IAAI,eAAe,WAAW,eAAe,QAAQ;AAClG,SAAK,0BAA0B;AAC/B,SAAK,uBAAuB;AAC5B,SAAK,sBAAsB,gBAAgB,UAAU,GAAG,GAAG,aAAa,CAAC;AACzE,SAAK,sBAAsB,mBAAmB,aAAa,GAAG,KAAK,GAAG,EAAE;AACxE,SAAK,YAAY;AACjB,UAAM,IAAI,SAAS,WAAW,IAAI;AAClC,UAAM,WAAW,IAAI,eAAe,IAAI,eAAe,CAAC;AACxD,UAAM,mBAAmB,OAAO,SAAS,KAAK,SAAS,EAAE;AACzD,QAAI,MAAM;AACV,SAAK,cAAc,cAAc,KAAK,IAAI,eAAe,WAAW,eAAe,QAAQ;AAC3F,SAAK,cAAc,cAAc,aAAa,IAAI,eAAe,WAAW,eAAe,aAAa;AACxG,WAAO,mBAAmB;AAAA,EAC5B;AAAA,EACA,mBAAmB,QAAQ,gBAAgB,6BAA6B;AACtE,WAAO,IAAI,EAAE,QAAQ,oBAAoB,KAAK,OAAO,MAAM,CAAC,WAAW,KAAK,UAAU,IAAI,OAAO,MAAM,EAAE,gBAAgB,QAAQ,aAAa,cAAc,OAAO,KAAK,IAAI,aAAa;AAAA,EAC3L;AAAA,EACA,aAAa;AACX,WAAO,KAAK,UAAU,WAAW,IAAI,KAAK,0BAA0B;AAAA,EACtE;AAAA,EACA,UAAU;AACR,QAAI,KAAK,UAAU;AACjB;AAAA,IACF;AACA,SAAK,cAAc,QAAQ;AAC3B,SAAK,eAAe,QAAQ;AAC5B,SAAK,WAAW;AAAA,EAClB;AACF;AACA,cAAc,aAAa;AAG3B,IAAI,kBAAkB,GAAG;AACvB,kBAAgB,UAAU,YAAY;AACpC,QAAI,EAAE,IAAI,gCAAgC,KAAK;AAC/C,UAAM,gBAAgB;AAAA,MACpB,iBAAiB,IAAI,EAAE,IAAI,0BAA0B,IAAI,cAAc;AAAA,IACzE;AACA,UAAM,UAAU,MAAM,UAAU,IAAI,eAAe,aAAa;AAChE,UAAM,gBAAgB,QAAQ;AAC9B,UAAM,mBAAmB,CAAC;AAC1B,UAAM,mBAAmB,QAAQ,SAAS,IAAI,iBAAiB;AAC/D,qBAAiB,iBAAiB;AAAA,MAChC,kCAAkC,cAAc;AAAA,MAChD,oCAAoC,cAAc;AAAA,MAClD,+BAA+B,cAAc;AAAA,IAC/C;AACA,QAAI,kBAAkB;AACpB,uBAAiB,mBAAmB,CAAC,iBAAiB;AAAA,IACxD;AACA,UAAM,SAAS,MAAM,QAAQ,cAAc,gBAAgB;AAC3D,WAAO,IAAI,cAAc,MAAM;AAAA,EACjC,GAAG,CAAC;AACN;AAGA,IAAI;AAAA,CACH,SAAS,eAAe;AACvB,gBAAc,cAAc,SAAS,KAAK;AAC1C,gBAAc,cAAc,SAAS,KAAK;AAC1C,gBAAc,cAAc,WAAW,KAAK;AAC5C,gBAAc,cAAc,SAAS,KAAK;AAC1C,gBAAc,cAAc,SAAS,KAAK;AAC1C,gBAAc,cAAc,WAAW,KAAK;AAC5C,gBAAc,cAAc,aAAa,KAAK;AAC9C,gBAAc,cAAc,mBAAmB,KAAK;AACpD,gBAAc,cAAc,UAAU,KAAK;AAC3C,gBAAc,cAAc,gBAAgB,KAAK;AACjD,gBAAc,cAAc,iBAAiB,MAAM;AACnD,gBAAc,cAAc,eAAe,MAAM;AACjD,gBAAc,cAAc,wBAAwB,MAAM;AAC1D,gBAAc,cAAc,aAAa,MAAM;AAC/C,gBAAc,cAAc,SAAS,MAAM;AAC3C,gBAAc,cAAc,WAAW,MAAM;AAC7C,gBAAc,cAAc,SAAS,MAAM;AAC3C,gBAAc,cAAc,SAAS,MAAM;AAC3C,gBAAc,cAAc,2BAA2B,MAAM;AAC7D,gBAAc,cAAc,2BAA2B,MAAM;AAC/D,GAAG,iBAAiB,eAAe,CAAC,EAAE;AACtC,IAAI,qBAAqB;AAAA;AAAA;AAAA;AAIzB,IAAI,+BAA+B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAcnC,IAAI,yBAAyB;AAAA;AAAA,IAEzB;AAAA;AAEJ,IAAI,OAAO;AACX,IAAI,wBAAwB;AAC5B,IAAI,wBAAwB;AAC5B,IAAI,OAAO;AACX,IAAI,OAAO;AACX,IAAI,sBAAsB;AAC1B,IAAI,OAAO;AACX,IAAI,SAAS;AACb,IAAI,aAAa;AACjB,IAAI,WAAW;AACf,IAAI,eAAe;AACnB,IAAI,iBAAiB;AACrB,IAAI,qBAAqB;AACzB,IAAI,QAAQ;AACZ,IAAI,YAAY;AAChB,IAAI,cAAc;AAClB,IAAI,kBAAkB;AACtB,IAAI,eAAe;AACnB,IAAI,mBAAmB;AAAA;AAEvB,IAAI,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAMf,IAAI,eAAe;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAsBnB,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAMjB,IAAI,iBAAiB;AAAA;AAAA;AAAA,IAGjB;AAAA;AAAA;AAAA;AAIJ,IAAI,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAYX,IAAI,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAsBX;AAAA;AAAA;AAGJ,IAAI,SAAS;AACb,IAAI,aAAa;AAAA;AAAA;AAAA;AAIjB,SAAS,uBAAuB,KAAK,SAAS,cAAc,gBAAgB;AAC1E,QAAM,kBAAkB,UAAU,yBAAyB;AAC3D,SAAO,UAAU;AAAA,wBACK;AAAA,iCACS;AAAA,QACzB,kBAAkB;AAAA;AAAA,MAEpB,kBAAkB;AAAA,aACX;AAAA;AAEb;AACA,SAAS,kBAAkB,MAAM,SAAS;AACxC,UAAQ;AAAA,SACD,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO,uBAAuB,SAAS,OAAO;AAAA,SAC3C,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO,UAAU,aAAa;AAAA,SAC3B,aAAa;AAChB,aAAO,UAAU,eAAe;AAAA,SAC7B,aAAa;AAChB,aAAO,UAAU,qBAAqB;AAAA,SACnC,aAAa;AAChB,aAAO,UAAU,YAAY;AAAA,SAC1B,aAAa;AAChB,aAAO,UAAU,kBAAkB;AAAA,SAChC,aAAa;AAChB,aAAO,UAAU,mBAAmB;AAAA,SACjC,aAAa;AAChB,aAAO,UAAU,iBAAiB;AAAA,SAC/B,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO,UAAU,eAAe;AAAA,SAC7B,aAAa;AAChB,aAAO,UAAU,aAAa;AAAA,SAC3B,aAAa;AAChB,aAAO,uBAAuB,OAAO,OAAO;AAAA,SACzC,aAAa;AAChB,aAAO,uBAAuB,OAAO,OAAO;AAAA,SACzC,aAAa;AAChB,aAAO,UAAU,WAAW;AAAA,SACzB,aAAa;AAChB,aAAO;AAAA,SACJ,aAAa;AAChB,aAAO;AAAA;AAEP,YAAM,IAAI,MAAM,cAAc,0BAA0B;AAAA;AAE9D;AAGA,IAAI;AAAA,CACH,SAAS,cAAc;AACtB,eAAa,aAAa,SAAS,KAAK;AACxC,eAAa,aAAa,UAAU,KAAK;AACzC,eAAa,aAAa,SAAS,KAAK;AACxC,eAAa,aAAa,UAAU,KAAK;AACzC,eAAa,aAAa,SAAS,KAAK;AACxC,eAAa,aAAa,SAAS,KAAK;AACxC,eAAa,aAAa,WAAW,KAAK;AAC1C,eAAa,aAAa,WAAW,KAAK;AAC1C,eAAa,aAAa,YAAY,KAAK;AAC3C,eAAa,aAAa,YAAY,KAAK;AAC3C,eAAa,aAAa,SAAS,MAAM;AACzC,eAAa,aAAa,iBAAiB,MAAM;AACjD,eAAa,aAAa,SAAS,MAAM;AACzC,eAAa,aAAa,UAAU,MAAM;AAC1C,eAAa,aAAa,WAAW,MAAM;AAC3C,eAAa,aAAa,eAAe,MAAM;AAC/C,eAAa,aAAa,gBAAgB,MAAM;AAChD,eAAa,aAAa,WAAW,MAAM;AAC3C,eAAa,aAAa,SAAS,MAAM;AACzC,eAAa,aAAa,UAAU,MAAM;AAC1C,eAAa,aAAa,aAAa,MAAM;AAC7C,eAAa,aAAa,UAAU,MAAM;AAC1C,eAAa,aAAa,YAAY,MAAM;AAC5C,eAAa,aAAa,UAAU,MAAM;AAC1C,eAAa,aAAa,YAAY,MAAM;AAC9C,GAAG,gBAAgB,cAAc,CAAC,EAAE;AACpC,IAAI,OAAO;AACX,IAAI,QAAQ;AACZ,IAAI,OAAO;AACX,IAAI,QAAQ;AAAA;AAAA;AAAA;AAIZ,IAAI,SAAS;AACb,IAAI,OAAO;AACX,IAAI,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAgBf,IAAI,OAAO;AACX,IAAI,SAAS;AACb,IAAI,UAAU;AACd,IAAI,UAAU;AACd,IAAI,OAAO;AAAA;AAEX,IAAI,eAAe;AACnB,IAAI,OAAO;AACX,IAAI,aAAa;AACjB,IAAI,iBAAiB;AAAA;AAAA;AAAA;AAIrB,IAAI,cAAc;AAClB,IAAI,QAAQ;AACZ,IAAI,SAAS;AACb,IAAI,aAAa;AACjB,IAAI,YAAY;AAAA;AAAA;AAGhB,IAAI,SAAS;AACb,IAAI,WAAW;AACf,IAAI,OAAO;AACX,IAAI,QAAQ;AAAA;AAAA;AAAA;AAIZ,IAAI,QAAQ;AACZ,IAAI,UAAU;AACd,IAAI,QAAQ;AAAA;AAAA;AAAA;AAIZ,IAAI,UAAU;AACd,SAAS,iBAAiB,MAAM,SAAS;AACvC,UAAQ;AAAA,SACD,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO,UAAU,WAAW;AAAA,SACzB,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO,UAAU,iBAAiB;AAAA,SAC/B,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO,UAAU,YAAY;AAAA,SAC1B,YAAY;AACf,aAAO,UAAU,aAAa;AAAA,SAC3B,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA,SACJ,YAAY;AACf,aAAO;AAAA;AAEP,YAAM,IAAI,MAAM,cAAc,0BAA0B;AAAA;AAE9D;AAGA,IAAI,cAAc,CAAC,cAAc;AAC/B,UAAQ;AAAA,SACD;AACH,aAAO;AAAA,SACJ;AACH,aAAO;AAAA,SACJ;AACH,aAAO;AAAA,SACJ;AACH,aAAO;AAAA;AAEP,YAAM,IAAI,MAAM,GAAG,uCAAuC;AAAA;AAEhE;AACA,SAAS,oBAAoB,aAAa,4BAA4B,OAAO,SAAS,OAAO,eAAe,GAAG;AAC7G,MAAI,gBAAgB,MAAM;AACxB,WAAO;AAAA,EACT;AACA,MAAI,sBAAsB;AAC1B,MAAI,gBAAgB,UAAU;AAC5B,0BAAsB,iBAAiB,YAAY,MAAM;AAAA,EAC3D,WAAW,gBAAgB,QAAQ;AACjC,0BAAsB,iBAAiB,YAAY,MAAM,MAAM;AAAA,EACjE,WAAW,gBAAgB,OAAO;AAChC,0BAAsB,iBAAiB,YAAY,KAAK,MAAM;AAAA,EAChE,WAAW,gBAAgB,SAAS;AAClC,0BAAsB,iBAAiB,YAAY,OAAO,MAAM;AAAA,EAClE,WAAW,gBAAgB,SAAS;AAClC,0BAAsB,kBAAkB,aAAa,OAAO,MAAM;AAAA,EACpE,WAAW,gBAAgB,WAAW;AACpC,0BAAsB,iBAAiB,YAAY,SAAS,MAAM;AAAA,EACpE,WAAW,gBAAgB,aAAa;AACtC,0BAAsB,iBAAiB,YAAY,WAAW,MAAM;AAAA,EACtE,OAAO;AACL,UAAM,IAAI,MAAM,cAAc,8DAA8D;AAAA,EAC9F;AACA,QAAM,cAAc,SAAS,IAAI;AACjC,QAAM,WAAW,YAAY,WAAW;AACxC,MAAI,uBAAuB;AAC3B,MAAI,2BAA2B;AAC7B,2BAAuB;AAAA,0BACD,yBAAyB,yBAAyB;AAAA;AAAA,UAElE;AAAA;AAAA,EAER,OAAO;AACL,2BAAuB;AAAA,0BACD,yBAAyB,yBAAyB;AAAA,UAClE;AAAA;AAAA,EAER;AACA,SAAO;AACT;AACA,SAAS,sBAAsB,SAAS,aAAa;AACnD,SAAO;AAAA,QACD,UAAU,mDAAmD;AAAA,QAC7D,cAAc,uCAAuC;AAAA;AAE7D;AAGA,SAAS,mBAAmB,gBAAgB,gBAAgB,YAAY,YAAY,YAAY,OAAO,YAAY,OAAO,WAAW,OAAO,YAAY,GAAG;AACzJ,eAAa,OAAO,cAAc,cAAc,KAAK,CAAC,YAAY,MAAM,cAAc,oDAAoD,WAAW;AACrJ,QAAM,UAAU;AAAA,oBACE,iBAAiB,MAAM;AAAA;AAAA,QAEnC,aAAa,qEAAqE,gBAAgB,qEAAqE;AAAA;AAAA;AAG7K,MAAI;AACJ,MAAI,eAAe,OAAO;AACxB,cAAU,qEAAqE;AAAA,EACjF,OAAO;AACL,cAAU,qEAAqE;AAAA,EACjF;AACA,SAAO;AAAA,uDAC8C,YAAY,SAAS;AAAA,kBAC1D,YAAY,SAAS;AAAA,wBACf;AAAA,MAClB,aAAa,WAAW,UAAU;AAAA,MAClC,aAAa,4DAA4D;AAAA;AAAA,QAEvE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uDAM+C,YAAY,SAAS;AAAA,wBACpD;AAAA,kBACN,iBAAiB,MAAM;AAAA;AAAA,kBAEvB,YAAY,SAAS;AAAA,MACjC;AAAA;AAAA;AAAA;AAIN;AACA,SAAS,wBAAwB,SAAS,aAAa,gBAAgB,gBAAgB,YAAY,YAAY,YAAY,OAAO,YAAY,OAAO,WAAW,OAAO,YAAY,GAAG;AACpL,SAAO;AAAA,IACL,mBAAmB,gBAAgB,gBAAgB,YAAY,YAAY,WAAW,WAAW,UAAU,SAAS;AAAA,2DAC7D,YAAY,SAAS;AAAA,wBACxD;AAAA,MAClB,aAAa,YAAY,KAAK;AAAA;AAAA;AAAA;AAAA,QAI5B,sBAAsB,SAAS,WAAW;AAAA;AAAA;AAAA;AAAA;AAKlD;AACA,IAAI,6BAA6B,CAAC,eAAe;AAC/C,MAAI,YAAY;AACd,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,EAKT,OAAO;AACL,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,EAKT;AACF;AACA,IAAI,yBAAyB,CAAC,YAAY,qBAAqB;AAC7D,MAAI,YAAY;AACd,WAAO;AAAA;AAAA;AAAA;AAAA,UAID,qBAAqB,IAAI,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA,YAK5B,qBAAqB,IAAI,KAAK;AAAA;AAAA,EAExC,OAAO;AACL,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAMC,qBAAqB,IAAI,KAAK;AAAA;AAAA,EAExC;AACF;AACA,SAAS,2BAA2B,eAAe,eAAe,aAAa,OAAO,YAAY,IAAI,SAAS,OAAO,kBAAkB,IAAI,YAAY,OAAO;AAC7J,QAAM,aAAa,cAAc,KAAK,cAAc;AACpD,QAAM,aAAa,cAAc,KAAK,cAAc;AACpD,QAAM,aAAa,aAAa,aAAa;AAC7C,QAAM,aAAa,aAAa,YAAY;AAC5C,QAAM,mBAAmB,aAAa,cAAc;AACpD,QAAM,gBAAgB,YAAY,cAAc;AAChD,eAAa,QAAQ,cAAc,qBAAqB,KAAK,cAAc,OAAO,KAAK,CAAC,eAAe,qBAAqB,KAAK,qBAAqB,OAAO,aAAa,cAAc,OAAO,KAAK,YAAY,cAAc,OAAO,KAAK,cAAc,OAAO,GAAG,MAAM,iBAAiB,wCAAwC,yCAAyC,cAAc;AAAA,wCAClV;AAAA,mBACrB,mDAAmD,cAAc,iBAAiB,mDAAmD,cAAc,oBAAoB,cAAc,eAAe;AACrN,SAAO;AAAA,4CACmC,0BAA0B,aAAa,sBAAsB;AAAA,oDACrD,aAAa,cAAc,QAAQ;AAAA;AAAA,yBAE9D,cAAc;AAAA,yBACd,cAAc;AAAA,6BACV;AAAA,sBACP;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBAYF,YAAY,MAAM;AAAA;AAAA;AAAA,sBAGhB,YAAY,MAAM;AAAA;AAAA,kBAEtB,SAAS,MAAM;AAAA,gDACe;AAAA;AAAA,qBAE3B,SAAS,GAAG,KAAK,KAAK,kBAAkB,SAAS,MAAM;AAAA,mBACzD,SAAS,qBAAqB,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKrC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAMlB,2BAA2B,UAAU;AAAA;AAAA;AAAA;AAAA,4CAIP;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAa9B,qBAAqB,IAAI,KAAK;AAAA;AAAA,cAE9B,uBAAuB,YAAY,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAUjE;AACA,IAAI,yBAAyB,CAAC,eAAe;AAC3C,MAAI,YAAY;AACd,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,EAKT,OAAO;AACL,WAAO;AAAA;AAAA;AAAA;AAAA;AAAA,EAKT;AACF;AACA,IAAI,0BAA0B,CAAC,eAAe;AAC5C,SAAO,aAAa,kDAAkD;AACxE;AACA,SAAS,uBAAuB,eAAe,eAAe,aAAa,OAAO,YAAY,IAAI,SAAS,OAAO,kBAAkB,IAAI;AACtI,QAAM,aAAa,cAAc,KAAK,cAAc;AACpD,QAAM,aAAa,cAAc,KAAK,cAAc;AACpD,QAAM,aAAa,aAAa,aAAa;AAC7C,QAAM,aAAa,aAAa,YAAY;AAC5C,eAAa,OAAO,aAAa,cAAc,OAAO,KAAK,aAAa,cAAc,OAAO,KAAK,YAAY,cAAc,OAAO,GAAG,MAAM,cAAc,mDAAmD,cAAc,kBAAkB,mDAAmD,cAAc,iBAAiB,kDAAkD,cAAc,IAAI;AACnY,QAAM,gBAAgB,aAAa,cAAc;AACjD,QAAM,gBAAgB,aAAa,cAAc;AACjD,QAAM,gBAAgB,YAAY,cAAc;AAChD,SAAO;AAAA,gDACuC,gBAAgB;AAAA,gDAChB,gBAAgB;AAAA,2BACrC,cAAc;AAAA,2BACd,cAAc;AAAA,wBACjB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBAgBJ,SAAS,MAAM;AAAA,kDACe;AAAA;AAAA,uBAE3B,SAAS,GAAG,KAAK,KAAK,kBAAkB,SAAS,MAAM;AAAA,qBACzD,SAAS,qBAAqB,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wCAW/B;AAAA,wCACA;AAAA,wCACA;AAAA;AAAA;AAAA;AAAA,4CAII;AAAA,8CACE;AAAA;AAAA;AAAA,cAGhC,uBAAuB,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA,4CAKH;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAoB9B,wBAAwB,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAkBhD;AACA,IAAI,qBAAqB,CAAC,eAAe;AACvC,SAAO,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA,MAKhB;AAAA;AAAA;AAAA;AAAA;AAAA;AAMN;AACA,SAAS,8BAA8B,eAAe,aAAa,OAAO;AACxE,eAAa,OAAO,cAAc,OAAO,KAAK,cAAc,OAAO,GAAG,MAAM,iDAAiD,gBAAgB;AAC7I,SAAO;AAAA,uBACc,cAAc,KAAK;AAAA,gDACM,cAAc;AAAA;AAAA,MAExD,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uCAca,mBAAmB,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAqBpE;AACA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,QAAQ,aAAa,gBAAgB,gBAAgB,aAAa,OAAO,aAAa,OAAO,OAAO,MAAM,cAAc,MAAM,yBAAyB,MAAM;AACvK,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AAC/C,UAAM,WAAW,aAAa,OAAO,KAAK,OAAO;AACjD,SAAK,UAAU,WAAW,MAAM,KAAK,CAAC,cAAc,YAAY,KAAK,MAAM,KAAK,eAAe,YAAY,KAAK,MAAM,KAAK,CAAC;AAC5H,SAAK,YAAY,YAAY,OAAO,KAAK,CAAC;AAC1C,QAAI,CAAC,KAAK,UAAU,KAAK,WAAW;AAClC,WAAK,oBAAoB,CAAC,GAAG,GAAG,CAAC;AACjC,WAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAAA,IAChC,OAAO;AACL,YAAM,gBAAgB,8BAA8B,YAAY,IAAI,UAAU,YAAY,IAAI,UAAU;AACxG,WAAK,gBAAgB,cAAc;AACnC,WAAK,oBAAoB,cAAc;AAAA,IACzC;AACA,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,KAAK,iBAAiB;AACjH,UAAM,UAAU,QAAQ;AACxB,UAAM,4BAA4B,0BAA0B;AAC5D,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,2BAA2B;AAC7B,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,4BAA4B;AACjC,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,KAAC,KAAK,WAAW,KAAK,WAAW,KAAK,QAAQ,IAAI,KAAK,YAAY,YAAY,IAAI,YAAY,IAAI,QAAQ;AAC3G,SAAK,YAAY,gBAAgB,KAAK,qBAAqB,cAAc,cAAc,KAAK,cAAc,KAAK,aAAa,KAAK,aAAa,KAAK,YAAY,KAAK,UAAU,KAAK,aAAa,KAAK,kBAAkB,KAAK;AAAA,EAC9N;AAAA,EACA,YAAY,WAAW,WAAW,UAAU;AAC1C,UAAM,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AAClE,UAAM,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AAClE,QAAI,CAAC,KAAK,UAAU,KAAK,WAAW;AAClC,WAAK,YAAY,KAAK,cAAc,KAAK;AAAA,IAC3C,OAAO;AACL,WAAK,YAAY;AAAA,IACnB;AACA,UAAM,YAAY,YAAY,eAAe;AAC7C,UAAM,YAAY,YAAY,eAAe;AAC7C,UAAM,WAAW,WAAW,KAAK,cAAc;AAC/C,WAAO,CAAC,WAAW,WAAW,QAAQ;AAAA,EACxC;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,2BAA2B,KAAK,MAAM;AAAA,QAChF,wBAAwB,KAAK,SAAS,KAAK,YAAY,KAAK,gBAAgB,KAAK,gBAAgB,OAAO,KAAK,YAAY,KAAK,WAAW,KAAK,WAAW,KAAK,UAAU,KAAK,SAAS,IAAI,CAAC;AAAA,QAC3L,KAAK,SAAS,2BAA2B,KAAK,mBAAmB,KAAK,eAAe,KAAK,YAAY,KAAK,WAAW,OAAO,MAAM,KAAK,SAAS,IAAI,KAAK,YAAY,8BAA8B,KAAK,eAAe,KAAK,UAAU,IAAI,uBAAuB,KAAK,mBAAmB,KAAK,eAAe,KAAK,YAAY,KAAK,SAAS;AAAA;AAEjV,WAAO;AAAA,EACT;AACF;AAGA,SAAS,yBAAyB;AAChC,SAAO;AAAA;AAAA,MAEH,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA8B1B;AACA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,gBAAgB,gBAAgB,aAAa,OAAO,aAAa,OAAO,OAAO,MAAM,cAAc,MAAM,yBAAyB,MAAM;AAC/J,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AACjD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,UAAM,UAAU,QAAQ;AACxB,UAAM,4BAA4B,0BAA0B;AAC5D,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,2BAA2B;AAC7B,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,4BAA4B;AACjC,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,YAAY,gBAAgB,KAAK,cAAc,cAAc,cAAc,KAAK,kBAAkB,KAAK;AAAA,EAC9G;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,yBAAyB;AAAA,QACnE,wBAAwB,KAAK,SAAS,KAAK,YAAY,KAAK,gBAAgB,KAAK,gBAAgB,KAAK,YAAY,KAAK,UAAU;AAAA,QACjI,uBAAuB;AAAA;AAE3B,WAAO;AAAA,EACT;AACF;AAGA,SAAS,gCAAgC,eAAe;AACtD,QAAM,aAAa,cAAc;AACjC,QAAM,aAAa,cAAc;AACjC,QAAM,YAAY,aAAa,aAAa,aAAa;AACzD,SAAO;AAAA,8CACqC,eAAe;AAAA,8CACf,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAQ1D,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,+CAQuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQf;AAAA,gCACA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAYE;AAAA,kCACA;AAAA;AAAA,4BAEN;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAS5B;AACA,IAAI,+BAA+B,MAAM;AAAA,EACvC,YAAY,QAAQ,QAAQ,aAAa,aAAa,OAAO,aAAa,OAAO,OAAO,MAAM,cAAc,MAAM,yBAAyB,MAAM;AAC/I,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AAC/C,SAAK,WAAW;AAAA,MACd,KAAK,KAAK,YAAY,KAAK,KAAK,cAAc,EAAE;AAAA,MAChD,KAAK,KAAK,YAAY,KAAK,KAAK,cAAc,EAAE;AAAA,MAChD,YAAY;AAAA,IACd;AACA,UAAM,UAAU,QAAQ;AACxB,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,UAAM,4BAA4B,0BAA0B;AAC5D,QAAI,2BAA2B;AAC7B,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,4BAA4B;AACjC,SAAK,iBAAiB,OAAO,OAAO;AACpC,SAAK,iBAAiB,OAAO,OAAO;AACpC,SAAK,YAAY,yBAAyB,KAAK,cAAc,cAAc,cAAc,KAAK,kBAAkB,KAAK;AAAA,EACvH;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,yBAAyB;AAAA,QACnE,wBAAwB,KAAK,SAAS,KAAK,YAAY,KAAK,gBAAgB,KAAK,gBAAgB,KAAK,YAAY,KAAK,UAAU;AAAA,QACjI,gCAAgC,KAAK,aAAa;AAAA;AAEtD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,sBAAsB,MAAM;AAAA,EAC9B,YAAY,aAAa,UAAU,gBAAgB,gBAAgB,aAAa,OAAO,aAAa,OAAO;AACzG,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,GAAG,GAAG,CAAC;AAC7B,SAAK,SAAS;AACd,SAAK,SAAS;AACd,SAAK,kBAAkB;AACvB,iBAAa,OAAO,YAAY,OAAO,GAAG,MAAM,8CAA8C;AAC9F,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,EAAE;AAClD,SAAK,UAAU,cAAc,KAAK,YAAY,KAAK,MAAM,KAAK,CAAC,cAAc,WAAW,MAAM,MAAM,KAAK,YAAY,KAAK,MAAM;AAChI,SAAK,oBAAoB,CAAC,GAAG,GAAG,KAAK,eAAe;AACpD,QAAI,CAAC,KAAK,QAAQ;AAChB,UAAI,KAAK,YAAY,KAAK,IAAI;AAC5B,aAAK,kBAAkB,KAAK;AAAA,MAC9B;AACA,UAAI,KAAK,YAAY,KAAK,IAAI;AAC5B,aAAK,kBAAkB,KAAK;AAAA,MAC9B;AAAA,IACF;AACA,SAAK,WAAW,gBAAgB,KAAK,gBAAgB;AAAA,MACnD,KAAK,YAAY;AAAA,MACjB,KAAK,YAAY;AAAA,MACjB,KAAK,YAAY;AAAA,MACjB;AAAA,IACF,GAAG,KAAK,eAAe,KAAK,iBAAiB;AAC7C,SAAK,aAAa;AAClB,SAAK,aAAa;AAClB,SAAK,iBAAiB;AACtB,SAAK,iBAAiB;AACtB,SAAK,YAAY,gBAAgB,cAAc,cAAc,kBAAkB,kBAAkB,KAAK,qBAAqB,KAAK;AAAA,EAClI;AAAA,EACA,cAAc;AACZ,UAAM,mBAAmB,CAAC,eAAe;AACvC,aAAO;AAAA,4BACe;AAAA;AAAA;AAAA;AAAA;AAAA,uDAK2B,aAAa,IAAI,aAAa;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAQjF;AACA,UAAM,YAAY,KAAK,SAAS,IAAI;AACpC,UAAM,WAAW;AAAA,QACb,mBAAmB,KAAK,gBAAgB,KAAK,gBAAgB,OAAO,KAAK,YAAY,OAAO,OAAO,OAAO,SAAS;AAAA,gEAC3D,YAAY,SAAS;AAAA,4BACzD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAMhB,iBAAiB,SAAS;AAAA;AAAA;AAAA,QAG9B,KAAK,SAAS,2BAA2B,KAAK,mBAAmB,KAAK,eAAe,KAAK,YAAY,IAAI,MAAM,KAAK,eAAe,IAAI,uBAAuB,KAAK,mBAAmB,KAAK,eAAe,KAAK,YAAY,IAAI,MAAM,KAAK,eAAe;AAAA;AAE9P,WAAO;AAAA,EACT;AACF;AACA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,aAAa,OAAO,MAAM,cAAc,MAAM,yBAAyB,MAAM;AACvF,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,UAAU,QAAQ;AACvB,SAAK,4BAA4B,0BAA0B;AAC3D,SAAK,aAAa;AAClB,QAAI,KAAK,SAAS;AAChB,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,KAAK,2BAA2B;AAClC,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,YAAY,kBAAkB;AAAA,EACrC;AAAA,EACA,cAAc;AACZ,WAAO;AAAA,MACL,oBAAoB,KAAK,YAAY,KAAK,yBAAyB;AAAA,MACnE,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA,UAIvB,sBAAsB,KAAK,SAAS,KAAK,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA,EAK3D;AACF;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC;AACtB,SAAK,cAAc,CAAC;AACpB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,MACf,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAM7B,WAAO;AAAA,EACT;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,IAAI;AACzB,MAAI,EAAE,MAAM,IAAI;AAChB,UAAQ,SAAS,aAAa,WAAW,KAAK;AAC9C,MAAI,UAAU,UAAU;AACtB,UAAM,SAAS,aAAa,kBAAkB,OAAO,aAAa,cAAc,KAAK,CAAC;AACtF,WAAO,KAAK,KAAK;AACjB,WAAO,SAAS,eAAe,OAAO,OAAO,MAAM;AAAA,EACrD,OAAO;AACL,UAAM,UAAU,IAAI,aAAa,KAAK;AACtC,UAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,KAAK,EAAE,CAAC;AACvD,WAAO,SAAS,iBAAiB,SAAS,CAAC,GAAG,OAAO,WAAW;AAAA,EAClE;AACF;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,MAAM,IAAI;AAC1B,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,QAAQ,aAAa,cAAc,EAAE,KAAK;AAChD,QAAM,SAAS,aAAa,uBAAuB,OAAO,KAAK;AAC/D,QAAM,SAAS,aAAa,cAAc,MAAM;AAChD,eAAa,OAAO,UAAU,QAAQ,MAAM,kBAAkB,eAAe,sCAAsC,EAAE,cAAc,oFAAoF;AACvN,OAAK,QAAQ,OAAO,EAAE,MAAM;AAC5B,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,QAAQ,OAAO,EAAE,MAAM;AAC3D;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,iBAAiB,EAAE,GAAG,GAAG,YAAY,YAAY,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AAC7K,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,cAAc,aAAa,EAAE,MAAM,QAAQ,KAAK,EAAE,MAAM,QAAQ;AACtE,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,aAAa,EAAE,MAAM,MAAM,GAAG,EAAE;AACtC,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,YAAY,aAAa,cAAc,UAAU;AACvD,QAAM,oBAAoB,uBAAuB,2BAA2B,EAAE,MAAM,MAAM,GAAG,EAAE,GAAG,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC;AACtH,QAAM,WAAW,kBAAkB,OAAO,CAAC,aAAa,WAAW,CAAC;AACpE,eAAa,OAAO,gBAAgB,aAAa,MAAM,kCAAkC,qBAAqB,uCAAuC,EAAE,aAAa,EAAE,wBAAwB,6BAA6B,wBAAwB;AACnP,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,WAAW,aAAa,CAAC,WAAW,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,WAAW;AAC1G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACxF,QAAM,gBAAgB,CAAC,KAAK,GAAG;AAC/B,QAAM,WAAW,KAAK,IAAI,WAAW,SAAS;AAC9C,QAAM,iBAAiB,cAAc;AACrC,QAAM,iBAAiB,cAAc;AACrC,QAAM,SAAS,CAAC,KAAK,GAAG;AACxB,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,WAAW,EAAE;AAAA,IACrC,EAAE,MAAM,SAAS,MAAM,CAAC,WAAW,EAAE;AAAA,IACrC,EAAE,MAAM,SAAS,MAAM,CAAC,WAAW,EAAE;AAAA,EACvC;AACA,MAAI;AACJ,MAAI;AACJ,QAAM,cAAc,CAAC,UAAU,aAAa,WAAW;AACvD,MAAI,oBAAoB,IAAI,EAAE,IAAI,4BAA4B;AAC9D,MAAI,oBAAoB,GAAG;AACzB,QAAI,cAAc,eAAe,KAAK;AACpC,0BAAoB,kBAAkB;AAAA,IACxC,WAAW,aAAa,KAAK,eAAe,OAAO,eAAe,MAAM,eAAe,KAAK;AAC1F,0BAAoB,kBAAkB;AAAA,IACxC,WAAW,eAAe,OAAO,eAAe,OAAO,eAAe,IAAI,gBAAgB,eAAe,OAAO,eAAe,OAAO,eAAe,IAAI,cAAc;AACrK,0BAAoB,kBAAkB;AAAA,IACxC,OAAO;AACL,0BAAoB,kBAAkB;AAAA,IACxC;AAAA,EACF;AACA,UAAQ;AAAA,SACD,kBAAkB;AACrB,gBAAU,IAAI,oBAAoB,aAAa,gBAAgB,gBAAgB,YAAY,YAAY,MAAM,aAAa,sBAAsB;AAChJ;AAAA,SACG,kBAAkB,qBAAqB;AAC1C,YAAM,MAAM,EAAE,SAAS,UAAU,OAAO,EAAE,OAAO,aAAa,OAAO,GAAG,OAAO,EAAE,MAAM,EAAE,CAAC;AAC1F,gBAAU,IAAI,oBAAoB,aAAa,aAAa,gBAAgB,gBAAgB,YAAY,UAAU;AAClH,UAAI,QAAQ,aAAa;AACvB,cAAM,SAAS,iBAAiB,SAAS,QAAQ,EAAE,OAAO,YAAY,GAAG;AACzE,cAAM,wBAAwB,IAAI,sBAAsB,IAAI,OAAO,MAAM,aAAa,sBAAsB;AAC5G,YAAI,cAAc;AAClB,cAAM,mBAAmB,CAAC,GAAG;AAC7B,YAAI,MAAM;AACR,2BAAiB,KAAK,IAAI;AAAA,QAC5B;AACA,YAAI,wBAAwB;AAC1B,2BAAiB,KAAK,sBAAsB;AAAA,QAC9C;AACA,YAAI,gBAAgB,aAAa;AAC/B,wBAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,EAAE,CAAC;AAC1D,gCAAsB,YAAY;AAAA,QACpC;AACA,cAAM,eAAe,SAAS,iBAAiB,uBAAuB,kBAAkB,IAAI,OAAO,WAAW;AAC9G,sBAAc,KAAK,GAAG;AACtB,cAAM,eAAe,SAAS,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC5G,sBAAc,KAAK,YAAY;AAC/B,mBAAW,MAAM,eAAe;AAC9B,mBAAS,YAAY,GAAG,MAAM;AAAA,QAChC;AACA,eAAO;AAAA,MACT;AACA;AAAA,IACF;AAAA,SACK,kBAAkB;AACrB,gBAAU,IAAI,6BAA6B,UAAU,UAAU,aAAa,YAAY,YAAY,MAAM,aAAa,sBAAsB;AAC7I;AAAA,SACG,kBAAkB;AACrB,gBAAU,IAAI,qBAAqB,UAAU,aAAa,gBAAgB,gBAAgB,YAAY,YAAY,MAAM,aAAa,sBAAsB;AAC3J;AAAA;AAEA,YAAM,IAAI,MAAM,iCAAiC,oBAAoB;AAAA;AAEzE,MAAI,MAAM;AACR,WAAO,KAAK,IAAI;AAAA,EAClB;AACA,MAAI,wBAAwB;AAC1B,WAAO,KAAK,sBAAsB;AAAA,EACpC;AACA,MAAI,gBAAgB,aAAa;AAC/B,eAAW,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,EAAE,CAAC;AAC3D,YAAQ,YAAY;AAAA,EACtB;AACA,QAAM,SAAS,iBAAiB,SAAS,QAAQ,EAAE,OAAO,YAAY,GAAG;AACzE,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAClG,gBAAc,KAAK,GAAG;AACtB,aAAW,MAAM,eAAe;AAC9B,aAAS,YAAY,GAAG,MAAM;AAAA,EAChC;AACA,SAAO;AACT;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,GAAG,MAAM,uBAAuB,IAAI;AAC/C,QAAM,EAAE,YAAY,YAAY,YAAY,aAAa,eAAe,IAAI;AAC5E,SAAO,iBAAiB;AAAA,IACtB;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,EACd,CAAC;AACH;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,KAAK,QAAQ,QAAQ;AAC/B,SAAK,gBAAgB,CAAC,SAAS,SAAS,SAAS,OAAO;AACxD,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY,mBAAmB;AACpC,SAAK,KAAK;AAAA,EACZ;AAAA,EACA,cAAc;AACZ,UAAM,QAAQ,kBAAkB,KAAK,IAAI,KAAK;AAC9C,UAAM,WAAW;AAAA;AAAA;AAAA,UAGX;AAAA;AAAA;AAAA,QAGF,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAU/B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,KAAK,QAAQ,QAAQ;AAC/B,SAAK,OAAO;AACZ,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,cAAc,qBAAqB,2BAA2B,QAAQ,MAAM;AACjF,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,KAAK;AACV,SAAK,uBAAuB,OAAO,WAAW,KAAK,OAAO,SAAS,KAAK,OAAO,KAAK;AACpF,SAAK,uBAAuB,OAAO,WAAW,KAAK,OAAO,SAAS,KAAK,OAAO,KAAK;AACpF,QAAI,KAAK,wBAAwB,KAAK,sBAAsB;AAC1D,WAAK,SAAS;AACd,WAAK,oBAAoB,KAAK,uBAAuB,OAAO,KAAK,OAAO;AACxE,WAAK,YAAY,UAAU,KAAK,QAAQ,OAAO,KAAK,qBAAqB,KAAK;AAC9E,WAAK,OAAO;AACZ,WAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,UAAI,KAAK,oBAAoB,KAAK;AAChC,aAAK,gBAAgB;AAAA,MACvB,WAAW,KAAK,oBAAoB,KAAK;AACvC,aAAK,gBAAgB;AAAA,MACvB,OAAO;AACL,aAAK,gBAAgB;AAAA,MACvB;AAAA,IACF,OAAO;AACL,UAAI,aAAa,YAAY,QAAQ,MAAM,KAAK,aAAa,cAAc,MAAM,IAAI,MAAM,GAAG;AAC5F,aAAK,SAAS;AACd,aAAK,OAAO;AACZ,aAAK,gBAAgB;AAAA,MACvB,OAAO;AACL,aAAK,SAAS;AACd,aAAK,OAAO;AACZ,aAAK,gBAAgB;AAAA,MACvB;AACA,WAAK,YAAY,UAAU,KAAK,QAAQ;AACxC,WAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAAA,IACjC;AACA,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AAAA,EACvH;AAAA,EACA,cAAc;AACZ,QAAI;AACJ,QAAI,KAAK,SAAS,UAAU;AAC1B,YAAM,qBAAqB,KAAK,oBAAoB,IAAI,UAAU,KAAK,YAAY,SAAS,OAAO;AACnG,YAAM,oBAAoB,KAAK,uBAAuB;AAAA,8BAC9B,yBAAyB,qBAAqB;AAAA;AAEtE,YAAM,QAAQ,kBAAkB,KAAK,IAAI,KAAK,MAAM;AACpD,iBAAW;AAAA;AAAA,YAEL;AAAA;AAAA,gDAEoC,KAAK;AAAA,UAC3C,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA,8DAIyB,KAAK,gDAAgD,KAAK,cAAc;AAAA,0CAC5F,KAAK,uBAAuB,MAAM;AAAA;AAAA;AAAA;AAAA,+BAI7C,KAAK;AAAA,sCACE,KAAK;AAAA;AAAA;AAAA;AAAA,gBAI3B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAMZ,OAAO;AACL,YAAM,QAAQ,KAAK,SAAS,SAAS,cAAc;AACnD,YAAM,QAAQ,kBAAkB,KAAK,IAAI,KAAK,MAAM;AACpD,iBAAW;AAAA,gCACe,cAAc,aAAa;AAAA,WAChD;AAAA;AAAA,SAEF,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAQhC;AACA,WAAO;AAAA,EACT;AACF;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,EAAE,IAAI;AACd,OAAK,QAAQ,OAAO,EAAE,MAAM;AAC5B,SAAO,EAAE,QAAQ,EAAE,QAAQ,OAAO,EAAE,OAAO,OAAO,EAAE,MAAM;AAC5D;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,MAAM,OAAO,MAAM,MAAM,IAAI;AACrC,QAAM,cAAc,SAAS,eAAe,MAAM,OAAO,WAAW;AACpE,QAAM,WAAW,SAAS,UAAU,IAAI,YAAY,MAAM;AAC1D,QAAM,iBAAiB,UAAU,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,SAAS,CAAC;AAC5E,QAAM,iBAAiB,UAAU,EAAE,QAAQ,EAAE,GAAG,MAAM,GAAG,SAAS,SAAS,CAAC;AAC5E,WAAS,qBAAqB,EAAE,MAAM,gBAAgB,MAAM,eAAe;AAC3E,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,aAAa,KAAK;AAC5B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,OAAO;AACZ,UAAM,iBAAiB;AACvB,SAAK,gBAAgB,CAAC,gBAAgB,GAAG,CAAC;AAC1C,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,KAAK;AACV,SAAK,YAAY,SAAS;AAAA,EAC5B;AAAA,EACA,cAAc;AACZ,WAAO;AAAA;AAAA,UAED,iBAAiB,KAAK,IAAI,KAAK;AAAA;AAAA,QAEjC,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOjC;AACF;AAGA,SAAS,iBAAiB,EAAE,QAAQ,eAAe,MAAM,GAAG;AAC1D,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,gBAAgB;AACtB,UAAM,SAAS,SAAS,EAAE;AAC1B,QAAI,cAAc,mBAAmB,CAAC,CAAC,CAAC,KAAK,iBAAiB,MAAM;AAClE,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM;AAClD,YAAM,YAAY,cAAc,MAAM,QAAQ,MAAM;AACpD,aAAO,cAAc,eAAe,EAAE,OAAO,QAAQ,SAAS;AAAA,IAChE;AACA,UAAM,UAAU,IAAI,gBAAgB,EAAE,OAAO,MAAM;AACnD,WAAO,cAAc,iBAAiB,SAAS,CAAC,CAAC,GAAG,MAAM;AAAA,EAC5D;AACF;AACA,SAAS,kBAAkB,EAAE,QAAQ,eAAe,kBAAkB,OAAO,MAAM,GAAG;AACpF,SAAO,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AACxC,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,gBAAgB;AACtB,QAAI,mBAAmB,EAAE,UAAU,aAAa;AAC9C,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM;AAClD,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM;AAClD,UAAI,OAAO;AACX,UAAI,WAAW,aAAa,KAAK;AAC/B,SAAC,OAAO,KAAK,IAAI;AAAA,UACf,CAAC,MAAM,mBAAmB,MAAM,MAAM,mBAAmB,IAAI;AAAA,UAC7D,CAAC,MAAM,mBAAmB,MAAM,MAAM,mBAAmB,IAAI;AAAA,QAC/D,EAAE,IAAI,CAAC,iBAAiB;AACtB,gBAAM,CAAC,OAAO,KAAK,IAAI;AACvB,gBAAM,UAAU;AAAA,YACd,QAAQ,MAAM;AAAA,YACd,OAAO,MAAM;AAAA,YACb,OAAO,EAAE;AAAA,UACX;AACA,gBAAM,UAAU;AAAA,YACd,QAAQ,MAAM;AAAA,YACd,OAAO,MAAM;AAAA,YACb,OAAO,EAAE;AAAA,UACX;AACA,gBAAM,WAAW,IAAI,iBAAiB,QAAQ,EAAE,OAAO,EAAE,KAAK;AAC9D,iBAAO,cAAc,iBAAiB,UAAU,CAAC,SAAS,OAAO,GAAG,WAAW,MAAM,OAAO,MAAM,KAAK,CAAC;AAAA,QAC1G,CAAC;AAAA,MACH,OAAO;AACL,cAAM,cAAc,IAAI,wBAAwB,aAAa,uBAAuB,EAAE,OAAO,EAAE,KAAK;AACpG,cAAM,cAAc,IAAI,wBAAwB,aAAa,uBAAuB,EAAE,OAAO,EAAE,KAAK;AACpG,cAAM,UAAU;AAAA,UACd;AAAA,YACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,YACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,YACrC,OAAO,EAAE;AAAA,UACX;AAAA,UACA;AAAA,YACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,YACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,YACrC,OAAO,EAAE;AAAA,UACX;AAAA,UACA;AAAA,YACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,YACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,YACrC,OAAO,EAAE;AAAA,UACX;AAAA,UACA;AAAA,YACE,QAAQ,MAAM,mBAAmB,KAAK;AAAA,YACtC,OAAO,MAAM,mBAAmB,KAAK;AAAA,YACrC,OAAO,EAAE;AAAA,UACX;AAAA,QACF;AACA,gBAAQ,cAAc,iBAAiB,aAAa,SAAS,SAAS;AACtE,gBAAQ,cAAc,iBAAiB,aAAa,SAAS,SAAS;AAAA,MACxE;AACA,YAAM,gBAAgB,SAAS,EAAE,QAAQ,EAAE,MAAM,OAAO,MAAM,MAAM,GAAG,SAAS,cAAc,CAAC;AAC/F,oBAAc,YAAY,MAAM,MAAM;AACtC,oBAAc,YAAY,MAAM,MAAM;AACtC,aAAO;AAAA,IACT;AACA,UAAM,SAAS,SAAS,WAAW,EAAE,OAAO,EAAE,KAAK;AACnD,SAAK,EAAE,UAAU,YAAY,EAAE,UAAU,YAAY,cAAc,mBAAmB,CAAC,GAAG,CAAC,CAAC,MAAM,iBAAiB,MAAM;AACvH,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM,EAAE;AACpD,YAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM,EAAE;AACpD,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,eAAe,EAAE,UAAU,WAAW,qBAAqB,uBAAuB,KAAK,IAAI;AACjG,YAAM,CAAC,WAAW,QAAQ,IAAI,cAAc,EAAE,OAAO,EAAE,OAAO,cAAc,cAAc,MAAM;AAChG,aAAO,cAAc,eAAe,UAAU,QAAQ,SAAS;AAAA,IACjE;AACA,UAAM,UAAU,IAAI,iBAAiB,QAAQ,EAAE,OAAO,EAAE,KAAK;AAC7D,WAAO,cAAc,iBAAiB,SAAS,CAAC,GAAG,CAAC,GAAG,MAAM;AAAA,EAC/D;AACF;AAGA,IAAI,EAAE,SAAS,aAAa,UAAU,cAAc,UAAU,cAAc,YAAY,gBAAgB,WAAW,eAAe,SAAS,aAAa,WAAW,eAAe,WAAW,eAAe,cAAc,kBAAkB,cAAc,kBAAkB,kBAAkB,sBAAsB,aAAa,iBAAiB,eAAe,mBAAmB,UAAU,cAAc,SAAS,aAAa,SAAS,aAAa,aAAa,iBAAiB,aAAa,iBAAiB,cAAc,kBAAkB,SAAS,aAAa,cAAc,kBAAkB,UAAU,cAAc,WAAW,eAAe,WAAW,eAAe,aAAa,iBAAiB,eAAe,mBAAmB,WAAW,eAAe,kBAAkB,sBAAsB,kBAAkB,sBAAsB,SAAS,aAAa,UAAU,cAAc,UAAU,cAAc,eAAe,mBAAmB,YAAY,eAAe,IAAI;AAGv8B,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,KAAK,eAAe,kBAAkB,CAAC;AACzF,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,kBAAkB,EAAE,QAAQ,aAAa,KAAK,eAAe,aAAa,iBAAiB,KAAK,CAAC;AACtH,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,QAAQ;AAClB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,OAAO;AAC1B,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW,CAAC;AAClB,SAAK,cAAc,QAAQ,CAAC,cAAc;AACxC,eAAS,KAAK,QAAQ,kBAAkB,kCAAkC;AAAA,IAC5E,CAAC;AACD,UAAM,YAAY,KAAK,cAAc,IAAI,CAAC,cAAc;AACtD,aAAO,IAAI;AAAA,IACb,CAAC,EAAE,KAAK,KAAK;AACb,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA,8BACL,KAAK;AAAA,oCACC,KAAK;AAAA;AAAA;AAAA,cAG3B,SAAS,KAAK,YAAY;AAAA,0CACE;AAAA;AAAA;AAAA;AAAA;AAKtC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,UAAU;AAChB,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,QAAQ,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK,EAAE,OAAO,CAAC,IAAI,OAAO,WAAW,IAAI,EAAE,CAAC;AACjF,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,QAAM,UAAU,IAAI,mBAAmB,MAAM;AAC7C,SAAO,SAAS,iBAAiB,SAAS,SAAS,KAAK;AAC1D;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,YAAY,MAAM,YAAY;AACxC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,OAAO;AACZ,UAAM,OAAO,CAAC,IAAI;AAClB,SAAK,KAAK,eAAe,QAAQ,MAAM;AACvC,UAAM,CAAC,aAAa,WAAW,IAAI,qBAAqB,0BAA0B,YAAY,IAAI;AAClG,SAAK,cAAc,YAAY,WAAW,IAAI,CAAC,CAAC,IAAI;AACpD,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,QAAI,aAAa,cAAc,WAAW,IAAI,MAAM,aAAa,cAAc,WAAW,IAAI,KAAK;AACjG,WAAK,OAAO;AACZ,WAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AAAA,IAC3F,OAAO;AACL,WAAK,OAAO;AACZ,WAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,CAAC,GAAG,GAAG,CAAC,CAAC;AAAA,IAClF;AACA,SAAK,aAAa;AAClB,SAAK,YAAY,aAAa,KAAK,MAAM,KAAK;AAAA,EAChD;AAAA,EACA,cAAc;AACZ,UAAM,uBAAuB,MAAM;AACjC,UAAI,KAAK,WAAW,WAAW,GAAG;AAChC,eAAO;AAAA,MACT,OAAO;AACL,eAAO,mBAAmB,aAAa,KAAK,WAAW,SAAS,CAAC;AAAA,MACnE;AAAA,IACF;AACA,UAAM,oBAAoB,MAAM;AAC9B,UAAI,UAAU;AACd,UAAI,KAAK,YAAY,WAAW,GAAG;AACjC,YAAI,KAAK,WAAW,WAAW,GAAG;AAChC,qBAAW;AAAA,QACb;AAAA,MACF,OAAO;AACL,iBAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,MAAM;AACnD,qBAAW,gBAAgB,aAAa,EAAE;AAAA,QAC5C;AAAA,MACF;AACA,aAAO;AAAA,IACT;AACA,QAAI,KAAK,SAAS,UAAU;AAC1B,YAAM,sBAAsB;AAAA,iDACe,KAAK,cAAc;AAAA,gDACpB,KAAK,cAAc;AAAA;AAE7D,YAAM,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,QAKf;AAAA;AAAA,QAEA,oBAAoB,OAAO;AAAA;AAAA,6BAEN,qBAAqB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iCAOjB,kBAAkB;AAAA,+CACJ,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,4BAexB,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAe3B,aAAO;AAAA,IACT,OAAO;AACL,YAAM,WAAW;AAAA,QACf,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA,iCAIF,kBAAkB;AAAA,+BACpB,qBAAqB;AAAA;AAAA,mCAEjB,kBAAkB;AAAA,4BACzB,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAS3B,aAAO;AAAA,IACT;AAAA,EACF;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,QAAQ,QAAQ;AAC1B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,IAAI,CAAC;AAC/B,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,OAAO;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AACvC,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,GAAG,GAAG,CAAC,CAAC;AACpG,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,yBACI,KAAK,cAAc;AAAA,+CACG,KAAK,cAAc,KAAK,OAAO,KAAK,cAAc;AAAA,QACzF,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAoB3B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,QAAQ,QAAQ;AAC1B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,OAAO;AAAA,IAClC;AACA,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,SAAS;AACd,SAAK,YAAY,aAAa;AAAA,EAChC;AAAA,EACA,cAAc;AACZ,UAAM,QAAQ,mBAAmB,KAAK,YAAY,MAAM;AACxD,UAAM,WAAW,mBAAmB,KAAK,MAAM;AAC/C,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA,6BACN,KAAK;AAAA,oCACE,KAAK;AAAA;AAAA;AAAA,8DAGqB,KAAK,YAAY;AAAA,gBAC/D,SAAS;AAAA;AAAA;AAAA;AAAA;AAKrB,WAAO;AAAA,EACT;AACF;AACA,SAAS,mBAAmB,QAAQ;AAClC,QAAM,OAAO,OAAO;AACpB,MAAI,OAAO,GAAG;AACZ,UAAM,MAAM,sBAAsB,2BAA2B;AAAA,EAC/D;AACA,QAAM,iBAAiB,IAAI,MAAM,IAAI;AACrC,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,mBAAe,OAAO,OAAO,SAAS,aAAa,EAAE;AAAA,EACvD;AACA,SAAO,eAAe,KAAK;AAC7B;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,gBAAgB;AACtB,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,WAAW,IAAI,MAAM,KAAK;AAChC,WAAS,KAAK,GAAG,KAAK,SAAS,QAAQ,MAAM;AAC3C,aAAS,MAAM,EAAE,MAAM,KAAK;AAAA,EAC9B;AACA,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,QAAQ,cAAc,UAAU,IAAI,EAAE,MAAM;AAClD,UAAM,SAAS,MAAM;AACrB,UAAM,YAAY,kBAAkB,QAAQ,EAAE,OAAO,EAAE,OAAO,MAAM,QAAQ;AAC5E,WAAO,SAAS,eAAe,UAAU,EAAE,OAAO,SAAS;AAAA,EAC7D;AACA,MAAI,EAAE,MAAM,WAAW,KAAK,aAAa,YAAY,MAAM,CAAC,GAAG,CAAC,CAAC,GAAG;AAClE,UAAM,WAAW,IAAI,uBAAuB,EAAE,OAAO,IAAI;AACzD,WAAO,cAAc,iBAAiB,UAAU,CAAC,CAAC,GAAG,EAAE,KAAK;AAAA,EAC9D;AACA,QAAM,UAAU,IAAI,kBAAkB,EAAE,OAAO,IAAI;AACnD,SAAO,cAAc,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAC7D;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,uBAAqB,2BAA2B,UAAU,CAAC,KAAK,EAAE,GAAG,GAAG,MAAM,MAAM;AACpF,QAAM,UAAU,IAAI,kBAAkB,GAAG,OAAO,KAAK,IAAI,KAAK;AAC9D,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,iBAAiB,EAAE,CAAC;AAC1E,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,EAAE,GAAG,SAAS,WAAW;AACzE,0BAAwB,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACvE,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,aAAa,eAAe,MAAM,EAAE,KAAK;AACpD,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,EAAE,MAAM,MAAM;AACjF,MAAI,KAAK;AACT,QAAM,0BAA0B,CAAC;AACjC,MAAI,gBAAgB,MAAM;AACxB,SAAK,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AACnF,4BAAwB,KAAK,EAAE;AAC/B,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,GAAG,MAAM,MAAM;AAAA,EAC3E;AACA,uBAAqB,2BAA2B,UAAU,CAAC,KAAK,EAAE,GAAG,GAAG,MAAM,MAAM;AACpF,QAAM,UAAU,IAAI,kBAAkB,GAAG,OAAO,KAAK,IAAI,KAAK;AAC9D,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,iBAAiB,EAAE,CAAC;AAC1E,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,EAAE,GAAG,SAAS,WAAW;AACzE,0BAAwB,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACvE,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,kBAAkB,EAAE,QAAQ,aAAa,MAAM,CAAC;AAC7D,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,UAAU,UAAU;AAC9B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY,UAAU;AAC3B,SAAK,WAAW;AAAA,EAClB;AAAA,EACA,cAAc;AACZ,QAAI,gBAAgB;AACpB,QAAI,KAAK,aAAa,OAAO;AAC3B,sBAAgB;AAAA,IAClB;AACA,QAAI,cAAc;AAClB,QAAI,KAAK,aAAa,OAAO;AAC3B,oBAAc;AAAA,IAChB;AACA,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAQL,KAAK,aAAa,QAAQ,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gBAiBhD;AAAA;AAAA;AAAA;AAAA,oCAIoB;AAAA;AAAA;AAAA;AAIhC,WAAO;AAAA,EACT;AACF;AAGA,IAAI,qCAAqC,MAAM;AAAA,EAC7C,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAe/B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,YAAY,YAAY;AAClC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,OAAO;AACZ,SAAK,aAAa,CAAC,WAAW,WAAW,WAAW,MAAM;AAC1D,UAAM,CAAC,WAAW,IAAI,qBAAqB,0BAA0B,KAAK,YAAY,CAAC,CAAC,CAAC;AACzF,SAAK,cAAc,YAAY,WAAW,IAAI,CAAC,CAAC,IAAI;AACpD,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,CAAC,GAAG,GAAG,CAAC,CAAC;AAChF,SAAK,aAAa;AAClB,SAAK,YAAY,UAAU;AAAA,EAC7B;AAAA,EACA,cAAc;AACZ,QAAI,WAAW;AACf,QAAI,YAAY;AAChB,QAAI,KAAK,eAAe,SAAS,KAAK,eAAe,OAAO;AAC1D,iBAAW;AAAA;AAAA;AAAA,qDAGoC,KAAK,eAAe,QAAQ,MAAM;AAAA;AAEjF,kBAAY;AAAA,IACd,WAAW,KAAK,eAAe,SAAS,KAAK,eAAe,QAAQ;AAClE,iBAAW;AAAA,IACb,WAAW,KAAK,eAAe,QAAQ;AACrC,iBAAW;AACX,kBAAY;AAAA,IACd;AACA,UAAM,gBAAgB,KAAK,eAAe,SAAS,yEAAyE;AAC5H,UAAM,sBAAsB;AAAA,mDACmB,KAAK,cAAc;AAAA;AAElE,UAAM,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA,SAKZ;AAAA;AAAA;AAAA,wBAGe,KAAK,YAAY,WAAW,IAAI,iBAAiB;AAAA;AAAA;AAAA,SAGhE,oBAAoB,OAAO;AAAA;AAAA;AAAA,2BAGT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,aAMd;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAWC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAQF;AAAA;AAAA;AAAA;AAIR,WAAO;AAAA,EACT;AACF;AAGA,SAAS,QAAQ,GAAG,MAAM,UAAU,YAAY,UAAU;AACxD,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,YAAY,CAAC;AACnB,QAAM,WAAW,aAAa,eAAe,MAAM,EAAE,KAAK;AAC1D,MAAI,OAAO;AACX,QAAM,eAAe,qBAAqB,mBAAmB,MAAM,KAAK;AACxE,MAAI,SAAS;AACb,MAAI,gBAAgB,MAAM;AACxB,aAAS,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AACvF,WAAO,qBAAqB,iBAAiB,KAAK,QAAQ,KAAK;AAC/D,cAAU,KAAK,MAAM;AAAA,EACvB;AACA,uBAAqB,2BAA2B,YAAY,MAAM,KAAK;AACvE,QAAM,CAAC,gBAAgB,WAAW,IAAI,qBAAqB,0BAA0B,OAAO,OAAO,IAAI;AACvG,MAAI,cAAc;AAClB,MAAI,UAAU;AACZ,kBAAc,qBAAqB,qBAAqB,gBAAgB,QAAQ;AAAA,EAClF;AACA,MAAI;AACJ,OAAK,eAAe,SAAS,eAAe,WAAW,SAAS,mBAAmB,CAAC,MAAM,CAAC,GAAG;AAC5F,UAAM,QAAQ,SAAS,UAAU,IAAI,OAAO,MAAM,EAAE;AACpD,YAAQ;AAAA,WACD;AACH,cAAM,YAAY,YAAY,OAAO,aAAa,cAAc,WAAW,GAAG,aAAa,EAAE,KAAK;AAClG,cAAM,SAAS,eAAe,aAAa,EAAE,OAAO,SAAS;AAC7D;AAAA,WACG;AACH,cAAM,EAAE,SAAS,UAAU,SAAS,IAAI,aAAa,OAAO,OAAO,OAAO,OAAO,OAAO,IAAI;AAC5F,cAAM,SAAS,eAAe,UAAU,UAAU,OAAO;AACzD;AAAA;AAEA,cAAM,IAAI,MAAM,GAAG,qDAAqD;AAAA;AAAA,EAE9E,OAAO;AACL,UAAM,SAAS,aAAa,cAAc,WAAW;AACrD,UAAM,QAAQ,aAAa,cAAc,OAAO,KAAK;AACrD,UAAM,YAAY,QAAQ;AAC1B,UAAM,aAAa,EAAE,YAAY,QAAQ,QAAQ,WAAW,SAAS,EAAE;AACvE,UAAM,QAAQ,eAAe,SAAS,YAAY,WAAW,EAAE,KAAK;AACpE,UAAM,cAAc;AAAA,MAClB,EAAE,MAAM,SAAS,MAAM,CAAC,MAAM,EAAE;AAAA,IAClC;AACA,UAAM,UAAU,IAAI,eAAe,YAAY,UAAU;AACzD,UAAM,UAAU,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,WAAW;AAC/E,cAAU,KAAK,OAAO;AACtB,UAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,YAAY,GAAG,SAAS,SAAS,CAAC;AAAA,EAC7F;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,kBAAkB,SAAS,IAAI;AACvC,SAAO,QAAQ,GAAG,kBAAkB,UAAU,OAAO,QAAQ;AAC/D;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,QAAQ,QAAQ;AACpD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,GAAG,UAAU,UAAU,UAAU;AACjD,MAAI,SAAS,gBAAgB,KAAK,SAAS,iBAAiB,KAAK,aAAa,YAAY,SAAS,SAAS,SAAS,QAAQ,GAAG;AAC9H,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,MAAI,SAAS,gBAAgB,SAAS,WAAW,SAAS,iBAAiB,SAAS,YAAY,SAAS,cAAc,KAAK,SAAS,QAAQ,SAAS,SAAS;AAC7J,UAAM,SAAS,EAAE,MAAM;AACvB,UAAM,WAAW,SAAS;AAAA,MACxB,QAAQ,EAAE,EAAE;AAAA,MACZ,SAAS;AAAA,MACT,OAAO;AAAA,QACL,OAAO;AAAA,UACL,EAAE,MAAM,SAAS,KAAK,EAAE,MAAM,SAAS;AAAA,UACvC,EAAE,MAAM,SAAS;AAAA,QACnB;AAAA,MACF;AAAA,IACF,CAAC;AACD,QAAI;AACJ,QAAI,aAAa,OAAO;AACtB,gBAAU,MAAM,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,GAAG,UAAU,MAAM,EAAE,CAAC;AAAA,IACrG,OAAO;AACL,mBAAa,OAAO,aAAa,OAAO,MAAM,qBAAqB,UAAU;AAC7E,gBAAU,KAAK;AAAA,QACb,QAAQ,EAAE,GAAG,SAAS;AAAA,QACtB,SAAS;AAAA,QACT,OAAO,EAAE,kBAAkB,GAAG,UAAU,MAAM;AAAA,MAChD,CAAC;AAAA,IACH;AACA,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AAC1G,aAAS,YAAY,SAAS,MAAM;AACpC,aAAS,YAAY,QAAQ,MAAM;AACnC,WAAO;AAAA,EACT;AACA,MAAI;AACJ,QAAM,aAAa,CAAC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE,CAAC;AAC1F,MAAI,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,GAAG;AAC7D,cAAU,IAAI,mCAAmC,QAAQ;AAAA,EAC3D,OAAO;AACL,QAAI,aAAa,OAAO;AACtB,gBAAU,IAAI,eAAe,UAAU,KAAK;AAAA,IAC9C,OAAO;AACL,mBAAa,OAAO,aAAa,OAAO,MAAM,qBAAqB,UAAU;AAC7E,gBAAU,IAAI,eAAe,UAAU,KAAK;AAAA,IAC9C;AACA,eAAW,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI,EAAE,GAAG;AAAA,MACtF,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IACxD,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,UAAU,SAAS,OAAO,EAAE,GAAG;AAAA,MACjE,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,uBAAuB,SAAS,oBAAoB;AAAA,IACtE,CAAC;AAAA,EACH;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,UAAU;AACpE;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAa,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,SAAO,SAAS,GAAG,UAAU,OAAO,QAAQ;AAC9C;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI;AACjB,QAAM,EAAE,YAAY,WAAW,IAAI;AACnC,SAAO,iBAAiB,EAAE,GAAG,GAAG,YAAY,YAAY,SAAS,SAAS,CAAC;AAC7E;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO,UAAU;AAC3B,SAAK,gBAAgB,CAAC,QAAQ;AAC9B,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,OAAO,SAAS;AACrB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,QAAQ;AACb,SAAK,WAAW,WAAW,mBAAmB,MAAM,MAAM;AAC1D,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,QAAQ,mBAAmB,KAAK,IAAI;AAC1C,UAAM,eAAe,WAAW,KAAK,IAAI;AACzC,QAAI;AACJ,QAAI,KAAK,MAAM,WAAW,GAAG;AAC3B,iBAAW,KAAK,YAAY,IAAI,CAAC,GAAG,OAAO;AACzC,eAAO;AAAA,MACT,CAAC;AAAA,IACH,OAAO;AACL,iBAAW,KAAK,YAAY,IAAI,CAAC,GAAG,OAAO;AACzC,eAAO,aAAa,QAAQ,wBAAwB,aAAa,EAAE,cAAc,QAAQ;AAAA,MAC3F,CAAC;AAAA,IACH;AACA,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA,4BAEP;AAAA;AAAA,YAEhB,SAAS,KAAK,IAAI;AAAA,8CACgB;AAAA;AAAA;AAAA;AAI1C,WAAO;AAAA,EACT;AACF;AACA,IAAI,UAAU,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAC3C,SAAS,WAAW,MAAM;AACxB,MAAI,SAAS,GAAG;AACd,WAAO;AAAA,EACT,WAAW,QAAQ,GAAG;AACpB,WAAO,QAAQ,MAAM,GAAG,IAAI,EAAE,IAAI,CAAC,UAAU,aAAa,OAAO,EAAE,KAAK,GAAG;AAAA,EAC7E,OAAO;AACL,UAAM,MAAM,oBAAoB,2BAA2B;AAAA,EAC7D;AACF;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,MAAAb,MAAK,IAAI;AACxB,QAAM,CAAC,QAAQ,KAAK,IAAI,mBAAmB,iBAAiB,GAAG,OAAOA,KAAI;AAC1E,qBAAmB,kBAAkB,GAAG,QAAQ,KAAK;AACrD,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,UAAU;AAC5D,UAAM,cAAc,SAAS,UAAU,IAAI,EAAE,MAAM;AACnD,UAAM,YAAY,cAAc,YAAY,QAAQ,QAAQ,OAAO,EAAE,OAAO,EAAE,KAAK;AACnF,WAAO,SAAS,eAAe,OAAO,EAAE,OAAO,SAAS;AAAA,EAC1D;AACA,MAAI,aAAa,cAAc,KAAK,MAAM,GAAG;AAC3C,WAAO,SAAS,eAAe,OAAO,EAAE,OAAO,CAAC,CAAC;AAAA,EACnD;AACA,QAAM,UAAU,IAAI,cAAc,QAAQ,KAAK;AAC/C,QAAM,cAAc,CAAC,EAAE,MAAM,SAAS,MAAM,OAAO,CAAC;AACpD,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACrE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,CAAC,SAAS;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,MAAM,IAAI;AAC9B,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,uEAAuE;AACtH,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,WAAW,qBAAqB,YAAY,EAAE,OAAO,YAAY,KAAK;AAC5E,QAAM,WAAW,qBAAqB,YAAY,SAAS,QAAQ,WAAW,MAAM;AACpF,QAAM,mBAAmB,qBAAqB,oBAAoB,EAAE,OAAO,YAAY,KAAK;AAC5F,QAAM,mBAAmB,qBAAqB,oBAAoB,OAAO,WAAW,MAAM;AAC1F,QAAM,YAAY,qBAAqB,aAAa,kBAAkB,OAAO,WAAW,MAAM;AAC9F,QAAM,YAAY,CAAC;AACnB,QAAM,uBAAuB,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACtG,QAAM,yBAAyB,WAAW,EAAE,QAAQ,EAAE,GAAG,qBAAqB,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,SAAS,EAAE,CAAC;AAC/H,QAAM,wBAAwB,SAAS;AAAA,IACrC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,IACpC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,iBAAiB;AAAA,EACnC,CAAC;AACD,QAAM,SAAS,OAAO;AAAA,IACpB,QAAQ,EAAE,GAAG,sBAAsB;AAAA,IACnC,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,kBAAkB,MAAM,UAAU;AAAA,EACpD,CAAC;AACD,YAAU,KAAK,oBAAoB;AACnC,YAAU,KAAK,sBAAsB;AACrC,YAAU,KAAK,qBAAqB;AACpC,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,kBAAkB;AAAA,EAChC,QAAQ,aAAa;AAAA,EACrB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,SAAS,UAAU,IAAI,OAAO,MAAM;AACtD,SAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,mBAAmB,KAAK,GAAG,SAAS,SAAS,CAAC;AAC1F;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,QAAQ,UAAU;AAC9B,QAAM,UAAU,IAAI,gBAAgB,OAAO,OAAO,YAAY,MAAM;AACpE,QAAM,SAAS,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO;AACnE,SAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAC3E;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,UAAU,aAAa;AACzB,QAAI,EAAE,UAAU,aAAa;AAC3B,aAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACvD;AACA,UAAM,cAAc,MAAM,EAAE,KAAK;AACjC,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,EAAE,CAAC;AACtF,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,QAAQ,MAAM,YAAY,GAAG,SAAS,SAAS,CAAC;AAC1F,gBAAY,QAAQ;AACpB,aAAS,YAAY,OAAO,MAAM;AAClC,WAAO;AAAA,EACT;AACA,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,SAAS,MAAM,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,aAAS,YAAY,SAAS,MAAM;AACpC,WAAO;AAAA,EACT;AACA,MAAI,CAAC,aAAa,gBAAgB,EAAE,OAAO,KAAK,GAAG;AACjD,UAAM,SAAS,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7D,WAAO,EAAE,QAAQ,OAAO,QAAQ,OAAO,OAAO,OAAO,MAAM;AAAA,EAC7D;AACA,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,SAAS,SAAS,UAAU,IAAI,EAAE,MAAM,EAAE;AAChD,UAAM,CAAC,aAAa,YAAY,UAAU,IAAI,aAAa,QAAQ,EAAE,OAAO,EAAE,OAAO,KAAK;AAC1F,WAAO,SAAS,eAAe,aAAa,YAAY,UAAU;AAAA,EACpE;AACA,MAAI,UAAU,SAAS;AACrB,WAAO,KAAK,GAAG,QAAQ;AAAA,EACzB;AACA,MAAI,UAAU,QAAQ;AACpB,UAAM,kBAAkB,SAAS,eAAe,CAAC,GAAG,QAAQ,aAAa,uBAAuB,QAAQ,CAAC,CAAC;AAC1G,UAAM,eAAe,EAAE,GAAG,GAAG,GAAG,gBAAgB;AAChD,UAAM,SAAS,UAAU,EAAE,QAAQ,cAAc,SAAS,SAAS,CAAC;AACpE,aAAS,YAAY,gBAAgB,MAAM;AAC3C,WAAO;AAAA,EACT;AACA,QAAM,IAAI,MAAM,iCAAiC,EAAE,YAAY,OAAO;AACxE;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,MAAM,eAAe,aAAa,CAAC;AACtF,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,SAAS;AACd,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAgB/B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,aAAa;AACvB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAW/B,WAAO;AAAA,EACT;AACF;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,cAAc,aAAa,IAAI;AACvC,MAAI;AACJ,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,WAAW,MAAM,CAAC,YAAY,EAAE;AAAA,IACxC,EAAE,MAAM,WAAW,MAAM,CAAC,YAAY,EAAE;AAAA,EAC1C;AACA,MAAI,aAAa,cAAc,EAAE,KAAK,IAAI,MAAM,GAAG;AACjD,cAAU,IAAI,gBAAgB,EAAE,KAAK;AAAA,EACvC,OAAO;AACL,cAAU,IAAI,aAAa,EAAE,KAAK;AAAA,EACpC;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACrE;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,QAAQ;AAClB,SAAK,WAAW;AAChB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,qBAAqB,gBAAgB,QAAQ,CAAC;AACjE,SAAK,gBAAgB,OAAO,IAAI,CAAC,GAAG,OAAO,IAAI,IAAI;AACnD,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,SAAK,eAAe,OAAO,SAAS;AACpC,aAAS,KAAK,GAAG,KAAK,KAAK,cAAc,MAAM;AAC7C,WAAK,YAAY,SAAS;AAAA,IAC5B;AACA,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW,CAAC;AAClB,QAAI,KAAK,eAAe,GAAG;AACzB,eAAS,KAAK,qFAAqF;AACnG,eAAS,KAAK,GAAG,KAAK,KAAK,cAAc,MAAM;AAC7C,iBAAS,KAAK,gCAAgC,CAAC,EAAE,iDAAiD,8BAA8B,KAAK,QAAQ;AAAA,MAC/I;AACA,YAAM,YAAY,KAAK;AACvB,YAAM,iBAAiB,KAAK,eAAe;AAC3C,eAAS,KAAK,oDAAoD,qCAAqC,qBAAqB;AAAA,IAC9H,OAAO;AACL,eAAS,KAAK,uDAAuD;AAAA,IACvE;AACA,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA,6BACN,KAAK;AAAA,oCACE,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAM3B,SAAS,KAAK,YAAY;AAAA;AAAA;AAAA;AAAA;AAKpC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,SAAS,UAAU,IAAI,OAAO,MAAM;AACtD,SAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,mBAAmB,KAAK,GAAG,SAAS,SAAS,CAAC;AAC1F;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,QAAQ,MAAM,UAAU;AAC3C,QAAM,QAAQ,OAAO,GAAG;AACxB,MAAI,UAAU,aAAa;AACzB,UAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACpF,UAAM,QAAQ,OAAO,IAAI,CAAC,OAAO,MAAM,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,SAAS,CAAC,CAAC;AACpF,UAAM,eAAe,YAAY,OAAO,MAAM,QAAQ;AACtD,UAAM,eAAe,YAAY,OAAO,MAAM,QAAQ;AACtD,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,cAAc,MAAM,aAAa,GAAG,SAAS,SAAS,CAAC;AACjG,UAAM,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACrD,UAAM,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACrD,aAAS,YAAY,aAAa,MAAM;AACxC,aAAS,YAAY,aAAa,MAAM;AACxC,WAAO;AAAA,EACT;AACA,MAAI,WAAW,SAAS,mBAAmB,MAAM;AACjD,MAAI,UAAU,UAAU;AACtB,eAAW;AAAA,EACb;AACA,MAAI,UAAU;AACZ,UAAM,aAAa,OAAO,IAAI,CAAC,OAAO;AACpC,YAAM,YAAY,aAAa,cAAc,GAAG,MAAM,MAAM,IAAI,CAAC;AACjE,YAAM,QAAQ,CAAC,IAAI,SAAS;AAC5B,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AAAA,IAC5E,CAAC;AACD,UAAM,kBAAkB,WAAW,IAAI,CAAC,OAAO;AAC7C,aAAO,EAAE,MAAM,SAAS,SAAS,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM;AAAA,IAC/D,CAAC;AACD,UAAM,YAAY,qBAAqB,gBAAgB,WAAW,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,CAAC;AAC1F,UAAM,eAAe,WAAW,GAAG,MAAM,OAAO;AAChD,UAAM,UAAU,eAAe,iBAAiB,WAAW,OAAO,YAAY;AAC9E,UAAM,gBAAgB,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AAC7F,UAAM,UAAU,SAAS,eAAe,eAAe,OAAO,OAAO;AACrE,eAAW,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AAC1D,WAAO;AAAA,EACT;AACA,QAAM,cAAc,SAAS,OAAO,OAAO,kCAAkC;AAC7E,MAAI,OAAO,SAAS,aAAa;AAC/B,UAAM,gBAAgB,CAAC;AACvB,aAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM,aAAa;AACtD,YAAM,WAAW,OAAO,MAAM,IAAI,KAAK,WAAW;AAClD,oBAAc,KAAK,YAAY,UAAU,MAAM,QAAQ,CAAC;AAAA,IAC1D;AACA,UAAM,SAAS,YAAY,eAAe,MAAM,QAAQ;AACxD,eAAW,MAAM,eAAe;AAC9B,eAAS,YAAY,GAAG,MAAM;AAAA,IAChC;AACA,WAAO;AAAA,EACT;AACA,QAAM,EAAE,WAAW,SAAS,IAAI,kBAAkB,QAAQ,MAAM,QAAQ;AACxE,QAAM,SAAS,UAAU,IAAI,CAAC,OAAO,GAAG,KAAK;AAC7C,QAAM,UAAU,IAAI,eAAe,MAAM;AACzC,QAAM,cAAc,CAAC;AACrB,QAAM,UAAU,IAAI,MAAM,OAAO,SAAS,CAAC;AAC3C,MAAI,QAAQ,SAAS,GAAG;AACtB,YAAQ,KAAK,OAAO,GAAG;AACvB,gBAAY,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,QAAQ,EAAE,EAAE,CAAC;AACtD,aAAS,KAAK,GAAG,KAAK,QAAQ,QAAQ,MAAM;AAC1C,cAAQ,MAAM,QAAQ,KAAK,KAAK,OAAO,IAAI;AAC3C,kBAAY,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,QAAQ,GAAG,EAAE,CAAC;AAAA,IACzD;AAAA,EACF;AACA,QAAM,MAAM,SAAS,iBAAiB,SAAS,WAAW,UAAU,GAAG,OAAO,WAAW;AACzF,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AACrG,WAAS,YAAY,IAAI,MAAM;AAC/B,SAAO;AACT;AACA,SAAS,kBAAkB,QAAQ,MAAM,UAAU;AACjD,QAAM,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,IAAI;AACxF,QAAM,YAAY,OAAO,IAAI,CAAC,OAAO,SAAS;AAAA,IAC5C,QAAQ,EAAE,GAAG,GAAG;AAAA,IAChB,SAAS;AAAA,IACT,OAAO;AAAA,MACL,OAAO;AAAA,QACL,aAAa,cAAc,GAAG,MAAM,MAAM,GAAG,IAAI,CAAC;AAAA,QAClD,aAAa,cAAc,GAAG,MAAM,MAAM,IAAI,CAAC;AAAA,MACjD;AAAA,IACF;AAAA,EACF,CAAC,CAAC;AACF,SAAO,EAAE,WAAW,SAAS;AAC/B;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,QAAM,QAAQ,aAAa,eAAe,MAAM,OAAO,GAAG,KAAK,EAAE;AACjE,QAAM,WAAW,qBAAqB,gBAAgB,OAAO,IAAI,CAAC,OAAO,GAAG,KAAK,GAAG,KAAK;AACzF,MAAI,aAAa,cAAc,QAAQ,MAAM,GAAG;AAC9C,WAAO,SAAS,eAAe,UAAU,OAAO,GAAG,OAAO,CAAC,CAAC;AAAA,EAC9D;AACA,QAAM,UAAU,OAAO,OAAO,CAAC,OAAO,aAAa,cAAc,GAAG,KAAK,IAAI,CAAC;AAC9E,MAAI,QAAQ,WAAW,GAAG;AACxB,WAAO,UAAU,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,GAAG,SAAS,SAAS,CAAC;AAAA,EACnE;AACA,QAAM,SAAS,QAAQ,IAAI,CAAC,OAAO,GAAG,KAAK;AAC3C,uBAAqB,uBAAuB,QAAQ,KAAK;AACzD,SAAO,YAAY,SAAS,OAAO,QAAQ;AAC7C;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,oBAAoB,gBAAgB,WAAW,WAAW,UAAU,UAAU,OAAO,cAAc,MAAM,4BAA4B,OAAO,oBAAoB,GAAG,oBAAoB,GAAG,mBAAmB,GAAG;AACvN,QAAM,cAAc,CAAC,sBAAsB;AACzC,YAAQ;AAAA,WACD;AACH,eAAO;AAAA,WACJ;AACH,eAAO;AAAA,WACJ;AACH,eAAO;AAAA;AAEP,cAAM,IAAI,MAAM,oBAAoB,qCAAqC;AAAA;AAAA,EAE/E;AACA,QAAM,cAAc,CAAC,sBAAsB;AACzC,YAAQ;AAAA,WACD;AACH,eAAO;AAAA,WACJ;AACH,eAAO;AAAA;AAEP,cAAM,IAAI,MAAM,oBAAoB,qCAAqC;AAAA;AAAA,EAE/E;AACA,QAAM,gBAAgB,iBAAiB;AAAA;AAAA,UAE/B;AAAA;AAAA;AAGR,QAAM,kBAAkB,iBAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAMjC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAOR,QAAM,SAAS,iBAAiB,uBAAuB;AACvD,QAAM,SAAS,iBAAiB,uBAAuB;AACvD,QAAM,MAAM,iBAAiB,QAAQ;AACrC,QAAM,MAAM,iBAAiB,QAAQ;AACrC,QAAM,eAAe;AAAA;AAAA,uBAEA,iBAAiB,yBAAyB;AAAA,qBAC5C;AAAA,qBACA;AAAA;AAAA,mBAEF;AAAA,mBACA;AAAA;AAAA;AAAA,kBAGD;AAAA,sBACI,YAAY,iBAAiB;AAAA;AAAA;AAAA,gCAGnB,iCAAiC;AAAA,UACvD;AAAA;AAAA,UAEA,YAAY,iBAAiB;AAAA;AAAA;AAGrC,QAAM,UAAU,iBAAiB,aAAa,WAAW;AAAA,0BACjC;AAAA,QAClB,iBAAiB;AAAA,0BACC;AAAA;AAAA,UAEhB;AAAA;AAAA,eAEK,YAAY,iBAAiB,YAAY,YAAY,YAAY;AAAA,0BACtD;AAAA,QAClB,iBAAiB;AAAA,0BACC;AAAA;AAAA,UAEhB;AAAA;AAAA,eAEK,YAAY,iBAAiB;AAC1C,QAAM,UAAU,GAAG,YAAY,iBAAiB;AAChD,QAAM,UAAU,YAAY,gBAAgB;AAC5C,QAAM,QAAQ,iBAAiB,YAAY,iBAAiB,IAAI,YAAY,iBAAiB;AAC7F,QAAM,QAAQ,iBAAiB,YAAY,iBAAiB,IAAI,YAAY,iBAAiB;AAC7F,QAAM,WAAW;AAAA,QACX,oBAAoB,aAAa,2BAA2B,qBAAqB,GAAG,CAAC;AAAA,2DAClC;AAAA,UACjD,iBAAiB,UAAU;AAAA;AAAA;AAAA,2DAGsB;AAAA,UACjD,iBAAiB,UAAU;AAAA;AAAA;AAAA,kEAG6B;AAAA,4BACtC;AAAA;AAAA;AAAA;AAAA,yBAIH,iBAAiB,yBAAyB;AAAA,UACzD;AAAA,UACA,sBAAsB,SAAS,WAAW;AAAA;AAAA;AAAA;AAIlD,SAAO;AACT;AACA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,UAAU,WAAW,WAAW,UAAU,UAAU,OAAO,cAAc,MAAM,4BAA4B,OAAO;AAC5H,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,SAAS,eAAe;AAC9C,SAAK,WAAW,SAAS,aAAa,MAAM,KAAK,SAAS,aAAa,MAAM,MAAM,KAAK,kBAAkB,SAAS,WAAW,MAAM,KAAK,CAAC,KAAK,mBAAmB,SAAS,cAAc,MAAM;AAC/L,SAAK,iBAAiB,KAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,IAAI,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AACxG,SAAK,gBAAgB,8BAA8B,KAAK,gBAAgB,KAAK,aAAa,KAAK,MAAM;AACrG,SAAK,oBAAoB,8BAA8B,KAAK,gBAAgB,KAAK,aAAa,KAAK,MAAM;AACzG,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,KAAK,iBAAiB;AACjH,QAAI,KAAK,QAAQ;AACf,UAAI,KAAK,kBAAkB,SAAS,aAAa,MAAM,GAAG;AACxD,aAAK,mBAAmB;AACxB,aAAK,gBAAgB,CAAC,OAAO,WAAW;AAAA,MAC1C,OAAO;AACL,aAAK,mBAAmB;AACxB,aAAK,gBAAgB,CAAC,aAAa,WAAW;AAAA,MAChD;AACA,UAAI,SAAS;AACX,aAAK,cAAc,KAAK,MAAM;AAC9B,aAAK,cAAc,KAAK,WAAW;AAAA,MACrC;AACA,UAAI,2BAA2B;AAC7B,aAAK,cAAc,KAAK,wBAAwB;AAChD,aAAK,cAAc,KAAK,WAAW;AAAA,MACrC;AAAA,IACF,OAAO;AACL,WAAK,mBAAmB,KAAK,kBAAkB;AAC/C,UAAI,SAAS;AACX,aAAK,cAAc,KAAK,MAAM;AAAA,MAChC;AACA,UAAI,2BAA2B;AAC7B,aAAK,cAAc,KAAK,wBAAwB;AAAA,MAClD;AAAA,IACF;AACA,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,4BAA4B;AACjC,SAAK,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AACjE,SAAK,aAAa,KAAK,cAAc,KAAK,KAAK,kBAAkB;AACjE,SAAK,YAAY,KAAK,IAAI,KAAK,cAAc,KAAK,KAAK,kBAAkB,KAAK,cAAc,EAAE;AAC9F,SAAK,YAAY,YAAY,KAAK,eAAe;AACjD,SAAK,YAAY,YAAY,KAAK,eAAe;AACjD,SAAK,WAAW,WAAW,KAAK,cAAc;AAC9C,SAAK,YAAY,YAAY,KAAK,qBAAqB,KAAK,eAAe,KAAK,aAAa,KAAK,aAAa,KAAK,YAAY,KAAK,UAAU,KAAK,oBAAoB,KAAK;AAAA,EAC/K;AAAA,EACA,cAAc;AACZ,UAAM,eAAe,KAAK,SAAS,2BAA2B,KAAK,mBAAmB,KAAK,eAAe,CAAC,KAAK,gBAAgB,KAAK,SAAS,IAAI,uBAAuB,KAAK,mBAAmB,KAAK,eAAe,CAAC,KAAK,gBAAgB,KAAK,SAAS;AACzP,UAAM,eAAe,KAAK,SAAS,CAAC,KAAK,kBAAkB,GAAG,CAAC,IAAI,CAAC,GAAG,GAAG,CAAC;AAC3E,UAAM,WAAW;AAAA,MACf,oBAAoB,KAAK,gBAAgB,KAAK,WAAW,KAAK,WAAW,KAAK,UAAU,KAAK,SAAS,KAAK,YAAY,KAAK,2BAA2B,aAAa,IAAI,aAAa,IAAI,aAAa,EAAE;AAAA,MACxM;AAAA;AAEF,WAAO;AAAA,EACT;AACF;AAGA,SAAS,wBAAwB,OAAO,gBAAgB;AACtD,QAAM,SAAS,MAAM;AACrB,MAAI,UAAU,GAAG;AACf,WAAO,iBAAiB;AAAA,MACtB,GAAG,MAAM,MAAM,GAAG,EAAE;AAAA,MACpB,MAAM,SAAS,KAAK,MAAM,SAAS;AAAA,MACnC,MAAM,SAAS;AAAA,IACjB,IAAI;AAAA,MACF,GAAG,MAAM,MAAM,GAAG,EAAE;AAAA,MACpB,MAAM,SAAS;AAAA,MACf,MAAM,SAAS,KAAK,MAAM,SAAS;AAAA,IACrC;AAAA,EACF,WAAW,CAAC,kBAAkB,WAAW,KAAK,MAAM,KAAK,GAAG;AAC1D,WAAO,CAAC,MAAM,IAAI,CAAC;AAAA,EACrB,OAAO;AACL,WAAO;AAAA,EACT;AACF;AACA,SAAS,gBAAgB,EAAE,GAAG,QAAQ,UAAU,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AACnK,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,aAAa,iBAAiB,QAAQ;AAC5C,QAAM,aAAa;AACnB,QAAM,WAAW,kBAAkB,SAAS,iBAAiB,SAAS,YAAY,SAAS,gBAAgB,SAAS,WAAW,SAAS,QAAQ,SAAS;AACzJ,QAAM,gBAAgB,CAAC;AACvB,MAAI;AACJ,MAAI;AACJ,MAAI,UAAU;AACZ,UAAM,YAAY,SAAS,WAAW,SAAS,UAAU,SAAS;AAClE,gBAAY,SAAS;AAAA,MACnB,QAAQ,EAAE,EAAE;AAAA,MACZ,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,SAAS,WAAW,SAAS,EAAE;AAAA,IACrD,CAAC;AACD,qBAAiB,SAAS;AAAA,MACxB,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,WAAW,SAAS,WAAW,EAAE;AAAA,IACvD,CAAC;AAAA,EACH,OAAO;AACL,gBAAY,SAAS;AAAA,MACnB,QAAQ,EAAE,EAAE;AAAA,MACZ,SAAS;AAAA,MACT,OAAO;AAAA,QACL,OAAO,iBAAiB;AAAA,UACtB,SAAS;AAAA,UACT,SAAS,WAAW,SAAS;AAAA,UAC7B,SAAS;AAAA,QACX,IAAI;AAAA,UACF,SAAS;AAAA,UACT,SAAS;AAAA,UACT,SAAS,WAAW,SAAS;AAAA,QAC/B;AAAA,MACF;AAAA,IACF,CAAC;AACD,qBAAiB,SAAS;AAAA,MACxB,QAAQ,EAAE,GAAG,OAAO;AAAA,MACpB,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,CAAC,GAAG,SAAS,YAAY,SAAS,WAAW,EAAE;AAAA,IACjE,CAAC;AAAA,EACH;AACA,gBAAc,KAAK,SAAS;AAC5B,gBAAc,KAAK,cAAc;AACjC,MAAI,0BAA0B,MAAM;AAClC,UAAM,cAAc,wBAAwB,uBAAuB,OAAO,cAAc;AACxF,QAAI,eAAe,MAAM;AACvB,+BAAyB,SAAS;AAAA,QAChC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,YAAY;AAAA,MAC9B,CAAC;AACD,oBAAc,KAAK,sBAAsB;AAAA,IAC3C;AAAA,EACF;AACA,MAAI,QAAQ,MAAM;AAChB,UAAM,cAAc,wBAAwB,KAAK,OAAO,cAAc;AACtE,QAAI,eAAe,MAAM;AACvB,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AACzF,oBAAc,KAAK,IAAI;AAAA,IACzB;AAAA,EACF;AACA,QAAM,SAAS,iBAAiB;AAAA,IAC9B,GAAG,iBAAiB,YAAY;AAAA,IAChC,GAAG,iBAAiB,iBAAiB;AAAA,IACrC;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT;AAAA,IACA,YAAY;AAAA,IACZ;AAAA,IACA;AAAA,EACF,CAAC;AACD,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,SAAS,EAAE,CAAC;AACtG,gBAAc,KAAK,MAAM;AACzB,aAAW,MAAM,eAAe;AAC9B,aAAS,YAAY,GAAG,MAAM;AAAA,EAChC;AACA,SAAO;AACT;AACA,SAAS,WAAW,EAAE,GAAG,QAAQ,UAAU,SAAS,UAAU,OAAO,MAAM,yBAAyB,MAAM,iBAAiB,GAAG,YAAY,cAAc,KAAK,GAAG;AAC9J,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,QAAM,iBAAiB,SAAS,eAAe;AAC/C,QAAM,WAAW,kBAAkB,SAAS,iBAAiB,SAAS,YAAY,SAAS,gBAAgB,SAAS,WAAW,SAAS,QAAQ,SAAS;AACzJ,MAAI,YAAY,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,MAAM,SAAS,QAAQ,SAAS,UAAU,SAAS,QAAQ,SAAS,UAAU;AAClR,WAAO,gBAAgB;AAAA,MACrB;AAAA,MACA;AAAA,MACA;AAAA,MACA,SAAS;AAAA,MACT;AAAA,MACA,YAAY;AAAA,MACZ;AAAA,MACA;AAAA,IACF,CAAC;AAAA,EACH;AACA,QAAM,YAAY,iBAAiB,SAAS,YAAY,SAAS,WAAW,SAAS;AACrF,QAAM,YAAY,iBAAiB,SAAS,cAAc,SAAS,YAAY,SAAS;AACxF,QAAM,WAAW,SAAS,eAAe,SAAS,cAAc,SAAS;AACzE,QAAM,UAAU,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI;AAC5D,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE;AAAA,IACrE,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACpC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE;AAAA,IACrE,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,gBAAgB,SAAS,aAAa,EAAE;AAAA,IACzE,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,IACnC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,IACnC,EAAE,MAAM,SAAS,MAAM,CAAC,QAAQ,EAAE;AAAA,EACpC;AACA,QAAM,UAAU,IAAI,gBAAgB,UAAU,WAAW,WAAW,UAAU,SAAS,aAAa,yBAAyB;AAC7H,QAAM,gBAAgB,CAAC;AACvB,QAAM,WAAW,CAAC,GAAG,MAAM;AAC3B,MAAI,SAAS;AACX,QAAI,CAAC,kBAAkB,KAAK,MAAM,WAAW,GAAG;AAC9C,aAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,KAAK,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,KAAK,MAAM,IAAI,GAAG,CAAC,EAAE,EAAE,CAAC;AACnG,oBAAc,KAAK,IAAI;AAAA,IACzB;AACA,aAAS,KAAK,IAAI;AAAA,EACpB;AACA,MAAI,2BAA2B;AAC7B,QAAI,CAAC,kBAAkB,uBAAuB,MAAM,WAAW,GAAG;AAChE,+BAAyB,SAAS;AAAA,QAChC,QAAQ,EAAE,GAAG,uBAAuB;AAAA,QACpC,SAAS;AAAA,QACT,OAAO,EAAE,OAAO,CAAC,uBAAuB,MAAM,IAAI,GAAG,CAAC,EAAE;AAAA,MAC1D,CAAC;AACD,oBAAc,KAAK,sBAAsB;AAAA,IAC3C;AACA,aAAS,KAAK,sBAAsB;AAAA,EACtC;AACA,MAAI,gBAAgB,aAAa;AAC/B,eAAW,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,EAAE,CAAC;AAC3D,YAAQ,YAAY;AAAA,EACtB;AACA,QAAM,MAAM,SAAS,iBAAiB,SAAS,UAAU,EAAE,OAAO,UAAU;AAC5E,aAAW,MAAM,eAAe;AAC9B,aAAS,YAAY,GAAG,MAAM;AAAA,EAChC;AACA,SAAO;AACT;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB,IAAI;AACvE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,SAAO,WAAW,EAAE,GAAG,QAAQ,UAAU,SAAS,SAAS,CAAC;AAC9D;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,6BAA6B,mBAAmB,GAAG;AAC1D,QAAM,cAAc,CAAC,sBAAsB;AACzC,YAAQ;AAAA,WACD;AACH,eAAO;AAAA,WACJ;AACH,eAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAWP,cAAM,IAAI,MAAM,oBAAoB,qCAAqC;AAAA;AAAA,EAE/E;AACA,QAAM,eAAe;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iBASN,YAAY,gBAAgB;AAAA;AAAA;AAAA,iBAG5B,YAAY,gBAAgB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8DAOiB;AAC5D,QAAM,UAAU;AAAA,UACR;AAAA;AAAA,eAEK,YAAY,gBAAgB;AACzC,QAAM,WAAW;AAAA,uDACoC,YAAY,gBAAgB;AAAA,wBAC3D;AAAA,MAClB;AAAA;AAAA;AAAA,uDAGiD,YAAY,gBAAgB;AAAA,wBAC3D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QAShB,YAAY,gBAAgB;AAAA;AAAA,aAEvB,YAAY,gBAAgB;AAAA;AAAA;AAAA,iEAGwB,YAAY,gBAAgB;AAAA,wBACrE;AAAA,6CACqB,mBAAmB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iEAOC;AAAA;AAAA;AAG/D,SAAO;AACT;AACA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,cAAc,SAAS;AAC5B,iBAAa,OAAO,SAAS,eAAe,gBAAgB,MAAM,6BAA6B;AAC/F,SAAK,SAAS,SAAS,aAAa,MAAM,KAAK,SAAS,cAAc,MAAM;AAC5E,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE;AAClD,SAAK,gBAAgB,8BAA8B,KAAK,gBAAgB,KAAK,aAAa,KAAK,MAAM;AACrG,SAAK,oBAAoB,8BAA8B,KAAK,gBAAgB,KAAK,aAAa,KAAK,MAAM;AACzG,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,KAAK,iBAAiB;AACjH,QAAI,KAAK,QAAQ;AACf,WAAK,gBAAgB,CAAC,aAAa,KAAK;AAAA,IAC1C;AACA,SAAK,YAAY,oBAAoB,KAAK,UAAU,KAAK;AAAA,EAC3D;AAAA,EACA,cAAc;AACZ,UAAM,eAAe,KAAK,SAAS,2BAA2B,KAAK,mBAAmB,KAAK,aAAa,IAAI,uBAAuB,KAAK,mBAAmB,KAAK,aAAa;AAC7K,UAAM,WAAW;AAAA,MACf,6BAA6B,KAAK,SAAS,IAAI,CAAC;AAAA,MAChD;AAAA;AAEF,WAAO;AAAA,EACT;AACF;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,MAAM,GAAG;AAC/B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,iBAAiB,SAAS,eAAe;AAC9C,SAAK,YAAY,kBAAkB,KAAK;AAAA,EAC1C;AAAA,EACA,cAAc;AACZ,UAAM,SAAS,KAAK,iBAAiB,IAAI;AACzC,UAAM,SAAS,KAAK,iBAAiB,IAAI;AACzC,UAAM,aAAa,KAAK,iBAAiB,IAAI;AAC7C,WAAO;AAAA,MACL,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA,0BAIP;AAAA;AAAA,0CAEgB,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBA0B1C,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAiBvB;AACF;AAGA,SAAS,qBAAqB,MAAM;AAClC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,IAAI,OAAO,IAAI;AACvB,QAAM,EAAE,YAAY,SAAAA,UAAS,KAAK,MAAM,YAAY,gBAAgB,IAAI;AACxE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,YAAY,OAAO,OAAOA,UAAS,GAAG,MAAM,iBAAiB,OAAO,WAAW;AACvI,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE;AAAA,IACrE;AAAA,MACE,MAAM;AAAA,MACN,MAAM;AAAA,QACJ,SAAS,eAAe,IAAI,SAAS,QAAQ;AAAA,QAC7C,SAAS,cAAc,IAAI,SAAS,QAAQ;AAAA,MAC9C;AAAA,IACF;AAAA,IACA,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE;AAAA,IACrE;AAAA,MACE,MAAM;AAAA,MACN,MAAM;AAAA,QACJ,SAAS;AAAA,QACT,SAAS;AAAA,QACT,SAAS;AAAA,QACT,SAAS;AAAA,MACX;AAAA,IACF;AAAA,EACF;AACA,MAAI;AACJ,MAAI,IAAI,EAAE,QAAQ,mCAAmC,GAAG;AACtD,cAAU,IAAI,uBAAuB,QAAQ;AAAA,EAC/C,OAAO;AACL,cAAU,IAAI,wBAAwB,QAAQ;AAC9C,UAAM,YAAY,SAAS,QAAQ,KAAK,SAAS,QAAQ;AACzD,UAAM,YAAY,SAAS,QAAQ;AACnC,UAAM,WAAW,SAAS,eAAe,SAAS,cAAc,SAAS;AACzE,eAAW,KAAK,EAAE,MAAM,UAAU,MAAM,CAAC,SAAS,EAAE,GAAG,EAAE,MAAM,UAAU,MAAM,CAAC,SAAS,EAAE,GAAG,EAAE,MAAM,UAAU,MAAM,CAAC,QAAQ,EAAE,CAAC;AAAA,EACpI;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,IAAI,MAAM,GAAG,WAAW,UAAU;AAC/E;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,IAAI,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,UAAU,UAAU,UAAU,QAAQ;AAChD,SAAK,gBAAgB,CAAC,SAAS,SAAS,QAAQ;AAChD,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,UAAM,CAAC,QAAQ,IAAI;AACnB,SAAK,cAAc,CAAC,UAAU,SAAS,IAAI,SAAS,IAAI,QAAQ;AAChE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,WAAW,WAAW,aAAa,IAAI;AAC5C,SAAK,wBAAwB,KAAK,YAAY,KAAK;AACnD,SAAK,uBAAuB,KAAK,YAAY,KAAK;AAClD,SAAK,YAAY,iBAAiB,KAAK,YAAY,KAAK,yBAAyB,KAAK;AAAA,EACxF;AAAA,EACA,cAAc;AACZ,UAAM,CAAC,kBAAkB,eAAe,IAAI,CAAC,mCAAmC,iCAAiC;AACjH,UAAM,CAAC,aAAa,aAAa,GAAG,IAAI,KAAK,wBAAwB;AAAA,MACnE,IAAI;AAAA,MACJ;AAAA,MACA,MAAM;AAAA,IACR,IAAI;AAAA,MACF;AAAA,MACA;AAAA,MACA,mBAAmB;AAAA,IACrB;AACA,UAAM,CAAC,YAAY,YAAY,GAAG,IAAI,KAAK,uBAAuB;AAAA,MAChE,IAAI;AAAA,MACJ;AAAA,MACA,MAAM;AAAA,IACR,IAAI;AAAA,MACF;AAAA,MACA;AAAA,MACA,mBAAmB;AAAA,IACrB;AACA,UAAM,WAAW;AAAA,MACf,oBAAoB,OAAO;AAAA;AAAA;AAAA,iCAGA;AAAA,gCACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,6BAeH;AAAA,4BACD;AAAA,qBACP;AAAA,mCACc;AAAA;AAAA;AAAA;AAAA,qBAId;AAAA,mCACc;AAAA;AAAA;AAAA;AAAA;AAAA,aAKtB,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAwBd,WAAO;AAAA,EACT;AACF;AAGA,IAAI,iBAAiB,CAAC,SAAS;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,OAAO,OAAO,IAAI;AACzC,QAAM,EAAE,UAAU,QAAQ,mBAAmB,IAAI;AACjD,QAAM,UAAU,IAAI,sBAAsB,OAAO,MAAM,IAAI,MAAM,OAAO,UAAU,MAAM;AACxF,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,kBAAkB,EAAE,CAAC;AACpE,SAAO,SAAS,iBAAiB,SAAS,CAAC,QAAQ,OAAO,MAAM,GAAG,WAAW,WAAW;AAC3F;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI;AAAA,CACH,SAAS,YAAY;AACpB,aAAW,UAAU;AACrB,aAAW,SAAS;AACtB,GAAG,eAAe,aAAa,CAAC,EAAE;AAClC,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,KAAK,OAAO,WAAW,UAAU;AAC3C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,OAAO;AACZ,UAAM,iBAAiB;AACvB,SAAK,gBAAgB,CAAC,gBAAgB,GAAG,CAAC;AAC1C,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AACjB,SAAK,UAAU;AACf,SAAK,KAAK;AACV,SAAK,YAAY,OAAO,KAAK,MAAM,KAAK,aAAa,KAAK;AAAA,EAC5D;AAAA,EACA,cAAc;AACZ,UAAM,OAAO,KAAK,YAAY;AAC9B,UAAM,UAAU,KAAK,OAAO,WAAW,OAAO,QAAQ;AACtD,UAAM,MAAM,KAAK,YAAY,UAAU,QAAQ,WAAW,MAAM,UAAU,KAAK,EAAE;AACjF,UAAM,SAAS,KAAK,YAAY,KAAK,YAAY,SAAS;AAC1D,QAAI,YAAY;AAChB,QAAI,YAAY;AAChB,QAAI,KAAK,WAAW;AAClB,kBAAY,KAAK,UAAU,UAAU,SAAS,MAAM;AACpD,kBAAY,KAAK,UAAU,YAAY;AAAA,IACzC,OAAO;AACL,kBAAY,KAAK,UAAU,gBAAgB,WAAW;AACtD,kBAAY,KAAK,UAAU,eAAe;AAAA,IAC5C;AACA,WAAO;AAAA,QACH,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA,qBAId,eAAe,MAAM,UAAU,KAAK,EAAE;AAAA,qBACtC;AAAA;AAAA,eAEN;AAAA,uBACQ;AAAA,aACV,eAAe,MAAM,UAAU,KAAK,EAAE;AAAA,iBAClC,KAAK,YAAY,WAAW,MAAM,UAAU,KAAK,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAMlE;AACF;AACA,SAAS,WAAW,MAAM,MAAM,KAAK;AACnC,MAAI,SAAS,GAAG;AACd,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW;AAAA,EACvB,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW,WAAW;AAAA,EAClC,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG,WAAW,WAAW,WAAW;AAAA,EAC7C,OAAO;AACL,UAAM,MAAM,cAAc,gBAAgB,2BAA2B;AAAA,EACvE;AACF;AACA,SAAS,eAAe,MAAM,MAAM,KAAK;AACvC,MAAI,SAAS,GAAG;AACd,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,WAAW,SAAS,GAAG;AACrB,WAAO,GAAG;AAAA,EACZ,OAAO;AACL,UAAM,MAAM,cAAc,gBAAgB,2BAA2B;AAAA,EACvE;AACF;AAGA,SAAS,SAAS,KAAK,GAAG,UAAU,MAAM,WAAW,UAAU;AAC7D,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,cAAc,qBAAqB,mBAAmB,CAAC,IAAI,GAAG,KAAK;AACzE,MAAI,YAAY;AAChB,MAAI,eAAe,MAAM;AACvB,gBAAY,WAAW,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,YAAY,EAAE,CAAC;AAAA,EAC3F;AACA,QAAM,eAAe,qBAAqB,iBAAiB,GAAG,KAAK,EAAE;AACrE,MAAI,iBAAiB,QAAQ,GAAG;AAC9B,UAAM,IAAI,MAAM,oDAAoD,EAAE,MAAM,SAAS,kBAAkB,MAAM;AAAA,EAC/G;AACA,QAAMb,QAAO,UAAU,MAAM;AAC7B,MAAI,SAAS,UAAU,EAAE,QAAQ,EAAE,GAAG,UAAU,GAAG,SAAS,SAAS,CAAC;AACtE,WAAS,KAAK,GAAG,MAAM,KAAK,KAAK,KAAK,KAAKA,KAAI,CAAC,IAAI,GAAG,MAAM;AAC3D,UAAM,UAAU,IAAI,YAAY,KAAK,UAAU,OAAO,OAAO,QAAQ;AACrE,UAAM,aAAa;AACnB,UAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,EAAE,EAAE,CAAC;AACpD,aAAS,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,WAAW;AAC/E,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,WAAW;AACb,UAAM,UAAU,IAAI,YAAY,KAAK,UAAU,OAAO,WAAW,QAAQ;AACzE,UAAM,aAAa;AACnB,UAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,CAAC,EAAE,CAAC;AACnD,aAAS,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,WAAW;AAC/E,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,MAAI,eAAe,MAAM;AACvB,UAAM,qBAAqB,qBAAqB,uBAAuB,WAAW;AAClF,UAAM,0BAA0B,WAAW,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,mBAAmB,EAAE,CAAC;AAC5H,aAAS,YAAY,OAAO,MAAM;AAClC,aAAS,YAAY,UAAU,MAAM;AACrC,WAAO;AAAA,EACT;AACA,SAAO;AACT;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,SAAO,SAAS,WAAW,MAAM,GAAG,UAAU,MAAM,WAAW,QAAQ;AACzE;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,WAAW,SAAS,SAAS,IAAI;AAC/C,SAAO,SAAS,WAAW,KAAK,GAAG,UAAU,MAAM,WAAW,QAAQ;AACxE;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,aAAa,YAAY;AACnC,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,WAAW;AAChB,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY,gBAAgB;AACjC,SAAK,aAAa;AAAA,EACpB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA,oBAIf,KAAK,qBAAqB;AAAA,oBAC1B,KAAK,oBAAoB;AAAA,oBACzB,KAAK,oBAAoB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAO/B,KAAK,mBAAmB;AAAA;AAAA;AAAA,sBAGhB,KAAK,uBAAuB;AAAA;AAAA;AAAA;AAI9C,WAAO;AAAA,EACT;AAAA,EACA,uBAAuB;AACrB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,sBAAsB;AACpB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,sBAAsB;AACpB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,qBAAqB;AACnB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EACA,yBAAyB;AACvB,QAAI,KAAK,eAAe,QAAQ;AAC9B,aAAO;AAAA,IACT,OAAO;AACL,aAAO;AAAA,IACT;AAAA,EACF;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,WAAW,WAAW,IAAI;AAClC,QAAM,YAAY,EAAE,MAAM;AAC1B,QAAM,cAAc,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AACjE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,aAAa,eAAe,SAAS,EAAE,MAAM,KAAK,EAAE,MAAM;AAChE,QAAM,eAAe,cAAc;AACnC,QAAM,cAAc,aAAa;AACjC,QAAM,cAAc,cAAc,YAAY;AAC9C,QAAM,cAAc,eAAe,SAAS,CAAC,WAAW,cAAc,aAAa,WAAW,IAAI,CAAC,WAAW,aAAa,cAAc,WAAW;AACpJ,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,EACrC;AACA,QAAM,UAAU,IAAI,qBAAqB,aAAa,UAAU;AAChE,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACrE;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mCAAmC,MAAM;AAAA,EAC3C,YAAY,aAAa,cAAc,aAAa,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO;AACnH,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,IAAI,CAAC;AAC/B,SAAK,cAAc;AACnB,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,EAAE;AAClD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,qBAAqB;AAC1B,SAAK,eAAe;AACpB,SAAK,cAAc;AACnB,SAAK,YAAY,iBAAiB,KAAK,cAAc,KAAK,gBAAgB,KAAK;AAAA,EACjF;AAAA,EACA,cAAc;AACZ,UAAM,aAAa,KAAK,cAAc,KAAK;AAC3C,UAAM,gBAAgB,KAAK,cAAc,KAAK,KAAK,cAAc,KAAK,KAAK,cAAc;AACzF,UAAM,cAAc,KAAK,cAAc,KAAK,KAAK,eAAe;AAChE,UAAM,aAAa,KAAK,cAAc,KAAK,KAAK,cAAc;AAC9D,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,oBAAoB,OAAO,CAAC;AAAA;AAAA,kDAE5B,gBAAgB;AAAA,kDAChB,KAAK,iBAAiB,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QAUrE,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mDAuBoB,sCAAsC,KAAK,cAAc;AAAA,qDACvD,qCAAqC,KAAK,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UASnG,aAAa,gBAAgB,gBAAgB,gBAAgB,kBAAkB,iCAAiC;AAAA;AAAA;AAAA,gCAG1F,KAAK;AAAA,gCACL,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAOL,KAAK;AAAA,kCACH,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAM7B,sBAAsB,KAAK,SAAS,KAAK,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAMzD,WAAO;AAAA,EACT;AACF;AAGA,IAAI,6BAA6B,MAAM;AAAA,EACrC,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO;AACrF,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,GAAG,GAAG,CAAC;AAC7B,SAAK,SAAS;AACd,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,EAAE,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,EAAE;AAClD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,GAAG,GAAG,CAAC,CAAC;AACpG,iBAAa,OAAO,SAAS,eAAe,gBAAgB,MAAM,6BAA6B;AAC/F,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,WAAW;AAChB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,qBAAqB;AAC1B,SAAK,YAAY,iBAAiB,eAAe,KAAK,SAAS,gBAAgB,KAAK,SAAS;AAAA,EAC/F;AAAA,EACA,cAAc;AACZ,UAAM,UAAU,IAAI,KAAK,SAAS,cAAc;AAChD,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,oBAAoB,MAAM,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QASrE,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uCAUQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQP,KAAK,SAAS;AAAA;AAAA,gCAEd;AAAA;AAAA;AAAA;AAAA,kCAIE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAalC,sBAAsB,KAAK,SAAS,KAAK,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAM7D,WAAO;AAAA,EACT;AACF;AAGA,IAAI,0BAA0B,MAAM;AAAA,EAClC,YAAY,UAAU,UAAU,OAAO,cAAc,MAAM,qBAAqB,OAAO;AACrF,SAAK,gBAAgB,CAAC,KAAK,GAAG;AAC9B,SAAK,WAAW;AAAA;AAEhB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,cAAc,SAAS;AAC5B,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,iBAAiB,SAAS,eAAe;AAC9C,QAAI,SAAS;AACX,WAAK,cAAc,KAAK,MAAM;AAAA,IAChC;AACA,QAAI,oBAAoB;AACtB,WAAK,cAAc,KAAK,wBAAwB;AAAA,IAClD;AACA,SAAK,WAAW;AAChB,SAAK,UAAU;AACf,SAAK,aAAa;AAClB,SAAK,qBAAqB;AAC1B,SAAK,YAAY,aAAa,KAAK,cAAc,KAAK;AAAA,EACxD;AAAA,EACA,cAAc;AACZ,UAAM,cAAc,KAAK,iBAAiB,6BAA6B;AACvE,UAAM,WAAW;AAAA,QACb,oBAAoB,KAAK,YAAY,KAAK,oBAAoB,OAAO,CAAC;AAAA;AAAA,QAEtE,oBAAoB;AAAA;AAAA;AAAA,2CAGe,KAAK,iBAAiB,OAAO;AAAA,0BAC9C,KAAK,iBAAiB,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,6BA4BvB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,6BAoBA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAMjB,sBAAsB,KAAK,SAAS,KAAK,UAAU;AAAA;AAAA;AAAA;AAAA;AAAA;AAM3D,WAAO;AAAA,EACT;AACF;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,EAAE,SAAAa,UAAS,KAAK,MAAM,YAAY,WAAW,gBAAgB,IAAI;AACvE,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,MAAM,WAAW;AAC5I,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI,EAAE;AAAA,IACrE,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,UAAU,SAAS,OAAO,EAAE;AAAA,EAC/D;AACA,QAAM,iBAAiB,SAAS,eAAe;AAC/C,MAAI;AACJ,MAAI,CAAC,kBAAkB,SAAS,WAAW,MAAM,SAAS,UAAU,MAAM,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,kBAAkB,KAAK,SAAS,mBAAmB,KAAK,SAAS,eAAe,SAAS,aAAa;AACpP,cAAU,IAAI,iCAAiC,SAAS,UAAU,SAAS,cAAc,SAAS,WAAW;AAAA,EAC/G,WAAW,kBAAkB,SAAS,WAAW,KAAK,SAAS,UAAU,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,eAAe,SAAS,eAAe,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,aAAa,MAAM,GAAG;AACzR,cAAU,IAAI,2BAA2B,QAAQ;AAAA,EACnD,OAAO;AACL,cAAU,IAAI,wBAAwB,QAAQ;AAC9C,eAAW,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,YAAY,EAAE,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,WAAW,EAAE,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE,GAAG;AAAA,MACzL,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IACxD,CAAC;AAAA,EACH;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,GAAG,MAAM,GAAG,EAAE,OAAO,UAAU;AAC5E;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB,kBAAkB;AAAA,EACzC,QAAQ,aAAa;AAAA,EACrB,eAAe;AAAA,EACf,iBAAiB;AACnB,CAAC;AACD,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,OAAO,QAAQ;AACnD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,IAAI;AACrB,QAAM,UAAU;AAChB,QAAM,EAAE,SAAS,YAAY,OAAO,IAAI,qBAAqB,qBAAqB,UAAU,QAAQ,MAAM;AAC1G,uBAAqB,oBAAoB,QAAQ,QAAQ,QAAQ,OAAO;AACxE,QAAM,EAAE,MAAM,MAAM,IAAI,qBAAqB,qBAAqB,YAAY,MAAM;AACpF,QAAM,SAAS,MAAM;AACrB,MAAI,MAAM;AACV,MAAI,mBAAmB,QAAQ;AAC/B,QAAM,mBAAmB,CAAC;AAC1B,WAAS,KAAK,GAAG,KAAK,QAAQ,EAAE,IAAI;AAClC,eAAW,UAAU,MAAM,KAAK;AAC9B,YAAM,EAAE,oBAAoB,MAAM,YAAY,aAAa,IAAI,qBAAqB,qBAAqB,kBAAkB,OAAO,OAAO;AACzI,UAAI;AACJ,UAAI,qBAAqB,sBAAsB,IAAI,GAAG;AACpD,YAAI,QAAQ;AAAA,MACd,OAAO;AACL,YAAI,WAAW,EAAE,QAAQ,EAAE,GAAG,QAAQ,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACrF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,YAAM,cAAc,EAAE,MAAM,MAAM;AAClC,eAAS,IAAI,GAAG,IAAI,aAAa,QAAQ,EAAE,GAAG;AAC5C,oBAAY,OAAO,aAAa,IAAI,GAAG,CAAC;AAAA,MAC1C;AACA,UAAI,CAAC,aAAa,YAAY,EAAE,OAAO,WAAW,GAAG;AACnD,YAAI,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAChF,yBAAiB,KAAK,CAAC;AAAA,MACzB;AACA,UAAI,QAAQ,MAAM;AAChB,cAAM;AAAA,MACR,OAAO;AACL,cAAM,mBAAmB,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,IAAI,GAAG,SAAS,SAAS,CAAC;AACxE,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AAAA,IACF;AACA,QAAI,KAAK,SAAS,GAAG;AACnB,UAAI,KAAK,OAAO,GAAG;AACjB,cAAM,KAAK;AAAA,UACT,QAAQ,EAAE,GAAG,IAAI;AAAA,UACjB,SAAS;AAAA,UACT,OAAO;AAAA,YACL,MAAM,KAAK,OAAO,QAAQ,SAAS;AAAA,YACnC,UAAU;AAAA,UACZ;AAAA,QACF,CAAC;AACD,yBAAiB,KAAK,GAAG;AAAA,MAC3B;AACA;AAAA,IACF;AAAA,EACF;AACA,aAAW,cAAc,kBAAkB;AACzC,QAAI,eAAe,KAAK;AACtB;AAAA,IACF;AACA,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACA,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,IAAI,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,kBAAkB,EAAE,QAAQ,aAAa,OAAO,OAAO,QAAQ,eAAe,cAAc,CAAC;AAC1G,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB;AAAA,EAC1B,QAAQ,YAAY;AAAA,EACpB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,OAAO,SAAS,SAAS,IAAI;AAC7C,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,YAAY,OAAO,MAAM;AAC/B,QAAM,WAAW,OAAO,MAAM,MAAM;AACpC,MAAI,OAAO;AACX,MAAI,MAAM,GAAG;AACX,iBAAa,OAAO,EAAE,YAAY,MAAM,KAAK,MAAM,iCAAiC,EAAE,YAAY,OAAO,YAAY;AACrH,WAAO,YAAY,MAAM;AAAA,EAC3B;AACA,WAAS,OAAO,MAAM,GAAG,CAAC;AAC1B,SAAO,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAC1F;AACA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,iBAAiB,EAAE,QAAQ,YAAY,OAAO,eAAe,cAAc,CAAC;AACzF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,wBAAwB,MAAM;AAAA,EAChC,YAAY,YAAY;AACtB,SAAK,cAAc,CAAC;AACpB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAS/B,WAAO;AAAA,EACT;AACF;AAGA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AAC7C,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,gBAAgB;AACtB,UAAM,UAAU,IAAI,sBAAsB,OAAO,KAAK;AACtD,UAAM,SAAS,cAAc,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,KAAK;AAC7E,WAAO;AAAA,EACT;AACF;AAGA,IAAI,SAAS,iBAAiB,EAAE,QAAQ,YAAY,OAAO,eAAe,cAAc,CAAC;AACzF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,YAAY,kBAAkB,EAAE,QAAQ,aAAa,SAAS,OAAO,QAAQ,CAAC;AAClF,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,qBAAqB,MAAM;AAAA,EAC7B,YAAY,aAAa,aAAa,cAAc,OAAO;AACzD,SAAK,eAAe;AACpB,SAAK,cAAc,CAAC,CAAC;AACrB,SAAK,gBAAgB,CAAC;AACtB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,aAAa,GAAG,CAAC,CAAC;AAC9G,SAAK,cAAc;AACnB,SAAK,YAAY,cAAc,KAAK;AAAA,EACtC;AAAA,EACA,cAAc;AACZ,UAAM,cAAc,KAAK,cAAc,4CAA4C;AACnF,UAAM,cAAc,KAAK,cAAc,qBAAqB;AAC5D,WAAO;AAAA,uCAC4B;AAAA,QAC/B,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA,yBAIV;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOvB;AACF;AAGA,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AACA,IAAI;AACJ,IAAI,sBAAsB,IAAI,EAAE,QAAQ,uCAAuC;AAC/E,IAAI,oBAAoC,oBAAI,IAAI;AAChD,SAAS,YAAY,MAAM;AACzB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,MAAI,EAAE,OAAO,IAAI;AACjB,QAAM,EAAE,YAAY,IAAI;AACxB,MAAI,UAAU,MAAM;AAClB,UAAM,IAAI,MAAM,0DAA0D;AAAA,EAC5E;AACA,QAAM,UAAU,OAAO,qBAAqB,eAAe,kBAAkB;AAC7E,QAAM,UAAU,OAAO,qBAAqB,eAAe,kBAAkB;AAC7E,QAAM,WAAW,OAAO,sBAAsB,eAAe,kBAAkB,qBAAqB,OAAO,oBAAoB,eAAe,kBAAkB;AAChK,QAAM,gBAAgB,OAAO,gBAAgB,eAAe,kBAAkB;AAC9E,QAAM,CAAC,OAAO,MAAM,IAAI,UAAU;AAAA,IAChC,OAAO;AAAA,IACP,OAAO;AAAA,EACT,IAAI,CAAC,OAAO,OAAO,OAAO,MAAM;AAChC,QAAM,cAAc,CAAC,QAAQ,OAAO,WAAW;AAC/C,QAAM,cAAc,IAAI,EAAE,QAAQ,gCAAgC,KAAK;AACvE,QAAM,iBAAiB,WAAW;AAClC,MAAI,iBAAiB,YAAY,gBAAgB;AAC/C,QAAI;AACJ,QAAI,aAAa;AACf,YAAM,eAAe;AACrB,UAAI,CAAC,kBAAkB,IAAI,YAAY,KAAK,kBAAkB,IAAI,YAAY,EAAE,SAAS;AACvF,cAAM,4BAA4B,EAAE,QAAQ,aAAa;AACzD,0BAAkB,IAAI,cAAc,SAAS,OAAO,sBAAsB,yBAAyB,CAAC;AAAA,MACtG;AACA,oBAAc;AAAA,QACZ;AAAA,QACA;AAAA,QACA,QAAQ;AAAA,QACR,OAAO;AAAA,QACP,SAAS,kBAAkB,IAAI,YAAY;AAAA,MAC7C;AAAA,IACF,OAAO;AACL,UAAI,gBAAgB;AAClB,cAAM,wBAAwB,IAAI,EAAE,QAAQ,uCAAuC;AACnF,YAAI,wBAAwB,QAAQ,0BAA0B,qBAAqB;AACjF,gCAAsB;AACtB,iCAAuB,SAAS,cAAc,QAAQ,EAAE,WAAW,MAAM,EAAE,oBAAoB,oBAAoB,CAAC;AAAA,QACtH;AACA,6BAAqB,OAAO,QAAQ;AACpC,6BAAqB,OAAO,SAAS;AACrC,6BAAqB,UAAU,QAAQ,GAAG,GAAG,OAAO,MAAM;AAC1D,iBAAS,qBAAqB;AAAA,MAChC;AACA,YAAM,QAAQ,gBAAgB,WAAW,gBAAgB,oBAAoB,gBAAgB;AAC7F,YAAM,SAAS;AACf,YAAM,UAAU,SAAS,eAAe,eAAe,YAAY,IAAI,YAAY,IAAI,QAAQ,KAAK;AACpG,eAAS,MAAM,2BAA2B,EAAE,QAAQ,OAAO,GAAG,EAAE,QAAQ,GAAG,CAAC,YAAY,IAAI,YAAY,EAAE,CAAC;AAC3G,oBAAc,EAAE,OAAO,QAAQ,QAAQ,OAAO,QAAQ;AAAA,IACxD;AACA,UAAMb,QAAO,aAAa,cAAc,WAAW;AACnD,UAAMa,WAAU,aAAa,eAAe,WAAW;AACvD,UAAM,UAAU,IAAI,mBAAmB,aAAa,aAAa,WAAW;AAC5E,UAAM,cAAc;AAAA,MAClB,EAAE,MAAM,UAAU,MAAM,CAACb,KAAI,EAAE;AAAA,MAC/B,EAAE,MAAM,UAAU,MAAM,CAAC,WAAW,EAAE;AAAA,MACtC,EAAE,MAAM,UAAU,MAAM,CAAC,GAAGa,QAAO,EAAE;AAAA,IACvC;AACA,UAAM,SAAS,SAAS,eAAe,CAAC,QAAQ,KAAK,GAAG,OAAO;AAC/D,UAAM,OAAO,SAAS,UAAU,IAAI,OAAO,MAAM;AACjD,SAAK,eAAe;AACpB,UAAM,SAAS,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,SAAS,WAAW;AAChF,aAAS,YAAY,OAAO,MAAM;AAClC,WAAO;AAAA,EACT;AACA,QAAM,YAAY,OAAO;AACzB,MAAI,aAAa;AACjB,MAAI,eAAe,QAAQ,gBAAgB,GAAG;AAC5C,iBAAa,IAAI,WAAW,OAAO,QAAQ,OAAO,SAAS,WAAW;AACtE,UAAM,aAAa,UAAU;AAC7B,QAAI,IAAI;AACR,aAAS,KAAK,GAAG,KAAK,YAAY,MAAM;AACtC,UAAI,KAAK,IAAI,aAAa;AACxB,mBAAW,OAAO,UAAU;AAAA,MAC9B;AAAA,IACF;AAAA,EACF;AACA,QAAM,SAAS,SAAS,eAAe,aAAa,SAAS,IAAI,WAAW,UAAU,CAAC;AACvF,WAAS,YAAY,OAAO,MAAM;AAClC,SAAO;AACT;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,QAAQ,WAAW,eAAe,aAAa,YAAY;AACrE,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,gBAAgB,CAAC,KAAK,QAAQ,UAAU;AAC7C,yBAAqB,2BAA2B,QAAQ,SAAS;AACjE,yBAAqB,2BAA2B,QAAQ,aAAa;AACrE,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,QAAI,eAAe,MAAM;AACvB,2BAAqB,2BAA2B,QAAQ,WAAW;AACnE,WAAK,cAAc,KAAK,QAAQ;AAAA,IAClC;AACA,QAAI,cAAc,MAAM;AACtB,2BAAqB,2BAA2B,QAAQ,UAAU;AAClE,WAAK,cAAc,KAAK,OAAO;AAAA,IACjC;AACA,SAAK,cAAc;AACnB,SAAK,aAAa;AAClB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,QAAI,gBAAgB;AACpB,QAAI,KAAK,eAAe,MAAM;AAC5B,sBAAgB;AAAA,IAClB;AACA,QAAI,eAAe;AACnB,QAAI,KAAK,cAAc,MAAM;AAC3B,qBAAe;AAAA,IACjB;AACA,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAML;AAAA,6BACD;AAAA;AAAA;AAAA;AAAA;AAAA;AAMzB,WAAO;AAAA,EACT;AACF;AAGA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,GAAG,OAAOS,SAAQ,QAAQ,MAAM,OAAO,SAAS,IAAI;AAC5D,UAAM,EAAE,gBAAgB,IAAI;AAC5B,UAAM,gBAAgB;AACtB,UAAM,kBAAkB,CAAC,GAAG,OAAO,QAAQ;AAC3C,QAAI,cAAc;AAClB,QAAI,UAAU,MAAM;AAClB,oBAAc,OAAO;AACrB,sBAAgB,KAAK,MAAM;AAAA,IAC7B;AACA,QAAI,aAAa;AACjB,QAAIA,WAAU,MAAM;AAClB,mBAAaA,QAAO;AACpB,sBAAgB,KAAKA,OAAM;AAAA,IAC7B;AACA,UAAM,UAAU,IAAI,kBAAkB,EAAE,OAAO,MAAM,OAAO,SAAS,OAAO,aAAa,UAAU;AACnG,UAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,eAAe,EAAE,CAAC;AACjE,WAAO,cAAc,iBAAiB,SAAS,iBAAiB,EAAE,OAAO,WAAW;AAAA,EACtF;AACF;AAGA,SAAS,aAAa,MAAM;AAC1B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAT,UAAS,KAAK,MAAM,YAAY,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AAChH,QAAM,cAAc,qBAAqB,wBAAwB,UAAU;AAC3E,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,WAAW,MAAM,iBAAiB,OAAO,WAAW;AAC5I,SAAO,WAAW;AAAA,IAChB;AAAA,IACA;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT;AAAA,IACA;AAAA,IACA;AAAA,IACA,YAAY;AAAA,EACd,CAAC;AACH;AACA,IAAI,qBAAqB;AAAA,EACvB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,sBAAsB,MAAM;AACnC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,MAAM,uBAAuB,IAAI;AACpD,QAAM,EAAE,SAAAA,UAAS,KAAK,MAAM,WAAW,iBAAiB,YAAY,aAAa,eAAe,IAAI;AACpG,MAAI,aAAa;AACjB,MAAI,cAAc,MAAM;AACtB,iBAAa,CAAC,GAAG,CAAC;AAAA,EACpB;AACA,eAAa,OAAO,qBAAqB,+BAA+BA,UAAS,UAAU,GAAG,MAAM,gFAAgFA,2BAA0B,aAAa;AAC3N,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,OAAO,OAAOA,UAAS,YAAY,MAAM,iBAAiB,IAAI;AAC/H,QAAM,gBAAgB,CAAC,GAAG,MAAM;AAChC,QAAM,UAAU,QAAQ;AACxB,QAAM,4BAA4B,0BAA0B;AAC5D,MAAI,SAAS;AACX,kBAAc,KAAK,IAAI;AAAA,EACzB;AACA,MAAI,2BAA2B;AAC7B,kBAAc,KAAK,sBAAsB;AAAA,EAC3C;AACA,QAAM,aAAa;AAAA,IACjB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,QAAQ,KAAK,SAAS,QAAQ,IAAI,EAAE;AAAA,IACrE,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,UAAU,SAAS,OAAO,EAAE;AAAA,EAC/D;AACA,MAAI;AACJ,MAAI,SAAS,WAAW,KAAK,SAAS,UAAU,KAAK,SAAS,iBAAiB,KAAK,SAAS,gBAAgB,KAAK,SAAS,eAAe,SAAS,eAAe,SAAS,mBAAmB,KAAK,SAAS,kBAAkB,KAAK,SAAS,aAAa,MAAM,GAAG;AAChQ,cAAU,IAAI,2BAA2B,UAAU,SAAS,aAAa,yBAAyB;AAAA,EACpG,OAAO;AACL,cAAU,IAAI,wBAAwB,UAAU,SAAS,aAAa,yBAAyB;AAC/F,eAAW,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,YAAY,EAAE,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,WAAW,EAAE,GAAG,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,cAAc,SAAS,WAAW,EAAE,GAAG;AAAA,MACzL,MAAM;AAAA,MACN,MAAM,CAAC,SAAS,gBAAgB,SAAS,aAAa;AAAA,IACxD,CAAC;AAAA,EACH;AACA,MAAI,gBAAgB,aAAa;AAC/B,eAAW,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,EAAE,CAAC;AAC3D,YAAQ,YAAY;AAAA,EACtB;AACA,QAAM,SAAS,SAAS,iBAAiB,SAAS,eAAe,WAAW,UAAU;AACtF,SAAO;AACT;AACA,IAAI,8BAA8B;AAAA,EAChC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,mBAAmB,MAAM;AAAA,EAC3B,YAAY,UAAU,OAAO;AAC3B,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY,YAAY;AAC7B,SAAK,WAAW;AAChB,SAAK,WAAW,6BAA6B,mBAAmB,QAAQ;AAAA,EAC1E;AAAA,EACA,cAAc;AACZ,QAAI;AACJ,QAAI,KAAK,WAAW,GAAG;AACrB,qBAAe;AAAA,IACjB,OAAO;AACL,qBAAe;AAAA,IACjB;AACA,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAML;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAQ1B,WAAO;AAAA,EACT;AACF;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,QAAQ,QAAQ,IAAI;AAC5B,QAAM,eAAe,QAAQ;AAC7B,QAAM,YAAY,aAAa,aAAa,SAAS;AACrD,QAAM,aAAa,aAAa,cAAc,OAAO,KAAK;AAC1D,QAAM,CAAC,aAAa,WAAW,WAAWA,QAAO,IAAI,qBAAqB,mBAAmB,QAAQ,OAAO;AAC5G,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,WAAW,SAAS,EAAE,EAAE,CAAC;AACvH,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,aAAa,cAAc,OAAO,KAAK,IAAI,WAAW,SAAS,EAAE;AAAA,EACpF,CAAC;AACD,MAAI,SAAS,mBAAmB,CAAC,QAAQ,OAAO,CAAC,KAAK,OAAO,UAAU,UAAU;AAC/E,UAAM,cAAc,SAAS,SAAS,QAAQ,MAAM;AACpD,UAAM,YAAY,SAAS,WAAW,MAAM;AAC5C,UAAM,WAAW,iBAAiB,aAAa,WAAW,OAAO,OAAO,WAAW,WAAW,WAAWA,UAAS,OAAO,OAAO,UAAU;AAC1I,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,SAAS,MAAM;AAAA,EAC3E;AACA,QAAM,UAAU,IAAI,iBAAiB,WAAW,CAAC,WAAW,SAAS,CAAC;AACtE,QAAM,cAAc,CAAC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE,GAAG,EAAE,MAAM,SAAS,MAAMA,SAAQ,CAAC;AAC3F,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,UAAU,cAAc,GAAG,SAAS,OAAO,WAAW;AACtG,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAClG,WAAS,YAAY,eAAe,MAAM;AAC1C,WAAS,YAAY,SAAS,MAAM;AACpC,WAAS,YAAY,IAAI,MAAM;AAC/B,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,QAAQ,aAAa;AAC/B,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,OAAO,MAAM;AAChC,SAAK,SAAS;AACd,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,eAAe,iBAAiB,KAAK,MAAM;AACjD,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA,oDAKiB;AAAA;AAAA;AAAA;AAIhD,WAAO;AAAA,EACT;AACF;AACA,SAAS,iBAAiB,QAAQ;AAChC,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,OAAO,QAAQ,MAAM;AACzC,QAAI,OAAO,GAAG;AACZ,mBAAa,KAAK,QAAQ;AAAA,IAC5B,OAAO;AACL,mBAAa,KAAK,GAAG,cAAc,KAAK;AAAA,IAC1C;AAAA,EACF;AACA,SAAO,aAAa,KAAK;AAC3B;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,GAAG,QAAQ,IAAI;AACvB,QAAM,EAAE,MAAM,UAAU,IAAI;AAC5B,QAAM,aAAa,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AAC9D,QAAM,YAAY,qBAAqB,aAAa,yBAAyB,GAAG,SAAS,YAAY,SAAS;AAC9G,QAAM,cAAc,aAAa,cAAc,QAAQ,KAAK;AAC5D,QAAM,YAAY,CAAC;AACnB,QAAM,WAAW,SAAS;AAAA,IACxB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO;AAAA,MACL,OAAO;AAAA,QACL,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,QACV,UAAU;AAAA,MACZ;AAAA,IACF;AAAA,EACF,CAAC;AACD,QAAM,eAAe,SAAS;AAAA,IAC5B,QAAQ,EAAE,GAAG,QAAQ;AAAA,IACrB,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,UAAU,WAAW,cAAc,UAAU,SAAS,EAAE;AAAA,EAC3E,CAAC;AACD,YAAU,KAAK,QAAQ;AACvB,YAAU,KAAK,YAAY;AAC3B,QAAM,qBAAqB;AAAA,IACzB,UAAU;AAAA,IACV,UAAU;AAAA,IACV,cAAc,UAAU;AAAA,IACxB,UAAU;AAAA,EACZ;AACA,MAAI,SAAS,mBAAmB,CAAC,GAAG,OAAO,CAAC,GAAG;AAC7C,UAAM,oBAAoB,SAAS,UAAU,IAAI,aAAa,MAAM;AACpE,UAAM,gBAAgB,kBAAkB;AACxC,UAAM,aAAa,OAAO,aAAa,OAAO,aAAa,OAAO,aAAa;AAC/E,UAAM,cAAc,SAAS,UAAU,IAAI,SAAS,MAAM;AAC1D,UAAM,UAAU,YAAY;AAC5B,UAAM,OAAO,OAAO,SAAS,OAAO,SAAS,OAAO,OAAO;AAC3D,UAAM,SAAS,iBAAiB,MAAM,YAAY,kBAAkB;AACpE,cAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,WAAO,SAAS,eAAe,UAAU,aAAa,OAAO,OAAO,OAAO,MAAM;AAAA,EACnF;AACA,QAAM,UAAU,IAAI,eAAe,SAAS,OAAO,kBAAkB;AACrE,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,UAAU,YAAY,GAAG,SAAS,KAAK;AACvF,YAAU,KAAK,GAAG;AAClB,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,UAAU,YAAY,EAAE,CAAC;AAC5G,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,kBAAkB;AAAA,EAC/B,QAAQ,aAAa;AAAA,EACrB,eAAe;AAAA,EACf,OAAO;AACT,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB,kBAAkB;AAAA,EACpC,QAAQ,aAAa;AAAA,EACrB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,iBAAiB,EAAE,QAAQ,YAAY,QAAQ,OAAO,OAAO,CAAC;AAC3E,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAAU,OAAM,IAAI;AAClB,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAACA,MAAK,EAAE,CAAC;AACvD,QAAM,UAAU,IAAI,gBAAgB,EAAE,OAAO,YAAY,SAAS;AAClE,UAAQ,WAAW;AACnB,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,WAAW,WAAW;AACvE;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,kBAAkB,EAAE,QAAQ,aAAa,MAAM,OAAO,QAAQ,eAAe,aAAa,CAAC;AACvG,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,aAAa,kBAAkB;AAAA,EACjC,QAAQ,aAAa;AAAA,EACrB,OAAO;AAAA,EACP,eAAe;AACjB,CAAC;AACD,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,KAAK,eAAe,YAAY,CAAC;AACnF,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,kBAAkB,EAAE,QAAQ,aAAa,aAAa,OAAO,OAAO,CAAC;AACvF,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,iBAAiB,EAAE,QAAQ,YAAY,YAAY,CAAC;AACtE,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,kBAAkB;AAAA,EAC/B,QAAQ,aAAa;AAAA,EACrB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAAV,UAAS,KAAK,MAAM,gBAAgB,IAAI;AAC5D,QAAM,YAAY;AAClB,QAAM,WAAW,qBAAqB,kBAAkB,EAAE,OAAO,YAAYA,UAAS,WAAW,MAAM,eAAe;AACtH,SAAO,SAAS,GAAG,UAAU,OAAO,QAAQ;AAC9C;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,OAAO,QAAQ;AACnD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,kBAAkB;AAAA,EAC/B,QAAQ,aAAa;AAAA,EACrB,eAAe;AACjB,CAAC;AACD,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,QAAQ,UAAU,MAAM;AAClC,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,SAAS;AACd,aAAS,IAAI,CAAC,GAAG,OAAO;AACtB,WAAK,YAAY,OAAO;AAAA,IAC1B,CAAC;AACD,SAAK,SAAS,SAAS,YAAY,IAAI;AACvC,SAAK,YAAY,aAAa;AAAA,EAChC;AAAA,EACA,cAAc;AACZ,UAAM,OAAO,KAAK,OAAO;AACzB,UAAM,QAAQ,KAAK,OAAO,IAAI,CAAC,GAAG,OAAO,eAAe,OAAO,EAAE,KAAK,GAAG;AACzE,UAAM,MAAM,KAAK,OAAO,IAAI,CAAC,GAAG,OAAO,eAAe,0BAA0B,OAAO,IAAI,IAAI,QAAQ,IAAI,EAAE,KAAK,GAAG;AACrH,UAAM,cAAc,SAAS,IAAI,UAAU;AAC3C,UAAM,YAAY,SAAS,IAAI,QAAQ;AACvC,UAAM,aAAa,SAAS,IAAI,SAAS;AACzC,UAAM,QAAQ,mBAAmB,IAAI;AACrC,UAAM,iBAAiB,OAAO,IAAI,CAAC,aAAa,aAAa,aAAa,WAAW,EAAE,MAAM,GAAG,IAAI,IAAI;AACxG,WAAO;AAAA,QACH,oBAAoB,OAAO;AAAA;AAAA,wBAEX,SAAS;AAAA,sBACX,SAAS;AAAA;AAAA,gCAEC;AAAA,kBACd,gBAAgB;AAAA,gBAClB,gBAAgB,qBAAqB,gBAAgB,KAAK;AAAA,wBAClD,iBAAiB;AAAA,gBACzB,iBAAiB,wBAAwB,gBAAgB,KAAK;AAAA;AAAA;AAAA;AAAA,yCAIrC;AAAA;AAAA;AAAA;AAAA,EAIvC;AACF;AAGA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,EAAE,UAAU,KAAK,IAAI;AAC3B,UAAM,gBAAgB;AACtB,UAAM,cAAc,SAAS,IAAI,CAAC,OAAO;AACvC,aAAO,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,IAAI,GAAG,EAAE,EAAE;AAAA,IAC/C,CAAC;AACD,UAAM,UAAU,IAAI,kBAAkB,EAAE,OAAO,UAAU,IAAI;AAC7D,UAAM,SAAS,cAAc,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AAChF,WAAO;AAAA,EACT;AACF;AAGA,SAAS,KAAK,MAAM;AAClB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,QAAQ,SAAS,UAAU,IAAI,EAAE,MAAM;AAC7C,UAAM,CAAC,WAAW,QAAQ,IAAI,YAAY,MAAM,QAAQ,EAAE,OAAO,EAAE,KAAK;AACxE,WAAO,SAAS,eAAe,UAAU,EAAE,OAAO,SAAS;AAAA,EAC7D;AACA,QAAM,UAAU,IAAI,gBAAgB,EAAE,OAAO,YAAY,GAAG;AAC5D,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AACxD;AACA,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,UAAQ,KAAK,gGAAgG;AAC7G,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,eAAe,IAAI;AACxD,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,EAAE,gBAAgB,IAAI,qBAAqB,wBAAwB,WAAW,YAAY,eAAe,cAAc,cAAc;AAC3I,SAAO,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AACnG;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,qBAAqB,MAAM;AAClC,UAAQ,KAAK,gGAAgG;AAC7G,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,QAAM,EAAE,eAAe,cAAc,gBAAgB,aAAa,IAAI;AACtE,QAAM,YAAY,SAAS,SAAS,MAAM,MAAM;AAChD,QAAM,aAAa,SAAS,SAAS,OAAO,MAAM;AAClD,QAAM,mBAAmB;AACzB,QAAM,kBAAkB;AACxB,QAAM,oBAAoB;AAC1B,QAAM,kBAAkB;AACxB,QAAM,EAAE,iBAAiB,eAAe,IAAI,qBAAqB,wBAAwB,WAAW,YAAY,kBAAkB,iBAAiB,mBAAmB,eAAe;AACrL,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,gBAAgB,MAAM,GAAG,SAAS,IAAI,WAAW,eAAe,CAAC;AAAA,IAC1F,SAAS,eAAe,CAAC,eAAe,MAAM,GAAG,WAAW,IAAI,aAAa,cAAc,CAAC;AAAA,EAC9F;AACF;AACA,IAAI,6BAA6B;AAAA,EAC/B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,aAAa;AAC3B,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,YAAY,SAAS,MAAM;AACpC,aAAS,YAAY,GAAG,MAAM;AAC9B,aAAS,YAAY,SAAS,MAAM;AACpC,aAAS,YAAY,GAAG,MAAM;AAC9B,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM;AAAA,MACX,OAAO;AAAA,QACL,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,QACT,OAAO,EAAE,UAAU,WAAW,KAAK;AAAA,MACrC;AAAA,MACA,SAAS;AAAA,IACX,CAAC;AAAA,EACH;AACF;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,UAAU,MAAM;AACvB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,EAAE,IAAI;AACd,MAAI,EAAE,UAAU,UAAU;AACxB,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE,WAAW,EAAE,UAAU,aAAa;AAClC,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,UAAU,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACnE,UAAM,WAAW,MAAM,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAClE,UAAM,KAAK,WAAW,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,SAAS,CAAC;AACpE,UAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,GAAG,GAAG,SAAS,SAAS,CAAC;AAC7E,aAAS,YAAY,SAAS,MAAM;AACpC,aAAS,YAAY,GAAG,MAAM;AAC9B,aAAS,YAAY,SAAS,MAAM;AACpC,aAAS,YAAY,GAAG,MAAM;AAC9B,WAAO;AAAA,EACT,OAAO;AACL,WAAO,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,OAAO,EAAE,OAAO,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACzF;AACF;AACA,IAAI,kBAAkB;AAAA,EACpB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,OAAO,WAAW,GAAG;AACvB,WAAO,YAAY,EAAE,QAAQ,EAAE,OAAO,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAAA,EAC9F;AACA,QAAM,QAAQ,OAAO,GAAG;AACxB,QAAM,QAAQ,OAAO,GAAG;AACxB,SAAO,QAAQ,CAAC,OAAO;AACrB,iBAAa,kBAAkB,OAAO,GAAG,OAAO,uDAAuD;AACvG,iBAAa,OAAO,UAAU,GAAG,OAAO,MAAM,uDAAuD;AAAA,EACvG,CAAC;AACD,QAAM,0BAA0B,CAAC;AACjC,QAAM,kBAAkB,OAAO,IAAI,CAAC,OAAO;AACzC,UAAM,YAAY,YAAY,EAAE,QAAQ,EAAE,OAAO,GAAG,GAAG,SAAS,UAAU,OAAO,EAAE,KAAK,KAAK,EAAE,CAAC;AAChG,4BAAwB,KAAK,SAAS;AACtC,WAAO;AAAA,EACT,CAAC;AACD,QAAM,SAAS,QAAQ,EAAE,QAAQ,iBAAiB,SAAS,UAAU,OAAO,EAAE,KAAK,EAAE,CAAC;AACtF,0BAAwB,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACvE,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,MAAM;AAAA,EACtB,YAAY,QAAQ,UAAU;AAC5B,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,OAAO,MAAM,GAAG,EAAE;AACtE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,aAAS,IAAI,CAAC,GAAG,OAAO;AACtB,WAAK,YAAY,OAAO;AAAA,IAC1B,CAAC;AACD,SAAK,SAAS;AACd,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,OAAO,KAAK,OAAO;AACzB,UAAM,OAAO,mBAAmB,IAAI;AACpC,UAAM,QAAQ,KAAK,OAAO,IAAI,CAAC,GAAG,OAAO,eAAe,OAAO,EAAE,KAAK,GAAG;AACzE,UAAM,MAAM,KAAK,OAAO,IAAI,CAAC,GAAG,OAAO,eAAe,0BAA0B,OAAO,IAAI,IAAI,QAAQ,IAAI,EAAE,KAAK,GAAG;AACrH,UAAM,aAAa,OAAO,IAAI,GAAG,QAAQ,WAAW,GAAG;AACvD,UAAM,WAAW,OAAO,IAAI,GAAG,QAAQ,SAAS,GAAG;AACnD,UAAM,mBAAmB,OAAO,IAAI,sBAAsB;AAC1D,UAAM,oBAAoB,OAAO,IAAI,qBAAqB;AAC1D,UAAM,iBAAiB,OAAO,IAAI,CAAC,aAAa,aAAa,aAAa,WAAW,EAAE,MAAM,GAAG,IAAI,IAAI;AACxG,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA,wBAEX;AAAA,sBACF;AAAA;AAAA;AAAA,gBAGN,uBAAuB;AAAA;AAAA;AAAA;AAAA,2CAII;AAAA;AAAA;AAAA;AAAA;AAKvC,WAAO;AAAA,EACT;AACF;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,UAAU,cAAc,IAAI;AACpC,MAAI,SAAS,MAAM,CAAC,OAAO,aAAa,YAAY,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG;AAChE,WAAO,UAAU,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,EACvD;AACA,MAAI,aAAa,cAAc,EAAE,KAAK,MAAM,GAAG;AAC7C,UAAM,cAAc,SAAS,IAAI,CAAC,IAAI,OAAO,GAAG,KAAK,EAAE,MAAM,MAAM,GAAG,EAAE;AACxE,WAAO,MAAM;AAAA,MACX,SAAS;AAAA,MACT,OAAO,EAAE,OAAO,aAAa,OAAO,eAAe,OAAO,EAAE,MAAM;AAAA,IACpE,CAAC;AAAA,EACH;AACA,QAAM,cAAc,CAAC,EAAE,MAAM,WAAW,MAAM,CAAC,aAAa,EAAE,CAAC;AAC/D,WAAS,IAAI,CAAC,OAAO,YAAY,KAAK,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,IAAI,GAAG,EAAE,EAAE,CAAC,CAAC;AAC9E,QAAM,UAAU,IAAI,YAAY,EAAE,OAAO,QAAQ;AACjD,SAAO,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACrE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,kBAAkB;AAAA,EAC3B,QAAQ,aAAa;AACvB,CAAC;AACD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,OAAO,MAAM;AACpB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,GAAG,OAAAU,OAAM,IAAI;AACrB,QAAM,UAAU,IAAI,iBAAiB,aAAa,OAAO,EAAE,OAAOA,OAAM,KAAK;AAC7E,SAAO,SAAS,iBAAiB,SAAS,CAAC,GAAGA,MAAK,GAAG,SAAS;AACjE;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,MAAM,SAAS,IAAI;AAC3B,SAAO,QAAQ,GAAG,MAAM,UAAU,QAAQ,QAAQ;AACpD;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,CAAC,SAAS;AACrB,QAAM,EAAE,SAAS,UAAU,MAAM,IAAI;AACrC,QAAM,EAAE,OAAO,MAAM,MAAM,OAAO,MAAM,IAAI;AAC5C,QAAM,SAAS,cAAc,OAAO,MAAM,OAAO,KAAK;AACtD,SAAO,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,OAAO,MAAM;AAC/D;AACA,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,kBAAkB,EAAE,QAAQ,aAAa,IAAI,CAAC;AAC7D,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,cAAc,iBAAiB,EAAE,QAAQ,YAAY,WAAW,CAAC;AACrE,IAAI,oBAAoB;AAAA,EACtB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,SAAS,iBAAiB,EAAE,QAAQ,YAAY,MAAM,CAAC;AAC3D,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,yBAAyB,MAAM;AAAA,EACjC,YAAY,YAAY,WAAW,UAAU;AAC3C,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,CAAC,WAAW,IAAI,WAAW,UAAU,WAAW,EAAE;AACrE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA2C/B,WAAO;AAAA,EACT;AACF;AAGA,SAAS,gBAAgB,MAAM;AAC7B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,MAAAvB,OAAM,iBAAiB,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,eAAe,gBAAgB,YAAY,IAAI,IAAI;AACzD,QAAM,cAAc,gBAAgB,WAAW,IAAI,IAAI;AACvD,QAAM,wBAAwB,mBAAmB,MAAM;AACvD,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,WAAW,EAAE;AAAA,IACrD,EAAE,MAAM,WAAW,MAAM,CAAC,qBAAqB,EAAE;AAAA,EACnD;AACA,QAAM,UAAU,IAAI,uBAAuB,OAAO,OAAO,WAAW,QAAQ;AAC5E,SAAO,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,WAAW,WAAW;AAC5E;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gCAAgC,MAAM;AAAA,EACxC,YAAY,YAAY,WAAW,UAAU,kBAAkB;AAC7D,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc,CAAC,WAAW,IAAI,WAAW,UAAU,WAAW,EAAE;AACrE,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,mBAAmB;AACxB,SAAK,YAAY,iBAAiB;AAAA,EACpC;AAAA,EACA,cAAc;AACZ,QAAI;AACJ,QAAI,KAAK,kBAAkB;AACzB,0BAAoB;AAAA,IACtB,OAAO;AACL,0BAAoB;AAAA,IACtB;AACA,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAmBC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAYhC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,uBAAuB,MAAM;AACpC,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,cAAc,kBAAkB,MAAAA,MAAK,IAAI;AACjD,QAAM,CAAC,WAAW,QAAQ,IAAIA;AAC9B,QAAM,eAAe,gBAAgB,YAAY,IAAI,IAAI;AACzD,QAAM,cAAc,gBAAgB,WAAW,IAAI,IAAI;AACvD,QAAM,YAAY,eAAe,MAAM;AACvC,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,WAAW,MAAM,CAAC,cAAc,WAAW,EAAE;AAAA,IACrD,EAAE,MAAM,WAAW,MAAM,CAAC,SAAS,EAAE;AAAA,EACvC;AACA,QAAM,UAAU,IAAI,8BAA8B,OAAO,OAAO,WAAW,UAAU,gBAAgB;AACrG,SAAO,SAAS,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,WAAW;AAC/E;AACA,IAAI,+BAA+B;AAAA,EACjC,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,YAAY,WAAW;AACjC,SAAK,cAAc,CAAC;AACpB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,WAAW;AAAA;AAEhB,SAAK,YAAY;AACjB,SAAK,cAAc;AACnB,QAAI,OAAO,cAAc,UAAU;AACjC,WAAK,YAAY;AACjB,WAAK,cAAc;AACnB,WAAK,aAAa;AAAA,IACpB,OAAO;AACL,WAAK,YAAY;AACjB,WAAK,cAAc;AACnB,WAAK,aAAa;AAAA,IACpB;AAAA,EACF;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,UACX,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAWvB,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AASf,WAAO;AAAA,EACT;AACF;AAGA,IAAI,0BAA0B;AAAA,EAC5B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,OAAO,SAAS,SAAS,MAAM;AACpD,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,UAAM,EAAE,SAAS,WAAW,OAAO,IAAI;AACvC,UAAM,gBAAgB;AACtB,UAAM,UAAU,IAAI,eAAe,OAAO,OAAO,SAAS;AAC1D,UAAM,CAAC,SAAS,OAAO,IAAI,qBAAqB,eAAe,QAAQ,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE;AACvG,UAAM,cAAc;AAAA,MAClB,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,EAAE;AAAA,MACnC,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,EAAE;AAAA,MACnC,EAAE,MAAM,WAAW,MAAM,CAAC,KAAK,IAAI,OAAO,CAAC,EAAE;AAAA,MAC7C,EAAE,MAAM,WAAW,MAAM,CAAC,KAAK,IAAI,OAAO,CAAC,EAAE;AAAA,IAC/C;AACA,QAAI,OAAO,cAAc,UAAU;AACjC,kBAAY,KAAK,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,WAAW,UAAU,QAAQ,CAAC,CAAC,CAAC,EAAE,CAAC;AAAA,IACvF,OAAO;AACL,kBAAY,KAAK,EAAE,MAAM,WAAW,MAAM,UAAU,CAAC;AAAA,IACvD;AACA,UAAM,SAAS,cAAc,iBAAiB,SAAS,CAAC,MAAM,GAAG,OAAO,OAAO,WAAW;AAC1F,WAAO;AAAA,EACT;AACF;AAGA,IAAI,SAAS,iBAAiB,EAAE,QAAQ,YAAY,OAAO,eAAe,cAAc,CAAC;AACzF,IAAI,eAAe;AAAA,EACjB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,MAAM;AAAA,EAC1B,YAAY,eAAe,UAAU,aAAa,aAAaa,UAAS,OAAO,aAAa,iBAAiB,MAAM;AACjH,SAAK,gBAAgB,CAAC,WAAW,SAAS;AAC1C,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,SAAS;AACd,SAAK,cAAc;AACnB,SAAK,OAAO;AACZ,SAAK,iBAAiB;AACtB,SAAK,iBAAiB,mBAAmB,aAAa;AACtD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,eAAe,KAAK,aAAa;AACtF,SAAK,yBAAyB,WAAW;AACzC,SAAK,YAAY,WAAW,eAAe,eAAe,KAAK,0BAA0B,eAAe;AACxG,UAAM,cAAc,mBAAmBA,SAAQ,MAAM;AACrD,SAAK,WAAW,4BAA4B;AAC5C,SAAK,cAAc;AACnB,SAAK,cAAc;AAAA,EACrB;AAAA,EACA,cAAc;AACZ,QAAI,gBAAgB;AACpB,QAAI,KAAK,gBAAgB,GAAG;AAC1B,sBAAgB;AAAA,IAClB,WAAW,KAAK,gBAAgB,GAAG;AACjC,sBAAgB;AAAA,IAClB;AACA,UAAM,iBAAiB,cAAc;AACrC,UAAM,eAAe,KAAK,yBAAyB,wBAAwB;AAC3E,QAAI,kBAAkB;AACtB,QAAI,gCAAgC;AACpC,QAAI,KAAK,eAAe,EAAE,WAAW,GAAG;AACtC,wBAAkB;AAClB,sCAAgC;AAAA;AAAA;AAAA;AAAA;AAAA,IAKlC,WAAW,KAAK,eAAe,EAAE,WAAW,GAAG;AAC7C,wBAAkB;AAClB,sCAAgC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAYlC;AACA,UAAM,gBAAgB,MAAM,KAAK,EAAE,QAAQ,KAAK,YAAY,GAAG,CAAC,GAAG,QAAQ,UAAU,MAAM;AAC3F,UAAM,iBAAiB,cAAc,cAAc,KAAK,IAAI;AAC5D,UAAM,YAAY,CAAC,KAAK,QAAQ;AAC9B,UAAI,mBAAmB,aAAa,qBAAqB;AACzD,UAAI,KAAK,SAAS,WAAW;AAC3B,2BAAmB;AAAA;AAAA;AAAA,yCAGc;AAAA;AAAA,qDAEY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2CAMV;AAAA;AAAA;AAAA;AAAA;AAAA,MAKrC;AACA,YAAM,qBAAqB,eAAe,qBAAqB;AAC/D,aAAO,KAAK,iBAAiB,mBAAmB;AAAA,IAClD;AACA,UAAM,WAAW;AAAA,MACf;AAAA;AAAA,QAEE,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA,0CAKO;AAAA,8DACoB;AAAA;AAAA;AAAA,gBAG9C,eAAe,KAAK,MAAM,KAAK,KAAK;AAAA,qDACC;AAAA;AAAA,YAEzC,UAAU,sBAAsB,aAAa;AAAA;AAAA;AAGrD,WAAO;AAAA,EACT;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,SAAS,QAAQ,IAAI;AAC7B,QAAM,EAAE,MAAM,IAAI;AAClB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAA,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,SAAS,SAAS,KAAK;AAC9H,QAAM,eAAe,CAACA,cAAa,WAAW,SAAS;AACvD,MAAIA,gBAAe,GAAG;AACpB,WAAO,SAAS,eAAe,OAAO,QAAQ,KAAK;AAAA,EACrD;AACA,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE,EAAE,CAAC;AACxH,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE,EAAE,CAAC;AAClH,QAAM,OAAO,SAAS;AACtB,QAAM,SAAS,MAAM,EAAE,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,OAAO,GAAG,OAAO,KAAK,EAAE,CAAC;AACjG,QAAMrB,QAAO,aAAa,cAAc,SAAS,KAAK;AACtD,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,IACnC,EAAE,MAAM,SAAS,MAAMa,SAAQ;AAAA,IAC/B,EAAE,MAAM,SAAS,MAAM,CAACb,KAAI,EAAE;AAAA,EAChC;AACA,QAAM,UAAU,IAAI,gBAAgB,SAAS,OAAO,WAAW,eAAe,MAAM,QAAQ,SAAS,MAAM,QAAQa,UAAS,cAAc,IAAI;AAC9I,QAAM,MAAM,SAAS,iBAAiB,SAAS,CAAC,UAAU,cAAc,GAAG,MAAM,aAAa,MAAM;AACpG,QAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,IAAI,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,EAAE,CAAC;AACrF,WAAS,YAAY,eAAe,MAAM;AAC1C,WAAS,YAAY,SAAS,MAAM;AACpC,WAAS,YAAY,IAAI,MAAM;AAC/B,SAAO;AACT;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB,MAAM;AAAA,EACzB,YAAY,OAAO,OAAO,MAAM;AAC9B,SAAK,gBAAgB,CAAC,KAAK,KAAK,GAAG;AACnC,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,QAAQ;AACb,SAAK,OAAO;AACZ,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,QAAI;AACJ,QAAI;AACJ,QAAI,KAAK,OAAO,GAAG;AACjB,YAAM,MAAM,kBAAkB,KAAK,2BAA2B;AAAA,IAChE;AACA,QAAI,KAAK,SAAS,GAAG;AACnB,iBAAW;AACX,gBAAU;AAAA,IACZ,OAAO;AACL,YAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,YAAM,aAAa,CAAC;AACpB,YAAM,cAAc,CAAC;AACrB,eAAS,KAAK,GAAG,KAAK,KAAK,YAAY,QAAQ,MAAM;AACnD,oBAAY,KAAK,GAAG,cAAc,KAAK;AACvC,YAAI,KAAK,KAAK,OAAO;AACnB,qBAAW,KAAK,GAAG,cAAc,KAAK;AAAA,QACxC;AAAA,MACF;AACA,gBAAU,WAAW,KAAK;AAC1B,iBAAW,YAAY,KAAK;AAAA,IAC9B;AACA,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA,4BAGP;AAAA;AAAA,2CAEe;AAAA;AAAA,2CAEA;AAAA;AAAA;AAAA;AAAA;AAKvC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,SAAS,IAAI;AACtC,QAAM,EAAE,WAAW,GAAG,IAAI,GAAG,GAAG,IAAI;AACpC,QAAM,UAAU,IAAI,eAAe,UAAU,MAAM,QAAQ,GAAG,OAAO,GAAG,MAAM,MAAM;AACpF,SAAO,SAAS,iBAAiB,SAAS,CAAC,WAAW,IAAI,EAAE,GAAG,WAAW,GAAG,OAAO,GAAG,KAAK,CAAC;AAC/F;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,WAAW,iBAAiB,EAAE,QAAQ,YAAY,QAAQ,CAAC;AAC/D,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,iBAAiB,EAAE,QAAQ,YAAY,IAAI,CAAC;AACvD,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,OAAO,kBAAkB,EAAE,QAAQ,aAAa,KAAK,eAAe,aAAa,iBAAiB,KAAK,CAAC;AAC5G,IAAI,aAAa;AAAA,EACf,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,SAAS,MAAM;AACtB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,IAAI;AACnB,QAAM,EAAE,IAAI,IAAI;AAChB,QAAM,OAAO,aAAa,eAAe,CAAC,GAAG,GAAG,OAAO,KAAK;AAC5D,QAAM,WAAW,KAAK;AAAA,IACpB,QAAQ,EAAE,GAAG,OAAO;AAAA,IACpB,SAAS;AAAA,IACT,OAAO,EAAE,kBAAkB,MAAM,UAAU,MAAM;AAAA,EACnD,CAAC;AACD,QAAM,gBAAgB,qBAAqB,qBAAqB,SAAS,OAAO,IAAI;AACpF,QAAM,oBAAoB,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAClH,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,kBAAkB,GAAG,SAAS,SAAS,CAAC;AACjF,QAAM,IAAI,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,SAAS,CAAC;AACtD,QAAM,SAAS,KAAK,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,MAAM,UAAU,MAAM,EAAE,CAAC;AACnG,QAAM,iBAAiB,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,cAAc,EAAE,CAAC;AAC7G,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,GAAG,GAAG,GAAG,eAAe,GAAG,SAAS,SAAS,CAAC;AAC/E,WAAS,YAAY,SAAS,MAAM;AACpC,WAAS,YAAY,kBAAkB,MAAM;AAC7C,WAAS,YAAY,EAAE,MAAM;AAC7B,WAAS,YAAY,EAAE,MAAM;AAC7B,WAAS,YAAY,OAAO,MAAM;AAClC,WAAS,YAAY,eAAe,MAAM;AAC1C,SAAO;AACT;AACA,IAAI,iBAAiB;AAAA,EACnB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,kBAAkB,CAAC,SAAS;AAC9B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,YAAY,SAAS,IAAI;AACjC,eAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,uEAAuE;AACtH,QAAM,QAAQ,WAAW,OAAO,CAAC,GAAG,MAAM,IAAI,CAAC;AAC/C,QAAM,mBAAmB,CAAC,CAAC,GAAG,CAAC,CAAC;AAChC,mBAAiB,KAAK,GAAG,QAAQ;AACjC,WAAS,KAAK,IAAI,WAAW,QAAQ,KAAK,EAAE,MAAM,QAAQ,EAAE,IAAI;AAC9D,qBAAiB,KAAK,CAAC,GAAG,CAAC,CAAC;AAAA,EAC9B;AACA,QAAM,YAAY,CAAC;AACnB,QAAM,UAAU,OAAO;AAAA,IACrB,QAAQ,EAAE,EAAE;AAAA,IACZ,SAAS;AAAA,IACT,OAAO,EAAE,UAAU,kBAAkB,eAAe,EAAE;AAAA,EACxD,CAAC;AACD,QAAM,sBAAsB,qBAAqB,YAAY,QAAQ,OAAO,YAAY,OAAO,KAAK;AACpG,QAAM,oCAAoC,qBAAqB,YAAY,oBAAoB,QAAQ,WAAW,QAAQ,KAAK;AAC/H,QAAM,eAAe,qBAAqB,oBAAoB,QAAQ,OAAO,YAAY,OAAO,KAAK;AACrG,QAAM,kBAAkB,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,oBAAoB,EAAE,CAAC;AACrH,QAAM,WAAW,WAAW;AAAA,IAC1B,QAAQ,EAAE,GAAG,gBAAgB;AAAA,IAC7B,SAAS;AAAA,IACT,OAAO,EAAE,MAAM,kCAAkC;AAAA,EACnD,CAAC;AACD,QAAM,SAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,SAAS,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,aAAa,EAAE,CAAC;AACtG,YAAU,KAAK,OAAO;AACtB,YAAU,KAAK,eAAe;AAC9B,YAAU,KAAK,QAAQ;AACvB,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AACA,IAAI,wBAAwB;AAAA,EAC1B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,QAAQ,MAAM;AACxB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,UAAM,cAAc,IAAI,MAAM,OAAO,MAAM;AAC3C,aAAS,KAAK,GAAG,KAAK,YAAY,QAAQ,MAAM;AAC9C,kBAAY,MAAM,OAAO,MAAM,KAAK;AAAA,IACtC;AACA,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,OAAO,KAAK,YAAY;AAC7B,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,eAAe,iBAAiB,KAAK,MAAM,WAAW;AAC5D,UAAM,WAAW;AAAA,QACb,oBAAoB,OAAO;AAAA;AAAA;AAAA,yCAGM;AAAA;AAAA;AAAA;AAIrC,WAAO;AAAA,EACT;AACF;AACA,SAAS,iBAAiB,MAAM,gBAAgB,IAAI;AAClD,MAAI,QAAQ,GAAG;AACb,UAAM,MAAM,iBAAiB,2BAA2B;AAAA,EAC1D;AACA,MAAI,SAAS,GAAG;AACd,WAAO,YAAY;AAAA,EACrB;AACA,QAAM,gBAAgB,CAAC,WAAW,WAAW,WAAW,SAAS;AACjE,QAAM,eAAe,CAAC;AACtB,WAAS,KAAK,GAAG,KAAK,MAAM,MAAM;AAChC,iBAAa,KAAK,IAAI,cAAc,SAAS,uBAAuB,MAAM;AAAA,EAC5E;AACA,SAAO,aAAa,KAAK;AAC3B;AAGA,SAAS,MAAM,QAAQ;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,KAAK,IAAI;AACjB,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,KAAK,EAAE,UAAU,YAAY,EAAE,MAAM,UAAU,GAAG;AACnF,UAAM,OAAO,SAAS,SAAS,EAAE,MAAM;AACvC,UAAM,QAAQ,EAAE,UAAU,WAAW,KAAK,IAAI,CAAC,MAAM,aAAa,aAAa,CAAC,CAAC,IAAI;AACrF,UAAM,MAAM,OAAO,EAAE,OAAO,EAAE,OAAO,KAAK;AAC1C,UAAM,SAAS,aAAa,KAAK,IAAI;AACrC,WAAO,SAAS,eAAe,OAAO,OAAO,OAAO,OAAO,OAAO,MAAM;AAAA,EAC1E;AACA,QAAM,UAAU,IAAI,aAAa,EAAE,OAAO,IAAI;AAC9C,QAAM,SAAS,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAC9D,SAAO;AACT;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,eAAe,MAAM;AAC5B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,eAAe,cAAc,aAAa,IAAI;AACtD,QAAM,EAAE,YAAY,IAAI;AACxB,QAAM,EAAE,WAAW,YAAY,WAAW,SAAAA,UAAS,YAAAQ,YAAW,IAAI,qBAAqB,gBAAgB,cAAc,eAAe,WAAW;AAC/I,QAAM,iBAAiB;AACvB,MAAI,aAAa,UAAU,UAAU;AACnC,UAAM,aAAa,SAAS,WAAW,aAAa;AACpD,UAAM,aAAa,SAAS,WAAW,YAAY;AACnD,UAAM,iBAAiB,aAAa,aAAa,SAAS,SAAS,aAAa,MAAM,EAAE,EAAE;AAC1F,UAAM,SAAS,gBAAgB,YAAY,YAAY,aAAaA,aAAY,WAAW,YAAY,WAAWR,UAAS,gBAAgB,cAAc;AACzJ,WAAO,SAAS,eAAe,aAAa,OAAO,OAAO,OAAO,MAAM;AAAA,EACzE;AACA,QAAM,eAAe,CAACQ,cAAa,WAAW,SAAS;AACvD,QAAM,iBAAiB,SAAS;AAAA,IAC9B,QAAQ,EAAE,GAAG,cAAc;AAAA,IAC3B,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE;AAAA,EAC1C,CAAC;AACD,QAAM,gBAAgB,aAAa,MAAM,SAAS,SAAS;AAAA,IACzD,QAAQ,EAAE,GAAG,aAAa;AAAA,IAC1B,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,CAAC,YAAY,SAAS,EAAE;AAAA,EAC1C,CAAC,IAAI,UAAU,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,SAAS,SAAS,CAAC;AACjE,QAAM,OAAO,cAAc;AAC3B,QAAM,OAAO,SAAS,eAAe,CAAC,GAAG,MAAM,aAAa,oBAAoB,GAAG,IAAI,CAAC;AACxF,QAAM,gBAAgB,SAAS;AAAA,IAC7B,QAAQ,EAAE,GAAG,aAAa;AAAA,IAC1B,SAAS;AAAA,IACT,OAAO,EAAE,OAAO,MAAM,aAAa,MAAM,EAAE,KAAK,CAAC,EAAE;AAAA,EACrD,CAAC;AACD,QAAM,eAAe,MAAM,EAAE,QAAQ,EAAE,GAAG,cAAc,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,aAAa,EAAE,CAAC;AAC7G,QAAMrB,QAAO,aAAa,cAAc,CAAC,YAAY,SAAS,CAAC;AAC/D,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,IACnC,EAAE,MAAM,SAAS,MAAMa,SAAQ;AAAA,IAC/B,EAAE,MAAM,SAAS,MAAM,CAACb,KAAI,EAAE;AAAA,EAChC;AACA,UAAQ;AAAA,SACD;AACH;AAAA,SACG;AACH,UAAI,MAAM;AACR,cAAM,UAAU,IAAI,gBAAgB,CAAC,YAAY,SAAS,GAAG,WAAW,eAAe,MAAM,QAAQ,cAAc,MAAM,QAAQa,UAAS,cAAc,MAAM,cAAc;AAC5K,iBAAS,iBAAiB,SAAS,CAAC,eAAe,cAAc,GAAG,MAAM,aAAa,YAAY;AAAA,MACrG;AACA;AAAA;AAEA,UAAI,MAAM;AACR,cAAM,UAAU,IAAI,gBAAgB,CAAC,YAAY,SAAS,GAAG,WAAW,eAAe,MAAM,QAAQ,KAAK,MAAM,QAAQA,UAAS,cAAc,MAAM,cAAc;AACnK,iBAAS,iBAAiB,SAAS,CAAC,MAAM,cAAc,GAAG,MAAM,aAAa,YAAY;AAAA,MAC5F;AACA;AACE,cAAM,UAAU,IAAI,gBAAgB,CAAC,YAAY,SAAS,GAAG,WAAW,eAAe,MAAM,QAAQ,cAAc,MAAM,QAAQA,UAAS,cAAc,IAAI;AAC5J,iBAAS,iBAAiB,SAAS,CAAC,eAAe,cAAc,GAAG,MAAM,aAAa,YAAY;AAAA,MACrG;AAAA;AAEJ,QAAM,cAAc,SAAS,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,YAAY,EAAE,CAAC;AAC9G,WAAS,YAAY,eAAe,MAAM;AAC1C,WAAS,YAAY,cAAc,MAAM;AACzC,WAAS,YAAY,cAAc,MAAM;AACzC,WAAS,YAAY,KAAK,MAAM;AAChC,WAAS,YAAY,aAAa,MAAM;AACxC,SAAO;AACT;AACA,IAAI,uBAAuB;AAAA,EACzB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,iBAAiB,KAAK,IAAI;AAClC,QAAM,QAAQ,aAAa,eAAe,MAAM,EAAE,KAAK,EAAE;AACzD,QAAM,aAAa,qBAAqB,iBAAiB,GAAG,iBAAiB,KAAK;AAClF,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,QAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,CAAC;AACrC,QAAMb,QAAO,EAAE,MAAM,MAAM;AAC3B,SAAO,WAAW,IAAI,CAAC,OAAO;AAC5B,UAAM,YAAY,CAAC,GAAGA,KAAI;AAC1B,cAAU,SAAS;AACnB,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAM,UAAU,EAAE,CAAC;AAC7F,UAAM,UAAU;AAChB,WAAO;AAAA,EACT,CAAC;AACH;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY,CAAC,EAAE,QAAQ,SAAS,SAAS,MAAM;AAC7C,UAAM,EAAE,EAAE,IAAI;AACd,UAAM,gBAAgB;AACtB,UAAM,UAAU,IAAI,gBAAgB,EAAE,OAAO,YAAY,MAAM;AAC/D,WAAO,cAAc,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,KAAK;AAAA,EAC7D;AACF;AAGA,IAAI,qBAAqB,kBAAkB;AAAA,EACzC,QAAQ,aAAa;AACvB,CAAC;AACD,IAAI,2BAA2B;AAAA,EAC7B,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,uBAAuB,MAAM;AAAA,EAC/B,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,GAAG;AACzB,SAAK,gBAAgB;AACrB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,eAAe,CAAC,KAAK,eAAe,GAAG,CAAC,CAAC;AACrH,UAAM,QAAQ,mBAAmB,KAAK,YAAY,MAAM;AACxD,SAAK,WAAW,WAAW,qBAAqB;AAChD,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,OAAO,KAAK,YAAY;AAC9B,QAAI,YAAY;AAChB,QAAI,SAAS,GAAG;AACd,kBAAY;AAAA,IACd,OAAO;AACL,UAAI,aAAa;AACjB,kBAAY,KAAK,YAAY,IAAI,CAAC,GAAG,OAAO;AAC1C;AACA,eAAO,KAAK,YAAY,WAAW,IAAI,6BAA6B,wBAAwB,QAAQ,UAAU,aAAa,yBAAyB,wBAAwB;AAAA,MAC9K,CAAC,EAAE,KAAK,GAAG;AAAA,IACb;AACA,UAAM,WAAW;AAAA,SACZ,oBAAoB,OAAO;AAAA;AAAA;AAAA,0CAGM;AAAA;AAAA;AAAA;AAItC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,OAAO,KAAK,SAAAa,UAAS,WAAW,SAAS,cAAc,aAAa,eAAe,IAAI;AAC/F,QAAM,EAAE,kBAAkB,YAAY,YAAY,WAAW,eAAe,OAAO,QAAQ,KAAK,MAAM,SAAS,SAAS,IAAI,mBAAmB,UAAU,EAAE,OAAO,OAAO,KAAKA,UAAS,WAAW,SAAS,cAAc,aAAa,cAAc;AACpP,MAAI;AACJ,MAAI,YAAY;AACd,aAAS,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAAA,EACtF,WAAW,aAAa,eAAe;AACrC,iBAAa,OAAO,EAAE,MAAM,UAAU,GAAG,MAAM,yCAAyC,EAAE,MAAM,QAAQ;AACxG,UAAMb,QAAO,mBAAmB,gBAAgB,QAAQ,MAAM,QAAQ;AACtE,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,QAAQ,MAAAA,MAAK,EAAE,CAAC;AAC1F,aAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAC5F,aAAS,YAAY,OAAO,MAAM;AAAA,EACpC,OAAO;AACL,UAAM,qBAAqB,SAAS,mBAAmB,CAAC,CAAC,CAAC;AAC1D,QAAI,oBAAoB;AACtB,YAAM,SAAS,SAAS,SAAS,EAAE,MAAM;AACzC,YAAM,OAAO,OAAO,EAAE,OAAO,EAAE,OAAO,MAAM;AAC5C,YAAM,eAAe,qBAAqB,kBAAkB,MAAM,UAAU,MAAM;AAClF,eAAS,SAAS,eAAe,YAAY,EAAE,OAAO,aAAa,MAAM;AAAA,IAC3E,OAAO;AACL,YAAM,UAAU,IAAI,qBAAqB,gBAAgB;AACzD,YAAM,cAAc,CAAC,EAAE,MAAM,SAAS,MAAM,OAAO,GAAG,EAAE,MAAM,SAAS,MAAM,SAAS,CAAC;AACvF,YAAM,eAAe,SAAS,iBAAiB,SAAS,CAAC,CAAC,GAAG,EAAE,OAAO,WAAW;AACjF,eAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,aAAa,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,WAAW,EAAE,CAAC;AAClG,eAAS,YAAY,aAAa,MAAM;AAAA,IAC1C;AAAA,EACF;AACA,SAAO;AACT;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,cAAc,MAAM;AAC3B,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,WAAW,aAAa,SAAS,UAAU,WAAW,UAAU,uBAAuB,IAAI;AACnG,QAAM,EAAE,MAAM,WAAW,IAAI;AAC7B,QAAM,QAAQ,SAAS,SAAS,KAAK,MAAM;AAC3C,QAAM,cAAc,SAAS,SAAS,WAAW,MAAM;AACvD,QAAM,CAAC,QAAQ,YAAY,IAAI,qBAAqB,OAAO,aAAa,WAAW,aAAa,SAAS,WAAW,UAAU,sBAAsB;AACpJ,SAAO;AAAA,IACL,SAAS,eAAe,CAAC,OAAO,MAAM,GAAG,UAAU,MAAM;AAAA,IACzD,SAAS,eAAe,WAAW,OAAO,SAAS,YAAY;AAAA,EACjE;AACF;AACA,IAAI,sBAAsB;AAAA,EACxB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,QAAQ,iBAAiB,EAAE,QAAQ,YAAY,KAAK,CAAC;AACzD,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,eAAe,MAAM;AAAA,EACvB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,WAAW;AAAA;AAEhB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,UACX,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAmEjC,WAAO;AAAA,EACT;AACF;AACA,IAAI,gBAAgB,MAAM;AAAA,EACxB,YAAY,OAAO;AACjB,SAAK,gBAAgB,CAAC,KAAK,SAAS;AACpC,SAAK,gBAAgB,CAAC,KAAK,GAAG,CAAC;AAC/B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,WAAW;AAChB,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA,UACX,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA2DjC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,qCAAqC,UAAU,YAAY;AAClE,MAAI,eAAe,MAAM;AACvB,aAAS,YAAY,WAAW,MAAM;AAAA,EACxC;AACF;AACA,SAAS,eAAe,KAAK;AAC3B,MAAI,QAAQ;AACZ,SAAO,QAAQ,KAAK;AAClB,aAAS;AAAA,EACX;AACA,SAAO;AACT;AACA,SAAS,MAAM,MAAM;AACnB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,EAAE,IAAI;AACd,QAAM,EAAE,GAAG,OAAO,IAAI;AACtB,QAAM,SAAS,EAAE;AACjB,QAAM,UAAU,OAAO,OAAO,SAAS;AACvC,MAAI,SAAS,mBAAmB,CAAC,CAAC,CAAC,GAAG;AACpC,UAAM,QAAQ,SAAS,SAAS,EAAE,MAAM;AACxC,UAAM,CAAC,aAAa,cAAc,IAAI,aAAa,OAAO,QAAQ,EAAE,OAAO,GAAG,MAAM;AACpF,WAAO;AAAA,MACL,SAAS,eAAe,YAAY,OAAO,YAAY,OAAO,YAAY,MAAM;AAAA,MAChF,SAAS,eAAe,eAAe,OAAO,eAAe,OAAO,eAAe,MAAM;AAAA,IAC3F;AAAA,EACF;AACA,MAAI,MAAM,GAAG;AACX,WAAO,OAAO,SAAS,KAAK;AAC5B,WAAO;AAAA,MACL,SAAS,eAAe,QAAQ,EAAE,OAAO,CAAC,CAAC;AAAA,MAC3C,SAAS,eAAe,QAAQ,SAAS,CAAC,CAAC;AAAA,IAC7C;AAAA,EACF;AACA,MAAI,YAAY,GAAG;AACjB,WAAO;AAAA,MACL;AAAA,MACA,MAAM,EAAE,OAAO,EAAE,OAAO,QAAQ,OAAO,SAAS,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAAA,IACjF;AAAA,EACF;AACA,QAAM,QAAQ,aAAa,cAAc,MAAM;AAC/C,QAAM,QAAQ,QAAQ;AACtB,QAAM,MAAM,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAG,OAAO,EAAE,OAAO,CAAC,OAAO,OAAO,EAAE,GAAG,SAAS,SAAS,CAAC;AAC7F,QAAM,QAAQ,eAAe,CAAC;AAC9B,QAAM,cAAc,eAAe,OAAO;AAC1C,MAAI,UAAU;AACd,QAAM,YAAY,MAAM,YAAY,OAAO,CAAC,KAAK,GAAG,IAAI,CAAC,KAAK,OAAO;AACrE,QAAM,UAAU,CAAC,KAAK,KAAK,UAAU;AACnC,UAAM,UAAU,UAAU;AAC1B,UAAM,UAAU,IAAI,aAAa,KAAK;AACtC,UAAM,YAAY,YAAY,OAAO,IAAI;AACzC,UAAM,kBAAkB;AAAA,MACtB,EAAE,MAAM,SAAS,MAAM,CAAC,OAAO,EAAE;AAAA,MACjC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,MACnC,EAAE,MAAM,WAAW,MAAM,CAAC,OAAO,iBAAiB,EAAE;AAAA,MACpD,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,EAAE;AAAA,MAC7B,EAAE,MAAM,SAAS,MAAM,CAAC,GAAG,EAAE;AAAA,IAC/B;AACA,UAAM,eAAe;AACrB,cAAU,SAAS,iBAAiB,SAAS,SAAS,SAAS,eAAe;AAC9E,yCAAqC,UAAU,YAAY;AAAA,EAC7D;AACA,WAAS,MAAM,GAAG,MAAM,OAAO,OAAO,GAAG;AACvC,UAAM,MAAM,MAAM;AAClB,aAAS,MAAM,KAAK,OAAO,GAAG,OAAO,GAAG;AACtC,cAAQ,KAAK,KAAK,CAAC,OAAO,WAAW,CAAC;AAAA,IACxC;AAAA,EACF;AACA,WAAS,cAAc,aAAa,cAAc,OAAO,eAAe,GAAG;AACzE,UAAM,UAAU,UAAU;AAC1B,UAAM,eAAe,IAAI,cAAc,CAAC,OAAO,cAAc,CAAC,CAAC;AAC/D,UAAM,YAAY,YAAY,OAAO,IAAI;AACzC,UAAM,mBAAmB;AAAA,MACvB,EAAE,MAAM,SAAS,MAAM,CAAC,OAAO,EAAE;AAAA,MACjC,EAAE,MAAM,SAAS,MAAM,CAAC,SAAS,EAAE;AAAA,MACnC,EAAE,MAAM,SAAS,MAAM,CAAC,KAAK,EAAE;AAAA,IACjC;AACA,UAAM,eAAe;AACrB,cAAU,SAAS,iBAAiB,cAAc,SAAS,SAAS,gBAAgB;AACpF,yCAAqC,UAAU,YAAY;AAC3D,UAAM,MAAM,QAAQ;AACpB,UAAM,MAAM,MAAM;AAClB,aAAS,MAAM,KAAK,OAAO,GAAG,OAAO,GAAG;AACtC,cAAQ,KAAK,KAAK,QAAQ,KAAK;AAAA,IACjC;AAAA,EACF;AACA,MAAI,cAAc;AAClB,YAAU,OAAO,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,GAAG,MAAM,CAAC,OAAO,CAAC,EAAE,EAAE,CAAC;AACrG,uCAAqC,UAAU,WAAW;AAC1D,MAAI,SAAS,UAAU,EAAE,QAAQ,EAAE,GAAG,KAAK,QAAQ,GAAG,SAAS,UAAU,OAAO,EAAE,MAAM,GAAG,WAAW,EAAE,EAAE,CAAC;AAC3G,uCAAqC,UAAU,GAAG;AAClD,QAAM,WAAW,OAAO,MAAM,GAAG,EAAE;AACnC,WAAS,KAAK,CAAC;AACf,gBAAc;AACd,YAAU,SAAS,EAAE,QAAQ,EAAE,GAAG,QAAQ,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC5F,uCAAqC,UAAU,WAAW;AAC1D,QAAM,aAAa;AACnB,WAAS,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,OAAO,EAAE,OAAO,SAAS,GAAG,SAAS,SAAS,CAAC;AAC1F,uCAAqC,UAAU,UAAU;AACzD,SAAO,CAAC,QAAQ,OAAO;AACzB;AACA,IAAI,cAAc;AAAA,EAChB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,oBAAoB,MAAM;AAAA,EAC5B,YAAY,UAAU;AACpB,SAAK,gBAAgB,CAAC,SAAS,YAAY;AAC3C,SAAK,WAAW;AAChB,SAAK,gBAAgB,CAAC,IAAI,GAAG,CAAC;AAC9B,SAAK,OAAO;AACZ,SAAK,cAAc;AACnB,SAAK,iBAAiB,mBAAmB,KAAK,WAAW;AACzD,SAAK,WAAW,gBAAgB,KAAK,gBAAgB,KAAK,aAAa,KAAK,aAAa;AACzF,SAAK,YAAY;AAAA,EACnB;AAAA,EACA,cAAc;AACZ,UAAM,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAgET,oBAAoB,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAqDnC,WAAO;AAAA,EACT;AACF;AAGA,SAAS,WAAW,MAAM;AACxB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,OAAO,QAAQ,WAAW,IAAI;AACtC,QAAM,EAAE,eAAe,UAAU,WAAW,YAAY,IAAI;AAC5D,QAAM,CAAC,OAAO,aAAa,YAAY,WAAW,IAAI,OAAO;AAC7D,QAAM,CAAC,WAAW,QAAQ,IAAI,eAAe,OAAO,cAAc,CAAC,aAAa,UAAU;AAC1F,QAAM,WAAW;AAAA,IACf;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AACA,QAAM,UAAU,IAAI,kBAAkB,QAAQ;AAC9C,QAAM,sBAAsB,kBAAkB,YAAY,IAAI;AAC9D,MAAI;AACJ,UAAQ;AAAA,SACD;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA,SACG;AACH,mBAAa;AACb;AAAA;AAEA,mBAAa;AACb;AAAA;AAEJ,QAAM,cAAc;AAAA,IAClB,EAAE,MAAM,SAAS,MAAM,CAAC,mBAAmB,EAAE;AAAA,IAC7C,EAAE,MAAM,SAAS,MAAM,CAAC,UAAU,EAAE;AAAA,IACpC,EAAE,MAAM,WAAW,MAAM,CAAC,SAAS,EAAE;AAAA,EACvC;AACA,SAAO,SAAS,iBAAiB,SAAS,CAAC,QAAQ,UAAU,GAAG,WAAW,WAAW;AACxF;AACA,IAAI,mBAAmB;AAAA,EACrB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,SAAS,QAAQ,MAAM;AACrB,QAAM,EAAE,QAAQ,SAAS,UAAU,MAAM,IAAI;AAC7C,QAAM,EAAE,MAAM,IAAI;AAClB,MAAI,EAAE,KAAK,IAAI;AACf,MAAI,OAAO,GAAG;AACZ,YAAQ,MAAM,MAAM;AAAA,EACtB;AACA,QAAM,IAAI;AACV,QAAM,QAAQ,EAAE,MAAM;AACtB,QAAM,MAAM,MAAM,MAAM;AACxB,QAAM,WAAW,IAAI,MAAM,QAAQ,CAAC;AACpC,MAAI,WAAW;AACf,WAAS,KAAK,GAAG,KAAK,OAAO,MAAM;AACjC,QAAI,OAAO,MAAM;AACf,eAAS,cAAc,EAAE,MAAM;AAAA,IACjC;AAAA,EACF;AACA,QAAM,YAAY,CAAC;AACnB,QAAM,QAAQ,IAAI,MAAM,KAAK,EAAE,KAAK,CAAC;AACrC,QAAMA,QAAO,EAAE,MAAM,MAAM;AAC3B,EAAAA,MAAK,QAAQ;AACb,QAAM,MAAM,IAAI,MAAM,GAAG;AACzB,WAAS,KAAK,GAAG,KAAK,IAAI,QAAQ,MAAM;AACtC,UAAM,QAAQ;AACd,UAAM,SAAS,OAAO,EAAE,QAAQ,EAAE,EAAE,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,MAAAA,MAAK,EAAE,CAAC;AAClF,UAAM,WAAW,SAAS,EAAE,QAAQ,EAAE,GAAG,OAAO,GAAG,SAAS,UAAU,OAAO,EAAE,OAAO,SAAS,EAAE,CAAC;AAClG,QAAI,MAAM;AACV,cAAU,KAAK,MAAM;AAAA,EACvB;AACA,YAAU,QAAQ,CAAC,OAAO,SAAS,YAAY,GAAG,MAAM,CAAC;AACzD,SAAO;AACT;AACA,IAAI,gBAAgB;AAAA,EAClB,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,YAAY;AACd;AAGA,IAAI,iBAAiB;AAAA,EACnB;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AACA,WAAW,gBAAgB,gBAAgB;AACzC,iBAAe,YAAY;AAC7B;AAGA,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI;AACR,IAAI,IAAI,EAAE,MAAM,GAAG,aAAa,GAAG,aAAa,GAAG,eAAe,GAAG,kBAAkB,GAAG,sBAAsB,GAAG,qBAAqB,EAAE;;;ACxzzEnI,IAAM,iBAAiB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAqBvB,IAAM,uBAAuB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAc7B,IAAM,0BAA0B;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAchC,IAAM,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAejB,IAAM,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAyBb,IAAM,cAAc;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;;;AC9E3B,IAAM,UAAU,CAAC,QAAQ,QAAgB,eAAe;AACtD,QAAMuC,KAAI,IAAI,OAAO,QAAQ,SAAS,gBAAgB,IAAI;AAC1D,SAAO,QAAQA,IAAG,CAACC,QAAO,SAAS;AACjC,eAAW,QAAQ;AACnB,WAAOA;AAAA,EACT,CAAC;AACH;AAEA,IAAM,YAAN,MAAgB;AAAA,EAMd,YAAY,IAAI,cAAc,gBAAgB;AAL9C,mCAAU,CAAC;AACX,qCAAY,CAAC;AACb;AACA;AA2BA,mCAAU,CAAC,QAAQ,SAA6B;AAC9C,YAAM,SAAS,KAAK,GAAG,aAAa,IAAI;AACxC,UAAI,CAAC,QAAQ;AACX,YAAI,iCAAiC;AACrC,eAAO;AAAA,MACT;AACA,WAAK,GAAG,aAAa,QAAQ,MAAM;AACnC,WAAK,GAAG,cAAc,MAAM;AAC5B,UAAI,CAAC,KAAK,GAAG,mBAAmB,QAAQ,KAAK,GAAG,cAAc,GAAG;AAC/D,YAAI,8BAA8B,KAAK,GAAG,iBAAiB,MAAM,KAAK,WAAW;AACjF,eAAO;AAAA,MACT;AACA,aAAO;AAAA,IACT;AArCE,SAAK,KAAK;AACV,UAAM,eAAe,KAAK,QAAQ,cAAc,KAAK,GAAG,aAAa;AACrE,UAAM,iBAAiB,KAAK,QAAQ,gBAAgB,KAAK,GAAG,eAAe;AAC3E,SAAK,KAAK,KAAK,GAAG,cAAc;AAChC,QAAI,CAAC,gBAAgB,CAAC;AAAgB;AACtC,QAAI,CAAC,KAAK,IAAI;AACZ,UAAI,wCAAwC;AAC5C;AAAA,IACF;AACA,SAAK,GAAG,aAAa,KAAK,IAAI,YAAY;AAC1C,SAAK,GAAG,aAAa,KAAK,IAAI,cAAc;AAC5C,SAAK,GAAG,YAAY,KAAK,EAAE;AAC3B,QAAI,CAAC,KAAK,GAAG,oBAAoB,KAAK,IAAI,KAAK,GAAG,WAAW,GAAG;AAC9D,UAAI,2BAA2B,KAAK,GAAG,kBAAkB,KAAK,EAAE,KAAK,WAAW;AAChF;AAAA,IACF;AACA,SAAK,GAAG,WAAW,KAAK,EAAE;AAC1B,YAAQ,cAAc,aAAa,KAAK,SAAS;AACjD,eAAW,KAAK,KAAK;AAAW,WAAK,UAAU,KAAK,KAAK,GAAG,kBAAkB,KAAK,IAAI,CAAC;AACxF,YAAQ,cAAc,WAAW,KAAK,OAAO;AAC7C,YAAQ,gBAAgB,WAAW,KAAK,OAAO;AAC/C,eAAW,KAAK,KAAK;AAAS,WAAK,QAAQ,KAAK,KAAK,GAAG,mBAAmB,KAAK,IAAI,CAAC;AAAA,EACvF;AAgBF;AAWO,SAAS,gBAAgB;AAC9B,MAAI,YAAY;AAChB,MAAI,gBAAqC;AACzC,MAAI,cAAc;AAClB,MAAI,0BAA0B;AAC9B,MAAI,mBAAoG,CAAC,MAAM,IAAI;AACnH,MAAI,cAAyC,CAAC;AAC9C,MAAI,eAAmC;AACvC,MAAI,iBAAmC;AACvC,QAAM,WAAW,OAAO,KAAK,GAAG;AAChC,QAAM,qBAAqB,CAAE;AAC7B,QAAM,OAAO,EAAE,cAAc,EAAE;AAC/B,QAAM,KAAK,SAAS,WAAW,OAAO;AACtC,MAAI,CAAC,IAAI;AACP,QAAI,kCAAkC;AACtC;AAAA,EACF;AAEA,OAAK,KAAK;AAEV,WAAS,OAAO,OAAO,QAAQ;AAC7B,QAAI,UAAU,SAAS,SAAS,WAAW,SAAS;AAAQ;AAC5D,aAAS,QAAQ;AACjB,aAAS,SAAS;AAClB,QAAI,CAAC,cAAc;AACjB,YAAM,WAAW,IAAI,aAAa,CAAC,IAAI,IAAI,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,CAAC;AAChH,qBAAe,GAAG,aAAa;AAC/B,SAAG,WAAW,GAAG,cAAc,YAAY;AAC3C,SAAG,WAAW,GAAG,cAAc,UAAU,GAAG,WAAW;AACvD,SAAG,YAAY,GAAG,gCAAgC,IAAI;AAAA,IACxD;AACA,OAAG,SAAS,GAAG,GAAG,SAAS,OAAO,SAAS,MAAM;AACjD,uBAAmB,CAAC,MAAM,IAAI;AAAA,EAChC;AAEA,WAAS,yBAAyB,OAAO,QAAQ;AAC/C,UAAM,MAAM,GAAG,kBAAkB;AACjC,OAAG,gBAAgB,GAAG,aAAa,GAAG;AACtC,UAAM,eAAe,GAAG,mBAAmB;AAC3C,OAAG,iBAAiB,GAAG,cAAc,YAAY;AACjD,UAAM,UAAU,GAAG,cAAc;AACjC,OAAG,YAAY,GAAG,YAAY,OAAO;AACrC,OAAG,WAAW,GAAG,YAAY,GAAG,GAAG,MAAM,OAAO,QAAQ,GAAG,GAAG,MAAM,GAAG,eAAe,IAAI;AAC1F,OAAG,cAAc,GAAG,YAAY,GAAG,oBAAoB,GAAG,MAAM;AAChE,OAAG,cAAc,GAAG,YAAY,GAAG,oBAAoB,GAAG,MAAM;AAChE,OAAG,cAAc,GAAG,YAAY,GAAG,gBAAgB,GAAG,aAAa;AACnE,OAAG,cAAc,GAAG,YAAY,GAAG,gBAAgB,GAAG,aAAa;AACnE,OAAG,qBAAqB,GAAG,aAAa,GAAG,mBAAmB,GAAG,YAAY,SAAS,CAAC;AACvF,OAAG,YAAY,GAAG,YAAY,IAAI;AAClC,OAAG,gBAAgB,GAAG,aAAa,IAAI;AACvC,WAAO,EAAE,KAAK,QAAQ;AAAA,EACxB;AAEA,WAAS,mBAAmBC,QAAuE;AACjG,qBAAiBA,UAAS,iBAAiBA,WAAU,yBAAyB,SAAS,OAAO,SAAS,MAAM;AAC7G,WAAO,iBAAiBA;AAAA,EAC1B;AAEA,WAAS,KAAK,QAAQ,GAAG;AACvB,QAAI,CAAC;AAAgB;AACrB,QAAI,SAA8B;AAClC,QAAI,SAAkC;AACtC,QAAI,QAAQ;AACZ,QAAI,cAAc;AAAG,eAAS;AAAA;AACzB,eAAS,mBAAmB,uBAAuB,EAAE,WAAW;AACrE;AACA,QAAI,eAAe,EAAE,QAAQ,KAAK,eAAe;AAC/C,eAAS;AACT,cAAQ,YAAY,MAAM;AAAA,IAC5B,OAAO;AACL,iCAA2B,0BAA0B,KAAK;AAC1D,eAAS,mBAAmB,uBAAuB,EAAE,OAAO;AAAA,IAC9D;AACA,OAAG,YAAY,GAAG,YAAY,MAAM;AACpC,OAAG,gBAAgB,GAAG,aAAa,MAAM;AACzC,OAAG,UAAU,eAAe,QAAQ,UAAW,QAAQ,KAAK,CAAE;AAC9D,OAAG,WAAW,GAAG,WAAW,GAAG,CAAC;AAAA,EAClC;AAEA,WAAS,cAAc,gBAAkC;AACvD,QAAI,mBAAmB,iBAAiB;AACtC,uBAAiB,mBAAmB;AACpC,SAAG,YAAY,iBAAiB,eAAe,KAAK,SAAS,IAAI;AACjE,aAAO;AAAA,IACT;AACA,qBAAiB,IAAI,UAAU,IAAY,gBAAgB,cAAc;AACzE,QAAI,CAAC,gBAAgB;AACnB,UAAI,qCAAqC;AACzC,aAAO;AAAA,IACT;AACA,UAAM,YAAY,aAAa;AAC/B,UAAM,WAAW,IAAI;AACrB,OAAG,wBAAwB,eAAe,UAAU,MAAM;AAC1D,OAAG,oBAAoB,eAAe,UAAU,QAAQ,GAAG,GAAG,OAAO,OAAO,UAAU,IAAI,SAAS;AACnG,OAAG,wBAAwB,eAAe,UAAU,KAAK;AACzD,OAAG,oBAAoB,eAAe,UAAU,OAAO,GAAG,GAAG,OAAO,OAAO,UAAU,IAAI,SAAS;AAClG,uBAAmB,kBAAkB;AACrC,WAAO;AAAA,EACT;AAEA,QAAM,SAAS;AAAA,IACb,aAAa,CAAC,WAAqB;AACjC,YAAM,IAAI,IAAI,aAAa,MAAM;AACjC,QAAE,MAAM;AACR,QAAE,MAAM;AACR,QAAE,OAAO;AACT,QAAE,OAAO;AACT,YAAM,SAAU,EAAE,QAAQ,KAAK,EAAE,OAAO,KAAK,EAAE,OAAO,KAAK,EAAE,QAAQ,KAAK,EAAE,QAAQ,KAAK,EAAE,QAAQ,KAAK,EAAE,QAAQ,KAAK,EAAE,QAAQ,IACrH,0BACA;AACZ,YAAM,UAAU,cAAc,MAAM;AACpC,UAAI,CAAC;AAAS;AACd,SAAG,WAAW,QAAQ,QAAQ,MAAM,CAAC;AACrC,WAAK;AAAA,IACP;AAAA,IAEA,YAAY,CAAC,eAAuB;AAClC,YAAM,KAAK,cAAc,KAAK;AAC9B,aAAO,YAAY;AAAA,QACjB;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,YAAY,CAAC,WAAmB;AAC9B,YAAM,KAAK,UAAU,KAAK,IAAI,IAAI;AAClC,YAAM,KAAM,IAAI,KAAK;AACrB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,YAAY,MAAM;AAChB,aAAO,WAAW,EAAE;AAAA,IACtB;AAAA,IAEA,UAAU,CAAC,WAAmB;AAC5B,YAAM,KAAK,UAAU,KAAK;AAC1B,YAAM,IAAI,QAAQ,IAAI;AACtB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,UAAU,MAAM;AACd,aAAO,SAAS,EAAE;AAAA,IACpB;AAAA,IAEA,KAAK,CAAC,aAAqB;AACzB,kBAAY,YAAY,KAAK,MAAM,KAAK;AACxC,YAAMC,OAAM,KAAK,IAAI,QAAQ;AAC7B,YAAMC,OAAM,KAAK,IAAI,QAAQ;AAC7B,YAAM,OAAO;AACb,YAAM,OAAO;AACb,YAAM,OAAO;AACb,aAAO,YAAY;AAAA,QACjB,OAAOD,QAAO,IAAI,QAAQC,OAAO,CAAC;AAAA,QAAO,OAAOD,OAAO,CAAC,OAAQC,OAAO,CAAC;AAAA,QAAO,OAAOD,OAAO,CAAC,OAAQC,QAAO,IAAI;AAAA,QAAO;AAAA,QAAG;AAAA,QAC3H,OAAOD,OAAO,CAAC,OAAQC,OAAO;AAAA,QAAQ,OAAOD,QAAO,IAAI,QAAQC,OAAO;AAAA,QAAQ,OAAOD,OAAO,CAAC,OAAQC,OAAO;AAAA,QAAS;AAAA,QAAG;AAAA,QACzH,OAAOD,OAAO,CAAC,OAAQC,OAAO,EAAE,IAAI;AAAA,QAAQ,OAAOD,OAAO,CAAC,OAAQC,OAAO;AAAA,QAAO,OAAOD,QAAO,IAAI,QAAQC,OAAO;AAAA,QAAO;AAAA,QAAG;AAAA,QAC5H;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,qBAAqB,MAAM;AACzB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAW;AAAA,QAAW;AAAA,QAAW;AAAA,QAAG;AAAA,QACpC;AAAA,QAAW;AAAA,QAAW;AAAA,QAAW;AAAA,QAAG;AAAA,QACpC;AAAA,QAAW;AAAA,QAAW;AAAA,QAAW;AAAA,QAAG;AAAA,QACpC;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,OAAO,MAAM;AACX,aAAO,YAAY;AAAA,QACjB;AAAA,QAAO;AAAA,QAAW;AAAA,QAAY;AAAA,QAAG;AAAA,QACjC;AAAA,QAAO;AAAA,QAAW;AAAA,QAAY;AAAA,QAAG;AAAA,QACjC;AAAA,QAAO;AAAA,QAAW;AAAA,QAAY;AAAA,QAAG;AAAA,QACjC;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,SAAS,MAAM;AACb,aAAO,YAAY;AAAA,QACjB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAqB;AAAA,QAAG;AAAA,QACjE;AAAA,QAAuB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAG;AAAA,QACnE;AAAA,QAAqB;AAAA,QAAsB;AAAA,QAAqB;AAAA,QAAG;AAAA,QACnE;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,gBAAgB,MAAM;AACpB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAoB;AAAA,QAAoB;AAAA,QAAsB;AAAA,QAAG;AAAA,QACjE;AAAA,QAAqB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAG;AAAA,QACjE;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAoB;AAAA,QAAG;AAAA,QAChE;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,YAAY,MAAM;AAChB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAsB;AAAA,QAAG;AAAA,QAClE;AAAA,QAAsB;AAAA,QAAoB;AAAA,QAAsB;AAAA,QAAG;AAAA,QACnE;AAAA,QAAsB;AAAA,QAAqB;AAAA,QAAoB;AAAA,QAAG;AAAA,QAClE;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,aAAa,MAAM;AACjB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAsB;AAAA,QAAG;AAAA,QAClE;AAAA,QAAqB;AAAA,QAAoB;AAAA,QAAsB;AAAA,QAAG;AAAA,QAClE;AAAA,QAAoB;AAAA,QAAqB;AAAA,QAAmB;AAAA,QAAG;AAAA,QAC/D;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,UAAU,MAAM;AACd,aAAO,YAAY;AAAA,QACjB;AAAA,QAAO;AAAA,QAAQ;AAAA,QAAQ;AAAA,QAAG;AAAA,QAC1B;AAAA,QAAQ;AAAA,QAAO;AAAA,QAAQ;AAAA,QAAG;AAAA,QAC1B;AAAA,QAAQ;AAAA,QAAQ;AAAA,QAAO;AAAA,QAAG;AAAA,QAC1B;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,YAAY,MAAM;AAChB,aAAO,YAAY;AAAA,QACjB;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QACZ;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,QAAG;AAAA,MACd,CAAC;AAAA,IACH;AAAA,IAEA,aAAa,CAAC,WAAqB;AACjC,YAAM,IAAI,IAAI,aAAa,MAAM;AACjC,YAAM,aAAa,IAAI,SAAS;AAChC,YAAM,aAAa,IAAI,SAAS;AAChC,YAAM,UAAU,cAAsB,WAAW;AACjD,UAAI,CAAC;AAAS;AACd,SAAG,WAAW,QAAQ,QAAQ,MAAM,CAAC;AACrC,SAAG,UAAU,QAAQ,QAAQ,OAAO,YAAY,UAAU;AAC1D,WAAK;AAAA,IACP;AAAA,IAEA,aAAa,MAAM;AAEjB,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B;AAAA,QAAG;AAAA,QAAG;AAAA,QACN;AAAA,QAAG;AAAA,QAAI;AAAA,QACP;AAAA,QAAG;AAAA,QAAG;AAAA,MACR,CAAC;AAAA,IACH;AAAA,IAEA,QAAQ,MAAM;AAEZ,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B;AAAA,QAAI;AAAA,QAAG;AAAA,QACP;AAAA,QAAI;AAAA,QAAG;AAAA,QACP;AAAA,QAAI;AAAA,QAAG;AAAA,MACT,CAAC;AAAA,IACH;AAAA,IAEA,QAAQ,MAAM;AAEZ,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B;AAAA,QAAI;AAAA,QAAI;AAAA,QACR;AAAA,QAAG;AAAA,QAAG;AAAA,QACN;AAAA,QAAG;AAAA,QAAG;AAAA,MACR,CAAC;AAAA,IACH;AAAA,IAEA,SAAS,CAAC,WAAW;AACnB,YAAM,IAAI,UAAU;AAEpB,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B;AAAA,QAAG,KAAK;AAAA,QAAG;AAAA,QACX,KAAK;AAAA,QAAG,IAAI,IAAI;AAAA,QAAG,KAAK;AAAA,QACxB;AAAA,QAAG,KAAK;AAAA,QAAG;AAAA,MACb,CAAC;AAAA,IACH;AAAA,IAEA,QAAQ,CAACC,UAAiB;AACxB,YAAMC,KAAID,SAAQ;AAElB,aAAO,YAAY,KAAK,MAAM;AAAA,QAC5B,KAAKC;AAAA,QAAG,KAAKA;AAAA,QAAG;AAAA,QAChB,KAAKA;AAAA,QAAG;AAAA,QAAG,IAAIA;AAAA,QACf;AAAA,QAAG,IAAIA;AAAA,QAAG,IAAIA;AAAA,MAChB,CAAC;AAAA,IACH;AAAA,IAEA,MAAM,CAACD,UAAiB;AACtB,YAAM,YAAaA,QAAO,IAAK,SAAS;AACxC,YAAM,YAAaA,QAAO,IAAK,SAAS;AACxC,YAAM,UAAU,cAAsB,IAAI;AAC1C,UAAI,CAAC;AAAS;AAEd,SAAG,UAAU,QAAQ,QAAQ,OAAO,GAAG,SAAS;AAChD,WAAK,KAAK,YAAY;AAEtB,SAAG,UAAU,QAAQ,QAAQ,OAAO,WAAW,CAAC;AAChD,WAAK;AAAA,IACP;AAAA,IAEA,UAAU,CAACA,UAAiB;AAC1B,YAAM,YAAaA,QAAQ,SAAS;AACpC,YAAM,YAAaA,QAAQ,SAAS;AACpC,YAAM,UAAU,cAAsB,QAAQ;AAC9C,UAAI,CAAC;AAAS;AACd,SAAG,UAAU,QAAQ,QAAQ,SAAS,WAAW,SAAS;AAC1D,WAAK;AAAA,IACP;AAAA,EACF;AAGA,OAAK,MAAM,SAAU,MAAM;AACzB,UAAM,OAAO,MAAM,UAAU,MAAM,KAAK,WAAW,CAAC;AACpD,UAAME,QAAO,OAAO;AACpB,gBAAY,KAAK,EAAE,MAAAA,OAAM,KAAK,CAAC;AAAA,EACjC;AAGA,OAAK,QAAQ,WAAY;AACvB,kBAAc,CAAC;AAAA,EACjB;AAGA,OAAK,MAAM,WAAY;AACrB,WAAO;AAAA,EACT;AAGA,OAAK,QAAQ,SAAUC,QAAO;AAC5B,WAAOA,OAAM,OAAOA,OAAM,MAAM;AAChC,gBAAY;AACZ,QAAI,CAAC;AAAe,sBAAgB,GAAG,cAAc;AACrD,OAAG,YAAY,GAAG,YAAY,aAAa;AAC3C,OAAG,cAAc,GAAG,YAAY,GAAG,gBAAgB,GAAG,aAAa;AACnE,OAAG,cAAc,GAAG,YAAY,GAAG,gBAAgB,GAAG,aAAa;AACnE,OAAG,cAAc,GAAG,YAAY,GAAG,oBAAoB,GAAG,OAAO;AACjE,OAAG,cAAc,GAAG,YAAY,GAAG,oBAAoB,GAAG,OAAO;AACjE,OAAG,WAAW,GAAG,YAAY,GAAG,GAAG,MAAM,GAAG,MAAM,GAAG,eAAeA,MAAK;AACzE,aAASC,KAAI,GAAGA,KAAI,YAAY,QAAQA,MAAK;AAC3C,oBAAeA,OAAM,YAAY,SAAS;AAC1C,YAAM,IAAI,YAAYA;AAEtB,QAAE,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC;AAAA,IACjC;AACA,WAAO;AAAA,EACT;AAGA,OAAK,OAAO,SAAUD,QAAO;AAC3B,SAAK,IAAI,cAAc,CAAC;AACxB,WAAO,KAAK,MAAMA,MAAK;AAAA,EACzB;AACF;;;AClbA,eAAsB,sBAAsB,YAAqC;AAE/E,QAAME,WAAU,WAAW,MAAM,WAAW,IAAO,QAAQ,UAAU,IAAI;AACzE,QAAM,WAAc,MAAMA,UAAS,GAAG,CAAC;AACvC,QAAMC,OAAgB,CAAI,IAAI,SAAS,EAAE,GAAM,IAAI,SAAS,EAAE,GAAM,IAAI,SAAS,EAAE,CAAC;AACpF,QAAMC,OAAgB,CAAI,IAAI,SAAS,EAAE,GAAM,IAAI,SAAS,EAAE,GAAM,IAAI,SAAS,EAAE,CAAC;AACpF,QAAM,SAAS,MAAM,QAAQ,IAAIA,KAAI,IAAI,CAAC,YAAY,QAAQ,KAAK,CAAC,CAAC;AACrE,QAAM,WAAW,OAAO,KAAK,IAAI,OAAO,GAAG,IAAI,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACzE,QAAMC,OAAM,CAAI,IAAI,SAAS,IAAIF,KAAI,EAAE,GAAM,IAAI,SAAS,IAAIA,KAAI,EAAE,GAAM,IAAI,SAAS,IAAIA,KAAI,EAAE,CAAC;AAClG,QAAMG,SAAQ,CAAI,IAAIF,KAAI,IAAID,KAAI,EAAE,GAAM,IAAIC,KAAI,IAAID,KAAI,EAAE,GAAM,IAAIC,KAAI,IAAID,KAAI,EAAE,CAAC;AACrF,QAAM,OAAO,CAAI,IAAI,UAAUG,OAAM,EAAE,GAAM,IAAI,UAAUA,OAAM,EAAE,GAAM,IAAI,UAAUA,OAAM,EAAE,CAAC;AAChG,QAAM,MAAM,CAAI,IAAID,KAAI,IAAI,KAAK,EAAE,GAAM,IAAIA,KAAI,IAAI,KAAK,EAAE,GAAM,IAAIA,KAAI,IAAI,KAAK,EAAE,CAAC;AACtF,QAAME,OAAS,MAAM,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,GAAG,CAAC;AAChD,QAAMC,WAAa,QAAQD,MAAK,CAAC,GAAGL,SAAQ,MAAM,IAAIA,SAAQ,MAAM,IAAI,CAAC,CAAC;AAC1E,EAAG,QAAQ,CAAC,GAAG,UAAU,GAAGC,MAAK,GAAGC,MAAK,GAAGC,MAAK,GAAGC,QAAO,GAAG,MAAM,GAAG,KAAKC,MAAKL,QAAO,CAAC;AACzF,SAAOM;AACT;;;ACZA,IAAM,UAAU;AAEhB,IAAI,WAA6B;AACjC,IAAI,YAA8B;AAClC,IAAI,YAA8B;AAElC,IAAI;AAEJ,IAAM,OAAoG;AAAA,EACxG,UAAU;AAAA,EACV,WAAW;AAAA,EACX,WAAW;AAAA,EACX,aAAa;AACf;AAEO,SAAS,QAAQ;AACtB,OAAK,WAAW;AAChB,OAAK,YAAY;AACjB,OAAK,YAAY;AACjB,OAAK,cAAc;AACrB;AAEO,SAAS,OAAO,OAAe,QAA2B;AAC/D,MAAI;AACJ,MAAIC,KAAI,SAAS;AACf,QAAIA,KAAI,QAAQ;AACd,UAAI,OAAO,oBAAoB;AAAa,cAAM,IAAI,MAAM,mFAAmF;AAC/I,UAAI,IAAI,gBAAgB,OAAO,MAAM;AAAA,IACvC,OAAO;AACL,UAAI,OAAO,aAAa;AAAa,cAAM,IAAI,MAAM,kEAAkE;AACvH,UAAI,SAAS,cAAc,QAAQ;AACnC,QAAE,QAAQ;AACV,QAAE,SAAS;AAAA,IACb;AAAA,EACF,OAAO;AAEL,QAAI,OAAOA,KAAI,WAAW;AAAa,UAAI,IAAIA,KAAI,OAAO,OAAO,MAAM;AAAA,aAC9D,OAAO,WAAW,WAAW;AAAa,UAAI,IAAI,WAAW,OAAO,OAAO,MAAM;AAAA,EAE5F;AAEA,SAAO;AACT;AAGO,SAAS,KAAKC,QAAkB,QAAoB;AACzD,QAAM,eAAe,UAAU,OAAOA,OAAM,OAAOA,OAAM,MAAM;AAC/D,QAAM,MAAM,aAAa,WAAW,IAAI;AACxC,MAAI,UAAUA,QAAO,GAAG,CAAC;AACzB,SAAO;AACT;AAKA,eAAsBC,SAAQD,QAAcE,SAAgBC,aAAqB,MAAoE;AAlErJ;AAmEE,MAAI,CAACH,QAAO;AAEV,QAAIE,QAAO;AAAO,UAAI,+BAA+B;AACrD,WAAO,EAAE,QAAQ,MAAM,QAAQ,KAAK;AAAA,EACtC;AAEA,MACE,EAAEF,kBAAoB,WACnB,EAAE,OAAO,UAAU,eAAeA,kBAAiB,UACnD,EAAE,OAAOD,KAAI,WAAW,eAAeC,kBAAiBD,KAAI,WAC5D,EAAE,OAAO,WAAW,WAAW,eAAeC,kBAAiB,WAAW,WAC1E,EAAE,OAAO,cAAc,eAAeA,kBAAiB,cACvD,EAAE,OAAO,gBAAgB,eAAeA,kBAAiB,gBACzD,EAAE,OAAO,qBAAqB,eAAeA,kBAAiB,qBAC9D,EAAE,OAAO,qBAAqB,eAAeA,kBAAiB,qBAC9D,EAAE,OAAO,qBAAqB,eAAeA,kBAAiB,qBAC9D,EAAE,OAAO,sBAAsB,eAAeA,kBAAiB,sBAC/D,EAAE,OAAO,oBAAoB,eAAeA,kBAAiB,kBAChE;AACA,UAAM,IAAI,MAAM,qCAAqC;AAAA,EACvD;AACA,MAAIA,kBAAoB,QAAQ;AAC9B,QAAII,UAAwB;AAC5B,QAAKJ,OAAiB;AAAuB,YAAM,IAAI,MAAM,yDAAyD;AACtH,QAAI,CAAEA,OAAiB;AAAO,YAAM,IAAI,MAAM,sDAAsD;AACpG,QAAKA,OAAiB,MAAM,WAAW,GAAG;AACxC,UAAKA,OAAiB,MAAM,OAAO,GAAG;AACpC,QAAAI,UAAY,WAAWJ,QAAO,CAAC;AAAA,MACjC,WAAYA,OAAiB,MAAM,OAAO,GAAG;AAC3C,cAAMK,OAAS,QAAQL,QAAO,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,CAAC;AACpD,QAAAI,UAAY,WAAWC,MAAK,CAAC;AAC7B,QAAG,QAAQA,IAAG;AAAA,MAChB;AAAA,IACF,WAAYL,OAAiB,MAAM,WAAW,GAAG;AAC/C,UAAKA,OAAiB,MAAM,OAAO,GAAG;AACpC,QAAAI,UAAY,MAAMJ,MAAK;AAAA,MACzB,WAAYA,OAAiB,MAAM,OAAO,GAAG;AAC3C,QAAAI,UAAY,QAAQJ,QAAO,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC,CAAC;AAAA,MAC1D;AAAA,IACF;AAEA,QAAII,WAAU,QAAQA,QAAO,MAAM,WAAW,KAAKA,QAAO,MAAM,OAAO,KAAKA,QAAO,MAAM,OAAO;AAAG,YAAM,IAAI,MAAM,iEAAmEJ,OAAiB,MAAO,SAAS,GAAG;AAC1N,QAAKI,QAAQ,UAAU,SAAS;AAC9B,YAAME,QAAU,KAAKF,SAAQ,SAAS;AACtC,MAAG,QAAQA,OAAM;AACjB,MAAAA,UAASE;AAAA,IACX;AACA,WAAO,EAAE,QAAAF,SAAQ,QAASF,QAAO,OAAO,SAAS,YAAY,KAAM;AAAA,EACrE;AAEA,MAAI,OAAOF,OAAM,kBAAkB,eAAgBA,OAA2B,cAAc,GAAG;AAC7F,QAAIE,QAAO;AAAO,UAAI,2BAA2B;AACjD,WAAO,EAAE,QAAQ,MAAM,QAAQ,SAAS;AAAA,EAC1C;AACA,QAAM,gBAAwBF,OAAM,mBAAmBA,OAAM,iBAAiBA,OAAM,YAAaA,OAAM,YAAaA,OAAM,SAAS,KAAK;AACxI,QAAM,iBAAyBA,OAAM,oBAAoBA,OAAM,kBAAkBA,OAAM,aAAcA,OAAM,YAAaA,OAAM,SAAS,KAAK;AAC5I,MAAI,CAAC,iBAAiB,CAAC,gBAAgB;AACrC,QAAIE,QAAO;AAAO,UAAI,mCAAmC;AACzD,WAAO,EAAE,QAAQ,MAAM,QAAQ,SAAS;AAAA,EAC1C;AACA,MAAI,cAAsB;AAC1B,MAAI,eAAuB;AAC3B,MAAI,cAAc,SAAS;AACzB,kBAAc;AACd,mBAAe,KAAK,MAAM,cAAc,iBAAiB,aAAa;AAAA,EACxE;AACA,MAAI,eAAe,SAAS;AAC1B,mBAAe;AACf,kBAAc,KAAK,MAAM,eAAe,gBAAgB,cAAc;AAAA,EACxE;AAGA,SAAK,KAAAA,QAAO,WAAP,mBAAe,UAAS,KAAK;AAAG,kBAAcA,QAAO,OAAO;AAAA,cACvD,KAAAA,QAAO,WAAP,mBAAe,WAAU,KAAK;AAAG,kBAAc,kBAAkBA,QAAO,OAAO,UAAU,KAAK;AACxG,OAAKA,QAAO,OAAO,UAAU,KAAK;AAAG,mBAAeA,QAAO,OAAO;AAAA,YACxDA,QAAO,OAAO,SAAS,KAAK;AAAG,mBAAe,mBAAmBA,QAAO,OAAO,SAAS,KAAK;AACvG,MAAI,CAAC,eAAe,CAAC;AAAc,UAAM,IAAI,MAAM,yCAAyC;AAC5F,MAAI,CAAC,YAAa,SAAS,UAAU,eAAiB,SAAS,WAAW;AAAe,eAAW,OAAO,aAAa,YAAY;AAGpI,QAAM,QAAQ,SAAS,WAAW,IAAI;AACtC,MAAK,OAAO,cAAc,eAAiBF,kBAAiB,WAAY;AACtE,UAAM,aAAaA,QAAO,GAAG,CAAC;AAAA,EAChC,OAAO;AACL,QAAIE,QAAO,OAAO,QAAQ,OAAO,MAAM,cAAc,aAAa;AAChE,YAAM,UAAU,eAAe,CAAC;AAChC,YAAM,MAAM,IAAI,CAAC;AACjB,YAAM,UAAUF,QAAoB,GAAG,GAAG,eAAe,gBAAgB,GAAG,GAAG,SAAS,OAAO,SAAS,MAAM;AAC9G,YAAM,aAAa,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,IACrC,OAAO;AACL,YAAM,UAAUA,QAAoB,GAAG,GAAG,eAAe,gBAAgB,GAAG,GAAG,SAAS,OAAO,SAAS,MAAM;AAAA,IAChH;AAAA,EACF;AAEA,MAAI,CAAC,aAAc,SAAS,UAAU,UAAU,SAAW,SAAS,WAAW,UAAU;AAAS,gBAAY,OAAO,SAAS,OAAO,SAAS,MAAM;AAGpJ,MAAIE,QAAO,OAAO,WAAWH,KAAI,MAAM,WAAW;AAChD,QAAI,CAAC;AAAI,WAAKA,KAAI,UAAU,IAAY,cAAc,IAAI;AAC1D,IAAAA,KAAI,SAAS,CAAC,CAAC;AACf,QAAI,EAAC,yBAAI,MAAK;AACZ,UAAIG,QAAO;AAAO,YAAI,gDAAgD;AACtE,MAAAH,KAAI,MAAM,YAAY;AACtB,MAAAG,QAAO,OAAO,UAAU;AACxB,WAAK,UAAU,SAAS;AAAA,IAE1B,OAAO;AACL,SAAG,MAAM;AACT,UAAIA,QAAO,OAAO,eAAe;AAAG,WAAG,IAAI,cAAcA,QAAO,OAAO,UAAU;AACjF,UAAIA,QAAO,OAAO,aAAa;AAAG,WAAG,IAAI,YAAYA,QAAO,OAAO,QAAQ;AAC3E,UAAIA,QAAO,OAAO,cAAc;AAAG,WAAG,IAAI,WAAWA,QAAO,OAAO,SAAS;AAC5E,UAAIA,QAAO,OAAO,SAAS;AAAG,WAAG,IAAI,QAAQA,QAAO,OAAO,IAAI;AAC/D,UAAIA,QAAO,OAAO,eAAe;AAAG,WAAG,IAAI,cAAcA,QAAO,OAAO,UAAU;AACjF,UAAIA,QAAO,OAAO,QAAQ;AAAG,WAAG,IAAI,OAAOA,QAAO,OAAO,GAAG;AAC5D,UAAIA,QAAO,OAAO;AAAU,WAAG,IAAI,UAAU;AAC7C,UAAIA,QAAO,OAAO;AAAO,WAAG,IAAI,OAAO;AACvC,UAAIA,QAAO,OAAO;AAAS,WAAG,IAAI,SAAS;AAC3C,UAAIA,QAAO,OAAO;AAAO,WAAG,IAAI,OAAO;AACvC,UAAIA,QAAO,OAAO;AAAY,WAAG,IAAI,YAAY;AACjD,UAAIA,QAAO,OAAO;AAAa,WAAG,IAAI,aAAa;AACnD,UAAIA,QAAO,OAAO;AAAU,WAAG,IAAI,UAAU;AAC7C,UAAIA,QAAO,OAAO,aAAa;AAAG,WAAG,IAAI,YAAYA,QAAO,OAAO,QAAQ;AAC3E,UAAI,GAAG,IAAI,IAAI;AAAG,oBAAY,GAAG,MAAM,QAAQ;AAAA;AAC1C,oBAAY,GAAG,KAAK,QAAQ;AAAA,IACnC;AAAA,EACF,OAAO;AACL,SAAK,UAAU,SAAS;AACxB,QAAI;AAAI,WAAK;AACb,IAAAH,KAAI,SAAS,CAAC,CAAC;AAAA,EACjB;AAEA,MAAI,CAACI;AAAW,WAAO,EAAE,QAAQ,MAAM,QAAQ,UAAU;AACzD,MAAI,CAAC;AAAW,UAAM,IAAI,MAAM,oCAAoC;AAGpE,MAAI;AACJ,MAAI,QAAQ;AACZ,MAAK,OAAO,cAAc,eAAeH,kBAAiB,aAAgBA,OAAoB,QAASA,OAAoB,SAAUA,OAAoB,QAAS;AAChK,QAAID,KAAI,WAAc,iBAAS;AAC7B,eAAY,kBAAa,gBAAQ,WAAWC,MAAK,IAAI;AAAA,IACvD,OAAO;AACL,cAASA,OAAoB,KAAK,SAAUA,OAAoB,SAAUA,OAAoB;AAE9F,YAAM,MAAM,IAAI,WAAYA,OAAoB,KAAK,MAAM;AAC3D,eAAY,OAAO,KAAK,CAAEA,OAAoB,QAASA,OAAoB,OAAO,KAAK,GAAG,OAAO;AAAA,IACnG;AAAA,EACF,OAAO;AACL,QAAI,CAAC,aAAc,UAAU,UAAU,UAAU,SAAW,UAAU,WAAW,UAAU;AAAS,kBAAY,OAAO,UAAU,OAAO,UAAU,MAAM;AACxJ,QAAO,mBAAWD,KAAI,SAAS;AAC7B,UAAIG,QAAO,YAAY,WAAWA,QAAO,YAAY,aAAaA,QAAO,YAAY,UAAU;AAC7F,iBAAY,gBAAQ,WAAW,SAAS;AAAA,MAC1C,OAAO;AACL,oBAAY,KAAK,SAAS;AAC1B,iBAAY,gBAAQ,WAAW,SAAS;AAAA,MAC1C;AAAA,IACF,OAAO;AACL,YAAM,aAAa,KAAK,SAAS;AACjC,YAAM,UAAU,WAAW,WAAW,IAAI;AAC1C,YAAM,WAAW,QAAQ,aAAa,GAAG,GAAG,aAAa,YAAY;AACrE,cAAQ,SAAS,KAAK,SAAS,cAAc;AAC7C,YAAM,MAAM,IAAI,WAAW,SAAS,KAAK,MAAM;AAC/C,eAAY,OAAO,KAAK,CAAC,aAAa,cAAc,KAAK,CAAC;AAAA,IAC5D;AAAA,EACF;AACA,MAAI,UAAU,GAAG;AACf,UAAMG,OAAS,QAAQ,QAAQ,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,IAAI,IAAI,CAAC,CAAC;AACrD,IAAG,QAAQ,MAAM;AACjB,aAASA;AAAA,EACX;AACA,MAAI,CAAC;AAAQ,UAAM,IAAI,MAAM,mCAAmC;AAChE,QAAM,SAAoB,KAAK,QAAQ,SAAS;AAChD,QAAMD,UAAiBF,QAAO,OAAO,eAAe,MAAc,sBAAsB,MAAM,IAAO,WAAW,QAAQ,CAAC;AACzH,EAAG,QAAQ,CAAC,QAAQ,MAAM,CAAC;AAC3B,SAAO,EAAE,QAAAE,SAAQ,QAASF,QAAO,OAAO,SAAS,YAAY,KAAM;AACrE;AAgCA,eAAsB,KAAKA,SAAyBF,QAAe;AACjE,MAAI,YAAY;AAChB,MAAIE,QAAO,qBAAqB,KAAK,CAACF,OAAM,SAASA,OAAM,MAAM,WAAW,KAAKA,OAAM,MAAM,KAAK,QAAQA,OAAM,MAAM,KAAK;AAAM,WAAO;AAcxI,MAAI,CAAC,KAAK,aAAa;AACrB,SAAK,cAAiB,MAAMA,MAAK;AAAA,EACnC,WAAW,KAAK,YAAY,MAAM,OAAOA,OAAM,MAAM,MAAM,KAAK,YAAY,MAAM,OAAOA,OAAM,MAAM,IAAI;AACvG,IAAG,QAAQ,KAAK,WAAW;AAC3B,SAAK,cAAiB,MAAMA,MAAK;AAAA,EACnC,OAAO;AACL,UAAMO,KAA4B,CAAC;AACnC,IAAAA,GAAE,OAAU,IAAIP,QAAO,KAAK,WAAW;AACvC,IAAAO,GAAE,UAAa,IAAIA,GAAE,MAAMA,GAAE,IAAI;AACjC,IAAAA,GAAE,MAAS,KAAIA,GAAE,OAAO;AACxB,UAAM,UAAU,MAAMA,GAAE,IAAI,KAAK;AACjC,UAAM,eAAe,QAAQ,MAAMP,OAAM,MAAM,MAAM,MAAMA,OAAM,MAAM,MAAM,KAAK,MAAM;AACxF,IAAG,QAAQ,CAAC,KAAK,aAAaO,GAAE,MAAMA,GAAE,SAASA,GAAE,GAAG,CAAC;AACvD,SAAK,cAAiB,MAAMP,MAAK;AACjC,gBAAY,iBAAiBE,QAAO,oBAAoB;AAAA,EAC1D;AACA,SAAO;AACT;AAEA,eAAsB,QAAQA,SAAyB,QAAgB,QAAiC;AACtG,QAAMK,KAA4B,CAAC;AACnC,MAAI,CAAC,UAAU,CAAC,UAAU,OAAO,MAAM,WAAW,KAAK,OAAO,MAAM,WAAW,OAAO,MAAM,QAAQ;AAClG,QAAI,CAACL,QAAO;AAAO,UAAI,uDAAuD,OAAO,OAAO,OAAO,KAAK;AACxG,WAAO;AAAA,EACT;AACA,MAAI,OAAO,MAAM,OAAO,KAAK,OAAO,MAAM,OAAO,KAAK,OAAO,MAAM,OAAO,KAAK,OAAO,MAAM,OAAO,GAAG;AACpG,QAAI,CAACA,QAAO;AAAO,UAAI,yDAAyD,OAAO,OAAO,OAAO,KAAK;AAC1G,WAAO;AAAA,EACT;AACA,EAAAK,GAAE,SAAY,MAAM,MAAM;AAC1B,EAAAA,GAAE,SAAU,OAAO,MAAM,OAAO,OAAO,MAAM,MAAM,OAAO,MAAM,OAAO,OAAO,MAAM,KAAS,MAAM,eAAe,QAAQ,CAAC,OAAO,MAAM,IAAI,OAAO,MAAM,EAAE,CAAC,IAAO,MAAM,MAAM;AAC/K,EAAAA,GAAE,OAAU,IAAIA,GAAE,QAAQA,GAAE,MAAM;AAClC,EAAAA,GAAE,UAAa,IAAIA,GAAE,MAAMA,GAAE,IAAI;AACjC,EAAAA,GAAE,MAAS,KAAIA,GAAE,OAAO;AACxB,QAAM,UAAU,MAAMA,GAAE,IAAI,KAAK;AACjC,QAAM,eAAe,QAAQ,MAAM,OAAO,MAAM,MAAM,MAAM,OAAO,MAAM,MAAM,KAAK,MAAM;AAC1F,EAAG,QAAQ,CAACA,GAAE,QAAQA,GAAE,QAAQA,GAAE,MAAMA,GAAE,SAASA,GAAE,GAAG,CAAC;AACzD,SAAO;AACT;;;ACnUO,IAAM,MAAN,MAAU;AAAA,EAoFf,cAAc;AAlFd;AAEA;AAEA;AAEA,oCAAmB;AAEnB,iCAAgB;AAEhB,oCAAqB,CAAC;AAEtB;AAEA;AAEA;AAIA;AAEA,mCAAmB;AAEnB,sCAGI;AAAA,MACA,SAAS;AAAA,MACT,KAAK;AAAA,IACP;AAEF,gCAKI;AAAA,MACA,WAAW;AAAA,MACX,SAAS;AAAA,MACT,MAAM;AAAA,MACN,aAAa;AAAA,IACf;AAEF,iCAKI;AAAA,MACA,WAAW;AAAA,MACX,SAAS;AAAA,MACT,SAAS;AAAA,MACT,UAAU;AAAA,IACZ;AAEF,kCAII;AAAA,MACA,WAAW;AAAA,MACX,SAAS;AAAA,MACT,SAAS;AAAA,IACX;AAEF,+BAGI;AAAA,MACA,OAAO;AAAA,MACP,OAAO,CAAC;AAAA,IACV;AAEF,mCAAoB,CAAC;AAErB;AAEA;AAEA;AAGE,SAAK,UAAU,OAAO,cAAc;AACpC,SAAK,OAAQ,OAAO,YAAY,eAAiB,OAAO,QAAQ,aAAa,eAAiB,OAAO,QAAQ,SAAS,SAAS;AAC/H,SAAK,OAAO,EAAE,SAAY,EAAQ,aAAa;AAC/C,SAAK,YAAY,OAAO,oBAAoB;AAC5C,SAAK,UAAU;AAGf,SAAK,SAAS,KAAK,WAAW,KAAK,YAAa,OAAO,sBAAsB,cAAe;AAC5F,QAAI,OAAO,cAAc,aAAa;AACpC,YAAM,MAAM,UAAU,UAAU,MAAM,eAAe;AACrD,UAAI,2BAAM,IAAI;AACZ,cAAM,gBAAgB,IAAI,GAAG,MAAM,eAAe;AAClD,aAAK,YAAY,+CAAgB,MAAM,cAAc,GAAG,QAAQ,UAAU,EAAE,IAAI;AAChF,aAAK,QAAQ,UAAU,UAAU,QAAQ,IAAI,IAAI,EAAE;AACnD,YAAI,KAAK,SAAS;AAAI,eAAK,QAAQ,KAAK,MAAM,QAAQ,IAAI,IAAI,EAAE;AAChE,aAAK,QAAQ,KAAK,MAAM,QAAQ,OAAO,GAAG;AAAA,MAU5C;AAAA,IACF,WAAW,OAAO,YAAY,aAAa;AACzC,WAAK,WAAW,GAAG,QAAQ,YAAY,QAAQ;AAC/C,WAAK,QAAQ,UAAU,QAAQ;AAAA,IACjC;AAAA,EACF;AAAA,EAGA,MAAM,gBAAgB;AAEpB,SAAK,WAAW,OAAO,KAAQ,OAAO,EAAE,eAAe;AACvD,SAAK,aAAa;AAAA,MAChB,SAAa,QAAQ,EAAE,UAAa,QAAQ,EAAE,QAAQ,aAAa;AAAA,MACnE,KAAS,QAAQ,EAAE,UAAa,QAAQ,EAAE,QAAQ,iBAAiB,IAAI;AAAA,IACzE;AACA,SAAK,KAAK,YAAY,OAAO,gBAAgB;AAC7C,SAAK,KAAK,UAAU,KAAK,SAAS,SAAS,MAAM;AACjD,QAAI,KAAK,KAAK,aAAa,KAAK,KAAK,WAAc,WAAW,MAAM,QAAQ;AAC1E,WAAK,KAAK,OAAU,IAAI,EAAE,IAAI,uBAAuB;AACrD,WAAK,KAAK,cAAiB,IAAI,EAAE,IAAI,8BAA8B;AAAA,IACrE;AACA,UAAM,IAAU,OAAO,KAAK,GAAG;AAC/B,UAAM,MAAM,IAAI,EAAE,WAAW,QAAQ,IAAI;AAEzC,SAAK,MAAM,YAAY,OAAO,QAAQ;AACtC,SAAK,MAAM,UAAU,KAAK,SAAS,SAAS,OAAO;AACnD,QAAI,KAAK,MAAM,aAAa,KAAK,MAAM,YAAe,WAAW,MAAM,WAAc,WAAW,MAAM,YAAY;AAChH,YAAM,KAAQ,QAAQ,EAAE,UAAU,cAAc,MAAS,QAAQ,EAAE,gBAAgB,EAAE,KAAK;AAC1F,UAAI,IAAI;AACN,aAAK,MAAM,UAAU,GAAG,aAAa,GAAG,OAAO;AAC/C,aAAK,MAAM,WAAW,GAAG,aAAa,GAAG,QAAQ;AAAA,MACnD;AAAA,IACF;AACA,SAAK,OAAO,YAAY,KAAK,WAAW,OAAO,UAAU,QAAQ;AACjE,SAAK,OAAO,UAAU,KAAK,SAAS,SAAS,QAAQ;AACrD,QAAI;AACF,UAAI,KAAK,OAAO,WAAW;AACzB,cAAM,UAAU,MAAM,UAAU,IAAI,eAAe;AACnD,aAAK,OAAO,UAAU,UAAU,QAAQ,OAAO;AAAA,MACjD;AAAA,IACF,SAAQC,IAAN;AACA,WAAK,OAAO,YAAY;AAAA,IAC1B;AACA,QAAI;AACF,WAAK,UAAa,qBAAwB,WAAW,CAAC,EAAE,IAAI,CAAC,WAAY,OAAO,WAAsB,YAAY,CAAC;AAAA,IACrH,SAAQA,IAAN;AAAA,IAAa;AAAA,EACjB;AAAA,EAGA,YAAY;AACV,UAAM,MAAM,EAAE,OAAO,IAAI,OAAO,CAAC,EAAE;AACnC,QAAI,KAAK,QAAQ,KAAK,SAAS,WAAW,OAAO,GAAG;AAAA,IAWpD;AACA,QAAI,CAAC,KAAK;AAAK,aAAO,eAAe,MAAM,OAAO,EAAE,OAAO,IAAI,CAAC;AAAA;AAC3D,WAAK,MAAM;AAAA,EAClB;AACF;AAEO,IAAMC,OAAM,IAAI,IAAI;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ACtL3B,IAAAC,kBAAA;AAAA,SAAAA,iBAAA;AAAA;AAAA;AAAA,cAAAC;AAAA,EAAA,aAAAC;AAAA,EAAA,gBAAAC;AAAA,EAAA;AAAA;;;ACeA,IAAIC;AACJ,IAAMC,QAAmB,CAAC;AAC1B,IAAM,YAAY,CAAC,SAAS,SAAS,SAAS,UAAU,OAAO;AAC/D,IAAM,aAAa,CAAC,IAAI,IAAI,IAAI,MAAM,MAAM,MAAM,EAAE;AACpD,IAAI,YAAY;AAChB,IAAI,WAAW;AACf,IAAI,UAAU,OAAO;AAErB,eAAsB,KAAKC,SAAgB;AAvB3C;AAwBE,MAAIC,KAAI;AAAS,IAAAH,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAE,QAAO,KAAK,SAAZ,mBAAkB,SAAS;AAAA,WACtDA,QAAO;AAAO,QAAI,iBAAiBF,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsB,QAAQI,QAAeF,SAAgB,KAAaG,QAAkC;AA9B5G;AA+BE,MAAI,CAACL;AAAO,WAAO,EAAE,KAAK,GAAG,QAAQ,WAAW,aAAa,GAAG,MAAM,CAAC,EAAE;AACzE,QAAM,YAAY,aAAW,KAAAE,QAAO,KAAK,SAAZ,mBAAkB,eAAc;AAC7D,QAAM,cAAY,KAAAA,QAAO,KAAK,SAAZ,mBAAkB,aAAY,KAAM,IAAI,IAAI;AAC9D,MAAIA,QAAO,eAAe,YAAY,aAAc,cAAcG,UAAUJ,MAAK,MAAM;AACrF;AACA,WAAOA,MAAK;AAAA,EACd;AACA,YAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AAvCxC,QAAAK,KAAAC;AAwCI,QAAI,EAACP,UAAA,gBAAAA,OAAO,OAAO,GAAG;AAAO;AAC7B,UAAMQ,KAA4B,CAAC;AAEnC,UAAM,MAAM,CAAC,CAAC,GAAK,KAAM,KAAM,GAAI,CAAC;AACpC,IAAAA,GAAE,SAAY,MAAM,cAAcJ,QAAO,KAAK,CAAC,CAAC,GAAG,CAACJ,OAAM,OAAO,GAAG,MAAM,IAAIA,OAAM,OAAO,GAAG,MAAM,EAAE,CAAC;AACvG,UAAM,MAAgB,EAAE,KAAK,GAAG,QAAQ,WAAW,aAAa,GAAG,MAAM,CAAC,EAAE;AAC5E,SAAIM,MAAAJ,QAAO,KAAK,SAAZ,gBAAAI,IAAkB;AAAS,OAACE,GAAE,KAAKA,GAAE,QAAQA,GAAE,IAAI,IAAIR,OAAM,QAAQQ,GAAE,QAAQ,CAAC,cAAc,iBAAiB,aAAa,CAAC;AACjI,UAAMC,UAAS,MAAMD,GAAE,OAAO,KAAK;AACnC,QAAI,SAASC,QAAO,KAAKA,QAAO,KAAK,SAAS;AAC9C,QAAI,cAAc,KAAK,MAAM,OAAOA,QAAO,KAAKA,QAAO,KAAKA,QAAO,KAAKA,QAAO,GAAG,IAAI;AACtF,UAAM,OAAO,MAAMD,GAAE,KAAK,KAAK;AAC/B,aAASE,KAAI,GAAGA,KAAI,KAAK,QAAQA,MAAK;AACpC,UAAI,KAAKA,SAAMH,MAAAL,QAAO,KAAK,SAAZ,gBAAAK,IAAkB,kBAAiB;AAAM,YAAI,KAAK,KAAK,EAAE,OAAO,KAAK,MAAM,MAAM,KAAKG,GAAE,IAAI,KAAK,MAAM,UAAUA,IAAW,CAAC;AAAA,IAC9I;AACA,QAAI,KAAK,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAEzC,UAAM,kBAAkB,MAAM,KAAK,MAAMF,GAAE,IAAI,KAAK,CAAC;AACrD,UAAM,YAAY,gBAAgB,IAAI,CAAC,GAAGE,OAAM,CAAC,WAAWA,KAAI,CAAC,CAAC,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,KAAK,EAAE,EAAE;AAC9F,QAAIC,OAAM,UAAU,GAAG;AACvB,aAASD,KAAI,GAAGA,KAAI,UAAU,QAAQA;AAAK,MAAAC,QAAO,UAAUD,IAAG,MAAM,UAAUA,IAAG,KAAKC;AACvF,QAAI,MAAM,KAAK,MAAM,KAAKA,IAAG,IAAI;AACjC,WAAO,KAAKH,EAAC,EAAE,QAAQ,CAACI,YAAc,QAAQJ,GAAEI,QAAO,CAAC;AACxD,IAAAX,MAAK,OAAO;AACZ,gBAAYI;AACZ,eAAW,IAAI;AACf,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;AChEO,IAAM,YAAwD;AAAA,EACnE,OAAO;AAAA,EACP,KAAK;AAAA,EACL,KAAK;AAAA,EACL,MAAM;AAAA,EACN,OAAO;AAAA,EACP,KAAK,CAAC,QAAQ,OAAQ,KAAM;AAC9B;AAEO,SAASQ,QAAO;AACrB,YAAU,QAAW,OAAO,KAAK,SAAS;AAC1C,YAAU,MAAS,OAAO,GAAG,SAAS;AACtC,YAAU,MAAS,OAAO,GAAG,SAAS;AACtC,YAAU,OAAU,OAAO,KAAK,SAAS;AACzC,YAAU,QAAW,OAAO,OAAO,SAAS;AAC5C,YAAU,MAAS,SAAS,CAAC,QAAQ,OAAQ,KAAM,GAAG,SAAS;AACjE;;;ACLA,IAAIC;AACJ,IAAMC,QAA0B,CAAC;AACjC,IAAIC,aAAY;AAChB,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAgB;AACzC,MAAIC,KAAI;AAAS,IAAAP,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,UAAUM,QAAO,KAAK,UAAU,YAAY;AAAA,WAC7DA,QAAO;AAAO,QAAI,iBAAiBN,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,SAAQC,QAAeH,SAAgB,KAAaI,QAAyC;AA3BnH;AA4BE,MAAI,CAACV;AAAO,WAAO,EAAE,KAAK,EAAE;AAC5B,QAAM,YAAYI,cAAW,KAAAE,QAAO,KAAK,cAAZ,mBAAuB,eAAc;AAClE,QAAM,cAAY,KAAAA,QAAO,KAAK,cAAZ,mBAAuB,aAAY,KAAM,IAAI,IAAIH;AACnE,MAAIG,QAAO,eAAe,aAAa,YAAaJ,eAAcQ,YAAU,KAAAT,MAAK,SAAL,mBAAW,UAAQ,KAAAA,MAAK,SAAL,mBAAW,OAAM,GAAI;AAClH,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,EAAAG,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AApCxC,QAAAO;AAqCI,QAAI,EAACX,UAAA,gBAAAA,OAAO,WAAU,CAACA,OAAM,OAAO,MAAM,CAACA,OAAM,OAAO,GAAG;AAAO;AAClE,UAAMY,KAA4B,CAAC;AACnC,IAAAA,GAAE,SAAY,MAAM,eAAeH,QAAO,CAACT,OAAM,OAAO,GAAG,MAAM,IAAIA,OAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AACrG,IAAAY,GAAE,UAAa,IAAIA,GAAE,QAAQ,UAAU,KAAK;AAC5C,UAAM,MAAM,EAAE,KAAK,EAAE;AACrB,SAAID,MAAAL,QAAO,KAAK,cAAZ,gBAAAK,IAAuB;AAAS,MAAAC,GAAE,MAAMZ,OAAM,QAAQY,GAAE,OAAO;AACnE,QAAIA,GAAE,KAAK;AACT,YAAM,OAAO,MAAMA,GAAE,IAAI,KAAK;AAC9B,UAAI,MAAM,KAAK,MAAM,KAAK,KAAK,EAAE,IAAI;AAAA,IACvC;AACA,WAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,IAAAZ,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,IAAAP,YAAW,IAAI;AACf,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;ACtCA,IAAIW;AACJ,IAAMC,QAAkD,CAAC;AACzD,IAAIC,aAAY;AAChB,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAGrB,IAAM,MAAM,CAAC,QAAQ,OAAQ,KAAM;AAEnC,eAAsBC,MAAKC,SAAgB;AAxB3C;AAyBE,MAAIC,KAAI;AAAS,IAAAP,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,cAAZ,mBAAuB,eAAe;AAAA,WACjEA,QAAO;AAAO,QAAI,iBAAiBN,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,SAAQC,QAAeH,SAAgB,KAAKI,QAAyD;AA/B3H;AAgCE,MAAI,CAACV;AAAO,WAAO,EAAE,QAAQ,WAAW,aAAa,EAAE;AACvD,QAAM,YAAYI,cAAW,KAAAE,QAAO,KAAK,cAAZ,mBAAuB,eAAc;AAClE,QAAM,cAAY,KAAAA,QAAO,KAAK,cAAZ,mBAAuB,aAAY,KAAM,IAAI,IAAIH;AACnE,MAAIG,QAAO,eAAe,aAAa,YAAaJ,eAAcQ,YAAU,KAAAT,MAAK,SAAL,mBAAW,aAAW,KAAAA,MAAK,SAAL,mBAAW,eAAc,GAAI;AAC7H,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,EAAAG,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AAxCxC,QAAAO;AAyCI,QAAI,EAACX,UAAA,gBAAAA,OAAO,OAAO,GAAG;AAAO;AAC7B,UAAMY,KAA4B,CAAC;AACnC,IAAAA,GAAE,SAAY,MAAM,eAAeH,QAAO,CAACT,OAAM,OAAO,GAAG,MAAM,IAAIA,OAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AACrG,IAAAY,GAAE,UAAa,KAAK,MAAM;AACxB,YAAM,CAAC,KAAK,OAAO,IAAI,IAAO,MAAMA,GAAE,QAAQ,GAAG,CAAC;AAClD,YAAM,UAAa,IAAI,KAAK,IAAI,EAAE;AAClC,YAAM,YAAe,IAAI,OAAO,IAAI,EAAE;AACtC,YAAM,WAAc,IAAI,MAAM,IAAI,EAAE;AACpC,YAAM,YAAe,KAAK,CAAC,SAAS,WAAW,QAAQ,CAAC;AACxD,YAAM,YAAe,IAAO,IAAI,WAAW,UAAU,IAAI,GAAG,CAAC;AAC7D,aAAO;AAAA,IACT,CAAC;AACD,UAAM,MAA+C,EAAE,QAAQ,WAAW,aAAa,EAAE;AACzF,SAAID,MAAAL,QAAO,KAAK,cAAZ,gBAAAK,IAAuB;AAAS,MAAAC,GAAE,SAASZ,OAAM,QAAQY,GAAE,OAAO;AACtE,UAAM,OAAO,MAAMA,GAAE,OAAO,KAAK;AACjC,QAAI,SAAS,KAAK,KAAK,KAAK,KAAK,WAAW;AAC5C,QAAI,cAAc,KAAK,KAAK,KAAK,KAAM,KAAK,MAAM,MAAM,KAAK,EAAE,IAAI,MAAQ,KAAK,MAAM,MAAM,KAAK,EAAE,IAAI;AACvG,WAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,IAAAZ,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,IAAAP,YAAW,IAAI;AACf,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;ACrDA,IAAIW;AACJ,IAAM,SAAmB,CAAC;AAC1B,IAAIC,WAAU,OAAO;AACrB,IAAIC,aAAY;AAChB,IAAIC,YAAW;AAEf,eAAsBC,MAAKC,SAAqC;AAjBhE;AAkBE,MAAIC,KAAI;AAAS,IAAAN,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAK,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAAA,WAC3DA,QAAO;AAAO,QAAI,iBAAiBL,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBO,SAAQC,QAAeH,SAAgB,KAAaI,QAAgC;AAxB1G;AAyBE,MAAI,CAACT,UAAS,EAACA,UAAA,gBAAAA,OAAQ;AAAa,WAAO;AAC3C,QAAM,cAAY,KAAAK,QAAO,KAAK,cAAZ,mBAAuB,aAAY,KAAM,IAAI,IAAIF;AACnE,QAAM,YAAYF,cAAW,KAAAI,QAAO,KAAK,cAAZ,mBAAuB,eAAc;AAClE,MAAIA,QAAO,eAAe,YAAY,aAAcH,eAAcO,UAAU,OAAO,MAAM;AACvF,IAAAR;AACA,WAAO,OAAO;AAAA,EAChB;AACA,EAAAA,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAM,SAAY,MAAM,eAAeO,QAAO,EAACR,UAAA,gBAAAA,OAAO,OAAO,GAAG,SAAQA,OAAM,OAAO,GAAG,MAAM,KAAK,IAAGA,UAAA,gBAAAA,OAAO,OAAO,GAAG,SAAQA,OAAM,OAAO,GAAG,MAAM,KAAK,CAAC,GAAG,KAAK;AACnK,UAAM,MAAMA,UAAA,gBAAAA,OAAO,QAAQ;AAC3B,UAAM,OAAO,MAAM,IAAI,KAAK,GAAG;AAC/B,WAAO,OAAO,KAAK,MAAM,MAAM,GAAG,IAAI;AACtC,IAAAE,aAAYO;AACZ,IAAAN,YAAW,IAAI;AACf,IAAG,QAAQ,CAAC,QAAQ,GAAG,CAAC;AACxB,YAAQ,OAAO,IAAI;AAAA,EACrB,CAAC;AACH;;;ACtCO,IAAM,kBAA4C;AAAA,EACvD,YAAY;AAAA,IACV;AAAA,IAAI;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IACtD;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IACvD;AAAA,IAAK;AAAA,IAAI;AAAA,IAAK;AAAA,IAAI;AAAA,IAAK;AAAA,IAAK;AAAA,IAAK;AAAA,IAAI;AAAA,IAAI;AAAA,IAAK;AAAA,IAAI;AAAA,EACpD;AAAA,EAKA,gBAAgB,CAAC,KAAK,IAAI,IAAI,IAAI,GAAG,KAAK,KAAK,KAAK,GAAG;AAAA,EACvD,gBAAgB,CAAC,IAAI,KAAK,IAAI,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAClE,gBAAgB,CAAC,KAAK,IAAI,IAAI,IAAI,IAAI,KAAK,KAAK,KAAK,GAAG;AAAA,EACxD,gBAAgB,CAAC,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACjE,oBAAoB,CAAC,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACrE,oBAAoB,CAAC,KAAK,IAAI,IAAI,IAAI,IAAI,KAAK,KAAK,KAAK,GAAG;AAAA,EAC5D,oBAAoB,CAAC,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACrE,oBAAoB,CAAC,KAAK,IAAI,IAAI,IAAI,IAAI,KAAK,KAAK,KAAK,GAAG;AAAA,EAC5D,gBAAgB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAClD,gBAAgB,CAAC,IAAI,GAAG,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACzD,gBAAgB,CAAC,KAAK,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG;AAAA,EAC7C,gBAAgB,CAAC,KAAK,IAAI,KAAK,IAAI,IAAI,IAAI,IAAI,KAAK,GAAG;AAAA,EACvD,gBAAgB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAClD,gBAAgB,CAAC,KAAK,IAAI,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,gBAAgB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC5D,mBAAmB,CAAC,KAAK,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,GAAG;AAAA,EACtD,mBAAmB,CAAC,IAAI,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC3C,cAAc,CAAC,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACtC,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACjD,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACjD,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACjD,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,eAAe,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC3D,kBAAkB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACzD,kBAAkB,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EAC/C,aAAa,CAAC,KAAK,KAAK,KAAK,KAAK,GAAG;AAAA,EACrC,mBAAmB,CAAC,GAAG;AAAA,EACvB,SAAS,CAAC,CAAC;AAAA,EACX,YAAY,CAAC,CAAC;AAAA,EACd,iBAAiB,CAAC,EAAE;AAAA,EACpB,gBAAgB,CAAC,GAAG;AAAA,EACpB,YAAY,CAAC,GAAG;AAAA,EAChB,WAAW,CAAC,GAAG;AACjB;AAEO,IAAM,gBAAmD;AAAA,EAC9D,OAAO;AAAA,EACP,OAAO;AAAA,EACP,cAAc,CAAC,IAAI,gBAAgB,kBAAkB,EAAE;AACzD;AAEO,IAAM,qBAAwD;AAAA,EACnE,SAAS;AAAA,EACT,UAAU;AAAA,EACV,MAAM;AAAA,EACN,OAAO;AAAA,EACP,SAAS;AAAA,EACT,UAAU;AAAA,EACV,cAAc,CAAC,GAAG,CAAC;AACrB;AAEO,IAAM,cAAoD;AAAA,EAC/D,EAAE,KAAK,aAAa,SAAS,CAAC,GAAG,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EACzD,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAC1D,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAC1D,EAAE,KAAK,aAAa,SAAS,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,EAAE;AAAA,EACzD,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAClE,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAClE,EAAE,KAAK,aAAa,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EAClE,EAAE,KAAK,gBAAgB,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAAA,EACjE,EAAE,KAAK,gBAAgB,SAAS,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE;AAC3D;AAEO,IAAM,QAA4B;AAAA,EACvC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,gBAAgB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,gBAAgB;AAAA,EAClC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,gBAAgB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,gBAAgB,iBAAiB;AAAA,EAClC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,kBAAkB,iBAAiB;AAAA,EACpC,CAAC,iBAAiB,iBAAiB;AAAA,EACnC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AAAA,EACrC,CAAC,mBAAmB,iBAAiB;AACvC;AAEO,IAAM,SAAmB;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACtJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EACrJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAC7I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACrJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EACtJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACrJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EACnJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EACnJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EACrJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACpJ;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACrJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9I;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/I;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAChJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAClJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACjJ;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAG;AAwB1I,IAAM,QAAkB;AAAA,EACjB;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC/E;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC1C;AAAA,EAAK;AAAA,EAAG;AAAA,EAAK;AAAA,EAAG;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAChC;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACtD;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAChD;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAI;AAC7C;AAEO,IAAM,QAAkB,CAAC,IAAI,KAAK,KAAK,KAAK,GAAG,IAAI,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,KAAK,KAAK,GAAG,IAAI,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,KAAK,IAAI,IAAI,KAAK,IAAI,KAAK,KAAK,KAAK,IAAI,KAAK,GAAG;AAE7K,IAAM,OAAiB,CAAC,IAAI,KAAK,KAAK,KAAK,GAAG,IAAI,GAAG;AAErD,IAAM,OAAO,MAAM,IAAI,CAAC,MAAM,MAAM,EAAE;AAEtC,IAAM,OAAO,MAAM,IAAI,CAAC,MAAM,MAAM,EAAE;AAEtC,IAAM,MAAM,KAAK,IAAI,CAAC,MAAM,MAAM,EAAE;AAO3C,SAAS,qBAAqB,aAAwB;AACpD,QAAM,UAAU,YAAY,IAAI,CAAC,eAAe,WAAW,EAAE;AAC7D,UAAQ,KAAK,YAAY,YAAY,SAAS,GAAG,EAAE;AACnD,SAAO;AACT;AAEO,IAAM,YAAuB;AAAA,EAClC,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,CAAC;AAAA,EAAG,CAAC,GAAG,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAC3N,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAC7N;AAEO,IAAM,eAA0B,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAE/N,IAAM,mBAA8B,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEnI,IAAM,gBAA2B,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEhF,IAAM,gBAA2B,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,IAAI,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAE1N,IAAM,oBAA+B,CAAC,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,GAAG,GAAG,CAAC,KAAK,EAAE,GAAG,CAAC,IAAI,GAAG,CAAC;AAEvH,IAAM,iBAA4B,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEjF,IAAM,mBAA8B;AAAA,EACzC,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACpE,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACrE,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACrE,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACrE,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACjE,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAChE;AAEO,IAAM,mBAAmB;AAAA,EAC9B,MAAM,qBAAqB,SAAS;AAAA,EACpC,SAAS,qBAAqB,YAAY;AAAA,EAC1C,aAAa,qBAAqB,gBAAgB;AAAA,EAClD,UAAU,qBAAqB,aAAa;AAAA,EAC5C,UAAU,qBAAqB,aAAa;AAAA,EAC5C,cAAc,qBAAqB,iBAAiB;AAAA,EACpD,WAAW,qBAAqB,cAAc;AAAA,EAC9C,UAAU,qBAAqB,gBAAgB;AACjD;;;ACrsBO,IAAM,aAAa,CAAC,QAA0B,CAAC,KAAK,IAAI,IAAI,SAAS,KAAK,IAAI,WAAW,EAAE,GAAG,KAAK,IAAI,IAAI,SAAS,KAAK,IAAI,WAAW,EAAE,CAAC;AAE3I,IAAM,eAAe,CAAC,QAAkC,CAAC,IAAI,WAAW,MAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,IAAI,WAAW,MAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,CAAC;AAExL,IAAM,WAAW,CAAC,KAAKO,WAAgB,MAAM;AAAA,EAClD,KAAK,MAAM,KAAK,IAAI,GAAG,IAAI,WAAW,EAAE,CAAC;AAAA,EACzC,KAAK,MAAM,KAAK,IAAI,GAAG,IAAI,WAAW,EAAE,CAAC;AAAA,EACzC,KAAK,MAAM,KAAK,IAAKA,OAAM,MAAM,MAAM,GAAI,IAAI,SAAS,EAAE,IAAI,KAAK,IAAI,GAAG,IAAI,WAAW,EAAE,CAAC;AAAA,EAC5F,KAAK,MAAM,KAAK,IAAKA,OAAM,MAAM,MAAM,GAAI,IAAI,SAAS,EAAE,IAAI,KAAK,IAAI,GAAG,IAAI,WAAW,EAAE,CAAC;AAC9F,IAAI,CAAC,GAAG,GAAG,GAAG,CAAC;AAER,IAAM,YAAY,CAAC,KAAKA,WAAgB,MAAM;AAAA,EACnD,IAAI,WAAW,MAAMA,OAAM,MAAM,MAAM;AAAA,EACvC,IAAI,WAAW,MAAMA,OAAM,MAAM,MAAM;AAAA,GACtC,IAAI,SAAS,KAAK,IAAI,WAAW,OAAOA,OAAM,MAAM,MAAM;AAAA,GAC1D,IAAI,SAAS,KAAK,IAAI,WAAW,OAAOA,OAAM,MAAM,MAAM;AAC7D,IAAI,CAAC,GAAG,GAAG,GAAG,CAAC;AAER,IAAM,sBAAsB,CAAC,KAAK,WAAW;AAClD,QAAM,aAAoB,CAAC,IAAI,WAAW,KAAK,OAAO,IAAI,IAAI,WAAW,KAAK,OAAO,EAAE;AACvF,QAAM,WAAkB,CAAC,IAAI,SAAS,KAAK,OAAO,IAAI,IAAI,SAAS,KAAK,OAAO,EAAE;AACjF,SAAO,EAAE,YAAY,UAAU,WAAW,IAAI,WAAW,YAAY,IAAI,WAAW;AACtF;AAEO,IAAM,eAAe,CAAC,KAAKC,QAAO,aAAa;AACpD,QAAM,IAAIA,OAAM,MAAM;AACtB,QAAM,IAAIA,OAAM,MAAM;AACtB,QAAM,SAAS,CAAC,IAAI,WAAW,KAAK,GAAG,IAAI,WAAW,KAAK,GAAG,IAAI,SAAS,KAAK,GAAG,IAAI,SAAS,KAAK,CAAC;AACtG,QAAM,OAAU,MAAM,cAAcA,QAAO,CAAC,MAAM,GAAG,CAAC,CAAC,GAAG,QAAQ;AAClE,QAAMC,QAAU,IAAI,MAAM,UAAU,KAAK;AACzC,EAAG,QAAQ,IAAI;AACf,SAAOA;AACT;AAEO,IAAM,aAAa,CAAC,KAAK,WAAW;AACzC,QAAM,SAAS,aAAa,GAAG;AAC/B,QAAMC,QAAO,WAAW,GAAG;AAC3B,QAAM,WAA6B,CAAC,SAASA,MAAK,KAAK,GAAG,SAASA,MAAK,KAAK,CAAC;AAC9E,SAAO,EAAE,YAAY,CAAC,OAAO,KAAK,SAAS,IAAI,OAAO,KAAK,SAAS,EAAE,GAAY,UAAU,CAAC,OAAO,KAAK,SAAS,IAAI,OAAO,KAAK,SAAS,EAAE,GAAY,WAAW,IAAI,WAAW,YAAY,IAAI,WAAW;AAChN;AAEO,IAAM,cAAc,CAAC,QAAQ;AAClC,QAAM,UAAU,aAAa,GAAG;AAChC,QAAMA,QAAO,WAAW,GAAG;AAC3B,QAAM,WAAW,KAAK,IAAI,GAAGA,KAAI,IAAI;AACrC,SAAO,EAAE,YAAY,CAAC,KAAK,MAAM,QAAQ,KAAK,QAAQ,GAAG,KAAK,MAAM,QAAQ,KAAK,QAAQ,CAAC,GAAY,UAAU,CAAC,KAAK,MAAM,QAAQ,KAAK,QAAQ,GAAG,KAAK,MAAM,QAAQ,KAAK,QAAQ,CAAC,GAAY,WAAW,IAAI,WAAW,YAAY,IAAI,WAAW;AACxP;AAEO,IAAM,gCAAgC,CAAC,cAAc;AAC1D,QAAM,IAAI,UAAU,IAAI,CAAC,MAAM,EAAE,EAAE;AACnC,QAAM,IAAI,UAAU,IAAI,CAAC,MAAM,EAAE,EAAE;AACnC,SAAO,EAAE,YAAY,CAAC,KAAK,IAAI,GAAG,CAAC,GAAG,KAAK,IAAI,GAAG,CAAC,CAAC,GAAY,UAAU,CAAC,KAAK,IAAI,GAAG,CAAC,GAAG,KAAK,IAAI,GAAG,CAAC,CAAC,GAAY,UAAU;AACjI;AAEO,IAAM,sBAAsB,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAE5D,IAAM,mBAAmB,CAAC,UAAkB,QAAQ,IAAI,KAAK,KAAK,KAAK,OAAO,QAAQ,KAAK,OAAO,IAAI,KAAK,GAAG;AAE9G,IAAM,kBAAkB,CAAC,QAAQ,WAAW,iBAAiB,KAAK,KAAK,IAAI,KAAK,MAAM,EAAE,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,OAAO,EAAE,CAAC;AAItI,IAAM,yBAAyB,CAAC,GAAG,MAAM,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAEzE,IAAMC,OAAM,CAAC,IAAc,OAAiB;AACjD,MAAI,UAAU;AACd,WAASC,KAAI,GAAGA,KAAI,GAAG,QAAQA;AAAK,eAAW,GAAGA,MAAK,GAAGA;AAC1D,SAAO;AACT;AAEO,IAAM,qBAAqB,CAAC,KAAK,gBAAgB;AACtD,QAAM,SAAmB,CAAC;AAC1B,WAASA,KAAI,GAAGA,KAAI,IAAI,QAAQA;AAAK,WAAO,KAAK,IAAIA,IAAG,YAAY;AACpE,SAAO;AACT;AAEO,IAAM,4BAA4B,CAAC,MAAM,SAAS;AACvD,QAAM,UAAsB,CAAC;AAC7B,QAAMC,QAAO,KAAK;AAClB,WAAS,MAAM,GAAG,MAAMA,OAAM,OAAO;AACnC,YAAQ,KAAK,CAAC,CAAC;AACf,aAAS,MAAM,GAAG,MAAMA,OAAM;AAAO,cAAQ,KAAK,KAAKF,KAAI,KAAK,MAAM,mBAAmB,MAAM,GAAG,CAAC,CAAC;AAAA,EACtG;AACA,SAAO;AACT;AAEO,IAAM,sBAAsB,CAAC,UAAU,WAAW;AACvD,QAAM,OAAO,KAAK,IAAI,QAAQ;AAC9B,QAAM,OAAO,KAAK,IAAI,QAAQ;AAC9B,QAAM,iBAAiB,CAAC,CAAC,MAAM,CAAC,MAAM,CAAC,GAAG,CAAC,MAAM,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AACpE,QAAM,oBAAoB,uBAAuB,OAAO,IAAI,OAAO,EAAE;AACrE,QAAM,2BAA2B,0BAA0B,mBAAmB,cAAc;AAC5F,QAAM,4BAA4B,uBAAuB,CAAC,OAAO,IAAI,CAAC,OAAO,EAAE;AAC/E,SAAO,0BAA0B,0BAA0B,yBAAyB;AACtF;AAEO,IAAM,wBAAwB,CAAC,WAAW;AAC/C,QAAM,oBAAoB,CAAC,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE,GAAG,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE,CAAC;AACrF,QAAM,uBAAuB,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACxD,QAAM,sBAAsB,CAAC,CAACA,KAAI,kBAAkB,IAAI,oBAAoB,GAAG,CAACA,KAAI,kBAAkB,IAAI,oBAAoB,CAAC;AAC/H,SAAO,CAAC,kBAAkB,GAAG,OAAO,oBAAoB,EAAE,GAAG,kBAAkB,GAAG,OAAO,oBAAoB,EAAE,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAC7H;AAEO,IAAM,cAAc,CAAC,uBAAuB,mBAAmB,CAACA,KAAI,uBAAuB,eAAe,EAAE,GAAGA,KAAI,uBAAuB,eAAe,EAAE,CAAC;AAI5J,SAAS,gBAAgBG,aAAmB;AACjD,QAAM,OAAOA,gBAAc,MACvB,EAAE,SAAS,CAAC,CAAC,GAAG,SAAS,CAAC,CAAC,EAAE,IAC7B,EAAE,SAAS,CAACA,cAAY,IAAIA,cAAY,CAAC,GAAG,SAAS,CAAC,GAAG,CAAC,EAAE;AAChE,QAAMC,WAA8B,CAAC;AACrC,WAASC,KAAI,GAAGA,KAAI,KAAK,QAAQ,QAAQA,MAAK;AAC5C,UAAM,SAAS,KAAK,QAAQA;AAC5B,UAAM,WAAW,KAAK,OAAOF,cAAY,SAAS,KAAK,MAAM;AAC7D,UAAM,WAAW,KAAK,OAAOA,cAAY,SAAS,KAAK,MAAM;AAC7D,UAAM,aAAa,KAAK,QAAQE;AAChC,aAAS,QAAQ,GAAG,QAAQ,UAAU,SAAS;AAC7C,YAAM,UAAU,UAAU,QAAQ;AAClC,eAAS,QAAQ,GAAG,QAAQ,UAAU,SAAS;AAC7C,cAAM,UAAU,UAAU,QAAQ;AAClC,iBAASC,KAAI,GAAGA,KAAI,YAAYA;AAAK,UAAAF,SAAQ,KAAK,CAAC,SAAS,OAAO,CAAC;AAAA,MACtE;AAAA,IACF;AAAA,EACF;AACA,SAAOA;AACT;AAEO,SAAS,mBAAmB,WAAW,KAAK,OAAO,gBAAgBD,aAAW;AACnF,QAAM,UAAU,WAAW,GAAG;AAC9B,QAAM,eAAe,UAAU,IAAI,CAAC,UAAW;AAAA,IAC5C,QAAQ,KAAKA,eAAc,MAAM,KAAMA,cAAY;AAAA,IACnD,QAAQ,KAAKA,eAAc,MAAM,KAAMA,cAAY;AAAA,IACnD,MAAM,MAAM;AAAA,EACf,CAAE;AACF,QAAM,aAAa,SAAU,UAAU,KAAO,KAAK,IAAI,KAAK,IAAI;AAChE,QAAM,uBAAuB,aAAa,oBAAoB,OAAO,CAAC,GAAG,CAAC,CAAC,IAAI;AAC/E,QAAM,gBAAgB,aAAa,aAAa,IAAI,CAAC,UAAW,CAAC,GAAG,YAAY,OAAO,oBAAoB,GAAG,MAAM,EAAE,CAAE,IAAI;AAC5H,QAAM,wBAAwB,aAAa,sBAAsB,cAAc,IAAI;AACnF,QAAM,YAAY,aAAa,GAAG;AAClC,QAAM,UAAU,CAACI,KAAI,WAAW,sBAAsB,EAAE,GAAGA,KAAI,WAAW,sBAAsB,EAAE,CAAC;AACnG,SAAO,cAAc,IAAI,CAAC,UAAW;AAAA,IACnC,KAAK,MAAM,MAAM,KAAK,QAAQ,EAAE;AAAA,IAChC,KAAK,MAAM,MAAM,KAAK,QAAQ,EAAE;AAAA,IAChC,KAAK,MAAM,MAAM,MAAM,CAAC;AAAA,EAC1B,CAAE;AACJ;AAEO,SAAS,oBAAoB,QAAQ,KAAKC,QAAOL,aAAW;AACjE,QAAM,eAAgB,IAAI,UAAU,UAAiB,cAAc,QACxD,cAAc,eACd,mBAAmB;AAC9B,MAAI,QAAQ;AACZ,MAAI,iBAAiB;AACrB,MAAIM;AAEJ,MAAI,UAAUC,KAAI,QAAQ,SAAS,kBAAkB,GAAG;AACtD,YAAQ,gBAAgB,IAAI,UAAU,aAAa,KAAK,IAAI,UAAU,aAAa,GAAG;AACtF,UAAM,aAAa,SAAU,UAAU,KAAO,KAAK,IAAI,KAAK,IAAI;AAChE,QAAI,YAAY;AACd,YAAM,SAAgB,aAAa,GAAG;AACtC,YAAM,YAAmB,CAAC,OAAO,KAAKF,OAAM,MAAM,IAAI,OAAO,KAAKA,OAAM,MAAM,EAAE;AAChF,YAAM,UAAa,MAAM,iBAAiBA,QAAO,OAAO,GAAG,SAAS;AACpE,uBAAiB,oBAAoB,CAAC,OAAO,MAAM;AACnD,MAAAC,QAAO,aAAa,KAAK,SAAS,CAACN,aAAWA,WAAS,CAAC;AACxD,MAAG,QAAQ,OAAO;AAAA,IACpB,OAAO;AACL,MAAAM,QAAO,aAAa,KAAKD,QAAO,CAACL,aAAWA,WAAS,CAAC;AAAA,IACxD;AAAA,EACF,OAAO;AACL,IAAAM,QAAO,aAAa,KAAKD,QAAO,CAACL,aAAWA,WAAS,CAAC;AAAA,EACxD;AACA,SAAO,CAAC,OAAO,gBAAgBM,KAAI;AACrC;AAEO,IAAM,iBAAiB,CAAC,SAAS;AACtC,QAAM,IAAI,KAAK,IAAI,CAAC,MAAM,EAAE,EAAE;AAC9B,QAAM,IAAI,KAAK,IAAI,CAAC,MAAM,EAAE,EAAE;AAO9B,SAAO,CAAC,KAAK,IAAI,GAAG,CAAC,KAAK,KAAK,IAAI,GAAG,CAAC,IAAI,KAAK,IAAI,GAAG,CAAC,KAAK,GAAG,KAAK,IAAI,GAAG,CAAC,KAAK,KAAK,IAAI,GAAG,CAAC,IAAI,KAAK,IAAI,GAAG,CAAC,KAAK,CAAC;AACxH;AAEO,IAAM,mBAAmB,CAAC,MAAM,gBAAgB;AACrD,QAAM,SAAS,eAAe,IAAI;AAClC,QAAM,UAAU,WAAW,WAAW;AACtC,QAAM,gBAAgB;AAAA,IACpB,YAAY,CAAC,OAAO,KAAK,QAAQ,KAAK,GAAG,OAAO,KAAK,QAAQ,KAAK,CAAC;AAAA,IACnE,UAAU,CAAC,OAAO,KAAK,QAAQ,KAAK,GAAG,OAAO,KAAK,QAAQ,KAAK,CAAC;AAAA,EACnE;AACA,SAAO;AACT;;;ACnMA,IAAM,iBAAiB;AACvB,IAAM,qBAAqB;AAC3B,IAAIE;AACJ,IAAI,UAAyB;AAC7B,IAAI,YAAY;AAChB,IAAI,aAA4B;AAIzB,IAAM,OAAO,MAAM;AAE1B,eAAsBC,MAAKC,SAAqC;AA1BhE;AA2BE,MAAIC,KAAI;AAAS,IAAAH,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAE,QAAO,KAAK,aAAZ,mBAAsB,SAAS;AAAA,WAC1DA,QAAO;AAAO,QAAI,iBAAiBF,OAAM,WAAW;AAC7D,cAAaA,OAAM,eAAeA,OAAM,OAAO,GAAG,QAASA,OAAM,OAAO,GAAG,MAAM,KAAK;AACtF,eAAgB,OAAO,WAAW,OAAO;AACzC,YAAa,SAAc,gBAAgB,SAAS,CAAC;AACrD,SAAOA;AACT;AAEA,SAAS,YAAY,YAAoB;AACvC,QAAMI,KAA4B,CAAC;AACnC,EAAAA,GAAE,YAAe,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AAClD,EAAAA,GAAE,UAAa,KAAIA,GAAE,WAAW,OAAO;AACvC,EAAAA,GAAE,WAAc,MAAM,YAAY,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AACjD,EAAAA,GAAE,qBAAwB,IAAIA,GAAE,UAAU,UAAU;AACpD,EAAAA,GAAE,oBAAuB,IAAIA,GAAE,SAAS,UAAU;AAClD,EAAAA,GAAE,cAAiB,IAAIA,GAAE,oBAAoB,UAAU,GAAG;AAC1D,EAAAA,GAAE,SAAY,IAAIA,GAAE,mBAAmBA,GAAE,WAAW;AACpD,EAAAA,GAAE,OAAU,KAAIA,GAAE,mBAAmBA,GAAE,WAAW;AAClD,EAAAA,GAAE,kBAAqB,IAAIA,GAAE,QAAQ,UAAU;AAC/C,EAAAA,GAAE,gBAAmB,IAAIA,GAAE,MAAM,UAAU;AAC3C,QAAM,QAAW,SAAS,CAACA,GAAE,iBAAiBA,GAAE,aAAa,GAAG,CAAC;AACjE,SAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AACT;AAEA,eAAsB,SAAS,YAAoBH,SAAgB;AArDnE;AAuDE,MAAK,CAAC,cAAgB,WAAW,yBAA2B,WAAW,MAAM,WAAW,KAAO,WAAW,MAAM,KAAK,KAAO,WAAW,MAAM,KAAK;AAAI,WAAO,CAAC;AAC9J,QAAME,KAA4B,CAAC;AACnC,EAAAA,GAAE,UAAa,MAAM,eAAe,YAAY,CAAC,WAAW,SAAS,CAAC;AACtE,EAAAA,GAAE,MAAS,IAAIA,GAAE,SAAS,UAAU,KAAK;AACzC,EAAAA,GAAE,aAAgB,IAAIA,GAAE,KAAK,UAAU,IAAI;AAC3C,QAAM,MAAMJ,UAAA,gBAAAA,OAAO,QAAQI,GAAE;AAC7B,MAAI,MAAM,QAAQ,GAAG,KAAK,IAAI,SAAS,GAAG;AACxC,UAAM,SAAS,IAAI,KAAK,CAAC,GAAG,MAAM,EAAE,OAAO,EAAE,IAAI;AACjD,IAAAA,GAAE,YAAe,OAAO,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,CAAC;AACjD,IAAAA,GAAE,YAAe,OAAO,CAAC,OAAO,IAAI,OAAO,EAAE,GAAG,CAAC;AACjD,IAAAA,GAAE,SAAY,OAAO,CAACA,GAAE,WAAWA,GAAE,SAAS,GAAG,CAAC;AAClD,IAAAA,GAAE,QAAW,QAAQA,GAAE,QAAQ,CAAC;AAAA,EAClC,WAAW,MAAM,QAAQ,GAAG,GAAG;AAC7B,IAAAA,GAAE,QAAW,QAAQ,IAAI,EAAE;AAAA,EAC7B,OAAO;AACL,IAAAA,GAAE,QAAW,QAAQ,GAAG;AAAA,EAC1B;AACA,EAAG,QAAQ,GAAG;AACd,EAAAA,GAAE,QAAQ,YAAYA,GAAE,KAAK;AAC7B,EAAAA,GAAE,SAAY,MAAMA,GAAE,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AAC5C,EAAAA,GAAE,UAAa,QAAQA,GAAE,MAAM;AAC/B,EAAAA,GAAE,SAAY,QAAQA,GAAE,OAAO;AAC/B,EAAAA,GAAE,MAAM,MAAS,MAAM,uBAAuBA,GAAE,OAAOA,GAAE,UAAS,KAAAF,QAAO,KAAK,aAAZ,mBAAsB,gBAAe,KAAK,KAAAA,QAAO,KAAK,aAAZ,mBAAsB,iBAAgB,KAAK,KAAAA,QAAO,KAAK,aAAZ,mBAAsB,kBAAiB,CAAE;AAChM,QAAM,MAAM,MAAME,GAAE,IAAI,MAAM;AAC9B,QAAM,QAAqB,CAAC;AAC5B,QAAM,SAAS,MAAMA,GAAE,OAAO,KAAK;AACnC,WAASE,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,UAAM,aAAa,OAAO,IAAIA;AAC9B,QAAI,gBAAc,KAAAJ,QAAO,KAAK,aAAZ,mBAAsB,kBAAiB,IAAI;AAC3D,YAAM,IAA4B,CAAC;AACnC,QAAE,OAAU,MAAME,GAAE,OAAO,CAAC,IAAIE,KAAI,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AAC/C,QAAE,QAAW,MAAMF,GAAE,OAAO,CAAC,IAAIE,KAAI,iBAAiB,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AACjE,QAAE,UAAa,QAAQ,EAAE,KAAK;AAC9B,QAAE,YAAe,QAAQ,EAAE,SAAS,CAAC,gBAAgB,EAAE,CAAC;AACxD,YAAM,SAAS,MAAM,EAAE,KAAK,KAAK;AACjC,YAAM,SAAS;AAAA,QACb,YAAY,CAAC,OAAO,IAAI,OAAO,EAAE;AAAA,QACjC,UAAU,CAAC,OAAO,IAAI,OAAO,EAAE;AAAA,QAC/B,WAAY,MAAM,EAAE,UAAU,MAAM;AAAA,QACpC;AAAA,MACF;AACA,YAAM,YAAiB,oBAAoB,QAAQ,EAAE,WAAW,MAAM,MAAM,KAAK,YAAY,WAAW,MAAM,MAAM,KAAK,SAAS,CAAC;AACnI,YAAM,cAAmB,WAAW,WAAWJ,QAAO,KAAK,YAAY,kBAAkB;AACzF,YAAM,aAAkB,YAAY,WAAW;AAC/C,YAAM,KAAK,UAAU;AACrB,aAAO,KAAK,CAAC,EAAE,QAAQ,CAACG,YAAc,QAAQ,EAAEA,QAAO,CAAC;AAAA,IAC1D;AAAA,EACF;AACA,SAAO,KAAKD,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AACT;;;ACzGA;AAAA;AAAA;AAAA;AAAA;AAEO,IAAM,MAAgB;AAAA,EAC3B;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AAEO,IAAM,YAAsC;AAAA,EACjD,WAAW,CAAC,gBAAgB,eAAe;AAAA,EAC3C,MAAM,CAAC,YAAY,SAAS;AAAA,EAC5B,OAAO,CAAC,aAAa,YAAY;AAAA,EACjC,cAAc,CAAC,WAAW,UAAU;AAAA,EACpC,cAAc,CAAC,YAAY,WAAW;AAAA,EACtC,UAAU,CAAC,aAAa,YAAY,UAAU;AAAA,EAC9C,WAAW,CAAC,gBAAgB,SAAS;AAAA,EACrC,cAAc,CAAC,gBAAgB,WAAW;AAAA,EAC1C,cAAc,CAAC,aAAa,WAAW;AAAA,EACvC,UAAU,CAAC,aAAa,UAAU;AAAA,EAClC,eAAe,CAAC,YAAY,WAAW;AAAA,EACvC,eAAe,CAAC,YAAY,WAAW;AAAA,EACvC,eAAe,CAAC,YAAY,WAAW;AAAA,EACvC,gBAAgB,CAAC,iBAAiB,gBAAgB;AAAA,EAClD,eAAe,CAAC,YAAY,WAAW;AAAA,EACvC,eAAe,CAAC,aAAa,YAAY;AAAA,EACzC,WAAW,CAAC,cAAc,aAAa,WAAW;AAAA,EAClD,YAAY,CAAC,iBAAiB,UAAU;AAAA,EACxC,eAAe,CAAC,iBAAiB,YAAY;AAAA,EAC7C,eAAe,CAAC,cAAc,YAAY;AAAA,EAC1C,WAAW,CAAC,cAAc,WAAW;AAAA,EACrC,gBAAgB,CAAC,aAAa,YAAY;AAAA,EAC1C,gBAAgB,CAAC,aAAa,YAAY;AAAA,EAC1C,gBAAgB,CAAC,aAAa,YAAY;AAAA,EAC1C,iBAAiB,CAAC,kBAAkB,iBAAiB;AACvD;;;AC/DA,IAAME,aAAY;AAClB,IAAI;AACJ,IAAM,YAAY;AAClB,IAAM,UAAU,CAAC,GAAG,IAAI,IAAI,IAAI,EAAE;AAE3B,SAAS,gBAAgB;AAC9B,QAAMC,WAAsC,CAAC;AAC7C,MAAI,UAAU;AACd,SAAO,UAAU,WAAW;AAC1B,QAAI,cAAc;AAClB,QAAI,sBAAsB;AAC1B,WAAO,sBAAsB,QAAQ,UAAU,QAAQ,yBAAyB,QAAQ,UAAU;AAChG,qBAAe;AACf;AAAA,IACF;AACA,UAAM,SAAS,QAAQ;AACvB,UAAM,mBAAmB,KAAK,KAAKD,aAAY,MAAM;AACrD,UAAM,kBAAkB,KAAK,KAAKA,aAAY,MAAM;AACpD,aAAS,IAAI,GAAG,IAAI,kBAAkB,EAAE,GAAG;AACzC,eAAS,IAAI,GAAG,IAAI,iBAAiB,EAAE,GAAG;AACxC,iBAAS,WAAW,GAAG,WAAW,aAAa,EAAE,UAAU;AACzD,UAAAC,SAAQ,KAAK,EAAE,IAAI,IAAI,OAAO,iBAAiB,IAAI,IAAI,OAAO,iBAAiB,CAAC;AAAA,QAClF;AAAA,MACF;AAAA,IACF;AACA,cAAU;AAAA,EACZ;AACA,iBAAe,EAAE,GAAM,SAASA,SAAQ,IAAI,CAAC,MAAM,EAAE,CAAC,CAAC,GAAG,GAAM,SAASA,SAAQ,IAAI,CAAC,MAAM,EAAE,CAAC,CAAC,EAAE;AACpG;;;ACjCO,SAAS,KAAK,WAAoBC,cAA+B,CAAC,GAAG,CAAC,GAAG;AAC9E,QAAMC,UAAS,CAAC,UAAU,IAAI,CAAC,OAAO,GAAG,EAAE,GAAG,UAAU,IAAI,CAAC,OAAO,GAAG,EAAE,CAAC;AAC1E,QAAMC,OAAM,CAAC,KAAK,IAAI,GAAGD,QAAO,EAAE,GAAG,KAAK,IAAI,GAAGA,QAAO,EAAE,CAAC;AAC3D,QAAME,OAAM,CAAC,KAAK,IAAI,GAAGF,QAAO,EAAE,GAAG,KAAK,IAAI,GAAGA,QAAO,EAAE,CAAC;AAC3D,QAAM,MAAW,CAACC,KAAI,IAAIA,KAAI,IAAIC,KAAI,KAAKD,KAAI,IAAIC,KAAI,KAAKD,KAAI,EAAE;AAClE,QAAM,SAAc,CAAC,IAAI,KAAKF,YAAW,IAAI,IAAI,KAAKA,YAAW,IAAI,IAAI,KAAKA,YAAW,IAAI,IAAI,KAAKA,YAAW,EAAE;AACnH,SAAO,EAAE,KAAK,OAAO;AACvB;AAEO,SAASI,QAAO,WAAoBJ,cAA+B,CAAC,GAAG,CAAC,GAAG;AAChF,QAAMC,UAAS,CAAC,UAAU,IAAI,CAAC,OAAO,GAAG,EAAE,GAAG,UAAU,IAAI,CAAC,OAAO,GAAG,EAAE,CAAC;AAC1E,QAAMC,OAAM,CAAC,KAAK,IAAI,GAAGD,QAAO,EAAE,GAAG,KAAK,IAAI,GAAGA,QAAO,EAAE,CAAC;AAC3D,QAAME,OAAM,CAAC,KAAK,IAAI,GAAGF,QAAO,EAAE,GAAG,KAAK,IAAI,GAAGA,QAAO,EAAE,CAAC;AAC3D,QAAM,SAAS,EAAEC,KAAI,KAAKC,KAAI,MAAM,IAAID,KAAI,KAAKC,KAAI,MAAM,CAAC;AAC5D,QAAM,OAAO,KAAK,IAAI,OAAO,KAAKD,KAAI,IAAI,OAAO,KAAKA,KAAI,IAAI,CAAC,OAAO,KAAKC,KAAI,IAAI,CAAC,OAAO,KAAKA,KAAI,EAAE;AACtG,QAAM,MAAW,CAAC,KAAK,MAAM,OAAO,KAAK,IAAI,GAAG,KAAK,MAAM,OAAO,KAAK,IAAI,GAAG,KAAK,MAAM,IAAI,IAAI,GAAG,KAAK,MAAM,IAAI,IAAI,CAAC;AACxH,QAAM,SAAc,CAAC,IAAI,KAAKH,YAAW,IAAI,IAAI,KAAKA,YAAW,IAAI,IAAI,KAAKA,YAAW,IAAI,IAAI,KAAKA,YAAW,EAAE;AACnH,SAAO,EAAE,KAAK,OAAO;AACvB;AAEO,SAASK,OAAM,KAAU,WAAmB;AACjD,QAAM,OAAO,CAAC,IAAI,KAAK,WAAW,IAAI,KAAK,SAAS;AACpD,QAAM,SAAc;AAAA,IAClB,IAAI,MAAM,KAAK,KAAK,IAAI,MAAM;AAAA,IAC9B,IAAI,MAAM,KAAK,KAAK,IAAI,MAAM;AAAA,IAC9B,KAAK;AAAA,IACL,KAAK;AAAA,EACP;AACA,SAAO;AACT;;;AChBA,IAAMC,OAAM,EAAE,SAAS,KAAK;AAE5B,IAAMC,UAAwE,EAAE,UAAU,MAAM,WAAW,KAAK;AAChH,IAAMC,aAAyE,EAAE,UAAU,CAAC,KAAK,GAAG,GAAG,WAAW,CAAC,KAAK,GAAG,EAAE;AAC7H,IAAIC,WAAU,OAAO;AACrB,IAAM,cAA2D;AAAA,EAC/D,WAAW,CAAC,SAAS,2BAA2B,sBAAsB,YAAY,iBAAiB;AAAA,EACnG,UAAU,CAAC;AACb;AAEA,IAAI,QAA2B;AAC/B,IAAI;AACJ,IAAI,UAA8B,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACjE,IAAIC,YAAW;AAEf,IAAMC,WAAU,CAAC,MAAO,IAAK,KAAK,IAAI,KAAK,IAAI,CAAC;AAEhD,eAAsB,WAAWC,SAAqC;AAhCtE;AAiCE,MAAIN,KAAI;AAAS,IAAAC,QAAO,WAAW;AACnC,MAAI,CAACA,QAAO,YAAYK,QAAO,KAAK,eAAeA,QAAO,KAAK,YAAY,aAAa,IAAI;AAC1F,IAAAL,QAAO,WAAW,MAAM,UAAUK,QAAO,KAAK,YAAY,SAAS;AACnE,UAAM,WAAS,KAAAL,QAAO,aAAP,mBAAkB,eAAc,OAAO,OAAOA,QAAO,SAAS,eAAe,SAAS,IAAI;AACzG,IAAAC,WAAU,SAAS,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAC9F,IAAAA,WAAU,SAAS,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EAChG,WAAWI,QAAO,SAASL,QAAO;AAAU,QAAI,iBAAiBA,QAAO,SAAS,WAAW;AAC5F,EAAO,cAAc;AACrB,SAAOA,QAAO;AAChB;AAEA,eAAsB,SAASK,SAAqC;AA5CpE;AA6CE,MAAIN,KAAI;AAAS,IAAAC,QAAO,YAAY;AACpC,MAAI,CAACA,QAAO,WAAW;AACrB,IAAAA,QAAO,YAAY,MAAM,UAAUK,QAAO,KAAK,SAAS;AACxD,UAAM,WAAS,KAAAL,QAAO,cAAP,mBAAmB,eAAc,OAAO,OAAOA,QAAO,UAAU,eAAe,SAAS,IAAI;AAC3G,IAAAC,WAAU,UAAU,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAC/F,IAAAA,WAAU,UAAU,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EACjG,WAAWI,QAAO;AAAO,QAAI,iBAAiBL,QAAO,UAAU,WAAW;AAC1E,SAAOA,QAAO;AAChB;AAQA,SAAS,aAAaM,QAAeC,OAAsB;AA7D3D;AA8DE,QAAMC,KAA4B,CAAC;AACnC,MAAI,GAAC,KAAAF,UAAA,gBAAAA,OAAO,UAAP,mBAAe,OAAM,GAAC,KAAAA,UAAA,gBAAAA,OAAO,UAAP,mBAAe;AAAI,WAAOA;AACrD,MAAI;AACJ,MAAI,SAAS;AACX,IAAAE,GAAE,UAAa,MAAM,cAAcF,QAAO,CAAC,OAAO,GAAG,CAAC,CAAC,GAAG,CAACA,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,CAAC;AAAA,EAC5F;AACA,MAAIA,OAAM,MAAM,OAAOA,OAAM,MAAM,IAAI;AACrC,UAAM,SAA2B;AAAA,MAC/BA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI;AAAA,MACtFA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI;AAAA,IACxF;AACA,UAAM,QAA0B;AAAA,MAC9BA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI;AAAA,MACtFA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI;AAAA,IACxF;AACA,cAAU;AAAA,MACR,CAAC,GAAG,CAAC;AAAA,MACL;AAAA,MACA;AAAA,MACA,CAAC,GAAG,CAAC;AAAA,IACP;AACA,IAAAE,GAAE,MAAS,IAAIA,GAAE,WAAWF,QAAO,OAAO;AAC1C,IAAAE,GAAE,SAAY,MAAM,eAAeA,GAAE,KAAK,CAACD,OAAMA,KAAI,CAAC;AACtD,YAAW,IAAIC,GAAE,QAAQ,UAAU,KAAK;AAAA,EAC1C,WAAWF,OAAM,MAAM,OAAOC,OAAM;AAClC,IAAAC,GAAE,SAAY,MAAM,eAAeA,GAAE,WAAWF,QAAO,CAACC,OAAMA,KAAI,CAAC;AACnE,YAAW,IAAIC,GAAE,QAAQ,UAAU,KAAK;AAAA,EAC1C,OAAO;AACL,YAAW,IAAIA,GAAE,WAAWF,QAAO,UAAU,KAAK;AAAA,EACpD;AACA,SAAO,KAAKE,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AACT;AAEA,SAAS,iBAAiB,WAA2BC,aAA8C;AACjG,aAAWC,QAAO,WAAW;AAC3B,IAAAA,KAAI,WAAW;AAAA,MACb,KAAK,MAAMA,KAAI,SAAS,MAAMD,YAAW,KAAK,QAAQ,GAAG,KAAK,QAAQ,GAAG,MAAMA,YAAW,KAAK,QAAQ,GAAG,EAAE;AAAA,MAC5G,KAAK,MAAMC,KAAI,SAAS,MAAMD,YAAW,KAAK,QAAQ,GAAG,KAAK,QAAQ,GAAG,MAAMA,YAAW,KAAK,QAAQ,GAAG,EAAE;AAAA,MAC5GC,KAAI,SAAS;AAAA,IACf;AACA,IAAAA,KAAI,cAAc,CAACA,KAAI,SAAS,KAAKD,YAAW,IAAIC,KAAI,SAAS,KAAKD,YAAW,IAAI,IAAKC,KAAI,SAAS,MAAiBD,YAAW,KAAKA,YAAW,GAAG;AAAA,EACxJ;AACA,MAAI,SAAS;AACX,eAAWC,QAAO,WAAW;AAC3B,MAAAA,KAAI,cAAc;AAAA,QAChBA,KAAI,YAAY,KAAK,QAAQ;AAAA,QAC7BA,KAAI,YAAY,KAAK,QAAQ;AAAA,QAC7BA,KAAI,YAAY;AAAA,MAClB;AACA,MAAAA,KAAI,WAAW;AAAA,QACb,KAAK,MAAMA,KAAI,YAAY,KAAKD,YAAW,EAAE;AAAA,QAC7C,KAAK,MAAMC,KAAI,YAAY,KAAKD,YAAW,EAAE;AAAA,QAC7CC,KAAI,YAAY;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAEA,SAAS,aAAa,WAA2B;AAE/C,QAAM,WAAW,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,UAAU;AAC5D,QAAM,YAAY,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,WAAW;AAC9D,QAAM,YAAY,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,WAAW;AAC9D,WAAS,SAAS,OAAO,UAAU,SAAS,MAAM,MAAM,UAAU,SAAS,MAAM,MAAM;AACvF,QAAM,YAAY,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,WAAW;AAC9D,QAAM,aAAa,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,YAAY;AAChE,QAAM,aAAa,UAAU,KAAK,CAAC,MAAM,EAAE,SAAS,YAAY;AAChE,YAAU,SAAS,OAAO,WAAW,SAAS,MAAM,MAAM,WAAW,SAAS,MAAM,MAAM;AAC5F;AAEA,eAAe,gBAAgBL,QAAeM,SAAgBF,aAA0D;AAtIxH;AA8IE,MAAI,GAAC,KAAAG,QAAO,cAAP,mBAAmB;AAAa,WAAO;AAC5C,QAAML,KAA4B,CAAC;AACnC,GAACA,GAAE,IAAqBA,GAAE,cAA+BA,GAAE,SAAyBA,GAAE,OAAwBA,GAAE,QAAiB,KAAI,KAAAK,QAAO,cAAP,mBAAkB,QAAQP,QAAO,YAAY;AAClL,QAAM,aAAa,MAAME,GAAE,SAAS,KAAK,GAAG;AAC5C,QAAM,SAAS,MAAMA,GAAE,GAAG,KAAK;AAC/B,QAAM,YAAY,MAAMA,GAAE,MAAM,KAAK;AACrC,SAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,QAAM,oBAAoC,CAAC;AAC3C,QAAM,QAAQ;AACd,WAASK,KAAI,GAAGA,KAAI,OAAO,SAAS,OAAOA,MAAK;AAC9C,UAAM,QAAQC,SAAQ,OAAO,QAAQD,KAAI,EAAE;AAC3C,UAAM,WAAWC,SAAQ,OAAO,QAAQD,KAAI,EAAE;AAC9C,UAAM,WAAW,KAAK,MAAM,MAAM,QAAQ,WAAW,SAAS,IAAI;AAClE,UAAM,cAAqB,CAAC,OAAO,QAAQA,KAAI,KAAKE,WAAU,UAAU,IAAI,OAAO,QAAQF,KAAI,KAAKE,WAAU,UAAU,IAAI,OAAO,QAAQF,KAAI,KAAK,CAAC;AACrJ,UAAM,WAAkB,CAAC,KAAK,MAAMJ,YAAW,KAAK,YAAY,EAAE,GAAG,KAAK,MAAMA,YAAW,KAAK,YAAY,EAAE,GAAG,YAAY,EAAY;AACzI,UAAMO,YAAkB,CAAC,UAAU,QAAQH,KAAI,IAAI,UAAU,QAAQA,KAAI,IAAI,UAAU,QAAQA,KAAI,KAAK,CAAC;AACzG,sBAAkB,KAAK,EAAE,MAAa,IAAIA,KAAoB,aAAa,UAAU,UAAAG,WAAU,OAAO,SAAS,CAAC;AAAA,EAClH;AACA,MAAI,aAAaL,QAAO,KAAK,iBAAiB;AAAI,WAAO;AACzD,eAAa,iBAAiB;AAC9B,QAAM,YAA4B,iBAAiB,mBAAmBF,WAAU;AAChF,QAAM,OAAO,UAAU,IAAI,CAAC,MAAM,EAAE,QAAQ;AAC5C,QAAM,QAAY,KAAK,MAAM,CAACA,YAAW,IAAIA,YAAW,EAAE,CAAC;AAC3D,QAAMQ,eAAiD,CAAC;AACxD,aAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAe,SAAS,GAAG;AAC9D,UAAM,KAAgB,CAAC;AACvB,aAASJ,KAAI,GAAGA,KAAI,QAAQ,SAAS,GAAGA,MAAK;AAC3C,YAAM,MAAM,UAAU,KAAK,CAACH,SAAQA,KAAI,SAAS,QAAQG,GAAE;AAC3D,YAAM,MAAM,UAAU,KAAK,CAACH,SAAQA,KAAI,SAAS,QAAQG,KAAI,EAAE;AAC/D,UAAI,OAAO;AAAK,WAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,IACtD;AACA,IAAAI,aAAY,QAAQ;AAAA,EACtB;AACA,QAAMC,QAAO,EAAE,IAAI,GAAG,OAAO,KAAK,MAAM,MAAM,SAAS,IAAI,KAAK,KAAK,MAAM,KAAK,QAAQ,MAAM,QAAQ,WAAW,aAAAD,aAAY;AAC7H,SAAOC;AACT;AAgCA,eAAsBC,SAAQd,QAAeM,SAAuC;AAClF,QAAMF,cAA+B,CAACJ,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC;AAC9E,QAAM,YAAYM,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIS;AACxD,QAAM,YAAYC,YAAWV,QAAO,KAAK,cAAc;AACvD,MAAIA,QAAO,eAAe,YAAY,aAAa,UAAU,MAAM;AACjE,IAAAU;AAAA,EACF,OAAO;AACL,UAAMd,KAA4B,CAAC;AAOnC,IAAAA,GAAE,YAAY,aAAaF,QAAO,GAAG;AACrC,YAAQ,MAAM,gBAAgBE,GAAE,WAAWI,SAAQF,WAAU;AAe7D,WAAO,KAAKF,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,IAAAY,YAAW,IAAI;AACf,IAAAC,WAAU;AAAA,EACZ;AACA,SAAO,QAAQ,CAAC,KAAK,IAAI,CAAC;AAC5B;;;ACjPO,IAAM,SAAS;AAAA,EACpB,EAAE,OAAO,GAAG,OAAO,SAAS;AAAA,EAC5B,EAAE,OAAO,GAAG,OAAO,UAAU;AAAA,EAC7B,EAAE,OAAO,GAAG,OAAO,MAAM;AAAA,EACzB,EAAE,OAAO,GAAG,OAAO,aAAa;AAAA,EAChC,EAAE,OAAO,GAAG,OAAO,WAAW;AAAA,EAC9B,EAAE,OAAO,GAAG,OAAO,MAAM;AAAA,EACzB,EAAE,OAAO,GAAG,OAAO,QAAQ;AAAA,EAC3B,EAAE,OAAO,GAAG,OAAO,QAAQ;AAAA,EAC3B,EAAE,OAAO,GAAG,OAAO,OAAO;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,gBAAgB;AAAA,EACpC,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,YAAY;AAAA,EAChC,EAAE,OAAO,IAAI,OAAO,gBAAgB;AAAA,EACpC,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,YAAY;AAAA,EAChC,EAAE,OAAO,IAAI,OAAO,cAAc;AAAA,EAClC,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,iBAAiB;AAAA,EACrC,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,YAAY;AAAA,EAChC,EAAE,OAAO,IAAI,OAAO,gBAAgB;AAAA,EACpC,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,MAAM;AAAA,EAC1B,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,KAAK;AAAA,EACzB,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,SAAS;AAAA,EAC7B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,YAAY;AAAA,EAChC,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,UAAU;AAAA,EAC9B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,eAAe;AAAA,EACnC,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,QAAQ;AAAA,EAC5B,EAAE,OAAO,IAAI,OAAO,OAAO;AAAA,EAC3B,EAAE,OAAO,IAAI,OAAO,WAAW;AAAA,EAC/B,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,aAAa;AAAA,EACjC,EAAE,OAAO,IAAI,OAAO,aAAa;AACnC;;;ACrEA,IAAIC;AACJ,IAAIC,aAAY;AAChB,IAAIC,QAAuB,CAAC;AAC5B,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAqC;AAC9D,MAAIC,KAAI;AAAS,IAAAP,SAAQ;AACzB,MAAI,CAACA,QAAO;AAEV,IAAAA,SAAQ,MAAM,UAAUM,QAAO,OAAO,SAAS;AAC/C,UAAM,UAASN,UAAA,gBAAAA,OAAQ,eAAc,OAAO,OAAOA,OAAM,eAAe,SAAS,IAAI;AACrF,IAAAC,aAAY,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EACpF,WAAWK,QAAO;AAAO,QAAI,iBAAiBN,OAAM,WAAW;AAC/D,SAAOA;AACT;AAEA,eAAeQ,SAAQ,KAAoB,aAA+BF,SAAgB;AACxF,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAMG,KAA4B,CAAC;AACnC,QAAM,UAA0B,CAAC;AACjC,QAAM,aAAa,MAAM,IAAI,MAAM;AACnC,EAAAA,GAAE,UAAa,QAAQ,GAAG;AAC1B,QAAM,MAAS,MAAMA,GAAE,SAAS,GAAG,CAAC;AACpC,EAAAA,GAAE,QAAW,MAAM,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,IAAI,EAAE,GAAG,CAAC;AACtD,EAAAA,GAAE,QAAW,QAAQA,GAAE,KAAK;AAC5B,EAAAA,GAAE,SAAY,QAAQ,IAAI,EAAE;AAC5B,EAAAA,GAAE,UAAa,QAAQ,IAAI,EAAE;AAC7B,EAAG,QAAQ,CAAC,KAAK,GAAG,GAAG,CAAC;AACxB,EAAAA,GAAE,MAAM,MAAS,MAAM,uBAAuBA,GAAE,OAAOA,GAAE,QAAQH,QAAO,OAAO,aAAaA,QAAO,OAAO,cAAeA,QAAO,OAAO,iBAAiB,CAAE;AAC1J,QAAM,MAAM,MAAMG,GAAE,IAAI,KAAK;AAC7B,MAAIC,KAAI;AACR,aAAW,MAAM,MAAM,KAAK,GAAG,GAAG;AAChC,UAAM,QAAQ,KAAK,MAAM,MAAM,WAAW,GAAG,IAAI,EAAE,IAAI;AACvD,UAAM,WAAW,WAAW,GAAG,IAAI;AACnC,QAAI,OAAO,MAAM,QAAQ;AAAG;AAC5B,UAAM,QAAQ,OAAO,UAAU;AAC/B,UAAM,CAAC,GAAG,CAAC,IAAI;AAAA,MACb,WAAW,GAAG,IAAI,KAAKT;AAAA,MACvB,WAAW,GAAG,IAAI,KAAKA;AAAA,IACzB;AACA,UAAM,SAAc;AAAA,MAClB;AAAA,MACA;AAAA,MACA,WAAW,GAAG,IAAI,KAAKA,aAAY;AAAA,MACnC,WAAW,GAAG,IAAI,KAAKA,aAAY;AAAA,IACrC;AACA,UAAM,MAAW;AAAA,MACf,KAAK,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,MACrC,KAAK,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,MACrC,KAAK,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,MACrC,KAAK,MAAM,OAAO,KAAK,YAAY,EAAE;AAAA,IACvC;AACA,YAAQ,KAAK,EAAE,IAAIS,MAAK,OAAO,OAAO,UAAU,OAAO,KAAK,OAAO,CAAC;AAAA,EACtE;AACA,SAAO,KAAKD,EAAC,EAAE,QAAQ,CAACE,YAAc,QAAQF,GAAEE,QAAO,CAAC;AACxD,SAAO;AACT;AAEA,eAAsBC,SAAQC,QAAeP,SAAyC;AACpF,MAAI,EAACN,UAAA,gBAAAA,OAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYM,QAAO,OAAO,YAAY,KAAM,IAAI,IAAIH;AAC1D,QAAM,YAAYC,YAAWE,QAAO,OAAO,cAAc;AACzD,MAAIA,QAAO,eAAe,YAAY,aAAcJ,MAAK,SAAS,GAAI;AACpE,IAAAE;AACA,WAAOF;AAAA,EACT;AACA,EAAAE,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAMU,cAAa,CAACD,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC;AAC5D,UAAM,SAAY,MAAM,eAAeA,QAAO,CAACZ,YAAWA,UAAS,CAAC;AACpE,UAAM,UAAUK,QAAO,OAAO,UAAUN,UAAA,gBAAAA,OAAO,QAAQ,QAAQ,CAAC,oBAAoB,KAAe;AACnG,IAAAG,YAAW,IAAI;AACf,IAAG,QAAQ,MAAM;AAEjB,UAAM,MAAM,MAAMK,SAAQ,SAASM,aAAYR,OAAM;AACrD,IAAAJ,QAAO;AAEP,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;AC/FA;AAAA;AAAA,mBAAAa;AAAA,EAAA,WAAAC;AAAA;AAAO,IAAMA,OAAgB;AAAA,EAC3B;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AAEO,IAAMD,aAAsC;AAAA,EACjD,SAAS,CAAC,WAAW,YAAY,WAAW;AAAA,EAC5C,UAAU,CAAC,YAAY,aAAa,YAAY;AAAA,EAChD,OAAO,CAAC,gBAAgB,iBAAiB,YAAY,WAAW,cAAc;AAAA,EAC9E,SAAS,CAAC,gBAAgB,aAAa,WAAW;AAAA,EAClD,UAAU,CAAC,iBAAiB,cAAc,YAAY;AAAA,EACtD,MAAM,CAAC;AACT;;;ACVA,IAAIE;AACJ,IAAIC,YAAW;AACf,IAAMC,SAAoB,EAAE,IAAI,GAAG,WAAW,CAAC,GAAG,KAAK,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,OAAO,GAAG,aAAa,CAAC,EAAuC;AAM1J,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAqC;AAC9D,MAAIC,KAAI;AAAS,IAAAN,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,UAAUK,QAAO,KAAK,SAAS;AAAA,WAChDA,QAAO;AAAO,QAAI,iBAAiBL,OAAM,WAAW;AAC7D,SAAOA;AACT;AAGA,eAAe,MAAM,QAAQ,UAA6C;AACxE,QAAM,CAAC,OAAO,MAAM,IAAI,OAAO;AAC/B,QAAM,WAAc,QAAQ,QAAQ,CAAC,SAAS,KAAK,CAAC;AACpD,QAAMO,OAAS,IAAI,UAAU,CAAC;AAC9B,QAAM,YAAoB,MAAMA,KAAI,KAAK,GAAG;AAC5C,MAAI,WAAW,UAAU;AACvB,UAAM,cAAiB,OAAO,UAAU,CAAC;AACzC,UAAMC,OAAS,IAAI,aAAa,KAAK;AACrC,UAAM,KAAK,MAAMA,KAAI,KAAK,GAAG;AAC7B,UAAMC,OAAS,IAAI,aAAa,KAAK;AACrC,UAAM,KAAa,MAAMA,KAAI,KAAK,GAAG;AACrC,IAAG,QAAQ,CAAC,UAAUF,MAAK,aAAaC,MAAKC,IAAG,CAAC;AACjD,WAAO,CAAC,GAAG,GAAG,QAAQ;AAAA,EACxB;AACA,EAAG,QAAQ,CAAC,UAAUF,IAAG,CAAC;AAC1B,SAAO,CAAC,GAAG,GAAG,QAAQ;AACxB;AAEA,eAAsBG,SAAQC,QAAeN,SAAuC;AAClF,MAAI,EAACL,UAAA,gBAAAA,OAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYK,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIJ;AACxD,QAAM,YAAYE,YAAWE,QAAO,KAAK,cAAc;AACvD,MAAIA,QAAO,eAAe,YAAY,aAAa,OAAO,KAAKH,OAAM,SAAS,EAAE,SAAS,GAAG;AAC1F,IAAAC;AACA,WAAO,CAACD,MAAK;AAAA,EACf;AACA,EAAAC,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAMS,UAAY,KAAK,MAAM;AAC3B,UAAI,EAACZ,UAAA,gBAAAA,OAAO,OAAO,GAAG;AAAO,eAAO;AACpC,YAAM,SAAY,MAAM,eAAeW,QAAO,CAACX,OAAM,OAAO,GAAG,MAAM,IAAIA,OAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AACzG,YAAMa,WAAa,IAAI,QAAQ,UAAU,GAAG;AAC5C,YAAMC,QAAU,IAAID,UAAS,UAAU,GAAG;AAC1C,aAAOC;AAAA,IACT,CAAC;AACD,QAAI;AACJ,QAAIT,QAAO,KAAK;AAAS,aAAOL,UAAA,gBAAAA,OAAO,QAAQY;AAC/C,IAAAX,YAAW,IAAI;AACf,IAAG,QAAQW,OAAM;AAEjB,QAAI,MAAM;AACR,MAAAV,OAAM,UAAU,SAAS;AACzB,YAAMa,WAAa,QAAQ,IAAI;AAC/B,MAAG,QAAQ,IAAI;AAEf,YAAMC,SAAW,QAAQD,UAAS,CAAC;AACnC,MAAG,QAAQA,QAAO;AAGlB,eAAS,KAAK,GAAG,KAAKC,OAAM,QAAQ,MAAM;AAExC,cAAM,CAACC,IAAGC,IAAG,SAAS,IAAI,MAAM,MAAMF,OAAM,KAAKX,QAAO,KAAK,aAAa;AAC1E,YAAI,aAAaA,QAAO,KAAK,iBAAiB,IAAI;AAChD,UAAAH,OAAM,UAAU,KAAK;AAAA,YACnB,OAAO,KAAK,MAAM,MAAM,SAAS,IAAI;AAAA,YACrC,MAAaiB,KAAI;AAAA,YACjB,aAAa;AAAA,cAEXF,KAAIjB,OAAM,OAAO,GAAG,MAAM;AAAA,cAAIkB,KAAIlB,OAAM,OAAO,GAAG,MAAM;AAAA,YAC1D;AAAA,YACA,UAAU;AAAA,cAER,KAAK,MAAMW,OAAM,MAAM,KAAKM,KAAIjB,OAAM,OAAO,GAAG,MAAM,EAAE;AAAA,cAAG,KAAK,MAAMW,OAAM,MAAM,KAAKO,KAAIlB,OAAM,OAAO,GAAG,MAAM,EAAE;AAAA,YACrH;AAAA,UACF,CAAC;AAAA,QACH;AAAA,MACF;AACA,MAAAgB,OAAM,QAAQ,CAACI,OAAS,QAAQA,EAAC,CAAC;AAAA,IACpC;AACA,IAAAlB,OAAM,QAAQA,OAAM,UAAU,OAAO,CAAC,MAAM,SAAU,KAAK,QAAQ,OAAO,KAAK,QAAQ,MAAO,CAAC;AAC/F,UAAM,IAAIA,OAAM,UAAU,IAAI,CAAC,MAAM,EAAE,SAAS,EAAE;AAClD,UAAM,IAAIA,OAAM,UAAU,IAAI,CAAC,MAAM,EAAE,SAAS,EAAE;AAClD,IAAAA,OAAM,MAAM;AAAA,MACV,KAAK,IAAI,GAAG,CAAC;AAAA,MACb,KAAK,IAAI,GAAG,CAAC;AAAA,MACb,KAAK,IAAI,GAAG,CAAC,IAAI,KAAK,IAAI,GAAG,CAAC;AAAA,MAC9B,KAAK,IAAI,GAAG,CAAC,IAAI,KAAK,IAAI,GAAG,CAAC;AAAA,IAChC;AACA,UAAM,OAAOA,OAAM,UAAU,IAAI,CAAC,MAAM,EAAE,YAAY,EAAE;AACxD,UAAM,OAAOA,OAAM,UAAU,IAAI,CAAC,MAAM,EAAE,YAAY,EAAE;AACxD,IAAAA,OAAM,SAAS;AAAA,MACb,KAAK,IAAI,GAAG,IAAI;AAAA,MAChB,KAAK,IAAI,GAAG,IAAI;AAAA,MAChB,KAAK,IAAI,GAAG,IAAI,IAAI,KAAK,IAAI,GAAG,IAAI;AAAA,MACpC,KAAK,IAAI,GAAG,IAAI,IAAI,KAAK,IAAI,GAAG,IAAI;AAAA,IACtC;AACA,eAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAemB,UAAS,GAAG;AAC9D,YAAM,KAAgB,CAAC;AACvB,eAASC,KAAI,GAAGA,KAAI,QAAQ,SAAS,GAAGA,MAAK;AAC3C,cAAM,MAAMpB,OAAM,UAAU,KAAK,CAACiB,SAAQA,KAAI,SAAS,QAAQG,GAAE;AACjE,cAAM,MAAMpB,OAAM,UAAU,KAAK,CAACiB,SAAQA,KAAI,SAAS,QAAQG,KAAI,EAAE;AACrE,YAAI,OAAO,OAAO,IAAI,SAASjB,QAAO,KAAK,iBAAiB,MAAM,IAAI,SAASA,QAAO,KAAK,iBAAiB;AAAI,aAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,MACtJ;AACA,MAAAH,OAAM,YAAY,QAAQ;AAAA,IAC5B;AACA,YAAQ,CAACA,MAAK,CAAC;AAAA,EACjB,CAAC;AACH;;;ACpHA,IAAM,cAAc,CAAC,SAAS,WAAW,QAAQ,SAAS,OAAO,YAAY,SAAS;AACtF,IAAIqB;AACJ,IAAMC,QAAgD,CAAC;AACvD,IAAIC,aAAY;AAChB,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAqC;AAtBhE;AAuBE,MAAIC,KAAI;AAAS,IAAAP,SAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,SAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,YAAZ,mBAAqB,SAAS;AAAA,WACzDA,QAAO;AAAO,QAAI,iBAAiBN,OAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,SAAQC,QAAeH,SAAgB,KAAaI,QAA+D;AA7BzI;AA8BE,MAAI,CAACV;AAAO,WAAO,CAAC;AACpB,QAAM,YAAYI,cAAW,KAAAE,QAAO,KAAK,YAAZ,mBAAqB,eAAc;AAChE,QAAM,cAAY,KAAAA,QAAO,KAAK,YAAZ,mBAAqB,aAAY,KAAM,IAAI,IAAIH;AACjE,MAAIG,QAAO,eAAe,YAAY,aAAcJ,eAAcQ,UAAUT,MAAK,QAASA,MAAK,KAAK,SAAS,GAAI;AAC/G,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,EAAAG,WAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AAtCxC,QAAAO;AAuCI,UAAM,MAA6C,CAAC;AACpD,SAAIA,MAAAL,QAAO,KAAK,YAAZ,gBAAAK,IAAqB,SAAS;AAChC,YAAMC,KAA4B,CAAC;AACnC,YAAMC,eAAYb,UAAA,gBAAAA,OAAO,OAAO,GAAG,SAAQA,OAAM,OAAO,GAAG,MAAM,KAAK;AACtE,MAAAY,GAAE,SAAY,MAAM,eAAeH,QAAO,CAACI,aAAWA,WAAS,GAAG,KAAK;AASvE,MAAAD,GAAE,WAAc,IAAIA,GAAE,QAAQ,UAAU,GAAG;AAC3C,MAAAA,GAAE,YAAe,KAAIA,GAAE,UAAU,GAAG,IAAI;AACxC,MAAAA,GAAE,eAAkB,IAAIA,GAAE,WAAW,UAAU,IAAI;AACnD,MAAAA,GAAE,eAAkB,IAAIA,GAAE,cAAc,UAAU,GAAG;AACrD,MAAAA,GAAE,UAAUZ,UAAA,gBAAAA,OAAO,QAAQY,GAAE;AAC7B,MAAAT,YAAW,IAAI;AACf,YAAM,OAAO,MAAMS,GAAE,QAAQ,KAAK;AAClC,eAASE,KAAI,GAAGA,KAAI,KAAK,QAAQA,MAAK;AACpC,YAAI,KAAKA,OAAMR,QAAO,KAAK,QAAQ,iBAAiB;AAAI,cAAI,KAAK,EAAE,OAAO,KAAK,IAAI,MAAM,KAAK,MAAM,MAAM,KAAKQ,GAAE,IAAI,GAAG,GAAG,SAAS,YAAYA,IAAc,CAAC;AAAA,MACjK;AACA,UAAI,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AACpC,aAAO,KAAKF,EAAC,EAAE,QAAQ,CAACG,YAAc,QAAQH,GAAEG,QAAO,CAAC;AAAA,IAC1D;AACA,IAAAd,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;ACtDA,IAAIM;AACJ,IAAMC,QAAmB,CAAC;AAC1B,IAAIC,aAAY;AAChB,IAAIC,YAAW;AACf,IAAIC,WAAU,OAAO;AAErB,eAAsBC,MAAKC,SAAqC;AArBhE;AAsBE,MAAIC,KAAI;AAAS,IAAAP,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,qBAAZ,mBAA8B,SAAS;AAAA,WAClEA,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC7D,SAAOA;AACT;AAoBA,eAAsBQ,SAAQC,QAAeH,SAAgB,KAAKI,QAA0B;AA9C5F;AA+CE,MAAI,EAACV,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYI,cAAW,KAAAE,QAAO,KAAK,qBAAZ,mBAA8B,eAAc;AACzE,QAAM,cAAY,KAAAA,QAAO,KAAK,qBAAZ,mBAA8B,aAAY,KAAM,IAAI,IAAIH;AAC1E,MAAIG,QAAO,eAAe,YAAY,aAAcJ,eAAcQ,UAAUT,MAAK,MAAM;AACrF,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AAtDxC,QAAAU;AAuDI,QAAI,OAAiB,CAAC;AACtB,UAAIA,MAAAL,QAAO,KAAK,qBAAZ,gBAAAK,IAA8B,aAAWX,WAAA,gBAAAA,QAAO,OAAO,GAAG,QAAO;AACnE,YAAMY,KAA4B,CAAC;AACnC,MAAAA,GAAE,OAAU,MAAM,eAAeH,QAAO,CAACT,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AAInG,MAAAY,GAAE,OAAOZ,QAAM,QAAQY,GAAE,IAAI;AAa7B,YAAM,SAAS,MAAMA,GAAE,KAAK,KAAK;AACjC,aAAO,MAAM,KAAK,MAAM;AACxB,aAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AAAA,IAC1D;AACA,IAAAZ,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,IAAAP,YAAW,IAAI;AACf,YAAQ,IAAI;AAAA,EACd,CAAC;AACH;;;ACrEA,IAAIW;AACJ,IAAMC,QAAmB,CAAC;AAC1B,IAAIC,aAAY;AAChB,IAAIC,aAAW;AACf,IAAIC,YAAU,OAAO;AAErB,eAAsBC,OAAKC,SAAqC;AAC9D,MAAIC,KAAI;AAAS,IAAAP,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,UAAUM,QAAO,KAAK,eAAe,SAAS;AAAA,WAC/DA,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,UAAQC,QAAeH,SAAgB,KAAKI,QAA0B;AA5B5F;AA6BE,MAAI,EAACV,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYI,eAAW,KAAAE,QAAO,KAAK,mBAAZ,mBAA4B,eAAc;AACvE,QAAM,cAAY,KAAAA,QAAO,KAAK,mBAAZ,mBAA4B,aAAY,KAAM,IAAI,IAAIH;AACxE,MAAIG,QAAO,eAAe,YAAY,aAAcJ,eAAcQ,UAAUT,MAAK,MAAM;AACrF,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AApCxC,QAAAU;AAqCI,QAAI,OAAiB,CAAC;AACtB,UAAIA,MAAAL,QAAO,KAAK,mBAAZ,gBAAAK,IAA4B,aAAWX,WAAA,gBAAAA,QAAO,OAAO,GAAG,QAAO;AACjE,YAAMY,KAA4B,CAAC;AACnC,MAAAA,GAAE,OAAU,MAAM,eAAeH,QAAO,CAACT,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AAInG,MAAAY,GAAE,OAAOZ,QAAM,QAAQY,GAAE,IAAI;AAC7B,YAAM,SAAS,MAAMA,GAAE,KAAK,KAAK;AACjC,aAAO,MAAM,KAAK,MAAM;AACxB,aAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AAAA,IAC1D;AACA,IAAAZ,MAAK,OAAO;AACZ,IAAAC,aAAYQ;AACZ,IAAAP,aAAW,IAAI;AACf,YAAQ,IAAI;AAAA,EACd,CAAC;AACH;;;AC5CA,IAAIW;AACJ,IAAIC,aAAY;AAEhB,IAAM,cAAc;AAEpB,IAAM,cAAqB,gBAAgB;AAC3C,IAAM,eAAsB,gBAAgB;AAE5C,IAAM,eAAe;AAAA,EACnB,YAAY,CAAC,YAAY,IAAI,YAAY,YAAY,SAAS,EAAE;AAAA,EAChE,aAAa,CAAC,aAAa,IAAI,aAAa,aAAa,SAAS,EAAE;AACtE;AAEA,IAAM,gBAAgB;AAAA,EACpB,aAAa;AAAA,EACb,aAAa;AAAA,EACb,OAAO;AAAA,EACP,gBAAgB;AAClB;AAEA,eAAsBC,OAAKC,SAAqC;AA9BhE;AA+BE,MAAIC,KAAI;AAAS,IAAAJ,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,WAAU,KAAAG,QAAO,KAAK,SAAZ,mBAAkB,SAAS;AAAA,WACtDA,QAAO;AAAO,QAAI,iBAAiBH,QAAM,WAAW;AAC7D,EAAAC,cAAaD,WAAA,gBAAAA,QAAQ,kBAAe,KAAAA,QAAM,WAAN,mBAAe,GAAG,SAASA,QAAM,OAAO,GAAG,MAAM,KAAK;AAC1F,MAAIC,eAAc;AAAI,IAAAA,aAAY;AAClC,SAAOD;AACT;AAGO,SAAS,kBAAkB,WAAW,WAAW,QAAQ,MAAM;AACpE,WAASK,KAAI,GAAGA,KAAW,YAAY,QAAQA,MAAK;AAClD,UAAM,EAAE,KAAK,QAAQ,IAAW,YAAYA;AAC5C,UAAM,kBAAyB,gBAAgB,GAAG,SAAS;AAC3D,QAAI,CAAC,QAAQ,KAAK,SAAS,GAAG,GAAG;AAC/B,eAAS,IAAI,GAAG,IAAI,QAAQ,QAAQ,KAAK;AACvC,cAAMC,SAAQ,QAAQ;AACtB,kBAAU,gBAAgB,MAAM;AAAA,UAC9B,UAAUA,QAAO;AAAA,UACjB,UAAUA,QAAO;AAAA,WAChB,UAAUA,QAAO,KAAK,UAAU,gBAAgB,IAAI,MAAM;AAAA,QAC7D;AAAA,MACF;AAAA,IACF;AAAA,EACF;AACF;AAEO,IAAM,mCAAmC,CAAC,cAAc;AAC7D,QAAM,WAAW,UAAU,aAAa,WAAW,IAAI;AACvD,QAAM,YAAY,UAAU,aAAa,YAAY,IAAI;AACzD,SAAO,WAAW;AACpB;AAGO,IAAM,YAAY,CAAC,WAAWC,OAAM,qBAAqB,qBAAqB,UAAU,OAAO,UAAU;AAC9G,QAAM,MAAW,YAAiB,WAAgB,8BAA8B,CAAC,UAAU,sBAAsB,UAAU,oBAAoB,CAAC,GAAG,WAAW,CAAC;AAC/J,QAAM,UAAe,WAAW,GAAG;AACnC,MAAI,OAAU,MAAM,cAAcA,OAAM,CAAC;AAAA,IACvC,IAAI,WAAW,KAAK;AAAA,IACpB,IAAI,WAAW,KAAK;AAAA,IAAU,IAAI,SAAS,KAAK;AAAA,IAChD,IAAI,SAAS,KAAK;AAAA,EACpB,CAAC,GAAG,CAAC,CAAC,GAAG,CAACN,YAAWA,UAAS,CAAC;AAC/B,MAAI,QAAQG,KAAI,QAAQ,SAAS,eAAe,GAAG;AACjD,UAAM,UAAa,MAAM,cAAc,IAAI;AAC3C,IAAG,QAAQ,IAAI;AACf,WAAO;AAAA,EACT;AACA,SAAO,EAAE,KAAK,SAAS,KAAK;AAC9B;AAGO,IAAM,eAAe,CAAC,SAAS,QAAQ,YAAY,OAAO,UAAU;AACzE,QAAM,eAAwB,CAAC;AAC/B,WAASC,KAAI,GAAGA,KAAI,cAAc,gBAAgBA,MAAK;AACrD,UAAM,IAAI,QAAQA,KAAI;AACtB,UAAM,IAAI,QAAQA,KAAI,IAAI;AAC1B,UAAM,IAAI,QAAQA,KAAI,IAAI;AAC1B,iBAAa,KAAK;AAAA,OACf,OAAQ,IAAK,IAAIJ,aAAe,IAAIA,cAAc,WAAW,KAAK,OAAO,WAAW;AAAA,MACpF,IAAIA,aAAa,WAAW,KAAK,OAAO,WAAW;AAAA,MAAI;AAAA,IAC1D,CAAC;AAAA,EACH;AACA,SAAO,EAAE,WAAW,cAAc,MAAM,aAAa,MAAM,cAAc,KAAK,EAAE;AAClF;AAGO,IAAM,wBAAwB,CAAC,WAAW,YAAY,cAAc;AACzE,QAAM,eAAe,UAAiB,gBAAgB,GAAG,sBAAsB,cAAc,cAAc;AAC3G,QAAM,eAAe,UAAiB,gBAAgB,GAAG,sBAAsB,cAAc,cAAc;AAC3G,QAAM,YAAY,eAAe,gBAAgB;AAEjD,SAAO,WAAW,IAAI,CAAC,OAAOI,OAAM;AAClC,QAAI,IAAI;AACR,QAAIA,OAAM,GAAG;AACX,UAAI;AAAA,IACN,WAAWA,OAAM,GAAG;AAClB,UAAI;AAAA,IACN;AACA,WAAO,CAAC,MAAM,IAAI,MAAM,IAAI,CAAC;AAAA,EAC/B,CAAC;AACH;AAEA,eAAsB,YAAY,WAAWE,OAAM,UAAU;AAC3D,MAAI,EAACP,WAAA,gBAAAA,QAAQ;AAAa,WAAO;AACjC,QAAM,EAAE,KAAK,YAAY,SAAS,gBAAgB,MAAM,YAAY,IAAI,UAAU,WAAWO,OAAM,aAAa,WAAW,IAAI,aAAa,WAAW,IAAI,UAAU,IAAI;AACzK,QAAM,EAAE,KAAK,aAAa,SAAS,iBAAiB,MAAM,aAAa,IAAI,UAAU,WAAWA,OAAM,aAAa,YAAY,IAAI,aAAa,YAAY,IAAI,UAAU,IAAI;AAC9K,QAAM,WAAc,OAAO,CAAC,aAAa,YAAY,CAAC;AACtD,EAAG,QAAQ,WAAW;AACtB,EAAG,QAAQ,YAAY;AACvB,QAAM,iBAAiBP,QAAM,QAAQ,QAAQ;AAC7C,EAAG,QAAQ,QAAQ;AACnB,QAAM,qBAAqB,MAAM,eAAe,KAAK;AACrD,EAAG,QAAQ,cAAc;AACzB,QAAM,cAAc,mBAAmB,MAAM,GAAG,cAAc,iBAAiB,CAAC;AAChF,QAAM,EAAE,WAAW,kBAAkB,MAAM,kBAAkB,IAAI,aAAa,aAAa,YAAY,gBAAgB,IAAI;AAC3H,QAAM,eAAe,mBAAmB,MAAM,cAAc,iBAAiB,CAAC;AAC9E,QAAM,EAAE,WAAW,mBAAmB,MAAM,mBAAmB,IAAI,aAAa,cAAc,aAAa,iBAAiB,KAAK;AACjI,QAAM,gCAAgC,iCAAiC,SAAS;AAChF,MAAI,KAAK,IAAI,6BAA6B,IAAI,IAAI;AAChD,sBAAkB,WAAW,kBAAkB,QAAQ,IAAI;AAC3D,sBAAkB,WAAW,mBAAmB,SAAS,IAAI;AAAA,EAE/D,WAAW,gCAAgC,GAAG;AAC5C,sBAAkB,WAAW,kBAAkB,QAAQ,CAAC,aAAa,WAAW,CAAC;AAAA,EACnF,OAAO;AACL,sBAAkB,WAAW,mBAAmB,SAAS,CAAC,aAAa,WAAW,CAAC;AAAA,EACrF;AACA,QAAM,yBAAyB,sBAAsB,WAAW,mBAAmB,MAAM;AACzF,QAAM,0BAA0B,sBAAsB,WAAW,oBAAoB,OAAO;AAC5F,QAAM,YAAY,UAAU,OAAO,sBAAsB,EAAE,OAAO,uBAAuB;AACzF,SAAO;AACT;;;ACxIA,IAAM,mBAA8B;AAAA,EAClC,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,CAAC;AAAA,EAAG,CAAC,GAAG,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAC3N,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAC7N;AAEA,IAAM,uBAAkC,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEvO,IAAM,2BAAsC,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAE3I,IAAM,wBAAmC,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAExF,IAAM,wBAAmC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,IAAI,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAElO,IAAM,4BAAuC,CAAC,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,GAAG,GAAG,CAAC,KAAK,EAAE,GAAG,CAAC,IAAI,GAAG,CAAC;AAE/H,IAAM,yBAAoC,CAAC,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC;AAEzF,IAAM,wBAAmC;AAAA,EACvC,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EACpN,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAAA,EAAG,CAAC,IAAI,GAAG;AAAA,EAAG,CAAC,KAAK,EAAE;AAC5M;AAmJA,SAASQ,sBAAqB,aAAwB;AACpD,QAAM,UAAU,YAAY,IAAI,CAAC,eAAe,WAAW,EAAE;AAC7D,UAAQ,KAAK,YAAY,YAAY,SAAS,GAAG,EAAE;AACnD,SAAO;AACT;AAEO,IAAM,2CAA2C;AAAA,EACtD,MAAMA,sBAAqB,gBAAgB;AAAA,EAC3C,SAASA,sBAAqB,oBAAoB;AAAA,EAClD,aAAaA,sBAAqB,wBAAwB;AAAA,EAC1D,UAAUA,sBAAqB,qBAAqB;AAAA,EACpD,UAAUA,sBAAqB,qBAAqB;AAAA,EACpD,cAAcA,sBAAqB,yBAAyB;AAAA,EAC5D,WAAWA,sBAAqB,sBAAsB;AAAA,EACtD,UAAUA,sBAAqB,qBAAqB;AACtD;AAEA,IAAM,kBAAsC,OAAO,QAAQ,wCAAwC,EAChG,IAAI,CAAC,CAAC,OAAO,OAAO,MAAM,QAAQ,IAAI,CAACC,WAAU,CAACA,QAAO,KAAK,CAAqB,CAAC,EACpF,KAAK;AAED,IAAM,gCAAgC,IAAI,IAAI,eAAe;AAQ7D,IAAM,mCAAmC;AAAA,EAC9C;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9C;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACnC;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7C;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpC;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7C;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACpC;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC7C;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AACtC;AAEO,IAAM,uCAAuC;AAAA,EAClD;AAAA,EAAI;AAAA,EAAG;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACrC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EACnC;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACzB;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACvC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAI;AAAA,EACrB;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAI;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AAAA,EAAK;AAAA,EAAI;AACjC;AAEO,IAAM,wCAAwC;AAAA,EACnD;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAC9B;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACzB;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EACxC;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AAAA,EAAK;AACrC;;;ACvOA,eAAsB,QAAQ,WAAW,SAAmB;AAH5D;AAIE,QAAMC,KAAkC;AAAA,IAGtC,MAAM,QAAM,mBAAQ,OAAO,CAACC,OAAMA,GAAE,SAAS,GAAG,MAApC,mBAAwC,OAAxC,mBAA4C;AAAA,IACxD,OAAO,QAAM,mBAAQ,OAAO,CAACA,OAAMA,GAAE,SAAS,EAAE,MAAnC,mBAAuC,OAAvC,mBAA2C;AAAA,IACxD,MAAM,QAAM,mBAAQ,OAAO,CAACA,OAAMA,GAAE,SAAS,GAAG,MAApC,mBAAwC,OAAxC,mBAA4C;AAAA,IACxD,OAAO,QAAM,mBAAQ,OAAO,CAACA,OAAMA,GAAE,SAAS,EAAE,MAAnC,mBAAuC,OAAvC,mBAA2C;AAAA,IACxD,MAAM,QAAM,mBAAQ,OAAO,CAACA,OAAMA,GAAE,SAAS,GAAG,MAApC,mBAAwC,OAAxC,mBAA4C;AAAA,EAC1D;AACA,aAAW,OAAO,OAAO,OAAOD,EAAC,GAAG;AAClC,QAAI,CAAC;AAAK,aAAO;AAAA,EACnB;AAGA,QAAM,aAAuB,qCAAqC,OAAO,CAAC,MAAM,SAAS,QAAQ,UAAU,MAAM,IAAI,CAAC,IAAc,qCAAqC;AACzK,WAASE,KAAI,GAAGA,KAAIF,GAAE,MAAM,SAAS,GAAGE;AAAK,cAAU,KAAK,CAACF,GAAE,MAAM,IAAIE,KAAI,IAAIF,GAAE,MAAM,IAAIE,KAAI,IAAI,UAAU,CAAC;AAChH,QAAM,aAAuB,sCAAsC,OAAO,CAAC,MAAM,SAAS,QAAQ,UAAU,MAAM,IAAI,CAAC,IAAc,sCAAsC;AAC3K,WAASA,KAAI,GAAGA,KAAIF,GAAE,MAAM,SAAS,GAAGE;AAAK,cAAU,KAAK,CAACF,GAAE,MAAM,IAAIE,KAAI,IAAIF,GAAE,MAAM,IAAIE,KAAI,IAAI,UAAU,CAAC;AAGhH,WAASA,KAAI,GAAGA,KAAIF,GAAE,KAAK,SAAS,GAAGE;AAAK,cAAoB,qCAAqCA,OAAM,CAACF,GAAE,KAAK,IAAIE,KAAI,IAAIF,GAAE,KAAK,IAAIE,KAAI,IAAI,UAAoB,qCAAqCA,KAAI,EAAE;AACjN,WAASA,KAAI,GAAGA,KAAIF,GAAE,KAAK,SAAS,GAAGE;AAAK,cAAoB,sCAAsCA,OAAM,CAACF,GAAE,KAAK,IAAIE,KAAI,IAAIF,GAAE,KAAK,IAAIE,KAAI,IAAI,UAAoB,sCAAsCA,KAAI,EAAE;AAGnN,WAASA,KAAI,GAAGA,KAAIF,GAAE,KAAK,SAAS,GAAGE;AAAK,cAAoB,iCAAiCA,OAAM,CAACF,GAAE,KAAK,IAAIE,KAAI,IAAIF,GAAE,KAAK,IAAIE,KAAI,IAAI,UAAoB,iCAAiCA,KAAI,EAAE;AAEzM,SAAO;AACT;;;ACNA,IAAMC,SAAQ;AAAA,EACZ,OAAO,CAAC;AAAA,EACR,SAAS,OAAO;AAAA,EAChB,WAAW;AACb;AAEA,IAAIC,UAA2B;AAC/B,IAAIC,aAAY;AAEhB,eAAsBC,UAAQC,QAAeC,SAAuC;AAlCpF;AAmCE,MAAI,EAACJ,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAElC,QAAM,cAAY,KAAAI,QAAO,KAAK,aAAZ,mBAAsB,aAAY,KAAM,IAAI,IAAIL,OAAM;AACxE,QAAM,YAAYA,OAAM,aAAW,KAAAK,QAAO,KAAK,aAAZ,mBAAsB,eAAc;AACvE,MAAI,CAACA,QAAO,eAAe,CAAC,YAAY,CAAC,aAAaL,OAAM,MAAM,WAAW,GAAG;AAC9E,IAAAA,OAAM,QAAQ,MAAgB,SAASI,QAAOC,OAAM;AACpD,IAAAL,OAAM,YAAY,IAAI;AACtB,IAAAA,OAAM,UAAU;AAAA,EAClB,OAAO;AACL,IAAAA,OAAM;AAAA,EACR;AACA,QAAM,QAAsB,CAAC;AAC7B,QAAM,WAAwB,CAAC;AAC/B,MAAI,KAAK;AACT,QAAMM,QAAOJ;AACb,WAASK,KAAI,GAAGA,KAAIP,OAAM,MAAM,QAAQO,MAAK;AAC3C,UAAM,MAAMP,OAAM,MAAMO;AACxB,QAAI,QAAQ;AACZ,QAAI;AACJ,UAAMC,QAAmB;AAAA,MACvB,IAAI;AAAA,MACJ,MAAM,CAAC;AAAA,MACP,SAAS,CAAC;AAAA,MACV,KAAK,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,MAChB,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,MACnB,OAAO;AAAA,MACP,UAAU;AAAA,MACV,WAAW;AAAA,MAGX,aAAa,CAAC;AAAA,IAChB;AAGA,KAAC,OAAO,gBAAgBA,MAAK,MAAM,IAAS,qBAAoB,KAAAH,QAAO,KAAK,aAAZ,mBAAsB,UAAU,KAAKD,UAAO,KAAAC,QAAO,KAAK,SAAZ,mBAAkB,WAAUH,aAAsB,KAAK,CAAC;AACpK,QAAIG,QAAO,OAAO,cAAc;AAC9B,YAAM,YAAYG,MAAK,SAAS,MAAM,sBAAsBA,MAAK,MAAM,IAAI;AAC3E,MAAG,QAAQA,MAAK,MAAM;AACtB,UAAI;AAAW,QAAAA,MAAK,SAAS;AAAA,IAC/B;AACA,IAAAA,MAAK,WAAW,KAAK,MAAM,MAAM,IAAI,UAAU,IAAI;AACnD,QAAI,GAAC,KAAAH,QAAO,KAAK,SAAZ,mBAAkB,UAAS;AAC9B,MAAAG,MAAK,MAAW,SAAS,KAAKJ,MAAK;AACnC,MAAAI,MAAK,SAAc,UAAU,KAAKJ,MAAK;AACvC,MAAAI,MAAK,QAAQA,MAAK;AAClB,MAAAA,MAAK,OAAO,IAAI,UAAU,IAAI,CAAC,OAAO;AAAA,SAClC,IAAI,WAAW,KAAK,IAAI,SAAS,MAAO,KAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,KAAe,KAAK;AAAA,SAC5G,IAAI,WAAW,KAAK,IAAI,SAAS,MAAO,KAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,KAAe,KAAK;AAAA,MAChH,CAAC;AACD,MAAAA,MAAK,UAAUA,MAAK,KAAK,IAAI,CAAC,OAAO,CAAC,GAAG,MAAMJ,OAAM,MAAM,MAAM,IAAI,GAAG,MAAMA,OAAM,MAAM,MAAM,KAAK,GAAG,MAAM,KAAKE,KAAI,CAAC;AACxH,iBAAW,OAAO,OAAO,KAAY,kBAAkB,GAAG;AACxD,QAAAE,MAAK,YAAY,OAAO,CAACA,MAAK,KAAY,mBAAmB,KAAe;AAAA,MAC9E;AAAA,IACF,WAAW,CAACP,SAAO;AACjB,UAAII,QAAO;AAAO,YAAI,wDAAwD;AAAA,IAChF,OAAO;AACL,YAAI,KAAAA,QAAO,KAAK,cAAZ,mBAAuB,YAAW,CAACI,KAAI,QAAQ,SAAS,OAAO,GAAG;AACpE,QAAAJ,QAAO,KAAK,UAAU,UAAU;AAChC,QAAG,QAAQG,MAAK,MAAM;AACtB,eAAO;AAAA,MACT;AACA,YAAM,UAAUP,QAAM,QAAQO,MAAK,MAAgB;AACnD,YAAM,cAAc,QAAQ,KAAK,CAACE,OAAMA,GAAE,MAAMA,GAAE,MAAM,SAAS,OAAO,CAAC;AACzE,YAAM,iBAAiB,MAAM,YAAY,KAAK;AAC9C,MAAAF,MAAK,YAAY,KAAK,MAAM,MAAM,eAAe,EAAE,IAAI;AACvD,UAAIA,MAAK,eAAa,KAAAH,QAAO,KAAK,aAAZ,mBAAsB,kBAAiB,IAAI;AAC/D,YAAI,aAAaG,MAAK;AACtB,YAAIH,QAAO,KAAK,KAAK,aAAa;AAChC,UAAAG,MAAK,MAAW,SAAS,KAAKJ,MAAK;AACnC,UAAAI,MAAK,SAAc,UAAU,KAAKJ,MAAK;AACvC,UAAAI,MAAK,QAAQA,MAAK;AAClB,UAAAA,MAAK,OAAO,IAAI,UAAU,IAAI,CAAC,OAAO;AAAA,aAClC,IAAI,WAAW,KAAK,IAAI,SAAS,MAAO,KAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,KAAe,KAAK;AAAA,aAC5G,IAAI,WAAW,KAAK,IAAI,SAAS,MAAO,KAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM,GAAG,KAAe,KAAK;AAAA,UAChH,CAAC;AACD,UAAAA,MAAK,UAAUA,MAAK,KAAK,IAAI,CAAC,OAAO,CAAC,GAAG,MAAMJ,OAAM,MAAM,MAAM,IAAI,GAAG,MAAMA,OAAM,MAAM,MAAM,KAAK,GAAG,MAAM,KAAKE,KAAI,CAAC;AACxH,qBAAW,OAAO,OAAO,KAAY,kBAAkB,GAAG;AACxD,YAAAE,MAAK,YAAY,OAAO,CAACA,MAAK,KAAY,mBAAmB,KAAe;AAAA,UAC9E;AAAA,QACF;AAAA,MACF,OAAO;AACL,cAAM,QAAQ,QAAQ,KAAK,CAACE,OAAMA,GAAE,MAAMA,GAAE,MAAM,SAAS,OAAO,IAAI;AACtE,cAAM,iBAAoB,QAAQ,OAAO,CAAC,IAAI,CAAC,CAAC;AAChD,YAAI,YAAY,MAAM,eAAe,MAAM;AAC3C,QAAG,QAAQ,cAAc;AACzB,aAAI,KAAAL,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAClC,sBAAY,MAAgB,QAAQ,WAAW,OAAO;AAAA,QACxD,YAAW,KAAAA,QAAO,KAAK,SAAZ,mBAAkB,SAAS;AACpC,sBAAY,MAAW,YAAY,WAAWG,MAAK,QAAQN,UAAS;AAAA,QACtE;AACA,QAAAM,MAAK,OAAY,mBAAmB,WAAW,KAAK,OAAO,gBAAgBN,UAAS;AACpF,QAAAM,MAAK,UAAUA,MAAK,KAAK,IAAI,CAAC,OAAO,CAAC,GAAG,MAAMJ,OAAM,MAAM,MAAM,IAAI,GAAG,MAAMA,OAAM,MAAM,MAAM,KAAK,GAAG,MAAM,KAAKE,KAAI,CAAC;AACxH,mBAAW,OAAO,OAAO,KAAY,eAAe;AAAG,UAAAE,MAAK,YAAY,OAAc,gBAAgB,KAAK,IAAI,CAACG,WAAUH,MAAK,KAAKG,OAAM;AAC1I,QAAAH,MAAK,QAAQA,MAAK;AAClB,cAAM,gBAAgB,EAAE,GAAQ,iBAAiBA,MAAK,MAAM,GAAG,GAAG,YAAY,IAAI,YAAY,WAAW,IAAI,UAAU;AACvH,QAAAA,MAAK,MAAW,SAAS,eAAeJ,MAAK;AAC7C,QAAAI,MAAK,SAAc,UAAU,eAAeJ,MAAK;AAQjD,iBAAS,KAAK,aAAa;AAAA,MAC7B;AACA,MAAG,QAAQ,OAAO;AAAA,IACpB;AACA,QAAII,MAAK,WAAS,KAAAH,QAAO,KAAK,aAAZ,mBAAsB,kBAAiB;AAAI,YAAM,KAAKG,KAAI;AAAA;AACvE,MAAG,QAAQA,MAAK,MAAM;AAAA,EAC7B;AACA,EAAAR,OAAM,QAAQ;AACd,SAAO;AACT;AAEA,eAAsBY,OAAKP,SAAqC;AAtJhE;AAuJE,MAAII,KAAI;AAAS,IAAAR,UAAQ;AACzB,QAAI,KAAAI,QAAO,KAAK,cAAZ,mBAAuB,aAAWJ,WAAA,gBAAAA,QAAQ,eAAc;AAC1D,QAAI,OAAO,OAAK,KAAAA,WAAA,gBAAAA,QAAQ,iBAAR,mBAAsB,YAAW,CAAC,CAAC,EAAE,SAAS;AAAG,MAAAA,UAAQ;AAAA,EAC3E;AACA,MAAI,CAACA,SAAO;AACV,SAAI,KAAAI,QAAO,KAAK,cAAZ,mBAAuB;AAAS,MAAAJ,UAAQ,MAAM,UAAUI,QAAO,KAAK,UAAU,SAAS;AAAA;AACtF,MAAAJ,UAAQ,MAAM,WAAU,KAAAI,QAAO,KAAK,SAAZ,mBAAkB,SAAS;AAAA,EAC1D,WAAWA,QAAO,OAAO;AACvB,QAAI,iBAAiBJ,QAAM,WAAW;AAAA,EACxC;AACA,EAAAC,aAAaD,QAAM,iBAAe,KAAAA,WAAA,gBAAAA,QAAO,WAAP,mBAAgB,GAAG,UAAS,KAAAA,WAAA,gBAAAA,QAAO,WAAP,mBAAgB,GAAG,MAAM,KAAK;AAC5F,SAAOA;AACT;AAEO,IAAM,gBAAuB;AAC7B,IAAM,QAAe;;;AClJ5B,IAAIY;AACJ,IAAMC,QAKA,CAAC;AAEP,IAAIC,aAAW;AACf,IAAIC,aAAY;AAChB,IAAIC,YAAU,OAAO;AAErB,eAAsBC,OAAKC,SAAqC;AAhChE;AAiCE,MAAIC,KAAI;AAAS,IAAAP,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,gBAAZ,mBAAyB,SAAS;AAAA,WAC7DA,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC7D,SAAOA;AACT;AAEO,SAAS,QAAQQ,QAAe;AACrC,QAAMC,UAAUD,OAAM,SAASA,OAAM,UAAUA;AAC/C,MAAI,EAACR,WAAA,gBAAAA,QAAO,OAAO,GAAG;AAAO,WAAOS;AACpC,QAAM,OAAkB,MAAM,eAAeA,SAAQ,CAACT,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,GAAG,KAAK;AAChH,QAAMU,QAAkB,IAAI,MAAM,UAAU,KAAK;AACjD,EAAG,QAAQ,IAAI;AACf,SAAOA;AAkBT;AAEA,eAAsBC,UAAQC,QAAeN,SAAgB,KAAaO,QAAiC;AAjE3G;AAkEE,MAAI,EAACb,WAAA,gBAAAA,QAAQ;AAAa,WAAO,EAAE,KAAK,GAAG,QAAQ,WAAW,aAAa,GAAG,YAAY,CAAC,EAAE;AAC7F,QAAM,YAAYI,eAAW,KAAAE,QAAO,KAAK,gBAAZ,mBAAyB,eAAc;AACpE,QAAM,cAAY,KAAAA,QAAO,KAAK,gBAAZ,mBAAyB,aAAY,KAAM,IAAI,IAAIJ;AACrE,MAAII,QAAO,eAAe,aAAa,YAAaH,eAAcU,YAAU,KAAAZ,MAAK,SAAL,mBAAW,UAAQ,KAAAA,MAAK,SAAL,mBAAW,OAAM,GAAI;AAClH,IAAAG;AACA,WAAOH,MAAK;AAAA,EACd;AACA,EAAAG,YAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AA1ExC,QAAAU;AA2EI,UAAM,MAAM;AAAA,MACV,KAAK;AAAA,MACL,QAAQ;AAAA,MACR,aAAa;AAAA,MACb,YAAY,CAAC;AAAA,IACf;AAEA,SAAIA,MAAAR,QAAO,KAAK,gBAAZ,gBAAAQ,IAAyB,SAAS;AACpC,YAAM,WAAW,QAAQF,MAAK;AAC9B,YAAM,OAAOZ,WAAA,gBAAAA,QAAO,QAAQ;AAC5B,MAAAE,aAAW,IAAI;AACf,MAAG,QAAQ,QAAQ;AACnB,YAAM,UAAU,KAAK,KAAK,CAACa,OAAMA,GAAE,MAAM,OAAO,CAAC;AACjD,YAAMC,UAAS,MAAM,QAAQ,KAAK;AAClC,YAAM,aAAa,KAAK,MAAM,MAAM,KAAK,IAAKA,QAAO,KAAK,GAAI,CAAC,IAAI;AACnE,UAAI,cAAcV,QAAO,KAAK,YAAY,iBAAiB,IAAI;AAC7D,YAAI,SAASU,QAAO,MAAM,MAAM,WAAW;AAC3C,YAAI,cAAc,KAAK,IAAI,MAAM,UAAU;AAAA,MAC7C;AACA,YAAMC,UAAY,OAAO,KAAK,KAAK,CAACF,OAAMA,GAAE,MAAM,OAAO,GAAG,GAAG,CAAC;AAChE,YAAMG,QAAe,MAAMD,QAAO,KAAK,GAAG;AAC1C,MAAG,QAAQA,OAAM;AACjB,YAAM,OAAO,KAAK,KAAK,CAACF,OAAMA,GAAE,MAAM,OAAO,GAAG;AAChD,YAAMI,OAAM,MAAM,KAAK,KAAK;AAC5B,UAAI,MAAM,KAAK,MAAMA,KAAID,OAAM,KAAKC,KAAID,OAAM,KAAK,KAAKA,OAAM,MAAMC,KAAID,OAAM,KAAK,KAAKA,OAAM,MAAMC,KAAID,OAAM,EAAE,IAAI;AAEpH,YAAM,OAAO,KAAK,KAAK,CAACH,OAAMA,GAAE,MAAM,OAAO,IAAI;AAGjD,YAAM,aAAa,OAAO,MAAM,KAAK,KAAK,IAAI,CAAC;AAC/C,UAAI,aAAa,MAAM,KAAK,UAAU;AACtC,WAAK,QAAQ,CAACA,OAAS,QAAQA,EAAC,CAAC;AAAA,IACnC;AACA,IAAAd,MAAK,OAAO;AACZ,IAAAE,aAAYU;AACZ,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;AC7GO,SAASO,YAAW,KAAK;AAC9B,SAAO;AAAA,IACL,KAAK,IAAI,IAAI,SAAS,KAAK,IAAI,WAAW,EAAE;AAAA,IAC5C,KAAK,IAAI,IAAI,SAAS,KAAK,IAAI,WAAW,EAAE;AAAA,EAC9C;AACF;AAEO,SAASC,cAAa,KAAK;AAChC,SAAO;AAAA,IACL,IAAI,WAAW,MAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM;AAAA,IAC5D,IAAI,WAAW,MAAM,IAAI,SAAS,KAAK,IAAI,WAAW,MAAM;AAAA,EAC9D;AACF;AAEO,SAAS,yBAAyB,KAAKC,QAAO,UAAU;AAC7D,QAAM,IAAIA,OAAM,MAAM;AACtB,QAAM,IAAIA,OAAM,MAAM;AACtB,QAAM,QAAQ,CAAC;AAAA,IACb,IAAI,WAAW,KAAK;AAAA,IACpB,IAAI,WAAW,KAAK;AAAA,IACpB,IAAI,SAAS,KAAK;AAAA,IAClB,IAAI,SAAS,KAAK;AAAA,EACpB,CAAC;AACD,SAAU,MAAM,cAAcA,QAAO,OAAO,CAAC,CAAC,GAAG,QAAQ;AAC3D;AAEO,SAASC,qBAAoB,KAAK,QAAQ;AAC/C,QAAM,aAAa,CAAC,IAAI,WAAW,KAAK,OAAO,IAAI,IAAI,WAAW,KAAK,OAAO,EAAE;AAChF,QAAM,WAAW,CAAC,IAAI,SAAS,KAAK,OAAO,IAAI,IAAI,SAAS,KAAK,OAAO,EAAE;AAC1E,QAAM,gBAAgB,IAAI,cAAc,IAAI,CAAC,UAAU;AACrD,UAAM,cAAc,CAAC,MAAM,KAAK,OAAO,IAAI,MAAM,KAAK,OAAO,EAAE;AAC/D,WAAO;AAAA,EACT,CAAC;AACD,SAAO,EAAE,YAAY,UAAU,eAAe,YAAY,IAAI,WAAW;AAC3E;AAEO,SAASC,YAAW,KAAK,SAAS,KAAK;AAC5C,QAAM,SAASH,cAAa,GAAG;AAC/B,QAAMI,QAAOL,YAAW,GAAG;AAC3B,QAAM,cAAc,CAAC,SAASK,MAAK,KAAK,GAAG,SAASA,MAAK,KAAK,CAAC;AAC/D,QAAM,aAAa,CAAC,OAAO,KAAK,YAAY,IAAI,OAAO,KAAK,YAAY,EAAE;AAC1E,QAAM,WAAW,CAAC,OAAO,KAAK,YAAY,IAAI,OAAO,KAAK,YAAY,EAAE;AACxE,SAAO,EAAE,YAAY,UAAU,eAAe,IAAI,cAAc;AAClE;AAEO,SAASC,aAAY,KAAK;AAC/B,QAAM,UAAUL,cAAa,GAAG;AAChC,QAAMI,QAAOL,YAAW,GAAG;AAC3B,QAAM,UAAU,KAAK,IAAI,GAAGK,KAAI;AAChC,QAAM,WAAW,UAAU;AAC3B,QAAM,aAAa,CAAC,QAAQ,KAAK,UAAU,QAAQ,KAAK,QAAQ;AAChE,QAAM,WAAW,CAAC,QAAQ,KAAK,UAAU,QAAQ,KAAK,QAAQ;AAC9D,SAAO,EAAE,YAAY,UAAU,eAAe,IAAI,cAAc;AAClE;AAaO,SAASE,kBAAiB,OAAO;AACtC,SAAO,QAAQ,IAAI,KAAK,KAAK,KAAK,OAAO,QAAQ,KAAK,OAAO,IAAI,KAAK,GAAG;AAC3E;AAEO,SAASC,iBAAgB,QAAQ,QAAQ;AAC9C,QAAM,UAAU,KAAK,KAAK,IAAI,KAAK,MAAM,EAAE,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,OAAO,EAAE;AACxF,SAAOD,kBAAiB,OAAO;AACjC;AAEO,IAAME,0BAAyB,CAAC,GAAG,MAAM,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AAEzE,SAASC,KAAI,IAAI,IAAI;AAC1B,MAAI,UAAU;AACd,WAASC,KAAI,GAAGA,KAAI,GAAG,QAAQA,MAAK;AAClC,eAAW,GAAGA,MAAK,GAAGA;AAAA,EACxB;AACA,SAAO;AACT;AAEO,SAASC,oBAAmB,KAAK,aAAa;AACnD,QAAM,SAAmB,CAAC;AAC1B,WAASD,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,WAAO,KAAK,IAAIA,IAAG,YAAY;AAAA,EACjC;AACA,SAAO;AACT;AAEO,SAASE,2BAA0B,MAAM,MAAM;AACpD,QAAM,UAAsB,CAAC;AAC7B,QAAMC,QAAO,KAAK;AAClB,WAAS,MAAM,GAAG,MAAMA,OAAM,OAAO;AACnC,YAAQ,KAAK,CAAC,CAAC;AACf,aAAS,MAAM,GAAG,MAAMA,OAAM,OAAO;AACnC,cAAQ,KAAK,KAAKJ,KAAI,KAAK,MAAME,oBAAmB,MAAM,GAAG,CAAC,CAAC;AAAA,IACjE;AAAA,EACF;AACA,SAAO;AACT;AAEO,SAASG,qBAAoB,UAAU,QAAQ;AACpD,QAAM,OAAO,KAAK,IAAI,QAAQ;AAC9B,QAAM,OAAO,KAAK,IAAI,QAAQ;AAC9B,QAAM,iBAAiB,CAAC,CAAC,MAAM,CAAC,MAAM,CAAC,GAAG,CAAC,MAAM,MAAM,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC;AACpE,QAAM,oBAAoBN,wBAAuB,OAAO,IAAI,OAAO,EAAE;AACrE,QAAM,2BAA2BI,2BAA0B,mBAAmB,cAAc;AAC5F,QAAM,4BAA4BJ,wBAAuB,CAAC,OAAO,IAAI,CAAC,OAAO,EAAE;AAC/E,SAAOI,2BAA0B,0BAA0B,yBAAyB;AACtF;AAEO,SAASG,uBAAsB,QAAQ;AAC5C,QAAM,oBAAoB,CAAC,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE,GAAG,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE,CAAC;AACrF,QAAM,uBAAuB,CAAC,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACxD,QAAM,sBAAsB;AAAA,IAC1B,CAACN,KAAI,kBAAkB,IAAI,oBAAoB;AAAA,IAC/C,CAACA,KAAI,kBAAkB,IAAI,oBAAoB;AAAA,EACjD;AACA,SAAO;AAAA,IACL,kBAAkB,GAAG,OAAO,oBAAoB,EAAE;AAAA,IAClD,kBAAkB,GAAG,OAAO,oBAAoB,EAAE;AAAA,IAClD,CAAC,GAAG,GAAG,CAAC;AAAA,EACV;AACF;AAEO,SAASO,aAAY,uBAAuB,gBAAgB;AACjE,SAAO;AAAA,IACLP,KAAI,uBAAuB,eAAe,EAAE;AAAA,IAC5CA,KAAI,uBAAuB,eAAe,EAAE;AAAA,EAC9C;AACF;;;ACpIO,IAAMQ,WAAU;AAAA,EACrB,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,UAAU,GAAG,SAAS;AAAA,EAC3B,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,SAAS,GAAG,QAAQ;AAAA,EACzB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AAAA,EACvB,EAAE,GAAG,QAAQ,GAAG,OAAO;AACzB;;;ACz3FO,IAAM,eAAN,MAAmB;AAAA,EAQxB,YAAYC,SAAmB;AAP/B;AACA;AACA;AACA;AACA;AACA;AAnBF;AAsBI,SAAK,QAAQA;AACb,SAAK,UAAkBC,SAAQ,IAAI,CAAC,WAAW,CAAC,OAAO,GAAG,OAAO,CAAC,CAAC;AACnE,SAAK,gBAAmB,SAAS,KAAK,OAAO;AAC7C,SAAK,cAAY,oDAAM,UAAN,mBAAa,WAAb,mBAAsB,OAAtB,mBAA0B,UAA1B,mBAAkC,OAAM;AACzD,SAAK,kBAAqB,SAAS,CAAC,KAAK,WAAW,KAAK,SAAS,CAAC;AACnE,SAAK,wBAA2B,SAAS,CAAC,KAAK,YAAY,GAAG,KAAK,YAAY,CAAC,CAAC;AAAA,EACnF;AAAA,EAEA,eAAe,OAAO;AACpB,UAAMC,KAA4B,CAAC;AACnC,IAAAA,GAAE,aAAgB,MAAM,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AAC9C,IAAAA,GAAE,WAAc,MAAM,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AAC5C,IAAAA,GAAE,MAAS,IAAIA,GAAE,YAAY,KAAK,eAAe;AACjD,IAAAA,GAAE,kBAAqB,KAAIA,GAAE,KAAK,KAAK,aAAa;AACpD,IAAAA,GAAE,eAAkB,IAAIA,GAAE,UAAU,KAAK,qBAAqB;AAC9D,IAAAA,GAAE,MAAS,IAAIA,GAAE,iBAAiBA,GAAE,YAAY;AAChD,IAAAA,GAAE,cAAiB,IAAIA,GAAE,KAAK,KAAK,eAAe;AAClD,IAAAA,GAAE,MAAS,KAAIA,GAAE,iBAAiBA,GAAE,YAAY;AAChD,IAAAA,GAAE,YAAe,IAAIA,GAAE,KAAK,KAAK,eAAe;AAChD,UAAM,MAAS,SAAS,CAACA,GAAE,aAAaA,GAAE,SAAS,GAAG,CAAC;AACvD,WAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,WAAO;AAAA,EACT;AAAA,EAEA,mBAAmB,kBAAkBC,QAAe;AAClD,UAAMF,KAA4B,CAAC;AACnC,IAAAA,GAAE,UAAa,QAAQ,kBAAkB,CAAC,IAAI,GAAG,CAAC,CAAC;AACnD,IAAAA,GAAE,MAAS,IAAIA,GAAE,SAAS,KAAK,eAAe;AAC9C,IAAAA,GAAE,YAAe,KAAIA,GAAE,KAAK,KAAK,QAAQE,UAAS,KAAK,QAAQA,UAAS,CAAC;AACzE,UAAM,MAAS,IAAIF,GAAE,WAAW,KAAK,eAAe;AACpD,WAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,WAAO;AAAA,EACT;AAAA,EAEA,MAAM,QAAQE,QAAeC,SAA+G;AAxD9I;AAyDI,UAAMJ,KAA4B,CAAC;AACnC,IAAAA,GAAE,SAAY,MAAM,eAAeG,QAAO,CAAC,KAAK,WAAW,KAAK,SAAS,CAAC;AAC1E,IAAAH,GAAE,MAAS,IAAIA,GAAE,QAAQ,UAAU,KAAK;AACxC,IAAAA,GAAE,QAAW,IAAIA,GAAE,KAAK,UAAU,GAAG;AACrC,IAAAA,GAAE,UAAU,KAAK,MAAM,QAAQA,GAAE,KAAK;AACtC,IAAAA,GAAE,cAAiB,QAAQA,GAAE,OAAO;AACpC,IAAAA,GAAE,QAAW,MAAMA,GAAE,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AACjD,IAAAA,GAAE,UAAa,QAAQA,GAAE,KAAK;AAC9B,IAAAA,GAAE,SAAY,QAAQA,GAAE,OAAO;AAC/B,UAAM,SAAS,MAAMA,GAAE,OAAO,KAAK;AACnC,IAAAA,GAAE,QAAW,MAAMA,GAAE,aAAa,CAAC,GAAG,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC;AACjD,IAAAA,GAAE,OAAO,KAAK,eAAeA,GAAE,KAAK;AAEpC,IAAAA,GAAE,MAAM,MAAS,MAAM,uBAAuBA,GAAE,MAAMA,GAAE,QAAQ,OAAK,KAAAI,QAAO,SAAP,mBAAa,gBAAe,IAAIA,QAAO,KAAK,cAAcA,QAAO,KAAK,aAAa;AACxJ,UAAM,MAAM,MAAMJ,GAAE,IAAI,MAAM;AAC9B,UAAM,QAA8F,CAAC;AACrG,eAAWE,UAAS,KAAK;AACvB,YAAMG,KAA4B,CAAC;AACnC,MAAAA,GAAE,MAAS,MAAML,GAAE,MAAM,CAACE,QAAO,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AAC5C,MAAAG,GAAE,QAAW,MAAML,GAAE,aAAa,CAACE,QAAO,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;AACrD,MAAAG,GAAE,OAAO,KAAK,mBAAmBA,GAAE,OAAOH,MAAK;AAC/C,MAAAG,GAAE,gBAAmB,QAAQA,GAAE,MAAM,CAAC,IAAI,CAAC,CAAC;AAC5C,YAAM,MAAM,MAAMA,GAAE,IAAI,KAAK;AAC7B,YAAM,aAAa,IAAI,MAAM,GAAG,CAAC;AACjC,YAAM,WAAW,IAAI,MAAM,GAAG,CAAC;AAC/B,YAAM,gBAAgB,MAAMA,GAAE,cAAc,MAAM;AAClD,YAAMC,QAAO,EAAE,YAAY,UAAU,eAAe,YAAY,OAAOJ,QAAO;AAC9E,YAAM,SAAcK,qBAAoBD,OAAM,EAAEH,OAAM,MAAM,MAAM,KAAK,KAAK,YAAYA,OAAM,MAAM,MAAM,KAAK,KAAK,SAAS,CAAC;AAC9H,YAAM,KAAK,MAAM;AACjB,aAAO,KAAKE,EAAC,EAAE,QAAQ,CAACJ,YAAc,QAAQI,GAAEJ,QAAO,CAAC;AAAA,IAC1D;AACA,WAAO,KAAKD,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,WAAO;AAAA,EACT;AACF;;;AC7EA,IAAM,uBAAuB;AAC7B,IAAM,uBAAuB;AAC7B,IAAM,kBAAkB,CAAC,GAAG,GAAG,GAAG,IAAI,IAAI,GAAG,CAAC;AAC9C,IAAM,wBAAwB;AAC9B,IAAM,gCAAgC;AACtC,IAAIO,aAAW;AAER,IAAM,eAAN,MAAmB;AAAA,EAQxB,YAAY,cAAcC,gBAAe;AAPzC;AACA;AACA;AACA;AACA;AACA;AA3BF;AA8BI,SAAK,eAAe;AACpB,SAAK,gBAAgBA;AACrB,SAAK,cAAY,sBAAK,kBAAL,mBAAoB,WAApB,mBAA6B,GAAG,UAAhC,mBAAwC,OAAM;AAC/D,SAAK,cAAc,CAAC;AACpB,SAAK,UAAU,OAAO;AACtB,SAAK,gBAAgB;AAAA,EACvB;AAAA,EAEA,8BAA8B,WAAW;AACvC,UAAM,KAAK,UAAU,IAAI,CAAC,MAAM,EAAE,EAAE;AACpC,UAAM,KAAK,UAAU,IAAI,CAAC,MAAM,EAAE,EAAE;AACpC,UAAM,aAAa,CAAC,KAAK,IAAI,GAAG,EAAE,GAAG,KAAK,IAAI,GAAG,EAAE,CAAC;AACpD,UAAM,WAAW,CAAC,KAAK,IAAI,GAAG,EAAE,GAAG,KAAK,IAAI,GAAG,EAAE,CAAC;AAClD,WAAO,EAAE,YAAY,SAAS;AAAA,EAChC;AAAA,EAEA,uBAAuB,eAAe,gBAAgB;AACpD,UAAM,uBAAuB,cAAc,IAAI,CAAC,UAAeC,aAAY,CAAC,GAAG,OAAO,CAAC,GAAG,cAAc,CAAC;AACzG,UAAM,gBAAgB,KAAK,8BAA8B,oBAAoB;AAC7E,WAAYC,YAAgBC,aAAY,aAAa,GAAG,oBAAoB;AAAA,EAC9E;AAAA,EAEA,uBAAuB,WAAW;AAChC,UAAM,cAAc,KAAK,8BAA8B,SAAS;AAChE,UAAM,gBAAqBD,YAAgBC,aAAY,WAAW,GAAG,oBAAoB;AACzF,kBAAc,gBAAgB,CAAC;AAC/B,aAASC,KAAI,GAAGA,KAAI,gBAAgB,QAAQA,MAAK;AAC/C,oBAAc,cAAc,KAAK,UAAU,gBAAgBA,KAAI,MAAM,GAAG,CAAC,CAAC;AAAA,IAC5E;AACA,WAAO;AAAA,EACT;AAAA,EAEA,mBAAmB,WAAW,MAAM,OAAO,gBAAgB;AACzD,UAAM,UAAeC,YAAW,IAAI;AACpC,UAAM,cAAc,CAAC,QAAQ,KAAK,KAAK,WAAW,QAAQ,KAAK,KAAK,YAAY,QAAQ,KAAK,QAAQ,MAAM,KAAK,YAAY,CAAC;AAC7H,UAAM,eAAe,UAAU,IAAI,CAAC,UAAU;AAAA,MAC5C,YAAY,MAAM,MAAM,KAAK,KAAK,YAAY;AAAA,MAC9C,YAAY,MAAM,MAAM,KAAK,KAAK,YAAY;AAAA,MAC9C,YAAY,KAAK,MAAM;AAAA,IACzB,CAAC;AACD,UAAM,uBAA4BC,qBAAoB,OAAO,CAAC,GAAG,CAAC,CAAC;AACnE,UAAM,gBAAgB,aAAa,IAAI,CAAC,UAAU;AAChD,YAAM,UAAeL,aAAY,OAAO,oBAAoB;AAC5D,aAAO,CAAC,GAAG,SAAS,MAAM,EAAE;AAAA,IAC9B,CAAC;AACD,UAAM,wBAA6BM,uBAAsB,cAAc;AACvE,UAAM,YAAY,CAAC,GAAQC,cAAa,IAAI,GAAG,CAAC;AAChD,UAAM,oBAAoB;AAAA,MACnBC,KAAI,WAAW,sBAAsB,EAAE;AAAA,MACvCA,KAAI,WAAW,sBAAsB,EAAE;AAAA,IAC9C;AACA,WAAO,cAAc,IAAI,CAAC,UAAU;AAAA,MAClC,KAAK,MAAM,MAAM,KAAK,kBAAkB,EAAE;AAAA,MAC1C,KAAK,MAAM,MAAM,KAAK,kBAAkB,EAAE;AAAA,MAC1C,KAAK,MAAM,MAAM,EAAE;AAAA,IACrB,CAAC;AAAA,EACH;AAAA,EAEA,MAAM,cAAcC,QAAOC,SAAQ;AACjC,QAAI,cAAc;AAGlB,QAAI;AACJ,UAAM,YAAYA,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIZ;AACxD,UAAM,YAAY,KAAK,WAAWY,QAAO,KAAK,cAAc;AAC5D,QAAIA,QAAO,eAAe,YAAY,WAAW;AAC/C,cAAQ,MAAM,KAAK,aAAa,QAAQD,QAAOC,OAAM;AACrD,WAAK,UAAU;AAAA,IACjB;AACA,QAAIA,QAAO;AAAa,WAAK;AAG7B,QAAI,SAAU,MAAM,SAAS,MAAQ,MAAM,WAAW,KAAK,iBAAmB,KAAK,kBAAkBA,QAAO,KAAK,eAAgB,CAACA,QAAO,KAAK,YAAY;AACxJ,WAAK,gBAAgB;AACrB,WAAK,cAAc,CAAC,GAAG,KAAK;AAE5B,UAAI,KAAK,YAAY,SAAS;AAAG,sBAAc;AAAA,IACjD;AACA,UAAM,QAAoJ,CAAC;AAG3J,aAASP,KAAI,GAAGA,KAAI,KAAK,YAAY,QAAQA,MAAK;AAChD,YAAM,aAAa,KAAK,YAAYA;AACpC,UAAI,CAAC;AAAY;AACjB,UAAIO,QAAO,KAAK,WAAW;AACzB,cAAM,QAAQA,QAAO,KAAK,WAAgBC,iBAAgB,WAAW,cAAc,wBAAwB,WAAW,cAAc,8BAA8B,IAAI;AACtK,cAAM,aAAkBJ,cAAa,UAAU;AAC/C,cAAM,uBAAuB,CAAC,WAAW,KAAKE,OAAM,MAAM,IAAI,WAAW,KAAKA,OAAM,MAAM,EAAE;AAC5F,cAAM,eAAeC,QAAO,KAAK,YAAYE,KAAI,QAAQ,SAAS,kBAAkB,IAAO,MAAM,iBAAiBH,QAAO,OAAO,GAAG,oBAAoB,IAAIA,OAAM,MAAM;AACvK,cAAM,iBAAsBJ,qBAAoB,CAAC,OAAO,UAAU;AAClE,cAAM,SAAS,cAAc,KAAK,uBAAuB,WAAW,eAAe,cAAc,IAAI;AACrG,cAAM,eAAoB,yBAAyB,QAAQ,cAAc,CAAC,KAAK,WAAW,KAAK,SAAS,CAAC;AACzG,cAAM,YAAe,IAAI,cAAc,UAAU,KAAK;AACtD,QAAG,QAAQ,YAAY;AACvB,QAAG,QAAQ,YAAY;AACvB,cAAM,CAAC,aAAa,SAAS,IAAI,KAAK,cAAc,QAAQ,SAAS;AACrE,QAAAP,aAAW,IAAI;AACf,QAAG,QAAQ,SAAS;AACpB,cAAM,cAAc,MAAM,YAAY,KAAK,GAAG;AAC9C,QAAG,QAAQ,WAAW;AACtB,YAAI,cAAcY,QAAO,KAAK,gBAAgB,GAAG;AAC/C,gBAAM,oBAAuB,QAAQ,WAAW,CAAC,IAAI,CAAC,CAAC;AACvD,gBAAM,YAAY,MAAM,kBAAkB,MAAM;AAChD,UAAG,QAAQ,SAAS;AACpB,UAAG,QAAQ,iBAAiB;AAC5B,gBAAMG,UAAS,KAAK,mBAAmB,WAAW,QAAQ,OAAO,cAAc;AAC/E,gBAAM,kBAAkB,KAAK,uBAAuBA,OAAM;AAC1D,eAAK,YAAYV,MAAK,EAAE,GAAG,iBAAiB,WAAW;AACvD,gBAAM,SAAS;AAAA,YACb,WAAWU;AAAA,YACX;AAAA,YACA,eAAe,WAAW;AAAA,YAC1B,kBAAkB;AAAA,YAClB,KAAK,EAAE,SAAS,gBAAgB,YAAY,aAAa,gBAAgB,SAAS;AAAA,UACpF;AACA,gBAAM,KAAK,MAAM;AAAA,QACnB,OAAO;AACL,eAAK,YAAYV,MAAK;AAAA,QACxB;AACA,QAAG,QAAQ,SAAS;AAAA,MACtB,OAAO;AAEL,cAAM,WAAgBF,YAAgBC,aAAY,UAAU,GAAG,oBAAoB;AACnF,cAAM,SAAS;AAAA,UACb,YAAY,WAAW;AAAA,UACvB,eAAe,WAAW;AAAA,UAC1B,kBAAkB;AAAA,UAClB,KAAK,EAAE,SAAS,SAAS,YAAY,aAAa,SAAS,SAAS;AAAA,UACpE,WAAW,CAAC;AAAA,QACd;AACA,cAAM,KAAK,MAAM;AAAA,MACnB;AAAA,IACF;AACA,SAAK,cAAc,KAAK,YAAY,OAAO,CAAC,MAAM,MAAM,IAAI;AAC5D,SAAK,gBAAgB,MAAM;AAC3B,QAAI,MAAM,SAASQ,QAAO,KAAK;AAAa,YAAM,SAASA,QAAO,KAAK;AACvE,WAAO;AAAA,EACT;AACF;;;ACnKO,IAAM,SAAS;AAAA,EACpB,OAAO;AAAA,EACP,OAAO;AAAA,EACP,QAAQ;AAAA,EACR,MAAM;AAAA,EACN,OAAO;AAAA,EACP,KAAK,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACnB,aAAa,EAAE,GAAG,SAAS,GAAG,SAAS,GAAG,UAAU,GAAG,QAAQ,GAAG,QAAQ;AAAA,EAQ1E,eAAe;AAAA,IACb,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,IAClC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAAA,IAClC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,CAAC;AAAA,IACvC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,CAAC;AAAA,IACzC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,CAAC;AAAA,EAC3C;AAAA,EACA,SAAS,CAAC,UAAU,OAAO,YAAY;AAAA,EACvC,WAAW,CAAC,UAAU,OAAO,cAAc;AAC7C;AAEO,IAAM,aAAa;AAAA,EACxB,MAAM;AAAA,EACN,MAAM;AAAA,EACN,MAAM;AAAA,EACN,aAAa,EAAE,GAAG,QAAQ,GAAG,QAAQ,GAAG,OAAO;AAAA,EAC/C,SAAS,CAAC,UAAU,WAAW,YAAY;AAC7C;AAEO,IAAM,kBAAkB;AAAA,EAC7B,YAAY;AAAA,EACZ,cAAc;AAAA,EACd,gBAAgB;AAAA,EAChB,iBAAiB;AAAA,EACjB,iBAAiB;AAAA,EACjB,gBAAgB;AAAA,EAChB,mBAAmB;AAAA,EACnB,kBAAkB;AAAA,EAClB,aAAa,EAAE,GAAG,cAAc,GAAG,gBAAgB,GAAG,kBAAkB,GAAG,mBAAmB,GAAG,mBAAmB,GAAG,kBAAkB,GAAG,qBAAqB,GAAG,mBAAmB;AAAA,EACvL,SAAS,CAAC,UAAU,gBAAgB,YAAY;AAClD;AAEO,IAAM,gBAAN,MAAoB;AAAA,EAOzB,YAAY,MAAM;AANlB;AACA;AACA;AACA;AACA;AAIE,SAAK,OAAO;AACZ,SAAK,QAAQ,CAAC;AACd,SAAK,aAAa,CAAC;AACnB,SAAK,UAAU,CAAC,GAAK,GAAK,GAAK,GAAK,CAAG;AACvC,SAAK,kBAAkB,CAAC,GAAK,GAAK,GAAK,GAAK,CAAG;AAAA,EACjD;AAAA,EAEA,KAAK,QAAQ,MAAM,YAAY;AAC7B,QAAI,OAAO,KAAK,MAAM,YAAY;AAAa,WAAK,MAAM,UAAU,CAAC;AACrE,SAAK,MAAM,QAAQ,KAAK,CAAC,MAAM,UAAU,CAAC;AAAA,EAC5C;AAAA,EAEA,UAAU,QAAQ,UAAU,YAAY;AACtC,QAAI,CAAC,KAAK,WAAW;AAAS,WAAK,WAAW,UAAU,CAAC;AACzD,SAAK,WAAW,QAAQ,KAAK,CAAC,UAAU,UAAU,CAAC;AAAA,EACrD;AAAA,EAEA,OAAO,QAAQ,QAAQ;AACrB,SAAK,QAAQ,UAAU;AAEvB,UAAM,QAAQ,KAAK,QAAQ,OAAO,CAAC,GAAG,MAAM,IAAI,GAAG,CAAC;AACpD,SAAK,kBAAkB,KAAK,QAAQ,IAAI,CAAC,OAAO,KAAK,IAAI,KAAK;AAAA,EAChE;AAAA,EAEA,aAAa,eAAe,oBAAoB;AAC9C,QAAI,aAAa;AAGjB,eAAW,aAAa,eAAe;AACrC,YAAM,eAAe,cAAc;AACnC,YAAM,gBAAgB,KAAK,MAAM;AACjC,UAAI,OAAO,kBAAkB,aAAa;AAGxC,sBAAc,KAAK,gBAAgB;AACnC;AAAA,MACF;AAEA,iBAAW,CAAC,cAAc,KAAK,KAAK,eAAe;AACjD,YAAI,iBAAiB,cAAc;AACjC,wBAAc,QAAQ,KAAK,gBAAgB;AAC3C;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAEA,eAAW,aAAa,oBAAoB;AAC1C,YAAM,oBAAoB,mBAAmB;AAC7C,YAAM,qBAAqB,KAAK,WAAW;AAC3C,UAAI,OAAO,uBAAuB,aAAa;AAG7C,sBAAc,KAAK,gBAAgB;AACnC;AAAA,MACF;AAEA,iBAAW,CAAC,mBAAmB,KAAK,KAAK,oBAAoB;AAC3D,YAAI,sBAAsB,mBAAmB;AAC3C,wBAAc,QAAQ,KAAK,gBAAgB;AAC3C;AAAA,QACF;AAAA,MACF;AAAA,IACF;AACA,WAAO,aAAa;AAAA,EACtB;AACF;;;ACvHO,IAAM,EAAE,OAAO,OAAO,QAAQ,MAAM,MAAM,IAAI;AAC9C,IAAM,EAAE,MAAM,MAAM,KAAK,IAAI;AAC7B,IAAM,EAAE,YAAY,cAAc,gBAAgB,iBAAiB,iBAAiB,gBAAgB,mBAAmB,iBAAiB,IAAI;AAGnJ,IAAM,WAAW,IAAI,cAAc,WAAW;AAC9C,SAAS,KAAK,OAAO,MAAM,CAAG;AAC9B,SAAS,UAAU,OAAO,YAAY,CAAG;AACzC,SAAS,UAAU,OAAO,gBAAgB,IAAI;AAC9C,SAAS,UAAU,OAAO,iBAAiB,IAAI;AAC/C,WAAW,UAAU,CAAC,OAAO,OAAO,OAAO,QAAQ,OAAO,MAAM,OAAO,KAAK,GAAG;AAC7E,WAAS,KAAK,QAAQ,MAAM,CAAG;AAC/B,WAAS,UAAU,QAAQ,gBAAgB,CAAG;AAC9C,WAAS,UAAU,QAAQ,iBAAiB,CAAG;AACjD;AAGA,IAAM,UAAU,IAAI,cAAc,SAAS;AAC3C,QAAQ,KAAK,OAAO,MAAM,GAAG;AAC7B,QAAQ,KAAK,OAAO,MAAM,GAAG;AAC7B,QAAQ,UAAU,OAAO,YAAY,CAAG;AACxC,QAAQ,UAAU,OAAO,gBAAgB,CAAG;AAC5C,QAAQ,KAAK,OAAO,MAAM,CAAG;AAC7B,QAAQ,UAAU,OAAO,YAAY,IAAI;AACzC,QAAQ,UAAU,OAAO,gBAAgB,CAAG;AAC5C,QAAQ,KAAK,QAAQ,MAAM,CAAG;AAC9B,QAAQ,UAAU,QAAQ,YAAY,CAAG;AACzC,QAAQ,UAAU,QAAQ,gBAAgB,IAAI;AAC9C,QAAQ,KAAK,MAAM,MAAM,CAAG;AAC5B,QAAQ,UAAU,MAAM,YAAY,GAAG;AACvC,QAAQ,UAAU,MAAM,gBAAgB,CAAG;AAC3C,QAAQ,UAAU,MAAM,gBAAgB,GAAG;AAC3C,QAAQ,KAAK,OAAO,MAAM,CAAG;AAC7B,QAAQ,UAAU,OAAO,YAAY,GAAG;AACxC,QAAQ,UAAU,OAAO,gBAAgB,CAAG;AAC5C,QAAQ,UAAU,OAAO,gBAAgB,GAAG;AAC5C,QAAQ,OAAO,OAAO,CAAC;AACvB,QAAQ,OAAO,QAAQ,CAAC;AAGxB,IAAM,QAAQ,IAAI,cAAc,OAAO;AACvC,MAAM,KAAK,OAAO,MAAM,CAAG;AAC3B,MAAM,KAAK,OAAO,MAAM,GAAG;AAC3B,MAAM,KAAK,QAAQ,MAAM,GAAG;AAC5B,MAAM,KAAK,MAAM,MAAM,GAAG;AAC1B,MAAM,KAAK,OAAO,MAAM,GAAG;AAC3B,MAAM,OAAO,OAAO,CAAC;AACrB,MAAM,OAAO,QAAQ,CAAC;AAGtB,IAAM,eAAe,IAAI,cAAc,eAAe;AACtD,aAAa,KAAK,OAAO,MAAM,CAAG;AAClC,aAAa,KAAK,OAAO,MAAM,GAAG;AAClC,aAAa,KAAK,QAAQ,MAAM,GAAG;AACnC,aAAa,KAAK,MAAM,MAAM,GAAG;AACjC,aAAa,KAAK,OAAO,MAAM,GAAG;AAClC,aAAa,OAAO,OAAO,CAAC;AAC5B,aAAa,OAAO,QAAQ,CAAC;AAG7B,IAAM,WAAW,IAAI,cAAc,WAAW;AAC9C,SAAS,KAAK,OAAO,MAAM,IAAI;AAC/B,SAAS,KAAK,OAAO,MAAM,IAAI;AAC/B,SAAS,KAAK,QAAQ,MAAM,IAAI;AAChC,SAAS,KAAK,MAAM,MAAM,IAAI;AAC9B,SAAS,KAAK,OAAO,MAAM,IAAI;AAE/B,IAAO,wBAAQ,CAAC,UAAU,SAAS,OAAO,cAAc,QAAQ;;;AC/DhE,IAAM,gBAAgB;AACtB,IAAM,UAAU;AAAA,EAEd,uBAAuB;AAAA,EACvB,qBAAqB;AAAA,EAErB,qBAAqB;AAAA,EACrB,yBAAyB;AAAA,EACzB,wBAAwB;AAC1B;AAEA,SAAS,eAAe,SAAS,SAAS,SAAS,SAAS;AAC1D,QAAM,SAAS,UAAU,YAAY,UAAU;AAC/C,MAAI,QAAQ,KAAK,KAAK,KAAK,IAAI,MAAM,KAAK;AAC1C,MAAI,SAAS;AAAG,YAAQ,CAAC;AAAA,WAChB,QAAQ;AAAG,YAAQ,MAAM;AAClC,SAAO;AACT;AAIA,SAAS,UAAU,QAAQ,QAAQ;AACjC,MAAI,CAAC,UAAU,CAAC;AAAQ,WAAO,CAAC,GAAG,CAAC;AACpC,QAAM,UAAU,eAAe,OAAO,IAAI,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE;AACzE,MAAI,OAAO,WAAW;AAAG,WAAO;AAChC,QAAM,UAAU,eAAe,OAAO,IAAI,OAAO,IAAI,OAAO,IAAI,OAAO,EAAE;AACzE,SAAO,CAAC,SAAS,OAAO;AAC1B;AAEA,SAAS,mBAAmB,OAAO,cAAc,GAAK;AACpD,MAAI,aAAa;AACjB,MAAI,aAAa;AACjB,MAAI,eAAe;AACnB,MAAI,SAAS,MAAQ,SAAS;AAAO,iBAAa,IAAI;AAAA,WAC7C,SAAS,MAAQ,SAAS;AAAO,iBAAa,IAAI;AAAA;AACtD,mBAAe,IAAI;AACxB,SAAO,CAAC,YAAY,YAAY,YAAY;AAC9C;AAEA,SAAS,mBAAmB,YAAY,UAAU,UAAU;AAC1D,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,iBAAiB,KAAK,KAAK,mBAAmB,mBAAmB,mBAAmB,mBAAmB,mBAAmB,gBAAgB;AAChJ,QAAM,iBAAiB,KAAK,KAAK,mBAAmB,mBAAmB,mBAAmB,mBAAmB,mBAAmB,gBAAgB;AAChJ,QAAM,eAAe,KAAK,KAAK,iBAAiB,iBAAiB,iBAAiB,iBAAiB,iBAAiB,cAAc;AAClI,MAAI,UAAU,eAAe,eAAe,iBAAiB,iBAAiB,iBAAiB,mBAAmB,IAAI,eAAe;AACrI,MAAI,SAAS;AAAK,aAAS;AAAA,WAClB,SAAS;AAAM,aAAS;AACjC,MAAI,eAAe,KAAK,KAAK,MAAM;AACnC,iBAAgB,UAAU,eAAgB;AAC1C,MAAI;AACJ,MAAI,eAAe,QAAQ;AAAqB,iBAAa,WAAW;AAAA,WAC/D,eAAe,QAAQ;AAAuB,iBAAa,WAAW;AAAA;AAC1E,iBAAa,WAAW;AAC7B,SAAO;AACT;AAEA,SAAS,4BAA4B,kBAAkB,kBAAkB,gBAAgB,YAAY;AACnG,MAAI;AACJ,MAAI,eAAe,KAAK,IAAI,gBAAgB,GAAG;AAC7C,QAAI,mBAAmB;AAAG,2BAAqB,gBAAgB;AAAA;AAC1D,2BAAqB,gBAAgB;AAAA,EAC5C,WAAW,eAAe,KAAK,IAAI,gBAAgB,GAAG;AACpD,QAAI,mBAAmB;AAAG,2BAAqB,gBAAgB;AAAA;AAC1D,2BAAqB,gBAAgB;AAAA,EAC5C,OAAO;AACL,QAAI,iBAAiB;AAAG,2BAAqB,gBAAgB;AAAA;AACxD,2BAAqB,gBAAgB;AAAA,EAC5C;AACA,SAAO;AACT;AAEA,SAAS,0BAA0B,kBAAkB,kBAAkB,gBAAgB,YAAY;AACjG,MAAI;AACJ,MAAI,eAAe,KAAK,IAAI,gBAAgB,GAAG;AAC7C,QAAI,mBAAmB;AAAG,2BAAqB,gBAAgB;AAAA;AAC1D,2BAAqB,gBAAgB;AAAA,EAC5C,WAAW,eAAe,KAAK,IAAI,gBAAgB,GAAG;AACpD,QAAI,mBAAmB;AAAG,2BAAqB,gBAAgB;AAAA;AAC1D,2BAAqB,gBAAgB;AAAA,EAC5C,OAAO;AACL,QAAI,iBAAiB;AAAG,2BAAqB,gBAAgB;AAAA;AACxD,2BAAqB,gBAAgB;AAAA,EAC5C;AACA,SAAO;AACT;AAEA,SAAS,0BAA0B,kBAAkB,kBAAkB,gBAAgB,YAAY,kBAAkB,kBAAkB,gBAAgB,YAAY;AACjK,MAAI;AACJ,QAAM,0BAA0B,0BAA0B,kBAAkB,kBAAkB,gBAAgB,UAAU;AACxH,QAAM,4BAA4B,4BAA4B,kBAAkB,kBAAkB,gBAAgB,UAAU;AAC5H,MAAI,4BAA4B,gBAAgB,YAAY;AAC1D,QAAI,8BAA8B,gBAAgB;AAAgB,2BAAqB,gBAAgB;AAAA;AAClG,2BAAqB,gBAAgB;AAAA,EAC5C,OAAO;AACL,QAAI,8BAA8B,gBAAgB;AAAgB,2BAAqB,gBAAgB;AAAA;AAClG,2BAAqB,gBAAgB;AAAA,EAC5C;AACA,SAAO;AACT;AAEA,SAAS,yBAAyB,YAAY,UAAU,UAAU,cAAc;AAC9E,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,mBAAmB,WAAW,KAAK,SAAS;AAClD,QAAM,iBAAiB,SAAS,KAAK,SAAS;AAC9C,QAAM,aAAa,KAAK,IAAI,KAAK,IAAI,gBAAgB,GAAG,KAAK,IAAI,gBAAgB,GAAG,KAAK,IAAI,cAAc,CAAC;AAC5G,QAAM,aAAa,KAAK,IAAI,KAAK,IAAI,gBAAgB,GAAG,KAAK,IAAI,gBAAgB,GAAG,KAAK,IAAI,cAAc,CAAC;AAC5G,MAAI,eAAe;AACnB,MAAI,eAAe;AACnB,MAAI,iBAAiB;AACrB,QAAM,2BAA2B,cAAc,aAAa;AAC5D,MAAI,2BAA2B;AAAK,oBAAgB,QAAQ;AAAA,WACnD,2BAA2B;AAAM,oBAAgB,QAAQ;AAAA;AAC7D,sBAAkB,QAAQ;AAC/B,QAAM,iBAAiB,KAAK,KAAK,mBAAmB,mBAAmB,mBAAmB,gBAAgB;AAC1G,QAAM,iBAAiB,KAAK,KAAK,mBAAmB,mBAAmB,mBAAmB,gBAAgB;AAC1G,QAAM,eAAe,KAAK,KAAK,iBAAiB,iBAAiB,iBAAiB,cAAc;AAChG,QAAM,WAAW,KAAK,IAAI,gBAAgB,gBAAgB,YAAY;AACtE,MAAI,qBAAqB,WAAW;AACpC,MAAI,qBAAqB,WAAW;AACpC,MAAI,mBAAmB,SAAS;AAChC,MAAI,mBAAmB,SAAS;AAChC,MAAI,aAAa,gBAAgB;AAC/B,uBAAmB,SAAS;AAC5B,uBAAmB,SAAS;AAAA,EAC9B,WAAW,aAAa,cAAc;AACpC,yBAAqB,SAAS;AAC9B,yBAAqB,SAAS;AAAA,EAChC;AACA,QAAM,iBAAiB,CAAC,oBAAoB,kBAAkB;AAC9D,QAAM,eAAe,CAAC,kBAAkB,gBAAgB;AACxD,QAAM,aAAa,UAAU,gBAAgB,YAAY;AACzD,QAAM,QAAQ,mBAAmB,YAAY,QAAQ,sBAAsB;AAC3E,kBAAgB,MAAM;AACtB,kBAAgB,MAAM;AACtB,oBAAkB,MAAM;AACxB,aAAW,eAAe,cAAc;AACtC,UAAM,cAAc,mBAAmB,aAAa,QAAQ,uBAAuB;AACnF,oBAAgB,YAAY;AAC5B,oBAAgB,YAAY;AAC5B,sBAAkB,YAAY;AAAA,EAChC;AAGA,MAAI;AACJ,MAAI,iBAAiB,KAAK,IAAI,cAAc,cAAc,cAAc,GAAG;AACzE,yBAAqB,0BAA0B,kBAAkB,kBAAkB,gBAAgB,UAAU;AAAA,EAC/G,WAAW,mBAAmB,KAAK,IAAI,cAAc,cAAc,GAAG;AACpE,yBAAqB,4BAA4B,kBAAkB,kBAAkB,gBAAgB,UAAU;AAAA,EACjH,OAAO;AACL,yBAAqB,0BAA0B,kBAAkB,kBAAkB,gBAAgB,YAAY,kBAAkB,kBAAkB,gBAAgB,UAAU;AAAA,EAC/K;AACA,SAAO;AACT;AAEA,SAAS,SAAS,WAAW;AAE3B,QAAM,WAAuB,CAAC;AAC9B,QAAM,WAAuB,CAAC;AAC9B,QAAM,cAAwB,CAAC;AAC/B,QAAM,mBAA6B,CAAC;AACpC,MAAI,CAAC;AAAW,WAAO,EAAE,OAAO,aAAa,YAAY,iBAAiB;AAG1E,aAAW,UAAU,OAAO,KAAK;AAC/B,UAAM,SAAS,OAAO,UAAU,MAAM;AACtC,UAAM,YAAsB,CAAC;AAC7B,UAAM,YAAsB,CAAC;AAC7B,eAAWI,UAAS,QAAQ;AAC1B,YAAM,SAAS,UAAUA,OAAM;AAC/B,YAAMC,UAAS,UAAUD,OAAM;AAE/B,YAAM,SAAS,UAAU,QAAQC,OAAM;AACvC,YAAM,UAAU,OAAO;AACvB,YAAM,UAAU,OAAO;AACvB,gBAAU,KAAK,OAAO;AACtB,gBAAU,KAAK,OAAO;AAAA,IACxB;AACA,aAAS,KAAK,SAAS;AACvB,aAAS,KAAK,SAAS;AAAA,EACzB;AAGA,aAAW,UAAU,OAAO,KAAK;AAE/B,UAAM,eAAgB,WAAW,OAAO,QAAS,IAAI;AACrD,UAAM,iBAAiB,OAAO,UAAU,MAAM;AAC9C,UAAM,aAAa,UAAU,eAAe,cAAc;AAC1D,UAAM,WAAW,UAAU,eAAe,eAAe,GAAG;AAC5D,UAAM,WAAW,UAAU,eAAe,GAAG;AAE7C,UAAM,eAAe,mBAAmB,YAAY,UAAU,QAAQ;AACtE,UAAM,iBAAiB,yBAAyB,YAAY,UAAU,UAAU,SAAS,QAAQ,MAAM,YAAY,CAAC;AACpH,gBAAY,UAAU;AACtB,qBAAiB,UAAU;AAAA,EAC7B;AACA,SAAO,EAAE,OAAO,aAAa,YAAY,iBAAiB;AAC5D;AAEO,SAAS,QAAQ,WAAW;AACjC,MAAI,CAAC,aAAa,UAAU,WAAW;AAAG,WAAO;AACjD,QAAM,eAAe,SAAS,SAAS;AACvC,QAAM,YAAY,CAAC;AACnB,aAAW,aAAa,OAAO,KAAK;AAClC,cAAU,OAAO,QAAQ,SAAS,KAAK;AAAA,MACrC,MAAM,WAAW,QAAQ,aAAa,MAAM,UAAU;AAAA,MACtD,WAAW,gBAAgB,QAAQ,aAAa,WAAW,UAAU;AAAA,IACvE;AAAA,EACF;AACA,SAAO;AACT;AAEO,SAAS,MAAM,WAAW;AAC/B,QAAM,QAAgD,CAAC;AACvD,MAAI,CAAC,aAAa,UAAU,WAAW;AAAG,WAAO;AACjD,QAAM,eAAe,SAAS,SAAS;AACvC,aAAWC,YAAW,uBAAU;AAC9B,UAAM,aAAaA,SAAQ,aAAa,aAAa,OAAO,aAAa,UAAU;AACnF,QAAI,cAAc;AAAe,YAAM,KAAK,EAAE,MAAMA,SAAQ,MAAM,WAAW,CAAC;AAAA,EAChF;AACA,SAAO;AACT;;;AClOA,IAAMC,mBAAkB;AAAA,EACtB,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,EAClB,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,EAClB,QAAQ,CAAC,GAAG,IAAI,IAAI,EAAE;AAAA,EACtB,MAAM,CAAC,IAAI,IAAI,IAAI,EAAE;AAAA,EACrB,OAAO,CAAC,IAAI,IAAI,IAAI,EAAE;AAAA,EACtB,MAAM,CAAC,CAAC;AACV;AAEA,IAAI;AACJ,IAAI;AACJ,IAAI;AAEJ,eAAsBC,UAAQC,QAAeC,SAAuC;AAClF,QAAM,cAAc,MAAM,aAAa,cAAcD,QAAOC,OAAM;AAClE,MAAI,CAAC;AAAa,WAAO,CAAC;AAC1B,QAAM,QAAsB,CAAC;AAC7B,WAASC,KAAI,GAAGA,KAAI,YAAY,QAAQA,MAAK;AAC3C,UAAMC,eAAc,CAAC;AACrB,QAAI,YAAYD,IAAG,WAAW;AAC5B,iBAAW,OAAO,OAAO,KAAKJ,gBAAe,GAAG;AAC9C,QAAAK,aAAY,OAAOL,iBAAgB,KAAK,IAAI,CAACM,WAAU,YAAYF,IAAG,UAAUE,OAAM;AAAA,MACxF;AAAA,IACF;AACA,UAAM,YAAY,YAAYF,IAAG;AACjC,QAAI,MAAW,CAAC,OAAO,kBAAkB,OAAO,kBAAkB,GAAG,CAAC;AACtE,QAAI,SAAc,CAAC,GAAG,GAAG,GAAG,CAAC;AAC7B,QAAI,aAAa,UAAU,SAAS,GAAG;AACrC,iBAAW,MAAM,WAAW;AAC1B,YAAI,GAAG,KAAK,IAAI;AAAI,cAAI,KAAK,GAAG;AAChC,YAAI,GAAG,KAAK,IAAI;AAAI,cAAI,KAAK,GAAG;AAChC,YAAI,GAAG,KAAK,IAAI;AAAI,cAAI,KAAK,GAAG;AAChC,YAAI,GAAG,KAAK,IAAI;AAAI,cAAI,KAAK,GAAG;AAAA,MAClC;AACA,UAAI,MAAM,IAAI;AACd,UAAI,MAAM,IAAI;AACd,eAAS,CAAC,IAAI,MAAMF,OAAM,MAAM,MAAM,IAAI,IAAI,MAAMA,OAAM,MAAM,MAAM,IAAI,IAAI,MAAMA,OAAM,MAAM,MAAM,IAAI,IAAI,MAAMA,OAAM,MAAM,MAAM,EAAE;AAAA,IAC1I,OAAO;AACL,YAAM,YAAYE,IAAG,MAAM;AAAA,QACzB,KAAK,MAAM,KAAK,IAAI,GAAG,YAAYA,IAAG,IAAI,QAAQ,EAAE,CAAC;AAAA,QACrD,KAAK,MAAM,KAAK,IAAI,GAAG,YAAYA,IAAG,IAAI,QAAQ,EAAE,CAAC;AAAA,QACrD,KAAK,MAAM,KAAK,IAAKF,OAAM,MAAM,MAAM,GAAI,YAAYE,IAAG,IAAI,YAAY,EAAE,IAAI,KAAK,IAAI,GAAG,YAAYA,IAAG,IAAI,QAAQ,EAAE,CAAC;AAAA,QAC1H,KAAK,MAAM,KAAK,IAAKF,OAAM,MAAM,MAAM,GAAI,YAAYE,IAAG,IAAI,YAAY,EAAE,IAAI,KAAK,IAAI,GAAG,YAAYA,IAAG,IAAI,QAAQ,EAAE,CAAC;AAAA,MAC5H,IAAI,CAAC,GAAG,GAAG,GAAG,CAAC;AACf,eAAS;AAAA,QACN,YAAYA,IAAG,IAAI,QAAQ,MAAOF,OAAM,MAAM,MAAM;AAAA,QACpD,YAAYE,IAAG,IAAI,QAAQ,MAAOF,OAAM,MAAM,MAAM;AAAA,SACpD,YAAYE,IAAG,IAAI,YAAY,KAAK,YAAYA,IAAG,IAAI,QAAQ,OAAOF,OAAM,MAAM,MAAM;AAAA,SACxF,YAAYE,IAAG,IAAI,YAAY,KAAK,YAAYA,IAAG,IAAI,QAAQ,OAAOF,OAAM,MAAM,MAAM;AAAA,MAC3F;AAAA,IACF;AACA,UAAM,YAAuB,QAAQ,SAAS;AAC9C,UAAM,KAAK;AAAA,MACT,IAAIE;AAAA,MACJ,OAAO,KAAK,MAAM,MAAM,YAAYA,IAAG,UAAU,IAAI;AAAA,MACrD,UAAU,KAAK,MAAM,MAAM,YAAYA,IAAG,aAAa,IAAI;AAAA,MAC3D,aAAa,KAAK,MAAM,MAAM,YAAYA,IAAG,gBAAgB,IAAI;AAAA,MACjE,OAAO;AAAA,MACP;AAAA,MACA;AAAA,MACA;AAAA,MACA,aAAaC;AAAA,MACb;AAAA,IACF,CAAC;AAAA,EACH;AACA,SAAO;AACT;AAEA,eAAsBE,OAAKJ,SAAiE;AApF5F;AAqFE,MAAIK,KAAI,SAAS;AACf,wBAAoB;AACpB,oBAAgB;AAAA,EAClB;AACA,MAAI,CAAC,qBAAqB,CAAC,eAAe;AACxC,KAAC,mBAAmB,aAAa,IAAI,MAAM,QAAQ,IAAI;AAAA,MACrDL,QAAO,KAAK,UAAU,WAAU,KAAAA,QAAO,KAAK,aAAZ,mBAAsB,SAAS,IAAI;AAAA,MACnEA,QAAO,KAAK,YAAY,WAAU,KAAAA,QAAO,KAAK,aAAZ,mBAAsB,SAAS,IAAI;AAAA,IACvE,CAAC;AAAA,EACH,OAAO;AACL,QAAIA,QAAO;AAAO,UAAI,iBAAiB,kBAAkB,WAAW;AACpE,QAAIA,QAAO;AAAO,UAAI,iBAAiB,cAAc,WAAW;AAAA,EAClE;AACA,QAAM,eAAe,oBAAoB,IAAiB,aAAa,iBAAiB,IAAI;AAC5F,MAAI,gBAAgB;AAAe,mBAAe,IAAiB,aAAa,cAAc,aAAa;AAC3G,SAAO,CAAC,mBAAmB,aAAa;AAC1C;;;AC3FO,IAAMM,UAAS;AAAA,EACpB,MAAM;AAAA,EACN,UAAU;AAAA,EACV,QAAQ;AAAA,EACR,IAAI;AAAA,EACJ,YAAY,CAAC;AAAA,EACb,WAAW;AAAA,IACT,OAAO;AAAA,IACP,WAAW;AAAA,IACX,oBAAoB;AAAA,IACpB,uBAAuB;AAAA,IACvB,OAAO;AAAA,IACP,SAAS;AAAA,IACT,8BAA8B;AAAA,IAC9B,gBAAgB;AAAA,EAClB;AACF;AAEA,SAAS,aAAmB;AAK1B,QAAM,KAAKA,QAAO;AAClB,MAAI,CAAC;AAAI;AACT,EAAAA,QAAO,aAAa,GAAG,uBAAuB;AAEhD;AAOO,SAAS,SAASC,WAAuB;AA5ChD;AA8CE,MAAIA,UAAS,OAAO,YAAY;AAAW;AAC3C,MAAKD,QAAO,QAAW,OAAO,EAAE,YAAa,GAAC,KAAAA,WAAA,gBAAAA,QAAQ,OAAR,mBAAY,aAAaA,QAAO,GAAG,WAAU;AACzF,QAAI,wCAAwC;AAC5C,IAAOE,OAAMD,SAAQ;AAAA,EAMvB;AACA,MAAI,CAAI,YAAYD,QAAO,IAAI,GAAG;AAChC,QAAI;AACF,MAAAA,QAAO,SAAe,OAAO,KAAK,GAAG;AAAA,IACvC,SAAS,KAAP;AACA,UAAI,gCAAgC,GAAG;AACvC;AAAA,IACF;AACA,QAAI;AACF,MAAAA,QAAO,KAAKA,QAAO,OAAO,WAAW,UAAUA,QAAO,SAAS;AAC/D,UAAI,CAACA,QAAO,IAAI;AACd,YAAI,iCAAiC;AACrC;AAAA,MACF;AACA,YAAM,OAAOA,QAAO,GAAG,aAAaA,QAAO,GAAG,OAAO,EAAE,SAAS,KAAK;AACrE,UAAI,CAAC,MAAM;AACT,YAAI,qEAAqE;AACzE,QAAAC,UAAS,OAAO,UAAU;AAC1B;AAAA,MACF;AACA,UAAID,QAAO,QAAQ;AACjB,QAAAA,QAAO,OAAO,iBAAiB,oBAAoB,CAACG,OAAM;AACxD,cAAI,mBAAmBA,GAAE,IAAI;AAC7B,cAAI,0FAA0F;AAC9F,UAAAF,UAAS,KAAK,OAAO;AACrB,gBAAM,IAAI,MAAM,mCAAmC;AAAA,QAMrD,CAAC;AACD,QAAAD,QAAO,OAAO,iBAAiB,wBAAwB,CAACG,OAAM;AAC5D,cAAI,oCAAoCA,EAAC;AAAA,QAC3C,CAAC;AACD,QAAAH,QAAO,OAAO,iBAAiB,6BAA6B,CAACG,OAAM;AACjE,cAAI,kCAAkCA,EAAC;AAAA,QACzC,CAAC;AAAA,MACH;AAAA,IACF,SAAS,KAAP;AACA,UAAI,oCAAoC,GAAG;AAC3C;AAAA,IACF;AACA,QAAI;AACF,MAAG,gBAAgB,GAAGH,QAAO,EAAE;AAAA,IACjC,SAAS,KAAP;AACA,UAAI,oCAAoC,GAAG;AAC3C;AAAA,IACF;AACA,QAAI;AACF,YAAM,MAAM,IAAO,aAAaA,QAAO,EAAE;AACzC,MAAG,gBAAgBA,QAAO,MAAM,MAAM,IAAO,iBAAiB,GAAG,GAAGA,QAAO,QAAQ;AAAA,IACrF,SAAS,KAAP;AACA,UAAI,yCAAyC,GAAG;AAChD;AAAA,IACF;AACA,QAAI;AACF,YAAM,UAAa,qBAAqB,OAAO;AAC/C,cAAQ,QAAQ,CAAC,iBAAiB;AAChC,cAAM,kBAAkB,EAAE,GAAG,cAAc,aAAaA,QAAO,KAAK;AACpE,QAAG,eAAe,eAAe;AAAA,MACnC,CAAC;AAAA,IACH,SAAS,KAAP;AACA,UAAI,oDAAoD,GAAG;AAC3D;AAAA,IACF;AACA,UAAM,UAAa,QAAQ,EAAE,kBAAqB,QAAQ,EAAE,gBAAgB,EAAE,KAAK;AACnF,QAAI,SAAS;AACX,UAAI,yBAAyB,QAAQ,aAAa,QAAQ,OAAO,cAAwB,QAAQ,aAAa,QAAQ,QAAQ,GAAa;AAAA,IAC7I,OAAO;AACL,UAAI,iCAAiC,SAASA,QAAO,EAAE;AACvD;AAAA,IACF;AACA,QAAI;AACF,UAAO,IAAI,EAAE,aAAa;AAAe,QAAG,IAAI,EAAE,IAAI,iBAAiB,CAAC;AAAA,IAC1E,SAAS,KAAP;AACA,UAAI,0CAA0C,GAAG;AACjD;AAAA,IACF;AACA,eAAW;AACX,QAAI,uBAAuBA,QAAO,IAAI;AAAA,EACxC;AACF;;;AChIA,SAAS,kBAAkBI,SAAgB;AACzC,MAAI,CAACC,KAAI,QAAQ,SAAS,KAAK,GAAG;AAChC,UAAM,YAAY;AAAA,MAChB,YAAY;AAAA,MACZ,aAAgB,WAAW;AAAA,MAC3B,YAAY,CAACC,QAAU,KAAK,MAAS,IAAIA,IAAG,OAAO,GAAM,IAAO,IAAIA,IAAG,OAAO,GAAGA,IAAG,OAAO,CAAC,GAAGA,IAAG,OAAO,CAAC,CAAC,CAAC;AAAA,IAC9G;AACA,QAAIF,QAAO;AAAO,UAAI,sBAAsB,KAAK;AACjD,IAAG,eAAe,SAAS;AAC3B,IAAAC,KAAI,QAAQ,KAAK,KAAK;AAAA,EACxB;AACA,MAAI,CAACA,KAAI,QAAQ,SAAS,UAAU,GAAG;AACrC,UAAM,iBAAiB;AAAA,MACrB,YAAY;AAAA,MACZ,aAAgB,WAAW;AAAA,MAC3B,YAAY,CAACC,QAAU,KAAK,MAAS,KAAO,IAAO,SAASA,IAAG,OAAO,IAAIA,IAAG,OAAO,CAAC,GAAGA,IAAG,OAAO,CAAC,GAAM,IAAIA,IAAG,OAAO,GAAGA,IAAG,OAAO,CAAC,CAAC,CAAC;AAAA,IACzI;AACA,QAAIF,QAAO;AAAO,UAAI,sBAAsB,UAAU;AACtD,IAAG,eAAe,cAAc;AAChC,IAAAC,KAAI,QAAQ,KAAK,UAAU;AAAA,EAC7B;AAoBA,MAAI,CAACA,KAAI,QAAQ,SAAS,kBAAkB,KAAKD,QAAO,iBAAiB;AACvE,UAAM,yBAAyB;AAAA,MAC7B,YAAY;AAAA,MACZ,aAAgB,WAAW;AAAA,MAC3B,YAAY,CAACE,QAAU,KAAK,MAAM;AAChC,cAAMC,WAAa,WAAW;AAC9B,QAAG,WAAW,KAAK;AACnB,cAAMC,KAAO,MAAM,iBAAiBF,IAAG,OAAO,OAAOA,IAAG,MAAM,SAASA,IAAG,MAAM,WAAWA,IAAG,MAAM,MAAM;AAC1G,QAAG,WAAWC,QAAO;AACrB,eAAOC;AAAA,MACT,CAAC;AAAA,IACH;AACA,QAAIJ,QAAO;AAAO,UAAI,sBAAsB,kBAAkB;AAC9D,IAAG,eAAe,sBAAsB;AACxC,IAAAC,KAAI,QAAQ,KAAK,kBAAkB;AAAA,EACrC;AACF;AAEA,eAAsB,MAAMI,WAAiB,QAAQ,OAAO;AAC1D,EAAAA,UAAS,QAAQ;AACjB,MAAI,SAASJ,KAAI,WAAYI,UAAS,OAAO,WAAYA,UAAS,OAAO,QAAQ,SAAS,KAAU,WAAW,MAAMA,UAAS,OAAO,SAAW;AAC9I,UAAM,YAAY,IAAI;AAEtB,QAAIA,UAAS,OAAO,WAAWA,UAAS,OAAO,QAAQ,SAAS,GAAG;AAGjE,UAAI,OAAO,WAAW,eAAe,OAAO,sBAAsB,eAAeA,UAAS,OAAO,OAAO;AACtG,YAAIA,UAAS,OAAO;AAAO,cAAI,2BAA2B;AAAA,MAC5D;AAGA,UAAIJ,KAAI,WAAWI,UAAS,OAAO,YAAY,cAAc;AAC3D,YAAIA,UAAS,OAAO;AAAO,cAAI,8DAA8D;AAC7F,QAAAA,UAAS,OAAO,UAAU;AAAA,MAC5B;AACA,UAAIJ,KAAI,SAASI,UAAS,OAAO,YAAY,WAAWA,UAAS,OAAO,YAAY,YAAY;AAC9F,YAAIA,UAAS,OAAO;AAAO,cAAI,4BAA4BA,UAAS,OAAO,iCAAiC;AAC5G,QAAAA,UAAS,OAAO,UAAU;AAAA,MAC5B;AAGA,UAAIJ,KAAI,WAAWI,UAAS,OAAO,YAAY,UAAU;AACvD,YAAI,OAAO,cAAc,eAAe,OAAO,UAAU,QAAQ,aAAa;AAC5E,cAAI,qEAAqE;AACzE,UAAAA,UAAS,OAAO,UAAU;AAAA,QAC5B,OAAO;AACL,gBAAM,UAAU,MAAM,UAAU,IAAI,eAAe;AACnD,cAAIA,UAAS,OAAO;AAAO,gBAAI,8BAA8B,OAAO;AACpE,cAAI,CAAC,SAAS;AACZ,gBAAI,sEAAsE;AAC1E,YAAAA,UAAS,OAAO,UAAU;AAAA,UAC5B,OAAO;AAEL,kBAAM,cAAc,wBAAwB,UAAU,MAAO,QAAuB,mBAAmB,IAAI;AAE3G,gBAAI,wBAAwB,WAAW;AAAA,UACzC;AAAA,QACF;AAAA,MACF;AAGA,UAAIA,UAAS,OAAO,YAAY;AAAW,QAAQ,SAASA,SAAQ;AACpE,YAAM,YAAY,OAAO,KAAQ,OAAO,EAAE,eAA0C;AACpF,UAAIA,UAAS,OAAO;AAAO,YAAI,uBAAuB,SAAS;AAE/D,UAAI,CAAC,UAAU,SAASA,UAAS,OAAO,OAAO,GAAG;AAChD,YAAI,kBAAkBA,UAAS,OAAO,+BAA+B;AACrE,QAAAA,UAAS,OAAO,UAAUJ,KAAI,OAAO,eAAe;AACpD,YAAII,UAAS,OAAO;AAAO,cAAI,6BAA6BA,UAAS,OAAO,SAAS;AAAA,MACvF;AAEA,UAAIA,UAAS,OAAO;AAAO,YAAI,oBAAoBA,UAAS,OAAO,OAAO;AAG1E,UAAIA,UAAS,OAAO,YAAY,QAAQ;AACtC,YAAO,IAAI,EAAE,aAAa;AAA+B,UAAG,IAAI,EAAE,IAAI,iCAAiC,IAAI;AAC3G,YAAIA,UAAS,OAAO;AAAO,cAAI,cAAcA,UAAS,OAAO,QAAQ;AACrE,YAAI,OAAU,iBAAiB;AAAa,UAAG,aAAaA,UAAS,OAAO,UAAUA,UAAS,OAAO,iBAAiB;AAAA;AAClH,gBAAM,IAAI,MAAM,wEAAwE;AAC7F,YAAI,KAAK;AACT,YAAI,OAAO;AACX,YAAI;AACF,eAAK,MAAS,IAAI,EAAE,SAAS,8BAA8B;AAC3D,iBAAO,MAAS,IAAI,EAAE,SAAS,uBAAuB;AACtD,cAAIA,UAAS,OAAO;AAAO,gBAAI,mBAAmB,OAAO,SAAS,aAAa,KAAK,kBAAkB,kBAAkB;AACxH,cAAIA,UAAS,OAAO,SAAS,CAAC;AAAM,gBAAI,2CAA2C;AAAA,QACrF,SAAQC,IAAN;AACA,cAAI,uBAAuB;AAAA,QAC7B;AAAA,MACF;AAEA,UAAI;AACF,cAAS,WAAWD,UAAS,OAAO,OAAO;AAC3C,cAAS,MAAM;AACf,QAAUE,MAAK;AAAA,MACjB,SAAS,KAAP;AACA,YAAI,8BAA8BF,UAAS,OAAO,SAAS,GAAG;AAC9D,eAAO;AAAA,MACT;AAAA,IACF;AAGA,QAAO,WAAW,MAAM,WAAW;AACjC,UAAO,IAAI,EAAE,aAAa;AAA8B,QAAG,IAAI,EAAE,IAAI,gCAAgC,KAAK;AAC1G,UAAO,IAAI,EAAE,aAAa;AAAmB,QAAG,IAAI,EAAE,IAAI,qBAAqB,IAAI;AACnF,UAAO,IAAI,EAAE,aAAa;AAA2B,QAAG,IAAI,EAAE,IAAI,6BAA6B,IAAI;AACnG,UAAO,IAAI,EAAE,aAAa;AAA4B,QAAG,IAAI,EAAE,IAAI,8BAA8B,GAAG;AACpG,UAAO,IAAI,EAAE,aAAa;AAAgB,QAAG,IAAI,EAAE,IAAI,kBAAkB,IAAI;AAC7E,UAAO,IAAI,EAAE,aAAa;AAAsB,QAAG,IAAI,EAAE,IAAI,wBAAwB,IAAI;AAGzF,UAAI,OAAOA,UAAS,OAAO,eAAe,eAAeA,UAAS,OAAO,YAAY;AACnF,YAAI,mDAAmD,IAAI;AAC3D,QAAG,IAAI,EAAE,IAAI,kCAAkC,CAAC;AAAA,MAClD;AACA,UAAO,QAAQ,EAAE,iBAAiB;AAChC,cAAM,KAAK,MAAS,QAAQ,EAAE,gBAAgB,EAAE;AAChD,YAAIA,UAAS,OAAO;AAAO,cAAI,cAAc,GAAG,aAAa,GAAG,OAAO,cAAwB,GAAG,aAAa,GAAG,QAAQ,GAAa;AAAA,MACzI;AAAA,IACF;AAGA,QAAO,WAAW,MAAM,UAAU;AAAA,IAIlC;AAGA,IAAG,eAAe;AAClB,UAAS,MAAM;AAEf,IAAAA,UAAS,YAAY,cAAc,KAAK,MAAM,IAAI,IAAI,SAAS;AAC/D,IAAAA,UAAS,OAAO,UAAa,WAAW;AAExC,UAAMJ,KAAI,cAAc;AACxB,sBAAkBI,UAAS,MAAM;AAAA,EAEnC;AACA,SAAO;AACT;AAGO,SAAS,QAAQ,aAAuBL,SAAQ;AAErD,aAAW,cAAc,aAAa;AACpC,UAAM,eAAe;AAAA,MACnB;AAAA,MACA,aAAaA,QAAO;AAAA,MACpB,YAAY,MAAM;AAAE,YAAIA,QAAO;AAAO,cAAI,cAAc,YAAYA,QAAO,OAAO;AAAA,MAAG;AAAA,IAGvF;AACA,IAAG,eAAe,YAAY;AAAA,EAChC;AACA,EAAAC,KAAI,UAAa,qBAAwB,WAAW,CAAC,EAAE,IAAI,CAAC,WAAY,OAAO,WAAsB,YAAY,CAAC;AACpH;;;ACzLA,IAAMO,UAAiD,CAAC,MAAM,IAAI;AAClE,IAAM,mBAAmB,CAAC,+CAA+C,oDAAoD;AAE7H,IAAMC,aAAY,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAEjC,IAAM,UAAU,CAAC,QAAQ,QAAQ,SAAS,SAAS,QAAQ,OAAO,UAAU;AAC5E,IAAM,YAAY;AAElB,IAAM,gBAAgB;AACtB,IAAM,wBAAwB;AAC9B,IAAM,qBAAqB;AAE3B,IAAIC,YAAU,OAAO;AACrB,IAAIC,aAAW;AACf,IAAI,aAA+B,CAAC,GAAG,CAAC;AAUxC,IAAMC,SAGF;AAAA,EACF,OAAO,CAAC;AAAA,EACR,OAAO,CAAC;AACV;AAEA,IAAM,YAAY;AAAA,EAShB,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,EAClB,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC;AAAA,EAClB,QAAQ,CAAC,GAAG,IAAI,IAAI,EAAE;AAAA,EACtB,MAAM,CAAC,IAAI,IAAI,IAAI,EAAE;AAAA,EACrB,OAAO,CAAC,IAAI,IAAI,IAAI,EAAE;AAAA,EACtB,MAAM,CAAC,CAAC;AAAA,EACR,MAAM,CAAC,GAAG,IAAI,IAAI,GAAG,GAAG,GAAG,CAAC;AAC9B;AAEA,eAAsBC,YAAWC,SAAqC;AAtEtE;AAwEE,MAAIC,KAAI;AAAS,IAAAP,QAAO,KAAK;AAC7B,MAAI,CAACA,QAAO,IAAI;AAGd,YAAQ,CAAC,qBAAqB,SAAS,wBAAwB,SAAS,YAAY,UAAU,QAAQ,mBAAmB,iBAAiB,qBAAqB,qBAAqB,cAAc,SAAS,SAAS,OAAO,GAAGM,OAAM;AACpO,IAAAN,QAAO,KAAK,MAAM,WAAU,KAAAM,QAAO,KAAK,aAAZ,mBAAsB,SAAS;AAC3D,UAAM,SAASN,QAAO,GAAG,cAAc,OAAO,OAAOA,QAAO,GAAG,eAAe,SAAS,IAAI;AAC3F,IAAAC,WAAU,GAAG,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AACxF,IAAAA,WAAU,GAAG,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EAC1F,WAAWK,QAAO;AAAO,QAAI,iBAAiBN,QAAO,GAAG,WAAW;AACnE,SAAOA,QAAO;AAChB;AAEA,eAAsB,aAAaM,SAAqC;AArFxE;AAsFE,MAAIC,KAAI;AAAS,IAAAP,QAAO,KAAK;AAC7B,MAAI,CAACA,QAAO,IAAI;AACd,IAAAA,QAAO,KAAK,MAAM,WAAU,KAAAM,QAAO,KAAK,aAAZ,mBAAsB,SAAS;AAC3D,UAAM,SAASN,QAAO,GAAG,cAAc,OAAO,OAAOA,QAAO,GAAG,eAAe,SAAS,IAAI;AAC3F,IAAAC,WAAU,GAAG,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AACxF,IAAAA,WAAU,GAAG,KAAK,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EAC1F,WAAWK,QAAO;AAAO,QAAI,iBAAiBN,QAAO,GAAG,WAAW;AACnE,SAAOA,QAAO;AAChB;AAQA,eAAe,YAAYQ,QAAeC,SAA6C;AACrF,QAAM,QAA4B,CAAC;AACnC,MAAI,CAACD,UAAS,CAACE,QAAO;AAAI,WAAO;AACjC,QAAMC,KAA4B,CAAC;AACnC,QAAM,SAASH,OAAM,MAAM,MAAM,MAAMA,OAAM,MAAM,MAAM;AACzD,QAAM,SAAS,KAAK,IAAI,KAAK,OAAOA,OAAM,MAAM,MAAM,KAAK,CAAC,IAAI,GAAG,qBAAqB;AACxF,QAAM,QAAQ,KAAK,MAAM,SAAS,QAAQ,CAAC,IAAI;AAC/C,EAAAG,GAAE,SAAY,MAAM,eAAeH,QAAO,CAAC,QAAQ,KAAK,CAAC;AACzD,EAAAG,GAAE,OAAU,KAAKA,GAAE,QAAQ,OAAO;AAClC,GAACA,GAAE,WAAWA,GAAE,QAAQ,IAAI,MAAMD,QAAO,GAAG,aAAaC,GAAE,MAAM,gBAAgB;AACjF,EAAAA,GAAE,QAAW,QAAQA,GAAE,UAAU,CAAC,GAAG,CAAC,CAAC;AACvC,EAAAA,GAAE,SAAY,QAAQA,GAAE,WAAW,CAAC,CAAC,CAAC;AACtC,QAAM,cAA2B,QAAQA,GAAE,QAAQ,CAAC;AACpD,EAAG,QAAQ,YAAY,UAAU;AACjC,cAAY,OAAO,WAAW,CAAC;AAC/B,EAAAA,GAAE,WAAc,MAAM,aAAa,CAAC;AACpC,EAAG,QAAQ,WAAW;AAEtB,EAAAA,GAAE,MAAS,IAAIA,GAAE,UAAU,CAAC;AAC5B,EAAAA,GAAE,SAAY,OAAOA,GAAE,UAAU,CAAC;AAClC,MAAI,KAAK;AACT,EAAAA,GAAE,MAAM,MAAS,MAAM,uBAAuBA,GAAE,OAAOA,GAAE,MAAMF,QAAO,KAAK,eAAe,KAAK,GAAGA,QAAO,KAAK,gBAAgB,GAAGA,QAAO,KAAK,iBAAiB,CAAC;AAC/J,QAAM,MAAM,MAAME,GAAE,IAAI,KAAK;AAC7B,QAAM,SAAS,MAAMA,GAAE,IAAI,KAAK;AAChC,QAAM,WAAW,MAAMA,GAAE,OAAO,KAAK;AACrC,aAAW,YAAY,MAAM,KAAK,GAAG,GAAG;AACtC,UAAM,WAAc,MAAMA,GAAE,OAAO,UAAU,CAAC;AAC9C,UAAM,QAAQ,MAAM,SAAS,KAAK;AAClC,IAAG,QAAQ,QAAQ;AACnB,UAAM,UAAe,CAAC,MAAM,IAAI,MAAM,IAAI,MAAM,KAAK,MAAM,IAAI,MAAM,KAAK,MAAM,EAAE;AAClF,UAAM,SAAkBC,OAAM,SAAS,kBAAkB;AACzD,UAAM,UAAe,CAAC,KAAK,MAAM,QAAQ,KAAK,WAAW,EAAE,GAAG,KAAK,MAAM,QAAQ,KAAK,WAAW,EAAE,GAAG,KAAK,MAAM,QAAQ,KAAK,WAAW,EAAE,GAAG,KAAK,MAAM,QAAQ,KAAK,WAAW,EAAE,CAAC;AACpL,UAAM,QAAQ,OAAO;AACrB,UAAM,QAAQ,QAAQ,SAAS;AAC/B,UAAMC,QAAyB,EAAE,IAAI,MAAM,OAAO,KAAK,SAAS,QAAQ,MAAM;AAC9E,UAAM,KAAKA,KAAI;AAAA,EACjB;AACA,SAAO,KAAKF,EAAC,EAAE,QAAQ,CAACG,YAAc,QAAQH,GAAEG,QAAO,CAAC;AACxD,QAAM,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AACtC,MAAI,MAAM,UAAUL,QAAO,KAAK,eAAe;AAAI,UAAM,SAAUA,QAAO,KAAK,eAAe;AAC9F,SAAO;AACT;AAEA,eAAe,cAAcD,QAAe,GAAqBC,SAAqC;AACpG,QAAMI,QAAmB;AAAA,IACvB,IAAI,EAAE;AAAA,IACN,OAAO,KAAK,MAAM,MAAM,EAAE,KAAK,IAAI;AAAA,IACnC,UAAU,KAAK,MAAM,MAAM,EAAE,KAAK,IAAI;AAAA,IACtC,aAAa;AAAA,IACb,KAAK,EAAE;AAAA,IACP,QAAQ,EAAE;AAAA,IACV,OAAO,EAAE;AAAA,IACT,WAAW,CAAC;AAAA,IACZ,WAAW,CAAC;AAAA,IACZ,aAAa,CAAC;AAAA,EAChB;AACA,MAAIL,UAASE,QAAO,MAAMD,QAAO,KAAK,aAAa,EAAE,SAASA,QAAO,KAAK,iBAAiB,IAAI;AAC7F,UAAME,KAA4B,CAAC;AACnC,UAAM,UAAU,CAAC,EAAE,OAAO,IAAI,EAAE,OAAO,IAAI,EAAE,OAAO,KAAK,EAAE,OAAO,IAAI,EAAE,OAAO,KAAK,EAAE,OAAO,EAAE;AAC/F,IAAAA,GAAE,OAAU,MAAM,cAAcH,QAAO,CAAC,OAAO,GAAG,CAAC,CAAC,GAAG,CAACO,WAAU,GAAG,IAAIA,WAAU,GAAG,EAAE,GAAG,UAAU;AACrG,IAAAJ,GAAE,MAAS,IAAIA,GAAE,MAAM,UAAU,KAAK;AACtC,KAACA,GAAE,OAAOA,GAAE,SAAS,IAAID,QAAO,GAAG,QAAQC,GAAE,KAAK,CAAC,cAAc,UAAU,CAAC;AAC5E,UAAM,YAAY,MAAMA,GAAE,MAAM,KAAK,GAAG;AACxC,UAAM,SAAS,MAAM,KAAK,MAAM,OAAO,IAAI,KAAK,IAAI,QAAQ,EAAE,KAAK;AACnE,QAAI,UAAUF,QAAO,KAAK,iBAAiB,IAAI;AAC7C,MAAAI,MAAK,cAAc;AACnB,MAAAF,GAAE,WAAc,QAAQA,GAAE,WAAW,CAAC,IAAI,CAAC,CAAC;AAC5C,YAAM,aAAsB,MAAMA,GAAE,SAAS,MAAM;AACnD,YAAM,YAAqB,WAAW,IAAI,CAACK,SAAQ,CAACA,KAAI,KAAKD,WAAU,GAAG,IAAIC,KAAI,KAAKD,WAAU,GAAG,IAAKC,KAAI,MAAM,CAAE,CAAC;AACtH,YAAM,aAAsB,UAAU,IAAI,CAACA,SAAQ,CAACA,KAAI,KAAK,EAAE,OAAO,IAAIA,KAAI,KAAK,EAAE,OAAO,IAAKA,KAAI,MAAM,CAAE,CAAC;AAC9G,MAAAH,MAAK,YAAa,WAAY,IAAI,CAACG,SAAQ,CAAC,WAAW,MAAMA,KAAI,KAAK,EAAE,OAAO,KAAK,WAAW,MAAMA,KAAI,KAAK,EAAE,OAAO,KAAMA,KAAI,MAAM,CAAE,CAAC;AAC1I,MAAAH,MAAK,YAAuB,QAAQA,MAAK,SAAS;AAClD,iBAAW,OAAO,OAAO,KAAK,SAAS,GAAG;AACxC,QAAAA,MAAK,YAAY,OAAO,UAAU,KAAK,IAAI,CAACI,WAAmBJ,MAAK,aAAaA,MAAK,UAAUI,UAASJ,MAAK,UAAUI,UAAS,IAAK;AAAA,MACxI;AAAA,IACF;AACA,WAAO,KAAKN,EAAC,EAAE,QAAQ,CAACG,YAAc,QAAQH,GAAEG,QAAO,CAAC;AAAA,EAC1D;AACA,SAAOD;AACT;AAEA,eAAsBK,UAAQV,QAAeC,SAAuC;AAvLpF;AAwLE,MAAI,GAAC,KAAAC,QAAO,OAAP,mBAAY,gBAAe,GAAC,KAAAA,QAAO,OAAP,mBAAY,gBAAe,CAACA,QAAO,GAAG,OAAO,GAAG,SAAS,CAACA,QAAO,GAAG,OAAO,GAAG;AAAO,WAAO,CAAC;AAC9H,eAAa,CAACF,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC;AACtD,EAAAW;AACA,QAAM,YAAYV,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIW;AACxD,QAAM,YAAYD,aAAWV,QAAO,KAAK,cAAc;AACvD,MAAIA,QAAO,eAAe,YAAY,WAAW;AAC/C,WAAOY,OAAM;AAAA,EACf;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAM,mBAAmB,KAAKZ,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIW;AACpE,UAAM,oBAAoBD,YAAU,KAAKV,QAAO,KAAK,cAAc;AACnE,QAAIA,QAAO,eAAeY,OAAM,MAAM,WAAWZ,QAAO,KAAK,aAAa;AACxE,MAAAY,OAAM,QAAQ,MAAM,QAAQ,IAAIA,OAAM,MAAM,IAAI,CAAC,YAAY,cAAcb,QAAO,SAASC,OAAM,CAAC,CAAC;AAAA,IACrG,WAAWA,QAAO,eAAe,oBAAoB,qBAAqBY,OAAM,MAAM,SAAS,GAAG;AAChG,MAAAA,OAAM,QAAQ,MAAM,QAAQ,IAAIA,OAAM,MAAM,IAAI,CAAC,YAAY,cAAcb,QAAO,SAASC,OAAM,CAAC,CAAC;AAAA,IACrG,OAAO;AACL,MAAAY,OAAM,QAAQ,MAAM,YAAYb,QAAOC,OAAM;AAC7C,MAAAW,aAAW,IAAI;AACf,MAAAC,OAAM,QAAQ,MAAM,QAAQ,IAAIA,OAAM,MAAM,IAAI,CAAC,YAAY,cAAcb,QAAO,SAASC,OAAM,CAAC,CAAC;AACnG,MAAAU,YAAU;AAAA,IACZ;AAEA,UAAM,WAAW,CAAC,GAAGE,OAAM,KAAK;AAChC,IAAAA,OAAM,MAAM,SAAS;AACrB,QAAIZ,QAAO,mBAAmB,GAAG;AAC/B,eAASa,KAAI,GAAGA,KAAID,OAAM,MAAM,QAAQC,MAAK;AAC3C,cAAM,SAAaC,QAAOF,OAAM,MAAMC,IAAG,WAAW,UAAU;AAC9D,YAAI,OAAO,IAAI,MAAMd,OAAM,MAAM,MAAM,KAAK,QAAQ,OAAO,IAAI,MAAMA,OAAM,MAAM,MAAM,KAAK,QAAQa,OAAM,MAAMC,IAAG,eAAeD,OAAM,MAAMC,IAAG,eAAeb,QAAO,KAAK,iBAAiB,IAAI;AAC/L,gBAAM,WAAeG,OAAM,OAAO,KAAK,aAAa;AACpD,gBAAM,cAAkBA,OAAM,OAAO,QAAQ,aAAa;AAE1D,UAAAS,OAAM,MAAM,KAAK,EAAE,GAAG,SAASC,KAAI,KAAK,UAAU,QAAQ,YAAY,CAAC;AAAA,QACzE;AAAA,MACF;AAAA,IACF;AACA,aAASA,KAAI,GAAGA,KAAID,OAAM,MAAM,QAAQC,MAAK;AAC3C,YAAM,OAAW,KAAKD,OAAM,MAAMC,IAAG,WAAW,UAAU;AAC1D,MAAAD,OAAM,MAAMC,IAAG,MAAM,KAAK;AAC1B,MAAAD,OAAM,MAAMC,IAAG,SAAS,KAAK;AAAA,IAC/B;AACA,YAAQD,OAAM,KAAK;AAAA,EACrB,CAAC;AACH;;;ACvNA,IAAIG;AACJ,IAAMC,UAAmB,CAAC;AAC1B,IAAIC,YAAU,OAAO;AACrB,IAAIC,aAAY;AAChB,IAAIC,aAAW;AAEf,eAAsBC,OAAKC,SAAqC;AAjBhE;AAkBE,MAAIC,KAAI;AAAS,IAAAP,UAAQ;AACzB,MAAI,CAACA;AAAO,IAAAA,UAAQ,MAAM,WAAU,KAAAM,QAAO,KAAK,aAAZ,mBAAsB,SAAS;AAAA,WAC1DA,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBQ,UAAQC,QAAeH,SAAgB,KAAaI,QAAgC;AAxB1G;AAyBE,MAAI,EAACV,WAAA,gBAAAA,QAAQ;AAAa,WAAO;AACjC,QAAM,cAAY,KAAAM,QAAO,KAAK,aAAZ,mBAAsB,aAAY,KAAM,IAAI,IAAIF;AAClE,QAAM,YAAYF,eAAW,KAAAI,QAAO,KAAK,aAAZ,mBAAsB,eAAc;AACjE,MAAIA,QAAO,eAAe,YAAY,aAAcH,eAAcO,UAAUT,QAAO,MAAM;AACvF,IAAAC;AACA,WAAOD,QAAO;AAAA,EAChB;AACA,EAAAC,YAAU;AACV,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAM,SAAY,MAAM,eAAeO,QAAO,EAACT,WAAA,gBAAAA,QAAO,OAAO,GAAG,SAAQA,QAAM,OAAO,GAAG,MAAM,KAAK,IAAGA,WAAA,gBAAAA,QAAO,OAAO,GAAG,SAAQA,QAAM,OAAO,GAAG,MAAM,KAAK,CAAC,GAAG,KAAK;AACnK,UAAM,MAAMA,WAAA,gBAAAA,QAAO,QAAQ;AAC3B,UAAM,OAAO,MAAM,IAAI,KAAK,GAAG;AAC/B,IAAAC,QAAO,OAAO,KAAK,MAAM,MAAM,GAAG,IAAI;AACtC,IAAAE,aAAYO;AACZ,IAAAN,aAAW,IAAI;AACf,IAAG,QAAQ,CAAC,QAAQ,GAAG,CAAC;AACxB,YAAQH,QAAO,IAAI;AAAA,EACrB,CAAC;AACH;;;AC3CA;AAAA;AAAA,mBAAAU;AAAA,EAAA;AAAA,aAAAC;AAAA,EAAA;AAAA;AAAA;AAAO,IAAMA,OAAgB;AAAA,EAC3B;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACF;AAEO,IAAM,aAAyB;AAAA,EACpC,CAAC,WAAW,UAAU;AAAA,EACtB,CAAC,WAAW,UAAU;AAAA,EACtB,CAAC,gBAAgB,eAAe;AAAA,EAChC,CAAC,aAAa,YAAY;AAAA,EAC1B,CAAC,aAAa,YAAY;AAAA,EAC1B,CAAC,WAAW,UAAU;AAAA,EACtB,CAAC,YAAY,WAAW;AAAA,EACxB,CAAC,aAAa,YAAY;AAC5B;AAEO,IAAM,WAAuB;AAAA,EAClC,CAAC,YAAY,cAAc;AAAA,EAC3B,CAAC,aAAa,eAAe;AAAA,EAC7B,CAAC,aAAa,UAAU;AAAA,EACxB,CAAC,cAAc,WAAW;AAC5B;AAEO,IAAM,WAAyB;AAAA,EACpC,CAAC,CAAC,WAAW,UAAU,GAAG,CAAC,gBAAgB,eAAe,CAAC;AAAA,EAC3D,CAAC,CAAC,aAAa,YAAY,GAAG,CAAC,gBAAgB,eAAe,CAAC;AACjE;AAEO,IAAMD,aAAsC;AAAA,EACjD,SAAS,CAAC,WAAW,YAAY,WAAW;AAAA,EAC5C,UAAU,CAAC,YAAY,aAAa,YAAY;AAAA,EAChD,OAAO,CAAC,gBAAgB,iBAAiB,YAAY,WAAW,cAAc;AAAA,EAC9E,SAAS,CAAC,gBAAgB,aAAa,WAAW;AAAA,EAClD,UAAU,CAAC,iBAAiB,cAAc,YAAY;AAAA,EACtD,MAAM,CAAC;AACT;;;AC5CA,IAAM,YAAY;AAElB,IAAME,SAGF;AAAA,EACF,WAAW,CAAC;AAAA,EACZ,SAAS,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAC1C;AAEO,SAAS,UAAUC,OAAkB;AAC1C,aAAW,QAAe,YAAY;AACpC,UAAM,OAAOA,MAAK,UAAU,UAAU,CAAC,OAAO,GAAG,SAAS,KAAK,EAAE;AACjE,UAAM,QAAQA,MAAK,UAAU,UAAU,CAAC,OAAO,GAAG,SAAS,KAAK,EAAE;AAClE,QAAIA,MAAK,UAAU,SAASA,MAAK,UAAU,QAAQ;AACjD,UAAIA,MAAK,UAAU,MAAM,SAAS,KAAKA,MAAK,UAAU,OAAO,SAAS,IAAI;AACxE,cAAM,MAAMA,MAAK,UAAU;AAC3B,QAAAA,MAAK,UAAU,QAAQA,MAAK,UAAU;AACtC,QAAAA,MAAK,UAAU,SAAS;AAAA,MAC1B;AAAA,IACF;AAAA,EACF;AACA,aAAW,QAAe,UAAU;AAClC,UAAM,QAAQA,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAAS,KAAK,EAAG;AAC1E,UAAM,SAASA,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAAS,KAAK,EAAG;AAC3E,QAAIA,MAAK,UAAU,UAAUA,MAAK,UAAU,SAAS;AACnD,UAAIA,MAAK,UAAU,OAAO,SAAS,KAAKA,MAAK,UAAU,QAAQ,SAAS,IAAI;AAC1E,QAAAA,MAAK,UAAU,OAAO,OAAO,CAAC;AAAA,MAChC;AAAA,IACF;AAAA,EACF;AACA,aAAW,CAAC,MAAMC,QAAO,KAAY,UAAU;AAC7C,UAAM,OAAOD,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAAS,KAAK,EAAG;AACzE,UAAM,QAAQA,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAAS,KAAK,EAAG;AAC1E,UAAM,SAASA,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAASC,SAAQ,EAAG;AAC9E,UAAM,UAAUD,MAAK,UAAU,UAAU,CAAC,OAAQ,MAAM,GAAG,SAASC,SAAQ,EAAG;AAC/E,QAAI,CAACD,MAAK,UAAU,WAAW,CAACA,MAAK,UAAU;AAAU;AACzD,UAAM,eAAeA,MAAK,UAAU,QAAQ;AAAA,MAC1C,KAAK,IAAIA,MAAK,UAAU,QAAQ,SAAS,KAAKA,MAAK,UAAU,MAAM,SAAS,EAAE;AAAA,MAC9E,KAAK,IAAIA,MAAK,UAAU,SAAS,SAAS,KAAKA,MAAK,UAAU,MAAM,SAAS,EAAE;AAAA,IACjF,IAAI,CAAC,GAAG,CAAC;AACT,UAAM,gBAAgBA,MAAK,UAAU,SAAS;AAAA,MAC5C,KAAK,IAAIA,MAAK,UAAU,SAAS,SAAS,KAAKA,MAAK,UAAU,OAAO,SAAS,EAAE;AAAA,MAChF,KAAK,IAAIA,MAAK,UAAU,QAAQ,SAAS,KAAKA,MAAK,UAAU,OAAO,SAAS,EAAE;AAAA,IACjF,IAAI,CAAC,GAAG,CAAC;AACT,QAAI,aAAa,KAAK,aAAa,MAAM,cAAc,KAAK,cAAc,IAAI;AAC5E,YAAM,MAAMA,MAAK,UAAU;AAC3B,MAAAA,MAAK,UAAU,QAAQA,MAAK,UAAU;AACtC,MAAAA,MAAK,UAAU,SAAS;AAAA,IAC1B;AAAA,EACF;AACF;AAEO,SAAS,OAAO,WAA2C;AAChE,WAASE,KAAI,GAAGA,KAAI,UAAU,QAAQA,MAAK;AACzC,QAAI,UAAUA,OAAMH,OAAM,UAAUG,KAAI;AACtC,YAAM,OAAO,CAAC,KAAK,IAAI,UAAUA,IAAG,YAAY,KAAKH,OAAM,UAAUG,IAAG,YAAY,EAAE,GAAG,KAAK,IAAI,UAAUA,IAAG,YAAY,KAAKH,OAAM,UAAUG,IAAG,YAAY,EAAE,CAAC;AAClK,UAAI,KAAK,KAAK,aAAa,KAAK,KAAK,WAAW;AAC9C,kBAAUA,MAAKH,OAAM,UAAUG;AAAA,MACjC,OAAO;AACL,QAAAH,OAAM,UAAUG,MAAK,UAAUA;AAAA,MACjC;AAAA,IACF,OAAO;AACL,MAAAH,OAAM,UAAUG,MAAK,UAAUA;AAAA,IACjC;AAAA,EACF;AACA,SAAO;AACT;AAEO,SAAS,SAASC,QAAeC,aAA2B;AA3EnE;AA4EE,QAAMC,KAA4B,CAAC;AACnC,MAAI,GAAC,KAAAF,UAAA,gBAAAA,OAAO,UAAP,mBAAe,OAAM,GAAC,KAAAA,UAAA,gBAAAA,OAAO,UAAP,mBAAe;AAAI,WAAOA;AACrD,EAAAJ,OAAM,UAAU;AAAA,IACd,CAAC,GAAG,CAAC;AAAA,IACL,CAACI,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI,GAAGA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI,CAAC;AAAA,IACjL,CAACA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI,GAAGA,OAAM,MAAM,KAAKA,OAAM,MAAM,KAAK,KAAK,OAAOA,OAAM,MAAM,KAAKA,OAAM,MAAM,MAAM,CAAC,IAAI,CAAC;AAAA,IACjL,CAAC,GAAG,CAAC;AAAA,EACP;AACA,EAAAE,GAAE,MAAS,IAAIF,QAAOJ,OAAM,OAAO;AACnC,EAAAM,GAAE,SAAY,MAAM,eAAeA,GAAE,KAAK,CAACD,aAAWA,WAAS,CAAC;AAChE,QAAM,QAAW,KAAKC,GAAE,QAAQ,OAAO;AACvC,SAAO,KAAKA,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AACT;AAEO,SAAS,YAAYN,OAAkBO,aAA0C;AACtF,EAAAP,MAAK,YAAYA,MAAK,UAAU,OAAO,CAACQ,SAAQA,QAAA,gBAAAA,KAAK,QAAQ;AAC7D,aAAWA,QAAOR,MAAK,WAAW;AAChC,IAAAQ,KAAI,WAAW;AAAA,MACbA,KAAI,SAAS,MAAMD,YAAW,KAAKR,OAAM,QAAQ,GAAG,KAAKA,OAAM,QAAQ,GAAG,MAAMQ,YAAW,KAAKR,OAAM,QAAQ,GAAG;AAAA,MACjHS,KAAI,SAAS,MAAMD,YAAW,KAAKR,OAAM,QAAQ,GAAG,KAAKA,OAAM,QAAQ,GAAG,MAAMQ,YAAW,KAAKR,OAAM,QAAQ,GAAG;AAAA,IACnH;AACA,IAAAS,KAAI,cAAc;AAAA,MAChBA,KAAI,SAAS,KAAKD,YAAW;AAAA,MAAIC,KAAI,SAAS,KAAKD,YAAW;AAAA,IAChE;AAAA,EACF;AACA,QAAM,gBAAoB,KAAKP,MAAK,UAAU,IAAI,CAAC,OAAO,GAAG,QAAQ,GAAGO,WAAU;AAClF,EAAAP,MAAK,MAAM,cAAc;AACzB,EAAAA,MAAK,SAAS,cAAc;AAC5B,SAAOA;AACT;;;ACxFA,IAAIS;AACJ,IAAIC,aAAY;AAChB,IAAIC,YAAU,OAAO;AAGrB,IAAMC,SAIF;AAAA,EACF,OAAO,CAAC;AAAA,EACR,QAAQ,CAAC;AAAA,EACT,MAAM;AACR;AAEA,eAAsBC,OAAKC,SAAqC;AAjChE;AAkCE,MAAIC,KAAI;AAAS,IAAAN,UAAQ;AACzB,MAAI,CAACA,SAAO;AACV,YAAQ,CAAC,MAAM,GAAGK,OAAM;AACxB,IAAAL,UAAQ,MAAM,UAAUK,QAAO,KAAK,SAAS;AAAA,EAC/C,WAAWA,QAAO;AAAO,QAAI,iBAAiBL,QAAM,WAAW;AAC/D,EAAAC,cAAaD,WAAA,gBAAAA,QAAQ,kBAAe,KAAAA,WAAA,gBAAAA,QAAO,WAAP,mBAAgB,GAAG,SAASA,QAAM,OAAO,GAAG,MAAM,KAAK;AAC3F,MAAIC,aAAY;AAAI,IAAAA,aAAY;AAChC,SAAOD;AACT;AAEA,SAAS,gBAAgB,KAAKK,SAAQE,QAAO;AAC3C,QAAMC,OAAM,IAAI,GAAG;AACnB,QAAM,YAA4B,CAAC;AACnC,MAAI,QAAQ;AACZ,WAAS,KAAK,GAAG,KAAKA,KAAI,QAAQ,MAAM;AACtC,YAAQA,KAAI,IAAI;AAChB,QAAI,QAAQH,QAAO,KAAK,eAAe;AACrC,YAAM,cAAqB,CAACG,KAAI,IAAI,IAAIA,KAAI,IAAI,EAAE;AAClD,gBAAU,KAAK;AAAA,QACb,OAAO,KAAK,MAAM,MAAM,KAAK,IAAI;AAAA,QACjC,MAAaA,KAAI;AAAA,QACjB;AAAA,QACA,UAAU;AAAA,UACR,KAAK,OAAOD,OAAM,MAAM,MAAM,KAAK,YAAY,EAAE;AAAA,UACjD,KAAK,OAAOA,OAAM,MAAM,MAAM,KAAK,YAAY,EAAE;AAAA,QACnD;AAAA,MACF,CAAC;AAAA,IACH;AAAA,EACF;AACA,UAAQ,UAAU,OAAO,CAAC,MAAM,SAAU,KAAK,QAAQ,OAAO,KAAK,QAAQ,MAAO,CAAC;AACnF,QAAM,SAAuB,CAAC;AAC9B,QAAM,SAAa,KAAK,UAAU,IAAI,CAAC,OAAO,GAAG,QAAQ,GAAG,CAACA,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,CAAC;AAC5F,QAAME,eAAyC,CAAC;AAChD,aAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAeC,UAAS,GAAG;AAC9D,UAAM,KAAgB,CAAC;AACvB,aAASC,KAAI,GAAGA,KAAI,QAAQ,SAAS,GAAGA,MAAK;AAC3C,YAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQA,GAAE;AACzD,YAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQA,KAAI,EAAE;AAC7D,UAAI,OAAO,OAAO,IAAI,SAASN,QAAO,KAAK,iBAAiB,MAAM,IAAI,SAASA,QAAO,KAAK,iBAAiB;AAAI,WAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,IACtJ;AACA,IAAAI,aAAY,QAAQ;AAAA,EACtB;AACA,QAAMG,QAAmB,EAAE,IAAI,GAAG,OAAO,KAAK,OAAO,KAAK,QAAQ,OAAO,QAAQ,WAAW,aAAAH,aAAY;AACxG,EAAI,UAAUG,KAAI;AAClB,SAAO,KAAKA,KAAI;AAChB,SAAO;AACT;AAEA,SAAS,eAAe,KAAKP,SAAQE,QAAO;AAC1C,QAAM,SAAuB,CAAC;AAC9B,WAAS,KAAK,GAAG,KAAK,IAAI,GAAG,QAAQ,MAAM;AACzC,UAAMC,OAAM,IAAI,GAAG;AACnB,UAAM,aAAa,KAAK,MAAM,MAAMA,KAAI,KAAK,EAAE,IAAI;AACnD,QAAI,aAAaH,QAAO,KAAK,eAAe;AAC1C,YAAM,YAA4B,CAAC;AACnC,eAASM,KAAI,GAAGA,KAAI,IAAIA,MAAK;AAC3B,cAAM,QAAQH,KAAI,IAAIG,KAAI;AAC1B,YAAI,QAAQN,QAAO,KAAK,eAAe;AACrC,gBAAM,cAAqB,CAACG,KAAI,IAAIG,KAAI,IAAIH,KAAI,IAAIG,KAAI,EAAE;AAC1D,oBAAU,KAAK;AAAA,YACb,MAAaH,KAAIG;AAAA,YACjB,OAAO,KAAK,MAAM,MAAM,KAAK,IAAI;AAAA,YACjC;AAAA,YACA,UAAU,CAAC,KAAK,OAAOJ,OAAM,MAAM,MAAM,KAAK,YAAY,EAAE,GAAG,KAAK,OAAOA,OAAM,MAAM,MAAM,KAAK,YAAY,EAAE,CAAC;AAAA,UACnH,CAAC;AAAA,QACH;AAAA,MACF;AACA,YAAM,SAAa,KAAK,UAAU,IAAI,CAAC,OAAO,GAAG,QAAQ,GAAG,CAACA,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,CAAC;AAI5F,YAAME,eAAiD,CAAC;AACxD,iBAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAeC,UAAS,GAAG;AAC9D,cAAM,KAAgB,CAAC;AACvB,iBAASC,KAAI,GAAGA,KAAI,QAAQ,SAAS,GAAGA,MAAK;AAC3C,gBAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQA,GAAE;AACzD,gBAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQA,KAAI,EAAE;AAC7D,cAAI,OAAO,OAAO,IAAI,SAASN,QAAO,KAAK,iBAAiB,MAAM,IAAI,SAASA,QAAO,KAAK,iBAAiB;AAAI,eAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,QACtJ;AACA,QAAAI,aAAY,QAAQ;AAAA,MACtB;AACA,YAAMG,QAAmB,EAAE,IAAI,OAAO,YAAY,KAAK,OAAO,KAAK,QAAQ,OAAO,QAAQ,WAAW,CAAC,GAAG,SAAS,GAAG,aAAAH,aAAY;AACjI,MAAI,UAAUG,KAAI;AAClB,aAAO,KAAKA,KAAI;AAAA,IAClB;AAAA,EACF;AACA,SAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AACvC,MAAI,OAAO,SAASP,QAAO,KAAK;AAAa,WAAO,SAASA,QAAO,KAAK;AACzE,SAAO;AACT;AAEA,eAAsBQ,UAAQC,QAAeT,SAAuC;AA7HpF;AA8HE,MAAI,EAACL,WAAA,gBAAAA,QAAQ,gBAAe,GAAC,KAAAA,WAAA,gBAAAA,QAAO,WAAP,mBAAgB,GAAG;AAAO,WAAO,CAAC;AAC/D,MAAI,CAACK,QAAO;AAAa,IAAAF,OAAM,MAAM,SAAS;AAC9C,EAAAD;AACA,QAAM,YAAYG,QAAO,KAAK,YAAY,KAAM,IAAI,IAAIF,OAAM;AAC9D,QAAM,YAAYD,aAAWG,QAAO,KAAK,cAAc;AACvD,MAAIA,QAAO,eAAe,YAAY,WAAW;AAC/C,WAAOF,OAAM;AAAA,EACf;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAMY,KAA4B,CAAC;AACnC,IAAAb,YAAU;AAmCV,IAAAa,GAAE,QAAY,SAASD,QAAOb,UAAS;AACvC,IAAAc,GAAE,MAAMf,WAAA,gBAAAA,QAAO,QAAQe,GAAE;AACzB,IAAAZ,OAAM,OAAO,IAAI;AACjB,UAAM,MAAM,MAAMY,GAAE,IAAI,MAAM;AAC9B,IAAAZ,OAAM,SAAUY,GAAE,IAAI,MAAM,OAAO,KAC/B,gBAAgB,KAAKV,SAAQS,MAAK,IAClC,eAAe,KAAKT,SAAQS,MAAK;AACrC,eAAWF,SAAQT,OAAM,QAAQ;AAC/B,MAAI,YAAYS,OAAM,CAACE,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC,CAAC;AAChE,MAAI,OAAOF,MAAK,SAAS;AAAA,IAC3B;AACA,WAAO,KAAKG,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AAExD,YAAQb,OAAM,MAAM;AAAA,EACtB,CAAC;AACH;;;AC1KA,IAAIc;AACJ,IAAIC,SAAuB,CAAC;AAC5B,IAAIC,aAAW;AACf,IAAIC,YAAU,OAAO;AACrB,IAAIC,aAAY;AAEhB,IAAM,WAAW;AAEjB,eAAsBC,OAAKC,SAAqC;AAC9D,MAAI,CAACN,WAASO,KAAI,SAAS;AACzB,IAAAP,UAAQ,MAAM,UAAUM,QAAO,OAAO,SAAS;AAC/C,UAAM,UAASN,WAAA,gBAAAA,QAAQ,eAAc,OAAO,OAAOA,QAAM,eAAe,SAAS,IAAI;AACrF,IAAAI,aAAY,MAAM,QAAQ,MAAM,IAAI,SAAS,OAAO,GAAG,YAAY,IAAI,GAAG,IAAI,IAAI;AAAA,EACpF,WAAWE,QAAO;AAAO,QAAI,iBAAiBN,QAAM,WAAW;AAC/D,SAAOA;AACT;AAEA,eAAeQ,SAAQ,KAAe,aAA+BF,SAAgB;AACnF,MAAI,KAAK;AACT,MAAI,UAA0B,CAAC;AAC/B,QAAMG,QAAOL;AACb,aAAW,cAAc,CAAC,GAAG,GAAG,CAAC,GAAG;AAElC,UAAM,WAAW,aAAa;AAE9B,UAAM,UAAa,QAAQ,IAAI,KAAK,CAAC,MAAe,EAAE,MAAM,OAAQ,YAAY,MAAO,EAAE,MAAM,MAAM,OAAO,OAAO,MAAO,CAAC;AAC3H,UAAM,SAAS,MAAM,QAAQ,MAAM;AACnC,UAAM,YAAe,QAAQ,IAAI,KAAK,CAAC,MAAe,EAAE,MAAM,OAAQ,YAAY,MAAO,EAAE,MAAM,MAAM,KAAK,OAAO,MAAO,CAAC;AAC3H,UAAM,YAAY,UAAU,QAAQ,CAAC,IAAI,GAAG,UAAU,MAAM,KAAK,CAAC,CAAC;AACnE,UAAM,UAAU,UAAU,OAAO,CAAC;AAClC,UAAM,SAAS,MAAM,QAAQ,MAAM;AACnC,aAASM,KAAI,GAAGA,KAAI,QAAQ,MAAM,IAAIA,MAAK;AACzC,eAAS,IAAI,GAAG,IAAI,QAAQ,MAAM,IAAI,KAAK;AACzC,cAAM,QAAQ,OAAOA,IAAG;AACxB,YAAI,SAASJ,QAAO,OAAO,iBAAiB,MAAM,MAAM,IAAI;AAC1D,gBAAM,MAAM,MAAM,KAAK,MAAMI,KAAI,QAAQ,KAAK;AAC9C,gBAAM,MAAM,MAAM,KAAK,MAAMA,KAAI,QAAQ,KAAK;AAC9C,gBAAM,YAAY,OAAOA,IAAG,IAAI,CAAC,MAAc,KAAK,WAAW,aAAcD,MAAM;AACnF,gBAAM,CAAC,GAAG,CAAC,IAAI;AAAA,YACb,KAAM,WAAW,aAAa,UAAU;AAAA,YACxC,KAAM,WAAW,aAAa,UAAU;AAAA,UAC1C;AACA,gBAAM,CAAC,GAAG,CAAC,IAAI;AAAA,YACb,KAAM,WAAW,aAAa,UAAU,KAAM;AAAA,YAC9C,KAAM,WAAW,aAAa,UAAU,KAAM;AAAA,UAChD;AACA,cAAI,SAAc,CAAC,GAAG,GAAG,GAAG,CAAC;AAC7B,mBAAS,OAAO,IAAI,CAAC,MAAM,KAAK,IAAI,GAAG,KAAK,IAAI,GAAG,CAAC,CAAC,CAAC;AACtD,gBAAM,MAAM;AAAA,YACV,OAAO,KAAK,YAAY;AAAA,YACxB,OAAO,KAAK,YAAY;AAAA,YACxB,OAAO,KAAK,YAAY;AAAA,YACxB,OAAO,KAAK,YAAY;AAAA,UAC1B;AACA,gBAAM,SAAS;AAAA,YACb,IAAI;AAAA,YAEJ,OAAO,KAAK,MAAM,MAAM,KAAK,IAAI;AAAA,YACjC,OAAO,IAAI;AAAA,YACX,OAAO,OAAO,GAAG;AAAA,YAGjB,KAAK,IAAI,IAAI,CAAC,MAAM,KAAK,MAAM,CAAC,CAAC;AAAA,YACjC;AAAA,UACF;AACA,kBAAQ,KAAK,MAAM;AAAA,QACrB;AAAA,MACF;AAAA,IACF;AACA,IAAG,QAAQ,CAAC,SAAS,WAAW,WAAW,OAAO,CAAC;AAAA,EACrD;AAIA,QAAM,WAAW,QAAQ,IAAI,CAAC,MAAM,CAAC,EAAE,OAAO,IAAI,EAAE,OAAO,IAAI,EAAE,OAAO,IAAI,EAAE,OAAO,EAAE,CAAC;AACxF,QAAM,YAAY,QAAQ,IAAI,CAAC,MAAM,EAAE,KAAK;AAC5C,MAAI,SAAmB,CAAC;AACxB,MAAI,YAAY,SAAS,SAAS,GAAG;AACnC,UAAM,MAAM,MAAS,MAAM,uBAAuB,UAAU,WAAWH,QAAO,OAAO,aAAaA,QAAO,OAAO,cAAcA,QAAO,OAAO,aAAa;AACzJ,aAAS,MAAM,IAAI,KAAK;AACxB,IAAG,QAAQ,GAAG;AAAA,EAChB;AAGA,YAAU,QACP,OAAO,CAAC,MAAM,QAAQ,OAAO,SAAS,GAAG,CAAC,EAC1C,KAAK,CAAC,GAAG,MAAO,EAAE,QAAQ,EAAE,KAAM;AAErC,SAAO;AACT;AAEA,eAAsBK,UAAQC,QAAeN,SAAyC;AACpF,MAAI,EAACN,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,YAAYM,QAAO,OAAO,YAAY,KAAM,IAAI,IAAIJ;AAC1D,QAAM,YAAYC,aAAWG,QAAO,OAAO,cAAc;AACzD,MAAIA,QAAO,eAAe,YAAY,aAAcL,OAAK,SAAS,GAAI;AACpE,IAAAE;AACA,WAAOF;AAAA,EACT;AACA,EAAAE,YAAU;AACV,MAAI,CAACI,KAAI,QAAQ,SAAS,KAAK,KAAK,CAACA,KAAI,QAAQ,SAAS,eAAe;AAAG,WAAON;AACnF,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAMY,cAAa,CAACD,OAAM,MAAM,MAAM,GAAGA,OAAM,MAAM,MAAM,CAAC;AAC5D,UAAM,UAAa,MAAM,eAAeA,QAAO,CAACR,YAAWA,UAAS,GAAG,KAAK;AAC5E,UAAM,QAAW,IAAI,SAAS,UAAU,KAAK;AAC7C,UAAM,aAAgB,UAAU,OAAO,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;AAEnD,QAAI;AACJ,QAAIE,QAAO,OAAO;AAAS,gBAAUN,QAAM,QAAQ,UAAU;AAC7D,IAAAE,aAAW,IAAI;AAEf,UAAM,MAAM,MAAMM,SAAQ,SAAqBK,aAAgCP,OAAM;AACrF,IAAAL,SAAO;AACP,IAAG,QAAQ,CAAC,SAAS,OAAO,YAAY,GAAG,OAAO,CAAC;AACnD,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;AC7HO,IAAM,YAAY;AAAA,EACvB;AAAA,EAAQ;AAAA,EAAW;AAAA,EAAY;AAAA,EAAW;AAAA,EAAY;AAAA,EACtD;AAAA,EAAiB;AAAA,EAAa;AAAA,EAAc;AAAA,EAAa;AAAA,EACzD;AAAA,EAAW;AAAA,EAAY;AAAA,EAAY;AAAA,EAAa;AAAA,EAAa;AAC/D;AAEO,IAAMa,SAAQ,UAAU;AAExB,IAAM,UAAU,UAAU,OAAO,CAAC,QAAQ,WAAWC,OAAM;AAChE,SAAO,aAAaA;AACpB,SAAO;AACT,GAAG,CAAC,CAAC;AAEL,IAAM,qBAAqB;AAAA,EACzB,CAAC,WAAW,cAAc;AAAA,EAAG,CAAC,aAAa,cAAc;AAAA,EACzD,CAAC,aAAa,WAAW;AAAA,EAAG,CAAC,WAAW,UAAU;AAAA,EAClD,CAAC,YAAY,WAAW;AAAA,EAAG,CAAC,YAAY,eAAe;AAAA,EACvD,CAAC,cAAc,eAAe;AAAA,EAAG,CAAC,cAAc,YAAY;AAAA,EAC5D,CAAC,YAAY,WAAW;AAAA,EAAG,CAAC,aAAa,YAAY;AAAA,EACrD,CAAC,gBAAgB,eAAe;AAAA,EAAG,CAAC,WAAW,UAAU;AAC3D;AACO,IAAM,uBAAuB,mBAAmB,IAAI,CAAC,CAAC,YAAY,UAAU,MAAO,CAAC,QAAQ,aAAa,QAAQ,WAAW,CAAE;AAE9H,IAAM,YAAY;AAAA,EACvB,CAAC,QAAQ,SAAS;AAAA,EAAG,CAAC,WAAW,SAAS;AAAA,EAAG,CAAC,QAAQ,UAAU;AAAA,EAChE,CAAC,YAAY,UAAU;AAAA,EAAG,CAAC,QAAQ,cAAc;AAAA,EACjD,CAAC,gBAAgB,WAAW;AAAA,EAAG,CAAC,aAAa,WAAW;AAAA,EACxD,CAAC,gBAAgB,SAAS;AAAA,EAAG,CAAC,WAAW,UAAU;AAAA,EACnD,CAAC,YAAY,WAAW;AAAA,EAAG,CAAC,QAAQ,eAAe;AAAA,EACnD,CAAC,iBAAiB,YAAY;AAAA,EAAG,CAAC,cAAc,YAAY;AAAA,EAC5D,CAAC,iBAAiB,UAAU;AAAA,EAAG,CAAC,YAAY,WAAW;AAAA,EACvD,CAAC,aAAa,YAAY;AAC5B;AAgBO,SAAS,eAAe,WAA6C;AAC1E,QAAM,QAAQ,UAAU,OAAO,CAAC,EAAE,MAAM,MAAM,MAAM,KAAK,GAAG,EAAE,UAAU,EAAE,GAAG,EAAE,EAAE,OAAO;AAAA,IACtF,MAAM,KAAK,IAAI,MAAM,CAAC;AAAA,IACtB,MAAM,KAAK,IAAI,MAAM,CAAC;AAAA,IACtB,MAAM,KAAK,IAAI,MAAM,CAAC;AAAA,IACtB,MAAM,KAAK,IAAI,MAAM,CAAC;AAAA,EACxB,IAAI;AAAA,IACF,MAAM,OAAO;AAAA,IACb,MAAM,OAAO;AAAA,IACb,MAAM,OAAO;AAAA,IACb,MAAM,OAAO;AAAA,EACf,CAAC;AACD,SAAO,CAAC,MAAM,MAAM,MAAM,MAAM,MAAM,OAAO,MAAM,MAAM,MAAM,OAAO,MAAM,IAAI;AAClF;AAEO,SAAS,WAAW,OAAO,CAAC,QAAQ,KAAK,GAAG,CAAC,uBAAuB,oBAAoB,GAAiB;AAC9G,QAAM,SAAS,SAAS;AACxB,QAAM,SAAS,QAAQ;AACvB,QAAM,YAAY,CAAC,MAAMC,QAAmB;AAAA,IAC1C,IAAIA;AAAA,IACJ,OAAO,KAAK;AAAA,IACZ,QAAQ,CAAC,KAAK,IAAI,KAAK,sBAAsB,KAAK,IAAI,KAAK,uBAAuB,KAAK,IAAI,KAAK,sBAAsB,KAAK,IAAI,KAAK,qBAAqB;AAAA,IACzJ,KAAK,CAAC,KAAK,MAAM,KAAK,IAAI,KAAK,MAAM,GAAG,KAAK,MAAM,KAAK,IAAI,KAAK,MAAM,GAAG,KAAK,MAAM,KAAK,IAAI,KAAK,MAAM,GAAG,KAAK,MAAM,KAAK,IAAI,KAAK,MAAM,CAAC;AAAA,IAC5I,WAAW,KAAK,UAAU,IAAI,CAAC,EAAE,OAAO,MAAM,SAAS,OAAO;AAAA,MAC5D;AAAA,MACA;AAAA,MACA,UAAU,CAAC,KAAK,MAAM,SAAS,IAAI,MAAM,GAAG,KAAK,MAAM,SAAS,IAAI,MAAM,CAAC;AAAA,MAC3E,aAAa,CAAC,SAAS,IAAI,uBAAuB,SAAS,IAAI,qBAAqB;AAAA,IACtF,EAAE;AAAA,IACF,aAAa,CAAC;AAAA,EAChB;AACA,QAAM,cAAc,MAAM,IAAI,CAAC,MAAMA,OAAM,UAAU,MAAMA,EAAC,CAAC;AAC7D,SAAO;AACT;AAGO,IAAM,UAAN,MAAc;AAAA,EAKnB,YAAYC,UAAS,iBAAiB;AAJtC;AACA;AACA;AAGE,SAAK,gBAAgB,IAAI,MAAMA,QAAO;AACtC,SAAK,mBAAmB;AACxB,SAAK,kBAAkB;AAAA,EACzB;AAAA,EAEA,QAAQ,GAAG;AACT,SAAK,cAAc,EAAE,KAAK,oBAAoB;AAC9C,SAAK,KAAK,KAAK,gBAAgB;AAAA,EACjC;AAAA,EAEA,UAAU;AACR,UAAMC,OAAM,KAAK,cAAc;AAC/B,SAAK,SAAS,GAAG,KAAK,kBAAkB;AACxC,SAAK,KAAK,CAAC;AACX,SAAK,cAAc,KAAK,mBAAmB,KAAK;AAChD,WAAOA;AAAA,EACT;AAAA,EAEA,QAAQ;AAAE,WAAO,KAAK,qBAAqB;AAAA,EAAI;AAAA,EAE/C,OAAO;AAAE,WAAO,KAAK,mBAAmB;AAAA,EAAG;AAAA,EAE3C,MAAM;AAAE,WAAO,KAAK,cAAc,MAAM,GAAG,KAAK,mBAAmB,CAAC;AAAA,EAAG;AAAA,EAEvE,MAAM;AAAE,WAAO,KAAK,cAAc;AAAA,EAAI;AAAA,EAEtC,KAAK,GAAG;AACN,WAAO,IAAI,KAAK,KAAK,KAAK,KAAK,MAAM,IAAI,CAAC,GAAG,CAAC,GAAG;AAC/C,WAAK,SAAS,GAAG,KAAK,MAAM,IAAI,CAAC,CAAC;AAClC,UAAI,KAAK,MAAM,IAAI,CAAC;AAAA,IACtB;AAAA,EACF;AAAA,EAEA,KAAK,GAAG;AACN,WAAO,IAAI,KAAK,KAAK,kBAAkB;AACrC,UAAI,IAAI,IAAI;AACZ,UAAI,IAAI,KAAK,oBAAoB,KAAK,KAAK,GAAG,IAAI,CAAC;AAAG;AACtD,UAAI,CAAC,KAAK,KAAK,GAAG,CAAC;AAAG;AACtB,WAAK,SAAS,GAAG,CAAC;AAClB,UAAI;AAAA,IACN;AAAA,EACF;AAAA,EAEA,WAAWF,IAAG;AAEZ,WAAO,KAAK,gBAAgB,KAAK,cAAcA,GAAE;AAAA,EACnD;AAAA,EAEA,KAAKA,IAAG,GAAG;AACT,WAAO,KAAK,WAAWA,EAAC,IAAI,KAAK,WAAW,CAAC;AAAA,EAC/C;AAAA,EAEA,SAASA,IAAG,GAAG;AACb,UAAMG,KAAI,KAAK,cAAcH;AAC7B,SAAK,cAAcA,MAAK,KAAK,cAAc;AAC3C,SAAK,cAAc,KAAKG;AAAA,EAC1B;AACF;AAEO,SAAS,eAAe,GAAG,GAAG,UAAkB,SAAS;AAC9D,SAAO;AAAA,IACL,GAAG,QAAQ,IAAI,GAAG,GAAG,QAAQ;AAAA,IAC7B,GAAG,QAAQ,IAAI,GAAG,GAAG,WAAWC,MAAK;AAAA,EACvC;AACF;AAEO,SAAS,eAAe,MAAMC,eAAsB,SAAS;AAClE,QAAM,EAAE,UAAU,UAAU,IAAI,SAAS,IAAI;AAC7C,QAAM,EAAE,GAAG,EAAE,IAAI,eAAe,UAAU,UAAU,UAAU,OAAO;AACrE,SAAO;AAAA,IACL,GAAG,KAAK,WAAWA,gBAAe;AAAA,IAClC,GAAG,KAAK,WAAWA,gBAAe;AAAA,EACpC;AACF;AAUO,SAASC,OAAM,GAAGC,MAAKC,MAAK;AACjC,MAAI,IAAID;AAAK,WAAOA;AACpB,MAAI,IAAIC;AAAK,WAAOA;AACpB,SAAO;AACT;AAEO,SAAS,gBAAgB,IAAI,IAAI,IAAI,IAAI;AAC9C,QAAM,KAAK,KAAK;AAChB,QAAM,KAAK,KAAK;AAChB,SAAO,KAAK,KAAK,KAAK;AACxB;AAEO,SAAS,WAAW,GAA6B,GAA6B;AACnF,SAAO,EAAE,GAAG,EAAE,IAAI,EAAE,GAAG,GAAG,EAAE,IAAI,EAAE,EAAE;AACtC;;;ACnLA,IAAIC;AACJ,IAAM,iBAAiB,CAAC,gCAA6C,iCAAoD,0CAA+D,wCAA6D;AACrP,IAAM,qBAAqB;AAC3B,IAAM,eAAe;AACrB,IAAM,mBAAmB,MAAM;AAE/B,SAAS,SAAS,QAAgB,gBAAgB,UAAU,QAAQ,SAAS,eAAe,mBAAmB,GAAG;AAChH,QAAM,kBAAkB,CAACC,YAAW;AAAA,IAClC,GAAG,cAAc,IAAIA,OAAM,GAAGA,OAAM,GAAG,MAAM;AAAA,IAC7C,GAAG,cAAc,IAAIA,OAAM,GAAGA,OAAM,GAAI,cAAc,MAAM,KAAK,IAAK,MAAM;AAAA,EAC9E;AACA,QAAM,2BAA2B,CAACA,QAAOC,SAAQC,YAAW;AAAA,IAC1D,GAASC,OAAM,KAAK,MAAMH,OAAM,IAAI,YAAY,GAAG,GAAGC,UAAS,CAAC;AAAA,IAChE,GAASE,OAAM,KAAK,MAAMH,OAAM,IAAI,YAAY,GAAG,GAAGE,SAAQ,CAAC;AAAA,EACjE;AAEA,QAAM,CAAC,QAAQ,KAAK,IAAI,OAAO;AAE/B,QAAM,wBAAwB,yBAAyB,eAAe,UAAU,QAAQ,KAAK;AAC7F,QAAM,eAAe,gBAAgB,qBAAqB;AAC1D,QAAM,iBAAuB,WAAW,eAAe,UAAU,YAAY;AAC7E,MAAI,iBAAiB;AACrB,WAASE,KAAI,GAAGA,KAAI,kBAAkBA,MAAK;AACzC,UAAM,wBAAwB,yBAAyB,gBAAgB,QAAQ,KAAK;AACpF,UAAM,cAAoB,eAAe,sBAAsB,GAAG,sBAAsB,GAAG,UAAU,OAAO;AAC5G,qBAAuB;AAAA,MACrB,EAAE,GAAG,sBAAsB,IAAI,cAAc,GAAG,sBAAsB,IAAI,aAAa;AAAA,MACvF,EAAE,GAAG,YAAY,GAAG,GAAG,YAAY,EAAE;AAAA,IACvC;AAAA,EACF;AACA,QAAM,wBAAwB,yBAAyB,gBAAgB,QAAQ,KAAK;AACpF,QAAM,QAAQ,OAAO,IAAI,sBAAsB,GAAG,sBAAsB,GAAG,QAAQ;AACnF,SAAO,EAAE,UAAU,gBAAgB,MAAY,UAAU,WAAW,MAAM;AAC5E;AAEO,SAAS,WAAW,MAAM,QAAQ,SAAS,kBAAkB,kBAAkB;AACpF,QAAM,SAAe,UAAU,IAAI,CAAC,CAAC,gBAAgB,aAAa,MAAO,CAAO,QAAQ,iBAAuB,QAAQ,cAAc,CAAE;AACvI,QAAM,WAAW,OAAO,IAAI,CAAC,CAAC,EAAE,YAAY,MAAM,YAAY;AAC9D,QAAM,WAAW,OAAO,IAAI,CAAC,CAAC,aAAa,MAAM,aAAa;AAC9D,QAAM,WAAW,OAAO,MAAM;AAC9B,QAAM,WAAW,SAAS;AAC1B,QAAM,YAAY,IAAI,MAAM,QAAQ;AAEpC,QAAM,YAAkB,eAAe,KAAK,MAAM,cAAc,OAAO;AACvE,YAAU,KAAK,KAAK,MAAM;AAAA,IACxB,OAAO,KAAK;AAAA,IACZ,MAAY,UAAU,KAAK,KAAK;AAAA,IAChC,UAAU;AAAA,EACZ;AAEA,WAAS,OAAO,WAAW,GAAG,QAAQ,GAAG,EAAE,MAAM;AAC/C,UAAM,WAAW,SAAS;AAC1B,UAAM,WAAW,SAAS;AAC1B,QAAI,UAAU,aAAa,CAAC,UAAU,WAAW;AAC/C,gBAAU,YAAY,SAAS,MAAM,UAAU,WAAW,UAAU,QAAQ,SAAS,gBAAgB;AAAA,IACvG;AAAA,EACF;AAEA,WAAS,OAAO,GAAG,OAAO,UAAU,EAAE,MAAM;AAC1C,UAAM,WAAW,SAAS;AAC1B,UAAM,WAAW,SAAS;AAC1B,QAAI,UAAU,aAAa,CAAC,UAAU,WAAW;AAC/C,gBAAU,YAAY,SAAS,MAAM,UAAU,WAAW,UAAU,QAAQ,SAAS,gBAAgB;AAAA,IACvG;AAAA,EACF;AACA,SAAO;AACT;AAEA,SAAS,4BAA4B,YAAY,OAAe,UAAkB,UAAkB,QAAQ;AAC1G,QAAM,CAAC,QAAQ,KAAK,IAAsB,OAAO;AACjD,MAAI,eAAe;AACnB,QAAM,SAAS,KAAK,IAAI,WAAW,oBAAoB,CAAC;AACxD,QAAM,OAAO,KAAK,IAAI,WAAW,qBAAqB,GAAG,MAAM;AAC/D,WAAS,WAAW,QAAQ,WAAW,MAAM,EAAE,UAAU;AACvD,UAAM,SAAS,KAAK,IAAI,WAAW,oBAAoB,CAAC;AACxD,UAAM,OAAO,KAAK,IAAI,WAAW,qBAAqB,GAAG,KAAK;AAC9D,aAAS,WAAW,QAAQ,WAAW,MAAM,EAAE,UAAU;AACvD,UAAI,OAAO,IAAI,UAAU,UAAU,UAAU,IAAI,OAAO;AACtD,uBAAe;AACf;AAAA,MACF;AAAA,IACF;AACA,QAAI,CAAC;AAAc;AAAA,EACrB;AACA,SAAO;AACT;AAEO,SAAS,wBAAwBC,gBAAe,QAAQ;AAC7D,QAAM,CAAC,QAAQ,OAAO,YAAY,IAAI,OAAO;AAC7C,QAAM,QAAQ,IAAU,QAAQ,SAAS,QAAQ,cAAc,CAAC,EAAE,MAAM,MAAM,KAAK;AACnF,WAAS,WAAW,GAAG,WAAW,QAAQ,EAAE,UAAU;AACpD,aAAS,WAAW,GAAG,WAAW,OAAO,EAAE,UAAU;AACnD,eAAS,aAAa,GAAG,aAAa,cAAc,EAAE,YAAY;AAChE,cAAM,QAAQ,OAAO,IAAI,UAAU,UAAU,UAAU;AAEvD,YAAI,QAAQA;AAAe;AAE3B,YAAI,4BAA4B,YAAY,OAAO,UAAU,UAAU,MAAM;AAAG,gBAAM,QAAQ,EAAE,OAAO,MAAM,EAAE,UAAU,UAAU,IAAI,WAAW,EAAE,CAAC;AAAA,MACvJ;AAAA,IACF;AAAA,EACF;AACA,SAAO;AACT;AAEA,SAAS,aAAa,OAAO,EAAE,GAAG,EAAE,GAAG,YAAY;AACjD,SAAO,MAAM,KAAK,CAAC,EAAE,UAAU,MAAM;AAxHvC;AAyHI,UAAM,yBAAwB,eAAU,gBAAV,mBAAuB;AACrD,QAAI,CAAC;AAAuB,aAAO;AACnC,WAAa,gBAAgB,GAAG,GAAG,sBAAsB,GAAG,sBAAsB,CAAC,KAAK;AAAA,EAC1F,CAAC;AACH;AAEA,SAAS,iBAAiB,eAAe,WAAW;AAClD,QAAM,8BAA8B,UAAU,OAAO,CAAC,QAAQ,EAAE,UAAU,MAAM,GAAG,eAAe;AAChG,QAAI,CAAC,aAAa,eAAe,UAAU,UAAU;AAAG,gBAAU;AAClE,WAAO;AAAA,EACT,GAAG,CAAG;AACN,SAAO,8BAA8B,UAAU;AACjD;AAEO,SAAS,OAAO,SAAS,QAAQ,kBAAkB,kBAAkB,aAAaA,gBAAe;AACtG,QAAM,QAAkD,CAAC;AACzD,QAAM,QAAQ,wBAAwBA,gBAAe,MAAM;AAE3D,SAAO,MAAM,SAAS,eAAe,CAAC,MAAM,MAAM,GAAG;AAEnD,UAAM,OAAO,MAAM,QAAQ;AAG3B,UAAM,kBAAwB,eAAe,KAAK,MAAM,cAAc,OAAO;AAE7E,QAAI,aAAa,OAAO,iBAAiB,KAAK,KAAK,EAAE;AAAG;AAExD,QAAI,YAAY,WAAW,MAAM,QAAQ,SAAS,kBAAkB,gBAAgB;AACpF,gBAAY,UAAU,OAAO,CAAC,MAAM,EAAE,QAAQA,cAAa;AAC3D,UAAM,QAAQ,iBAAiB,OAAO,SAAS;AAC/C,UAAM,MAAY,eAAe,SAAS;AAC1C,QAAI,QAAQA;AAAe,YAAM,KAAK,EAAE,WAAW,KAAK,OAAO,KAAK,MAAM,MAAM,KAAK,IAAI,IAAI,CAAC;AAAA,EAChG;AACA,SAAO;AACT;AAEA,eAAsBC,UAAQC,QAAeC,SAAuC;AAIlF,MAAI,EAACT,WAAA,gBAAAA,QAAQ;AAAa,WAAO,CAAC;AAClC,QAAM,MAAS,KAAK,MAAM;AACxB,QAAI,CAACA,QAAM,OAAO,GAAG;AAAO,aAAO,CAAC;AACpC,UAAM,UAAa,MAAM,eAAeQ,QAAO,CAACR,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,CAAC;AACnG,UAAM,aAAgB,IAAO,IAAO,KAAK,SAAS,SAAS,GAAG,KAAK,GAAG,CAAG;AACzE,UAAM,UAAoBA,QAAM,QAAQ,YAAY,cAAc;AAClE,UAAM,YAAY,QAAQ,IAAI,CAAC,MAAS,QAAQ,GAAG,CAAC,CAAC,CAAC,CAAC;AACvD,cAAU,KAAQ,QAAQ,UAAU,EAAE;AACtC,WAAO;AAAA,EACT,CAAC;AAED,QAAM,UAAU,MAAM,QAAQ,IAAI,IAAI,IAAI,CAACU,YAAmBA,QAAO,OAAO,CAAC,CAAC;AAC9E,aAAWC,MAAK;AAAK,IAAG,QAAQA,EAAC;AAEjC,QAAM,UAAU,OAAO,QAAQ,IAAI,QAAQ,IAAI,QAAQ,IAAI,QAAQ,IAAIF,QAAO,KAAK,aAAaA,QAAO,KAAK,aAAa;AACzH,MAAI,CAACT,QAAM,OAAO,GAAG;AAAO,WAAO,CAAC;AACpC,QAAM,SAAe,WAAW,SAAS,CAACQ,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,GAAG,CAACR,QAAM,OAAO,GAAG,MAAM,IAAIA,QAAM,OAAO,GAAG,MAAM,EAAE,CAAC;AAC/H,SAAO;AACT;AAEA,eAAsBY,OAAKH,SAAqC;AAC9D,MAAI,CAACT,WAASa,KAAI;AAAS,IAAAb,UAAQ,MAAM,UAAUS,QAAO,KAAK,SAAS;AAAA,WAC/DA,QAAO;AAAO,QAAI,iBAAiBT,QAAM,WAAW;AAC7D,SAAOA;AACT;;;ACvKA,IAAIc;AACJ,IAAI,OAAO;AAEX,eAAsBC,OAAKC,SAAqC;AAC9D,MAAI,CAACF,WAASG,KAAI;AAAS,IAAAH,UAAQ,MAAM,UAAUE,QAAO,aAAa,SAAS;AAAA,WACvEA,QAAO;AAAO,QAAI,iBAAiBF,QAAM,WAAW;AAC7D,SAAOA;AACT;AAEA,eAAsBI,SAAQC,QAAc,YAA+BH,SACe;AA5B1F;AA6BE,MAAI;AAAM,WAAO,EAAE,MAAM,CAAC,GAAG,QAAQ,MAAM,OAAO,KAAK;AACvD,SAAO;AACP,MAAI,CAACF;AAAO,UAAMC,OAAKC,OAAM;AAC7B,QAAM,aAAa,MAAYE,SAAQC,QAAOH,OAAM;AACpD,QAAM,UAAQ,gBAAW,WAAX,mBAAmB,MAAM,OAAM;AAC7C,QAAM,WAAS,gBAAW,WAAX,mBAAmB,MAAM,OAAM;AAC9C,MAAI,CAAC,WAAW;AAAQ,WAAO,EAAE,MAAM,CAAC,GAAG,QAAQ,MAAM,OAAO,KAAK;AACrE,QAAMI,KAA4B,CAAC;AAEnC,EAAAA,GAAE,SAAY,MAAM,eAAe,WAAW,QAAQ,CAACN,QAAM,OAAO,GAAG,QAAQA,QAAM,OAAO,GAAG,MAAM,KAAK,GAAGA,QAAM,OAAO,GAAG,QAAQA,QAAM,OAAO,GAAG,MAAM,KAAK,CAAC,GAAG,KAAK;AACzK,EAAG,QAAQ,WAAW,MAAM;AAC5B,EAAAM,GAAE,OAAU,IAAIA,GAAE,QAAQ,UAAU,KAAK;AACzC,EAAAA,GAAE,MAAMN,QAAM,QAAQM,GAAE,IAAI;AAE5B,EAAAA,GAAE,UAAa,QAAQA,GAAE,KAAK,CAAC;AAC/B,MAAIA,GAAE,QAAQ,MAAM,OAAO,GAAG;AAC5B,IAAAA,GAAE,UAAa,QAAQA,GAAE,OAAO;AAChC,KAACA,GAAE,IAAIA,GAAE,EAAE,IAAO,QAAQA,GAAE,SAAS,CAAC;AACtC,IAAAA,GAAE,SAAY,WAAWA,GAAE,IAAI,CAAC;AAChC,IAAAA,GAAE,MAAS,WAAWA,GAAE,QAAQ,CAAC;AACjC,IAAAA,GAAE,OAAU,MAAM,cAAcA,GAAE,KAAK,CAAC,CAAC,GAAG,GAAG,KAAK,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,OAAO,MAAM,CAAC;AAI/E,IAAAA,GAAE,OAAU,QAAQA,GAAE,MAAM,CAAC;AAAA,EAC/B,OAAO;AACL,IAAAA,GAAE,OAAU,MAAM,eAAeA,GAAE,SAAS,CAAC,QAAQ,KAAK,CAAC;AAAA,EAC7D;AACA,QAAM,OAAO,MAAM,KAAK,MAAMA,GAAE,KAAK,KAAK,CAAC;AAE3C,MAAIH,KAAI,QAAQ,CAACA,KAAI,UAAW,OAAO,cAAc,aAAc;AACjE,QAAID,QAAO;AAAO,UAAI,wBAAwB;AAC9C,WAAO,KAAKI,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,WAAO,EAAE,MAAM,QAAQ,MAAM,OAAO,KAAK;AAAA,EAC3C;AAEA,QAAM,cAAoB,OAAO,OAAO,MAAM;AAC9C,MAAO;AAAS,UAAS,gBAAQ,SAASD,GAAE,MAAM,WAAW;AAC7D,QAAM,WAAW,YAAY,WAAW,IAAI;AAC5C,MAAIJ,QAAO,aAAa,QAAQA,QAAO,aAAa,OAAO;AAAG,aAAS,SAAS,QAAQA,QAAO,aAAa;AAC5G,QAAM,YAAY,SAAS,aAAa,GAAG,GAAG,OAAO,MAAM;AAE3D,QAAM,kBAAwB,OAAO,OAAO,MAAM;AAClD,QAAM,eAAe,gBAAgB,WAAW,IAAI;AACpD,MAAI,WAAW;AAAQ,iBAAa,UAAU,WAAW,QAAQ,GAAG,CAAC;AACrE,eAAa,2BAA2B;AACxC,MAAIA,QAAO,aAAa,QAAQA,QAAO,aAAa,OAAO;AAAG,iBAAa,SAAS,QAAQA,QAAO,aAAa;AAChH,eAAa,UAAU,aAAa,GAAG,CAAC;AACxC,eAAa,2BAA2B;AACxC,eAAa,SAAS;AACtB,QAAM,gBAAgB,aAAa,aAAa,GAAG,GAAG,OAAO,MAAM;AACnE,WAASM,KAAI,GAAGA,KAAI,QAAQ,QAAQA;AAAK,kBAAc,KAAK,IAAIA,KAAI,KAAK,UAAU,KAAK,IAAIA,KAAI;AAChG,eAAa,aAAa,eAAe,GAAG,CAAC;AAE7C,MAAI,eAAiC;AACrC,MAAI,cAAc,iBAAiB;AACjC,mBAAqB,OAAO,OAAO,MAAM;AACzC,UAAM,UAAU,MAAYJ,SAAQ,YAAYF,OAAM;AACtD,IAAG,QAAQ,QAAQ,MAAM;AACzB,UAAM,WAAW,aAAa,WAAW,IAAI;AAC7C,aAAS,UAAU,QAAQ,QAA6B,GAAG,GAAG,aAAa,OAAO,aAAa,MAAM;AACrG,aAAS,UAAU,iBAAiB,GAAG,CAAC;AAAA,EAC1C;AAEA,SAAO,KAAKI,EAAC,EAAE,QAAQ,CAACC,YAAc,QAAQD,GAAEC,QAAO,CAAC;AACxD,SAAO;AAEP,SAAO,EAAE,MAAM,QAAQ,iBAAiB,OAAO,YAAY;AAC7D;;;A3C5DO,IAAM,SAAN,MAAa;AAAA,EAAb;AACL,qCAAqD;AACrD,gCAAgD;AAChD,2CAA2D;AAC3D,qCAAqD;AACrD,qCAAqD;AACrD,yCAAyD;AACzD,yCAAyD;AACzD,uCAAuD;AACvD,mCAAmD;AACnD,sCAAsD;AACtD,oCAAoD;AACpD,oCAAoD;AACpD,mCAAmD;AACnD,wCAAwD;AACxD,oCAAoD;AACpD,wCAAwD;AACxD,qCAAqD;AACrD,oCAAoD;AACpD,mCAAmD;AACnD,mCAAmD;AACnD,mCAAmD;AACnD,wCAAwD;AACxD,qCAAqD;AAAA;AACvD;AAcO,IAAM,gBAAgB,CAACE,cAAgC;AAC5D,MAAI,wBAAwB;AAC5B,MAAI,mBAAmB;AACvB,MAAI,mBAAmB;AACvB,aAAW,KAAK,OAAO,OAAO,UAAU,GAAG;AACzC,6BAAyB,EAAE;AAC3B,wBAAoB,EAAE;AACtB,wBAAoB,EAAE;AAAA,EACxB;AACA,QAAM,mBAAmB,mBAAmB,IAAI,mBAAmB,mBAAmB;AACtF,SAAO;AAAA,IACL,iBAAiB,OAAO,OAAO,UAAU,EAAE;AAAA,IAC3C,kBAAkB;AAAA,IAClB,kBAAkB,OAAO,KAAKA,UAAS,MAAM,EAAE;AAAA,IAC/C;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA,kBAAkB;AAAA,IAClB,YAAY,OAAO,OAAO,UAAU;AAAA,EACtC;AACF;AAEO,SAASC,OAAMD,WAAuB;AAE3C,aAAWE,WAAS,OAAO,KAAKF,UAAS,MAAM;AAAG,IAAAA,UAAS,OAAOE,WAAyB;AAC7F;AAGA,eAAsBC,OAAKH,WAAgC;AAxG3D;AAyGE,MAAII,KAAI;AAAS,IAAAH,OAAMD,SAAQ;AAC/B,MAAIA,UAAS,OAAO,KAAK,SAAS;AAChC,QAAI,CAACA,UAAS,OAAO,cAAY,WAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,cAA/B,mBAA0C,SAAS,gBAAe;AACjG,OAACA,UAAS,OAAO,UAAUA,UAAS,OAAO,YAAY,IAAI,MAAeG,OAAKH,UAAS,MAAM;AAAA,IAChG;AACA,QAAI,CAACA,UAAS,OAAO,gBAAgBA,UAAS,OAAO,KAAK,eAAa,WAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,cAA/B,mBAA0C,SAAS,gBAAe;AACvI,OAACA,UAAS,OAAO,UAAUA,UAAS,OAAO,YAAY,IAAI,MAAeG,OAAKH,UAAS,MAAM;AAAA,IAChG;AAAA,EACF;AACA,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,eAAa,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,SAAS;AAAc,IAAAA,UAAS,OAAO,YAAsB,SAASA,UAAS,MAAM;AACvL,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,mBAAmBA,UAAS,OAAO,KAAK,eAAeA,UAAS,OAAO,KAAK,YAAY;AAAW,IAAAA,UAAS,OAAO,kBAA4B,WAAWA,UAAS,MAAM;AAC9N,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,mBAAiB,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,SAAS;AAAkB,IAAAA,UAAS,OAAO,gBAA8BG,MAAKH,UAAS,MAAM;AACnM,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,SAAS;AAAY,IAAAA,UAAS,OAAO,UAAkBG,OAAKH,UAAS,MAAM;AAC3K,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,SAAS;AAAY,IAAAA,UAAS,OAAO,UAAkBG,OAAKH,UAAS,MAAM;AAC3K,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO;AAAY,IAAAA,UAAS,OAAO,aAAuBG,MAAKH,UAAS,MAAM;AAC5H,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,CAACA,UAAS,OAAO;AAAW,IAAAA,UAAS,OAAO,YAAsBG,MAAKH,UAAS,MAAM;AACrK,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,YAAW,CAACA,UAAS,OAAO;AAAU,IAAAA,UAAS,OAAO,WAAoBG,OAAKH,UAAS,MAAM;AACjK,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,gBAArB,mBAAkC,YAAW,CAACA,UAAS,OAAO;AAAS,IAAAA,UAAS,OAAO,UAAkBG,OAAKH,UAAS,MAAM;AACjK,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,YAArB,mBAA8B,YAAW,CAACA,UAAS,OAAO;AAAS,IAAAA,UAAS,OAAO,UAAkBG,MAAKH,UAAS,MAAM;AAC7J,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,YAAW,GAAC,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,CAACA,UAAS,OAAO;AAAU,IAAAA,UAAS,OAAO,WAAgBG,OAAKH,UAAS,MAAM;AACrM,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,YAAY,CAACA,UAAS,OAAO;AAAW,IAAAA,UAAS,OAAO,WAAoBG,OAAKH,UAAS,MAAM;AAC/J,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,YAArB,mBAA8B,YAAW,CAACA,UAAS,OAAO;AAAM,IAAAA,UAAS,OAAO,OAAY,KAAKA,UAAS,MAAM;AACpJ,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,CAACA,UAAS,OAAO;AAAW,IAAAA,UAAS,OAAO,YAAsBG,MAAKH,UAAS,MAAM;AACrK,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,CAACA,UAAS,OAAO;AAAc,IAAAA,UAAS,OAAO,eAA4BG,MAAKH,UAAS,MAAM;AAC9K,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,qBAArB,mBAAuC,YAAW,CAACA,UAAS,OAAO;AAAe,IAAAA,UAAS,OAAO,gBAA8BG,MAAKH,UAAS,MAAM;AACxL,MAAIA,UAAS,OAAO,KAAK,aAAW,KAAAA,UAAS,OAAO,KAAK,mBAArB,mBAAqC,YAAW,CAACA,UAAS,OAAO;AAAa,IAAAA,UAAS,OAAO,cAA0BG,OAAKH,UAAS,MAAM;AAChL,MAAIA,UAAS,OAAO,KAAK,WAAW,CAACA,UAAS,OAAO,eAAa,WAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,cAA/B,mBAA0C,SAAS;AAAc,IAAAA,UAAS,OAAO,YAAsBK,YAAWL,UAAS,MAAM;AACnM,MAAIA,UAAS,OAAO,KAAK,WAAWA,UAAS,OAAO,KAAK,aAAa,CAACA,UAAS,OAAO,kBAAgB,WAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,cAA/B,mBAA0C,SAAS;AAAc,IAAAA,UAAS,OAAO,eAAyB,aAAaA,UAAS,MAAM;AAC7O,MAAIA,UAAS,OAAO,OAAO,WAAW,CAACA,UAAS,OAAO,eAAa,KAAAA,UAAS,OAAO,OAAO,cAAvB,mBAAkC,SAAS;AAAc,IAAAA,UAAS,OAAO,YAAsBG,MAAKH,UAAS,MAAM;AACvL,MAAIA,UAAS,OAAO,OAAO,WAAW,CAACA,UAAS,OAAO,aAAW,KAAAA,UAAS,OAAO,OAAO,cAAvB,mBAAkC,SAAS;AAAY,IAAAA,UAAS,OAAO,UAAkBG,OAAKH,UAAS,MAAM;AAC/K,MAAIA,UAAS,OAAO,aAAa,WAAW,CAACA,UAAS,OAAO;AAAc,IAAAA,UAAS,OAAO,eAA4BG,OAAKH,UAAS,MAAM;AAG3I,mBAAiBE,WAAS,OAAO,KAAKF,UAAS,MAAM,GAAG;AACtD,QAAIA,UAAS,OAAOE,YAA0B,OAAOF,UAAS,OAAOE,aAA2B,aAAa;AAC3G,MAAAF,UAAS,OAAOE,WAAyB,MAAMF,UAAS,OAAOE;AAAA,IACjE;AAAA,EACF;AACF;AAEA,IAAI;AAGG,SAAS,cAAc,aAA2BA,SAA0B,MAAgC;AApJnH;AAqJE,MAAI;AAAa,eAAW;AAC5B,MAAI,CAACA;AAAO,WAAO;AACnB,MAAI,CAAC;AAAU,QAAI,wBAAwB;AAC3C,MAAI,CAAC,SAAS,OAAO;AAAgB,WAAO;AAC5C,QAAM,YAAY,CAAC,SAAS,eAAe,QAAQ,OAAO,WAAW,OAAO,OAAO,OAAO,KAAK;AAC/F,QAAM,YAAY,CAAC,WAAW,oBAAoB,QAAQ;AAC1D,QAAM,MAAgB,CAAC;AACvB,QAAM,UAAoB,CAAC;AAE3B,QAAM,MAAMA,QAAM;AAClB,QAAM,WAAWA,QAAM;AACvB,OAAI,0CAAU,UAAV,mBAAiB,OAAO;AAC1B,eAAW,UAAU,OAAO,OAAO,SAAS,MAAM,KAAK,GAAG;AACxD,YAAMI,MAAM,OAAc,GAAG,YAAY;AACzC,UAAI,CAAC,IAAI,SAASA,GAAE;AAAG,YAAI,KAAKA,GAAE;AAAA,IACpC;AAAA,EACF,OAAO;AACL,QAAI,CAAC,YAAY,SAAS,OAAO,OAAO;AACtC,UAAI,oBAAoB,IAAI;AAAA,IAC9B;AAAA,EACF;AACA,aAAWA,OAAM,KAAK;AACpB,QAAI,CAAC,UAAU,SAASA,GAAE,KACrB,CAAC,UAAU,SAASA,GAAE,KACtB,CAAC,SAAS,IAAI,QAAQ,SAASA,GAAE,KACjC,CAAC,SAAS,IAAI,QAAQ,SAASA,IAAG,QAAQ,KAAK,EAAE,CAAC,KAClD,CAAC,SAAS,IAAI,QAAQ,SAASA,IAAG,QAAQ,UAAU,EAAE,CAAC,KACvD,CAAC,SAAS,IAAI,QAAQ,SAASA,IAAG,QAAQ,MAAM,EAAE,CAAC,GAAG;AACzD,cAAQ,KAAKA,GAAE;AAAA,IACjB;AAAA,EACF;AACA,MAAI,SAAS,OAAO,SAAS,QAAQ,SAAS;AAAG,QAAI,4BAA4B,MAAM,OAAO;AAC9F,SAAO,QAAQ,SAAS,IAAI,EAAE,MAAM,SAAS,KAAK,IAAI,IAAI;AAC5D;AAEO,SAASC,UAAS,aAA2D;AAClF,aAAW;AACX,QAAM,UAAuB,CAAC;AAC9B,aAAW,WAAW,OAAO,KAAK,SAAS,MAAM,GAAG;AAClD,UAAML,UAA2B,SAAS,OAAO;AACjD,QAAI,CAACA;AAAO;AACZ,UAAM,MAAM,cAAc,UAAUA,SAAO,OAAO;AAClD,QAAI;AAAK,cAAQ,KAAK,GAAG;AAAA,EAC3B;AACA,SAAO;AACT;;;A4C3LA,IAAMM,WAAU;AAAA,EACd,aAAa;AAAA,EACb,gBAAgB;AAAA,EAChB,SAAS;AAAA,EACT,OAAO;AAAA,EACP,eAAe;AACjB;AAUO,IAAM,aAAwC,CAAC;AAEtD,eAAe,YAAY,KAAaC,OAA8C;AACpF,MAAID,SAAQ;AAAO,QAAI,qBAAqB,KAAKC,KAAI;AACrD,SAAO,MAAM,KAAKA,KAAI;AACxB;AAEO,SAAS,oBAAoBC,SAAgB;AAClD,EAAAF,SAAQ,cAAcE,QAAO;AAC7B,EAAAF,SAAQ,UAAUE,QAAO;AACzB,EAAAF,SAAQ,gBAAgBE,QAAO;AACjC;AAEA,eAAsB,UAAU,WAAoD;AApCpF;AAqCE,MAAI,WAAW,KAAKF,SAAQ,eAAe,aAAa,EAAE;AAC1D,MAAI,CAAC,SAAS,YAAY,EAAE,SAAS,OAAO;AAAG,gBAAY;AAC3D,QAAM,oBAAoB,SAAS,SAAS,GAAG,IAAI,SAAS,MAAM,GAAG,IAAI,SAAS,MAAM,IAAI;AAC5F,QAAM,iBAAiB,kBAAkB,kBAAkB,SAAS,GAAG,QAAQ,SAAS,EAAE;AAC1F,QAAM,kBAAkB,iBAAiB;AACzC,aAAW,kBAAkB;AAAA,IAC3B,MAAM;AAAA,IACN,kBAAkB;AAAA,IAClB,mBAAmB;AAAA,IACnB,aAAa,eAAW;AAAA,IACxB,SAAS;AAAA,EACX;AACA,EAAAA,SAAQ,iBAAkB,OAAO,WAAW,eAAiB,OAAO,OAAO,iBAAiB,eAAiB,OAAO,OAAO,cAAc;AACzI,MAAI,eAAe,CAAC;AACpB,MAAI;AACF,mBAAgBA,SAAQ,kBAAkBA,SAAQ,cAAe,MAAS,WAAG,WAAW,IAAI,CAAC;AAAA,EAC/F,SAAQG,IAAN;AACA,IAAAH,SAAQ,iBAAiB;AAAA,EAC3B;AACA,aAAW,gBAAgB,UAAWA,SAAQ,kBAAkBA,SAAQ,eAAgB,OAAO,KAAK,YAAY,EAAE,SAAS,eAAe;AAC1I,QAAM,gBAAgB,OAAO,UAAU,cAAc,CAAC,IAAI,EAAE,WAAW,CAAC,KAAaC,UAAuB,YAAY,KAAKA,KAAI,EAAE;AACnI,QAAMG,UAAoB,IAAO,WAAW,WAAW,gBAAgB,UAAU,kBAAkB,UAAU,aAAa;AAC1H,MAAI,SAAS;AACb,MAAI;AAEF,IAAAA,QAAM,cAAc;AACpB,QAAIJ,SAAQ;AAAO,UAAI,uBAAuBI,QAAM,UAAU;AAE9D,UAAM,YAAY,MAAMA,QAAM,QAAQ,KAAK;AAC3C,eAAW,gBAAgB,qBAAmB,4CAAW,eAAX,mBAAuB,eAAc;AACnF,IAAAA,QAAM,SAAS,SAAS;AAExB,eAAW,gBAAgB,sBAAoB,WAAAA,QAAM,cAAN,mBAAiB,eAAjB,mBAA6B,eAAc;AAC1F,QAAIJ,SAAQ;AAAS,UAAI,eAAeI,QAAM,aAAa,EAAE,OAAO,WAAW,gBAAgB,kBAAkB,GAAGJ,QAAO;AAC3H,aAAS;AAAA,EACX,SAAS,KAAP;AACA,QAAI,wBAAwB,UAAU,GAAG;AAAA,EAC3C;AACA,MAAI,UAAUA,SAAQ,eAAeA,SAAQ,kBAAkB,CAAC,WAAW,gBAAgB,SAAS;AAClG,QAAI;AACF,YAAM,aAAa,MAAMI,QAAM,KAAK,eAAe;AACnD,UAAI,gBAAgB,iBAAiB,UAAU;AAAA,IACjD,SAAS,KAAP;AACA,UAAI,uBAAuB,UAAU,GAAG;AAAA,IAC1C;AAAA,EACF;AACA,gBAAc,MAAMA,SAAO,GAAG,aAAa,IAAI;AAC/C,SAAOA;AACT;;;;;;ACrFA;AAAA;AAAA,aAAAC;AAAA,EAAA;AAAA,gBAAAC;AAAA,EAAA;AAAA;AAAA;AAAA;AAAA,iBAAAC;AAAA,EAAA;AAAA;;;ACKO,IAAM,mBAAmB,CAACC,WAAqB;AACpD,MAAI,CAACA;AAAO,QAAI,4BAA4B;AAAA,WACnC,CAACA,OAAM;AAAY,QAAI,wCAAwC;AAAA,OACnE;AACH,UAAM,MAAMA,OAAM,WAAW,IAAI;AACjC,QAAI,CAAC;AAAK,UAAI,uCAAuC;AAAA;AAChD,aAAO;AAAA,EACd;AACA,SAAO;AACT;AAEO,IAAM,UAAU,CAAC,UAAkB,KAAK,MAAO,QAAQ,MAAO,KAAK,EAAE;AAErE,IAAM,aAAa,CAAC,GAAuBC,SAA6B;AAC7E,MAAI,CAACA,KAAI,YAAY,OAAO,MAAM;AAAa,WAAOA,KAAI;AAC1D,QAAMC,OAAM,kBAAkB,KAAK,CAAC,MAAO,IAAI,GAAI,MAAO,IAAI,GAAI,GAAG,CAAC;AACtE,SAAO,QAAQA,KAAI,OAAOA,KAAI,OAAOA,KAAI,OAAOD,KAAI;AACtD;AAEO,SAAS,MAAM,KAAmE,GAAW,GAAW,GAAuB,cAA2B;AAC/J,MAAI,YAAY,WAAW,GAAG,YAAY;AAC1C,MAAI,UAAU;AACd,MAAI,IAAI,GAAG,GAAG,aAAa,WAAW,GAAG,IAAI,KAAK,EAAE;AACpD,MAAI,KAAK;AACX;AAEO,SAAS,KAAK,KAAmE,GAAW,GAAW,OAAe,QAAgB,cAA2B;AACtK,MAAI,UAAU;AACd,MAAI,YAAY,aAAa;AAC7B,MAAI,aAAa,WAAW;AAC1B,UAAM,MAAM,IAAI,IAAI,SAAS;AAC7B,UAAM,MAAM,IAAI,IAAI,UAAU;AAC9B,QAAI,QAAQ,IAAI,IAAI,QAAQ,GAAG,SAAS,GAAG,GAAG,GAAG,IAAI,KAAK,EAAE;AAAA,EAC9D,OAAO;AACL,QAAI,OAAO,IAAI,aAAa,WAAW,CAAC;AACxC,QAAI,OAAO,IAAI,QAAQ,aAAa,WAAW,CAAC;AAChD,QAAI,iBAAiB,IAAI,OAAO,GAAG,IAAI,OAAO,IAAI,aAAa,SAAS;AACxE,QAAI,OAAO,IAAI,OAAO,IAAI,SAAS,aAAa,SAAS;AACzD,QAAI,iBAAiB,IAAI,OAAO,IAAI,QAAQ,IAAI,QAAQ,aAAa,WAAW,IAAI,MAAM;AAC1F,QAAI,OAAO,IAAI,aAAa,WAAW,IAAI,MAAM;AACjD,QAAI,iBAAiB,GAAG,IAAI,QAAQ,GAAG,IAAI,SAAS,aAAa,SAAS;AAC1E,QAAI,OAAO,GAAG,IAAI,aAAa,SAAS;AACxC,QAAI,iBAAiB,GAAG,GAAG,IAAI,aAAa,WAAW,CAAC;AACxD,QAAI,UAAU;AAAA,EAChB;AACA,MAAI,OAAO;AACb;AAEO,SAAS,MAAM,KAAmE,QAAiB,cAA2B;AACnI,MAAI,OAAO,SAAS;AAAG;AACvB,MAAI,UAAU;AACd,MAAI,OAAO,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACrC,aAAW,MAAM,QAAQ;AACvB,QAAI,cAAc,WAAW,GAAG,MAAM,GAAG,YAAY;AACrD,QAAI,OAAO,KAAK,MAAM,GAAG,EAAE,GAAG,KAAK,MAAM,GAAG,EAAE,CAAC;AAAA,EACjD;AACA,MAAI,OAAO;AACX,MAAI,aAAa,cAAc;AAC7B,QAAI,UAAU;AACd,QAAI,KAAK;AAAA,EACX;AACF;AAEO,SAAS,OAAO,KAAmE,QAAiB,cAA2B;AACpI,MAAI,OAAO,SAAS;AAAG;AACvB,MAAI,YAAY,aAAa;AAC7B,MAAI,CAAC,aAAa,aAAa,OAAO,UAAU,GAAG;AACjD,UAAM,KAAK,QAAQ,YAAY;AAC/B;AAAA,EACF;AACA,MAAI,OAAO,OAAO,GAAG,IAAI,OAAO,GAAG,EAAE;AACrC,WAASE,KAAI,GAAGA,KAAI,OAAO,SAAS,GAAGA,MAAK;AAC1C,UAAM,MAAM,OAAOA,IAAG,KAAK,OAAOA,KAAI,GAAG,MAAM;AAC/C,UAAM,MAAM,OAAOA,IAAG,KAAK,OAAOA,KAAI,GAAG,MAAM;AAC/C,QAAI,iBAAiB,OAAOA,IAAG,IAAI,OAAOA,IAAG,IAAI,IAAI,EAAE;AAAA,EACzD;AACA,MAAI,iBAAiB,OAAO,OAAO,SAAS,GAAG,IAAI,OAAO,OAAO,SAAS,GAAG,IAAI,OAAO,OAAO,SAAS,GAAG,IAAI,OAAO,OAAO,SAAS,GAAG,EAAE;AAC3I,MAAI,OAAO;AACX,MAAI,aAAa,cAAc;AAC7B,QAAI,UAAU;AACd,QAAI,KAAK;AAAA,EACX;AACF;AAEO,SAAS,MAAM,KAAmE,MAAa,IAAW,SAAS,GAAG;AAC3H,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI,UAAU;AACd,MAAI,OAAO,KAAK,IAAI,KAAK,EAAE;AAC3B,MAAI,OAAO,GAAG,IAAI,GAAG,EAAE;AACvB,UAAQ,KAAK,MAAM,GAAG,KAAK,KAAK,IAAI,GAAG,KAAK,KAAK,EAAE;AACnD,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,OAAO,GAAG,CAAC;AACf,WAAU,IAAM,KAAQ,IAAI,KAAK;AACjC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,OAAO,GAAG,CAAC;AACf,WAAU,IAAM,KAAQ,IAAI,KAAK;AACjC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,SAAS,KAAK,IAAI,KAAK,IAAI,GAAG;AAClC,MAAI,OAAO,GAAG,CAAC;AACf,MAAI,UAAU;AACd,MAAI,OAAO;AACX,MAAI,KAAK;AACX;;;AClEO,IAAMC,WAAuB;AAAA,EAClC,OAAO;AAAA,EACP,YAAY;AAAA,EACZ,aAAa;AAAA,EACb,OAAO;AAAA,EACP,MAAM;AAAA,EACN,YAAY;AAAA,EACZ,WAAW;AAAA,EACX,WAAW;AAAA,EACX,WAAW;AAAA,EACX,YAAY;AAAA,EACZ,YAAY;AAAA,EACZ,WAAW;AAAA,EACX,eAAe;AAAA,EACf,cAAc;AAAA,EACd,cAAc;AAAA,EACd,UAAU;AAAA,EACV,cAAc;AAAA,EACd,UAAU;AAAA,EACV,WAAW;AACb;;;ACzDA,IAAI;AAEJ,SAAS,WAAW,GAAe,KAAmE;AAVtG;AAWE,MAAI,IAAI,YAAY;AAElB,UAAMC,UAAkB,CAAC;AACzB,IAAAA,QAAO,KAAK,SAAS,KAAK,MAAM,MAAM,EAAE,KAAK,IAAI;AACjD,QAAI,EAAE;AAAa,MAAAA,QAAO,KAAK,GAAG,EAAE,UAAU,MAAM,KAAK,MAAM,MAAM,EAAE,WAAW,IAAI;AACtF,QAAI,EAAE;AAAK,MAAAA,QAAO,KAAK,QAAQ,EAAE,OAAO,IAAI;AAC5C,QAAI,EAAE;AAAM,MAAAA,QAAO,KAAK,aAAa,EAAE,MAAM;AAC7C,QAAI,EAAE;AAAM,MAAAA,QAAO,KAAK,SAAS,KAAK,MAAM,MAAM,EAAE,IAAI,IAAI;AAC5D,QAAI,EAAE;AAAM,MAAAA,QAAO,KAAK,SAAS,KAAK,MAAM,MAAM,EAAE,IAAI,IAAI;AAC5D,QAAI,EAAE,WAAW,EAAE,QAAQ,SAAS,GAAG;AACrC,YAAMC,WAAU,EAAE,QAAQ,IAAI,CAAC,MAAM,GAAG,KAAK,MAAM,MAAM,EAAE,KAAK,MAAM,EAAE,SAAS;AACjF,UAAIA,SAAQ,SAAS;AAAG,QAAAA,SAAQ,SAAS;AACzC,MAAAD,QAAO,KAAKC,SAAQ,KAAK,GAAG,CAAC;AAAA,IAC/B;AACA,UAAI,OAAE,aAAF,mBAAY,YAAS,OAAE,aAAF,mBAAY,OAAM;AACzC,UAAI,EAAE,SAAS,MAAM;AAAM,QAAAD,QAAO,KAAK,SAAS,QAAQ,EAAE,SAAS,MAAM,IAAI,aAAU,QAAQ,EAAE,SAAS,MAAM,GAAG,eAAY,QAAQ,EAAE,SAAS,MAAM,KAAK,OAAI;AACjK,UAAI,EAAE,SAAS,KAAK;AAAS,QAAAA,QAAO,KAAK,SAAS,QAAQ,EAAE,SAAS,KAAK,OAAO,OAAI;AAAA,IACvF;AACA,QAAIA,QAAO,WAAW;AAAG,MAAAA,QAAO,KAAK,MAAM;AAC3C,QAAI,YAAY,IAAI;AACpB,aAASE,KAAIF,QAAO,SAAS,GAAGE,MAAK,GAAGA,MAAK;AAC3C,YAAM,IAAI,KAAK,IAAI,EAAE,IAAI,IAAI,CAAC;AAC9B,YAAM,IAAIA,KAAI,IAAI,aAAa,EAAE,IAAI;AACrC,UAAI,IAAI,eAAe,IAAI,gBAAgB,IAAI;AAC7C,YAAI,YAAY,IAAI;AACpB,YAAI,SAASF,QAAOE,KAAI,IAAI,GAAG,IAAI,EAAE;AAAA,MACvC;AACA,UAAI,YAAY,IAAI;AACpB,UAAI,SAASF,QAAOE,KAAI,IAAI,GAAG,IAAI,EAAE;AAAA,IACvC;AAAA,EACF;AACF;AAEA,SAAS,eAAe,GAAe,KAAmE;AA5C1G;AA8CE,QAAI,OAAE,gBAAF,mBAAe,kBAAe,OAAE,gBAAF,mBAAe,YAAY,KAAI;AAC/D,QAAI,cAAc,IAAI,WAAW,6BAA6B,IAAI;AAClE,QAAI,UAAU;AACd,UAAM,QAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,KAAK,EAAE,YAAY,YAAY,GAAG,EAAE,IAAI;AAC5F,UAAM,QAAQ,KAAK,IAAI,EAAE,YAAY,YAAY,GAAG,KAAK,EAAE,YAAY,YAAY,GAAG,EAAE,IAAI;AAC5F,QAAI,QAAQ,EAAE,YAAY,YAAY,GAAG,IAAI,EAAE,YAAY,YAAY,GAAG,IAAI,OAAO,OAAO,GAAG,GAAG,IAAI,KAAK,EAAE;AAC7G,QAAI,OAAO;AACX,QAAI,IAAI,cAAc;AACpB,UAAI,YAAY,IAAI,WAAW,6BAA6B,IAAI;AAChE,UAAI,KAAK;AAAA,IACX;AAAA,EACF;AACA,QAAI,OAAE,gBAAF,mBAAe,mBAAgB,OAAE,gBAAF,mBAAe,aAAa,KAAI;AACjE,QAAI,cAAc,IAAI,WAAW,6BAA6B,IAAI;AAClE,QAAI,UAAU;AACd,UAAM,QAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,KAAK,EAAE,YAAY,aAAa,GAAG,EAAE,IAAI;AAC9F,UAAM,QAAQ,KAAK,IAAI,EAAE,YAAY,aAAa,GAAG,KAAK,EAAE,YAAY,aAAa,GAAG,EAAE,IAAI;AAC9F,QAAI,QAAQ,EAAE,YAAY,aAAa,GAAG,IAAI,EAAE,YAAY,aAAa,GAAG,IAAI,OAAO,OAAO,GAAG,GAAG,IAAI,KAAK,EAAE;AAC/G,QAAI,OAAO;AACX,QAAI,IAAI,cAAc;AACpB,UAAI,YAAY,IAAI,WAAW,6BAA6B,IAAI;AAChE,UAAI,KAAK;AAAA,IACX;AAAA,EACF;AACF;AAEA,SAAS,gBAAgB,GAAe,KAAmE;AAxE3G;AAyEE,MAAI,IAAI,cAAY,OAAE,aAAF,mBAAY,UAAS,OAAO,WAAW,aAAa;AACtE,QAAI,cAAc;AAClB,UAAM,OAAQ,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK,IAAM,EAAE,IAAI,KAAK,QAAQ,EAAE,SAAS,MAAM,GAAG,IAAI;AACrF,UAAM,OAAQ,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK,IAAM,EAAE,IAAI,KAAK,QAAQ,EAAE,SAAS,MAAM,KAAK,IAAI;AACvF,UAAM,QAAQ,IAAI,OAAO;AAAA,UACnB,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK,KAAK,EAAE,IAAI;AAAA;AAAA,UAEjC,QAAQ,EAAE,IAAI;AAAA,UACd,QAAQ,EAAE,IAAI,KAAK,EAAE,IAAI;AAAA,UACzB,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,EAAE,IAAI;AAAA,KACjD;AACD,UAAM,QAAQ,IAAI,OAAO;AAAA,UACnB,EAAE,IAAI,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK;AAAA;AAAA,UAElC,EAAE,IAAI,MAAM;AAAA,UACZ,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,UACvB,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,KAAK;AAAA,KAClD;AACD,QAAI,OAAO,KAAK;AAChB,QAAI,OAAO,KAAK;AAAA,EAClB;AACF;AAEA,SAAS,eAAe,GAAe,KAAmE;AAhG1G;AAiGE,MAAI,IAAI,cAAY,OAAE,aAAF,mBAAY,KAAK,aAAY,EAAE,SAAS,KAAK,WAAW,EAAE,YAAY,eAAe,EAAE,YAAY,gBAAgB,EAAE,YAAY,YAAY,MAAM,EAAE,YAAY,aAAa,IAAI;AACpM,QAAI,cAAc;AAClB,QAAI,YAAY;AAChB,UAAM,WAAW;AAAA,MACf,EAAE,YAAY,YAAY,GAAG,KAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,IAAI,EAAE,SAAS,KAAK,WAAW,EAAE,IAAI;AAAA,MACxG,EAAE,YAAY,YAAY,GAAG,KAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,IAAI,EAAE,SAAS,KAAK,WAAW,EAAE,IAAI;AAAA,IAC1G;AACA,UAAM,KAAK,CAAC,EAAE,YAAY,YAAY,GAAG,IAAI,EAAE,YAAY,YAAY,GAAG,EAAE,GAAG,CAAC,SAAS,IAAI,SAAS,EAAE,GAAG,CAAC;AAC5G,UAAM,YAAY;AAAA,MAChB,EAAE,YAAY,aAAa,GAAG,KAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,IAAI,EAAE,SAAS,KAAK,WAAW,EAAE,IAAI;AAAA,MACzG,EAAE,YAAY,aAAa,GAAG,KAAM,KAAK,IAAI,EAAE,SAAS,KAAK,OAAO,IAAI,EAAE,SAAS,KAAK,WAAW,EAAE,IAAI;AAAA,IAC3G;AACA,UAAM,KAAK,CAAC,EAAE,YAAY,aAAa,GAAG,IAAI,EAAE,YAAY,aAAa,GAAG,EAAE,GAAG,CAAC,UAAU,IAAI,UAAU,EAAE,GAAG,CAAC;AAAA,EAClH;AACF;AAEA,SAAS,iBAAiB,GAAe,KAAmE;AAC1G,MAAI,IAAI,gBAAgB,EAAE,KAAK,UAAU,KAAK;AAC5C,QAAI,YAAY;AAChB,aAASA,KAAI,GAAGA,KAAI,OAAc,SAAS,GAAGA,MAAK;AACjD,YAAM,SAAS,CAAC,OAAcA,KAAI,IAAI,IAAI,OAAcA,KAAI,IAAI,IAAI,OAAcA,KAAI,IAAI,EAAE,EAAE,IAAI,CAACC,WAAU,EAAE,KAAKA,OAAM;AAC1H,YAAM,KAAK,QAAQ,GAAG;AAAA,IACxB;AACA,mBAAe,GAAG,GAAG;AAAA,EACvB;AAQF;AAEA,SAAS,eAAe,GAAe,KAAmE;AACxG,MAAI,IAAI,cAAc,EAAE,KAAK,UAAU,KAAK;AAC1C,aAASD,KAAI,GAAGA,KAAI,EAAE,KAAK,QAAQA,MAAK;AACtC,YAAM,KAAK,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAI,GAAG;AACxD,UAAI,IAAI,eAAe;AACrB,YAAsB,iCAAiC,SAASA,EAAC;AAAG,gBAAM,KAAK,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAK,EAAE,KAAKA,IAAG,KAAgB,KAAK,GAAG;AAC9I,YAAsB,qCAAqC,SAASA,EAAC;AAAG,gBAAM,KAAK,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAK,EAAE,KAAKA,IAAG,KAAgB,KAAK,GAAG;AAClJ,YAAsB,sCAAsC,SAASA,EAAC;AAAG,gBAAM,KAAK,EAAE,KAAKA,IAAG,IAAI,EAAE,KAAKA,IAAG,IAAK,EAAE,KAAKA,IAAG,KAAgB,KAAK,GAAG;AAAA,MACrJ;AAAA,IACF;AAAA,EACF;AACF;AAEA,SAAS,cAAc,GAAe,KAAK;AACzC,MAAI,IAAI,WAAW;AACjB,SAAK,KAAK,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,GAAG;AAAA,EACvD;AACF;AAGO,SAAS,KAAKE,WAAqB,QAAsB,aAAoC;AAClG,QAAM,UAAUC,UAAS,WAAW;AACpC,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,OAAO,IAAI;AACf,MAAI,cAAc,IAAI;AACtB,MAAI,YAAY,IAAI;AACpB,aAAW,KAAK,QAAQ;AACtB,kBAAc,GAAG,GAAG;AACpB,eAAW,GAAG,GAAG;AACjB,QAAI,EAAE,QAAQ,EAAE,KAAK,SAAS,GAAG;AAC/B,qBAAe,GAAG,GAAG;AACrB,uBAAiB,GAAG,GAAG;AACvB,sBAAgB,GAAG,GAAG;AACtB,qBAAe,GAAG,GAAG;AAAA,IACvB;AAAA,EACF;AACF;;;AClKO,SAAS,KAAKE,WAAqB,QAAsB,aAAoC;AAClG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,WAAW;AACf,WAASE,KAAI,GAAGA,KAAI,OAAO,QAAQA,MAAK;AACtC,QAAI,cAAc,aAAa;AAC/B,QAAI,YAAY,aAAa;AAC7B,QAAI,YAAY,aAAa;AAC7B,QAAI,OAAO,aAAa;AACxB,QAAI,aAAa,aAAa,OAAOA,IAAG,OAAO,OAAOA,IAAG,IAAI,WAAW,GAAG;AACzE,WAAK,KAAK,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,YAAY;AAC9F,UAAI,aAAa,YAAY;AAC3B,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,QAAQ,MAAM,OAAOA,IAAG,UAAU,OAAOA,IAAG,IAAI,KAAK,GAAG,IAAI,OAAOA,IAAG,IAAI,KAAK,aAAa,YAAY,OAAOA,IAAG,IAAI,EAAE;AAAA,QACvI;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,QAAQ,MAAM,OAAOA,IAAG,UAAU,OAAOA,IAAG,IAAI,KAAK,GAAG,IAAI,OAAOA,IAAG,IAAI,KAAK,aAAa,YAAY,OAAOA,IAAG,IAAI,EAAE;AAAA,MACvI;AAAA,IACF;AACA,QAAI,aAAa,cAAc,OAAOA,IAAG,WAAW;AAClD,eAAS,KAAK,GAAG,KAAK,OAAOA,IAAG,UAAU,QAAQ,MAAM;AACtD,YAAI,CAAC,OAAOA,IAAG,UAAU,IAAI,SAAU,OAAOA,IAAG,UAAU,IAAI,UAAU;AAAI;AAC7E,YAAI,YAAY,WAAW,OAAOA,IAAG,UAAU,IAAI,SAAS,IAAI,YAAY;AAC5E,cAAM,KAAK,OAAOA,IAAG,UAAU,IAAI,SAAS,IAAI,OAAOA,IAAG,UAAU,IAAI,SAAS,IAAI,GAAG,YAAY;AAAA,MACtG;AAAA,IACF;AACA,QAAI,aAAa,cAAc,OAAOA,IAAG,WAAW;AAClD,UAAI,OAAO,aAAa;AACxB,iBAAW,MAAM,OAAOA,IAAG,WAAW;AACpC,YAAI,CAAC,GAAG,SAAU,GAAG,UAAU;AAAI;AACnC,YAAI,YAAY,WAAW,GAAG,SAAS,IAAI,YAAY;AACvD,YAAI,SAAS,GAAG,GAAG,QAAQ,KAAK,MAAM,MAAM,GAAG,KAAK,MAAM,GAAG,SAAS,KAAK,GAAG,GAAG,SAAS,KAAK,CAAC;AAAA,MAClG;AAAA,IACF;AACA,QAAI,aAAa,gBAAgB,OAAOA,IAAG,aAAa,OAAOA,IAAG,aAAa;AAC7E,iBAAW,QAAQ,OAAO,OAAO,OAAOA,IAAG,WAAW,GAAG;AACvD,mBAAWC,cAAa;AAAM,iBAAO,KAAKA,YAAW,YAAY;AAAA,MACnE;AAAA,IACF;AAAA,EACF;AACF;;;AC3CO,SAAS,KAAKC,WAAqB,QAAsB,aAAoC;AAClG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,WAAW;AACf,MAAI,OAAO,aAAa;AACxB,aAAW,KAAK,QAAQ;AACtB,QAAI,aAAa,WAAW;AAC1B,UAAI,cAAc,aAAa;AAC/B,UAAI,YAAY,aAAa;AAC7B,WAAK,KAAK,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,YAAY;AAC9D,UAAI,aAAa,YAAY;AAC3B,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,QAAQ,KAAK,MAAM,MAAM,EAAE,KAAK,MAAM,EAAE,IAAI,KAAK,GAAG,IAAI,EAAE,IAAI,KAAK,aAAa,YAAY,EAAE,IAAI,EAAE;AAAA,QACnH;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,QAAQ,KAAK,MAAM,MAAM,EAAE,KAAK,MAAM,EAAE,IAAI,KAAK,GAAG,IAAI,EAAE,IAAI,KAAK,aAAa,YAAY,EAAE,IAAI,EAAE;AAAA,MACnH;AACA,UAAI,OAAO;AAAA,IACb;AACA,QAAI,aAAa,YAAY;AAC3B,UAAI,EAAE,aAAa,EAAE,UAAU,SAAS,GAAG;AACzC,mBAAW,MAAM,EAAE,WAAW;AAC5B,cAAI,YAAY,WAAW,GAAG,IAAI,YAAY;AAC9C,gBAAM,KAAK,GAAG,IAAI,GAAG,IAAI,GAAG,YAAY;AAAA,QAC1C;AAAA,MACF;AAAA,IACF;AACA,QAAI,aAAa,cAAc,EAAE,aAAa;AAC5C,YAAM,eAAe,CAAC,MAAe,UAAkB;AACrD,YAAI,CAAC,QAAQ,KAAK,WAAW,KAAK,CAAC,KAAK;AAAI;AAC5C,cAAM,IAAI,KAAK,KAAK,SAAS,GAAG,MAAM;AACtC,YAAI,YAAY,WAAW,GAAG,YAAY;AAC1C,YAAI,SAAS,OAAO,KAAK,KAAK,SAAS,GAAG,KAAK,GAAG,KAAK,KAAK,SAAS,GAAG,KAAK,CAAC;AAAA,MAChF;AACA,UAAI,OAAO,aAAa;AACxB,mBAAa,EAAE,YAAY,OAAO,OAAO;AACzC,mBAAa,EAAE,YAAY,QAAQ,QAAQ;AAC3C,mBAAa,EAAE,YAAY,MAAM,MAAM;AACvC,mBAAa,EAAE,YAAY,OAAO,OAAO;AACzC,mBAAa,EAAE,YAAY,OAAO,OAAO;AACzC,mBAAa,EAAE,YAAY,MAAM,MAAM;AAAA,IACzC;AACA,QAAI,aAAa,gBAAgB,EAAE,aAAa;AAC9C,YAAM,cAAc,CAAC,SAAkB;AACrC,YAAI,CAAC,QAAQ,KAAK,WAAW,KAAK,CAAC,KAAK;AAAI;AAC5C,iBAASE,KAAI,GAAGA,KAAI,KAAK,QAAQA,MAAK;AACpC,cAAI,UAAU;AACd,gBAAM,IAAI,KAAKA,IAAG,MAAM;AACxB,cAAI,cAAc,WAAWA,KAAI,GAAG,YAAY;AAChD,cAAI,OAAO,KAAKA,KAAI,IAAIA,KAAI,IAAI,GAAG,IAAI,KAAKA,KAAI,IAAIA,KAAI,IAAI,GAAG,EAAE;AACjE,cAAI,OAAO,KAAKA,IAAG,IAAI,KAAKA,IAAG,EAAE;AACjC,cAAI,OAAO;AAAA,QACb;AAAA,MACF;AACA,UAAI,YAAY,aAAa;AAC7B,kBAAY,EAAE,YAAY,KAAK;AAC/B,kBAAY,EAAE,YAAY,MAAM;AAChC,kBAAY,EAAE,YAAY,IAAI;AAC9B,kBAAY,EAAE,YAAY,KAAK;AAC/B,kBAAY,EAAE,YAAY,KAAK;AAAA,IAEjC;AAAA,EACF;AACF;;;AClEO,SAAS,OAAOC,WAAqB,QAAwB,aAAoC;AACtG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,WAAW;AACf,MAAI,OAAO,aAAa;AACxB,aAAW,KAAK,QAAQ;AACtB,QAAI,aAAa,WAAW;AAC1B,UAAI,cAAc,aAAa;AAC/B,UAAI,YAAY,aAAa;AAC7B,WAAK,KAAK,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,YAAY;AAC9D,UAAI,aAAa,YAAY;AAC3B,cAAM,QAAQ,GAAG,EAAE,SAAS,KAAK,MAAM,MAAM,EAAE,KAAK;AACpD,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,OAAO,EAAE,IAAI,KAAK,GAAG,IAAI,EAAE,IAAI,KAAK,aAAa,YAAY,EAAE,IAAI,EAAE;AAAA,QACpF;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,OAAO,EAAE,IAAI,KAAK,GAAG,IAAI,EAAE,IAAI,KAAK,aAAa,YAAY,EAAE,IAAI,EAAE;AAAA,MACpF;AACA,UAAI,OAAO;AAAA,IACb;AAAA,EACF;AACF;;;ACxBO,SAAS,QAAQE,WAAqB,QAAyB,aAAoC;AACxG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,MAAI,aAAa,cAAc;AAC7B,UAAM,MAAM,iBAAiBA,SAAQ;AACrC,QAAI,CAAC;AAAK;AACV,QAAI,OAAO,aAAa;AACxB,QAAI,YAAY,aAAa;AAC7B,QAAIE,KAAI;AACR,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,KAAK;AACtC,UAAIC,SAAmB,CAAC;AACxB,UAAI,OAAkB,CAAC;AACvB,OAACA,QAAO,IAAI,IAAI,OAAO,QAAQ,OAAO,EAAE;AACxC,UAAK,KAAK,SAAS,KAAQ,KAAK,GAAc,SAAS,GAAI;AACzD,cAAM,MAAMA,OAAM,KAAe,IAAI,IAAIA,OAAM,OAAO;AACtD,cAAM,QAAQ,GAAGA,OAAM,MAAM,QAAQ,KAAK;AAC1C,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,OAAO,GAAG,IAAKD,KAAI,aAAa,UAAW;AAAA,QAC1D;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,OAAO,GAAG,IAAKA,KAAI,aAAa,UAAW;AACxD,QAAAA,MAAK;AAAA,MACP;AAAA,IACF;AAAA,EACF;AACF;;;APjBA,IAAI,WAAW;AAUR,SAAS,OAAOE,WAAqB,QAAwB,aAAoC;AACtG,QAAM,eAA4B,UAAUC,UAAS,WAAW;AAChE,MAAI,CAAC,UAAU,CAACD;AAAU;AAC1B,QAAM,MAAM,iBAAiBA,SAAQ;AACrC,MAAI,CAAC;AAAK;AACV,MAAI,WAAW;AACf,MAAI,OAAO,aAAa;AAExB,WAASE,KAAI,GAAGA,KAAI,OAAO,QAAQA,MAAK;AACtC,QAAI,aAAa,WAAW;AAC1B,UAAI,cAAc,aAAa;AAC/B,UAAI,YAAY,aAAa;AAC7B,WAAK,KAAK,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,OAAOA,IAAG,IAAI,IAAI,YAAY;AAC9F,UAAI,aAAa,YAAY;AAC3B,cAAM,QAAQ,WAAWA;AACzB,YAAI,aAAa,eAAe,aAAa,gBAAgB,IAAI;AAC/D,cAAI,YAAY,aAAa;AAC7B,cAAI,SAAS,OAAO,OAAOA,IAAG,IAAI,KAAK,GAAG,IAAI,OAAOA,IAAG,IAAI,KAAK,aAAa,YAAY,OAAOA,IAAG,IAAI,EAAE;AAAA,QAC5G;AACA,YAAI,YAAY,aAAa;AAC7B,YAAI,SAAS,OAAO,OAAOA,IAAG,IAAI,KAAK,GAAG,IAAI,OAAOA,IAAG,IAAI,KAAK,aAAa,YAAY,OAAOA,IAAG,IAAI,EAAE;AAAA,MAC5G;AACA,UAAI,OAAO;AAAA,IACb;AAAA,EACF;AACF;AAGO,SAASC,QAAOC,QAAwD,QAAmB;AAChG,MAAI,CAACA,UAAS,CAAC;AAAQ;AACvB,QAAM,MAAM,iBAAiB,MAAM;AACnC,MAAI,CAAC;AAAK;AACV,MAAI,UAAUA,QAAO,GAAG,CAAC;AAC3B;AAGA,eAAsBC,KAAIL,WAAqB,QAAgB,aAAoC;AACjG,MAAI,EAAC,iCAAQ,gBAAe,CAACA;AAAU,WAAO;AAC9C,QAAM,YAAY,IAAI;AACtB,QAAM,eAAe,UAAUC,UAAS,WAAW;AACnD,QAAM,UAAU,QAAQ,IAAI;AAAA,IAC1B,KAAKD,WAAU,OAAO,MAAM,YAAY;AAAA,IACxC,KAAKA,WAAU,OAAO,MAAM,YAAY;AAAA,IACxC,KAAKA,WAAU,OAAO,MAAM,YAAY;AAAA,IACxC,OAAOA,WAAU,OAAO,QAAQ,YAAY;AAAA,IAC5C,QAAQA,WAAU,OAAO,SAAS,YAAY;AAAA,EAEhD,CAAC;AACD,aAAWM,KAAI,UAAU,WAAW,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAChG,SAAO,YAAY,OAAO;AAC1B,SAAO;AACT;;;AQxEA,IAAM,aAAa;AACnB,IAAM,QAAQ;AAGd,SAAS,WAAW,GAAW,GAAW,SAA8C;AACtF,MAAI,SAAS;AACb,MAAI,IAAI,QAAQ,SAAS;AACzB,WAASC,KAAI,GAAGA,KAAI,QAAQ,QAAQ,IAAIA,MAAK;AAC3C,QAAM,QAAQA,IAAG,IAAI,MAAQ,QAAQ,GAAG,IAAI,KAAQ,KAAK,QAAQ,GAAG,IAAI,QAAQA,IAAG,MAAM,IAAI,QAAQA,IAAG,MAAM,QAAQ,GAAG,IAAI,QAAQA,IAAG,KAAK,QAAQA,IAAG;AAAI,eAAS,CAAC;AAAA,EACxK;AACA,SAAO;AACT;AAEA,eAAsB,KAAKC,OAA+C;AACxE,MAAI,CAACA,MAAK;AAAQ,WAAOA,MAAK;AAC9B,MAAI,CAACA,MAAK,QAAQA,MAAK,KAAK,SAAS;AAAK,WAAOA,MAAK;AACtD,QAAM,QAAQA,MAAK,OAAO,MAAM,MAAM;AACtC,QAAM,SAASA,MAAK,OAAO,MAAM,MAAM;AACvC,QAAMC,UAAS,MAAMD,MAAK,OAAO,OAAO;AACxC,MAAI,aAAyC,CAAC;AAC9C,aAAW,MAAM,gBAAgB;AAAY,eAAW,KAAK,EAAE,IAAIA,MAAK,KAAK,IAAI,KAAKA,MAAK,IAAI,MAAMA,MAAK,IAAI,IAAI,IAAIA,MAAK,KAAK,IAAI,KAAKA,MAAK,IAAI,MAAMA,MAAK,IAAI,GAAG,CAAC;AACrK,MAAI,cAAc,aAAa;AAAG,iBAAa,WAAW,IAAI,CAAC,QAAQ,EAAE,GAAG,GAAG,IAAI,MAAM,GAAG,IAAI,aAAa,GAAG,IAAI,YAAY,GAAG,GAAG,IAAI,MAAM,GAAG,IAAI,aAAa,GAAG,IAAI,WAAW,EAAE;AACxL,WAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC9B,aAAS,IAAI,GAAG,IAAI,QAAQ,KAAK;AAC/B,YAAM,SAAS,WAAW,IAAI,OAAO,IAAI,OAAO,UAAU;AAC1D,UAAI,CAAC,QAAQ;AACX,QAAAC,QAAO,IAAI,QAAQA,QAAO,IAAI,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;AACrD,QAAAA,QAAO,IAAI,QAAQA,QAAO,IAAI,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;AACrD,QAAAA,QAAO,IAAI,QAAQA,QAAO,IAAI,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,MACvD;AAAA,IACF;AAAA,EACF;AACA,QAAM,SAASA,QAAO,SAAS;AAC/B,EAAG,QAAQA,OAAM;AACjB,SAAO;AACT;;;ACpCA,IAAM,gBAAgB,CAACC,UAA4D;AACjF,QAAM,UAAU,CAAC,KAAY,QAAe,KAAK,MAAM,IAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,EAAE;AACvF,MAAI,CAACA,MAAK,YAAY,gBAAgB,CAACA,MAAK,YAAY;AAAa,WAAO,EAAE,SAAS,GAAG,UAAU,EAAE;AAEtG,QAAM,aAAa,CAAC,GAAG,IAAI;AAC3B,QAAM,WAAW;AAEjB,QAAM,QAAQA,MAAK,KAAK,IAAI,MAAM,MAAMA,MAAK,KAAK,KAAK,MAAM;AAC7D,QAAM,aAAa,OAAOA,MAAK,KAAK,OAAOA,MAAK,KAAK;AACrD,QAAM,YAAY,OACd,EAAEA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,IAAI,MAAM,IAAIA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,IAAI,MAAM,CAAC,IACvF,EAAEA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,KAAK,MAAM,IAAIA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,KAAK,MAAM,CAAC;AAC7F,QAAM,UAAU,OACZ,CAACA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,IAAI,IAAIA,MAAK,KAAK,IAAI,KAAKA,MAAK,KAAK,IAAI,EAAE,IAC1E,CAACA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,KAAK,IAAIA,MAAK,KAAK,KAAK,KAAKA,MAAK,KAAK,KAAK,EAAE;AACjF,QAAM,UAAiB;AAAA,KACpB,UAAU,KAAK,WAAW,MAAM,QAAQ,KAAK,WAAW;AAAA,IACzD,YAAY,WAAW,KAAK,UAAU,MAAM,QAAQ,KAAK,WAAW;AAAA,EACtE;AACA,MAAI,WAAW,KAAK,KAAM,QAAQ,KAAK,QAAQ,KAAO,QAAQ,KAAK,QAAQ,EAAG;AAC9E,aAAW,KAAK,IAAI,UAAUA,MAAK,OAAO,KAAK,GAAGA,MAAK,OAAO,KAAK,CAAC;AACpE,QAAM,WAAW,QAAQ,CAAC,GAAG,CAAC,GAAG,OAAO,IAAK,KAAK,KAAK,KAAM,KAAK;AAClE,SAAO,EAAE,SAAS,SAAS;AAC7B;AAEO,IAAM,qBAAqB,CAACA,OAAkB,cAIhD;AAEH,QAAM,YAAY,CAAC,MAAsB;AACvC,UAAM,SAAS,KAAK,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE,EAAE;AAChE,MAAE,MAAM;AACR,MAAE,MAAM;AACR,MAAE,MAAM;AACR,WAAO;AAAA,EACT;AACA,QAAM,aAAa,CAAC,GAAW,MAAsB;AACnD,UAAM,IAAI,EAAE,KAAK,EAAE;AACnB,UAAM,IAAI,EAAE,KAAK,EAAE;AACnB,UAAM,IAAI,EAAE,KAAK,EAAE;AACnB,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AACA,QAAM,eAAe,CAAC,GAAW,MAAsB;AACrD,UAAM,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE;AACjC,UAAM,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE;AACjC,UAAM,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE;AACjC,WAAO,CAAC,GAAG,GAAG,CAAC;AAAA,EACjB;AAEA,QAAM,6BAA6B,CAACC,OAA8D;AAChG,UAAM,CAAC,KAAK,MAAM,MAAM,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG,IAAIA;AACxD,QAAI;AACJ,QAAI;AACJ,QAAI;AACJ,QAAI,MAAM,GAAG;AACX,UAAI,MAAM,IAAI;AACZ,iBAAS,KAAK,KAAK,GAAG;AACtB,iBAAS,KAAK,MAAM,CAAC,KAAK,GAAG;AAC7B,iBAAS,KAAK,MAAM,CAAC,KAAK,GAAG;AAAA,MAC/B,OAAO;AACL,iBAAS,CAAC,KAAK,KAAK;AACpB,iBAAS,CAAC,KAAK,MAAM,KAAK,GAAG;AAC7B,iBAAS;AAAA,MACX;AAAA,IACF,OAAO;AACL,eAAS,KAAK,KAAK;AACnB,eAAS,KAAK,MAAM,KAAK,GAAG;AAC5B,eAAS;AAAA,IACX;AACA,QAAI,OAAO,MAAM,MAAM;AAAG,eAAS;AACnC,QAAI,OAAO,MAAM,MAAM;AAAG,eAAS;AACnC,QAAI,OAAO,MAAM,MAAM;AAAG,eAAS;AACnC,WAAO,EAAE,OAAO,IAAI,CAAC,QAAQ,KAAK,IAAI,CAAC,QAAQ,MAAM,IAAI,CAAC,OAAO;AAAA,EACnE;AAcA,QAAM,OAAOD,MAAK;AAClB,MAAI,CAAC,QAAQ,KAAK,SAAS;AAAK,WAAO,EAAE,OAAO,EAAE,OAAO,GAAG,KAAK,GAAG,MAAM,EAAE,GAAG,QAAQ,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,MAAM,EAAE,SAAS,GAAG,UAAU,EAAE,EAAE;AAEtJ,QAAME,QAAO,KAAK,IAAIF,MAAK,OAAO,KAAK,UAAU,IAAIA,MAAK,OAAO,KAAK,UAAU,EAAE,IAAI;AAEtF,QAAM,MAAe,CAAC,KAAK,KAAK,KAAK,MAAM,KAAK,MAAM,KAAK,IAAI,EAAE,IAAI,CAAC,OAAO,CAAC,GAAG,KAAK,UAAU,KAAKE,OAAM,GAAG,KAAK,UAAU,KAAKA,OAAM,GAAG,EAAE,CAAU;AAEvJ,QAAM,QAAQ,UAAU,WAAW,IAAI,IAAc,IAAI,EAAY,CAAC;AACtE,MAAI,QAAQ,UAAU,WAAW,IAAI,IAAc,IAAI,EAAY,CAAC;AACpE,QAAM,QAAQ,UAAU,aAAa,OAAO,KAAK,CAAC;AAElD,UAAQ,aAAa,OAAO,KAAK;AAIjC,QAAM,SAAmF;AAAA,IACvF,MAAM;AAAA,IAAI,MAAM;AAAA,IAAI,MAAM;AAAA,IAC1B,MAAM;AAAA,IAAI,MAAM;AAAA,IAAI,MAAM;AAAA,IAC1B,MAAM;AAAA,IAAI,MAAM;AAAA,IAAI,MAAM;AAAA,EAC5B;AACA,QAAM,QAAQ,2BAA2B,MAAM;AAI/C,QAAM,OAAO,KAAK,WAAW,MAAM,cAAcF,KAAI,IAAI,EAAE,SAAS,GAAG,UAAU,EAAE;AAEnF,SAAO,EAAE,OAAO,QAAQ,KAAK;AAC/B;;;AC9FO,IAAM,aAAa,OAAOG,WAAyCC,WAAyC;AA1BnH;AA4BE,MAAI,YAAoB,IAAI;AAC5B,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AACJ,MAAI;AAEJ,QAAM,UAAwB,CAAC;AAC/B,EAAAD,UAAS,QAAQ;AAEjB,QAAM,QAAQ,MAAeE,UAAQD,QAAOD,UAAS,MAAM;AAC3D,EAAAA,UAAS,YAAY,OAAOG,KAAI,WAAWH,UAAS,YAAY,QAAQ,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AACzI,MAAI,CAACC,OAAM,SAASA,OAAM,MAAM,WAAW;AAAG,WAAO,CAAC;AACtD,MAAI,CAAC;AAAO,WAAO,CAAC;AAEpB,WAASG,KAAI,GAAGA,KAAI,MAAM,QAAQA,MAAK;AACrC,IAAAJ,UAAS,QAAQ,UAAU;AAI3B,QAAI,CAAC,MAAMI,IAAG,UAAU,MAAMA,IAAG,OAAO,oBAAoB;AAC1D,UAAI,4BAA4B,MAAMA,IAAG,MAAM;AAC/C;AAAA,IACF;AAGA,SAAI,KAAAJ,UAAS,OAAO,KAAK,aAArB,mBAA+B,MAAM;AACvC,YAAM,SAAS,MAAW,KAAK,MAAMI,GAAE;AACvC,MAAG,QAAQ,MAAMA,IAAG,MAAM;AAC1B,UAAI;AAAQ,cAAMA,IAAG,SAAS;AAAA,IAChC;AAGA,UAAM,WAAW,MAAMA,IAAG,QAAS,MAAMA,IAAG,KAAK,SAAS,MAAO,mBAAmB,MAAMA,KAAI,CAACH,OAAM,MAAM,IAAIA,OAAM,MAAM,EAAE,CAAC,IAAI;AAGlI,IAAAD,UAAS,QAAQ,gBAAgB;AACjC,QAAIA,UAAS,OAAO,OAAO;AACzB,qBAAa,KAAAA,UAAS,OAAO,KAAK,YAArB,mBAA8B,WAAkBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI,CAAC;AAAA,IAC9I,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,qBAAa,KAAAA,UAAS,OAAO,KAAK,YAArB,mBAA8B,WAAU,MAAcE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI,CAAC;AAClJ,MAAAJ,UAAS,YAAY,UAAUG,KAAI,WAAWH,UAAS,YAAY,WAAW,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACjJ;AACA,IAAAA,UAAS,QAAQ,cAAc;AAG/B,IAAAA,UAAS,QAAQ,kBAAkB;AACnC,QAAIA,UAAS,OAAO,OAAO;AACzB,uBAAe,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAoBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IACnJ,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,uBAAe,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAU,MAAgBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACvJ,MAAAJ,UAAS,YAAY,YAAYG,KAAI,WAAWH,UAAS,YAAY,aAAa,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACrJ;AACA,IAAAA,UAAS,QAAQ,gBAAgB;AAGjC,IAAAA,UAAS,QAAQ,iBAAiB;AAClC,QAAIA,UAAS,OAAO,OAAO;AACzB,sBAAc,KAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,WAAmBE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IAChJ,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,sBAAc,KAAAA,UAAS,OAAO,KAAK,aAArB,mBAA+B,WAAU,MAAeE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACpJ,MAAAJ,UAAS,YAAY,WAAWG,KAAI,WAAWH,UAAS,YAAY,aAAa,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACpJ;AACA,IAAAA,UAAS,QAAQ,eAAe;AAGhC,IAAAA,UAAS,QAAQ,aAAa;AAC9B,QAAIA,UAAS,OAAO,OAAO;AACzB,kBAAU,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,WAAe,QAAQ,MAAMI,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IACpI,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,kBAAU,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,WAAU,MAAW,QAAQ,MAAMI,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACxI,MAAAJ,UAAS,YAAY,OAAO,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IAC1D;AACA,IAAAA,UAAS,QAAQ,WAAW;AAG5B,IAAAA,UAAS,QAAQ,eAAe;AAChC,QAAIA,UAAS,OAAO,OAAO;AACzB,iBAAS,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAoBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAC3I,oBAAY,KAAAJ,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAuBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IACnJ,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,iBAAS,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAU,MAAgBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACjJ,oBAAY,KAAAJ,UAAS,OAAO,KAAK,cAArB,mBAAgC,WAAU,MAAmBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACvJ,MAAAJ,UAAS,YAAY,SAAS,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IAC5D;AACA,IAAAA,UAAS,QAAQ,aAAa;AAG9B,IAAAA,UAAS,QAAQ,sBAAsB;AACvC,QAAIA,UAAS,OAAO,OAAO;AACzB,2BAAmB,KAAAA,UAAS,OAAO,KAAK,qBAArB,mBAAuC,WAAwBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IAClK,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,2BAAmB,KAAAA,UAAS,OAAO,KAAK,qBAArB,mBAAuC,WAAU,MAAoBE,SAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AACtK,MAAAJ,UAAS,YAAY,gBAAgB,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACnE;AACA,IAAAA,UAAS,QAAQ,oBAAoB;AAGrC,IAAAA,UAAS,QAAQ,oBAAoB;AACrC,QAAIA,UAAS,OAAO,OAAO;AACzB,yBAAiB,KAAAA,UAAS,OAAO,KAAK,mBAArB,mBAAqC,WAAsBE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAAA,IAC5J,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,yBAAiB,KAAAA,UAAS,OAAO,KAAK,mBAArB,mBAAqC,WAAU,MAAkBE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM,IAAI;AAChK,MAAAJ,UAAS,YAAY,gBAAgB,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACnE;AACA,IAAAA,UAAS,QAAQ,kBAAkB;AAGnC,IAAAA,UAAS,QAAQ,oBAAoB;AACrC,QAAIA,UAAS,OAAO,OAAO;AACzB,gBAAkBE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM;AAAA,IAC9F,OAAO;AACL,MAAAJ,UAAS,QAAQ;AACjB,kBAAY,IAAI;AAChB,gBAAU,MAAcE,UAAQ,MAAME,IAAG,UAAa,OAAO,CAAC,CAAC,GAAGJ,UAAS,QAAQI,IAAG,MAAM,MAAM;AAClG,MAAAJ,UAAS,YAAY,cAAcG,KAAI,WAAWH,UAAS,YAAY,eAAe,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,IACzJ;AACA,IAAAA,UAAS,QAAQ,kBAAkB;AAGnC,QAAIA,UAAS,OAAO,OAAO;AACzB,OAAC,QAAQ,WAAW,YAAY,kBAAkB,gBAAgB,SAAS,SAAS,cAAc,WAAW,IAAI,MAAM,QAAQ,IAAI,CAAC,QAAQ,WAAW,YAAY,kBAAkB,gBAAgB,SAAS,SAAS,cAAc,WAAW,CAAC;AAAA,IACnP;AACA,IAAAA,UAAS,QAAQ,cAAc;AAE/B,UAAI,KAAAA,UAAS,OAAO,KAAK,cAArB,mBAAgC,YAAW,UAAU,WAAW;AAClE,gBAAU;AAAA,QACR,GAAI;AAAA,QACJ,KAAM,OAA0B;AAAA,QAChC,QAAS,UAAsD;AAAA,QAC/D,aAAc,UAAsD;AAAA,MACtE;AAAA,IACF;AACA,UAAI,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,YAAW,SAAS;AACjD,gBAAU;AAAA,QACR,GAAI;AAAA,QACJ,KAAM,QAA0B;AAAA,QAChC,QAAS,QAA0B;AAAA,QACnC,aAAc,QAA0B;AAAA,QACxC,MAAO,QAA0B;AAAA,MACnC;AAAA,IACF;AACA,UAAI,KAAAA,UAAS,OAAO,KAAK,qBAArB,mBAAuC,YAAW,kBAAkB;AACtE,MAAC,QAAoB,aAAa;AAAA,IACpC;AAEA,UAAI,KAAAA,UAAS,OAAO,KAAK,mBAArB,mBAAqC,YAAW,gBAAgB;AAClE,MAAC,QAAoB,aAAa;AAAA,IACpC;AAIA,QAAI,GAAC,KAAAA,UAAS,OAAO,KAAK,SAArB,mBAA2B,UAAS;AAAA,IAGzC;AACA,UAAM,aAAY,uBAAMI,QAAN,mBAAU,gBAAV,mBAAuB,gBAAvB,mBAAqC,SAAM,uBAAMA,QAAN,mBAAU,gBAAV,mBAAuB,iBAAvB,mBAAsC,OAC7F,MAAMA,IAAG,YAAY,YAAY,SAAS,KAAO,MAAMA,IAAG,YAAY,aAAa,SAAS,KAC5F,MAAMA,IAAG,YAAY,YAAY,OAAO,QAAU,MAAMA,IAAG,YAAY,aAAa,OAAO,OAC7F,KAAK,IAAI,KAAK,IAAI,MAAMA,IAAG,YAAY,YAAY,GAAG,KAAK,MAAMA,IAAG,YAAY,YAAY,GAAG,EAAE,GAAG,KAAK,IAAI,MAAMA,IAAG,YAAY,aAAa,GAAG,KAAK,MAAMA,IAAG,YAAY,aAAa,GAAG,EAAE,CAAC,IAAIH,OAAM,MAAM,KAC/M;AAGJ,UAAMI,YAAS,KAAAL,UAAS,OAAO,KAAK,aAArB,mBAA+B,UAAY,QAAQ,MAAMI,IAAG,MAAM,IAAI;AAErF,IAAG,QAAQ,MAAMA,IAAG,MAAM;AAE1B,QAAI,MAAMA,IAAG;AAAQ,aAAO,MAAMA,IAAG;AAErC,UAAM,MAAkB;AAAA,MACtB,GAAG,MAAMA;AAAA,MACT,IAAIA;AAAA,IACN;AACA,QAAK,QAAoB;AAAK,UAAI,MAAO,QAAoB;AAC7D,QAAK,QAAoB;AAAQ,UAAI,SAAU,QAAoB;AACnE,QAAK,QAAoB;AAAa,UAAI,cAAe,QAAoB;AAC7E,QAAK,QAAoB;AAAY,UAAI,YAAa,QAAoB;AAC1E,QAAK,QAAoB;AAAM,UAAI,OAAQ,QAAoB;AAC/D,QAAI;AAAY,UAAI,UAAU;AAC9B,QAAI;AAAc,UAAI,OAAO;AAC7B,QAAI;AAAa,UAAI,OAAO;AAC5B,QAAI,YAAY,aAAa;AAAG,UAAI,OAAO,KAAK,MAAM,MAAM,WAAW,IAAI,IAAI;AAC/E,QAAI;AAAU,UAAI,WAAW;AAC7B,QAAIC;AAAQ,UAAI,SAASA;AACzB,YAAQ,KAAK,GAAG;AAChB,IAAAL,UAAS,QAAQ,UAAU;AAAA,EAC7B;AACA,EAAAA,UAAS,QAAQ,eAAe;AAChC,MAAIA,UAAS,OAAO,OAAO;AACzB,QAAIA,UAAS,YAAY;AAAM,aAAOA,UAAS,YAAY;AAC3D,QAAIA,UAAS,YAAY;AAAK,aAAOA,UAAS,YAAY;AAC1D,QAAIA,UAAS,YAAY;AAAQ,aAAOA,UAAS,YAAY;AAC7D,QAAIA,UAAS,YAAY;AAAS,aAAOA,UAAS,YAAY;AAAA,EAChE;AACA,SAAO;AACT;;;AChNO,IAAMM,QAAO,CAAC,QAAuC;AAC1D,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAM,WAAqD,CAAC;AAC5D,WAASC,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AAEnC,UAAM,YAAY,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,WAAY;AACvE,UAAM,aAAa,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,YAAa;AACzE,UAAM,OAAO,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,MAAO;AAC7D,QAAI,QAAQ,aAAa,cAAe,UAAU,SAAS,KAAK,KAAK,SAAS,MAAQ,WAAW,SAAS,KAAK,KAAK,SAAS;AAAK,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,YAAY,CAAC;AAAA,aACxK,QAAQ,aAAc,UAAU,SAAS,KAAK,KAAK,SAAS;AAAK,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,kBAAkB,CAAC;AAAA,aACtH,QAAQ,cAAe,WAAW,SAAS,KAAK,KAAK,SAAS;AAAK,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,mBAAmB,CAAC;AAGlI,UAAM,eAAe,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,cAAe;AAC7E,UAAM,gBAAgB,IAAIA,IAAG,UAAU,KAAK,CAAC,MAAO,EAAE,SAAS,eAAgB;AAC/E,QAAI,gBAAgB,iBAAiB,KAAK,IAAI,aAAa,YAAY,KAAK,cAAc,YAAY,EAAE,IAAI,KAAK;AAC/G,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,WAAY,aAAa,SAAS,KAAK,cAAc,SAAS,KAAM,SAAS,UAAU,CAAC;AAAA,IAC5H;AAAA,EACF;AACA,SAAO;AACT;AAEO,IAAMC,QAAO,CAAC,QAAuC;AAC1D,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAM,WAAqD,CAAC;AAC5D,WAASD,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,QAAI,IAAIA,IAAG,QAAQ,IAAIA,IAAG,KAAK,SAAS,KAAK;AAC3C,YAAM,SAAS,IAAIA,IAAG,KAAK,IAAI,MAAM,MAAM,IAAIA,IAAG,KAAK,KAAK,MAAM;AAClE,YAAM,QAAQ,IAAIA,IAAG,KAAK,IAAI,KAAK,IAAIA,IAAG,KAAK,KAAK;AACpD,UAAI,KAAK,IAAI,QAAQ,KAAK,KAAK;AAAM,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,gBAAgB,CAAC;AAAA;AACnF,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,UAAU,QAAQ,IAAI,SAAS,UAAU,CAAC;AACjF,YAAM,WAAW,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE,IAAI,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE;AACzH,UAAI,WAAW;AAAK,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,iBAAiB,CAAC;AACxE,YAAM,YAAY,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE,IAAI,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE;AAC1H,UAAI,YAAY;AAAK,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,kBAAkB,CAAC;AAC1E,YAAM,YAAY,KAAK,IAAI,KAAK,MAAM,KAAK,IAAI,IAAIA,IAAG,KAAK,IAAI,KAAK,IAAIA,IAAG,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,IAAIA,IAAG,KAAK,IAAI,KAAK,IAAIA,IAAG,KAAK,KAAK,EAAE,CAAC;AAC5I,UAAI,YAAY;AAAI,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,SAAS,KAAK,MAAM,SAAS,UAAU,CAAC;AAC9F,YAAM,YAAY,IAAIA,IAAG,KAAK,KAAK,MAAM;AACzC,UAAI,KAAK,IAAI,SAAS,IAAI;AAAI,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,QAAQ,YAAY,IAAI,OAAO,SAAS,CAAC;AAAA,IAC3G;AAAA,EACF;AACA,SAAO;AACT;AAEO,IAAME,QAAO,CAAC,QAAuC;AA7E5D;AA8EE,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAM,WAAqD,CAAC;AAC5D,WAASF,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,QAAI,GAAC,eAAIA,IAAG,gBAAP,mBAAoB,gBAApB,mBAAkC,OAAM,GAAC,eAAIA,IAAG,gBAAP,mBAAoB,iBAApB,mBAAmC;AAAI;AACrF,UAAM,YAAY,IAAIA,IAAG,YAAY,YAAY,GAAG,KAAK,IAAIA,IAAG,YAAY,YAAY,GAAG;AAC3F,UAAM,YAAY,IAAIA,IAAG,YAAY,YAAY,GAAG,KAAK,IAAIA,IAAG,YAAY,YAAY,GAAG;AAC3F,UAAM,WAAW,KAAK,IAAI,YAAY,SAAS;AAE/C,UAAM,aAAa,IAAIA,IAAG,YAAY,aAAa,GAAG,KAAK,IAAIA,IAAG,YAAY,aAAa,GAAG;AAC9F,UAAM,aAAa,IAAIA,IAAG,YAAY,aAAa,GAAG,KAAK,IAAIA,IAAG,YAAY,aAAa,GAAG;AAC9F,UAAM,YAAY,KAAK,IAAI,aAAa,UAAU;AAElD,QAAI,SAAS;AACb,UAAM,aAAa,KAAK,IAAI,WAAW,SAAS,IAAI,KAAK,IAAI,UAAU,SAAS;AAChF,QAAI,aAAa,MAAM;AACrB,eAAS;AACT,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,gBAAgB,CAAC;AAAA,IACrD;AAEA,UAAM,kBAAkB,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,YAAY,YAAY,GAAG,EAAE,IAAI,IAAIA,IAAG,IAAI;AAC1G,UAAM,mBAAmB,KAAK,IAAI,IAAIA,IAAG,KAAK,IAAI,KAAK,IAAIA,IAAG,YAAY,aAAa,GAAG,EAAE,IAAI,IAAIA,IAAG,IAAI;AAC3G,QAAI,kBAAkB,QAAQ,mBAAmB;AAAM,eAAS;AAChE,QAAI,kBAAkB,kBAAkB;AACtC,UAAI,kBAAkB;AAAM,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,gBAAgB,CAAC;AAAA,IACjF,OAAO;AACL,UAAI,mBAAmB;AAAM,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,eAAe,CAAC;AAAA,IACjF;AAEA,UAAM,mBAAmB,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,YAAY,aAAa,GAAG,EAAE,IAAI,IAAIA,IAAG,IAAI;AAC5G,UAAM,kBAAkB,KAAK,IAAI,IAAIA,IAAG,KAAK,KAAK,KAAK,IAAIA,IAAG,YAAY,YAAY,GAAG,EAAE,IAAI,IAAIA,IAAG,IAAI;AAC1G,QAAI,kBAAkB,QAAQ,mBAAmB,QAAQ,kBAAkB,SAAS,mBAAmB;AAAO,eAAS;AACvH,QAAI,kBAAkB,QAAQ,mBAAmB;AAAM,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,eAAe,CAAC;AACzG,QAAI,kBAAkB,SAAS,mBAAmB;AAAO,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,aAAa,CAAC;AAGzG,QAAI;AAAQ,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,iBAAiB,CAAC;AAAA,EAClE;AACA,SAAO;AACT;AAEO,IAAMG,QAAO,CAAC,QAAuC;AAC1D,MAAI,CAAC;AAAK,WAAO,CAAC;AAClB,QAAM,WAAqD,CAAC;AAC5D,WAASH,KAAI,GAAGA,KAAI,IAAI,QAAQA,MAAK;AACnC,UAAM,UAA+C,CAAC;AACtD,QAAI,IAAIA,IAAG,aAAa;AACtB,iBAAW,CAAC,QAAQ,GAAG,KAAK,OAAO,QAAQ,IAAIA,IAAG,WAAW,GAAG;AAC9D,YAAI,WAAW,cAAc,MAAM,QAAQ,GAAG,KAAK,IAAI;AAAI,kBAAQ,KAAK,EAAE,MAAM,OAAO,YAAY,GAAG,UAAU,IAAI,GAAG,CAAC;AAAA,MAC1H;AAAA,IACF;AACA,QAAI,WAAW,QAAQ,SAAS,GAAG;AACjC,YAAM,UAAU,QAAQ,OAAO,CAAC,MAAM,OAAQ,KAAK,SAAS,MAAM,MAAM,EAAE,SAAS,MAAM,KAAK,OAAO,CAAE;AACvG,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,GAAG,QAAQ,eAA8B,CAAC;AAC5E,YAAM,UAAU,QAAQ,OAAO,CAAC,MAAM,MAAO,KAAK,SAAS,KAAK,EAAE,SAAS,KAAK,OAAO,CAAE;AACzF,eAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,GAAG,QAAQ,UAAyB,CAAC;AAAA,IACzE;AACA,QAAI,IAAIA,IAAG,WAAW;AACpB,YAAM,QAAmB,MAAM,IAAIA,IAAG,SAAS;AAC/C,iBAAW,QAAQ;AAAO,iBAAS,KAAK,EAAE,MAAMA,IAAG,SAAS,KAAK,KAAoB,CAAC;AAAA,IACxF;AAAA,EACF;AACA,SAAO;AACT;;;AC/HA,IAAM,iBAAyB,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,SAAS,CAAC,GAAG,aAAa,CAAC,GAAG,WAAW,GAAG,OAAO,KAAK;AAChJ,IAAI,kBAAkB;AAEf,SAASI,MAAK,WAAmBC,SAAwB;AAhBhE;AAiBE,QAAM,KAAK,IAAI;AACf,MAAI,CAAC;AAAW,WAAO,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,SAAS,CAAC,GAAG,aAAa,CAAC,GAAG,WAAW,GAAG,OAAO,KAAK;AAKxI,QAAM,UAAU,KAAK,IAAI,IAAI,UAAU;AAQvC,QAAM,iBAAiB,UAAU,MAAO,IAAI,KAAK,IAAI,UAAU,CAAC,IAAI;AAEpE,MAAI,UAAU;AAAQ,mBAAe,SAAS,UAAU;AACxD,MAAI,UAAU;AAAO,mBAAe,QAAQ,UAAU;AAGtD,MAAI,CAAC,eAAe,QAAS,UAAU,KAAK,WAAW,eAAe,KAAK,QAAS;AAClF,mBAAe,OAAO,KAAK,MAAM,KAAK,UAAU,UAAU,IAAI,CAAC;AAAA,EACjE,OAAO;AACL,aAASC,KAAI,GAAGA,KAAI,UAAU,KAAK,QAAQA,MAAK;AAC9C,YAAM,MAAM,UAAU,KAAKA,IAAG,IAC3B,IAAI,CAAC,aAAa,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,IAAI,KAAK,eAAe,cAAc;AAChH,YAAM,SAAS,UAAU,KAAKA,IAAG,OAC9B,IAAI,CAAC,aAAa,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,OAAO,KAAK,eAAe,cAAc;AACnH,YAAM,YAAa,UAAU,KAAKA,IAAG,UAClC,IAAI,CAAC,QAAQ,MAAG;AA9CzB,YAAAC,KAAAC,KAAAC,KAAAC,KAAAC,KAAAC,KAAAC,KAAAC,KAAAC;AA8C6B;AAAA,UACnB,OAAO,OAAO;AAAA,UACd,MAAM,OAAO;AAAA,UACb,UAAU;AAAA,YACR,eAAe,KAAKT,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,SAAS,MAAM,MAAM,OAAO,SAAS,MAAM,MAAM,iBAAiB,OAAO,SAAS;AAAA,YACrL,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,SAAS,MAAM,MAAM,OAAO,SAAS,MAAM,MAAM,iBAAiB,OAAO,SAAS;AAAA,YACrL,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,SAAS,MAAM,MAAM,OAAO,SAAS,MAAM,MAAM,iBAAiB,OAAO,SAAS;AAAA,UACvL;AAAA,UACA,aAAa;AAAA,YACX,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,YAAY,MAAM,MAAM,OAAO,YAAY,MAAM,MAAM,iBAAiB,OAAO,YAAY;AAAA,YAC9L,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,YAAY,MAAM,MAAM,OAAO,YAAY,MAAM,MAAM,iBAAiB,OAAO,YAAY;AAAA,YAC9L,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,YAAY,MAAM,MAAM,OAAO,YAAY,MAAM,MAAM,iBAAiB,OAAO,YAAY;AAAA,UAChM;AAAA,UACA,UAAU;AAAA,YACR,eAAe,KAAKA,IAAG,UAAU,OAAO,iBAAiB,QAAMC,MAAA,eAAe,KAAKD,IAAG,UAAU,GAAG,aAApC,gBAAAC,IAA+C,OAAM,QAAMC,MAAA,OAAO,aAAP,gBAAAA,IAAkB,OAAM,MAAM,kBAAiBC,MAAA,OAAO,aAAP,gBAAAA,IAAkB;AAAA,YAC3L,eAAe,KAAKH,IAAG,UAAU,OAAO,iBAAiB,QAAMI,MAAA,eAAe,KAAKJ,IAAG,UAAU,GAAG,aAApC,gBAAAI,IAA+C,OAAM,QAAMC,MAAA,OAAO,aAAP,gBAAAA,IAAkB,OAAM,MAAM,kBAAiBC,MAAA,OAAO,aAAP,gBAAAA,IAAkB;AAAA,YAC3L,eAAe,KAAKN,IAAG,UAAU,OAAO,iBAAiB,QAAMO,MAAA,eAAe,KAAKP,IAAG,UAAU,GAAG,aAApC,gBAAAO,IAA+C,OAAM,QAAMC,MAAA,OAAO,aAAP,gBAAAA,IAAkB,OAAM,MAAM,kBAAiBC,MAAA,OAAO,aAAP,gBAAAA,IAAkB;AAAA,UAC7L;AAAA,QACF;AAAA,OAAE;AAEJ,YAAMC,eAAiD,CAAC;AACxD,UAAIC,UAAS,EAAE,WAAW,CAAC,EAAE;AAC7B,WAAI,KAAAZ,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAAkB,QAAAY,UAAS;AAAA,gBACtD,KAAAZ,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAAc,QAAAY,UAAS;AAAA,gBACvD,KAAAZ,QAAO,KAAK,cAAZ,mBAAuB,SAAS;AAAY,QAAAY,UAAS;AAC9D,iBAAW,CAAC,MAAM,OAAO,KAAK,OAAO,QAAQA,QAAO,SAAqC,GAAG;AAC1F,cAAM,KAAgB,CAAC;AACvB,iBAAS,IAAI,GAAG,IAAI,QAAQ,SAAS,GAAG,KAAK;AAC3C,gBAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQ,EAAE;AACzD,gBAAM,MAAM,UAAU,KAAK,CAAC,OAAO,GAAG,SAAS,QAAQ,IAAI,EAAE;AAE7D,cAAI,OAAO;AAAK,eAAG,KAAK,CAAC,IAAI,UAAU,IAAI,QAAQ,CAAC;AAAA,QACtD;AACA,QAAAD,aAAY,QAAQ;AAAA,MACtB;AACA,qBAAe,KAAKV,MAAK,EAAE,GAAG,UAAU,KAAKA,KAAI,KAAK,QAAQ,WAAW,aAAAU,aAAY;AAAA,IACvF;AAAA,EACF;AAGA,MAAI,CAAC,eAAe,QAAS,UAAU,KAAK,WAAW,eAAe,KAAK,QAAS;AAClF,mBAAe,OAAO,KAAK,MAAM,KAAK,UAAU,UAAU,IAAI,CAAC;AAAA,EACjE,OAAO;AACL,aAASV,KAAI,GAAGA,KAAI,UAAU,KAAK,QAAQA,MAAK;AAC9C,YAAM,MAAO,UAAU,KAAKA,IAAG,IAC5B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,IAAI,KAAK,KAAK,cAAc;AAC5F,YAAM,SAAU,UAAU,KAAKA,IAAG,OAC/B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,OAAO,KAAK,KAAK,cAAc;AAC/F,UAAI,eAAe,KAAKA,IAAG,UAAU,WAAW,UAAU,KAAKA,IAAG,UAAU;AAAQ,uBAAe,KAAKA,IAAG,YAAY,UAAU,KAAKA,IAAG;AACzI,YAAM,YAAY,UAAU,KAAKA,IAAG,aAAa,UAAU,KAAKA,IAAG,UAAU,SAAS,IAAI,UAAU,KAAKA,IAAG,UACzG,IAAI,CAAC,UAAU,MAAM,SACnB,IAAI,CAAC,OAAO,QAAS,iBAAiB,MAAM,eAAe,KAAKA,IAAG,UAAU,GAAG,MAAM,MAAM,SAAS,MAAM,cAAe,CAAU,IACrI,CAAC;AACL,UAAIU,eAAc,CAAC;AACnB,UAAI,OAAO,KAAK,eAAe,KAAKV,IAAG,WAAW,EAAE,WAAW,OAAO,KAAK,UAAU,KAAKA,IAAG,WAAW,EAAE,QAAQ;AAChH,uBAAe,KAAKA,IAAG,cAAc,UAAU,KAAKA,IAAG;AACvD,QAAAU,eAAc,eAAe,KAAKV,IAAG;AAAA,MACvC,WAAW,UAAU,KAAKA,IAAG,aAAa;AACxC,mBAAW,OAAO,OAAO,KAAK,UAAU,KAAKA,IAAG,WAAW,GAAG;AAC5D,UAAAU,aAAY,SAAO,2BAAU,KAAKV,QAAf,mBAAmB,gBAAnB,mBAAiC,SAAjC,mBAAwC,MACvD,UAAU,KAAKA,IAAG,YAAY,KAC7B,IAAI,CAAC,KAAK,MAAc,IACtB,IAAI,CAAC,OAAe,QAAgB,iBAAiB,KAAK,eAAe,KAAKA,IAAG,YAAY,KAAK,GAAG,KAAK,SAAS,cAAc,CAAC,IACrI;AAAA,QACN;AAAA,MACF;AACA,qBAAe,KAAKA,MAAK,EAAE,GAAG,UAAU,KAAKA,KAAI,KAAK,QAAQ,WAAW,aAAaU,aAAyC;AAAA,IACjI;AAAA,EACF;AAGA,MAAI,CAAC,eAAe,QAAS,UAAU,KAAK,WAAW,eAAe,KAAK,QAAS;AAClF,mBAAe,OAAO,KAAK,MAAM,KAAK,UAAU,UAAU,IAAI,CAAC;AAAA,EACjE,OAAO;AACL,aAASV,KAAI,GAAGA,KAAI,UAAU,KAAK,QAAQA,MAAK;AAC9C,YAAM,MAAO,UAAU,KAAKA,IAAG,IAC5B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,IAAI,KAAK,KAAK,cAAc;AAC5F,YAAM,SAAU,UAAU,KAAKA,IAAG,OAC/B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,KAAKA,IAAG,OAAO,KAAK,KAAK,cAAc;AAC/F,UAAI,UAAU,KAAKA,IAAG,UAAU;AAC9B,cAAM,WAIF,EAAE,QAAQ,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,OAAO,EAAE,MAAM,GAAG,KAAK,GAAG,OAAO,EAAE,GAAG,MAAM,EAAE,SAAS,GAAG,UAAU,EAAE,EAAE;AACnH,iBAAS,UAAS,eAAU,KAAKA,IAAG,aAAlB,mBAA4B;AAC9C,iBAAS,QAAQ;AAAA,UACf,QAAQ,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,MAAM,SAAQ,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,MAAM,SAAQ,MAAM;AAAA,UACpI,OAAO,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,MAAM,QAAO,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,MAAM,QAAO,MAAM;AAAA,UACjI,SAAS,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,MAAM,UAAS,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,MAAM,UAAS,MAAM;AAAA,QACzI;AACA,iBAAS,OAAO;AAAA,UAEd,WAAW,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,KAAK,YAAW,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,KAAK,YAAW,MAAM;AAAA,UAC3I,YAAY,iBAAiB,QAAM,oBAAe,KAAKA,IAAG,aAAvB,mBAAiC,KAAK,aAAY,QAAM,eAAU,KAAKA,IAAG,aAAlB,mBAA4B,KAAK,aAAY,MAAM;AAAA,QAChJ;AACA,uBAAe,KAAKA,MAAK,EAAE,GAAG,UAAU,KAAKA,KAAI,UAAU,KAAK,OAAO;AAAA,MACzE;AACA,qBAAe,KAAKA,MAAK,EAAE,GAAG,UAAU,KAAKA,KAAI,KAAK,OAAO;AAAA,IAC/D;AAAA,EACF;AAGA,MAAI,CAAC,eAAe,UAAW,UAAU,OAAO,WAAW,eAAe,OAAO,QAAS;AACxF,mBAAe,SAAS,KAAK,MAAM,KAAK,UAAU,UAAU,MAAM,CAAC;AAAA,EACrE,OAAO;AACL,aAASA,KAAI,GAAGA,KAAI,UAAU,OAAO,QAAQA,MAAK;AAChD,YAAM,MAAO,UAAU,OAAOA,IAAG,IAC9B,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,OAAOA,IAAG,IAAI,KAAK,KAAK,cAAc;AAC9F,YAAM,SAAU,UAAU,OAAOA,IAAG,OACjC,IAAI,CAAC,GAAG,QAAQ,iBAAiB,KAAK,eAAe,OAAOA,IAAG,OAAO,KAAK,KAAK,cAAc;AACjG,qBAAe,OAAOA,MAAK,EAAE,GAAG,UAAU,OAAOA,KAAI,KAAK,OAAO;AAAA,IACnE;AAAA,EACF;AAGA,MAAI,UAAU,SAAS;AACrB,UAAM,aAAa,UAAU;AAC7B,QAAI,CAAC,eAAe,WAAY,WAAW,WAAW,eAAe,QAAQ,QAAS;AACpF,qBAAe,UAAU,KAAK,MAAM,KAAK,UAAU,UAAU,CAAC;AAAA,IAChE,OAAO;AACL,eAASA,KAAI,GAAGA,KAAI,WAAW,QAAQA,MAAK;AAC1C,uBAAe,QAAQA,IAAG,MAAO,WAAWA,IAAG,IAC5C,IAAI,CAAC,KAAK,QAAQ,iBAAiB,KAAK,eAAe,QAAQA,IAAG,IAAI,KAAK,OAAO,cAAc;AAAA,MACrG;AAAA,IACF;AAAA,EACF;AAGA,MAAI,UAAU;AAAS,mBAAe,UAAU,UAAU;AAG1D,QAAM,KAAK,IAAI;AACf,oBAAkBY,KAAI,UAAU,kBAAkB,KAAK,MAAM,KAAK,EAAE,IAAI,KAAK,MAAM,KAAK,EAAE;AAC1F,MAAI,UAAU;AAAa,mBAAe,cAAc,EAAE,GAAG,UAAU,aAAa,aAAa,gBAAgB;AAEjH,SAAO;AACT;;;ACvLA;AAAA;AAAA;AAAA,eAAAC;AAAA,EAAA;AAAA;AAWO,SAAS,SAAS,aAAyB,aAAyBC,WAAwB,EAAE,OAAO,GAAG,YAAY,GAAG,GAAG;AAE/H,MAAI,CAAC,eAAe,CAAC;AAAa,WAAO,OAAO;AAChD,MAAIC,OAAM;AACV,WAASC,KAAI,GAAGA,KAAI,YAAY,QAAQA,MAAK;AAC3C,UAAM,OAAQ,CAACF,SAAQ,SAASA,SAAQ,UAAU,IAAM,YAAYE,MAAK,YAAYA,MAAO,KAAK,IAAI,YAAYA,MAAK,YAAYA,GAAE;AACpI,IAAAD,QAAQ,CAACD,SAAQ,SAASA,SAAQ,UAAU,IAAM,OAAO,OAAS,QAAQA,SAAQ;AAAA,EACpF;AACA,UAAQA,SAAQ,cAAc,MAAMC;AACtC;AAGA,IAAM,oBAAoB,CAAC,MAAM,OAAOE,MAAKC,SAAQ;AACnD,MAAI,SAAS;AAAG,WAAO;AACvB,QAAM,OAAO,UAAU,IAAI,KAAK,KAAK,IAAI,IAAI,SAAS,IAAI;AAC1D,QAAMC,SAAQ,IAAK,OAAO,MAAOF,SAAQC,OAAMD;AAC/C,QAAMG,SAAQ,KAAK,IAAI,KAAK,IAAID,OAAM,CAAC,GAAG,CAAC;AAC3C,SAAOC;AACT;AAaO,SAAS,WAAW,aAAyB,aAAyBN,WAAwB,EAAE,OAAO,GAAG,YAAY,IAAI,KAAK,KAAK,KAAK,IAAI,GAAG;AACrJ,QAAM,OAAO,SAAS,aAAa,aAAaA,QAAO;AACvD,SAAO,kBAAkB,MAAMA,SAAQ,SAAS,GAAGA,SAAQ,OAAO,GAAGA,SAAQ,OAAO,CAAC;AACvF;AAWO,SAASD,OAAM,YAAwB,aAA2BC,WAAwB,EAAE,OAAO,GAAG,YAAY,IAAI,WAAW,GAAG,KAAK,KAAK,KAAK,IAAI,GAAG;AAC/J,MAAI,CAAC,MAAM,QAAQ,UAAU,KAAK,CAAC,MAAM,QAAQ,WAAW,KAAK,WAAW,SAAS,MAAM,YAAY,WAAW,GAAG;AACnH,WAAO,EAAE,OAAO,IAAI,UAAU,OAAO,mBAAmB,YAAY,EAAE;AAAA,EACxE;AACA,MAAI,iBAAiB,OAAO;AAC5B,MAAIO,SAAQ;AACZ,WAASL,KAAI,GAAGA,KAAI,YAAY,QAAQA,MAAK;AAC3C,UAAM,MAAM,YAAYA,IAAG,WAAW,WAAW,SAAS,SAAS,YAAY,YAAYA,KAAIF,QAAO,IAAI,OAAO;AACjH,QAAI,MAAM,gBAAgB;AACxB,uBAAiB;AACjB,MAAAO,SAAQL;AAAA,IACV;AACA,QAAI,kBAAkBF,SAAQ,aAAa;AAAI;AAAA,EACjD;AACA,QAAM,uBAAuB,kBAAkB,gBAAgBA,SAAQ,SAAS,GAAGA,SAAQ,OAAO,GAAGA,SAAQ,OAAO,CAAC;AACrH,SAAO,EAAE,OAAAO,QAAO,UAAU,gBAAgB,YAAY,qBAAqB;AAC7E;;;AClEO,SAASC,MAAK,OAAqB,QAAsB,OAAqB,UAA2B,OAA6C;AAN7J;AAOE,MAAI,KAAK;AACT,QAAM,UAA0B,CAAC;AACjC,aAAWC,SAAQ,OAAO;AACxB,UAAMC,UAAuB,EAAE,IAAI,MAAM,MAAAD,OAAM,MAAM,MAAM,OAAO,EAAE,MAAM,MAAM,OAAO,KAAK,GAAG,UAAU,CAAC,GAAG,KAAK,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE;AAC/H,eAAWE,SAAQ,QAAQ;AACzB,UAAIF,MAAK,IAAI,KAAKE,MAAK,IAAI,MACtBF,MAAK,IAAI,KAAKE,MAAK,IAAI,KAAKA,MAAK,IAAI,MACrCF,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKE,MAAK,IAAI,MACrCF,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKE,MAAK,IAAI,KAAKA,MAAK,IAAI,IAAI;AAC1D,QAAAD,QAAO,OAAOC;AAAA,MAChB;AAAA,IACF;AACA,QAAID,QAAO,MAAM;AACf,iBAAWE,SAAQ,OAAO;AACxB,YAAIA,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,MAC3CE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,KAAKA,QAAO,KAAK,IAAI,MACjEE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,MAC5CE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,KAAKA,QAAO,KAAK,IAAI,IAAI;AACxE,cAAIA,QAAO;AAAO,YAAAA,QAAO,MAAM,OAAOE;AAAA,QACxC;AACA,YAAIA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,KAAKA,QAAO,KAAK,IAAI,MAClDE,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,MAC9BE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,MAC5CE,MAAK,IAAI,KAAKA,MAAK,IAAI,KAAKF,QAAO,KAAK,IAAI,KAAKA,QAAO,KAAK,IAAI,IAAI;AACxE,cAAIA,QAAO;AAAO,YAAAA,QAAO,MAAM,QAAQE;AAAA,QACzC;AAAA,MACF;AAAA,IACF;AACA,eAAWC,YAAW,UAAU;AAC9B,UAAIA,SAAQ,YAAY,UAAaA,SAAQ,YAAYJ,MAAK;AAAI,QAAAC,QAAO,SAAS,KAAKG,QAAO;AAAA,eACrFA,SAAQ,YAAY,UAAaA,SAAQ,YAAYJ,MAAK;AAAI,QAAAC,QAAO,SAAS,KAAKG,QAAO;AAAA,eAC1FA,SAAQ,YAAY,UAAaA,SAAQ,cAAY,KAAAH,QAAO,SAAP,mBAAa;AAAI,QAAAA,QAAO,SAAS,KAAKG,QAAO;AAAA,eAClGA,SAAQ,YAAY,UAAaA,SAAQ,cAAY,KAAAH,QAAO,MAAM,SAAb,mBAAmB;AAAI,QAAAA,QAAO,SAAS,KAAKG,QAAO;AAAA,eACxGA,SAAQ,YAAY,UAAaA,SAAQ,cAAY,KAAAH,QAAO,MAAM,UAAb,mBAAoB;AAAI,QAAAA,QAAO,SAAS,KAAKG,QAAO;AAAA,IACpH;AAGA,UAAM,IAAc,CAAC;AACrB,UAAM,IAAc,CAAC;AACrB,UAAM,YAAY,CAAC,QAAyB;AAC1C,UAAI,OAAO,IAAI,WAAW,GAAG;AAC3B,UAAE,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,EAAE;AAC9B,UAAE,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,EAAE;AAAA,MAChC;AAAA,IACF;AACA,cAAUH,QAAO,KAAK,GAAG;AACzB,eAAU,KAAAA,QAAO,SAAP,mBAAa,GAAG;AAC1B,eAAU,KAAAA,QAAO,MAAM,SAAb,mBAAmB,GAAG;AAChC,eAAU,KAAAA,QAAO,MAAM,UAAb,mBAAoB,GAAG;AACjC,UAAM,OAAO,KAAK,IAAI,GAAG,CAAC;AAC1B,UAAM,OAAO,KAAK,IAAI,GAAG,CAAC;AAC1B,IAAAA,QAAO,MAAM,CAAC,MAAM,MAAM,KAAK,IAAI,GAAG,CAAC,IAAI,MAAM,KAAK,IAAI,GAAG,CAAC,IAAI,IAAI;AAGtE,SAAI,+BAAQ,QAAM,+BAAQ;AAAI,MAAAA,QAAO,SAAS,CAACA,QAAO,IAAI,KAAK,MAAM,IAAIA,QAAO,IAAI,KAAK,MAAM,IAAIA,QAAO,IAAI,KAAK,MAAM,IAAIA,QAAO,IAAI,KAAK,MAAM,EAAE;AAErJ,YAAQ,KAAKA,OAAM;AAAA,EACrB;AACA,SAAO;AACT;;;AC7DO,IAAMI,QAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA0Jb,IAAMC,QAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;;;ACjJpB,eAAe,aAAaC,WAA8C;AACxE,QAAM,YAAY,CAAC,QAAgB,OAAO,+BAA+B,MAAM,QAAQ,eAAe,QAAQ,EAAE,KAAK,CAACC,SAAQA,KAAI,KAAK,CAAC;AACxI,MAAI;AACJ,MAAI;AACJ,UAAQD,UAAS,OAAO;AAAA,SACjB;AAAQ,aAAO,MAAM,UAAiBE,KAAI;AAAG;AAAA,SAC7C;AAAA,SACA;AAAQ,aAAO,MAAM,UAAiBC,KAAI;AAAG;AAAA;AACzC,aAAO;AAAA;AAElB,MAAI,MAAM;AACR,UAAM,SAAS,MAAM,kBAAkB,IAAI;AAC3C,UAAM,MAAMH,UAAS,OAAO,QAAQA,UAAS,MAAM;AACnD,WAAO,MAAM;AAAA,EACf;AACA,SAAO;AACT;AAEA,eAAe,aAAaA,WAA8C;AACxE,SAAO,IAAI,QAAQ,CAAC,YAAY;AAC9B,QAAI;AAEJ,YAAQA,UAAS,OAAO;AAAA,WACjB;AAEH,cAAM,4BAAmCE;AACzC;AAAA,WACG;AAAA,WACA;AAEH,cAAM,4BAAmCC;AACzC;AAAA;AAEA,cAAM;AAAA;AAGV,QAAI;AACJ,QAAI,OAAO,UAAU;AAAa,YAAM,IAAI,MAAM;AAAA,aAEzCC,KAAI;AAAO,YAAM,IAAIA,KAAI,MAAM;AAAA;AACnC;AACL,QAAI,SAAS,YAAY;AACvB,YAAMC,UAAe,OAAO,IAAI,cAAc,IAAI,aAAa;AAC/D,UAAI,CAACA,SAAQ;AACX,YAAI,0BAA0B;AAC9B,gBAAQ,MAAS;AAAA,MACnB,OAAO;AACL,cAAM,MAAMA,QAAO,WAAW,IAAI;AAClC,YAAI;AAAK,cAAI,UAAU,KAAK,GAAG,CAAC;AAEhC,cAAMC,UAAS,MAAMN,UAAS,MAAMK,OAAM;AAC1C,cAAM,MAAMC,QAAO,SAAS,MAAMN,UAAS,OAAOM,QAAO,QAAQN,UAAS,MAAM,IAAI;AACpF,gBAAQ,GAAG;AAAA,MACb;AAAA,IACF;AACA,QAAI;AAAK,UAAI,MAAM;AAAA;AACd,cAAQ,MAAS;AAAA,EACxB,CAAC;AACH;AAEA,eAAe,WAAWA,WAA8C;AACtE,QAAMO,QAAO,CAAC,QAAgB,OAAO,KAAK,KAAK,QAAQ;AACvD,MAAI;AACJ,MAAIP,UAAS,OAAO,WAAW;AAAQ,UAAMO,MAAYL,KAAI;AAAA;AACxD,UAAMK,MAAYJ,KAAI;AAC3B,MAAI;AACJ,MAAK,UAAU,oBAAW,WAAW,MAAM,cAAe;AACxD,UAAM,OAAkB,SAAQ,WAAW,GAAG;AAC9C,UAAM,WAAsB,WAAW,MAAM,CAAC;AAC9C,IAAAH,UAAS,GAAG,QAAQ,IAAI;AAExB,UAAM,MAAMA,UAAS,OAAO,UAAUA,UAAS,MAAM;AACrD,IAAAA,UAAS,GAAG,QAAQ,QAAQ;AAAA,EAC9B,OAAO;AACL,QAAIA,UAAS,OAAO;AAAO,UAAI,6BAA6B;AAAA,EAQ9D;AAEA,SAAO;AACT;AAEA,eAAe,aAAaA,WAAiB;AAC3C,MAAI;AACJ,MAAI,OAAO,sBAAsB;AAAY,UAAM,MAAM,aAAaA,SAAQ;AAAA,WACrE,OAAO,UAAU,eAAeI,KAAI,WAAW;AAAW,UAAM,MAAM,aAAaJ,SAAQ;AAAA;AAC/F,UAAM,MAAM,WAAWA,SAAQ;AACpC,SAAO;AACT;AAGA,eAAsB,WAAW,WAAmB;AA9GpD;AA+GE,MAAI,CAAI,IAAI,EAAE,aAAa;AAAqB;AAChD,QAAM,cAAiB,WAAW;AAClC,QAAM,eAAkB,QAAQ;AAChC,MAAK,gBAAgB,WAAW,gBAAgB,aAAc,EAAC,6CAAc,yBAAwB;AAEnG;AAAA,EACF;AACA,EAAG,IAAI,EAAE,IAAI,uBAAuB,IAAI;AACxC,QAAM,kBAAqB,OAAO,EAAE,MAAM;AAC1C,QAAM,iBAA2B,CAAC;AAClC,aAAW,CAAC,WAAWQ,OAAK,KAAK,OAAO,QAAQ,SAAS,EAAE,OAAO,CAAC,CAAC,KAAK,GAAG,MAAO,QAAQ,QAAQ,QAAQ,IAAK,GAAG;AACjH,UAAM,UAAS,WAAAA,QAAM,WAAN,mBAAe,OAAf,mBAAmB,SAAS,CAAC,GAAGA,QAAM,OAAO,GAAG,KAAK,IAAI,CAAC,GAAG,IAAI,IAAI,CAAC;AACrF,UAAM,UAAiB,WAAAA,QAAM,WAAN,mBAAe,OAAf,mBAAmB,SAASA,QAAM,OAAO,GAAG,QAAQ;AAC3E,aAAS,MAAM,GAAG,MAAM,MAAM,QAAQ,OAAO;AAC3C,UAAI,MAAM,SAAS;AAAI,cAAM,OAAO,QAAQ,IAAI,IAAI;AAAA,IACtD;AACA,UAAMF,UAAY,MAAM,OAAO,KAAK;AACpC,QAAI;AACF,YAAM,MAAME,QAAM,QAAQF,OAAM;AAChC,qBAAe,KAAK,SAAS;AAC7B,UAAI,MAAM,QAAQ,GAAG;AAAG,YAAI,QAAQ,CAACG,OAAS,QAAQA,EAAC,CAAC;AAAA;AACnD,QAAG,QAAQ,GAAG;AAAA,IACrB,SAAQC,IAAN;AACA,UAAI,uBAAuB,SAAS;AAAA,IACtC;AACA,IAAG,QAAQJ,OAAM;AAAA,EACnB;AACA,QAAM,UAAU,MAAM,aAAa,4BAA4B;AAC/D,eAAa,oBAAoB;AACjC,MAAI,wBAAwB,cAAc;AAC1C,MAAI,yBAAyB,QAAQ,MAAM;AAC3C,EAAG,IAAI,EAAE,IAAI,uBAAuB,KAAK;AACzC,QAAM,gBAAmB,OAAO,EAAE,MAAM;AACxC,MAAK,gBAAgB,kBAAmB;AAAG,QAAI,gBAAgB,gBAAgB,eAAe;AAChG;AAOA,eAAsB,OAAON,WAAiB,YAA2D;AACvG,QAAM,KAAK,IAAI;AACf,EAAAA,UAAS,QAAQ;AACjB,MAAI;AAAY,IAAAA,UAAS,SAAS,UAAUA,UAAS,QAAQ,UAAU;AACvE,MAAI,CAACA,UAAS,OAAO,UAAUA,UAAS,OAAO,OAAO,WAAW,KAAKA,UAAS,OAAO,WAAW,QAAQ;AACvG,WAAO,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,aAAaA,UAAS,aAAa,WAAW,IAAI,GAAG,SAAS,CAAC,GAAG,OAAO,KAAK;AAAA,EAChJ;AACA,SAAO,IAAI,QAAQ,OAAO,YAAY;AACpC,UAAM,WAAWA,UAAS,MAAM;AAChC,UAAM,MAAM,MAAM,aAAaA,SAAQ;AACvC,UAAM,KAAK,IAAI;AACf,QAAIA,UAAS,OAAO;AAAO,UAAI,UAAUA,UAAS,OAAO,QAAQ,KAAK,MAAM,KAAK,EAAE,GAAG,IAAI;AAC1F,IAAAA,UAAS,KAAK,QAAQ;AACtB,YAAQ,GAAG;AAAA,EACb,CAAC;AACH;;;ACvKA;AAsDO,IAAM,QAAN,MAAY;AAAA,EAuEjB,YAAY,YAA8B;AArE1C;AAKA;AAKA;AAMA;AAGA;AAMA;AAGA;AAOA;AAMA;AAWA;AAEA;AAEA;AAEA;AACA;AACA;AACA;AAEA;AA4DA,mCAAU,IAAI,QAAkB;AAC9B,UAAI,CAAC,mBAAK;AAAqB;AAC/B,YAAM,iBAAiB,KAAK,GAAG,OAAO,EAAE,MAAM;AAC9C,YAAM,kBAAkB,mBAAK;AAC7B,yBAAK,aAAc;AACnB,YAAM,SAAS,iBAAiB;AAChC,UAAI,WAAW;AAAG,YAAI,GAAG,KAAK,MAAM;AAAA,IACtC;AAGA,gCAAU,CAACW,WAAgC;AACzC,UAAI,CAAC,mBAAK;AAAc,eAAO;AAC/B,UAAI,CAACA;AAAO,eAAO;AACnB,UAAI,KAAK,IAAI,QAAQ,EAAEA,kBAAoB;AAAS,eAAO;AAC3D,UAAI;AACF,aAAK,GAAG,WAAW;AAAA,MACrB,SAAQC,IAAN;AACA,eAAO;AAAA,MACT;AACA,aAAO;AAAA,IACT;AAwBA,wBAAO,cAAmB;AAE1B,wBAAO,YAAiB;AAExB,wBAAO,SAAcC;AAoGrB,gCAAO,CAAC,UAAkB;AAvU5B;AAwUI,WAAI,UAAK,WAAL,mBAAa;AAAe,aAAK,OAAO,cAAc,IAAI,MAAM,KAAK,CAAC;AAAA,IAC5E;AA3ME,SAAK,MAAMC;AAMX,UAAM,aAAgB,EAAQ,QAAW,SAAc,QAAQ,SAAS,EAAE;AAC1E,WAAS,WAAW,8DAA8D;AAClF,WAAS,gBAAgBA,KAAI,UAAU,eAAe;AACtD,WAAS,UAAUA,KAAI,UAAU,YAAY;AAC7C,SAAK,UAAcC;AACnB,WAAO,eAAe,MAAM,WAAW,EAAE,OAAWA,SAAQ,CAAC;AAC7D,SAAK,SAAS,KAAK,MAAM,KAAK,UAAU,MAAQ,CAAC;AACjD,WAAO,KAAK,KAAK,MAAM;AACvB,SAAK,OAAO,cAAc,OAAO,cAAc;AAC/C,QAAI;AAAY,WAAK,SAAS,UAAU,KAAK,QAAQ,UAAU;AAC/D,wBAAoB,KAAK,MAAM;AAC/B,SAAK,KAAK;AACV,SAAK,QAAQ;AACb,uBAAK,aAAc;AACnB,uBAAK,qBAAsB;AAC3B,uBAAK,cAAe;AACpB,SAAK,cAAc,CAAC;AACpB,SAAK,SAAU,OAAO,gBAAgB,cAAe,IAAI,YAAY,IAAI;AAEzE,SAAK,SAAS,IAAW,OAAO;AAEhC,SAAK,OAAO;AAAA,MACV,SAAcC;AAAA,MACd,QAAQ,CAACL,QAAwD,WAA2BM,QAAON,QAAO,MAAM;AAAA,MAChH,MAAM,CAAC,QAAmB,QAAsBK,aAAwC,KAAK,QAAQ,QAAQA,QAAO;AAAA,MACpH,MAAM,CAAC,QAAmB,QAAsBA,aAAwC,KAAK,QAAQ,QAAQA,QAAO;AAAA,MACpH,MAAM,CAAC,QAAmB,QAAsBA,aAAwC,KAAK,QAAQ,QAAQA,QAAO;AAAA,MACpH,SAAS,CAAC,QAAmB,QAAyBA,aAAwC,QAAQ,QAAQ,QAAQA,QAAO;AAAA,MAC7H,QAAQ,CAAC,QAAmB,QAAwBA,aAAwC,OAAO,QAAQ,QAAQA,QAAO;AAAA,MAC1H,QAAQ,CAAC,QAAmB,QAAwBA,aAAwC,OAAO,QAAQ,QAAQA,QAAO;AAAA,MAC1H,KAAK,CAAC,QAAmB,QAAgBA,aAAwCE,KAAI,QAAQ,QAAQF,QAAO;AAAA,IAC9G;AACA,SAAK,SAAS,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,aAAa,CAAC,GAAG,WAAW,GAAG,SAAS,CAAC,GAAG,OAAO,KAAK;AAE/H,SAAK,UAAU,EAAE,QAAQ,MAAM,QAAQ,KAAK;AAE5C,SAAK,oBAA6B;AAClC,SAAK,YAAqB;AAE1B,SAAK,KAAaG;AAElB,IAAO,cAAc,MAAM,MAAM,EAAE;AAEnC,SAAK,KAAK,QAAQ;AAAA,EACpB;AAAA,EA0BA,QAAc;AACZ,UAAM,iBAAiB,KAAK,OAAO;AACnC,SAAK,SAAS,KAAK,MAAM,KAAK,UAAU,MAAQ,CAAC;AACjD,SAAK,OAAO,UAAU;AACtB,IAAM,MAAM;AACZ,IAAAL,KAAI,UAAU;AAAA,EAChB;AAAA,EAGA,SAAS,YAA8B;AACrC,UAAM,OAAO,SAAS,QAAU,cAAc,KAAK,MAAM;AACzD,QAAI,KAAK,WAAW;AAAG,WAAK,SAAS,UAAU,KAAK,QAAQ,UAAU;AACtE,WAAO;AAAA,EACT;AAAA,EAGA,QAAQ;AACN,WAAcM,UAAS,IAAI;AAAA,EAC7B;AAAA,EAUA,MAAc;AACZ,WAAO,IAAI;AAAA,EACb;AAAA,EAQA,MAAMT,QAAcU,aAAqB,MAAM;AAC7C,WAAaC,SAAQX,QAAO,KAAK,QAAQU,UAAS;AAAA,EACpD;AAAA,EAYA,MAAM,aAAaV,QAAc,YAA6G;AAC5I,WAAoBW,SAAQX,QAAO,YAAY,KAAK,MAAM;AAAA,EAC5D;AAAA,EAOA,QAAQA,QAA8B;AACpC,WAAe,QAAQA,MAAK;AAAA,EAC9B;AAAA,EASA,QAAQ,kBAA0B,mBAA4C;AAC5E,WAAa,QAAQ,KAAK,QAAQ,kBAAkB,iBAAiB;AAAA,EACvE;AAAA,EAOA,MAAM,OAAsB;AAC1B,UAAc,MAAM,MAAM,IAAI;AAC9B,UAAM,KAAK,GAAG,MAAM;AACpB,IAAM,MAAM;AAAA,EACd;AAAA,EAOA,MAAM,KAAK,YAA6C;AACtD,SAAK,QAAQ;AACb,UAAM,YAAY,IAAI;AACtB,UAAMY,SAAQ,OAAO,OAAO,KAAK,MAAM,EAAE,OAAO,CAACC,YAAUA,OAAK,EAAE;AAClE,QAAI;AAAY,WAAK,SAAS,UAAU,KAAK,QAAQ,UAAU;AAE/D,QAAI,KAAK,IAAI,SAAS;AACpB,UAAI,KAAK,OAAO;AAAO,YAAI,YAAY,KAAK,SAAS;AACrD,UAAI,KAAK,OAAO;AAAO,YAAI,iBAAiB,KAAK,GAAG,QAAQ,cAAwB;AACpF,UAAI,CAAC,MAAc,MAAM,IAAI;AAAG,YAAI,6BAA6B;AACjE,YAAS,MAAM;AACf,UAAI,KAAK,IAAI,SAAS;AACpB,YAAI,KAAK,OAAO;AAAO,cAAI,kBAAkB,KAAK,MAAM;AACxD,YAAI,KAAK,OAAO;AAAO,cAAI,gBAAgB,KAAK,GAAG;AACnD,YAAI,KAAK,OAAO;AAAO,cAAI,aAAa,KAAK,GAAG,IAAI,KAAK;AAAA,MAC3D;AAAA,IACF;AAEA,UAAaC,OAAK,IAAI;AACtB,QAAI,KAAK,IAAI,WAAW,KAAK,OAAO;AAAO,UAAI,oBAAoB,KAAK,GAAG,OAAO,EAAE,MAAM,UAAU,SAAS,KAAK,GAAG,OAAO,EAAE,MAAM,YAAY,SAAS;AACzJ,SAAK,IAAI,UAAU;AAEnB,UAAM,SAAS,OAAO,OAAO,KAAK,MAAM,EAAE,OAAO,CAACD,YAAUA,OAAK,EAAE;AACnE,QAAI,WAAWD,QAAO;AACpB,MAAOH,UAAS,IAAI;AACpB,WAAK,KAAK,MAAM;AAAA,IAClB;AAEA,UAAM,UAAU,KAAK,MAAM,IAAI,IAAI,SAAS;AAC5C,QAAI,WAAW,KAAK,YAAY,cAAc;AAAI,WAAK,YAAY,aAAa,KAAK,IAAI,WAAW,KAAK,YAAY,cAAc,KAAK,UAAU;AAAA,EACpJ;AAAA,EAaA,KAAK,SAAiB,KAAK,QAAgB;AACzC,WAAmBM,MAAK,QAAQ,KAAK,MAAM;AAAA,EAC7C;AAAA,EAGA,gBAA4B;AAAE,WAAc,cAAc,IAAI;AAAA,EAAG;AAAA,EAQjE,MAAM,OAAO,YAA8B;AACzC,UAAM,KAAK,IAAI;AACf,UAAM,MAAM,MAAc,OAAO,MAAM,UAAU;AACjD,UAAM,KAAK,IAAI;AACf,SAAK,YAAY,SAAS,KAAK,MAAM,KAAK,EAAE;AAC5C,WAAO;AAAA,EACT;AAAA,EAMA,MAAM,QAAQf,QAAc,YAAyF;AACnH,UAAMgB,WAAU,MAAM,KAAK,GAAG,QAAQ,MAAM,KAAK,OAAOhB,QAAO,UAAU,CAAC;AAC1E,UAAM,UAAkC,CAAC;AACzC,QAAI,QAAQ;AACZ,eAAW,UAAUgB,SAAQ,SAAS;AACpC,UAAI,QAAQ,OAAO;AAAO,gBAAQ,OAAO,SAAS,OAAO;AAAA;AACpD,gBAAQ,OAAO,QAAQ,OAAO;AACnC,eAAS,OAAO;AAAA,IAClB;AACA,UAAM,YAA8D,CAAC;AACrE,WAAO,QAAQ,OAAO,EAAE,QAAQ,CAAC,QAAQ,UAAU,KAAK,EAAE,QAAQ,IAAI,IAAI,MAAM,IAAI,IAAyB,MAAM,EAAE,CAAC,CAAC;AACvH,eAAW,UAAU,WAAW;AAC9B,aAAO,OAAO,KAAK,MAAM,MAAO,OAAO,OAAO,KAAK,IAAI;AACvD,aAAO,OAAO,KAAK,MAAM,MAAO,OAAO,IAAI,IAAI;AAAA,IACjD;AACA,cAAU,KAAK,CAAC,GAAG,MAAM,EAAE,OAAO,EAAE,IAAI;AACxC,cAAU,SAAS;AACnB,WAAO;AAAA,EACT;AAAA,EAYA,MAAM,OAAOhB,QAAc,YAA+C;AAExE,SAAK,QAAQ;AACb,WAAO,IAAI,QAAQ,OAAO,YAAY;AA3Y1C;AA4YM,WAAK,QAAQ;AACb,UAAI;AAGJ,WAAK,SAAS,UAAU,KAAK,QAAQ,UAAU;AAG/C,WAAK,QAAQ;AACb,YAAM,QAAQ,mBAAK,SAAL,WAAaA;AAC3B,UAAI,OAAO;AACT,YAAI,OAAOA,MAAK;AAChB,aAAK,KAAK,OAAO;AACjB,gBAAQ,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,aAAa,KAAK,aAAa,WAAW,IAAI,GAAG,SAAS,CAAC,GAAG,MAAM,CAAC;AAAA,MACxI;AAEA,YAAM,YAAY,IAAI;AAGtB,YAAc,MAAM,IAAI;AAGxB,YAAM,KAAK,KAAK;AAEhB,kBAAY,IAAI;AAChB,WAAK,QAAQ;AACb,YAAM,MAAM,MAAYW,SAAQX,QAAO,KAAK,MAAM;AAClD,WAAK,UAAU;AACf,WAAK,YAAY,eAAe,KAAK,IAAI,WAAW,KAAK,YAAY,gBAAgB,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AACtJ,WAAK,QAAQ,YAAY;AAEzB,UAAI,CAAC,IAAI,QAAQ;AACf,YAAI,KAAK,OAAO;AAAO,cAAI,mCAAmC;AAC9D,aAAK,KAAK,OAAO;AACjB,gBAAQ,EAAE,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,MAAM,CAAC,GAAG,SAAS,CAAC,GAAG,QAAQ,CAAC,GAAG,aAAa,KAAK,aAAa,WAAW,IAAI,GAAG,SAAS,CAAC,GAAG,OAAO,oCAAoC,CAAC;AAC3K;AAAA,MACF;AACA,WAAK,KAAK,OAAO;AAEjB,kBAAY,IAAI;AAChB,WAAK,OAAO,cAAc,MAAY,KAAK,KAAK,QAAQ,IAAI,MAAM;AAClE,UAAI,CAAC,KAAK,YAAY;AAAa,aAAK,YAAY,cAAc;AAClE,UAAI,CAAC,KAAK,YAAY;AAAc,aAAK,YAAY,eAAe;AACpE,MAAC,KAAK,YAAY;AAClB,UAAI,KAAK,OAAO;AAAa,aAAK,YAAY;AAC9C,WAAK,YAAY,aAAa,KAAK,IAAI,WAAW,KAAK,YAAY,cAAc,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAClJ,WAAK,QAAQ,gBAAgB;AAI7B,UAAI,UAA0D,CAAC;AAC/D,UAAI,UAA0D,CAAC;AAC/D,UAAI,UAA0D,CAAC;AAC/D,UAAI,YAAgE,CAAC;AAGrE,WAAK,QAAQ;AACb,UAAI,KAAK,OAAO,OAAO;AACrB,kBAAU,KAAK,OAAO,KAAK,UAAe,WAAW,MAAM,IAAI,MAAM,IAAI,CAAC;AAC1E,YAAI,KAAK,YAAY;AAAM,iBAAO,KAAK,YAAY;AAAA,MACrD,OAAO;AACL,oBAAY,IAAI;AAChB,kBAAU,KAAK,OAAO,KAAK,UAAU,MAAW,WAAW,MAAM,IAAI,MAAM,IAAI,CAAC;AAChF,aAAK,YAAY,OAAO,KAAK,IAAI,WAAW,KAAK,YAAY,QAAQ,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,MACxI;AAEA,UAAI,KAAK,OAAO,UAAU,KAAK,OAAO,KAAK,gBAAgB,MAAM,KAAK,OAAO,KAAK,gBAAgB;AAAK,kBAAU,MAAM;AAGvH,WAAK,QAAQ,aAAa;AAC1B,WAAK,QAAQ;AACb,YAAM,aAAa,KAAK,OAAO,KAAK,gBAAgB,KAAK,UAAU,KAAK,QAAQ,EAAE,MAAM,EAAE,aAAa,KAAK,OAAO,KAAK,UAAU,IAAK,QAAyB,SAAS,EAAE,EAAE,CAAC,IAAI,KAAK;AACvL,UAAI,KAAK,OAAO,OAAO;AACrB,aAAI,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAY,oBAAU,KAAK,OAAO,KAAK,UAAkBiB,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAC5H,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAc,oBAAU,KAAK,OAAO,KAAK,UAAoBA,SAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBACrI,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAkB,oBAAU,KAAK,OAAO,KAAK,UAAwBA,SAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAC7I,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAY,oBAAU,KAAK,OAAO,KAAK,UAAkBA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAC1I,YAAI,KAAK,YAAY;AAAM,iBAAO,KAAK,YAAY;AAAA,MACrD,OAAO;AACL,oBAAY,IAAI;AAChB,aAAI,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAY,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAcA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAClI,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAc,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAgBA,SAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAC3I,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAkB,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAoBA,SAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBACnJ,UAAK,OAAO,KAAK,cAAjB,mBAA4B,SAAS;AAAY,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAcA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAChJ,aAAK,YAAY,OAAO,KAAK,IAAI,WAAW,KAAK,YAAY,QAAQ,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,MACxI;AACA,WAAK,QAAQ,WAAW;AAGxB,WAAK,QAAQ,aAAa;AAC1B,WAAK,QAAQ;AACb,YAAM,aAAa,KAAK,OAAO,KAAK,gBAAgB,KAAK,UAAU,KAAK,QAAQ,EAAE,MAAM,EAAE,aAAa,KAAK,OAAO,KAAK,UAAU,IAAK,QAAyB,SAAS,EAAE,EAAE,CAAC,IAAI,KAAK;AACvL,UAAI,KAAK,OAAO,OAAO;AACrB,aAAI,gBAAK,OAAO,KAAK,aAAjB,mBAA2B,cAA3B,mBAAsC,SAAS;AAAe,oBAAU,KAAK,OAAO,KAAK,UAAmBA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAC1I,gBAAK,OAAO,KAAK,aAAjB,mBAA2B,cAA3B,mBAAsC,SAAS;AAAc,oBAAU,KAAK,OAAO,KAAK,UAAoBA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AACxJ,YAAI,KAAK,YAAY;AAAM,iBAAO,KAAK,YAAY;AAAA,MACrD,OAAO;AACL,oBAAY,IAAI;AAChB,aAAI,gBAAK,OAAO,KAAK,aAAjB,mBAA2B,cAA3B,mBAAsC,SAAS;AAAe,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAeA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAAA,kBAChJ,gBAAK,OAAO,KAAK,aAAjB,mBAA2B,cAA3B,mBAAsC,SAAS;AAAc,oBAAU,KAAK,OAAO,KAAK,UAAU,MAAgBA,UAAQ,IAAI,QAAQ,UAAU,IAAI,CAAC;AAC9J,aAAK,YAAY,OAAO,KAAK,IAAI,WAAW,KAAK,YAAY,QAAQ,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,MACxI;AACA,WAAK,QAAQ,WAAW;AAGxB,WAAK,QAAQ,eAAe;AAC5B,WAAK,QAAQ;AACb,UAAI,KAAK,OAAO,OAAO;AACrB,aAAI,UAAK,OAAO,OAAO,cAAnB,mBAA8B,SAAS;AAAY,sBAAY,KAAK,OAAO,OAAO,UAAkBA,UAAQ,IAAI,QAAQ,KAAK,MAAM,IAAI,CAAC;AAAA,kBACnI,UAAK,OAAO,OAAO,cAAnB,mBAA8B,SAAS;AAAc,sBAAY,KAAK,OAAO,OAAO,UAAoBA,SAAQ,IAAI,QAAQ,KAAK,MAAM,IAAI,CAAC;AACrJ,YAAI,KAAK,YAAY;AAAQ,iBAAO,KAAK,YAAY;AAAA,MACvD,OAAO;AACL,oBAAY,IAAI;AAChB,aAAI,UAAK,OAAO,OAAO,cAAnB,mBAA8B,SAAS;AAAY,sBAAY,KAAK,OAAO,OAAO,UAAU,MAAcA,UAAQ,IAAI,QAAQ,KAAK,MAAM,IAAI,CAAC;AAAA,kBACzI,UAAK,OAAO,OAAO,cAAnB,mBAA8B,SAAS;AAAc,sBAAY,KAAK,OAAO,OAAO,UAAU,MAAgBA,SAAQ,IAAI,QAAQ,KAAK,MAAM,IAAI,CAAC;AAC3J,aAAK,YAAY,SAAS,KAAK,IAAI,WAAW,KAAK,YAAY,UAAU,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,MAC5I;AACA,WAAK,QAAQ,aAAa;AAG1B,WAAK,QAAQ;AACb,UAAI,KAAK,OAAO;AAAO,SAAC,SAAS,SAAS,SAAS,SAAS,IAAI,MAAM,QAAQ,IAAI,CAAC,SAAS,SAAS,SAAS,SAAS,CAAC;AAGxH,WAAK,QAAQ;AACb,UAAI,aAA8B,CAAC;AACnC,UAAI,KAAK,OAAO,QAAQ,SAAS;AAC/B,oBAAY,IAAI;AAChB,qBAAa,CAAC,GAAWC,MAAK,OAAuB,GAAG,GAAWC,MAAK,OAAuB,GAAG,GAAWC,MAAK,OAAuB,GAAG,GAAWC,MAAK,OAAuB,CAAC;AACpL,YAAI,CAAC,KAAK,OAAO;AAAO,eAAK,YAAY,UAAU,KAAK,IAAI,WAAW,KAAK,YAAY,WAAW,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AAAA,iBAC3J,KAAK,YAAY;AAAS,iBAAO,KAAK,YAAY;AAAA,MAC7D;AAEA,WAAK,YAAY,QAAQ,KAAK,IAAI,WAAW,KAAK,YAAY,SAAS,KAAK,KAAK,MAAM,IAAI,IAAI,SAAS,IAAI,KAAK,MAAM,IAAI,IAAI,SAAS;AACxI,YAAM,UAAQ,UAAK,QAAQ,WAAb,mBAAqB,UAAS,CAAC;AAC7C,WAAK,SAAS;AAAA,QACZ,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,SAAS;AAAA,QACT,QAAQ;AAAA,QACR,aAAa,KAAK;AAAA,QAClB,QAAQ,KAAK,QAAQ;AAAA,QACrB,WAAW,KAAK,IAAI;AAAA,QACpB,OAAO;AAAA,QACP,IAAI,UAAU;AAAE,iBAAeC,MAAK,SAAyB,SAAyB,SAAyB,YAAY,KAAK;AAAA,QAAG;AAAA,MACrI;AAGA,MAAG,QAAQ,IAAI,MAAM;AAGrB,WAAK,KAAK,QAAQ;AAClB,WAAK,QAAQ;AACb,cAAQ,KAAK,MAAM;AAAA,IACrB,CAAC;AAAA,EACH;AACF;AArbE;AACA;AACA;AAwEA;", + "names": ["config", "log2", "__defProp", "__export", "all5", "cache", "size", "compare", "log22", "copy", "init2", "mask", "options", "count2", "instance", "now2", "index", "canvas", "object", "strides", "log", "config", "now", "node", "lines", "size2", "labels", "outputSize", "scale2", "alpha", "half", "middle", "labels2", "inputSize", "padding", "lastTime", "model2", "constants", "maxSize", "node2", "outputNodes", "match", "skipped", "strides2", "body", "r", "match", "index", "cos", "sin", "size", "s", "func", "image", "i", "squeeze", "min", "max", "sub", "range", "rgb", "reshape", "env", "input", "process", "config", "getTensor", "tensor", "rgb", "cast", "t", "e", "env", "models_exports", "load", "reset", "validate", "model", "last", "config", "env", "image", "count", "_a", "_b", "t", "gender", "i", "age", "tensor", "init", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "image", "count", "_a", "t", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "image", "count", "_a", "t", "tensor", "model", "skipped", "lastCount", "lastTime", "load", "config", "env", "predict", "image", "count", "input", "image", "norm", "size", "dot", "i", "size", "inputSize", "anchors", "i", "n", "dot", "input", "face", "env", "model", "load", "config", "env", "t", "tensor", "i", "inputSize", "anchors", "outputSize", "coords", "min", "max", "square", "scale", "env", "models", "inputSize", "skipped", "lastTime", "sigmoid", "config", "input", "size", "t", "tensor", "outputSize", "kpt", "config", "models", "i", "sigmoid", "inputSize", "distance", "annotations", "body", "predict", "lastTime", "skipped", "model", "inputSize", "last", "lastTime", "skipped", "load", "config", "env", "process", "t", "i", "tensor", "predict", "input", "outputSize", "connected", "kpt", "model", "lastTime", "cache", "skipped", "load", "config", "env", "max", "mod", "div", "predict", "image", "tensor", "enhance", "norm", "squeeze", "stack", "x", "y", "kpt", "s", "connected", "i", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "image", "count", "_a", "t", "inputSize", "i", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "input", "count", "_a", "t", "tensor", "model", "last", "lastCount", "lastTime", "skipped", "load", "config", "env", "predict", "input", "count", "_a", "t", "tensor", "model", "inputSize", "load", "config", "env", "i", "index", "face", "connectionsToIndices", "index", "t", "r", "i", "cache", "model", "inputSize", "predict", "input", "config", "size", "i", "face", "env", "t", "index", "load", "model", "last", "lastTime", "lastCount", "skipped", "load", "config", "env", "input", "tensor", "norm", "predict", "image", "count", "_a", "t", "gender", "argmax", "age", "all", "getBoxSize", "getBoxCenter", "image", "scaleBoxCoordinates", "enlargeBox", "size", "squarifyBox", "normalizeRadians", "computeRotation", "buildTranslationMatrix", "dot", "i", "getColumnFrom2DArr", "multiplyTransformMatrices", "size", "buildRotationMatrix", "invertTransformMatrix", "rotatePoint", "anchors", "model", "anchors", "t", "tensor", "index", "input", "config", "p", "hand", "scaleBoxCoordinates", "lastTime", "handPoseModel", "rotatePoint", "enlargeBox", "squarifyBox", "i", "getBoxSize", "buildRotationMatrix", "invertTransformMatrix", "getBoxCenter", "dot", "image", "config", "computeRotation", "env", "coords", "point", "point2", "gesture", "meshAnnotations", "predict", "input", "config", "i", "annotations", "index", "load", "env", "config", "instance", "reset", "e", "config", "env", "op", "backend", "t", "instance", "e", "init", "models", "inputSize", "skipped", "lastTime", "cache", "loadDetect", "config", "env", "input", "config", "models", "t", "scale", "hand", "tensor", "inputSize", "kpt", "index", "predict", "skipped", "lastTime", "cache", "i", "square", "model", "cached", "skipped", "lastCount", "lastTime", "load", "config", "env", "predict", "image", "count", "connected", "kpt", "cache", "body", "compare", "i", "input", "inputSize", "t", "tensor", "outputSize", "kpt", "model", "inputSize", "skipped", "cache", "load", "config", "env", "image", "kpt", "annotations", "connected", "i", "body", "predict", "input", "t", "tensor", "model", "last", "lastTime", "skipped", "inputSize", "load", "config", "env", "process", "size", "i", "predict", "image", "outputSize", "count", "i", "i", "maxSize", "max", "t", "count", "outputStride", "clamp", "min", "max", "model", "point", "height", "width", "clamp", "i", "minConfidence", "predict", "input", "config", "tensor", "t", "load", "env", "model", "load", "config", "env", "process", "input", "t", "tensor", "i", "instance", "reset", "model", "load", "env", "loadDetect", "op", "validate", "options", "init", "config", "e", "model", "all", "canvas", "options", "input", "opt", "rgb", "i", "options", "labels", "emotion", "i", "index", "inCanvas", "options", "inCanvas", "options", "i", "connected", "inCanvas", "options", "i", "inCanvas", "options", "inCanvas", "options", "i", "where", "inCanvas", "options", "i", "canvas", "input", "all", "env", "i", "face", "buffer", "face", "r", "size", "instance", "input", "predict", "env", "i", "tensor", "body", "i", "face", "iris", "hand", "calc", "config", "i", "_a", "_b", "_c", "_d", "_e", "_f", "_g", "_h", "_i", "annotations", "coords", "env", "match", "options", "sum", "i", "min", "max", "norm", "clamp", "index", "join", "face", "person", "body", "hand", "gesture", "face", "body", "instance", "res", "face", "body", "env", "canvas", "tensor", "atob", "model", "t", "e", "input", "e", "match", "env", "version", "options", "canvas", "all", "config", "validate", "getTensor", "process", "count", "model", "load", "calc", "profile", "predict", "face", "body", "hand", "iris", "join"] } diff --git a/dist/human.js b/dist/human.js index 4b670cfd..39a69f73 100644 --- a/dist/human.js +++ b/dist/human.js @@ -4,64 +4,64 @@ author: ' */ -"use strict";var Human=(()=>{var Kf=Object.defineProperty;var U_=Object.getOwnPropertyDescriptor;var G_=Object.getOwnPropertyNames;var H_=Object.prototype.hasOwnProperty;var j_=(e,t,n)=>t in e?Kf(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var ga=(e,t)=>{for(var n in t)Kf(e,n,{get:t[n],enumerable:!0})},q_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of G_(t))!H_.call(e,r)&&r!==n&&Kf(e,r,{get:()=>t[r],enumerable:!(s=U_(t,r))||s.enumerable});return e};var X_=e=>q_(Kf({},"__esModule",{value:!0}),e);var ge=(e,t,n)=>(j_(e,typeof t!="symbol"?t+"":t,n),n),Nv=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var sp=(e,t,n)=>(Nv(e,t,"read from private field"),n?n.call(e):t.get(e)),rp=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},ap=(e,t,n,s)=>(Nv(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var P4e={};ga(P4e,{Human:()=>ov,default:()=>ov,defaults:()=>ao,draw:()=>Q4,env:()=>he,match:()=>av,models:()=>A1});function se(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function Ev(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var le=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function g3(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")g3(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&se("invalid configuration",s),s}function Kt(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Kt(a,o):n[r]=o}),n),{})}var ao={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ye={};ga(Ye,{Abs:()=>vl,Acos:()=>bc,Acosh:()=>vc,AdadeltaOptimizer:()=>o2,AdagradOptimizer:()=>i2,AdamOptimizer:()=>l2,AdamaxOptimizer:()=>u2,Add:()=>oa,AddN:()=>_o,All:()=>wc,Any:()=>kc,ArgMax:()=>Do,ArgMin:()=>Ic,Asin:()=>Sc,Asinh:()=>Cc,Atan:()=>Tc,Atan2:()=>Ec,Atanh:()=>Nc,AvgPool:()=>$o,AvgPool3D:()=>qp,AvgPool3DGrad:()=>r0,AvgPoolGrad:()=>s0,BackendWasm:()=>mT,BatchMatMul:()=>Po,BatchToSpaceND:()=>wl,Bincount:()=>a0,BroadcastArgs:()=>o0,BroadcastTo:()=>$w,Callback:()=>q8,CallbackList:()=>Yk,Cast:()=>Fo,Ceil:()=>Na,ClipByValue:()=>Ea,Complex:()=>Xp,ComplexAbs:()=>Kp,Concat:()=>kl,Conv2D:()=>Oo,Conv2DBackpropFilter:()=>i0,Conv2DBackpropInput:()=>Mo,Conv3D:()=>Zp,Conv3DBackpropFilterV2:()=>l0,Conv3DBackpropInputV2:()=>u0,Cos:()=>zo,Cosh:()=>Lo,CropAndResize:()=>Sl,Cumprod:()=>Il,Cumsum:()=>Bo,CustomCallback:()=>Qk,DataStorage:()=>jp,DenseBincount:()=>c0,DepthToSpace:()=>Cl,DepthwiseConv2dNative:()=>Wo,DepthwiseConv2dNativeBackpropFilter:()=>d0,DepthwiseConv2dNativeBackpropInput:()=>p0,Diag:()=>h0,Dilation2D:()=>Yp,Dilation2DBackpropFilter:()=>Sm,Dilation2DBackpropInput:()=>Im,ENV:()=>By,EarlyStopping:()=>X8,Einsum:()=>Jp,Elu:()=>Uo,EluGrad:()=>f0,Environment:()=>_w,Equal:()=>Go,Erf:()=>Rc,Exp:()=>Ra,ExpandDims:()=>Tl,Expm1:()=>Ho,FFT:()=>m0,Fill:()=>_c,FlipLeftRight:()=>Nl,Floor:()=>_a,FloorDiv:()=>jo,FromPixels:()=>Np,FusedBatchNorm:()=>qo,FusedConv2D:()=>xo,FusedDepthwiseConv2D:()=>bo,GPGPUContext:()=>ec,GatherNd:()=>Rl,GatherV2:()=>El,GraphModel:()=>Uh,Greater:()=>Xo,GreaterEqual:()=>Da,History:()=>Jk,IFFT:()=>g0,Identity:()=>Ko,Imag:()=>Qp,InputSpec:()=>on,IsFinite:()=>Dc,IsInf:()=>$c,IsNan:()=>Pc,KernelBackend:()=>Ac,LRN:()=>eh,LRNGrad:()=>A0,LayerVariable:()=>Gk,LayersModel:()=>wa,LeakyRelu:()=>Zo,Less:()=>Yo,LessEqual:()=>Jo,LinSpace:()=>y0,Log:()=>$a,Log1p:()=>Fc,LogSoftmax:()=>Fw,LogicalAnd:()=>_l,LogicalNot:()=>Dl,LogicalOr:()=>Oc,LogicalXor:()=>Pw,LowerBound:()=>LD,MathBackendWebGL:()=>md,Max:()=>Qo,MaxPool:()=>ei,MaxPool3D:()=>th,MaxPool3DGrad:()=>b0,MaxPoolGrad:()=>x0,MaxPoolWithArgmax:()=>v0,Maximum:()=>Pa,Mean:()=>ti,Min:()=>ni,Minimum:()=>Fa,MirrorPad:()=>si,Mod:()=>Mc,MomentumOptimizer:()=>c2,Multinomial:()=>w0,Multiply:()=>Oa,Neg:()=>$l,NonMaxSuppressionV3:()=>Pl,NonMaxSuppressionV4:()=>zc,NonMaxSuppressionV5:()=>Fl,NotEqual:()=>ri,OP_SCOPE_SUFFIX:()=>Gy,OneHot:()=>Ml,OnesLike:()=>Ol,Optimizer:()=>Ga,OptimizerConstructors:()=>oo,Pack:()=>zl,PadV2:()=>ai,Pool:()=>BD,Pow:()=>oi,Prelu:()=>ii,Prod:()=>li,RMSPropOptimizer:()=>d2,RNN:()=>ua,RaggedTensorToTensor:()=>k0,Range:()=>Lc,Rank:()=>$3,Real:()=>nh,RealDiv:()=>Vo,Reciprocal:()=>Bc,Reduction:()=>ns,Relu:()=>ui,Relu6:()=>pi,Reshape:()=>Ll,ResizeBilinear:()=>di,ResizeBilinearGrad:()=>S0,ResizeNearestNeighbor:()=>ci,ResizeNearestNeighborGrad:()=>I0,Reverse:()=>Bl,RotateWithOffset:()=>eu,Round:()=>Wl,Rsqrt:()=>Ma,SGDOptimizer:()=>_h,ScatterNd:()=>Vl,SearchSorted:()=>C0,Select:()=>Ul,Selu:()=>Wc,Sequential:()=>dc,Sigmoid:()=>za,Sign:()=>Vc,Sin:()=>hi,Sinh:()=>Hl,Slice:()=>Gl,Softmax:()=>mi,Softplus:()=>Uc,SpaceToBatchND:()=>jl,SparseFillEmptyRows:()=>sh,SparseReshape:()=>Gc,SparseSegmentMean:()=>rh,SparseSegmentSum:()=>ah,SparseToDense:()=>oh,SplitV:()=>ql,Sqrt:()=>La,Square:()=>Hc,SquaredDifference:()=>Ba,Step:()=>yi,StridedSlice:()=>Xl,StringNGrams:()=>jc,StringSplit:()=>ih,StringToHashBucketFast:()=>lh,Sub:()=>Wa,Sum:()=>fi,SymbolicTensor:()=>Fr,Tan:()=>Kl,Tanh:()=>gi,Tensor:()=>nt,TensorBuffer:()=>Zt,Tile:()=>Va,TopK:()=>Zl,Transform:()=>Yl,Transpose:()=>ea,Unique:()=>T0,Unpack:()=>Jl,UnsortedSegmentSum:()=>uh,UpperBound:()=>WD,Variable:()=>_p,ZerosLike:()=>Ql,_FusedMatMul:()=>Ao,abs:()=>sn,acos:()=>lA,acosh:()=>uA,add:()=>ue,addN:()=>E0,all:()=>R0,any:()=>Pp,argMax:()=>Ps,argMin:()=>cA,asin:()=>dA,asinh:()=>pA,atan:()=>hA,atan2:()=>fA,atanh:()=>mA,avgPool:()=>Ah,avgPool3d:()=>yA,backend:()=>Hn,backend_util:()=>C,basicLSTMCell:()=>C6,batchNorm:()=>Kc,batchNorm2d:()=>AA,batchNorm3d:()=>xA,batchNorm4d:()=>bA,batchToSpaceND:()=>xh,bincount:()=>vA,booleanMaskAsync:()=>lk,broadcastArgs:()=>T6,broadcastTo:()=>rl,broadcast_util:()=>nu,browser:()=>sr,buffer:()=>De,callbacks:()=>Jj,cast:()=>ye,ceil:()=>wA,clipByValue:()=>xs,clone:()=>Un,complex:()=>ka,concat:()=>St,concat1d:()=>kA,concat2d:()=>su,concat3d:()=>IA,concat4d:()=>SA,constraints:()=>qk,conv1d:()=>_0,conv2d:()=>Ia,conv2dTranspose:()=>D0,conv3d:()=>TA,conv3dTranspose:()=>NA,copyRegisteredKernels:()=>HD,cos:()=>bh,cosh:()=>$0,cosineWindow:()=>t2,cumprod:()=>Fp,cumsum:()=>P0,customGrad:()=>ra,data:()=>AI,denseBincount:()=>E6,deprecationWarn:()=>Jy,depthToSpace:()=>EA,depthwiseConv2d:()=>Zc,deregisterOp:()=>tq,device_util:()=>hh,diag:()=>R6,dilation2d:()=>RA,disableDeprecationWarnings:()=>AP,dispose:()=>J,disposeVariables:()=>xP,div:()=>fe,divNoNan:()=>_A,dot:()=>DA,dropout:()=>r5,einsum:()=>_6,elu:()=>Yc,enableDebugMode:()=>yP,enableProdMode:()=>Yy,enclosingPowerOfTwo:()=>a5,engine:()=>an,env:()=>H,equal:()=>Fs,erf:()=>$A,euclideanNorm:()=>OA,exp:()=>Os,expandDims:()=>Wt,expm1:()=>MA,eye:()=>F0,fft:()=>Eh,fill:()=>Qc,findBackend:()=>Qy,findBackendFactory:()=>kP,floor:()=>ed,floorDiv:()=>Xc,forceHalfFloat:()=>P9,fused:()=>lc,gather:()=>td,gatherND:()=>pk,gather_util:()=>tA,getBackend:()=>Sn,getGradient:()=>_3,getKernel:()=>Cm,getKernelsForBackend:()=>na,getThreadsCount:()=>$0e,gpgpu_util:()=>p9,grad:()=>jO,grads:()=>qO,greater:()=>ws,greaterEqual:()=>bi,ifft:()=>ic,imag:()=>gh,image:()=>Se,inTopKAsync:()=>hk,initializers:()=>Xk,input:()=>h8,io:()=>Ds,irfft:()=>Y0,isFinite:()=>zA,isInf:()=>LA,isNaN:()=>BA,keep:()=>wn,kernel_impls:()=>Ar,layers:()=>Kk,leakyRelu:()=>vh,less:()=>O0,lessEqual:()=>vi,linalg:()=>l5,linspace:()=>O6,loadGraphModel:()=>rX,loadGraphModelSync:()=>aX,loadLayersModel:()=>lH,localResponseNormalization:()=>WA,log:()=>Ms,log1p:()=>wh,logSigmoid:()=>VA,logSoftmax:()=>z0,logSumExp:()=>L0,logicalAnd:()=>gr,logicalNot:()=>kh,logicalOr:()=>B0,logicalXor:()=>UA,losses:()=>Sk,lowerBound:()=>z6,matMul:()=>Qe,math:()=>a6,max:()=>gn,maxPool:()=>Ih,maxPool3d:()=>GA,maxPoolWithArgmax:()=>L6,maximum:()=>la,mean:()=>Vt,memory:()=>Em,meshgrid:()=>B6,metrics:()=>G8,min:()=>Sa,minimum:()=>nd,mirrorPad:()=>HA,mod:()=>au,model:()=>oH,models:()=>H8,moments:()=>Sh,movingAverage:()=>uk,mul:()=>z,multiRNNCell:()=>W6,multinomial:()=>V6,neg:()=>$t,nextFrame:()=>u5,norm:()=>Jc,notEqual:()=>hl,oneHot:()=>rc,ones:()=>$s,onesLike:()=>zs,op:()=>B,outerProduct:()=>U6,pad:()=>rr,pad1d:()=>G6,pad2d:()=>H6,pad3d:()=>j6,pad4d:()=>q6,pool:()=>jA,pow:()=>Ca,prelu:()=>Th,print:()=>Xy,prod:()=>qA,profile:()=>bP,raggedTensorToTensor:()=>X6,rand:()=>K6,randomGamma:()=>Z6,randomNormal:()=>V0,randomStandardNormal:()=>Y6,randomUniform:()=>sd,range:()=>oc,ready:()=>qc,real:()=>ac,reciprocal:()=>ZA,registerBackend:()=>tu,registerCallbackConstructor:()=>uH,registerGradient:()=>Ow,registerKernel:()=>nr,registerOp:()=>eq,regularizers:()=>j8,relu:()=>Vr,relu6:()=>U0,removeBackend:()=>wP,reshape:()=>V,reverse:()=>tr,reverse1d:()=>J6,reverse2d:()=>Q6,reverse3d:()=>ek,reverse4d:()=>tk,rfft:()=>Rh,round:()=>G0,rsqrt:()=>H0,scalar:()=>Ce,scatterND:()=>ck,scatter_util:()=>nA,searchSorted:()=>W0,selu:()=>j0,separableConv2d:()=>q0,sequential:()=>iH,serialization:()=>de,setBackend:()=>mh,setPlatform:()=>IP,setThreadsCount:()=>D0e,setWasmPath:()=>_0e,setWasmPaths:()=>B2,setWebGLContext:()=>$2,setdiff1dAsync:()=>nk,sigmoid:()=>Dn,sign:()=>YA,signal:()=>Ik,sin:()=>X0,sinh:()=>K0,slice:()=>Le,slice1d:()=>Nh,slice2d:()=>Z0,slice3d:()=>wi,slice4d:()=>wo,slice_util:()=>Pt,softmax:()=>ou,softplus:()=>ru,spaceToBatchND:()=>Ch,sparse:()=>Ck,sparseToDense:()=>dk,spectral:()=>kk,split:()=>Yt,sqrt:()=>Fn,square:()=>bt,squaredDifference:()=>J0,squeeze:()=>st,stack:()=>un,step:()=>iu,stridedSlice:()=>JA,string:()=>Tk,sub:()=>me,sum:()=>ke,sumOutType:()=>ph,tan:()=>QA,tanh:()=>dl,tensor:()=>ct,tensor1d:()=>Ft,tensor2d:()=>mr,tensor3d:()=>eA,tensor4d:()=>sk,tensor5d:()=>rk,tensor6d:()=>ak,tensor_util:()=>Or,test_util:()=>b6,tidy:()=>Z,tile:()=>Ys,time:()=>vP,topk:()=>e5,train:()=>Xi,transpose:()=>et,truncatedNormal:()=>Q0,unique:()=>t5,unregisterGradient:()=>GD,unregisterKernel:()=>UD,unsortedSegmentSum:()=>e2,unstack:()=>On,upcastType:()=>Pn,upperBound:()=>ok,util:()=>v,valueAndGrad:()=>XO,valueAndGrads:()=>KO,variable:()=>n5,variableGrads:()=>M6,version:()=>Qh,version_converter:()=>iX,version_core:()=>iA,version_layers:()=>_5,version_wasm:()=>P0e,version_webgl:()=>Cse,webgl:()=>Tse,webgl_util:()=>OS,webgpu:()=>lN,where:()=>Gn,whereAsync:()=>s5,zeros:()=>Ut,zerosLike:()=>it});var K_=Object.create,Fy=Object.defineProperty,Z_=Object.getOwnPropertyDescriptor,xw=Object.getOwnPropertyNames,Y_=Object.getPrototypeOf,J_=Object.prototype.hasOwnProperty,cn=(e,t)=>function(){return t||(0,e[xw(e)[0]])((t={exports:{}}).exports,t),t.exports},Ve=(e,t)=>{for(var n in t)Fy(e,n,{get:t[n],enumerable:!0})},Q_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of xw(t))!J_.call(e,r)&&r!==n&&Fy(e,r,{get:()=>t[r],enumerable:!(s=Z_(t,r))||s.enumerable});return e},Eo=(e,t,n)=>(n=e!=null?K_(Y_(e)):{},Q_(t||!e||!e.__esModule?Fy(n,"default",{value:e,enumerable:!0}):n,e)),eD=cn({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(P){}function s(P,T,M){this.low=P|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(P){return(P&&P.__isLong__)===!0}s.isLong=r;var a={},o={};function i(P,T){var M,W,G;return T?(P>>>=0,(G=0<=P&&P<256)&&(W=o[P],W)?W:(M=u(P,(P|0)<0?-1:0,!0),G&&(o[P]=M),M)):(P|=0,(G=-128<=P&&P<128)&&(W=a[P],W)?W:(M=u(P,P<0?-1:0,!1),G&&(a[P]=M),M))}s.fromInt=i;function l(P,T){if(isNaN(P))return T?b:A;if(T){if(P<0)return b;if(P>=g)return _}else{if(P<=-y)return D;if(P+1>=y)return E}return P<0?l(-P,T).neg():u(P%m|0,P/m|0,T)}s.fromNumber=l;function u(P,T,M){return new s(P,T,M)}s.fromBits=u;var c=Math.pow;function p(P,T,M){if(P.length===0)throw Error("empty string");if(P==="NaN"||P==="Infinity"||P==="+Infinity"||P==="-Infinity")return A;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||360)throw Error("interior hyphen");if(W===0)return p(P.substring(1),T,M).neg();for(var G=l(c(M,8)),X=A,K=0;K>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(T){if(T=T||10,T<2||36>>0,ie=ee.toString(T);if(K=ae,K.isZero())return ie+Y;for(;ie.length<6;)ie="0"+ie;Y=""+ie+Y}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(D)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<=0},R.isOdd=function(){return(this.low&1)===1},R.isEven=function(){return(this.low&1)===0},R.equals=function(T){return r(T)||(T=d(T)),this.unsigned!==T.unsigned&&this.high>>>31===1&&T.high>>>31===1?!1:this.high===T.high&&this.low===T.low},R.eq=R.equals,R.notEquals=function(T){return!this.eq(T)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(T){return this.comp(T)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(T){return this.comp(T)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(T){return this.comp(T)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(T){return this.comp(T)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(T){if(r(T)||(T=d(T)),this.eq(T))return 0;var M=this.isNegative(),W=T.isNegative();return M&&!W?-1:!M&&W?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(D)?D:this.not().add(w)},R.neg=R.negate,R.add=function(T){r(T)||(T=d(T));var M=this.high>>>16,W=this.high&65535,G=this.low>>>16,X=this.low&65535,K=T.high>>>16,Y=T.high&65535,ae=T.low>>>16,ee=T.low&65535,ie=0,ne=0,pe=0,ce=0;return ce+=X+ee,pe+=ce>>>16,ce&=65535,pe+=G+ae,ne+=pe>>>16,pe&=65535,ne+=W+Y,ie+=ne>>>16,ne&=65535,ie+=M+K,ie&=65535,u(pe<<16|ce,ie<<16|ne,this.unsigned)},R.subtract=function(T){return r(T)||(T=d(T)),this.add(T.neg())},R.sub=R.subtract,R.multiply=function(T){if(this.isZero())return A;if(r(T)||(T=d(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return u(M,n.get_high(),this.unsigned)}if(T.isZero())return A;if(this.eq(D))return T.isOdd()?D:A;if(T.eq(D))return this.isOdd()?D:A;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(x)&&T.lt(x))return l(this.toNumber()*T.toNumber(),this.unsigned);var W=this.high>>>16,G=this.high&65535,X=this.low>>>16,K=this.low&65535,Y=T.high>>>16,ae=T.high&65535,ee=T.low>>>16,ie=T.low&65535,ne=0,pe=0,ce=0,Ae=0;return Ae+=K*ie,ce+=Ae>>>16,Ae&=65535,ce+=X*ie,pe+=ce>>>16,ce&=65535,ce+=K*ee,pe+=ce>>>16,ce&=65535,pe+=G*ie,ne+=pe>>>16,pe&=65535,pe+=X*ee,ne+=pe>>>16,pe&=65535,pe+=K*ae,ne+=pe>>>16,pe&=65535,ne+=W*ie+G*ee+X*ae+K*Y,ne&=65535,u(ce<<16|Ae,ne<<16|pe,this.unsigned)},R.mul=R.multiply,R.divide=function(T){if(r(T)||(T=d(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:A;var W,G,X;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return I;X=b}else{if(this.eq(D)){if(T.eq(w)||T.eq(k))return D;if(T.eq(D))return w;var K=this.shr(1);return W=K.div(T).shl(1),W.eq(A)?T.isNegative()?w:k:(G=this.sub(T.mul(W)),X=W.add(G.div(T)),X)}else if(T.eq(D))return this.unsigned?b:A;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();X=A}for(G=this;G.gte(T);){W=Math.max(1,Math.floor(G.toNumber()/T.toNumber()));for(var Y=Math.ceil(Math.log(W)/Math.LN2),ae=Y<=48?1:c(2,Y-48),ee=l(W),ie=ee.mul(T);ie.isNegative()||ie.gt(G);)W-=ae,ee=l(W,this.unsigned),ie=ee.mul(T);ee.isZero()&&(ee=w),X=X.add(ee),G=G.sub(ie)}return X},R.div=R.divide,R.modulo=function(T){if(r(T)||(T=d(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return u(~this.low,~this.high,this.unsigned)},R.and=function(T){return r(T)||(T=d(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},R.or=function(T){return r(T)||(T=d(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},R.xor=function(T){return r(T)||(T=d(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},R.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<>>32-T,this.unsigned):u(0,this.low<>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var W=this.low;return u(W>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?u(M,0,this.unsigned):u(M>>>T-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},R.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},R.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,W){return W?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),tD=cn({"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js"(){}}),nD=cn({"(disabled):util"(){}}),sD=cn({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var p=new a(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&o(d,p),h.state=function(){return o(p,{})}),h}function l(){var u=4022871197,c=function(p){p=String(p);for(var d=0;d>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rD=cn({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aD=cn({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oD=cn({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,u.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h0;--h)p.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iD=cn({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,f,m;return u.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,y,x=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=x[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(x[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;p.w=y,p.X=x,p.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lD=cn({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uD=cn({"(disabled):crypto"(){}}),cD=cn({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),p=c*2,d=a-1,h;function f(w,I,k){var E=[];I=I==!0?{entropy:!0}:I||{};var _=x(y(I.entropy?[w,b(s)]:w==null?A():w,3),E),D=new m(E),R=function(){for(var P=D.g(o),T=u,M=0;P=p;)P/=2,T/=2,M>>>=1;return(P+M)/T};return R.int32=function(){return D.g(4)|0},R.quick=function(){return D.g(4)/4294967296},R.double=R,x(b(D.S),s),(I.pass||k||function(P,T,M,W){return W&&(W.S&&g(W,D),P.state=function(){return g(D,{})}),M?(r[l]=P,T):P})(R,_,"global"in I?I.global:this==r,I.state)}function m(w){var I,k=w.length,E=this,_=0,D=E.i=E.j=0,R=E.S=[];for(k||(w=[k++]);_{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Oe.buffer!=Yn&&Cr(Oe.buffer),mf}function o(){return Oe.buffer!=Yn&&Cr(Oe.buffer),gf}function i(){return Oe.buffer!=Yn&&Cr(Oe.buffer),Hd}function l(){return Oe.buffer!=Yn&&Cr(Oe.buffer),yf}function u(){return Oe.buffer!=Yn&&Cr(Oe.buffer),Af}function c(){return Oe.buffer!=Yn&&Cr(Oe.buffer),xf}function p(){return Oe.buffer!=Yn&&Cr(Oe.buffer),bf}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,F){h=N,f=F});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),y=[],x="./this.program",A=(N,F)=>{throw F},b=typeof window=="object",w=typeof importScripts=="function",I=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",k=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function _(N){return d.locateFile?d.locateFile(N,E):E+N}var D,R,P,T;function M(N){if(N instanceof tp)return;ee("exiting due to exception: "+N)}var W,G,X;if(I){w?E=vm().dirname(E)+"/":E=__dirname+"/",X=()=>{G||(W=Oy(),G=vm())},D=function(U,Q){return X(),U=G.normalize(U),W.readFileSync(U,Q?void 0:"utf8")},P=F=>{var U=D(F,!0);return U.buffer||(U=new Uint8Array(U)),U},R=(F,U,Q)=>{X(),F=G.normalize(F),W.readFile(F,function(xe,we){xe?Q(xe):U(we.buffer)})},process.argv.length>1&&(x=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof tp))throw F}),process.on("unhandledRejection",function(F){throw F}),A=(F,U)=>{if(Bi())throw process.exitCode=F,U;M(U),process.exit(F)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=dD()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=N.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof s!="undefined"&&s&&(E=s),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",I||(D=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},w&&(P=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),R=(N,F,U)=>{var Q=new XMLHttpRequest;Q.open("GET",N,!0),Q.responseType="arraybuffer",Q.onload=()=>{if(Q.status==200||Q.status==0&&Q.response){F(Q.response);return}U()},Q.onerror=U,Q.send(null)}),T=N=>document.title=N);I&&typeof performance=="undefined"&&(global.performance=pD().performance);var K=console.log.bind(console),Y=console.warn.bind(console);I&&(X(),K=N=>W.writeSync(1,N+` -`),Y=N=>W.writeSync(2,N+` -`));var ae=d.print||K,ee=d.printErr||Y;Object.assign(d,g),g=null,d.arguments&&(y=d.arguments),d.thisProgram&&(x=d.thisProgram),d.quit&&(A=d.quit);var ie=4;function ne(N){ne.shown||(ne.shown={}),ne.shown[N]||(ne.shown[N]=1,ee(N))}function pe(N,F){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},Q={parameters:[],results:F[0]=="v"?[]:[U[F[0]]]},xe=1;xe{_e=N},Me=Atomics.load,ot=Atomics.store,gt=Atomics.compareExchange,pt;d.wasmBinary&&(pt=d.wasmBinary);var yt=d.noExitRuntime||!0;typeof WebAssembly!="object"&&_u("no native wasm support detected");var Oe,Tt,kt=!1,Xn;function tn(N,F){N||_u(F)}function Ss(N){var F=d["_"+N];return F}function fn(N,F,U,Q,xe){var we={string:function(Ns){var Wu=0;if(Ns!=null&&Ns!==0){var Tv=(Ns.length<<2)+1;Wu=Bu(Tv),fa(Ns,Wu,Tv)}return Wu},array:function(Ns){var Wu=Bu(Ns.length);return ma(Ns,Wu),Wu}};function Ne(Ns){return F==="string"?Zn(Ns):F==="boolean"?Boolean(Ns):Ns}var Be=Ss(N),Bt=[],Rr=0;if(Q)for(var _r=0;_r(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),F.decode.call(F,U))}var Wn=typeof TextDecoder!="undefined"?new Ts("utf8"):void 0;function qs(N,F,U){for(var Q=F+U,xe=F;N[xe]&&!(xe>=Q);)++xe;if(xe-F>16&&N.subarray&&Wn)return Wn.decode(N.subarray(F,xe));for(var we="";F>10,56320|Rr&1023)}}return we}function Zn(N,F){return N?qs(o(),N,F):""}function ha(N,F,U,Q){if(!(Q>0))return 0;for(var xe=U,we=U+Q-1,Ne=0;Ne=55296&&Be<=57343){var Bt=N.charCodeAt(++Ne);Be=65536+((Be&1023)<<10)|Bt&1023}if(Be<=127){if(U>=we)break;F[U++]=Be}else if(Be<=2047){if(U+1>=we)break;F[U++]=192|Be>>6,F[U++]=128|Be&63}else if(Be<=65535){if(U+2>=we)break;F[U++]=224|Be>>12,F[U++]=128|Be>>6&63,F[U++]=128|Be&63}else{if(U+3>=we)break;F[U++]=240|Be>>18,F[U++]=128|Be>>12&63,F[U++]=128|Be>>6&63,F[U++]=128|Be&63}}return F[U]=0,U-xe}function fa(N,F,U){return ha(N,o(),F,U)}function Nu(N){for(var F=0,U=0;U=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|N.charCodeAt(++U)&1023),Q<=127?++F:Q<=2047?F+=2:Q<=65535?F+=3:F+=4}return F}var to=typeof TextDecoder!="undefined"?new Ts("utf-16le"):void 0;function ma(N,F){a().set(N,F)}function Gd(N,F,U){for(var Q=0;Q>0]=N.charCodeAt(Q);U||(a()[F>>0]=0)}function Eu(N,F){return N%F>0&&(N+=F-N%F),N}var Yn,mf,gf,Hd,yf,Af,iv,xf,bf;k&&(Yn=d.buffer);function Cr(N){Yn=N,d.HEAP8=mf=new Int8Array(N),d.HEAP16=Hd=new Int16Array(N),d.HEAP32=Af=new Int32Array(N),d.HEAPU8=gf=new Uint8Array(N),d.HEAPU16=yf=new Uint16Array(N),d.HEAPU32=iv=new Uint32Array(N),d.HEAPF32=xf=new Float32Array(N),d.HEAPF64=bf=new Float64Array(N)}var vf=d.INITIAL_MEMORY||16777216;if(k)Oe=d.wasmMemory,Yn=d.buffer;else if(d.wasmMemory)Oe=d.wasmMemory;else if(Oe=new WebAssembly.Memory({initial:vf/65536,maximum:32768,shared:!0}),!(Oe.buffer instanceof SharedArrayBuffer))throw ee("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),I&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Oe&&(Yn=Oe.buffer),vf=Yn.byteLength,Cr(Yn);var Xs,Ru=[],no=[],F1=[],wf=[],Li=!1,O1=!1,kf=0;function Bi(){return yt||kf>0}function Jn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)lv(d.preRun.shift());Tf(Ru)}function jd(){Li=!0,!k&&Tf(no)}function M1(){k||(We.terminateAllThreads(),O1=!0)}function z1(){if(!k){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)qd(d.postRun.shift());Tf(wf)}}function lv(N){Ru.unshift(N)}function uv(N){no.unshift(N)}function qd(N){wf.unshift(N)}var so=0,If=null,Tr=null;function Xd(N){so++,d.monitorRunDependencies&&d.monitorRunDependencies(so)}function cv(N){if(so--,d.monitorRunDependencies&&d.monitorRunDependencies(so),so==0&&(If!==null&&(clearInterval(If),If=null),Tr)){var F=Tr;Tr=null,F()}}d.preloadedImages={},d.preloadedAudios={};function _u(N){k?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",ee(N),kt=!0,Xn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw f(F),F}var L1="data:application/octet-stream;base64,";function Kd(N){return N.startsWith(L1)}function Sf(N){return N.startsWith("file://")}var Qn;Qn="tfjs-backend-wasm-threaded-simd.wasm",Kd(Qn)||(Qn=_(Qn));function Cf(N){try{if(N==Qn&&pt)return new Uint8Array(pt);if(P)return P(N);throw"both async and sync fetching of the wasm failed"}catch(F){_u(F)}}function Du(){if(!pt&&(b||w)){if(typeof fetch=="function"&&!Sf(Qn))return fetch(Qn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Qn+"'";return N.arrayBuffer()}).catch(function(){return Cf(Qn)});if(R)return new Promise(function(N,F){R(Qn,function(U){N(new Uint8Array(U))},F)})}return Promise.resolve().then(function(){return Cf(Qn)})}function B1(){var N={env:Lf,wasi_snapshot_preview1:Lf};function F(Ne,Be){var Bt=Ne.exports;if(d.asm=Bt,q1(d.asm.emscripten_tls_init),Xs=d.asm.__indirect_function_table,uv(d.asm.__wasm_call_ctors),Tt=Be,!k){var Rr=We.unusedWorkers.length;We.unusedWorkers.forEach(function(_r){We.loadWasmModuleToWorker(_r,function(){--Rr||cv("wasm-instantiate")})})}}k||Xd("wasm-instantiate");function U(Ne){F(Ne.instance,Ne.module)}function Q(Ne){return Du().then(function(Be){return WebAssembly.instantiate(Be,N)}).then(function(Be){return Be}).then(Ne,function(Be){ee("failed to asynchronously prepare wasm: "+Be),_u(Be)})}function xe(){return!pt&&typeof WebAssembly.instantiateStreaming=="function"&&!Kd(Qn)&&!Sf(Qn)&&typeof fetch=="function"?fetch(Qn,{credentials:"same-origin"}).then(function(Ne){var Be=WebAssembly.instantiateStreaming(Ne,N);return Be.then(U,function(Bt){return ee("wasm streaming compile failed: "+Bt),ee("falling back to ArrayBuffer instantiation"),Q(U)})}):Q(U)}if(d.instantiateWasm)try{var we=d.instantiateWasm(N,F);return we}catch(Ne){return ee("Module.instantiateWasm callback failed with error: "+Ne),!1}return xe().catch(f),{}}var dv,pv,W1={};function Tf(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(d);continue}var U=F.func;typeof U=="number"?F.arg===void 0?Pu(U)():Pu(U)(F.arg):U(F.arg===void 0?null:F.arg)}}function $u(N){var F=f3(),U=N();return Gf(F),U}function ZR(N){return N}function hv(N){var F=/\b_Z[\w\d_]+/g;return N.replace(F,function(U){var Q=U;return U===Q?U:Q+" ["+U+"]"})}function V1(N){u()[N>>2]=0;var F=We.pthreads[N];delete We.pthreads[N],F.worker.terminate(),h3(N),We.runningWorkers.splice(We.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function U1(N){var F=We.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function Nf(N){var F=We.pthreads[N];if(F){u()[N>>2]=0;var U=F.worker;We.returnWorkerToPool(U)}}function Ef(N){L_(N)}function G1(N){if(N instanceof tp||N=="unwind")return Xn;A(1,N)}var We={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){k?We.initWorker():We.initMainThread()},initMainThread:function(){for(var N=8,F=0;F>2]=0;try{N()}finally{u()[Cv>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in We.tlsInitFunctions)We.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,F){N.onmessage=U=>{var Q=U.data,xe=Q.cmd;if(N.pthread&&(We.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=Uf()){var we=We.pthreads[Q.targetThread];we?we.worker.postMessage(Q,Q.transferList):ee('Internal error! Worker sent a message "'+xe+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),We.currentProxiedOperationCallerThread=void 0;return}xe==="processQueuedMainThreadWork"?vv():xe==="spawnThread"?_f(Q):xe==="cleanupThread"?Nf(Q.thread):xe==="killThread"?V1(Q.thread):xe==="cancelThread"?U1(Q.thread):xe==="loaded"?(N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):xe==="print"?ae("Thread "+Q.threadId+": "+Q.text):xe==="printErr"?ee("Thread "+Q.threadId+": "+Q.text):xe==="alert"?alert("Thread "+Q.threadId+": "+Q.text):Q.target==="setimmediate"?N.postMessage(Q):xe==="onAbort"?d.onAbort&&d.onAbort(Q.arg):ee("worker sent an unknown command "+xe),We.currentProxiedOperationCallerThread=void 0},N.onerror=U=>{var Q="worker sent an error!";throw ee(Q+" "+U.filename+":"+U.lineno+": "+U.message),U},I&&(N.on("message",function(U){N.onmessage({data:U})}),N.on("error",function(U){N.onerror(U)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:Oe,wasmModule:Tt})},allocateUnusedWorker:function(){var N=_("tfjs-backend-wasm-threaded-simd.worker.js");We.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return We.unusedWorkers.length==0&&(We.allocateUnusedWorker(),We.loadWasmModuleToWorker(We.unusedWorkers[0])),We.unusedWorkers.pop()}};function H1(){var N=Uf(),F=u()[N+44>>2],U=u()[N+48>>2],Q=F-U;Sv(F,Q),Gf(F)}d.establishStackSpace=H1;function Rf(N){if(k)return Ui(1,0,N);try{Ef(N)}catch(F){G1(F)}}var Wi=[];function Pu(N){var F=Wi[N];return F||(N>=Wi.length&&(Wi.length=N+1),Wi[N]=F=Xs.get(N)),F}function j1(N,F){return Pu(N)(F)}d.invokeEntryPoint=j1;function fv(){var N=new Error;if(!N.stack){try{throw new Error}catch(F){N=F}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function q1(N,F,U){We.tlsInitFunctions.push(N)}function mv(N,F){Xs.set(N,F),Wi[N]=F}var Vi;I?Vi=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?Vi=()=>performance.now()-d.__performance_now_clock_drift:Vi=()=>performance.now();var X1=!0;function K1(N){return u()[bv()>>2]=N,N}function Z1(N,F){var U;if(N===0)U=Date.now();else if((N===1||N===4)&&X1)U=Vi();else return K1(28),-1;return u()[F>>2]=U/1e3|0,u()[F+4>>2]=U%1e3*1e3*1e3|0,0}function Y1(N,F){return Z1(N,F)}function J1(N){wv(N,!w,1,!b),We.threadInit()}function Q1(N){k?postMessage({cmd:"cleanupThread",thread:N}):Nf(N)}function _f(N){var F=We.getNewWorker();if(!F)return 6;We.runningWorkers.push(F);var U=We.pthreads[N.pthread_ptr]={worker:F,threadInfoStruct:N.pthread_ptr};F.pthread=U;var Q={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return F.runPthread=()=>{Q.time=performance.now(),F.postMessage(Q,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function eg(N,F,U,Q){if(typeof SharedArrayBuffer=="undefined")return ee("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var xe=[],we=0;if(k&&(xe.length===0||we))return kv(687865856,N,F,U,Q);if(we)return we;var Ne={startRoutine:U,pthread_ptr:N,arg:Q,transferList:xe};return k?(Ne.cmd="spawnThread",postMessage(Ne,xe),0):_f(Ne)}function tg(){return 2097152}function ng(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var U=We.pthreads[N],Q=U&&U.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function sg(){_u("")}function rg(){I||w||ne("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Df(){return 2147483648}function ag(N,F,U){o().copyWithin(N,F,F+U)}function og(){return I?hD().cpus().length:navigator.hardwareConcurrency}function Ui(N,F){var U=arguments.length-2,Q=arguments;return $u(function(){for(var xe=U,we=Bu(xe*8),Ne=we>>3,Be=0;Be>3,xe=0;xe>>16),Cr(Oe.buffer),1}catch(F){}}function ug(N){var F=o().length;if(N=N>>>0,N<=F)return!1;var U=Df();if(N>U)return!1;for(var Q=1;Q<=4;Q*=2){var xe=F*(1+.2/Q);xe=Math.min(xe,N+100663296);var we=Math.min(U,Eu(Math.max(N,xe),65536)),Ne=lg(we);if(Ne)return!0}return!1}var Je={inEventHandler:0,removeAllEventListeners:function(){for(var N=Je.eventHandlers.length-1;N>=0;--N)Je._removeHandler(N);Je.eventHandlers=[],Je.deferredCalls=[]},registerRemoveEventListeners:function(){Je.removeEventListenersRegistered||(F1.push(Je.removeAllEventListeners),Je.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,U){function Q(Ne,Be){if(Ne.length!=Be.length)return!1;for(var Bt in Ne)if(Ne[Bt]!=Be[Bt])return!1;return!0}for(var xe in Je.deferredCalls){var we=Je.deferredCalls[xe];if(we.targetFunction==N&&Q(we.argsList,U))return}Je.deferredCalls.push({targetFunction:N,precedence:F,argsList:U}),Je.deferredCalls.sort(function(Ne,Be){return Ne.precedence>2]=U,u()[we+4>>2]=Q,u()[we+8>>2]=xe,p3(N,637534208,F,Q,we)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return We.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function cg(N){var F=Nu(N)+1,U=d3(F);return fa(N,U,F),U}function dg(N,F,U,Q){$u(function(){var xe=Bu(12),we=0;F&&(we=cg(F)),u()[xe>>2]=we,u()[xe+4>>2]=U,u()[xe+8>>2]=Q,p3(N,657457152,0,we,xe)})}function pg(N,F,U,Q){F=F?Zn(F):"",dg(N,F,U,Q)}function hg(N){return N>2?Zn(N):N}var fg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function mg(N){N=hg(N);var F=fg[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function Yd(N){return mg(N)}function $f(N,F,U){var Q=Yd(N);if(!Q)return-4;if(Q.canvasSharedPtr&&(u()[Q.canvasSharedPtr>>2]=F,u()[Q.canvasSharedPtr+4>>2]=U),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var xe=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var we=Q.GLctxObject.GLctx.getParameter(2978);xe=we[0]===0&&we[1]===0&&we[2]===Q.width&&we[3]===Q.height}Q.width=F,Q.height=U,xe&&Q.GLctxObject.GLctx.viewport(0,0,F,U)}else if(Q.canvasSharedPtr){var Ne=u()[Q.canvasSharedPtr+8>>2];return pg(Ne,N,F,U),1}else return-4;return 0}function Pf(N,F,U){return k?Ui(2,1,N,F,U):$f(N,F,U)}function gg(N,F,U){var Q=Yd(N);return Q?$f(N,F,U):Pf(N,F,U)}function yg(){throw"unwind"}function Ag(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(U,Q){F.vertexAttribDivisorANGLE(U,Q)},N.drawArraysInstanced=function(U,Q,xe,we){F.drawArraysInstancedANGLE(U,Q,xe,we)},N.drawElementsInstanced=function(U,Q,xe,we,Ne){F.drawElementsInstancedANGLE(U,Q,xe,we,Ne)},1}function xg(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(U){F.deleteVertexArrayOES(U)},N.bindVertexArray=function(U){F.bindVertexArrayOES(U)},N.isVertexArray=function(U){return F.isVertexArrayOES(U)},1}function bg(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(U,Q){F.drawBuffersWEBGL(U,Q)},1}function vg(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Lt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(F){Lt.lastError||(Lt.lastError=F)},getNewId:function(N){for(var F=Lt.counter++,U=N.length;U>2]:-1;xe+=Zn(u()[U+we*4>>2],Ne<0?void 0:Ne)}return xe},createContext:function(N,F){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(xe,we){var Ne=N.getContextSafariWebGL2Fixed(xe,we);return xe=="webgl"==Ne instanceof WebGLRenderingContext?Ne:null});var U=N.getContext("webgl",F);if(!U)return 0;var Q=Lt.registerContext(U,F);return Q},registerContext:function(N,F){var U=d3(8);u()[U+4>>2]=Uf();var Q={handle:U,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Q),Lt.contexts[U]=Q,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&Lt.initExtensions(Q),U},makeContextCurrent:function(N){return Lt.currentContext=Lt.contexts[N],d.ctx=zf=Lt.currentContext&&Lt.currentContext.GLctx,!(N&&!zf)},getContext:function(N){return Lt.contexts[N]},deleteContext:function(N){Lt.currentContext===Lt.contexts[N]&&(Lt.currentContext=null),typeof Je=="object"&&Je.removeAllHandlersOnTarget(Lt.contexts[N].GLctx.canvas),Lt.contexts[N]&&Lt.contexts[N].GLctx.canvas&&(Lt.contexts[N].GLctx.canvas.GLctxObject=void 0),xv(Lt.contexts[N].handle),Lt.contexts[N]=null},initExtensions:function(N){if(N||(N=Lt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;Ag(F),xg(F),bg(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),vg(F);var U=F.getSupportedExtensions()||[];U.forEach(function(Q){!Q.includes("lose_context")&&!Q.includes("debug")&&F.getExtension(Q)})}}},wg=["default","low-power","high-performance"];function kg(N,F){var U=F>>2,Q=u()[U+6],xe={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:wg[Q],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},we=Yd(N);if(!we||xe.explicitSwapControl)return 0;var Ne=Lt.createContext(we,xe);return Ne}function Ig(N,F){return kg(N,F)}var Fu={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var U=Fu.buffers[N];F===0||F===10?((N===1?ae:ee)(qs(U,0)),U.length=0):U.push(F)},varargs:void 0,get:function(){Fu.varargs+=4;var N=u()[Fu.varargs-4>>2];return N},getStr:function(N){var F=Zn(N);return F},get64:function(N,F){return N}};function Ff(N){return k?Ui(3,1,N):0}function Of(N,F,U,Q,xe){if(k)return Ui(4,1,N,F,U,Q,xe)}function Mf(N,F,U,Q){if(k)return Ui(5,1,N,F,U,Q);for(var xe=0,we=0;we>2],Be=u()[F+4>>2];F+=8;for(var Bt=0;Bt>2]=xe,0}function Sg(N){Ue(N)}We.init();var zf,Cg=[null,Rf,Pf,Ff,Of,Mf],gv=!1,Lf={__clock_gettime:Y1,__emscripten_init_main_thread_js:J1,__emscripten_thread_cleanup:Q1,__pthread_create_js:eg,_emscripten_default_pthread_stack_size:tg,_emscripten_notify_thread_queue:ng,abort:sg,emscripten_check_blocking_allowed:rg,emscripten_get_heap_max:Df,emscripten_get_now:Vi,emscripten_memcpy_big:ag,emscripten_num_logical_cores:og,emscripten_receive_on_main_thread_js:ig,emscripten_resize_heap:ug,emscripten_set_canvas_element_size:gg,emscripten_unwind_to_js_event_loop:yg,emscripten_webgl_create_context:Ig,exit:Ef,fd_close:Ff,fd_seek:Of,fd_write:Mf,memory:Oe||d.wasmMemory,setTempRet0:Sg},yv=B1(),Tg=d.___wasm_call_ctors=function(){return(Tg=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},Ng=d._init=function(){return(Ng=d._init=d.asm.init).apply(null,arguments)},Eg=d._init_with_threads_count=function(){return(Eg=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},Rg=d._get_threads_count=function(){return(Rg=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},_g=d._register_tensor=function(){return(_g=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},Dg=d._dispose_data=function(){return(Dg=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},$g=d._dispose=function(){return($g=d._dispose=d.asm.dispose).apply(null,arguments)},Pg=d._Abs=function(){return(Pg=d._Abs=d.asm.Abs).apply(null,arguments)},Fg=d._Add=function(){return(Fg=d._Add=d.asm.Add).apply(null,arguments)},Og=d._AddN=function(){return(Og=d._AddN=d.asm.AddN).apply(null,arguments)},Mg=d._All=function(){return(Mg=d._All=d.asm.All).apply(null,arguments)},zg=d._Any=function(){return(zg=d._Any=d.asm.Any).apply(null,arguments)},Lg=d._ArgMax=function(){return(Lg=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},Bg=d._AvgPool=function(){return(Bg=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},Wg=d._BatchMatMul=function(){return(Wg=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},Vg=d._Ceil=function(){return(Vg=d._Ceil=d.asm.Ceil).apply(null,arguments)},Ug=d._ClipByValue=function(){return(Ug=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},Gg=d._Conv2D=function(){return(Gg=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},Hg=d._Conv2DBackpropInput=function(){return(Hg=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},jg=d._Cos=function(){return(jg=d._Cos=d.asm.Cos).apply(null,arguments)},qg=d._Cosh=function(){return(qg=d._Cosh=d.asm.Cosh).apply(null,arguments)},Xg=d._CropAndResize=function(){return(Xg=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},Kg=d._Cumprod=function(){return(Kg=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},Zg=d._Cumsum=function(){return(Zg=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},Yg=d._DepthToSpace=function(){return(Yg=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},Jg=d._DepthwiseConv2dNative=function(){return(Jg=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},Qg=d._Elu=function(){return(Qg=d._Elu=d.asm.Elu).apply(null,arguments)},e3=d._Equal=function(){return(e3=d._Equal=d.asm.Equal).apply(null,arguments)},t3=d._Exp=function(){return(t3=d._Exp=d.asm.Exp).apply(null,arguments)},n3=d._FlipLeftRight=function(){return(n3=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},s3=d._Floor=function(){return(s3=d._Floor=d.asm.Floor).apply(null,arguments)},r3=d._FloorDiv=function(){return(r3=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},a3=d._FusedBatchNorm=function(){return(a3=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},o3=d._FusedConv2D=function(){return(o3=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Bf=d._FusedDepthwiseConv2D=function(){return(Bf=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Wf=d._Gather=function(){return(Wf=d._Gather=d.asm.Gather).apply(null,arguments)},Jd=d._GatherNd=function(){return(Jd=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},i3=d._Greater=function(){return(i3=d._Greater=d.asm.Greater).apply(null,arguments)},l3=d._GreaterEqual=function(){return(l3=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Ou=d._LeakyRelu=function(){return(Ou=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Qd=d._Less=function(){return(Qd=d._Less=d.asm.Less).apply(null,arguments)},ep=d._LessEqual=function(){return(ep=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},Av=d._Log=function(){return(Av=d._Log=d.asm.Log).apply(null,arguments)},Mu=d._LogicalAnd=function(){return(Mu=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},zu=d._LogicalNot=function(){return(zu=d._LogicalNot=d.asm.LogicalNot).apply(null,arguments)},u3=d._LogicalOr=function(){return(u3=d._LogicalOr=d.asm.LogicalOr).apply(null,arguments)},q=d._LogicalXor=function(){return(q=d._LogicalXor=d.asm.LogicalXor).apply(null,arguments)},te=d._Max=function(){return(te=d._Max=d.asm.Max).apply(null,arguments)},be=d._MaxPool=function(){return(be=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},$e=d._Maximum=function(){return($e=d._Maximum=d.asm.Maximum).apply(null,arguments)},ht=d._Mean=function(){return(ht=d._Mean=d.asm.Mean).apply(null,arguments)},mt=d._Min=function(){return(mt=d._Min=d.asm.Min).apply(null,arguments)},tt=d._Minimum=function(){return(tt=d._Minimum=d.asm.Minimum).apply(null,arguments)},Ke=d._MirrorPad=function(){return(Ke=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},nn=d._Multiply=function(){return(nn=d._Multiply=d.asm.Multiply).apply(null,arguments)},Nr=d._Neg=function(){return(Nr=d._Neg=d.asm.Neg).apply(null,arguments)},Er=d._NonMaxSuppressionV3=function(){return(Er=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},Lu=d._NonMaxSuppressionV4=function(){return(Lu=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},Gi=d._NonMaxSuppressionV5=function(){return(Gi=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},c3=d._NotEqual=function(){return(c3=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},es=d._OneHot=function(){return(es=d._OneHot=d.asm.OneHot).apply(null,arguments)},ro=d._PadV2=function(){return(ro=d._PadV2=d.asm.PadV2).apply(null,arguments)},Vf=d._Pow=function(){return(Vf=d._Pow=d.asm.Pow).apply(null,arguments)},YR=d._Prelu=function(){return(YR=d._Prelu=d.asm.Prelu).apply(null,arguments)},JR=d._Prod=function(){return(JR=d._Prod=d.asm.Prod).apply(null,arguments)},QR=d._RealDiv=function(){return(QR=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},e_=d._Relu=function(){return(e_=d._Relu=d.asm.Relu).apply(null,arguments)},t_=d._Relu6=function(){return(t_=d._Relu6=d.asm.Relu6).apply(null,arguments)},n_=d._ResizeBilinear=function(){return(n_=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},s_=d._ResizeNearestNeighbor=function(){return(s_=d._ResizeNearestNeighbor=d.asm.ResizeNearestNeighbor).apply(null,arguments)},r_=d._Reverse=function(){return(r_=d._Reverse=d.asm.Reverse).apply(null,arguments)},a_=d._RotateWithOffset=function(){return(a_=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},o_=d._Round=function(){return(o_=d._Round=d.asm.Round).apply(null,arguments)},i_=d._Rsqrt=function(){return(i_=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},l_=d._ScatterNd=function(){return(l_=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},u_=d._SelectV2=function(){return(u_=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},c_=d._Sigmoid=function(){return(c_=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},d_=d._Sin=function(){return(d_=d._Sin=d.asm.Sin).apply(null,arguments)},p_=d._Softmax=function(){return(p_=d._Softmax=d.asm.Softmax).apply(null,arguments)},h_=d._SparseFillEmptyRows=function(){return(h_=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},f_=d._SparseReshape=function(){return(f_=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},m_=d._SparseSegmentReduction=function(){return(m_=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},g_=d._Sqrt=function(){return(g_=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},y_=d._Square=function(){return(y_=d._Square=d.asm.Square).apply(null,arguments)},A_=d._SquaredDifference=function(){return(A_=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},x_=d._Step=function(){return(x_=d._Step=d.asm.Step).apply(null,arguments)},b_=d._StridedSlice=function(){return(b_=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},v_=d._Sub=function(){return(v_=d._Sub=d.asm.Sub).apply(null,arguments)},w_=d._Sum=function(){return(w_=d._Sum=d.asm.Sum).apply(null,arguments)},k_=d._Tan=function(){return(k_=d._Tan=d.asm.Tan).apply(null,arguments)},I_=d._Tanh=function(){return(I_=d._Tanh=d.asm.Tanh).apply(null,arguments)},S_=d._Tile=function(){return(S_=d._Tile=d.asm.Tile).apply(null,arguments)},C_=d._TopK=function(){return(C_=d._TopK=d.asm.TopK).apply(null,arguments)},T_=d._Transform=function(){return(T_=d._Transform=d.asm.Transform).apply(null,arguments)},N_=d._Transpose=function(){return(N_=d._Transpose=d.asm.Transpose).apply(null,arguments)},E_=d.__FusedMatMul=function(){return(E_=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},d3=d._malloc=function(){return(d3=d._malloc=d.asm.malloc).apply(null,arguments)},xv=d._free=function(){return(xv=d._free=d.asm.free).apply(null,arguments)},R_=d._emscripten_tls_init=function(){return(R_=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},bv=d.___errno_location=function(){return(bv=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Uf=d._pthread_self=function(){return(Uf=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},vv=d._emscripten_main_thread_process_queued_calls=function(){return(vv=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},__=d.__emscripten_thread_crashed=function(){return(__=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},wv=d.__emscripten_thread_init=function(){return(wv=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},D_=d._emscripten_current_thread_process_queued_calls=function(){return(D_=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},$_=d._emscripten_main_browser_thread_id=function(){return($_=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},P_=d._emscripten_sync_run_in_main_thread_2=function(){return(P_=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},kv=d._emscripten_sync_run_in_main_thread_4=function(){return(kv=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},Iv=d._emscripten_run_in_main_runtime_thread_js=function(){return(Iv=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},p3=d._emscripten_dispatch_to_thread_=function(){return(p3=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},h3=d.__emscripten_thread_free_data=function(){return(h3=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},F_=d.__emscripten_thread_exit=function(){return(F_=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},O_=d._memalign=function(){return(O_=d._memalign=d.asm.memalign).apply(null,arguments)},Sv=d._emscripten_stack_set_limits=function(){return(Sv=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},f3=d.stackSave=function(){return(f3=d.stackSave=d.asm.stackSave).apply(null,arguments)},Gf=d.stackRestore=function(){return(Gf=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Bu=d.stackAlloc=function(){return(Bu=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},M_=d.dynCall_iijjiiii=function(){return(M_=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},z_=d.dynCall_jiji=function(){return(z_=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},Cv=d.__emscripten_allow_main_runtime_queued_calls=21672;d.cwrap=Kn,d.keepRuntimeAlive=Bi,d.PThread=We,d.PThread=We,d.wasmMemory=Oe,d.ExitStatus=tp;var Hf;function tp(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Tr=function N(){Hf||m3(),Hf||(Tr=N)};function m3(N){if(N=N||y,so>0)return;if(k){h(d),jd(),postMessage({cmd:"loaded"});return}if(Jn(),so>0)return;function F(){Hf||(Hf=!0,d.calledRun=!0,!kt&&(jd(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),z1()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),F()},1)):F()}d.run=m3;function L_(N,F){if(Xn=N,!F&&k)throw Rf(N),"unwind";Bi()||M1(),B_(N)}function B_(N){Xn=N,Bi()||(We.terminateAllThreads(),d.onExit&&d.onExit(N),kt=!0),A(N,new tp(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();m3();var jf;m&&(jf={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var qf;if(typeof WasmBackendModule!="undefined")qf=WasmBackendModule;else if(typeof r!="undefined")qf=r;else throw new Error("Could not find wasm module in post.js");if(jf){var W_=qf._dispose;qf._dispose=function(){W_(),jf.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),jf.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),mD=cn({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js"(e,t){t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+" -");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`}}),gD=cn({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(q,te){o=q,i=te});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},a),c=[],p="./this.program",d=(q,te)=>{throw te},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(q){return a.locateFile?a.locateFile(q,g):g+q}var x,A,b,w;function I(q){if(q instanceof Qd)return;R("exiting due to exception: "+q)}var k,E,_;m?(f?g=vm().dirname(g)+"/":g=__dirname+"/",_=()=>{E||(k=Oy(),E=vm())},x=function(te,be){return _(),te=E.normalize(te),k.readFileSync(te,be?void 0:"utf8")},b=q=>{var te=x(q,!0);return te.buffer||(te=new Uint8Array(te)),te},A=(q,te,be)=>{_(),q=E.normalize(q),k.readFile(q,function($e,ht){$e?be($e):te(ht.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof Qd))throw q}),process.on("unhandledRejection",function(q){throw q}),d=(q,te)=>{if(Hd())throw process.exitCode=q,te;I(te),process.exit(q)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",x=q=>{var te=new XMLHttpRequest;return te.open("GET",q,!1),te.send(null),te.responseText},f&&(b=q=>{var te=new XMLHttpRequest;return te.open("GET",q,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),A=(q,te,be)=>{var $e=new XMLHttpRequest;$e.open("GET",q,!0),$e.responseType="arraybuffer",$e.onload=()=>{if($e.status==200||$e.status==0&&$e.response){te($e.response);return}be()},$e.onerror=be,$e.send(null)},w=q=>document.title=q);var D=a.print||console.log.bind(console),R=a.printErr||console.warn.bind(console);Object.assign(a,u),u=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var P=4;function T(q){T.shown||(T.shown={}),T.shown[q]||(T.shown[q]=1,R(q))}function M(q,te){if(typeof WebAssembly.Function=="function"){for(var be={i:"i32",j:"i64",f:"f32",d:"f64"},$e={parameters:[],results:te[0]=="v"?[]:[be[te[0]]]},ht=1;ht{Y=q},ee;a.wasmBinary&&(ee=a.wasmBinary);var ie=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Li("no native wasm support detected");var ne,pe=!1,ce;function Ae(q,te){q||Li(te)}function oe(q){var te=a["_"+q];return te}function Re(q,te,be,$e,ht){var mt={string:function(es){var ro=0;if(es!=null&&es!==0){var Vf=(es.length<<2)+1;ro=Jd(Vf),yt(es,ro,Vf)}return ro},array:function(es){var ro=Jd(es.length);return kt(es,ro),ro}};function tt(es){return te==="string"?gt(es):te==="boolean"?Boolean(es):es}var Ke=oe(q),nn=[],Nr=0;if($e)for(var Er=0;Er<$e.length;Er++){var Lu=mt[be[Er]];Lu?(Nr===0&&(Nr=Bf()),nn[Er]=Lu($e[Er])):nn[Er]=$e[Er]}var Gi=Ke.apply(null,nn);function c3(es){return Nr!==0&&Wf(Nr),tt(es)}return Gi=c3(Gi),Gi}function _e(q,te,be,$e){be=be||[];var ht=be.every(function(tt){return tt==="number"}),mt=te!=="string";return mt&&ht&&!$e?oe(q):function(){return Re(q,te,be,arguments,$e)}}var Ue=1,Me=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ot(q,te,be){for(var $e=te+be,ht=te;q[ht]&&!(ht>=$e);)++ht;if(ht-te>16&&q.subarray&&Me)return Me.decode(q.subarray(te,ht));for(var mt="";te>10,56320|Nr&1023)}}return mt}function gt(q,te){return q?ot(Kn,q,te):""}function pt(q,te,be,$e){if(!($e>0))return 0;for(var ht=be,mt=be+$e-1,tt=0;tt=55296&&Ke<=57343){var nn=q.charCodeAt(++tt);Ke=65536+((Ke&1023)<<10)|nn&1023}if(Ke<=127){if(be>=mt)break;te[be++]=Ke}else if(Ke<=2047){if(be+1>=mt)break;te[be++]=192|Ke>>6,te[be++]=128|Ke&63}else if(Ke<=65535){if(be+2>=mt)break;te[be++]=224|Ke>>12,te[be++]=128|Ke>>6&63,te[be++]=128|Ke&63}else{if(be+3>=mt)break;te[be++]=240|Ke>>18,te[be++]=128|Ke>>12&63,te[be++]=128|Ke>>6&63,te[be++]=128|Ke&63}}return te[be]=0,be-ht}function yt(q,te,be){return pt(q,Kn,te,be)}function Oe(q){for(var te=0,be=0;be=55296&&$e<=57343&&($e=65536+(($e&1023)<<10)|q.charCodeAt(++be)&1023),$e<=127?++te:$e<=2047?te+=2:$e<=65535?te+=3:te+=4}return te}var Tt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function kt(q,te){fn.set(q,te)}function Xn(q,te,be){for(var $e=0;$e>0]=q.charCodeAt($e);be||(fn[te>>0]=0)}function tn(q,te){return q%te>0&&(q+=te-q%te),q}var Ss,fn,Kn,Cs,Ts,Wn,qs,Zn,ha;function fa(q){Ss=q,a.HEAP8=fn=new Int8Array(q),a.HEAP16=Cs=new Int16Array(q),a.HEAP32=Wn=new Int32Array(q),a.HEAPU8=Kn=new Uint8Array(q),a.HEAPU16=Ts=new Uint16Array(q),a.HEAPU32=qs=new Uint32Array(q),a.HEAPF32=Zn=new Float32Array(q),a.HEAPF64=ha=new Float64Array(q)}var Nu=a.INITIAL_MEMORY||16777216,to,ma=[],Gd=[],Eu=[],Yn=!1,mf=!1,gf=0;function Hd(){return ie||gf>0}function yf(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)bf(a.preRun.shift());qd(ma)}function Af(){Yn=!0,qd(Gd)}function iv(){mf=!0}function xf(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)vf(a.postRun.shift());qd(Eu)}function bf(q){ma.unshift(q)}function Cr(q){Gd.unshift(q)}function vf(q){Eu.unshift(q)}var Xs=0,Ru=null,no=null;function F1(q){Xs++,a.monitorRunDependencies&&a.monitorRunDependencies(Xs)}function wf(q){if(Xs--,a.monitorRunDependencies&&a.monitorRunDependencies(Xs),Xs==0&&(Ru!==null&&(clearInterval(Ru),Ru=null),no)){var te=no;no=null,te()}}a.preloadedImages={},a.preloadedAudios={};function Li(q){a.onAbort&&a.onAbort(q),q="Aborted("+q+")",R(q),pe=!0,ce=1,q+=". Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(q);throw i(te),te}var O1="data:application/octet-stream;base64,";function kf(q){return q.startsWith(O1)}function Bi(q){return q.startsWith("file://")}var Jn;Jn="tfjs-backend-wasm.wasm",kf(Jn)||(Jn=y(Jn));function jd(q){try{if(q==Jn&&ee)return new Uint8Array(ee);if(b)return b(q);throw"both async and sync fetching of the wasm failed"}catch(te){Li(te)}}function M1(){if(!ee&&(h||f)){if(typeof fetch=="function"&&!Bi(Jn))return fetch(Jn,{credentials:"same-origin"}).then(function(q){if(!q.ok)throw"failed to load wasm binary file at '"+Jn+"'";return q.arrayBuffer()}).catch(function(){return jd(Jn)});if(A)return new Promise(function(q,te){A(Jn,function(be){q(new Uint8Array(be))},te)})}return Promise.resolve().then(function(){return jd(Jn)})}function z1(){var q={env:$u,wasi_snapshot_preview1:$u};function te(tt,Ke){var nn=tt.exports;a.asm=nn,ne=a.asm.memory,fa(ne.buffer),to=a.asm.__indirect_function_table,Cr(a.asm.__wasm_call_ctors),wf("wasm-instantiate")}F1("wasm-instantiate");function be(tt){te(tt.instance)}function $e(tt){return M1().then(function(Ke){return WebAssembly.instantiate(Ke,q)}).then(function(Ke){return Ke}).then(tt,function(Ke){R("failed to asynchronously prepare wasm: "+Ke),Li(Ke)})}function ht(){return!ee&&typeof WebAssembly.instantiateStreaming=="function"&&!kf(Jn)&&!Bi(Jn)&&typeof fetch=="function"?fetch(Jn,{credentials:"same-origin"}).then(function(tt){var Ke=WebAssembly.instantiateStreaming(tt,q);return Ke.then(be,function(nn){return R("wasm streaming compile failed: "+nn),R("falling back to ArrayBuffer instantiation"),$e(be)})}):$e(be)}if(a.instantiateWasm)try{var mt=a.instantiateWasm(q,te);return mt}catch(tt){return R("Module.instantiateWasm callback failed with error: "+tt),!1}return ht().catch(i),{}}var lv,uv;function qd(q){for(;q.length>0;){var te=q.shift();if(typeof te=="function"){te(a);continue}var be=te.func;typeof be=="number"?te.arg===void 0?Xd(be)():Xd(be)(te.arg):be(te.arg===void 0?null:te.arg)}}function so(q){return q}function If(q){var te=/\b_Z[\w\d_]+/g;return q.replace(te,function(be){var $e=be;return be===$e?be:$e+" ["+be+"]"})}var Tr=[];function Xd(q){var te=Tr[q];return te||(q>=Tr.length&&(Tr.length=q+1),Tr[q]=te=to.get(q)),te}function cv(){var q=new Error;if(!q.stack){try{throw new Error}catch(te){q=te}if(!q.stack)return"(no stack trace available)"}return q.stack.toString()}function _u(q,te){to.set(q,te),Tr[q]=te}function L1(){Li("")}function Kd(){return 2147483648}function Sf(q,te,be){Kn.copyWithin(q,te,te+be)}function Qn(q){try{return ne.grow(q-Ss.byteLength+65535>>>16),fa(ne.buffer),1}catch(te){}}function Cf(q){var te=Kn.length;q=q>>>0;var be=Kd();if(q>be)return!1;for(var $e=1;$e<=4;$e*=2){var ht=te*(1+.2/$e);ht=Math.min(ht,q+100663296);var mt=Math.min(be,tn(Math.max(q,ht),65536)),tt=Qn(mt);if(tt)return!0}return!1}var Du={mappings:{},buffers:[null,[],[]],printChar:function(q,te){var be=Du.buffers[q];te===0||te===10?((q===1?D:R)(ot(be,0)),be.length=0):be.push(te)},varargs:void 0,get:function(){Du.varargs+=4;var q=Wn[Du.varargs-4>>2];return q},getStr:function(q){var te=gt(q);return te},get64:function(q,te){return q}};function B1(q){return 0}function dv(q,te,be,$e,ht){}function pv(q,te,be,$e){for(var ht=0,mt=0;mt>2],Ke=Wn[te+4>>2];te+=8;for(var nn=0;nn>2]=ht,0}function W1(q){ae(q)}var Tf=!1,$u={abort:L1,emscripten_get_heap_max:Kd,emscripten_memcpy_big:Sf,emscripten_resize_heap:Cf,fd_close:B1,fd_seek:dv,fd_write:pv,setTempRet0:W1},ZR=z1(),hv=a.___wasm_call_ctors=function(){return(hv=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},V1=a._init=function(){return(V1=a._init=a.asm.init).apply(null,arguments)},U1=a._init_with_threads_count=function(){return(U1=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},Nf=a._get_threads_count=function(){return(Nf=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},Ef=a._register_tensor=function(){return(Ef=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},G1=a._dispose_data=function(){return(G1=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},We=a._dispose=function(){return(We=a._dispose=a.asm.dispose).apply(null,arguments)},H1=a._Abs=function(){return(H1=a._Abs=a.asm.Abs).apply(null,arguments)},Rf=a._Add=function(){return(Rf=a._Add=a.asm.Add).apply(null,arguments)},Wi=a._AddN=function(){return(Wi=a._AddN=a.asm.AddN).apply(null,arguments)},Pu=a._All=function(){return(Pu=a._All=a.asm.All).apply(null,arguments)},j1=a._Any=function(){return(j1=a._Any=a.asm.Any).apply(null,arguments)},fv=a._ArgMax=function(){return(fv=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},q1=a._AvgPool=function(){return(q1=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},mv=a._BatchMatMul=function(){return(mv=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},Vi=a._Ceil=function(){return(Vi=a._Ceil=a.asm.Ceil).apply(null,arguments)},X1=a._ClipByValue=function(){return(X1=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},K1=a._Conv2D=function(){return(K1=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},Z1=a._Conv2DBackpropInput=function(){return(Z1=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},Y1=a._Cos=function(){return(Y1=a._Cos=a.asm.Cos).apply(null,arguments)},J1=a._Cosh=function(){return(J1=a._Cosh=a.asm.Cosh).apply(null,arguments)},Q1=a._CropAndResize=function(){return(Q1=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},_f=a._Cumprod=function(){return(_f=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},eg=a._Cumsum=function(){return(eg=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},tg=a._DepthToSpace=function(){return(tg=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},ng=a._DepthwiseConv2dNative=function(){return(ng=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},sg=a._Elu=function(){return(sg=a._Elu=a.asm.Elu).apply(null,arguments)},rg=a._Equal=function(){return(rg=a._Equal=a.asm.Equal).apply(null,arguments)},Df=a._Exp=function(){return(Df=a._Exp=a.asm.Exp).apply(null,arguments)},ag=a._FlipLeftRight=function(){return(ag=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},og=a._Floor=function(){return(og=a._Floor=a.asm.Floor).apply(null,arguments)},Ui=a._FloorDiv=function(){return(Ui=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},Zd=a._FusedBatchNorm=function(){return(Zd=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},ig=a._FusedConv2D=function(){return(ig=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},lg=a._FusedDepthwiseConv2D=function(){return(lg=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},ug=a._Gather=function(){return(ug=a._Gather=a.asm.Gather).apply(null,arguments)},Je=a._GatherNd=function(){return(Je=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},cg=a._Greater=function(){return(cg=a._Greater=a.asm.Greater).apply(null,arguments)},dg=a._GreaterEqual=function(){return(dg=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},pg=a._LeakyRelu=function(){return(pg=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},hg=a._Less=function(){return(hg=a._Less=a.asm.Less).apply(null,arguments)},fg=a._LessEqual=function(){return(fg=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},mg=a._Log=function(){return(mg=a._Log=a.asm.Log).apply(null,arguments)},Yd=a._LogicalAnd=function(){return(Yd=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},$f=a._LogicalNot=function(){return($f=a._LogicalNot=a.asm.LogicalNot).apply(null,arguments)},Pf=a._LogicalOr=function(){return(Pf=a._LogicalOr=a.asm.LogicalOr).apply(null,arguments)},gg=a._LogicalXor=function(){return(gg=a._LogicalXor=a.asm.LogicalXor).apply(null,arguments)},yg=a._Max=function(){return(yg=a._Max=a.asm.Max).apply(null,arguments)},Ag=a._MaxPool=function(){return(Ag=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},xg=a._Maximum=function(){return(xg=a._Maximum=a.asm.Maximum).apply(null,arguments)},bg=a._Mean=function(){return(bg=a._Mean=a.asm.Mean).apply(null,arguments)},vg=a._Min=function(){return(vg=a._Min=a.asm.Min).apply(null,arguments)},Lt=a._Minimum=function(){return(Lt=a._Minimum=a.asm.Minimum).apply(null,arguments)},wg=a._MirrorPad=function(){return(wg=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},kg=a._Multiply=function(){return(kg=a._Multiply=a.asm.Multiply).apply(null,arguments)},Ig=a._Neg=function(){return(Ig=a._Neg=a.asm.Neg).apply(null,arguments)},Fu=a._NonMaxSuppressionV3=function(){return(Fu=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},Ff=a._NonMaxSuppressionV4=function(){return(Ff=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},Of=a._NonMaxSuppressionV5=function(){return(Of=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Mf=a._NotEqual=function(){return(Mf=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},Sg=a._OneHot=function(){return(Sg=a._OneHot=a.asm.OneHot).apply(null,arguments)},zf=a._PadV2=function(){return(zf=a._PadV2=a.asm.PadV2).apply(null,arguments)},Cg=a._Pow=function(){return(Cg=a._Pow=a.asm.Pow).apply(null,arguments)},gv=a._Prelu=function(){return(gv=a._Prelu=a.asm.Prelu).apply(null,arguments)},Lf=a._Prod=function(){return(Lf=a._Prod=a.asm.Prod).apply(null,arguments)},yv=a._RealDiv=function(){return(yv=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},Tg=a._Relu=function(){return(Tg=a._Relu=a.asm.Relu).apply(null,arguments)},Ng=a._Relu6=function(){return(Ng=a._Relu6=a.asm.Relu6).apply(null,arguments)},Eg=a._ResizeBilinear=function(){return(Eg=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},Rg=a._ResizeNearestNeighbor=function(){return(Rg=a._ResizeNearestNeighbor=a.asm.ResizeNearestNeighbor).apply(null,arguments)},_g=a._Reverse=function(){return(_g=a._Reverse=a.asm.Reverse).apply(null,arguments)},Dg=a._RotateWithOffset=function(){return(Dg=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},$g=a._Round=function(){return($g=a._Round=a.asm.Round).apply(null,arguments)},Pg=a._Rsqrt=function(){return(Pg=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},Fg=a._ScatterNd=function(){return(Fg=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},Og=a._SelectV2=function(){return(Og=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},Mg=a._Sigmoid=function(){return(Mg=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},zg=a._Sin=function(){return(zg=a._Sin=a.asm.Sin).apply(null,arguments)},Lg=a._Softmax=function(){return(Lg=a._Softmax=a.asm.Softmax).apply(null,arguments)},Bg=a._SparseFillEmptyRows=function(){return(Bg=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},Wg=a._SparseReshape=function(){return(Wg=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},Vg=a._SparseSegmentReduction=function(){return(Vg=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},Ug=a._Sqrt=function(){return(Ug=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},Gg=a._Square=function(){return(Gg=a._Square=a.asm.Square).apply(null,arguments)},Hg=a._SquaredDifference=function(){return(Hg=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},jg=a._Step=function(){return(jg=a._Step=a.asm.Step).apply(null,arguments)},qg=a._StridedSlice=function(){return(qg=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},Xg=a._Sub=function(){return(Xg=a._Sub=a.asm.Sub).apply(null,arguments)},Kg=a._Sum=function(){return(Kg=a._Sum=a.asm.Sum).apply(null,arguments)},Zg=a._Tan=function(){return(Zg=a._Tan=a.asm.Tan).apply(null,arguments)},Yg=a._Tanh=function(){return(Yg=a._Tanh=a.asm.Tanh).apply(null,arguments)},Jg=a._Tile=function(){return(Jg=a._Tile=a.asm.Tile).apply(null,arguments)},Qg=a._TopK=function(){return(Qg=a._TopK=a.asm.TopK).apply(null,arguments)},e3=a._Transform=function(){return(e3=a._Transform=a.asm.Transform).apply(null,arguments)},t3=a._Transpose=function(){return(t3=a._Transpose=a.asm.Transpose).apply(null,arguments)},n3=a.__FusedMatMul=function(){return(n3=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},s3=a._malloc=function(){return(s3=a._malloc=a.asm.malloc).apply(null,arguments)},r3=a._free=function(){return(r3=a._free=a.asm.free).apply(null,arguments)},a3=a.___errno_location=function(){return(a3=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},o3=a._emscripten_main_thread_process_queued_calls=function(){return(o3=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Bf=a.stackSave=function(){return(Bf=a.stackSave=a.asm.stackSave).apply(null,arguments)},Wf=a.stackRestore=function(){return(Wf=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},Jd=a.stackAlloc=function(){return(Jd=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},i3=a.dynCall_iijjiiii=function(){return(i3=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},l3=a.dynCall_jiji=function(){return(l3=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=_e;var Ou;function Qd(q){this.name="ExitStatus",this.message="Program terminated with exit("+q+")",this.status=q}no=function q(){Ou||ep(),Ou||(no=q)};function ep(q){if(q=q||c,Xs>0||(yf(),Xs>0))return;function te(){Ou||(Ou=!0,a.calledRun=!0,!pe&&(Af(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),xf()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),te()},1)):te()}a.run=ep;function Av(q){ce=q,Hd()||(a.onExit&&a.onExit(q),pe=!0),d(q,new Qd(q))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();ep();var Mu;l&&(Mu={uncaughtException:process.listeners("uncaughtException").filter(function(q){return!l.uncaughtException.indexOf(q)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(q){return!l.unhandledRejection.indexOf(q)>-1})});var zu;if(typeof r!="undefined")zu=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")zu=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Mu){var u3=zu._dispose;zu._dispose=function(){u3(),Mu.uncaughtException.forEach(function(q){process.removeListener("uncaughtException",q)}),Mu.unhandledRejection.forEach(function(q){process.removeListener("unhandledRejection",q)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),yD=1e-7,AD=1e-4,jp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ac=class{refCount(e){return Ks("refCount")}incRef(e){return Ks("incRef")}timerAvailable(){return!0}time(e){return Ks("time")}read(e){return Ks("read")}readSync(e){return Ks("readSync")}readToGPU(e,t){return Ks("readToGPU")}numDataIds(){return Ks("numDataIds")}disposeData(e,t){return Ks("disposeData")}write(e,t,n){return Ks("write")}move(e,t,n,s,r){return Ks("move")}memory(){return Ks("memory")}floatPrecision(){return Ks("floatPrecision")}epsilon(){return this.floatPrecision()===32?yD:AD}dispose(){return Ks("dispose")}};function Ks(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function vw(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,wm(e,t,n)}function xD(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,wm(e,n,s),wm(t,n,s)}function Tp(e,t,n){return Math.max(e,Math.min(t,n))}function bD(e){return e%2===0?e:e+1}function wm(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function vD(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function bl(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ll(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Vn(e)&&!n)for(let s=0;s0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function ED(e,t){let n=1,s=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function yr(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>tc(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function ww(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:yr(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function kw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Iw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Sw(e,t){for(let n=0;nt+=n.length),t}function uo(e){return typeof e=="string"||e instanceof String}function Nw(e){return typeof e=="boolean"}function Ew(e){return typeof e=="number"}function t0(e){return Array.isArray(e)?t0(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":Ew(e)?"float32":uo(e)?"string":Nw(e)?"bool":"float32"}function yo(e){return!!(e&&e.constructor&&e.call&&e.apply)}function km(e,t){for(let n=t;n=0;--s)n[s]=n[s+1]*e[s+1];return n}function Rw(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;ol*u)*(s?2:1);for(let l=0;lr*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Rw(0,e,t,n)}function My(e,t){let n=n0(e,t);for(let s=0;ss*r,1);if(t==null||t==="float32")return Zu(e,new Float32Array(n));if(t==="int32")return Zu(e,new Int32Array(n));if(t==="bool")return Zu(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function zy(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function DD(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r{let[s,r]=n.split(":");this.urlFlags[s]=OD(s,r)})}};function PD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(FD(t,s[0],s[1]),s.join("="))),t}function FD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function OD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function H(){return By}var By=null;function MD(e){By=e}var y3;function Dw(){if(y3==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");y3=e}return y3}function zD(){let e=Dw();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Wy(e,t){let n=zD();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var vl="Abs",bc="Acos",vc="Acosh",oa="Add",_o="AddN",wc="All",kc="Any",Do="ArgMax",Ic="ArgMin",Sc="Asin",Cc="Asinh",Tc="Atan",Nc="Atanh",Ec="Atan2",$o="AvgPool",s0="AvgPoolGrad",qp="AvgPool3D",r0="AvgPool3DGrad",Po="BatchMatMul",wl="BatchToSpaceND",a0="Bincount",$w="BroadcastTo",o0="BroadcastArgs",Fo="Cast",Na="Ceil",Ea="ClipByValue",Xp="Complex",Kp="ComplexAbs",kl="Concat",Oo="Conv2D",i0="Conv2DBackpropFilter",Mo="Conv2DBackpropInput",Zp="Conv3D",l0="Conv3DBackpropFilterV2",u0="Conv3DBackpropInputV2",zo="Cos",Lo="Cosh",Il="Cumprod",Bo="Cumsum",Sl="CropAndResize",c0="DenseBincount",Cl="DepthToSpace",Wo="DepthwiseConv2dNative",d0="DepthwiseConv2dNativeBackpropFilter",p0="DepthwiseConv2dNativeBackpropInput",h0="Diag",Yp="Dilation2D",Im="Dilation2DBackpropInput",Sm="Dilation2DBackpropFilter",Vo="RealDiv",Jp="Einsum",Uo="Elu",f0="EluGrad",Rc="Erf",Go="Equal",Ra="Exp",Tl="ExpandDims",Ho="Expm1",m0="FFT",_c="Fill",Nl="FlipLeftRight",_a="Floor",jo="FloorDiv",qo="FusedBatchNorm",El="GatherV2",Rl="GatherNd",Xo="Greater",Da="GreaterEqual",Ko="Identity",g0="IFFT",Qp="Imag",Dc="IsFinite",$c="IsInf",Pc="IsNan",Zo="LeakyRelu",Yo="Less",Jo="LessEqual",y0="LinSpace",$a="Log",Fc="Log1p",_l="LogicalAnd",Dl="LogicalNot",Oc="LogicalOr",Pw="LogicalXor",Fw="LogSoftmax",LD="LowerBound",eh="LRN",A0="LRNGrad",Qo="Max",Pa="Maximum",ei="MaxPool",x0="MaxPoolGrad",th="MaxPool3D",b0="MaxPool3DGrad",v0="MaxPoolWithArgmax",ti="Mean",ni="Min",Fa="Minimum",si="MirrorPad",Mc="Mod",w0="Multinomial",Oa="Multiply",$l="Neg",ri="NotEqual",Pl="NonMaxSuppressionV3",zc="NonMaxSuppressionV4",Fl="NonMaxSuppressionV5",Ol="OnesLike",Ml="OneHot",zl="Pack",ai="PadV2",BD="Pool",oi="Pow",ii="Prelu",li="Prod",k0="RaggedTensorToTensor",Lc="Range",nh="Real",Bc="Reciprocal",ui="Relu",Ll="Reshape",ci="ResizeNearestNeighbor",I0="ResizeNearestNeighborGrad",di="ResizeBilinear",S0="ResizeBilinearGrad",pi="Relu6",Bl="Reverse",Wl="Round",Ma="Rsqrt",Vl="ScatterNd",C0="SearchSorted",Ul="Select",Wc="Selu",Gl="Slice",hi="Sin",Hl="Sinh",Vc="Sign",za="Sigmoid",Uc="Softplus",La="Sqrt",fi="Sum",jl="SpaceToBatchND",ql="SplitV",mi="Softmax",sh="SparseFillEmptyRows",Gc="SparseReshape",rh="SparseSegmentMean",ah="SparseSegmentSum",oh="SparseToDense",Ba="SquaredDifference",Hc="Square",Xl="StridedSlice",jc="StringNGrams",ih="StringSplit",lh="StringToHashBucketFast",Wa="Sub",Kl="Tan",gi="Tanh",Va="Tile",Zl="TopK",Yl="Transform",ea="Transpose",T0="Unique",Jl="Unpack",uh="UnsortedSegmentSum",WD="UpperBound",Ql="ZerosLike",yi="Step",Np="FromPixels",eu="RotateWithOffset",Ao="_FusedMatMul",xo="FusedConv2D",bo="FusedDepthwiseConv2D";function lo(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(...e)}function VD(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.log(...e)}var nc=Wy("kernelRegistry",()=>new Map),Ep=Wy("gradRegistry",()=>new Map);function Cm(e,t){let n=Vy(e,t);return nc.get(n)}function _3(e){return Ep.get(e)}function na(e){let t=nc.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function nr(e){let{kernelName:t,backendName:n}=e,s=Vy(t,n);nc.has(s)&&lo(`The kernel '${t}' for backend '${n}' is already registered`),nc.set(s,e)}function Ow(e){let{kernelName:t}=e;Ep.has(t)&&H().getBool("DEBUG")&&lo(`Overriding the gradient for '${t}'`),Ep.set(t,e)}function UD(e,t){let n=Vy(e,t);if(!nc.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);nc.delete(n)}function GD(e){if(!Ep.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Ep.delete(e)}function HD(e,t){na(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});nr(r)})}function Vy(e,t){return`${t}_${e}`}var v={};Ve(v,{arraysEqual:()=>Ro,assert:()=>O,assertNonNegativeIntegerDimensions:()=>zy,assertNonNull:()=>bl,assertShapesMatch:()=>os,bytesFromStringArray:()=>Tw,bytesPerElement:()=>R3,checkConversionForErrors:()=>Sw,clamp:()=>Tp,computeStrides:()=>xc,createScalarValue:()=>YD,createShuffledIndices:()=>TD,decodeString:()=>Tm,distSquared:()=>kD,encodeString:()=>dh,fetch:()=>QD,fingerPrint64:()=>ZD,flatten:()=>ll,getArrayFromDType:()=>Iw,getTypedArrayFromDType:()=>kw,hasEncodingLoss:()=>RD,hexToLong:()=>ch,indexToLoc:()=>$D,inferDtype:()=>t0,inferFromImplicitShape:()=>ED,isBoolean:()=>Nw,isFunction:()=>yo,isInt:()=>tc,isNumber:()=>Ew,isPromise:()=>Ly,isScalarShape:()=>ID,isString:()=>uo,isTypedArray:()=>Vn,isValidDtype:()=>Cw,locToIndex:()=>DD,makeOnesTypedArray:()=>My,makeZerosNestedTypedArray:()=>_D,makeZerosTypedArray:()=>n0,nearestDivisor:()=>km,nearestLargerEven:()=>bD,now:()=>Rp,parseAxisParam:()=>yr,randUniform:()=>wD,repeatedTry:()=>ND,rightPad:()=>wp,shuffle:()=>vw,shuffleCombo:()=>xD,sizeFromShape:()=>Et,sizeToSquarishShape:()=>CD,squeezeShape:()=>ww,sum:()=>vD,swap:()=>wm,tanh:()=>SD,toNestedArray:()=>Zu,toTypedArray:()=>N0});var _v=Eo(eD()),Zi=_v.default||_v;function ch(e){return Zi.fromString(e,!0,16)}var Mw=ch("c3a5c85c97cb3127"),qi=ch("b492b66fbe98f273"),ts=ch("9ae16a3b2f90404f");function D3(e){return e.xor(e.shru(47))}function zw(e,t,n){let s=e.slice(t,t+n);return Zi.fromBytes(Array.from(s),!0,!0)}function Nt(e,t){return zw(e,t,8)}function Dv(e,t){return zw(e,t,4)}function vn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ho(e,t,n=ch("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function jD(e,t,n,s,r,a){r=r.add(e),a=vn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(vn(r,44)),[r.add(s),a.add(o)]}function Zf(e,t,n,s){return jD(Nt(e,t),Nt(e,t+8),Nt(e,t+16),Nt(e,t+24),n,s)}function qD(e,t=e.length){if(t>=8){let n=ts.add(t*2),s=Nt(e,0).add(ts),r=Nt(e,t-8),a=vn(r,37).mul(n).add(s),o=vn(s,25).add(r).mul(n);return ho(a,o,n)}if(t>=4){let n=ts.add(t*2),s=Dv(e,0);return ho(s.shl(3).add(t),Dv(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return D3(ts.mul(a).xor(Mw.mul(o))).mul(ts)}return ts}function XD(e,t=e.length){let n=ts.add(t*2),s=Nt(e,0).mul(qi),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(ts);return ho(vn(s.add(r),43).add(vn(a,30)).add(o),s.add(vn(r.add(ts),18)).add(a),n)}function KD(e,t=e.length){let n=ts.add(t*2),s=Nt(e,0).mul(ts),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(ts),i=vn(s.add(r),43).add(vn(a,30)).add(o),l=ho(i,s.add(vn(r.add(ts),18)).add(a),n),u=Nt(e,16).mul(n),c=Nt(e,24),p=i.add(Nt(e,t-32)).mul(n),d=l.add(Nt(e,t-24)).mul(n);return ho(vn(u.add(c),43).add(vn(p,30)).add(d),u.add(vn(c.add(s),18)).add(p),n)}function ZD(e,t=e.length){let n=Zi.fromNumber(81,!0);if(t<=32)return t<=16?qD(e,t):XD(e,t);if(t<=64)return KD(e,t);let s=n,r=n.mul(qi).add(113),a=D3(r.mul(ts).add(113)).mul(ts),o=[Zi.UZERO,Zi.UZERO],i=[Zi.UZERO,Zi.UZERO];s=s.mul(ts).add(Nt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=vn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(qi),r=vn(r.add(o[1]).add(Nt(e,l+48)),42).mul(qi),s=s.xor(i[1]),r=r.add(o[0]).add(Nt(e,l+40)),a=vn(a.add(i[0]),33).mul(qi),o=Zf(e,l,o[1].mul(qi),s.add(i[0])),i=Zf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let p=qi.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=vn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(p),r=vn(r.add(o[1]).add(Nt(e,l+48)),42).mul(p),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(Nt(e,l+40))),a=vn(a.add(i[0]),33).mul(p),o=Zf(e,l,o[1].mul(p),s.add(i[0])),i=Zf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],ho(ho(o[0],i[0],p).add(D3(r).mul(Mw)).add(a),ho(o[1],i[1],p).add(s),p)}function YD(e,t){return t==="string"?dh(e):N0([e],t)}function JD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function N0(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ll(e)),H().getBool("DEBUG")&&Sw(e,t),JD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s{s=n()},a,o=Rp();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Rp()-o})}if(H().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l{t$(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function t$(e,t,n){if(t!=="float32")return!1;for(let s=0;s0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function s$(e,t,n){let s={},r={};for(let l=0;ls[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let p=0;p=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!Ro(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let p=e[c.id];e[c.id]=s(p,u),p.dispose()}}}}var $v=20,op=3,A3=7;function a$(e,t,n,s){let r=xc(t),a=o$(e,t,n,r),o=t.length,i=dm(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(` +"use strict";var Human=(()=>{var Gf=Object.defineProperty;var h_=Object.getOwnPropertyDescriptor;var f_=Object.getOwnPropertyNames;var m_=Object.prototype.hasOwnProperty;var g_=(e,t,n)=>t in e?Gf(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var fa=(e,t)=>{for(var n in t)Gf(e,n,{get:t[n],enumerable:!0})},y_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of f_(t))!m_.call(e,r)&&r!==n&&Gf(e,r,{get:()=>t[r],enumerable:!(s=h_(t,r))||s.enumerable});return e};var A_=e=>y_(Gf({},"__esModule",{value:!0}),e);var ge=(e,t,n)=>(g_(e,typeof t!="symbol"?t+"":t,n),n),vv=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Jd=(e,t,n)=>(vv(e,t,"read from private field"),n?n.call(e):t.get(e)),Qd=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},ep=(e,t,n,s)=>(vv(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Fbe={};fa(Fbe,{Human:()=>Q4,default:()=>Q4,defaults:()=>Ua,draw:()=>j4,env:()=>he,match:()=>J4,models:()=>p1});function re(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function wv(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var le=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function c3(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")c3(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&re("invalid configuration",s),s}function Xt(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Xt(a,o):n[r]=o}),n),{})}var Ua={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Je={};fa(Je,{Abs:()=>pl,Acos:()=>bc,Acosh:()=>vc,AdadeltaOptimizer:()=>e2,AdagradOptimizer:()=>t2,AdamOptimizer:()=>n2,AdamaxOptimizer:()=>s2,Add:()=>Ta,AddN:()=>fo,All:()=>wc,Any:()=>kc,ArgMax:()=>mo,ArgMin:()=>Sc,Asin:()=>Ic,Asinh:()=>Cc,Atan:()=>Tc,Atan2:()=>hl,Atanh:()=>Nc,AvgPool:()=>go,AvgPool3D:()=>Vp,AvgPool3DGrad:()=>Jm,AvgPoolGrad:()=>Ym,BackendWasm:()=>oT,BatchMatMul:()=>yo,BatchToSpaceND:()=>fl,Bincount:()=>Qm,BroadcastArgs:()=>e0,BroadcastTo:()=>I6,Callback:()=>Lk,CallbackList:()=>U8,Cast:()=>Ao,Ceil:()=>xo,ClipByValue:()=>Na,Complex:()=>Up,ComplexAbs:()=>Gp,Concat:()=>ml,Conv2D:()=>bo,Conv2DBackpropFilter:()=>t0,Conv2DBackpropInput:()=>vo,Conv3D:()=>Hp,Conv3DBackpropFilterV2:()=>n0,Conv3DBackpropInputV2:()=>s0,Cos:()=>wo,Cosh:()=>ko,CropAndResize:()=>yl,Cumprod:()=>gl,Cumsum:()=>So,CustomCallback:()=>H8,DataStorage:()=>Wp,DenseBincount:()=>r0,DepthToSpace:()=>Al,DepthwiseConv2dNative:()=>Io,DepthwiseConv2dNativeBackpropFilter:()=>a0,DepthwiseConv2dNativeBackpropInput:()=>o0,Diag:()=>i0,Dilation2D:()=>jp,Dilation2DBackpropFilter:()=>bm,Dilation2DBackpropInput:()=>xm,ENV:()=>Fy,EarlyStopping:()=>Bk,Einsum:()=>qp,Elu:()=>To,EluGrad:()=>l0,Environment:()=>k6,Equal:()=>xl,Erf:()=>Ec,Exp:()=>No,ExpandDims:()=>bl,Expm1:()=>vl,FFT:()=>u0,Fill:()=>Rc,FlipLeftRight:()=>wl,Floor:()=>Eo,FloorDiv:()=>Ro,FromPixels:()=>wp,FusedBatchNorm:()=>_o,FusedConv2D:()=>to,FusedDepthwiseConv2D:()=>no,GPGPUContext:()=>ec,GatherNd:()=>Sl,GatherV2:()=>kl,GraphModel:()=>zh,Greater:()=>Il,GreaterEqual:()=>Do,History:()=>G8,IFFT:()=>c0,Identity:()=>$o,Imag:()=>Xp,InputSpec:()=>an,IsFinite:()=>_c,IsInf:()=>Dc,IsNan:()=>Cl,KernelBackend:()=>Ac,LRN:()=>Kp,LRNGrad:()=>p0,LayerVariable:()=>O8,LayersModel:()=>ba,LeakyRelu:()=>Po,Less:()=>Tl,LessEqual:()=>Nl,LinSpace:()=>d0,Log:()=>Fo,Log1p:()=>$c,LogSoftmax:()=>T6,LogicalAnd:()=>El,LogicalNot:()=>Rl,LogicalOr:()=>Pc,LogicalXor:()=>C6,LowerBound:()=>uD,MathBackendWebGL:()=>pd,Max:()=>Oo,MaxPool:()=>zo,MaxPool3D:()=>Zp,MaxPool3DGrad:()=>f0,MaxPoolGrad:()=>h0,MaxPoolWithArgmax:()=>m0,Maximum:()=>Mo,Mean:()=>Lo,Min:()=>Bo,Minimum:()=>Wo,MirrorPad:()=>Vo,Mod:()=>Fc,MomentumOptimizer:()=>r2,Multinomial:()=>g0,Multiply:()=>Uo,Neg:()=>_l,NonMaxSuppressionV3:()=>$l,NonMaxSuppressionV4:()=>Oc,NonMaxSuppressionV5:()=>Pl,NotEqual:()=>Dl,OP_SCOPE_SUFFIX:()=>Ly,OneHot:()=>Ol,OnesLike:()=>Fl,Optimizer:()=>_a,OptimizerConstructors:()=>Ga,Pack:()=>Ml,PadV2:()=>Go,Pool:()=>cD,Pow:()=>Ho,Prelu:()=>jo,Prod:()=>qo,RMSPropOptimizer:()=>a2,RNN:()=>ia,RaggedTensorToTensor:()=>y0,Range:()=>Mc,Rank:()=>E3,Real:()=>Yp,RealDiv:()=>Co,Reciprocal:()=>zl,Reduction:()=>ss,Relu:()=>Xo,Relu6:()=>Yo,Reshape:()=>Ll,ResizeBilinear:()=>Zo,ResizeBilinearGrad:()=>x0,ResizeNearestNeighbor:()=>Ko,ResizeNearestNeighborGrad:()=>A0,Reverse:()=>Bl,RotateWithOffset:()=>eu,Round:()=>Wl,Rsqrt:()=>Jo,SGDOptimizer:()=>Ch,ScatterNd:()=>Vl,SearchSorted:()=>b0,Select:()=>Ul,Selu:()=>zc,Sequential:()=>dc,Sigmoid:()=>ei,Sign:()=>Lc,Sin:()=>Qo,Sinh:()=>Hl,Slice:()=>Gl,Softmax:()=>si,Softplus:()=>Bc,SpaceToBatchND:()=>jl,SparseFillEmptyRows:()=>Jp,SparseReshape:()=>Wc,SparseSegmentMean:()=>Qp,SparseSegmentSum:()=>eh,SparseToDense:()=>th,SplitV:()=>ql,Sqrt:()=>ti,Square:()=>Vc,SquaredDifference:()=>ri,Step:()=>ii,StridedSlice:()=>Xl,StringNGrams:()=>Uc,StringSplit:()=>nh,StringToHashBucketFast:()=>sh,Sub:()=>ai,Sum:()=>ni,SymbolicTensor:()=>Pr,Tan:()=>Kl,Tanh:()=>oi,Tensor:()=>st,TensorBuffer:()=>mn,Tile:()=>Ea,TopK:()=>Zl,Transform:()=>Yl,Transpose:()=>Qr,Unique:()=>v0,Unpack:()=>Jl,UnsortedSegmentSum:()=>rh,UpperBound:()=>dD,Variable:()=>Ip,WebGPUBackend:()=>F2,ZerosLike:()=>Ql,_FusedMatMul:()=>eo,abs:()=>sn,acos:()=>sA,acosh:()=>rA,add:()=>ue,addN:()=>k0,all:()=>S0,any:()=>Np,argMax:()=>Ps,argMin:()=>aA,asin:()=>oA,asinh:()=>iA,atan:()=>lA,atan2:()=>uA,atanh:()=>cA,avgPool:()=>hh,avgPool3d:()=>pA,backend:()=>Hn,backend_util:()=>T,basicLSTMCell:()=>Aw,batchNorm:()=>jc,batchNorm2d:()=>hA,batchNorm3d:()=>fA,batchNorm4d:()=>mA,batchToSpaceND:()=>fh,bincount:()=>gA,booleanMaskAsync:()=>e8,broadcastArgs:()=>xw,broadcastTo:()=>Ki,broadcast_util:()=>nu,browser:()=>nr,buffer:()=>We,callbacks:()=>wj,cast:()=>ye,ceil:()=>yA,clipByValue:()=>xs,clone:()=>Vn,complex:()=>wa,concat:()=>It,concat1d:()=>AA,concat2d:()=>su,concat3d:()=>xA,concat4d:()=>bA,constraints:()=>L8,conv1d:()=>I0,conv2d:()=>ka,conv2dTranspose:()=>C0,conv3d:()=>wA,conv3dTranspose:()=>kA,copyRegisteredKernels:()=>mD,cos:()=>mh,cosh:()=>T0,cosineWindow:()=>K0,cumprod:()=>Ep,cumsum:()=>N0,customGrad:()=>sa,data:()=>cS,denseBincount:()=>vw,deprecationWarn:()=>qy,depthToSpace:()=>SA,depthwiseConv2d:()=>qc,deregisterOp:()=>Ij,device_util:()=>lh,diag:()=>ww,dilation2d:()=>IA,disableDeprecationWarnings:()=>V$,dispose:()=>J,disposeVariables:()=>U$,div:()=>fe,divNoNan:()=>CA,dot:()=>TA,dropout:()=>QA,einsum:()=>kw,elu:()=>Xc,enableDebugMode:()=>W$,enableProdMode:()=>jy,enclosingPowerOfTwo:()=>e5,engine:()=>rn,env:()=>H,equal:()=>Fs,erf:()=>NA,euclideanNorm:()=>_A,exp:()=>Os,expandDims:()=>Bt,expm1:()=>DA,eye:()=>E0,fft:()=>Sh,fill:()=>Zc,findBackend:()=>Xy,findBackendFactory:()=>q$,floor:()=>Yc,floorDiv:()=>Hc,forceHalfFloat:()=>I9,fused:()=>lc,gather:()=>Jc,gatherND:()=>r8,gather_util:()=>Zy,getBackend:()=>Cn,getGradient:()=>T3,getKernel:()=>vm,getKernelsForBackend:()=>ta,getThreadsCount:()=>s0e,gpgpu_util:()=>s9,grad:()=>gO,grads:()=>yO,greater:()=>ws,greaterEqual:()=>ci,ifft:()=>ic,imag:()=>dh,image:()=>Ie,inTopKAsync:()=>a8,initializers:()=>B8,input:()=>ak,io:()=>Ds,irfft:()=>H0,isFinite:()=>$A,isInf:()=>PA,isNaN:()=>FA,keep:()=>kn,kernel_impls:()=>yr,layers:()=>W8,leakyRelu:()=>gh,less:()=>R0,lessEqual:()=>di,linalg:()=>s5,linspace:()=>Nw,loadGraphModel:()=>Nq,loadGraphModelSync:()=>Eq,loadLayersModel:()=>DG,localResponseNormalization:()=>OA,log:()=>Ms,log1p:()=>yh,logSigmoid:()=>MA,logSoftmax:()=>D0,logSumExp:()=>$0,logicalAnd:()=>mr,logicalNot:()=>Ah,logicalOr:()=>P0,logicalXor:()=>zA,losses:()=>y8,lowerBound:()=>Rw,matMul:()=>et,math:()=>Y6,max:()=>gn,maxPool:()=>xh,maxPool3d:()=>LA,maxPoolWithArgmax:()=>_w,maximum:()=>oa,mean:()=>Wt,memory:()=>Sm,meshgrid:()=>Dw,metrics:()=>Ok,min:()=>Sa,minimum:()=>Qc,mirrorPad:()=>BA,mod:()=>au,model:()=>RG,models:()=>Mk,moments:()=>bh,movingAverage:()=>t8,mul:()=>z,multiRNNCell:()=>$w,multinomial:()=>Pw,neg:()=>$t,nextFrame:()=>r5,norm:()=>Kc,notEqual:()=>rl,oneHot:()=>rc,ones:()=>$s,onesLike:()=>zs,op:()=>W,outerProduct:()=>Fw,pad:()=>sr,pad1d:()=>Ow,pad2d:()=>Mw,pad3d:()=>zw,pad4d:()=>Lw,pool:()=>WA,pow:()=>Ia,prelu:()=>wh,print:()=>Uy,prod:()=>VA,profile:()=>G$,raggedTensorToTensor:()=>Bw,rand:()=>Ww,randomGamma:()=>Vw,randomNormal:()=>O0,randomStandardNormal:()=>Uw,randomUniform:()=>ed,range:()=>oc,ready:()=>Gc,real:()=>ac,reciprocal:()=>HA,registerBackend:()=>tu,registerCallbackConstructor:()=>$G,registerGradient:()=>N6,registerKernel:()=>tr,registerOp:()=>Sj,regularizers:()=>zk,relu:()=>Wr,relu6:()=>M0,removeBackend:()=>j$,reshape:()=>V,reverse:()=>Qs,reverse1d:()=>Gw,reverse2d:()=>Hw,reverse3d:()=>jw,reverse4d:()=>qw,rfft:()=>Ih,round:()=>z0,rsqrt:()=>L0,scalar:()=>Ce,scatterND:()=>n8,scatter_util:()=>Yy,searchSorted:()=>F0,selu:()=>B0,separableConv2d:()=>W0,sequential:()=>_G,serialization:()=>de,setBackend:()=>ch,setPlatform:()=>X$,setThreadsCount:()=>n0e,setWasmPath:()=>t0e,setWasmPaths:()=>P2,setWebGLContext:()=>T2,setdiff1dAsync:()=>Xw,sigmoid:()=>$n,sign:()=>jA,signal:()=>g8,sin:()=>V0,sinh:()=>U0,slice:()=>ze,slice1d:()=>kh,slice2d:()=>G0,slice3d:()=>pi,slice4d:()=>ro,slice_util:()=>Gt,softmax:()=>ou,softplus:()=>ru,spaceToBatchND:()=>vh,sparse:()=>A8,sparseToDense:()=>s8,spectral:()=>m8,split:()=>Yt,sqrt:()=>Fn,square:()=>bt,squaredDifference:()=>j0,squeeze:()=>rt,stack:()=>ln,step:()=>iu,stridedSlice:()=>qA,string:()=>x8,sub:()=>me,sum:()=>ke,sumOutType:()=>ih,tan:()=>XA,tanh:()=>nl,tensor:()=>ct,tensor1d:()=>Pt,tensor2d:()=>fr,tensor3d:()=>Ky,tensor4d:()=>Kw,tensor5d:()=>Zw,tensor6d:()=>Yw,tensor_util:()=>Fr,test_util:()=>pw,tidy:()=>Z,tile:()=>Ks,time:()=>H$,topk:()=>KA,train:()=>Li,transpose:()=>tt,truncatedNormal:()=>q0,unique:()=>ZA,unregisterGradient:()=>fD,unregisterKernel:()=>hD,unsortedSegmentSum:()=>X0,unstack:()=>On,upcastType:()=>Un,upperBound:()=>Jw,util:()=>v,valueAndGrad:()=>AO,valueAndGrads:()=>xO,variable:()=>YA,variableGrads:()=>Ew,version:()=>Xh,version_converter:()=>_q,version_core:()=>nA,version_layers:()=>C5,version_wasm:()=>r0e,version_webgl:()=>Zne,webgl:()=>Yne,webgl_util:()=>TI,webgpu_util:()=>uT,where:()=>Gn,whereAsync:()=>JA,zeros:()=>Vt,zerosLike:()=>lt});var x_=Object.create,Ry=Object.defineProperty,b_=Object.getOwnPropertyDescriptor,d6=Object.getOwnPropertyNames,v_=Object.getPrototypeOf,w_=Object.prototype.hasOwnProperty,un=(e,t)=>function(){return t||(0,e[d6(e)[0]])((t={exports:{}}).exports,t),t.exports},He=(e,t)=>{for(var n in t)Ry(e,n,{get:t[n],enumerable:!0})},k_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of d6(t))!w_.call(e,r)&&r!==n&&Ry(e,r,{get:()=>t[r],enumerable:!(s=b_(t,r))||s.enumerable});return e},po=(e,t,n)=>(n=e!=null?x_(v_(e)):{},k_(t||!e||!e.__esModule?Ry(n,"default",{value:e,enumerable:!0}):n,e)),S_=un({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(P){}function s(P,C,M){this.low=P|0,this.high=C|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(P){return(P&&P.__isLong__)===!0}s.isLong=r;var a={},o={};function i(P,C){var M,L,G;return C?(P>>>=0,(G=0<=P&&P<256)&&(L=o[P],L)?L:(M=u(P,(P|0)<0?-1:0,!0),G&&(o[P]=M),M)):(P|=0,(G=-128<=P&&P<128)&&(L=a[P],L)?L:(M=u(P,P<0?-1:0,!1),G&&(a[P]=M),M))}s.fromInt=i;function l(P,C){if(isNaN(P))return C?b:A;if(C){if(P<0)return b;if(P>=g)return _}else{if(P<=-y)return D;if(P+1>=y)return E}return P<0?l(-P,C).neg():u(P%m|0,P/m|0,C)}s.fromNumber=l;function u(P,C,M){return new s(P,C,M)}s.fromBits=u;var c=Math.pow;function p(P,C,M){if(P.length===0)throw Error("empty string");if(P==="NaN"||P==="Infinity"||P==="+Infinity"||P==="-Infinity")return A;if(typeof C=="number"?(M=C,C=!1):C=!!C,M=M||10,M<2||360)throw Error("interior hyphen");if(L===0)return p(P.substring(1),C,M).neg();for(var G=l(c(M,8)),K=A,X=0;X>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(C){if(C=C||10,C<2||36>>0,ie=ee.toString(C);if(X=ne,X.isZero())return ie+Y;for(;ie.length<6;)ie="0"+ie;Y=""+ie+Y}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(D)?64:this.neg().getNumBitsAbs();for(var C=this.high!=0?this.high:this.low,M=31;M>0&&(C&1<=0},R.isOdd=function(){return(this.low&1)===1},R.isEven=function(){return(this.low&1)===0},R.equals=function(C){return r(C)||(C=d(C)),this.unsigned!==C.unsigned&&this.high>>>31===1&&C.high>>>31===1?!1:this.high===C.high&&this.low===C.low},R.eq=R.equals,R.notEquals=function(C){return!this.eq(C)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(C){return this.comp(C)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(C){return this.comp(C)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(C){return this.comp(C)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(C){return this.comp(C)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(C){if(r(C)||(C=d(C)),this.eq(C))return 0;var M=this.isNegative(),L=C.isNegative();return M&&!L?-1:!M&&L?1:this.unsigned?C.high>>>0>this.high>>>0||C.high===this.high&&C.low>>>0>this.low>>>0?-1:1:this.sub(C).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(D)?D:this.not().add(w)},R.neg=R.negate,R.add=function(C){r(C)||(C=d(C));var M=this.high>>>16,L=this.high&65535,G=this.low>>>16,K=this.low&65535,X=C.high>>>16,Y=C.high&65535,ne=C.low>>>16,ee=C.low&65535,ie=0,se=0,pe=0,ce=0;return ce+=K+ee,pe+=ce>>>16,ce&=65535,pe+=G+ne,se+=pe>>>16,pe&=65535,se+=L+Y,ie+=se>>>16,se&=65535,ie+=M+X,ie&=65535,u(pe<<16|ce,ie<<16|se,this.unsigned)},R.subtract=function(C){return r(C)||(C=d(C)),this.add(C.neg())},R.sub=R.subtract,R.multiply=function(C){if(this.isZero())return A;if(r(C)||(C=d(C)),n){var M=n.mul(this.low,this.high,C.low,C.high);return u(M,n.get_high(),this.unsigned)}if(C.isZero())return A;if(this.eq(D))return C.isOdd()?D:A;if(C.eq(D))return this.isOdd()?D:A;if(this.isNegative())return C.isNegative()?this.neg().mul(C.neg()):this.neg().mul(C).neg();if(C.isNegative())return this.mul(C.neg()).neg();if(this.lt(x)&&C.lt(x))return l(this.toNumber()*C.toNumber(),this.unsigned);var L=this.high>>>16,G=this.high&65535,K=this.low>>>16,X=this.low&65535,Y=C.high>>>16,ne=C.high&65535,ee=C.low>>>16,ie=C.low&65535,se=0,pe=0,ce=0,xe=0;return xe+=X*ie,ce+=xe>>>16,xe&=65535,ce+=K*ie,pe+=ce>>>16,ce&=65535,ce+=X*ee,pe+=ce>>>16,ce&=65535,pe+=G*ie,se+=pe>>>16,pe&=65535,pe+=K*ee,se+=pe>>>16,pe&=65535,pe+=X*ne,se+=pe>>>16,pe&=65535,se+=L*ie+G*ee+K*ne+X*Y,se&=65535,u(ce<<16|xe,se<<16|pe,this.unsigned)},R.mul=R.multiply,R.divide=function(C){if(r(C)||(C=d(C)),C.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&C.low===-1&&C.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,C.low,C.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:A;var L,G,K;if(this.unsigned){if(C.unsigned||(C=C.toUnsigned()),C.gt(this))return b;if(C.gt(this.shru(1)))return S;K=b}else{if(this.eq(D)){if(C.eq(w)||C.eq(k))return D;if(C.eq(D))return w;var X=this.shr(1);return L=X.div(C).shl(1),L.eq(A)?C.isNegative()?w:k:(G=this.sub(C.mul(L)),K=L.add(G.div(C)),K)}else if(C.eq(D))return this.unsigned?b:A;if(this.isNegative())return C.isNegative()?this.neg().div(C.neg()):this.neg().div(C).neg();if(C.isNegative())return this.div(C.neg()).neg();K=A}for(G=this;G.gte(C);){L=Math.max(1,Math.floor(G.toNumber()/C.toNumber()));for(var Y=Math.ceil(Math.log(L)/Math.LN2),ne=Y<=48?1:c(2,Y-48),ee=l(L),ie=ee.mul(C);ie.isNegative()||ie.gt(G);)L-=ne,ee=l(L,this.unsigned),ie=ee.mul(C);ee.isZero()&&(ee=w),K=K.add(ee),G=G.sub(ie)}return K},R.div=R.divide,R.modulo=function(C){if(r(C)||(C=d(C)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,C.low,C.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(C).mul(C))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return u(~this.low,~this.high,this.unsigned)},R.and=function(C){return r(C)||(C=d(C)),u(this.low&C.low,this.high&C.high,this.unsigned)},R.or=function(C){return r(C)||(C=d(C)),u(this.low|C.low,this.high|C.high,this.unsigned)},R.xor=function(C){return r(C)||(C=d(C)),u(this.low^C.low,this.high^C.high,this.unsigned)},R.shiftLeft=function(C){return r(C)&&(C=C.toInt()),(C&=63)===0?this:C<32?u(this.low<>>32-C,this.unsigned):u(0,this.low<>>C|this.high<<32-C,this.high>>C,this.unsigned):u(this.high>>C-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(C){if(r(C)&&(C=C.toInt()),C&=63,C===0)return this;var M=this.high;if(C<32){var L=this.low;return u(L>>>C|M<<32-C,M>>>C,this.unsigned)}else return C===32?u(M,0,this.unsigned):u(M>>>C-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},R.toBytes=function(C){return C?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var C=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,C&255,C>>>8&255,C>>>16&255,C>>>24]},R.toBytesBE=function(){var C=this.high,M=this.low;return[C>>>24,C>>>16&255,C>>>8&255,C&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(C,M,L){return L?s.fromBytesLE(C,M):s.fromBytesBE(C,M)},s.fromBytesLE=function(C,M){return new s(C[0]|C[1]<<8|C[2]<<16|C[3]<<24,C[4]|C[5]<<8|C[6]<<16|C[7]<<24,M)},s.fromBytesBE=function(C,M){return new s(C[4]<<24|C[5]<<16|C[6]<<8|C[7],C[0]<<24|C[1]<<16|C[2]<<8|C[3],M)}}}),I_=un({"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js"(){}}),C_=un({"(disabled):util"(){}}),T_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var p=new a(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&o(d,p),h.state=function(){return o(p,{})}),h}function l(){var u=4022871197,c=function(p){p=String(p);for(var d=0;d>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),N_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),E_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),R_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,u.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h0;--h)p.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),__=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,f,m;return u.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,y,x=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=x[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(x[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;p.w=y,p.X=x,p.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),D_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),$_=un({"(disabled):crypto"(){}}),P_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),p=c*2,d=a-1,h;function f(w,S,k){var E=[];S=S==!0?{entropy:!0}:S||{};var _=x(y(S.entropy?[w,b(s)]:w==null?A():w,3),E),D=new m(E),R=function(){for(var P=D.g(o),C=u,M=0;P=p;)P/=2,C/=2,M>>>=1;return(P+M)/C};return R.int32=function(){return D.g(4)|0},R.quick=function(){return D.g(4)/4294967296},R.double=R,x(b(D.S),s),(S.pass||k||function(P,C,M,L){return L&&(L.S&&g(L,D),P.state=function(){return g(D,{})}),M?(r[l]=P,C):P})(R,_,"global"in S?S.global:this==r,S.state)}function m(w){var S,k=w.length,E=this,_=0,D=E.i=E.j=0,R=E.S=[];for(k||(w=[k++]);_{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Oe.buffer!=Jn&&Sr(Oe.buffer),cf}function o(){return Oe.buffer!=Jn&&Sr(Oe.buffer),df}function i(){return Oe.buffer!=Jn&&Sr(Oe.buffer),Bd}function l(){return Oe.buffer!=Jn&&Sr(Oe.buffer),pf}function u(){return Oe.buffer!=Jn&&Sr(Oe.buffer),hf}function c(){return Oe.buffer!=Jn&&Sr(Oe.buffer),ff}function p(){return Oe.buffer!=Jn&&Sr(Oe.buffer),mf}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,F){h=N,f=F});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),y=[],x="./this.program",A=(N,F)=>{throw F},b=typeof window=="object",w=typeof importScripts=="function",S=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",k=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function _(N){return d.locateFile?d.locateFile(N,E):E+N}var D,R,P,C;function M(N){if(N instanceof Zd)return;ee("exiting due to exception: "+N)}var L,G,K;if(S){w?E=gm().dirname(E)+"/":E=__dirname+"/",K=()=>{G||(L=_y(),G=gm())},D=function(U,Q){return K(),U=G.normalize(U),L.readFileSync(U,Q?void 0:"utf8")},P=F=>{var U=D(F,!0);return U.buffer||(U=new Uint8Array(U)),U},R=(F,U,Q)=>{K(),F=G.normalize(F),L.readFile(F,function(Ae,we){Ae?Q(Ae):U(we.buffer)})},process.argv.length>1&&(x=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof Zd))throw F}),process.on("unhandledRejection",function(F){throw F}),A=(F,U)=>{if(_i())throw process.exitCode=F,U;M(U),process.exit(F)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=F_()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=N.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof s!="undefined"&&s&&(E=s),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",S||(D=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},w&&(P=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),R=(N,F,U)=>{var Q=new XMLHttpRequest;Q.open("GET",N,!0),Q.responseType="arraybuffer",Q.onload=()=>{if(Q.status==200||Q.status==0&&Q.response){F(Q.response);return}U()},Q.onerror=U,Q.send(null)}),C=N=>document.title=N);S&&typeof performance=="undefined"&&(global.performance=O_().performance);var X=console.log.bind(console),Y=console.warn.bind(console);S&&(K(),X=N=>L.writeSync(1,N+` +`),Y=N=>L.writeSync(2,N+` +`));var ne=d.print||X,ee=d.printErr||Y;Object.assign(d,g),g=null,d.arguments&&(y=d.arguments),d.thisProgram&&(x=d.thisProgram),d.quit&&(A=d.quit);var ie=4;function se(N){se.shown||(se.shown={}),se.shown[N]||(se.shown[N]=1,ee(N))}function pe(N,F){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},Q={parameters:[],results:F[0]=="v"?[]:[U[F[0]]]},Ae=1;Ae{_e=N},Me=Atomics.load,it=Atomics.store,gt=Atomics.compareExchange,pt;d.wasmBinary&&(pt=d.wasmBinary);var yt=d.noExitRuntime||!0;typeof WebAssembly!="object"&&_u("no native wasm support detected");var Oe,Tt,kt=!1,Kn;function tn(N,F){N||_u(F)}function Is(N){var F=d["_"+N];return F}function hn(N,F,U,Q,Ae){var we={string:function(Ns){var Wu=0;if(Ns!=null&&Ns!==0){var bv=(Ns.length<<2)+1;Wu=Bu(bv),pa(Ns,Wu,bv)}return Wu},array:function(Ns){var Wu=Bu(Ns.length);return ha(Ns,Wu),Wu}};function Ne(Ns){return F==="string"?Yn(Ns):F==="boolean"?Boolean(Ns):Ns}var Le=Is(N),Lt=[],Nr=0;if(Q)for(var Er=0;Er(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),F.decode.call(F,U))}var Bn=typeof TextDecoder!="undefined"?new Ts("utf8"):void 0;function js(N,F,U){for(var Q=F+U,Ae=F;N[Ae]&&!(Ae>=Q);)++Ae;if(Ae-F>16&&N.subarray&&Bn)return Bn.decode(N.subarray(F,Ae));for(var we="";F>10,56320|Nr&1023)}}return we}function Yn(N,F){return N?js(o(),N,F):""}function da(N,F,U,Q){if(!(Q>0))return 0;for(var Ae=U,we=U+Q-1,Ne=0;Ne=55296&&Le<=57343){var Lt=N.charCodeAt(++Ne);Le=65536+((Le&1023)<<10)|Lt&1023}if(Le<=127){if(U>=we)break;F[U++]=Le}else if(Le<=2047){if(U+1>=we)break;F[U++]=192|Le>>6,F[U++]=128|Le&63}else if(Le<=65535){if(U+2>=we)break;F[U++]=224|Le>>12,F[U++]=128|Le>>6&63,F[U++]=128|Le&63}else{if(U+3>=we)break;F[U++]=240|Le>>18,F[U++]=128|Le>>12&63,F[U++]=128|Le>>6&63,F[U++]=128|Le&63}}return F[U]=0,U-Ae}function pa(N,F,U){return da(N,o(),F,U)}function Nu(N){for(var F=0,U=0;U=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|N.charCodeAt(++U)&1023),Q<=127?++F:Q<=2047?F+=2:Q<=65535?F+=3:F+=4}return F}var La=typeof TextDecoder!="undefined"?new Ts("utf-16le"):void 0;function ha(N,F){a().set(N,F)}function Ld(N,F,U){for(var Q=0;Q>0]=N.charCodeAt(Q);U||(a()[F>>0]=0)}function Eu(N,F){return N%F>0&&(N+=F-N%F),N}var Jn,cf,df,Bd,pf,hf,ev,ff,mf;k&&(Jn=d.buffer);function Sr(N){Jn=N,d.HEAP8=cf=new Int8Array(N),d.HEAP16=Bd=new Int16Array(N),d.HEAP32=hf=new Int32Array(N),d.HEAPU8=df=new Uint8Array(N),d.HEAPU16=pf=new Uint16Array(N),d.HEAPU32=ev=new Uint32Array(N),d.HEAPF32=ff=new Float32Array(N),d.HEAPF64=mf=new Float64Array(N)}var gf=d.INITIAL_MEMORY||16777216;if(k)Oe=d.wasmMemory,Jn=d.buffer;else if(d.wasmMemory)Oe=d.wasmMemory;else if(Oe=new WebAssembly.Memory({initial:gf/65536,maximum:32768,shared:!0}),!(Oe.buffer instanceof SharedArrayBuffer))throw ee("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),S&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Oe&&(Jn=Oe.buffer),gf=Jn.byteLength,Sr(Jn);var qs,Ru=[],Ba=[],E1=[],yf=[],Ri=!1,R1=!1,Af=0;function _i(){return yt||Af>0}function Qn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)tv(d.preRun.shift());wf(Ru)}function Wd(){Ri=!0,!k&&wf(Ba)}function _1(){k||(Be.terminateAllThreads(),R1=!0)}function D1(){if(!k){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)Vd(d.postRun.shift());wf(yf)}}function tv(N){Ru.unshift(N)}function nv(N){Ba.unshift(N)}function Vd(N){yf.unshift(N)}var Wa=0,xf=null,Ir=null;function Ud(N){Wa++,d.monitorRunDependencies&&d.monitorRunDependencies(Wa)}function sv(N){if(Wa--,d.monitorRunDependencies&&d.monitorRunDependencies(Wa),Wa==0&&(xf!==null&&(clearInterval(xf),xf=null),Ir)){var F=Ir;Ir=null,F()}}d.preloadedImages={},d.preloadedAudios={};function _u(N){k?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",ee(N),kt=!0,Kn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw f(F),F}var $1="data:application/octet-stream;base64,";function Gd(N){return N.startsWith($1)}function bf(N){return N.startsWith("file://")}var es;es="tfjs-backend-wasm-threaded-simd.wasm",Gd(es)||(es=_(es));function vf(N){try{if(N==es&&pt)return new Uint8Array(pt);if(P)return P(N);throw"both async and sync fetching of the wasm failed"}catch(F){_u(F)}}function Du(){if(!pt&&(b||w)){if(typeof fetch=="function"&&!bf(es))return fetch(es,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+es+"'";return N.arrayBuffer()}).catch(function(){return vf(es)});if(R)return new Promise(function(N,F){R(es,function(U){N(new Uint8Array(U))},F)})}return Promise.resolve().then(function(){return vf(es)})}function P1(){var N={env:Pf,wasi_snapshot_preview1:Pf};function F(Ne,Le){var Lt=Ne.exports;if(d.asm=Lt,W1(d.asm.emscripten_tls_init),qs=d.asm.__indirect_function_table,nv(d.asm.__wasm_call_ctors),Tt=Le,!k){var Nr=Be.unusedWorkers.length;Be.unusedWorkers.forEach(function(Er){Be.loadWasmModuleToWorker(Er,function(){--Nr||sv("wasm-instantiate")})})}}k||Ud("wasm-instantiate");function U(Ne){F(Ne.instance,Ne.module)}function Q(Ne){return Du().then(function(Le){return WebAssembly.instantiate(Le,N)}).then(function(Le){return Le}).then(Ne,function(Le){ee("failed to asynchronously prepare wasm: "+Le),_u(Le)})}function Ae(){return!pt&&typeof WebAssembly.instantiateStreaming=="function"&&!Gd(es)&&!bf(es)&&typeof fetch=="function"?fetch(es,{credentials:"same-origin"}).then(function(Ne){var Le=WebAssembly.instantiateStreaming(Ne,N);return Le.then(U,function(Lt){return ee("wasm streaming compile failed: "+Lt),ee("falling back to ArrayBuffer instantiation"),Q(U)})}):Q(U)}if(d.instantiateWasm)try{var we=d.instantiateWasm(N,F);return we}catch(Ne){return ee("Module.instantiateWasm callback failed with error: "+Ne),!1}return Ae().catch(f),{}}var rv,av,F1={};function wf(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(d);continue}var U=F.func;typeof U=="number"?F.arg===void 0?Pu(U)():Pu(U)(F.arg):U(F.arg===void 0?null:F.arg)}}function $u(N){var F=l3(),U=N();return Lf(F),U}function bR(N){return N}function ov(N){var F=/\b_Z[\w\d_]+/g;return N.replace(F,function(U){var Q=U;return U===Q?U:Q+" ["+U+"]"})}function O1(N){u()[N>>2]=0;var F=Be.pthreads[N];delete Be.pthreads[N],F.worker.terminate(),i3(N),Be.runningWorkers.splice(Be.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function M1(N){var F=Be.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function kf(N){var F=Be.pthreads[N];if(F){u()[N>>2]=0;var U=F.worker;Be.returnWorkerToPool(U)}}function Sf(N){u_(N)}function z1(N){if(N instanceof Zd||N=="unwind")return Kn;A(1,N)}var Be={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){k?Be.initWorker():Be.initMainThread()},initMainThread:function(){for(var N=8,F=0;F>2]=0;try{N()}finally{u()[xv>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in Be.tlsInitFunctions)Be.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,F){N.onmessage=U=>{var Q=U.data,Ae=Q.cmd;if(N.pthread&&(Be.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=zf()){var we=Be.pthreads[Q.targetThread];we?we.worker.postMessage(Q,Q.transferList):ee('Internal error! Worker sent a message "'+Ae+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),Be.currentProxiedOperationCallerThread=void 0;return}Ae==="processQueuedMainThreadWork"?fv():Ae==="spawnThread"?Cf(Q):Ae==="cleanupThread"?kf(Q.thread):Ae==="killThread"?O1(Q.thread):Ae==="cancelThread"?M1(Q.thread):Ae==="loaded"?(N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):Ae==="print"?ne("Thread "+Q.threadId+": "+Q.text):Ae==="printErr"?ee("Thread "+Q.threadId+": "+Q.text):Ae==="alert"?alert("Thread "+Q.threadId+": "+Q.text):Q.target==="setimmediate"?N.postMessage(Q):Ae==="onAbort"?d.onAbort&&d.onAbort(Q.arg):ee("worker sent an unknown command "+Ae),Be.currentProxiedOperationCallerThread=void 0},N.onerror=U=>{var Q="worker sent an error!";throw ee(Q+" "+U.filename+":"+U.lineno+": "+U.message),U},S&&(N.on("message",function(U){N.onmessage({data:U})}),N.on("error",function(U){N.onerror(U)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:Oe,wasmModule:Tt})},allocateUnusedWorker:function(){var N=_("tfjs-backend-wasm-threaded-simd.worker.js");Be.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Be.unusedWorkers.length==0&&(Be.allocateUnusedWorker(),Be.loadWasmModuleToWorker(Be.unusedWorkers[0])),Be.unusedWorkers.pop()}};function L1(){var N=zf(),F=u()[N+44>>2],U=u()[N+48>>2],Q=F-U;Av(F,Q),Lf(F)}d.establishStackSpace=L1;function If(N){if(k)return Pi(1,0,N);try{Sf(N)}catch(F){z1(F)}}var Di=[];function Pu(N){var F=Di[N];return F||(N>=Di.length&&(Di.length=N+1),Di[N]=F=qs.get(N)),F}function B1(N,F){return Pu(N)(F)}d.invokeEntryPoint=B1;function iv(){var N=new Error;if(!N.stack){try{throw new Error}catch(F){N=F}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function W1(N,F,U){Be.tlsInitFunctions.push(N)}function lv(N,F){qs.set(N,F),Di[N]=F}var $i;S?$i=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?$i=()=>performance.now()-d.__performance_now_clock_drift:$i=()=>performance.now();var V1=!0;function U1(N){return u()[hv()>>2]=N,N}function G1(N,F){var U;if(N===0)U=Date.now();else if((N===1||N===4)&&V1)U=$i();else return U1(28),-1;return u()[F>>2]=U/1e3|0,u()[F+4>>2]=U%1e3*1e3*1e3|0,0}function H1(N,F){return G1(N,F)}function j1(N){mv(N,!w,1,!b),Be.threadInit()}function q1(N){k?postMessage({cmd:"cleanupThread",thread:N}):kf(N)}function Cf(N){var F=Be.getNewWorker();if(!F)return 6;Be.runningWorkers.push(F);var U=Be.pthreads[N.pthread_ptr]={worker:F,threadInfoStruct:N.pthread_ptr};F.pthread=U;var Q={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return F.runPthread=()=>{Q.time=performance.now(),F.postMessage(Q,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function X1(N,F,U,Q){if(typeof SharedArrayBuffer=="undefined")return ee("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Ae=[],we=0;if(k&&(Ae.length===0||we))return gv(687865856,N,F,U,Q);if(we)return we;var Ne={startRoutine:U,pthread_ptr:N,arg:Q,transferList:Ae};return k?(Ne.cmd="spawnThread",postMessage(Ne,Ae),0):Cf(Ne)}function K1(){return 2097152}function Z1(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var U=Be.pthreads[N],Q=U&&U.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function Y1(){_u("")}function J1(){S||w||se("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Tf(){return 2147483648}function Q1(N,F,U){o().copyWithin(N,F,F+U)}function eg(){return S?M_().cpus().length:navigator.hardwareConcurrency}function Pi(N,F){var U=arguments.length-2,Q=arguments;return $u(function(){for(var Ae=U,we=Bu(Ae*8),Ne=we>>3,Le=0;Le>3,Ae=0;Ae>>16),Sr(Oe.buffer),1}catch(F){}}function sg(N){var F=o().length;if(N=N>>>0,N<=F)return!1;var U=Tf();if(N>U)return!1;for(var Q=1;Q<=4;Q*=2){var Ae=F*(1+.2/Q);Ae=Math.min(Ae,N+100663296);var we=Math.min(U,Eu(Math.max(N,Ae),65536)),Ne=ng(we);if(Ne)return!0}return!1}var Qe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Qe.eventHandlers.length-1;N>=0;--N)Qe._removeHandler(N);Qe.eventHandlers=[],Qe.deferredCalls=[]},registerRemoveEventListeners:function(){Qe.removeEventListenersRegistered||(E1.push(Qe.removeAllEventListeners),Qe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,U){function Q(Ne,Le){if(Ne.length!=Le.length)return!1;for(var Lt in Ne)if(Ne[Lt]!=Le[Lt])return!1;return!0}for(var Ae in Qe.deferredCalls){var we=Qe.deferredCalls[Ae];if(we.targetFunction==N&&Q(we.argsList,U))return}Qe.deferredCalls.push({targetFunction:N,precedence:F,argsList:U}),Qe.deferredCalls.sort(function(Ne,Le){return Ne.precedence>2]=U,u()[we+4>>2]=Q,u()[we+8>>2]=Ae,o3(N,637534208,F,Q,we)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Be.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function rg(N){var F=Nu(N)+1,U=a3(F);return pa(N,U,F),U}function ag(N,F,U,Q){$u(function(){var Ae=Bu(12),we=0;F&&(we=rg(F)),u()[Ae>>2]=we,u()[Ae+4>>2]=U,u()[Ae+8>>2]=Q,o3(N,657457152,0,we,Ae)})}function og(N,F,U,Q){F=F?Yn(F):"",ag(N,F,U,Q)}function ig(N){return N>2?Yn(N):N}var lg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function ug(N){N=ig(N);var F=lg[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function jd(N){return ug(N)}function Nf(N,F,U){var Q=jd(N);if(!Q)return-4;if(Q.canvasSharedPtr&&(u()[Q.canvasSharedPtr>>2]=F,u()[Q.canvasSharedPtr+4>>2]=U),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var Ae=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var we=Q.GLctxObject.GLctx.getParameter(2978);Ae=we[0]===0&&we[1]===0&&we[2]===Q.width&&we[3]===Q.height}Q.width=F,Q.height=U,Ae&&Q.GLctxObject.GLctx.viewport(0,0,F,U)}else if(Q.canvasSharedPtr){var Ne=u()[Q.canvasSharedPtr+8>>2];return og(Ne,N,F,U),1}else return-4;return 0}function Ef(N,F,U){return k?Pi(2,1,N,F,U):Nf(N,F,U)}function cg(N,F,U){var Q=jd(N);return Q?Nf(N,F,U):Ef(N,F,U)}function dg(){throw"unwind"}function pg(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(U,Q){F.vertexAttribDivisorANGLE(U,Q)},N.drawArraysInstanced=function(U,Q,Ae,we){F.drawArraysInstancedANGLE(U,Q,Ae,we)},N.drawElementsInstanced=function(U,Q,Ae,we,Ne){F.drawElementsInstancedANGLE(U,Q,Ae,we,Ne)},1}function hg(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(U){F.deleteVertexArrayOES(U)},N.bindVertexArray=function(U){F.bindVertexArrayOES(U)},N.isVertexArray=function(U){return F.isVertexArrayOES(U)},1}function fg(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(U,Q){F.drawBuffersWEBGL(U,Q)},1}function mg(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var zt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(F){zt.lastError||(zt.lastError=F)},getNewId:function(N){for(var F=zt.counter++,U=N.length;U>2]:-1;Ae+=Yn(u()[U+we*4>>2],Ne<0?void 0:Ne)}return Ae},createContext:function(N,F){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(Ae,we){var Ne=N.getContextSafariWebGL2Fixed(Ae,we);return Ae=="webgl"==Ne instanceof WebGLRenderingContext?Ne:null});var U=N.getContext("webgl",F);if(!U)return 0;var Q=zt.registerContext(U,F);return Q},registerContext:function(N,F){var U=a3(8);u()[U+4>>2]=zf();var Q={handle:U,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Q),zt.contexts[U]=Q,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&zt.initExtensions(Q),U},makeContextCurrent:function(N){return zt.currentContext=zt.contexts[N],d.ctx=$f=zt.currentContext&&zt.currentContext.GLctx,!(N&&!$f)},getContext:function(N){return zt.contexts[N]},deleteContext:function(N){zt.currentContext===zt.contexts[N]&&(zt.currentContext=null),typeof Qe=="object"&&Qe.removeAllHandlersOnTarget(zt.contexts[N].GLctx.canvas),zt.contexts[N]&&zt.contexts[N].GLctx.canvas&&(zt.contexts[N].GLctx.canvas.GLctxObject=void 0),pv(zt.contexts[N].handle),zt.contexts[N]=null},initExtensions:function(N){if(N||(N=zt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;pg(F),hg(F),fg(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),mg(F);var U=F.getSupportedExtensions()||[];U.forEach(function(Q){!Q.includes("lose_context")&&!Q.includes("debug")&&F.getExtension(Q)})}}},gg=["default","low-power","high-performance"];function yg(N,F){var U=F>>2,Q=u()[U+6],Ae={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:gg[Q],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},we=jd(N);if(!we||Ae.explicitSwapControl)return 0;var Ne=zt.createContext(we,Ae);return Ne}function Ag(N,F){return yg(N,F)}var Fu={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var U=Fu.buffers[N];F===0||F===10?((N===1?ne:ee)(js(U,0)),U.length=0):U.push(F)},varargs:void 0,get:function(){Fu.varargs+=4;var N=u()[Fu.varargs-4>>2];return N},getStr:function(N){var F=Yn(N);return F},get64:function(N,F){return N}};function Rf(N){return k?Pi(3,1,N):0}function _f(N,F,U,Q,Ae){if(k)return Pi(4,1,N,F,U,Q,Ae)}function Df(N,F,U,Q){if(k)return Pi(5,1,N,F,U,Q);for(var Ae=0,we=0;we>2],Le=u()[F+4>>2];F+=8;for(var Lt=0;Lt>2]=Ae,0}function xg(N){Ve(N)}Be.init();var $f,bg=[null,If,Ef,Rf,_f,Df],uv=!1,Pf={__clock_gettime:H1,__emscripten_init_main_thread_js:j1,__emscripten_thread_cleanup:q1,__pthread_create_js:X1,_emscripten_default_pthread_stack_size:K1,_emscripten_notify_thread_queue:Z1,abort:Y1,emscripten_check_blocking_allowed:J1,emscripten_get_heap_max:Tf,emscripten_get_now:$i,emscripten_memcpy_big:Q1,emscripten_num_logical_cores:eg,emscripten_receive_on_main_thread_js:tg,emscripten_resize_heap:sg,emscripten_set_canvas_element_size:cg,emscripten_unwind_to_js_event_loop:dg,emscripten_webgl_create_context:Ag,exit:Sf,fd_close:Rf,fd_seek:_f,fd_write:Df,memory:Oe||d.wasmMemory,setTempRet0:xg},cv=P1(),vg=d.___wasm_call_ctors=function(){return(vg=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},wg=d._init=function(){return(wg=d._init=d.asm.init).apply(null,arguments)},kg=d._init_with_threads_count=function(){return(kg=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},Sg=d._get_threads_count=function(){return(Sg=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},Ig=d._register_tensor=function(){return(Ig=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},Cg=d._dispose_data=function(){return(Cg=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},Tg=d._dispose=function(){return(Tg=d._dispose=d.asm.dispose).apply(null,arguments)},Ng=d._Abs=function(){return(Ng=d._Abs=d.asm.Abs).apply(null,arguments)},Eg=d._Add=function(){return(Eg=d._Add=d.asm.Add).apply(null,arguments)},Rg=d._AddN=function(){return(Rg=d._AddN=d.asm.AddN).apply(null,arguments)},_g=d._All=function(){return(_g=d._All=d.asm.All).apply(null,arguments)},Dg=d._Any=function(){return(Dg=d._Any=d.asm.Any).apply(null,arguments)},$g=d._ArgMax=function(){return($g=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},Pg=d._AvgPool=function(){return(Pg=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},Fg=d._BatchMatMul=function(){return(Fg=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},Og=d._Ceil=function(){return(Og=d._Ceil=d.asm.Ceil).apply(null,arguments)},Mg=d._ClipByValue=function(){return(Mg=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},zg=d._Conv2D=function(){return(zg=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},Lg=d._Conv2DBackpropInput=function(){return(Lg=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},Bg=d._Cos=function(){return(Bg=d._Cos=d.asm.Cos).apply(null,arguments)},Wg=d._Cosh=function(){return(Wg=d._Cosh=d.asm.Cosh).apply(null,arguments)},Vg=d._CropAndResize=function(){return(Vg=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},Ug=d._Cumprod=function(){return(Ug=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},Gg=d._Cumsum=function(){return(Gg=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},Hg=d._DepthToSpace=function(){return(Hg=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},jg=d._DepthwiseConv2dNative=function(){return(jg=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},qg=d._Elu=function(){return(qg=d._Elu=d.asm.Elu).apply(null,arguments)},Xg=d._Equal=function(){return(Xg=d._Equal=d.asm.Equal).apply(null,arguments)},Kg=d._Exp=function(){return(Kg=d._Exp=d.asm.Exp).apply(null,arguments)},Zg=d._FlipLeftRight=function(){return(Zg=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},Yg=d._Floor=function(){return(Yg=d._Floor=d.asm.Floor).apply(null,arguments)},Jg=d._FloorDiv=function(){return(Jg=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},Qg=d._FusedBatchNorm=function(){return(Qg=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},e3=d._FusedConv2D=function(){return(e3=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Ff=d._FusedDepthwiseConv2D=function(){return(Ff=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Of=d._Gather=function(){return(Of=d._Gather=d.asm.Gather).apply(null,arguments)},qd=d._GatherNd=function(){return(qd=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},t3=d._Greater=function(){return(t3=d._Greater=d.asm.Greater).apply(null,arguments)},n3=d._GreaterEqual=function(){return(n3=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Ou=d._LeakyRelu=function(){return(Ou=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Xd=d._Less=function(){return(Xd=d._Less=d.asm.Less).apply(null,arguments)},Kd=d._LessEqual=function(){return(Kd=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},dv=d._Log=function(){return(dv=d._Log=d.asm.Log).apply(null,arguments)},Mu=d._LogicalAnd=function(){return(Mu=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},zu=d._LogicalNot=function(){return(zu=d._LogicalNot=d.asm.LogicalNot).apply(null,arguments)},s3=d._LogicalOr=function(){return(s3=d._LogicalOr=d.asm.LogicalOr).apply(null,arguments)},q=d._LogicalXor=function(){return(q=d._LogicalXor=d.asm.LogicalXor).apply(null,arguments)},te=d._Max=function(){return(te=d._Max=d.asm.Max).apply(null,arguments)},be=d._MaxPool=function(){return(be=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},De=d._Maximum=function(){return(De=d._Maximum=d.asm.Maximum).apply(null,arguments)},ht=d._Mean=function(){return(ht=d._Mean=d.asm.Mean).apply(null,arguments)},mt=d._Min=function(){return(mt=d._Min=d.asm.Min).apply(null,arguments)},nt=d._Minimum=function(){return(nt=d._Minimum=d.asm.Minimum).apply(null,arguments)},Ze=d._MirrorPad=function(){return(Ze=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},nn=d._Multiply=function(){return(nn=d._Multiply=d.asm.Multiply).apply(null,arguments)},Cr=d._Neg=function(){return(Cr=d._Neg=d.asm.Neg).apply(null,arguments)},Tr=d._NonMaxSuppressionV3=function(){return(Tr=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},Lu=d._NonMaxSuppressionV4=function(){return(Lu=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},Fi=d._NonMaxSuppressionV5=function(){return(Fi=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},r3=d._NotEqual=function(){return(r3=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},ts=d._OneHot=function(){return(ts=d._OneHot=d.asm.OneHot).apply(null,arguments)},Va=d._PadV2=function(){return(Va=d._PadV2=d.asm.PadV2).apply(null,arguments)},Mf=d._Pow=function(){return(Mf=d._Pow=d.asm.Pow).apply(null,arguments)},vR=d._Prelu=function(){return(vR=d._Prelu=d.asm.Prelu).apply(null,arguments)},wR=d._Prod=function(){return(wR=d._Prod=d.asm.Prod).apply(null,arguments)},kR=d._RealDiv=function(){return(kR=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},SR=d._Relu=function(){return(SR=d._Relu=d.asm.Relu).apply(null,arguments)},IR=d._Relu6=function(){return(IR=d._Relu6=d.asm.Relu6).apply(null,arguments)},CR=d._ResizeBilinear=function(){return(CR=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},TR=d._ResizeNearestNeighbor=function(){return(TR=d._ResizeNearestNeighbor=d.asm.ResizeNearestNeighbor).apply(null,arguments)},NR=d._Reverse=function(){return(NR=d._Reverse=d.asm.Reverse).apply(null,arguments)},ER=d._RotateWithOffset=function(){return(ER=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},RR=d._Round=function(){return(RR=d._Round=d.asm.Round).apply(null,arguments)},_R=d._Rsqrt=function(){return(_R=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},DR=d._ScatterNd=function(){return(DR=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},$R=d._SelectV2=function(){return($R=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},PR=d._Sigmoid=function(){return(PR=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},FR=d._Sin=function(){return(FR=d._Sin=d.asm.Sin).apply(null,arguments)},OR=d._Softmax=function(){return(OR=d._Softmax=d.asm.Softmax).apply(null,arguments)},MR=d._SparseFillEmptyRows=function(){return(MR=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},zR=d._SparseReshape=function(){return(zR=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},LR=d._SparseSegmentReduction=function(){return(LR=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},BR=d._Sqrt=function(){return(BR=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},WR=d._Square=function(){return(WR=d._Square=d.asm.Square).apply(null,arguments)},VR=d._SquaredDifference=function(){return(VR=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},UR=d._Step=function(){return(UR=d._Step=d.asm.Step).apply(null,arguments)},GR=d._StridedSlice=function(){return(GR=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},HR=d._Sub=function(){return(HR=d._Sub=d.asm.Sub).apply(null,arguments)},jR=d._Sum=function(){return(jR=d._Sum=d.asm.Sum).apply(null,arguments)},qR=d._Tan=function(){return(qR=d._Tan=d.asm.Tan).apply(null,arguments)},XR=d._Tanh=function(){return(XR=d._Tanh=d.asm.Tanh).apply(null,arguments)},KR=d._Tile=function(){return(KR=d._Tile=d.asm.Tile).apply(null,arguments)},ZR=d._TopK=function(){return(ZR=d._TopK=d.asm.TopK).apply(null,arguments)},YR=d._Transform=function(){return(YR=d._Transform=d.asm.Transform).apply(null,arguments)},JR=d._Transpose=function(){return(JR=d._Transpose=d.asm.Transpose).apply(null,arguments)},QR=d.__FusedMatMul=function(){return(QR=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},a3=d._malloc=function(){return(a3=d._malloc=d.asm.malloc).apply(null,arguments)},pv=d._free=function(){return(pv=d._free=d.asm.free).apply(null,arguments)},e_=d._emscripten_tls_init=function(){return(e_=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},hv=d.___errno_location=function(){return(hv=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},zf=d._pthread_self=function(){return(zf=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},fv=d._emscripten_main_thread_process_queued_calls=function(){return(fv=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},t_=d.__emscripten_thread_crashed=function(){return(t_=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},mv=d.__emscripten_thread_init=function(){return(mv=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},n_=d._emscripten_current_thread_process_queued_calls=function(){return(n_=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},s_=d._emscripten_main_browser_thread_id=function(){return(s_=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},r_=d._emscripten_sync_run_in_main_thread_2=function(){return(r_=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},gv=d._emscripten_sync_run_in_main_thread_4=function(){return(gv=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},yv=d._emscripten_run_in_main_runtime_thread_js=function(){return(yv=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},o3=d._emscripten_dispatch_to_thread_=function(){return(o3=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},i3=d.__emscripten_thread_free_data=function(){return(i3=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},a_=d.__emscripten_thread_exit=function(){return(a_=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},o_=d._memalign=function(){return(o_=d._memalign=d.asm.memalign).apply(null,arguments)},Av=d._emscripten_stack_set_limits=function(){return(Av=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},l3=d.stackSave=function(){return(l3=d.stackSave=d.asm.stackSave).apply(null,arguments)},Lf=d.stackRestore=function(){return(Lf=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Bu=d.stackAlloc=function(){return(Bu=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},i_=d.dynCall_iijjiiii=function(){return(i_=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},l_=d.dynCall_jiji=function(){return(l_=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},xv=d.__emscripten_allow_main_runtime_queued_calls=21672;d.cwrap=Zn,d.keepRuntimeAlive=_i,d.PThread=Be,d.PThread=Be,d.wasmMemory=Oe,d.ExitStatus=Zd;var Bf;function Zd(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Ir=function N(){Bf||u3(),Bf||(Ir=N)};function u3(N){if(N=N||y,Wa>0)return;if(k){h(d),Wd(),postMessage({cmd:"loaded"});return}if(Qn(),Wa>0)return;function F(){Bf||(Bf=!0,d.calledRun=!0,!kt&&(Wd(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),D1()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),F()},1)):F()}d.run=u3;function u_(N,F){if(Kn=N,!F&&k)throw If(N),"unwind";_i()||_1(),c_(N)}function c_(N){Kn=N,_i()||(Be.terminateAllThreads(),d.onExit&&d.onExit(N),kt=!0),A(N,new Zd(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();u3();var Wf;m&&(Wf={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var Vf;if(typeof WasmBackendModule!="undefined")Vf=WasmBackendModule;else if(typeof r!="undefined")Vf=r;else throw new Error("Could not find wasm module in post.js");if(Wf){var d_=Vf._dispose;Vf._dispose=function(){d_(),Wf.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Wf.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),L_=un({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js"(e,t){t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+" +");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`}}),B_=un({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(q,te){o=q,i=te});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},a),c=[],p="./this.program",d=(q,te)=>{throw te},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(q){return a.locateFile?a.locateFile(q,g):g+q}var x,A,b,w;function S(q){if(q instanceof Xd)return;R("exiting due to exception: "+q)}var k,E,_;m?(f?g=gm().dirname(g)+"/":g=__dirname+"/",_=()=>{E||(k=_y(),E=gm())},x=function(te,be){return _(),te=E.normalize(te),k.readFileSync(te,be?void 0:"utf8")},b=q=>{var te=x(q,!0);return te.buffer||(te=new Uint8Array(te)),te},A=(q,te,be)=>{_(),q=E.normalize(q),k.readFile(q,function(De,ht){De?be(De):te(ht.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof Xd))throw q}),process.on("unhandledRejection",function(q){throw q}),d=(q,te)=>{if(Bd())throw process.exitCode=q,te;S(te),process.exit(q)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",x=q=>{var te=new XMLHttpRequest;return te.open("GET",q,!1),te.send(null),te.responseText},f&&(b=q=>{var te=new XMLHttpRequest;return te.open("GET",q,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),A=(q,te,be)=>{var De=new XMLHttpRequest;De.open("GET",q,!0),De.responseType="arraybuffer",De.onload=()=>{if(De.status==200||De.status==0&&De.response){te(De.response);return}be()},De.onerror=be,De.send(null)},w=q=>document.title=q);var D=a.print||console.log.bind(console),R=a.printErr||console.warn.bind(console);Object.assign(a,u),u=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var P=4;function C(q){C.shown||(C.shown={}),C.shown[q]||(C.shown[q]=1,R(q))}function M(q,te){if(typeof WebAssembly.Function=="function"){for(var be={i:"i32",j:"i64",f:"f32",d:"f64"},De={parameters:[],results:te[0]=="v"?[]:[be[te[0]]]},ht=1;ht{Y=q},ee;a.wasmBinary&&(ee=a.wasmBinary);var ie=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Ri("no native wasm support detected");var se,pe=!1,ce;function xe(q,te){q||Ri(te)}function oe(q){var te=a["_"+q];return te}function Re(q,te,be,De,ht){var mt={string:function(ts){var Va=0;if(ts!=null&&ts!==0){var Mf=(ts.length<<2)+1;Va=qd(Mf),yt(ts,Va,Mf)}return Va},array:function(ts){var Va=qd(ts.length);return kt(ts,Va),Va}};function nt(ts){return te==="string"?gt(ts):te==="boolean"?Boolean(ts):ts}var Ze=oe(q),nn=[],Cr=0;if(De)for(var Tr=0;Tr=De);)++ht;if(ht-te>16&&q.subarray&&Me)return Me.decode(q.subarray(te,ht));for(var mt="";te>10,56320|Cr&1023)}}return mt}function gt(q,te){return q?it(Zn,q,te):""}function pt(q,te,be,De){if(!(De>0))return 0;for(var ht=be,mt=be+De-1,nt=0;nt=55296&&Ze<=57343){var nn=q.charCodeAt(++nt);Ze=65536+((Ze&1023)<<10)|nn&1023}if(Ze<=127){if(be>=mt)break;te[be++]=Ze}else if(Ze<=2047){if(be+1>=mt)break;te[be++]=192|Ze>>6,te[be++]=128|Ze&63}else if(Ze<=65535){if(be+2>=mt)break;te[be++]=224|Ze>>12,te[be++]=128|Ze>>6&63,te[be++]=128|Ze&63}else{if(be+3>=mt)break;te[be++]=240|Ze>>18,te[be++]=128|Ze>>12&63,te[be++]=128|Ze>>6&63,te[be++]=128|Ze&63}}return te[be]=0,be-ht}function yt(q,te,be){return pt(q,Zn,te,be)}function Oe(q){for(var te=0,be=0;be=55296&&De<=57343&&(De=65536+((De&1023)<<10)|q.charCodeAt(++be)&1023),De<=127?++te:De<=2047?te+=2:De<=65535?te+=3:te+=4}return te}var Tt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function kt(q,te){hn.set(q,te)}function Kn(q,te,be){for(var De=0;De>0]=q.charCodeAt(De);be||(hn[te>>0]=0)}function tn(q,te){return q%te>0&&(q+=te-q%te),q}var Is,hn,Zn,Cs,Ts,Bn,js,Yn,da;function pa(q){Is=q,a.HEAP8=hn=new Int8Array(q),a.HEAP16=Cs=new Int16Array(q),a.HEAP32=Bn=new Int32Array(q),a.HEAPU8=Zn=new Uint8Array(q),a.HEAPU16=Ts=new Uint16Array(q),a.HEAPU32=js=new Uint32Array(q),a.HEAPF32=Yn=new Float32Array(q),a.HEAPF64=da=new Float64Array(q)}var Nu=a.INITIAL_MEMORY||16777216,La,ha=[],Ld=[],Eu=[],Jn=!1,cf=!1,df=0;function Bd(){return ie||df>0}function pf(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)mf(a.preRun.shift());Vd(ha)}function hf(){Jn=!0,Vd(Ld)}function ev(){cf=!0}function ff(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)gf(a.postRun.shift());Vd(Eu)}function mf(q){ha.unshift(q)}function Sr(q){Ld.unshift(q)}function gf(q){Eu.unshift(q)}var qs=0,Ru=null,Ba=null;function E1(q){qs++,a.monitorRunDependencies&&a.monitorRunDependencies(qs)}function yf(q){if(qs--,a.monitorRunDependencies&&a.monitorRunDependencies(qs),qs==0&&(Ru!==null&&(clearInterval(Ru),Ru=null),Ba)){var te=Ba;Ba=null,te()}}a.preloadedImages={},a.preloadedAudios={};function Ri(q){a.onAbort&&a.onAbort(q),q="Aborted("+q+")",R(q),pe=!0,ce=1,q+=". Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(q);throw i(te),te}var R1="data:application/octet-stream;base64,";function Af(q){return q.startsWith(R1)}function _i(q){return q.startsWith("file://")}var Qn;Qn="tfjs-backend-wasm.wasm",Af(Qn)||(Qn=y(Qn));function Wd(q){try{if(q==Qn&&ee)return new Uint8Array(ee);if(b)return b(q);throw"both async and sync fetching of the wasm failed"}catch(te){Ri(te)}}function _1(){if(!ee&&(h||f)){if(typeof fetch=="function"&&!_i(Qn))return fetch(Qn,{credentials:"same-origin"}).then(function(q){if(!q.ok)throw"failed to load wasm binary file at '"+Qn+"'";return q.arrayBuffer()}).catch(function(){return Wd(Qn)});if(A)return new Promise(function(q,te){A(Qn,function(be){q(new Uint8Array(be))},te)})}return Promise.resolve().then(function(){return Wd(Qn)})}function D1(){var q={env:$u,wasi_snapshot_preview1:$u};function te(nt,Ze){var nn=nt.exports;a.asm=nn,se=a.asm.memory,pa(se.buffer),La=a.asm.__indirect_function_table,Sr(a.asm.__wasm_call_ctors),yf("wasm-instantiate")}E1("wasm-instantiate");function be(nt){te(nt.instance)}function De(nt){return _1().then(function(Ze){return WebAssembly.instantiate(Ze,q)}).then(function(Ze){return Ze}).then(nt,function(Ze){R("failed to asynchronously prepare wasm: "+Ze),Ri(Ze)})}function ht(){return!ee&&typeof WebAssembly.instantiateStreaming=="function"&&!Af(Qn)&&!_i(Qn)&&typeof fetch=="function"?fetch(Qn,{credentials:"same-origin"}).then(function(nt){var Ze=WebAssembly.instantiateStreaming(nt,q);return Ze.then(be,function(nn){return R("wasm streaming compile failed: "+nn),R("falling back to ArrayBuffer instantiation"),De(be)})}):De(be)}if(a.instantiateWasm)try{var mt=a.instantiateWasm(q,te);return mt}catch(nt){return R("Module.instantiateWasm callback failed with error: "+nt),!1}return ht().catch(i),{}}var tv,nv;function Vd(q){for(;q.length>0;){var te=q.shift();if(typeof te=="function"){te(a);continue}var be=te.func;typeof be=="number"?te.arg===void 0?Ud(be)():Ud(be)(te.arg):be(te.arg===void 0?null:te.arg)}}function Wa(q){return q}function xf(q){var te=/\b_Z[\w\d_]+/g;return q.replace(te,function(be){var De=be;return be===De?be:De+" ["+be+"]"})}var Ir=[];function Ud(q){var te=Ir[q];return te||(q>=Ir.length&&(Ir.length=q+1),Ir[q]=te=La.get(q)),te}function sv(){var q=new Error;if(!q.stack){try{throw new Error}catch(te){q=te}if(!q.stack)return"(no stack trace available)"}return q.stack.toString()}function _u(q,te){La.set(q,te),Ir[q]=te}function $1(){Ri("")}function Gd(){return 2147483648}function bf(q,te,be){Zn.copyWithin(q,te,te+be)}function es(q){try{return se.grow(q-Is.byteLength+65535>>>16),pa(se.buffer),1}catch(te){}}function vf(q){var te=Zn.length;q=q>>>0;var be=Gd();if(q>be)return!1;for(var De=1;De<=4;De*=2){var ht=te*(1+.2/De);ht=Math.min(ht,q+100663296);var mt=Math.min(be,tn(Math.max(q,ht),65536)),nt=es(mt);if(nt)return!0}return!1}var Du={mappings:{},buffers:[null,[],[]],printChar:function(q,te){var be=Du.buffers[q];te===0||te===10?((q===1?D:R)(it(be,0)),be.length=0):be.push(te)},varargs:void 0,get:function(){Du.varargs+=4;var q=Bn[Du.varargs-4>>2];return q},getStr:function(q){var te=gt(q);return te},get64:function(q,te){return q}};function P1(q){return 0}function rv(q,te,be,De,ht){}function av(q,te,be,De){for(var ht=0,mt=0;mt>2],Ze=Bn[te+4>>2];te+=8;for(var nn=0;nn>2]=ht,0}function F1(q){ne(q)}var wf=!1,$u={abort:$1,emscripten_get_heap_max:Gd,emscripten_memcpy_big:bf,emscripten_resize_heap:vf,fd_close:P1,fd_seek:rv,fd_write:av,setTempRet0:F1},bR=D1(),ov=a.___wasm_call_ctors=function(){return(ov=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},O1=a._init=function(){return(O1=a._init=a.asm.init).apply(null,arguments)},M1=a._init_with_threads_count=function(){return(M1=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},kf=a._get_threads_count=function(){return(kf=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},Sf=a._register_tensor=function(){return(Sf=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},z1=a._dispose_data=function(){return(z1=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},Be=a._dispose=function(){return(Be=a._dispose=a.asm.dispose).apply(null,arguments)},L1=a._Abs=function(){return(L1=a._Abs=a.asm.Abs).apply(null,arguments)},If=a._Add=function(){return(If=a._Add=a.asm.Add).apply(null,arguments)},Di=a._AddN=function(){return(Di=a._AddN=a.asm.AddN).apply(null,arguments)},Pu=a._All=function(){return(Pu=a._All=a.asm.All).apply(null,arguments)},B1=a._Any=function(){return(B1=a._Any=a.asm.Any).apply(null,arguments)},iv=a._ArgMax=function(){return(iv=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},W1=a._AvgPool=function(){return(W1=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},lv=a._BatchMatMul=function(){return(lv=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},$i=a._Ceil=function(){return($i=a._Ceil=a.asm.Ceil).apply(null,arguments)},V1=a._ClipByValue=function(){return(V1=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},U1=a._Conv2D=function(){return(U1=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},G1=a._Conv2DBackpropInput=function(){return(G1=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},H1=a._Cos=function(){return(H1=a._Cos=a.asm.Cos).apply(null,arguments)},j1=a._Cosh=function(){return(j1=a._Cosh=a.asm.Cosh).apply(null,arguments)},q1=a._CropAndResize=function(){return(q1=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},Cf=a._Cumprod=function(){return(Cf=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},X1=a._Cumsum=function(){return(X1=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},K1=a._DepthToSpace=function(){return(K1=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},Z1=a._DepthwiseConv2dNative=function(){return(Z1=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},Y1=a._Elu=function(){return(Y1=a._Elu=a.asm.Elu).apply(null,arguments)},J1=a._Equal=function(){return(J1=a._Equal=a.asm.Equal).apply(null,arguments)},Tf=a._Exp=function(){return(Tf=a._Exp=a.asm.Exp).apply(null,arguments)},Q1=a._FlipLeftRight=function(){return(Q1=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},eg=a._Floor=function(){return(eg=a._Floor=a.asm.Floor).apply(null,arguments)},Pi=a._FloorDiv=function(){return(Pi=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},Hd=a._FusedBatchNorm=function(){return(Hd=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},tg=a._FusedConv2D=function(){return(tg=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},ng=a._FusedDepthwiseConv2D=function(){return(ng=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},sg=a._Gather=function(){return(sg=a._Gather=a.asm.Gather).apply(null,arguments)},Qe=a._GatherNd=function(){return(Qe=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},rg=a._Greater=function(){return(rg=a._Greater=a.asm.Greater).apply(null,arguments)},ag=a._GreaterEqual=function(){return(ag=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},og=a._LeakyRelu=function(){return(og=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},ig=a._Less=function(){return(ig=a._Less=a.asm.Less).apply(null,arguments)},lg=a._LessEqual=function(){return(lg=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},ug=a._Log=function(){return(ug=a._Log=a.asm.Log).apply(null,arguments)},jd=a._LogicalAnd=function(){return(jd=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},Nf=a._LogicalNot=function(){return(Nf=a._LogicalNot=a.asm.LogicalNot).apply(null,arguments)},Ef=a._LogicalOr=function(){return(Ef=a._LogicalOr=a.asm.LogicalOr).apply(null,arguments)},cg=a._LogicalXor=function(){return(cg=a._LogicalXor=a.asm.LogicalXor).apply(null,arguments)},dg=a._Max=function(){return(dg=a._Max=a.asm.Max).apply(null,arguments)},pg=a._MaxPool=function(){return(pg=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},hg=a._Maximum=function(){return(hg=a._Maximum=a.asm.Maximum).apply(null,arguments)},fg=a._Mean=function(){return(fg=a._Mean=a.asm.Mean).apply(null,arguments)},mg=a._Min=function(){return(mg=a._Min=a.asm.Min).apply(null,arguments)},zt=a._Minimum=function(){return(zt=a._Minimum=a.asm.Minimum).apply(null,arguments)},gg=a._MirrorPad=function(){return(gg=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},yg=a._Multiply=function(){return(yg=a._Multiply=a.asm.Multiply).apply(null,arguments)},Ag=a._Neg=function(){return(Ag=a._Neg=a.asm.Neg).apply(null,arguments)},Fu=a._NonMaxSuppressionV3=function(){return(Fu=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},Rf=a._NonMaxSuppressionV4=function(){return(Rf=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},_f=a._NonMaxSuppressionV5=function(){return(_f=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Df=a._NotEqual=function(){return(Df=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},xg=a._OneHot=function(){return(xg=a._OneHot=a.asm.OneHot).apply(null,arguments)},$f=a._PadV2=function(){return($f=a._PadV2=a.asm.PadV2).apply(null,arguments)},bg=a._Pow=function(){return(bg=a._Pow=a.asm.Pow).apply(null,arguments)},uv=a._Prelu=function(){return(uv=a._Prelu=a.asm.Prelu).apply(null,arguments)},Pf=a._Prod=function(){return(Pf=a._Prod=a.asm.Prod).apply(null,arguments)},cv=a._RealDiv=function(){return(cv=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},vg=a._Relu=function(){return(vg=a._Relu=a.asm.Relu).apply(null,arguments)},wg=a._Relu6=function(){return(wg=a._Relu6=a.asm.Relu6).apply(null,arguments)},kg=a._ResizeBilinear=function(){return(kg=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},Sg=a._ResizeNearestNeighbor=function(){return(Sg=a._ResizeNearestNeighbor=a.asm.ResizeNearestNeighbor).apply(null,arguments)},Ig=a._Reverse=function(){return(Ig=a._Reverse=a.asm.Reverse).apply(null,arguments)},Cg=a._RotateWithOffset=function(){return(Cg=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},Tg=a._Round=function(){return(Tg=a._Round=a.asm.Round).apply(null,arguments)},Ng=a._Rsqrt=function(){return(Ng=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},Eg=a._ScatterNd=function(){return(Eg=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},Rg=a._SelectV2=function(){return(Rg=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},_g=a._Sigmoid=function(){return(_g=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},Dg=a._Sin=function(){return(Dg=a._Sin=a.asm.Sin).apply(null,arguments)},$g=a._Softmax=function(){return($g=a._Softmax=a.asm.Softmax).apply(null,arguments)},Pg=a._SparseFillEmptyRows=function(){return(Pg=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},Fg=a._SparseReshape=function(){return(Fg=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},Og=a._SparseSegmentReduction=function(){return(Og=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},Mg=a._Sqrt=function(){return(Mg=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},zg=a._Square=function(){return(zg=a._Square=a.asm.Square).apply(null,arguments)},Lg=a._SquaredDifference=function(){return(Lg=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},Bg=a._Step=function(){return(Bg=a._Step=a.asm.Step).apply(null,arguments)},Wg=a._StridedSlice=function(){return(Wg=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},Vg=a._Sub=function(){return(Vg=a._Sub=a.asm.Sub).apply(null,arguments)},Ug=a._Sum=function(){return(Ug=a._Sum=a.asm.Sum).apply(null,arguments)},Gg=a._Tan=function(){return(Gg=a._Tan=a.asm.Tan).apply(null,arguments)},Hg=a._Tanh=function(){return(Hg=a._Tanh=a.asm.Tanh).apply(null,arguments)},jg=a._Tile=function(){return(jg=a._Tile=a.asm.Tile).apply(null,arguments)},qg=a._TopK=function(){return(qg=a._TopK=a.asm.TopK).apply(null,arguments)},Xg=a._Transform=function(){return(Xg=a._Transform=a.asm.Transform).apply(null,arguments)},Kg=a._Transpose=function(){return(Kg=a._Transpose=a.asm.Transpose).apply(null,arguments)},Zg=a.__FusedMatMul=function(){return(Zg=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},Yg=a._malloc=function(){return(Yg=a._malloc=a.asm.malloc).apply(null,arguments)},Jg=a._free=function(){return(Jg=a._free=a.asm.free).apply(null,arguments)},Qg=a.___errno_location=function(){return(Qg=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},e3=a._emscripten_main_thread_process_queued_calls=function(){return(e3=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Ff=a.stackSave=function(){return(Ff=a.stackSave=a.asm.stackSave).apply(null,arguments)},Of=a.stackRestore=function(){return(Of=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},qd=a.stackAlloc=function(){return(qd=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},t3=a.dynCall_iijjiiii=function(){return(t3=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},n3=a.dynCall_jiji=function(){return(n3=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=_e;var Ou;function Xd(q){this.name="ExitStatus",this.message="Program terminated with exit("+q+")",this.status=q}Ba=function q(){Ou||Kd(),Ou||(Ba=q)};function Kd(q){if(q=q||c,qs>0||(pf(),qs>0))return;function te(){Ou||(Ou=!0,a.calledRun=!0,!pe&&(hf(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),ff()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),te()},1)):te()}a.run=Kd;function dv(q){ce=q,Bd()||(a.onExit&&a.onExit(q),pe=!0),d(q,new Xd(q))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();Kd();var Mu;l&&(Mu={uncaughtException:process.listeners("uncaughtException").filter(function(q){return!l.uncaughtException.indexOf(q)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(q){return!l.unhandledRejection.indexOf(q)>-1})});var zu;if(typeof r!="undefined")zu=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")zu=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Mu){var s3=zu._dispose;zu._dispose=function(){s3(),Mu.uncaughtException.forEach(function(q){process.removeListener("uncaughtException",q)}),Mu.unhandledRejection.forEach(function(q){process.removeListener("unhandledRejection",q)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),W_=1e-7,V_=1e-4,Wp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ac=class{refCount(e){return Xs("refCount")}incRef(e){return Xs("incRef")}timerAvailable(){return!0}time(e){return Xs("time")}read(e){return Xs("read")}readSync(e){return Xs("readSync")}readToGPU(e,t){return Xs("readToGPU")}numDataIds(){return Xs("numDataIds")}disposeData(e,t){return Xs("disposeData")}write(e,t,n){return Xs("write")}move(e,t,n,s,r){return Xs("move")}memory(){return Xs("memory")}floatPrecision(){return Xs("floatPrecision")}epsilon(){return this.floatPrecision()===32?W_:V_}dispose(){return Xs("dispose")}};function Xs(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function h6(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,ym(e,t,n)}function U_(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,ym(e,n,s),ym(t,n,s)}function vp(e,t,n){return Math.max(e,Math.min(t,n))}function G_(e){return e%2===0?e:e+1}function ym(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function H_(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function dl(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Qi(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Wn(e)&&!n)for(let s=0;s0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function Q_(e,t){let n=1,s=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function gr(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>tc(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function f6(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:gr(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function m6(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function g6(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function y6(e,t){for(let n=0;nt+=n.length),t}function qa(e){return typeof e=="string"||e instanceof String}function b6(e){return typeof e=="boolean"}function v6(e){return typeof e=="number"}function Km(e){return Array.isArray(e)?Km(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":v6(e)?"float32":qa(e)?"string":b6(e)?"bool":"float32"}function Qa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Am(e,t){for(let n=t;n=0;--s)n[s]=n[s+1]*e[s+1];return n}function w6(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;ol*u)*(s?2:1);for(let l=0;lr*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return w6(0,e,t,n)}function Dy(e,t){let n=Zm(e,t);for(let s=0;ss*r,1);if(t==null||t==="float32")return Zu(e,new Float32Array(n));if(t==="int32")return Zu(e,new Int32Array(n));if(t==="bool")return Zu(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function $y(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function nD(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r{let[s,r]=n.split(":");this.urlFlags[s]=oD(s,r)})}};function rD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(aD(t,s[0],s[1]),s.join("="))),t}function aD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function oD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function H(){return Fy}var Fy=null;function iD(e){Fy=e}var d3;function S6(){if(d3==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");d3=e}return d3}function lD(){let e=S6();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Oy(e,t){let n=lD();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var pl="Abs",bc="Acos",vc="Acosh",Ta="Add",fo="AddN",wc="All",kc="Any",mo="ArgMax",Sc="ArgMin",Ic="Asin",Cc="Asinh",Tc="Atan",Nc="Atanh",hl="Atan2",go="AvgPool",Ym="AvgPoolGrad",Vp="AvgPool3D",Jm="AvgPool3DGrad",yo="BatchMatMul",fl="BatchToSpaceND",Qm="Bincount",I6="BroadcastTo",e0="BroadcastArgs",Ao="Cast",xo="Ceil",Na="ClipByValue",Up="Complex",Gp="ComplexAbs",ml="Concat",bo="Conv2D",t0="Conv2DBackpropFilter",vo="Conv2DBackpropInput",Hp="Conv3D",n0="Conv3DBackpropFilterV2",s0="Conv3DBackpropInputV2",wo="Cos",ko="Cosh",gl="Cumprod",So="Cumsum",yl="CropAndResize",r0="DenseBincount",Al="DepthToSpace",Io="DepthwiseConv2dNative",a0="DepthwiseConv2dNativeBackpropFilter",o0="DepthwiseConv2dNativeBackpropInput",i0="Diag",jp="Dilation2D",xm="Dilation2DBackpropInput",bm="Dilation2DBackpropFilter",Co="RealDiv",qp="Einsum",To="Elu",l0="EluGrad",Ec="Erf",xl="Equal",No="Exp",bl="ExpandDims",vl="Expm1",u0="FFT",Rc="Fill",wl="FlipLeftRight",Eo="Floor",Ro="FloorDiv",_o="FusedBatchNorm",kl="GatherV2",Sl="GatherNd",Il="Greater",Do="GreaterEqual",$o="Identity",c0="IFFT",Xp="Imag",_c="IsFinite",Dc="IsInf",Cl="IsNan",Po="LeakyRelu",Tl="Less",Nl="LessEqual",d0="LinSpace",Fo="Log",$c="Log1p",El="LogicalAnd",Rl="LogicalNot",Pc="LogicalOr",C6="LogicalXor",T6="LogSoftmax",uD="LowerBound",Kp="LRN",p0="LRNGrad",Oo="Max",Mo="Maximum",zo="MaxPool",h0="MaxPoolGrad",Zp="MaxPool3D",f0="MaxPool3DGrad",m0="MaxPoolWithArgmax",Lo="Mean",Bo="Min",Wo="Minimum",Vo="MirrorPad",Fc="Mod",g0="Multinomial",Uo="Multiply",_l="Neg",Dl="NotEqual",$l="NonMaxSuppressionV3",Oc="NonMaxSuppressionV4",Pl="NonMaxSuppressionV5",Fl="OnesLike",Ol="OneHot",Ml="Pack",Go="PadV2",cD="Pool",Ho="Pow",jo="Prelu",qo="Prod",y0="RaggedTensorToTensor",Mc="Range",Yp="Real",zl="Reciprocal",Xo="Relu",Ll="Reshape",Ko="ResizeNearestNeighbor",A0="ResizeNearestNeighborGrad",Zo="ResizeBilinear",x0="ResizeBilinearGrad",Yo="Relu6",Bl="Reverse",Wl="Round",Jo="Rsqrt",Vl="ScatterNd",b0="SearchSorted",Ul="Select",zc="Selu",Gl="Slice",Qo="Sin",Hl="Sinh",Lc="Sign",ei="Sigmoid",Bc="Softplus",ti="Sqrt",ni="Sum",jl="SpaceToBatchND",ql="SplitV",si="Softmax",Jp="SparseFillEmptyRows",Wc="SparseReshape",Qp="SparseSegmentMean",eh="SparseSegmentSum",th="SparseToDense",ri="SquaredDifference",Vc="Square",Xl="StridedSlice",Uc="StringNGrams",nh="StringSplit",sh="StringToHashBucketFast",ai="Sub",Kl="Tan",oi="Tanh",Ea="Tile",Zl="TopK",Yl="Transform",Qr="Transpose",v0="Unique",Jl="Unpack",rh="UnsortedSegmentSum",dD="UpperBound",Ql="ZerosLike",ii="Step",wp="FromPixels",eu="RotateWithOffset",eo="_FusedMatMul",to="FusedConv2D",no="FusedDepthwiseConv2D";function ja(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(...e)}function pD(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.log(...e)}var nc=Oy("kernelRegistry",()=>new Map),kp=Oy("gradRegistry",()=>new Map);function vm(e,t){let n=My(e,t);return nc.get(n)}function T3(e){return kp.get(e)}function ta(e){let t=nc.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function tr(e){let{kernelName:t,backendName:n}=e,s=My(t,n);nc.has(s)&&ja(`The kernel '${t}' for backend '${n}' is already registered`),nc.set(s,e)}function N6(e){let{kernelName:t}=e;kp.has(t)&&H().getBool("DEBUG")&&ja(`Overriding the gradient for '${t}'`),kp.set(t,e)}function hD(e,t){let n=My(e,t);if(!nc.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);nc.delete(n)}function fD(e){if(!kp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);kp.delete(e)}function mD(e,t){ta(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});tr(r)})}function My(e,t){return`${t}_${e}`}var v={};He(v,{arraysEqual:()=>ho,assert:()=>O,assertNonNegativeIntegerDimensions:()=>$y,assertNonNull:()=>dl,assertShapesMatch:()=>is,bytesFromStringArray:()=>x6,bytesPerElement:()=>C3,checkConversionForErrors:()=>y6,clamp:()=>vp,computeStrides:()=>xc,createScalarValue:()=>vD,createShuffledIndices:()=>Y_,decodeString:()=>wm,distSquared:()=>q_,encodeString:()=>oh,fetch:()=>kD,fingerPrint64:()=>bD,flatten:()=>Qi,getArrayFromDType:()=>g6,getTypedArrayFromDType:()=>m6,hasEncodingLoss:()=>eD,hexToLong:()=>ah,indexToLoc:()=>sD,inferDtype:()=>Km,inferFromImplicitShape:()=>Q_,isBoolean:()=>b6,isFunction:()=>Qa,isInt:()=>tc,isNumber:()=>v6,isPromise:()=>Py,isScalarShape:()=>X_,isString:()=>qa,isTypedArray:()=>Wn,isValidDtype:()=>A6,locToIndex:()=>nD,makeOnesTypedArray:()=>Dy,makeZerosNestedTypedArray:()=>tD,makeZerosTypedArray:()=>Zm,nearestDivisor:()=>Am,nearestLargerEven:()=>G_,now:()=>Sp,parseAxisParam:()=>gr,randUniform:()=>j_,repeatedTry:()=>J_,rightPad:()=>gp,shuffle:()=>h6,shuffleCombo:()=>U_,sizeFromShape:()=>Et,sizeToSquarishShape:()=>Z_,squeezeShape:()=>f6,sum:()=>H_,swap:()=>ym,tanh:()=>K_,toNestedArray:()=>Zu,toTypedArray:()=>w0});var Sv=po(S_()),Wi=Sv.default||Sv;function ah(e){return Wi.fromString(e,!0,16)}var E6=ah("c3a5c85c97cb3127"),zi=ah("b492b66fbe98f273"),ns=ah("9ae16a3b2f90404f");function N3(e){return e.xor(e.shru(47))}function R6(e,t,n){let s=e.slice(t,t+n);return Wi.fromBytes(Array.from(s),!0,!0)}function Nt(e,t){return R6(e,t,8)}function Iv(e,t){return R6(e,t,4)}function wn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Za(e,t,n=ah("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function gD(e,t,n,s,r,a){r=r.add(e),a=wn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(wn(r,44)),[r.add(s),a.add(o)]}function Hf(e,t,n,s){return gD(Nt(e,t),Nt(e,t+8),Nt(e,t+16),Nt(e,t+24),n,s)}function yD(e,t=e.length){if(t>=8){let n=ns.add(t*2),s=Nt(e,0).add(ns),r=Nt(e,t-8),a=wn(r,37).mul(n).add(s),o=wn(s,25).add(r).mul(n);return Za(a,o,n)}if(t>=4){let n=ns.add(t*2),s=Iv(e,0);return Za(s.shl(3).add(t),Iv(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return N3(ns.mul(a).xor(E6.mul(o))).mul(ns)}return ns}function AD(e,t=e.length){let n=ns.add(t*2),s=Nt(e,0).mul(zi),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(ns);return Za(wn(s.add(r),43).add(wn(a,30)).add(o),s.add(wn(r.add(ns),18)).add(a),n)}function xD(e,t=e.length){let n=ns.add(t*2),s=Nt(e,0).mul(ns),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(ns),i=wn(s.add(r),43).add(wn(a,30)).add(o),l=Za(i,s.add(wn(r.add(ns),18)).add(a),n),u=Nt(e,16).mul(n),c=Nt(e,24),p=i.add(Nt(e,t-32)).mul(n),d=l.add(Nt(e,t-24)).mul(n);return Za(wn(u.add(c),43).add(wn(p,30)).add(d),u.add(wn(c.add(s),18)).add(p),n)}function bD(e,t=e.length){let n=Wi.fromNumber(81,!0);if(t<=32)return t<=16?yD(e,t):AD(e,t);if(t<=64)return xD(e,t);let s=n,r=n.mul(zi).add(113),a=N3(r.mul(ns).add(113)).mul(ns),o=[Wi.UZERO,Wi.UZERO],i=[Wi.UZERO,Wi.UZERO];s=s.mul(ns).add(Nt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=wn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(zi),r=wn(r.add(o[1]).add(Nt(e,l+48)),42).mul(zi),s=s.xor(i[1]),r=r.add(o[0]).add(Nt(e,l+40)),a=wn(a.add(i[0]),33).mul(zi),o=Hf(e,l,o[1].mul(zi),s.add(i[0])),i=Hf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let p=zi.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=wn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(p),r=wn(r.add(o[1]).add(Nt(e,l+48)),42).mul(p),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(Nt(e,l+40))),a=wn(a.add(i[0]),33).mul(p),o=Hf(e,l,o[1].mul(p),s.add(i[0])),i=Hf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],Za(Za(o[0],i[0],p).add(N3(r).mul(E6)).add(a),Za(o[1],i[1],p).add(s),p)}function vD(e,t){return t==="string"?oh(e):w0([e],t)}function wD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function w0(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Qi(e)),H().getBool("DEBUG")&&y6(e,t),wD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s{s=n()},a,o=Sp();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Sp()-o})}if(H().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l{ID(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function ID(e,t,n){if(t!=="float32")return!1;for(let s=0;s0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function TD(e,t,n){let s={},r={};for(let l=0;ls[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let p=0;p=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!ho(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let p=e[c.id];e[c.id]=s(p,u),p.dispose()}}}}var Cv=20,tp=3,p3=7;function ED(e,t,n,s){let r=xc(t),a=RD(e,t,n,r),o=t.length,i=om(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(` `)),l.join(` -`)}function o$(e,t,n,s){let r=Et(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?dp(e):e;if(i>1)for(let u=0;u$v){let g=op*o,y=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-op)*o,i*o));return n==="complex64"&&(y=dp(y),x=dp(x)),["["+y.map((A,b)=>cp(A,r[b],n)).join(", ")+", ..., "+x.map((A,b)=>cp(A,r[i-op+b],n)).join(", ")+"]"]}let m=n==="complex64"?dp(e):Array.from(e);return["["+m.map((g,y)=>cp(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),p=s[0]*o,d=[];if(i>$v){for(let m=0;m1)for(let u=0;uCv){let g=tp*o,y=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-tp)*o,i*o));return n==="complex64"&&(y=op(y),x=op(x)),["["+y.map((A,b)=>ap(A,r[b],n)).join(", ")+", ..., "+x.map((A,b)=>ap(A,r[i-tp+b],n)).join(", ")+"]"]}let m=n==="complex64"?op(e):Array.from(e);return["["+m.map((g,y)=>ap(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),p=s[0]*o,d=[];if(i>Cv){for(let m=0;m`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Iw(t,this.size),this.strides=xc(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;sTm(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Dr().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Dr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Tm(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Dr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Dr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return qu.print(this,e)}clone(){return this.throwIfDisposed(),qu.clone(this)}toString(e=!1){let t=this.dataSync();return a$(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),qu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Dr().makeVariable(this,e,t,n)}};Object.defineProperty(nt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function re(){return Wy("Tensor",()=>nt)}re();var _p=class extends nt{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Ro(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Dr().disposeTensor(this),this.dataId=e.dataId,Dr().incRef(this,null)}dispose(){Dr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(_p,Symbol.hasInstance,{value:e=>e instanceof nt&&e.assign!=null&&e.assign instanceof Function});var Or={};Ve(Or,{assertTypesMatch:()=>Bw,getTensorsInContainer:()=>Uy,isTensorInList:()=>p$,makeTypesMatch:()=>Ht});var $3;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})($3||($3={}));var P3;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(P3||(P3={}));var F3;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(F3||(F3={}));var O3;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(O3||(O3={}));var M3;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(M3||(M3={}));var d$={float32:O3,int32:P3,bool:F3,complex64:M3};function Pn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return d$[e][t]}function ph(e){return Pn(e,"int32")}function Ht(e,t){if(e.dtype===t.dtype)return[e,t];let n=Pn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Bw(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function p$(e,t){return t.some(n=>n.id===e.id)}function Uy(e){let t=[];return Ww(e,t,new Set),t}function Ww(e,t,n){if(e==null)return;if(e instanceof nt){t.push(e);return}if(!h$(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),Ww(a,t,n))}}function h$(e){return Array.isArray(e)||typeof e=="object"}function x3(e){return e.kernelName!=null}var Pv=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Dp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Pv}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){na(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ac)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s(sthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Dp.nextTensorId++}nextVariableId(){return Dp.nextVariableId++}clone(e){let t=L.runKernel(Ko,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return L.runKernel(Fo,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Cm(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=x3(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(x3(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Cm(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,x);let A=x.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(s){let b=this.getTensorsForGradient(h,f,A);n=this.saveTensorsForBackwardMode(b)}return A}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,p=x3(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(d=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(l,u,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=_3(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&uo(e[0])&&(r=e.map(i=>dh(i)));let a=s.write(r,t,n),o=new nt(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=Tw(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,s)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:s,dtype:r}=e,a=new nt(s,r,n,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new _p(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*R3(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof _p||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*R3(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=_3(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let p=n[c],d=n0(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Uy(e),n=new Set(t.map(r=>r.id));for(let r=0;r{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof nt,()=>"The result y returned by f() must be a tensor.");let a=s$(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?f$(r.shape):n,r$(o,a,l=>this.tidy(l),m$);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(yo(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof nt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof nt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(yo(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];O(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(u.every(p=>p instanceof nt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Rp(),n=await this.backend.time(e);return n.wallMs=Rp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Pv;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Dp.nextTensorId=0;Dp.nextVariableId=0;function f$(e){let t=My(Et(e),"float32");return L.makeTensor(t,e,"float32")}function Vw(){let e=Dw();if(e._tfengine==null){let t=new _w(e);e._tfengine=new Dp(t)}return MD(e._tfengine.ENV),l$(()=>e._tfengine),e._tfengine}var L=Vw();function m$(e,t){let n={a:e,b:t};return L.runKernel(oa,n)}var hh={};Ve(hh,{isBrowser:()=>Uw,isMobile:()=>A$,mockIsMobile:()=>y$});function g$(){return typeof navigator!="undefined"&&navigator!=null}var z3;function y$(e){z3=e}function A$(e){if(z3!==void 0)return z3;if(e||g$()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Uw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var er=H();er.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});er.registerFlag("IS_BROWSER",()=>Uw());er.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");er.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));er.registerFlag("PROD",()=>!1);er.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>er.getBool("DEBUG"));er.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);er.registerFlag("IS_TEST",()=>!1);er.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);er.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);er.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);er.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);function sa(e,t){let n=e;if(Vn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Vn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&H().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Gw(e,s,[]),s}function Gw(e,t,n){if(n=n||[],!Array.isArray(e)&&!Vn(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r=0&&(r=s),Fv(s,r,t,n),e==null||!Vn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=sa(e,r);!Vn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?N0(e,r):ll(e,[],!0);return L.makeTensor(i,a,r)}function $p(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var Gy="__op";function B(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Gy;let r=(...a)=>{L.startScope(n);try{let o=s(...a);return Ly(o)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(o),o}catch(o){throw L.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function x$(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");os(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return L.runKernel(Xp,r)}var ka=B({complex_:x$});function Ai(e,t,n,s){if(s==null&&(s=t0(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Vn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){zy(t);let r=Et(t),a=Et(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Vn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?N0(e,s):ll(e,[],!0),L.makeTensor(e,t,s)}function ct(e,t,n){let s=sa(e,n);return Ai(e,t,s,n)}var L3={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Nm=4;async function b$(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+Nm*d.length,f=new Uint8Array(h),m=0;for(let g=0;g{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Hy=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ov(e){return Hy?Buffer.byteLength(e):new Blob([e]).size}function w$(e){if(Hy)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function Mv(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function jw(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function qy(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function fh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ov(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ov(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function I$(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function S$(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function C$(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function T$(){let e=I$(),t=S$(),n=C$();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Xt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Xt.instance==null&&(Xt.instance=new Xt),Xt.instance}static registerSaveRouter(e){Xt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Xt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Xt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Xt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Xt.getInstance().loadRouters:Xt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},N$=e=>Xt.registerSaveRouter(e),E$=e=>Xt.registerLoadRouter(e),R$=e=>Xt.getSaveHandlers(e),_$=(e,t)=>Xt.getLoadHandlers(e,t),B3="tensorflowjs",W3=1,el="models_store",co="model_info_store";function qw(){if(!H().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function V3(e){let t=e.result;t.createObjectStore(el,{keyPath:"modelPath"}),t.createObjectStore(co,{keyPath:"modelPath"})}var ul=class{constructor(e){if(this.indexedDB=qw(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(B3,W3);r.onupgradeneeded=()=>V3(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(el,"readonly"),l=o.objectStore(el).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=fh(t),i=a.transaction(co,"readwrite"),l=i.objectStore(co),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(el,"readwrite");let d=c.objectStore(el).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});d.onsuccess=()=>n({modelArtifactsInfo:o}),d.onerror=h=>{l=i.objectStore(co);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},u.onerror=p=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};ul.URL_SCHEME="indexeddb://";var Xw=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ul.URL_SCHEME)?D$(e.slice(ul.URL_SCHEME.length)):null;Xt.registerSaveRouter(Xw);Xt.registerLoadRouter(Xw);function D$(e){return new ul(e)}function $$(e){return e.startsWith(ul.URL_SCHEME)?e.slice(ul.URL_SCHEME.length):e}var P$=class{constructor(){this.indexedDB=qw()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(B3,W3);n.onupgradeneeded=()=>V3(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(co,"readonly"),o=r.objectStore(co).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=$$(e),new Promise((t,n)=>{let s=this.indexedDB.open(B3,W3);s.onupgradeneeded=()=>V3(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(co,"readwrite"),o=a.objectStore(co),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(el,"readwrite");let d=l.objectStore(el).delete(e);d.onsuccess=()=>t(i.result.modelArtifactsInfo),d.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=p=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},ba="/",Xu="tensorflowjs_models",Kw="info",F$="model_topology",O$="weight_specs",M$="weight_data",z$="model_metadata";function Zw(e){return{info:[Xu,e,Kw].join(ba),topology:[Xu,e,F$].join(ba),weightSpecs:[Xu,e,O$].join(ba),weightData:[Xu,e,M$].join(ba),modelMetadata:[Xu,e,z$].join(ba)}}function Yw(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function L$(e){let t=e.split(ba);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ba)}function B$(e){return e.startsWith(cl.URL_SCHEME)?e.slice(cl.URL_SCHEME.length):e}var cl=class{constructor(e){if(!H().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Zw(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=fh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,w$(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Yw(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=k$(a),t}};cl.URL_SCHEME="localstorage://";var Jw=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(cl.URL_SCHEME)?W$(e.slice(cl.URL_SCHEME.length)):null;Xt.registerSaveRouter(Jw);Xt.registerLoadRouter(Jw);function W$(e){return new cl(e)}var V$=class{constructor(){O(H().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Xu+ba,n=ba+Kw;for(let s=0;s"scheme must not be undefined or null."),e.endsWith(Yu)&&(e=e.slice(0,e.indexOf(Yu))),O(e.length>0,()=>"scheme must not be an empty string.");let n=gs.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=gs.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(gs.getInstance().managers)}};function pm(e){if(e.indexOf(Yu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${gs.getSchemes().join(",")}`);return{scheme:e.split(Yu)[0],path:e.split(Yu)[1]}}async function Qw(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Xt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Xt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=pm(e).scheme,l=pm(e).path,u=i===pm(e).scheme,c=await r.load();n&&u&&await gs.getManager(i).removeModel(l);let p=await o.save(c);return n&&!u&&await gs.getManager(i).removeModel(l),p.modelArtifactsInfo}async function U$(){let e=gs.getSchemes(),t={};for(let n of e){let s=await gs.getManager(n).listModels();for(let r in s){let a=n+Yu+r;t[a]=s[r]}}return t}async function G$(e){let t=pm(e);return gs.getManager(t.scheme).removeModel(t.path)}async function H$(e,t){return Qw(e,t,!1)}async function j$(e,t){return Qw(e,t,!0)}var q$=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(H().get("IS_BROWSER")){H().setPlatform("browser",new q$);try{gs.registerManager(cl.URL_SCHEME,new V$)}catch(e){}try{gs.registerManager(ul.URL_SCHEME,new P$)}catch(e){}}var X$={importFetch:()=>tD()},b3,K$=class{constructor(){this.util=nD(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return H().global.fetch!=null?H().global.fetch(e,t):(b3==null&&(b3=X$.importFetch()),b3(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};H().get("IS_NODE")&&!H().get("IS_BROWSER")&&H().setPlatform("node",new K$);function De(e,t="float32",n){return t=t||"float32",zy(e),new Zt(e,t,n)}function Z$(e,t){let n=$(e,"x","cast");if(!Cw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return L.runKernel(Fo,s,r)}var ye=B({cast_:Z$});function Y$(e){let n={x:$(e,"x","clone","string_or_numeric")};return L.runKernel(Ko,n)}var Un=B({clone_:Y$});function Xy(e,t=!1){console.log(e.toString(t))}Vw();var J$={buffer:De,cast:ye,clone:Un,print:Xy};u$(J$);var Ds={};Ve(Ds,{browserFiles:()=>aP,browserHTTPRequest:()=>cP,concatenateArrayBuffers:()=>jy,copyModel:()=>H$,decodeWeights:()=>Hw,encodeWeights:()=>b$,fromMemory:()=>pP,fromMemorySync:()=>r6,getLoadHandlers:()=>_$,getModelArtifactsForJSON:()=>qy,getModelArtifactsInfoForJSON:()=>fh,getSaveHandlers:()=>R$,http:()=>Zy,isHTTPScheme:()=>U3,listModels:()=>U$,loadWeights:()=>oP,moveModel:()=>j$,registerLoadRouter:()=>E$,registerSaveRouter:()=>N$,removeModel:()=>G$,weightsLoaderFactory:()=>t6,withSaveHandler:()=>hP,withSaveHandlerSync:()=>fP});var Q$="model",eP=".json",tP=".weights.bin";function zv(e){return new Promise(t=>setTimeout(t)).then(e)}var sc=class{constructor(e){if(!H().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(sc.URL_SCHEME)&&(e=e.slice(sc.URL_SCHEME.length)),(e==null||e.length===0)&&(e=Q$),this.modelJsonFileName=e+eP,this.weightDataFileName=e+tP}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=jw(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await zv(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await zv(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:fh(e)}}}};sc.URL_SCHEME="downloads://";var nP=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=qy(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,jy(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>Mv(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=Mv(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},sP=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(sc.URL_SCHEME)?rP(e.slice(sc.URL_SCHEME.length)):null;Xt.registerSaveRouter(sP);function rP(e="model"){return new sc(e)}function aP(e){return new nP(e)}function Lv(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),O(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function e6(e,t){t==null&&(t={});let n=t.fetchFunc==null?H().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await Lv(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await Lv(i,t.onProgress,l,u)}async function oP(e,t="",n,s){return t6(o=>e6(o,{requestInit:s}))(e,t,n)}function t6(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,x=L3[y]*Et(g.shape),A=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(A(),o[w]=!0)}):A(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}. -Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),p={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),I=Hw(w,[b.manifestEntry]);for(let k in I)p[k]=I[k]}),d+=f}),p}}var iP="application/octet-stream",lP="application/json",Ky=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=H().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=jw(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:lP}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:iP}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:fh(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return qy(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=uP(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await e6(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,jy(l)]}};Ky.URL_SCHEME_REGEX=/^https?:\/\//;function uP(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function U3(e){return e.match(Ky.URL_SCHEME_REGEX)!=null}var n6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>U3(s)):n=U3(e),n)return Zy(e,t)}return null};Xt.registerSaveRouter(n6);Xt.registerLoadRouter(n6);function Zy(e,t){return new Ky(e,t)}function cP(e,t){return Zy(e,t)}var v3=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},s6=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},dP=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function pP(e,t,n,s){let r=arguments;return new dP(r6(...r))}function r6(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new v3(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new v3({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new v3({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function hP(e){return new s6(e)}function fP(e){return new s6(e)}var a6={};Ve(a6,{confusionMatrix:()=>RP});function mP(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=Ht(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return L.runKernel(Po,o,i)}var Qe=B({matMul_:mP});function gP(e,t,n=1,s=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let o={indices:$(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:s};return L.runKernel(Ml,o,i)}var rc=B({oneHot_:gP});function Yy(){H().set("PROD",!0)}function yP(){H().set("DEBUG",!0)}function AP(){H().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Jy(e){H().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}c$(Jy);function xP(){L.disposeVariables()}function an(){return L}function Em(){return L.memory()}function bP(e){return L.profile(e)}function Z(e,t){return L.tidy(e,t)}function J(e){Uy(e).forEach(n=>n.dispose())}function wn(e){return L.keep(e)}function vP(e){return L.time(e)}function mh(e){return L.setBackend(e)}function qc(){return L.ready()}function Sn(){return L.backendName}function wP(e){L.removeBackend(e)}function Qy(e){return L.findBackend(e)}function kP(e){return L.findBackendFactory(e)}function tu(e,t,n=1){return L.registerBackend(e,t,n)}function Hn(){return L.backend}function IP(e,t){H().setPlatform(e,t)}function SP(e){let n={input:$(e,"input","imag")};return L.runKernel(Qp,n)}var gh=B({imag_:SP});function CP(e){let n={x:$(e,"x","neg")};return L.runKernel($l,n)}var $t=B({neg_:CP});function TP(e){let n={input:$(e,"input","real")};return L.runKernel(nh,n)}var ac=B({real_:TP});function NP(e,t,n){let s=$(e,"x","transpose");if(t==null&&(t=s.shape.map((o,i)=>i).reverse()),O(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(o=>{O(o>=0&&o`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();let r={x:s},a={perm:t};return s.dtype==="complex64"?Z(()=>{let o=ac(s),i=gh(s);return o=L.runKernel(ea,{x:o},a),i=L.runKernel(ea,{x:i},a),n&&(i=$t(i)),ka(o,i)}):L.runKernel(ea,r,a)}var et=B({transpose_:NP});function EP(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=rc(ye(s,"int32"),n),o=rc(ye(r,"int32"),n),i=et(a),l=Qe(i,o);return ye(l,"int32")}var RP=B({confusionMatrix_:EP}),nu={};Ve(nu,{assertAndGetBroadcastShape:()=>wt,getBroadcastDims:()=>o6,getReductionAxes:()=>ln});function o6(e,t){let n=e.length,s=[];for(let r=0;r1&&o===1&&s.unshift(a)}return s}function ln(e,t){let n=[];for(let s=0;s1)&&n.unshift(a)}return n}function wt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;rMP,fromPixelsAsync:()=>FP,toPixels:()=>OP});function eA(e,t,n){if(bl(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=sa(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ai(e,t,s,n)}var Hi;function i6(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(Cm(Np,L.backendName)!=null){let f={pixels:e},m={numChannels:t};return L.runKernel(Np,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(o)p=e.getContext("2d").getImageData(0,0,u,c).data;else if(s||n)p=e.data;else if(a||r||i){if(Hi==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Hi=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Hi=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Hi.canvas.width=u,Hi.canvas.height=c,Hi.drawImage(e,0,0,u,c),p=Hi.getImageData(0,0,u,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=u*c;d=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[d]=h*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var MP=B({fromPixels_:i6}),tA={};Ve(tA,{prepareAndValidate:()=>l6});function l6(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let p=0;pp/u),1].slice(0,a);return[l,o,u,c]}var nA={};Ve(nA,{calculateShapes:()=>u6,validateInput:()=>rA,validateUpdateShape:()=>sA});function sA(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank1?t.shape[s-1]:1,a=n.length,o=1;for(let p=r;pLP,computeFlatOffset:()=>GP,computeOutShape:()=>WP,getNormalizedAxes:()=>VP,isSliceContinous:()=>UP,maskToAxes:()=>BP,parseSliceParams:()=>A6,sliceInfo:()=>HP,startForAxis:()=>g6,startIndicesWithElidedDims:()=>h6,stopForAxis:()=>y6,stopIndicesWithElidedDims:()=>f6,stridesForAxis:()=>m6,stridesWithElidedDims:()=>c6});var G3=-2,zP=-1;function LP(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function BP(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function WP(e,t,n){let s=[];for(let r=0;r0){let h=t[0],f=n+1;c=h6(o,h,f,s,e),p=f6(i,h,f,r,e),d=c6(a,h,f,e)}else for(let h=0;h-1)a[i]=0;else{let l=d6(t,n,i),u=s[l];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=d6(t,n,i),u=s[l];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Tp(0,o,l-1),o}function y6(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Tp(0,o,l):o=Tp(-1,o,l-1),o}function UP(e,t,n){let s=n.length;for(let r=0;r1){s=r;break}for(let r=s+1;r0||n[r]!==e[r])return!1;return!0}function GP(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.lengtho>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function HP(e,t,n,s,r,a,o,i,l){let u;if(s==null?(u=new Array(t.length),u.fill(1)):u=s,o!=null&&(o&o-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let A=0;A0?0:-1,d.strides[A]>0?w:w-1];if(b&&d.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[A]===1;let E=!!(d.beginMask&1<=w)throw Error(`slice index ${d.begin[A]} of dimension ${A} out of bounds.`)}else d.begin[A]=Bv(d.begin[A],0,d.strides[A],w,I,k),d.end[A]=Bv(d.end[A],1,d.strides[A],w,I,k);let R=d.strides[A]===1&&d.begin[A]===0&&d.end[A]===w;h=h&&R,f=f&&(A===0&&d.strides[A]===1||R)}else h=h&&d.strides[A]===1&&E,f=f&&(A===0&&d.strides[A]===1||E);let _,D=!1;if(d.beginValid&&d.endValid?(_=d.end[A]-d.begin[A],D=!0):b?(_=1,D=!0):E&&w>=0&&(d.strides[A]<0?_=-w:_=w,D=!0),D){let R;_===0||_<0!=d.strides[A]<0?R=0:R=Math.trunc(_/d.strides[A])+(_%d.strides[A]!==0?1:0),g.push(R)}else g.push(-1)}for(let A=0;A=0?y.push(g[b]):b===G3&&y.push(1)}return{finalShapeSparse:y.filter((A,b)=>d.finalShapeGatherIndices[b]!==G3),finalShape:y,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function jP(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return oa[1]?a[1]:o}}var de={};Ve(de,{Serializable:()=>x6,SerializationMap:()=>Yi,registerClass:()=>xi});var x6=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Yi=class{constructor(){this.classNameMap={}}static getMap(){return Yi.instance==null&&(Yi.instance=new Yi),Yi.instance}static register(e){Yi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function xi(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Yi.register(e)}var b6={};Ve(b6,{TEST_EPSILON_FLOAT16:()=>v6,createVideoElement:()=>eF,encodeStrings:()=>w6,expectArrayBuffersEqual:()=>QP,expectArraysClose:()=>XP,expectArraysEqual:()=>ZP,expectNumbersClose:()=>YP,expectPromiseToFail:()=>KP,expectValuesInRange:()=>JP,play:()=>tF,testEpsilon:()=>aA});var qP=.001,v6=.1;function XP(e,t,n){return n==null&&(n=aA()),H3(e,t,(s,r)=>oA(s,r,n))}function aA(){return L.backend.floatPrecision()===32?qP:v6}function H3(e,t,n){let s=!0;if((Vn(e)||Vn(t))&&(s=!1),Vn(e)&&Vn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=sa(e),i=sa(t);if(!Ro(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Vn(e)?e:ll(e),a=Vn(t)?t:ll(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}. +`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function op(e){let t=[];for(let n=0;n`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||g6(t,this.size),this.strides=xc(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;swm(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),_r().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=_r().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>wm(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await _r().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(_r().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return qu.print(this,e)}clone(){return this.throwIfDisposed(),qu.clone(this)}toString(e=!1){let t=this.dataSync();return ED(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),qu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),_r().makeVariable(this,e,t,n)}};Object.defineProperty(st,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ae(){return Oy("Tensor",()=>st)}ae();var Ip=class extends st{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ho(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);_r().disposeTensor(this),this.dataId=e.dataId,_r().incRef(this,null)}dispose(){_r().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Ip,Symbol.hasInstance,{value:e=>e instanceof st&&e.assign!=null&&e.assign instanceof Function});var Fr={};He(Fr,{assertTypesMatch:()=>D6,getTensorsInContainer:()=>zy,isTensorInList:()=>OD,makeTypesMatch:()=>Ht});var E3;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(E3||(E3={}));var R3;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(R3||(R3={}));var _3;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(_3||(_3={}));var D3;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(D3||(D3={}));var $3;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})($3||($3={}));var FD={float32:D3,int32:R3,bool:_3,complex64:$3};function Un(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return FD[e][t]}function ih(e){return Un(e,"int32")}function Ht(e,t){if(e.dtype===t.dtype)return[e,t];let n=Un(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function D6(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function OD(e,t){return t.some(n=>n.id===e.id)}function zy(e){let t=[];return $6(e,t,new Set),t}function $6(e,t,n){if(e==null)return;if(e instanceof st){t.push(e);return}if(!MD(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),$6(a,t,n))}}function MD(e){return Array.isArray(e)||typeof e=="object"}function h3(e){return e.kernelName!=null}var Tv=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Cp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Tv}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){ta(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ac)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s(sthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Cp.nextTensorId++}nextVariableId(){return Cp.nextVariableId++}clone(e){let t=B.runKernel($o,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return B.runKernel(Ao,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(vm(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=h3(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(h3(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=vm(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,x);let A=x.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(s){let b=this.getTensorsForGradient(h,f,A);n=this.saveTensorsForBackwardMode(b)}return A}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,p=h3(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(d=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(l,u,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=T3(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&qa(e[0])&&(r=e.map(i=>oh(i)));let a=s.write(r,t,n),o=new st(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=x6(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,s)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:s,dtype:r}=e,a=new st(s,r,n,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Ip(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*C3(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Ip||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*C3(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=T3(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let p=n[c],d=Zm(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=zy(e),n=new Set(t.map(r=>r.id));for(let r=0;r{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof st,()=>"The result y returned by f() must be a tensor.");let a=TD(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?zD(r.shape):n,ND(o,a,l=>this.tidy(l),LD);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(Qa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof st),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof st,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(Qa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];O(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(u.every(p=>p instanceof st),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Sp(),n=await this.backend.time(e);return n.wallMs=Sp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Tv;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Cp.nextTensorId=0;Cp.nextVariableId=0;function zD(e){let t=Dy(Et(e),"float32");return B.makeTensor(t,e,"float32")}function P6(){let e=S6();if(e._tfengine==null){let t=new k6(e);e._tfengine=new Cp(t)}return iD(e._tfengine.ENV),DD(()=>e._tfengine),e._tfengine}var B=P6();function LD(e,t){let n={a:e,b:t};return B.runKernel(Ta,n)}var lh={};He(lh,{isBrowser:()=>F6,isMobile:()=>VD,mockIsMobile:()=>WD});function BD(){return typeof navigator!="undefined"&&navigator!=null}var P3;function WD(e){P3=e}function VD(e){if(P3!==void 0)return P3;if(e||BD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function F6(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Js=H();Js.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Js.registerFlag("IS_BROWSER",()=>F6());Js.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Js.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Js.registerFlag("PROD",()=>!1);Js.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Js.getBool("DEBUG"));Js.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Js.registerFlag("IS_TEST",()=>!1);Js.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Js.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Js.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);Js.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);function na(e,t){let n=e;if(Wn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Wn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&H().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&O6(e,s,[]),s}function O6(e,t,n){if(n=n||[],!Array.isArray(e)&&!Wn(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r=0&&(r=s),Nv(s,r,t,n),e==null||!Wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=na(e,r);!Wn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?w0(e,r):Qi(e,[],!0);return B.makeTensor(i,a,r)}function Tp(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var Ly="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Ly;let r=(...a)=>{B.startScope(n);try{let o=s(...a);return Py(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function UD(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");is(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return B.runKernel(Up,r)}var wa=W({complex_:UD});function li(e,t,n,s){if(s==null&&(s=Km(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){$y(t);let r=Et(t),a=Et(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Wn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?w0(e,s):Qi(e,[],!0),B.makeTensor(e,t,s)}function ct(e,t,n){let s=na(e,n);return li(e,t,s,n)}var F3={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},km=4;async function GD(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+km*d.length,f=new Uint8Array(h),m=0;for(let g=0;g{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var By=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ev(e){return By?Buffer.byteLength(e):new Blob([e]).size}function jD(e){if(By)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function Rv(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function z6(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Vy(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function uh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ev(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ev(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function XD(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function KD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function ZD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function YD(){let e=XD(),t=KD(),n=ZD();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Kt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Kt.instance==null&&(Kt.instance=new Kt),Kt.instance}static registerSaveRouter(e){Kt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Kt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Kt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Kt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Kt.getInstance().loadRouters:Kt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},JD=e=>Kt.registerSaveRouter(e),QD=e=>Kt.registerLoadRouter(e),e$=e=>Kt.getSaveHandlers(e),t$=(e,t)=>Kt.getLoadHandlers(e,t),O3="tensorflowjs",M3=1,Hi="models_store",Xa="model_info_store";function L6(){if(!H().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function z3(e){let t=e.result;t.createObjectStore(Hi,{keyPath:"modelPath"}),t.createObjectStore(Xa,{keyPath:"modelPath"})}var el=class{constructor(e){if(this.indexedDB=L6(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(O3,M3);r.onupgradeneeded=()=>z3(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Hi,"readonly"),l=o.objectStore(Hi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=uh(t),i=a.transaction(Xa,"readwrite"),l=i.objectStore(Xa),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Hi,"readwrite");let d=c.objectStore(Hi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});d.onsuccess=()=>n({modelArtifactsInfo:o}),d.onerror=h=>{l=i.objectStore(Xa);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},u.onerror=p=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};el.URL_SCHEME="indexeddb://";var B6=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(el.URL_SCHEME)?n$(e.slice(el.URL_SCHEME.length)):null;Kt.registerSaveRouter(B6);Kt.registerLoadRouter(B6);function n$(e){return new el(e)}function s$(e){return e.startsWith(el.URL_SCHEME)?e.slice(el.URL_SCHEME.length):e}var r$=class{constructor(){this.indexedDB=L6()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(O3,M3);n.onupgradeneeded=()=>z3(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Xa,"readonly"),o=r.objectStore(Xa).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=s$(e),new Promise((t,n)=>{let s=this.indexedDB.open(O3,M3);s.onupgradeneeded=()=>z3(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Xa,"readwrite"),o=a.objectStore(Xa),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(Hi,"readwrite");let d=l.objectStore(Hi).delete(e);d.onsuccess=()=>t(i.result.modelArtifactsInfo),d.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=p=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Aa="/",Xu="tensorflowjs_models",W6="info",a$="model_topology",o$="weight_specs",i$="weight_data",l$="model_metadata";function V6(e){return{info:[Xu,e,W6].join(Aa),topology:[Xu,e,a$].join(Aa),weightSpecs:[Xu,e,o$].join(Aa),weightData:[Xu,e,i$].join(Aa),modelMetadata:[Xu,e,l$].join(Aa)}}function U6(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function u$(e){let t=e.split(Aa);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Aa)}function c$(e){return e.startsWith(tl.URL_SCHEME)?e.slice(tl.URL_SCHEME.length):e}var tl=class{constructor(e){if(!H().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=V6(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=uh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,jD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw U6(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=qD(a),t}};tl.URL_SCHEME="localstorage://";var G6=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tl.URL_SCHEME)?d$(e.slice(tl.URL_SCHEME.length)):null;Kt.registerSaveRouter(G6);Kt.registerLoadRouter(G6);function d$(e){return new tl(e)}var p$=class{constructor(){O(H().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Xu+Aa,n=Aa+W6;for(let s=0;s"scheme must not be undefined or null."),e.endsWith(Yu)&&(e=e.slice(0,e.indexOf(Yu))),O(e.length>0,()=>"scheme must not be an empty string.");let n=gs.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=gs.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(gs.getInstance().managers)}};function im(e){if(e.indexOf(Yu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${gs.getSchemes().join(",")}`);return{scheme:e.split(Yu)[0],path:e.split(Yu)[1]}}async function H6(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Kt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Kt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=im(e).scheme,l=im(e).path,u=i===im(e).scheme,c=await r.load();n&&u&&await gs.getManager(i).removeModel(l);let p=await o.save(c);return n&&!u&&await gs.getManager(i).removeModel(l),p.modelArtifactsInfo}async function h$(){let e=gs.getSchemes(),t={};for(let n of e){let s=await gs.getManager(n).listModels();for(let r in s){let a=n+Yu+r;t[a]=s[r]}}return t}async function f$(e){let t=im(e);return gs.getManager(t.scheme).removeModel(t.path)}async function m$(e,t){return H6(e,t,!1)}async function g$(e,t){return H6(e,t,!0)}var y$=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(H().get("IS_BROWSER")){H().setPlatform("browser",new y$);try{gs.registerManager(tl.URL_SCHEME,new p$)}catch(e){}try{gs.registerManager(el.URL_SCHEME,new r$)}catch(e){}}var A$={importFetch:()=>I_()},f3,x$=class{constructor(){this.util=C_(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return H().global.fetch!=null?H().global.fetch(e,t):(f3==null&&(f3=A$.importFetch()),f3(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};H().get("IS_NODE")&&!H().get("IS_BROWSER")&&H().setPlatform("node",new x$);function We(e,t="float32",n){return t=t||"float32",$y(e),new mn(e,t,n)}function b$(e,t){let n=$(e,"x","cast");if(!A6(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return B.runKernel(Ao,s,r)}var ye=W({cast_:b$});function v$(e){let n={x:$(e,"x","clone","string_or_numeric")};return B.runKernel($o,n)}var Vn=W({clone_:v$});function Uy(e,t=!1){console.log(e.toString(t))}P6();var w$={buffer:We,cast:ye,clone:Vn,print:Uy};$D(w$);var Ds={};He(Ds,{browserFiles:()=>E$,browserHTTPRequest:()=>P$,concatenateArrayBuffers:()=>Wy,copyModel:()=>m$,decodeWeights:()=>M6,encodeWeights:()=>GD,fromMemory:()=>O$,fromMemorySync:()=>Z6,getLoadHandlers:()=>t$,getModelArtifactsForJSON:()=>Vy,getModelArtifactsInfoForJSON:()=>uh,getSaveHandlers:()=>e$,http:()=>Hy,isHTTPScheme:()=>L3,listModels:()=>h$,loadWeights:()=>R$,moveModel:()=>g$,registerLoadRouter:()=>QD,registerSaveRouter:()=>JD,removeModel:()=>f$,weightsLoaderFactory:()=>q6,withSaveHandler:()=>M$,withSaveHandlerSync:()=>z$});var k$="model",S$=".json",I$=".weights.bin";function _v(e){return new Promise(t=>setTimeout(t)).then(e)}var sc=class{constructor(e){if(!H().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(sc.URL_SCHEME)&&(e=e.slice(sc.URL_SCHEME.length)),(e==null||e.length===0)&&(e=k$),this.modelJsonFileName=e+S$,this.weightDataFileName=e+I$}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=z6(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await _v(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await _v(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:uh(e)}}}};sc.URL_SCHEME="downloads://";var C$=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Vy(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Wy(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>Rv(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=Rv(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},T$=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(sc.URL_SCHEME)?N$(e.slice(sc.URL_SCHEME.length)):null;Kt.registerSaveRouter(T$);function N$(e="model"){return new sc(e)}function E$(e){return new C$(e)}function Dv(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),O(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function j6(e,t){t==null&&(t={});let n=t.fetchFunc==null?H().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await Dv(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await Dv(i,t.onProgress,l,u)}async function R$(e,t="",n,s){return q6(o=>j6(o,{requestInit:s}))(e,t,n)}function q6(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,x=F3[y]*Et(g.shape),A=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(A(),o[w]=!0)}):A(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}. +Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),p={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),S=M6(w,[b.manifestEntry]);for(let k in S)p[k]=S[k]}),d+=f}),p}}var _$="application/octet-stream",D$="application/json",Gy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=H().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=z6(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:D$}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:_$}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:uh(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Vy(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=$$(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await j6(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Wy(l)]}};Gy.URL_SCHEME_REGEX=/^https?:\/\//;function $$(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function L3(e){return e.match(Gy.URL_SCHEME_REGEX)!=null}var X6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>L3(s)):n=L3(e),n)return Hy(e,t)}return null};Kt.registerSaveRouter(X6);Kt.registerLoadRouter(X6);function Hy(e,t){return new Gy(e,t)}function P$(e,t){return Hy(e,t)}var m3=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},K6=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},F$=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function O$(e,t,n,s){let r=arguments;return new F$(Z6(...r))}function Z6(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new m3(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new m3({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new m3({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function M$(e){return new K6(e)}function z$(e){return new K6(e)}var Y6={};He(Y6,{confusionMatrix:()=>eP});function L$(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=Ht(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return B.runKernel(yo,o,i)}var et=W({matMul_:L$});function B$(e,t,n=1,s=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let o={indices:$(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:s};return B.runKernel(Ol,o,i)}var rc=W({oneHot_:B$});function jy(){H().set("PROD",!0)}function W$(){H().set("DEBUG",!0)}function V$(){H().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function qy(e){H().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}PD(qy);function U$(){B.disposeVariables()}function rn(){return B}function Sm(){return B.memory()}function G$(e){return B.profile(e)}function Z(e,t){return B.tidy(e,t)}function J(e){zy(e).forEach(n=>n.dispose())}function kn(e){return B.keep(e)}function H$(e){return B.time(e)}function ch(e){return B.setBackend(e)}function Gc(){return B.ready()}function Cn(){return B.backendName}function j$(e){B.removeBackend(e)}function Xy(e){return B.findBackend(e)}function q$(e){return B.findBackendFactory(e)}function tu(e,t,n=1){return B.registerBackend(e,t,n)}function Hn(){return B.backend}function X$(e,t){H().setPlatform(e,t)}function K$(e){let n={input:$(e,"input","imag")};return B.runKernel(Xp,n)}var dh=W({imag_:K$});function Z$(e){let n={x:$(e,"x","neg")};return B.runKernel(_l,n)}var $t=W({neg_:Z$});function Y$(e){let n={input:$(e,"input","real")};return B.runKernel(Yp,n)}var ac=W({real_:Y$});function J$(e,t,n){let s=$(e,"x","transpose");if(t==null&&(t=s.shape.map((o,i)=>i).reverse()),O(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(o=>{O(o>=0&&o`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();let r={x:s},a={perm:t};return s.dtype==="complex64"?Z(()=>{let o=ac(s),i=dh(s);return o=B.runKernel(Qr,{x:o},a),i=B.runKernel(Qr,{x:i},a),n&&(i=$t(i)),wa(o,i)}):B.runKernel(Qr,r,a)}var tt=W({transpose_:J$});function Q$(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=rc(ye(s,"int32"),n),o=rc(ye(r,"int32"),n),i=tt(a),l=et(i,o);return ye(l,"int32")}var eP=W({confusionMatrix_:Q$}),nu={};He(nu,{assertAndGetBroadcastShape:()=>wt,getBroadcastDims:()=>J6,getReductionAxes:()=>on});function J6(e,t){let n=e.length,s=[];for(let r=0;r1&&o===1&&s.unshift(a)}return s}function on(e,t){let n=[];for(let s=0;s1)&&n.unshift(a)}return n}function wt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;riP,fromPixelsAsync:()=>aP,toPixels:()=>oP});function Ky(e,t,n){if(dl(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=na(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return li(e,t,s,n)}var Oi;function Q6(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(vm(wp,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(wp,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(o)p=e.getContext("2d").getImageData(0,0,u,c).data;else if(s||n)p=e.data;else if(a||r||i){if(Oi==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Oi=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Oi=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Oi.canvas.width=u,Oi.canvas.height=c,Oi.drawImage(e,0,0,u,c),p=Oi.getImageData(0,0,u,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=u*c;d=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[d]=h*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var iP=W({fromPixels_:Q6}),Zy={};He(Zy,{prepareAndValidate:()=>ew});function ew(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let p=0;pp/u),1].slice(0,a);return[l,o,u,c]}var Yy={};He(Yy,{calculateShapes:()=>tw,validateInput:()=>Qy,validateUpdateShape:()=>Jy});function Jy(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank1?t.shape[s-1]:1,a=n.length,o=1;for(let p=r;puP,computeFlatOffset:()=>fP,computeOutShape:()=>dP,getNormalizedAxes:()=>pP,isSliceContinous:()=>hP,maskToAxes:()=>cP,parseSliceParams:()=>cw,sliceInfo:()=>mP,startForAxis:()=>lw,startIndicesWithElidedDims:()=>aw,stopForAxis:()=>uw,stopIndicesWithElidedDims:()=>ow,stridesForAxis:()=>iw,stridesWithElidedDims:()=>nw});var B3=-2,lP=-1;function uP(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function cP(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function dP(e,t,n){let s=[];for(let r=0;r0){let h=t[0],f=n+1;c=aw(o,h,f,s,e),p=ow(i,h,f,r,e),d=nw(a,h,f,e)}else for(let h=0;h-1)a[i]=0;else{let l=sw(t,n,i),u=s[l];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=sw(t,n,i),u=s[l];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=vp(0,o,l-1),o}function uw(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=vp(0,o,l):o=vp(-1,o,l-1),o}function hP(e,t,n){let s=n.length;for(let r=0;r1){s=r;break}for(let r=s+1;r0||n[r]!==e[r])return!1;return!0}function fP(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.lengtho>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function mP(e,t,n,s,r,a,o,i,l){let u;if(s==null?(u=new Array(t.length),u.fill(1)):u=s,o!=null&&(o&o-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let A=0;A0?0:-1,d.strides[A]>0?w:w-1];if(b&&d.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[A]===1;let E=!!(d.beginMask&1<=w)throw Error(`slice index ${d.begin[A]} of dimension ${A} out of bounds.`)}else d.begin[A]=$v(d.begin[A],0,d.strides[A],w,S,k),d.end[A]=$v(d.end[A],1,d.strides[A],w,S,k);let R=d.strides[A]===1&&d.begin[A]===0&&d.end[A]===w;h=h&&R,f=f&&(A===0&&d.strides[A]===1||R)}else h=h&&d.strides[A]===1&&E,f=f&&(A===0&&d.strides[A]===1||E);let _,D=!1;if(d.beginValid&&d.endValid?(_=d.end[A]-d.begin[A],D=!0):b?(_=1,D=!0):E&&w>=0&&(d.strides[A]<0?_=-w:_=w,D=!0),D){let R;_===0||_<0!=d.strides[A]<0?R=0:R=Math.trunc(_/d.strides[A])+(_%d.strides[A]!==0?1:0),g.push(R)}else g.push(-1)}for(let A=0;A=0?y.push(g[b]):b===B3&&y.push(1)}return{finalShapeSparse:y.filter((A,b)=>d.finalShapeGatherIndices[b]!==B3),finalShape:y,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function gP(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return oa[1]?a[1]:o}}var de={};He(de,{Serializable:()=>dw,SerializationMap:()=>Vi,registerClass:()=>ui});var dw=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Vi=class{constructor(){this.classNameMap={}}static getMap(){return Vi.instance==null&&(Vi.instance=new Vi),Vi.instance}static register(e){Vi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ui(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Vi.register(e)}var pw={};He(pw,{TEST_EPSILON_FLOAT16:()=>hw,createVideoElement:()=>SP,encodeStrings:()=>fw,expectArrayBuffersEqual:()=>kP,expectArraysClose:()=>AP,expectArraysEqual:()=>bP,expectNumbersClose:()=>vP,expectPromiseToFail:()=>xP,expectValuesInRange:()=>wP,play:()=>IP,testEpsilon:()=>eA});var yP=.001,hw=.1;function AP(e,t,n){return n==null&&(n=eA()),W3(e,t,(s,r)=>tA(s,r,n))}function eA(){return B.backend.floatPrecision()===32?yP:hw}function W3(e,t,n){let s=!0;if((Wn(e)||Wn(t))&&(s=!1),Wn(e)&&Wn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=na(e),i=na(t);if(!ho(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Wn(e)?e:Qi(e),a=Wn(t)?t:Qi(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}. Actual: ${r}. Expected: ${a}.`);for(let o=0;ot.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function ZP(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return uo(e)||uo(e[0])||uo(t)||uo(t[0])?H3(e,n,(s,r)=>s==r):H3(e,t,(s,r)=>oA(s,r,0))}function YP(e,t,n){if(n==null&&(n=aA()),!oA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function oA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function JP(e,t,n){for(let s=0;sn)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function QP(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r{t.addEventListener("loadeddata",s=>n(t)),t.load()})}async function tF(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var iA="3.20.0";function nF(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=Ht(n,s);let r={a:n,b:s};return L.runKernel(oa,r)}var ue=B({add_:nF});function sF(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=Ht(n,s);let r={a:n,b:s};return L.runKernel(jo,r)}var Xc=B({floorDiv_:sF});function rF(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=Ht(n,s),n.dtype==="int32"&&s.dtype==="int32")return Xc(n,s);let r={a:n,b:s},a={};return L.runKernel(Vo,r,a)}var fe=B({div_:rF});function aF(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=Ht(n,s);let r={a:n,b:s};return L.runKernel(Oa,r)}var z=B({mul_:aF});function oF(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(Kp,n)}else{let n={x:t};return L.runKernel(vl,n)}}var sn=B({abs_:oF});function iF(e){let n={x:$(e,"x","acos")};return L.runKernel(bc,n)}var lA=B({acos_:iF});function lF(e){let n={x:$(e,"x","acosh")};return L.runKernel(vc,n)}var uA=B({acosh_:lF});function uF(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Ro(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return L.runKernel(_o,s)}var E0=B({addN_:uF});function cF(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(wc,r,a)}var R0=B({all_:cF});function dF(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(kc,r,a)}var Pp=B({any_:dF});function pF(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return L.runKernel(Do,s,r)}var Ps=B({argMax_:pF});function hF(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return L.runKernel(Ic,s,r)}var cA=B({argMin_:hF});function fF(e){let n={x:$(e,"x","asin")};return L.runKernel(Sc,n)}var dA=B({asin_:fF});function mF(e){let n={x:$(e,"x","asinh")};return L.runKernel(Cc,n)}var pA=B({asinh_:mF});function gF(e){let n={x:$(e,"x","atan")};return L.runKernel(Tc,n)}var hA=B({atan_:gF});function yF(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=Ht(n,s);let r={a:n,b:s};return L.runKernel(Ec,r)}var fA=B({atan2_:yF});function AF(e){let n={x:$(e,"x","atanh")};return L.runKernel(Nc,n)}var mA=B({atanh_:AF});function xF(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=S6(r);return yh(e,i,n,a,s,null,null,l)}function k6(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Rm(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return yh(e,u,n,s,r,a,!1,o)}function bF(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=j3(t),c,p;if(o==="NDHWC")p="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")p="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return I6(e,c,n,s,r,!1,p,a)}function yh(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=e;else if(i==="channelsFirst")[l,p,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[d,h,,f]=t,[m,g]=Rm(n),[y,x]=Rm(s),A=Ju(d,y),b=Ju(h,x),{padInfo:w,outHeight:I,outWidth:k}=kF(r,u,c,m,g,A,b,a,i),E=o?f*p:f,_;return i==="channelsFirst"?_=[l,E,I,k]:i==="channelsLast"&&(_=[l,I,k,E]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:I,outWidth:k,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:A,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:x,inShape:e,outShape:_,filterShape:t}}function I6(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,p,d]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,p,d]=e;else if(o==="channelsFirst")[l,d,u,c,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,x,A]=j3(n),[b,w,I]=j3(s),k=Ju(h,b),E=Ju(f,w),_=Ju(m,I),{padInfo:D,outDepth:R,outHeight:P,outWidth:T}=IF(r,u,c,p,y,x,A,k,E,_,i),M=a?g*d:g,W;return o==="channelsFirst"?W=[l,M,R,P,T]:o==="channelsLast"&&(W=[l,R,P,T,M]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:p,inChannels:d,outDepth:R,outHeight:P,outWidth:T,outChannels:M,padInfo:D,strideDepth:y,strideHeight:x,strideWidth:A,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:k,effectiveFilterHeight:E,effectiveFilterWidth:_,dilationDepth:b,dilationHeight:w,dilationWidth:I,inShape:e,outShape:W,filterShape:t}}function vF(e,t,n,s,r){s==null&&(s=gA(e,t,n));let a=e[0],o=e[1],i=sl((a-t+2*s)/n+1,r),l=sl((o-t+2*s)/n+1,r);return[i,l]}function wF(e,t,n,s,r,a){r==null&&(r=gA(e,t,s));let o=e[0],i=e[1],l=e[2],u=sl((o-t+2*r)/s+1,a),c=sl((i-t+2*r)/s+1,a),p=sl((l-t+2*r)/s+1,a);return[u,c,p,n]}function gA(e,t,n,s=1){let r=Ju(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Rm(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function j3(e){return typeof e=="number"?[e,e,e]:e}function Ju(e,t){return t<=1?e:e+(e-1)*(t-1)}function kF(e,t,n,s,r,a,o,i,l){let u,c,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=vF([t,n],a,s,e,i);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+o-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),y=h-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=sl((t-a+d+h)/s+1,i),p=sl((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:p}}function IF(e,t,n,s,r,a,o,i,l,u,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=wF([t,n,s,1],i,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(d-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+u-s,x=Math.floor(m/2),A=m-x,b=Math.floor(g/2),w=g-b,I=Math.floor(y/2),k=y-I;p={top:b,bottom:w,left:I,right:k,front:x,back:A,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function sl(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function vo(e){let[t,n,s]=Rm(e);return t===1&&n===1&&s===1}function ia(e,t){return vo(e)||vo(t)}function S6(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function is(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")O(tc(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{O(tc(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function SF(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(Ll,s,r)}var V=B({reshape_:SF});function CF(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;O(ia(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),is("avgPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=L.runKernel($o,u,c);return p=ye(p,a.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ah=B({avgPool_:CF});function TF(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),is("avgPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=L.runKernel(qp,u,c);return p=ye(p,i.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var yA=B({avgPool3d_:TF});function NF(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=$p(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${a.dtype}. `)}),n.length===1)return Un(n[0]);let s=n,r={axis:t};return L.runKernel(kl,s,r)}var St=B({concat_:NF});function EF(e){let n={x:$(e,"x","sigmoid","float32")};return L.runKernel(za,n)}var Dn=B({sigmoid_:EF});function RF(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return L.runKernel(Gl,r,a)}var Le=B({slice_:RF});function _F(e){let n={x:$(e,"x","tanh","float32")};return L.runKernel(gi,n)}var dl=B({tanh_:_F});function DF(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),u=$(s,"data","basicLSTMCell"),c=$(r,"c","basicLSTMCell"),p=$(a,"h","basicLSTMCell"),d=St([u,p],1),h=Qe(d,i),f=ue(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],x=Le(f,[0,0],y),A=Le(f,[0,g],y),b=Le(f,[0,g*2],y),w=Le(f,[0,g*3],y),I=ue(z(Dn(x),dl(A)),z(c,Dn(ue(o,b)))),k=z(dl(I),Dn(w));return[I,k]}var C6=B({basicLSTMCell_:DF});function $F(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return L.runKernel(wl,a,o)}var xh=B({batchToSpaceND_:$F});function PF(e){let t;return e.rank===0||e.rank===1?t=V(e,[1,1,1,e.size]):e.rank===2?t=V(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function FF(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;s!=null&&(c=$(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:PF(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=L.runKernel(qo,d,h);return V(f,o.shape)}var Kc=B({batchNorm_:FF});function OF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Kc(o,i,l,c,u,a)}var AA=B({batchNorm2d_:OF});function MF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Kc(o,i,l,c,u,a)}var xA=B({batchNorm3d_:MF});function zF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Kc(o,i,l,c,u,a)}var bA=B({batchNorm4d_:zF});function LF(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return L.runKernel(a0,a,o)}var vA=B({bincount_:LF});function BF(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return L.runKernel(o0,r)}var T6=B({broadcastArgs_:BF});function WF(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let u=n.shape.slice();for(;u.length=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Un(n);let i={x:n},l={reps:a};return L.runKernel(Va,i,l)}var rl=B({broadcastTo_:WF});function VF(e){let n={x:$(e,"x","ceil","float32")};return L.runKernel(Na,n)}var wA=B({ceil_:VF});function UF(e,t,n){let s=$(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return L.runKernel(Ea,r,a)}var xs=B({clipByValue_:UF});function GF(e){return St(e,0)}var kA=B({concat1d_:GF});function HF(e,t){return St(e,t)}var su=B({concat2d_:HF});function jF(e,t){return St(e,t)}var IA=B({concat3d_:jF});function qF(e,t){return St(e,t)}var SA=B({concat4d_:qF});function XF(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d","float32"),l=$(t,"filter","conv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),is("conv2d",s,o);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),O(ia(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=L.runKernel(Oo,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ia=B({conv2d_:XF});function KF(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1]])),O(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),is("conv1d",s,o),O(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(ia(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=V(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=V(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Ia(d,p,[1,n],s,"NHWC",[1,a],o);return c?V(g,[g.shape[2],g.shape[3]]):V(g,[g.shape[0],g.shape[2],g.shape[3]])}var _0=B({conv1d_:KF});function ZF(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],p=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),O(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),is("conv2dDerInput",r,o);let d={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=L.runKernel(Mo,d,h);return u?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var CA=B({conv2DBackpropInput_:ZF});function YF(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return CA(n,o,i,s,r,"NHWC",a)}var D0=B({conv2dTranspose_:YF});function JF(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(ia(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:n,pad:s,dataFormat:r,dilations:a},d=L.runKernel(Zp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var TA=B({conv3d_:JF});function QF(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},p={pad:r,strides:s,inputShape:a},d=L.runKernel(u0,c,p);return i?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var N6=B({conv3DBackpropInput_:QF});function eO(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return N6(n,a,o,s,r)}var NA=B({conv3dTranspose_:eO});function tO(e){let n={x:$(e,"x","cos","float32")};return L.runKernel(zo,n)}var bh=B({cos_:tO});function nO(e){let n={x:$(e,"x","cosh","float32")};return L.runKernel(Lo,n)}var $0=B({cosh_:nO});function sO(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumprod")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(Il,a,o)}var Fp=B({cumprod_:sO});function rO(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(Bo,a,o)}var P0=B({cumsum_:rO});function aO(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return L.runKernel(c0,o,i)}var E6=B({denseBincount_:aO});function oO(e,t,n="NHWC"){let s=$(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying +Expected: ${a}.`)}typeof expect!="undefined"&&expect().nothing()}function xP(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function bP(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return qa(e)||qa(e[0])||qa(t)||qa(t[0])?W3(e,n,(s,r)=>s==r):W3(e,t,(s,r)=>tA(s,r,0))}function vP(e,t,n){if(n==null&&(n=eA()),!tA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function tA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function wP(e,t,n){for(let s=0;sn)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function kP(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r{t.addEventListener("loadeddata",s=>n(t)),t.load()})}async function IP(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var nA="3.20.0";function CP(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Ta,r)}var ue=W({add_:CP});function TP(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Ro,r)}var Hc=W({floorDiv_:TP});function NP(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=Ht(n,s),n.dtype==="int32"&&s.dtype==="int32")return Hc(n,s);let r={a:n,b:s},a={};return B.runKernel(Co,r,a)}var fe=W({div_:NP});function EP(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Uo,r)}var z=W({mul_:EP});function RP(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(Gp,n)}else{let n={x:t};return B.runKernel(pl,n)}}var sn=W({abs_:RP});function _P(e){let n={x:$(e,"x","acos")};return B.runKernel(bc,n)}var sA=W({acos_:_P});function DP(e){let n={x:$(e,"x","acosh")};return B.runKernel(vc,n)}var rA=W({acosh_:DP});function $P(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!ho(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return B.runKernel(fo,s)}var k0=W({addN_:$P});function PP(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(wc,r,a)}var S0=W({all_:PP});function FP(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel(kc,r,a)}var Np=W({any_:FP});function OP(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return B.runKernel(mo,s,r)}var Ps=W({argMax_:OP});function MP(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return B.runKernel(Sc,s,r)}var aA=W({argMin_:MP});function zP(e){let n={x:$(e,"x","asin")};return B.runKernel(Ic,n)}var oA=W({asin_:zP});function LP(e){let n={x:$(e,"x","asinh")};return B.runKernel(Cc,n)}var iA=W({asinh_:LP});function BP(e){let n={x:$(e,"x","atan")};return B.runKernel(Tc,n)}var lA=W({atan_:BP});function WP(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(hl,r)}var uA=W({atan2_:WP});function VP(e){let n={x:$(e,"x","atanh")};return B.runKernel(Nc,n)}var cA=W({atanh_:VP});function UP(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=yw(r);return ph(e,i,n,a,s,null,null,l)}function mw(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Im(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return ph(e,u,n,s,r,a,!1,o)}function GP(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=V3(t),c,p;if(o==="NDHWC")p="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")p="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return gw(e,c,n,s,r,!1,p,a)}function ph(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=e;else if(i==="channelsFirst")[l,p,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[d,h,,f]=t,[m,g]=Im(n),[y,x]=Im(s),A=Ju(d,y),b=Ju(h,x),{padInfo:w,outHeight:S,outWidth:k}=qP(r,u,c,m,g,A,b,a,i),E=o?f*p:f,_;return i==="channelsFirst"?_=[l,E,S,k]:i==="channelsLast"&&(_=[l,S,k,E]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:S,outWidth:k,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:A,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:x,inShape:e,outShape:_,filterShape:t}}function gw(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,p,d]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,p,d]=e;else if(o==="channelsFirst")[l,d,u,c,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,x,A]=V3(n),[b,w,S]=V3(s),k=Ju(h,b),E=Ju(f,w),_=Ju(m,S),{padInfo:D,outDepth:R,outHeight:P,outWidth:C}=XP(r,u,c,p,y,x,A,k,E,_,i),M=a?g*d:g,L;return o==="channelsFirst"?L=[l,M,R,P,C]:o==="channelsLast"&&(L=[l,R,P,C,M]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:p,inChannels:d,outDepth:R,outHeight:P,outWidth:C,outChannels:M,padInfo:D,strideDepth:y,strideHeight:x,strideWidth:A,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:k,effectiveFilterHeight:E,effectiveFilterWidth:_,dilationDepth:b,dilationHeight:w,dilationWidth:S,inShape:e,outShape:L,filterShape:t}}function HP(e,t,n,s,r){s==null&&(s=dA(e,t,n));let a=e[0],o=e[1],i=Xi((a-t+2*s)/n+1,r),l=Xi((o-t+2*s)/n+1,r);return[i,l]}function jP(e,t,n,s,r,a){r==null&&(r=dA(e,t,s));let o=e[0],i=e[1],l=e[2],u=Xi((o-t+2*r)/s+1,a),c=Xi((i-t+2*r)/s+1,a),p=Xi((l-t+2*r)/s+1,a);return[u,c,p,n]}function dA(e,t,n,s=1){let r=Ju(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Im(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function V3(e){return typeof e=="number"?[e,e,e]:e}function Ju(e,t){return t<=1?e:e+(e-1)*(t-1)}function qP(e,t,n,s,r,a,o,i,l){let u,c,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=HP([t,n],a,s,e,i);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+o-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),y=h-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Xi((t-a+d+h)/s+1,i),p=Xi((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:p}}function XP(e,t,n,s,r,a,o,i,l,u,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=jP([t,n,s,1],i,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(d-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+u-s,x=Math.floor(m/2),A=m-x,b=Math.floor(g/2),w=g-b,S=Math.floor(y/2),k=y-S;p={top:b,bottom:w,left:S,right:k,front:x,back:A,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function Xi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function so(e){let[t,n,s]=Im(e);return t===1&&n===1&&s===1}function aa(e,t){return so(e)||so(t)}function yw(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function ls(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")O(tc(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{O(tc(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function KP(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return B.runKernel(Ll,s,r)}var V=W({reshape_:KP});function ZP(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;O(aa(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),ls("avgPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(go,u,c);return p=ye(p,a.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var hh=W({avgPool_:ZP});function YP(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),ls("avgPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Vp,u,c);return p=ye(p,i.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var pA=W({avgPool3d_:YP});function JP(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=Tp(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor + with dtype ${a.dtype}. `)}),n.length===1)return Vn(n[0]);let s=n,r={axis:t};return B.runKernel(ml,s,r)}var It=W({concat_:JP});function QP(e){let n={x:$(e,"x","sigmoid","float32")};return B.runKernel(ei,n)}var $n=W({sigmoid_:QP});function eF(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return B.runKernel(Gl,r,a)}var ze=W({slice_:eF});function tF(e){let n={x:$(e,"x","tanh","float32")};return B.runKernel(oi,n)}var nl=W({tanh_:tF});function nF(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),u=$(s,"data","basicLSTMCell"),c=$(r,"c","basicLSTMCell"),p=$(a,"h","basicLSTMCell"),d=It([u,p],1),h=et(d,i),f=ue(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],x=ze(f,[0,0],y),A=ze(f,[0,g],y),b=ze(f,[0,g*2],y),w=ze(f,[0,g*3],y),S=ue(z($n(x),nl(A)),z(c,$n(ue(o,b)))),k=z(nl(S),$n(w));return[S,k]}var Aw=W({basicLSTMCell_:nF});function sF(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return B.runKernel(fl,a,o)}var fh=W({batchToSpaceND_:sF});function rF(e){let t;return e.rank===0||e.rank===1?t=V(e,[1,1,1,e.size]):e.rank===2?t=V(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function aF(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;s!=null&&(c=$(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:rF(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=B.runKernel(_o,d,h);return V(f,o.shape)}var jc=W({batchNorm_:aF});function oF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),jc(o,i,l,c,u,a)}var hA=W({batchNorm2d_:oF});function iF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),jc(o,i,l,c,u,a)}var fA=W({batchNorm3d_:iF});function lF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),jc(o,i,l,c,u,a)}var mA=W({batchNorm4d_:lF});function uF(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return B.runKernel(Qm,a,o)}var gA=W({bincount_:uF});function cF(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return B.runKernel(e0,r)}var xw=W({broadcastArgs_:cF});function dF(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let u=n.shape.slice();for(;u.length=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Vn(n);let i={x:n},l={reps:a};return B.runKernel(Ea,i,l)}var Ki=W({broadcastTo_:dF});function pF(e){let n={x:$(e,"x","ceil","float32")};return B.runKernel(xo,n)}var yA=W({ceil_:pF});function hF(e,t,n){let s=$(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return B.runKernel(Na,r,a)}var xs=W({clipByValue_:hF});function fF(e){return It(e,0)}var AA=W({concat1d_:fF});function mF(e,t){return It(e,t)}var su=W({concat2d_:mF});function gF(e,t){return It(e,t)}var xA=W({concat3d_:gF});function yF(e,t){return It(e,t)}var bA=W({concat4d_:yF});function AF(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d","float32"),l=$(t,"filter","conv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),ls("conv2d",s,o);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),O(aa(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(bo,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ka=W({conv2d_:AF});function xF(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1]])),O(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),ls("conv1d",s,o),O(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(aa(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=V(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=V(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=ka(d,p,[1,n],s,"NHWC",[1,a],o);return c?V(g,[g.shape[2],g.shape[3]]):V(g,[g.shape[0],g.shape[2],g.shape[3]])}var I0=W({conv1d_:xF});function bF(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],p=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),O(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),ls("conv2dDerInput",r,o);let d={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(vo,d,h);return u?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var vA=W({conv2DBackpropInput_:bF});function vF(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return vA(n,o,i,s,r,"NHWC",a)}var C0=W({conv2dTranspose_:vF});function wF(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(aa(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:n,pad:s,dataFormat:r,dilations:a},d=B.runKernel(Hp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var wA=W({conv3d_:wF});function kF(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},p={pad:r,strides:s,inputShape:a},d=B.runKernel(s0,c,p);return i?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var bw=W({conv3DBackpropInput_:kF});function SF(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return bw(n,a,o,s,r)}var kA=W({conv3dTranspose_:SF});function IF(e){let n={x:$(e,"x","cos","float32")};return B.runKernel(wo,n)}var mh=W({cos_:IF});function CF(e){let n={x:$(e,"x","cosh","float32")};return B.runKernel(ko,n)}var T0=W({cosh_:CF});function TF(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumprod")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(gl,a,o)}var Ep=W({cumprod_:TF});function NF(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(So,a,o)}var N0=W({cumsum_:NF});function EF(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return B.runKernel(r0,o,i)}var vw=W({denseBincount_:EF});function RF(e,t,n="NHWC"){let s=$(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${r} and ${t} for depthToSpace with input shape ${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape - ${s.shape}`),O(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return L.runKernel(Cl,i,l)}var EA=B({depthToSpace_:oO});function iO(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d","float32"),l=$(t,"filter","depthwiseConv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${l.shape[2]}.`),is("depthwiseConv2d",s,o);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=L.runKernel(Wo,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Zc=B({depthwiseConv2d_:iO});function lO(e){let n={x:$(e,"x","diag")};return L.runKernel(h0,n)}var R6=B({diag_:lO});function uO(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:n,pad:s,dilations:r},d=L.runKernel(Yp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var RA=B({dilation2d_:uO});function cO(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Go,r)}var Fs=B({equal_:cO});function dO(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=wt(wt(a.shape,s.shape),r.shape),i=rl(a,o),l=rl(s,o),u=rl(r,o),c={condition:i,t:l,e:u};return L.runKernel(Ul,c)}var Gn=B({where_:dO});function pO(e){let n={x:$(e,"x","zerosLike")};return L.runKernel(Ql,n)}var it=B({zerosLike_:pO});function hO(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=Ht(n,s);let r=fe(n,s),a=it(r),o=Fs(s,a);return Gn(o,a,r)}var _A=B({divNoNan_:hO});function fO(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=V(n,[1,-1]),i=V(s,[-1,1]),l=Qe(o,i);return V(l,[])}else if(n.rank===1&&s.rank===2){let o=V(n,[1,-1]),i=V(s,[s.shape[0],s.shape[1]]),l=Qe(o,i);return V(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=V(s,[-1,1]),i=Qe(n,o);return V(i,[i.size])}else{let o=V(s,[s.shape[0],s.shape[1]]);return Qe(n,o)}}var DA=B({dot_:fO});function mO(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return L.runKernel(Jp,n,s)}var _6=B({einsum_:mO});function gO(e){let n={x:$(e,"x","elu","float32")};return L.runKernel(Uo,n)}var Yc=B({elu_:gO});function yO(e){let t=$(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ye(t,"float32"));let n={x:t};return L.runKernel(Rc,n)}var $A=B({erf_:yO});function PA(e,t){for(let n=0;ne[a]);return[n,r]}function pl(e,t){let n=t.map(s=>1);return D6(e,n,t)}function AO(e,t,n){O(PA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function P6(e,t){if(PA(e,t))return null;let n=[];for(let s=0;sn.push(s)),n}function FA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function xO(e,t){let n=[];for(let s=t-e;s"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return L.runKernel(Tl,s,r)}var Wt=B({expandDims_:EO});function RO(e){let n={x:$(e,"x","expm1")};return L.runKernel(Ho,n)}var MA=B({expm1_:RO});function _O(e,t){let n=$(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return L.runKernel(Va,s,r)}var Ys=B({tile_:_O});function DO(e,t,n,s="float32"){t==null&&(t=e);let r=De([e,t],s),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${a.rank}.`),O(tc(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=V(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=L.runKernel(eh,l,u);return i?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var WA=B({localResponseNormalization_:UO});function GO(e){let n={x:$(e,"x","log","float32")};return L.runKernel($a,n)}var Ms=B({log_:GO});function HO(e){let n={x:$(e,"x","log1p")};return L.runKernel(Fc,n)}var wh=B({log1p_:HO});function jO(e){return O(yo(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(s),[s],r);return r!=null&&os(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),M0(o),o[0]})}}function qO(e){return O(yo(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=$p(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(...s),s,r);return r!=null&&os(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),M0(o),o})}}function XO(e){return O(yo(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof nt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof nt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=L.gradients(()=>e(t),[t],n);return M0(s),{grad:s[0],value:r}}}function KO(e){return O(yo(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof nt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof nt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=L.gradients(()=>e(...t),t,n);return n!=null&&os(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),M0(s.grads),s}}function M6(e,t){O(yo(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(u=>u instanceof _p),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=L.gradients(e,t,null,a);O(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function ra(e){return L.customGrad(e)}function M0(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function ZO(e){let n={x:$(e,"x","softplus")};return L.runKernel(Uc,n)}var ru=B({softplus_:ZO});function YO(e){let t=$(e,"x","logSigmoid");return ra(s=>({value:$t(ru($t(s))),gradFunc:o=>z(o,Dn($t(s)))}))(t)}var VA=B({logSigmoid_:YO});function JO(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=Ht(n,s);let r={a:n,b:s};return L.runKernel(Wa,r)}var me=B({sub_:JO});function QO(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ra((r,a)=>{let i=gn(r,t,!0),l=me(r,i),u=me(ye(l,"float32"),Ms(ke(Os(l),t,!0)));return a([u]),{value:u,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Os(h);return me(p,z(ke(p,t,f),m))}}})(n)}var z0=B({logSoftmax_:QO});function eM(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=yr(t,s.shape),a=gn(s,r,!0),o=me(s,a),i=Os(o),l=ke(i,r),u=Ms(l),c=ue(V(a,u.shape),u);if(n){let p=pl(c.shape,r);return V(c,p)}return c}var L0=B({logSumExp_:eM});function tM(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(_l,r)}var gr=B({logicalAnd_:tM});function nM(e){let n={x:$(e,"x","logicalNot","bool")};return L.runKernel(Dl,n)}var kh=B({logicalNot_:nM});function sM(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Oc,r)}var B0=B({logicalOr_:sM});function rM(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return wt(n.shape,s.shape),gr(B0(e,t),kh(gr(e,t)))}var UA=B({logicalXor_:rM}),Yf=2147483648;function aM(e,t,n="left"){let s=$(e,"sortedSequence","searchSorted"),r=$(t,"values","searchSorted"),a=s.shape[s.shape.length-1],o=r.shape[r.shape.length-1],i=V(s,[-1,a]),l=V(r,[-1,o]);if(i.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(i.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Et(l.shape)>=Yf)throw new Error(`values tensor size must less than ${Yf}`);if(i.shape[1]>=Yf)throw new Error(`trailing dim_size must less than ${Yf} for int32 output type, was ${i.shape[1]}`);let u={sortedSequence:i,values:l},c={side:n};return L.runKernel(C0,u,c)}var W0=B({searchSorted_:aM});function z6(e,t){return W0(e,t,"left")}function oM(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(ia(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),is("maxPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=L.runKernel(ei,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ih=B({maxPool_:oM});function iM(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),is("maxPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=L.runKernel(th,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var GA=B({maxPool3d_:iM});function lM(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=L.runKernel(v0,o,i);return{result:l[0],indexes:l[1]}}var L6=B({maxPoolWithArgmax_:lM});function uM(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Pa,r)}var la=B({maximum_:uM});function cM(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(ti,r,a)}var Vt=B({mean_:cM});function Ut(e,t="float32"){if(t==="complex64"){let s=Ut(e,"float32"),r=Ut(e,"float32");return ka(s,r)}let n=n0(Et(e),t);return L.makeTensor(n,e,t)}function $s(e,t="float32"){if(t==="complex64"){let s=$s(e,"float32"),r=Ut(e,"float32");return ka(s,r)}let n=My(Et(e),t);return L.makeTensor(n,e,t)}function B6(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof nt?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof nt?t.dtype:"float32"),a=Et(s.shape),o=Et(r.shape);return n==="xy"?(s=V(s,[1,-1]),r=V(r,[-1,1]),[Qe($s([o,1],s.dtype),s),Qe(r,$s([1,a],r.dtype))]):(s=V(s,[-1,1]),r=V(r,[1,-1]),[Qe(s,$s([1,o],s.dtype)),Qe($s([a,1],r.dtype),r)])}function dM(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Fa,r)}var nd=B({minimum_:dM});function pM(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return L.runKernel(si,o,a)}var HA=B({mirrorPad_:pM});function hM(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=Ht(n,s);let r={a:n,b:s};return L.runKernel(Mc,r)}var au=B({mod_:hM});function fM(e,t=null,n=!1){e=$(e,"x","moments");let s=yr(t,e.shape),r=Vt(e,s,n),a=r.shape;n||(a=pl(r.shape,s));let o=bt(me(ye(e,"float32"),V(r,a))),i=Vt(o,s,n);return{mean:r,variance:i}}var Sh=B({moments_:fM});function mM(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=$p(n,"c","multiRNNCell"),o=$p(s,"h","multiRNNCell"),i=r,l=[];for(let p=0;p2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?V(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=L.runKernel(w0,l,u);return o===1?V(c,[c.size]):c}var V6=B({multinomial_:gM});function yM(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(ri,r)}var hl=B({notEqual_:yM});function AM(e){let n={x:$(e,"x","onesLike")};return L.runKernel(Ol,n)}var zs=B({onesLike_:AM});function xM(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=V(n,[-1,1]),a=V(s,[1,-1]);return Qe(r,a)}var U6=B({outerProduct_:xM});function bM(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return L.runKernel(ai,a,r)}var rr=B({pad_:bM});function vM(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),rr(e,[t],n)}var G6=B({pad1d_:vM});function wM(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,n)}var H6=B({pad2d_:wM});function kM(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,n)}var j6=B({pad3d_:kM});function IM(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,n)}var q6=B({pad4d_:IM});function SM(e,t,n){let s=$(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]===0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return L.runKernel(jl,r,a)}var Ch=B({spaceToBatchND_:SM});function CM(e,t,n,s,r,a,o){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let i=$(e,"x","maxPool"),l=i,u=!1;i.rank===3&&(u=!0,l=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(ia(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=k6(l.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=NM([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=TM([c.inHeight,c.inWidth],p,d),g=h?s:"valid",y=h?l:Ch(l,p,f),A=(n==="avg"?()=>Ah(y,t,a,g,o):()=>Ih(y,t,a,g,o))(),b=h?A:xh(A,p,m);return u?V(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function TM(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,p)=>(c-a[p]%c)%c),i=r.map((c,p)=>c+o[p]),l=t.map((c,p)=>[s[p],i[p]]),u=t.map((c,p)=>[0,o[p]]);return[l,u]}function NM(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var jA=B({pool_:CM});function EM(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return L.runKernel(ii,r)}var Th=B({prelu_:EM});function RM(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=ye(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(li,r,a)}var qA=B({prod_:RM});function _M(e,t,n,s,r){let a=$(e,"shape","raggedTensorToTensor","int32"),o=$(t,"values","raggedTensorToTensor"),i=$(n,"defaultValue","raggedTensorToTensor",o.dtype),l=s.map((p,d)=>$(p,`tensors${d}`,"raggedTensorToTensor","int32")),u={shape:a,values:o,defaultValue:i,rowPartitionTensors:l},c={rowPartitionTypes:r};return L.runKernel(k0,u,c)}var X6=B({raggedTensorToTensor_:_M});function DM(e,t,n){let s=Et(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},$M=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=XA.alea(r.toString()),this.randn=new KA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),rthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=XA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function FM(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new $M(t,n,s,r),o=De(e,s);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),tr(t,0)}var J6=B({reverse1d_:UM});function GM(e,t){let n=$(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),tr(n,t)}var Q6=B({reverse2d_:GM});function HM(e,t){let n=$(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),tr(n,t)}var ek=B({reverse3d_:HM});function jM(e,t){let n=$(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),tr(n,t)}var tk=B({reverse4d_:jM});function qM(e){let n={x:$(e,"x","round")};return L.runKernel(Wl,n)}var G0=B({round_:qM});function XM(e){let n={x:$(e,"x","rsqrt","float32")};return L.runKernel(Ma,n)}var H0=B({rsqrt_:XM});function KM(e){let n={x:$(e,"x","selu")};return L.runKernel(Wc,n)}var j0=B({selu_:KM});function ZM(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),u=$(n,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),O(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];O(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=Zc(c,l,s,r,o,a),g=Ia(f,u,1,"valid",o);return p?V(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var q0=B({separableConv2d_:ZM});async function YM(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Le(s,[t],[n])}var Nh=B({slice1d_:tz});function nz(e,t,n){let s=$(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Le(s,t,n)}var Z0=B({slice2d_:nz});function sz(e,t,n){let s=$(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Le(s,t,n)}var wi=B({slice3d_:sz});function rz(e,t,n){let s=$(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Le(s,t,n)}var wo=B({slice4d_:rz});function az(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return L.runKernel(mi,s,r)}var ou=B({softmax_:az});function oz(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(m0,t)}var Eh=B({fft_:oz});function iz(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(g0,t)}var ic=B({ifft_:iz});function lz(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=V(e,[n,t]);s=ic(r)}else{let r=[n,2*(t-1)],a=V(ac(e),[n,t]),o=V(gh(e),[n,t]),i=tr(Le(a,[0,1],[n,t-2]),1),l=z(tr(Le(o,[0,1],[n,t-2]),1),Ce(-1)),u=St([a,i],1),c=St([o,l],1),p=V(ka(u,c),[r[0],r[1]]);s=ic(p)}if(s=ac(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=V(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var Y0=B({irfft_:lz});function uz(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(ql,r,a)}var Yt=B({split_:uz});function cz(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Le(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=St([e,Ut(f)],e.shape.length-1),n=t}else r=e;let a=it(r),o=V(ka(r,a),[s,n]),i=Eh(o),l=Math.floor(n/2)+1,u=ac(i),c=gh(i),p=Yt(u,[l,n-l],u.shape.length-1),d=Yt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,V(ka(p[0],d[0]),h)}var Rh=B({rfft_:cz});function dz(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s},a={};return L.runKernel(Ba,r,a)}var J0=B({squaredDifference_:dz});function pz(e,t){let n=$(e,"x","squeeze","string_or_numeric");return V(n,ww(n.shape,t).newShape)}var st=B({squeeze_:pz});function hz(e,t=0){let n=$p(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return L.runKernel(zl,s,r)}var un=B({stack_:hz});function fz(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return L.runKernel(yi,s,r)}var iu=B({step_:fz});function mz(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:$(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return L.runKernel(Xl,c,p)}var JA=B({stridedSlice_:mz});function gz(e){let n={x:$(e,"x","tan","float32")};return L.runKernel(Kl,n)}var QA=B({tan_:gz});function Ft(e,t){bl(e);let n=sa(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ai(e,null,n,t)}function mr(e,t,n){if(bl(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=sa(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ai(e,t,s,n)}function sk(e,t,n){if(bl(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=sa(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ai(e,t,s,n)}function rk(e,t,n){if(bl(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=sa(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ai(e,t,s,n)}function ak(e,t,n){if(bl(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=sa(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Ai(e,t,s,n)}function yz(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=L.runKernel(Zl,a,o);return{values:i,indices:l}}var e5=B({topk_:yz});function Az(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new KA(t,n,s,!0,r),o=De(e,s);for(let i=0;i0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=L.runKernel(T0,s,r);return{values:a,indices:o}}var t5=B({unique_:xz});function bz(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");O(tc(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return L.runKernel(uh,a,o)}var e2=B({unsortedSegmentSum_:bz});function vz(e,t=0){let n=$(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return L.runKernel(Jl,s,r)}var On=B({unstack_:vz});function ok(e,t){return W0(e,t,"right")}function n5(e,t=!0,n,s){return L.makeVariable(e,t,n,s)}function ik(e,t){let n=[];for(let a=0;a0,()=>"mask cannot be scalar"),os(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m"Shape mismatch in v and x");let l=Ce(1),u=me(l,i),c=z(me(o,a),u);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let p=$(s,"step","movingAverage");c=fe(c,me(l,Ca(i,p)))}return ue(a,c)}var uk=B({movingAverage_:Iz});function Sz(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");rA(r,s,n);let a={indices:s,updates:r},o={shape:n};return L.runKernel(Vl,a,o)}var ck=B({scatterND_:Sz});function Cz(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function Tz(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense","string_or_numeric"),o=$(s,"defaultValue","sparseToDense",a.dtype);Cz(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return L.runKernel(oh,i,l)}var dk=B({sparseToDense_:Tz});function Nz(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(Rl,r)}var pk=B({gatherND_:Nz});function Ez(e,t){if(t==null)return e.shape.slice();if(Ro(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof nt?r.clone():r;let a=Ez(r,n),o=1-t,i=fe(ed(ue(sd(a,0,1,"float32",s),o)),o);return z(r,i)}var r5=B({dropout_:Rz});function a5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function t2(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),os(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=kw("bool",l);for(let p=0;pg.value-m.value),c[p]=0;for(let m=0;mPz,depthwiseConv2d:()=>zz,matMul:()=>Bz});function Dz(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),O(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),is("conv2dDerFilter",r,o);let p={x:i,dy:l},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return L.runKernel(i0,p,d)}var o5=B({conv2DBackpropFilter_:Dz});function n2(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,iu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function s2(e,t){let n=t,s=ln(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),V(n,e.shape)}function r2(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Vr(e);if(t==="elu")return Yc(e);if(t==="relu6")return U0(e);if(t==="prelu")return Th(e,n);if(t==="leakyrelu")return vh(e,s);if(t==="sigmoid")return Dn(e);throw new Error(`Unknown fused activation ${t}.`)}var a2=(e,t)=>!(e>0)||t==="linear";function $z({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",a2(L.state.gradientDepth,l)===!1){O(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let I=Ia(e,t,n,s,r,a,o);return i!=null&&(I=ue(I,i)),r2(I,l,u,c)}let p=$(e,"x","conv2d","float32"),d=$(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),is("fused conv2d",s,o);let m=r==="NHWC"?h.shape[3]:h.shape[1];O(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),O(ia(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let g=yh(h.shape,d.shape,n,a,s,o),y;i!=null&&(y=$(i,"bias","fused conv2d"),[y]=Ht(y,p),r==="NHWC"?wt(g.outShape,y.shape):(O(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),O(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let x;if(u!=null){let I=u.shape;if(O(I.length<=1||I.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${I.length}.`),I.length===1)O(I[0]===1||I[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the number of output channels (${g.outChannels}).`);else if(I.length===3)try{wt(I,g.outShape)}catch(k){let E=`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}x=$(u,"prelu weights","fused conv2d")}let A=(I,k)=>{O(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,_,D,R]=k,P=n2(I,D,l);O(vo(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let T=CA(_.shape,P,E,n,s),M=o5(_,P,E.shape,n,s),W=[T,M];if(R!=null){let G=s2(R,P);W.push(G)}return W},b={x:h,filter:d,bias:y,preluActivationWeights:x},w={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?ra((k,E,_)=>{let D=L.runKernel(xo,b,w);return _([E,k,D]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:A}})(h,d):ra((k,E,_,D)=>{let R=L.runKernel(xo,b,w);return D([E,k,R,_]),f&&(R=V(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(h,d,y)}var Pz=B({fusedConv2d_:$z});function Fz(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return L.runKernel(d0,u,c)}var fk=B({depthwiseConv2dNativeBackpropFilter_:Fz});function Oz(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},p=L.runKernel(p0,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var mk=B({depthwiseConv2dNativeBackpropInput_:Oz});function Mz({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(a2(L.state.gradientDepth,l)===!1){let w=Zc(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),r2(w,l,u,c)}let p=$(e,"x","depthwiseConv2d","float32"),d=$(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),O(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),O(ia(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),is("fused depthwiseConv2d",s,o);let m=yh(h.shape,d.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Ht(g,p),wt(m.outShape,g.shape));let y;u!=null&&(y=$(u,"prelu weights","fused depthwiseConv2d"));let x=(w,I)=>{O(vo(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[k,E,_,D]=I,R=n2(w,_,l),P=mk(E.shape,R,k,n,s,a,o),T=fk(E,R,k.shape,n,s,a,o);if(D!=null){let M=s2(g,R);return[P,T,M]}return[P,T]},A={x:h,filter:d,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?ra((I,k,E)=>{let _=L.runKernel(bo,A,b);return E([k,I,_]),f&&(_=V(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:x}})(h,d):ra((I,k,E,_)=>{let D=L.runKernel(bo,A,b);return _([k,I,D,E]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:x}})(h,d,g)}var zz=B({fusedDepthwiseConv2d_:Mz});function Lz({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i=.2}){if(a2(L.state.gradientDepth,a)===!1){let R=Qe(e,t,n,s);return r!=null&&(R=ue(R,r)),r2(R,a,o,i)}let l=$(e,"a","fused matMul"),u=$(t,"b","fused matMul");[l,u]=Ht(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=s?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Et(f),y=Et(m);O(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=wt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),b=n?V(l,[g,c,d]):V(l,[g,d,c]),w=s?V(u,[y,h,p]):V(u,[y,p,h]),I;r!=null&&(I=$(r,"bias","fused matMul"),[I]=Ht(I,l),wt(A,I.shape));let k;o!=null&&(k=$(o,"prelu weights","fused matMul"));let E=(R,P)=>{let[T,M,W,G]=P,X=n2(V(R,W.shape),W,a),K,Y;if(!n&&!s?(K=Qe(X,M,!1,!0),Y=Qe(T,X,!0,!1)):!n&&s?(K=Qe(X,M,!1,!1),Y=Qe(X,T,!0,!1)):n&&!s?(K=Qe(M,X,!1,!0),Y=Qe(T,X,!1,!1)):(K=Qe(M,X,!0,!0),Y=Qe(X,T,!0,!0)),r!=null){let ae=s2(G,X);return[K,Y,ae]}else return[K,Y]},_={a:b,b:w,bias:I,preluActivationWeights:k},D={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?ra((P,T,M)=>{let W=L.runKernel(Ao,_,D);return M([P,T,W]),{value:V(W,A),gradFunc:E}})(b,w):ra((P,T,M,W)=>{let G=L.runKernel(Ao,_,D);return W([P,T,G,M]),{value:V(G,A),gradFunc:E}})(b,w,I)}var Bz=B({fusedMatMul_:Lz});function Wz(e){return t2(e,.54,.46)}var Vz=B({hammingWindow_:Wz});function Uz(e){return t2(e,.5,.5)}var gk=B({hannWindow_:Uz});function Gz(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Le(e,a,t)),a+=n;if(s)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},p={method:r,extrapolationValue:a,cropSize:s};return L.runKernel(Sl,c,p)}var Xz=B({cropAndResize_:qz});function Kz(e){let t=$(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(Nl,n,{})}var Zz=B({flipLeftRight_:Kz});function Yz(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ys(t,r)}var Jz=B({grayscaleToRGB_:Yz});function Qz(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return L.runKernel(eu,a,o)}var eL=B({rotateWithOffset_:Qz});function rd(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function tL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression","float32"),o=$(t,"scores","nonMaxSuppression","float32"),i=rd(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return L.runKernel(Pl,{boxes:a,scores:o},l)}var nL=B({nonMaxSuppression_:tL});function sL(e,t,n){let s=rL(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function rL(e,t,n){return oL(e,t,n||aL)}function aL(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Ak(e,t,n,s,r){return i5(e,t,n,s,r,0)}function xk(e,t,n,s,r,a){return i5(e,t,n,s,r,0,!1,a,!0)}function bk(e,t,n,s,r,a){return i5(e,t,n,s,r,a,!0)}function i5(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;gr&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Wv);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length0;){let g=u.pop(),{score:y,boxIndex:x,suppressBeginIndex:A}=g;if(y=A;--w){let I=iL(e,x,p[w]);if(I>=s){b=!0;break}if(g.score=g.score*lL(s,c,I),g.score<=r)break}g.suppressBeginIndex=p.length,b||(g.score===y?(p.push(x),d.push(g.score)):g.score>r&&sL(u,g,Wv))}let h=p.length,f=n-h;i&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return o&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function iL(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(p-u)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,p),x=Math.min(l,d),A=Math.max(y-m,0)*Math.max(x-g,0);return A/(h+f-A)}function lL(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Wv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function uL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=rd(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:p}=Ak(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Ft(p,"int32")}var cL=uL;function dL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=rd(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=L.runKernel(Fl,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var pL=B({nonMaxSuppressionWithScore_:dL});async function hL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=rd(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:d,selectedScores:h}=bk(c,p,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ft(d,"int32"),selectedScores:Ft(h)}}var fL=hL;function mL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=rd(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,d={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=L.runKernel(zc,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var gL=B({nonMaxSuppressionPadded_:mL});async function yL(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=rd(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=xk(d,h,u,c,p,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ft(f,"int32"),validOutputs:Ce(m,"int32")}}var AL=yL;function xL(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(di,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var vk=B({resizeBilinear_:xL});function bL(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(ci,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var wk=B({resizeNearestNeighbor_:bL});function vL(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Ft([s]),255),c,p,d,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Yt(r,[1,1,1],-1);let g=z(c,a),y=z(p,o),x=z(d,i);h=ue(ue(g,y),x)}else h=e;if(t==="otsu"){let g=vA(ye(G0(h),"int32"),ct([]),256);u=wL(g,l)}let f=n?vi(h,u):ws(h,u);return ye(z(f,255),"int32")}function wL(e,t){let n=Ft([-1]),s=Ft([0]),r=Ft([0]),a,o,i,l,u,c;for(let p=0;p`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return L.runKernel(Yl,l,u)}var SL=B({transform_:IL});function CL(e,t,n){O(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=V(oc(0,a,1,"int32"),[-1,1]),l=oc(0,o,1,"int32"),u=me(i,l),c=gr(vi(u,Ce(+t,"int32")),bi(u,Ce(-n,"int32"))),p=Ut([a,o],s.dtype);return V(un(On(V(s,[-1,a,o])).map(d=>Gn(c,d,p))),r)}var TL=B({bandPart_:CL});function NL(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Yt(e,e.shape[0],0).map(r=>st(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r{let a=s[r];if(r>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Vv(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=On(V(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Vv(l,t);r.push(u),a.push(c)});let o=V(un(r,0),e.shape),i=V(un(a,0),e.shape);return[o,i]}}function Vv(e,t=!1){return L.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=F0(n),a=Un(e),o=mr([[1]],[1,1]),i=Un(o),l=n>=s?s:n;for(let u=0;u{let h=Le(a,[u,u],[n-u,1]),f=Jc(h),m=Le(a,[u,u],[1,1]),g=Gn(ws(m,0),mr([[-1]]),mr([[1]])),y=me(m,z(g,f)),x=fe(h,y);x.shape[0]===1?i=Un(o):i=St([o,Le(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let A=$t(fe(Qe(g,y),f)),b=Le(a,[u,0],[n-u,s]),w=z(A,i),I=et(i);if(u===0)a=me(b,Qe(w,Qe(I,b)));else{let _=me(b,Qe(w,Qe(I,b)));a=St([Le(a,[0,0],[u,s]),_],0)}let k=et(w),E=Le(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=me(E,Qe(Qe(E,i),k));else{let _=me(E,Qe(Qe(E,i),k));r=St([Le(r,[0,0],[n,u]),_],1)}return[i,a,r]}),J([c,p,d])}return!t&&n>s&&(r=Le(r,[0,0],[n,s]),a=Le(a,[0,0],[s,s])),[r,a]})}var _L=B({qr_:RL}),ns;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(ns||(ns={}));function DL(e,t,n=ns.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===ns.NONE)return a;if(n===ns.SUM)return ke(a);if(n===ns.MEAN){if(r==null)return Vt(a);{let o=s.size/r.size,i=fe(ke(a),ke(r));return o>1?fe(i,Ce(o)):i}}if(n===ns.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(ke(a),Ce(s.size));{let o=z(r,$s(s.shape)),i=ye(ke(hl(o,Ce(0))),"float32");return fe(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ua=B({computeWeightedLoss_:DL});function $L(e,t,n,s=ns.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),os(r.shape,a.shape,"Error in absoluteDifference: ");let i=sn(me(r,a));return Ua(i,o,s)}var PL=B({absoluteDifference_:$L});function FL(e,t,n,s,r=ns.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),os(a.shape,o.shape,"Error in cosineDistance: ");let l=Ce(1),u=me(l,ke(z(a,o),n,!0));return Ua(u,i,r)}var OL=B({cosineDistance_:FL});function ML(e,t,n,s=ns.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),os(r.shape,a.shape,"Error in hingeLoss: ");let i=Ce(1);r=me(z(Ce(2),r),i);let l=Vr(me(i,z(r,a)));return Ua(l,o,s)}var zL=B({hingeLoss_:ML});function LL(e,t,n,s=1,r=ns.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),os(a.shape,o.shape,"Error in huberLoss: ");let l=Ce(s),u=sn(me(o,a)),c=nd(u,l),p=me(u,c),d=ue(z(Ce(.5),bt(c)),z(l,p));return Ua(d,i,r)}var BL=B({huberLoss_:LL});function WL(e,t,n,s=1e-7,r=ns.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),os(a.shape,o.shape,"Error in logLoss: ");let l=Ce(1),u=Ce(s),c=$t(z(a,Ms(ue(o,u)))),p=z(me(l,a),Ms(ue(me(l,o),u))),d=me(c,p);return Ua(d,i,r)}var VL=B({logLoss_:WL});function UL(e,t,n,s=ns.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),os(r.shape,a.shape,"Error in meanSquaredError: ");let i=J0(r,a);return Ua(i,o,s)}var GL=B({meanSquaredError_:UL});function HL(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");os(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Vr(s),a=z(s,n),o=wh(Os($t(sn(s))));return ue(me(r,a),o)}function jL(e,t,n,s=0,r=ns.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),os(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(.5);a=ue(z(a,me(c,u)),z(p,u))}let l=HL(a,o);return Ua(l,i,r)}var qL=B({sigmoidCrossEntropy_:jL});function XL(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ra((r,a,o)=>{let l=L0(a,[n],!0),u=me(ye(a,"float32"),l);o([r,u]);let c=$t(z(u,r));return{value:ke(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=pl(h.shape,[n]);return[z(V(h,y),me(ye(m,"float32"),Os(g))),z(V(h,y),me(Os(g),ye(m,"float32")))]}}})(e,t)}function KL(e,t,n,s=0,r=ns.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),os(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(a.shape[1]);a=ue(z(a,me(c,u)),fe(u,p))}let l=XL(a,o);return Ua(l,i,r)}var ZL=B({softmaxCrossEntropy_:KL});function YL(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows","int32"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows","int32"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape - ${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=L.runKernel(sh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var JL=B({sparseFillEmptyRows_:YL});function QL(e,t,n){let s=$(e,"inputIndices","sparseReshape","int32"),r=$(t,"inputShape","sparseReshape","int32"),a=$(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape - ${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=L.runKernel(Gc,o);return{outputIndices:i[0],outputShape:i[1]}}var eB=B({sparseReshape_:QL});function tB(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean","int32"),a=$(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape + ${s.shape}`),O(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return B.runKernel(Al,i,l)}var SA=W({depthToSpace_:RF});function _F(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d","float32"),l=$(t,"filter","depthwiseConv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${l.shape[2]}.`),ls("depthwiseConv2d",s,o);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(Io,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var qc=W({depthwiseConv2d_:_F});function DF(e){let n={x:$(e,"x","diag")};return B.runKernel(i0,n)}var ww=W({diag_:DF});function $F(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:n,pad:s,dilations:r},d=B.runKernel(jp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var IA=W({dilation2d_:$F});function PF(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(xl,r)}var Fs=W({equal_:PF});function FF(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=wt(wt(a.shape,s.shape),r.shape),i=Ki(a,o),l=Ki(s,o),u=Ki(r,o),c={condition:i,t:l,e:u};return B.runKernel(Ul,c)}var Gn=W({where_:FF});function OF(e){let n={x:$(e,"x","zerosLike")};return B.runKernel(Ql,n)}var lt=W({zerosLike_:OF});function MF(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=Ht(n,s);let r=fe(n,s),a=lt(r),o=Fs(s,a);return Gn(o,a,r)}var CA=W({divNoNan_:MF});function zF(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=V(n,[1,-1]),i=V(s,[-1,1]),l=et(o,i);return V(l,[])}else if(n.rank===1&&s.rank===2){let o=V(n,[1,-1]),i=V(s,[s.shape[0],s.shape[1]]),l=et(o,i);return V(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=V(s,[-1,1]),i=et(n,o);return V(i,[i.size])}else{let o=V(s,[s.shape[0],s.shape[1]]);return et(n,o)}}var TA=W({dot_:zF});function LF(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return B.runKernel(qp,n,s)}var kw=W({einsum_:LF});function BF(e){let n={x:$(e,"x","elu","float32")};return B.runKernel(To,n)}var Xc=W({elu_:BF});function WF(e){let t=$(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ye(t,"float32"));let n={x:t};return B.runKernel(Ec,n)}var NA=W({erf_:WF});function EA(e,t){for(let n=0;ne[a]);return[n,r]}function sl(e,t){let n=t.map(s=>1);return Sw(e,n,t)}function VF(e,t,n){O(EA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Cw(e,t){if(EA(e,t))return null;let n=[];for(let s=0;sn.push(s)),n}function RA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function UF(e,t){let n=[];for(let s=t-e;s"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return B.runKernel(bl,s,r)}var Bt=W({expandDims_:QF});function eO(e){let n={x:$(e,"x","expm1")};return B.runKernel(vl,n)}var DA=W({expm1_:eO});function tO(e,t){let n=$(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return B.runKernel(Ea,s,r)}var Ks=W({tile_:tO});function nO(e,t,n,s="float32"){t==null&&(t=e);let r=We([e,t],s),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got + rank ${a.rank}.`),O(tc(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=V(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=B.runKernel(Kp,l,u);return i?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var OA=W({localResponseNormalization_:hO});function fO(e){let n={x:$(e,"x","log","float32")};return B.runKernel(Fo,n)}var Ms=W({log_:fO});function mO(e){let n={x:$(e,"x","log1p")};return B.runKernel($c,n)}var yh=W({log1p_:mO});function gO(e){return O(Qa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(s),[s],r);return r!=null&&is(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),_0(o),o[0]})}}function yO(e){return O(Qa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Tp(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...s),s,r);return r!=null&&is(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),_0(o),o})}}function AO(e){return O(Qa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof st,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof st,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=B.gradients(()=>e(t),[t],n);return _0(s),{grad:s[0],value:r}}}function xO(e){return O(Qa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof st),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof st,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=B.gradients(()=>e(...t),t,n);return n!=null&&is(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),_0(s.grads),s}}function Ew(e,t){O(Qa(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(u=>u instanceof Ip),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);O(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function sa(e){return B.customGrad(e)}function _0(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that + the f you passed encloses all operations that lead from x to y.`)}function bO(e){let n={x:$(e,"x","softplus")};return B.runKernel(Bc,n)}var ru=W({softplus_:bO});function vO(e){let t=$(e,"x","logSigmoid");return sa(s=>({value:$t(ru($t(s))),gradFunc:o=>z(o,$n($t(s)))}))(t)}var MA=W({logSigmoid_:vO});function wO(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(ai,r)}var me=W({sub_:wO});function kO(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return sa((r,a)=>{let i=gn(r,t,!0),l=me(r,i),u=me(ye(l,"float32"),Ms(ke(Os(l),t,!0)));return a([u]),{value:u,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Os(h);return me(p,z(ke(p,t,f),m))}}})(n)}var D0=W({logSoftmax_:kO});function SO(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=gr(t,s.shape),a=gn(s,r,!0),o=me(s,a),i=Os(o),l=ke(i,r),u=Ms(l),c=ue(V(a,u.shape),u);if(n){let p=sl(c.shape,r);return V(c,p)}return c}var $0=W({logSumExp_:SO});function IO(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(El,r)}var mr=W({logicalAnd_:IO});function CO(e){let n={x:$(e,"x","logicalNot","bool")};return B.runKernel(Rl,n)}var Ah=W({logicalNot_:CO});function TO(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Pc,r)}var P0=W({logicalOr_:TO});function NO(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return wt(n.shape,s.shape),mr(P0(e,t),Ah(mr(e,t)))}var zA=W({logicalXor_:NO}),jf=2147483648;function EO(e,t,n="left"){let s=$(e,"sortedSequence","searchSorted"),r=$(t,"values","searchSorted"),a=s.shape[s.shape.length-1],o=r.shape[r.shape.length-1],i=V(s,[-1,a]),l=V(r,[-1,o]);if(i.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(i.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Et(l.shape)>=jf)throw new Error(`values tensor size must less than ${jf}`);if(i.shape[1]>=jf)throw new Error(`trailing dim_size must less than ${jf} for int32 output type, was ${i.shape[1]}`);let u={sortedSequence:i,values:l},c={side:n};return B.runKernel(b0,u,c)}var F0=W({searchSorted_:EO});function Rw(e,t){return F0(e,t,"left")}function RO(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(aa(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),ls("maxPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(zo,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xh=W({maxPool_:RO});function _O(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),ls("maxPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Zp,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var LA=W({maxPool3d_:_O});function DO(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=B.runKernel(m0,o,i);return{result:l[0],indexes:l[1]}}var _w=W({maxPoolWithArgmax_:DO});function $O(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Mo,r)}var oa=W({maximum_:$O});function PO(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(Lo,r,a)}var Wt=W({mean_:PO});function Vt(e,t="float32"){if(t==="complex64"){let s=Vt(e,"float32"),r=Vt(e,"float32");return wa(s,r)}let n=Zm(Et(e),t);return B.makeTensor(n,e,t)}function $s(e,t="float32"){if(t==="complex64"){let s=$s(e,"float32"),r=Vt(e,"float32");return wa(s,r)}let n=Dy(Et(e),t);return B.makeTensor(n,e,t)}function Dw(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof st?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof st?t.dtype:"float32"),a=Et(s.shape),o=Et(r.shape);return n==="xy"?(s=V(s,[1,-1]),r=V(r,[-1,1]),[et($s([o,1],s.dtype),s),et(r,$s([1,a],r.dtype))]):(s=V(s,[-1,1]),r=V(r,[1,-1]),[et(s,$s([1,o],s.dtype)),et($s([a,1],r.dtype),r)])}function FO(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Wo,r)}var Qc=W({minimum_:FO});function OO(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return B.runKernel(Vo,o,a)}var BA=W({mirrorPad_:OO});function MO(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Fc,r)}var au=W({mod_:MO});function zO(e,t=null,n=!1){e=$(e,"x","moments");let s=gr(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=sl(r.shape,s));let o=bt(me(ye(e,"float32"),V(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var bh=W({moments_:zO});function LO(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=Tp(n,"c","multiRNNCell"),o=Tp(s,"h","multiRNNCell"),i=r,l=[];for(let p=0;p2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?V(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=B.runKernel(g0,l,u);return o===1?V(c,[c.size]):c}var Pw=W({multinomial_:BO});function WO(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Dl,r)}var rl=W({notEqual_:WO});function VO(e){let n={x:$(e,"x","onesLike")};return B.runKernel(Fl,n)}var zs=W({onesLike_:VO});function UO(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=V(n,[-1,1]),a=V(s,[1,-1]);return et(r,a)}var Fw=W({outerProduct_:UO});function GO(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return B.runKernel(Go,a,r)}var sr=W({pad_:GO});function HO(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),sr(e,[t],n)}var Ow=W({pad1d_:HO});function jO(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var Mw=W({pad2d_:jO});function qO(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var zw=W({pad3d_:qO});function XO(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var Lw=W({pad4d_:XO});function KO(e,t,n){let s=$(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]===0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return B.runKernel(jl,r,a)}var vh=W({spaceToBatchND_:KO});function ZO(e,t,n,s,r,a,o){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let i=$(e,"x","maxPool"),l=i,u=!1;i.rank===3&&(u=!0,l=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(aa(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=mw(l.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=JO([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=YO([c.inHeight,c.inWidth],p,d),g=h?s:"valid",y=h?l:vh(l,p,f),A=(n==="avg"?()=>hh(y,t,a,g,o):()=>xh(y,t,a,g,o))(),b=h?A:fh(A,p,m);return u?V(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function YO(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,p)=>(c-a[p]%c)%c),i=r.map((c,p)=>c+o[p]),l=t.map((c,p)=>[s[p],i[p]]),u=t.map((c,p)=>[0,o[p]]);return[l,u]}function JO(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var WA=W({pool_:ZO});function QO(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return B.runKernel(jo,r)}var wh=W({prelu_:QO});function eM(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=ye(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(qo,r,a)}var VA=W({prod_:eM});function tM(e,t,n,s,r){let a=$(e,"shape","raggedTensorToTensor","int32"),o=$(t,"values","raggedTensorToTensor"),i=$(n,"defaultValue","raggedTensorToTensor",o.dtype),l=s.map((p,d)=>$(p,`tensors${d}`,"raggedTensorToTensor","int32")),u={shape:a,values:o,defaultValue:i,rowPartitionTensors:l},c={rowPartitionTypes:r};return B.runKernel(y0,u,c)}var Bw=W({raggedTensorToTensor_:tM});function nM(e,t,n){let s=Et(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},sM=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=UA.alea(r.toString()),this.randn=new GA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),rthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=UA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function aM(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new sM(t,n,s,r),o=We(e,s);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Qs(t,0)}var Gw=W({reverse1d_:hM});function fM(e,t){let n=$(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Qs(n,t)}var Hw=W({reverse2d_:fM});function mM(e,t){let n=$(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Qs(n,t)}var jw=W({reverse3d_:mM});function gM(e,t){let n=$(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Qs(n,t)}var qw=W({reverse4d_:gM});function yM(e){let n={x:$(e,"x","round")};return B.runKernel(Wl,n)}var z0=W({round_:yM});function AM(e){let n={x:$(e,"x","rsqrt","float32")};return B.runKernel(Jo,n)}var L0=W({rsqrt_:AM});function xM(e){let n={x:$(e,"x","selu")};return B.runKernel(zc,n)}var B0=W({selu_:xM});function bM(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),u=$(n,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),O(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];O(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=qc(c,l,s,r,o,a),g=ka(f,u,1,"valid",o);return p?V(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var W0=W({separableConv2d_:bM});async function vM(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),ze(s,[t],[n])}var kh=W({slice1d_:IM});function CM(e,t,n){let s=$(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),ze(s,t,n)}var G0=W({slice2d_:CM});function TM(e,t,n){let s=$(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),ze(s,t,n)}var pi=W({slice3d_:TM});function NM(e,t,n){let s=$(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),ze(s,t,n)}var ro=W({slice4d_:NM});function EM(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return B.runKernel(si,s,r)}var ou=W({softmax_:EM});function RM(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(u0,t)}var Sh=W({fft_:RM});function _M(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(c0,t)}var ic=W({ifft_:_M});function DM(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=V(e,[n,t]);s=ic(r)}else{let r=[n,2*(t-1)],a=V(ac(e),[n,t]),o=V(dh(e),[n,t]),i=Qs(ze(a,[0,1],[n,t-2]),1),l=z(Qs(ze(o,[0,1],[n,t-2]),1),Ce(-1)),u=It([a,i],1),c=It([o,l],1),p=V(wa(u,c),[r[0],r[1]]);s=ic(p)}if(s=ac(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=V(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var H0=W({irfft_:DM});function $M(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(ql,r,a)}var Yt=W({split_:$M});function PM(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=ze(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=It([e,Vt(f)],e.shape.length-1),n=t}else r=e;let a=lt(r),o=V(wa(r,a),[s,n]),i=Sh(o),l=Math.floor(n/2)+1,u=ac(i),c=dh(i),p=Yt(u,[l,n-l],u.shape.length-1),d=Yt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,V(wa(p[0],d[0]),h)}var Ih=W({rfft_:PM});function FM(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s},a={};return B.runKernel(ri,r,a)}var j0=W({squaredDifference_:FM});function OM(e,t){let n=$(e,"x","squeeze","string_or_numeric");return V(n,f6(n.shape,t).newShape)}var rt=W({squeeze_:OM});function MM(e,t=0){let n=Tp(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return B.runKernel(Ml,s,r)}var ln=W({stack_:MM});function zM(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return B.runKernel(ii,s,r)}var iu=W({step_:zM});function LM(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:$(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return B.runKernel(Xl,c,p)}var qA=W({stridedSlice_:LM});function BM(e){let n={x:$(e,"x","tan","float32")};return B.runKernel(Kl,n)}var XA=W({tan_:BM});function Pt(e,t){dl(e);let n=na(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return li(e,null,n,t)}function fr(e,t,n){if(dl(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=na(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return li(e,t,s,n)}function Kw(e,t,n){if(dl(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=na(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return li(e,t,s,n)}function Zw(e,t,n){if(dl(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=na(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return li(e,t,s,n)}function Yw(e,t,n){if(dl(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=na(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,li(e,t,s,n)}function WM(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=B.runKernel(Zl,a,o);return{values:i,indices:l}}var KA=W({topk_:WM});function VM(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new GA(t,n,s,!0,r),o=We(e,s);for(let i=0;i0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=B.runKernel(v0,s,r);return{values:a,indices:o}}var ZA=W({unique_:UM});function GM(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");O(tc(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return B.runKernel(rh,a,o)}var X0=W({unsortedSegmentSum_:GM});function HM(e,t=0){let n=$(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return B.runKernel(Jl,s,r)}var On=W({unstack_:HM});function Jw(e,t){return F0(e,t,"right")}function YA(e,t=!0,n,s){return B.makeVariable(e,t,n,s)}function Qw(e,t){let n=[];for(let a=0;a0,()=>"mask cannot be scalar"),is(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m"Shape mismatch in v and x");let l=Ce(1),u=me(l,i),c=z(me(o,a),u);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let p=$(s,"step","movingAverage");c=fe(c,me(l,Ia(i,p)))}return ue(a,c)}var t8=W({movingAverage_:XM});function KM(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");Qy(r,s,n);let a={indices:s,updates:r},o={shape:n};return B.runKernel(Vl,a,o)}var n8=W({scatterND_:KM});function ZM(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function YM(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense","string_or_numeric"),o=$(s,"defaultValue","sparseToDense",a.dtype);ZM(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return B.runKernel(th,i,l)}var s8=W({sparseToDense_:YM});function JM(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(Sl,r)}var r8=W({gatherND_:JM});function QM(e,t){if(t==null)return e.shape.slice();if(ho(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof st?r.clone():r;let a=QM(r,n),o=1-t,i=fe(Yc(ue(ed(a,0,1,"float32",s),o)),o);return z(r,i)}var QA=W({dropout_:ez});function e5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function K0(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),is(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=m6("bool",l);for(let p=0;pg.value-m.value),c[p]=0;for(let m=0;mrz,depthwiseConv2d:()=>lz,matMul:()=>cz});function nz(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),O(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),ls("conv2dDerFilter",r,o);let p={x:i,dy:l},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(t0,p,d)}var t5=W({conv2DBackpropFilter_:nz});function Z0(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,iu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Y0(e,t){let n=t,s=on(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),V(n,e.shape)}function J0(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Wr(e);if(t==="elu")return Xc(e);if(t==="relu6")return M0(e);if(t==="prelu")return wh(e,n);if(t==="leakyrelu")return gh(e,s);if(t==="sigmoid")return $n(e);throw new Error(`Unknown fused activation ${t}.`)}var Q0=(e,t)=>!(e>0)||t==="linear";function sz({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Q0(B.state.gradientDepth,l)===!1){O(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let S=ka(e,t,n,s,r,a,o);return i!=null&&(S=ue(S,i)),J0(S,l,u,c)}let p=$(e,"x","conv2d","float32"),d=$(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),ls("fused conv2d",s,o);let m=r==="NHWC"?h.shape[3]:h.shape[1];O(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),O(aa(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let g=ph(h.shape,d.shape,n,a,s,o),y;i!=null&&(y=$(i,"bias","fused conv2d"),[y]=Ht(y,p),r==="NHWC"?wt(g.outShape,y.shape):(O(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),O(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let x;if(u!=null){let S=u.shape;if(O(S.length<=1||S.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${S.length}.`),S.length===1)O(S[0]===1||S[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${S}) is not compatible with the number of output channels (${g.outChannels}).`);else if(S.length===3)try{wt(S,g.outShape)}catch(k){let E=`Error in fused conv2d: PReLU activation weights (${S}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}x=$(u,"prelu weights","fused conv2d")}let A=(S,k)=>{O(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,_,D,R]=k,P=Z0(S,D,l);O(so(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let C=vA(_.shape,P,E,n,s),M=t5(_,P,E.shape,n,s),L=[C,M];if(R!=null){let G=Y0(R,P);L.push(G)}return L},b={x:h,filter:d,bias:y,preluActivationWeights:x},w={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?sa((k,E,_)=>{let D=B.runKernel(to,b,w);return _([E,k,D]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:A}})(h,d):sa((k,E,_,D)=>{let R=B.runKernel(to,b,w);return D([E,k,R,_]),f&&(R=V(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(h,d,y)}var rz=W({fusedConv2d_:sz});function az(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(a0,u,c)}var o8=W({depthwiseConv2dNativeBackpropFilter_:az});function oz(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},p=B.runKernel(o0,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var i8=W({depthwiseConv2dNativeBackpropInput_:oz});function iz({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Q0(B.state.gradientDepth,l)===!1){let w=qc(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),J0(w,l,u,c)}let p=$(e,"x","depthwiseConv2d","float32"),d=$(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),O(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),O(aa(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),ls("fused depthwiseConv2d",s,o);let m=ph(h.shape,d.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Ht(g,p),wt(m.outShape,g.shape));let y;u!=null&&(y=$(u,"prelu weights","fused depthwiseConv2d"));let x=(w,S)=>{O(so(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[k,E,_,D]=S,R=Z0(w,_,l),P=i8(E.shape,R,k,n,s,a,o),C=o8(E,R,k.shape,n,s,a,o);if(D!=null){let M=Y0(g,R);return[P,C,M]}return[P,C]},A={x:h,filter:d,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?sa((S,k,E)=>{let _=B.runKernel(no,A,b);return E([k,S,_]),f&&(_=V(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:x}})(h,d):sa((S,k,E,_)=>{let D=B.runKernel(no,A,b);return _([k,S,D,E]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:x}})(h,d,g)}var lz=W({fusedDepthwiseConv2d_:iz});function uz({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i=.2}){if(Q0(B.state.gradientDepth,a)===!1){let R=et(e,t,n,s);return r!=null&&(R=ue(R,r)),J0(R,a,o,i)}let l=$(e,"a","fused matMul"),u=$(t,"b","fused matMul");[l,u]=Ht(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=s?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Et(f),y=Et(m);O(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=wt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),b=n?V(l,[g,c,d]):V(l,[g,d,c]),w=s?V(u,[y,h,p]):V(u,[y,p,h]),S;r!=null&&(S=$(r,"bias","fused matMul"),[S]=Ht(S,l),wt(A,S.shape));let k;o!=null&&(k=$(o,"prelu weights","fused matMul"));let E=(R,P)=>{let[C,M,L,G]=P,K=Z0(V(R,L.shape),L,a),X,Y;if(!n&&!s?(X=et(K,M,!1,!0),Y=et(C,K,!0,!1)):!n&&s?(X=et(K,M,!1,!1),Y=et(K,C,!0,!1)):n&&!s?(X=et(M,K,!1,!0),Y=et(C,K,!1,!1)):(X=et(M,K,!0,!0),Y=et(K,C,!0,!0)),r!=null){let ne=Y0(G,K);return[X,Y,ne]}else return[X,Y]},_={a:b,b:w,bias:S,preluActivationWeights:k},D={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?sa((P,C,M)=>{let L=B.runKernel(eo,_,D);return M([P,C,L]),{value:V(L,A),gradFunc:E}})(b,w):sa((P,C,M,L)=>{let G=B.runKernel(eo,_,D);return L([P,C,G,M]),{value:V(G,A),gradFunc:E}})(b,w,S)}var cz=W({fusedMatMul_:uz});function dz(e){return K0(e,.54,.46)}var pz=W({hammingWindow_:dz});function hz(e){return K0(e,.5,.5)}var l8=W({hannWindow_:hz});function fz(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(ze(e,a,t)),a+=n;if(s)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},p={method:r,extrapolationValue:a,cropSize:s};return B.runKernel(yl,c,p)}var Az=W({cropAndResize_:yz});function xz(e){let t=$(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(wl,n,{})}var bz=W({flipLeftRight_:xz});function vz(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ks(t,r)}var wz=W({grayscaleToRGB_:vz});function kz(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return B.runKernel(eu,a,o)}var Sz=W({rotateWithOffset_:kz});function td(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function Iz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression","float32"),o=$(t,"scores","nonMaxSuppression","float32"),i=td(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return B.runKernel($l,{boxes:a,scores:o},l)}var Cz=W({nonMaxSuppression_:Iz});function Tz(e,t,n){let s=Nz(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function Nz(e,t,n){return Rz(e,t,n||Ez)}function Ez(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function c8(e,t,n,s,r){return n5(e,t,n,s,r,0)}function d8(e,t,n,s,r,a){return n5(e,t,n,s,r,0,!1,a,!0)}function p8(e,t,n,s,r,a){return n5(e,t,n,s,r,a,!0)}function n5(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;gr&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Pv);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length0;){let g=u.pop(),{score:y,boxIndex:x,suppressBeginIndex:A}=g;if(y=A;--w){let S=_z(e,x,p[w]);if(S>=s){b=!0;break}if(g.score=g.score*Dz(s,c,S),g.score<=r)break}g.suppressBeginIndex=p.length,b||(g.score===y?(p.push(x),d.push(g.score)):g.score>r&&Tz(u,g,Pv))}let h=p.length,f=n-h;i&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return o&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function _z(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(p-u)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,p),x=Math.min(l,d),A=Math.max(y-m,0)*Math.max(x-g,0);return A/(h+f-A)}function Dz(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Pv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function $z(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=td(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:p}=c8(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Pt(p,"int32")}var Pz=$z;function Fz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=td(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=B.runKernel(Pl,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var Oz=W({nonMaxSuppressionWithScore_:Fz});async function Mz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=td(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:d,selectedScores:h}=p8(c,p,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Pt(d,"int32"),selectedScores:Pt(h)}}var zz=Mz;function Lz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=td(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,d={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=B.runKernel(Oc,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var Bz=W({nonMaxSuppressionPadded_:Lz});async function Wz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=td(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=d8(d,h,u,c,p,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Pt(f,"int32"),validOutputs:Ce(m,"int32")}}var Vz=Wz;function Uz(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Zo,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var h8=W({resizeBilinear_:Uz});function Gz(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Ko,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var f8=W({resizeNearestNeighbor_:Gz});function Hz(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Pt([s]),255),c,p,d,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Yt(r,[1,1,1],-1);let g=z(c,a),y=z(p,o),x=z(d,i);h=ue(ue(g,y),x)}else h=e;if(t==="otsu"){let g=gA(ye(z0(h),"int32"),ct([]),256);u=jz(g,l)}let f=n?di(h,u):ws(h,u);return ye(z(f,255),"int32")}function jz(e,t){let n=Pt([-1]),s=Pt([0]),r=Pt([0]),a,o,i,l,u,c;for(let p=0;p`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return B.runKernel(Yl,l,u)}var Kz=W({transform_:Xz});function Zz(e,t,n){O(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=V(oc(0,a,1,"int32"),[-1,1]),l=oc(0,o,1,"int32"),u=me(i,l),c=mr(di(u,Ce(+t,"int32")),ci(u,Ce(-n,"int32"))),p=Vt([a,o],s.dtype);return V(ln(On(V(s,[-1,a,o])).map(d=>Gn(c,d,p))),r)}var Yz=W({bandPart_:Zz});function Jz(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Yt(e,e.shape[0],0).map(r=>rt(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r{let a=s[r];if(r>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Fv(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=On(V(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Fv(l,t);r.push(u),a.push(c)});let o=V(ln(r,0),e.shape),i=V(ln(a,0),e.shape);return[o,i]}}function Fv(e,t=!1){return B.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=E0(n),a=Vn(e),o=fr([[1]],[1,1]),i=Vn(o),l=n>=s?s:n;for(let u=0;u{let h=ze(a,[u,u],[n-u,1]),f=Kc(h),m=ze(a,[u,u],[1,1]),g=Gn(ws(m,0),fr([[-1]]),fr([[1]])),y=me(m,z(g,f)),x=fe(h,y);x.shape[0]===1?i=Vn(o):i=It([o,ze(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let A=$t(fe(et(g,y),f)),b=ze(a,[u,0],[n-u,s]),w=z(A,i),S=tt(i);if(u===0)a=me(b,et(w,et(S,b)));else{let _=me(b,et(w,et(S,b)));a=It([ze(a,[0,0],[u,s]),_],0)}let k=tt(w),E=ze(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=me(E,et(et(E,i),k));else{let _=me(E,et(et(E,i),k));r=It([ze(r,[0,0],[n,u]),_],1)}return[i,a,r]}),J([c,p,d])}return!t&&n>s&&(r=ze(r,[0,0],[n,s]),a=ze(a,[0,0],[s,s])),[r,a]})}var tL=W({qr_:eL}),ss;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(ss||(ss={}));function nL(e,t,n=ss.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===ss.NONE)return a;if(n===ss.SUM)return ke(a);if(n===ss.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=fe(ke(a),ke(r));return o>1?fe(i,Ce(o)):i}}if(n===ss.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(ke(a),Ce(s.size));{let o=z(r,$s(s.shape)),i=ye(ke(rl(o,Ce(0))),"float32");return fe(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ra=W({computeWeightedLoss_:nL});function sL(e,t,n,s=ss.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),is(r.shape,a.shape,"Error in absoluteDifference: ");let i=sn(me(r,a));return Ra(i,o,s)}var rL=W({absoluteDifference_:sL});function aL(e,t,n,s,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),is(a.shape,o.shape,"Error in cosineDistance: ");let l=Ce(1),u=me(l,ke(z(a,o),n,!0));return Ra(u,i,r)}var oL=W({cosineDistance_:aL});function iL(e,t,n,s=ss.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),is(r.shape,a.shape,"Error in hingeLoss: ");let i=Ce(1);r=me(z(Ce(2),r),i);let l=Wr(me(i,z(r,a)));return Ra(l,o,s)}var lL=W({hingeLoss_:iL});function uL(e,t,n,s=1,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),is(a.shape,o.shape,"Error in huberLoss: ");let l=Ce(s),u=sn(me(o,a)),c=Qc(u,l),p=me(u,c),d=ue(z(Ce(.5),bt(c)),z(l,p));return Ra(d,i,r)}var cL=W({huberLoss_:uL});function dL(e,t,n,s=1e-7,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),is(a.shape,o.shape,"Error in logLoss: ");let l=Ce(1),u=Ce(s),c=$t(z(a,Ms(ue(o,u)))),p=z(me(l,a),Ms(ue(me(l,o),u))),d=me(c,p);return Ra(d,i,r)}var pL=W({logLoss_:dL});function hL(e,t,n,s=ss.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),is(r.shape,a.shape,"Error in meanSquaredError: ");let i=j0(r,a);return Ra(i,o,s)}var fL=W({meanSquaredError_:hL});function mL(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");is(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Wr(s),a=z(s,n),o=yh(Os($t(sn(s))));return ue(me(r,a),o)}function gL(e,t,n,s=0,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),is(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(.5);a=ue(z(a,me(c,u)),z(p,u))}let l=mL(a,o);return Ra(l,i,r)}var yL=W({sigmoidCrossEntropy_:gL});function AL(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return sa((r,a,o)=>{let l=$0(a,[n],!0),u=me(ye(a,"float32"),l);o([r,u]);let c=$t(z(u,r));return{value:ke(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=sl(h.shape,[n]);return[z(V(h,y),me(ye(m,"float32"),Os(g))),z(V(h,y),me(Os(g),ye(m,"float32")))]}}})(e,t)}function xL(e,t,n,s=0,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),is(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(a.shape[1]);a=ue(z(a,me(c,u)),fe(u,p))}let l=AL(a,o);return Ra(l,i,r)}var bL=W({softmaxCrossEntropy_:xL});function vL(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows","int32"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows","int32"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape + ${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=B.runKernel(Jp,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var wL=W({sparseFillEmptyRows_:vL});function kL(e,t,n){let s=$(e,"inputIndices","sparseReshape","int32"),r=$(t,"inputShape","sparseReshape","int32"),a=$(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape + ${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=B.runKernel(Wc,o);return{outputIndices:i[0],outputShape:i[1]}}var SL=W({sparseReshape_:kL});function IL(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean","int32"),a=$(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape - ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(rh,o)}var nB=B({sparseSegmentMean_:tB});function sB(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum","int32"),a=$(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape + ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Qp,o)}var CL=W({sparseSegmentMean_:IL});function TL(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum","int32"),a=$(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape - ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(ah,o)}var rB=B({sparseSegmentSum_:sB});function aB(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=$(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},p={data:l,dataSplits:u},d=L.runKernel(jc,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var oB=B({stringNGrams_:aB});function iB(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=L.runKernel(ih,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var lB=B({stringSplit_:iB});function uB(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(lh,r,s)}var cB=B({stringToHashBucketFast_:uB}),kk={fft:Eh,ifft:ic,rfft:Rh,irfft:Y0},Ik={hammingWindow:Vz,hannWindow:gk,frame:yk,stft:jz},Se={flipLeftRight:Zz,grayscaleToRGB:Jz,resizeNearestNeighbor:wk,resizeBilinear:vk,rotateWithOffset:eL,cropAndResize:Xz,nonMaxSuppression:nL,nonMaxSuppressionAsync:cL,nonMaxSuppressionWithScore:pL,nonMaxSuppressionWithScoreAsync:fL,nonMaxSuppressionPadded:gL,nonMaxSuppressionPaddedAsync:AL,threshold:kL,transform:SL},l5={bandPart:TL,gramSchmidt:EL,qr:_L},Sk={absoluteDifference:PL,computeWeightedLoss:Ua,cosineDistance:OL,hingeLoss:zL,huberLoss:BL,logLoss:VL,meanSquaredError:GL,sigmoidCrossEntropy:qL,softmaxCrossEntropy:ZL},Ck={sparseFillEmptyRows:JL,sparseReshape:eB,sparseSegmentMean:nB,sparseSegmentSum:rB},Tk={stringNGrams:oB,stringSplit:lB,stringToHashBucketFast:cB},Ga=class extends x6{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return J(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return M6(e,t)}dispose(){this.iterations_!=null&&J(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ga,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var o2=class extends Ga{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:Z(()=>it(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:Z(()=>it(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;Z(()=>{let u=ue(z(i,this.rho),z(bt(o),1-this.rho)),c=z(fe(Fn(ue(l,this.epsilon)),Fn(ue(i,this.epsilon))),o),p=ue(z(l,this.rho),z(bt(c),1-this.rho));i.assign(u),l.assign(p);let d=ue(z(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(J(this.accumulatedGrads.map(e=>e.variable)),J(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};o2.className="Adadelta";xi(o2);var i2=class extends Ga{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:Z(()=>Qc(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;Z(()=>{let i=ue(o,bt(a));o.assign(i);let l=ue(z(fe(a,Fn(ue(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&J(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};i2.className="Adagrad";xi(i2);var l2=class extends Ga{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Z(()=>{this.accBeta1=Ce(t).variable(),this.accBeta2=Ce(n).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=me(1,this.accBeta1),s=me(1,this.accBeta2);t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Z(()=>it(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:Z(()=>it(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ue(z(u,this.beta1),z(l,1-this.beta1)),d=ue(z(c,this.beta2),z(bt(l),1-this.beta2)),h=fe(p,n),f=fe(d,s);u.assign(p),c.assign(d);let m=ue(z(fe(h,ue(Fn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&J(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&J(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Z(()=>{this.accBeta1.assign(Ca(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ca(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};l2.className="Adam";xi(l2);var u2=class extends Ga{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Z(()=>{this.iteration=Ce(0).variable(),this.accBeta1=Ce(t).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=me(1,this.accBeta1),s=fe(-this.learningRate,ue(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:it(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:it(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ue(z(u,this.beta1),z(l,1-this.beta1)),d=z(c,this.beta2),h=sn(l),f=la(d,h);u.assign(p),c.assign(f);let m=ue(z(fe(s,n),fe(p,ue(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ue(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&J(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&J(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};u2.className="Adamax";xi(u2);var _h=class extends Ga{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=L.registeredVariables[n];Z(()=>{let o=ue(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=wn(Ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};_h.className="SGD";xi(_h);var c2=class extends _h{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ce(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:Z(()=>it(r).variable(!1))});let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&Z(()=>{let i,l=ue(z(this.m,a),o);this.useNesterov?i=ue(z(this.c,ue(o,z(l,this.m))),r):i=ue(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&J(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};c2.className="Momentum";xi(c2);var d2=class extends Ga{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:Z(()=>it(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:Z(()=>it(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:Z(()=>it(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;Z(()=>{let u=ue(z(i,this.decay),z(bt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ue(z(c,this.decay),z(o,1-this.decay)),d=fe(z(o,this.learningRate),Fn(me(u,ue(bt(p),this.epsilon)))),h=ue(z(l,this.momentum),d);i.assign(u),c.assign(p),l.assign(h);let f=me(r,h);r.assign(f)}else{let c=ue(z(i,this.decay),z(bt(o),1-this.decay)),p=ue(z(l,this.momentum),fe(z(o,this.learningRate),Fn(ue(c,this.epsilon))));i.assign(c),l.assign(p);let d=me(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&J(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&J(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&J(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};d2.className="RMSProp";xi(d2);var oo=class{static sgd(e){return new _h(e)}static momentum(e,t,n=!1){return new c2(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new d2(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new l2(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new o2(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new u2(e,t,n,s,r)}static adagrad(e,t=.1){return new i2(e,t)}},Xi={sgd:oo.sgd,momentum:oo.momentum,adadelta:oo.adadelta,adagrad:oo.adagrad,rmsprop:oo.rmsprop,adamax:oo.adamax,adam:oo.adam},dB=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function u5(){return new Promise(e=>dB(()=>e()))}var C={};Ve(C,{ERF_A1:()=>CB,ERF_A2:()=>TB,ERF_A3:()=>NB,ERF_A4:()=>EB,ERF_A5:()=>RB,ERF_P:()=>SB,PARALLELIZE_THRESHOLD:()=>c5,RowPartitionType:()=>Zr,SELU_SCALE:()=>Ek,SELU_SCALEALPHA:()=>Nk,applyActivation:()=>r2,assertAndGetBroadcastShape:()=>wt,assertAxesAreInnerMostDims:()=>AO,assertParamsConsistent:()=>pB,assignToTypedArray:()=>OB,axesAreInnerMostDims:()=>PA,calculateShapes:()=>u6,checkEinsumDimSizes:()=>VB,checkPadOnDimRoundingMode:()=>is,combineLocations:()=>D6,combineRaggedTensorToTensorShapes:()=>fB,complexWithEvenIndex:()=>$B,complexWithOddIndex:()=>PB,computeConv2DInfo:()=>yh,computeConv3DInfo:()=>I6,computeDefaultPad:()=>gA,computeDilation2DInfo:()=>xF,computeOptimalWindowSize:()=>AB,computeOutAndReduceShapes:()=>$6,computeOutShape:()=>hB,computePool2DInfo:()=>k6,computePool3DInfo:()=>bF,convertConv2DDataFormat:()=>S6,decodeEinsumEquation:()=>BB,eitherStridesOrDilationsAreOne:()=>ia,expandShapeToKeepDim:()=>pl,exponent:()=>zB,exponents:()=>MB,fromStringArrayToUint8:()=>uW,fromUint8ToStringArray:()=>lW,getAxesPermutation:()=>P6,getBroadcastDims:()=>o6,getComplexWithIndex:()=>FB,getEinsumComputePath:()=>UB,getEinsumPermutation:()=>WB,getFusedBiasGradient:()=>s2,getFusedDyActivation:()=>n2,getImageCenter:()=>xB,getInnerMostAxes:()=>xO,getPermuted:()=>vB,getRaggedRank:()=>gB,getReductionAxes:()=>ln,getReshaped:()=>bB,getReshapedPermuted:()=>wB,getRowPartitionTypesHelper:()=>mB,getSliceBeginCoords:()=>kB,getSliceSize:()=>IB,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>qB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>XB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>KB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>JB,getSparseReshapeInputOutputMismatchErrorMessage:()=>eW,getSparseReshapeInputOutputMultipleErrorMessage:()=>QB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>ZB,getSparseReshapeNegativeOutputDimErrorMessage:()=>YB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>rW,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>tW,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>nW,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>sW,getUndoAxesPermutation:()=>FA,isIdentityPermutation:()=>GB,log:()=>VD,mergeRealAndImagArrays:()=>_B,prepareAndValidate:()=>l6,prepareSplitSize:()=>jB,segment_util:()=>Rk,shouldFuse:()=>a2,slice_util:()=>Pt,splitRealAndImagArrays:()=>DB,tupleValuesAreOne:()=>vo,upcastType:()=>Pn,validateDefaultValueShape:()=>yB,validateInput:()=>rA,validateUpdateShape:()=>sA,warn:()=>lo});function pB(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function hB(e,t){let n=e[0].slice();for(let s=1;s=0)if(i>=0){if(i!==a)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${a} but shape[${r+e}] = ${i}`)}else s[o]=a}return s}function mB(e){let t={FIRST_DIM_SIZE:Zr.FIRST_DIM_SIZE,VALUE_ROWIDS:Zr.VALUE_ROWIDS,ROW_LENGTHS:Zr.ROW_LENGTHS,ROW_SPLITS:Zr.ROW_SPLITS,ROW_LIMITS:Zr.ROW_LIMITS,ROW_STARTS:Zr.ROW_STARTS},n=[];for(let s of e)if(s in t)n.push(t[s]);else break;return n}function gB(e){return e.length===0?0:e[0]===Zr.FIRST_DIM_SIZE?e.length-1:e.length}function yB(e,t){if(e==null||t==null)return;let n=e.length,s=t.length;if(n>=s)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${s})`);for(let r=0;r=0&&o>=0&&a!==1&&a!==o)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${a} but ragged tensor input.flatValues.shape[${r-e.length}] = ${o}`)}}var c5=30;function AB(e){return e<=c5?e:km(e,Math.floor(Math.sqrt(e)))}function xB(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function bB(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o=t*2+1||o%2===1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function wB(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a/g,Uv=",",Gv="...";function BB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(LB,"").length)/w3.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${w3}").`);let[s,r]=e.split(w3);O(s.indexOf(Gv)===-1,()=>`The ellipsis notation ("${Gv}") is not supported yet.`);let a=s.split(Uv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let d=0;df.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let d=0;dr!==-1),{permutationIndices:n,expandDims:s}}function VB(e,t,n){let s=new Array(e);for(let r=0;r`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function UB(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;ot===n)}function HB(e,t){let n=[];for(let s=0;s"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function qB(e){return`Received SparseTensor with denseShape[0] = 0 but - indices.shape[0] = ${e}`}function XB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function KB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function ZB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function YB(e,t){return`size ${e} must be non-negative, not ${t}`}function JB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function QB(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a SparseTensor with ${n} - dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function eW(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function tW(){return"segment ids must be >= 0"}function nW(){return"segment ids are not increasing"}function sW(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function rW(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var Rk={};Ve(Rk,{collectGatherOpShapeInfo:()=>iW,computeOutShape:()=>oW,segOpComputeOptimalWindowSize:()=>aW});function aW(e,t){let n=!1,s;for(e<=c5?(s=e,n=!0):s=km(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=km(e,s+1);return s}function oW(e,t,n){let s=[],r=e.length;for(let a=0;ar))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) ( - ${a}).`);if(nTm(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function uW(e){return e.map(t=>dh(t))}var Ar={};Ve(Ar,{nonMaxSuppressionV3Impl:()=>Ak,nonMaxSuppressionV4Impl:()=>xk,nonMaxSuppressionV5Impl:()=>bk,whereImpl:()=>ik});var _k={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,iu(ye(n,"float32"),-1))}}},cW={kernelName:bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=bt(ye(n,"float32")),r=Fn(me(Ce(1),s));return $t(fe(e,r))}}}},dW={kernelName:vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Fn(me(bt(ye(n,"float32")),1));return fe(e,s)}}}},pW={kernelName:oa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=ln(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=ln(s.shape,r);return l.length>0&&(i=ke(i,l)),V(i,s.shape)}}}},hW={kernelName:_o,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},fW={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>it(n)}}},mW={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>it(n)}}},gW={kernelName:Sc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Fn(me(Ce(1),bt(ye(n,"float32")))))}}},yW={kernelName:Cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Fn(ue(Ce(1),bt(ye(n,"float32"))));return fe(e,s)}}}},AW={kernelName:Ec,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=ue(bt(n),bt(s)),l=z(e,fe(s,i)),u=ln(n.shape,r);return u.length>0&&(l=ke(l,u)),V(l,n.shape)},b:()=>{let i=ue(bt(n),bt(s)),l=$t(z(e,fe(n,i))),u=ln(s.shape,r);return u.length>0&&(l=ke(l,u)),V(l,s.shape)}}}},xW={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(bt(ye(n,"float32")),1))}}},bW={kernelName:Nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,me(Ce(1),bt(ye(n,"float32"))))}}};function vW(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),is("avgPool3dGrad",r,a);let p={dy:l,input:u},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=L.runKernel(r0,p,d);return c?V(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var wW=B({avgPool3dGrad_:vW}),kW={kernelName:qp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>wW(e,s,r,a,o,i)}}};function IW(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:n,strides:s,pad:r},d=L.runKernel(s0,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var SW=B({avgPoolGrad_:IW}),CW={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>SW(e,s,r,a,o)}}},TW={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Qe(e,r,!1,!0),b:()=>Qe(s,e,!0,!1)}:!a&&o?{a:()=>Qe(e,r,!1,!1),b:()=>Qe(e,s,!0,!1)}:a&&!o?{a:()=>Qe(r,e,!1,!0),b:()=>Qe(s,e,!1,!1)}:{a:()=>Qe(r,e,!0,!0),b:()=>Qe(e,s,!0,!0)}}},NW={kernelName:wl,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>Ch(e,s,r)}}},EW={kernelName:$w,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l1&&i.push(l);return{x:()=>ke(e,i,!0)}}},RW={kernelName:Fo,gradFunc:e=>({x:()=>e.clone()})},_W={kernelName:Na,gradFunc:e=>({x:()=>it(e)})},DW={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Gn(gr(bi(s,r),vi(s,a)),e,it(e))}}},$W={kernelName:Kp,inputsToSave:["x"],gradFunc:_k.gradFunc},PW={kernelName:kl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=yr(r,t[0].shape)[0],o=s.map(l=>l[a]);return Yt(e,o,a).map(l=>()=>l)}},FW={kernelName:Oo,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(vo(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>CA(s.shape,e,r,o,i,l),filter:()=>o5(s,e,r.shape,o,i,l)}}},OW={kernelName:Mo,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Ia(e,r,a,o,i,1,l),filter:()=>o5(e,s,r.shape,a,o,i,l)}}};function MW(e,t,n,s,r){let a=e;e.rank===4&&(a=V(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return L.runKernel(l0,i,l)}var zW=B({conv3DBackpropFilter_:MW}),LW={kernelName:Zp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(vo(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>N6(o.shape,e,i,r,a),filter:()=>zW(o,e,i.shape,r,a)}}},BW={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z($t(X0(ye(n,"float32"))),e)}}},WW={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(K0(ye(n,"float32")),e)}}},VW={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=P6([r],s.rank),l=P0(e,r,a,!o);return i!=null&&(l=et(l,i)),l}}}},UW={kernelName:Wo,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(vo(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),O(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),O(ia(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),is("depthwiseConv2d",a,o),{x:()=>mk(l.shape,e,u,r,a,i,o),filter:()=>fk(l,e,u.shape,r,a,i,o)}}},GW={kernelName:Yp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>L.runKernel(Im,a,n),filter:()=>L.runKernel(Sm,o,n)}}},HW={kernelName:Uo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>L.runKernel(f0,s)}}},jW={kernelName:Rc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(Os($t(bt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},qW={kernelName:Ra,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},XW={kernelName:Tl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>V(e,n.shape)}}},KW={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Os(n))}}},ZW={kernelName:_a,gradFunc:e=>({x:()=>it(e)})},YW={kernelName:jo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=fe(e,ye(s,"float32")),l=ln(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=ln(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(fe(i,ye(u,"float32")))}}}},JW={kernelName:qo,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ce(1):i,u=ln(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;ba.rank===1?V(z(z(e,Ys(V(h,[1,1,1,a.shape[0]]),c)),l),r.shape):V(z(z(e,h),l),r.shape),mean:()=>{let b=z(z(h,Ce(-1)),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},variance:()=>{let b=z(z(f,p),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},scale:()=>{let b=z(p,h),w=z(e,b);return a.rank===1&&(w=ke(w,u)),V(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,u)),V(b,a.shape)}}}},QW={kernelName:El,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=yr(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),p=c.length,d=l.slice(a,l.length).slice(1),h=d.length,f=Hv(0,p),m=Hv(p+1,p+1+h),g=jv([c,[u],d]),y=V(e,g),x=V(r,[u]),A=jv([[p],f,m]),b=et(y,A),w=e2(b,x,s.shape[o]),I=FA(A);return w=et(w,I),w},indices:()=>r}}};function Hv(e,t){let n=[];for(let s=e;s{let[n,s]=t;return{a:()=>it(n),b:()=>it(s)}}},tV={kernelName:Ko,gradFunc:e=>({x:()=>ye(e,"float32")})},nV={kernelName:Dc,gradFunc:e=>({x:()=>it(e)})},sV={kernelName:$c,gradFunc:e=>({x:()=>it(e)})},rV={kernelName:Pc,gradFunc:e=>({x:()=>it(e)})},aV={kernelName:Zo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=ws(s,0);return{x:()=>Gn(a,e,z(e,r))}}},oV={kernelName:Fc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(n,1))}}},iV={kernelName:$a,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ye(n,"float32"))}}},lV={kernelName:Fw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let o=Os(s);return me(e,z(ke(e,r,!0),o))}}}};function uV(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return L.runKernel(A0,i,l)}var cV=B({localResponseNormalizationBackprop_:uV}),dV={kernelName:eh,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>cV(s,r,e,a,o,i,l)}}};function Dk(e,t,n,s){return t.rankz(e,ye(Fs(n,t),e.dtype))}}var qv={kernelName:Qo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=yr(r,a.shape),l=Dk(e,o,a,i);return{x:()=>l.x()}}},pV={kernelName:Pa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(bi(n,s),"float32")),b:()=>z(e,ye(O0(n,s),"float32"))}}};function hV(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),u=$(n,"output","maxPool3dGrad"),c=i,p=l,d=u,h=!1;l.rank===4&&(h=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=V(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=V(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),O(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),is("maxPool3dGrad",a,o);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=L.runKernel(b0,f,m);return h?V(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var fV=B({maxPool3dGrad_:hV}),mV={kernelName:th,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>fV(e,s,r,a,o,i,l)}}};function gV(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),u=$(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),is("maxPoolGrad",a,o);let c={dy:i,input:l,output:u},p={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return L.runKernel(x0,c,p)}var yV=B({maxPoolGrad_:gV}),AV={kernelName:ei,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>yV(e,s,r,a,o,i)}}},xV={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=yr(r,s.shape),i=$6(s.shape,a)[1],l=Et(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=V(e,c);return fe(z(p,$s(s.shape,"float32")),l)}}}},bV={kernelName:ni,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=yr(r,a.shape),l=Dk(e,o,a,i);return{x:()=>l.x()}}},vV={kernelName:Fa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(vi(n,s),"float32")),b:()=>z(e,ye(ws(n,s),"float32"))}}},wV={kernelName:si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Le(e,a,s.shape)}}},kV={kernelName:Mc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=ln(n.shape,r);return i.length>0?V(ke(e,i),n.shape):e},b:()=>{let i=z(e,$t(ed(fe(n,s)))),l=ln(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},IV={kernelName:Oa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=z(e,ye(s,"float32")),l=ln(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=ln(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},SV={kernelName:$l,gradFunc:e=>({x:()=>$t(e)})},CV={kernelName:Ml,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ut(n.shape,"float32")}}},TV={kernelName:Ol,gradFunc:e=>({x:()=>it(e)})},NV={kernelName:zl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return On(e,s).map(a=>()=>a)}},Xv={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Le(e,a,s.shape)}}},EV={kernelName:oi,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=wt(a.shape,o.shape);return{a:()=>{let c=ye(o,"float32"),p=z(e,z(c,Ca(a,me(c,Ce(1))))),d=ln(a.shape,i);return d.length>0&&(p=ke(p,d)),V(p,a.shape)},b:()=>{let c=ws(a,0),p=Gn(c,Ms(a),it(a)),d=z(e,z(r,p)),h=ln(o.shape,i);return h.length>0&&(d=ke(d,h)),V(d,o.shape)}}}},RV={kernelName:ii,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=ws(n,0);return{x:()=>Gn(r,e,z(e,s)),alpha:()=>{let a=Gn(r,it(e),z(e,n)),o=ln(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),V(a,s.shape)}}}};function _V(e,t,n){let s=e.shape.slice();s[n]=1;let r=V(t,s),a=Fp(e,n,!0,!1),o=Fp(e,n,!0,!0),i=z(a,o);return z(r,i)}function DV(e,t,n){let s=e.shape.length,r=s-n.length,a=C.getAxesPermutation(n,s),o=e;a!=null&&(o=et(e,a));let i=o.shape.slice(),u=i.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);i.push(u);let c=o.reshape(i),p=_V(c,t,r);if(p=p.reshape(o.shape),a!=null){let d=C.getUndoAxesPermutation(a);p=et(p,d)}return p}var $V={kernelName:li,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((o,i)=>i):typeof r=="number"?a=[r]:a=r,{x:()=>DV(s,e,a)}}},PV={kernelName:Vo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=fe(e,ye(s,"float32")),l=ln(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=ln(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(fe(i,ye(u,"float32")))}}}},FV={kernelName:Bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,$t(bt(n)))}}},OV={kernelName:pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(vi(n,6),iu(n));return{x:()=>z(e,ye(s,"float32"))}}},MV={kernelName:ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ye(iu(n),"float32"))}}},zV={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n.shape)}}},LV={kernelName:di,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(S0,r,n)}}},BV={kernelName:ci,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(I0,r,n)}}},WV={kernelName:Bl,gradFunc:(e,t,n)=>{let{dims:s}=n,r=yr(s,e.shape);return{x:()=>tr(e,r)}}},VV={kernelName:Wl,gradFunc:e=>({x:()=>it(e)})},UV={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>$t(fe(e,z(Ca(n,1.5),2)))}}},GV={kernelName:Ul,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ye(it(n),"float32"),t:()=>z(e,ye(n,e.dtype)),e:()=>z(e,ye(kh(n),e.dtype))}}},HV={kernelName:Wc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ws(n,Ce(0)),r=Ce(Nk),a=Ce(Ek),o=z(e,a),i=z(z(e,r),Os(ye(n,"float32")));return Gn(s,o,i)}}}},jV={kernelName:za,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,me(Ce(1),n)))}}},qV={kernelName:Vc,gradFunc:e=>({x:()=>it(e)})},XV={kernelName:hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(bh(ye(n,"float32")),e)}}},KV={kernelName:Hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z($0(ye(n,"float32")),e)}}},ZV={kernelName:Gl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=A6(s,r,a),u=[];for(let c=0;crr(e,u)}}},YV={kernelName:mi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>me(o,z(ke(o,[r],a),s))}}},JV={kernelName:Uc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Dn(n))}}},Kv={kernelName:jl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>xh(e,s,r)}}},Zv={kernelName:ql,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>St(e,s)}}},QV={kernelName:La,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,z(Fn(ye(n,"float32")),2))}}},eU={kernelName:Hc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ye(n,"float32"),2))}}},tU={kernelName:Ba,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ce(2);return{a:()=>z(e,z(r,me(n,s))),b:()=>z(e,z(r,me(s,n)))}}},nU={kernelName:yi,gradFunc:e=>({x:()=>it(e)})},sU={kernelName:Wa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=ln(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=ln(s.shape,r);return l.length>0&&(i=ke(i,l)),V($t(i),s.shape)}}}},rU={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;yr(a,s.shape).forEach(u=>{r[u]=1});let i=V(e,r),l=z(i,$s(s.shape,"float32"));return{x:()=>l}}},aU={kernelName:Kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,bt(bh(n)))}}},oU={kernelName:gi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(me(Ce(1),bt(n)),e)}}},iU={kernelName:Va,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=it(s);if(s.rank===1)for(let i=0;i{let s=n,{perm:r}=s,a=FA(r);return{x:()=>et(e,a)}}},uU={kernelName:Jl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>un(e,r)}}},cU={kernelName:uh,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>dU(e,n)}}};function dU(e,t){let n=la(t,it(t)),s=td(e,n),r=bi(t,Ce(0,"int32")),a=s.rank-r.rank;for(let i=0;i({x:()=>it(e)})},hU=[_k,cW,dW,pW,hW,fW,mW,gW,yW,AW,xW,bW,kW,CW,TW,NW,EW,RW,_W,DW,$W,PW,OW,FW,LW,BW,WW,VW,UW,GW,PV,HW,jW,qW,XW,KW,YW,ZW,JW,QW,eV,tV,nV,sV,rV,aV,oV,iV,lV,dV,qv,qv,pV,mV,AV,xV,bV,vV,wV,kV,IV,SV,CV,TV,NV,Xv,Xv,EV,RV,$V,FV,OV,MV,zV,LV,BV,WV,VV,UV,GV,HV,jV,qV,XV,KV,ZV,YV,JV,Kv,Kv,Zv,Zv,QV,tU,eU,nU,sU,rU,aU,oU,iU,lU,uU,cU,pU];for(let e of hU)Ow(e);re().prototype.abs=function(){return this.throwIfDisposed(),sn(this)};re().prototype.acos=function(){return this.throwIfDisposed(),lA(this)};re().prototype.acosh=function(){return this.throwIfDisposed(),uA(this)};re().prototype.add=function(e){return this.throwIfDisposed(),ue(this,e)};re().prototype.all=function(e,t){return this.throwIfDisposed(),R0(this,e,t)};re().prototype.any=function(e,t){return this.throwIfDisposed(),Pp(this,e,t)};re().prototype.argMax=function(e){return this.throwIfDisposed(),Ps(this,e)};re().prototype.argMin=function(e){return this.throwIfDisposed(),cA(this,e)};re().prototype.asScalar=function(){return this.throwIfDisposed(),O(this.size===1,()=>"The array must have only 1 element."),V(this,[])};re().prototype.asType=function(e){return this.throwIfDisposed(),ye(this,e)};re().prototype.as1D=function(){return this.throwIfDisposed(),V(this,[this.size])};re().prototype.as2D=function(e,t){return this.throwIfDisposed(),V(this,[e,t])};re().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),V(this,[e,t,n])};re().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),V(this,[e,t,n,s])};re().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),V(this,[e,t,n,s,r])};re().prototype.asin=function(){return this.throwIfDisposed(),dA(this)};re().prototype.asinh=function(){return this.throwIfDisposed(),pA(this)};re().prototype.atan=function(){return this.throwIfDisposed(),hA(this)};re().prototype.atan2=function(e){return this.throwIfDisposed(),fA(this,e)};re().prototype.atanh=function(){return this.throwIfDisposed(),mA(this)};re().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),Ah(this,e,t,n,s)};re().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),xh(this,e,t)};re().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),Kc(this,e,t,n,s,r)};re().prototype.broadcastTo=function(e){return this.throwIfDisposed(),rl(this,e)};re().prototype.cast=function(e){return this.throwIfDisposed(),ye(this,e)};re().prototype.ceil=function(){return this.throwIfDisposed(),wA(this)};re().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),xs(this,e,t)};re().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof nt&&(e=[e]),St([this,...e],t)};re().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),_0(this,e,t,n,s,r,a)};re().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),D0(this,e,t,n,s,r)};re().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Ia(this,e,t,n,s,r,a)};re().prototype.cos=function(){return this.throwIfDisposed(),bh(this)};re().prototype.cosh=function(){return this.throwIfDisposed(),$0(this)};re().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),Fp(this,e,t,n)};re().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),P0(this,e,t,n)};re().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),EA(this,e,t)};re().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Zc(this,e,t,n,s,r,a)};re().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),RA(this,e,t,n,s,r)};re().prototype.divNoNan=function(e){return this.throwIfDisposed(),_A(this,e)};re().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};re().prototype.dot=function(e){return this.throwIfDisposed(),DA(this,e)};re().prototype.elu=function(){return this.throwIfDisposed(),Yc(this)};re().prototype.equal=function(e){return this.throwIfDisposed(),Fs(this,e)};re().prototype.erf=function(){return this.throwIfDisposed(),$A(this)};re().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),OA(this,e,t)};re().prototype.exp=function(){return this.throwIfDisposed(),Os(this)};re().prototype.expandDims=function(e){return this.throwIfDisposed(),Wt(this,e)};re().prototype.expm1=function(){return this.throwIfDisposed(),MA(this)};re().prototype.fft=function(){return this.throwIfDisposed(),Eh(this)};re().prototype.flatten=function(){return this.throwIfDisposed(),V(this,[this.size])};re().prototype.floor=function(){return this.throwIfDisposed(),ed(this)};re().prototype.floorDiv=function(e){return this.throwIfDisposed(),Xc(this,e)};re().prototype.gather=function(e,t){return this.throwIfDisposed(),td(this,e,t)};re().prototype.greaterEqual=function(e){return this.throwIfDisposed(),bi(this,e)};re().prototype.greater=function(e){return this.throwIfDisposed(),ws(this,e)};re().prototype.ifft=function(){return this.throwIfDisposed(),ic(this)};re().prototype.irfft=function(){return this.throwIfDisposed(),Y0(this)};re().prototype.isFinite=function(){return this.throwIfDisposed(),zA(this)};re().prototype.isInf=function(){return this.throwIfDisposed(),LA(this)};re().prototype.isNaN=function(){return this.throwIfDisposed(),BA(this)};re().prototype.leakyRelu=function(e){return this.throwIfDisposed(),vh(this,e)};re().prototype.lessEqual=function(e){return this.throwIfDisposed(),vi(this,e)};re().prototype.less=function(e){return this.throwIfDisposed(),O0(this,e)};re().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),WA(this,e,t,n,s)};re().prototype.logSigmoid=function(){return this.throwIfDisposed(),VA(this)};re().prototype.logSoftmax=function(e){return this.throwIfDisposed(),z0(this,e)};re().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),L0(this,e,t)};re().prototype.log=function(){return this.throwIfDisposed(),Ms(this)};re().prototype.log1p=function(){return this.throwIfDisposed(),wh(this)};re().prototype.logicalAnd=function(e){return this.throwIfDisposed(),gr(this,e)};re().prototype.logicalNot=function(){return this.throwIfDisposed(),kh(this)};re().prototype.logicalOr=function(e){return this.throwIfDisposed(),B0(this,e)};re().prototype.logicalXor=function(e){return this.throwIfDisposed(),UA(this,e)};re().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Qe(this,e,t,n)};re().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),Ih(this,e,t,n,s)};re().prototype.max=function(e,t){return this.throwIfDisposed(),gn(this,e,t)};re().prototype.maximum=function(e){return this.throwIfDisposed(),la(this,e)};re().prototype.mean=function(e,t){return this.throwIfDisposed(),Vt(this,e,t)};re().prototype.min=function(e,t){return this.throwIfDisposed(),Sa(this,e,t)};re().prototype.minimum=function(e){return this.throwIfDisposed(),nd(this,e)};re().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),HA(this,e,t)};re().prototype.mod=function(e){return this.throwIfDisposed(),au(this,e)};re().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};re().prototype.neg=function(){return this.throwIfDisposed(),$t(this)};re().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Jc(this,e,t,n)};re().prototype.notEqual=function(e){return this.throwIfDisposed(),hl(this,e)};re().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),rc(this,e,t,n)};re().prototype.onesLike=function(){return this.throwIfDisposed(),zs(this)};re().prototype.pad=function(e,t){return this.throwIfDisposed(),rr(this,e,t)};re().prototype.pool=function(e,t,n,s,r,a){return this.throwIfDisposed(),jA(this,e,t,n,s,r,a)};re().prototype.pow=function(e){return this.throwIfDisposed(),Ca(this,e)};re().prototype.prelu=function(e){return this.throwIfDisposed(),Th(this,e)};re().prototype.prod=function(e,t){return this.throwIfDisposed(),qA(this,e,t)};re().prototype.reciprocal=function(){return this.throwIfDisposed(),ZA(this)};re().prototype.relu=function(){return this.throwIfDisposed(),Vr(this)};re().prototype.relu6=function(){return this.throwIfDisposed(),U0(this)};re().prototype.reshapeAs=function(e){return this.throwIfDisposed(),V(this,e.shape)};re().prototype.reshape=function(e){return this.throwIfDisposed(),V(this,e)};re().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),vk(this,e,t,n)};re().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),wk(this,e,t,n)};re().prototype.reverse=function(e){return this.throwIfDisposed(),tr(this,e)};re().prototype.rfft=function(){return this.throwIfDisposed(),Rh(this)};re().prototype.round=function(){return this.throwIfDisposed(),G0(this)};re().prototype.rsqrt=function(){return this.throwIfDisposed(),H0(this)};re().prototype.selu=function(){return this.throwIfDisposed(),j0(this)};re().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),q0(this,e,t,n,s,r,a)};re().prototype.sigmoid=function(){return this.throwIfDisposed(),Dn(this)};re().prototype.sign=function(){return this.throwIfDisposed(),YA(this)};re().prototype.sin=function(){return this.throwIfDisposed(),X0(this)};re().prototype.sinh=function(){return this.throwIfDisposed(),K0(this)};re().prototype.slice=function(e,t){return this.throwIfDisposed(),Le(this,e,t)};re().prototype.softmax=function(e){return this.throwIfDisposed(),ou(this,e)};re().prototype.softplus=function(){return this.throwIfDisposed(),ru(this)};re().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Ch(this,e,t)};re().prototype.split=function(e,t){return this.throwIfDisposed(),Yt(this,e,t)};re().prototype.sqrt=function(){return this.throwIfDisposed(),Fn(this)};re().prototype.square=function(){return this.throwIfDisposed(),bt(this)};re().prototype.squaredDifference=function(e){return this.throwIfDisposed(),J0(this,e)};re().prototype.squeeze=function(e){return this.throwIfDisposed(),st(this,e)};re().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof nt?[this,e]:[this,...e];return un(n,t)};re().prototype.step=function(e){return this.throwIfDisposed(),iu(this,e)};re().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),JA(this,e,t,n,s,r,a,o,i)};re().prototype.sub=function(e){return this.throwIfDisposed(),me(this,e)};re().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};re().prototype.tan=function(){return this.throwIfDisposed(),QA(this)};re().prototype.tanh=function(){return this.throwIfDisposed(),dl(this)};re().prototype.tile=function(e){return this.throwIfDisposed(),Ys(this,e)};re().prototype.toBool=function(){return this.throwIfDisposed(),ye(this,"bool")};re().prototype.toFloat=function(){return this.throwIfDisposed(),ye(this,"float32")};re().prototype.toInt=function(){return this.throwIfDisposed(),ye(this,"int32")};re().prototype.topk=function(e,t){return this.throwIfDisposed(),e5(this,e,t)};re().prototype.transpose=function(e){return this.throwIfDisposed(),et(this,e)};re().prototype.unique=function(e){return this.throwIfDisposed(),t5(this,e)};re().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),e2(this,e,t)};re().prototype.unstack=function(e){return this.throwIfDisposed(),On(this,e)};re().prototype.where=function(e,t){return this.throwIfDisposed(),Gn(e,this,t)};re().prototype.zerosLike=function(){return this.throwIfDisposed(),it(this)};var ya=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,ya.prototype)}},Pr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Pr.prototype)}},j=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,j.prototype)}},qe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,qe.prototype)}},$k=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,$k.prototype)}},Pk=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;tn.toUpperCase())}var cr={};function d5(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function q3(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>q3(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:q3(s))}}}function Dh(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in cr)o=cr[a];else if(o=t[a],o==null)throw new j(`Unknown ${s}: ${e}. This may be due to one of the following reasons: + ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(eh,o)}var NL=W({sparseSegmentSum_:TL});function EL(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=$(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},p={data:l,dataSplits:u},d=B.runKernel(Uc,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var RL=W({stringNGrams_:EL});function _L(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=B.runKernel(nh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var DL=W({stringSplit_:_L});function $L(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return B.runKernel(sh,r,s)}var PL=W({stringToHashBucketFast_:$L}),m8={fft:Sh,ifft:ic,rfft:Ih,irfft:H0},g8={hammingWindow:pz,hannWindow:l8,frame:u8,stft:gz},Ie={flipLeftRight:bz,grayscaleToRGB:wz,resizeNearestNeighbor:f8,resizeBilinear:h8,rotateWithOffset:Sz,cropAndResize:Az,nonMaxSuppression:Cz,nonMaxSuppressionAsync:Pz,nonMaxSuppressionWithScore:Oz,nonMaxSuppressionWithScoreAsync:zz,nonMaxSuppressionPadded:Bz,nonMaxSuppressionPaddedAsync:Vz,threshold:qz,transform:Kz},s5={bandPart:Yz,gramSchmidt:Qz,qr:tL},y8={absoluteDifference:rL,computeWeightedLoss:Ra,cosineDistance:oL,hingeLoss:lL,huberLoss:cL,logLoss:pL,meanSquaredError:fL,sigmoidCrossEntropy:yL,softmaxCrossEntropy:bL},A8={sparseFillEmptyRows:wL,sparseReshape:SL,sparseSegmentMean:CL,sparseSegmentSum:NL},x8={stringNGrams:RL,stringSplit:DL,stringToHashBucketFast:PL},_a=class extends dw{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return J(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Ew(e,t)}dispose(){this.iterations_!=null&&J(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(_a,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var e2=class extends _a{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:Z(()=>lt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:Z(()=>lt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;Z(()=>{let u=ue(z(i,this.rho),z(bt(o),1-this.rho)),c=z(fe(Fn(ue(l,this.epsilon)),Fn(ue(i,this.epsilon))),o),p=ue(z(l,this.rho),z(bt(c),1-this.rho));i.assign(u),l.assign(p);let d=ue(z(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(J(this.accumulatedGrads.map(e=>e.variable)),J(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};e2.className="Adadelta";ui(e2);var t2=class extends _a{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:Z(()=>Zc(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;Z(()=>{let i=ue(o,bt(a));o.assign(i);let l=ue(z(fe(a,Fn(ue(i,B.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&J(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};t2.className="Adagrad";ui(t2);var n2=class extends _a{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Z(()=>{this.accBeta1=Ce(t).variable(),this.accBeta2=Ce(n).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=me(1,this.accBeta1),s=me(1,this.accBeta2);t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Z(()=>lt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:Z(()=>lt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ue(z(u,this.beta1),z(l,1-this.beta1)),d=ue(z(c,this.beta2),z(bt(l),1-this.beta2)),h=fe(p,n),f=fe(d,s);u.assign(p),c.assign(d);let m=ue(z(fe(h,ue(Fn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&J(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&J(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Z(()=>{this.accBeta1.assign(Ia(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ia(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};n2.className="Adam";ui(n2);var s2=class extends _a{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Z(()=>{this.iteration=Ce(0).variable(),this.accBeta1=Ce(t).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=me(1,this.accBeta1),s=fe(-this.learningRate,ue(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:lt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:lt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ue(z(u,this.beta1),z(l,1-this.beta1)),d=z(c,this.beta2),h=sn(l),f=oa(d,h);u.assign(p),c.assign(f);let m=ue(z(fe(s,n),fe(p,ue(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ue(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&J(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&J(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};s2.className="Adamax";ui(s2);var Ch=class extends _a{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=B.registeredVariables[n];Z(()=>{let o=ue(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=kn(Ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Ch.className="SGD";ui(Ch);var r2=class extends Ch{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ce(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:Z(()=>lt(r).variable(!1))});let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&Z(()=>{let i,l=ue(z(this.m,a),o);this.useNesterov?i=ue(z(this.c,ue(o,z(l,this.m))),r):i=ue(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&J(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};r2.className="Momentum";ui(r2);var a2=class extends _a{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:Z(()=>lt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:Z(()=>lt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:Z(()=>lt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;Z(()=>{let u=ue(z(i,this.decay),z(bt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ue(z(c,this.decay),z(o,1-this.decay)),d=fe(z(o,this.learningRate),Fn(me(u,ue(bt(p),this.epsilon)))),h=ue(z(l,this.momentum),d);i.assign(u),c.assign(p),l.assign(h);let f=me(r,h);r.assign(f)}else{let c=ue(z(i,this.decay),z(bt(o),1-this.decay)),p=ue(z(l,this.momentum),fe(z(o,this.learningRate),Fn(ue(c,this.epsilon))));i.assign(c),l.assign(p);let d=me(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&J(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&J(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&J(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};a2.className="RMSProp";ui(a2);var Ga=class{static sgd(e){return new Ch(e)}static momentum(e,t,n=!1){return new r2(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new a2(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new n2(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new e2(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new s2(e,t,n,s,r)}static adagrad(e,t=.1){return new t2(e,t)}},Li={sgd:Ga.sgd,momentum:Ga.momentum,adadelta:Ga.adadelta,adagrad:Ga.adagrad,rmsprop:Ga.rmsprop,adamax:Ga.adamax,adam:Ga.adam},FL=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function r5(){return new Promise(e=>FL(()=>e()))}var T={};He(T,{ERF_A1:()=>ZL,ERF_A2:()=>YL,ERF_A3:()=>JL,ERF_A4:()=>QL,ERF_A5:()=>eB,ERF_P:()=>KL,PARALLELIZE_THRESHOLD:()=>a5,RowPartitionType:()=>Kr,SELU_SCALE:()=>v8,SELU_SCALEALPHA:()=>b8,applyActivation:()=>J0,assertAndGetBroadcastShape:()=>wt,assertAxesAreInnerMostDims:()=>VF,assertParamsConsistent:()=>OL,assignToTypedArray:()=>oB,axesAreInnerMostDims:()=>EA,calculateShapes:()=>tw,checkEinsumDimSizes:()=>pB,checkPadOnDimRoundingMode:()=>ls,combineLocations:()=>Sw,combineRaggedTensorToTensorShapes:()=>zL,complexWithEvenIndex:()=>sB,complexWithOddIndex:()=>rB,computeConv2DInfo:()=>ph,computeConv3DInfo:()=>gw,computeDefaultPad:()=>dA,computeDilation2DInfo:()=>UP,computeOptimalWindowSize:()=>VL,computeOutAndReduceShapes:()=>Iw,computeOutShape:()=>ML,computePool2DInfo:()=>mw,computePool3DInfo:()=>GP,convertConv2DDataFormat:()=>yw,decodeEinsumEquation:()=>cB,eitherStridesOrDilationsAreOne:()=>aa,expandShapeToKeepDim:()=>sl,exponent:()=>lB,exponents:()=>iB,fromStringArrayToUint8:()=>$B,fromUint8ToStringArray:()=>DB,getAxesPermutation:()=>Cw,getBroadcastDims:()=>J6,getComplexWithIndex:()=>aB,getEinsumComputePath:()=>hB,getEinsumPermutation:()=>dB,getFusedBiasGradient:()=>Y0,getFusedDyActivation:()=>Z0,getImageCenter:()=>UL,getInnerMostAxes:()=>UF,getPermuted:()=>HL,getRaggedRank:()=>BL,getReductionAxes:()=>on,getReshaped:()=>GL,getReshapedPermuted:()=>jL,getRowPartitionTypesHelper:()=>LL,getSliceBeginCoords:()=>qL,getSliceSize:()=>XL,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>yB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>AB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>xB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>wB,getSparseReshapeInputOutputMismatchErrorMessage:()=>SB,getSparseReshapeInputOutputMultipleErrorMessage:()=>kB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>bB,getSparseReshapeNegativeOutputDimErrorMessage:()=>vB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>NB,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>IB,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>CB,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>TB,getUndoAxesPermutation:()=>RA,isIdentityPermutation:()=>fB,log:()=>pD,mergeRealAndImagArrays:()=>tB,prepareAndValidate:()=>ew,prepareSplitSize:()=>gB,segment_util:()=>w8,shouldFuse:()=>Q0,slice_util:()=>Gt,splitRealAndImagArrays:()=>nB,tupleValuesAreOne:()=>so,upcastType:()=>Un,validateDefaultValueShape:()=>WL,validateInput:()=>Qy,validateUpdateShape:()=>Jy,warn:()=>ja});function OL(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function ML(e,t){let n=e[0].slice();for(let s=1;s=0)if(i>=0){if(i!==a)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${a} but shape[${r+e}] = ${i}`)}else s[o]=a}return s}function LL(e){let t={FIRST_DIM_SIZE:Kr.FIRST_DIM_SIZE,VALUE_ROWIDS:Kr.VALUE_ROWIDS,ROW_LENGTHS:Kr.ROW_LENGTHS,ROW_SPLITS:Kr.ROW_SPLITS,ROW_LIMITS:Kr.ROW_LIMITS,ROW_STARTS:Kr.ROW_STARTS},n=[];for(let s of e)if(s in t)n.push(t[s]);else break;return n}function BL(e){return e.length===0?0:e[0]===Kr.FIRST_DIM_SIZE?e.length-1:e.length}function WL(e,t){if(e==null||t==null)return;let n=e.length,s=t.length;if(n>=s)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${s})`);for(let r=0;r=0&&o>=0&&a!==1&&a!==o)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${a} but ragged tensor input.flatValues.shape[${r-e.length}] = ${o}`)}}var a5=30;function VL(e){return e<=a5?e:Am(e,Math.floor(Math.sqrt(e)))}function UL(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function GL(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o=t*2+1||o%2===1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function jL(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a/g,Ov=",",Mv="...";function cB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(uB,"").length)/g3.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${g3}").`);let[s,r]=e.split(g3);O(s.indexOf(Mv)===-1,()=>`The ellipsis notation ("${Mv}") is not supported yet.`);let a=s.split(Ov),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let d=0;df.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let d=0;dr!==-1),{permutationIndices:n,expandDims:s}}function pB(e,t,n){let s=new Array(e);for(let r=0;r`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function hB(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;ot===n)}function mB(e,t){let n=[];for(let s=0;s"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function yB(e){return`Received SparseTensor with denseShape[0] = 0 but + indices.shape[0] = ${e}`}function AB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function xB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function bB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function vB(e,t){return`size ${e} must be non-negative, not ${t}`}function wB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function kB(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a SparseTensor with ${n} + dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function SB(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function IB(){return"segment ids must be >= 0"}function CB(){return"segment ids are not increasing"}function TB(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function NB(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var w8={};He(w8,{collectGatherOpShapeInfo:()=>_B,computeOutShape:()=>RB,segOpComputeOptimalWindowSize:()=>EB});function EB(e,t){let n=!1,s;for(e<=a5?(s=e,n=!0):s=Am(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Am(e,s+1);return s}function RB(e,t,n){let s=[],r=e.length;for(let a=0;ar))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) ( + ${a}).`);if(nwm(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function $B(e){return e.map(t=>oh(t))}var yr={};He(yr,{nonMaxSuppressionV3Impl:()=>c8,nonMaxSuppressionV4Impl:()=>d8,nonMaxSuppressionV5Impl:()=>p8,whereImpl:()=>Qw});var k8={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,iu(ye(n,"float32"),-1))}}},PB={kernelName:bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=bt(ye(n,"float32")),r=Fn(me(Ce(1),s));return $t(fe(e,r))}}}},FB={kernelName:vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Fn(me(bt(ye(n,"float32")),1));return fe(e,s)}}}},OB={kernelName:Ta,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=on(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=on(s.shape,r);return l.length>0&&(i=ke(i,l)),V(i,s.shape)}}}},MB={kernelName:fo,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},zB={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lt(n)}}},LB={kernelName:Sc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lt(n)}}},BB={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Fn(me(Ce(1),bt(ye(n,"float32")))))}}},WB={kernelName:Cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Fn(ue(Ce(1),bt(ye(n,"float32"))));return fe(e,s)}}}},VB={kernelName:hl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=ue(bt(n),bt(s)),l=z(e,fe(s,i)),u=on(n.shape,r);return u.length>0&&(l=ke(l,u)),V(l,n.shape)},b:()=>{let i=ue(bt(n),bt(s)),l=$t(z(e,fe(n,i))),u=on(s.shape,r);return u.length>0&&(l=ke(l,u)),V(l,s.shape)}}}},UB={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(bt(ye(n,"float32")),1))}}},GB={kernelName:Nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,me(Ce(1),bt(ye(n,"float32"))))}}};function HB(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),ls("avgPool3dGrad",r,a);let p={dy:l,input:u},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=B.runKernel(Jm,p,d);return c?V(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var jB=W({avgPool3dGrad_:HB}),qB={kernelName:Vp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>jB(e,s,r,a,o,i)}}};function XB(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:n,strides:s,pad:r},d=B.runKernel(Ym,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var KB=W({avgPoolGrad_:XB}),ZB={kernelName:go,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>KB(e,s,r,a,o)}}},YB={kernelName:yo,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>et(e,r,!1,!0),b:()=>et(s,e,!0,!1)}:!a&&o?{a:()=>et(e,r,!1,!1),b:()=>et(e,s,!0,!1)}:a&&!o?{a:()=>et(r,e,!1,!0),b:()=>et(s,e,!1,!1)}:{a:()=>et(r,e,!0,!0),b:()=>et(e,s,!0,!0)}}},JB={kernelName:fl,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>vh(e,s,r)}}},QB={kernelName:I6,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l1&&i.push(l);return{x:()=>ke(e,i,!0)}}},eW={kernelName:Ao,gradFunc:e=>({x:()=>e.clone()})},tW={kernelName:xo,gradFunc:e=>({x:()=>lt(e)})},nW={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Gn(mr(ci(s,r),di(s,a)),e,lt(e))}}},sW={kernelName:Gp,inputsToSave:["x"],gradFunc:k8.gradFunc},rW={kernelName:ml,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=gr(r,t[0].shape)[0],o=s.map(l=>l[a]);return Yt(e,o,a).map(l=>()=>l)}},aW={kernelName:bo,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(so(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>vA(s.shape,e,r,o,i,l),filter:()=>t5(s,e,r.shape,o,i,l)}}},oW={kernelName:vo,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>ka(e,r,a,o,i,1,l),filter:()=>t5(e,s,r.shape,a,o,i,l)}}};function iW(e,t,n,s,r){let a=e;e.rank===4&&(a=V(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return B.runKernel(n0,i,l)}var lW=W({conv3DBackpropFilter_:iW}),uW={kernelName:Hp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(so(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>bw(o.shape,e,i,r,a),filter:()=>lW(o,e,i.shape,r,a)}}},cW={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z($t(V0(ye(n,"float32"))),e)}}},dW={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(U0(ye(n,"float32")),e)}}},pW={kernelName:So,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Cw([r],s.rank),l=N0(e,r,a,!o);return i!=null&&(l=tt(l,i)),l}}}},hW={kernelName:Io,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(so(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),O(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),O(aa(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),ls("depthwiseConv2d",a,o),{x:()=>i8(l.shape,e,u,r,a,i,o),filter:()=>o8(l,e,u.shape,r,a,i,o)}}},fW={kernelName:jp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>B.runKernel(xm,a,n),filter:()=>B.runKernel(bm,o,n)}}},mW={kernelName:To,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>B.runKernel(l0,s)}}},gW={kernelName:Ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(Os($t(bt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},yW={kernelName:No,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},AW={kernelName:bl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>V(e,n.shape)}}},xW={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Os(n))}}},bW={kernelName:Eo,gradFunc:e=>({x:()=>lt(e)})},vW={kernelName:Ro,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=fe(e,ye(s,"float32")),l=on(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=on(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(fe(i,ye(u,"float32")))}}}},wW={kernelName:_o,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ce(1):i,u=on(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;ba.rank===1?V(z(z(e,Ks(V(h,[1,1,1,a.shape[0]]),c)),l),r.shape):V(z(z(e,h),l),r.shape),mean:()=>{let b=z(z(h,Ce(-1)),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},variance:()=>{let b=z(z(f,p),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},scale:()=>{let b=z(p,h),w=z(e,b);return a.rank===1&&(w=ke(w,u)),V(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,u)),V(b,a.shape)}}}},kW={kernelName:kl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=gr(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),p=c.length,d=l.slice(a,l.length).slice(1),h=d.length,f=zv(0,p),m=zv(p+1,p+1+h),g=Lv([c,[u],d]),y=V(e,g),x=V(r,[u]),A=Lv([[p],f,m]),b=tt(y,A),w=X0(b,x,s.shape[o]),S=RA(A);return w=tt(w,S),w},indices:()=>r}}};function zv(e,t){let n=[];for(let s=e;s{let[n,s]=t;return{a:()=>lt(n),b:()=>lt(s)}}},IW={kernelName:$o,gradFunc:e=>({x:()=>ye(e,"float32")})},CW={kernelName:_c,gradFunc:e=>({x:()=>lt(e)})},TW={kernelName:Dc,gradFunc:e=>({x:()=>lt(e)})},NW={kernelName:Cl,gradFunc:e=>({x:()=>lt(e)})},EW={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=ws(s,0);return{x:()=>Gn(a,e,z(e,r))}}},RW={kernelName:$c,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(n,1))}}},_W={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ye(n,"float32"))}}},DW={kernelName:T6,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let o=Os(s);return me(e,z(ke(e,r,!0),o))}}}};function $W(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return B.runKernel(p0,i,l)}var PW=W({localResponseNormalizationBackprop_:$W}),FW={kernelName:Kp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>PW(s,r,e,a,o,i,l)}}};function S8(e,t,n,s){return t.rankz(e,ye(Fs(n,t),e.dtype))}}var Bv={kernelName:Oo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=gr(r,a.shape),l=S8(e,o,a,i);return{x:()=>l.x()}}},OW={kernelName:Mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(ci(n,s),"float32")),b:()=>z(e,ye(R0(n,s),"float32"))}}};function MW(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),u=$(n,"output","maxPool3dGrad"),c=i,p=l,d=u,h=!1;l.rank===4&&(h=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=V(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=V(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),O(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),ls("maxPool3dGrad",a,o);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=B.runKernel(f0,f,m);return h?V(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var zW=W({maxPool3dGrad_:MW}),LW={kernelName:Zp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>zW(e,s,r,a,o,i,l)}}};function BW(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),u=$(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),ls("maxPoolGrad",a,o);let c={dy:i,input:l,output:u},p={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return B.runKernel(h0,c,p)}var WW=W({maxPoolGrad_:BW}),VW={kernelName:zo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>WW(e,s,r,a,o,i)}}},UW={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=gr(r,s.shape),i=Iw(s.shape,a)[1],l=Et(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=V(e,c);return fe(z(p,$s(s.shape,"float32")),l)}}}},GW={kernelName:Bo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=gr(r,a.shape),l=S8(e,o,a,i);return{x:()=>l.x()}}},HW={kernelName:Wo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(di(n,s),"float32")),b:()=>z(e,ye(ws(n,s),"float32"))}}},jW={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>ze(e,a,s.shape)}}},qW={kernelName:Fc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=on(n.shape,r);return i.length>0?V(ke(e,i),n.shape):e},b:()=>{let i=z(e,$t(Yc(fe(n,s)))),l=on(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},XW={kernelName:Uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=z(e,ye(s,"float32")),l=on(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=on(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},KW={kernelName:_l,gradFunc:e=>({x:()=>$t(e)})},ZW={kernelName:Ol,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Vt(n.shape,"float32")}}},YW={kernelName:Fl,gradFunc:e=>({x:()=>lt(e)})},JW={kernelName:Ml,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return On(e,s).map(a=>()=>a)}},Wv={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>ze(e,a,s.shape)}}},QW={kernelName:Ho,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=wt(a.shape,o.shape);return{a:()=>{let c=ye(o,"float32"),p=z(e,z(c,Ia(a,me(c,Ce(1))))),d=on(a.shape,i);return d.length>0&&(p=ke(p,d)),V(p,a.shape)},b:()=>{let c=ws(a,0),p=Gn(c,Ms(a),lt(a)),d=z(e,z(r,p)),h=on(o.shape,i);return h.length>0&&(d=ke(d,h)),V(d,o.shape)}}}},eV={kernelName:jo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=ws(n,0);return{x:()=>Gn(r,e,z(e,s)),alpha:()=>{let a=Gn(r,lt(e),z(e,n)),o=on(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),V(a,s.shape)}}}};function tV(e,t,n){let s=e.shape.slice();s[n]=1;let r=V(t,s),a=Ep(e,n,!0,!1),o=Ep(e,n,!0,!0),i=z(a,o);return z(r,i)}function nV(e,t,n){let s=e.shape.length,r=s-n.length,a=T.getAxesPermutation(n,s),o=e;a!=null&&(o=tt(e,a));let i=o.shape.slice(),u=i.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);i.push(u);let c=o.reshape(i),p=tV(c,t,r);if(p=p.reshape(o.shape),a!=null){let d=T.getUndoAxesPermutation(a);p=tt(p,d)}return p}var sV={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((o,i)=>i):typeof r=="number"?a=[r]:a=r,{x:()=>nV(s,e,a)}}},rV={kernelName:Co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=fe(e,ye(s,"float32")),l=on(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=on(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(fe(i,ye(u,"float32")))}}}},aV={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,$t(bt(n)))}}},oV={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(di(n,6),iu(n));return{x:()=>z(e,ye(s,"float32"))}}},iV={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ye(iu(n),"float32"))}}},lV={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n.shape)}}},uV={kernelName:Zo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(x0,r,n)}}},cV={kernelName:Ko,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(A0,r,n)}}},dV={kernelName:Bl,gradFunc:(e,t,n)=>{let{dims:s}=n,r=gr(s,e.shape);return{x:()=>Qs(e,r)}}},pV={kernelName:Wl,gradFunc:e=>({x:()=>lt(e)})},hV={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>$t(fe(e,z(Ia(n,1.5),2)))}}},fV={kernelName:Ul,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ye(lt(n),"float32"),t:()=>z(e,ye(n,e.dtype)),e:()=>z(e,ye(Ah(n),e.dtype))}}},mV={kernelName:zc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ws(n,Ce(0)),r=Ce(b8),a=Ce(v8),o=z(e,a),i=z(z(e,r),Os(ye(n,"float32")));return Gn(s,o,i)}}}},gV={kernelName:ei,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,me(Ce(1),n)))}}},yV={kernelName:Lc,gradFunc:e=>({x:()=>lt(e)})},AV={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(mh(ye(n,"float32")),e)}}},xV={kernelName:Hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(T0(ye(n,"float32")),e)}}},bV={kernelName:Gl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=cw(s,r,a),u=[];for(let c=0;csr(e,u)}}},vV={kernelName:si,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>me(o,z(ke(o,[r],a),s))}}},wV={kernelName:Bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,$n(n))}}},Vv={kernelName:jl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>fh(e,s,r)}}},Uv={kernelName:ql,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>It(e,s)}}},kV={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,z(Fn(ye(n,"float32")),2))}}},SV={kernelName:Vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ye(n,"float32"),2))}}},IV={kernelName:ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ce(2);return{a:()=>z(e,z(r,me(n,s))),b:()=>z(e,z(r,me(s,n)))}}},CV={kernelName:ii,gradFunc:e=>({x:()=>lt(e)})},TV={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=on(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=on(s.shape,r);return l.length>0&&(i=ke(i,l)),V($t(i),s.shape)}}}},NV={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;gr(a,s.shape).forEach(u=>{r[u]=1});let i=V(e,r),l=z(i,$s(s.shape,"float32"));return{x:()=>l}}},EV={kernelName:Kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,bt(mh(n)))}}},RV={kernelName:oi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(me(Ce(1),bt(n)),e)}}},_V={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=lt(s);if(s.rank===1)for(let i=0;i{let s=n,{perm:r}=s,a=RA(r);return{x:()=>tt(e,a)}}},$V={kernelName:Jl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>ln(e,r)}}},PV={kernelName:rh,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>FV(e,n)}}};function FV(e,t){let n=oa(t,lt(t)),s=Jc(e,n),r=ci(t,Ce(0,"int32")),a=s.rank-r.rank;for(let i=0;i({x:()=>lt(e)})},MV=[k8,PB,FB,OB,MB,zB,LB,BB,WB,VB,UB,GB,qB,ZB,YB,JB,QB,eW,tW,nW,sW,rW,oW,aW,uW,cW,dW,pW,hW,fW,rV,mW,gW,yW,AW,xW,vW,bW,wW,kW,SW,IW,CW,TW,NW,EW,RW,_W,DW,FW,Bv,Bv,OW,LW,VW,UW,GW,HW,jW,qW,XW,KW,ZW,YW,JW,Wv,Wv,QW,eV,sV,aV,oV,iV,lV,uV,cV,dV,pV,hV,fV,mV,gV,yV,AV,xV,bV,vV,wV,Vv,Vv,Uv,Uv,kV,IV,SV,CV,TV,NV,EV,RV,_V,DV,$V,PV,OV];for(let e of MV)N6(e);ae().prototype.abs=function(){return this.throwIfDisposed(),sn(this)};ae().prototype.acos=function(){return this.throwIfDisposed(),sA(this)};ae().prototype.acosh=function(){return this.throwIfDisposed(),rA(this)};ae().prototype.add=function(e){return this.throwIfDisposed(),ue(this,e)};ae().prototype.all=function(e,t){return this.throwIfDisposed(),S0(this,e,t)};ae().prototype.any=function(e,t){return this.throwIfDisposed(),Np(this,e,t)};ae().prototype.argMax=function(e){return this.throwIfDisposed(),Ps(this,e)};ae().prototype.argMin=function(e){return this.throwIfDisposed(),aA(this,e)};ae().prototype.asScalar=function(){return this.throwIfDisposed(),O(this.size===1,()=>"The array must have only 1 element."),V(this,[])};ae().prototype.asType=function(e){return this.throwIfDisposed(),ye(this,e)};ae().prototype.as1D=function(){return this.throwIfDisposed(),V(this,[this.size])};ae().prototype.as2D=function(e,t){return this.throwIfDisposed(),V(this,[e,t])};ae().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),V(this,[e,t,n])};ae().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),V(this,[e,t,n,s])};ae().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),V(this,[e,t,n,s,r])};ae().prototype.asin=function(){return this.throwIfDisposed(),oA(this)};ae().prototype.asinh=function(){return this.throwIfDisposed(),iA(this)};ae().prototype.atan=function(){return this.throwIfDisposed(),lA(this)};ae().prototype.atan2=function(e){return this.throwIfDisposed(),uA(this,e)};ae().prototype.atanh=function(){return this.throwIfDisposed(),cA(this)};ae().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),hh(this,e,t,n,s)};ae().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),fh(this,e,t)};ae().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),jc(this,e,t,n,s,r)};ae().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Ki(this,e)};ae().prototype.cast=function(e){return this.throwIfDisposed(),ye(this,e)};ae().prototype.ceil=function(){return this.throwIfDisposed(),yA(this)};ae().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),xs(this,e,t)};ae().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof st&&(e=[e]),It([this,...e],t)};ae().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),I0(this,e,t,n,s,r,a)};ae().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),C0(this,e,t,n,s,r)};ae().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),ka(this,e,t,n,s,r,a)};ae().prototype.cos=function(){return this.throwIfDisposed(),mh(this)};ae().prototype.cosh=function(){return this.throwIfDisposed(),T0(this)};ae().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),Ep(this,e,t,n)};ae().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),N0(this,e,t,n)};ae().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),SA(this,e,t)};ae().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),qc(this,e,t,n,s,r,a)};ae().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),IA(this,e,t,n,s,r)};ae().prototype.divNoNan=function(e){return this.throwIfDisposed(),CA(this,e)};ae().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};ae().prototype.dot=function(e){return this.throwIfDisposed(),TA(this,e)};ae().prototype.elu=function(){return this.throwIfDisposed(),Xc(this)};ae().prototype.equal=function(e){return this.throwIfDisposed(),Fs(this,e)};ae().prototype.erf=function(){return this.throwIfDisposed(),NA(this)};ae().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),_A(this,e,t)};ae().prototype.exp=function(){return this.throwIfDisposed(),Os(this)};ae().prototype.expandDims=function(e){return this.throwIfDisposed(),Bt(this,e)};ae().prototype.expm1=function(){return this.throwIfDisposed(),DA(this)};ae().prototype.fft=function(){return this.throwIfDisposed(),Sh(this)};ae().prototype.flatten=function(){return this.throwIfDisposed(),V(this,[this.size])};ae().prototype.floor=function(){return this.throwIfDisposed(),Yc(this)};ae().prototype.floorDiv=function(e){return this.throwIfDisposed(),Hc(this,e)};ae().prototype.gather=function(e,t){return this.throwIfDisposed(),Jc(this,e,t)};ae().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ci(this,e)};ae().prototype.greater=function(e){return this.throwIfDisposed(),ws(this,e)};ae().prototype.ifft=function(){return this.throwIfDisposed(),ic(this)};ae().prototype.irfft=function(){return this.throwIfDisposed(),H0(this)};ae().prototype.isFinite=function(){return this.throwIfDisposed(),$A(this)};ae().prototype.isInf=function(){return this.throwIfDisposed(),PA(this)};ae().prototype.isNaN=function(){return this.throwIfDisposed(),FA(this)};ae().prototype.leakyRelu=function(e){return this.throwIfDisposed(),gh(this,e)};ae().prototype.lessEqual=function(e){return this.throwIfDisposed(),di(this,e)};ae().prototype.less=function(e){return this.throwIfDisposed(),R0(this,e)};ae().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),OA(this,e,t,n,s)};ae().prototype.logSigmoid=function(){return this.throwIfDisposed(),MA(this)};ae().prototype.logSoftmax=function(e){return this.throwIfDisposed(),D0(this,e)};ae().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),$0(this,e,t)};ae().prototype.log=function(){return this.throwIfDisposed(),Ms(this)};ae().prototype.log1p=function(){return this.throwIfDisposed(),yh(this)};ae().prototype.logicalAnd=function(e){return this.throwIfDisposed(),mr(this,e)};ae().prototype.logicalNot=function(){return this.throwIfDisposed(),Ah(this)};ae().prototype.logicalOr=function(e){return this.throwIfDisposed(),P0(this,e)};ae().prototype.logicalXor=function(e){return this.throwIfDisposed(),zA(this,e)};ae().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),et(this,e,t,n)};ae().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),xh(this,e,t,n,s)};ae().prototype.max=function(e,t){return this.throwIfDisposed(),gn(this,e,t)};ae().prototype.maximum=function(e){return this.throwIfDisposed(),oa(this,e)};ae().prototype.mean=function(e,t){return this.throwIfDisposed(),Wt(this,e,t)};ae().prototype.min=function(e,t){return this.throwIfDisposed(),Sa(this,e,t)};ae().prototype.minimum=function(e){return this.throwIfDisposed(),Qc(this,e)};ae().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),BA(this,e,t)};ae().prototype.mod=function(e){return this.throwIfDisposed(),au(this,e)};ae().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};ae().prototype.neg=function(){return this.throwIfDisposed(),$t(this)};ae().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Kc(this,e,t,n)};ae().prototype.notEqual=function(e){return this.throwIfDisposed(),rl(this,e)};ae().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),rc(this,e,t,n)};ae().prototype.onesLike=function(){return this.throwIfDisposed(),zs(this)};ae().prototype.pad=function(e,t){return this.throwIfDisposed(),sr(this,e,t)};ae().prototype.pool=function(e,t,n,s,r,a){return this.throwIfDisposed(),WA(this,e,t,n,s,r,a)};ae().prototype.pow=function(e){return this.throwIfDisposed(),Ia(this,e)};ae().prototype.prelu=function(e){return this.throwIfDisposed(),wh(this,e)};ae().prototype.prod=function(e,t){return this.throwIfDisposed(),VA(this,e,t)};ae().prototype.reciprocal=function(){return this.throwIfDisposed(),HA(this)};ae().prototype.relu=function(){return this.throwIfDisposed(),Wr(this)};ae().prototype.relu6=function(){return this.throwIfDisposed(),M0(this)};ae().prototype.reshapeAs=function(e){return this.throwIfDisposed(),V(this,e.shape)};ae().prototype.reshape=function(e){return this.throwIfDisposed(),V(this,e)};ae().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),h8(this,e,t,n)};ae().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),f8(this,e,t,n)};ae().prototype.reverse=function(e){return this.throwIfDisposed(),Qs(this,e)};ae().prototype.rfft=function(){return this.throwIfDisposed(),Ih(this)};ae().prototype.round=function(){return this.throwIfDisposed(),z0(this)};ae().prototype.rsqrt=function(){return this.throwIfDisposed(),L0(this)};ae().prototype.selu=function(){return this.throwIfDisposed(),B0(this)};ae().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),W0(this,e,t,n,s,r,a)};ae().prototype.sigmoid=function(){return this.throwIfDisposed(),$n(this)};ae().prototype.sign=function(){return this.throwIfDisposed(),jA(this)};ae().prototype.sin=function(){return this.throwIfDisposed(),V0(this)};ae().prototype.sinh=function(){return this.throwIfDisposed(),U0(this)};ae().prototype.slice=function(e,t){return this.throwIfDisposed(),ze(this,e,t)};ae().prototype.softmax=function(e){return this.throwIfDisposed(),ou(this,e)};ae().prototype.softplus=function(){return this.throwIfDisposed(),ru(this)};ae().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),vh(this,e,t)};ae().prototype.split=function(e,t){return this.throwIfDisposed(),Yt(this,e,t)};ae().prototype.sqrt=function(){return this.throwIfDisposed(),Fn(this)};ae().prototype.square=function(){return this.throwIfDisposed(),bt(this)};ae().prototype.squaredDifference=function(e){return this.throwIfDisposed(),j0(this,e)};ae().prototype.squeeze=function(e){return this.throwIfDisposed(),rt(this,e)};ae().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof st?[this,e]:[this,...e];return ln(n,t)};ae().prototype.step=function(e){return this.throwIfDisposed(),iu(this,e)};ae().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),qA(this,e,t,n,s,r,a,o,i)};ae().prototype.sub=function(e){return this.throwIfDisposed(),me(this,e)};ae().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};ae().prototype.tan=function(){return this.throwIfDisposed(),XA(this)};ae().prototype.tanh=function(){return this.throwIfDisposed(),nl(this)};ae().prototype.tile=function(e){return this.throwIfDisposed(),Ks(this,e)};ae().prototype.toBool=function(){return this.throwIfDisposed(),ye(this,"bool")};ae().prototype.toFloat=function(){return this.throwIfDisposed(),ye(this,"float32")};ae().prototype.toInt=function(){return this.throwIfDisposed(),ye(this,"int32")};ae().prototype.topk=function(e,t){return this.throwIfDisposed(),KA(this,e,t)};ae().prototype.transpose=function(e){return this.throwIfDisposed(),tt(this,e)};ae().prototype.unique=function(e){return this.throwIfDisposed(),ZA(this,e)};ae().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),X0(this,e,t)};ae().prototype.unstack=function(e){return this.throwIfDisposed(),On(this,e)};ae().prototype.where=function(e,t){return this.throwIfDisposed(),Gn(e,this,t)};ae().prototype.zerosLike=function(){return this.throwIfDisposed(),lt(this)};var ma=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,ma.prototype)}},$r=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,$r.prototype)}},j=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,j.prototype)}},Xe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Xe.prototype)}},I8=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,I8.prototype)}},C8=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;tn.toUpperCase())}var ur={};function o5(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function U3(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>U3(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:U3(s))}}}function Th(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in ur)o=ur[a];else if(o=t[a],o==null)throw new j(`Unknown ${s}: ${e}. This may be due to one of the following reasons: 1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new j(`${s}: Improper config format: ${JSON.stringify(a)}. -'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in cr?[i,l]=cr.className:o in t&&([i,l]=t[o]),i==null)throw new j(`Unknown ${s}: ${o}. This may be due to one of the following reasons: +'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in ur?[i,l]=ur.className:o in t&&([i,l]=t[o]),i==null)throw new j(`Unknown ${s}: ${o}. This may be due to one of the following reasons: 1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(cr))u[h]=cr[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let p=Object.assign({},cr);for(let h of Object.keys(n))cr[h]=n[h];q3(a.config);let d=l(i,a.config,n,r);return cr=Object.assign({},p),d}else{let u=Object.assign({},cr);for(let p of Object.keys(n))cr[p]=n[p];let c=new i(a.config);return cr=Object.assign({},u),c}}}function fU(e,t){return et?1:0}function Jf(e,t){return-1*fU(e,t)}function fo(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function mU(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function lu(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function p5(e,t,n=0,s=1/0){return Yr(n>=0),Yr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function kn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>kn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Fk(e)}.`)}function Fk(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Fk(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function gU(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s0){let n=`${e}_${t}`;return Vu.set(n,1),n}else return e}var SU=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Wk(e){return!!e.match(SU)}function CU(e){return e===parseInt(e.toString(),10)}function mo(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;rt&&(t=s)}return t}function Lr(e,t){if(t{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=$h(e,1);return X3(n,[1,t,1])})}function NU(e){let t=[mo(e.shape)];return V(e,t)}function EU(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],mo(e.shape,1)];return V(e,t)}function ol(e,t,n){return Z(()=>{switch(e.rank){case 1:return Nh(e,t,n);case 2:return Z0(e,[t,0],[n,e.shape[1]]);case 3:return wi(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return wo(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Le(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Le(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function I3(e,t,n){return Z(()=>{switch(e.rank){case 1:return Nh(e,t,n);case 2:return Z0(e,[0,t],[e.shape[0],n]);case 3:return wi(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return wo(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function em(e,t,n,s){return Z(()=>{switch(e.rank){case 1:return Nh(e,t,n);case 2:switch(s){case 1:return ol(e,t,n);case 2:return I3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return ol(e,t,n);case 2:return wi(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return I3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return ol(e,t,n);case 2:return wo(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return wo(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return I3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function h5(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),St(e,t)}function Qv(e,t){switch(e.rank){case 1:return kA([e,t]);case 2:return su([e,t],0);case 3:return IA([e,t],0);case 4:return SA([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function X3(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ys(e,t)}function f2(e,t=0,n=1,s,r){return V0(e,t,n,s,r)}function ta(e,t,n,s){if(e.rank<2||t.rank<2)throw new qe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new qe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return lc.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?K3(e.rank,s,Br()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=V(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=V(et(t,c),[l,-1]);let p=[...r,...u],d=!1,h=!1;return V(lc.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?K3(e.rank,s,Br()):null,activation:n}),p)}}function Vk(e,t,n){return Z(()=>(Array.isArray(t)?t=Ft(t,"int32"):t=ye(t,"int32"),td(e,t,n)))}function Ph(e){return z(e,e)}function K3(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1,1]):V(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1]):V(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1]):V(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,s[0]]):V(t,[1].concat(s))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ur(e,t,n){return Z(()=>(n==null&&(n=Br()),Jt(n),ue(e,K3(e.rank,t,n))))}function RU(e,t=1){if(t!==1)throw new qe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Yc(e)}function _U(e){return Z(()=>fe(e,ue(sn(e),1)))}function Uk(e,t,n,s){return Z(()=>r5(e,t,n,s))}function DU(e){return Z(()=>{let t=ue(.5,z(.2,e));return xs(t,0,1)})}function Fh(e,t,n=!1){return n?e():t()}var $U=["fanIn","fanOut","fanAvg"],PU=["normal","uniform","truncatedNormal"];function FU(e){lu($U,"FanMode",e)}function OU(e){lu(PU,"Distribution",e)}var xr=class extends de.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},f5=class extends xr{apply(e,t){return Ut(e,t)}};f5.className="Zeros";de.registerClass(f5);var m2=class extends xr{apply(e,t){return $s(e,t)}};m2.className="Ones";de.registerClass(m2);var m5=class extends xr{constructor(e){if(super(),typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return Z(()=>z(Ce(this.value),$s(e,t)))}getConfig(){return{value:this.value}}};m5.className="Constant";de.registerClass(m5);var g5=class extends xr{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return sd(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};g5.className="RandomUniform";de.registerClass(g5);var y5=class extends xr{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new qe(`randomNormal does not support dType ${t}.`);return f2(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};y5.className="RandomNormal";de.registerClass(y5);var A5=class extends xr{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new qe(`truncatedNormal does not support dType ${t}.`);return Q0(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};A5.className="TruncatedNormal";de.registerClass(A5);var x5=class extends xr{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return Z(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,F0(e[0]))})}getConfig(){return{gain:this.gain}}};x5.className="Identity";de.registerClass(x5);function MU(e,t="channelsLast"){let n,s;if(Jt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=mo(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=mo(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=mo(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var bs=class extends xr{constructor(e){if(super(),e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,FU(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,OU(this.distribution),this.seed=e.seed}apply(e,t){let n=MU(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new qe(`${this.getClassName()} does not support dType ${t}.`);return Q0(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return sd(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};bs.className="VarianceScaling";de.registerClass(bs);var g2=class extends bs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bs.className}};g2.className="GlorotUniform";de.registerClass(g2);var y2=class extends bs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bs.className}};y2.className="GlorotNormal";de.registerClass(y2);var A2=class extends bs{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bs.className}};A2.className="HeNormal";de.registerClass(A2);var x2=class extends bs{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bs.className}};x2.className="HeUniform";de.registerClass(x2);var b2=class extends bs{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bs.className}};b2.className="LeCunNormal";de.registerClass(b2);var v2=class extends bs{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bs.className}};v2.className="LeCunNormal";de.registerClass(v2);var b5=class extends xr{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new qe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return Z(()=>{if(e.length<2)throw new qe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=f2(n,0,1,"float32"),r=l5.gramSchmidt(s);return e[0]>e[1]&&(r=et(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};b5.className="Orthogonal";de.registerClass(b5);var e7={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function t7(e,t={}){return Dh(e,de.SerializationMap.getMap().classNameMap,t,"initializer")}function Gt(e){return d5(e)}function Ot(e){if(typeof e=="string"){let t=e in e7?e7[e]:e;if(t==="GlorotNormal")return new y2;if(t==="GlorotUniform")return new g2;if(t==="HeNormal")return new A2;if(t==="HeUniform")return new x2;if(t==="LeCunNormal")return new b2;if(t==="LeCunUniform")return new v2;{let n={};return n.className=t,n.config={},t7(n)}}else return e instanceof xr?e:t7(e)}function Z3(e){return Array.isArray(e)&&Array.isArray(e[0])}function _m(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Xe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function At(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Dm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var n7="Variable",Gk=class{constructor(e,t="float32",n=n7,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Mk(),n=n==null?n7:n,this.originalName=Lk(n),this.name=Bk(this.originalName),this.trainable_=s,this.constraint=r,this.val=n5(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),zU(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function zU(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Y3(e){return e.map(t=>t.read())}function v5(e){e.forEach(t=>{t[0].write(t[1])})}var on=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Fr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Mk(),a!=null&&(this.originalName=Lk(a),this.name=Bk(this.originalName)),this.rank=t.length}},LU=0,w2=class{constructor(e,t){this.callArgs=t,this.id=LU++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},BU=0,ut=class extends de.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=BU++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Aa(n)+"_"+p2(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Pr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return ys(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return ys(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} is not connected, no input to return.`);return ys(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ya(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ya(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return ys(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Dt(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;nr.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Dt(e))a.push(o.shape);this.build(ys(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=Dt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=ys(i),this.activityRegularizer!=null)throw new qe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=WU(e),o=this.computeOutputShape(a),i,l=VU(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Fr(l,u,this,Dt(e),t,this.name,c)):i=new Fr(l,o,this,Dt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new qe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ya(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ya(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Pr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Dm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Y3(e?this.trainableWeights:this.weights)}setWeights(e){Z(()=>{let t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=Y3(t);for(let r=0;rr.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=Dt(e);t=Dt(t),n=Dt(n),s=Dt(s),r=_m(r),a=_m(a);let l=[],u=[],c=[];for(let p of i)l.push(p.sourceLayer),u.push(p.nodeIndex),c.push(p.tensorIndex);new w2({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let p=0;pe.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function WU(e){e=Dt(e);let t=[];for(let n of e)t.push(n.shape);return ys(t)}function VU(e){return"float32"}function Hk(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;af.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().sort().join(","),p=$m.get(c),d;if(p==null){let f=HU(o,t);p=f.sorted,d=f.recipientCounts,$m.put(c,p),Pm.put(c,d)}d={},r||Object.assign(d,Pm.get(c));let h=new tl(t);for(let f=0;fs.maxNumTensors&&(s.maxNumTensors=_),_0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=s7(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=s7(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:jU(s)}}function jU(e){let t={};for(let n in e)t[n]=e[n].size;return t}function s7(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function qU(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s100,GU);var qk={};Ve(qk,{maxNorm:()=>KU,minMaxNorm:()=>JU,nonNeg:()=>YU,unitNorm:()=>ZU});function w5(e,t){return Z(()=>Fn(ke(z(e,e),t,!0)))}var Oh=class extends de.Serializable{getConfig(){return{}}},k5=class extends Oh{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=w5(e,this.axis),n=xs(t,0,this.maxValue);return z(e,fe(n,ue(mn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};k5.className="MaxNorm";de.registerClass(k5);var I5=class extends Oh{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>fe(e,ue(mn(),w5(e,this.axis))))}getConfig(){return{axis:this.axis}}};I5.className="UnitNorm";de.registerClass(I5);var S5=class extends Oh{apply(e){return Vr(e)}};S5.className="NonNeg";de.registerClass(S5);var C5=class extends Oh{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=w5(e,this.axis),n=ue(z(this.rate,xs(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,fe(n,ue(mn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};C5.className="MinMaxNorm";de.registerClass(C5);var r7={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function yn(e){return d5(e)}function a7(e,t={}){return Dh(e,de.SerializationMap.getMap().classNameMap,t,"constraint")}function An(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in r7?r7[e]:e,config:{}};return a7(n)}else return e instanceof Oh?e:a7(e)}function KU(e){return new k5(e)}function ZU(e){return new I5(e)}function YU(){return new S5}function JU(e){return new C5(e)}var Xk={};Ve(Xk,{constant:()=>tG,glorotNormal:()=>lG,glorotUniform:()=>iG,heNormal:()=>uG,heUniform:()=>cG,identity:()=>aG,leCunNormal:()=>dG,leCunUniform:()=>pG,ones:()=>eG,orthogonal:()=>hG,randomNormal:()=>sG,randomUniform:()=>nG,truncatedNormal:()=>rG,varianceScaling:()=>oG,zeros:()=>QU});function QU(){return new f5}function eG(){return new m2}function tG(e){return new m5(e)}function nG(e){return new g5(e)}function sG(e){return new y5(e)}function rG(e){return new A5(e)}function aG(e){return new x5(e)}function oG(e){return new bs(e)}function iG(e){return new g2(e)}function lG(e){return new y2(e)}function uG(e){return new A2(e)}function cG(e){return new x2(e)}function dG(e){return new b2(e)}function pG(e){return new v2(e)}function hG(e){return new b5(e)}var Kk={};Ve(Kk,{Layer:()=>ut,RNN:()=>ua,RNNCell:()=>Wh,activation:()=>LH,add:()=>XH,alphaDropout:()=>_j,average:()=>KH,averagePooling1d:()=>$x,averagePooling2d:()=>Px,averagePooling3d:()=>Fx,avgPool1d:()=>rj,avgPool2d:()=>oj,avgPool3d:()=>lj,avgPooling1d:()=>aj,avgPooling2d:()=>ij,avgPooling3d:()=>uj,batchNormalization:()=>tj,bidirectional:()=>kj,concatenate:()=>ZH,conv1d:()=>RH,conv2d:()=>_H,conv2dTranspose:()=>DH,conv3d:()=>$H,conv3dTranspose:()=>PH,convLstm2d:()=>xj,convLstm2dCell:()=>bj,cropping2D:()=>OH,dense:()=>BH,depthwiseConv2d:()=>zH,dot:()=>ej,dropout:()=>WH,elu:()=>IH,embedding:()=>qH,flatten:()=>UH,gaussianDropout:()=>Rj,gaussianNoise:()=>Ej,globalAveragePooling1d:()=>cj,globalAveragePooling2d:()=>dj,globalMaxPool1d:()=>Sj,globalMaxPool2d:()=>Cj,globalMaxPooling1d:()=>B8,globalMaxPooling2d:()=>W8,gru:()=>hj,gruCell:()=>fj,input:()=>h8,inputLayer:()=>kH,layerNormalization:()=>nj,leakyReLU:()=>CH,lstm:()=>mj,lstmCell:()=>gj,masking:()=>Dj,maxPool1d:()=>Tj,maxPool2d:()=>Nj,maxPooling1d:()=>V8,maxPooling2d:()=>U8,maxPooling3d:()=>pj,maximum:()=>YH,minimum:()=>JH,multiply:()=>QH,permute:()=>jH,prelu:()=>TH,reLU:()=>SH,repeatVector:()=>GH,reshape:()=>HH,rnn:()=>vj,separableConv2d:()=>FH,simpleRNN:()=>yj,simpleRNNCell:()=>Aj,softmax:()=>NH,spatialDropout1d:()=>VH,stackedRNNCells:()=>wj,thresholdedReLU:()=>EH,timeDistributed:()=>Ij,upSampling2d:()=>MH,zeroPadding2d:()=>sj});async function io(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;aue(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:Z(()=>{let s=z(fe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),wn(t[n])}))}},Jk=class extends cc{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;onew Qk(s,t))}var hr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),hr.checkForDuplicate(t),hr.constructors[e]==null&&(hr.constructors[e]=[]),hr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in hr.constructors)hr.constructors[+t].forEach(s=>{if(s===e)throw new j("Duplicate callback constructor.")})}static clear(){hr.constructors={}}static createCallbacks(e){let t=[];for(let n in hr.constructors){let s=+n;e>=s&&t.push(...hr.constructors[s])}return t.map(n=>new n)}};hr.constructors={};function t8(e,t,n,s,r,a,o,i,l){let u=new Jk,c=[new mG,...hr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let p=new Yk(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Mr(e,t={},n=!1){return Dh(e,de.SerializationMap.getMap().classNameMap,t,"layer",n)}function Fm(e,t){return Z(()=>{e.dtype!=="float32"&&(e=ye(e,"float32"));let n=ke(Ph(e),t,!0),s=Qc(n.shape,mn()),r=Fn(la(n,s));return fe(e,r)})}function uu(e,t){return Z(()=>Vt(Ph(me(t,e)),-1))}function k2(e,t){return Z(()=>Vt(sn(me(t,e)),-1))}function od(e,t){return Z(()=>{let n=me(e,t),s=xs(sn(e),mn(),Number.MAX_VALUE),r=sn(fe(n,s));return z(100,Vt(r,-1))})}function gG(e,t){return Z(()=>{let n=xs(t,mn(),Number.MAX_VALUE),s=Ms(ue(1,n)),r=xs(e,mn(),Number.MAX_VALUE),a=Ms(ue(1,r));return Vt(Ph(me(s,a)),-1)})}function yG(e,t){return Z(()=>{let n=la(0,me(1,z(e,t)));return Vt(Ph(n),-1)})}function AG(e,t){return Z(()=>{let n=la(0,me(1,z(e,t)));return Vt(n,-1)})}function xG(e,t){return Z(()=>{let n=ke(z(e,t),-1),s=gn(z(me(1,e),t),-1);return la(0,ue(1,me(s,n)))})}function bG(e,t){return Z(()=>{let n=Math.log(2),s=me(t,e),r=me(ue(s,ru(z(-2,s))),n);return Vt(r,-1)})}function Op(e,t,n=!1){return Z(()=>{if(n)t=ou(t);else{let s=ke(t,t.shape.length-1,!0);t=fe(t,s)}return t=xs(t,mn(),1-mn()),$t(ke(z(ye(e,"float32"),Ms(t)),t.shape.length-1))})}function Om(e,t,n=!1){return Z(()=>{let s=ye(ed(NU(e)),"int32");t=xs(t,mn(),1-mn());let r=t.shape,a=V(rc(s,r[r.length-1]),r);return Op(a,t,n)})}function vG(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return Z(()=>{let n=Vr(t),s=$t(sn(t));return ue(me(n,z(t,e)),wh(Os(s)))})}function I2(e,t){return Z(()=>{let n;return n=xs(t,mn(),1-mn()),n=Ms(fe(n,me(1,n))),Vt(vG(e,n),-1)})}function wG(e,t){return Z(()=>{let n=xs(e,mn(),1),s=xs(t,mn(),1);return ke(z(e,Ms(fe(n,s))),-1)})}function kG(e,t){return Z(()=>{let n=Ms(ue(mn(),t));return Vt(me(t,z(e,n)),-1)})}function T5(e,t){return Z(()=>{let n=Fm(e,-1),s=Fm(t,-1),r=z(n,s);return $t(ke(r,-1))})}var Mm={meanSquaredError:uu,meanAbsoluteError:k2,meanAbsolutePercentageError:od,meanSquaredLogarithmicError:gG,squaredHinge:yG,hinge:AG,categoricalHinge:xG,logcosh:bG,categoricalCrossentropy:Op,sparseCategoricalCrossentropy:Om,binaryCrossentropy:I2,kullbackLeiblerDivergence:wG,poisson:kG,cosineProximity:T5};function S3(e){if(typeof e=="string"){if(e in Mm)return Mm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function N5(e,t){return Z(()=>{let n=z(.5,zs(t)),s=h2(ws(t,n),e.dtype);return Vt(Fs(e,s),-1)})}function E5(e,t){return Z(()=>h2(Fs(Ps(e,-1),Ps(t,-1)),"float32"))}function n8(e,t){return Z(()=>ye(ke(gr(Fs(e,1),Fs(t,1))),"float32"))}function IG(e,t){return Z(()=>ye(ke(gr(Fs(e,1),Fs(t,0))),"float32"))}function SG(e,t){return Z(()=>ye(ke(gr(Fs(e,0),Fs(t,1))),"float32"))}function s8(e,t){return Z(()=>{let n=n8(e,t),s=SG(e,t),r=ue(n,s);return ye(Gn(ws(r,0),fe(n,r),0),"float32")})}function CG(e,t){return Z(()=>{let n=n8(e,t),s=IG(e,t),r=ue(n,s);return ye(Gn(ws(r,0),fe(n,r),0),"float32")})}function r8(e,t){return I2(e,t)}function a8(e,t){return e.rank===t.rank&&(e=st(e,[e.rank-1])),t=Ps(t,-1),t.dtype!==e.dtype&&(t=ye(t,e.dtype)),ye(Fs(e,t),"float32")}var TG=uu,NG=uu,EG=k2,RG=k2,_G=od,DG=od,R5=Op,$G=T5,o8=Om,zm={binaryAccuracy:N5,categoricalAccuracy:E5,precision:s8,categoricalCrossentropy:R5,sparseCategoricalCrossentropy:o8,mse:TG,MSE:NG,mae:EG,MAE:RG,mape:_G,MAPE:DG,cosine:$G};function PG(e){if(typeof e=="string"&&e in zm)return zm[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function tm(e){if(Yr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Mm))if(Mm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(zm))if(zm[n]===e){t=n;break}return t!==void 0?t:e.name}}function FG(e){let t={Adagrad:()=>Xi.adagrad(.01),Adadelta:()=>Xi.adadelta(1,.95,mn()),Adam:()=>Xi.adam(.001,.9,.999,mn()),Adamax:()=>Xi.adamax(.002,.9,.999,mn(),0),RMSProp:()=>Xi.rmsprop(.001,.9,0,mn()),SGD:()=>Xi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}var i7=1*1024*1024;function l7(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!J3(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>i7&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${i7}.`)}}function J3(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!J3(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!J3(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function OG(e,t,n,s=console.log){let r=zG(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Lm(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Lm(e,t,n=console.log){let s="";for(let r=0;r0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function LG(e,t,n){let s,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(l){s="multiple"}let a=e.name,o=e.getClassName(),i=[`${a} (${o})`,r,s,e.countParams().toString()];Lm(i,t,n)}function BG(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let o=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;dy.name)}`);fo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(A),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;Yr(A===0,"input layer has >1 nodes"),Yr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(A),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,x,A,b,w,I)=>{(b==null||w==null||I==null)&&(b=y.sourceLayer,w=y.nodeIndex,I=y.tensorIndex);let k=b.inboundNodes[w];if(A.indexOf(k)!==-1)throw new Pr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(k)!==-1)return;this.containerNodes.add(Kr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),A.indexOf(k)===-1&&A.push(k);let E=k.inboundLayers.length;for(let _=0;_=0;)A.splice(A.indexOf(k),1);o.push(k)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let x=t[y.id],A=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];x=Math.max(x,A),s[y.outboundLayer.id]=x,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=x;for(let b=0;bparseInt(y,10)).sort(Jf);this.layers=[];for(let y of h){let x=d[y];x.sort((A,b)=>{let w=a[A.id],I=a[b.id];return wI?1:0});for(let A of x)A instanceof Kr&&this.internalContainerRefs.push(A),this.layers.push(A)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Jf);let f=this.inputs.slice(),m=[];for(let y of h)for(let x of p[y]){let A=x.outboundLayer;if(A!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new Pr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${A.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(A.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let x=g.filter(A=>A===y).length;if(x!==1)throw new Pr(`The name "${y}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new w2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new j(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new j(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new j(`${a.length} of ${s} weights are not set: ${a}`)}v5(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${_5}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Q3(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return Z(()=>{e=Dt(e);let n=new tl;for(let s=0;s{e=Dt(e);let n;return t==null?n=fl(null,e.length):n=Dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=_m(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;oparseInt(o,10)).sort(Jf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;fparseInt(i,10)).sort(Jf);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,p=u.inputTensors,d=u.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,y,x;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[A,b]=h[0];f.mask==null&&(f.mask=b),y=Dt(c.call(A,f)),x=Dt(c.computeMask(A,b)),m=[A],g=[b]}else m=h.map(A=>A[0]),g=h.map(A=>A[1]),f.mask==null&&(f.mask=g),y=Dt(c.call(m,f)),x=Dt(c.computeMask(m,g));if(c.activityRegularizer)throw new qe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let A=0;A{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(ys(y),x)}function l(m){let g=m.name,y=Mr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${A}`);o(y,A)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!mU(a);)for(let m of c){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let x of y)i(g,x)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],x=m[2];Yr(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],x=m[2];Yr(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[x])}return new e({inputs:p,outputs:d,name:u})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){Z(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function WG(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function l8(e,t){return WG(e,t,"classWeight")}async function u8(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=Z(()=>{if(e.shape.length===1)return Un(e);if(e.shape.length===2){if(e.shape[1]>1)return Ps(e,1);if(e.shape[1]===1)return V(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());J(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Ft(o,"float32")}else return null}function VG(e,t){return z(e,t)}var UG=32;function c8(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=u7("input",e.inputNames,n),o=u7("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function u7(e,t,n){if(n instanceof nt)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function GG(e){if(e.length===3)throw new qe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function HG(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(c7(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=GG(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=e8(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=t8(c,p,n.epochs,null,null,jG(t,n),null,r,u);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:A.done){if(r){let b;c7(n.validationData)?b=Dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Dt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?UG:n.validationBatchSize,verbose:0}));for(let w=0;w0)throw new qe("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=qG(t)?t:await t.iterator(),i=0,l=0;for(;!s||l{if(u.value){let{xs:c,ys:p}=c8(e,u.value),d=c.concat(p),h=Z(()=>r(d));if(J(d),l===0)for(let m=0;mue(a[m],z(f,g))),l>0&&J(y)}J(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function hp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>ol(s,t,n-t)):ol(e,t,n-t)}function D5(e,t){return Z(()=>e==null?null:Array.isArray(e)?e.map(n=>D5(n,t)):Vk(e,t.dtype==="int32"?t:ye(t,"int32")))}function ty(e,t){let n=[],s=0,r=null;for(;s=e&&(r=e),n.push([s,r]),s=r;return n}async function KG(e,t,n,s,r,a,o,i,l,u,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Lr(0,g)),o==null&&(o=1);let{callbackList:x,history:A}=t8(i,o,a,d,g,h,r,m,p);x.setModel(e),e.history=A,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b{let D=k[E][0],R=k[E][1],P=ol(I,D,R-D);_.batch=E,_.size=R-D;let T=D5(n,P),M=t(T);for(let W=0;W0){if(g=!0,s.validationData.length===2)l=s.validationData[0],u=s.validationData[1];else throw s.validationData.length===3?new qe("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let _=!0,D=await e.standardizeUserData(l,u,null,null,_,h);c=D[0],p=D[1],y=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let _=Math.floor(r[0].shape[0]*(1-s.validationSplit)),D=r[0].shape[0];c=hp(r,_,D),o=r,r=hp(r,0,_),p=hp(a,_,D),i=a,a=hp(a,0,_),y=c.concat(p)}else s.validationSteps!=null&&(g=!0);let x=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,I;g?(e.makeTestFunction(),w=e.testFunction,I=b.slice().concat(b.map(_=>"val_"+_))):(w=null,y=[],I=b.slice());let k=e8(s.callbacks,s.yieldEvery);return await KG(e,A,x,b,h,s.epochs,s.verbose,k,w,y,s.shuffle,I,s.initialEpoch,null,null)}finally{e.isTraining=!1,$r(r,t),$r(a,n),$r(o,t),$r(i,n),$r(c,l),$r(p,u),d!=null&&J(d)}}function d8(e){let t=[];e instanceof nt&&(e=[e]);for(let n=0;nn.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof nt)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function YG(e){return e instanceof nt}function ny(e){return Array.isArray(e)}function d7(e){return!YG(e)&&!ny(e)}function p7(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(ny(e)&&e.length>0)o=!0;else if(d7(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new j(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(d7(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new j(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(ny(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new j(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=d8(a),n!=null)for(let o=0;o=0&&u!==c)throw new j(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function JG(e,t,n){let s=fo(e.map(a=>a.shape[0]));s.sort();let r=fo(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function QG(e,t,n){let s=[uu,I2,Op];for(let r=0;r1)throw new j(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var tH="layers-model",wa=class extends Kr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");OG(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=FG(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ga))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new j(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(S3(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>S3(o))}else{let a=S3(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a{for(let a=0;a1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=eH(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};al("metric",()=>{for(let a=0;a{let u="",c,p,d;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===I2?["accuracy","acc"].indexOf(h)!==-1?p=N5:["crossentropy","ce"].indexOf(h)!==-1&&(p=r8):this.lossFunctions[a]===Om?["accuracy","acc"].indexOf(h)!==-1?p=a8:["crossentropy","ce"].indexOf(h)!==-1&&(p=o8):["accuracy","acc"].indexOf(h)!==-1?p=E5:["crossentropy","ce"].indexOf(h)!==-1&&(p=R5);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=u+g}else d=PG(h),c=u+tm(h);let f;al(c,()=>{f=d}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;ey(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return ys(l)}finally{$r(a[0],e),$r(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),XG(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new j(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new tl;if(e instanceof nt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;io.name);for(let o=0;o0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return Z(()=>{let s=this.checkNumSamples(e);if(n)throw new qe("Verbose predictLoop() is not implemented yet.");let r=ty(s,t),a=this.outputs.map(o=>[]);for(let o=0;o{let l=r[o][0],u=r[o][1],c=hp(e,l,u),p=[];if(Array.isArray(c))for(let h=0;ha[u].push(l));return ys(a.map(o=>St(o,0)))})}predict(e,t={}){let n=d8(e);h7(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return ey(s),this.predictLoop(n,s)}finally{$r(n,e)}}predictOnBatch(e){h7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Pr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a0&&e[0].shape[0]%s!==0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=l8(s,this.outputNames);l=[];for(let c=0;c{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new qe("Verbose mode is not implemented yet.");if(r!=null)throw new qe("steps mode in testLoop() is not implemented yet");{let i=ty(a,n),l=Ft(Lr(0,a));for(let u=0;u1&&(r+=`_${Yv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f1&&f{h=ue(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>Z(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;lAa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Aa(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Aa(tm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Aa(tm(e)));{let e={};for(let t in this.metrics)e[t]=Aa(tm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Mp(e.optimizer_config),n=Mr(t),s;if(typeof e.loss=="string")s=Ji(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Ji(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Ji(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Ji(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Ji(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Ds.getSaveHandlers(e);if(l.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new j(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ds.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:tH,generatedBy:`TensorFlow.js tfjs-layers v${_5}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Ds.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Ds.concatenateArrayBuffers([n.data,u])}return this.userDefinedMetadata!=null&&(l7(this.userDefinedMetadata,this.name,!0),o.userDefinedMetadata=this.userDefinedMetadata),o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){l7(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};wa.className="Model";de.registerClass(wa);var p8=class extends wa{};p8.className="Functional";de.registerClass(p8);async function nH(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Mp(n),r=Mr(s,t);if(e.weightsManifest!=null){let a=await Ds.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),J(a)}return r}async function sH(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ds.getLoadHandlers(e,t);if(n.length===0)n.push(Ds.browserHTTPRequest(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return rH(e,void 0,t)}async function rH(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Mr(Mp(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=aH(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),J(u),J(c.map(p=>p.tensor))}return i}function aH(e,t){let n=Ds.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var dc=class extends wa{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:p2("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof dc||e instanceof wa,n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=jk({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Hk(this.outputs[0])}this.inboundNodes=[],new w2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:fl(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(At(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new wa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Pr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Pr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Pr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Pr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof dc))throw new qe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Mr(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};dc.className="Sequential";de.registerClass(dc);function oH(e){return new wa(e)}function iH(e){return new dc(e)}function lH(e,t){return t==null&&(t={}),sH(e,t)}function h8(e){return jk(e)}function uH(e,t){hr.registerCallbackConstructor(e,t)}var ks=class extends de.Serializable{getConfig(){return{}}},f8=class extends ks{apply(e,t=1){return RU(e,t)}};f8.className="elu";de.registerClass(f8);var m8=class extends ks{apply(e){return j0(e)}};m8.className="selu";de.registerClass(m8);var g8=class extends ks{apply(e){return Vr(e)}};g8.className="relu";de.registerClass(g8);var y8=class extends ks{apply(e){return Z(()=>nd(6,Vr(e)))}};y8.className="relu6";de.registerClass(y8);var A8=class extends ks{apply(e){return e}};A8.className="linear";de.registerClass(A8);var x8=class extends ks{apply(e){return Dn(e)}};x8.className="sigmoid";de.registerClass(x8);var b8=class extends ks{apply(e){return DU(e)}};b8.className="hardSigmoid";de.registerClass(b8);var v8=class extends ks{apply(e){return ru(e)}};v8.className="softplus";de.registerClass(v8);var w8=class extends ks{apply(e){return _U(e)}};w8.className="softsign";de.registerClass(w8);var k8=class extends ks{apply(e){return dl(e)}};k8.className="tanh";de.registerClass(k8);var $5=class extends ks{apply(e,t=-1){return ou(e,t)}};$5.className="softmax";de.registerClass($5);var I8=class extends ks{apply(e,t=-1){return z0(e,t)}};I8.className="logSoftmax";de.registerClass(I8);var S8=class extends ks{apply(e,t=1){return Z(()=>z(Dn(z(e,t)),e))}};S8.className="swish";de.registerClass(S8);var C8=class extends ks{apply(e){return Z(()=>z(e,dl(ru(e))))}};C8.className="mish";de.registerClass(C8);function Io(e){return e.getClassName()}function C3(e,t={}){return Dh(e,de.SerializationMap.getMap().classNameMap,t,"activation")}function So(e){if(e==null){let t={};return t.className="linear",t.config={},C3(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},C3(t)}else return e instanceof ks?e:C3(e)}function P5(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var T8=class extends de.Serializable{},Mh=class extends T8{constructor(e){super(),P5(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return Z(()=>{let t=Ut([1]);return this.hasL1&&(t=ue(t,ke(z(this.l1,sn(e))))),this.hasL2&&(t=ue(t,ke(z(this.l2,Ph(e))))),V(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Mh.className="L1L2";de.registerClass(Mh);function cH(e){return P5(e),new Mh({l1:e!=null?e.l1:null,l2:0})}function dH(e){return P5(e),new Mh({l2:e!=null?e.l2:null,l1:0})}var f7={l1l2:"L1L2"};function It(e){return d5(e)}function m7(e,t={}){return Dh(e,de.SerializationMap.getMap().classNameMap,t,"regularizer")}function Mt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in f7?f7[e]:e,config:{}};return m7(n)}else return e instanceof T8?e:m7(e)}var F5=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Xe(e);let n=Vr(e);return this.maxValue!=null&&(n=xs(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};F5.className="ReLU";de.registerClass(F5);var O5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Xe(e);return vh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};O5.className="LeakyReLU";de.registerClass(O5);var M5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ot(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Mt(e.alphaRegularizer),this.alphaConstraint=An(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=At(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s(Jt(t),t==="channelsFirst"?et(e,[0,2,3,1]):e))}function N8(e,t){return Z(()=>(Jt(t),t==="channelsFirst"?et(e,[0,2,3,4,1]):e))}function pH(e,t,n,s=1,r="valid",a,o=1){return Z(()=>{if(a==null&&(a=Br()),Jt(a),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=et(e,[0,2,1])),r==="causal")throw new qe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=_0(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Ur(i,n)),i})}function g7(e,t,n,s=[1,1],r="valid",a,o,i=null){return Z(()=>{if(a==null&&(a=Br()),Jt(a),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=W5(e,a);if(r==="causal")throw new qe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=lc.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=et(l,[0,3,1,2])),l})}function hH(e,t,n,s=[1,1,1],r="valid",a,o){return Z(()=>{if(a==null&&(a=Br()),Jt(a),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=N8(e,a);if(r==="causal")throw new qe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=TA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Ur(i,n)),a==="channelsFirst"&&(i=et(i,[0,4,1,2,3])),i})}var V5=class extends ut{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",V5.verifyArgs(t),this.rank=e,kn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new qe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Qu(t.kernelSize,e,"kernelSize"),this.strides=Qu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ar(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Jt(this.dataFormat),this.activation=So(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ot(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=An(t.biasConstraint),this.biasRegularizer=Mt(t.biasRegularizer),this.activityRegularizer=Mt(t.activityRegularizer),this.dilationRate=Qu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Yr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!p5(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Io(this.activation),useBias:this.useBias,biasInitializer:Gt(this.biasInitializer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),biasConstraint:yn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},zh=class extends V5{constructor(e,t){super(e,t),this.kernel=null,zh.verifyArgs(t),this.filters=t.filters,kn(this.filters,"filters"),this.kernelInitializer=Ot(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=An(t.kernelConstraint),this.kernelRegularizer=Mt(t.kernelRegularizer)}build(e){e=At(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return Z(()=>{e=Xe(e);let n,s=this.bias==null?null:this.bias.read(),r=Ok(this.activation.getClassName());if(r!=null&&this.rank===2)n=g7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=pH(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=g7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=hH(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new qe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=At(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r 0 but got ${JSON.stringify(e.filters)}`)}},Lh=class extends zh{constructor(e){super(2,e),Lh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!p5(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Lh.className="Conv2D";de.registerClass(Lh);var Bh=class extends zh{constructor(e){super(3,e),Bh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Bh.className="Conv3D";de.registerClass(Bh);var U5=class extends Lh{constructor(e){if(super(e),this.inputSpec=[new on({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new on({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Xe(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Jr(i,p,u,this.padding),f=Jr(l,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=et(n,[0,2,3,1]));let g=D0(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=et(g,[0,3,1,2])),this.bias!=null&&(g=Ur(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Jr(t[s],i,a,this.padding),t[r]=Jr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};U5.className="Conv2DTranspose";de.registerClass(U5);var G5=class extends Bh{constructor(e){if(super(e),this.inputSpec=[new on({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==5)throw new j("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new on({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Xe(e);if(n.shape.length!==5)throw new j(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Jr(l,f,p,this.padding),x=Jr(u,m,d,this.padding),A=Jr(c,g,h,this.padding),b=[r,y,x,A,this.filters];this.dataFormat!=="channelsLast"&&(n=et(n,[0,2,3,4,1]));let w=NA(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=et(w,[0,4,1,2,3])),this.bias!==null&&(w=Ur(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Jr(t[s],u,o,this.padding),t[r]=Jr(t[r],c,i,this.padding),t[a]=Jr(t[a],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};G5.className="Conv3DTranspose";de.registerClass(G5);var E8=class extends zh{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ot(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Mt(t.depthwiseRegularizer),this.depthwiseConstraint=An(t.depthwiseConstraint),this.pointwiseInitializer=Ot(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Mt(t.pointwiseRegularizer),this.pointwiseConstraint=An(t.pointwiseConstraint)}build(e){if(e=At(e),e.length{e=Xe(e);let n;if(this.rank===1)throw new qe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=et(e,[0,2,3,1])),n=q0(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=et(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Gt(this.depthwiseInitializer),e.pointwiseInitializer=Gt(this.pointwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.pointwiseRegularizer=It(this.pointwiseRegularizer),e.depthwiseConstraint=yn(this.depthwiseConstraint),e.pointwiseConstraint=yn(this.pointwiseConstraint),e}};E8.className="SeparableConv";var H5=class extends E8{constructor(e){super(2,e)}};H5.className="SeparableConv2D";de.registerClass(H5);var S2=class extends zh{constructor(e){super(1,e),S2.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!p5(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};S2.className="Conv1D";de.registerClass(S2);var j5=class extends ut{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return Z(()=>{if(e=Xe(e),this.dataFormat==="channelsLast"){let n=em(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return em(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=em(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return em(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};j5.className="Cropping2D";de.registerClass(j5);var q5=class extends ut{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,kU(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return Z(()=>{let n=Xe(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=et(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Se.resizeNearestNeighbor(n,[r,a]):Se.resizeBilinear(n,[r,a]);return et(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Se.resizeNearestNeighbor(n,[r,a]):Se.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};q5.className="UpSampling2D";de.registerClass(q5);function fH(e,t,n=[1,1],s="valid",r,a){return Z(()=>{r==null&&(r=Br()),Jt(r);let o=W5(e,r);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Zc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=et(o,[0,3,1,2])),o})}var X5=class extends V5{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ot(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=An(e.depthwiseConstraint),this.depthwiseRegularizer=Mt(e.depthwiseRegularizer)}build(e){if(e=At(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{e=Xe(e);let n=fH(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=zr(t,this.kernelSize[0],this.padding,this.strides[0]),a=zr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Gt(this.depthwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.depthwiseConstraint=yn(this.depthwiseRegularizer),e}};X5.className="DepthwiseConv2D";de.registerClass(X5);function R8(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function _8(e,t,n,s=!1,r,a,o=!1,i=!1){return Z(()=>{let l=t.shape.length;if(l<3)throw new j(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Lr(2,l));if(t=et(t,u),a!=null)throw new qe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ye(ye(r,"bool"),"float32"),r.rank===l-1&&(r=Wt(r,-1)),r=et(r,u)),s&&(t=tr(t,0),r!=null&&(r=tr(r,0)));let c=[],p,d=n,h=t.shape[0],f=On(t),m;r!=null&&(m=On(r));for(let y=0;ye(x,d));if(r==null)p=A[0],d=A[1];else{let b=Z(()=>{let w=m[y],I=me(zs(w),w),k=ue(z(A[0],w),z(d[0],I)),E=d.map((_,D)=>ue(z(A[1][D],w),z(_,I)));return{output:k,newStates:E}});p=b.output,d=b.newStates}i&&c.push(p)}let g;return i&&(g=un(c,1)),[p,g,d]})}var ua=class extends ut{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new N2({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new on({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Lr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Z3(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return Z(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;no.shape[o.shape.length-1]),a))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new on({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ut([n,s])):this.states_=[Ut([n,this.cell.stateSize])];else if(e==null)J(this.states_),this.keptStates!=null&&(J(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ut([n,s])):this.states_[0]=Ut([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):J(this.states_);for(let s=0;swn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=R8(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new on({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Fr){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Xe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new j(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=_8((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],p=l[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:u;return this.returnState?[d].concat(p):d})}getInitialState(e){return Z(()=>{let t=Ut(e.shape);return t=ke(t,[1,2]),t=$h(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?X3(t,[1,n]):t):this.cell.stateSize>1?[X3(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===ua.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Mr(s,n);return new e(Object.assign(t,{cell:r}))}};ua.className="RNN";de.registerClass(ua);var Wh=class extends ut{},C2=class extends Wh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,kn(this.units,"units"),this.activation=So(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ot(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=An(e.kernelConstraint),this.recurrentConstraint=An(e.recurrentConstraint),this.biasConstraint=An(e.biasConstraint),this.dropout=uc([1,ko([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=uc([1,ko([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0zs(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0zs(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=ta(z(e,a),this.kernel.read()):r=ta(e,this.kernel.read()),this.bias!=null&&(r=Ur(r,this.bias.read())),o!=null&&(n=z(n,o));let i=ue(r,ta(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Io(this.activation),useBias:this.useBias,kernelInitializer:Gt(this.kernelInitializer),recurrentInitializer:Gt(this.recurrentInitializer),biasInitializer:Gt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:yn(this.kernelConstraint),recurrentConstraint:yn(this.recurrentConstraint),biasConstraint:yn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};C2.className="SimpleRNNCell";de.registerClass(C2);var K5=class extends ua{constructor(e){e.cell=new C2(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};K5.className="SimpleRNN";de.registerClass(K5);var T2=class extends Wh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,kn(this.units,"units"),this.activation=So(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=So(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ot(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=An(e.kernelConstraint),this.recurrentConstraint=An(e.recurrentConstraint),this.biasConstraint=An(e.biasConstraint),this.dropout=uc([1,ko([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=uc([1,ko([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0zs(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0zs(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Z5.className="GRU";de.registerClass(Z5);var Vh=class extends Wh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,kn(this.units,"units"),this.activation=So(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=So(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ot(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=An(e.kernelConstraint),this.recurrentConstraint=An(e.recurrentConstraint),this.biasConstraint=An(e.biasConstraint),this.dropout=uc([1,ko([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=uc([1,ko([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=At(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends xr{apply(i,l){let u=r.apply([a]),c=new m2().apply([a]),p=r.apply([a*2]);return Qv(Qv(u,c),p)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0zs(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0zs(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Y5.className="LSTM";de.registerClass(Y5);var N2=class extends Wh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return Z(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o{al(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Mr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Y3(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;aa!=null?a(t(),n):Uk(t(),n),i=()=>Fh(o,t,s);return!r||r<=1?wn(i().clone()):Array(r).fill(void 0).map(i).map(u=>wn(u.clone()))}var mH=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r{if(this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return Z(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ut(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new ya("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ut(r)):this.states_=[Ut(r)];else if(e==null)J(this.states_),this.keptStates!=null&&(J(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ut(r)):this.states_[0]=Ut(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):J(this.states_);for(let o=0;own(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=zr(l,s[0],r,a[0],o[0]),p=zr(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,p]:[c,p,n]]}};D8.className="ConvRNN2D";var E2=class extends Vh{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t})),this.filters=t,kn(this.filters,"filters"),this.kernelSize=Qu(n,2,"kernelSize"),this.kernelSize.forEach(i=>kn(i,"kernelSize")),this.strides=Qu(s||1,2,"strides"),this.strides.forEach(i=>kn(i,"strides")),this.padding=r||"valid",ar(this.padding),this.dataFormat=a||"channelsLast",Jt(this.dataFormat),this.dilationRate=Qu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>kn(i,"dilationRate"))}build(e){var t;e=At(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends xr{apply(p,d){let h=l.apply([u]),f=$s([u]),m=l.apply([u*2]);return h5([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return Z(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0zs(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Y,ae,ee)=>!ae||!ae[ee]?Y:z(ae[ee],Y),u=l(s,i,0),c=l(s,i,1),p=l(s,i,2),d=l(s,i,3);0zs(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),x=3,[A,b,w,I]=Yt(this.kernel.read(),o,x),[k,E,_,D]=this.useBias?Yt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,A,k,this.padding),c=this.inputConv(c,b,E,this.padding),p=this.inputConv(p,w,_,this.padding),d=this.inputConv(d,I,D,this.padding);let[R,P,T,M]=Yt(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,R),m=this.recurrentConv(m,P),g=this.recurrentConv(g,T),y=this.recurrentConv(y,M);let W=this.recurrentActivation.apply(ue(u,f)),G=this.recurrentActivation.apply(ue(c,m)),X=ue(z(G,a),z(W,this.activation.apply(ue(p,g)))),K=z(this.recurrentActivation.apply(ue(d,y)),this.activation.apply(X));return[K,K,X]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=mH(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Ia(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ur(r,n,this.dataFormat):r}recurrentConv(e,t){return Ia(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};E2.className="ConvLSTM2DCell";de.registerClass(E2);var J5=class extends D8{constructor(e){let t=new E2(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};J5.className="ConvLSTM2D";de.registerClass(J5);var R2=class extends ut{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s{this.invokeCallHook(e,t);let n=Xe(e);if(0Uk(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};R2.className="Dropout";de.registerClass(R2);var Q5=class extends R2{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Q5.className="SpatialDropout1D";de.registerClass(Q5);var ex=class extends ut{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,kn(this.units,"units"),this.activation=So(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=An(e.kernelConstraint),this.biasConstraint=An(e.biasConstraint),this.kernelRegularizer=Mt(e.kernelRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.activityRegularizer=Mt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=At(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=At(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e),s=Ok(this.activation.getClassName()),r;return s!=null?r=ta(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=ta(n,this.kernel.read()),this.bias!=null&&(r=Ur(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Io(this.activation),useBias:this.useBias,kernelInitializer:Gt(this.kernelInitializer),biasInitializer:Gt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:yn(this.kernelConstraint),biasConstraint:yn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};ex.className="Dense";de.registerClass(ex);var tx=class extends ut{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=At(e);for(let t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],mo(e,1)]}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r{this.invokeCallHook(e,t);let n=Xe(e);return this.activation.apply(n)})}getConfig(){let e={activation:Io(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Activation";de.registerClass(nx);var sx=class extends ut{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return Z(()=>(e=Xe(e),TU(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};sx.className="RepeatVector";de.registerClass(sx);var rx=class extends ut{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=Xe(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return V(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};rx.className="Reshape";de.registerClass(rx);var ax=class extends ut{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Lr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new on({ndim:this.dims.length+1})]}computeOutputShape(e){e=At(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return et(Xe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};ax.className="Permute";de.registerClass(ax);var ox=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Xe(e),s=-1;return Pp(hl(n,this.maskValue),s)}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e),s=-1,r=!0,a=Pp(hl(n,this.maskValue),s,r);return z(n,ye(a,n.dtype))})}};ox.className="Masking";de.registerClass(ox);var ix=class extends ut{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Dt(e.inputLength))}this.inputDim=e.inputDim,kn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,kn(this.outputDim,"outputDim"),this.embeddingsInitializer=Ot(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Mt(e.embeddingsRegularizer),this.activityRegularizer=Mt(e.activityRegularizer),this.embeddingsConstraint=An(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return Z(()=>this.maskZero?(e=Xe(e),hl(e,it(e))):null)}computeOutputShape(e){if(e=At(e),this.inputLength==null)return[...e,this.outputDim];let t=Dt(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s{this.invokeCallHook(e,t);let n=Xe(e);n.dtype!=="int32"&&(n=h2(n,"int32"));let s=Vk(this.embeddings.read(),V(n,[n.size]));return V(s,At(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Gt(this.embeddingsInitializer),embeddingsRegularizer:It(this.embeddingsRegularizer),activityRegularizer:It(this.activityRegularizer),embeddingsConstraint:yn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ix.className="Embedding";de.registerClass(ix);var cu=class extends ut{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new qe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;rr.length);e.indexOf(null)===-1&&fo(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return Z(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=ko(s);for(let a of e){let o=a.rank;for(let i=0;i1){let u=Lr(1,l).concat([0]);n.push(et(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=V(et(V(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Lr(0,o-1));a=et(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Wt(s,0));let n=t[0];for(let s=1;s{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return Z(()=>h5(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return Z(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a3||t.shape.length>3)throw new qe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new qe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return Z(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;us){o=r-s;let l=[];for(let u=0;u0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new qe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new j(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>ip(r,e[a].shape.length)):s=[ip(this.axes,t.shape.length),ip(this.axes,n.shape.length)],this.normalize&&(t=Fm(t,s[0]),n=Fm(n,s[1])),gH(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[ip(this.axes,e.length),ip(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new qe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};fx.className="Dot";de.registerClass(fx);var mx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e);return Fh(()=>ue(f2(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};mx.className="GaussianNoise";de.registerClass(mx);var gx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Xe(e);return this.rate>0&&this.rate<1?Fh(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,f2(n.shape,1,r))},()=>n,t.training||!1):n})}};gx.className="GaussianDropout";de.registerClass(gx);var yx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Xe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Fh(()=>{let r=Xe(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=bi(sd(n),this.rate);l=h2(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,p=ue(z(r,l),z(ue(l,-1),i));return ue(z(p,u),c)},()=>Xe(e),t.training||!1)}return e})}};yx.className="AlphaDropout";de.registerClass(yx);function zp(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=AA(e,t,n,s,r,a);else if(e.rank===3)o=xA(e,t,n,s,r,a);else if(e.rank===4)o=bA(e,t,n,s,r,a);else throw new qe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function yH(e,t,n,s,r=.001){return Z(()=>{let a=Sh(e,s),o=a.mean,i=a.variance;return[zp(e,o,i,n,t,r),o,i]})}function AH(e,t,n,s,r=.001){return Z(()=>{let a=Sh(e,s),o=a.mean,i=a.variance,l=[];for(let f of Lr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=V(o,l),c=V(i,l),p=t==null?null:V(t,l),d=n==null?null:V(n,l);return[zp(e,u,c,d,p,r),o,i]})}function xH(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),Lr(0,e.rank-1))?yH(e,t,n,s,r):AH(e,t,n,s,r)}var Ax=class extends ut{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ot(e.betaInitializer||"zeros"),this.gammaInitializer=Ot(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ot(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ot(e.movingVarianceInitializer||"ones"),this.betaConstraint=An(e.betaConstraint),this.gammaConstraint=An(e.gammaConstraint),this.betaRegularizer=Mt(e.betaRegularizer),this.gammaRegularizer=Mt(e.gammaRegularizer)}build(e){e=At(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new on({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training,s=Xe(e),r=s.shape,a=r.length,o=Lr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=fl(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!v.arraysEqual(u,Lr(0,a).slice(0,a-1)),p=()=>{if(c){let y=V(this.movingMean.read(),l),x=V(this.movingVariance.read(),l),A=this.center?V(this.beta.read(),l):null,b=this.scale?V(this.gamma.read(),l):null;return zp(s,y,x,A,b,this.epsilon)}else return zp(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=xH(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,x,A)=>{Z(()=>{let b=1-A,w=y.read(),I=z(me(w,x),b);y.write(me(w,I))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Gt(this.betaInitializer),gammaInitializer:Gt(this.gammaInitializer),movingMeanInitializer:Gt(this.movingMeanInitializer),movingVarianceInitializer:Gt(this.movingVarianceInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer),betaConstraint:yn(this.betaConstraint),gammaConstraint:yn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="BatchNormalization";de.registerClass(Ax);var xx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ot(e.betaInitializer||"zeros"),this.gammaInitializer=Ot(e.gammaInitializer||"ones"),this.betaRegularizer=Mt(e.betaRegularizer),this.gammaRegularizer=Mt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=At(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==fo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Xe(e),s=n.shape,r=s.length;return Z(()=>{let{mean:o,variance:i}=Sh(n,this.axis,!0),l=fl(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r?V(f,l):f,c=this.scale?u(this.gamma.read()):null,p=this.center?u(this.beta.read()):null,d=[],h=[];for(let f=0;f{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Br()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],rr(e,s)})}var bx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Br():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new on({ndim:4})]}computeOutputShape(e){e=At(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return Z(()=>bH(Xe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};bx.className="ZeroPadding2D";de.registerClass(bx);function _2(e,t,n,s,r,a){return Z(()=>{Jt(r),zk(a),ar(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Br()),a==null&&(a="max"),e=W5(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Ih(e,t,n,i):o=Ah(e,t,n,i),r==="channelsFirst"&&(o=et(o,[0,3,1,2])),o})}function $8(e,t,n,s,r,a){return Z(()=>{Jt(r),zk(a),ar(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Br()),a==null&&(a="max"),e=N8(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=GA(e,t,n,i):o=yA(e,t,n,i),r==="channelsFirst"&&(o=et(o,[0,4,1,2,3])),o})}var P8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(kn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);kn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ar(this.padding),this.inputSpec=[new on({ndim:3})]}computeOutputShape(e){e=At(e);let t=zr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return Z(()=>{this.invokeCallHook(e,t),e=$h(Xe(e),2);let n=this.poolingFunction(Xe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return st(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},vx=class extends P8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),ar(s),_2(e,t,n,s,r,"max")}};vx.className="MaxPooling1D";de.registerClass(vx);var wx=class extends P8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),ar(s),_2(e,t,n,s,r,"avg")}};wx.className="AveragePooling1D";de.registerClass(wx);var F8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];kn(this.poolSize,"poolSize"),kn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),ar(this.padding),this.inputSpec=[new on({ndim:4})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=zr(t,this.poolSize[0],this.padding,this.strides[0]),n=zr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Xe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},kx=class extends F8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),ar(s),_2(e,t,n,s,r,"max")}};kx.className="MaxPooling2D";de.registerClass(kx);var Ix=class extends F8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),ar(s),_2(e,t,n,s,r,"avg")}};Ix.className="AveragePooling2D";de.registerClass(Ix);var O8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];kn(this.poolSize,"poolSize"),kn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),ar(this.padding),this.inputSpec=[new on({ndim:5})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=zr(t,this.poolSize[0],this.padding,this.strides[0]),n=zr(n,this.poolSize[1],this.padding,this.strides[1]),s=zr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Xe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Sx=class extends O8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),ar(s),$8(e,t,n,s,r,"max")}};Sx.className="MaxPooling3D";de.registerClass(Sx);var Cx=class extends O8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),ar(s),$8(e,t,n,s,r,"avg")}};Cx.className="AveragePooling3D";de.registerClass(Cx);var M8=class extends ut{constructor(e){super(e),this.inputSpec=[new on({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new qe}},Tx=class extends M8{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Xe(e);return Vt(n,1)})}};Tx.className="GlobalAveragePooling1D";de.registerClass(Tx);var Nx=class extends M8{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Xe(e);return gn(n,1)})}};Nx.className="GlobalMaxPooling1D";de.registerClass(Nx);var z8=class extends ut{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),this.inputSpec=[new on({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new qe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ex=class extends z8{call(e,t){return Z(()=>{let n=Xe(e);return this.dataFormat==="channelsLast"?Vt(n,[1,2]):Vt(n,[2,3])})}};Ex.className="GlobalAveragePooling2D";de.registerClass(Ex);var Rx=class extends z8{call(e,t){return Z(()=>{let n=Xe(e);return this.dataFormat==="channelsLast"?gn(n,[1,2]):gn(n,[2,3])})}};Rx.className="GlobalMaxPooling2D";de.registerClass(Rx);var L8=class extends ut{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Mr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},_x=class extends L8{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=At(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=At(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return Z(()=>(e=Xe(e),_8((a,o)=>[Xe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};_x.className="TimeDistributed";de.registerClass(_x);function vH(e){lu(wU,"BidirectionalMergeMode",e)}var wH="concat",Dx=class extends L8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Mr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Mr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?wH:e.mergeMode,vH(this.mergeMode),e.weights)throw new qe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):ys(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=R8(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new on({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new qe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Fr;for(let l of a)if(l instanceof Fr!==i)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=tr(r,1));let o;return this.mergeMode==="concat"?o=h5([s,r]):this.mergeMode==="sum"?o=ue(s,r):this.mergeMode==="ave"?o=z(.5,ue(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){al(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),al(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Mr(t.layer);if(delete t.layer,t.numConstants!=null)throw new qe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Dx.className="Bidirectional";de.registerClass(Dx);function kH(e){return new ad(e)}function IH(e){return new z5(e)}function SH(e){return new F5(e)}function CH(e){return new O5(e)}function TH(e){return new M5(e)}function NH(e){return new B5(e)}function EH(e){return new L5(e)}function RH(e){return new S2(e)}function _H(e){return new Lh(e)}function DH(e){return new U5(e)}function $H(e){return new Bh(e)}function PH(e){return new G5(e)}function FH(e){return new H5(e)}function OH(e){return new j5(e)}function MH(e){return new q5(e)}function zH(e){return new X5(e)}function LH(e){return new nx(e)}function BH(e){return new ex(e)}function WH(e){return new R2(e)}function VH(e){return new Q5(e)}function UH(e){return new tx(e)}function GH(e){return new sx(e)}function HH(e){return new rx(e)}function jH(e){return new ax(e)}function qH(e){return new ix(e)}function XH(e){return new lx(e)}function KH(e){return new cx(e)}function ZH(e){return new hx(e)}function YH(e){return new dx(e)}function JH(e){return new px(e)}function QH(e){return new ux(e)}function ej(e){return new fx(e)}function tj(e){return new Ax(e)}function nj(e){return new xx(e)}function sj(e){return new bx(e)}function $x(e){return new wx(e)}function rj(e){return $x(e)}function aj(e){return $x(e)}function Px(e){return new Ix(e)}function oj(e){return Px(e)}function ij(e){return Px(e)}function Fx(e){return new Cx(e)}function lj(e){return Fx(e)}function uj(e){return Fx(e)}function cj(e){return new Tx(e)}function dj(e){return new Ex(e)}function B8(e){return new Nx(e)}function W8(e){return new Rx(e)}function V8(e){return new vx(e)}function U8(e){return new kx(e)}function pj(e){return new Sx(e)}function hj(e){return new Z5(e)}function fj(e){return new T2(e)}function mj(e){return new Y5(e)}function gj(e){return new Vh(e)}function yj(e){return new K5(e)}function Aj(e){return new C2(e)}function xj(e){return new J5(e)}function bj(e){return new E2(e)}function vj(e){return new ua(e)}function wj(e){return new N2(e)}function kj(e){return new Dx(e)}function Ij(e){return new _x(e)}var Sj=B8,Cj=W8,Tj=V8,Nj=U8;function Ej(e){return new mx(e)}function Rj(e){return new gx(e)}function _j(e){return new yx(e)}function Dj(e){return new ox(e)}var G8={};Ve(G8,{MAPE:()=>Uj,MSE:()=>jj,binaryAccuracy:()=>$j,binaryCrossentropy:()=>Pj,categoricalAccuracy:()=>Oj,categoricalCrossentropy:()=>Mj,cosineProximity:()=>Bj,mape:()=>Gj,meanAbsoluteError:()=>Wj,meanAbsolutePercentageError:()=>Vj,meanSquaredError:()=>Hj,mse:()=>qj,precision:()=>zj,recall:()=>Lj,sparseCategoricalAccuracy:()=>Fj});function $j(e,t){return N5(e,t)}function Pj(e,t){return r8(e,t)}function Fj(e,t){return a8(e,t)}function Oj(e,t){return E5(e,t)}function Mj(e,t){return R5(e,t)}function zj(e,t){return s8(e,t)}function Lj(e,t){return CG(e,t)}function Bj(e,t){return T5(e,t)}function Wj(e,t){return k2(e,t)}function Vj(e,t){return od(e,t)}function Uj(e,t){return od(e,t)}function Gj(e,t){return od(e,t)}function Hj(e,t){return uu(e,t)}function jj(e,t){return uu(e,t)}function qj(e,t){return uu(e,t)}var H8={};Ve(H8,{modelFromJSON:()=>nH});var j8={};Ve(j8,{l1:()=>Kj,l1l2:()=>Xj,l2:()=>Zj});function Xj(e){return new Mh(e)}function Kj(e){return cH(e)}function Zj(e){return dH(e)}var q8=class extends cc{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof wa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function nm(e,t){return et}var X8=class extends q8{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new qe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=nm:this.mode==="max"?this.monitorFunc=y7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=y7:this.monitorFunc=nm,this.monitorFunc===nm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===nm?1/0:-1/0}async onEpochEnd(e,t){await io(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Yj(e){return new X8(e)}var Jj={earlyStopping:Yj},Qj=H();Qj.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var pr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(pr||(pr={}));var A7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(A7||(A7={}));var Ox={};function eq(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ox[e]=n}function K8(e){return Ox[e]}function tq(e){delete Ox[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return ss(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(d=>ss(d,n,s,r));let u=ss(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function ss(e,t,n,s){let[r,a]=Rs(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Bm(r,i)]);return o!==void 0?t[Bm(r,o)][a]:void 0}function nq(e,t,n){return t[Bm(e,n.currentContextId)]}function Qr(e,t){let[n,s,r]=Rs(e);return[Bm(n,t&&t.currentContextId),s,r]}function Bm(e,t){return t?`${e}-${t}`:e}function Rs(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function hm(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function xa(e){return e.kept?e:Un(e)}var Z8={};Ve(Z8,{json:()=>sq});var sq=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Y8={};Ve(Y8,{json:()=>rq});var rq=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],J8={};Ve(J8,{json:()=>aq});var aq=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],Q8={};Ve(Q8,{json:()=>oq});var oq=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],eI={};Ve(eI,{json:()=>iq});var iq=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],tI={};Ve(tI,{json:()=>lq});var lq=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],nI={};Ve(nI,{json:()=>uq});var uq=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],sI={};Ve(sI,{json:()=>cq});var cq=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],rI={};Ve(rI,{json:()=>dq});var dq=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],aI={};Ve(aI,{json:()=>pq});var pq=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],oI={};Ve(oI,{json:()=>hq});var hq=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],iI={};Ve(iI,{json:()=>fq});var fq=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],lI={};Ve(lI,{json:()=>mq});var mq=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],uI={};Ve(uI,{json:()=>gq});var gq=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],cI={};Ve(cI,{json:()=>yq});var yq=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],dI={};Ve(dI,{json:()=>Aq});var Aq=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],pI={};Ve(pI,{json:()=>xq});var xq=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],hI={};Ve(hI,{json:()=>bq});var bq=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],fI={};Ve(fI,{json:()=>vq});var vq=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],x7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Z8,Y8,J8,Q8,eI,tI,nI,sI,rI,aI,oI,iI,lI,uI,cI,dI,pI,hI,fI],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(o);p.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[x,,A]=Qr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(A);if(w!==-1){let I=`${x}:${w}`;m.inputNames[y]=I}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Qr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Qr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=K8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=sy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=sy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=cy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=cy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=ay(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=ay(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=uy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=uy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=ry(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ry(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=py(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=py(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=ly(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ly(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=dy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=dy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=oy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=oy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=b7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=b7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[p]=Qr(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Mx(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Qr(d),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let x=`${f}:${y}`;p.inputNames[h]=x}}p.inputs.push(g),g.children.push(p)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Qr(l[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function wq(e){let t=H().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function mI(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):wq(e);return t?n:n.toLowerCase()}function sy(e,t,n,s=!1){let r=e[t];return r!=null?mI(r.s,s):n}function ry(e,t,n){let s=e[t];return s?s.b:n}function ay(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Mx(e){switch(typeof e=="string"&&(e=pr[e]),e){case pr.DT_FLOAT:case pr.DT_HALF:return"float32";case pr.DT_INT32:case pr.DT_INT64:case pr.DT_INT8:case pr.DT_UINT8:return"int32";case pr.DT_BOOL:return"bool";case pr.DT_DOUBLE:return"float32";case pr.DT_STRING:return"string";default:return null}}function b7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function oy(e,t,n){let s=e[t];return s&&s.type?Mx(s.type):n}function iy(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Mx(r)):n}function gI(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ly(e,t,n){let s=e[t];return s&&s.shape?gI(s.shape):n}function uy(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function cy(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>mI(a,s)):n}function dy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>gI(r)):n}function py(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var kq=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return ss(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return ss(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return ay(this.node.rawAttrs,e,t);if(n.s!=null)return sy(this.node.rawAttrs,e,t);if(n.b!=null)return ry(this.node.rawAttrs,e,t);if(n.shape!=null)return ly(this.node.rawAttrs,e,t);if(n.type!=null)return oy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return uy(this.node.rawAttrs,e,t);if(n.list.s!=null)return cy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return dy(this.node.rawAttrs,e,t);if(n.list.b!=null)return py(this.node.rawAttrs,e,t);if(n.list.type!=null)return iy(this.node.rawAttrs,e,t)}return t}},Mn={};Ve(Mn,{OP_SCOPE_SUFFIX:()=>Gy,abs:()=>sn,acos:()=>lA,acosh:()=>uA,add:()=>ue,addN:()=>E0,all:()=>R0,any:()=>Pp,argMax:()=>Ps,argMin:()=>cA,asin:()=>dA,asinh:()=>pA,atan:()=>hA,atan2:()=>fA,atanh:()=>mA,avgPool:()=>Ah,avgPool3d:()=>yA,basicLSTMCell:()=>C6,batchNorm:()=>Kc,batchNorm2d:()=>AA,batchNorm3d:()=>xA,batchNorm4d:()=>bA,batchToSpaceND:()=>xh,bincount:()=>vA,booleanMaskAsync:()=>lk,broadcastArgs:()=>T6,broadcastTo:()=>rl,buffer:()=>De,cast:()=>ye,ceil:()=>wA,clipByValue:()=>xs,clone:()=>Un,complex:()=>ka,concat:()=>St,concat1d:()=>kA,concat2d:()=>su,concat3d:()=>IA,concat4d:()=>SA,conv1d:()=>_0,conv2d:()=>Ia,conv2dTranspose:()=>D0,conv3d:()=>TA,conv3dTranspose:()=>NA,cos:()=>bh,cosh:()=>$0,cosineWindow:()=>t2,cumprod:()=>Fp,cumsum:()=>P0,denseBincount:()=>E6,depthToSpace:()=>EA,depthwiseConv2d:()=>Zc,diag:()=>R6,dilation2d:()=>RA,div:()=>fe,divNoNan:()=>_A,dot:()=>DA,dropout:()=>r5,einsum:()=>_6,elu:()=>Yc,enclosingPowerOfTwo:()=>a5,equal:()=>Fs,erf:()=>$A,euclideanNorm:()=>OA,exp:()=>Os,expandDims:()=>Wt,expm1:()=>MA,eye:()=>F0,fft:()=>Eh,fill:()=>Qc,floor:()=>ed,floorDiv:()=>Xc,fused:()=>lc,gather:()=>td,gatherND:()=>pk,greater:()=>ws,greaterEqual:()=>bi,ifft:()=>ic,imag:()=>gh,image:()=>Se,inTopKAsync:()=>hk,irfft:()=>Y0,isFinite:()=>zA,isInf:()=>LA,isNaN:()=>BA,leakyRelu:()=>vh,less:()=>O0,lessEqual:()=>vi,linalg:()=>l5,linspace:()=>O6,localResponseNormalization:()=>WA,log:()=>Ms,log1p:()=>wh,logSigmoid:()=>VA,logSoftmax:()=>z0,logSumExp:()=>L0,logicalAnd:()=>gr,logicalNot:()=>kh,logicalOr:()=>B0,logicalXor:()=>UA,losses:()=>Sk,lowerBound:()=>z6,matMul:()=>Qe,max:()=>gn,maxPool:()=>Ih,maxPool3d:()=>GA,maxPoolWithArgmax:()=>L6,maximum:()=>la,mean:()=>Vt,meshgrid:()=>B6,min:()=>Sa,minimum:()=>nd,mirrorPad:()=>HA,mod:()=>au,moments:()=>Sh,movingAverage:()=>uk,mul:()=>z,multiRNNCell:()=>W6,multinomial:()=>V6,neg:()=>$t,norm:()=>Jc,notEqual:()=>hl,oneHot:()=>rc,ones:()=>$s,onesLike:()=>zs,op:()=>B,outerProduct:()=>U6,pad:()=>rr,pad1d:()=>G6,pad2d:()=>H6,pad3d:()=>j6,pad4d:()=>q6,pool:()=>jA,pow:()=>Ca,prelu:()=>Th,print:()=>Xy,prod:()=>qA,raggedTensorToTensor:()=>X6,rand:()=>K6,randomGamma:()=>Z6,randomNormal:()=>V0,randomStandardNormal:()=>Y6,randomUniform:()=>sd,range:()=>oc,real:()=>ac,reciprocal:()=>ZA,relu:()=>Vr,relu6:()=>U0,reshape:()=>V,reverse:()=>tr,reverse1d:()=>J6,reverse2d:()=>Q6,reverse3d:()=>ek,reverse4d:()=>tk,rfft:()=>Rh,round:()=>G0,rsqrt:()=>H0,scalar:()=>Ce,scatterND:()=>ck,searchSorted:()=>W0,selu:()=>j0,separableConv2d:()=>q0,setdiff1dAsync:()=>nk,sigmoid:()=>Dn,sign:()=>YA,signal:()=>Ik,sin:()=>X0,sinh:()=>K0,slice:()=>Le,slice1d:()=>Nh,slice2d:()=>Z0,slice3d:()=>wi,slice4d:()=>wo,softmax:()=>ou,softplus:()=>ru,spaceToBatchND:()=>Ch,sparse:()=>Ck,sparseToDense:()=>dk,spectral:()=>kk,split:()=>Yt,sqrt:()=>Fn,square:()=>bt,squaredDifference:()=>J0,squeeze:()=>st,stack:()=>un,step:()=>iu,stridedSlice:()=>JA,string:()=>Tk,sub:()=>me,sum:()=>ke,tan:()=>QA,tanh:()=>dl,tensor:()=>ct,tensor1d:()=>Ft,tensor2d:()=>mr,tensor3d:()=>eA,tensor4d:()=>sk,tensor5d:()=>rk,tensor6d:()=>ak,tile:()=>Ys,topk:()=>e5,transpose:()=>et,truncatedNormal:()=>Q0,unique:()=>t5,unsortedSegmentSum:()=>e2,unstack:()=>On,upperBound:()=>ok,variable:()=>n5,where:()=>Gn,whereAsync:()=>s5,zeros:()=>Ut,zerosLike:()=>it});var Iq=(e,t,n,s=Mn)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[s.add(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[s.addN(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[s.mod(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[s.mul(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[s.div(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[s.divNoNan(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[s.floorDiv(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[s.sub(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[s.minimum(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[s.maximum(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[s.pow(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[s.squaredDifference(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sq=(e,t,n,s=Mn)=>{switch(e.op){case"Abs":case"ComplexAbs":return[s.abs(S("x",e,t,n))];case"Acos":return[s.acos(S("x",e,t,n))];case"Acosh":return[s.acosh(S("x",e,t,n))];case"Asin":return[s.asin(S("x",e,t,n))];case"Asinh":return[s.asinh(S("x",e,t,n))];case"Atan":return[s.atan(S("x",e,t,n))];case"Atan2":return[s.atan2(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[s.atanh(S("x",e,t,n))];case"Ceil":return[s.ceil(S("x",e,t,n))];case"Complex":return[s.complex(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[s.cos(S("x",e,t,n))];case"Cosh":return[s.cosh(S("x",e,t,n))];case"Elu":return[s.elu(S("x",e,t,n))];case"Erf":return[s.erf(S("x",e,t,n))];case"Exp":return[s.exp(S("x",e,t,n))];case"Expm1":return[s.expm1(S("x",e,t,n))];case"Floor":return[s.floor(S("x",e,t,n))];case"Log":return[s.log(S("x",e,t,n))];case"Log1p":return[s.log1p(S("x",e,t,n))];case"Imag":return[s.imag(S("x",e,t,n))];case"Neg":return[s.neg(S("x",e,t,n))];case"Reciprocal":return[s.reciprocal(S("x",e,t,n))];case"Real":return[s.real(S("x",e,t,n))];case"Relu":return[s.relu(S("x",e,t,n))];case"Round":return[s.round(S("x",e,t,n))];case"Selu":return[s.selu(S("x",e,t,n))];case"Sigmoid":return[s.sigmoid(S("x",e,t,n))];case"Sin":return[s.sin(S("x",e,t,n))];case"Sign":return[s.sign(S("x",e,t,n))];case"Sinh":return[s.sinh(S("x",e,t,n))];case"Softplus":return[s.softplus(S("x",e,t,n))];case"Sqrt":return[s.sqrt(S("x",e,t,n))];case"Square":return[s.square(S("x",e,t,n))];case"Tanh":return[s.tanh(S("x",e,t,n))];case"Tan":return[s.tan(S("x",e,t,n))];case"ClipByValue":return[s.clipByValue(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[s.relu6(S("x",e,t,n))];case"Rsqrt":return[s.rsqrt(ss(e.inputNames[0],t,n))];case"Prod":return[s.prod(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[s.leakyRelu(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[s.prelu(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[s.isNaN(ss(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function fr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;sn+` Shapes ${e} and ${t} must match`)}}}function v7(e){return!(typeof e=="number"||e.some(t=>t<0))}function lp(e,t,n){let s=hy(e,n),r=!v7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=hy(a.shape,s)}),!v7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function hy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var Cq=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ce(0),wn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, - because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),fr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,wn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,On(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to +2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ur))u[h]=ur[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let p=Object.assign({},ur);for(let h of Object.keys(n))ur[h]=n[h];U3(a.config);let d=l(i,a.config,n,r);return ur=Object.assign({},p),d}else{let u=Object.assign({},ur);for(let p of Object.keys(n))ur[p]=n[p];let c=new i(a.config);return ur=Object.assign({},u),c}}}function zV(e,t){return et?1:0}function qf(e,t){return-1*zV(e,t)}function Ya(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function LV(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function lu(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function i5(e,t,n=0,s=1/0){return Zr(n>=0),Zr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Sn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Sn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${T8(e)}.`)}function T8(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>T8(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function BV(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s0){let n=`${e}_${t}`;return Vu.set(n,1),n}else return e}var KV=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function $8(e){return!!e.match(KV)}function ZV(e){return e===parseInt(e.toString(),10)}function Ja(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;rt&&(t=s)}return t}function zr(e,t){if(t{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Nh(e,1);return G3(n,[1,t,1])})}function JV(e){let t=[Ja(e.shape)];return V(e,t)}function QV(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ja(e.shape,1)];return V(e,t)}function Yi(e,t,n){return Z(()=>{switch(e.rank){case 1:return kh(e,t,n);case 2:return G0(e,[t,0],[n,e.shape[1]]);case 3:return pi(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ro(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return ze(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return ze(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function A3(e,t,n){return Z(()=>{switch(e.rank){case 1:return kh(e,t,n);case 2:return G0(e,[0,t],[e.shape[0],n]);case 3:return pi(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ro(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Kf(e,t,n,s){return Z(()=>{switch(e.rank){case 1:return kh(e,t,n);case 2:switch(s){case 1:return Yi(e,t,n);case 2:return A3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Yi(e,t,n);case 2:return pi(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return A3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Yi(e,t,n);case 2:return ro(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ro(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return A3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function l5(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),It(e,t)}function jv(e,t){switch(e.rank){case 1:return AA([e,t]);case 2:return su([e,t],0);case 3:return xA([e,t],0);case 4:return bA([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function G3(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ks(e,t)}function l2(e,t=0,n=1,s,r){return O0(e,t,n,s,r)}function ea(e,t,n,s){if(e.rank<2||t.rank<2)throw new Xe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Xe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return lc.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?H3(e.rank,s,Lr()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=V(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=V(tt(t,c),[l,-1]);let p=[...r,...u],d=!1,h=!1;return V(lc.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?H3(e.rank,s,Lr()):null,activation:n}),p)}}function P8(e,t,n){return Z(()=>(Array.isArray(t)?t=Pt(t,"int32"):t=ye(t,"int32"),Jc(e,t,n)))}function Eh(e){return z(e,e)}function H3(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1,1]):V(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1]):V(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1]):V(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,s[0]]):V(t,[1].concat(s))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function Vr(e,t,n){return Z(()=>(n==null&&(n=Lr()),Jt(n),ue(e,H3(e.rank,t,n))))}function eU(e,t=1){if(t!==1)throw new Xe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Xc(e)}function tU(e){return Z(()=>fe(e,ue(sn(e),1)))}function F8(e,t,n,s){return Z(()=>QA(e,t,n,s))}function nU(e){return Z(()=>{let t=ue(.5,z(.2,e));return xs(t,0,1)})}function Rh(e,t,n=!1){return n?e():t()}var sU=["fanIn","fanOut","fanAvg"],rU=["normal","uniform","truncatedNormal"];function aU(e){lu(sU,"FanMode",e)}function oU(e){lu(rU,"Distribution",e)}var Ar=class extends de.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},u5=class extends Ar{apply(e,t){return Vt(e,t)}};u5.className="Zeros";de.registerClass(u5);var u2=class extends Ar{apply(e,t){return $s(e,t)}};u2.className="Ones";de.registerClass(u2);var c5=class extends Ar{constructor(e){if(super(),typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return Z(()=>z(Ce(this.value),$s(e,t)))}getConfig(){return{value:this.value}}};c5.className="Constant";de.registerClass(c5);var d5=class extends Ar{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return ed(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};d5.className="RandomUniform";de.registerClass(d5);var p5=class extends Ar{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Xe(`randomNormal does not support dType ${t}.`);return l2(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};p5.className="RandomNormal";de.registerClass(p5);var h5=class extends Ar{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Xe(`truncatedNormal does not support dType ${t}.`);return q0(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};h5.className="TruncatedNormal";de.registerClass(h5);var f5=class extends Ar{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return Z(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,E0(e[0]))})}getConfig(){return{gain:this.gain}}};f5.className="Identity";de.registerClass(f5);function iU(e,t="channelsLast"){let n,s;if(Jt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Ja(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Ja(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Ja(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var bs=class extends Ar{constructor(e){if(super(),e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,aU(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,oU(this.distribution),this.seed=e.seed}apply(e,t){let n=iU(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Xe(`${this.getClassName()} does not support dType ${t}.`);return q0(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return ed(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};bs.className="VarianceScaling";de.registerClass(bs);var c2=class extends bs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bs.className}};c2.className="GlorotUniform";de.registerClass(c2);var d2=class extends bs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bs.className}};d2.className="GlorotNormal";de.registerClass(d2);var p2=class extends bs{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bs.className}};p2.className="HeNormal";de.registerClass(p2);var h2=class extends bs{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bs.className}};h2.className="HeUniform";de.registerClass(h2);var f2=class extends bs{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bs.className}};f2.className="LeCunNormal";de.registerClass(f2);var m2=class extends bs{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bs.className}};m2.className="LeCunNormal";de.registerClass(m2);var m5=class extends Ar{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Xe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return Z(()=>{if(e.length<2)throw new Xe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=l2(n,0,1,"float32"),r=s5.gramSchmidt(s);return e[0]>e[1]&&(r=tt(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};m5.className="Orthogonal";de.registerClass(m5);var qv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Xv(e,t={}){return Th(e,de.SerializationMap.getMap().classNameMap,t,"initializer")}function Ut(e){return o5(e)}function Ft(e){if(typeof e=="string"){let t=e in qv?qv[e]:e;if(t==="GlorotNormal")return new d2;if(t==="GlorotUniform")return new c2;if(t==="HeNormal")return new p2;if(t==="HeUniform")return new h2;if(t==="LeCunNormal")return new f2;if(t==="LeCunUniform")return new m2;{let n={};return n.className=t,n.config={},Xv(n)}}else return e instanceof Ar?e:Xv(e)}function j3(e){return Array.isArray(e)&&Array.isArray(e[0])}function Cm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ke(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function At(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Tm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Kv="Variable",O8=class{constructor(e,t="float32",n=Kv,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=E8(),n=n==null?Kv:n,this.originalName=_8(n),this.name=D8(this.originalName),this.trainable_=s,this.constraint=r,this.val=YA(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),lU(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function lU(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function q3(e){return e.map(t=>t.read())}function g5(e){e.forEach(t=>{t[0].write(t[1])})}var an=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Pr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=E8(),a!=null&&(this.originalName=_8(a),this.name=D8(this.originalName)),this.rank=t.length}},uU=0,g2=class{constructor(e,t){this.callArgs=t,this.id=uU++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},cU=0,ut=class extends de.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=cU++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ga(n)+"_"+o2(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new $r(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return ys(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return ys(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ma(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ma(`Layer ${this.name} is not connected, no input to return.`);return ys(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ma(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ma(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return ys(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Dt(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;nr.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Dt(e))a.push(o.shape);this.build(ys(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=Dt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=ys(i),this.activityRegularizer!=null)throw new Xe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=dU(e),o=this.computeOutputShape(a),i,l=pU(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Pr(l,u,this,Dt(e),t,this.name,c)):i=new Pr(l,o,this,Dt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Xe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ma(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ma(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new $r(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Tm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return q3(e?this.trainableWeights:this.weights)}setWeights(e){Z(()=>{let t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=q3(t);for(let r=0;rr.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=Dt(e);t=Dt(t),n=Dt(n),s=Dt(s),r=Cm(r),a=Cm(a);let l=[],u=[],c=[];for(let p of i)l.push(p.sourceLayer),u.push(p.nodeIndex),c.push(p.tensorIndex);new g2({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let p=0;pe.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function dU(e){e=Dt(e);let t=[];for(let n of e)t.push(n.shape);return ys(t)}function pU(e){return"float32"}function M8(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;af.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().sort().join(","),p=Nm.get(c),d;if(p==null){let f=mU(o,t);p=f.sorted,d=f.recipientCounts,Nm.put(c,p),Em.put(c,d)}d={},r||Object.assign(d,Em.get(c));let h=new ji(t);for(let f=0;fs.maxNumTensors&&(s.maxNumTensors=_),_0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Zv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Zv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:gU(s)}}function gU(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Zv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function yU(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s100,fU);var L8={};He(L8,{maxNorm:()=>xU,minMaxNorm:()=>wU,nonNeg:()=>vU,unitNorm:()=>bU});function y5(e,t){return Z(()=>Fn(ke(z(e,e),t,!0)))}var _h=class extends de.Serializable{getConfig(){return{}}},A5=class extends _h{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=y5(e,this.axis),n=xs(t,0,this.maxValue);return z(e,fe(n,ue(fn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};A5.className="MaxNorm";de.registerClass(A5);var x5=class extends _h{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>fe(e,ue(fn(),y5(e,this.axis))))}getConfig(){return{axis:this.axis}}};x5.className="UnitNorm";de.registerClass(x5);var b5=class extends _h{apply(e){return Wr(e)}};b5.className="NonNeg";de.registerClass(b5);var v5=class extends _h{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=y5(e,this.axis),n=ue(z(this.rate,xs(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,fe(n,ue(fn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};v5.className="MinMaxNorm";de.registerClass(v5);var Yv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function yn(e){return o5(e)}function Jv(e,t={}){return Th(e,de.SerializationMap.getMap().classNameMap,t,"constraint")}function An(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Yv?Yv[e]:e,config:{}};return Jv(n)}else return e instanceof _h?e:Jv(e)}function xU(e){return new A5(e)}function bU(e){return new x5(e)}function vU(){return new b5}function wU(e){return new v5(e)}var B8={};He(B8,{constant:()=>IU,glorotNormal:()=>DU,glorotUniform:()=>_U,heNormal:()=>$U,heUniform:()=>PU,identity:()=>EU,leCunNormal:()=>FU,leCunUniform:()=>OU,ones:()=>SU,orthogonal:()=>MU,randomNormal:()=>TU,randomUniform:()=>CU,truncatedNormal:()=>NU,varianceScaling:()=>RU,zeros:()=>kU});function kU(){return new u5}function SU(){return new u2}function IU(e){return new c5(e)}function CU(e){return new d5(e)}function TU(e){return new p5(e)}function NU(e){return new h5(e)}function EU(e){return new f5(e)}function RU(e){return new bs(e)}function _U(e){return new c2(e)}function DU(e){return new d2(e)}function $U(e){return new p2(e)}function PU(e){return new h2(e)}function FU(e){return new f2(e)}function OU(e){return new m2(e)}function MU(e){return new m5(e)}var W8={};He(W8,{Layer:()=>ut,RNN:()=>ia,RNNCell:()=>Oh,activation:()=>uH,add:()=>AH,alphaDropout:()=>tj,average:()=>xH,averagePooling1d:()=>Nx,averagePooling2d:()=>Ex,averagePooling3d:()=>Rx,avgPool1d:()=>NH,avgPool2d:()=>RH,avgPool3d:()=>DH,avgPooling1d:()=>EH,avgPooling2d:()=>_H,avgPooling3d:()=>$H,batchNormalization:()=>IH,bidirectional:()=>qH,concatenate:()=>bH,conv1d:()=>eH,conv2d:()=>tH,conv2dTranspose:()=>nH,conv3d:()=>sH,conv3dTranspose:()=>rH,convLstm2d:()=>UH,convLstm2dCell:()=>GH,cropping2D:()=>oH,dense:()=>cH,depthwiseConv2d:()=>lH,dot:()=>SH,dropout:()=>dH,elu:()=>XG,embedding:()=>yH,flatten:()=>hH,gaussianDropout:()=>ej,gaussianNoise:()=>QH,globalAveragePooling1d:()=>PH,globalAveragePooling2d:()=>FH,globalMaxPool1d:()=>KH,globalMaxPool2d:()=>ZH,globalMaxPooling1d:()=>Dk,globalMaxPooling2d:()=>$k,gru:()=>MH,gruCell:()=>zH,input:()=>ak,inputLayer:()=>qG,layerNormalization:()=>CH,leakyReLU:()=>ZG,lstm:()=>LH,lstmCell:()=>BH,masking:()=>nj,maxPool1d:()=>YH,maxPool2d:()=>JH,maxPooling1d:()=>Pk,maxPooling2d:()=>Fk,maxPooling3d:()=>OH,maximum:()=>vH,minimum:()=>wH,multiply:()=>kH,permute:()=>gH,prelu:()=>YG,reLU:()=>KG,repeatVector:()=>fH,reshape:()=>mH,rnn:()=>HH,separableConv2d:()=>aH,simpleRNN:()=>WH,simpleRNNCell:()=>VH,softmax:()=>JG,spatialDropout1d:()=>pH,stackedRNNCells:()=>jH,thresholdedReLU:()=>QG,timeDistributed:()=>XH,upSampling2d:()=>iH,zeroPadding2d:()=>TH});async function Ha(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;aue(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:Z(()=>{let s=z(fe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),kn(t[n])}))}},G8=class extends cc{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;onew H8(s,t))}var pr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),pr.checkForDuplicate(t),pr.constructors[e]==null&&(pr.constructors[e]=[]),pr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in pr.constructors)pr.constructors[+t].forEach(s=>{if(s===e)throw new j("Duplicate callback constructor.")})}static clear(){pr.constructors={}}static createCallbacks(e){let t=[];for(let n in pr.constructors){let s=+n;e>=s&&t.push(...pr.constructors[s])}return t.map(n=>new n)}};pr.constructors={};function q8(e,t,n,s,r,a,o,i,l){let u=new G8,c=[new LU,...pr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let p=new U8(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Or(e,t={},n=!1){return Th(e,de.SerializationMap.getMap().classNameMap,t,"layer",n)}function Rm(e,t){return Z(()=>{e.dtype!=="float32"&&(e=ye(e,"float32"));let n=ke(Eh(e),t,!0),s=Zc(n.shape,fn()),r=Fn(oa(n,s));return fe(e,r)})}function uu(e,t){return Z(()=>Wt(Eh(me(t,e)),-1))}function y2(e,t){return Z(()=>Wt(sn(me(t,e)),-1))}function sd(e,t){return Z(()=>{let n=me(e,t),s=xs(sn(e),fn(),Number.MAX_VALUE),r=sn(fe(n,s));return z(100,Wt(r,-1))})}function BU(e,t){return Z(()=>{let n=xs(t,fn(),Number.MAX_VALUE),s=Ms(ue(1,n)),r=xs(e,fn(),Number.MAX_VALUE),a=Ms(ue(1,r));return Wt(Eh(me(s,a)),-1)})}function WU(e,t){return Z(()=>{let n=oa(0,me(1,z(e,t)));return Wt(Eh(n),-1)})}function VU(e,t){return Z(()=>{let n=oa(0,me(1,z(e,t)));return Wt(n,-1)})}function UU(e,t){return Z(()=>{let n=ke(z(e,t),-1),s=gn(z(me(1,e),t),-1);return oa(0,ue(1,me(s,n)))})}function GU(e,t){return Z(()=>{let n=Math.log(2),s=me(t,e),r=me(ue(s,ru(z(-2,s))),n);return Wt(r,-1)})}function Rp(e,t,n=!1){return Z(()=>{if(n)t=ou(t);else{let s=ke(t,t.shape.length-1,!0);t=fe(t,s)}return t=xs(t,fn(),1-fn()),$t(ke(z(ye(e,"float32"),Ms(t)),t.shape.length-1))})}function _m(e,t,n=!1){return Z(()=>{let s=ye(Yc(JV(e)),"int32");t=xs(t,fn(),1-fn());let r=t.shape,a=V(rc(s,r[r.length-1]),r);return Rp(a,t,n)})}function HU(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return Z(()=>{let n=Wr(t),s=$t(sn(t));return ue(me(n,z(t,e)),yh(Os(s)))})}function A2(e,t){return Z(()=>{let n;return n=xs(t,fn(),1-fn()),n=Ms(fe(n,me(1,n))),Wt(HU(e,n),-1)})}function jU(e,t){return Z(()=>{let n=xs(e,fn(),1),s=xs(t,fn(),1);return ke(z(e,Ms(fe(n,s))),-1)})}function qU(e,t){return Z(()=>{let n=Ms(ue(fn(),t));return Wt(me(t,z(e,n)),-1)})}function w5(e,t){return Z(()=>{let n=Rm(e,-1),s=Rm(t,-1),r=z(n,s);return $t(ke(r,-1))})}var Dm={meanSquaredError:uu,meanAbsoluteError:y2,meanAbsolutePercentageError:sd,meanSquaredLogarithmicError:BU,squaredHinge:WU,hinge:VU,categoricalHinge:UU,logcosh:GU,categoricalCrossentropy:Rp,sparseCategoricalCrossentropy:_m,binaryCrossentropy:A2,kullbackLeiblerDivergence:jU,poisson:qU,cosineProximity:w5};function x3(e){if(typeof e=="string"){if(e in Dm)return Dm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function k5(e,t){return Z(()=>{let n=z(.5,zs(t)),s=i2(ws(t,n),e.dtype);return Wt(Fs(e,s),-1)})}function S5(e,t){return Z(()=>i2(Fs(Ps(e,-1),Ps(t,-1)),"float32"))}function X8(e,t){return Z(()=>ye(ke(mr(Fs(e,1),Fs(t,1))),"float32"))}function XU(e,t){return Z(()=>ye(ke(mr(Fs(e,1),Fs(t,0))),"float32"))}function KU(e,t){return Z(()=>ye(ke(mr(Fs(e,0),Fs(t,1))),"float32"))}function K8(e,t){return Z(()=>{let n=X8(e,t),s=KU(e,t),r=ue(n,s);return ye(Gn(ws(r,0),fe(n,r),0),"float32")})}function ZU(e,t){return Z(()=>{let n=X8(e,t),s=XU(e,t),r=ue(n,s);return ye(Gn(ws(r,0),fe(n,r),0),"float32")})}function Z8(e,t){return A2(e,t)}function Y8(e,t){return e.rank===t.rank&&(e=rt(e,[e.rank-1])),t=Ps(t,-1),t.dtype!==e.dtype&&(t=ye(t,e.dtype)),ye(Fs(e,t),"float32")}var YU=uu,JU=uu,QU=y2,eG=y2,tG=sd,nG=sd,I5=Rp,sG=w5,J8=_m,$m={binaryAccuracy:k5,categoricalAccuracy:S5,precision:K8,categoricalCrossentropy:I5,sparseCategoricalCrossentropy:J8,mse:YU,MSE:JU,mae:QU,MAE:eG,mape:tG,MAPE:nG,cosine:sG};function rG(e){if(typeof e=="string"&&e in $m)return $m[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function Zf(e){if(Zr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Dm))if(Dm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys($m))if($m[n]===e){t=n;break}return t!==void 0?t:e.name}}function aG(e){let t={Adagrad:()=>Li.adagrad(.01),Adadelta:()=>Li.adadelta(1,.95,fn()),Adam:()=>Li.adam(.001,.9,.999,fn()),Adamax:()=>Li.adamax(.002,.9,.999,fn(),0),RMSProp:()=>Li.rmsprop(.001,.9,0,fn()),SGD:()=>Li.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}var e7=1*1024*1024;function t7(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!X3(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>e7&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${e7}.`)}}function X3(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!X3(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!X3(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function oG(e,t,n,s=console.log){let r=lG(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Pm(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Pm(e,t,n=console.log){let s="";for(let r=0;r0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function uG(e,t,n){let s,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(l){s="multiple"}let a=e.name,o=e.getClassName(),i=[`${a} (${o})`,r,s,e.countParams().toString()];Pm(i,t,n)}function cG(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let o=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;dy.name)}`);Ya(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(A),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;Zr(A===0,"input layer has >1 nodes"),Zr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(A),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,x,A,b,w,S)=>{(b==null||w==null||S==null)&&(b=y.sourceLayer,w=y.nodeIndex,S=y.tensorIndex);let k=b.inboundNodes[w];if(A.indexOf(k)!==-1)throw new $r(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(k)!==-1)return;this.containerNodes.add(Xr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),A.indexOf(k)===-1&&A.push(k);let E=k.inboundLayers.length;for(let _=0;_=0;)A.splice(A.indexOf(k),1);o.push(k)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let x=t[y.id],A=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];x=Math.max(x,A),s[y.outboundLayer.id]=x,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=x;for(let b=0;bparseInt(y,10)).sort(qf);this.layers=[];for(let y of h){let x=d[y];x.sort((A,b)=>{let w=a[A.id],S=a[b.id];return wS?1:0});for(let A of x)A instanceof Xr&&this.internalContainerRefs.push(A),this.layers.push(A)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(qf);let f=this.inputs.slice(),m=[];for(let y of h)for(let x of p[y]){let A=x.outboundLayer;if(A!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new $r(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${A.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(A.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let x=g.filter(A=>A===y).length;if(x!==1)throw new $r(`The name "${y}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new g2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new j(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new j(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new j(`${a.length} of ${s} weights are not set: ${a}`)}g5(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${C5}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=K3(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return Z(()=>{e=Dt(e);let n=new ji;for(let s=0;s{e=Dt(e);let n;return t==null?n=al(null,e.length):n=Dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Cm(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;oparseInt(o,10)).sort(qf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;fparseInt(i,10)).sort(qf);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,p=u.inputTensors,d=u.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,y,x;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[A,b]=h[0];f.mask==null&&(f.mask=b),y=Dt(c.call(A,f)),x=Dt(c.computeMask(A,b)),m=[A],g=[b]}else m=h.map(A=>A[0]),g=h.map(A=>A[1]),f.mask==null&&(f.mask=g),y=Dt(c.call(m,f)),x=Dt(c.computeMask(m,g));if(c.activityRegularizer)throw new Xe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let A=0;A{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(ys(y),x)}function l(m){let g=m.name,y=Or(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${A}`);o(y,A)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!LV(a);)for(let m of c){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let x of y)i(g,x)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],x=m[2];Zr(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],x=m[2];Zr(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[x])}return new e({inputs:p,outputs:d,name:u})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){Z(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function dG(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function ek(e,t){return dG(e,t,"classWeight")}async function tk(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=Z(()=>{if(e.shape.length===1)return Vn(e);if(e.shape.length===2){if(e.shape[1]>1)return Ps(e,1);if(e.shape[1]===1)return V(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());J(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Pt(o,"float32")}else return null}function pG(e,t){return z(e,t)}var hG=32;function nk(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=n7("input",e.inputNames,n),o=n7("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function n7(e,t,n){if(n instanceof st)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function fG(e){if(e.length===3)throw new Xe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function mG(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(s7(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=fG(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=j8(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=q8(c,p,n.epochs,null,null,gG(t,n),null,r,u);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:A.done){if(r){let b;s7(n.validationData)?b=Dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Dt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?hG:n.validationBatchSize,verbose:0}));for(let w=0;w0)throw new Xe("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=yG(t)?t:await t.iterator(),i=0,l=0;for(;!s||l{if(u.value){let{xs:c,ys:p}=nk(e,u.value),d=c.concat(p),h=Z(()=>r(d));if(J(d),l===0)for(let m=0;mue(a[m],z(f,g))),l>0&&J(y)}J(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function lp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Yi(s,t,n-t)):Yi(e,t,n-t)}function T5(e,t){return Z(()=>e==null?null:Array.isArray(e)?e.map(n=>T5(n,t)):P8(e,t.dtype==="int32"?t:ye(t,"int32")))}function Y3(e,t){let n=[],s=0,r=null;for(;s=e&&(r=e),n.push([s,r]),s=r;return n}async function xG(e,t,n,s,r,a,o,i,l,u,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=zr(0,g)),o==null&&(o=1);let{callbackList:x,history:A}=q8(i,o,a,d,g,h,r,m,p);x.setModel(e),e.history=A,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b{let D=k[E][0],R=k[E][1],P=Yi(S,D,R-D);_.batch=E,_.size=R-D;let C=T5(n,P),M=t(C);for(let L=0;L0){if(g=!0,s.validationData.length===2)l=s.validationData[0],u=s.validationData[1];else throw s.validationData.length===3?new Xe("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let _=!0,D=await e.standardizeUserData(l,u,null,null,_,h);c=D[0],p=D[1],y=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let _=Math.floor(r[0].shape[0]*(1-s.validationSplit)),D=r[0].shape[0];c=lp(r,_,D),o=r,r=lp(r,0,_),p=lp(a,_,D),i=a,a=lp(a,0,_),y=c.concat(p)}else s.validationSteps!=null&&(g=!0);let x=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,S;g?(e.makeTestFunction(),w=e.testFunction,S=b.slice().concat(b.map(_=>"val_"+_))):(w=null,y=[],S=b.slice());let k=j8(s.callbacks,s.yieldEvery);return await xG(e,A,x,b,h,s.epochs,s.verbose,k,w,y,s.shuffle,S,s.initialEpoch,null,null)}finally{e.isTraining=!1,Dr(r,t),Dr(a,n),Dr(o,t),Dr(i,n),Dr(c,l),Dr(p,u),d!=null&&J(d)}}function sk(e){let t=[];e instanceof st&&(e=[e]);for(let n=0;nn.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof st)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function vG(e){return e instanceof st}function J3(e){return Array.isArray(e)}function r7(e){return!vG(e)&&!J3(e)}function a7(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(J3(e)&&e.length>0)o=!0;else if(r7(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new j(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(r7(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new j(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(J3(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new j(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=sk(a),n!=null)for(let o=0;o=0&&u!==c)throw new j(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function wG(e,t,n){let s=Ya(e.map(a=>a.shape[0]));s.sort();let r=Ya(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function kG(e,t,n){let s=[uu,A2,Rp];for(let r=0;r1)throw new j(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var IG="layers-model",ba=class extends Xr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");oG(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=aG(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof _a))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new j(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(x3(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>x3(o))}else{let a=x3(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a{for(let a=0;a1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=SG(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Zi("metric",()=>{for(let a=0;a{let u="",c,p,d;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===A2?["accuracy","acc"].indexOf(h)!==-1?p=k5:["crossentropy","ce"].indexOf(h)!==-1&&(p=Z8):this.lossFunctions[a]===_m?["accuracy","acc"].indexOf(h)!==-1?p=Y8:["crossentropy","ce"].indexOf(h)!==-1&&(p=J8):["accuracy","acc"].indexOf(h)!==-1?p=S5:["crossentropy","ce"].indexOf(h)!==-1&&(p=I5);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=u+g}else d=rG(h),c=u+Zf(h);let f;Zi(c,()=>{f=d}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;Z3(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return ys(l)}finally{Dr(a[0],e),Dr(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),AG(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new j(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new ji;if(e instanceof st&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;io.name);for(let o=0;o0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return Z(()=>{let s=this.checkNumSamples(e);if(n)throw new Xe("Verbose predictLoop() is not implemented yet.");let r=Y3(s,t),a=this.outputs.map(o=>[]);for(let o=0;o{let l=r[o][0],u=r[o][1],c=lp(e,l,u),p=[];if(Array.isArray(c))for(let h=0;ha[u].push(l));return ys(a.map(o=>It(o,0)))})}predict(e,t={}){let n=sk(e);o7(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return Z3(s),this.predictLoop(n,s)}finally{Dr(n,e)}}predictOnBatch(e){o7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new $r("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a0&&e[0].shape[0]%s!==0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=ek(s,this.outputNames);l=[];for(let c=0;c{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Xe("Verbose mode is not implemented yet.");if(r!=null)throw new Xe("steps mode in testLoop() is not implemented yet");{let i=Y3(a,n),l=Pt(zr(0,a));for(let u=0;u1&&(r+=`_${Gv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f1&&f{h=ue(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>Z(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;lga(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ga(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ga(Zf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ga(Zf(e)));{let e={};for(let t in this.metrics)e[t]=ga(Zf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=_p(e.optimizer_config),n=Or(t),s;if(typeof e.loss=="string")s=Ui(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Ui(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Ui(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Ui(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Ui(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Ds.getSaveHandlers(e);if(l.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new j(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ds.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:IG,generatedBy:`TensorFlow.js tfjs-layers v${C5}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Ds.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Ds.concatenateArrayBuffers([n.data,u])}return this.userDefinedMetadata!=null&&(t7(this.userDefinedMetadata,this.name,!0),o.userDefinedMetadata=this.userDefinedMetadata),o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){t7(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ba.className="Model";de.registerClass(ba);var rk=class extends ba{};rk.className="Functional";de.registerClass(rk);async function CG(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=_p(n),r=Or(s,t);if(e.weightsManifest!=null){let a=await Ds.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),J(a)}return r}async function TG(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ds.getLoadHandlers(e,t);if(n.length===0)n.push(Ds.browserHTTPRequest(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return NG(e,void 0,t)}async function NG(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Or(_p(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=EG(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),J(u),J(c.map(p=>p.tensor))}return i}function EG(e,t){let n=Ds.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var dc=class extends ba{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:o2("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof dc||e instanceof ba,n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=z8({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=M8(this.outputs[0])}this.inboundNodes=[],new g2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:al(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(At(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ba({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new $r("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new $r("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new $r("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new $r("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof dc))throw new Xe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Or(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};dc.className="Sequential";de.registerClass(dc);function RG(e){return new ba(e)}function _G(e){return new dc(e)}function DG(e,t){return t==null&&(t={}),TG(e,t)}function ak(e){return z8(e)}function $G(e,t){pr.registerCallbackConstructor(e,t)}var ks=class extends de.Serializable{getConfig(){return{}}},ok=class extends ks{apply(e,t=1){return eU(e,t)}};ok.className="elu";de.registerClass(ok);var ik=class extends ks{apply(e){return B0(e)}};ik.className="selu";de.registerClass(ik);var lk=class extends ks{apply(e){return Wr(e)}};lk.className="relu";de.registerClass(lk);var uk=class extends ks{apply(e){return Z(()=>Qc(6,Wr(e)))}};uk.className="relu6";de.registerClass(uk);var ck=class extends ks{apply(e){return e}};ck.className="linear";de.registerClass(ck);var dk=class extends ks{apply(e){return $n(e)}};dk.className="sigmoid";de.registerClass(dk);var pk=class extends ks{apply(e){return nU(e)}};pk.className="hardSigmoid";de.registerClass(pk);var hk=class extends ks{apply(e){return ru(e)}};hk.className="softplus";de.registerClass(hk);var fk=class extends ks{apply(e){return tU(e)}};fk.className="softsign";de.registerClass(fk);var mk=class extends ks{apply(e){return nl(e)}};mk.className="tanh";de.registerClass(mk);var N5=class extends ks{apply(e,t=-1){return ou(e,t)}};N5.className="softmax";de.registerClass(N5);var gk=class extends ks{apply(e,t=-1){return D0(e,t)}};gk.className="logSoftmax";de.registerClass(gk);var yk=class extends ks{apply(e,t=1){return Z(()=>z($n(z(e,t)),e))}};yk.className="swish";de.registerClass(yk);var Ak=class extends ks{apply(e){return Z(()=>z(e,nl(ru(e))))}};Ak.className="mish";de.registerClass(Ak);function oo(e){return e.getClassName()}function b3(e,t={}){return Th(e,de.SerializationMap.getMap().classNameMap,t,"activation")}function io(e){if(e==null){let t={};return t.className="linear",t.config={},b3(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},b3(t)}else return e instanceof ks?e:b3(e)}function E5(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var xk=class extends de.Serializable{},Dh=class extends xk{constructor(e){super(),E5(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return Z(()=>{let t=Vt([1]);return this.hasL1&&(t=ue(t,ke(z(this.l1,sn(e))))),this.hasL2&&(t=ue(t,ke(z(this.l2,Eh(e))))),V(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Dh.className="L1L2";de.registerClass(Dh);function PG(e){return E5(e),new Dh({l1:e!=null?e.l1:null,l2:0})}function FG(e){return E5(e),new Dh({l2:e!=null?e.l2:null,l1:0})}var i7={l1l2:"L1L2"};function St(e){return o5(e)}function l7(e,t={}){return Th(e,de.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ot(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in i7?i7[e]:e,config:{}};return l7(n)}else return e instanceof xk?e:l7(e)}var R5=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ke(e);let n=Wr(e);return this.maxValue!=null&&(n=xs(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};R5.className="ReLU";de.registerClass(R5);var _5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ke(e);return gh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};_5.className="LeakyReLU";de.registerClass(_5);var D5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ft(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ot(e.alphaRegularizer),this.alphaConstraint=An(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=At(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s(Jt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function bk(e,t){return Z(()=>(Jt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function OG(e,t,n,s=1,r="valid",a,o=1){return Z(()=>{if(a==null&&(a=Lr()),Jt(a),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=tt(e,[0,2,1])),r==="causal")throw new Xe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=I0(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Vr(i,n)),i})}function u7(e,t,n,s=[1,1],r="valid",a,o,i=null){return Z(()=>{if(a==null&&(a=Lr()),Jt(a),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=O5(e,a);if(r==="causal")throw new Xe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=lc.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function MG(e,t,n,s=[1,1,1],r="valid",a,o){return Z(()=>{if(a==null&&(a=Lr()),Jt(a),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=bk(e,a);if(r==="causal")throw new Xe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=wA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Vr(i,n)),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var M5=class extends ut{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",M5.verifyArgs(t),this.rank=e,Sn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Xe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Qu(t.kernelSize,e,"kernelSize"),this.strides=Qu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,rr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Jt(this.dataFormat),this.activation=io(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ft(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=An(t.biasConstraint),this.biasRegularizer=Ot(t.biasRegularizer),this.activityRegularizer=Ot(t.activityRegularizer),this.dilationRate=Qu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Zr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!i5(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:oo(this.activation),useBias:this.useBias,biasInitializer:Ut(this.biasInitializer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),biasConstraint:yn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},$h=class extends M5{constructor(e,t){super(e,t),this.kernel=null,$h.verifyArgs(t),this.filters=t.filters,Sn(this.filters,"filters"),this.kernelInitializer=Ft(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=An(t.kernelConstraint),this.kernelRegularizer=Ot(t.kernelRegularizer)}build(e){e=At(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n,s=this.bias==null?null:this.bias.read(),r=N8(this.activation.getClassName());if(r!=null&&this.rank===2)n=u7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=OG(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=u7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=MG(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Xe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=At(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r 0 but got ${JSON.stringify(e.filters)}`)}},Ph=class extends $h{constructor(e){super(2,e),Ph.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!i5(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Ph.className="Conv2D";de.registerClass(Ph);var Fh=class extends $h{constructor(e){super(3,e),Fh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Fh.className="Conv3D";de.registerClass(Fh);var z5=class extends Ph{constructor(e){if(super(e),this.inputSpec=[new an({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new an({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Ke(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Yr(i,p,u,this.padding),f=Yr(l,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,1]));let g=C0(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=tt(g,[0,3,1,2])),this.bias!=null&&(g=Vr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Yr(t[s],i,a,this.padding),t[r]=Yr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};z5.className="Conv2DTranspose";de.registerClass(z5);var L5=class extends Fh{constructor(e){if(super(e),this.inputSpec=[new an({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==5)throw new j("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new an({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Ke(e);if(n.shape.length!==5)throw new j(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Yr(l,f,p,this.padding),x=Yr(u,m,d,this.padding),A=Yr(c,g,h,this.padding),b=[r,y,x,A,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,4,1]));let w=kA(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=tt(w,[0,4,1,2,3])),this.bias!==null&&(w=Vr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Yr(t[s],u,o,this.padding),t[r]=Yr(t[r],c,i,this.padding),t[a]=Yr(t[a],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};L5.className="Conv3DTranspose";de.registerClass(L5);var vk=class extends $h{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ft(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ot(t.depthwiseRegularizer),this.depthwiseConstraint=An(t.depthwiseConstraint),this.pointwiseInitializer=Ft(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ot(t.pointwiseRegularizer),this.pointwiseConstraint=An(t.pointwiseConstraint)}build(e){if(e=At(e),e.length{e=Ke(e);let n;if(this.rank===1)throw new Xe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),n=W0(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Vr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=tt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.pointwiseInitializer=Ut(this.pointwiseInitializer),e.depthwiseRegularizer=St(this.depthwiseRegularizer),e.pointwiseRegularizer=St(this.pointwiseRegularizer),e.depthwiseConstraint=yn(this.depthwiseConstraint),e.pointwiseConstraint=yn(this.pointwiseConstraint),e}};vk.className="SeparableConv";var B5=class extends vk{constructor(e){super(2,e)}};B5.className="SeparableConv2D";de.registerClass(B5);var x2=class extends $h{constructor(e){super(1,e),x2.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!i5(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};x2.className="Conv1D";de.registerClass(x2);var W5=class extends ut{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return Z(()=>{if(e=Ke(e),this.dataFormat==="channelsLast"){let n=Kf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Kf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Kf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Kf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};W5.className="Cropping2D";de.registerClass(W5);var V5=class extends ut{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,qV(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return Z(()=>{let n=Ke(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=tt(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Ie.resizeNearestNeighbor(n,[r,a]):Ie.resizeBilinear(n,[r,a]);return tt(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Ie.resizeNearestNeighbor(n,[r,a]):Ie.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};V5.className="UpSampling2D";de.registerClass(V5);function zG(e,t,n=[1,1],s="valid",r,a){return Z(()=>{r==null&&(r=Lr()),Jt(r);let o=O5(e,r);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=qc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}var U5=class extends M5{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ft(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=An(e.depthwiseConstraint),this.depthwiseRegularizer=Ot(e.depthwiseRegularizer)}build(e){if(e=At(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n=zG(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Vr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Mr(t,this.kernelSize[0],this.padding,this.strides[0]),a=Mr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.depthwiseRegularizer=St(this.depthwiseRegularizer),e.depthwiseConstraint=yn(this.depthwiseRegularizer),e}};U5.className="DepthwiseConv2D";de.registerClass(U5);function wk(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function kk(e,t,n,s=!1,r,a,o=!1,i=!1){return Z(()=>{let l=t.shape.length;if(l<3)throw new j(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(zr(2,l));if(t=tt(t,u),a!=null)throw new Xe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ye(ye(r,"bool"),"float32"),r.rank===l-1&&(r=Bt(r,-1)),r=tt(r,u)),s&&(t=Qs(t,0),r!=null&&(r=Qs(r,0)));let c=[],p,d=n,h=t.shape[0],f=On(t),m;r!=null&&(m=On(r));for(let y=0;ye(x,d));if(r==null)p=A[0],d=A[1];else{let b=Z(()=>{let w=m[y],S=me(zs(w),w),k=ue(z(A[0],w),z(d[0],S)),E=d.map((_,D)=>ue(z(A[1][D],w),z(_,S)));return{output:k,newStates:E}});p=b.output,d=b.newStates}i&&c.push(p)}let g;return i&&(g=ln(c,1)),[p,g,d]})}var ia=class extends ut{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new w2({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new an({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return zr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){j3(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return Z(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;no.shape[o.shape.length-1]),a))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new an({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new ma("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_=[Vt([n,this.cell.stateSize])];else if(e==null)J(this.states_),this.keptStates!=null&&(J(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_[0]=Vt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):J(this.states_);for(let s=0;skn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=wk(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new an({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Pr){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Ke(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new j(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=kk((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],p=l[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:u;return this.returnState?[d].concat(p):d})}getInitialState(e){return Z(()=>{let t=Vt(e.shape);return t=ke(t,[1,2]),t=Nh(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?G3(t,[1,n]):t):this.cell.stateSize>1?[G3(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===ia.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Or(s,n);return new e(Object.assign(t,{cell:r}))}};ia.className="RNN";de.registerClass(ia);var Oh=class extends ut{},b2=class extends Oh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Sn(this.units,"units"),this.activation=io(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ot(e.kernelRegularizer),this.recurrentRegularizer=Ot(e.recurrentRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.kernelConstraint=An(e.kernelConstraint),this.recurrentConstraint=An(e.recurrentConstraint),this.biasConstraint=An(e.biasConstraint),this.dropout=uc([1,ao([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=uc([1,ao([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0zs(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0zs(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=ea(z(e,a),this.kernel.read()):r=ea(e,this.kernel.read()),this.bias!=null&&(r=Vr(r,this.bias.read())),o!=null&&(n=z(n,o));let i=ue(r,ea(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:oo(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:yn(this.kernelConstraint),recurrentConstraint:yn(this.recurrentConstraint),biasConstraint:yn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};b2.className="SimpleRNNCell";de.registerClass(b2);var G5=class extends ia{constructor(e){e.cell=new b2(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};G5.className="SimpleRNN";de.registerClass(G5);var v2=class extends Oh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Sn(this.units,"units"),this.activation=io(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=io(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ot(e.kernelRegularizer),this.recurrentRegularizer=Ot(e.recurrentRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.kernelConstraint=An(e.kernelConstraint),this.recurrentConstraint=An(e.recurrentConstraint),this.biasConstraint=An(e.biasConstraint),this.dropout=uc([1,ao([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=uc([1,ao([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0zs(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0zs(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};H5.className="GRU";de.registerClass(H5);var Mh=class extends Oh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Sn(this.units,"units"),this.activation=io(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=io(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ot(e.kernelRegularizer),this.recurrentRegularizer=Ot(e.recurrentRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.kernelConstraint=An(e.kernelConstraint),this.recurrentConstraint=An(e.recurrentConstraint),this.biasConstraint=An(e.biasConstraint),this.dropout=uc([1,ao([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=uc([1,ao([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=At(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Ar{apply(i,l){let u=r.apply([a]),c=new u2().apply([a]),p=r.apply([a*2]);return jv(jv(u,c),p)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0zs(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0zs(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};j5.className="LSTM";de.registerClass(j5);var w2=class extends Oh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return Z(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o{Zi(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Or(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return q3(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;aa!=null?a(t(),n):F8(t(),n),i=()=>Rh(o,t,s);return!r||r<=1?kn(i().clone()):Array(r).fill(void 0).map(i).map(u=>kn(u.clone()))}var LG=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r{if(this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return Z(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Vt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new ma("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_=[Vt(r)];else if(e==null)J(this.states_),this.keptStates!=null&&(J(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_[0]=Vt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):J(this.states_);for(let o=0;okn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=Mr(l,s[0],r,a[0],o[0]),p=Mr(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,p]:[c,p,n]]}};Sk.className="ConvRNN2D";var k2=class extends Mh{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t})),this.filters=t,Sn(this.filters,"filters"),this.kernelSize=Qu(n,2,"kernelSize"),this.kernelSize.forEach(i=>Sn(i,"kernelSize")),this.strides=Qu(s||1,2,"strides"),this.strides.forEach(i=>Sn(i,"strides")),this.padding=r||"valid",rr(this.padding),this.dataFormat=a||"channelsLast",Jt(this.dataFormat),this.dilationRate=Qu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>Sn(i,"dilationRate"))}build(e){var t;e=At(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Ar{apply(p,d){let h=l.apply([u]),f=$s([u]),m=l.apply([u*2]);return l5([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return Z(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0zs(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Y,ne,ee)=>!ne||!ne[ee]?Y:z(ne[ee],Y),u=l(s,i,0),c=l(s,i,1),p=l(s,i,2),d=l(s,i,3);0zs(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),x=3,[A,b,w,S]=Yt(this.kernel.read(),o,x),[k,E,_,D]=this.useBias?Yt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,A,k,this.padding),c=this.inputConv(c,b,E,this.padding),p=this.inputConv(p,w,_,this.padding),d=this.inputConv(d,S,D,this.padding);let[R,P,C,M]=Yt(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,R),m=this.recurrentConv(m,P),g=this.recurrentConv(g,C),y=this.recurrentConv(y,M);let L=this.recurrentActivation.apply(ue(u,f)),G=this.recurrentActivation.apply(ue(c,m)),K=ue(z(G,a),z(L,this.activation.apply(ue(p,g)))),X=z(this.recurrentActivation.apply(ue(d,y)),this.activation.apply(K));return[X,X,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=LG(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=ka(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Vr(r,n,this.dataFormat):r}recurrentConv(e,t){return ka(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};k2.className="ConvLSTM2DCell";de.registerClass(k2);var q5=class extends Sk{constructor(e){let t=new k2(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};q5.className="ConvLSTM2D";de.registerClass(q5);var S2=class extends ut{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s{this.invokeCallHook(e,t);let n=Ke(e);if(0F8(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};S2.className="Dropout";de.registerClass(S2);var X5=class extends S2{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};X5.className="SpatialDropout1D";de.registerClass(X5);var K5=class extends ut{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Sn(this.units,"units"),this.activation=io(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=An(e.kernelConstraint),this.biasConstraint=An(e.biasConstraint),this.kernelRegularizer=Ot(e.kernelRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.activityRegularizer=Ot(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=At(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=At(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),s=N8(this.activation.getClassName()),r;return s!=null?r=ea(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=ea(n,this.kernel.read()),this.bias!=null&&(r=Vr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:oo(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:yn(this.kernelConstraint),biasConstraint:yn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};K5.className="Dense";de.registerClass(K5);var Z5=class extends ut{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=At(e);for(let t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ja(e,1)]}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r{this.invokeCallHook(e,t);let n=Ke(e);return this.activation.apply(n)})}getConfig(){let e={activation:oo(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Y5.className="Activation";de.registerClass(Y5);var J5=class extends ut{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return Z(()=>(e=Ke(e),YV(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};J5.className="RepeatVector";de.registerClass(J5);var Q5=class extends ut{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=Ke(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return V(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Q5.className="Reshape";de.registerClass(Q5);var ex=class extends ut{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=zr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new an({ndim:this.dims.length+1})]}computeOutputShape(e){e=At(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return tt(Ke(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};ex.className="Permute";de.registerClass(ex);var tx=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ke(e),s=-1;return Np(rl(n,this.maskValue),s)}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),s=-1,r=!0,a=Np(rl(n,this.maskValue),s,r);return z(n,ye(a,n.dtype))})}};tx.className="Masking";de.registerClass(tx);var nx=class extends ut{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Dt(e.inputLength))}this.inputDim=e.inputDim,Sn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Sn(this.outputDim,"outputDim"),this.embeddingsInitializer=Ft(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ot(e.embeddingsRegularizer),this.activityRegularizer=Ot(e.activityRegularizer),this.embeddingsConstraint=An(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return Z(()=>this.maskZero?(e=Ke(e),rl(e,lt(e))):null)}computeOutputShape(e){if(e=At(e),this.inputLength==null)return[...e,this.outputDim];let t=Dt(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s{this.invokeCallHook(e,t);let n=Ke(e);n.dtype!=="int32"&&(n=i2(n,"int32"));let s=P8(this.embeddings.read(),V(n,[n.size]));return V(s,At(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ut(this.embeddingsInitializer),embeddingsRegularizer:St(this.embeddingsRegularizer),activityRegularizer:St(this.activityRegularizer),embeddingsConstraint:yn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Embedding";de.registerClass(nx);var cu=class extends ut{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Xe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;rr.length);e.indexOf(null)===-1&&Ya(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return Z(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=ao(s);for(let a of e){let o=a.rank;for(let i=0;i1){let u=zr(1,l).concat([0]);n.push(tt(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=V(tt(V(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(zr(0,o-1));a=tt(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Bt(s,0));let n=t[0];for(let s=1;s{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return Z(()=>l5(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return Z(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a3||t.shape.length>3)throw new Xe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Xe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return Z(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;us){o=r-s;let l=[];for(let u=0;u0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Xe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new j(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>np(r,e[a].shape.length)):s=[np(this.axes,t.shape.length),np(this.axes,n.shape.length)],this.normalize&&(t=Rm(t,s[0]),n=Rm(n,s[1])),BG(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[np(this.axes,e.length),np(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Xe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ux.className="Dot";de.registerClass(ux);var cx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return Rh(()=>ue(l2(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};cx.className="GaussianNoise";de.registerClass(cx);var dx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return this.rate>0&&this.rate<1?Rh(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,l2(n.shape,1,r))},()=>n,t.training||!1):n})}};dx.className="GaussianDropout";de.registerClass(dx);var px=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ke(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Rh(()=>{let r=Ke(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ci(ed(n),this.rate);l=i2(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,p=ue(z(r,l),z(ue(l,-1),i));return ue(z(p,u),c)},()=>Ke(e),t.training||!1)}return e})}};px.className="AlphaDropout";de.registerClass(px);function Dp(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=hA(e,t,n,s,r,a);else if(e.rank===3)o=fA(e,t,n,s,r,a);else if(e.rank===4)o=mA(e,t,n,s,r,a);else throw new Xe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function WG(e,t,n,s,r=.001){return Z(()=>{let a=bh(e,s),o=a.mean,i=a.variance;return[Dp(e,o,i,n,t,r),o,i]})}function VG(e,t,n,s,r=.001){return Z(()=>{let a=bh(e,s),o=a.mean,i=a.variance,l=[];for(let f of zr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=V(o,l),c=V(i,l),p=t==null?null:V(t,l),d=n==null?null:V(n,l);return[Dp(e,u,c,d,p,r),o,i]})}function UG(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),zr(0,e.rank-1))?WG(e,t,n,s,r):VG(e,t,n,s,r)}var hx=class extends ut{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ft(e.betaInitializer||"zeros"),this.gammaInitializer=Ft(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ft(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ft(e.movingVarianceInitializer||"ones"),this.betaConstraint=An(e.betaConstraint),this.gammaConstraint=An(e.gammaConstraint),this.betaRegularizer=Ot(e.betaRegularizer),this.gammaRegularizer=Ot(e.gammaRegularizer)}build(e){e=At(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new an({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training,s=Ke(e),r=s.shape,a=r.length,o=zr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=al(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!v.arraysEqual(u,zr(0,a).slice(0,a-1)),p=()=>{if(c){let y=V(this.movingMean.read(),l),x=V(this.movingVariance.read(),l),A=this.center?V(this.beta.read(),l):null,b=this.scale?V(this.gamma.read(),l):null;return Dp(s,y,x,A,b,this.epsilon)}else return Dp(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=UG(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,x,A)=>{Z(()=>{let b=1-A,w=y.read(),S=z(me(w,x),b);y.write(me(w,S))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),movingMeanInitializer:Ut(this.movingMeanInitializer),movingVarianceInitializer:Ut(this.movingVarianceInitializer),betaRegularizer:St(this.betaRegularizer),gammaRegularizer:St(this.gammaRegularizer),betaConstraint:yn(this.betaConstraint),gammaConstraint:yn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hx.className="BatchNormalization";de.registerClass(hx);var fx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ft(e.betaInitializer||"zeros"),this.gammaInitializer=Ft(e.gammaInitializer||"ones"),this.betaRegularizer=Ot(e.betaRegularizer),this.gammaRegularizer=Ot(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=At(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Ya(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Ke(e),s=n.shape,r=s.length;return Z(()=>{let{mean:o,variance:i}=bh(n,this.axis,!0),l=al(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r?V(f,l):f,c=this.scale?u(this.gamma.read()):null,p=this.center?u(this.beta.read()):null,d=[],h=[];for(let f=0;f{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Lr()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],sr(e,s)})}var mx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Lr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new an({ndim:4})]}computeOutputShape(e){e=At(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return Z(()=>GG(Ke(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};mx.className="ZeroPadding2D";de.registerClass(mx);function I2(e,t,n,s,r,a){return Z(()=>{Jt(r),R8(a),rr(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Lr()),a==null&&(a="max"),e=O5(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=xh(e,t,n,i):o=hh(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}function Ik(e,t,n,s,r,a){return Z(()=>{Jt(r),R8(a),rr(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Lr()),a==null&&(a="max"),e=bk(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=LA(e,t,n,i):o=pA(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var Ck=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Sn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Sn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,rr(this.padding),this.inputSpec=[new an({ndim:3})]}computeOutputShape(e){e=At(e);let t=Mr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return Z(()=>{this.invokeCallHook(e,t),e=Nh(Ke(e),2);let n=this.poolingFunction(Ke(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return rt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},gx=class extends Ck{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),I2(e,t,n,s,r,"max")}};gx.className="MaxPooling1D";de.registerClass(gx);var yx=class extends Ck{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),I2(e,t,n,s,r,"avg")}};yx.className="AveragePooling1D";de.registerClass(yx);var Tk=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Sn(this.poolSize,"poolSize"),Sn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),rr(this.padding),this.inputSpec=[new an({ndim:4})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Mr(t,this.poolSize[0],this.padding,this.strides[0]),n=Mr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ax=class extends Tk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),I2(e,t,n,s,r,"max")}};Ax.className="MaxPooling2D";de.registerClass(Ax);var xx=class extends Tk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),I2(e,t,n,s,r,"avg")}};xx.className="AveragePooling2D";de.registerClass(xx);var Nk=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Sn(this.poolSize,"poolSize"),Sn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),rr(this.padding),this.inputSpec=[new an({ndim:5})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Mr(t,this.poolSize[0],this.padding,this.strides[0]),n=Mr(n,this.poolSize[1],this.padding,this.strides[1]),s=Mr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},bx=class extends Nk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),Ik(e,t,n,s,r,"max")}};bx.className="MaxPooling3D";de.registerClass(bx);var vx=class extends Nk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),Ik(e,t,n,s,r,"avg")}};vx.className="AveragePooling3D";de.registerClass(vx);var Ek=class extends ut{constructor(e){super(e),this.inputSpec=[new an({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Xe}},wx=class extends Ek{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Ke(e);return Wt(n,1)})}};wx.className="GlobalAveragePooling1D";de.registerClass(wx);var kx=class extends Ek{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Ke(e);return gn(n,1)})}};kx.className="GlobalMaxPooling1D";de.registerClass(kx);var Rk=class extends ut{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),this.inputSpec=[new an({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Xe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Sx=class extends Rk{call(e,t){return Z(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};Sx.className="GlobalAveragePooling2D";de.registerClass(Sx);var Ix=class extends Rk{call(e,t){return Z(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?gn(n,[1,2]):gn(n,[2,3])})}};Ix.className="GlobalMaxPooling2D";de.registerClass(Ix);var _k=class extends ut{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Or(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Cx=class extends _k{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=At(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=At(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return Z(()=>(e=Ke(e),kk((a,o)=>[Ke(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Cx.className="TimeDistributed";de.registerClass(Cx);function HG(e){lu(jV,"BidirectionalMergeMode",e)}var jG="concat",Tx=class extends _k{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Or(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Or(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?jG:e.mergeMode,HG(this.mergeMode),e.weights)throw new Xe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):ys(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=wk(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new an({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Xe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Pr;for(let l of a)if(l instanceof Pr!==i)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Qs(r,1));let o;return this.mergeMode==="concat"?o=l5([s,r]):this.mergeMode==="sum"?o=ue(s,r):this.mergeMode==="ave"?o=z(.5,ue(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Zi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Zi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Or(t.layer);if(delete t.layer,t.numConstants!=null)throw new Xe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Tx.className="Bidirectional";de.registerClass(Tx);function qG(e){return new nd(e)}function XG(e){return new $5(e)}function KG(e){return new R5(e)}function ZG(e){return new _5(e)}function YG(e){return new D5(e)}function JG(e){return new F5(e)}function QG(e){return new P5(e)}function eH(e){return new x2(e)}function tH(e){return new Ph(e)}function nH(e){return new z5(e)}function sH(e){return new Fh(e)}function rH(e){return new L5(e)}function aH(e){return new B5(e)}function oH(e){return new W5(e)}function iH(e){return new V5(e)}function lH(e){return new U5(e)}function uH(e){return new Y5(e)}function cH(e){return new K5(e)}function dH(e){return new S2(e)}function pH(e){return new X5(e)}function hH(e){return new Z5(e)}function fH(e){return new J5(e)}function mH(e){return new Q5(e)}function gH(e){return new ex(e)}function yH(e){return new nx(e)}function AH(e){return new sx(e)}function xH(e){return new ax(e)}function bH(e){return new lx(e)}function vH(e){return new ox(e)}function wH(e){return new ix(e)}function kH(e){return new rx(e)}function SH(e){return new ux(e)}function IH(e){return new hx(e)}function CH(e){return new fx(e)}function TH(e){return new mx(e)}function Nx(e){return new yx(e)}function NH(e){return Nx(e)}function EH(e){return Nx(e)}function Ex(e){return new xx(e)}function RH(e){return Ex(e)}function _H(e){return Ex(e)}function Rx(e){return new vx(e)}function DH(e){return Rx(e)}function $H(e){return Rx(e)}function PH(e){return new wx(e)}function FH(e){return new Sx(e)}function Dk(e){return new kx(e)}function $k(e){return new Ix(e)}function Pk(e){return new gx(e)}function Fk(e){return new Ax(e)}function OH(e){return new bx(e)}function MH(e){return new H5(e)}function zH(e){return new v2(e)}function LH(e){return new j5(e)}function BH(e){return new Mh(e)}function WH(e){return new G5(e)}function VH(e){return new b2(e)}function UH(e){return new q5(e)}function GH(e){return new k2(e)}function HH(e){return new ia(e)}function jH(e){return new w2(e)}function qH(e){return new Tx(e)}function XH(e){return new Cx(e)}var KH=Dk,ZH=$k,YH=Pk,JH=Fk;function QH(e){return new cx(e)}function ej(e){return new dx(e)}function tj(e){return new px(e)}function nj(e){return new tx(e)}var Ok={};He(Ok,{MAPE:()=>hj,MSE:()=>gj,binaryAccuracy:()=>sj,binaryCrossentropy:()=>rj,categoricalAccuracy:()=>oj,categoricalCrossentropy:()=>ij,cosineProximity:()=>cj,mape:()=>fj,meanAbsoluteError:()=>dj,meanAbsolutePercentageError:()=>pj,meanSquaredError:()=>mj,mse:()=>yj,precision:()=>lj,recall:()=>uj,sparseCategoricalAccuracy:()=>aj});function sj(e,t){return k5(e,t)}function rj(e,t){return Z8(e,t)}function aj(e,t){return Y8(e,t)}function oj(e,t){return S5(e,t)}function ij(e,t){return I5(e,t)}function lj(e,t){return K8(e,t)}function uj(e,t){return ZU(e,t)}function cj(e,t){return w5(e,t)}function dj(e,t){return y2(e,t)}function pj(e,t){return sd(e,t)}function hj(e,t){return sd(e,t)}function fj(e,t){return sd(e,t)}function mj(e,t){return uu(e,t)}function gj(e,t){return uu(e,t)}function yj(e,t){return uu(e,t)}var Mk={};He(Mk,{modelFromJSON:()=>CG});var zk={};He(zk,{l1:()=>xj,l1l2:()=>Aj,l2:()=>bj});function Aj(e){return new Dh(e)}function xj(e){return PG(e)}function bj(e){return FG(e)}var Lk=class extends cc{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof ba))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Yf(e,t){return et}var Bk=class extends Lk{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Xe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Yf:this.mode==="max"?this.monitorFunc=c7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=c7:this.monitorFunc=Yf,this.monitorFunc===Yf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Yf?1/0:-1/0}async onEpochEnd(e,t){await Ha(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function vj(e){return new Bk(e)}var wj={earlyStopping:vj},kj=H();kj.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var dr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(dr||(dr={}));var d7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(d7||(d7={}));var _x={};function Sj(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};_x[e]=n}function Wk(e){return _x[e]}function Ij(e){delete _x[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return rs(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(d=>rs(d,n,s,r));let u=rs(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function rs(e,t,n,s){let[r,a]=Rs(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Fm(r,i)]);return o!==void 0?t[Fm(r,o)][a]:void 0}function Cj(e,t,n){return t[Fm(e,n.currentContextId)]}function Jr(e,t){let[n,s,r]=Rs(e);return[Fm(n,t&&t.currentContextId),s,r]}function Fm(e,t){return t?`${e}-${t}`:e}function Rs(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function lm(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function ya(e){return e.kept?e:Vn(e)}var Vk={};He(Vk,{json:()=>Tj});var Tj=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Uk={};He(Uk,{json:()=>Nj});var Nj=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Gk={};He(Gk,{json:()=>Ej});var Ej=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],Hk={};He(Hk,{json:()=>Rj});var Rj=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],jk={};He(jk,{json:()=>_j});var _j=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],qk={};He(qk,{json:()=>Dj});var Dj=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Xk={};He(Xk,{json:()=>$j});var $j=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Kk={};He(Kk,{json:()=>Pj});var Pj=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Zk={};He(Zk,{json:()=>Fj});var Fj=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Yk={};He(Yk,{json:()=>Oj});var Oj=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],Jk={};He(Jk,{json:()=>Mj});var Mj=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Qk={};He(Qk,{json:()=>zj});var zj=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],eS={};He(eS,{json:()=>Lj});var Lj=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],tS={};He(tS,{json:()=>Bj});var Bj=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],nS={};He(nS,{json:()=>Wj});var Wj=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],sS={};He(sS,{json:()=>Vj});var Vj=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],rS={};He(rS,{json:()=>Uj});var Uj=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],aS={};He(aS,{json:()=>Gj});var Gj=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],oS={};He(oS,{json:()=>Hj});var Hj=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],p7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Vk,Uk,Gk,Hk,jk,qk,Xk,Kk,Zk,Yk,Jk,Qk,eS,tS,nS,sS,rS,aS,oS],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(o);p.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[x,,A]=Jr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(A);if(w!==-1){let S=`${x}:${w}`;m.inputNames[y]=S}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Jr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Jr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Wk(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Q3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Q3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=oy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=oy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=ty(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=ty(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=ay(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ay(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=ey(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ey(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=ly(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ly(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=ry(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ry(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=ny(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ny(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=sy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=sy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=h7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=h7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[p]=Jr(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Dx(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Jr(d),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let x=`${f}:${y}`;p.inputNames[h]=x}}p.inputs.push(g),g.children.push(p)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Jr(l[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function jj(e){let t=H().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function iS(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):jj(e);return t?n:n.toLowerCase()}function Q3(e,t,n,s=!1){let r=e[t];return r!=null?iS(r.s,s):n}function ey(e,t,n){let s=e[t];return s?s.b:n}function ty(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Dx(e){switch(typeof e=="string"&&(e=dr[e]),e){case dr.DT_FLOAT:case dr.DT_HALF:return"float32";case dr.DT_INT32:case dr.DT_INT64:case dr.DT_INT8:case dr.DT_UINT8:return"int32";case dr.DT_BOOL:return"bool";case dr.DT_DOUBLE:return"float32";case dr.DT_STRING:return"string";default:return null}}function h7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function ny(e,t,n){let s=e[t];return s&&s.type?Dx(s.type):n}function sy(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Dx(r)):n}function lS(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ry(e,t,n){let s=e[t];return s&&s.shape?lS(s.shape):n}function ay(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function oy(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>iS(a,s)):n}function iy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>lS(r)):n}function ly(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var qj=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return rs(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return rs(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return ty(this.node.rawAttrs,e,t);if(n.s!=null)return Q3(this.node.rawAttrs,e,t);if(n.b!=null)return ey(this.node.rawAttrs,e,t);if(n.shape!=null)return ry(this.node.rawAttrs,e,t);if(n.type!=null)return ny(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return ay(this.node.rawAttrs,e,t);if(n.list.s!=null)return oy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return iy(this.node.rawAttrs,e,t);if(n.list.b!=null)return ly(this.node.rawAttrs,e,t);if(n.list.type!=null)return sy(this.node.rawAttrs,e,t)}return t}},Mn={};He(Mn,{OP_SCOPE_SUFFIX:()=>Ly,abs:()=>sn,acos:()=>sA,acosh:()=>rA,add:()=>ue,addN:()=>k0,all:()=>S0,any:()=>Np,argMax:()=>Ps,argMin:()=>aA,asin:()=>oA,asinh:()=>iA,atan:()=>lA,atan2:()=>uA,atanh:()=>cA,avgPool:()=>hh,avgPool3d:()=>pA,basicLSTMCell:()=>Aw,batchNorm:()=>jc,batchNorm2d:()=>hA,batchNorm3d:()=>fA,batchNorm4d:()=>mA,batchToSpaceND:()=>fh,bincount:()=>gA,booleanMaskAsync:()=>e8,broadcastArgs:()=>xw,broadcastTo:()=>Ki,buffer:()=>We,cast:()=>ye,ceil:()=>yA,clipByValue:()=>xs,clone:()=>Vn,complex:()=>wa,concat:()=>It,concat1d:()=>AA,concat2d:()=>su,concat3d:()=>xA,concat4d:()=>bA,conv1d:()=>I0,conv2d:()=>ka,conv2dTranspose:()=>C0,conv3d:()=>wA,conv3dTranspose:()=>kA,cos:()=>mh,cosh:()=>T0,cosineWindow:()=>K0,cumprod:()=>Ep,cumsum:()=>N0,denseBincount:()=>vw,depthToSpace:()=>SA,depthwiseConv2d:()=>qc,diag:()=>ww,dilation2d:()=>IA,div:()=>fe,divNoNan:()=>CA,dot:()=>TA,dropout:()=>QA,einsum:()=>kw,elu:()=>Xc,enclosingPowerOfTwo:()=>e5,equal:()=>Fs,erf:()=>NA,euclideanNorm:()=>_A,exp:()=>Os,expandDims:()=>Bt,expm1:()=>DA,eye:()=>E0,fft:()=>Sh,fill:()=>Zc,floor:()=>Yc,floorDiv:()=>Hc,fused:()=>lc,gather:()=>Jc,gatherND:()=>r8,greater:()=>ws,greaterEqual:()=>ci,ifft:()=>ic,imag:()=>dh,image:()=>Ie,inTopKAsync:()=>a8,irfft:()=>H0,isFinite:()=>$A,isInf:()=>PA,isNaN:()=>FA,leakyRelu:()=>gh,less:()=>R0,lessEqual:()=>di,linalg:()=>s5,linspace:()=>Nw,localResponseNormalization:()=>OA,log:()=>Ms,log1p:()=>yh,logSigmoid:()=>MA,logSoftmax:()=>D0,logSumExp:()=>$0,logicalAnd:()=>mr,logicalNot:()=>Ah,logicalOr:()=>P0,logicalXor:()=>zA,losses:()=>y8,lowerBound:()=>Rw,matMul:()=>et,max:()=>gn,maxPool:()=>xh,maxPool3d:()=>LA,maxPoolWithArgmax:()=>_w,maximum:()=>oa,mean:()=>Wt,meshgrid:()=>Dw,min:()=>Sa,minimum:()=>Qc,mirrorPad:()=>BA,mod:()=>au,moments:()=>bh,movingAverage:()=>t8,mul:()=>z,multiRNNCell:()=>$w,multinomial:()=>Pw,neg:()=>$t,norm:()=>Kc,notEqual:()=>rl,oneHot:()=>rc,ones:()=>$s,onesLike:()=>zs,op:()=>W,outerProduct:()=>Fw,pad:()=>sr,pad1d:()=>Ow,pad2d:()=>Mw,pad3d:()=>zw,pad4d:()=>Lw,pool:()=>WA,pow:()=>Ia,prelu:()=>wh,print:()=>Uy,prod:()=>VA,raggedTensorToTensor:()=>Bw,rand:()=>Ww,randomGamma:()=>Vw,randomNormal:()=>O0,randomStandardNormal:()=>Uw,randomUniform:()=>ed,range:()=>oc,real:()=>ac,reciprocal:()=>HA,relu:()=>Wr,relu6:()=>M0,reshape:()=>V,reverse:()=>Qs,reverse1d:()=>Gw,reverse2d:()=>Hw,reverse3d:()=>jw,reverse4d:()=>qw,rfft:()=>Ih,round:()=>z0,rsqrt:()=>L0,scalar:()=>Ce,scatterND:()=>n8,searchSorted:()=>F0,selu:()=>B0,separableConv2d:()=>W0,setdiff1dAsync:()=>Xw,sigmoid:()=>$n,sign:()=>jA,signal:()=>g8,sin:()=>V0,sinh:()=>U0,slice:()=>ze,slice1d:()=>kh,slice2d:()=>G0,slice3d:()=>pi,slice4d:()=>ro,softmax:()=>ou,softplus:()=>ru,spaceToBatchND:()=>vh,sparse:()=>A8,sparseToDense:()=>s8,spectral:()=>m8,split:()=>Yt,sqrt:()=>Fn,square:()=>bt,squaredDifference:()=>j0,squeeze:()=>rt,stack:()=>ln,step:()=>iu,stridedSlice:()=>qA,string:()=>x8,sub:()=>me,sum:()=>ke,tan:()=>XA,tanh:()=>nl,tensor:()=>ct,tensor1d:()=>Pt,tensor2d:()=>fr,tensor3d:()=>Ky,tensor4d:()=>Kw,tensor5d:()=>Zw,tensor6d:()=>Yw,tile:()=>Ks,topk:()=>KA,transpose:()=>tt,truncatedNormal:()=>q0,unique:()=>ZA,unsortedSegmentSum:()=>X0,unstack:()=>On,upperBound:()=>Jw,variable:()=>YA,where:()=>Gn,whereAsync:()=>JA,zeros:()=>Vt,zerosLike:()=>lt});var Xj=(e,t,n,s=Mn)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[s.add(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[s.addN(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[s.mod(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[s.mul(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[s.div(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[s.divNoNan(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[s.floorDiv(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[s.sub(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[s.minimum(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[s.maximum(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[s.pow(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[s.squaredDifference(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kj=(e,t,n,s=Mn)=>{switch(e.op){case"Abs":case"ComplexAbs":return[s.abs(I("x",e,t,n))];case"Acos":return[s.acos(I("x",e,t,n))];case"Acosh":return[s.acosh(I("x",e,t,n))];case"Asin":return[s.asin(I("x",e,t,n))];case"Asinh":return[s.asinh(I("x",e,t,n))];case"Atan":return[s.atan(I("x",e,t,n))];case"Atan2":return[s.atan2(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[s.atanh(I("x",e,t,n))];case"Ceil":return[s.ceil(I("x",e,t,n))];case"Complex":return[s.complex(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[s.cos(I("x",e,t,n))];case"Cosh":return[s.cosh(I("x",e,t,n))];case"Elu":return[s.elu(I("x",e,t,n))];case"Erf":return[s.erf(I("x",e,t,n))];case"Exp":return[s.exp(I("x",e,t,n))];case"Expm1":return[s.expm1(I("x",e,t,n))];case"Floor":return[s.floor(I("x",e,t,n))];case"Log":return[s.log(I("x",e,t,n))];case"Log1p":return[s.log1p(I("x",e,t,n))];case"Imag":return[s.imag(I("x",e,t,n))];case"Neg":return[s.neg(I("x",e,t,n))];case"Reciprocal":return[s.reciprocal(I("x",e,t,n))];case"Real":return[s.real(I("x",e,t,n))];case"Relu":return[s.relu(I("x",e,t,n))];case"Round":return[s.round(I("x",e,t,n))];case"Selu":return[s.selu(I("x",e,t,n))];case"Sigmoid":return[s.sigmoid(I("x",e,t,n))];case"Sin":return[s.sin(I("x",e,t,n))];case"Sign":return[s.sign(I("x",e,t,n))];case"Sinh":return[s.sinh(I("x",e,t,n))];case"Softplus":return[s.softplus(I("x",e,t,n))];case"Sqrt":return[s.sqrt(I("x",e,t,n))];case"Square":return[s.square(I("x",e,t,n))];case"Tanh":return[s.tanh(I("x",e,t,n))];case"Tan":return[s.tan(I("x",e,t,n))];case"ClipByValue":return[s.clipByValue(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[s.relu6(I("x",e,t,n))];case"Rsqrt":return[s.rsqrt(rs(e.inputNames[0],t,n))];case"Prod":return[s.prod(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[s.leakyRelu(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[s.prelu(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[s.isNaN(rs(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function hr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;sn+` Shapes ${e} and ${t} must match`)}}}function f7(e){return!(typeof e=="number"||e.some(t=>t<0))}function sp(e,t,n){let s=uy(e,n),r=!f7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=uy(a.shape,s)}),!f7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function uy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var Zj=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ce(0),kn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, + because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),hr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,kn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,On(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];Z(()=>{t=V(t,[1,n,r]);for(let i=0;i{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);fr(t,r.shape,"TensorList shape mismatch: "),wn(r)}),this.idTensor=Ce(0),this.maxNumElements=s,wn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new pc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);fr(e,this.elementShape,"TensorList shape mismatch: ");let s=lp(this.elementShape,this.tensors,e);return Z(()=>{let r=this.tensors.map(a=>V(a,s));return un(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=lp(this.elementShape,this.tensors,e),s=this.tensors.pop();return s.kept=!1,fr(s.shape,e,"TensorList shape mismatch: "),V(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(fr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");wn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new pc([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;nthis.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);fr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=lp(this.elementShape,this.tensors,t);return V(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);fr(this.elementShape,t.shape,"TensorList shape mismatch: "),wn(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);fr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=lp(this.elementShape,this.tensors,n);return e.length===0?ct([],[0].concat(s)):Z(()=>{let r=e.map(a=>V(this.tensors[a],s));return un(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);fr(this.elementShape,t,"TensorList shape mismatch: ");let n=lp(this.elementShape,this.tensors,t);return this.size()===0?ct([],[0].concat(n)):Z(()=>{let s=this.tensors.map(r=>V(r,n));return St(s,0)})}};function Tq(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);fr(r,t,"TensorList shape mismatch: ");let a=On(e);return new pc(a,t,s)}function Nq(e,t,n,s){return new pc([],e,t,s)}function Eq(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new pc([],n,e.dtype,s),o=On(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function Rq(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to + ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];Z(()=>{t=V(t,[1,n,r]);for(let i=0;i{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);hr(t,r.shape,"TensorList shape mismatch: "),kn(r)}),this.idTensor=Ce(0),this.maxNumElements=s,kn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new pc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);hr(e,this.elementShape,"TensorList shape mismatch: ");let s=sp(this.elementShape,this.tensors,e);return Z(()=>{let r=this.tensors.map(a=>V(a,s));return ln(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=sp(this.elementShape,this.tensors,e),s=this.tensors.pop();return s.kept=!1,hr(s.shape,e,"TensorList shape mismatch: "),V(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(hr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");kn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new pc([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;nthis.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);hr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=sp(this.elementShape,this.tensors,t);return V(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);hr(this.elementShape,t.shape,"TensorList shape mismatch: "),kn(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);hr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=sp(this.elementShape,this.tensors,n);return e.length===0?ct([],[0].concat(s)):Z(()=>{let r=e.map(a=>V(this.tensors[a],s));return ln(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);hr(this.elementShape,t,"TensorList shape mismatch: ");let n=sp(this.elementShape,this.tensors,t);return this.size()===0?ct([],[0].concat(n)):Z(()=>{let s=this.tensors.map(r=>V(r,n));return It(s,0)})}};function Yj(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);hr(r,t,"TensorList shape mismatch: ");let a=On(e);return new pc(a,t,s)}function Jj(e,t,n,s){return new pc([],e,t,s)}function Qj(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new pc([],n,e.dtype,s),o=On(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function eq(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=hy(a,n),i=s===0?0:e.size/s,l=Z(()=>{let c=[];e=V(e,[1,s,i]);for(let p=0;p{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),o=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=S("pred",e,t,n);return[xa(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=xa(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>ss(r,t,n)!==void 0);if(s){let r=ss(s,t,n);return[xa(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[xa(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[xa(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[xa(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),o=S("dynamicSize",e,t,n),i=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),u=S("name",e,t,n),c=new Cq(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ce(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ce(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),o=S("numElements",e,t,n),i=Eq(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=S(a,e,t,n),i=e.op==="TensorListReserve"?-1:o,l=Nq(s,r,o,i);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=Tq(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),o=S("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),o=Rq(s,a,r);return n.addTensorList(o),[o.idTensor]}case"TensorListLength":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id);return[Ce(r.size(),"int32")]}case"TensorListResize":{let s=S("tensorListId",e,t,n),r=S("size",e,t,n),o=n.getTensorList(s.id).resize(r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function w7(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=S("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=S("strides",e,t,n),p=hm(e,t,n),d=S("dataFormat",e,t,n).toUpperCase(),h=S("dilations",e,t,n),[f,m]=S("args",e,t,n);o&&(m=f,f=void 0);let g=S("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var Dq=(e,t,n,s=Mn)=>{switch(e.op){case"Conv1D":{let r=S("stride",e,t,n),a=S("pad",e,t,n),o=S("dataFormat",e,t,n).toUpperCase(),i=S("dilation",e,t,n);return[s.conv1d(S("x",e,t,n),S("filter",e,t,n),r,a,o,i)]}case"Conv2D":{let r=S("strides",e,t,n),a=hm(e,t,n),o=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[s.conv2d(S("x",e,t,n),S("filter",e,t,n),[r[1],r[2]],a,o,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=w7(e,t,n);return[s.fused.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=w7(e,t,n);return[s.fused.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=S("outputShape",e,t,n),a=S("strides",e,t,n),o=hm(e,t,n);return[s.conv2dTranspose(S("x",e,t,n),S("filter",e,t,n),r,[a[1],a[2]],o)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=S("strides",e,t,n),a=hm(e,t,n),o=S("dilations",e,t,n),i=S("dataFormat",e,t,n).toUpperCase();return[s.depthwiseConv2d(S("input",e,t,n),S("filter",e,t,n),[r[1],r[2]],a,i,[o[1],o[2]])]}case"Conv3D":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[s.conv3d(S("x",e,t,n),S("filter",e,t,n),[r[1],r[2],r[3]],a,o,[i[1],i[2],i[3]])]}case"AvgPool":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n);return[s.avgPool(S("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n);return[s.maxPool(S("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n),i=S("includeBatchInIndex",e,t,n),{result:l,indexes:u}=s.maxPoolWithArgmax(S("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a,i);return[l,u]}case"AvgPool3D":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n);return[s.avgPool3d(S("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("kernelSize",e,t,n);return[s.maxPool3d(S("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=S("strides",e,t,n),a=S("pad",e,t,n),o=S("dilations",e,t,n),i=r[1],l=r[2],u=o[1],c=o[2];return[s.dilation2d(S("x",e,t,n),S("filter",e,t,n),[i,l],a,[u,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$q=(e,t,n,s=Mn)=>{switch(e.op){case"Fill":{let r=S("shape",e,t,n),a=S("dtype",e,t,n),o=S("value",e,t,n);return[s.fill(r,o,a)]}case"LinSpace":{let r=S("start",e,t,n),a=S("stop",e,t,n),o=S("num",e,t,n);return[s.linspace(r,a,o)]}case"Multinomial":{let r=S("logits",e,t,n),a=S("numSamples",e,t,n),o=S("seed",e,t,n);return[s.multinomial(r,a,o)]}case"OneHot":{let r=S("indices",e,t,n),a=S("depth",e,t,n),o=S("onValue",e,t,n),i=S("offValue",e,t,n),l=S("dtype",e,t,n);return[s.oneHot(r,a,o,i,l)]}case"Ones":return[s.ones(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[s.onesLike(S("x",e,t,n))];case"RandomStandardNormal":return[s.randomStandardNormal(S("shape",e,t,n),S("dtype",e,t,n),S("seed",e,t,n))];case"RandomUniform":return[s.randomUniform(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let r=S("start",e,t,n),a=S("stop",e,t,n),o=S("step",e,t,n);return[s.range(r,a,o,S("dtype",e,t,n))]}case"TruncatedNormal":{let r=S("shape",e,t,n),a=S("mean",e,t,n),o=S("stdDev",e,t,n),i=S("seed",e,t,n);return[s.truncatedNormal(r,a,o,S("dtype",e,t,n),i)]}case"Zeros":return[s.zeros(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[s.zerosLike(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function T3(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),o=S("iouThreshold",e,t,n),i=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var Pq=async(e,t,n,s,r=Mn)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u,softNmsSigma:c}=T3(e,t,n),p=await r.image.nonMaxSuppressionWithScoreAsync(a,o,i,l,u,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=T3(e,t,n),c=S("padToMaxOutputSize",e,t,n),p=await r.image.nonMaxSuppressionPaddedAsync(a,o,i,l,u,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=T3(e,t,n);return[await r.image.nonMaxSuppressionAsync(a,o,i,l,u)]}case"Where":{let a=r.cast(S("condition",e,t,n),"bool"),o=[await r.whereAsync(a)];return a.dispose(),o}case"ListDiff":return r.setdiff1dAsync(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fq=(e,t,n,s=Mn)=>{switch(e.op){case"LowerBound":{let r=S("sortedSequence",e,t,n),a=S("values",e,t,n);return[s.lowerBound(r,a)]}case"TopKV2":{let r=S("x",e,t,n),a=S("k",e,t,n),o=S("sorted",e,t,n),i=s.topk(r,a,o);return[i.values,i.indices]}case"UpperBound":{let r=S("sortedSequence",e,t,n),a=S("values",e,t,n);return[s.upperBound(r,a)]}case"Unique":{let r=S("x",e,t,n),a=s.unique(r);return[a.values,a.indices]}case"UniqueV2":{let r=S("x",e,t,n),a=S("axis",e,t,n),o=s.unique(r,a);return[o.values,o.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Oq=(e,t,n,s=Mn)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=S("default",e,t,n);return[ss(e.name,t,n)||r];case"Placeholder":return[ss(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=S("x",e,t,n);return[xa(c)]}case"IdentityN":return S("x",e,t,n).map(c=>xa(c));case"Snapshot":let a=S("x",e,t,n);return[xa(a)];case"Shape":return[s.tensor1d(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(c=>s.tensor1d(c.shape));case"Size":return[s.scalar(S("x",e,t,n).size,"int32")];case"Rank":return[s.scalar(S("x",e,t,n).rank,"int32")];case"NoOp":return[s.scalar(1)];case"Print":let o=S("x",e,t,n),i=S("data",e,t,n),l=S("message",e,t,n),u=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ce(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),Z(()=>{let s=On(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o{let s=[];for(let r=0;r{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),o=new Mq(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lq=(e,t,n,s=Mn)=>{switch(e.op){case"ResizeBilinear":{let r=S("images",e,t,n),a=S("size",e,t,n),o=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[s.image.resizeBilinear(r,[a[0],a[1]],o,i)]}case"ResizeNearestNeighbor":{let r=S("images",e,t,n),a=S("size",e,t,n),o=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[s.image.resizeNearestNeighbor(r,[a[0],a[1]],o,i)]}case"CropAndResize":{let r=S("image",e,t,n),a=S("boxes",e,t,n),o=S("boxInd",e,t,n),i=S("cropSize",e,t,n),l=S("method",e,t,n),u=S("extrapolationValue",e,t,n);return[s.image.cropAndResize(r,a,o,i,l,u)]}case"ImageProjectiveTransformV3":{let r=S("images",e,t,n),a=S("transforms",e,t,n),o=S("outputShape",e,t,n),i=S("fillValue",e,t,n),l=S("interpolation",e,t,n),u=S("fillMode",e,t,n);return[s.image.transform(r,a,l.toLowerCase(),u.toLowerCase(),i,o)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bq=(e,t,n,s=Mn)=>{switch(e.op){case"Equal":return[s.equal(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[s.notEqual(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[s.greater(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[s.greaterEqual(S("a",e,t,n),S("b",e,t,n))];case"Less":return[s.less(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[s.lessEqual(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[s.logicalAnd(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[s.logicalNot(S("a",e,t,n))];case"LogicalOr":return[s.logicalOr(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[s.where(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wq=(e,t,n,s=Mn)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[s.matMul(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[s.einsum(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[s.transpose(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[r,a]=S("fusedOps",e,t,n),o=r==="biasadd",i=a==="prelu",l=S("numArgs",e,t,n),u=S("leakyreluAlpha",e,t,n);if(o){if(i&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=S("args",e,t,n);return[s.fused.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:p,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vq=(e,t,n,s=Mn)=>{switch(e.op){case"EuclideanNorm":return[s.euclideanNorm(S("x",e,t,n),S("axis",e,t,n),S("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[s.batchNorm(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[s.batchNorm(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[s.localResponseNormalization(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[s.softmax(S("x",e,t,n))];case"LogSoftmax":return[s.logSoftmax(S("x",e,t,n))];case"SparseToDense":return[s.sparseToDense(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Uq=(e,t,n,s=Mn)=>{switch(e.op){case"Max":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.max(S("x",e,t,n),i,l)]}case"Mean":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.mean(S("x",e,t,n),i,l)]}case"Min":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.min(S("x",e,t,n),i,l)]}case"Sum":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.sum(S("x",e,t,n),i,l)]}case"All":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.all(S("x",e,t,n),i,l)]}case"Any":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.any(S("x",e,t,n),i,l)]}case"ArgMax":{let i=S("axis",e,t,n);return[s.argMax(S("x",e,t,n),i)]}case"ArgMin":{let i=S("axis",e,t,n);return[s.argMin(S("x",e,t,n),i)]}case"Prod":{let i=S("axis",e,t,n),l=S("keepDims",e,t,n);return[s.prod(S("x",e,t,n),i,l)]}case"Cumprod":{let i=S("axis",e,t,n),l=S("exclusive",e,t,n),u=S("reverse",e,t,n);return[s.cumprod(S("x",e,t,n),i,l,u)]}case"Cumsum":{let i=S("axis",e,t,n),l=S("exclusive",e,t,n),u=S("reverse",e,t,n);return[s.cumsum(S("x",e,t,n),i,l,u)]}case"Bincount":let r=S("x",e,t,n),a=S("weights",e,t,n),o=S("size",e,t,n);return[s.bincount(r,a,o)];case"DenseBincount":{let i=S("x",e,t,n),l=S("weights",e,t,n),u=S("size",e,t,n),c=S("binaryOutput",e,t,n);return[s.denseBincount(i,l,u,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gq=(e,t,n,s=Mn)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=S("n",e,t,n),a=S("axis",e,t,n),o=S("tensors",e,t,n);return o=o.slice(0,r),[s.concat(o,a)]}case"Gather":{let r=S("x",e,t,n),a=S("indices",e,t,n);return[s.gather(r,s.cast(a,"int32"),0)]}case"GatherV2":{let r=S("axis",e,t,n),a=S("batchDims",e,t,n),o=S("x",e,t,n),i=S("indices",e,t,n);return[s.gather(o,s.cast(i,"int32"),r,a)]}case"Reverse":{let r=S("dims",e,t,n),a=[];for(let i=0;i{let r=S("axis",e,t,n),a=S("tensors",e,t,n),o=a[0].shape,i=s.squeeze(a[0]).shape,l=a.map(u=>{let c=v.arraysEqual(u.shape,o);if(!c&&!v.arraysEqual(s.squeeze(u).shape,i))throw new Error("the input tensors shape does not match");return c?u:s.reshape(u,o)});return[s.stack(l,r)]});case"Unpack":{let r=S("axis",e,t,n),a=S("tensor",e,t,n);return s.unstack(a,r)}case"Tile":{let r=S("reps",e,t,n);return[s.tile(S("x",e,t,n),r)]}case"Split":case"SplitV":{let r=S("axis",e,t,n),a=S("numOrSizeSplits",e,t,n),o=S("x",e,t,n);return s.split(o,a,r)}case"ScatterNd":{let r=S("indices",e,t,n),a=S("values",e,t,n),o=S("shape",e,t,n);return[s.scatterND(r,a,o)]}case"GatherNd":{let r=S("x",e,t,n),a=S("indices",e,t,n);return[s.gatherND(r,a)]}case"SparseToDense":{let r=S("sparseIndices",e,t,n),a=S("outputShape",e,t,n),o=S("sparseValues",e,t,n),i=S("defaultValue",e,t,n);return[s.sparseToDense(r,o,a,o.dtype===i.dtype?i:s.cast(i,o.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hq=(e,t,n,s=Mn)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:a,emptyRowIndicator:o,reverseIndexMap:i}=s.sparse.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[r,a,o,i]}case"SparseReshape":{let{outputIndices:r,outputShape:a}=s.sparse.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[r,a]}case"SparseSegmentMean":return[s.sparse.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[s.sparse.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jq=(e,t,n,s=Mn)=>{switch(e.op){case"FFT":return[s.fft(S("x",e,t,n))];case"IFFT":return[s.ifft(S("x",e,t,n))];case"RFFT":return[s.rfft(S("x",e,t,n))];case"IRFFT":return[s.irfft(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qq=(e,t,n,s=Mn)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:a}=s.string.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[r,a]}case"StringSplit":{let{indices:r,values:a,shape:o}=s.string.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[r,a,o]}case"StringToHashBucketFast":return[s.string.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Xq=(e,t,n,s=Mn)=>{switch(e.op){case"Cast":return[s.cast(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let r=S("axis",e,t,n);return[s.expandDims(S("x",e,t,n),r)]}case"Squeeze":{let r=S("axis",e,t,n);return[s.squeeze(S("x",e,t,n),r)]}case"Reshape":return[s.reshape(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[s.mirrorPad(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[s.pad(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let r=S("blockShape",e,t,n),a=S("paddings",e,t,n);return[s.spaceToBatchND(S("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=S("blockShape",e,t,n),a=S("crops",e,t,n);return[s.batchToSpaceND(S("x",e,t,n),r,a)]}case"DepthToSpace":{let r=S("blockSize",e,t,n),a=S("dataFormat",e,t,n).toUpperCase();return[s.depthToSpace(S("x",e,t,n),r,a)]}case"BroadcastTo":return[s.broadcastTo(S("x",e,t,n),S("shape",e,t,n))];case"BroadcastArgs":return[s.broadcastArgs(S("s0",e,t,n),S("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function k7(e,t,n,s,r=Z){let a=((o,i,l)=>{switch(o.category){case"arithmetic":return r(()=>Iq(o,i,l));case"basic_math":return r(()=>Sq(o,i,l));case"control":return _q(o,i,l);case"convolution":return r(()=>Dq(o,i,l));case"creation":return r(()=>$q(o,i,l));case"dynamic":return Pq(o,i,l);case"evaluation":return r(()=>Fq(o,i,l));case"image":return r(()=>Lq(o,i,l));case"graph":return r(()=>Oq(o,i,l));case"logical":return r(()=>Bq(o,i,l));case"matrices":return r(()=>Wq(o,i,l));case"normalization":return r(()=>Vq(o,i,l));case"reduction":return r(()=>Uq(o,i,l));case"slice_join":return r(()=>Gq(o,i,l));case"sparse":return r(()=>Hq(o,i,l));case"spectral":return r(()=>jq(o,i,l));case"string":return r(()=>qq(o,i,l));case"transformation":return r(()=>Xq(o,i,l));case"hash_table":return zq(o,i,l,s);case"custom":let u=K8(o.op);if(u&&u.customExecutor)return u.customExecutor(new kq(o,i,l));throw TypeError(`Custom op ${o.op} is not registered.`);default:throw TypeError(`Unknown op '${o.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(o=>[].concat(o)):[].concat(a)}var I7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function S7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(d=>Rs(d)[0]),c=[];s!=null&&(c=s.map(d=>Rs(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((yI(d)||Qq(d)||eX(d))&&o==null&&(o=d,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function Kq(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Rs(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&a.push(p)})}return u}var Zq=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Yq=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Jq=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function yI(e){return Zq.indexOf(e.op)>=0}function Qq(e){return Yq.indexOf(e.op)>=0}function eX(e){return Jq.indexOf(e.op)>=0}var fy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new fy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=S7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return Kq(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Rs(c)[0]]),r=t.map(c=>Rs(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return Z(()=>{let c=new I7(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Rs(f),y=[];y[g]=e[f],p[m]=y});let d=this.getFrozenTensorIds(p),h={};for(let f=0;fss(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=nq(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];if(c===1){if(!this.keepTensorForDebug)u.dispose();else{let[p,d]=Qr(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=u:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=u)}delete o[u.id]}else c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let a=new I7(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(u=>ss(u,this.tensorsMap,a)),i=o.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[Rs(x)[0]]),o=n.map(x=>Rs(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:p}=S7(e,i,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[A,b]=Rs(x),w=[];w[b]=e[x],h[A]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let x=this.processStack(a,d,t,h,g,m,o,f,l);await Promise.all(x)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(x=>!yI(x)&&!ss(x.name,h,t)).map(x=>x.name);if(y.length>0){let x="";throw c!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&S("isConstant",c.node,s,n)&&([p]=Qr(c.node.name,n)),s[c.node.name]==null){let d=k7(c.node,s,n,this._resourceManager);p||([p]=Qr(c.node.name,n));let h=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Qr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!ss(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!ss(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Rs(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Rs(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Rs(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},tX=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},nX="?tfjs-format=file",sX="model.json",Uh=class{constructor(e,t={},n=Ds){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new tX}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new fy(x7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=x7.Instance.transformGraph(e.modelInitializer);this.initializer=new fy(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let s=n instanceof nt?[n]:n,r={};return s.forEach((a,o)=>r[this.structuredOutputKeys[o]]=a),r}return n}normalizeInputs(e){if(!(e instanceof nt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function rX(e,t={},n=Ds){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=oX(e));let s=new Uh(e,t,n);return await s.load(),s}function aX(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new Uh(e);return t.load(),t}function oX(e){return e.endsWith("/")||(e=e+"/"),`${e}${sX}${nX}`}var iX="3.20.0",AI={};Ve(AI,{CSVDataset:()=>TI,Dataset:()=>id,FileDataSource:()=>PI,TextLineDataset:()=>CI,URLDataSource:()=>FI,array:()=>RX,csv:()=>WX,func:()=>VX,generator:()=>UX,microphone:()=>HX,version_data:()=>jX,webcam:()=>GX,zip:()=>_X});var lX=Eo(e0()),uX=Eo(e0());function cX(e,t){return Wm(e,t)}function Wm(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(hc(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Wm(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function dX(e,t=bI){return xI(e,t)}function xI(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(hc(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=xI(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function bI(e){return e===null?null:hc(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function vI(e,t){let n=new Map;Wm(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Wm(e,t,n)}function hc(e){let t=!1;if(H().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=bw();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof nt)&&!(e instanceof Promise)&&!t)}function pX(e){return e==null||hX(e)||Array.isArray(e)||typeof e=="object"&&e instanceof nt||v.isTypedArray(e)}function hX(e){return e===null||typeof e!="object"&&typeof e!="function"}function fX(e){return cX(e,mX)}function mX(e){return e instanceof nt?{value:e.clone(),recurse:!1}:hc(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var wI=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},zx=class extends wI{constructor(){super(zx.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;st===!0)}rowMajorBatch(e,t=!0){return new kX(this,e,t)}columnMajorBatch(e,t=!0,n=bI){return this.rowMajorBatch(e,t).map(r=>dX(r,n))}concatenate(e,t){return new II(kI([this,e]),t)}take(e){return e<0||e==null?this:new wX(this,e)}skip(e){return e<0||e==null?this:new vX(this,e)}prefetch(e){return new SI(this,e)}shuffle(e,t){return new EX(this,e,t)}serial(){return new bX(this)}},AX=class extends In{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:fX(e),done:!1}}},xX=class extends In{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},bX=class extends In{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},vX=class extends In{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},kX=class extends In{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},IX=class extends In{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;J(e.value)}}},SX=class extends In{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Or.getTensorsInContainer(e.value),n=this.transform(e.value),s=Or.getTensorsInContainer(n);for(let r of t)Or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},CX=class extends In{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},C7=class extends In{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Or.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Or.getTensorsInContainer(n);for(let r of t)Or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Bx=class extends In{constructor(){super(),this.outputQueue=new zx,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},TX=class extends Bx{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Or.getTensorsInContainer(e.value),n=this.transform(e.value),s=Or.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Or.isTensorInList(r,s)||r.dispose();return!0}},II=class extends In{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},po;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(po||(po={}));var NX=class extends In{constructor(e,t=po.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof In?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await vI(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case po.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case po.SHORTEST:return{value:null,done:!0};case po.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},SI=class extends In{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new wI(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},EX=class extends SI{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=uX.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},id=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is - ${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Es(async()=>(await n.iterator()).columnMajorBatch(e,t,DX),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Es(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Es(async()=>(await t.iterator()).filter(s=>Z(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Es(async()=>(await t.iterator()).map(n=>Z(()=>e(n))),this.size)}mapAsync(e){let t=this;return Es(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Es(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Es(async()=>{let s=Lx(async()=>({value:await t.iterator(),done:!1}));return gX(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=lX.alea(t||v.now().toString());return Es(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Es(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};id.MAX_BUFFER_SIZE=1e4;function Es(e,t=null){return new class extends id{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function RX(e){return Es(async()=>kI(e),e.length)}function _X(e){if(!hc(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await vI(e,s=>{if(s instanceof id)return{value:s.iterator(),recurse:!1};if(hc(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return yX(n,po.SHORTEST)},t)}function DX(e){if(e===null)return null;let t=e[0];return pX(t)?{value:$X(e),recurse:!1}:{value:null,recurse:!0}}function $X(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof nt?un(e):ct(e)}var CI=class extends id{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` -`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},sm='"',up=Symbol("out"),T7=Symbol("field"),rm=Symbol("quote"),N3=Symbol("quoteafterquote"),N7=Symbol("quoteinquote"),TI=class extends id{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new CI(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!H().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new NI(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),ct(n,t)}},EI=class extends In{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ft([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=mr([a,r,i,o],[1,4])}else this.cropBox=mr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!H().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new EI(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=sr.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return Z(()=>{let t=Wt(ye(e,"float32"),0),n;n=Se.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return V(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},RI=class{},_I=class extends In{split(e){return new PX(this,e)}},PX=class extends _I{constructor(e,t){super(),this.upstream=e,this.impl=new FX(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},FX=class extends Bx{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},OX=class extends In{decodeUTF8(){return new MX(this)}},MX=class extends _I{constructor(e){super(),this.upstream=e,this.impl=new zX(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},zX=class extends Bx{constructor(e){if(super(),this.upstream=e,H().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=bw();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return H().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},DI=class extends OX{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(H().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function LX(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=BX(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new DI(o,t)}else throw new Error(a.statusText)}var BX=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function $I(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var PI=class extends RI{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if($I(this.input)&&H().get("IS_NODE")){let e=Oy();this.input=e.readFileSync(this.input.slice(7))}return new DI(this.input,this.options)}},FI=class extends RI{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return $I(this.url)?new PI(this.url,this.fileOptions).iterator():LX(this.url,this.fileOptions)}};function WX(e,t={}){return new TI(new FI(e),t)}function VX(e){let t=Lx(e);return Es(async()=>t)}function UX(e){return Es(async()=>{let t=await e();return Lx(()=>t.next())})}async function GX(e,t){return EI.create(e,t)}async function HX(e){return NI.create(e)}var jX="3.20.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var qX=Ar.whereImpl,Wx=class extends Ac{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new jp(this,an())}nextDataId(){return Wx.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,H().get("IS_NODE")&&C.warn(` + ${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=uy(a,n),i=s===0?0:e.size/s,l=Z(()=>{let c=[];e=V(e,[1,s,i]);for(let p=0;p{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=I("pred",e,t,n);return[ya(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=ya(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>rs(r,t,n)!==void 0);if(s){let r=rs(s,t,n);return[ya(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[ya(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[ya(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[ya(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new Zj(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ce(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ce(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=Qj(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=e.op==="TensorListReserve"?-1:o,l=Jj(s,r,o,i);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=Yj(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=eq(s,a,r);return n.addTensorList(o),[o.idTensor]}case"TensorListLength":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id);return[Ce(r.size(),"int32")]}case"TensorListResize":{let s=I("tensorListId",e,t,n),r=I("size",e,t,n),o=n.getTensorList(s.id).resize(r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function m7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),p=lm(e,t,n),d=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var nq=(e,t,n,s=Mn)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[s.conv1d(I("x",e,t,n),I("filter",e,t,n),r,a,o,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=lm(e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[s.conv2d(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,o,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=m7(e,t,n);return[s.fused.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=m7(e,t,n);return[s.fused.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),o=lm(e,t,n);return[s.conv2dTranspose(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],o)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=lm(e,t,n),o=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[s.depthwiseConv2d(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[o[1],o[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[s.conv3d(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,o,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.avgPool(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.maxPool(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:l,indexes:u}=s.maxPoolWithArgmax(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a,i);return[l,u]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.avgPool3d(I("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.maxPool3d(I("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("dilations",e,t,n),i=r[1],l=r[2],u=o[1],c=o[2];return[s.dilation2d(I("x",e,t,n),I("filter",e,t,n),[i,l],a,[u,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},sq=(e,t,n,s=Mn)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),o=I("value",e,t,n);return[s.fill(r,o,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),o=I("num",e,t,n);return[s.linspace(r,a,o)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),o=I("seed",e,t,n);return[s.multinomial(r,a,o)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),o=I("onValue",e,t,n),i=I("offValue",e,t,n),l=I("dtype",e,t,n);return[s.oneHot(r,a,o,i,l)]}case"Ones":return[s.ones(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[s.onesLike(I("x",e,t,n))];case"RandomStandardNormal":return[s.randomStandardNormal(I("shape",e,t,n),I("dtype",e,t,n),I("seed",e,t,n))];case"RandomUniform":return[s.randomUniform(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),o=I("step",e,t,n);return[s.range(r,a,o,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),o=I("stdDev",e,t,n),i=I("seed",e,t,n);return[s.truncatedNormal(r,a,o,I("dtype",e,t,n),i)]}case"Zeros":return[s.zeros(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[s.zerosLike(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function v3(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var rq=async(e,t,n,s,r=Mn)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u,softNmsSigma:c}=v3(e,t,n),p=await r.image.nonMaxSuppressionWithScoreAsync(a,o,i,l,u,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=v3(e,t,n),c=I("padToMaxOutputSize",e,t,n),p=await r.image.nonMaxSuppressionPaddedAsync(a,o,i,l,u,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=v3(e,t,n);return[await r.image.nonMaxSuppressionAsync(a,o,i,l,u)]}case"Where":{let a=r.cast(I("condition",e,t,n),"bool"),o=[await r.whereAsync(a)];return a.dispose(),o}case"ListDiff":return r.setdiff1dAsync(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},aq=(e,t,n,s=Mn)=>{switch(e.op){case"LowerBound":{let r=I("sortedSequence",e,t,n),a=I("values",e,t,n);return[s.lowerBound(r,a)]}case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),o=I("sorted",e,t,n),i=s.topk(r,a,o);return[i.values,i.indices]}case"UpperBound":{let r=I("sortedSequence",e,t,n),a=I("values",e,t,n);return[s.upperBound(r,a)]}case"Unique":{let r=I("x",e,t,n),a=s.unique(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),o=s.unique(r,a);return[o.values,o.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},oq=(e,t,n,s=Mn)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[rs(e.name,t,n)||r];case"Placeholder":return[rs(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[ya(c)]}case"IdentityN":return I("x",e,t,n).map(c=>ya(c));case"Snapshot":let a=I("x",e,t,n);return[ya(a)];case"Shape":return[s.tensor1d(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>s.tensor1d(c.shape));case"Size":return[s.scalar(I("x",e,t,n).size,"int32")];case"Rank":return[s.scalar(I("x",e,t,n).rank,"int32")];case"NoOp":return[s.scalar(1)];case"Print":let o=I("x",e,t,n),i=I("data",e,t,n),l=I("message",e,t,n),u=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ce(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),Z(()=>{let s=On(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o{let s=[];for(let r=0;r{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new iq(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},uq=(e,t,n,s=Mn)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),o=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[s.image.resizeBilinear(r,[a[0],a[1]],o,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),o=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[s.image.resizeNearestNeighbor(r,[a[0],a[1]],o,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),o=I("boxInd",e,t,n),i=I("cropSize",e,t,n),l=I("method",e,t,n),u=I("extrapolationValue",e,t,n);return[s.image.cropAndResize(r,a,o,i,l,u)]}case"ImageProjectiveTransformV3":{let r=I("images",e,t,n),a=I("transforms",e,t,n),o=I("outputShape",e,t,n),i=I("fillValue",e,t,n),l=I("interpolation",e,t,n),u=I("fillMode",e,t,n);return[s.image.transform(r,a,l.toLowerCase(),u.toLowerCase(),i,o)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},cq=(e,t,n,s=Mn)=>{switch(e.op){case"Equal":return[s.equal(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[s.notEqual(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[s.greater(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[s.greaterEqual(I("a",e,t,n),I("b",e,t,n))];case"Less":return[s.less(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[s.lessEqual(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[s.logicalAnd(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[s.logicalNot(I("a",e,t,n))];case"LogicalOr":return[s.logicalOr(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[s.where(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},dq=(e,t,n,s=Mn)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[s.matMul(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[s.einsum(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[s.transpose(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),o=r==="biasadd",i=a==="prelu",l=I("numArgs",e,t,n),u=I("leakyreluAlpha",e,t,n);if(o){if(i&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=I("args",e,t,n);return[s.fused.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:p,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},pq=(e,t,n,s=Mn)=>{switch(e.op){case"EuclideanNorm":return[s.euclideanNorm(I("x",e,t,n),I("axis",e,t,n),I("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[s.batchNorm(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[s.batchNorm(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[s.localResponseNormalization(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[s.softmax(I("x",e,t,n))];case"LogSoftmax":return[s.logSoftmax(I("x",e,t,n))];case"SparseToDense":return[s.sparseToDense(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},hq=(e,t,n,s=Mn)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.max(I("x",e,t,n),i,l)]}case"Mean":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.mean(I("x",e,t,n),i,l)]}case"Min":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.min(I("x",e,t,n),i,l)]}case"Sum":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.sum(I("x",e,t,n),i,l)]}case"All":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.all(I("x",e,t,n),i,l)]}case"Any":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.any(I("x",e,t,n),i,l)]}case"ArgMax":{let i=I("axis",e,t,n);return[s.argMax(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[s.argMin(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.prod(I("x",e,t,n),i,l)]}case"Cumprod":{let i=I("axis",e,t,n),l=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[s.cumprod(I("x",e,t,n),i,l,u)]}case"Cumsum":{let i=I("axis",e,t,n),l=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[s.cumsum(I("x",e,t,n),i,l,u)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),o=I("size",e,t,n);return[s.bincount(r,a,o)];case"DenseBincount":{let i=I("x",e,t,n),l=I("weights",e,t,n),u=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[s.denseBincount(i,l,u,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},fq=(e,t,n,s=Mn)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),o=I("tensors",e,t,n);return o=o.slice(0,r),[s.concat(o,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[s.gather(r,s.cast(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),o=I("x",e,t,n),i=I("indices",e,t,n);return[s.gather(o,s.cast(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),o=a[0].shape,i=s.squeeze(a[0]).shape,l=a.map(u=>{let c=v.arraysEqual(u.shape,o);if(!c&&!v.arraysEqual(s.squeeze(u).shape,i))throw new Error("the input tensors shape does not match");return c?u:s.reshape(u,o)});return[s.stack(l,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return s.unstack(a,r)}case"Tile":{let r=I("reps",e,t,n);return[s.tile(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),o=I("x",e,t,n);return s.split(o,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),o=I("shape",e,t,n);return[s.scatterND(r,a,o)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[s.gatherND(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),o=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[s.sparseToDense(r,o,a,o.dtype===i.dtype?i:s.cast(i,o.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mq=(e,t,n,s=Mn)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:a,emptyRowIndicator:o,reverseIndexMap:i}=s.sparse.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[r,a,o,i]}case"SparseReshape":{let{outputIndices:r,outputShape:a}=s.sparse.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}case"SparseSegmentMean":return[s.sparse.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[s.sparse.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gq=(e,t,n,s=Mn)=>{switch(e.op){case"FFT":return[s.fft(I("x",e,t,n))];case"IFFT":return[s.ifft(I("x",e,t,n))];case"RFFT":return[s.rfft(I("x",e,t,n))];case"IRFFT":return[s.irfft(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yq=(e,t,n,s=Mn)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:a}=s.string.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[r,a]}case"StringSplit":{let{indices:r,values:a,shape:o}=s.string.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[r,a,o]}case"StringToHashBucketFast":return[s.string.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Aq=(e,t,n,s=Mn)=>{switch(e.op){case"Cast":return[s.cast(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[s.expandDims(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[s.squeeze(I("x",e,t,n),r)]}case"Reshape":return[s.reshape(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[s.mirrorPad(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[s.pad(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[s.spaceToBatchND(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[s.batchToSpaceND(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[s.depthToSpace(I("x",e,t,n),r,a)]}case"BroadcastTo":return[s.broadcastTo(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[s.broadcastArgs(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function g7(e,t,n,s,r=Z){let a=((o,i,l)=>{switch(o.category){case"arithmetic":return r(()=>Xj(o,i,l));case"basic_math":return r(()=>Kj(o,i,l));case"control":return tq(o,i,l);case"convolution":return r(()=>nq(o,i,l));case"creation":return r(()=>sq(o,i,l));case"dynamic":return rq(o,i,l);case"evaluation":return r(()=>aq(o,i,l));case"image":return r(()=>uq(o,i,l));case"graph":return r(()=>oq(o,i,l));case"logical":return r(()=>cq(o,i,l));case"matrices":return r(()=>dq(o,i,l));case"normalization":return r(()=>pq(o,i,l));case"reduction":return r(()=>hq(o,i,l));case"slice_join":return r(()=>fq(o,i,l));case"sparse":return r(()=>mq(o,i,l));case"spectral":return r(()=>gq(o,i,l));case"string":return r(()=>yq(o,i,l));case"transformation":return r(()=>Aq(o,i,l));case"hash_table":return lq(o,i,l,s);case"custom":let u=Wk(o.op);if(u&&u.customExecutor)return u.customExecutor(new qj(o,i,l));throw TypeError(`Custom op ${o.op} is not registered.`);default:throw TypeError(`Unknown op '${o.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(o=>[].concat(o)):[].concat(a)}var y7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function A7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(d=>Rs(d)[0]),c=[];s!=null&&(c=s.map(d=>Rs(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((uS(d)||kq(d)||Sq(d))&&o==null&&(o=d,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function xq(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Rs(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&a.push(p)})}return u}var bq=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],vq=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],wq=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function uS(e){return bq.indexOf(e.op)>=0}function kq(e){return vq.indexOf(e.op)>=0}function Sq(e){return wq.indexOf(e.op)>=0}var cy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new cy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=A7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return xq(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Rs(c)[0]]),r=t.map(c=>Rs(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return Z(()=>{let c=new y7(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Rs(f),y=[];y[g]=e[f],p[m]=y});let d=this.getFrozenTensorIds(p),h={};for(let f=0;frs(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=Cj(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];if(c===1){if(!this.keepTensorForDebug)u.dispose();else{let[p,d]=Jr(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=u:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=u)}delete o[u.id]}else c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let a=new y7(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(u=>rs(u,this.tensorsMap,a)),i=o.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[Rs(x)[0]]),o=n.map(x=>Rs(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:p}=A7(e,i,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[A,b]=Rs(x),w=[];w[b]=e[x],h[A]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let x=this.processStack(a,d,t,h,g,m,o,f,l);await Promise.all(x)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(x=>!uS(x)&&!rs(x.name,h,t)).map(x=>x.name);if(y.length>0){let x="";throw c!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([p]=Jr(c.node.name,n)),s[c.node.name]==null){let d=g7(c.node,s,n,this._resourceManager);p||([p]=Jr(c.node.name,n));let h=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Jr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!rs(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!rs(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Rs(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Rs(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Rs(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Iq=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Cq="?tfjs-format=file",Tq="model.json",zh=class{constructor(e,t={},n=Ds){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new Iq}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new cy(p7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=p7.Instance.transformGraph(e.modelInitializer);this.initializer=new cy(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let s=n instanceof st?[n]:n,r={};return s.forEach((a,o)=>r[this.structuredOutputKeys[o]]=a),r}return n}normalizeInputs(e){if(!(e instanceof st)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Nq(e,t={},n=Ds){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=Rq(e));let s=new zh(e,t,n);return await s.load(),s}function Eq(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new zh(e);return t.load(),t}function Rq(e){return e.endsWith("/")||(e=e+"/"),`${e}${Tq}${Cq}`}var _q="3.20.0",cS={};He(cS,{CSVDataset:()=>xS,Dataset:()=>rd,FileDataSource:()=>CS,TextLineDataset:()=>AS,URLDataSource:()=>TS,array:()=>eX,csv:()=>dX,func:()=>pX,generator:()=>hX,microphone:()=>mX,version_data:()=>gX,webcam:()=>fX,zip:()=>tX});var Dq=po(Xm()),$q=po(Xm());function Pq(e,t){return Om(e,t)}function Om(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(hc(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Om(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Fq(e,t=pS){return dS(e,t)}function dS(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(hc(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=dS(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function pS(e){return e===null?null:hc(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function hS(e,t){let n=new Map;Om(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Om(e,t,n)}function hc(e){let t=!1;if(H().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=p6();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof st)&&!(e instanceof Promise)&&!t)}function Oq(e){return e==null||Mq(e)||Array.isArray(e)||typeof e=="object"&&e instanceof st||v.isTypedArray(e)}function Mq(e){return e===null||typeof e!="object"&&typeof e!="function"}function zq(e){return Pq(e,Lq)}function Lq(e){return e instanceof st?{value:e.clone(),recurse:!1}:hc(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var fS=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},$x=class extends fS{constructor(){super($x.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;st===!0)}rowMajorBatch(e,t=!0){return new qq(this,e,t)}columnMajorBatch(e,t=!0,n=pS){return this.rowMajorBatch(e,t).map(r=>Fq(r,n))}concatenate(e,t){return new gS(mS([this,e]),t)}take(e){return e<0||e==null?this:new jq(this,e)}skip(e){return e<0||e==null?this:new Hq(this,e)}prefetch(e){return new yS(this,e)}shuffle(e,t){return new Qq(this,e,t)}serial(){return new Gq(this)}},Vq=class extends In{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:zq(e),done:!1}}},Uq=class extends In{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Gq=class extends In{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Hq=class extends In{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},qq=class extends In{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Xq=class extends In{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;J(e.value)}}},Kq=class extends In{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Fr.getTensorsInContainer(e.value),n=this.transform(e.value),s=Fr.getTensorsInContainer(n);for(let r of t)Fr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Zq=class extends In{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},x7=class extends In{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Fr.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Fr.getTensorsInContainer(n);for(let r of t)Fr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Fx=class extends In{constructor(){super(),this.outputQueue=new $x,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Yq=class extends Fx{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Fr.getTensorsInContainer(e.value),n=this.transform(e.value),s=Fr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Fr.isTensorInList(r,s)||r.dispose();return!0}},gS=class extends In{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ka;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ka||(Ka={}));var Jq=class extends In{constructor(e,t=Ka.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof In?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await hS(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ka.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ka.SHORTEST:return{value:null,done:!0};case Ka.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},yS=class extends In{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new fS(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Qq=class extends yS{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=$q.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},rd=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is + ${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Es(async()=>(await n.iterator()).columnMajorBatch(e,t,nX),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Es(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Es(async()=>(await t.iterator()).filter(s=>Z(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Es(async()=>(await t.iterator()).map(n=>Z(()=>e(n))),this.size)}mapAsync(e){let t=this;return Es(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Es(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Es(async()=>{let s=Px(async()=>({value:await t.iterator(),done:!1}));return Bq(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=Dq.alea(t||v.now().toString());return Es(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Es(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};rd.MAX_BUFFER_SIZE=1e4;function Es(e,t=null){return new class extends rd{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function eX(e){return Es(async()=>mS(e),e.length)}function tX(e){if(!hc(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await hS(e,s=>{if(s instanceof rd)return{value:s.iterator(),recurse:!1};if(hc(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Wq(n,Ka.SHORTEST)},t)}function nX(e){if(e===null)return null;let t=e[0];return Oq(t)?{value:sX(e),recurse:!1}:{value:null,recurse:!0}}function sX(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof st?ln(e):ct(e)}var AS=class extends rd{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` +`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Jf='"',rp=Symbol("out"),b7=Symbol("field"),Qf=Symbol("quote"),w3=Symbol("quoteafterquote"),v7=Symbol("quoteinquote"),xS=class extends rd{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new AS(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!H().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new bS(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),ct(n,t)}},vS=class extends In{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Pt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=fr([a,r,i,o],[1,4])}else this.cropBox=fr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!H().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new vS(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=nr.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return Z(()=>{let t=Bt(ye(e,"float32"),0),n;n=Ie.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return V(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},wS=class{},kS=class extends In{split(e){return new rX(this,e)}},rX=class extends kS{constructor(e,t){super(),this.upstream=e,this.impl=new aX(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},aX=class extends Fx{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},oX=class extends In{decodeUTF8(){return new iX(this)}},iX=class extends kS{constructor(e){super(),this.upstream=e,this.impl=new lX(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},lX=class extends Fx{constructor(e){if(super(),this.upstream=e,H().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=p6();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return H().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},SS=class extends oX{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(H().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function uX(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=cX(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new SS(o,t)}else throw new Error(a.statusText)}var cX=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function IS(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var CS=class extends wS{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(IS(this.input)&&H().get("IS_NODE")){let e=_y();this.input=e.readFileSync(this.input.slice(7))}return new SS(this.input,this.options)}},TS=class extends wS{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return IS(this.url)?new CS(this.url,this.fileOptions).iterator():uX(this.url,this.fileOptions)}};function dX(e,t={}){return new xS(new TS(e),t)}function pX(e){let t=Px(e);return Es(async()=>t)}function hX(e){return Es(async()=>{let t=await e();return Px(()=>t.next())})}async function fX(e,t){return vS.create(e,t)}async function mX(e){return bS.create(e)}var gX="3.20.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var yX=yr.whereImpl,Ox=class extends Ac{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Wp(this,rn())}nextDataId(){return Ox.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,H().get("IS_NODE")&&T.warn(` ============================ Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return De(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,t)}makeOutput(e,t,n){return an().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return qX(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Wx.nextDataId=0;var OI={};Ve(OI,{addImpl:()=>LI,bincountImpl:()=>Ux,bincountReduceImpl:()=>BI,castImpl:()=>zI,ceilImpl:()=>WI,concatImpl:()=>Gx,equalImpl:()=>VI,expImpl:()=>GI,expm1Impl:()=>jI,floorImpl:()=>qI,gatherNdImpl:()=>XI,gatherV2Impl:()=>KI,greaterEqualImpl:()=>YI,greaterImpl:()=>ZI,lessEqualImpl:()=>QI,lessImpl:()=>JI,linSpaceImpl:()=>eS,logImpl:()=>tS,maxImpl:()=>nS,maximumImpl:()=>sS,minimumImpl:()=>rS,multiplyImpl:()=>Hx,negImpl:()=>aS,notEqualImpl:()=>oS,prodImpl:()=>iS,raggedTensorToTensorImpl:()=>lS,rangeImpl:()=>qx,rsqrtImpl:()=>uS,scatterImpl:()=>Ku,sigmoidImpl:()=>FK,simpleAbsImpl:()=>MI,sliceImpl:()=>Um,sparseFillEmptyRowsImpl:()=>dS,sparseReshapeImpl:()=>pS,sparseSegmentReductionImpl:()=>Xx,sqrtImpl:()=>zK,squaredDifferenceImpl:()=>hS,stridedSliceImpl:()=>fS,stringNGramsImpl:()=>Kx,stringSplitImpl:()=>Zx,stringToHashBucketFastImpl:()=>Yx,subImpl:()=>mS,tileImpl:()=>gS,topKImpl:()=>AS,transposeImpl:()=>jx,uniqueImpl:()=>xS});function MI(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;Te(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=MI(r),n.makeOutput(s,t.shape,t.dtype)},KX={kernelName:vl,backendName:"cpu",kernelFunc:XX};function dn(e){return(t,n,s,r,a)=>{let o=C.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=C.getBroadcastDims(t,o),g=C.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;yA[k]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(k=>w[k]=0);let I=v.locToIndex(w,d,f);c[y]=e(s[b],r[I])}return[c,o]}}function _s(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var ZX={kernelName:Xp,backendName:"cpu",kernelFunc:_s};function Vm(e,t,n="float32"){if(n==="complex64"){let r=Vm(e,t,"float32"),a=Vm(e,t,"float32");return _s({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function aa(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var YX={kernelName:Ko,backendName:"cpu",kernelFunc:aa};function ml(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var JX={kernelName:nh,backendName:"cpu",kernelFunc:ml};function zI(e,t,n,s){if(s==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(s==="bool"){let r=v.toTypedArray([0],n),[a,o]=dn((i,l)=>i!==l?1:0)(t,[],e,r,"bool");return[o,"bool",a]}throw new Error(`Error in Cast: failed to cast ${n} to ${s}`)}function To(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return aa({inputs:{x:r},backend:n});let c=Vm(n,r.shape,r.dtype),p=To({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),d=_s({inputs:{real:p,imag:c},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),d}if(r.dtype==="complex64"){let c=ml({inputs:{input:r},backend:n}),p=To({inputs:{x:c},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(c),p}if(!v.hasEncodingLoss(r.dtype,a)){let c=aa({inputs:{x:r},backend:n});return{dataId:c.dataId,shape:c.shape,dtype:a}}let o=n.data.get(r.dataId).values,[i,l,u]=zI(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}var QX={kernelName:Fo,backendName:"cpu",kernelFunc:To};function Cn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Te([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?C.fromUint8ToStringArray(u):u,d=o.dtype==="string"?C.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=To({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=To({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,I,k]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(k,"float32",w),_=l.makeTensorInfo(k,"float32",I),D=_s({inputs:{real:E,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(_),D}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function Vx(e){return(t,n,s,r,a,o)=>{let i=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,i),f=C.getBroadcastDims(n,i),m=C.mergeRealAndImagArrays(s,r),g=C.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;wk[P]=0);let E=v.locToIndex(k,y,x),_=I.slice(-A);f.forEach(P=>_[P]=0);let D=v.locToIndex(_,A,b),R=e(m[E*2],m[E*2+1],g[D*2],g[D*2+1]);p[w]=R.real,d[w]=R.imag}return[p,d,i]}}var LI=dn((e,t)=>e+t),eK=Vx((e,t,n,s)=>({real:e+n,imag:t+s})),fc=Cn(oa,LI,eK),tK={kernelName:oa,backendName:"cpu",kernelFunc:fc};function Ux(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function BI(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=De([r,n],t.dtype);for(let i=0;i=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function ki(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var WI=ki(e=>Math.ceil(e)),nK=ld(Na,WI),sK={kernelName:Na,backendName:"cpu",kernelFunc:nK};function Gx(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?C.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;ue===t?1:0),UI=Cn(Go,VI,null,"bool"),rK={kernelName:Go,backendName:"cpu",kernelFunc:UI},GI=ki(e=>Math.exp(e)),HI=ld(Ra,GI,"float32"),aK={kernelName:Ra,backendName:"cpu",kernelFunc:HI},jI=ki(e=>Math.expm1(e)),oK=ld(Ho,jI),iK={kernelName:Ho,backendName:"cpu",kernelFunc:oK},qI=ki(e=>Math.floor(e)),lK=ld(_a,qI),uK={kernelName:_a,backendName:"cpu",kernelFunc:lK};function XI(e,t,n,s,r,a,o,i,l){let u=De([s,a],n);for(let c=0;c=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;he>t?1:0),cK=Cn(Xo,ZI,null,"bool"),dK={kernelName:Xo,backendName:"cpu",kernelFunc:cK},YI=dn((e,t)=>e>=t?1:0),pK=Cn(Da,YI,null,"bool"),hK={kernelName:Da,backendName:"cpu",kernelFunc:pK},JI=dn((e,t)=>ee<=t?1:0),gK=Cn(Jo,QI,null,"bool"),yK={kernelName:Jo,backendName:"cpu",kernelFunc:gK};function eS(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;aMath.log(e)),AK=ld($a,tS),xK={kernelName:$a,backendName:"cpu",kernelFunc:AK};function nS(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;ai)&&(i=u)}r[a]=i}return r}var sS=dn((e,t)=>Math.max(e,t)),bK=Cn(Pa,sS),vK={kernelName:Pa,backendName:"cpu",kernelFunc:bK},rS=dn((e,t)=>Math.min(e,t)),wK=Cn(Fa,rS),kK={kernelName:Fa,backendName:"cpu",kernelFunc:wK},Hx=dn((e,t)=>e*t),IK=Vx((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),D2=Cn(Oa,Hx,IK),SK={kernelName:Oa,backendName:"cpu",kernelFunc:D2};function aS(e,t,n){let s=v.createScalarValue(-1,n);return Hx([],t,s,e,n)}function CK(e){let{inputs:t,backend:n}=e,{x:s}=t;Te(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=aS(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var TK={kernelName:$l,backendName:"cpu",kernelFunc:CK},oS=dn((e,t)=>e!==t?1:0),NK=Cn(ri,oS,null,"bool"),EK={kernelName:ri,backendName:"cpu",kernelFunc:NK};function jx(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;cn.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(y,g,f)}var DK={kernelName:li,backendName:"cpu",kernelFunc:_K},dr=C.RowPartitionType,my=class{constructor(e,t,n,s,r,a,o,i,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=s,this.valuesDType=r,this.defaultValue=a,this.defaultValueShape=o,this.rowPartitionValues=i,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=C.getRowPartitionTypesHelper(u),this.raggedRank=C.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===dr.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===dr.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case dr.VALUE_ROWIDS:return my.getMaxWidthValueRowID(t);case dr.ROW_SPLITS:return my.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${dr[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let s=0;sn&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,s=e[0],r=0;for(let a=1;a"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,s){let r=e.length,a=[];for(let o=0;o0&&a.length!==e[r-1])throw new Error("Invalid row split size.");return a}calculateOutputIndexValueRowID(e,t,n,s){let r=e.length,a=[];if(r===0)return[];let o=0,i=e[0];if(i>=t.length)throw new Error(`Got currentValueRowId=${i}, which is not less than ${t.length}`);let l=t[i];a.push(l);for(let u=1;u=0&&(++o,o=t.length)throw new Error(`Got nextValueRowId=${c} which is not less than ${t.length}`);l=t[c]}a.push(l)}if(a.length!==e.length)throw new Error("Invalid row ids.");return a}calculateOutputIndex(e,t,n,s){let r=this.getRowPartitionTensor(e),a=this.getRowPartitionTypeByDimension(e);switch(a){case dr.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,s);case dr.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,s);default:throw new Error(`Unsupported partition type: ${dr[a]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case dr.FIRST_DIM_SIZE:return e[0];case dr.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case dr.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${dr[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let t=this.getFirstDimensionSize(),n=this.calculateOutputSize(t),s=new Array(this.raggedRank+1);s[s.length-1]=1;for(let i=s.length-2;i>=0;--i)s[i]=s[i+1]*n[i+1];let r=R7(n,!1),a=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(r));if(s[0]*n[0]>0){let i=this.calculateFirstParentOutputIndex(t,s[0],n[0]);for(let l=1;l<=this.raggedRank;++l)i=this.calculateOutputIndex(l-1,i,s[l],n[l]);this.setOutput(this.raggedRank,i,a,r)}return[r,a]}setOutput(e,t,n,s){if(n.length===0)return;let r=this.values,a=n,o=s.slice();o=o.slice(e+1);let i=v.sizeFromShape(o),l=t.length,u=this.defaultValue;if(u.length!==i&&u.length!==1){let h=this.defaultValueShape;Z(()=>{let f=V(u,h);u=rl(f,o).dataSync()})}let c=0,p=0,d=0;for(let h=0;h<=l;++h){let f=h=l){let m=n.length;f=Math.floor(m/i)}if(f>d)if(this.defaultValue.length===1)a.subarray(d*i,f*i).fill(this.defaultValue[0]),d=f;else for(;f>d;){let m=a.slice(d*i);E7(m,u,i),++d}f<0?(c=h+1,p=d):(c=h,p=d,d=p+1)}}};function E7(e,t,n){for(let s=0;s= 0`);if(s<-1)throw new Error(`Dimension ${s} must be >= -1`);s=-1}n.push(s)}return n}function lS(e,t,n,s,r,a,o,i,l,u){return new my(e,t,n,s,r,a,o,i,l,u).compute()}function qx(e,t,n,s){let r=e===t,a=e1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t1/Math.sqrt(e)),$K=ld(Ma,uS),PK={kernelName:Ma,backendName:"cpu",kernelFunc:$K};function Ku(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return De(n,t.dtype);let h=De(c,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1/(1+Math.exp(-e))),cS=xt(za,e=>1/(1+Math.exp(-e))),OK={kernelName:za,backendName:"cpu",kernelFunc:cS};function Um(e,t,n,s,r){let a=Pt.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Pt.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=De(s,r,l),c=De(n,r);for(let p=0;pf+t[m]);c.set(u.get(...h),...d)}return r==="string"?C.fromStringArrayToUint8(c.values):c.values}function gl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Te(r,"slice");let[i,l]=Pt.parseSliceParams(r,a,o);Pt.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=Um(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var MK={kernelName:Gl,backendName:"cpu",kernelFunc:gl};function dS(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g0?r[i-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g=A)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let I=0;Ii)break}return yMath.sqrt(e)),LK=xt(La,e=>Math.sqrt(e)),BK={kernelName:La,backendName:"cpu",kernelFunc:LK},hS=dn((e,t)=>{let n=e-t;return n*n}),WK=Cn(Ba,hS),VK={kernelName:Ba,backendName:"cpu",kernelFunc:WK};function fS(e,t,n,s){let r=De(e,t.dtype);for(let a=0;a0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;yy.forEach(x=>f[m++]=x);for(let y=0;y0){g(e[p+c-1]);for(let y=0;y0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function Kx(e,t,n,s,r,a,o,i){return new UK(n,s,r,a,o,i).compute(e,t)}function GK(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;ae-t),HK=Vx((e,t,n,s)=>({real:e-n,imag:t-s})),Jx=Cn(Wa,mS,HK),jK={kernelName:Wa,backendName:"cpu",kernelFunc:Jx};function gS(e,t){let n=new Array(e.rank);for(let r=0;r{let n=t.value-e.value;return n===0?e.index-t.index:n};function yS(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));yS(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),fp(e[s],r)>0&&v.swap(e,n,s);a0;)o=o-1}fp(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function AS(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;pf[A]={value:x,index:A}),s{for(let g=0;gnew Wx,1);var bS=xt(Uo,e=>e>=0?e:Math.exp(e)-1),qK={kernelName:Uo,backendName:"cpu",kernelFunc:bS};function vS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Te([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let u=0;ue<0?t*e:e);function wS(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Te([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=KK(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var ZK={kernelName:ii,backendName:"cpu",kernelFunc:wS},kS=xt(ui,e=>Math.max(0,e)),YK={kernelName:ui,backendName:"cpu",kernelFunc:kS},IS=xt(pi,e=>Math.min(Math.max(0,e),6)),JK={kernelName:pi,backendName:"cpu",kernelFunc:IS};function Gm(e,t,n,s,r){if(n==="linear")return aa({inputs:{x:t},backend:e});if(n==="relu")return kS({inputs:{x:t},backend:e});if(n==="elu")return bS({inputs:{x:t},backend:e});if(n==="relu6")return IS({inputs:{x:t},backend:e});if(n==="prelu")return wS({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return vS({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return cS({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Rt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var QK={kernelName:Ll,backendName:"cpu",kernelFunc:Rt};function SS(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Te([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],I=Rt({inputs:{x:r},backend:n,attrs:{shape:b}}),k=Rt({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?I.shape[1]:I.shape[2],_=o?I.shape[2]:I.shape[1],D=i?k.shape[1]:k.shape[2],R=Math.max(g,y),P=n.data.get(I.dataId).values,T=n.data.get(k.dataId).values,M=v.computeStrides(I.shape),W=v.computeStrides(k.shape),[G,X,K]=o?[M[0],1,M[1]]:[M[0],M[1],1],[Y,ae,ee]=i?[1,W[1],W[0]]:[W[1],1,W[0]],ie=_*D,ne=De([R,_,D],I.dtype),pe=ne.values,ce=n.blockSize;for(let Ae=0;AeMath.acos(e)),rZ={kernelName:bc,backendName:"cpu",kernelFunc:sZ},aZ=xt(vc,e=>Math.acosh(e)),oZ={kernelName:vc,backendName:"cpu",kernelFunc:aZ};function iZ(e){let{inputs:t,backend:n}=e,s=t;Te(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=De(s[0].shape,s[0].dtype),o=a.values;for(let i=0;ix&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var fZ={kernelName:Do,backendName:"cpu",kernelFunc:hZ};function mZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=vs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],C.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;gn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var gZ={kernelName:Ic,backendName:"cpu",kernelFunc:mZ},yZ=xt(Sc,e=>Math.asin(e)),AZ={kernelName:Sc,backendName:"cpu",kernelFunc:yZ},xZ=xt(Cc,e=>Math.asinh(e)),bZ={kernelName:Cc,backendName:"cpu",kernelFunc:xZ},vZ=xt(Tc,e=>Math.atan(e)),wZ={kernelName:Tc,backendName:"cpu",kernelFunc:vZ},kZ=dn((e,t)=>Math.atan2(e,t)),IZ=Cn(Ec,kZ),SZ={kernelName:Ec,backendName:"cpu",kernelFunc:IZ},CZ=xt(Nc,e=>Math.atanh(e)),TZ={kernelName:Nc,backendName:"cpu",kernelFunc:CZ};function Qx(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=De(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],A=r.outShape[3];for(let b=0;bX?X=ce:a==="avg"&&(K+=ce,Y++)}if(isNaN(X))break}let ae=P+T*A+k;g[ae]=a==="avg"?K/Y:X}}}return m}function CS(e,t,n,s,r=!1,a=!1){let o=De(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=De(t,n,e);for(let g=0;gD&&(D=G,r?R=a?((g*s.inHeight+P)*s.inWidth+M)*s.inChannels+y:(P*s.inWidth+M)*s.inChannels+y:R=T*d+W)}}o.set(R,g,x,I,y)}}return o}function TS(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=De(r.outShape,n),b=A.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],I=r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let _=0;_Re?Re=kt:a==="avg"&&(_e+=kt,Ue++),isNaN(Re))break}if(isNaN(Re))break}if(isNaN(Re))break}let Me=oe+P;b[Me]=a==="avg"?_e/Ue:Re}}}}return A}function NZ(e,t){let n=De(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=T&&(T=ee,M=G*c*p+K*c+ae)}}}n.set(M,m,y,w,_,g)}}}return n}function EZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=aa({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Qx(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var RZ={kernelName:$o,backendName:"cpu",kernelFunc:EZ};function _Z(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"avgPool3d");let c=C.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=TS(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var DZ={kernelName:qp,backendName:"cpu",kernelFunc:_Z};function $Z(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"avgPool3DGrad");let c=C.computePool3DInfo(a.shape,o,i,1,l,u),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,x=c.dilationHeight,A=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,I=c.effectiveFilterWidth,k=b-1-c.padInfo.front,E=I-1-c.padInfo.left,_=w-1-c.padInfo.top,D=De(a.shape,"float32"),R=1/(f*m*g),P=n.bufferSync(r);for(let T=0;T=c.outDepth||Math.floor(ne)!==ne))for(let pe=0;pe=c.outHeight||Math.floor(ce)!==ce))for(let Ae=0;Ae=c.outWidth||Math.floor(oe)!==oe)continue;ee+=P.get(T,ne,ce,oe,M)}}}D.set(ee*R,T,W,G,X,M)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var PZ={kernelName:r0,backendName:"cpu",kernelFunc:$Z};function FZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Te([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=C.computePool2DInfo(o.shape,i,l,1,u),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,x=c.effectiveFilterWidth,A=x-1-c.padInfo.left,b=y-1-c.padInfo.top,w=De(o.shape,"float32"),I=1/(h*f),k=n.data.get(r.dataId).values,E=De(r.shape,"float32",k);for(let _=0;_=c.outHeight||Math.floor(X)!==X))for(let K=0;K=c.outWidth||Math.floor(Y)!==Y)continue;W+=E.get(_,X,Y,D)}}w.set(W*I,_,R,P,D)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var OZ={kernelName:s0,backendName:"cpu",kernelFunc:FZ};function MZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,p=n.data.get(i.dataId).values,d=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=h.length,x=d.length,A=p.length,b=0,w=0,I=0,k=0;for(let E=0;E=g&&(b=0),w>=A&&(w=0),I>=y&&(I=0),k>=x&&(k=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var zZ={kernelName:qo,backendName:"cpu",kernelFunc:MZ};function LZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Te([r],"batchToSpaceND");let i=a.reduce((y,x)=>y*x),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=Rt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=vs({inputs:{x:h},backend:n,attrs:{perm:u}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=gl({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var BZ={kernelName:wl,backendName:"cpu",kernelFunc:LZ};function WZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Ux(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var VZ={kernelName:a0,backendName:"cpu",kernelFunc:WZ};function UZ(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=C.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var GZ={kernelName:o0,backendName:"cpu",kernelFunc:UZ},HZ=xt(Ea,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;um.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return aa({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(C.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>ml({inputs:{input:b},backend:n})),g=i.map(b=>mc({inputs:{input:b},backend:n})),y=gc({inputs:m,backend:n,attrs:{axis:a}}),x=gc({inputs:g,backend:n,attrs:{axis:a}}),A=_s({inputs:{real:y,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),A}let u=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Rt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=C.computeOutShape(u.map(m=>m.shape),1);let p=u[0].shape[0]===1,d=Gx(c,o,t[0].dtype,p),h=C.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var ZZ={kernelName:kl,backendName:"cpu",kernelFunc:gc};function NS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Te([r,a],"conv2d");let p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,x=d.padInfo.top,A=d.dataFormat==="channelsLast",b=new Zt(d.outShape,r.dtype),w=v.computeStrides(r.shape),I=v.computeStrides(a.shape),k=w[0],E=A?w[1]:w[2],_=A?w[2]:1,D=A?1:w[1],R=b.strides[0],P=A?b.strides[1]:b.strides[2],T=A?b.strides[2]:1,M=A?1:b.strides[1],W=n.data.get(r.dataId).values,G=n.data.get(a.dataId).values,X=b.values;for(let K=0;K=d.inHeight)continue;let Ae=pe*I[0],oe=Y+ce*E;for(let Re=0;Re=d.inWidth)continue;let gt=Ae+Me*I[1],pt=oe+ot*_,yt=gt;for(let Oe=0;Oe=u.inDepth)continue;let K=G*_[0],Y=R+X*E[1];for(let ae=0;ae=u.inHeight)continue;let ce=K+ne*_[1],Ae=Y+pe*E[2];for(let oe=0;oe=u.inWidth)continue;let ot=ce+Ue*_[2],gt=Ae+Me*u.inChannels,pt=ot;for(let yt=0;ytMath.cos(e)),uY={kernelName:zo,backendName:"cpu",kernelFunc:lY},cY=xt(Lo,e=>Math.cosh(e)),dY={kernelName:Lo,backendName:"cpu",kernelFunc:cY};function pY(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=i,y=De([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,A=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),I=v.computeStrides(y.shape);for(let k=0;k=c)continue;let M=m>1?(R-_)*(p-1)/(m-1):0,W=g>1?(P-D)*(d-1)/(g-1):0;for(let G=0;G1?_*(p-1)+G*M:.5*(_+R)*(p-1);if(X<0||X>p-1){for(let K=0;K1?D*(d-1)+ee*W:.5*(D+P)*(d-1);if(ie<0||ie>d-1){for(let Ae=0;Ae1?D*(d-1)+K*W:.5*(D+P)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+f-x-1:(y,x)=>y+x;for(let y=0;yy+f-x-1:(y,x)=>y+x;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],p=l*a,d=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*p*d*h),g=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);let h=C.computeConv2DInfo(r.shape,a.shape,o,d,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:x}=h,A=x.left,b=x.top,w=h.outChannels/h.inChannels,I=new Zt(h.outShape,r.dtype),k=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,_=I.values;for(let D=0;D=h.inHeight)continue;let K=G*p[0],Y=R+X*c[1];for(let ae=0;ae=h.inWidth)continue;let ce=K+ne*p[1],Ae=Y+pe*h.inChannels,oe=ee,Re=ce;for(let _e=0;_e{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:x,padInfo:A,strideHeight:b,strideWidth:w,filterHeight:I,filterWidth:k,dilationHeight:E,dilationWidth:_,outShape:D}=C.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=v.sizeFromShape(D),P=D.length,T=v.getArrayFromDType(s.dtype,R);for(let W=0;W=0&&pe=0&&Aeee&&(ee=_e)}}}let ie=v.locToIndex([W,G,K,ae],P,v.computeStrides(D));T[ie]=ee}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),D,s.dtype),shape:D,dtype:s.dtype}}},RY={kernelName:Sm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:I,dilationHeight:k,dilationWidth:E,outShape:_}=C.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${Sm}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let D=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T=0&&ne=0&&ceY&&(Y=Ae,ae=ie,ee=pe)}}}R[ae][ee][K]+=D[T][M][G][K]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},_Y={kernelName:Im,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:I,dilationHeight:k,dilationWidth:E,outShape:_}=C.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${Im}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let D=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T=0&&ne=0&&ceY&&(Y=Ae,ae=ne,ee=ce)}}}R[T][ae][ee][K]+=D[T][M][G][K]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Gh(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"sum");let i;r.dtype==="bool"?i=To({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=aa({inputs:{x:r},backend:n});let l=i.shape.length,u=v.parseAxisParam(a,i.shape),c=C.getAxesPermutation(u,l),p=u,d=i;c!=null&&(d=vs({inputs:{x:i},backend:n,attrs:{perm:c}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=C.computeOutAndReduceShapes(d.shape,p),m=C.upcastType(d.dtype,"int32"),g=Vm(n,h,m),y=v.sizeFromShape(f),x=n.data.get(g.dataId).values,A=n.data.get(d.dataId).values;for(let b=0;b=0&&(d=Gh({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var PY={kernelName:Jp,backendName:"cpu",kernelFunc:$Y};function FY(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Te([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var OY={kernelName:f0,backendName:"cpu",kernelFunc:FY},MY=C.ERF_P,zY=C.ERF_A1,LY=C.ERF_A2,BY=C.ERF_A3,WY=C.ERF_A4,VY=C.ERF_A5,UY=xt(Rc,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+MY*n);return t*(1-((((VY*s+WY)*s+BY)*s+LY)*s+zY)*s*Math.exp(-n*n))}),GY={kernelName:Rc,backendName:"cpu",kernelFunc:UY};function Hm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Rt({inputs:{x:r},backend:n,attrs:{shape:i}})}var HY={kernelName:Tl,backendName:"cpu",kernelFunc:Hm},jY=dn((e,t)=>e/t),eb=Cn(Vo,jY),gy={kernelName:Vo,backendName:"cpu",kernelFunc:eb};function RS(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=v.sizeFromShape(u),p=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let g=0;g{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d=0&&AMath.floor(e/t)),nJ=Cn(jo,tJ,null,"int32"),sJ={kernelName:jo,backendName:"cpu",kernelFunc:nJ};function rJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=NS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;if(c==="NCHW"&&o.shape.length===1&&o.shape[0]!==1){let y=Rt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});m=fc({inputs:{a:m,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else m=fc({inputs:{a:m,b:o},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(c==="NCHW"&&h==="prelu"&&i.shape.length===1&&i.shape[0]!==1){let y=Rt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});m=Gm(n,m,h,y,f),n.disposeIntermediateTensorInfo(y)}else m=Gm(n,m,h,i,f);n.disposeIntermediateTensorInfo(g)}return m}var aJ={kernelName:xo,backendName:"cpu",kernelFunc:rJ};function oJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=ES({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;m=fc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Gm(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var iJ={kernelName:bo,backendName:"cpu",kernelFunc:oJ};function lJ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,p]=C.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=XI(d,h,s.dtype,u,i,c,p,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var uJ={kernelName:Rl,backendName:"cpu",kernelFunc:lJ};function cJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Te([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],u=n.data.get(a.dataId).values,c=r.shape[l];for(let b=0;b=0,()=>`GatherV2: the index value ${w} is not in [0, ${c-1}]`)}let p=i;i==null&&(p=0);let d=v.sizeFromShape(a.shape),h=C.segment_util.collectGatherOpShapeInfo(r,a,l,p),f=Rt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Rt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],y=n.bufferSync(m),x=n.bufferSync(f),A=KI(x,y,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,A.dtype,A.values)}var dJ={kernelName:El,backendName:"cpu",kernelFunc:cJ};function pJ(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=RS(i,!0,n),u=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var hJ={kernelName:g0,backendName:"cpu",kernelFunc:pJ},fJ=xt(Dc,e=>Number.isFinite(e)?1:0,"bool"),mJ={kernelName:Dc,backendName:"cpu",kernelFunc:fJ},gJ=xt($c,e=>Math.abs(e)===1/0?1:0,"bool"),yJ={kernelName:$c,backendName:"cpu",kernelFunc:gJ},AJ=xt(Pc,e=>Number.isNaN(e)?1:0,"bool"),xJ={kernelName:Pc,backendName:"cpu",kernelFunc:AJ};function bJ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=eS(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var vJ={kernelName:y0,backendName:"cpu",kernelFunc:bJ},wJ=xt(Fc,e=>Math.log1p(e)),kJ={kernelName:Fc,backendName:"cpu",kernelFunc:wJ},IJ=dn((e,t)=>e&&t),SJ=Cn(_l,IJ,null,"bool"),CJ={kernelName:_l,backendName:"cpu",kernelFunc:SJ},TJ=xt(Dl,e=>e?0:1,"bool"),NJ={kernelName:Dl,backendName:"cpu",kernelFunc:TJ},EJ=dn((e,t)=>e||t),RJ=Cn(Oc,EJ,null,"bool"),_J={kernelName:Oc,backendName:"cpu",kernelFunc:RJ};function DJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Te(r,"LRN");let u=r.shape[3],c=u-1,p=n.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,c),A=0;for(;y<=x;y++){let b=p[y];A+=b*b}return A}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=aa({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Qx(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var zJ={kernelName:ei,backendName:"cpu",kernelFunc:MJ};function LJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"maxPool3d");let c=C.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=TS(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var BJ={kernelName:th,backendName:"cpu",kernelFunc:LJ};function WJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"maxPool3DGrad");let c=C.computePool3DInfo(a.shape,o,i,1,l,u),p=n.bufferSync(a),d=NZ(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,A=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=A-1-c.padInfo.front,k=w-1-c.padInfo.left,E=b-1-c.padInfo.top,_=De(a.shape,"float32"),D=n.bufferSync(r);for(let R=0;R=c.outDepth||Math.floor(ee)!==ee))for(let ie=0;ie=c.outHeight||Math.floor(ne)!==ne))for(let pe=0;pe=c.outWidth||Math.floor(ce)!==ce)continue;let Ae=A*b*w-1-d.get(R,ee,ne,ce,P),oe=ae*b*w+ie*w+pe,Re=Ae===oe?1:0;if(Re===0)continue;Y+=D.get(R,ee,ne,ce,P)*Re}}}_.set(Y,R,T,M,W,P)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var VJ={kernelName:b0,backendName:"cpu",kernelFunc:WJ};function UJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Te([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(i.shape,l,u,1,c,p),h=n.data.get(i.dataId).values,f=De(d.outShape,i.dtype,CS(h,i.shape,i.dtype,d).values),m=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,x=d.dilationWidth,A=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,I=A-1-d.padInfo.top,k=De(i.shape,"float32"),E=n.data.get(r.dataId).values,_=De(r.shape,"float32",E);for(let D=0;D=d.outHeight||Math.floor(K)!==K))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let ee=A*b-1-f.get(D,K,ae,R),ie=X*b+Y,ne=ee===ie?1:0;if(ne===0)continue;G+=_.get(D,K,ae,R)*ne}}k.set(G,D,P,T,R)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var GJ={kernelName:x0,backendName:"cpu",kernelFunc:UJ};function HJ(e,t,n,s,r){let a=v.computeStrides(t),o=Qx(e,t,n,a,r,"max"),i=CS(e,t,n,r,!0,s);return[o.values,i.values]}var jJ={kernelName:v0,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Te(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=C.computePool2DInfo(s.shape,r,a,[1,1],o),[p,d]=HJ(u,s.shape,s.dtype,i,c),h=l.write(p,c.outShape,s.dtype),f=l.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function qJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),u=C.computeOutAndReduceShapes(r.shape,i)[1],c=v.sizeFromShape(u),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=To({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=eb({inputs:{a:h,b:d},backend:n});p.push(f);let m=Gh({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var XJ={kernelName:ti,backendName:"cpu",kernelFunc:qJ};function KJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;yA[0]+r.shape[b]+A[1]),l=a.map(A=>A[0]),u=a.map((A,b)=>A[0]+r.shape[b]),c=o==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let A=0;A=u[I]&&(b[I]=(u[I]-1)*2-b[I]+c);b=b.map((I,k)=>I-l[k]);let w=v.locToIndex(b,d,h);y[A]=p[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var JJ={kernelName:si,backendName:"cpu",kernelFunc:YJ},QJ=dn((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),eQ=Cn(Mc,QJ),tQ={kernelName:Mc,backendName:"cpu",kernelFunc:eQ},nQ=Eo(e0());function DS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),u=_S({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),p=Rt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=Jx({inputs:{a:r,b:p},backend:n}),h=HI({inputs:{x:d},backend:n}),f=Gh({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=eb({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var sQ={kernelName:mi,backendName:"cpu",kernelFunc:DS};function rQ(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Te(r,"multinomial");let l=i?r:DS({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=n.data.get(l.dataId).values,d=[u,a],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f=0&&p[d]{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Hm({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=gc({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var xQ={kernelName:zl,backendName:"cpu",kernelFunc:PS};function bQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Te(r,"pad");let i=a.map((x,A)=>x[0]+r.shape[A]+x[1]),l=a.map(x=>x[0]),u=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),p=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;xI+l[k]),w=v.locToIndex(b,f,m);g[w]=u[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var FS={kernelName:ai,backendName:"cpu",kernelFunc:bQ},vQ=dn((e,t)=>Math.pow(e,t)),wQ=Cn(oi,vQ),kQ={kernelName:oi,backendName:"cpu",kernelFunc:wQ};function IQ(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,p=n.data.get(o.dataId).values,d=i.map(g=>n.data.get(g.dataId).values),h=i.map(g=>g.shape),[f,m]=lS(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var SQ={kernelName:k0,backendName:"cpu",kernelFunc:IQ};function CQ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=qx(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var TQ={kernelName:Lc,backendName:"cpu",kernelFunc:CQ},NQ=xt(Bc,e=>1/e),EQ={kernelName:Bc,backendName:"cpu",kernelFunc:NQ};function RQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([p,u,c,f])),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=0,b=y[0]/x[0],w=y[1]/x[1];for(let I=0;I1?u-1:u,o&&h>1?c-1:c],g=[o&&d>1?d-1:d,o&&h>1?h-1:h],y=m[0]/g[0],x=m[1]/g[1],A=n.data.get(a.dataId).values,b=0;for(let w=0;w1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=y[0]/x[0],b=y[1]/x[1],w=0;for(let I=0;I1?c-1:c,o&&f>1?p-1:p],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],A=y[0]/x[0],b=y[1]/x[1],w=1/A,I=1/b,k=Math.ceil(w)*2+2,E=Math.ceil(I)*2+2;for(let _=0;_=h)continue;let ne=D+ie*l[1],pe=ie*A,ce=Math.min(c-1,o?Math.round(pe):Math.floor(pe));if(R===ce)for(let Ae=0;Ae=f)continue;let Re=ne+oe*l[2],_e=oe*b,Ue=Math.min(p-1,o?Math.round(_e):Math.floor(_e));W===Ue&&(ae+=g[Re+Y])}}m[G+Y]=ae}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var MQ={kernelName:I0,backendName:"cpu",kernelFunc:OQ};function zQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Te(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return aa({inputs:{x:r},backend:n});let l=new Zt(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;cd[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var LQ={kernelName:Bl,backendName:"cpu",kernelFunc:zQ},BQ={kernelName:eu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[u,c,p,d]=s.shape,[h,f]=C.getImageCenter(o,c,p),m=255,g=Math.sin(r),y=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b=0&&M=0&&W{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),VQ={kernelName:Wl,backendName:"cpu",kernelFunc:WQ};function UQ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=Ku(h,f,o,p,u,l,i,c,0,d);return n.makeTensorInfo(o,m.dtype,m.values)}var GQ={kernelName:Vl,backendName:"cpu",kernelFunc:UQ};function HQ(e,t){let n=0,s=e.length,r=0;for(;n1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;fe>=0?QQ*e:JQ*(Math.exp(e)-1)),tee={kernelName:Wc,backendName:"cpu",kernelFunc:eee},nee=xt(Vc,e=>e<0?-1:e>0?1:0),see={kernelName:Vc,backendName:"cpu",kernelFunc:nee},ree=xt(hi,e=>Math.sin(e)),aee={kernelName:hi,backendName:"cpu",kernelFunc:ree},oee=xt(Hl,e=>Math.sinh(e)),iee={kernelName:Hl,backendName:"cpu",kernelFunc:oee},lee=11920928955078125e-23,_7=Math.log(lee)+2,uee=xt(Uc,e=>{let t=e>-_7,n=e<_7,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),cee={kernelName:Uc,backendName:"cpu",kernelFunc:uee};function dee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Te([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let I=1+a.length;I0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return T.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}makeOutput(e,t,n){return rn().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return yX(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Ox.nextDataId=0;var Mx={};He(Mx,{addImpl:()=>RS,bincountImpl:()=>Lx,bincountReduceImpl:()=>_S,castImpl:()=>ES,ceilImpl:()=>DS,concatImpl:()=>Bx,equalImpl:()=>$S,expImpl:()=>FS,expm1Impl:()=>MS,floorImpl:()=>zS,gatherNdImpl:()=>LS,gatherV2Impl:()=>BS,greaterEqualImpl:()=>VS,greaterImpl:()=>WS,lessEqualImpl:()=>GS,lessImpl:()=>US,linSpaceImpl:()=>HS,logImpl:()=>jS,maxImpl:()=>qS,maximumImpl:()=>XS,minimumImpl:()=>KS,multiplyImpl:()=>Wx,negImpl:()=>ZS,notEqualImpl:()=>YS,prodImpl:()=>JS,raggedTensorToTensorImpl:()=>QS,rangeImpl:()=>Ux,rsqrtImpl:()=>eI,scatterImpl:()=>Ku,sigmoidImpl:()=>aK,simpleAbsImpl:()=>NS,sliceImpl:()=>zm,sparseFillEmptyRowsImpl:()=>nI,sparseReshapeImpl:()=>sI,sparseSegmentReductionImpl:()=>Gx,sqrtImpl:()=>lK,squaredDifferenceImpl:()=>rI,stridedSliceImpl:()=>aI,stringNGramsImpl:()=>Hx,stringSplitImpl:()=>jx,stringToHashBucketFastImpl:()=>qx,subImpl:()=>oI,tileImpl:()=>iI,topKImpl:()=>uI,transposeImpl:()=>Vx,uniqueImpl:()=>cI});function NS(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;Te(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=NS(r),n.makeOutput(s,t.shape,t.dtype)},xX={kernelName:pl,backendName:"cpu",kernelFunc:AX};function cn(e){return(t,n,s,r,a)=>{let o=T.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=T.getBroadcastDims(t,o),g=T.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;yA[k]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(k=>w[k]=0);let S=v.locToIndex(w,d,f);c[y]=e(s[b],r[S])}return[c,o]}}function _s(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var bX={kernelName:Up,backendName:"cpu",kernelFunc:_s};function Mm(e,t,n="float32"){if(n==="complex64"){let r=Mm(e,t,"float32"),a=Mm(e,t,"float32");return _s({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function ra(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var vX={kernelName:$o,backendName:"cpu",kernelFunc:ra};function ol(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var wX={kernelName:Yp,backendName:"cpu",kernelFunc:ol};function ES(e,t,n,s){if(s==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(s==="bool"){let r=v.toTypedArray([0],n),[a,o]=cn((i,l)=>i!==l?1:0)(t,[],e,r,"bool");return[o,"bool",a]}throw new Error(`Error in Cast: failed to cast ${n} to ${s}`)}function uo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ra({inputs:{x:r},backend:n});let c=Mm(n,r.shape,r.dtype),p=uo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),d=_s({inputs:{real:p,imag:c},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),d}if(r.dtype==="complex64"){let c=ol({inputs:{input:r},backend:n}),p=uo({inputs:{x:c},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(c),p}if(!v.hasEncodingLoss(r.dtype,a)){let c=ra({inputs:{x:r},backend:n});return{dataId:c.dataId,shape:c.shape,dtype:a}}let o=n.data.get(r.dataId).values,[i,l,u]=ES(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}var kX={kernelName:Ao,backendName:"cpu",kernelFunc:uo};function Tn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Te([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?T.fromUint8ToStringArray(u):u,d=o.dtype==="string"?T.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=uo({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=uo({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,S,k]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(k,"float32",w),_=l.makeTensorInfo(k,"float32",S),D=_s({inputs:{real:E,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(_),D}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function zx(e){return(t,n,s,r,a,o)=>{let i=T.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=T.getBroadcastDims(t,i),f=T.getBroadcastDims(n,i),m=T.mergeRealAndImagArrays(s,r),g=T.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;wk[P]=0);let E=v.locToIndex(k,y,x),_=S.slice(-A);f.forEach(P=>_[P]=0);let D=v.locToIndex(_,A,b),R=e(m[E*2],m[E*2+1],g[D*2],g[D*2+1]);p[w]=R.real,d[w]=R.imag}return[p,d,i]}}var RS=cn((e,t)=>e+t),SX=zx((e,t,n,s)=>({real:e+n,imag:t+s})),fc=Tn(Ta,RS,SX),IX={kernelName:Ta,backendName:"cpu",kernelFunc:fc};function Lx(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function _S(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=We([r,n],t.dtype);for(let i=0;i=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function hi(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var DS=hi(e=>Math.ceil(e)),CX=ad(xo,DS),TX={kernelName:xo,backendName:"cpu",kernelFunc:CX};function Bx(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?T.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;ue===t?1:0),PS=Tn(xl,$S,null,"bool"),NX={kernelName:xl,backendName:"cpu",kernelFunc:PS},FS=hi(e=>Math.exp(e)),OS=ad(No,FS,"float32"),EX={kernelName:No,backendName:"cpu",kernelFunc:OS},MS=hi(e=>Math.expm1(e)),RX=ad(vl,MS),_X={kernelName:vl,backendName:"cpu",kernelFunc:RX},zS=hi(e=>Math.floor(e)),DX=ad(Eo,zS),$X={kernelName:Eo,backendName:"cpu",kernelFunc:DX};function LS(e,t,n,s,r,a,o,i,l){let u=We([s,a],n);for(let c=0;c=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;he>t?1:0),PX=Tn(Il,WS,null,"bool"),FX={kernelName:Il,backendName:"cpu",kernelFunc:PX},VS=cn((e,t)=>e>=t?1:0),OX=Tn(Do,VS,null,"bool"),MX={kernelName:Do,backendName:"cpu",kernelFunc:OX},US=cn((e,t)=>ee<=t?1:0),BX=Tn(Nl,GS,null,"bool"),WX={kernelName:Nl,backendName:"cpu",kernelFunc:BX};function HS(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;aMath.log(e)),VX=ad(Fo,jS),UX={kernelName:Fo,backendName:"cpu",kernelFunc:VX};function qS(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;ai)&&(i=u)}r[a]=i}return r}var XS=cn((e,t)=>Math.max(e,t)),GX=Tn(Mo,XS),HX={kernelName:Mo,backendName:"cpu",kernelFunc:GX},KS=cn((e,t)=>Math.min(e,t)),jX=Tn(Wo,KS),qX={kernelName:Wo,backendName:"cpu",kernelFunc:jX},Wx=cn((e,t)=>e*t),XX=zx((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),C2=Tn(Uo,Wx,XX),KX={kernelName:Uo,backendName:"cpu",kernelFunc:C2};function ZS(e,t,n){let s=v.createScalarValue(-1,n);return Wx([],t,s,e,n)}function ZX(e){let{inputs:t,backend:n}=e,{x:s}=t;Te(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=ZS(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var YX={kernelName:_l,backendName:"cpu",kernelFunc:ZX},YS=cn((e,t)=>e!==t?1:0),JX=Tn(Dl,YS,null,"bool"),QX={kernelName:Dl,backendName:"cpu",kernelFunc:JX};function Vx(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;cn.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(y,g,f)}var nK={kernelName:qo,backendName:"cpu",kernelFunc:tK},cr=T.RowPartitionType,dy=class{constructor(e,t,n,s,r,a,o,i,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=s,this.valuesDType=r,this.defaultValue=a,this.defaultValueShape=o,this.rowPartitionValues=i,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=T.getRowPartitionTypesHelper(u),this.raggedRank=T.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===cr.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===cr.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case cr.VALUE_ROWIDS:return dy.getMaxWidthValueRowID(t);case cr.ROW_SPLITS:return dy.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${cr[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let s=0;sn&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,s=e[0],r=0;for(let a=1;a"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,s){let r=e.length,a=[];for(let o=0;o0&&a.length!==e[r-1])throw new Error("Invalid row split size.");return a}calculateOutputIndexValueRowID(e,t,n,s){let r=e.length,a=[];if(r===0)return[];let o=0,i=e[0];if(i>=t.length)throw new Error(`Got currentValueRowId=${i}, which is not less than ${t.length}`);let l=t[i];a.push(l);for(let u=1;u=0&&(++o,o=t.length)throw new Error(`Got nextValueRowId=${c} which is not less than ${t.length}`);l=t[c]}a.push(l)}if(a.length!==e.length)throw new Error("Invalid row ids.");return a}calculateOutputIndex(e,t,n,s){let r=this.getRowPartitionTensor(e),a=this.getRowPartitionTypeByDimension(e);switch(a){case cr.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,s);case cr.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,s);default:throw new Error(`Unsupported partition type: ${cr[a]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case cr.FIRST_DIM_SIZE:return e[0];case cr.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case cr.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${cr[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let t=this.getFirstDimensionSize(),n=this.calculateOutputSize(t),s=new Array(this.raggedRank+1);s[s.length-1]=1;for(let i=s.length-2;i>=0;--i)s[i]=s[i+1]*n[i+1];let r=k7(n,!1),a=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(r));if(s[0]*n[0]>0){let i=this.calculateFirstParentOutputIndex(t,s[0],n[0]);for(let l=1;l<=this.raggedRank;++l)i=this.calculateOutputIndex(l-1,i,s[l],n[l]);this.setOutput(this.raggedRank,i,a,r)}return[r,a]}setOutput(e,t,n,s){if(n.length===0)return;let r=this.values,a=n,o=s.slice();o=o.slice(e+1);let i=v.sizeFromShape(o),l=t.length,u=this.defaultValue;if(u.length!==i&&u.length!==1){let h=this.defaultValueShape;Z(()=>{let f=V(u,h);u=Ki(f,o).dataSync()})}let c=0,p=0,d=0;for(let h=0;h<=l;++h){let f=h=l){let m=n.length;f=Math.floor(m/i)}if(f>d)if(this.defaultValue.length===1)a.subarray(d*i,f*i).fill(this.defaultValue[0]),d=f;else for(;f>d;){let m=a.slice(d*i);w7(m,u,i),++d}f<0?(c=h+1,p=d):(c=h,p=d,d=p+1)}}};function w7(e,t,n){for(let s=0;s= 0`);if(s<-1)throw new Error(`Dimension ${s} must be >= -1`);s=-1}n.push(s)}return n}function QS(e,t,n,s,r,a,o,i,l,u){return new dy(e,t,n,s,r,a,o,i,l,u).compute()}function Ux(e,t,n,s){let r=e===t,a=e1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t1/Math.sqrt(e)),sK=ad(Jo,eI),rK={kernelName:Jo,backendName:"cpu",kernelFunc:sK};function Ku(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return We(n,t.dtype);let h=We(c,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1/(1+Math.exp(-e))),tI=xt(ei,e=>1/(1+Math.exp(-e))),oK={kernelName:ei,backendName:"cpu",kernelFunc:tI};function zm(e,t,n,s,r){let a=Gt.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Gt.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?T.fromUint8ToStringArray(e):e,u=We(s,r,l),c=We(n,r);for(let p=0;pf+t[m]);c.set(u.get(...h),...d)}return r==="string"?T.fromStringArrayToUint8(c.values):c.values}function il(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Te(r,"slice");let[i,l]=Gt.parseSliceParams(r,a,o);Gt.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=zm(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var iK={kernelName:Gl,backendName:"cpu",kernelFunc:il};function nI(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g=l)throw new Error(T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g0?r[i-1]+1:0;if(p<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g=A)throw new Error(T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b=l[0])throw new Error(T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let S=0;Si)break}return yMath.sqrt(e)),uK=xt(ti,e=>Math.sqrt(e)),cK={kernelName:ti,backendName:"cpu",kernelFunc:uK},rI=cn((e,t)=>{let n=e-t;return n*n}),dK=Tn(ri,rI),pK={kernelName:ri,backendName:"cpu",kernelFunc:dK};function aI(e,t,n,s){let r=We(e,t.dtype);for(let a=0;a0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;yy.forEach(x=>f[m++]=x);for(let y=0;y0){g(e[p+c-1]);for(let y=0;y0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function Hx(e,t,n,s,r,a,o,i){return new hK(n,s,r,a,o,i).compute(e,t)}function fK(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;ae-t),mK=zx((e,t,n,s)=>({real:e-n,imag:t-s})),Xx=Tn(ai,oI,mK),gK={kernelName:ai,backendName:"cpu",kernelFunc:Xx};function iI(e,t){let n=new Array(e.rank);for(let r=0;r{let n=t.value-e.value;return n===0?e.index-t.index:n};function lI(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));lI(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),up(e[s],r)>0&&v.swap(e,n,s);a0;)o=o-1}up(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function uI(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;pf[A]={value:x,index:A}),s{for(let g=0;gnew Ox,1);var dI=xt(To,e=>e>=0?e:Math.exp(e)-1),yK={kernelName:To,backendName:"cpu",kernelFunc:dI};function pI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Te([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let u=0;ue<0?t*e:e);function hI(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Te([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=xK(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var bK={kernelName:jo,backendName:"cpu",kernelFunc:hI},fI=xt(Xo,e=>Math.max(0,e)),vK={kernelName:Xo,backendName:"cpu",kernelFunc:fI},mI=xt(Yo,e=>Math.min(Math.max(0,e),6)),wK={kernelName:Yo,backendName:"cpu",kernelFunc:mI};function Lm(e,t,n,s,r){if(n==="linear")return ra({inputs:{x:t},backend:e});if(n==="relu")return fI({inputs:{x:t},backend:e});if(n==="elu")return dI({inputs:{x:t},backend:e});if(n==="relu6")return mI({inputs:{x:t},backend:e});if(n==="prelu")return hI({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return pI({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return tI({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Rt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var kK={kernelName:Ll,backendName:"cpu",kernelFunc:Rt};function gI(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Te([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],S=Rt({inputs:{x:r},backend:n,attrs:{shape:b}}),k=Rt({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?S.shape[1]:S.shape[2],_=o?S.shape[2]:S.shape[1],D=i?k.shape[1]:k.shape[2],R=Math.max(g,y),P=n.data.get(S.dataId).values,C=n.data.get(k.dataId).values,M=v.computeStrides(S.shape),L=v.computeStrides(k.shape),[G,K,X]=o?[M[0],1,M[1]]:[M[0],M[1],1],[Y,ne,ee]=i?[1,L[1],L[0]]:[L[1],1,L[0]],ie=_*D,se=We([R,_,D],S.dtype),pe=se.values,ce=n.blockSize;for(let xe=0;xeMath.acos(e)),NK={kernelName:bc,backendName:"cpu",kernelFunc:TK},EK=xt(vc,e=>Math.acosh(e)),RK={kernelName:vc,backendName:"cpu",kernelFunc:EK};function _K(e){let{inputs:t,backend:n}=e,s=t;Te(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=We(s[0].shape,s[0].dtype),o=a.values;for(let i=0;ix&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var zK={kernelName:mo,backendName:"cpu",kernelFunc:MK};function LK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=vs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],T.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,p]=T.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;gn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var BK={kernelName:Sc,backendName:"cpu",kernelFunc:LK},WK=xt(Ic,e=>Math.asin(e)),VK={kernelName:Ic,backendName:"cpu",kernelFunc:WK},UK=xt(Cc,e=>Math.asinh(e)),GK={kernelName:Cc,backendName:"cpu",kernelFunc:UK},HK=xt(Tc,e=>Math.atan(e)),jK={kernelName:Tc,backendName:"cpu",kernelFunc:HK},qK=cn((e,t)=>Math.atan2(e,t)),XK=Tn(hl,qK),KK={kernelName:hl,backendName:"cpu",kernelFunc:XK},ZK=xt(Nc,e=>Math.atanh(e)),YK={kernelName:Nc,backendName:"cpu",kernelFunc:ZK};function Kx(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],A=r.outShape[3];for(let b=0;bK?K=ce:a==="avg"&&(X+=ce,Y++)}if(isNaN(K))break}let ne=P+C*A+k;g[ne]=a==="avg"?X/Y:K}}}return m}function yI(e,t,n,s,r=!1,a=!1){let o=We(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=We(t,n,e);for(let g=0;gD&&(D=G,r?R=a?((g*s.inHeight+P)*s.inWidth+M)*s.inChannels+y:(P*s.inWidth+M)*s.inChannels+y:R=C*d+L)}}o.set(R,g,x,S,y)}}return o}function AI(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=We(r.outShape,n),b=A.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let _=0;_Re?Re=kt:a==="avg"&&(_e+=kt,Ve++),isNaN(Re))break}if(isNaN(Re))break}if(isNaN(Re))break}let Me=oe+P;b[Me]=a==="avg"?_e/Ve:Re}}}}return A}function JK(e,t){let n=We(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=C&&(C=ee,M=G*c*p+X*c+ne)}}}n.set(M,m,y,w,_,g)}}}return n}function QK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=ra({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Kx(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var eZ={kernelName:go,backendName:"cpu",kernelFunc:QK};function tZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"avgPool3d");let c=T.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=AI(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var nZ={kernelName:Vp,backendName:"cpu",kernelFunc:tZ};function sZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"avgPool3DGrad");let c=T.computePool3DInfo(a.shape,o,i,1,l,u),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,x=c.dilationHeight,A=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,S=c.effectiveFilterWidth,k=b-1-c.padInfo.front,E=S-1-c.padInfo.left,_=w-1-c.padInfo.top,D=We(a.shape,"float32"),R=1/(f*m*g),P=n.bufferSync(r);for(let C=0;C=c.outDepth||Math.floor(se)!==se))for(let pe=0;pe=c.outHeight||Math.floor(ce)!==ce))for(let xe=0;xe=c.outWidth||Math.floor(oe)!==oe)continue;ee+=P.get(C,se,ce,oe,M)}}}D.set(ee*R,C,L,G,K,M)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var rZ={kernelName:Jm,backendName:"cpu",kernelFunc:sZ};function aZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Te([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=T.computePool2DInfo(o.shape,i,l,1,u),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,x=c.effectiveFilterWidth,A=x-1-c.padInfo.left,b=y-1-c.padInfo.top,w=We(o.shape,"float32"),S=1/(h*f),k=n.data.get(r.dataId).values,E=We(r.shape,"float32",k);for(let _=0;_=c.outHeight||Math.floor(K)!==K))for(let X=0;X=c.outWidth||Math.floor(Y)!==Y)continue;L+=E.get(_,K,Y,D)}}w.set(L*S,_,R,P,D)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var oZ={kernelName:Ym,backendName:"cpu",kernelFunc:aZ};function iZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,p=n.data.get(i.dataId).values,d=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=h.length,x=d.length,A=p.length,b=0,w=0,S=0,k=0;for(let E=0;E=g&&(b=0),w>=A&&(w=0),S>=y&&(S=0),k>=x&&(k=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var lZ={kernelName:_o,backendName:"cpu",kernelFunc:iZ};function uZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Te([r],"batchToSpaceND");let i=a.reduce((y,x)=>y*x),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=Rt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=vs({inputs:{x:h},backend:n,attrs:{perm:u}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=il({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var cZ={kernelName:fl,backendName:"cpu",kernelFunc:uZ};function dZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Lx(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var pZ={kernelName:Qm,backendName:"cpu",kernelFunc:dZ};function hZ(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=T.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var fZ={kernelName:e0,backendName:"cpu",kernelFunc:hZ},mZ=xt(Na,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;um.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return ra({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(T.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>ol({inputs:{input:b},backend:n})),g=i.map(b=>mc({inputs:{input:b},backend:n})),y=gc({inputs:m,backend:n,attrs:{axis:a}}),x=gc({inputs:g,backend:n,attrs:{axis:a}}),A=_s({inputs:{real:y,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),A}let u=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Rt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=T.computeOutShape(u.map(m=>m.shape),1);let p=u[0].shape[0]===1,d=Bx(c,o,t[0].dtype,p),h=T.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var bZ={kernelName:ml,backendName:"cpu",kernelFunc:gc};function xI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Te([r,a],"conv2d");let p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,x=d.padInfo.top,A=d.dataFormat==="channelsLast",b=new mn(d.outShape,r.dtype),w=v.computeStrides(r.shape),S=v.computeStrides(a.shape),k=w[0],E=A?w[1]:w[2],_=A?w[2]:1,D=A?1:w[1],R=b.strides[0],P=A?b.strides[1]:b.strides[2],C=A?b.strides[2]:1,M=A?1:b.strides[1],L=n.data.get(r.dataId).values,G=n.data.get(a.dataId).values,K=b.values;for(let X=0;X=d.inHeight)continue;let xe=pe*S[0],oe=Y+ce*E;for(let Re=0;Re=d.inWidth)continue;let gt=xe+Me*S[1],pt=oe+it*_,yt=gt;for(let Oe=0;Oe=u.inDepth)continue;let X=G*_[0],Y=R+K*E[1];for(let ne=0;ne=u.inHeight)continue;let ce=X+se*_[1],xe=Y+pe*E[2];for(let oe=0;oe=u.inWidth)continue;let it=ce+Ve*_[2],gt=xe+Me*u.inChannels,pt=it;for(let yt=0;ytMath.cos(e)),$Z={kernelName:wo,backendName:"cpu",kernelFunc:DZ},PZ=xt(ko,e=>Math.cosh(e)),FZ={kernelName:ko,backendName:"cpu",kernelFunc:PZ};function OZ(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=i,y=We([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,A=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),S=v.computeStrides(y.shape);for(let k=0;k=c)continue;let M=m>1?(R-_)*(p-1)/(m-1):0,L=g>1?(P-D)*(d-1)/(g-1):0;for(let G=0;G1?_*(p-1)+G*M:.5*(_+R)*(p-1);if(K<0||K>p-1){for(let X=0;X1?D*(d-1)+ee*L:.5*(D+P)*(d-1);if(ie<0||ie>d-1){for(let xe=0;xe1?D*(d-1)+X*L:.5*(D+P)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+f-x-1:(y,x)=>y+x;for(let y=0;yy+f-x-1:(y,x)=>y+x;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],p=l*a,d=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*p*d*h),g=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);let h=T.computeConv2DInfo(r.shape,a.shape,o,d,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:x}=h,A=x.left,b=x.top,w=h.outChannels/h.inChannels,S=new mn(h.outShape,r.dtype),k=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,_=S.values;for(let D=0;D=h.inHeight)continue;let X=G*p[0],Y=R+K*c[1];for(let ne=0;ne=h.inWidth)continue;let ce=X+se*p[1],xe=Y+pe*h.inChannels,oe=ee,Re=ce;for(let _e=0;_e{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:x,padInfo:A,strideHeight:b,strideWidth:w,filterHeight:S,filterWidth:k,dilationHeight:E,dilationWidth:_,outShape:D}=T.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=v.sizeFromShape(D),P=D.length,C=v.getArrayFromDType(s.dtype,R);for(let L=0;L=0&&pe=0&&xeee&&(ee=_e)}}}let ie=v.locToIndex([L,G,X,ne],P,v.computeStrides(D));C[ie]=ee}}}return{dataId:l.write(v.toTypedArray(C,s.dtype),D,s.dtype),shape:D,dtype:s.dtype}}},eY={kernelName:bm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:k,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${bm}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let D=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let C=0;C=0&&se=0&&ceY&&(Y=xe,ne=ie,ee=pe)}}}R[ne][ee][X]+=D[C][M][G][X]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},tY={kernelName:xm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:k,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${xm}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let D=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let C=0;C=0&&se=0&&ceY&&(Y=xe,ne=se,ee=ce)}}}R[C][ne][ee][X]+=D[C][M][G][X]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Lh(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"sum");let i;r.dtype==="bool"?i=uo({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=ra({inputs:{x:r},backend:n});let l=i.shape.length,u=v.parseAxisParam(a,i.shape),c=T.getAxesPermutation(u,l),p=u,d=i;c!=null&&(d=vs({inputs:{x:i},backend:n,attrs:{perm:c}}),p=T.getInnerMostAxes(p.length,l)),T.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=T.computeOutAndReduceShapes(d.shape,p),m=T.upcastType(d.dtype,"int32"),g=Mm(n,h,m),y=v.sizeFromShape(f),x=n.data.get(g.dataId).values,A=n.data.get(d.dataId).values;for(let b=0;b=0&&(d=Lh({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var rY={kernelName:qp,backendName:"cpu",kernelFunc:sY};function aY(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Te([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var oY={kernelName:l0,backendName:"cpu",kernelFunc:aY},iY=T.ERF_P,lY=T.ERF_A1,uY=T.ERF_A2,cY=T.ERF_A3,dY=T.ERF_A4,pY=T.ERF_A5,hY=xt(Ec,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+iY*n);return t*(1-((((pY*s+dY)*s+cY)*s+uY)*s+lY)*s*Math.exp(-n*n))}),fY={kernelName:Ec,backendName:"cpu",kernelFunc:hY};function Bm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Rt({inputs:{x:r},backend:n,attrs:{shape:i}})}var mY={kernelName:bl,backendName:"cpu",kernelFunc:Bm},gY=cn((e,t)=>e/t),Zx=Tn(Co,gY),py={kernelName:Co,backendName:"cpu",kernelFunc:Zx};function vI(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=v.sizeFromShape(u),p=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let g=0;g{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d=0&&AMath.floor(e/t)),CY=Tn(Ro,IY,null,"int32"),TY={kernelName:Ro,backendName:"cpu",kernelFunc:CY};function NY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=xI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;if(c==="NCHW"&&o.shape.length===1&&o.shape[0]!==1){let y=Rt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});m=fc({inputs:{a:m,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else m=fc({inputs:{a:m,b:o},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(c==="NCHW"&&h==="prelu"&&i.shape.length===1&&i.shape[0]!==1){let y=Rt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});m=Lm(n,m,h,y,f),n.disposeIntermediateTensorInfo(y)}else m=Lm(n,m,h,i,f);n.disposeIntermediateTensorInfo(g)}return m}var EY={kernelName:to,backendName:"cpu",kernelFunc:NY};function RY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=bI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;m=fc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Lm(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var _Y={kernelName:no,backendName:"cpu",kernelFunc:RY};function DY(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,p]=T.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=LS(d,h,s.dtype,u,i,c,p,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var $Y={kernelName:Sl,backendName:"cpu",kernelFunc:DY};function PY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Te([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],u=n.data.get(a.dataId).values,c=r.shape[l];for(let b=0;b=0,()=>`GatherV2: the index value ${w} is not in [0, ${c-1}]`)}let p=i;i==null&&(p=0);let d=v.sizeFromShape(a.shape),h=T.segment_util.collectGatherOpShapeInfo(r,a,l,p),f=Rt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Rt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],y=n.bufferSync(m),x=n.bufferSync(f),A=BS(x,y,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,A.dtype,A.values)}var FY={kernelName:kl,backendName:"cpu",kernelFunc:PY};function OY(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=vI(i,!0,n),u=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var MY={kernelName:c0,backendName:"cpu",kernelFunc:OY},zY=xt(_c,e=>Number.isFinite(e)?1:0,"bool"),LY={kernelName:_c,backendName:"cpu",kernelFunc:zY},BY=xt(Dc,e=>Math.abs(e)===1/0?1:0,"bool"),WY={kernelName:Dc,backendName:"cpu",kernelFunc:BY},VY=xt(Cl,e=>Number.isNaN(e)?1:0,"bool"),UY={kernelName:Cl,backendName:"cpu",kernelFunc:VY};function GY(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=HS(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var HY={kernelName:d0,backendName:"cpu",kernelFunc:GY},jY=xt($c,e=>Math.log1p(e)),qY={kernelName:$c,backendName:"cpu",kernelFunc:jY},XY=cn((e,t)=>e&&t),KY=Tn(El,XY,null,"bool"),ZY={kernelName:El,backendName:"cpu",kernelFunc:KY},YY=xt(Rl,e=>e?0:1,"bool"),JY={kernelName:Rl,backendName:"cpu",kernelFunc:YY},QY=cn((e,t)=>e||t),eJ=Tn(Pc,QY,null,"bool"),tJ={kernelName:Pc,backendName:"cpu",kernelFunc:eJ};function nJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Te(r,"LRN");let u=r.shape[3],c=u-1,p=n.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,c),A=0;for(;y<=x;y++){let b=p[y];A+=b*b}return A}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=ra({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Kx(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var lJ={kernelName:zo,backendName:"cpu",kernelFunc:iJ};function uJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"maxPool3d");let c=T.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=AI(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var cJ={kernelName:Zp,backendName:"cpu",kernelFunc:uJ};function dJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"maxPool3DGrad");let c=T.computePool3DInfo(a.shape,o,i,1,l,u),p=n.bufferSync(a),d=JK(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,A=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,S=A-1-c.padInfo.front,k=w-1-c.padInfo.left,E=b-1-c.padInfo.top,_=We(a.shape,"float32"),D=n.bufferSync(r);for(let R=0;R=c.outDepth||Math.floor(ee)!==ee))for(let ie=0;ie=c.outHeight||Math.floor(se)!==se))for(let pe=0;pe=c.outWidth||Math.floor(ce)!==ce)continue;let xe=A*b*w-1-d.get(R,ee,se,ce,P),oe=ne*b*w+ie*w+pe,Re=xe===oe?1:0;if(Re===0)continue;Y+=D.get(R,ee,se,ce,P)*Re}}}_.set(Y,R,C,M,L,P)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var pJ={kernelName:f0,backendName:"cpu",kernelFunc:dJ};function hJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Te([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=T.computePool2DInfo(i.shape,l,u,1,c,p),h=n.data.get(i.dataId).values,f=We(d.outShape,i.dtype,yI(h,i.shape,i.dtype,d).values),m=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,x=d.dilationWidth,A=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,S=A-1-d.padInfo.top,k=We(i.shape,"float32"),E=n.data.get(r.dataId).values,_=We(r.shape,"float32",E);for(let D=0;D=d.outHeight||Math.floor(X)!==X))for(let Y=0;Y=d.outWidth||Math.floor(ne)!==ne)continue;let ee=A*b-1-f.get(D,X,ne,R),ie=K*b+Y,se=ee===ie?1:0;if(se===0)continue;G+=_.get(D,X,ne,R)*se}}k.set(G,D,P,C,R)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var fJ={kernelName:h0,backendName:"cpu",kernelFunc:hJ};function mJ(e,t,n,s,r){let a=v.computeStrides(t),o=Kx(e,t,n,a,r,"max"),i=yI(e,t,n,r,!0,s);return[o.values,i.values]}var gJ={kernelName:m0,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Te(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=T.computePool2DInfo(s.shape,r,a,[1,1],o),[p,d]=mJ(u,s.shape,s.dtype,i,c),h=l.write(p,c.outShape,s.dtype),f=l.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function yJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),u=T.computeOutAndReduceShapes(r.shape,i)[1],c=v.sizeFromShape(u),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=uo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=Zx({inputs:{a:h,b:d},backend:n});p.push(f);let m=Lh({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var AJ={kernelName:Lo,backendName:"cpu",kernelFunc:yJ};function xJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;yA[0]+r.shape[b]+A[1]),l=a.map(A=>A[0]),u=a.map((A,b)=>A[0]+r.shape[b]),c=o==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let A=0;A=u[S]&&(b[S]=(u[S]-1)*2-b[S]+c);b=b.map((S,k)=>S-l[k]);let w=v.locToIndex(b,d,h);y[A]=p[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var wJ={kernelName:Vo,backendName:"cpu",kernelFunc:vJ},kJ=cn((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),SJ=Tn(Fc,kJ),IJ={kernelName:Fc,backendName:"cpu",kernelFunc:SJ},CJ=po(Xm());function kI(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),u=wI({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=T.expandShapeToKeepDim(u.shape,l),p=Rt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=Xx({inputs:{a:r,b:p},backend:n}),h=OS({inputs:{x:d},backend:n}),f=Lh({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=Zx({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var TJ={kernelName:si,backendName:"cpu",kernelFunc:kI};function NJ(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Te(r,"multinomial");let l=i?r:kI({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=n.data.get(l.dataId).values,d=[u,a],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f=0&&p[d]{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Bm({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=gc({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var UJ={kernelName:Ml,backendName:"cpu",kernelFunc:II};function GJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Te(r,"pad");let i=a.map((x,A)=>x[0]+r.shape[A]+x[1]),l=a.map(x=>x[0]),u=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),p=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;xS+l[k]),w=v.locToIndex(b,f,m);g[w]=u[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var CI={kernelName:Go,backendName:"cpu",kernelFunc:GJ},HJ=cn((e,t)=>Math.pow(e,t)),jJ=Tn(Ho,HJ),qJ={kernelName:Ho,backendName:"cpu",kernelFunc:jJ};function XJ(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,p=n.data.get(o.dataId).values,d=i.map(g=>n.data.get(g.dataId).values),h=i.map(g=>g.shape),[f,m]=QS(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var KJ={kernelName:y0,backendName:"cpu",kernelFunc:XJ};function ZJ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=Ux(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var YJ={kernelName:Mc,backendName:"cpu",kernelFunc:ZJ},JJ=xt(zl,e=>1/e),QJ={kernelName:zl,backendName:"cpu",kernelFunc:JJ};function eQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([p,u,c,f])),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=0,b=y[0]/x[0],w=y[1]/x[1];for(let S=0;S1?u-1:u,o&&h>1?c-1:c],g=[o&&d>1?d-1:d,o&&h>1?h-1:h],y=m[0]/g[0],x=m[1]/g[1],A=n.data.get(a.dataId).values,b=0;for(let w=0;w1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=y[0]/x[0],b=y[1]/x[1],w=0;for(let S=0;S1?c-1:c,o&&f>1?p-1:p],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],A=y[0]/x[0],b=y[1]/x[1],w=1/A,S=1/b,k=Math.ceil(w)*2+2,E=Math.ceil(S)*2+2;for(let _=0;_=h)continue;let se=D+ie*l[1],pe=ie*A,ce=Math.min(c-1,o?Math.round(pe):Math.floor(pe));if(R===ce)for(let xe=0;xe=f)continue;let Re=se+oe*l[2],_e=oe*b,Ve=Math.min(p-1,o?Math.round(_e):Math.floor(_e));L===Ve&&(ne+=g[Re+Y])}}m[G+Y]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var iQ={kernelName:A0,backendName:"cpu",kernelFunc:oQ};function lQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Te(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return ra({inputs:{x:r},backend:n});let l=new mn(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;cd[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var uQ={kernelName:Bl,backendName:"cpu",kernelFunc:lQ},cQ={kernelName:eu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[u,c,p,d]=s.shape,[h,f]=T.getImageCenter(o,c,p),m=255,g=Math.sin(r),y=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b=0&&M=0&&L{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),pQ={kernelName:Wl,backendName:"cpu",kernelFunc:dQ};function hQ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=Ku(h,f,o,p,u,l,i,c,0,d);return n.makeTensorInfo(o,m.dtype,m.values)}var fQ={kernelName:Vl,backendName:"cpu",kernelFunc:hQ};function mQ(e,t){let n=0,s=e.length,r=0;for(;n1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;fe>=0?kQ*e:wQ*(Math.exp(e)-1)),IQ={kernelName:zc,backendName:"cpu",kernelFunc:SQ},CQ=xt(Lc,e=>e<0?-1:e>0?1:0),TQ={kernelName:Lc,backendName:"cpu",kernelFunc:CQ},NQ=xt(Qo,e=>Math.sin(e)),EQ={kernelName:Qo,backendName:"cpu",kernelFunc:NQ},RQ=xt(Hl,e=>Math.sinh(e)),_Q={kernelName:Hl,backendName:"cpu",kernelFunc:RQ},DQ=11920928955078125e-23,S7=Math.log(DQ)+2,$Q=xt(Bc,e=>{let t=e>-S7,n=eNumber(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var fee={kernelName:sh,backendName:"cpu",kernelFunc:hee};function mee(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape + ${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[p,d,h,f,m]=nI(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var zQ={kernelName:Jp,backendName:"cpu",kernelFunc:MQ};function LQ(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape - ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,p]=pS(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var gee={kernelName:Gc,backendName:"cpu",kernelFunc:mee};function yee(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,p]=sI(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var BQ={kernelName:Wc,backendName:"cpu",kernelFunc:LQ};function WQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Xx(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Aee={kernelName:rh,backendName:"cpu",kernelFunc:yee};function xee(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Gx(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var VQ={kernelName:Qp,backendName:"cpu",kernelFunc:WQ};function UQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Xx(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var bee={kernelName:ah,backendName:"cpu",kernelFunc:xee};function vee(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m;switch(a.dtype){case"bool":{let g=n.bufferSync(a),y=Boolean(n.data.get(o.dataId).values[0]);m=Ku(f,g,i,d,c,u,l,p,y,h);break}case"float32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Ku(f,g,i,d,c,u,l,p,y,h);break}case"int32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Ku(f,g,i,d,c,u,l,p,y,h);break}case"string":{let g=n.bufferSync(a),y=v.decodeString(n.data.get(o.dataId).values[0]);m=Ku(f,g,i,d,c,u,l,p,y,h);break}default:throw new Error(`Unsupported type ${a.dtype}`)}return n.makeTensorInfo(i,m.dtype,m.values)}var wee={kernelName:oh,backendName:"cpu",kernelFunc:vee};function kee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=gl({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});return u[i]+=p,h})}var Iee={kernelName:ql,backendName:"cpu",kernelFunc:kee},See={kernelName:Hc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Te(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),Tee={kernelName:yi,backendName:"cpu",kernelFunc:Cee};function Nee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;Te(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Pt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Rt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=Pt.computeOutShape(x,A,b),k=gl({inputs:{x:r},backend:n,attrs:{begin:x,size:I}});w=Rt({inputs:{x:k},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(k)}else{let I=n.bufferSync(r),k=fS(h,I,b,x);w=n.makeTensorInfo(f,k.dtype,k.values)}return w}var Eee={kernelName:Xl,backendName:"cpu",kernelFunc:Nee};function Ree(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=Kx(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var _ee={kernelName:jc,backendName:"cpu",kernelFunc:Ree};function Dee(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,p]=Zx(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var $ee={kernelName:ih,backendName:"cpu",kernelFunc:Dee};function Pee(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=Yx(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Fee={kernelName:lh,backendName:"cpu",kernelFunc:Pee},Oee=xt(Kl,e=>Math.tan(e)),Mee={kernelName:Kl,backendName:"cpu",kernelFunc:Oee},zee=xt(gi,e=>Math.tanh(e)),Lee={kernelName:gi,backendName:"cpu",kernelFunc:zee};function Bee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Te(r,"tile");let o=gS(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var Wee={kernelName:Va,backendName:"cpu",kernelFunc:Bee};function Vee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Te(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=AS(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var Uee={kernelName:Zl,backendName:"cpu",kernelFunc:Vee};function Gee(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=v.computeStrides(r.shape),x=y[0],A=y[1],b=y[2],w=v.computeStrides(g),I=w[0],k=w[1],E=w[2],_=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));_.fill(l);let D=s.data.get(r.dataId).values,R=s.data.get(a.dataId).values;for(let T=0;Tt-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function qee(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function Xee(e,t){return e}function Kee(e,t){return v.clamp(0,e,t-1)}function mp(e,t,n,s,r,a,o,i,l,u,c){let p=o*s+i*r+l*a+u;return 0<=i&&in.disposeIntermediateTensorInfo(f)),h}var ste={kernelName:uh,backendName:"cpu",kernelFunc:nte},rte=[nZ,KX,rZ,oZ,tK,lZ,cZ,pZ,fZ,gZ,AZ,bZ,wZ,SZ,TZ,RZ,DZ,PZ,OZ,eZ,zZ,BZ,VZ,GZ,QX,sK,jZ,ZX,XZ,ZZ,YZ,QZ,tY,sY,aY,iY,uY,dY,hY,mY,yY,xY,vY,wY,IY,CY,NY,EY,RY,_Y,PY,qK,OY,rK,GY,aK,HY,iK,YY,JY,eJ,uK,sJ,aJ,iJ,uJ,dJ,dK,hK,YX,hJ,KZ,mJ,yJ,xJ,XK,mK,yK,vJ,xK,kJ,CJ,NJ,_J,$J,FJ,OJ,vK,zJ,BJ,VJ,GJ,jJ,XJ,ZJ,kK,JJ,tQ,aQ,SK,TK,lQ,dQ,fQ,EK,gQ,AQ,xQ,FS,kQ,ZK,DK,SQ,TQ,JX,gy,EQ,YK,JK,QK,_Q,$Q,FQ,MQ,LQ,BQ,VQ,PK,GQ,KQ,YQ,tee,OK,see,aee,iee,MK,sQ,cee,pee,fee,gee,Aee,bee,wee,Iee,BK,See,VK,Tee,Eee,_ee,$ee,Fee,jK,DY,Mee,Lee,Wee,Uee,Hee,RK,Qee,tte,ste,yQ];for(let e of rte)nr(e);var OS={};Ve(OS,{assertNotComplex:()=>cd,bindCanvasToFramebuffer:()=>mte,bindColorTextureToFramebuffer:()=>mm,bindTextureToProgramUniformSampler:()=>YS,bindTextureUnit:()=>XS,bindVertexBufferToProgramAttribute:()=>Ay,callAndCheck:()=>Ie,canBeRepresented:()=>MS,createFragmentShader:()=>BS,createFramebuffer:()=>qS,createProgram:()=>WS,createStaticIndexBuffer:()=>GS,createStaticVertexBuffer:()=>US,createTexture:()=>HS,createVertexShader:()=>LS,getBatchDim:()=>yl,getExtensionOrThrow:()=>gp,getFramebufferErrorMessage:()=>JS,getMaxTexturesInShader:()=>n9,getNumChannels:()=>hte,getProgramUniformLocation:()=>ZS,getProgramUniformLocationOrThrow:()=>KS,getRowsCols:()=>Al,getShapeAs3D:()=>gm,getTextureShapeFromLogicalShape:()=>e9,getWebGLDisjointQueryTimerVersion:()=>s9,getWebGLErrorMessage:()=>zS,getWebGLMaxTextureSize:()=>t9,hasExtension:()=>Qs,isCapableOfRenderingToFloatTexture:()=>r9,isDownloadFloatTextureEnabled:()=>a9,isReshapeFree:()=>Bp,isWebGLFenceEnabled:()=>o9,isWebGLVersionEnabled:()=>by,linkProgram:()=>VS,logShaderSourceAndInfoLog:()=>sb,resetMaxTextureSize:()=>gte,resetMaxTexturesInShader:()=>yte,unbindColorTextureFromFramebuffer:()=>xy,unbindTextureUnit:()=>fte,validateFramebuffer:()=>yp,validateProgram:()=>fm,validateTextureSize:()=>jS});var Qi={},am={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function $2(e,t){Qi[e]=t}function Wr(e,t){if(!(e in Qi)||t!=null){let s=ote(e,t);if(s!==null)Qi[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=Qi[e];return n==null||n.isContextLost()?(delete Qi[e],Wr(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Qi[e])}function ate(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function ote(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?ate(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete Qi[e]},!1),H().getBool("SOFTWARE_WEBGL_ENABLED")&&(am.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",am)||n.getContext("experimental-webgl",am):n.getContext("webgl2",am)}var Lp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Lp||(Lp={}));var Js;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Js||(Js={}));var _n;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(_n||(_n={}));function Hh(e,t){return[t,e]}function ite(e,t){return e*t}function om(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function ud(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function lte(e,t){let[n,s]=ud(e,t);return n*s*4}function nb(e,t){let n=e,s,r,a,o,i,l,u,c,p,d;return H().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,l=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ie(e,t){let n=t();return H().getBool("DEBUG")&&ute(e),n}function ute(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+zS(e,t))}var cte=596e-10,dte=65504;function MS(e){return!!(H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||ctee.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function LS(e,t){let n=Ha(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function BS(e,t){let n=Ha(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),H().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw sb(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var pte=/ERROR: [0-9]+:([0-9]+):/g;function sb(e,t){let n=pte.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(` + ${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Gx(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var GQ={kernelName:eh,backendName:"cpu",kernelFunc:UQ};function HQ(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m;switch(a.dtype){case"bool":{let g=n.bufferSync(a),y=Boolean(n.data.get(o.dataId).values[0]);m=Ku(f,g,i,d,c,u,l,p,y,h);break}case"float32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Ku(f,g,i,d,c,u,l,p,y,h);break}case"int32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Ku(f,g,i,d,c,u,l,p,y,h);break}case"string":{let g=n.bufferSync(a),y=v.decodeString(n.data.get(o.dataId).values[0]);m=Ku(f,g,i,d,c,u,l,p,y,h);break}default:throw new Error(`Unsupported type ${a.dtype}`)}return n.makeTensorInfo(i,m.dtype,m.values)}var jQ={kernelName:th,backendName:"cpu",kernelFunc:HQ};function qQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=il({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});return u[i]+=p,h})}var XQ={kernelName:ql,backendName:"cpu",kernelFunc:qQ},KQ={kernelName:Vc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Te(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),YQ={kernelName:ii,backendName:"cpu",kernelFunc:ZQ};function JQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;Te(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Rt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Gt.computeOutShape(x,A,b),k=il({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=Rt({inputs:{x:k},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(k)}else{let S=n.bufferSync(r),k=aI(h,S,b,x);w=n.makeTensorInfo(f,k.dtype,k.values)}return w}var QQ={kernelName:Xl,backendName:"cpu",kernelFunc:JQ};function eee(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=Hx(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var tee={kernelName:Uc,backendName:"cpu",kernelFunc:eee};function nee(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,p]=jx(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var see={kernelName:nh,backendName:"cpu",kernelFunc:nee};function ree(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=qx(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var aee={kernelName:sh,backendName:"cpu",kernelFunc:ree},oee=xt(Kl,e=>Math.tan(e)),iee={kernelName:Kl,backendName:"cpu",kernelFunc:oee},lee=xt(oi,e=>Math.tanh(e)),uee={kernelName:oi,backendName:"cpu",kernelFunc:lee};function cee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Te(r,"tile");let o=iI(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var dee={kernelName:Ea,backendName:"cpu",kernelFunc:cee};function pee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Te(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=uI(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var hee={kernelName:Zl,backendName:"cpu",kernelFunc:pee};function fee(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=v.computeStrides(r.shape),x=y[0],A=y[1],b=y[2],w=v.computeStrides(g),S=w[0],k=w[1],E=w[2],_=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));_.fill(l);let D=s.data.get(r.dataId).values,R=s.data.get(a.dataId).values;for(let C=0;Ct-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function yee(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function Aee(e,t){return e}function xee(e,t){return v.clamp(0,e,t-1)}function cp(e,t,n,s,r,a,o,i,l,u,c){let p=o*s+i*r+l*a+u;return 0<=i&&in.disposeIntermediateTensorInfo(f)),h}var Tee={kernelName:rh,backendName:"cpu",kernelFunc:Cee},Nee=[CK,xX,NK,RK,IX,DK,PK,OK,zK,BK,VK,GK,jK,KK,YK,eZ,nZ,rZ,oZ,SK,lZ,cZ,pZ,fZ,kX,TX,gZ,bX,AZ,bZ,vZ,kZ,IZ,TZ,EZ,_Z,$Z,FZ,MZ,LZ,WZ,UZ,HZ,jZ,XZ,ZZ,JZ,QZ,eY,tY,rY,yK,oY,NX,fY,EX,mY,_X,vY,wY,SY,$X,TY,EY,_Y,$Y,FY,FX,MX,vX,MY,xZ,LY,WY,UY,AK,LX,WX,HY,UX,qY,ZY,JY,tJ,sJ,aJ,oJ,HX,lJ,cJ,pJ,fJ,gJ,AJ,bJ,qX,wJ,IJ,EJ,KX,YX,DJ,FJ,zJ,QX,BJ,VJ,UJ,CI,qJ,bK,nK,KJ,YJ,wX,py,QJ,vK,wK,kK,tQ,sQ,aQ,iQ,uQ,cQ,pQ,rK,fQ,xQ,vQ,IQ,oK,TQ,EQ,_Q,iK,TJ,PQ,OQ,zQ,BQ,VQ,GQ,jQ,XQ,cK,KQ,pK,YQ,QQ,tee,see,aee,gK,nY,iee,uee,dee,hee,mee,eK,kee,Iee,Tee,WJ];for(let e of Nee)tr(e);var TI={};He(TI,{assertNotComplex:()=>id,bindCanvasToFramebuffer:()=>Lee,bindColorTextureToFramebuffer:()=>cm,bindTextureToProgramUniformSampler:()=>VI,bindTextureUnit:()=>LI,bindVertexBufferToProgramAttribute:()=>fy,callAndCheck:()=>Se,canBeRepresented:()=>NI,createFragmentShader:()=>_I,createFramebuffer:()=>zI,createProgram:()=>DI,createStaticIndexBuffer:()=>FI,createStaticVertexBuffer:()=>PI,createTexture:()=>OI,createVertexShader:()=>RI,getBatchDim:()=>ll,getExtensionOrThrow:()=>dp,getFramebufferErrorMessage:()=>UI,getMaxTexturesInShader:()=>qI,getNumChannels:()=>Mee,getProgramUniformLocation:()=>WI,getProgramUniformLocationOrThrow:()=>BI,getRowsCols:()=>ul,getShapeAs3D:()=>dm,getTextureShapeFromLogicalShape:()=>HI,getWebGLDisjointQueryTimerVersion:()=>XI,getWebGLErrorMessage:()=>EI,getWebGLMaxTextureSize:()=>jI,hasExtension:()=>Ys,isCapableOfRenderingToFloatTexture:()=>KI,isDownloadFloatTextureEnabled:()=>ZI,isReshapeFree:()=>Pp,isWebGLFenceEnabled:()=>YI,isWebGLVersionEnabled:()=>gy,linkProgram:()=>$I,logShaderSourceAndInfoLog:()=>Qx,resetMaxTextureSize:()=>Bee,resetMaxTexturesInShader:()=>Wee,unbindColorTextureFromFramebuffer:()=>my,unbindTextureUnit:()=>zee,validateFramebuffer:()=>pp,validateProgram:()=>um,validateTextureSize:()=>MI});var Gi={},em={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function T2(e,t){Gi[e]=t}function Br(e,t){if(!(e in Gi)||t!=null){let s=Ree(e,t);if(s!==null)Gi[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=Gi[e];return n==null||n.isContextLost()?(delete Gi[e],Br(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Gi[e])}function Eee(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Ree(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?Eee(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete Gi[e]},!1),H().getBool("SOFTWARE_WEBGL_ENABLED")&&(em.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",em)||n.getContext("experimental-webgl",em):n.getContext("webgl2",em)}var $p;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})($p||($p={}));var Zs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Zs||(Zs={}));var Dn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Dn||(Dn={}));function Bh(e,t){return[t,e]}function _ee(e,t){return e*t}function tm(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function od(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Dee(e,t){let[n,s]=od(e,t);return n*s*4}function Jx(e,t){let n=e,s,r,a,o,i,l,u,c,p,d;return H().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,l=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function Se(e,t){let n=t();return H().getBool("DEBUG")&&$ee(e),n}function $ee(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+EI(e,t))}var Pee=596e-10,Fee=65504;function NI(e){return!!(H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Peee.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function RI(e,t){let n=Da(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function _I(e,t){let n=Da(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),H().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Qx(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Oee=/ERROR: [0-9]+:([0-9]+):/g;function Qx(e,t){let n=Oee.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(` `),a=r.length.toString().length+2,o=r.map((p,d)=>v.rightPad((d+1).toString(),a)+p),i=0;for(let p=0;pe.createProgram(),"Unable to create WebGLProgram.")}function VS(e,t){if(Ie(e,()=>e.linkProgram(t)),!H().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function fm(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function US(e,t){let n=Ha(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function GS(e,t){let n=Ha(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function hte(){return H().getNumber("WEBGL_VERSION")===2?1:4}function HS(e){return Ha(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function jS(e,t){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function qS(e){return Ha(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Ay(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ie(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function XS(e,t,n){QS(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function fte(e,t){QS(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function KS(e,t,n){return Ha(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function ZS(e,t,n){return e.getUniformLocation(t,n)}function YS(e,t,n,s){Ie(e,()=>XS(e,t,s)),Ie(e,()=>e.uniform1i(n,s))}function mte(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function mm(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function xy(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function yp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+JS(e,t))}function JS(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Ha(e,t,n){let s=Ie(e,()=>t());if(s==null)throw new Error(n);return s}function QS(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(sn){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function yl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Al(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function gm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[yl(e),...Al(e)]),t}function e9(e,t=!1){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=yl(e),a=2,o=2;return e.length&&([a,o]=Al(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function im(e){return e%2===0}function Bp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||im(n)&&im(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&im(e[0])&&im(t[0])}var ym,Am;function t9(e){if(ym==null){let t=Wr(e);ym=t.getParameter(t.MAX_TEXTURE_SIZE)}return ym}function gte(){ym=null}function yte(){Am=null}function n9(e){if(Am==null){let t=Wr(e);Am=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Am)}function s9(e){if(e===0)return 0;let t,n=Wr(e);return Qs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Qs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Qs(e,t){return e.getExtension(t)!=null}function by(e){try{if(Wr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function r9(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Qs(t,"OES_texture_float"))return!1}else if(!Qs(t,"EXT_color_buffer_float"))return!1;return vy(t)}function a9(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Qs(t,"OES_texture_float")||!Qs(t,"WEBGL_color_buffer_float"))return!1}else{if(Qs(t,"EXT_color_buffer_float"))return vy(t);let s="EXT_color_buffer_half_float";if(Qs(t,s)){let r=t.getExtension(s);return Ate(t,r)}return!1}return vy(t)}function vy(e){let t=nb(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Ate(e,t){let n=nb(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function o9(e){return e!==2?!1:Wr(e).fenceSync!=null}function cd(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Pe=H();Pe.registerFlag("HAS_WEBGL",()=>Pe.getNumber("WEBGL_VERSION")>0);Pe.registerFlag("WEBGL_VERSION",()=>by(2)?2:by(1)?1:0);Pe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Pe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Pe.get("WEBGL_VERSION")===2);Pe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Pe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Pe.registerFlag("WEBGL_PACK",()=>Pe.getBool("HAS_WEBGL"));Pe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_CLIP",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_REDUCE",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_CONV_IM2COL",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>t9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>n9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Pe.getNumber("WEBGL_VERSION");return e===0?0:s9(e)});Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Pe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!hh.isMobile());Pe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>r9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Pe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Pe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Pe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>a9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>o9(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Pe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Pe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Pe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>hh.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Pe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Pe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Pe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Pe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);Pe.registerFlag("WEBGL_EXP_CONV",()=>!1);Pe.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>Pe.getBool("IS_TEST"));function ls(){let e,t,n,s,r,a,o,i,l,u;return H().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=` +`))}function DI(e){return Da(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function $I(e,t){if(Se(e,()=>e.linkProgram(t)),!H().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function um(e,t){if(Se(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function PI(e,t){let n=Da(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function FI(e,t){let n=Da(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Mee(){return H().getNumber("WEBGL_VERSION")===2?1:4}function OI(e){return Da(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function MI(e,t){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function zI(e){return Da(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function fy(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Se(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Se(e,()=>e.enableVertexAttribArray(i)),!0)}function LI(e,t,n){GI(e,n),Se(e,()=>e.activeTexture(e.TEXTURE0+n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function zee(e,t){GI(e,t),Se(e,()=>e.activeTexture(e.TEXTURE0+t)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function BI(e,t,n){return Da(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function WI(e,t,n){return e.getUniformLocation(t,n)}function VI(e,t,n,s){Se(e,()=>LI(e,t,s)),Se(e,()=>e.uniform1i(n,s))}function Lee(e){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Se(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function cm(e,t,n){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function my(e,t){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function pp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+UI(e,t))}function UI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Da(e,t,n){let s=Se(e,()=>t());if(s==null)throw new Error(n);return s}function GI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(sn){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ll(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function ul(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function dm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ll(e),...ul(e)]),t}function HI(e,t=!1){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=ll(e),a=2,o=2;return e.length&&([a,o]=ul(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function nm(e){return e%2===0}function Pp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||nm(n)&&nm(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&nm(e[0])&&nm(t[0])}var pm,hm;function jI(e){if(pm==null){let t=Br(e);pm=t.getParameter(t.MAX_TEXTURE_SIZE)}return pm}function Bee(){pm=null}function Wee(){hm=null}function qI(e){if(hm==null){let t=Br(e);hm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,hm)}function XI(e){if(e===0)return 0;let t,n=Br(e);return Ys(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ys(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ys(e,t){return e.getExtension(t)!=null}function gy(e){try{if(Br(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function KI(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Ys(t,"OES_texture_float"))return!1}else if(!Ys(t,"EXT_color_buffer_float"))return!1;return yy(t)}function ZI(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Ys(t,"OES_texture_float")||!Ys(t,"WEBGL_color_buffer_float"))return!1}else{if(Ys(t,"EXT_color_buffer_float"))return yy(t);let s="EXT_color_buffer_half_float";if(Ys(t,s)){let r=t.getExtension(s);return Vee(t,r)}return!1}return yy(t)}function yy(e){let t=Jx(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Vee(e,t){let n=Jx(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function YI(e){return e!==2?!1:Br(e).fenceSync!=null}function id(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=H();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>gy(2)?2:gy(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>jI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>qI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:XI(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!lh.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>KI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>ZI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>YI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});$e.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>lh.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});$e.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);$e.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);$e.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);$e.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);$e.registerFlag("WEBGL_EXP_CONV",()=>!1);$e.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>$e.getBool("IS_TEST"));function us(){let e,t,n,s,r,a,o,i,l,u;return H().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=` bool isnan_custom(float val) { uint floatToUint = floatBitsToUint(val); return (floatToUint & 0x7fffffffu) > 0x7f800000u; @@ -107,15 +107,15 @@ Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dram ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } - `),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function du(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function P2(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function xte(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function bte(e,t,n="index"){let s=e.map((a,o)=>o),r=xte(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function rb(e){let t=v.computeStrides(e).map(n=>n.toString());return` + `),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function du(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function N2(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function Uee(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Gee(e,t,n="index"){let s=e.map((a,o)=>o),r=Uee(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function eb(e){let t=v.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } -`}function ab(){return` +`}function tb(){return` int getFlatIndex(ivec3 coords) { return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z; } -`}var i9=` +`}var JI=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; @@ -154,22 +154,22 @@ Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dram return c / 255.0; } -`,{getBroadcastDims:l9}=C;function vte(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=ob(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(` -`),a=e.map(h=>wte(h,t,n.packedInputs,n.enableShapeUniforms)).join(` -`),o=t.texShape,i=ls(),l=Ste(i),u,c,p=Nte(i);return t.isPacked?(u=kte(t.logicalShape,o,n.enableShapeUniforms),c=Tte(i)):(u=Ite(t.logicalShape,o,n.enableShapeUniforms),c=Cte(i)),n.packedInputs&&(p+=Dte),[p,l,c,r,u,a,n.userCode].join(` -`)}function dd(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Gte(e,t);case 1:return jte(e,t);case 2:return Xte(e,t);case 3:return Zte(e,t);case 4:return Jte(e,t);case 5:return Qte(e);case 6:return ene(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function u9(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Ute(e);case 1:return Hte(e,t);case 2:return qte(e,t);case 3:return Kte(e,t);default:return Yte(e,t)}}function wte(e,t,n=!1,s){let r="";n?r+=u9(e,s):r+=dd(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=tne(e,t):r+=nne(e,t)),r}function kte(e,t,n){switch(e.length){case 0:return c9();case 1:return $te(e,t,n);case 2:return Wte(e,t,n);case 3:return Fte(e,t,n);default:return Mte(e,t,n)}}function Ite(e,t,n){switch(e.length){case 0:return c9();case 1:return Pte(e,t,n);case 2:return Vte(e,t,n);case 3:return Ote(e,t,n);case 4:return zte(e,t,n);case 5:return Lte(e,t);case 6:return Bte(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Ste(e){return` +`,{getBroadcastDims:QI}=T;function Hee(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=nb(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(` +`),a=e.map(h=>jee(h,t,n.packedInputs,n.enableShapeUniforms)).join(` +`),o=t.texShape,i=us(),l=Kee(i),u,c,p=Jee(i);return t.isPacked?(u=qee(t.logicalShape,o,n.enableShapeUniforms),c=Yee(i)):(u=Xee(t.logicalShape,o,n.enableShapeUniforms),c=Zee(i)),n.packedInputs&&(p+=nte),[p,l,c,r,u,a,n.userCode].join(` +`)}function ld(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return fte(e,t);case 1:return gte(e,t);case 2:return Ate(e,t);case 3:return bte(e,t);case 4:return wte(e,t);case 5:return kte(e);case 6:return Ste(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function e9(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return hte(e);case 1:return mte(e,t);case 2:return yte(e,t);case 3:return xte(e,t);default:return vte(e,t)}}function jee(e,t,n=!1,s){let r="";n?r+=e9(e,s):r+=ld(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=Ite(e,t):r+=Cte(e,t)),r}function qee(e,t,n){switch(e.length){case 0:return t9();case 1:return ste(e,t,n);case 2:return dte(e,t,n);case 3:return ate(e,t,n);default:return ite(e,t,n)}}function Xee(e,t,n){switch(e.length){case 0:return t9();case 1:return rte(e,t,n);case 2:return pte(e,t,n);case 3:return ote(e,t,n);case 4:return lte(e,t,n);case 5:return ute(e,t);case 6:return cte(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Kee(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } - `}function Cte(e){return` + `}function Zee(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } - `}function Tte(e){return` + `}function Yee(e){return` void setOutput(vec4 val) { ${e.output} = val; } - `}function Nte(e){return`${e.version} + `}function Jee(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; @@ -224,10 +224,10 @@ Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dram return fract((p3.x + p3.y) * p3.z); } - ${Ete} - ${Rte} - ${_te} - `}var Ete=` + ${Qee} + ${ete} + ${tte} + `}var Qee=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; @@ -239,7 +239,7 @@ vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,Rte=` +`,ete=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); @@ -247,7 +247,7 @@ vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,_te=` +`,tte=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { @@ -256,7 +256,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,Dte=` +`,nte=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? @@ -267,11 +267,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } -`;function c9(){return` +`;function t9(){return` int getOutputCoords() { return 0; } - `}function $te(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?` + `}function ste(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?` int getOutputCoords() { return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0)); } @@ -300,7 +300,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${s[0]}, ${s[1]})); return 2 * (resTexRC.x * ${s[1]} + resTexRC.y); } - `}function Pte(e,t,n){return t[0]===1?n?` + `}function rte(e,t,n){return t[0]===1?n?` int getOutputCoords() { return int(resultUV.x * float(outTexShape[1])); } @@ -328,7 +328,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } - `}function Fte(e,t,n){if(n)return` + `}function ate(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0)); @@ -359,12 +359,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec3(b, r, c); } - `}function Ote(e,t,n){if(n)return` + `}function ote(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); int index = resTexRC.x * outTexShape[1] + resTexRC.y; - ${P2(["r","c","d"],e)} + ${N2(["r","c","d"],e)} return ivec3(r, c, d); } `;let s=du(["r","c","d"],e);return` @@ -375,7 +375,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${s} return ivec3(r, c, d); } - `}function Mte(e,t,n){if(n)return` + `}function ite(e,t,n){if(n)return` ivec4 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * @@ -416,12 +416,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec${e.length}(${l}); } - `}function zte(e,t,n){if(n)return` + `}function lte(e,t,n){if(n)return` ivec4 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); int index = resTexRC.x * outTexShape[1] + resTexRC.y; - ${P2(["r","c","d","d2"],e)} + ${N2(["r","c","d","d2"],e)} return ivec4(r, c, d, d2); } `;let s=du(["r","c","d","d2"],e);return` @@ -432,7 +432,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${s} return ivec4(r, c, d, d2); } - `}function Lte(e,t){let n=du(["r","c","d","d2","d3"],e);return` + `}function ute(e,t){let n=du(["r","c","d","d2","d3"],e);return` ivec5 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -444,7 +444,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ivec5 outShape = ivec5(r, c, d, d2, d3); return outShape; } - `}function Bte(e,t){let n=du(["r","c","d","d2","d3","d4"],e);return` + `}function cte(e,t){let n=du(["r","c","d","d2","d3","d4"],e);return` ivec6 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -455,7 +455,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ivec6 result = ivec6(r, c, d, d2, d3, d4); return result; } - `}function Wte(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?` + `}function dte(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?` ivec2 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); @@ -488,7 +488,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec2(r, c); } - `}function Vte(e,t,n){return v.arraysEqual(e,t)?n?` + `}function pte(e,t,n){return v.arraysEqual(e,t)?n?` ivec2 getOutputCoords() { return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); } @@ -542,11 +542,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, int c = index - r * ${e[1]}; return ivec2(r, c); } - `}function pu(e){return`offset${e}`}function Ute(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=ls();return` + `}function pu(e){return`offset${e}`}function hte(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=us();return` vec4 ${n}() { return ${s.texture2D}(${t}, halfCR); } - `}function Gte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return` + `}function fte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return` float ${s}() { return sampleTexture(${n}, halfCR); } @@ -560,7 +560,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2 uv = uvFromFlat(${i}, ${l}, ${o}); return sampleTexture(${n}, uv); } - `}function Hte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=ls();if(t)return` + `}function mte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=us();if(t)return` vec4 ${s}(int index) { ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0)); vec2 uv = packedUVfrom1D( @@ -573,9 +573,9 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${o[0]}, ${o[1]}, index); return ${a.texture2D}(${n}, uv); } - `}function jte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return` + `}function gte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return` float ${s}(int index) { - ${pd(e)} + ${ud(e)} } `;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return` float ${s}(int index) { @@ -611,7 +611,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2 uv = uvFromFlat(${a}, ${o}, index + ${i}); return sampleTexture(${n}, uv); } - `}function qte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=ls();if(a!=null&&v.arraysEqual(n,a))return t?` + `}function yte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=us();if(a!=null&&v.arraysEqual(n,a))return t?` vec4 ${r}(int row, int col) { vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]); @@ -635,7 +635,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col); return ${l.texture2D}(${s}, uv); } - `}function Xte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return` + `}function Ate(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return` float ${r}(int row, int col) { vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]); return sampleTexture(${s}, uv); @@ -645,15 +645,15 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0); return sampleTexture(${s}, uv); } - `}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length=1?c="coords = 0;":c=i.map(x=>`coords.${p[x+u]} = 0;`).join(` + `}function Ite(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=QI(e.shapeInfo.logicalShape,t.logicalShape),l=vt(o),u=o-a,c,p=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(x=>`coords.${p[x+u]} = 0;`).join(` `);let d="";o<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((x,A)=>`coords.${p[A+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,y=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)h=` return vec4(outputValue.xy, outputValue.xy); `;else if(m&&!y)o===1?h=` @@ -972,20 +972,20 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec4 outputValue = get${s}(${d}); ${h} } - `}function nne(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return` + `}function Cte(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return` float ${r}() { return sampleTexture(${n}, resultUV); } - `;let u=vt(l),c=l9(e.shapeInfo.logicalShape,t.logicalShape),p=l-i,d,h=["x","y","z","w","u","v"];i===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(` + `;let u=vt(l),c=QI(e.shapeInfo.logicalShape,t.logicalShape),p=l-i,d,h=["x","y","z","w","u","v"];i===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(` `);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),` float ${r}() { ${u} coords = getOutputCoords(); ${d} return get${s}(${f}); } - `}function vt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function ob(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.lengthe[n]).join(", ")}function sne(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=vte(r,o,t),l=BS(e.gl,i),u=e.createProgram(l);return H().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o},d9(e,t,u))}function d9(e,t,n){let s={},r={},a={},o=[],i,l,u,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),H().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h{o[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:o,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:i,outShapeStridesLocation:u,outTexShapeLocation:l}}function $7(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function rne(e,t,n,s,r){t.program.enableShapeUniforms||($7(t.inShapeInfos,n),$7([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,o[0],o[1]):e.setOutputMatrixTexture(a.texture,o[0],o[1]),e.setProgram(t.webGLProgram),H().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=ob(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),p!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(p,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,p,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],p=r[u];if(l.type==="float")e.gl.uniform1fv(c,p);else if(l.type==="vec2")e.gl.uniform2fv(c,p);else if(l.type==="vec3")e.gl.uniform3fv(c,p);else if(l.type==="vec4")e.gl.uniform4fv(c,p);else if(l.type==="int")e.gl.uniform1iv(c,p);else if(l.type==="ivec2")e.gl.uniform2iv(c,p);else if(l.type==="ivec3")e.gl.uniform3iv(c,p);else if(l.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function ane(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:p}=ob(e.packedInputs,o.shape,l),d="",h="",f="";if(c.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${w[0]>1}_${w[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let w=v.computeStrides(c);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,x=C.getBroadcastDims(o.shape,n.shape),A=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${A}_${u?p:""}_${c.length}_${y}_${x}_${g}_${d}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${H().getNumber("WEBGL_VERSION")}`,a}function us(e){return H().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var one=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Lp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=ls();this.outputShape=e,this.enableShapeUniforms=us(this.outputShape.length),this.userCode=` + `}function vt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function nb(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.lengthe[n]).join(", ")}function Tte(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=Hee(r,o,t),l=_I(e.gl,i),u=e.createProgram(l);return H().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o},n9(e,t,u))}function n9(e,t,n){let s={},r={},a={},o=[],i,l,u,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),H().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h{o[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:o,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:i,outShapeStridesLocation:u,outTexShapeLocation:l}}function C7(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Nte(e,t,n,s,r){t.program.enableShapeUniforms||(C7(t.inShapeInfos,n),C7([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,o[0],o[1]):e.setOutputMatrixTexture(a.texture,o[0],o[1]),e.setProgram(t.webGLProgram),H().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=nb(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),p!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(p,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,p,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],p=r[u];if(l.type==="float")e.gl.uniform1fv(c,p);else if(l.type==="vec2")e.gl.uniform2fv(c,p);else if(l.type==="vec3")e.gl.uniform3fv(c,p);else if(l.type==="vec4")e.gl.uniform4fv(c,p);else if(l.type==="int")e.gl.uniform1iv(c,p);else if(l.type==="ivec2")e.gl.uniform2iv(c,p);else if(l.type==="ivec3")e.gl.uniform3iv(c,p);else if(l.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Ete(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:p}=nb(e.packedInputs,o.shape,l),d="",h="",f="";if(c.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${w[0]>1}_${w[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let w=v.computeStrides(c);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,x=T.getBroadcastDims(o.shape,n.shape),A=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${A}_${u?p:""}_${c.length}_${y}_${x}_${g}_${d}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${H().getNumber("WEBGL_VERSION")}`,a}function cs(e){return H().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var Rte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=$p.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${this.enableShapeUniforms?P2(["r","c","d"],e):du(["r","c","d"],e)} + ${this.enableShapeUniforms?N2(["r","c","d"],e):du(["r","c","d"],e)} return ivec3(r, c, d); } @@ -1003,9 +1003,9 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${t.output} = result; } - `}},ine=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Lp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=ls();this.outputShape=e,this.enableShapeUniforms=us(this.outputShape.length),this.userCode=` + `}},_te=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=$p.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${this.enableShapeUniforms?P2(["r","c","d"],e):du(["r","c","d"],e)} + ${this.enableShapeUniforms?N2(["r","c","d"],e):du(["r","c","d"],e)} return ivec3(r, c, d); } @@ -1023,23 +1023,23 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${t.output} = result; } - `}},lne=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Js.DOWNLOAD;let t=ls();this.outputShape=e,this.userCode=` - ${i9} + `}},Dte=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Zs.DOWNLOAD;let t=us();this.outputShape=e,this.userCode=` + ${JI} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } - `}},une=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Js.DOWNLOAD;let t=ls();this.outputShape=e,this.userCode=` - ${i9} + `}},$te=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Zs.DOWNLOAD;let t=us();this.outputShape=e,this.userCode=` + ${JI} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } - `}},cne=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=ls();this.outputShape=e,this.enableShapeUniforms=us(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=` - ${this.enableShapeUniforms?ab():rb(e)} + `}},Pte=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=` + ${this.enableShapeUniforms?tb():eb(e)} void main() { ivec3 coords = getOutputCoords(); @@ -1068,7 +1068,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${n.output} = vec4(${s}, 0., 0., 0.); } - `}},dne=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=ls();this.outputShape=e,this.enableShapeUniforms=us(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=` + `}},Fte=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=` localCoords = coords; if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) { localCoords[2] += ${o}; @@ -1097,7 +1097,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } } `}this.userCode=` - ${this.enableShapeUniforms?ab():rb(e)} + ${this.enableShapeUniforms?tb():eb(e)} void main() { ivec3 coords = getOutputCoords(); @@ -1112,7 +1112,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${n.output} = ${r}; } - `}},p9={};Ve(p9,{bindVertexProgramAttributeStreams:()=>v9,createBufferFromOutputTexture:()=>I9,createFloat16MatrixTexture:()=>y9,createFloat16PackedMatrixTexture:()=>b9,createFloat32MatrixTexture:()=>g9,createIndexBuffer:()=>m9,createPackedMatrixTexture:()=>x9,createUnsignedBytesMatrixTexture:()=>A9,createVertexBuffer:()=>f9,createVertexShader:()=>h9,downloadByteEncodedFloatMatrixFromOutputTexture:()=>C9,downloadFloat32MatrixFromBuffer:()=>S9,downloadMatrixFromPackedOutputTexture:()=>N9,downloadPackedMatrixFromBuffer:()=>T9,getInternalFormatForFloat16MatrixTexture:()=>lb,getInternalFormatForFloat16PackedMatrixTexture:()=>db,getInternalFormatForFloat32MatrixTexture:()=>ib,getInternalFormatForPackedMatrixTexture:()=>cb,getInternalFormatForUnsignedBytesMatrixTexture:()=>ub,uploadDenseMatrixToTexture:()=>w9,uploadPixelDataToTexture:()=>k9});function h9(e){let t=ls(),n=`${t.version} + `}},s9={};He(s9,{bindVertexProgramAttributeStreams:()=>p9,createBufferFromOutputTexture:()=>m9,createFloat16MatrixTexture:()=>l9,createFloat16PackedMatrixTexture:()=>d9,createFloat32MatrixTexture:()=>i9,createIndexBuffer:()=>o9,createPackedMatrixTexture:()=>c9,createUnsignedBytesMatrixTexture:()=>u9,createVertexBuffer:()=>a9,createVertexShader:()=>r9,downloadByteEncodedFloatMatrixFromOutputTexture:()=>y9,downloadFloat32MatrixFromBuffer:()=>g9,downloadMatrixFromPackedOutputTexture:()=>x9,downloadPackedMatrixFromBuffer:()=>A9,getInternalFormatForFloat16MatrixTexture:()=>rb,getInternalFormatForFloat16PackedMatrixTexture:()=>ib,getInternalFormatForFloat32MatrixTexture:()=>sb,getInternalFormatForPackedMatrixTexture:()=>ob,getInternalFormatForUnsignedBytesMatrixTexture:()=>ab,uploadDenseMatrixToTexture:()=>h9,uploadPixelDataToTexture:()=>f9});function r9(e){let t=us(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; @@ -1121,11 +1121,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; - }`;return LS(e,n)}function f9(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return US(e,t)}function m9(e){let t=new Uint16Array([0,1,2,2,1,3]);return GS(e,t)}function jh(e,t,n,s,r,a){jS(t,n);let o=HS(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),H().getNumber("WEBGL_VERSION")===1?Ie(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)):Ie(e,()=>e.texStorage2D(i,1,s,t,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:o,texShape:[n,t]}}function ib(e){return e.internalFormatFloat}function g9(e,t,n,s){let[r,a]=Hh(t,n);return jh(e,r,a,ib(s),s.textureFormatFloat,e.FLOAT)}function lb(e){return e.internalFormatHalfFloat}function y9(e,t,n,s){let[r,a]=Hh(t,n);return jh(e,r,a,lb(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function ub(e){return e.downloadTextureFormat}function A9(e,t,n,s){let[r,a]=Hh(t,n);return jh(e,r,a,ub(s),e.RGBA,e.UNSIGNED_BYTE)}function cb(e){return e.internalFormatPackedFloat}function x9(e,t,n,s){let[r,a]=ud(t,n);return jh(e,r,a,cb(s),e.RGBA,e.FLOAT)}function db(e){return e.internalFormatPackedHalfFloat}function b9(e,t,n,s){let[r,a]=ud(t,n);return jh(e,r,a,db(s),e.RGBA,s.textureTypeHalfFloat)}function v9(e,t,n){return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ay(e,t,"clipSpacePos",n,3,20,0)&&Ay(e,t,"uv",n,2,20,12)}function w9(e,t,n,s,r,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),H().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,i,o)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function k9(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?H().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):H().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function I9(e,t,n,s){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function S9(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function C9(e,t,n,s){let[r,a]=Hh(t,n),o=4,i=new Uint8Array(ite(t*n,o));return Ie(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function T9(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(lte(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function N9(e,t,n){let s=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var ec=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=H().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,$2(t,e)):this.gl=Wr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),H().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=gp(this.gl,r),Qs(this.gl,a))this.textureHalfFloatExtension=gp(this.gl,a);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Qs(this.gl,s))this.colorBufferHalfFloatExtension=gp(this.gl,s);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Qs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Qs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=f9(this.gl),this.indexBuffer=m9(this.gl),this.framebuffer=qS(this.gl),this.textureConfig=nb(this.gl,this.textureHalfFloatExtension)}get debug(){return H().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),g9(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),y9(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),A9(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),k9(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),w9(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),b9(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),x9(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(xy(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>C9(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return T9(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return S9(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=I9(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(H().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>N9(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=h9(t));let n=WS(t);return Ie(t,()=>t.attachShader(n,this.vertexShader)),Ie(t,()=>t.attachShader(n,e)),VS(t,n),this.debug&&fm(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=v9(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&fm(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?KS(this.gl,e,t):ZS(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),YS(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=ud(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&fm(this.gl,this.program),yp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=gp(this.gl,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=pne(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),mm(this.gl,e,this.framebuffer),this.debug&&yp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(mm(this.gl,this.outputTexture,this.framebuffer),this.debug&&yp(this.gl)):xy(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;mm(s,e,this.framebuffer),this.debug&&yp(s),this.outputTexture=e,Ie(s,()=>s.viewport(0,0,t,n)),Ie(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function pne(e){let t=0;for(;t`${e}.${n}`)}function rs(e,t){return t===1?[e]:D9(e,t)}function ese(e,t){if(e===1)return"rc";let n="";for(let s=0;se.bindTexture(i,o)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),H().getNumber("WEBGL_VERSION")===1?Se(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)):Se(e,()=>e.texStorage2D(i,1,s,t,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:o,texShape:[n,t]}}function sb(e){return e.internalFormatFloat}function i9(e,t,n,s){let[r,a]=Bh(t,n);return Wh(e,r,a,sb(s),s.textureFormatFloat,e.FLOAT)}function rb(e){return e.internalFormatHalfFloat}function l9(e,t,n,s){let[r,a]=Bh(t,n);return Wh(e,r,a,rb(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function ab(e){return e.downloadTextureFormat}function u9(e,t,n,s){let[r,a]=Bh(t,n);return Wh(e,r,a,ab(s),e.RGBA,e.UNSIGNED_BYTE)}function ob(e){return e.internalFormatPackedFloat}function c9(e,t,n,s){let[r,a]=od(t,n);return Wh(e,r,a,ob(s),e.RGBA,e.FLOAT)}function ib(e){return e.internalFormatPackedHalfFloat}function d9(e,t,n,s){let[r,a]=od(t,n);return Wh(e,r,a,ib(s),e.RGBA,s.textureTypeHalfFloat)}function p9(e,t,n){return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),fy(e,t,"clipSpacePos",n,3,20,0)&&fy(e,t,"uv",n,2,20,12)}function h9(e,t,n,s,r,a){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),H().getNumber("WEBGL_VERSION")===2?Se(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,i,o)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function f9(e,t,n){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?H().getNumber("WEBGL_VERSION")===2?Se(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):H().getNumber("WEBGL_VERSION")===2?Se(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function m9(e,t,n,s){let r=e.createBuffer();Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Se(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function g9(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function y9(e,t,n,s){let[r,a]=Bh(t,n),o=4,i=new Uint8Array(_ee(t*n,o));return Se(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function A9(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(Dee(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function x9(e,t,n){let s=new Float32Array(t*n*4);return Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var ec=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=H().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,T2(t,e)):this.gl=Br(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),H().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=dp(this.gl,r),Ys(this.gl,a))this.textureHalfFloatExtension=dp(this.gl,a);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ys(this.gl,s))this.colorBufferHalfFloatExtension=dp(this.gl,s);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ys(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ys(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=a9(this.gl),this.indexBuffer=o9(this.gl),this.framebuffer=zI(this.gl),this.textureConfig=Jx(this.gl,this.textureHalfFloatExtension)}get debug(){return H().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Se(e,()=>e.finish()),Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.deleteFramebuffer(this.framebuffer)),Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Se(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),i9(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),l9(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),u9(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),f9(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),h9(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),d9(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),c9(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(my(this.gl,this.framebuffer),this.outputTexture=null),Se(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>y9(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return A9(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return g9(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=m9(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(H().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>x9(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=r9(t));let n=DI(t);return Se(t,()=>t.attachShader(n,this.vertexShader)),Se(t,()=>t.attachShader(n,e)),$I(t,n),this.debug&&um(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=p9(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Se(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&um(this.gl,this.program),Se(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?BI(this.gl,e,t):WI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Se(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),VI(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=od(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&um(this.gl,this.program),pp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Se(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Se(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=dp(this.gl,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Ote(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),cm(this.gl,e,this.framebuffer),this.debug&&pp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(cm(this.gl,this.outputTexture,this.framebuffer),this.debug&&pp(this.gl)):my(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;cm(s,e,this.framebuffer),this.debug&&pp(s),this.outputTexture=e,Se(s,()=>s.viewport(0,0,t,n)),Se(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Se(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Ote(e){let t=0;for(;t`${e}.${n}`)}function as(e,t){return t===1?[e]:k9(e,t)}function Sne(e,t){if(e===1)return"rc";let n="";for(let s=0;s= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}), cEdge ? 0. : getA(${t[1]}), rEdge ? 0. : getA(${t[2]}), - rEdge || cEdge ? 0. : getA(${t[3]})`}},$9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=us(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=` + rEdge || cEdge ? 0. : getA(${t[3]})`}},S9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=` ${r} ${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); @@ -1160,8 +1160,8 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${s>0?"}":""} `}this.userCode=` - ${nse(t,this.enableShapeUniforms)} - ${this.enableShapeUniforms?ab():rb(e)} + ${Cne(t,this.enableShapeUniforms)} + ${this.enableShapeUniforms?tb():eb(e)} void main() { ivec3 rc = getOutputCoords(); @@ -1176,12 +1176,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function nse(e,t){return` + `}};function Cne(e,t){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { - ${t?bte(["r","c","d"],"inputShape"):du(["r","c","d"],e)} + ${t?Gee(["r","c","d"],"inputShape"):du(["r","c","d"],e)} return ivec3(r, c, d); } - `}var sse=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=F7(t,n),r=O7(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=P7(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===_n.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===_n.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===_n.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===_n.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===_n.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=F7(n,s),a=O7(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=P7(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=H().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function rse(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function P7(e,t,n,s,r){let a=ase(t,s),o;if(r){let[l,u]=ud(e[0],e[1]);o=l*u}else{let[l,u]=Hh(e[0],e[1]);o=l*u}let i=rse(n,a);return o*i}function ase(e,t){switch(e){case _n.PACKED_2X2_FLOAT32:return cb(t);case _n.PACKED_2X2_FLOAT16:return db(t);case _n.UNPACKED_FLOAT32:return ib(t);case _n.UNPACKED_FLOAT16:return lb(t);case _n.PACKED_4X1_UNSIGNED_BYTE:return ub(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function ose(e){return H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?_n.PACKED_2X2_FLOAT32:_n.UNPACKED_FLOAT32:e?_n.PACKED_2X2_FLOAT16:_n.UNPACKED_FLOAT16}function F7(e,t){if(e===Js.UPLOAD)return _n.PACKED_2X2_FLOAT32;if(e===Js.RENDER||e==null)return ose(t);if(e===Js.DOWNLOAD||e===Js.PIXELS)return _n.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function O7(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var va=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=us(this.outputShape.length),this.userCode=` + `}var Tne=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=N7(t,n),r=E7(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=T7(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Dn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Dn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Dn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Dn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Dn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=N7(n,s),a=E7(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=T7(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=H().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Nne(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function T7(e,t,n,s,r){let a=Ene(t,s),o;if(r){let[l,u]=od(e[0],e[1]);o=l*u}else{let[l,u]=Bh(e[0],e[1]);o=l*u}let i=Nne(n,a);return o*i}function Ene(e,t){switch(e){case Dn.PACKED_2X2_FLOAT32:return ob(t);case Dn.PACKED_2X2_FLOAT16:return ib(t);case Dn.UNPACKED_FLOAT32:return sb(t);case Dn.UNPACKED_FLOAT16:return rb(t);case Dn.PACKED_4X1_UNSIGNED_BYTE:return ab(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Rne(e){return H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Dn.PACKED_2X2_FLOAT32:Dn.UNPACKED_FLOAT32:e?Dn.PACKED_2X2_FLOAT16:Dn.UNPACKED_FLOAT16}function N7(e,t){if(e===Zs.UPLOAD)return Dn.PACKED_2X2_FLOAT32;if(e===Zs.RENDER||e==null)return Rne(t);if(e===Zs.DOWNLOAD||e===Zs.PIXELS)return Dn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function E7(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var xa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=` float unaryOperation(float x) { ${t} } @@ -1192,11 +1192,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},br="if (isnan(x)) return x;",ise="return x;",M7="return abs(x);",lse="return (x >= 0.0) ? x : (exp(x) - 1.0);",use=br+` + `}},xr="if (isnan(x)) return x;",_ne="return x;",R7="return abs(x);",Dne="return (x >= 0.0) ? x : (exp(x) - 1.0);",$ne=xr+` return (x < 0.0) ? 0.0 : x; -`,cse=br+` +`,Pne=xr+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,Uu="return x;",dse="return 1.0 / (1.0 + exp(-1.0 * x));",pse="return x;",hse=` +`,Uu="return x;",Fne="return 1.0 / (1.0 + exp(-1.0 * x));",One="return x;",Mne=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -1205,7 +1205,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,fse=` +`,zne=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -1215,7 +1215,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,mse=` +`,Lne=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -1225,7 +1225,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,gse="return 1.0 / (1.0 + exp(-1.0 * x));",nl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=us(this.outputShape.length),this.userCode=` +`,Bne="return 1.0 / (1.0 + exp(-1.0 * x));",qi=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } @@ -1236,17 +1236,17 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},yse=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=us(this.outputShape.length);let t=e.length,n=rs("rc",t),s=vt(t),r=ese(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=` + `}},Wne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let t=e.length,n=as("rc",t),s=vt(t),r=Sne(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=` void main() { ${s} rc = getOutputCoords(); vec4 packedInput = getA(${r}); setOutput(getChannel(packedInput, ${o})); } - `}},Ase=Ar.whereImpl,xse=1e-7,bse=1e-4,lm={};function vse(e){return e in lm||(lm[e]={}),lm[e]}var wse=H().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),kse=600;function Ise(){return H().global.screen==null?1024:H().global.screen.height*H().global.screen.width*window.devicePixelRatio*kse/1024/1024}var md=class extends Ac{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!H().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof ec)t=e;else{let n=Wr(H().getNumber("WEBGL_VERSION"),e);t=new ec(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Wr(H().getNumber("WEBGL_VERSION"));t=new ec(n),this.binaryCache=vse(H().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new sse(this.gpgpu),this.numMBBeforeWarning=Ise(),this.texData=new jp(this,an())}nextDataId(){return md.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((H().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||H().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Js.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(H().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Js.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let p;i?p=new nl(o,Uu):p=new va(o,Uu);let d=this.runWebGLProgram(p,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=C.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new nl(s,Uu):h=new va(s,Uu);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(H().getBool("DEBUG")&&!H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&H().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&H().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...om(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=C.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;Ie(h,()=>h.deleteBuffer(l))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&an().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:o,isPacked:i,texture:l}=n;if(o==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;i?d=new nl(r,Uu):d=new va(r,Uu);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:o}],o),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),c=an().makeTensorFromTensorInfo(u),p=this.texData.get(u.dataId);return Object.assign({tensorRef:c},p.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return De(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=wse){return H().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){return an().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new yse(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new tse(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[yl(e.shape),...Al(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[yl(t),...Al(t)],a=new $9(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let o=gm(r),i;s?i=new ine(o):i=new one(o);let l=!0,u=[t!=null?t:om(o)],c=this.runWebGLProgram(i,[{shape:o,dtype:a,dataId:e}],a,u,l,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let o=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(o.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Lp.DENSE){let g=a!=null?a:om(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(o.shape)===0)return i.values=v.getTypedArrayFromDType(o.dtype,0),o;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=H().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Bp(y.shape,g.shape)){let x=g,A=g.shape;g.shape=y.shape,g=this.packedReshape(g,A),l.push(g),y=this.texData.get(g.dataId),x.shape=A}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(o.dataId);let c={shape:o.shape,texData:i,isUniform:!1},p=ane(e,u,c),d=this.getAndSaveBinary(p,()=>sne(this.gpgpu,e,u,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),H().get("ENGINE_COMPILE_ONLY")||rne(this.gpgpu,d,u,c,s),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=H().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!H().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let g=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),g}return o}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(H().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Z(()=>{if(!H().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=H().getBool("DEBUG");H().set("DEBUG",!1);let t=this.abs(Ce(1e-8)).dataSync()[0];if(H().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?xse:bse}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=e9(n,i),t.texShape=c),r!=null){let p=gm(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(i||!m)&&([h,f]=ud(c[0],c[1])),i?d=new dne(p,m):d=new cne(p,m);let g=m?[f,h]:c,y=this.makeTensorInfo(g,s),x=this.texData.get(y.dataId);m?x.usage=Js.PIXELS:x.usage=Js.UPLOAD,x.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,f,r);let A=[[f,h]],b=!0,w=this.runWebGLProgram(d,[y],s,A,b),I=this.texData.get(w.dataId);t.texShape=I.texShape,t.isPacked=I.isPacked,t.usage=I.usage,H().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=I.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let p=this.acquireTexture(c,o,s,i);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=Sse(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await u5(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(sb(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:o,outShapeLocation:i,outShapeStridesLocation:l,outTexShapeLocation:u}=d9(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=o,e.outShapeLocation=i,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};md.nextDataId=0;function Sse(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;snew md,2);var Tse={forceHalfFloat:P9},F9=` + `}},Vne=yr.whereImpl,Une=1e-7,Gne=1e-4,sm={};function Hne(e){return e in sm||(sm[e]={}),sm[e]}var jne=H().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),qne=600;function Xne(){return H().global.screen==null?1024:H().global.screen.height*H().global.screen.width*window.devicePixelRatio*qne/1024/1024}var pd=class extends Ac{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!H().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof ec)t=e;else{let n=Br(H().getNumber("WEBGL_VERSION"),e);t=new ec(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Br(H().getNumber("WEBGL_VERSION"));t=new ec(n),this.binaryCache=Hne(H().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new Tne(this.gpgpu),this.numMBBeforeWarning=Xne(),this.texData=new Wp(this,rn())}nextDataId(){return pd.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((H().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||H().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Zs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(H().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Zs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let p;i?p=new qi(o,Uu):p=new xa(o,Uu);let d=this.runWebGLProgram(p,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=T.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new qi(s,Uu):h=new xa(s,Uu);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(H().getBool("DEBUG")&&!H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&H().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&H().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...tm(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=T.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;Se(h,()=>h.deleteBuffer(l))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&rn().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:o,isPacked:i,texture:l}=n;if(o==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;i?d=new qi(r,Uu):d=new xa(r,Uu);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:o}],o),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),c=rn().makeTensorFromTensorInfo(u),p=this.texData.get(u.dataId);return Object.assign({tensorRef:c},p.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=jne){return H().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){return rn().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new Wne(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Ine(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ll(e.shape),...ul(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ll(t),...ul(t)],a=new S9(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let o=dm(r),i;s?i=new _te(o):i=new Rte(o);let l=!0,u=[t!=null?t:tm(o)],c=this.runWebGLProgram(i,[{shape:o,dtype:a,dataId:e}],a,u,l,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let o=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(o.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===$p.DENSE){let g=a!=null?a:tm(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(o.shape)===0)return i.values=v.getTypedArrayFromDType(o.dtype,0),o;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=H().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Pp(y.shape,g.shape)){let x=g,A=g.shape;g.shape=y.shape,g=this.packedReshape(g,A),l.push(g),y=this.texData.get(g.dataId),x.shape=A}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(o.dataId);let c={shape:o.shape,texData:i,isUniform:!1},p=Ete(e,u,c),d=this.getAndSaveBinary(p,()=>Tte(this.gpgpu,e,u,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),H().get("ENGINE_COMPILE_ONLY")||Nte(this.gpgpu,d,u,c,s),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=H().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!H().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let g=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),g}return o}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(H().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Z(()=>{if(!H().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=H().getBool("DEBUG");H().set("DEBUG",!1);let t=this.abs(Ce(1e-8)).dataSync()[0];if(H().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Une:Gne}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=HI(n,i),t.texShape=c),r!=null){let p=dm(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(i||!m)&&([h,f]=od(c[0],c[1])),i?d=new Fte(p,m):d=new Pte(p,m);let g=m?[f,h]:c,y=this.makeTensorInfo(g,s),x=this.texData.get(y.dataId);m?x.usage=Zs.PIXELS:x.usage=Zs.UPLOAD,x.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,f,r);let A=[[f,h]],b=!0,w=this.runWebGLProgram(d,[y],s,A,b),S=this.texData.get(w.dataId);t.texShape=S.texShape,t.isPacked=S.isPacked,t.usage=S.usage,H().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=S.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let p=this.acquireTexture(c,o,s,i);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=Kne(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await r5(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Qx(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:o,outShapeLocation:i,outShapeStridesLocation:l,outTexShapeLocation:u}=n9(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=o,e.outShapeLocation=i,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};pd.nextDataId=0;function Kne(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;snew pd,2);var Yne={forceHalfFloat:I9},C9=` if (isnan(a)) return a; if (isnan(b)) return b; -`,yc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=us(this.outputShape.length),this.userCode=` +`,yc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=` float binaryOperation(float a, float b) { ${e} } @@ -1256,12 +1256,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } - `}},F2=` + `}},E2=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`,qh=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=us(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=` +`,Vh=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=T.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=cs(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=` result.y = 0.; result.z = 0.; result.w = 0.; @@ -1275,7 +1275,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; - `;else{let i=rs("coords",r);this.enableShapeUniforms?a+=` + `;else{let i=as("coords",r);this.enableShapeUniforms?a+=` bool nextRowOutOfBounds = (${i[r-2]} + 1) >= outShape[${r} - 2]; bool nextColOutOfBounds = @@ -1305,21 +1305,21 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function Ls(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var Nse={kernelName:Ko,backendName:"webgl",kernelFunc:Ls};function Ii(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Ls({inputs:{x:s},backend:n}),l=Ls({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Ese={kernelName:Xp,backendName:"webgl",kernelFunc:Ii},O9="return (a < 0.) ? b * a : a;",M9=` + `}};function Ls(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var Jne={kernelName:$o,backendName:"webgl",kernelFunc:Ls};function fi(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Ls({inputs:{x:s},backend:n}),l=Ls({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Qne={kernelName:Up,backendName:"webgl",kernelFunc:fi},T9="return (a < 0.) ? b * a : a;",N9=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function Rse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qh(M9,r.shape,o.shape):new yc(O9,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var _se={kernelName:Zo,backendName:"webgl",kernelFunc:Rse},z9="return (a < 0.) ? b * a : a;",L9=` +`;function ese(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vh(N9,r.shape,o.shape):new yc(T9,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var tse={kernelName:Po,backendName:"webgl",kernelFunc:ese},E9="return (a < 0.) ? b * a : a;",R9=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function Dse(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qh(L9,s.shape,r.shape):new yc(z9,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var $se={kernelName:ii,backendName:"webgl",kernelFunc:Dse},gd="if (isnan(x)) return x;",Pse=` +`;function nse(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vh(R9,s.shape,r.shape):new yc(E9,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var sse={kernelName:jo,backendName:"webgl",kernelFunc:nse},hd="if (isnan(x)) return x;",rse=` if (isnan(a)) return a; if (isnan(b)) return b; -`,Fse=` +`,ase=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`;function dt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let p=i.texData.get(o.dataId),d=n(p.values,l);return i.makeTensorInfo(o.shape,l,d)}let u=H().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new nl(o.shape,t):c=new va(o.shape,e),i.runWebGLProgram(c,[o],l)}}function zn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(A=>{let[b,w]=A,I={dataId:b.dataId,dtype:b.dtype,shape:l.shape},k={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new yc(e,l.shape,u.shape);return c.runWebGLProgram(E,[I,k],Pn(b.dtype,w.dtype))}),x=Ii({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),x}let p=a||Pn(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?C.fromUint8ToStringArray(f):f,y=l.dtype==="string"?C.fromUint8ToStringArray(m):m,[x,A]=r(l.shape,u.shape,g,y,p),b=c.makeTensorInfo(A,p),w=c.texData.get(b.dataId);return w.values=x,b}let d=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new qh(t,l.shape,u.shape,n):h=new yc(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],p)}}function Wp(e,t=!1){if(e==="linear")return t?pse:ise;if(e==="relu")return t?fse:use;if(e==="elu")return t?hse:lse;if(e==="relu6")return t?mse:cse;if(e==="prelu")return t?L9:z9;if(e==="leakyrelu")return t?M9:O9;if(e==="sigmoid")return t?gse:dse;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var B9=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=us(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) { +`;function dt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let p=i.texData.get(o.dataId),d=n(p.values,l);return i.makeTensorInfo(o.shape,l,d)}let u=H().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new qi(o.shape,t):c=new xa(o.shape,e),i.runWebGLProgram(c,[o],l)}}function zn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(A=>{let[b,w]=A,S={dataId:b.dataId,dtype:b.dtype,shape:l.shape},k={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new yc(e,l.shape,u.shape);return c.runWebGLProgram(E,[S,k],Un(b.dtype,w.dtype))}),x=fi({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),x}let p=a||Un(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?T.fromUint8ToStringArray(f):f,y=l.dtype==="string"?T.fromUint8ToStringArray(m):m,[x,A]=r(l.shape,u.shape,g,y,p),b=c.makeTensorInfo(A,p),w=c.texData.get(b.dataId);return w.values=x,b}let d=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new Vh(t,l.shape,u.shape,n):h=new yc(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],p)}}function Fp(e,t=!1){if(e==="linear")return t?One:_ne;if(e==="relu")return t?zne:$ne;if(e==="elu")return t?Mne:Dne;if(e==="relu6")return t?Lne:Pne;if(e==="prelu")return t?R9:E9;if(e==="leakyrelu")return t?N9:T9;if(e==="sigmoid")return t?Bne:Fne;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var _9=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=cs(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${o} }`:l?m=`vec4 activation(vec4 a) { @@ -1358,7 +1358,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}},z7={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},L7=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=` + `}},_7={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},D7=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOpComplex( float areal, float aimag, float breal, float bimag) { ${e} @@ -1371,7 +1371,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float bimag = getBImagAtOutCoords(); setOutput(binaryOpComplex(areal, aimag, breal, bimag)); } - `}},B7="return a * b;";function hb(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=C.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new L7(z7.REAL,s.shape,r.shape),c=new L7(z7.IMAG,s.shape,r.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Ii({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=$ne(s.shape,r.shape,i.values,l.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=u,p}let o;return H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new qh(B7,s.shape,r.shape):o=new yc(B7,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var Ose={kernelName:Oa,backendName:"webgl",kernelFunc:hb};function Mse(e,t,n){let s=[yl(e.shape),...Al(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[yl(t),...Al(t)],o=new $9(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),u=v.sizeFromShape(l);v.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Bp(r.shape,l)&&!(c.texture!==null&&Bp(c.shape,l))?Mse(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var zse={kernelName:Ll,backendName:"webgl",kernelFunc:ve},W7=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=` + `}},$7="return a * b;";function ub(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=T.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new D7(_7.REAL,s.shape,r.shape),c=new D7(_7.IMAG,s.shape,r.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=fi({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=sne(s.shape,r.shape,i.values,l.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=u,p}let o;return H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Vh($7,s.shape,r.shape):o=new yc($7,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var ose={kernelName:Uo,backendName:"webgl",kernelFunc:ub};function ise(e,t,n){let s=[ll(e.shape),...ul(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[ll(t),...ul(t)],o=new S9(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),u=v.sizeFromShape(l);v.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Pp(r.shape,l)&&!(c.texture!==null&&Pp(c.shape,l))?ise(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var lse={kernelName:Ll,backendName:"webgl",kernelFunc:ve},P7=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=` if (inIdx < 0 || inIdx >= ${r}) { return 0.0; } @@ -1424,7 +1424,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(sumValue); } - `}},Lse=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,p=` + `}},use=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,p=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { @@ -1516,12 +1516,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(${l}); } - `}};function Bse(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function hu(e,t,n,s){let r=Bse(e.shape),a=e;for(let o=0;o6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=vt(this.rank),r=D9("rc",this.rank),a=new Array(this.rank);for(let u=0;u6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=vt(this.rank),r=k9("rc",this.rank),a=new Array(this.rank);for(let u=0;u`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],I=s?[x,f,d]:[x,d,f],k=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),E=ve({inputs:{x:t},backend:r,attrs:{shape:I}}),_=[k,E],D=Math.max(y,x),R=n?k.shape[1]:k.shape[2],P=a!=null,T=o!=null,M=l==="leakyrelu",W=l!=null?Wp(l,!0):null,G=P||T||M||W!=null,X;if((h===1||f===1)&&R>W9&&G===!1){let Y=k,ae=E;n&&(Y=as({inputs:{x:k},backend:r,attrs:{perm:[0,2,1]}}),_.push(Y)),s&&(ae=as({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),_.push(ae));let ee=f!==1,ie=f===1,ne=Y;ee&&(ne=ve({inputs:{x:Y},backend:r,attrs:{shape:[D,R,1]}}),_.push(ne));let pe=f===1?2:1,ce=ae;ie&&(ce=ve({inputs:{x:ae},backend:r,attrs:{shape:[D,1,R]}}),_.push(ce));let Ae=hb({inputs:{a:ne,b:ce},backend:r});X=M2({inputs:{x:Ae},backend:r,attrs:{axis:pe,keepDims:!0}}),_.push(Ae)}else{let Y=Pn(e.dtype,t.dtype),ae=new B9(w,I,[D,h,f],n,s,P,W,T,M),ee=[k,E];if(a!=null&&ee.push(a),T&&ee.push(o),M){let ie=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));ee.push(ie),_.push(ie)}X=r.runWebGLProgram(ae,ee,Y)}let K=ve({inputs:{x:X},backend:r,attrs:{shape:b}});_.push(X);for(let Y of _)r.disposeIntermediateTensorInfo(Y);return K}function qse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return qm({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var Xse={kernelName:Ao,backendName:"webgl",kernelFunc:qse},V7="return abs(x);";function Kse(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=R9(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new nl(s.shape,V7):r=new va(s.shape,V7),n.runWebGLProgram(r,[s],s.dtype)}var Zse={kernelName:vl,backendName:"webgl",kernelFunc:Kse},Yse=br+` + `}};function R2(e,t,n){let s=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new hse(e.shape,t):new dse(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function fse(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=T.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=R2(e,l,s),i=T.getInnerMostAxes(i.length,a)),T.assertAxesAreInnerMostDims("sum",i,a);let[p,d]=T.computeOutAndReduceShapes(c.shape,i),h=p;n&&(h=T.expandShapeToKeepDim(p,o));let f=v.sizeFromShape(d),g=v.sizeFromShape(e.shape)/f,y=ve({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),x=ih(e.dtype),A=hu(y,x,"sum",s),b=ve({inputs:{x:A},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(A),u&&s.disposeIntermediateTensorInfo(c),b}function _2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return fse(r,a,o,n)}var mse={kernelName:ni,backendName:"webgl",kernelFunc:_2};function os(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],S=s?[x,f,d]:[x,d,f],k=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),E=ve({inputs:{x:t},backend:r,attrs:{shape:S}}),_=[k,E],D=Math.max(y,x),R=n?k.shape[1]:k.shape[2],P=a!=null,C=o!=null,M=l==="leakyrelu",L=l!=null?Fp(l,!0):null,G=P||C||M||L!=null,K;if((h===1||f===1)&&R>D9&&G===!1){let Y=k,ne=E;n&&(Y=os({inputs:{x:k},backend:r,attrs:{perm:[0,2,1]}}),_.push(Y)),s&&(ne=os({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),_.push(ne));let ee=f!==1,ie=f===1,se=Y;ee&&(se=ve({inputs:{x:Y},backend:r,attrs:{shape:[D,R,1]}}),_.push(se));let pe=f===1?2:1,ce=ne;ie&&(ce=ve({inputs:{x:ne},backend:r,attrs:{shape:[D,1,R]}}),_.push(ce));let xe=ub({inputs:{a:se,b:ce},backend:r});K=_2({inputs:{x:xe},backend:r,attrs:{axis:pe,keepDims:!0}}),_.push(xe)}else{let Y=Un(e.dtype,t.dtype),ne=new _9(w,S,[D,h,f],n,s,P,L,C,M),ee=[k,E];if(a!=null&&ee.push(a),C&&ee.push(o),M){let ie=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));ee.push(ie),_.push(ie)}K=r.runWebGLProgram(ne,ee,Y)}let X=ve({inputs:{x:K},backend:r,attrs:{shape:b}});_.push(K);for(let Y of _)r.disposeIntermediateTensorInfo(Y);return X}function yse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return Vm({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var Ase={kernelName:eo,backendName:"webgl",kernelFunc:yse},F7="return abs(x);";function xse(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=v9(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new qi(s.shape,F7):r=new xa(s.shape,F7),n.runWebGLProgram(r,[s],s.dtype)}var bse={kernelName:pl,backendName:"webgl",kernelFunc:xse},vse=xr+` if (abs(x) > 1.) { return NAN; } return acos(x); -`,Jse=dt({opSnippet:Yse}),Qse={kernelName:bc,backendName:"webgl",kernelFunc:Jse},ere=br+` +`,wse=dt({opSnippet:vse}),kse={kernelName:bc,backendName:"webgl",kernelFunc:wse},Sse=xr+` if (x < 1.0) return NAN; -return log(x + sqrt(x * x - 1.0));`,tre=dt({opSnippet:ere}),nre={kernelName:vc,backendName:"webgl",kernelFunc:tre},U7="return a + b;",sre=zn({opSnippet:U7,packedOpSnippet:U7,supportsComplex:!0,cpuKernelImpl:hne}),rre={kernelName:oa,backendName:"webgl",kernelFunc:sre},are=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` +return log(x + sqrt(x * x - 1.0));`,Ise=dt({opSnippet:Sse}),Cse={kernelName:vc,backendName:"webgl",kernelFunc:Ise},O7="return a + b;",Tse=zn({opSnippet:O7,packedOpSnippet:O7,supportsComplex:!0,cpuKernelImpl:Mte}),Nse={kernelName:Ta,backendName:"webgl",kernelFunc:Tse},Ese=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1553,7 +1553,7 @@ return log(x + sqrt(x * x - 1.0));`,tre=dt({opSnippet:ere}),nre={kernelName:vc,b float result = ${s}; setOutput(result); } - `}},ore=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` + `}},Rse=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1561,7 +1561,7 @@ return log(x + sqrt(x * x - 1.0));`,tre=dt({opSnippet:ere}),nre={kernelName:vc,b vec4 result = ${s}; setOutput(result); } - `}};function xm(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Ls({inputs:{x:s[0]},backend:n});if(s.length>H().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=xm({inputs:s.slice(0,l),backend:n}),c=xm({inputs:s.slice(l),backend:n});return xm({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Pn(l,u)),a=s.map(l=>l.shape),i=H().getBool("WEBGL_PACK")?new ore(s[0].shape,a):new are(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var ire={kernelName:_o,backendName:"webgl",kernelFunc:xm};function lre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=as({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("all",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=hu(m,m.dtype,"all",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var ure={kernelName:wc,backendName:"webgl",kernelFunc:lre};function cre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=as({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("any",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=hu(m,m.dtype,"any",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var dre={kernelName:kc,backendName:"webgl",kernelFunc:cre},pre=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` + `}};function fm(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Ls({inputs:{x:s[0]},backend:n});if(s.length>H().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=fm({inputs:s.slice(0,l),backend:n}),c=fm({inputs:s.slice(l),backend:n});return fm({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Un(l,u)),a=s.map(l=>l.shape),i=H().getBool("WEBGL_PACK")?new Rse(s[0].shape,a):new Ese(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var _se={kernelName:fo,backendName:"webgl",kernelFunc:fm};function Dse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,i)),T.assertAxesAreInnerMostDims("all",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=hu(m,m.dtype,"all",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var $se={kernelName:wc,backendName:"webgl",kernelFunc:Dse};function Pse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,i)),T.assertAxesAreInnerMostDims("any",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=hu(m,m.dtype,"any",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Fse={kernelName:kc,backendName:"webgl",kernelFunc:Pse},Ose=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -1581,7 +1581,7 @@ return log(x + sqrt(x * x - 1.0));`,tre=dt({opSnippet:ere}),nre={kernelName:vc,b } setOutput(float(bestIndex)); } - `}},hre=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=vt(i),u=rs("coords",i),c,p;if(a===1){p=i+1;let k=vt(p);c=` + `}},Mse=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=vt(i),u=as("coords",i),c,p;if(a===1){p=i+1;let k=vt(p);c=` ${k} sourceLocR = ${k}(${u.join()}, 0); ++${u[i-1]}; ${k} sourceLocG = ${k}(${u.join()}, 0); @@ -1597,7 +1597,7 @@ return log(x + sqrt(x * x - 1.0));`,tre=dt({opSnippet:ere}),nre={kernelName:vc,b ${l} sourceLocA = coords; --${u[i-1]}; ${l} sourceLocB = coords; - --${u[i-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map(k=>"int "+k),m=rs("sourceLocR",p-1).concat("inIdx.r"),g=rs("sourceLocG",p-1).concat("inIdx.g"),y=rs("sourceLocB",p-1).concat("inIdx.b"),x=rs("sourceLocA",p-1).concat("inIdx.a"),A=n==="max"?"greaterThan":"lessThan",b=s?"":` + --${u[i-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map(k=>"int "+k),m=as("sourceLocR",p-1).concat("inIdx.r"),g=as("sourceLocG",p-1).concat("inIdx.g"),y=as("sourceLocB",p-1).concat("inIdx.b"),x=as("sourceLocA",p-1).concat("inIdx.a"),A=n==="max"?"greaterThan":"lessThan",b=s?"":` inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), getBestIndicesAChannel(${g.join()}), getBestIndicesAChannel(${y.join()}), @@ -1605,7 +1605,7 @@ return log(x + sqrt(x * x - 1.0));`,tre=dt({opSnippet:ere}),nre={kernelName:vc,b getAChannel(${m.join()}), hasNextCol ? getAChannel(${g.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., - hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,I=s?"":` + hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,S=s?"":` float getBestIndicesAChannel(${f.join()}) { return getChannel(getBestIndicesA(${d.join()}), vec2(${d.slice(-2).join()})); @@ -1614,7 +1614,7 @@ return log(x + sqrt(x * x - 1.0));`,tre=dt({opSnippet:ere}),nre={kernelName:vc,b return getChannel(getA(${d.join()}), vec2(${d.slice(-2).join()})); } - ${I} + ${S} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${u[i-1]} < ${o[i-1]-1}; @@ -1643,23 +1643,23 @@ return log(x + sqrt(x * x - 1.0));`,tre=dt({opSnippet:ere}),nre={kernelName:vc,b } setOutput(bestIndex); } - `}};function V9(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=C.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new pre(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=V9(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function U9(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=C.computeOptimalWindowSize(a),i=new hre(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=U9(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function G9(e,t,n,s){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!H().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=C.computeOutAndReduceShapes(l.shape,r),p=v.sizeFromShape(c),d=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=V9(e,d,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return U9(e,t,s)}function fre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=as({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=G9(n,l,o[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var mre={kernelName:Do,backendName:"webgl",kernelFunc:fre};function gre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=as({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=G9(n,l,o[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var yre={kernelName:Ic,backendName:"webgl",kernelFunc:gre},Are=br+` + `}};function $9(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=T.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new Ose(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=$9(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function P9(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=T.computeOptimalWindowSize(a),i=new Mse(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=P9(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function F9(e,t,n,s){let r=[n];if(T.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!H().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=T.computeOutAndReduceShapes(l.shape,r),p=v.sizeFromShape(c),d=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=$9(e,d,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return P9(e,t,s)}function zse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=os({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=F9(n,l,o[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var Lse={kernelName:mo,backendName:"webgl",kernelFunc:zse};function Bse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=os({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=F9(n,l,o[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var Wse={kernelName:Sc,backendName:"webgl",kernelFunc:Bse},Vse=xr+` if (abs(x) > 1.) { return NAN; } return asin(x); -`,xre=dt({opSnippet:Are}),bre={kernelName:Sc,backendName:"webgl",kernelFunc:xre},vre=br+"return log(x + sqrt(x * x + 1.0));",wre=dt({opSnippet:vre}),kre={kernelName:Cc,backendName:"webgl",kernelFunc:wre},Ire=br+` +`,Use=dt({opSnippet:Vse}),Gse={kernelName:Ic,backendName:"webgl",kernelFunc:Use},Hse=xr+"return log(x + sqrt(x * x + 1.0));",jse=dt({opSnippet:Hse}),qse={kernelName:Cc,backendName:"webgl",kernelFunc:jse},Xse=xr+` return atan(x); -`,Sre=dt({opSnippet:Ire}),Cre={kernelName:Tc,backendName:"webgl",kernelFunc:Sre},Tre=Pse+` +`,Kse=dt({opSnippet:Xse}),Zse={kernelName:Tc,backendName:"webgl",kernelFunc:Kse},Yse=rse+` return atan(a, b); -`,Nre=` +`,Jse=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); - `+Fse+` + `+ase+` return result; -`,Ere=zn({opSnippet:Tre,packedOpSnippet:Nre}),Rre={kernelName:Ec,backendName:"webgl",kernelFunc:Ere},_re=br+` +`,Qse=zn({opSnippet:Yse,packedOpSnippet:Jse}),ere={kernelName:hl,backendName:"webgl",kernelFunc:Qse},tre=xr+` if ((x < -1.0) || (x > 1.0)) return NAN; -return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernelName:Nc,backendName:"webgl",kernelFunc:Dre},Vp=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` +return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,nre=dt({opSnippet:tre}),sre={kernelName:Nc,backendName:"webgl",kernelFunc:nre},Op=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=` const ivec2 strides = ivec2(${o}, ${i}); const ivec2 pads = ivec2(${d}, ${h}); @@ -1710,7 +1710,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(float(minMaxPosition)); } - `;return}let x="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,I=` + `;return}let x="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,S=` if (${f}) { avgValue += dot(values, ones); } else { @@ -1765,7 +1765,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel getValue(batch, xR, xC + 3 * ${u}, d) ); - ${I} + ${S} } int xC = xCCorner + ${b}; @@ -1777,7 +1777,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel initializationValue ); - ${I} + ${S} } else if (${w===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), @@ -1786,7 +1786,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel initializationValue ); - ${I} + ${S} } else if (${w===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), @@ -1795,12 +1795,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel initializationValue ); - ${I} + ${S} } } setOutput(${A}); } - `}},fb=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",A="0.0";if(x||(A="-1.0 / 1e-20"),n){let _=">=";this.userCode=` + `}},cb=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",A="0.0";if(x||(A="-1.0 / 1e-20"),n){let _=">=";this.userCode=` const ivec3 strides = ivec3(${o}, ${i}, ${l}); const ivec3 pads = ivec3(${m}, ${g}, ${y}); @@ -1862,7 +1862,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(float(minMaxPosition)); } - `;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let I=Math.floor(a/4)*4,k=a%4,E=` + `;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let S=Math.floor(a/4)*4,k=a%4,E=` if (${x}) { avgValue += dot(values, ones); } else { @@ -1917,7 +1917,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel continue; } - for (int wC = 0; wC < ${I}; wC += 4) { + for (int wC = 0; wC < ${S}; wC += 4) { int xC = xCCorner + wC * ${p}; vec4 values = vec4( @@ -1930,7 +1930,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel ${E} } - int xC = xCCorner + ${I}; + int xC = xCCorner + ${S}; if (${k===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), @@ -1963,7 +1963,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel setOutput(${w}); } } - `}};function Pre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;cd(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ls({inputs:{x:r},backend:n});let p=new Vp(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var Fre={kernelName:$o,backendName:"webgl",kernelFunc:Pre};function Ore(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,o,c,i,l,u),d=new fb(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var Mre={kernelName:qp,backendName:"webgl",kernelFunc:Ore},zre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,p=1/(t*n);this.userCode=` + `}};function rre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;id(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ls({inputs:{x:r},backend:n});let p=new Op(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var are={kernelName:go,backendName:"webgl",kernelFunc:rre};function ore(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],p=T.computePool3DInfo(r.shape,a,o,c,i,l,u),d=new cb(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var ire={kernelName:Vp,backendName:"webgl",kernelFunc:ore},lre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,p=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${u}, ${c}); const float avgMultiplier = float(${p}); @@ -2005,7 +2005,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}},Lre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=` + `}},ure=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=` const ivec3 pads = ivec3(${h}, ${f}, ${m}); const float avgMultiplier = float(${g}); @@ -2061,7 +2061,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}};function Bre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(o.shape,i,l,p,u,c),h=new Lre(d);return n.runWebGLProgram(h,[r],o.dtype)}var Wre={kernelName:r0,backendName:"webgl",kernelFunc:Bre};function Vre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;cd([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=C.computePool2DInfo(o.shape,i,l,1,u),p=new zre(c);return n.runWebGLProgram(p,[r],o.dtype)}var Ure={kernelName:s0,backendName:"webgl",kernelFunc:Vre};function Gre(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return qm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Hre={kernelName:Po,backendName:"webgl",kernelFunc:Gre},jre=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}};function cre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=T.computePool3DInfo(o.shape,i,l,p,u,c),h=new ure(d);return n.runWebGLProgram(h,[r],o.dtype)}var dre={kernelName:Jm,backendName:"webgl",kernelFunc:cre};function pre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;id([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=T.computePool2DInfo(o.shape,i,l,1,u),p=new lre(c);return n.runWebGLProgram(p,[r],o.dtype)}var hre={kernelName:Ym,backendName:"webgl",kernelFunc:pre};function fre(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Vm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var mre={kernelName:yo,backendName:"webgl",kernelFunc:fre},gre=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); @@ -2071,7 +2071,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel float inv = scale * inversesqrt(variance + float(${a})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } - `}},qre=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}},yre=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${o}; vec4 scale = ${i}; @@ -2084,7 +2084,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel setOutput((x - mean) * inv + offset); } - `}},Xre=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let p=null;i!=null&&(p=i.shape,u.push(i));let d=H().getBool("WEBGL_PACK_NORMALIZATION")?new qre(s.shape,r.shape,a.shape,c,p,l):new jre(s.shape,r.shape,a.shape,c,p,l);return t.runWebGLProgram(d,u,u[0].dtype)},Kre={kernelName:qo,backendName:"webgl",kernelFunc:Xre},Zre=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=vt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Yre(this.rank),s,r=e.map((a,o)=>`sourceLoc.${wy[o]} = start[${o}] + coords.${wy[o]};`);s=` + `}},Are=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let p=null;i!=null&&(p=i.shape,u.push(i));let d=H().getBool("WEBGL_PACK_NORMALIZATION")?new yre(s.shape,r.shape,a.shape,c,p,l):new gre(s.shape,r.shape,a.shape,c,p,l);return t.runWebGLProgram(d,u,u[0].dtype)},xre={kernelName:_o,backendName:"webgl",kernelFunc:Are},bre=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=vt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=vre(this.rank),s,r=e.map((a,o)=>`sourceLoc.${Ay[o]} = start[${o}] + coords.${Ay[o]};`);s=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${r.join(` @@ -2094,7 +2094,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel ${s} setOutput(getSource(${n})); } - `}},wy=["x","y","z","w","u","v"];function Yre(e){if(e===1)return"sourceLoc";if(e<=6)return wy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Jre=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=vt(this.rank),n=rs("coords",this.rank),s=rs("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=` + `}},Ay=["x","y","z","w","u","v"];function vre(e){if(e===1)return"sourceLoc";if(e<=6)return Ay.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var wre=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=vt(this.rank),n=as("coords",this.rank),s=as("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=` result.x = ${a}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${s[this.rank-1]}; @@ -2123,7 +2123,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel ${i} setOutput(result); } - `}};function Qre(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Pt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function yd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Pt.parseSliceParams(r,a,o);if(Pt.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=Vne(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=n.texData.get(r.dataId),c=Pt.isSliceContinous(r.shape,i,l);if(u||!c){let p=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Jre(l):new Zre(l),d=[i];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),Qre(r,i,l,n)}var eae={kernelName:Gl,backendName:"webgl",kernelFunc:yd},tae=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=as({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:c}}),y=yd({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),y},nae={kernelName:wl,backendName:"webgl",kernelFunc:tae};function sae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=E9(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var rae={kernelName:a0,backendName:"webgl",kernelFunc:sae};function aae(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=C.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var oae={kernelName:o0,backendName:"webgl",kernelFunc:aae},iae="return float(a != b);",H9=zn({opSnippet:iae,cpuKernelImpl:Fne,dtype:"bool"}),lae={kernelName:ri,backendName:"webgl",kernelFunc:H9};function Xh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ls({inputs:{x:r.complexTensorInfos.real},backend:n})}var uae={kernelName:nh,backendName:"webgl",kernelFunc:Xh},cae="return float(int(x));";function dae(e,t){let n=new va(e.shape,cae),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function ky(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Ls({inputs:{x:r},backend:n});let o=Ut(r.shape),i=ky({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Ii({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Xh({inputs:{input:r},backend:n}),i=ky({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Ls({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(n.shouldExecuteOnCPU([r])){let o=n.texData.get(r.dataId).values,[i,l,u]=mne(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}if(a==="int32")return dae(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=H9({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var pae={kernelName:Fo,backendName:"webgl",kernelFunc:ky},G7="return ceil(x);",hae=dt({opSnippet:G7,packedOpSnippet:G7,cpuKernelImpl:gne}),fae={kernelName:Na,backendName:"webgl",kernelFunc:hae},mae=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` + `}};function kre(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Gt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function fd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Gt.parseSliceParams(r,a,o);if(Gt.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=pne(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=n.texData.get(r.dataId),c=Gt.isSliceContinous(r.shape,i,l);if(u||!c){let p=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wre(l):new bre(l),d=[i];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),kre(r,i,l,n)}var Sre={kernelName:Gl,backendName:"webgl",kernelFunc:fd},Ire=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=os({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:c}}),y=fd({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),y},Cre={kernelName:fl,backendName:"webgl",kernelFunc:Ire};function Tre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=b9(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var Nre={kernelName:Qm,backendName:"webgl",kernelFunc:Tre};function Ere(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=T.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Rre={kernelName:e0,backendName:"webgl",kernelFunc:Ere},_re="return float(a != b);",O9=zn({opSnippet:_re,cpuKernelImpl:ane,dtype:"bool"}),Dre={kernelName:Dl,backendName:"webgl",kernelFunc:O9};function Uh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ls({inputs:{x:r.complexTensorInfos.real},backend:n})}var $re={kernelName:Yp,backendName:"webgl",kernelFunc:Uh},Pre="return float(int(x));";function Fre(e,t){let n=new xa(e.shape,Pre),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function xy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Ls({inputs:{x:r},backend:n});let o=Vt(r.shape),i=xy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fi({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Uh({inputs:{input:r},backend:n}),i=xy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Ls({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(n.shouldExecuteOnCPU([r])){let o=n.texData.get(r.dataId).values,[i,l,u]=Lte(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}if(a==="int32")return Fre(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=O9({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Ore={kernelName:Ao,backendName:"webgl",kernelFunc:xy},M7="return ceil(x);",Mre=dt({opSnippet:M7,packedOpSnippet:M7,cpuKernelImpl:Bte}),zre={kernelName:xo,backendName:"webgl",kernelFunc:Mre},Lre=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { float value = getAAtOutCoords(); @@ -2134,7 +2134,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel setOutput(clamp(value, minVal, maxVal)); } - `}},gae=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` + `}},Bre=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { vec4 value = getAAtOutCoords(); @@ -2145,7 +2145,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } - `}};function yae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;H().getBool("WEBGL_PACK_CLIP")?i=new gae(r.shape):i=new mae(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var Aae={kernelName:Ea,backendName:"webgl",kernelFunc:yae},xae=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` + `}};function Wre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;H().getBool("WEBGL_PACK_CLIP")?i=new Bre(r.shape):i=new Lre(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var Vre={kernelName:Na,backendName:"webgl",kernelFunc:Wre},Ure=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); @@ -2158,7 +2158,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } - `}};function H7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function bae(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new xae(s.shape),o=[H7(s,r.complexTensorInfos.real),H7(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var vae={kernelName:Kp,backendName:"webgl",kernelFunc:bae},wae=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f= ${i[f-1]}) { return getChannel( - getT${f}(${um(o,l,m)}), - vec2(${um(u,l,m)})); + getT${f}(${rm(o,l,m)}), + vec2(${rm(u,l,m)})); }`}let d=i.length,h=i[i.length-1];p+=` return getChannel( - getT${d}(${um(o,l,h)}), - vec2(${um(u,l,h)}));`,this.userCode=` + getT${d}(${rm(o,l,h)}), + vec2(${rm(u,l,h)}));`,this.userCode=` float getValue(${o.map(f=>"int "+f)}) { ${p} } @@ -2204,7 +2204,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(result); } - `}};function um(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function z2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ls({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Iae={kernelName:Qp,backendName:"webgl",kernelFunc:z2};function Ap(e,t,n){let s=e[0].dtype;if(s==="complex64"){let p=e.map(g=>Xh({inputs:{input:g},backend:n})),d=e.map(g=>z2({inputs:{input:g},backend:n})),h=Ap(p,t,n),f=Ap(d,t,n),m=Ii({inputs:{real:h,imag:f},backend:n});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let p=e.map(x=>{let A=v.sizeFromShape(x.shape.slice(t));return ve({inputs:{x},backend:n,attrs:{shape:[-1,A]}})}),d=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),h=C.computeOutShape(p.map(x=>x.shape),1),f=p[0].shape[0]===1,m=yne(d,h,s,f),g=C.computeOutShape(e.map(x=>x.shape),t),y=n.makeTensorInfo(g,s,m);return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}let a=H().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>a){let p=[];for(let h=0;h1){let p=new kae(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,s)}let{tensors2D:o,outShape:i}=Sae(e,t,n),l=new wae(o.map(p=>p.shape)),u=n.runWebGLProgram(l,o,s);o.forEach(p=>n.disposeIntermediateTensorInfo(p));let c=ve({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),c}function Sae(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function j9(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Ls({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,a),Ap(i,a,n)}var Cae={kernelName:kl,backendName:"webgl",kernelFunc:j9},q9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,x=m?3:1,A="",b="";n&&(s?A=`float activation(float a) { + `}};function rm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function D2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ls({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Xre={kernelName:Xp,backendName:"webgl",kernelFunc:D2};function hp(e,t,n){let s=e[0].dtype;if(s==="complex64"){let p=e.map(g=>Uh({inputs:{input:g},backend:n})),d=e.map(g=>D2({inputs:{input:g},backend:n})),h=hp(p,t,n),f=hp(d,t,n),m=fi({inputs:{real:h,imag:f},backend:n});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let p=e.map(x=>{let A=v.sizeFromShape(x.shape.slice(t));return ve({inputs:{x},backend:n,attrs:{shape:[-1,A]}})}),d=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),h=T.computeOutShape(p.map(x=>x.shape),1),f=p[0].shape[0]===1,m=Wte(d,h,s,f),g=T.computeOutShape(e.map(x=>x.shape),t),y=n.makeTensorInfo(g,s,m);return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}let a=H().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>a){let p=[];for(let h=0;h1){let p=new qre(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,s)}let{tensors2D:o,outShape:i}=Kre(e,t,n),l=new jre(o.map(p=>p.shape)),u=n.runWebGLProgram(l,o,s);o.forEach(p=>n.disposeIntermediateTensorInfo(p));let c=ve({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),c}function Kre(e,t,n){let s=T.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function M9(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Ls({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return T.assertParamsConsistent(l,a),hp(i,a,n)}var Zre={kernelName:ml,backendName:"webgl",kernelFunc:M9},z9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,x=m?3:1,A="",b="";n&&(s?A=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:r?A=`float activation(float a) { @@ -2338,7 +2338,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel ${b} setOutput(result); } - `}},Tae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` + `}},Yre=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${r}, ${a}, ${o}); const ivec3 pads = ivec3(${t}, ${n}, ${s}); @@ -2426,7 +2426,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}},X9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=us(this.outputShape.length);let a=e.padInfo.left,o=e.strideWidth,i=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,c=u,p=` + `}},L9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=cs(this.outputShape.length);let a=e.padInfo.left,o=e.strideWidth,i=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,c=u,p=` int xR; int xC; int xCOffset; vec4 wTexel; vec4 previous; vec4 final;`;for(let m=0;m=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function K9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(a!=null){let b=Xm(a.shape,h);b!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:b}}),y.push(a))}if(r!=null){let b=Xm(r.shape,h);b!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:b}}),y.push(r))}if(!((p===1||d===1)&&c>W9)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},I=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Bp(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let E=qm({a:w,b:k,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),_=s.texData.get(E.dataId);v.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=I,_.shape=n.outShape,g=Ls({inputs:{x:E},backend:s}),g.shape=n.outShape,y.push(E)}else{let b=n.outHeight*n.outWidth,w=ve({inputs:{x:e},backend:s,attrs:{shape:h?[n.batchSize,b,n.inChannels]:[n.batchSize,n.inChannels,b]}}),I=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=qm({a:h?w:I,b:h?I:w,transposeA:!h,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:k},backend:s,attrs:{shape:n.outShape}}),y.push(w),y.push(I),y.push(k)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function Z9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=d*p,y=[n.batchSize,m,g],x=!0,A=!1,b=[];if(a!=null){let K=Xm(a.shape,f);K!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:K}}),b.push(a))}if(r!=null){let K=Xm(r.shape,f);K!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:K}}),b.push(r))}let w=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w);let I=new Nae(y,n),k=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=s.runWebGLProgram(I,[e],"float32",k),_=ve({inputs:{x:E},backend:s,attrs:{shape:y}});b.push(E),b.push(_);let D=r!=null,R=a!=null,P=i==="leakyrelu",T=i?Wp(i,!0):null,M=new B9(f?_.shape:w.shape,f?w.shape:_.shape,f?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],x,A,D,T,R,P),W=f?[_,w]:[w,_];if(r&&W.push(r),R&&W.push(a),P){let K=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));W.push(K),b.push(K)}let G=s.runWebGLProgram(M,W,"float32"),X=ve({inputs:{x:G},backend:s,attrs:{shape:n.outShape}});b.push(G);for(let K of b)s.disposeIntermediateTensorInfo(K);return X}function Eae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=K9({x:r,filter:a,convInfo:d,backend:n});else if(d.strideWidth<=2&&p==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let m=new X9(d),g=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];h=n.runWebGLProgram(m,[r,a],"float32",g)}else if(H().getBool("WEBGL_CONV_IM2COL"))h=Z9({x:r,filter:a,convInfo:d,backend:n});else{let m=new q9(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var Rae={kernelName:Oo,backendName:"webgl",kernelFunc:Eae},_ae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=` + `}};function Um(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function B9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(a!=null){let b=Um(a.shape,h);b!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:b}}),y.push(a))}if(r!=null){let b=Um(r.shape,h);b!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:b}}),y.push(r))}if(!((p===1||d===1)&&c>D9)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},S=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Pp(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let E=Vm({a:w,b:k,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),_=s.texData.get(E.dataId);v.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=S,_.shape=n.outShape,g=Ls({inputs:{x:E},backend:s}),g.shape=n.outShape,y.push(E)}else{let b=n.outHeight*n.outWidth,w=ve({inputs:{x:e},backend:s,attrs:{shape:h?[n.batchSize,b,n.inChannels]:[n.batchSize,n.inChannels,b]}}),S=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=Vm({a:h?w:S,b:h?S:w,transposeA:!h,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:k},backend:s,attrs:{shape:n.outShape}}),y.push(w),y.push(S),y.push(k)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function W9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=d*p,y=[n.batchSize,m,g],x=!0,A=!1,b=[];if(a!=null){let X=Um(a.shape,f);X!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:X}}),b.push(a))}if(r!=null){let X=Um(r.shape,f);X!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:X}}),b.push(r))}let w=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w);let S=new Jre(y,n),k=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=s.runWebGLProgram(S,[e],"float32",k),_=ve({inputs:{x:E},backend:s,attrs:{shape:y}});b.push(E),b.push(_);let D=r!=null,R=a!=null,P=i==="leakyrelu",C=i?Fp(i,!0):null,M=new _9(f?_.shape:w.shape,f?w.shape:_.shape,f?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],x,A,D,C,R,P),L=f?[_,w]:[w,_];if(r&&L.push(r),R&&L.push(a),P){let X=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));L.push(X),b.push(X)}let G=s.runWebGLProgram(M,L,"float32"),K=ve({inputs:{x:G},backend:s,attrs:{shape:n.outShape}});b.push(G);for(let X of b)s.disposeIntermediateTensorInfo(X);return K}function Qre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=B9({x:r,filter:a,convInfo:d,backend:n});else if(d.strideWidth<=2&&p==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let m=new L9(d),g=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];h=n.runWebGLProgram(m,[r,a],"float32",g)}else if(H().getBool("WEBGL_CONV_IM2COL"))h=W9({x:r,filter:a,convInfo:d,backend:n});else{let m=new z9(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var eae={kernelName:bo,backendName:"webgl",kernelFunc:Qre},tae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2711,7 +2711,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}},Dae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=` + `}},nae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { @@ -2764,7 +2764,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}},$ae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=` + `}},sae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; @@ -2806,7 +2806,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}},Pae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=` + `}},rae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${i}, ${l}, ${u}); void main() { @@ -2863,12 +2863,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}};function Fae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),h=new _ae(d);return n.runWebGLProgram(h,[r,a],"float32")}var Oae={kernelName:i0,backendName:"webgl",kernelFunc:Fae};function Mae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=new Dae(d);return n.runWebGLProgram(h,[r,a],"float32")}var zae={kernelName:Mo,backendName:"webgl",kernelFunc:Mae};function Lae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=C.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new Tae(u);return n.runWebGLProgram(c,[r,a],"float32")}var Bae={kernelName:Zp,backendName:"webgl",kernelFunc:Lae};function Wae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=C.computeConv3DInfo(r.shape,l,o,1,i),c=new $ae(u);return n.runWebGLProgram(c,[r,a],"float32")}var Vae={kernelName:l0,backendName:"webgl",kernelFunc:Wae};function Uae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=C.computeConv3DInfo(l,a.shape,i,1,o),c=new Pae(u);return n.runWebGLProgram(c,[r,a],"float32")}var Gae={kernelName:u0,backendName:"webgl",kernelFunc:Uae},Hae=gd+` + `}};function aae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),h=new tae(d);return n.runWebGLProgram(h,[r,a],"float32")}var oae={kernelName:t0,backendName:"webgl",kernelFunc:aae};function iae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=new nae(d);return n.runWebGLProgram(h,[r,a],"float32")}var lae={kernelName:vo,backendName:"webgl",kernelFunc:iae};function uae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=T.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new Yre(u);return n.runWebGLProgram(c,[r,a],"float32")}var cae={kernelName:Hp,backendName:"webgl",kernelFunc:uae};function dae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=T.computeConv3DInfo(r.shape,l,o,1,i),c=new sae(u);return n.runWebGLProgram(c,[r,a],"float32")}var pae={kernelName:n0,backendName:"webgl",kernelFunc:dae};function hae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=T.computeConv3DInfo(l,a.shape,i,1,o),c=new rae(u);return n.runWebGLProgram(c,[r,a],"float32")}var fae={kernelName:s0,backendName:"webgl",kernelFunc:hae},mae=hd+` return cos(x); -`,jae=dt({opSnippet:Hae}),qae={kernelName:zo,backendName:"webgl",kernelFunc:jae},Xae=` +`,gae=dt({opSnippet:mae}),yae={kernelName:wo,backendName:"webgl",kernelFunc:gae},Aae=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; -`,Kae=dt({opSnippet:Xae}),Zae={kernelName:Lo,backendName:"webgl",kernelFunc:Kae},Yae=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,p]=n;this.outputShape=[u,c,p,l];let d=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,A,b]=p>1?[`${(i-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` +`,xae=dt({opSnippet:Aae}),bae={kernelName:ko,backendName:"webgl",kernelFunc:xae},vae=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,p]=n;this.outputShape=[u,c,p,l];let d=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,A,b]=p>1?[`${(i-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` const float height_ratio = float(${m}); const float width_ratio = float(${x}); void main() { @@ -2929,20 +2929,20 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel setOutput(newValue); } } - `}},Jae=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Yae(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},Qae={kernelName:Sl,backendName:"webgl",kernelFunc:Jae},Up;(function(e){e.Prod="*",e.Sum="+"})(Up||(Up={}));var j7=class{constructor(e,t,n,s){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,a=this.op===Up.Prod?"1.0":"0.0",o=n?a:`getX(${q7(r,"coords",this.op)})`,i=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=s?`end != ${i-1}`:"end != 0",u=s?"end + 1":"end - 1"):(l=s?`end + pow2 < ${i}`:"end >= pow2",u=s?"end + pow2":"end - pow2"),this.userCode=` + `}},wae=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new vae(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},kae={kernelName:yl,backendName:"webgl",kernelFunc:wae},Mp;(function(e){e.Prod="*",e.Sum="+"})(Mp||(Mp={}));var L7=class{constructor(e,t,n,s){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,a=this.op===Mp.Prod?"1.0":"0.0",o=n?a:`getX(${B7(r,"coords",this.op)})`,i=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=s?`end != ${i-1}`:"end != 0",u=s?"end + 1":"end - 1"):(l=s?`end + pow2 < ${i}`:"end >= pow2",u=s?"end + pow2":"end - pow2"),this.userCode=` void main() { ${vt(r)} coords = getOutputCoords(); - int end = ${X7(r,"coords",this.op)}; + int end = ${W7(r,"coords",this.op)}; float val = ${o}; int pow2 = int(pow(2.0, index)); if (${l}) { int idx = ${u}; - ${X7(r,"coords",this.op)} = idx; - val ${this.op}= getX(${q7(r,"coords",this.op)}); + ${W7(r,"coords",this.op)} = idx; + val ${this.op}= getX(${B7(r,"coords",this.op)}); } setOutput(val); } - `}};function q7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function X7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function Y9(e,t,n,s,r,a){let o=t.shape.length,i=C.getAxesPermutation([s],o),l=t;i!=null&&(l=as({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=C.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=Ls({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new j7(e,l.shape,!1,a),f=[[d]],m=p;p=n.runWebGLProgram(h,[p],p.dtype,f),n.disposeIntermediateTensorInfo(m)}if(r){let d=new j7(e,l.shape,r,a),h=p;p=n.runWebGLProgram(d,[p],p.dtype),n.disposeIntermediateTensorInfo(h)}if(i!=null){let d=C.getUndoAxesPermutation(i),h=as({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(l),h}return p}function eoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return Y9(Up.Prod,r,n,a,o,i)}var toe={kernelName:Il,backendName:"webgl",kernelFunc:eoe};function noe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return Y9(Up.Sum,r,n,a,o,i)}var soe={kernelName:Bo,backendName:"webgl",kernelFunc:noe};function roe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=E9(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=fne(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var aoe={kernelName:c0,backendName:"webgl",kernelFunc:roe},ooe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` + `}};function B7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function W7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function V9(e,t,n,s,r,a){let o=t.shape.length,i=T.getAxesPermutation([s],o),l=t;i!=null&&(l=os({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=T.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=Ls({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new L7(e,l.shape,!1,a),f=[[d]],m=p;p=n.runWebGLProgram(h,[p],p.dtype,f),n.disposeIntermediateTensorInfo(m)}if(r){let d=new L7(e,l.shape,r,a),h=p;p=n.runWebGLProgram(d,[p],p.dtype),n.disposeIntermediateTensorInfo(h)}if(i!=null){let d=T.getUndoAxesPermutation(i),h=os({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(l),h}return p}function Sae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return V9(Mp.Prod,r,n,a,o,i)}var Iae={kernelName:gl,backendName:"webgl",kernelFunc:Sae};function Cae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return V9(Mp.Sum,r,n,a,o,i)}var Tae={kernelName:So,backendName:"webgl",kernelFunc:Cae};function Nae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=b9(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=zte(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Eae={kernelName:r0,backendName:"webgl",kernelFunc:Nae},Rae=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -2961,7 +2961,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel float result = ${this.getInputSamplingString()}; setOutput(result); } - `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function ioe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=new ooe(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var loe={kernelName:Cl,backendName:"webgl",kernelFunc:ioe},J9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=us(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) { + `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _ae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=new Rae(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Dae={kernelName:Al,backendName:"webgl",kernelFunc:_ae},U9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=cs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:r?l=`float activation(float a) { @@ -3014,7 +3014,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel ${u} setOutput(result); } - `}},Q9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=us(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,p=c,d=` + `}},G9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=cs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,p=c,d=` int xR; int xC; int xCOffset; vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let p=C.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d;H().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new Q9(p):d=new J9(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var coe={kernelName:Wo,backendName:"webgl",kernelFunc:uoe},doe=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=` + `}};function $ae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let p=T.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d;H().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new G9(p):d=new U9(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var Pae={kernelName:Io,backendName:"webgl",kernelFunc:$ae},Fae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -3238,7 +3238,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}},poe=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=` + `}},Oae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${a}, ${o}); void main() { @@ -3283,13 +3283,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}};function hoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,p=C.computeConv2DInfo(r.shape,c,o,i,l,u,!0),d=new doe(p);return n.runWebGLProgram(d,[r,a],"float32")}var foe={kernelName:d0,backendName:"webgl",kernelFunc:hoe};function moe(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,p=C.computeConv2DInfo(c,a.shape,o,i,l,u,!0),d=new poe(p);return n.runWebGLProgram(d,[r,a],"float32")}var goe={kernelName:p0,backendName:"webgl",kernelFunc:moe},yoe=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` + `}};function Mae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,p=T.computeConv2DInfo(r.shape,c,o,i,l,u,!0),d=new Fae(p);return n.runWebGLProgram(d,[r,a],"float32")}var zae={kernelName:a0,backendName:"webgl",kernelFunc:Mae};function Lae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,p=T.computeConv2DInfo(c,a.shape,o,i,l,u,!0),d=new Oae(p);return n.runWebGLProgram(d,[r,a],"float32")}var Bae={kernelName:o0,backendName:"webgl",kernelFunc:Lae},Wae=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } - `}};function Aoe(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new yoe(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var xoe={kernelName:h0,backendName:"webgl",kernelFunc:Aoe},boe=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:p}=s;this.userCode=` + `}};function Vae(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new Wae(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var Uae={kernelName:i0,backendName:"webgl",kernelFunc:Vae},Gae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:p}=s;this.userCode=` const ivec2 strides = ivec2(${r}, ${a}); const ivec2 pads = ivec2(${c}, ${p}); const float neg_infinity = -3.4e38; @@ -3327,7 +3327,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel float result = curVal; setOutput(result); } - `}};function voe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=C.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,p=new boe(u);c=n.runWebGLProgram(p,[r,a],"float32");let d=ve({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var woe={kernelName:Yp,backendName:"webgl",kernelFunc:voe};function koe(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m=0&&(d=M2({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var Ioe={kernelName:Jp,backendName:"webgl",kernelFunc:koe},Soe="return (x >= 0.0) ? x : (exp(x) - 1.0);",Coe=` + `}};function Hae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=T.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,p=new Gae(u);c=n.runWebGLProgram(p,[r,a],"float32");let d=ve({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var jae={kernelName:jp,backendName:"webgl",kernelFunc:Hae};function qae(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m=0&&(d=_2({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var Xae={kernelName:qp,backendName:"webgl",kernelFunc:qae},Kae="return (x >= 0.0) ? x : (exp(x) - 1.0);",Zae=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -3336,29 +3336,29 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,Toe=dt({opSnippet:Soe,packedOpSnippet:Coe}),Noe={kernelName:Uo,backendName:"webgl",kernelFunc:Toe},Eoe="return (b >= 1.0) ? a : a * (b + 1.0);",Roe=` +`,Yae=dt({opSnippet:Kae,packedOpSnippet:Zae}),Jae={kernelName:To,backendName:"webgl",kernelFunc:Yae},Qae="return (b >= 1.0) ? a : a * (b + 1.0);",eoe=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); -`,_oe=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qh(Roe,s.shape,r.shape):new yc(Eoe,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},Doe={kernelName:f0,backendName:"webgl",kernelFunc:_oe},$oe=` +`,toe=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vh(eoe,s.shape,r.shape):new yc(Qae,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},noe={kernelName:l0,backendName:"webgl",kernelFunc:toe},soe=` return vec4(equal(a, b)); -`,Poe="return float(a == b);",Foe=zn({opSnippet:Poe,packedOpSnippet:$oe,dtype:"bool",cpuKernelImpl:Ane}),Ooe={kernelName:Go,backendName:"webgl",kernelFunc:Foe},Moe=` +`,roe="return float(a == b);",aoe=zn({opSnippet:roe,packedOpSnippet:soe,dtype:"bool",cpuKernelImpl:Vte}),ooe={kernelName:xl,backendName:"webgl",kernelFunc:aoe},ioe=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. - float p = ${C.ERF_P}; - float a1 = ${C.ERF_A1}; - float a2 = ${C.ERF_A2}; - float a3 = ${C.ERF_A3}; - float a4 = ${C.ERF_A4}; - float a5 = ${C.ERF_A5}; + float p = ${T.ERF_P}; + float a1 = ${T.ERF_A1}; + float a2 = ${T.ERF_A2}; + float a3 = ${T.ERF_A3}; + float a4 = ${T.ERF_A4}; + float a5 = ${T.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); -`,zoe=dt({opSnippet:Moe}),Loe={kernelName:Rc,backendName:"webgl",kernelFunc:zoe},Boe=gd+` +`,loe=dt({opSnippet:ioe}),uoe={kernelName:Ec,backendName:"webgl",kernelFunc:loe},coe=hd+` return exp(x); -`,Woe=` +`,doe=` vec4 result = exp(x); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; @@ -3367,7 +3367,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel result.a = isNaN.a ? x.a : result.a; return result; -`,eC=dt({opSnippet:Boe,packedOpSnippet:Woe,cpuKernelImpl:xne,dtype:"float32"}),Voe={kernelName:Ra,backendName:"webgl",kernelFunc:eC};function Iy(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var Uoe={kernelName:Tl,backendName:"webgl",kernelFunc:Iy},K7="return exp(x) - 1.0;",Goe=dt({opSnippet:K7,packedOpSnippet:K7,cpuKernelImpl:bne}),Hoe={kernelName:Ho,backendName:"webgl",kernelFunc:Goe},Z7=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` +`,H9=dt({opSnippet:coe,packedOpSnippet:doe,cpuKernelImpl:Ute,dtype:"float32"}),poe={kernelName:No,backendName:"webgl",kernelFunc:H9};function by(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var hoe={kernelName:bl,backendName:"webgl",kernelFunc:by},V7="return exp(x) - 1.0;",foe=dt({opSnippet:V7,packedOpSnippet:V7,cpuKernelImpl:Gte}),moe={kernelName:vl,backendName:"webgl",kernelFunc:foe},U7=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${r}; float unaryOpComplex(float real, float expR, float imag, float expI) { @@ -3400,12 +3400,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } - `}};function tC(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new Z7("real",l,t),c=new Z7("imag",l,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Ii({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function joe(e){let{inputs:t,backend:n}=e,{input:s}=t;return tC(s,!1,n)}var qoe={kernelName:m0,backendName:"webgl",kernelFunc:joe},Xoe=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=` + `}};function j9(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new U7("real",l,t),c=new U7("imag",l,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=fi({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function goe(e){let{inputs:t,backend:n}=e,{input:s}=t;return j9(s,!1,n)}var yoe={kernelName:u0,backendName:"webgl",kernelFunc:goe},Aoe=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=` void main() { // Input can be obtained from uniform value. setOutput(value); } - `}};function Kh(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Xoe(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Koe={kernelName:_c,backendName:"webgl",kernelFunc:Kh},Zoe=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` + `}};function Gh(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Aoe(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var xoe={kernelName:Rc,backendName:"webgl",kernelFunc:Gh},boe=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; @@ -3419,7 +3419,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(outputValue); } - `}},Yoe={kernelName:Nl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Zoe(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},Y7="return floor(x);",Joe=dt({opSnippet:Y7,packedOpSnippet:Y7,cpuKernelImpl:vne}),Qoe={kernelName:_a,backendName:"webgl",kernelFunc:Joe},eie=` + `}},voe={kernelName:wl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new boe(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},G7="return floor(x);",woe=dt({opSnippet:G7,packedOpSnippet:G7,cpuKernelImpl:Hte}),koe={kernelName:Eo,backendName:"webgl",kernelFunc:woe},Soe=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); @@ -3429,7 +3429,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } else { return NAN; } -`,tie=` +`,Ioe=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); @@ -3450,7 +3450,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); -`,nie=zn({opSnippet:eie,packedOpSnippet:tie,dtype:"int32"}),sie={kernelName:jo,backendName:"webgl",kernelFunc:nie},rie=class{constructor(e){this.variableNames=["A"];let t=ls(),[n,s]=e;this.outputShape=e,this.userCode=` +`,Coe=zn({opSnippet:Soe,packedOpSnippet:Ioe,dtype:"int32"}),Toe={kernelName:Ro,backendName:"webgl",kernelFunc:Coe},Noe=class{constructor(e){this.variableNames=["A"];let t=us(),[n,s]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -3472,7 +3472,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel setOutput(floor(value * 255.0 + 0.5)); } - `}},aie=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=ls(),[n,s]=e;this.outputShape=e,this.userCode=` + `}},Eoe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=us(),[n,s]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -3506,7 +3506,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel ${t.output} = result; } - `}},oie={kernelName:Np,backendName:"webgl",kernelFunc:iie},Gu,E3=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function iie(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],p=[u,l,a];if(i||o){let m=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Gu==null||m!==E3)&&(E3=m,Gu=document.createElement("canvas").getContext("2d",{willReadFrequently:E3})),Gu.canvas.width=l,Gu.canvas.height=u,Gu.drawImage(r,0,0,l,u),r=Gu.canvas}let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=Js.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=H().getBool("WEBGL_PACK")?new aie(p):new rie(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function lie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m),y,x=[],A=o!=null,b=i!=null,w=h==="leakyrelu",I=()=>{let E=[r,a],_=(D,R)=>{if(R==="NCHW"&&D.shape.length===1&&D.shape[0]!==1){let P=ve({inputs:{x:D},backend:n,attrs:{shape:[D.shape[0],1,1]}});return x.push(P),P}return D};if(A&&E.push(_(o,c)),b&&E.push(_(i,c)),w){let D=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push(D),x.push(D)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=K9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(g.strideWidth<=2&&m==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let E=h?Wp(h,!0):null,_=new X9(g,A,E,b,w),D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=I();y=n.runWebGLProgram(_,R,"float32",D)}else if(H().getBool("WEBGL_CONV_IM2COL"))y=Z9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let E=h?Wp(h,!1):null,_=new q9(g,A,E,b,w),D=I();y=n.runWebGLProgram(_,D,"float32")}let k=ve({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return x.push(y),x.forEach(E=>n.disposeIntermediateTensorInfo(E)),k}var uie={kernelName:xo,backendName:"webgl",kernelFunc:lie};function cie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=C.computeConv2DInfo(r.shape,a.shape,l,m,u,p,!0),y=H().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,x=d?Wp(d,y):null,A=[r,a],b=o!=null,w=i!=null,I=d==="leakyrelu";if(b&&A.push(o),w&&A.push(i),I){let D=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));A.push(D),f.push(D)}let k;y?k=new Q9(g,b,x,w,I):k=new J9(g,b,x,w,I);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],_=n.runWebGLProgram(k,A,"float32",E);return f.forEach(D=>n.disposeIntermediateTensorInfo(D)),_}var die={kernelName:bo,backendName:"webgl",kernelFunc:cie},pie=class{constructor(e,t,n,s){this.sliceDim=e,this.strides=t,this.paramsShape=s,this.variableNames=["x","indices"],this.outputShape=n;let r=vt(t.length),a=vt(n.length),o=this.sliceDim>1?"strides[j]":"strides",i=vt(s.length),l=s.length>1?"paramsShape[j]":"paramsShape";this.userCode=` + `}},Roe={kernelName:wp,backendName:"webgl",kernelFunc:_oe},Gu,k3=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function _oe(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],p=[u,l,a];if(i||o){let m=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Gu==null||m!==k3)&&(k3=m,Gu=document.createElement("canvas").getContext("2d",{willReadFrequently:k3})),Gu.canvas.width=l,Gu.canvas.height=u,Gu.drawImage(r,0,0,l,u),r=Gu.canvas}let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=Zs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=H().getBool("WEBGL_PACK")?new Eoe(p):new Noe(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function Doe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=T.convertConv2DDataFormat(c),g=T.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m),y,x=[],A=o!=null,b=i!=null,w=h==="leakyrelu",S=()=>{let E=[r,a],_=(D,R)=>{if(R==="NCHW"&&D.shape.length===1&&D.shape[0]!==1){let P=ve({inputs:{x:D},backend:n,attrs:{shape:[D.shape[0],1,1]}});return x.push(P),P}return D};if(A&&E.push(_(o,c)),b&&E.push(_(i,c)),w){let D=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push(D),x.push(D)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=B9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(g.strideWidth<=2&&m==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let E=h?Fp(h,!0):null,_=new L9(g,A,E,b,w),D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=S();y=n.runWebGLProgram(_,R,"float32",D)}else if(H().getBool("WEBGL_CONV_IM2COL"))y=W9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let E=h?Fp(h,!1):null,_=new z9(g,A,E,b,w),D=S();y=n.runWebGLProgram(_,D,"float32")}let k=ve({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return x.push(y),x.forEach(E=>n.disposeIntermediateTensorInfo(E)),k}var $oe={kernelName:to,backendName:"webgl",kernelFunc:Doe};function Poe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=T.computeConv2DInfo(r.shape,a.shape,l,m,u,p,!0),y=H().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,x=d?Fp(d,y):null,A=[r,a],b=o!=null,w=i!=null,S=d==="leakyrelu";if(b&&A.push(o),w&&A.push(i),S){let D=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));A.push(D),f.push(D)}let k;y?k=new G9(g,b,x,w,S):k=new U9(g,b,x,w,S);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],_=n.runWebGLProgram(k,A,"float32",E);return f.forEach(D=>n.disposeIntermediateTensorInfo(D)),_}var Foe={kernelName:no,backendName:"webgl",kernelFunc:Poe},Ooe=class{constructor(e,t,n,s){this.sliceDim=e,this.strides=t,this.paramsShape=s,this.variableNames=["x","indices"],this.outputShape=n;let r=vt(t.length),a=vt(n.length),o=this.sliceDim>1?"strides[j]":"strides",i=vt(s.length),l=s.length>1?"paramsShape[j]":"paramsShape";this.userCode=` ${r} strides = ${r}(${this.strides}); ${i} paramsShape = ${i}(${this.paramsShape}); void main() { @@ -3521,24 +3521,24 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1])); } - `}};function hie(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=C.prepareAndValidate(s,r),d=ve({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),x=n.bufferSync(s),A=wne(y,x,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,A.values)}let f=new pie(o,p,[u,c],s.shape),m=n.runWebGLProgram(f,[h,d],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var fie={kernelName:Rl,backendName:"webgl",kernelFunc:hie},mie=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=vt(this.rank),s=gie(e,2);this.userCode=` + `}};function Moe(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=T.prepareAndValidate(s,r),d=ve({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),x=n.bufferSync(s),A=jte(y,x,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,A.values)}let f=new Ooe(o,p,[u,c],s.shape),m=n.runWebGLProgram(f,[h,d],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var zoe={kernelName:Sl,backendName:"webgl",kernelFunc:Moe},Loe=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=vt(this.rank),s=Boe(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); int index = int(getIndices(resRC.x, resRC.z)); float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0; setOutput(inBounds * getA(${s})); } - `}};function gie(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r=0,()=>`GatherV2: the index value ${w} is not in [0, ${A-1}]`)}}let u=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=ve({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ve({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let x=n.bufferSync(h),A=n.bufferSync(d),b=kne(A,x,f);return p.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new mie(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let y=ve({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var yie={kernelName:El,backendName:"webgl",kernelFunc:nC},Aie="return float(a > b);",xie=` + `}};function Boe(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r=0,()=>`GatherV2: the index value ${w} is not in [0, ${A-1}]`)}}let u=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=ve({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ve({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let x=n.bufferSync(h),A=n.bufferSync(d),b=qte(A,x,f);return p.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new Loe(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let y=ve({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var Woe={kernelName:kl,backendName:"webgl",kernelFunc:q9},Voe="return float(a > b);",Uoe=` return vec4(greaterThan(a, b)); -`,bie=zn({opSnippet:Aie,packedOpSnippet:xie,cpuKernelImpl:Ine,dtype:"bool"}),vie={kernelName:Xo,backendName:"webgl",kernelFunc:bie},wie="return float(a >= b);",kie=` +`,Goe=zn({opSnippet:Voe,packedOpSnippet:Uoe,cpuKernelImpl:Xte,dtype:"bool"}),Hoe={kernelName:Il,backendName:"webgl",kernelFunc:Goe},joe="return float(a >= b);",qoe=` return vec4(greaterThanEqual(a, b)); -`,Iie=zn({opSnippet:wie,packedOpSnippet:kie,dtype:"bool",cpuKernelImpl:Sne}),Sie={kernelName:Da,backendName:"webgl",kernelFunc:Iie};function Cie(e){let{inputs:t,backend:n}=e,{input:s}=t;return tC(s,!0,n)}var Tie={kernelName:g0,backendName:"webgl",kernelFunc:Cie},Nie="return float(!isnan(x) && !isinf(x));",Eie=dt({opSnippet:Nie,dtype:"bool"}),Rie={kernelName:Dc,backendName:"webgl",kernelFunc:Eie},_ie="return float(isinf(x));",Die=dt({opSnippet:_ie,dtype:"bool"}),$ie={kernelName:$c,backendName:"webgl",kernelFunc:Die},Pie="return float(isnan(x));",Fie=dt({opSnippet:Pie,dtype:"bool"}),Oie={kernelName:Pc,backendName:"webgl",kernelFunc:Fie},Mie="return float(a < b);",zie=` +`,Xoe=zn({opSnippet:joe,packedOpSnippet:qoe,dtype:"bool",cpuKernelImpl:Kte}),Koe={kernelName:Do,backendName:"webgl",kernelFunc:Xoe};function Zoe(e){let{inputs:t,backend:n}=e,{input:s}=t;return j9(s,!0,n)}var Yoe={kernelName:c0,backendName:"webgl",kernelFunc:Zoe},Joe="return float(!isnan(x) && !isinf(x));",Qoe=dt({opSnippet:Joe,dtype:"bool"}),eie={kernelName:_c,backendName:"webgl",kernelFunc:Qoe},tie="return float(isinf(x));",nie=dt({opSnippet:tie,dtype:"bool"}),sie={kernelName:Dc,backendName:"webgl",kernelFunc:nie},rie="return float(isnan(x));",aie=dt({opSnippet:rie,dtype:"bool"}),oie={kernelName:Cl,backendName:"webgl",kernelFunc:aie},iie="return float(a < b);",lie=` return vec4(lessThan(a, b)); -`,Lie=zn({opSnippet:Mie,packedOpSnippet:zie,cpuKernelImpl:Cne,dtype:"bool"}),Bie={kernelName:Yo,backendName:"webgl",kernelFunc:Lie},Wie="return float(a <= b);",Vie=` +`,uie=zn({opSnippet:iie,packedOpSnippet:lie,cpuKernelImpl:Zte,dtype:"bool"}),cie={kernelName:Tl,backendName:"webgl",kernelFunc:uie},die="return float(a <= b);",pie=` return vec4(lessThanEqual(a, b)); -`,Uie=zn({opSnippet:Wie,packedOpSnippet:Vie,cpuKernelImpl:Tne,dtype:"bool"}),Gie={kernelName:Jo,backendName:"webgl",kernelFunc:Uie};function Hie(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=Nne(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var jie={kernelName:y0,backendName:"webgl",kernelFunc:Hie},qie=gd+` +`,hie=zn({opSnippet:die,packedOpSnippet:pie,cpuKernelImpl:Yte,dtype:"bool"}),fie={kernelName:Nl,backendName:"webgl",kernelFunc:hie};function mie(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=Jte(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var gie={kernelName:d0,backendName:"webgl",kernelFunc:mie},yie=hd+` return x < 0.0 ? 0./0. : log(x); -`,Xie=` +`,Aie=` vec4 result = log(x); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r); @@ -3546,18 +3546,18 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b); result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a); return result; -`,Kie=dt({opSnippet:qie,packedOpSnippet:Xie,cpuKernelImpl:Ene}),Zie={kernelName:$a,backendName:"webgl",kernelFunc:Kie},Yie=gd+` +`,xie=dt({opSnippet:yie,packedOpSnippet:Aie,cpuKernelImpl:Qte}),bie={kernelName:Fo,backendName:"webgl",kernelFunc:xie},vie=hd+` return log(1.0 + x); -`,Jie=dt({opSnippet:Yie}),Qie={kernelName:Fc,backendName:"webgl",kernelFunc:Jie},ele="return float(a >= 1.0 && b >= 1.0);",tle=` +`,wie=dt({opSnippet:vie}),kie={kernelName:$c,backendName:"webgl",kernelFunc:wie},Sie="return float(a >= 1.0 && b >= 1.0);",Iie=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); -`,nle=zn({opSnippet:ele,packedOpSnippet:tle,dtype:"bool"}),sle={kernelName:_l,backendName:"webgl",kernelFunc:nle},rle="return float(!(x >= 1.0));",ale=dt({opSnippet:rle}),ole={kernelName:Dl,backendName:"webgl",kernelFunc:ale},ile="return float(a >= 1.0 || b >= 1.0);",lle=` +`,Cie=zn({opSnippet:Sie,packedOpSnippet:Iie,dtype:"bool"}),Tie={kernelName:El,backendName:"webgl",kernelFunc:Cie},Nie="return float(!(x >= 1.0));",Eie=dt({opSnippet:Nie}),Rie={kernelName:Rl,backendName:"webgl",kernelFunc:Eie},_ie="return float(a >= 1.0 || b >= 1.0);",Die=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); -`,ule=zn({opSnippet:ile,packedOpSnippet:lle,dtype:"bool"}),cle={kernelName:Oc,backendName:"webgl",kernelFunc:ule},dle=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` +`,$ie=zn({opSnippet:_ie,packedOpSnippet:Die,dtype:"bool"}),Pie={kernelName:Pc,backendName:"webgl",kernelFunc:$ie},Fie=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3576,7 +3576,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel float val = x * ${i}; setOutput(val); } - `}},ple=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` + `}},Oie=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; @@ -3638,7 +3638,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel vec4 result = xAtOutputCoords * ${i}; setOutput(result); } - `}},hle=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=H().getBool("WEBGL_PACK_NORMALIZATION")?new ple(r.shape,a,o,i,l):new dle(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},fle={kernelName:eh,backendName:"webgl",kernelFunc:hle},mle=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=` + `}},Mie=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=H().getBool("WEBGL_PACK_NORMALIZATION")?new Oie(r.shape,a,o,i,l):new Fie(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},zie={kernelName:Kp,backendName:"webgl",kernelFunc:Mie},Lie=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3693,14 +3693,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(result); } - `}},gle=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,p=new mle(r.shape,i,l,u,c);return n.runWebGLProgram(p,[r,a,o],r.dtype)},yle={kernelName:A0,backendName:"webgl",kernelFunc:gle};function Ale(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=hu(i,e.dtype,"max",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function sC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let A=n.texData.get(h.dataId).values,b=new Array(i);for(let k=0;k{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,p=new Lie(r.shape,i,l,u,c);return n.runWebGLProgram(p,[r,a,o],r.dtype)},Wie={kernelName:p0,backendName:"webgl",kernelFunc:Bie};function Vie(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=hu(i,e.dtype,"max",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function X9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let A=n.texData.get(h.dataId).values,b=new Array(i);for(let k=0;k`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ls({inputs:{x:r},backend:n});let p=new Vp(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Sle={kernelName:ei,backendName:"webgl",kernelFunc:Ile};function Cle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,o,c,i,u,l),d=new fb(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Tle={kernelName:th,backendName:"webgl",kernelFunc:Cle},Nle=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=` +`,jie=zn({opSnippet:Gie,packedOpSnippet:Hie,cpuKernelImpl:tne}),qie={kernelName:Mo,backendName:"webgl",kernelFunc:jie};function Xie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;id(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ls({inputs:{x:r},backend:n});let p=new Op(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Kie={kernelName:zo,backendName:"webgl",kernelFunc:Xie};function Zie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],p=T.computePool3DInfo(r.shape,a,o,c,i,u,l),d=new cb(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Yie={kernelName:Zp,backendName:"webgl",kernelFunc:Zie},Jie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { @@ -3746,7 +3746,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}},Ele=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,p=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=` + `}},Qie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,p=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=` const ivec3 pads = ivec3(${c}, ${p}, ${d}); void main() { @@ -3810,14 +3810,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel } setOutput(dotProd); } - `}};function Rle(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(o.shape,i,l,p,u,c),h=new fb(d,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Ele(d),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var _le={kernelName:b0,backendName:"webgl",kernelFunc:Rle};function Dle(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;cd([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(i.shape,l,u,1,c,p),h=!0,f=new Vp(d,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Nle(d),y=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var $le={kernelName:x0,backendName:"webgl",kernelFunc:Dle};function Ple(e,t,n,s){let r=new Vp(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Vp(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var Fle={kernelName:v0,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(s.shape,r,a,u,o),[p,d]=Ple(s,i,c,l);return[p,d]}};function Ole(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=hu(i,"float32","mean",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var Mle={kernelName:ti,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,d=o.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;E{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];v.assert(T.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=T.computePool2DInfo(s.shape,r,a,u,o),[p,d]=rle(s,i,c,l);return[p,d]}};function ole(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=hu(i,"float32","mean",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var ile={kernelName:Lo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),u=l,c=T.getAxesPermutation(u,i),p=c!=null,d=o.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;Eu[0]+e[c]+u[1]);let s=e.length,r=vt(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=` +`,ple=zn({opSnippet:cle,packedOpSnippet:dle,cpuKernelImpl:nne}),hle={kernelName:Wo,backendName:"webgl",kernelFunc:ple},fle=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=vt(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=` int start = ${a}; int end = ${o}; @@ -3846,7 +3846,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel ${r} coords = outC - start; setOutput(getX(${i})); } - `}},Hle=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=vt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=rs("rc",s),l=rs("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=` + `}},mle=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=vt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=as("rc",s),l=as("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=` ${r} source = rc; if (source < start) { source = start * 2 - source - ${p}; @@ -3902,13 +3902,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel ${d} setOutput(result); } - `}},jle=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Hle(s.shape,r,a):new Gle(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},qle={kernelName:si,backendName:"webgl",kernelFunc:jle},Xle=`if (b == 0.0) return NAN; - return mod(a, b);`,Kle=` + `}},gle=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new mle(s.shape,r,a):new fle(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},yle={kernelName:Vo,backendName:"webgl",kernelFunc:gle},Ale=`if (b == 0.0) return NAN; + return mod(a, b);`,xle=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); - `+F2+` + `+E2+` return result; -`,Zle=zn({opSnippet:Xle,packedOpSnippet:Kle}),Yle={kernelName:Mc,backendName:"webgl",kernelFunc:Zle},Jle=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=` +`,ble=zn({opSnippet:Ale,packedOpSnippet:xle}),vle={kernelName:Fc,backendName:"webgl",kernelFunc:ble},wle=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -3928,11 +3928,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Dre=dt({opSnippet:_re}),$re={kernel // If no other event happened, last event happened. setOutput(float(${t-1})); } - `}},Qle=` + `}},kle=` if (a == b) { return 1.0; }; -return a / b;`,eue=` +return a / b;`,Sle=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; @@ -3950,9 +3950,9 @@ return a / b;`,eue=` } return result; -`,rC=zn({opSnippet:Qle,packedOpSnippet:eue,checkOutOfBounds:!0}),tue={kernelName:Vo,backendName:"webgl",kernelFunc:rC},J7="return a - b;",aC=zn({opSnippet:J7,packedOpSnippet:J7,supportsComplex:!0,cpuKernelImpl:Zne}),nue={kernelName:Wa,backendName:"webgl",kernelFunc:aC};function oC(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=sC({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=C.expandShapeToKeepDim(i.shape,o),u=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),c=aC({inputs:{a:r,b:u},backend:n}),p=eC({inputs:{x:c},backend:n}),d=M2({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:d},backend:n,attrs:{shape:l}}),f=rC({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var sue={kernelName:mi,backendName:"webgl",kernelFunc:oC};function rue(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:oC({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new Jle(u,c,a),d=[[o]],h=n.runWebGLProgram(p,[l],"int32",d);return i||n.disposeIntermediateTensorInfo(l),h}var aue={kernelName:w0,backendName:"webgl",kernelFunc:rue},oue=br+` +`,K9=zn({opSnippet:kle,packedOpSnippet:Sle,checkOutOfBounds:!0}),Ile={kernelName:Co,backendName:"webgl",kernelFunc:K9},H7="return a - b;",Z9=zn({opSnippet:H7,packedOpSnippet:H7,supportsComplex:!0,cpuKernelImpl:bne}),Cle={kernelName:ai,backendName:"webgl",kernelFunc:Z9};function Y9(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=X9({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=T.expandShapeToKeepDim(i.shape,o),u=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),c=Z9({inputs:{a:r,b:u},backend:n}),p=H9({inputs:{x:c},backend:n}),d=_2({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:d},backend:n,attrs:{shape:l}}),f=K9({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var Tle={kernelName:si,backendName:"webgl",kernelFunc:Y9};function Nle(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:Y9({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new wle(u,c,a),d=[[o]],h=n.runWebGLProgram(p,[l],"int32",d);return i||n.disposeIntermediateTensorInfo(l),h}var Ele={kernelName:g0,backendName:"webgl",kernelFunc:Nle},Rle=xr+` return -x; -`,iue=` +`,_le=` vec4 result = -x; bvec4 isNaN = isnan(x); @@ -3962,14 +3962,14 @@ return a / b;`,eue=` result.a = isNaN.a ? x.a : result.a; return result; -`;function lue(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=Pne(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new nl(s.shape,iue):r=new va(s.shape,oue),n.runWebGLProgram(r,[s],s.dtype)}var uue={kernelName:$l,backendName:"webgl",kernelFunc:lue},cue=Ar.nonMaxSuppressionV3Impl;function due(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=cue(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var pue={kernelName:Pl,backendName:"webgl",kernelFunc:due},hue=Ar.nonMaxSuppressionV4Impl;function fue(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=hue(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var mue={kernelName:zc,backendName:"webgl",kernelFunc:fue},gue=Ar.nonMaxSuppressionV5Impl;function yue(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=gue(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Aue={kernelName:Fl,backendName:"webgl",kernelFunc:yue},xue=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` +`;function Dle(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=rne(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new qi(s.shape,_le):r=new xa(s.shape,Rle),n.runWebGLProgram(r,[s],s.dtype)}var $le={kernelName:_l,backendName:"webgl",kernelFunc:Dle},Ple=yr.nonMaxSuppressionV3Impl;function Fle(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=Ple(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Ole={kernelName:$l,backendName:"webgl",kernelFunc:Fle},Mle=yr.nonMaxSuppressionV4Impl;function zle(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=Mle(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Lle={kernelName:Oc,backendName:"webgl",kernelFunc:zle},Ble=yr.nonMaxSuppressionV5Impl;function Wle(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=Ble(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Vle={kernelName:Pl,backendName:"webgl",kernelFunc:Wle},Ule=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${s}), float(${n}), float(index == coords.y))); } - `}},bue=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=v.sizeFromShape(r.shape),c=new xue(u,o,i,l),p=ve({inputs:{x:r},backend:n,attrs:{shape:[u]}}),d=n.runWebGLProgram(c,[p],a);n.disposeIntermediateTensorInfo(p);let h=[...r.shape,o],f=ve({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),f},vue={kernelName:Ml,backendName:"webgl",kernelFunc:bue};function Km(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Xh({inputs:{input:s},backend:n}),a=Km({inputs:{x:r},backend:n}),o=z2({inputs:{input:s},backend:n}),i=Km({inputs:{x:o},backend:n}),l=Ii({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Kh({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var wue={kernelName:Ql,backendName:"webgl",kernelFunc:Km};function iC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Xh({inputs:{input:s},backend:n}),a=iC({inputs:{x:r},backend:n}),o=z2({inputs:{input:s},backend:n}),i=Km({inputs:{x:o},backend:n}),l=Ii({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Kh({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var kue={kernelName:Ol,backendName:"webgl",kernelFunc:iC};function Iue(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Iy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Iy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=j9({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var Sue={kernelName:zl,backendName:"webgl",kernelFunc:Iue},Cue=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=vt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=` + `}},Gle=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=v.sizeFromShape(r.shape),c=new Ule(u,o,i,l),p=ve({inputs:{x:r},backend:n,attrs:{shape:[u]}}),d=n.runWebGLProgram(c,[p],a);n.disposeIntermediateTensorInfo(p);let h=[...r.shape,o],f=ve({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),f},Hle={kernelName:Ol,backendName:"webgl",kernelFunc:Gle};function Gm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Uh({inputs:{input:s},backend:n}),a=Gm({inputs:{x:r},backend:n}),o=D2({inputs:{input:s},backend:n}),i=Gm({inputs:{x:o},backend:n}),l=fi({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Gh({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var jle={kernelName:Ql,backendName:"webgl",kernelFunc:Gm};function J9(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Uh({inputs:{input:s},backend:n}),a=J9({inputs:{x:r},backend:n}),o=D2({inputs:{input:s},backend:n}),i=Gm({inputs:{x:o},backend:n}),l=fi({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Gh({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var qle={kernelName:Fl,backendName:"webgl",kernelFunc:J9};function Xle(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return by({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=by({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=M9({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var Kle={kernelName:Ml,backendName:"webgl",kernelFunc:Xle},Zle=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=vt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=` int start = ${a}; int end = ${o}; @@ -3994,7 +3994,7 @@ return a / b;`,eue=` setOutput(getX(${i})); } } - `}},Tue=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=vt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=rs("rc",s),l=rs("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${i[s-1]} += 1; + `}},Yle=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=vt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=as("rc",s),l=as("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${i[s-1]} += 1; if(${u}) { `,s===1?"":`} rc = outputLoc; @@ -4018,7 +4018,7 @@ return a / b;`,eue=` ${h} setOutput(result); } - `}},lC=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return Kh({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Tue(r.shape,a,o):new Cue(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Nue={kernelName:ai,backendName:"webgl",kernelFunc:lC},Eue=` + `}},Q9=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return Gh({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Yle(r.shape,a,o):new Zle(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Jle={kernelName:Go,backendName:"webgl",kernelFunc:Q9},Qle=` if(a < 0.0 && floor(b) < b){ return NAN; } @@ -4027,7 +4027,7 @@ return a / b;`,eue=` } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); -`,Rue=` +`,eue=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); @@ -4041,11 +4041,11 @@ return a / b;`,eue=` result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); - `+F2+` + `+E2+` return result; -`,_ue=zn({opSnippet:Eue,packedOpSnippet:Rue}),Due={kernelName:oi,backendName:"webgl",kernelFunc:_ue};function $ue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=v.parseAxisParam(a,r.shape),c=u,p=C.getAxesPermutation(c,i),d=r;p!=null&&(d=as({inputs:{x:r},backend:n,attrs:{perm:p}}),c=C.getInnerMostAxes(c.length,i),l.push(d)),C.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:y}=One(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=C.computeOutAndReduceShapes(d.shape,c),g=v.sizeFromShape(m),y=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),x=ph(r.dtype),A=hu(y,x,"prod",n);h=ve({inputs:{x:A},backend:n,attrs:{shape:f}}),l.push(y),l.push(A)}if(o){l.push(h);let f=C.expandShapeToKeepDim(h.shape,u);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Pue={kernelName:li,backendName:"webgl",kernelFunc:$ue};function Fue(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),p=n.readSync(o.dataId),d=i.map(g=>n.readSync(g.dataId)),h=i.map(g=>g.shape),[f,m]=Mne(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var Oue={kernelName:k0,backendName:"webgl",kernelFunc:Fue},uC=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=zne(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Mue={kernelName:Lc,backendName:"webgl",kernelFunc:uC},zue="return 1.0 / x;",Lue=dt({opSnippet:zue}),Bue={kernelName:Bc,backendName:"webgl",kernelFunc:Lue},Wue=br+` +`,tue=zn({opSnippet:Qle,packedOpSnippet:eue}),nue={kernelName:Ho,backendName:"webgl",kernelFunc:tue};function sue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=v.parseAxisParam(a,r.shape),c=u,p=T.getAxesPermutation(c,i),d=r;p!=null&&(d=os({inputs:{x:r},backend:n,attrs:{perm:p}}),c=T.getInnerMostAxes(c.length,i),l.push(d)),T.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:y}=one(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=T.computeOutAndReduceShapes(d.shape,c),g=v.sizeFromShape(m),y=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),x=ih(r.dtype),A=hu(y,x,"prod",n);h=ve({inputs:{x:A},backend:n,attrs:{shape:f}}),l.push(y),l.push(A)}if(o){l.push(h);let f=T.expandShapeToKeepDim(h.shape,u);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var rue={kernelName:qo,backendName:"webgl",kernelFunc:sue};function aue(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),p=n.readSync(o.dataId),d=i.map(g=>n.readSync(g.dataId)),h=i.map(g=>g.shape),[f,m]=ine(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var oue={kernelName:y0,backendName:"webgl",kernelFunc:aue},eC=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=lne(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},iue={kernelName:Mc,backendName:"webgl",kernelFunc:eC},lue="return 1.0 / x;",uue=dt({opSnippet:lue}),cue={kernelName:zl,backendName:"webgl",kernelFunc:uue},due=xr+` return (x < 0.0) ? 0.0 : x; -`,Vue=` +`,pue=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -4055,9 +4055,9 @@ return a / b;`,eue=` result.a = isNaN.a ? x.a : result.a; return result; -`,Uue=dt({opSnippet:Wue,packedOpSnippet:Vue}),Gue={kernelName:ui,backendName:"webgl",kernelFunc:Uue},Hue=br+` +`,hue=dt({opSnippet:due,packedOpSnippet:pue}),fue={kernelName:Xo,backendName:"webgl",kernelFunc:hue},mue=xr+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,jue=` +`,gue=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -4067,7 +4067,7 @@ return a / b;`,eue=` result.a = isNaN.a ? x.a : result.a; return result; -`,que=dt({opSnippet:Hue,packedOpSnippet:jue}),Xue={kernelName:pi,backendName:"webgl",kernelFunc:que},Kue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` +`,yue=dt({opSnippet:mue,packedOpSnippet:gue}),Aue={kernelName:Yo,backendName:"webgl",kernelFunc:yue},xue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/c[0]}, ${u[1]/c[1]}); @@ -4100,7 +4100,7 @@ return a / b;`,eue=` setOutput(newValue); } - `}},Zue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},bue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${u[0]/c[0]}, ${u[1]/c[1]}, @@ -4177,7 +4177,7 @@ return a / b;`,eue=` setOutput(newValue); } - `}};function Yue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Zue(r.shape,l,u,a,o):new Kue(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var Jue={kernelName:di,backendName:"webgl",kernelFunc:Yue},Que=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=` + `}};function vue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new bue(r.shape,l,u,a,o):new xue(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var wue={kernelName:Zo,backendName:"webgl",kernelFunc:vue},kue=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -4258,7 +4258,7 @@ return a / b;`,eue=` setOutput(accumulator); } - `}};function ece(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Que(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var tce={kernelName:S0,backendName:"webgl",kernelFunc:ece},nce=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}};function Sue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new kue(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Iue={kernelName:x0,backendName:"webgl",kernelFunc:Sue},Cue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/c[0]}, ${u[1]/c[1]}); @@ -4280,7 +4280,7 @@ return a / b;`,eue=` setOutput(newValue); } - `}},sce=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},Tue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${u[0]/c[0]}, ${u[1]/c[1]}, @@ -4321,7 +4321,7 @@ return a / b;`,eue=` setOutput(newValue); } - `}};function rce(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new sce(r.shape,l,u,a,o):new nce(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var ace={kernelName:ci,backendName:"webgl",kernelFunc:rce},oce=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=` + `}};function Nue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Tue(r.shape,l,u,a,o):new Cue(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var Eue={kernelName:Ko,backendName:"webgl",kernelFunc:Nue},Rue=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -4391,7 +4391,7 @@ return a / b;`,eue=` setOutput(accumulator); } - `}};function ice(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new oce(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var lce={kernelName:I0,backendName:"webgl",kernelFunc:ice},uce=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` + `}};function _ue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Rue(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Due={kernelName:A0,backendName:"webgl",kernelFunc:_ue},$ue=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); @@ -4401,7 +4401,7 @@ return a / b;`,eue=` ${a} coords = getOutputCoords(); setOutput(getX(${r})); } - `}},cce=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=rs("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=vt(n);n===1?this.userCode=` + `}},Pue=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=as("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=vt(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); @@ -4429,7 +4429,7 @@ return a / b;`,eue=` } setOutput(result); } - `;function i(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((y,x)=>d(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function dce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Ls({inputs:{x:r},backend:n});let l=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new cce(r.shape,i):new uce(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var pce={kernelName:Bl,backendName:"webgl",kernelFunc:dce},hce=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=` + `;function i(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((y,x)=>d(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Fue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Ls({inputs:{x:r},backend:n});let l=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Pue(r.shape,i):new $ue(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Oue={kernelName:Bl,backendName:"webgl",kernelFunc:Fue},Mue=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { @@ -4448,7 +4448,7 @@ return a / b;`,eue=` } setOutput(outputValue); } - `}},fce={kernelName:eu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new hce(s.shape,a),[u,c]=C.getImageCenter(o,s.shape[1],s.shape[2]),p=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,p)}},mce=` + `}},zue={kernelName:eu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Mue(s.shape,a),[u,c]=T.getImageCenter(o,s.shape[1],s.shape[2]),p=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,p)}},Lue=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); @@ -4463,7 +4463,7 @@ return a / b;`,eue=` return base + 1.0; } } -`,gce=dt({opSnippet:mce}),yce={kernelName:Wl,backendName:"webgl",kernelFunc:gce},Ace="return inversesqrt(x);",xce=dt({opSnippet:Ace,cpuKernelImpl:Lne}),bce={kernelName:Ma,backendName:"webgl",kernelFunc:xce},cC=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=vt(r.length),l=vt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=` +`,Bue=dt({opSnippet:Lue}),Wue={kernelName:Wl,backendName:"webgl",kernelFunc:Bue},Vue="return inversesqrt(x);",Uue=dt({opSnippet:Vue,cpuKernelImpl:une}),Gue={kernelName:Jo,backendName:"webgl",kernelFunc:Uue},tC=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=vt(r.length),l=vt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=` ${i} strides = ${i}(${r}); void main() { @@ -4483,7 +4483,7 @@ return a / b;`,eue=` } setOutput(mix(getDefaultValue(), sum, float(found))); } - `}};function vce(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new cC(l,i,h.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),x}var wce={kernelName:Vl,backendName:"webgl",kernelFunc:vce},kce=class{constructor(e,t,n,s){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,o=H().getNumber("WEBGL_VERSION")===2?r:a,i=s==="left"?"<":"<=";this.userCode=` + `}};function Hue(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new tC(l,i,h.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),x}var jue={kernelName:Vl,backendName:"webgl",kernelFunc:Hue},que=class{constructor(e,t,n,s){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,o=H().getNumber("WEBGL_VERSION")===2?r:a,i=s==="left"?"<":"<=";this.userCode=` int findBound(int batch, float value) { int left = 0; int right = numInputs; @@ -4508,7 +4508,7 @@ return a / b;`,eue=` setOutput(float(findBound(batch, value))); } - `}};function Ice(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=new kce(r.shape[0],r.shape[1],a.shape[1],o),l=[[r.shape[1]]];return n.runWebGLProgram(i,[r,a],"int32",l)}var Sce={kernelName:C0,backendName:"webgl",kernelFunc:Ice},Cce=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); -`,Rce=dt({opSnippet:Ece}),_ce={kernelName:Wc,backendName:"webgl",kernelFunc:Rce},Dce=gd+` +`,ece=dt({opSnippet:Que}),tce={kernelName:zc,backendName:"webgl",kernelFunc:ece},nce=hd+` return 1.0 / (1.0 + exp(-1.0 * x)); -`,$ce=` +`,sce=` vec4 result = 1.0 / (1.0 + exp(-1.0 * x)); bvec4 isNaN = isnan(x); @@ -4536,15 +4536,15 @@ return a / b;`,eue=` result.a = isNaN.a ? x.a : result.a; return result; -`,Pce=dt({opSnippet:Dce,packedOpSnippet:$ce,cpuKernelImpl:Wne}),Fce={kernelName:za,backendName:"webgl",kernelFunc:Pce},Oce=` +`,rce=dt({opSnippet:nce,packedOpSnippet:sce,cpuKernelImpl:dne}),ace={kernelName:ei,backendName:"webgl",kernelFunc:rce},oce=` if (isnan(x)) { return 0.0; } return sign(x); -`,Mce=dt({opSnippet:Oce}),zce={kernelName:Vc,backendName:"webgl",kernelFunc:Mce},Lce=gd+` +`,ice=dt({opSnippet:oce}),lce={kernelName:Lc,backendName:"webgl",kernelFunc:ice},uce=hd+` return sin(x); -`,Bce=dt({opSnippet:Lce}),Wce={kernelName:hi,backendName:"webgl",kernelFunc:Bce},Vce=` +`,cce=dt({opSnippet:uce}),dce={kernelName:Qo,backendName:"webgl",kernelFunc:cce},pce=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; -`,Uce=dt({opSnippet:Vce}),Gce={kernelName:Hl,backendName:"webgl",kernelFunc:Uce},Hce=` +`,hce=dt({opSnippet:pce}),fce={kernelName:Hl,backendName:"webgl",kernelFunc:hce},mce=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; @@ -4564,17 +4564,17 @@ return a / b;`,eue=` result = log(exp_x + 1.0); } return result; -`,jce=dt({opSnippet:Hce}),qce={kernelName:Uc,backendName:"webgl",kernelFunc:jce},Xce=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;yn.disposeIntermediateTensorInfo(y)),g},Kce={kernelName:jl,backendName:"webgl",kernelFunc:Xce};function Zce(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw: +`,gce=dt({opSnippet:mce}),yce={kernelName:Bc,backendName:"webgl",kernelFunc:gce},Ace=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;yn.disposeIntermediateTensorInfo(y)),g},xce={kernelName:jl,backendName:"webgl",kernelFunc:Ace};function bce(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw: ${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw: ${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw: ${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw: - ${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[p,d,h,f,m]=Une(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Yce={kernelName:sh,backendName:"webgl",kernelFunc:Zce};function Jce(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,p]=Gne(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var Qce={kernelName:Gc,backendName:"webgl",kernelFunc:Jce};function ede(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[p,d,h,f,m]=hne(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var vce={kernelName:Jp,backendName:"webgl",kernelFunc:bce};function wce(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,p]=fne(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var kce={kernelName:Wc,backendName:"webgl",kernelFunc:wce};function Sce(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=_9(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var tde={kernelName:rh,backendName:"webgl",kernelFunc:ede};function nde(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=w9(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Ice={kernelName:Qp,backendName:"webgl",kernelFunc:Sce};function Cce(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=_9(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var sde={kernelName:ah,backendName:"webgl",kernelFunc:nde};function rde(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let y=n.bufferSync(r),x=n.bufferSync(a),A=v.decodeString(n.readSync(o.dataId)[0]),b=Bne(y,x,i,d,c,u,l,p,A,h);return n.makeTensorInfo(i,b.dtype,b.values)}let f=new cC(u,l,r.shape.length,a.shape.length,p,[d,1],h),m=n.runWebGLProgram(f,[a,r,o],a.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(m),g}var ade={kernelName:oh,backendName:"webgl",kernelFunc:rde};function ode(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=yd({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var ide={kernelName:ql,backendName:"webgl",kernelFunc:ode},Q7="return sqrt(x);",lde=dt({opSnippet:Q7,packedOpSnippet:Q7,cpuKernelImpl:Hne}),ude={kernelName:La,backendName:"webgl",kernelFunc:lde},cde="return x * x;",dde=dt({opSnippet:cde}),pde={kernelName:Hc,backendName:"webgl",kernelFunc:dde},ew="return (a - b) * (a - b);",hde=zn({opSnippet:ew,packedOpSnippet:ew}),fde={kernelName:Ba,backendName:"webgl",kernelFunc:hde};function mde({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=br+` + ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=w9(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var Tce={kernelName:eh,backendName:"webgl",kernelFunc:Cce};function Nce(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let y=n.bufferSync(r),x=n.bufferSync(a),A=v.decodeString(n.readSync(o.dataId)[0]),b=cne(y,x,i,d,c,u,l,p,A,h);return n.makeTensorInfo(i,b.dtype,b.values)}let f=new tC(u,l,r.shape.length,a.shape.length,p,[d,1],h),m=n.runWebGLProgram(f,[a,r,o],a.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(m),g}var Ece={kernelName:th,backendName:"webgl",kernelFunc:Nce};function Rce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=fd({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var _ce={kernelName:ql,backendName:"webgl",kernelFunc:Rce},j7="return sqrt(x);",Dce=dt({opSnippet:j7,packedOpSnippet:j7,cpuKernelImpl:mne}),$ce={kernelName:ti,backendName:"webgl",kernelFunc:Dce},Pce="return x * x;",Fce=dt({opSnippet:Pce}),Oce={kernelName:Vc,backendName:"webgl",kernelFunc:Fce},q7="return (a - b) * (a - b);",Mce=zn({opSnippet:q7,packedOpSnippet:q7}),zce={kernelName:ri,backendName:"webgl",kernelFunc:Mce};function Lce({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=xr+` return x > 0.0 ? 1.0 : float(${t.alpha}); - `,a=new va(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var gde={kernelName:yi,backendName:"webgl",kernelFunc:mde},yde=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=vt(n.length),a=vt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=` + `,a=new xa(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Bce={kernelName:ii,backendName:"webgl",kernelFunc:Lce},Wce=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=vt(n.length),a=vt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=` ${r} begin = ${r}(${e}); ${r} strides = ${r}(${t}); @@ -4582,15 +4582,15 @@ return a / b;`,eue=` ${a} coords = getOutputCoords(); setOutput(getX(${o})); } - `}};function Ade(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Pt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Pt.computeOutShape(x,A,b),E=yd({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=ve({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),_=De(r.shape,r.dtype,E),D=jne(h,_,b,x);w=n.makeTensorInfo(f,r.dtype,D.values)}else{let E=new yde(x,b,h);w=n.runWebGLProgram(E,[r],r.dtype)}let I=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),I}var xde={kernelName:Xl,backendName:"webgl",kernelFunc:Ade};function bde(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=qne(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var vde={kernelName:jc,backendName:"webgl",kernelFunc:bde};function wde(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,p]=Xne(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var kde={kernelName:ih,backendName:"webgl",kernelFunc:wde};function Ide(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=Kne(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Sde={kernelName:lh,backendName:"webgl",kernelFunc:Ide},Cde="return tan(x);",Tde=dt({opSnippet:Cde}),Nde={kernelName:Kl,backendName:"webgl",kernelFunc:Tde},Ede=` + `}};function Vce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Gt.computeOutShape(x,A,b),E=fd({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=ve({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),_=We(r.shape,r.dtype,E),D=gne(h,_,b,x);w=n.makeTensorInfo(f,r.dtype,D.values)}else{let E=new Wce(x,b,h);w=n.runWebGLProgram(E,[r],r.dtype)}let S=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),S}var Uce={kernelName:Xl,backendName:"webgl",kernelFunc:Vce};function Gce(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=yne(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var Hce={kernelName:Uc,backendName:"webgl",kernelFunc:Gce};function jce(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,p]=Ane(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var qce={kernelName:nh,backendName:"webgl",kernelFunc:jce};function Xce(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=xne(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Kce={kernelName:sh,backendName:"webgl",kernelFunc:Xce},Zce="return tan(x);",Yce=dt({opSnippet:Zce}),Jce={kernelName:Kl,backendName:"webgl",kernelFunc:Yce},Qce=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); -`,Rde=dt({opSnippet:Ede}),_de={kernelName:gi,backendName:"webgl",kernelFunc:Rde},Dde=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=De(r.shape,r.dtype,u),p=Yne(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new Dde(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var Pde={kernelName:Va,backendName:"webgl",kernelFunc:dC},Fde=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=` + `}};function sde(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=vne(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new nde(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var rde={kernelName:Ea,backendName:"webgl",kernelFunc:nC},ade=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -4630,7 +4630,7 @@ return a / b;`,eue=` setOutput(float(i1)); } } - `}},Ode=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=` + `}},ode=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=` void main() { // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ... ivec2 coords = getOutputCoords(); @@ -4664,7 +4664,7 @@ return a / b;`,eue=` setOutput(x0 >= x1 ? float(i0) : float(i1)); } - `}};function ji(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function tw(e){let t=1;for(;tl){let D=n.readSync(r.dataId),[R,P]=Jne(D,u,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(P.shape,P.dtype,P.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,Kh({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=v.sizeFromShape(u)/c,g=ve({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&ji(n,h);let y=tw(a),x=tw(c),A=null,b=()=>A===null?[g,g]:[g,A],w=(D,R,P)=>{let T=b(),M=new Fde(P),G=[[c],[A===null?1:0],[Number.NEGATIVE_INFINITY],[D],[R]],X=A;A=n.runWebGLProgram(M,T,"int32",G),ji(n,X)};for(let D=1;D=1;P/=2)w(R,P,[m,x])}for(let D=x;D>y;D/=2){let R=b(),P=new Ode([m,D/2]),M=[[c],[A===null?1:0],[y]],W=A;A=n.runWebGLProgram(P,R,"int32",M),ji(n,W);let G=y/2,X=G*2;for(let K=G;K>=1;K/=2)w(X,K,A.shape)}let I=A;A=yd({inputs:{x:A},backend:n,attrs:{begin:0,size:[m,a]}}),ji(n,I);let k=nC({inputs:{x:g,indices:A},backend:n,attrs:{axis:1,batchDims:1}});ji(n,g);let E=u.slice(0,-1);E.push(a),I=A,A=ve({inputs:{x:A},attrs:{shape:E},backend:n}),ji(n,I);let _=k;return k=ve({inputs:{x:k},attrs:{shape:E},backend:n}),ji(n,_),[k,A]}var zde={kernelName:Zl,backendName:"webgl",kernelFunc:Mde},Lde=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=` + `}};function Mi(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function X7(e){let t=1;for(;tl){let D=n.readSync(r.dataId),[R,P]=wne(D,u,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(P.shape,P.dtype,P.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,Gh({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=v.sizeFromShape(u)/c,g=ve({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&Mi(n,h);let y=X7(a),x=X7(c),A=null,b=()=>A===null?[g,g]:[g,A],w=(D,R,P)=>{let C=b(),M=new ade(P),G=[[c],[A===null?1:0],[Number.NEGATIVE_INFINITY],[D],[R]],K=A;A=n.runWebGLProgram(M,C,"int32",G),Mi(n,K)};for(let D=1;D=1;P/=2)w(R,P,[m,x])}for(let D=x;D>y;D/=2){let R=b(),P=new ode([m,D/2]),M=[[c],[A===null?1:0],[y]],L=A;A=n.runWebGLProgram(P,R,"int32",M),Mi(n,L);let G=y/2,K=G*2;for(let X=G;X>=1;X/=2)w(K,X,A.shape)}let S=A;A=fd({inputs:{x:A},backend:n,attrs:{begin:0,size:[m,a]}}),Mi(n,S);let k=q9({inputs:{x:g,indices:A},backend:n,attrs:{axis:1,batchDims:1}});Mi(n,g);let E=u.slice(0,-1);E.push(a),S=A,A=ve({inputs:{x:A},attrs:{shape:E},backend:n}),Mi(n,S);let _=k;return k=ve({inputs:{x:k},attrs:{shape:E},backend:n}),Mi(n,_),[k,A]}var lde={kernelName:Zl,backendName:"webgl",kernelFunc:ide},ude=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${i} == 2) { @@ -4776,7 +4776,7 @@ return a / b;`,eue=` } setOutput(outputValue); } - `}};function Bde(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Lde(p,d,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var Wde={kernelName:Yl,backendName:"webgl",kernelFunc:Bde};function Vde(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;cd(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=Qne(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Ude={kernelName:T0,backendName:"webgl",kernelFunc:Vde};function Gde(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var Hde={kernelName:Jl,backendName:"webgl",kernelFunc:Gde},jde=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,p=` + `}};function cde(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new ude(p,d,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var dde={kernelName:Yl,backendName:"webgl",kernelFunc:cde};function pde(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;id(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=kne(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var hde={kernelName:v0,backendName:"webgl",kernelFunc:pde};function fde(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var mde={kernelName:Jl,backendName:"webgl",kernelFunc:fde},gde=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,p=` sumValue += dot(values, segFilter); `,d="";r%n>0&&(d=` if (inIdx < 0 || inIdx >= ${r}) { @@ -4882,149 +4882,35 @@ return a / b;`,eue=` } setOutput(${l}); } - `}};function qde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=C.getAxesPermutation([u],i),p=r;c!=null&&(p=as({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(p),u=C.getInnerMostAxes(1,i)[0]);let d=C.segment_util.computeOutShape(p.shape,u,o),h=v.sizeFromShape([p.shape[u]]),f=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=ph(r.dtype),g=(b,w,I,k,E)=>{let _=b.shape[0],D=b.shape[1],R=C.segment_util.segOpComputeOptimalWindowSize(D,E),P={windowSize:R,inSize:D,batchSize:_,numSegments:E},T=new jde(P,w),M=n.compileAndRun(T,[b,I],k);if(l.push(M),M.shape[1]===E)return M;let W=uC({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),G=dC({inputs:{x:W},backend:n,attrs:{reps:[D/R]}});return l.push(W),l.push(G),g(M,w,G,k,E)},y=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:y},backend:n,attrs:{shape:d}}),A=x;if(c!=null){l.push(x);let b=C.getUndoAxesPermutation(c);A=as({inputs:{x:A},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var Xde={kernelName:uh,backendName:"webgl",kernelFunc:qde},Kde=[Xse,Zse,Qse,nre,rre,ire,ure,dre,mre,yre,bre,kre,Cre,Rre,$re,Fre,Mre,Wre,Ure,Hre,Kre,nae,rae,oae,pae,fae,Aae,Ese,vae,Cae,Rae,Oae,zae,Bae,Vae,Gae,qae,Zae,Qae,toe,soe,aoe,loe,coe,foe,goe,xoe,woe,Ioe,Noe,Doe,Ooe,Loe,Voe,Uoe,Hoe,qoe,Koe,Yoe,Qoe,sie,oie,uie,die,fie,yie,vie,Sie,Nse,Tie,Iae,Rie,$ie,Oie,_se,Bie,Gie,jie,Zie,Qie,sle,ole,cle,fle,yle,xle,kle,Sle,Tle,_le,$le,Fle,Mle,Lle,Ule,qle,Yle,aue,Ose,uue,pue,mue,Aue,lae,vue,kue,Sue,Nue,Due,$se,Pue,Oue,Mue,uae,tue,Bue,Gue,Xue,zse,Jue,tce,ace,lce,pce,fce,yce,bce,wce,Sce,Nce,_ce,Fce,zce,Wce,Gce,eae,sue,qce,Kce,Yce,Qce,tde,sde,ade,ide,ude,pde,fde,gde,xde,vde,kde,Sde,nue,Hse,Nde,_de,Pde,zde,Wde,jse,Ude,Hde,Xde,wue];for(let e of Kde)nr(e);var jt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(jt||(jt={}));var Gp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Gp||(Gp={}));var pC;function Zde(e){pC=e.wasm.cwrap(Ao,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Yde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Gp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],x=u?a.shape[1]:a.shape[2],A=nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...A,y,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,I=new Uint8Array(new Int32Array(r.shape).buffer),k=new Uint8Array(new Int32Array(a.shape).buffer);return pC(d,I,r.shape.length,h,k,a.shape.length,l,u,g,f,m,p||0,w),b}var Jde={kernelName:Ao,backendName:"wasm",setupFunc:Zde,kernelFunc:Yde};function Tn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,u=o.makeOutput(i.shape,t||i.dtype),c=o.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,jt[i.dtype],c),u}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var Qde=Tn(vl);function Ln(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,d=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=C.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),x=i.dataIdMap.get(m.dataId).id;return(()=>s(p,g,u.shape.length,d,y,c.shape.length,jt[u.dtype],x))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var epe=!0,tpe=Ln(oa,epe),hC;function npe(e){hC=e.wasm.cwrap(_o,null,["array","number","number","number"])}function spe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return hC(a,r.length,jt[s.dtype],o),s}var rpe={kernelName:_o,backendName:"wasm",setupFunc:npe,kernelFunc:spe};function L2(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var ape={kernelName:Ko,backendName:"wasm",kernelFunc:L2},fC;function ope(e){fC=e.wasm.cwrap(ea,null,["number","array","number","number","number","array","number"])}function No(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=lpe(t.x.shape,s.perm),o=!0;for(let f=0;f=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var upe={kernelName:ea,backendName:"wasm",kernelFunc:No,setupFunc:ope};function Si(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=C.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var wpe={kernelName:Ll,backendName:"wasm",kernelFunc:As},xC;function kpe(e){xC=e.wasm.cwrap(Po,null,["number","array","number","number","array","number","number","number","number"])}function Ipe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],I=As({inputs:{x:r},backend:n,attrs:{shape:b}}),k=As({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(I.dataId).id,_=n.dataIdMap.get(k.dataId).id,D=o?I.shape[2]:I.shape[1],R=i?k.shape[1]:k.shape[2],P=Math.max(g,y),T=n.makeOutput([P,D,R],I.dtype),M=n.dataIdMap.get(T.dataId).id,W=new Uint8Array(new Int32Array(I.shape).buffer),G=new Uint8Array(new Int32Array(k.shape).buffer);return xC(E,W,I.shape.length,_,G,k.shape.length,o,i,M),n.disposeData(I.dataId),n.disposeData(k.dataId),T.shape=A,T}var Spe={kernelName:Po,backendName:"wasm",setupFunc:kpe,kernelFunc:Ipe};function xl(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Pt.parseSliceParams(t,n,s),i=Pt.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=v.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(i){let f=Pt.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(o))),u}if(t.dtype==="string"){let f=Um(l,a,o,t.shape,t.dtype);return p.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Cpe(l,c[0],d,a,o);else if(h===3)Tpe(l,c[0],c[1],d,a,o);else if(h===4)Npe(l,c[0],c[1],c[2],d,a,o);else{let f=Um(l,a,o,t.shape,t.dtype);d.set(f)}return u}function Cpe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;uy*x),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=As({inputs:{x:r},backend:n,attrs:{shape:l}}),f=No({inputs:{x:h},backend:n,attrs:{perm:u}}),m=As({inputs:{x:f},backend:n,attrs:{shape:c}}),g=xl({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var _pe={kernelName:wl,backendName:"wasm",kernelFunc:Rpe};function Ad(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Dpe={kernelName:Fo,backendName:"wasm",kernelFunc:Ad},$pe=Tn(Na),bC;function Ppe(e){bC=e.wasm.cwrap(Ea,null,["number","number","number","number"])}function Fpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return bC(i,a,o,u),l}var Ope={kernelName:Ea,backendName:"wasm",setupFunc:Ppe,kernelFunc:Fpe};function vC(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return L2({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(C.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(A=>{let b=v.sizeFromShape(A.shape.slice(s));return As({inputs:{x:A},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(A=>({vals:n.readSync(A.dataId),shape:A.shape}));r=C.computeOutShape(h.map(A=>A.shape),1);let m=h[0].shape[0]===1,g=Gx(f,r,t[0].dtype,m),y=C.computeOutShape(a.map(A=>A.shape),s);o.shape=y;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=C.fromStringArrayToUint8(g),h.forEach(A=>n.disposeData(A.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return u+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(o);for(let h=0;h`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([a],l),c=r;u!==null&&(c=No({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumprod",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;SC(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=C.getUndoAxesPermutation(u);g=No({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Ype={kernelName:Il,backendName:"wasm",setupFunc:Kpe,kernelFunc:Zpe},CC;function Jpe(e){CC=e.wasm.cwrap(Bo,null,["number","number","number","number","number","number"])}function Qpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([a],l),c=r;u!==null&&(c=No({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;CC(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=C.getUndoAxesPermutation(u);g=No({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var ehe={kernelName:Bo,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},TC;function the(e){TC=e.wasm.cwrap(Cl,null,["number","number","number","array","number","array","array","number","number"])}function nhe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return TC(y,a,o==="NHWC"?1:0,x,r.shape.length-1,A,b,f.length,w),m}var she={kernelName:Cl,backendName:"wasm",setupFunc:the,kernelFunc:nhe},NC;function rhe(e){NC=e.wasm.cwrap(Wo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ahe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=n,d=u==null?[1,1]:u,h=C.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,x=h.padInfo.bottom,A=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,I=h.strideHeight,k=h.strideWidth,E=h.inChannels,_=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(h.outShape,"float32"),P=s.dataIdMap.get(R.dataId).id;return NC(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,x,A,D,b,w,I,k,E,_,P),R}var ohe={kernelName:Wo,backendName:"wasm",setupFunc:rhe,kernelFunc:ahe},ihe=Tn(Uo),lhe=!1,uhe=Ln(Go,lhe,"bool"),che=Tn(Ra,"float32");function Cy(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),As({inputs:{x:r},backend:s,attrs:{shape:i}})}var dhe={kernelName:Tl,backendName:"wasm",kernelFunc:Cy};function EC(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var phe={kernelName:_c,backendName:"wasm",kernelFunc:EC},RC;function hhe(e){RC=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number"])}function fhe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return RC(a,i,l,u,c,o),r}var mhe={kernelName:Nl,backendName:"wasm",kernelFunc:fhe,setupFunc:hhe},ghe=Tn(_a),yhe=!1,Ahe=Ln(jo,yhe),_C;function xhe(e){_C=e.wasm.cwrap(qo,null,["number","number","number","number","number","number","number"])}function bhe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return _C(c,p,d,h,f,r,g),m}var vhe={kernelName:qo,backendName:"wasm",setupFunc:xhe,kernelFunc:bhe},DC;function whe(e){DC=e.wasm.cwrap(xo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function khe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,l,c,u,d),g=Gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let ne=s.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==A)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${A})`);b=ne.id}let w=m.filterHeight,I=m.filterWidth,k=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,D=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,W=m.inChannels,G=m.padInfo.type==="SAME"?1:0,X=m.batchSize,K=m.inHeight,Y=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ae=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(ae.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return DC(y,X,K,Y,x,w,I,b,k,E,_,D,G,R,P,T,M,W,A,g,ie,f||0,ee),ae}var Ihe={kernelName:xo,backendName:"wasm",setupFunc:whe,kernelFunc:khe},$C;function She(e){$C=e.wasm.cwrap(bo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Che(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!0),g=Gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let ne=s.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==A)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${A})`);b=ne.id}let w=m.filterHeight,I=m.filterWidth,k=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,D=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,W=m.inChannels,G=m.padInfo.type==="SAME"?1:0,X=m.batchSize,K=m.inHeight,Y=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ae=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(ae.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return $C(y,X,K,Y,x,w,I,b,k,E,_,D,G,R,P,T,M,W,A,g,ie,f||0,ee),ae}var The={kernelName:bo,backendName:"wasm",setupFunc:She,kernelFunc:Che},PC;function Nhe(e){PC=e.wasm.cwrap(Rl,null,["number","number","number","number","number","number","array","number"])}function Ehe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=tA.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return PC(h,jt[s.dtype],m,o,p,i,g,y),u}var Rhe={kernelName:Rl,backendName:"wasm",setupFunc:Nhe,kernelFunc:Ehe},FC;function _he(e){FC=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Dhe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=t.readSync(a.dataId),c=r.shape[l];for(let _=0;_=0,()=>`GatherV2: the index value ${D} is not in [0, ${c-1}]`)}let p=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),d=As({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=As({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,w=t.dataIdMap.get(f.dataId).id,I=t.dataIdMap.get(g.dataId).id,k=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return FC(A,jt[r.dtype],k,y,w,p.batchSize,E,I),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var $he={kernelName:El,backendName:"wasm",setupFunc:_he,kernelFunc:Dhe},Phe=!1,Fhe=Ln(Xo,Phe,"bool"),Ohe=!1,Mhe=Ln(Da,Ohe,"bool"),OC;function zhe(e){OC=e.wasm.cwrap(Zo,null,["number","number","number","number"])}function Lhe(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;OC(r,jt[t.dtype],n,o)}return a}var Bhe={kernelName:Zo,backendName:"wasm",setupFunc:zhe,kernelFunc:Lhe},Whe=!1,Vhe=Ln(Yo,Whe,"bool"),Uhe=!1,Ghe=Ln(Jo,Uhe,"bool"),Hhe=Tn($a),jhe=!1,qhe=Ln(_l,jhe,"bool"),Xhe=Tn(Dl),Khe=!1,Zhe=Ln(Oc,Khe,"bool"),Yhe=!1,Jhe=Ln(Pw,Yhe,"bool"),MC;function Qhe(e){MC=e.wasm.cwrap(Qo,null,["number","number","number","number"])}function efe(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Si(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("max",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;MC(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var tfe={kernelName:Qo,backendName:"wasm",setupFunc:Qhe,kernelFunc:efe},nfe=!1,sfe=Ln(Pa,nfe),zC;function rfe(e){zC=e.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function afe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,x=c.dilationWidth,A=c.strideHeight,b=c.strideWidth,w=c.inChannels,I=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let k=s.makeOutput(c.outShape,"float32"),E=s.dataIdMap.get(k.dataId).id;return zC(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,b,w,I,E),k}var ofe={kernelName:ei,backendName:"wasm",setupFunc:rfe,kernelFunc:afe},LC;function ife(e){LC=e.wasm.cwrap(ti,null,["number, number, number"])}function lfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Si(o,r,t),f=p;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=u;u.dtype!=="float32"&&(x=Ad({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let A=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(A.dataId).id;LC(l,y,b)}if(h&&t.disposeData(c.dataId),a){let b=C.expandShapeToKeepDim(A.shape,d);A.shape=b}return u.dtype!=="float32"&&t.disposeData(x.dataId),A}var ufe={kernelName:ti,backendName:"wasm",setupFunc:ife,kernelFunc:lfe},BC;function cfe(e){BC=e.wasm.cwrap(ni,null,["number","number","number","number"])}function dfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Si(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A)}let f=u.shape.length;C.assertAxesAreInnerMostDims("min",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;BC(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var pfe={kernelName:ni,backendName:"wasm",setupFunc:cfe,kernelFunc:dfe},hfe=!1,ffe=Ln(Fa,hfe),Ty;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Ty||(Ty={}));var WC;function mfe(e){WC=e.wasm.cwrap(si,null,["number","array","number","number","array","array","number","number"])}function gfe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return WC(o,u,t.shape.length,jt[t.dtype],d,h,Ty[r],l),i}var yfe={kernelName:si,backendName:"wasm",kernelFunc:gfe,setupFunc:mfe},Afe=!0,xfe=Ln(Oa,Afe),bfe=Tn($l);function mb(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var VC;function vfe(e){VC=e.wasm.cwrap(Pl,"number",["number","number","number","number","number"])}function wfe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,p=VC(u,c,a,r,o),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=mb(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var kfe={kernelName:Pl,backendName:"wasm",setupFunc:vfe,kernelFunc:wfe},UC;function Ife(e){UC=e.wasm.cwrap(zc,"number",["number","number","number","number","number","bool"])}function Sfe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=UC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=mb(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[y,x]}var Cfe={kernelName:zc,backendName:"wasm",setupFunc:Ife,kernelFunc:Sfe},GC;function Tfe(e){GC=e.wasm.cwrap(Fl,"number",["number","number","number","number","number","number"])}function Nfe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=GC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=mb(t,d);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[y,x]}var Efe={kernelName:Fl,backendName:"wasm",setupFunc:Tfe,kernelFunc:Nfe},Rfe=!1,_fe=Ln(ri,Rfe,"bool"),HC;function Dfe(e){HC=e.wasm.cwrap(Ml,null,["number","number","number","number","number"])}function $fe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=n.makeOutput([...r.shape,o],a),c=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return HC(d,o,i,l,c),u}var Pfe={kernelName:Ml,backendName:"wasm",setupFunc:Dfe,kernelFunc:$fe};function Ffe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Ofe={kernelName:Ol,backendName:"wasm",kernelFunc:Ffe};function Mfe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Cy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Cy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=vC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var zfe={kernelName:zl,backendName:"wasm",kernelFunc:Mfe},jC;function Lfe(e){jC=e.wasm.cwrap(ai,null,["number","array","number","number","array","array","number","number"])}function Bfe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return EC({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return jC(o,c,t.shape.length,jt[t.dtype],h,f,r,u),i}var qC={kernelName:ai,backendName:"wasm",kernelFunc:Bfe,setupFunc:Lfe},Wfe=!1,Vfe=Ln(oi,Wfe),XC;function Ufe(e){XC=e.wasm.cwrap(ii,null,["number","number","number"])}function Gfe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,u=l;l.dtype!=="float32"&&(u=Ad({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(u.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return XC(i,o,p),l.dtype!=="float32"&&n.disposeData(u.dataId),c}var Hfe={kernelName:ii,backendName:"wasm",setupFunc:Ufe,kernelFunc:Gfe},KC;function jfe(e){KC=e.wasm.cwrap(li,null,["number","number","number","number"])}function qfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Si(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;KC(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Xfe={kernelName:li,backendName:"wasm",setupFunc:jfe,kernelFunc:qfe},Kfe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=qx(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Zfe={kernelName:Lc,backendName:"wasm",kernelFunc:Kfe},Yfe=!0,Jfe=Ln(Vo,Yfe),Qfe=Tn(ui),eme=Tn(pi),ZC;function tme(e){ZC=e.wasm.cwrap(di,null,["number","number","number","number","number","number","number","number","number","number"])}function nme(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Ad({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let A=t.dataIdMap.get(x.dataId).id;return ZC(y,c,p,d,h,l,u,a?1:0,o?1:0,A),g!=null&&t.disposeData(g.dataId),x}var sme={kernelName:di,backendName:"wasm",setupFunc:tme,kernelFunc:nme},YC;function rme(e){YC=e.wasm.cwrap(ci,null,["number","number","number","number","number","number","number","number","number","number"])}function ame(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return m;let g=t.dataIdMap.get(r.dataId),y;g.dtype!=="float32"&&(y=Ad({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let x=g.id,A=t.dataIdMap.get(m.dataId).id;return YC(x,c,p,d,h,l,u,a?1:0,o?1:0,A),y!=null&&t.disposeData(y.dataId),m}var ome={kernelName:ci,backendName:"wasm",setupFunc:rme,kernelFunc:ame},JC;function ime(e){JC=e.wasm.cwrap(Bl,null,["number","array","number","array","number","number"])}function lme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return L2({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);JC(l,c,o.length,p,r.shape.length,u);let d=As({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),d}var ume={kernelName:Bl,backendName:"wasm",kernelFunc:lme,setupFunc:ime},QC;function cme(e){QC=e.wasm.cwrap(eu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function dme(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[p,d,h,f]=r.shape,[m,g]=C.getImageCenter(i,d,h),y=o===0,x=255,A=typeof o=="number"?[o,o,o,y?0:x]:[...o,x],b=new Uint8Array(new Int32Array(A).buffer);return QC(u,p,d,h,f,a,m,g,b,A.length,c),l}var pme={kernelName:eu,backendName:"wasm",kernelFunc:dme,setupFunc:cme},hme=Tn(Wl),fme=Tn(Ma),eT;function mme(e){eT=e.wasm.cwrap(Vl,null,["number","number","number","number","number","number","array","number","number"])}function gme(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=nA.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),x=t.dataIdMap.get(i.dataId).id;return eT(f,g,jt[a.dtype],l,u,c,y,d,x),i}var yme={kernelName:Vl,backendName:"wasm",setupFunc:mme,kernelFunc:gme},tT;function Ame(e){tT=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function xme(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return tT(o,i,l,h,c),u}var bme={kernelName:Ul,backendName:"wasm",kernelFunc:xme,setupFunc:Ame},nT;function vme(e){nT=e.wasm.cwrap(za,null,["number","number"])}function wme(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||nT(s,a),r}var kme={kernelName:"Sigmoid",backendName:"wasm",setupFunc:vme,kernelFunc:wme},Ime=Tn(hi),sT;function Sme(e){sT=e.wasm.cwrap(mi,null,["number","number","number","number"])}function Cme(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||sT(r,o,i,l),a}var Tme={kernelName:mi,backendName:"wasm",setupFunc:Sme,kernelFunc:Cme};function Nme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let I=1+a.length;I{let _=b.shape[0],D=b.shape[1],R=T.segment_util.segOpComputeOptimalWindowSize(D,E),P={windowSize:R,inSize:D,batchSize:_,numSegments:E},C=new gde(P,w),M=n.compileAndRun(C,[b,S],k);if(l.push(M),M.shape[1]===E)return M;let L=eC({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),G=nC({inputs:{x:L},backend:n,attrs:{reps:[D/R]}});return l.push(L),l.push(G),g(M,w,G,k,E)},y=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:y},backend:n,attrs:{shape:d}}),A=x;if(c!=null){l.push(x);let b=T.getUndoAxesPermutation(c);A=os({inputs:{x:A},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var Ade={kernelName:rh,backendName:"webgl",kernelFunc:yde},xde=[Ase,bse,kse,Cse,Nse,_se,$se,Fse,Lse,Wse,Gse,qse,Zse,ere,sre,are,ire,dre,hre,mre,xre,Cre,Nre,Rre,Ore,zre,Vre,Qne,Hre,Zre,eae,oae,lae,cae,pae,fae,yae,bae,kae,Iae,Tae,Eae,Dae,Pae,zae,Bae,Uae,jae,Xae,Jae,noe,ooe,uoe,poe,hoe,moe,yoe,xoe,voe,koe,Toe,Roe,$oe,Foe,zoe,Woe,Hoe,Koe,Jne,Yoe,Xre,eie,sie,oie,tse,cie,fie,gie,bie,kie,Tie,Rie,Pie,zie,Wie,Uie,qie,Kie,Yie,tle,sle,ale,ile,ule,hle,yle,vle,Ele,ose,$le,Ole,Lle,Vle,Dre,Hle,qle,Kle,Jle,nue,sse,rue,oue,iue,$re,Ile,cue,fue,Aue,lse,wue,Iue,Eue,Due,Oue,zue,Wue,Gue,jue,Kue,Jue,tce,ace,lce,dce,fce,Sre,Tle,yce,xce,vce,kce,Ice,Tce,Ece,_ce,$ce,Oce,zce,Bce,Uce,Hce,qce,Kce,Cle,mse,Jce,tde,rde,lde,dde,gse,hde,mde,Ade,jle];for(let e of xde)tr(e);var jt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(jt||(jt={}));var zp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(zp||(zp={}));var sC;function bde(e){sC=e.wasm.cwrap(eo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function vde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=zp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],x=u?a.shape[1]:a.shape[2],A=nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...A,y,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,S=new Uint8Array(new Int32Array(r.shape).buffer),k=new Uint8Array(new Int32Array(a.shape).buffer);return sC(d,S,r.shape.length,h,k,a.shape.length,l,u,g,f,m,p||0,w),b}var wde={kernelName:eo,backendName:"wasm",setupFunc:bde,kernelFunc:vde};function Nn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,u=o.makeOutput(i.shape,t||i.dtype),c=o.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,jt[i.dtype],c),u}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var kde=Nn(pl);function Ln(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,d=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=T.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),x=i.dataIdMap.get(m.dataId).id;return(()=>s(p,g,u.shape.length,d,y,c.shape.length,jt[u.dtype],x))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Sde=!0,Ide=Ln(Ta,Sde),rC;function Cde(e){rC=e.wasm.cwrap(fo,null,["array","number","number","number"])}function Tde(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return rC(a,r.length,jt[s.dtype],o),s}var Nde={kernelName:fo,backendName:"wasm",setupFunc:Cde,kernelFunc:Tde};function $2(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Ede={kernelName:$o,backendName:"wasm",kernelFunc:$2},aC;function Rde(e){aC=e.wasm.cwrap(Qr,null,["number","array","number","number","number","array","number"])}function co(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Dde(t.x.shape,s.perm),o=!0;for(let f=0;f=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var $de={kernelName:Qr,backendName:"wasm",kernelFunc:co,setupFunc:Rde};function mi(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=T.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var jde={kernelName:Ll,backendName:"wasm",kernelFunc:As},cC;function qde(e){cC=e.wasm.cwrap(yo,null,["number","array","number","number","array","number","number","number","number"])}function Xde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],S=As({inputs:{x:r},backend:n,attrs:{shape:b}}),k=As({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(S.dataId).id,_=n.dataIdMap.get(k.dataId).id,D=o?S.shape[2]:S.shape[1],R=i?k.shape[1]:k.shape[2],P=Math.max(g,y),C=n.makeOutput([P,D,R],S.dtype),M=n.dataIdMap.get(C.dataId).id,L=new Uint8Array(new Int32Array(S.shape).buffer),G=new Uint8Array(new Int32Array(k.shape).buffer);return cC(E,L,S.shape.length,_,G,k.shape.length,o,i,M),n.disposeData(S.dataId),n.disposeData(k.dataId),C.shape=A,C}var Kde={kernelName:yo,backendName:"wasm",setupFunc:qde,kernelFunc:Xde};function cl(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Gt.parseSliceParams(t,n,s),i=Gt.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=v.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(i){let f=Gt.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(o))),u}if(t.dtype==="string"){let f=zm(l,a,o,t.shape,t.dtype);return p.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Zde(l,c[0],d,a,o);else if(h===3)Yde(l,c[0],c[1],d,a,o);else if(h===4)Jde(l,c[0],c[1],c[2],d,a,o);else{let f=zm(l,a,o,t.shape,t.dtype);d.set(f)}return u}function Zde(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;uy*x),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=As({inputs:{x:r},backend:n,attrs:{shape:l}}),f=co({inputs:{x:h},backend:n,attrs:{perm:u}}),m=As({inputs:{x:f},backend:n,attrs:{shape:c}}),g=cl({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var tpe={kernelName:fl,backendName:"wasm",kernelFunc:epe};function md(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var npe={kernelName:Ao,backendName:"wasm",kernelFunc:md},spe=Nn(xo),dC;function rpe(e){dC=e.wasm.cwrap(Na,null,["number","number","number","number"])}function ape(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return dC(i,a,o,u),l}var ope={kernelName:Na,backendName:"wasm",setupFunc:rpe,kernelFunc:ape};function pC(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=T.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return $2({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(T.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(A=>{let b=v.sizeFromShape(A.shape.slice(s));return As({inputs:{x:A},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(A=>({vals:n.readSync(A.dataId),shape:A.shape}));r=T.computeOutShape(h.map(A=>A.shape),1);let m=h[0].shape[0]===1,g=Bx(f,r,t[0].dtype,m),y=T.computeOutShape(a.map(A=>A.shape),s);o.shape=y;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=T.fromStringArrayToUint8(g),h.forEach(A=>n.disposeData(A.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return u+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(o);for(let h=0;h`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([a],l),c=r;u!==null&&(c=co({inputs:{x:r},attrs:{perm:u},backend:n}));let p=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumprod",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;gC(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=T.getUndoAxesPermutation(u);g=co({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var vpe={kernelName:gl,backendName:"wasm",setupFunc:xpe,kernelFunc:bpe},yC;function wpe(e){yC=e.wasm.cwrap(So,null,["number","number","number","number","number","number"])}function kpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([a],l),c=r;u!==null&&(c=co({inputs:{x:r},attrs:{perm:u},backend:n}));let p=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;yC(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=T.getUndoAxesPermutation(u);g=co({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Spe={kernelName:So,backendName:"wasm",setupFunc:wpe,kernelFunc:kpe},AC;function Ipe(e){AC=e.wasm.cwrap(Al,null,["number","number","number","array","number","array","array","number","number"])}function Cpe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return AC(y,a,o==="NHWC"?1:0,x,r.shape.length-1,A,b,f.length,w),m}var Tpe={kernelName:Al,backendName:"wasm",setupFunc:Ipe,kernelFunc:Cpe},xC;function Npe(e){xC=e.wasm.cwrap(Io,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Epe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=n,d=u==null?[1,1]:u,h=T.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,x=h.padInfo.bottom,A=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,S=h.strideHeight,k=h.strideWidth,E=h.inChannels,_=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(h.outShape,"float32"),P=s.dataIdMap.get(R.dataId).id;return xC(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,x,A,D,b,w,S,k,E,_,P),R}var Rpe={kernelName:Io,backendName:"wasm",setupFunc:Npe,kernelFunc:Epe},_pe=Nn(To),Dpe=!1,$pe=Ln(xl,Dpe,"bool"),Ppe=Nn(No,"float32");function wy(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),As({inputs:{x:r},backend:s,attrs:{shape:i}})}var Fpe={kernelName:bl,backendName:"wasm",kernelFunc:wy};function bC(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Ope={kernelName:Rc,backendName:"wasm",kernelFunc:bC},vC;function Mpe(e){vC=e.wasm.cwrap(wl,null,["number","number","number","number","number","number"])}function zpe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return vC(a,i,l,u,c,o),r}var Lpe={kernelName:wl,backendName:"wasm",kernelFunc:zpe,setupFunc:Mpe},Bpe=Nn(Eo),Wpe=!1,Vpe=Ln(Ro,Wpe),wC;function Upe(e){wC=e.wasm.cwrap(_o,null,["number","number","number","number","number","number","number"])}function Gpe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return wC(c,p,d,h,f,r,g),m}var Hpe={kernelName:_o,backendName:"wasm",setupFunc:Upe,kernelFunc:Gpe},kC;function jpe(e){kC=e.wasm.cwrap(to,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qpe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.computeConv2DInfo(r.shape,a.shape,l,c,u,d),g=zp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let se=s.dataIdMap.get(o.dataId);if(se.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==A)throw new Error(`FusedConv2D bias shape (${se.shape}) does not match the number of output channels (${A})`);b=se.id}let w=m.filterHeight,S=m.filterWidth,k=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,D=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,C=m.strideHeight,M=m.strideWidth,L=m.inChannels,G=m.padInfo.type==="SAME"?1:0,K=m.batchSize,X=m.inHeight,Y=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(ne.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return kC(y,K,X,Y,x,w,S,b,k,E,_,D,G,R,P,C,M,L,A,g,ie,f||0,ee),ne}var Xpe={kernelName:to,backendName:"wasm",setupFunc:jpe,kernelFunc:qpe},SC;function Kpe(e){SC=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zpe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!0),g=zp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let se=s.dataIdMap.get(o.dataId);if(se.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==A)throw new Error(`FusedDepthwiseConv2D bias shape (${se.shape}) does not match the number of output channels (${A})`);b=se.id}let w=m.filterHeight,S=m.filterWidth,k=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,D=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,C=m.strideHeight,M=m.strideWidth,L=m.inChannels,G=m.padInfo.type==="SAME"?1:0,K=m.batchSize,X=m.inHeight,Y=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(ne.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return SC(y,K,X,Y,x,w,S,b,k,E,_,D,G,R,P,C,M,L,A,g,ie,f||0,ee),ne}var Ype={kernelName:no,backendName:"wasm",setupFunc:Kpe,kernelFunc:Zpe},IC;function Jpe(e){IC=e.wasm.cwrap(Sl,null,["number","number","number","number","number","number","array","number"])}function Qpe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=Zy.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return IC(h,jt[s.dtype],m,o,p,i,g,y),u}var ehe={kernelName:Sl,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},CC;function the(e){CC=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function nhe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=t.readSync(a.dataId),c=r.shape[l];for(let _=0;_=0,()=>`GatherV2: the index value ${D} is not in [0, ${c-1}]`)}let p=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),d=As({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=As({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,w=t.dataIdMap.get(f.dataId).id,S=t.dataIdMap.get(g.dataId).id,k=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return CC(A,jt[r.dtype],k,y,w,p.batchSize,E,S),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var she={kernelName:kl,backendName:"wasm",setupFunc:the,kernelFunc:nhe},rhe=!1,ahe=Ln(Il,rhe,"bool"),ohe=!1,ihe=Ln(Do,ohe,"bool"),TC;function lhe(e){TC=e.wasm.cwrap(Po,null,["number","number","number","number"])}function uhe(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;TC(r,jt[t.dtype],n,o)}return a}var che={kernelName:Po,backendName:"wasm",setupFunc:lhe,kernelFunc:uhe},dhe=!1,phe=Ln(Tl,dhe,"bool"),hhe=!1,fhe=Ln(Nl,hhe,"bool"),mhe=Nn(Fo),ghe=!1,yhe=Ln(El,ghe,"bool"),Ahe=Nn(Rl),xhe=!1,bhe=Ln(Pc,xhe,"bool"),vhe=!1,whe=Ln(C6,vhe,"bool"),NC;function khe(e){NC=e.wasm.cwrap(Oo,null,["number","number","number","number"])}function She(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("max",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;NC(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ihe={kernelName:Oo,backendName:"wasm",setupFunc:khe,kernelFunc:She},Che=!1,The=Ln(Mo,Che),EC;function Nhe(e){EC=e.wasm.cwrap(zo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ehe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=T.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,x=c.dilationWidth,A=c.strideHeight,b=c.strideWidth,w=c.inChannels,S=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let k=s.makeOutput(c.outShape,"float32"),E=s.dataIdMap.get(k.dataId).id;return EC(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,b,w,S,E),k}var Rhe={kernelName:zo,backendName:"wasm",setupFunc:Nhe,kernelFunc:Ehe},RC;function _he(e){RC=e.wasm.cwrap(Lo,null,["number, number, number"])}function Dhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t),f=p;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=u;u.dtype!=="float32"&&(x=md({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let A=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(A.dataId).id;RC(l,y,b)}if(h&&t.disposeData(c.dataId),a){let b=T.expandShapeToKeepDim(A.shape,d);A.shape=b}return u.dtype!=="float32"&&t.disposeData(x.dataId),A}var $he={kernelName:Lo,backendName:"wasm",setupFunc:_he,kernelFunc:Dhe},_C;function Phe(e){_C=e.wasm.cwrap(Bo,null,["number","number","number","number"])}function Fhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A)}let f=u.shape.length;T.assertAxesAreInnerMostDims("min",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;_C(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ohe={kernelName:Bo,backendName:"wasm",setupFunc:Phe,kernelFunc:Fhe},Mhe=!1,zhe=Ln(Wo,Mhe),ky;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(ky||(ky={}));var DC;function Lhe(e){DC=e.wasm.cwrap(Vo,null,["number","array","number","number","array","array","number","number"])}function Bhe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return DC(o,u,t.shape.length,jt[t.dtype],d,h,ky[r],l),i}var Whe={kernelName:Vo,backendName:"wasm",kernelFunc:Bhe,setupFunc:Lhe},Vhe=!0,Uhe=Ln(Uo,Vhe),Ghe=Nn(_l);function db(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var $C;function Hhe(e){$C=e.wasm.cwrap($l,"number",["number","number","number","number","number"])}function jhe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,p=$C(u,c,a,r,o),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=db(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var qhe={kernelName:$l,backendName:"wasm",setupFunc:Hhe,kernelFunc:jhe},PC;function Xhe(e){PC=e.wasm.cwrap(Oc,"number",["number","number","number","number","number","bool"])}function Khe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=PC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=db(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[y,x]}var Zhe={kernelName:Oc,backendName:"wasm",setupFunc:Xhe,kernelFunc:Khe},FC;function Yhe(e){FC=e.wasm.cwrap(Pl,"number",["number","number","number","number","number","number"])}function Jhe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=FC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=db(t,d);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[y,x]}var Qhe={kernelName:Pl,backendName:"wasm",setupFunc:Yhe,kernelFunc:Jhe},efe=!1,tfe=Ln(Dl,efe,"bool"),OC;function nfe(e){OC=e.wasm.cwrap(Ol,null,["number","number","number","number","number"])}function sfe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=n.makeOutput([...r.shape,o],a),c=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return OC(d,o,i,l,c),u}var rfe={kernelName:Ol,backendName:"wasm",setupFunc:nfe,kernelFunc:sfe};function afe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var ofe={kernelName:Fl,backendName:"wasm",kernelFunc:afe};function ife(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return wy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=wy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=pC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var lfe={kernelName:Ml,backendName:"wasm",kernelFunc:ife},MC;function ufe(e){MC=e.wasm.cwrap(Go,null,["number","array","number","number","array","array","number","number"])}function cfe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return bC({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return MC(o,c,t.shape.length,jt[t.dtype],h,f,r,u),i}var zC={kernelName:Go,backendName:"wasm",kernelFunc:cfe,setupFunc:ufe},dfe=!1,pfe=Ln(Ho,dfe),LC;function hfe(e){LC=e.wasm.cwrap(jo,null,["number","number","number"])}function ffe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,u=l;l.dtype!=="float32"&&(u=md({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(u.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return LC(i,o,p),l.dtype!=="float32"&&n.disposeData(u.dataId),c}var mfe={kernelName:jo,backendName:"wasm",setupFunc:hfe,kernelFunc:ffe},BC;function gfe(e){BC=e.wasm.cwrap(qo,null,["number","number","number","number"])}function yfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;BC(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Afe={kernelName:qo,backendName:"wasm",setupFunc:gfe,kernelFunc:yfe},xfe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Ux(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},bfe={kernelName:Mc,backendName:"wasm",kernelFunc:xfe},vfe=!0,wfe=Ln(Co,vfe),kfe=Nn(Xo),Sfe=Nn(Yo),WC;function Ife(e){WC=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","number","number","number","number"])}function Cfe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=md({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let A=t.dataIdMap.get(x.dataId).id;return WC(y,c,p,d,h,l,u,a?1:0,o?1:0,A),g!=null&&t.disposeData(g.dataId),x}var Tfe={kernelName:Zo,backendName:"wasm",setupFunc:Ife,kernelFunc:Cfe},VC;function Nfe(e){VC=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","number","number","number","number"])}function Efe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return m;let g=t.dataIdMap.get(r.dataId),y;g.dtype!=="float32"&&(y=md({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let x=g.id,A=t.dataIdMap.get(m.dataId).id;return VC(x,c,p,d,h,l,u,a?1:0,o?1:0,A),y!=null&&t.disposeData(y.dataId),m}var Rfe={kernelName:Ko,backendName:"wasm",setupFunc:Nfe,kernelFunc:Efe},UC;function _fe(e){UC=e.wasm.cwrap(Bl,null,["number","array","number","array","number","number"])}function Dfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return $2({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);UC(l,c,o.length,p,r.shape.length,u);let d=As({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),d}var $fe={kernelName:Bl,backendName:"wasm",kernelFunc:Dfe,setupFunc:_fe},GC;function Pfe(e){GC=e.wasm.cwrap(eu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Ffe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[p,d,h,f]=r.shape,[m,g]=T.getImageCenter(i,d,h),y=o===0,x=255,A=typeof o=="number"?[o,o,o,y?0:x]:[...o,x],b=new Uint8Array(new Int32Array(A).buffer);return GC(u,p,d,h,f,a,m,g,b,A.length,c),l}var Ofe={kernelName:eu,backendName:"wasm",kernelFunc:Ffe,setupFunc:Pfe},Mfe=Nn(Wl),zfe=Nn(Jo),HC;function Lfe(e){HC=e.wasm.cwrap(Vl,null,["number","number","number","number","number","number","array","number","number"])}function Bfe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=Yy.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),x=t.dataIdMap.get(i.dataId).id;return HC(f,g,jt[a.dtype],l,u,c,y,d,x),i}var Wfe={kernelName:Vl,backendName:"wasm",setupFunc:Lfe,kernelFunc:Bfe},jC;function Vfe(e){jC=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Ufe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return jC(o,i,l,h,c),u}var Gfe={kernelName:Ul,backendName:"wasm",kernelFunc:Ufe,setupFunc:Vfe},qC;function Hfe(e){qC=e.wasm.cwrap(ei,null,["number","number"])}function jfe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||qC(s,a),r}var qfe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Hfe,kernelFunc:jfe},Xfe=Nn(Qo),XC;function Kfe(e){XC=e.wasm.cwrap(si,null,["number","number","number","number"])}function Zfe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||XC(r,o,i,l),a}var Yfe={kernelName:si,backendName:"wasm",setupFunc:Kfe,kernelFunc:Zfe};function Jfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let S=1+a.length;S0?l+1:0;if(c<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,y=n.makeOutput([4],"int32"),x=n.dataIdMap.get(y.dataId).id;oT(d,jt[r.dtype],r.shape[0],h,f,g,x,t,0);let A=n.readSync(y.dataId),b;switch(A[0]){case 0:{b=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{b=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:b=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:b=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:b=""}if(n.disposeData(y.dataId),b)throw n.disposeData(m.dataId),new Error(b);return m}function Ome(e){return lT(e,!0)}var Mme={kernelName:rh,backendName:"wasm",setupFunc:iT,kernelFunc:Ome};function zme(e){return lT(e,!1)}var Lme={kernelName:ah,backendName:"wasm",setupFunc:iT,kernelFunc:zme};function Bme(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=xl({inputs:{x:r},attrs:{begin:u,size:d},backend:s});return u[i]+=p,h})}var Wme={kernelName:ql,backendName:"wasm",kernelFunc:Bme},Vme=Tn(La),Ume=Tn(Hc),Gme=!0,Hme=Ln(Ba,Gme),uT;function jme(e){uT=e.wasm.cwrap(yi,null,["number","number","number","number"])}function qme(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return uT(o,r,jt[a.dtype],l),i}var Xme={kernelName:yi,backendName:"wasm",setupFunc:jme,kernelFunc:qme},cT;function Kme(e){cT=e.wasm.cwrap(Xl,null,["number","array","number","array","array","array","array","array","number","number"])}function Zme(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Pt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=As({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=Pt.computeOutShape(x,A,b),k=xl({inputs:{x:r},backend:t,attrs:{begin:x,size:I}});w=As({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}else{let I=t.makeOutput(h,"float32"),k=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),_=new Uint8Array(new Int32Array(x).buffer),D=new Uint8Array(new Int32Array(A).buffer),R=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),M=t.dataIdMap.get(I.dataId).id;cT(k,E,r.shape.length,_,D,R,P,T,h.length,M),w=As({inputs:{x:I},backend:t,attrs:{shape:f}}),t.disposeData(I.dataId)}return w}var Yme={kernelName:Xl,backendName:"wasm",setupFunc:Kme,kernelFunc:Zme};function Jme(e){let{backend:t,inputs:n,attrs:s}=e,{data:r,dataSplits:a}=n,{separator:o,nGramWidths:i,leftPad:l,rightPad:u,padWidth:c,preserveShortSequences:p}=s,d=t.readSync(r.dataId),h=t.readSync(a.dataId),[f,m]=Kx(d,h,o,i,l,u,c,p),g=t.makeOutput([f.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=f;let x=t.makeOutput(a.shape,"int32");return t.typedArrayFromHeap(x).set(m),[g,x]}var Qme={kernelName:jc,backendName:"wasm",kernelFunc:Jme};function e0e(e){let{backend:t,inputs:n,attrs:s}=e,{input:r,delimiter:a}=n,{skipEmpty:o}=s,i=t.readSync(r.dataId),l=t.readSync(a.dataId),[u,c,p]=Zx(i,l[0],o),d=c.length,h=t.makeOutput([d,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([d],"string"),g=t.dataIdMap.get(m.dataId);g.stringBytes=c;let y=t.makeOutput([2],"int32");return t.typedArrayFromHeap(y).set(p),[h,m,y]}var t0e={kernelName:ih,backendName:"wasm",kernelFunc:e0e};function n0e(e){let{backend:t,inputs:n,attrs:s}=e,{input:r}=n,{numBuckets:a}=s,o=t.readSync(r.dataId),i=Yx(o,a),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(i),l}var s0e={kernelName:lh,backendName:"wasm",kernelFunc:n0e},r0e=!0,a0e=Ln(Wa,r0e),dT;function o0e(e){dT=e.wasm.cwrap(fi,null,["number","number","number","number"])}function i0e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Si(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;dT(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var l0e={kernelName:fi,backendName:"wasm",setupFunc:o0e,kernelFunc:i0e},u0e=Tn(Kl),c0e=Tn(gi),pT;function d0e(e){pT=e.wasm.cwrap(Va,null,["number","array","number","array","number","number"])}function p0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let d=0;d{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return hT(o,i,s.shape.length,jt[s.dtype],r,a,c,d),[u,p]},g0e={kernelName:Zl,backendName:"wasm",setupFunc:f0e,kernelFunc:m0e},fT;function y0e(e){fT=e.wasm.cwrap(Yl,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function A0e(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),A=t.makeOutput(g,r.dtype),b=t.dataIdMap.get(A.dataId).id,I=t.dataIdMap.get(r.dataId).id,E=t.dataIdMap.get(a.dataId).id,_=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return fT(I,E,a.shape[0]>1,c,f,m,h,d,p,y,r.shape.length-1,x,g.length-1,_,D,l,b),A}var x0e={kernelName:Yl,backendName:"wasm",setupFunc:y0e,kernelFunc:A0e};function b0e(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h({dataId:h,dtype:f,shape:l}))}var v0e={kernelName:Jl,backendName:"wasm",kernelFunc:b0e};function w0e(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var k0e={kernelName:Ql,backendName:"wasm",kernelFunc:w0e},I0e=[Jde,Qde,tpe,rpe,ppe,mpe,Ape,vpe,Spe,_pe,Dpe,$pe,Ope,Mpe,Bpe,Upe,Gpe,Hpe,Xpe,Ype,ehe,she,ohe,ihe,uhe,che,dhe,phe,mhe,ghe,Ahe,vhe,Ihe,The,Rhe,$he,Fhe,Mhe,ape,Bhe,Vhe,Ghe,Hhe,qhe,Xhe,Zhe,Jhe,tfe,sfe,ofe,ufe,pfe,ffe,yfe,xfe,bfe,kfe,Cfe,Efe,_fe,Pfe,Ofe,zfe,qC,Vfe,Hfe,Xfe,Zfe,Jfe,Qfe,eme,wpe,sme,ome,ume,pme,hme,fme,yme,bme,kme,Ime,Epe,Tme,Eme,Dme,Fme,Mme,Lme,Wme,Vme,Ume,Hme,Xme,Yme,Qme,t0e,s0e,a0e,l0e,u0e,c0e,h0e,g0e,x0e,upe,v0e,k0e];for(let e of I0e)nr(e);var Ny=H();Ny.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Ny.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Ny.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var nw=Eo(fD()),S0e=Eo(mD()),sw=Eo(gD()),rw=nw.default||nw,C0e=sw.default||sw,mT=class extends Ac{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(gT),Ey=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new jp(this,an())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||v.sizeFromShape(a);let i=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(s+t*i,s+n*i);return E0e(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function T0e(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function aw(e,t,n){if(Zm!=null)return Zm;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Ip!=null&&Ip[s]!=null?Ip[s]:n+s}async function N0e(){let[e,t]=await Promise.all([H().getAsync("WASM_HAS_SIMD_SUPPORT"),H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=S0e.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?aw(e,t,xp!=null?xp:l):l+i},gb&&(r.instantiateWasm=T0e(aw(e,t,xp!=null?xp:"")));let a=!1;r.onAbort=()=>{if(a||Sp)return;Sp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Zm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+rw.toString()],{type:"text/javascript"}),o=rw(r)):o=C0e(r),o.then(i=>{a=!0,Sp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})}).catch(s)})}function E0e(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var R0e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Zm=null,xp=null,Ip={},Sp=!1,gb=!1;function _0e(e,t=!1){if(Jy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Sp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Zm=e,gb=t}function B2(e,t=!1){if(Sp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")xp=e;else{Ip=e;let n=R0e.filter(s=>Ip[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}gb=t}var gT=-1,Ey=-1;function D0e(e){gT=e}function $0e(){if(Ey===-1)throw new Error("WASM backend not initialized.");return Ey}var P0e="3.20.0",F0e=2;tu("wasm",async()=>{let{wasm:e}=await N0e();return new mT(e)},F0e);var ja=H();ja.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);ja.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);ja.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);ja.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE",()=>-1);ja.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);ja.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);ja.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);ja.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);ja.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE",()=>!1);var Ze;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Ze||(Ze={}));var O0e="return a + b;",M0e="return areal * breal - aimag * bimag;",z0e="return areal * bimag + aimag * breal;",L0e="return a / b;",B0e="return a * b;",W0e="return (a - b) * (a - b);",V0e="return a - b;",U0e="return f32(a == b);",G0e="return vec4(a == b);",H0e="return f32(a > b);",j0e="return vec4(a > b);",q0e="return f32(a >= b);",X0e="return vec4(a >= b);",K0e="return f32(a < b);",Z0e="return vec4(a < b);",Y0e="return f32(a <= b);",J0e="return vec4(a <= b);",Q0e="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",e2e=`return (vec4(a >= vec4(1.0)) * - vec4(b >= vec4(1.0)));`,t2e=` - if (isnan(a)) { return a; } - if (isnan(b)) { return b; } - `,yT=` - if (isNaN.r) { - resultTemp.r = uniforms.NAN; - } - if (isNaN.g) { - resultTemp.g = uniforms.NAN; - } - if (isNaN.b) { - resultTemp.b = uniforms.NAN; - } - if (isNaN.a) { - resultTemp.a = uniforms.NAN; - } - `,n2e=` - let s = sign(a) * sign(b); - let ia = i32(round(a)); - let ib = i32(round(b)); - return f32(idiv(ia, ib, s)); - `,s2e=` - let ia = vec4(round(a)); - let ib = vec4(round(b)); - let cond = ib != vec4(0); - var resultTemp = vec4(0); - let s = sign(a) * sign(b); + ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=t.dataIdMap.get(s.dataId).id,i=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(a.dataId).id,u=s.shape[0],c=v.sizeFromShape(a.shape),p=t.makeOutput([u,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;ZC(o,i,l,u,d,f,g);let y=t.readSync(m.dataId),x;switch(y[0]){case 0:{x=T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{x=T.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:x=T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=T.getSparseReshapeInputOutputMultipleErrorMessage(A,b);break}case 4:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=T.getSparseReshapeInputOutputMismatchErrorMessage(A,b);break}default:x=""}if(t.disposeData(m.dataId),x)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(x);return[p,h]}var ame={kernelName:Wc,backendName:"wasm",setupFunc:sme,kernelFunc:rme},YC;function JC(e){YC=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function QC(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:o}=s,i=a.shape[0],l=n.readSync(o.dataId,i-1,i)[0],c=i>0?l+1:0;if(c<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,y=n.makeOutput([4],"int32"),x=n.dataIdMap.get(y.dataId).id;YC(d,jt[r.dtype],r.shape[0],h,f,g,x,t,0);let A=n.readSync(y.dataId),b;switch(A[0]){case 0:{b=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{b=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:b=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:b=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:b=""}if(n.disposeData(y.dataId),b)throw n.disposeData(m.dataId),new Error(b);return m}function ome(e){return QC(e,!0)}var ime={kernelName:Qp,backendName:"wasm",setupFunc:JC,kernelFunc:ome};function lme(e){return QC(e,!1)}var ume={kernelName:eh,backendName:"wasm",setupFunc:JC,kernelFunc:lme};function cme(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=cl({inputs:{x:r},attrs:{begin:u,size:d},backend:s});return u[i]+=p,h})}var dme={kernelName:ql,backendName:"wasm",kernelFunc:cme},pme=Nn(ti),hme=Nn(Vc),fme=!0,mme=Ln(ri,fme),eT;function gme(e){eT=e.wasm.cwrap(ii,null,["number","number","number","number"])}function yme(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return eT(o,r,jt[a.dtype],l),i}var Ame={kernelName:ii,backendName:"wasm",setupFunc:gme,kernelFunc:yme},tT;function xme(e){tT=e.wasm.cwrap(Xl,null,["number","array","number","array","array","array","array","array","number","number"])}function bme(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=As({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Gt.computeOutShape(x,A,b),k=cl({inputs:{x:r},backend:t,attrs:{begin:x,size:S}});w=As({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}else{let S=t.makeOutput(h,"float32"),k=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),_=new Uint8Array(new Int32Array(x).buffer),D=new Uint8Array(new Int32Array(A).buffer),R=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(h).buffer),C=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),M=t.dataIdMap.get(S.dataId).id;tT(k,E,r.shape.length,_,D,R,P,C,h.length,M),w=As({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}return w}var vme={kernelName:Xl,backendName:"wasm",setupFunc:xme,kernelFunc:bme};function wme(e){let{backend:t,inputs:n,attrs:s}=e,{data:r,dataSplits:a}=n,{separator:o,nGramWidths:i,leftPad:l,rightPad:u,padWidth:c,preserveShortSequences:p}=s,d=t.readSync(r.dataId),h=t.readSync(a.dataId),[f,m]=Hx(d,h,o,i,l,u,c,p),g=t.makeOutput([f.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=f;let x=t.makeOutput(a.shape,"int32");return t.typedArrayFromHeap(x).set(m),[g,x]}var kme={kernelName:Uc,backendName:"wasm",kernelFunc:wme};function Sme(e){let{backend:t,inputs:n,attrs:s}=e,{input:r,delimiter:a}=n,{skipEmpty:o}=s,i=t.readSync(r.dataId),l=t.readSync(a.dataId),[u,c,p]=jx(i,l[0],o),d=c.length,h=t.makeOutput([d,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([d],"string"),g=t.dataIdMap.get(m.dataId);g.stringBytes=c;let y=t.makeOutput([2],"int32");return t.typedArrayFromHeap(y).set(p),[h,m,y]}var Ime={kernelName:nh,backendName:"wasm",kernelFunc:Sme};function Cme(e){let{backend:t,inputs:n,attrs:s}=e,{input:r}=n,{numBuckets:a}=s,o=t.readSync(r.dataId),i=qx(o,a),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(i),l}var Tme={kernelName:sh,backendName:"wasm",kernelFunc:Cme},Nme=!0,Eme=Ln(ai,Nme),nT;function Rme(e){nT=e.wasm.cwrap(ni,null,["number","number","number","number"])}function _me(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;nT(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Dme={kernelName:ni,backendName:"wasm",setupFunc:Rme,kernelFunc:_me},$me=Nn(Kl),Pme=Nn(oi),sT;function Fme(e){sT=e.wasm.cwrap(Ea,null,["number","array","number","array","number","number"])}function Ome(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let d=0;d{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return rT(o,i,s.shape.length,jt[s.dtype],r,a,c,d),[u,p]},Bme={kernelName:Zl,backendName:"wasm",setupFunc:zme,kernelFunc:Lme},aT;function Wme(e){aT=e.wasm.cwrap(Yl,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function Vme(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),A=t.makeOutput(g,r.dtype),b=t.dataIdMap.get(A.dataId).id,S=t.dataIdMap.get(r.dataId).id,E=t.dataIdMap.get(a.dataId).id,_=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return aT(S,E,a.shape[0]>1,c,f,m,h,d,p,y,r.shape.length-1,x,g.length-1,_,D,l,b),A}var Ume={kernelName:Yl,backendName:"wasm",setupFunc:Wme,kernelFunc:Vme};function Gme(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h({dataId:h,dtype:f,shape:l}))}var Hme={kernelName:Jl,backendName:"wasm",kernelFunc:Gme};function jme(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var qme={kernelName:Ql,backendName:"wasm",kernelFunc:jme},Xme=[wde,kde,Ide,Nde,Ode,Lde,Vde,Hde,Kde,tpe,npe,spe,ope,ipe,cpe,hpe,fpe,mpe,Ape,vpe,Spe,Tpe,Rpe,_pe,$pe,Ppe,Fpe,Ope,Lpe,Bpe,Vpe,Hpe,Xpe,Ype,ehe,she,ahe,ihe,Ede,che,phe,fhe,mhe,yhe,Ahe,bhe,whe,Ihe,The,Rhe,$he,Ohe,zhe,Whe,Uhe,Ghe,qhe,Zhe,Qhe,tfe,rfe,ofe,lfe,zC,pfe,mfe,Afe,bfe,wfe,kfe,Sfe,jde,Tfe,Rfe,$fe,Ofe,Mfe,zfe,Wfe,Gfe,qfe,Xfe,Qde,Yfe,Qfe,nme,ame,ime,ume,dme,pme,hme,mme,Ame,vme,kme,Ime,Tme,Eme,Dme,$me,Pme,Mme,Bme,Ume,$de,Hme,qme];for(let e of Xme)tr(e);var Sy=H();Sy.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Sy.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Sy.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var K7=po(z_()),Kme=po(L_()),Z7=po(B_()),Y7=K7.default||K7,Zme=Z7.default||Z7,oT=class extends Ac{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(iT),Iy=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Wp(this,rn())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||v.sizeFromShape(a);let i=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(s+t*i,s+n*i);return Qme(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Yme(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function J7(e,t,n){if(Hm!=null)return Hm;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Ap!=null&&Ap[s]!=null?Ap[s]:n+s}async function Jme(){let[e,t]=await Promise.all([H().getAsync("WASM_HAS_SIMD_SUPPORT"),H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Kme.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?J7(e,t,fp!=null?fp:l):l+i},pb&&(r.instantiateWasm=Yme(J7(e,t,fp!=null?fp:"")));let a=!1;r.onAbort=()=>{if(a||xp)return;xp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Hm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Y7.toString()],{type:"text/javascript"}),o=Y7(r)):o=Zme(r),o.then(i=>{a=!0,xp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})}).catch(s)})}function Qme(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var e0e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Hm=null,fp=null,Ap={},xp=!1,pb=!1;function t0e(e,t=!1){if(qy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Hm=e,pb=t}function P2(e,t=!1){if(xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")fp=e;else{Ap=e;let n=e0e.filter(s=>Ap[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}pb=t}var iT=-1,Iy=-1;function n0e(e){iT=e}function s0e(){if(Iy===-1)throw new Error("WASM backend not initialized.");return Iy}var r0e="3.20.0",a0e=2;tu("wasm",async()=>{let{wasm:e}=await Jme();return new oT(e)},a0e);var gi=H();gi.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);gi.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);gi.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE",()=>-1);gi.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);gi.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);gi.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);gi.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);gi.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE",()=>!0);var o0e=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=Q7(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({size:e,usage:t,mappedAtCreation:n});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=Q7(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Q7(e,t){return`${e}_${t}`}var i0e=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,n,s){let r=t6(n),a=e*t*r,o=e6(e,t,n,s);if(this.freeTextures.has(o)||this.freeTextures.set(o,[]),this.usedTextures.has(o)||this.usedTextures.set(o,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(o).length>0){this.numFreeTextures--;let l=this.freeTextures.get(o).shift();return this.usedTextures.get(o).push(l),l}this.numBytesAllocated+=a;let i=this.device.createTexture({size:[e,t],format:n,usage:s});return this.usedTextures.get(o).push(i),i}releaseTexture(e,t,n,s,r){if(this.freeTextures.size===0)return;let a=e6(t,n,s,r);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let o=this.usedTextures.get(a),i=o.indexOf(e);if(i<0)throw new Error("Cannot release a texture that was never provided by this texture manager");o.splice(i,1);let l=t6(s),u=t*n*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function e6(e,t,n,s){return`${e}_${t}_${n}_${s}`}function t6(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}function l0e(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}var u0e=(e,t,n,s)=>{let r={dtype:s.dtype,shape:s.shape},a=c0e(n,r,t),o=e.createShaderModule({code:a,label:t.constructor.name});return e.createComputePipeline({compute:{module:o,entryPoint:"_start"},label:t.constructor.name,layout:"auto"})};function Pn(e){if(e<=1)return"i32";if(e===2)return"vec2";if(e===3)return"vec3";if(e===4)return"vec4";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function va(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function Ye(...e){let t;switch(e.length){case 0:t=` + ${Lp()} + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups : vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + main(); + } - // Windows (D3D) wants guaranteed non-zero int division at compile-time. - if (cond[0]) { - resultTemp[0] = idiv(ia[0], ib[0], s[0]); - } - if (cond[1]) { - resultTemp[1] = idiv(ia[1], ib[1], s[1]); - } - if (cond[2]) { - resultTemp[2] = idiv(ia[2], ib[2], s[2]); - } - if (cond[3]) { - resultTemp[3] = idiv(ia[3], ib[3], s[3]); - } - return vec4(resultTemp); - `,r2e="return f32(a != b);",a2e="return vec4(a != b);",o2e=` - if(a < 0.0 && floor(b) < b) { - return uniforms.NAN; - } - if (b == 0.0) { - return 1.0; - } - if (round(abs(b) % 2.0) != 1.0) { - return pow(abs(a), b); - } - return sign(a) * pow(abs(a), b); - `,i2e=` - let isModRound1Bool = vec4(round(abs(b) % vec4(2.0))) == vec4(1); - let isModRound1 = vec4(isModRound1Bool); - let multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); - var resultTemp = multiplier * pow(abs(a), b); + fn main() + `;break;case 1:t=` + ${Lp()} + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups : vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + main(getGlobalIndex()); + } - // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS - let isExpZero = b == vec4(0.0); - if (isExpZero.r) { - resultTemp.r = 1.0; - } - if (isExpZero.g) { - resultTemp.g = 1.0; - } - if (isExpZero.b) { - resultTemp.b = 1.0; - } - if (isExpZero.a) { - resultTemp.a = 1.0; - } - let isNaN = a < vec4(0.0) & floor(b) < b; - ${yT} - return resultTemp; - `,l2e="if (a < 0.0) { return b * a; } return a;",u2e=` - let aLessThanZero = vec4(a < vec4(0.0)); - return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); - `;function ow(e,t){let n=t?yT:t2e;return t?` - var resultTemp = vec4(${e}(a, b)); - let isNaN = isnanVec4(a) | isnanVec4(b); - `+n+` - return resultTemp; - `:n+` - return ${e}(a, b); - `}function Ym(e,t){switch(e){case Ze.MUL:return B0e;case Ze.ADD:return O0e;case Ze.SUB:return V0e;case Ze.DIV:return L0e;case Ze.EQUAL:return t?G0e:U0e;case Ze.GREATER:return t?j0e:H0e;case Ze.GREATER_EQUAL:return t?X0e:q0e;case Ze.LESS:return t?Z0e:K0e;case Ze.LESS_EQUAL:return t?J0e:Y0e;case Ze.LOGICAL_AND:return t?e2e:Q0e;case Ze.NOT_EQUAL:return t?a2e:r2e;case Ze.SQUARED_DIFFERENCE:return W0e;case Ze.INT_DIV:return t?s2e:n2e;case Ze.PRELU:return t?u2e:l2e;case Ze.MAX:return ow("max",t);case Ze.MIN:return ow("min",t);case Ze.POW:return t?i2e:o2e;case Ze.COMPLEX_MULTIPLY_REAL:return M0e;case Ze.COMPLEX_MULTIPLY_IMAG:return z0e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var ze;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.RELU=12]="RELU",e[e.RELU6=13]="RELU6",e[e.LEAKYRELU=14]="LEAKYRELU",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(ze||(ze={}));var c2e="return abs(a);",d2e="return ceil(a);",p2e="return cos(a);",h2e=` - let e2x = exp(-a); - return (e2x + 1.0 / e2x) / 2.0; -`,f2e="return exp(a) - 1.0;",m2e="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",g2e=` - var resFloat = exp(a) - vec4(1.0); - if (a.r >= 0.0) { - resFloat.r = a.r; - } - if (a.g >= 0.0) { - resFloat.g = a.g; - } - if (a.b >= 0.0) { - resFloat.b = a.b; - } - if (a.a >= 0.0) { - resFloat.a = a.a; - } - return resFloat; -`,y2e="return exp(a);",A2e="return floor(a);",x2e="return a;",b2e=`if (a < 0.0) { return 1.0/0.0; } - return log(a);`,v2e="return f32(!(a >= 1.0));",w2e="return -a;",k2e="if (a < 0.0) { return uniforms.alpha * a; } return a;",I2e=` - let aLessThanZero = vec4(a < vec4(0.0)); - return (aLessThanZero * (uniforms.alpha * a)) + ((vec4(1.0) - aLessThanZero) * a); -`,S2e="return select(a, 0.0, a < 0.0);",C2e="return clamp(a, 0.0, 6.0);",T2e="return clamp(a, vec4(0.0, 0.0, 0.0, 0.0), vec4(6.0, 6.0, 6.0, 6.0));",N2e=` - return select(a, vec4(0.0), a < vec4(0.0)); -`,E2e="return 1.0/sqrt(a);",R2e="return 1.0 / (1.0 + exp(-1.0 * a));",_2e="return sin(a);",D2e=` - let e2x = exp(a); - return (e2x - 1.0 / e2x) / 2.0; -`,$2e="return sqrt(a);",P2e="return a * a;",F2e=` - let e2x = exp(-2.0 * abs(a)); - return sign(a) * (1.0 - e2x) / (1.0 + e2x); -`,O2e="return f32(i32((a)));";function Ki(e,t){switch(e){case ze.ABS:return c2e;case ze.COS:return p2e;case ze.COSH:return h2e;case ze.CEIL:return d2e;case ze.ELU:return t?g2e:m2e;case ze.EXP:return y2e;case ze.EXPM1:return f2e;case ze.FLOOR:return A2e;case ze.LINEAR:return x2e;case ze.LOG:return b2e;case ze.LOGICAL_NOT:return v2e;case ze.NEG:return w2e;case ze.LEAKYRELU:return t?I2e:k2e;case ze.RELU:return t?N2e:S2e;case ze.RELU6:return t?T2e:C2e;case ze.RSQRT:return E2e;case ze.SIGMOID:return R2e;case ze.SIN:return _2e;case ze.SINH:return D2e;case ze.SQRT:return $2e;case ze.SQUARE:return P2e;case ze.TANH:return F2e;case ze.TO_INT:return O2e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var rn=e=>{switch(e){case 1:return"f32";case 2:return"vec2";case 3:return"vec3";case 4:return"vec4";default:throw new Error(`${e}-component is not supported.`)}};function qa(e,t=!1,n=!1,s=3){if(e===null)return"";let r="";if(e==="linear")r=Ki(ze.LINEAR);else if(e==="relu")r=Ki(ze.RELU,n);else if(e==="elu")r=Ki(ze.ELU,n);else if(e==="relu6")r=Ki(ze.RELU6,n);else if(e==="prelu")r=Ym(Ze.PRELU,n);else if(e==="sigmoid")r=Ki(ze.SIGMOID,n);else if(e==="leakyrelu")r=Ki(ze.LEAKYRELU,n);else throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`);let o=rn(n?4:1),i="";return t?i=` - fn activation(a : ${o}, coords : vec${s}) -> ${o} { - let b = getPreluActivationWeightsByOutputCoords(coords); - ${r} - }`:i=` - fn activation(a : ${o}, coords : vec${s}) -> ${o} { - ${r} - }`,i}function xd(e,t){return` - ${e?"value = value + getBiasByOutputCoords(coords);":""} - ${t?"value = activation(value, coords);":""} - `}function M2e(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}var z2e=(e,t,n,s)=>{let r={dtype:s.dtype,shape:s.shape},a=L2e(n,r,t),o=e.createShaderModule({code:a,label:t.constructor.name});return e.createComputePipeline({compute:{module:o,entryPoint:"main"},label:t.constructor.name,layout:"auto"})};function $n(e){if(e<=1)return"i32";if(e===2)return"vec2";if(e===3)return"vec3";if(e===4)return"vec4";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function go(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function lt(){return` - ${bd()} - let index = getGlobalIndex(); -`}function bd(){return` - ${W2()} - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(num_workgroups) NumWorkgroups: vec3) { - localId = LocalId; - globalId = GlobalId; - numWorkgroups = NumWorkgroups; -`}function W2(){return` + fn main(${e[0]} : i32) + `;break;default:throw Error("Unreachable")}return t}function Lp(){return` @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) -`}function L2e(e,t,n){let s=[];if(s.push(` +`}function c0e(e,t,n){let s=[];if(s.push(` const workGroupSizeX = ${n.workGroupSize[0]}u; const workGroupSizeY = ${n.workGroupSize[1]}u; const workGroupSizeZ = ${n.workGroupSize[2]}u; @@ -5035,7 +4921,7 @@ return a / b;`,eue=` // Only used when the y/z dimension of workgroup size is 1. fn getGlobalIndex() -> i32 { - ${AT(n)?" return i32(globalId.x);":` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY + + ${lT(n)?" return i32(globalId.x);":` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY + localId.y * workGroupSizeX + localId.x; let workGroupID = (globalId - localId)/vec3( workGroupSizeX, workGroupSizeY, workGroupSizeZ); @@ -5053,23 +4939,23 @@ return a / b;`,eue=` outShapeStrides : vec2, }; - @group(0) @binding(0) var result: array<${Cp(t.dtype,n.isVec4)}>; + @group(0) @binding(0) var result: array<${bp(t.dtype,n.isVec4)}>; @group(0) @binding(2) var uniforms: Uniform; - `),[iw,s.join(` -`),lw(t.shape),n.getUserCode()].join(` -`);let r=!1,a=!1,o="struct Uniforms { NAN : f32, ";n.variableNames.forEach((f,m)=>{let g=$n(e[m].shape.length);(g==="vec5"||g==="vec6")&&(a=!0),(r||a)&&(o+="@align(16) "),r=a,o+=`${f.charAt(0).toLowerCase()+f.slice(1)}Shape : ${g}, `});let i=$n(t.shape.length);a=i==="vec5"||i==="vec6",(r||a)&&(o+="@align(16) "),r=a,o+=`outShape : ${i}, `;let l=t.shape.length-1,u=$n(l);a=u==="vec5"||u==="vec6",(r||a)&&(o+="@align(16) "),r=a,o+=` - outShapeStrides: ${u}, `,n.size&&(r&&(o+="@align(16) "),r=!1,o+="size : i32, "),n.uniforms&&(r&&(o+="@align(16) "),o+=n.uniforms),o+="};",s.push(o),n.atomic?s.push(` + `),[n6,s.join(` +`),s6(t.shape),n.getUserCode()].join(` +`);let r="struct Uniforms { NAN : f32, ";n.variableNames.forEach((d,h)=>{let f=Pn(e[h].shape.length);r+=`${d.charAt(0).toLowerCase()+d.slice(1)}Shape : ${f}, `}),r+=`outShape : ${Pn(t.shape.length)}, `;let o=t.shape.length-1;r+=` + outShapeStrides: ${Pn(o)}, `,n.size&&(r+="size : i32, "),n.uniforms&&(r+=n.uniforms),r+="};",r=A0e(r),s.push(r),n.atomic?s.push(` @group(0) @binding(0) var result: array>; `):s.push(` - @group(0) @binding(0) var result: array<${Cp(t.dtype,n.isVec4)}>; - `),n.variableNames.forEach((f,m)=>{s.push(` - @group(0) @binding(${1+m}) var ${f}: array<${n.variableTypes?n.variableTypes[m]:Cp(e[m].dtype,n.isVec4)}>; - `)}),o!==""&&s.push(` + @group(0) @binding(0) var result: array<${bp(t.dtype,n.isVec4)}>; + `),n.variableNames.forEach((d,h)=>{s.push(` + @group(0) @binding(${1+h}) var ${d}: array<${n.variableTypes?n.variableTypes[h]:bp(e[h].dtype,n.isVec4)}>; + `)}),r!==""&&s.push(` @group(0) @binding(${1+n.variableNames.length}) var uniforms: Uniforms; - `);let c=G2e(t.shape,n.dispatchLayout),p=[iw,s.join(` -`),lw(t.shape),c,H2e(t.shape.length)];n.atomic||p.push(j2e(t.shape,t.dtype,n.isVec4));let d=e.map((f,m)=>U2e(f,t.shape,n.variableTypes?n.variableTypes[m]==="vec4":n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(` -`);return p.push(d),p.push(n.getUserCode()),p.join(` -`)}function B2e(e,t,n,s){let r=e.shaderKey;if(e.isFromPixels)return r;let a=n.map(c=>c.dtype).concat(s.dtype),o=n.map(c=>C.getBroadcastDims(c.shape,s.shape)),i=n.map(c=>v.arraysEqual(c.shape,s.shape)).join("_"),l=o.map(c=>c.join("_")).join(";"),u=AT(e)?"flatDispatch":"";return r+="_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(c=>c.length).join(",")+a.join(",")+e.variableNames.join(",")+l+i+u,r}var iw=` + `);let l=m0e(t.shape,n.dispatchLayout),u=[n6,s.join(` +`),s6(t.shape),l,g0e(t.shape.length)];n.atomic||u.push(y0e(t.shape,t.dtype,n.isVec4));let c=e.map((d,h)=>f0e(d,t.shape,n.variableTypes?n.variableTypes[h]==="vec4":n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(` +`);return u.push(c),u.push(n.getUserCode()),u.join(` +`)}function d0e(e,t,n,s){let r=e.shaderKey;if(e.isFromPixels)return r;let a=n.map(c=>c.dtype).concat(s.dtype),o=n.map(c=>T.getBroadcastDims(c.shape,s.shape)),i=n.map(c=>v.arraysEqual(c.shape,s.shape)).join("_"),l=o.map(c=>c.join("_")).join(";"),u=lT(e)?"flatDispatch":"";return r+="_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(c=>c.length).join(",")+a.join(",")+e.variableNames.join(",")+l+i+u,r}var n6=` struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32}; struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32}; @@ -5108,8 +4994,8 @@ return a / b;`,eue=` fn idiv(a: i32, b: i32, sign: f32) -> i32 { var res: i32 = a / b; - let mod: i32 = a % b; - if (sign < 0. && mod != 0) { + let modulo: i32 = a % b; + if (sign < 0. && modulo != 0) { res = res - 1; } return res; @@ -5127,15 +5013,15 @@ return a / b;`,eue=` fn isnanVec4(val : vec4) -> vec4 { return vec4(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3])); } -`;function lw(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=$n(t),r=[];for(let o=0;o vec2 { +`;function s6(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=Pn(t),r=[];for(let o=0;o vec2 { let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides; return vec2(d0, d1); - }`;let a;return a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides.${go(i)}`,u=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides.${go(i)}`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides.${go(i)}`;return`${l}; ${u};`}).join(""),` + }`;let a;return a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides.${va(i)}`,u=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides.${va(i)}`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides.${va(i)}`;return`${l}; ${u};`}).join(""),` fn getCoordsFromIndex(index : i32) -> ${s} { ${a} return ${s}(${r.join(",")}); } - `}function W2e(e,t){let n=e.name,s=e.shape.length,r=$n(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=o.map(c=>`${c} : i32`).join(", ");if(s<1)return t?` + `}function p0e(e,t){let n=e.name,s=e.shape.length,r=Pn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=o.map(c=>`${c} : i32`).join(", ");if(s<1)return t?` fn ${a}() -> vec4 { return vec4(${n}[0]); } @@ -5153,7 +5039,7 @@ return a / b;`,eue=` return f32(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}), ${l})]); } - `}function V2e(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"ByOutput",i=e.shape.length,l=t.length,u=$n(l);if(v.arraysEqual(e.shape,t)&&s)return n?` + `}function h0e(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"ByOutput",i=e.shape.length,l=t.length,u=Pn(l);if(v.arraysEqual(e.shape,t)&&s)return n?` fn ${o}Index(globalIndex : i32) -> vec4 { return vec4(${r}[globalIndex]); } @@ -5169,7 +5055,7 @@ return a / b;`,eue=` fn ${o}Coords(coords : ${u}) -> f32 { return f32(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]); } - `;let c=C.getBroadcastDims(e.shape,t),p=l-i,d="";if(i===0)return n?` + `;let c=T.getBroadcastDims(e.shape,t),p=l-i,d="";if(i===0)return n?` fn ${o}Index(globalIndex : i32) -> vec4 { return get${a}(); } @@ -5185,8 +5071,8 @@ return a / b;`,eue=` fn ${o}Coords(coords : ${u}) -> f32{ return get${a}(); } - `;l<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords.${go(g+p)} = 0;`).join(` -`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=$n(i),y=e.shape.map((x,A)=>`coords.${go(A+p)}`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?` + `;l<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords.${va(g+p)} = 0;`).join(` +`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=Pn(i),y=e.shape.map((x,A)=>`coords.${va(A+p)}`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?` fn ${o}Index(globalIndex : i32) -> vec4 { var coords = getCoordsFromIndex(globalIndex); ${d} @@ -5210,13 +5096,13 @@ return a / b;`,eue=` ${d} return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]); } -`}function U2e(e,t,n,s){let r=W2e(e,n);return e.shape.length<=t.length&&(r+=V2e(e,t,n,s)),r}function G2e(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return`fn getOutputCoords() -> ${$n(a)}{ +`}function f0e(e,t,n,s){let r=p0e(e,n);return e.shape.length<=t.length&&(r+=h0e(e,t,n,s)),r}function m0e(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return`fn getOutputCoords() -> ${Pn(a)}{ let globalIndex = getGlobalIndex(); return getCoordsFromIndex(globalIndex); } - `;let o="",i=[n,s,r],l=0;for(let d=0;d ${c} { + `;let o="",i=[n,s,r],l=0;for(let d=0;d ${c} { ${o} -`;return u.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${u.join(",")}); }`,p}function H2e(e){let t="";switch(e){case 0:case 1:t+=` +`;return u.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${u.join(",")}); }`,p}function g0e(e){let t="";switch(e){case 0:case 1:t+=` fn getOutputIndexFromCoords(coords : i32) -> i32 { return coords; } @@ -5250,7 +5136,7 @@ return a / b;`,eue=` coords.u * uniforms.outShapeStrides.u + coords.v; } - `;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function AT(e){return e.dispatch[1]===1&&e.dispatch[2]===1}function Cp(e,t){return e==="float32"?t?"vec4":"f32":e==="int32"||e==="bool"?t?"vec4":"i32":e}function j2e(e,t,n){let s=e.length,r=Cp(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4) { + `;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function lT(e){return e.dispatch[1]===1&&e.dispatch[2]===1}function bp(e,t){return e==="float32"?t?"vec4":"f32":e==="int32"||e==="bool"?t?"vec4":"i32":e}function y0e(e,t,n){let s=e.length,r=bp(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4) { result[flatIndex] = ${r}(value); } fn setOutputAtIndexI32(flatIndex : i32, value : vec4) { @@ -5260,7 +5146,7 @@ return a / b;`,eue=` } fn setOutputAtIndexI32(flatIndex : i32, value : i32) { result[flatIndex] = ${r}(value); - }`,s>=2){let o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=$n(s);n?a+=` + }`,s>=2){let o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=Pn(s);n?a+=` fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4) { let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")})); setOutputAtIndex(flatIndex / 4, value); @@ -5278,14 +5164,156 @@ return a / b;`,eue=` let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")})); setOutputAtIndexI32(flatIndex, value); } - `}return a}var xT={};Ve(xT,{ArrayBufferToTypedArray:()=>wT,GPUBytesPerElement:()=>vT,MatMulProgramType:()=>Zs,computeDispatch:()=>Ge,computeWorkGroupSizeForConv2d:()=>yb,computeWorkGroupSizeForMatMul:()=>bT,computeWorkPerThreadForConv2d:()=>Ab,flatDispatchLayout:()=>at,isWebGPUSupported:()=>xb,tilesFitEvenlyIntoShape:()=>q2e});var il=e=>{let t=1;for(let n=0;nn%e[s]===0)}function Ge(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(il(e.x.map(i=>t[i]))/(n[0]*s[0])),e.y?Math.ceil(il(e.y.map(i=>t[i]))/(n[1]*s[1])):1,e.z?Math.ceil(il(e.z.map(i=>t[i]))/(n[2]*s[2])):1];return[r,a,o]}function yb(e,t,n=!1){if(n)return[8,8,1];let s=il(e.x.map(a=>t[a])),r=il(e.y.map(a=>t[a]));return s<=4?[4,16,1]:r<=4?[16,4,1]:[16,16,1]}function bT(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function Ab(e,t,n=!1){if(n)return[4,4,1];let s=il(e.x.map(a=>t[a])),r=il(e.y.map(a=>t[a]));return s<=4?[1,2,1]:r<=4?[2,1,1]:[2,2,1]}function at(e){return{x:e.map((t,n)=>n)}}function vT(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function wT(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function xb(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}var Zs;(function(e){e[e.MatMulPackedVec4Program=0]="MatMulPackedVec4Program",e[e.MatMulReduceProgram=1]="MatMulReduceProgram",e[e.MatMulSplitKProgram=2]="MatMulSplitKProgram",e[e.MatMulSmallOutputSizeProgram=3]="MatMulSmallOutputSizeProgram",e[e.MatMulPackedProgram=4]="MatMulPackedProgram",e[e.MatMulMax=5]="MatMulMax"})(Zs||(Zs={}));function kT(e,t,n,s,r=!1,a=!1,o=!1,i=1){v.assert(n&&i===1||!n,()=>`transposeA ${n} is not compatible with component size ${i}`);let l=` + `}return a}function A0e(e){let t=/(\w+)\s*:\s*vec(5|6)/g;e=e.replace(t,s=>"@align(16) "+s);let n=/vec(5|6)\s*,\s*(\w+)/g;return e=e.replace(n,(s,r,a)=>`vec${r}, @align(16) ${a}`),e}var uT={};He(uT,{ArrayBufferToTypedArray:()=>pT,GPUBytesPerElement:()=>dT,MatMulProgramType:()=>Rr,computeDispatch:()=>Ge,computeWorkGroupInfoForMatMul:()=>cT,computeWorkGroupSizeForConv2d:()=>hb,computeWorkPerThreadForConv2d:()=>fb,flatDispatchLayout:()=>ot,isWebGPUSupported:()=>mb,tilesFitEvenlyIntoShape:()=>x0e});var Ji=e=>{let t=1;for(let n=0;nn%e[s]===0)}function Ge(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(Ji(e.x.map(i=>t[i]))/(n[0]*s[0])),e.y?Math.ceil(Ji(e.y.map(i=>t[i]))/(n[1]*s[1])):1,e.z?Math.ceil(Ji(e.z.map(i=>t[i]))/(n[2]*s[2])):1];return[r,a,o]}function cT(e,t,n,s=!1){let r=[8,8,1],a=[4,4,1];return s||(e<=8&&(a[1]=1),t<=16&&n<=16&&(r[0]=4)),{workGroupSize:r,elementsPerThread:a}}function hb(e,t,n=!1){if(n)return[8,8,1];let s=Ji(e.x.map(a=>t[a])),r=Ji(e.y.map(a=>t[a]));return s<=4?[4,16,1]:r<=4?[16,4,1]:[16,16,1]}function fb(e,t,n=!1){if(n)return[4,4,1];let s=Ji(e.x.map(a=>t[a])),r=Ji(e.y.map(a=>t[a]));return s<=4?[1,2,1]:r<=4?[2,1,1]:[2,2,1]}function ot(e){return{x:e.map((t,n)=>n)}}function dT(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function pT(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function mb(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}var Rr;(function(e){e[e.MatMulReduceProgram=0]="MatMulReduceProgram",e[e.MatMulSplitKProgram=1]="MatMulSplitKProgram",e[e.MatMulSmallOutputSizeProgram=2]="MatMulSmallOutputSizeProgram",e[e.MatMulPackedProgram=3]="MatMulPackedProgram",e[e.MatMulMax=4]="MatMulMax"})(Rr||(Rr={}));var b0e=H().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),v0e=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(o=>o<=n))return r;v.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),v.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},F2=class extends Ac{constructor(e){if(super(),this.commandQueueOwnedIds=new WeakSet,this.dispatchNumberInEncoder=0,this.disposed=!1,this.downloadWaitMs=0,this.tensorDataPendingDisposal=[],this.stagingPendingDisposal=[],this.uniformPendingDisposal=[],this.uploadWaitMs=0,!mb())throw new Error("WebGPU is not supported on this device");this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=e.features.has("timestamp-query"),this.bufferManager=new o0e(this.device),this.textureManager=new i0e(this.device),this.tensorMap=new Wp(this,rn()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return F2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}disposeData(e,t=!1){if(this.tensorDataPendingDisposal.indexOf(e)>=0)return!1;if(!this.tensorMap.has(e))return!0;let n=this.tensorMap.get(e);if(this.decRef(e),!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDataPendingDisposal.push(e),!1;let{complexTensorInfos:s}=this.tensorMap.get(e);return s!=null&&(this.disposeData(s.real.dataId,t),this.disposeData(s.imag.dataId,t)),this.releaseResource(e),this.tensorMap.delete(e),!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}releaseResource(e){let t=this.tensorMap.get(e);if(!(!t||!t.resourceInfo)){if("texture"in t.resourceInfo){let n=t.resourceInfo;n.texture instanceof GPUTexture&&this.textureManager.releaseTexture(n.texture,n.width,n.height,n.format,n.usage),n.texture=null}else{let n=t.resourceInfo;this.bufferManager.releaseBuffer(n.buffer,n.size,n.usage),n.buffer=null}t.resourceInfo=null}}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.tensorMap.set(s,{dtype:n,shape:t,values:e,refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.tensorMap.set(e,{dtype:s,shape:n,values:t,refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.tensorDataPendingDisposal.forEach(e=>{this.releaseResource(e),this.tensorMap.delete(e)}),this.uniformPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.size,e.usage)),this.stagingPendingDisposal.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.size,e.usage)),this.tensorDataPendingDisposal=[],this.uniformPendingDisposal=[],this.stagingPendingDisposal=[]}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let n=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=n.getMappedRange().slice(0);return n.unmap(),n!=null&&this.bufferManager.releaseBuffer(n,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),s}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.releaseResource(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=T.mergeRealAndImagArrays(a,o)}else{let r=t.resourceInfo,a=await this.getBufferData(r.buffer,r.size);s=pT(a,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}readToGPU(e){let t=this.tensorMap.get(e),{values:n,dtype:s,shape:r,resourceInfo:a}=t;if(s==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let o=a.size,i=this.bufferManager.acquireBuffer(o,a.usage);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(a.buffer,0,i,0,o),this.submitQueue();let l=this.makeTensorInfo(r,s),u=rn().makeTensorFromTensorInfo(l),c=this.tensorMap.get(l.dataId);return c.resourceInfo={size:o,usage:this.defaultGpuBufferUsage(),buffer:i},{tensorRef:u,buffer:i,bufSize:o}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}async time(e){this.supportTimeQuery||console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Otherwise, zero will be shown for the kernel time when profiling mode is enabled. Using performance.now is not workable for webgpu since it doesn't support synchronous data read from GPU.");let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}makeTensorInfo(e,t,n){return t==="string"&&n!=null&&n.length>0&&v.isString(n[0])&&(n=n.map(r=>v.encodeString(r))),{dataId:this.write(n,e,t),shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);if("texture"in t.resourceInfo){let s=t.resourceInfo;return s.texture instanceof GPUExternalTexture?s.texture:s.texture.createView()}let n=t.resourceInfo;return{offset:0,size:n.size,buffer:n.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.resourceInfo)return;let n=dT(t.dtype)*v.sizeFromShape(t.shape),s=this.bufferManager.acquireBuffer(n,this.defaultGpuBufferUsage());if(t.resourceInfo={size:n,usage:this.defaultGpuBufferUsage(),buffer:s},t.values){let r=this.bufferManager.acquireUploadBuffer(n,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),a=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(a).set(t.values):new Float32Array(a).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,s,0,n);let o={size:n,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingPendingDisposal.push(o)}}makeUniforms(e){let t=0,n=0,s=[];e.forEach(i=>{i.data.length===0&&(i.data=[1]);let l;switch(i.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${i.data.length}D shape`)}(n===5||n===6)&&(l=16),t=Math.ceil(t/l)*l,n=i.data.length,s.push(t),t+=i.data.length*4});let r=new ArrayBuffer(t);e.forEach((i,l)=>{let u=s[l];i.type==="int32"?new Int32Array(r,u,i.data.length).set(i.data):i.type==="uint32"?new Uint32Array(r,u,i.data.length).set(i.data):new Float32Array(r,u,i.data.length).set(i.data)});let a=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(a,0,r,0,t);let o={size:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:a};return this.uniformPendingDisposal.push(o),{offset:0,size:t,buffer:a}}runWebGPUProgram(e,t,n,s,r){if(r||(r=this.makeTensorInfo(e.outputShape,n)),v.sizeFromShape(r.shape)===0)return this.tensorMap.get(r.dataId).values=v.getTypedArrayFromDType(r.dtype,0),r;this.uploadToGPU(r.dataId),e.dispatch=v0e(this.device,e);let a=[],o=[];if(!e.isFromPixels){a.push({type:"float32",data:[NaN]}),o=t.concat(r).map(g=>g.shape);let f="int32";o.map(g=>{a.push({type:f,data:g})});let m=v.computeStrides(r.shape);if(a.push({type:f,data:m}),e.size){let g=v.sizeFromShape(e.outputShape);a.push({type:f,data:[e.isVec4?g/4:g]})}}let i=t.map((f,m)=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(f.dataId),{dtype:this.tensorMap.get(f.dataId).dtype,shape:f.shape,name:e.variableNames[m]}}),l=d0e(e,o,i,r),u;l in this.pipelineCache?u=this.pipelineCache[l]:(u=u0e(this.device,e,i,r),this.pipelineCache[l]=u),s&&(a=[...a,...s]);let c=[this.tensorToBinding(r),...t.map(f=>this.tensorToBinding(f)),this.makeUniforms(a)],p=this.device.createBindGroup({layout:u.getBindGroupLayout(0),entries:c.map((f,m)=>({binding:m,resource:f}))});this.ensureCommandEncoderReady();let d=this.getComputePass(),h=this.activeTimers!=null;return h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,0),d.setPipeline(u),d.setBindGroup(0,p),d.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(f=>{this.commandQueueOwnedIds.add(f.dataId)}),this.commandQueueOwnedIds.add(r.dataId),H().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),h&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}async getTimeFromQuerySet(e){let t=this.bufferManager.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.bufferManager.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=b0e){return H().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).resourceInfo==null&&v.sizeFromShape(n.shape){H().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:H().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:n.maxStorageBufferBindingSize},r&&(s.requiredFeatures=["timestamp-query"]);let a=await t.requestDevice(s);return new F2(a)},3);var qe;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.ATAN2=2]="ATAN2",e[e.SUB=3]="SUB",e[e.DIV=4]="DIV",e[e.EQUAL=5]="EQUAL",e[e.GREATER=6]="GREATER",e[e.GREATER_EQUAL=7]="GREATER_EQUAL",e[e.LESS=8]="LESS",e[e.LESS_EQUAL=9]="LESS_EQUAL",e[e.LOGICAL_AND=10]="LOGICAL_AND",e[e.NOT_EQUAL=11]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=12]="SQUARED_DIFFERENCE",e[e.INT_DIV=13]="INT_DIV",e[e.POW=14]="POW",e[e.PRELU=15]="PRELU",e[e.MAX=16]="MAX",e[e.MIN=17]="MIN",e[e.COMPLEX_MULTIPLY_REAL=18]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=19]="COMPLEX_MULTIPLY_IMAG"})(qe||(qe={}));var w0e=` + if (isnan(a)) { return a; } + if (isnan(b)) { return b; } + `,hT=` + if (isNaN.r) { + resultTemp.r = valueForNaN; + } + if (isNaN.g) { + resultTemp.g = valueForNaN; + } + if (isNaN.b) { + resultTemp.b = valueForNaN; + } + if (isNaN.a) { + resultTemp.a = valueForNaN; + } + `,fT=` + let isNaN = isnanVec4(a) | isnanVec4(b); + ${hT} + `,k0e="return a + b;",S0e="return areal * breal - aimag * bimag;",I0e="return areal * bimag + aimag * breal;",C0e="return a / b;",T0e="return a * b;",N0e="return (a - b) * (a - b);",E0e="return a - b;",R0e="return f32(a == b);",_0e="return vec4(a == b);",D0e="return f32(a > b);",$0e="return vec4(a > b);",P0e="return f32(a >= b);",F0e="return vec4(a >= b);",O0e="return f32(a < b);",M0e="return vec4(a < b);",z0e="return f32(a <= b);",L0e="return vec4(a <= b);",B0e="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",W0e=`return (vec4(a >= vec4(1.0)) * + vec4(b >= vec4(1.0)));`,V0e=` + let s = sign(a) * sign(b); + let ia = i32(round(a)); + let ib = i32(round(b)); + return f32(idiv(ia, ib, s)); + `,U0e=` + let ia = vec4(round(a)); + let ib = vec4(round(b)); + let cond = ib != vec4(0); + var resultTemp = vec4(0); + let s = sign(a) * sign(b); + + // Windows (D3D) wants guaranteed non-zero int division at compile-time. + if (cond[0]) { + resultTemp[0] = idiv(ia[0], ib[0], s[0]); + } + if (cond[1]) { + resultTemp[1] = idiv(ia[1], ib[1], s[1]); + } + if (cond[2]) { + resultTemp[2] = idiv(ia[2], ib[2], s[2]); + } + if (cond[3]) { + resultTemp[3] = idiv(ia[3], ib[3], s[3]); + } + return vec4(resultTemp); + `,G0e=` + if (isnan(a) || isnan(b)) { + return 1.0; + } + return f32(a != b); +`,H0e=` + var resultTemp = vec4(a != b); + let valueForNaN = 1.0; + ${fT} + + return resultTemp; +`,j0e=` + if(a < 0.0 && floor(b) < b) { + return uniforms.NAN; + } + if (b == 0.0) { + return 1.0; + } + if (round(abs(b) % 2.0) != 1.0) { + return pow(abs(a), b); + } + return sign(a) * pow(abs(a), b); + `,q0e=` + let isModRound1Bool = vec4(round(abs(b) % vec4(2.0))) == vec4(1); + let isModRound1 = vec4(isModRound1Bool); + let multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); + var resultTemp = multiplier * pow(abs(a), b); + + // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS + let isExpZero = b == vec4(0.0); + if (isExpZero.r) { + resultTemp.r = 1.0; + } + if (isExpZero.g) { + resultTemp.g = 1.0; + } + if (isExpZero.b) { + resultTemp.b = 1.0; + } + if (isExpZero.a) { + resultTemp.a = 1.0; + } + let isNaN = a < vec4(0.0) & floor(b) < b; + let valueForNaN = uniforms.NAN; + ${hT} + return resultTemp; + `,X0e="if (a < 0.0) { return b * a; } return a;",K0e=` + let aLessThanZero = vec4(a < vec4(0.0)); + return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); + `;function S3(e,t,n="uniforms.NAN"){let s=t?fT:w0e;return t?` + let valueForNaN = ${n}; + var resultTemp = vec4(${e}(a, b)); + `+s+` + return resultTemp; + `:s+` + return ${e}(a, b); + `}function jm(e,t){switch(e){case qe.MUL:return T0e;case qe.ADD:return k0e;case qe.ATAN2:return S3("atan2",t);case qe.SUB:return E0e;case qe.DIV:return C0e;case qe.EQUAL:return t?_0e:R0e;case qe.GREATER:return t?$0e:D0e;case qe.GREATER_EQUAL:return t?F0e:P0e;case qe.LESS:return t?M0e:O0e;case qe.LESS_EQUAL:return t?L0e:z0e;case qe.LOGICAL_AND:return t?W0e:B0e;case qe.NOT_EQUAL:return t?H0e:G0e;case qe.SQUARED_DIFFERENCE:return N0e;case qe.INT_DIV:return t?U0e:V0e;case qe.PRELU:return t?K0e:X0e;case qe.MAX:return S3("max",t);case qe.MIN:return S3("min",t);case qe.POW:return t?q0e:j0e;case qe.COMPLEX_MULTIPLY_REAL:return S0e;case qe.COMPLEX_MULTIPLY_IMAG:return I0e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Fe;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.IS_NAN=8]="IS_NAN",e[e.LINEAR=9]="LINEAR",e[e.LOG=10]="LOG",e[e.LOGICAL_NOT=11]="LOGICAL_NOT",e[e.NEG=12]="NEG",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.LEAKYRELU=15]="LEAKYRELU",e[e.RECIPROCAL=16]="RECIPROCAL",e[e.RSQRT=17]="RSQRT",e[e.SIN=18]="SIN",e[e.SINH=19]="SINH",e[e.SIGMOID=20]="SIGMOID",e[e.SQRT=21]="SQRT",e[e.SQUARE=22]="SQUARE",e[e.TANH=23]="TANH",e[e.TO_INT=24]="TO_INT"})(Fe||(Fe={}));var Z0e="return abs(a);",Y0e="return ceil(a);",J0e="return cos(a);",Q0e=` + let e2x = exp(-a); + return (e2x + 1.0 / e2x) / 2.0; +`,e2e="return exp(a) - 1.0;",t2e="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",n2e=` + var resFloat = exp(a) - vec4(1.0); + if (a.r >= 0.0) { + resFloat.r = a.r; + } + if (a.g >= 0.0) { + resFloat.g = a.g; + } + if (a.b >= 0.0) { + resFloat.b = a.b; + } + if (a.a >= 0.0) { + resFloat.a = a.a; + } + return resFloat; +`,s2e="return exp(a);",r2e="return floor(a);",a2e="return f32(isnan(a));",o2e="return a;",i2e=`if (a < 0.0) { return 1.0/0.0; } + return log(a);`,l2e="return f32(!(a >= 1.0));",u2e="return -a;",c2e="if (a < 0.0) { return uniforms.alpha * a; } return a;",d2e=` + let aLessThanZero = vec4(a < vec4(0.0)); + return (aLessThanZero * (uniforms.alpha * a)) + ((vec4(1.0) - aLessThanZero) * a); +`,p2e="return 1.0 / a;",h2e="return select(a, 0.0, a < 0.0);",f2e="return clamp(a, 0.0, 6.0);",m2e="return clamp(a, vec4(0.0, 0.0, 0.0, 0.0), vec4(6.0, 6.0, 6.0, 6.0));",g2e=` + return select(a, vec4(0.0), a < vec4(0.0)); +`,y2e="return 1.0/sqrt(a);",A2e="return 1.0 / (1.0 + exp(-1.0 * a));",x2e="return sin(a);",b2e=` + let e2x = exp(a); + return (e2x - 1.0 / e2x) / 2.0; +`,v2e="return sqrt(a);",w2e="return a * a;",k2e=` + let e2x = exp(-2.0 * abs(a)); + return sign(a) * (1.0 - e2x) / (1.0 + e2x); +`,S2e="return f32(i32((a)));";function Bi(e,t){switch(e){case Fe.ABS:return Z0e;case Fe.COS:return J0e;case Fe.COSH:return Q0e;case Fe.CEIL:return Y0e;case Fe.ELU:return t?n2e:t2e;case Fe.EXP:return s2e;case Fe.EXPM1:return e2e;case Fe.FLOOR:return r2e;case Fe.IS_NAN:return a2e;case Fe.LINEAR:return o2e;case Fe.LOG:return i2e;case Fe.LOGICAL_NOT:return l2e;case Fe.NEG:return u2e;case Fe.LEAKYRELU:return t?d2e:c2e;case Fe.RECIPROCAL:return p2e;case Fe.RELU:return t?g2e:h2e;case Fe.RELU6:return t?m2e:f2e;case Fe.RSQRT:return y2e;case Fe.SIGMOID:return A2e;case Fe.SIN:return x2e;case Fe.SINH:return b2e;case Fe.SQRT:return v2e;case Fe.SQUARE:return w2e;case Fe.TANH:return k2e;case Fe.TO_INT:return S2e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Zt=e=>{switch(e){case 1:return"f32";case 2:return"vec2";case 3:return"vec3";case 4:return"vec4";default:throw new Error(`${e}-component is not supported.`)}};function yi(e,t=!1,n=!1,s=3){if(e===null)return"";let r="";if(e==="linear")r=Bi(Fe.LINEAR);else if(e==="relu")r=Bi(Fe.RELU,n);else if(e==="elu")r=Bi(Fe.ELU,n);else if(e==="relu6")r=Bi(Fe.RELU6,n);else if(e==="prelu")r=jm(qe.PRELU,n);else if(e==="sigmoid")r=Bi(Fe.SIGMOID,n);else if(e==="leakyrelu")r=Bi(Fe.LEAKYRELU,n);else throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`);let o=Zt(n?4:1),i="";return t?i=` + fn activation(a : ${o}, coords : vec${s}) -> ${o} { + let b = getPreluActivationWeightsByOutputCoords(coords); + ${r} + }`:i=` + fn activation(a : ${o}, coords : vec${s}) -> ${o} { + ${r} + }`,i}function gd(e,t){return` + ${e?"value = value + getBiasByOutputCoords(coords);":""} + ${t?"value = activation(value, coords);":""} + `}function mT(e,t,n,s,r=!1,a=!1,o=!1,i=1){v.assert(n&&i===1||!n,()=>`transposeA ${n} is not compatible with component size ${i}`);let l=` let batch = ${e?"0":"batchIn"}; let batchASize = uniforms.aShape[1] * uniforms.aShape[2]; ${n?`value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${i}];`:`value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${i}];`} `,u;return s===!1?u=`value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${i}];`:u=`value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${i}];`,` - fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${rn(i)} { - var value = ${rn(i)}(0.0); + fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${Zt(i)} { + var value = ${Zt(i)}(0.0); let col = colIn * ${i}; ${r&&o?l:` ${n?"if(row < uniforms.dimAOuter && col < uniforms.dimInner)":"if(row < uniforms.aShape[1] && col < uniforms.aShape[2])"} @@ -5296,46 +5324,140 @@ return a / b;`,eue=` return value; } - fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${rn(i)} { + fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${Zt(i)} { let col = colIn * ${i}; let batch = ${t?"0":"batchIn"}; let batchBSize = uniforms.bShape[1] * uniforms.bShape[2]; - var value = ${rn(i)}(0.0); + var value = ${Zt(i)}(0.0); ${u} return value; } - `}function V2(e,t,n,s,r,a,o=!1,i=!1,l=!1,u=1){return` - ${kT(n,s,r,a,o,i,l,u)} - fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${rn(u)}) { + `}function gb(e,t,n,s,r,a,o=!1,i=!1,l=!1,u=1){return` + ${mT(n,s,r,a,o,i,l,u)} + fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${Zt(u)}) { let col = colIn * ${u}; ${o&&i?"":"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"} { var value = valueIn; let coords = vec3(batch, row, col); - ${xd(e,t)} + ${gd(e,t)} setOutputAtCoords(coords[0], coords[1], coords[2], value); } } - `}var X2e=e=>e?` + `}var I2e=e=>e?` mm_Asub[inputRow][inputCol] = mm_readA(batch, - t * TileInner + inputRow, + kStart + inputRow, + globalRowStart / InnerElementSize + inputCol); + `:` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + globalRow + innerRow, + kStart / InnerElementSize + inputCol); + `,C2e=(e,t)=>e?` + let ACached0 = mm_Asub[k * InnerElementSize][localRow]; + let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow]; + let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow]; + ${t===3?"":"let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"} + for (var i = 0; i < RowPerThread; i = i + 1) { + acc[i] = BCached0 * ACached0[i] + acc[i]; + acc[i] = BCached1 * ACached1[i] + acc[i]; + acc[i] = BCached2 * ACached2[i] + acc[i]; + ${t===3?"":"acc[i] = BCached3 * ACached3[i] + acc[i];"} + }`:` + for (var i = 0; i < RowPerThread; i = i + 1) { + let ACached = mm_Asub[tileRow + i][k]; + acc[i] = BCached0 * ACached.x + acc[i]; + acc[i] = BCached1 * ACached.y + acc[i]; + acc[i] = BCached2 * ACached.z + acc[i]; + ${t===3?"":"acc[i] = BCached3 * ACached.w + acc[i];"} + }`;function O2(e,t,n=!1,s=32,r=!1,a=32,o=!1){let i=t[1]*e[1],l=t[0]*e[0],u=n?i:s,c=n?s:i,p=u/t[0],d=s/t[1];return v.assert((n&&p===4&&e[1]===4||!n&&(p===3||p===4))&&u%t[0]===0&&s%t[1]===0&&e[0]===4,()=>`If transposeA ${n} is true, innerElementSize ${p} and workPerThread[1] ${e[1]} must be 4. + Otherwise, innerElementSize ${p} must be 3 or 4. + tileAWidth ${u} must be divisible by workGroupSize[0]${t[0]}. tileInner ${s} must be divisible by workGroupSize[1] ${t[1]}. ColPerThread ${e[0]} must be 4.`),` + var mm_Asub : array, ${u/p}>, ${c}>; + var mm_Bsub : array, ${l/e[0]}>, ${s}>; + + const RowPerThread = ${e[1]}; + const ColPerThread = ${e[0]}; + const InnerElementSize = ${p}; + const TileInner = ${s}; + + @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups: vec3, + @builtin(workgroup_id) workgroupId: vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + + let localRow = i32(localId.y); + let tileRow = ${o?"0":"localRow * RowPerThread"}; + let tileCol = i32(localId.x); + + let globalRow = ${o?"0":"i32(globalId.y) * RowPerThread"}; + let globalCol = i32(globalId.x); + let batch = ${r?"0":"i32(globalId.z)"}; + let globalRowStart = i32(workgroupId.y) * ${i}; + + let numTiles = ${r?`${Math.ceil(a/s)}`:"(uniforms.dimInner - 1) / TileInner + 1"}; + var kStart = ${r?`i32(globalId.z) * ${a}`:"0"}; + + var acc: array, RowPerThread>; + + // Loop over shared dimension. + let tileRowB = localRow * ${d}; + for (var t = 0; t < numTiles; t = t + 1) { + // Load one tile of A into local memory. + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + let inputRow = tileRow + innerRow; + let inputCol = tileCol; + ${I2e(n)} + } + + // Load one tile of B into local memory. + for (var innerRow = 0; innerRow < ${d}; innerRow = innerRow + 1) { + let inputRow = tileRowB + innerRow; + let inputCol = tileCol; + mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalCol); + } + kStart = kStart + TileInner; + workgroupBarrier(); + + // Compute acc values for a single thread. + for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) { + let BCached0 = mm_Bsub[k * InnerElementSize][tileCol]; + let BCached1 = mm_Bsub[k * InnerElementSize + 1][tileCol]; + let BCached2 = mm_Bsub[k * InnerElementSize + 2][tileCol]; + ${p===3?"":"let BCached3 = mm_Bsub[k * InnerElementSize + 3][tileCol];"} + + ${C2e(n,p)} + } + + workgroupBarrier(); + } + + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]); + } + }`}var T2e=e=>e?` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + kStart + inputRow, globalRowStart + inputCol); `:` mm_Asub[inputRow][inputCol] = mm_readA(batch, globalRowStart + inputRow, - t * TileInner + inputCol); - `,K2e=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function bb(e,t,n=!1,s=32){let r=e[1]*t[1],a=e[0]*t[0],o=n?r:s,i=n?s:r;v.assert(i%t[1]===0&&o%t[0]===0&&s%t[1]===0,()=>`tileAHight ${i} must be divisible by workGroupSize[1]${t[1]}, tileAWidth ${o} must be divisible by workGroupSize[0]${t[0]}, tileInner ${s} must be divisible by workGroupSize[1]${t[1]}`);let l=i/t[1],u=o/t[0],c=s/t[1];return` - var mm_Asub : array, ${i}>; - var mm_Bsub : array, ${s}>; + kStart + inputCol); + `,N2e=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function M2(e,t,n=!1,s=32,r=!1,a=32){let o=e[1]*t[1],i=e[0]*t[0],l=n?o:s,u=n?s:o;v.assert(u%t[1]===0&&l%t[0]===0&&s%t[1]===0,()=>`tileAHight ${u} must be divisible by workGroupSize[1]${t[1]}, tileAWidth ${l} must be divisible by workGroupSize[0]${t[0]}, tileInner ${s} must be divisible by workGroupSize[1]${t[1]}`);let c=u/t[1],p=l/t[0],d=s/t[1];return` + var mm_Asub : array, ${u}>; + var mm_Bsub : array, ${s}>; const RowPerThread = ${e[1]}; const ColPerThread = ${e[0]}; const TileInner = ${s}; @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(num_workgroups) NumWorkgroups: vec3, - @builtin(workgroup_id) workgroupId: vec3) { + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups: vec3, + @builtin(workgroup_id) workgroupId: vec3) { localId = LocalId; globalId = GlobalId; numWorkgroups = NumWorkgroups; @@ -5345,10 +5467,11 @@ return a / b;`,eue=` let globalRow = i32(globalId.y) * RowPerThread; let globalCol = i32(globalId.x) * ColPerThread; - let batch = i32(globalId.z); - let globalRowStart = i32(workgroupId.y) * ${r}; + let batch = ${r?"0":"i32(globalId.z)"}; + let globalRowStart = i32(workgroupId.y) * ${o}; - let numTiles = (uniforms.dimInner - 1) / TileInner + 1; + let numTiles = ${r?`${Math.ceil(a/s)}`:"(uniforms.dimInner - 1) / TileInner + 1"}; + var kStart = ${r?`i32(globalId.z) * ${a}`:"0"}; var acc : array, RowPerThread>; @@ -5359,31 +5482,31 @@ return a / b;`,eue=` } } - let tileRowA = i32(localId.y) * ${l}; - let tileColA = i32(localId.x) * ${u}; - let tileRowB = i32(localId.y) * ${c}; + let tileRowA = i32(localId.y) * ${c}; + let tileColA = i32(localId.x) * ${p}; + let tileRowB = i32(localId.y) * ${d}; // Loop over shared dimension. for (var t = 0; t < numTiles; t = t + 1) { // Load one tile of A into local memory. - for (var innerRow = 0; innerRow < ${l}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${u}; innerCol = innerCol + 1) { + for (var innerRow = 0; innerRow < ${c}; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ${p}; innerCol = innerCol + 1) { let inputRow = tileRowA + innerRow; let inputCol = tileColA + innerCol; - ${X2e(n)} + ${T2e(n)} } } // Load one tile of B into local memory. - for (var innerRow = 0; innerRow < ${c}; innerRow = innerRow + 1) { + for (var innerRow = 0; innerRow < ${d}; innerRow = innerRow + 1) { for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { let inputRow = tileRowB + innerRow; let inputCol = tileCol + innerCol; mm_Bsub[inputRow][inputCol] = mm_readB(batch, - t * TileInner + inputRow, + kStart + inputRow, globalCol + innerCol); } } - + kStart = kStart + TileInner; workgroupBarrier(); // Compute acc values for a single thread. @@ -5394,7 +5517,7 @@ return a / b;`,eue=` } for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - ${K2e(n)} + ${N2e(n)} for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; } @@ -5411,7 +5534,7 @@ return a / b;`,eue=` } } } - `}var Z2e=e=>e?` + `}var E2e=e=>e?` mm_readA(batch, colA, globalRow), mm_readA(batch, colA + 1, globalRow), mm_readA(batch, colA + 2, globalRow), @@ -5421,11 +5544,11 @@ return a / b;`,eue=` mm_readA(batch, globalRow, colA + 1), mm_readA(batch, globalRow, colA + 2), mm_readA(batch, globalRow, colA + 3) - `;function Y2e(e,t=!1){return v.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`),` + `;function R2e(e,t=!1){return v.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`),` const TileSize = ${e[0]*4}; var mm_Asub : array, ${e[0]}>; - ${bd()} + ${Ye()} { let tileCol = i32(localId.x); let globalCol = i32(globalId.x); let globalRow = i32(globalId.y); @@ -5439,7 +5562,7 @@ return a / b;`,eue=` for (var t = 0; t < numTiles; t = t + 1) { // Load one tile of A into local memory. let colA = t * TileSize + tileCol * 4; - mm_Asub[tileCol] = vec4(${Z2e(t)}); + mm_Asub[tileCol] = vec4(${E2e(t)}); workgroupBarrier(); // Compute acc values for a single thread. @@ -5459,111 +5582,13 @@ return a / b;`,eue=` mm_write(batch, globalRow, globalCol, acc); } - `}var J2e=class{constructor(e,t,n,s,r,a=!1,o=!1,i=null,l=null,u=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let c=a?e[1]:e[2];this.workGroupSize=bT(t[1],c,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let p=i!=null,d=u!=null;p&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.transposeA=a,this.transposeB=o,this.addBias=p,this.activation=l,this.hasPreluActivationWeights=d,this.batchAEqualOne=s,this.batchBEqualOne=r,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],c),this.shaderKey=`matMulPacked_${this.workPerThread}_${a}_${o}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.outputShape[1]>1}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e,t,n){let s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.workPerThread;this.tileInner=32,this.outputShape[1]===1&&(this.tileInner=this.workGroupSize[0]*4);let a=e%s===0,o=t%r===0,i=n%this.tileInner===0;return[a,o,i]}getUserCode(){return` - ${qa(this.activation,this.hasPreluActivationWeights)} - ${V2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,this.fitAOuter,this.fitBOuter,this.fitInner)} - ${this.outputShape[1]>1?bb([this.workPerThread,this.workPerThread,1],this.workGroupSize,this.transposeA,this.tileInner):Y2e(this.workGroupSize,this.transposeA)} - `}},Q2e=(e,t)=>e?` - mm_Asub[inputRow][inputCol] = mm_readA(batch, - t * TileInner + inputRow, - globalRowStart / ${t} + inputCol); - `:` - mm_Asub[inputRow][inputCol] = mm_readA(batch, - globalRow + innerRow, - t * TileInner / ${t} + inputCol); - `,e1e=(e,t)=>e?` - let ACached0 = mm_Asub[k * InnerElementSize][localRow]; - let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow]; - let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow]; - ${t===3?"":"let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"} - for (var i = 0; i < RowPerThread; i = i + 1) { - acc[i] = BCached[0] * ACached0[i] + acc[i]; - acc[i] = BCached[1] * ACached1[i] + acc[i]; - acc[i] = BCached[2] * ACached2[i] + acc[i]; - ${t===3?"":"acc[i] = BCached[3] * ACached3[i] + acc[i];"} - }`:` - for (var i = 0; i < RowPerThread; i = i + 1) { - let ACached = mm_Asub[tileRow + i][k]; - acc[i] = BCached[0] * ACached.x + acc[i]; - acc[i] = BCached[1] * ACached.y + acc[i]; - acc[i] = BCached[2] * ACached.z + acc[i]; - ${t===3?"":"acc[i] = BCached[3] * ACached.w + acc[i];"} - }`;function vb(e,t,n,s,r=4,a=!1){let o=a?t:s,i=a?s:t,l=a?e[1]:r;return v.assert((a&&t===n||s%4===0||s%3===0)&&e[0]===4&&(r===3||r===4),()=>`tileInner ${s} must be divisible by 4|3. ColPerThread ${e[0]} must be 4. - innerElementSize ${r} must be 3|4.`),` - var mm_Asub : array, ${o/l}>, ${i}>; - var mm_Bsub : array, ${n/e[0]}>, ${s}>; - - const RowPerThread = ${e[1]}; - const ColPerThread = ${e[0]}; - const InnerElementSize = ${r}; - const TileInner = ${s}; - - @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(num_workgroups) NumWorkgroups: vec3, - @builtin(workgroup_id) workgroupId: vec3) { - localId = LocalId; - globalId = GlobalId; - numWorkgroups = NumWorkgroups; - - let localRow = i32(localId.y); - let tileRow = ${t===1?"0":"localRow * RowPerThread"}; - let tileCol = i32(localId.x); - - let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"}; - let globalCol = i32(globalId.x); - let batch = i32(globalId.z); - let globalRowStart = i32(workgroupId.y) * ${t}; - - let numTiles = (uniforms.dimInner - 1) / TileInner + 1; - - var acc: array, RowPerThread>; - var BCached : array, 4>; - - // Loop over shared dimension. - let RowPerThreadB = TileInner / i32(workGroupSizeY); - let tileRowB = localRow * RowPerThreadB; - for (var t = 0; t < numTiles; t = t + 1) { - // Load one tile of A into local memory. - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - let inputRow = tileRow + innerRow; - let inputCol = tileCol; - ${Q2e(a,l)} - } - - // Load one tile of B into local memory. - for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) { - let inputRow = tileRowB + innerRow; - let inputCol = tileCol; - mm_Bsub[inputRow][inputCol] = mm_readB(batch, t * TileInner + inputRow, globalCol); - } - - workgroupBarrier(); - - // Compute acc values for a single thread. - for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) { - BCached[0] = mm_Bsub[k * InnerElementSize][tileCol]; - BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol]; - BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol]; - ${r===3?"":"BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"} - - ${e1e(a,r)} - } - - workgroupBarrier(); - } - - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]); - } - }`}var t1e=class{constructor(e,t,n,s,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&!r?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1&&!r?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=n,this.batchBEqualOne=s,this.transposeA=r;let c=r?e[1]:e[2];this.fitAOuter=t[1]%this.tileAOuter===0,this.fitBOuter=t[2]%this.tileBOuter===0,this.fitInner=c%this.tileInner===0,this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}_${this.transposeA}`}getUserCode(){return` - ${qa(this.activation,this.hasPreluActivationWeights,!0)} - ${V2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,!1,this.fitAOuter,this.fitBOuter,this.fitInner,4)} - ${vb(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,4,this.transposeA)} - `}};function n1e(){return` + `}var _2e=class{constructor(e,t,n,s,r=!1,a=!1,o=null,i=null,l=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let u=r?e[1]:e[2];if(this.isVec4=(u%4===0&&!r||t[1]%4===0&&r)&&t[2]%4===0&&!a,this.isVectorA=t[1]===1&&!r,!this.isVec4&&this.isVectorA)this.elementsPerThread=[1,1,1],this.workGroupSize=[32,1,1];else{let d=cT(t[1],u,t[2],r);this.workGroupSize=d.workGroupSize,this.elementsPerThread=d.elementsPerThread}this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let c=o!=null,p=l!=null;c&&this.variableNames.push("bias"),p&&this.variableNames.push("preluActivationWeights"),this.transposeA=r,this.transposeB=a,this.addBias=c,this.activation=i,this.hasPreluActivationWeights=p,this.batchAEqualOne=n,this.batchBEqualOne=s,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],u),this.shaderKey=`matMulPacked_${this.elementsPerThread}_${r}_${a}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.isVectorA}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e,t,n){let s=this.workGroupSize[1]*this.elementsPerThread[1],r=this.workGroupSize[0]*this.elementsPerThread[0];!this.isVec4&&this.isVectorA?this.tileInner=this.workGroupSize[0]*4:this.tileInner=r;let a=e%s===0,o=t%r===0,i=n%this.tileInner===0;return[a,o,i]}getUserCode(){return` + ${yi(this.activation,this.hasPreluActivationWeights,this.isVec4)} + ${gb(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,this.fitAOuter,this.fitBOuter,this.fitInner,this.isVec4?4:1)} + ${this.isVec4?O2(this.elementsPerThread,this.workGroupSize,this.transposeA,this.tileInner,!1,null,this.isVectorA):this.isVectorA?R2e(this.workGroupSize,this.transposeA):M2(this.elementsPerThread,this.workGroupSize,this.transposeA,this.tileInner)} + `}};function D2e(){return` var sumValues : array; - ${bd()} + ${Ye()} { let coords = getOutputCoords(); let batch = coords[0]; let row = coords[1]; @@ -5592,11 +5617,11 @@ return a / b;`,eue=` mm_write(batch, row, col, sum); } } - `}var s1e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=n,this.shaderKey=`matMulReduce_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return` - ${qa(this.activation,this.hasPreluActivationWeights)} - ${V2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)} - ${n1e()} - `}};function r1e(e){let t=e[1],n=e[0],s=t>n?t:n;return` + `}var $2e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=n,this.shaderKey=`matMulReduce_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return` + ${yi(this.activation,this.hasPreluActivationWeights)} + ${gb(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)} + ${D2e()} + `}};function P2e(e){let t=e[1],n=e[0],s=t>n?t:n;return` var mm_Asub : array, ${t}>; var mm_Bsub : array, ${s}>; @@ -5606,7 +5631,7 @@ return a / b;`,eue=` // shared memory, so it is instruction-Level parallelism for arithmetic // operations and others handle IO operations between barrier api, makes ALU // and load/store units work simultaneously, could improves the performance. - ${bd()} + ${Ye()} { let tileRow = i32(localId.y); let tileCol = i32(localId.x); let globalRow = i32(globalId.y); @@ -5646,116 +5671,59 @@ return a / b;`,eue=` mm_write(batch, globalRow, globalCol, acc); } - `}var a1e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,8,1],this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]/this.workGroupSize[1]),n[0]];let l=a!=null;l&&this.variableNames.push("bias");let u=i!=null;u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return` - ${qa(this.activation,this.hasPreluActivationWeights)} - ${V2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)} - ${r1e(this.workGroupSize)} - `}},o1e=class{constructor(e,t,n,s,r=!1,a=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.atomic=!0,this.tileInner=32,v.assert(e[0]===1,()=>"MatMulSplitKProgram only supports batch = 1."),this.outputShape=e,this.dispatchLayout={x:[2],y:[1],z:[0,3]},this.elementsPerThread=[4,4,this.tileInner],this.outputShape[1]<16&&(this.elementsPerThread[1]=1),this.outputShape[2]<16&&(this.elementsPerThread[0]=1),this.dispatch=Ge(this.dispatchLayout,[this.outputShape[0],this.outputShape[1],this.outputShape[2],t],this.workGroupSize,this.elementsPerThread),this.transposeA=r,this.transposeB=a,this.batchAEqualOne=n,this.batchBEqualOne=s,this.shaderKey=`matMulSplitK_${r}_${a}_${n}_${s}_${this.elementsPerThread}`}getUserCode(){let e=` - var oldValue = atomicLoad(&(result[flatIndex])); - var exchanged = false; - for (; !exchanged;) { - let newValueF32 = bitcast(oldValue) + value; - let newValue = bitcast(newValueF32); - let res = atomicCompareExchangeWeak(&(result[flatIndex]), oldValue, newValue); - oldValue = res.old_value; - exchanged = res.exchanged; - } - `;return` - ${kT(this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)} - fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) { + `}var F2e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,8,1],this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]/this.workGroupSize[1]),n[0]];let l=a!=null;l&&this.variableNames.push("bias");let u=i!=null;u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return` + ${yi(this.activation,this.hasPreluActivationWeights)} + ${gb(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)} + ${P2e(this.workGroupSize)} + `}},O2e=class{constructor(e,t,n,s,r=!1,a=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.atomic=!0,this.isVec4=!1,this.splitedDimInner=128,v.assert(e[0]===1,()=>"MatMulSplitKProgram only supports batch = 1."),this.outputShape=e,this.dispatchLayout={x:[2],y:[1],z:[0,3]},this.isVec4=(r&&this.outputShape[1]%4===0||!r&&t%4===0)&&this.outputShape[2]%4===0,this.elementsPerThread=[4,4,this.splitedDimInner],this.isVec4||(this.outputShape[1]<16&&(this.elementsPerThread[1]=1),this.outputShape[2]<16&&(this.elementsPerThread[0]=1)),this.dispatch=Ge(this.dispatchLayout,[this.outputShape[0],this.outputShape[1],this.outputShape[2],t],this.workGroupSize,this.elementsPerThread),this.transposeA=r,this.transposeB=a,this.batchAEqualOne=n,this.batchBEqualOne=s,this.shaderKey=`matMulSplitK_${r}_${a}_${n}_${s}_${this.elementsPerThread}_${this.isVec4}`}getUserCode(){let e=s=>` + for (var i = 0; i < ${s}; i = i + 1) + { + var oldValue = atomicLoad(&(result[flatIndex + i])); + var exchanged = false; + for (; !exchanged;) { + let newValueF32 = bitcast(oldValue) + ${s>1?"value[i]":"value"}; + let newValue = bitcast(newValueF32); + let res = atomicCompareExchangeWeak(&(result[flatIndex + i]), oldValue, newValue); + oldValue = res.old_value; + exchanged = res.exchanged; + } + } + `,t=this.isVec4?4:1;return` + ${mT(this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,!1,!1,!1,t)} + fn mm_write(batch: i32, row : i32, colIn : i32, value : ${Zt(t)}) { + let col = colIn * ${t}; if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) { let coords = vec3(batch, row, col); let flatIndex = getOutputIndexFromCoords(coords); - var value = valueIn; // The problem is that we should initialize output to zero before using. // Otherwise, the original value will be added to the result. - ${e} + ${e(t)} } } - - ${this.makeMatMulSplitKSource()} - `}makeMatMulSplitKSource(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=this.elementsPerThread[1],s=this.elementsPerThread[0],r=this.tileInner/this.workGroupSize[0],a=this.tileInner/this.workGroupSize[1];return v.assert(this.tileInner%this.workGroupSize[0]===0&&this.tileInner%this.workGroupSize[1]===0,()=>`tileInner ${this.tileInner} must be divisible by workGroupSize[0]${this.workGroupSize[0]} and workGroupSize[1]${this.workGroupSize[1]}`),` - var mm_Asub : array, ${e}>; - var mm_Bsub : array, ${this.tileInner}>; - ${bd()} - let tileRow = i32(localId.y) * ${n}; - let tileCol = i32(localId.x) * ${s}; - - let globalRow = i32(globalId.y) * ${n}; - let globalCol = i32(globalId.x) * ${s}; - let batch = 0; - let kStart = i32(globalId.z) * ${this.tileInner}; - - // Load one tile of A into local memory. - let tileColA = i32(localId.x) * ${r}; - for (var innerRow = 0; innerRow < ${n}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${r}; innerCol = innerCol + 1) { - let inputRow = tileRow + innerRow; - let inputCol = tileColA + innerCol; - mm_Asub[inputRow][inputCol] = mm_readA(${this.batchAEqualOne?0:"batch"}, - globalRow + innerRow, - kStart + inputCol); - } - } - // Load one tile of B into local memory. - let tileRowB = i32(localId.y) * ${a}; - for (var innerRow = 0; innerRow < ${a}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${s}; innerCol = innerCol + 1) { - let inputRow = tileRowB + innerRow; - let inputCol = tileCol + innerCol; - mm_Bsub[inputRow][inputCol] = mm_readB(${this.batchBEqualOne?0:"batch"}, - kStart + inputRow, - globalCol + innerCol); - } - } - - workgroupBarrier(); - - var acc : array, ${n}>; - // Loop over shared dimension. Compute acc values for a single thread. - for (var k = 0; k < ${this.tileInner}; k = k + 1) { - var BCached : array; - for (var inner = 0; inner < ${s}; inner = inner + 1) { - BCached[inner] = mm_Bsub[k][tileCol + inner]; - } - - for (var innerRow = 0; innerRow < ${n}; innerRow = innerRow + 1) { - let ACached = mm_Asub[tileRow + innerRow][k]; - for (var innerCol = 0; innerCol < ${s}; innerCol = innerCol + 1) { - acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; - } - } - } - - for (var innerRow = 0; innerRow < ${n}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${s}; innerCol = innerCol + 1) { - mm_write(batch, globalRow + innerRow, globalCol + innerCol, acc[innerRow][innerCol]); - } - } - } - `}},i1e=class{constructor(e,t=null,n=null,s=null){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.addBias=t!=null,this.hasPreluActivationWeights=s!=null,this.activation=n,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`biasActivation_${n}`}getUserCode(){return` - ${qa(this.activation,this.hasPreluActivationWeights)} - ${lt()} + ${this.isVec4?O2(this.elementsPerThread,this.workGroupSize,this.transposeA,32,!0,this.splitedDimInner):M2(this.elementsPerThread,this.workGroupSize,this.transposeA,32,!0,this.splitedDimInner)} + `}},M2e=class{constructor(e,t=null,n=null,s=null){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.addBias=t!=null,this.hasPreluActivationWeights=s!=null,this.activation=n,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`biasActivation_${n}`}getUserCode(){return` + ${yi(this.activation,this.hasPreluActivationWeights)} + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); var value = getXByOutputIndex(index); - ${xd(this.addBias,this.activation)} + ${gd(this.addBias,this.activation)} setOutputAtIndex(index, value); } } - `}},l1e=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return` - ${lt()} + `}},z2e=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return` + ${Ye("index")} { if (index < uniforms.size) { setOutputAtIndex(index, uniforms.value); } } - `}};function fu(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new l1e(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var u1e={kernelName:_c,backendName:"webgpu",kernelFunc:fu};function He(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var c1e={kernelName:Ll,backendName:"webgpu",kernelFunc:He};function wb({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=nu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],I=s?[x,f,d]:[x,d,f],k=He({inputs:{x:e},backend:r,attrs:{shape:w}}),E=He({inputs:{x:t},backend:r,attrs:{shape:I}}),_=[k,E],D=Math.max(y,x),R=y===1,P=x===1,T=(p%4===0&&!n||h%4===0&&n)&&f%4===0&&!s,M=[k,E],W=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}],G,X,K=[D,h,f],Y=H().get("WEBGPU_MATMUL_PROGRAM_TYPE");switch(Y<0&&(h*f<=128?Y=Zs.MatMulReduceProgram:D===1&&h<=128&&f<=48&&d>=2e3?Y=Zs.MatMulSplitKProgram:h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h)?Y=Zs.MatMulSmallOutputSizeProgram:T?Y=Zs.MatMulPackedVec4Program:Y=Zs.MatMulPackedProgram),Y){case Zs.MatMulPackedVec4Program:G=new t1e(w,K,R,P,n,a,l,o);break;case Zs.MatMulReduceProgram:G=new s1e(K,R,P,n,s,a,l,o);break;case Zs.MatMulSplitKProgram:{if(X=fu({backend:r,attrs:{shape:K,value:0,dtype:e.dtype}}),G=new o1e(K,d,R,P,n,s),a||l){X=r.runWebGPUProgram(G,M,e.dtype,W,X);let ee=new i1e(X.shape,a,l,o),ie=null,ne=[X];a&&ne.push(a),o&&ne.push(o),l==="leakyrelu"&&(ie=[{type:"float32",data:[i]}],ee.uniforms+=" alpha : f32,");let pe=r.runWebGPUProgram(ee,ne,X.dtype,ie);_.push(X);let ce=He({inputs:{x:pe},backend:r,attrs:{shape:b}});_.push(pe);for(let Ae of _)r.disposeData(Ae.dataId);return ce}break}case Zs.MatMulSmallOutputSizeProgram:G=new a1e(w,I,K,n,s,a,l,o);break;case Zs.MatMulPackedProgram:G=new J2e(w,K,H().get("WEBGPU_MATMUL_WORK_PER_THREAD"),R,P,n,s,a,l,o);break;default:throw new Error(`Unsupported MatMulProgramType ${Y}.`)}a&&M.push(a),o&&M.push(o),l==="leakyrelu"&&(W.push({type:"float32",data:[i]}),G.uniforms+=" alpha : f32,"),X=r.runWebGPUProgram(G,M,e.dtype,W,X);let ae=He({inputs:{x:X},backend:r,attrs:{shape:b}});_.push(X);for(let ee of _)r.disposeData(ee.dataId);return ae}function d1e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return wb({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var p1e={kernelName:Ao,backendName:"webgpu",kernelFunc:d1e},uw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return` + `}};function fu(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new z2e(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var L2e={kernelName:Rc,backendName:"webgpu",kernelFunc:fu};function Ue(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var B2e={kernelName:Ll,backendName:"webgpu",kernelFunc:Ue};function yb({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=nu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],S=s?[x,f,d]:[x,d,f],k=Ue({inputs:{x:e},backend:r,attrs:{shape:w}}),E=Ue({inputs:{x:t},backend:r,attrs:{shape:S}}),_=[k,E],D=Math.max(y,x),R=y===1,P=x===1,C=[k,E],M=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}],L,G,K=[D,h,f],X=H().get("WEBGPU_MATMUL_PROGRAM_TYPE");switch(X<0&&(h*f<=128?X=Rr.MatMulReduceProgram:D===1&&h<=128&&f<=48&&d>=2e3?X=Rr.MatMulSplitKProgram:h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h)?X=Rr.MatMulSmallOutputSizeProgram:X=Rr.MatMulPackedProgram),X){case Rr.MatMulReduceProgram:L=new $2e(K,R,P,n,s,a,l,o);break;case Rr.MatMulSplitKProgram:{if(G=fu({backend:r,attrs:{shape:K,value:0,dtype:e.dtype}}),L=new O2e(K,d,R,P,n,s),a||l){G=r.runWebGPUProgram(L,C,e.dtype,M,G);let ne=new M2e(G.shape,a,l,o),ee=null,ie=[G];a&&ie.push(a),o&&ie.push(o),l==="leakyrelu"&&(ee=[{type:"float32",data:[i]}],ne.uniforms+=" alpha : f32,");let se=r.runWebGPUProgram(ne,ie,G.dtype,ee);_.push(G);let pe=Ue({inputs:{x:se},backend:r,attrs:{shape:b}});_.push(se);for(let ce of _)r.disposeData(ce.dataId);return pe}break}case Rr.MatMulSmallOutputSizeProgram:L=new F2e(w,S,K,n,s,a,l,o);break;case Rr.MatMulPackedProgram:L=new _2e(w,K,R,P,n,s,a,l,o);break;default:throw new Error(`Unsupported MatMulProgramType ${X}.`)}a&&C.push(a),o&&C.push(o),l==="leakyrelu"&&(M.push({type:"float32",data:[i]}),L.uniforms+=" alpha : f32,"),G=r.runWebGPUProgram(L,C,e.dtype,M,G);let Y=Ue({inputs:{x:G},backend:r,attrs:{shape:b}});_.push(G);for(let ne of _)r.disposeData(ne.dataId);return Y}function W2e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return yb({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var V2e={kernelName:eo,backendName:"webgpu",kernelFunc:W2e},r6=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return` fn binaryOpComplex( areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 { - ${Ym(this.op,!1)} + ${jm(this.op,!1)} } - ${lt()} + ${Ye("index")} { if(index < uniforms.size) { let areal = getARealByOutputIndex(index); let aimag = getAImagByOutputIndex(index); @@ -5764,15 +5732,14 @@ return a / b;`,eue=` setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag)); } } - `}},Ry=class{constructor(e,t,n){this.size=!0,this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=at(this.outputShape),this.op=e,this.useSharedMemoryWithA=t.length===1&&n.length>1&&t[0]<1024,this.useSharedMemoryWithB=n.length===1&&t.length>1&&n[0]<1024,this.useSharedMemoryWithA||this.useSharedMemoryWithB?(this.isVec4=!1,this.lastDimensionSize=this.useSharedMemoryWithB?n[0]:t[0],this.shaderKey=`binary_${this.type}_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`,this.type="shared",this.workGroupSize=[256,1,1],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4):(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4===0?(this.isVec4=!0,this.type="vec4",this.workPerThread=4):(this.isVec4=!1,this.type="plain",this.workPerThread=1),this.shaderKey=`binary_${this.type}_${e}`,this.workGroupSize=[128,1,1]),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1])}getUserCode(){let e;if(this.type==="shared"){let t=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",n=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords); + `}},Cy=class{constructor(e,t,n){this.size=!0,this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ot(this.outputShape),this.op=e,this.useSharedMemoryWithA=t.length===1&&n.length>1&&t[0]<1024,this.useSharedMemoryWithB=n.length===1&&t.length>1&&n[0]<1024,this.useSharedMemoryWithA||this.useSharedMemoryWithB?(this.isVec4=!1,this.lastDimensionSize=this.useSharedMemoryWithB?n[0]:t[0],this.shaderKey=`binary_${this.type}_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`,this.type="shared",this.workGroupSize=[256,1,1],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4):(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4===0?(this.isVec4=!0,this.type="vec4",this.workPerThread=4):(this.isVec4=!1,this.type="plain",this.workPerThread=1),this.shaderKey=`binary_${this.type}_${e}`,this.workGroupSize=[128,1,1]),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1])}getUserCode(){let e;if(this.type==="shared"){let t=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",n=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords); let b = sharedBuf[${t}];`:`let a = sharedBuf[${t}]; let b = getBByOutputCoords(coords);`;e=` fn binaryOperation(a : f32, b : f32) -> f32 { - ${Ym(this.op,this.isVec4)} + ${jm(this.op,this.isVec4)} } var sharedBuf : array; - ${lt()} - + ${Ye("index")} { // Fill in the shared memory buffer. Here we need a loop to make sure // that all data in A|B are uploaded when |sharedMemorySize| is larger // than work group size. @@ -5791,29 +5758,29 @@ return a / b;`,eue=` } } } - `}else{let t=this.type==="vec4"?"vec4":"f32",n=Ym(this.op,this.isVec4);e=` + `}else{let t=this.type==="vec4"?"vec4":"f32",n=jm(this.op,this.isVec4);e=` fn binaryOperation(a : ${t}, b : ${t}) -> ${t} { ${n} } - ${lt()} + ${Ye("index")} { if (index < uniforms.size) { let a = getAByOutputIndex(index); let b = getBByOutputIndex(index); setOutputAtIndex(index, binaryOperation(a, b)); } } - `}return e}};function Bs(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var h1e={kernelName:Ko,backendName:"webgpu",kernelFunc:Bs};function vd(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=Bs({inputs:{x:s},backend:n}),l=Bs({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var f1e={kernelName:Xp,backendName:"webgpu",kernelFunc:vd},Zh=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return` + `}return e}};function er(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var U2e={kernelName:$o,backendName:"webgpu",kernelFunc:er};function yd(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=er({inputs:{x:s},backend:n}),l=er({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var G2e={kernelName:Up,backendName:"webgpu",kernelFunc:yd},Hh=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return` fn unaryOperation(a : f32) -> f32 { - ${Ki(this.op,!1)} + ${Bi(this.op,!1)} } - ${lt()} + ${Ye("index")} { if (index < uniforms.size) { let a = getAByOutputIndex(index); setOutputAtIndex(index, unaryOperation(a)); } } - `}};function Bn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let u=o.tensorMap.get(a.dataId),c=t(u.values,i);return o.makeTensorInfo(a.shape,i,c)}let l=new Zh(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function cs({opType:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let p=l.tensorMap.get(o.dataId),d=l.tensorMap.get(i.dataId),h,f;if(e!==Ze.MUL)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[y,x]=g,A={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=new Ry(e,o.shape,i.shape);return l.runWebGPUProgram(w,[A,b],Pn(y.dtype,x.dtype))});else{let g=new uw(Ze.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),y=new uw(Ze.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:i.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(y,x,"float32")}let m=vd({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=s||Pn(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let p=l.tensorMap.get(o.dataId).values,d=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?C.fromUint8ToStringArray(p):p,f=o.dtype==="string"?C.fromUint8ToStringArray(d):d,[m,g]=t(o.shape,i.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let c=new Ry(e,o.shape,i.shape);return l.runWebGPUProgram(c,[o,i],u)}}var IT={};Ve(IT,{addImpl:()=>ST,bincountImpl:()=>A1e,bincountReduceImpl:()=>x1e,ceilImpl:()=>TT,concatImpl:()=>b1e,equalImpl:()=>NT,expImpl:()=>ET,expm1Impl:()=>RT,floorImpl:()=>_T,gatherNdImpl:()=>v1e,gatherV2Impl:()=>w1e,greaterEqualImpl:()=>$T,greaterImpl:()=>DT,lessEqualImpl:()=>FT,lessImpl:()=>PT,linSpaceImpl:()=>k1e,logImpl:()=>OT,maxImpl:()=>I1e,maximumImpl:()=>MT,minimumImpl:()=>zT,multiplyImpl:()=>Cb,negImpl:()=>C1e,notEqualImpl:()=>LT,prodImpl:()=>N1e,rangeImpl:()=>E1e,rsqrtImpl:()=>BT,scatterImpl:()=>R1e,sigmoidImpl:()=>_1e,simpleAbsImpl:()=>m1e,sliceImpl:()=>D1e,sparseFillEmptyRowsImpl:()=>$1e,sparseReshapeImpl:()=>P1e,sparseSegmentReductionImpl:()=>F1e,sqrtImpl:()=>O1e,squaredDifferenceImpl:()=>WT,stridedSliceImpl:()=>M1e,stringNGramsImpl:()=>L1e,stringSplitImpl:()=>W1e,stringToHashBucketFastImpl:()=>V1e,subImpl:()=>VT,tileImpl:()=>G1e,topKImpl:()=>H1e,transposeImpl:()=>T1e,uniqueImpl:()=>j1e});function kb(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}function m1e(e){let t=new Float32Array(e.length);for(let n=0;n{let o=C.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=C.getBroadcastDims(t,o),g=C.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;yA[k]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(k=>w[k]=0);let I=v.locToIndex(w,d,f);c[y]=e(s[b],r[I])}return[c,o]}}function Ib(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}function _y(e,t,n="float32"){if(n==="complex64"){let r=_y(e,t,"float32"),a=_y(e,t,"float32");return Ib({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function cw(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function g1e(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}function Jm(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return cw({inputs:{x:r},backend:n});let o=_y(n,r.shape,r.dtype),i=Jm({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Ib({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=g1e({inputs:{input:r},backend:n}),i=Jm({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=cw({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,u]=or((c,p)=>c!==p?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}function vr(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;kb([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?C.fromUint8ToStringArray(u):u,d=o.dtype==="string"?C.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=Jm({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=Jm({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,I,k]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(k,"float32",w),_=l.makeTensorInfo(k,"float32",I),D=Ib({inputs:{real:E,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(_),D}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function Sb(e){return(t,n,s,r,a,o)=>{let i=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,i),f=C.getBroadcastDims(n,i),m=C.mergeRealAndImagArrays(s,r),g=C.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;wk[P]=0);let E=v.locToIndex(k,y,x),_=I.slice(-A);f.forEach(P=>_[P]=0);let D=v.locToIndex(_,A,b),R=e(m[E*2],m[E*2+1],g[D*2],g[D*2+1]);p[w]=R.real,d[w]=R.imag}return[p,d,i]}}var ST=or((e,t)=>e+t),y1e=Sb((e,t,n,s)=>({real:e+n,imag:t+s})),B4e=vr(oa,ST,y1e);function A1e(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function x1e(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=De([r,n],t.dtype);for(let i=0;i=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function Ci(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=s;if(kb(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d{let{x:o}=s;if(kb(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var TT=Ci(e=>Math.ceil(e)),W4e=wd(Na,TT);function b1e(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?C.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;ue===t?1:0),V4e=vr(Go,NT,null,"bool"),ET=Ci(e=>Math.exp(e)),U4e=wd(Ra,ET,"float32"),RT=Ci(e=>Math.expm1(e)),G4e=wd(Ho,RT),_T=Ci(e=>Math.floor(e)),H4e=wd(_a,_T);function v1e(e,t,n,s,r,a,o,i,l){let u=De([s,a],n);for(let c=0;c=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;he>t?1:0),j4e=vr(Xo,DT,null,"bool"),$T=or((e,t)=>e>=t?1:0),q4e=vr(Da,$T,null,"bool"),PT=or((e,t)=>ee<=t?1:0),K4e=vr(Jo,FT,null,"bool");function k1e(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;aMath.log(e)),Z4e=wd($a,OT);function I1e(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;ai)&&(i=u)}r[a]=i}return r}var MT=or((e,t)=>Math.max(e,t)),Y4e=vr(Pa,MT),zT=or((e,t)=>Math.min(e,t)),J4e=vr(Fa,zT),Cb=or((e,t)=>e*t),S1e=Sb((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),Q4e=vr(Oa,Cb,S1e);function C1e(e,t,n){let s=v.createScalarValue(-1,n);return Cb([],t,s,e,n)}var LT=or((e,t)=>e!==t?1:0),eve=vr(ri,LT,null,"bool");function T1e(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;c1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t1/Math.sqrt(e)),tve=wd(Ma,BT);function R1e(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return De(n,t.dtype);let h=De(c,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1/(1+Math.exp(-e))),nve=CT(za,e=>1/(1+Math.exp(-e)));function D1e(e,t,n,s,r){let a=Pt.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Pt.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=De(s,r,l),c=De(n,r);for(let p=0;pf+t[m]);c.set(u.get(...h),...d)}return r==="string"?C.fromStringArrayToUint8(c.values):c.values}function $1e(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g0?r[i-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g=A)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let I=0;Ii)break}return yMath.sqrt(e)),sve=CT(La,e=>Math.sqrt(e)),WT=or((e,t)=>{let n=e-t;return n*n}),rve=vr(Ba,WT);function M1e(e,t,n,s){let r=De(e,t.dtype);for(let a=0;a0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;yy.forEach(x=>f[m++]=x);for(let y=0;y0){g(e[p+c-1]);for(let y=0;y0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function L1e(e,t,n,s,r,a,o,i){return new z1e(n,s,r,a,o,i).compute(e,t)}function B1e(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;ae-t),U1e=Sb((e,t,n,s)=>({real:e-n,imag:t-s})),ave=vr(Wa,VT,U1e);function G1e(e,t){let n=new Array(e.rank);for(let r=0;r{let n=t.value-e.value;return n===0?e.index-t.index:n};function UT(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));UT(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),bp(e[s],r)>0&&v.swap(e,n,s);a0;)o=o-1}bp(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function H1e(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;pf[A]={value:x,index:A}),s{for(let g=0;g`T${n}`),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return` - ${lt()} + `}};function xn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let u=o.tensorMap.get(a.dataId),c=t(u.values,i);return o.makeTensorInfo(a.shape,i,c)}let l=new Hh(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function jn({opType:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let p=l.tensorMap.get(o.dataId),d=l.tensorMap.get(i.dataId),h,f;if(e!==qe.MUL)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[y,x]=g,A={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=new Cy(e,o.shape,i.shape);return l.runWebGPUProgram(w,[A,b],Un(y.dtype,x.dtype))});else{let g=new r6(qe.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),y=new r6(qe.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:i.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(y,x,"float32")}let m=yd({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=s||Un(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let p=l.tensorMap.get(o.dataId).values,d=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?T.fromUint8ToStringArray(p):p,f=o.dtype==="string"?T.fromUint8ToStringArray(d):d,[m,g]=t(o.shape,i.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let c=new Cy(e,o.shape,i.shape);return l.runWebGPUProgram(c,[o,i],u)}}var{addImpl:H2e,castImpl:j2e,ceilImpl:q2e,concatImpl:X2e,equalImpl:K2e,expImpl:Z2e,expm1Impl:Y2e,floorImpl:J2e,gatherNdImpl:Q2e,gatherV2Impl:e1e,greaterEqualImpl:t1e,greaterImpl:n1e,lessEqualImpl:s1e,lessImpl:r1e,logImpl:a1e,maxImpl:o1e,maximumImpl:i1e,minimumImpl:l1e,multiplyImpl:u1e,negImpl:c1e,notEqualImpl:d1e,prodImpl:p1e,rangeImpl:h1e,rsqrtImpl:f1e,scatterImpl:m1e,simpleAbsImpl:g1e,sliceImpl:y1e,stridedSliceImpl:A1e,stringNGramsImpl:x1e,subImpl:b1e,tileImpl:v1e,topKImpl:w1e,transposeImpl:k1e,uniqueImpl:Wbe}=Mx,S1e=xn({opType:Fe.ABS,cpuKernelImpl:g1e}),I1e={kernelName:pl,backendName:"webgpu",kernelFunc:S1e},C1e=jn({opType:qe.ADD,cpuKernelImpl:H2e,supportsComplex:!0}),T1e={kernelName:Ta,backendName:"webgpu",kernelFunc:C1e},N1e=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return` + ${Ye("index")} { for (var i = 0; i < ${this.workPerThread}; i = i + 1) { let flatIndex = index * ${this.workPerThread} + i; if (flatIndex < uniforms.size) { @@ -5824,26 +5791,26 @@ return a / b;`,eue=` } } } - `}};function Rge(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Bs({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Pn(i,l)),a=s.map(i=>i.shape),o=new Ege(a);return n.runWebGPUProgram(o,s,r)}var _ge={kernelName:_o,backendName:"webgpu",kernelFunc:Rge},GT=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let s=[t];C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r]=C.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=` - var xBestIndices : array; - var xBestValues : array; - `,t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${go(this.inputShape.length-1)}`,n=()=>{let r="";if(this.outputShape.length===1)this.inputShape.length!==1&&(r+="outputCoords,");else for(let a=0;ai.dtype).reduce((i,l)=>Un(i,l)),a=s.map(i=>i.shape),o=new N1e(a);return n.runWebGPUProgram(o,s,r)}var R1e={kernelName:fo,backendName:"webgpu",kernelFunc:E1e},gT=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let s=[t];this.op=n==="min"?"<":">";let[r,a]=T.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=ot(this.outputShape),v.sizeFromShape(a)<32||v.sizeFromShape(r)>1e3?(this.type="plain",this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize)):(this.type="shared",this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1])),this.inputShape=e,this.shaderKey=`argMinMax_${this.op}_${this.type}`}getUserCode(){let e=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${va(this.inputShape.length-1)}`,t=()=>{let n="";if(this.outputShape.length===1)this.inputShape.length!==1&&(n+="outputCoords,");else for(let s=0;s u32 { return ((a - 1u) / b + 1u); } - ${e} + ${` + var xBestIndices : array; + var xBestValues : array; + `} - ${lt()} + ${Ye("index")} { let outputIndex = index / i32(workGroupSizeX); - let reduceLength = ${t()}; + let reduceLength = ${e()}; var bestIndex = i32(localId.x); var bestValue = uniforms.infinityValue; let outputCoords = getCoordsFromIndex(outputIndex); for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size; k = k + i32(workGroupSizeX)) { - let candidate = getX(${n()} k); + let candidate = getX(${t()} k); if (!isnan(candidate) && candidate ${this.op} bestValue) { bestValue = candidate; bestIndex = k; @@ -5873,12 +5840,29 @@ return a / b;`,eue=` setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]); } } - `}},Dge=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s tile : array, ${this.workGroupSize[0]}>; - ${W2()} - fn main(@builtin(local_invocation_id) localId : vec3, - @builtin(workgroup_id) workgroupId : vec3) { + ${Lp()} + fn _start(@builtin(local_invocation_id) localId : vec3, + @builtin(workgroup_id) workgroupId : vec3) { var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x); var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y); let width = uniforms.outShape[0]; @@ -5895,9 +5879,8 @@ return a / b;`,eue=` [localId.y]); } } - `}},$ge=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;sn.disposeData(h.dataId)),d}var Mge={kernelName:Do,backendName:"webgpu",kernelFunc:Oge};function zge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Ta({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=new GT(l.shape,o[0],"min"),p=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var Lge={kernelName:Ic,backendName:"webgpu",kernelFunc:zge},HT=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2, pad : vec2, dilation : vec2, convDims : vec2, filterDims : vec2,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),` - ${lt()} + `}};function $1e(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;sn.disposeData(h.dataId)),d}var O1e={kernelName:mo,backendName:"webgpu",kernelFunc:F1e};function M1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Ca({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=new gT(l.shape,o[0],"min"),p=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var z1e={kernelName:Sc,backendName:"webgpu",kernelFunc:M1e},L1e=jn({opType:qe.ATAN2}),B1e={kernelName:hl,backendName:"webgpu",kernelFunc:L1e},a6=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2, pad : vec2, dilation : vec2, convDims : vec2, filterDims : vec2,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),` + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let batch = coords[0]; @@ -5940,8 +5923,8 @@ return a / b;`,eue=` setOutputAtIndex(index, ${t}); } } - `}},jT=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return` - ${lt()} + `}},W1e=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return` + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let batch = coords[0]; @@ -5955,8 +5938,56 @@ return a / b;`,eue=` setOutputAtIndex(index, value); } } - `}};function Bge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Bs({inputs:{x:r},backend:n});let p,d=[{type:"int32",data:[c.strideHeight,c.strideWidth]}];return c.filterHeight===1&&c.filterWidth===1?p=new jT(c):(p=new HT(c,"avg"),d.push({type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]})),n.runWebGPUProgram(p,[r],r.dtype,d)}var Wge={kernelName:$o,backendName:"webgpu",kernelFunc:Bge};function Vge(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return wb({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Uge={kernelName:Po,backendName:"webgpu",kernelFunc:Vge},Gge=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${$n(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=$n(this.rank),t=Hge(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Dy[a]} = uniforms.start[${a}] + coords.${Dy[a]};`),` - ${lt()} + `}},V1e=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=T.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=` + if (isnan(candidate)) { + bestValue = uniforms.NAN; + } else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue) + { bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return` + fn DIV_CEIL(a : u32, b : u32) -> u32 { + return ((a - 1u) / b + 1u); + } + + ${` + var xBestValues : array; + `} + fn getOffset(outputIndex : i32) -> i32 { + let outputCoords = getCoordsFromIndex(outputIndex); + let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize; + return offset; + } + ${Ye("index")} { + let outputIndex = index / i32(workGroupSizeX); + let offset = getOffset(outputIndex); + var bestValue = ${t}; + let Length = uniforms.reduceSize; + let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX); + for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size; + k = k + i32(workGroupSizeX)) { + let candidate = f32(x[offset + k]); + ${e} + } + xBestValues[localId.x] = bestValue; + workgroupBarrier(); + + var reduceSize = min(u32(Length), workGroupSizeX); + for (var currentSize = reduceSize / 2u; reduceSize > 1u; + currentSize = reduceSize / 2u) { + let interval = DIV_CEIL(reduceSize, 2u); + if (localId.x < currentSize) { + let candidate = xBestValues[localId.x + interval]; + ${e} + xBestValues[localId.x] = bestValue; + } + reduceSize = interval; + workgroupBarrier(); + } + + if (localId.x == 0u && outputIndex < uniforms.size) { + ${n} + } + } + `}};function jh(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,u=T.getAxesPermutation(l,a),c=e;u!=null&&(c=Ca({inputs:{x:e},attrs:{perm:u},backend:r}),l=T.getInnerMostAxes(l.length,a),o.push(c)),T.assertAxesAreInnerMostDims(s,l,a);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=p;n&&(h=T.expandShapeToKeepDim(p,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=o1e(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:x,outDtype:A}=p1e(c.shape,c.dtype,m,l);f=r.makeTensorInfo(x,A,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),y=v.sizeFromShape(c.shape)/m,x={windowSize:m,inSize:m,batchSize:y,outSize:1},A=s==="mean"?"float32":ih(e.dtype),b=[{type:"int32",data:[m]}],w=new V1e(x,s),S=r.runWebGPUProgram(w,[c],A,b);o.push(S),f=Ue({inputs:{x:S},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function Ab(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return jh(r,a,o,"max",n)}var U1e={kernelName:Oo,backendName:"webgpu",kernelFunc:Ab};function yT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return jh(r,o,a,"mean",n)}var G1e={kernelName:Lo,backendName:"webgpu",kernelFunc:yT};function AT(e,t,n,s){if(t.filterWidth===1&&t.filterHeight===1&&v.arraysEqual(t.inShape,t.outShape))return er({inputs:{x:e},backend:s});if(t.filterWidth===t.inWidth&&t.filterHeight===t.inHeight&&t.batchSize===1&&t.padInfo.type==="VALID"){let o=e.shape.length,i=Ue({inputs:{x:e},backend:s,attrs:{shape:[e.shape[o-3]*e.shape[o-2],e.shape[o-1]]}}),l;n==="avg"?l=yT({inputs:{x:i},backend:s,attrs:{axis:0,keepDims:!1}}):(v.assert(n==="max",()=>`Invalid pool type ${n}`),l=Ab({inputs:{x:i},backend:s,attrs:{reductionIndices:0,keepDims:!1}}));let u=Ue({inputs:{x:l},backend:s,attrs:{shape:t.outShape}});return s.disposeData(i.dataId),s.disposeData(l.dataId),u}let r,a=[{type:"int32",data:[t.strideHeight,t.strideWidth]}];return t.filterHeight===1&&t.filterWidth===1?r=new W1e(t):(n==="avg"?r=new a6(t,"avg"):(v.assert(n==="max",()=>`Invalid pool type ${n}`),r=new a6(t,"max")),a.push({type:"int32",data:[t.padInfo.top,t.padInfo.left]},{type:"int32",data:[t.dilationHeight,t.dilationWidth]},{type:"int32",data:[t.inHeight,t.inWidth]},{type:"int32",data:[t.effectiveFilterHeight,t.effectiveFilterWidth]})),s.runWebGPUProgram(r,[e],e.dtype,a)}function H1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=T.computePool2DInfo(r.shape,a,o,u,i,l);return AT(r,c,"avg",n)}var j1e={kernelName:go,backendName:"webgpu",kernelFunc:H1e};function q1e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return yb({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var X1e={kernelName:yo,backendName:"webgpu",kernelFunc:q1e},K1e=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Pn(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=Pn(this.rank),t=Z1e(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Ty[a]} = uniforms.start.${va(a)} + coords.${Ty[a]};`),` + ${Ye("index")} { if (index < uniforms.size) { var sourceLoc : ${e}; let coords = getCoordsFromIndex(index); @@ -5965,8 +5996,8 @@ return a / b;`,eue=` setOutputAtIndex(index, getSource(${t})); } } - `}},Dy=["x","y","z","w","u","v"];function Hge(e){if(e===1)return"sourceLoc";if(e<=6)return Dy.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function kd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Pt.parseSliceParams(r,a,o);if(Pt.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=Age(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let u=new Gge(i,l),c=[{type:"int32",data:i}];return n.runWebGPUProgram(u,[r],r.dtype,c)}var jge={kernelName:Gl,backendName:"webgpu",kernelFunc:kd},qge=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=[],f=He({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Ta({inputs:{x:f},backend:n,attrs:{perm:u}}),g=He({inputs:{x:m},backend:n,attrs:{shape:c}}),y=kd({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),y},Xge={kernelName:wl,backendName:"webgpu",kernelFunc:qge},qT=cs({opType:Ze.NOT_EQUAL,dtype:"bool",cpuKernelImpl:pge}),Kge={kernelName:ri,backendName:"webgpu",kernelFunc:qT};function Yh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Bs({inputs:{x:r.complexTensorInfos.real},backend:n})}var Zge={kernelName:nh,backendName:"webgpu",kernelFunc:Yh};function Yge(e,t){let n=new Zh(e.shape,ze.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function $y(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Bs({inputs:{x:r},backend:n});let o=Ut(r.shape),i=$y({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=vd({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=Yh({inputs:{input:r},backend:n}),i=$y({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Bs({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Yge(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=qT({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Jge={kernelName:Fo,backendName:"webgpu",kernelFunc:$y},Qge=Bn({opType:ze.CEIL,cpuKernelImpl:X1e}),e3e={kernelName:Na,backendName:"webgpu",kernelFunc:Qge},t3e=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return` - ${lt()} + `}},Ty=["x","y","z","w","u","v"];function Z1e(e){if(e===1)return"sourceLoc";if(e<=6)return Ty.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Ad(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Gt.parseSliceParams(r,a,o);if(Gt.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=y1e(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let u=new K1e(i,l),c=[{type:"int32",data:i}];return n.runWebGPUProgram(u,[r],r.dtype,c)}var Y1e={kernelName:Gl,backendName:"webgpu",kernelFunc:Ad},J1e=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=[],f=Ue({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Ca({inputs:{x:f},backend:n,attrs:{perm:u}}),g=Ue({inputs:{x:m},backend:n,attrs:{shape:c}}),y=Ad({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),y},Q1e={kernelName:fl,backendName:"webgpu",kernelFunc:J1e},xT=jn({opType:qe.NOT_EQUAL,dtype:"bool",cpuKernelImpl:d1e}),ege={kernelName:Dl,backendName:"webgpu",kernelFunc:xT};function qh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return er({inputs:{x:r.complexTensorInfos.real},backend:n})}var tge={kernelName:Yp,backendName:"webgpu",kernelFunc:qh};function nge(e,t){let n=new Hh(e.shape,Fe.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Ny(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return er({inputs:{x:r},backend:n});let o=Vt(r.shape),i=Ny({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=yd({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=qh({inputs:{input:r},backend:n}),i=Ny({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=er({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(n.shouldExecuteOnCPU([r])){let o=n.tensorMap.get(r.dataId).values,[i,l,u]=j2e(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}if(a==="int32")return nge(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=xT({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var sge={kernelName:Ao,backendName:"webgpu",kernelFunc:Ny},rge=xn({opType:Fe.CEIL,cpuKernelImpl:q2e}),age={kernelName:xo,backendName:"webgpu",kernelFunc:rge},oge=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return` + ${Ye("index")} { if(index < uniforms.size) { let value = getAByOutputIndex(index); var clampedValue : vec4; @@ -5981,8 +6012,8 @@ return a / b;`,eue=` setOutputAtIndex(index, clampedValue); } } - `}},n3e=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return` - ${lt()} + `}},ige=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return` + ${Ye("index")} { if(index < uniforms.size) { let value = getAByOutputIndex(index); if (isnan(value)) { @@ -5992,8 +6023,8 @@ return a / b;`,eue=` setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal)); } } - `}};function s3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4===0?i=new t3e(r.shape):i=new n3e(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var r3e={kernelName:Ea,backendName:"webgpu",kernelFunc:s3e},a3e=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r`T${n}`),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;rYh({inputs:{input:A},backend:n})),m=e.map(A=>U2({inputs:{input:A},backend:n})),g=vp(f,t,n),y=vp(m,t,n),x=vd({inputs:{real:g,imag:y},backend:n});return f.forEach(A=>n.disposeData(A.dataId)),m.forEach(A=>n.disposeData(A.dataId)),n.disposeData(g.dataId),n.disposeData(y.dataId),x}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let f=e.map(w=>{let I=v.sizeFromShape(w.shape.slice(t));return He({inputs:{x:w},backend:n,attrs:{shape:[-1,I]}})}),m=f.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),g=C.computeOutShape(f.map(w=>w.shape),1),y=f[0].shape[0]===1,x=K1e(m,g,s,y),A=C.computeOutShape(e.map(w=>w.shape),t),b=n.makeTensorInfo(A,s,x);return f.forEach(w=>n.disposeData(w.dataId)),b}let a=n.device.limits.maxStorageBuffersPerShaderStage-1;if(e.length>a){let f=[];for(let g=0;gf.shape),u=new a3e(l),c=[],p=new Array(l.length-1);if(p.length>0){p[0]=l[0][1],c.push({type:"int32",data:[p[0]]});for(let f=1;fn.disposeData(f.dataId));let h=He({inputs:{x:d},backend:n,attrs:{shape:i}});return n.disposeData(d.dataId),h}function i3e(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>He({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function XT(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Bs({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,a),vp(i,a,n)}var l3e={kernelName:kl,backendName:"webgpu",kernelFunc:XT};function u3e(e,t,n,s,r=!1,a=null,o=!1,i=4,l=4,u=4){let c=_=>{switch(_){case 1:return"resData = x[xIndex];";case 3:return"resData = vec3(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},p=_=>{switch(_){case 1:return"return W[row * uniforms.wShape[3] + colIn];";case 4:return"return W[row * uniforms.wShape[3] / 4 + colIn];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},d=e?` + `}};function z2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return er({inputs:{x:r.complexTensorInfos.imag},backend:n})}var dge={kernelName:Xp,backendName:"webgpu",kernelFunc:z2};function mp(e,t,n){let s=e[0].dtype;if(s==="complex64"){let f=e.map(A=>qh({inputs:{input:A},backend:n})),m=e.map(A=>z2({inputs:{input:A},backend:n})),g=mp(f,t,n),y=mp(m,t,n),x=yd({inputs:{real:g,imag:y},backend:n});return f.forEach(A=>n.disposeData(A.dataId)),m.forEach(A=>n.disposeData(A.dataId)),n.disposeData(g.dataId),n.disposeData(y.dataId),x}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let f=e.map(w=>{let S=v.sizeFromShape(w.shape.slice(t));return Ue({inputs:{x:w},backend:n,attrs:{shape:[-1,S]}})}),m=f.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),g=T.computeOutShape(f.map(w=>w.shape),1),y=f[0].shape[0]===1,x=X2e(m,g,s,y),A=T.computeOutShape(e.map(w=>w.shape),t),b=n.makeTensorInfo(A,s,x);return f.forEach(w=>n.disposeData(w.dataId)),b}let a=n.device.limits.maxStorageBuffersPerShaderStage-1;if(e.length>a){let f=[];for(let g=0;gf.shape),u=new cge(l),c=[],p=new Array(l.length-1);if(p.length>0){p[0]=l[0][1],c.push({type:"int32",data:[p[0]]});for(let f=1;fn.disposeData(f.dataId));let h=Ue({inputs:{x:d},backend:n,attrs:{shape:i}});return n.disposeData(d.dataId),h}function pge(e,t,n){let s=T.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Ue({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function bT(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return er({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return T.assertParamsConsistent(l,a),mp(i,a,n)}var hge={kernelName:ml,backendName:"webgpu",kernelFunc:bT};function fge(e,t,n,s,r=!1,a=null,o=!1,i=4,l=4,u=4){let c=_=>{switch(_){case 1:return"resData = x[xIndex];";case 3:return"resData = vec3(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},p=_=>{switch(_){case 1:return"return W[row * uniforms.wShape[3] + colIn];";case 4:return"return W[row * uniforms.wShape[3] / 4 + colIn];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},d=e?` let coord = vec4(batch, xRow, xCol, xCh); `:` let coord = vec4(batch, xCh, xRow, xCol); @@ -6033,7 +6064,7 @@ return a / b;`,eue=` let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0]; let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1]; let xCh = ${y} % inChannels; - var resData = ${rn(i)}(0.0); + var resData = ${Zt(i)}(0.0); // The bounds checking is always needed since we use it to pad zero for // the 'same' padding type. if (xRow >= 0 && xRow < ${f} && xCol >= 0 && xCol < ${m}) { @@ -6048,16 +6079,16 @@ return a / b;`,eue=` if (row < uniforms.dimAOuter && col < uniforms.dimInner) { ${x} } - return ${rn(i)}(0.0);`:s&&n?` + return ${Zt(i)}(0.0);`:s&&n?` let col = colIn * ${i}; ${x}`:` let col = colIn * ${i}; if (row < uniforms.dimInner && col < uniforms.dimBOuter) { ${x} } - return ${rn(i)}(0.0);`,b=`${p(l)}`,w=rn(u),I=rn(e?i:l),k=rn(e?l:i);return` - ${qa(a,o,u===4,4)} - fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${I} { + return ${Zt(i)}(0.0);`,b=`${p(l)}`,w=Zt(u),S=Zt(e?i:l),k=Zt(e?l:i);return` + ${yi(a,o,u===4,4)} + fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${S} { ${e?A:b} } @@ -6072,13 +6103,13 @@ return a / b;`,eue=` var value = valueIn; let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"}; ${h} - ${xd(r,a)} + ${gd(r,a)} setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); } - }`}var c3e=class{constructor(e,t,n,s,r=!1,a=null,o=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2, pad : vec2, stride : vec2, dilation : vec2, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=((e.inChannels%4===0||e.inChannels%3===0)&&this.isChannelsLast||e.outWidth%4===0&&!this.isChannelsLast)&&e.outChannels%4===0,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workGroupSize=yb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=Ab(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4?(this.isChannelsLast&&e.inChannels%4!==0?(this.innerElementSize=3,this.variableTypes=["f32","vec4"]):(this.innerElementSize=4,this.variableTypes=["vec4","vec4"]),r&&(this.variableNames.push("bias"),this.variableTypes.push("vec4")),o&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4"))):(this.innerElementSize=this.elementsPerThread[0],r&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights")),this.addBias=r,this.activation=a,this.hasPreluActivationWeights=o,this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=n%this.tileBOuter===0,this.fitInner=s%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`}getUserCode(){let e=this.isVec4?vb(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize,!this.isChannelsLast):bb(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner),t=this.isVec4?[this.isChannelsLast?this.innerElementSize:4,4,4]:[1,1,1];return` - ${u3e(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])} + }`}var mge=class{constructor(e,t,n,s,r=!1,a=null,o=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2, pad : vec2, stride : vec2, dilation : vec2, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=((e.inChannels%4===0||e.inChannels%3===0)&&this.isChannelsLast||e.outWidth%4===0&&!this.isChannelsLast)&&e.outChannels%4===0,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workGroupSize=hb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=fb(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4?(this.isChannelsLast&&e.inChannels%4!==0?(this.innerElementSize=3,this.variableTypes=["f32","vec4"]):(this.innerElementSize=4,this.variableTypes=["vec4","vec4"]),r&&(this.variableNames.push("bias"),this.variableTypes.push("vec4")),o&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4"))):(this.innerElementSize=this.elementsPerThread[0],r&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights")),this.addBias=r,this.activation=a,this.hasPreluActivationWeights=o,this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=n%this.tileBOuter===0,this.fitInner=s%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`}getUserCode(){let e=this.isVec4?O2(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner):M2(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner),t=this.isVec4?[this.innerElementSize,4,4]:[1,1,1];return` + ${fge(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])} ${e} - `}};function dw(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function d3e({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=n.dataFormat==="channelsLast",u=!l,c=!1,p=l&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",d=[],h,f;if(p){let y=n.inHeight*n.inWidth*n.inChannels;h=He({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,y]}}),f=He({inputs:{x:t},backend:s,attrs:{shape:[1,y,n.outChannels]}})}else h=He({inputs:{x:e},backend:s,attrs:{shape:l?[n.batchSize,n.inHeight*n.inWidth,n.inChannels]:[n.batchSize,n.inChannels,n.inHeight*n.inWidth]}}),f=He({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});if(d.push(h),d.push(f),a!=null){let y=dw(a.shape,l);y!=null&&(a=He({inputs:{x:a},backend:s,attrs:{shape:y}}),d.push(a))}if(r!=null){let y=dw(r.shape,l);y!=null&&(r=He({inputs:{x:r},backend:s,attrs:{shape:y}}),d.push(r))}let m=wb({a:l?h:f,b:l?f:h,transposeA:u,transposeB:c,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=He({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});d.push(m);for(let y of d)s.disposeData(y.dataId);return g}function KT({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=r!=null,u=a!=null,c=n.dataFormat==="channelsLast";if(c&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return d3e({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});let d=c?n.outHeight*n.outWidth:n.outChannels,h=c?n.outChannels:n.outHeight*n.outWidth,f=n.filterHeight*n.filterWidth*n.inChannels,m=[n.padInfo.top,n.padInfo.left],g=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...m]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]},{type:"int32",data:[d]},{type:"int32",data:[h]},{type:"int32",data:[f]}],y=new c3e(n,d,h,f,l,i,u),x=[],A=[e,t];l&&(!c&&r.shape.length===1&&(r=He({inputs:{x:r},backend:s,attrs:{shape:[r.shape[0],1,1]}}),x.push(r)),A.push(r)),u&&(!c&&a.shape.length===1&&(a=He({inputs:{x:a},backend:s,attrs:{shape:[a.shape[0],1,1]}}),x.push(a)),A.push(a)),i==="leakyrelu"&&(g.push({type:"float32",data:[o]}),y.uniforms+=" alpha : f32,");let b=s.runWebGPUProgram(y,A,e.dtype,g);for(let w of x)s.disposeData(w.dataId);return b}function p3e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p);return KT({x:r,filter:a,convInfo:d,backend:s})}var h3e={kernelName:Oo,backendName:"webgpu",kernelFunc:p3e};function f3e(e=4){let t=a=>{switch(a){case 1:return"return W[getIndexFromCoords4D(coord, uniforms.wShape)];";case 4:return` + `}};function o6(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function gge({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=n.dataFormat==="channelsLast",u=!l,c=!1,p=l&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",d=[],h,f;if(p){let y=n.inHeight*n.inWidth*n.inChannels;h=Ue({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,y]}}),f=Ue({inputs:{x:t},backend:s,attrs:{shape:[1,y,n.outChannels]}})}else h=Ue({inputs:{x:e},backend:s,attrs:{shape:l?[n.batchSize,n.inHeight*n.inWidth,n.inChannels]:[n.batchSize,n.inChannels,n.inHeight*n.inWidth]}}),f=Ue({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});if(d.push(h),d.push(f),a!=null){let y=o6(a.shape,l);y!=null&&(a=Ue({inputs:{x:a},backend:s,attrs:{shape:y}}),d.push(a))}if(r!=null){let y=o6(r.shape,l);y!=null&&(r=Ue({inputs:{x:r},backend:s,attrs:{shape:y}}),d.push(r))}let m=yb({a:l?h:f,b:l?f:h,transposeA:u,transposeB:c,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=Ue({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});d.push(m);for(let y of d)s.disposeData(y.dataId);return g}function vT({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=r!=null,u=a!=null,c=n.dataFormat==="channelsLast";if(c&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return gge({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});let d=c?n.outHeight*n.outWidth:n.outChannels,h=c?n.outChannels:n.outHeight*n.outWidth,f=n.filterHeight*n.filterWidth*n.inChannels,m=[n.padInfo.top,n.padInfo.left],g=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...m]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]},{type:"int32",data:[d]},{type:"int32",data:[h]},{type:"int32",data:[f]}],y=new mge(n,d,h,f,l,i,u),x=[],A=[e,t];l&&(!c&&r.shape.length===1&&(r=Ue({inputs:{x:r},backend:s,attrs:{shape:[r.shape[0],1,1]}}),x.push(r)),A.push(r)),u&&(!c&&a.shape.length===1&&(a=Ue({inputs:{x:a},backend:s,attrs:{shape:[a.shape[0],1,1]}}),x.push(a)),A.push(a)),i==="leakyrelu"&&(g.push({type:"float32",data:[o]}),y.uniforms+=" alpha : f32,");let b=s.runWebGPUProgram(y,A,e.dtype,g);for(let w of x)s.disposeData(w.dataId);return b}function yge(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p);return vT({x:r,filter:a,convInfo:d,backend:s})}var Age={kernelName:bo,backendName:"webgpu",kernelFunc:yge};function xge(e=4){let t=a=>{switch(a){case 1:return"return W[getIndexFromCoords4D(coord, uniforms.wShape)];";case 4:return` let coord1 = vec4(coordX, coordY, col + 1, rowInner); let coord2 = vec4(coordX, coordY, col + 2, rowInner); let coord3 = vec4(coordX, coordY, col + 3, rowInner); @@ -6097,10 +6128,10 @@ return a / b;`,eue=` let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]); let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]); if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) { - return ${rn(e)}(0.0); + return ${Zt(e)}(0.0); } if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) { - return ${rn(e)}(0.0); + return ${Zt(e)}(0.0); } let coord = vec4( batch, @@ -6109,13 +6140,13 @@ return a / b;`,eue=` col % uniforms.outBackprop[3]); return x[getIndexFromCoords4D(coord, uniforms.xShape)/${e}];`} } - return ${rn(e)}(0.0);`;return` - fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${rn(e)} { + return ${Zt(e)}(0.0);`;return` + fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${Zt(e)} { let col = colIn * ${e}; ${s} } - fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${rn(e)} { + fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${Zt(e)} { let col = colIn * ${e}; let coordX = uniforms.filterDims.x - 1 - row / (uniforms.filterDims[1] * uniforms.outBackprop[3]); @@ -6127,10 +6158,10 @@ return a / b;`,eue=` let coord = vec4(coordX, coordY, col, rowInner); ${t(e)} } - return ${rn(e)}(0.0); + return ${Zt(e)}(0.0); } - fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${rn(e)}) { + fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${Zt(e)}) { let col = colIn * ${e}; if (row < uniforms.dimAOuter && (col + ${e-1}) < uniforms.dimBOuter) { var value = valueInput; @@ -6141,11 +6172,11 @@ return a / b;`,eue=` col); result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${e}] = value; } - }`}var m3e=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.isVec4=e.inChannels%4===0&&e.outChannels%4===0,this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=yb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=Ab(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4?(this.innerElementSize=4,this.variableTypes=["vec4","f32"]):this.innerElementSize=this.elementsPerThread[0],this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.shaderKey=`conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}_${this.innerElementSize}`}getUserCode(){let e=this.isVec4?vb(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize):bb(this.elementsPerThread,this.workGroupSize);return` - ${f3e(this.isVec4?4:1)} + }`}var bge=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.isVec4=e.inChannels%4===0&&e.outChannels%4===0,this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=hb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=fb(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4&&(this.variableTypes=["vec4","f32"]),this.shaderKey=`conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`}getUserCode(){let e=this.isVec4?O2(this.elementsPerThread,this.workGroupSize):M2(this.elementsPerThread,this.workGroupSize);return` + ${xge(this.isVec4?4:1)} ${e} - `}},g3e=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return` - ${lt()} { + `}},vge=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return` + ${Ye("index")} { if(index < uniforms.size) { let coords = getCoordsFromIndex(index); let batch = coords[0]; @@ -6193,8 +6224,8 @@ return a / b;`,eue=` setOutputAtIndex(index, dotProd); } } - `}};function y3e(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(H().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new g3e(d);else{f=new m3e(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],y=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var A3e={kernelName:Mo,backendName:"webgpu",kernelFunc:y3e},x3e=Bn({opType:ze.COS}),b3e={kernelName:zo,backendName:"webgpu",kernelFunc:x3e},v3e=Bn({opType:ze.COSH}),w3e={kernelName:Lo,backendName:"webgpu",kernelFunc:v3e},k3e=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return` - ${lt()} + `}};function wge(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(H().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new vge(d);else{f=new bge(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],y=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var kge={kernelName:vo,backendName:"webgpu",kernelFunc:wge},Sge=xn({opType:Fe.COS}),Ige={kernelName:wo,backendName:"webgpu",kernelFunc:Sge},Cge=xn({opType:Fe.COSH}),Tge={kernelName:ko,backendName:"webgpu",kernelFunc:Cge},Nge=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return` + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let height_ratio = f32(${n}); @@ -6249,24 +6280,24 @@ return a / b;`,eue=` } } } - `}},I3e=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new k3e(r.shape[3],a.shape,i,l),p=[{type:"float32",data:[u]}];return n.runWebGPUProgram(c,[r,a,o],"float32",p)},S3e={kernelName:Sl,backendName:"webgpu",kernelFunc:I3e},Hp;(function(e){e.Prod="*",e.Sum="+"})(Hp||(Hp={}));var pw=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===Hp.Prod?"1.0":"0.0",n=this.exclusive?t:`getX(${hw(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),` - ${lt()} + `}},Ege=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Nge(r.shape[3],a.shape,i,l),p=[{type:"float32",data:[u]}];return n.runWebGPUProgram(c,[r,a,o],"float32",p)},Rge={kernelName:yl,backendName:"webgpu",kernelFunc:Ege},Bp;(function(e){e.Prod="*",e.Sum="+"})(Bp||(Bp={}));var i6=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===Bp.Prod?"1.0":"0.0",n=this.exclusive?t:`getX(${l6(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),` + ${Ye("index")} { if (index < uniforms.size) { var coords = getCoordsFromIndex(index); - let end = ${fw(e,"coords",this.op)}; + let end = ${u6(e,"coords",this.op)}; var val = ${n}; let pow2 = i32(pow(2.0, uniforms.index)); if (${r}) { let idx = ${a}; - ${fw(e,"coords",this.op)} = idx; - val ${this.op}= getX(${hw(e,"coords",this.op)}); + ${u6(e,"coords",this.op)} = idx; + val ${this.op}= getX(${l6(e,"coords",this.op)}); } setOutputAtIndex(index, val); } } - `}};function hw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function fw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function ZT(e,t,n,s,r,a){let o=t.shape.length,i=C.getAxesPermutation([s],o),l=t;i!=null&&(l=Ta({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=C.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=Bs({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new pw(e,l.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new pw(e,l.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(i!=null){let d=C.getUndoAxesPermutation(i),h=Ta({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(l.dataId),h}return p}function C3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return ZT(Hp.Prod,r,n,a,o,i)}var T3e={kernelName:Il,backendName:"webgpu",kernelFunc:C3e};function N3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return ZT(Hp.Sum,r,n,a,o,i)}var E3e={kernelName:Bo,backendName:"webgpu",kernelFunc:N3e},R3e=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return` - ${lt()} + `}};function l6(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function u6(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function wT(e,t,n,s,r,a){let o=t.shape.length,i=T.getAxesPermutation([s],o),l=t;i!=null&&(l=Ca({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=T.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=er({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new i6(e,l.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new i6(e,l.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(i!=null){let d=T.getUndoAxesPermutation(i),h=Ca({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(l.dataId),h}return p}function _ge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return wT(Bp.Prod,r,n,a,o,i)}var Dge={kernelName:gl,backendName:"webgpu",kernelFunc:_ge};function $ge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return wT(Bp.Sum,r,n,a,o,i)}var Pge={kernelName:So,backendName:"webgpu",kernelFunc:$ge},Fge=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return` + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let b = coords[0]; @@ -6285,8 +6316,8 @@ return a / b;`,eue=` let rlt = ${this.getInputSamplingString()}; setOutputAtIndex(index, rlt); } - }`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=[{type:"int32",data:[a]}],g=new R3e(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var D3e={kernelName:Cl,backendName:"webgpu",kernelFunc:_3e},$3e=class{constructor(e,t,n,s=!1,r=null,a=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2, inDims : vec2,",this.workGroupSize=[16,16,1],this.outputShape=e,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),s&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),this.addBias=s,this.activation=r,this.hasPreluActivation=a,this.filterHeight=t,this.filterWidth=n,this.shaderKey=`depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`}getUserCode(){let e=this.filterWidth*this.filterHeight,t=this.workGroupSize[0]*this.workGroupSize[1]*this.workGroupSize[2],n=this.workGroupSize[1]+this.filterHeight-1,s=this.workGroupSize[0]+this.filterWidth-1;return` - ${qa(this.activation,this.hasPreluActivation,!1,4)} + }`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Oge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=[{type:"int32",data:[a]}],g=new Fge(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Mge={kernelName:Al,backendName:"webgpu",kernelFunc:Oge},zge=class{constructor(e,t,n,s=!1,r=null,a=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2, inDims : vec2,",this.workGroupSize=[16,16,1],this.outputShape=e,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),s&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),this.addBias=s,this.activation=r,this.hasPreluActivation=a,this.filterHeight=t,this.filterWidth=n,this.shaderKey=`depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`}getUserCode(){let e=this.filterWidth*this.filterHeight,t=this.workGroupSize[0]*this.workGroupSize[1]*this.workGroupSize[2],n=this.workGroupSize[1]+this.filterHeight-1,s=this.workGroupSize[0]+this.filterWidth-1;return` + ${yi(this.activation,this.hasPreluActivation,!1,4)} var mm_Asub : array, ${n}>; var mm_Bsub : array, ${this.filterHeight}>; @@ -6299,11 +6330,11 @@ return a / b;`,eue=` return value; } - ${W2()} - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(local_invocation_index) LocalIndex: u32, - @builtin(num_workgroups) NumWorkgroups: vec3) { + ${Lp()} + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(local_invocation_index) LocalIndex: u32, + @builtin(num_workgroups) NumWorkgroups: vec3) { localId = LocalId; globalId = GlobalId; let localIndex = i32(LocalIndex); @@ -6350,13 +6381,13 @@ return a / b;`,eue=` value = fma(xVal, wVal, value); } } - ${xd(this.addBias,this.activation)} + ${gd(this.addBias,this.activation)} if (coordsInBounds4D(coords, uniforms.outShape)) { setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); } } - `}},YT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2, inDims : vec2,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[4,4,1]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwiseVec4_${n}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`}getUserCode(){let e=4+this.convInfo.filterWidth-1;return` - ${qa(this.activation,this.hasPreluActivation,!0,4)} + `}},kT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2, inDims : vec2,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[4,4,1]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwiseVec4_${n}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`}getUserCode(){let e=4+this.convInfo.filterWidth-1;return` + ${yi(this.activation,this.hasPreluActivation,!0,4)} fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4 { var value = vec4(0.0); if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1]) @@ -6365,8 +6396,8 @@ return a / b;`,eue=` } return value; } - ${W2()} - fn main(@builtin(global_invocation_id) globalId: vec3) { + ${Lp()} + fn _start(@builtin(global_invocation_id) globalId: vec3) { let batch = i32(globalId.z) / uniforms.outShape[1]; let r = i32(globalId.z) % uniforms.outShape[1]; let c = i32(globalId.y) * 4; @@ -6402,16 +6433,16 @@ return a / b;`,eue=` let coords = vec4(batch, r, c + i, d1); if (coordsInBounds4D(coords, uniforms.outShape)) { var value = dotProd[i]; - ${xd(this.addBias,this.activation)} + ${gd(this.addBias,this.activation)} setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); } } } - `}},JT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2, inDims : vec2, filterHeight : i32, - filterWidth : i32, stride : vec2, dilation : vec2,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?"getX(batch, xR, xC, d1);":"getX(batch, d1, xR, xC);";return` - ${qa(this.activation,this.hasPreluActivation,!1,4)} + `}},ST=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2, inDims : vec2, filterHeight : i32, + filterWidth : i32, stride : vec2, dilation : vec2,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?"getX(batch, xR, xC, d1);":"getX(batch, d1, xR, xC);";return` + ${yi(this.activation,this.hasPreluActivation,!1,4)} - ${bd()} + ${Ye()} { let coords = getOutputCoords(); let batch = coords[0]; let xRCCorner = vec2(coords.${this.isChannelsLast?"yz":"zw"}) * uniforms.stride - uniforms.pad; @@ -6469,61 +6500,13 @@ return a / b;`,eue=` } } } - ${xd(this.addBias,this.activation)} + ${gd(this.addBias,this.activation)} if (coordsInBounds4D(coords, uniforms.outShape)) { setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); } } - `}};function P3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=u;d==null&&(d=[1,1]);let h=C.computeConv2DInfo(r.shape,a.shape,o,d,i,c,!0,p),f=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.inHeight,h.inWidth]}],m=h.dataFormat==="channelsLast",g;return!m&&h.inHeight>16&&h.inWidth>16&&h.strideHeight===1&&h.strideWidth===1&&h.dilationWidth===1&&h.dilationHeight===1&&h.inChannels===h.outChannels?g=new $3e(h.outShape,h.filterHeight,h.filterWidth):m&&h.inHeight>4&&h.inWidth>4&&h.strideHeight===1&&h.strideWidth===1&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.inChannels%4===0?g=new YT(h):(g=new JT(h),f.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]})),n.runWebGPUProgram(g,[r,a],r.dtype,f)}var F3e={kernelName:Wo,backendName:"webgpu",kernelFunc:P3e},QT=cs({opType:Ze.MUL,cpuKernelImpl:cge,supportsComplex:!0}),O3e={kernelName:Oa,backendName:"webgpu",kernelFunc:QT},M3e=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=C.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=` - if (isnan(candidate)) { - bestValue = uniforms.NAN; - } else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue) - { bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return` - fn DIV_CEIL(a : u32, b : u32) -> u32 { - return ((a - 1u) / b + 1u); - } - - ${` - var xBestValues : array; - `} - fn getOffset(outputIndex : i32) -> i32 { - let outputCoords = getCoordsFromIndex(outputIndex); - let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize; - return offset; - } - ${lt()} - let outputIndex = index / i32(workGroupSizeX); - let offset = getOffset(outputIndex); - var bestValue = ${t}; - let Length = uniforms.reduceSize; - let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX); - for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size; - k = k + i32(workGroupSizeX)) { - let candidate = f32(x[offset + k]); - ${e} - } - xBestValues[localId.x] = bestValue; - workgroupBarrier(); - - var reduceSize = min(u32(Length), workGroupSizeX); - for (var currentSize = reduceSize / 2u; reduceSize > 1u; - currentSize = reduceSize / 2u) { - let interval = DIV_CEIL(reduceSize, 2u); - if (localId.x < currentSize) { - let candidate = xBestValues[localId.x + interval]; - ${e} - xBestValues[localId.x] = bestValue; - } - reduceSize = interval; - workgroupBarrier(); - } - - if (localId.x == 0u && outputIndex < uniforms.size) { - ${n} - } - } - `}};function Jh(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,u=C.getAxesPermutation(l,a),c=e;u!=null&&(c=Ta({inputs:{x:e},attrs:{perm:u},backend:r}),l=C.getInnerMostAxes(l.length,a),o.push(c)),C.assertAxesAreInnerMostDims(s,l,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=ige(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:x,outDtype:A}=hge(c.shape,c.dtype,m,l);f=r.makeTensorInfo(x,A,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),y=v.sizeFromShape(c.shape)/m,x={windowSize:m,inSize:m,batchSize:y,outSize:1},A=s==="mean"?"float32":ph(e.dtype),b=[{type:"int32",data:[m]}],w=new M3e(x,s),I=r.runWebGPUProgram(w,[c],A,b);o.push(I),f=He({inputs:{x:I},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function Tb(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Jh(r,a,o,"sum",n)}var z3e={kernelName:fi,backendName:"webgpu",kernelFunc:Tb};function L3e(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m=0&&(d=Tb({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var B3e={kernelName:Jp,backendName:"webgpu",kernelFunc:L3e},W3e=Bn({opType:ze.ELU}),V3e={kernelName:Uo,backendName:"webgpu",kernelFunc:W3e},U3e=cs({opType:Ze.EQUAL,dtype:"bool",cpuKernelImpl:Z1e}),G3e={kernelName:Go,backendName:"webgpu",kernelFunc:U3e},eN=Bn({opType:ze.EXP,cpuKernelImpl:Y1e,dtype:"float32"}),H3e={kernelName:Ra,backendName:"webgpu",kernelFunc:eN};function Py(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),He({inputs:{x:a},backend:s,attrs:{shape:i}})}var j3e={kernelName:Tl,backendName:"webgpu",kernelFunc:Py},q3e=Bn({opType:ze.EXPM1,cpuKernelImpl:J1e}),X3e={kernelName:Ho,backendName:"webgpu",kernelFunc:q3e},K3e=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return` - ${lt()} + `}};function Lge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(l),d=u;d==null&&(d=[1,1]);let h=T.computeConv2DInfo(r.shape,a.shape,o,d,i,c,!0,p),f=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.inHeight,h.inWidth]}],m=h.dataFormat==="channelsLast",g;return!m&&h.inHeight>16&&h.inWidth>16&&h.strideHeight===1&&h.strideWidth===1&&h.dilationWidth===1&&h.dilationHeight===1&&h.inChannels===h.outChannels?g=new zge(h.outShape,h.filterHeight,h.filterWidth):m&&h.inHeight>4&&h.inWidth>4&&h.strideHeight===1&&h.strideWidth===1&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.inChannels%4===0?g=new kT(h):(g=new ST(h),f.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]})),n.runWebGPUProgram(g,[r,a],r.dtype,f)}var Bge={kernelName:Io,backendName:"webgpu",kernelFunc:Lge},IT=jn({opType:qe.MUL,cpuKernelImpl:u1e,supportsComplex:!0}),Wge={kernelName:Uo,backendName:"webgpu",kernelFunc:IT};function xb(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return jh(r,a,o,"sum",n)}var Vge={kernelName:ni,backendName:"webgpu",kernelFunc:xb};function Uge(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m=0&&(d=xb({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var Gge={kernelName:qp,backendName:"webgpu",kernelFunc:Uge},Hge=xn({opType:Fe.ELU}),jge={kernelName:To,backendName:"webgpu",kernelFunc:Hge},qge=jn({opType:qe.EQUAL,dtype:"bool",cpuKernelImpl:K2e}),Xge={kernelName:xl,backendName:"webgpu",kernelFunc:qge},CT=xn({opType:Fe.EXP,cpuKernelImpl:Z2e,dtype:"float32"}),Kge={kernelName:No,backendName:"webgpu",kernelFunc:CT};function Ey(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),Ue({inputs:{x:a},backend:s,attrs:{shape:i}})}var Zge={kernelName:bl,backendName:"webgpu",kernelFunc:Ey},Yge=xn({opType:Fe.EXPM1,cpuKernelImpl:Y2e}),Jge={kernelName:vl,backendName:"webgpu",kernelFunc:Yge},Qge=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return` + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let coordX = uniforms.xShape[2] - coords[2] - 1; @@ -6531,9 +6514,9 @@ return a / b;`,eue=` setOutputAtIndex(index, outputValue); } } - `}},Z3e={kernelName:Nl,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new K3e(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},Y3e=Bn({opType:ze.FLOOR,cpuKernelImpl:Q1e}),J3e={kernelName:_a,backendName:"webgpu",kernelFunc:Y3e},Q3e=cs({opType:Ze.INT_DIV,dtype:"int32"}),eye={kernelName:jo,backendName:"webgpu",kernelFunc:Q3e},tye=class{constructor(e,t,n=!1){this.isFromPixels=!0,this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[t,1,1]),this.importVideo=n,this.shaderKey=`fromPixels_${this.importVideo}`}getUserCode(){let e=this.importVideo?"textureLoad(src, vec2(coords.yx));":"textureLoad(src, vec2(coords.yx), 0)";return` + `}},e3e={kernelName:wl,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Qge(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},t3e=xn({opType:Fe.FLOOR,cpuKernelImpl:J2e}),n3e={kernelName:Eo,backendName:"webgpu",kernelFunc:t3e},s3e=jn({opType:qe.INT_DIV,dtype:"int32"}),r3e={kernelName:Ro,backendName:"webgpu",kernelFunc:s3e},a3e=class{constructor(e,t,n=!1){this.isFromPixels=!0,this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[t,1,1]),this.importVideo=n,this.shaderKey=`fromPixels_${this.importVideo}`}getUserCode(){let e=this.importVideo?"textureLoad(src, vec2(coords.yx));":"textureLoad(src, vec2(coords.yx), 0)";return` @binding(1) @group(0) var src: ${this.importVideo?"texture_external":"texture_2d"}; - ${lt()} + ${Ye("index")} { let flatIndex = index * uniforms.numChannels; if (flatIndex < uniforms.size) { let coords = getCoordsFromIndex(flatIndex); @@ -6543,8 +6526,8 @@ return a / b;`,eue=` } } } - `}},nye={kernelName:Np,backendName:"webgpu",kernelFunc:sye},Hu,cm=new Map;function sye(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a],h=H().getBool("WEBGPU_IMPORT_EXTERNAL_TEXTURE")&&o,f=o||i;if(u||l||f){let x;if(h){let D=r;if(!cm.has(D)||cm.get(D).expired){let R={source:D};cm.set(D,n.device.importExternalTexture(R))}x={width:c,height:p,format:null,usage:null,texture:cm.get(D)}}else{f&&(Hu==null&&(Hu=document.createElement("canvas").getContext("2d")),Hu.canvas.width=c,Hu.canvas.height=p,Hu.drawImage(r,0,0,c,p),r=Hu.canvas);let D=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,R="rgba8unorm",P=n.textureManager.acquireTexture(d[1],d[0],R,D);n.queue.copyExternalImageToTexture({source:r},{texture:P},[d[1],d[0]]),x={width:c,height:p,format:R,usage:D,texture:P}}let A=v.sizeFromShape(d),b=v.computeStrides(d),w=new tye(d,a,h),I=[{type:"uint32",data:[A]},{type:"uint32",data:[a]},{type:"uint32",data:[...b]}],k=n.makeTensorInfo([p,c],"int32"),E=n.tensorMap.get(k.dataId);E.resourceInfo=x;let _=n.runWebGPUProgram(w,[k],"int32",I);return n.disposeData(k.dataId),_}let m=r.data,g=m;if(a!=null&&a!==4){g=new Uint8Array(r.width*r.height*a);let x=m.length,A=0;for(let b=0;b(xValue, -meanValue, offsetValue), vec3(inv, inv, 1.0))); } } - `}},aye={kernelName:qo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,u=n,c=[s,o,i],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new rye(s.shape,o.shape,i.shape,p,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,c,s.dtype,f)}};function oye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m);return KT({x:r,filter:a,convInfo:g,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:f,activation:h})}var iye={kernelName:xo,backendName:"webgpu",kernelFunc:oye};function lye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=C.computeConv2DInfo(r.shape,a.shape,l,f,u,p,!0),g=[r,a],y=o!=null,x=i!=null;y&&g.push(o),x&&g.push(i);let A=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.inHeight>4&&m.inWidth>4&&m.strideHeight===1&&m.strideWidth===1&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.inChannels%4===0?b=new YT(m,y,d,x):(b=new JT(m,y,d,x),A.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]})),d==="leakyrelu"&&(A.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),n.runWebGPUProgram(b,g,"float32",A)}var uye={kernelName:bo,backendName:"webgpu",kernelFunc:lye},cye=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${$n(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",` - ${lt()} + `}},u3e={kernelName:_o,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,u=n,c=[s,o,i],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new l3e(s.shape,o.shape,i.shape,p,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,c,s.dtype,f)}};function c3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=T.convertConv2DDataFormat(c),g=T.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m);return vT({x:r,filter:a,convInfo:g,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:f,activation:h})}var d3e={kernelName:to,backendName:"webgpu",kernelFunc:c3e};function p3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=T.computeConv2DInfo(r.shape,a.shape,l,f,u,p,!0),g=[r,a],y=o!=null,x=i!=null;y&&g.push(o),x&&g.push(i);let A=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.inHeight>4&&m.inWidth>4&&m.strideHeight===1&&m.strideWidth===1&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.inChannels%4===0?b=new kT(m,y,d,x):(b=new ST(m,y,d,x),A.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]})),d==="leakyrelu"&&(A.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),n.runWebGPUProgram(b,g,"float32",A)}var h3e={kernelName:no,backendName:"webgpu",kernelFunc:p3e},f3e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${Pn(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",` + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); var flattenIndex = 0; @@ -6570,8 +6553,8 @@ return a / b;`,eue=` setOutputAtIndex(index, getA(flattenIndex, coords[1])); } } - `}};function dye(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=C.prepareAndValidate(s,r),d=He({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=He({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),A=n.bufferSync(s),b=ege(x,A,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new cye(o,[u,c]),m=[{type:"int32",data:[o]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),y=He({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var pye={kernelName:Rl,backendName:"webgpu",kernelFunc:dye},hye=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=fye(this.aShape);return` - ${lt()} + `}};function m3e(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=T.prepareAndValidate(s,r),d=Ue({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=Ue({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),A=n.bufferSync(s),b=Q2e(x,A,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new f3e(o,[u,c]),m=[{type:"int32",data:[o]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),y=Ue({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var g3e={kernelName:Sl,backendName:"webgpu",kernelFunc:m3e},y3e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=A3e(this.aShape);return` + ${Ye("index")} { if (index < uniforms.size) { let resRC = getCoordsFromIndex(index); let indexZ = i32(getIndices(resRC.x, resRC.z)); @@ -6579,8 +6562,8 @@ return a / b;`,eue=` setOutputAtIndex(index, inBounds * getA(${e})); } } - `}};function fye(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;sn.disposeData(_.dataId)),n.makeTensorInfo(u.outputShape,E.dtype,E.values)}let m=new hye(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let y=He({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeData(x.dataId)),y}var mye={kernelName:El,backendName:"webgpu",kernelFunc:tN},gye=cs({opType:Ze.GREATER,cpuKernelImpl:sge,dtype:"bool"}),yye={kernelName:Xo,backendName:"webgpu",kernelFunc:gye},Aye=cs({opType:Ze.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:nge}),xye={kernelName:Da,backendName:"webgpu",kernelFunc:Aye};function bye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=[{type:"float32",data:[a]}],i=new Zh(r.shape,ze.LEAKYRELU);return i.uniforms="alpha : f32,",n.runWebGPUProgram(i,[r],"float32",o)}var vye={kernelName:Zo,backendName:"webgpu",kernelFunc:bye},wye=cs({opType:Ze.LESS,dtype:"bool",cpuKernelImpl:age}),kye={kernelName:Yo,backendName:"webgpu",kernelFunc:wye},Iye=cs({opType:Ze.LESS_EQUAL,dtype:"bool",cpuKernelImpl:rge}),Sye={kernelName:Jo,backendName:"webgpu",kernelFunc:Iye},Cye=Bn({opType:ze.LOG,cpuKernelImpl:oge}),Tye={kernelName:$a,backendName:"webgpu",kernelFunc:Cye},Nye=cs({opType:Ze.LOGICAL_AND,dtype:"bool"}),Eye={kernelName:_l,backendName:"webgpu",kernelFunc:Nye},Rye=Bn({opType:ze.LOGICAL_NOT}),_ye={kernelName:Dl,backendName:"webgpu",kernelFunc:Rye};function nN(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return Jh(r,a,o,"max",n)}var Dye={kernelName:Qo,backendName:"webgpu",kernelFunc:nN},$ye=cs({opType:Ze.MAX,cpuKernelImpl:lge}),Pye={kernelName:Pa,backendName:"webgpu",kernelFunc:$ye};function Fye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=C.computePool2DInfo(r.shape,a,o,u,i,l),p,d=[];if(c.filterHeight===1&&c.filterWidth===1){if(v.arraysEqual(c.inShape,c.outShape))return Bs({inputs:{x:r},backend:n});p=new jT(c),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]})}else p=new HT(c,"max"),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]});return n.runWebGPUProgram(p,[r],r.dtype,d)}var Oye={kernelName:ei,backendName:"webgpu",kernelFunc:Fye};function Mye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return Jh(r,o,a,"mean",n)}var zye={kernelName:ti,backendName:"webgpu",kernelFunc:Mye};function Lye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Jh(r,a,o,"min",n)}var Bye={kernelName:ni,backendName:"webgpu",kernelFunc:Lye},Wye=cs({opType:Ze.MIN,cpuKernelImpl:uge}),Vye={kernelName:Fa,backendName:"webgpu",kernelFunc:Wye},Uye=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),n=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=$n(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return` - ${lt()} + `}};function A3e(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;sn.disposeData(_.dataId)),n.makeTensorInfo(u.outputShape,E.dtype,E.values)}let m=new y3e(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let y=Ue({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeData(x.dataId)),y}var x3e={kernelName:kl,backendName:"webgpu",kernelFunc:TT},b3e=jn({opType:qe.GREATER,cpuKernelImpl:n1e,dtype:"bool"}),v3e={kernelName:Il,backendName:"webgpu",kernelFunc:b3e},w3e=jn({opType:qe.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:t1e}),k3e={kernelName:Do,backendName:"webgpu",kernelFunc:w3e},S3e=xn({opType:Fe.IS_NAN,dtype:"bool"}),I3e={kernelName:Cl,backendName:"webgpu",kernelFunc:S3e};function C3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=[{type:"float32",data:[a]}],i=new Hh(r.shape,Fe.LEAKYRELU);return i.uniforms="alpha : f32,",n.runWebGPUProgram(i,[r],"float32",o)}var T3e={kernelName:Po,backendName:"webgpu",kernelFunc:C3e},N3e=jn({opType:qe.LESS,dtype:"bool",cpuKernelImpl:r1e}),E3e={kernelName:Tl,backendName:"webgpu",kernelFunc:N3e},R3e=jn({opType:qe.LESS_EQUAL,dtype:"bool",cpuKernelImpl:s1e}),_3e={kernelName:Nl,backendName:"webgpu",kernelFunc:R3e},D3e=xn({opType:Fe.LOG,cpuKernelImpl:a1e}),$3e={kernelName:Fo,backendName:"webgpu",kernelFunc:D3e},P3e=jn({opType:qe.LOGICAL_AND,dtype:"bool"}),F3e={kernelName:El,backendName:"webgpu",kernelFunc:P3e},O3e=xn({opType:Fe.LOGICAL_NOT}),M3e={kernelName:Rl,backendName:"webgpu",kernelFunc:O3e},z3e=jn({opType:qe.MAX,cpuKernelImpl:i1e}),L3e={kernelName:Mo,backendName:"webgpu",kernelFunc:z3e};function B3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=T.computePool2DInfo(r.shape,a,o,u,i,l);return AT(r,c,"max",n)}var W3e={kernelName:zo,backendName:"webgpu",kernelFunc:B3e};function V3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return jh(r,a,o,"min",n)}var U3e={kernelName:Bo,backendName:"webgpu",kernelFunc:V3e},G3e=jn({opType:qe.MIN,cpuKernelImpl:l1e}),H3e={kernelName:Wo,backendName:"webgpu",kernelFunc:G3e},j3e=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),n=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=Pn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return` + ${Ye("index")} { if (index < uniforms.size) { let start = ${o}(${t}); let end = ${o}(${n}); @@ -6596,8 +6579,8 @@ return a / b;`,eue=` setOutputAtIndex(index, getX(${i})); } } - `}},Gye={kernelName:si,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(c=>({type:"int32",data:[c[0],c[1]]})),l=new Uye(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function Hye(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=dge(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Zh(s.shape,ze.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var jye={kernelName:$l,backendName:"webgpu",kernelFunc:Hye};function qye(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=Ar.nonMaxSuppressionV3Impl(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Xye={kernelName:Pl,backendName:"webgpu",kernelFunc:qye};function Kye(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=Ar.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Zye={kernelName:Fl,backendName:"webgpu",kernelFunc:Kye};function Qm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Yh({inputs:{input:s},backend:n}),a=Qm({inputs:{x:r},backend:n}),o=U2({inputs:{input:s},backend:n}),i=Qm({inputs:{x:o},backend:n}),l=vd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return fu({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Yye={kernelName:Ql,backendName:"webgpu",kernelFunc:Qm};function sN(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Yh({inputs:{input:s},backend:n}),a=sN({inputs:{x:r},backend:n}),o=U2({inputs:{input:s},backend:n}),i=Qm({inputs:{x:o},backend:n}),l=vd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return fu({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Jye={kernelName:Ol,backendName:"webgpu",kernelFunc:sN};function Qye(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Py({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Py({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=XT({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var eAe={kernelName:zl,backendName:"webgpu",kernelFunc:Qye},tAe=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=$n(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return` - ${lt()} + `}},q3e={kernelName:Vo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(c=>({type:"int32",data:[c[0],c[1]]})),l=new j3e(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function X3e(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=c1e(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Hh(s.shape,Fe.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var K3e={kernelName:_l,backendName:"webgpu",kernelFunc:X3e};function Z3e(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=yr.nonMaxSuppressionV3Impl(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Y3e={kernelName:$l,backendName:"webgpu",kernelFunc:Z3e};function J3e(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=yr.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Q3e={kernelName:Pl,backendName:"webgpu",kernelFunc:J3e};function qm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=qh({inputs:{input:s},backend:n}),a=qm({inputs:{x:r},backend:n}),o=z2({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=yd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return fu({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var eye={kernelName:Ql,backendName:"webgpu",kernelFunc:qm};function NT(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=qh({inputs:{input:s},backend:n}),a=NT({inputs:{x:r},backend:n}),o=z2({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=yd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return fu({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var tye={kernelName:Fl,backendName:"webgpu",kernelFunc:NT};function nye(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Ey({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Ey({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=bT({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var sye={kernelName:Ml,backendName:"webgpu",kernelFunc:nye},rye=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=Pn(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return` + ${Ye("index")} { if (index < uniforms.size) { let start = ${r}; let end = ${a}; @@ -6611,8 +6594,8 @@ return a / b;`,eue=` } } } - `}},rN=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(u=>v.arraysEqual(u,[0,0])))return Bs({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return fu({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(u=>i.push({type:"int32",data:[u[0],u[1]]}));let l=new tAe(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},nAe={kernelName:ai,backendName:"webgpu",kernelFunc:rN},sAe=cs({opType:Ze.POW}),rAe={kernelName:oi,backendName:"webgpu",kernelFunc:sAe};function aAe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new Ry(Ze.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var oAe={kernelName:ii,backendName:"webgpu",kernelFunc:aAe};function iAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Jh(r,a,o,"prod",n)}var lAe={kernelName:li,backendName:"webgpu",kernelFunc:iAe},uAe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=fge(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},cAe={kernelName:Lc,backendName:"webgpu",kernelFunc:uAe},aN=cs({opType:Ze.DIV}),dAe={kernelName:Vo,backendName:"webgpu",kernelFunc:aN},pAe=Bn({opType:ze.RELU}),hAe={kernelName:ui,backendName:"webgpu",kernelFunc:pAe},fAe=Bn({opType:ze.RELU6}),mAe={kernelName:pi,backendName:"webgpu",kernelFunc:fAe},gAe=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return` - ${lt()} + `}},ET=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(u=>v.arraysEqual(u,[0,0])))return er({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return fu({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(u=>i.push({type:"int32",data:[u[0],u[1]]}));let l=new rye(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},aye={kernelName:Go,backendName:"webgpu",kernelFunc:ET},oye=jn({opType:qe.POW}),iye={kernelName:Ho,backendName:"webgpu",kernelFunc:oye};function lye(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new Cy(qe.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var uye={kernelName:jo,backendName:"webgpu",kernelFunc:lye};function cye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return jh(r,a,o,"prod",n)}var dye={kernelName:qo,backendName:"webgpu",kernelFunc:cye},pye=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=h1e(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},hye={kernelName:Mc,backendName:"webgpu",kernelFunc:pye},RT=jn({opType:qe.DIV}),fye={kernelName:Co,backendName:"webgpu",kernelFunc:RT},mye=xn({opType:Fe.RECIPROCAL}),gye={kernelName:zl,backendName:"webgpu",kernelFunc:mye},yye=xn({opType:Fe.RELU}),Aye={kernelName:Xo,backendName:"webgpu",kernelFunc:yye},xye=xn({opType:Fe.RELU6}),bye={kernelName:Yo,backendName:"webgpu",kernelFunc:xye},vye=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return` + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let b = coords[0]; @@ -6654,8 +6637,8 @@ return a / b;`,eue=` setOutputAtIndex(index, newValue); } } - `}};function yAe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,u]=o,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[i?.5:0]}],f=new gAe(r.shape,l,u);return n.runWebGPUProgram(f,[r],"float32",h)}var AAe={kernelName:di,backendName:"webgpu",kernelFunc:yAe},xAe=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2(rc) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":e="vec2(rc) * effectiveInputOverOutputRatioRC",` - ${lt()} + `}};function wye(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,u]=o,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[i?.5:0]}],f=new vye(r.shape,l,u);return n.runWebGPUProgram(f,[r],"float32",h)}var kye={kernelName:Zo,backendName:"webgpu",kernelFunc:wye},Sye=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2(rc) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":e="vec2(rc) * effectiveInputOverOutputRatioRC",` + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let b = coords[0]; @@ -6685,10 +6668,9 @@ return a / b;`,eue=` setOutputAtIndex(index, newValue); } } - `}};function bAe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new xAe(r.shape,l,u,o);return n.runWebGPUProgram(f,[r],r.dtype,h)}var vAe={kernelName:ci,backendName:"webgpu",kernelFunc:bAe},wAe=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32, + `}};function Iye(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new Sye(r.shape,l,u,o);return n.runWebGPUProgram(f,[r],r.dtype,h)}var Cye={kernelName:Ko,backendName:"webgpu",kernelFunc:Iye},Tye=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32, cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return` - ${lt()} - + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); let coordXFloat = (f32(coords[2]) - uniforms.centerX) * @@ -6707,7 +6689,7 @@ return a / b;`,eue=` setOutputAtIndex(index, outputValue); } } - `}},kAe={kernelName:eu,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new wAe(s.shape,a),[u,c]=C.getImageCenter(o,s.shape[1],s.shape[2]),p=[{type:"float32",data:[u]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,p)}},IAe=Bn({opType:ze.RSQRT,cpuKernelImpl:mge}),SAe={kernelName:Ma,backendName:"webgpu",kernelFunc:IAe},bm=class{constructor(e,t,n,s,r,a,o,i=!0){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.sumDupeIndices=i,this.dispatchLayout=at(e),this.dispatch=Ge(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}_${i}`;let l=$n(r.length);this.uniforms=`sliceDim : i32, strides: ${l}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="";this.dispatchLayout.x.length===1?(s="flattenedIndex",r=` + `}},Nye={kernelName:eu,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Tye(s.shape,a),[u,c]=T.getImageCenter(o,s.shape[1],s.shape[2]),p=[{type:"float32",data:[u]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,p)}},Eye=xn({opType:Fe.RSQRT,cpuKernelImpl:f1e}),Rye={kernelName:Jo,backendName:"webgpu",kernelFunc:Eye},mm=class{constructor(e,t,n,s,r,a,o,i=!0){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.sumDupeIndices=i,this.dispatchLayout=ot(e),this.dispatch=Ge(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}_${i}`;let l=Pn(r.length);this.uniforms=`sliceDim : i32, strides: ${l}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="";this.dispatchLayout.x.length===1?(s="flattenedIndex",r=` fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 { return index; } @@ -6740,8 +6722,7 @@ return a / b;`,eue=` `);let d=`atomicStore(${u}, bitcast(${c}));`;return this.sumDupeIndices?p:d};return` ${r} - ${lt()} - + ${Ye("index")} { if (index < uniforms.size) { let coords = getUpdatesCoordsFromFlatIndex(index); var flattenedIndex = 0; @@ -6750,13 +6731,13 @@ return a / b;`,eue=` flattenedIndex = flattenedIndex + indexInside * ${n}; } let updateValue = - ${Cp(this.type,!1)}(${o}); + ${bp(this.type,!1)}(${o}); let flatIndex = getOutputIndexFromCoords(${s}); ${i("&result[flatIndex]","updateValue")}; } - }`}};function CAe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=He({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=He({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=f.dtype,g=fu({backend:n,attrs:{shape:d,value:0,dtype:m}}),y=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[y]}],A=new bm(f.shape,i,h.shape.length,f.shape.length,c,d,m),b=n.runWebGPUProgram(A,[f,h],m,x,g),w=He({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var TAe={kernelName:Vl,backendName:"webgpu",kernelFunc:CAe},NAe=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;yn.disposeData(y.dataId)),g},WAe={kernelName:jl,backendName:"webgpu",kernelFunc:BAe},VAe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;yn.disposeData(y.dataId)),g},jye={kernelName:jl,backendName:"webgpu",kernelFunc:Hye},qye=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r=5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=De(r.shape,r.dtype,u),p=wge(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new VAe(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var GAe={kernelName:Va,backendName:"webgpu",kernelFunc:iN};function HAe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let E=n.bufferSync(r),_=n.bufferSync(a),D=v.decodeString(n.readSync(o.dataId)[0]),R=gge(E,_,i,d,c,u,l,p,D,h);return n.makeTensorInfo(i,R.dtype,R.values)}let f=[d/c,c],m=He({inputs:{x:r},backend:n,attrs:{shape:[u,l]}}),g=a.shape.length?He({inputs:{x:a},backend:n,attrs:{shape:[u,c]}}):Bs({inputs:{x:a},backend:n}),y=g.dtype,x=n.makeTensorInfo([],y,v.makeZerosTypedArray(1,y)),A=He({inputs:{x:o},backend:n,attrs:{shape:Array(f.length).fill(1)}}),b=iN({inputs:{x:A},backend:n,attrs:{reps:f}}),w=v.sizeFromShape([u,c]),I=[{type:"int32",data:[l]},{type:"int32",data:p},{type:"int32",data:[w]}];switch(u){case 0:break;case 1:{let E=new bm([u,c],l,m.shape.length,g.shape.length,p,f,y,h);n.runWebGPUProgram(E,[g,m],y,I,b)}break;default:{let E=new bm([u,c],l,m.shape.length,x.shape.length,p,f,y,h);n.runWebGPUProgram(E,[x,m],y,I,b)}{let E=new bm([u,c],l,m.shape.length,g.shape.length,p,f,y);n.runWebGPUProgram(E,[g,m],y,I,b)}}let k=He({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),n.disposeData(g.dataId),n.disposeData(A.dataId),n.disposeData(x.dataId),n.disposeData(b.dataId),k}var jAe={kernelName:oh,backendName:"webgpu",kernelFunc:HAe};function qAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=kd({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var XAe={kernelName:ql,backendName:"webgpu",kernelFunc:qAe},KAe=Bn({opType:ze.SQRT}),ZAe={kernelName:La,backendName:"webgpu",kernelFunc:KAe},YAe={kernelName:Hc,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Zh(n.shape,ze.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},JAe=cs({opType:Ze.SQUARED_DIFFERENCE}),QAe={kernelName:Ba,backendName:"webgpu",kernelFunc:JAe},e5e=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=$n(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return` - ${lt()} + `}};function Xye(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r=5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=v1e(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new qye(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var Kye={kernelName:Ea,backendName:"webgpu",kernelFunc:DT};function Zye(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let E=n.bufferSync(r),_=n.bufferSync(a),D=v.decodeString(n.readSync(o.dataId)[0]),R=m1e(E,_,i,d,c,u,l,p,D,h);return n.makeTensorInfo(i,R.dtype,R.values)}let f=[d/c,c],m=Ue({inputs:{x:r},backend:n,attrs:{shape:[u,l]}}),g=a.shape.length?Ue({inputs:{x:a},backend:n,attrs:{shape:[u,c]}}):er({inputs:{x:a},backend:n}),y=g.dtype,x=n.makeTensorInfo([],y,v.makeZerosTypedArray(1,y)),A=Ue({inputs:{x:o},backend:n,attrs:{shape:Array(f.length).fill(1)}}),b=DT({inputs:{x:A},backend:n,attrs:{reps:f}}),w=v.sizeFromShape([u,c]),S=[{type:"int32",data:[l]},{type:"int32",data:p},{type:"int32",data:[w]}];switch(u){case 0:break;case 1:{let E=new mm([u,c],l,m.shape.length,g.shape.length,p,f,y,h);n.runWebGPUProgram(E,[g,m],y,S,b)}break;default:{let E=new mm([u,c],l,m.shape.length,x.shape.length,p,f,y,h);n.runWebGPUProgram(E,[x,m],y,S,b)}{let E=new mm([u,c],l,m.shape.length,g.shape.length,p,f,y);n.runWebGPUProgram(E,[g,m],y,S,b)}}let k=Ue({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),n.disposeData(g.dataId),n.disposeData(A.dataId),n.disposeData(x.dataId),n.disposeData(b.dataId),k}var Yye={kernelName:th,backendName:"webgpu",kernelFunc:Zye};function Jye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=Ad({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var Qye={kernelName:ql,backendName:"webgpu",kernelFunc:Jye},eAe=xn({opType:Fe.SQRT}),tAe={kernelName:ti,backendName:"webgpu",kernelFunc:eAe},nAe={kernelName:Vc,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Hh(n.shape,Fe.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},sAe=jn({opType:qe.SQUARED_DIFFERENCE}),rAe={kernelName:ri,backendName:"webgpu",kernelFunc:sAe},aAe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Pn(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return` + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); setOutputAtIndex(index, getX(${t})); } } - `}};function t5e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Pt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=He({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=Pt.computeOutShape(x,A,b),k=kd({inputs:{x:r},backend:n,attrs:{begin:x,size:I}});w=He({inputs:{x:k},backend:n,attrs:{shape:f}}),n.disposeData(k.dataId)}else if(n.shouldExecuteOnCPU([r])){let k=n.readSync(r.dataId),E=De(r.shape,r.dtype,k),_=xge(h,E,b,x);w=n.makeTensorInfo(f,r.dtype,_.values)}else{let k=new e5e(h),E=[{type:"int32",data:x},{type:"int32",data:b}],_=n.runWebGPUProgram(k,[r],r.dtype,E);w=He({inputs:{x:_},backend:n,attrs:{shape:f}}),n.disposeData(_.dataId)}return w}var n5e={kernelName:Xl,backendName:"webgpu",kernelFunc:t5e};function s5e(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=bge(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var r5e={kernelName:jc,backendName:"webgpu",kernelFunc:s5e},a5e=Bn({opType:ze.TANH}),o5e={kernelName:gi,backendName:"webgpu",kernelFunc:a5e},i5e=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32, + `}};function oAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Ue({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Gt.computeOutShape(x,A,b),k=Ad({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=Ue({inputs:{x:k},backend:n,attrs:{shape:f}}),n.disposeData(k.dataId)}else if(n.shouldExecuteOnCPU([r])){let k=n.readSync(r.dataId),E=We(r.shape,r.dtype,k),_=A1e(h,E,b,x);w=n.makeTensorInfo(f,r.dtype,_.values)}else{let k=new aAe(h),E=[{type:"int32",data:x},{type:"int32",data:b}],_=n.runWebGPUProgram(k,[r],r.dtype,E);w=Ue({inputs:{x:_},backend:n,attrs:{shape:f}}),n.disposeData(_.dataId)}return w}var iAe={kernelName:Xl,backendName:"webgpu",kernelFunc:oAe};function lAe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=x1e(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var uAe={kernelName:Uc,backendName:"webgpu",kernelFunc:lAe},cAe=xn({opType:Fe.TANH}),dAe={kernelName:oi,backendName:"webgpu",kernelFunc:cAe},pAe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32, dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return` - ${lt()} + ${Ye("index")} { if (index < uniforms.size) { let outC = getCoordsFromIndex(index); let batch = outC[0]; @@ -6849,8 +6830,8 @@ return a / b;`,eue=` } } } - `}},l5e=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return` - ${lt()} + `}},hAe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return` + ${Ye("index")} { if (index < uniforms.size) { let outC = getCoordsFromIndex(index); let batch = outC[0]; @@ -6908,7 +6889,7 @@ return a / b;`,eue=` } } } - `}};function ju(e,t){t!==null&&e.disposeData(t.dataId)}function mw(e){let t=1;for(;tf===null?[p,p]:[p,f],g=(w,I,k)=>{let E=m(),_=new i5e(k),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[I]}],P=f;f=n.runWebGPUProgram(_,E,"int32",R),ju(n,P)};for(let w=1;w=1;k/=2)g(I,k,[c,h])}for(let w=h;w>d;w/=2){let I=m(),k=new l5e([c,w/2]),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],D=f;f=n.runWebGPUProgram(k,I,"int32",_),ju(n,D);let R=d/2,P=R*2;for(let T=R;T>=1;T/=2)g(P,T,f.shape)}let y=f;f=kd({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),ju(n,y);let x=tN({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});ju(n,p);let A=i.slice(0,-1);A.push(a),y=f,f=He({inputs:{x:f},attrs:{shape:A},backend:n}),ju(n,y);let b=x;return x=He({inputs:{x},attrs:{shape:A},backend:n}),ju(n,b),[x,f]}var c5e={kernelName:Zl,backendName:"webgpu",kernelFunc:u5e},d5e=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return` + `}};function ju(e,t){t!==null&&e.disposeData(t.dataId)}function c6(e){let t=1;for(;tf===null?[p,p]:[p,f],g=(w,S,k)=>{let E=m(),_=new pAe(k),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[S]}],P=f;f=n.runWebGPUProgram(_,E,"int32",R),ju(n,P)};for(let w=1;w=1;k/=2)g(S,k,[c,h])}for(let w=h;w>d;w/=2){let S=m(),k=new hAe([c,w/2]),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],D=f;f=n.runWebGPUProgram(k,S,"int32",_),ju(n,D);let R=d/2,P=R*2;for(let C=R;C>=1;C/=2)g(P,C,f.shape)}let y=f;f=Ad({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),ju(n,y);let x=TT({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});ju(n,p);let A=i.slice(0,-1);A.push(a),y=f,f=Ue({inputs:{x:f},attrs:{shape:A},backend:n}),ju(n,y);let b=x;return x=Ue({inputs:{x},attrs:{shape:A},backend:n}),ju(n,b),[x,f]}var mAe={kernelName:Zl,backendName:"webgpu",kernelFunc:fAe},gAe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return` fn mapCoord(outCoord : f32, len : f32) -> f32{ var inCoord = outCoord; if(uniforms.fillModeId == 2) { @@ -6972,7 +6953,7 @@ return a / b;`,eue=` return outputValue; } - ${lt()} + ${Ye("index")} { if (index < uniforms.size) { let coords = getCoordsFromIndex(index); var outputValue : f32; @@ -7024,7 +7005,7 @@ return a / b;`,eue=` setOutputAtIndex(index, outputValue); } } - `}};function p5e(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new d5e(g),x=o==="nearest"?1:2,A;switch(i){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[A]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var h5e={kernelName:Yl,backendName:"webgpu",kernelFunc:p5e};function f5e(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;mn.disposeData(m.dataId)),f}var m5e={kernelName:Jl,backendName:"webgpu",kernelFunc:f5e},g5e=[p1e,Cge,Nge,_ge,Mge,Lge,Wge,Uge,Xge,Jge,e3e,r3e,f1e,l3e,h3e,A3e,b3e,w3e,S3e,T3e,E3e,D3e,F3e,B3e,V3e,G3e,H3e,j3e,X3e,u1e,Z3e,nye,J3e,eye,aye,iye,uye,pye,mye,yye,xye,h1e,o3e,vye,kye,Sye,Tye,Eye,_ye,Dye,Pye,Oye,zye,Bye,Vye,Gye,O3e,jye,Xye,Zye,Kge,Jye,eAe,nAe,rAe,oAe,lAe,cAe,Zge,dAe,hAe,mAe,c1e,AAe,vAe,kAe,SAe,TAe,RAe,DAe,PAe,OAe,jge,n5e,r5e,LAe,WAe,jAe,XAe,ZAe,YAe,QAe,MAe,z3e,o5e,GAe,c5e,h5e,Fge,m5e,Yye];for(let e of g5e)nr(e);var y5e=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=gw(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({size:e,usage:t,mappedAtCreation:n});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=gw(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function gw(e,t){return`${e}_${t}`}var A5e=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,n,s){let r=Aw(n),a=e*t*r,o=yw(e,t,n,s);if(this.freeTextures.has(o)||this.freeTextures.set(o,[]),this.usedTextures.has(o)||this.usedTextures.set(o,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(o).length>0){this.numFreeTextures--;let l=this.freeTextures.get(o).shift();return this.usedTextures.get(o).push(l),l}this.numBytesAllocated+=a;let i=this.device.createTexture({size:[e,t],format:n,usage:s});return this.usedTextures.get(o).push(i),i}releaseTexture(e,t,n,s,r){if(this.freeTextures.size===0)return;let a=yw(t,n,s,r);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let o=this.usedTextures.get(a),i=o.indexOf(e);if(i<0)throw new Error("Cannot release a texture that was never provided by this texture manager");o.splice(i,1);let l=Aw(s),u=t*n*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function yw(e,t,n,s){return`${e}_${t}_${n}_${s}`}function Aw(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}var x5e=H().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),b5e=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(o=>o<=n))return r;v.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),v.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},G2=class extends Ac{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.dispatchNumberInEncoder=0,this.disposed=!1,this.downloadWaitMs=0,this.tensorDataPendingDisposal=[],this.stagingPendingDisposal=[],this.uniformPendingDisposal=[],this.uploadWaitMs=0,!xb())throw new Error("WebGPU is not supported on this device");this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new y5e(this.device),this.textureManager=new A5e(this.device),this.tensorMap=new jp(this,an()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return G2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}disposeData(e,t=!1){if(this.tensorDataPendingDisposal.indexOf(e)>=0)return!1;if(!this.tensorMap.has(e))return!0;let n=this.tensorMap.get(e);if(this.decRef(e),!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDataPendingDisposal.push(e),!1;let{complexTensorInfos:s}=this.tensorMap.get(e);return s!=null&&(this.disposeData(s.real.dataId,t),this.disposeData(s.imag.dataId,t)),this.releaseResource(e),this.tensorMap.delete(e),!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}releaseResource(e){let t=this.tensorMap.get(e);if(!(!t||!t.resourceInfo)){if("texture"in t.resourceInfo){let n=t.resourceInfo;n.texture instanceof GPUTexture&&this.textureManager.releaseTexture(n.texture,n.width,n.height,n.format,n.usage),n.texture=null}else{let n=t.resourceInfo;this.bufferManager.releaseBuffer(n.buffer,n.size,n.usage),n.buffer=null}t.resourceInfo=null}}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.tensorMap.set(s,{dtype:n,shape:t,values:e,refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.tensorMap.set(e,{dtype:s,shape:n,values:t,refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.tensorDataPendingDisposal.forEach(e=>{this.releaseResource(e),this.tensorMap.delete(e)}),this.uniformPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.size,e.usage)),this.stagingPendingDisposal.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.size,e.usage)),this.tensorDataPendingDisposal=[],this.uniformPendingDisposal=[],this.stagingPendingDisposal=[]}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let n=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=n.getMappedRange().slice(0);return n.unmap(),n!=null&&this.bufferManager.releaseBuffer(n,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),s}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.releaseResource(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=C.mergeRealAndImagArrays(a,o)}else{let r=t.resourceInfo,a=await this.getBufferData(r.buffer,r.size);s=wT(a,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}readToGPU(e){let t=this.tensorMap.get(e),{values:n,dtype:s,shape:r,resourceInfo:a}=t;if(s==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let o=a.size,i=this.bufferManager.acquireBuffer(o,a.usage);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(a.buffer,0,i,0,o),this.submitQueue();let l=this.makeTensorInfo(r,s),u=an().makeTensorFromTensorInfo(l),c=this.tensorMap.get(l.dataId);return c.resourceInfo={size:o,usage:this.defaultGpuBufferUsage(),buffer:i},{tensorRef:u,buffer:i,bufSize:o}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return De(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,t)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}makeTensorInfo(e,t,n){return t==="string"&&n!=null&&n.length>0&&v.isString(n[0])&&(n=n.map(r=>v.encodeString(r))),{dataId:this.write(n,e,t),shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);if("texture"in t.resourceInfo){let s=t.resourceInfo;return s.texture instanceof GPUExternalTexture?s.texture:s.texture.createView()}let n=t.resourceInfo;return{offset:0,size:n.size,buffer:n.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.resourceInfo)return;let n=vT(t.dtype)*v.sizeFromShape(t.shape),s=this.bufferManager.acquireBuffer(n,this.defaultGpuBufferUsage());if(t.resourceInfo={size:n,usage:this.defaultGpuBufferUsage(),buffer:s},t.values){let r=this.bufferManager.acquireUploadBuffer(n,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),a=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(a).set(t.values):new Float32Array(a).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,s,0,n);let o={size:n,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingPendingDisposal.push(o)}}makeUniforms(e){let t=0,n=0,s=[];e.forEach(i=>{i.data.length===0&&(i.data=[1]);let l;switch(i.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${i.data.length}D shape`)}(n===5||n===6)&&(l=16),t=Math.ceil(t/l)*l,n=i.data.length,s.push(t),t+=i.data.length*4});let r=new ArrayBuffer(t);e.forEach((i,l)=>{let u=s[l];i.type==="int32"?new Int32Array(r,u,i.data.length).set(i.data):i.type==="uint32"?new Uint32Array(r,u,i.data.length).set(i.data):new Float32Array(r,u,i.data.length).set(i.data)});let a=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(a,0,r,0,t);let o={size:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:a};return this.uniformPendingDisposal.push(o),{offset:0,size:t,buffer:a}}runWebGPUProgram(e,t,n,s,r){if(r||(r=this.makeTensorInfo(e.outputShape,n)),v.sizeFromShape(r.shape)===0)return this.tensorMap.get(r.dataId).values=v.getTypedArrayFromDType(r.dtype,0),r;this.uploadToGPU(r.dataId),e.dispatch=b5e(this.device,e);let a=[],o=[];if(!e.isFromPixels){a.push({type:"float32",data:[NaN]}),o=t.concat(r).map(g=>g.shape);let f="int32";o.map(g=>{a.push({type:f,data:g})});let m=v.computeStrides(r.shape);if(a.push({type:f,data:m}),e.size){let g=v.sizeFromShape(e.outputShape);a.push({type:f,data:[e.isVec4?g/4:g]})}}let i=t.map((f,m)=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(f.dataId),{dtype:this.tensorMap.get(f.dataId).dtype,shape:f.shape,name:e.variableNames[m]}}),l=B2e(e,o,i,r),u;l in this.pipelineCache?u=this.pipelineCache[l]:(u=z2e(this.device,e,i,r),this.pipelineCache[l]=u),s&&(a=[...a,...s]);let c=[this.tensorToBinding(r),...t.map(f=>this.tensorToBinding(f)),this.makeUniforms(a)],p=this.device.createBindGroup({layout:u.getBindGroupLayout(0),entries:c.map((f,m)=>({binding:m,resource:f}))});this.ensureCommandEncoderReady();let d=this.getComputePass(),h=this.activeTimers!=null;return h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,0),d.setPipeline(u),d.setBindGroup(0,p),d.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(f=>{this.commandQueueOwnedIds.add(f.dataId)}),this.commandQueueOwnedIds.add(r.dataId),H().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),h&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}async getTimeFromQuerySet(e){let t=this.bufferManager.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.bufferManager.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=x5e){return H().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).resourceInfo==null&&v.sizeFromShape(n.shape)G2,webgpu_util:()=>xT});xb()&&tu("webgpu",async()=>{H().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:H().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:n.maxStorageBufferBindingSize},r?s.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let a=await t.requestDevice(s);return new G2(a,r)},3);var v5e="3.20.0",w5e="3.20.0",k5e="3.20.0",I5e="3.20.0",S5e="3.20.0",C5e="3.20.0",T5e="3.20.0",Qh={tfjs:v5e,"tfjs-core":w5e,"tfjs-data":k5e,"tfjs-layers":I5e,"tfjs-converter":S5e,"tfjs-backend-webgl":C5e,"tfjs-backend-wasm":T5e};var uN=` + `}};function yAe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new gAe(g),x=o==="nearest"?1:2,A;switch(i){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[A]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var AAe={kernelName:Yl,backendName:"webgpu",kernelFunc:yAe};function xAe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;mn.disposeData(m.dataId)),f}var bAe={kernelName:Jl,backendName:"webgpu",kernelFunc:xAe},vAe=[V2e,I1e,T1e,R1e,O1e,z1e,B1e,j1e,X1e,Q1e,sge,age,uge,G2e,hge,Age,kge,Ige,Tge,Rge,Dge,Pge,Mge,Bge,Gge,jge,Xge,Kge,Zge,Jge,L2e,e3e,o3e,n3e,r3e,u3e,d3e,h3e,g3e,x3e,v3e,k3e,U2e,dge,I3e,T3e,E3e,_3e,$3e,F3e,M3e,U1e,L3e,W3e,G1e,U3e,H3e,q3e,Wge,K3e,Y3e,Q3e,ege,tye,sye,aye,iye,uye,dye,hye,tge,fye,gye,Aye,bye,B2e,kye,Cye,Nye,Rye,Dye,Fye,Mye,Lye,Wye,Y1e,iAe,uAe,Gye,jye,Yye,Qye,tAe,nAe,rAe,Vye,Vge,dAe,Kye,mAe,AAe,P1e,bAe,eye];for(let e of vAe)tr(e);var wAe="3.20.0",kAe="3.20.0",SAe="3.20.0",IAe="3.20.0",CAe="3.20.0",TAe="3.20.0",NAe="3.20.0",Xh={tfjs:wAe,"tfjs-core":kAe,"tfjs-data":SAe,"tfjs-layers":IAe,"tfjs-converter":CAe,"tfjs-backend-webgl":TAe,"tfjs-backend-wasm":NAe};var $T=` precision highp float; attribute vec2 pos; attribute vec2 uv; @@ -7034,7 +7015,7 @@ return a / b;`,eue=` vUv = uv; gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.); } -`;var cN=` +`;var PT=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -7046,7 +7027,7 @@ return a / b;`,eue=` gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14]; gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19]; } -`,dN=` +`,FT=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -7058,7 +7039,7 @@ return a / b;`,eue=` gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14]; gl_FragColor.a = c.a; } -`,pN=` +`,OT=` precision highp float; varying vec2 vUv; uniform vec2 size; @@ -7071,7 +7052,7 @@ return a / b;`,eue=` vec2 coord = pixelate(vUv, size); gl_FragColor += texture2D(texture, coord); } -`,hN=` +`,MT=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -7094,7 +7075,7 @@ return a / b;`,eue=` gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794; gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265; } -`,fN=` +`,zT=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -7116,7 +7097,7 @@ return a / b;`,eue=` c31 * m[6] + c32 * m[7] + c33 * m[8]; gl_FragColor.a = c22.a; } -`;var Nb=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},Eb=class{constructor(t,n,s){ge(this,"uniform",{});ge(this,"attribute",{});ge(this,"gl");ge(this,"id");ge(this,"compile",(t,n)=>{let s=this.gl.createShader(n);return s?(this.gl.shaderSource(s,t),this.gl.compileShader(s),this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS)?s:(se(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)||"unknown"}`),null)):(se("filter: could not create shader"),null)});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!a)){if(!this.id){se("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){se(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),Nb(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);Nb(n,"uniform",this.uniform),Nb(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}}};function mN(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=ds(100,100),u={},c={INTERMEDIATE:1},p=l.getContext("webgl");if(!p){se("filter: cannot get webgl context");return}this.gl=p;function d(x,A){if(!(x===l.width&&A===l.height)){if(l.width=x,l.height=A,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,o),p.bufferData(p.ARRAY_BUFFER,b,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,A){let b=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,b);let w=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,w);let I=p.createTexture();return p.bindTexture(p.TEXTURE_2D,I),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,A,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,I,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:b,texture:I}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let A=null,b=null,w=!1;e===0?A=t:A=f(s).texture||null,e++,n&&!(x&c.INTERMEDIATE)?(b=null,w=e%2===0):(s=(s+1)%2,b=f(s).fbo||null),p.bindTexture(p.TEXTURE_2D,A),p.bindFramebuffer(p.FRAMEBUFFER,b),p.uniform1f(i.uniform.flipY,w?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function g(x){if(u[x])return i=u[x],p.useProgram((i?i.id:null)||null),i;if(i=new Eb(p,uN,x),!i)return se("filter: could not get webgl program"),null;let A=Float32Array.BYTES_PER_ELEMENT,b=4*A;return p.enableVertexAttribArray(i.attribute.pos),p.vertexAttribPointer(i.attribute.pos,2,p.FLOAT,!1,b,0*A),p.enableVertexAttribArray(i.attribute.uv),p.vertexAttribPointer(i.attribute.uv,2,p.FLOAT,!1,b,2*A),u[x]=i,i}let y={colorMatrix:x=>{let A=new Float32Array(x);A[4]/=255,A[9]/=255,A[14]/=255,A[19]/=255;let b=A[18]===1&&A[3]===0&&A[8]===0&&A[13]===0&&A[15]===0&&A[16]===0&&A[17]===0&&A[19]===0?dN:cN,w=g(b);!w||(p.uniform1fv(w.uniform.m,A),m())},brightness:x=>{let A=(x||0)+1;y.colorMatrix([A,0,0,0,0,0,A,0,0,0,0,0,A,0,0,0,0,0,1,0])},saturation:x=>{let A=(x||0)*2/3+1,b=(A-1)*-.5;y.colorMatrix([A,b,b,0,0,b,A,b,0,0,b,b,A,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:x=>{let A=(x||0)+1,b=-128*(A-1);y.colorMatrix([A,0,0,0,b,0,A,0,0,b,0,0,A,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let A=Math.cos(x),b=Math.sin(x),w=.213,I=.715,k=.072;y.colorMatrix([w+A*(1-w)+b*-w,I+A*-I+b*-I,k+A*-k+b*(1-k),0,0,w+A*-w+b*.143,I+A*(1-I)+b*.14,k+A*-k+b*-.283,0,0,w+A*-w+b*-(1-w),I+A*-I+b*I,k+A*(1-k)+b*k,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let A=new Float32Array(x),b=1/l.width,w=1/l.height,I=g(fN);!I||(p.uniform1fv(I.uniform.m,A),p.uniform2f(I.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let A=x||1;y.convolution.call(this,[0,-1*A,0,-1*A,1+4*A,-1*A,0,-1*A,0])},emboss:x=>{let A=x||1;y.convolution.call(this,[-2*A,-1*A,0,-1*A,1,1*A,0,1*A,2*A])},blur:x=>{let A=x/7/l.width,b=x/7/l.height,w=g(hN);!w||(p.uniform2f(w.uniform.px,0,b),m(c.INTERMEDIATE),p.uniform2f(w.uniform.px,A,0),m())},pixelate:x=>{let A=x/l.width,b=x/l.height,w=g(pN);!w||(p.uniform2f(w.uniform.size,A,b),m())}};this.add=function(x){let A=Array.prototype.slice.call(arguments,1),b=y[x];a.push({func:b,args:A})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){d(x.width,x.height),e=0,t||(t=p.createTexture()),p.bindTexture(p.TEXTURE_2D,t),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let A=0;Ah.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[me(n[0],s[0]),me(n[1],s[1]),me(n[2],s[2])],l=[me(r[0],s[0]),me(r[1],s[1]),me(r[2],s[2])],u=[fe(o,l[0]),fe(o,l[1]),fe(o,l[2])],c=[z(i[0],u[0]),z(i[1],u[1]),z(i[2],u[2])],p=un([c[0],c[1],c[2]],2),d=V(p,[1,t.shape[0],t.shape[1],3]);return J([...n,...s,...r,...i,...l,...u,...c,p,t]),d}var j2=3840,Nn=null,En=null,Id=null,_t,Xa={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function ds(e,t){let n;if(he.browser)if(he.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");n=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof he.Canvas!="undefined"?n=new he.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function q2(e,t){let n=t||ds(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function Sd(e,t,n=!0){var d,h;if(!e)return t.debug&&se("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof nt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof he.Canvas!="undefined"&&e instanceof he.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof nt){let f=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)f=Wt(e,0);else if(e.shape[2]===4){let m=wi(e,[0,0,0],[-1,-1,3]);f=Wt(m,0),J(m)}}else e.shape.length===4&&(e.shape[3]===3?f=Un(e):e.shape[3]===4&&(f=wo(e,[0,0,0,0],[-1,-1,-1,3])));if(f==null||f.shape.length!==4||f.shape[0]!==1||f.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(f.dtype==="int32"){let m=ye(f,"float32");J(f),f=m}return{tensor:f,canvas:t.filter.return?En:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&se("input stream is not ready"),{tensor:null,canvas:Nn};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&se("cannot determine input dimensions"),{tensor:null,canvas:Nn};let a=s,o=r;if(a>j2&&(a=j2,o=Math.trunc(a*r/s)),o>j2&&(o=j2,a=Math.trunc(o*s/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?a=t.filter.width:(((h=t.filter)==null?void 0:h.height)||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input error: cannot determine dimension");(!Nn||Nn.width!==a||Nn.height!==o)&&(Nn=ds(a,o));let i=Nn.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,Nn.width,Nn.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,Nn.width,Nn.height),(!En||Nn.width!==En.width||Nn.height!==En.height)&&(En=ds(Nn.width,Nn.height)),t.filter.enabled&&he.webgl.supported?(_t||(_t=he.browser?new mN:null),he.filter=!!_t,_t!=null&&_t.add?(_t.reset(),t.filter.brightness!==0&&_t.add("brightness",t.filter.brightness),t.filter.contrast!==0&&_t.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&_t.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&_t.add("blur",t.filter.blur),t.filter.saturation!==0&&_t.add("saturation",t.filter.saturation),t.filter.hue!==0&&_t.add("hue",t.filter.hue),t.filter.negative&&_t.add("negative"),t.filter.sepia&&_t.add("sepia"),t.filter.vintage&&_t.add("brownie"),t.filter.sepia&&_t.add("sepia"),t.filter.kodachrome&&_t.add("kodachrome"),t.filter.technicolor&&_t.add("technicolor"),t.filter.polaroid&&_t.add("polaroid"),t.filter.pixelate!==0&&_t.add("pixelate",t.filter.pixelate),_t.get()>0?En=_t.apply(Nn):En=_t.draw(Nn)):(t.debug&&se("input process error: cannot initialize filters"),he.webgl.supported=!1,t.filter.enabled=!1,q2(Nn,En))):(q2(Nn,En),_t&&(_t=null),he.filter=!!_t),!n)return{tensor:null,canvas:En};if(!En)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(he.browser&&sr)l=sr?sr.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let f=new Uint8Array(e.data.buffer);l=ct(f,[e.height,e.width,u],"int32")}else if((!Id||En.width!==Id.width||En.height!==Id.height)&&(Id=ds(En.width,En.height)),sr&&he.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=sr.fromPixels(En):(Id=q2(En),l=sr.fromPixels(Id));else{let g=q2(En).getContext("2d").getImageData(0,0,a,o);u=g.data.length/a/o;let y=new Uint8Array(g.data.buffer);l=ct(y,[a,o,u])}if(u===4){let f=wi(l,[0,0,0],[-1,-1,3]);J(l),l=f}if(!l)throw new Error("input error: cannot create tensor");let c=ye(l,"float32"),p=t.filter.equalization?await H2(c):Wt(c,0);return J([l,c]),{tensor:p,canvas:t.filter.return?En:null}}async function gN(e,t){let n=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return n;if(!Xa.inputTensor)Xa.inputTensor=Un(t);else if(Xa.inputTensor.shape[1]!==t.shape[1]||Xa.inputTensor.shape[2]!==t.shape[2])J(Xa.inputTensor),Xa.inputTensor=Un(t);else{let s={};s.diff=me(t,Xa.inputTensor),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;J([Xa.inputTensor,s.diff,s.squared,s.sum]),Xa.inputTensor=Un(t),n=a<=(e.cacheSensitivity||0)}return n}async function yN(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||se("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||se("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Un(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?Se.resizeBilinear(n,[t.shape[1],t.shape[2]]):Un(n),s.diff=me(s.input1,s.input2),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return J([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var Rb=class{constructor(){ge(this,"browser");ge(this,"node");ge(this,"worker");ge(this,"platform","");ge(this,"agent","");ge(this,"backends",[]);ge(this,"initial");ge(this,"filter");ge(this,"tfjs");ge(this,"offscreen");ge(this,"perfadd",!1);ge(this,"tensorflow",{version:void 0,gpu:void 0});ge(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});ge(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});ge(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});ge(this,"cpu",{model:void 0,flags:[]});ge(this,"kernels",[]);ge(this,"Canvas");ge(this,"Image");ge(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Qh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n!=null&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(an().registryFactory),this.tensorflow={version:Hn().binding?Hn().binding.TF_Version:void 0,gpu:Hn().binding?Hn().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Sn()==="wasm"&&(this.wasm.simd=H().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=H().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=ds(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Sn()==="webgl"||Sn()==="humangl")){let s=Hn().gpgpu!=="undefined"?await Hn().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let s=await navigator.gpu.requestAdapter();this.webgpu.adapter=s?s.name:void 0}}catch(s){this.webgpu.supported=!1}try{this.kernels=na(Sn()).map(s=>s.kernelName.toLowerCase())}catch(s){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},he=new Rb;var _b={};ga(_b,{age:()=>G5e,"anti-spoofing":()=>vxe,antispoof:()=>_5e,blazeface:()=>D5e,"blazeface-back":()=>H5e,"blazeface-front":()=>j5e,"blazepose-detect":()=>bxe,"blazepose-detector2d":()=>q5e,"blazepose-detector3d":()=>X5e,"blazepose-full":()=>K5e,"blazepose-heavy":()=>Z5e,"blazepose-lite":()=>Y5e,default:()=>Pxe,efficientpose:()=>J5e,"efficientpose-i-lite":()=>wxe,"efficientpose-ii-lite":()=>kxe,"efficientpose-iv":()=>Ixe,emotion:()=>$5e,faceboxes:()=>Q5e,facemesh:()=>P5e,"facemesh-attention":()=>txe,"facemesh-attention-alt":()=>exe,"facemesh-detection-full":()=>nxe,"facemesh-detection-short":()=>sxe,"facemesh-orig":()=>rxe,faceres:()=>F5e,"faceres-deep":()=>axe,gear:()=>oxe,gender:()=>lxe,"gender-ssrnet-imdb":()=>ixe,handdetect:()=>uxe,"handlandmark-full":()=>O5e,"handlandmark-lite":()=>cxe,"handlandmark-sparse":()=>dxe,handskeleton:()=>pxe,handtrack:()=>M5e,"insightface-efficientnet-b0":()=>Sxe,"insightface-ghostnet-strides1":()=>Cxe,"insightface-ghostnet-strides2":()=>Txe,"insightface-mobilenet-emore":()=>Nxe,"insightface-mobilenet-swish":()=>Exe,iris:()=>z5e,liveness:()=>L5e,"mb3-centernet":()=>B5e,meet:()=>hxe,mobileface:()=>fxe,mobilefacenet:()=>mxe,models:()=>W5e,"movenet-lightning":()=>V5e,"movenet-multipose":()=>gxe,"movenet-thunder":()=>yxe,nanodet:()=>Axe,"nanodet-e":()=>Rxe,"nanodet-g":()=>_xe,"nanodet-m":()=>Dxe,"nanodet-t":()=>$xe,posenet:()=>xxe,selfie:()=>U5e});var _5e=853098,D5e=538928,$5e=820516,P5e=1477958,F5e=6978814,O5e=5431368,M5e=2964837,z5e=2599092,L5e=592976,B5e=4030290,W5e=0,V5e=4650216,U5e=212886,G5e=161240,H5e=538928,j5e=402048,q5e=7499400,X5e=5928856,K5e=6338290,Z5e=27501554,Y5e=2725490,J5e=5651240,Q5e=2013002,exe=2387598,txe=2382414,nxe=1026192,sxe=201268,rxe=2955780,axe=13957620,oxe=1498916,ixe=161236,lxe=201808,uxe=3515612,cxe=2023432,dxe=5286322,pxe=5502280,hxe=372228,fxe=2183192,mxe=5171976,gxe=9448838,yxe=12477112,Axe=7574558,xxe=5032780,bxe=5928804,vxe=853098,wxe=2269064,kxe=5651240,Ixe=25643252,Sxe=13013224,Cxe=8093408,Txe=8049584,Nxe=6938536,Exe=12168584,Rxe=12319156,_xe=7574558,Dxe=1887474,$xe=5294216,Pxe={antispoof:_5e,blazeface:D5e,emotion:$5e,facemesh:P5e,faceres:F5e,"handlandmark-full":O5e,handtrack:M5e,iris:z5e,liveness:L5e,"mb3-centernet":B5e,models:W5e,"movenet-lightning":V5e,selfie:U5e,age:G5e,"blazeface-back":H5e,"blazeface-front":j5e,"blazepose-detector2d":q5e,"blazepose-detector3d":X5e,"blazepose-full":K5e,"blazepose-heavy":Z5e,"blazepose-lite":Y5e,efficientpose:J5e,faceboxes:Q5e,"facemesh-attention-alt":exe,"facemesh-attention":txe,"facemesh-detection-full":nxe,"facemesh-detection-short":sxe,"facemesh-orig":rxe,"faceres-deep":axe,gear:oxe,"gender-ssrnet-imdb":ixe,gender:lxe,handdetect:uxe,"handlandmark-lite":cxe,"handlandmark-sparse":dxe,handskeleton:pxe,meet:hxe,mobileface:fxe,mobilefacenet:mxe,"movenet-multipose":gxe,"movenet-thunder":yxe,nanodet:Axe,posenet:xxe,"blazepose-detect":bxe,"anti-spoofing":vxe,"efficientpose-i-lite":wxe,"efficientpose-ii-lite":kxe,"efficientpose-iv":Ixe,"insightface-efficientnet-b0":Sxe,"insightface-ghostnet-strides1":Cxe,"insightface-ghostnet-strides2":Txe,"insightface-mobilenet-emore":Nxe,"insightface-mobilenet-swish":Exe,"nanodet-e":Rxe,"nanodet-g":_xe,"nanodet-m":Dxe,"nanodet-t":$xe};var A1={};ga(A1,{Models:()=>df,getModelStats:()=>G4,load:()=>H4,reset:()=>y1,validate:()=>_1,validateModel:()=>Od});var wr,Db=[],Fxe=["white","black","asian","indian","other"],Oxe=[15,23,28,35.5,45.5,55.5,65],AN=0,xN=0,$b=Number.MAX_SAFE_INTEGER;async function bN(e){var t;return he.initial&&(wr=null),wr?e.debug&&se("cached model:",wr.modelUrl):wr=await je((t=e.face.gear)==null?void 0:t.modelPath),wr}async function Pb(e,t,n,s){var o,i;if(!wr)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=$b<(((o=t.face.gear)==null?void 0:o.skipFrames)||0),a=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>le()-xN;return t.skipAllowed&&a&&r&&AN===s&&Db[n]?($b++,Db[n]):($b=0,new Promise(async l=>{var y,x;if(!(wr!=null&&wr.inputs[0].shape))return;let u={},c=[[0,.1,.9,.9]];u.resize=Se.cropAndResize(e,c,[0],[wr.inputs[0].shape[2],wr.inputs[0].shape[1]]);let p={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=wr.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();p.gender=d[0]>d[1]?"male":"female",p.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let A=0;A(((x=t.face.gear)==null?void 0:x.minConfidence)||.2)&&p.race.push({score:Math.round(100*h[A])/100,race:Fxe[A]});p.race.sort((A,b)=>b.score-A.score);let m=Array.from(await u.age.data()).map((A,b)=>[Oxe[b],A]).sort((A,b)=>b[1]-A[1]),g=m[0][0];for(let A=1;AJ(u[A])),Db[n]=p,AN=s,xN=le(),l(p)}))}var rt={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function wN(){rt.tf255=Ce(255,"float32"),rt.tf1=Ce(1,"float32"),rt.tf2=Ce(2,"float32"),rt.tf05=Ce(.5,"float32"),rt.tf127=Ce(127.5,"float32"),rt.rgb=Ft([.2989,.587,.114],"float32")}var Ws,X2=[],kN=0,IN=0,Fb=Number.MAX_SAFE_INTEGER;async function SN(e){return he.initial&&(Ws=null),Ws?e.debug&&se("cached model:",Ws.modelUrl):Ws=await je(e.face.ssrnet.modelPathAge),Ws}async function Ob(e,t,n,s){var o,i,l,u;if(!Ws)return{age:0};let r=Fb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-IN;return t.skipAllowed&&r&&a&&kN===s&&((l=X2[n])==null?void 0:l.age)&&((u=X2[n])==null?void 0:u.age)>0?(Fb++,X2[n]):(Fb=0,new Promise(async c=>{var h;if(!(Ws!=null&&Ws.inputs)||!Ws.inputs[0]||!Ws.inputs[0].shape)return;let p={};p.resize=Se.resizeBilinear(e,[Ws.inputs[0].shape[2],Ws.inputs[0].shape[1]],!1),p.enhance=z(p.resize,rt.tf255);let d={age:0};if((h=t.face.ssrnet)!=null&&h.enabled&&(p.age=Ws.execute(p.enhance)),p.age){let f=await p.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(p).forEach(f=>J(p[f])),X2[n]=d,kN=s,IN=le(),c(d)}))}var kr,K2=[],TN=0,NN=0,Mb=Number.MAX_SAFE_INTEGER,zb=[.2989,.587,.114];async function EN(e){var t;return he.initial&&(kr=null),kr?e.debug&&se("cached model:",kr.modelUrl):kr=await je((t=e.face.ssrnet)==null?void 0:t.modelPathGender),kr}async function Lb(e,t,n,s){var o,i,l,u;if(!kr)return{gender:"unknown",genderScore:0};let r=Mb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-NN;return t.skipAllowed&&r&&a&&TN===s&&((l=K2[n])==null?void 0:l.gender)&&((u=K2[n])==null?void 0:u.genderScore)>0?(Mb++,K2[n]):(Mb=0,new Promise(async c=>{var f;if(!(kr!=null&&kr.inputs[0].shape))return;let p={};p.resize=Se.resizeBilinear(e,[kr.inputs[0].shape[2],kr.inputs[0].shape[1]],!1),p.enhance=Z(()=>{let[m,g,y]=Yt(p.resize,3,3),x=z(m,zb[0]),A=z(g,zb[1]),b=z(y,zb[2]),w=E0([x,A,b]);return z(me(w,rt.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(p.gender=kr.execute(p.enhance));let h=await p.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(p).forEach(m=>J(p[m])),K2[n]=d,TN=s,NN=le(),c(d)}))}var xn,Z2=[],Bb=Number.MAX_SAFE_INTEGER,_N=0,DN=0;async function $N(e){var t;return he.initial&&(xn=null),xn?e.debug&&se("cached model:",xn.modelUrl):xn=await je((t=e.face.antispoof)==null?void 0:t.modelPath),xn}async function Wb(e,t,n,s){var o,i;if(!xn||!(xn!=null&&xn.executor))return 0;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>le()-DN,a=Bb<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&_N===s&&Z2[n]?(Bb++,Z2[n]):(Bb=0,new Promise(async l=>{let u=Se.resizeBilinear(e,[xn!=null&&xn.inputs[0].shape?xn.inputs[0].shape[2]:0,xn!=null&&xn.inputs[0].shape?xn.inputs[0].shape[1]:0],!1),c=xn==null?void 0:xn.execute(u),p=(await c.data())[0];Z2[n]=Math.round(100*p)/100,_N=s,DN=le(),J([u,c]),l(Z2[n])}))}var Ir={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Vb={count:468,mouth:13,symmetryLine:[13,Ir.midwayBetweenEyes[0]]},mu={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Ub=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],tf=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],gu=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var zxe=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Lxe=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Bxe=[33,133,362,263,1,78,308],pSe=zxe.map(e=>tf[e]),hSe=Lxe.map(e=>tf[e]),fSe=Bxe.map(e=>tf[e]);function Ti(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var Wxe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Vxe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Uxe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Gxe=[[474,475],[475,476],[476,477],[477,474]],Hxe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],jxe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],qxe=[[469,470],[470,471],[471,472],[472,469]],Xxe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],mSe={lips:Ti(Wxe),leftEye:Ti(Vxe),leftEyebrow:Ti(Uxe),leftIris:Ti(Gxe),rightEye:Ti(Hxe),rightEyebrow:Ti(jxe),rightIris:Ti(qxe),faceOval:Ti(Xxe)};var Cd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],Y2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],J2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Q2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],MN=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},Hb=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r],o=Se.cropAndResize(t,[a],[0],n),i=fe(o,rt.tf255);return J(o),i},e1=(e,t)=>{let n=Y2(e),s=Cd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},t1=e=>{let t=Y2(e),n=Cd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},zN=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},jb=[[1,0,0],[0,1,0],[0,0,1]],Kxe=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Zxe=(e,t)=>Kxe(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var FN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],yu=(e,t)=>{let n=0;for(let s=0;s{let n=[];for(let s=0;s{let n=[],s=e.length;for(let r=0;r{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=FN(t[0],t[1]),o=ON(a,r),i=FN(-t[0],-t[1]);return ON(o,i)},Jxe=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-yu(t[0],n),-yu(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},Qxe=(e,t)=>[yu(e,t[0]),yu(e,t[1])];function BN(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s[a[0]/r*(h[0]-r/2),a[1]/r*(h[1]-r/2),h[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?LN(n,[0,0]):jb,u=i?o.map(h=>[...Qxe(h,l),h[2]]):o,c=i?Jxe(s):jb,p=Y2(t),d=[yu(p,c[0]),yu(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function VN(e,t,n,s){let r=t.landmarks.length>=Vb.count?Vb.symmetryLine:mu.symmetryLine,a=0,o=jb,i;if(e&&he.kernels.includes("rotatewithoffset"))if(a=Zxe(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let u=Y2(t),c=[u[0]/n.shape[2],u[1]/n.shape[1]],p=Se.rotateWithOffset(n,a,0,c);o=LN(-a,u),i=Hb(t,p,[s,s]),J(p)}else i=Hb(t,n,[s,s]);else i=Hb(t,n,[s,s]);return[a,o,i]}var ebe=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...n)+(Math.max(...n)-Math.min(...n))/2]},UN=(e,t)=>{let n=ebe(e),s=Cd(t);return{startPoint:[n[0]-s[0]/2,n[1]-s[1]/2],endPoint:[n[0]+s[0]/2,n[1]+s[1]/2]}};var GN=6,tbe=1.4,Gr,HN=null,Ni=0,nf=null,Td=()=>Ni;async function jN(e){var t;return he.initial&&(Gr=null),Gr?e.debug&&se("cached model:",Gr.modelUrl):Gr=await je((t=e.face.detector)==null?void 0:t.modelPath),Ni=Gr.executor&&Gr.inputs[0].shape?Gr.inputs[0].shape[2]:256,nf=Ce(Ni,"int32"),HN=mr(BN(Ni)),Gr}function nbe(e){let t={};t.boxStarts=Le(e,[0,1],[-1,2]),t.centers=ue(t.boxStarts,HN),t.boxSizes=Le(e,[0,3],[-1,2]),t.boxSizesNormalized=fe(t.boxSizes,nf),t.centersNormalized=fe(t.centers,nf),t.halfBoxSize=fe(t.boxSizesNormalized,rt.tf2),t.starts=me(t.centersNormalized,t.halfBoxSize),t.ends=ue(t.centersNormalized,t.halfBoxSize),t.startNormalized=z(t.starts,nf),t.endNormalized=z(t.ends,nf);let n=su([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>J(t[s])),n}async function qN(e,t){var i,l,u,c;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let n={};n.resized=Se.resizeBilinear(e,[Ni,Ni]),n.div=fe(n.resized,rt.tf127),n.normalized=me(n.div,rt.tf05);let s=Gr==null?void 0:Gr.execute(n.normalized);if(Array.isArray(s)&&s.length>2){let p=s.sort((d,h)=>d.size-h.size);n.concat384=St([p[0],p[2]],2),n.concat512=St([p[1],p[3]],2),n.concat=St([n.concat512,n.concat384],1),n.batch=st(n.concat,0)}else Array.isArray(s)?n.batch=st(s[0]):n.batch=st(s);J(s),n.boxes=nbe(n.batch),n.logits=Le(n.batch,[0,0],[-1,1]),n.sigmoid=Dn(n.logits),n.scores=st(n.sigmoid),n.nms=await Se.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let p=0;p(((c=t.face.detector)==null?void 0:c.minConfidence)||0)){let h={};h.bbox=Le(n.boxes,[r[p],0],[1,-1]),h.slice=Le(n.batch,[r[p],GN-1],[1,-1]),h.squeeze=st(h.slice),h.landmarks=V(h.squeeze,[GN,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=MN(m,[(e.shape[2]||0)/Ni,(e.shape[1]||0)/Ni]),y=e1(g,t.face.scale||tbe),x=t1(y);a.push(x),Object.keys(h).forEach(A=>J(h[A]))}}return Object.keys(n).forEach(p=>J(n[p])),a}var n1={};ga(n1,{connected:()=>Kb,kpt:()=>Xb});var Xb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],Kb={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var KN=224,sbe,rbe=5,s1=[8,16,32,32,32];function ZN(){let e=[],t=0;for(;tn.x)),y:Ft(e.map(n=>n.y))}}function Ka(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function YN(e,t=[1,1]){let n=[e.map(u=>u[0]),e.map(u=>u[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function r1(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}var eE={initial:!0},jn={detector:null,landmarks:null},Nd={detector:[224,224],landmarks:[256,256]},Zb=Number.MAX_SAFE_INTEGER,obe={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},o1=null,sf,Ei=[[0,0],[0,0],[0,0],[0,0]],JN=0,QN=e=>1-1/(1+Math.exp(e));async function tE(e){var t;if(eE.initial&&(jn.detector=null),!jn.detector&&e.body.detector&&e.body.detector.modelPath){jn.detector=await je(e.body.detector.modelPath);let n=(t=jn.detector)!=null&&t.executor?Object.values(jn.detector.modelSignature.inputs):void 0;Nd.detector[0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Nd.detector[1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}else e.debug&&jn.detector&&se("cached model:",jn.detector.modelUrl);return ZN(),jn.detector}async function nE(e){var t;if(eE.initial&&(jn.landmarks=null),jn.landmarks)e.debug&&se("cached model:",jn.landmarks.modelUrl);else{jn.landmarks=await je(e.body.modelPath);let n=(t=jn.landmarks)!=null&&t.executor?Object.values(jn.landmarks.modelSignature.inputs):void 0;Nd.landmarks[0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Nd.landmarks[1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return jn.landmarks}function ibe(e,t){var r,a;let n={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((a=e==null?void 0:e.shape)!=null&&a[2]))return e;let s;if(sf&&(n.cropped=Se.cropAndResize(e,[sf],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let o=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],i=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Ei=[[0,0],o,i,[0,0]],n.pad=rr(n.cropped||e,Ei),n.resize=Se.resizeBilinear(n.pad,[t,t]),s=fe(n.resize,rt.tf255)}else e.shape[1]!==t?(n.resize=Se.resizeBilinear(n.cropped||e,[t,t]),s=fe(n.resize,rt.tf255)):s=fe(n.cropped||e,rt.tf255);return Object.keys(n).forEach(o=>J(n[o])),s}function lbe(e,t){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+Ei[2][0]+Ei[2][1])/t[0]-Ei[2][0]),Math.trunc(n.position[1]*(t[1]+Ei[1][0]+Ei[1][1])/t[1]-Ei[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(sf)for(let n of e)n.positionRaw=[n.positionRaw[0]+sf[1],n.positionRaw[1]+sf[0],n.positionRaw[2]],n.position=[Math.trunc(n.positionRaw[0]*t[0]),Math.trunc(n.positionRaw[1]*t[1]),n.positionRaw[2]];return e}function ube(e){let t=e.find(i=>i.part==="leftPalm"),n=e.find(i=>i.part==="leftWrist"),s=e.find(i=>i.part==="leftIndex");t.position[2]=((n.position[2]||0)+(s.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),a=e.find(i=>i.part==="rightWrist"),o=e.find(i=>i.part==="rightIndex");r.position[2]=((a.position[2]||0)+(o.position[2]||0))/2}async function cbe(e,t,n){var f,m;if(!((f=jn.landmarks)!=null&&f.executor))return null;let s={};[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(m=jn.landmarks)==null?void 0:m.execute(e,obe.landmarks);let r=(await s.poseflag.data())[0],a=await s.ld.data(),o=await s.world.data();Object.keys(s).forEach(g=>J(s[g]));let i=[],l=5;for(let g=0;gg.position),p=Ka(c,[n[0],n[1]]),d={};for(let[g,y]of Object.entries(Kb)){let x=[];for(let A=0;AI.part===y[A]),w=u.find(I=>I.part===y[A+1]);b&&w&&x.push([b.position,w.position])}d[g]=x}return{id:0,score:Math.trunc(100*r)/100,box:p.box,boxRaw:p.boxRaw,keypoints:u,annotations:d}}async function Yb(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>le()-JN,r=Zb<(t.body.skipFrames||0);if(t.skipAllowed&&s&&r&&o1!==null)Zb++;else{let a={};a.landmarks=ibe(e,256),o1=await cbe(a.landmarks,t,n),Object.keys(a).forEach(o=>J(a[o])),JN=le(),Zb=0}return o1?[o1]:[]}var Ed=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Is,Au=0,Jb=[],rE=0,Qb=Number.MAX_SAFE_INTEGER;async function aE(e){if(he.initial&&(Is=null),Is)e.debug&&se("cached model:",Is.modelUrl);else{Is=await je(e.object.modelPath);let t=Is!=null&&Is.executor?Object.values(Is.modelSignature.inputs):void 0;Au=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return Is}async function dbe(e,t,n){if(!e)return[];let s={},r=[],a=await e.array();s.squeeze=st(e);let o=Yt(s.squeeze,6,1);s.stack=un([o[1],o[0],o[3],o[2]],1),s.boxes=st(s.stack),s.scores=st(o[4]),s.classes=st(o[5]),J([e,...o]),s.nms=await Se.nonMaxSuppressionAsync(s.boxes,s.scores,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence||0);let i=await s.nms.data(),l=0;for(let u of Array.from(i)){let c=Math.trunc(100*a[0][u][4])/100,p=a[0][u][5],d=Ed[p].label,[h,f]=[a[0][u][0]/Au,a[0][u][1]/Au],m=[h,f,a[0][u][2]/Au-h,a[0][u][3]/Au-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:c,class:p,label:d,box:g,boxRaw:m})}return Object.keys(s).forEach(u=>J(s[u])),r}async function e4(e,t){if(!(Is!=null&&Is.executor))return[];let n=(t.object.skipTime||0)>le()-rE,s=Qb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Jb.length>0?(Qb++,Jb):(Qb=0,new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Se.resizeBilinear(e,[Au,Au]),i=t.object.enabled?Is==null?void 0:Is.execute(o,["tower_0/detections"]):null;rE=le(),J(o);let l=await dbe(i,a,t);Jb=l,r(l)}))}var i1={};ga(i1,{connected:()=>n4,kpt:()=>t4});var t4=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],n4={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var bn,iE=0,ps={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},s4=Number.MAX_SAFE_INTEGER;async function lE(e){return he.initial&&(bn=null),bn?e.debug&&se("cached model:",bn.modelUrl):bn=await je(e.body.modelPath),bn}async function pbe(e,t){let[n,s]=e.shape,r=V(e,[s*n]),a=gn(r,0),o=(await a.data())[0];if(o>t){let i=Ps(r,0),l=au(i,n),u=(await l.data())[0],c=fe(i,n),p=(await c.data())[0];return J([r,a,i,l,c]),[u,p,o]}return J([r,a]),[0,0,o]}async function r4(e,t){if(!(bn!=null&&bn.executor))return[];let n=(t.body.skipTime||0)>le()-iE,s=s4<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(ps.keypoints).length>0?(s4++,[ps]):(s4=0,new Promise(async r=>{let a=Z(()=>{if(!(bn!=null&&bn.inputs[0].shape))return null;let p=Se.resizeBilinear(e,[bn.inputs[0].shape[2],bn.inputs[0].shape[1]],!1),d=z(p,rt.tf2);return me(d,rt.tf1)}),o;if(t.body.enabled&&(o=bn==null?void 0:bn.execute(a)),iE=le(),J(a),o){ps.keypoints.length=0;let p=st(o);J(o);let d=On(p,2);J(p);for(let h=0;h(t.body.minConfidence||0)&&ps.keypoints.push({score:Math.round(100*g)/100,part:t4[h],positionRaw:[f/bn.inputs[0].shape[2],m/bn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/bn.inputs[0].shape[2]),Math.round(e.shape[1]*m/bn.inputs[0].shape[1])]})}d.forEach(h=>J(h))}ps.score=ps.keypoints.reduce((p,d)=>d.score>p?d.score:p,0);let i=ps.keypoints.map(p=>p.position[0]),l=ps.keypoints.map(p=>p.position[1]);ps.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let u=ps.keypoints.map(p=>p.positionRaw[0]),c=ps.keypoints.map(p=>p.positionRaw[1]);ps.boxRaw=[Math.min(...u),Math.min(...c),Math.max(...u)-Math.min(...u),Math.max(...c)-Math.min(...c)];for(let[p,d]of Object.entries(n4)){let h=[];for(let f=0;fy.part===d[f]),g=ps.keypoints.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}ps.annotations[p]=h}r([ps])}))}var hbe=["angry","disgust","fear","happy","sad","surprise","neutral"],ir,l1=[],cE=0,dE=0,a4=Number.MAX_SAFE_INTEGER;async function pE(e){var t;return he.initial&&(ir=null),ir?e.debug&&se("cached model:",ir.modelUrl):ir=await je((t=e.face.emotion)==null?void 0:t.modelPath),ir}async function o4(e,t,n,s){var o,i;if(!ir)return[];let r=a4<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>le()-dE;return t.skipAllowed&&a&&r&&cE===s&&l1[n]&&l1[n].length>0?(a4++,l1[n]):(a4=0,new Promise(async l=>{var c;let u=[];if((c=t.face.emotion)!=null&&c.enabled){let p={},d=ir!=null&&ir.inputs[0].shape?ir.inputs[0].shape[2]:0;p.resize=Se.resizeBilinear(e,[d,d],!1),p.channels=z(p.resize,rt.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=me(p.grayscale,rt.tf05),p.grayscaleMul=z(p.grayscaleSub,rt.tf2),p.emotion=ir==null?void 0:ir.execute(p.grayscaleMul),dE=le();let h=await p.emotion.data();for(let f=0;f(t.face.emotion.minConfidence||0)&&u.push({score:Math.min(.99,Math.trunc(100*h[f])/100),emotion:hbe[f]});u.sort((f,m)=>m.score-f.score),Object.keys(p).forEach(f=>J(p[f]))}l1[n]=u,cE=s,l(u)}))}var Vs,i4=[],fE=0,mE=0,gE=Number.MAX_SAFE_INTEGER;async function yE(e){var t;return he.initial&&(Vs=null),Vs?e.debug&&se("cached model:",Vs.modelUrl):Vs=await je((t=e.face.mobilefacenet)==null?void 0:t.modelPath),Vs}async function l4(e,t,n,s){var o,i;if(!(Vs!=null&&Vs.executor))return[];let r=gE<(((o=t.face.mobilefacenet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.mobilefacenet)==null?void 0:i.skipTime)||0)>le()-mE;return t.skipAllowed&&a&&r&&fE===s&&i4[n]?(gE++,i4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.mobilefacenet)==null?void 0:c.enabled)&&(Vs==null?void 0:Vs.inputs[0].shape)){let p={};p.crop=Se.resizeBilinear(e,[Vs.inputs[0].shape[2],Vs.inputs[0].shape[1]],!1),p.data=Vs.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>J(p[h]))}i4[n]=u,fE=s,mE=le(),l(u)})}var Us,u4=[],xE=0,bE=0,vE=Number.MAX_SAFE_INTEGER;async function wE(e){return he.initial&&(Us=null),Us?e.debug&&se("cached model:",Us.modelUrl):Us=await je(e.face.insightface.modelPath),Us}async function c4(e,t,n,s){var o,i;if(!(Us!=null&&Us.executor))return[];let r=vE<(((o=t.face.insightface)==null?void 0:o.skipFrames)||0),a=(((i=t.face.insightface)==null?void 0:i.skipTime)||0)>le()-bE;return t.skipAllowed&&a&&r&&xE===s&&u4[n]?(vE++,u4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.insightface)==null?void 0:c.enabled)&&(Us==null?void 0:Us.inputs[0].shape)){let p={};p.crop=Se.resizeBilinear(e,[Us.inputs[0].shape[2],Us.inputs[0].shape[1]],!1),p.data=Us.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>J(p[h]))}u4[n]=u,xE=s,bE=le(),l(u)})}var Gs,Ri=0,fbe=2.3,d4=Ir.leftEyeLower0,p4=Ir.rightEyeLower0,Rd={leftBounds:[d4[0],d4[d4.length-1]],rightBounds:[p4[0],p4[p4.length-1]]},_d={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function TE(e){var t,n;return he.initial&&(Gs=null),Gs?e.debug&&se("cached model:",Gs.modelUrl):Gs=await je((t=e.face.iris)==null?void 0:t.modelPath),Ri=(Gs==null?void 0:Gs.executor)&&((n=Gs.inputs)==null?void 0:n[0].shape)?Gs.inputs[0].shape[2]:0,Ri===-1&&(Ri=64),Gs}function u1(e,t,n,s){for(let r=0;r{let t=e[Rd.leftBounds[0]][2],n=e[Rd.rightBounds[0]][2];return t-n},IE=(e,t,n,s,r,a=!1)=>{let o=t1(e1(zN([e[n],e[s]]),fbe)),i=Cd(o),l=Se.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[Ri,Ri]);if(a&&he.kernels.includes("flipleftright")){let u=Se.flipLeftRight(l);J(l),l=u}return{box:o,boxSize:i,crop:l}},SE=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<_d.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/Ri:o/Ri)*n[0]+t.startPoint[0],i/Ri*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(_d.index)}},CE=(e,t,n)=>{let s=e[Ir[`${n}EyeUpper0`][_d.upperCenter]][2],r=e[Ir[`${n}EyeLower0`][_d.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function NE(e,t,n){if(!(Gs!=null&&Gs.executor))return e;let{box:s,boxSize:r,crop:a}=IE(e,t,Rd.leftBounds[0],Rd.leftBounds[1],n,!0),{box:o,boxSize:i,crop:l}=IE(e,t,Rd.rightBounds[0],Rd.rightBounds[1],n,!0),u=St([a,l]);J(a),J(l);let c=Gs.execute(u);J(u);let p=await c.data();J(c);let d=p.slice(0,_d.numCoordinates*3),{rawCoords:h,iris:f}=SE(d,s,r,!0),m=p.slice(_d.numCoordinates*3),{rawCoords:g,iris:y}=SE(m,o,i,!1),x=mbe(e);Math.abs(x)<30?(u1(e,h,"left",null),u1(e,g,"right",null)):x<1?u1(e,h,"left",["EyeUpper0","EyeLower0"]):u1(e,g,"right",["EyeUpper0","EyeLower0"]);let A=CE(e,f,"left"),b=CE(e,y,"right");return e.concat(A).concat(b)}var gbe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],ybe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Abe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],xbe=[[474,475],[475,476],[476,477],[477,474]],bbe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],vbe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],wbe=[[469,470],[470,471],[471,472],[472,469]],kbe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function _i(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var Ibe={lips:_i(gbe),leftEye:_i(ybe),leftEyebrow:_i(Abe),leftIris:_i(xbe),rightEye:_i(bbe),rightEyebrow:_i(vbe),rightIris:_i(wbe),faceOval:_i(kbe)},Sbe=Object.entries(Ibe).map(([e,t])=>t.map(n=>[n,e])).flat(),qSe=new Map(Sbe),rf=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],xu=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],bu=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function _E(e,t){let n={lips:await t.filter(a=>a.size===160)[0].data(),irisL:await t.filter(a=>a.size===10)[0].data(),eyeL:await t.filter(a=>a.size===142)[0].data(),irisR:await t.filter(a=>a.size===10)[1].data(),eyeR:await t.filter(a=>a.size===142)[1].data()},s=xu.reduce((a,o)=>a+=e[o][2],0)/xu.length;for(let a=0;aa+=e[o][2],0)/bu.length;for(let a=0;ale()-ca.timestamp,s=ca.skipped<(((u=t.face.detector)==null?void 0:u.skipFrames)||0);!t.skipAllowed||!n||!s||ca.boxes.length===0?(ca.boxes=await qN(e,t),ca.timestamp=le(),ca.skipped=0):ca.skipped++;let r=[],a=[],o=0,i=af;for(let x=0;xD.shape[D.shape.length-1]===1).data();if(I.faceScore=Math.round(100*_[0])/100,I.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(A.confidence=I.faceScore,t.face.mesh.keepInvalid){I.box=J2(A,e),I.boxRaw=Q2(A,e),I.score=I.boxScore,I.mesh=A.landmarks.map(D=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*D[0]/Td(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*D[1]/Td()]),I.meshRaw=I.mesh.map(D=>[D[0]/(e.shape[2]||1),D[1]/(e.shape[1]||1),(D[2]||0)/i]);for(let D of Object.keys(mu))I.annotations[D]=[I.mesh[mu[D]]]}}else{let D=k.find(M=>M.shape[M.shape.length-1]===1404),R=V(D,[-1,3]),P=await R.array();J(R),(m=t.face.attention)!=null&&m.enabled?P=await _E(P,k):(g=t.face.iris)!=null&&g.enabled&&(P=await NE(P,I.tensor,af)),I.mesh=WN(P,A,b,w,af),I.meshRaw=I.mesh.map(M=>[M[0]/(e.shape[2]||0),M[1]/(e.shape[1]||0),(M[2]||0)/i]);for(let M of Object.keys(Ir))I.annotations[M]=Ir[M].map(W=>I.mesh[W]);I.score=I.faceScore;let T={...UN(I.mesh,A),confidence:A.confidence,landmarks:A.landmarks};I.box=J2(T,e),I.boxRaw=Q2(T,e),a.push(T)}J(k)}else{I.box=J2(A,e),I.boxRaw=Q2(A,e),I.score=I.boxScore,I.mesh=A.landmarks.map(k=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*k[0]/Td(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*k[1]/Td()]),I.meshRaw=I.mesh.map(k=>[k[0]/(e.shape[2]||0),k[1]/(e.shape[1]||0),(k[2]||0)/i]);for(let k of Object.keys(mu))I.annotations[k]=[I.mesh[mu[k]]]}I.score>(((y=t.face.detector)==null?void 0:y.minConfidence)||1)?r.push(I):J(I.tensor)}return ca.boxes=a,r}async function $E(e){var t,n,s,r,a,o;return he.initial&&(zt=null),((t=e.face.attention)==null?void 0:t.enabled)&&(zt==null?void 0:zt.signature)&&Object.keys(((n=zt==null?void 0:zt.signature)==null?void 0:n.outputs)||{}).length<6&&(zt=null),zt?e.debug&&se("cached model:",zt.modelUrl):(s=e.face.attention)!=null&&s.enabled?zt=await je(e.face.attention.modelPath):zt=await je((r=e.face.mesh)==null?void 0:r.modelPath),af=zt.executor&&((a=zt==null?void 0:zt.inputs)==null?void 0:a[0].shape)?(o=zt==null?void 0:zt.inputs)==null?void 0:o[0].shape[2]:256,zt}var PE=gu,FE=tf;var hs,c1=[],OE=0,ME=0,f4=Number.MAX_SAFE_INTEGER;async function zE(e){var t;return he.initial&&(hs=null),hs?e.debug&&se("cached model:",hs.modelUrl):hs=await je((t=e.face.description)==null?void 0:t.modelPath),hs}function m4(e){let t=e.image||e.tensor||e;if(!(hs!=null&&hs.inputs[0].shape))return t;let n=Se.resizeBilinear(t,[hs.inputs[0].shape[2],hs.inputs[0].shape[1]],!1),s=z(n,rt.tf255);return J(n),s}async function g4(e,t,n,s){var o,i,l,u;if(!(hs!=null&&hs.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=f4<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>le()-OE;return t.skipAllowed&&r&&a&&ME===s&&((l=c1[n])==null?void 0:l.age)&&((u=c1[n])==null?void 0:u.age)>0?(f4++,c1[n]):(f4=0,new Promise(async c=>{var d;let p={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let h=m4(e),f=hs==null?void 0:hs.execute(h);OE=le(),J(h);let g=await f.find(E=>E.shape[1]===1).data(),y=Math.trunc(200*Math.abs(g[0]-.5))/100;y>(t.face.description.minConfidence||0)&&(p.gender=g[0]<=.5?"female":"male",p.genderScore=Math.min(.99,y));let x=Ps(f.find(E=>E.shape[1]===100),1),A=(await x.data())[0];J(x);let w=await f.find(E=>E.shape[1]===100).data();p.age=Math.round(w[A-1]>w[A+1]?10*A-100*w[A-1]:10*A+100*w[A+1])/10;let I=f.find(E=>E.shape[1]===1024),k=I?await I.data():[];p.descriptor=Array.from(k),f.forEach(E=>J(E))}c1[n]=p,ME=s,c(p)}))}function d1(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function of(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function WE(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Se.cropAndResize(t,a,[0],n)}function VE(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function p1(e,t=1.5){let n=of(e),s=d1(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function h1(e){let t=of(e),n=d1(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Tbe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function UE(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Tbe(n)}var LE=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Di(e,t){let n=0;for(let s=0;s[o.x,o.y]),this.anchorsTensor=mr(this.anchors),this.inputSize=((a=(r=(s=(n=this==null?void 0:this.model)==null?void 0:n.inputs)==null?void 0:s[0])==null?void 0:r.shape)==null?void 0:a[2])||0,this.inputSizeTensor=Ft([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Ft([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=Le(t,[0,0],[-1,2]),n.boxSizes=Le(t,[0,2],[-1,2]),n.div=fe(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=ue(n.div,this.anchorsTensor),n.halfBoxSizes=fe(n.boxSizes,this.doubleInputSizeTensor),n.sub=me(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=z(n.sub,this.inputSizeTensor),n.add=ue(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=z(n.add,this.inputSizeTensor);let s=su([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>J(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=V(t,[-1,7,2]),s.div=fe(s.reshape,this.inputSizeTensor),s.landmarks=ue(s.div,this.anchors[n]?this.anchors[n]:0);let r=z(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>J(s[a])),r}async predict(t,n){var i;let s={};s.resize=Se.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=fe(s.resize,rt.tf127),s.image=me(s.div,rt.tf1),s.batched=this.model.execute(s.image),s.predictions=st(s.batched),s.slice=Le(s.predictions,[0,0],[-1,1]),s.sigmoid=Dn(s.slice),s.scores=st(s.sigmoid);let r=await s.scores.data();s.boxes=Le(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Se.nonMaxSuppressionAsync(s.norm,s.scores,3*(((i=n.hand)==null?void 0:i.maxDetected)||1),n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let l of a){let u={};u.box=Le(s.norm,[l,0],[1,-1]),u.slice=Le(s.predictions,[l,5],[1,14]),u.norm=this.normalizeLandmarks(u.slice,l),u.palmLandmarks=V(u.norm,[-1,2]);let c=await u.box.data(),p=c.slice(0,2),d=c.slice(2,4),h=await u.palmLandmarks.array(),f={startPoint:p,endPoint:d,palmLandmarks:h,confidence:r[l]},m=VE(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);o.push(m),Object.keys(u).forEach(g=>J(u[g]))}return Object.keys(s).forEach(l=>J(s[l])),o}};var _be=5,qE=1.65,XE=[0,5,9,13,17,1,2],Dbe=0,$be=2,KE=0,m1=class{constructor(t,n){ge(this,"handDetector");ge(this,"handPoseModel");ge(this,"inputSize");ge(this,"storedBoxes");ge(this,"skipped");ge(this,"detectedHands");var s,r,a;this.handDetector=t,this.handPoseModel=n,this.inputSize=((a=(r=(s=this.handPoseModel)==null?void 0:s.inputs)==null?void 0:r[0].shape)==null?void 0:a[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>x4([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return p1(h1(r),_be)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=p1(h1(n),qE);s.palmLandmarks=[];for(let r=0;r[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=A4(s,[0,0]),u=i.map(h=>[...x4(h,l),h[2]]),c=GE(r),p=[...of(n),1],d=[Di(p,c[0]),Di(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>le()-KE,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l=n.hand.minConfidence/4){let w=V(A,[-1,3]),I=await w.array();J(A),J(w);let k=this.transformRawCoords(I,m,c,f),E=this.getBoxForHandLandmarks(k);this.storedBoxes[l]={...E,confidence:b};let _={landmarks:k,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};i.push(_)}else this.storedBoxes[l]=null;J(A)}else{let c=p1(h1(u),qE),p={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:c.startPoint,bottomRight:c.endPoint},landmarks:[]};i.push(p)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var fs={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>fs.nameMapping[e],getPoints:e=>fs.pointsMapping[e]},Pi={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Pi.nameMapping[e]},qt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>qt.nameMapping[e]},$i=class{constructor(t){ge(this,"name");ge(this,"curls");ge(this,"directions");ge(this,"weights");ge(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:Hr,index:Za,middle:Ya,ring:vu,pinky:wu}=fs,{none:jr,half:Fbe,full:qr}=Pi,{verticalUp:Dd,verticalDown:l9e,horizontalLeft:b4,horizontalRight:Obe,diagonalUpRight:Mbe,diagonalUpLeft:$d,diagonalDownRight:u9e,diagonalDownLeft:c9e}=qt,Fi=new $i("thumbs up");Fi.curl(Hr,jr,1);Fi.direction(Hr,Dd,1);Fi.direction(Hr,$d,.25);Fi.direction(Hr,Mbe,.25);for(let e of[fs.index,fs.middle,fs.ring,fs.pinky])Fi.curl(e,qr,1),Fi.direction(e,b4,1),Fi.direction(e,Obe,1);var pn=new $i("victory");pn.curl(Hr,Fbe,.5);pn.curl(Hr,jr,.5);pn.direction(Hr,Dd,1);pn.direction(Hr,$d,1);pn.curl(Za,jr,1);pn.direction(Za,Dd,.75);pn.direction(Za,$d,1);pn.curl(Ya,jr,1);pn.direction(Ya,Dd,1);pn.direction(Ya,$d,.75);pn.curl(vu,qr,1);pn.direction(vu,Dd,.2);pn.direction(vu,$d,1);pn.direction(vu,b4,.2);pn.curl(wu,qr,1);pn.direction(wu,Dd,.2);pn.direction(wu,$d,1);pn.direction(wu,b4,.2);pn.weight(Za,2);pn.weight(Ya,2);var Oi=new $i("point");Oi.curl(Hr,qr,1);Oi.curl(Za,jr,.5);Oi.curl(Ya,qr,.5);Oi.curl(vu,qr,.5);Oi.curl(wu,qr,.5);Oi.weight(Za,2);Oi.weight(Ya,2);var Mi=new $i("middle finger");Mi.curl(Hr,jr,1);Mi.curl(Za,qr,.5);Mi.curl(Ya,qr,.5);Mi.curl(vu,qr,.5);Mi.curl(wu,qr,.5);Mi.weight(Za,2);Mi.weight(Ya,2);var Pd=new $i("open palm");Pd.curl(Hr,jr,.75);Pd.curl(Za,jr,.75);Pd.curl(Ya,jr,.75);Pd.curl(vu,jr,.75);Pd.curl(wu,jr,.75);var ZE=[Fi,pn,Oi,Mi,Pd];var zbe=.7,ku={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function YE(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function QE(e,t){if(!e||!t)return[0,0];let n=YE(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=YE(e[1],e[2],t[1],t[2]);return[n,s]}function JE(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function Lbe(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],p=t[2]-n[2],d=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+p*p),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>ku.NO_CURL_START_LIMIT?y=Pi.none:g>ku.HALF_CURL_START_LIMIT?y=Pi.half:y=Pi.full,y}function eR(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=qt.horizontalLeft:r=qt.horizontalRight:s===Math.abs(t)?t>0?r=qt.horizontalLeft:r=qt.horizontalRight:n>0?r=qt.horizontalLeft:r=qt.horizontalRight,r}function tR(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=qt.verticalDown:r=qt.verticalUp:s===Math.abs(t)?t<0?r=qt.verticalDown:r=qt.verticalUp:n<0?r=qt.verticalDown:r=qt.verticalUp,r}function Bbe(e,t,n,s,r,a,o,i){let l,u=tR(e,t,n,s),c=eR(r,a,o,i);return u===qt.verticalUp?c===qt.horizontalLeft?l=qt.diagonalUpLeft:l=qt.diagonalUpRight:c===qt.horizontalLeft?l=qt.diagonalDownLeft:l=qt.diagonalDownRight,l}function Wbe(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),p=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=p/(c+1e-5);m>1.5?d+=ku.DISTANCE_VOTE_POWER:m>.66?h+=ku.DISTANCE_VOTE_POWER:f+=ku.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+u*u),A=Math.max(g,y,x),b=e[0],w=e[1],I=n[0],k=n[1];A===g?(I=n[0],k=n[1]):A===x&&(b=t[0],w=t[1]);let D=QE([b,w],[I,k]),R=JE(D,ku.TOTAL_ANGLE_VOTE_POWER);d+=R[0],h+=R[1],f+=R[2];for(let T of s){let M=JE(T,ku.SINGLE_ANGLE_VOTE_POWER);d+=M[0],h+=M[1],f+=M[2]}let P;return d===Math.max(d,h,f)?P=tR(l,i,u,p):f===Math.max(h,f)?P=eR(a,r,o,c):P=Bbe(l,i,u,p,a,r,o,c),P}function nR(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of fs.all){let o=fs.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],p=e[u[1]],d=QE(c,p),h=d[0],f=d[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of fs.all){let o=a===fs.thumb?1:0,i=fs.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],p=Lbe(l,u,c),d=Wbe(l,u,c,t[a].slice(o));s[a]=p,r[a]=d}return{curls:s,directions:r}}function g1(e){if(!e||e.length===0)return null;let t=nR(e),n={};for(let s of fs.all)n[fs.getName(s)]={curl:Pi.getName(t.curls[s]),direction:qt.getName(t.directions[s])};return n}function sR(e){let t=[];if(!e||e.length===0)return t;let n=nR(e);for(let s of ZE){let r=s.matchAgainst(n.curls,n.directions);r>=zbe&&t.push({name:s.name,confidence:r})}return t}var rR={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Iu,Su,aR;async function w4(e,t){let n=await aR.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;rn[r].landmarks[p]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=g1(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function k4(e){var n,s;he.initial&&(Iu=null,Su=null),!Iu||!Su?[Iu,Su]=await Promise.all([e.hand.enabled?je((n=e.hand.detector)==null?void 0:n.modelPath):null,e.hand.landmarks?je((s=e.hand.skeleton)==null?void 0:s.modelPath):null]):(e.debug&&se("cached model:",Iu.modelUrl),e.debug&&se("cached model:",Su.modelUrl));let t=Iu?new f1(Iu):void 0;return t&&Su&&(aR=new m1(t,Su)),[Iu,Su]}var Ct={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Vbe(){let e=Ct.gl;!e||(Ct.extensions=e.getSupportedExtensions())}function iR(e){var t;if(e.config.backend==="humangl"&&(Ct.name in an().registry&&!((t=Ct==null?void 0:Ct.gl)!=null&&t.getParameter(Ct.gl.VERSION))&&(se("error: humangl backend invalid context"),y1(e)),!Qy(Ct.name))){try{Ct.canvas=ds(100,100)}catch(s){se("error: cannot create canvas:",s);return}try{if(Ct.gl=Ct.canvas.getContext("webgl2",Ct.webGLattr),!Ct.gl){se("error: cannot get WebGL context");return}if(!Ct.gl.getParameter(Ct.gl.VERSION).includes("2.0")){se("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Ct.canvas&&(Ct.canvas.addEventListener("webglcontextlost",r=>{throw se("error: humangl:",r.type),se("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Ct.canvas.addEventListener("webglcontextrestored",r=>{se("error: humangl context restored:",r)}),Ct.canvas.addEventListener("webglcontextcreationerror",r=>{se("error: humangl context create:",r)}))}catch(s){se("error: cannot get WebGL context:",s);return}try{$2(2,Ct.gl)}catch(s){se("error: cannot set WebGL context:",s);return}try{let s=new ec(Ct.gl);tu(Ct.name,()=>new md(s),Ct.priority)}catch(s){se("error: cannot register WebGL backend:",s);return}try{na("webgl").forEach(r=>{let a={...r,backendName:Ct.name};nr(a)})}catch(s){se("error: cannot update WebGL backend registration:",s);return}let n=Hn().getGPGPUContext?Hn().getGPGPUContext().gl:null;if(n)se(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{se("error: no current gl context:",n,Ct.gl);return}try{H().flagRegistry.WEBGL_VERSION&&H().set("WEBGL_VERSION",2)}catch(s){se("error: cannot set WebGL backend flags:",s);return}Vbe(),se("backend registered:",Ct.name)}}function Ube(e){if(!he.kernels.includes("mod")){let t={kernelName:"Mod",backendName:Sn(),kernelFunc:n=>Z(()=>me(n.inputs.a,z(fe(n.inputs.a,n.inputs.b),n.inputs.b)))};e.debug&&se("registered kernel:","Mod"),nr(t),he.kernels.push("mod")}if(!he.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:Sn(),kernelFunc:n=>Z(()=>ue(z(Xc(n.inputs.a/n.inputs.b),n.inputs.b),au(n.inputs.a,n.inputs.b)))};e.debug&&se("registered kernel:","FloorMod"),nr(t),he.kernels.push("floormod")}if(!he.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:Sn(),kernelFunc:n=>Z(()=>{let s=Sn();mh("cpu");let r=Se.rotateWithOffset(n.inputs.image,n.attrs.radians,n.attrs.fillValue,n.attrs.center);return mh(s),r})};e.debug&&se("registered kernel:","RotateWithOffset"),nr(t),he.kernels.push("rotatewithoffset")}}async function x1(e,t=!1){if(e.state="backend",t||he.initial||e.config.backend&&e.config.backend.length>0&&Sn()!==e.config.backend){let n=le();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&se("running inside web worker"),he.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&se("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),he.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&se(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),he.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")se("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&se("enumerated webgpu adapter:",r),!r)se("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let a="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;se("webgpu adapter info:",a)}}e.config.backend==="humangl"&&iR(e);let s=Object.keys(an().registryFactory);if(e.config.debug&&se("available backends:",s),s.includes(e.config.backend)||(se(`error: backend ${e.config.backend} not found in registry`),e.config.backend=he.node?"tensorflow":"webgl",e.config.debug&&se(`override: setting backend ${e.config.backend}`)),e.config.debug&&se("setting backend:",e.config.backend),e.config.backend==="wasm"){if(H().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&H().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&se("wasm path:",e.config.wasmPath),typeof B2!="undefined")B2(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,a=!1;try{r=await H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),a=await H().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&se(`wasm execution: ${a?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&se("warning: wasm simd support is not enabled")}catch(o){se("wasm detection failed")}}try{await mh(e.config.backend),await qc(),wN()}catch(r){return se("error: cannot set backend:",e.config.backend,r),!1}}if(Sn()==="humangl"&&(H().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&H().set("CHECK_COMPUTATION_FOR_ERRORS",!1),H().flagRegistry.WEBGL_CPU_FORWARD&&H().set("WEBGL_CPU_FORWARD",!0),H().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&H().set("WEBGL_USE_SHAPES_UNIFORMS",!0),H().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&H().set("CPU_HANDOFF_SIZE_THRESHOLD",256),H().flagRegistry.WEBGL_EXP_CONV&&H().set("WEBGL_EXP_CONV",!0),H().flagRegistry.USE_SETTIMEOUTCUSTOM&&H().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(se("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),H().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Hn().getGPGPUContext)){let s=await Hn().getGPGPUContext().gl;e.config.debug&&se(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Sn(),Yy(),await qc(),e.performance.initBackend=Math.trunc(le()-n),e.config.backend=Sn(),await he.updateBackend(),Ube(e.config)}return!0}function b1(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&se("kernelFunc",n,t.backend)}};nr(s)}he.kernels=na(Sn()).map(n=>n.kernelName.toLowerCase())}var en=[null,null],Hbe=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],zi=[[0,0],[0,0]],jbe=["hand","fist","pinch","point","face","tip","pinchtip"],uR=4,cR=1.6,qbe=512,Xbe=1.4,v1=Number.MAX_SAFE_INTEGER,I4=0,Ja=[0,0],Qt={boxes:[],hands:[]},dR={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function pR(e){var t;if(he.initial&&(en[0]=null),en[0])e.debug&&se("cached model:",en[0].modelUrl);else{b1(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),en[0]=await je((t=e.hand.detector)==null?void 0:t.modelPath);let n=en[0].executor?Object.values(en[0].modelSignature.inputs):void 0;zi[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,zi[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return en[0]}async function hR(e){var t;if(he.initial&&(en[1]=null),en[1])e.debug&&se("cached model:",en[1].modelUrl);else{en[1]=await je((t=e.hand.skeleton)==null?void 0:t.modelPath);let n=en[1].executor?Object.values(en[1].modelSignature.inputs):void 0;zi[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,zi[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return en[1]}async function Kbe(e,t){let n=[];if(!e||!en[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,qbe),o=Math.round(a*r/8)*8;s.resize=Se.resizeBilinear(e,[a,o]),s.cast=ye(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await en[0].executeAsync(s.cast,Hbe),s.boxes=st(s.rawBoxes,[0,2]),s.scores=st(s.rawScores,[0]);let i=On(s.scores,1);J(i[uR]),i.splice(uR,1),s.filtered=un(i,1),J(i),s.max=gn(s.filtered,1),s.argmax=Ps(s.filtered,1);let l=0;s.nms=await Se.nonMaxSuppressionAsync(s.boxes,s.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await s.nms.data(),c=await s.max.data(),p=await s.argmax.data();for(let d of Array.from(u)){let h=Le(s.boxes,d,1),f=await h.data();J(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=r1(m,Xbe),y=[Math.trunc(m[0]*Ja[0]),Math.trunc(m[1]*Ja[1]),Math.trunc(m[2]*Ja[0]),Math.trunc(m[3]*Ja[1])],x=c[d],A=jbe[p[d]],b={id:l++,score:x,box:y,boxRaw:g,label:A};n.push(b)}return Object.keys(s).forEach(d=>J(s[d])),n.sort((d,h)=>h.score-d.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function S4(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&en[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={},a=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=Se.cropAndResize(e,[a],[0],[zi[1][0],zi[1][1]],"bilinear"),r.div=fe(r.crop,rt.tf255),[r.score,r.keypoints]=en[1].execute(r.div,["Identity_1","Identity"]);let o=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(o))))/100;if(i>=(n.hand.minConfidence||0)){s.fingerScore=i,r.reshaped=V(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(p=>[p[0]/zi[1][1],p[1]/zi[1][0],p[2]||0]).map(p=>[p[0]*t.boxRaw[2],p[1]*t.boxRaw[3],p[2]||0]);s.keypoints=c.map(p=>[Ja[0]*(p[0]+t.boxRaw[0]),Ja[1]*(p[1]+t.boxRaw[1]),p[2]||0]),s.landmarks=g1(s.keypoints);for(let p of Object.keys(dR))s.annotations[p]=dR[p].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(l=>J(r[l]))}return s}async function C4(e,t){var r,a;if(!((r=en[0])!=null&&r.executor)||!((a=en[1])!=null&&a.executor)||!en[0].inputs[0].shape||!en[1].inputs[0].shape)return[];Ja=[e.shape[2]||0,e.shape[1]||0],v1++;let n=(t.hand.skipTime||0)>le()-I4,s=v1<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Qt.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>le()-I4,l=v1<3*(t.hand.skipFrames||0);t.skipAllowed&&Qt.hands.length===t.hand.maxDetected?Qt.hands=await Promise.all(Qt.boxes.map(c=>S4(e,c,t))):t.skipAllowed&&i&&l&&Qt.hands.length>0?Qt.hands=await Promise.all(Qt.boxes.map(c=>S4(e,c,t))):(Qt.boxes=await Kbe(e,t),I4=le(),Qt.hands=await Promise.all(Qt.boxes.map(c=>S4(e,c,t))),v1=0);let u=[...Qt.boxes];if(Qt.boxes.length=0,t.cacheSensitivity>0)for(let c=0;c.05&&p.box[3]/(e.shape[1]||1)>.05&&Qt.hands[c].fingerScore&&Qt.hands[c].fingerScore>(t.hand.minConfidence||0)){let d=r1(p.box,cR),h=r1(p.boxRaw,cR);Qt.boxes.push({...u[c],box:d,boxRaw:h})}}for(let c=0;cle()-gR,a=T4<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&mR===s&&w1[n]?(T4++,w1[n]):(T4=0,new Promise(async l=>{let u=Se.resizeBilinear(e,[Rn!=null&&Rn.inputs[0].shape?Rn.inputs[0].shape[2]:0,Rn!=null&&Rn.inputs[0].shape?Rn.inputs[0].shape[1]:0],!1),c=Rn==null?void 0:Rn.execute(u),p=(await c.data())[0];w1[n]=Math.round(100*p)/100,mR=s,gR=le(),J([u,c]),l(w1[n])}))}var lf={};ga(lf,{connected:()=>I1,horizontal:()=>E4,kpt:()=>k1,relative:()=>_4,vertical:()=>R4});var k1=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],E4=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],R4=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],_4=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],I1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var xR=.005,Hs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function D4(e){for(let t of E4){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),a=e.keypoints.findIndex(u=>u&&u.part===n[0]),o=e.keypoints.findIndex(u=>u&&u.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let u=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=u}}}function bR(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=rr(e,Hs.padding),n.resize=Se.resizeBilinear(n.pad,[t,t]);let s=ye(n.resize,"int32");return Object.keys(n).forEach(o=>J(n[o])),s}function wR(e,t){e.keypoints=e.keypoints.filter(s=>s==null?void 0:s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Hs.padding[2][0]+Hs.padding[2][1])/t[0]-Hs.padding[2][0],s.position[1]*(t[1]+Hs.padding[1][0]+Hs.padding[1][1])/t[1]-Hs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Ka(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var hn,S1=0,$4=Number.MAX_SAFE_INTEGER,Cu={boxes:[],bodies:[],last:0};async function kR(e){var t;return he.initial&&(hn=null),hn?e.debug&&se("cached model:",hn.modelUrl):(b1(["size"],e),hn=await je(e.body.modelPath)),S1=(hn==null?void 0:hn.executor)&&((t=hn==null?void 0:hn.inputs)==null?void 0:t[0].shape)?hn.inputs[0].shape[2]:0,S1<64&&(S1=256),hn}function Ybe(e,t,n){let s=e[0][0],r=[],a=0;for(let c=0;ct.body.minConfidence){let p=[s[c][1],s[c][0]];r.push({score:Math.round(100*a)/100,part:k1[c],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}a=r.reduce((c,p)=>p.score>c?p.score:c,0);let o=[],i=Ka(r.map(c=>c.position),[n.shape[2],n.shape[1]]),l={};for(let[c,p]of Object.entries(I1)){let d=[];for(let h=0;hg.part===p[h]),m=r.find(g=>g.part===p[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[c]=d}let u={id:0,score:a,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:l};return D4(u),o.push(u),o}function Jbe(e,t,n){let s=[];for(let r=0;rt.body.minConfidence){let i=[];for(let p=0;p<17;p++){let d=a[3*p+2];if(d>t.body.minConfidence){let h=[a[3*p+1],a[3*p+0]];i.push({part:k1[p],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((n.shape[2]||0)*h[0]),Math.round((n.shape[1]||0)*h[1])]})}}let l=Ka(i.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,d]of Object.entries(I1)){let h=[];for(let f=0;fy.part===d[f]),g=i.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[p]=h}let c={id:r,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:[...i],annotations:u};D4(c),s.push(c)}}return s.sort((r,a)=>a.score-r.score),s.length>t.body.maxDetected&&(s.length=t.body.maxDetected),s}async function P4(e,t){var r;if(!(hn!=null&&hn.executor)||!((r=hn==null?void 0:hn.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Cu.boxes.length=0),$4++;let n=(t.body.skipTime||0)>le()-Cu.last,s=$4<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Cu.bodies:new Promise(async a=>{let o={};$4=0,o.input=vR(e,S1),o.res=hn==null?void 0:hn.execute(o.input),Cu.last=le();let i=await o.res.array();Cu.bodies=o.res.shape[2]===17?Ybe(i,t,e):Jbe(i,t,e);for(let l of Cu.bodies)wR(l,[e.shape[2]||1,e.shape[1]||1]),bR(l.keypoints);Object.keys(o).forEach(l=>J(o[l])),a(Cu.bodies)})}var Sr,C1=[],SR=0,F4=Number.MAX_SAFE_INTEGER,N1=0,T1=2.5;async function CR(e){if(!Sr||he.initial){Sr=await je(e.object.modelPath);let t=Sr!=null&&Sr.executor?Object.values(Sr.modelSignature.inputs):void 0;N1=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&se("cached model:",Sr.modelUrl);return Sr}async function Qbe(e,t,n){let s=0,r=[],a=N1;for(let u of[1,2,4]){let c=u*13,p=st(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)===Ed.length)),d=await p.array(),h=st(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)(n.object.minConfidence||0)&&x!==61){let b=(.5+Math.trunc(y%c))/c,w=(.5+Math.trunc(y/c))/c,I=g[y].map(M=>M*(c/u/a)),[k,E]=[b-T1/u*I[0],w-T1/u*I[1]],[_,D]=[b+T1/u*I[2]-k,w+T1/u*I[3]-E],R=[k,E,_,D];R=R.map(M=>Math.max(0,Math.min(M,1)));let P=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],T={id:s++,score:Math.round(100*A)/100,class:x+1,label:Ed[x].label,box:P.map(M=>Math.trunc(M)),boxRaw:R};r.push(T)}}J([p,h,f,m])}let o=r.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=r.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Se.nonMaxSuppressionAsync(o,i,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);l=await u.data(),J(u)}return r=r.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),r}async function O4(e,t){if(!(Sr!=null&&Sr.executor))return[];let n=(t.object.skipTime||0)>le()-SR,s=F4<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&C1.length>0?(F4++,C1):(F4=0,!he.kernels.includes("mod")||!he.kernels.includes("sparsetodense")?C1:new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Se.resizeBilinear(e,[N1,N1],!1),i=fe(o,rt.tf255),l=et(i,[0,3,1,2]),u;t.object.enabled&&(u=Sr.execute(l)),SR=le();let c=await Qbe(u,a,t);C1=c,J([o,i,l,...u]),r(c)}))}var cf=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],e4e=cf.length,uf=cf.reduce((e,t,n)=>(e[t]=n,e),{}),t4e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],M9e=t4e.map(([e,t])=>[uf[e],uf[t]]),NR=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function ER(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function RR(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:p,part:d,position:h})=>({score:p,part:d,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]})),annotations:{}});return e.map((u,c)=>i(u,c))}var E1=class{constructor(t,n){ge(this,"priorityQueue");ge(this,"numberOfElements");ge(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function _R(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function B4(e,t){return{x:e.x+t.x,y:e.y+t.y}}var js,s4e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],R1=1,Fd=16,r4e=50**2;function DR(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,x,A)=>({y:L4(Math.round(y.y/Fd),0,x-1),x:L4(Math.round(y.x/Fd),0,A-1)}),[u,c]=s.shape,p=l(t.position,u,c),d=i(p),f=B4(t.position,d);for(let y=0;y[uf[d],uf[h]]),o=a.map(([,d])=>d),i=a.map(([d])=>d),l=t.shape[2],u=o.length,c=new Array(l),p=z4(e.part,Fd,n);c[e.part.id]={score:e.score,part:cf[e.part.id],position:p};for(let d=u-1;d>=0;--d){let h=o[d],f=i[d];c[h]&&!c[f]&&(c[f]=DR(d,c[h],f,t,n,r))}for(let d=0;dt){i=!1;break}if(!i)break}return i}function i4e(e,t){let[n,s,r]=t.shape,a=new E1(n*s*r,({score:o})=>o);for(let o=0;o{var o;let a=(o=r[s])==null?void 0:o.position;return a?_R(n,t,a.y,a.x)<=r4e:!1})}function l4e(e,t){return t.reduce((s,{position:r,score:a},o)=>($R(e,r,o)||(s+=a),s),0)/t.length}function u4e(e,t,n,s,r,a){let o=[],i=i4e(a,t);for(;o.lengthh.score>a);let p=l4e(o,c),d=ER(c);p>a&&o.push({keypoints:c,box:d,score:Math.round(100*p)/100})}return o}async function W4(e,t){if(!(js!=null&&js.executor))return[];let n=Z(()=>{if(!js.inputs[0].shape)return[];let o=Se.resizeBilinear(e,[js.inputs[0].shape[2],js.inputs[0].shape[1]]),i=me(fe(ye(o,"float32"),127.5),1),u=js.execute(i,s4e).map(c=>st(c,[0]));return u[1]=Dn(u[1]),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)J(o);let r=u4e(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return js.inputs[0].shape?RR(r,[e.shape[1],e.shape[2]],[js.inputs[0].shape[2],js.inputs[0].shape[1]]):[]}async function PR(e){return!js||he.initial?js=await je(e.body.modelPath):e.debug&&se("cached model:",js.modelUrl),js}var da,V4=!1;async function U4(e){return!da||he.initial?da=await je(e.segmentation.modelPath):e.debug&&se("cached model:",da.modelUrl),da}async function OR(e,t,n){var m,g;if(V4)return{data:[],canvas:null,alpha:null};V4=!0,da||await U4(n);let s=await Sd(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=Se.resizeBilinear(s.tensor,[da.inputs[0].shape?da.inputs[0].shape[1]:0,da.inputs[0].shape?da.inputs[0].shape[2]:0],!1),J(s.tensor),o.norm=fe(o.resize,rt.tf255),o.res=da.execute(o.norm),o.squeeze=st(o.res,0),o.squeeze.shape[2]===2?(o.softmax=ou(o.squeeze),[o.bg,o.fg]=On(o.softmax,2),o.expand=Wt(o.fg,2),o.pad=Wt(o.expand,0),o.crop=Se.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=st(o.crop,0)):o.data=Se.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(he.node&&!he.Canvas&&typeof ImageData=="undefined")return n.debug&&se("canvas support missing"),Object.keys(o).forEach(y=>J(o[y])),{data:i,canvas:null,alpha:null};let l=ds(r,a);sr&&await sr.toPixels(o.data,l);let u=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(u.filter=`blur(${n.segmentation.blur}px)`);let c=u.getImageData(0,0,r,a),p=ds(r,a),d=p.getContext("2d");s.canvas&&d.drawImage(s.canvas,0,0),d.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(d.filter=`blur(${n.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let h=d.getImageData(0,0,r,a);for(let y=0;yJ(o[y])),V4=!1,{data:i,canvas:p,alpha:l}}var df=class{constructor(){ge(this,"ssrnetage",null);ge(this,"gear",null);ge(this,"blazeposedetect",null);ge(this,"blazepose",null);ge(this,"centernet",null);ge(this,"efficientpose",null);ge(this,"mobilefacenet",null);ge(this,"insightface",null);ge(this,"emotion",null);ge(this,"facedetect",null);ge(this,"faceiris",null);ge(this,"facemesh",null);ge(this,"faceres",null);ge(this,"ssrnetgender",null);ge(this,"handpose",null);ge(this,"handskeleton",null);ge(this,"handtrack",null);ge(this,"liveness",null);ge(this,"movenet",null);ge(this,"nanodet",null);ge(this,"posenet",null);ge(this,"segmentation",null);ge(this,"antispoof",null)}},G4=e=>{let t=0,n=0,s=0;for(let a of Object.values(Xr))t+=a.sizeFromManifest,n+=a.sizeLoadedWeights,s+=a.sizeDesired;let r=s>0?n/s:0;return{numLoadedModels:Object.values(Xr).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:n,totalSizeLoading:s,totalSizeEnabled:void 0,modelStats:Object.values(Xr)}};function y1(e){for(let t of Object.keys(e.models))e.models[t]=null}async function H4(e){var t,n,s,r,a,o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,I,k,E,_,D;he.initial&&y1(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await k4(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await k4(e.config))),e.config.body.enabled&&!e.models.blazepose&&((a=e.config.body.modelPath)==null?void 0:a.includes("blazepose"))&&(e.models.blazepose=nE(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=tE(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((o=e.config.body.modelPath)==null?void 0:o.includes("efficientpose"))&&(e.models.efficientpose=lE(e.config)),e.config.body.enabled&&!e.models.movenet&&((i=e.config.body.modelPath)==null?void 0:i.includes("movenet"))&&(e.models.movenet=kR(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=PR(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=jN(e.config)),e.config.face.enabled&&((u=e.config.face.antispoof)==null?void 0:u.enabled)&&!e.models.antispoof&&(e.models.antispoof=$N(e.config)),e.config.face.enabled&&((c=e.config.face.liveness)==null?void 0:c.enabled)&&!e.models.liveness&&(e.models.liveness=yR(e.config)),e.config.face.enabled&&((p=e.config.face.description)==null?void 0:p.enabled)&&!e.models.faceres&&(e.models.faceres=zE(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=pE(e.config)),e.config.face.enabled&&((h=e.config.face.iris)==null?void 0:h.enabled)&&!((f=e.config.face.attention)!=null&&f.enabled)&&!e.models.faceiris&&(e.models.faceiris=TE(e.config)),e.config.face.enabled&&((m=e.config.face.mesh)==null?void 0:m.enabled)&&!e.models.facemesh&&(e.models.facemesh=$E(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=bN(e.config)),e.config.face.enabled&&((y=e.config.face.ssrnet)==null?void 0:y.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=SN(e.config)),e.config.face.enabled&&((x=e.config.face.ssrnet)==null?void 0:x.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=EN(e.config)),e.config.face.enabled&&((A=e.config.face.mobilefacenet)==null?void 0:A.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=yE(e.config)),e.config.face.enabled&&((b=e.config.face.insightface)==null?void 0:b.enabled)&&!e.models.insightface&&(e.models.insightface=wE(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((I=(w=e.config.hand.detector)==null?void 0:w.modelPath)==null?void 0:I.includes("handtrack"))&&(e.models.handtrack=pR(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((E=(k=e.config.hand.detector)==null?void 0:k.modelPath)==null?void 0:E.includes("handtrack"))&&(e.models.handskeleton=hR(e.config)),e.config.object.enabled&&!e.models.centernet&&((_=e.config.object.modelPath)==null?void 0:_.includes("centernet"))&&(e.models.centernet=aE(e.config)),e.config.object.enabled&&!e.models.nanodet&&((D=e.config.object.modelPath)==null?void 0:D.includes("nanodet"))&&(e.models.nanodet=CR(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=U4(e.config));for await(let R of Object.keys(e.models))e.models[R]&&typeof e.models[R]!="undefined"&&(e.models[R]=await e.models[R])}var lr;function Od(e,t,n){var u;if(e&&(lr=e),!t||(lr||se("instance not registred"),!lr.config.validateModels))return null;let s=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],a=[],o=[],i=t.modelUrl,l=t.executor;if((u=l==null?void 0:l.graph)!=null&&u.nodes)for(let c of Object.values(l.graph.nodes)){let p=c.op.toLowerCase();a.includes(p)||a.push(p)}else!l&&lr.config.debug&&se("model not loaded",n);for(let c of a)!s.includes(c)&&!r.includes(c)&&!lr.env.kernels.includes(c)&&!lr.env.kernels.includes(c.replace("_",""))&&!lr.env.kernels.includes(c.replace("native",""))&&!lr.env.kernels.includes(c.replace("v2",""))&&o.push(c);return lr.config.debug&&o.length>0&&se("model validation failed:",n,o),o.length>0?{name:n,missing:o,ops:a,url:i}:null}function _1(e){lr=e;let t=[];for(let n of Object.keys(lr.models)){let s=lr.models[n];if(!s)continue;let r=Od(lr,s,n);r&&t.push(r)}return t}var ms={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},Xr={};async function c4e(e,t){return ms.debug&&se("load model fetch:",e,t),fetch(e,t)}function zR(e){ms.cacheModels=e.cacheModels,ms.verbose=e.debug,ms.modelBasePath=e.modelBasePath}async function je(e){var u,c,p;let t=Ev(ms.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let n=t.includes("/")?t.split("/"):t.split("\\"),s=n[n.length-1].replace(".json",""),r="indexeddb://"+s;Xr[s]={name:s,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:_b[s],inCache:!1},ms.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let a={};try{a=ms.cacheSupported&&ms.cacheModels?await Ds.listModels():{}}catch(d){ms.cacheSupported=!1}Xr[s].inCache=ms.cacheSupported&&ms.cacheModels&&Object.keys(a).includes(r);let o=typeof fetch=="undefined"?{}:{fetchFunc:(d,h)=>c4e(d,h)},i=new Uh(Xr[s].inCache?r:t,o),l=!1;try{i.findIOHandler(),ms.debug&&se("model load handler:",i.handler);let d=await i.handler.load();Xr[s].sizeFromManifest=((u=d==null?void 0:d.weightData)==null?void 0:u.byteLength)||0,i.loadSync(d),Xr[s].sizeLoadedWeights=((p=(c=i.artifacts)==null?void 0:c.weightData)==null?void 0:p.byteLength)||0,ms.verbose&&se("load model:",i.modelUrl,{bytes:Xr[s].sizeLoadedWeights},ms),l=!0}catch(d){se("error loading model:",t,d)}if(l&&ms.cacheModels&&ms.cacheSupported&&!Xr[s].inCache)try{let d=await i.save(r);se("model saved:",r,d)}catch(d){se("error saving model:",t,d)}return Od(null,i,`${e||""}`),i}var j4="2.9.4";var Q4={};ga(Q4,{all:()=>J4,body:()=>zd,canvas:()=>Y4,face:()=>Md,gesture:()=>Wd,hand:()=>Ld,object:()=>Bd,options:()=>qn,person:()=>Z4});var ur=e=>{if(!e)se("draw error: invalid canvas");else if(!e.getContext)se("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)se("draw error: cannot get canvas context");else return t}return null},Tu=e=>Math.round(e*180/Math.PI),Qa=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let n=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${n[0]}, ${n[1]}, ${n[2]}, ${t.alpha})`};function eo(e,t,n,s,r){e.fillStyle=Qa(s,r),e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function pa(e,t,n,s,r,a){if(e.beginPath(),e.lineWidth=a.lineWidth,a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function q4(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t)e.strokeStyle=Qa(s[2]||0,n),e.lineTo(Math.trunc(s[0]),Math.trunc(s[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function LR(e,t,n){if(!(t.length<2)){if(e.lineWidth=n.lineWidth,!n.useCurves||t.length<=2){q4(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s0){let a=e.emotion.map(o=>`${Math.trunc(100*o.score)}% ${o.emotion}`);a.length>3&&(a.length=3),r.push(a.join(" "))}((n=e.rotation)==null?void 0:n.angle)&&((s=e.rotation)==null?void 0:s.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Tu(e.rotation.angle.roll)}\xB0 yaw:${Tu(e.rotation.angle.yaw)}\xB0 pitch:${Tu(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Tu(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=ft.color;for(let a=r.length-1;a>=0;a--){let o=Math.max(e.box[0],0),i=a*ft.lineHeight+e.box[1];ft.shadowColor&&ft.shadowColor!==""&&(t.fillStyle=ft.shadowColor,t.fillText(r[a],o+5,i+16)),t.fillStyle=ft.labelColor,t.fillText(r[a],o+4,i+15)}}}function f4e(e,t){var n,s,r,a;if(((n=e.annotations)==null?void 0:n.leftEyeIris)&&((s=e.annotations)==null?void 0:s.leftEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,i=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((a=e.annotations)==null?void 0:a.rightEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,i=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}}function m4e(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let s=e.box[0]+e.box[2]/2-e.box[3]*Tu(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Tu(e.rotation.angle.pitch)/90,a=new Path2D(` +`;var bb=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},vb=class{constructor(t,n,s){ge(this,"uniform",{});ge(this,"attribute",{});ge(this,"gl");ge(this,"id");ge(this,"compile",(t,n)=>{let s=this.gl.createShader(n);return s?(this.gl.shaderSource(s,t),this.gl.compileShader(s),this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS)?s:(re(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)||"unknown"}`),null)):(re("filter: could not create shader"),null)});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!a)){if(!this.id){re("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){re(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),bb(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);bb(n,"uniform",this.uniform),bb(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}}};function LT(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=ds(100,100),u={},c={INTERMEDIATE:1},p=l.getContext("webgl");if(!p){re("filter: cannot get webgl context");return}this.gl=p;function d(x,A){if(!(x===l.width&&A===l.height)){if(l.width=x,l.height=A,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,o),p.bufferData(p.ARRAY_BUFFER,b,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,A){let b=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,b);let w=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,w);let S=p.createTexture();return p.bindTexture(p.TEXTURE_2D,S),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,A,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,S,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:b,texture:S}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let A=null,b=null,w=!1;e===0?A=t:A=f(s).texture||null,e++,n&&!(x&c.INTERMEDIATE)?(b=null,w=e%2===0):(s=(s+1)%2,b=f(s).fbo||null),p.bindTexture(p.TEXTURE_2D,A),p.bindFramebuffer(p.FRAMEBUFFER,b),p.uniform1f(i.uniform.flipY,w?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function g(x){if(u[x])return i=u[x],p.useProgram((i?i.id:null)||null),i;if(i=new vb(p,$T,x),!i)return re("filter: could not get webgl program"),null;let A=Float32Array.BYTES_PER_ELEMENT,b=4*A;return p.enableVertexAttribArray(i.attribute.pos),p.vertexAttribPointer(i.attribute.pos,2,p.FLOAT,!1,b,0*A),p.enableVertexAttribArray(i.attribute.uv),p.vertexAttribPointer(i.attribute.uv,2,p.FLOAT,!1,b,2*A),u[x]=i,i}let y={colorMatrix:x=>{let A=new Float32Array(x);A[4]/=255,A[9]/=255,A[14]/=255,A[19]/=255;let b=A[18]===1&&A[3]===0&&A[8]===0&&A[13]===0&&A[15]===0&&A[16]===0&&A[17]===0&&A[19]===0?FT:PT,w=g(b);!w||(p.uniform1fv(w.uniform.m,A),m())},brightness:x=>{let A=(x||0)+1;y.colorMatrix([A,0,0,0,0,0,A,0,0,0,0,0,A,0,0,0,0,0,1,0])},saturation:x=>{let A=(x||0)*2/3+1,b=(A-1)*-.5;y.colorMatrix([A,b,b,0,0,b,A,b,0,0,b,b,A,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:x=>{let A=(x||0)+1,b=-128*(A-1);y.colorMatrix([A,0,0,0,b,0,A,0,0,b,0,0,A,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let A=Math.cos(x),b=Math.sin(x),w=.213,S=.715,k=.072;y.colorMatrix([w+A*(1-w)+b*-w,S+A*-S+b*-S,k+A*-k+b*(1-k),0,0,w+A*-w+b*.143,S+A*(1-S)+b*.14,k+A*-k+b*-.283,0,0,w+A*-w+b*-(1-w),S+A*-S+b*S,k+A*(1-k)+b*k,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let A=new Float32Array(x),b=1/l.width,w=1/l.height,S=g(zT);!S||(p.uniform1fv(S.uniform.m,A),p.uniform2f(S.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let A=x||1;y.convolution.call(this,[0,-1*A,0,-1*A,1+4*A,-1*A,0,-1*A,0])},emboss:x=>{let A=x||1;y.convolution.call(this,[-2*A,-1*A,0,-1*A,1,1*A,0,1*A,2*A])},blur:x=>{let A=x/7/l.width,b=x/7/l.height,w=g(MT);!w||(p.uniform2f(w.uniform.px,0,b),m(c.INTERMEDIATE),p.uniform2f(w.uniform.px,A,0),m())},pixelate:x=>{let A=x/l.width,b=x/l.height,w=g(OT);!w||(p.uniform2f(w.uniform.size,A,b),m())}};this.add=function(x){let A=Array.prototype.slice.call(arguments,1),b=y[x];a.push({func:b,args:A})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){d(x.width,x.height),e=0,t||(t=p.createTexture()),p.bindTexture(p.TEXTURE_2D,t),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let A=0;Ah.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[me(n[0],s[0]),me(n[1],s[1]),me(n[2],s[2])],l=[me(r[0],s[0]),me(r[1],s[1]),me(r[2],s[2])],u=[fe(o,l[0]),fe(o,l[1]),fe(o,l[2])],c=[z(i[0],u[0]),z(i[1],u[1]),z(i[2],u[2])],p=ln([c[0],c[1],c[2]],2),d=V(p,[1,t.shape[0],t.shape[1],3]);return J([...n,...s,...r,...i,...l,...u,...c,p,t]),d}var B2=3840,En=null,Rn=null,xd=null,_t,ar={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function wb(){ar.inputSum=0,ar.cacheDiff=1,ar.sumMethod=0,ar.inputTensor=void 0}function ds(e,t){let n;if(he.browser)if(he.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");n=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof he.Canvas!="undefined"?n=new he.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function W2(e,t){let n=t||ds(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function bd(e,t,n=!0){var d,h;if(!e)return t.debug&&re("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof st)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof he.Canvas!="undefined"&&e instanceof he.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof st){let f=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)f=Bt(e,0);else if(e.shape[2]===4){let m=pi(e,[0,0,0],[-1,-1,3]);f=Bt(m,0),J(m)}}else e.shape.length===4&&(e.shape[3]===3?f=Vn(e):e.shape[3]===4&&(f=ro(e,[0,0,0,0],[-1,-1,-1,3])));if(f==null||f.shape.length!==4||f.shape[0]!==1||f.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(f.dtype==="int32"){let m=ye(f,"float32");J(f),f=m}return{tensor:f,canvas:t.filter.return?Rn:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&re("input stream is not ready"),{tensor:null,canvas:En};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&re("cannot determine input dimensions"),{tensor:null,canvas:En};let a=s,o=r;if(a>B2&&(a=B2,o=Math.trunc(a*r/s)),o>B2&&(o=B2,a=Math.trunc(o*s/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?a=t.filter.width:(((h=t.filter)==null?void 0:h.height)||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input error: cannot determine dimension");(!En||En.width!==a||En.height!==o)&&(En=ds(a,o));let i=En.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,En.width,En.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,En.width,En.height),(!Rn||En.width!==Rn.width||En.height!==Rn.height)&&(Rn=ds(En.width,En.height)),t.filter.enabled&&he.webgl.supported?(_t||(_t=he.browser?new LT:null),he.filter=!!_t,_t!=null&&_t.add?(_t.reset(),t.filter.brightness!==0&&_t.add("brightness",t.filter.brightness),t.filter.contrast!==0&&_t.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&_t.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&_t.add("blur",t.filter.blur),t.filter.saturation!==0&&_t.add("saturation",t.filter.saturation),t.filter.hue!==0&&_t.add("hue",t.filter.hue),t.filter.negative&&_t.add("negative"),t.filter.sepia&&_t.add("sepia"),t.filter.vintage&&_t.add("brownie"),t.filter.sepia&&_t.add("sepia"),t.filter.kodachrome&&_t.add("kodachrome"),t.filter.technicolor&&_t.add("technicolor"),t.filter.polaroid&&_t.add("polaroid"),t.filter.pixelate!==0&&_t.add("pixelate",t.filter.pixelate),_t.get()>0?Rn=_t.apply(En):Rn=_t.draw(En)):(t.debug&&re("input process error: cannot initialize filters"),he.webgl.supported=!1,t.filter.enabled=!1,W2(En,Rn))):(W2(En,Rn),_t&&(_t=null),he.filter=!!_t),!n)return{tensor:null,canvas:Rn};if(!Rn)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(he.browser&&nr)l=nr?nr.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let f=new Uint8Array(e.data.buffer);l=ct(f,[e.height,e.width,u],"int32")}else if((!xd||Rn.width!==xd.width||Rn.height!==xd.height)&&(xd=ds(Rn.width,Rn.height)),nr&&he.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=nr.fromPixels(Rn):(xd=W2(Rn),l=nr.fromPixels(xd));else{let g=W2(Rn).getContext("2d").getImageData(0,0,a,o);u=g.data.length/a/o;let y=new Uint8Array(g.data.buffer);l=ct(y,[a,o,u])}if(u===4){let f=pi(l,[0,0,0],[-1,-1,3]);J(l),l=f}if(!l)throw new Error("input error: cannot create tensor");let c=ye(l,"float32"),p=t.filter.equalization?await L2(c):Bt(c,0);return J([l,c]),{tensor:p,canvas:t.filter.return?Rn:null}}async function BT(e,t){let n=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return n;if(!ar.inputTensor)ar.inputTensor=Vn(t);else if(ar.inputTensor.shape[1]!==t.shape[1]||ar.inputTensor.shape[2]!==t.shape[2])J(ar.inputTensor),ar.inputTensor=Vn(t);else{let s={};s.diff=me(t,ar.inputTensor),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;J([ar.inputTensor,s.diff,s.squared,s.sum]),ar.inputTensor=Vn(t),n=a<=(e.cacheSensitivity||0)}return n}async function WT(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||re("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||re("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Vn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?Ie.resizeBilinear(n,[t.shape[1],t.shape[2]]):Vn(n),s.diff=me(s.input1,s.input2),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return J([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var kb=class{constructor(){ge(this,"browser");ge(this,"node");ge(this,"worker");ge(this,"platform","");ge(this,"agent","");ge(this,"backends",[]);ge(this,"initial");ge(this,"filter");ge(this,"tfjs");ge(this,"offscreen");ge(this,"perfadd",!1);ge(this,"tensorflow",{version:void 0,gpu:void 0});ge(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});ge(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});ge(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});ge(this,"cpu",{model:void 0,flags:[]});ge(this,"kernels",[]);ge(this,"Canvas");ge(this,"Image");ge(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Xh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n!=null&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(rn().registryFactory),this.tensorflow={version:Hn().binding?Hn().binding.TF_Version:void 0,gpu:Hn().binding?Hn().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Cn()==="wasm"&&(this.wasm.simd=H().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=H().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=ds(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Cn()==="webgl"||Cn()==="humangl")){let s=Hn().gpgpu!=="undefined"?await Hn().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let s=await navigator.gpu.requestAdapter();this.webgpu.adapter=s?s.name:void 0}}catch(s){this.webgpu.supported=!1}try{this.kernels=ta(Cn()).map(s=>s.kernelName.toLowerCase())}catch(s){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},he=new kb;var Sb={};fa(Sb,{age:()=>HAe,"anti-spoofing":()=>w5e,antispoof:()=>DAe,blazeface:()=>$Ae,"blazeface-back":()=>jAe,"blazeface-front":()=>qAe,"blazepose-detect":()=>v5e,"blazepose-detector2d":()=>XAe,"blazepose-detector3d":()=>KAe,"blazepose-full":()=>ZAe,"blazepose-heavy":()=>YAe,"blazepose-lite":()=>JAe,default:()=>F5e,efficientpose:()=>QAe,"efficientpose-i-lite":()=>k5e,"efficientpose-ii-lite":()=>S5e,"efficientpose-iv":()=>I5e,emotion:()=>PAe,faceboxes:()=>e5e,facemesh:()=>FAe,"facemesh-attention":()=>n5e,"facemesh-attention-alt":()=>t5e,"facemesh-detection-full":()=>s5e,"facemesh-detection-short":()=>r5e,"facemesh-orig":()=>a5e,faceres:()=>OAe,"faceres-deep":()=>o5e,gear:()=>i5e,gender:()=>u5e,"gender-ssrnet-imdb":()=>l5e,handdetect:()=>c5e,"handlandmark-full":()=>MAe,"handlandmark-lite":()=>d5e,"handlandmark-sparse":()=>p5e,handskeleton:()=>h5e,handtrack:()=>zAe,"insightface-efficientnet-b0":()=>C5e,"insightface-ghostnet-strides1":()=>T5e,"insightface-ghostnet-strides2":()=>N5e,"insightface-mobilenet-emore":()=>E5e,"insightface-mobilenet-swish":()=>R5e,iris:()=>LAe,liveness:()=>BAe,"mb3-centernet":()=>WAe,meet:()=>f5e,mobileface:()=>m5e,mobilefacenet:()=>g5e,models:()=>VAe,"movenet-lightning":()=>UAe,"movenet-multipose":()=>y5e,"movenet-thunder":()=>A5e,nanodet:()=>x5e,"nanodet-e":()=>_5e,"nanodet-g":()=>D5e,"nanodet-m":()=>$5e,"nanodet-t":()=>P5e,posenet:()=>b5e,selfie:()=>GAe});var DAe=853098,$Ae=538928,PAe=820516,FAe=1477958,OAe=6978814,MAe=5431368,zAe=2964837,LAe=2599092,BAe=592976,WAe=4030290,VAe=0,UAe=4650216,GAe=212886,HAe=161240,jAe=538928,qAe=402048,XAe=7499400,KAe=5928856,ZAe=6338290,YAe=27501554,JAe=2725490,QAe=5651240,e5e=2013002,t5e=2387598,n5e=2382414,s5e=1026192,r5e=201268,a5e=2955780,o5e=13957620,i5e=1498916,l5e=161236,u5e=201808,c5e=3515612,d5e=2023432,p5e=5286322,h5e=5502280,f5e=372228,m5e=2183192,g5e=5171976,y5e=9448838,A5e=12477112,x5e=7574558,b5e=5032780,v5e=5928804,w5e=853098,k5e=2269064,S5e=5651240,I5e=25643252,C5e=13013224,T5e=8093408,N5e=8049584,E5e=6938536,R5e=12168584,_5e=12319156,D5e=7574558,$5e=1887474,P5e=5294216,F5e={antispoof:DAe,blazeface:$Ae,emotion:PAe,facemesh:FAe,faceres:OAe,"handlandmark-full":MAe,handtrack:zAe,iris:LAe,liveness:BAe,"mb3-centernet":WAe,models:VAe,"movenet-lightning":UAe,selfie:GAe,age:HAe,"blazeface-back":jAe,"blazeface-front":qAe,"blazepose-detector2d":XAe,"blazepose-detector3d":KAe,"blazepose-full":ZAe,"blazepose-heavy":YAe,"blazepose-lite":JAe,efficientpose:QAe,faceboxes:e5e,"facemesh-attention-alt":t5e,"facemesh-attention":n5e,"facemesh-detection-full":s5e,"facemesh-detection-short":r5e,"facemesh-orig":a5e,"faceres-deep":o5e,gear:i5e,"gender-ssrnet-imdb":l5e,gender:u5e,handdetect:c5e,"handlandmark-lite":d5e,"handlandmark-sparse":p5e,handskeleton:h5e,meet:f5e,mobileface:m5e,mobilefacenet:g5e,"movenet-multipose":y5e,"movenet-thunder":A5e,nanodet:x5e,posenet:b5e,"blazepose-detect":v5e,"anti-spoofing":w5e,"efficientpose-i-lite":k5e,"efficientpose-ii-lite":S5e,"efficientpose-iv":I5e,"insightface-efficientnet-b0":C5e,"insightface-ghostnet-strides1":T5e,"insightface-ghostnet-strides2":N5e,"insightface-mobilenet-emore":E5e,"insightface-mobilenet-swish":R5e,"nanodet-e":_5e,"nanodet-g":D5e,"nanodet-m":$5e,"nanodet-t":P5e};var p1={};fa(p1,{Models:()=>af,getModelStats:()=>M4,load:()=>z4,reset:()=>d1,validate:()=>I1,validateModel:()=>_d});var br,Ib=[],O5e=["white","black","asian","indian","other"],M5e=[15,23,28,35.5,45.5,55.5,65],VT=0,UT=0,Cb=Number.MAX_SAFE_INTEGER;async function GT(e){var t;return he.initial&&(br=null),br?e.debug&&re("cached model:",br.modelUrl):br=await je((t=e.face.gear)==null?void 0:t.modelPath),br}async function Tb(e,t,n,s){var o,i;if(!br)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=Cb<(((o=t.face.gear)==null?void 0:o.skipFrames)||0),a=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>le()-UT;return t.skipAllowed&&a&&r&&VT===s&&Ib[n]?(Cb++,Ib[n]):(Cb=0,new Promise(async l=>{var y,x;if(!(br!=null&&br.inputs[0].shape))return;let u={},c=[[0,.1,.9,.9]];u.resize=Ie.cropAndResize(e,c,[0],[br.inputs[0].shape[2],br.inputs[0].shape[1]]);let p={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=br.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();p.gender=d[0]>d[1]?"male":"female",p.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let A=0;A(((x=t.face.gear)==null?void 0:x.minConfidence)||.2)&&p.race.push({score:Math.round(100*h[A])/100,race:O5e[A]});p.race.sort((A,b)=>b.score-A.score);let m=Array.from(await u.age.data()).map((A,b)=>[M5e[b],A]).sort((A,b)=>b[1]-A[1]),g=m[0][0];for(let A=1;AJ(u[A])),Ib[n]=p,VT=s,UT=le(),l(p)}))}var at={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function jT(){at.tf255=Ce(255,"float32"),at.tf1=Ce(1,"float32"),at.tf2=Ce(2,"float32"),at.tf05=Ce(.5,"float32"),at.tf127=Ce(127.5,"float32"),at.rgb=Pt([.2989,.587,.114],"float32")}var Bs,V2=[],qT=0,XT=0,Nb=Number.MAX_SAFE_INTEGER;async function KT(e){return he.initial&&(Bs=null),Bs?e.debug&&re("cached model:",Bs.modelUrl):Bs=await je(e.face.ssrnet.modelPathAge),Bs}async function Eb(e,t,n,s){var o,i,l,u;if(!Bs)return{age:0};let r=Nb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-XT;return t.skipAllowed&&r&&a&&qT===s&&((l=V2[n])==null?void 0:l.age)&&((u=V2[n])==null?void 0:u.age)>0?(Nb++,V2[n]):(Nb=0,new Promise(async c=>{var h;if(!(Bs!=null&&Bs.inputs)||!Bs.inputs[0]||!Bs.inputs[0].shape)return;let p={};p.resize=Ie.resizeBilinear(e,[Bs.inputs[0].shape[2],Bs.inputs[0].shape[1]],!1),p.enhance=z(p.resize,at.tf255);let d={age:0};if((h=t.face.ssrnet)!=null&&h.enabled&&(p.age=Bs.execute(p.enhance)),p.age){let f=await p.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(p).forEach(f=>J(p[f])),V2[n]=d,qT=s,XT=le(),c(d)}))}var vr,U2=[],YT=0,JT=0,Rb=Number.MAX_SAFE_INTEGER,_b=[.2989,.587,.114];async function QT(e){var t;return he.initial&&(vr=null),vr?e.debug&&re("cached model:",vr.modelUrl):vr=await je((t=e.face.ssrnet)==null?void 0:t.modelPathGender),vr}async function Db(e,t,n,s){var o,i,l,u;if(!vr)return{gender:"unknown",genderScore:0};let r=Rb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-JT;return t.skipAllowed&&r&&a&&YT===s&&((l=U2[n])==null?void 0:l.gender)&&((u=U2[n])==null?void 0:u.genderScore)>0?(Rb++,U2[n]):(Rb=0,new Promise(async c=>{var f;if(!(vr!=null&&vr.inputs[0].shape))return;let p={};p.resize=Ie.resizeBilinear(e,[vr.inputs[0].shape[2],vr.inputs[0].shape[1]],!1),p.enhance=Z(()=>{let[m,g,y]=Yt(p.resize,3,3),x=z(m,_b[0]),A=z(g,_b[1]),b=z(y,_b[2]),w=k0([x,A,b]);return z(me(w,at.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(p.gender=vr.execute(p.enhance));let h=await p.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(p).forEach(m=>J(p[m])),U2[n]=d,YT=s,JT=le(),c(d)}))}var bn,G2=[],$b=Number.MAX_SAFE_INTEGER,tN=0,nN=0;async function sN(e){var t;return he.initial&&(bn=null),bn?e.debug&&re("cached model:",bn.modelUrl):bn=await je((t=e.face.antispoof)==null?void 0:t.modelPath),bn}async function Pb(e,t,n,s){var o,i;if(!bn||!(bn!=null&&bn.executor))return 0;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>le()-nN,a=$b<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&tN===s&&G2[n]?($b++,G2[n]):($b=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[bn!=null&&bn.inputs[0].shape?bn.inputs[0].shape[2]:0,bn!=null&&bn.inputs[0].shape?bn.inputs[0].shape[1]:0],!1),c=bn==null?void 0:bn.execute(u),p=(await c.data())[0];G2[n]=Math.round(100*p)/100,tN=s,nN=le(),J([u,c]),l(G2[n])}))}var wr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Fb={count:468,mouth:13,symmetryLine:[13,wr.midwayBetweenEyes[0]]},mu={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Ob=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],Zh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],gu=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var L5e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],B5e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],W5e=[33,133,362,263,1,78,308],Hke=L5e.map(e=>Zh[e]),jke=B5e.map(e=>Zh[e]),qke=W5e.map(e=>Zh[e]);function Ai(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var V5e=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],U5e=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],G5e=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],H5e=[[474,475],[475,476],[476,477],[477,474]],j5e=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],q5e=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],X5e=[[469,470],[470,471],[471,472],[472,469]],K5e=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],Xke={lips:Ai(V5e),leftEye:Ai(U5e),leftEyebrow:Ai(G5e),leftIris:Ai(H5e),rightEye:Ai(j5e),rightEyebrow:Ai(q5e),rightIris:Ai(X5e),faceOval:Ai(K5e)};var vd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],H2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],j2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],q2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],iN=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},zb=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r],o=Ie.cropAndResize(t,[a],[0],n),i=fe(o,at.tf255);return J(o),i},X2=(e,t)=>{let n=H2(e),s=vd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},K2=e=>{let t=H2(e),n=vd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},lN=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},Lb=[[1,0,0],[0,1,0],[0,0,1]],Z5e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Y5e=(e,t)=>Z5e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var aN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],yu=(e,t)=>{let n=0;for(let s=0;s{let n=[];for(let s=0;s{let n=[],s=e.length;for(let r=0;r{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=aN(t[0],t[1]),o=oN(a,r),i=aN(-t[0],-t[1]);return oN(o,i)},Q5e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-yu(t[0],n),-yu(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},exe=(e,t)=>[yu(e,t[0]),yu(e,t[1])];function cN(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s[a[0]/r*(h[0]-r/2),a[1]/r*(h[1]-r/2),h[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?uN(n,[0,0]):Lb,u=i?o.map(h=>[...exe(h,l),h[2]]):o,c=i?Q5e(s):Lb,p=H2(t),d=[yu(p,c[0]),yu(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function pN(e,t,n,s){let r=t.landmarks.length>=Fb.count?Fb.symmetryLine:mu.symmetryLine,a=0,o=Lb,i;if(e&&he.kernels.includes("rotatewithoffset"))if(a=Y5e(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let u=H2(t),c=[u[0]/n.shape[2],u[1]/n.shape[1]],p=Ie.rotateWithOffset(n,a,0,c);o=uN(-a,u),i=zb(t,p,[s,s]),J(p)}else i=zb(t,n,[s,s]);else i=zb(t,n,[s,s]);return[a,o,i]}var txe=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...n)+(Math.max(...n)-Math.min(...n))/2]},hN=(e,t)=>{let n=txe(e),s=vd(t);return{startPoint:[n[0]-s[0]/2,n[1]-s[1]/2],endPoint:[n[0]+s[0]/2,n[1]+s[1]/2]}};var fN=6,nxe=1.4,Ur,mN=null,xi=0,Yh=null,wd=()=>xi;async function gN(e){var t;return he.initial&&(Ur=null),Ur?e.debug&&re("cached model:",Ur.modelUrl):Ur=await je((t=e.face.detector)==null?void 0:t.modelPath),xi=Ur.executor&&Ur.inputs[0].shape?Ur.inputs[0].shape[2]:256,Yh=Ce(xi,"int32"),mN=fr(cN(xi)),Ur}function sxe(e){let t={};t.boxStarts=ze(e,[0,1],[-1,2]),t.centers=ue(t.boxStarts,mN),t.boxSizes=ze(e,[0,3],[-1,2]),t.boxSizesNormalized=fe(t.boxSizes,Yh),t.centersNormalized=fe(t.centers,Yh),t.halfBoxSize=fe(t.boxSizesNormalized,at.tf2),t.starts=me(t.centersNormalized,t.halfBoxSize),t.ends=ue(t.centersNormalized,t.halfBoxSize),t.startNormalized=z(t.starts,Yh),t.endNormalized=z(t.ends,Yh);let n=su([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>J(t[s])),n}async function yN(e,t){var i,l,u,c;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let n={};n.resized=Ie.resizeBilinear(e,[xi,xi]),n.div=fe(n.resized,at.tf127),n.normalized=me(n.div,at.tf05);let s=Ur==null?void 0:Ur.execute(n.normalized);if(Array.isArray(s)&&s.length>2){let p=s.sort((d,h)=>d.size-h.size);n.concat384=It([p[0],p[2]],2),n.concat512=It([p[1],p[3]],2),n.concat=It([n.concat512,n.concat384],1),n.batch=rt(n.concat,0)}else Array.isArray(s)?n.batch=rt(s[0]):n.batch=rt(s);J(s),n.boxes=sxe(n.batch),n.logits=ze(n.batch,[0,0],[-1,1]),n.sigmoid=$n(n.logits),n.scores=rt(n.sigmoid),n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let p=0;p(((c=t.face.detector)==null?void 0:c.minConfidence)||0)){let h={};h.bbox=ze(n.boxes,[r[p],0],[1,-1]),h.slice=ze(n.batch,[r[p],fN-1],[1,-1]),h.squeeze=rt(h.slice),h.landmarks=V(h.squeeze,[fN,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=iN(m,[(e.shape[2]||0)/xi,(e.shape[1]||0)/xi]),y=X2(g,t.face.scale||nxe),x=K2(y);a.push(x),Object.keys(h).forEach(A=>J(h[A]))}}return Object.keys(n).forEach(p=>J(n[p])),a}var Z2={};fa(Z2,{connected:()=>Vb,kpt:()=>Wb});var Wb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],Vb={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var xN=224,rxe,axe=5,Y2=[8,16,32,32,32];function bN(){let e=[],t=0;for(;tn.x)),y:Pt(e.map(n=>n.y))}}function $a(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function vN(e,t=[1,1]){let n=[e.map(u=>u[0]),e.map(u=>u[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function J2(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}var SN={initial:!0},qn={detector:null,landmarks:null},kd={detector:[224,224],landmarks:[256,256]},Ub=Number.MAX_SAFE_INTEGER,ixe={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},e1=null,Jh,bi=[[0,0],[0,0],[0,0],[0,0]],wN=0,kN=e=>1-1/(1+Math.exp(e));async function IN(e){var t;if(SN.initial&&(qn.detector=null),!qn.detector&&e.body.detector&&e.body.detector.modelPath){qn.detector=await je(e.body.detector.modelPath);let n=(t=qn.detector)!=null&&t.executor?Object.values(qn.detector.modelSignature.inputs):void 0;kd.detector[0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,kd.detector[1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}else e.debug&&qn.detector&&re("cached model:",qn.detector.modelUrl);return bN(),qn.detector}async function CN(e){var t;if(SN.initial&&(qn.landmarks=null),qn.landmarks)e.debug&&re("cached model:",qn.landmarks.modelUrl);else{qn.landmarks=await je(e.body.modelPath);let n=(t=qn.landmarks)!=null&&t.executor?Object.values(qn.landmarks.modelSignature.inputs):void 0;kd.landmarks[0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,kd.landmarks[1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return qn.landmarks}function lxe(e,t){var r,a;let n={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((a=e==null?void 0:e.shape)!=null&&a[2]))return e;let s;if(Jh&&(n.cropped=Ie.cropAndResize(e,[Jh],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let o=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],i=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];bi=[[0,0],o,i,[0,0]],n.pad=sr(n.cropped||e,bi),n.resize=Ie.resizeBilinear(n.pad,[t,t]),s=fe(n.resize,at.tf255)}else e.shape[1]!==t?(n.resize=Ie.resizeBilinear(n.cropped||e,[t,t]),s=fe(n.resize,at.tf255)):s=fe(n.cropped||e,at.tf255);return Object.keys(n).forEach(o=>J(n[o])),s}function uxe(e,t){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+bi[2][0]+bi[2][1])/t[0]-bi[2][0]),Math.trunc(n.position[1]*(t[1]+bi[1][0]+bi[1][1])/t[1]-bi[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(Jh)for(let n of e)n.positionRaw=[n.positionRaw[0]+Jh[1],n.positionRaw[1]+Jh[0],n.positionRaw[2]],n.position=[Math.trunc(n.positionRaw[0]*t[0]),Math.trunc(n.positionRaw[1]*t[1]),n.positionRaw[2]];return e}function cxe(e){let t=e.find(i=>i.part==="leftPalm"),n=e.find(i=>i.part==="leftWrist"),s=e.find(i=>i.part==="leftIndex");t.position[2]=((n.position[2]||0)+(s.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),a=e.find(i=>i.part==="rightWrist"),o=e.find(i=>i.part==="rightIndex");r.position[2]=((a.position[2]||0)+(o.position[2]||0))/2}async function dxe(e,t,n){var f,m;if(!((f=qn.landmarks)!=null&&f.executor))return null;let s={};[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(m=qn.landmarks)==null?void 0:m.execute(e,ixe.landmarks);let r=(await s.poseflag.data())[0],a=await s.ld.data(),o=await s.world.data();Object.keys(s).forEach(g=>J(s[g]));let i=[],l=5;for(let g=0;gg.position),p=$a(c,[n[0],n[1]]),d={};for(let[g,y]of Object.entries(Vb)){let x=[];for(let A=0;AS.part===y[A]),w=u.find(S=>S.part===y[A+1]);b&&w&&x.push([b.position,w.position])}d[g]=x}return{id:0,score:Math.trunc(100*r)/100,box:p.box,boxRaw:p.boxRaw,keypoints:u,annotations:d}}async function Gb(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>le()-wN,r=Ub<(t.body.skipFrames||0);if(t.skipAllowed&&s&&r&&e1!==null)Ub++;else{let a={};a.landmarks=lxe(e,256),e1=await dxe(a.landmarks,t,n),Object.keys(a).forEach(o=>J(a[o])),wN=le(),Ub=0}return e1?[e1]:[]}var Sd=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Ss,Au=0,Hb=[],NN=0,jb=Number.MAX_SAFE_INTEGER;async function EN(e){if(he.initial&&(Ss=null),Ss)e.debug&&re("cached model:",Ss.modelUrl);else{Ss=await je(e.object.modelPath);let t=Ss!=null&&Ss.executor?Object.values(Ss.modelSignature.inputs):void 0;Au=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return Ss}async function pxe(e,t,n){if(!e)return[];let s={},r=[],a=await e.array();s.squeeze=rt(e);let o=Yt(s.squeeze,6,1);s.stack=ln([o[1],o[0],o[3],o[2]],1),s.boxes=rt(s.stack),s.scores=rt(o[4]),s.classes=rt(o[5]),J([e,...o]),s.nms=await Ie.nonMaxSuppressionAsync(s.boxes,s.scores,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence||0);let i=await s.nms.data(),l=0;for(let u of Array.from(i)){let c=Math.trunc(100*a[0][u][4])/100,p=a[0][u][5];if(Number.isNaN(p))continue;let d=Sd[p].label,[h,f]=[a[0][u][0]/Au,a[0][u][1]/Au],m=[h,f,a[0][u][2]/Au-h,a[0][u][3]/Au-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:c,class:p,label:d,box:g,boxRaw:m})}return Object.keys(s).forEach(u=>J(s[u])),r}async function qb(e,t){if(!(Ss!=null&&Ss.executor))return[];let n=(t.object.skipTime||0)>le()-NN,s=jb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Hb.length>0?(jb++,Hb):(jb=0,new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Ie.resizeBilinear(e,[Au,Au]),i=t.object.enabled?Ss==null?void 0:Ss.execute(o,["tower_0/detections"]):null;NN=le(),J(o);let l=await pxe(i,a,t);Hb=l,r(l)}))}var t1={};fa(t1,{connected:()=>Kb,kpt:()=>Xb});var Xb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Kb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var vn,_N=0,ps={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Zb=Number.MAX_SAFE_INTEGER;async function DN(e){return he.initial&&(vn=null),vn?e.debug&&re("cached model:",vn.modelUrl):vn=await je(e.body.modelPath),vn}async function hxe(e,t){let[n,s]=e.shape,r=V(e,[s*n]),a=gn(r,0),o=(await a.data())[0];if(o>t){let i=Ps(r,0),l=au(i,n),u=(await l.data())[0],c=fe(i,n),p=(await c.data())[0];return J([r,a,i,l,c]),[u,p,o]}return J([r,a]),[0,0,o]}async function Yb(e,t){if(!(vn!=null&&vn.executor))return[];let n=(t.body.skipTime||0)>le()-_N,s=Zb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(ps.keypoints).length>0?(Zb++,[ps]):(Zb=0,new Promise(async r=>{let a=Z(()=>{if(!(vn!=null&&vn.inputs[0].shape))return null;let p=Ie.resizeBilinear(e,[vn.inputs[0].shape[2],vn.inputs[0].shape[1]],!1),d=z(p,at.tf2);return me(d,at.tf1)}),o;if(t.body.enabled&&(o=vn==null?void 0:vn.execute(a)),_N=le(),J(a),o){ps.keypoints.length=0;let p=rt(o);J(o);let d=On(p,2);J(p);for(let h=0;h(t.body.minConfidence||0)&&ps.keypoints.push({score:Math.round(100*g)/100,part:Xb[h],positionRaw:[f/vn.inputs[0].shape[2],m/vn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/vn.inputs[0].shape[2]),Math.round(e.shape[1]*m/vn.inputs[0].shape[1])]})}d.forEach(h=>J(h))}ps.score=ps.keypoints.reduce((p,d)=>d.score>p?d.score:p,0);let i=ps.keypoints.map(p=>p.position[0]),l=ps.keypoints.map(p=>p.position[1]);ps.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let u=ps.keypoints.map(p=>p.positionRaw[0]),c=ps.keypoints.map(p=>p.positionRaw[1]);ps.boxRaw=[Math.min(...u),Math.min(...c),Math.max(...u)-Math.min(...u),Math.max(...c)-Math.min(...c)];for(let[p,d]of Object.entries(Kb)){let h=[];for(let f=0;fy.part===d[f]),g=ps.keypoints.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}ps.annotations[p]=h}r([ps])}))}var fxe=["angry","disgust","fear","happy","sad","surprise","neutral"],or,n1=[],PN=0,FN=0,Jb=Number.MAX_SAFE_INTEGER;async function ON(e){var t;return he.initial&&(or=null),or?e.debug&&re("cached model:",or.modelUrl):or=await je((t=e.face.emotion)==null?void 0:t.modelPath),or}async function Qb(e,t,n,s){var o,i;if(!or)return[];let r=Jb<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>le()-FN;return t.skipAllowed&&a&&r&&PN===s&&n1[n]&&n1[n].length>0?(Jb++,n1[n]):(Jb=0,new Promise(async l=>{var c;let u=[];if((c=t.face.emotion)!=null&&c.enabled){let p={},d=or!=null&&or.inputs[0].shape?or.inputs[0].shape[2]:0;p.resize=Ie.resizeBilinear(e,[d,d],!1),p.channels=z(p.resize,at.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=me(p.grayscale,at.tf05),p.grayscaleMul=z(p.grayscaleSub,at.tf2),p.emotion=or==null?void 0:or.execute(p.grayscaleMul),FN=le();let h=await p.emotion.data();for(let f=0;f(t.face.emotion.minConfidence||0)&&u.push({score:Math.min(.99,Math.trunc(100*h[f])/100),emotion:fxe[f]});u.sort((f,m)=>m.score-f.score),Object.keys(p).forEach(f=>J(p[f]))}n1[n]=u,PN=s,l(u)}))}var Ws,e4=[],zN=0,LN=0,BN=Number.MAX_SAFE_INTEGER;async function WN(e){var t;return he.initial&&(Ws=null),Ws?e.debug&&re("cached model:",Ws.modelUrl):Ws=await je((t=e.face.mobilefacenet)==null?void 0:t.modelPath),Ws}async function t4(e,t,n,s){var o,i;if(!(Ws!=null&&Ws.executor))return[];let r=BN<(((o=t.face.mobilefacenet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.mobilefacenet)==null?void 0:i.skipTime)||0)>le()-LN;return t.skipAllowed&&a&&r&&zN===s&&e4[n]?(BN++,e4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.mobilefacenet)==null?void 0:c.enabled)&&(Ws==null?void 0:Ws.inputs[0].shape)){let p={};p.crop=Ie.resizeBilinear(e,[Ws.inputs[0].shape[2],Ws.inputs[0].shape[1]],!1),p.data=Ws.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>J(p[h]))}e4[n]=u,zN=s,LN=le(),l(u)})}var Vs,n4=[],UN=0,GN=0,HN=Number.MAX_SAFE_INTEGER;async function jN(e){return he.initial&&(Vs=null),Vs?e.debug&&re("cached model:",Vs.modelUrl):Vs=await je(e.face.insightface.modelPath),Vs}async function s4(e,t,n,s){var o,i;if(!(Vs!=null&&Vs.executor))return[];let r=HN<(((o=t.face.insightface)==null?void 0:o.skipFrames)||0),a=(((i=t.face.insightface)==null?void 0:i.skipTime)||0)>le()-GN;return t.skipAllowed&&a&&r&&UN===s&&n4[n]?(HN++,n4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.insightface)==null?void 0:c.enabled)&&(Vs==null?void 0:Vs.inputs[0].shape)){let p={};p.crop=Ie.resizeBilinear(e,[Vs.inputs[0].shape[2],Vs.inputs[0].shape[1]],!1),p.data=Vs.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>J(p[h]))}n4[n]=u,UN=s,GN=le(),l(u)})}var Us,vi=0,mxe=2.3,r4=wr.leftEyeLower0,a4=wr.rightEyeLower0,Id={leftBounds:[r4[0],r4[r4.length-1]],rightBounds:[a4[0],a4[a4.length-1]]},Cd={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function YN(e){var t,n;return he.initial&&(Us=null),Us?e.debug&&re("cached model:",Us.modelUrl):Us=await je((t=e.face.iris)==null?void 0:t.modelPath),vi=(Us==null?void 0:Us.executor)&&((n=Us.inputs)==null?void 0:n[0].shape)?Us.inputs[0].shape[2]:0,vi===-1&&(vi=64),Us}function s1(e,t,n,s){for(let r=0;r{let t=e[Id.leftBounds[0]][2],n=e[Id.rightBounds[0]][2];return t-n},XN=(e,t,n,s,r,a=!1)=>{let o=K2(X2(lN([e[n],e[s]]),mxe)),i=vd(o),l=Ie.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[vi,vi]);if(a&&he.kernels.includes("flipleftright")){let u=Ie.flipLeftRight(l);J(l),l=u}return{box:o,boxSize:i,crop:l}},KN=(e,t,n,s=!1)=>{let r=[];for(let a=0;a{let s=e[wr[`${n}EyeUpper0`][Cd.upperCenter]][2],r=e[wr[`${n}EyeLower0`][Cd.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function JN(e,t,n){if(!(Us!=null&&Us.executor))return e;let{box:s,boxSize:r,crop:a}=XN(e,t,Id.leftBounds[0],Id.leftBounds[1],n,!0),{box:o,boxSize:i,crop:l}=XN(e,t,Id.rightBounds[0],Id.rightBounds[1],n,!0),u=It([a,l]);J(a),J(l);let c=Us.execute(u);J(u);let p=await c.data();J(c);let d=p.slice(0,Cd.numCoordinates*3),{rawCoords:h,iris:f}=KN(d,s,r,!0),m=p.slice(Cd.numCoordinates*3),{rawCoords:g,iris:y}=KN(m,o,i,!1),x=gxe(e);Math.abs(x)<30?(s1(e,h,"left",null),s1(e,g,"right",null)):x<1?s1(e,h,"left",["EyeUpper0","EyeLower0"]):s1(e,g,"right",["EyeUpper0","EyeLower0"]);let A=ZN(e,f,"left"),b=ZN(e,y,"right");return e.concat(A).concat(b)}var yxe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Axe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],xxe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],bxe=[[474,475],[475,476],[476,477],[477,474]],vxe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],wxe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],kxe=[[469,470],[470,471],[471,472],[472,469]],Sxe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function wi(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var Ixe={lips:wi(yxe),leftEye:wi(Axe),leftEyebrow:wi(xxe),leftIris:wi(bxe),rightEye:wi(vxe),rightEyebrow:wi(wxe),rightIris:wi(kxe),faceOval:wi(Sxe)},Cxe=Object.entries(Ixe).map(([e,t])=>t.map(n=>[n,e])).flat(),CSe=new Map(Cxe),Qh=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],xu=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],bu=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function tE(e,t){var a,o,i,l,u,c,p,d,h,f;let n={lips:await((o=(a=t.filter(m=>m.size===160))==null?void 0:a[0])==null?void 0:o.data()),irisL:await((l=(i=t.filter(m=>m.size===10))==null?void 0:i[0])==null?void 0:l.data()),eyeL:await((c=(u=t.filter(m=>m.size===142))==null?void 0:u[0])==null?void 0:c.data()),irisR:await((d=(p=t.filter(m=>m.size===10))==null?void 0:p[1])==null?void 0:d.data()),eyeR:await((f=(h=t.filter(m=>m.size===142))==null?void 0:h[1])==null?void 0:f.data())};for(let m of Object.values(n))if(!m)return e;let s=xu.reduce((m,g)=>m+=e[g][2],0)/xu.length;for(let m=0;mm+=e[g][2],0)/bu.length;for(let m=0;mle()-la.timestamp,s=la.skipped<(((u=t.face.detector)==null?void 0:u.skipFrames)||0);!t.skipAllowed||!n||!s||la.boxes.length===0?(la.boxes=await yN(e,t),la.timestamp=le(),la.skipped=0):la.skipped++;let r=[],a=[],o=0,i=ef;for(let x=0;xD.shape[D.shape.length-1]===1).data();if(S.faceScore=Math.round(100*_[0])/100,S.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(A.confidence=S.faceScore,t.face.mesh.keepInvalid){S.box=j2(A,e),S.boxRaw=q2(A,e),S.score=S.boxScore,S.mesh=A.landmarks.map(D=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*D[0]/wd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*D[1]/wd()]),S.meshRaw=S.mesh.map(D=>[D[0]/(e.shape[2]||1),D[1]/(e.shape[1]||1),(D[2]||0)/i]);for(let D of Object.keys(mu))S.annotations[D]=[S.mesh[mu[D]]]}}else{let D=k.find(M=>M.shape[M.shape.length-1]===1404),R=V(D,[-1,3]),P=await R.array();J(R),(m=t.face.attention)!=null&&m.enabled?P=await tE(P,k):(g=t.face.iris)!=null&&g.enabled&&(P=await JN(P,S.tensor,ef)),S.mesh=dN(P,A,b,w,ef),S.meshRaw=S.mesh.map(M=>[M[0]/(e.shape[2]||0),M[1]/(e.shape[1]||0),(M[2]||0)/i]);for(let M of Object.keys(wr))S.annotations[M]=wr[M].map(L=>S.mesh[L]);S.score=S.faceScore;let C={...hN(S.mesh,A),confidence:A.confidence,landmarks:A.landmarks};S.box=j2(C,e),S.boxRaw=q2(C,e),a.push(C)}J(k)}else{S.box=j2(A,e),S.boxRaw=q2(A,e),S.score=S.boxScore,S.mesh=A.landmarks.map(k=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*k[0]/wd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*k[1]/wd()]),S.meshRaw=S.mesh.map(k=>[k[0]/(e.shape[2]||0),k[1]/(e.shape[1]||0),(k[2]||0)/i]);for(let k of Object.keys(mu))S.annotations[k]=[S.mesh[mu[k]]]}S.score>(((y=t.face.detector)==null?void 0:y.minConfidence)||1)?r.push(S):J(S.tensor)}return la.boxes=a,r}async function sE(e){var t,n,s,r,a,o;return he.initial&&(Mt=null),((t=e.face.attention)==null?void 0:t.enabled)&&(Mt==null?void 0:Mt.signature)&&Object.keys(((n=Mt==null?void 0:Mt.signature)==null?void 0:n.outputs)||{}).length<6&&(Mt=null),Mt?e.debug&&re("cached model:",Mt.modelUrl):(s=e.face.attention)!=null&&s.enabled?Mt=await je(e.face.attention.modelPath):Mt=await je((r=e.face.mesh)==null?void 0:r.modelPath),ef=Mt.executor&&((a=Mt==null?void 0:Mt.inputs)==null?void 0:a[0].shape)?(o=Mt==null?void 0:Mt.inputs)==null?void 0:o[0].shape[2]:256,Mt}var rE=gu,aE=Zh;var hs,r1=[],oE=0,iE=0,i4=Number.MAX_SAFE_INTEGER;async function lE(e){var t;return he.initial&&(hs=null),hs?e.debug&&re("cached model:",hs.modelUrl):hs=await je((t=e.face.description)==null?void 0:t.modelPath),hs}function l4(e){let t=e.image||e.tensor||e;if(!(hs!=null&&hs.inputs[0].shape))return t;let n=Ie.resizeBilinear(t,[hs.inputs[0].shape[2],hs.inputs[0].shape[1]],!1),s=z(n,at.tf255);return J(n),s}async function u4(e,t,n,s){var o,i,l,u;if(!(hs!=null&&hs.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=i4<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>le()-oE;return t.skipAllowed&&r&&a&&iE===s&&((l=r1[n])==null?void 0:l.age)&&((u=r1[n])==null?void 0:u.age)>0?(i4++,r1[n]):(i4=0,new Promise(async c=>{var d;let p={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let h=l4(e),f=hs==null?void 0:hs.execute(h);oE=le(),J(h);let g=await f.find(E=>E.shape[1]===1).data(),y=Math.trunc(200*Math.abs(g[0]-.5))/100;y>(t.face.description.minConfidence||0)&&(p.gender=g[0]<=.5?"female":"male",p.genderScore=Math.min(.99,y));let x=Ps(f.find(E=>E.shape[1]===100),1),A=(await x.data())[0];J(x);let w=await f.find(E=>E.shape[1]===100).data();p.age=Math.round(w[A-1]>w[A+1]?10*A-100*w[A-1]:10*A+100*w[A+1])/10;let S=f.find(E=>E.shape[1]===1024),k=S?await S.data():[];p.descriptor=Array.from(k),f.forEach(E=>J(E))}r1[n]=p,iE=s,c(p)}))}function a1(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function tf(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function dE(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Ie.cropAndResize(t,a,[0],n)}function pE(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function o1(e,t=1.5){let n=tf(e),s=a1(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function i1(e){let t=tf(e),n=a1(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Nxe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function hE(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Nxe(n)}var uE=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ki(e,t){let n=0;for(let s=0;s[o.x,o.y]),this.anchorsTensor=fr(this.anchors),this.inputSize=((a=(r=(s=(n=this==null?void 0:this.model)==null?void 0:n.inputs)==null?void 0:s[0])==null?void 0:r.shape)==null?void 0:a[2])||0,this.inputSizeTensor=Pt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Pt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=ze(t,[0,0],[-1,2]),n.boxSizes=ze(t,[0,2],[-1,2]),n.div=fe(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=ue(n.div,this.anchorsTensor),n.halfBoxSizes=fe(n.boxSizes,this.doubleInputSizeTensor),n.sub=me(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=z(n.sub,this.inputSizeTensor),n.add=ue(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=z(n.add,this.inputSizeTensor);let s=su([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>J(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=V(t,[-1,7,2]),s.div=fe(s.reshape,this.inputSizeTensor),s.landmarks=ue(s.div,this.anchors[n]?this.anchors[n]:0);let r=z(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>J(s[a])),r}async predict(t,n){var i;let s={};s.resize=Ie.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=fe(s.resize,at.tf127),s.image=me(s.div,at.tf1),s.batched=this.model.execute(s.image),s.predictions=rt(s.batched),s.slice=ze(s.predictions,[0,0],[-1,1]),s.sigmoid=$n(s.slice),s.scores=rt(s.sigmoid);let r=await s.scores.data();s.boxes=ze(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Ie.nonMaxSuppressionAsync(s.norm,s.scores,3*(((i=n.hand)==null?void 0:i.maxDetected)||1),n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let l of a){let u={};u.box=ze(s.norm,[l,0],[1,-1]),u.slice=ze(s.predictions,[l,5],[1,14]),u.norm=this.normalizeLandmarks(u.slice,l),u.palmLandmarks=V(u.norm,[-1,2]);let c=await u.box.data(),p=c.slice(0,2),d=c.slice(2,4),h=await u.palmLandmarks.array(),f={startPoint:p,endPoint:d,palmLandmarks:h,confidence:r[l]},m=pE(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);o.push(m),Object.keys(u).forEach(g=>J(u[g]))}return Object.keys(s).forEach(l=>J(s[l])),o}};var Dxe=5,yE=1.65,AE=[0,5,9,13,17,1,2],$xe=0,Pxe=2,xE=0,u1=class{constructor(t,n){ge(this,"handDetector");ge(this,"handPoseModel");ge(this,"inputSize");ge(this,"storedBoxes");ge(this,"skipped");ge(this,"detectedHands");var s,r,a;this.handDetector=t,this.handPoseModel=n,this.inputSize=((a=(r=(s=this.handPoseModel)==null?void 0:s.inputs)==null?void 0:r[0].shape)==null?void 0:a[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>p4([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return o1(i1(r),Dxe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=o1(i1(n),yE);s.palmLandmarks=[];for(let r=0;r[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=d4(s,[0,0]),u=i.map(h=>[...p4(h,l),h[2]]),c=fE(r),p=[...tf(n),1],d=[ki(p,c[0]),ki(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>le()-xE,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l=n.hand.minConfidence/4){let w=V(A,[-1,3]),S=await w.array();J(A),J(w);let k=this.transformRawCoords(S,m,c,f),E=this.getBoxForHandLandmarks(k);this.storedBoxes[l]={...E,confidence:b};let _={landmarks:k,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};i.push(_)}else this.storedBoxes[l]=null;J(A)}else{let c=o1(i1(u),yE),p={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:c.startPoint,bottomRight:c.endPoint},landmarks:[]};i.push(p)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var fs={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>fs.nameMapping[e],getPoints:e=>fs.pointsMapping[e]},Ii={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Ii.nameMapping[e]},qt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>qt.nameMapping[e]},Si=class{constructor(t){ge(this,"name");ge(this,"curls");ge(this,"directions");ge(this,"weights");ge(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:Gr,index:Pa,middle:Fa,ring:vu,pinky:wu}=fs,{none:Hr,half:Oxe,full:jr}=Ii,{verticalUp:Td,verticalDown:WSe,horizontalLeft:h4,horizontalRight:Mxe,diagonalUpRight:zxe,diagonalUpLeft:Nd,diagonalDownRight:VSe,diagonalDownLeft:USe}=qt,Ci=new Si("thumbs up");Ci.curl(Gr,Hr,1);Ci.direction(Gr,Td,1);Ci.direction(Gr,Nd,.25);Ci.direction(Gr,zxe,.25);for(let e of[fs.index,fs.middle,fs.ring,fs.pinky])Ci.curl(e,jr,1),Ci.direction(e,h4,1),Ci.direction(e,Mxe,1);var dn=new Si("victory");dn.curl(Gr,Oxe,.5);dn.curl(Gr,Hr,.5);dn.direction(Gr,Td,1);dn.direction(Gr,Nd,1);dn.curl(Pa,Hr,1);dn.direction(Pa,Td,.75);dn.direction(Pa,Nd,1);dn.curl(Fa,Hr,1);dn.direction(Fa,Td,1);dn.direction(Fa,Nd,.75);dn.curl(vu,jr,1);dn.direction(vu,Td,.2);dn.direction(vu,Nd,1);dn.direction(vu,h4,.2);dn.curl(wu,jr,1);dn.direction(wu,Td,.2);dn.direction(wu,Nd,1);dn.direction(wu,h4,.2);dn.weight(Pa,2);dn.weight(Fa,2);var Ti=new Si("point");Ti.curl(Gr,jr,1);Ti.curl(Pa,Hr,.5);Ti.curl(Fa,jr,.5);Ti.curl(vu,jr,.5);Ti.curl(wu,jr,.5);Ti.weight(Pa,2);Ti.weight(Fa,2);var Ni=new Si("middle finger");Ni.curl(Gr,Hr,1);Ni.curl(Pa,jr,.5);Ni.curl(Fa,jr,.5);Ni.curl(vu,jr,.5);Ni.curl(wu,jr,.5);Ni.weight(Pa,2);Ni.weight(Fa,2);var Ed=new Si("open palm");Ed.curl(Gr,Hr,.75);Ed.curl(Pa,Hr,.75);Ed.curl(Fa,Hr,.75);Ed.curl(vu,Hr,.75);Ed.curl(wu,Hr,.75);var bE=[Ci,dn,Ti,Ni,Ed];var Lxe=.7,ku={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function vE(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function kE(e,t){if(!e||!t)return[0,0];let n=vE(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=vE(e[1],e[2],t[1],t[2]);return[n,s]}function wE(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function Bxe(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],p=t[2]-n[2],d=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+p*p),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>ku.NO_CURL_START_LIMIT?y=Ii.none:g>ku.HALF_CURL_START_LIMIT?y=Ii.half:y=Ii.full,y}function SE(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=qt.horizontalLeft:r=qt.horizontalRight:s===Math.abs(t)?t>0?r=qt.horizontalLeft:r=qt.horizontalRight:n>0?r=qt.horizontalLeft:r=qt.horizontalRight,r}function IE(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=qt.verticalDown:r=qt.verticalUp:s===Math.abs(t)?t<0?r=qt.verticalDown:r=qt.verticalUp:n<0?r=qt.verticalDown:r=qt.verticalUp,r}function Wxe(e,t,n,s,r,a,o,i){let l,u=IE(e,t,n,s),c=SE(r,a,o,i);return u===qt.verticalUp?c===qt.horizontalLeft?l=qt.diagonalUpLeft:l=qt.diagonalUpRight:c===qt.horizontalLeft?l=qt.diagonalDownLeft:l=qt.diagonalDownRight,l}function Vxe(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),p=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=p/(c+1e-5);m>1.5?d+=ku.DISTANCE_VOTE_POWER:m>.66?h+=ku.DISTANCE_VOTE_POWER:f+=ku.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+u*u),A=Math.max(g,y,x),b=e[0],w=e[1],S=n[0],k=n[1];A===g?(S=n[0],k=n[1]):A===x&&(b=t[0],w=t[1]);let D=kE([b,w],[S,k]),R=wE(D,ku.TOTAL_ANGLE_VOTE_POWER);d+=R[0],h+=R[1],f+=R[2];for(let C of s){let M=wE(C,ku.SINGLE_ANGLE_VOTE_POWER);d+=M[0],h+=M[1],f+=M[2]}let P;return d===Math.max(d,h,f)?P=IE(l,i,u,p):f===Math.max(h,f)?P=SE(a,r,o,c):P=Wxe(l,i,u,p,a,r,o,c),P}function CE(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of fs.all){let o=fs.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],p=e[u[1]],d=kE(c,p),h=d[0],f=d[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of fs.all){let o=a===fs.thumb?1:0,i=fs.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],p=Bxe(l,u,c),d=Vxe(l,u,c,t[a].slice(o));s[a]=p,r[a]=d}return{curls:s,directions:r}}function c1(e){if(!e||e.length===0)return null;let t=CE(e),n={};for(let s of fs.all)n[fs.getName(s)]={curl:Ii.getName(t.curls[s]),direction:qt.getName(t.directions[s])};return n}function TE(e){let t=[];if(!e||e.length===0)return t;let n=CE(e);for(let s of bE){let r=s.matchAgainst(n.curls,n.directions);r>=Lxe&&t.push({name:s.name,confidence:r})}return t}var NE={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Su,Iu,EE;async function m4(e,t){let n=await EE.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;rn[r].landmarks[p]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=c1(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function g4(e){var n,s;he.initial&&(Su=null,Iu=null),!Su||!Iu?[Su,Iu]=await Promise.all([e.hand.enabled?je((n=e.hand.detector)==null?void 0:n.modelPath):null,e.hand.landmarks?je((s=e.hand.skeleton)==null?void 0:s.modelPath):null]):(e.debug&&re("cached model:",Su.modelUrl),e.debug&&re("cached model:",Iu.modelUrl));let t=Su?new l1(Su):void 0;return t&&Iu&&(EE=new u1(t,Iu)),[Su,Iu]}var Ct={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Uxe(){let e=Ct.gl;!e||(Ct.extensions=e.getSupportedExtensions())}function _E(e){var t;if(e.config.backend==="humangl"&&(Ct.name in rn().registry&&!((t=Ct==null?void 0:Ct.gl)!=null&&t.getParameter(Ct.gl.VERSION))&&(re("error: humangl backend invalid context"),d1(e)),!Xy(Ct.name))){try{Ct.canvas=ds(100,100)}catch(s){re("error: cannot create canvas:",s);return}try{if(Ct.gl=Ct.canvas.getContext("webgl2",Ct.webGLattr),!Ct.gl){re("error: cannot get WebGL context");return}if(!Ct.gl.getParameter(Ct.gl.VERSION).includes("2.0")){re("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Ct.canvas&&(Ct.canvas.addEventListener("webglcontextlost",r=>{throw re("error: humangl:",r.type),re("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Ct.canvas.addEventListener("webglcontextrestored",r=>{re("error: humangl context restored:",r)}),Ct.canvas.addEventListener("webglcontextcreationerror",r=>{re("error: humangl context create:",r)}))}catch(s){re("error: cannot get WebGL context:",s);return}try{T2(2,Ct.gl)}catch(s){re("error: cannot set WebGL context:",s);return}try{let s=new ec(Ct.gl);tu(Ct.name,()=>new pd(s),Ct.priority)}catch(s){re("error: cannot register WebGL backend:",s);return}try{ta("webgl").forEach(r=>{let a={...r,backendName:Ct.name};tr(a)})}catch(s){re("error: cannot update WebGL backend registration:",s);return}let n=Hn().getGPGPUContext?Hn().getGPGPUContext().gl:null;if(n)re(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{re("error: no current gl context:",n,Ct.gl);return}try{H().flagRegistry.WEBGL_VERSION&&H().set("WEBGL_VERSION",2)}catch(s){re("error: cannot set WebGL backend flags:",s);return}Uxe(),re("backend registered:",Ct.name)}}function Gxe(e){if(!he.kernels.includes("mod")){let t={kernelName:"Mod",backendName:Cn(),kernelFunc:n=>Z(()=>me(n.inputs.a,z(fe(n.inputs.a,n.inputs.b),n.inputs.b)))};e.debug&&re("registered kernel:","Mod"),tr(t),he.kernels.push("mod")}if(!he.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:Cn(),kernelFunc:n=>Z(()=>ue(z(Hc(n.inputs.a/n.inputs.b),n.inputs.b),au(n.inputs.a,n.inputs.b)))};e.debug&&re("registered kernel:","FloorMod"),tr(t),he.kernels.push("floormod")}if(!he.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:Cn(),kernelFunc:n=>Z(()=>{let s=Cn();ch("cpu");let r=Ie.rotateWithOffset(n.inputs.image,n.attrs.radians,n.attrs.fillValue,n.attrs.center);return ch(s),r})};e.debug&&re("registered kernel:","RotateWithOffset"),tr(t),he.kernels.push("rotatewithoffset")}}async function h1(e,t=!1){if(e.state="backend",t||he.initial||e.config.backend&&e.config.backend.length>0&&Cn()!==e.config.backend){let n=le();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&re("running inside web worker"),he.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&re("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),he.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&re(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),he.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")re("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&re("enumerated webgpu adapter:",r),!r)re("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let a="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;re("webgpu adapter info:",a)}}e.config.backend==="humangl"&&_E(e);let s=Object.keys(rn().registryFactory);if(e.config.debug&&re("available backends:",s),s.includes(e.config.backend)||(re(`error: backend ${e.config.backend} not found in registry`),e.config.backend=he.node?"tensorflow":"webgl",e.config.debug&&re(`override: setting backend ${e.config.backend}`)),e.config.debug&&re("setting backend:",e.config.backend),e.config.backend==="wasm"){if(H().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&H().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&re("wasm path:",e.config.wasmPath),typeof P2!="undefined")P2(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,a=!1;try{r=await H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),a=await H().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&re(`wasm execution: ${a?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&re("warning: wasm simd support is not enabled")}catch(o){re("wasm detection failed")}}try{await ch(e.config.backend),await Gc(),jT()}catch(r){return re("error: cannot set backend:",e.config.backend,r),!1}}if(Cn()==="humangl"&&(H().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&H().set("CHECK_COMPUTATION_FOR_ERRORS",!1),H().flagRegistry.WEBGL_CPU_FORWARD&&H().set("WEBGL_CPU_FORWARD",!0),H().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&H().set("WEBGL_USE_SHAPES_UNIFORMS",!0),H().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&H().set("CPU_HANDOFF_SIZE_THRESHOLD",256),H().flagRegistry.WEBGL_EXP_CONV&&H().set("WEBGL_EXP_CONV",!0),H().flagRegistry.USE_SETTIMEOUTCUSTOM&&H().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(re("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),H().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Hn().getGPGPUContext)){let s=await Hn().getGPGPUContext().gl;e.config.debug&&re(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Cn(),jy(),await Gc(),e.performance.initBackend=Math.trunc(le()-n),e.config.backend=Cn(),await he.updateBackend(),Gxe(e.config)}return!0}function f1(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&re("kernelFunc",n,t.backend)}};tr(s)}he.kernels=ta(Cn()).map(n=>n.kernelName.toLowerCase())}var en=[null,null],jxe=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Ei=[[0,0],[0,0]],qxe=["hand","fist","pinch","point","face","tip","pinchtip"],$E=4,PE=1.6,Xxe=512,Kxe=1.4,m1=Number.MAX_SAFE_INTEGER,y4=0,Oa=[0,0],Qt={boxes:[],hands:[]},FE={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function OE(e){var t;if(he.initial&&(en[0]=null),en[0])e.debug&&re("cached model:",en[0].modelUrl);else{f1(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),en[0]=await je((t=e.hand.detector)==null?void 0:t.modelPath);let n=en[0].executor?Object.values(en[0].modelSignature.inputs):void 0;Ei[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Ei[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return en[0]}async function ME(e){var t;if(he.initial&&(en[1]=null),en[1])e.debug&&re("cached model:",en[1].modelUrl);else{en[1]=await je((t=e.hand.skeleton)==null?void 0:t.modelPath);let n=en[1].executor?Object.values(en[1].modelSignature.inputs):void 0;Ei[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Ei[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return en[1]}async function Zxe(e,t){let n=[];if(!e||!en[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,Xxe),o=Math.round(a*r/8)*8;s.resize=Ie.resizeBilinear(e,[a,o]),s.cast=ye(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await en[0].executeAsync(s.cast,jxe),s.boxes=rt(s.rawBoxes,[0,2]),s.scores=rt(s.rawScores,[0]);let i=On(s.scores,1);J(i[$E]),i.splice($E,1),s.filtered=ln(i,1),J(i),s.max=gn(s.filtered,1),s.argmax=Ps(s.filtered,1);let l=0;s.nms=await Ie.nonMaxSuppressionAsync(s.boxes,s.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await s.nms.data(),c=await s.max.data(),p=await s.argmax.data();for(let d of Array.from(u)){let h=ze(s.boxes,d,1),f=await h.data();J(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=J2(m,Kxe),y=[Math.trunc(m[0]*Oa[0]),Math.trunc(m[1]*Oa[1]),Math.trunc(m[2]*Oa[0]),Math.trunc(m[3]*Oa[1])],x=c[d],A=qxe[p[d]],b={id:l++,score:x,box:y,boxRaw:g,label:A};n.push(b)}return Object.keys(s).forEach(d=>J(s[d])),n.sort((d,h)=>h.score-d.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function A4(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&en[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={},a=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=Ie.cropAndResize(e,[a],[0],[Ei[1][0],Ei[1][1]],"bilinear"),r.div=fe(r.crop,at.tf255),[r.score,r.keypoints]=en[1].execute(r.div,["Identity_1","Identity"]);let o=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(o))))/100;if(i>=(n.hand.minConfidence||0)){s.fingerScore=i,r.reshaped=V(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(p=>[p[0]/Ei[1][1],p[1]/Ei[1][0],p[2]||0]).map(p=>[p[0]*t.boxRaw[2],p[1]*t.boxRaw[3],p[2]||0]);s.keypoints=c.map(p=>[Oa[0]*(p[0]+t.boxRaw[0]),Oa[1]*(p[1]+t.boxRaw[1]),p[2]||0]),s.landmarks=c1(s.keypoints);for(let p of Object.keys(FE))s.annotations[p]=FE[p].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(l=>J(r[l]))}return s}async function x4(e,t){var r,a;if(!((r=en[0])!=null&&r.executor)||!((a=en[1])!=null&&a.executor)||!en[0].inputs[0].shape||!en[1].inputs[0].shape)return[];Oa=[e.shape[2]||0,e.shape[1]||0],m1++;let n=(t.hand.skipTime||0)>le()-y4,s=m1<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Qt.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>le()-y4,l=m1<3*(t.hand.skipFrames||0);t.skipAllowed&&Qt.hands.length===t.hand.maxDetected?Qt.hands=await Promise.all(Qt.boxes.map(c=>A4(e,c,t))):t.skipAllowed&&i&&l&&Qt.hands.length>0?Qt.hands=await Promise.all(Qt.boxes.map(c=>A4(e,c,t))):(Qt.boxes=await Zxe(e,t),y4=le(),Qt.hands=await Promise.all(Qt.boxes.map(c=>A4(e,c,t))),m1=0);let u=[...Qt.boxes];if(Qt.boxes.length=0,t.cacheSensitivity>0)for(let c=0;c.05&&p.box[3]/(e.shape[1]||1)>.05&&Qt.hands[c].fingerScore&&Qt.hands[c].fingerScore>(t.hand.minConfidence||0)){let d=J2(p.box,PE),h=J2(p.boxRaw,PE);Qt.boxes.push({...u[c],box:d,boxRaw:h})}}for(let c=0;cle()-BE,a=b4<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&LE===s&&g1[n]?(b4++,g1[n]):(b4=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[2]:0,_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[1]:0],!1),c=_n==null?void 0:_n.execute(u),p=(await c.data())[0];g1[n]=Math.round(100*p)/100,LE=s,BE=le(),J([u,c]),l(g1[n])}))}var nf={};fa(nf,{connected:()=>A1,horizontal:()=>w4,kpt:()=>y1,relative:()=>S4,vertical:()=>k4});var y1=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],w4=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],k4=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],S4=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],A1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var UE=.005,Gs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function I4(e){for(let t of w4){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),a=e.keypoints.findIndex(u=>u&&u.part===n[0]),o=e.keypoints.findIndex(u=>u&&u.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let u=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=u}}}function GE(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=sr(e,Gs.padding),n.resize=Ie.resizeBilinear(n.pad,[t,t]);let s=ye(n.resize,"int32");return Object.keys(n).forEach(o=>J(n[o])),s}function jE(e,t){e.keypoints=e.keypoints.filter(s=>s==null?void 0:s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Gs.padding[2][0]+Gs.padding[2][1])/t[0]-Gs.padding[2][0],s.position[1]*(t[1]+Gs.padding[1][0]+Gs.padding[1][1])/t[1]-Gs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=$a(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var pn,x1=0,C4=Number.MAX_SAFE_INTEGER,Cu={boxes:[],bodies:[],last:0};async function qE(e){var t;return he.initial&&(pn=null),pn?e.debug&&re("cached model:",pn.modelUrl):(f1(["size"],e),pn=await je(e.body.modelPath)),x1=(pn==null?void 0:pn.executor)&&((t=pn==null?void 0:pn.inputs)==null?void 0:t[0].shape)?pn.inputs[0].shape[2]:0,x1<64&&(x1=256),pn}function Jxe(e,t,n){let s=e[0][0],r=[],a=0;for(let c=0;ct.body.minConfidence){let p=[s[c][1],s[c][0]];r.push({score:Math.round(100*a)/100,part:y1[c],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}a=r.reduce((c,p)=>p.score>c?p.score:c,0);let o=[],i=$a(r.map(c=>c.position),[n.shape[2],n.shape[1]]),l={};for(let[c,p]of Object.entries(A1)){let d=[];for(let h=0;hg.part===p[h]),m=r.find(g=>g.part===p[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[c]=d}let u={id:0,score:a,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:l};return I4(u),o.push(u),o}function Qxe(e,t,n){let s=[];for(let r=0;rt.body.minConfidence){let i=[];for(let p=0;p<17;p++){let d=a[3*p+2];if(d>t.body.minConfidence){let h=[a[3*p+1],a[3*p+0]];i.push({part:y1[p],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((n.shape[2]||0)*h[0]),Math.round((n.shape[1]||0)*h[1])]})}}let l=$a(i.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,d]of Object.entries(A1)){let h=[];for(let f=0;fy.part===d[f]),g=i.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[p]=h}let c={id:r,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:[...i],annotations:u};I4(c),s.push(c)}}return s.sort((r,a)=>a.score-r.score),s.length>t.body.maxDetected&&(s.length=t.body.maxDetected),s}async function T4(e,t){var r;if(!(pn!=null&&pn.executor)||!((r=pn==null?void 0:pn.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Cu.boxes.length=0),C4++;let n=(t.body.skipTime||0)>le()-Cu.last,s=C4<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Cu.bodies:new Promise(async a=>{let o={};C4=0,o.input=HE(e,x1),o.res=pn==null?void 0:pn.execute(o.input),Cu.last=le();let i=await o.res.array();Cu.bodies=o.res.shape[2]===17?Jxe(i,t,e):Qxe(i,t,e);for(let l of Cu.bodies)jE(l,[e.shape[2]||1,e.shape[1]||1]),GE(l.keypoints);Object.keys(o).forEach(l=>J(o[l])),a(Cu.bodies)})}var kr,b1=[],KE=0,N4=Number.MAX_SAFE_INTEGER,w1=0,v1=2.5;async function ZE(e){if(!kr||he.initial){kr=await je(e.object.modelPath);let t=kr!=null&&kr.executor?Object.values(kr.modelSignature.inputs):void 0;w1=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&re("cached model:",kr.modelUrl);return kr}async function ebe(e,t,n){let s=0,r=[],a=w1;for(let u of[1,2,4]){let c=u*13,p=rt(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)===Sd.length)),d=await p.array(),h=rt(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)(n.object.minConfidence||0)&&x!==61){let b=(.5+Math.trunc(y%c))/c,w=(.5+Math.trunc(y/c))/c,S=g[y].map(M=>M*(c/u/a)),[k,E]=[b-v1/u*S[0],w-v1/u*S[1]],[_,D]=[b+v1/u*S[2]-k,w+v1/u*S[3]-E],R=[k,E,_,D];R=R.map(M=>Math.max(0,Math.min(M,1)));let P=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],C={id:s++,score:Math.round(100*A)/100,class:x+1,label:Sd[x].label,box:P.map(M=>Math.trunc(M)),boxRaw:R};r.push(C)}}J([p,h,f,m])}let o=r.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=r.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Ie.nonMaxSuppressionAsync(o,i,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);l=await u.data(),J(u)}return r=r.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),r}async function E4(e,t){if(!(kr!=null&&kr.executor))return[];let n=(t.object.skipTime||0)>le()-KE,s=N4<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&b1.length>0?(N4++,b1):(N4=0,!he.kernels.includes("mod")||!he.kernels.includes("sparsetodense")?b1:new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Ie.resizeBilinear(e,[w1,w1],!1),i=fe(o,at.tf255),l=tt(i,[0,3,1,2]),u;t.object.enabled&&(u=kr.execute(l)),KE=le();let c=await ebe(u,a,t);b1=c,J([o,i,l,...u]),r(c)}))}var rf=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],tbe=rf.length,sf=rf.reduce((e,t,n)=>(e[t]=n,e),{}),nbe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],gIe=nbe.map(([e,t])=>[sf[e],sf[t]]),JE=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function QE(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function eR(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:p,part:d,position:h})=>({score:p,part:d,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]})),annotations:{}});return e.map((u,c)=>i(u,c))}var k1=class{constructor(t,n){ge(this,"priorityQueue");ge(this,"numberOfElements");ge(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function tR(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function $4(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Hs,rbe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],S1=1,Rd=16,abe=50**2;function nR(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,x,A)=>({y:D4(Math.round(y.y/Rd),0,x-1),x:D4(Math.round(y.x/Rd),0,A-1)}),[u,c]=s.shape,p=l(t.position,u,c),d=i(p),f=$4(t.position,d);for(let y=0;y[sf[d],sf[h]]),o=a.map(([,d])=>d),i=a.map(([d])=>d),l=t.shape[2],u=o.length,c=new Array(l),p=_4(e.part,Rd,n);c[e.part.id]={score:e.score,part:rf[e.part.id],position:p};for(let d=u-1;d>=0;--d){let h=o[d],f=i[d];c[h]&&!c[f]&&(c[f]=nR(d,c[h],f,t,n,r))}for(let d=0;dt){i=!1;break}if(!i)break}return i}function lbe(e,t){let[n,s,r]=t.shape,a=new k1(n*s*r,({score:o})=>o);for(let o=0;o{var o;let a=(o=r[s])==null?void 0:o.position;return a?tR(n,t,a.y,a.x)<=abe:!1})}function ube(e,t){return t.reduce((s,{position:r,score:a},o)=>(sR(e,r,o)||(s+=a),s),0)/t.length}function cbe(e,t,n,s,r,a){let o=[],i=lbe(a,t);for(;o.lengthh.score>a);let p=ube(o,c),d=QE(c);p>a&&o.push({keypoints:c,box:d,score:Math.round(100*p)/100})}return o}async function P4(e,t){if(!(Hs!=null&&Hs.executor))return[];let n=Z(()=>{if(!Hs.inputs[0].shape)return[];let o=Ie.resizeBilinear(e,[Hs.inputs[0].shape[2],Hs.inputs[0].shape[1]]),i=me(fe(ye(o,"float32"),127.5),1),u=Hs.execute(i,rbe).map(c=>rt(c,[0]));return u[1]=$n(u[1]),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)J(o);let r=cbe(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Hs.inputs[0].shape?eR(r,[e.shape[1],e.shape[2]],[Hs.inputs[0].shape[2],Hs.inputs[0].shape[1]]):[]}async function rR(e){return!Hs||he.initial?Hs=await je(e.body.modelPath):e.debug&&re("cached model:",Hs.modelUrl),Hs}var ua,F4=!1;async function O4(e){return!ua||he.initial?ua=await je(e.segmentation.modelPath):e.debug&&re("cached model:",ua.modelUrl),ua}async function oR(e,t,n){var m,g;if(F4)return{data:[],canvas:null,alpha:null};F4=!0,ua||await O4(n);let s=await bd(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=Ie.resizeBilinear(s.tensor,[ua.inputs[0].shape?ua.inputs[0].shape[1]:0,ua.inputs[0].shape?ua.inputs[0].shape[2]:0],!1),J(s.tensor),o.norm=fe(o.resize,at.tf255),o.res=ua.execute(o.norm),o.squeeze=rt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=ou(o.squeeze),[o.bg,o.fg]=On(o.softmax,2),o.expand=Bt(o.fg,2),o.pad=Bt(o.expand,0),o.crop=Ie.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=rt(o.crop,0)):o.data=Ie.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(he.node&&!he.Canvas&&typeof ImageData=="undefined")return n.debug&&re("canvas support missing"),Object.keys(o).forEach(y=>J(o[y])),{data:i,canvas:null,alpha:null};let l=ds(r,a);nr&&await nr.toPixels(o.data,l);let u=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(u.filter=`blur(${n.segmentation.blur}px)`);let c=u.getImageData(0,0,r,a),p=ds(r,a),d=p.getContext("2d");s.canvas&&d.drawImage(s.canvas,0,0),d.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(d.filter=`blur(${n.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let h=d.getImageData(0,0,r,a);for(let y=0;yJ(o[y])),F4=!1,{data:i,canvas:p,alpha:l}}var af=class{constructor(){ge(this,"ssrnetage",null);ge(this,"gear",null);ge(this,"blazeposedetect",null);ge(this,"blazepose",null);ge(this,"centernet",null);ge(this,"efficientpose",null);ge(this,"mobilefacenet",null);ge(this,"insightface",null);ge(this,"emotion",null);ge(this,"facedetect",null);ge(this,"faceiris",null);ge(this,"facemesh",null);ge(this,"faceres",null);ge(this,"ssrnetgender",null);ge(this,"handpose",null);ge(this,"handskeleton",null);ge(this,"handtrack",null);ge(this,"liveness",null);ge(this,"movenet",null);ge(this,"nanodet",null);ge(this,"posenet",null);ge(this,"segmentation",null);ge(this,"antispoof",null)}},M4=e=>{let t=0,n=0,s=0;for(let a of Object.values(qr))t+=a.sizeFromManifest,n+=a.sizeLoadedWeights,s+=a.sizeDesired;let r=s>0?n/s:0;return{numLoadedModels:Object.values(qr).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:n,totalSizeLoading:s,totalSizeEnabled:void 0,modelStats:Object.values(qr)}};function d1(e){for(let t of Object.keys(e.models))e.models[t]=null}async function z4(e){var t,n,s,r,a,o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,S,k,E,_,D;he.initial&&d1(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await g4(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await g4(e.config))),e.config.body.enabled&&!e.models.blazepose&&((a=e.config.body.modelPath)==null?void 0:a.includes("blazepose"))&&(e.models.blazepose=CN(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=IN(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((o=e.config.body.modelPath)==null?void 0:o.includes("efficientpose"))&&(e.models.efficientpose=DN(e.config)),e.config.body.enabled&&!e.models.movenet&&((i=e.config.body.modelPath)==null?void 0:i.includes("movenet"))&&(e.models.movenet=qE(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=rR(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=gN(e.config)),e.config.face.enabled&&((u=e.config.face.antispoof)==null?void 0:u.enabled)&&!e.models.antispoof&&(e.models.antispoof=sN(e.config)),e.config.face.enabled&&((c=e.config.face.liveness)==null?void 0:c.enabled)&&!e.models.liveness&&(e.models.liveness=WE(e.config)),e.config.face.enabled&&((p=e.config.face.description)==null?void 0:p.enabled)&&!e.models.faceres&&(e.models.faceres=lE(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=ON(e.config)),e.config.face.enabled&&((h=e.config.face.iris)==null?void 0:h.enabled)&&!((f=e.config.face.attention)!=null&&f.enabled)&&!e.models.faceiris&&(e.models.faceiris=YN(e.config)),e.config.face.enabled&&((m=e.config.face.mesh)==null?void 0:m.enabled)&&!e.models.facemesh&&(e.models.facemesh=sE(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=GT(e.config)),e.config.face.enabled&&((y=e.config.face.ssrnet)==null?void 0:y.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=KT(e.config)),e.config.face.enabled&&((x=e.config.face.ssrnet)==null?void 0:x.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=QT(e.config)),e.config.face.enabled&&((A=e.config.face.mobilefacenet)==null?void 0:A.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=WN(e.config)),e.config.face.enabled&&((b=e.config.face.insightface)==null?void 0:b.enabled)&&!e.models.insightface&&(e.models.insightface=jN(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((S=(w=e.config.hand.detector)==null?void 0:w.modelPath)==null?void 0:S.includes("handtrack"))&&(e.models.handtrack=OE(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((E=(k=e.config.hand.detector)==null?void 0:k.modelPath)==null?void 0:E.includes("handtrack"))&&(e.models.handskeleton=ME(e.config)),e.config.object.enabled&&!e.models.centernet&&((_=e.config.object.modelPath)==null?void 0:_.includes("centernet"))&&(e.models.centernet=EN(e.config)),e.config.object.enabled&&!e.models.nanodet&&((D=e.config.object.modelPath)==null?void 0:D.includes("nanodet"))&&(e.models.nanodet=ZE(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=O4(e.config));for await(let R of Object.keys(e.models))e.models[R]&&typeof e.models[R]!="undefined"&&(e.models[R]=await e.models[R])}var ir;function _d(e,t,n){var u;if(e&&(ir=e),!t||(ir||re("instance not registred"),!ir.config.validateModels))return null;let s=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],a=[],o=[],i=t.modelUrl,l=t.executor;if((u=l==null?void 0:l.graph)!=null&&u.nodes)for(let c of Object.values(l.graph.nodes)){let p=c.op.toLowerCase();a.includes(p)||a.push(p)}else!l&&ir.config.debug&&re("model not loaded",n);for(let c of a)!s.includes(c)&&!r.includes(c)&&!ir.env.kernels.includes(c)&&!ir.env.kernels.includes(c.replace("_",""))&&!ir.env.kernels.includes(c.replace("native",""))&&!ir.env.kernels.includes(c.replace("v2",""))&&o.push(c);return ir.config.debug&&o.length>0&&re("model validation failed:",n,o),o.length>0?{name:n,missing:o,ops:a,url:i}:null}function I1(e){ir=e;let t=[];for(let n of Object.keys(ir.models)){let s=ir.models[n];if(!s)continue;let r=_d(ir,s,n);r&&t.push(r)}return t}var ms={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},qr={};async function dbe(e,t){return ms.debug&&re("load model fetch:",e,t),fetch(e,t)}function lR(e){ms.cacheModels=e.cacheModels,ms.verbose=e.debug,ms.modelBasePath=e.modelBasePath}async function je(e){var u,c,p;let t=wv(ms.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let n=t.includes("/")?t.split("/"):t.split("\\"),s=n[n.length-1].replace(".json",""),r="indexeddb://"+s;qr[s]={name:s,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:Sb[s],inCache:!1},ms.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let a={};try{a=ms.cacheSupported&&ms.cacheModels?await Ds.listModels():{}}catch(d){ms.cacheSupported=!1}qr[s].inCache=ms.cacheSupported&&ms.cacheModels&&Object.keys(a).includes(r);let o=typeof fetch=="undefined"?{}:{fetchFunc:(d,h)=>dbe(d,h)},i=new zh(qr[s].inCache?r:t,o),l=!1;try{i.findIOHandler(),ms.debug&&re("model load handler:",i.handler);let d=await i.handler.load();qr[s].sizeFromManifest=((u=d==null?void 0:d.weightData)==null?void 0:u.byteLength)||0,i.loadSync(d),qr[s].sizeLoadedWeights=((p=(c=i.artifacts)==null?void 0:c.weightData)==null?void 0:p.byteLength)||0,ms.verbose&&re("load model:",i.modelUrl,{bytes:qr[s].sizeLoadedWeights},ms),l=!0}catch(d){re("error loading model:",t,d)}if(l&&ms.cacheModels&&ms.cacheSupported&&!qr[s].inCache)try{let d=await i.save(r);re("model saved:",r,d)}catch(d){re("error saving model:",t,d)}return _d(null,i,`${e||""}`),i}var L4="2.9.4";var j4={};fa(j4,{all:()=>H4,body:()=>$d,canvas:()=>G4,face:()=>Dd,gesture:()=>Od,hand:()=>Pd,object:()=>Fd,options:()=>Xn,person:()=>U4});var lr=e=>{if(!e)re("draw error: invalid canvas");else if(!e.getContext)re("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)re("draw error: cannot get canvas context");else return t}return null},Tu=e=>Math.round(e*180/Math.PI),Ma=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let n=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${n[0]}, ${n[1]}, ${n[2]}, ${t.alpha})`};function za(e,t,n,s,r){e.fillStyle=Ma(s,r),e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function ca(e,t,n,s,r,a){if(e.beginPath(),e.lineWidth=a.lineWidth,a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function B4(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t)e.strokeStyle=Ma(s[2]||0,n),e.lineTo(Math.trunc(s[0]),Math.trunc(s[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function uR(e,t,n){if(!(t.length<2)){if(e.lineWidth=n.lineWidth,!n.useCurves||t.length<=2){B4(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s0){let a=e.emotion.map(o=>`${Math.trunc(100*o.score)}% ${o.emotion}`);a.length>3&&(a.length=3),r.push(a.join(" "))}((n=e.rotation)==null?void 0:n.angle)&&((s=e.rotation)==null?void 0:s.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Tu(e.rotation.angle.roll)}\xB0 yaw:${Tu(e.rotation.angle.yaw)}\xB0 pitch:${Tu(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Tu(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=ft.color;for(let a=r.length-1;a>=0;a--){let o=Math.max(e.box[0],0),i=a*ft.lineHeight+e.box[1];ft.shadowColor&&ft.shadowColor!==""&&(t.fillStyle=ft.shadowColor,t.fillText(r[a],o+5,i+16)),t.fillStyle=ft.labelColor,t.fillText(r[a],o+4,i+15)}}}function mbe(e,t){var n,s,r,a;if(((n=e.annotations)==null?void 0:n.leftEyeIris)&&((s=e.annotations)==null?void 0:s.leftEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,i=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((a=e.annotations)==null?void 0:a.rightEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,i=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}}function gbe(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let s=e.box[0]+e.box[2]/2-e.box[3]*Tu(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Tu(e.rotation.angle.pitch)/90,a=new Path2D(` M ${e.box[0]+e.box[2]/2} ${e.box[1]} C ${s} ${e.box[1]}, @@ -7128,7 +7109,7 @@ return a / b;`,eue=` ${e.box[0]} ${r}, ${e.box[0]+e.box[2]} ${r}, ${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2} - `);t.stroke(o),t.stroke(a)}}function g4e(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let s=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];X4(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[s[0],s[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];X4(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function y4e(e,t){if(ft.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let n=0;ne.mesh[r]);q4(t,s,ft)}f4e(e,t)}}function A4e(e,t){if(ft.drawPoints&&e.mesh.length>=468)for(let n=0;n0&&(A4e(r,s),y4e(r,s),m4e(r,s),g4e(r,s))}}function zd(e,t,n){let s=Kt(qn,n);if(!t||!e)return;let r=ur(e);if(!!r){r.lineJoin="round";for(let a=0;a0)for(let o of a.keypoints)r.fillStyle=Qa(o[2],s),eo(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{if(!i||i.length===0||!i[0])return;let u=i[i.length-1][2]||-256;r.fillStyle=Qa(u,s),r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()}};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}function Bd(e,t,n){let s=Kt(qn,n);if(!t||!e)return;let r=ur(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,pa(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}function Wd(e,t,n){let s=Kt(qn,n);if(!(!t||!e)&&s.drawGestures){let r=ur(e);if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}}var K4=0;function Z4(e,t,n){let s=Kt(qn,n);if(!t||!e)return;let r=ur(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;at!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function BR(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of Ir.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Vd&&Vd>0&&(r=r.map(o=>({x:o.x>.5?o.x+Vd:o.x-Vd,y:o.y>.5?o.y+Vd:o.y-Vd})));for(let o=0;o{let t=(p,d)=>Math.atan2(p[1]-d[1],p[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},WR=(e,t)=>{let n=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},s=(m,g)=>{let y=m[0]-g[0],x=m[1]-g[1],A=m[2]-g[2];return[y,x,A]},r=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],x=m[2]*g[0]-m[0]*g[2],A=m[0]*g[1]-m[1]*g[0];return[y,x,A]},a=m=>{let[g,y,x,A,b,w,I,k,E]=m,_,D,R;return A<1?A>-1?(R=Math.asin(A),D=Math.atan2(-I,g),_=Math.atan2(-w,b)):(R=-Math.PI/2,D=-Math.atan2(k,E),_=0):(R=Math.PI/2,D=Math.atan2(k,E),_=0),Number.isNaN(_)&&(_=0),Number.isNaN(D)&&(D=0),Number.isNaN(R)&&(R=0),{pitch:2*-_,yaw:2*-D,roll:2*-R}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[o[10],o[152],o[234],o[454]].map(m=>[m[0]*t[0]/i,m[1]*t[1]/i,m[2]]),u=n(s(l[1],l[0])),c=n(s(l[3],l[2])),p=n(r(c,u));c=r(u,p);let d=[c[0],c[1],c[2],u[0],u[1],u[2],p[0],p[1],p[2]],h=a(d),f=o.length===478?w4e(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};var tv=async(e,t)=>{var f,m,g,y,x,A,b,w,I,k,E,_,D,R,P,T,M,W,G,X,K,Y,ae,ee,ie,ne,pe,ce,Ae;let n=le(),s,r,a,o,i,l,u,c,p,d=[];e.state="run:face";let h=await DE(t,e.config);if(e.performance.face=he.perfadd?(e.performance.face||0)+Math.trunc(le()-n):Math.trunc(le()-n),!t.shape||t.shape.length!==4)return[];if(!h)return[];for(let oe=0;oe200?WR(h[oe],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=(m=e.config.face.emotion)!=null&&m.enabled?o4(h[oe].tensor||ct([]),e.config,oe,h.length):[]:(e.state="run:emotion",n=le(),o=(g=e.config.face.emotion)!=null&&g.enabled?await o4(h[oe].tensor||ct([]),e.config,oe,h.length):[],e.performance.emotion=he.perfadd?(e.performance.emotion||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?u=(y=e.config.face.antispoof)!=null&&y.enabled?Wb(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:antispoof",n=le(),u=(x=e.config.face.antispoof)!=null&&x.enabled?await Wb(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.antispoof=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?c=(A=e.config.face.liveness)!=null&&A.enabled?N4(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:liveness",n=le(),c=(b=e.config.face.liveness)!=null&&b.enabled?await N4(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.liveness=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(w=e.config.face.gear)!=null&&w.enabled?Pb(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:gear",n=le(),r=(I=e.config.face.gear)!=null&&I.enabled?await Pb(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.gear=Math.trunc(le()-n)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(s=(k=e.config.face.ssrnet)!=null&&k.enabled?Ob(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=(E=e.config.face.ssrnet)!=null&&E.enabled?Lb(h[oe].tensor||ct([]),e.config,oe,h.length):null):(e.state="run:ssrnet",n=le(),s=(_=e.config.face.ssrnet)!=null&&_.enabled?await Ob(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=(D=e.config.face.ssrnet)!=null&&D.enabled?await Lb(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.ssrnet=Math.trunc(le()-n)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=(R=e.config.face.mobilefacenet)!=null&&R.enabled?l4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),i=(P=e.config.face.mobilefacenet)!=null&&P.enabled?await l4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(T=e.config.face.insightface)!=null&&T.enabled?c4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),l=(M=e.config.face.insightface)!=null&&M.enabled?await c4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?p=g4(h[oe].tensor||ct([]),e.config,oe,h.length):(e.state="run:description",n=le(),p=await g4(h[oe].tensor||ct([]),e.config,oe,h.length),e.performance.description=he.perfadd?(e.performance.description||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,p,r,u,c]=await Promise.all([s,a,o,i,l,p,r,u,c])),e.analyze("Finish Face:"),((W=e.config.face.ssrnet)==null?void 0:W.enabled)&&s&&a&&(p={...p,age:s.age,gender:a.gender,genderScore:a.genderScore}),((G=e.config.face.gear)==null?void 0:G.enabled)&&r&&(p={...p,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((X=e.config.face.mobilefacenet)==null?void 0:X.enabled)&&i&&(p.descriptor=i),((K=e.config.face.insightface)==null?void 0:K.enabled)&&l&&(p.descriptor=l),(Y=e.config.face.iris)!=null&&Y.enabled;let _e=((ie=(ee=(ae=h[oe])==null?void 0:ae.annotations)==null?void 0:ee.leftEyeIris)==null?void 0:ie[0])&&((ce=(pe=(ne=h[oe])==null?void 0:ne.annotations)==null?void 0:pe.rightEyeIris)==null?void 0:ce[0])&&h[oe].annotations.leftEyeIris.length>0&&h[oe].annotations.rightEyeIris.length>0&&h[oe].annotations.leftEyeIris[0]!==null&&h[oe].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(h[oe].annotations.leftEyeIris[3][0]-h[oe].annotations.leftEyeIris[1][0]),Math.abs(h[oe].annotations.rightEyeIris[4][1]-h[oe].annotations.rightEyeIris[2][1]))/t.shape[2]:0,Ue=(Ae=e.config.face.detector)!=null&&Ae.return?st(h[oe].tensor):null;J(h[oe].tensor),h[oe].tensor&&delete h[oe].tensor;let Me={...h[oe],id:oe};p.age&&(Me.age=p.age),p.gender&&(Me.gender=p.gender),p.genderScore&&(Me.genderScore=p.genderScore),p.descriptor&&(Me.embedding=p.descriptor),p.race&&(Me.race=p.race),o&&(Me.emotion=o),u&&(Me.real=u),c&&(Me.live=c),_e&&_e!==0&&(Me.iris=Math.trunc(500/_e/11.7)/100),Re&&(Me.rotation=Re),Ue&&(Me.tensor=Ue),d.push(Me),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var VR=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},UR=e=>{if(!e)return[];let t=[];for(let n=0;n450){let s=(e[n].mesh[33][2]||0)-(e[n].mesh[263][2]||0),r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},GR=e=>{var n,s,r,a;if(!e)return[];let t=[];for(let o=0;o.06||g>.06)&&(h=!1),m>g?m>.05&&t.push({iris:o,gesture:"looking right"}):g>.05&&t.push({iris:o,gesture:"looking left"});let y=Math.abs(e[o].mesh[145][1]-e[o].annotations.rightEyeIris[0][1])/e[o].box[3],x=Math.abs(e[o].mesh[374][1]-e[o].annotations.leftEyeIris[0][1])/e[o].box[3];(x<.01||y<.01||x>.022||y>.022)&&(h=!1),(x<.01||y<.01)&&t.push({iris:o,gesture:"looking down"}),(x>.022||y>.022)&&t.push({iris:o,gesture:"looking up"}),h&&t.push({iris:o,gesture:"looking center"})}return t},HR=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=s.reduce((o,i)=>(o.position[2]||0)<(i.position[2]||0)?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]((r-1)*Ee.body[k].box[M]+T)/r),_=e.body[k].boxRaw.map((T,M)=>((r-1)*Ee.body[k].boxRaw[M]+T)/r),D=e.body[k].keypoints.map((T,M)=>{var W,G,X,K,Y,ae,ee,ie,ne;return{score:T.score,part:T.part,position:[Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[0]||0)+(T.position[0]||0))/r:T.position[0],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[1]||0)+(T.position[1]||0))/r:T.position[1],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[2]||0)+(T.position[2]||0))/r:T.position[2]],positionRaw:[Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[0]||0)+(T.positionRaw[0]||0))/r:T.positionRaw[0],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[1]||0)+(T.positionRaw[1]||0))/r:T.positionRaw[1],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[2]||0)+(T.positionRaw[2]||0))/r:T.positionRaw[2]],distance:[Ee.body[k].keypoints[M]?((r-1)*(((W=Ee.body[k].keypoints[M].distance)==null?void 0:W[0])||0)+(((G=T.distance)==null?void 0:G[0])||0))/r:(X=T.distance)==null?void 0:X[0],Ee.body[k].keypoints[M]?((r-1)*(((K=Ee.body[k].keypoints[M].distance)==null?void 0:K[1])||0)+(((Y=T.distance)==null?void 0:Y[1])||0))/r:(ae=T.distance)==null?void 0:ae[1],Ee.body[k].keypoints[M]?((r-1)*(((ee=Ee.body[k].keypoints[M].distance)==null?void 0:ee[2])||0)+(((ie=T.distance)==null?void 0:ie[2])||0))/r:(ne=T.distance)==null?void 0:ne[2]]}}),R={},P={connected:{}};(o=t.body.modelPath)!=null&&o.includes("efficientpose")?P=i1:(i=t.body.modelPath)!=null&&i.includes("blazepose")?P=n1:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(P=lf);for(let[T,M]of Object.entries(P.connected)){let W=[];for(let G=0;GY.part===M[G]),K=D.find(Y=>Y.part===M[G+1]);X&&K&&W.push([X.position,K.position])}R[T]=W}Ee.body[k]={...e.body[k],box:E,boxRaw:_,keypoints:D,annotations:R}}if(!Ee.hand||e.hand.length!==Ee.hand.length)Ee.hand=JSON.parse(JSON.stringify(e.hand));else for(let k=0;k((r-1)*Ee.hand[k].box[T]+P)/r),_=e.hand[k].boxRaw.map((P,T)=>((r-1)*Ee.hand[k].boxRaw[T]+P)/r);Ee.hand[k].keypoints.length!==e.hand[k].keypoints.length&&(Ee.hand[k].keypoints=e.hand[k].keypoints);let D=e.hand[k].keypoints&&e.hand[k].keypoints.length>0?e.hand[k].keypoints.map((P,T)=>P.map((M,W)=>((r-1)*(Ee.hand[k].keypoints[T][W]||1)+(M||0))/r)):[],R={};if(Object.keys(Ee.hand[k].annotations).length!==Object.keys(e.hand[k].annotations).length)Ee.hand[k].annotations=e.hand[k].annotations,R=Ee.hand[k].annotations;else if(e.hand[k].annotations)for(let P of Object.keys(e.hand[k].annotations))R[P]=(p=(c=(u=e.hand[k])==null?void 0:u.annotations)==null?void 0:c[P])!=null&&p[0]?e.hand[k].annotations[P].map((T,M)=>T.map((W,G)=>((r-1)*Ee.hand[k].annotations[P][M][G]+W)/r)):null;Ee.hand[k]={...e.hand[k],box:E,boxRaw:_,keypoints:D,annotations:R}}if(!Ee.face||e.face.length!==Ee.face.length)Ee.face=JSON.parse(JSON.stringify(e.face));else for(let k=0;k((r-1)*Ee.face[k].box[R]+D)/r),_=e.face[k].boxRaw.map((D,R)=>((r-1)*Ee.face[k].boxRaw[R]+D)/r);if(e.face[k].rotation){let D={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};D.matrix=(d=e.face[k].rotation)==null?void 0:d.matrix,D.angle={roll:((r-1)*(((h=Ee.face[k].rotation)==null?void 0:h.angle.roll)||0)+(((f=e.face[k].rotation)==null?void 0:f.angle.roll)||0))/r,yaw:((r-1)*(((m=Ee.face[k].rotation)==null?void 0:m.angle.yaw)||0)+(((g=e.face[k].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((y=Ee.face[k].rotation)==null?void 0:y.angle.pitch)||0)+(((x=e.face[k].rotation)==null?void 0:x.angle.pitch)||0))/r},D.gaze={bearing:((r-1)*(((A=Ee.face[k].rotation)==null?void 0:A.gaze.bearing)||0)+(((b=e.face[k].rotation)==null?void 0:b.gaze.bearing)||0))/r,strength:((r-1)*(((w=Ee.face[k].rotation)==null?void 0:w.gaze.strength)||0)+(((I=e.face[k].rotation)==null?void 0:I.gaze.strength)||0))/r},Ee.face[k]={...e.face[k],rotation:D,box:E,boxRaw:_}}Ee.face[k]={...e.face[k],box:E,boxRaw:_}}if(!Ee.object||e.object.length!==Ee.object.length)Ee.object=JSON.parse(JSON.stringify(e.object));else for(let k=0;k((r-1)*Ee.object[k].box[R]+D)/r),_=e.object[k].boxRaw.map((D,R)=>((r-1)*Ee.object[k].boxRaw[R]+D)/r);Ee.object[k]={...e.object[k],box:E,boxRaw:_}}if(e.persons){let k=e.persons;if(!Ee.persons||k.length!==Ee.persons.length)Ee.persons=JSON.parse(JSON.stringify(k));else for(let E=0;E((r-1)*Ee.persons[E].box[D]+_)/r)}e.gesture&&(Ee.gesture=e.gesture);let a=le();return nv=he.perfadd?nv+Math.round(a-n):Math.round(a-n),e.performance&&(Ee.performance={...e.performance,interpolate:nv}),Ee}var av={};ga(av,{distance:()=>pf,match:()=>rv,similarity:()=>sv});function pf(e,t,n={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let s=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function sv(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=pf(e,t,n);return qR(s,n.order||2,n.min||0,n.max||1)}function rv(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;ob.box[0]&&h.box[0]b.box[1]&&h.box[1]+h.box[3]f.body.box[0]&&b.box[0]+b.box[2]f.body.box[1]&&b.box[1]+b.box[3]f.body.box[0]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]{b&&b.length===4&&(m.push(b[0],b[0]+b[2]),g.push(b[1],b[1]+b[3]))};y(f.face.box),y((c=f.body)==null?void 0:c.box),y((p=f.hands.left)==null?void 0:p.box),y((d=f.hands.right)==null?void 0:d.box);let x=Math.min(...m),A=Math.min(...g);f.box=[x,A,Math.max(...m)-x,Math.max(...g)-A],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),o.push(f)}return o}var D1=` + `);t.stroke(o),t.stroke(a)}}function ybe(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let s=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];W4(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[s[0],s[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];W4(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function Abe(e,t){if(ft.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let n=0;ne.mesh[r]);B4(t,s,ft)}mbe(e,t)}}function xbe(e,t){if(ft.drawPoints&&e.mesh.length>=468)for(let n=0;n0&&(xbe(r,s),Abe(r,s),gbe(r,s),ybe(r,s))}}function $d(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round";for(let a=0;a0)for(let o of a.keypoints)r.fillStyle=Ma(o[2],s),za(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{if(!i||i.length===0||!i[0])return;let u=i[i.length-1][2]||-256;r.fillStyle=Ma(u,s),r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()}};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}function Fd(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ca(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}function Od(e,t,n){let s=Xt(Xn,n);if(!(!t||!e)&&s.drawGestures){let r=lr(e);if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}}var V4=0;function U4(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;at!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function cR(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of wr.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Md&&Md>0&&(r=r.map(o=>({x:o.x>.5?o.x+Md:o.x-Md,y:o.y>.5?o.y+Md:o.y-Md})));for(let o=0;o{let t=(p,d)=>Math.atan2(p[1]-d[1],p[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},dR=(e,t)=>{let n=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},s=(m,g)=>{let y=m[0]-g[0],x=m[1]-g[1],A=m[2]-g[2];return[y,x,A]},r=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],x=m[2]*g[0]-m[0]*g[2],A=m[0]*g[1]-m[1]*g[0];return[y,x,A]},a=m=>{let[g,y,x,A,b,w,S,k,E]=m,_,D,R;return A<1?A>-1?(R=Math.asin(A),D=Math.atan2(-S,g),_=Math.atan2(-w,b)):(R=-Math.PI/2,D=-Math.atan2(k,E),_=0):(R=Math.PI/2,D=Math.atan2(k,E),_=0),Number.isNaN(_)&&(_=0),Number.isNaN(D)&&(D=0),Number.isNaN(R)&&(R=0),{pitch:2*-_,yaw:2*-D,roll:2*-R}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[o[10],o[152],o[234],o[454]].map(m=>[m[0]*t[0]/i,m[1]*t[1]/i,m[2]]),u=n(s(l[1],l[0])),c=n(s(l[3],l[2])),p=n(r(c,u));c=r(u,p);let d=[c[0],c[1],c[2],u[0],u[1],u[2],p[0],p[1],p[2]],h=a(d),f=o.length===478?kbe(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};var X4=async(e,t)=>{var f,m,g,y,x,A,b,w,S,k,E,_,D,R,P,C,M,L,G,K,X,Y,ne,ee,ie,se,pe,ce,xe;let n=le(),s,r,a,o,i,l,u,c,p,d=[];e.state="run:face";let h=await nE(t,e.config);if(e.performance.face=he.perfadd?(e.performance.face||0)+Math.trunc(le()-n):Math.trunc(le()-n),!t.shape||t.shape.length!==4)return[];if(!h)return[];for(let oe=0;oe200?dR(h[oe],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=(m=e.config.face.emotion)!=null&&m.enabled?Qb(h[oe].tensor||ct([]),e.config,oe,h.length):[]:(e.state="run:emotion",n=le(),o=(g=e.config.face.emotion)!=null&&g.enabled?await Qb(h[oe].tensor||ct([]),e.config,oe,h.length):[],e.performance.emotion=he.perfadd?(e.performance.emotion||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?u=(y=e.config.face.antispoof)!=null&&y.enabled?Pb(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:antispoof",n=le(),u=(x=e.config.face.antispoof)!=null&&x.enabled?await Pb(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.antispoof=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?c=(A=e.config.face.liveness)!=null&&A.enabled?v4(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:liveness",n=le(),c=(b=e.config.face.liveness)!=null&&b.enabled?await v4(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.liveness=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(w=e.config.face.gear)!=null&&w.enabled?Tb(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:gear",n=le(),r=(S=e.config.face.gear)!=null&&S.enabled?await Tb(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.gear=Math.trunc(le()-n)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(s=(k=e.config.face.ssrnet)!=null&&k.enabled?Eb(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=(E=e.config.face.ssrnet)!=null&&E.enabled?Db(h[oe].tensor||ct([]),e.config,oe,h.length):null):(e.state="run:ssrnet",n=le(),s=(_=e.config.face.ssrnet)!=null&&_.enabled?await Eb(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=(D=e.config.face.ssrnet)!=null&&D.enabled?await Db(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.ssrnet=Math.trunc(le()-n)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=(R=e.config.face.mobilefacenet)!=null&&R.enabled?t4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),i=(P=e.config.face.mobilefacenet)!=null&&P.enabled?await t4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(C=e.config.face.insightface)!=null&&C.enabled?s4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),l=(M=e.config.face.insightface)!=null&&M.enabled?await s4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?p=u4(h[oe].tensor||ct([]),e.config,oe,h.length):(e.state="run:description",n=le(),p=await u4(h[oe].tensor||ct([]),e.config,oe,h.length),e.performance.description=he.perfadd?(e.performance.description||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,p,r,u,c]=await Promise.all([s,a,o,i,l,p,r,u,c])),e.analyze("Finish Face:"),((L=e.config.face.ssrnet)==null?void 0:L.enabled)&&s&&a&&(p={...p,age:s.age,gender:a.gender,genderScore:a.genderScore}),((G=e.config.face.gear)==null?void 0:G.enabled)&&r&&(p={...p,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((K=e.config.face.mobilefacenet)==null?void 0:K.enabled)&&i&&(p.descriptor=i),((X=e.config.face.insightface)==null?void 0:X.enabled)&&l&&(p.descriptor=l),(Y=e.config.face.iris)!=null&&Y.enabled;let _e=((ie=(ee=(ne=h[oe])==null?void 0:ne.annotations)==null?void 0:ee.leftEyeIris)==null?void 0:ie[0])&&((ce=(pe=(se=h[oe])==null?void 0:se.annotations)==null?void 0:pe.rightEyeIris)==null?void 0:ce[0])&&h[oe].annotations.leftEyeIris.length>0&&h[oe].annotations.rightEyeIris.length>0&&h[oe].annotations.leftEyeIris[0]!==null&&h[oe].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(h[oe].annotations.leftEyeIris[3][0]-h[oe].annotations.leftEyeIris[1][0]),Math.abs(h[oe].annotations.rightEyeIris[4][1]-h[oe].annotations.rightEyeIris[2][1]))/t.shape[2]:0,Ve=(xe=e.config.face.detector)!=null&&xe.return?rt(h[oe].tensor):null;J(h[oe].tensor),h[oe].tensor&&delete h[oe].tensor;let Me={...h[oe],id:oe};p.age&&(Me.age=p.age),p.gender&&(Me.gender=p.gender),p.genderScore&&(Me.genderScore=p.genderScore),p.descriptor&&(Me.embedding=p.descriptor),p.race&&(Me.race=p.race),o&&(Me.emotion=o),u&&(Me.real=u),c&&(Me.live=c),_e&&_e!==0&&(Me.iris=Math.trunc(500/_e/11.7)/100),Re&&(Me.rotation=Re),Ve&&(Me.tensor=Ve),d.push(Me),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var pR=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},hR=e=>{if(!e)return[];let t=[];for(let n=0;n450){let s=(e[n].mesh[33][2]||0)-(e[n].mesh[263][2]||0),r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},fR=e=>{var n,s,r,a;if(!e)return[];let t=[];for(let o=0;o.06||g>.06)&&(h=!1),m>g?m>.05&&t.push({iris:o,gesture:"looking right"}):g>.05&&t.push({iris:o,gesture:"looking left"});let y=Math.abs(e[o].mesh[145][1]-e[o].annotations.rightEyeIris[0][1])/e[o].box[3],x=Math.abs(e[o].mesh[374][1]-e[o].annotations.leftEyeIris[0][1])/e[o].box[3];(x<.01||y<.01||x>.022||y>.022)&&(h=!1),(x<.01||y<.01)&&t.push({iris:o,gesture:"looking down"}),(x>.022||y>.022)&&t.push({iris:o,gesture:"looking up"}),h&&t.push({iris:o,gesture:"looking center"})}return t},mR=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=s.reduce((o,i)=>(o.position[2]||0)<(i.position[2]||0)?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]((r-1)*Ee.body[k].box[M]+C)/r),_=e.body[k].boxRaw.map((C,M)=>((r-1)*Ee.body[k].boxRaw[M]+C)/r),D=e.body[k].keypoints.map((C,M)=>{var L,G,K,X,Y,ne,ee,ie,se;return{score:C.score,part:C.part,position:[Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[0]||0)+(C.position[0]||0))/r:C.position[0],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[1]||0)+(C.position[1]||0))/r:C.position[1],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[2]||0)+(C.position[2]||0))/r:C.position[2]],positionRaw:[Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[0]||0)+(C.positionRaw[0]||0))/r:C.positionRaw[0],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[1]||0)+(C.positionRaw[1]||0))/r:C.positionRaw[1],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[2]||0)+(C.positionRaw[2]||0))/r:C.positionRaw[2]],distance:[Ee.body[k].keypoints[M]?((r-1)*(((L=Ee.body[k].keypoints[M].distance)==null?void 0:L[0])||0)+(((G=C.distance)==null?void 0:G[0])||0))/r:(K=C.distance)==null?void 0:K[0],Ee.body[k].keypoints[M]?((r-1)*(((X=Ee.body[k].keypoints[M].distance)==null?void 0:X[1])||0)+(((Y=C.distance)==null?void 0:Y[1])||0))/r:(ne=C.distance)==null?void 0:ne[1],Ee.body[k].keypoints[M]?((r-1)*(((ee=Ee.body[k].keypoints[M].distance)==null?void 0:ee[2])||0)+(((ie=C.distance)==null?void 0:ie[2])||0))/r:(se=C.distance)==null?void 0:se[2]]}}),R={},P={connected:{}};(o=t.body.modelPath)!=null&&o.includes("efficientpose")?P=t1:(i=t.body.modelPath)!=null&&i.includes("blazepose")?P=Z2:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(P=nf);for(let[C,M]of Object.entries(P.connected)){let L=[];for(let G=0;GY.part===M[G]),X=D.find(Y=>Y.part===M[G+1]);K&&X&&L.push([K.position,X.position])}R[C]=L}Ee.body[k]={...e.body[k],box:E,boxRaw:_,keypoints:D,annotations:R}}if(!Ee.hand||e.hand.length!==Ee.hand.length)Ee.hand=JSON.parse(JSON.stringify(e.hand));else for(let k=0;k((r-1)*Ee.hand[k].box[C]+P)/r),_=e.hand[k].boxRaw.map((P,C)=>((r-1)*Ee.hand[k].boxRaw[C]+P)/r);Ee.hand[k].keypoints.length!==e.hand[k].keypoints.length&&(Ee.hand[k].keypoints=e.hand[k].keypoints);let D=e.hand[k].keypoints&&e.hand[k].keypoints.length>0?e.hand[k].keypoints.map((P,C)=>P.map((M,L)=>((r-1)*(Ee.hand[k].keypoints[C][L]||1)+(M||0))/r)):[],R={};if(Object.keys(Ee.hand[k].annotations).length!==Object.keys(e.hand[k].annotations).length)Ee.hand[k].annotations=e.hand[k].annotations,R=Ee.hand[k].annotations;else if(e.hand[k].annotations)for(let P of Object.keys(e.hand[k].annotations))R[P]=(p=(c=(u=e.hand[k])==null?void 0:u.annotations)==null?void 0:c[P])!=null&&p[0]?e.hand[k].annotations[P].map((C,M)=>C.map((L,G)=>((r-1)*Ee.hand[k].annotations[P][M][G]+L)/r)):null;Ee.hand[k]={...e.hand[k],box:E,boxRaw:_,keypoints:D,annotations:R}}if(!Ee.face||e.face.length!==Ee.face.length)Ee.face=JSON.parse(JSON.stringify(e.face));else for(let k=0;k((r-1)*Ee.face[k].box[R]+D)/r),_=e.face[k].boxRaw.map((D,R)=>((r-1)*Ee.face[k].boxRaw[R]+D)/r);if(e.face[k].rotation){let D={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};D.matrix=(d=e.face[k].rotation)==null?void 0:d.matrix,D.angle={roll:((r-1)*(((h=Ee.face[k].rotation)==null?void 0:h.angle.roll)||0)+(((f=e.face[k].rotation)==null?void 0:f.angle.roll)||0))/r,yaw:((r-1)*(((m=Ee.face[k].rotation)==null?void 0:m.angle.yaw)||0)+(((g=e.face[k].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((y=Ee.face[k].rotation)==null?void 0:y.angle.pitch)||0)+(((x=e.face[k].rotation)==null?void 0:x.angle.pitch)||0))/r},D.gaze={bearing:((r-1)*(((A=Ee.face[k].rotation)==null?void 0:A.gaze.bearing)||0)+(((b=e.face[k].rotation)==null?void 0:b.gaze.bearing)||0))/r,strength:((r-1)*(((w=Ee.face[k].rotation)==null?void 0:w.gaze.strength)||0)+(((S=e.face[k].rotation)==null?void 0:S.gaze.strength)||0))/r},Ee.face[k]={...e.face[k],rotation:D,box:E,boxRaw:_}}Ee.face[k]={...e.face[k],box:E,boxRaw:_}}if(!Ee.object||e.object.length!==Ee.object.length)Ee.object=JSON.parse(JSON.stringify(e.object));else for(let k=0;k((r-1)*Ee.object[k].box[R]+D)/r),_=e.object[k].boxRaw.map((D,R)=>((r-1)*Ee.object[k].boxRaw[R]+D)/r);Ee.object[k]={...e.object[k],box:E,boxRaw:_}}if(e.persons){let k=e.persons;if(!Ee.persons||k.length!==Ee.persons.length)Ee.persons=JSON.parse(JSON.stringify(k));else for(let E=0;E((r-1)*Ee.persons[E].box[D]+_)/r)}e.gesture&&(Ee.gesture=e.gesture);let a=le();return K4=he.perfadd?K4+Math.round(a-n):Math.round(a-n),e.performance&&(Ee.performance={...e.performance,interpolate:K4}),Ee}var J4={};fa(J4,{distance:()=>of,match:()=>Y4,similarity:()=>Z4});function of(e,t,n={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let s=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function Z4(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=of(e,t,n);return yR(s,n.order||2,n.min||0,n.max||1)}function Y4(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;ob.box[0]&&h.box[0]b.box[1]&&h.box[1]+h.box[3]f.body.box[0]&&b.box[0]+b.box[2]f.body.box[1]&&b.box[1]+b.box[3]f.body.box[0]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]{b&&b.length===4&&(m.push(b[0],b[0]+b[2]),g.push(b[1],b[1]+b[3]))};y(f.face.box),y((c=f.body)==null?void 0:c.box),y((p=f.hands.left)==null?void 0:p.box),y((d=f.hands.right)==null?void 0:d.box);let x=Math.min(...m),A=Math.min(...g);f.box=[x,A,Math.max(...m)-x,Math.max(...g)-A],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),o.push(f)}return o}var C1=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -7279,7 +7260,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,$1=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,T1=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -7847,4 +7828,4 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;async function N4e(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(D1);break;case"body":case"full":n=await t($1);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function E4e(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+D1;break;case"full":case"body":n="data:image/jpeg;base64,"+$1;break;default:n=""}let s;if(typeof Image!="undefined")s=new Image;else if(he.Image)s=new he.Image;else return;s.onload=async()=>{let r=ds(s.naturalWidth,s.naturalHeight);if(!r)se("Warmup: Canvas not found"),t(void 0);else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=o.tensor?await e.detect(o.tensor,e.config):void 0;t(i)}},n?s.src=n:t(void 0)})}async function R4e(e){let t=r=>Buffer.from(r,"base64"),n;e.config.warmup==="face"?n=t(D1):n=t($1);let s;if("node"in Ye&&Sn()==="tensorflow"){let r=(void 0).decodeJpeg(n),a=Wt(r,0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&se("Warmup tfjs-node not loaded");return s}async function _4e(e){let t;return typeof createImageBitmap=="function"?t=await N4e(e):typeof Image!="undefined"||he.Canvas!==void 0?t=await E4e(e):t=await R4e(e),t}async function D4e(e){var i,l,u,c;if(!H().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=Sn(),n=Hn();if(t!=="webgl"&&t!=="humangl"||!(n!=null&&n.checkCompileCompletion))return;H().set("ENGINE_COMPILE_ONLY",!0);let s=an().state.numTensors,r=[];for(let[p,d]of Object.entries(e).filter(([h,f])=>h!==null&&f!==null)){let h=(l=(i=d.inputs)==null?void 0:i[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],f=(c=(u=d.inputs)==null?void 0:u[0])!=null&&c.dtype?d.inputs[0].dtype:"float32";for(let g=0;gJ(y)):J(g)}catch(g){se("compile fail model:",p)}J(m)}let a=await n.checkCompileCompletionAsync();n.getUniformLocations(),se("compile pass models:",r),se("compile pass kernels:",a.length),H().set("ENGINE_COMPILE_ONLY",!1);let o=an().state.numTensors;o-s>0&&se("tensor leak:",o-s)}async function KR(e,t){let n=le();return e.state="warmup",t&&(e.config=Kt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:le(),persons:[],error:null}:new Promise(async s=>{await D4e(e.models);let r=await _4e(e),a=le();e.config.debug&&se("warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),s(r)})}var Ud,hf,ff,P1,ov=class{constructor(t){ge(this,"version");ge(this,"config");ge(this,"result");ge(this,"state");ge(this,"process");ge(this,"tf");ge(this,"env");ge(this,"draw");ge(this,"models");ge(this,"events");ge(this,"faceTriangulation");ge(this,"faceUVMap");ge(this,"performance");rp(this,Ud,void 0);rp(this,hf,void 0);rp(this,ff,void 0);ge(this,"gl");ge(this,"analyze",(...t)=>{if(!sp(this,hf))return;let n=this.tf.engine().state.numTensors,s=sp(this,Ud);ap(this,Ud,n);let r=n-s;r!==0&&se(...t,r)});rp(this,P1,t=>{if(!sp(this,ff))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof nt))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ge(this,"similarity",sv);ge(this,"distance",pf);ge(this,"match",rv);ge(this,"emit",t=>{var n;(n=this.events)!=null&&n.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=he;let n=(Qh.tfjs||iA).replace(/-(.*)/,"");ao.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${n}/dist/`,ao.modelBasePath=he.browser?"../models/":"file://models/",ao.backend=he.browser?"humangl":"tensorflow",this.version=j4,Object.defineProperty(this,"version",{value:j4}),this.config=JSON.parse(JSON.stringify(ao)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Kt(this.config,t)),zR(this.config),this.tf=Ye,this.state="idle",ap(this,Ud,0),ap(this,hf,!1),ap(this,ff,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new df,this.draw={options:qn,canvas:(s,r)=>Y4(s,r),face:(s,r,a)=>Md(s,r,a),body:(s,r,a)=>zd(s,r,a),hand:(s,r,a)=>Ld(s,r,a),gesture:(s,r,a)=>Wd(s,r,a),object:(s,r,a)=>Bd(s,r,a),person:(s,r,a)=>Z4(s,r,a),all:(s,r,a)=>J4(s,r,a)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=PE,this.faceUVMap=FE,this.gl=Ct,Od(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ao)),this.config.backend=t}validate(t){return g3(ao,t||this.config)}check(){return _1(this)}now(){return le()}image(t,n=!0){return Sd(t,this.config,n)}async segmentation(t,n){return OR(t,n,this.config)}enhance(t){return m4(t)}compare(t,n){return yN(this.config,t,n)}async init(){await x1(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=le(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Kt(this.config,t)),this.env.initial&&(this.config.debug&&se(`version: ${this.version}`),this.config.debug&&se(`tfjs version: ${this.tf.version["tfjs-core"]}`),await x1(this)||se("error: backend check failed"),await qc(),this.env.browser&&(this.config.debug&&se("configuration:",this.config),this.config.debug&&se("environment:",this.env),this.config.debug&&se("tf flags:",this.tf.ENV.flags))),await H4(this),this.env.initial&&this.config.debug&&se("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(_1(this),this.emit("load"));let a=Math.trunc(le()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return jR(t,this.config)}getModelStats(){return G4(this)}async warmup(t){let n=le(),s=await KR(this,t),r=le();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={},a=0;for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs,a+=i.kernelTimeMs;let o=[];Object.entries(r).forEach(i=>o.push({kernel:i[0],time:i[1],perc:0}));for(let i of o)i.perc=Math.round(1e3*i.time/a)/1e3,i.time=Math.round(1e3*i.time)/1e3;return o.sort((i,l)=>l.time-i.time),o.length=20,o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,y,x,A,b,w,I,k,E,_,D,R,P,T,M,W,G,X,K,Y,ae;this.state="config";let r;this.config=Kt(this.config,n),this.state="check";let a=sp(this,P1).call(this,t);a&&(se(a,t),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:a}));let o=le();await x1(this),await this.load(),r=le(),this.state="image";let i=await Sd(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&se("could not convert input to tensor"),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=le(),this.config.skipAllowed=await gN(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Check Changed:");let l=[],u=[],c=[],p=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?tv(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=le(),l=this.config.face.enabled?await tv(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?Kt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?W4(i.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?Yb(i.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("efficientpose")?u=this.config.body.enabled?r4(i.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("movenet")&&(u=this.config.body.enabled?P4(i.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=le(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await W4(i.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await Yb(i.tensor,d):[]:(I=this.config.body.modelPath)!=null&&I.includes("efficientpose")?u=this.config.body.enabled?await r4(i.tensor,d):[]:(k=this.config.body.modelPath)!=null&&k.includes("movenet")&&(u=this.config.body.enabled?await P4(i.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Kt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((_=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&_.includes("handdetect")?c=this.config.hand.enabled?w4(i.tensor,h):[]:(R=(D=this.config.hand.detector)==null?void 0:D.modelPath)!=null&&R.includes("handtrack")&&(c=this.config.hand.enabled?C4(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=le(),(T=(P=this.config.hand.detector)==null?void 0:P.modelPath)!=null&&T.includes("handdetect")?c=this.config.hand.enabled?await w4(i.tensor,h):[]:(W=(M=this.config.hand.detector)==null?void 0:M.modelPath)!=null&&W.includes("handtrack")&&(c=this.config.hand.enabled?await C4(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((G=this.config.object.modelPath)!=null&&G.includes("nanodet")?p=this.config.object.enabled?O4(i.tensor,this.config):[]:(X=this.config.object.modelPath)!=null&&X.includes("centernet")&&(p=this.config.object.enabled?e4(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=le(),(K=this.config.object.modelPath)!=null&&K.includes("nanodet")?p=this.config.object.enabled?await O4(i.tensor,this.config):[]:(Y=this.config.object.modelPath)!=null&&Y.includes("centernet")&&(p=this.config.object.enabled?await e4(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,c,p]=await Promise.all([l,u,c,p])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=le(),f=[...UR(l),...VR(u),...HR(c),...GR(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(le()-o):Math.trunc(le()-o);let m=((ae=this.process.tensor)==null?void 0:ae.shape)||[];this.result={face:l,body:u,hand:c,gesture:f,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return XR(l,u,c,f,m)}},J(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Ud=new WeakMap,hf=new WeakMap,ff=new WeakMap,P1=new WeakMap;return X_(P4e);})(); +2Q==`;async function Ebe(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(C1);break;case"body":case"full":n=await t(T1);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function Rbe(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+C1;break;case"full":case"body":n="data:image/jpeg;base64,"+T1;break;default:n=""}let s;if(typeof Image!="undefined")s=new Image;else if(he.Image)s=new he.Image;else return;s.onload=async()=>{let r=ds(s.naturalWidth,s.naturalHeight);if(!r)re("Warmup: Canvas not found"),t(void 0);else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=o.tensor?await e.detect(o.tensor,e.config):void 0;t(i)}},n?s.src=n:t(void 0)})}async function _be(e){let t=r=>Buffer.from(r,"base64"),n;e.config.warmup==="face"?n=t(C1):n=t(T1);let s;if("node"in Je&&Cn()==="tensorflow"){let r=(void 0).decodeJpeg(n),a=Bt(r,0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&re("Warmup tfjs-node not loaded");return s}async function Dbe(e){let t;return typeof createImageBitmap=="function"?t=await Ebe(e):typeof Image!="undefined"||he.Canvas!==void 0?t=await Rbe(e):t=await _be(e),t}async function $be(e){var i,l,u,c;if(!H().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=Cn(),n=Hn();if(t!=="webgl"&&t!=="humangl"||!(n!=null&&n.checkCompileCompletion))return;H().set("ENGINE_COMPILE_ONLY",!0);let s=rn().state.numTensors,r=[];for(let[p,d]of Object.entries(e).filter(([h,f])=>h!==null&&f!==null)){let h=(l=(i=d.inputs)==null?void 0:i[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],f=(c=(u=d.inputs)==null?void 0:u[0])!=null&&c.dtype?d.inputs[0].dtype:"float32";for(let g=0;gJ(y)):J(g)}catch(g){re("compile fail model:",p)}J(m)}let a=await n.checkCompileCompletionAsync();n.getUniformLocations(),re("compile pass models:",r),re("compile pass kernels:",a.length),H().set("ENGINE_COMPILE_ONLY",!1);let o=rn().state.numTensors;o-s>0&&re("tensor leak:",o-s)}async function xR(e,t){let n=le();return e.state="warmup",t&&(e.config=Xt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:le(),persons:[],error:null}:new Promise(async s=>{await $be(e.models);let r=await Dbe(e),a=le();e.config.debug&&re("warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),s(r)})}var zd,lf,uf,N1,Q4=class{constructor(t){ge(this,"version");ge(this,"config");ge(this,"result");ge(this,"state");ge(this,"process");ge(this,"tf");ge(this,"env");ge(this,"draw");ge(this,"models");ge(this,"events");ge(this,"faceTriangulation");ge(this,"faceUVMap");ge(this,"performance");Qd(this,zd,void 0);Qd(this,lf,void 0);Qd(this,uf,void 0);ge(this,"gl");ge(this,"analyze",(...t)=>{if(!Jd(this,lf))return;let n=this.tf.engine().state.numTensors,s=Jd(this,zd);ep(this,zd,n);let r=n-s;r!==0&&re(...t,r)});Qd(this,N1,t=>{if(!Jd(this,uf))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof st))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ge(this,"similarity",Z4);ge(this,"distance",of);ge(this,"match",Y4);ge(this,"emit",t=>{var n;(n=this.events)!=null&&n.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=he;let n=(Xh.tfjs||nA).replace(/-(.*)/,"");Ua.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${n}/dist/`,Ua.modelBasePath=he.browser?"../models/":"file://models/",Ua.backend=he.browser?"humangl":"tensorflow",this.version=L4,Object.defineProperty(this,"version",{value:L4}),this.config=JSON.parse(JSON.stringify(Ua)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Xt(this.config,t)),lR(this.config),this.tf=Je,this.state="idle",ep(this,zd,0),ep(this,lf,!1),ep(this,uf,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new af,this.draw={options:Xn,canvas:(s,r)=>G4(s,r),face:(s,r,a)=>Dd(s,r,a),body:(s,r,a)=>$d(s,r,a),hand:(s,r,a)=>Pd(s,r,a),gesture:(s,r,a)=>Od(s,r,a),object:(s,r,a)=>Fd(s,r,a),person:(s,r,a)=>U4(s,r,a),all:(s,r,a)=>H4(s,r,a)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=rE,this.faceUVMap=aE,this.gl=Ct,_d(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Ua)),this.config.backend=t,wb(),he.initial=!0}validate(t){let n=c3(Ua,t||this.config);return n.length===0&&(this.config=Xt(this.config,t)),n}check(){return I1(this)}now(){return le()}image(t,n=!0){return bd(t,this.config,n)}async segmentation(t,n){return oR(t,n,this.config)}enhance(t){return l4(t)}compare(t,n){return WT(this.config,t,n)}async init(){await h1(this,!0),await this.tf.ready(),wb()}async load(t){this.state="load";let n=le(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Xt(this.config,t)),this.env.initial&&(this.config.debug&&re(`version: ${this.version}`),this.config.debug&&re(`tfjs version: ${this.tf.version["tfjs-core"]}`),await h1(this)||re("error: backend check failed"),await Gc(),this.env.browser&&(this.config.debug&&re("configuration:",this.config),this.config.debug&&re("environment:",this.env),this.config.debug&&re("tf flags:",this.tf.ENV.flags))),await z4(this),this.env.initial&&this.config.debug&&re("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(I1(this),this.emit("load"));let a=Math.trunc(le()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return gR(t,this.config)}getModelStats(){return M4(this)}async warmup(t){let n=le(),s=await xR(this,t),r=le();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={},a=0;for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs,a+=i.kernelTimeMs;let o=[];Object.entries(r).forEach(i=>o.push({kernel:i[0],time:i[1],perc:0}));for(let i of o)i.perc=Math.round(1e3*i.time/a)/1e3,i.time=Math.round(1e3*i.time)/1e3;return o.sort((i,l)=>l.time-i.time),o.length=20,o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,y,x,A,b,w,S,k,E,_,D,R,P,C,M,L,G,K,X,Y,ne;this.state="config";let r;this.config=Xt(this.config,n),this.state="check";let a=Jd(this,N1).call(this,t);a&&(re(a,t),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:a}));let o=le();await h1(this),await this.load(),r=le(),this.state="image";let i=await bd(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&re("could not convert input to tensor"),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=le(),this.config.skipAllowed=await BT(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Check Changed:");let l=[],u=[],c=[],p=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?X4(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=le(),l=this.config.face.enabled?await X4(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?Xt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?P4(i.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?Gb(i.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("efficientpose")?u=this.config.body.enabled?Yb(i.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("movenet")&&(u=this.config.body.enabled?T4(i.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=le(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await P4(i.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await Gb(i.tensor,d):[]:(S=this.config.body.modelPath)!=null&&S.includes("efficientpose")?u=this.config.body.enabled?await Yb(i.tensor,d):[]:(k=this.config.body.modelPath)!=null&&k.includes("movenet")&&(u=this.config.body.enabled?await T4(i.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Xt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((_=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&_.includes("handdetect")?c=this.config.hand.enabled?m4(i.tensor,h):[]:(R=(D=this.config.hand.detector)==null?void 0:D.modelPath)!=null&&R.includes("handtrack")&&(c=this.config.hand.enabled?x4(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=le(),(C=(P=this.config.hand.detector)==null?void 0:P.modelPath)!=null&&C.includes("handdetect")?c=this.config.hand.enabled?await m4(i.tensor,h):[]:(L=(M=this.config.hand.detector)==null?void 0:M.modelPath)!=null&&L.includes("handtrack")&&(c=this.config.hand.enabled?await x4(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((G=this.config.object.modelPath)!=null&&G.includes("nanodet")?p=this.config.object.enabled?E4(i.tensor,this.config):[]:(K=this.config.object.modelPath)!=null&&K.includes("centernet")&&(p=this.config.object.enabled?qb(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=le(),(X=this.config.object.modelPath)!=null&&X.includes("nanodet")?p=this.config.object.enabled?await E4(i.tensor,this.config):[]:(Y=this.config.object.modelPath)!=null&&Y.includes("centernet")&&(p=this.config.object.enabled?await qb(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,c,p]=await Promise.all([l,u,c,p])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=le(),f=[...hR(l),...pR(u),...mR(c),...fR(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(le()-o):Math.trunc(le()-o);let m=((ne=this.process.tensor)==null?void 0:ne.shape)||[];this.result={face:l,body:u,hand:c,gesture:f,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return AR(l,u,c,f,m)}},J(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};zd=new WeakMap,lf=new WeakMap,uf=new WeakMap,N1=new WeakMap;return A_(Fbe);})(); diff --git a/dist/human.node-gpu.js b/dist/human.node-gpu.js index 9a9da478..4aa55472 100644 --- a/dist/human.node-gpu.js +++ b/dist/human.node-gpu.js @@ -4,7 +4,7 @@ author: ' */ -"use strict";var pn=Object.create;var p2=Object.defineProperty;var un=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var Mn=(e,t,o)=>t in e?p2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var vn=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),pe=(e,t)=>{for(var o in t)p2(e,o,{get:t[o],enumerable:!0})},bt=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of hn(t))!gn.call(e,r)&&r!==o&&p2(e,r,{get:()=>t[r],enumerable:!(n=un(t,r))||n.enumerable});return e};var V=(e,t,o)=>(o=e!=null?pn(bn(e)):{},bt(t||!e||!e.__esModule?p2(o,"default",{value:e,enumerable:!0}):o,e)),Rn=e=>bt(p2({},"__esModule",{value:!0}),e);var T=(e,t,o)=>(Mn(e,typeof t!="symbol"?t+"":t,o),o),gt=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var u2=(e,t,o)=>(gt(e,t,"read from private field"),o?o.call(e):t.get(e)),h2=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},b2=(e,t,o,n)=>(gt(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);var D=vn((G7,O5)=>{"use strict";var vt=Object.defineProperty,Pn=Object.getOwnPropertyDescriptor,Tn=Object.getOwnPropertyNames,wn=Object.prototype.hasOwnProperty,I5=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Tn(t))!wn.call(e,r)&&r!==o&&vt(e,r,{get:()=>t[r],enumerable:!(n=Pn(t,r))||n.enumerable});return e},kn=(e,t,o)=>(I5(e,t,"default"),o&&I5(o,t,"default")),En=e=>I5(vt({},"__esModule",{value:!0}),e),Rt={};O5.exports=En(Rt);kn(Rt,require("@tensorflow/tfjs-node-gpu"),O5.exports)});var N7={};pe(N7,{Human:()=>yt,default:()=>yt,defaults:()=>ue,draw:()=>At,env:()=>P,match:()=>xt,models:()=>x5});module.exports=Rn(N7);function h(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function Mt(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var v=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function C5(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")C5(e[r],t[r],r,n);else{let A=e&&typeof e[r]!="undefined";A||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let s=e&&typeof e[r]==typeof t[r];A&&!s&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&h("invalid configuration",n),n}function n0(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let A=o[r],s=n[r];Array.isArray(A)&&Array.isArray(s)?o[r]=A.concat(...s):t(A)&&t(s)?o[r]=n0(A,s):o[r]=s}),o),{})}var ue={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var a0=V(D());var j=V(D());var Pt=` +"use strict";var un=Object.create;var p2=Object.defineProperty;var hn=Object.getOwnPropertyDescriptor;var bn=Object.getOwnPropertyNames;var gn=Object.getPrototypeOf,Mn=Object.prototype.hasOwnProperty;var vn=(e,t,o)=>t in e?p2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var Rn=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),pe=(e,t)=>{for(var o in t)p2(e,o,{get:t[o],enumerable:!0})},gt=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of bn(t))!Mn.call(e,r)&&r!==o&&p2(e,r,{get:()=>t[r],enumerable:!(n=hn(t,r))||n.enumerable});return e};var V=(e,t,o)=>(o=e!=null?un(gn(e)):{},gt(t||!e||!e.__esModule?p2(o,"default",{value:e,enumerable:!0}):o,e)),Pn=e=>gt(p2({},"__esModule",{value:!0}),e);var T=(e,t,o)=>(vn(e,typeof t!="symbol"?t+"":t,o),o),Mt=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var u2=(e,t,o)=>(Mt(e,t,"read from private field"),o?o.call(e):t.get(e)),h2=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},b2=(e,t,o,n)=>(Mt(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);var D=Rn((B7,O5)=>{"use strict";var Rt=Object.defineProperty,Tn=Object.getOwnPropertyDescriptor,wn=Object.getOwnPropertyNames,kn=Object.prototype.hasOwnProperty,I5=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of wn(t))!kn.call(e,r)&&r!==o&&Rt(e,r,{get:()=>t[r],enumerable:!(n=Tn(t,r))||n.enumerable});return e},En=(e,t,o)=>(I5(e,t,"default"),o&&I5(o,t,"default")),zn=e=>I5(Rt({},"__esModule",{value:!0}),e),Pt={};O5.exports=zn(Pt);En(Pt,require("@tensorflow/tfjs-node-gpu"),O5.exports)});var L7={};pe(L7,{Human:()=>dt,default:()=>dt,defaults:()=>ue,draw:()=>st,env:()=>P,match:()=>yt,models:()=>x5});module.exports=Pn(L7);function b(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function vt(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var v=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function C5(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")C5(e[r],t[r],r,n);else{let A=e&&typeof e[r]!="undefined";A||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let s=e&&typeof e[r]==typeof t[r];A&&!s&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&b("invalid configuration",n),n}function o0(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let A=o[r],s=n[r];Array.isArray(A)&&Array.isArray(s)?o[r]=A.concat(...s):t(A)&&t(s)?o[r]=o0(A,s):o[r]=s}),o),{})}var ue={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var a0=V(D());var j=V(D());var Tt=` precision highp float; attribute vec2 pos; attribute vec2 uv; @@ -14,7 +14,7 @@ vUv = uv; gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.); } -`;var Tt=` +`;var wt=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -26,7 +26,7 @@ gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14]; gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19]; } -`,wt=` +`,kt=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -38,7 +38,7 @@ gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14]; gl_FragColor.a = c.a; } -`,kt=` +`,Et=` precision highp float; varying vec2 vUv; uniform vec2 size; @@ -51,7 +51,7 @@ vec2 coord = pixelate(vUv, size); gl_FragColor += texture2D(texture, coord); } -`,Et=` +`,zt=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -74,7 +74,7 @@ gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794; gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265; } -`,zt=` +`,St=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -96,7 +96,7 @@ c31 * m[6] + c32 * m[7] + c33 * m[8]; gl_FragColor.a = c22.a; } -`;var j5=(e,t,o)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,A)=>(o[A]=0,r))},N5=class{constructor(t,o,n){T(this,"uniform",{});T(this,"attribute",{});T(this,"gl");T(this,"id");T(this,"compile",(t,o)=>{let n=this.gl.createShader(o);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(h(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(h("filter: could not create shader"),null)});this.gl=t;let r=this.compile(o,this.gl.VERTEX_SHADER),A=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!A)){if(!this.id){h("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,A),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){h(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),j5(o,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=this.gl.getAttribLocation(this.id,s);j5(o,"uniform",this.uniform),j5(n,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=this.gl.getUniformLocation(this.id,s)}}};function St(){let e=0,t=null,o=!1,n=-1,r=[null,null],A=[],s=null,a=null,l=b0(100,100),c={},y={INTERMEDIATE:1},i=l.getContext("webgl");if(!i){h("filter: cannot get webgl context");return}this.gl=i;function d(R,f){if(!(R===l.width&&f===l.height)){if(l.width=R,l.height=f,!s){let p=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);s=i.createBuffer(),i.bindBuffer(i.ARRAY_BUFFER,s),i.bufferData(i.ARRAY_BUFFER,p,i.STATIC_DRAW),i.pixelStorei(i.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}i.viewport(0,0,l.width,l.height),r=[null,null]}}function x(R,f){let p=i.createFramebuffer();i.bindFramebuffer(i.FRAMEBUFFER,p);let z=i.createRenderbuffer();i.bindRenderbuffer(i.RENDERBUFFER,z);let w=i.createTexture();return i.bindTexture(i.TEXTURE_2D,w),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,R,f,0,i.RGBA,i.UNSIGNED_BYTE,null),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.framebufferTexture2D(i.FRAMEBUFFER,i.COLOR_ATTACHMENT0,i.TEXTURE_2D,w,0),i.bindTexture(i.TEXTURE_2D,null),i.bindFramebuffer(i.FRAMEBUFFER,null),{fbo:p,texture:w}}function m(R){return r[R]=r[R]||x(l.width,l.height),r[R]}function b(R=0){if(!a)return;let f=null,p=null,z=!1;e===0?f=t:f=m(n).texture||null,e++,o&&!(R&y.INTERMEDIATE)?(p=null,z=e%2===0):(n=(n+1)%2,p=m(n).fbo||null),i.bindTexture(i.TEXTURE_2D,f),i.bindFramebuffer(i.FRAMEBUFFER,p),i.uniform1f(a.uniform.flipY,z?-1:1),i.drawArrays(i.TRIANGLES,0,6)}function g(R){if(c[R])return a=c[R],i.useProgram((a?a.id:null)||null),a;if(a=new N5(i,Pt,R),!a)return h("filter: could not get webgl program"),null;let f=Float32Array.BYTES_PER_ELEMENT,p=4*f;return i.enableVertexAttribArray(a.attribute.pos),i.vertexAttribPointer(a.attribute.pos,2,i.FLOAT,!1,p,0*f),i.enableVertexAttribArray(a.attribute.uv),i.vertexAttribPointer(a.attribute.uv,2,i.FLOAT,!1,p,2*f),c[R]=a,a}let M={colorMatrix:R=>{let f=new Float32Array(R);f[4]/=255,f[9]/=255,f[14]/=255,f[19]/=255;let p=f[18]===1&&f[3]===0&&f[8]===0&&f[13]===0&&f[15]===0&&f[16]===0&&f[17]===0&&f[19]===0?wt:Tt,z=g(p);!z||(i.uniform1fv(z.uniform.m,f),b())},brightness:R=>{let f=(R||0)+1;M.colorMatrix([f,0,0,0,0,0,f,0,0,0,0,0,f,0,0,0,0,0,1,0])},saturation:R=>{let f=(R||0)*2/3+1,p=(f-1)*-.5;M.colorMatrix([f,p,p,0,0,p,f,p,0,0,p,p,f,0,0,0,0,0,1,0])},desaturate:()=>{M.saturation(-1)},contrast:R=>{let f=(R||0)+1,p=-128*(f-1);M.colorMatrix([f,0,0,0,p,0,f,0,0,p,0,0,f,0,p,0,0,0,1,0])},negative:()=>{M.contrast(-2)},hue:R=>{R=(R||0)/180*Math.PI;let f=Math.cos(R),p=Math.sin(R),z=.213,w=.715,u=.072;M.colorMatrix([z+f*(1-z)+p*-z,w+f*-w+p*-w,u+f*-u+p*(1-u),0,0,z+f*-z+p*.143,w+f*(1-w)+p*.14,u+f*-u+p*-.283,0,0,z+f*-z+p*-(1-z),w+f*-w+p*w,u+f*(1-u)+p*u,0,0,0,0,0,1,0])},desaturateLuminance:()=>{M.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{M.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{M.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{M.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{M.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{M.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{M.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{M.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:R=>{let f=new Float32Array(R),p=1/l.width,z=1/l.height,w=g(zt);!w||(i.uniform1fv(w.uniform.m,f),i.uniform2f(w.uniform.px,p,z),b())},detectEdges:()=>{M.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{M.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{M.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:R=>{let f=R||1;M.convolution.call(this,[0,-1*f,0,-1*f,1+4*f,-1*f,0,-1*f,0])},emboss:R=>{let f=R||1;M.convolution.call(this,[-2*f,-1*f,0,-1*f,1,1*f,0,1*f,2*f])},blur:R=>{let f=R/7/l.width,p=R/7/l.height,z=g(Et);!z||(i.uniform2f(z.uniform.px,0,p),b(y.INTERMEDIATE),i.uniform2f(z.uniform.px,f,0),b())},pixelate:R=>{let f=R/l.width,p=R/l.height,z=g(kt);!z||(i.uniform2f(z.uniform.size,f,p),b())}};this.add=function(R){let f=Array.prototype.slice.call(arguments,1),p=M[R];A.push({func:p,args:f})},this.reset=function(){A=[]},this.get=function(){return A},this.apply=function(R){d(R.width,R.height),e=0,t||(t=i.createTexture()),i.bindTexture(i.TEXTURE_2D,t),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.NEAREST),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.NEAREST),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,i.RGBA,i.UNSIGNED_BYTE,R);for(let f=0;fx.data())),s=.99*Math.max(A[0][0],A[1][0],A[2][0]),a=[q.sub(o[0],n[0]),q.sub(o[1],n[1]),q.sub(o[2],n[2])],l=[q.sub(r[0],n[0]),q.sub(r[1],n[1]),q.sub(r[2],n[2])],c=[q.div(s,l[0]),q.div(s,l[1]),q.div(s,l[2])],y=[q.mul(a[0],c[0]),q.mul(a[1],c[1]),q.mul(a[2],c[2])],i=q.stack([y[0],y[1],y[2]],2),d=q.reshape(i,[1,t.shape[0],t.shape[1],3]);return q.dispose([...o,...n,...r,...a,...l,...c,...y,i,t]),d}var N2=3840,y0=null,d0=null,qe=null,Q,ae={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function b0(e,t){let o;if(P.browser)if(P.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");o=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");o=document.createElement("canvas"),o.width=e,o.height=t}else typeof P.Canvas!="undefined"?o=new P.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(o=new globalThis.Canvas(e,t));return o}function L2(e,t){let o=t||b0(e.width,e.height);return o.getContext("2d").drawImage(e,0,0),o}async function Ue(e,t,o=!0){var d,x;if(!e)return t.debug&&h("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof j.Tensor)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof P.Canvas!="undefined"&&e instanceof P.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof j.Tensor){let m=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)m=j.expandDims(e,0);else if(e.shape[2]===4){let b=j.slice3d(e,[0,0,0],[-1,-1,3]);m=j.expandDims(b,0),j.dispose(b)}}else e.shape.length===4&&(e.shape[3]===3?m=j.clone(e):e.shape[3]===4&&(m=j.slice4d(e,[0,0,0,0],[-1,-1,-1,3])));if(m==null||m.shape.length!==4||m.shape[0]!==1||m.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(m.dtype==="int32"){let b=j.cast(m,"float32");j.dispose(m),m=b}return{tensor:m,canvas:t.filter.return?d0:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&h("input stream is not ready"),{tensor:null,canvas:y0};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&h("cannot determine input dimensions"),{tensor:null,canvas:y0};let A=n,s=r;if(A>N2&&(A=N2,s=Math.trunc(A*r/n)),s>N2&&(s=N2,A=Math.trunc(s*n/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?A=t.filter.width:(((x=t.filter)==null?void 0:x.height)||0)>0&&(A=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?s=t.filter.height:(t.filter.width||0)>0&&(s=r*((t.filter.width||0)/n)),!A||!s)throw new Error("input error: cannot determine dimension");(!y0||y0.width!==A||y0.height!==s)&&(y0=b0(A,s));let a=y0.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?a.putImageData(e,0,0):t.filter.flip&&typeof a.translate!="undefined"?(a.translate(n,0),a.scale(-1,1),a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),a.setTransform(1,0,0,1,0,0)):a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),(!d0||y0.width!==d0.width||y0.height!==d0.height)&&(d0=b0(y0.width,y0.height)),t.filter.enabled&&P.webgl.supported?(Q||(Q=P.browser?new St:null),P.filter=!!Q,Q!=null&&Q.add?(Q.reset(),t.filter.brightness!==0&&Q.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Q.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Q.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Q.add("blur",t.filter.blur),t.filter.saturation!==0&&Q.add("saturation",t.filter.saturation),t.filter.hue!==0&&Q.add("hue",t.filter.hue),t.filter.negative&&Q.add("negative"),t.filter.sepia&&Q.add("sepia"),t.filter.vintage&&Q.add("brownie"),t.filter.sepia&&Q.add("sepia"),t.filter.kodachrome&&Q.add("kodachrome"),t.filter.technicolor&&Q.add("technicolor"),t.filter.polaroid&&Q.add("polaroid"),t.filter.pixelate!==0&&Q.add("pixelate",t.filter.pixelate),Q.get()>0?d0=Q.apply(y0):d0=Q.draw(y0)):(t.debug&&h("input process error: cannot initialize filters"),P.webgl.supported=!1,t.filter.enabled=!1,L2(y0,d0))):(L2(y0,d0),Q&&(Q=null),P.filter=!!Q),!o)return{tensor:null,canvas:d0};if(!d0)throw new Error("canvas error: cannot create output");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(P.browser&&j.browser)l=j.browser?j.browser.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let m=new Uint8Array(e.data.buffer);l=j.tensor(m,[e.height,e.width,c],"int32")}else if((!qe||d0.width!==qe.width||d0.height!==qe.height)&&(qe=b0(d0.width,d0.height)),j.browser&&P.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=j.browser.fromPixels(d0):(qe=L2(d0),l=j.browser.fromPixels(qe));else{let g=L2(d0).getContext("2d").getImageData(0,0,A,s);c=g.data.length/A/s;let M=new Uint8Array(g.data.buffer);l=j.tensor(M,[A,s,c])}if(c===4){let m=j.slice3d(l,[0,0,0],[-1,-1,3]);j.dispose(l),l=m}if(!l)throw new Error("input error: cannot create tensor");let y=j.cast(l,"float32"),i=t.filter.equalization?await j2(y):j.expandDims(y,0);return j.dispose([l,y]),{tensor:i,canvas:t.filter.return?d0:null}}async function Ct(e,t){let o=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return o;if(!ae.inputTensor)ae.inputTensor=j.clone(t);else if(ae.inputTensor.shape[1]!==t.shape[1]||ae.inputTensor.shape[2]!==t.shape[2])j.dispose(ae.inputTensor),ae.inputTensor=j.clone(t);else{let n={};n.diff=j.sub(t,ae.inputTensor),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;j.dispose([ae.inputTensor,n.diff,n.squared,n.sum]),ae.inputTensor=j.clone(t),o=A<=(e.cacheSensitivity||0)}return o}async function It(e,t,o){let n={};if(!t||!o||t.shape.length!==4||t.shape.length!==o.shape.length)return e.debug||h("invalid input tensor or tensor shapes do not match:",t.shape,o.shape),0;if(t.shape[0]!==1||o.shape[0]!==1||t.shape[3]!==3||o.shape[3]!==3)return e.debug||h("input tensors must be of shape [1, height, width, 3]:",t.shape,o.shape),0;n.input1=j.clone(t),n.input2=t.shape[1]!==o.shape[1]||t.shape[2]!==o.shape[2]?j.image.resizeBilinear(o,[t.shape[1],t.shape[2]]):j.clone(o),n.diff=j.sub(n.input1,n.input2),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return j.dispose([n.input1,n.input2,n.diff,n.squared,n.sum]),A}var L5=class{constructor(){T(this,"browser");T(this,"node");T(this,"worker");T(this,"platform","");T(this,"agent","");T(this,"backends",[]);T(this,"initial");T(this,"filter");T(this,"tfjs");T(this,"offscreen");T(this,"perfadd",!1);T(this,"tensorflow",{version:void 0,gpu:void 0});T(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});T(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});T(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});T(this,"cpu",{model:void 0,flags:[]});T(this,"kernels",[]);T(this,"Canvas");T(this,"Image");T(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:a0.version["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let o=t[0].match(/\(([^()]+)\)/g);this.platform=o!=null&&o[0]?o[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(a0.engine().registryFactory),this.tensorflow={version:a0.backend().binding?a0.backend().binding.TF_Version:void 0,gpu:a0.backend().binding?a0.backend().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&a0.getBackend()==="wasm"&&(this.wasm.simd=a0.env().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=a0.env().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=b0(100,100),o=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof o!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(a0.getBackend()==="webgl"||a0.getBackend()==="humangl")){let n=a0.backend().gpgpu!=="undefined"?await a0.backend().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=n?n.name:void 0}}catch(n){this.webgpu.supported=!1}try{this.kernels=a0.getKernelsForBackend(a0.getBackend()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},P=new L5;var w5=V(D());var W5={};pe(W5,{age:()=>Xn,"anti-spoofing":()=>vr,antispoof:()=>In,blazeface:()=>On,"blazeface-back":()=>qn,"blazeface-front":()=>Un,"blazepose-detect":()=>Mr,"blazepose-detector2d":()=>Yn,"blazepose-detector3d":()=>Kn,"blazepose-full":()=>Jn,"blazepose-heavy":()=>Qn,"blazepose-lite":()=>_n,default:()=>Nr,efficientpose:()=>$n,"efficientpose-i-lite":()=>Rr,"efficientpose-ii-lite":()=>Pr,"efficientpose-iv":()=>Tr,emotion:()=>jn,faceboxes:()=>er,facemesh:()=>Nn,"facemesh-attention":()=>or,"facemesh-attention-alt":()=>tr,"facemesh-detection-full":()=>nr,"facemesh-detection-short":()=>rr,"facemesh-orig":()=>Ar,faceres:()=>Ln,"faceres-deep":()=>sr,gear:()=>ar,gender:()=>lr,"gender-ssrnet-imdb":()=>ir,handdetect:()=>cr,"handlandmark-full":()=>Wn,"handlandmark-lite":()=>xr,"handlandmark-sparse":()=>yr,handskeleton:()=>dr,handtrack:()=>Fn,"insightface-efficientnet-b0":()=>wr,"insightface-ghostnet-strides1":()=>kr,"insightface-ghostnet-strides2":()=>Er,"insightface-mobilenet-emore":()=>zr,"insightface-mobilenet-swish":()=>Sr,iris:()=>Gn,liveness:()=>Bn,"mb3-centernet":()=>Hn,meet:()=>fr,mobileface:()=>mr,mobilefacenet:()=>pr,models:()=>Dn,"movenet-lightning":()=>Vn,"movenet-multipose":()=>ur,"movenet-thunder":()=>hr,nanodet:()=>br,"nanodet-e":()=>Cr,"nanodet-g":()=>Ir,"nanodet-m":()=>Or,"nanodet-t":()=>jr,posenet:()=>gr,selfie:()=>Zn});var In=853098,On=538928,jn=820516,Nn=1477958,Ln=6978814,Wn=5431368,Fn=2964837,Gn=2599092,Bn=592976,Hn=4030290,Dn=0,Vn=4650216,Zn=212886,Xn=161240,qn=538928,Un=402048,Yn=7499400,Kn=5928856,Jn=6338290,Qn=27501554,_n=2725490,$n=5651240,er=2013002,tr=2387598,or=2382414,nr=1026192,rr=201268,Ar=2955780,sr=13957620,ar=1498916,ir=161236,lr=201808,cr=3515612,xr=2023432,yr=5286322,dr=5502280,fr=372228,mr=2183192,pr=5171976,ur=9448838,hr=12477112,br=7574558,gr=5032780,Mr=5928804,vr=853098,Rr=2269064,Pr=5651240,Tr=25643252,wr=13013224,kr=8093408,Er=8049584,zr=6938536,Sr=12168584,Cr=12319156,Ir=7574558,Or=1887474,jr=5294216,Nr={antispoof:In,blazeface:On,emotion:jn,facemesh:Nn,faceres:Ln,"handlandmark-full":Wn,handtrack:Fn,iris:Gn,liveness:Bn,"mb3-centernet":Hn,models:Dn,"movenet-lightning":Vn,selfie:Zn,age:Xn,"blazeface-back":qn,"blazeface-front":Un,"blazepose-detector2d":Yn,"blazepose-detector3d":Kn,"blazepose-full":Jn,"blazepose-heavy":Qn,"blazepose-lite":_n,efficientpose:$n,faceboxes:er,"facemesh-attention-alt":tr,"facemesh-attention":or,"facemesh-detection-full":nr,"facemesh-detection-short":rr,"facemesh-orig":Ar,"faceres-deep":sr,gear:ar,"gender-ssrnet-imdb":ir,gender:lr,handdetect:cr,"handlandmark-lite":xr,"handlandmark-sparse":yr,handskeleton:dr,meet:fr,mobileface:mr,mobilefacenet:pr,"movenet-multipose":ur,"movenet-thunder":hr,nanodet:br,posenet:gr,"blazepose-detect":Mr,"anti-spoofing":vr,"efficientpose-i-lite":Rr,"efficientpose-ii-lite":Pr,"efficientpose-iv":Tr,"insightface-efficientnet-b0":wr,"insightface-ghostnet-strides1":kr,"insightface-ghostnet-strides2":Er,"insightface-mobilenet-emore":zr,"insightface-mobilenet-swish":Sr,"nanodet-e":Cr,"nanodet-g":Ir,"nanodet-m":Or,"nanodet-t":jr};var x5={};pe(x5,{Models:()=>S2,getModelStats:()=>J1,load:()=>Q1,reset:()=>c5,validate:()=>T5,validateModel:()=>A2});var W2=V(D());var V0,F5=[],Lr=["white","black","asian","indian","other"],Wr=[15,23,28,35.5,45.5,55.5,65],Ot=0,jt=0,G5=Number.MAX_SAFE_INTEGER;async function Nt(e){var t;return P.initial&&(V0=null),V0?e.debug&&h("cached model:",V0.modelUrl):V0=await F((t=e.face.gear)==null?void 0:t.modelPath),V0}async function B5(e,t,o,n){var s,a;if(!V0)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=G5<(((s=t.face.gear)==null?void 0:s.skipFrames)||0),A=(((a=t.face.gear)==null?void 0:a.skipTime)||0)>v()-jt;return t.skipAllowed&&A&&r&&Ot===n&&F5[o]?(G5++,F5[o]):(G5=0,new Promise(async l=>{var M,R;if(!(V0!=null&&V0.inputs[0].shape))return;let c={},y=[[0,.1,.9,.9]];c.resize=W2.image.cropAndResize(e,y,[0],[V0.inputs[0].shape[2],V0.inputs[0].shape[1]]);let i={age:0,gender:"unknown",genderScore:0,race:[]};(M=t.face.gear)!=null&&M.enabled&&([c.age,c.gender,c.race]=V0.execute(c.resize,["age_output","gender_output","race_output"]));let d=await c.gender.data();i.gender=d[0]>d[1]?"male":"female",i.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let x=await c.race.data();for(let f=0;f(((R=t.face.gear)==null?void 0:R.minConfidence)||.2)&&i.race.push({score:Math.round(100*x[f])/100,race:Lr[f]});i.race.sort((f,p)=>p.score-f.score);let b=Array.from(await c.age.data()).map((f,p)=>[Wr[p],f]).sort((f,p)=>p[1]-f[1]),g=b[0][0];for(let f=1;fW2.dispose(c[f])),F5[o]=i,Ot=n,jt=v(),l(i)}))}var Ye=V(D());var he=V(D()),H={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function Wt(){H.tf255=he.scalar(255,"float32"),H.tf1=he.scalar(1,"float32"),H.tf2=he.scalar(2,"float32"),H.tf05=he.scalar(.5,"float32"),H.tf127=he.scalar(127.5,"float32"),H.rgb=he.tensor1d([.2989,.587,.114],"float32")}var E0,F2=[],Ft=0,Gt=0,H5=Number.MAX_SAFE_INTEGER;async function Bt(e){return P.initial&&(E0=null),E0?e.debug&&h("cached model:",E0.modelUrl):E0=await F(e.face.ssrnet.modelPathAge),E0}async function D5(e,t,o,n){var s,a,l,c;if(!E0)return{age:0};let r=H5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Gt;return t.skipAllowed&&r&&A&&Ft===n&&((l=F2[o])==null?void 0:l.age)&&((c=F2[o])==null?void 0:c.age)>0?(H5++,F2[o]):(H5=0,new Promise(async y=>{var x;if(!(E0!=null&&E0.inputs)||!E0.inputs[0]||!E0.inputs[0].shape)return;let i={};i.resize=Ye.image.resizeBilinear(e,[E0.inputs[0].shape[2],E0.inputs[0].shape[1]],!1),i.enhance=Ye.mul(i.resize,H.tf255);let d={age:0};if((x=t.face.ssrnet)!=null&&x.enabled&&(i.age=E0.execute(i.enhance)),i.age){let m=await i.age.data();d.age=Math.trunc(10*m[0])/10}Object.keys(i).forEach(m=>Ye.dispose(i[m])),F2[o]=d,Ft=n,Gt=v(),y(d)}))}var p0=V(D());var Z0,G2=[],Dt=0,Vt=0,V5=Number.MAX_SAFE_INTEGER,Z5=[.2989,.587,.114];async function Zt(e){var t;return P.initial&&(Z0=null),Z0?e.debug&&h("cached model:",Z0.modelUrl):Z0=await F((t=e.face.ssrnet)==null?void 0:t.modelPathGender),Z0}async function X5(e,t,o,n){var s,a,l,c;if(!Z0)return{gender:"unknown",genderScore:0};let r=V5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Vt;return t.skipAllowed&&r&&A&&Dt===n&&((l=G2[o])==null?void 0:l.gender)&&((c=G2[o])==null?void 0:c.genderScore)>0?(V5++,G2[o]):(V5=0,new Promise(async y=>{var m;if(!(Z0!=null&&Z0.inputs[0].shape))return;let i={};i.resize=p0.image.resizeBilinear(e,[Z0.inputs[0].shape[2],Z0.inputs[0].shape[1]],!1),i.enhance=p0.tidy(()=>{let[b,g,M]=p0.split(i.resize,3,3),R=p0.mul(b,Z5[0]),f=p0.mul(g,Z5[1]),p=p0.mul(M,Z5[2]),z=p0.addN([R,f,p]);return p0.mul(p0.sub(z,H.tf05),2)});let d={gender:"unknown",genderScore:0};(m=t.face.ssrnet)!=null&&m.enabled&&(i.gender=Z0.execute(i.enhance));let x=await i.gender.data();d.gender=x[0]>x[1]?"female":"male",d.genderScore=x[0]>x[1]?Math.trunc(100*x[0])/100:Math.trunc(100*x[1])/100,Object.keys(i).forEach(b=>p0.dispose(i[b])),G2[o]=d,Dt=n,Vt=v(),y(d)}))}var H2=V(D());var c0,B2=[],q5=Number.MAX_SAFE_INTEGER,qt=0,Ut=0;async function Yt(e){var t;return P.initial&&(c0=null),c0?e.debug&&h("cached model:",c0.modelUrl):c0=await F((t=e.face.antispoof)==null?void 0:t.modelPath),c0}async function U5(e,t,o,n){var s,a;if(!c0||!(c0!=null&&c0.executor))return 0;let r=(((s=t.face.antispoof)==null?void 0:s.skipTime)||0)>v()-Ut,A=q5<(((a=t.face.antispoof)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&qt===n&&B2[o]?(q5++,B2[o]):(q5=0,new Promise(async l=>{let c=H2.image.resizeBilinear(e,[c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[2]:0,c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[1]:0],!1),y=c0==null?void 0:c0.execute(c),i=(await y.data())[0];B2[o]=Math.round(100*i)/100,qt=n,Ut=v(),H2.dispose([c,y]),l(B2[o])}))}var L=V(D());var ie=V(D());var X0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Y5={count:468,mouth:13,symmetryLine:[13,X0.midwayBetweenEyes[0]]},Oe={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},K5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],M2=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],je=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Gr=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Br=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Hr=[33,133,362,263,1,78,308],A4=Gr.map(e=>M2[e]),s4=Br.map(e=>M2[e]),a4=Hr.map(e=>M2[e]);function be(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var Dr=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Vr=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Zr=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Xr=[[474,475],[475,476],[476,477],[477,474]],qr=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Ur=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Yr=[[469,470],[470,471],[471,472],[472,469]],Kr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],i4={lips:be(Dr),leftEye:be(Vr),leftEyebrow:be(Zr),leftIris:be(Xr),rightEye:be(qr),rightEyebrow:be(Ur),rightIris:be(Yr),faceOval:be(Kr)};var Ke=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],D2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],V2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Z2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],_t=(e,t)=>{let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:o,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},Q5=(e,t,o)=>{let n=t.shape[1],r=t.shape[2],A=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],s=ie.image.cropAndResize(t,[A],[0],o),a=ie.div(s,H.tf255);return ie.dispose(s),a},X2=(e,t)=>{let o=D2(e),n=Ke(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[o[0]-r[0],o[1]-r[1]],endPoint:[o[0]+r[0],o[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},q2=e=>{let t=D2(e),o=Ke(e),n=Math.max(...o)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},$t=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...o)],endPoint:[Math.max(...t),Math.max(...o)],landmarks:e}},_5=[[1,0,0],[0,1,0],[0,0,1]],Jr=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Qr=(e,t)=>Jr(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var Jt=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ne=(e,t)=>{let o=0;for(let n=0;n{let o=[];for(let n=0;n{let o=[],n=e.length;for(let r=0;r{let o=Math.cos(e),n=Math.sin(e),r=[[o,-n,0],[n,o,0],[0,0,1]],A=Jt(t[0],t[1]),s=Qt(A,r),a=Jt(-t[0],-t[1]);return Qt(s,a)},$r=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],o=[e[0][2],e[1][2]],n=[-Ne(t[0],o),-Ne(t[1],o)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},eA=(e,t)=>[Ne(e,t[0]),Ne(e,t[1])];function t3(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},o=[];for(let n=0;n[A[0]/r*(x[0]-r/2),A[1]/r*(x[1]-r/2),x[2]||0]),a=o&&o!==0&&Math.abs(o)>.2,l=a?e3(o,[0,0]):_5,c=a?s.map(x=>[...eA(x,l),x[2]]):s,y=a?$r(n):_5,i=D2(t),d=[Ne(i,y[0]),Ne(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2]||0)])}function n3(e,t,o,n){let r=t.landmarks.length>=Y5.count?Y5.symmetryLine:Oe.symmetryLine,A=0,s=_5,a;if(e&&P.kernels.includes("rotatewithoffset"))if(A=Qr(t.landmarks[r[0]],t.landmarks[r[1]]),A&&A!==0&&Math.abs(A)>.2){let c=D2(t),y=[c[0]/o.shape[2],c[1]/o.shape[1]],i=ie.image.rotateWithOffset(o,A,0,y);s=e3(-A,c),a=Q5(t,i,[n,n]),ie.dispose(i)}else a=Q5(t,o,[n,n]);else a=Q5(t,o,[n,n]);return[A,s,a]}var tA=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...o)+(Math.max(...o)-Math.min(...o))/2]},r3=(e,t)=>{let o=tA(e),n=Ke(t);return{startPoint:[o[0]-n[0]/2,o[1]-n[1]/2],endPoint:[o[0]+n[0]/2,o[1]+n[1]/2]}};var A3=6,oA=1.4,K0,s3=null,ge=0,v2=null,Je=()=>ge;async function a3(e){var t;return P.initial&&(K0=null),K0?e.debug&&h("cached model:",K0.modelUrl):K0=await F((t=e.face.detector)==null?void 0:t.modelPath),ge=K0.executor&&K0.inputs[0].shape?K0.inputs[0].shape[2]:256,v2=L.scalar(ge,"int32"),s3=L.tensor2d(t3(ge)),K0}function nA(e){let t={};t.boxStarts=L.slice(e,[0,1],[-1,2]),t.centers=L.add(t.boxStarts,s3),t.boxSizes=L.slice(e,[0,3],[-1,2]),t.boxSizesNormalized=L.div(t.boxSizes,v2),t.centersNormalized=L.div(t.centers,v2),t.halfBoxSize=L.div(t.boxSizesNormalized,H.tf2),t.starts=L.sub(t.centersNormalized,t.halfBoxSize),t.ends=L.add(t.centersNormalized,t.halfBoxSize),t.startNormalized=L.mul(t.starts,v2),t.endNormalized=L.mul(t.ends,v2);let o=L.concat2d([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>L.dispose(t[n])),o}async function i3(e,t){var a,l,c,y;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let o={};o.resized=L.image.resizeBilinear(e,[ge,ge]),o.div=L.div(o.resized,H.tf127),o.normalized=L.sub(o.div,H.tf05);let n=K0==null?void 0:K0.execute(o.normalized);if(Array.isArray(n)&&n.length>2){let i=n.sort((d,x)=>d.size-x.size);o.concat384=L.concat([i[0],i[2]],2),o.concat512=L.concat([i[1],i[3]],2),o.concat=L.concat([o.concat512,o.concat384],1),o.batch=L.squeeze(o.concat,0)}else Array.isArray(n)?o.batch=L.squeeze(n[0]):o.batch=L.squeeze(n);L.dispose(n),o.boxes=nA(o.batch),o.logits=L.slice(o.batch,[0,0],[-1,1]),o.sigmoid=L.sigmoid(o.logits),o.scores=L.squeeze(o.sigmoid),o.nms=await L.image.nonMaxSuppressionAsync(o.boxes,o.scores,((a=t.face.detector)==null?void 0:a.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((c=t.face.detector)==null?void 0:c.minConfidence)||0);let r=await o.nms.array(),A=[],s=await o.scores.data();for(let i=0;i(((y=t.face.detector)==null?void 0:y.minConfidence)||0)){let x={};x.bbox=L.slice(o.boxes,[r[i],0],[1,-1]),x.slice=L.slice(o.batch,[r[i],A3-1],[1,-1]),x.squeeze=L.squeeze(x.slice),x.landmarks=L.reshape(x.squeeze,[A3,-1]);let m=await x.bbox.data(),b={startPoint:[m[0],m[1]],endPoint:[m[2],m[3]],landmarks:await x.landmarks.array(),confidence:d},g=_t(b,[(e.shape[2]||0)/ge,(e.shape[1]||0)/ge]),M=X2(g,t.face.scale||oA),R=q2(M);A.push(R),Object.keys(x).forEach(f=>L.dispose(x[f]))}}return Object.keys(o).forEach(i=>L.dispose(o[i])),A}var S0=V(D());var U2={};pe(U2,{connected:()=>t1,kpt:()=>e1});var e1=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],t1={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var z0=V(D()),c3=224,rA,AA=5,Y2=[8,16,32,32,32];function x3(){let e=[],t=0;for(;to.x)),y:z0.tensor1d(e.map(o=>o.y))}}function le(e,t=[1,1]){let o=[e.map(a=>a[0]),e.map(a=>a[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[n[0],n[1],r[0]-n[0],r[1]-n[1]],s=[A[0]/t[0],A[1]/t[1],A[2]/t[0],A[3]/t[1]];return{box:A,boxRaw:s}}function y3(e,t=[1,1]){let o=[e.map(c=>c[0]),e.map(c=>c[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[(n[0]+r[0])/2,(n[1]+r[1])/2],s=Math.max(A[0]-n[0],A[1]-n[1],-A[0]+r[0],-A[1]+r[1]),a=[Math.trunc(A[0]-s),Math.trunc(A[1]-s),Math.trunc(2*s),Math.trunc(2*s)],l=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:l}}function K2(e,t){let o=[e[2]*t,e[3]*t];return[e[0]-(o[0]-e[2])/2,e[1]-(o[1]-e[3])/2,o[0],o[1]]}var m3={initial:!0},u0={detector:null,landmarks:null},Qe={detector:[224,224],landmarks:[256,256]},o1=Number.MAX_SAFE_INTEGER,aA={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},Q2=null,R2,Me=[[0,0],[0,0],[0,0],[0,0]],d3=0,f3=e=>1-1/(1+Math.exp(e));async function p3(e){var t;if(m3.initial&&(u0.detector=null),!u0.detector&&e.body.detector&&e.body.detector.modelPath){u0.detector=await F(e.body.detector.modelPath);let o=(t=u0.detector)!=null&&t.executor?Object.values(u0.detector.modelSignature.inputs):void 0;Qe.detector[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.detector[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}else e.debug&&u0.detector&&h("cached model:",u0.detector.modelUrl);return x3(),u0.detector}async function u3(e){var t;if(m3.initial&&(u0.landmarks=null),u0.landmarks)e.debug&&h("cached model:",u0.landmarks.modelUrl);else{u0.landmarks=await F(e.body.modelPath);let o=(t=u0.landmarks)!=null&&t.executor?Object.values(u0.landmarks.modelSignature.inputs):void 0;Qe.landmarks[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.landmarks[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return u0.landmarks}function iA(e,t){var r,A;let o={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((A=e==null?void 0:e.shape)!=null&&A[2]))return e;let n;if(R2&&(o.cropped=S0.image.cropAndResize(e,[R2],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let s=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],a=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Me=[[0,0],s,a,[0,0]],o.pad=S0.pad(o.cropped||e,Me),o.resize=S0.image.resizeBilinear(o.pad,[t,t]),n=S0.div(o.resize,H.tf255)}else e.shape[1]!==t?(o.resize=S0.image.resizeBilinear(o.cropped||e,[t,t]),n=S0.div(o.resize,H.tf255)):n=S0.div(o.cropped||e,H.tf255);return Object.keys(o).forEach(s=>S0.dispose(o[s])),n}function lA(e,t){for(let o of e)o.position=[Math.trunc(o.position[0]*(t[0]+Me[2][0]+Me[2][1])/t[0]-Me[2][0]),Math.trunc(o.position[1]*(t[1]+Me[1][0]+Me[1][1])/t[1]-Me[1][0]),o.position[2]],o.positionRaw=[o.position[0]/t[0],o.position[1]/t[1],2*o.position[2]/(t[0]+t[1])];if(R2)for(let o of e)o.positionRaw=[o.positionRaw[0]+R2[1],o.positionRaw[1]+R2[0],o.positionRaw[2]],o.position=[Math.trunc(o.positionRaw[0]*t[0]),Math.trunc(o.positionRaw[1]*t[1]),o.positionRaw[2]];return e}function cA(e){let t=e.find(a=>a.part==="leftPalm"),o=e.find(a=>a.part==="leftWrist"),n=e.find(a=>a.part==="leftIndex");t.position[2]=((o.position[2]||0)+(n.position[2]||0))/2;let r=e.find(a=>a.part==="rightPalm"),A=e.find(a=>a.part==="rightWrist"),s=e.find(a=>a.part==="rightIndex");r.position[2]=((A.position[2]||0)+(s.position[2]||0))/2}async function xA(e,t,o){var m,b;if(!((m=u0.landmarks)!=null&&m.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(b=u0.landmarks)==null?void 0:b.execute(e,aA.landmarks);let r=(await n.poseflag.data())[0],A=await n.ld.data(),s=await n.world.data();Object.keys(n).forEach(g=>S0.dispose(n[g]));let a=[],l=5;for(let g=0;gg.position),i=le(y,[o[0],o[1]]),d={};for(let[g,M]of Object.entries(t1)){let R=[];for(let f=0;fw.part===M[f]),z=c.find(w=>w.part===M[f+1]);p&&z&&R.push([p.position,z.position])}d[g]=R}return{id:0,score:Math.trunc(100*r)/100,box:i.box,boxRaw:i.boxRaw,keypoints:c,annotations:d}}async function n1(e,t){let o=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>v()-d3,r=o1<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&Q2!==null)o1++;else{let A={};A.landmarks=iA(e,256),Q2=await xA(A.landmarks,t,o),Object.keys(A).forEach(s=>S0.dispose(A[s])),d3=v(),o1=0}return Q2?[Q2]:[]}var g0=V(D());var _e=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var k0,Le=0,r1=[],b3=0,A1=Number.MAX_SAFE_INTEGER;async function g3(e){if(P.initial&&(k0=null),k0)e.debug&&h("cached model:",k0.modelUrl);else{k0=await F(e.object.modelPath);let t=k0!=null&&k0.executor?Object.values(k0.modelSignature.inputs):void 0;Le=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return k0}async function yA(e,t,o){if(!e)return[];let n={},r=[],A=await e.array();n.squeeze=g0.squeeze(e);let s=g0.split(n.squeeze,6,1);n.stack=g0.stack([s[1],s[0],s[3],s[2]],1),n.boxes=g0.squeeze(n.stack),n.scores=g0.squeeze(s[4]),n.classes=g0.squeeze(s[5]),g0.dispose([e,...s]),n.nms=await g0.image.nonMaxSuppressionAsync(n.boxes,n.scores,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence||0);let a=await n.nms.data(),l=0;for(let c of Array.from(a)){let y=Math.trunc(100*A[0][c][4])/100,i=A[0][c][5],d=_e[i].label,[x,m]=[A[0][c][0]/Le,A[0][c][1]/Le],b=[x,m,A[0][c][2]/Le-x,A[0][c][3]/Le-m],g=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];r.push({id:l++,score:y,class:i,label:d,box:g,boxRaw:b})}return Object.keys(n).forEach(c=>g0.dispose(n[c])),r}async function s1(e,t){if(!(k0!=null&&k0.executor))return[];let o=(t.object.skipTime||0)>v()-b3,n=A1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&r1.length>0?(A1++,r1):(A1=0,new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=g0.image.resizeBilinear(e,[Le,Le]),a=t.object.enabled?k0==null?void 0:k0.execute(s,["tower_0/detections"]):null;b3=v(),g0.dispose(s);let l=await yA(a,A,t);r1=l,r(l)}))}var Y=V(D());var _2={};pe(_2,{connected:()=>i1,kpt:()=>a1});var a1=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],i1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var x0,v3=0,M0={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},l1=Number.MAX_SAFE_INTEGER;async function R3(e){return P.initial&&(x0=null),x0?e.debug&&h("cached model:",x0.modelUrl):x0=await F(e.body.modelPath),x0}async function dA(e,t){let[o,n]=e.shape,r=Y.reshape(e,[n*o]),A=Y.max(r,0),s=(await A.data())[0];if(s>t){let a=Y.argMax(r,0),l=Y.mod(a,o),c=(await l.data())[0],y=Y.div(a,o),i=(await y.data())[0];return Y.dispose([r,A,a,l,y]),[c,i,s]}return Y.dispose([r,A]),[0,0,s]}async function c1(e,t){if(!(x0!=null&&x0.executor))return[];let o=(t.body.skipTime||0)>v()-v3,n=l1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n&&Object.keys(M0.keypoints).length>0?(l1++,[M0]):(l1=0,new Promise(async r=>{let A=Y.tidy(()=>{if(!(x0!=null&&x0.inputs[0].shape))return null;let i=Y.image.resizeBilinear(e,[x0.inputs[0].shape[2],x0.inputs[0].shape[1]],!1),d=Y.mul(i,H.tf2);return Y.sub(d,H.tf1)}),s;if(t.body.enabled&&(s=x0==null?void 0:x0.execute(A)),v3=v(),Y.dispose(A),s){M0.keypoints.length=0;let i=Y.squeeze(s);Y.dispose(s);let d=Y.unstack(i,2);Y.dispose(i);for(let x=0;x(t.body.minConfidence||0)&&M0.keypoints.push({score:Math.round(100*g)/100,part:a1[x],positionRaw:[m/x0.inputs[0].shape[2],b/x0.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/x0.inputs[0].shape[2]),Math.round(e.shape[1]*b/x0.inputs[0].shape[1])]})}d.forEach(x=>Y.dispose(x))}M0.score=M0.keypoints.reduce((i,d)=>d.score>i?d.score:i,0);let a=M0.keypoints.map(i=>i.position[0]),l=M0.keypoints.map(i=>i.position[1]);M0.box=[Math.min(...a),Math.min(...l),Math.max(...a)-Math.min(...a),Math.max(...l)-Math.min(...l)];let c=M0.keypoints.map(i=>i.positionRaw[0]),y=M0.keypoints.map(i=>i.positionRaw[1]);M0.boxRaw=[Math.min(...c),Math.min(...y),Math.max(...c)-Math.min(...c),Math.max(...y)-Math.min(...y)];for(let[i,d]of Object.entries(i1)){let x=[];for(let m=0;mM.part===d[m]),g=M0.keypoints.find(M=>M.part===d[m+1]);b&&g&&b.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([b.position,g.position])}M0.annotations[i]=x}r([M0])}))}var J0=V(D());var fA=["angry","disgust","fear","happy","sad","surprise","neutral"],F0,$2=[],T3=0,w3=0,x1=Number.MAX_SAFE_INTEGER;async function k3(e){var t;return P.initial&&(F0=null),F0?e.debug&&h("cached model:",F0.modelUrl):F0=await F((t=e.face.emotion)==null?void 0:t.modelPath),F0}async function y1(e,t,o,n){var s,a;if(!F0)return[];let r=x1<(((s=t.face.emotion)==null?void 0:s.skipFrames)||0),A=(((a=t.face.emotion)==null?void 0:a.skipTime)||0)>v()-w3;return t.skipAllowed&&A&&r&&T3===n&&$2[o]&&$2[o].length>0?(x1++,$2[o]):(x1=0,new Promise(async l=>{var y;let c=[];if((y=t.face.emotion)!=null&&y.enabled){let i={},d=F0!=null&&F0.inputs[0].shape?F0.inputs[0].shape[2]:0;i.resize=J0.image.resizeBilinear(e,[d,d],!1),i.channels=J0.mul(i.resize,H.rgb),i.grayscale=J0.sum(i.channels,3,!0),i.grayscaleSub=J0.sub(i.grayscale,H.tf05),i.grayscaleMul=J0.mul(i.grayscaleSub,H.tf2),i.emotion=F0==null?void 0:F0.execute(i.grayscaleMul),w3=v();let x=await i.emotion.data();for(let m=0;m(t.face.emotion.minConfidence||0)&&c.push({score:Math.min(.99,Math.trunc(100*x[m])/100),emotion:fA[m]});c.sort((m,b)=>b.score-m.score),Object.keys(i).forEach(m=>J0.dispose(i[m]))}$2[o]=c,T3=n,l(c)}))}var e5=V(D());var C0,d1=[],z3=0,S3=0,C3=Number.MAX_SAFE_INTEGER;async function I3(e){var t;return P.initial&&(C0=null),C0?e.debug&&h("cached model:",C0.modelUrl):C0=await F((t=e.face.mobilefacenet)==null?void 0:t.modelPath),C0}async function f1(e,t,o,n){var s,a;if(!(C0!=null&&C0.executor))return[];let r=C3<(((s=t.face.mobilefacenet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.mobilefacenet)==null?void 0:a.skipTime)||0)>v()-S3;return t.skipAllowed&&A&&r&&z3===n&&d1[o]?(C3++,d1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.mobilefacenet)==null?void 0:y.enabled)&&(C0==null?void 0:C0.inputs[0].shape)){let i={};i.crop=e5.image.resizeBilinear(e,[C0.inputs[0].shape[2],C0.inputs[0].shape[1]],!1),i.data=C0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>e5.dispose(i[x]))}d1[o]=c,z3=n,S3=v(),l(c)})}var t5=V(D());var I0,m1=[],j3=0,N3=0,L3=Number.MAX_SAFE_INTEGER;async function W3(e){return P.initial&&(I0=null),I0?e.debug&&h("cached model:",I0.modelUrl):I0=await F(e.face.insightface.modelPath),I0}async function p1(e,t,o,n){var s,a;if(!(I0!=null&&I0.executor))return[];let r=L3<(((s=t.face.insightface)==null?void 0:s.skipFrames)||0),A=(((a=t.face.insightface)==null?void 0:a.skipTime)||0)>v()-N3;return t.skipAllowed&&A&&r&&j3===n&&m1[o]?(L3++,m1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.insightface)==null?void 0:y.enabled)&&(I0==null?void 0:I0.inputs[0].shape)){let i={};i.crop=t5.image.resizeBilinear(e,[I0.inputs[0].shape[2],I0.inputs[0].shape[1]],!1),i.data=I0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>t5.dispose(i[x]))}m1[o]=c,j3=n,N3=v(),l(c)})}var Pe=V(D());var Q0=V(D());var O0,ve=0,mA=2.3,u1=X0.leftEyeLower0,h1=X0.rightEyeLower0,$e={leftBounds:[u1[0],u1[u1.length-1]],rightBounds:[h1[0],h1[h1.length-1]]},e2={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function D3(e){var t,o;return P.initial&&(O0=null),O0?e.debug&&h("cached model:",O0.modelUrl):O0=await F((t=e.face.iris)==null?void 0:t.modelPath),ve=(O0==null?void 0:O0.executor)&&((o=O0.inputs)==null?void 0:o[0].shape)?O0.inputs[0].shape[2]:0,ve===-1&&(ve=64),O0}function o5(e,t,o,n){for(let r=0;r{let t=e[$e.leftBounds[0]][2],o=e[$e.rightBounds[0]][2];return t-o},G3=(e,t,o,n,r,A=!1)=>{let s=q2(X2($t([e[o],e[n]]),mA)),a=Ke(s),l=Q0.image.cropAndResize(t,[[s.startPoint[1]/r,s.startPoint[0]/r,s.endPoint[1]/r,s.endPoint[0]/r]],[0],[ve,ve]);if(A&&P.kernels.includes("flipleftright")){let c=Q0.image.flipLeftRight(l);Q0.dispose(l),l=c}return{box:s,boxSize:a,crop:l}},B3=(e,t,o,n=!1)=>{let r=[];for(let A=0;A{let n=e[X0[`${o}EyeUpper0`][e2.upperCenter]][2],r=e[X0[`${o}EyeLower0`][e2.lowerCenter]][2],A=(n+r)/2;return t.map((s,a)=>{let l=A;return a===2?l=n:a===4&&(l=r),[s[0],s[1],l]})};async function V3(e,t,o){if(!(O0!=null&&O0.executor))return e;let{box:n,boxSize:r,crop:A}=G3(e,t,$e.leftBounds[0],$e.leftBounds[1],o,!0),{box:s,boxSize:a,crop:l}=G3(e,t,$e.rightBounds[0],$e.rightBounds[1],o,!0),c=Q0.concat([A,l]);Q0.dispose(A),Q0.dispose(l);let y=O0.execute(c);Q0.dispose(c);let i=await y.data();Q0.dispose(y);let d=i.slice(0,e2.numCoordinates*3),{rawCoords:x,iris:m}=B3(d,n,r,!0),b=i.slice(e2.numCoordinates*3),{rawCoords:g,iris:M}=B3(b,s,a,!1),R=pA(e);Math.abs(R)<30?(o5(e,x,"left",null),o5(e,g,"right",null)):R<1?o5(e,x,"left",["EyeUpper0","EyeLower0"]):o5(e,g,"right",["EyeUpper0","EyeLower0"]);let f=H3(e,m,"left"),p=H3(e,M,"right");return e.concat(f).concat(p)}var uA=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],hA=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],bA=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],gA=[[474,475],[475,476],[476,477],[477,474]],MA=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],vA=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],RA=[[469,470],[470,471],[471,472],[472,469]],PA=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Re(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var TA={lips:Re(uA),leftEye:Re(hA),leftEyebrow:Re(bA),leftIris:Re(gA),rightEye:Re(MA),rightEyebrow:Re(vA),rightIris:Re(RA),faceOval:Re(PA)},wA=Object.entries(TA).map(([e,t])=>t.map(o=>[o,e])).flat(),B4=new Map(wA),P2=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],We=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],Fe=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function q3(e,t){let o={lips:await t.filter(A=>A.size===160)[0].data(),irisL:await t.filter(A=>A.size===10)[0].data(),eyeL:await t.filter(A=>A.size===142)[0].data(),irisR:await t.filter(A=>A.size===10)[1].data(),eyeR:await t.filter(A=>A.size===142)[1].data()},n=We.reduce((A,s)=>A+=e[s][2],0)/We.length;for(let A=0;AA+=e[s][2],0)/Fe.length;for(let A=0;Av()-re.timestamp,n=re.skipped<(((c=t.face.detector)==null?void 0:c.skipFrames)||0);!t.skipAllowed||!o||!n||re.boxes.length===0?(re.boxes=await i3(e,t),re.timestamp=v(),re.skipped=0):re.skipped++;let r=[],A=[],s=0,a=T2;for(let R=0;RO.shape[O.shape.length-1]===1).data();if(w.faceScore=Math.round(100*X[0])/100,w.faceScore<(((m=t.face.detector)==null?void 0:m.minConfidence)||1)){if(f.confidence=w.faceScore,t.face.mesh.keepInvalid){w.box=V2(f,e),w.boxRaw=Z2(f,e),w.score=w.boxScore,w.mesh=f.landmarks.map(O=>[(f.startPoint[0]+f.endPoint[0])/2+(f.endPoint[0]+f.startPoint[0])*O[0]/Je(),(f.startPoint[1]+f.endPoint[1])/2+(f.endPoint[1]+f.startPoint[1])*O[1]/Je()]),w.meshRaw=w.mesh.map(O=>[O[0]/(e.shape[2]||1),O[1]/(e.shape[1]||1),(O[2]||0)/a]);for(let O of Object.keys(Oe))w.annotations[O]=[w.mesh[Oe[O]]]}}else{let O=u.find(I=>I.shape[I.shape.length-1]===1404),W=Pe.reshape(O,[-1,3]),Z=await W.array();Pe.dispose(W),(b=t.face.attention)!=null&&b.enabled?Z=await q3(Z,u):(g=t.face.iris)!=null&&g.enabled&&(Z=await V3(Z,w.tensor,T2)),w.mesh=o3(Z,f,p,z,T2),w.meshRaw=w.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/a]);for(let I of Object.keys(X0))w.annotations[I]=X0[I].map(m0=>w.mesh[m0]);w.score=w.faceScore;let N={...r3(w.mesh,f),confidence:f.confidence,landmarks:f.landmarks};w.box=V2(N,e),w.boxRaw=Z2(N,e),A.push(N)}Pe.dispose(u)}else{w.box=V2(f,e),w.boxRaw=Z2(f,e),w.score=w.boxScore,w.mesh=f.landmarks.map(u=>[(f.startPoint[0]+f.endPoint[0])/2+(f.endPoint[0]+f.startPoint[0])*u[0]/Je(),(f.startPoint[1]+f.endPoint[1])/2+(f.endPoint[1]+f.startPoint[1])*u[1]/Je()]),w.meshRaw=w.mesh.map(u=>[u[0]/(e.shape[2]||0),u[1]/(e.shape[1]||0),(u[2]||0)/a]);for(let u of Object.keys(Oe))w.annotations[u]=[w.mesh[Oe[u]]]}w.score>(((M=t.face.detector)==null?void 0:M.minConfidence)||1)?r.push(w):Pe.dispose(w.tensor)}return re.boxes=A,r}async function Y3(e){var t,o,n,r,A,s;return P.initial&&(_=null),((t=e.face.attention)==null?void 0:t.enabled)&&(_==null?void 0:_.signature)&&Object.keys(((o=_==null?void 0:_.signature)==null?void 0:o.outputs)||{}).length<6&&(_=null),_?e.debug&&h("cached model:",_.modelUrl):(n=e.face.attention)!=null&&n.enabled?_=await F(e.face.attention.modelPath):_=await F((r=e.face.mesh)==null?void 0:r.modelPath),T2=_.executor&&((A=_==null?void 0:_.inputs)==null?void 0:A[0].shape)?(s=_==null?void 0:_.inputs)==null?void 0:s[0].shape[2]:256,_}var K3=je,J3=M2;var _0=V(D());var v0,n5=[],Q3=0,_3=0,g1=Number.MAX_SAFE_INTEGER;async function $3(e){var t;return P.initial&&(v0=null),v0?e.debug&&h("cached model:",v0.modelUrl):v0=await F((t=e.face.description)==null?void 0:t.modelPath),v0}function M1(e){let t=e.image||e.tensor||e;if(!(v0!=null&&v0.inputs[0].shape))return t;let o=_0.image.resizeBilinear(t,[v0.inputs[0].shape[2],v0.inputs[0].shape[1]],!1),n=_0.mul(o,H.tf255);return _0.dispose(o),n}async function v1(e,t,o,n){var s,a,l,c;if(!(v0!=null&&v0.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=g1<(((s=t.face.description)==null?void 0:s.skipFrames)||0),A=(((a=t.face.description)==null?void 0:a.skipTime)||0)>v()-Q3;return t.skipAllowed&&r&&A&&_3===n&&((l=n5[o])==null?void 0:l.age)&&((c=n5[o])==null?void 0:c.age)>0?(g1++,n5[o]):(g1=0,new Promise(async y=>{var d;let i={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let x=M1(e),m=v0==null?void 0:v0.execute(x);Q3=v(),_0.dispose(x);let g=await m.find(B=>B.shape[1]===1).data(),M=Math.trunc(200*Math.abs(g[0]-.5))/100;M>(t.face.description.minConfidence||0)&&(i.gender=g[0]<=.5?"female":"male",i.genderScore=Math.min(.99,M));let R=_0.argMax(m.find(B=>B.shape[1]===100),1),f=(await R.data())[0];_0.dispose(R);let z=await m.find(B=>B.shape[1]===100).data();i.age=Math.round(z[f-1]>z[f+1]?10*f-100*z[f-1]:10*f+100*z[f+1])/10;let w=m.find(B=>B.shape[1]===1024),u=w?await w.data():[];i.descriptor=Array.from(u),m.forEach(B=>_0.dispose(B))}n5[o]=i,_3=n,y(i)}))}var G=V(D());var oo=V(D());function r5(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function w2(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function no(e,t,o){let n=t.shape[1],r=t.shape[2],A=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return oo.image.cropAndResize(t,A,[0],o)}function ro(e,t){let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(A=>[A[0]*t[0],A[1]*t[1]]);return{startPoint:o,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function A5(e,t=1.5){let o=w2(e),n=r5(e),r=[t*n[0]/2,t*n[1]/2],A=[o[0]-r[0],o[1]-r[1]],s=[o[0]+r[0],o[1]+r[1]];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function s5(e){let t=w2(e),o=r5(e),r=Math.max(...o)/2,A=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function EA(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Ao(e,t){let o=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return EA(o)}var eo=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Te(e,t){let o=0;for(let n=0;n[s.x,s.y]),this.anchorsTensor=G.tensor2d(this.anchors),this.inputSize=((A=(r=(n=(o=this==null?void 0:this.model)==null?void 0:o.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:A[2])||0,this.inputSizeTensor=G.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=G.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let o={};o.boxOffsets=G.slice(t,[0,0],[-1,2]),o.boxSizes=G.slice(t,[0,2],[-1,2]),o.div=G.div(o.boxOffsets,this.inputSizeTensor),o.boxCenterPoints=G.add(o.div,this.anchorsTensor),o.halfBoxSizes=G.div(o.boxSizes,this.doubleInputSizeTensor),o.sub=G.sub(o.boxCenterPoints,o.halfBoxSizes),o.startPoints=G.mul(o.sub,this.inputSizeTensor),o.add=G.add(o.boxCenterPoints,o.halfBoxSizes),o.endPoints=G.mul(o.add,this.inputSizeTensor);let n=G.concat2d([o.startPoints,o.endPoints],1);return Object.keys(o).forEach(r=>G.dispose(o[r])),n}normalizeLandmarks(t,o){let n={};n.reshape=G.reshape(t,[-1,7,2]),n.div=G.div(n.reshape,this.inputSizeTensor),n.landmarks=G.add(n.div,this.anchors[o]?this.anchors[o]:0);let r=G.mul(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(A=>G.dispose(n[A])),r}async predict(t,o){var a;let n={};n.resize=G.image.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=G.div(n.resize,H.tf127),n.image=G.sub(n.div,H.tf1),n.batched=this.model.execute(n.image),n.predictions=G.squeeze(n.batched),n.slice=G.slice(n.predictions,[0,0],[-1,1]),n.sigmoid=G.sigmoid(n.slice),n.scores=G.squeeze(n.sigmoid);let r=await n.scores.data();n.boxes=G.slice(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await G.image.nonMaxSuppressionAsync(n.norm,n.scores,3*(((a=o.hand)==null?void 0:a.maxDetected)||1),o.hand.iouThreshold,o.hand.minConfidence);let A=await n.nms.array(),s=[];for(let l of A){let c={};c.box=G.slice(n.norm,[l,0],[1,-1]),c.slice=G.slice(n.predictions,[l,5],[1,14]),c.norm=this.normalizeLandmarks(c.slice,l),c.palmLandmarks=G.reshape(c.norm,[-1,2]);let y=await c.box.data(),i=y.slice(0,2),d=y.slice(2,4),x=await c.palmLandmarks.array(),m={startPoint:i,endPoint:d,palmLandmarks:x,confidence:r[l]},b=ro(m,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);s.push(b),Object.keys(c).forEach(g=>G.dispose(c[g]))}return Object.keys(n).forEach(l=>G.dispose(n[l])),s}};var j0=V(D());var IA=5,lo=1.65,co=[0,5,9,13,17,1,2],OA=0,jA=2,xo=0,i5=class{constructor(t,o){T(this,"handDetector");T(this,"handPoseModel");T(this,"inputSize");T(this,"storedBoxes");T(this,"skipped");T(this,"detectedHands");var n,r,A;this.handDetector=t,this.handPoseModel=o,this.inputSize=((A=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:A[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let o=t.map(s=>s[0]),n=t.map(s=>s[1]),r=[Math.min(...o),Math.min(...n)],A=[Math.max(...o),Math.max(...n)];return{startPoint:r,endPoint:A}}getBoxForPalmLandmarks(t,o){let n=t.map(A=>T1([...A,1],o)),r=this.calculateLandmarksBoundingBox(n);return A5(s5(r),IA)}getBoxForHandLandmarks(t){let o=this.calculateLandmarksBoundingBox(t),n=A5(s5(o),lo);n.palmLandmarks=[];for(let r=0;r[s[0]*(x[0]-this.inputSize/2),s[1]*(x[1]-this.inputSize/2),s[2]*x[2]]),l=P1(n,[0,0]),c=a.map(x=>[...T1(x,l),x[2]]),y=so(r),i=[...w2(o),1],d=[Te(i,y[0]),Te(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2])])}async estimateHands(t,o){let n=!1,r,A=(o.hand.skipTime||0)>v()-xo,s=this.skipped<(o.hand.skipFrames||0);o.skipAllowed&&A&&s&&(r=await this.handDetector.predict(t,o),this.skipped=0),o.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==o.hand.maxDetected||!o.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let a=[];for(let l=0;l=o.hand.minConfidence/4){let z=j0.reshape(f,[-1,3]),w=await z.array();j0.dispose(f),j0.dispose(z);let u=this.transformRawCoords(w,b,y,m),B=this.getBoxForHandLandmarks(u);this.storedBoxes[l]={...B,confidence:p};let X={landmarks:u,confidence:p,boxConfidence:c.confidence,fingerConfidence:p,box:{topLeft:B.startPoint,bottomRight:B.endPoint}};a.push(X)}else this.storedBoxes[l]=null;j0.dispose(f)}else{let y=A5(s5(c),lo),i={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:y.startPoint,bottomRight:y.endPoint},landmarks:[]};a.push(i)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=a.length,a.length>o.hand.maxDetected&&(a.length=o.hand.maxDetected),a}};var R0={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>R0.nameMapping[e],getPoints:e=>R0.pointsMapping[e]},ke={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ke.nameMapping[e]},$={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>$.nameMapping[e]},we=class{constructor(t){T(this,"name");T(this,"curls");T(this,"directions");T(this,"weights");T(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,o,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([o,n])}direction(t,o,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([o,n])}weight(t,o){this.weights[t]=o;let n=this.weights.reduce((r,A)=>r+A,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,o){let n=0;for(let r in t){let A=t[r],s=this.curls[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}for(let r in o){let A=o[r],s=this.directions[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}return n/10}};var{thumb:$0,index:ce,middle:xe,ring:Ge,pinky:Be}=R0,{none:ee,half:LA,full:te}=ke,{verticalUp:t2,verticalDown:ts,horizontalLeft:w1,horizontalRight:WA,diagonalUpRight:FA,diagonalUpLeft:o2,diagonalDownRight:os,diagonalDownLeft:ns}=$,Ee=new we("thumbs up");Ee.curl($0,ee,1);Ee.direction($0,t2,1);Ee.direction($0,o2,.25);Ee.direction($0,FA,.25);for(let e of[R0.index,R0.middle,R0.ring,R0.pinky])Ee.curl(e,te,1),Ee.direction(e,w1,1),Ee.direction(e,WA,1);var i0=new we("victory");i0.curl($0,LA,.5);i0.curl($0,ee,.5);i0.direction($0,t2,1);i0.direction($0,o2,1);i0.curl(ce,ee,1);i0.direction(ce,t2,.75);i0.direction(ce,o2,1);i0.curl(xe,ee,1);i0.direction(xe,t2,1);i0.direction(xe,o2,.75);i0.curl(Ge,te,1);i0.direction(Ge,t2,.2);i0.direction(Ge,o2,1);i0.direction(Ge,w1,.2);i0.curl(Be,te,1);i0.direction(Be,t2,.2);i0.direction(Be,o2,1);i0.direction(Be,w1,.2);i0.weight(ce,2);i0.weight(xe,2);var ze=new we("point");ze.curl($0,te,1);ze.curl(ce,ee,.5);ze.curl(xe,te,.5);ze.curl(Ge,te,.5);ze.curl(Be,te,.5);ze.weight(ce,2);ze.weight(xe,2);var Se=new we("middle finger");Se.curl($0,ee,1);Se.curl(ce,te,.5);Se.curl(xe,te,.5);Se.curl(Ge,te,.5);Se.curl(Be,te,.5);Se.weight(ce,2);Se.weight(xe,2);var n2=new we("open palm");n2.curl($0,ee,.75);n2.curl(ce,ee,.75);n2.curl(xe,ee,.75);n2.curl(Ge,ee,.75);n2.curl(Be,ee,.75);var yo=[Ee,i0,ze,Se,n2];var GA=.7,He={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function fo(e,t,o,n){let r=(t-n)/(e-o),A=Math.atan(r)*180/Math.PI;return A<=0?A=-A:A>0&&(A=180-A),A}function po(e,t){if(!e||!t)return[0,0];let o=fo(e[0],e[1],t[0],t[1]);if(e.length===2)return o;let n=fo(e[1],e[2],t[1],t[2]);return[o,n]}function mo(e,t=1){let o=0,n=0,r=0;return e>=75&&e<=105?o=1*t:e>=25&&e<=155?n=1*t:r=1*t,[o,n,r]}function BA(e,t,o){let n=e[0]-t[0],r=e[0]-o[0],A=t[0]-o[0],s=e[1]-t[1],a=e[1]-o[1],l=t[1]-o[1],c=e[2]-t[2],y=e[2]-o[2],i=t[2]-o[2],d=Math.sqrt(n*n+s*s+c*c),x=Math.sqrt(r*r+a*a+y*y),m=Math.sqrt(A*A+l*l+i*i),b=(m*m+d*d-x*x)/(2*m*d);b>1?b=1:b<-1&&(b=-1);let g=Math.acos(b);g=57.2958*g%180;let M;return g>He.NO_CURL_START_LIMIT?M=ke.none:g>He.HALF_CURL_START_LIMIT?M=ke.half:M=ke.full,M}function uo(e,t,o,n){let r;return n===Math.abs(e)?e>0?r=$.horizontalLeft:r=$.horizontalRight:n===Math.abs(t)?t>0?r=$.horizontalLeft:r=$.horizontalRight:o>0?r=$.horizontalLeft:r=$.horizontalRight,r}function ho(e,t,o,n){let r;return n===Math.abs(e)?e<0?r=$.verticalDown:r=$.verticalUp:n===Math.abs(t)?t<0?r=$.verticalDown:r=$.verticalUp:o<0?r=$.verticalDown:r=$.verticalUp,r}function HA(e,t,o,n,r,A,s,a){let l,c=ho(e,t,o,n),y=uo(r,A,s,a);return c===$.verticalUp?y===$.horizontalLeft?l=$.diagonalUpLeft:l=$.diagonalUpRight:y===$.horizontalLeft?l=$.diagonalDownLeft:l=$.diagonalDownRight,l}function DA(e,t,o,n){let r=e[0]-t[0],A=e[0]-o[0],s=t[0]-o[0],a=e[1]-t[1],l=e[1]-o[1],c=t[1]-o[1],y=Math.max(Math.abs(r),Math.abs(A),Math.abs(s)),i=Math.max(Math.abs(a),Math.abs(l),Math.abs(c)),d=0,x=0,m=0,b=i/(y+1e-5);b>1.5?d+=He.DISTANCE_VOTE_POWER:b>.66?x+=He.DISTANCE_VOTE_POWER:m+=He.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+a*a),M=Math.sqrt(A*A+l*l),R=Math.sqrt(s*s+c*c),f=Math.max(g,M,R),p=e[0],z=e[1],w=o[0],u=o[1];f===g?(w=o[0],u=o[1]):f===R&&(p=t[0],z=t[1]);let O=po([p,z],[w,u]),W=mo(O,He.TOTAL_ANGLE_VOTE_POWER);d+=W[0],x+=W[1],m+=W[2];for(let N of n){let I=mo(N,He.SINGLE_ANGLE_VOTE_POWER);d+=I[0],x+=I[1],m+=I[2]}let Z;return d===Math.max(d,x,m)?Z=ho(l,a,c,i):m===Math.max(x,m)?Z=uo(A,r,s,y):Z=HA(l,a,c,i,A,r,s,y),Z}function bo(e){let t=[],o=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let A of R0.all){let s=R0.getPoints(A),a=[],l=[];for(let c of s){let y=e[c[0]],i=e[c[1]],d=po(y,i),x=d[0],m=d[1];a.push(x),l.push(m)}t.push(a),o.push(l)}for(let A of R0.all){let s=A===R0.thumb?1:0,a=R0.getPoints(A),l=e[a[s][0]],c=e[a[s+1][1]],y=e[a[3][1]],i=BA(l,c,y),d=DA(l,c,y,t[A].slice(s));n[A]=i,r[A]=d}return{curls:n,directions:r}}function l5(e){if(!e||e.length===0)return null;let t=bo(e),o={};for(let n of R0.all)o[R0.getName(n)]={curl:ke.getName(t.curls[n]),direction:$.getName(t.directions[n])};return o}function go(e){let t=[];if(!e||e.length===0)return t;let o=bo(e);for(let n of yo){let r=n.matchAgainst(o.curls,o.directions);r>=GA&&t.push({name:n.name,confidence:r})}return t}var Mo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},De,Ve,vo;async function E1(e,t){let o=await vo.estimateHands(e,t);if(!o)return[];let n=[];for(let r=0;ro[r].landmarks[i]);let s=o[r].landmarks,a=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(s&&s.length>0){for(let y of s)y[0]a[2]&&(a[2]=y[0]),y[1]>a[3]&&(a[3]=y[1]);a[2]-=a[0],a[3]-=a[1],l=[a[0]/(e.shape[2]||0),a[1]/(e.shape[1]||0),a[2]/(e.shape[2]||0),a[3]/(e.shape[1]||0)]}else a=o[r].box?[Math.trunc(Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.max(0,o[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,o[r].box.bottomRight[0])-Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,o[r].box.bottomRight[1])-Math.max(0,o[r].box.topLeft[1]))]:[0,0,0,0],l=[o[r].box.topLeft[0]/(e.shape[2]||0),o[r].box.topLeft[1]/(e.shape[1]||0),(o[r].box.bottomRight[0]-o[r].box.topLeft[0])/(e.shape[2]||0),(o[r].box.bottomRight[1]-o[r].box.topLeft[1])/(e.shape[1]||0)];let c=l5(s);n.push({id:r,score:Math.round(100*o[r].confidence)/100,boxScore:Math.round(100*o[r].boxConfidence)/100,fingerScore:Math.round(100*o[r].fingerConfidence)/100,label:"hand",box:a,boxRaw:l,keypoints:s,annotations:A,landmarks:c})}return n}async function z1(e){var o,n;P.initial&&(De=null,Ve=null),!De||!Ve?[De,Ve]=await Promise.all([e.hand.enabled?F((o=e.hand.detector)==null?void 0:o.modelPath):null,e.hand.landmarks?F((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&h("cached model:",De.modelUrl),e.debug&&h("cached model:",Ve.modelUrl));let t=De?new a5(De):void 0;return t&&Ve&&(vo=new i5(t,Ve)),[De,Ve]}var K=V(D());var r0=V(D());var J={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function VA(){let e=J.gl;!e||(J.extensions=e.getSupportedExtensions())}function Po(e){var t;if(e.config.backend==="humangl"&&(J.name in r0.engine().registry&&!((t=J==null?void 0:J.gl)!=null&&t.getParameter(J.gl.VERSION))&&(h("error: humangl backend invalid context"),c5(e)),!r0.findBackend(J.name))){try{J.canvas=b0(100,100)}catch(n){h("error: cannot create canvas:",n);return}try{if(J.gl=J.canvas.getContext("webgl2",J.webGLattr),!J.gl){h("error: cannot get WebGL context");return}if(!J.gl.getParameter(J.gl.VERSION).includes("2.0")){h("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}J.canvas&&(J.canvas.addEventListener("webglcontextlost",r=>{throw h("error: humangl:",r.type),h("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),J.canvas.addEventListener("webglcontextrestored",r=>{h("error: humangl context restored:",r)}),J.canvas.addEventListener("webglcontextcreationerror",r=>{h("error: humangl context create:",r)}))}catch(n){h("error: cannot get WebGL context:",n);return}try{r0.setWebGLContext(2,J.gl)}catch(n){h("error: cannot set WebGL context:",n);return}try{let n=new r0.GPGPUContext(J.gl);r0.registerBackend(J.name,()=>new r0.MathBackendWebGL(n),J.priority)}catch(n){h("error: cannot register WebGL backend:",n);return}try{r0.getKernelsForBackend("webgl").forEach(r=>{let A={...r,backendName:J.name};r0.registerKernel(A)})}catch(n){h("error: cannot update WebGL backend registration:",n);return}let o=r0.backend().getGPGPUContext?r0.backend().getGPGPUContext().gl:null;if(o)h(`humangl webgl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`);else{h("error: no current gl context:",o,J.gl);return}try{r0.env().flagRegistry.WEBGL_VERSION&&r0.env().set("WEBGL_VERSION",2)}catch(n){h("error: cannot set WebGL backend flags:",n);return}VA(),h("backend registered:",J.name)}}var k=V(D());function ZA(e){if(!P.kernels.includes("mod")){let t={kernelName:"Mod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.sub(o.inputs.a,k.mul(k.div(o.inputs.a,o.inputs.b),o.inputs.b)))};e.debug&&h("registered kernel:","Mod"),k.registerKernel(t),P.kernels.push("mod")}if(!P.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.add(k.mul(k.floorDiv(o.inputs.a/o.inputs.b),o.inputs.b),k.mod(o.inputs.a,o.inputs.b)))};e.debug&&h("registered kernel:","FloorMod"),k.registerKernel(t),P.kernels.push("floormod")}if(!P.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>{let n=k.getBackend();k.setBackend("cpu");let r=k.image.rotateWithOffset(o.inputs.image,o.attrs.radians,o.attrs.fillValue,o.attrs.center);return k.setBackend(n),r})};e.debug&&h("registered kernel:","RotateWithOffset"),k.registerKernel(t),P.kernels.push("rotatewithoffset")}}async function y5(e,t=!1){if(e.state="backend",t||P.initial||e.config.backend&&e.config.backend.length>0&&k.getBackend()!==e.config.backend){let o=v();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&h("running inside web worker"),P.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&h("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),P.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&h(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),P.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")h("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&h("enumerated webgpu adapter:",r),!r)h("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let A="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;h("webgpu adapter info:",A)}}e.config.backend==="humangl"&&Po(e);let n=Object.keys(k.engine().registryFactory);if(e.config.debug&&h("available backends:",n),n.includes(e.config.backend)||(h(`error: backend ${e.config.backend} not found in registry`),e.config.backend=P.node?"tensorflow":"webgl",e.config.debug&&h(`override: setting backend ${e.config.backend}`)),e.config.debug&&h("setting backend:",e.config.backend),e.config.backend==="wasm"){if(k.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&k.env().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&h("wasm path:",e.config.wasmPath),typeof k.setWasmPaths!="undefined")k.setWasmPaths(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,A=!1;try{r=await k.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),A=await k.env().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&h(`wasm execution: ${A?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!A&&h("warning: wasm simd support is not enabled")}catch(s){h("wasm detection failed")}}try{await k.setBackend(e.config.backend),await k.ready(),Wt()}catch(r){return h("error: cannot set backend:",e.config.backend,r),!1}}if(k.getBackend()==="humangl"&&(k.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&k.env().set("CHECK_COMPUTATION_FOR_ERRORS",!1),k.env().flagRegistry.WEBGL_CPU_FORWARD&&k.env().set("WEBGL_CPU_FORWARD",!0),k.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&k.env().set("WEBGL_USE_SHAPES_UNIFORMS",!0),k.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&k.env().set("CPU_HANDOFF_SIZE_THRESHOLD",256),k.env().flagRegistry.WEBGL_EXP_CONV&&k.env().set("WEBGL_EXP_CONV",!0),k.env().flagRegistry.USE_SETTIMEOUTCUSTOM&&k.env().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(h("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),k.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),k.backend().getGPGPUContext)){let n=await k.backend().getGPGPUContext().gl;e.config.debug&&h(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}k.getBackend(),k.enableProdMode(),await k.ready(),e.performance.initBackend=Math.trunc(v()-o),e.config.backend=k.getBackend(),await P.updateBackend(),ZA(e.config)}return!0}function d5(e,t){for(let o of e){let n={kernelName:o,backendName:t.backend,kernelFunc:()=>{t.debug&&h("kernelFunc",o,t.backend)}};k.registerKernel(n)}P.kernels=k.getKernelsForBackend(k.getBackend()).map(o=>o.kernelName.toLowerCase())}var s0=[null,null],qA=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Ce=[[0,0],[0,0]],UA=["hand","fist","pinch","point","face","tip","pinchtip"],wo=4,ko=1.6,YA=512,KA=1.4,f5=Number.MAX_SAFE_INTEGER,S1=0,ye=[0,0],A0={boxes:[],hands:[]},Eo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function zo(e){var t;if(P.initial&&(s0[0]=null),s0[0])e.debug&&h("cached model:",s0[0].modelUrl);else{d5(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),s0[0]=await F((t=e.hand.detector)==null?void 0:t.modelPath);let o=s0[0].executor?Object.values(s0[0].modelSignature.inputs):void 0;Ce[0][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[0][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[0]}async function So(e){var t;if(P.initial&&(s0[1]=null),s0[1])e.debug&&h("cached model:",s0[1].modelUrl);else{s0[1]=await F((t=e.hand.skeleton)==null?void 0:t.modelPath);let o=s0[1].executor?Object.values(s0[1].modelSignature.inputs):void 0;Ce[1][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[1][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[1]}async function JA(e,t){let o=[];if(!e||!s0[0])return o;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),A=Math.min(Math.round((e.shape[1]||0)/8)*8,YA),s=Math.round(A*r/8)*8;n.resize=K.image.resizeBilinear(e,[A,s]),n.cast=K.cast(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await s0[0].executeAsync(n.cast,qA),n.boxes=K.squeeze(n.rawBoxes,[0,2]),n.scores=K.squeeze(n.rawScores,[0]);let a=K.unstack(n.scores,1);K.dispose(a[wo]),a.splice(wo,1),n.filtered=K.stack(a,1),K.dispose(a),n.max=K.max(n.filtered,1),n.argmax=K.argMax(n.filtered,1);let l=0;n.nms=await K.image.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let c=await n.nms.data(),y=await n.max.data(),i=await n.argmax.data();for(let d of Array.from(c)){let x=K.slice(n.boxes,d,1),m=await x.data();K.dispose(x);let b=[m[1],m[0],m[3]-m[1],m[2]-m[0]],g=K2(b,KA),M=[Math.trunc(b[0]*ye[0]),Math.trunc(b[1]*ye[1]),Math.trunc(b[2]*ye[0]),Math.trunc(b[3]*ye[1])],R=y[d],f=UA[i[d]],p={id:l++,score:R,box:M,boxRaw:g,label:f};o.push(p)}return Object.keys(n).forEach(d=>K.dispose(n[d])),o.sort((d,x)=>x.score-d.score),o.length>(t.hand.maxDetected||1)&&(o.length=t.hand.maxDetected||1),o}async function C1(e,t,o){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&s0[1]&&o.hand.landmarks&&t.score>(o.hand.minConfidence||0)){let r={},A=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=K.image.cropAndResize(e,[A],[0],[Ce[1][0],Ce[1][1]],"bilinear"),r.div=K.div(r.crop,H.tf255),[r.score,r.keypoints]=s0[1].execute(r.div,["Identity_1","Identity"]);let s=(await r.score.data())[0],a=(100-Math.trunc(100/(1+Math.exp(s))))/100;if(a>=(o.hand.minConfidence||0)){n.fingerScore=a,r.reshaped=K.reshape(r.keypoints,[-1,3]);let y=(await r.reshaped.array()).map(i=>[i[0]/Ce[1][1],i[1]/Ce[1][0],i[2]||0]).map(i=>[i[0]*t.boxRaw[2],i[1]*t.boxRaw[3],i[2]||0]);n.keypoints=y.map(i=>[ye[0]*(i[0]+t.boxRaw[0]),ye[1]*(i[1]+t.boxRaw[1]),i[2]||0]),n.landmarks=l5(n.keypoints);for(let i of Object.keys(Eo))n.annotations[i]=Eo[i].map(d=>n.landmarks&&n.keypoints[d]?n.keypoints[d]:null)}Object.keys(r).forEach(l=>K.dispose(r[l]))}return n}async function I1(e,t){var r,A;if(!((r=s0[0])!=null&&r.executor)||!((A=s0[1])!=null&&A.executor)||!s0[0].inputs[0].shape||!s0[1].inputs[0].shape)return[];ye=[e.shape[2]||0,e.shape[1]||0],f5++;let o=(t.hand.skipTime||0)>v()-S1,n=f5<(t.hand.skipFrames||0);return t.skipAllowed&&o&&n?A0.hands:new Promise(async s=>{let a=3*(t.hand.skipTime||0)>v()-S1,l=f5<3*(t.hand.skipFrames||0);t.skipAllowed&&A0.hands.length===t.hand.maxDetected?A0.hands=await Promise.all(A0.boxes.map(y=>C1(e,y,t))):t.skipAllowed&&a&&l&&A0.hands.length>0?A0.hands=await Promise.all(A0.boxes.map(y=>C1(e,y,t))):(A0.boxes=await JA(e,t),S1=v(),A0.hands=await Promise.all(A0.boxes.map(y=>C1(e,y,t))),f5=0);let c=[...A0.boxes];if(A0.boxes.length=0,t.cacheSensitivity>0)for(let y=0;y.05&&i.box[3]/(e.shape[1]||1)>.05&&A0.hands[y].fingerScore&&A0.hands[y].fingerScore>(t.hand.minConfidence||0)){let d=K2(i.box,ko),x=K2(i.boxRaw,ko);A0.boxes.push({...c[y],box:d,boxRaw:x})}}for(let y=0;yv()-Oo,A=O1<(((a=t.face.liveness)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&Io===n&&m5[o]?(O1++,m5[o]):(O1=0,new Promise(async l=>{let c=p5.image.resizeBilinear(e,[f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[2]:0,f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[1]:0],!1),y=f0==null?void 0:f0.execute(c),i=(await y.data())[0];m5[o]=Math.round(100*i)/100,Io=n,Oo=v(),p5.dispose([c,y]),l(m5[o])}))}var Bo=V(D());var k2={};pe(k2,{connected:()=>h5,horizontal:()=>N1,kpt:()=>u5,relative:()=>W1,vertical:()=>L1});var u5=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],N1=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],L1=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],W1=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],h5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Ie=V(D()),Lo=.005,N0={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function F1(e){for(let t of N1){let o=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[0]r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[1]c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),A=e.keypoints.findIndex(c=>c&&c.part===o[0]),s=e.keypoints.findIndex(c=>c&&c.part===o[1]);if(!e.keypoints[A]||!e.keypoints[s])continue;let a=e.keypoints[n]?[Math.abs(e.keypoints[A].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[A].position[0]-e.keypoints[r].position[0])]:[0,0];if(a[0]>a[1]||l[0]>l[1]){let c=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=c}}}function Wo(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],o.pad=Ie.pad(e,N0.padding),o.resize=Ie.image.resizeBilinear(o.pad,[t,t]);let n=Ie.cast(o.resize,"int32");return Object.keys(o).forEach(s=>Ie.dispose(o[s])),n}function Go(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+N0.padding[2][0]+N0.padding[2][1])/t[0]-N0.padding[2][0],n.position[1]*(t[1]+N0.padding[1][0]+N0.padding[1][1])/t[1]-N0.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let o=le(e.keypoints.map(n=>n.position),t);return e.box=o.box,e.boxRaw=o.boxRaw,e}var l0,b5=0,G1=Number.MAX_SAFE_INTEGER,Ze={boxes:[],bodies:[],last:0};async function Ho(e){var t;return P.initial&&(l0=null),l0?e.debug&&h("cached model:",l0.modelUrl):(d5(["size"],e),l0=await F(e.body.modelPath)),b5=(l0==null?void 0:l0.executor)&&((t=l0==null?void 0:l0.inputs)==null?void 0:t[0].shape)?l0.inputs[0].shape[2]:0,b5<64&&(b5=256),l0}function _A(e,t,o){let n=e[0][0],r=[],A=0;for(let y=0;yt.body.minConfidence){let i=[n[y][1],n[y][0]];r.push({score:Math.round(100*A)/100,part:u5[y],positionRaw:i,position:[Math.round((o.shape[2]||0)*i[0]),Math.round((o.shape[1]||0)*i[1])]})}A=r.reduce((y,i)=>i.score>y?i.score:y,0);let s=[],a=le(r.map(y=>y.position),[o.shape[2],o.shape[1]]),l={};for(let[y,i]of Object.entries(h5)){let d=[];for(let x=0;xg.part===i[x]),b=r.find(g=>g.part===i[x+1]);m&&b&&m.score>(t.body.minConfidence||0)&&b.score>(t.body.minConfidence||0)&&d.push([m.position,b.position])}l[y]=d}let c={id:0,score:A,box:a.box,boxRaw:a.boxRaw,keypoints:r,annotations:l};return F1(c),s.push(c),s}function $A(e,t,o){let n=[];for(let r=0;rt.body.minConfidence){let a=[];for(let i=0;i<17;i++){let d=A[3*i+2];if(d>t.body.minConfidence){let x=[A[3*i+1],A[3*i+0]];a.push({part:u5[i],score:Math.round(100*d)/100,positionRaw:x,position:[Math.round((o.shape[2]||0)*x[0]),Math.round((o.shape[1]||0)*x[1])]})}}let l=le(a.map(i=>i.position),[o.shape[2],o.shape[1]]),c={};for(let[i,d]of Object.entries(h5)){let x=[];for(let m=0;mM.part===d[m]),g=a.find(M=>M.part===d[m+1]);b&&g&&b.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([b.position,g.position])}c[i]=x}let y={id:r,score:s,box:l.box,boxRaw:l.boxRaw,keypoints:[...a],annotations:c};F1(y),n.push(y)}}return n.sort((r,A)=>A.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function B1(e,t){var r;if(!(l0!=null&&l0.executor)||!((r=l0==null?void 0:l0.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Ze.boxes.length=0),G1++;let o=(t.body.skipTime||0)>v()-Ze.last,n=G1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n?Ze.bodies:new Promise(async A=>{let s={};G1=0,s.input=Fo(e,b5),s.res=l0==null?void 0:l0.execute(s.input),Ze.last=v();let a=await s.res.array();Ze.bodies=s.res.shape[2]===17?_A(a,t,e):$A(a,t,e);for(let l of Ze.bodies)Go(l,[e.shape[2]||1,e.shape[1]||1]),Wo(l.keypoints);Object.keys(s).forEach(l=>Bo.dispose(s[l])),A(Ze.bodies)})}var L0=V(D());var q0,g5=[],Vo=0,H1=Number.MAX_SAFE_INTEGER,v5=0,M5=2.5;async function Zo(e){if(!q0||P.initial){q0=await F(e.object.modelPath);let t=q0!=null&&q0.executor?Object.values(q0.modelSignature.inputs):void 0;v5=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&h("cached model:",q0.modelUrl);return q0}async function e7(e,t,o){let n=0,r=[],A=v5;for(let c of[1,2,4]){let y=c*13,i=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)===_e.length)),d=await i.array(),x=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)<_e.length)),m=x.reshape([-1,4,x.shape[1]/4]),b=m.argMax(2),g=await b.array();for(let M=0;M(o.object.minConfidence||0)&&R!==61){let p=(.5+Math.trunc(M%y))/y,z=(.5+Math.trunc(M/y))/y,w=g[M].map(I=>I*(y/c/A)),[u,B]=[p-M5/c*w[0],z-M5/c*w[1]],[X,O]=[p+M5/c*w[2]-u,z+M5/c*w[3]-B],W=[u,B,X,O];W=W.map(I=>Math.max(0,Math.min(I,1)));let Z=[W[0]*t[0],W[1]*t[1],W[2]*t[0],W[3]*t[1]],N={id:n++,score:Math.round(100*f)/100,class:R+1,label:_e[R].label,box:Z.map(I=>Math.trunc(I)),boxRaw:W};r.push(N)}}L0.dispose([i,x,m,b])}let s=r.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),a=r.map(c=>c.score),l=[];if(s&&s.length>0){let c=await L0.image.nonMaxSuppressionAsync(s,a,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence);l=await c.data(),L0.dispose(c)}return r=r.filter((c,y)=>l.includes(y)).sort((c,y)=>y.score-c.score),r}async function D1(e,t){if(!(q0!=null&&q0.executor))return[];let o=(t.object.skipTime||0)>v()-Vo,n=H1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&g5.length>0?(H1++,g5):(H1=0,!P.kernels.includes("mod")||!P.kernels.includes("sparsetodense")?g5:new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=L0.image.resizeBilinear(e,[v5,v5],!1),a=L0.div(s,H.tf255),l=L0.transpose(a,[0,3,1,2]),c;t.object.enabled&&(c=q0.execute(l)),Vo=v();let y=await e7(c,A,t);g5=y,L0.dispose([s,a,l,...c]),r(y)}))}var P0=V(D());var z2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],t7=z2.length,E2=z2.reduce((e,t,o)=>(e[t]=o,e),{}),o7=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Ss=o7.map(([e,t])=>[E2[e],E2[t]]),qo=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Uo(e){let t=e.reduce(({maxX:o,maxY:n,minX:r,minY:A},{position:{x:s,y:a}})=>({maxX:Math.max(o,s),maxY:Math.max(n,a),minX:Math.min(r,s),minY:Math.min(A,a)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Yo(e,[t,o],[n,r]){let A=t/n,s=o/r,a=(c,y)=>({id:y,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/n,c.box[2]/r,c.box[3]/n],box:[Math.trunc(c.box[0]*s),Math.trunc(c.box[1]*A),Math.trunc(c.box[2]*s),Math.trunc(c.box[3]*A)],keypoints:c.keypoints.map(({score:i,part:d,position:x})=>({score:i,part:d,position:[Math.trunc(x.x*s),Math.trunc(x.y*A)],positionRaw:[x.x/n,x.y/n]})),annotations:{}});return e.map((c,y)=>a(c,y))}var R5=class{constructor(t,o){T(this,"priorityQueue");T(this,"numberOfElements");T(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=o}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let o=2*t;if(oo?o:e}function Ko(e,t,o,n){let r=o-e,A=n-t;return r*r+A*A}function q1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var W0,r7=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],P5=1,r2=16,A7=50**2;function Jo(e,t,o,n,r,A,s=2){let a=M=>({y:A.get(M.y,M.x,e),x:A.get(M.y,M.x,A.shape[2]/2+e)}),l=(M,R,f)=>({y:X1(Math.round(M.y/r2),0,R-1),x:X1(Math.round(M.x/r2),0,f-1)}),[c,y]=n.shape,i=l(t.position,c,y),d=a(i),m=q1(t.position,d);for(let M=0;M[E2[d],E2[x]]),s=A.map(([,d])=>d),a=A.map(([d])=>d),l=t.shape[2],c=s.length,y=new Array(l),i=Z1(e.part,r2,o);y[e.part.id]={score:e.score,part:z2[e.part.id],position:i};for(let d=c-1;d>=0;--d){let x=s[d],m=a[d];y[x]&&!y[m]&&(y[m]=Jo(d,y[x],m,t,o,r))}for(let d=0;dt){a=!1;break}if(!a)break}return a}function i7(e,t){let[o,n,r]=t.shape,A=new R5(o*n*r,({score:s})=>s);for(let s=0;s{var s;let A=(s=r[n])==null?void 0:s.position;return A?Ko(o,t,A.y,A.x)<=A7:!1})}function l7(e,t){return t.reduce((n,{position:r,score:A},s)=>(Qo(e,r,s)||(n+=A),n),0)/t.length}function c7(e,t,o,n,r,A){let s=[],a=i7(A,t);for(;s.lengthx.score>A);let i=l7(s,y),d=Uo(y);i>A&&s.push({keypoints:y,box:d,score:Math.round(100*i)/100})}return s}async function U1(e,t){if(!(W0!=null&&W0.executor))return[];let o=P0.tidy(()=>{if(!W0.inputs[0].shape)return[];let s=P0.image.resizeBilinear(e,[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]),a=P0.sub(P0.div(P0.cast(s,"float32"),127.5),1),c=W0.execute(a,r7).map(y=>P0.squeeze(y,[0]));return c[1]=P0.sigmoid(c[1]),c}),n=await Promise.all(o.map(s=>s.buffer()));for(let s of o)P0.dispose(s);let r=c7(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return W0.inputs[0].shape?Yo(r,[e.shape[1],e.shape[2]],[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]):[]}async function _o(e){return!W0||P.initial?W0=await F(e.body.modelPath):e.debug&&h("cached model:",W0.modelUrl),W0}var e0=V(D());var Ae,Y1=!1;async function K1(e){return!Ae||P.initial?Ae=await F(e.segmentation.modelPath):e.debug&&h("cached model:",Ae.modelUrl),Ae}async function en(e,t,o){var b,g;if(Y1)return{data:[],canvas:null,alpha:null};Y1=!0,Ae||await K1(o);let n=await Ue(e,o),r=((b=n.tensor)==null?void 0:b.shape[2])||0,A=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let s={};s.resize=e0.image.resizeBilinear(n.tensor,[Ae.inputs[0].shape?Ae.inputs[0].shape[1]:0,Ae.inputs[0].shape?Ae.inputs[0].shape[2]:0],!1),e0.dispose(n.tensor),s.norm=e0.div(s.resize,H.tf255),s.res=Ae.execute(s.norm),s.squeeze=e0.squeeze(s.res,0),s.squeeze.shape[2]===2?(s.softmax=e0.softmax(s.squeeze),[s.bg,s.fg]=e0.unstack(s.softmax,2),s.expand=e0.expandDims(s.fg,2),s.pad=e0.expandDims(s.expand,0),s.crop=e0.image.cropAndResize(s.pad,[[0,0,.5,.5]],[0],[r,A]),s.data=e0.squeeze(s.crop,0)):s.data=e0.image.resizeBilinear(s.squeeze,[A,r]);let a=Array.from(await s.data.data());if(P.node&&!P.Canvas&&typeof ImageData=="undefined")return o.debug&&h("canvas support missing"),Object.keys(s).forEach(M=>e0.dispose(s[M])),{data:a,canvas:null,alpha:null};let l=b0(r,A);e0.browser&&await e0.browser.toPixels(s.data,l);let c=l.getContext("2d");o.segmentation.blur&&o.segmentation.blur>0&&(c.filter=`blur(${o.segmentation.blur}px)`);let y=c.getImageData(0,0,r,A),i=b0(r,A),d=i.getContext("2d");n.canvas&&d.drawImage(n.canvas,0,0),d.globalCompositeOperation="darken",o.segmentation.blur&&o.segmentation.blur>0&&(d.filter=`blur(${o.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let x=d.getImageData(0,0,r,A);for(let M=0;Me0.dispose(s[M])),Y1=!1,{data:a,canvas:i,alpha:l}}var S2=class{constructor(){T(this,"ssrnetage",null);T(this,"gear",null);T(this,"blazeposedetect",null);T(this,"blazepose",null);T(this,"centernet",null);T(this,"efficientpose",null);T(this,"mobilefacenet",null);T(this,"insightface",null);T(this,"emotion",null);T(this,"facedetect",null);T(this,"faceiris",null);T(this,"facemesh",null);T(this,"faceres",null);T(this,"ssrnetgender",null);T(this,"handpose",null);T(this,"handskeleton",null);T(this,"handtrack",null);T(this,"liveness",null);T(this,"movenet",null);T(this,"nanodet",null);T(this,"posenet",null);T(this,"segmentation",null);T(this,"antispoof",null)}},J1=e=>{let t=0,o=0,n=0;for(let A of Object.values(oe))t+=A.sizeFromManifest,o+=A.sizeLoadedWeights,n+=A.sizeDesired;let r=n>0?o/n:0;return{numLoadedModels:Object.values(oe).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:o,totalSizeLoading:n,totalSizeEnabled:void 0,modelStats:Object.values(oe)}};function c5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function Q1(e){var t,o,n,r,A,s,a,l,c,y,i,d,x,m,b,g,M,R,f,p,z,w,u,B,X,O;P.initial&&c5(e),e.config.hand.enabled&&(!e.models.handpose&&((o=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:o.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await z1(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await z1(e.config))),e.config.body.enabled&&!e.models.blazepose&&((A=e.config.body.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=u3(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=p3(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((s=e.config.body.modelPath)==null?void 0:s.includes("efficientpose"))&&(e.models.efficientpose=R3(e.config)),e.config.body.enabled&&!e.models.movenet&&((a=e.config.body.modelPath)==null?void 0:a.includes("movenet"))&&(e.models.movenet=Ho(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=_o(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=a3(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=Yt(e.config)),e.config.face.enabled&&((y=e.config.face.liveness)==null?void 0:y.enabled)&&!e.models.liveness&&(e.models.liveness=jo(e.config)),e.config.face.enabled&&((i=e.config.face.description)==null?void 0:i.enabled)&&!e.models.faceres&&(e.models.faceres=$3(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=k3(e.config)),e.config.face.enabled&&((x=e.config.face.iris)==null?void 0:x.enabled)&&!((m=e.config.face.attention)!=null&&m.enabled)&&!e.models.faceiris&&(e.models.faceiris=D3(e.config)),e.config.face.enabled&&((b=e.config.face.mesh)==null?void 0:b.enabled)&&!e.models.facemesh&&(e.models.facemesh=Y3(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=Nt(e.config)),e.config.face.enabled&&((M=e.config.face.ssrnet)==null?void 0:M.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=Bt(e.config)),e.config.face.enabled&&((R=e.config.face.ssrnet)==null?void 0:R.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=Zt(e.config)),e.config.face.enabled&&((f=e.config.face.mobilefacenet)==null?void 0:f.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=I3(e.config)),e.config.face.enabled&&((p=e.config.face.insightface)==null?void 0:p.enabled)&&!e.models.insightface&&(e.models.insightface=W3(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((w=(z=e.config.hand.detector)==null?void 0:z.modelPath)==null?void 0:w.includes("handtrack"))&&(e.models.handtrack=zo(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((B=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:B.includes("handtrack"))&&(e.models.handskeleton=So(e.config)),e.config.object.enabled&&!e.models.centernet&&((X=e.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(e.models.centernet=g3(e.config)),e.config.object.enabled&&!e.models.nanodet&&((O=e.config.object.modelPath)==null?void 0:O.includes("nanodet"))&&(e.models.nanodet=Zo(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=K1(e.config));for await(let W of Object.keys(e.models))e.models[W]&&typeof e.models[W]!="undefined"&&(e.models[W]=await e.models[W])}var G0;function A2(e,t,o){var c;if(e&&(G0=e),!t||(G0||h("instance not registred"),!G0.config.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],A=[],s=[],a=t.modelUrl,l=t.executor;if((c=l==null?void 0:l.graph)!=null&&c.nodes)for(let y of Object.values(l.graph.nodes)){let i=y.op.toLowerCase();A.includes(i)||A.push(i)}else!l&&G0.config.debug&&h("model not loaded",o);for(let y of A)!n.includes(y)&&!r.includes(y)&&!G0.env.kernels.includes(y)&&!G0.env.kernels.includes(y.replace("_",""))&&!G0.env.kernels.includes(y.replace("native",""))&&!G0.env.kernels.includes(y.replace("v2",""))&&s.push(y);return G0.config.debug&&s.length>0&&h("model validation failed:",o,s),s.length>0?{name:o,missing:s,ops:A,url:a}:null}function T5(e){G0=e;let t=[];for(let o of Object.keys(G0.models)){let n=G0.models[o];if(!n)continue;let r=A2(G0,n,o);r&&t.push(r)}return t}var T0={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},oe={};async function x7(e,t){return T0.debug&&h("load model fetch:",e,t),fetch(e,t)}function on(e){T0.cacheModels=e.cacheModels,T0.verbose=e.debug,T0.modelBasePath=e.modelBasePath}async function F(e){var c,y,i;let t=Mt(T0.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let o=t.includes("/")?t.split("/"):t.split("\\"),n=o[o.length-1].replace(".json",""),r="indexeddb://"+n;oe[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:W5[n],inCache:!1},T0.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let A={};try{A=T0.cacheSupported&&T0.cacheModels?await w5.io.listModels():{}}catch(d){T0.cacheSupported=!1}oe[n].inCache=T0.cacheSupported&&T0.cacheModels&&Object.keys(A).includes(r);let s=typeof fetch=="undefined"?{}:{fetchFunc:(d,x)=>x7(d,x)},a=new w5.GraphModel(oe[n].inCache?r:t,s),l=!1;try{a.findIOHandler(),T0.debug&&h("model load handler:",a.handler);let d=await a.handler.load();oe[n].sizeFromManifest=((c=d==null?void 0:d.weightData)==null?void 0:c.byteLength)||0,a.loadSync(d),oe[n].sizeLoadedWeights=((i=(y=a.artifacts)==null?void 0:y.weightData)==null?void 0:i.byteLength)||0,T0.verbose&&h("load model:",a.modelUrl,{bytes:oe[n].sizeLoadedWeights},T0),l=!0}catch(d){h("error loading model:",t,d)}if(l&&T0.cacheModels&&T0.cacheSupported&&!oe[n].inCache)try{let d=await a.save(r);h("model saved:",r,d)}catch(d){h("error saving model:",t,d)}return A2(null,a,`${e||""}`),a}var ne=V(D());var _1="2.9.4";var At={};pe(At,{all:()=>rt,body:()=>a2,canvas:()=>nt,face:()=>s2,gesture:()=>c2,hand:()=>i2,object:()=>l2,options:()=>h0,person:()=>ot});var B0=e=>{if(!e)h("draw error: invalid canvas");else if(!e.getContext)h("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)h("draw error: cannot get canvas context");else return t}return null},Xe=e=>Math.round(e*180/Math.PI),de=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let o=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${o[0]}, ${o[1]}, ${o[2]}, ${t.alpha})`};function fe(e,t,o,n,r){e.fillStyle=de(n,r),e.beginPath(),e.arc(t,o,r.pointSize,0,2*Math.PI),e.fill()}function se(e,t,o,n,r,A){if(e.beginPath(),e.lineWidth=A.lineWidth,A.useCurves){let s=(t+t+n)/2,a=(o+o+r)/2;e.ellipse(s,a,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+A.roundRect,o),e.lineTo(t+n-A.roundRect,o),e.quadraticCurveTo(t+n,o,t+n,o+A.roundRect),e.lineTo(t+n,o+r-A.roundRect),e.quadraticCurveTo(t+n,o+r,t+n-A.roundRect,o+r),e.lineTo(t+A.roundRect,o+r),e.quadraticCurveTo(t,o+r,t,o+r-A.roundRect),e.lineTo(t,o+A.roundRect),e.quadraticCurveTo(t,o,t+A.roundRect,o),e.closePath();e.stroke()}function $1(e,t,o){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=de(n[2]||0,o),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),o.fillPolygons&&(e.closePath(),e.fill())}}function nn(e,t,o){if(!(t.length<2)){if(e.lineWidth=o.lineWidth,!o.useCurves||t.length<=2){$1(e,t,o);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n0){let A=e.emotion.map(s=>`${Math.trunc(100*s.score)}% ${s.emotion}`);A.length>3&&(A.length=3),r.push(A.join(" "))}((o=e.rotation)==null?void 0:o.angle)&&((n=e.rotation)==null?void 0:n.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Xe(e.rotation.angle.roll)}\xB0 yaw:${Xe(e.rotation.angle.yaw)}\xB0 pitch:${Xe(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Xe(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=U.color;for(let A=r.length-1;A>=0;A--){let s=Math.max(e.box[0],0),a=A*U.lineHeight+e.box[1];U.shadowColor&&U.shadowColor!==""&&(t.fillStyle=U.shadowColor,t.fillText(r[A],s+5,a+16)),t.fillStyle=U.labelColor,t.fillText(r[A],s+4,a+15)}}}function m7(e,t){var o,n,r,A;if(((o=e.annotations)==null?void 0:o.leftEyeIris)&&((n=e.annotations)==null?void 0:n.leftEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,a=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((A=e.annotations)==null?void 0:A.rightEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,a=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}}function p7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*Xe(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Xe(e.rotation.angle.pitch)/90,A=new Path2D(` +`;var j5=(e,t,o)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,A)=>(o[A]=0,r))},N5=class{constructor(t,o,n){T(this,"uniform",{});T(this,"attribute",{});T(this,"gl");T(this,"id");T(this,"compile",(t,o)=>{let n=this.gl.createShader(o);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(b(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(b("filter: could not create shader"),null)});this.gl=t;let r=this.compile(o,this.gl.VERTEX_SHADER),A=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!A)){if(!this.id){b("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,A),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){b(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),j5(o,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=this.gl.getAttribLocation(this.id,s);j5(o,"uniform",this.uniform),j5(n,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=this.gl.getUniformLocation(this.id,s)}}};function Ct(){let e=0,t=null,o=!1,n=-1,r=[null,null],A=[],s=null,a=null,l=b0(100,100),c={},y={INTERMEDIATE:1},i=l.getContext("webgl");if(!i){b("filter: cannot get webgl context");return}this.gl=i;function d(R,m){if(!(R===l.width&&m===l.height)){if(l.width=R,l.height=m,!s){let u=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);s=i.createBuffer(),i.bindBuffer(i.ARRAY_BUFFER,s),i.bufferData(i.ARRAY_BUFFER,u,i.STATIC_DRAW),i.pixelStorei(i.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}i.viewport(0,0,l.width,l.height),r=[null,null]}}function x(R,m){let u=i.createFramebuffer();i.bindFramebuffer(i.FRAMEBUFFER,u);let z=i.createRenderbuffer();i.bindRenderbuffer(i.RENDERBUFFER,z);let w=i.createTexture();return i.bindTexture(i.TEXTURE_2D,w),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,R,m,0,i.RGBA,i.UNSIGNED_BYTE,null),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.framebufferTexture2D(i.FRAMEBUFFER,i.COLOR_ATTACHMENT0,i.TEXTURE_2D,w,0),i.bindTexture(i.TEXTURE_2D,null),i.bindFramebuffer(i.FRAMEBUFFER,null),{fbo:u,texture:w}}function f(R){return r[R]=r[R]||x(l.width,l.height),r[R]}function p(R=0){if(!a)return;let m=null,u=null,z=!1;e===0?m=t:m=f(n).texture||null,e++,o&&!(R&y.INTERMEDIATE)?(u=null,z=e%2===0):(n=(n+1)%2,u=f(n).fbo||null),i.bindTexture(i.TEXTURE_2D,m),i.bindFramebuffer(i.FRAMEBUFFER,u),i.uniform1f(a.uniform.flipY,z?-1:1),i.drawArrays(i.TRIANGLES,0,6)}function g(R){if(c[R])return a=c[R],i.useProgram((a?a.id:null)||null),a;if(a=new N5(i,Tt,R),!a)return b("filter: could not get webgl program"),null;let m=Float32Array.BYTES_PER_ELEMENT,u=4*m;return i.enableVertexAttribArray(a.attribute.pos),i.vertexAttribPointer(a.attribute.pos,2,i.FLOAT,!1,u,0*m),i.enableVertexAttribArray(a.attribute.uv),i.vertexAttribPointer(a.attribute.uv,2,i.FLOAT,!1,u,2*m),c[R]=a,a}let M={colorMatrix:R=>{let m=new Float32Array(R);m[4]/=255,m[9]/=255,m[14]/=255,m[19]/=255;let u=m[18]===1&&m[3]===0&&m[8]===0&&m[13]===0&&m[15]===0&&m[16]===0&&m[17]===0&&m[19]===0?kt:wt,z=g(u);!z||(i.uniform1fv(z.uniform.m,m),p())},brightness:R=>{let m=(R||0)+1;M.colorMatrix([m,0,0,0,0,0,m,0,0,0,0,0,m,0,0,0,0,0,1,0])},saturation:R=>{let m=(R||0)*2/3+1,u=(m-1)*-.5;M.colorMatrix([m,u,u,0,0,u,m,u,0,0,u,u,m,0,0,0,0,0,1,0])},desaturate:()=>{M.saturation(-1)},contrast:R=>{let m=(R||0)+1,u=-128*(m-1);M.colorMatrix([m,0,0,0,u,0,m,0,0,u,0,0,m,0,u,0,0,0,1,0])},negative:()=>{M.contrast(-2)},hue:R=>{R=(R||0)/180*Math.PI;let m=Math.cos(R),u=Math.sin(R),z=.213,w=.715,h=.072;M.colorMatrix([z+m*(1-z)+u*-z,w+m*-w+u*-w,h+m*-h+u*(1-h),0,0,z+m*-z+u*.143,w+m*(1-w)+u*.14,h+m*-h+u*-.283,0,0,z+m*-z+u*-(1-z),w+m*-w+u*w,h+m*(1-h)+u*h,0,0,0,0,0,1,0])},desaturateLuminance:()=>{M.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{M.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{M.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{M.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{M.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{M.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{M.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{M.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:R=>{let m=new Float32Array(R),u=1/l.width,z=1/l.height,w=g(St);!w||(i.uniform1fv(w.uniform.m,m),i.uniform2f(w.uniform.px,u,z),p())},detectEdges:()=>{M.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{M.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{M.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:R=>{let m=R||1;M.convolution.call(this,[0,-1*m,0,-1*m,1+4*m,-1*m,0,-1*m,0])},emboss:R=>{let m=R||1;M.convolution.call(this,[-2*m,-1*m,0,-1*m,1,1*m,0,1*m,2*m])},blur:R=>{let m=R/7/l.width,u=R/7/l.height,z=g(zt);!z||(i.uniform2f(z.uniform.px,0,u),p(y.INTERMEDIATE),i.uniform2f(z.uniform.px,m,0),p())},pixelate:R=>{let m=R/l.width,u=R/l.height,z=g(Et);!z||(i.uniform2f(z.uniform.size,m,u),p())}};this.add=function(R){let m=Array.prototype.slice.call(arguments,1),u=M[R];A.push({func:u,args:m})},this.reset=function(){A=[]},this.get=function(){return A},this.apply=function(R){d(R.width,R.height),e=0,t||(t=i.createTexture()),i.bindTexture(i.TEXTURE_2D,t),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.NEAREST),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.NEAREST),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,i.RGBA,i.UNSIGNED_BYTE,R);for(let m=0;mx.data())),s=.99*Math.max(A[0][0],A[1][0],A[2][0]),a=[q.sub(o[0],n[0]),q.sub(o[1],n[1]),q.sub(o[2],n[2])],l=[q.sub(r[0],n[0]),q.sub(r[1],n[1]),q.sub(r[2],n[2])],c=[q.div(s,l[0]),q.div(s,l[1]),q.div(s,l[2])],y=[q.mul(a[0],c[0]),q.mul(a[1],c[1]),q.mul(a[2],c[2])],i=q.stack([y[0],y[1],y[2]],2),d=q.reshape(i,[1,t.shape[0],t.shape[1],3]);return q.dispose([...o,...n,...r,...a,...l,...c,...y,i,t]),d}var N2=3840,y0=null,d0=null,qe=null,Q,F0={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function L5(){F0.inputSum=0,F0.cacheDiff=1,F0.sumMethod=0,F0.inputTensor=void 0}function b0(e,t){let o;if(P.browser)if(P.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");o=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");o=document.createElement("canvas"),o.width=e,o.height=t}else typeof P.Canvas!="undefined"?o=new P.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(o=new globalThis.Canvas(e,t));return o}function L2(e,t){let o=t||b0(e.width,e.height);return o.getContext("2d").drawImage(e,0,0),o}async function Ue(e,t,o=!0){var d,x;if(!e)return t.debug&&b("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof j.Tensor)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof P.Canvas!="undefined"&&e instanceof P.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof j.Tensor){let f=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)f=j.expandDims(e,0);else if(e.shape[2]===4){let p=j.slice3d(e,[0,0,0],[-1,-1,3]);f=j.expandDims(p,0),j.dispose(p)}}else e.shape.length===4&&(e.shape[3]===3?f=j.clone(e):e.shape[3]===4&&(f=j.slice4d(e,[0,0,0,0],[-1,-1,-1,3])));if(f==null||f.shape.length!==4||f.shape[0]!==1||f.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(f.dtype==="int32"){let p=j.cast(f,"float32");j.dispose(f),f=p}return{tensor:f,canvas:t.filter.return?d0:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&b("input stream is not ready"),{tensor:null,canvas:y0};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&b("cannot determine input dimensions"),{tensor:null,canvas:y0};let A=n,s=r;if(A>N2&&(A=N2,s=Math.trunc(A*r/n)),s>N2&&(s=N2,A=Math.trunc(s*n/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?A=t.filter.width:(((x=t.filter)==null?void 0:x.height)||0)>0&&(A=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?s=t.filter.height:(t.filter.width||0)>0&&(s=r*((t.filter.width||0)/n)),!A||!s)throw new Error("input error: cannot determine dimension");(!y0||y0.width!==A||y0.height!==s)&&(y0=b0(A,s));let a=y0.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?a.putImageData(e,0,0):t.filter.flip&&typeof a.translate!="undefined"?(a.translate(n,0),a.scale(-1,1),a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),a.setTransform(1,0,0,1,0,0)):a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),(!d0||y0.width!==d0.width||y0.height!==d0.height)&&(d0=b0(y0.width,y0.height)),t.filter.enabled&&P.webgl.supported?(Q||(Q=P.browser?new Ct:null),P.filter=!!Q,Q!=null&&Q.add?(Q.reset(),t.filter.brightness!==0&&Q.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Q.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Q.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Q.add("blur",t.filter.blur),t.filter.saturation!==0&&Q.add("saturation",t.filter.saturation),t.filter.hue!==0&&Q.add("hue",t.filter.hue),t.filter.negative&&Q.add("negative"),t.filter.sepia&&Q.add("sepia"),t.filter.vintage&&Q.add("brownie"),t.filter.sepia&&Q.add("sepia"),t.filter.kodachrome&&Q.add("kodachrome"),t.filter.technicolor&&Q.add("technicolor"),t.filter.polaroid&&Q.add("polaroid"),t.filter.pixelate!==0&&Q.add("pixelate",t.filter.pixelate),Q.get()>0?d0=Q.apply(y0):d0=Q.draw(y0)):(t.debug&&b("input process error: cannot initialize filters"),P.webgl.supported=!1,t.filter.enabled=!1,L2(y0,d0))):(L2(y0,d0),Q&&(Q=null),P.filter=!!Q),!o)return{tensor:null,canvas:d0};if(!d0)throw new Error("canvas error: cannot create output");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(P.browser&&j.browser)l=j.browser?j.browser.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let f=new Uint8Array(e.data.buffer);l=j.tensor(f,[e.height,e.width,c],"int32")}else if((!qe||d0.width!==qe.width||d0.height!==qe.height)&&(qe=b0(d0.width,d0.height)),j.browser&&P.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=j.browser.fromPixels(d0):(qe=L2(d0),l=j.browser.fromPixels(qe));else{let g=L2(d0).getContext("2d").getImageData(0,0,A,s);c=g.data.length/A/s;let M=new Uint8Array(g.data.buffer);l=j.tensor(M,[A,s,c])}if(c===4){let f=j.slice3d(l,[0,0,0],[-1,-1,3]);j.dispose(l),l=f}if(!l)throw new Error("input error: cannot create tensor");let y=j.cast(l,"float32"),i=t.filter.equalization?await j2(y):j.expandDims(y,0);return j.dispose([l,y]),{tensor:i,canvas:t.filter.return?d0:null}}async function It(e,t){let o=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return o;if(!F0.inputTensor)F0.inputTensor=j.clone(t);else if(F0.inputTensor.shape[1]!==t.shape[1]||F0.inputTensor.shape[2]!==t.shape[2])j.dispose(F0.inputTensor),F0.inputTensor=j.clone(t);else{let n={};n.diff=j.sub(t,F0.inputTensor),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;j.dispose([F0.inputTensor,n.diff,n.squared,n.sum]),F0.inputTensor=j.clone(t),o=A<=(e.cacheSensitivity||0)}return o}async function Ot(e,t,o){let n={};if(!t||!o||t.shape.length!==4||t.shape.length!==o.shape.length)return e.debug||b("invalid input tensor or tensor shapes do not match:",t.shape,o.shape),0;if(t.shape[0]!==1||o.shape[0]!==1||t.shape[3]!==3||o.shape[3]!==3)return e.debug||b("input tensors must be of shape [1, height, width, 3]:",t.shape,o.shape),0;n.input1=j.clone(t),n.input2=t.shape[1]!==o.shape[1]||t.shape[2]!==o.shape[2]?j.image.resizeBilinear(o,[t.shape[1],t.shape[2]]):j.clone(o),n.diff=j.sub(n.input1,n.input2),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return j.dispose([n.input1,n.input2,n.diff,n.squared,n.sum]),A}var W5=class{constructor(){T(this,"browser");T(this,"node");T(this,"worker");T(this,"platform","");T(this,"agent","");T(this,"backends",[]);T(this,"initial");T(this,"filter");T(this,"tfjs");T(this,"offscreen");T(this,"perfadd",!1);T(this,"tensorflow",{version:void 0,gpu:void 0});T(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});T(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});T(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});T(this,"cpu",{model:void 0,flags:[]});T(this,"kernels",[]);T(this,"Canvas");T(this,"Image");T(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:a0.version["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let o=t[0].match(/\(([^()]+)\)/g);this.platform=o!=null&&o[0]?o[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(a0.engine().registryFactory),this.tensorflow={version:a0.backend().binding?a0.backend().binding.TF_Version:void 0,gpu:a0.backend().binding?a0.backend().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&a0.getBackend()==="wasm"&&(this.wasm.simd=a0.env().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=a0.env().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=b0(100,100),o=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof o!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(a0.getBackend()==="webgl"||a0.getBackend()==="humangl")){let n=a0.backend().gpgpu!=="undefined"?await a0.backend().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=n?n.name:void 0}}catch(n){this.webgpu.supported=!1}try{this.kernels=a0.getKernelsForBackend(a0.getBackend()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},P=new W5;var w5=V(D());var F5={};pe(F5,{age:()=>qn,"anti-spoofing":()=>Rr,antispoof:()=>On,blazeface:()=>jn,"blazeface-back":()=>Un,"blazeface-front":()=>Yn,"blazepose-detect":()=>vr,"blazepose-detector2d":()=>Kn,"blazepose-detector3d":()=>Jn,"blazepose-full":()=>Qn,"blazepose-heavy":()=>_n,"blazepose-lite":()=>$n,default:()=>Lr,efficientpose:()=>er,"efficientpose-i-lite":()=>Pr,"efficientpose-ii-lite":()=>Tr,"efficientpose-iv":()=>wr,emotion:()=>Nn,faceboxes:()=>tr,facemesh:()=>Ln,"facemesh-attention":()=>nr,"facemesh-attention-alt":()=>or,"facemesh-detection-full":()=>rr,"facemesh-detection-short":()=>Ar,"facemesh-orig":()=>sr,faceres:()=>Wn,"faceres-deep":()=>ar,gear:()=>ir,gender:()=>cr,"gender-ssrnet-imdb":()=>lr,handdetect:()=>xr,"handlandmark-full":()=>Fn,"handlandmark-lite":()=>yr,"handlandmark-sparse":()=>dr,handskeleton:()=>fr,handtrack:()=>Gn,"insightface-efficientnet-b0":()=>kr,"insightface-ghostnet-strides1":()=>Er,"insightface-ghostnet-strides2":()=>zr,"insightface-mobilenet-emore":()=>Sr,"insightface-mobilenet-swish":()=>Cr,iris:()=>Bn,liveness:()=>Hn,"mb3-centernet":()=>Dn,meet:()=>mr,mobileface:()=>pr,mobilefacenet:()=>ur,models:()=>Vn,"movenet-lightning":()=>Zn,"movenet-multipose":()=>hr,"movenet-thunder":()=>br,nanodet:()=>gr,"nanodet-e":()=>Ir,"nanodet-g":()=>Or,"nanodet-m":()=>jr,"nanodet-t":()=>Nr,posenet:()=>Mr,selfie:()=>Xn});var On=853098,jn=538928,Nn=820516,Ln=1477958,Wn=6978814,Fn=5431368,Gn=2964837,Bn=2599092,Hn=592976,Dn=4030290,Vn=0,Zn=4650216,Xn=212886,qn=161240,Un=538928,Yn=402048,Kn=7499400,Jn=5928856,Qn=6338290,_n=27501554,$n=2725490,er=5651240,tr=2013002,or=2387598,nr=2382414,rr=1026192,Ar=201268,sr=2955780,ar=13957620,ir=1498916,lr=161236,cr=201808,xr=3515612,yr=2023432,dr=5286322,fr=5502280,mr=372228,pr=2183192,ur=5171976,hr=9448838,br=12477112,gr=7574558,Mr=5032780,vr=5928804,Rr=853098,Pr=2269064,Tr=5651240,wr=25643252,kr=13013224,Er=8093408,zr=8049584,Sr=6938536,Cr=12168584,Ir=12319156,Or=7574558,jr=1887474,Nr=5294216,Lr={antispoof:On,blazeface:jn,emotion:Nn,facemesh:Ln,faceres:Wn,"handlandmark-full":Fn,handtrack:Gn,iris:Bn,liveness:Hn,"mb3-centernet":Dn,models:Vn,"movenet-lightning":Zn,selfie:Xn,age:qn,"blazeface-back":Un,"blazeface-front":Yn,"blazepose-detector2d":Kn,"blazepose-detector3d":Jn,"blazepose-full":Qn,"blazepose-heavy":_n,"blazepose-lite":$n,efficientpose:er,faceboxes:tr,"facemesh-attention-alt":or,"facemesh-attention":nr,"facemesh-detection-full":rr,"facemesh-detection-short":Ar,"facemesh-orig":sr,"faceres-deep":ar,gear:ir,"gender-ssrnet-imdb":lr,gender:cr,handdetect:xr,"handlandmark-lite":yr,"handlandmark-sparse":dr,handskeleton:fr,meet:mr,mobileface:pr,mobilefacenet:ur,"movenet-multipose":hr,"movenet-thunder":br,nanodet:gr,posenet:Mr,"blazepose-detect":vr,"anti-spoofing":Rr,"efficientpose-i-lite":Pr,"efficientpose-ii-lite":Tr,"efficientpose-iv":wr,"insightface-efficientnet-b0":kr,"insightface-ghostnet-strides1":Er,"insightface-ghostnet-strides2":zr,"insightface-mobilenet-emore":Sr,"insightface-mobilenet-swish":Cr,"nanodet-e":Ir,"nanodet-g":Or,"nanodet-m":jr,"nanodet-t":Nr};var x5={};pe(x5,{Models:()=>S2,getModelStats:()=>Q1,load:()=>_1,reset:()=>c5,validate:()=>T5,validateModel:()=>A2});var W2=V(D());var Z0,G5=[],Wr=["white","black","asian","indian","other"],Fr=[15,23,28,35.5,45.5,55.5,65],jt=0,Nt=0,B5=Number.MAX_SAFE_INTEGER;async function Lt(e){var t;return P.initial&&(Z0=null),Z0?e.debug&&b("cached model:",Z0.modelUrl):Z0=await F((t=e.face.gear)==null?void 0:t.modelPath),Z0}async function H5(e,t,o,n){var s,a;if(!Z0)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=B5<(((s=t.face.gear)==null?void 0:s.skipFrames)||0),A=(((a=t.face.gear)==null?void 0:a.skipTime)||0)>v()-Nt;return t.skipAllowed&&A&&r&&jt===n&&G5[o]?(B5++,G5[o]):(B5=0,new Promise(async l=>{var M,R;if(!(Z0!=null&&Z0.inputs[0].shape))return;let c={},y=[[0,.1,.9,.9]];c.resize=W2.image.cropAndResize(e,y,[0],[Z0.inputs[0].shape[2],Z0.inputs[0].shape[1]]);let i={age:0,gender:"unknown",genderScore:0,race:[]};(M=t.face.gear)!=null&&M.enabled&&([c.age,c.gender,c.race]=Z0.execute(c.resize,["age_output","gender_output","race_output"]));let d=await c.gender.data();i.gender=d[0]>d[1]?"male":"female",i.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let x=await c.race.data();for(let m=0;m(((R=t.face.gear)==null?void 0:R.minConfidence)||.2)&&i.race.push({score:Math.round(100*x[m])/100,race:Wr[m]});i.race.sort((m,u)=>u.score-m.score);let p=Array.from(await c.age.data()).map((m,u)=>[Fr[u],m]).sort((m,u)=>u[1]-m[1]),g=p[0][0];for(let m=1;mW2.dispose(c[m])),G5[o]=i,jt=n,Nt=v(),l(i)}))}var Ye=V(D());var he=V(D()),H={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function Ft(){H.tf255=he.scalar(255,"float32"),H.tf1=he.scalar(1,"float32"),H.tf2=he.scalar(2,"float32"),H.tf05=he.scalar(.5,"float32"),H.tf127=he.scalar(127.5,"float32"),H.rgb=he.tensor1d([.2989,.587,.114],"float32")}var E0,F2=[],Gt=0,Bt=0,D5=Number.MAX_SAFE_INTEGER;async function Ht(e){return P.initial&&(E0=null),E0?e.debug&&b("cached model:",E0.modelUrl):E0=await F(e.face.ssrnet.modelPathAge),E0}async function V5(e,t,o,n){var s,a,l,c;if(!E0)return{age:0};let r=D5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Bt;return t.skipAllowed&&r&&A&&Gt===n&&((l=F2[o])==null?void 0:l.age)&&((c=F2[o])==null?void 0:c.age)>0?(D5++,F2[o]):(D5=0,new Promise(async y=>{var x;if(!(E0!=null&&E0.inputs)||!E0.inputs[0]||!E0.inputs[0].shape)return;let i={};i.resize=Ye.image.resizeBilinear(e,[E0.inputs[0].shape[2],E0.inputs[0].shape[1]],!1),i.enhance=Ye.mul(i.resize,H.tf255);let d={age:0};if((x=t.face.ssrnet)!=null&&x.enabled&&(i.age=E0.execute(i.enhance)),i.age){let f=await i.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(i).forEach(f=>Ye.dispose(i[f])),F2[o]=d,Gt=n,Bt=v(),y(d)}))}var p0=V(D());var X0,G2=[],Vt=0,Zt=0,Z5=Number.MAX_SAFE_INTEGER,X5=[.2989,.587,.114];async function Xt(e){var t;return P.initial&&(X0=null),X0?e.debug&&b("cached model:",X0.modelUrl):X0=await F((t=e.face.ssrnet)==null?void 0:t.modelPathGender),X0}async function q5(e,t,o,n){var s,a,l,c;if(!X0)return{gender:"unknown",genderScore:0};let r=Z5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Zt;return t.skipAllowed&&r&&A&&Vt===n&&((l=G2[o])==null?void 0:l.gender)&&((c=G2[o])==null?void 0:c.genderScore)>0?(Z5++,G2[o]):(Z5=0,new Promise(async y=>{var f;if(!(X0!=null&&X0.inputs[0].shape))return;let i={};i.resize=p0.image.resizeBilinear(e,[X0.inputs[0].shape[2],X0.inputs[0].shape[1]],!1),i.enhance=p0.tidy(()=>{let[p,g,M]=p0.split(i.resize,3,3),R=p0.mul(p,X5[0]),m=p0.mul(g,X5[1]),u=p0.mul(M,X5[2]),z=p0.addN([R,m,u]);return p0.mul(p0.sub(z,H.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(i.gender=X0.execute(i.enhance));let x=await i.gender.data();d.gender=x[0]>x[1]?"female":"male",d.genderScore=x[0]>x[1]?Math.trunc(100*x[0])/100:Math.trunc(100*x[1])/100,Object.keys(i).forEach(p=>p0.dispose(i[p])),G2[o]=d,Vt=n,Zt=v(),y(d)}))}var H2=V(D());var c0,B2=[],U5=Number.MAX_SAFE_INTEGER,Ut=0,Yt=0;async function Kt(e){var t;return P.initial&&(c0=null),c0?e.debug&&b("cached model:",c0.modelUrl):c0=await F((t=e.face.antispoof)==null?void 0:t.modelPath),c0}async function Y5(e,t,o,n){var s,a;if(!c0||!(c0!=null&&c0.executor))return 0;let r=(((s=t.face.antispoof)==null?void 0:s.skipTime)||0)>v()-Yt,A=U5<(((a=t.face.antispoof)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&Ut===n&&B2[o]?(U5++,B2[o]):(U5=0,new Promise(async l=>{let c=H2.image.resizeBilinear(e,[c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[2]:0,c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[1]:0],!1),y=c0==null?void 0:c0.execute(c),i=(await y.data())[0];B2[o]=Math.round(100*i)/100,Ut=n,Yt=v(),H2.dispose([c,y]),l(B2[o])}))}var L=V(D());var ie=V(D());var q0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},K5={count:468,mouth:13,symmetryLine:[13,q0.midwayBetweenEyes[0]]},Oe={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},J5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],M2=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],je=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Br=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Hr=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Dr=[33,133,362,263,1,78,308],s4=Br.map(e=>M2[e]),a4=Hr.map(e=>M2[e]),i4=Dr.map(e=>M2[e]);function be(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var Vr=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Zr=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Xr=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],qr=[[474,475],[475,476],[476,477],[477,474]],Ur=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Yr=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Kr=[[469,470],[470,471],[471,472],[472,469]],Jr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],l4={lips:be(Vr),leftEye:be(Zr),leftEyebrow:be(Xr),leftIris:be(qr),rightEye:be(Ur),rightEyebrow:be(Yr),rightIris:be(Kr),faceOval:be(Jr)};var Ke=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],D2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],V2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Z2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],$t=(e,t)=>{let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:o,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},_5=(e,t,o)=>{let n=t.shape[1],r=t.shape[2],A=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],s=ie.image.cropAndResize(t,[A],[0],o),a=ie.div(s,H.tf255);return ie.dispose(s),a},X2=(e,t)=>{let o=D2(e),n=Ke(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[o[0]-r[0],o[1]-r[1]],endPoint:[o[0]+r[0],o[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},q2=e=>{let t=D2(e),o=Ke(e),n=Math.max(...o)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},e3=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...o)],endPoint:[Math.max(...t),Math.max(...o)],landmarks:e}},$5=[[1,0,0],[0,1,0],[0,0,1]],Qr=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),_r=(e,t)=>Qr(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var Qt=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ne=(e,t)=>{let o=0;for(let n=0;n{let o=[];for(let n=0;n{let o=[],n=e.length;for(let r=0;r{let o=Math.cos(e),n=Math.sin(e),r=[[o,-n,0],[n,o,0],[0,0,1]],A=Qt(t[0],t[1]),s=_t(A,r),a=Qt(-t[0],-t[1]);return _t(s,a)},eA=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],o=[e[0][2],e[1][2]],n=[-Ne(t[0],o),-Ne(t[1],o)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},tA=(e,t)=>[Ne(e,t[0]),Ne(e,t[1])];function o3(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},o=[];for(let n=0;n[A[0]/r*(x[0]-r/2),A[1]/r*(x[1]-r/2),x[2]||0]),a=o&&o!==0&&Math.abs(o)>.2,l=a?t3(o,[0,0]):$5,c=a?s.map(x=>[...tA(x,l),x[2]]):s,y=a?eA(n):$5,i=D2(t),d=[Ne(i,y[0]),Ne(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2]||0)])}function r3(e,t,o,n){let r=t.landmarks.length>=K5.count?K5.symmetryLine:Oe.symmetryLine,A=0,s=$5,a;if(e&&P.kernels.includes("rotatewithoffset"))if(A=_r(t.landmarks[r[0]],t.landmarks[r[1]]),A&&A!==0&&Math.abs(A)>.2){let c=D2(t),y=[c[0]/o.shape[2],c[1]/o.shape[1]],i=ie.image.rotateWithOffset(o,A,0,y);s=t3(-A,c),a=_5(t,i,[n,n]),ie.dispose(i)}else a=_5(t,o,[n,n]);else a=_5(t,o,[n,n]);return[A,s,a]}var oA=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...o)+(Math.max(...o)-Math.min(...o))/2]},A3=(e,t)=>{let o=oA(e),n=Ke(t);return{startPoint:[o[0]-n[0]/2,o[1]-n[1]/2],endPoint:[o[0]+n[0]/2,o[1]+n[1]/2]}};var s3=6,nA=1.4,J0,a3=null,ge=0,v2=null,Je=()=>ge;async function i3(e){var t;return P.initial&&(J0=null),J0?e.debug&&b("cached model:",J0.modelUrl):J0=await F((t=e.face.detector)==null?void 0:t.modelPath),ge=J0.executor&&J0.inputs[0].shape?J0.inputs[0].shape[2]:256,v2=L.scalar(ge,"int32"),a3=L.tensor2d(o3(ge)),J0}function rA(e){let t={};t.boxStarts=L.slice(e,[0,1],[-1,2]),t.centers=L.add(t.boxStarts,a3),t.boxSizes=L.slice(e,[0,3],[-1,2]),t.boxSizesNormalized=L.div(t.boxSizes,v2),t.centersNormalized=L.div(t.centers,v2),t.halfBoxSize=L.div(t.boxSizesNormalized,H.tf2),t.starts=L.sub(t.centersNormalized,t.halfBoxSize),t.ends=L.add(t.centersNormalized,t.halfBoxSize),t.startNormalized=L.mul(t.starts,v2),t.endNormalized=L.mul(t.ends,v2);let o=L.concat2d([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>L.dispose(t[n])),o}async function l3(e,t){var a,l,c,y;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let o={};o.resized=L.image.resizeBilinear(e,[ge,ge]),o.div=L.div(o.resized,H.tf127),o.normalized=L.sub(o.div,H.tf05);let n=J0==null?void 0:J0.execute(o.normalized);if(Array.isArray(n)&&n.length>2){let i=n.sort((d,x)=>d.size-x.size);o.concat384=L.concat([i[0],i[2]],2),o.concat512=L.concat([i[1],i[3]],2),o.concat=L.concat([o.concat512,o.concat384],1),o.batch=L.squeeze(o.concat,0)}else Array.isArray(n)?o.batch=L.squeeze(n[0]):o.batch=L.squeeze(n);L.dispose(n),o.boxes=rA(o.batch),o.logits=L.slice(o.batch,[0,0],[-1,1]),o.sigmoid=L.sigmoid(o.logits),o.scores=L.squeeze(o.sigmoid),o.nms=await L.image.nonMaxSuppressionAsync(o.boxes,o.scores,((a=t.face.detector)==null?void 0:a.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((c=t.face.detector)==null?void 0:c.minConfidence)||0);let r=await o.nms.array(),A=[],s=await o.scores.data();for(let i=0;i(((y=t.face.detector)==null?void 0:y.minConfidence)||0)){let x={};x.bbox=L.slice(o.boxes,[r[i],0],[1,-1]),x.slice=L.slice(o.batch,[r[i],s3-1],[1,-1]),x.squeeze=L.squeeze(x.slice),x.landmarks=L.reshape(x.squeeze,[s3,-1]);let f=await x.bbox.data(),p={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await x.landmarks.array(),confidence:d},g=$t(p,[(e.shape[2]||0)/ge,(e.shape[1]||0)/ge]),M=X2(g,t.face.scale||nA),R=q2(M);A.push(R),Object.keys(x).forEach(m=>L.dispose(x[m]))}}return Object.keys(o).forEach(i=>L.dispose(o[i])),A}var S0=V(D());var U2={};pe(U2,{connected:()=>o1,kpt:()=>t1});var t1=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],o1={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var z0=V(D()),x3=224,AA,sA=5,Y2=[8,16,32,32,32];function y3(){let e=[],t=0;for(;to.x)),y:z0.tensor1d(e.map(o=>o.y))}}function le(e,t=[1,1]){let o=[e.map(a=>a[0]),e.map(a=>a[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[n[0],n[1],r[0]-n[0],r[1]-n[1]],s=[A[0]/t[0],A[1]/t[1],A[2]/t[0],A[3]/t[1]];return{box:A,boxRaw:s}}function d3(e,t=[1,1]){let o=[e.map(c=>c[0]),e.map(c=>c[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[(n[0]+r[0])/2,(n[1]+r[1])/2],s=Math.max(A[0]-n[0],A[1]-n[1],-A[0]+r[0],-A[1]+r[1]),a=[Math.trunc(A[0]-s),Math.trunc(A[1]-s),Math.trunc(2*s),Math.trunc(2*s)],l=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:l}}function K2(e,t){let o=[e[2]*t,e[3]*t];return[e[0]-(o[0]-e[2])/2,e[1]-(o[1]-e[3])/2,o[0],o[1]]}var p3={initial:!0},u0={detector:null,landmarks:null},Qe={detector:[224,224],landmarks:[256,256]},n1=Number.MAX_SAFE_INTEGER,iA={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},Q2=null,R2,Me=[[0,0],[0,0],[0,0],[0,0]],f3=0,m3=e=>1-1/(1+Math.exp(e));async function u3(e){var t;if(p3.initial&&(u0.detector=null),!u0.detector&&e.body.detector&&e.body.detector.modelPath){u0.detector=await F(e.body.detector.modelPath);let o=(t=u0.detector)!=null&&t.executor?Object.values(u0.detector.modelSignature.inputs):void 0;Qe.detector[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.detector[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}else e.debug&&u0.detector&&b("cached model:",u0.detector.modelUrl);return y3(),u0.detector}async function h3(e){var t;if(p3.initial&&(u0.landmarks=null),u0.landmarks)e.debug&&b("cached model:",u0.landmarks.modelUrl);else{u0.landmarks=await F(e.body.modelPath);let o=(t=u0.landmarks)!=null&&t.executor?Object.values(u0.landmarks.modelSignature.inputs):void 0;Qe.landmarks[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.landmarks[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return u0.landmarks}function lA(e,t){var r,A;let o={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((A=e==null?void 0:e.shape)!=null&&A[2]))return e;let n;if(R2&&(o.cropped=S0.image.cropAndResize(e,[R2],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let s=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],a=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Me=[[0,0],s,a,[0,0]],o.pad=S0.pad(o.cropped||e,Me),o.resize=S0.image.resizeBilinear(o.pad,[t,t]),n=S0.div(o.resize,H.tf255)}else e.shape[1]!==t?(o.resize=S0.image.resizeBilinear(o.cropped||e,[t,t]),n=S0.div(o.resize,H.tf255)):n=S0.div(o.cropped||e,H.tf255);return Object.keys(o).forEach(s=>S0.dispose(o[s])),n}function cA(e,t){for(let o of e)o.position=[Math.trunc(o.position[0]*(t[0]+Me[2][0]+Me[2][1])/t[0]-Me[2][0]),Math.trunc(o.position[1]*(t[1]+Me[1][0]+Me[1][1])/t[1]-Me[1][0]),o.position[2]],o.positionRaw=[o.position[0]/t[0],o.position[1]/t[1],2*o.position[2]/(t[0]+t[1])];if(R2)for(let o of e)o.positionRaw=[o.positionRaw[0]+R2[1],o.positionRaw[1]+R2[0],o.positionRaw[2]],o.position=[Math.trunc(o.positionRaw[0]*t[0]),Math.trunc(o.positionRaw[1]*t[1]),o.positionRaw[2]];return e}function xA(e){let t=e.find(a=>a.part==="leftPalm"),o=e.find(a=>a.part==="leftWrist"),n=e.find(a=>a.part==="leftIndex");t.position[2]=((o.position[2]||0)+(n.position[2]||0))/2;let r=e.find(a=>a.part==="rightPalm"),A=e.find(a=>a.part==="rightWrist"),s=e.find(a=>a.part==="rightIndex");r.position[2]=((A.position[2]||0)+(s.position[2]||0))/2}async function yA(e,t,o){var f,p;if(!((f=u0.landmarks)!=null&&f.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(p=u0.landmarks)==null?void 0:p.execute(e,iA.landmarks);let r=(await n.poseflag.data())[0],A=await n.ld.data(),s=await n.world.data();Object.keys(n).forEach(g=>S0.dispose(n[g]));let a=[],l=5;for(let g=0;gg.position),i=le(y,[o[0],o[1]]),d={};for(let[g,M]of Object.entries(o1)){let R=[];for(let m=0;mw.part===M[m]),z=c.find(w=>w.part===M[m+1]);u&&z&&R.push([u.position,z.position])}d[g]=R}return{id:0,score:Math.trunc(100*r)/100,box:i.box,boxRaw:i.boxRaw,keypoints:c,annotations:d}}async function r1(e,t){let o=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>v()-f3,r=n1<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&Q2!==null)n1++;else{let A={};A.landmarks=lA(e,256),Q2=await yA(A.landmarks,t,o),Object.keys(A).forEach(s=>S0.dispose(A[s])),f3=v(),n1=0}return Q2?[Q2]:[]}var g0=V(D());var _e=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var k0,Le=0,A1=[],g3=0,s1=Number.MAX_SAFE_INTEGER;async function M3(e){if(P.initial&&(k0=null),k0)e.debug&&b("cached model:",k0.modelUrl);else{k0=await F(e.object.modelPath);let t=k0!=null&&k0.executor?Object.values(k0.modelSignature.inputs):void 0;Le=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return k0}async function dA(e,t,o){if(!e)return[];let n={},r=[],A=await e.array();n.squeeze=g0.squeeze(e);let s=g0.split(n.squeeze,6,1);n.stack=g0.stack([s[1],s[0],s[3],s[2]],1),n.boxes=g0.squeeze(n.stack),n.scores=g0.squeeze(s[4]),n.classes=g0.squeeze(s[5]),g0.dispose([e,...s]),n.nms=await g0.image.nonMaxSuppressionAsync(n.boxes,n.scores,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence||0);let a=await n.nms.data(),l=0;for(let c of Array.from(a)){let y=Math.trunc(100*A[0][c][4])/100,i=A[0][c][5];if(Number.isNaN(i))continue;let d=_e[i].label,[x,f]=[A[0][c][0]/Le,A[0][c][1]/Le],p=[x,f,A[0][c][2]/Le-x,A[0][c][3]/Le-f],g=[Math.trunc(p[0]*t[0]),Math.trunc(p[1]*t[1]),Math.trunc(p[2]*t[0]),Math.trunc(p[3]*t[1])];r.push({id:l++,score:y,class:i,label:d,box:g,boxRaw:p})}return Object.keys(n).forEach(c=>g0.dispose(n[c])),r}async function a1(e,t){if(!(k0!=null&&k0.executor))return[];let o=(t.object.skipTime||0)>v()-g3,n=s1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&A1.length>0?(s1++,A1):(s1=0,new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=g0.image.resizeBilinear(e,[Le,Le]),a=t.object.enabled?k0==null?void 0:k0.execute(s,["tower_0/detections"]):null;g3=v(),g0.dispose(s);let l=await dA(a,A,t);A1=l,r(l)}))}var Y=V(D());var _2={};pe(_2,{connected:()=>l1,kpt:()=>i1});var i1=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],l1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var x0,R3=0,M0={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},c1=Number.MAX_SAFE_INTEGER;async function P3(e){return P.initial&&(x0=null),x0?e.debug&&b("cached model:",x0.modelUrl):x0=await F(e.body.modelPath),x0}async function fA(e,t){let[o,n]=e.shape,r=Y.reshape(e,[n*o]),A=Y.max(r,0),s=(await A.data())[0];if(s>t){let a=Y.argMax(r,0),l=Y.mod(a,o),c=(await l.data())[0],y=Y.div(a,o),i=(await y.data())[0];return Y.dispose([r,A,a,l,y]),[c,i,s]}return Y.dispose([r,A]),[0,0,s]}async function x1(e,t){if(!(x0!=null&&x0.executor))return[];let o=(t.body.skipTime||0)>v()-R3,n=c1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n&&Object.keys(M0.keypoints).length>0?(c1++,[M0]):(c1=0,new Promise(async r=>{let A=Y.tidy(()=>{if(!(x0!=null&&x0.inputs[0].shape))return null;let i=Y.image.resizeBilinear(e,[x0.inputs[0].shape[2],x0.inputs[0].shape[1]],!1),d=Y.mul(i,H.tf2);return Y.sub(d,H.tf1)}),s;if(t.body.enabled&&(s=x0==null?void 0:x0.execute(A)),R3=v(),Y.dispose(A),s){M0.keypoints.length=0;let i=Y.squeeze(s);Y.dispose(s);let d=Y.unstack(i,2);Y.dispose(i);for(let x=0;x(t.body.minConfidence||0)&&M0.keypoints.push({score:Math.round(100*g)/100,part:i1[x],positionRaw:[f/x0.inputs[0].shape[2],p/x0.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/x0.inputs[0].shape[2]),Math.round(e.shape[1]*p/x0.inputs[0].shape[1])]})}d.forEach(x=>Y.dispose(x))}M0.score=M0.keypoints.reduce((i,d)=>d.score>i?d.score:i,0);let a=M0.keypoints.map(i=>i.position[0]),l=M0.keypoints.map(i=>i.position[1]);M0.box=[Math.min(...a),Math.min(...l),Math.max(...a)-Math.min(...a),Math.max(...l)-Math.min(...l)];let c=M0.keypoints.map(i=>i.positionRaw[0]),y=M0.keypoints.map(i=>i.positionRaw[1]);M0.boxRaw=[Math.min(...c),Math.min(...y),Math.max(...c)-Math.min(...c),Math.max(...y)-Math.min(...y)];for(let[i,d]of Object.entries(l1)){let x=[];for(let f=0;fM.part===d[f]),g=M0.keypoints.find(M=>M.part===d[f+1]);p&&g&&p.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([p.position,g.position])}M0.annotations[i]=x}r([M0])}))}var Q0=V(D());var mA=["angry","disgust","fear","happy","sad","surprise","neutral"],G0,$2=[],w3=0,k3=0,y1=Number.MAX_SAFE_INTEGER;async function E3(e){var t;return P.initial&&(G0=null),G0?e.debug&&b("cached model:",G0.modelUrl):G0=await F((t=e.face.emotion)==null?void 0:t.modelPath),G0}async function d1(e,t,o,n){var s,a;if(!G0)return[];let r=y1<(((s=t.face.emotion)==null?void 0:s.skipFrames)||0),A=(((a=t.face.emotion)==null?void 0:a.skipTime)||0)>v()-k3;return t.skipAllowed&&A&&r&&w3===n&&$2[o]&&$2[o].length>0?(y1++,$2[o]):(y1=0,new Promise(async l=>{var y;let c=[];if((y=t.face.emotion)!=null&&y.enabled){let i={},d=G0!=null&&G0.inputs[0].shape?G0.inputs[0].shape[2]:0;i.resize=Q0.image.resizeBilinear(e,[d,d],!1),i.channels=Q0.mul(i.resize,H.rgb),i.grayscale=Q0.sum(i.channels,3,!0),i.grayscaleSub=Q0.sub(i.grayscale,H.tf05),i.grayscaleMul=Q0.mul(i.grayscaleSub,H.tf2),i.emotion=G0==null?void 0:G0.execute(i.grayscaleMul),k3=v();let x=await i.emotion.data();for(let f=0;f(t.face.emotion.minConfidence||0)&&c.push({score:Math.min(.99,Math.trunc(100*x[f])/100),emotion:mA[f]});c.sort((f,p)=>p.score-f.score),Object.keys(i).forEach(f=>Q0.dispose(i[f]))}$2[o]=c,w3=n,l(c)}))}var e5=V(D());var C0,f1=[],S3=0,C3=0,I3=Number.MAX_SAFE_INTEGER;async function O3(e){var t;return P.initial&&(C0=null),C0?e.debug&&b("cached model:",C0.modelUrl):C0=await F((t=e.face.mobilefacenet)==null?void 0:t.modelPath),C0}async function m1(e,t,o,n){var s,a;if(!(C0!=null&&C0.executor))return[];let r=I3<(((s=t.face.mobilefacenet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.mobilefacenet)==null?void 0:a.skipTime)||0)>v()-C3;return t.skipAllowed&&A&&r&&S3===n&&f1[o]?(I3++,f1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.mobilefacenet)==null?void 0:y.enabled)&&(C0==null?void 0:C0.inputs[0].shape)){let i={};i.crop=e5.image.resizeBilinear(e,[C0.inputs[0].shape[2],C0.inputs[0].shape[1]],!1),i.data=C0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>e5.dispose(i[x]))}f1[o]=c,S3=n,C3=v(),l(c)})}var t5=V(D());var I0,p1=[],N3=0,L3=0,W3=Number.MAX_SAFE_INTEGER;async function F3(e){return P.initial&&(I0=null),I0?e.debug&&b("cached model:",I0.modelUrl):I0=await F(e.face.insightface.modelPath),I0}async function u1(e,t,o,n){var s,a;if(!(I0!=null&&I0.executor))return[];let r=W3<(((s=t.face.insightface)==null?void 0:s.skipFrames)||0),A=(((a=t.face.insightface)==null?void 0:a.skipTime)||0)>v()-L3;return t.skipAllowed&&A&&r&&N3===n&&p1[o]?(W3++,p1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.insightface)==null?void 0:y.enabled)&&(I0==null?void 0:I0.inputs[0].shape)){let i={};i.crop=t5.image.resizeBilinear(e,[I0.inputs[0].shape[2],I0.inputs[0].shape[1]],!1),i.data=I0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>t5.dispose(i[x]))}p1[o]=c,N3=n,L3=v(),l(c)})}var Pe=V(D());var _0=V(D());var O0,ve=0,pA=2.3,h1=q0.leftEyeLower0,b1=q0.rightEyeLower0,$e={leftBounds:[h1[0],h1[h1.length-1]],rightBounds:[b1[0],b1[b1.length-1]]},e2={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function V3(e){var t,o;return P.initial&&(O0=null),O0?e.debug&&b("cached model:",O0.modelUrl):O0=await F((t=e.face.iris)==null?void 0:t.modelPath),ve=(O0==null?void 0:O0.executor)&&((o=O0.inputs)==null?void 0:o[0].shape)?O0.inputs[0].shape[2]:0,ve===-1&&(ve=64),O0}function o5(e,t,o,n){for(let r=0;r{let t=e[$e.leftBounds[0]][2],o=e[$e.rightBounds[0]][2];return t-o},B3=(e,t,o,n,r,A=!1)=>{let s=q2(X2(e3([e[o],e[n]]),pA)),a=Ke(s),l=_0.image.cropAndResize(t,[[s.startPoint[1]/r,s.startPoint[0]/r,s.endPoint[1]/r,s.endPoint[0]/r]],[0],[ve,ve]);if(A&&P.kernels.includes("flipleftright")){let c=_0.image.flipLeftRight(l);_0.dispose(l),l=c}return{box:s,boxSize:a,crop:l}},H3=(e,t,o,n=!1)=>{let r=[];for(let A=0;A{let n=e[q0[`${o}EyeUpper0`][e2.upperCenter]][2],r=e[q0[`${o}EyeLower0`][e2.lowerCenter]][2],A=(n+r)/2;return t.map((s,a)=>{let l=A;return a===2?l=n:a===4&&(l=r),[s[0],s[1],l]})};async function Z3(e,t,o){if(!(O0!=null&&O0.executor))return e;let{box:n,boxSize:r,crop:A}=B3(e,t,$e.leftBounds[0],$e.leftBounds[1],o,!0),{box:s,boxSize:a,crop:l}=B3(e,t,$e.rightBounds[0],$e.rightBounds[1],o,!0),c=_0.concat([A,l]);_0.dispose(A),_0.dispose(l);let y=O0.execute(c);_0.dispose(c);let i=await y.data();_0.dispose(y);let d=i.slice(0,e2.numCoordinates*3),{rawCoords:x,iris:f}=H3(d,n,r,!0),p=i.slice(e2.numCoordinates*3),{rawCoords:g,iris:M}=H3(p,s,a,!1),R=uA(e);Math.abs(R)<30?(o5(e,x,"left",null),o5(e,g,"right",null)):R<1?o5(e,x,"left",["EyeUpper0","EyeLower0"]):o5(e,g,"right",["EyeUpper0","EyeLower0"]);let m=D3(e,f,"left"),u=D3(e,M,"right");return e.concat(m).concat(u)}var hA=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],bA=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],gA=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],MA=[[474,475],[475,476],[476,477],[477,474]],vA=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],RA=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],PA=[[469,470],[470,471],[471,472],[472,469]],TA=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Re(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var wA={lips:Re(hA),leftEye:Re(bA),leftEyebrow:Re(gA),leftIris:Re(MA),rightEye:Re(vA),rightEyebrow:Re(RA),rightIris:Re(PA),faceOval:Re(TA)},kA=Object.entries(wA).map(([e,t])=>t.map(o=>[o,e])).flat(),H4=new Map(kA),P2=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],We=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],Fe=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function U3(e,t){var A,s,a,l,c,y,i,d,x,f;let o={lips:await((s=(A=t.filter(p=>p.size===160))==null?void 0:A[0])==null?void 0:s.data()),irisL:await((l=(a=t.filter(p=>p.size===10))==null?void 0:a[0])==null?void 0:l.data()),eyeL:await((y=(c=t.filter(p=>p.size===142))==null?void 0:c[0])==null?void 0:y.data()),irisR:await((d=(i=t.filter(p=>p.size===10))==null?void 0:i[1])==null?void 0:d.data()),eyeR:await((f=(x=t.filter(p=>p.size===142))==null?void 0:x[1])==null?void 0:f.data())};for(let p of Object.values(o))if(!p)return e;let n=We.reduce((p,g)=>p+=e[g][2],0)/We.length;for(let p=0;pp+=e[g][2],0)/Fe.length;for(let p=0;pv()-Ae.timestamp,n=Ae.skipped<(((c=t.face.detector)==null?void 0:c.skipFrames)||0);!t.skipAllowed||!o||!n||Ae.boxes.length===0?(Ae.boxes=await l3(e,t),Ae.timestamp=v(),Ae.skipped=0):Ae.skipped++;let r=[],A=[],s=0,a=T2;for(let R=0;RO.shape[O.shape.length-1]===1).data();if(w.faceScore=Math.round(100*X[0])/100,w.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(m.confidence=w.faceScore,t.face.mesh.keepInvalid){w.box=V2(m,e),w.boxRaw=Z2(m,e),w.score=w.boxScore,w.mesh=m.landmarks.map(O=>[(m.startPoint[0]+m.endPoint[0])/2+(m.endPoint[0]+m.startPoint[0])*O[0]/Je(),(m.startPoint[1]+m.endPoint[1])/2+(m.endPoint[1]+m.startPoint[1])*O[1]/Je()]),w.meshRaw=w.mesh.map(O=>[O[0]/(e.shape[2]||1),O[1]/(e.shape[1]||1),(O[2]||0)/a]);for(let O of Object.keys(Oe))w.annotations[O]=[w.mesh[Oe[O]]]}}else{let O=h.find(I=>I.shape[I.shape.length-1]===1404),W=Pe.reshape(O,[-1,3]),Z=await W.array();Pe.dispose(W),(p=t.face.attention)!=null&&p.enabled?Z=await U3(Z,h):(g=t.face.iris)!=null&&g.enabled&&(Z=await Z3(Z,w.tensor,T2)),w.mesh=n3(Z,m,u,z,T2),w.meshRaw=w.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/a]);for(let I of Object.keys(q0))w.annotations[I]=q0[I].map(m0=>w.mesh[m0]);w.score=w.faceScore;let N={...A3(w.mesh,m),confidence:m.confidence,landmarks:m.landmarks};w.box=V2(N,e),w.boxRaw=Z2(N,e),A.push(N)}Pe.dispose(h)}else{w.box=V2(m,e),w.boxRaw=Z2(m,e),w.score=w.boxScore,w.mesh=m.landmarks.map(h=>[(m.startPoint[0]+m.endPoint[0])/2+(m.endPoint[0]+m.startPoint[0])*h[0]/Je(),(m.startPoint[1]+m.endPoint[1])/2+(m.endPoint[1]+m.startPoint[1])*h[1]/Je()]),w.meshRaw=w.mesh.map(h=>[h[0]/(e.shape[2]||0),h[1]/(e.shape[1]||0),(h[2]||0)/a]);for(let h of Object.keys(Oe))w.annotations[h]=[w.mesh[Oe[h]]]}w.score>(((M=t.face.detector)==null?void 0:M.minConfidence)||1)?r.push(w):Pe.dispose(w.tensor)}return Ae.boxes=A,r}async function K3(e){var t,o,n,r,A,s;return P.initial&&(_=null),((t=e.face.attention)==null?void 0:t.enabled)&&(_==null?void 0:_.signature)&&Object.keys(((o=_==null?void 0:_.signature)==null?void 0:o.outputs)||{}).length<6&&(_=null),_?e.debug&&b("cached model:",_.modelUrl):(n=e.face.attention)!=null&&n.enabled?_=await F(e.face.attention.modelPath):_=await F((r=e.face.mesh)==null?void 0:r.modelPath),T2=_.executor&&((A=_==null?void 0:_.inputs)==null?void 0:A[0].shape)?(s=_==null?void 0:_.inputs)==null?void 0:s[0].shape[2]:256,_}var J3=je,Q3=M2;var $0=V(D());var v0,n5=[],_3=0,$3=0,M1=Number.MAX_SAFE_INTEGER;async function eo(e){var t;return P.initial&&(v0=null),v0?e.debug&&b("cached model:",v0.modelUrl):v0=await F((t=e.face.description)==null?void 0:t.modelPath),v0}function v1(e){let t=e.image||e.tensor||e;if(!(v0!=null&&v0.inputs[0].shape))return t;let o=$0.image.resizeBilinear(t,[v0.inputs[0].shape[2],v0.inputs[0].shape[1]],!1),n=$0.mul(o,H.tf255);return $0.dispose(o),n}async function R1(e,t,o,n){var s,a,l,c;if(!(v0!=null&&v0.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=M1<(((s=t.face.description)==null?void 0:s.skipFrames)||0),A=(((a=t.face.description)==null?void 0:a.skipTime)||0)>v()-_3;return t.skipAllowed&&r&&A&&$3===n&&((l=n5[o])==null?void 0:l.age)&&((c=n5[o])==null?void 0:c.age)>0?(M1++,n5[o]):(M1=0,new Promise(async y=>{var d;let i={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let x=v1(e),f=v0==null?void 0:v0.execute(x);_3=v(),$0.dispose(x);let g=await f.find(B=>B.shape[1]===1).data(),M=Math.trunc(200*Math.abs(g[0]-.5))/100;M>(t.face.description.minConfidence||0)&&(i.gender=g[0]<=.5?"female":"male",i.genderScore=Math.min(.99,M));let R=$0.argMax(f.find(B=>B.shape[1]===100),1),m=(await R.data())[0];$0.dispose(R);let z=await f.find(B=>B.shape[1]===100).data();i.age=Math.round(z[m-1]>z[m+1]?10*m-100*z[m-1]:10*m+100*z[m+1])/10;let w=f.find(B=>B.shape[1]===1024),h=w?await w.data():[];i.descriptor=Array.from(h),f.forEach(B=>$0.dispose(B))}n5[o]=i,$3=n,y(i)}))}var G=V(D());var no=V(D());function r5(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function w2(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function ro(e,t,o){let n=t.shape[1],r=t.shape[2],A=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return no.image.cropAndResize(t,A,[0],o)}function Ao(e,t){let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(A=>[A[0]*t[0],A[1]*t[1]]);return{startPoint:o,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function A5(e,t=1.5){let o=w2(e),n=r5(e),r=[t*n[0]/2,t*n[1]/2],A=[o[0]-r[0],o[1]-r[1]],s=[o[0]+r[0],o[1]+r[1]];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function s5(e){let t=w2(e),o=r5(e),r=Math.max(...o)/2,A=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function zA(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function so(e,t){let o=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return zA(o)}var to=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Te(e,t){let o=0;for(let n=0;n[s.x,s.y]),this.anchorsTensor=G.tensor2d(this.anchors),this.inputSize=((A=(r=(n=(o=this==null?void 0:this.model)==null?void 0:o.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:A[2])||0,this.inputSizeTensor=G.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=G.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let o={};o.boxOffsets=G.slice(t,[0,0],[-1,2]),o.boxSizes=G.slice(t,[0,2],[-1,2]),o.div=G.div(o.boxOffsets,this.inputSizeTensor),o.boxCenterPoints=G.add(o.div,this.anchorsTensor),o.halfBoxSizes=G.div(o.boxSizes,this.doubleInputSizeTensor),o.sub=G.sub(o.boxCenterPoints,o.halfBoxSizes),o.startPoints=G.mul(o.sub,this.inputSizeTensor),o.add=G.add(o.boxCenterPoints,o.halfBoxSizes),o.endPoints=G.mul(o.add,this.inputSizeTensor);let n=G.concat2d([o.startPoints,o.endPoints],1);return Object.keys(o).forEach(r=>G.dispose(o[r])),n}normalizeLandmarks(t,o){let n={};n.reshape=G.reshape(t,[-1,7,2]),n.div=G.div(n.reshape,this.inputSizeTensor),n.landmarks=G.add(n.div,this.anchors[o]?this.anchors[o]:0);let r=G.mul(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(A=>G.dispose(n[A])),r}async predict(t,o){var a;let n={};n.resize=G.image.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=G.div(n.resize,H.tf127),n.image=G.sub(n.div,H.tf1),n.batched=this.model.execute(n.image),n.predictions=G.squeeze(n.batched),n.slice=G.slice(n.predictions,[0,0],[-1,1]),n.sigmoid=G.sigmoid(n.slice),n.scores=G.squeeze(n.sigmoid);let r=await n.scores.data();n.boxes=G.slice(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await G.image.nonMaxSuppressionAsync(n.norm,n.scores,3*(((a=o.hand)==null?void 0:a.maxDetected)||1),o.hand.iouThreshold,o.hand.minConfidence);let A=await n.nms.array(),s=[];for(let l of A){let c={};c.box=G.slice(n.norm,[l,0],[1,-1]),c.slice=G.slice(n.predictions,[l,5],[1,14]),c.norm=this.normalizeLandmarks(c.slice,l),c.palmLandmarks=G.reshape(c.norm,[-1,2]);let y=await c.box.data(),i=y.slice(0,2),d=y.slice(2,4),x=await c.palmLandmarks.array(),f={startPoint:i,endPoint:d,palmLandmarks:x,confidence:r[l]},p=Ao(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);s.push(p),Object.keys(c).forEach(g=>G.dispose(c[g]))}return Object.keys(n).forEach(l=>G.dispose(n[l])),s}};var j0=V(D());var OA=5,co=1.65,xo=[0,5,9,13,17,1,2],jA=0,NA=2,yo=0,i5=class{constructor(t,o){T(this,"handDetector");T(this,"handPoseModel");T(this,"inputSize");T(this,"storedBoxes");T(this,"skipped");T(this,"detectedHands");var n,r,A;this.handDetector=t,this.handPoseModel=o,this.inputSize=((A=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:A[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let o=t.map(s=>s[0]),n=t.map(s=>s[1]),r=[Math.min(...o),Math.min(...n)],A=[Math.max(...o),Math.max(...n)];return{startPoint:r,endPoint:A}}getBoxForPalmLandmarks(t,o){let n=t.map(A=>w1([...A,1],o)),r=this.calculateLandmarksBoundingBox(n);return A5(s5(r),OA)}getBoxForHandLandmarks(t){let o=this.calculateLandmarksBoundingBox(t),n=A5(s5(o),co);n.palmLandmarks=[];for(let r=0;r[s[0]*(x[0]-this.inputSize/2),s[1]*(x[1]-this.inputSize/2),s[2]*x[2]]),l=T1(n,[0,0]),c=a.map(x=>[...w1(x,l),x[2]]),y=ao(r),i=[...w2(o),1],d=[Te(i,y[0]),Te(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2])])}async estimateHands(t,o){let n=!1,r,A=(o.hand.skipTime||0)>v()-yo,s=this.skipped<(o.hand.skipFrames||0);o.skipAllowed&&A&&s&&(r=await this.handDetector.predict(t,o),this.skipped=0),o.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==o.hand.maxDetected||!o.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let a=[];for(let l=0;l=o.hand.minConfidence/4){let z=j0.reshape(m,[-1,3]),w=await z.array();j0.dispose(m),j0.dispose(z);let h=this.transformRawCoords(w,p,y,f),B=this.getBoxForHandLandmarks(h);this.storedBoxes[l]={...B,confidence:u};let X={landmarks:h,confidence:u,boxConfidence:c.confidence,fingerConfidence:u,box:{topLeft:B.startPoint,bottomRight:B.endPoint}};a.push(X)}else this.storedBoxes[l]=null;j0.dispose(m)}else{let y=A5(s5(c),co),i={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:y.startPoint,bottomRight:y.endPoint},landmarks:[]};a.push(i)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=a.length,a.length>o.hand.maxDetected&&(a.length=o.hand.maxDetected),a}};var R0={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>R0.nameMapping[e],getPoints:e=>R0.pointsMapping[e]},ke={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ke.nameMapping[e]},$={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>$.nameMapping[e]},we=class{constructor(t){T(this,"name");T(this,"curls");T(this,"directions");T(this,"weights");T(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,o,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([o,n])}direction(t,o,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([o,n])}weight(t,o){this.weights[t]=o;let n=this.weights.reduce((r,A)=>r+A,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,o){let n=0;for(let r in t){let A=t[r],s=this.curls[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}for(let r in o){let A=o[r],s=this.directions[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}return n/10}};var{thumb:ee,index:ce,middle:xe,ring:Ge,pinky:Be}=R0,{none:te,half:WA,full:oe}=ke,{verticalUp:t2,verticalDown:os,horizontalLeft:k1,horizontalRight:FA,diagonalUpRight:GA,diagonalUpLeft:o2,diagonalDownRight:ns,diagonalDownLeft:rs}=$,Ee=new we("thumbs up");Ee.curl(ee,te,1);Ee.direction(ee,t2,1);Ee.direction(ee,o2,.25);Ee.direction(ee,GA,.25);for(let e of[R0.index,R0.middle,R0.ring,R0.pinky])Ee.curl(e,oe,1),Ee.direction(e,k1,1),Ee.direction(e,FA,1);var i0=new we("victory");i0.curl(ee,WA,.5);i0.curl(ee,te,.5);i0.direction(ee,t2,1);i0.direction(ee,o2,1);i0.curl(ce,te,1);i0.direction(ce,t2,.75);i0.direction(ce,o2,1);i0.curl(xe,te,1);i0.direction(xe,t2,1);i0.direction(xe,o2,.75);i0.curl(Ge,oe,1);i0.direction(Ge,t2,.2);i0.direction(Ge,o2,1);i0.direction(Ge,k1,.2);i0.curl(Be,oe,1);i0.direction(Be,t2,.2);i0.direction(Be,o2,1);i0.direction(Be,k1,.2);i0.weight(ce,2);i0.weight(xe,2);var ze=new we("point");ze.curl(ee,oe,1);ze.curl(ce,te,.5);ze.curl(xe,oe,.5);ze.curl(Ge,oe,.5);ze.curl(Be,oe,.5);ze.weight(ce,2);ze.weight(xe,2);var Se=new we("middle finger");Se.curl(ee,te,1);Se.curl(ce,oe,.5);Se.curl(xe,oe,.5);Se.curl(Ge,oe,.5);Se.curl(Be,oe,.5);Se.weight(ce,2);Se.weight(xe,2);var n2=new we("open palm");n2.curl(ee,te,.75);n2.curl(ce,te,.75);n2.curl(xe,te,.75);n2.curl(Ge,te,.75);n2.curl(Be,te,.75);var fo=[Ee,i0,ze,Se,n2];var BA=.7,He={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function mo(e,t,o,n){let r=(t-n)/(e-o),A=Math.atan(r)*180/Math.PI;return A<=0?A=-A:A>0&&(A=180-A),A}function uo(e,t){if(!e||!t)return[0,0];let o=mo(e[0],e[1],t[0],t[1]);if(e.length===2)return o;let n=mo(e[1],e[2],t[1],t[2]);return[o,n]}function po(e,t=1){let o=0,n=0,r=0;return e>=75&&e<=105?o=1*t:e>=25&&e<=155?n=1*t:r=1*t,[o,n,r]}function HA(e,t,o){let n=e[0]-t[0],r=e[0]-o[0],A=t[0]-o[0],s=e[1]-t[1],a=e[1]-o[1],l=t[1]-o[1],c=e[2]-t[2],y=e[2]-o[2],i=t[2]-o[2],d=Math.sqrt(n*n+s*s+c*c),x=Math.sqrt(r*r+a*a+y*y),f=Math.sqrt(A*A+l*l+i*i),p=(f*f+d*d-x*x)/(2*f*d);p>1?p=1:p<-1&&(p=-1);let g=Math.acos(p);g=57.2958*g%180;let M;return g>He.NO_CURL_START_LIMIT?M=ke.none:g>He.HALF_CURL_START_LIMIT?M=ke.half:M=ke.full,M}function ho(e,t,o,n){let r;return n===Math.abs(e)?e>0?r=$.horizontalLeft:r=$.horizontalRight:n===Math.abs(t)?t>0?r=$.horizontalLeft:r=$.horizontalRight:o>0?r=$.horizontalLeft:r=$.horizontalRight,r}function bo(e,t,o,n){let r;return n===Math.abs(e)?e<0?r=$.verticalDown:r=$.verticalUp:n===Math.abs(t)?t<0?r=$.verticalDown:r=$.verticalUp:o<0?r=$.verticalDown:r=$.verticalUp,r}function DA(e,t,o,n,r,A,s,a){let l,c=bo(e,t,o,n),y=ho(r,A,s,a);return c===$.verticalUp?y===$.horizontalLeft?l=$.diagonalUpLeft:l=$.diagonalUpRight:y===$.horizontalLeft?l=$.diagonalDownLeft:l=$.diagonalDownRight,l}function VA(e,t,o,n){let r=e[0]-t[0],A=e[0]-o[0],s=t[0]-o[0],a=e[1]-t[1],l=e[1]-o[1],c=t[1]-o[1],y=Math.max(Math.abs(r),Math.abs(A),Math.abs(s)),i=Math.max(Math.abs(a),Math.abs(l),Math.abs(c)),d=0,x=0,f=0,p=i/(y+1e-5);p>1.5?d+=He.DISTANCE_VOTE_POWER:p>.66?x+=He.DISTANCE_VOTE_POWER:f+=He.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+a*a),M=Math.sqrt(A*A+l*l),R=Math.sqrt(s*s+c*c),m=Math.max(g,M,R),u=e[0],z=e[1],w=o[0],h=o[1];m===g?(w=o[0],h=o[1]):m===R&&(u=t[0],z=t[1]);let O=uo([u,z],[w,h]),W=po(O,He.TOTAL_ANGLE_VOTE_POWER);d+=W[0],x+=W[1],f+=W[2];for(let N of n){let I=po(N,He.SINGLE_ANGLE_VOTE_POWER);d+=I[0],x+=I[1],f+=I[2]}let Z;return d===Math.max(d,x,f)?Z=bo(l,a,c,i):f===Math.max(x,f)?Z=ho(A,r,s,y):Z=DA(l,a,c,i,A,r,s,y),Z}function go(e){let t=[],o=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let A of R0.all){let s=R0.getPoints(A),a=[],l=[];for(let c of s){let y=e[c[0]],i=e[c[1]],d=uo(y,i),x=d[0],f=d[1];a.push(x),l.push(f)}t.push(a),o.push(l)}for(let A of R0.all){let s=A===R0.thumb?1:0,a=R0.getPoints(A),l=e[a[s][0]],c=e[a[s+1][1]],y=e[a[3][1]],i=HA(l,c,y),d=VA(l,c,y,t[A].slice(s));n[A]=i,r[A]=d}return{curls:n,directions:r}}function l5(e){if(!e||e.length===0)return null;let t=go(e),o={};for(let n of R0.all)o[R0.getName(n)]={curl:ke.getName(t.curls[n]),direction:$.getName(t.directions[n])};return o}function Mo(e){let t=[];if(!e||e.length===0)return t;let o=go(e);for(let n of fo){let r=n.matchAgainst(o.curls,o.directions);r>=BA&&t.push({name:n.name,confidence:r})}return t}var vo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},De,Ve,Ro;async function z1(e,t){let o=await Ro.estimateHands(e,t);if(!o)return[];let n=[];for(let r=0;ro[r].landmarks[i]);let s=o[r].landmarks,a=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(s&&s.length>0){for(let y of s)y[0]a[2]&&(a[2]=y[0]),y[1]>a[3]&&(a[3]=y[1]);a[2]-=a[0],a[3]-=a[1],l=[a[0]/(e.shape[2]||0),a[1]/(e.shape[1]||0),a[2]/(e.shape[2]||0),a[3]/(e.shape[1]||0)]}else a=o[r].box?[Math.trunc(Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.max(0,o[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,o[r].box.bottomRight[0])-Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,o[r].box.bottomRight[1])-Math.max(0,o[r].box.topLeft[1]))]:[0,0,0,0],l=[o[r].box.topLeft[0]/(e.shape[2]||0),o[r].box.topLeft[1]/(e.shape[1]||0),(o[r].box.bottomRight[0]-o[r].box.topLeft[0])/(e.shape[2]||0),(o[r].box.bottomRight[1]-o[r].box.topLeft[1])/(e.shape[1]||0)];let c=l5(s);n.push({id:r,score:Math.round(100*o[r].confidence)/100,boxScore:Math.round(100*o[r].boxConfidence)/100,fingerScore:Math.round(100*o[r].fingerConfidence)/100,label:"hand",box:a,boxRaw:l,keypoints:s,annotations:A,landmarks:c})}return n}async function S1(e){var o,n;P.initial&&(De=null,Ve=null),!De||!Ve?[De,Ve]=await Promise.all([e.hand.enabled?F((o=e.hand.detector)==null?void 0:o.modelPath):null,e.hand.landmarks?F((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&b("cached model:",De.modelUrl),e.debug&&b("cached model:",Ve.modelUrl));let t=De?new a5(De):void 0;return t&&Ve&&(Ro=new i5(t,Ve)),[De,Ve]}var K=V(D());var r0=V(D());var J={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function ZA(){let e=J.gl;!e||(J.extensions=e.getSupportedExtensions())}function To(e){var t;if(e.config.backend==="humangl"&&(J.name in r0.engine().registry&&!((t=J==null?void 0:J.gl)!=null&&t.getParameter(J.gl.VERSION))&&(b("error: humangl backend invalid context"),c5(e)),!r0.findBackend(J.name))){try{J.canvas=b0(100,100)}catch(n){b("error: cannot create canvas:",n);return}try{if(J.gl=J.canvas.getContext("webgl2",J.webGLattr),!J.gl){b("error: cannot get WebGL context");return}if(!J.gl.getParameter(J.gl.VERSION).includes("2.0")){b("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}J.canvas&&(J.canvas.addEventListener("webglcontextlost",r=>{throw b("error: humangl:",r.type),b("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),J.canvas.addEventListener("webglcontextrestored",r=>{b("error: humangl context restored:",r)}),J.canvas.addEventListener("webglcontextcreationerror",r=>{b("error: humangl context create:",r)}))}catch(n){b("error: cannot get WebGL context:",n);return}try{r0.setWebGLContext(2,J.gl)}catch(n){b("error: cannot set WebGL context:",n);return}try{let n=new r0.GPGPUContext(J.gl);r0.registerBackend(J.name,()=>new r0.MathBackendWebGL(n),J.priority)}catch(n){b("error: cannot register WebGL backend:",n);return}try{r0.getKernelsForBackend("webgl").forEach(r=>{let A={...r,backendName:J.name};r0.registerKernel(A)})}catch(n){b("error: cannot update WebGL backend registration:",n);return}let o=r0.backend().getGPGPUContext?r0.backend().getGPGPUContext().gl:null;if(o)b(`humangl webgl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`);else{b("error: no current gl context:",o,J.gl);return}try{r0.env().flagRegistry.WEBGL_VERSION&&r0.env().set("WEBGL_VERSION",2)}catch(n){b("error: cannot set WebGL backend flags:",n);return}ZA(),b("backend registered:",J.name)}}var k=V(D());function XA(e){if(!P.kernels.includes("mod")){let t={kernelName:"Mod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.sub(o.inputs.a,k.mul(k.div(o.inputs.a,o.inputs.b),o.inputs.b)))};e.debug&&b("registered kernel:","Mod"),k.registerKernel(t),P.kernels.push("mod")}if(!P.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.add(k.mul(k.floorDiv(o.inputs.a/o.inputs.b),o.inputs.b),k.mod(o.inputs.a,o.inputs.b)))};e.debug&&b("registered kernel:","FloorMod"),k.registerKernel(t),P.kernels.push("floormod")}if(!P.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>{let n=k.getBackend();k.setBackend("cpu");let r=k.image.rotateWithOffset(o.inputs.image,o.attrs.radians,o.attrs.fillValue,o.attrs.center);return k.setBackend(n),r})};e.debug&&b("registered kernel:","RotateWithOffset"),k.registerKernel(t),P.kernels.push("rotatewithoffset")}}async function y5(e,t=!1){if(e.state="backend",t||P.initial||e.config.backend&&e.config.backend.length>0&&k.getBackend()!==e.config.backend){let o=v();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&b("running inside web worker"),P.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&b("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),P.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&b(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),P.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")b("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&b("enumerated webgpu adapter:",r),!r)b("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let A="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;b("webgpu adapter info:",A)}}e.config.backend==="humangl"&&To(e);let n=Object.keys(k.engine().registryFactory);if(e.config.debug&&b("available backends:",n),n.includes(e.config.backend)||(b(`error: backend ${e.config.backend} not found in registry`),e.config.backend=P.node?"tensorflow":"webgl",e.config.debug&&b(`override: setting backend ${e.config.backend}`)),e.config.debug&&b("setting backend:",e.config.backend),e.config.backend==="wasm"){if(k.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&k.env().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&b("wasm path:",e.config.wasmPath),typeof k.setWasmPaths!="undefined")k.setWasmPaths(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,A=!1;try{r=await k.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),A=await k.env().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&b(`wasm execution: ${A?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!A&&b("warning: wasm simd support is not enabled")}catch(s){b("wasm detection failed")}}try{await k.setBackend(e.config.backend),await k.ready(),Ft()}catch(r){return b("error: cannot set backend:",e.config.backend,r),!1}}if(k.getBackend()==="humangl"&&(k.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&k.env().set("CHECK_COMPUTATION_FOR_ERRORS",!1),k.env().flagRegistry.WEBGL_CPU_FORWARD&&k.env().set("WEBGL_CPU_FORWARD",!0),k.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&k.env().set("WEBGL_USE_SHAPES_UNIFORMS",!0),k.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&k.env().set("CPU_HANDOFF_SIZE_THRESHOLD",256),k.env().flagRegistry.WEBGL_EXP_CONV&&k.env().set("WEBGL_EXP_CONV",!0),k.env().flagRegistry.USE_SETTIMEOUTCUSTOM&&k.env().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(b("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),k.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),k.backend().getGPGPUContext)){let n=await k.backend().getGPGPUContext().gl;e.config.debug&&b(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}k.getBackend(),k.enableProdMode(),await k.ready(),e.performance.initBackend=Math.trunc(v()-o),e.config.backend=k.getBackend(),await P.updateBackend(),XA(e.config)}return!0}function d5(e,t){for(let o of e){let n={kernelName:o,backendName:t.backend,kernelFunc:()=>{t.debug&&b("kernelFunc",o,t.backend)}};k.registerKernel(n)}P.kernels=k.getKernelsForBackend(k.getBackend()).map(o=>o.kernelName.toLowerCase())}var s0=[null,null],UA=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Ce=[[0,0],[0,0]],YA=["hand","fist","pinch","point","face","tip","pinchtip"],ko=4,Eo=1.6,KA=512,JA=1.4,f5=Number.MAX_SAFE_INTEGER,C1=0,ye=[0,0],A0={boxes:[],hands:[]},zo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function So(e){var t;if(P.initial&&(s0[0]=null),s0[0])e.debug&&b("cached model:",s0[0].modelUrl);else{d5(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),s0[0]=await F((t=e.hand.detector)==null?void 0:t.modelPath);let o=s0[0].executor?Object.values(s0[0].modelSignature.inputs):void 0;Ce[0][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[0][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[0]}async function Co(e){var t;if(P.initial&&(s0[1]=null),s0[1])e.debug&&b("cached model:",s0[1].modelUrl);else{s0[1]=await F((t=e.hand.skeleton)==null?void 0:t.modelPath);let o=s0[1].executor?Object.values(s0[1].modelSignature.inputs):void 0;Ce[1][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[1][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[1]}async function QA(e,t){let o=[];if(!e||!s0[0])return o;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),A=Math.min(Math.round((e.shape[1]||0)/8)*8,KA),s=Math.round(A*r/8)*8;n.resize=K.image.resizeBilinear(e,[A,s]),n.cast=K.cast(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await s0[0].executeAsync(n.cast,UA),n.boxes=K.squeeze(n.rawBoxes,[0,2]),n.scores=K.squeeze(n.rawScores,[0]);let a=K.unstack(n.scores,1);K.dispose(a[ko]),a.splice(ko,1),n.filtered=K.stack(a,1),K.dispose(a),n.max=K.max(n.filtered,1),n.argmax=K.argMax(n.filtered,1);let l=0;n.nms=await K.image.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let c=await n.nms.data(),y=await n.max.data(),i=await n.argmax.data();for(let d of Array.from(c)){let x=K.slice(n.boxes,d,1),f=await x.data();K.dispose(x);let p=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=K2(p,JA),M=[Math.trunc(p[0]*ye[0]),Math.trunc(p[1]*ye[1]),Math.trunc(p[2]*ye[0]),Math.trunc(p[3]*ye[1])],R=y[d],m=YA[i[d]],u={id:l++,score:R,box:M,boxRaw:g,label:m};o.push(u)}return Object.keys(n).forEach(d=>K.dispose(n[d])),o.sort((d,x)=>x.score-d.score),o.length>(t.hand.maxDetected||1)&&(o.length=t.hand.maxDetected||1),o}async function I1(e,t,o){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&s0[1]&&o.hand.landmarks&&t.score>(o.hand.minConfidence||0)){let r={},A=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=K.image.cropAndResize(e,[A],[0],[Ce[1][0],Ce[1][1]],"bilinear"),r.div=K.div(r.crop,H.tf255),[r.score,r.keypoints]=s0[1].execute(r.div,["Identity_1","Identity"]);let s=(await r.score.data())[0],a=(100-Math.trunc(100/(1+Math.exp(s))))/100;if(a>=(o.hand.minConfidence||0)){n.fingerScore=a,r.reshaped=K.reshape(r.keypoints,[-1,3]);let y=(await r.reshaped.array()).map(i=>[i[0]/Ce[1][1],i[1]/Ce[1][0],i[2]||0]).map(i=>[i[0]*t.boxRaw[2],i[1]*t.boxRaw[3],i[2]||0]);n.keypoints=y.map(i=>[ye[0]*(i[0]+t.boxRaw[0]),ye[1]*(i[1]+t.boxRaw[1]),i[2]||0]),n.landmarks=l5(n.keypoints);for(let i of Object.keys(zo))n.annotations[i]=zo[i].map(d=>n.landmarks&&n.keypoints[d]?n.keypoints[d]:null)}Object.keys(r).forEach(l=>K.dispose(r[l]))}return n}async function O1(e,t){var r,A;if(!((r=s0[0])!=null&&r.executor)||!((A=s0[1])!=null&&A.executor)||!s0[0].inputs[0].shape||!s0[1].inputs[0].shape)return[];ye=[e.shape[2]||0,e.shape[1]||0],f5++;let o=(t.hand.skipTime||0)>v()-C1,n=f5<(t.hand.skipFrames||0);return t.skipAllowed&&o&&n?A0.hands:new Promise(async s=>{let a=3*(t.hand.skipTime||0)>v()-C1,l=f5<3*(t.hand.skipFrames||0);t.skipAllowed&&A0.hands.length===t.hand.maxDetected?A0.hands=await Promise.all(A0.boxes.map(y=>I1(e,y,t))):t.skipAllowed&&a&&l&&A0.hands.length>0?A0.hands=await Promise.all(A0.boxes.map(y=>I1(e,y,t))):(A0.boxes=await QA(e,t),C1=v(),A0.hands=await Promise.all(A0.boxes.map(y=>I1(e,y,t))),f5=0);let c=[...A0.boxes];if(A0.boxes.length=0,t.cacheSensitivity>0)for(let y=0;y.05&&i.box[3]/(e.shape[1]||1)>.05&&A0.hands[y].fingerScore&&A0.hands[y].fingerScore>(t.hand.minConfidence||0)){let d=K2(i.box,Eo),x=K2(i.boxRaw,Eo);A0.boxes.push({...c[y],box:d,boxRaw:x})}}for(let y=0;yv()-jo,A=j1<(((a=t.face.liveness)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&Oo===n&&m5[o]?(j1++,m5[o]):(j1=0,new Promise(async l=>{let c=p5.image.resizeBilinear(e,[f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[2]:0,f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[1]:0],!1),y=f0==null?void 0:f0.execute(c),i=(await y.data())[0];m5[o]=Math.round(100*i)/100,Oo=n,jo=v(),p5.dispose([c,y]),l(m5[o])}))}var Ho=V(D());var k2={};pe(k2,{connected:()=>h5,horizontal:()=>L1,kpt:()=>u5,relative:()=>F1,vertical:()=>W1});var u5=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],L1=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],W1=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],F1=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],h5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Ie=V(D()),Wo=.005,N0={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function G1(e){for(let t of L1){let o=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[0]r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[1]c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),A=e.keypoints.findIndex(c=>c&&c.part===o[0]),s=e.keypoints.findIndex(c=>c&&c.part===o[1]);if(!e.keypoints[A]||!e.keypoints[s])continue;let a=e.keypoints[n]?[Math.abs(e.keypoints[A].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[A].position[0]-e.keypoints[r].position[0])]:[0,0];if(a[0]>a[1]||l[0]>l[1]){let c=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=c}}}function Fo(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],o.pad=Ie.pad(e,N0.padding),o.resize=Ie.image.resizeBilinear(o.pad,[t,t]);let n=Ie.cast(o.resize,"int32");return Object.keys(o).forEach(s=>Ie.dispose(o[s])),n}function Bo(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+N0.padding[2][0]+N0.padding[2][1])/t[0]-N0.padding[2][0],n.position[1]*(t[1]+N0.padding[1][0]+N0.padding[1][1])/t[1]-N0.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let o=le(e.keypoints.map(n=>n.position),t);return e.box=o.box,e.boxRaw=o.boxRaw,e}var l0,b5=0,B1=Number.MAX_SAFE_INTEGER,Ze={boxes:[],bodies:[],last:0};async function Do(e){var t;return P.initial&&(l0=null),l0?e.debug&&b("cached model:",l0.modelUrl):(d5(["size"],e),l0=await F(e.body.modelPath)),b5=(l0==null?void 0:l0.executor)&&((t=l0==null?void 0:l0.inputs)==null?void 0:t[0].shape)?l0.inputs[0].shape[2]:0,b5<64&&(b5=256),l0}function $A(e,t,o){let n=e[0][0],r=[],A=0;for(let y=0;yt.body.minConfidence){let i=[n[y][1],n[y][0]];r.push({score:Math.round(100*A)/100,part:u5[y],positionRaw:i,position:[Math.round((o.shape[2]||0)*i[0]),Math.round((o.shape[1]||0)*i[1])]})}A=r.reduce((y,i)=>i.score>y?i.score:y,0);let s=[],a=le(r.map(y=>y.position),[o.shape[2],o.shape[1]]),l={};for(let[y,i]of Object.entries(h5)){let d=[];for(let x=0;xg.part===i[x]),p=r.find(g=>g.part===i[x+1]);f&&p&&f.score>(t.body.minConfidence||0)&&p.score>(t.body.minConfidence||0)&&d.push([f.position,p.position])}l[y]=d}let c={id:0,score:A,box:a.box,boxRaw:a.boxRaw,keypoints:r,annotations:l};return G1(c),s.push(c),s}function e7(e,t,o){let n=[];for(let r=0;rt.body.minConfidence){let a=[];for(let i=0;i<17;i++){let d=A[3*i+2];if(d>t.body.minConfidence){let x=[A[3*i+1],A[3*i+0]];a.push({part:u5[i],score:Math.round(100*d)/100,positionRaw:x,position:[Math.round((o.shape[2]||0)*x[0]),Math.round((o.shape[1]||0)*x[1])]})}}let l=le(a.map(i=>i.position),[o.shape[2],o.shape[1]]),c={};for(let[i,d]of Object.entries(h5)){let x=[];for(let f=0;fM.part===d[f]),g=a.find(M=>M.part===d[f+1]);p&&g&&p.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([p.position,g.position])}c[i]=x}let y={id:r,score:s,box:l.box,boxRaw:l.boxRaw,keypoints:[...a],annotations:c};G1(y),n.push(y)}}return n.sort((r,A)=>A.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function H1(e,t){var r;if(!(l0!=null&&l0.executor)||!((r=l0==null?void 0:l0.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Ze.boxes.length=0),B1++;let o=(t.body.skipTime||0)>v()-Ze.last,n=B1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n?Ze.bodies:new Promise(async A=>{let s={};B1=0,s.input=Go(e,b5),s.res=l0==null?void 0:l0.execute(s.input),Ze.last=v();let a=await s.res.array();Ze.bodies=s.res.shape[2]===17?$A(a,t,e):e7(a,t,e);for(let l of Ze.bodies)Bo(l,[e.shape[2]||1,e.shape[1]||1]),Fo(l.keypoints);Object.keys(s).forEach(l=>Ho.dispose(s[l])),A(Ze.bodies)})}var L0=V(D());var U0,g5=[],Zo=0,D1=Number.MAX_SAFE_INTEGER,v5=0,M5=2.5;async function Xo(e){if(!U0||P.initial){U0=await F(e.object.modelPath);let t=U0!=null&&U0.executor?Object.values(U0.modelSignature.inputs):void 0;v5=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&b("cached model:",U0.modelUrl);return U0}async function t7(e,t,o){let n=0,r=[],A=v5;for(let c of[1,2,4]){let y=c*13,i=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)===_e.length)),d=await i.array(),x=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)<_e.length)),f=x.reshape([-1,4,x.shape[1]/4]),p=f.argMax(2),g=await p.array();for(let M=0;M(o.object.minConfidence||0)&&R!==61){let u=(.5+Math.trunc(M%y))/y,z=(.5+Math.trunc(M/y))/y,w=g[M].map(I=>I*(y/c/A)),[h,B]=[u-M5/c*w[0],z-M5/c*w[1]],[X,O]=[u+M5/c*w[2]-h,z+M5/c*w[3]-B],W=[h,B,X,O];W=W.map(I=>Math.max(0,Math.min(I,1)));let Z=[W[0]*t[0],W[1]*t[1],W[2]*t[0],W[3]*t[1]],N={id:n++,score:Math.round(100*m)/100,class:R+1,label:_e[R].label,box:Z.map(I=>Math.trunc(I)),boxRaw:W};r.push(N)}}L0.dispose([i,x,f,p])}let s=r.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),a=r.map(c=>c.score),l=[];if(s&&s.length>0){let c=await L0.image.nonMaxSuppressionAsync(s,a,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence);l=await c.data(),L0.dispose(c)}return r=r.filter((c,y)=>l.includes(y)).sort((c,y)=>y.score-c.score),r}async function V1(e,t){if(!(U0!=null&&U0.executor))return[];let o=(t.object.skipTime||0)>v()-Zo,n=D1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&g5.length>0?(D1++,g5):(D1=0,!P.kernels.includes("mod")||!P.kernels.includes("sparsetodense")?g5:new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=L0.image.resizeBilinear(e,[v5,v5],!1),a=L0.div(s,H.tf255),l=L0.transpose(a,[0,3,1,2]),c;t.object.enabled&&(c=U0.execute(l)),Zo=v();let y=await t7(c,A,t);g5=y,L0.dispose([s,a,l,...c]),r(y)}))}var P0=V(D());var z2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],o7=z2.length,E2=z2.reduce((e,t,o)=>(e[t]=o,e),{}),n7=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Cs=n7.map(([e,t])=>[E2[e],E2[t]]),Uo=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Yo(e){let t=e.reduce(({maxX:o,maxY:n,minX:r,minY:A},{position:{x:s,y:a}})=>({maxX:Math.max(o,s),maxY:Math.max(n,a),minX:Math.min(r,s),minY:Math.min(A,a)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Ko(e,[t,o],[n,r]){let A=t/n,s=o/r,a=(c,y)=>({id:y,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/n,c.box[2]/r,c.box[3]/n],box:[Math.trunc(c.box[0]*s),Math.trunc(c.box[1]*A),Math.trunc(c.box[2]*s),Math.trunc(c.box[3]*A)],keypoints:c.keypoints.map(({score:i,part:d,position:x})=>({score:i,part:d,position:[Math.trunc(x.x*s),Math.trunc(x.y*A)],positionRaw:[x.x/n,x.y/n]})),annotations:{}});return e.map((c,y)=>a(c,y))}var R5=class{constructor(t,o){T(this,"priorityQueue");T(this,"numberOfElements");T(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=o}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let o=2*t;if(oo?o:e}function Jo(e,t,o,n){let r=o-e,A=n-t;return r*r+A*A}function U1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var W0,A7=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],P5=1,r2=16,s7=50**2;function Qo(e,t,o,n,r,A,s=2){let a=M=>({y:A.get(M.y,M.x,e),x:A.get(M.y,M.x,A.shape[2]/2+e)}),l=(M,R,m)=>({y:q1(Math.round(M.y/r2),0,R-1),x:q1(Math.round(M.x/r2),0,m-1)}),[c,y]=n.shape,i=l(t.position,c,y),d=a(i),f=U1(t.position,d);for(let M=0;M[E2[d],E2[x]]),s=A.map(([,d])=>d),a=A.map(([d])=>d),l=t.shape[2],c=s.length,y=new Array(l),i=X1(e.part,r2,o);y[e.part.id]={score:e.score,part:z2[e.part.id],position:i};for(let d=c-1;d>=0;--d){let x=s[d],f=a[d];y[x]&&!y[f]&&(y[f]=Qo(d,y[x],f,t,o,r))}for(let d=0;dt){a=!1;break}if(!a)break}return a}function l7(e,t){let[o,n,r]=t.shape,A=new R5(o*n*r,({score:s})=>s);for(let s=0;s{var s;let A=(s=r[n])==null?void 0:s.position;return A?Jo(o,t,A.y,A.x)<=s7:!1})}function c7(e,t){return t.reduce((n,{position:r,score:A},s)=>(_o(e,r,s)||(n+=A),n),0)/t.length}function x7(e,t,o,n,r,A){let s=[],a=l7(A,t);for(;s.lengthx.score>A);let i=c7(s,y),d=Yo(y);i>A&&s.push({keypoints:y,box:d,score:Math.round(100*i)/100})}return s}async function Y1(e,t){if(!(W0!=null&&W0.executor))return[];let o=P0.tidy(()=>{if(!W0.inputs[0].shape)return[];let s=P0.image.resizeBilinear(e,[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]),a=P0.sub(P0.div(P0.cast(s,"float32"),127.5),1),c=W0.execute(a,A7).map(y=>P0.squeeze(y,[0]));return c[1]=P0.sigmoid(c[1]),c}),n=await Promise.all(o.map(s=>s.buffer()));for(let s of o)P0.dispose(s);let r=x7(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return W0.inputs[0].shape?Ko(r,[e.shape[1],e.shape[2]],[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]):[]}async function $o(e){return!W0||P.initial?W0=await F(e.body.modelPath):e.debug&&b("cached model:",W0.modelUrl),W0}var e0=V(D());var se,K1=!1;async function J1(e){return!se||P.initial?se=await F(e.segmentation.modelPath):e.debug&&b("cached model:",se.modelUrl),se}async function tn(e,t,o){var p,g;if(K1)return{data:[],canvas:null,alpha:null};K1=!0,se||await J1(o);let n=await Ue(e,o),r=((p=n.tensor)==null?void 0:p.shape[2])||0,A=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let s={};s.resize=e0.image.resizeBilinear(n.tensor,[se.inputs[0].shape?se.inputs[0].shape[1]:0,se.inputs[0].shape?se.inputs[0].shape[2]:0],!1),e0.dispose(n.tensor),s.norm=e0.div(s.resize,H.tf255),s.res=se.execute(s.norm),s.squeeze=e0.squeeze(s.res,0),s.squeeze.shape[2]===2?(s.softmax=e0.softmax(s.squeeze),[s.bg,s.fg]=e0.unstack(s.softmax,2),s.expand=e0.expandDims(s.fg,2),s.pad=e0.expandDims(s.expand,0),s.crop=e0.image.cropAndResize(s.pad,[[0,0,.5,.5]],[0],[r,A]),s.data=e0.squeeze(s.crop,0)):s.data=e0.image.resizeBilinear(s.squeeze,[A,r]);let a=Array.from(await s.data.data());if(P.node&&!P.Canvas&&typeof ImageData=="undefined")return o.debug&&b("canvas support missing"),Object.keys(s).forEach(M=>e0.dispose(s[M])),{data:a,canvas:null,alpha:null};let l=b0(r,A);e0.browser&&await e0.browser.toPixels(s.data,l);let c=l.getContext("2d");o.segmentation.blur&&o.segmentation.blur>0&&(c.filter=`blur(${o.segmentation.blur}px)`);let y=c.getImageData(0,0,r,A),i=b0(r,A),d=i.getContext("2d");n.canvas&&d.drawImage(n.canvas,0,0),d.globalCompositeOperation="darken",o.segmentation.blur&&o.segmentation.blur>0&&(d.filter=`blur(${o.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let x=d.getImageData(0,0,r,A);for(let M=0;Me0.dispose(s[M])),K1=!1,{data:a,canvas:i,alpha:l}}var S2=class{constructor(){T(this,"ssrnetage",null);T(this,"gear",null);T(this,"blazeposedetect",null);T(this,"blazepose",null);T(this,"centernet",null);T(this,"efficientpose",null);T(this,"mobilefacenet",null);T(this,"insightface",null);T(this,"emotion",null);T(this,"facedetect",null);T(this,"faceiris",null);T(this,"facemesh",null);T(this,"faceres",null);T(this,"ssrnetgender",null);T(this,"handpose",null);T(this,"handskeleton",null);T(this,"handtrack",null);T(this,"liveness",null);T(this,"movenet",null);T(this,"nanodet",null);T(this,"posenet",null);T(this,"segmentation",null);T(this,"antispoof",null)}},Q1=e=>{let t=0,o=0,n=0;for(let A of Object.values(ne))t+=A.sizeFromManifest,o+=A.sizeLoadedWeights,n+=A.sizeDesired;let r=n>0?o/n:0;return{numLoadedModels:Object.values(ne).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:o,totalSizeLoading:n,totalSizeEnabled:void 0,modelStats:Object.values(ne)}};function c5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function _1(e){var t,o,n,r,A,s,a,l,c,y,i,d,x,f,p,g,M,R,m,u,z,w,h,B,X,O;P.initial&&c5(e),e.config.hand.enabled&&(!e.models.handpose&&((o=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:o.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await S1(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await S1(e.config))),e.config.body.enabled&&!e.models.blazepose&&((A=e.config.body.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=h3(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=u3(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((s=e.config.body.modelPath)==null?void 0:s.includes("efficientpose"))&&(e.models.efficientpose=P3(e.config)),e.config.body.enabled&&!e.models.movenet&&((a=e.config.body.modelPath)==null?void 0:a.includes("movenet"))&&(e.models.movenet=Do(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=$o(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=i3(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=Kt(e.config)),e.config.face.enabled&&((y=e.config.face.liveness)==null?void 0:y.enabled)&&!e.models.liveness&&(e.models.liveness=No(e.config)),e.config.face.enabled&&((i=e.config.face.description)==null?void 0:i.enabled)&&!e.models.faceres&&(e.models.faceres=eo(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=E3(e.config)),e.config.face.enabled&&((x=e.config.face.iris)==null?void 0:x.enabled)&&!((f=e.config.face.attention)!=null&&f.enabled)&&!e.models.faceiris&&(e.models.faceiris=V3(e.config)),e.config.face.enabled&&((p=e.config.face.mesh)==null?void 0:p.enabled)&&!e.models.facemesh&&(e.models.facemesh=K3(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=Lt(e.config)),e.config.face.enabled&&((M=e.config.face.ssrnet)==null?void 0:M.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=Ht(e.config)),e.config.face.enabled&&((R=e.config.face.ssrnet)==null?void 0:R.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=Xt(e.config)),e.config.face.enabled&&((m=e.config.face.mobilefacenet)==null?void 0:m.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=O3(e.config)),e.config.face.enabled&&((u=e.config.face.insightface)==null?void 0:u.enabled)&&!e.models.insightface&&(e.models.insightface=F3(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((w=(z=e.config.hand.detector)==null?void 0:z.modelPath)==null?void 0:w.includes("handtrack"))&&(e.models.handtrack=So(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((B=(h=e.config.hand.detector)==null?void 0:h.modelPath)==null?void 0:B.includes("handtrack"))&&(e.models.handskeleton=Co(e.config)),e.config.object.enabled&&!e.models.centernet&&((X=e.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(e.models.centernet=M3(e.config)),e.config.object.enabled&&!e.models.nanodet&&((O=e.config.object.modelPath)==null?void 0:O.includes("nanodet"))&&(e.models.nanodet=Xo(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=J1(e.config));for await(let W of Object.keys(e.models))e.models[W]&&typeof e.models[W]!="undefined"&&(e.models[W]=await e.models[W])}var B0;function A2(e,t,o){var c;if(e&&(B0=e),!t||(B0||b("instance not registred"),!B0.config.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],A=[],s=[],a=t.modelUrl,l=t.executor;if((c=l==null?void 0:l.graph)!=null&&c.nodes)for(let y of Object.values(l.graph.nodes)){let i=y.op.toLowerCase();A.includes(i)||A.push(i)}else!l&&B0.config.debug&&b("model not loaded",o);for(let y of A)!n.includes(y)&&!r.includes(y)&&!B0.env.kernels.includes(y)&&!B0.env.kernels.includes(y.replace("_",""))&&!B0.env.kernels.includes(y.replace("native",""))&&!B0.env.kernels.includes(y.replace("v2",""))&&s.push(y);return B0.config.debug&&s.length>0&&b("model validation failed:",o,s),s.length>0?{name:o,missing:s,ops:A,url:a}:null}function T5(e){B0=e;let t=[];for(let o of Object.keys(B0.models)){let n=B0.models[o];if(!n)continue;let r=A2(B0,n,o);r&&t.push(r)}return t}var T0={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},ne={};async function y7(e,t){return T0.debug&&b("load model fetch:",e,t),fetch(e,t)}function nn(e){T0.cacheModels=e.cacheModels,T0.verbose=e.debug,T0.modelBasePath=e.modelBasePath}async function F(e){var c,y,i;let t=vt(T0.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let o=t.includes("/")?t.split("/"):t.split("\\"),n=o[o.length-1].replace(".json",""),r="indexeddb://"+n;ne[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:F5[n],inCache:!1},T0.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let A={};try{A=T0.cacheSupported&&T0.cacheModels?await w5.io.listModels():{}}catch(d){T0.cacheSupported=!1}ne[n].inCache=T0.cacheSupported&&T0.cacheModels&&Object.keys(A).includes(r);let s=typeof fetch=="undefined"?{}:{fetchFunc:(d,x)=>y7(d,x)},a=new w5.GraphModel(ne[n].inCache?r:t,s),l=!1;try{a.findIOHandler(),T0.debug&&b("model load handler:",a.handler);let d=await a.handler.load();ne[n].sizeFromManifest=((c=d==null?void 0:d.weightData)==null?void 0:c.byteLength)||0,a.loadSync(d),ne[n].sizeLoadedWeights=((i=(y=a.artifacts)==null?void 0:y.weightData)==null?void 0:i.byteLength)||0,T0.verbose&&b("load model:",a.modelUrl,{bytes:ne[n].sizeLoadedWeights},T0),l=!0}catch(d){b("error loading model:",t,d)}if(l&&T0.cacheModels&&T0.cacheSupported&&!ne[n].inCache)try{let d=await a.save(r);b("model saved:",r,d)}catch(d){b("error saving model:",t,d)}return A2(null,a,`${e||""}`),a}var re=V(D());var $1="2.9.4";var st={};pe(st,{all:()=>At,body:()=>a2,canvas:()=>rt,face:()=>s2,gesture:()=>c2,hand:()=>i2,object:()=>l2,options:()=>h0,person:()=>nt});var H0=e=>{if(!e)b("draw error: invalid canvas");else if(!e.getContext)b("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)b("draw error: cannot get canvas context");else return t}return null},Xe=e=>Math.round(e*180/Math.PI),de=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let o=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${o[0]}, ${o[1]}, ${o[2]}, ${t.alpha})`};function fe(e,t,o,n,r){e.fillStyle=de(n,r),e.beginPath(),e.arc(t,o,r.pointSize,0,2*Math.PI),e.fill()}function ae(e,t,o,n,r,A){if(e.beginPath(),e.lineWidth=A.lineWidth,A.useCurves){let s=(t+t+n)/2,a=(o+o+r)/2;e.ellipse(s,a,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+A.roundRect,o),e.lineTo(t+n-A.roundRect,o),e.quadraticCurveTo(t+n,o,t+n,o+A.roundRect),e.lineTo(t+n,o+r-A.roundRect),e.quadraticCurveTo(t+n,o+r,t+n-A.roundRect,o+r),e.lineTo(t+A.roundRect,o+r),e.quadraticCurveTo(t,o+r,t,o+r-A.roundRect),e.lineTo(t,o+A.roundRect),e.quadraticCurveTo(t,o,t+A.roundRect,o),e.closePath();e.stroke()}function et(e,t,o){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=de(n[2]||0,o),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),o.fillPolygons&&(e.closePath(),e.fill())}}function rn(e,t,o){if(!(t.length<2)){if(e.lineWidth=o.lineWidth,!o.useCurves||t.length<=2){et(e,t,o);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n0){let A=e.emotion.map(s=>`${Math.trunc(100*s.score)}% ${s.emotion}`);A.length>3&&(A.length=3),r.push(A.join(" "))}((o=e.rotation)==null?void 0:o.angle)&&((n=e.rotation)==null?void 0:n.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Xe(e.rotation.angle.roll)}\xB0 yaw:${Xe(e.rotation.angle.yaw)}\xB0 pitch:${Xe(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Xe(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=U.color;for(let A=r.length-1;A>=0;A--){let s=Math.max(e.box[0],0),a=A*U.lineHeight+e.box[1];U.shadowColor&&U.shadowColor!==""&&(t.fillStyle=U.shadowColor,t.fillText(r[A],s+5,a+16)),t.fillStyle=U.labelColor,t.fillText(r[A],s+4,a+15)}}}function p7(e,t){var o,n,r,A;if(((o=e.annotations)==null?void 0:o.leftEyeIris)&&((n=e.annotations)==null?void 0:n.leftEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,a=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((A=e.annotations)==null?void 0:A.rightEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,a=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}}function u7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*Xe(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Xe(e.rotation.angle.pitch)/90,A=new Path2D(` M ${e.box[0]+e.box[2]/2} ${e.box[1]} C ${n} ${e.box[1]}, @@ -108,7 +108,7 @@ ${e.box[0]} ${r}, ${e.box[0]+e.box[2]} ${r}, ${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2} - `);t.stroke(s),t.stroke(A)}}function u7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];et(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];et(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function h7(e,t){if(U.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let o=0;oe.mesh[r]);$1(t,n,U)}m7(e,t)}}function b7(e,t){if(U.drawPoints&&e.mesh.length>=468)for(let o=0;o0&&(b7(r,n),h7(r,n),p7(r,n),u7(r,n))}}function a2(e,t,o){let n=n0(h0,o);if(!t||!e)return;let r=B0(e);if(!!r){r.lineJoin="round";for(let A=0;A0)for(let s of A.keypoints)r.fillStyle=de(s[2],n),fe(r,s[0],s[1],0,n);if(n.drawLabels&&A.annotations){let s=(a,l)=>{if(!a||a.length===0||!a[0])return;let c=a[a.length-1][2]||-256;r.fillStyle=de(c,n),r.fillText(l,a[a.length-1][0]+4,a[a.length-1][1]+4)};r.font=n.font,s(A.annotations.index,"index"),s(A.annotations.middle,"middle"),s(A.annotations.ring,"ring"),s(A.annotations.pinky,"pinky"),s(A.annotations.thumb,"thumb"),s(A.annotations.palm,"palm")}if(n.drawPolygons&&A.annotations){let s=a=>{if(!(!a||a.length===0||!a[0]))for(let l=0;l0?l-1:0][0],a[l>0?l-1:0][1]),r.lineTo(a[l][0],a[l][1]),r.stroke()}};r.lineWidth=n.lineWidth,s(A.annotations.index),s(A.annotations.middle),s(A.annotations.ring),s(A.annotations.pinky),s(A.annotations.thumb)}}}}function l2(e,t,o){let n=n0(h0,o);if(!t||!e)return;let r=B0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,se(r,A.box[0],A.box[1],A.box[2],A.box[3],n),n.drawLabels){let s=`${A.label} ${Math.round(100*A.score)}%`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(s,A.box[0]+3,1+A.box[1]+n.lineHeight,A.box[2])),r.fillStyle=n.labelColor,r.fillText(s,A.box[0]+2,0+A.box[1]+n.lineHeight,A.box[2])}r.stroke()}}}function c2(e,t,o){let n=n0(h0,o);if(!(!t||!e)&&n.drawGestures){let r=B0(e);if(!r)return;r.font=n.font,r.fillStyle=n.color;let A=1;for(let s=0;s1&&l[1].length>0){let c=a[1]>0?`#${a[1]}`:"",y=`${a[0]} ${c}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(y,8,2+A*n.lineHeight)),r.fillStyle=n.labelColor,r.fillText(y,6,0+A*n.lineHeight),A+=1}}}}var tt=0;function ot(e,t,o){let n=n0(h0,o);if(!t||!e)return;let r=B0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A=0;At!=o[r].y>t&&e<(o[r].x-o[A].x)*(t-o[A].y)/(o[r].y-o[A].y)+o[A].x&&(n=!n);return n}async function An(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,o=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let s of X0.silhouette)r.push({x:(e.mesh[s][0]-e.box[0])/e.box[2],y:(e.mesh[s][1]-e.box[1])/e.box[3]});x2&&x2>0&&(r=r.map(s=>({x:s.x>.5?s.x+x2:s.x-x2,y:s.y>.5?s.y+x2:s.y-x2})));for(let s=0;s{let t=(i,d)=>Math.atan2(i[1]-d[1],i[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let o=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),A=r?e.mesh[473]:e.mesh[468],s=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],a=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(s[0]-A[0])/a[0]-o[0],n*(A[1]-s[1])/a[1]-o[1]],c=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},sn=(e,t)=>{let o=b=>{let g=Math.sqrt(b[0]*b[0]+b[1]*b[1]+b[2]*b[2]);return b[0]/=g,b[1]/=g,b[2]/=g,b},n=(b,g)=>{let M=b[0]-g[0],R=b[1]-g[1],f=b[2]-g[2];return[M,R,f]},r=(b,g)=>{let M=b[1]*g[2]-b[2]*g[1],R=b[2]*g[0]-b[0]*g[2],f=b[0]*g[1]-b[1]*g[0];return[M,R,f]},A=b=>{let[g,M,R,f,p,z,w,u,B]=b,X,O,W;return f<1?f>-1?(W=Math.asin(f),O=Math.atan2(-w,g),X=Math.atan2(-z,p)):(W=-Math.PI/2,O=-Math.atan2(u,B),X=0):(W=Math.PI/2,O=Math.atan2(u,B),X=0),Number.isNaN(X)&&(X=0),Number.isNaN(O)&&(O=0),Number.isNaN(W)&&(W=0),{pitch:2*-X,yaw:2*-O,roll:2*-W}},s=e.meshRaw;if(!s||s.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let a=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[s[10],s[152],s[234],s[454]].map(b=>[b[0]*t[0]/a,b[1]*t[1]/a,b[2]]),c=o(n(l[1],l[0])),y=o(n(l[3],l[2])),i=o(r(y,c));y=r(c,i);let d=[y[0],y[1],y[2],c[0],c[1],c[2],i[0],i[1],i[2]],x=A(d),m=s.length===478?R7(e):{bearing:0,strength:0};return{angle:x,matrix:d,gaze:m}};var at=async(e,t)=>{var m,b,g,M,R,f,p,z,w,u,B,X,O,W,Z,N,I,m0,w0,U0,Y0,H0,me,d2,f2,m2,dt,ft,mt;let o=v(),n,r,A,s,a,l,c,y,i,d=[];e.state="run:face";let x=await U3(t,e.config);if(e.performance.face=P.perfadd?(e.performance.face||0)+Math.trunc(v()-o):Math.trunc(v()-o),!t.shape||t.shape.length!==4)return[];if(!x)return[];for(let S=0;S200?sn(x[S],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?s=(b=e.config.face.emotion)!=null&&b.enabled?y1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[]:(e.state="run:emotion",o=v(),s=(g=e.config.face.emotion)!=null&&g.enabled?await y1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[],e.performance.emotion=P.perfadd?(e.performance.emotion||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?c=(M=e.config.face.antispoof)!=null&&M.enabled?U5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:antispoof",o=v(),c=(R=e.config.face.antispoof)!=null&&R.enabled?await U5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.antispoof=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?y=(f=e.config.face.liveness)!=null&&f.enabled?j1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:liveness",o=v(),y=(p=e.config.face.liveness)!=null&&p.enabled?await j1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.liveness=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(z=e.config.face.gear)!=null&&z.enabled?B5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:gear",o=v(),r=(w=e.config.face.gear)!=null&&w.enabled?await B5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.gear=Math.trunc(v()-o)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(u=e.config.face.ssrnet)!=null&&u.enabled?D5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(B=e.config.face.ssrnet)!=null&&B.enabled?X5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null):(e.state="run:ssrnet",o=v(),n=(X=e.config.face.ssrnet)!=null&&X.enabled?await D5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(O=e.config.face.ssrnet)!=null&&O.enabled?await X5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.ssrnet=Math.trunc(v()-o)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?a=(W=e.config.face.mobilefacenet)!=null&&W.enabled?f1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),a=(Z=e.config.face.mobilefacenet)!=null&&Z.enabled?await f1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(N=e.config.face.insightface)!=null&&N.enabled?p1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),l=(I=e.config.face.insightface)!=null&&I.enabled?await p1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?i=v1(x[S].tensor||t0.tensor([]),e.config,S,x.length):(e.state="run:description",o=v(),i=await v1(x[S].tensor||t0.tensor([]),e.config,S,x.length),e.performance.description=P.perfadd?(e.performance.description||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Description:"),e.config.async&&([n,A,s,a,l,i,r,c,y]=await Promise.all([n,A,s,a,l,i,r,c,y])),e.analyze("Finish Face:"),((m0=e.config.face.ssrnet)==null?void 0:m0.enabled)&&n&&A&&(i={...i,age:n.age,gender:A.gender,genderScore:A.genderScore}),((w0=e.config.face.gear)==null?void 0:w0.enabled)&&r&&(i={...i,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((U0=e.config.face.mobilefacenet)==null?void 0:U0.enabled)&&a&&(i.descriptor=a),((Y0=e.config.face.insightface)==null?void 0:Y0.enabled)&&l&&(i.descriptor=l),(H0=e.config.face.iris)!=null&&H0.enabled;let S5=((f2=(d2=(me=x[S])==null?void 0:me.annotations)==null?void 0:d2.leftEyeIris)==null?void 0:f2[0])&&((ft=(dt=(m2=x[S])==null?void 0:m2.annotations)==null?void 0:dt.rightEyeIris)==null?void 0:ft[0])&&x[S].annotations.leftEyeIris.length>0&&x[S].annotations.rightEyeIris.length>0&&x[S].annotations.leftEyeIris[0]!==null&&x[S].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(x[S].annotations.leftEyeIris[3][0]-x[S].annotations.leftEyeIris[1][0]),Math.abs(x[S].annotations.rightEyeIris[4][1]-x[S].annotations.rightEyeIris[2][1]))/t.shape[2]:0,ut=(mt=e.config.face.detector)!=null&&mt.return?t0.squeeze(x[S].tensor):null;t0.dispose(x[S].tensor),x[S].tensor&&delete x[S].tensor;let D0={...x[S],id:S};i.age&&(D0.age=i.age),i.gender&&(D0.gender=i.gender),i.genderScore&&(D0.genderScore=i.genderScore),i.descriptor&&(D0.embedding=i.descriptor),i.race&&(D0.race=i.race),s&&(D0.emotion=s),c&&(D0.real=c),y&&(D0.live=y),S5&&S5!==0&&(D0.iris=Math.trunc(500/S5/11.7)/100),pt&&(D0.rotation=pt),ut&&(D0.tensor=ut),d.push(D0),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var an=e=>{if(!e)return[];let t=[];for(let o=0;ol.part==="leftWrist"),r=e[o].keypoints.find(l=>l.part==="rightWrist"),A=e[o].keypoints.find(l=>l.part==="nose");A&&n&&r&&n.position[1]l.part==="leftShoulder"),a=e[o].keypoints.find(l=>l.part==="rightShoulder");s&&a&&Math.abs(s.positionRaw[1]-a.positionRaw[1])>.1&&t.push({body:o,gesture:`leaning ${s.position[1]>a.position[1]?"left":"right"}`})}return t},ln=e=>{if(!e)return[];let t=[];for(let o=0;o450){let n=(e[o].mesh[33][2]||0)-(e[o].mesh[263][2]||0),r=e[o].mesh[33][0]-e[o].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:o,gesture:"facing center"}):t.push({face:o,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[o].mesh[374][1]-e[o].mesh[386][1])/Math.abs(e[o].mesh[443][1]-e[o].mesh[450][1])<.2&&t.push({face:o,gesture:"blink left eye"}),Math.abs(e[o].mesh[145][1]-e[o].mesh[159][1])/Math.abs(e[o].mesh[223][1]-e[o].mesh[230][1])<.2&&t.push({face:o,gesture:"blink right eye"});let a=Math.min(100,500*Math.abs(e[o].mesh[13][1]-e[o].mesh[14][1])/Math.abs(e[o].mesh[10][1]-e[o].mesh[152][1]));a>10&&t.push({face:o,gesture:`mouth ${Math.trunc(a)}% open`});let l=e[o].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:o,gesture:`head ${l<0?"up":"down"}`})}return t},cn=e=>{var o,n,r,A;if(!e)return[];let t=[];for(let s=0;s.06||g>.06)&&(x=!1),b>g?b>.05&&t.push({iris:s,gesture:"looking right"}):g>.05&&t.push({iris:s,gesture:"looking left"});let M=Math.abs(e[s].mesh[145][1]-e[s].annotations.rightEyeIris[0][1])/e[s].box[3],R=Math.abs(e[s].mesh[374][1]-e[s].annotations.leftEyeIris[0][1])/e[s].box[3];(R<.01||M<.01||R>.022||M>.022)&&(x=!1),(R<.01||M<.01)&&t.push({iris:s,gesture:"looking down"}),(R>.022||M>.022)&&t.push({iris:s,gesture:"looking up"}),x&&t.push({iris:s,gesture:"looking center"})}return t},xn=e=>{if(!e)return[];let t=[];for(let o=0;o0){let r=n.reduce((s,a)=>(s.position[2]||0)<(a.position[2]||0)?s:a);t.push({hand:o,gesture:`${r.name} forward`});let A=n.reduce((s,a)=>s.position[1]((r-1)*E.body[u].box[I]+N)/r),X=e.body[u].boxRaw.map((N,I)=>((r-1)*E.body[u].boxRaw[I]+N)/r),O=e.body[u].keypoints.map((N,I)=>{var m0,w0,U0,Y0,H0,me,d2,f2,m2;return{score:N.score,part:N.part,position:[E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].position[0]||0)+(N.position[0]||0))/r:N.position[0],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].position[1]||0)+(N.position[1]||0))/r:N.position[1],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].position[2]||0)+(N.position[2]||0))/r:N.position[2]],positionRaw:[E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].positionRaw[0]||0)+(N.positionRaw[0]||0))/r:N.positionRaw[0],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].positionRaw[1]||0)+(N.positionRaw[1]||0))/r:N.positionRaw[1],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].positionRaw[2]||0)+(N.positionRaw[2]||0))/r:N.positionRaw[2]],distance:[E.body[u].keypoints[I]?((r-1)*(((m0=E.body[u].keypoints[I].distance)==null?void 0:m0[0])||0)+(((w0=N.distance)==null?void 0:w0[0])||0))/r:(U0=N.distance)==null?void 0:U0[0],E.body[u].keypoints[I]?((r-1)*(((Y0=E.body[u].keypoints[I].distance)==null?void 0:Y0[1])||0)+(((H0=N.distance)==null?void 0:H0[1])||0))/r:(me=N.distance)==null?void 0:me[1],E.body[u].keypoints[I]?((r-1)*(((d2=E.body[u].keypoints[I].distance)==null?void 0:d2[2])||0)+(((f2=N.distance)==null?void 0:f2[2])||0))/r:(m2=N.distance)==null?void 0:m2[2]]}}),W={},Z={connected:{}};(s=t.body.modelPath)!=null&&s.includes("efficientpose")?Z=_2:(a=t.body.modelPath)!=null&&a.includes("blazepose")?Z=U2:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(Z=k2);for(let[N,I]of Object.entries(Z.connected)){let m0=[];for(let w0=0;w0H0.part===I[w0]),Y0=O.find(H0=>H0.part===I[w0+1]);U0&&Y0&&m0.push([U0.position,Y0.position])}W[N]=m0}E.body[u]={...e.body[u],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.hand||e.hand.length!==E.hand.length)E.hand=JSON.parse(JSON.stringify(e.hand));else for(let u=0;u((r-1)*E.hand[u].box[N]+Z)/r),X=e.hand[u].boxRaw.map((Z,N)=>((r-1)*E.hand[u].boxRaw[N]+Z)/r);E.hand[u].keypoints.length!==e.hand[u].keypoints.length&&(E.hand[u].keypoints=e.hand[u].keypoints);let O=e.hand[u].keypoints&&e.hand[u].keypoints.length>0?e.hand[u].keypoints.map((Z,N)=>Z.map((I,m0)=>((r-1)*(E.hand[u].keypoints[N][m0]||1)+(I||0))/r)):[],W={};if(Object.keys(E.hand[u].annotations).length!==Object.keys(e.hand[u].annotations).length)E.hand[u].annotations=e.hand[u].annotations,W=E.hand[u].annotations;else if(e.hand[u].annotations)for(let Z of Object.keys(e.hand[u].annotations))W[Z]=(i=(y=(c=e.hand[u])==null?void 0:c.annotations)==null?void 0:y[Z])!=null&&i[0]?e.hand[u].annotations[Z].map((N,I)=>N.map((m0,w0)=>((r-1)*E.hand[u].annotations[Z][I][w0]+m0)/r)):null;E.hand[u]={...e.hand[u],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.face||e.face.length!==E.face.length)E.face=JSON.parse(JSON.stringify(e.face));else for(let u=0;u((r-1)*E.face[u].box[W]+O)/r),X=e.face[u].boxRaw.map((O,W)=>((r-1)*E.face[u].boxRaw[W]+O)/r);if(e.face[u].rotation){let O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(d=e.face[u].rotation)==null?void 0:d.matrix,O.angle={roll:((r-1)*(((x=E.face[u].rotation)==null?void 0:x.angle.roll)||0)+(((m=e.face[u].rotation)==null?void 0:m.angle.roll)||0))/r,yaw:((r-1)*(((b=E.face[u].rotation)==null?void 0:b.angle.yaw)||0)+(((g=e.face[u].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((M=E.face[u].rotation)==null?void 0:M.angle.pitch)||0)+(((R=e.face[u].rotation)==null?void 0:R.angle.pitch)||0))/r},O.gaze={bearing:((r-1)*(((f=E.face[u].rotation)==null?void 0:f.gaze.bearing)||0)+(((p=e.face[u].rotation)==null?void 0:p.gaze.bearing)||0))/r,strength:((r-1)*(((z=E.face[u].rotation)==null?void 0:z.gaze.strength)||0)+(((w=e.face[u].rotation)==null?void 0:w.gaze.strength)||0))/r},E.face[u]={...e.face[u],rotation:O,box:B,boxRaw:X}}E.face[u]={...e.face[u],box:B,boxRaw:X}}if(!E.object||e.object.length!==E.object.length)E.object=JSON.parse(JSON.stringify(e.object));else for(let u=0;u((r-1)*E.object[u].box[W]+O)/r),X=e.object[u].boxRaw.map((O,W)=>((r-1)*E.object[u].boxRaw[W]+O)/r);E.object[u]={...e.object[u],box:B,boxRaw:X}}if(e.persons){let u=e.persons;if(!E.persons||u.length!==E.persons.length)E.persons=JSON.parse(JSON.stringify(u));else for(let B=0;B((r-1)*E.persons[B].box[O]+X)/r)}e.gesture&&(E.gesture=e.gesture);let A=v();return it=P.perfadd?it+Math.round(A-o):Math.round(A-o),e.performance&&(E.performance={...e.performance,interpolate:it}),E}var xt={};pe(xt,{distance:()=>C2,match:()=>ct,similarity:()=>lt});function C2(e,t,o={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),A=(1-r/100-o)/(n-o);return Math.max(Math.min(A,1),0)};function lt(e,t,o={order:2,multiplier:25,min:.2,max:.8}){let n=C2(e,t,o);return dn(n,o.order||2,o.min||0,o.max||1)}function ct(e,t,o={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let s=0;sp.box[0]&&x.box[0]p.box[1]&&x.box[1]+x.box[3]m.body.box[0]&&p.box[0]+p.box[2]m.body.box[1]&&p.box[1]+p.box[3]m.body.box[0]&&p.box[1]+p.box[3]>m.body.box[1]&&p.box[1]+p.box[3]{p&&p.length===4&&(b.push(p[0],p[0]+p[2]),g.push(p[1],p[1]+p[3]))};M(m.face.box),M((y=m.body)==null?void 0:y.box),M((i=m.hands.left)==null?void 0:i.box),M((d=m.hands.right)==null?void 0:d.box);let R=Math.min(...b),f=Math.min(...g);m.box=[R,f,Math.max(...b)-R,Math.max(...g)-f],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(m.boxRaw=[m.box[0]/r[2],m.box[1]/r[1],m.box[2]/r[2],m.box[3]/r[1]]),s.push(m)}return s}var k5=` + `);t.stroke(s),t.stroke(A)}}function h7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];tt(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];tt(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function b7(e,t){if(U.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let o=0;oe.mesh[r]);et(t,n,U)}p7(e,t)}}function g7(e,t){if(U.drawPoints&&e.mesh.length>=468)for(let o=0;o0&&(g7(r,n),b7(r,n),u7(r,n),h7(r,n))}}function a2(e,t,o){let n=o0(h0,o);if(!t||!e)return;let r=H0(e);if(!!r){r.lineJoin="round";for(let A=0;A0)for(let s of A.keypoints)r.fillStyle=de(s[2],n),fe(r,s[0],s[1],0,n);if(n.drawLabels&&A.annotations){let s=(a,l)=>{if(!a||a.length===0||!a[0])return;let c=a[a.length-1][2]||-256;r.fillStyle=de(c,n),r.fillText(l,a[a.length-1][0]+4,a[a.length-1][1]+4)};r.font=n.font,s(A.annotations.index,"index"),s(A.annotations.middle,"middle"),s(A.annotations.ring,"ring"),s(A.annotations.pinky,"pinky"),s(A.annotations.thumb,"thumb"),s(A.annotations.palm,"palm")}if(n.drawPolygons&&A.annotations){let s=a=>{if(!(!a||a.length===0||!a[0]))for(let l=0;l0?l-1:0][0],a[l>0?l-1:0][1]),r.lineTo(a[l][0],a[l][1]),r.stroke()}};r.lineWidth=n.lineWidth,s(A.annotations.index),s(A.annotations.middle),s(A.annotations.ring),s(A.annotations.pinky),s(A.annotations.thumb)}}}}function l2(e,t,o){let n=o0(h0,o);if(!t||!e)return;let r=H0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,ae(r,A.box[0],A.box[1],A.box[2],A.box[3],n),n.drawLabels){let s=`${A.label} ${Math.round(100*A.score)}%`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(s,A.box[0]+3,1+A.box[1]+n.lineHeight,A.box[2])),r.fillStyle=n.labelColor,r.fillText(s,A.box[0]+2,0+A.box[1]+n.lineHeight,A.box[2])}r.stroke()}}}function c2(e,t,o){let n=o0(h0,o);if(!(!t||!e)&&n.drawGestures){let r=H0(e);if(!r)return;r.font=n.font,r.fillStyle=n.color;let A=1;for(let s=0;s1&&l[1].length>0){let c=a[1]>0?`#${a[1]}`:"",y=`${a[0]} ${c}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(y,8,2+A*n.lineHeight)),r.fillStyle=n.labelColor,r.fillText(y,6,0+A*n.lineHeight),A+=1}}}}var ot=0;function nt(e,t,o){let n=o0(h0,o);if(!t||!e)return;let r=H0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A=0;At!=o[r].y>t&&e<(o[r].x-o[A].x)*(t-o[A].y)/(o[r].y-o[A].y)+o[A].x&&(n=!n);return n}async function sn(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,o=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let s of q0.silhouette)r.push({x:(e.mesh[s][0]-e.box[0])/e.box[2],y:(e.mesh[s][1]-e.box[1])/e.box[3]});x2&&x2>0&&(r=r.map(s=>({x:s.x>.5?s.x+x2:s.x-x2,y:s.y>.5?s.y+x2:s.y-x2})));for(let s=0;s{let t=(i,d)=>Math.atan2(i[1]-d[1],i[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let o=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),A=r?e.mesh[473]:e.mesh[468],s=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],a=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(s[0]-A[0])/a[0]-o[0],n*(A[1]-s[1])/a[1]-o[1]],c=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},an=(e,t)=>{let o=p=>{let g=Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);return p[0]/=g,p[1]/=g,p[2]/=g,p},n=(p,g)=>{let M=p[0]-g[0],R=p[1]-g[1],m=p[2]-g[2];return[M,R,m]},r=(p,g)=>{let M=p[1]*g[2]-p[2]*g[1],R=p[2]*g[0]-p[0]*g[2],m=p[0]*g[1]-p[1]*g[0];return[M,R,m]},A=p=>{let[g,M,R,m,u,z,w,h,B]=p,X,O,W;return m<1?m>-1?(W=Math.asin(m),O=Math.atan2(-w,g),X=Math.atan2(-z,u)):(W=-Math.PI/2,O=-Math.atan2(h,B),X=0):(W=Math.PI/2,O=Math.atan2(h,B),X=0),Number.isNaN(X)&&(X=0),Number.isNaN(O)&&(O=0),Number.isNaN(W)&&(W=0),{pitch:2*-X,yaw:2*-O,roll:2*-W}},s=e.meshRaw;if(!s||s.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let a=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[s[10],s[152],s[234],s[454]].map(p=>[p[0]*t[0]/a,p[1]*t[1]/a,p[2]]),c=o(n(l[1],l[0])),y=o(n(l[3],l[2])),i=o(r(y,c));y=r(c,i);let d=[y[0],y[1],y[2],c[0],c[1],c[2],i[0],i[1],i[2]],x=A(d),f=s.length===478?P7(e):{bearing:0,strength:0};return{angle:x,matrix:d,gaze:f}};var it=async(e,t)=>{var f,p,g,M,R,m,u,z,w,h,B,X,O,W,Z,N,I,m0,w0,Y0,K0,D0,me,d2,f2,m2,ft,mt,pt;let o=v(),n,r,A,s,a,l,c,y,i,d=[];e.state="run:face";let x=await Y3(t,e.config);if(e.performance.face=P.perfadd?(e.performance.face||0)+Math.trunc(v()-o):Math.trunc(v()-o),!t.shape||t.shape.length!==4)return[];if(!x)return[];for(let S=0;S200?an(x[S],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?s=(p=e.config.face.emotion)!=null&&p.enabled?d1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[]:(e.state="run:emotion",o=v(),s=(g=e.config.face.emotion)!=null&&g.enabled?await d1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[],e.performance.emotion=P.perfadd?(e.performance.emotion||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?c=(M=e.config.face.antispoof)!=null&&M.enabled?Y5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:antispoof",o=v(),c=(R=e.config.face.antispoof)!=null&&R.enabled?await Y5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.antispoof=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?y=(m=e.config.face.liveness)!=null&&m.enabled?N1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:liveness",o=v(),y=(u=e.config.face.liveness)!=null&&u.enabled?await N1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.liveness=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(z=e.config.face.gear)!=null&&z.enabled?H5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:gear",o=v(),r=(w=e.config.face.gear)!=null&&w.enabled?await H5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.gear=Math.trunc(v()-o)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(h=e.config.face.ssrnet)!=null&&h.enabled?V5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(B=e.config.face.ssrnet)!=null&&B.enabled?q5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null):(e.state="run:ssrnet",o=v(),n=(X=e.config.face.ssrnet)!=null&&X.enabled?await V5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(O=e.config.face.ssrnet)!=null&&O.enabled?await q5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.ssrnet=Math.trunc(v()-o)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?a=(W=e.config.face.mobilefacenet)!=null&&W.enabled?m1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),a=(Z=e.config.face.mobilefacenet)!=null&&Z.enabled?await m1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(N=e.config.face.insightface)!=null&&N.enabled?u1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),l=(I=e.config.face.insightface)!=null&&I.enabled?await u1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?i=R1(x[S].tensor||t0.tensor([]),e.config,S,x.length):(e.state="run:description",o=v(),i=await R1(x[S].tensor||t0.tensor([]),e.config,S,x.length),e.performance.description=P.perfadd?(e.performance.description||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Description:"),e.config.async&&([n,A,s,a,l,i,r,c,y]=await Promise.all([n,A,s,a,l,i,r,c,y])),e.analyze("Finish Face:"),((m0=e.config.face.ssrnet)==null?void 0:m0.enabled)&&n&&A&&(i={...i,age:n.age,gender:A.gender,genderScore:A.genderScore}),((w0=e.config.face.gear)==null?void 0:w0.enabled)&&r&&(i={...i,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((Y0=e.config.face.mobilefacenet)==null?void 0:Y0.enabled)&&a&&(i.descriptor=a),((K0=e.config.face.insightface)==null?void 0:K0.enabled)&&l&&(i.descriptor=l),(D0=e.config.face.iris)!=null&&D0.enabled;let S5=((f2=(d2=(me=x[S])==null?void 0:me.annotations)==null?void 0:d2.leftEyeIris)==null?void 0:f2[0])&&((mt=(ft=(m2=x[S])==null?void 0:m2.annotations)==null?void 0:ft.rightEyeIris)==null?void 0:mt[0])&&x[S].annotations.leftEyeIris.length>0&&x[S].annotations.rightEyeIris.length>0&&x[S].annotations.leftEyeIris[0]!==null&&x[S].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(x[S].annotations.leftEyeIris[3][0]-x[S].annotations.leftEyeIris[1][0]),Math.abs(x[S].annotations.rightEyeIris[4][1]-x[S].annotations.rightEyeIris[2][1]))/t.shape[2]:0,ht=(pt=e.config.face.detector)!=null&&pt.return?t0.squeeze(x[S].tensor):null;t0.dispose(x[S].tensor),x[S].tensor&&delete x[S].tensor;let V0={...x[S],id:S};i.age&&(V0.age=i.age),i.gender&&(V0.gender=i.gender),i.genderScore&&(V0.genderScore=i.genderScore),i.descriptor&&(V0.embedding=i.descriptor),i.race&&(V0.race=i.race),s&&(V0.emotion=s),c&&(V0.real=c),y&&(V0.live=y),S5&&S5!==0&&(V0.iris=Math.trunc(500/S5/11.7)/100),ut&&(V0.rotation=ut),ht&&(V0.tensor=ht),d.push(V0),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var ln=e=>{if(!e)return[];let t=[];for(let o=0;ol.part==="leftWrist"),r=e[o].keypoints.find(l=>l.part==="rightWrist"),A=e[o].keypoints.find(l=>l.part==="nose");A&&n&&r&&n.position[1]l.part==="leftShoulder"),a=e[o].keypoints.find(l=>l.part==="rightShoulder");s&&a&&Math.abs(s.positionRaw[1]-a.positionRaw[1])>.1&&t.push({body:o,gesture:`leaning ${s.position[1]>a.position[1]?"left":"right"}`})}return t},cn=e=>{if(!e)return[];let t=[];for(let o=0;o450){let n=(e[o].mesh[33][2]||0)-(e[o].mesh[263][2]||0),r=e[o].mesh[33][0]-e[o].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:o,gesture:"facing center"}):t.push({face:o,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[o].mesh[374][1]-e[o].mesh[386][1])/Math.abs(e[o].mesh[443][1]-e[o].mesh[450][1])<.2&&t.push({face:o,gesture:"blink left eye"}),Math.abs(e[o].mesh[145][1]-e[o].mesh[159][1])/Math.abs(e[o].mesh[223][1]-e[o].mesh[230][1])<.2&&t.push({face:o,gesture:"blink right eye"});let a=Math.min(100,500*Math.abs(e[o].mesh[13][1]-e[o].mesh[14][1])/Math.abs(e[o].mesh[10][1]-e[o].mesh[152][1]));a>10&&t.push({face:o,gesture:`mouth ${Math.trunc(a)}% open`});let l=e[o].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:o,gesture:`head ${l<0?"up":"down"}`})}return t},xn=e=>{var o,n,r,A;if(!e)return[];let t=[];for(let s=0;s.06||g>.06)&&(x=!1),p>g?p>.05&&t.push({iris:s,gesture:"looking right"}):g>.05&&t.push({iris:s,gesture:"looking left"});let M=Math.abs(e[s].mesh[145][1]-e[s].annotations.rightEyeIris[0][1])/e[s].box[3],R=Math.abs(e[s].mesh[374][1]-e[s].annotations.leftEyeIris[0][1])/e[s].box[3];(R<.01||M<.01||R>.022||M>.022)&&(x=!1),(R<.01||M<.01)&&t.push({iris:s,gesture:"looking down"}),(R>.022||M>.022)&&t.push({iris:s,gesture:"looking up"}),x&&t.push({iris:s,gesture:"looking center"})}return t},yn=e=>{if(!e)return[];let t=[];for(let o=0;o0){let r=n.reduce((s,a)=>(s.position[2]||0)<(a.position[2]||0)?s:a);t.push({hand:o,gesture:`${r.name} forward`});let A=n.reduce((s,a)=>s.position[1]((r-1)*E.body[h].box[I]+N)/r),X=e.body[h].boxRaw.map((N,I)=>((r-1)*E.body[h].boxRaw[I]+N)/r),O=e.body[h].keypoints.map((N,I)=>{var m0,w0,Y0,K0,D0,me,d2,f2,m2;return{score:N.score,part:N.part,position:[E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[0]||0)+(N.position[0]||0))/r:N.position[0],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[1]||0)+(N.position[1]||0))/r:N.position[1],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[2]||0)+(N.position[2]||0))/r:N.position[2]],positionRaw:[E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[0]||0)+(N.positionRaw[0]||0))/r:N.positionRaw[0],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[1]||0)+(N.positionRaw[1]||0))/r:N.positionRaw[1],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[2]||0)+(N.positionRaw[2]||0))/r:N.positionRaw[2]],distance:[E.body[h].keypoints[I]?((r-1)*(((m0=E.body[h].keypoints[I].distance)==null?void 0:m0[0])||0)+(((w0=N.distance)==null?void 0:w0[0])||0))/r:(Y0=N.distance)==null?void 0:Y0[0],E.body[h].keypoints[I]?((r-1)*(((K0=E.body[h].keypoints[I].distance)==null?void 0:K0[1])||0)+(((D0=N.distance)==null?void 0:D0[1])||0))/r:(me=N.distance)==null?void 0:me[1],E.body[h].keypoints[I]?((r-1)*(((d2=E.body[h].keypoints[I].distance)==null?void 0:d2[2])||0)+(((f2=N.distance)==null?void 0:f2[2])||0))/r:(m2=N.distance)==null?void 0:m2[2]]}}),W={},Z={connected:{}};(s=t.body.modelPath)!=null&&s.includes("efficientpose")?Z=_2:(a=t.body.modelPath)!=null&&a.includes("blazepose")?Z=U2:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(Z=k2);for(let[N,I]of Object.entries(Z.connected)){let m0=[];for(let w0=0;w0D0.part===I[w0]),K0=O.find(D0=>D0.part===I[w0+1]);Y0&&K0&&m0.push([Y0.position,K0.position])}W[N]=m0}E.body[h]={...e.body[h],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.hand||e.hand.length!==E.hand.length)E.hand=JSON.parse(JSON.stringify(e.hand));else for(let h=0;h((r-1)*E.hand[h].box[N]+Z)/r),X=e.hand[h].boxRaw.map((Z,N)=>((r-1)*E.hand[h].boxRaw[N]+Z)/r);E.hand[h].keypoints.length!==e.hand[h].keypoints.length&&(E.hand[h].keypoints=e.hand[h].keypoints);let O=e.hand[h].keypoints&&e.hand[h].keypoints.length>0?e.hand[h].keypoints.map((Z,N)=>Z.map((I,m0)=>((r-1)*(E.hand[h].keypoints[N][m0]||1)+(I||0))/r)):[],W={};if(Object.keys(E.hand[h].annotations).length!==Object.keys(e.hand[h].annotations).length)E.hand[h].annotations=e.hand[h].annotations,W=E.hand[h].annotations;else if(e.hand[h].annotations)for(let Z of Object.keys(e.hand[h].annotations))W[Z]=(i=(y=(c=e.hand[h])==null?void 0:c.annotations)==null?void 0:y[Z])!=null&&i[0]?e.hand[h].annotations[Z].map((N,I)=>N.map((m0,w0)=>((r-1)*E.hand[h].annotations[Z][I][w0]+m0)/r)):null;E.hand[h]={...e.hand[h],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.face||e.face.length!==E.face.length)E.face=JSON.parse(JSON.stringify(e.face));else for(let h=0;h((r-1)*E.face[h].box[W]+O)/r),X=e.face[h].boxRaw.map((O,W)=>((r-1)*E.face[h].boxRaw[W]+O)/r);if(e.face[h].rotation){let O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(d=e.face[h].rotation)==null?void 0:d.matrix,O.angle={roll:((r-1)*(((x=E.face[h].rotation)==null?void 0:x.angle.roll)||0)+(((f=e.face[h].rotation)==null?void 0:f.angle.roll)||0))/r,yaw:((r-1)*(((p=E.face[h].rotation)==null?void 0:p.angle.yaw)||0)+(((g=e.face[h].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((M=E.face[h].rotation)==null?void 0:M.angle.pitch)||0)+(((R=e.face[h].rotation)==null?void 0:R.angle.pitch)||0))/r},O.gaze={bearing:((r-1)*(((m=E.face[h].rotation)==null?void 0:m.gaze.bearing)||0)+(((u=e.face[h].rotation)==null?void 0:u.gaze.bearing)||0))/r,strength:((r-1)*(((z=E.face[h].rotation)==null?void 0:z.gaze.strength)||0)+(((w=e.face[h].rotation)==null?void 0:w.gaze.strength)||0))/r},E.face[h]={...e.face[h],rotation:O,box:B,boxRaw:X}}E.face[h]={...e.face[h],box:B,boxRaw:X}}if(!E.object||e.object.length!==E.object.length)E.object=JSON.parse(JSON.stringify(e.object));else for(let h=0;h((r-1)*E.object[h].box[W]+O)/r),X=e.object[h].boxRaw.map((O,W)=>((r-1)*E.object[h].boxRaw[W]+O)/r);E.object[h]={...e.object[h],box:B,boxRaw:X}}if(e.persons){let h=e.persons;if(!E.persons||h.length!==E.persons.length)E.persons=JSON.parse(JSON.stringify(h));else for(let B=0;B((r-1)*E.persons[B].box[O]+X)/r)}e.gesture&&(E.gesture=e.gesture);let A=v();return lt=P.perfadd?lt+Math.round(A-o):Math.round(A-o),e.performance&&(E.performance={...e.performance,interpolate:lt}),E}var yt={};pe(yt,{distance:()=>C2,match:()=>xt,similarity:()=>ct});function C2(e,t,o={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),A=(1-r/100-o)/(n-o);return Math.max(Math.min(A,1),0)};function ct(e,t,o={order:2,multiplier:25,min:.2,max:.8}){let n=C2(e,t,o);return fn(n,o.order||2,o.min||0,o.max||1)}function xt(e,t,o={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let s=0;su.box[0]&&x.box[0]u.box[1]&&x.box[1]+x.box[3]f.body.box[0]&&u.box[0]+u.box[2]f.body.box[1]&&u.box[1]+u.box[3]f.body.box[0]&&u.box[1]+u.box[3]>f.body.box[1]&&u.box[1]+u.box[3]{u&&u.length===4&&(p.push(u[0],u[0]+u[2]),g.push(u[1],u[1]+u[3]))};M(f.face.box),M((y=f.body)==null?void 0:y.box),M((i=f.hands.left)==null?void 0:i.box),M((d=f.hands.right)==null?void 0:d.box);let R=Math.min(...p),m=Math.min(...g);f.box=[R,m,Math.max(...p)-R,Math.max(...g)-m],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),s.push(f)}return s}var k5=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -827,4 +827,4 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var o0=V(D());async function z7(e){let t=(r,A="application/octet-stream")=>fetch(`data:${A};base64,${r}`).then(s=>s.blob()),o,n;switch(e.config.warmup){case"face":o=await t(k5);break;case"body":case"full":o=await t(E5);break;default:o=null}if(o){let r=await createImageBitmap(o);n=await e.detect(r,e.config),r.close()}return n}async function S7(e){return new Promise(t=>{let o;switch(e.config.warmup){case"face":o="data:image/jpeg;base64,"+k5;break;case"full":case"body":o="data:image/jpeg;base64,"+E5;break;default:o=""}let n;if(typeof Image!="undefined")n=new Image;else if(P.Image)n=new P.Image;else return;n.onload=async()=>{let r=b0(n.naturalWidth,n.naturalHeight);if(!r)h("Warmup: Canvas not found"),t(void 0);else{let A=r.getContext("2d");A&&A.drawImage(n,0,0);let s=await e.image(r),a=s.tensor?await e.detect(s.tensor,e.config):void 0;t(a)}},o?n.src=o:t(void 0)})}async function C7(e){let t=r=>Buffer.from(r,"base64"),o;e.config.warmup==="face"?o=t(k5):o=t(E5);let n;if("node"in o0&&o0.getBackend()==="tensorflow"){let r=o0.node.decodeJpeg(o),A=o0.expandDims(r,0);e.tf.dispose(r),n=await e.detect(A,e.config),e.tf.dispose(A)}else e.config.debug&&h("Warmup tfjs-node not loaded");return n}async function I7(e){let t;return typeof createImageBitmap=="function"?t=await z7(e):typeof Image!="undefined"||P.Canvas!==void 0?t=await S7(e):t=await C7(e),t}async function O7(e){var a,l,c,y;if(!o0.env().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=o0.getBackend(),o=o0.backend();if(t!=="webgl"&&t!=="humangl"||!(o!=null&&o.checkCompileCompletion))return;o0.env().set("ENGINE_COMPILE_ONLY",!0);let n=o0.engine().state.numTensors,r=[];for(let[i,d]of Object.entries(e).filter(([x,m])=>x!==null&&m!==null)){let x=(l=(a=d.inputs)==null?void 0:a[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],m=(y=(c=d.inputs)==null?void 0:c[0])!=null&&y.dtype?d.inputs[0].dtype:"float32";for(let g=0;go0.dispose(M)):o0.dispose(g)}catch(g){h("compile fail model:",i)}o0.dispose(b)}let A=await o.checkCompileCompletionAsync();o.getUniformLocations(),h("compile pass models:",r),h("compile pass kernels:",A.length),o0.env().set("ENGINE_COMPILE_ONLY",!1);let s=o0.engine().state.numTensors;s-n>0&&h("tensor leak:",s-n)}async function mn(e,t){let o=v();return e.state="warmup",t&&(e.config=n0(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:v(),persons:[],error:null}:new Promise(async n=>{await O7(e.models);let r=await I7(e),A=v();e.config.debug&&h("warmup",e.config.warmup,Math.round(A-o),"ms"),e.emit("warmup"),n(r)})}var y2,I2,O2,z5,yt=class{constructor(t){T(this,"version");T(this,"config");T(this,"result");T(this,"state");T(this,"process");T(this,"tf");T(this,"env");T(this,"draw");T(this,"models");T(this,"events");T(this,"faceTriangulation");T(this,"faceUVMap");T(this,"performance");h2(this,y2,void 0);h2(this,I2,void 0);h2(this,O2,void 0);T(this,"gl");T(this,"analyze",(...t)=>{if(!u2(this,I2))return;let o=this.tf.engine().state.numTensors,n=u2(this,y2);b2(this,y2,o);let r=o-n;r!==0&&h(...t,r)});h2(this,z5,t=>{if(!u2(this,O2))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof ne.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(o){return"backend not loaded"}return null});T(this,"similarity",lt);T(this,"distance",C2);T(this,"match",ct);T(this,"emit",t=>{var o;(o=this.events)!=null&&o.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=P;let o=(ne.version.tfjs||ne.version_core).replace(/-(.*)/,"");ue.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${o}/dist/`,ue.modelBasePath=P.browser?"../models/":"file://models/",ue.backend=P.browser?"humangl":"tensorflow",this.version=_1,Object.defineProperty(this,"version",{value:_1}),this.config=JSON.parse(JSON.stringify(ue)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=n0(this.config,t)),on(this.config),this.tf=ne,this.state="idle",b2(this,y2,0),b2(this,I2,!1),b2(this,O2,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new S2,this.draw={options:h0,canvas:(n,r)=>nt(n,r),face:(n,r,A)=>s2(n,r,A),body:(n,r,A)=>a2(n,r,A),hand:(n,r,A)=>i2(n,r,A),gesture:(n,r,A)=>c2(n,r,A),object:(n,r,A)=>l2(n,r,A),person:(n,r,A)=>ot(n,r,A),all:(n,r,A)=>rt(n,r,A)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=K3,this.faceUVMap=J3,this.gl=J,A2(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ue)),this.config.backend=t}validate(t){return C5(ue,t||this.config)}check(){return T5(this)}now(){return v()}image(t,o=!0){return Ue(t,this.config,o)}async segmentation(t,o){return en(t,o,this.config)}enhance(t){return M1(t)}compare(t,o){return It(this.config,t,o)}async init(){await y5(this,!0),await this.tf.ready()}async load(t){this.state="load";let o=v(),n=Object.values(this.models).filter(s=>s).length;t&&(this.config=n0(this.config,t)),this.env.initial&&(this.config.debug&&h(`version: ${this.version}`),this.config.debug&&h(`tfjs version: ${this.tf.version["tfjs-core"]}`),await y5(this)||h("error: backend check failed"),await ne.ready(),this.env.browser&&(this.config.debug&&h("configuration:",this.config),this.config.debug&&h("environment:",this.env),this.config.debug&&h("tf flags:",this.tf.ENV.flags))),await Q1(this),this.env.initial&&this.config.debug&&h("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(s=>s).length!==n&&(T5(this),this.emit("load"));let A=Math.trunc(v()-o);A>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+A:A)}next(t=this.result){return yn(t,this.config)}getModelStats(){return J1(this)}async warmup(t){let o=v(),n=await mn(this,t),r=v();return this.performance.warmup=Math.trunc(r-o),n}async profile(t,o){let n=await this.tf.profile(()=>this.detect(t,o)),r={},A=0;for(let a of n.kernels)r[a.name]?r[a.name]+=a.kernelTimeMs:r[a.name]=a.kernelTimeMs,A+=a.kernelTimeMs;let s=[];Object.entries(r).forEach(a=>s.push({kernel:a[0],time:a[1],perc:0}));for(let a of s)a.perc=Math.round(1e3*a.time/A)/1e3,a.time=Math.round(1e3*a.time)/1e3;return s.sort((a,l)=>l.time-a.time),s.length=20,s}async detect(t,o){return this.state="detect",new Promise(async n=>{var g,M,R,f,p,z,w,u,B,X,O,W,Z,N,I,m0,w0,U0,Y0,H0,me;this.state="config";let r;this.config=n0(this.config,o),this.state="check";let A=u2(this,z5).call(this,t);A&&(h(A,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:A}));let s=v();await y5(this),await this.load(),r=v(),this.state="image";let a=await Ue(t,this.config);if(this.process=a,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Get Image:"),!a.tensor){this.config.debug&&h("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=v(),this.config.skipAllowed=await Ct(this.config,a.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Check Changed:");let l=[],c=[],y=[],i=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?at(this,a.tensor):[],this.performance.face&&delete this.performance.face):(r=v(),l=this.config.face.enabled?await at(this,a.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?n0(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?c=this.config.body.enabled?U1(a.tensor,d):[]:(M=this.config.body.modelPath)!=null&&M.includes("blazepose")?c=this.config.body.enabled?n1(a.tensor,d):[]:(R=this.config.body.modelPath)!=null&&R.includes("efficientpose")?c=this.config.body.enabled?c1(a.tensor,d):[]:(f=this.config.body.modelPath)!=null&&f.includes("movenet")&&(c=this.config.body.enabled?B1(a.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=v(),(p=this.config.body.modelPath)!=null&&p.includes("posenet")?c=this.config.body.enabled?await U1(a.tensor,d):[]:(z=this.config.body.modelPath)!=null&&z.includes("blazepose")?c=this.config.body.enabled?await n1(a.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("efficientpose")?c=this.config.body.enabled?await c1(a.tensor,d):[]:(u=this.config.body.modelPath)!=null&&u.includes("movenet")&&(c=this.config.body.enabled?await B1(a.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let x=this.config.hand.maxDetected===-1?n0(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((X=(B=this.config.hand.detector)==null?void 0:B.modelPath)!=null&&X.includes("handdetect")?y=this.config.hand.enabled?E1(a.tensor,x):[]:(W=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&W.includes("handtrack")&&(y=this.config.hand.enabled?I1(a.tensor,x):[]),this.performance.hand&&delete this.performance.hand):(r=v(),(N=(Z=this.config.hand.detector)==null?void 0:Z.modelPath)!=null&&N.includes("handdetect")?y=this.config.hand.enabled?await E1(a.tensor,x):[]:(m0=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&m0.includes("handtrack")&&(y=this.config.hand.enabled?await I1(a.tensor,x):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((w0=this.config.object.modelPath)!=null&&w0.includes("nanodet")?i=this.config.object.enabled?D1(a.tensor,this.config):[]:(U0=this.config.object.modelPath)!=null&&U0.includes("centernet")&&(i=this.config.object.enabled?s1(a.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=v(),(Y0=this.config.object.modelPath)!=null&&Y0.includes("nanodet")?i=this.config.object.enabled?await D1(a.tensor,this.config):[]:(H0=this.config.object.modelPath)!=null&&H0.includes("centernet")&&(i=this.config.object.enabled?await s1(a.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,y,i]=await Promise.all([l,c,y,i])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(r=v(),m=[...ln(l),...an(c),...xn(y),...cn(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(v()-s):Math.trunc(v()-s);let b=((me=this.process.tensor)==null?void 0:me.shape)||[];this.result={face:l,body:c,hand:y,gesture:m,object:i,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return fn(l,c,y,m,b)}},ne.dispose(a.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};y2=new WeakMap,I2=new WeakMap,O2=new WeakMap,z5=new WeakMap;0&&(module.exports={Human,defaults,draw,env,match,models}); +2Q==`;var n0=V(D());async function S7(e){let t=(r,A="application/octet-stream")=>fetch(`data:${A};base64,${r}`).then(s=>s.blob()),o,n;switch(e.config.warmup){case"face":o=await t(k5);break;case"body":case"full":o=await t(E5);break;default:o=null}if(o){let r=await createImageBitmap(o);n=await e.detect(r,e.config),r.close()}return n}async function C7(e){return new Promise(t=>{let o;switch(e.config.warmup){case"face":o="data:image/jpeg;base64,"+k5;break;case"full":case"body":o="data:image/jpeg;base64,"+E5;break;default:o=""}let n;if(typeof Image!="undefined")n=new Image;else if(P.Image)n=new P.Image;else return;n.onload=async()=>{let r=b0(n.naturalWidth,n.naturalHeight);if(!r)b("Warmup: Canvas not found"),t(void 0);else{let A=r.getContext("2d");A&&A.drawImage(n,0,0);let s=await e.image(r),a=s.tensor?await e.detect(s.tensor,e.config):void 0;t(a)}},o?n.src=o:t(void 0)})}async function I7(e){let t=r=>Buffer.from(r,"base64"),o;e.config.warmup==="face"?o=t(k5):o=t(E5);let n;if("node"in n0&&n0.getBackend()==="tensorflow"){let r=n0.node.decodeJpeg(o),A=n0.expandDims(r,0);e.tf.dispose(r),n=await e.detect(A,e.config),e.tf.dispose(A)}else e.config.debug&&b("Warmup tfjs-node not loaded");return n}async function O7(e){let t;return typeof createImageBitmap=="function"?t=await S7(e):typeof Image!="undefined"||P.Canvas!==void 0?t=await C7(e):t=await I7(e),t}async function j7(e){var a,l,c,y;if(!n0.env().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=n0.getBackend(),o=n0.backend();if(t!=="webgl"&&t!=="humangl"||!(o!=null&&o.checkCompileCompletion))return;n0.env().set("ENGINE_COMPILE_ONLY",!0);let n=n0.engine().state.numTensors,r=[];for(let[i,d]of Object.entries(e).filter(([x,f])=>x!==null&&f!==null)){let x=(l=(a=d.inputs)==null?void 0:a[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],f=(y=(c=d.inputs)==null?void 0:c[0])!=null&&y.dtype?d.inputs[0].dtype:"float32";for(let g=0;gn0.dispose(M)):n0.dispose(g)}catch(g){b("compile fail model:",i)}n0.dispose(p)}let A=await o.checkCompileCompletionAsync();o.getUniformLocations(),b("compile pass models:",r),b("compile pass kernels:",A.length),n0.env().set("ENGINE_COMPILE_ONLY",!1);let s=n0.engine().state.numTensors;s-n>0&&b("tensor leak:",s-n)}async function pn(e,t){let o=v();return e.state="warmup",t&&(e.config=o0(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:v(),persons:[],error:null}:new Promise(async n=>{await j7(e.models);let r=await O7(e),A=v();e.config.debug&&b("warmup",e.config.warmup,Math.round(A-o),"ms"),e.emit("warmup"),n(r)})}var y2,I2,O2,z5,dt=class{constructor(t){T(this,"version");T(this,"config");T(this,"result");T(this,"state");T(this,"process");T(this,"tf");T(this,"env");T(this,"draw");T(this,"models");T(this,"events");T(this,"faceTriangulation");T(this,"faceUVMap");T(this,"performance");h2(this,y2,void 0);h2(this,I2,void 0);h2(this,O2,void 0);T(this,"gl");T(this,"analyze",(...t)=>{if(!u2(this,I2))return;let o=this.tf.engine().state.numTensors,n=u2(this,y2);b2(this,y2,o);let r=o-n;r!==0&&b(...t,r)});h2(this,z5,t=>{if(!u2(this,O2))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof re.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(o){return"backend not loaded"}return null});T(this,"similarity",ct);T(this,"distance",C2);T(this,"match",xt);T(this,"emit",t=>{var o;(o=this.events)!=null&&o.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=P;let o=(re.version.tfjs||re.version_core).replace(/-(.*)/,"");ue.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${o}/dist/`,ue.modelBasePath=P.browser?"../models/":"file://models/",ue.backend=P.browser?"humangl":"tensorflow",this.version=$1,Object.defineProperty(this,"version",{value:$1}),this.config=JSON.parse(JSON.stringify(ue)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=o0(this.config,t)),nn(this.config),this.tf=re,this.state="idle",b2(this,y2,0),b2(this,I2,!1),b2(this,O2,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new S2,this.draw={options:h0,canvas:(n,r)=>rt(n,r),face:(n,r,A)=>s2(n,r,A),body:(n,r,A)=>a2(n,r,A),hand:(n,r,A)=>i2(n,r,A),gesture:(n,r,A)=>c2(n,r,A),object:(n,r,A)=>l2(n,r,A),person:(n,r,A)=>nt(n,r,A),all:(n,r,A)=>At(n,r,A)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=J3,this.faceUVMap=Q3,this.gl=J,A2(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ue)),this.config.backend=t,L5(),P.initial=!0}validate(t){let o=C5(ue,t||this.config);return o.length===0&&(this.config=o0(this.config,t)),o}check(){return T5(this)}now(){return v()}image(t,o=!0){return Ue(t,this.config,o)}async segmentation(t,o){return tn(t,o,this.config)}enhance(t){return v1(t)}compare(t,o){return Ot(this.config,t,o)}async init(){await y5(this,!0),await this.tf.ready(),L5()}async load(t){this.state="load";let o=v(),n=Object.values(this.models).filter(s=>s).length;t&&(this.config=o0(this.config,t)),this.env.initial&&(this.config.debug&&b(`version: ${this.version}`),this.config.debug&&b(`tfjs version: ${this.tf.version["tfjs-core"]}`),await y5(this)||b("error: backend check failed"),await re.ready(),this.env.browser&&(this.config.debug&&b("configuration:",this.config),this.config.debug&&b("environment:",this.env),this.config.debug&&b("tf flags:",this.tf.ENV.flags))),await _1(this),this.env.initial&&this.config.debug&&b("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(s=>s).length!==n&&(T5(this),this.emit("load"));let A=Math.trunc(v()-o);A>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+A:A)}next(t=this.result){return dn(t,this.config)}getModelStats(){return Q1(this)}async warmup(t){let o=v(),n=await pn(this,t),r=v();return this.performance.warmup=Math.trunc(r-o),n}async profile(t,o){let n=await this.tf.profile(()=>this.detect(t,o)),r={},A=0;for(let a of n.kernels)r[a.name]?r[a.name]+=a.kernelTimeMs:r[a.name]=a.kernelTimeMs,A+=a.kernelTimeMs;let s=[];Object.entries(r).forEach(a=>s.push({kernel:a[0],time:a[1],perc:0}));for(let a of s)a.perc=Math.round(1e3*a.time/A)/1e3,a.time=Math.round(1e3*a.time)/1e3;return s.sort((a,l)=>l.time-a.time),s.length=20,s}async detect(t,o){return this.state="detect",new Promise(async n=>{var g,M,R,m,u,z,w,h,B,X,O,W,Z,N,I,m0,w0,Y0,K0,D0,me;this.state="config";let r;this.config=o0(this.config,o),this.state="check";let A=u2(this,z5).call(this,t);A&&(b(A,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:A}));let s=v();await y5(this),await this.load(),r=v(),this.state="image";let a=await Ue(t,this.config);if(this.process=a,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Get Image:"),!a.tensor){this.config.debug&&b("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=v(),this.config.skipAllowed=await It(this.config,a.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Check Changed:");let l=[],c=[],y=[],i=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?it(this,a.tensor):[],this.performance.face&&delete this.performance.face):(r=v(),l=this.config.face.enabled?await it(this,a.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?o0(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?c=this.config.body.enabled?Y1(a.tensor,d):[]:(M=this.config.body.modelPath)!=null&&M.includes("blazepose")?c=this.config.body.enabled?r1(a.tensor,d):[]:(R=this.config.body.modelPath)!=null&&R.includes("efficientpose")?c=this.config.body.enabled?x1(a.tensor,d):[]:(m=this.config.body.modelPath)!=null&&m.includes("movenet")&&(c=this.config.body.enabled?H1(a.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=v(),(u=this.config.body.modelPath)!=null&&u.includes("posenet")?c=this.config.body.enabled?await Y1(a.tensor,d):[]:(z=this.config.body.modelPath)!=null&&z.includes("blazepose")?c=this.config.body.enabled?await r1(a.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("efficientpose")?c=this.config.body.enabled?await x1(a.tensor,d):[]:(h=this.config.body.modelPath)!=null&&h.includes("movenet")&&(c=this.config.body.enabled?await H1(a.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let x=this.config.hand.maxDetected===-1?o0(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((X=(B=this.config.hand.detector)==null?void 0:B.modelPath)!=null&&X.includes("handdetect")?y=this.config.hand.enabled?z1(a.tensor,x):[]:(W=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&W.includes("handtrack")&&(y=this.config.hand.enabled?O1(a.tensor,x):[]),this.performance.hand&&delete this.performance.hand):(r=v(),(N=(Z=this.config.hand.detector)==null?void 0:Z.modelPath)!=null&&N.includes("handdetect")?y=this.config.hand.enabled?await z1(a.tensor,x):[]:(m0=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&m0.includes("handtrack")&&(y=this.config.hand.enabled?await O1(a.tensor,x):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((w0=this.config.object.modelPath)!=null&&w0.includes("nanodet")?i=this.config.object.enabled?V1(a.tensor,this.config):[]:(Y0=this.config.object.modelPath)!=null&&Y0.includes("centernet")&&(i=this.config.object.enabled?a1(a.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=v(),(K0=this.config.object.modelPath)!=null&&K0.includes("nanodet")?i=this.config.object.enabled?await V1(a.tensor,this.config):[]:(D0=this.config.object.modelPath)!=null&&D0.includes("centernet")&&(i=this.config.object.enabled?await a1(a.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,y,i]=await Promise.all([l,c,y,i])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=v(),f=[...cn(l),...ln(c),...yn(y),...xn(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(v()-s):Math.trunc(v()-s);let p=((me=this.process.tensor)==null?void 0:me.shape)||[];this.result={face:l,body:c,hand:y,gesture:f,object:i,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return mn(l,c,y,f,p)}},re.dispose(a.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};y2=new WeakMap,I2=new WeakMap,O2=new WeakMap,z5=new WeakMap;0&&(module.exports={Human,defaults,draw,env,match,models}); diff --git a/dist/human.node-wasm.js b/dist/human.node-wasm.js index 8906d269..25ce7e06 100644 --- a/dist/human.node-wasm.js +++ b/dist/human.node-wasm.js @@ -4,7 +4,7 @@ author: ' */ -"use strict";var un=Object.create;var p2=Object.defineProperty;var hn=Object.getOwnPropertyDescriptor;var bn=Object.getOwnPropertyNames;var gn=Object.getPrototypeOf,Mn=Object.prototype.hasOwnProperty;var vn=(e,t,o)=>t in e?p2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var Rn=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),pe=(e,t)=>{for(var o in t)p2(e,o,{get:t[o],enumerable:!0})},gt=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of bn(t))!Mn.call(e,r)&&r!==o&&p2(e,r,{get:()=>t[r],enumerable:!(n=hn(t,r))||n.enumerable});return e};var V=(e,t,o)=>(o=e!=null?un(gn(e)):{},gt(t||!e||!e.__esModule?p2(o,"default",{value:e,enumerable:!0}):o,e)),Pn=e=>gt(p2({},"__esModule",{value:!0}),e);var T=(e,t,o)=>(vn(e,typeof t!="symbol"?t+"":t,o),o),Mt=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var u2=(e,t,o)=>(Mt(e,t,"read from private field"),o?o.call(e):t.get(e)),h2=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},b2=(e,t,o,n)=>(Mt(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);var D=Rn((G7,j2)=>{"use strict";var Rt=Object.defineProperty,Tn=Object.getOwnPropertyDescriptor,wn=Object.getOwnPropertyNames,kn=Object.prototype.hasOwnProperty,O5=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of wn(t))!kn.call(e,r)&&r!==o&&Rt(e,r,{get:()=>t[r],enumerable:!(n=Tn(t,r))||n.enumerable});return e},Pt=(e,t,o)=>(O5(e,t,"default"),o&&O5(o,t,"default")),En=e=>O5(Rt({},"__esModule",{value:!0}),e),j5={};j2.exports=En(j5);Pt(j5,require("@tensorflow/tfjs"),j2.exports);Pt(j5,require("@tensorflow/tfjs-backend-wasm"),j2.exports)});var N7={};pe(N7,{Human:()=>dt,default:()=>dt,defaults:()=>ue,draw:()=>st,env:()=>P,match:()=>yt,models:()=>y5});module.exports=Pn(N7);function h(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function vt(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var v=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function I5(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")I5(e[r],t[r],r,n);else{let A=e&&typeof e[r]!="undefined";A||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let s=e&&typeof e[r]==typeof t[r];A&&!s&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&h("invalid configuration",n),n}function n0(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let A=o[r],s=n[r];Array.isArray(A)&&Array.isArray(s)?o[r]=A.concat(...s):t(A)&&t(s)?o[r]=n0(A,s):o[r]=s}),o),{})}var ue={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var a0=V(D());var j=V(D());var Tt=` +"use strict";var hn=Object.create;var p2=Object.defineProperty;var bn=Object.getOwnPropertyDescriptor;var gn=Object.getOwnPropertyNames;var Mn=Object.getPrototypeOf,vn=Object.prototype.hasOwnProperty;var Rn=(e,t,o)=>t in e?p2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var Pn=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),pe=(e,t)=>{for(var o in t)p2(e,o,{get:t[o],enumerable:!0})},Mt=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of gn(t))!vn.call(e,r)&&r!==o&&p2(e,r,{get:()=>t[r],enumerable:!(n=bn(t,r))||n.enumerable});return e};var V=(e,t,o)=>(o=e!=null?hn(Mn(e)):{},Mt(t||!e||!e.__esModule?p2(o,"default",{value:e,enumerable:!0}):o,e)),Tn=e=>Mt(p2({},"__esModule",{value:!0}),e);var T=(e,t,o)=>(Rn(e,typeof t!="symbol"?t+"":t,o),o),vt=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var u2=(e,t,o)=>(vt(e,t,"read from private field"),o?o.call(e):t.get(e)),h2=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},b2=(e,t,o,n)=>(vt(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);var D=Pn((B7,j2)=>{"use strict";var Pt=Object.defineProperty,wn=Object.getOwnPropertyDescriptor,kn=Object.getOwnPropertyNames,En=Object.prototype.hasOwnProperty,O5=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of kn(t))!En.call(e,r)&&r!==o&&Pt(e,r,{get:()=>t[r],enumerable:!(n=wn(t,r))||n.enumerable});return e},Tt=(e,t,o)=>(O5(e,t,"default"),o&&O5(o,t,"default")),zn=e=>O5(Pt({},"__esModule",{value:!0}),e),j5={};j2.exports=zn(j5);Tt(j5,require("@tensorflow/tfjs"),j2.exports);Tt(j5,require("@tensorflow/tfjs-backend-wasm"),j2.exports)});var L7={};pe(L7,{Human:()=>ft,default:()=>ft,defaults:()=>ue,draw:()=>at,env:()=>P,match:()=>dt,models:()=>y5});module.exports=Tn(L7);function b(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function Rt(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var v=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function I5(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")I5(e[r],t[r],r,n);else{let A=e&&typeof e[r]!="undefined";A||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let s=e&&typeof e[r]==typeof t[r];A&&!s&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&b("invalid configuration",n),n}function o0(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let A=o[r],s=n[r];Array.isArray(A)&&Array.isArray(s)?o[r]=A.concat(...s):t(A)&&t(s)?o[r]=o0(A,s):o[r]=s}),o),{})}var ue={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var a0=V(D());var j=V(D());var wt=` precision highp float; attribute vec2 pos; attribute vec2 uv; @@ -14,7 +14,7 @@ vUv = uv; gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.); } -`;var wt=` +`;var kt=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -26,7 +26,7 @@ gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14]; gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19]; } -`,kt=` +`,Et=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -38,7 +38,7 @@ gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14]; gl_FragColor.a = c.a; } -`,Et=` +`,zt=` precision highp float; varying vec2 vUv; uniform vec2 size; @@ -51,7 +51,7 @@ vec2 coord = pixelate(vUv, size); gl_FragColor += texture2D(texture, coord); } -`,zt=` +`,St=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -74,7 +74,7 @@ gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794; gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265; } -`,St=` +`,Ct=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -96,7 +96,7 @@ c31 * m[6] + c32 * m[7] + c33 * m[8]; gl_FragColor.a = c22.a; } -`;var N5=(e,t,o)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,A)=>(o[A]=0,r))},L5=class{constructor(t,o,n){T(this,"uniform",{});T(this,"attribute",{});T(this,"gl");T(this,"id");T(this,"compile",(t,o)=>{let n=this.gl.createShader(o);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(h(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(h("filter: could not create shader"),null)});this.gl=t;let r=this.compile(o,this.gl.VERTEX_SHADER),A=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!A)){if(!this.id){h("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,A),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){h(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),N5(o,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=this.gl.getAttribLocation(this.id,s);N5(o,"uniform",this.uniform),N5(n,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=this.gl.getUniformLocation(this.id,s)}}};function Ct(){let e=0,t=null,o=!1,n=-1,r=[null,null],A=[],s=null,a=null,l=b0(100,100),c={},y={INTERMEDIATE:1},i=l.getContext("webgl");if(!i){h("filter: cannot get webgl context");return}this.gl=i;function d(R,f){if(!(R===l.width&&f===l.height)){if(l.width=R,l.height=f,!s){let p=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);s=i.createBuffer(),i.bindBuffer(i.ARRAY_BUFFER,s),i.bufferData(i.ARRAY_BUFFER,p,i.STATIC_DRAW),i.pixelStorei(i.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}i.viewport(0,0,l.width,l.height),r=[null,null]}}function x(R,f){let p=i.createFramebuffer();i.bindFramebuffer(i.FRAMEBUFFER,p);let z=i.createRenderbuffer();i.bindRenderbuffer(i.RENDERBUFFER,z);let w=i.createTexture();return i.bindTexture(i.TEXTURE_2D,w),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,R,f,0,i.RGBA,i.UNSIGNED_BYTE,null),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.framebufferTexture2D(i.FRAMEBUFFER,i.COLOR_ATTACHMENT0,i.TEXTURE_2D,w,0),i.bindTexture(i.TEXTURE_2D,null),i.bindFramebuffer(i.FRAMEBUFFER,null),{fbo:p,texture:w}}function m(R){return r[R]=r[R]||x(l.width,l.height),r[R]}function b(R=0){if(!a)return;let f=null,p=null,z=!1;e===0?f=t:f=m(n).texture||null,e++,o&&!(R&y.INTERMEDIATE)?(p=null,z=e%2===0):(n=(n+1)%2,p=m(n).fbo||null),i.bindTexture(i.TEXTURE_2D,f),i.bindFramebuffer(i.FRAMEBUFFER,p),i.uniform1f(a.uniform.flipY,z?-1:1),i.drawArrays(i.TRIANGLES,0,6)}function g(R){if(c[R])return a=c[R],i.useProgram((a?a.id:null)||null),a;if(a=new L5(i,Tt,R),!a)return h("filter: could not get webgl program"),null;let f=Float32Array.BYTES_PER_ELEMENT,p=4*f;return i.enableVertexAttribArray(a.attribute.pos),i.vertexAttribPointer(a.attribute.pos,2,i.FLOAT,!1,p,0*f),i.enableVertexAttribArray(a.attribute.uv),i.vertexAttribPointer(a.attribute.uv,2,i.FLOAT,!1,p,2*f),c[R]=a,a}let M={colorMatrix:R=>{let f=new Float32Array(R);f[4]/=255,f[9]/=255,f[14]/=255,f[19]/=255;let p=f[18]===1&&f[3]===0&&f[8]===0&&f[13]===0&&f[15]===0&&f[16]===0&&f[17]===0&&f[19]===0?kt:wt,z=g(p);!z||(i.uniform1fv(z.uniform.m,f),b())},brightness:R=>{let f=(R||0)+1;M.colorMatrix([f,0,0,0,0,0,f,0,0,0,0,0,f,0,0,0,0,0,1,0])},saturation:R=>{let f=(R||0)*2/3+1,p=(f-1)*-.5;M.colorMatrix([f,p,p,0,0,p,f,p,0,0,p,p,f,0,0,0,0,0,1,0])},desaturate:()=>{M.saturation(-1)},contrast:R=>{let f=(R||0)+1,p=-128*(f-1);M.colorMatrix([f,0,0,0,p,0,f,0,0,p,0,0,f,0,p,0,0,0,1,0])},negative:()=>{M.contrast(-2)},hue:R=>{R=(R||0)/180*Math.PI;let f=Math.cos(R),p=Math.sin(R),z=.213,w=.715,u=.072;M.colorMatrix([z+f*(1-z)+p*-z,w+f*-w+p*-w,u+f*-u+p*(1-u),0,0,z+f*-z+p*.143,w+f*(1-w)+p*.14,u+f*-u+p*-.283,0,0,z+f*-z+p*-(1-z),w+f*-w+p*w,u+f*(1-u)+p*u,0,0,0,0,0,1,0])},desaturateLuminance:()=>{M.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{M.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{M.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{M.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{M.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{M.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{M.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{M.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:R=>{let f=new Float32Array(R),p=1/l.width,z=1/l.height,w=g(St);!w||(i.uniform1fv(w.uniform.m,f),i.uniform2f(w.uniform.px,p,z),b())},detectEdges:()=>{M.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{M.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{M.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:R=>{let f=R||1;M.convolution.call(this,[0,-1*f,0,-1*f,1+4*f,-1*f,0,-1*f,0])},emboss:R=>{let f=R||1;M.convolution.call(this,[-2*f,-1*f,0,-1*f,1,1*f,0,1*f,2*f])},blur:R=>{let f=R/7/l.width,p=R/7/l.height,z=g(zt);!z||(i.uniform2f(z.uniform.px,0,p),b(y.INTERMEDIATE),i.uniform2f(z.uniform.px,f,0),b())},pixelate:R=>{let f=R/l.width,p=R/l.height,z=g(Et);!z||(i.uniform2f(z.uniform.size,f,p),b())}};this.add=function(R){let f=Array.prototype.slice.call(arguments,1),p=M[R];A.push({func:p,args:f})},this.reset=function(){A=[]},this.get=function(){return A},this.apply=function(R){d(R.width,R.height),e=0,t||(t=i.createTexture()),i.bindTexture(i.TEXTURE_2D,t),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.NEAREST),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.NEAREST),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,i.RGBA,i.UNSIGNED_BYTE,R);for(let f=0;fx.data())),s=.99*Math.max(A[0][0],A[1][0],A[2][0]),a=[q.sub(o[0],n[0]),q.sub(o[1],n[1]),q.sub(o[2],n[2])],l=[q.sub(r[0],n[0]),q.sub(r[1],n[1]),q.sub(r[2],n[2])],c=[q.div(s,l[0]),q.div(s,l[1]),q.div(s,l[2])],y=[q.mul(a[0],c[0]),q.mul(a[1],c[1]),q.mul(a[2],c[2])],i=q.stack([y[0],y[1],y[2]],2),d=q.reshape(i,[1,t.shape[0],t.shape[1],3]);return q.dispose([...o,...n,...r,...a,...l,...c,...y,i,t]),d}var L2=3840,y0=null,d0=null,qe=null,Q,ae={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function b0(e,t){let o;if(P.browser)if(P.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");o=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");o=document.createElement("canvas"),o.width=e,o.height=t}else typeof P.Canvas!="undefined"?o=new P.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(o=new globalThis.Canvas(e,t));return o}function W2(e,t){let o=t||b0(e.width,e.height);return o.getContext("2d").drawImage(e,0,0),o}async function Ue(e,t,o=!0){var d,x;if(!e)return t.debug&&h("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof j.Tensor)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof P.Canvas!="undefined"&&e instanceof P.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof j.Tensor){let m=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)m=j.expandDims(e,0);else if(e.shape[2]===4){let b=j.slice3d(e,[0,0,0],[-1,-1,3]);m=j.expandDims(b,0),j.dispose(b)}}else e.shape.length===4&&(e.shape[3]===3?m=j.clone(e):e.shape[3]===4&&(m=j.slice4d(e,[0,0,0,0],[-1,-1,-1,3])));if(m==null||m.shape.length!==4||m.shape[0]!==1||m.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(m.dtype==="int32"){let b=j.cast(m,"float32");j.dispose(m),m=b}return{tensor:m,canvas:t.filter.return?d0:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&h("input stream is not ready"),{tensor:null,canvas:y0};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&h("cannot determine input dimensions"),{tensor:null,canvas:y0};let A=n,s=r;if(A>L2&&(A=L2,s=Math.trunc(A*r/n)),s>L2&&(s=L2,A=Math.trunc(s*n/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?A=t.filter.width:(((x=t.filter)==null?void 0:x.height)||0)>0&&(A=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?s=t.filter.height:(t.filter.width||0)>0&&(s=r*((t.filter.width||0)/n)),!A||!s)throw new Error("input error: cannot determine dimension");(!y0||y0.width!==A||y0.height!==s)&&(y0=b0(A,s));let a=y0.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?a.putImageData(e,0,0):t.filter.flip&&typeof a.translate!="undefined"?(a.translate(n,0),a.scale(-1,1),a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),a.setTransform(1,0,0,1,0,0)):a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),(!d0||y0.width!==d0.width||y0.height!==d0.height)&&(d0=b0(y0.width,y0.height)),t.filter.enabled&&P.webgl.supported?(Q||(Q=P.browser?new Ct:null),P.filter=!!Q,Q!=null&&Q.add?(Q.reset(),t.filter.brightness!==0&&Q.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Q.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Q.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Q.add("blur",t.filter.blur),t.filter.saturation!==0&&Q.add("saturation",t.filter.saturation),t.filter.hue!==0&&Q.add("hue",t.filter.hue),t.filter.negative&&Q.add("negative"),t.filter.sepia&&Q.add("sepia"),t.filter.vintage&&Q.add("brownie"),t.filter.sepia&&Q.add("sepia"),t.filter.kodachrome&&Q.add("kodachrome"),t.filter.technicolor&&Q.add("technicolor"),t.filter.polaroid&&Q.add("polaroid"),t.filter.pixelate!==0&&Q.add("pixelate",t.filter.pixelate),Q.get()>0?d0=Q.apply(y0):d0=Q.draw(y0)):(t.debug&&h("input process error: cannot initialize filters"),P.webgl.supported=!1,t.filter.enabled=!1,W2(y0,d0))):(W2(y0,d0),Q&&(Q=null),P.filter=!!Q),!o)return{tensor:null,canvas:d0};if(!d0)throw new Error("canvas error: cannot create output");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(P.browser&&j.browser)l=j.browser?j.browser.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let m=new Uint8Array(e.data.buffer);l=j.tensor(m,[e.height,e.width,c],"int32")}else if((!qe||d0.width!==qe.width||d0.height!==qe.height)&&(qe=b0(d0.width,d0.height)),j.browser&&P.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=j.browser.fromPixels(d0):(qe=W2(d0),l=j.browser.fromPixels(qe));else{let g=W2(d0).getContext("2d").getImageData(0,0,A,s);c=g.data.length/A/s;let M=new Uint8Array(g.data.buffer);l=j.tensor(M,[A,s,c])}if(c===4){let m=j.slice3d(l,[0,0,0],[-1,-1,3]);j.dispose(l),l=m}if(!l)throw new Error("input error: cannot create tensor");let y=j.cast(l,"float32"),i=t.filter.equalization?await N2(y):j.expandDims(y,0);return j.dispose([l,y]),{tensor:i,canvas:t.filter.return?d0:null}}async function It(e,t){let o=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return o;if(!ae.inputTensor)ae.inputTensor=j.clone(t);else if(ae.inputTensor.shape[1]!==t.shape[1]||ae.inputTensor.shape[2]!==t.shape[2])j.dispose(ae.inputTensor),ae.inputTensor=j.clone(t);else{let n={};n.diff=j.sub(t,ae.inputTensor),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;j.dispose([ae.inputTensor,n.diff,n.squared,n.sum]),ae.inputTensor=j.clone(t),o=A<=(e.cacheSensitivity||0)}return o}async function Ot(e,t,o){let n={};if(!t||!o||t.shape.length!==4||t.shape.length!==o.shape.length)return e.debug||h("invalid input tensor or tensor shapes do not match:",t.shape,o.shape),0;if(t.shape[0]!==1||o.shape[0]!==1||t.shape[3]!==3||o.shape[3]!==3)return e.debug||h("input tensors must be of shape [1, height, width, 3]:",t.shape,o.shape),0;n.input1=j.clone(t),n.input2=t.shape[1]!==o.shape[1]||t.shape[2]!==o.shape[2]?j.image.resizeBilinear(o,[t.shape[1],t.shape[2]]):j.clone(o),n.diff=j.sub(n.input1,n.input2),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return j.dispose([n.input1,n.input2,n.diff,n.squared,n.sum]),A}var W5=class{constructor(){T(this,"browser");T(this,"node");T(this,"worker");T(this,"platform","");T(this,"agent","");T(this,"backends",[]);T(this,"initial");T(this,"filter");T(this,"tfjs");T(this,"offscreen");T(this,"perfadd",!1);T(this,"tensorflow",{version:void 0,gpu:void 0});T(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});T(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});T(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});T(this,"cpu",{model:void 0,flags:[]});T(this,"kernels",[]);T(this,"Canvas");T(this,"Image");T(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:a0.version["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let o=t[0].match(/\(([^()]+)\)/g);this.platform=o!=null&&o[0]?o[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(a0.engine().registryFactory),this.tensorflow={version:a0.backend().binding?a0.backend().binding.TF_Version:void 0,gpu:a0.backend().binding?a0.backend().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&a0.getBackend()==="wasm"&&(this.wasm.simd=a0.env().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=a0.env().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=b0(100,100),o=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof o!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(a0.getBackend()==="webgl"||a0.getBackend()==="humangl")){let n=a0.backend().gpgpu!=="undefined"?await a0.backend().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=n?n.name:void 0}}catch(n){this.webgpu.supported=!1}try{this.kernels=a0.getKernelsForBackend(a0.getBackend()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},P=new W5;var k5=V(D());var F5={};pe(F5,{age:()=>Xn,"anti-spoofing":()=>vr,antispoof:()=>In,blazeface:()=>On,"blazeface-back":()=>qn,"blazeface-front":()=>Un,"blazepose-detect":()=>Mr,"blazepose-detector2d":()=>Yn,"blazepose-detector3d":()=>Kn,"blazepose-full":()=>Jn,"blazepose-heavy":()=>Qn,"blazepose-lite":()=>_n,default:()=>Nr,efficientpose:()=>$n,"efficientpose-i-lite":()=>Rr,"efficientpose-ii-lite":()=>Pr,"efficientpose-iv":()=>Tr,emotion:()=>jn,faceboxes:()=>er,facemesh:()=>Nn,"facemesh-attention":()=>or,"facemesh-attention-alt":()=>tr,"facemesh-detection-full":()=>nr,"facemesh-detection-short":()=>rr,"facemesh-orig":()=>Ar,faceres:()=>Ln,"faceres-deep":()=>sr,gear:()=>ar,gender:()=>lr,"gender-ssrnet-imdb":()=>ir,handdetect:()=>cr,"handlandmark-full":()=>Wn,"handlandmark-lite":()=>xr,"handlandmark-sparse":()=>yr,handskeleton:()=>dr,handtrack:()=>Fn,"insightface-efficientnet-b0":()=>wr,"insightface-ghostnet-strides1":()=>kr,"insightface-ghostnet-strides2":()=>Er,"insightface-mobilenet-emore":()=>zr,"insightface-mobilenet-swish":()=>Sr,iris:()=>Gn,liveness:()=>Bn,"mb3-centernet":()=>Hn,meet:()=>fr,mobileface:()=>mr,mobilefacenet:()=>pr,models:()=>Dn,"movenet-lightning":()=>Vn,"movenet-multipose":()=>ur,"movenet-thunder":()=>hr,nanodet:()=>br,"nanodet-e":()=>Cr,"nanodet-g":()=>Ir,"nanodet-m":()=>Or,"nanodet-t":()=>jr,posenet:()=>gr,selfie:()=>Zn});var In=853098,On=538928,jn=820516,Nn=1477958,Ln=6978814,Wn=5431368,Fn=2964837,Gn=2599092,Bn=592976,Hn=4030290,Dn=0,Vn=4650216,Zn=212886,Xn=161240,qn=538928,Un=402048,Yn=7499400,Kn=5928856,Jn=6338290,Qn=27501554,_n=2725490,$n=5651240,er=2013002,tr=2387598,or=2382414,nr=1026192,rr=201268,Ar=2955780,sr=13957620,ar=1498916,ir=161236,lr=201808,cr=3515612,xr=2023432,yr=5286322,dr=5502280,fr=372228,mr=2183192,pr=5171976,ur=9448838,hr=12477112,br=7574558,gr=5032780,Mr=5928804,vr=853098,Rr=2269064,Pr=5651240,Tr=25643252,wr=13013224,kr=8093408,Er=8049584,zr=6938536,Sr=12168584,Cr=12319156,Ir=7574558,Or=1887474,jr=5294216,Nr={antispoof:In,blazeface:On,emotion:jn,facemesh:Nn,faceres:Ln,"handlandmark-full":Wn,handtrack:Fn,iris:Gn,liveness:Bn,"mb3-centernet":Hn,models:Dn,"movenet-lightning":Vn,selfie:Zn,age:Xn,"blazeface-back":qn,"blazeface-front":Un,"blazepose-detector2d":Yn,"blazepose-detector3d":Kn,"blazepose-full":Jn,"blazepose-heavy":Qn,"blazepose-lite":_n,efficientpose:$n,faceboxes:er,"facemesh-attention-alt":tr,"facemesh-attention":or,"facemesh-detection-full":nr,"facemesh-detection-short":rr,"facemesh-orig":Ar,"faceres-deep":sr,gear:ar,"gender-ssrnet-imdb":ir,gender:lr,handdetect:cr,"handlandmark-lite":xr,"handlandmark-sparse":yr,handskeleton:dr,meet:fr,mobileface:mr,mobilefacenet:pr,"movenet-multipose":ur,"movenet-thunder":hr,nanodet:br,posenet:gr,"blazepose-detect":Mr,"anti-spoofing":vr,"efficientpose-i-lite":Rr,"efficientpose-ii-lite":Pr,"efficientpose-iv":Tr,"insightface-efficientnet-b0":wr,"insightface-ghostnet-strides1":kr,"insightface-ghostnet-strides2":Er,"insightface-mobilenet-emore":zr,"insightface-mobilenet-swish":Sr,"nanodet-e":Cr,"nanodet-g":Ir,"nanodet-m":Or,"nanodet-t":jr};var y5={};pe(y5,{Models:()=>S2,getModelStats:()=>Q1,load:()=>_1,reset:()=>x5,validate:()=>w5,validateModel:()=>A2});var F2=V(D());var V0,G5=[],Lr=["white","black","asian","indian","other"],Wr=[15,23,28,35.5,45.5,55.5,65],jt=0,Nt=0,B5=Number.MAX_SAFE_INTEGER;async function Lt(e){var t;return P.initial&&(V0=null),V0?e.debug&&h("cached model:",V0.modelUrl):V0=await F((t=e.face.gear)==null?void 0:t.modelPath),V0}async function H5(e,t,o,n){var s,a;if(!V0)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=B5<(((s=t.face.gear)==null?void 0:s.skipFrames)||0),A=(((a=t.face.gear)==null?void 0:a.skipTime)||0)>v()-Nt;return t.skipAllowed&&A&&r&&jt===n&&G5[o]?(B5++,G5[o]):(B5=0,new Promise(async l=>{var M,R;if(!(V0!=null&&V0.inputs[0].shape))return;let c={},y=[[0,.1,.9,.9]];c.resize=F2.image.cropAndResize(e,y,[0],[V0.inputs[0].shape[2],V0.inputs[0].shape[1]]);let i={age:0,gender:"unknown",genderScore:0,race:[]};(M=t.face.gear)!=null&&M.enabled&&([c.age,c.gender,c.race]=V0.execute(c.resize,["age_output","gender_output","race_output"]));let d=await c.gender.data();i.gender=d[0]>d[1]?"male":"female",i.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let x=await c.race.data();for(let f=0;f(((R=t.face.gear)==null?void 0:R.minConfidence)||.2)&&i.race.push({score:Math.round(100*x[f])/100,race:Lr[f]});i.race.sort((f,p)=>p.score-f.score);let b=Array.from(await c.age.data()).map((f,p)=>[Wr[p],f]).sort((f,p)=>p[1]-f[1]),g=b[0][0];for(let f=1;fF2.dispose(c[f])),G5[o]=i,jt=n,Nt=v(),l(i)}))}var Ye=V(D());var he=V(D()),H={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function Ft(){H.tf255=he.scalar(255,"float32"),H.tf1=he.scalar(1,"float32"),H.tf2=he.scalar(2,"float32"),H.tf05=he.scalar(.5,"float32"),H.tf127=he.scalar(127.5,"float32"),H.rgb=he.tensor1d([.2989,.587,.114],"float32")}var E0,G2=[],Gt=0,Bt=0,D5=Number.MAX_SAFE_INTEGER;async function Ht(e){return P.initial&&(E0=null),E0?e.debug&&h("cached model:",E0.modelUrl):E0=await F(e.face.ssrnet.modelPathAge),E0}async function V5(e,t,o,n){var s,a,l,c;if(!E0)return{age:0};let r=D5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Bt;return t.skipAllowed&&r&&A&&Gt===n&&((l=G2[o])==null?void 0:l.age)&&((c=G2[o])==null?void 0:c.age)>0?(D5++,G2[o]):(D5=0,new Promise(async y=>{var x;if(!(E0!=null&&E0.inputs)||!E0.inputs[0]||!E0.inputs[0].shape)return;let i={};i.resize=Ye.image.resizeBilinear(e,[E0.inputs[0].shape[2],E0.inputs[0].shape[1]],!1),i.enhance=Ye.mul(i.resize,H.tf255);let d={age:0};if((x=t.face.ssrnet)!=null&&x.enabled&&(i.age=E0.execute(i.enhance)),i.age){let m=await i.age.data();d.age=Math.trunc(10*m[0])/10}Object.keys(i).forEach(m=>Ye.dispose(i[m])),G2[o]=d,Gt=n,Bt=v(),y(d)}))}var p0=V(D());var Z0,B2=[],Vt=0,Zt=0,Z5=Number.MAX_SAFE_INTEGER,X5=[.2989,.587,.114];async function Xt(e){var t;return P.initial&&(Z0=null),Z0?e.debug&&h("cached model:",Z0.modelUrl):Z0=await F((t=e.face.ssrnet)==null?void 0:t.modelPathGender),Z0}async function q5(e,t,o,n){var s,a,l,c;if(!Z0)return{gender:"unknown",genderScore:0};let r=Z5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Zt;return t.skipAllowed&&r&&A&&Vt===n&&((l=B2[o])==null?void 0:l.gender)&&((c=B2[o])==null?void 0:c.genderScore)>0?(Z5++,B2[o]):(Z5=0,new Promise(async y=>{var m;if(!(Z0!=null&&Z0.inputs[0].shape))return;let i={};i.resize=p0.image.resizeBilinear(e,[Z0.inputs[0].shape[2],Z0.inputs[0].shape[1]],!1),i.enhance=p0.tidy(()=>{let[b,g,M]=p0.split(i.resize,3,3),R=p0.mul(b,X5[0]),f=p0.mul(g,X5[1]),p=p0.mul(M,X5[2]),z=p0.addN([R,f,p]);return p0.mul(p0.sub(z,H.tf05),2)});let d={gender:"unknown",genderScore:0};(m=t.face.ssrnet)!=null&&m.enabled&&(i.gender=Z0.execute(i.enhance));let x=await i.gender.data();d.gender=x[0]>x[1]?"female":"male",d.genderScore=x[0]>x[1]?Math.trunc(100*x[0])/100:Math.trunc(100*x[1])/100,Object.keys(i).forEach(b=>p0.dispose(i[b])),B2[o]=d,Vt=n,Zt=v(),y(d)}))}var D2=V(D());var c0,H2=[],U5=Number.MAX_SAFE_INTEGER,Ut=0,Yt=0;async function Kt(e){var t;return P.initial&&(c0=null),c0?e.debug&&h("cached model:",c0.modelUrl):c0=await F((t=e.face.antispoof)==null?void 0:t.modelPath),c0}async function Y5(e,t,o,n){var s,a;if(!c0||!(c0!=null&&c0.executor))return 0;let r=(((s=t.face.antispoof)==null?void 0:s.skipTime)||0)>v()-Yt,A=U5<(((a=t.face.antispoof)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&Ut===n&&H2[o]?(U5++,H2[o]):(U5=0,new Promise(async l=>{let c=D2.image.resizeBilinear(e,[c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[2]:0,c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[1]:0],!1),y=c0==null?void 0:c0.execute(c),i=(await y.data())[0];H2[o]=Math.round(100*i)/100,Ut=n,Yt=v(),D2.dispose([c,y]),l(H2[o])}))}var L=V(D());var ie=V(D());var X0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},K5={count:468,mouth:13,symmetryLine:[13,X0.midwayBetweenEyes[0]]},Oe={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},J5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],M2=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],je=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Gr=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Br=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Hr=[33,133,362,263,1,78,308],A4=Gr.map(e=>M2[e]),s4=Br.map(e=>M2[e]),a4=Hr.map(e=>M2[e]);function be(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var Dr=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Vr=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Zr=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Xr=[[474,475],[475,476],[476,477],[477,474]],qr=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Ur=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Yr=[[469,470],[470,471],[471,472],[472,469]],Kr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],i4={lips:be(Dr),leftEye:be(Vr),leftEyebrow:be(Zr),leftIris:be(Xr),rightEye:be(qr),rightEyebrow:be(Ur),rightIris:be(Yr),faceOval:be(Kr)};var Ke=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],V2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],Z2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],X2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],$t=(e,t)=>{let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:o,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},_5=(e,t,o)=>{let n=t.shape[1],r=t.shape[2],A=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],s=ie.image.cropAndResize(t,[A],[0],o),a=ie.div(s,H.tf255);return ie.dispose(s),a},q2=(e,t)=>{let o=V2(e),n=Ke(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[o[0]-r[0],o[1]-r[1]],endPoint:[o[0]+r[0],o[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},U2=e=>{let t=V2(e),o=Ke(e),n=Math.max(...o)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},e3=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...o)],endPoint:[Math.max(...t),Math.max(...o)],landmarks:e}},$5=[[1,0,0],[0,1,0],[0,0,1]],Jr=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Qr=(e,t)=>Jr(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var Qt=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ne=(e,t)=>{let o=0;for(let n=0;n{let o=[];for(let n=0;n{let o=[],n=e.length;for(let r=0;r{let o=Math.cos(e),n=Math.sin(e),r=[[o,-n,0],[n,o,0],[0,0,1]],A=Qt(t[0],t[1]),s=_t(A,r),a=Qt(-t[0],-t[1]);return _t(s,a)},$r=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],o=[e[0][2],e[1][2]],n=[-Ne(t[0],o),-Ne(t[1],o)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},eA=(e,t)=>[Ne(e,t[0]),Ne(e,t[1])];function o3(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},o=[];for(let n=0;n[A[0]/r*(x[0]-r/2),A[1]/r*(x[1]-r/2),x[2]||0]),a=o&&o!==0&&Math.abs(o)>.2,l=a?t3(o,[0,0]):$5,c=a?s.map(x=>[...eA(x,l),x[2]]):s,y=a?$r(n):$5,i=V2(t),d=[Ne(i,y[0]),Ne(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2]||0)])}function r3(e,t,o,n){let r=t.landmarks.length>=K5.count?K5.symmetryLine:Oe.symmetryLine,A=0,s=$5,a;if(e&&P.kernels.includes("rotatewithoffset"))if(A=Qr(t.landmarks[r[0]],t.landmarks[r[1]]),A&&A!==0&&Math.abs(A)>.2){let c=V2(t),y=[c[0]/o.shape[2],c[1]/o.shape[1]],i=ie.image.rotateWithOffset(o,A,0,y);s=t3(-A,c),a=_5(t,i,[n,n]),ie.dispose(i)}else a=_5(t,o,[n,n]);else a=_5(t,o,[n,n]);return[A,s,a]}var tA=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...o)+(Math.max(...o)-Math.min(...o))/2]},A3=(e,t)=>{let o=tA(e),n=Ke(t);return{startPoint:[o[0]-n[0]/2,o[1]-n[1]/2],endPoint:[o[0]+n[0]/2,o[1]+n[1]/2]}};var s3=6,oA=1.4,K0,a3=null,ge=0,v2=null,Je=()=>ge;async function i3(e){var t;return P.initial&&(K0=null),K0?e.debug&&h("cached model:",K0.modelUrl):K0=await F((t=e.face.detector)==null?void 0:t.modelPath),ge=K0.executor&&K0.inputs[0].shape?K0.inputs[0].shape[2]:256,v2=L.scalar(ge,"int32"),a3=L.tensor2d(o3(ge)),K0}function nA(e){let t={};t.boxStarts=L.slice(e,[0,1],[-1,2]),t.centers=L.add(t.boxStarts,a3),t.boxSizes=L.slice(e,[0,3],[-1,2]),t.boxSizesNormalized=L.div(t.boxSizes,v2),t.centersNormalized=L.div(t.centers,v2),t.halfBoxSize=L.div(t.boxSizesNormalized,H.tf2),t.starts=L.sub(t.centersNormalized,t.halfBoxSize),t.ends=L.add(t.centersNormalized,t.halfBoxSize),t.startNormalized=L.mul(t.starts,v2),t.endNormalized=L.mul(t.ends,v2);let o=L.concat2d([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>L.dispose(t[n])),o}async function l3(e,t){var a,l,c,y;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let o={};o.resized=L.image.resizeBilinear(e,[ge,ge]),o.div=L.div(o.resized,H.tf127),o.normalized=L.sub(o.div,H.tf05);let n=K0==null?void 0:K0.execute(o.normalized);if(Array.isArray(n)&&n.length>2){let i=n.sort((d,x)=>d.size-x.size);o.concat384=L.concat([i[0],i[2]],2),o.concat512=L.concat([i[1],i[3]],2),o.concat=L.concat([o.concat512,o.concat384],1),o.batch=L.squeeze(o.concat,0)}else Array.isArray(n)?o.batch=L.squeeze(n[0]):o.batch=L.squeeze(n);L.dispose(n),o.boxes=nA(o.batch),o.logits=L.slice(o.batch,[0,0],[-1,1]),o.sigmoid=L.sigmoid(o.logits),o.scores=L.squeeze(o.sigmoid),o.nms=await L.image.nonMaxSuppressionAsync(o.boxes,o.scores,((a=t.face.detector)==null?void 0:a.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((c=t.face.detector)==null?void 0:c.minConfidence)||0);let r=await o.nms.array(),A=[],s=await o.scores.data();for(let i=0;i(((y=t.face.detector)==null?void 0:y.minConfidence)||0)){let x={};x.bbox=L.slice(o.boxes,[r[i],0],[1,-1]),x.slice=L.slice(o.batch,[r[i],s3-1],[1,-1]),x.squeeze=L.squeeze(x.slice),x.landmarks=L.reshape(x.squeeze,[s3,-1]);let m=await x.bbox.data(),b={startPoint:[m[0],m[1]],endPoint:[m[2],m[3]],landmarks:await x.landmarks.array(),confidence:d},g=$t(b,[(e.shape[2]||0)/ge,(e.shape[1]||0)/ge]),M=q2(g,t.face.scale||oA),R=U2(M);A.push(R),Object.keys(x).forEach(f=>L.dispose(x[f]))}}return Object.keys(o).forEach(i=>L.dispose(o[i])),A}var S0=V(D());var Y2={};pe(Y2,{connected:()=>o1,kpt:()=>t1});var t1=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],o1={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var z0=V(D()),x3=224,rA,AA=5,K2=[8,16,32,32,32];function y3(){let e=[],t=0;for(;to.x)),y:z0.tensor1d(e.map(o=>o.y))}}function le(e,t=[1,1]){let o=[e.map(a=>a[0]),e.map(a=>a[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[n[0],n[1],r[0]-n[0],r[1]-n[1]],s=[A[0]/t[0],A[1]/t[1],A[2]/t[0],A[3]/t[1]];return{box:A,boxRaw:s}}function d3(e,t=[1,1]){let o=[e.map(c=>c[0]),e.map(c=>c[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[(n[0]+r[0])/2,(n[1]+r[1])/2],s=Math.max(A[0]-n[0],A[1]-n[1],-A[0]+r[0],-A[1]+r[1]),a=[Math.trunc(A[0]-s),Math.trunc(A[1]-s),Math.trunc(2*s),Math.trunc(2*s)],l=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:l}}function J2(e,t){let o=[e[2]*t,e[3]*t];return[e[0]-(o[0]-e[2])/2,e[1]-(o[1]-e[3])/2,o[0],o[1]]}var p3={initial:!0},u0={detector:null,landmarks:null},Qe={detector:[224,224],landmarks:[256,256]},n1=Number.MAX_SAFE_INTEGER,aA={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},_2=null,R2,Me=[[0,0],[0,0],[0,0],[0,0]],f3=0,m3=e=>1-1/(1+Math.exp(e));async function u3(e){var t;if(p3.initial&&(u0.detector=null),!u0.detector&&e.body.detector&&e.body.detector.modelPath){u0.detector=await F(e.body.detector.modelPath);let o=(t=u0.detector)!=null&&t.executor?Object.values(u0.detector.modelSignature.inputs):void 0;Qe.detector[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.detector[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}else e.debug&&u0.detector&&h("cached model:",u0.detector.modelUrl);return y3(),u0.detector}async function h3(e){var t;if(p3.initial&&(u0.landmarks=null),u0.landmarks)e.debug&&h("cached model:",u0.landmarks.modelUrl);else{u0.landmarks=await F(e.body.modelPath);let o=(t=u0.landmarks)!=null&&t.executor?Object.values(u0.landmarks.modelSignature.inputs):void 0;Qe.landmarks[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.landmarks[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return u0.landmarks}function iA(e,t){var r,A;let o={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((A=e==null?void 0:e.shape)!=null&&A[2]))return e;let n;if(R2&&(o.cropped=S0.image.cropAndResize(e,[R2],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let s=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],a=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Me=[[0,0],s,a,[0,0]],o.pad=S0.pad(o.cropped||e,Me),o.resize=S0.image.resizeBilinear(o.pad,[t,t]),n=S0.div(o.resize,H.tf255)}else e.shape[1]!==t?(o.resize=S0.image.resizeBilinear(o.cropped||e,[t,t]),n=S0.div(o.resize,H.tf255)):n=S0.div(o.cropped||e,H.tf255);return Object.keys(o).forEach(s=>S0.dispose(o[s])),n}function lA(e,t){for(let o of e)o.position=[Math.trunc(o.position[0]*(t[0]+Me[2][0]+Me[2][1])/t[0]-Me[2][0]),Math.trunc(o.position[1]*(t[1]+Me[1][0]+Me[1][1])/t[1]-Me[1][0]),o.position[2]],o.positionRaw=[o.position[0]/t[0],o.position[1]/t[1],2*o.position[2]/(t[0]+t[1])];if(R2)for(let o of e)o.positionRaw=[o.positionRaw[0]+R2[1],o.positionRaw[1]+R2[0],o.positionRaw[2]],o.position=[Math.trunc(o.positionRaw[0]*t[0]),Math.trunc(o.positionRaw[1]*t[1]),o.positionRaw[2]];return e}function cA(e){let t=e.find(a=>a.part==="leftPalm"),o=e.find(a=>a.part==="leftWrist"),n=e.find(a=>a.part==="leftIndex");t.position[2]=((o.position[2]||0)+(n.position[2]||0))/2;let r=e.find(a=>a.part==="rightPalm"),A=e.find(a=>a.part==="rightWrist"),s=e.find(a=>a.part==="rightIndex");r.position[2]=((A.position[2]||0)+(s.position[2]||0))/2}async function xA(e,t,o){var m,b;if(!((m=u0.landmarks)!=null&&m.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(b=u0.landmarks)==null?void 0:b.execute(e,aA.landmarks);let r=(await n.poseflag.data())[0],A=await n.ld.data(),s=await n.world.data();Object.keys(n).forEach(g=>S0.dispose(n[g]));let a=[],l=5;for(let g=0;gg.position),i=le(y,[o[0],o[1]]),d={};for(let[g,M]of Object.entries(o1)){let R=[];for(let f=0;fw.part===M[f]),z=c.find(w=>w.part===M[f+1]);p&&z&&R.push([p.position,z.position])}d[g]=R}return{id:0,score:Math.trunc(100*r)/100,box:i.box,boxRaw:i.boxRaw,keypoints:c,annotations:d}}async function r1(e,t){let o=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>v()-f3,r=n1<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&_2!==null)n1++;else{let A={};A.landmarks=iA(e,256),_2=await xA(A.landmarks,t,o),Object.keys(A).forEach(s=>S0.dispose(A[s])),f3=v(),n1=0}return _2?[_2]:[]}var g0=V(D());var _e=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var k0,Le=0,A1=[],g3=0,s1=Number.MAX_SAFE_INTEGER;async function M3(e){if(P.initial&&(k0=null),k0)e.debug&&h("cached model:",k0.modelUrl);else{k0=await F(e.object.modelPath);let t=k0!=null&&k0.executor?Object.values(k0.modelSignature.inputs):void 0;Le=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return k0}async function yA(e,t,o){if(!e)return[];let n={},r=[],A=await e.array();n.squeeze=g0.squeeze(e);let s=g0.split(n.squeeze,6,1);n.stack=g0.stack([s[1],s[0],s[3],s[2]],1),n.boxes=g0.squeeze(n.stack),n.scores=g0.squeeze(s[4]),n.classes=g0.squeeze(s[5]),g0.dispose([e,...s]),n.nms=await g0.image.nonMaxSuppressionAsync(n.boxes,n.scores,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence||0);let a=await n.nms.data(),l=0;for(let c of Array.from(a)){let y=Math.trunc(100*A[0][c][4])/100,i=A[0][c][5],d=_e[i].label,[x,m]=[A[0][c][0]/Le,A[0][c][1]/Le],b=[x,m,A[0][c][2]/Le-x,A[0][c][3]/Le-m],g=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];r.push({id:l++,score:y,class:i,label:d,box:g,boxRaw:b})}return Object.keys(n).forEach(c=>g0.dispose(n[c])),r}async function a1(e,t){if(!(k0!=null&&k0.executor))return[];let o=(t.object.skipTime||0)>v()-g3,n=s1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&A1.length>0?(s1++,A1):(s1=0,new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=g0.image.resizeBilinear(e,[Le,Le]),a=t.object.enabled?k0==null?void 0:k0.execute(s,["tower_0/detections"]):null;g3=v(),g0.dispose(s);let l=await yA(a,A,t);A1=l,r(l)}))}var Y=V(D());var $2={};pe($2,{connected:()=>l1,kpt:()=>i1});var i1=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],l1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var x0,R3=0,M0={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},c1=Number.MAX_SAFE_INTEGER;async function P3(e){return P.initial&&(x0=null),x0?e.debug&&h("cached model:",x0.modelUrl):x0=await F(e.body.modelPath),x0}async function dA(e,t){let[o,n]=e.shape,r=Y.reshape(e,[n*o]),A=Y.max(r,0),s=(await A.data())[0];if(s>t){let a=Y.argMax(r,0),l=Y.mod(a,o),c=(await l.data())[0],y=Y.div(a,o),i=(await y.data())[0];return Y.dispose([r,A,a,l,y]),[c,i,s]}return Y.dispose([r,A]),[0,0,s]}async function x1(e,t){if(!(x0!=null&&x0.executor))return[];let o=(t.body.skipTime||0)>v()-R3,n=c1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n&&Object.keys(M0.keypoints).length>0?(c1++,[M0]):(c1=0,new Promise(async r=>{let A=Y.tidy(()=>{if(!(x0!=null&&x0.inputs[0].shape))return null;let i=Y.image.resizeBilinear(e,[x0.inputs[0].shape[2],x0.inputs[0].shape[1]],!1),d=Y.mul(i,H.tf2);return Y.sub(d,H.tf1)}),s;if(t.body.enabled&&(s=x0==null?void 0:x0.execute(A)),R3=v(),Y.dispose(A),s){M0.keypoints.length=0;let i=Y.squeeze(s);Y.dispose(s);let d=Y.unstack(i,2);Y.dispose(i);for(let x=0;x(t.body.minConfidence||0)&&M0.keypoints.push({score:Math.round(100*g)/100,part:i1[x],positionRaw:[m/x0.inputs[0].shape[2],b/x0.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/x0.inputs[0].shape[2]),Math.round(e.shape[1]*b/x0.inputs[0].shape[1])]})}d.forEach(x=>Y.dispose(x))}M0.score=M0.keypoints.reduce((i,d)=>d.score>i?d.score:i,0);let a=M0.keypoints.map(i=>i.position[0]),l=M0.keypoints.map(i=>i.position[1]);M0.box=[Math.min(...a),Math.min(...l),Math.max(...a)-Math.min(...a),Math.max(...l)-Math.min(...l)];let c=M0.keypoints.map(i=>i.positionRaw[0]),y=M0.keypoints.map(i=>i.positionRaw[1]);M0.boxRaw=[Math.min(...c),Math.min(...y),Math.max(...c)-Math.min(...c),Math.max(...y)-Math.min(...y)];for(let[i,d]of Object.entries(l1)){let x=[];for(let m=0;mM.part===d[m]),g=M0.keypoints.find(M=>M.part===d[m+1]);b&&g&&b.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([b.position,g.position])}M0.annotations[i]=x}r([M0])}))}var J0=V(D());var fA=["angry","disgust","fear","happy","sad","surprise","neutral"],F0,e5=[],w3=0,k3=0,y1=Number.MAX_SAFE_INTEGER;async function E3(e){var t;return P.initial&&(F0=null),F0?e.debug&&h("cached model:",F0.modelUrl):F0=await F((t=e.face.emotion)==null?void 0:t.modelPath),F0}async function d1(e,t,o,n){var s,a;if(!F0)return[];let r=y1<(((s=t.face.emotion)==null?void 0:s.skipFrames)||0),A=(((a=t.face.emotion)==null?void 0:a.skipTime)||0)>v()-k3;return t.skipAllowed&&A&&r&&w3===n&&e5[o]&&e5[o].length>0?(y1++,e5[o]):(y1=0,new Promise(async l=>{var y;let c=[];if((y=t.face.emotion)!=null&&y.enabled){let i={},d=F0!=null&&F0.inputs[0].shape?F0.inputs[0].shape[2]:0;i.resize=J0.image.resizeBilinear(e,[d,d],!1),i.channels=J0.mul(i.resize,H.rgb),i.grayscale=J0.sum(i.channels,3,!0),i.grayscaleSub=J0.sub(i.grayscale,H.tf05),i.grayscaleMul=J0.mul(i.grayscaleSub,H.tf2),i.emotion=F0==null?void 0:F0.execute(i.grayscaleMul),k3=v();let x=await i.emotion.data();for(let m=0;m(t.face.emotion.minConfidence||0)&&c.push({score:Math.min(.99,Math.trunc(100*x[m])/100),emotion:fA[m]});c.sort((m,b)=>b.score-m.score),Object.keys(i).forEach(m=>J0.dispose(i[m]))}e5[o]=c,w3=n,l(c)}))}var t5=V(D());var C0,f1=[],S3=0,C3=0,I3=Number.MAX_SAFE_INTEGER;async function O3(e){var t;return P.initial&&(C0=null),C0?e.debug&&h("cached model:",C0.modelUrl):C0=await F((t=e.face.mobilefacenet)==null?void 0:t.modelPath),C0}async function m1(e,t,o,n){var s,a;if(!(C0!=null&&C0.executor))return[];let r=I3<(((s=t.face.mobilefacenet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.mobilefacenet)==null?void 0:a.skipTime)||0)>v()-C3;return t.skipAllowed&&A&&r&&S3===n&&f1[o]?(I3++,f1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.mobilefacenet)==null?void 0:y.enabled)&&(C0==null?void 0:C0.inputs[0].shape)){let i={};i.crop=t5.image.resizeBilinear(e,[C0.inputs[0].shape[2],C0.inputs[0].shape[1]],!1),i.data=C0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>t5.dispose(i[x]))}f1[o]=c,S3=n,C3=v(),l(c)})}var o5=V(D());var I0,p1=[],N3=0,L3=0,W3=Number.MAX_SAFE_INTEGER;async function F3(e){return P.initial&&(I0=null),I0?e.debug&&h("cached model:",I0.modelUrl):I0=await F(e.face.insightface.modelPath),I0}async function u1(e,t,o,n){var s,a;if(!(I0!=null&&I0.executor))return[];let r=W3<(((s=t.face.insightface)==null?void 0:s.skipFrames)||0),A=(((a=t.face.insightface)==null?void 0:a.skipTime)||0)>v()-L3;return t.skipAllowed&&A&&r&&N3===n&&p1[o]?(W3++,p1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.insightface)==null?void 0:y.enabled)&&(I0==null?void 0:I0.inputs[0].shape)){let i={};i.crop=o5.image.resizeBilinear(e,[I0.inputs[0].shape[2],I0.inputs[0].shape[1]],!1),i.data=I0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>o5.dispose(i[x]))}p1[o]=c,N3=n,L3=v(),l(c)})}var Pe=V(D());var Q0=V(D());var O0,ve=0,mA=2.3,h1=X0.leftEyeLower0,b1=X0.rightEyeLower0,$e={leftBounds:[h1[0],h1[h1.length-1]],rightBounds:[b1[0],b1[b1.length-1]]},e2={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function V3(e){var t,o;return P.initial&&(O0=null),O0?e.debug&&h("cached model:",O0.modelUrl):O0=await F((t=e.face.iris)==null?void 0:t.modelPath),ve=(O0==null?void 0:O0.executor)&&((o=O0.inputs)==null?void 0:o[0].shape)?O0.inputs[0].shape[2]:0,ve===-1&&(ve=64),O0}function n5(e,t,o,n){for(let r=0;r{let t=e[$e.leftBounds[0]][2],o=e[$e.rightBounds[0]][2];return t-o},B3=(e,t,o,n,r,A=!1)=>{let s=U2(q2(e3([e[o],e[n]]),mA)),a=Ke(s),l=Q0.image.cropAndResize(t,[[s.startPoint[1]/r,s.startPoint[0]/r,s.endPoint[1]/r,s.endPoint[0]/r]],[0],[ve,ve]);if(A&&P.kernels.includes("flipleftright")){let c=Q0.image.flipLeftRight(l);Q0.dispose(l),l=c}return{box:s,boxSize:a,crop:l}},H3=(e,t,o,n=!1)=>{let r=[];for(let A=0;A{let n=e[X0[`${o}EyeUpper0`][e2.upperCenter]][2],r=e[X0[`${o}EyeLower0`][e2.lowerCenter]][2],A=(n+r)/2;return t.map((s,a)=>{let l=A;return a===2?l=n:a===4&&(l=r),[s[0],s[1],l]})};async function Z3(e,t,o){if(!(O0!=null&&O0.executor))return e;let{box:n,boxSize:r,crop:A}=B3(e,t,$e.leftBounds[0],$e.leftBounds[1],o,!0),{box:s,boxSize:a,crop:l}=B3(e,t,$e.rightBounds[0],$e.rightBounds[1],o,!0),c=Q0.concat([A,l]);Q0.dispose(A),Q0.dispose(l);let y=O0.execute(c);Q0.dispose(c);let i=await y.data();Q0.dispose(y);let d=i.slice(0,e2.numCoordinates*3),{rawCoords:x,iris:m}=H3(d,n,r,!0),b=i.slice(e2.numCoordinates*3),{rawCoords:g,iris:M}=H3(b,s,a,!1),R=pA(e);Math.abs(R)<30?(n5(e,x,"left",null),n5(e,g,"right",null)):R<1?n5(e,x,"left",["EyeUpper0","EyeLower0"]):n5(e,g,"right",["EyeUpper0","EyeLower0"]);let f=D3(e,m,"left"),p=D3(e,M,"right");return e.concat(f).concat(p)}var uA=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],hA=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],bA=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],gA=[[474,475],[475,476],[476,477],[477,474]],MA=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],vA=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],RA=[[469,470],[470,471],[471,472],[472,469]],PA=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Re(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var TA={lips:Re(uA),leftEye:Re(hA),leftEyebrow:Re(bA),leftIris:Re(gA),rightEye:Re(MA),rightEyebrow:Re(vA),rightIris:Re(RA),faceOval:Re(PA)},wA=Object.entries(TA).map(([e,t])=>t.map(o=>[o,e])).flat(),B4=new Map(wA),P2=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],We=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],Fe=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function U3(e,t){let o={lips:await t.filter(A=>A.size===160)[0].data(),irisL:await t.filter(A=>A.size===10)[0].data(),eyeL:await t.filter(A=>A.size===142)[0].data(),irisR:await t.filter(A=>A.size===10)[1].data(),eyeR:await t.filter(A=>A.size===142)[1].data()},n=We.reduce((A,s)=>A+=e[s][2],0)/We.length;for(let A=0;AA+=e[s][2],0)/Fe.length;for(let A=0;Av()-re.timestamp,n=re.skipped<(((c=t.face.detector)==null?void 0:c.skipFrames)||0);!t.skipAllowed||!o||!n||re.boxes.length===0?(re.boxes=await l3(e,t),re.timestamp=v(),re.skipped=0):re.skipped++;let r=[],A=[],s=0,a=T2;for(let R=0;RO.shape[O.shape.length-1]===1).data();if(w.faceScore=Math.round(100*X[0])/100,w.faceScore<(((m=t.face.detector)==null?void 0:m.minConfidence)||1)){if(f.confidence=w.faceScore,t.face.mesh.keepInvalid){w.box=Z2(f,e),w.boxRaw=X2(f,e),w.score=w.boxScore,w.mesh=f.landmarks.map(O=>[(f.startPoint[0]+f.endPoint[0])/2+(f.endPoint[0]+f.startPoint[0])*O[0]/Je(),(f.startPoint[1]+f.endPoint[1])/2+(f.endPoint[1]+f.startPoint[1])*O[1]/Je()]),w.meshRaw=w.mesh.map(O=>[O[0]/(e.shape[2]||1),O[1]/(e.shape[1]||1),(O[2]||0)/a]);for(let O of Object.keys(Oe))w.annotations[O]=[w.mesh[Oe[O]]]}}else{let O=u.find(I=>I.shape[I.shape.length-1]===1404),W=Pe.reshape(O,[-1,3]),Z=await W.array();Pe.dispose(W),(b=t.face.attention)!=null&&b.enabled?Z=await U3(Z,u):(g=t.face.iris)!=null&&g.enabled&&(Z=await Z3(Z,w.tensor,T2)),w.mesh=n3(Z,f,p,z,T2),w.meshRaw=w.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/a]);for(let I of Object.keys(X0))w.annotations[I]=X0[I].map(m0=>w.mesh[m0]);w.score=w.faceScore;let N={...A3(w.mesh,f),confidence:f.confidence,landmarks:f.landmarks};w.box=Z2(N,e),w.boxRaw=X2(N,e),A.push(N)}Pe.dispose(u)}else{w.box=Z2(f,e),w.boxRaw=X2(f,e),w.score=w.boxScore,w.mesh=f.landmarks.map(u=>[(f.startPoint[0]+f.endPoint[0])/2+(f.endPoint[0]+f.startPoint[0])*u[0]/Je(),(f.startPoint[1]+f.endPoint[1])/2+(f.endPoint[1]+f.startPoint[1])*u[1]/Je()]),w.meshRaw=w.mesh.map(u=>[u[0]/(e.shape[2]||0),u[1]/(e.shape[1]||0),(u[2]||0)/a]);for(let u of Object.keys(Oe))w.annotations[u]=[w.mesh[Oe[u]]]}w.score>(((M=t.face.detector)==null?void 0:M.minConfidence)||1)?r.push(w):Pe.dispose(w.tensor)}return re.boxes=A,r}async function K3(e){var t,o,n,r,A,s;return P.initial&&(_=null),((t=e.face.attention)==null?void 0:t.enabled)&&(_==null?void 0:_.signature)&&Object.keys(((o=_==null?void 0:_.signature)==null?void 0:o.outputs)||{}).length<6&&(_=null),_?e.debug&&h("cached model:",_.modelUrl):(n=e.face.attention)!=null&&n.enabled?_=await F(e.face.attention.modelPath):_=await F((r=e.face.mesh)==null?void 0:r.modelPath),T2=_.executor&&((A=_==null?void 0:_.inputs)==null?void 0:A[0].shape)?(s=_==null?void 0:_.inputs)==null?void 0:s[0].shape[2]:256,_}var J3=je,Q3=M2;var _0=V(D());var v0,r5=[],_3=0,$3=0,M1=Number.MAX_SAFE_INTEGER;async function eo(e){var t;return P.initial&&(v0=null),v0?e.debug&&h("cached model:",v0.modelUrl):v0=await F((t=e.face.description)==null?void 0:t.modelPath),v0}function v1(e){let t=e.image||e.tensor||e;if(!(v0!=null&&v0.inputs[0].shape))return t;let o=_0.image.resizeBilinear(t,[v0.inputs[0].shape[2],v0.inputs[0].shape[1]],!1),n=_0.mul(o,H.tf255);return _0.dispose(o),n}async function R1(e,t,o,n){var s,a,l,c;if(!(v0!=null&&v0.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=M1<(((s=t.face.description)==null?void 0:s.skipFrames)||0),A=(((a=t.face.description)==null?void 0:a.skipTime)||0)>v()-_3;return t.skipAllowed&&r&&A&&$3===n&&((l=r5[o])==null?void 0:l.age)&&((c=r5[o])==null?void 0:c.age)>0?(M1++,r5[o]):(M1=0,new Promise(async y=>{var d;let i={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let x=v1(e),m=v0==null?void 0:v0.execute(x);_3=v(),_0.dispose(x);let g=await m.find(B=>B.shape[1]===1).data(),M=Math.trunc(200*Math.abs(g[0]-.5))/100;M>(t.face.description.minConfidence||0)&&(i.gender=g[0]<=.5?"female":"male",i.genderScore=Math.min(.99,M));let R=_0.argMax(m.find(B=>B.shape[1]===100),1),f=(await R.data())[0];_0.dispose(R);let z=await m.find(B=>B.shape[1]===100).data();i.age=Math.round(z[f-1]>z[f+1]?10*f-100*z[f-1]:10*f+100*z[f+1])/10;let w=m.find(B=>B.shape[1]===1024),u=w?await w.data():[];i.descriptor=Array.from(u),m.forEach(B=>_0.dispose(B))}r5[o]=i,$3=n,y(i)}))}var G=V(D());var no=V(D());function A5(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function w2(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function ro(e,t,o){let n=t.shape[1],r=t.shape[2],A=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return no.image.cropAndResize(t,A,[0],o)}function Ao(e,t){let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(A=>[A[0]*t[0],A[1]*t[1]]);return{startPoint:o,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function s5(e,t=1.5){let o=w2(e),n=A5(e),r=[t*n[0]/2,t*n[1]/2],A=[o[0]-r[0],o[1]-r[1]],s=[o[0]+r[0],o[1]+r[1]];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function a5(e){let t=w2(e),o=A5(e),r=Math.max(...o)/2,A=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function EA(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function so(e,t){let o=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return EA(o)}var to=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Te(e,t){let o=0;for(let n=0;n[s.x,s.y]),this.anchorsTensor=G.tensor2d(this.anchors),this.inputSize=((A=(r=(n=(o=this==null?void 0:this.model)==null?void 0:o.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:A[2])||0,this.inputSizeTensor=G.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=G.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let o={};o.boxOffsets=G.slice(t,[0,0],[-1,2]),o.boxSizes=G.slice(t,[0,2],[-1,2]),o.div=G.div(o.boxOffsets,this.inputSizeTensor),o.boxCenterPoints=G.add(o.div,this.anchorsTensor),o.halfBoxSizes=G.div(o.boxSizes,this.doubleInputSizeTensor),o.sub=G.sub(o.boxCenterPoints,o.halfBoxSizes),o.startPoints=G.mul(o.sub,this.inputSizeTensor),o.add=G.add(o.boxCenterPoints,o.halfBoxSizes),o.endPoints=G.mul(o.add,this.inputSizeTensor);let n=G.concat2d([o.startPoints,o.endPoints],1);return Object.keys(o).forEach(r=>G.dispose(o[r])),n}normalizeLandmarks(t,o){let n={};n.reshape=G.reshape(t,[-1,7,2]),n.div=G.div(n.reshape,this.inputSizeTensor),n.landmarks=G.add(n.div,this.anchors[o]?this.anchors[o]:0);let r=G.mul(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(A=>G.dispose(n[A])),r}async predict(t,o){var a;let n={};n.resize=G.image.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=G.div(n.resize,H.tf127),n.image=G.sub(n.div,H.tf1),n.batched=this.model.execute(n.image),n.predictions=G.squeeze(n.batched),n.slice=G.slice(n.predictions,[0,0],[-1,1]),n.sigmoid=G.sigmoid(n.slice),n.scores=G.squeeze(n.sigmoid);let r=await n.scores.data();n.boxes=G.slice(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await G.image.nonMaxSuppressionAsync(n.norm,n.scores,3*(((a=o.hand)==null?void 0:a.maxDetected)||1),o.hand.iouThreshold,o.hand.minConfidence);let A=await n.nms.array(),s=[];for(let l of A){let c={};c.box=G.slice(n.norm,[l,0],[1,-1]),c.slice=G.slice(n.predictions,[l,5],[1,14]),c.norm=this.normalizeLandmarks(c.slice,l),c.palmLandmarks=G.reshape(c.norm,[-1,2]);let y=await c.box.data(),i=y.slice(0,2),d=y.slice(2,4),x=await c.palmLandmarks.array(),m={startPoint:i,endPoint:d,palmLandmarks:x,confidence:r[l]},b=Ao(m,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);s.push(b),Object.keys(c).forEach(g=>G.dispose(c[g]))}return Object.keys(n).forEach(l=>G.dispose(n[l])),s}};var j0=V(D());var IA=5,co=1.65,xo=[0,5,9,13,17,1,2],OA=0,jA=2,yo=0,l5=class{constructor(t,o){T(this,"handDetector");T(this,"handPoseModel");T(this,"inputSize");T(this,"storedBoxes");T(this,"skipped");T(this,"detectedHands");var n,r,A;this.handDetector=t,this.handPoseModel=o,this.inputSize=((A=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:A[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let o=t.map(s=>s[0]),n=t.map(s=>s[1]),r=[Math.min(...o),Math.min(...n)],A=[Math.max(...o),Math.max(...n)];return{startPoint:r,endPoint:A}}getBoxForPalmLandmarks(t,o){let n=t.map(A=>w1([...A,1],o)),r=this.calculateLandmarksBoundingBox(n);return s5(a5(r),IA)}getBoxForHandLandmarks(t){let o=this.calculateLandmarksBoundingBox(t),n=s5(a5(o),co);n.palmLandmarks=[];for(let r=0;r[s[0]*(x[0]-this.inputSize/2),s[1]*(x[1]-this.inputSize/2),s[2]*x[2]]),l=T1(n,[0,0]),c=a.map(x=>[...w1(x,l),x[2]]),y=ao(r),i=[...w2(o),1],d=[Te(i,y[0]),Te(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2])])}async estimateHands(t,o){let n=!1,r,A=(o.hand.skipTime||0)>v()-yo,s=this.skipped<(o.hand.skipFrames||0);o.skipAllowed&&A&&s&&(r=await this.handDetector.predict(t,o),this.skipped=0),o.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==o.hand.maxDetected||!o.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let a=[];for(let l=0;l=o.hand.minConfidence/4){let z=j0.reshape(f,[-1,3]),w=await z.array();j0.dispose(f),j0.dispose(z);let u=this.transformRawCoords(w,b,y,m),B=this.getBoxForHandLandmarks(u);this.storedBoxes[l]={...B,confidence:p};let X={landmarks:u,confidence:p,boxConfidence:c.confidence,fingerConfidence:p,box:{topLeft:B.startPoint,bottomRight:B.endPoint}};a.push(X)}else this.storedBoxes[l]=null;j0.dispose(f)}else{let y=s5(a5(c),co),i={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:y.startPoint,bottomRight:y.endPoint},landmarks:[]};a.push(i)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=a.length,a.length>o.hand.maxDetected&&(a.length=o.hand.maxDetected),a}};var R0={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>R0.nameMapping[e],getPoints:e=>R0.pointsMapping[e]},ke={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ke.nameMapping[e]},$={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>$.nameMapping[e]},we=class{constructor(t){T(this,"name");T(this,"curls");T(this,"directions");T(this,"weights");T(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,o,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([o,n])}direction(t,o,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([o,n])}weight(t,o){this.weights[t]=o;let n=this.weights.reduce((r,A)=>r+A,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,o){let n=0;for(let r in t){let A=t[r],s=this.curls[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}for(let r in o){let A=o[r],s=this.directions[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}return n/10}};var{thumb:$0,index:ce,middle:xe,ring:Ge,pinky:Be}=R0,{none:ee,half:LA,full:te}=ke,{verticalUp:t2,verticalDown:ts,horizontalLeft:k1,horizontalRight:WA,diagonalUpRight:FA,diagonalUpLeft:o2,diagonalDownRight:os,diagonalDownLeft:ns}=$,Ee=new we("thumbs up");Ee.curl($0,ee,1);Ee.direction($0,t2,1);Ee.direction($0,o2,.25);Ee.direction($0,FA,.25);for(let e of[R0.index,R0.middle,R0.ring,R0.pinky])Ee.curl(e,te,1),Ee.direction(e,k1,1),Ee.direction(e,WA,1);var i0=new we("victory");i0.curl($0,LA,.5);i0.curl($0,ee,.5);i0.direction($0,t2,1);i0.direction($0,o2,1);i0.curl(ce,ee,1);i0.direction(ce,t2,.75);i0.direction(ce,o2,1);i0.curl(xe,ee,1);i0.direction(xe,t2,1);i0.direction(xe,o2,.75);i0.curl(Ge,te,1);i0.direction(Ge,t2,.2);i0.direction(Ge,o2,1);i0.direction(Ge,k1,.2);i0.curl(Be,te,1);i0.direction(Be,t2,.2);i0.direction(Be,o2,1);i0.direction(Be,k1,.2);i0.weight(ce,2);i0.weight(xe,2);var ze=new we("point");ze.curl($0,te,1);ze.curl(ce,ee,.5);ze.curl(xe,te,.5);ze.curl(Ge,te,.5);ze.curl(Be,te,.5);ze.weight(ce,2);ze.weight(xe,2);var Se=new we("middle finger");Se.curl($0,ee,1);Se.curl(ce,te,.5);Se.curl(xe,te,.5);Se.curl(Ge,te,.5);Se.curl(Be,te,.5);Se.weight(ce,2);Se.weight(xe,2);var n2=new we("open palm");n2.curl($0,ee,.75);n2.curl(ce,ee,.75);n2.curl(xe,ee,.75);n2.curl(Ge,ee,.75);n2.curl(Be,ee,.75);var fo=[Ee,i0,ze,Se,n2];var GA=.7,He={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function mo(e,t,o,n){let r=(t-n)/(e-o),A=Math.atan(r)*180/Math.PI;return A<=0?A=-A:A>0&&(A=180-A),A}function uo(e,t){if(!e||!t)return[0,0];let o=mo(e[0],e[1],t[0],t[1]);if(e.length===2)return o;let n=mo(e[1],e[2],t[1],t[2]);return[o,n]}function po(e,t=1){let o=0,n=0,r=0;return e>=75&&e<=105?o=1*t:e>=25&&e<=155?n=1*t:r=1*t,[o,n,r]}function BA(e,t,o){let n=e[0]-t[0],r=e[0]-o[0],A=t[0]-o[0],s=e[1]-t[1],a=e[1]-o[1],l=t[1]-o[1],c=e[2]-t[2],y=e[2]-o[2],i=t[2]-o[2],d=Math.sqrt(n*n+s*s+c*c),x=Math.sqrt(r*r+a*a+y*y),m=Math.sqrt(A*A+l*l+i*i),b=(m*m+d*d-x*x)/(2*m*d);b>1?b=1:b<-1&&(b=-1);let g=Math.acos(b);g=57.2958*g%180;let M;return g>He.NO_CURL_START_LIMIT?M=ke.none:g>He.HALF_CURL_START_LIMIT?M=ke.half:M=ke.full,M}function ho(e,t,o,n){let r;return n===Math.abs(e)?e>0?r=$.horizontalLeft:r=$.horizontalRight:n===Math.abs(t)?t>0?r=$.horizontalLeft:r=$.horizontalRight:o>0?r=$.horizontalLeft:r=$.horizontalRight,r}function bo(e,t,o,n){let r;return n===Math.abs(e)?e<0?r=$.verticalDown:r=$.verticalUp:n===Math.abs(t)?t<0?r=$.verticalDown:r=$.verticalUp:o<0?r=$.verticalDown:r=$.verticalUp,r}function HA(e,t,o,n,r,A,s,a){let l,c=bo(e,t,o,n),y=ho(r,A,s,a);return c===$.verticalUp?y===$.horizontalLeft?l=$.diagonalUpLeft:l=$.diagonalUpRight:y===$.horizontalLeft?l=$.diagonalDownLeft:l=$.diagonalDownRight,l}function DA(e,t,o,n){let r=e[0]-t[0],A=e[0]-o[0],s=t[0]-o[0],a=e[1]-t[1],l=e[1]-o[1],c=t[1]-o[1],y=Math.max(Math.abs(r),Math.abs(A),Math.abs(s)),i=Math.max(Math.abs(a),Math.abs(l),Math.abs(c)),d=0,x=0,m=0,b=i/(y+1e-5);b>1.5?d+=He.DISTANCE_VOTE_POWER:b>.66?x+=He.DISTANCE_VOTE_POWER:m+=He.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+a*a),M=Math.sqrt(A*A+l*l),R=Math.sqrt(s*s+c*c),f=Math.max(g,M,R),p=e[0],z=e[1],w=o[0],u=o[1];f===g?(w=o[0],u=o[1]):f===R&&(p=t[0],z=t[1]);let O=uo([p,z],[w,u]),W=po(O,He.TOTAL_ANGLE_VOTE_POWER);d+=W[0],x+=W[1],m+=W[2];for(let N of n){let I=po(N,He.SINGLE_ANGLE_VOTE_POWER);d+=I[0],x+=I[1],m+=I[2]}let Z;return d===Math.max(d,x,m)?Z=bo(l,a,c,i):m===Math.max(x,m)?Z=ho(A,r,s,y):Z=HA(l,a,c,i,A,r,s,y),Z}function go(e){let t=[],o=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let A of R0.all){let s=R0.getPoints(A),a=[],l=[];for(let c of s){let y=e[c[0]],i=e[c[1]],d=uo(y,i),x=d[0],m=d[1];a.push(x),l.push(m)}t.push(a),o.push(l)}for(let A of R0.all){let s=A===R0.thumb?1:0,a=R0.getPoints(A),l=e[a[s][0]],c=e[a[s+1][1]],y=e[a[3][1]],i=BA(l,c,y),d=DA(l,c,y,t[A].slice(s));n[A]=i,r[A]=d}return{curls:n,directions:r}}function c5(e){if(!e||e.length===0)return null;let t=go(e),o={};for(let n of R0.all)o[R0.getName(n)]={curl:ke.getName(t.curls[n]),direction:$.getName(t.directions[n])};return o}function Mo(e){let t=[];if(!e||e.length===0)return t;let o=go(e);for(let n of fo){let r=n.matchAgainst(o.curls,o.directions);r>=GA&&t.push({name:n.name,confidence:r})}return t}var vo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},De,Ve,Ro;async function z1(e,t){let o=await Ro.estimateHands(e,t);if(!o)return[];let n=[];for(let r=0;ro[r].landmarks[i]);let s=o[r].landmarks,a=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(s&&s.length>0){for(let y of s)y[0]a[2]&&(a[2]=y[0]),y[1]>a[3]&&(a[3]=y[1]);a[2]-=a[0],a[3]-=a[1],l=[a[0]/(e.shape[2]||0),a[1]/(e.shape[1]||0),a[2]/(e.shape[2]||0),a[3]/(e.shape[1]||0)]}else a=o[r].box?[Math.trunc(Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.max(0,o[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,o[r].box.bottomRight[0])-Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,o[r].box.bottomRight[1])-Math.max(0,o[r].box.topLeft[1]))]:[0,0,0,0],l=[o[r].box.topLeft[0]/(e.shape[2]||0),o[r].box.topLeft[1]/(e.shape[1]||0),(o[r].box.bottomRight[0]-o[r].box.topLeft[0])/(e.shape[2]||0),(o[r].box.bottomRight[1]-o[r].box.topLeft[1])/(e.shape[1]||0)];let c=c5(s);n.push({id:r,score:Math.round(100*o[r].confidence)/100,boxScore:Math.round(100*o[r].boxConfidence)/100,fingerScore:Math.round(100*o[r].fingerConfidence)/100,label:"hand",box:a,boxRaw:l,keypoints:s,annotations:A,landmarks:c})}return n}async function S1(e){var o,n;P.initial&&(De=null,Ve=null),!De||!Ve?[De,Ve]=await Promise.all([e.hand.enabled?F((o=e.hand.detector)==null?void 0:o.modelPath):null,e.hand.landmarks?F((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&h("cached model:",De.modelUrl),e.debug&&h("cached model:",Ve.modelUrl));let t=De?new i5(De):void 0;return t&&Ve&&(Ro=new l5(t,Ve)),[De,Ve]}var K=V(D());var r0=V(D());var J={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function VA(){let e=J.gl;!e||(J.extensions=e.getSupportedExtensions())}function To(e){var t;if(e.config.backend==="humangl"&&(J.name in r0.engine().registry&&!((t=J==null?void 0:J.gl)!=null&&t.getParameter(J.gl.VERSION))&&(h("error: humangl backend invalid context"),x5(e)),!r0.findBackend(J.name))){try{J.canvas=b0(100,100)}catch(n){h("error: cannot create canvas:",n);return}try{if(J.gl=J.canvas.getContext("webgl2",J.webGLattr),!J.gl){h("error: cannot get WebGL context");return}if(!J.gl.getParameter(J.gl.VERSION).includes("2.0")){h("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}J.canvas&&(J.canvas.addEventListener("webglcontextlost",r=>{throw h("error: humangl:",r.type),h("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),J.canvas.addEventListener("webglcontextrestored",r=>{h("error: humangl context restored:",r)}),J.canvas.addEventListener("webglcontextcreationerror",r=>{h("error: humangl context create:",r)}))}catch(n){h("error: cannot get WebGL context:",n);return}try{r0.setWebGLContext(2,J.gl)}catch(n){h("error: cannot set WebGL context:",n);return}try{let n=new r0.GPGPUContext(J.gl);r0.registerBackend(J.name,()=>new r0.MathBackendWebGL(n),J.priority)}catch(n){h("error: cannot register WebGL backend:",n);return}try{r0.getKernelsForBackend("webgl").forEach(r=>{let A={...r,backendName:J.name};r0.registerKernel(A)})}catch(n){h("error: cannot update WebGL backend registration:",n);return}let o=r0.backend().getGPGPUContext?r0.backend().getGPGPUContext().gl:null;if(o)h(`humangl webgl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`);else{h("error: no current gl context:",o,J.gl);return}try{r0.env().flagRegistry.WEBGL_VERSION&&r0.env().set("WEBGL_VERSION",2)}catch(n){h("error: cannot set WebGL backend flags:",n);return}VA(),h("backend registered:",J.name)}}var k=V(D());function ZA(e){if(!P.kernels.includes("mod")){let t={kernelName:"Mod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.sub(o.inputs.a,k.mul(k.div(o.inputs.a,o.inputs.b),o.inputs.b)))};e.debug&&h("registered kernel:","Mod"),k.registerKernel(t),P.kernels.push("mod")}if(!P.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.add(k.mul(k.floorDiv(o.inputs.a/o.inputs.b),o.inputs.b),k.mod(o.inputs.a,o.inputs.b)))};e.debug&&h("registered kernel:","FloorMod"),k.registerKernel(t),P.kernels.push("floormod")}if(!P.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>{let n=k.getBackend();k.setBackend("cpu");let r=k.image.rotateWithOffset(o.inputs.image,o.attrs.radians,o.attrs.fillValue,o.attrs.center);return k.setBackend(n),r})};e.debug&&h("registered kernel:","RotateWithOffset"),k.registerKernel(t),P.kernels.push("rotatewithoffset")}}async function d5(e,t=!1){if(e.state="backend",t||P.initial||e.config.backend&&e.config.backend.length>0&&k.getBackend()!==e.config.backend){let o=v();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&h("running inside web worker"),P.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&h("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),P.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&h(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),P.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")h("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&h("enumerated webgpu adapter:",r),!r)h("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let A="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;h("webgpu adapter info:",A)}}e.config.backend==="humangl"&&To(e);let n=Object.keys(k.engine().registryFactory);if(e.config.debug&&h("available backends:",n),n.includes(e.config.backend)||(h(`error: backend ${e.config.backend} not found in registry`),e.config.backend=P.node?"tensorflow":"webgl",e.config.debug&&h(`override: setting backend ${e.config.backend}`)),e.config.debug&&h("setting backend:",e.config.backend),e.config.backend==="wasm"){if(k.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&k.env().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&h("wasm path:",e.config.wasmPath),typeof k.setWasmPaths!="undefined")k.setWasmPaths(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,A=!1;try{r=await k.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),A=await k.env().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&h(`wasm execution: ${A?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!A&&h("warning: wasm simd support is not enabled")}catch(s){h("wasm detection failed")}}try{await k.setBackend(e.config.backend),await k.ready(),Ft()}catch(r){return h("error: cannot set backend:",e.config.backend,r),!1}}if(k.getBackend()==="humangl"&&(k.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&k.env().set("CHECK_COMPUTATION_FOR_ERRORS",!1),k.env().flagRegistry.WEBGL_CPU_FORWARD&&k.env().set("WEBGL_CPU_FORWARD",!0),k.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&k.env().set("WEBGL_USE_SHAPES_UNIFORMS",!0),k.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&k.env().set("CPU_HANDOFF_SIZE_THRESHOLD",256),k.env().flagRegistry.WEBGL_EXP_CONV&&k.env().set("WEBGL_EXP_CONV",!0),k.env().flagRegistry.USE_SETTIMEOUTCUSTOM&&k.env().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(h("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),k.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),k.backend().getGPGPUContext)){let n=await k.backend().getGPGPUContext().gl;e.config.debug&&h(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}k.getBackend(),k.enableProdMode(),await k.ready(),e.performance.initBackend=Math.trunc(v()-o),e.config.backend=k.getBackend(),await P.updateBackend(),ZA(e.config)}return!0}function f5(e,t){for(let o of e){let n={kernelName:o,backendName:t.backend,kernelFunc:()=>{t.debug&&h("kernelFunc",o,t.backend)}};k.registerKernel(n)}P.kernels=k.getKernelsForBackend(k.getBackend()).map(o=>o.kernelName.toLowerCase())}var s0=[null,null],qA=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Ce=[[0,0],[0,0]],UA=["hand","fist","pinch","point","face","tip","pinchtip"],ko=4,Eo=1.6,YA=512,KA=1.4,m5=Number.MAX_SAFE_INTEGER,C1=0,ye=[0,0],A0={boxes:[],hands:[]},zo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function So(e){var t;if(P.initial&&(s0[0]=null),s0[0])e.debug&&h("cached model:",s0[0].modelUrl);else{f5(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),s0[0]=await F((t=e.hand.detector)==null?void 0:t.modelPath);let o=s0[0].executor?Object.values(s0[0].modelSignature.inputs):void 0;Ce[0][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[0][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[0]}async function Co(e){var t;if(P.initial&&(s0[1]=null),s0[1])e.debug&&h("cached model:",s0[1].modelUrl);else{s0[1]=await F((t=e.hand.skeleton)==null?void 0:t.modelPath);let o=s0[1].executor?Object.values(s0[1].modelSignature.inputs):void 0;Ce[1][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[1][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[1]}async function JA(e,t){let o=[];if(!e||!s0[0])return o;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),A=Math.min(Math.round((e.shape[1]||0)/8)*8,YA),s=Math.round(A*r/8)*8;n.resize=K.image.resizeBilinear(e,[A,s]),n.cast=K.cast(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await s0[0].executeAsync(n.cast,qA),n.boxes=K.squeeze(n.rawBoxes,[0,2]),n.scores=K.squeeze(n.rawScores,[0]);let a=K.unstack(n.scores,1);K.dispose(a[ko]),a.splice(ko,1),n.filtered=K.stack(a,1),K.dispose(a),n.max=K.max(n.filtered,1),n.argmax=K.argMax(n.filtered,1);let l=0;n.nms=await K.image.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let c=await n.nms.data(),y=await n.max.data(),i=await n.argmax.data();for(let d of Array.from(c)){let x=K.slice(n.boxes,d,1),m=await x.data();K.dispose(x);let b=[m[1],m[0],m[3]-m[1],m[2]-m[0]],g=J2(b,KA),M=[Math.trunc(b[0]*ye[0]),Math.trunc(b[1]*ye[1]),Math.trunc(b[2]*ye[0]),Math.trunc(b[3]*ye[1])],R=y[d],f=UA[i[d]],p={id:l++,score:R,box:M,boxRaw:g,label:f};o.push(p)}return Object.keys(n).forEach(d=>K.dispose(n[d])),o.sort((d,x)=>x.score-d.score),o.length>(t.hand.maxDetected||1)&&(o.length=t.hand.maxDetected||1),o}async function I1(e,t,o){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&s0[1]&&o.hand.landmarks&&t.score>(o.hand.minConfidence||0)){let r={},A=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=K.image.cropAndResize(e,[A],[0],[Ce[1][0],Ce[1][1]],"bilinear"),r.div=K.div(r.crop,H.tf255),[r.score,r.keypoints]=s0[1].execute(r.div,["Identity_1","Identity"]);let s=(await r.score.data())[0],a=(100-Math.trunc(100/(1+Math.exp(s))))/100;if(a>=(o.hand.minConfidence||0)){n.fingerScore=a,r.reshaped=K.reshape(r.keypoints,[-1,3]);let y=(await r.reshaped.array()).map(i=>[i[0]/Ce[1][1],i[1]/Ce[1][0],i[2]||0]).map(i=>[i[0]*t.boxRaw[2],i[1]*t.boxRaw[3],i[2]||0]);n.keypoints=y.map(i=>[ye[0]*(i[0]+t.boxRaw[0]),ye[1]*(i[1]+t.boxRaw[1]),i[2]||0]),n.landmarks=c5(n.keypoints);for(let i of Object.keys(zo))n.annotations[i]=zo[i].map(d=>n.landmarks&&n.keypoints[d]?n.keypoints[d]:null)}Object.keys(r).forEach(l=>K.dispose(r[l]))}return n}async function O1(e,t){var r,A;if(!((r=s0[0])!=null&&r.executor)||!((A=s0[1])!=null&&A.executor)||!s0[0].inputs[0].shape||!s0[1].inputs[0].shape)return[];ye=[e.shape[2]||0,e.shape[1]||0],m5++;let o=(t.hand.skipTime||0)>v()-C1,n=m5<(t.hand.skipFrames||0);return t.skipAllowed&&o&&n?A0.hands:new Promise(async s=>{let a=3*(t.hand.skipTime||0)>v()-C1,l=m5<3*(t.hand.skipFrames||0);t.skipAllowed&&A0.hands.length===t.hand.maxDetected?A0.hands=await Promise.all(A0.boxes.map(y=>I1(e,y,t))):t.skipAllowed&&a&&l&&A0.hands.length>0?A0.hands=await Promise.all(A0.boxes.map(y=>I1(e,y,t))):(A0.boxes=await JA(e,t),C1=v(),A0.hands=await Promise.all(A0.boxes.map(y=>I1(e,y,t))),m5=0);let c=[...A0.boxes];if(A0.boxes.length=0,t.cacheSensitivity>0)for(let y=0;y.05&&i.box[3]/(e.shape[1]||1)>.05&&A0.hands[y].fingerScore&&A0.hands[y].fingerScore>(t.hand.minConfidence||0)){let d=J2(i.box,Eo),x=J2(i.boxRaw,Eo);A0.boxes.push({...c[y],box:d,boxRaw:x})}}for(let y=0;yv()-jo,A=j1<(((a=t.face.liveness)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&Oo===n&&p5[o]?(j1++,p5[o]):(j1=0,new Promise(async l=>{let c=u5.image.resizeBilinear(e,[f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[2]:0,f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[1]:0],!1),y=f0==null?void 0:f0.execute(c),i=(await y.data())[0];p5[o]=Math.round(100*i)/100,Oo=n,jo=v(),u5.dispose([c,y]),l(p5[o])}))}var Ho=V(D());var k2={};pe(k2,{connected:()=>b5,horizontal:()=>L1,kpt:()=>h5,relative:()=>F1,vertical:()=>W1});var h5=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],L1=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],W1=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],F1=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],b5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Ie=V(D()),Wo=.005,N0={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function G1(e){for(let t of L1){let o=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[0]r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[1]c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),A=e.keypoints.findIndex(c=>c&&c.part===o[0]),s=e.keypoints.findIndex(c=>c&&c.part===o[1]);if(!e.keypoints[A]||!e.keypoints[s])continue;let a=e.keypoints[n]?[Math.abs(e.keypoints[A].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[A].position[0]-e.keypoints[r].position[0])]:[0,0];if(a[0]>a[1]||l[0]>l[1]){let c=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=c}}}function Fo(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],o.pad=Ie.pad(e,N0.padding),o.resize=Ie.image.resizeBilinear(o.pad,[t,t]);let n=Ie.cast(o.resize,"int32");return Object.keys(o).forEach(s=>Ie.dispose(o[s])),n}function Bo(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+N0.padding[2][0]+N0.padding[2][1])/t[0]-N0.padding[2][0],n.position[1]*(t[1]+N0.padding[1][0]+N0.padding[1][1])/t[1]-N0.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let o=le(e.keypoints.map(n=>n.position),t);return e.box=o.box,e.boxRaw=o.boxRaw,e}var l0,g5=0,B1=Number.MAX_SAFE_INTEGER,Ze={boxes:[],bodies:[],last:0};async function Do(e){var t;return P.initial&&(l0=null),l0?e.debug&&h("cached model:",l0.modelUrl):(f5(["size"],e),l0=await F(e.body.modelPath)),g5=(l0==null?void 0:l0.executor)&&((t=l0==null?void 0:l0.inputs)==null?void 0:t[0].shape)?l0.inputs[0].shape[2]:0,g5<64&&(g5=256),l0}function _A(e,t,o){let n=e[0][0],r=[],A=0;for(let y=0;yt.body.minConfidence){let i=[n[y][1],n[y][0]];r.push({score:Math.round(100*A)/100,part:h5[y],positionRaw:i,position:[Math.round((o.shape[2]||0)*i[0]),Math.round((o.shape[1]||0)*i[1])]})}A=r.reduce((y,i)=>i.score>y?i.score:y,0);let s=[],a=le(r.map(y=>y.position),[o.shape[2],o.shape[1]]),l={};for(let[y,i]of Object.entries(b5)){let d=[];for(let x=0;xg.part===i[x]),b=r.find(g=>g.part===i[x+1]);m&&b&&m.score>(t.body.minConfidence||0)&&b.score>(t.body.minConfidence||0)&&d.push([m.position,b.position])}l[y]=d}let c={id:0,score:A,box:a.box,boxRaw:a.boxRaw,keypoints:r,annotations:l};return G1(c),s.push(c),s}function $A(e,t,o){let n=[];for(let r=0;rt.body.minConfidence){let a=[];for(let i=0;i<17;i++){let d=A[3*i+2];if(d>t.body.minConfidence){let x=[A[3*i+1],A[3*i+0]];a.push({part:h5[i],score:Math.round(100*d)/100,positionRaw:x,position:[Math.round((o.shape[2]||0)*x[0]),Math.round((o.shape[1]||0)*x[1])]})}}let l=le(a.map(i=>i.position),[o.shape[2],o.shape[1]]),c={};for(let[i,d]of Object.entries(b5)){let x=[];for(let m=0;mM.part===d[m]),g=a.find(M=>M.part===d[m+1]);b&&g&&b.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([b.position,g.position])}c[i]=x}let y={id:r,score:s,box:l.box,boxRaw:l.boxRaw,keypoints:[...a],annotations:c};G1(y),n.push(y)}}return n.sort((r,A)=>A.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function H1(e,t){var r;if(!(l0!=null&&l0.executor)||!((r=l0==null?void 0:l0.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Ze.boxes.length=0),B1++;let o=(t.body.skipTime||0)>v()-Ze.last,n=B1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n?Ze.bodies:new Promise(async A=>{let s={};B1=0,s.input=Go(e,g5),s.res=l0==null?void 0:l0.execute(s.input),Ze.last=v();let a=await s.res.array();Ze.bodies=s.res.shape[2]===17?_A(a,t,e):$A(a,t,e);for(let l of Ze.bodies)Bo(l,[e.shape[2]||1,e.shape[1]||1]),Fo(l.keypoints);Object.keys(s).forEach(l=>Ho.dispose(s[l])),A(Ze.bodies)})}var L0=V(D());var q0,M5=[],Zo=0,D1=Number.MAX_SAFE_INTEGER,R5=0,v5=2.5;async function Xo(e){if(!q0||P.initial){q0=await F(e.object.modelPath);let t=q0!=null&&q0.executor?Object.values(q0.modelSignature.inputs):void 0;R5=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&h("cached model:",q0.modelUrl);return q0}async function e7(e,t,o){let n=0,r=[],A=R5;for(let c of[1,2,4]){let y=c*13,i=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)===_e.length)),d=await i.array(),x=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)<_e.length)),m=x.reshape([-1,4,x.shape[1]/4]),b=m.argMax(2),g=await b.array();for(let M=0;M(o.object.minConfidence||0)&&R!==61){let p=(.5+Math.trunc(M%y))/y,z=(.5+Math.trunc(M/y))/y,w=g[M].map(I=>I*(y/c/A)),[u,B]=[p-v5/c*w[0],z-v5/c*w[1]],[X,O]=[p+v5/c*w[2]-u,z+v5/c*w[3]-B],W=[u,B,X,O];W=W.map(I=>Math.max(0,Math.min(I,1)));let Z=[W[0]*t[0],W[1]*t[1],W[2]*t[0],W[3]*t[1]],N={id:n++,score:Math.round(100*f)/100,class:R+1,label:_e[R].label,box:Z.map(I=>Math.trunc(I)),boxRaw:W};r.push(N)}}L0.dispose([i,x,m,b])}let s=r.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),a=r.map(c=>c.score),l=[];if(s&&s.length>0){let c=await L0.image.nonMaxSuppressionAsync(s,a,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence);l=await c.data(),L0.dispose(c)}return r=r.filter((c,y)=>l.includes(y)).sort((c,y)=>y.score-c.score),r}async function V1(e,t){if(!(q0!=null&&q0.executor))return[];let o=(t.object.skipTime||0)>v()-Zo,n=D1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&M5.length>0?(D1++,M5):(D1=0,!P.kernels.includes("mod")||!P.kernels.includes("sparsetodense")?M5:new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=L0.image.resizeBilinear(e,[R5,R5],!1),a=L0.div(s,H.tf255),l=L0.transpose(a,[0,3,1,2]),c;t.object.enabled&&(c=q0.execute(l)),Zo=v();let y=await e7(c,A,t);M5=y,L0.dispose([s,a,l,...c]),r(y)}))}var P0=V(D());var z2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],t7=z2.length,E2=z2.reduce((e,t,o)=>(e[t]=o,e),{}),o7=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Ss=o7.map(([e,t])=>[E2[e],E2[t]]),Uo=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Yo(e){let t=e.reduce(({maxX:o,maxY:n,minX:r,minY:A},{position:{x:s,y:a}})=>({maxX:Math.max(o,s),maxY:Math.max(n,a),minX:Math.min(r,s),minY:Math.min(A,a)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Ko(e,[t,o],[n,r]){let A=t/n,s=o/r,a=(c,y)=>({id:y,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/n,c.box[2]/r,c.box[3]/n],box:[Math.trunc(c.box[0]*s),Math.trunc(c.box[1]*A),Math.trunc(c.box[2]*s),Math.trunc(c.box[3]*A)],keypoints:c.keypoints.map(({score:i,part:d,position:x})=>({score:i,part:d,position:[Math.trunc(x.x*s),Math.trunc(x.y*A)],positionRaw:[x.x/n,x.y/n]})),annotations:{}});return e.map((c,y)=>a(c,y))}var P5=class{constructor(t,o){T(this,"priorityQueue");T(this,"numberOfElements");T(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=o}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let o=2*t;if(oo?o:e}function Jo(e,t,o,n){let r=o-e,A=n-t;return r*r+A*A}function U1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var W0,r7=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],T5=1,r2=16,A7=50**2;function Qo(e,t,o,n,r,A,s=2){let a=M=>({y:A.get(M.y,M.x,e),x:A.get(M.y,M.x,A.shape[2]/2+e)}),l=(M,R,f)=>({y:q1(Math.round(M.y/r2),0,R-1),x:q1(Math.round(M.x/r2),0,f-1)}),[c,y]=n.shape,i=l(t.position,c,y),d=a(i),m=U1(t.position,d);for(let M=0;M[E2[d],E2[x]]),s=A.map(([,d])=>d),a=A.map(([d])=>d),l=t.shape[2],c=s.length,y=new Array(l),i=X1(e.part,r2,o);y[e.part.id]={score:e.score,part:z2[e.part.id],position:i};for(let d=c-1;d>=0;--d){let x=s[d],m=a[d];y[x]&&!y[m]&&(y[m]=Qo(d,y[x],m,t,o,r))}for(let d=0;dt){a=!1;break}if(!a)break}return a}function i7(e,t){let[o,n,r]=t.shape,A=new P5(o*n*r,({score:s})=>s);for(let s=0;s{var s;let A=(s=r[n])==null?void 0:s.position;return A?Jo(o,t,A.y,A.x)<=A7:!1})}function l7(e,t){return t.reduce((n,{position:r,score:A},s)=>(_o(e,r,s)||(n+=A),n),0)/t.length}function c7(e,t,o,n,r,A){let s=[],a=i7(A,t);for(;s.lengthx.score>A);let i=l7(s,y),d=Yo(y);i>A&&s.push({keypoints:y,box:d,score:Math.round(100*i)/100})}return s}async function Y1(e,t){if(!(W0!=null&&W0.executor))return[];let o=P0.tidy(()=>{if(!W0.inputs[0].shape)return[];let s=P0.image.resizeBilinear(e,[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]),a=P0.sub(P0.div(P0.cast(s,"float32"),127.5),1),c=W0.execute(a,r7).map(y=>P0.squeeze(y,[0]));return c[1]=P0.sigmoid(c[1]),c}),n=await Promise.all(o.map(s=>s.buffer()));for(let s of o)P0.dispose(s);let r=c7(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return W0.inputs[0].shape?Ko(r,[e.shape[1],e.shape[2]],[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]):[]}async function $o(e){return!W0||P.initial?W0=await F(e.body.modelPath):e.debug&&h("cached model:",W0.modelUrl),W0}var e0=V(D());var Ae,K1=!1;async function J1(e){return!Ae||P.initial?Ae=await F(e.segmentation.modelPath):e.debug&&h("cached model:",Ae.modelUrl),Ae}async function tn(e,t,o){var b,g;if(K1)return{data:[],canvas:null,alpha:null};K1=!0,Ae||await J1(o);let n=await Ue(e,o),r=((b=n.tensor)==null?void 0:b.shape[2])||0,A=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let s={};s.resize=e0.image.resizeBilinear(n.tensor,[Ae.inputs[0].shape?Ae.inputs[0].shape[1]:0,Ae.inputs[0].shape?Ae.inputs[0].shape[2]:0],!1),e0.dispose(n.tensor),s.norm=e0.div(s.resize,H.tf255),s.res=Ae.execute(s.norm),s.squeeze=e0.squeeze(s.res,0),s.squeeze.shape[2]===2?(s.softmax=e0.softmax(s.squeeze),[s.bg,s.fg]=e0.unstack(s.softmax,2),s.expand=e0.expandDims(s.fg,2),s.pad=e0.expandDims(s.expand,0),s.crop=e0.image.cropAndResize(s.pad,[[0,0,.5,.5]],[0],[r,A]),s.data=e0.squeeze(s.crop,0)):s.data=e0.image.resizeBilinear(s.squeeze,[A,r]);let a=Array.from(await s.data.data());if(P.node&&!P.Canvas&&typeof ImageData=="undefined")return o.debug&&h("canvas support missing"),Object.keys(s).forEach(M=>e0.dispose(s[M])),{data:a,canvas:null,alpha:null};let l=b0(r,A);e0.browser&&await e0.browser.toPixels(s.data,l);let c=l.getContext("2d");o.segmentation.blur&&o.segmentation.blur>0&&(c.filter=`blur(${o.segmentation.blur}px)`);let y=c.getImageData(0,0,r,A),i=b0(r,A),d=i.getContext("2d");n.canvas&&d.drawImage(n.canvas,0,0),d.globalCompositeOperation="darken",o.segmentation.blur&&o.segmentation.blur>0&&(d.filter=`blur(${o.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let x=d.getImageData(0,0,r,A);for(let M=0;Me0.dispose(s[M])),K1=!1,{data:a,canvas:i,alpha:l}}var S2=class{constructor(){T(this,"ssrnetage",null);T(this,"gear",null);T(this,"blazeposedetect",null);T(this,"blazepose",null);T(this,"centernet",null);T(this,"efficientpose",null);T(this,"mobilefacenet",null);T(this,"insightface",null);T(this,"emotion",null);T(this,"facedetect",null);T(this,"faceiris",null);T(this,"facemesh",null);T(this,"faceres",null);T(this,"ssrnetgender",null);T(this,"handpose",null);T(this,"handskeleton",null);T(this,"handtrack",null);T(this,"liveness",null);T(this,"movenet",null);T(this,"nanodet",null);T(this,"posenet",null);T(this,"segmentation",null);T(this,"antispoof",null)}},Q1=e=>{let t=0,o=0,n=0;for(let A of Object.values(oe))t+=A.sizeFromManifest,o+=A.sizeLoadedWeights,n+=A.sizeDesired;let r=n>0?o/n:0;return{numLoadedModels:Object.values(oe).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:o,totalSizeLoading:n,totalSizeEnabled:void 0,modelStats:Object.values(oe)}};function x5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function _1(e){var t,o,n,r,A,s,a,l,c,y,i,d,x,m,b,g,M,R,f,p,z,w,u,B,X,O;P.initial&&x5(e),e.config.hand.enabled&&(!e.models.handpose&&((o=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:o.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await S1(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await S1(e.config))),e.config.body.enabled&&!e.models.blazepose&&((A=e.config.body.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=h3(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=u3(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((s=e.config.body.modelPath)==null?void 0:s.includes("efficientpose"))&&(e.models.efficientpose=P3(e.config)),e.config.body.enabled&&!e.models.movenet&&((a=e.config.body.modelPath)==null?void 0:a.includes("movenet"))&&(e.models.movenet=Do(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=$o(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=i3(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=Kt(e.config)),e.config.face.enabled&&((y=e.config.face.liveness)==null?void 0:y.enabled)&&!e.models.liveness&&(e.models.liveness=No(e.config)),e.config.face.enabled&&((i=e.config.face.description)==null?void 0:i.enabled)&&!e.models.faceres&&(e.models.faceres=eo(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=E3(e.config)),e.config.face.enabled&&((x=e.config.face.iris)==null?void 0:x.enabled)&&!((m=e.config.face.attention)!=null&&m.enabled)&&!e.models.faceiris&&(e.models.faceiris=V3(e.config)),e.config.face.enabled&&((b=e.config.face.mesh)==null?void 0:b.enabled)&&!e.models.facemesh&&(e.models.facemesh=K3(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=Lt(e.config)),e.config.face.enabled&&((M=e.config.face.ssrnet)==null?void 0:M.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=Ht(e.config)),e.config.face.enabled&&((R=e.config.face.ssrnet)==null?void 0:R.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=Xt(e.config)),e.config.face.enabled&&((f=e.config.face.mobilefacenet)==null?void 0:f.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=O3(e.config)),e.config.face.enabled&&((p=e.config.face.insightface)==null?void 0:p.enabled)&&!e.models.insightface&&(e.models.insightface=F3(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((w=(z=e.config.hand.detector)==null?void 0:z.modelPath)==null?void 0:w.includes("handtrack"))&&(e.models.handtrack=So(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((B=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:B.includes("handtrack"))&&(e.models.handskeleton=Co(e.config)),e.config.object.enabled&&!e.models.centernet&&((X=e.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(e.models.centernet=M3(e.config)),e.config.object.enabled&&!e.models.nanodet&&((O=e.config.object.modelPath)==null?void 0:O.includes("nanodet"))&&(e.models.nanodet=Xo(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=J1(e.config));for await(let W of Object.keys(e.models))e.models[W]&&typeof e.models[W]!="undefined"&&(e.models[W]=await e.models[W])}var G0;function A2(e,t,o){var c;if(e&&(G0=e),!t||(G0||h("instance not registred"),!G0.config.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],A=[],s=[],a=t.modelUrl,l=t.executor;if((c=l==null?void 0:l.graph)!=null&&c.nodes)for(let y of Object.values(l.graph.nodes)){let i=y.op.toLowerCase();A.includes(i)||A.push(i)}else!l&&G0.config.debug&&h("model not loaded",o);for(let y of A)!n.includes(y)&&!r.includes(y)&&!G0.env.kernels.includes(y)&&!G0.env.kernels.includes(y.replace("_",""))&&!G0.env.kernels.includes(y.replace("native",""))&&!G0.env.kernels.includes(y.replace("v2",""))&&s.push(y);return G0.config.debug&&s.length>0&&h("model validation failed:",o,s),s.length>0?{name:o,missing:s,ops:A,url:a}:null}function w5(e){G0=e;let t=[];for(let o of Object.keys(G0.models)){let n=G0.models[o];if(!n)continue;let r=A2(G0,n,o);r&&t.push(r)}return t}var T0={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},oe={};async function x7(e,t){return T0.debug&&h("load model fetch:",e,t),fetch(e,t)}function nn(e){T0.cacheModels=e.cacheModels,T0.verbose=e.debug,T0.modelBasePath=e.modelBasePath}async function F(e){var c,y,i;let t=vt(T0.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let o=t.includes("/")?t.split("/"):t.split("\\"),n=o[o.length-1].replace(".json",""),r="indexeddb://"+n;oe[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:F5[n],inCache:!1},T0.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let A={};try{A=T0.cacheSupported&&T0.cacheModels?await k5.io.listModels():{}}catch(d){T0.cacheSupported=!1}oe[n].inCache=T0.cacheSupported&&T0.cacheModels&&Object.keys(A).includes(r);let s=typeof fetch=="undefined"?{}:{fetchFunc:(d,x)=>x7(d,x)},a=new k5.GraphModel(oe[n].inCache?r:t,s),l=!1;try{a.findIOHandler(),T0.debug&&h("model load handler:",a.handler);let d=await a.handler.load();oe[n].sizeFromManifest=((c=d==null?void 0:d.weightData)==null?void 0:c.byteLength)||0,a.loadSync(d),oe[n].sizeLoadedWeights=((i=(y=a.artifacts)==null?void 0:y.weightData)==null?void 0:i.byteLength)||0,T0.verbose&&h("load model:",a.modelUrl,{bytes:oe[n].sizeLoadedWeights},T0),l=!0}catch(d){h("error loading model:",t,d)}if(l&&T0.cacheModels&&T0.cacheSupported&&!oe[n].inCache)try{let d=await a.save(r);h("model saved:",r,d)}catch(d){h("error saving model:",t,d)}return A2(null,a,`${e||""}`),a}var ne=V(D());var $1="2.9.4";var st={};pe(st,{all:()=>At,body:()=>a2,canvas:()=>rt,face:()=>s2,gesture:()=>c2,hand:()=>i2,object:()=>l2,options:()=>h0,person:()=>nt});var B0=e=>{if(!e)h("draw error: invalid canvas");else if(!e.getContext)h("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)h("draw error: cannot get canvas context");else return t}return null},Xe=e=>Math.round(e*180/Math.PI),de=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let o=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${o[0]}, ${o[1]}, ${o[2]}, ${t.alpha})`};function fe(e,t,o,n,r){e.fillStyle=de(n,r),e.beginPath(),e.arc(t,o,r.pointSize,0,2*Math.PI),e.fill()}function se(e,t,o,n,r,A){if(e.beginPath(),e.lineWidth=A.lineWidth,A.useCurves){let s=(t+t+n)/2,a=(o+o+r)/2;e.ellipse(s,a,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+A.roundRect,o),e.lineTo(t+n-A.roundRect,o),e.quadraticCurveTo(t+n,o,t+n,o+A.roundRect),e.lineTo(t+n,o+r-A.roundRect),e.quadraticCurveTo(t+n,o+r,t+n-A.roundRect,o+r),e.lineTo(t+A.roundRect,o+r),e.quadraticCurveTo(t,o+r,t,o+r-A.roundRect),e.lineTo(t,o+A.roundRect),e.quadraticCurveTo(t,o,t+A.roundRect,o),e.closePath();e.stroke()}function et(e,t,o){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=de(n[2]||0,o),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),o.fillPolygons&&(e.closePath(),e.fill())}}function rn(e,t,o){if(!(t.length<2)){if(e.lineWidth=o.lineWidth,!o.useCurves||t.length<=2){et(e,t,o);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n0){let A=e.emotion.map(s=>`${Math.trunc(100*s.score)}% ${s.emotion}`);A.length>3&&(A.length=3),r.push(A.join(" "))}((o=e.rotation)==null?void 0:o.angle)&&((n=e.rotation)==null?void 0:n.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Xe(e.rotation.angle.roll)}\xB0 yaw:${Xe(e.rotation.angle.yaw)}\xB0 pitch:${Xe(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Xe(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=U.color;for(let A=r.length-1;A>=0;A--){let s=Math.max(e.box[0],0),a=A*U.lineHeight+e.box[1];U.shadowColor&&U.shadowColor!==""&&(t.fillStyle=U.shadowColor,t.fillText(r[A],s+5,a+16)),t.fillStyle=U.labelColor,t.fillText(r[A],s+4,a+15)}}}function m7(e,t){var o,n,r,A;if(((o=e.annotations)==null?void 0:o.leftEyeIris)&&((n=e.annotations)==null?void 0:n.leftEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,a=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((A=e.annotations)==null?void 0:A.rightEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,a=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}}function p7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*Xe(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Xe(e.rotation.angle.pitch)/90,A=new Path2D(` +`;var N5=(e,t,o)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,A)=>(o[A]=0,r))},L5=class{constructor(t,o,n){T(this,"uniform",{});T(this,"attribute",{});T(this,"gl");T(this,"id");T(this,"compile",(t,o)=>{let n=this.gl.createShader(o);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(b(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(b("filter: could not create shader"),null)});this.gl=t;let r=this.compile(o,this.gl.VERTEX_SHADER),A=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!A)){if(!this.id){b("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,A),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){b(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),N5(o,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=this.gl.getAttribLocation(this.id,s);N5(o,"uniform",this.uniform),N5(n,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=this.gl.getUniformLocation(this.id,s)}}};function It(){let e=0,t=null,o=!1,n=-1,r=[null,null],A=[],s=null,a=null,l=b0(100,100),c={},y={INTERMEDIATE:1},i=l.getContext("webgl");if(!i){b("filter: cannot get webgl context");return}this.gl=i;function d(R,m){if(!(R===l.width&&m===l.height)){if(l.width=R,l.height=m,!s){let u=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);s=i.createBuffer(),i.bindBuffer(i.ARRAY_BUFFER,s),i.bufferData(i.ARRAY_BUFFER,u,i.STATIC_DRAW),i.pixelStorei(i.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}i.viewport(0,0,l.width,l.height),r=[null,null]}}function x(R,m){let u=i.createFramebuffer();i.bindFramebuffer(i.FRAMEBUFFER,u);let z=i.createRenderbuffer();i.bindRenderbuffer(i.RENDERBUFFER,z);let w=i.createTexture();return i.bindTexture(i.TEXTURE_2D,w),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,R,m,0,i.RGBA,i.UNSIGNED_BYTE,null),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.framebufferTexture2D(i.FRAMEBUFFER,i.COLOR_ATTACHMENT0,i.TEXTURE_2D,w,0),i.bindTexture(i.TEXTURE_2D,null),i.bindFramebuffer(i.FRAMEBUFFER,null),{fbo:u,texture:w}}function f(R){return r[R]=r[R]||x(l.width,l.height),r[R]}function p(R=0){if(!a)return;let m=null,u=null,z=!1;e===0?m=t:m=f(n).texture||null,e++,o&&!(R&y.INTERMEDIATE)?(u=null,z=e%2===0):(n=(n+1)%2,u=f(n).fbo||null),i.bindTexture(i.TEXTURE_2D,m),i.bindFramebuffer(i.FRAMEBUFFER,u),i.uniform1f(a.uniform.flipY,z?-1:1),i.drawArrays(i.TRIANGLES,0,6)}function g(R){if(c[R])return a=c[R],i.useProgram((a?a.id:null)||null),a;if(a=new L5(i,wt,R),!a)return b("filter: could not get webgl program"),null;let m=Float32Array.BYTES_PER_ELEMENT,u=4*m;return i.enableVertexAttribArray(a.attribute.pos),i.vertexAttribPointer(a.attribute.pos,2,i.FLOAT,!1,u,0*m),i.enableVertexAttribArray(a.attribute.uv),i.vertexAttribPointer(a.attribute.uv,2,i.FLOAT,!1,u,2*m),c[R]=a,a}let M={colorMatrix:R=>{let m=new Float32Array(R);m[4]/=255,m[9]/=255,m[14]/=255,m[19]/=255;let u=m[18]===1&&m[3]===0&&m[8]===0&&m[13]===0&&m[15]===0&&m[16]===0&&m[17]===0&&m[19]===0?Et:kt,z=g(u);!z||(i.uniform1fv(z.uniform.m,m),p())},brightness:R=>{let m=(R||0)+1;M.colorMatrix([m,0,0,0,0,0,m,0,0,0,0,0,m,0,0,0,0,0,1,0])},saturation:R=>{let m=(R||0)*2/3+1,u=(m-1)*-.5;M.colorMatrix([m,u,u,0,0,u,m,u,0,0,u,u,m,0,0,0,0,0,1,0])},desaturate:()=>{M.saturation(-1)},contrast:R=>{let m=(R||0)+1,u=-128*(m-1);M.colorMatrix([m,0,0,0,u,0,m,0,0,u,0,0,m,0,u,0,0,0,1,0])},negative:()=>{M.contrast(-2)},hue:R=>{R=(R||0)/180*Math.PI;let m=Math.cos(R),u=Math.sin(R),z=.213,w=.715,h=.072;M.colorMatrix([z+m*(1-z)+u*-z,w+m*-w+u*-w,h+m*-h+u*(1-h),0,0,z+m*-z+u*.143,w+m*(1-w)+u*.14,h+m*-h+u*-.283,0,0,z+m*-z+u*-(1-z),w+m*-w+u*w,h+m*(1-h)+u*h,0,0,0,0,0,1,0])},desaturateLuminance:()=>{M.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{M.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{M.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{M.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{M.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{M.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{M.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{M.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:R=>{let m=new Float32Array(R),u=1/l.width,z=1/l.height,w=g(Ct);!w||(i.uniform1fv(w.uniform.m,m),i.uniform2f(w.uniform.px,u,z),p())},detectEdges:()=>{M.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{M.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{M.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:R=>{let m=R||1;M.convolution.call(this,[0,-1*m,0,-1*m,1+4*m,-1*m,0,-1*m,0])},emboss:R=>{let m=R||1;M.convolution.call(this,[-2*m,-1*m,0,-1*m,1,1*m,0,1*m,2*m])},blur:R=>{let m=R/7/l.width,u=R/7/l.height,z=g(St);!z||(i.uniform2f(z.uniform.px,0,u),p(y.INTERMEDIATE),i.uniform2f(z.uniform.px,m,0),p())},pixelate:R=>{let m=R/l.width,u=R/l.height,z=g(zt);!z||(i.uniform2f(z.uniform.size,m,u),p())}};this.add=function(R){let m=Array.prototype.slice.call(arguments,1),u=M[R];A.push({func:u,args:m})},this.reset=function(){A=[]},this.get=function(){return A},this.apply=function(R){d(R.width,R.height),e=0,t||(t=i.createTexture()),i.bindTexture(i.TEXTURE_2D,t),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.NEAREST),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.NEAREST),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,i.RGBA,i.UNSIGNED_BYTE,R);for(let m=0;mx.data())),s=.99*Math.max(A[0][0],A[1][0],A[2][0]),a=[q.sub(o[0],n[0]),q.sub(o[1],n[1]),q.sub(o[2],n[2])],l=[q.sub(r[0],n[0]),q.sub(r[1],n[1]),q.sub(r[2],n[2])],c=[q.div(s,l[0]),q.div(s,l[1]),q.div(s,l[2])],y=[q.mul(a[0],c[0]),q.mul(a[1],c[1]),q.mul(a[2],c[2])],i=q.stack([y[0],y[1],y[2]],2),d=q.reshape(i,[1,t.shape[0],t.shape[1],3]);return q.dispose([...o,...n,...r,...a,...l,...c,...y,i,t]),d}var L2=3840,y0=null,d0=null,qe=null,Q,F0={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function W5(){F0.inputSum=0,F0.cacheDiff=1,F0.sumMethod=0,F0.inputTensor=void 0}function b0(e,t){let o;if(P.browser)if(P.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");o=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");o=document.createElement("canvas"),o.width=e,o.height=t}else typeof P.Canvas!="undefined"?o=new P.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(o=new globalThis.Canvas(e,t));return o}function W2(e,t){let o=t||b0(e.width,e.height);return o.getContext("2d").drawImage(e,0,0),o}async function Ue(e,t,o=!0){var d,x;if(!e)return t.debug&&b("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof j.Tensor)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof P.Canvas!="undefined"&&e instanceof P.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof j.Tensor){let f=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)f=j.expandDims(e,0);else if(e.shape[2]===4){let p=j.slice3d(e,[0,0,0],[-1,-1,3]);f=j.expandDims(p,0),j.dispose(p)}}else e.shape.length===4&&(e.shape[3]===3?f=j.clone(e):e.shape[3]===4&&(f=j.slice4d(e,[0,0,0,0],[-1,-1,-1,3])));if(f==null||f.shape.length!==4||f.shape[0]!==1||f.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(f.dtype==="int32"){let p=j.cast(f,"float32");j.dispose(f),f=p}return{tensor:f,canvas:t.filter.return?d0:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&b("input stream is not ready"),{tensor:null,canvas:y0};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&b("cannot determine input dimensions"),{tensor:null,canvas:y0};let A=n,s=r;if(A>L2&&(A=L2,s=Math.trunc(A*r/n)),s>L2&&(s=L2,A=Math.trunc(s*n/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?A=t.filter.width:(((x=t.filter)==null?void 0:x.height)||0)>0&&(A=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?s=t.filter.height:(t.filter.width||0)>0&&(s=r*((t.filter.width||0)/n)),!A||!s)throw new Error("input error: cannot determine dimension");(!y0||y0.width!==A||y0.height!==s)&&(y0=b0(A,s));let a=y0.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?a.putImageData(e,0,0):t.filter.flip&&typeof a.translate!="undefined"?(a.translate(n,0),a.scale(-1,1),a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),a.setTransform(1,0,0,1,0,0)):a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),(!d0||y0.width!==d0.width||y0.height!==d0.height)&&(d0=b0(y0.width,y0.height)),t.filter.enabled&&P.webgl.supported?(Q||(Q=P.browser?new It:null),P.filter=!!Q,Q!=null&&Q.add?(Q.reset(),t.filter.brightness!==0&&Q.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Q.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Q.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Q.add("blur",t.filter.blur),t.filter.saturation!==0&&Q.add("saturation",t.filter.saturation),t.filter.hue!==0&&Q.add("hue",t.filter.hue),t.filter.negative&&Q.add("negative"),t.filter.sepia&&Q.add("sepia"),t.filter.vintage&&Q.add("brownie"),t.filter.sepia&&Q.add("sepia"),t.filter.kodachrome&&Q.add("kodachrome"),t.filter.technicolor&&Q.add("technicolor"),t.filter.polaroid&&Q.add("polaroid"),t.filter.pixelate!==0&&Q.add("pixelate",t.filter.pixelate),Q.get()>0?d0=Q.apply(y0):d0=Q.draw(y0)):(t.debug&&b("input process error: cannot initialize filters"),P.webgl.supported=!1,t.filter.enabled=!1,W2(y0,d0))):(W2(y0,d0),Q&&(Q=null),P.filter=!!Q),!o)return{tensor:null,canvas:d0};if(!d0)throw new Error("canvas error: cannot create output");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(P.browser&&j.browser)l=j.browser?j.browser.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let f=new Uint8Array(e.data.buffer);l=j.tensor(f,[e.height,e.width,c],"int32")}else if((!qe||d0.width!==qe.width||d0.height!==qe.height)&&(qe=b0(d0.width,d0.height)),j.browser&&P.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=j.browser.fromPixels(d0):(qe=W2(d0),l=j.browser.fromPixels(qe));else{let g=W2(d0).getContext("2d").getImageData(0,0,A,s);c=g.data.length/A/s;let M=new Uint8Array(g.data.buffer);l=j.tensor(M,[A,s,c])}if(c===4){let f=j.slice3d(l,[0,0,0],[-1,-1,3]);j.dispose(l),l=f}if(!l)throw new Error("input error: cannot create tensor");let y=j.cast(l,"float32"),i=t.filter.equalization?await N2(y):j.expandDims(y,0);return j.dispose([l,y]),{tensor:i,canvas:t.filter.return?d0:null}}async function Ot(e,t){let o=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return o;if(!F0.inputTensor)F0.inputTensor=j.clone(t);else if(F0.inputTensor.shape[1]!==t.shape[1]||F0.inputTensor.shape[2]!==t.shape[2])j.dispose(F0.inputTensor),F0.inputTensor=j.clone(t);else{let n={};n.diff=j.sub(t,F0.inputTensor),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;j.dispose([F0.inputTensor,n.diff,n.squared,n.sum]),F0.inputTensor=j.clone(t),o=A<=(e.cacheSensitivity||0)}return o}async function jt(e,t,o){let n={};if(!t||!o||t.shape.length!==4||t.shape.length!==o.shape.length)return e.debug||b("invalid input tensor or tensor shapes do not match:",t.shape,o.shape),0;if(t.shape[0]!==1||o.shape[0]!==1||t.shape[3]!==3||o.shape[3]!==3)return e.debug||b("input tensors must be of shape [1, height, width, 3]:",t.shape,o.shape),0;n.input1=j.clone(t),n.input2=t.shape[1]!==o.shape[1]||t.shape[2]!==o.shape[2]?j.image.resizeBilinear(o,[t.shape[1],t.shape[2]]):j.clone(o),n.diff=j.sub(n.input1,n.input2),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return j.dispose([n.input1,n.input2,n.diff,n.squared,n.sum]),A}var F5=class{constructor(){T(this,"browser");T(this,"node");T(this,"worker");T(this,"platform","");T(this,"agent","");T(this,"backends",[]);T(this,"initial");T(this,"filter");T(this,"tfjs");T(this,"offscreen");T(this,"perfadd",!1);T(this,"tensorflow",{version:void 0,gpu:void 0});T(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});T(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});T(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});T(this,"cpu",{model:void 0,flags:[]});T(this,"kernels",[]);T(this,"Canvas");T(this,"Image");T(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:a0.version["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let o=t[0].match(/\(([^()]+)\)/g);this.platform=o!=null&&o[0]?o[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(a0.engine().registryFactory),this.tensorflow={version:a0.backend().binding?a0.backend().binding.TF_Version:void 0,gpu:a0.backend().binding?a0.backend().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&a0.getBackend()==="wasm"&&(this.wasm.simd=a0.env().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=a0.env().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=b0(100,100),o=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof o!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(a0.getBackend()==="webgl"||a0.getBackend()==="humangl")){let n=a0.backend().gpgpu!=="undefined"?await a0.backend().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=n?n.name:void 0}}catch(n){this.webgpu.supported=!1}try{this.kernels=a0.getKernelsForBackend(a0.getBackend()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},P=new F5;var k5=V(D());var G5={};pe(G5,{age:()=>qn,"anti-spoofing":()=>Rr,antispoof:()=>On,blazeface:()=>jn,"blazeface-back":()=>Un,"blazeface-front":()=>Yn,"blazepose-detect":()=>vr,"blazepose-detector2d":()=>Kn,"blazepose-detector3d":()=>Jn,"blazepose-full":()=>Qn,"blazepose-heavy":()=>_n,"blazepose-lite":()=>$n,default:()=>Lr,efficientpose:()=>er,"efficientpose-i-lite":()=>Pr,"efficientpose-ii-lite":()=>Tr,"efficientpose-iv":()=>wr,emotion:()=>Nn,faceboxes:()=>tr,facemesh:()=>Ln,"facemesh-attention":()=>nr,"facemesh-attention-alt":()=>or,"facemesh-detection-full":()=>rr,"facemesh-detection-short":()=>Ar,"facemesh-orig":()=>sr,faceres:()=>Wn,"faceres-deep":()=>ar,gear:()=>ir,gender:()=>cr,"gender-ssrnet-imdb":()=>lr,handdetect:()=>xr,"handlandmark-full":()=>Fn,"handlandmark-lite":()=>yr,"handlandmark-sparse":()=>dr,handskeleton:()=>fr,handtrack:()=>Gn,"insightface-efficientnet-b0":()=>kr,"insightface-ghostnet-strides1":()=>Er,"insightface-ghostnet-strides2":()=>zr,"insightface-mobilenet-emore":()=>Sr,"insightface-mobilenet-swish":()=>Cr,iris:()=>Bn,liveness:()=>Hn,"mb3-centernet":()=>Dn,meet:()=>mr,mobileface:()=>pr,mobilefacenet:()=>ur,models:()=>Vn,"movenet-lightning":()=>Zn,"movenet-multipose":()=>hr,"movenet-thunder":()=>br,nanodet:()=>gr,"nanodet-e":()=>Ir,"nanodet-g":()=>Or,"nanodet-m":()=>jr,"nanodet-t":()=>Nr,posenet:()=>Mr,selfie:()=>Xn});var On=853098,jn=538928,Nn=820516,Ln=1477958,Wn=6978814,Fn=5431368,Gn=2964837,Bn=2599092,Hn=592976,Dn=4030290,Vn=0,Zn=4650216,Xn=212886,qn=161240,Un=538928,Yn=402048,Kn=7499400,Jn=5928856,Qn=6338290,_n=27501554,$n=2725490,er=5651240,tr=2013002,or=2387598,nr=2382414,rr=1026192,Ar=201268,sr=2955780,ar=13957620,ir=1498916,lr=161236,cr=201808,xr=3515612,yr=2023432,dr=5286322,fr=5502280,mr=372228,pr=2183192,ur=5171976,hr=9448838,br=12477112,gr=7574558,Mr=5032780,vr=5928804,Rr=853098,Pr=2269064,Tr=5651240,wr=25643252,kr=13013224,Er=8093408,zr=8049584,Sr=6938536,Cr=12168584,Ir=12319156,Or=7574558,jr=1887474,Nr=5294216,Lr={antispoof:On,blazeface:jn,emotion:Nn,facemesh:Ln,faceres:Wn,"handlandmark-full":Fn,handtrack:Gn,iris:Bn,liveness:Hn,"mb3-centernet":Dn,models:Vn,"movenet-lightning":Zn,selfie:Xn,age:qn,"blazeface-back":Un,"blazeface-front":Yn,"blazepose-detector2d":Kn,"blazepose-detector3d":Jn,"blazepose-full":Qn,"blazepose-heavy":_n,"blazepose-lite":$n,efficientpose:er,faceboxes:tr,"facemesh-attention-alt":or,"facemesh-attention":nr,"facemesh-detection-full":rr,"facemesh-detection-short":Ar,"facemesh-orig":sr,"faceres-deep":ar,gear:ir,"gender-ssrnet-imdb":lr,gender:cr,handdetect:xr,"handlandmark-lite":yr,"handlandmark-sparse":dr,handskeleton:fr,meet:mr,mobileface:pr,mobilefacenet:ur,"movenet-multipose":hr,"movenet-thunder":br,nanodet:gr,posenet:Mr,"blazepose-detect":vr,"anti-spoofing":Rr,"efficientpose-i-lite":Pr,"efficientpose-ii-lite":Tr,"efficientpose-iv":wr,"insightface-efficientnet-b0":kr,"insightface-ghostnet-strides1":Er,"insightface-ghostnet-strides2":zr,"insightface-mobilenet-emore":Sr,"insightface-mobilenet-swish":Cr,"nanodet-e":Ir,"nanodet-g":Or,"nanodet-m":jr,"nanodet-t":Nr};var y5={};pe(y5,{Models:()=>S2,getModelStats:()=>_1,load:()=>$1,reset:()=>x5,validate:()=>w5,validateModel:()=>A2});var F2=V(D());var Z0,B5=[],Wr=["white","black","asian","indian","other"],Fr=[15,23,28,35.5,45.5,55.5,65],Nt=0,Lt=0,H5=Number.MAX_SAFE_INTEGER;async function Wt(e){var t;return P.initial&&(Z0=null),Z0?e.debug&&b("cached model:",Z0.modelUrl):Z0=await F((t=e.face.gear)==null?void 0:t.modelPath),Z0}async function D5(e,t,o,n){var s,a;if(!Z0)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=H5<(((s=t.face.gear)==null?void 0:s.skipFrames)||0),A=(((a=t.face.gear)==null?void 0:a.skipTime)||0)>v()-Lt;return t.skipAllowed&&A&&r&&Nt===n&&B5[o]?(H5++,B5[o]):(H5=0,new Promise(async l=>{var M,R;if(!(Z0!=null&&Z0.inputs[0].shape))return;let c={},y=[[0,.1,.9,.9]];c.resize=F2.image.cropAndResize(e,y,[0],[Z0.inputs[0].shape[2],Z0.inputs[0].shape[1]]);let i={age:0,gender:"unknown",genderScore:0,race:[]};(M=t.face.gear)!=null&&M.enabled&&([c.age,c.gender,c.race]=Z0.execute(c.resize,["age_output","gender_output","race_output"]));let d=await c.gender.data();i.gender=d[0]>d[1]?"male":"female",i.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let x=await c.race.data();for(let m=0;m(((R=t.face.gear)==null?void 0:R.minConfidence)||.2)&&i.race.push({score:Math.round(100*x[m])/100,race:Wr[m]});i.race.sort((m,u)=>u.score-m.score);let p=Array.from(await c.age.data()).map((m,u)=>[Fr[u],m]).sort((m,u)=>u[1]-m[1]),g=p[0][0];for(let m=1;mF2.dispose(c[m])),B5[o]=i,Nt=n,Lt=v(),l(i)}))}var Ye=V(D());var he=V(D()),H={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function Gt(){H.tf255=he.scalar(255,"float32"),H.tf1=he.scalar(1,"float32"),H.tf2=he.scalar(2,"float32"),H.tf05=he.scalar(.5,"float32"),H.tf127=he.scalar(127.5,"float32"),H.rgb=he.tensor1d([.2989,.587,.114],"float32")}var E0,G2=[],Bt=0,Ht=0,V5=Number.MAX_SAFE_INTEGER;async function Dt(e){return P.initial&&(E0=null),E0?e.debug&&b("cached model:",E0.modelUrl):E0=await F(e.face.ssrnet.modelPathAge),E0}async function Z5(e,t,o,n){var s,a,l,c;if(!E0)return{age:0};let r=V5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Ht;return t.skipAllowed&&r&&A&&Bt===n&&((l=G2[o])==null?void 0:l.age)&&((c=G2[o])==null?void 0:c.age)>0?(V5++,G2[o]):(V5=0,new Promise(async y=>{var x;if(!(E0!=null&&E0.inputs)||!E0.inputs[0]||!E0.inputs[0].shape)return;let i={};i.resize=Ye.image.resizeBilinear(e,[E0.inputs[0].shape[2],E0.inputs[0].shape[1]],!1),i.enhance=Ye.mul(i.resize,H.tf255);let d={age:0};if((x=t.face.ssrnet)!=null&&x.enabled&&(i.age=E0.execute(i.enhance)),i.age){let f=await i.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(i).forEach(f=>Ye.dispose(i[f])),G2[o]=d,Bt=n,Ht=v(),y(d)}))}var p0=V(D());var X0,B2=[],Zt=0,Xt=0,X5=Number.MAX_SAFE_INTEGER,q5=[.2989,.587,.114];async function qt(e){var t;return P.initial&&(X0=null),X0?e.debug&&b("cached model:",X0.modelUrl):X0=await F((t=e.face.ssrnet)==null?void 0:t.modelPathGender),X0}async function U5(e,t,o,n){var s,a,l,c;if(!X0)return{gender:"unknown",genderScore:0};let r=X5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Xt;return t.skipAllowed&&r&&A&&Zt===n&&((l=B2[o])==null?void 0:l.gender)&&((c=B2[o])==null?void 0:c.genderScore)>0?(X5++,B2[o]):(X5=0,new Promise(async y=>{var f;if(!(X0!=null&&X0.inputs[0].shape))return;let i={};i.resize=p0.image.resizeBilinear(e,[X0.inputs[0].shape[2],X0.inputs[0].shape[1]],!1),i.enhance=p0.tidy(()=>{let[p,g,M]=p0.split(i.resize,3,3),R=p0.mul(p,q5[0]),m=p0.mul(g,q5[1]),u=p0.mul(M,q5[2]),z=p0.addN([R,m,u]);return p0.mul(p0.sub(z,H.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(i.gender=X0.execute(i.enhance));let x=await i.gender.data();d.gender=x[0]>x[1]?"female":"male",d.genderScore=x[0]>x[1]?Math.trunc(100*x[0])/100:Math.trunc(100*x[1])/100,Object.keys(i).forEach(p=>p0.dispose(i[p])),B2[o]=d,Zt=n,Xt=v(),y(d)}))}var D2=V(D());var c0,H2=[],Y5=Number.MAX_SAFE_INTEGER,Yt=0,Kt=0;async function Jt(e){var t;return P.initial&&(c0=null),c0?e.debug&&b("cached model:",c0.modelUrl):c0=await F((t=e.face.antispoof)==null?void 0:t.modelPath),c0}async function K5(e,t,o,n){var s,a;if(!c0||!(c0!=null&&c0.executor))return 0;let r=(((s=t.face.antispoof)==null?void 0:s.skipTime)||0)>v()-Kt,A=Y5<(((a=t.face.antispoof)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&Yt===n&&H2[o]?(Y5++,H2[o]):(Y5=0,new Promise(async l=>{let c=D2.image.resizeBilinear(e,[c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[2]:0,c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[1]:0],!1),y=c0==null?void 0:c0.execute(c),i=(await y.data())[0];H2[o]=Math.round(100*i)/100,Yt=n,Kt=v(),D2.dispose([c,y]),l(H2[o])}))}var L=V(D());var ie=V(D());var q0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},J5={count:468,mouth:13,symmetryLine:[13,q0.midwayBetweenEyes[0]]},Oe={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Q5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],M2=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],je=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Br=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Hr=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Dr=[33,133,362,263,1,78,308],s4=Br.map(e=>M2[e]),a4=Hr.map(e=>M2[e]),i4=Dr.map(e=>M2[e]);function be(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var Vr=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Zr=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Xr=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],qr=[[474,475],[475,476],[476,477],[477,474]],Ur=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Yr=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Kr=[[469,470],[470,471],[471,472],[472,469]],Jr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],l4={lips:be(Vr),leftEye:be(Zr),leftEyebrow:be(Xr),leftIris:be(qr),rightEye:be(Ur),rightEyebrow:be(Yr),rightIris:be(Kr),faceOval:be(Jr)};var Ke=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],V2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],Z2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],X2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],e3=(e,t)=>{let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:o,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},$5=(e,t,o)=>{let n=t.shape[1],r=t.shape[2],A=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],s=ie.image.cropAndResize(t,[A],[0],o),a=ie.div(s,H.tf255);return ie.dispose(s),a},q2=(e,t)=>{let o=V2(e),n=Ke(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[o[0]-r[0],o[1]-r[1]],endPoint:[o[0]+r[0],o[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},U2=e=>{let t=V2(e),o=Ke(e),n=Math.max(...o)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},t3=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...o)],endPoint:[Math.max(...t),Math.max(...o)],landmarks:e}},e1=[[1,0,0],[0,1,0],[0,0,1]],Qr=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),_r=(e,t)=>Qr(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var _t=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ne=(e,t)=>{let o=0;for(let n=0;n{let o=[];for(let n=0;n{let o=[],n=e.length;for(let r=0;r{let o=Math.cos(e),n=Math.sin(e),r=[[o,-n,0],[n,o,0],[0,0,1]],A=_t(t[0],t[1]),s=$t(A,r),a=_t(-t[0],-t[1]);return $t(s,a)},eA=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],o=[e[0][2],e[1][2]],n=[-Ne(t[0],o),-Ne(t[1],o)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},tA=(e,t)=>[Ne(e,t[0]),Ne(e,t[1])];function n3(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},o=[];for(let n=0;n[A[0]/r*(x[0]-r/2),A[1]/r*(x[1]-r/2),x[2]||0]),a=o&&o!==0&&Math.abs(o)>.2,l=a?o3(o,[0,0]):e1,c=a?s.map(x=>[...tA(x,l),x[2]]):s,y=a?eA(n):e1,i=V2(t),d=[Ne(i,y[0]),Ne(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2]||0)])}function A3(e,t,o,n){let r=t.landmarks.length>=J5.count?J5.symmetryLine:Oe.symmetryLine,A=0,s=e1,a;if(e&&P.kernels.includes("rotatewithoffset"))if(A=_r(t.landmarks[r[0]],t.landmarks[r[1]]),A&&A!==0&&Math.abs(A)>.2){let c=V2(t),y=[c[0]/o.shape[2],c[1]/o.shape[1]],i=ie.image.rotateWithOffset(o,A,0,y);s=o3(-A,c),a=$5(t,i,[n,n]),ie.dispose(i)}else a=$5(t,o,[n,n]);else a=$5(t,o,[n,n]);return[A,s,a]}var oA=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...o)+(Math.max(...o)-Math.min(...o))/2]},s3=(e,t)=>{let o=oA(e),n=Ke(t);return{startPoint:[o[0]-n[0]/2,o[1]-n[1]/2],endPoint:[o[0]+n[0]/2,o[1]+n[1]/2]}};var a3=6,nA=1.4,J0,i3=null,ge=0,v2=null,Je=()=>ge;async function l3(e){var t;return P.initial&&(J0=null),J0?e.debug&&b("cached model:",J0.modelUrl):J0=await F((t=e.face.detector)==null?void 0:t.modelPath),ge=J0.executor&&J0.inputs[0].shape?J0.inputs[0].shape[2]:256,v2=L.scalar(ge,"int32"),i3=L.tensor2d(n3(ge)),J0}function rA(e){let t={};t.boxStarts=L.slice(e,[0,1],[-1,2]),t.centers=L.add(t.boxStarts,i3),t.boxSizes=L.slice(e,[0,3],[-1,2]),t.boxSizesNormalized=L.div(t.boxSizes,v2),t.centersNormalized=L.div(t.centers,v2),t.halfBoxSize=L.div(t.boxSizesNormalized,H.tf2),t.starts=L.sub(t.centersNormalized,t.halfBoxSize),t.ends=L.add(t.centersNormalized,t.halfBoxSize),t.startNormalized=L.mul(t.starts,v2),t.endNormalized=L.mul(t.ends,v2);let o=L.concat2d([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>L.dispose(t[n])),o}async function c3(e,t){var a,l,c,y;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let o={};o.resized=L.image.resizeBilinear(e,[ge,ge]),o.div=L.div(o.resized,H.tf127),o.normalized=L.sub(o.div,H.tf05);let n=J0==null?void 0:J0.execute(o.normalized);if(Array.isArray(n)&&n.length>2){let i=n.sort((d,x)=>d.size-x.size);o.concat384=L.concat([i[0],i[2]],2),o.concat512=L.concat([i[1],i[3]],2),o.concat=L.concat([o.concat512,o.concat384],1),o.batch=L.squeeze(o.concat,0)}else Array.isArray(n)?o.batch=L.squeeze(n[0]):o.batch=L.squeeze(n);L.dispose(n),o.boxes=rA(o.batch),o.logits=L.slice(o.batch,[0,0],[-1,1]),o.sigmoid=L.sigmoid(o.logits),o.scores=L.squeeze(o.sigmoid),o.nms=await L.image.nonMaxSuppressionAsync(o.boxes,o.scores,((a=t.face.detector)==null?void 0:a.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((c=t.face.detector)==null?void 0:c.minConfidence)||0);let r=await o.nms.array(),A=[],s=await o.scores.data();for(let i=0;i(((y=t.face.detector)==null?void 0:y.minConfidence)||0)){let x={};x.bbox=L.slice(o.boxes,[r[i],0],[1,-1]),x.slice=L.slice(o.batch,[r[i],a3-1],[1,-1]),x.squeeze=L.squeeze(x.slice),x.landmarks=L.reshape(x.squeeze,[a3,-1]);let f=await x.bbox.data(),p={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await x.landmarks.array(),confidence:d},g=e3(p,[(e.shape[2]||0)/ge,(e.shape[1]||0)/ge]),M=q2(g,t.face.scale||nA),R=U2(M);A.push(R),Object.keys(x).forEach(m=>L.dispose(x[m]))}}return Object.keys(o).forEach(i=>L.dispose(o[i])),A}var S0=V(D());var Y2={};pe(Y2,{connected:()=>n1,kpt:()=>o1});var o1=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],n1={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var z0=V(D()),y3=224,AA,sA=5,K2=[8,16,32,32,32];function d3(){let e=[],t=0;for(;to.x)),y:z0.tensor1d(e.map(o=>o.y))}}function le(e,t=[1,1]){let o=[e.map(a=>a[0]),e.map(a=>a[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[n[0],n[1],r[0]-n[0],r[1]-n[1]],s=[A[0]/t[0],A[1]/t[1],A[2]/t[0],A[3]/t[1]];return{box:A,boxRaw:s}}function f3(e,t=[1,1]){let o=[e.map(c=>c[0]),e.map(c=>c[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[(n[0]+r[0])/2,(n[1]+r[1])/2],s=Math.max(A[0]-n[0],A[1]-n[1],-A[0]+r[0],-A[1]+r[1]),a=[Math.trunc(A[0]-s),Math.trunc(A[1]-s),Math.trunc(2*s),Math.trunc(2*s)],l=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:l}}function J2(e,t){let o=[e[2]*t,e[3]*t];return[e[0]-(o[0]-e[2])/2,e[1]-(o[1]-e[3])/2,o[0],o[1]]}var u3={initial:!0},u0={detector:null,landmarks:null},Qe={detector:[224,224],landmarks:[256,256]},r1=Number.MAX_SAFE_INTEGER,iA={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},_2=null,R2,Me=[[0,0],[0,0],[0,0],[0,0]],m3=0,p3=e=>1-1/(1+Math.exp(e));async function h3(e){var t;if(u3.initial&&(u0.detector=null),!u0.detector&&e.body.detector&&e.body.detector.modelPath){u0.detector=await F(e.body.detector.modelPath);let o=(t=u0.detector)!=null&&t.executor?Object.values(u0.detector.modelSignature.inputs):void 0;Qe.detector[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.detector[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}else e.debug&&u0.detector&&b("cached model:",u0.detector.modelUrl);return d3(),u0.detector}async function b3(e){var t;if(u3.initial&&(u0.landmarks=null),u0.landmarks)e.debug&&b("cached model:",u0.landmarks.modelUrl);else{u0.landmarks=await F(e.body.modelPath);let o=(t=u0.landmarks)!=null&&t.executor?Object.values(u0.landmarks.modelSignature.inputs):void 0;Qe.landmarks[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.landmarks[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return u0.landmarks}function lA(e,t){var r,A;let o={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((A=e==null?void 0:e.shape)!=null&&A[2]))return e;let n;if(R2&&(o.cropped=S0.image.cropAndResize(e,[R2],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let s=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],a=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Me=[[0,0],s,a,[0,0]],o.pad=S0.pad(o.cropped||e,Me),o.resize=S0.image.resizeBilinear(o.pad,[t,t]),n=S0.div(o.resize,H.tf255)}else e.shape[1]!==t?(o.resize=S0.image.resizeBilinear(o.cropped||e,[t,t]),n=S0.div(o.resize,H.tf255)):n=S0.div(o.cropped||e,H.tf255);return Object.keys(o).forEach(s=>S0.dispose(o[s])),n}function cA(e,t){for(let o of e)o.position=[Math.trunc(o.position[0]*(t[0]+Me[2][0]+Me[2][1])/t[0]-Me[2][0]),Math.trunc(o.position[1]*(t[1]+Me[1][0]+Me[1][1])/t[1]-Me[1][0]),o.position[2]],o.positionRaw=[o.position[0]/t[0],o.position[1]/t[1],2*o.position[2]/(t[0]+t[1])];if(R2)for(let o of e)o.positionRaw=[o.positionRaw[0]+R2[1],o.positionRaw[1]+R2[0],o.positionRaw[2]],o.position=[Math.trunc(o.positionRaw[0]*t[0]),Math.trunc(o.positionRaw[1]*t[1]),o.positionRaw[2]];return e}function xA(e){let t=e.find(a=>a.part==="leftPalm"),o=e.find(a=>a.part==="leftWrist"),n=e.find(a=>a.part==="leftIndex");t.position[2]=((o.position[2]||0)+(n.position[2]||0))/2;let r=e.find(a=>a.part==="rightPalm"),A=e.find(a=>a.part==="rightWrist"),s=e.find(a=>a.part==="rightIndex");r.position[2]=((A.position[2]||0)+(s.position[2]||0))/2}async function yA(e,t,o){var f,p;if(!((f=u0.landmarks)!=null&&f.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(p=u0.landmarks)==null?void 0:p.execute(e,iA.landmarks);let r=(await n.poseflag.data())[0],A=await n.ld.data(),s=await n.world.data();Object.keys(n).forEach(g=>S0.dispose(n[g]));let a=[],l=5;for(let g=0;gg.position),i=le(y,[o[0],o[1]]),d={};for(let[g,M]of Object.entries(n1)){let R=[];for(let m=0;mw.part===M[m]),z=c.find(w=>w.part===M[m+1]);u&&z&&R.push([u.position,z.position])}d[g]=R}return{id:0,score:Math.trunc(100*r)/100,box:i.box,boxRaw:i.boxRaw,keypoints:c,annotations:d}}async function A1(e,t){let o=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>v()-m3,r=r1<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&_2!==null)r1++;else{let A={};A.landmarks=lA(e,256),_2=await yA(A.landmarks,t,o),Object.keys(A).forEach(s=>S0.dispose(A[s])),m3=v(),r1=0}return _2?[_2]:[]}var g0=V(D());var _e=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var k0,Le=0,s1=[],M3=0,a1=Number.MAX_SAFE_INTEGER;async function v3(e){if(P.initial&&(k0=null),k0)e.debug&&b("cached model:",k0.modelUrl);else{k0=await F(e.object.modelPath);let t=k0!=null&&k0.executor?Object.values(k0.modelSignature.inputs):void 0;Le=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return k0}async function dA(e,t,o){if(!e)return[];let n={},r=[],A=await e.array();n.squeeze=g0.squeeze(e);let s=g0.split(n.squeeze,6,1);n.stack=g0.stack([s[1],s[0],s[3],s[2]],1),n.boxes=g0.squeeze(n.stack),n.scores=g0.squeeze(s[4]),n.classes=g0.squeeze(s[5]),g0.dispose([e,...s]),n.nms=await g0.image.nonMaxSuppressionAsync(n.boxes,n.scores,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence||0);let a=await n.nms.data(),l=0;for(let c of Array.from(a)){let y=Math.trunc(100*A[0][c][4])/100,i=A[0][c][5];if(Number.isNaN(i))continue;let d=_e[i].label,[x,f]=[A[0][c][0]/Le,A[0][c][1]/Le],p=[x,f,A[0][c][2]/Le-x,A[0][c][3]/Le-f],g=[Math.trunc(p[0]*t[0]),Math.trunc(p[1]*t[1]),Math.trunc(p[2]*t[0]),Math.trunc(p[3]*t[1])];r.push({id:l++,score:y,class:i,label:d,box:g,boxRaw:p})}return Object.keys(n).forEach(c=>g0.dispose(n[c])),r}async function i1(e,t){if(!(k0!=null&&k0.executor))return[];let o=(t.object.skipTime||0)>v()-M3,n=a1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&s1.length>0?(a1++,s1):(a1=0,new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=g0.image.resizeBilinear(e,[Le,Le]),a=t.object.enabled?k0==null?void 0:k0.execute(s,["tower_0/detections"]):null;M3=v(),g0.dispose(s);let l=await dA(a,A,t);s1=l,r(l)}))}var Y=V(D());var $2={};pe($2,{connected:()=>c1,kpt:()=>l1});var l1=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],c1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var x0,P3=0,M0={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},x1=Number.MAX_SAFE_INTEGER;async function T3(e){return P.initial&&(x0=null),x0?e.debug&&b("cached model:",x0.modelUrl):x0=await F(e.body.modelPath),x0}async function fA(e,t){let[o,n]=e.shape,r=Y.reshape(e,[n*o]),A=Y.max(r,0),s=(await A.data())[0];if(s>t){let a=Y.argMax(r,0),l=Y.mod(a,o),c=(await l.data())[0],y=Y.div(a,o),i=(await y.data())[0];return Y.dispose([r,A,a,l,y]),[c,i,s]}return Y.dispose([r,A]),[0,0,s]}async function y1(e,t){if(!(x0!=null&&x0.executor))return[];let o=(t.body.skipTime||0)>v()-P3,n=x1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n&&Object.keys(M0.keypoints).length>0?(x1++,[M0]):(x1=0,new Promise(async r=>{let A=Y.tidy(()=>{if(!(x0!=null&&x0.inputs[0].shape))return null;let i=Y.image.resizeBilinear(e,[x0.inputs[0].shape[2],x0.inputs[0].shape[1]],!1),d=Y.mul(i,H.tf2);return Y.sub(d,H.tf1)}),s;if(t.body.enabled&&(s=x0==null?void 0:x0.execute(A)),P3=v(),Y.dispose(A),s){M0.keypoints.length=0;let i=Y.squeeze(s);Y.dispose(s);let d=Y.unstack(i,2);Y.dispose(i);for(let x=0;x(t.body.minConfidence||0)&&M0.keypoints.push({score:Math.round(100*g)/100,part:l1[x],positionRaw:[f/x0.inputs[0].shape[2],p/x0.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/x0.inputs[0].shape[2]),Math.round(e.shape[1]*p/x0.inputs[0].shape[1])]})}d.forEach(x=>Y.dispose(x))}M0.score=M0.keypoints.reduce((i,d)=>d.score>i?d.score:i,0);let a=M0.keypoints.map(i=>i.position[0]),l=M0.keypoints.map(i=>i.position[1]);M0.box=[Math.min(...a),Math.min(...l),Math.max(...a)-Math.min(...a),Math.max(...l)-Math.min(...l)];let c=M0.keypoints.map(i=>i.positionRaw[0]),y=M0.keypoints.map(i=>i.positionRaw[1]);M0.boxRaw=[Math.min(...c),Math.min(...y),Math.max(...c)-Math.min(...c),Math.max(...y)-Math.min(...y)];for(let[i,d]of Object.entries(c1)){let x=[];for(let f=0;fM.part===d[f]),g=M0.keypoints.find(M=>M.part===d[f+1]);p&&g&&p.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([p.position,g.position])}M0.annotations[i]=x}r([M0])}))}var Q0=V(D());var mA=["angry","disgust","fear","happy","sad","surprise","neutral"],G0,e5=[],k3=0,E3=0,d1=Number.MAX_SAFE_INTEGER;async function z3(e){var t;return P.initial&&(G0=null),G0?e.debug&&b("cached model:",G0.modelUrl):G0=await F((t=e.face.emotion)==null?void 0:t.modelPath),G0}async function f1(e,t,o,n){var s,a;if(!G0)return[];let r=d1<(((s=t.face.emotion)==null?void 0:s.skipFrames)||0),A=(((a=t.face.emotion)==null?void 0:a.skipTime)||0)>v()-E3;return t.skipAllowed&&A&&r&&k3===n&&e5[o]&&e5[o].length>0?(d1++,e5[o]):(d1=0,new Promise(async l=>{var y;let c=[];if((y=t.face.emotion)!=null&&y.enabled){let i={},d=G0!=null&&G0.inputs[0].shape?G0.inputs[0].shape[2]:0;i.resize=Q0.image.resizeBilinear(e,[d,d],!1),i.channels=Q0.mul(i.resize,H.rgb),i.grayscale=Q0.sum(i.channels,3,!0),i.grayscaleSub=Q0.sub(i.grayscale,H.tf05),i.grayscaleMul=Q0.mul(i.grayscaleSub,H.tf2),i.emotion=G0==null?void 0:G0.execute(i.grayscaleMul),E3=v();let x=await i.emotion.data();for(let f=0;f(t.face.emotion.minConfidence||0)&&c.push({score:Math.min(.99,Math.trunc(100*x[f])/100),emotion:mA[f]});c.sort((f,p)=>p.score-f.score),Object.keys(i).forEach(f=>Q0.dispose(i[f]))}e5[o]=c,k3=n,l(c)}))}var t5=V(D());var C0,m1=[],C3=0,I3=0,O3=Number.MAX_SAFE_INTEGER;async function j3(e){var t;return P.initial&&(C0=null),C0?e.debug&&b("cached model:",C0.modelUrl):C0=await F((t=e.face.mobilefacenet)==null?void 0:t.modelPath),C0}async function p1(e,t,o,n){var s,a;if(!(C0!=null&&C0.executor))return[];let r=O3<(((s=t.face.mobilefacenet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.mobilefacenet)==null?void 0:a.skipTime)||0)>v()-I3;return t.skipAllowed&&A&&r&&C3===n&&m1[o]?(O3++,m1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.mobilefacenet)==null?void 0:y.enabled)&&(C0==null?void 0:C0.inputs[0].shape)){let i={};i.crop=t5.image.resizeBilinear(e,[C0.inputs[0].shape[2],C0.inputs[0].shape[1]],!1),i.data=C0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>t5.dispose(i[x]))}m1[o]=c,C3=n,I3=v(),l(c)})}var o5=V(D());var I0,u1=[],L3=0,W3=0,F3=Number.MAX_SAFE_INTEGER;async function G3(e){return P.initial&&(I0=null),I0?e.debug&&b("cached model:",I0.modelUrl):I0=await F(e.face.insightface.modelPath),I0}async function h1(e,t,o,n){var s,a;if(!(I0!=null&&I0.executor))return[];let r=F3<(((s=t.face.insightface)==null?void 0:s.skipFrames)||0),A=(((a=t.face.insightface)==null?void 0:a.skipTime)||0)>v()-W3;return t.skipAllowed&&A&&r&&L3===n&&u1[o]?(F3++,u1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.insightface)==null?void 0:y.enabled)&&(I0==null?void 0:I0.inputs[0].shape)){let i={};i.crop=o5.image.resizeBilinear(e,[I0.inputs[0].shape[2],I0.inputs[0].shape[1]],!1),i.data=I0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>o5.dispose(i[x]))}u1[o]=c,L3=n,W3=v(),l(c)})}var Pe=V(D());var _0=V(D());var O0,ve=0,pA=2.3,b1=q0.leftEyeLower0,g1=q0.rightEyeLower0,$e={leftBounds:[b1[0],b1[b1.length-1]],rightBounds:[g1[0],g1[g1.length-1]]},e2={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function Z3(e){var t,o;return P.initial&&(O0=null),O0?e.debug&&b("cached model:",O0.modelUrl):O0=await F((t=e.face.iris)==null?void 0:t.modelPath),ve=(O0==null?void 0:O0.executor)&&((o=O0.inputs)==null?void 0:o[0].shape)?O0.inputs[0].shape[2]:0,ve===-1&&(ve=64),O0}function n5(e,t,o,n){for(let r=0;r{let t=e[$e.leftBounds[0]][2],o=e[$e.rightBounds[0]][2];return t-o},H3=(e,t,o,n,r,A=!1)=>{let s=U2(q2(t3([e[o],e[n]]),pA)),a=Ke(s),l=_0.image.cropAndResize(t,[[s.startPoint[1]/r,s.startPoint[0]/r,s.endPoint[1]/r,s.endPoint[0]/r]],[0],[ve,ve]);if(A&&P.kernels.includes("flipleftright")){let c=_0.image.flipLeftRight(l);_0.dispose(l),l=c}return{box:s,boxSize:a,crop:l}},D3=(e,t,o,n=!1)=>{let r=[];for(let A=0;A{let n=e[q0[`${o}EyeUpper0`][e2.upperCenter]][2],r=e[q0[`${o}EyeLower0`][e2.lowerCenter]][2],A=(n+r)/2;return t.map((s,a)=>{let l=A;return a===2?l=n:a===4&&(l=r),[s[0],s[1],l]})};async function X3(e,t,o){if(!(O0!=null&&O0.executor))return e;let{box:n,boxSize:r,crop:A}=H3(e,t,$e.leftBounds[0],$e.leftBounds[1],o,!0),{box:s,boxSize:a,crop:l}=H3(e,t,$e.rightBounds[0],$e.rightBounds[1],o,!0),c=_0.concat([A,l]);_0.dispose(A),_0.dispose(l);let y=O0.execute(c);_0.dispose(c);let i=await y.data();_0.dispose(y);let d=i.slice(0,e2.numCoordinates*3),{rawCoords:x,iris:f}=D3(d,n,r,!0),p=i.slice(e2.numCoordinates*3),{rawCoords:g,iris:M}=D3(p,s,a,!1),R=uA(e);Math.abs(R)<30?(n5(e,x,"left",null),n5(e,g,"right",null)):R<1?n5(e,x,"left",["EyeUpper0","EyeLower0"]):n5(e,g,"right",["EyeUpper0","EyeLower0"]);let m=V3(e,f,"left"),u=V3(e,M,"right");return e.concat(m).concat(u)}var hA=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],bA=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],gA=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],MA=[[474,475],[475,476],[476,477],[477,474]],vA=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],RA=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],PA=[[469,470],[470,471],[471,472],[472,469]],TA=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Re(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var wA={lips:Re(hA),leftEye:Re(bA),leftEyebrow:Re(gA),leftIris:Re(MA),rightEye:Re(vA),rightEyebrow:Re(RA),rightIris:Re(PA),faceOval:Re(TA)},kA=Object.entries(wA).map(([e,t])=>t.map(o=>[o,e])).flat(),H4=new Map(kA),P2=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],We=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],Fe=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function Y3(e,t){var A,s,a,l,c,y,i,d,x,f;let o={lips:await((s=(A=t.filter(p=>p.size===160))==null?void 0:A[0])==null?void 0:s.data()),irisL:await((l=(a=t.filter(p=>p.size===10))==null?void 0:a[0])==null?void 0:l.data()),eyeL:await((y=(c=t.filter(p=>p.size===142))==null?void 0:c[0])==null?void 0:y.data()),irisR:await((d=(i=t.filter(p=>p.size===10))==null?void 0:i[1])==null?void 0:d.data()),eyeR:await((f=(x=t.filter(p=>p.size===142))==null?void 0:x[1])==null?void 0:f.data())};for(let p of Object.values(o))if(!p)return e;let n=We.reduce((p,g)=>p+=e[g][2],0)/We.length;for(let p=0;pp+=e[g][2],0)/Fe.length;for(let p=0;pv()-Ae.timestamp,n=Ae.skipped<(((c=t.face.detector)==null?void 0:c.skipFrames)||0);!t.skipAllowed||!o||!n||Ae.boxes.length===0?(Ae.boxes=await c3(e,t),Ae.timestamp=v(),Ae.skipped=0):Ae.skipped++;let r=[],A=[],s=0,a=T2;for(let R=0;RO.shape[O.shape.length-1]===1).data();if(w.faceScore=Math.round(100*X[0])/100,w.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(m.confidence=w.faceScore,t.face.mesh.keepInvalid){w.box=Z2(m,e),w.boxRaw=X2(m,e),w.score=w.boxScore,w.mesh=m.landmarks.map(O=>[(m.startPoint[0]+m.endPoint[0])/2+(m.endPoint[0]+m.startPoint[0])*O[0]/Je(),(m.startPoint[1]+m.endPoint[1])/2+(m.endPoint[1]+m.startPoint[1])*O[1]/Je()]),w.meshRaw=w.mesh.map(O=>[O[0]/(e.shape[2]||1),O[1]/(e.shape[1]||1),(O[2]||0)/a]);for(let O of Object.keys(Oe))w.annotations[O]=[w.mesh[Oe[O]]]}}else{let O=h.find(I=>I.shape[I.shape.length-1]===1404),W=Pe.reshape(O,[-1,3]),Z=await W.array();Pe.dispose(W),(p=t.face.attention)!=null&&p.enabled?Z=await Y3(Z,h):(g=t.face.iris)!=null&&g.enabled&&(Z=await X3(Z,w.tensor,T2)),w.mesh=r3(Z,m,u,z,T2),w.meshRaw=w.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/a]);for(let I of Object.keys(q0))w.annotations[I]=q0[I].map(m0=>w.mesh[m0]);w.score=w.faceScore;let N={...s3(w.mesh,m),confidence:m.confidence,landmarks:m.landmarks};w.box=Z2(N,e),w.boxRaw=X2(N,e),A.push(N)}Pe.dispose(h)}else{w.box=Z2(m,e),w.boxRaw=X2(m,e),w.score=w.boxScore,w.mesh=m.landmarks.map(h=>[(m.startPoint[0]+m.endPoint[0])/2+(m.endPoint[0]+m.startPoint[0])*h[0]/Je(),(m.startPoint[1]+m.endPoint[1])/2+(m.endPoint[1]+m.startPoint[1])*h[1]/Je()]),w.meshRaw=w.mesh.map(h=>[h[0]/(e.shape[2]||0),h[1]/(e.shape[1]||0),(h[2]||0)/a]);for(let h of Object.keys(Oe))w.annotations[h]=[w.mesh[Oe[h]]]}w.score>(((M=t.face.detector)==null?void 0:M.minConfidence)||1)?r.push(w):Pe.dispose(w.tensor)}return Ae.boxes=A,r}async function J3(e){var t,o,n,r,A,s;return P.initial&&(_=null),((t=e.face.attention)==null?void 0:t.enabled)&&(_==null?void 0:_.signature)&&Object.keys(((o=_==null?void 0:_.signature)==null?void 0:o.outputs)||{}).length<6&&(_=null),_?e.debug&&b("cached model:",_.modelUrl):(n=e.face.attention)!=null&&n.enabled?_=await F(e.face.attention.modelPath):_=await F((r=e.face.mesh)==null?void 0:r.modelPath),T2=_.executor&&((A=_==null?void 0:_.inputs)==null?void 0:A[0].shape)?(s=_==null?void 0:_.inputs)==null?void 0:s[0].shape[2]:256,_}var Q3=je,_3=M2;var $0=V(D());var v0,r5=[],$3=0,eo=0,v1=Number.MAX_SAFE_INTEGER;async function to(e){var t;return P.initial&&(v0=null),v0?e.debug&&b("cached model:",v0.modelUrl):v0=await F((t=e.face.description)==null?void 0:t.modelPath),v0}function R1(e){let t=e.image||e.tensor||e;if(!(v0!=null&&v0.inputs[0].shape))return t;let o=$0.image.resizeBilinear(t,[v0.inputs[0].shape[2],v0.inputs[0].shape[1]],!1),n=$0.mul(o,H.tf255);return $0.dispose(o),n}async function P1(e,t,o,n){var s,a,l,c;if(!(v0!=null&&v0.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=v1<(((s=t.face.description)==null?void 0:s.skipFrames)||0),A=(((a=t.face.description)==null?void 0:a.skipTime)||0)>v()-$3;return t.skipAllowed&&r&&A&&eo===n&&((l=r5[o])==null?void 0:l.age)&&((c=r5[o])==null?void 0:c.age)>0?(v1++,r5[o]):(v1=0,new Promise(async y=>{var d;let i={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let x=R1(e),f=v0==null?void 0:v0.execute(x);$3=v(),$0.dispose(x);let g=await f.find(B=>B.shape[1]===1).data(),M=Math.trunc(200*Math.abs(g[0]-.5))/100;M>(t.face.description.minConfidence||0)&&(i.gender=g[0]<=.5?"female":"male",i.genderScore=Math.min(.99,M));let R=$0.argMax(f.find(B=>B.shape[1]===100),1),m=(await R.data())[0];$0.dispose(R);let z=await f.find(B=>B.shape[1]===100).data();i.age=Math.round(z[m-1]>z[m+1]?10*m-100*z[m-1]:10*m+100*z[m+1])/10;let w=f.find(B=>B.shape[1]===1024),h=w?await w.data():[];i.descriptor=Array.from(h),f.forEach(B=>$0.dispose(B))}r5[o]=i,eo=n,y(i)}))}var G=V(D());var ro=V(D());function A5(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function w2(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Ao(e,t,o){let n=t.shape[1],r=t.shape[2],A=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return ro.image.cropAndResize(t,A,[0],o)}function so(e,t){let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(A=>[A[0]*t[0],A[1]*t[1]]);return{startPoint:o,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function s5(e,t=1.5){let o=w2(e),n=A5(e),r=[t*n[0]/2,t*n[1]/2],A=[o[0]-r[0],o[1]-r[1]],s=[o[0]+r[0],o[1]+r[1]];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function a5(e){let t=w2(e),o=A5(e),r=Math.max(...o)/2,A=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function zA(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function ao(e,t){let o=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return zA(o)}var oo=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Te(e,t){let o=0;for(let n=0;n[s.x,s.y]),this.anchorsTensor=G.tensor2d(this.anchors),this.inputSize=((A=(r=(n=(o=this==null?void 0:this.model)==null?void 0:o.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:A[2])||0,this.inputSizeTensor=G.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=G.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let o={};o.boxOffsets=G.slice(t,[0,0],[-1,2]),o.boxSizes=G.slice(t,[0,2],[-1,2]),o.div=G.div(o.boxOffsets,this.inputSizeTensor),o.boxCenterPoints=G.add(o.div,this.anchorsTensor),o.halfBoxSizes=G.div(o.boxSizes,this.doubleInputSizeTensor),o.sub=G.sub(o.boxCenterPoints,o.halfBoxSizes),o.startPoints=G.mul(o.sub,this.inputSizeTensor),o.add=G.add(o.boxCenterPoints,o.halfBoxSizes),o.endPoints=G.mul(o.add,this.inputSizeTensor);let n=G.concat2d([o.startPoints,o.endPoints],1);return Object.keys(o).forEach(r=>G.dispose(o[r])),n}normalizeLandmarks(t,o){let n={};n.reshape=G.reshape(t,[-1,7,2]),n.div=G.div(n.reshape,this.inputSizeTensor),n.landmarks=G.add(n.div,this.anchors[o]?this.anchors[o]:0);let r=G.mul(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(A=>G.dispose(n[A])),r}async predict(t,o){var a;let n={};n.resize=G.image.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=G.div(n.resize,H.tf127),n.image=G.sub(n.div,H.tf1),n.batched=this.model.execute(n.image),n.predictions=G.squeeze(n.batched),n.slice=G.slice(n.predictions,[0,0],[-1,1]),n.sigmoid=G.sigmoid(n.slice),n.scores=G.squeeze(n.sigmoid);let r=await n.scores.data();n.boxes=G.slice(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await G.image.nonMaxSuppressionAsync(n.norm,n.scores,3*(((a=o.hand)==null?void 0:a.maxDetected)||1),o.hand.iouThreshold,o.hand.minConfidence);let A=await n.nms.array(),s=[];for(let l of A){let c={};c.box=G.slice(n.norm,[l,0],[1,-1]),c.slice=G.slice(n.predictions,[l,5],[1,14]),c.norm=this.normalizeLandmarks(c.slice,l),c.palmLandmarks=G.reshape(c.norm,[-1,2]);let y=await c.box.data(),i=y.slice(0,2),d=y.slice(2,4),x=await c.palmLandmarks.array(),f={startPoint:i,endPoint:d,palmLandmarks:x,confidence:r[l]},p=so(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);s.push(p),Object.keys(c).forEach(g=>G.dispose(c[g]))}return Object.keys(n).forEach(l=>G.dispose(n[l])),s}};var j0=V(D());var OA=5,xo=1.65,yo=[0,5,9,13,17,1,2],jA=0,NA=2,fo=0,l5=class{constructor(t,o){T(this,"handDetector");T(this,"handPoseModel");T(this,"inputSize");T(this,"storedBoxes");T(this,"skipped");T(this,"detectedHands");var n,r,A;this.handDetector=t,this.handPoseModel=o,this.inputSize=((A=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:A[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let o=t.map(s=>s[0]),n=t.map(s=>s[1]),r=[Math.min(...o),Math.min(...n)],A=[Math.max(...o),Math.max(...n)];return{startPoint:r,endPoint:A}}getBoxForPalmLandmarks(t,o){let n=t.map(A=>k1([...A,1],o)),r=this.calculateLandmarksBoundingBox(n);return s5(a5(r),OA)}getBoxForHandLandmarks(t){let o=this.calculateLandmarksBoundingBox(t),n=s5(a5(o),xo);n.palmLandmarks=[];for(let r=0;r[s[0]*(x[0]-this.inputSize/2),s[1]*(x[1]-this.inputSize/2),s[2]*x[2]]),l=w1(n,[0,0]),c=a.map(x=>[...k1(x,l),x[2]]),y=io(r),i=[...w2(o),1],d=[Te(i,y[0]),Te(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2])])}async estimateHands(t,o){let n=!1,r,A=(o.hand.skipTime||0)>v()-fo,s=this.skipped<(o.hand.skipFrames||0);o.skipAllowed&&A&&s&&(r=await this.handDetector.predict(t,o),this.skipped=0),o.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==o.hand.maxDetected||!o.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let a=[];for(let l=0;l=o.hand.minConfidence/4){let z=j0.reshape(m,[-1,3]),w=await z.array();j0.dispose(m),j0.dispose(z);let h=this.transformRawCoords(w,p,y,f),B=this.getBoxForHandLandmarks(h);this.storedBoxes[l]={...B,confidence:u};let X={landmarks:h,confidence:u,boxConfidence:c.confidence,fingerConfidence:u,box:{topLeft:B.startPoint,bottomRight:B.endPoint}};a.push(X)}else this.storedBoxes[l]=null;j0.dispose(m)}else{let y=s5(a5(c),xo),i={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:y.startPoint,bottomRight:y.endPoint},landmarks:[]};a.push(i)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=a.length,a.length>o.hand.maxDetected&&(a.length=o.hand.maxDetected),a}};var R0={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>R0.nameMapping[e],getPoints:e=>R0.pointsMapping[e]},ke={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ke.nameMapping[e]},$={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>$.nameMapping[e]},we=class{constructor(t){T(this,"name");T(this,"curls");T(this,"directions");T(this,"weights");T(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,o,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([o,n])}direction(t,o,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([o,n])}weight(t,o){this.weights[t]=o;let n=this.weights.reduce((r,A)=>r+A,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,o){let n=0;for(let r in t){let A=t[r],s=this.curls[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}for(let r in o){let A=o[r],s=this.directions[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}return n/10}};var{thumb:ee,index:ce,middle:xe,ring:Ge,pinky:Be}=R0,{none:te,half:WA,full:oe}=ke,{verticalUp:t2,verticalDown:os,horizontalLeft:E1,horizontalRight:FA,diagonalUpRight:GA,diagonalUpLeft:o2,diagonalDownRight:ns,diagonalDownLeft:rs}=$,Ee=new we("thumbs up");Ee.curl(ee,te,1);Ee.direction(ee,t2,1);Ee.direction(ee,o2,.25);Ee.direction(ee,GA,.25);for(let e of[R0.index,R0.middle,R0.ring,R0.pinky])Ee.curl(e,oe,1),Ee.direction(e,E1,1),Ee.direction(e,FA,1);var i0=new we("victory");i0.curl(ee,WA,.5);i0.curl(ee,te,.5);i0.direction(ee,t2,1);i0.direction(ee,o2,1);i0.curl(ce,te,1);i0.direction(ce,t2,.75);i0.direction(ce,o2,1);i0.curl(xe,te,1);i0.direction(xe,t2,1);i0.direction(xe,o2,.75);i0.curl(Ge,oe,1);i0.direction(Ge,t2,.2);i0.direction(Ge,o2,1);i0.direction(Ge,E1,.2);i0.curl(Be,oe,1);i0.direction(Be,t2,.2);i0.direction(Be,o2,1);i0.direction(Be,E1,.2);i0.weight(ce,2);i0.weight(xe,2);var ze=new we("point");ze.curl(ee,oe,1);ze.curl(ce,te,.5);ze.curl(xe,oe,.5);ze.curl(Ge,oe,.5);ze.curl(Be,oe,.5);ze.weight(ce,2);ze.weight(xe,2);var Se=new we("middle finger");Se.curl(ee,te,1);Se.curl(ce,oe,.5);Se.curl(xe,oe,.5);Se.curl(Ge,oe,.5);Se.curl(Be,oe,.5);Se.weight(ce,2);Se.weight(xe,2);var n2=new we("open palm");n2.curl(ee,te,.75);n2.curl(ce,te,.75);n2.curl(xe,te,.75);n2.curl(Ge,te,.75);n2.curl(Be,te,.75);var mo=[Ee,i0,ze,Se,n2];var BA=.7,He={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function po(e,t,o,n){let r=(t-n)/(e-o),A=Math.atan(r)*180/Math.PI;return A<=0?A=-A:A>0&&(A=180-A),A}function ho(e,t){if(!e||!t)return[0,0];let o=po(e[0],e[1],t[0],t[1]);if(e.length===2)return o;let n=po(e[1],e[2],t[1],t[2]);return[o,n]}function uo(e,t=1){let o=0,n=0,r=0;return e>=75&&e<=105?o=1*t:e>=25&&e<=155?n=1*t:r=1*t,[o,n,r]}function HA(e,t,o){let n=e[0]-t[0],r=e[0]-o[0],A=t[0]-o[0],s=e[1]-t[1],a=e[1]-o[1],l=t[1]-o[1],c=e[2]-t[2],y=e[2]-o[2],i=t[2]-o[2],d=Math.sqrt(n*n+s*s+c*c),x=Math.sqrt(r*r+a*a+y*y),f=Math.sqrt(A*A+l*l+i*i),p=(f*f+d*d-x*x)/(2*f*d);p>1?p=1:p<-1&&(p=-1);let g=Math.acos(p);g=57.2958*g%180;let M;return g>He.NO_CURL_START_LIMIT?M=ke.none:g>He.HALF_CURL_START_LIMIT?M=ke.half:M=ke.full,M}function bo(e,t,o,n){let r;return n===Math.abs(e)?e>0?r=$.horizontalLeft:r=$.horizontalRight:n===Math.abs(t)?t>0?r=$.horizontalLeft:r=$.horizontalRight:o>0?r=$.horizontalLeft:r=$.horizontalRight,r}function go(e,t,o,n){let r;return n===Math.abs(e)?e<0?r=$.verticalDown:r=$.verticalUp:n===Math.abs(t)?t<0?r=$.verticalDown:r=$.verticalUp:o<0?r=$.verticalDown:r=$.verticalUp,r}function DA(e,t,o,n,r,A,s,a){let l,c=go(e,t,o,n),y=bo(r,A,s,a);return c===$.verticalUp?y===$.horizontalLeft?l=$.diagonalUpLeft:l=$.diagonalUpRight:y===$.horizontalLeft?l=$.diagonalDownLeft:l=$.diagonalDownRight,l}function VA(e,t,o,n){let r=e[0]-t[0],A=e[0]-o[0],s=t[0]-o[0],a=e[1]-t[1],l=e[1]-o[1],c=t[1]-o[1],y=Math.max(Math.abs(r),Math.abs(A),Math.abs(s)),i=Math.max(Math.abs(a),Math.abs(l),Math.abs(c)),d=0,x=0,f=0,p=i/(y+1e-5);p>1.5?d+=He.DISTANCE_VOTE_POWER:p>.66?x+=He.DISTANCE_VOTE_POWER:f+=He.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+a*a),M=Math.sqrt(A*A+l*l),R=Math.sqrt(s*s+c*c),m=Math.max(g,M,R),u=e[0],z=e[1],w=o[0],h=o[1];m===g?(w=o[0],h=o[1]):m===R&&(u=t[0],z=t[1]);let O=ho([u,z],[w,h]),W=uo(O,He.TOTAL_ANGLE_VOTE_POWER);d+=W[0],x+=W[1],f+=W[2];for(let N of n){let I=uo(N,He.SINGLE_ANGLE_VOTE_POWER);d+=I[0],x+=I[1],f+=I[2]}let Z;return d===Math.max(d,x,f)?Z=go(l,a,c,i):f===Math.max(x,f)?Z=bo(A,r,s,y):Z=DA(l,a,c,i,A,r,s,y),Z}function Mo(e){let t=[],o=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let A of R0.all){let s=R0.getPoints(A),a=[],l=[];for(let c of s){let y=e[c[0]],i=e[c[1]],d=ho(y,i),x=d[0],f=d[1];a.push(x),l.push(f)}t.push(a),o.push(l)}for(let A of R0.all){let s=A===R0.thumb?1:0,a=R0.getPoints(A),l=e[a[s][0]],c=e[a[s+1][1]],y=e[a[3][1]],i=HA(l,c,y),d=VA(l,c,y,t[A].slice(s));n[A]=i,r[A]=d}return{curls:n,directions:r}}function c5(e){if(!e||e.length===0)return null;let t=Mo(e),o={};for(let n of R0.all)o[R0.getName(n)]={curl:ke.getName(t.curls[n]),direction:$.getName(t.directions[n])};return o}function vo(e){let t=[];if(!e||e.length===0)return t;let o=Mo(e);for(let n of mo){let r=n.matchAgainst(o.curls,o.directions);r>=BA&&t.push({name:n.name,confidence:r})}return t}var Ro={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},De,Ve,Po;async function S1(e,t){let o=await Po.estimateHands(e,t);if(!o)return[];let n=[];for(let r=0;ro[r].landmarks[i]);let s=o[r].landmarks,a=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(s&&s.length>0){for(let y of s)y[0]a[2]&&(a[2]=y[0]),y[1]>a[3]&&(a[3]=y[1]);a[2]-=a[0],a[3]-=a[1],l=[a[0]/(e.shape[2]||0),a[1]/(e.shape[1]||0),a[2]/(e.shape[2]||0),a[3]/(e.shape[1]||0)]}else a=o[r].box?[Math.trunc(Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.max(0,o[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,o[r].box.bottomRight[0])-Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,o[r].box.bottomRight[1])-Math.max(0,o[r].box.topLeft[1]))]:[0,0,0,0],l=[o[r].box.topLeft[0]/(e.shape[2]||0),o[r].box.topLeft[1]/(e.shape[1]||0),(o[r].box.bottomRight[0]-o[r].box.topLeft[0])/(e.shape[2]||0),(o[r].box.bottomRight[1]-o[r].box.topLeft[1])/(e.shape[1]||0)];let c=c5(s);n.push({id:r,score:Math.round(100*o[r].confidence)/100,boxScore:Math.round(100*o[r].boxConfidence)/100,fingerScore:Math.round(100*o[r].fingerConfidence)/100,label:"hand",box:a,boxRaw:l,keypoints:s,annotations:A,landmarks:c})}return n}async function C1(e){var o,n;P.initial&&(De=null,Ve=null),!De||!Ve?[De,Ve]=await Promise.all([e.hand.enabled?F((o=e.hand.detector)==null?void 0:o.modelPath):null,e.hand.landmarks?F((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&b("cached model:",De.modelUrl),e.debug&&b("cached model:",Ve.modelUrl));let t=De?new i5(De):void 0;return t&&Ve&&(Po=new l5(t,Ve)),[De,Ve]}var K=V(D());var r0=V(D());var J={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function ZA(){let e=J.gl;!e||(J.extensions=e.getSupportedExtensions())}function wo(e){var t;if(e.config.backend==="humangl"&&(J.name in r0.engine().registry&&!((t=J==null?void 0:J.gl)!=null&&t.getParameter(J.gl.VERSION))&&(b("error: humangl backend invalid context"),x5(e)),!r0.findBackend(J.name))){try{J.canvas=b0(100,100)}catch(n){b("error: cannot create canvas:",n);return}try{if(J.gl=J.canvas.getContext("webgl2",J.webGLattr),!J.gl){b("error: cannot get WebGL context");return}if(!J.gl.getParameter(J.gl.VERSION).includes("2.0")){b("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}J.canvas&&(J.canvas.addEventListener("webglcontextlost",r=>{throw b("error: humangl:",r.type),b("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),J.canvas.addEventListener("webglcontextrestored",r=>{b("error: humangl context restored:",r)}),J.canvas.addEventListener("webglcontextcreationerror",r=>{b("error: humangl context create:",r)}))}catch(n){b("error: cannot get WebGL context:",n);return}try{r0.setWebGLContext(2,J.gl)}catch(n){b("error: cannot set WebGL context:",n);return}try{let n=new r0.GPGPUContext(J.gl);r0.registerBackend(J.name,()=>new r0.MathBackendWebGL(n),J.priority)}catch(n){b("error: cannot register WebGL backend:",n);return}try{r0.getKernelsForBackend("webgl").forEach(r=>{let A={...r,backendName:J.name};r0.registerKernel(A)})}catch(n){b("error: cannot update WebGL backend registration:",n);return}let o=r0.backend().getGPGPUContext?r0.backend().getGPGPUContext().gl:null;if(o)b(`humangl webgl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`);else{b("error: no current gl context:",o,J.gl);return}try{r0.env().flagRegistry.WEBGL_VERSION&&r0.env().set("WEBGL_VERSION",2)}catch(n){b("error: cannot set WebGL backend flags:",n);return}ZA(),b("backend registered:",J.name)}}var k=V(D());function XA(e){if(!P.kernels.includes("mod")){let t={kernelName:"Mod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.sub(o.inputs.a,k.mul(k.div(o.inputs.a,o.inputs.b),o.inputs.b)))};e.debug&&b("registered kernel:","Mod"),k.registerKernel(t),P.kernels.push("mod")}if(!P.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.add(k.mul(k.floorDiv(o.inputs.a/o.inputs.b),o.inputs.b),k.mod(o.inputs.a,o.inputs.b)))};e.debug&&b("registered kernel:","FloorMod"),k.registerKernel(t),P.kernels.push("floormod")}if(!P.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>{let n=k.getBackend();k.setBackend("cpu");let r=k.image.rotateWithOffset(o.inputs.image,o.attrs.radians,o.attrs.fillValue,o.attrs.center);return k.setBackend(n),r})};e.debug&&b("registered kernel:","RotateWithOffset"),k.registerKernel(t),P.kernels.push("rotatewithoffset")}}async function d5(e,t=!1){if(e.state="backend",t||P.initial||e.config.backend&&e.config.backend.length>0&&k.getBackend()!==e.config.backend){let o=v();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&b("running inside web worker"),P.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&b("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),P.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&b(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),P.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")b("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&b("enumerated webgpu adapter:",r),!r)b("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let A="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;b("webgpu adapter info:",A)}}e.config.backend==="humangl"&&wo(e);let n=Object.keys(k.engine().registryFactory);if(e.config.debug&&b("available backends:",n),n.includes(e.config.backend)||(b(`error: backend ${e.config.backend} not found in registry`),e.config.backend=P.node?"tensorflow":"webgl",e.config.debug&&b(`override: setting backend ${e.config.backend}`)),e.config.debug&&b("setting backend:",e.config.backend),e.config.backend==="wasm"){if(k.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&k.env().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&b("wasm path:",e.config.wasmPath),typeof k.setWasmPaths!="undefined")k.setWasmPaths(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,A=!1;try{r=await k.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),A=await k.env().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&b(`wasm execution: ${A?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!A&&b("warning: wasm simd support is not enabled")}catch(s){b("wasm detection failed")}}try{await k.setBackend(e.config.backend),await k.ready(),Gt()}catch(r){return b("error: cannot set backend:",e.config.backend,r),!1}}if(k.getBackend()==="humangl"&&(k.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&k.env().set("CHECK_COMPUTATION_FOR_ERRORS",!1),k.env().flagRegistry.WEBGL_CPU_FORWARD&&k.env().set("WEBGL_CPU_FORWARD",!0),k.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&k.env().set("WEBGL_USE_SHAPES_UNIFORMS",!0),k.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&k.env().set("CPU_HANDOFF_SIZE_THRESHOLD",256),k.env().flagRegistry.WEBGL_EXP_CONV&&k.env().set("WEBGL_EXP_CONV",!0),k.env().flagRegistry.USE_SETTIMEOUTCUSTOM&&k.env().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(b("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),k.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),k.backend().getGPGPUContext)){let n=await k.backend().getGPGPUContext().gl;e.config.debug&&b(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}k.getBackend(),k.enableProdMode(),await k.ready(),e.performance.initBackend=Math.trunc(v()-o),e.config.backend=k.getBackend(),await P.updateBackend(),XA(e.config)}return!0}function f5(e,t){for(let o of e){let n={kernelName:o,backendName:t.backend,kernelFunc:()=>{t.debug&&b("kernelFunc",o,t.backend)}};k.registerKernel(n)}P.kernels=k.getKernelsForBackend(k.getBackend()).map(o=>o.kernelName.toLowerCase())}var s0=[null,null],UA=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Ce=[[0,0],[0,0]],YA=["hand","fist","pinch","point","face","tip","pinchtip"],Eo=4,zo=1.6,KA=512,JA=1.4,m5=Number.MAX_SAFE_INTEGER,I1=0,ye=[0,0],A0={boxes:[],hands:[]},So={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function Co(e){var t;if(P.initial&&(s0[0]=null),s0[0])e.debug&&b("cached model:",s0[0].modelUrl);else{f5(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),s0[0]=await F((t=e.hand.detector)==null?void 0:t.modelPath);let o=s0[0].executor?Object.values(s0[0].modelSignature.inputs):void 0;Ce[0][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[0][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[0]}async function Io(e){var t;if(P.initial&&(s0[1]=null),s0[1])e.debug&&b("cached model:",s0[1].modelUrl);else{s0[1]=await F((t=e.hand.skeleton)==null?void 0:t.modelPath);let o=s0[1].executor?Object.values(s0[1].modelSignature.inputs):void 0;Ce[1][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[1][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[1]}async function QA(e,t){let o=[];if(!e||!s0[0])return o;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),A=Math.min(Math.round((e.shape[1]||0)/8)*8,KA),s=Math.round(A*r/8)*8;n.resize=K.image.resizeBilinear(e,[A,s]),n.cast=K.cast(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await s0[0].executeAsync(n.cast,UA),n.boxes=K.squeeze(n.rawBoxes,[0,2]),n.scores=K.squeeze(n.rawScores,[0]);let a=K.unstack(n.scores,1);K.dispose(a[Eo]),a.splice(Eo,1),n.filtered=K.stack(a,1),K.dispose(a),n.max=K.max(n.filtered,1),n.argmax=K.argMax(n.filtered,1);let l=0;n.nms=await K.image.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let c=await n.nms.data(),y=await n.max.data(),i=await n.argmax.data();for(let d of Array.from(c)){let x=K.slice(n.boxes,d,1),f=await x.data();K.dispose(x);let p=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=J2(p,JA),M=[Math.trunc(p[0]*ye[0]),Math.trunc(p[1]*ye[1]),Math.trunc(p[2]*ye[0]),Math.trunc(p[3]*ye[1])],R=y[d],m=YA[i[d]],u={id:l++,score:R,box:M,boxRaw:g,label:m};o.push(u)}return Object.keys(n).forEach(d=>K.dispose(n[d])),o.sort((d,x)=>x.score-d.score),o.length>(t.hand.maxDetected||1)&&(o.length=t.hand.maxDetected||1),o}async function O1(e,t,o){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&s0[1]&&o.hand.landmarks&&t.score>(o.hand.minConfidence||0)){let r={},A=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=K.image.cropAndResize(e,[A],[0],[Ce[1][0],Ce[1][1]],"bilinear"),r.div=K.div(r.crop,H.tf255),[r.score,r.keypoints]=s0[1].execute(r.div,["Identity_1","Identity"]);let s=(await r.score.data())[0],a=(100-Math.trunc(100/(1+Math.exp(s))))/100;if(a>=(o.hand.minConfidence||0)){n.fingerScore=a,r.reshaped=K.reshape(r.keypoints,[-1,3]);let y=(await r.reshaped.array()).map(i=>[i[0]/Ce[1][1],i[1]/Ce[1][0],i[2]||0]).map(i=>[i[0]*t.boxRaw[2],i[1]*t.boxRaw[3],i[2]||0]);n.keypoints=y.map(i=>[ye[0]*(i[0]+t.boxRaw[0]),ye[1]*(i[1]+t.boxRaw[1]),i[2]||0]),n.landmarks=c5(n.keypoints);for(let i of Object.keys(So))n.annotations[i]=So[i].map(d=>n.landmarks&&n.keypoints[d]?n.keypoints[d]:null)}Object.keys(r).forEach(l=>K.dispose(r[l]))}return n}async function j1(e,t){var r,A;if(!((r=s0[0])!=null&&r.executor)||!((A=s0[1])!=null&&A.executor)||!s0[0].inputs[0].shape||!s0[1].inputs[0].shape)return[];ye=[e.shape[2]||0,e.shape[1]||0],m5++;let o=(t.hand.skipTime||0)>v()-I1,n=m5<(t.hand.skipFrames||0);return t.skipAllowed&&o&&n?A0.hands:new Promise(async s=>{let a=3*(t.hand.skipTime||0)>v()-I1,l=m5<3*(t.hand.skipFrames||0);t.skipAllowed&&A0.hands.length===t.hand.maxDetected?A0.hands=await Promise.all(A0.boxes.map(y=>O1(e,y,t))):t.skipAllowed&&a&&l&&A0.hands.length>0?A0.hands=await Promise.all(A0.boxes.map(y=>O1(e,y,t))):(A0.boxes=await QA(e,t),I1=v(),A0.hands=await Promise.all(A0.boxes.map(y=>O1(e,y,t))),m5=0);let c=[...A0.boxes];if(A0.boxes.length=0,t.cacheSensitivity>0)for(let y=0;y.05&&i.box[3]/(e.shape[1]||1)>.05&&A0.hands[y].fingerScore&&A0.hands[y].fingerScore>(t.hand.minConfidence||0)){let d=J2(i.box,zo),x=J2(i.boxRaw,zo);A0.boxes.push({...c[y],box:d,boxRaw:x})}}for(let y=0;yv()-No,A=N1<(((a=t.face.liveness)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&jo===n&&p5[o]?(N1++,p5[o]):(N1=0,new Promise(async l=>{let c=u5.image.resizeBilinear(e,[f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[2]:0,f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[1]:0],!1),y=f0==null?void 0:f0.execute(c),i=(await y.data())[0];p5[o]=Math.round(100*i)/100,jo=n,No=v(),u5.dispose([c,y]),l(p5[o])}))}var Do=V(D());var k2={};pe(k2,{connected:()=>b5,horizontal:()=>W1,kpt:()=>h5,relative:()=>G1,vertical:()=>F1});var h5=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],W1=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],F1=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],G1=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],b5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Ie=V(D()),Fo=.005,N0={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function B1(e){for(let t of W1){let o=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[0]r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[1]c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),A=e.keypoints.findIndex(c=>c&&c.part===o[0]),s=e.keypoints.findIndex(c=>c&&c.part===o[1]);if(!e.keypoints[A]||!e.keypoints[s])continue;let a=e.keypoints[n]?[Math.abs(e.keypoints[A].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[A].position[0]-e.keypoints[r].position[0])]:[0,0];if(a[0]>a[1]||l[0]>l[1]){let c=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=c}}}function Go(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],o.pad=Ie.pad(e,N0.padding),o.resize=Ie.image.resizeBilinear(o.pad,[t,t]);let n=Ie.cast(o.resize,"int32");return Object.keys(o).forEach(s=>Ie.dispose(o[s])),n}function Ho(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+N0.padding[2][0]+N0.padding[2][1])/t[0]-N0.padding[2][0],n.position[1]*(t[1]+N0.padding[1][0]+N0.padding[1][1])/t[1]-N0.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let o=le(e.keypoints.map(n=>n.position),t);return e.box=o.box,e.boxRaw=o.boxRaw,e}var l0,g5=0,H1=Number.MAX_SAFE_INTEGER,Ze={boxes:[],bodies:[],last:0};async function Vo(e){var t;return P.initial&&(l0=null),l0?e.debug&&b("cached model:",l0.modelUrl):(f5(["size"],e),l0=await F(e.body.modelPath)),g5=(l0==null?void 0:l0.executor)&&((t=l0==null?void 0:l0.inputs)==null?void 0:t[0].shape)?l0.inputs[0].shape[2]:0,g5<64&&(g5=256),l0}function $A(e,t,o){let n=e[0][0],r=[],A=0;for(let y=0;yt.body.minConfidence){let i=[n[y][1],n[y][0]];r.push({score:Math.round(100*A)/100,part:h5[y],positionRaw:i,position:[Math.round((o.shape[2]||0)*i[0]),Math.round((o.shape[1]||0)*i[1])]})}A=r.reduce((y,i)=>i.score>y?i.score:y,0);let s=[],a=le(r.map(y=>y.position),[o.shape[2],o.shape[1]]),l={};for(let[y,i]of Object.entries(b5)){let d=[];for(let x=0;xg.part===i[x]),p=r.find(g=>g.part===i[x+1]);f&&p&&f.score>(t.body.minConfidence||0)&&p.score>(t.body.minConfidence||0)&&d.push([f.position,p.position])}l[y]=d}let c={id:0,score:A,box:a.box,boxRaw:a.boxRaw,keypoints:r,annotations:l};return B1(c),s.push(c),s}function e7(e,t,o){let n=[];for(let r=0;rt.body.minConfidence){let a=[];for(let i=0;i<17;i++){let d=A[3*i+2];if(d>t.body.minConfidence){let x=[A[3*i+1],A[3*i+0]];a.push({part:h5[i],score:Math.round(100*d)/100,positionRaw:x,position:[Math.round((o.shape[2]||0)*x[0]),Math.round((o.shape[1]||0)*x[1])]})}}let l=le(a.map(i=>i.position),[o.shape[2],o.shape[1]]),c={};for(let[i,d]of Object.entries(b5)){let x=[];for(let f=0;fM.part===d[f]),g=a.find(M=>M.part===d[f+1]);p&&g&&p.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([p.position,g.position])}c[i]=x}let y={id:r,score:s,box:l.box,boxRaw:l.boxRaw,keypoints:[...a],annotations:c};B1(y),n.push(y)}}return n.sort((r,A)=>A.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function D1(e,t){var r;if(!(l0!=null&&l0.executor)||!((r=l0==null?void 0:l0.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Ze.boxes.length=0),H1++;let o=(t.body.skipTime||0)>v()-Ze.last,n=H1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n?Ze.bodies:new Promise(async A=>{let s={};H1=0,s.input=Bo(e,g5),s.res=l0==null?void 0:l0.execute(s.input),Ze.last=v();let a=await s.res.array();Ze.bodies=s.res.shape[2]===17?$A(a,t,e):e7(a,t,e);for(let l of Ze.bodies)Ho(l,[e.shape[2]||1,e.shape[1]||1]),Go(l.keypoints);Object.keys(s).forEach(l=>Do.dispose(s[l])),A(Ze.bodies)})}var L0=V(D());var U0,M5=[],Xo=0,V1=Number.MAX_SAFE_INTEGER,R5=0,v5=2.5;async function qo(e){if(!U0||P.initial){U0=await F(e.object.modelPath);let t=U0!=null&&U0.executor?Object.values(U0.modelSignature.inputs):void 0;R5=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&b("cached model:",U0.modelUrl);return U0}async function t7(e,t,o){let n=0,r=[],A=R5;for(let c of[1,2,4]){let y=c*13,i=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)===_e.length)),d=await i.array(),x=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)<_e.length)),f=x.reshape([-1,4,x.shape[1]/4]),p=f.argMax(2),g=await p.array();for(let M=0;M(o.object.minConfidence||0)&&R!==61){let u=(.5+Math.trunc(M%y))/y,z=(.5+Math.trunc(M/y))/y,w=g[M].map(I=>I*(y/c/A)),[h,B]=[u-v5/c*w[0],z-v5/c*w[1]],[X,O]=[u+v5/c*w[2]-h,z+v5/c*w[3]-B],W=[h,B,X,O];W=W.map(I=>Math.max(0,Math.min(I,1)));let Z=[W[0]*t[0],W[1]*t[1],W[2]*t[0],W[3]*t[1]],N={id:n++,score:Math.round(100*m)/100,class:R+1,label:_e[R].label,box:Z.map(I=>Math.trunc(I)),boxRaw:W};r.push(N)}}L0.dispose([i,x,f,p])}let s=r.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),a=r.map(c=>c.score),l=[];if(s&&s.length>0){let c=await L0.image.nonMaxSuppressionAsync(s,a,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence);l=await c.data(),L0.dispose(c)}return r=r.filter((c,y)=>l.includes(y)).sort((c,y)=>y.score-c.score),r}async function Z1(e,t){if(!(U0!=null&&U0.executor))return[];let o=(t.object.skipTime||0)>v()-Xo,n=V1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&M5.length>0?(V1++,M5):(V1=0,!P.kernels.includes("mod")||!P.kernels.includes("sparsetodense")?M5:new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=L0.image.resizeBilinear(e,[R5,R5],!1),a=L0.div(s,H.tf255),l=L0.transpose(a,[0,3,1,2]),c;t.object.enabled&&(c=U0.execute(l)),Xo=v();let y=await t7(c,A,t);M5=y,L0.dispose([s,a,l,...c]),r(y)}))}var P0=V(D());var z2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],o7=z2.length,E2=z2.reduce((e,t,o)=>(e[t]=o,e),{}),n7=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Cs=n7.map(([e,t])=>[E2[e],E2[t]]),Yo=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Ko(e){let t=e.reduce(({maxX:o,maxY:n,minX:r,minY:A},{position:{x:s,y:a}})=>({maxX:Math.max(o,s),maxY:Math.max(n,a),minX:Math.min(r,s),minY:Math.min(A,a)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Jo(e,[t,o],[n,r]){let A=t/n,s=o/r,a=(c,y)=>({id:y,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/n,c.box[2]/r,c.box[3]/n],box:[Math.trunc(c.box[0]*s),Math.trunc(c.box[1]*A),Math.trunc(c.box[2]*s),Math.trunc(c.box[3]*A)],keypoints:c.keypoints.map(({score:i,part:d,position:x})=>({score:i,part:d,position:[Math.trunc(x.x*s),Math.trunc(x.y*A)],positionRaw:[x.x/n,x.y/n]})),annotations:{}});return e.map((c,y)=>a(c,y))}var P5=class{constructor(t,o){T(this,"priorityQueue");T(this,"numberOfElements");T(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=o}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let o=2*t;if(oo?o:e}function Qo(e,t,o,n){let r=o-e,A=n-t;return r*r+A*A}function Y1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var W0,A7=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],T5=1,r2=16,s7=50**2;function _o(e,t,o,n,r,A,s=2){let a=M=>({y:A.get(M.y,M.x,e),x:A.get(M.y,M.x,A.shape[2]/2+e)}),l=(M,R,m)=>({y:U1(Math.round(M.y/r2),0,R-1),x:U1(Math.round(M.x/r2),0,m-1)}),[c,y]=n.shape,i=l(t.position,c,y),d=a(i),f=Y1(t.position,d);for(let M=0;M[E2[d],E2[x]]),s=A.map(([,d])=>d),a=A.map(([d])=>d),l=t.shape[2],c=s.length,y=new Array(l),i=q1(e.part,r2,o);y[e.part.id]={score:e.score,part:z2[e.part.id],position:i};for(let d=c-1;d>=0;--d){let x=s[d],f=a[d];y[x]&&!y[f]&&(y[f]=_o(d,y[x],f,t,o,r))}for(let d=0;dt){a=!1;break}if(!a)break}return a}function l7(e,t){let[o,n,r]=t.shape,A=new P5(o*n*r,({score:s})=>s);for(let s=0;s{var s;let A=(s=r[n])==null?void 0:s.position;return A?Qo(o,t,A.y,A.x)<=s7:!1})}function c7(e,t){return t.reduce((n,{position:r,score:A},s)=>($o(e,r,s)||(n+=A),n),0)/t.length}function x7(e,t,o,n,r,A){let s=[],a=l7(A,t);for(;s.lengthx.score>A);let i=c7(s,y),d=Ko(y);i>A&&s.push({keypoints:y,box:d,score:Math.round(100*i)/100})}return s}async function K1(e,t){if(!(W0!=null&&W0.executor))return[];let o=P0.tidy(()=>{if(!W0.inputs[0].shape)return[];let s=P0.image.resizeBilinear(e,[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]),a=P0.sub(P0.div(P0.cast(s,"float32"),127.5),1),c=W0.execute(a,A7).map(y=>P0.squeeze(y,[0]));return c[1]=P0.sigmoid(c[1]),c}),n=await Promise.all(o.map(s=>s.buffer()));for(let s of o)P0.dispose(s);let r=x7(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return W0.inputs[0].shape?Jo(r,[e.shape[1],e.shape[2]],[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]):[]}async function en(e){return!W0||P.initial?W0=await F(e.body.modelPath):e.debug&&b("cached model:",W0.modelUrl),W0}var e0=V(D());var se,J1=!1;async function Q1(e){return!se||P.initial?se=await F(e.segmentation.modelPath):e.debug&&b("cached model:",se.modelUrl),se}async function on(e,t,o){var p,g;if(J1)return{data:[],canvas:null,alpha:null};J1=!0,se||await Q1(o);let n=await Ue(e,o),r=((p=n.tensor)==null?void 0:p.shape[2])||0,A=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let s={};s.resize=e0.image.resizeBilinear(n.tensor,[se.inputs[0].shape?se.inputs[0].shape[1]:0,se.inputs[0].shape?se.inputs[0].shape[2]:0],!1),e0.dispose(n.tensor),s.norm=e0.div(s.resize,H.tf255),s.res=se.execute(s.norm),s.squeeze=e0.squeeze(s.res,0),s.squeeze.shape[2]===2?(s.softmax=e0.softmax(s.squeeze),[s.bg,s.fg]=e0.unstack(s.softmax,2),s.expand=e0.expandDims(s.fg,2),s.pad=e0.expandDims(s.expand,0),s.crop=e0.image.cropAndResize(s.pad,[[0,0,.5,.5]],[0],[r,A]),s.data=e0.squeeze(s.crop,0)):s.data=e0.image.resizeBilinear(s.squeeze,[A,r]);let a=Array.from(await s.data.data());if(P.node&&!P.Canvas&&typeof ImageData=="undefined")return o.debug&&b("canvas support missing"),Object.keys(s).forEach(M=>e0.dispose(s[M])),{data:a,canvas:null,alpha:null};let l=b0(r,A);e0.browser&&await e0.browser.toPixels(s.data,l);let c=l.getContext("2d");o.segmentation.blur&&o.segmentation.blur>0&&(c.filter=`blur(${o.segmentation.blur}px)`);let y=c.getImageData(0,0,r,A),i=b0(r,A),d=i.getContext("2d");n.canvas&&d.drawImage(n.canvas,0,0),d.globalCompositeOperation="darken",o.segmentation.blur&&o.segmentation.blur>0&&(d.filter=`blur(${o.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let x=d.getImageData(0,0,r,A);for(let M=0;Me0.dispose(s[M])),J1=!1,{data:a,canvas:i,alpha:l}}var S2=class{constructor(){T(this,"ssrnetage",null);T(this,"gear",null);T(this,"blazeposedetect",null);T(this,"blazepose",null);T(this,"centernet",null);T(this,"efficientpose",null);T(this,"mobilefacenet",null);T(this,"insightface",null);T(this,"emotion",null);T(this,"facedetect",null);T(this,"faceiris",null);T(this,"facemesh",null);T(this,"faceres",null);T(this,"ssrnetgender",null);T(this,"handpose",null);T(this,"handskeleton",null);T(this,"handtrack",null);T(this,"liveness",null);T(this,"movenet",null);T(this,"nanodet",null);T(this,"posenet",null);T(this,"segmentation",null);T(this,"antispoof",null)}},_1=e=>{let t=0,o=0,n=0;for(let A of Object.values(ne))t+=A.sizeFromManifest,o+=A.sizeLoadedWeights,n+=A.sizeDesired;let r=n>0?o/n:0;return{numLoadedModels:Object.values(ne).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:o,totalSizeLoading:n,totalSizeEnabled:void 0,modelStats:Object.values(ne)}};function x5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function $1(e){var t,o,n,r,A,s,a,l,c,y,i,d,x,f,p,g,M,R,m,u,z,w,h,B,X,O;P.initial&&x5(e),e.config.hand.enabled&&(!e.models.handpose&&((o=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:o.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await C1(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await C1(e.config))),e.config.body.enabled&&!e.models.blazepose&&((A=e.config.body.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=b3(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=h3(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((s=e.config.body.modelPath)==null?void 0:s.includes("efficientpose"))&&(e.models.efficientpose=T3(e.config)),e.config.body.enabled&&!e.models.movenet&&((a=e.config.body.modelPath)==null?void 0:a.includes("movenet"))&&(e.models.movenet=Vo(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=en(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=l3(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=Jt(e.config)),e.config.face.enabled&&((y=e.config.face.liveness)==null?void 0:y.enabled)&&!e.models.liveness&&(e.models.liveness=Lo(e.config)),e.config.face.enabled&&((i=e.config.face.description)==null?void 0:i.enabled)&&!e.models.faceres&&(e.models.faceres=to(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=z3(e.config)),e.config.face.enabled&&((x=e.config.face.iris)==null?void 0:x.enabled)&&!((f=e.config.face.attention)!=null&&f.enabled)&&!e.models.faceiris&&(e.models.faceiris=Z3(e.config)),e.config.face.enabled&&((p=e.config.face.mesh)==null?void 0:p.enabled)&&!e.models.facemesh&&(e.models.facemesh=J3(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=Wt(e.config)),e.config.face.enabled&&((M=e.config.face.ssrnet)==null?void 0:M.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=Dt(e.config)),e.config.face.enabled&&((R=e.config.face.ssrnet)==null?void 0:R.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=qt(e.config)),e.config.face.enabled&&((m=e.config.face.mobilefacenet)==null?void 0:m.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=j3(e.config)),e.config.face.enabled&&((u=e.config.face.insightface)==null?void 0:u.enabled)&&!e.models.insightface&&(e.models.insightface=G3(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((w=(z=e.config.hand.detector)==null?void 0:z.modelPath)==null?void 0:w.includes("handtrack"))&&(e.models.handtrack=Co(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((B=(h=e.config.hand.detector)==null?void 0:h.modelPath)==null?void 0:B.includes("handtrack"))&&(e.models.handskeleton=Io(e.config)),e.config.object.enabled&&!e.models.centernet&&((X=e.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(e.models.centernet=v3(e.config)),e.config.object.enabled&&!e.models.nanodet&&((O=e.config.object.modelPath)==null?void 0:O.includes("nanodet"))&&(e.models.nanodet=qo(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=Q1(e.config));for await(let W of Object.keys(e.models))e.models[W]&&typeof e.models[W]!="undefined"&&(e.models[W]=await e.models[W])}var B0;function A2(e,t,o){var c;if(e&&(B0=e),!t||(B0||b("instance not registred"),!B0.config.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],A=[],s=[],a=t.modelUrl,l=t.executor;if((c=l==null?void 0:l.graph)!=null&&c.nodes)for(let y of Object.values(l.graph.nodes)){let i=y.op.toLowerCase();A.includes(i)||A.push(i)}else!l&&B0.config.debug&&b("model not loaded",o);for(let y of A)!n.includes(y)&&!r.includes(y)&&!B0.env.kernels.includes(y)&&!B0.env.kernels.includes(y.replace("_",""))&&!B0.env.kernels.includes(y.replace("native",""))&&!B0.env.kernels.includes(y.replace("v2",""))&&s.push(y);return B0.config.debug&&s.length>0&&b("model validation failed:",o,s),s.length>0?{name:o,missing:s,ops:A,url:a}:null}function w5(e){B0=e;let t=[];for(let o of Object.keys(B0.models)){let n=B0.models[o];if(!n)continue;let r=A2(B0,n,o);r&&t.push(r)}return t}var T0={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},ne={};async function y7(e,t){return T0.debug&&b("load model fetch:",e,t),fetch(e,t)}function rn(e){T0.cacheModels=e.cacheModels,T0.verbose=e.debug,T0.modelBasePath=e.modelBasePath}async function F(e){var c,y,i;let t=Rt(T0.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let o=t.includes("/")?t.split("/"):t.split("\\"),n=o[o.length-1].replace(".json",""),r="indexeddb://"+n;ne[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:G5[n],inCache:!1},T0.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let A={};try{A=T0.cacheSupported&&T0.cacheModels?await k5.io.listModels():{}}catch(d){T0.cacheSupported=!1}ne[n].inCache=T0.cacheSupported&&T0.cacheModels&&Object.keys(A).includes(r);let s=typeof fetch=="undefined"?{}:{fetchFunc:(d,x)=>y7(d,x)},a=new k5.GraphModel(ne[n].inCache?r:t,s),l=!1;try{a.findIOHandler(),T0.debug&&b("model load handler:",a.handler);let d=await a.handler.load();ne[n].sizeFromManifest=((c=d==null?void 0:d.weightData)==null?void 0:c.byteLength)||0,a.loadSync(d),ne[n].sizeLoadedWeights=((i=(y=a.artifacts)==null?void 0:y.weightData)==null?void 0:i.byteLength)||0,T0.verbose&&b("load model:",a.modelUrl,{bytes:ne[n].sizeLoadedWeights},T0),l=!0}catch(d){b("error loading model:",t,d)}if(l&&T0.cacheModels&&T0.cacheSupported&&!ne[n].inCache)try{let d=await a.save(r);b("model saved:",r,d)}catch(d){b("error saving model:",t,d)}return A2(null,a,`${e||""}`),a}var re=V(D());var et="2.9.4";var at={};pe(at,{all:()=>st,body:()=>a2,canvas:()=>At,face:()=>s2,gesture:()=>c2,hand:()=>i2,object:()=>l2,options:()=>h0,person:()=>rt});var H0=e=>{if(!e)b("draw error: invalid canvas");else if(!e.getContext)b("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)b("draw error: cannot get canvas context");else return t}return null},Xe=e=>Math.round(e*180/Math.PI),de=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let o=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${o[0]}, ${o[1]}, ${o[2]}, ${t.alpha})`};function fe(e,t,o,n,r){e.fillStyle=de(n,r),e.beginPath(),e.arc(t,o,r.pointSize,0,2*Math.PI),e.fill()}function ae(e,t,o,n,r,A){if(e.beginPath(),e.lineWidth=A.lineWidth,A.useCurves){let s=(t+t+n)/2,a=(o+o+r)/2;e.ellipse(s,a,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+A.roundRect,o),e.lineTo(t+n-A.roundRect,o),e.quadraticCurveTo(t+n,o,t+n,o+A.roundRect),e.lineTo(t+n,o+r-A.roundRect),e.quadraticCurveTo(t+n,o+r,t+n-A.roundRect,o+r),e.lineTo(t+A.roundRect,o+r),e.quadraticCurveTo(t,o+r,t,o+r-A.roundRect),e.lineTo(t,o+A.roundRect),e.quadraticCurveTo(t,o,t+A.roundRect,o),e.closePath();e.stroke()}function tt(e,t,o){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=de(n[2]||0,o),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),o.fillPolygons&&(e.closePath(),e.fill())}}function An(e,t,o){if(!(t.length<2)){if(e.lineWidth=o.lineWidth,!o.useCurves||t.length<=2){tt(e,t,o);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n0){let A=e.emotion.map(s=>`${Math.trunc(100*s.score)}% ${s.emotion}`);A.length>3&&(A.length=3),r.push(A.join(" "))}((o=e.rotation)==null?void 0:o.angle)&&((n=e.rotation)==null?void 0:n.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Xe(e.rotation.angle.roll)}\xB0 yaw:${Xe(e.rotation.angle.yaw)}\xB0 pitch:${Xe(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Xe(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=U.color;for(let A=r.length-1;A>=0;A--){let s=Math.max(e.box[0],0),a=A*U.lineHeight+e.box[1];U.shadowColor&&U.shadowColor!==""&&(t.fillStyle=U.shadowColor,t.fillText(r[A],s+5,a+16)),t.fillStyle=U.labelColor,t.fillText(r[A],s+4,a+15)}}}function p7(e,t){var o,n,r,A;if(((o=e.annotations)==null?void 0:o.leftEyeIris)&&((n=e.annotations)==null?void 0:n.leftEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,a=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((A=e.annotations)==null?void 0:A.rightEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,a=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}}function u7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*Xe(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Xe(e.rotation.angle.pitch)/90,A=new Path2D(` M ${e.box[0]+e.box[2]/2} ${e.box[1]} C ${n} ${e.box[1]}, @@ -108,7 +108,7 @@ ${e.box[0]} ${r}, ${e.box[0]+e.box[2]} ${r}, ${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2} - `);t.stroke(s),t.stroke(A)}}function u7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];tt(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];tt(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function h7(e,t){if(U.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let o=0;oe.mesh[r]);et(t,n,U)}m7(e,t)}}function b7(e,t){if(U.drawPoints&&e.mesh.length>=468)for(let o=0;o0&&(b7(r,n),h7(r,n),p7(r,n),u7(r,n))}}function a2(e,t,o){let n=n0(h0,o);if(!t||!e)return;let r=B0(e);if(!!r){r.lineJoin="round";for(let A=0;A0)for(let s of A.keypoints)r.fillStyle=de(s[2],n),fe(r,s[0],s[1],0,n);if(n.drawLabels&&A.annotations){let s=(a,l)=>{if(!a||a.length===0||!a[0])return;let c=a[a.length-1][2]||-256;r.fillStyle=de(c,n),r.fillText(l,a[a.length-1][0]+4,a[a.length-1][1]+4)};r.font=n.font,s(A.annotations.index,"index"),s(A.annotations.middle,"middle"),s(A.annotations.ring,"ring"),s(A.annotations.pinky,"pinky"),s(A.annotations.thumb,"thumb"),s(A.annotations.palm,"palm")}if(n.drawPolygons&&A.annotations){let s=a=>{if(!(!a||a.length===0||!a[0]))for(let l=0;l0?l-1:0][0],a[l>0?l-1:0][1]),r.lineTo(a[l][0],a[l][1]),r.stroke()}};r.lineWidth=n.lineWidth,s(A.annotations.index),s(A.annotations.middle),s(A.annotations.ring),s(A.annotations.pinky),s(A.annotations.thumb)}}}}function l2(e,t,o){let n=n0(h0,o);if(!t||!e)return;let r=B0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,se(r,A.box[0],A.box[1],A.box[2],A.box[3],n),n.drawLabels){let s=`${A.label} ${Math.round(100*A.score)}%`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(s,A.box[0]+3,1+A.box[1]+n.lineHeight,A.box[2])),r.fillStyle=n.labelColor,r.fillText(s,A.box[0]+2,0+A.box[1]+n.lineHeight,A.box[2])}r.stroke()}}}function c2(e,t,o){let n=n0(h0,o);if(!(!t||!e)&&n.drawGestures){let r=B0(e);if(!r)return;r.font=n.font,r.fillStyle=n.color;let A=1;for(let s=0;s1&&l[1].length>0){let c=a[1]>0?`#${a[1]}`:"",y=`${a[0]} ${c}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(y,8,2+A*n.lineHeight)),r.fillStyle=n.labelColor,r.fillText(y,6,0+A*n.lineHeight),A+=1}}}}var ot=0;function nt(e,t,o){let n=n0(h0,o);if(!t||!e)return;let r=B0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A=0;At!=o[r].y>t&&e<(o[r].x-o[A].x)*(t-o[A].y)/(o[r].y-o[A].y)+o[A].x&&(n=!n);return n}async function sn(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,o=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let s of X0.silhouette)r.push({x:(e.mesh[s][0]-e.box[0])/e.box[2],y:(e.mesh[s][1]-e.box[1])/e.box[3]});x2&&x2>0&&(r=r.map(s=>({x:s.x>.5?s.x+x2:s.x-x2,y:s.y>.5?s.y+x2:s.y-x2})));for(let s=0;s{let t=(i,d)=>Math.atan2(i[1]-d[1],i[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let o=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),A=r?e.mesh[473]:e.mesh[468],s=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],a=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(s[0]-A[0])/a[0]-o[0],n*(A[1]-s[1])/a[1]-o[1]],c=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},an=(e,t)=>{let o=b=>{let g=Math.sqrt(b[0]*b[0]+b[1]*b[1]+b[2]*b[2]);return b[0]/=g,b[1]/=g,b[2]/=g,b},n=(b,g)=>{let M=b[0]-g[0],R=b[1]-g[1],f=b[2]-g[2];return[M,R,f]},r=(b,g)=>{let M=b[1]*g[2]-b[2]*g[1],R=b[2]*g[0]-b[0]*g[2],f=b[0]*g[1]-b[1]*g[0];return[M,R,f]},A=b=>{let[g,M,R,f,p,z,w,u,B]=b,X,O,W;return f<1?f>-1?(W=Math.asin(f),O=Math.atan2(-w,g),X=Math.atan2(-z,p)):(W=-Math.PI/2,O=-Math.atan2(u,B),X=0):(W=Math.PI/2,O=Math.atan2(u,B),X=0),Number.isNaN(X)&&(X=0),Number.isNaN(O)&&(O=0),Number.isNaN(W)&&(W=0),{pitch:2*-X,yaw:2*-O,roll:2*-W}},s=e.meshRaw;if(!s||s.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let a=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[s[10],s[152],s[234],s[454]].map(b=>[b[0]*t[0]/a,b[1]*t[1]/a,b[2]]),c=o(n(l[1],l[0])),y=o(n(l[3],l[2])),i=o(r(y,c));y=r(c,i);let d=[y[0],y[1],y[2],c[0],c[1],c[2],i[0],i[1],i[2]],x=A(d),m=s.length===478?R7(e):{bearing:0,strength:0};return{angle:x,matrix:d,gaze:m}};var it=async(e,t)=>{var m,b,g,M,R,f,p,z,w,u,B,X,O,W,Z,N,I,m0,w0,U0,Y0,H0,me,d2,f2,m2,ft,mt,pt;let o=v(),n,r,A,s,a,l,c,y,i,d=[];e.state="run:face";let x=await Y3(t,e.config);if(e.performance.face=P.perfadd?(e.performance.face||0)+Math.trunc(v()-o):Math.trunc(v()-o),!t.shape||t.shape.length!==4)return[];if(!x)return[];for(let S=0;S200?an(x[S],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?s=(b=e.config.face.emotion)!=null&&b.enabled?d1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[]:(e.state="run:emotion",o=v(),s=(g=e.config.face.emotion)!=null&&g.enabled?await d1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[],e.performance.emotion=P.perfadd?(e.performance.emotion||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?c=(M=e.config.face.antispoof)!=null&&M.enabled?Y5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:antispoof",o=v(),c=(R=e.config.face.antispoof)!=null&&R.enabled?await Y5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.antispoof=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?y=(f=e.config.face.liveness)!=null&&f.enabled?N1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:liveness",o=v(),y=(p=e.config.face.liveness)!=null&&p.enabled?await N1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.liveness=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(z=e.config.face.gear)!=null&&z.enabled?H5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:gear",o=v(),r=(w=e.config.face.gear)!=null&&w.enabled?await H5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.gear=Math.trunc(v()-o)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(u=e.config.face.ssrnet)!=null&&u.enabled?V5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(B=e.config.face.ssrnet)!=null&&B.enabled?q5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null):(e.state="run:ssrnet",o=v(),n=(X=e.config.face.ssrnet)!=null&&X.enabled?await V5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(O=e.config.face.ssrnet)!=null&&O.enabled?await q5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.ssrnet=Math.trunc(v()-o)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?a=(W=e.config.face.mobilefacenet)!=null&&W.enabled?m1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),a=(Z=e.config.face.mobilefacenet)!=null&&Z.enabled?await m1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(N=e.config.face.insightface)!=null&&N.enabled?u1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),l=(I=e.config.face.insightface)!=null&&I.enabled?await u1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?i=R1(x[S].tensor||t0.tensor([]),e.config,S,x.length):(e.state="run:description",o=v(),i=await R1(x[S].tensor||t0.tensor([]),e.config,S,x.length),e.performance.description=P.perfadd?(e.performance.description||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Description:"),e.config.async&&([n,A,s,a,l,i,r,c,y]=await Promise.all([n,A,s,a,l,i,r,c,y])),e.analyze("Finish Face:"),((m0=e.config.face.ssrnet)==null?void 0:m0.enabled)&&n&&A&&(i={...i,age:n.age,gender:A.gender,genderScore:A.genderScore}),((w0=e.config.face.gear)==null?void 0:w0.enabled)&&r&&(i={...i,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((U0=e.config.face.mobilefacenet)==null?void 0:U0.enabled)&&a&&(i.descriptor=a),((Y0=e.config.face.insightface)==null?void 0:Y0.enabled)&&l&&(i.descriptor=l),(H0=e.config.face.iris)!=null&&H0.enabled;let C5=((f2=(d2=(me=x[S])==null?void 0:me.annotations)==null?void 0:d2.leftEyeIris)==null?void 0:f2[0])&&((mt=(ft=(m2=x[S])==null?void 0:m2.annotations)==null?void 0:ft.rightEyeIris)==null?void 0:mt[0])&&x[S].annotations.leftEyeIris.length>0&&x[S].annotations.rightEyeIris.length>0&&x[S].annotations.leftEyeIris[0]!==null&&x[S].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(x[S].annotations.leftEyeIris[3][0]-x[S].annotations.leftEyeIris[1][0]),Math.abs(x[S].annotations.rightEyeIris[4][1]-x[S].annotations.rightEyeIris[2][1]))/t.shape[2]:0,ht=(pt=e.config.face.detector)!=null&&pt.return?t0.squeeze(x[S].tensor):null;t0.dispose(x[S].tensor),x[S].tensor&&delete x[S].tensor;let D0={...x[S],id:S};i.age&&(D0.age=i.age),i.gender&&(D0.gender=i.gender),i.genderScore&&(D0.genderScore=i.genderScore),i.descriptor&&(D0.embedding=i.descriptor),i.race&&(D0.race=i.race),s&&(D0.emotion=s),c&&(D0.real=c),y&&(D0.live=y),C5&&C5!==0&&(D0.iris=Math.trunc(500/C5/11.7)/100),ut&&(D0.rotation=ut),ht&&(D0.tensor=ht),d.push(D0),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var ln=e=>{if(!e)return[];let t=[];for(let o=0;ol.part==="leftWrist"),r=e[o].keypoints.find(l=>l.part==="rightWrist"),A=e[o].keypoints.find(l=>l.part==="nose");A&&n&&r&&n.position[1]l.part==="leftShoulder"),a=e[o].keypoints.find(l=>l.part==="rightShoulder");s&&a&&Math.abs(s.positionRaw[1]-a.positionRaw[1])>.1&&t.push({body:o,gesture:`leaning ${s.position[1]>a.position[1]?"left":"right"}`})}return t},cn=e=>{if(!e)return[];let t=[];for(let o=0;o450){let n=(e[o].mesh[33][2]||0)-(e[o].mesh[263][2]||0),r=e[o].mesh[33][0]-e[o].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:o,gesture:"facing center"}):t.push({face:o,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[o].mesh[374][1]-e[o].mesh[386][1])/Math.abs(e[o].mesh[443][1]-e[o].mesh[450][1])<.2&&t.push({face:o,gesture:"blink left eye"}),Math.abs(e[o].mesh[145][1]-e[o].mesh[159][1])/Math.abs(e[o].mesh[223][1]-e[o].mesh[230][1])<.2&&t.push({face:o,gesture:"blink right eye"});let a=Math.min(100,500*Math.abs(e[o].mesh[13][1]-e[o].mesh[14][1])/Math.abs(e[o].mesh[10][1]-e[o].mesh[152][1]));a>10&&t.push({face:o,gesture:`mouth ${Math.trunc(a)}% open`});let l=e[o].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:o,gesture:`head ${l<0?"up":"down"}`})}return t},xn=e=>{var o,n,r,A;if(!e)return[];let t=[];for(let s=0;s.06||g>.06)&&(x=!1),b>g?b>.05&&t.push({iris:s,gesture:"looking right"}):g>.05&&t.push({iris:s,gesture:"looking left"});let M=Math.abs(e[s].mesh[145][1]-e[s].annotations.rightEyeIris[0][1])/e[s].box[3],R=Math.abs(e[s].mesh[374][1]-e[s].annotations.leftEyeIris[0][1])/e[s].box[3];(R<.01||M<.01||R>.022||M>.022)&&(x=!1),(R<.01||M<.01)&&t.push({iris:s,gesture:"looking down"}),(R>.022||M>.022)&&t.push({iris:s,gesture:"looking up"}),x&&t.push({iris:s,gesture:"looking center"})}return t},yn=e=>{if(!e)return[];let t=[];for(let o=0;o0){let r=n.reduce((s,a)=>(s.position[2]||0)<(a.position[2]||0)?s:a);t.push({hand:o,gesture:`${r.name} forward`});let A=n.reduce((s,a)=>s.position[1]((r-1)*E.body[u].box[I]+N)/r),X=e.body[u].boxRaw.map((N,I)=>((r-1)*E.body[u].boxRaw[I]+N)/r),O=e.body[u].keypoints.map((N,I)=>{var m0,w0,U0,Y0,H0,me,d2,f2,m2;return{score:N.score,part:N.part,position:[E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].position[0]||0)+(N.position[0]||0))/r:N.position[0],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].position[1]||0)+(N.position[1]||0))/r:N.position[1],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].position[2]||0)+(N.position[2]||0))/r:N.position[2]],positionRaw:[E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].positionRaw[0]||0)+(N.positionRaw[0]||0))/r:N.positionRaw[0],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].positionRaw[1]||0)+(N.positionRaw[1]||0))/r:N.positionRaw[1],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].positionRaw[2]||0)+(N.positionRaw[2]||0))/r:N.positionRaw[2]],distance:[E.body[u].keypoints[I]?((r-1)*(((m0=E.body[u].keypoints[I].distance)==null?void 0:m0[0])||0)+(((w0=N.distance)==null?void 0:w0[0])||0))/r:(U0=N.distance)==null?void 0:U0[0],E.body[u].keypoints[I]?((r-1)*(((Y0=E.body[u].keypoints[I].distance)==null?void 0:Y0[1])||0)+(((H0=N.distance)==null?void 0:H0[1])||0))/r:(me=N.distance)==null?void 0:me[1],E.body[u].keypoints[I]?((r-1)*(((d2=E.body[u].keypoints[I].distance)==null?void 0:d2[2])||0)+(((f2=N.distance)==null?void 0:f2[2])||0))/r:(m2=N.distance)==null?void 0:m2[2]]}}),W={},Z={connected:{}};(s=t.body.modelPath)!=null&&s.includes("efficientpose")?Z=$2:(a=t.body.modelPath)!=null&&a.includes("blazepose")?Z=Y2:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(Z=k2);for(let[N,I]of Object.entries(Z.connected)){let m0=[];for(let w0=0;w0H0.part===I[w0]),Y0=O.find(H0=>H0.part===I[w0+1]);U0&&Y0&&m0.push([U0.position,Y0.position])}W[N]=m0}E.body[u]={...e.body[u],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.hand||e.hand.length!==E.hand.length)E.hand=JSON.parse(JSON.stringify(e.hand));else for(let u=0;u((r-1)*E.hand[u].box[N]+Z)/r),X=e.hand[u].boxRaw.map((Z,N)=>((r-1)*E.hand[u].boxRaw[N]+Z)/r);E.hand[u].keypoints.length!==e.hand[u].keypoints.length&&(E.hand[u].keypoints=e.hand[u].keypoints);let O=e.hand[u].keypoints&&e.hand[u].keypoints.length>0?e.hand[u].keypoints.map((Z,N)=>Z.map((I,m0)=>((r-1)*(E.hand[u].keypoints[N][m0]||1)+(I||0))/r)):[],W={};if(Object.keys(E.hand[u].annotations).length!==Object.keys(e.hand[u].annotations).length)E.hand[u].annotations=e.hand[u].annotations,W=E.hand[u].annotations;else if(e.hand[u].annotations)for(let Z of Object.keys(e.hand[u].annotations))W[Z]=(i=(y=(c=e.hand[u])==null?void 0:c.annotations)==null?void 0:y[Z])!=null&&i[0]?e.hand[u].annotations[Z].map((N,I)=>N.map((m0,w0)=>((r-1)*E.hand[u].annotations[Z][I][w0]+m0)/r)):null;E.hand[u]={...e.hand[u],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.face||e.face.length!==E.face.length)E.face=JSON.parse(JSON.stringify(e.face));else for(let u=0;u((r-1)*E.face[u].box[W]+O)/r),X=e.face[u].boxRaw.map((O,W)=>((r-1)*E.face[u].boxRaw[W]+O)/r);if(e.face[u].rotation){let O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(d=e.face[u].rotation)==null?void 0:d.matrix,O.angle={roll:((r-1)*(((x=E.face[u].rotation)==null?void 0:x.angle.roll)||0)+(((m=e.face[u].rotation)==null?void 0:m.angle.roll)||0))/r,yaw:((r-1)*(((b=E.face[u].rotation)==null?void 0:b.angle.yaw)||0)+(((g=e.face[u].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((M=E.face[u].rotation)==null?void 0:M.angle.pitch)||0)+(((R=e.face[u].rotation)==null?void 0:R.angle.pitch)||0))/r},O.gaze={bearing:((r-1)*(((f=E.face[u].rotation)==null?void 0:f.gaze.bearing)||0)+(((p=e.face[u].rotation)==null?void 0:p.gaze.bearing)||0))/r,strength:((r-1)*(((z=E.face[u].rotation)==null?void 0:z.gaze.strength)||0)+(((w=e.face[u].rotation)==null?void 0:w.gaze.strength)||0))/r},E.face[u]={...e.face[u],rotation:O,box:B,boxRaw:X}}E.face[u]={...e.face[u],box:B,boxRaw:X}}if(!E.object||e.object.length!==E.object.length)E.object=JSON.parse(JSON.stringify(e.object));else for(let u=0;u((r-1)*E.object[u].box[W]+O)/r),X=e.object[u].boxRaw.map((O,W)=>((r-1)*E.object[u].boxRaw[W]+O)/r);E.object[u]={...e.object[u],box:B,boxRaw:X}}if(e.persons){let u=e.persons;if(!E.persons||u.length!==E.persons.length)E.persons=JSON.parse(JSON.stringify(u));else for(let B=0;B((r-1)*E.persons[B].box[O]+X)/r)}e.gesture&&(E.gesture=e.gesture);let A=v();return lt=P.perfadd?lt+Math.round(A-o):Math.round(A-o),e.performance&&(E.performance={...e.performance,interpolate:lt}),E}var yt={};pe(yt,{distance:()=>C2,match:()=>xt,similarity:()=>ct});function C2(e,t,o={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),A=(1-r/100-o)/(n-o);return Math.max(Math.min(A,1),0)};function ct(e,t,o={order:2,multiplier:25,min:.2,max:.8}){let n=C2(e,t,o);return fn(n,o.order||2,o.min||0,o.max||1)}function xt(e,t,o={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let s=0;sp.box[0]&&x.box[0]p.box[1]&&x.box[1]+x.box[3]m.body.box[0]&&p.box[0]+p.box[2]m.body.box[1]&&p.box[1]+p.box[3]m.body.box[0]&&p.box[1]+p.box[3]>m.body.box[1]&&p.box[1]+p.box[3]{p&&p.length===4&&(b.push(p[0],p[0]+p[2]),g.push(p[1],p[1]+p[3]))};M(m.face.box),M((y=m.body)==null?void 0:y.box),M((i=m.hands.left)==null?void 0:i.box),M((d=m.hands.right)==null?void 0:d.box);let R=Math.min(...b),f=Math.min(...g);m.box=[R,f,Math.max(...b)-R,Math.max(...g)-f],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(m.boxRaw=[m.box[0]/r[2],m.box[1]/r[1],m.box[2]/r[2],m.box[3]/r[1]]),s.push(m)}return s}var E5=` + `);t.stroke(s),t.stroke(A)}}function h7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];ot(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];ot(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function b7(e,t){if(U.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let o=0;oe.mesh[r]);tt(t,n,U)}p7(e,t)}}function g7(e,t){if(U.drawPoints&&e.mesh.length>=468)for(let o=0;o0&&(g7(r,n),b7(r,n),u7(r,n),h7(r,n))}}function a2(e,t,o){let n=o0(h0,o);if(!t||!e)return;let r=H0(e);if(!!r){r.lineJoin="round";for(let A=0;A0)for(let s of A.keypoints)r.fillStyle=de(s[2],n),fe(r,s[0],s[1],0,n);if(n.drawLabels&&A.annotations){let s=(a,l)=>{if(!a||a.length===0||!a[0])return;let c=a[a.length-1][2]||-256;r.fillStyle=de(c,n),r.fillText(l,a[a.length-1][0]+4,a[a.length-1][1]+4)};r.font=n.font,s(A.annotations.index,"index"),s(A.annotations.middle,"middle"),s(A.annotations.ring,"ring"),s(A.annotations.pinky,"pinky"),s(A.annotations.thumb,"thumb"),s(A.annotations.palm,"palm")}if(n.drawPolygons&&A.annotations){let s=a=>{if(!(!a||a.length===0||!a[0]))for(let l=0;l0?l-1:0][0],a[l>0?l-1:0][1]),r.lineTo(a[l][0],a[l][1]),r.stroke()}};r.lineWidth=n.lineWidth,s(A.annotations.index),s(A.annotations.middle),s(A.annotations.ring),s(A.annotations.pinky),s(A.annotations.thumb)}}}}function l2(e,t,o){let n=o0(h0,o);if(!t||!e)return;let r=H0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,ae(r,A.box[0],A.box[1],A.box[2],A.box[3],n),n.drawLabels){let s=`${A.label} ${Math.round(100*A.score)}%`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(s,A.box[0]+3,1+A.box[1]+n.lineHeight,A.box[2])),r.fillStyle=n.labelColor,r.fillText(s,A.box[0]+2,0+A.box[1]+n.lineHeight,A.box[2])}r.stroke()}}}function c2(e,t,o){let n=o0(h0,o);if(!(!t||!e)&&n.drawGestures){let r=H0(e);if(!r)return;r.font=n.font,r.fillStyle=n.color;let A=1;for(let s=0;s1&&l[1].length>0){let c=a[1]>0?`#${a[1]}`:"",y=`${a[0]} ${c}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(y,8,2+A*n.lineHeight)),r.fillStyle=n.labelColor,r.fillText(y,6,0+A*n.lineHeight),A+=1}}}}var nt=0;function rt(e,t,o){let n=o0(h0,o);if(!t||!e)return;let r=H0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A=0;At!=o[r].y>t&&e<(o[r].x-o[A].x)*(t-o[A].y)/(o[r].y-o[A].y)+o[A].x&&(n=!n);return n}async function an(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,o=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let s of q0.silhouette)r.push({x:(e.mesh[s][0]-e.box[0])/e.box[2],y:(e.mesh[s][1]-e.box[1])/e.box[3]});x2&&x2>0&&(r=r.map(s=>({x:s.x>.5?s.x+x2:s.x-x2,y:s.y>.5?s.y+x2:s.y-x2})));for(let s=0;s{let t=(i,d)=>Math.atan2(i[1]-d[1],i[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let o=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),A=r?e.mesh[473]:e.mesh[468],s=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],a=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(s[0]-A[0])/a[0]-o[0],n*(A[1]-s[1])/a[1]-o[1]],c=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},ln=(e,t)=>{let o=p=>{let g=Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);return p[0]/=g,p[1]/=g,p[2]/=g,p},n=(p,g)=>{let M=p[0]-g[0],R=p[1]-g[1],m=p[2]-g[2];return[M,R,m]},r=(p,g)=>{let M=p[1]*g[2]-p[2]*g[1],R=p[2]*g[0]-p[0]*g[2],m=p[0]*g[1]-p[1]*g[0];return[M,R,m]},A=p=>{let[g,M,R,m,u,z,w,h,B]=p,X,O,W;return m<1?m>-1?(W=Math.asin(m),O=Math.atan2(-w,g),X=Math.atan2(-z,u)):(W=-Math.PI/2,O=-Math.atan2(h,B),X=0):(W=Math.PI/2,O=Math.atan2(h,B),X=0),Number.isNaN(X)&&(X=0),Number.isNaN(O)&&(O=0),Number.isNaN(W)&&(W=0),{pitch:2*-X,yaw:2*-O,roll:2*-W}},s=e.meshRaw;if(!s||s.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let a=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[s[10],s[152],s[234],s[454]].map(p=>[p[0]*t[0]/a,p[1]*t[1]/a,p[2]]),c=o(n(l[1],l[0])),y=o(n(l[3],l[2])),i=o(r(y,c));y=r(c,i);let d=[y[0],y[1],y[2],c[0],c[1],c[2],i[0],i[1],i[2]],x=A(d),f=s.length===478?P7(e):{bearing:0,strength:0};return{angle:x,matrix:d,gaze:f}};var lt=async(e,t)=>{var f,p,g,M,R,m,u,z,w,h,B,X,O,W,Z,N,I,m0,w0,Y0,K0,D0,me,d2,f2,m2,mt,pt,ut;let o=v(),n,r,A,s,a,l,c,y,i,d=[];e.state="run:face";let x=await K3(t,e.config);if(e.performance.face=P.perfadd?(e.performance.face||0)+Math.trunc(v()-o):Math.trunc(v()-o),!t.shape||t.shape.length!==4)return[];if(!x)return[];for(let S=0;S200?ln(x[S],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?s=(p=e.config.face.emotion)!=null&&p.enabled?f1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[]:(e.state="run:emotion",o=v(),s=(g=e.config.face.emotion)!=null&&g.enabled?await f1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[],e.performance.emotion=P.perfadd?(e.performance.emotion||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?c=(M=e.config.face.antispoof)!=null&&M.enabled?K5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:antispoof",o=v(),c=(R=e.config.face.antispoof)!=null&&R.enabled?await K5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.antispoof=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?y=(m=e.config.face.liveness)!=null&&m.enabled?L1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:liveness",o=v(),y=(u=e.config.face.liveness)!=null&&u.enabled?await L1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.liveness=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(z=e.config.face.gear)!=null&&z.enabled?D5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:gear",o=v(),r=(w=e.config.face.gear)!=null&&w.enabled?await D5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.gear=Math.trunc(v()-o)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(h=e.config.face.ssrnet)!=null&&h.enabled?Z5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(B=e.config.face.ssrnet)!=null&&B.enabled?U5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null):(e.state="run:ssrnet",o=v(),n=(X=e.config.face.ssrnet)!=null&&X.enabled?await Z5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(O=e.config.face.ssrnet)!=null&&O.enabled?await U5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.ssrnet=Math.trunc(v()-o)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?a=(W=e.config.face.mobilefacenet)!=null&&W.enabled?p1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),a=(Z=e.config.face.mobilefacenet)!=null&&Z.enabled?await p1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(N=e.config.face.insightface)!=null&&N.enabled?h1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),l=(I=e.config.face.insightface)!=null&&I.enabled?await h1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?i=P1(x[S].tensor||t0.tensor([]),e.config,S,x.length):(e.state="run:description",o=v(),i=await P1(x[S].tensor||t0.tensor([]),e.config,S,x.length),e.performance.description=P.perfadd?(e.performance.description||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Description:"),e.config.async&&([n,A,s,a,l,i,r,c,y]=await Promise.all([n,A,s,a,l,i,r,c,y])),e.analyze("Finish Face:"),((m0=e.config.face.ssrnet)==null?void 0:m0.enabled)&&n&&A&&(i={...i,age:n.age,gender:A.gender,genderScore:A.genderScore}),((w0=e.config.face.gear)==null?void 0:w0.enabled)&&r&&(i={...i,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((Y0=e.config.face.mobilefacenet)==null?void 0:Y0.enabled)&&a&&(i.descriptor=a),((K0=e.config.face.insightface)==null?void 0:K0.enabled)&&l&&(i.descriptor=l),(D0=e.config.face.iris)!=null&&D0.enabled;let C5=((f2=(d2=(me=x[S])==null?void 0:me.annotations)==null?void 0:d2.leftEyeIris)==null?void 0:f2[0])&&((pt=(mt=(m2=x[S])==null?void 0:m2.annotations)==null?void 0:mt.rightEyeIris)==null?void 0:pt[0])&&x[S].annotations.leftEyeIris.length>0&&x[S].annotations.rightEyeIris.length>0&&x[S].annotations.leftEyeIris[0]!==null&&x[S].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(x[S].annotations.leftEyeIris[3][0]-x[S].annotations.leftEyeIris[1][0]),Math.abs(x[S].annotations.rightEyeIris[4][1]-x[S].annotations.rightEyeIris[2][1]))/t.shape[2]:0,bt=(ut=e.config.face.detector)!=null&&ut.return?t0.squeeze(x[S].tensor):null;t0.dispose(x[S].tensor),x[S].tensor&&delete x[S].tensor;let V0={...x[S],id:S};i.age&&(V0.age=i.age),i.gender&&(V0.gender=i.gender),i.genderScore&&(V0.genderScore=i.genderScore),i.descriptor&&(V0.embedding=i.descriptor),i.race&&(V0.race=i.race),s&&(V0.emotion=s),c&&(V0.real=c),y&&(V0.live=y),C5&&C5!==0&&(V0.iris=Math.trunc(500/C5/11.7)/100),ht&&(V0.rotation=ht),bt&&(V0.tensor=bt),d.push(V0),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var cn=e=>{if(!e)return[];let t=[];for(let o=0;ol.part==="leftWrist"),r=e[o].keypoints.find(l=>l.part==="rightWrist"),A=e[o].keypoints.find(l=>l.part==="nose");A&&n&&r&&n.position[1]l.part==="leftShoulder"),a=e[o].keypoints.find(l=>l.part==="rightShoulder");s&&a&&Math.abs(s.positionRaw[1]-a.positionRaw[1])>.1&&t.push({body:o,gesture:`leaning ${s.position[1]>a.position[1]?"left":"right"}`})}return t},xn=e=>{if(!e)return[];let t=[];for(let o=0;o450){let n=(e[o].mesh[33][2]||0)-(e[o].mesh[263][2]||0),r=e[o].mesh[33][0]-e[o].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:o,gesture:"facing center"}):t.push({face:o,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[o].mesh[374][1]-e[o].mesh[386][1])/Math.abs(e[o].mesh[443][1]-e[o].mesh[450][1])<.2&&t.push({face:o,gesture:"blink left eye"}),Math.abs(e[o].mesh[145][1]-e[o].mesh[159][1])/Math.abs(e[o].mesh[223][1]-e[o].mesh[230][1])<.2&&t.push({face:o,gesture:"blink right eye"});let a=Math.min(100,500*Math.abs(e[o].mesh[13][1]-e[o].mesh[14][1])/Math.abs(e[o].mesh[10][1]-e[o].mesh[152][1]));a>10&&t.push({face:o,gesture:`mouth ${Math.trunc(a)}% open`});let l=e[o].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:o,gesture:`head ${l<0?"up":"down"}`})}return t},yn=e=>{var o,n,r,A;if(!e)return[];let t=[];for(let s=0;s.06||g>.06)&&(x=!1),p>g?p>.05&&t.push({iris:s,gesture:"looking right"}):g>.05&&t.push({iris:s,gesture:"looking left"});let M=Math.abs(e[s].mesh[145][1]-e[s].annotations.rightEyeIris[0][1])/e[s].box[3],R=Math.abs(e[s].mesh[374][1]-e[s].annotations.leftEyeIris[0][1])/e[s].box[3];(R<.01||M<.01||R>.022||M>.022)&&(x=!1),(R<.01||M<.01)&&t.push({iris:s,gesture:"looking down"}),(R>.022||M>.022)&&t.push({iris:s,gesture:"looking up"}),x&&t.push({iris:s,gesture:"looking center"})}return t},dn=e=>{if(!e)return[];let t=[];for(let o=0;o0){let r=n.reduce((s,a)=>(s.position[2]||0)<(a.position[2]||0)?s:a);t.push({hand:o,gesture:`${r.name} forward`});let A=n.reduce((s,a)=>s.position[1]((r-1)*E.body[h].box[I]+N)/r),X=e.body[h].boxRaw.map((N,I)=>((r-1)*E.body[h].boxRaw[I]+N)/r),O=e.body[h].keypoints.map((N,I)=>{var m0,w0,Y0,K0,D0,me,d2,f2,m2;return{score:N.score,part:N.part,position:[E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[0]||0)+(N.position[0]||0))/r:N.position[0],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[1]||0)+(N.position[1]||0))/r:N.position[1],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[2]||0)+(N.position[2]||0))/r:N.position[2]],positionRaw:[E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[0]||0)+(N.positionRaw[0]||0))/r:N.positionRaw[0],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[1]||0)+(N.positionRaw[1]||0))/r:N.positionRaw[1],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[2]||0)+(N.positionRaw[2]||0))/r:N.positionRaw[2]],distance:[E.body[h].keypoints[I]?((r-1)*(((m0=E.body[h].keypoints[I].distance)==null?void 0:m0[0])||0)+(((w0=N.distance)==null?void 0:w0[0])||0))/r:(Y0=N.distance)==null?void 0:Y0[0],E.body[h].keypoints[I]?((r-1)*(((K0=E.body[h].keypoints[I].distance)==null?void 0:K0[1])||0)+(((D0=N.distance)==null?void 0:D0[1])||0))/r:(me=N.distance)==null?void 0:me[1],E.body[h].keypoints[I]?((r-1)*(((d2=E.body[h].keypoints[I].distance)==null?void 0:d2[2])||0)+(((f2=N.distance)==null?void 0:f2[2])||0))/r:(m2=N.distance)==null?void 0:m2[2]]}}),W={},Z={connected:{}};(s=t.body.modelPath)!=null&&s.includes("efficientpose")?Z=$2:(a=t.body.modelPath)!=null&&a.includes("blazepose")?Z=Y2:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(Z=k2);for(let[N,I]of Object.entries(Z.connected)){let m0=[];for(let w0=0;w0D0.part===I[w0]),K0=O.find(D0=>D0.part===I[w0+1]);Y0&&K0&&m0.push([Y0.position,K0.position])}W[N]=m0}E.body[h]={...e.body[h],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.hand||e.hand.length!==E.hand.length)E.hand=JSON.parse(JSON.stringify(e.hand));else for(let h=0;h((r-1)*E.hand[h].box[N]+Z)/r),X=e.hand[h].boxRaw.map((Z,N)=>((r-1)*E.hand[h].boxRaw[N]+Z)/r);E.hand[h].keypoints.length!==e.hand[h].keypoints.length&&(E.hand[h].keypoints=e.hand[h].keypoints);let O=e.hand[h].keypoints&&e.hand[h].keypoints.length>0?e.hand[h].keypoints.map((Z,N)=>Z.map((I,m0)=>((r-1)*(E.hand[h].keypoints[N][m0]||1)+(I||0))/r)):[],W={};if(Object.keys(E.hand[h].annotations).length!==Object.keys(e.hand[h].annotations).length)E.hand[h].annotations=e.hand[h].annotations,W=E.hand[h].annotations;else if(e.hand[h].annotations)for(let Z of Object.keys(e.hand[h].annotations))W[Z]=(i=(y=(c=e.hand[h])==null?void 0:c.annotations)==null?void 0:y[Z])!=null&&i[0]?e.hand[h].annotations[Z].map((N,I)=>N.map((m0,w0)=>((r-1)*E.hand[h].annotations[Z][I][w0]+m0)/r)):null;E.hand[h]={...e.hand[h],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.face||e.face.length!==E.face.length)E.face=JSON.parse(JSON.stringify(e.face));else for(let h=0;h((r-1)*E.face[h].box[W]+O)/r),X=e.face[h].boxRaw.map((O,W)=>((r-1)*E.face[h].boxRaw[W]+O)/r);if(e.face[h].rotation){let O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(d=e.face[h].rotation)==null?void 0:d.matrix,O.angle={roll:((r-1)*(((x=E.face[h].rotation)==null?void 0:x.angle.roll)||0)+(((f=e.face[h].rotation)==null?void 0:f.angle.roll)||0))/r,yaw:((r-1)*(((p=E.face[h].rotation)==null?void 0:p.angle.yaw)||0)+(((g=e.face[h].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((M=E.face[h].rotation)==null?void 0:M.angle.pitch)||0)+(((R=e.face[h].rotation)==null?void 0:R.angle.pitch)||0))/r},O.gaze={bearing:((r-1)*(((m=E.face[h].rotation)==null?void 0:m.gaze.bearing)||0)+(((u=e.face[h].rotation)==null?void 0:u.gaze.bearing)||0))/r,strength:((r-1)*(((z=E.face[h].rotation)==null?void 0:z.gaze.strength)||0)+(((w=e.face[h].rotation)==null?void 0:w.gaze.strength)||0))/r},E.face[h]={...e.face[h],rotation:O,box:B,boxRaw:X}}E.face[h]={...e.face[h],box:B,boxRaw:X}}if(!E.object||e.object.length!==E.object.length)E.object=JSON.parse(JSON.stringify(e.object));else for(let h=0;h((r-1)*E.object[h].box[W]+O)/r),X=e.object[h].boxRaw.map((O,W)=>((r-1)*E.object[h].boxRaw[W]+O)/r);E.object[h]={...e.object[h],box:B,boxRaw:X}}if(e.persons){let h=e.persons;if(!E.persons||h.length!==E.persons.length)E.persons=JSON.parse(JSON.stringify(h));else for(let B=0;B((r-1)*E.persons[B].box[O]+X)/r)}e.gesture&&(E.gesture=e.gesture);let A=v();return ct=P.perfadd?ct+Math.round(A-o):Math.round(A-o),e.performance&&(E.performance={...e.performance,interpolate:ct}),E}var dt={};pe(dt,{distance:()=>C2,match:()=>yt,similarity:()=>xt});function C2(e,t,o={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),A=(1-r/100-o)/(n-o);return Math.max(Math.min(A,1),0)};function xt(e,t,o={order:2,multiplier:25,min:.2,max:.8}){let n=C2(e,t,o);return mn(n,o.order||2,o.min||0,o.max||1)}function yt(e,t,o={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let s=0;su.box[0]&&x.box[0]u.box[1]&&x.box[1]+x.box[3]f.body.box[0]&&u.box[0]+u.box[2]f.body.box[1]&&u.box[1]+u.box[3]f.body.box[0]&&u.box[1]+u.box[3]>f.body.box[1]&&u.box[1]+u.box[3]{u&&u.length===4&&(p.push(u[0],u[0]+u[2]),g.push(u[1],u[1]+u[3]))};M(f.face.box),M((y=f.body)==null?void 0:y.box),M((i=f.hands.left)==null?void 0:i.box),M((d=f.hands.right)==null?void 0:d.box);let R=Math.min(...p),m=Math.min(...g);f.box=[R,m,Math.max(...p)-R,Math.max(...g)-m],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),s.push(f)}return s}var E5=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -827,4 +827,4 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var o0=V(D());async function z7(e){let t=(r,A="application/octet-stream")=>fetch(`data:${A};base64,${r}`).then(s=>s.blob()),o,n;switch(e.config.warmup){case"face":o=await t(E5);break;case"body":case"full":o=await t(z5);break;default:o=null}if(o){let r=await createImageBitmap(o);n=await e.detect(r,e.config),r.close()}return n}async function S7(e){return new Promise(t=>{let o;switch(e.config.warmup){case"face":o="data:image/jpeg;base64,"+E5;break;case"full":case"body":o="data:image/jpeg;base64,"+z5;break;default:o=""}let n;if(typeof Image!="undefined")n=new Image;else if(P.Image)n=new P.Image;else return;n.onload=async()=>{let r=b0(n.naturalWidth,n.naturalHeight);if(!r)h("Warmup: Canvas not found"),t(void 0);else{let A=r.getContext("2d");A&&A.drawImage(n,0,0);let s=await e.image(r),a=s.tensor?await e.detect(s.tensor,e.config):void 0;t(a)}},o?n.src=o:t(void 0)})}async function C7(e){let t=r=>Buffer.from(r,"base64"),o;e.config.warmup==="face"?o=t(E5):o=t(z5);let n;if("node"in o0&&o0.getBackend()==="tensorflow"){let r=o0.node.decodeJpeg(o),A=o0.expandDims(r,0);e.tf.dispose(r),n=await e.detect(A,e.config),e.tf.dispose(A)}else e.config.debug&&h("Warmup tfjs-node not loaded");return n}async function I7(e){let t;return typeof createImageBitmap=="function"?t=await z7(e):typeof Image!="undefined"||P.Canvas!==void 0?t=await S7(e):t=await C7(e),t}async function O7(e){var a,l,c,y;if(!o0.env().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=o0.getBackend(),o=o0.backend();if(t!=="webgl"&&t!=="humangl"||!(o!=null&&o.checkCompileCompletion))return;o0.env().set("ENGINE_COMPILE_ONLY",!0);let n=o0.engine().state.numTensors,r=[];for(let[i,d]of Object.entries(e).filter(([x,m])=>x!==null&&m!==null)){let x=(l=(a=d.inputs)==null?void 0:a[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],m=(y=(c=d.inputs)==null?void 0:c[0])!=null&&y.dtype?d.inputs[0].dtype:"float32";for(let g=0;go0.dispose(M)):o0.dispose(g)}catch(g){h("compile fail model:",i)}o0.dispose(b)}let A=await o.checkCompileCompletionAsync();o.getUniformLocations(),h("compile pass models:",r),h("compile pass kernels:",A.length),o0.env().set("ENGINE_COMPILE_ONLY",!1);let s=o0.engine().state.numTensors;s-n>0&&h("tensor leak:",s-n)}async function pn(e,t){let o=v();return e.state="warmup",t&&(e.config=n0(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:v(),persons:[],error:null}:new Promise(async n=>{await O7(e.models);let r=await I7(e),A=v();e.config.debug&&h("warmup",e.config.warmup,Math.round(A-o),"ms"),e.emit("warmup"),n(r)})}var y2,I2,O2,S5,dt=class{constructor(t){T(this,"version");T(this,"config");T(this,"result");T(this,"state");T(this,"process");T(this,"tf");T(this,"env");T(this,"draw");T(this,"models");T(this,"events");T(this,"faceTriangulation");T(this,"faceUVMap");T(this,"performance");h2(this,y2,void 0);h2(this,I2,void 0);h2(this,O2,void 0);T(this,"gl");T(this,"analyze",(...t)=>{if(!u2(this,I2))return;let o=this.tf.engine().state.numTensors,n=u2(this,y2);b2(this,y2,o);let r=o-n;r!==0&&h(...t,r)});h2(this,S5,t=>{if(!u2(this,O2))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof ne.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(o){return"backend not loaded"}return null});T(this,"similarity",ct);T(this,"distance",C2);T(this,"match",xt);T(this,"emit",t=>{var o;(o=this.events)!=null&&o.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=P;let o=(ne.version.tfjs||ne.version_core).replace(/-(.*)/,"");ue.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${o}/dist/`,ue.modelBasePath=P.browser?"../models/":"file://models/",ue.backend=P.browser?"humangl":"tensorflow",this.version=$1,Object.defineProperty(this,"version",{value:$1}),this.config=JSON.parse(JSON.stringify(ue)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=n0(this.config,t)),nn(this.config),this.tf=ne,this.state="idle",b2(this,y2,0),b2(this,I2,!1),b2(this,O2,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new S2,this.draw={options:h0,canvas:(n,r)=>rt(n,r),face:(n,r,A)=>s2(n,r,A),body:(n,r,A)=>a2(n,r,A),hand:(n,r,A)=>i2(n,r,A),gesture:(n,r,A)=>c2(n,r,A),object:(n,r,A)=>l2(n,r,A),person:(n,r,A)=>nt(n,r,A),all:(n,r,A)=>At(n,r,A)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=J3,this.faceUVMap=Q3,this.gl=J,A2(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ue)),this.config.backend=t}validate(t){return I5(ue,t||this.config)}check(){return w5(this)}now(){return v()}image(t,o=!0){return Ue(t,this.config,o)}async segmentation(t,o){return tn(t,o,this.config)}enhance(t){return v1(t)}compare(t,o){return Ot(this.config,t,o)}async init(){await d5(this,!0),await this.tf.ready()}async load(t){this.state="load";let o=v(),n=Object.values(this.models).filter(s=>s).length;t&&(this.config=n0(this.config,t)),this.env.initial&&(this.config.debug&&h(`version: ${this.version}`),this.config.debug&&h(`tfjs version: ${this.tf.version["tfjs-core"]}`),await d5(this)||h("error: backend check failed"),await ne.ready(),this.env.browser&&(this.config.debug&&h("configuration:",this.config),this.config.debug&&h("environment:",this.env),this.config.debug&&h("tf flags:",this.tf.ENV.flags))),await _1(this),this.env.initial&&this.config.debug&&h("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(s=>s).length!==n&&(w5(this),this.emit("load"));let A=Math.trunc(v()-o);A>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+A:A)}next(t=this.result){return dn(t,this.config)}getModelStats(){return Q1(this)}async warmup(t){let o=v(),n=await pn(this,t),r=v();return this.performance.warmup=Math.trunc(r-o),n}async profile(t,o){let n=await this.tf.profile(()=>this.detect(t,o)),r={},A=0;for(let a of n.kernels)r[a.name]?r[a.name]+=a.kernelTimeMs:r[a.name]=a.kernelTimeMs,A+=a.kernelTimeMs;let s=[];Object.entries(r).forEach(a=>s.push({kernel:a[0],time:a[1],perc:0}));for(let a of s)a.perc=Math.round(1e3*a.time/A)/1e3,a.time=Math.round(1e3*a.time)/1e3;return s.sort((a,l)=>l.time-a.time),s.length=20,s}async detect(t,o){return this.state="detect",new Promise(async n=>{var g,M,R,f,p,z,w,u,B,X,O,W,Z,N,I,m0,w0,U0,Y0,H0,me;this.state="config";let r;this.config=n0(this.config,o),this.state="check";let A=u2(this,S5).call(this,t);A&&(h(A,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:A}));let s=v();await d5(this),await this.load(),r=v(),this.state="image";let a=await Ue(t,this.config);if(this.process=a,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Get Image:"),!a.tensor){this.config.debug&&h("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=v(),this.config.skipAllowed=await It(this.config,a.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Check Changed:");let l=[],c=[],y=[],i=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?it(this,a.tensor):[],this.performance.face&&delete this.performance.face):(r=v(),l=this.config.face.enabled?await it(this,a.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?n0(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?c=this.config.body.enabled?Y1(a.tensor,d):[]:(M=this.config.body.modelPath)!=null&&M.includes("blazepose")?c=this.config.body.enabled?r1(a.tensor,d):[]:(R=this.config.body.modelPath)!=null&&R.includes("efficientpose")?c=this.config.body.enabled?x1(a.tensor,d):[]:(f=this.config.body.modelPath)!=null&&f.includes("movenet")&&(c=this.config.body.enabled?H1(a.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=v(),(p=this.config.body.modelPath)!=null&&p.includes("posenet")?c=this.config.body.enabled?await Y1(a.tensor,d):[]:(z=this.config.body.modelPath)!=null&&z.includes("blazepose")?c=this.config.body.enabled?await r1(a.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("efficientpose")?c=this.config.body.enabled?await x1(a.tensor,d):[]:(u=this.config.body.modelPath)!=null&&u.includes("movenet")&&(c=this.config.body.enabled?await H1(a.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let x=this.config.hand.maxDetected===-1?n0(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((X=(B=this.config.hand.detector)==null?void 0:B.modelPath)!=null&&X.includes("handdetect")?y=this.config.hand.enabled?z1(a.tensor,x):[]:(W=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&W.includes("handtrack")&&(y=this.config.hand.enabled?O1(a.tensor,x):[]),this.performance.hand&&delete this.performance.hand):(r=v(),(N=(Z=this.config.hand.detector)==null?void 0:Z.modelPath)!=null&&N.includes("handdetect")?y=this.config.hand.enabled?await z1(a.tensor,x):[]:(m0=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&m0.includes("handtrack")&&(y=this.config.hand.enabled?await O1(a.tensor,x):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((w0=this.config.object.modelPath)!=null&&w0.includes("nanodet")?i=this.config.object.enabled?V1(a.tensor,this.config):[]:(U0=this.config.object.modelPath)!=null&&U0.includes("centernet")&&(i=this.config.object.enabled?a1(a.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=v(),(Y0=this.config.object.modelPath)!=null&&Y0.includes("nanodet")?i=this.config.object.enabled?await V1(a.tensor,this.config):[]:(H0=this.config.object.modelPath)!=null&&H0.includes("centernet")&&(i=this.config.object.enabled?await a1(a.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,y,i]=await Promise.all([l,c,y,i])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(r=v(),m=[...cn(l),...ln(c),...yn(y),...xn(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(v()-s):Math.trunc(v()-s);let b=((me=this.process.tensor)==null?void 0:me.shape)||[];this.result={face:l,body:c,hand:y,gesture:m,object:i,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return mn(l,c,y,m,b)}},ne.dispose(a.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};y2=new WeakMap,I2=new WeakMap,O2=new WeakMap,S5=new WeakMap;0&&(module.exports={Human,defaults,draw,env,match,models}); +2Q==`;var n0=V(D());async function S7(e){let t=(r,A="application/octet-stream")=>fetch(`data:${A};base64,${r}`).then(s=>s.blob()),o,n;switch(e.config.warmup){case"face":o=await t(E5);break;case"body":case"full":o=await t(z5);break;default:o=null}if(o){let r=await createImageBitmap(o);n=await e.detect(r,e.config),r.close()}return n}async function C7(e){return new Promise(t=>{let o;switch(e.config.warmup){case"face":o="data:image/jpeg;base64,"+E5;break;case"full":case"body":o="data:image/jpeg;base64,"+z5;break;default:o=""}let n;if(typeof Image!="undefined")n=new Image;else if(P.Image)n=new P.Image;else return;n.onload=async()=>{let r=b0(n.naturalWidth,n.naturalHeight);if(!r)b("Warmup: Canvas not found"),t(void 0);else{let A=r.getContext("2d");A&&A.drawImage(n,0,0);let s=await e.image(r),a=s.tensor?await e.detect(s.tensor,e.config):void 0;t(a)}},o?n.src=o:t(void 0)})}async function I7(e){let t=r=>Buffer.from(r,"base64"),o;e.config.warmup==="face"?o=t(E5):o=t(z5);let n;if("node"in n0&&n0.getBackend()==="tensorflow"){let r=n0.node.decodeJpeg(o),A=n0.expandDims(r,0);e.tf.dispose(r),n=await e.detect(A,e.config),e.tf.dispose(A)}else e.config.debug&&b("Warmup tfjs-node not loaded");return n}async function O7(e){let t;return typeof createImageBitmap=="function"?t=await S7(e):typeof Image!="undefined"||P.Canvas!==void 0?t=await C7(e):t=await I7(e),t}async function j7(e){var a,l,c,y;if(!n0.env().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=n0.getBackend(),o=n0.backend();if(t!=="webgl"&&t!=="humangl"||!(o!=null&&o.checkCompileCompletion))return;n0.env().set("ENGINE_COMPILE_ONLY",!0);let n=n0.engine().state.numTensors,r=[];for(let[i,d]of Object.entries(e).filter(([x,f])=>x!==null&&f!==null)){let x=(l=(a=d.inputs)==null?void 0:a[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],f=(y=(c=d.inputs)==null?void 0:c[0])!=null&&y.dtype?d.inputs[0].dtype:"float32";for(let g=0;gn0.dispose(M)):n0.dispose(g)}catch(g){b("compile fail model:",i)}n0.dispose(p)}let A=await o.checkCompileCompletionAsync();o.getUniformLocations(),b("compile pass models:",r),b("compile pass kernels:",A.length),n0.env().set("ENGINE_COMPILE_ONLY",!1);let s=n0.engine().state.numTensors;s-n>0&&b("tensor leak:",s-n)}async function un(e,t){let o=v();return e.state="warmup",t&&(e.config=o0(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:v(),persons:[],error:null}:new Promise(async n=>{await j7(e.models);let r=await O7(e),A=v();e.config.debug&&b("warmup",e.config.warmup,Math.round(A-o),"ms"),e.emit("warmup"),n(r)})}var y2,I2,O2,S5,ft=class{constructor(t){T(this,"version");T(this,"config");T(this,"result");T(this,"state");T(this,"process");T(this,"tf");T(this,"env");T(this,"draw");T(this,"models");T(this,"events");T(this,"faceTriangulation");T(this,"faceUVMap");T(this,"performance");h2(this,y2,void 0);h2(this,I2,void 0);h2(this,O2,void 0);T(this,"gl");T(this,"analyze",(...t)=>{if(!u2(this,I2))return;let o=this.tf.engine().state.numTensors,n=u2(this,y2);b2(this,y2,o);let r=o-n;r!==0&&b(...t,r)});h2(this,S5,t=>{if(!u2(this,O2))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof re.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(o){return"backend not loaded"}return null});T(this,"similarity",xt);T(this,"distance",C2);T(this,"match",yt);T(this,"emit",t=>{var o;(o=this.events)!=null&&o.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=P;let o=(re.version.tfjs||re.version_core).replace(/-(.*)/,"");ue.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${o}/dist/`,ue.modelBasePath=P.browser?"../models/":"file://models/",ue.backend=P.browser?"humangl":"tensorflow",this.version=et,Object.defineProperty(this,"version",{value:et}),this.config=JSON.parse(JSON.stringify(ue)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=o0(this.config,t)),rn(this.config),this.tf=re,this.state="idle",b2(this,y2,0),b2(this,I2,!1),b2(this,O2,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new S2,this.draw={options:h0,canvas:(n,r)=>At(n,r),face:(n,r,A)=>s2(n,r,A),body:(n,r,A)=>a2(n,r,A),hand:(n,r,A)=>i2(n,r,A),gesture:(n,r,A)=>c2(n,r,A),object:(n,r,A)=>l2(n,r,A),person:(n,r,A)=>rt(n,r,A),all:(n,r,A)=>st(n,r,A)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=Q3,this.faceUVMap=_3,this.gl=J,A2(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ue)),this.config.backend=t,W5(),P.initial=!0}validate(t){let o=I5(ue,t||this.config);return o.length===0&&(this.config=o0(this.config,t)),o}check(){return w5(this)}now(){return v()}image(t,o=!0){return Ue(t,this.config,o)}async segmentation(t,o){return on(t,o,this.config)}enhance(t){return R1(t)}compare(t,o){return jt(this.config,t,o)}async init(){await d5(this,!0),await this.tf.ready(),W5()}async load(t){this.state="load";let o=v(),n=Object.values(this.models).filter(s=>s).length;t&&(this.config=o0(this.config,t)),this.env.initial&&(this.config.debug&&b(`version: ${this.version}`),this.config.debug&&b(`tfjs version: ${this.tf.version["tfjs-core"]}`),await d5(this)||b("error: backend check failed"),await re.ready(),this.env.browser&&(this.config.debug&&b("configuration:",this.config),this.config.debug&&b("environment:",this.env),this.config.debug&&b("tf flags:",this.tf.ENV.flags))),await $1(this),this.env.initial&&this.config.debug&&b("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(s=>s).length!==n&&(w5(this),this.emit("load"));let A=Math.trunc(v()-o);A>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+A:A)}next(t=this.result){return fn(t,this.config)}getModelStats(){return _1(this)}async warmup(t){let o=v(),n=await un(this,t),r=v();return this.performance.warmup=Math.trunc(r-o),n}async profile(t,o){let n=await this.tf.profile(()=>this.detect(t,o)),r={},A=0;for(let a of n.kernels)r[a.name]?r[a.name]+=a.kernelTimeMs:r[a.name]=a.kernelTimeMs,A+=a.kernelTimeMs;let s=[];Object.entries(r).forEach(a=>s.push({kernel:a[0],time:a[1],perc:0}));for(let a of s)a.perc=Math.round(1e3*a.time/A)/1e3,a.time=Math.round(1e3*a.time)/1e3;return s.sort((a,l)=>l.time-a.time),s.length=20,s}async detect(t,o){return this.state="detect",new Promise(async n=>{var g,M,R,m,u,z,w,h,B,X,O,W,Z,N,I,m0,w0,Y0,K0,D0,me;this.state="config";let r;this.config=o0(this.config,o),this.state="check";let A=u2(this,S5).call(this,t);A&&(b(A,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:A}));let s=v();await d5(this),await this.load(),r=v(),this.state="image";let a=await Ue(t,this.config);if(this.process=a,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Get Image:"),!a.tensor){this.config.debug&&b("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=v(),this.config.skipAllowed=await Ot(this.config,a.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Check Changed:");let l=[],c=[],y=[],i=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?lt(this,a.tensor):[],this.performance.face&&delete this.performance.face):(r=v(),l=this.config.face.enabled?await lt(this,a.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?o0(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?c=this.config.body.enabled?K1(a.tensor,d):[]:(M=this.config.body.modelPath)!=null&&M.includes("blazepose")?c=this.config.body.enabled?A1(a.tensor,d):[]:(R=this.config.body.modelPath)!=null&&R.includes("efficientpose")?c=this.config.body.enabled?y1(a.tensor,d):[]:(m=this.config.body.modelPath)!=null&&m.includes("movenet")&&(c=this.config.body.enabled?D1(a.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=v(),(u=this.config.body.modelPath)!=null&&u.includes("posenet")?c=this.config.body.enabled?await K1(a.tensor,d):[]:(z=this.config.body.modelPath)!=null&&z.includes("blazepose")?c=this.config.body.enabled?await A1(a.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("efficientpose")?c=this.config.body.enabled?await y1(a.tensor,d):[]:(h=this.config.body.modelPath)!=null&&h.includes("movenet")&&(c=this.config.body.enabled?await D1(a.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let x=this.config.hand.maxDetected===-1?o0(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((X=(B=this.config.hand.detector)==null?void 0:B.modelPath)!=null&&X.includes("handdetect")?y=this.config.hand.enabled?S1(a.tensor,x):[]:(W=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&W.includes("handtrack")&&(y=this.config.hand.enabled?j1(a.tensor,x):[]),this.performance.hand&&delete this.performance.hand):(r=v(),(N=(Z=this.config.hand.detector)==null?void 0:Z.modelPath)!=null&&N.includes("handdetect")?y=this.config.hand.enabled?await S1(a.tensor,x):[]:(m0=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&m0.includes("handtrack")&&(y=this.config.hand.enabled?await j1(a.tensor,x):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((w0=this.config.object.modelPath)!=null&&w0.includes("nanodet")?i=this.config.object.enabled?Z1(a.tensor,this.config):[]:(Y0=this.config.object.modelPath)!=null&&Y0.includes("centernet")&&(i=this.config.object.enabled?i1(a.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=v(),(K0=this.config.object.modelPath)!=null&&K0.includes("nanodet")?i=this.config.object.enabled?await Z1(a.tensor,this.config):[]:(D0=this.config.object.modelPath)!=null&&D0.includes("centernet")&&(i=this.config.object.enabled?await i1(a.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,y,i]=await Promise.all([l,c,y,i])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=v(),f=[...xn(l),...cn(c),...dn(y),...yn(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(v()-s):Math.trunc(v()-s);let p=((me=this.process.tensor)==null?void 0:me.shape)||[];this.result={face:l,body:c,hand:y,gesture:f,object:i,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return pn(l,c,y,f,p)}},re.dispose(a.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};y2=new WeakMap,I2=new WeakMap,O2=new WeakMap,S5=new WeakMap;0&&(module.exports={Human,defaults,draw,env,match,models}); diff --git a/dist/human.node.js b/dist/human.node.js index e9dfc7d4..0886c67d 100644 --- a/dist/human.node.js +++ b/dist/human.node.js @@ -4,7 +4,7 @@ author: ' */ -"use strict";var pn=Object.create;var p2=Object.defineProperty;var un=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var Mn=(e,t,o)=>t in e?p2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var vn=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),pe=(e,t)=>{for(var o in t)p2(e,o,{get:t[o],enumerable:!0})},bt=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of hn(t))!gn.call(e,r)&&r!==o&&p2(e,r,{get:()=>t[r],enumerable:!(n=un(t,r))||n.enumerable});return e};var V=(e,t,o)=>(o=e!=null?pn(bn(e)):{},bt(t||!e||!e.__esModule?p2(o,"default",{value:e,enumerable:!0}):o,e)),Rn=e=>bt(p2({},"__esModule",{value:!0}),e);var T=(e,t,o)=>(Mn(e,typeof t!="symbol"?t+"":t,o),o),gt=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var u2=(e,t,o)=>(gt(e,t,"read from private field"),o?o.call(e):t.get(e)),h2=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},b2=(e,t,o,n)=>(gt(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);var D=vn((G7,O5)=>{"use strict";var vt=Object.defineProperty,Pn=Object.getOwnPropertyDescriptor,Tn=Object.getOwnPropertyNames,wn=Object.prototype.hasOwnProperty,I5=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Tn(t))!wn.call(e,r)&&r!==o&&vt(e,r,{get:()=>t[r],enumerable:!(n=Pn(t,r))||n.enumerable});return e},kn=(e,t,o)=>(I5(e,t,"default"),o&&I5(o,t,"default")),En=e=>I5(vt({},"__esModule",{value:!0}),e),Rt={};O5.exports=En(Rt);kn(Rt,require("@tensorflow/tfjs-node"),O5.exports)});var N7={};pe(N7,{Human:()=>yt,default:()=>yt,defaults:()=>ue,draw:()=>At,env:()=>P,match:()=>xt,models:()=>x5});module.exports=Rn(N7);function h(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function Mt(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var v=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function C5(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")C5(e[r],t[r],r,n);else{let A=e&&typeof e[r]!="undefined";A||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let s=e&&typeof e[r]==typeof t[r];A&&!s&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&h("invalid configuration",n),n}function n0(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let A=o[r],s=n[r];Array.isArray(A)&&Array.isArray(s)?o[r]=A.concat(...s):t(A)&&t(s)?o[r]=n0(A,s):o[r]=s}),o),{})}var ue={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var a0=V(D());var j=V(D());var Pt=` +"use strict";var un=Object.create;var p2=Object.defineProperty;var hn=Object.getOwnPropertyDescriptor;var bn=Object.getOwnPropertyNames;var gn=Object.getPrototypeOf,Mn=Object.prototype.hasOwnProperty;var vn=(e,t,o)=>t in e?p2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:o}):e[t]=o;var Rn=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),pe=(e,t)=>{for(var o in t)p2(e,o,{get:t[o],enumerable:!0})},gt=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of bn(t))!Mn.call(e,r)&&r!==o&&p2(e,r,{get:()=>t[r],enumerable:!(n=hn(t,r))||n.enumerable});return e};var V=(e,t,o)=>(o=e!=null?un(gn(e)):{},gt(t||!e||!e.__esModule?p2(o,"default",{value:e,enumerable:!0}):o,e)),Pn=e=>gt(p2({},"__esModule",{value:!0}),e);var T=(e,t,o)=>(vn(e,typeof t!="symbol"?t+"":t,o),o),Mt=(e,t,o)=>{if(!t.has(e))throw TypeError("Cannot "+o)};var u2=(e,t,o)=>(Mt(e,t,"read from private field"),o?o.call(e):t.get(e)),h2=(e,t,o)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,o)},b2=(e,t,o,n)=>(Mt(e,t,"write to private field"),n?n.call(e,o):t.set(e,o),o);var D=Rn((B7,O5)=>{"use strict";var Rt=Object.defineProperty,Tn=Object.getOwnPropertyDescriptor,wn=Object.getOwnPropertyNames,kn=Object.prototype.hasOwnProperty,I5=(e,t,o,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of wn(t))!kn.call(e,r)&&r!==o&&Rt(e,r,{get:()=>t[r],enumerable:!(n=Tn(t,r))||n.enumerable});return e},En=(e,t,o)=>(I5(e,t,"default"),o&&I5(o,t,"default")),zn=e=>I5(Rt({},"__esModule",{value:!0}),e),Pt={};O5.exports=zn(Pt);En(Pt,require("@tensorflow/tfjs-node"),O5.exports)});var L7={};pe(L7,{Human:()=>dt,default:()=>dt,defaults:()=>ue,draw:()=>st,env:()=>P,match:()=>yt,models:()=>x5});module.exports=Pn(L7);function b(...e){let t=new Date,o=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(o,"Human:",...e)}function vt(e,t){let o=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${o}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var v=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function C5(e,t,o="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")C5(e[r],t[r],r,n);else{let A=e&&typeof e[r]!="undefined";A||n.push({reason:"unknown property",where:`${o}.${r} = ${t[r]}`});let s=e&&typeof e[r]==typeof t[r];A&&!s&&n.push({reason:"property type mismatch",where:`${o}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&o==="config"&&n.length>0&&b("invalid configuration",n),n}function o0(...e){let t=o=>o&&typeof o=="object";return e.reduce((o,n)=>(Object.keys(n||{}).forEach(r=>{let A=o[r],s=n[r];Array.isArray(A)&&Array.isArray(s)?o[r]=A.concat(...s):t(A)&&t(s)?o[r]=o0(A,s):o[r]=s}),o),{})}var ue={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var a0=V(D());var j=V(D());var Tt=` precision highp float; attribute vec2 pos; attribute vec2 uv; @@ -14,7 +14,7 @@ vUv = uv; gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.); } -`;var Tt=` +`;var wt=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -26,7 +26,7 @@ gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14]; gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19]; } -`,wt=` +`,kt=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -38,7 +38,7 @@ gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14]; gl_FragColor.a = c.a; } -`,kt=` +`,Et=` precision highp float; varying vec2 vUv; uniform vec2 size; @@ -51,7 +51,7 @@ vec2 coord = pixelate(vUv, size); gl_FragColor += texture2D(texture, coord); } -`,Et=` +`,zt=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -74,7 +74,7 @@ gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794; gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265; } -`,zt=` +`,St=` precision highp float; varying vec2 vUv; uniform sampler2D texture; @@ -96,7 +96,7 @@ c31 * m[6] + c32 * m[7] + c33 * m[8]; gl_FragColor.a = c22.a; } -`;var j5=(e,t,o)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,A)=>(o[A]=0,r))},N5=class{constructor(t,o,n){T(this,"uniform",{});T(this,"attribute",{});T(this,"gl");T(this,"id");T(this,"compile",(t,o)=>{let n=this.gl.createShader(o);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(h(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(h("filter: could not create shader"),null)});this.gl=t;let r=this.compile(o,this.gl.VERTEX_SHADER),A=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!A)){if(!this.id){h("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,A),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){h(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),j5(o,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=this.gl.getAttribLocation(this.id,s);j5(o,"uniform",this.uniform),j5(n,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=this.gl.getUniformLocation(this.id,s)}}};function St(){let e=0,t=null,o=!1,n=-1,r=[null,null],A=[],s=null,a=null,l=b0(100,100),c={},y={INTERMEDIATE:1},i=l.getContext("webgl");if(!i){h("filter: cannot get webgl context");return}this.gl=i;function d(R,f){if(!(R===l.width&&f===l.height)){if(l.width=R,l.height=f,!s){let p=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);s=i.createBuffer(),i.bindBuffer(i.ARRAY_BUFFER,s),i.bufferData(i.ARRAY_BUFFER,p,i.STATIC_DRAW),i.pixelStorei(i.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}i.viewport(0,0,l.width,l.height),r=[null,null]}}function x(R,f){let p=i.createFramebuffer();i.bindFramebuffer(i.FRAMEBUFFER,p);let z=i.createRenderbuffer();i.bindRenderbuffer(i.RENDERBUFFER,z);let w=i.createTexture();return i.bindTexture(i.TEXTURE_2D,w),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,R,f,0,i.RGBA,i.UNSIGNED_BYTE,null),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.framebufferTexture2D(i.FRAMEBUFFER,i.COLOR_ATTACHMENT0,i.TEXTURE_2D,w,0),i.bindTexture(i.TEXTURE_2D,null),i.bindFramebuffer(i.FRAMEBUFFER,null),{fbo:p,texture:w}}function m(R){return r[R]=r[R]||x(l.width,l.height),r[R]}function b(R=0){if(!a)return;let f=null,p=null,z=!1;e===0?f=t:f=m(n).texture||null,e++,o&&!(R&y.INTERMEDIATE)?(p=null,z=e%2===0):(n=(n+1)%2,p=m(n).fbo||null),i.bindTexture(i.TEXTURE_2D,f),i.bindFramebuffer(i.FRAMEBUFFER,p),i.uniform1f(a.uniform.flipY,z?-1:1),i.drawArrays(i.TRIANGLES,0,6)}function g(R){if(c[R])return a=c[R],i.useProgram((a?a.id:null)||null),a;if(a=new N5(i,Pt,R),!a)return h("filter: could not get webgl program"),null;let f=Float32Array.BYTES_PER_ELEMENT,p=4*f;return i.enableVertexAttribArray(a.attribute.pos),i.vertexAttribPointer(a.attribute.pos,2,i.FLOAT,!1,p,0*f),i.enableVertexAttribArray(a.attribute.uv),i.vertexAttribPointer(a.attribute.uv,2,i.FLOAT,!1,p,2*f),c[R]=a,a}let M={colorMatrix:R=>{let f=new Float32Array(R);f[4]/=255,f[9]/=255,f[14]/=255,f[19]/=255;let p=f[18]===1&&f[3]===0&&f[8]===0&&f[13]===0&&f[15]===0&&f[16]===0&&f[17]===0&&f[19]===0?wt:Tt,z=g(p);!z||(i.uniform1fv(z.uniform.m,f),b())},brightness:R=>{let f=(R||0)+1;M.colorMatrix([f,0,0,0,0,0,f,0,0,0,0,0,f,0,0,0,0,0,1,0])},saturation:R=>{let f=(R||0)*2/3+1,p=(f-1)*-.5;M.colorMatrix([f,p,p,0,0,p,f,p,0,0,p,p,f,0,0,0,0,0,1,0])},desaturate:()=>{M.saturation(-1)},contrast:R=>{let f=(R||0)+1,p=-128*(f-1);M.colorMatrix([f,0,0,0,p,0,f,0,0,p,0,0,f,0,p,0,0,0,1,0])},negative:()=>{M.contrast(-2)},hue:R=>{R=(R||0)/180*Math.PI;let f=Math.cos(R),p=Math.sin(R),z=.213,w=.715,u=.072;M.colorMatrix([z+f*(1-z)+p*-z,w+f*-w+p*-w,u+f*-u+p*(1-u),0,0,z+f*-z+p*.143,w+f*(1-w)+p*.14,u+f*-u+p*-.283,0,0,z+f*-z+p*-(1-z),w+f*-w+p*w,u+f*(1-u)+p*u,0,0,0,0,0,1,0])},desaturateLuminance:()=>{M.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{M.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{M.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{M.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{M.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{M.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{M.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{M.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:R=>{let f=new Float32Array(R),p=1/l.width,z=1/l.height,w=g(zt);!w||(i.uniform1fv(w.uniform.m,f),i.uniform2f(w.uniform.px,p,z),b())},detectEdges:()=>{M.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{M.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{M.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:R=>{let f=R||1;M.convolution.call(this,[0,-1*f,0,-1*f,1+4*f,-1*f,0,-1*f,0])},emboss:R=>{let f=R||1;M.convolution.call(this,[-2*f,-1*f,0,-1*f,1,1*f,0,1*f,2*f])},blur:R=>{let f=R/7/l.width,p=R/7/l.height,z=g(Et);!z||(i.uniform2f(z.uniform.px,0,p),b(y.INTERMEDIATE),i.uniform2f(z.uniform.px,f,0),b())},pixelate:R=>{let f=R/l.width,p=R/l.height,z=g(kt);!z||(i.uniform2f(z.uniform.size,f,p),b())}};this.add=function(R){let f=Array.prototype.slice.call(arguments,1),p=M[R];A.push({func:p,args:f})},this.reset=function(){A=[]},this.get=function(){return A},this.apply=function(R){d(R.width,R.height),e=0,t||(t=i.createTexture()),i.bindTexture(i.TEXTURE_2D,t),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.NEAREST),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.NEAREST),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,i.RGBA,i.UNSIGNED_BYTE,R);for(let f=0;fx.data())),s=.99*Math.max(A[0][0],A[1][0],A[2][0]),a=[q.sub(o[0],n[0]),q.sub(o[1],n[1]),q.sub(o[2],n[2])],l=[q.sub(r[0],n[0]),q.sub(r[1],n[1]),q.sub(r[2],n[2])],c=[q.div(s,l[0]),q.div(s,l[1]),q.div(s,l[2])],y=[q.mul(a[0],c[0]),q.mul(a[1],c[1]),q.mul(a[2],c[2])],i=q.stack([y[0],y[1],y[2]],2),d=q.reshape(i,[1,t.shape[0],t.shape[1],3]);return q.dispose([...o,...n,...r,...a,...l,...c,...y,i,t]),d}var N2=3840,y0=null,d0=null,qe=null,Q,ae={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function b0(e,t){let o;if(P.browser)if(P.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");o=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");o=document.createElement("canvas"),o.width=e,o.height=t}else typeof P.Canvas!="undefined"?o=new P.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(o=new globalThis.Canvas(e,t));return o}function L2(e,t){let o=t||b0(e.width,e.height);return o.getContext("2d").drawImage(e,0,0),o}async function Ue(e,t,o=!0){var d,x;if(!e)return t.debug&&h("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof j.Tensor)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof P.Canvas!="undefined"&&e instanceof P.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof j.Tensor){let m=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)m=j.expandDims(e,0);else if(e.shape[2]===4){let b=j.slice3d(e,[0,0,0],[-1,-1,3]);m=j.expandDims(b,0),j.dispose(b)}}else e.shape.length===4&&(e.shape[3]===3?m=j.clone(e):e.shape[3]===4&&(m=j.slice4d(e,[0,0,0,0],[-1,-1,-1,3])));if(m==null||m.shape.length!==4||m.shape[0]!==1||m.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(m.dtype==="int32"){let b=j.cast(m,"float32");j.dispose(m),m=b}return{tensor:m,canvas:t.filter.return?d0:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&h("input stream is not ready"),{tensor:null,canvas:y0};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&h("cannot determine input dimensions"),{tensor:null,canvas:y0};let A=n,s=r;if(A>N2&&(A=N2,s=Math.trunc(A*r/n)),s>N2&&(s=N2,A=Math.trunc(s*n/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?A=t.filter.width:(((x=t.filter)==null?void 0:x.height)||0)>0&&(A=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?s=t.filter.height:(t.filter.width||0)>0&&(s=r*((t.filter.width||0)/n)),!A||!s)throw new Error("input error: cannot determine dimension");(!y0||y0.width!==A||y0.height!==s)&&(y0=b0(A,s));let a=y0.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?a.putImageData(e,0,0):t.filter.flip&&typeof a.translate!="undefined"?(a.translate(n,0),a.scale(-1,1),a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),a.setTransform(1,0,0,1,0,0)):a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),(!d0||y0.width!==d0.width||y0.height!==d0.height)&&(d0=b0(y0.width,y0.height)),t.filter.enabled&&P.webgl.supported?(Q||(Q=P.browser?new St:null),P.filter=!!Q,Q!=null&&Q.add?(Q.reset(),t.filter.brightness!==0&&Q.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Q.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Q.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Q.add("blur",t.filter.blur),t.filter.saturation!==0&&Q.add("saturation",t.filter.saturation),t.filter.hue!==0&&Q.add("hue",t.filter.hue),t.filter.negative&&Q.add("negative"),t.filter.sepia&&Q.add("sepia"),t.filter.vintage&&Q.add("brownie"),t.filter.sepia&&Q.add("sepia"),t.filter.kodachrome&&Q.add("kodachrome"),t.filter.technicolor&&Q.add("technicolor"),t.filter.polaroid&&Q.add("polaroid"),t.filter.pixelate!==0&&Q.add("pixelate",t.filter.pixelate),Q.get()>0?d0=Q.apply(y0):d0=Q.draw(y0)):(t.debug&&h("input process error: cannot initialize filters"),P.webgl.supported=!1,t.filter.enabled=!1,L2(y0,d0))):(L2(y0,d0),Q&&(Q=null),P.filter=!!Q),!o)return{tensor:null,canvas:d0};if(!d0)throw new Error("canvas error: cannot create output");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(P.browser&&j.browser)l=j.browser?j.browser.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let m=new Uint8Array(e.data.buffer);l=j.tensor(m,[e.height,e.width,c],"int32")}else if((!qe||d0.width!==qe.width||d0.height!==qe.height)&&(qe=b0(d0.width,d0.height)),j.browser&&P.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=j.browser.fromPixels(d0):(qe=L2(d0),l=j.browser.fromPixels(qe));else{let g=L2(d0).getContext("2d").getImageData(0,0,A,s);c=g.data.length/A/s;let M=new Uint8Array(g.data.buffer);l=j.tensor(M,[A,s,c])}if(c===4){let m=j.slice3d(l,[0,0,0],[-1,-1,3]);j.dispose(l),l=m}if(!l)throw new Error("input error: cannot create tensor");let y=j.cast(l,"float32"),i=t.filter.equalization?await j2(y):j.expandDims(y,0);return j.dispose([l,y]),{tensor:i,canvas:t.filter.return?d0:null}}async function Ct(e,t){let o=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return o;if(!ae.inputTensor)ae.inputTensor=j.clone(t);else if(ae.inputTensor.shape[1]!==t.shape[1]||ae.inputTensor.shape[2]!==t.shape[2])j.dispose(ae.inputTensor),ae.inputTensor=j.clone(t);else{let n={};n.diff=j.sub(t,ae.inputTensor),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;j.dispose([ae.inputTensor,n.diff,n.squared,n.sum]),ae.inputTensor=j.clone(t),o=A<=(e.cacheSensitivity||0)}return o}async function It(e,t,o){let n={};if(!t||!o||t.shape.length!==4||t.shape.length!==o.shape.length)return e.debug||h("invalid input tensor or tensor shapes do not match:",t.shape,o.shape),0;if(t.shape[0]!==1||o.shape[0]!==1||t.shape[3]!==3||o.shape[3]!==3)return e.debug||h("input tensors must be of shape [1, height, width, 3]:",t.shape,o.shape),0;n.input1=j.clone(t),n.input2=t.shape[1]!==o.shape[1]||t.shape[2]!==o.shape[2]?j.image.resizeBilinear(o,[t.shape[1],t.shape[2]]):j.clone(o),n.diff=j.sub(n.input1,n.input2),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return j.dispose([n.input1,n.input2,n.diff,n.squared,n.sum]),A}var L5=class{constructor(){T(this,"browser");T(this,"node");T(this,"worker");T(this,"platform","");T(this,"agent","");T(this,"backends",[]);T(this,"initial");T(this,"filter");T(this,"tfjs");T(this,"offscreen");T(this,"perfadd",!1);T(this,"tensorflow",{version:void 0,gpu:void 0});T(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});T(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});T(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});T(this,"cpu",{model:void 0,flags:[]});T(this,"kernels",[]);T(this,"Canvas");T(this,"Image");T(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:a0.version["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let o=t[0].match(/\(([^()]+)\)/g);this.platform=o!=null&&o[0]?o[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(a0.engine().registryFactory),this.tensorflow={version:a0.backend().binding?a0.backend().binding.TF_Version:void 0,gpu:a0.backend().binding?a0.backend().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&a0.getBackend()==="wasm"&&(this.wasm.simd=a0.env().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=a0.env().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=b0(100,100),o=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof o!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(a0.getBackend()==="webgl"||a0.getBackend()==="humangl")){let n=a0.backend().gpgpu!=="undefined"?await a0.backend().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=n?n.name:void 0}}catch(n){this.webgpu.supported=!1}try{this.kernels=a0.getKernelsForBackend(a0.getBackend()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},P=new L5;var w5=V(D());var W5={};pe(W5,{age:()=>Xn,"anti-spoofing":()=>vr,antispoof:()=>In,blazeface:()=>On,"blazeface-back":()=>qn,"blazeface-front":()=>Un,"blazepose-detect":()=>Mr,"blazepose-detector2d":()=>Yn,"blazepose-detector3d":()=>Kn,"blazepose-full":()=>Jn,"blazepose-heavy":()=>Qn,"blazepose-lite":()=>_n,default:()=>Nr,efficientpose:()=>$n,"efficientpose-i-lite":()=>Rr,"efficientpose-ii-lite":()=>Pr,"efficientpose-iv":()=>Tr,emotion:()=>jn,faceboxes:()=>er,facemesh:()=>Nn,"facemesh-attention":()=>or,"facemesh-attention-alt":()=>tr,"facemesh-detection-full":()=>nr,"facemesh-detection-short":()=>rr,"facemesh-orig":()=>Ar,faceres:()=>Ln,"faceres-deep":()=>sr,gear:()=>ar,gender:()=>lr,"gender-ssrnet-imdb":()=>ir,handdetect:()=>cr,"handlandmark-full":()=>Wn,"handlandmark-lite":()=>xr,"handlandmark-sparse":()=>yr,handskeleton:()=>dr,handtrack:()=>Fn,"insightface-efficientnet-b0":()=>wr,"insightface-ghostnet-strides1":()=>kr,"insightface-ghostnet-strides2":()=>Er,"insightface-mobilenet-emore":()=>zr,"insightface-mobilenet-swish":()=>Sr,iris:()=>Gn,liveness:()=>Bn,"mb3-centernet":()=>Hn,meet:()=>fr,mobileface:()=>mr,mobilefacenet:()=>pr,models:()=>Dn,"movenet-lightning":()=>Vn,"movenet-multipose":()=>ur,"movenet-thunder":()=>hr,nanodet:()=>br,"nanodet-e":()=>Cr,"nanodet-g":()=>Ir,"nanodet-m":()=>Or,"nanodet-t":()=>jr,posenet:()=>gr,selfie:()=>Zn});var In=853098,On=538928,jn=820516,Nn=1477958,Ln=6978814,Wn=5431368,Fn=2964837,Gn=2599092,Bn=592976,Hn=4030290,Dn=0,Vn=4650216,Zn=212886,Xn=161240,qn=538928,Un=402048,Yn=7499400,Kn=5928856,Jn=6338290,Qn=27501554,_n=2725490,$n=5651240,er=2013002,tr=2387598,or=2382414,nr=1026192,rr=201268,Ar=2955780,sr=13957620,ar=1498916,ir=161236,lr=201808,cr=3515612,xr=2023432,yr=5286322,dr=5502280,fr=372228,mr=2183192,pr=5171976,ur=9448838,hr=12477112,br=7574558,gr=5032780,Mr=5928804,vr=853098,Rr=2269064,Pr=5651240,Tr=25643252,wr=13013224,kr=8093408,Er=8049584,zr=6938536,Sr=12168584,Cr=12319156,Ir=7574558,Or=1887474,jr=5294216,Nr={antispoof:In,blazeface:On,emotion:jn,facemesh:Nn,faceres:Ln,"handlandmark-full":Wn,handtrack:Fn,iris:Gn,liveness:Bn,"mb3-centernet":Hn,models:Dn,"movenet-lightning":Vn,selfie:Zn,age:Xn,"blazeface-back":qn,"blazeface-front":Un,"blazepose-detector2d":Yn,"blazepose-detector3d":Kn,"blazepose-full":Jn,"blazepose-heavy":Qn,"blazepose-lite":_n,efficientpose:$n,faceboxes:er,"facemesh-attention-alt":tr,"facemesh-attention":or,"facemesh-detection-full":nr,"facemesh-detection-short":rr,"facemesh-orig":Ar,"faceres-deep":sr,gear:ar,"gender-ssrnet-imdb":ir,gender:lr,handdetect:cr,"handlandmark-lite":xr,"handlandmark-sparse":yr,handskeleton:dr,meet:fr,mobileface:mr,mobilefacenet:pr,"movenet-multipose":ur,"movenet-thunder":hr,nanodet:br,posenet:gr,"blazepose-detect":Mr,"anti-spoofing":vr,"efficientpose-i-lite":Rr,"efficientpose-ii-lite":Pr,"efficientpose-iv":Tr,"insightface-efficientnet-b0":wr,"insightface-ghostnet-strides1":kr,"insightface-ghostnet-strides2":Er,"insightface-mobilenet-emore":zr,"insightface-mobilenet-swish":Sr,"nanodet-e":Cr,"nanodet-g":Ir,"nanodet-m":Or,"nanodet-t":jr};var x5={};pe(x5,{Models:()=>S2,getModelStats:()=>J1,load:()=>Q1,reset:()=>c5,validate:()=>T5,validateModel:()=>A2});var W2=V(D());var V0,F5=[],Lr=["white","black","asian","indian","other"],Wr=[15,23,28,35.5,45.5,55.5,65],Ot=0,jt=0,G5=Number.MAX_SAFE_INTEGER;async function Nt(e){var t;return P.initial&&(V0=null),V0?e.debug&&h("cached model:",V0.modelUrl):V0=await F((t=e.face.gear)==null?void 0:t.modelPath),V0}async function B5(e,t,o,n){var s,a;if(!V0)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=G5<(((s=t.face.gear)==null?void 0:s.skipFrames)||0),A=(((a=t.face.gear)==null?void 0:a.skipTime)||0)>v()-jt;return t.skipAllowed&&A&&r&&Ot===n&&F5[o]?(G5++,F5[o]):(G5=0,new Promise(async l=>{var M,R;if(!(V0!=null&&V0.inputs[0].shape))return;let c={},y=[[0,.1,.9,.9]];c.resize=W2.image.cropAndResize(e,y,[0],[V0.inputs[0].shape[2],V0.inputs[0].shape[1]]);let i={age:0,gender:"unknown",genderScore:0,race:[]};(M=t.face.gear)!=null&&M.enabled&&([c.age,c.gender,c.race]=V0.execute(c.resize,["age_output","gender_output","race_output"]));let d=await c.gender.data();i.gender=d[0]>d[1]?"male":"female",i.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let x=await c.race.data();for(let f=0;f(((R=t.face.gear)==null?void 0:R.minConfidence)||.2)&&i.race.push({score:Math.round(100*x[f])/100,race:Lr[f]});i.race.sort((f,p)=>p.score-f.score);let b=Array.from(await c.age.data()).map((f,p)=>[Wr[p],f]).sort((f,p)=>p[1]-f[1]),g=b[0][0];for(let f=1;fW2.dispose(c[f])),F5[o]=i,Ot=n,jt=v(),l(i)}))}var Ye=V(D());var he=V(D()),H={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function Wt(){H.tf255=he.scalar(255,"float32"),H.tf1=he.scalar(1,"float32"),H.tf2=he.scalar(2,"float32"),H.tf05=he.scalar(.5,"float32"),H.tf127=he.scalar(127.5,"float32"),H.rgb=he.tensor1d([.2989,.587,.114],"float32")}var E0,F2=[],Ft=0,Gt=0,H5=Number.MAX_SAFE_INTEGER;async function Bt(e){return P.initial&&(E0=null),E0?e.debug&&h("cached model:",E0.modelUrl):E0=await F(e.face.ssrnet.modelPathAge),E0}async function D5(e,t,o,n){var s,a,l,c;if(!E0)return{age:0};let r=H5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Gt;return t.skipAllowed&&r&&A&&Ft===n&&((l=F2[o])==null?void 0:l.age)&&((c=F2[o])==null?void 0:c.age)>0?(H5++,F2[o]):(H5=0,new Promise(async y=>{var x;if(!(E0!=null&&E0.inputs)||!E0.inputs[0]||!E0.inputs[0].shape)return;let i={};i.resize=Ye.image.resizeBilinear(e,[E0.inputs[0].shape[2],E0.inputs[0].shape[1]],!1),i.enhance=Ye.mul(i.resize,H.tf255);let d={age:0};if((x=t.face.ssrnet)!=null&&x.enabled&&(i.age=E0.execute(i.enhance)),i.age){let m=await i.age.data();d.age=Math.trunc(10*m[0])/10}Object.keys(i).forEach(m=>Ye.dispose(i[m])),F2[o]=d,Ft=n,Gt=v(),y(d)}))}var p0=V(D());var Z0,G2=[],Dt=0,Vt=0,V5=Number.MAX_SAFE_INTEGER,Z5=[.2989,.587,.114];async function Zt(e){var t;return P.initial&&(Z0=null),Z0?e.debug&&h("cached model:",Z0.modelUrl):Z0=await F((t=e.face.ssrnet)==null?void 0:t.modelPathGender),Z0}async function X5(e,t,o,n){var s,a,l,c;if(!Z0)return{gender:"unknown",genderScore:0};let r=V5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Vt;return t.skipAllowed&&r&&A&&Dt===n&&((l=G2[o])==null?void 0:l.gender)&&((c=G2[o])==null?void 0:c.genderScore)>0?(V5++,G2[o]):(V5=0,new Promise(async y=>{var m;if(!(Z0!=null&&Z0.inputs[0].shape))return;let i={};i.resize=p0.image.resizeBilinear(e,[Z0.inputs[0].shape[2],Z0.inputs[0].shape[1]],!1),i.enhance=p0.tidy(()=>{let[b,g,M]=p0.split(i.resize,3,3),R=p0.mul(b,Z5[0]),f=p0.mul(g,Z5[1]),p=p0.mul(M,Z5[2]),z=p0.addN([R,f,p]);return p0.mul(p0.sub(z,H.tf05),2)});let d={gender:"unknown",genderScore:0};(m=t.face.ssrnet)!=null&&m.enabled&&(i.gender=Z0.execute(i.enhance));let x=await i.gender.data();d.gender=x[0]>x[1]?"female":"male",d.genderScore=x[0]>x[1]?Math.trunc(100*x[0])/100:Math.trunc(100*x[1])/100,Object.keys(i).forEach(b=>p0.dispose(i[b])),G2[o]=d,Dt=n,Vt=v(),y(d)}))}var H2=V(D());var c0,B2=[],q5=Number.MAX_SAFE_INTEGER,qt=0,Ut=0;async function Yt(e){var t;return P.initial&&(c0=null),c0?e.debug&&h("cached model:",c0.modelUrl):c0=await F((t=e.face.antispoof)==null?void 0:t.modelPath),c0}async function U5(e,t,o,n){var s,a;if(!c0||!(c0!=null&&c0.executor))return 0;let r=(((s=t.face.antispoof)==null?void 0:s.skipTime)||0)>v()-Ut,A=q5<(((a=t.face.antispoof)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&qt===n&&B2[o]?(q5++,B2[o]):(q5=0,new Promise(async l=>{let c=H2.image.resizeBilinear(e,[c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[2]:0,c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[1]:0],!1),y=c0==null?void 0:c0.execute(c),i=(await y.data())[0];B2[o]=Math.round(100*i)/100,qt=n,Ut=v(),H2.dispose([c,y]),l(B2[o])}))}var L=V(D());var ie=V(D());var X0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Y5={count:468,mouth:13,symmetryLine:[13,X0.midwayBetweenEyes[0]]},Oe={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},K5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],M2=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],je=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Gr=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Br=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Hr=[33,133,362,263,1,78,308],A4=Gr.map(e=>M2[e]),s4=Br.map(e=>M2[e]),a4=Hr.map(e=>M2[e]);function be(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var Dr=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Vr=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Zr=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Xr=[[474,475],[475,476],[476,477],[477,474]],qr=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Ur=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Yr=[[469,470],[470,471],[471,472],[472,469]],Kr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],i4={lips:be(Dr),leftEye:be(Vr),leftEyebrow:be(Zr),leftIris:be(Xr),rightEye:be(qr),rightEyebrow:be(Ur),rightIris:be(Yr),faceOval:be(Kr)};var Ke=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],D2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],V2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Z2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],_t=(e,t)=>{let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:o,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},Q5=(e,t,o)=>{let n=t.shape[1],r=t.shape[2],A=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],s=ie.image.cropAndResize(t,[A],[0],o),a=ie.div(s,H.tf255);return ie.dispose(s),a},X2=(e,t)=>{let o=D2(e),n=Ke(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[o[0]-r[0],o[1]-r[1]],endPoint:[o[0]+r[0],o[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},q2=e=>{let t=D2(e),o=Ke(e),n=Math.max(...o)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},$t=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...o)],endPoint:[Math.max(...t),Math.max(...o)],landmarks:e}},_5=[[1,0,0],[0,1,0],[0,0,1]],Jr=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Qr=(e,t)=>Jr(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var Jt=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ne=(e,t)=>{let o=0;for(let n=0;n{let o=[];for(let n=0;n{let o=[],n=e.length;for(let r=0;r{let o=Math.cos(e),n=Math.sin(e),r=[[o,-n,0],[n,o,0],[0,0,1]],A=Jt(t[0],t[1]),s=Qt(A,r),a=Jt(-t[0],-t[1]);return Qt(s,a)},$r=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],o=[e[0][2],e[1][2]],n=[-Ne(t[0],o),-Ne(t[1],o)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},eA=(e,t)=>[Ne(e,t[0]),Ne(e,t[1])];function t3(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},o=[];for(let n=0;n[A[0]/r*(x[0]-r/2),A[1]/r*(x[1]-r/2),x[2]||0]),a=o&&o!==0&&Math.abs(o)>.2,l=a?e3(o,[0,0]):_5,c=a?s.map(x=>[...eA(x,l),x[2]]):s,y=a?$r(n):_5,i=D2(t),d=[Ne(i,y[0]),Ne(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2]||0)])}function n3(e,t,o,n){let r=t.landmarks.length>=Y5.count?Y5.symmetryLine:Oe.symmetryLine,A=0,s=_5,a;if(e&&P.kernels.includes("rotatewithoffset"))if(A=Qr(t.landmarks[r[0]],t.landmarks[r[1]]),A&&A!==0&&Math.abs(A)>.2){let c=D2(t),y=[c[0]/o.shape[2],c[1]/o.shape[1]],i=ie.image.rotateWithOffset(o,A,0,y);s=e3(-A,c),a=Q5(t,i,[n,n]),ie.dispose(i)}else a=Q5(t,o,[n,n]);else a=Q5(t,o,[n,n]);return[A,s,a]}var tA=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...o)+(Math.max(...o)-Math.min(...o))/2]},r3=(e,t)=>{let o=tA(e),n=Ke(t);return{startPoint:[o[0]-n[0]/2,o[1]-n[1]/2],endPoint:[o[0]+n[0]/2,o[1]+n[1]/2]}};var A3=6,oA=1.4,K0,s3=null,ge=0,v2=null,Je=()=>ge;async function a3(e){var t;return P.initial&&(K0=null),K0?e.debug&&h("cached model:",K0.modelUrl):K0=await F((t=e.face.detector)==null?void 0:t.modelPath),ge=K0.executor&&K0.inputs[0].shape?K0.inputs[0].shape[2]:256,v2=L.scalar(ge,"int32"),s3=L.tensor2d(t3(ge)),K0}function nA(e){let t={};t.boxStarts=L.slice(e,[0,1],[-1,2]),t.centers=L.add(t.boxStarts,s3),t.boxSizes=L.slice(e,[0,3],[-1,2]),t.boxSizesNormalized=L.div(t.boxSizes,v2),t.centersNormalized=L.div(t.centers,v2),t.halfBoxSize=L.div(t.boxSizesNormalized,H.tf2),t.starts=L.sub(t.centersNormalized,t.halfBoxSize),t.ends=L.add(t.centersNormalized,t.halfBoxSize),t.startNormalized=L.mul(t.starts,v2),t.endNormalized=L.mul(t.ends,v2);let o=L.concat2d([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>L.dispose(t[n])),o}async function i3(e,t){var a,l,c,y;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let o={};o.resized=L.image.resizeBilinear(e,[ge,ge]),o.div=L.div(o.resized,H.tf127),o.normalized=L.sub(o.div,H.tf05);let n=K0==null?void 0:K0.execute(o.normalized);if(Array.isArray(n)&&n.length>2){let i=n.sort((d,x)=>d.size-x.size);o.concat384=L.concat([i[0],i[2]],2),o.concat512=L.concat([i[1],i[3]],2),o.concat=L.concat([o.concat512,o.concat384],1),o.batch=L.squeeze(o.concat,0)}else Array.isArray(n)?o.batch=L.squeeze(n[0]):o.batch=L.squeeze(n);L.dispose(n),o.boxes=nA(o.batch),o.logits=L.slice(o.batch,[0,0],[-1,1]),o.sigmoid=L.sigmoid(o.logits),o.scores=L.squeeze(o.sigmoid),o.nms=await L.image.nonMaxSuppressionAsync(o.boxes,o.scores,((a=t.face.detector)==null?void 0:a.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((c=t.face.detector)==null?void 0:c.minConfidence)||0);let r=await o.nms.array(),A=[],s=await o.scores.data();for(let i=0;i(((y=t.face.detector)==null?void 0:y.minConfidence)||0)){let x={};x.bbox=L.slice(o.boxes,[r[i],0],[1,-1]),x.slice=L.slice(o.batch,[r[i],A3-1],[1,-1]),x.squeeze=L.squeeze(x.slice),x.landmarks=L.reshape(x.squeeze,[A3,-1]);let m=await x.bbox.data(),b={startPoint:[m[0],m[1]],endPoint:[m[2],m[3]],landmarks:await x.landmarks.array(),confidence:d},g=_t(b,[(e.shape[2]||0)/ge,(e.shape[1]||0)/ge]),M=X2(g,t.face.scale||oA),R=q2(M);A.push(R),Object.keys(x).forEach(f=>L.dispose(x[f]))}}return Object.keys(o).forEach(i=>L.dispose(o[i])),A}var S0=V(D());var U2={};pe(U2,{connected:()=>t1,kpt:()=>e1});var e1=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],t1={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var z0=V(D()),c3=224,rA,AA=5,Y2=[8,16,32,32,32];function x3(){let e=[],t=0;for(;to.x)),y:z0.tensor1d(e.map(o=>o.y))}}function le(e,t=[1,1]){let o=[e.map(a=>a[0]),e.map(a=>a[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[n[0],n[1],r[0]-n[0],r[1]-n[1]],s=[A[0]/t[0],A[1]/t[1],A[2]/t[0],A[3]/t[1]];return{box:A,boxRaw:s}}function y3(e,t=[1,1]){let o=[e.map(c=>c[0]),e.map(c=>c[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[(n[0]+r[0])/2,(n[1]+r[1])/2],s=Math.max(A[0]-n[0],A[1]-n[1],-A[0]+r[0],-A[1]+r[1]),a=[Math.trunc(A[0]-s),Math.trunc(A[1]-s),Math.trunc(2*s),Math.trunc(2*s)],l=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:l}}function K2(e,t){let o=[e[2]*t,e[3]*t];return[e[0]-(o[0]-e[2])/2,e[1]-(o[1]-e[3])/2,o[0],o[1]]}var m3={initial:!0},u0={detector:null,landmarks:null},Qe={detector:[224,224],landmarks:[256,256]},o1=Number.MAX_SAFE_INTEGER,aA={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},Q2=null,R2,Me=[[0,0],[0,0],[0,0],[0,0]],d3=0,f3=e=>1-1/(1+Math.exp(e));async function p3(e){var t;if(m3.initial&&(u0.detector=null),!u0.detector&&e.body.detector&&e.body.detector.modelPath){u0.detector=await F(e.body.detector.modelPath);let o=(t=u0.detector)!=null&&t.executor?Object.values(u0.detector.modelSignature.inputs):void 0;Qe.detector[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.detector[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}else e.debug&&u0.detector&&h("cached model:",u0.detector.modelUrl);return x3(),u0.detector}async function u3(e){var t;if(m3.initial&&(u0.landmarks=null),u0.landmarks)e.debug&&h("cached model:",u0.landmarks.modelUrl);else{u0.landmarks=await F(e.body.modelPath);let o=(t=u0.landmarks)!=null&&t.executor?Object.values(u0.landmarks.modelSignature.inputs):void 0;Qe.landmarks[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.landmarks[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return u0.landmarks}function iA(e,t){var r,A;let o={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((A=e==null?void 0:e.shape)!=null&&A[2]))return e;let n;if(R2&&(o.cropped=S0.image.cropAndResize(e,[R2],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let s=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],a=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Me=[[0,0],s,a,[0,0]],o.pad=S0.pad(o.cropped||e,Me),o.resize=S0.image.resizeBilinear(o.pad,[t,t]),n=S0.div(o.resize,H.tf255)}else e.shape[1]!==t?(o.resize=S0.image.resizeBilinear(o.cropped||e,[t,t]),n=S0.div(o.resize,H.tf255)):n=S0.div(o.cropped||e,H.tf255);return Object.keys(o).forEach(s=>S0.dispose(o[s])),n}function lA(e,t){for(let o of e)o.position=[Math.trunc(o.position[0]*(t[0]+Me[2][0]+Me[2][1])/t[0]-Me[2][0]),Math.trunc(o.position[1]*(t[1]+Me[1][0]+Me[1][1])/t[1]-Me[1][0]),o.position[2]],o.positionRaw=[o.position[0]/t[0],o.position[1]/t[1],2*o.position[2]/(t[0]+t[1])];if(R2)for(let o of e)o.positionRaw=[o.positionRaw[0]+R2[1],o.positionRaw[1]+R2[0],o.positionRaw[2]],o.position=[Math.trunc(o.positionRaw[0]*t[0]),Math.trunc(o.positionRaw[1]*t[1]),o.positionRaw[2]];return e}function cA(e){let t=e.find(a=>a.part==="leftPalm"),o=e.find(a=>a.part==="leftWrist"),n=e.find(a=>a.part==="leftIndex");t.position[2]=((o.position[2]||0)+(n.position[2]||0))/2;let r=e.find(a=>a.part==="rightPalm"),A=e.find(a=>a.part==="rightWrist"),s=e.find(a=>a.part==="rightIndex");r.position[2]=((A.position[2]||0)+(s.position[2]||0))/2}async function xA(e,t,o){var m,b;if(!((m=u0.landmarks)!=null&&m.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(b=u0.landmarks)==null?void 0:b.execute(e,aA.landmarks);let r=(await n.poseflag.data())[0],A=await n.ld.data(),s=await n.world.data();Object.keys(n).forEach(g=>S0.dispose(n[g]));let a=[],l=5;for(let g=0;gg.position),i=le(y,[o[0],o[1]]),d={};for(let[g,M]of Object.entries(t1)){let R=[];for(let f=0;fw.part===M[f]),z=c.find(w=>w.part===M[f+1]);p&&z&&R.push([p.position,z.position])}d[g]=R}return{id:0,score:Math.trunc(100*r)/100,box:i.box,boxRaw:i.boxRaw,keypoints:c,annotations:d}}async function n1(e,t){let o=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>v()-d3,r=o1<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&Q2!==null)o1++;else{let A={};A.landmarks=iA(e,256),Q2=await xA(A.landmarks,t,o),Object.keys(A).forEach(s=>S0.dispose(A[s])),d3=v(),o1=0}return Q2?[Q2]:[]}var g0=V(D());var _e=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var k0,Le=0,r1=[],b3=0,A1=Number.MAX_SAFE_INTEGER;async function g3(e){if(P.initial&&(k0=null),k0)e.debug&&h("cached model:",k0.modelUrl);else{k0=await F(e.object.modelPath);let t=k0!=null&&k0.executor?Object.values(k0.modelSignature.inputs):void 0;Le=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return k0}async function yA(e,t,o){if(!e)return[];let n={},r=[],A=await e.array();n.squeeze=g0.squeeze(e);let s=g0.split(n.squeeze,6,1);n.stack=g0.stack([s[1],s[0],s[3],s[2]],1),n.boxes=g0.squeeze(n.stack),n.scores=g0.squeeze(s[4]),n.classes=g0.squeeze(s[5]),g0.dispose([e,...s]),n.nms=await g0.image.nonMaxSuppressionAsync(n.boxes,n.scores,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence||0);let a=await n.nms.data(),l=0;for(let c of Array.from(a)){let y=Math.trunc(100*A[0][c][4])/100,i=A[0][c][5],d=_e[i].label,[x,m]=[A[0][c][0]/Le,A[0][c][1]/Le],b=[x,m,A[0][c][2]/Le-x,A[0][c][3]/Le-m],g=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];r.push({id:l++,score:y,class:i,label:d,box:g,boxRaw:b})}return Object.keys(n).forEach(c=>g0.dispose(n[c])),r}async function s1(e,t){if(!(k0!=null&&k0.executor))return[];let o=(t.object.skipTime||0)>v()-b3,n=A1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&r1.length>0?(A1++,r1):(A1=0,new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=g0.image.resizeBilinear(e,[Le,Le]),a=t.object.enabled?k0==null?void 0:k0.execute(s,["tower_0/detections"]):null;b3=v(),g0.dispose(s);let l=await yA(a,A,t);r1=l,r(l)}))}var Y=V(D());var _2={};pe(_2,{connected:()=>i1,kpt:()=>a1});var a1=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],i1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var x0,v3=0,M0={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},l1=Number.MAX_SAFE_INTEGER;async function R3(e){return P.initial&&(x0=null),x0?e.debug&&h("cached model:",x0.modelUrl):x0=await F(e.body.modelPath),x0}async function dA(e,t){let[o,n]=e.shape,r=Y.reshape(e,[n*o]),A=Y.max(r,0),s=(await A.data())[0];if(s>t){let a=Y.argMax(r,0),l=Y.mod(a,o),c=(await l.data())[0],y=Y.div(a,o),i=(await y.data())[0];return Y.dispose([r,A,a,l,y]),[c,i,s]}return Y.dispose([r,A]),[0,0,s]}async function c1(e,t){if(!(x0!=null&&x0.executor))return[];let o=(t.body.skipTime||0)>v()-v3,n=l1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n&&Object.keys(M0.keypoints).length>0?(l1++,[M0]):(l1=0,new Promise(async r=>{let A=Y.tidy(()=>{if(!(x0!=null&&x0.inputs[0].shape))return null;let i=Y.image.resizeBilinear(e,[x0.inputs[0].shape[2],x0.inputs[0].shape[1]],!1),d=Y.mul(i,H.tf2);return Y.sub(d,H.tf1)}),s;if(t.body.enabled&&(s=x0==null?void 0:x0.execute(A)),v3=v(),Y.dispose(A),s){M0.keypoints.length=0;let i=Y.squeeze(s);Y.dispose(s);let d=Y.unstack(i,2);Y.dispose(i);for(let x=0;x(t.body.minConfidence||0)&&M0.keypoints.push({score:Math.round(100*g)/100,part:a1[x],positionRaw:[m/x0.inputs[0].shape[2],b/x0.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/x0.inputs[0].shape[2]),Math.round(e.shape[1]*b/x0.inputs[0].shape[1])]})}d.forEach(x=>Y.dispose(x))}M0.score=M0.keypoints.reduce((i,d)=>d.score>i?d.score:i,0);let a=M0.keypoints.map(i=>i.position[0]),l=M0.keypoints.map(i=>i.position[1]);M0.box=[Math.min(...a),Math.min(...l),Math.max(...a)-Math.min(...a),Math.max(...l)-Math.min(...l)];let c=M0.keypoints.map(i=>i.positionRaw[0]),y=M0.keypoints.map(i=>i.positionRaw[1]);M0.boxRaw=[Math.min(...c),Math.min(...y),Math.max(...c)-Math.min(...c),Math.max(...y)-Math.min(...y)];for(let[i,d]of Object.entries(i1)){let x=[];for(let m=0;mM.part===d[m]),g=M0.keypoints.find(M=>M.part===d[m+1]);b&&g&&b.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([b.position,g.position])}M0.annotations[i]=x}r([M0])}))}var J0=V(D());var fA=["angry","disgust","fear","happy","sad","surprise","neutral"],F0,$2=[],T3=0,w3=0,x1=Number.MAX_SAFE_INTEGER;async function k3(e){var t;return P.initial&&(F0=null),F0?e.debug&&h("cached model:",F0.modelUrl):F0=await F((t=e.face.emotion)==null?void 0:t.modelPath),F0}async function y1(e,t,o,n){var s,a;if(!F0)return[];let r=x1<(((s=t.face.emotion)==null?void 0:s.skipFrames)||0),A=(((a=t.face.emotion)==null?void 0:a.skipTime)||0)>v()-w3;return t.skipAllowed&&A&&r&&T3===n&&$2[o]&&$2[o].length>0?(x1++,$2[o]):(x1=0,new Promise(async l=>{var y;let c=[];if((y=t.face.emotion)!=null&&y.enabled){let i={},d=F0!=null&&F0.inputs[0].shape?F0.inputs[0].shape[2]:0;i.resize=J0.image.resizeBilinear(e,[d,d],!1),i.channels=J0.mul(i.resize,H.rgb),i.grayscale=J0.sum(i.channels,3,!0),i.grayscaleSub=J0.sub(i.grayscale,H.tf05),i.grayscaleMul=J0.mul(i.grayscaleSub,H.tf2),i.emotion=F0==null?void 0:F0.execute(i.grayscaleMul),w3=v();let x=await i.emotion.data();for(let m=0;m(t.face.emotion.minConfidence||0)&&c.push({score:Math.min(.99,Math.trunc(100*x[m])/100),emotion:fA[m]});c.sort((m,b)=>b.score-m.score),Object.keys(i).forEach(m=>J0.dispose(i[m]))}$2[o]=c,T3=n,l(c)}))}var e5=V(D());var C0,d1=[],z3=0,S3=0,C3=Number.MAX_SAFE_INTEGER;async function I3(e){var t;return P.initial&&(C0=null),C0?e.debug&&h("cached model:",C0.modelUrl):C0=await F((t=e.face.mobilefacenet)==null?void 0:t.modelPath),C0}async function f1(e,t,o,n){var s,a;if(!(C0!=null&&C0.executor))return[];let r=C3<(((s=t.face.mobilefacenet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.mobilefacenet)==null?void 0:a.skipTime)||0)>v()-S3;return t.skipAllowed&&A&&r&&z3===n&&d1[o]?(C3++,d1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.mobilefacenet)==null?void 0:y.enabled)&&(C0==null?void 0:C0.inputs[0].shape)){let i={};i.crop=e5.image.resizeBilinear(e,[C0.inputs[0].shape[2],C0.inputs[0].shape[1]],!1),i.data=C0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>e5.dispose(i[x]))}d1[o]=c,z3=n,S3=v(),l(c)})}var t5=V(D());var I0,m1=[],j3=0,N3=0,L3=Number.MAX_SAFE_INTEGER;async function W3(e){return P.initial&&(I0=null),I0?e.debug&&h("cached model:",I0.modelUrl):I0=await F(e.face.insightface.modelPath),I0}async function p1(e,t,o,n){var s,a;if(!(I0!=null&&I0.executor))return[];let r=L3<(((s=t.face.insightface)==null?void 0:s.skipFrames)||0),A=(((a=t.face.insightface)==null?void 0:a.skipTime)||0)>v()-N3;return t.skipAllowed&&A&&r&&j3===n&&m1[o]?(L3++,m1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.insightface)==null?void 0:y.enabled)&&(I0==null?void 0:I0.inputs[0].shape)){let i={};i.crop=t5.image.resizeBilinear(e,[I0.inputs[0].shape[2],I0.inputs[0].shape[1]],!1),i.data=I0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>t5.dispose(i[x]))}m1[o]=c,j3=n,N3=v(),l(c)})}var Pe=V(D());var Q0=V(D());var O0,ve=0,mA=2.3,u1=X0.leftEyeLower0,h1=X0.rightEyeLower0,$e={leftBounds:[u1[0],u1[u1.length-1]],rightBounds:[h1[0],h1[h1.length-1]]},e2={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function D3(e){var t,o;return P.initial&&(O0=null),O0?e.debug&&h("cached model:",O0.modelUrl):O0=await F((t=e.face.iris)==null?void 0:t.modelPath),ve=(O0==null?void 0:O0.executor)&&((o=O0.inputs)==null?void 0:o[0].shape)?O0.inputs[0].shape[2]:0,ve===-1&&(ve=64),O0}function o5(e,t,o,n){for(let r=0;r{let t=e[$e.leftBounds[0]][2],o=e[$e.rightBounds[0]][2];return t-o},G3=(e,t,o,n,r,A=!1)=>{let s=q2(X2($t([e[o],e[n]]),mA)),a=Ke(s),l=Q0.image.cropAndResize(t,[[s.startPoint[1]/r,s.startPoint[0]/r,s.endPoint[1]/r,s.endPoint[0]/r]],[0],[ve,ve]);if(A&&P.kernels.includes("flipleftright")){let c=Q0.image.flipLeftRight(l);Q0.dispose(l),l=c}return{box:s,boxSize:a,crop:l}},B3=(e,t,o,n=!1)=>{let r=[];for(let A=0;A{let n=e[X0[`${o}EyeUpper0`][e2.upperCenter]][2],r=e[X0[`${o}EyeLower0`][e2.lowerCenter]][2],A=(n+r)/2;return t.map((s,a)=>{let l=A;return a===2?l=n:a===4&&(l=r),[s[0],s[1],l]})};async function V3(e,t,o){if(!(O0!=null&&O0.executor))return e;let{box:n,boxSize:r,crop:A}=G3(e,t,$e.leftBounds[0],$e.leftBounds[1],o,!0),{box:s,boxSize:a,crop:l}=G3(e,t,$e.rightBounds[0],$e.rightBounds[1],o,!0),c=Q0.concat([A,l]);Q0.dispose(A),Q0.dispose(l);let y=O0.execute(c);Q0.dispose(c);let i=await y.data();Q0.dispose(y);let d=i.slice(0,e2.numCoordinates*3),{rawCoords:x,iris:m}=B3(d,n,r,!0),b=i.slice(e2.numCoordinates*3),{rawCoords:g,iris:M}=B3(b,s,a,!1),R=pA(e);Math.abs(R)<30?(o5(e,x,"left",null),o5(e,g,"right",null)):R<1?o5(e,x,"left",["EyeUpper0","EyeLower0"]):o5(e,g,"right",["EyeUpper0","EyeLower0"]);let f=H3(e,m,"left"),p=H3(e,M,"right");return e.concat(f).concat(p)}var uA=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],hA=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],bA=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],gA=[[474,475],[475,476],[476,477],[477,474]],MA=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],vA=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],RA=[[469,470],[470,471],[471,472],[472,469]],PA=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Re(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var TA={lips:Re(uA),leftEye:Re(hA),leftEyebrow:Re(bA),leftIris:Re(gA),rightEye:Re(MA),rightEyebrow:Re(vA),rightIris:Re(RA),faceOval:Re(PA)},wA=Object.entries(TA).map(([e,t])=>t.map(o=>[o,e])).flat(),B4=new Map(wA),P2=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],We=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],Fe=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function q3(e,t){let o={lips:await t.filter(A=>A.size===160)[0].data(),irisL:await t.filter(A=>A.size===10)[0].data(),eyeL:await t.filter(A=>A.size===142)[0].data(),irisR:await t.filter(A=>A.size===10)[1].data(),eyeR:await t.filter(A=>A.size===142)[1].data()},n=We.reduce((A,s)=>A+=e[s][2],0)/We.length;for(let A=0;AA+=e[s][2],0)/Fe.length;for(let A=0;Av()-re.timestamp,n=re.skipped<(((c=t.face.detector)==null?void 0:c.skipFrames)||0);!t.skipAllowed||!o||!n||re.boxes.length===0?(re.boxes=await i3(e,t),re.timestamp=v(),re.skipped=0):re.skipped++;let r=[],A=[],s=0,a=T2;for(let R=0;RO.shape[O.shape.length-1]===1).data();if(w.faceScore=Math.round(100*X[0])/100,w.faceScore<(((m=t.face.detector)==null?void 0:m.minConfidence)||1)){if(f.confidence=w.faceScore,t.face.mesh.keepInvalid){w.box=V2(f,e),w.boxRaw=Z2(f,e),w.score=w.boxScore,w.mesh=f.landmarks.map(O=>[(f.startPoint[0]+f.endPoint[0])/2+(f.endPoint[0]+f.startPoint[0])*O[0]/Je(),(f.startPoint[1]+f.endPoint[1])/2+(f.endPoint[1]+f.startPoint[1])*O[1]/Je()]),w.meshRaw=w.mesh.map(O=>[O[0]/(e.shape[2]||1),O[1]/(e.shape[1]||1),(O[2]||0)/a]);for(let O of Object.keys(Oe))w.annotations[O]=[w.mesh[Oe[O]]]}}else{let O=u.find(I=>I.shape[I.shape.length-1]===1404),W=Pe.reshape(O,[-1,3]),Z=await W.array();Pe.dispose(W),(b=t.face.attention)!=null&&b.enabled?Z=await q3(Z,u):(g=t.face.iris)!=null&&g.enabled&&(Z=await V3(Z,w.tensor,T2)),w.mesh=o3(Z,f,p,z,T2),w.meshRaw=w.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/a]);for(let I of Object.keys(X0))w.annotations[I]=X0[I].map(m0=>w.mesh[m0]);w.score=w.faceScore;let N={...r3(w.mesh,f),confidence:f.confidence,landmarks:f.landmarks};w.box=V2(N,e),w.boxRaw=Z2(N,e),A.push(N)}Pe.dispose(u)}else{w.box=V2(f,e),w.boxRaw=Z2(f,e),w.score=w.boxScore,w.mesh=f.landmarks.map(u=>[(f.startPoint[0]+f.endPoint[0])/2+(f.endPoint[0]+f.startPoint[0])*u[0]/Je(),(f.startPoint[1]+f.endPoint[1])/2+(f.endPoint[1]+f.startPoint[1])*u[1]/Je()]),w.meshRaw=w.mesh.map(u=>[u[0]/(e.shape[2]||0),u[1]/(e.shape[1]||0),(u[2]||0)/a]);for(let u of Object.keys(Oe))w.annotations[u]=[w.mesh[Oe[u]]]}w.score>(((M=t.face.detector)==null?void 0:M.minConfidence)||1)?r.push(w):Pe.dispose(w.tensor)}return re.boxes=A,r}async function Y3(e){var t,o,n,r,A,s;return P.initial&&(_=null),((t=e.face.attention)==null?void 0:t.enabled)&&(_==null?void 0:_.signature)&&Object.keys(((o=_==null?void 0:_.signature)==null?void 0:o.outputs)||{}).length<6&&(_=null),_?e.debug&&h("cached model:",_.modelUrl):(n=e.face.attention)!=null&&n.enabled?_=await F(e.face.attention.modelPath):_=await F((r=e.face.mesh)==null?void 0:r.modelPath),T2=_.executor&&((A=_==null?void 0:_.inputs)==null?void 0:A[0].shape)?(s=_==null?void 0:_.inputs)==null?void 0:s[0].shape[2]:256,_}var K3=je,J3=M2;var _0=V(D());var v0,n5=[],Q3=0,_3=0,g1=Number.MAX_SAFE_INTEGER;async function $3(e){var t;return P.initial&&(v0=null),v0?e.debug&&h("cached model:",v0.modelUrl):v0=await F((t=e.face.description)==null?void 0:t.modelPath),v0}function M1(e){let t=e.image||e.tensor||e;if(!(v0!=null&&v0.inputs[0].shape))return t;let o=_0.image.resizeBilinear(t,[v0.inputs[0].shape[2],v0.inputs[0].shape[1]],!1),n=_0.mul(o,H.tf255);return _0.dispose(o),n}async function v1(e,t,o,n){var s,a,l,c;if(!(v0!=null&&v0.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=g1<(((s=t.face.description)==null?void 0:s.skipFrames)||0),A=(((a=t.face.description)==null?void 0:a.skipTime)||0)>v()-Q3;return t.skipAllowed&&r&&A&&_3===n&&((l=n5[o])==null?void 0:l.age)&&((c=n5[o])==null?void 0:c.age)>0?(g1++,n5[o]):(g1=0,new Promise(async y=>{var d;let i={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let x=M1(e),m=v0==null?void 0:v0.execute(x);Q3=v(),_0.dispose(x);let g=await m.find(B=>B.shape[1]===1).data(),M=Math.trunc(200*Math.abs(g[0]-.5))/100;M>(t.face.description.minConfidence||0)&&(i.gender=g[0]<=.5?"female":"male",i.genderScore=Math.min(.99,M));let R=_0.argMax(m.find(B=>B.shape[1]===100),1),f=(await R.data())[0];_0.dispose(R);let z=await m.find(B=>B.shape[1]===100).data();i.age=Math.round(z[f-1]>z[f+1]?10*f-100*z[f-1]:10*f+100*z[f+1])/10;let w=m.find(B=>B.shape[1]===1024),u=w?await w.data():[];i.descriptor=Array.from(u),m.forEach(B=>_0.dispose(B))}n5[o]=i,_3=n,y(i)}))}var G=V(D());var oo=V(D());function r5(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function w2(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function no(e,t,o){let n=t.shape[1],r=t.shape[2],A=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return oo.image.cropAndResize(t,A,[0],o)}function ro(e,t){let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(A=>[A[0]*t[0],A[1]*t[1]]);return{startPoint:o,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function A5(e,t=1.5){let o=w2(e),n=r5(e),r=[t*n[0]/2,t*n[1]/2],A=[o[0]-r[0],o[1]-r[1]],s=[o[0]+r[0],o[1]+r[1]];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function s5(e){let t=w2(e),o=r5(e),r=Math.max(...o)/2,A=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function EA(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Ao(e,t){let o=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return EA(o)}var eo=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Te(e,t){let o=0;for(let n=0;n[s.x,s.y]),this.anchorsTensor=G.tensor2d(this.anchors),this.inputSize=((A=(r=(n=(o=this==null?void 0:this.model)==null?void 0:o.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:A[2])||0,this.inputSizeTensor=G.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=G.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let o={};o.boxOffsets=G.slice(t,[0,0],[-1,2]),o.boxSizes=G.slice(t,[0,2],[-1,2]),o.div=G.div(o.boxOffsets,this.inputSizeTensor),o.boxCenterPoints=G.add(o.div,this.anchorsTensor),o.halfBoxSizes=G.div(o.boxSizes,this.doubleInputSizeTensor),o.sub=G.sub(o.boxCenterPoints,o.halfBoxSizes),o.startPoints=G.mul(o.sub,this.inputSizeTensor),o.add=G.add(o.boxCenterPoints,o.halfBoxSizes),o.endPoints=G.mul(o.add,this.inputSizeTensor);let n=G.concat2d([o.startPoints,o.endPoints],1);return Object.keys(o).forEach(r=>G.dispose(o[r])),n}normalizeLandmarks(t,o){let n={};n.reshape=G.reshape(t,[-1,7,2]),n.div=G.div(n.reshape,this.inputSizeTensor),n.landmarks=G.add(n.div,this.anchors[o]?this.anchors[o]:0);let r=G.mul(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(A=>G.dispose(n[A])),r}async predict(t,o){var a;let n={};n.resize=G.image.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=G.div(n.resize,H.tf127),n.image=G.sub(n.div,H.tf1),n.batched=this.model.execute(n.image),n.predictions=G.squeeze(n.batched),n.slice=G.slice(n.predictions,[0,0],[-1,1]),n.sigmoid=G.sigmoid(n.slice),n.scores=G.squeeze(n.sigmoid);let r=await n.scores.data();n.boxes=G.slice(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await G.image.nonMaxSuppressionAsync(n.norm,n.scores,3*(((a=o.hand)==null?void 0:a.maxDetected)||1),o.hand.iouThreshold,o.hand.minConfidence);let A=await n.nms.array(),s=[];for(let l of A){let c={};c.box=G.slice(n.norm,[l,0],[1,-1]),c.slice=G.slice(n.predictions,[l,5],[1,14]),c.norm=this.normalizeLandmarks(c.slice,l),c.palmLandmarks=G.reshape(c.norm,[-1,2]);let y=await c.box.data(),i=y.slice(0,2),d=y.slice(2,4),x=await c.palmLandmarks.array(),m={startPoint:i,endPoint:d,palmLandmarks:x,confidence:r[l]},b=ro(m,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);s.push(b),Object.keys(c).forEach(g=>G.dispose(c[g]))}return Object.keys(n).forEach(l=>G.dispose(n[l])),s}};var j0=V(D());var IA=5,lo=1.65,co=[0,5,9,13,17,1,2],OA=0,jA=2,xo=0,i5=class{constructor(t,o){T(this,"handDetector");T(this,"handPoseModel");T(this,"inputSize");T(this,"storedBoxes");T(this,"skipped");T(this,"detectedHands");var n,r,A;this.handDetector=t,this.handPoseModel=o,this.inputSize=((A=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:A[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let o=t.map(s=>s[0]),n=t.map(s=>s[1]),r=[Math.min(...o),Math.min(...n)],A=[Math.max(...o),Math.max(...n)];return{startPoint:r,endPoint:A}}getBoxForPalmLandmarks(t,o){let n=t.map(A=>T1([...A,1],o)),r=this.calculateLandmarksBoundingBox(n);return A5(s5(r),IA)}getBoxForHandLandmarks(t){let o=this.calculateLandmarksBoundingBox(t),n=A5(s5(o),lo);n.palmLandmarks=[];for(let r=0;r[s[0]*(x[0]-this.inputSize/2),s[1]*(x[1]-this.inputSize/2),s[2]*x[2]]),l=P1(n,[0,0]),c=a.map(x=>[...T1(x,l),x[2]]),y=so(r),i=[...w2(o),1],d=[Te(i,y[0]),Te(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2])])}async estimateHands(t,o){let n=!1,r,A=(o.hand.skipTime||0)>v()-xo,s=this.skipped<(o.hand.skipFrames||0);o.skipAllowed&&A&&s&&(r=await this.handDetector.predict(t,o),this.skipped=0),o.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==o.hand.maxDetected||!o.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let a=[];for(let l=0;l=o.hand.minConfidence/4){let z=j0.reshape(f,[-1,3]),w=await z.array();j0.dispose(f),j0.dispose(z);let u=this.transformRawCoords(w,b,y,m),B=this.getBoxForHandLandmarks(u);this.storedBoxes[l]={...B,confidence:p};let X={landmarks:u,confidence:p,boxConfidence:c.confidence,fingerConfidence:p,box:{topLeft:B.startPoint,bottomRight:B.endPoint}};a.push(X)}else this.storedBoxes[l]=null;j0.dispose(f)}else{let y=A5(s5(c),lo),i={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:y.startPoint,bottomRight:y.endPoint},landmarks:[]};a.push(i)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=a.length,a.length>o.hand.maxDetected&&(a.length=o.hand.maxDetected),a}};var R0={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>R0.nameMapping[e],getPoints:e=>R0.pointsMapping[e]},ke={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ke.nameMapping[e]},$={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>$.nameMapping[e]},we=class{constructor(t){T(this,"name");T(this,"curls");T(this,"directions");T(this,"weights");T(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,o,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([o,n])}direction(t,o,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([o,n])}weight(t,o){this.weights[t]=o;let n=this.weights.reduce((r,A)=>r+A,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,o){let n=0;for(let r in t){let A=t[r],s=this.curls[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}for(let r in o){let A=o[r],s=this.directions[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}return n/10}};var{thumb:$0,index:ce,middle:xe,ring:Ge,pinky:Be}=R0,{none:ee,half:LA,full:te}=ke,{verticalUp:t2,verticalDown:ts,horizontalLeft:w1,horizontalRight:WA,diagonalUpRight:FA,diagonalUpLeft:o2,diagonalDownRight:os,diagonalDownLeft:ns}=$,Ee=new we("thumbs up");Ee.curl($0,ee,1);Ee.direction($0,t2,1);Ee.direction($0,o2,.25);Ee.direction($0,FA,.25);for(let e of[R0.index,R0.middle,R0.ring,R0.pinky])Ee.curl(e,te,1),Ee.direction(e,w1,1),Ee.direction(e,WA,1);var i0=new we("victory");i0.curl($0,LA,.5);i0.curl($0,ee,.5);i0.direction($0,t2,1);i0.direction($0,o2,1);i0.curl(ce,ee,1);i0.direction(ce,t2,.75);i0.direction(ce,o2,1);i0.curl(xe,ee,1);i0.direction(xe,t2,1);i0.direction(xe,o2,.75);i0.curl(Ge,te,1);i0.direction(Ge,t2,.2);i0.direction(Ge,o2,1);i0.direction(Ge,w1,.2);i0.curl(Be,te,1);i0.direction(Be,t2,.2);i0.direction(Be,o2,1);i0.direction(Be,w1,.2);i0.weight(ce,2);i0.weight(xe,2);var ze=new we("point");ze.curl($0,te,1);ze.curl(ce,ee,.5);ze.curl(xe,te,.5);ze.curl(Ge,te,.5);ze.curl(Be,te,.5);ze.weight(ce,2);ze.weight(xe,2);var Se=new we("middle finger");Se.curl($0,ee,1);Se.curl(ce,te,.5);Se.curl(xe,te,.5);Se.curl(Ge,te,.5);Se.curl(Be,te,.5);Se.weight(ce,2);Se.weight(xe,2);var n2=new we("open palm");n2.curl($0,ee,.75);n2.curl(ce,ee,.75);n2.curl(xe,ee,.75);n2.curl(Ge,ee,.75);n2.curl(Be,ee,.75);var yo=[Ee,i0,ze,Se,n2];var GA=.7,He={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function fo(e,t,o,n){let r=(t-n)/(e-o),A=Math.atan(r)*180/Math.PI;return A<=0?A=-A:A>0&&(A=180-A),A}function po(e,t){if(!e||!t)return[0,0];let o=fo(e[0],e[1],t[0],t[1]);if(e.length===2)return o;let n=fo(e[1],e[2],t[1],t[2]);return[o,n]}function mo(e,t=1){let o=0,n=0,r=0;return e>=75&&e<=105?o=1*t:e>=25&&e<=155?n=1*t:r=1*t,[o,n,r]}function BA(e,t,o){let n=e[0]-t[0],r=e[0]-o[0],A=t[0]-o[0],s=e[1]-t[1],a=e[1]-o[1],l=t[1]-o[1],c=e[2]-t[2],y=e[2]-o[2],i=t[2]-o[2],d=Math.sqrt(n*n+s*s+c*c),x=Math.sqrt(r*r+a*a+y*y),m=Math.sqrt(A*A+l*l+i*i),b=(m*m+d*d-x*x)/(2*m*d);b>1?b=1:b<-1&&(b=-1);let g=Math.acos(b);g=57.2958*g%180;let M;return g>He.NO_CURL_START_LIMIT?M=ke.none:g>He.HALF_CURL_START_LIMIT?M=ke.half:M=ke.full,M}function uo(e,t,o,n){let r;return n===Math.abs(e)?e>0?r=$.horizontalLeft:r=$.horizontalRight:n===Math.abs(t)?t>0?r=$.horizontalLeft:r=$.horizontalRight:o>0?r=$.horizontalLeft:r=$.horizontalRight,r}function ho(e,t,o,n){let r;return n===Math.abs(e)?e<0?r=$.verticalDown:r=$.verticalUp:n===Math.abs(t)?t<0?r=$.verticalDown:r=$.verticalUp:o<0?r=$.verticalDown:r=$.verticalUp,r}function HA(e,t,o,n,r,A,s,a){let l,c=ho(e,t,o,n),y=uo(r,A,s,a);return c===$.verticalUp?y===$.horizontalLeft?l=$.diagonalUpLeft:l=$.diagonalUpRight:y===$.horizontalLeft?l=$.diagonalDownLeft:l=$.diagonalDownRight,l}function DA(e,t,o,n){let r=e[0]-t[0],A=e[0]-o[0],s=t[0]-o[0],a=e[1]-t[1],l=e[1]-o[1],c=t[1]-o[1],y=Math.max(Math.abs(r),Math.abs(A),Math.abs(s)),i=Math.max(Math.abs(a),Math.abs(l),Math.abs(c)),d=0,x=0,m=0,b=i/(y+1e-5);b>1.5?d+=He.DISTANCE_VOTE_POWER:b>.66?x+=He.DISTANCE_VOTE_POWER:m+=He.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+a*a),M=Math.sqrt(A*A+l*l),R=Math.sqrt(s*s+c*c),f=Math.max(g,M,R),p=e[0],z=e[1],w=o[0],u=o[1];f===g?(w=o[0],u=o[1]):f===R&&(p=t[0],z=t[1]);let O=po([p,z],[w,u]),W=mo(O,He.TOTAL_ANGLE_VOTE_POWER);d+=W[0],x+=W[1],m+=W[2];for(let N of n){let I=mo(N,He.SINGLE_ANGLE_VOTE_POWER);d+=I[0],x+=I[1],m+=I[2]}let Z;return d===Math.max(d,x,m)?Z=ho(l,a,c,i):m===Math.max(x,m)?Z=uo(A,r,s,y):Z=HA(l,a,c,i,A,r,s,y),Z}function bo(e){let t=[],o=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let A of R0.all){let s=R0.getPoints(A),a=[],l=[];for(let c of s){let y=e[c[0]],i=e[c[1]],d=po(y,i),x=d[0],m=d[1];a.push(x),l.push(m)}t.push(a),o.push(l)}for(let A of R0.all){let s=A===R0.thumb?1:0,a=R0.getPoints(A),l=e[a[s][0]],c=e[a[s+1][1]],y=e[a[3][1]],i=BA(l,c,y),d=DA(l,c,y,t[A].slice(s));n[A]=i,r[A]=d}return{curls:n,directions:r}}function l5(e){if(!e||e.length===0)return null;let t=bo(e),o={};for(let n of R0.all)o[R0.getName(n)]={curl:ke.getName(t.curls[n]),direction:$.getName(t.directions[n])};return o}function go(e){let t=[];if(!e||e.length===0)return t;let o=bo(e);for(let n of yo){let r=n.matchAgainst(o.curls,o.directions);r>=GA&&t.push({name:n.name,confidence:r})}return t}var Mo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},De,Ve,vo;async function E1(e,t){let o=await vo.estimateHands(e,t);if(!o)return[];let n=[];for(let r=0;ro[r].landmarks[i]);let s=o[r].landmarks,a=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(s&&s.length>0){for(let y of s)y[0]a[2]&&(a[2]=y[0]),y[1]>a[3]&&(a[3]=y[1]);a[2]-=a[0],a[3]-=a[1],l=[a[0]/(e.shape[2]||0),a[1]/(e.shape[1]||0),a[2]/(e.shape[2]||0),a[3]/(e.shape[1]||0)]}else a=o[r].box?[Math.trunc(Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.max(0,o[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,o[r].box.bottomRight[0])-Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,o[r].box.bottomRight[1])-Math.max(0,o[r].box.topLeft[1]))]:[0,0,0,0],l=[o[r].box.topLeft[0]/(e.shape[2]||0),o[r].box.topLeft[1]/(e.shape[1]||0),(o[r].box.bottomRight[0]-o[r].box.topLeft[0])/(e.shape[2]||0),(o[r].box.bottomRight[1]-o[r].box.topLeft[1])/(e.shape[1]||0)];let c=l5(s);n.push({id:r,score:Math.round(100*o[r].confidence)/100,boxScore:Math.round(100*o[r].boxConfidence)/100,fingerScore:Math.round(100*o[r].fingerConfidence)/100,label:"hand",box:a,boxRaw:l,keypoints:s,annotations:A,landmarks:c})}return n}async function z1(e){var o,n;P.initial&&(De=null,Ve=null),!De||!Ve?[De,Ve]=await Promise.all([e.hand.enabled?F((o=e.hand.detector)==null?void 0:o.modelPath):null,e.hand.landmarks?F((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&h("cached model:",De.modelUrl),e.debug&&h("cached model:",Ve.modelUrl));let t=De?new a5(De):void 0;return t&&Ve&&(vo=new i5(t,Ve)),[De,Ve]}var K=V(D());var r0=V(D());var J={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function VA(){let e=J.gl;!e||(J.extensions=e.getSupportedExtensions())}function Po(e){var t;if(e.config.backend==="humangl"&&(J.name in r0.engine().registry&&!((t=J==null?void 0:J.gl)!=null&&t.getParameter(J.gl.VERSION))&&(h("error: humangl backend invalid context"),c5(e)),!r0.findBackend(J.name))){try{J.canvas=b0(100,100)}catch(n){h("error: cannot create canvas:",n);return}try{if(J.gl=J.canvas.getContext("webgl2",J.webGLattr),!J.gl){h("error: cannot get WebGL context");return}if(!J.gl.getParameter(J.gl.VERSION).includes("2.0")){h("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}J.canvas&&(J.canvas.addEventListener("webglcontextlost",r=>{throw h("error: humangl:",r.type),h("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),J.canvas.addEventListener("webglcontextrestored",r=>{h("error: humangl context restored:",r)}),J.canvas.addEventListener("webglcontextcreationerror",r=>{h("error: humangl context create:",r)}))}catch(n){h("error: cannot get WebGL context:",n);return}try{r0.setWebGLContext(2,J.gl)}catch(n){h("error: cannot set WebGL context:",n);return}try{let n=new r0.GPGPUContext(J.gl);r0.registerBackend(J.name,()=>new r0.MathBackendWebGL(n),J.priority)}catch(n){h("error: cannot register WebGL backend:",n);return}try{r0.getKernelsForBackend("webgl").forEach(r=>{let A={...r,backendName:J.name};r0.registerKernel(A)})}catch(n){h("error: cannot update WebGL backend registration:",n);return}let o=r0.backend().getGPGPUContext?r0.backend().getGPGPUContext().gl:null;if(o)h(`humangl webgl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`);else{h("error: no current gl context:",o,J.gl);return}try{r0.env().flagRegistry.WEBGL_VERSION&&r0.env().set("WEBGL_VERSION",2)}catch(n){h("error: cannot set WebGL backend flags:",n);return}VA(),h("backend registered:",J.name)}}var k=V(D());function ZA(e){if(!P.kernels.includes("mod")){let t={kernelName:"Mod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.sub(o.inputs.a,k.mul(k.div(o.inputs.a,o.inputs.b),o.inputs.b)))};e.debug&&h("registered kernel:","Mod"),k.registerKernel(t),P.kernels.push("mod")}if(!P.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.add(k.mul(k.floorDiv(o.inputs.a/o.inputs.b),o.inputs.b),k.mod(o.inputs.a,o.inputs.b)))};e.debug&&h("registered kernel:","FloorMod"),k.registerKernel(t),P.kernels.push("floormod")}if(!P.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>{let n=k.getBackend();k.setBackend("cpu");let r=k.image.rotateWithOffset(o.inputs.image,o.attrs.radians,o.attrs.fillValue,o.attrs.center);return k.setBackend(n),r})};e.debug&&h("registered kernel:","RotateWithOffset"),k.registerKernel(t),P.kernels.push("rotatewithoffset")}}async function y5(e,t=!1){if(e.state="backend",t||P.initial||e.config.backend&&e.config.backend.length>0&&k.getBackend()!==e.config.backend){let o=v();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&h("running inside web worker"),P.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&h("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),P.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&h(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),P.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")h("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&h("enumerated webgpu adapter:",r),!r)h("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let A="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;h("webgpu adapter info:",A)}}e.config.backend==="humangl"&&Po(e);let n=Object.keys(k.engine().registryFactory);if(e.config.debug&&h("available backends:",n),n.includes(e.config.backend)||(h(`error: backend ${e.config.backend} not found in registry`),e.config.backend=P.node?"tensorflow":"webgl",e.config.debug&&h(`override: setting backend ${e.config.backend}`)),e.config.debug&&h("setting backend:",e.config.backend),e.config.backend==="wasm"){if(k.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&k.env().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&h("wasm path:",e.config.wasmPath),typeof k.setWasmPaths!="undefined")k.setWasmPaths(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,A=!1;try{r=await k.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),A=await k.env().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&h(`wasm execution: ${A?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!A&&h("warning: wasm simd support is not enabled")}catch(s){h("wasm detection failed")}}try{await k.setBackend(e.config.backend),await k.ready(),Wt()}catch(r){return h("error: cannot set backend:",e.config.backend,r),!1}}if(k.getBackend()==="humangl"&&(k.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&k.env().set("CHECK_COMPUTATION_FOR_ERRORS",!1),k.env().flagRegistry.WEBGL_CPU_FORWARD&&k.env().set("WEBGL_CPU_FORWARD",!0),k.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&k.env().set("WEBGL_USE_SHAPES_UNIFORMS",!0),k.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&k.env().set("CPU_HANDOFF_SIZE_THRESHOLD",256),k.env().flagRegistry.WEBGL_EXP_CONV&&k.env().set("WEBGL_EXP_CONV",!0),k.env().flagRegistry.USE_SETTIMEOUTCUSTOM&&k.env().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(h("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),k.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),k.backend().getGPGPUContext)){let n=await k.backend().getGPGPUContext().gl;e.config.debug&&h(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}k.getBackend(),k.enableProdMode(),await k.ready(),e.performance.initBackend=Math.trunc(v()-o),e.config.backend=k.getBackend(),await P.updateBackend(),ZA(e.config)}return!0}function d5(e,t){for(let o of e){let n={kernelName:o,backendName:t.backend,kernelFunc:()=>{t.debug&&h("kernelFunc",o,t.backend)}};k.registerKernel(n)}P.kernels=k.getKernelsForBackend(k.getBackend()).map(o=>o.kernelName.toLowerCase())}var s0=[null,null],qA=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Ce=[[0,0],[0,0]],UA=["hand","fist","pinch","point","face","tip","pinchtip"],wo=4,ko=1.6,YA=512,KA=1.4,f5=Number.MAX_SAFE_INTEGER,S1=0,ye=[0,0],A0={boxes:[],hands:[]},Eo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function zo(e){var t;if(P.initial&&(s0[0]=null),s0[0])e.debug&&h("cached model:",s0[0].modelUrl);else{d5(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),s0[0]=await F((t=e.hand.detector)==null?void 0:t.modelPath);let o=s0[0].executor?Object.values(s0[0].modelSignature.inputs):void 0;Ce[0][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[0][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[0]}async function So(e){var t;if(P.initial&&(s0[1]=null),s0[1])e.debug&&h("cached model:",s0[1].modelUrl);else{s0[1]=await F((t=e.hand.skeleton)==null?void 0:t.modelPath);let o=s0[1].executor?Object.values(s0[1].modelSignature.inputs):void 0;Ce[1][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[1][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[1]}async function JA(e,t){let o=[];if(!e||!s0[0])return o;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),A=Math.min(Math.round((e.shape[1]||0)/8)*8,YA),s=Math.round(A*r/8)*8;n.resize=K.image.resizeBilinear(e,[A,s]),n.cast=K.cast(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await s0[0].executeAsync(n.cast,qA),n.boxes=K.squeeze(n.rawBoxes,[0,2]),n.scores=K.squeeze(n.rawScores,[0]);let a=K.unstack(n.scores,1);K.dispose(a[wo]),a.splice(wo,1),n.filtered=K.stack(a,1),K.dispose(a),n.max=K.max(n.filtered,1),n.argmax=K.argMax(n.filtered,1);let l=0;n.nms=await K.image.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let c=await n.nms.data(),y=await n.max.data(),i=await n.argmax.data();for(let d of Array.from(c)){let x=K.slice(n.boxes,d,1),m=await x.data();K.dispose(x);let b=[m[1],m[0],m[3]-m[1],m[2]-m[0]],g=K2(b,KA),M=[Math.trunc(b[0]*ye[0]),Math.trunc(b[1]*ye[1]),Math.trunc(b[2]*ye[0]),Math.trunc(b[3]*ye[1])],R=y[d],f=UA[i[d]],p={id:l++,score:R,box:M,boxRaw:g,label:f};o.push(p)}return Object.keys(n).forEach(d=>K.dispose(n[d])),o.sort((d,x)=>x.score-d.score),o.length>(t.hand.maxDetected||1)&&(o.length=t.hand.maxDetected||1),o}async function C1(e,t,o){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&s0[1]&&o.hand.landmarks&&t.score>(o.hand.minConfidence||0)){let r={},A=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=K.image.cropAndResize(e,[A],[0],[Ce[1][0],Ce[1][1]],"bilinear"),r.div=K.div(r.crop,H.tf255),[r.score,r.keypoints]=s0[1].execute(r.div,["Identity_1","Identity"]);let s=(await r.score.data())[0],a=(100-Math.trunc(100/(1+Math.exp(s))))/100;if(a>=(o.hand.minConfidence||0)){n.fingerScore=a,r.reshaped=K.reshape(r.keypoints,[-1,3]);let y=(await r.reshaped.array()).map(i=>[i[0]/Ce[1][1],i[1]/Ce[1][0],i[2]||0]).map(i=>[i[0]*t.boxRaw[2],i[1]*t.boxRaw[3],i[2]||0]);n.keypoints=y.map(i=>[ye[0]*(i[0]+t.boxRaw[0]),ye[1]*(i[1]+t.boxRaw[1]),i[2]||0]),n.landmarks=l5(n.keypoints);for(let i of Object.keys(Eo))n.annotations[i]=Eo[i].map(d=>n.landmarks&&n.keypoints[d]?n.keypoints[d]:null)}Object.keys(r).forEach(l=>K.dispose(r[l]))}return n}async function I1(e,t){var r,A;if(!((r=s0[0])!=null&&r.executor)||!((A=s0[1])!=null&&A.executor)||!s0[0].inputs[0].shape||!s0[1].inputs[0].shape)return[];ye=[e.shape[2]||0,e.shape[1]||0],f5++;let o=(t.hand.skipTime||0)>v()-S1,n=f5<(t.hand.skipFrames||0);return t.skipAllowed&&o&&n?A0.hands:new Promise(async s=>{let a=3*(t.hand.skipTime||0)>v()-S1,l=f5<3*(t.hand.skipFrames||0);t.skipAllowed&&A0.hands.length===t.hand.maxDetected?A0.hands=await Promise.all(A0.boxes.map(y=>C1(e,y,t))):t.skipAllowed&&a&&l&&A0.hands.length>0?A0.hands=await Promise.all(A0.boxes.map(y=>C1(e,y,t))):(A0.boxes=await JA(e,t),S1=v(),A0.hands=await Promise.all(A0.boxes.map(y=>C1(e,y,t))),f5=0);let c=[...A0.boxes];if(A0.boxes.length=0,t.cacheSensitivity>0)for(let y=0;y.05&&i.box[3]/(e.shape[1]||1)>.05&&A0.hands[y].fingerScore&&A0.hands[y].fingerScore>(t.hand.minConfidence||0)){let d=K2(i.box,ko),x=K2(i.boxRaw,ko);A0.boxes.push({...c[y],box:d,boxRaw:x})}}for(let y=0;yv()-Oo,A=O1<(((a=t.face.liveness)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&Io===n&&m5[o]?(O1++,m5[o]):(O1=0,new Promise(async l=>{let c=p5.image.resizeBilinear(e,[f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[2]:0,f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[1]:0],!1),y=f0==null?void 0:f0.execute(c),i=(await y.data())[0];m5[o]=Math.round(100*i)/100,Io=n,Oo=v(),p5.dispose([c,y]),l(m5[o])}))}var Bo=V(D());var k2={};pe(k2,{connected:()=>h5,horizontal:()=>N1,kpt:()=>u5,relative:()=>W1,vertical:()=>L1});var u5=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],N1=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],L1=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],W1=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],h5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Ie=V(D()),Lo=.005,N0={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function F1(e){for(let t of N1){let o=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[0]r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[1]c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),A=e.keypoints.findIndex(c=>c&&c.part===o[0]),s=e.keypoints.findIndex(c=>c&&c.part===o[1]);if(!e.keypoints[A]||!e.keypoints[s])continue;let a=e.keypoints[n]?[Math.abs(e.keypoints[A].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[A].position[0]-e.keypoints[r].position[0])]:[0,0];if(a[0]>a[1]||l[0]>l[1]){let c=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=c}}}function Wo(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],o.pad=Ie.pad(e,N0.padding),o.resize=Ie.image.resizeBilinear(o.pad,[t,t]);let n=Ie.cast(o.resize,"int32");return Object.keys(o).forEach(s=>Ie.dispose(o[s])),n}function Go(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+N0.padding[2][0]+N0.padding[2][1])/t[0]-N0.padding[2][0],n.position[1]*(t[1]+N0.padding[1][0]+N0.padding[1][1])/t[1]-N0.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let o=le(e.keypoints.map(n=>n.position),t);return e.box=o.box,e.boxRaw=o.boxRaw,e}var l0,b5=0,G1=Number.MAX_SAFE_INTEGER,Ze={boxes:[],bodies:[],last:0};async function Ho(e){var t;return P.initial&&(l0=null),l0?e.debug&&h("cached model:",l0.modelUrl):(d5(["size"],e),l0=await F(e.body.modelPath)),b5=(l0==null?void 0:l0.executor)&&((t=l0==null?void 0:l0.inputs)==null?void 0:t[0].shape)?l0.inputs[0].shape[2]:0,b5<64&&(b5=256),l0}function _A(e,t,o){let n=e[0][0],r=[],A=0;for(let y=0;yt.body.minConfidence){let i=[n[y][1],n[y][0]];r.push({score:Math.round(100*A)/100,part:u5[y],positionRaw:i,position:[Math.round((o.shape[2]||0)*i[0]),Math.round((o.shape[1]||0)*i[1])]})}A=r.reduce((y,i)=>i.score>y?i.score:y,0);let s=[],a=le(r.map(y=>y.position),[o.shape[2],o.shape[1]]),l={};for(let[y,i]of Object.entries(h5)){let d=[];for(let x=0;xg.part===i[x]),b=r.find(g=>g.part===i[x+1]);m&&b&&m.score>(t.body.minConfidence||0)&&b.score>(t.body.minConfidence||0)&&d.push([m.position,b.position])}l[y]=d}let c={id:0,score:A,box:a.box,boxRaw:a.boxRaw,keypoints:r,annotations:l};return F1(c),s.push(c),s}function $A(e,t,o){let n=[];for(let r=0;rt.body.minConfidence){let a=[];for(let i=0;i<17;i++){let d=A[3*i+2];if(d>t.body.minConfidence){let x=[A[3*i+1],A[3*i+0]];a.push({part:u5[i],score:Math.round(100*d)/100,positionRaw:x,position:[Math.round((o.shape[2]||0)*x[0]),Math.round((o.shape[1]||0)*x[1])]})}}let l=le(a.map(i=>i.position),[o.shape[2],o.shape[1]]),c={};for(let[i,d]of Object.entries(h5)){let x=[];for(let m=0;mM.part===d[m]),g=a.find(M=>M.part===d[m+1]);b&&g&&b.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([b.position,g.position])}c[i]=x}let y={id:r,score:s,box:l.box,boxRaw:l.boxRaw,keypoints:[...a],annotations:c};F1(y),n.push(y)}}return n.sort((r,A)=>A.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function B1(e,t){var r;if(!(l0!=null&&l0.executor)||!((r=l0==null?void 0:l0.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Ze.boxes.length=0),G1++;let o=(t.body.skipTime||0)>v()-Ze.last,n=G1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n?Ze.bodies:new Promise(async A=>{let s={};G1=0,s.input=Fo(e,b5),s.res=l0==null?void 0:l0.execute(s.input),Ze.last=v();let a=await s.res.array();Ze.bodies=s.res.shape[2]===17?_A(a,t,e):$A(a,t,e);for(let l of Ze.bodies)Go(l,[e.shape[2]||1,e.shape[1]||1]),Wo(l.keypoints);Object.keys(s).forEach(l=>Bo.dispose(s[l])),A(Ze.bodies)})}var L0=V(D());var q0,g5=[],Vo=0,H1=Number.MAX_SAFE_INTEGER,v5=0,M5=2.5;async function Zo(e){if(!q0||P.initial){q0=await F(e.object.modelPath);let t=q0!=null&&q0.executor?Object.values(q0.modelSignature.inputs):void 0;v5=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&h("cached model:",q0.modelUrl);return q0}async function e7(e,t,o){let n=0,r=[],A=v5;for(let c of[1,2,4]){let y=c*13,i=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)===_e.length)),d=await i.array(),x=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)<_e.length)),m=x.reshape([-1,4,x.shape[1]/4]),b=m.argMax(2),g=await b.array();for(let M=0;M(o.object.minConfidence||0)&&R!==61){let p=(.5+Math.trunc(M%y))/y,z=(.5+Math.trunc(M/y))/y,w=g[M].map(I=>I*(y/c/A)),[u,B]=[p-M5/c*w[0],z-M5/c*w[1]],[X,O]=[p+M5/c*w[2]-u,z+M5/c*w[3]-B],W=[u,B,X,O];W=W.map(I=>Math.max(0,Math.min(I,1)));let Z=[W[0]*t[0],W[1]*t[1],W[2]*t[0],W[3]*t[1]],N={id:n++,score:Math.round(100*f)/100,class:R+1,label:_e[R].label,box:Z.map(I=>Math.trunc(I)),boxRaw:W};r.push(N)}}L0.dispose([i,x,m,b])}let s=r.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),a=r.map(c=>c.score),l=[];if(s&&s.length>0){let c=await L0.image.nonMaxSuppressionAsync(s,a,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence);l=await c.data(),L0.dispose(c)}return r=r.filter((c,y)=>l.includes(y)).sort((c,y)=>y.score-c.score),r}async function D1(e,t){if(!(q0!=null&&q0.executor))return[];let o=(t.object.skipTime||0)>v()-Vo,n=H1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&g5.length>0?(H1++,g5):(H1=0,!P.kernels.includes("mod")||!P.kernels.includes("sparsetodense")?g5:new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=L0.image.resizeBilinear(e,[v5,v5],!1),a=L0.div(s,H.tf255),l=L0.transpose(a,[0,3,1,2]),c;t.object.enabled&&(c=q0.execute(l)),Vo=v();let y=await e7(c,A,t);g5=y,L0.dispose([s,a,l,...c]),r(y)}))}var P0=V(D());var z2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],t7=z2.length,E2=z2.reduce((e,t,o)=>(e[t]=o,e),{}),o7=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Ss=o7.map(([e,t])=>[E2[e],E2[t]]),qo=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Uo(e){let t=e.reduce(({maxX:o,maxY:n,minX:r,minY:A},{position:{x:s,y:a}})=>({maxX:Math.max(o,s),maxY:Math.max(n,a),minX:Math.min(r,s),minY:Math.min(A,a)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Yo(e,[t,o],[n,r]){let A=t/n,s=o/r,a=(c,y)=>({id:y,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/n,c.box[2]/r,c.box[3]/n],box:[Math.trunc(c.box[0]*s),Math.trunc(c.box[1]*A),Math.trunc(c.box[2]*s),Math.trunc(c.box[3]*A)],keypoints:c.keypoints.map(({score:i,part:d,position:x})=>({score:i,part:d,position:[Math.trunc(x.x*s),Math.trunc(x.y*A)],positionRaw:[x.x/n,x.y/n]})),annotations:{}});return e.map((c,y)=>a(c,y))}var R5=class{constructor(t,o){T(this,"priorityQueue");T(this,"numberOfElements");T(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=o}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let o=2*t;if(oo?o:e}function Ko(e,t,o,n){let r=o-e,A=n-t;return r*r+A*A}function q1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var W0,r7=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],P5=1,r2=16,A7=50**2;function Jo(e,t,o,n,r,A,s=2){let a=M=>({y:A.get(M.y,M.x,e),x:A.get(M.y,M.x,A.shape[2]/2+e)}),l=(M,R,f)=>({y:X1(Math.round(M.y/r2),0,R-1),x:X1(Math.round(M.x/r2),0,f-1)}),[c,y]=n.shape,i=l(t.position,c,y),d=a(i),m=q1(t.position,d);for(let M=0;M[E2[d],E2[x]]),s=A.map(([,d])=>d),a=A.map(([d])=>d),l=t.shape[2],c=s.length,y=new Array(l),i=Z1(e.part,r2,o);y[e.part.id]={score:e.score,part:z2[e.part.id],position:i};for(let d=c-1;d>=0;--d){let x=s[d],m=a[d];y[x]&&!y[m]&&(y[m]=Jo(d,y[x],m,t,o,r))}for(let d=0;dt){a=!1;break}if(!a)break}return a}function i7(e,t){let[o,n,r]=t.shape,A=new R5(o*n*r,({score:s})=>s);for(let s=0;s{var s;let A=(s=r[n])==null?void 0:s.position;return A?Ko(o,t,A.y,A.x)<=A7:!1})}function l7(e,t){return t.reduce((n,{position:r,score:A},s)=>(Qo(e,r,s)||(n+=A),n),0)/t.length}function c7(e,t,o,n,r,A){let s=[],a=i7(A,t);for(;s.lengthx.score>A);let i=l7(s,y),d=Uo(y);i>A&&s.push({keypoints:y,box:d,score:Math.round(100*i)/100})}return s}async function U1(e,t){if(!(W0!=null&&W0.executor))return[];let o=P0.tidy(()=>{if(!W0.inputs[0].shape)return[];let s=P0.image.resizeBilinear(e,[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]),a=P0.sub(P0.div(P0.cast(s,"float32"),127.5),1),c=W0.execute(a,r7).map(y=>P0.squeeze(y,[0]));return c[1]=P0.sigmoid(c[1]),c}),n=await Promise.all(o.map(s=>s.buffer()));for(let s of o)P0.dispose(s);let r=c7(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return W0.inputs[0].shape?Yo(r,[e.shape[1],e.shape[2]],[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]):[]}async function _o(e){return!W0||P.initial?W0=await F(e.body.modelPath):e.debug&&h("cached model:",W0.modelUrl),W0}var e0=V(D());var Ae,Y1=!1;async function K1(e){return!Ae||P.initial?Ae=await F(e.segmentation.modelPath):e.debug&&h("cached model:",Ae.modelUrl),Ae}async function en(e,t,o){var b,g;if(Y1)return{data:[],canvas:null,alpha:null};Y1=!0,Ae||await K1(o);let n=await Ue(e,o),r=((b=n.tensor)==null?void 0:b.shape[2])||0,A=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let s={};s.resize=e0.image.resizeBilinear(n.tensor,[Ae.inputs[0].shape?Ae.inputs[0].shape[1]:0,Ae.inputs[0].shape?Ae.inputs[0].shape[2]:0],!1),e0.dispose(n.tensor),s.norm=e0.div(s.resize,H.tf255),s.res=Ae.execute(s.norm),s.squeeze=e0.squeeze(s.res,0),s.squeeze.shape[2]===2?(s.softmax=e0.softmax(s.squeeze),[s.bg,s.fg]=e0.unstack(s.softmax,2),s.expand=e0.expandDims(s.fg,2),s.pad=e0.expandDims(s.expand,0),s.crop=e0.image.cropAndResize(s.pad,[[0,0,.5,.5]],[0],[r,A]),s.data=e0.squeeze(s.crop,0)):s.data=e0.image.resizeBilinear(s.squeeze,[A,r]);let a=Array.from(await s.data.data());if(P.node&&!P.Canvas&&typeof ImageData=="undefined")return o.debug&&h("canvas support missing"),Object.keys(s).forEach(M=>e0.dispose(s[M])),{data:a,canvas:null,alpha:null};let l=b0(r,A);e0.browser&&await e0.browser.toPixels(s.data,l);let c=l.getContext("2d");o.segmentation.blur&&o.segmentation.blur>0&&(c.filter=`blur(${o.segmentation.blur}px)`);let y=c.getImageData(0,0,r,A),i=b0(r,A),d=i.getContext("2d");n.canvas&&d.drawImage(n.canvas,0,0),d.globalCompositeOperation="darken",o.segmentation.blur&&o.segmentation.blur>0&&(d.filter=`blur(${o.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let x=d.getImageData(0,0,r,A);for(let M=0;Me0.dispose(s[M])),Y1=!1,{data:a,canvas:i,alpha:l}}var S2=class{constructor(){T(this,"ssrnetage",null);T(this,"gear",null);T(this,"blazeposedetect",null);T(this,"blazepose",null);T(this,"centernet",null);T(this,"efficientpose",null);T(this,"mobilefacenet",null);T(this,"insightface",null);T(this,"emotion",null);T(this,"facedetect",null);T(this,"faceiris",null);T(this,"facemesh",null);T(this,"faceres",null);T(this,"ssrnetgender",null);T(this,"handpose",null);T(this,"handskeleton",null);T(this,"handtrack",null);T(this,"liveness",null);T(this,"movenet",null);T(this,"nanodet",null);T(this,"posenet",null);T(this,"segmentation",null);T(this,"antispoof",null)}},J1=e=>{let t=0,o=0,n=0;for(let A of Object.values(oe))t+=A.sizeFromManifest,o+=A.sizeLoadedWeights,n+=A.sizeDesired;let r=n>0?o/n:0;return{numLoadedModels:Object.values(oe).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:o,totalSizeLoading:n,totalSizeEnabled:void 0,modelStats:Object.values(oe)}};function c5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function Q1(e){var t,o,n,r,A,s,a,l,c,y,i,d,x,m,b,g,M,R,f,p,z,w,u,B,X,O;P.initial&&c5(e),e.config.hand.enabled&&(!e.models.handpose&&((o=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:o.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await z1(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await z1(e.config))),e.config.body.enabled&&!e.models.blazepose&&((A=e.config.body.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=u3(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=p3(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((s=e.config.body.modelPath)==null?void 0:s.includes("efficientpose"))&&(e.models.efficientpose=R3(e.config)),e.config.body.enabled&&!e.models.movenet&&((a=e.config.body.modelPath)==null?void 0:a.includes("movenet"))&&(e.models.movenet=Ho(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=_o(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=a3(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=Yt(e.config)),e.config.face.enabled&&((y=e.config.face.liveness)==null?void 0:y.enabled)&&!e.models.liveness&&(e.models.liveness=jo(e.config)),e.config.face.enabled&&((i=e.config.face.description)==null?void 0:i.enabled)&&!e.models.faceres&&(e.models.faceres=$3(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=k3(e.config)),e.config.face.enabled&&((x=e.config.face.iris)==null?void 0:x.enabled)&&!((m=e.config.face.attention)!=null&&m.enabled)&&!e.models.faceiris&&(e.models.faceiris=D3(e.config)),e.config.face.enabled&&((b=e.config.face.mesh)==null?void 0:b.enabled)&&!e.models.facemesh&&(e.models.facemesh=Y3(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=Nt(e.config)),e.config.face.enabled&&((M=e.config.face.ssrnet)==null?void 0:M.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=Bt(e.config)),e.config.face.enabled&&((R=e.config.face.ssrnet)==null?void 0:R.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=Zt(e.config)),e.config.face.enabled&&((f=e.config.face.mobilefacenet)==null?void 0:f.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=I3(e.config)),e.config.face.enabled&&((p=e.config.face.insightface)==null?void 0:p.enabled)&&!e.models.insightface&&(e.models.insightface=W3(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((w=(z=e.config.hand.detector)==null?void 0:z.modelPath)==null?void 0:w.includes("handtrack"))&&(e.models.handtrack=zo(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((B=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:B.includes("handtrack"))&&(e.models.handskeleton=So(e.config)),e.config.object.enabled&&!e.models.centernet&&((X=e.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(e.models.centernet=g3(e.config)),e.config.object.enabled&&!e.models.nanodet&&((O=e.config.object.modelPath)==null?void 0:O.includes("nanodet"))&&(e.models.nanodet=Zo(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=K1(e.config));for await(let W of Object.keys(e.models))e.models[W]&&typeof e.models[W]!="undefined"&&(e.models[W]=await e.models[W])}var G0;function A2(e,t,o){var c;if(e&&(G0=e),!t||(G0||h("instance not registred"),!G0.config.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],A=[],s=[],a=t.modelUrl,l=t.executor;if((c=l==null?void 0:l.graph)!=null&&c.nodes)for(let y of Object.values(l.graph.nodes)){let i=y.op.toLowerCase();A.includes(i)||A.push(i)}else!l&&G0.config.debug&&h("model not loaded",o);for(let y of A)!n.includes(y)&&!r.includes(y)&&!G0.env.kernels.includes(y)&&!G0.env.kernels.includes(y.replace("_",""))&&!G0.env.kernels.includes(y.replace("native",""))&&!G0.env.kernels.includes(y.replace("v2",""))&&s.push(y);return G0.config.debug&&s.length>0&&h("model validation failed:",o,s),s.length>0?{name:o,missing:s,ops:A,url:a}:null}function T5(e){G0=e;let t=[];for(let o of Object.keys(G0.models)){let n=G0.models[o];if(!n)continue;let r=A2(G0,n,o);r&&t.push(r)}return t}var T0={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},oe={};async function x7(e,t){return T0.debug&&h("load model fetch:",e,t),fetch(e,t)}function on(e){T0.cacheModels=e.cacheModels,T0.verbose=e.debug,T0.modelBasePath=e.modelBasePath}async function F(e){var c,y,i;let t=Mt(T0.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let o=t.includes("/")?t.split("/"):t.split("\\"),n=o[o.length-1].replace(".json",""),r="indexeddb://"+n;oe[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:W5[n],inCache:!1},T0.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let A={};try{A=T0.cacheSupported&&T0.cacheModels?await w5.io.listModels():{}}catch(d){T0.cacheSupported=!1}oe[n].inCache=T0.cacheSupported&&T0.cacheModels&&Object.keys(A).includes(r);let s=typeof fetch=="undefined"?{}:{fetchFunc:(d,x)=>x7(d,x)},a=new w5.GraphModel(oe[n].inCache?r:t,s),l=!1;try{a.findIOHandler(),T0.debug&&h("model load handler:",a.handler);let d=await a.handler.load();oe[n].sizeFromManifest=((c=d==null?void 0:d.weightData)==null?void 0:c.byteLength)||0,a.loadSync(d),oe[n].sizeLoadedWeights=((i=(y=a.artifacts)==null?void 0:y.weightData)==null?void 0:i.byteLength)||0,T0.verbose&&h("load model:",a.modelUrl,{bytes:oe[n].sizeLoadedWeights},T0),l=!0}catch(d){h("error loading model:",t,d)}if(l&&T0.cacheModels&&T0.cacheSupported&&!oe[n].inCache)try{let d=await a.save(r);h("model saved:",r,d)}catch(d){h("error saving model:",t,d)}return A2(null,a,`${e||""}`),a}var ne=V(D());var _1="2.9.4";var At={};pe(At,{all:()=>rt,body:()=>a2,canvas:()=>nt,face:()=>s2,gesture:()=>c2,hand:()=>i2,object:()=>l2,options:()=>h0,person:()=>ot});var B0=e=>{if(!e)h("draw error: invalid canvas");else if(!e.getContext)h("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)h("draw error: cannot get canvas context");else return t}return null},Xe=e=>Math.round(e*180/Math.PI),de=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let o=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${o[0]}, ${o[1]}, ${o[2]}, ${t.alpha})`};function fe(e,t,o,n,r){e.fillStyle=de(n,r),e.beginPath(),e.arc(t,o,r.pointSize,0,2*Math.PI),e.fill()}function se(e,t,o,n,r,A){if(e.beginPath(),e.lineWidth=A.lineWidth,A.useCurves){let s=(t+t+n)/2,a=(o+o+r)/2;e.ellipse(s,a,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+A.roundRect,o),e.lineTo(t+n-A.roundRect,o),e.quadraticCurveTo(t+n,o,t+n,o+A.roundRect),e.lineTo(t+n,o+r-A.roundRect),e.quadraticCurveTo(t+n,o+r,t+n-A.roundRect,o+r),e.lineTo(t+A.roundRect,o+r),e.quadraticCurveTo(t,o+r,t,o+r-A.roundRect),e.lineTo(t,o+A.roundRect),e.quadraticCurveTo(t,o,t+A.roundRect,o),e.closePath();e.stroke()}function $1(e,t,o){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=de(n[2]||0,o),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),o.fillPolygons&&(e.closePath(),e.fill())}}function nn(e,t,o){if(!(t.length<2)){if(e.lineWidth=o.lineWidth,!o.useCurves||t.length<=2){$1(e,t,o);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n0){let A=e.emotion.map(s=>`${Math.trunc(100*s.score)}% ${s.emotion}`);A.length>3&&(A.length=3),r.push(A.join(" "))}((o=e.rotation)==null?void 0:o.angle)&&((n=e.rotation)==null?void 0:n.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Xe(e.rotation.angle.roll)}\xB0 yaw:${Xe(e.rotation.angle.yaw)}\xB0 pitch:${Xe(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Xe(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=U.color;for(let A=r.length-1;A>=0;A--){let s=Math.max(e.box[0],0),a=A*U.lineHeight+e.box[1];U.shadowColor&&U.shadowColor!==""&&(t.fillStyle=U.shadowColor,t.fillText(r[A],s+5,a+16)),t.fillStyle=U.labelColor,t.fillText(r[A],s+4,a+15)}}}function m7(e,t){var o,n,r,A;if(((o=e.annotations)==null?void 0:o.leftEyeIris)&&((n=e.annotations)==null?void 0:n.leftEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,a=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((A=e.annotations)==null?void 0:A.rightEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,a=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}}function p7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*Xe(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Xe(e.rotation.angle.pitch)/90,A=new Path2D(` +`;var j5=(e,t,o)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,A)=>(o[A]=0,r))},N5=class{constructor(t,o,n){T(this,"uniform",{});T(this,"attribute",{});T(this,"gl");T(this,"id");T(this,"compile",(t,o)=>{let n=this.gl.createShader(o);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(b(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(b("filter: could not create shader"),null)});this.gl=t;let r=this.compile(o,this.gl.VERTEX_SHADER),A=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!A)){if(!this.id){b("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,A),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){b(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),j5(o,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=this.gl.getAttribLocation(this.id,s);j5(o,"uniform",this.uniform),j5(n,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=this.gl.getUniformLocation(this.id,s)}}};function Ct(){let e=0,t=null,o=!1,n=-1,r=[null,null],A=[],s=null,a=null,l=b0(100,100),c={},y={INTERMEDIATE:1},i=l.getContext("webgl");if(!i){b("filter: cannot get webgl context");return}this.gl=i;function d(R,m){if(!(R===l.width&&m===l.height)){if(l.width=R,l.height=m,!s){let u=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);s=i.createBuffer(),i.bindBuffer(i.ARRAY_BUFFER,s),i.bufferData(i.ARRAY_BUFFER,u,i.STATIC_DRAW),i.pixelStorei(i.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}i.viewport(0,0,l.width,l.height),r=[null,null]}}function x(R,m){let u=i.createFramebuffer();i.bindFramebuffer(i.FRAMEBUFFER,u);let z=i.createRenderbuffer();i.bindRenderbuffer(i.RENDERBUFFER,z);let w=i.createTexture();return i.bindTexture(i.TEXTURE_2D,w),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,R,m,0,i.RGBA,i.UNSIGNED_BYTE,null),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.LINEAR),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.framebufferTexture2D(i.FRAMEBUFFER,i.COLOR_ATTACHMENT0,i.TEXTURE_2D,w,0),i.bindTexture(i.TEXTURE_2D,null),i.bindFramebuffer(i.FRAMEBUFFER,null),{fbo:u,texture:w}}function f(R){return r[R]=r[R]||x(l.width,l.height),r[R]}function p(R=0){if(!a)return;let m=null,u=null,z=!1;e===0?m=t:m=f(n).texture||null,e++,o&&!(R&y.INTERMEDIATE)?(u=null,z=e%2===0):(n=(n+1)%2,u=f(n).fbo||null),i.bindTexture(i.TEXTURE_2D,m),i.bindFramebuffer(i.FRAMEBUFFER,u),i.uniform1f(a.uniform.flipY,z?-1:1),i.drawArrays(i.TRIANGLES,0,6)}function g(R){if(c[R])return a=c[R],i.useProgram((a?a.id:null)||null),a;if(a=new N5(i,Tt,R),!a)return b("filter: could not get webgl program"),null;let m=Float32Array.BYTES_PER_ELEMENT,u=4*m;return i.enableVertexAttribArray(a.attribute.pos),i.vertexAttribPointer(a.attribute.pos,2,i.FLOAT,!1,u,0*m),i.enableVertexAttribArray(a.attribute.uv),i.vertexAttribPointer(a.attribute.uv,2,i.FLOAT,!1,u,2*m),c[R]=a,a}let M={colorMatrix:R=>{let m=new Float32Array(R);m[4]/=255,m[9]/=255,m[14]/=255,m[19]/=255;let u=m[18]===1&&m[3]===0&&m[8]===0&&m[13]===0&&m[15]===0&&m[16]===0&&m[17]===0&&m[19]===0?kt:wt,z=g(u);!z||(i.uniform1fv(z.uniform.m,m),p())},brightness:R=>{let m=(R||0)+1;M.colorMatrix([m,0,0,0,0,0,m,0,0,0,0,0,m,0,0,0,0,0,1,0])},saturation:R=>{let m=(R||0)*2/3+1,u=(m-1)*-.5;M.colorMatrix([m,u,u,0,0,u,m,u,0,0,u,u,m,0,0,0,0,0,1,0])},desaturate:()=>{M.saturation(-1)},contrast:R=>{let m=(R||0)+1,u=-128*(m-1);M.colorMatrix([m,0,0,0,u,0,m,0,0,u,0,0,m,0,u,0,0,0,1,0])},negative:()=>{M.contrast(-2)},hue:R=>{R=(R||0)/180*Math.PI;let m=Math.cos(R),u=Math.sin(R),z=.213,w=.715,h=.072;M.colorMatrix([z+m*(1-z)+u*-z,w+m*-w+u*-w,h+m*-h+u*(1-h),0,0,z+m*-z+u*.143,w+m*(1-w)+u*.14,h+m*-h+u*-.283,0,0,z+m*-z+u*-(1-z),w+m*-w+u*w,h+m*(1-h)+u*h,0,0,0,0,0,1,0])},desaturateLuminance:()=>{M.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{M.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{M.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{M.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{M.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{M.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{M.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{M.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:R=>{let m=new Float32Array(R),u=1/l.width,z=1/l.height,w=g(St);!w||(i.uniform1fv(w.uniform.m,m),i.uniform2f(w.uniform.px,u,z),p())},detectEdges:()=>{M.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{M.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{M.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:R=>{let m=R||1;M.convolution.call(this,[0,-1*m,0,-1*m,1+4*m,-1*m,0,-1*m,0])},emboss:R=>{let m=R||1;M.convolution.call(this,[-2*m,-1*m,0,-1*m,1,1*m,0,1*m,2*m])},blur:R=>{let m=R/7/l.width,u=R/7/l.height,z=g(zt);!z||(i.uniform2f(z.uniform.px,0,u),p(y.INTERMEDIATE),i.uniform2f(z.uniform.px,m,0),p())},pixelate:R=>{let m=R/l.width,u=R/l.height,z=g(Et);!z||(i.uniform2f(z.uniform.size,m,u),p())}};this.add=function(R){let m=Array.prototype.slice.call(arguments,1),u=M[R];A.push({func:u,args:m})},this.reset=function(){A=[]},this.get=function(){return A},this.apply=function(R){d(R.width,R.height),e=0,t||(t=i.createTexture()),i.bindTexture(i.TEXTURE_2D,t),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_S,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_WRAP_T,i.CLAMP_TO_EDGE),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MIN_FILTER,i.NEAREST),i.texParameteri(i.TEXTURE_2D,i.TEXTURE_MAG_FILTER,i.NEAREST),i.texImage2D(i.TEXTURE_2D,0,i.RGBA,i.RGBA,i.UNSIGNED_BYTE,R);for(let m=0;mx.data())),s=.99*Math.max(A[0][0],A[1][0],A[2][0]),a=[q.sub(o[0],n[0]),q.sub(o[1],n[1]),q.sub(o[2],n[2])],l=[q.sub(r[0],n[0]),q.sub(r[1],n[1]),q.sub(r[2],n[2])],c=[q.div(s,l[0]),q.div(s,l[1]),q.div(s,l[2])],y=[q.mul(a[0],c[0]),q.mul(a[1],c[1]),q.mul(a[2],c[2])],i=q.stack([y[0],y[1],y[2]],2),d=q.reshape(i,[1,t.shape[0],t.shape[1],3]);return q.dispose([...o,...n,...r,...a,...l,...c,...y,i,t]),d}var N2=3840,y0=null,d0=null,qe=null,Q,F0={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function L5(){F0.inputSum=0,F0.cacheDiff=1,F0.sumMethod=0,F0.inputTensor=void 0}function b0(e,t){let o;if(P.browser)if(P.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");o=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");o=document.createElement("canvas"),o.width=e,o.height=t}else typeof P.Canvas!="undefined"?o=new P.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(o=new globalThis.Canvas(e,t));return o}function L2(e,t){let o=t||b0(e.width,e.height);return o.getContext("2d").drawImage(e,0,0),o}async function Ue(e,t,o=!0){var d,x;if(!e)return t.debug&&b("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof j.Tensor)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof P.Canvas!="undefined"&&e instanceof P.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof j.Tensor){let f=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)f=j.expandDims(e,0);else if(e.shape[2]===4){let p=j.slice3d(e,[0,0,0],[-1,-1,3]);f=j.expandDims(p,0),j.dispose(p)}}else e.shape.length===4&&(e.shape[3]===3?f=j.clone(e):e.shape[3]===4&&(f=j.slice4d(e,[0,0,0,0],[-1,-1,-1,3])));if(f==null||f.shape.length!==4||f.shape[0]!==1||f.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(f.dtype==="int32"){let p=j.cast(f,"float32");j.dispose(f),f=p}return{tensor:f,canvas:t.filter.return?d0:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&b("input stream is not ready"),{tensor:null,canvas:y0};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&b("cannot determine input dimensions"),{tensor:null,canvas:y0};let A=n,s=r;if(A>N2&&(A=N2,s=Math.trunc(A*r/n)),s>N2&&(s=N2,A=Math.trunc(s*n/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?A=t.filter.width:(((x=t.filter)==null?void 0:x.height)||0)>0&&(A=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?s=t.filter.height:(t.filter.width||0)>0&&(s=r*((t.filter.width||0)/n)),!A||!s)throw new Error("input error: cannot determine dimension");(!y0||y0.width!==A||y0.height!==s)&&(y0=b0(A,s));let a=y0.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?a.putImageData(e,0,0):t.filter.flip&&typeof a.translate!="undefined"?(a.translate(n,0),a.scale(-1,1),a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),a.setTransform(1,0,0,1,0,0)):a.drawImage(e,0,0,n,r,0,0,y0.width,y0.height),(!d0||y0.width!==d0.width||y0.height!==d0.height)&&(d0=b0(y0.width,y0.height)),t.filter.enabled&&P.webgl.supported?(Q||(Q=P.browser?new Ct:null),P.filter=!!Q,Q!=null&&Q.add?(Q.reset(),t.filter.brightness!==0&&Q.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Q.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Q.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Q.add("blur",t.filter.blur),t.filter.saturation!==0&&Q.add("saturation",t.filter.saturation),t.filter.hue!==0&&Q.add("hue",t.filter.hue),t.filter.negative&&Q.add("negative"),t.filter.sepia&&Q.add("sepia"),t.filter.vintage&&Q.add("brownie"),t.filter.sepia&&Q.add("sepia"),t.filter.kodachrome&&Q.add("kodachrome"),t.filter.technicolor&&Q.add("technicolor"),t.filter.polaroid&&Q.add("polaroid"),t.filter.pixelate!==0&&Q.add("pixelate",t.filter.pixelate),Q.get()>0?d0=Q.apply(y0):d0=Q.draw(y0)):(t.debug&&b("input process error: cannot initialize filters"),P.webgl.supported=!1,t.filter.enabled=!1,L2(y0,d0))):(L2(y0,d0),Q&&(Q=null),P.filter=!!Q),!o)return{tensor:null,canvas:d0};if(!d0)throw new Error("canvas error: cannot create output");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(P.browser&&j.browser)l=j.browser?j.browser.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let f=new Uint8Array(e.data.buffer);l=j.tensor(f,[e.height,e.width,c],"int32")}else if((!qe||d0.width!==qe.width||d0.height!==qe.height)&&(qe=b0(d0.width,d0.height)),j.browser&&P.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=j.browser.fromPixels(d0):(qe=L2(d0),l=j.browser.fromPixels(qe));else{let g=L2(d0).getContext("2d").getImageData(0,0,A,s);c=g.data.length/A/s;let M=new Uint8Array(g.data.buffer);l=j.tensor(M,[A,s,c])}if(c===4){let f=j.slice3d(l,[0,0,0],[-1,-1,3]);j.dispose(l),l=f}if(!l)throw new Error("input error: cannot create tensor");let y=j.cast(l,"float32"),i=t.filter.equalization?await j2(y):j.expandDims(y,0);return j.dispose([l,y]),{tensor:i,canvas:t.filter.return?d0:null}}async function It(e,t){let o=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return o;if(!F0.inputTensor)F0.inputTensor=j.clone(t);else if(F0.inputTensor.shape[1]!==t.shape[1]||F0.inputTensor.shape[2]!==t.shape[2])j.dispose(F0.inputTensor),F0.inputTensor=j.clone(t);else{let n={};n.diff=j.sub(t,F0.inputTensor),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;j.dispose([F0.inputTensor,n.diff,n.squared,n.sum]),F0.inputTensor=j.clone(t),o=A<=(e.cacheSensitivity||0)}return o}async function Ot(e,t,o){let n={};if(!t||!o||t.shape.length!==4||t.shape.length!==o.shape.length)return e.debug||b("invalid input tensor or tensor shapes do not match:",t.shape,o.shape),0;if(t.shape[0]!==1||o.shape[0]!==1||t.shape[3]!==3||o.shape[3]!==3)return e.debug||b("input tensors must be of shape [1, height, width, 3]:",t.shape,o.shape),0;n.input1=j.clone(t),n.input2=t.shape[1]!==o.shape[1]||t.shape[2]!==o.shape[2]?j.image.resizeBilinear(o,[t.shape[1],t.shape[2]]):j.clone(o),n.diff=j.sub(n.input1,n.input2),n.squared=j.mul(n.diff,n.diff),n.sum=j.sum(n.squared);let A=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return j.dispose([n.input1,n.input2,n.diff,n.squared,n.sum]),A}var W5=class{constructor(){T(this,"browser");T(this,"node");T(this,"worker");T(this,"platform","");T(this,"agent","");T(this,"backends",[]);T(this,"initial");T(this,"filter");T(this,"tfjs");T(this,"offscreen");T(this,"perfadd",!1);T(this,"tensorflow",{version:void 0,gpu:void 0});T(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});T(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});T(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});T(this,"cpu",{model:void 0,flags:[]});T(this,"kernels",[]);T(this,"Canvas");T(this,"Image");T(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:a0.version["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let o=t[0].match(/\(([^()]+)\)/g);this.platform=o!=null&&o[0]?o[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(a0.engine().registryFactory),this.tensorflow={version:a0.backend().binding?a0.backend().binding.TF_Version:void 0,gpu:a0.backend().binding?a0.backend().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&a0.getBackend()==="wasm"&&(this.wasm.simd=a0.env().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=a0.env().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=b0(100,100),o=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof o!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(a0.getBackend()==="webgl"||a0.getBackend()==="humangl")){let n=a0.backend().gpgpu!=="undefined"?await a0.backend().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=n?n.name:void 0}}catch(n){this.webgpu.supported=!1}try{this.kernels=a0.getKernelsForBackend(a0.getBackend()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},P=new W5;var w5=V(D());var F5={};pe(F5,{age:()=>qn,"anti-spoofing":()=>Rr,antispoof:()=>On,blazeface:()=>jn,"blazeface-back":()=>Un,"blazeface-front":()=>Yn,"blazepose-detect":()=>vr,"blazepose-detector2d":()=>Kn,"blazepose-detector3d":()=>Jn,"blazepose-full":()=>Qn,"blazepose-heavy":()=>_n,"blazepose-lite":()=>$n,default:()=>Lr,efficientpose:()=>er,"efficientpose-i-lite":()=>Pr,"efficientpose-ii-lite":()=>Tr,"efficientpose-iv":()=>wr,emotion:()=>Nn,faceboxes:()=>tr,facemesh:()=>Ln,"facemesh-attention":()=>nr,"facemesh-attention-alt":()=>or,"facemesh-detection-full":()=>rr,"facemesh-detection-short":()=>Ar,"facemesh-orig":()=>sr,faceres:()=>Wn,"faceres-deep":()=>ar,gear:()=>ir,gender:()=>cr,"gender-ssrnet-imdb":()=>lr,handdetect:()=>xr,"handlandmark-full":()=>Fn,"handlandmark-lite":()=>yr,"handlandmark-sparse":()=>dr,handskeleton:()=>fr,handtrack:()=>Gn,"insightface-efficientnet-b0":()=>kr,"insightface-ghostnet-strides1":()=>Er,"insightface-ghostnet-strides2":()=>zr,"insightface-mobilenet-emore":()=>Sr,"insightface-mobilenet-swish":()=>Cr,iris:()=>Bn,liveness:()=>Hn,"mb3-centernet":()=>Dn,meet:()=>mr,mobileface:()=>pr,mobilefacenet:()=>ur,models:()=>Vn,"movenet-lightning":()=>Zn,"movenet-multipose":()=>hr,"movenet-thunder":()=>br,nanodet:()=>gr,"nanodet-e":()=>Ir,"nanodet-g":()=>Or,"nanodet-m":()=>jr,"nanodet-t":()=>Nr,posenet:()=>Mr,selfie:()=>Xn});var On=853098,jn=538928,Nn=820516,Ln=1477958,Wn=6978814,Fn=5431368,Gn=2964837,Bn=2599092,Hn=592976,Dn=4030290,Vn=0,Zn=4650216,Xn=212886,qn=161240,Un=538928,Yn=402048,Kn=7499400,Jn=5928856,Qn=6338290,_n=27501554,$n=2725490,er=5651240,tr=2013002,or=2387598,nr=2382414,rr=1026192,Ar=201268,sr=2955780,ar=13957620,ir=1498916,lr=161236,cr=201808,xr=3515612,yr=2023432,dr=5286322,fr=5502280,mr=372228,pr=2183192,ur=5171976,hr=9448838,br=12477112,gr=7574558,Mr=5032780,vr=5928804,Rr=853098,Pr=2269064,Tr=5651240,wr=25643252,kr=13013224,Er=8093408,zr=8049584,Sr=6938536,Cr=12168584,Ir=12319156,Or=7574558,jr=1887474,Nr=5294216,Lr={antispoof:On,blazeface:jn,emotion:Nn,facemesh:Ln,faceres:Wn,"handlandmark-full":Fn,handtrack:Gn,iris:Bn,liveness:Hn,"mb3-centernet":Dn,models:Vn,"movenet-lightning":Zn,selfie:Xn,age:qn,"blazeface-back":Un,"blazeface-front":Yn,"blazepose-detector2d":Kn,"blazepose-detector3d":Jn,"blazepose-full":Qn,"blazepose-heavy":_n,"blazepose-lite":$n,efficientpose:er,faceboxes:tr,"facemesh-attention-alt":or,"facemesh-attention":nr,"facemesh-detection-full":rr,"facemesh-detection-short":Ar,"facemesh-orig":sr,"faceres-deep":ar,gear:ir,"gender-ssrnet-imdb":lr,gender:cr,handdetect:xr,"handlandmark-lite":yr,"handlandmark-sparse":dr,handskeleton:fr,meet:mr,mobileface:pr,mobilefacenet:ur,"movenet-multipose":hr,"movenet-thunder":br,nanodet:gr,posenet:Mr,"blazepose-detect":vr,"anti-spoofing":Rr,"efficientpose-i-lite":Pr,"efficientpose-ii-lite":Tr,"efficientpose-iv":wr,"insightface-efficientnet-b0":kr,"insightface-ghostnet-strides1":Er,"insightface-ghostnet-strides2":zr,"insightface-mobilenet-emore":Sr,"insightface-mobilenet-swish":Cr,"nanodet-e":Ir,"nanodet-g":Or,"nanodet-m":jr,"nanodet-t":Nr};var x5={};pe(x5,{Models:()=>S2,getModelStats:()=>Q1,load:()=>_1,reset:()=>c5,validate:()=>T5,validateModel:()=>A2});var W2=V(D());var Z0,G5=[],Wr=["white","black","asian","indian","other"],Fr=[15,23,28,35.5,45.5,55.5,65],jt=0,Nt=0,B5=Number.MAX_SAFE_INTEGER;async function Lt(e){var t;return P.initial&&(Z0=null),Z0?e.debug&&b("cached model:",Z0.modelUrl):Z0=await F((t=e.face.gear)==null?void 0:t.modelPath),Z0}async function H5(e,t,o,n){var s,a;if(!Z0)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=B5<(((s=t.face.gear)==null?void 0:s.skipFrames)||0),A=(((a=t.face.gear)==null?void 0:a.skipTime)||0)>v()-Nt;return t.skipAllowed&&A&&r&&jt===n&&G5[o]?(B5++,G5[o]):(B5=0,new Promise(async l=>{var M,R;if(!(Z0!=null&&Z0.inputs[0].shape))return;let c={},y=[[0,.1,.9,.9]];c.resize=W2.image.cropAndResize(e,y,[0],[Z0.inputs[0].shape[2],Z0.inputs[0].shape[1]]);let i={age:0,gender:"unknown",genderScore:0,race:[]};(M=t.face.gear)!=null&&M.enabled&&([c.age,c.gender,c.race]=Z0.execute(c.resize,["age_output","gender_output","race_output"]));let d=await c.gender.data();i.gender=d[0]>d[1]?"male":"female",i.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let x=await c.race.data();for(let m=0;m(((R=t.face.gear)==null?void 0:R.minConfidence)||.2)&&i.race.push({score:Math.round(100*x[m])/100,race:Wr[m]});i.race.sort((m,u)=>u.score-m.score);let p=Array.from(await c.age.data()).map((m,u)=>[Fr[u],m]).sort((m,u)=>u[1]-m[1]),g=p[0][0];for(let m=1;mW2.dispose(c[m])),G5[o]=i,jt=n,Nt=v(),l(i)}))}var Ye=V(D());var he=V(D()),H={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function Ft(){H.tf255=he.scalar(255,"float32"),H.tf1=he.scalar(1,"float32"),H.tf2=he.scalar(2,"float32"),H.tf05=he.scalar(.5,"float32"),H.tf127=he.scalar(127.5,"float32"),H.rgb=he.tensor1d([.2989,.587,.114],"float32")}var E0,F2=[],Gt=0,Bt=0,D5=Number.MAX_SAFE_INTEGER;async function Ht(e){return P.initial&&(E0=null),E0?e.debug&&b("cached model:",E0.modelUrl):E0=await F(e.face.ssrnet.modelPathAge),E0}async function V5(e,t,o,n){var s,a,l,c;if(!E0)return{age:0};let r=D5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Bt;return t.skipAllowed&&r&&A&&Gt===n&&((l=F2[o])==null?void 0:l.age)&&((c=F2[o])==null?void 0:c.age)>0?(D5++,F2[o]):(D5=0,new Promise(async y=>{var x;if(!(E0!=null&&E0.inputs)||!E0.inputs[0]||!E0.inputs[0].shape)return;let i={};i.resize=Ye.image.resizeBilinear(e,[E0.inputs[0].shape[2],E0.inputs[0].shape[1]],!1),i.enhance=Ye.mul(i.resize,H.tf255);let d={age:0};if((x=t.face.ssrnet)!=null&&x.enabled&&(i.age=E0.execute(i.enhance)),i.age){let f=await i.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(i).forEach(f=>Ye.dispose(i[f])),F2[o]=d,Gt=n,Bt=v(),y(d)}))}var p0=V(D());var X0,G2=[],Vt=0,Zt=0,Z5=Number.MAX_SAFE_INTEGER,X5=[.2989,.587,.114];async function Xt(e){var t;return P.initial&&(X0=null),X0?e.debug&&b("cached model:",X0.modelUrl):X0=await F((t=e.face.ssrnet)==null?void 0:t.modelPathGender),X0}async function q5(e,t,o,n){var s,a,l,c;if(!X0)return{gender:"unknown",genderScore:0};let r=Z5<(((s=t.face.ssrnet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.ssrnet)==null?void 0:a.skipTime)||0)>v()-Zt;return t.skipAllowed&&r&&A&&Vt===n&&((l=G2[o])==null?void 0:l.gender)&&((c=G2[o])==null?void 0:c.genderScore)>0?(Z5++,G2[o]):(Z5=0,new Promise(async y=>{var f;if(!(X0!=null&&X0.inputs[0].shape))return;let i={};i.resize=p0.image.resizeBilinear(e,[X0.inputs[0].shape[2],X0.inputs[0].shape[1]],!1),i.enhance=p0.tidy(()=>{let[p,g,M]=p0.split(i.resize,3,3),R=p0.mul(p,X5[0]),m=p0.mul(g,X5[1]),u=p0.mul(M,X5[2]),z=p0.addN([R,m,u]);return p0.mul(p0.sub(z,H.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(i.gender=X0.execute(i.enhance));let x=await i.gender.data();d.gender=x[0]>x[1]?"female":"male",d.genderScore=x[0]>x[1]?Math.trunc(100*x[0])/100:Math.trunc(100*x[1])/100,Object.keys(i).forEach(p=>p0.dispose(i[p])),G2[o]=d,Vt=n,Zt=v(),y(d)}))}var H2=V(D());var c0,B2=[],U5=Number.MAX_SAFE_INTEGER,Ut=0,Yt=0;async function Kt(e){var t;return P.initial&&(c0=null),c0?e.debug&&b("cached model:",c0.modelUrl):c0=await F((t=e.face.antispoof)==null?void 0:t.modelPath),c0}async function Y5(e,t,o,n){var s,a;if(!c0||!(c0!=null&&c0.executor))return 0;let r=(((s=t.face.antispoof)==null?void 0:s.skipTime)||0)>v()-Yt,A=U5<(((a=t.face.antispoof)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&Ut===n&&B2[o]?(U5++,B2[o]):(U5=0,new Promise(async l=>{let c=H2.image.resizeBilinear(e,[c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[2]:0,c0!=null&&c0.inputs[0].shape?c0.inputs[0].shape[1]:0],!1),y=c0==null?void 0:c0.execute(c),i=(await y.data())[0];B2[o]=Math.round(100*i)/100,Ut=n,Yt=v(),H2.dispose([c,y]),l(B2[o])}))}var L=V(D());var ie=V(D());var q0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},K5={count:468,mouth:13,symmetryLine:[13,q0.midwayBetweenEyes[0]]},Oe={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},J5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],M2=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],je=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Br=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Hr=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Dr=[33,133,362,263,1,78,308],s4=Br.map(e=>M2[e]),a4=Hr.map(e=>M2[e]),i4=Dr.map(e=>M2[e]);function be(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var Vr=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Zr=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Xr=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],qr=[[474,475],[475,476],[476,477],[477,474]],Ur=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Yr=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Kr=[[469,470],[470,471],[471,472],[472,469]],Jr=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],l4={lips:be(Vr),leftEye:be(Zr),leftEyebrow:be(Xr),leftIris:be(qr),rightEye:be(Ur),rightEyebrow:be(Yr),rightIris:be(Kr),faceOval:be(Jr)};var Ke=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],D2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],V2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Z2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],$t=(e,t)=>{let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:o,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},_5=(e,t,o)=>{let n=t.shape[1],r=t.shape[2],A=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],s=ie.image.cropAndResize(t,[A],[0],o),a=ie.div(s,H.tf255);return ie.dispose(s),a},X2=(e,t)=>{let o=D2(e),n=Ke(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[o[0]-r[0],o[1]-r[1]],endPoint:[o[0]+r[0],o[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},q2=e=>{let t=D2(e),o=Ke(e),n=Math.max(...o)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},e3=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...o)],endPoint:[Math.max(...t),Math.max(...o)],landmarks:e}},$5=[[1,0,0],[0,1,0],[0,0,1]],Qr=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),_r=(e,t)=>Qr(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var Qt=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ne=(e,t)=>{let o=0;for(let n=0;n{let o=[];for(let n=0;n{let o=[],n=e.length;for(let r=0;r{let o=Math.cos(e),n=Math.sin(e),r=[[o,-n,0],[n,o,0],[0,0,1]],A=Qt(t[0],t[1]),s=_t(A,r),a=Qt(-t[0],-t[1]);return _t(s,a)},eA=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],o=[e[0][2],e[1][2]],n=[-Ne(t[0],o),-Ne(t[1],o)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},tA=(e,t)=>[Ne(e,t[0]),Ne(e,t[1])];function o3(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},o=[];for(let n=0;n[A[0]/r*(x[0]-r/2),A[1]/r*(x[1]-r/2),x[2]||0]),a=o&&o!==0&&Math.abs(o)>.2,l=a?t3(o,[0,0]):$5,c=a?s.map(x=>[...tA(x,l),x[2]]):s,y=a?eA(n):$5,i=D2(t),d=[Ne(i,y[0]),Ne(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2]||0)])}function r3(e,t,o,n){let r=t.landmarks.length>=K5.count?K5.symmetryLine:Oe.symmetryLine,A=0,s=$5,a;if(e&&P.kernels.includes("rotatewithoffset"))if(A=_r(t.landmarks[r[0]],t.landmarks[r[1]]),A&&A!==0&&Math.abs(A)>.2){let c=D2(t),y=[c[0]/o.shape[2],c[1]/o.shape[1]],i=ie.image.rotateWithOffset(o,A,0,y);s=t3(-A,c),a=_5(t,i,[n,n]),ie.dispose(i)}else a=_5(t,o,[n,n]);else a=_5(t,o,[n,n]);return[A,s,a]}var oA=e=>{let t=e.map(n=>n[0]),o=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...o)+(Math.max(...o)-Math.min(...o))/2]},A3=(e,t)=>{let o=oA(e),n=Ke(t);return{startPoint:[o[0]-n[0]/2,o[1]-n[1]/2],endPoint:[o[0]+n[0]/2,o[1]+n[1]/2]}};var s3=6,nA=1.4,J0,a3=null,ge=0,v2=null,Je=()=>ge;async function i3(e){var t;return P.initial&&(J0=null),J0?e.debug&&b("cached model:",J0.modelUrl):J0=await F((t=e.face.detector)==null?void 0:t.modelPath),ge=J0.executor&&J0.inputs[0].shape?J0.inputs[0].shape[2]:256,v2=L.scalar(ge,"int32"),a3=L.tensor2d(o3(ge)),J0}function rA(e){let t={};t.boxStarts=L.slice(e,[0,1],[-1,2]),t.centers=L.add(t.boxStarts,a3),t.boxSizes=L.slice(e,[0,3],[-1,2]),t.boxSizesNormalized=L.div(t.boxSizes,v2),t.centersNormalized=L.div(t.centers,v2),t.halfBoxSize=L.div(t.boxSizesNormalized,H.tf2),t.starts=L.sub(t.centersNormalized,t.halfBoxSize),t.ends=L.add(t.centersNormalized,t.halfBoxSize),t.startNormalized=L.mul(t.starts,v2),t.endNormalized=L.mul(t.ends,v2);let o=L.concat2d([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>L.dispose(t[n])),o}async function l3(e,t){var a,l,c,y;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let o={};o.resized=L.image.resizeBilinear(e,[ge,ge]),o.div=L.div(o.resized,H.tf127),o.normalized=L.sub(o.div,H.tf05);let n=J0==null?void 0:J0.execute(o.normalized);if(Array.isArray(n)&&n.length>2){let i=n.sort((d,x)=>d.size-x.size);o.concat384=L.concat([i[0],i[2]],2),o.concat512=L.concat([i[1],i[3]],2),o.concat=L.concat([o.concat512,o.concat384],1),o.batch=L.squeeze(o.concat,0)}else Array.isArray(n)?o.batch=L.squeeze(n[0]):o.batch=L.squeeze(n);L.dispose(n),o.boxes=rA(o.batch),o.logits=L.slice(o.batch,[0,0],[-1,1]),o.sigmoid=L.sigmoid(o.logits),o.scores=L.squeeze(o.sigmoid),o.nms=await L.image.nonMaxSuppressionAsync(o.boxes,o.scores,((a=t.face.detector)==null?void 0:a.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((c=t.face.detector)==null?void 0:c.minConfidence)||0);let r=await o.nms.array(),A=[],s=await o.scores.data();for(let i=0;i(((y=t.face.detector)==null?void 0:y.minConfidence)||0)){let x={};x.bbox=L.slice(o.boxes,[r[i],0],[1,-1]),x.slice=L.slice(o.batch,[r[i],s3-1],[1,-1]),x.squeeze=L.squeeze(x.slice),x.landmarks=L.reshape(x.squeeze,[s3,-1]);let f=await x.bbox.data(),p={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await x.landmarks.array(),confidence:d},g=$t(p,[(e.shape[2]||0)/ge,(e.shape[1]||0)/ge]),M=X2(g,t.face.scale||nA),R=q2(M);A.push(R),Object.keys(x).forEach(m=>L.dispose(x[m]))}}return Object.keys(o).forEach(i=>L.dispose(o[i])),A}var S0=V(D());var U2={};pe(U2,{connected:()=>o1,kpt:()=>t1});var t1=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],o1={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var z0=V(D()),x3=224,AA,sA=5,Y2=[8,16,32,32,32];function y3(){let e=[],t=0;for(;to.x)),y:z0.tensor1d(e.map(o=>o.y))}}function le(e,t=[1,1]){let o=[e.map(a=>a[0]),e.map(a=>a[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[n[0],n[1],r[0]-n[0],r[1]-n[1]],s=[A[0]/t[0],A[1]/t[1],A[2]/t[0],A[3]/t[1]];return{box:A,boxRaw:s}}function d3(e,t=[1,1]){let o=[e.map(c=>c[0]),e.map(c=>c[1])],n=[Math.min(...o[0]),Math.min(...o[1])],r=[Math.max(...o[0]),Math.max(...o[1])],A=[(n[0]+r[0])/2,(n[1]+r[1])/2],s=Math.max(A[0]-n[0],A[1]-n[1],-A[0]+r[0],-A[1]+r[1]),a=[Math.trunc(A[0]-s),Math.trunc(A[1]-s),Math.trunc(2*s),Math.trunc(2*s)],l=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:l}}function K2(e,t){let o=[e[2]*t,e[3]*t];return[e[0]-(o[0]-e[2])/2,e[1]-(o[1]-e[3])/2,o[0],o[1]]}var p3={initial:!0},u0={detector:null,landmarks:null},Qe={detector:[224,224],landmarks:[256,256]},n1=Number.MAX_SAFE_INTEGER,iA={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},Q2=null,R2,Me=[[0,0],[0,0],[0,0],[0,0]],f3=0,m3=e=>1-1/(1+Math.exp(e));async function u3(e){var t;if(p3.initial&&(u0.detector=null),!u0.detector&&e.body.detector&&e.body.detector.modelPath){u0.detector=await F(e.body.detector.modelPath);let o=(t=u0.detector)!=null&&t.executor?Object.values(u0.detector.modelSignature.inputs):void 0;Qe.detector[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.detector[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}else e.debug&&u0.detector&&b("cached model:",u0.detector.modelUrl);return y3(),u0.detector}async function h3(e){var t;if(p3.initial&&(u0.landmarks=null),u0.landmarks)e.debug&&b("cached model:",u0.landmarks.modelUrl);else{u0.landmarks=await F(e.body.modelPath);let o=(t=u0.landmarks)!=null&&t.executor?Object.values(u0.landmarks.modelSignature.inputs):void 0;Qe.landmarks[0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Qe.landmarks[1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return u0.landmarks}function lA(e,t){var r,A;let o={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((A=e==null?void 0:e.shape)!=null&&A[2]))return e;let n;if(R2&&(o.cropped=S0.image.cropAndResize(e,[R2],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let s=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],a=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Me=[[0,0],s,a,[0,0]],o.pad=S0.pad(o.cropped||e,Me),o.resize=S0.image.resizeBilinear(o.pad,[t,t]),n=S0.div(o.resize,H.tf255)}else e.shape[1]!==t?(o.resize=S0.image.resizeBilinear(o.cropped||e,[t,t]),n=S0.div(o.resize,H.tf255)):n=S0.div(o.cropped||e,H.tf255);return Object.keys(o).forEach(s=>S0.dispose(o[s])),n}function cA(e,t){for(let o of e)o.position=[Math.trunc(o.position[0]*(t[0]+Me[2][0]+Me[2][1])/t[0]-Me[2][0]),Math.trunc(o.position[1]*(t[1]+Me[1][0]+Me[1][1])/t[1]-Me[1][0]),o.position[2]],o.positionRaw=[o.position[0]/t[0],o.position[1]/t[1],2*o.position[2]/(t[0]+t[1])];if(R2)for(let o of e)o.positionRaw=[o.positionRaw[0]+R2[1],o.positionRaw[1]+R2[0],o.positionRaw[2]],o.position=[Math.trunc(o.positionRaw[0]*t[0]),Math.trunc(o.positionRaw[1]*t[1]),o.positionRaw[2]];return e}function xA(e){let t=e.find(a=>a.part==="leftPalm"),o=e.find(a=>a.part==="leftWrist"),n=e.find(a=>a.part==="leftIndex");t.position[2]=((o.position[2]||0)+(n.position[2]||0))/2;let r=e.find(a=>a.part==="rightPalm"),A=e.find(a=>a.part==="rightWrist"),s=e.find(a=>a.part==="rightIndex");r.position[2]=((A.position[2]||0)+(s.position[2]||0))/2}async function yA(e,t,o){var f,p;if(!((f=u0.landmarks)!=null&&f.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(p=u0.landmarks)==null?void 0:p.execute(e,iA.landmarks);let r=(await n.poseflag.data())[0],A=await n.ld.data(),s=await n.world.data();Object.keys(n).forEach(g=>S0.dispose(n[g]));let a=[],l=5;for(let g=0;gg.position),i=le(y,[o[0],o[1]]),d={};for(let[g,M]of Object.entries(o1)){let R=[];for(let m=0;mw.part===M[m]),z=c.find(w=>w.part===M[m+1]);u&&z&&R.push([u.position,z.position])}d[g]=R}return{id:0,score:Math.trunc(100*r)/100,box:i.box,boxRaw:i.boxRaw,keypoints:c,annotations:d}}async function r1(e,t){let o=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>v()-f3,r=n1<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&Q2!==null)n1++;else{let A={};A.landmarks=lA(e,256),Q2=await yA(A.landmarks,t,o),Object.keys(A).forEach(s=>S0.dispose(A[s])),f3=v(),n1=0}return Q2?[Q2]:[]}var g0=V(D());var _e=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var k0,Le=0,A1=[],g3=0,s1=Number.MAX_SAFE_INTEGER;async function M3(e){if(P.initial&&(k0=null),k0)e.debug&&b("cached model:",k0.modelUrl);else{k0=await F(e.object.modelPath);let t=k0!=null&&k0.executor?Object.values(k0.modelSignature.inputs):void 0;Le=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return k0}async function dA(e,t,o){if(!e)return[];let n={},r=[],A=await e.array();n.squeeze=g0.squeeze(e);let s=g0.split(n.squeeze,6,1);n.stack=g0.stack([s[1],s[0],s[3],s[2]],1),n.boxes=g0.squeeze(n.stack),n.scores=g0.squeeze(s[4]),n.classes=g0.squeeze(s[5]),g0.dispose([e,...s]),n.nms=await g0.image.nonMaxSuppressionAsync(n.boxes,n.scores,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence||0);let a=await n.nms.data(),l=0;for(let c of Array.from(a)){let y=Math.trunc(100*A[0][c][4])/100,i=A[0][c][5];if(Number.isNaN(i))continue;let d=_e[i].label,[x,f]=[A[0][c][0]/Le,A[0][c][1]/Le],p=[x,f,A[0][c][2]/Le-x,A[0][c][3]/Le-f],g=[Math.trunc(p[0]*t[0]),Math.trunc(p[1]*t[1]),Math.trunc(p[2]*t[0]),Math.trunc(p[3]*t[1])];r.push({id:l++,score:y,class:i,label:d,box:g,boxRaw:p})}return Object.keys(n).forEach(c=>g0.dispose(n[c])),r}async function a1(e,t){if(!(k0!=null&&k0.executor))return[];let o=(t.object.skipTime||0)>v()-g3,n=s1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&A1.length>0?(s1++,A1):(s1=0,new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=g0.image.resizeBilinear(e,[Le,Le]),a=t.object.enabled?k0==null?void 0:k0.execute(s,["tower_0/detections"]):null;g3=v(),g0.dispose(s);let l=await dA(a,A,t);A1=l,r(l)}))}var Y=V(D());var _2={};pe(_2,{connected:()=>l1,kpt:()=>i1});var i1=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],l1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var x0,R3=0,M0={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},c1=Number.MAX_SAFE_INTEGER;async function P3(e){return P.initial&&(x0=null),x0?e.debug&&b("cached model:",x0.modelUrl):x0=await F(e.body.modelPath),x0}async function fA(e,t){let[o,n]=e.shape,r=Y.reshape(e,[n*o]),A=Y.max(r,0),s=(await A.data())[0];if(s>t){let a=Y.argMax(r,0),l=Y.mod(a,o),c=(await l.data())[0],y=Y.div(a,o),i=(await y.data())[0];return Y.dispose([r,A,a,l,y]),[c,i,s]}return Y.dispose([r,A]),[0,0,s]}async function x1(e,t){if(!(x0!=null&&x0.executor))return[];let o=(t.body.skipTime||0)>v()-R3,n=c1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n&&Object.keys(M0.keypoints).length>0?(c1++,[M0]):(c1=0,new Promise(async r=>{let A=Y.tidy(()=>{if(!(x0!=null&&x0.inputs[0].shape))return null;let i=Y.image.resizeBilinear(e,[x0.inputs[0].shape[2],x0.inputs[0].shape[1]],!1),d=Y.mul(i,H.tf2);return Y.sub(d,H.tf1)}),s;if(t.body.enabled&&(s=x0==null?void 0:x0.execute(A)),R3=v(),Y.dispose(A),s){M0.keypoints.length=0;let i=Y.squeeze(s);Y.dispose(s);let d=Y.unstack(i,2);Y.dispose(i);for(let x=0;x(t.body.minConfidence||0)&&M0.keypoints.push({score:Math.round(100*g)/100,part:i1[x],positionRaw:[f/x0.inputs[0].shape[2],p/x0.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/x0.inputs[0].shape[2]),Math.round(e.shape[1]*p/x0.inputs[0].shape[1])]})}d.forEach(x=>Y.dispose(x))}M0.score=M0.keypoints.reduce((i,d)=>d.score>i?d.score:i,0);let a=M0.keypoints.map(i=>i.position[0]),l=M0.keypoints.map(i=>i.position[1]);M0.box=[Math.min(...a),Math.min(...l),Math.max(...a)-Math.min(...a),Math.max(...l)-Math.min(...l)];let c=M0.keypoints.map(i=>i.positionRaw[0]),y=M0.keypoints.map(i=>i.positionRaw[1]);M0.boxRaw=[Math.min(...c),Math.min(...y),Math.max(...c)-Math.min(...c),Math.max(...y)-Math.min(...y)];for(let[i,d]of Object.entries(l1)){let x=[];for(let f=0;fM.part===d[f]),g=M0.keypoints.find(M=>M.part===d[f+1]);p&&g&&p.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([p.position,g.position])}M0.annotations[i]=x}r([M0])}))}var Q0=V(D());var mA=["angry","disgust","fear","happy","sad","surprise","neutral"],G0,$2=[],w3=0,k3=0,y1=Number.MAX_SAFE_INTEGER;async function E3(e){var t;return P.initial&&(G0=null),G0?e.debug&&b("cached model:",G0.modelUrl):G0=await F((t=e.face.emotion)==null?void 0:t.modelPath),G0}async function d1(e,t,o,n){var s,a;if(!G0)return[];let r=y1<(((s=t.face.emotion)==null?void 0:s.skipFrames)||0),A=(((a=t.face.emotion)==null?void 0:a.skipTime)||0)>v()-k3;return t.skipAllowed&&A&&r&&w3===n&&$2[o]&&$2[o].length>0?(y1++,$2[o]):(y1=0,new Promise(async l=>{var y;let c=[];if((y=t.face.emotion)!=null&&y.enabled){let i={},d=G0!=null&&G0.inputs[0].shape?G0.inputs[0].shape[2]:0;i.resize=Q0.image.resizeBilinear(e,[d,d],!1),i.channels=Q0.mul(i.resize,H.rgb),i.grayscale=Q0.sum(i.channels,3,!0),i.grayscaleSub=Q0.sub(i.grayscale,H.tf05),i.grayscaleMul=Q0.mul(i.grayscaleSub,H.tf2),i.emotion=G0==null?void 0:G0.execute(i.grayscaleMul),k3=v();let x=await i.emotion.data();for(let f=0;f(t.face.emotion.minConfidence||0)&&c.push({score:Math.min(.99,Math.trunc(100*x[f])/100),emotion:mA[f]});c.sort((f,p)=>p.score-f.score),Object.keys(i).forEach(f=>Q0.dispose(i[f]))}$2[o]=c,w3=n,l(c)}))}var e5=V(D());var C0,f1=[],S3=0,C3=0,I3=Number.MAX_SAFE_INTEGER;async function O3(e){var t;return P.initial&&(C0=null),C0?e.debug&&b("cached model:",C0.modelUrl):C0=await F((t=e.face.mobilefacenet)==null?void 0:t.modelPath),C0}async function m1(e,t,o,n){var s,a;if(!(C0!=null&&C0.executor))return[];let r=I3<(((s=t.face.mobilefacenet)==null?void 0:s.skipFrames)||0),A=(((a=t.face.mobilefacenet)==null?void 0:a.skipTime)||0)>v()-C3;return t.skipAllowed&&A&&r&&S3===n&&f1[o]?(I3++,f1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.mobilefacenet)==null?void 0:y.enabled)&&(C0==null?void 0:C0.inputs[0].shape)){let i={};i.crop=e5.image.resizeBilinear(e,[C0.inputs[0].shape[2],C0.inputs[0].shape[1]],!1),i.data=C0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>e5.dispose(i[x]))}f1[o]=c,S3=n,C3=v(),l(c)})}var t5=V(D());var I0,p1=[],N3=0,L3=0,W3=Number.MAX_SAFE_INTEGER;async function F3(e){return P.initial&&(I0=null),I0?e.debug&&b("cached model:",I0.modelUrl):I0=await F(e.face.insightface.modelPath),I0}async function u1(e,t,o,n){var s,a;if(!(I0!=null&&I0.executor))return[];let r=W3<(((s=t.face.insightface)==null?void 0:s.skipFrames)||0),A=(((a=t.face.insightface)==null?void 0:a.skipTime)||0)>v()-L3;return t.skipAllowed&&A&&r&&N3===n&&p1[o]?(W3++,p1[o]):new Promise(async l=>{var y;let c=[];if(((y=t.face.insightface)==null?void 0:y.enabled)&&(I0==null?void 0:I0.inputs[0].shape)){let i={};i.crop=t5.image.resizeBilinear(e,[I0.inputs[0].shape[2],I0.inputs[0].shape[1]],!1),i.data=I0.execute(i.crop);let d=await i.data.data();c=Array.from(d),Object.keys(i).forEach(x=>t5.dispose(i[x]))}p1[o]=c,N3=n,L3=v(),l(c)})}var Pe=V(D());var _0=V(D());var O0,ve=0,pA=2.3,h1=q0.leftEyeLower0,b1=q0.rightEyeLower0,$e={leftBounds:[h1[0],h1[h1.length-1]],rightBounds:[b1[0],b1[b1.length-1]]},e2={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function V3(e){var t,o;return P.initial&&(O0=null),O0?e.debug&&b("cached model:",O0.modelUrl):O0=await F((t=e.face.iris)==null?void 0:t.modelPath),ve=(O0==null?void 0:O0.executor)&&((o=O0.inputs)==null?void 0:o[0].shape)?O0.inputs[0].shape[2]:0,ve===-1&&(ve=64),O0}function o5(e,t,o,n){for(let r=0;r{let t=e[$e.leftBounds[0]][2],o=e[$e.rightBounds[0]][2];return t-o},B3=(e,t,o,n,r,A=!1)=>{let s=q2(X2(e3([e[o],e[n]]),pA)),a=Ke(s),l=_0.image.cropAndResize(t,[[s.startPoint[1]/r,s.startPoint[0]/r,s.endPoint[1]/r,s.endPoint[0]/r]],[0],[ve,ve]);if(A&&P.kernels.includes("flipleftright")){let c=_0.image.flipLeftRight(l);_0.dispose(l),l=c}return{box:s,boxSize:a,crop:l}},H3=(e,t,o,n=!1)=>{let r=[];for(let A=0;A{let n=e[q0[`${o}EyeUpper0`][e2.upperCenter]][2],r=e[q0[`${o}EyeLower0`][e2.lowerCenter]][2],A=(n+r)/2;return t.map((s,a)=>{let l=A;return a===2?l=n:a===4&&(l=r),[s[0],s[1],l]})};async function Z3(e,t,o){if(!(O0!=null&&O0.executor))return e;let{box:n,boxSize:r,crop:A}=B3(e,t,$e.leftBounds[0],$e.leftBounds[1],o,!0),{box:s,boxSize:a,crop:l}=B3(e,t,$e.rightBounds[0],$e.rightBounds[1],o,!0),c=_0.concat([A,l]);_0.dispose(A),_0.dispose(l);let y=O0.execute(c);_0.dispose(c);let i=await y.data();_0.dispose(y);let d=i.slice(0,e2.numCoordinates*3),{rawCoords:x,iris:f}=H3(d,n,r,!0),p=i.slice(e2.numCoordinates*3),{rawCoords:g,iris:M}=H3(p,s,a,!1),R=uA(e);Math.abs(R)<30?(o5(e,x,"left",null),o5(e,g,"right",null)):R<1?o5(e,x,"left",["EyeUpper0","EyeLower0"]):o5(e,g,"right",["EyeUpper0","EyeLower0"]);let m=D3(e,f,"left"),u=D3(e,M,"right");return e.concat(m).concat(u)}var hA=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],bA=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],gA=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],MA=[[474,475],[475,476],[476,477],[477,474]],vA=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],RA=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],PA=[[469,470],[470,471],[471,472],[472,469]],TA=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Re(e){let t=e.map(o=>o[0]);return t.push(e[e.length-1][1]),t}var wA={lips:Re(hA),leftEye:Re(bA),leftEyebrow:Re(gA),leftIris:Re(MA),rightEye:Re(vA),rightEyebrow:Re(RA),rightIris:Re(PA),faceOval:Re(TA)},kA=Object.entries(wA).map(([e,t])=>t.map(o=>[o,e])).flat(),H4=new Map(kA),P2=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],We=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],Fe=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function U3(e,t){var A,s,a,l,c,y,i,d,x,f;let o={lips:await((s=(A=t.filter(p=>p.size===160))==null?void 0:A[0])==null?void 0:s.data()),irisL:await((l=(a=t.filter(p=>p.size===10))==null?void 0:a[0])==null?void 0:l.data()),eyeL:await((y=(c=t.filter(p=>p.size===142))==null?void 0:c[0])==null?void 0:y.data()),irisR:await((d=(i=t.filter(p=>p.size===10))==null?void 0:i[1])==null?void 0:d.data()),eyeR:await((f=(x=t.filter(p=>p.size===142))==null?void 0:x[1])==null?void 0:f.data())};for(let p of Object.values(o))if(!p)return e;let n=We.reduce((p,g)=>p+=e[g][2],0)/We.length;for(let p=0;pp+=e[g][2],0)/Fe.length;for(let p=0;pv()-Ae.timestamp,n=Ae.skipped<(((c=t.face.detector)==null?void 0:c.skipFrames)||0);!t.skipAllowed||!o||!n||Ae.boxes.length===0?(Ae.boxes=await l3(e,t),Ae.timestamp=v(),Ae.skipped=0):Ae.skipped++;let r=[],A=[],s=0,a=T2;for(let R=0;RO.shape[O.shape.length-1]===1).data();if(w.faceScore=Math.round(100*X[0])/100,w.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(m.confidence=w.faceScore,t.face.mesh.keepInvalid){w.box=V2(m,e),w.boxRaw=Z2(m,e),w.score=w.boxScore,w.mesh=m.landmarks.map(O=>[(m.startPoint[0]+m.endPoint[0])/2+(m.endPoint[0]+m.startPoint[0])*O[0]/Je(),(m.startPoint[1]+m.endPoint[1])/2+(m.endPoint[1]+m.startPoint[1])*O[1]/Je()]),w.meshRaw=w.mesh.map(O=>[O[0]/(e.shape[2]||1),O[1]/(e.shape[1]||1),(O[2]||0)/a]);for(let O of Object.keys(Oe))w.annotations[O]=[w.mesh[Oe[O]]]}}else{let O=h.find(I=>I.shape[I.shape.length-1]===1404),W=Pe.reshape(O,[-1,3]),Z=await W.array();Pe.dispose(W),(p=t.face.attention)!=null&&p.enabled?Z=await U3(Z,h):(g=t.face.iris)!=null&&g.enabled&&(Z=await Z3(Z,w.tensor,T2)),w.mesh=n3(Z,m,u,z,T2),w.meshRaw=w.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/a]);for(let I of Object.keys(q0))w.annotations[I]=q0[I].map(m0=>w.mesh[m0]);w.score=w.faceScore;let N={...A3(w.mesh,m),confidence:m.confidence,landmarks:m.landmarks};w.box=V2(N,e),w.boxRaw=Z2(N,e),A.push(N)}Pe.dispose(h)}else{w.box=V2(m,e),w.boxRaw=Z2(m,e),w.score=w.boxScore,w.mesh=m.landmarks.map(h=>[(m.startPoint[0]+m.endPoint[0])/2+(m.endPoint[0]+m.startPoint[0])*h[0]/Je(),(m.startPoint[1]+m.endPoint[1])/2+(m.endPoint[1]+m.startPoint[1])*h[1]/Je()]),w.meshRaw=w.mesh.map(h=>[h[0]/(e.shape[2]||0),h[1]/(e.shape[1]||0),(h[2]||0)/a]);for(let h of Object.keys(Oe))w.annotations[h]=[w.mesh[Oe[h]]]}w.score>(((M=t.face.detector)==null?void 0:M.minConfidence)||1)?r.push(w):Pe.dispose(w.tensor)}return Ae.boxes=A,r}async function K3(e){var t,o,n,r,A,s;return P.initial&&(_=null),((t=e.face.attention)==null?void 0:t.enabled)&&(_==null?void 0:_.signature)&&Object.keys(((o=_==null?void 0:_.signature)==null?void 0:o.outputs)||{}).length<6&&(_=null),_?e.debug&&b("cached model:",_.modelUrl):(n=e.face.attention)!=null&&n.enabled?_=await F(e.face.attention.modelPath):_=await F((r=e.face.mesh)==null?void 0:r.modelPath),T2=_.executor&&((A=_==null?void 0:_.inputs)==null?void 0:A[0].shape)?(s=_==null?void 0:_.inputs)==null?void 0:s[0].shape[2]:256,_}var J3=je,Q3=M2;var $0=V(D());var v0,n5=[],_3=0,$3=0,M1=Number.MAX_SAFE_INTEGER;async function eo(e){var t;return P.initial&&(v0=null),v0?e.debug&&b("cached model:",v0.modelUrl):v0=await F((t=e.face.description)==null?void 0:t.modelPath),v0}function v1(e){let t=e.image||e.tensor||e;if(!(v0!=null&&v0.inputs[0].shape))return t;let o=$0.image.resizeBilinear(t,[v0.inputs[0].shape[2],v0.inputs[0].shape[1]],!1),n=$0.mul(o,H.tf255);return $0.dispose(o),n}async function R1(e,t,o,n){var s,a,l,c;if(!(v0!=null&&v0.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=M1<(((s=t.face.description)==null?void 0:s.skipFrames)||0),A=(((a=t.face.description)==null?void 0:a.skipTime)||0)>v()-_3;return t.skipAllowed&&r&&A&&$3===n&&((l=n5[o])==null?void 0:l.age)&&((c=n5[o])==null?void 0:c.age)>0?(M1++,n5[o]):(M1=0,new Promise(async y=>{var d;let i={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let x=v1(e),f=v0==null?void 0:v0.execute(x);_3=v(),$0.dispose(x);let g=await f.find(B=>B.shape[1]===1).data(),M=Math.trunc(200*Math.abs(g[0]-.5))/100;M>(t.face.description.minConfidence||0)&&(i.gender=g[0]<=.5?"female":"male",i.genderScore=Math.min(.99,M));let R=$0.argMax(f.find(B=>B.shape[1]===100),1),m=(await R.data())[0];$0.dispose(R);let z=await f.find(B=>B.shape[1]===100).data();i.age=Math.round(z[m-1]>z[m+1]?10*m-100*z[m-1]:10*m+100*z[m+1])/10;let w=f.find(B=>B.shape[1]===1024),h=w?await w.data():[];i.descriptor=Array.from(h),f.forEach(B=>$0.dispose(B))}n5[o]=i,$3=n,y(i)}))}var G=V(D());var no=V(D());function r5(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function w2(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function ro(e,t,o){let n=t.shape[1],r=t.shape[2],A=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return no.image.cropAndResize(t,A,[0],o)}function Ao(e,t){let o=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(A=>[A[0]*t[0],A[1]*t[1]]);return{startPoint:o,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function A5(e,t=1.5){let o=w2(e),n=r5(e),r=[t*n[0]/2,t*n[1]/2],A=[o[0]-r[0],o[1]-r[1]],s=[o[0]+r[0],o[1]+r[1]];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function s5(e){let t=w2(e),o=r5(e),r=Math.max(...o)/2,A=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:A,endPoint:s,palmLandmarks:e.palmLandmarks}}function zA(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function so(e,t){let o=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return zA(o)}var to=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Te(e,t){let o=0;for(let n=0;n[s.x,s.y]),this.anchorsTensor=G.tensor2d(this.anchors),this.inputSize=((A=(r=(n=(o=this==null?void 0:this.model)==null?void 0:o.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:A[2])||0,this.inputSizeTensor=G.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=G.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let o={};o.boxOffsets=G.slice(t,[0,0],[-1,2]),o.boxSizes=G.slice(t,[0,2],[-1,2]),o.div=G.div(o.boxOffsets,this.inputSizeTensor),o.boxCenterPoints=G.add(o.div,this.anchorsTensor),o.halfBoxSizes=G.div(o.boxSizes,this.doubleInputSizeTensor),o.sub=G.sub(o.boxCenterPoints,o.halfBoxSizes),o.startPoints=G.mul(o.sub,this.inputSizeTensor),o.add=G.add(o.boxCenterPoints,o.halfBoxSizes),o.endPoints=G.mul(o.add,this.inputSizeTensor);let n=G.concat2d([o.startPoints,o.endPoints],1);return Object.keys(o).forEach(r=>G.dispose(o[r])),n}normalizeLandmarks(t,o){let n={};n.reshape=G.reshape(t,[-1,7,2]),n.div=G.div(n.reshape,this.inputSizeTensor),n.landmarks=G.add(n.div,this.anchors[o]?this.anchors[o]:0);let r=G.mul(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(A=>G.dispose(n[A])),r}async predict(t,o){var a;let n={};n.resize=G.image.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=G.div(n.resize,H.tf127),n.image=G.sub(n.div,H.tf1),n.batched=this.model.execute(n.image),n.predictions=G.squeeze(n.batched),n.slice=G.slice(n.predictions,[0,0],[-1,1]),n.sigmoid=G.sigmoid(n.slice),n.scores=G.squeeze(n.sigmoid);let r=await n.scores.data();n.boxes=G.slice(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await G.image.nonMaxSuppressionAsync(n.norm,n.scores,3*(((a=o.hand)==null?void 0:a.maxDetected)||1),o.hand.iouThreshold,o.hand.minConfidence);let A=await n.nms.array(),s=[];for(let l of A){let c={};c.box=G.slice(n.norm,[l,0],[1,-1]),c.slice=G.slice(n.predictions,[l,5],[1,14]),c.norm=this.normalizeLandmarks(c.slice,l),c.palmLandmarks=G.reshape(c.norm,[-1,2]);let y=await c.box.data(),i=y.slice(0,2),d=y.slice(2,4),x=await c.palmLandmarks.array(),f={startPoint:i,endPoint:d,palmLandmarks:x,confidence:r[l]},p=Ao(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);s.push(p),Object.keys(c).forEach(g=>G.dispose(c[g]))}return Object.keys(n).forEach(l=>G.dispose(n[l])),s}};var j0=V(D());var OA=5,co=1.65,xo=[0,5,9,13,17,1,2],jA=0,NA=2,yo=0,i5=class{constructor(t,o){T(this,"handDetector");T(this,"handPoseModel");T(this,"inputSize");T(this,"storedBoxes");T(this,"skipped");T(this,"detectedHands");var n,r,A;this.handDetector=t,this.handPoseModel=o,this.inputSize=((A=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:A[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let o=t.map(s=>s[0]),n=t.map(s=>s[1]),r=[Math.min(...o),Math.min(...n)],A=[Math.max(...o),Math.max(...n)];return{startPoint:r,endPoint:A}}getBoxForPalmLandmarks(t,o){let n=t.map(A=>w1([...A,1],o)),r=this.calculateLandmarksBoundingBox(n);return A5(s5(r),OA)}getBoxForHandLandmarks(t){let o=this.calculateLandmarksBoundingBox(t),n=A5(s5(o),co);n.palmLandmarks=[];for(let r=0;r[s[0]*(x[0]-this.inputSize/2),s[1]*(x[1]-this.inputSize/2),s[2]*x[2]]),l=T1(n,[0,0]),c=a.map(x=>[...w1(x,l),x[2]]),y=ao(r),i=[...w2(o),1],d=[Te(i,y[0]),Te(i,y[1])];return c.map(x=>[Math.trunc(x[0]+d[0]),Math.trunc(x[1]+d[1]),Math.trunc(x[2])])}async estimateHands(t,o){let n=!1,r,A=(o.hand.skipTime||0)>v()-yo,s=this.skipped<(o.hand.skipFrames||0);o.skipAllowed&&A&&s&&(r=await this.handDetector.predict(t,o),this.skipped=0),o.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==o.hand.maxDetected||!o.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let a=[];for(let l=0;l=o.hand.minConfidence/4){let z=j0.reshape(m,[-1,3]),w=await z.array();j0.dispose(m),j0.dispose(z);let h=this.transformRawCoords(w,p,y,f),B=this.getBoxForHandLandmarks(h);this.storedBoxes[l]={...B,confidence:u};let X={landmarks:h,confidence:u,boxConfidence:c.confidence,fingerConfidence:u,box:{topLeft:B.startPoint,bottomRight:B.endPoint}};a.push(X)}else this.storedBoxes[l]=null;j0.dispose(m)}else{let y=A5(s5(c),co),i={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:y.startPoint,bottomRight:y.endPoint},landmarks:[]};a.push(i)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=a.length,a.length>o.hand.maxDetected&&(a.length=o.hand.maxDetected),a}};var R0={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>R0.nameMapping[e],getPoints:e=>R0.pointsMapping[e]},ke={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ke.nameMapping[e]},$={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>$.nameMapping[e]},we=class{constructor(t){T(this,"name");T(this,"curls");T(this,"directions");T(this,"weights");T(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,o,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([o,n])}direction(t,o,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([o,n])}weight(t,o){this.weights[t]=o;let n=this.weights.reduce((r,A)=>r+A,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,o){let n=0;for(let r in t){let A=t[r],s=this.curls[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}for(let r in o){let A=o[r],s=this.directions[r];if(typeof s=="undefined"){n+=this.weightsRelative[r];continue}for(let[a,l]of s)if(A===a){n+=l*this.weightsRelative[r];break}}return n/10}};var{thumb:ee,index:ce,middle:xe,ring:Ge,pinky:Be}=R0,{none:te,half:WA,full:oe}=ke,{verticalUp:t2,verticalDown:os,horizontalLeft:k1,horizontalRight:FA,diagonalUpRight:GA,diagonalUpLeft:o2,diagonalDownRight:ns,diagonalDownLeft:rs}=$,Ee=new we("thumbs up");Ee.curl(ee,te,1);Ee.direction(ee,t2,1);Ee.direction(ee,o2,.25);Ee.direction(ee,GA,.25);for(let e of[R0.index,R0.middle,R0.ring,R0.pinky])Ee.curl(e,oe,1),Ee.direction(e,k1,1),Ee.direction(e,FA,1);var i0=new we("victory");i0.curl(ee,WA,.5);i0.curl(ee,te,.5);i0.direction(ee,t2,1);i0.direction(ee,o2,1);i0.curl(ce,te,1);i0.direction(ce,t2,.75);i0.direction(ce,o2,1);i0.curl(xe,te,1);i0.direction(xe,t2,1);i0.direction(xe,o2,.75);i0.curl(Ge,oe,1);i0.direction(Ge,t2,.2);i0.direction(Ge,o2,1);i0.direction(Ge,k1,.2);i0.curl(Be,oe,1);i0.direction(Be,t2,.2);i0.direction(Be,o2,1);i0.direction(Be,k1,.2);i0.weight(ce,2);i0.weight(xe,2);var ze=new we("point");ze.curl(ee,oe,1);ze.curl(ce,te,.5);ze.curl(xe,oe,.5);ze.curl(Ge,oe,.5);ze.curl(Be,oe,.5);ze.weight(ce,2);ze.weight(xe,2);var Se=new we("middle finger");Se.curl(ee,te,1);Se.curl(ce,oe,.5);Se.curl(xe,oe,.5);Se.curl(Ge,oe,.5);Se.curl(Be,oe,.5);Se.weight(ce,2);Se.weight(xe,2);var n2=new we("open palm");n2.curl(ee,te,.75);n2.curl(ce,te,.75);n2.curl(xe,te,.75);n2.curl(Ge,te,.75);n2.curl(Be,te,.75);var fo=[Ee,i0,ze,Se,n2];var BA=.7,He={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function mo(e,t,o,n){let r=(t-n)/(e-o),A=Math.atan(r)*180/Math.PI;return A<=0?A=-A:A>0&&(A=180-A),A}function uo(e,t){if(!e||!t)return[0,0];let o=mo(e[0],e[1],t[0],t[1]);if(e.length===2)return o;let n=mo(e[1],e[2],t[1],t[2]);return[o,n]}function po(e,t=1){let o=0,n=0,r=0;return e>=75&&e<=105?o=1*t:e>=25&&e<=155?n=1*t:r=1*t,[o,n,r]}function HA(e,t,o){let n=e[0]-t[0],r=e[0]-o[0],A=t[0]-o[0],s=e[1]-t[1],a=e[1]-o[1],l=t[1]-o[1],c=e[2]-t[2],y=e[2]-o[2],i=t[2]-o[2],d=Math.sqrt(n*n+s*s+c*c),x=Math.sqrt(r*r+a*a+y*y),f=Math.sqrt(A*A+l*l+i*i),p=(f*f+d*d-x*x)/(2*f*d);p>1?p=1:p<-1&&(p=-1);let g=Math.acos(p);g=57.2958*g%180;let M;return g>He.NO_CURL_START_LIMIT?M=ke.none:g>He.HALF_CURL_START_LIMIT?M=ke.half:M=ke.full,M}function ho(e,t,o,n){let r;return n===Math.abs(e)?e>0?r=$.horizontalLeft:r=$.horizontalRight:n===Math.abs(t)?t>0?r=$.horizontalLeft:r=$.horizontalRight:o>0?r=$.horizontalLeft:r=$.horizontalRight,r}function bo(e,t,o,n){let r;return n===Math.abs(e)?e<0?r=$.verticalDown:r=$.verticalUp:n===Math.abs(t)?t<0?r=$.verticalDown:r=$.verticalUp:o<0?r=$.verticalDown:r=$.verticalUp,r}function DA(e,t,o,n,r,A,s,a){let l,c=bo(e,t,o,n),y=ho(r,A,s,a);return c===$.verticalUp?y===$.horizontalLeft?l=$.diagonalUpLeft:l=$.diagonalUpRight:y===$.horizontalLeft?l=$.diagonalDownLeft:l=$.diagonalDownRight,l}function VA(e,t,o,n){let r=e[0]-t[0],A=e[0]-o[0],s=t[0]-o[0],a=e[1]-t[1],l=e[1]-o[1],c=t[1]-o[1],y=Math.max(Math.abs(r),Math.abs(A),Math.abs(s)),i=Math.max(Math.abs(a),Math.abs(l),Math.abs(c)),d=0,x=0,f=0,p=i/(y+1e-5);p>1.5?d+=He.DISTANCE_VOTE_POWER:p>.66?x+=He.DISTANCE_VOTE_POWER:f+=He.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+a*a),M=Math.sqrt(A*A+l*l),R=Math.sqrt(s*s+c*c),m=Math.max(g,M,R),u=e[0],z=e[1],w=o[0],h=o[1];m===g?(w=o[0],h=o[1]):m===R&&(u=t[0],z=t[1]);let O=uo([u,z],[w,h]),W=po(O,He.TOTAL_ANGLE_VOTE_POWER);d+=W[0],x+=W[1],f+=W[2];for(let N of n){let I=po(N,He.SINGLE_ANGLE_VOTE_POWER);d+=I[0],x+=I[1],f+=I[2]}let Z;return d===Math.max(d,x,f)?Z=bo(l,a,c,i):f===Math.max(x,f)?Z=ho(A,r,s,y):Z=DA(l,a,c,i,A,r,s,y),Z}function go(e){let t=[],o=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let A of R0.all){let s=R0.getPoints(A),a=[],l=[];for(let c of s){let y=e[c[0]],i=e[c[1]],d=uo(y,i),x=d[0],f=d[1];a.push(x),l.push(f)}t.push(a),o.push(l)}for(let A of R0.all){let s=A===R0.thumb?1:0,a=R0.getPoints(A),l=e[a[s][0]],c=e[a[s+1][1]],y=e[a[3][1]],i=HA(l,c,y),d=VA(l,c,y,t[A].slice(s));n[A]=i,r[A]=d}return{curls:n,directions:r}}function l5(e){if(!e||e.length===0)return null;let t=go(e),o={};for(let n of R0.all)o[R0.getName(n)]={curl:ke.getName(t.curls[n]),direction:$.getName(t.directions[n])};return o}function Mo(e){let t=[];if(!e||e.length===0)return t;let o=go(e);for(let n of fo){let r=n.matchAgainst(o.curls,o.directions);r>=BA&&t.push({name:n.name,confidence:r})}return t}var vo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},De,Ve,Ro;async function z1(e,t){let o=await Ro.estimateHands(e,t);if(!o)return[];let n=[];for(let r=0;ro[r].landmarks[i]);let s=o[r].landmarks,a=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(s&&s.length>0){for(let y of s)y[0]a[2]&&(a[2]=y[0]),y[1]>a[3]&&(a[3]=y[1]);a[2]-=a[0],a[3]-=a[1],l=[a[0]/(e.shape[2]||0),a[1]/(e.shape[1]||0),a[2]/(e.shape[2]||0),a[3]/(e.shape[1]||0)]}else a=o[r].box?[Math.trunc(Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.max(0,o[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,o[r].box.bottomRight[0])-Math.max(0,o[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,o[r].box.bottomRight[1])-Math.max(0,o[r].box.topLeft[1]))]:[0,0,0,0],l=[o[r].box.topLeft[0]/(e.shape[2]||0),o[r].box.topLeft[1]/(e.shape[1]||0),(o[r].box.bottomRight[0]-o[r].box.topLeft[0])/(e.shape[2]||0),(o[r].box.bottomRight[1]-o[r].box.topLeft[1])/(e.shape[1]||0)];let c=l5(s);n.push({id:r,score:Math.round(100*o[r].confidence)/100,boxScore:Math.round(100*o[r].boxConfidence)/100,fingerScore:Math.round(100*o[r].fingerConfidence)/100,label:"hand",box:a,boxRaw:l,keypoints:s,annotations:A,landmarks:c})}return n}async function S1(e){var o,n;P.initial&&(De=null,Ve=null),!De||!Ve?[De,Ve]=await Promise.all([e.hand.enabled?F((o=e.hand.detector)==null?void 0:o.modelPath):null,e.hand.landmarks?F((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&b("cached model:",De.modelUrl),e.debug&&b("cached model:",Ve.modelUrl));let t=De?new a5(De):void 0;return t&&Ve&&(Ro=new i5(t,Ve)),[De,Ve]}var K=V(D());var r0=V(D());var J={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function ZA(){let e=J.gl;!e||(J.extensions=e.getSupportedExtensions())}function To(e){var t;if(e.config.backend==="humangl"&&(J.name in r0.engine().registry&&!((t=J==null?void 0:J.gl)!=null&&t.getParameter(J.gl.VERSION))&&(b("error: humangl backend invalid context"),c5(e)),!r0.findBackend(J.name))){try{J.canvas=b0(100,100)}catch(n){b("error: cannot create canvas:",n);return}try{if(J.gl=J.canvas.getContext("webgl2",J.webGLattr),!J.gl){b("error: cannot get WebGL context");return}if(!J.gl.getParameter(J.gl.VERSION).includes("2.0")){b("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}J.canvas&&(J.canvas.addEventListener("webglcontextlost",r=>{throw b("error: humangl:",r.type),b("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),J.canvas.addEventListener("webglcontextrestored",r=>{b("error: humangl context restored:",r)}),J.canvas.addEventListener("webglcontextcreationerror",r=>{b("error: humangl context create:",r)}))}catch(n){b("error: cannot get WebGL context:",n);return}try{r0.setWebGLContext(2,J.gl)}catch(n){b("error: cannot set WebGL context:",n);return}try{let n=new r0.GPGPUContext(J.gl);r0.registerBackend(J.name,()=>new r0.MathBackendWebGL(n),J.priority)}catch(n){b("error: cannot register WebGL backend:",n);return}try{r0.getKernelsForBackend("webgl").forEach(r=>{let A={...r,backendName:J.name};r0.registerKernel(A)})}catch(n){b("error: cannot update WebGL backend registration:",n);return}let o=r0.backend().getGPGPUContext?r0.backend().getGPGPUContext().gl:null;if(o)b(`humangl webgl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`);else{b("error: no current gl context:",o,J.gl);return}try{r0.env().flagRegistry.WEBGL_VERSION&&r0.env().set("WEBGL_VERSION",2)}catch(n){b("error: cannot set WebGL backend flags:",n);return}ZA(),b("backend registered:",J.name)}}var k=V(D());function XA(e){if(!P.kernels.includes("mod")){let t={kernelName:"Mod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.sub(o.inputs.a,k.mul(k.div(o.inputs.a,o.inputs.b),o.inputs.b)))};e.debug&&b("registered kernel:","Mod"),k.registerKernel(t),P.kernels.push("mod")}if(!P.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>k.add(k.mul(k.floorDiv(o.inputs.a/o.inputs.b),o.inputs.b),k.mod(o.inputs.a,o.inputs.b)))};e.debug&&b("registered kernel:","FloorMod"),k.registerKernel(t),P.kernels.push("floormod")}if(!P.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:k.getBackend(),kernelFunc:o=>k.tidy(()=>{let n=k.getBackend();k.setBackend("cpu");let r=k.image.rotateWithOffset(o.inputs.image,o.attrs.radians,o.attrs.fillValue,o.attrs.center);return k.setBackend(n),r})};e.debug&&b("registered kernel:","RotateWithOffset"),k.registerKernel(t),P.kernels.push("rotatewithoffset")}}async function y5(e,t=!1){if(e.state="backend",t||P.initial||e.config.backend&&e.config.backend.length>0&&k.getBackend()!==e.config.backend){let o=v();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&b("running inside web worker"),P.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&b("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),P.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&b(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),P.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")b("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&b("enumerated webgpu adapter:",r),!r)b("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let A="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;b("webgpu adapter info:",A)}}e.config.backend==="humangl"&&To(e);let n=Object.keys(k.engine().registryFactory);if(e.config.debug&&b("available backends:",n),n.includes(e.config.backend)||(b(`error: backend ${e.config.backend} not found in registry`),e.config.backend=P.node?"tensorflow":"webgl",e.config.debug&&b(`override: setting backend ${e.config.backend}`)),e.config.debug&&b("setting backend:",e.config.backend),e.config.backend==="wasm"){if(k.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&k.env().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&b("wasm path:",e.config.wasmPath),typeof k.setWasmPaths!="undefined")k.setWasmPaths(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,A=!1;try{r=await k.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),A=await k.env().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&b(`wasm execution: ${A?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!A&&b("warning: wasm simd support is not enabled")}catch(s){b("wasm detection failed")}}try{await k.setBackend(e.config.backend),await k.ready(),Ft()}catch(r){return b("error: cannot set backend:",e.config.backend,r),!1}}if(k.getBackend()==="humangl"&&(k.env().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&k.env().set("CHECK_COMPUTATION_FOR_ERRORS",!1),k.env().flagRegistry.WEBGL_CPU_FORWARD&&k.env().set("WEBGL_CPU_FORWARD",!0),k.env().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&k.env().set("WEBGL_USE_SHAPES_UNIFORMS",!0),k.env().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&k.env().set("CPU_HANDOFF_SIZE_THRESHOLD",256),k.env().flagRegistry.WEBGL_EXP_CONV&&k.env().set("WEBGL_EXP_CONV",!0),k.env().flagRegistry.USE_SETTIMEOUTCUSTOM&&k.env().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(b("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),k.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),k.backend().getGPGPUContext)){let n=await k.backend().getGPGPUContext().gl;e.config.debug&&b(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}k.getBackend(),k.enableProdMode(),await k.ready(),e.performance.initBackend=Math.trunc(v()-o),e.config.backend=k.getBackend(),await P.updateBackend(),XA(e.config)}return!0}function d5(e,t){for(let o of e){let n={kernelName:o,backendName:t.backend,kernelFunc:()=>{t.debug&&b("kernelFunc",o,t.backend)}};k.registerKernel(n)}P.kernels=k.getKernelsForBackend(k.getBackend()).map(o=>o.kernelName.toLowerCase())}var s0=[null,null],UA=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Ce=[[0,0],[0,0]],YA=["hand","fist","pinch","point","face","tip","pinchtip"],ko=4,Eo=1.6,KA=512,JA=1.4,f5=Number.MAX_SAFE_INTEGER,C1=0,ye=[0,0],A0={boxes:[],hands:[]},zo={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function So(e){var t;if(P.initial&&(s0[0]=null),s0[0])e.debug&&b("cached model:",s0[0].modelUrl);else{d5(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),s0[0]=await F((t=e.hand.detector)==null?void 0:t.modelPath);let o=s0[0].executor?Object.values(s0[0].modelSignature.inputs):void 0;Ce[0][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[0][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[0]}async function Co(e){var t;if(P.initial&&(s0[1]=null),s0[1])e.debug&&b("cached model:",s0[1].modelUrl);else{s0[1]=await F((t=e.hand.skeleton)==null?void 0:t.modelPath);let o=s0[1].executor?Object.values(s0[1].modelSignature.inputs):void 0;Ce[1][0]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[1].size):0,Ce[1][1]=Array.isArray(o)?parseInt(o[0].tensorShape.dim[2].size):0}return s0[1]}async function QA(e,t){let o=[];if(!e||!s0[0])return o;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),A=Math.min(Math.round((e.shape[1]||0)/8)*8,KA),s=Math.round(A*r/8)*8;n.resize=K.image.resizeBilinear(e,[A,s]),n.cast=K.cast(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await s0[0].executeAsync(n.cast,UA),n.boxes=K.squeeze(n.rawBoxes,[0,2]),n.scores=K.squeeze(n.rawScores,[0]);let a=K.unstack(n.scores,1);K.dispose(a[ko]),a.splice(ko,1),n.filtered=K.stack(a,1),K.dispose(a),n.max=K.max(n.filtered,1),n.argmax=K.argMax(n.filtered,1);let l=0;n.nms=await K.image.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let c=await n.nms.data(),y=await n.max.data(),i=await n.argmax.data();for(let d of Array.from(c)){let x=K.slice(n.boxes,d,1),f=await x.data();K.dispose(x);let p=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=K2(p,JA),M=[Math.trunc(p[0]*ye[0]),Math.trunc(p[1]*ye[1]),Math.trunc(p[2]*ye[0]),Math.trunc(p[3]*ye[1])],R=y[d],m=YA[i[d]],u={id:l++,score:R,box:M,boxRaw:g,label:m};o.push(u)}return Object.keys(n).forEach(d=>K.dispose(n[d])),o.sort((d,x)=>x.score-d.score),o.length>(t.hand.maxDetected||1)&&(o.length=t.hand.maxDetected||1),o}async function I1(e,t,o){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&s0[1]&&o.hand.landmarks&&t.score>(o.hand.minConfidence||0)){let r={},A=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=K.image.cropAndResize(e,[A],[0],[Ce[1][0],Ce[1][1]],"bilinear"),r.div=K.div(r.crop,H.tf255),[r.score,r.keypoints]=s0[1].execute(r.div,["Identity_1","Identity"]);let s=(await r.score.data())[0],a=(100-Math.trunc(100/(1+Math.exp(s))))/100;if(a>=(o.hand.minConfidence||0)){n.fingerScore=a,r.reshaped=K.reshape(r.keypoints,[-1,3]);let y=(await r.reshaped.array()).map(i=>[i[0]/Ce[1][1],i[1]/Ce[1][0],i[2]||0]).map(i=>[i[0]*t.boxRaw[2],i[1]*t.boxRaw[3],i[2]||0]);n.keypoints=y.map(i=>[ye[0]*(i[0]+t.boxRaw[0]),ye[1]*(i[1]+t.boxRaw[1]),i[2]||0]),n.landmarks=l5(n.keypoints);for(let i of Object.keys(zo))n.annotations[i]=zo[i].map(d=>n.landmarks&&n.keypoints[d]?n.keypoints[d]:null)}Object.keys(r).forEach(l=>K.dispose(r[l]))}return n}async function O1(e,t){var r,A;if(!((r=s0[0])!=null&&r.executor)||!((A=s0[1])!=null&&A.executor)||!s0[0].inputs[0].shape||!s0[1].inputs[0].shape)return[];ye=[e.shape[2]||0,e.shape[1]||0],f5++;let o=(t.hand.skipTime||0)>v()-C1,n=f5<(t.hand.skipFrames||0);return t.skipAllowed&&o&&n?A0.hands:new Promise(async s=>{let a=3*(t.hand.skipTime||0)>v()-C1,l=f5<3*(t.hand.skipFrames||0);t.skipAllowed&&A0.hands.length===t.hand.maxDetected?A0.hands=await Promise.all(A0.boxes.map(y=>I1(e,y,t))):t.skipAllowed&&a&&l&&A0.hands.length>0?A0.hands=await Promise.all(A0.boxes.map(y=>I1(e,y,t))):(A0.boxes=await QA(e,t),C1=v(),A0.hands=await Promise.all(A0.boxes.map(y=>I1(e,y,t))),f5=0);let c=[...A0.boxes];if(A0.boxes.length=0,t.cacheSensitivity>0)for(let y=0;y.05&&i.box[3]/(e.shape[1]||1)>.05&&A0.hands[y].fingerScore&&A0.hands[y].fingerScore>(t.hand.minConfidence||0)){let d=K2(i.box,Eo),x=K2(i.boxRaw,Eo);A0.boxes.push({...c[y],box:d,boxRaw:x})}}for(let y=0;yv()-jo,A=j1<(((a=t.face.liveness)==null?void 0:a.skipFrames)||0);return t.skipAllowed&&r&&A&&Oo===n&&m5[o]?(j1++,m5[o]):(j1=0,new Promise(async l=>{let c=p5.image.resizeBilinear(e,[f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[2]:0,f0!=null&&f0.inputs[0].shape?f0.inputs[0].shape[1]:0],!1),y=f0==null?void 0:f0.execute(c),i=(await y.data())[0];m5[o]=Math.round(100*i)/100,Oo=n,jo=v(),p5.dispose([c,y]),l(m5[o])}))}var Ho=V(D());var k2={};pe(k2,{connected:()=>h5,horizontal:()=>L1,kpt:()=>u5,relative:()=>F1,vertical:()=>W1});var u5=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],L1=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],W1=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],F1=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],h5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Ie=V(D()),Wo=.005,N0={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function G1(e){for(let t of L1){let o=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[0]r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[o]&&e.keypoints[n]&&e.keypoints[o].position[1]c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),A=e.keypoints.findIndex(c=>c&&c.part===o[0]),s=e.keypoints.findIndex(c=>c&&c.part===o[1]);if(!e.keypoints[A]||!e.keypoints[s])continue;let a=e.keypoints[n]?[Math.abs(e.keypoints[A].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[A].position[0]-e.keypoints[r].position[0])]:[0,0];if(a[0]>a[1]||l[0]>l[1]){let c=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=c}}}function Fo(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],o.pad=Ie.pad(e,N0.padding),o.resize=Ie.image.resizeBilinear(o.pad,[t,t]);let n=Ie.cast(o.resize,"int32");return Object.keys(o).forEach(s=>Ie.dispose(o[s])),n}function Bo(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+N0.padding[2][0]+N0.padding[2][1])/t[0]-N0.padding[2][0],n.position[1]*(t[1]+N0.padding[1][0]+N0.padding[1][1])/t[1]-N0.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let o=le(e.keypoints.map(n=>n.position),t);return e.box=o.box,e.boxRaw=o.boxRaw,e}var l0,b5=0,B1=Number.MAX_SAFE_INTEGER,Ze={boxes:[],bodies:[],last:0};async function Do(e){var t;return P.initial&&(l0=null),l0?e.debug&&b("cached model:",l0.modelUrl):(d5(["size"],e),l0=await F(e.body.modelPath)),b5=(l0==null?void 0:l0.executor)&&((t=l0==null?void 0:l0.inputs)==null?void 0:t[0].shape)?l0.inputs[0].shape[2]:0,b5<64&&(b5=256),l0}function $A(e,t,o){let n=e[0][0],r=[],A=0;for(let y=0;yt.body.minConfidence){let i=[n[y][1],n[y][0]];r.push({score:Math.round(100*A)/100,part:u5[y],positionRaw:i,position:[Math.round((o.shape[2]||0)*i[0]),Math.round((o.shape[1]||0)*i[1])]})}A=r.reduce((y,i)=>i.score>y?i.score:y,0);let s=[],a=le(r.map(y=>y.position),[o.shape[2],o.shape[1]]),l={};for(let[y,i]of Object.entries(h5)){let d=[];for(let x=0;xg.part===i[x]),p=r.find(g=>g.part===i[x+1]);f&&p&&f.score>(t.body.minConfidence||0)&&p.score>(t.body.minConfidence||0)&&d.push([f.position,p.position])}l[y]=d}let c={id:0,score:A,box:a.box,boxRaw:a.boxRaw,keypoints:r,annotations:l};return G1(c),s.push(c),s}function e7(e,t,o){let n=[];for(let r=0;rt.body.minConfidence){let a=[];for(let i=0;i<17;i++){let d=A[3*i+2];if(d>t.body.minConfidence){let x=[A[3*i+1],A[3*i+0]];a.push({part:u5[i],score:Math.round(100*d)/100,positionRaw:x,position:[Math.round((o.shape[2]||0)*x[0]),Math.round((o.shape[1]||0)*x[1])]})}}let l=le(a.map(i=>i.position),[o.shape[2],o.shape[1]]),c={};for(let[i,d]of Object.entries(h5)){let x=[];for(let f=0;fM.part===d[f]),g=a.find(M=>M.part===d[f+1]);p&&g&&p.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&x.push([p.position,g.position])}c[i]=x}let y={id:r,score:s,box:l.box,boxRaw:l.boxRaw,keypoints:[...a],annotations:c};G1(y),n.push(y)}}return n.sort((r,A)=>A.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function H1(e,t){var r;if(!(l0!=null&&l0.executor)||!((r=l0==null?void 0:l0.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Ze.boxes.length=0),B1++;let o=(t.body.skipTime||0)>v()-Ze.last,n=B1<(t.body.skipFrames||0);return t.skipAllowed&&o&&n?Ze.bodies:new Promise(async A=>{let s={};B1=0,s.input=Go(e,b5),s.res=l0==null?void 0:l0.execute(s.input),Ze.last=v();let a=await s.res.array();Ze.bodies=s.res.shape[2]===17?$A(a,t,e):e7(a,t,e);for(let l of Ze.bodies)Bo(l,[e.shape[2]||1,e.shape[1]||1]),Fo(l.keypoints);Object.keys(s).forEach(l=>Ho.dispose(s[l])),A(Ze.bodies)})}var L0=V(D());var U0,g5=[],Zo=0,D1=Number.MAX_SAFE_INTEGER,v5=0,M5=2.5;async function Xo(e){if(!U0||P.initial){U0=await F(e.object.modelPath);let t=U0!=null&&U0.executor?Object.values(U0.modelSignature.inputs):void 0;v5=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&b("cached model:",U0.modelUrl);return U0}async function t7(e,t,o){let n=0,r=[],A=v5;for(let c of[1,2,4]){let y=c*13,i=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)===_e.length)),d=await i.array(),x=L0.squeeze(e.find(M=>M.shape[1]===y**2&&(M.shape[2]||0)<_e.length)),f=x.reshape([-1,4,x.shape[1]/4]),p=f.argMax(2),g=await p.array();for(let M=0;M(o.object.minConfidence||0)&&R!==61){let u=(.5+Math.trunc(M%y))/y,z=(.5+Math.trunc(M/y))/y,w=g[M].map(I=>I*(y/c/A)),[h,B]=[u-M5/c*w[0],z-M5/c*w[1]],[X,O]=[u+M5/c*w[2]-h,z+M5/c*w[3]-B],W=[h,B,X,O];W=W.map(I=>Math.max(0,Math.min(I,1)));let Z=[W[0]*t[0],W[1]*t[1],W[2]*t[0],W[3]*t[1]],N={id:n++,score:Math.round(100*m)/100,class:R+1,label:_e[R].label,box:Z.map(I=>Math.trunc(I)),boxRaw:W};r.push(N)}}L0.dispose([i,x,f,p])}let s=r.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),a=r.map(c=>c.score),l=[];if(s&&s.length>0){let c=await L0.image.nonMaxSuppressionAsync(s,a,o.object.maxDetected,o.object.iouThreshold,o.object.minConfidence);l=await c.data(),L0.dispose(c)}return r=r.filter((c,y)=>l.includes(y)).sort((c,y)=>y.score-c.score),r}async function V1(e,t){if(!(U0!=null&&U0.executor))return[];let o=(t.object.skipTime||0)>v()-Zo,n=D1<(t.object.skipFrames||0);return t.skipAllowed&&o&&n&&g5.length>0?(D1++,g5):(D1=0,!P.kernels.includes("mod")||!P.kernels.includes("sparsetodense")?g5:new Promise(async r=>{let A=[e.shape[2]||0,e.shape[1]||0],s=L0.image.resizeBilinear(e,[v5,v5],!1),a=L0.div(s,H.tf255),l=L0.transpose(a,[0,3,1,2]),c;t.object.enabled&&(c=U0.execute(l)),Zo=v();let y=await t7(c,A,t);g5=y,L0.dispose([s,a,l,...c]),r(y)}))}var P0=V(D());var z2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],o7=z2.length,E2=z2.reduce((e,t,o)=>(e[t]=o,e),{}),n7=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Cs=n7.map(([e,t])=>[E2[e],E2[t]]),Uo=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Yo(e){let t=e.reduce(({maxX:o,maxY:n,minX:r,minY:A},{position:{x:s,y:a}})=>({maxX:Math.max(o,s),maxY:Math.max(n,a),minX:Math.min(r,s),minY:Math.min(A,a)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Ko(e,[t,o],[n,r]){let A=t/n,s=o/r,a=(c,y)=>({id:y,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/n,c.box[2]/r,c.box[3]/n],box:[Math.trunc(c.box[0]*s),Math.trunc(c.box[1]*A),Math.trunc(c.box[2]*s),Math.trunc(c.box[3]*A)],keypoints:c.keypoints.map(({score:i,part:d,position:x})=>({score:i,part:d,position:[Math.trunc(x.x*s),Math.trunc(x.y*A)],positionRaw:[x.x/n,x.y/n]})),annotations:{}});return e.map((c,y)=>a(c,y))}var R5=class{constructor(t,o){T(this,"priorityQueue");T(this,"numberOfElements");T(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=o}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let o=2*t;if(oo?o:e}function Jo(e,t,o,n){let r=o-e,A=n-t;return r*r+A*A}function U1(e,t){return{x:e.x+t.x,y:e.y+t.y}}var W0,A7=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],P5=1,r2=16,s7=50**2;function Qo(e,t,o,n,r,A,s=2){let a=M=>({y:A.get(M.y,M.x,e),x:A.get(M.y,M.x,A.shape[2]/2+e)}),l=(M,R,m)=>({y:q1(Math.round(M.y/r2),0,R-1),x:q1(Math.round(M.x/r2),0,m-1)}),[c,y]=n.shape,i=l(t.position,c,y),d=a(i),f=U1(t.position,d);for(let M=0;M[E2[d],E2[x]]),s=A.map(([,d])=>d),a=A.map(([d])=>d),l=t.shape[2],c=s.length,y=new Array(l),i=X1(e.part,r2,o);y[e.part.id]={score:e.score,part:z2[e.part.id],position:i};for(let d=c-1;d>=0;--d){let x=s[d],f=a[d];y[x]&&!y[f]&&(y[f]=Qo(d,y[x],f,t,o,r))}for(let d=0;dt){a=!1;break}if(!a)break}return a}function l7(e,t){let[o,n,r]=t.shape,A=new R5(o*n*r,({score:s})=>s);for(let s=0;s{var s;let A=(s=r[n])==null?void 0:s.position;return A?Jo(o,t,A.y,A.x)<=s7:!1})}function c7(e,t){return t.reduce((n,{position:r,score:A},s)=>(_o(e,r,s)||(n+=A),n),0)/t.length}function x7(e,t,o,n,r,A){let s=[],a=l7(A,t);for(;s.lengthx.score>A);let i=c7(s,y),d=Yo(y);i>A&&s.push({keypoints:y,box:d,score:Math.round(100*i)/100})}return s}async function Y1(e,t){if(!(W0!=null&&W0.executor))return[];let o=P0.tidy(()=>{if(!W0.inputs[0].shape)return[];let s=P0.image.resizeBilinear(e,[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]),a=P0.sub(P0.div(P0.cast(s,"float32"),127.5),1),c=W0.execute(a,A7).map(y=>P0.squeeze(y,[0]));return c[1]=P0.sigmoid(c[1]),c}),n=await Promise.all(o.map(s=>s.buffer()));for(let s of o)P0.dispose(s);let r=x7(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return W0.inputs[0].shape?Ko(r,[e.shape[1],e.shape[2]],[W0.inputs[0].shape[2],W0.inputs[0].shape[1]]):[]}async function $o(e){return!W0||P.initial?W0=await F(e.body.modelPath):e.debug&&b("cached model:",W0.modelUrl),W0}var e0=V(D());var se,K1=!1;async function J1(e){return!se||P.initial?se=await F(e.segmentation.modelPath):e.debug&&b("cached model:",se.modelUrl),se}async function tn(e,t,o){var p,g;if(K1)return{data:[],canvas:null,alpha:null};K1=!0,se||await J1(o);let n=await Ue(e,o),r=((p=n.tensor)==null?void 0:p.shape[2])||0,A=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let s={};s.resize=e0.image.resizeBilinear(n.tensor,[se.inputs[0].shape?se.inputs[0].shape[1]:0,se.inputs[0].shape?se.inputs[0].shape[2]:0],!1),e0.dispose(n.tensor),s.norm=e0.div(s.resize,H.tf255),s.res=se.execute(s.norm),s.squeeze=e0.squeeze(s.res,0),s.squeeze.shape[2]===2?(s.softmax=e0.softmax(s.squeeze),[s.bg,s.fg]=e0.unstack(s.softmax,2),s.expand=e0.expandDims(s.fg,2),s.pad=e0.expandDims(s.expand,0),s.crop=e0.image.cropAndResize(s.pad,[[0,0,.5,.5]],[0],[r,A]),s.data=e0.squeeze(s.crop,0)):s.data=e0.image.resizeBilinear(s.squeeze,[A,r]);let a=Array.from(await s.data.data());if(P.node&&!P.Canvas&&typeof ImageData=="undefined")return o.debug&&b("canvas support missing"),Object.keys(s).forEach(M=>e0.dispose(s[M])),{data:a,canvas:null,alpha:null};let l=b0(r,A);e0.browser&&await e0.browser.toPixels(s.data,l);let c=l.getContext("2d");o.segmentation.blur&&o.segmentation.blur>0&&(c.filter=`blur(${o.segmentation.blur}px)`);let y=c.getImageData(0,0,r,A),i=b0(r,A),d=i.getContext("2d");n.canvas&&d.drawImage(n.canvas,0,0),d.globalCompositeOperation="darken",o.segmentation.blur&&o.segmentation.blur>0&&(d.filter=`blur(${o.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let x=d.getImageData(0,0,r,A);for(let M=0;Me0.dispose(s[M])),K1=!1,{data:a,canvas:i,alpha:l}}var S2=class{constructor(){T(this,"ssrnetage",null);T(this,"gear",null);T(this,"blazeposedetect",null);T(this,"blazepose",null);T(this,"centernet",null);T(this,"efficientpose",null);T(this,"mobilefacenet",null);T(this,"insightface",null);T(this,"emotion",null);T(this,"facedetect",null);T(this,"faceiris",null);T(this,"facemesh",null);T(this,"faceres",null);T(this,"ssrnetgender",null);T(this,"handpose",null);T(this,"handskeleton",null);T(this,"handtrack",null);T(this,"liveness",null);T(this,"movenet",null);T(this,"nanodet",null);T(this,"posenet",null);T(this,"segmentation",null);T(this,"antispoof",null)}},Q1=e=>{let t=0,o=0,n=0;for(let A of Object.values(ne))t+=A.sizeFromManifest,o+=A.sizeLoadedWeights,n+=A.sizeDesired;let r=n>0?o/n:0;return{numLoadedModels:Object.values(ne).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:o,totalSizeLoading:n,totalSizeEnabled:void 0,modelStats:Object.values(ne)}};function c5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function _1(e){var t,o,n,r,A,s,a,l,c,y,i,d,x,f,p,g,M,R,m,u,z,w,h,B,X,O;P.initial&&c5(e),e.config.hand.enabled&&(!e.models.handpose&&((o=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:o.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await S1(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await S1(e.config))),e.config.body.enabled&&!e.models.blazepose&&((A=e.config.body.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=h3(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=u3(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((s=e.config.body.modelPath)==null?void 0:s.includes("efficientpose"))&&(e.models.efficientpose=P3(e.config)),e.config.body.enabled&&!e.models.movenet&&((a=e.config.body.modelPath)==null?void 0:a.includes("movenet"))&&(e.models.movenet=Do(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=$o(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=i3(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=Kt(e.config)),e.config.face.enabled&&((y=e.config.face.liveness)==null?void 0:y.enabled)&&!e.models.liveness&&(e.models.liveness=No(e.config)),e.config.face.enabled&&((i=e.config.face.description)==null?void 0:i.enabled)&&!e.models.faceres&&(e.models.faceres=eo(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=E3(e.config)),e.config.face.enabled&&((x=e.config.face.iris)==null?void 0:x.enabled)&&!((f=e.config.face.attention)!=null&&f.enabled)&&!e.models.faceiris&&(e.models.faceiris=V3(e.config)),e.config.face.enabled&&((p=e.config.face.mesh)==null?void 0:p.enabled)&&!e.models.facemesh&&(e.models.facemesh=K3(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=Lt(e.config)),e.config.face.enabled&&((M=e.config.face.ssrnet)==null?void 0:M.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=Ht(e.config)),e.config.face.enabled&&((R=e.config.face.ssrnet)==null?void 0:R.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=Xt(e.config)),e.config.face.enabled&&((m=e.config.face.mobilefacenet)==null?void 0:m.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=O3(e.config)),e.config.face.enabled&&((u=e.config.face.insightface)==null?void 0:u.enabled)&&!e.models.insightface&&(e.models.insightface=F3(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((w=(z=e.config.hand.detector)==null?void 0:z.modelPath)==null?void 0:w.includes("handtrack"))&&(e.models.handtrack=So(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((B=(h=e.config.hand.detector)==null?void 0:h.modelPath)==null?void 0:B.includes("handtrack"))&&(e.models.handskeleton=Co(e.config)),e.config.object.enabled&&!e.models.centernet&&((X=e.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(e.models.centernet=M3(e.config)),e.config.object.enabled&&!e.models.nanodet&&((O=e.config.object.modelPath)==null?void 0:O.includes("nanodet"))&&(e.models.nanodet=Xo(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=J1(e.config));for await(let W of Object.keys(e.models))e.models[W]&&typeof e.models[W]!="undefined"&&(e.models[W]=await e.models[W])}var B0;function A2(e,t,o){var c;if(e&&(B0=e),!t||(B0||b("instance not registred"),!B0.config.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],A=[],s=[],a=t.modelUrl,l=t.executor;if((c=l==null?void 0:l.graph)!=null&&c.nodes)for(let y of Object.values(l.graph.nodes)){let i=y.op.toLowerCase();A.includes(i)||A.push(i)}else!l&&B0.config.debug&&b("model not loaded",o);for(let y of A)!n.includes(y)&&!r.includes(y)&&!B0.env.kernels.includes(y)&&!B0.env.kernels.includes(y.replace("_",""))&&!B0.env.kernels.includes(y.replace("native",""))&&!B0.env.kernels.includes(y.replace("v2",""))&&s.push(y);return B0.config.debug&&s.length>0&&b("model validation failed:",o,s),s.length>0?{name:o,missing:s,ops:A,url:a}:null}function T5(e){B0=e;let t=[];for(let o of Object.keys(B0.models)){let n=B0.models[o];if(!n)continue;let r=A2(B0,n,o);r&&t.push(r)}return t}var T0={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},ne={};async function y7(e,t){return T0.debug&&b("load model fetch:",e,t),fetch(e,t)}function nn(e){T0.cacheModels=e.cacheModels,T0.verbose=e.debug,T0.modelBasePath=e.modelBasePath}async function F(e){var c,y,i;let t=vt(T0.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let o=t.includes("/")?t.split("/"):t.split("\\"),n=o[o.length-1].replace(".json",""),r="indexeddb://"+n;ne[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:F5[n],inCache:!1},T0.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let A={};try{A=T0.cacheSupported&&T0.cacheModels?await w5.io.listModels():{}}catch(d){T0.cacheSupported=!1}ne[n].inCache=T0.cacheSupported&&T0.cacheModels&&Object.keys(A).includes(r);let s=typeof fetch=="undefined"?{}:{fetchFunc:(d,x)=>y7(d,x)},a=new w5.GraphModel(ne[n].inCache?r:t,s),l=!1;try{a.findIOHandler(),T0.debug&&b("model load handler:",a.handler);let d=await a.handler.load();ne[n].sizeFromManifest=((c=d==null?void 0:d.weightData)==null?void 0:c.byteLength)||0,a.loadSync(d),ne[n].sizeLoadedWeights=((i=(y=a.artifacts)==null?void 0:y.weightData)==null?void 0:i.byteLength)||0,T0.verbose&&b("load model:",a.modelUrl,{bytes:ne[n].sizeLoadedWeights},T0),l=!0}catch(d){b("error loading model:",t,d)}if(l&&T0.cacheModels&&T0.cacheSupported&&!ne[n].inCache)try{let d=await a.save(r);b("model saved:",r,d)}catch(d){b("error saving model:",t,d)}return A2(null,a,`${e||""}`),a}var re=V(D());var $1="2.9.4";var st={};pe(st,{all:()=>At,body:()=>a2,canvas:()=>rt,face:()=>s2,gesture:()=>c2,hand:()=>i2,object:()=>l2,options:()=>h0,person:()=>nt});var H0=e=>{if(!e)b("draw error: invalid canvas");else if(!e.getContext)b("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)b("draw error: cannot get canvas context");else return t}return null},Xe=e=>Math.round(e*180/Math.PI),de=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let o=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${o[0]}, ${o[1]}, ${o[2]}, ${t.alpha})`};function fe(e,t,o,n,r){e.fillStyle=de(n,r),e.beginPath(),e.arc(t,o,r.pointSize,0,2*Math.PI),e.fill()}function ae(e,t,o,n,r,A){if(e.beginPath(),e.lineWidth=A.lineWidth,A.useCurves){let s=(t+t+n)/2,a=(o+o+r)/2;e.ellipse(s,a,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+A.roundRect,o),e.lineTo(t+n-A.roundRect,o),e.quadraticCurveTo(t+n,o,t+n,o+A.roundRect),e.lineTo(t+n,o+r-A.roundRect),e.quadraticCurveTo(t+n,o+r,t+n-A.roundRect,o+r),e.lineTo(t+A.roundRect,o+r),e.quadraticCurveTo(t,o+r,t,o+r-A.roundRect),e.lineTo(t,o+A.roundRect),e.quadraticCurveTo(t,o,t+A.roundRect,o),e.closePath();e.stroke()}function et(e,t,o){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=de(n[2]||0,o),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),o.fillPolygons&&(e.closePath(),e.fill())}}function rn(e,t,o){if(!(t.length<2)){if(e.lineWidth=o.lineWidth,!o.useCurves||t.length<=2){et(e,t,o);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n0){let A=e.emotion.map(s=>`${Math.trunc(100*s.score)}% ${s.emotion}`);A.length>3&&(A.length=3),r.push(A.join(" "))}((o=e.rotation)==null?void 0:o.angle)&&((n=e.rotation)==null?void 0:n.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Xe(e.rotation.angle.roll)}\xB0 yaw:${Xe(e.rotation.angle.yaw)}\xB0 pitch:${Xe(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Xe(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=U.color;for(let A=r.length-1;A>=0;A--){let s=Math.max(e.box[0],0),a=A*U.lineHeight+e.box[1];U.shadowColor&&U.shadowColor!==""&&(t.fillStyle=U.shadowColor,t.fillText(r[A],s+5,a+16)),t.fillStyle=U.labelColor,t.fillText(r[A],s+4,a+15)}}}function p7(e,t){var o,n,r,A;if(((o=e.annotations)==null?void 0:o.leftEyeIris)&&((n=e.annotations)==null?void 0:n.leftEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,a=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((A=e.annotations)==null?void 0:A.rightEyeIris[0])){t.strokeStyle=U.useDepth?"rgba(255, 200, 255, 0.3)":U.color,t.beginPath();let s=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,a=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],s,a,0,0,2*Math.PI),t.stroke(),U.fillPolygons&&(t.fillStyle=U.useDepth?"rgba(255, 255, 200, 0.3)":U.color,t.fill())}}function u7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*Xe(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Xe(e.rotation.angle.pitch)/90,A=new Path2D(` M ${e.box[0]+e.box[2]/2} ${e.box[1]} C ${n} ${e.box[1]}, @@ -108,7 +108,7 @@ ${e.box[0]} ${r}, ${e.box[0]+e.box[2]} ${r}, ${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2} - `);t.stroke(s),t.stroke(A)}}function u7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];et(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];et(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function h7(e,t){if(U.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let o=0;oe.mesh[r]);$1(t,n,U)}m7(e,t)}}function b7(e,t){if(U.drawPoints&&e.mesh.length>=468)for(let o=0;o0&&(b7(r,n),h7(r,n),p7(r,n),u7(r,n))}}function a2(e,t,o){let n=n0(h0,o);if(!t||!e)return;let r=B0(e);if(!!r){r.lineJoin="round";for(let A=0;A0)for(let s of A.keypoints)r.fillStyle=de(s[2],n),fe(r,s[0],s[1],0,n);if(n.drawLabels&&A.annotations){let s=(a,l)=>{if(!a||a.length===0||!a[0])return;let c=a[a.length-1][2]||-256;r.fillStyle=de(c,n),r.fillText(l,a[a.length-1][0]+4,a[a.length-1][1]+4)};r.font=n.font,s(A.annotations.index,"index"),s(A.annotations.middle,"middle"),s(A.annotations.ring,"ring"),s(A.annotations.pinky,"pinky"),s(A.annotations.thumb,"thumb"),s(A.annotations.palm,"palm")}if(n.drawPolygons&&A.annotations){let s=a=>{if(!(!a||a.length===0||!a[0]))for(let l=0;l0?l-1:0][0],a[l>0?l-1:0][1]),r.lineTo(a[l][0],a[l][1]),r.stroke()}};r.lineWidth=n.lineWidth,s(A.annotations.index),s(A.annotations.middle),s(A.annotations.ring),s(A.annotations.pinky),s(A.annotations.thumb)}}}}function l2(e,t,o){let n=n0(h0,o);if(!t||!e)return;let r=B0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,se(r,A.box[0],A.box[1],A.box[2],A.box[3],n),n.drawLabels){let s=`${A.label} ${Math.round(100*A.score)}%`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(s,A.box[0]+3,1+A.box[1]+n.lineHeight,A.box[2])),r.fillStyle=n.labelColor,r.fillText(s,A.box[0]+2,0+A.box[1]+n.lineHeight,A.box[2])}r.stroke()}}}function c2(e,t,o){let n=n0(h0,o);if(!(!t||!e)&&n.drawGestures){let r=B0(e);if(!r)return;r.font=n.font,r.fillStyle=n.color;let A=1;for(let s=0;s1&&l[1].length>0){let c=a[1]>0?`#${a[1]}`:"",y=`${a[0]} ${c}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(y,8,2+A*n.lineHeight)),r.fillStyle=n.labelColor,r.fillText(y,6,0+A*n.lineHeight),A+=1}}}}var tt=0;function ot(e,t,o){let n=n0(h0,o);if(!t||!e)return;let r=B0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A=0;At!=o[r].y>t&&e<(o[r].x-o[A].x)*(t-o[A].y)/(o[r].y-o[A].y)+o[A].x&&(n=!n);return n}async function An(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,o=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let s of X0.silhouette)r.push({x:(e.mesh[s][0]-e.box[0])/e.box[2],y:(e.mesh[s][1]-e.box[1])/e.box[3]});x2&&x2>0&&(r=r.map(s=>({x:s.x>.5?s.x+x2:s.x-x2,y:s.y>.5?s.y+x2:s.y-x2})));for(let s=0;s{let t=(i,d)=>Math.atan2(i[1]-d[1],i[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let o=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),A=r?e.mesh[473]:e.mesh[468],s=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],a=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(s[0]-A[0])/a[0]-o[0],n*(A[1]-s[1])/a[1]-o[1]],c=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},sn=(e,t)=>{let o=b=>{let g=Math.sqrt(b[0]*b[0]+b[1]*b[1]+b[2]*b[2]);return b[0]/=g,b[1]/=g,b[2]/=g,b},n=(b,g)=>{let M=b[0]-g[0],R=b[1]-g[1],f=b[2]-g[2];return[M,R,f]},r=(b,g)=>{let M=b[1]*g[2]-b[2]*g[1],R=b[2]*g[0]-b[0]*g[2],f=b[0]*g[1]-b[1]*g[0];return[M,R,f]},A=b=>{let[g,M,R,f,p,z,w,u,B]=b,X,O,W;return f<1?f>-1?(W=Math.asin(f),O=Math.atan2(-w,g),X=Math.atan2(-z,p)):(W=-Math.PI/2,O=-Math.atan2(u,B),X=0):(W=Math.PI/2,O=Math.atan2(u,B),X=0),Number.isNaN(X)&&(X=0),Number.isNaN(O)&&(O=0),Number.isNaN(W)&&(W=0),{pitch:2*-X,yaw:2*-O,roll:2*-W}},s=e.meshRaw;if(!s||s.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let a=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[s[10],s[152],s[234],s[454]].map(b=>[b[0]*t[0]/a,b[1]*t[1]/a,b[2]]),c=o(n(l[1],l[0])),y=o(n(l[3],l[2])),i=o(r(y,c));y=r(c,i);let d=[y[0],y[1],y[2],c[0],c[1],c[2],i[0],i[1],i[2]],x=A(d),m=s.length===478?R7(e):{bearing:0,strength:0};return{angle:x,matrix:d,gaze:m}};var at=async(e,t)=>{var m,b,g,M,R,f,p,z,w,u,B,X,O,W,Z,N,I,m0,w0,U0,Y0,H0,me,d2,f2,m2,dt,ft,mt;let o=v(),n,r,A,s,a,l,c,y,i,d=[];e.state="run:face";let x=await U3(t,e.config);if(e.performance.face=P.perfadd?(e.performance.face||0)+Math.trunc(v()-o):Math.trunc(v()-o),!t.shape||t.shape.length!==4)return[];if(!x)return[];for(let S=0;S200?sn(x[S],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?s=(b=e.config.face.emotion)!=null&&b.enabled?y1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[]:(e.state="run:emotion",o=v(),s=(g=e.config.face.emotion)!=null&&g.enabled?await y1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[],e.performance.emotion=P.perfadd?(e.performance.emotion||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?c=(M=e.config.face.antispoof)!=null&&M.enabled?U5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:antispoof",o=v(),c=(R=e.config.face.antispoof)!=null&&R.enabled?await U5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.antispoof=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?y=(f=e.config.face.liveness)!=null&&f.enabled?j1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:liveness",o=v(),y=(p=e.config.face.liveness)!=null&&p.enabled?await j1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.liveness=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(z=e.config.face.gear)!=null&&z.enabled?B5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:gear",o=v(),r=(w=e.config.face.gear)!=null&&w.enabled?await B5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.gear=Math.trunc(v()-o)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(u=e.config.face.ssrnet)!=null&&u.enabled?D5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(B=e.config.face.ssrnet)!=null&&B.enabled?X5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null):(e.state="run:ssrnet",o=v(),n=(X=e.config.face.ssrnet)!=null&&X.enabled?await D5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(O=e.config.face.ssrnet)!=null&&O.enabled?await X5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.ssrnet=Math.trunc(v()-o)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?a=(W=e.config.face.mobilefacenet)!=null&&W.enabled?f1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),a=(Z=e.config.face.mobilefacenet)!=null&&Z.enabled?await f1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(N=e.config.face.insightface)!=null&&N.enabled?p1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),l=(I=e.config.face.insightface)!=null&&I.enabled?await p1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?i=v1(x[S].tensor||t0.tensor([]),e.config,S,x.length):(e.state="run:description",o=v(),i=await v1(x[S].tensor||t0.tensor([]),e.config,S,x.length),e.performance.description=P.perfadd?(e.performance.description||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Description:"),e.config.async&&([n,A,s,a,l,i,r,c,y]=await Promise.all([n,A,s,a,l,i,r,c,y])),e.analyze("Finish Face:"),((m0=e.config.face.ssrnet)==null?void 0:m0.enabled)&&n&&A&&(i={...i,age:n.age,gender:A.gender,genderScore:A.genderScore}),((w0=e.config.face.gear)==null?void 0:w0.enabled)&&r&&(i={...i,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((U0=e.config.face.mobilefacenet)==null?void 0:U0.enabled)&&a&&(i.descriptor=a),((Y0=e.config.face.insightface)==null?void 0:Y0.enabled)&&l&&(i.descriptor=l),(H0=e.config.face.iris)!=null&&H0.enabled;let S5=((f2=(d2=(me=x[S])==null?void 0:me.annotations)==null?void 0:d2.leftEyeIris)==null?void 0:f2[0])&&((ft=(dt=(m2=x[S])==null?void 0:m2.annotations)==null?void 0:dt.rightEyeIris)==null?void 0:ft[0])&&x[S].annotations.leftEyeIris.length>0&&x[S].annotations.rightEyeIris.length>0&&x[S].annotations.leftEyeIris[0]!==null&&x[S].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(x[S].annotations.leftEyeIris[3][0]-x[S].annotations.leftEyeIris[1][0]),Math.abs(x[S].annotations.rightEyeIris[4][1]-x[S].annotations.rightEyeIris[2][1]))/t.shape[2]:0,ut=(mt=e.config.face.detector)!=null&&mt.return?t0.squeeze(x[S].tensor):null;t0.dispose(x[S].tensor),x[S].tensor&&delete x[S].tensor;let D0={...x[S],id:S};i.age&&(D0.age=i.age),i.gender&&(D0.gender=i.gender),i.genderScore&&(D0.genderScore=i.genderScore),i.descriptor&&(D0.embedding=i.descriptor),i.race&&(D0.race=i.race),s&&(D0.emotion=s),c&&(D0.real=c),y&&(D0.live=y),S5&&S5!==0&&(D0.iris=Math.trunc(500/S5/11.7)/100),pt&&(D0.rotation=pt),ut&&(D0.tensor=ut),d.push(D0),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var an=e=>{if(!e)return[];let t=[];for(let o=0;ol.part==="leftWrist"),r=e[o].keypoints.find(l=>l.part==="rightWrist"),A=e[o].keypoints.find(l=>l.part==="nose");A&&n&&r&&n.position[1]l.part==="leftShoulder"),a=e[o].keypoints.find(l=>l.part==="rightShoulder");s&&a&&Math.abs(s.positionRaw[1]-a.positionRaw[1])>.1&&t.push({body:o,gesture:`leaning ${s.position[1]>a.position[1]?"left":"right"}`})}return t},ln=e=>{if(!e)return[];let t=[];for(let o=0;o450){let n=(e[o].mesh[33][2]||0)-(e[o].mesh[263][2]||0),r=e[o].mesh[33][0]-e[o].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:o,gesture:"facing center"}):t.push({face:o,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[o].mesh[374][1]-e[o].mesh[386][1])/Math.abs(e[o].mesh[443][1]-e[o].mesh[450][1])<.2&&t.push({face:o,gesture:"blink left eye"}),Math.abs(e[o].mesh[145][1]-e[o].mesh[159][1])/Math.abs(e[o].mesh[223][1]-e[o].mesh[230][1])<.2&&t.push({face:o,gesture:"blink right eye"});let a=Math.min(100,500*Math.abs(e[o].mesh[13][1]-e[o].mesh[14][1])/Math.abs(e[o].mesh[10][1]-e[o].mesh[152][1]));a>10&&t.push({face:o,gesture:`mouth ${Math.trunc(a)}% open`});let l=e[o].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:o,gesture:`head ${l<0?"up":"down"}`})}return t},cn=e=>{var o,n,r,A;if(!e)return[];let t=[];for(let s=0;s.06||g>.06)&&(x=!1),b>g?b>.05&&t.push({iris:s,gesture:"looking right"}):g>.05&&t.push({iris:s,gesture:"looking left"});let M=Math.abs(e[s].mesh[145][1]-e[s].annotations.rightEyeIris[0][1])/e[s].box[3],R=Math.abs(e[s].mesh[374][1]-e[s].annotations.leftEyeIris[0][1])/e[s].box[3];(R<.01||M<.01||R>.022||M>.022)&&(x=!1),(R<.01||M<.01)&&t.push({iris:s,gesture:"looking down"}),(R>.022||M>.022)&&t.push({iris:s,gesture:"looking up"}),x&&t.push({iris:s,gesture:"looking center"})}return t},xn=e=>{if(!e)return[];let t=[];for(let o=0;o0){let r=n.reduce((s,a)=>(s.position[2]||0)<(a.position[2]||0)?s:a);t.push({hand:o,gesture:`${r.name} forward`});let A=n.reduce((s,a)=>s.position[1]((r-1)*E.body[u].box[I]+N)/r),X=e.body[u].boxRaw.map((N,I)=>((r-1)*E.body[u].boxRaw[I]+N)/r),O=e.body[u].keypoints.map((N,I)=>{var m0,w0,U0,Y0,H0,me,d2,f2,m2;return{score:N.score,part:N.part,position:[E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].position[0]||0)+(N.position[0]||0))/r:N.position[0],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].position[1]||0)+(N.position[1]||0))/r:N.position[1],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].position[2]||0)+(N.position[2]||0))/r:N.position[2]],positionRaw:[E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].positionRaw[0]||0)+(N.positionRaw[0]||0))/r:N.positionRaw[0],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].positionRaw[1]||0)+(N.positionRaw[1]||0))/r:N.positionRaw[1],E.body[u].keypoints[I]?((r-1)*(E.body[u].keypoints[I].positionRaw[2]||0)+(N.positionRaw[2]||0))/r:N.positionRaw[2]],distance:[E.body[u].keypoints[I]?((r-1)*(((m0=E.body[u].keypoints[I].distance)==null?void 0:m0[0])||0)+(((w0=N.distance)==null?void 0:w0[0])||0))/r:(U0=N.distance)==null?void 0:U0[0],E.body[u].keypoints[I]?((r-1)*(((Y0=E.body[u].keypoints[I].distance)==null?void 0:Y0[1])||0)+(((H0=N.distance)==null?void 0:H0[1])||0))/r:(me=N.distance)==null?void 0:me[1],E.body[u].keypoints[I]?((r-1)*(((d2=E.body[u].keypoints[I].distance)==null?void 0:d2[2])||0)+(((f2=N.distance)==null?void 0:f2[2])||0))/r:(m2=N.distance)==null?void 0:m2[2]]}}),W={},Z={connected:{}};(s=t.body.modelPath)!=null&&s.includes("efficientpose")?Z=_2:(a=t.body.modelPath)!=null&&a.includes("blazepose")?Z=U2:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(Z=k2);for(let[N,I]of Object.entries(Z.connected)){let m0=[];for(let w0=0;w0H0.part===I[w0]),Y0=O.find(H0=>H0.part===I[w0+1]);U0&&Y0&&m0.push([U0.position,Y0.position])}W[N]=m0}E.body[u]={...e.body[u],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.hand||e.hand.length!==E.hand.length)E.hand=JSON.parse(JSON.stringify(e.hand));else for(let u=0;u((r-1)*E.hand[u].box[N]+Z)/r),X=e.hand[u].boxRaw.map((Z,N)=>((r-1)*E.hand[u].boxRaw[N]+Z)/r);E.hand[u].keypoints.length!==e.hand[u].keypoints.length&&(E.hand[u].keypoints=e.hand[u].keypoints);let O=e.hand[u].keypoints&&e.hand[u].keypoints.length>0?e.hand[u].keypoints.map((Z,N)=>Z.map((I,m0)=>((r-1)*(E.hand[u].keypoints[N][m0]||1)+(I||0))/r)):[],W={};if(Object.keys(E.hand[u].annotations).length!==Object.keys(e.hand[u].annotations).length)E.hand[u].annotations=e.hand[u].annotations,W=E.hand[u].annotations;else if(e.hand[u].annotations)for(let Z of Object.keys(e.hand[u].annotations))W[Z]=(i=(y=(c=e.hand[u])==null?void 0:c.annotations)==null?void 0:y[Z])!=null&&i[0]?e.hand[u].annotations[Z].map((N,I)=>N.map((m0,w0)=>((r-1)*E.hand[u].annotations[Z][I][w0]+m0)/r)):null;E.hand[u]={...e.hand[u],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.face||e.face.length!==E.face.length)E.face=JSON.parse(JSON.stringify(e.face));else for(let u=0;u((r-1)*E.face[u].box[W]+O)/r),X=e.face[u].boxRaw.map((O,W)=>((r-1)*E.face[u].boxRaw[W]+O)/r);if(e.face[u].rotation){let O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(d=e.face[u].rotation)==null?void 0:d.matrix,O.angle={roll:((r-1)*(((x=E.face[u].rotation)==null?void 0:x.angle.roll)||0)+(((m=e.face[u].rotation)==null?void 0:m.angle.roll)||0))/r,yaw:((r-1)*(((b=E.face[u].rotation)==null?void 0:b.angle.yaw)||0)+(((g=e.face[u].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((M=E.face[u].rotation)==null?void 0:M.angle.pitch)||0)+(((R=e.face[u].rotation)==null?void 0:R.angle.pitch)||0))/r},O.gaze={bearing:((r-1)*(((f=E.face[u].rotation)==null?void 0:f.gaze.bearing)||0)+(((p=e.face[u].rotation)==null?void 0:p.gaze.bearing)||0))/r,strength:((r-1)*(((z=E.face[u].rotation)==null?void 0:z.gaze.strength)||0)+(((w=e.face[u].rotation)==null?void 0:w.gaze.strength)||0))/r},E.face[u]={...e.face[u],rotation:O,box:B,boxRaw:X}}E.face[u]={...e.face[u],box:B,boxRaw:X}}if(!E.object||e.object.length!==E.object.length)E.object=JSON.parse(JSON.stringify(e.object));else for(let u=0;u((r-1)*E.object[u].box[W]+O)/r),X=e.object[u].boxRaw.map((O,W)=>((r-1)*E.object[u].boxRaw[W]+O)/r);E.object[u]={...e.object[u],box:B,boxRaw:X}}if(e.persons){let u=e.persons;if(!E.persons||u.length!==E.persons.length)E.persons=JSON.parse(JSON.stringify(u));else for(let B=0;B((r-1)*E.persons[B].box[O]+X)/r)}e.gesture&&(E.gesture=e.gesture);let A=v();return it=P.perfadd?it+Math.round(A-o):Math.round(A-o),e.performance&&(E.performance={...e.performance,interpolate:it}),E}var xt={};pe(xt,{distance:()=>C2,match:()=>ct,similarity:()=>lt});function C2(e,t,o={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),A=(1-r/100-o)/(n-o);return Math.max(Math.min(A,1),0)};function lt(e,t,o={order:2,multiplier:25,min:.2,max:.8}){let n=C2(e,t,o);return dn(n,o.order||2,o.min||0,o.max||1)}function ct(e,t,o={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let s=0;sp.box[0]&&x.box[0]p.box[1]&&x.box[1]+x.box[3]m.body.box[0]&&p.box[0]+p.box[2]m.body.box[1]&&p.box[1]+p.box[3]m.body.box[0]&&p.box[1]+p.box[3]>m.body.box[1]&&p.box[1]+p.box[3]{p&&p.length===4&&(b.push(p[0],p[0]+p[2]),g.push(p[1],p[1]+p[3]))};M(m.face.box),M((y=m.body)==null?void 0:y.box),M((i=m.hands.left)==null?void 0:i.box),M((d=m.hands.right)==null?void 0:d.box);let R=Math.min(...b),f=Math.min(...g);m.box=[R,f,Math.max(...b)-R,Math.max(...g)-f],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(m.boxRaw=[m.box[0]/r[2],m.box[1]/r[1],m.box[2]/r[2],m.box[3]/r[1]]),s.push(m)}return s}var k5=` + `);t.stroke(s),t.stroke(A)}}function h7(e,t){var o;if(U.drawGaze&&((o=e.rotation)==null?void 0:o.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];tt(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];tt(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function b7(e,t){if(U.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let o=0;oe.mesh[r]);et(t,n,U)}p7(e,t)}}function g7(e,t){if(U.drawPoints&&e.mesh.length>=468)for(let o=0;o0&&(g7(r,n),b7(r,n),u7(r,n),h7(r,n))}}function a2(e,t,o){let n=o0(h0,o);if(!t||!e)return;let r=H0(e);if(!!r){r.lineJoin="round";for(let A=0;A0)for(let s of A.keypoints)r.fillStyle=de(s[2],n),fe(r,s[0],s[1],0,n);if(n.drawLabels&&A.annotations){let s=(a,l)=>{if(!a||a.length===0||!a[0])return;let c=a[a.length-1][2]||-256;r.fillStyle=de(c,n),r.fillText(l,a[a.length-1][0]+4,a[a.length-1][1]+4)};r.font=n.font,s(A.annotations.index,"index"),s(A.annotations.middle,"middle"),s(A.annotations.ring,"ring"),s(A.annotations.pinky,"pinky"),s(A.annotations.thumb,"thumb"),s(A.annotations.palm,"palm")}if(n.drawPolygons&&A.annotations){let s=a=>{if(!(!a||a.length===0||!a[0]))for(let l=0;l0?l-1:0][0],a[l>0?l-1:0][1]),r.lineTo(a[l][0],a[l][1]),r.stroke()}};r.lineWidth=n.lineWidth,s(A.annotations.index),s(A.annotations.middle),s(A.annotations.ring),s(A.annotations.pinky),s(A.annotations.thumb)}}}}function l2(e,t,o){let n=o0(h0,o);if(!t||!e)return;let r=H0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,ae(r,A.box[0],A.box[1],A.box[2],A.box[3],n),n.drawLabels){let s=`${A.label} ${Math.round(100*A.score)}%`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(s,A.box[0]+3,1+A.box[1]+n.lineHeight,A.box[2])),r.fillStyle=n.labelColor,r.fillText(s,A.box[0]+2,0+A.box[1]+n.lineHeight,A.box[2])}r.stroke()}}}function c2(e,t,o){let n=o0(h0,o);if(!(!t||!e)&&n.drawGestures){let r=H0(e);if(!r)return;r.font=n.font,r.fillStyle=n.color;let A=1;for(let s=0;s1&&l[1].length>0){let c=a[1]>0?`#${a[1]}`:"",y=`${a[0]} ${c}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(y,8,2+A*n.lineHeight)),r.fillStyle=n.labelColor,r.fillText(y,6,0+A*n.lineHeight),A+=1}}}}var ot=0;function nt(e,t,o){let n=o0(h0,o);if(!t||!e)return;let r=H0(e);if(!!r){r.lineJoin="round",r.font=n.font;for(let A=0;At!=o[r].y>t&&e<(o[r].x-o[A].x)*(t-o[A].y)/(o[r].y-o[A].y)+o[A].x&&(n=!n);return n}async function sn(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,o=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let s of q0.silhouette)r.push({x:(e.mesh[s][0]-e.box[0])/e.box[2],y:(e.mesh[s][1]-e.box[1])/e.box[3]});x2&&x2>0&&(r=r.map(s=>({x:s.x>.5?s.x+x2:s.x-x2,y:s.y>.5?s.y+x2:s.y-x2})));for(let s=0;s{let t=(i,d)=>Math.atan2(i[1]-d[1],i[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let o=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),A=r?e.mesh[473]:e.mesh[468],s=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],a=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(s[0]-A[0])/a[0]-o[0],n*(A[1]-s[1])/a[1]-o[1]],c=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},an=(e,t)=>{let o=p=>{let g=Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);return p[0]/=g,p[1]/=g,p[2]/=g,p},n=(p,g)=>{let M=p[0]-g[0],R=p[1]-g[1],m=p[2]-g[2];return[M,R,m]},r=(p,g)=>{let M=p[1]*g[2]-p[2]*g[1],R=p[2]*g[0]-p[0]*g[2],m=p[0]*g[1]-p[1]*g[0];return[M,R,m]},A=p=>{let[g,M,R,m,u,z,w,h,B]=p,X,O,W;return m<1?m>-1?(W=Math.asin(m),O=Math.atan2(-w,g),X=Math.atan2(-z,u)):(W=-Math.PI/2,O=-Math.atan2(h,B),X=0):(W=Math.PI/2,O=Math.atan2(h,B),X=0),Number.isNaN(X)&&(X=0),Number.isNaN(O)&&(O=0),Number.isNaN(W)&&(W=0),{pitch:2*-X,yaw:2*-O,roll:2*-W}},s=e.meshRaw;if(!s||s.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let a=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[s[10],s[152],s[234],s[454]].map(p=>[p[0]*t[0]/a,p[1]*t[1]/a,p[2]]),c=o(n(l[1],l[0])),y=o(n(l[3],l[2])),i=o(r(y,c));y=r(c,i);let d=[y[0],y[1],y[2],c[0],c[1],c[2],i[0],i[1],i[2]],x=A(d),f=s.length===478?P7(e):{bearing:0,strength:0};return{angle:x,matrix:d,gaze:f}};var it=async(e,t)=>{var f,p,g,M,R,m,u,z,w,h,B,X,O,W,Z,N,I,m0,w0,Y0,K0,D0,me,d2,f2,m2,ft,mt,pt;let o=v(),n,r,A,s,a,l,c,y,i,d=[];e.state="run:face";let x=await Y3(t,e.config);if(e.performance.face=P.perfadd?(e.performance.face||0)+Math.trunc(v()-o):Math.trunc(v()-o),!t.shape||t.shape.length!==4)return[];if(!x)return[];for(let S=0;S200?an(x[S],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?s=(p=e.config.face.emotion)!=null&&p.enabled?d1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[]:(e.state="run:emotion",o=v(),s=(g=e.config.face.emotion)!=null&&g.enabled?await d1(x[S].tensor||t0.tensor([]),e.config,S,x.length):[],e.performance.emotion=P.perfadd?(e.performance.emotion||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?c=(M=e.config.face.antispoof)!=null&&M.enabled?Y5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:antispoof",o=v(),c=(R=e.config.face.antispoof)!=null&&R.enabled?await Y5(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.antispoof=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?y=(m=e.config.face.liveness)!=null&&m.enabled?N1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0:(e.state="run:liveness",o=v(),y=(u=e.config.face.liveness)!=null&&u.enabled?await N1(x[S].tensor||t0.tensor([]),e.config,S,x.length):0,e.performance.liveness=P.perfadd?(e.performance.antispoof||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(z=e.config.face.gear)!=null&&z.enabled?H5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:gear",o=v(),r=(w=e.config.face.gear)!=null&&w.enabled?await H5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.gear=Math.trunc(v()-o)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(h=e.config.face.ssrnet)!=null&&h.enabled?V5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(B=e.config.face.ssrnet)!=null&&B.enabled?q5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null):(e.state="run:ssrnet",o=v(),n=(X=e.config.face.ssrnet)!=null&&X.enabled?await V5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,A=(O=e.config.face.ssrnet)!=null&&O.enabled?await q5(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.ssrnet=Math.trunc(v()-o)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?a=(W=e.config.face.mobilefacenet)!=null&&W.enabled?m1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),a=(Z=e.config.face.mobilefacenet)!=null&&Z.enabled?await m1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(N=e.config.face.insightface)!=null&&N.enabled?u1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null:(e.state="run:mobilefacenet",o=v(),l=(I=e.config.face.insightface)!=null&&I.enabled?await u1(x[S].tensor||t0.tensor([]),e.config,S,x.length):null,e.performance.mobilefacenet=Math.trunc(v()-o)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?i=R1(x[S].tensor||t0.tensor([]),e.config,S,x.length):(e.state="run:description",o=v(),i=await R1(x[S].tensor||t0.tensor([]),e.config,S,x.length),e.performance.description=P.perfadd?(e.performance.description||0)+Math.trunc(v()-o):Math.trunc(v()-o)),e.analyze("End Description:"),e.config.async&&([n,A,s,a,l,i,r,c,y]=await Promise.all([n,A,s,a,l,i,r,c,y])),e.analyze("Finish Face:"),((m0=e.config.face.ssrnet)==null?void 0:m0.enabled)&&n&&A&&(i={...i,age:n.age,gender:A.gender,genderScore:A.genderScore}),((w0=e.config.face.gear)==null?void 0:w0.enabled)&&r&&(i={...i,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((Y0=e.config.face.mobilefacenet)==null?void 0:Y0.enabled)&&a&&(i.descriptor=a),((K0=e.config.face.insightface)==null?void 0:K0.enabled)&&l&&(i.descriptor=l),(D0=e.config.face.iris)!=null&&D0.enabled;let S5=((f2=(d2=(me=x[S])==null?void 0:me.annotations)==null?void 0:d2.leftEyeIris)==null?void 0:f2[0])&&((mt=(ft=(m2=x[S])==null?void 0:m2.annotations)==null?void 0:ft.rightEyeIris)==null?void 0:mt[0])&&x[S].annotations.leftEyeIris.length>0&&x[S].annotations.rightEyeIris.length>0&&x[S].annotations.leftEyeIris[0]!==null&&x[S].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(x[S].annotations.leftEyeIris[3][0]-x[S].annotations.leftEyeIris[1][0]),Math.abs(x[S].annotations.rightEyeIris[4][1]-x[S].annotations.rightEyeIris[2][1]))/t.shape[2]:0,ht=(pt=e.config.face.detector)!=null&&pt.return?t0.squeeze(x[S].tensor):null;t0.dispose(x[S].tensor),x[S].tensor&&delete x[S].tensor;let V0={...x[S],id:S};i.age&&(V0.age=i.age),i.gender&&(V0.gender=i.gender),i.genderScore&&(V0.genderScore=i.genderScore),i.descriptor&&(V0.embedding=i.descriptor),i.race&&(V0.race=i.race),s&&(V0.emotion=s),c&&(V0.real=c),y&&(V0.live=y),S5&&S5!==0&&(V0.iris=Math.trunc(500/S5/11.7)/100),ut&&(V0.rotation=ut),ht&&(V0.tensor=ht),d.push(V0),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var ln=e=>{if(!e)return[];let t=[];for(let o=0;ol.part==="leftWrist"),r=e[o].keypoints.find(l=>l.part==="rightWrist"),A=e[o].keypoints.find(l=>l.part==="nose");A&&n&&r&&n.position[1]l.part==="leftShoulder"),a=e[o].keypoints.find(l=>l.part==="rightShoulder");s&&a&&Math.abs(s.positionRaw[1]-a.positionRaw[1])>.1&&t.push({body:o,gesture:`leaning ${s.position[1]>a.position[1]?"left":"right"}`})}return t},cn=e=>{if(!e)return[];let t=[];for(let o=0;o450){let n=(e[o].mesh[33][2]||0)-(e[o].mesh[263][2]||0),r=e[o].mesh[33][0]-e[o].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:o,gesture:"facing center"}):t.push({face:o,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[o].mesh[374][1]-e[o].mesh[386][1])/Math.abs(e[o].mesh[443][1]-e[o].mesh[450][1])<.2&&t.push({face:o,gesture:"blink left eye"}),Math.abs(e[o].mesh[145][1]-e[o].mesh[159][1])/Math.abs(e[o].mesh[223][1]-e[o].mesh[230][1])<.2&&t.push({face:o,gesture:"blink right eye"});let a=Math.min(100,500*Math.abs(e[o].mesh[13][1]-e[o].mesh[14][1])/Math.abs(e[o].mesh[10][1]-e[o].mesh[152][1]));a>10&&t.push({face:o,gesture:`mouth ${Math.trunc(a)}% open`});let l=e[o].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:o,gesture:`head ${l<0?"up":"down"}`})}return t},xn=e=>{var o,n,r,A;if(!e)return[];let t=[];for(let s=0;s.06||g>.06)&&(x=!1),p>g?p>.05&&t.push({iris:s,gesture:"looking right"}):g>.05&&t.push({iris:s,gesture:"looking left"});let M=Math.abs(e[s].mesh[145][1]-e[s].annotations.rightEyeIris[0][1])/e[s].box[3],R=Math.abs(e[s].mesh[374][1]-e[s].annotations.leftEyeIris[0][1])/e[s].box[3];(R<.01||M<.01||R>.022||M>.022)&&(x=!1),(R<.01||M<.01)&&t.push({iris:s,gesture:"looking down"}),(R>.022||M>.022)&&t.push({iris:s,gesture:"looking up"}),x&&t.push({iris:s,gesture:"looking center"})}return t},yn=e=>{if(!e)return[];let t=[];for(let o=0;o0){let r=n.reduce((s,a)=>(s.position[2]||0)<(a.position[2]||0)?s:a);t.push({hand:o,gesture:`${r.name} forward`});let A=n.reduce((s,a)=>s.position[1]((r-1)*E.body[h].box[I]+N)/r),X=e.body[h].boxRaw.map((N,I)=>((r-1)*E.body[h].boxRaw[I]+N)/r),O=e.body[h].keypoints.map((N,I)=>{var m0,w0,Y0,K0,D0,me,d2,f2,m2;return{score:N.score,part:N.part,position:[E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[0]||0)+(N.position[0]||0))/r:N.position[0],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[1]||0)+(N.position[1]||0))/r:N.position[1],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].position[2]||0)+(N.position[2]||0))/r:N.position[2]],positionRaw:[E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[0]||0)+(N.positionRaw[0]||0))/r:N.positionRaw[0],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[1]||0)+(N.positionRaw[1]||0))/r:N.positionRaw[1],E.body[h].keypoints[I]?((r-1)*(E.body[h].keypoints[I].positionRaw[2]||0)+(N.positionRaw[2]||0))/r:N.positionRaw[2]],distance:[E.body[h].keypoints[I]?((r-1)*(((m0=E.body[h].keypoints[I].distance)==null?void 0:m0[0])||0)+(((w0=N.distance)==null?void 0:w0[0])||0))/r:(Y0=N.distance)==null?void 0:Y0[0],E.body[h].keypoints[I]?((r-1)*(((K0=E.body[h].keypoints[I].distance)==null?void 0:K0[1])||0)+(((D0=N.distance)==null?void 0:D0[1])||0))/r:(me=N.distance)==null?void 0:me[1],E.body[h].keypoints[I]?((r-1)*(((d2=E.body[h].keypoints[I].distance)==null?void 0:d2[2])||0)+(((f2=N.distance)==null?void 0:f2[2])||0))/r:(m2=N.distance)==null?void 0:m2[2]]}}),W={},Z={connected:{}};(s=t.body.modelPath)!=null&&s.includes("efficientpose")?Z=_2:(a=t.body.modelPath)!=null&&a.includes("blazepose")?Z=U2:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(Z=k2);for(let[N,I]of Object.entries(Z.connected)){let m0=[];for(let w0=0;w0D0.part===I[w0]),K0=O.find(D0=>D0.part===I[w0+1]);Y0&&K0&&m0.push([Y0.position,K0.position])}W[N]=m0}E.body[h]={...e.body[h],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.hand||e.hand.length!==E.hand.length)E.hand=JSON.parse(JSON.stringify(e.hand));else for(let h=0;h((r-1)*E.hand[h].box[N]+Z)/r),X=e.hand[h].boxRaw.map((Z,N)=>((r-1)*E.hand[h].boxRaw[N]+Z)/r);E.hand[h].keypoints.length!==e.hand[h].keypoints.length&&(E.hand[h].keypoints=e.hand[h].keypoints);let O=e.hand[h].keypoints&&e.hand[h].keypoints.length>0?e.hand[h].keypoints.map((Z,N)=>Z.map((I,m0)=>((r-1)*(E.hand[h].keypoints[N][m0]||1)+(I||0))/r)):[],W={};if(Object.keys(E.hand[h].annotations).length!==Object.keys(e.hand[h].annotations).length)E.hand[h].annotations=e.hand[h].annotations,W=E.hand[h].annotations;else if(e.hand[h].annotations)for(let Z of Object.keys(e.hand[h].annotations))W[Z]=(i=(y=(c=e.hand[h])==null?void 0:c.annotations)==null?void 0:y[Z])!=null&&i[0]?e.hand[h].annotations[Z].map((N,I)=>N.map((m0,w0)=>((r-1)*E.hand[h].annotations[Z][I][w0]+m0)/r)):null;E.hand[h]={...e.hand[h],box:B,boxRaw:X,keypoints:O,annotations:W}}if(!E.face||e.face.length!==E.face.length)E.face=JSON.parse(JSON.stringify(e.face));else for(let h=0;h((r-1)*E.face[h].box[W]+O)/r),X=e.face[h].boxRaw.map((O,W)=>((r-1)*E.face[h].boxRaw[W]+O)/r);if(e.face[h].rotation){let O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(d=e.face[h].rotation)==null?void 0:d.matrix,O.angle={roll:((r-1)*(((x=E.face[h].rotation)==null?void 0:x.angle.roll)||0)+(((f=e.face[h].rotation)==null?void 0:f.angle.roll)||0))/r,yaw:((r-1)*(((p=E.face[h].rotation)==null?void 0:p.angle.yaw)||0)+(((g=e.face[h].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((M=E.face[h].rotation)==null?void 0:M.angle.pitch)||0)+(((R=e.face[h].rotation)==null?void 0:R.angle.pitch)||0))/r},O.gaze={bearing:((r-1)*(((m=E.face[h].rotation)==null?void 0:m.gaze.bearing)||0)+(((u=e.face[h].rotation)==null?void 0:u.gaze.bearing)||0))/r,strength:((r-1)*(((z=E.face[h].rotation)==null?void 0:z.gaze.strength)||0)+(((w=e.face[h].rotation)==null?void 0:w.gaze.strength)||0))/r},E.face[h]={...e.face[h],rotation:O,box:B,boxRaw:X}}E.face[h]={...e.face[h],box:B,boxRaw:X}}if(!E.object||e.object.length!==E.object.length)E.object=JSON.parse(JSON.stringify(e.object));else for(let h=0;h((r-1)*E.object[h].box[W]+O)/r),X=e.object[h].boxRaw.map((O,W)=>((r-1)*E.object[h].boxRaw[W]+O)/r);E.object[h]={...e.object[h],box:B,boxRaw:X}}if(e.persons){let h=e.persons;if(!E.persons||h.length!==E.persons.length)E.persons=JSON.parse(JSON.stringify(h));else for(let B=0;B((r-1)*E.persons[B].box[O]+X)/r)}e.gesture&&(E.gesture=e.gesture);let A=v();return lt=P.perfadd?lt+Math.round(A-o):Math.round(A-o),e.performance&&(E.performance={...e.performance,interpolate:lt}),E}var yt={};pe(yt,{distance:()=>C2,match:()=>xt,similarity:()=>ct});function C2(e,t,o={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),A=(1-r/100-o)/(n-o);return Math.max(Math.min(A,1),0)};function ct(e,t,o={order:2,multiplier:25,min:.2,max:.8}){let n=C2(e,t,o);return fn(n,o.order||2,o.min||0,o.max||1)}function xt(e,t,o={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let s=0;su.box[0]&&x.box[0]u.box[1]&&x.box[1]+x.box[3]f.body.box[0]&&u.box[0]+u.box[2]f.body.box[1]&&u.box[1]+u.box[3]f.body.box[0]&&u.box[1]+u.box[3]>f.body.box[1]&&u.box[1]+u.box[3]{u&&u.length===4&&(p.push(u[0],u[0]+u[2]),g.push(u[1],u[1]+u[3]))};M(f.face.box),M((y=f.body)==null?void 0:y.box),M((i=f.hands.left)==null?void 0:i.box),M((d=f.hands.right)==null?void 0:d.box);let R=Math.min(...p),m=Math.min(...g);f.box=[R,m,Math.max(...p)-R,Math.max(...g)-m],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),s.push(f)}return s}var k5=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -827,4 +827,4 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var o0=V(D());async function z7(e){let t=(r,A="application/octet-stream")=>fetch(`data:${A};base64,${r}`).then(s=>s.blob()),o,n;switch(e.config.warmup){case"face":o=await t(k5);break;case"body":case"full":o=await t(E5);break;default:o=null}if(o){let r=await createImageBitmap(o);n=await e.detect(r,e.config),r.close()}return n}async function S7(e){return new Promise(t=>{let o;switch(e.config.warmup){case"face":o="data:image/jpeg;base64,"+k5;break;case"full":case"body":o="data:image/jpeg;base64,"+E5;break;default:o=""}let n;if(typeof Image!="undefined")n=new Image;else if(P.Image)n=new P.Image;else return;n.onload=async()=>{let r=b0(n.naturalWidth,n.naturalHeight);if(!r)h("Warmup: Canvas not found"),t(void 0);else{let A=r.getContext("2d");A&&A.drawImage(n,0,0);let s=await e.image(r),a=s.tensor?await e.detect(s.tensor,e.config):void 0;t(a)}},o?n.src=o:t(void 0)})}async function C7(e){let t=r=>Buffer.from(r,"base64"),o;e.config.warmup==="face"?o=t(k5):o=t(E5);let n;if("node"in o0&&o0.getBackend()==="tensorflow"){let r=o0.node.decodeJpeg(o),A=o0.expandDims(r,0);e.tf.dispose(r),n=await e.detect(A,e.config),e.tf.dispose(A)}else e.config.debug&&h("Warmup tfjs-node not loaded");return n}async function I7(e){let t;return typeof createImageBitmap=="function"?t=await z7(e):typeof Image!="undefined"||P.Canvas!==void 0?t=await S7(e):t=await C7(e),t}async function O7(e){var a,l,c,y;if(!o0.env().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=o0.getBackend(),o=o0.backend();if(t!=="webgl"&&t!=="humangl"||!(o!=null&&o.checkCompileCompletion))return;o0.env().set("ENGINE_COMPILE_ONLY",!0);let n=o0.engine().state.numTensors,r=[];for(let[i,d]of Object.entries(e).filter(([x,m])=>x!==null&&m!==null)){let x=(l=(a=d.inputs)==null?void 0:a[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],m=(y=(c=d.inputs)==null?void 0:c[0])!=null&&y.dtype?d.inputs[0].dtype:"float32";for(let g=0;go0.dispose(M)):o0.dispose(g)}catch(g){h("compile fail model:",i)}o0.dispose(b)}let A=await o.checkCompileCompletionAsync();o.getUniformLocations(),h("compile pass models:",r),h("compile pass kernels:",A.length),o0.env().set("ENGINE_COMPILE_ONLY",!1);let s=o0.engine().state.numTensors;s-n>0&&h("tensor leak:",s-n)}async function mn(e,t){let o=v();return e.state="warmup",t&&(e.config=n0(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:v(),persons:[],error:null}:new Promise(async n=>{await O7(e.models);let r=await I7(e),A=v();e.config.debug&&h("warmup",e.config.warmup,Math.round(A-o),"ms"),e.emit("warmup"),n(r)})}var y2,I2,O2,z5,yt=class{constructor(t){T(this,"version");T(this,"config");T(this,"result");T(this,"state");T(this,"process");T(this,"tf");T(this,"env");T(this,"draw");T(this,"models");T(this,"events");T(this,"faceTriangulation");T(this,"faceUVMap");T(this,"performance");h2(this,y2,void 0);h2(this,I2,void 0);h2(this,O2,void 0);T(this,"gl");T(this,"analyze",(...t)=>{if(!u2(this,I2))return;let o=this.tf.engine().state.numTensors,n=u2(this,y2);b2(this,y2,o);let r=o-n;r!==0&&h(...t,r)});h2(this,z5,t=>{if(!u2(this,O2))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof ne.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(o){return"backend not loaded"}return null});T(this,"similarity",lt);T(this,"distance",C2);T(this,"match",ct);T(this,"emit",t=>{var o;(o=this.events)!=null&&o.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=P;let o=(ne.version.tfjs||ne.version_core).replace(/-(.*)/,"");ue.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${o}/dist/`,ue.modelBasePath=P.browser?"../models/":"file://models/",ue.backend=P.browser?"humangl":"tensorflow",this.version=_1,Object.defineProperty(this,"version",{value:_1}),this.config=JSON.parse(JSON.stringify(ue)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=n0(this.config,t)),on(this.config),this.tf=ne,this.state="idle",b2(this,y2,0),b2(this,I2,!1),b2(this,O2,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new S2,this.draw={options:h0,canvas:(n,r)=>nt(n,r),face:(n,r,A)=>s2(n,r,A),body:(n,r,A)=>a2(n,r,A),hand:(n,r,A)=>i2(n,r,A),gesture:(n,r,A)=>c2(n,r,A),object:(n,r,A)=>l2(n,r,A),person:(n,r,A)=>ot(n,r,A),all:(n,r,A)=>rt(n,r,A)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=K3,this.faceUVMap=J3,this.gl=J,A2(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ue)),this.config.backend=t}validate(t){return C5(ue,t||this.config)}check(){return T5(this)}now(){return v()}image(t,o=!0){return Ue(t,this.config,o)}async segmentation(t,o){return en(t,o,this.config)}enhance(t){return M1(t)}compare(t,o){return It(this.config,t,o)}async init(){await y5(this,!0),await this.tf.ready()}async load(t){this.state="load";let o=v(),n=Object.values(this.models).filter(s=>s).length;t&&(this.config=n0(this.config,t)),this.env.initial&&(this.config.debug&&h(`version: ${this.version}`),this.config.debug&&h(`tfjs version: ${this.tf.version["tfjs-core"]}`),await y5(this)||h("error: backend check failed"),await ne.ready(),this.env.browser&&(this.config.debug&&h("configuration:",this.config),this.config.debug&&h("environment:",this.env),this.config.debug&&h("tf flags:",this.tf.ENV.flags))),await Q1(this),this.env.initial&&this.config.debug&&h("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(s=>s).length!==n&&(T5(this),this.emit("load"));let A=Math.trunc(v()-o);A>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+A:A)}next(t=this.result){return yn(t,this.config)}getModelStats(){return J1(this)}async warmup(t){let o=v(),n=await mn(this,t),r=v();return this.performance.warmup=Math.trunc(r-o),n}async profile(t,o){let n=await this.tf.profile(()=>this.detect(t,o)),r={},A=0;for(let a of n.kernels)r[a.name]?r[a.name]+=a.kernelTimeMs:r[a.name]=a.kernelTimeMs,A+=a.kernelTimeMs;let s=[];Object.entries(r).forEach(a=>s.push({kernel:a[0],time:a[1],perc:0}));for(let a of s)a.perc=Math.round(1e3*a.time/A)/1e3,a.time=Math.round(1e3*a.time)/1e3;return s.sort((a,l)=>l.time-a.time),s.length=20,s}async detect(t,o){return this.state="detect",new Promise(async n=>{var g,M,R,f,p,z,w,u,B,X,O,W,Z,N,I,m0,w0,U0,Y0,H0,me;this.state="config";let r;this.config=n0(this.config,o),this.state="check";let A=u2(this,z5).call(this,t);A&&(h(A,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:A}));let s=v();await y5(this),await this.load(),r=v(),this.state="image";let a=await Ue(t,this.config);if(this.process=a,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Get Image:"),!a.tensor){this.config.debug&&h("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=v(),this.config.skipAllowed=await Ct(this.config,a.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Check Changed:");let l=[],c=[],y=[],i=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?at(this,a.tensor):[],this.performance.face&&delete this.performance.face):(r=v(),l=this.config.face.enabled?await at(this,a.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?n0(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?c=this.config.body.enabled?U1(a.tensor,d):[]:(M=this.config.body.modelPath)!=null&&M.includes("blazepose")?c=this.config.body.enabled?n1(a.tensor,d):[]:(R=this.config.body.modelPath)!=null&&R.includes("efficientpose")?c=this.config.body.enabled?c1(a.tensor,d):[]:(f=this.config.body.modelPath)!=null&&f.includes("movenet")&&(c=this.config.body.enabled?B1(a.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=v(),(p=this.config.body.modelPath)!=null&&p.includes("posenet")?c=this.config.body.enabled?await U1(a.tensor,d):[]:(z=this.config.body.modelPath)!=null&&z.includes("blazepose")?c=this.config.body.enabled?await n1(a.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("efficientpose")?c=this.config.body.enabled?await c1(a.tensor,d):[]:(u=this.config.body.modelPath)!=null&&u.includes("movenet")&&(c=this.config.body.enabled?await B1(a.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let x=this.config.hand.maxDetected===-1?n0(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((X=(B=this.config.hand.detector)==null?void 0:B.modelPath)!=null&&X.includes("handdetect")?y=this.config.hand.enabled?E1(a.tensor,x):[]:(W=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&W.includes("handtrack")&&(y=this.config.hand.enabled?I1(a.tensor,x):[]),this.performance.hand&&delete this.performance.hand):(r=v(),(N=(Z=this.config.hand.detector)==null?void 0:Z.modelPath)!=null&&N.includes("handdetect")?y=this.config.hand.enabled?await E1(a.tensor,x):[]:(m0=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&m0.includes("handtrack")&&(y=this.config.hand.enabled?await I1(a.tensor,x):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((w0=this.config.object.modelPath)!=null&&w0.includes("nanodet")?i=this.config.object.enabled?D1(a.tensor,this.config):[]:(U0=this.config.object.modelPath)!=null&&U0.includes("centernet")&&(i=this.config.object.enabled?s1(a.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=v(),(Y0=this.config.object.modelPath)!=null&&Y0.includes("nanodet")?i=this.config.object.enabled?await D1(a.tensor,this.config):[]:(H0=this.config.object.modelPath)!=null&&H0.includes("centernet")&&(i=this.config.object.enabled?await s1(a.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,y,i]=await Promise.all([l,c,y,i])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(r=v(),m=[...ln(l),...an(c),...xn(y),...cn(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(v()-s):Math.trunc(v()-s);let b=((me=this.process.tensor)==null?void 0:me.shape)||[];this.result={face:l,body:c,hand:y,gesture:m,object:i,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return fn(l,c,y,m,b)}},ne.dispose(a.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};y2=new WeakMap,I2=new WeakMap,O2=new WeakMap,z5=new WeakMap;0&&(module.exports={Human,defaults,draw,env,match,models}); +2Q==`;var n0=V(D());async function S7(e){let t=(r,A="application/octet-stream")=>fetch(`data:${A};base64,${r}`).then(s=>s.blob()),o,n;switch(e.config.warmup){case"face":o=await t(k5);break;case"body":case"full":o=await t(E5);break;default:o=null}if(o){let r=await createImageBitmap(o);n=await e.detect(r,e.config),r.close()}return n}async function C7(e){return new Promise(t=>{let o;switch(e.config.warmup){case"face":o="data:image/jpeg;base64,"+k5;break;case"full":case"body":o="data:image/jpeg;base64,"+E5;break;default:o=""}let n;if(typeof Image!="undefined")n=new Image;else if(P.Image)n=new P.Image;else return;n.onload=async()=>{let r=b0(n.naturalWidth,n.naturalHeight);if(!r)b("Warmup: Canvas not found"),t(void 0);else{let A=r.getContext("2d");A&&A.drawImage(n,0,0);let s=await e.image(r),a=s.tensor?await e.detect(s.tensor,e.config):void 0;t(a)}},o?n.src=o:t(void 0)})}async function I7(e){let t=r=>Buffer.from(r,"base64"),o;e.config.warmup==="face"?o=t(k5):o=t(E5);let n;if("node"in n0&&n0.getBackend()==="tensorflow"){let r=n0.node.decodeJpeg(o),A=n0.expandDims(r,0);e.tf.dispose(r),n=await e.detect(A,e.config),e.tf.dispose(A)}else e.config.debug&&b("Warmup tfjs-node not loaded");return n}async function O7(e){let t;return typeof createImageBitmap=="function"?t=await S7(e):typeof Image!="undefined"||P.Canvas!==void 0?t=await C7(e):t=await I7(e),t}async function j7(e){var a,l,c,y;if(!n0.env().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=n0.getBackend(),o=n0.backend();if(t!=="webgl"&&t!=="humangl"||!(o!=null&&o.checkCompileCompletion))return;n0.env().set("ENGINE_COMPILE_ONLY",!0);let n=n0.engine().state.numTensors,r=[];for(let[i,d]of Object.entries(e).filter(([x,f])=>x!==null&&f!==null)){let x=(l=(a=d.inputs)==null?void 0:a[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],f=(y=(c=d.inputs)==null?void 0:c[0])!=null&&y.dtype?d.inputs[0].dtype:"float32";for(let g=0;gn0.dispose(M)):n0.dispose(g)}catch(g){b("compile fail model:",i)}n0.dispose(p)}let A=await o.checkCompileCompletionAsync();o.getUniformLocations(),b("compile pass models:",r),b("compile pass kernels:",A.length),n0.env().set("ENGINE_COMPILE_ONLY",!1);let s=n0.engine().state.numTensors;s-n>0&&b("tensor leak:",s-n)}async function pn(e,t){let o=v();return e.state="warmup",t&&(e.config=o0(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:v(),persons:[],error:null}:new Promise(async n=>{await j7(e.models);let r=await O7(e),A=v();e.config.debug&&b("warmup",e.config.warmup,Math.round(A-o),"ms"),e.emit("warmup"),n(r)})}var y2,I2,O2,z5,dt=class{constructor(t){T(this,"version");T(this,"config");T(this,"result");T(this,"state");T(this,"process");T(this,"tf");T(this,"env");T(this,"draw");T(this,"models");T(this,"events");T(this,"faceTriangulation");T(this,"faceUVMap");T(this,"performance");h2(this,y2,void 0);h2(this,I2,void 0);h2(this,O2,void 0);T(this,"gl");T(this,"analyze",(...t)=>{if(!u2(this,I2))return;let o=this.tf.engine().state.numTensors,n=u2(this,y2);b2(this,y2,o);let r=o-n;r!==0&&b(...t,r)});h2(this,z5,t=>{if(!u2(this,O2))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof re.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(o){return"backend not loaded"}return null});T(this,"similarity",ct);T(this,"distance",C2);T(this,"match",xt);T(this,"emit",t=>{var o;(o=this.events)!=null&&o.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=P;let o=(re.version.tfjs||re.version_core).replace(/-(.*)/,"");ue.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${o}/dist/`,ue.modelBasePath=P.browser?"../models/":"file://models/",ue.backend=P.browser?"humangl":"tensorflow",this.version=$1,Object.defineProperty(this,"version",{value:$1}),this.config=JSON.parse(JSON.stringify(ue)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=o0(this.config,t)),nn(this.config),this.tf=re,this.state="idle",b2(this,y2,0),b2(this,I2,!1),b2(this,O2,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new S2,this.draw={options:h0,canvas:(n,r)=>rt(n,r),face:(n,r,A)=>s2(n,r,A),body:(n,r,A)=>a2(n,r,A),hand:(n,r,A)=>i2(n,r,A),gesture:(n,r,A)=>c2(n,r,A),object:(n,r,A)=>l2(n,r,A),person:(n,r,A)=>nt(n,r,A),all:(n,r,A)=>At(n,r,A)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=J3,this.faceUVMap=Q3,this.gl=J,A2(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ue)),this.config.backend=t,L5(),P.initial=!0}validate(t){let o=C5(ue,t||this.config);return o.length===0&&(this.config=o0(this.config,t)),o}check(){return T5(this)}now(){return v()}image(t,o=!0){return Ue(t,this.config,o)}async segmentation(t,o){return tn(t,o,this.config)}enhance(t){return v1(t)}compare(t,o){return Ot(this.config,t,o)}async init(){await y5(this,!0),await this.tf.ready(),L5()}async load(t){this.state="load";let o=v(),n=Object.values(this.models).filter(s=>s).length;t&&(this.config=o0(this.config,t)),this.env.initial&&(this.config.debug&&b(`version: ${this.version}`),this.config.debug&&b(`tfjs version: ${this.tf.version["tfjs-core"]}`),await y5(this)||b("error: backend check failed"),await re.ready(),this.env.browser&&(this.config.debug&&b("configuration:",this.config),this.config.debug&&b("environment:",this.env),this.config.debug&&b("tf flags:",this.tf.ENV.flags))),await _1(this),this.env.initial&&this.config.debug&&b("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(s=>s).length!==n&&(T5(this),this.emit("load"));let A=Math.trunc(v()-o);A>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+A:A)}next(t=this.result){return dn(t,this.config)}getModelStats(){return Q1(this)}async warmup(t){let o=v(),n=await pn(this,t),r=v();return this.performance.warmup=Math.trunc(r-o),n}async profile(t,o){let n=await this.tf.profile(()=>this.detect(t,o)),r={},A=0;for(let a of n.kernels)r[a.name]?r[a.name]+=a.kernelTimeMs:r[a.name]=a.kernelTimeMs,A+=a.kernelTimeMs;let s=[];Object.entries(r).forEach(a=>s.push({kernel:a[0],time:a[1],perc:0}));for(let a of s)a.perc=Math.round(1e3*a.time/A)/1e3,a.time=Math.round(1e3*a.time)/1e3;return s.sort((a,l)=>l.time-a.time),s.length=20,s}async detect(t,o){return this.state="detect",new Promise(async n=>{var g,M,R,m,u,z,w,h,B,X,O,W,Z,N,I,m0,w0,Y0,K0,D0,me;this.state="config";let r;this.config=o0(this.config,o),this.state="check";let A=u2(this,z5).call(this,t);A&&(b(A,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:A}));let s=v();await y5(this),await this.load(),r=v(),this.state="image";let a=await Ue(t,this.config);if(this.process=a,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Get Image:"),!a.tensor){this.config.debug&&b("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:v(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=v(),this.config.skipAllowed=await It(this.config,a.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(v()-r):Math.trunc(v()-r),this.analyze("Check Changed:");let l=[],c=[],y=[],i=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?it(this,a.tensor):[],this.performance.face&&delete this.performance.face):(r=v(),l=this.config.face.enabled?await it(this,a.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?o0(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?c=this.config.body.enabled?Y1(a.tensor,d):[]:(M=this.config.body.modelPath)!=null&&M.includes("blazepose")?c=this.config.body.enabled?r1(a.tensor,d):[]:(R=this.config.body.modelPath)!=null&&R.includes("efficientpose")?c=this.config.body.enabled?x1(a.tensor,d):[]:(m=this.config.body.modelPath)!=null&&m.includes("movenet")&&(c=this.config.body.enabled?H1(a.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=v(),(u=this.config.body.modelPath)!=null&&u.includes("posenet")?c=this.config.body.enabled?await Y1(a.tensor,d):[]:(z=this.config.body.modelPath)!=null&&z.includes("blazepose")?c=this.config.body.enabled?await r1(a.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("efficientpose")?c=this.config.body.enabled?await x1(a.tensor,d):[]:(h=this.config.body.modelPath)!=null&&h.includes("movenet")&&(c=this.config.body.enabled?await H1(a.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let x=this.config.hand.maxDetected===-1?o0(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((X=(B=this.config.hand.detector)==null?void 0:B.modelPath)!=null&&X.includes("handdetect")?y=this.config.hand.enabled?z1(a.tensor,x):[]:(W=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&W.includes("handtrack")&&(y=this.config.hand.enabled?O1(a.tensor,x):[]),this.performance.hand&&delete this.performance.hand):(r=v(),(N=(Z=this.config.hand.detector)==null?void 0:Z.modelPath)!=null&&N.includes("handdetect")?y=this.config.hand.enabled?await z1(a.tensor,x):[]:(m0=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&m0.includes("handtrack")&&(y=this.config.hand.enabled?await O1(a.tensor,x):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((w0=this.config.object.modelPath)!=null&&w0.includes("nanodet")?i=this.config.object.enabled?V1(a.tensor,this.config):[]:(Y0=this.config.object.modelPath)!=null&&Y0.includes("centernet")&&(i=this.config.object.enabled?a1(a.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=v(),(K0=this.config.object.modelPath)!=null&&K0.includes("nanodet")?i=this.config.object.enabled?await V1(a.tensor,this.config):[]:(D0=this.config.object.modelPath)!=null&&D0.includes("centernet")&&(i=this.config.object.enabled?await a1(a.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,y,i]=await Promise.all([l,c,y,i])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=v(),f=[...cn(l),...ln(c),...yn(y),...xn(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(v()-r):Math.trunc(v()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(v()-s):Math.trunc(v()-s);let p=((me=this.process.tensor)==null?void 0:me.shape)||[];this.result={face:l,body:c,hand:y,gesture:f,object:i,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return mn(l,c,y,f,p)}},re.dispose(a.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};y2=new WeakMap,I2=new WeakMap,O2=new WeakMap,z5=new WeakMap;0&&(module.exports={Human,defaults,draw,env,match,models}); diff --git a/dist/tfjs.esm.js b/dist/tfjs.esm.js index 4be1363f..dcb26c5f 100644 --- a/dist/tfjs.esm.js +++ b/dist/tfjs.esm.js @@ -580,7 +580,7 @@ var require_long = __commonJS({ return this.not().add(ONE); }; LongPrototype.neg = LongPrototype.negate; - LongPrototype.add = function add6(addend) { + LongPrototype.add = function add5(addend) { if (!isLong(addend)) addend = fromValue(addend); var a48 = this.high >>> 16; @@ -611,7 +611,7 @@ var require_long = __commonJS({ return this.add(subtrahend.neg()); }; LongPrototype.sub = LongPrototype.subtract; - LongPrototype.multiply = function multiply5(multiplier) { + LongPrototype.multiply = function multiply4(multiplier) { if (this.isZero()) return ZERO; if (!isLong(multiplier)) @@ -6188,7 +6188,7 @@ function getFilteredNodesXToY(tape, xs, y) { } return filteredTape; } -function backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add6) { +function backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add5) { for (let i2 = filteredTape.length - 1; i2 >= 0; i2--) { const node = filteredTape[i2]; const dys = []; @@ -6220,7 +6220,7 @@ function backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy tensorAccumulatedGradientMap[x.id] = dx; } else { const curGradient = tensorAccumulatedGradientMap[x.id]; - tensorAccumulatedGradientMap[x.id] = add6(curGradient, dx); + tensorAccumulatedGradientMap[x.id] = add5(curGradient, dx); curGradient.dispose(); } } @@ -7617,8 +7617,8 @@ function op(f) { } // node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/complex.js -function complex_(real6, imag5) { - const $real = convertToTensor(real6, "real", "complex"); +function complex_(real5, imag5) { + const $real = convertToTensor(real5, "real", "complex"); const $imag = convertToTensor(imag5, "imag", "complex"); assertShapesMatch($real.shape, $imag.shape, `real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`); const inputs = { real: $real, imag: $imag }; @@ -7789,13 +7789,13 @@ function decodeWeights(buffer2, specs) { values = new Uint8Array(byteBuffer); } else if (dtype === "complex64") { values = new Float32Array(byteBuffer); - const real6 = new Float32Array(values.length / 2); + const real5 = new Float32Array(values.length / 2); const image2 = new Float32Array(values.length / 2); - for (let i2 = 0; i2 < real6.length; i2++) { - real6[i2] = values[i2 * 2]; + for (let i2 = 0; i2 < real5.length; i2++) { + real5[i2] = values[i2 * 2]; image2[i2] = values[i2 * 2 + 1]; } - const realTensor = tensor(real6, shape, "float32"); + const realTensor = tensor(real5, shape, "float32"); const imageTensor = tensor(image2, shape, "float32"); out[name] = complex(realTensor, imageTensor); realTensor.dispose(); @@ -10228,9 +10228,9 @@ function expectPromiseToFail(fn, done) { } } function expectArraysEqual(actual, expected) { - const exp6 = typeof expected === "string" || typeof expected === "number" || typeof expected === "boolean" ? [expected] : expected; + const exp5 = typeof expected === "string" || typeof expected === "number" || typeof expected === "boolean" ? [expected] : expected; if (isString(actual) || isString(actual[0]) || isString(expected) || isString(expected[0])) { - return expectArraysPredicate(actual, exp6, (a, b) => a == b); + return expectArraysPredicate(actual, exp5, (a, b) => a == b); } return expectArraysPredicate(actual, expected, (a, b) => areClose(a, b, 0)); } @@ -11493,9 +11493,9 @@ function divNoNan_(a, b) { let $b = convertToTensor(b, "b", "div"); [$a, $b] = makeTypesMatch($a, $b); const divResult = div($a, $b); - const zeros5 = zerosLike(divResult); - const bEqualsZero = equal($b, zeros5); - return where(bEqualsZero, zeros5, divResult); + const zeros4 = zerosLike(divResult); + const bEqualsZero = equal($b, zeros4); + return where(bEqualsZero, zeros4, divResult); } var divNoNan = op({ divNoNan_ }); @@ -11641,9 +11641,9 @@ function min_(x, axis = null, keepDims = false) { var min = op({ min_ }); // node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/pow.js -function pow_(base, exp6) { +function pow_(base, exp5) { let $base = convertToTensor(base, "base", "pow"); - let $exp = convertToTensor(exp6, "exp", "pow"); + let $exp = convertToTensor(exp5, "exp", "pow"); [$base, $exp] = makeTypesMatch($base, $exp); const inputs = { a: $base, b: $exp }; return ENGINE.runKernel(Pow, inputs); @@ -12294,9 +12294,9 @@ var mean = op({ mean_ }); // node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/zeros.js function zeros(shape, dtype = "float32") { if (dtype === "complex64") { - const real6 = zeros(shape, "float32"); + const real5 = zeros(shape, "float32"); const imag5 = zeros(shape, "float32"); - return complex(real6, imag5); + return complex(real5, imag5); } const values = makeZerosTypedArray(sizeFromShape(shape), dtype); return ENGINE.makeTensor(values, shape, dtype); @@ -12305,9 +12305,9 @@ function zeros(shape, dtype = "float32") { // node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/ops/ones.js function ones2(shape, dtype = "float32") { if (dtype === "complex64") { - const real6 = ones2(shape, "float32"); + const real5 = ones2(shape, "float32"); const imag5 = zeros(shape, "float32"); - return complex(real6, imag5); + return complex(real5, imag5); } const values = makeOnesTypedArray(sizeFromShape(shape), dtype); return ENGINE.makeTensor(values, shape, dtype); @@ -16078,70 +16078,70 @@ var ERF_A4 = -1.453152027; var ERF_A5 = 1.061405429; // node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/complex_util.js -function mergeRealAndImagArrays(real6, imag5) { - if (real6.length !== imag5.length) { - throw new Error(`Cannot merge real and imag arrays of different lengths. real:${real6.length}, imag: ${imag5.length}.`); +function mergeRealAndImagArrays(real5, imag5) { + if (real5.length !== imag5.length) { + throw new Error(`Cannot merge real and imag arrays of different lengths. real:${real5.length}, imag: ${imag5.length}.`); } - const result = new Float32Array(real6.length * 2); + const result = new Float32Array(real5.length * 2); for (let i2 = 0; i2 < result.length; i2 += 2) { - result[i2] = real6[i2 / 2]; + result[i2] = real5[i2 / 2]; result[i2 + 1] = imag5[i2 / 2]; } return result; } -function splitRealAndImagArrays(complex6) { - const real6 = new Float32Array(complex6.length / 2); - const imag5 = new Float32Array(complex6.length / 2); - for (let i2 = 0; i2 < complex6.length; i2 += 2) { - real6[i2 / 2] = complex6[i2]; - imag5[i2 / 2] = complex6[i2 + 1]; +function splitRealAndImagArrays(complex5) { + const real5 = new Float32Array(complex5.length / 2); + const imag5 = new Float32Array(complex5.length / 2); + for (let i2 = 0; i2 < complex5.length; i2 += 2) { + real5[i2 / 2] = complex5[i2]; + imag5[i2 / 2] = complex5[i2 + 1]; } - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } -function complexWithEvenIndex(complex6) { - const len = Math.ceil(complex6.length / 4); - const real6 = new Float32Array(len); +function complexWithEvenIndex(complex5) { + const len = Math.ceil(complex5.length / 4); + const real5 = new Float32Array(len); const imag5 = new Float32Array(len); - for (let i2 = 0; i2 < complex6.length; i2 += 4) { - real6[Math.floor(i2 / 4)] = complex6[i2]; - imag5[Math.floor(i2 / 4)] = complex6[i2 + 1]; + for (let i2 = 0; i2 < complex5.length; i2 += 4) { + real5[Math.floor(i2 / 4)] = complex5[i2]; + imag5[Math.floor(i2 / 4)] = complex5[i2 + 1]; } - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } -function complexWithOddIndex(complex6) { - const len = Math.floor(complex6.length / 4); - const real6 = new Float32Array(len); +function complexWithOddIndex(complex5) { + const len = Math.floor(complex5.length / 4); + const real5 = new Float32Array(len); const imag5 = new Float32Array(len); - for (let i2 = 2; i2 < complex6.length; i2 += 4) { - real6[Math.floor(i2 / 4)] = complex6[i2]; - imag5[Math.floor(i2 / 4)] = complex6[i2 + 1]; + for (let i2 = 2; i2 < complex5.length; i2 += 4) { + real5[Math.floor(i2 / 4)] = complex5[i2]; + imag5[Math.floor(i2 / 4)] = complex5[i2 + 1]; } - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } -function getComplexWithIndex(complex6, index) { - const real6 = complex6[index * 2]; - const imag5 = complex6[index * 2 + 1]; - return { real: real6, imag: imag5 }; +function getComplexWithIndex(complex5, index) { + const real5 = complex5[index * 2]; + const imag5 = complex5[index * 2 + 1]; + return { real: real5, imag: imag5 }; } -function assignToTypedArray(data, real6, imag5, index) { - data[index * 2] = real6; +function assignToTypedArray(data, real5, imag5, index) { + data[index * 2] = real5; data[index * 2 + 1] = imag5; } function exponents(n2, inverse) { - const real6 = new Float32Array(n2 / 2); + const real5 = new Float32Array(n2 / 2); const imag5 = new Float32Array(n2 / 2); for (let i2 = 0; i2 < Math.ceil(n2 / 2); i2++) { const x = (inverse ? 2 : -2) * Math.PI * (i2 / n2); - real6[i2] = Math.cos(x); + real5[i2] = Math.cos(x); imag5[i2] = Math.sin(x); } - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } function exponent(k, n2, inverse) { const x = (inverse ? 2 : -2) * Math.PI * (k / n2); - const real6 = Math.cos(x); + const real5 = Math.cos(x); const imag5 = Math.sin(x); - return { real: real6, imag: imag5 }; + return { real: real5, imag: imag5 }; } // node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/backends/einsum_util.js @@ -17578,10 +17578,10 @@ var powGradConfig = { gradFunc: (dy, saved) => { const [a, b, y] = saved; const base = a; - const exp6 = b; - const outShape = assertAndGetBroadcastShape(base.shape, exp6.shape); + const exp5 = b; + const outShape = assertAndGetBroadcastShape(base.shape, exp5.shape); const derBase = () => { - const expFloat = cast(exp6, "float32"); + const expFloat = cast(exp5, "float32"); let res = mul(dy, mul(expFloat, pow(base, sub(expFloat, scalar(1))))); const reduceAxes = getReductionAxes(base.shape, outShape); if (reduceAxes.length > 0) { @@ -17593,11 +17593,11 @@ var powGradConfig = { const condition = greater(base, 0); const logBase = where(condition, log2(base), zerosLike(base)); let res = mul(dy, mul(y, logBase)); - const reduceAxes = getReductionAxes(exp6.shape, outShape); + const reduceAxes = getReductionAxes(exp5.shape, outShape); if (reduceAxes.length > 0) { res = sum2(res, reduceAxes); } - return reshape(res, exp6.shape); + return reshape(res, exp5.shape); }; return { a: derBase, b: derExp }; } @@ -18796,9 +18796,9 @@ getGlobalTensorClass().prototype.pool = function(windowShape, poolingType, paddi }; // node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/pow.js -getGlobalTensorClass().prototype.pow = function(exp6) { +getGlobalTensorClass().prototype.pow = function(exp5) { this.throwIfDisposed(); - return pow(this, exp6); + return pow(this, exp5); }; // node_modules/.pnpm/@tensorflow+tfjs-core@3.20.0/node_modules/@tensorflow/tfjs-core/dist/public/chained_ops/prelu.js @@ -21796,8 +21796,8 @@ var BaseLogger = class extends BaseCallback { logs[key] = this.totals[key] / this.seen; } else { tidy(() => { - const log7 = mul(div(1, this.seen), this.totals[key]); - logs[key] = log7; + const log6 = mul(div(1, this.seen), this.totals[key]); + logs[key] = log6; this.totals[key].dispose(); keep(logs[key]); }); @@ -42054,13 +42054,13 @@ function createSimpleBinaryKernelImpl(op2) { // node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Complex.js function complex2(args) { const { inputs, backend: backend2 } = args; - const { real: real6, imag: imag5 } = inputs; - const realVals = backend2.data.get(real6.dataId).values; + const { real: real5, imag: imag5 } = inputs; + const realVals = backend2.data.get(real5.dataId).values; const imagVals = backend2.data.get(imag5.dataId).values; - const complexInfo = backend2.makeTensorInfo(real6.shape, "complex64"); - const complex6 = backend2.data.get(complexInfo.dataId); - complex6.complexTensorInfos = { - real: backend2.makeTensorInfo(real6.shape, "float32", realVals), + const complexInfo = backend2.makeTensorInfo(real5.shape, "complex64"); + const complex5 = backend2.data.get(complexInfo.dataId); + complex5.complexTensorInfos = { + real: backend2.makeTensorInfo(real5.shape, "float32", realVals), imag: backend2.makeTensorInfo(imag5.shape, "float32", imagVals) }; return complexInfo; @@ -42074,9 +42074,9 @@ var complexConfig = { // node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/zeros_impl.js function zeros3(backend2, shape, dtype = "float32") { if (dtype === "complex64") { - const real6 = zeros3(backend2, shape, "float32"); + const real5 = zeros3(backend2, shape, "float32"); const imag5 = zeros3(backend2, shape, "float32"); - return complex2({ inputs: { real: real6, imag: imag5 }, backend: backend2 }); + return complex2({ inputs: { real: real5, imag: imag5 }, backend: backend2 }); } const values = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(shape), dtype); return backend2.makeTensorInfo(shape, dtype, values); @@ -42099,9 +42099,9 @@ var identityConfig = { function real2(args) { const { inputs, backend: backend2 } = args; const { input: input2 } = inputs; - const real6 = backend2.data.get(input2.dataId).complexTensorInfos.real; - const realVal = backend2.data.get(real6.dataId).values; - return backend2.makeTensorInfo(real6.shape, real6.dtype, realVal); + const real5 = backend2.data.get(input2.dataId).complexTensorInfos.real; + const realVal = backend2.data.get(real5.dataId).values; + return backend2.makeTensorInfo(real5.shape, real5.dtype, realVal); } var realConfig = { kernelName: Real, @@ -43860,9 +43860,9 @@ function reshape3(args) { backend2.incRef(x.dataId); const xData = backend2.data.get(x.dataId); if (xData.complexTensorInfos != null) { - const real6 = xData.complexTensorInfos.real; + const real5 = xData.complexTensorInfos.real; const imag5 = xData.complexTensorInfos.imag; - real6.shape = $shape; + real5.shape = $shape; imag5.shape = $shape; } return { dataId: x.dataId, shape: $shape, dtype: x.dtype }; @@ -44787,14 +44787,14 @@ var complexAbs = (args) => { const cpuBackend = args.backend; const resultValues = new Float32Array(util_exports.sizeFromShape(x.shape)); const complexVals = cpuBackend.data.get(x.dataId); - const real6 = complexVals.complexTensorInfos.real; + const real5 = complexVals.complexTensorInfos.real; const imag5 = complexVals.complexTensorInfos.imag; - const realVals = cpuBackend.data.get(real6.dataId).values; + const realVals = cpuBackend.data.get(real5.dataId).values; const imagVals = cpuBackend.data.get(imag5.dataId).values; for (let i2 = 0; i2 < realVals.length; i2++) { - const real7 = realVals[i2]; + const real6 = realVals[i2]; const imag6 = imagVals[i2]; - resultValues[i2] = Math.hypot(real7, imag6); + resultValues[i2] = Math.hypot(real6, imag6); } return cpuBackend.makeOutput(resultValues, x.shape, "float32"); }; @@ -46100,8 +46100,8 @@ function fftBatch(input2, inverse, cpuBackend) { attrs: { begin: [b, 0], size: [1, innerDim] } }); const input3 = complex2({ inputs: { real: r2, imag: i2 }, backend: cpuBackend }); - const { real: real6, imag: imag5 } = fftImpl(input3, inverse, cpuBackend); - const res = backend_util_exports.mergeRealAndImagArrays(real6, imag5); + const { real: real5, imag: imag5 } = fftImpl(input3, inverse, cpuBackend); + const res = backend_util_exports.mergeRealAndImagArrays(real5, imag5); for (let d = 0; d < innerDim; d++) { const c = backend_util_exports.getComplexWithIndex(res, d); resultReal[b * innerDim + d] = c.real; @@ -46249,19 +46249,19 @@ function fftRadix2(realVals, imagVals, size, inverse, cpuBackend) { function fourierTransformByMatmul(data, size, inverse) { const ret = new Float32Array(size * 2); for (let r2 = 0; r2 < size; r2++) { - let real6 = 0; + let real5 = 0; let imag5 = 0; for (let c = 0; c < size; c++) { const e2 = backend_util_exports.exponent(r2 * c, size, inverse); const term = backend_util_exports.getComplexWithIndex(data, c); - real6 += term.real * e2.real - term.imag * e2.imag; + real5 += term.real * e2.real - term.imag * e2.imag; imag5 += term.real * e2.imag + term.imag * e2.real; } if (inverse) { - real6 /= size; + real5 /= size; imag5 /= size; } - backend_util_exports.assignToTypedArray(ret, real6, imag5, r2); + backend_util_exports.assignToTypedArray(ret, real5, imag5, r2); } return ret; } @@ -53806,12 +53806,12 @@ var identityConfig2 = { // node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgl/dist/kernels/Complex.js function complex3(args) { const { inputs, backend: backend2 } = args; - const { real: real6, imag: imag5 } = inputs; - const complexInfo = backend2.makeTensorInfo(real6.shape, "complex64"); - const complex6 = backend2.texData.get(complexInfo.dataId); - const realTensorInfo = identity3({ inputs: { x: real6 }, backend: backend2 }); + const { real: real5, imag: imag5 } = inputs; + const complexInfo = backend2.makeTensorInfo(real5.shape, "complex64"); + const complex5 = backend2.texData.get(complexInfo.dataId); + const realTensorInfo = identity3({ inputs: { x: real5 }, backend: backend2 }); const imagTensorInfo = identity3({ inputs: { x: imag5 }, backend: backend2 }); - complex6.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo }; + complex5.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo }; return complexInfo; } var complexConfig2 = { @@ -53899,7 +53899,7 @@ function binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = fals if (supportsComplex && a.dtype === "complex64") { const aData = webglBackend.texData.get(a.dataId); const bData = webglBackend.texData.get(b.dataId); - const [real6, imag5] = [ + const [real5, imag5] = [ [aData.complexTensorInfos.real, bData.complexTensorInfos.real], [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag] ].map((complexParts) => { @@ -53917,8 +53917,8 @@ function binaryKernelFunc2({ opSnippet, packedOpSnippet, checkOutOfBounds = fals const program2 = new BinaryOpProgram(opSnippet, a.shape, b.shape); return webglBackend.runWebGLProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype)); }); - const complexOutput = complex3({ inputs: { real: real6, imag: imag5 }, backend: webglBackend }); - webglBackend.disposeIntermediateTensorInfo(real6); + const complexOutput = complex3({ inputs: { real: real5, imag: imag5 }, backend: webglBackend }); + webglBackend.disposeIntermediateTensorInfo(real5); webglBackend.disposeIntermediateTensorInfo(imag5); return complexOutput; } @@ -67478,405 +67478,202 @@ registerBackend("wasm", async () => { return new BackendWasm(wasm); }, WASM_PRIORITY); -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/flags_webgpu.js +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/flags_webgpu.js var ENV7 = env(); ENV7.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE", () => 15); ENV7.registerFlag("WEBGPU_CPU_FORWARD", () => true); -ENV7.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD", () => 4); ENV7.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE", () => -1); ENV7.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE", () => false); ENV7.registerFlag("WEBGPU_USE_LOW_POWER_GPU", () => false); ENV7.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD", () => 1e3); ENV7.registerFlag("WEBGPU_USE_PROFILE_TOOL", () => false); -ENV7.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE", () => false); +ENV7.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE", () => true); -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_util.js -var BinaryOpType; -(function(BinaryOpType2) { - BinaryOpType2[BinaryOpType2["MUL"] = 0] = "MUL"; - BinaryOpType2[BinaryOpType2["ADD"] = 1] = "ADD"; - BinaryOpType2[BinaryOpType2["SUB"] = 2] = "SUB"; - BinaryOpType2[BinaryOpType2["DIV"] = 3] = "DIV"; - BinaryOpType2[BinaryOpType2["EQUAL"] = 4] = "EQUAL"; - BinaryOpType2[BinaryOpType2["GREATER"] = 5] = "GREATER"; - BinaryOpType2[BinaryOpType2["GREATER_EQUAL"] = 6] = "GREATER_EQUAL"; - BinaryOpType2[BinaryOpType2["LESS"] = 7] = "LESS"; - BinaryOpType2[BinaryOpType2["LESS_EQUAL"] = 8] = "LESS_EQUAL"; - BinaryOpType2[BinaryOpType2["LOGICAL_AND"] = 9] = "LOGICAL_AND"; - BinaryOpType2[BinaryOpType2["NOT_EQUAL"] = 10] = "NOT_EQUAL"; - BinaryOpType2[BinaryOpType2["SQUARED_DIFFERENCE"] = 11] = "SQUARED_DIFFERENCE"; - BinaryOpType2[BinaryOpType2["INT_DIV"] = 12] = "INT_DIV"; - BinaryOpType2[BinaryOpType2["POW"] = 13] = "POW"; - BinaryOpType2[BinaryOpType2["PRELU"] = 14] = "PRELU"; - BinaryOpType2[BinaryOpType2["MAX"] = 15] = "MAX"; - BinaryOpType2[BinaryOpType2["MIN"] = 16] = "MIN"; - BinaryOpType2[BinaryOpType2["COMPLEX_MULTIPLY_REAL"] = 17] = "COMPLEX_MULTIPLY_REAL"; - BinaryOpType2[BinaryOpType2["COMPLEX_MULTIPLY_IMAG"] = 18] = "COMPLEX_MULTIPLY_IMAG"; -})(BinaryOpType || (BinaryOpType = {})); -var ADD2 = "return a + b;"; -var COMPLEX_MULTIPLY_REAL = "return areal * breal - aimag * bimag;"; -var COMPLEX_MULTIPLY_IMAG = "return areal * bimag + aimag * breal;"; -var DIV2 = "return a / b;"; -var MUL2 = "return a * b;"; -var SQUARED_DIFFERENCE2 = "return (a - b) * (a - b);"; -var SUB2 = "return a - b;"; -var EQUAL2 = "return f32(a == b);"; -var EQUAL_VEC4 = "return vec4(a == b);"; -var GREATER2 = "return f32(a > b);"; -var GREATER_VEC4 = "return vec4(a > b);"; -var GREATER_EQUAL2 = "return f32(a >= b);"; -var GREATER_EQUAL_VEC4 = "return vec4(a >= b);"; -var LESS2 = "return f32(a < b);"; -var LESS_VEC4 = "return vec4(a < b);"; -var LESS_EQUAL2 = "return f32(a <= b);"; -var LESS_EQUAL_VEC4 = "return vec4(a <= b);"; -var LOGICAL_AND2 = "return f32(f32(a) >= 1.0 && f32(b) >= 1.0);"; -var LOGICAL_AND_VEC4 = `return (vec4(a >= vec4(1.0)) * - vec4(b >= vec4(1.0)));`; -var CHECK_NAN_SNIPPET4 = ` - if (isnan(a)) { return a; } - if (isnan(b)) { return b; } - `; -var CHECK_NAN_SNIPPET_VEC4 = ` - if (isNaN.r) { - resultTemp.r = uniforms.NAN; +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/buffer_manager.js +var BufferManager = class { + constructor(device) { + this.device = device; + this.numUsedBuffers = 0; + this.numFreeBuffers = 0; + this.freeBuffers = /* @__PURE__ */ new Map(); + this.usedBuffers = /* @__PURE__ */ new Map(); + this.numBytesUsed = 0; + this.numBytesAllocated = 0; } - if (isNaN.g) { - resultTemp.g = uniforms.NAN; + acquireUploadBuffer(size, usage) { + return this.acquireBuffer(size, usage, true); } - if (isNaN.b) { - resultTemp.b = uniforms.NAN; + acquireBuffer(size, usage, mappedAtCreation = false) { + const key = getBufferKey(size, usage); + if (!this.freeBuffers.has(key)) { + this.freeBuffers.set(key, []); + } + if (!this.usedBuffers.has(key)) { + this.usedBuffers.set(key, []); + } + this.numBytesUsed += size; + this.numUsedBuffers++; + if (this.freeBuffers.get(key).length > 0) { + this.numFreeBuffers--; + const newBuffer2 = this.freeBuffers.get(key).shift(); + this.usedBuffers.get(key).push(newBuffer2); + return newBuffer2; + } + this.numBytesAllocated += size; + const newBuffer = this.device.createBuffer({ size, usage, mappedAtCreation }); + this.usedBuffers.get(key).push(newBuffer); + return newBuffer; } - if (isNaN.a) { - resultTemp.a = uniforms.NAN; + releaseBuffer(buffer2, size, usage) { + if (this.freeBuffers.size === 0) { + return; + } + const key = getBufferKey(size, usage); + if (!this.freeBuffers.has(key)) { + this.freeBuffers.set(key, []); + } + this.freeBuffers.get(key).push(buffer2); + this.numFreeBuffers++; + this.numUsedBuffers--; + const bufferList = this.usedBuffers.get(key); + const bufferIndex = bufferList.indexOf(buffer2); + if (bufferIndex < 0) { + throw new Error("Cannot release a buffer that was never provided by this buffer manager"); + } + bufferList.splice(bufferIndex, 1); + this.numBytesUsed -= size; } - `; -var INT_DIV2 = ` - let s = sign(a) * sign(b); - let ia = i32(round(a)); - let ib = i32(round(b)); - return f32(idiv(ia, ib, s)); - `; -var INT_DIV_VEC4 = ` - let ia = vec4(round(a)); - let ib = vec4(round(b)); - let cond = ib != vec4(0); - var resultTemp = vec4(0); - let s = sign(a) * sign(b); - - // Windows (D3D) wants guaranteed non-zero int division at compile-time. - if (cond[0]) { - resultTemp[0] = idiv(ia[0], ib[0], s[0]); + releaseUploadBuffer(buffer2, size, usage) { + buffer2.mapAsync(GPUMapMode.WRITE).then(() => { + this.releaseBuffer(buffer2, size, usage); + }, (err) => { + }); } - if (cond[1]) { - resultTemp[1] = idiv(ia[1], ib[1], s[1]); + getNumUsedBuffers() { + return this.numUsedBuffers; } - if (cond[2]) { - resultTemp[2] = idiv(ia[2], ib[2], s[2]); + getNumFreeBuffers() { + return this.numFreeBuffers; } - if (cond[3]) { - resultTemp[3] = idiv(ia[3], ib[3], s[3]); - } - return vec4(resultTemp); - `; -var NOT_EQUAL2 = "return f32(a != b);"; -var NOT_EQUAL_VEC4 = "return vec4(a != b);"; -var POW2 = ` - if(a < 0.0 && floor(b) < b) { - return uniforms.NAN; - } - if (b == 0.0) { - return 1.0; - } - if (round(abs(b) % 2.0) != 1.0) { - return pow(abs(a), b); - } - return sign(a) * pow(abs(a), b); - `; -var POW_VEC4 = ` - let isModRound1Bool = vec4(round(abs(b) % vec4(2.0))) == vec4(1); - let isModRound1 = vec4(isModRound1Bool); - let multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); - var resultTemp = multiplier * pow(abs(a), b); - - // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS - let isExpZero = b == vec4(0.0); - if (isExpZero.r) { - resultTemp.r = 1.0; - } - if (isExpZero.g) { - resultTemp.g = 1.0; - } - if (isExpZero.b) { - resultTemp.b = 1.0; - } - if (isExpZero.a) { - resultTemp.a = 1.0; - } - let isNaN = a < vec4(0.0) & floor(b) < b; - ${CHECK_NAN_SNIPPET_VEC4} - return resultTemp; - `; -var PRELU2 = `if (a < 0.0) { return b * a; } return a;`; -var PRELU_VEC4 = ` - let aLessThanZero = vec4(a < vec4(0.0)); - return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); - `; -function getMinMaxString(op2, useVec4) { - const checkNanSnippet = useVec4 ? CHECK_NAN_SNIPPET_VEC4 : CHECK_NAN_SNIPPET4; - return useVec4 ? ` - var resultTemp = vec4(${op2}(a, b)); - let isNaN = isnanVec4(a) | isnanVec4(b); - ` + checkNanSnippet + ` - return resultTemp; - ` : checkNanSnippet + ` - return ${op2}(a, b); - `; -} -function getBinaryOpString(type, useVec4) { - switch (type) { - case BinaryOpType.MUL: - return MUL2; - case BinaryOpType.ADD: - return ADD2; - case BinaryOpType.SUB: - return SUB2; - case BinaryOpType.DIV: - return DIV2; - case BinaryOpType.EQUAL: - return useVec4 ? EQUAL_VEC4 : EQUAL2; - case BinaryOpType.GREATER: - return useVec4 ? GREATER_VEC4 : GREATER2; - case BinaryOpType.GREATER_EQUAL: - return useVec4 ? GREATER_EQUAL_VEC4 : GREATER_EQUAL2; - case BinaryOpType.LESS: - return useVec4 ? LESS_VEC4 : LESS2; - case BinaryOpType.LESS_EQUAL: - return useVec4 ? LESS_EQUAL_VEC4 : LESS_EQUAL2; - case BinaryOpType.LOGICAL_AND: - return useVec4 ? LOGICAL_AND_VEC4 : LOGICAL_AND2; - case BinaryOpType.NOT_EQUAL: - return useVec4 ? NOT_EQUAL_VEC4 : NOT_EQUAL2; - case BinaryOpType.SQUARED_DIFFERENCE: - return SQUARED_DIFFERENCE2; - case BinaryOpType.INT_DIV: - return useVec4 ? INT_DIV_VEC4 : INT_DIV2; - case BinaryOpType.PRELU: - return useVec4 ? PRELU_VEC4 : PRELU2; - case BinaryOpType.MAX: - return getMinMaxString("max", useVec4); - case BinaryOpType.MIN: - return getMinMaxString("min", useVec4); - case BinaryOpType.POW: - return useVec4 ? POW_VEC4 : POW2; - case BinaryOpType.COMPLEX_MULTIPLY_REAL: - return COMPLEX_MULTIPLY_REAL; - case BinaryOpType.COMPLEX_MULTIPLY_IMAG: - return COMPLEX_MULTIPLY_IMAG; - default: - throw new Error(`BinaryType ${type} is not implemented!`); - } -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/unary_op_util.js -var UnaryOpType; -(function(UnaryOpType2) { - UnaryOpType2[UnaryOpType2["ABS"] = 0] = "ABS"; - UnaryOpType2[UnaryOpType2["CEIL"] = 1] = "CEIL"; - UnaryOpType2[UnaryOpType2["COS"] = 2] = "COS"; - UnaryOpType2[UnaryOpType2["COSH"] = 3] = "COSH"; - UnaryOpType2[UnaryOpType2["ELU"] = 4] = "ELU"; - UnaryOpType2[UnaryOpType2["EXP"] = 5] = "EXP"; - UnaryOpType2[UnaryOpType2["EXPM1"] = 6] = "EXPM1"; - UnaryOpType2[UnaryOpType2["FLOOR"] = 7] = "FLOOR"; - UnaryOpType2[UnaryOpType2["LINEAR"] = 8] = "LINEAR"; - UnaryOpType2[UnaryOpType2["LOG"] = 9] = "LOG"; - UnaryOpType2[UnaryOpType2["LOGICAL_NOT"] = 10] = "LOGICAL_NOT"; - UnaryOpType2[UnaryOpType2["NEG"] = 11] = "NEG"; - UnaryOpType2[UnaryOpType2["RELU"] = 12] = "RELU"; - UnaryOpType2[UnaryOpType2["RELU6"] = 13] = "RELU6"; - UnaryOpType2[UnaryOpType2["LEAKYRELU"] = 14] = "LEAKYRELU"; - UnaryOpType2[UnaryOpType2["RSQRT"] = 15] = "RSQRT"; - UnaryOpType2[UnaryOpType2["SIN"] = 16] = "SIN"; - UnaryOpType2[UnaryOpType2["SINH"] = 17] = "SINH"; - UnaryOpType2[UnaryOpType2["SIGMOID"] = 18] = "SIGMOID"; - UnaryOpType2[UnaryOpType2["SQRT"] = 19] = "SQRT"; - UnaryOpType2[UnaryOpType2["SQUARE"] = 20] = "SQUARE"; - UnaryOpType2[UnaryOpType2["TANH"] = 21] = "TANH"; - UnaryOpType2[UnaryOpType2["TO_INT"] = 22] = "TO_INT"; -})(UnaryOpType || (UnaryOpType = {})); -var ABS3 = `return abs(a);`; -var CEIL2 = `return ceil(a);`; -var COS2 = `return cos(a);`; -var COSH2 = ` - let e2x = exp(-a); - return (e2x + 1.0 / e2x) / 2.0; -`; -var EXPM12 = `return exp(a) - 1.0;`; -var ELU5 = `if (a >= 0.0) { return a; } return (exp(a) - 1.0);`; -var ELU_VEC4 = ` - var resFloat = exp(a) - vec4(1.0); - if (a.r >= 0.0) { - resFloat.r = a.r; - } - if (a.g >= 0.0) { - resFloat.g = a.g; - } - if (a.b >= 0.0) { - resFloat.b = a.b; - } - if (a.a >= 0.0) { - resFloat.a = a.a; - } - return resFloat; -`; -var EXP2 = `return exp(a);`; -var FLOOR2 = `return floor(a);`; -var LINEAR3 = `return a;`; -var LOG2 = `if (a < 0.0) { return 1.0/0.0; } - return log(a);`; -var LOGICAL_NOT2 = `return f32(!(a >= 1.0));`; -var NEG2 = `return -a;`; -var LEAKYRELU2 = `if (a < 0.0) { return uniforms.alpha * a; } return a;`; -var LEAKYRELU_VEC4 = ` - let aLessThanZero = vec4(a < vec4(0.0)); - return (aLessThanZero * (uniforms.alpha * a)) + ((vec4(1.0) - aLessThanZero) * a); -`; -var RELU4 = `return select(a, 0.0, a < 0.0);`; -var RELU64 = "return clamp(a, 0.0, 6.0);"; -var RELU6_VEC4 = "return clamp(a, vec4(0.0, 0.0, 0.0, 0.0), vec4(6.0, 6.0, 6.0, 6.0));"; -var RELU_VEC4 = ` - return select(a, vec4(0.0), a < vec4(0.0)); -`; -var RSQRT2 = `return 1.0/sqrt(a);`; -var SIGMOID4 = `return 1.0 / (1.0 + exp(-1.0 * a));`; -var SIN2 = `return sin(a);`; -var SINH2 = ` - let e2x = exp(a); - return (e2x - 1.0 / e2x) / 2.0; -`; -var SQRT2 = `return sqrt(a);`; -var SQUARE2 = `return a * a;`; -var TANH2 = ` - let e2x = exp(-2.0 * abs(a)); - return sign(a) * (1.0 - e2x) / (1.0 + e2x); -`; -var TO_INT2 = `return f32(i32((a)));`; -function getUnaryOpString(type, useVec4) { - switch (type) { - case UnaryOpType.ABS: - return ABS3; - case UnaryOpType.COS: - return COS2; - case UnaryOpType.COSH: - return COSH2; - case UnaryOpType.CEIL: - return CEIL2; - case UnaryOpType.ELU: - return useVec4 ? ELU_VEC4 : ELU5; - case UnaryOpType.EXP: - return EXP2; - case UnaryOpType.EXPM1: - return EXPM12; - case UnaryOpType.FLOOR: - return FLOOR2; - case UnaryOpType.LINEAR: - return LINEAR3; - case UnaryOpType.LOG: - return LOG2; - case UnaryOpType.LOGICAL_NOT: - return LOGICAL_NOT2; - case UnaryOpType.NEG: - return NEG2; - case UnaryOpType.LEAKYRELU: - return useVec4 ? LEAKYRELU_VEC4 : LEAKYRELU2; - case UnaryOpType.RELU: - return useVec4 ? RELU_VEC4 : RELU4; - case UnaryOpType.RELU6: - return useVec4 ? RELU6_VEC4 : RELU64; - case UnaryOpType.RSQRT: - return RSQRT2; - case UnaryOpType.SIGMOID: - return SIGMOID4; - case UnaryOpType.SIN: - return SIN2; - case UnaryOpType.SINH: - return SINH2; - case UnaryOpType.SQRT: - return SQRT2; - case UnaryOpType.SQUARE: - return SQUARE2; - case UnaryOpType.TANH: - return TANH2; - case UnaryOpType.TO_INT: - return TO_INT2; - default: - throw new Error(`BinaryType ${type} is not implemented!`); - } -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/activation_util.js -var typeSnippet = (component) => { - switch (component) { - case 1: - return "f32"; - case 2: - return "vec2"; - case 3: - return "vec3"; - case 4: - return "vec4"; - default: - throw new Error(`${component}-component is not supported.`); + dispose() { + this.freeBuffers.forEach((buffers, key) => { + buffers.forEach((buffer2) => { + buffer2.destroy(); + }); + }); + this.usedBuffers.forEach((buffers, key) => { + buffers.forEach((buffer2) => { + buffer2.destroy(); + }); + }); + this.freeBuffers = /* @__PURE__ */ new Map(); + this.usedBuffers = /* @__PURE__ */ new Map(); + this.numUsedBuffers = 0; + this.numFreeBuffers = 0; + this.numBytesUsed = 0; + this.numBytesAllocated = 0; } }; -function activationFnSnippet(activation2, hasPreluActivationWeights = false, packed = false, coordsLength = 3) { - if (activation2 === null) { - return ""; - } - let activationOpSnippet = ""; - if (activation2 === "linear") { - activationOpSnippet = getUnaryOpString(UnaryOpType.LINEAR); - } else if (activation2 === "relu") { - activationOpSnippet = getUnaryOpString(UnaryOpType.RELU, packed); - } else if (activation2 === "elu") { - activationOpSnippet = getUnaryOpString(UnaryOpType.ELU, packed); - } else if (activation2 === "relu6") { - activationOpSnippet = getUnaryOpString(UnaryOpType.RELU6, packed); - } else if (activation2 === "prelu") { - activationOpSnippet = getBinaryOpString(BinaryOpType.PRELU, packed); - } else if (activation2 === "sigmoid") { - activationOpSnippet = getUnaryOpString(UnaryOpType.SIGMOID, packed); - } else if (activation2 === "leakyrelu") { - activationOpSnippet = getUnaryOpString(UnaryOpType.LEAKYRELU, packed); - } else { - throw new Error(`Activation ${activation2} has not been implemented for the WebGPU backend.`); - } - const elementSize = packed ? 4 : 1; - const dataType = typeSnippet(elementSize); - let activationFnSnippet2 = ""; - if (hasPreluActivationWeights) { - activationFnSnippet2 = ` - fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { - let b = getPreluActivationWeightsByOutputCoords(coords); - ${activationOpSnippet} - }`; - } else { - activationFnSnippet2 = ` - fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { - ${activationOpSnippet} - }`; - } - return activationFnSnippet2; -} -function biasActivationSnippet(hasBias, activation2) { - return ` - ${hasBias ? "value = value + getBiasByOutputCoords(coords);" : ""} - ${activation2 ? "value = activation(value, coords);" : ""} - `; +function getBufferKey(size, usage) { + return `${size}_${usage}`; } -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/shader_util.js +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/texture_manager.js +var TextureManager2 = class { + constructor(device) { + this.device = device; + this.numUsedTextures = 0; + this.numFreeTextures = 0; + this.freeTextures = /* @__PURE__ */ new Map(); + this.usedTextures = /* @__PURE__ */ new Map(); + this.numBytesUsed = 0; + this.numBytesAllocated = 0; + } + acquireTexture(width, height, format, usage) { + const bytesPerElement2 = getBytesPerElement(format); + const byteSize = width * height * bytesPerElement2; + const key = getTextureKey(width, height, format, usage); + if (!this.freeTextures.has(key)) { + this.freeTextures.set(key, []); + } + if (!this.usedTextures.has(key)) { + this.usedTextures.set(key, []); + } + this.numBytesUsed += byteSize; + this.numUsedTextures++; + if (this.freeTextures.get(key).length > 0) { + this.numFreeTextures--; + const newTexture2 = this.freeTextures.get(key).shift(); + this.usedTextures.get(key).push(newTexture2); + return newTexture2; + } + this.numBytesAllocated += byteSize; + const newTexture = this.device.createTexture({ + size: [width, height], + format, + usage + }); + this.usedTextures.get(key).push(newTexture); + return newTexture; + } + releaseTexture(texture, width, height, format, usage) { + if (this.freeTextures.size === 0) { + return; + } + const key = getTextureKey(width, height, format, usage); + if (!this.freeTextures.has(key)) { + this.freeTextures.set(key, []); + } + this.freeTextures.get(key).push(texture); + this.numFreeTextures++; + this.numUsedTextures--; + const textureList = this.usedTextures.get(key); + const textureIndex = textureList.indexOf(texture); + if (textureIndex < 0) { + throw new Error("Cannot release a texture that was never provided by this texture manager"); + } + textureList.splice(textureIndex, 1); + const bytesPerElement2 = getBytesPerElement(format); + const byteSize = width * height * bytesPerElement2; + this.numBytesUsed -= byteSize; + } + getNumUsedTextures() { + return this.numUsedTextures; + } + getNumFreeTextures() { + return this.numFreeTextures; + } + dispose() { + this.freeTextures.forEach((textures, key) => { + textures.forEach((texture) => { + texture.destroy(); + }); + }); + this.usedTextures.forEach((textures, key) => { + textures.forEach((texture) => { + texture.destroy(); + }); + }); + this.freeTextures = /* @__PURE__ */ new Map(); + this.usedTextures = /* @__PURE__ */ new Map(); + this.numUsedTextures = 0; + this.numFreeTextures = 0; + this.numBytesUsed = 0; + this.numBytesAllocated = 0; + } +}; +function getTextureKey(width, height, format, usage) { + return `${width}_${height}_${format}_${usage}`; +} +function getBytesPerElement(format) { + if (format === "rgba8unorm") { + return 16; + } else { + throw new Error(`${format} is not supported!`); + } +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/shader_util.js function symbolicallyComputeStrides2(indicesArr, variableName) { if (Math.max(...indicesArr) > 3) { throw new Error("Cannot symbolically compute strides for rank > 4 tensor."); @@ -67891,13 +67688,13 @@ function symbolicallyComputeStrides2(indicesArr, variableName) { return strides; } -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu_program.js +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu_program.js var compileProgram2 = (device, program, inputsData, output) => { const outputData = { dtype: output.dtype, shape: output.shape }; const source = makeShader2(inputsData, outputData, program); const module = device.createShaderModule({ code: source, label: program.constructor.name }); const pipeline = device.createComputePipeline({ - compute: { module, entryPoint: "main" }, + compute: { module, entryPoint: "_start" }, label: program.constructor.name, layout: "auto" }); @@ -67937,22 +67734,43 @@ function getCoordsXYZ(index) { throw Error(`Index ${index} is not yet supported`); } } -function getMainHeaderAndGlobalIndexString() { - return ` - ${getMainHeaderString()} - let index = getGlobalIndex(); -`; -} -function getMainHeaderString() { - return ` - ${getWorkGroupSizeString()} - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(num_workgroups) NumWorkgroups: vec3) { - localId = LocalId; - globalId = GlobalId; - numWorkgroups = NumWorkgroups; -`; +function getMainHeaderString(...params) { + let snippet; + switch (params.length) { + case 0: + snippet = ` + ${getWorkGroupSizeString()} + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups : vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + main(); + } + + fn main() + `; + break; + case 1: + snippet = ` + ${getWorkGroupSizeString()} + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups : vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + main(getGlobalIndex()); + } + + fn main(${params[0]} : i32) + `; + break; + default: + throw Error("Unreachable"); + } + return snippet; } function getWorkGroupSizeString() { return ` @@ -68002,50 +67820,25 @@ function makeShader2(inputInfo, outputData, program) { program.getUserCode() ].join("\n"); } - let preMemberIsStruct = false; - let currentMemberIsStruct = false; let uniformDeclaration = "struct Uniforms { NAN : f32, "; program.variableNames.forEach((x, i2) => { const perDataType = getCoordsDataType2(inputInfo[i2].shape.length); - if (perDataType === "vec5" || perDataType === "vec6") { - currentMemberIsStruct = true; - } - if (preMemberIsStruct || currentMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } - preMemberIsStruct = currentMemberIsStruct; uniformDeclaration += `${x.charAt(0).toLowerCase() + x.slice(1)}Shape : ${perDataType}, `; }); const outputDataType = getCoordsDataType2(outputData.shape.length); - currentMemberIsStruct = outputDataType === "vec5" || outputDataType === "vec6"; - if (preMemberIsStruct || currentMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } - preMemberIsStruct = currentMemberIsStruct; uniformDeclaration += `outShape : ${outputDataType}, `; const stridesLength = outputData.shape.length - 1; const stridesDataType = getCoordsDataType2(stridesLength); - currentMemberIsStruct = stridesDataType === "vec5" || stridesDataType === "vec6"; - if (preMemberIsStruct || currentMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } - preMemberIsStruct = currentMemberIsStruct; uniformDeclaration += ` outShapeStrides: ${stridesDataType}, `; if (program.size) { - if (preMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } - preMemberIsStruct = false; uniformDeclaration += "size : i32, "; } if (program.uniforms) { - if (preMemberIsStruct) { - uniformDeclaration += `@align(16) `; - } uniformDeclaration += program.uniforms; } uniformDeclaration += "};"; + uniformDeclaration = insertAlignment(uniformDeclaration); prefixSnippets.push(uniformDeclaration); if (program.atomic) { prefixSnippets.push(` @@ -68135,8 +67928,8 @@ var commonSnippet = ` fn idiv(a: i32, b: i32, sign: f32) -> i32 { var res: i32 = a / b; - let mod: i32 = a % b; - if (sign < 0. && mod != 0) { + let modulo: i32 = a % b; + if (sign < 0. && modulo != 0) { res = res - 1; } return res; @@ -68512,16 +68305,27 @@ function setOutputSnippet(outShape, outBufferType, isVec4) { } return snippet; } +function insertAlignment(uniformShader) { + const curInsertRe = /(\w+)\s*:\s*vec(5|6)/g; + uniformShader = uniformShader.replace(curInsertRe, (match) => { + return "@align(16) " + match; + }); + const preInsertRe = /vec(5|6)\s*,\s*(\w+)/g; + uniformShader = uniformShader.replace(preInsertRe, (_, p1, p2) => { + return `vec${p1}, @align(16) ${p2}`; + }); + return uniformShader; +} -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu_util.js +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu_util.js var webgpu_util_exports = {}; __export(webgpu_util_exports, { ArrayBufferToTypedArray: () => ArrayBufferToTypedArray, GPUBytesPerElement: () => GPUBytesPerElement, MatMulProgramType: () => MatMulProgramType, computeDispatch: () => computeDispatch, + computeWorkGroupInfoForMatMul: () => computeWorkGroupInfoForMatMul, computeWorkGroupSizeForConv2d: () => computeWorkGroupSizeForConv2d, - computeWorkGroupSizeForMatMul: () => computeWorkGroupSizeForMatMul, computeWorkPerThreadForConv2d: () => computeWorkPerThreadForConv2d, flatDispatchLayout: () => flatDispatchLayout, isWebGPUSupported: () => isWebGPUSupported, @@ -68548,6 +68352,19 @@ function computeDispatch(layout, outputShape, workGroupSize = [1, 1, 1], element ]; return [dispatchX, dispatchY, dispatchZ]; } +function computeWorkGroupInfoForMatMul(dimAOuter, dimInner, dimBOuter, transposeA = false) { + const workGroupSize = [8, 8, 1]; + const elementsPerThread = [4, 4, 1]; + if (!transposeA) { + if (dimAOuter <= 8) { + elementsPerThread[1] = 1; + } + if (dimInner <= 16 && dimBOuter <= 16) { + workGroupSize[0] = 4; + } + } + return { workGroupSize, elementsPerThread }; +} function computeWorkGroupSizeForConv2d(layout, outputShape, isVec4 = false) { if (isVec4) { return [8, 8, 1]; @@ -68562,14 +68379,6 @@ function computeWorkGroupSizeForConv2d(layout, outputShape, isVec4 = false) { } return [16, 16, 1]; } -function computeWorkGroupSizeForMatMul(dimAOuter, dimInner, dimBOuter) { - if (dimAOuter === 1) { - return [32, 1, 1]; - } else if (dimBOuter === 1) { - return [1, 32, 1]; - } - return [8, 8, 1]; -} function computeWorkPerThreadForConv2d(layout, outputShape, isVec4 = false) { if (isVec4) { return [4, 4, 1]; @@ -68612,7682 +68421,14 @@ function isWebGPUSupported() { } var MatMulProgramType; (function(MatMulProgramType2) { - MatMulProgramType2[MatMulProgramType2["MatMulPackedVec4Program"] = 0] = "MatMulPackedVec4Program"; - MatMulProgramType2[MatMulProgramType2["MatMulReduceProgram"] = 1] = "MatMulReduceProgram"; - MatMulProgramType2[MatMulProgramType2["MatMulSplitKProgram"] = 2] = "MatMulSplitKProgram"; - MatMulProgramType2[MatMulProgramType2["MatMulSmallOutputSizeProgram"] = 3] = "MatMulSmallOutputSizeProgram"; - MatMulProgramType2[MatMulProgramType2["MatMulPackedProgram"] = 4] = "MatMulPackedProgram"; - MatMulProgramType2[MatMulProgramType2["MatMulMax"] = 5] = "MatMulMax"; + MatMulProgramType2[MatMulProgramType2["MatMulReduceProgram"] = 0] = "MatMulReduceProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulSplitKProgram"] = 1] = "MatMulSplitKProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulSmallOutputSizeProgram"] = 2] = "MatMulSmallOutputSizeProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulPackedProgram"] = 3] = "MatMulPackedProgram"; + MatMulProgramType2[MatMulProgramType2["MatMulMax"] = 4] = "MatMulMax"; })(MatMulProgramType || (MatMulProgramType = {})); -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_packed_webgpu.js -function matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) { - util_exports.assert(transposeA && component === 1 || !transposeA, () => `transposeA ${transposeA} is not compatible with component size ${component}`); - const sampleA = ` - let batch = ${batchAEqualOne ? "0" : "batchIn"}; - let batchASize = uniforms.aShape[1] * uniforms.aShape[2]; - ${transposeA ? `value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${component}];` : `value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${component}];`} - - `; - let sampleB; - if (transposeB === false) { - sampleB = `value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${component}];`; - } else { - sampleB = `value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${component}];`; - } - return ` - fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} { - var value = ${typeSnippet(component)}(0.0); - let col = colIn * ${component}; - ${fitAOuter && fitInner ? sampleA : ` - ${transposeA ? `if(row < uniforms.dimAOuter && col < uniforms.dimInner)` : `if(row < uniforms.aShape[1] && col < uniforms.aShape[2])`} - { - ${sampleA} - } - `} - return value; - } - - fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} { - let col = colIn * ${component}; - let batch = ${batchBEqualOne ? "0" : "batchIn"}; - let batchBSize = uniforms.bShape[1] * uniforms.bShape[2]; - var value = ${typeSnippet(component)}(0.0); - ${sampleB} - return value; - } - `; -} -function matMulReadWriteFnSource(hasBias, activation2, batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) { - return ` - ${matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter, fitBOuter, fitInner, component)} - fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${typeSnippet(component)}) { - let col = colIn * ${component}; - ${fitAOuter && fitBOuter ? "" : "if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"} - { - var value = valueIn; - let coords = vec3(batch, row, col); - ${biasActivationSnippet(hasBias, activation2)} - setOutputAtCoords(coords[0], coords[1], coords[2], value); - } - } - `; -} -var writeDataToSubASnippet = (transpose7) => { - if (transpose7) { - return ` - mm_Asub[inputRow][inputCol] = mm_readA(batch, - t * TileInner + inputRow, - globalRowStart + inputCol); - `; - } else { - return ` - mm_Asub[inputRow][inputCol] = mm_readA(batch, - globalRowStart + inputRow, - t * TileInner + inputCol); - `; - } -}; -var readDataFromSubASnippet = (transposeA) => { - return transposeA ? "let ACached = mm_Asub[k][tileRow + innerRow];" : "let ACached = mm_Asub[tileRow + innerRow][k];"; -}; -function makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false, tileInner = 32) { - const tileAOuter = workPerThread[1] * workGroupSize[1]; - const tileBOuter = workPerThread[0] * workGroupSize[0]; - const tileAWidth = transposeA ? tileAOuter : tileInner; - const tileAHight = transposeA ? tileInner : tileAOuter; - util_exports.assert(tileAHight % workGroupSize[1] === 0 && tileAWidth % workGroupSize[0] === 0 && tileInner % workGroupSize[1] === 0, () => `tileAHight ${tileAHight} must be divisible by workGroupSize[1]${workGroupSize[1]}, tileAWidth ${tileAWidth} must be divisible by workGroupSize[0]${workGroupSize[0]}, tileInner ${tileInner} must be divisible by workGroupSize[1]${workGroupSize[1]}`); - const rowPerThreadA = tileAHight / workGroupSize[1]; - const colPerThreadA = tileAWidth / workGroupSize[0]; - const rowPerThreadB = tileInner / workGroupSize[1]; - return ` - var mm_Asub : array, ${tileAHight}>; - var mm_Bsub : array, ${tileInner}>; - const RowPerThread = ${workPerThread[1]}; - const ColPerThread = ${workPerThread[0]}; - const TileInner = ${tileInner}; - - @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(num_workgroups) NumWorkgroups: vec3, - @builtin(workgroup_id) workgroupId: vec3) { - localId = LocalId; - globalId = GlobalId; - numWorkgroups = NumWorkgroups; - - let tileRow = i32(localId.y) * RowPerThread; - let tileCol = i32(localId.x) * ColPerThread; - - let globalRow = i32(globalId.y) * RowPerThread; - let globalCol = i32(globalId.x) * ColPerThread; - let batch = i32(globalId.z); - let globalRowStart = i32(workgroupId.y) * ${tileAOuter}; - - let numTiles = (uniforms.dimInner - 1) / TileInner + 1; - - var acc : array, RowPerThread>; - - // Without this initialization strange values show up in acc. - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { - acc[innerRow][innerCol] = 0.0; - } - } - - let tileRowA = i32(localId.y) * ${rowPerThreadA}; - let tileColA = i32(localId.x) * ${colPerThreadA}; - let tileRowB = i32(localId.y) * ${rowPerThreadB}; - // Loop over shared dimension. - for (var t = 0; t < numTiles; t = t + 1) { - // Load one tile of A into local memory. - for (var innerRow = 0; innerRow < ${rowPerThreadA}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${colPerThreadA}; innerCol = innerCol + 1) { - let inputRow = tileRowA + innerRow; - let inputCol = tileColA + innerCol; - ${writeDataToSubASnippet(transposeA)} - } - } - - // Load one tile of B into local memory. - for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { - let inputRow = tileRowB + innerRow; - let inputCol = tileCol + innerCol; - mm_Bsub[inputRow][inputCol] = mm_readB(batch, - t * TileInner + inputRow, - globalCol + innerCol); - } - } - - workgroupBarrier(); - - // Compute acc values for a single thread. - var BCached : array; - for (var k = 0; k < TileInner; k = k + 1) { - for (var inner = 0; inner < ColPerThread; inner = inner + 1) { - BCached[inner] = mm_Bsub[k][tileCol + inner]; - } - - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - ${readDataFromSubASnippet(transposeA)} - for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { - acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; - } - } - } - - workgroupBarrier(); - } - - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { - mm_write(batch, globalRow + innerRow, globalCol + innerCol, - acc[innerRow][innerCol]); - } - } - } - `; -} -var readVectorASnippet = (transpose7) => { - return transpose7 ? ` - mm_readA(batch, colA, globalRow), - mm_readA(batch, colA + 1, globalRow), - mm_readA(batch, colA + 2, globalRow), - mm_readA(batch, colA + 3, globalRow) - ` : ` - mm_readA(batch, globalRow, colA), - mm_readA(batch, globalRow, colA + 1), - mm_readA(batch, globalRow, colA + 2), - mm_readA(batch, globalRow, colA + 3) - `; -}; -function makeVectorMatrixProductSource(workGroupSize, transposeA = false) { - util_exports.assert(workGroupSize[1] === 1 && workGroupSize[2] === 1, () => `A linear work group size is required. But got ${workGroupSize}.`); - return ` - const TileSize = ${workGroupSize[0] * 4}; - var mm_Asub : array, ${workGroupSize[0]}>; - - ${getMainHeaderString()} - let tileCol = i32(localId.x); - let globalCol = i32(globalId.x); - let globalRow = i32(globalId.y); - - let numTiles = (uniforms.dimInner - 1) / TileSize + 1; - let batch = i32(globalId.z); - // Without this initialization strange values show up in acc. - var acc = 0.0; - - // Loop over shared dimension. - for (var t = 0; t < numTiles; t = t + 1) { - // Load one tile of A into local memory. - let colA = t * TileSize + tileCol * 4; - mm_Asub[tileCol] = vec4(${readVectorASnippet(transposeA)}); - workgroupBarrier(); - - // Compute acc values for a single thread. - for (var k = 0; k < TileSize / 4; k = k + 1) { - let rowB = t * TileSize + k * 4; - let BCached = vec4(mm_readB(batch, rowB, globalCol), - mm_readB(batch, rowB + 1, globalCol), - mm_readB(batch, rowB + 2, globalCol), - mm_readB(batch, rowB + 3, globalCol)); - - let ACached = mm_Asub[k]; - acc = acc + dot(ACached, BCached); - } - - workgroupBarrier(); - } - - mm_write(batch, globalRow, globalCol, acc); - } - `; -} -var MatMulPackedProgram2 = class { - constructor(aShape, outputShape, workPerThread, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) { - this.variableNames = ["A", "B"]; - this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [16, 16, 1]; - this.outputShape = outputShape; - this.dispatchLayout = { x: [2], y: [1], z: [0] }; - const dimInner = transposeA ? aShape[1] : aShape[2]; - this.workGroupSize = computeWorkGroupSizeForMatMul(outputShape[1], dimInner, outputShape[2]); - if (outputShape[1] === 1 || outputShape[2] === 1) { - workPerThread = 1; - } - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [workPerThread, workPerThread, 1]); - if (util_exports.arraysEqual(this.dispatch, [1, 1, 1])) { - workPerThread = 1; - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [workPerThread, workPerThread, 1]); - } - const addBias = bias != null; - const hasPreluActivationWeights = preluActivationWeights != null; - if (addBias) { - this.variableNames.push("bias"); - } - if (hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - } - this.workPerThread = workPerThread; - this.transposeA = transposeA; - this.transposeB = transposeB; - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivationWeights = hasPreluActivationWeights; - this.batchAEqualOne = batchAEqualOne; - this.batchBEqualOne = batchBEqualOne; - [this.fitAOuter, this.fitBOuter, this.fitInner] = this.getShapeFit(outputShape[1], outputShape[2], dimInner); - this.shaderKey = `matMulPacked_${this.workPerThread}_${transposeA}_${transposeB}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.outputShape[1] > 1}_${this.batchAEqualOne}_${this.batchBEqualOne}`; - } - getShapeFit(dimAOuter, dimBOuter, dimInner) { - const tileAOuter = this.workGroupSize[1] * this.workPerThread; - const tileBOuter = this.workGroupSize[0] * this.workPerThread; - this.tileInner = 32; - if (this.outputShape[1] === 1) { - this.tileInner = this.workGroupSize[0] * 4; - } - const fitAOuter = dimAOuter % tileAOuter === 0; - const fitBOuter = dimBOuter % tileBOuter === 0; - const fitInner = dimInner % this.tileInner === 0; - return [fitAOuter, fitBOuter, fitInner]; - } - getUserCode() { - const userCode = ` - ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} - ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, this.fitAOuter, this.fitBOuter, this.fitInner)} - ${this.outputShape[1] > 1 ? makeMatMulPackedSource([this.workPerThread, this.workPerThread, 1], this.workGroupSize, this.transposeA, this.tileInner) : makeVectorMatrixProductSource(this.workGroupSize, this.transposeA)} - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_packed_vec4_webgpu.js -var writeDataToSubASnippet2 = (transpose7, innerAElementSize) => { - if (transpose7) { - return ` - mm_Asub[inputRow][inputCol] = mm_readA(batch, - t * TileInner + inputRow, - globalRowStart / ${innerAElementSize} + inputCol); - `; - } else { - return ` - mm_Asub[inputRow][inputCol] = mm_readA(batch, - globalRow + innerRow, - t * TileInner / ${innerAElementSize} + inputCol); - `; - } -}; -var calculateResultSnippet = (transposeA, innerElementSize) => { - if (transposeA) { - return ` - let ACached0 = mm_Asub[k * InnerElementSize][localRow]; - let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow]; - let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow]; - ${innerElementSize === 3 ? "" : "let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"} - for (var i = 0; i < RowPerThread; i = i + 1) { - acc[i] = BCached[0] * ACached0[i] + acc[i]; - acc[i] = BCached[1] * ACached1[i] + acc[i]; - acc[i] = BCached[2] * ACached2[i] + acc[i]; - ${innerElementSize === 3 ? "" : "acc[i] = BCached[3] * ACached3[i] + acc[i];"} - }`; - } else { - return ` - for (var i = 0; i < RowPerThread; i = i + 1) { - let ACached = mm_Asub[tileRow + i][k]; - acc[i] = BCached[0] * ACached.x + acc[i]; - acc[i] = BCached[1] * ACached.y + acc[i]; - acc[i] = BCached[2] * ACached.z + acc[i]; - ${innerElementSize === 3 ? "" : "acc[i] = BCached[3] * ACached.w + acc[i];"} - }`; - } -}; -function makeMatMulPackedVec4Source(workPerThread, tileAOuter, tileBOuter, tileInner, innerElementSize = 4, transposeA = false) { - const tileAWidth = transposeA ? tileAOuter : tileInner; - const tileAHight = transposeA ? tileInner : tileAOuter; - const innerAElementSize = transposeA ? workPerThread[1] : innerElementSize; - util_exports.assert((transposeA && tileAOuter === tileBOuter || (tileInner % 4 === 0 || tileInner % 3 === 0)) && workPerThread[0] === 4 && (innerElementSize === 3 || innerElementSize === 4), () => `tileInner ${tileInner} must be divisible by 4|3. ColPerThread ${workPerThread[0]} must be 4. - innerElementSize ${innerElementSize} must be 3|4.`); - return ` - var mm_Asub : array, ${tileAWidth / innerAElementSize}>, ${tileAHight}>; - var mm_Bsub : array, ${tileBOuter / workPerThread[0]}>, ${tileInner}>; - - const RowPerThread = ${workPerThread[1]}; - const ColPerThread = ${workPerThread[0]}; - const InnerElementSize = ${innerElementSize}; - const TileInner = ${tileInner}; - - @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(num_workgroups) NumWorkgroups: vec3, - @builtin(workgroup_id) workgroupId: vec3) { - localId = LocalId; - globalId = GlobalId; - numWorkgroups = NumWorkgroups; - - let localRow = i32(localId.y); - let tileRow = ${tileAOuter === 1 ? "0" : "localRow * RowPerThread"}; - let tileCol = i32(localId.x); - - let globalRow = ${tileAOuter === 1 ? "0" : "i32(globalId.y) * RowPerThread"}; - let globalCol = i32(globalId.x); - let batch = i32(globalId.z); - let globalRowStart = i32(workgroupId.y) * ${tileAOuter}; - - let numTiles = (uniforms.dimInner - 1) / TileInner + 1; - - var acc: array, RowPerThread>; - var BCached : array, 4>; - - // Loop over shared dimension. - let RowPerThreadB = TileInner / i32(workGroupSizeY); - let tileRowB = localRow * RowPerThreadB; - for (var t = 0; t < numTiles; t = t + 1) { - // Load one tile of A into local memory. - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - let inputRow = tileRow + innerRow; - let inputCol = tileCol; - ${writeDataToSubASnippet2(transposeA, innerAElementSize)} - } - - // Load one tile of B into local memory. - for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) { - let inputRow = tileRowB + innerRow; - let inputCol = tileCol; - mm_Bsub[inputRow][inputCol] = mm_readB(batch, t * TileInner + inputRow, globalCol); - } - - workgroupBarrier(); - - // Compute acc values for a single thread. - for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) { - BCached[0] = mm_Bsub[k * InnerElementSize][tileCol]; - BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol]; - BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol]; - ${innerElementSize === 3 ? "" : "BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"} - - ${calculateResultSnippet(transposeA, innerElementSize)} - } - - workgroupBarrier(); - } - - for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { - mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]); - } - }`; -} -var MatMulPackedVec4Program = class { - constructor(aShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, bias = null, activation2 = null, preluActivationWeights = null) { - this.variableNames = ["A", "B"]; - this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [8, 8, 1]; - this.isVec4 = true; - this.outputShape = outputShape; - this.dispatchLayout = { x: [2], y: [1], z: [0] }; - if (outputShape[1] === 1 && !transposeA) { - this.elementsPerThread = [4, 1, 1]; - } else { - this.elementsPerThread = [4, 4, 1]; - } - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); - const addBias = bias != null; - const hasPreluActivationWeights = preluActivationWeights != null; - if (addBias) { - this.variableNames.push("bias"); - } - if (hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - } - this.tileAOuter = outputShape[1] === 1 && !transposeA ? 1 : this.workGroupSize[1] * this.elementsPerThread[1]; - this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - this.tileInner = this.tileBOuter; - this.aShape = aShape; - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivationWeights = hasPreluActivationWeights; - this.batchAEqualOne = batchAEqualOne; - this.batchBEqualOne = batchBEqualOne; - this.transposeA = transposeA; - const dimInner = transposeA ? aShape[1] : aShape[2]; - this.fitAOuter = outputShape[1] % this.tileAOuter === 0; - this.fitBOuter = outputShape[2] % this.tileBOuter === 0; - this.fitInner = dimInner % this.tileInner === 0; - this.shaderKey = `matMulPackedVec4_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}_${this.transposeA}`; - } - getUserCode() { - const userCode = ` - ${activationFnSnippet(this.activation, this.hasPreluActivationWeights, true)} - ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, false, this.fitAOuter, this.fitBOuter, this.fitInner, 4)} - ${makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, 4, this.transposeA)} - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_reduce_webgpu.js -function makeMatMulReduceSource() { - return ` - var sumValues : array; - ${getMainHeaderString()} - let coords = getOutputCoords(); - let batch = coords[0]; - let row = coords[1]; - let col = coords[2]; - var sum = 0.0; - let Length = uniforms.dimInner; - for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) { - let dataA = mm_readA(batch, row, k); - let dataB = mm_readB(batch, k, col); - sum = sum + dataA * dataB; - } - sumValues[localId.x] = sum; - workgroupBarrier(); - - for(var currentSize = workGroupSizeX / 2u; currentSize > 1u; - currentSize = currentSize / 2u) { - if (localId.x < currentSize) - { - sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize]; - } - workgroupBarrier(); - } - - if (localId.x == 0u) { - sum = sumValues[0] + sumValues[1]; - mm_write(batch, row, col, sum); - } - } - `; -} -var MatMulReduceProgram = class { - constructor(outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) { - this.variableNames = ["A", "B"]; - this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [256, 1, 1]; - this.outputShape = outputShape; - this.dispatchLayout = { x: [], y: [1, 2], z: [0] }; - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - const addBias = bias != null; - const hasPreluActivationWeights = preluActivationWeights != null; - if (addBias) { - this.variableNames.push("bias"); - } - if (hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - } - this.transposeA = transposeA; - this.transposeB = transposeB; - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivationWeights = hasPreluActivationWeights; - this.batchAEqualOne = batchAEqualOne; - this.batchBEqualOne = batchBEqualOne; - this.shaderKey = `matMulReduce_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`; - } - getUserCode() { - const userCode = ` - ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} - ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)} - ${makeMatMulReduceSource()} - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_small_output_size_webgpu.js -function makeMatMulSmallOutputSizeSource(workGroupSize) { - const tileAOuter = workGroupSize[1]; - const tileBOuter = workGroupSize[0]; - const tileInner = tileAOuter > tileBOuter ? tileAOuter : tileBOuter; - return ` - var mm_Asub : array, ${tileAOuter}>; - var mm_Bsub : array, ${tileInner}>; - - // If the output size is small for matrix multiplication, avoid to use vec4 - // and handle some elements per thread to optimally utilize the ALU. - // Read data from global memory to registers firstly, then store them into - // shared memory, so it is instruction-Level parallelism for arithmetic - // operations and others handle IO operations between barrier api, makes ALU - // and load/store units work simultaneously, could improves the performance. - ${getMainHeaderString()} - let tileRow = i32(localId.y); - let tileCol = i32(localId.x); - let globalRow = i32(globalId.y); - let globalCol = i32(globalId.x); - let batch = i32(globalId.z); - - // uniforms.dimInner should be greater than 0. - let numTiles = (uniforms.dimInner - 1) / ${tileInner} + 1; - var acc = 0.0; - - var globalColA = tileCol; - var globalRowB = 0; - var regA = mm_readA(batch, globalRow, globalColA); - var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol); - var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol); - globalColA = globalColA + ${tileInner}; - globalRowB = globalRowB + ${tileInner}; - - for (var t = 0; t < numTiles; t = t + 1) { - mm_Asub[tileRow][tileCol] = regA; - mm_Bsub[2 * tileRow][tileCol] = regB0; - mm_Bsub[2 * tileRow + 1][tileCol] = regB1; - - workgroupBarrier(); - - regA = mm_readA(batch, globalRow, globalColA); - regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol); - regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol); - globalColA = globalColA + ${tileInner}; - globalRowB = globalRowB + ${tileInner}; - - for (var k = 0; k < ${tileInner}; k = k + 1) { - acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol]; - } - workgroupBarrier(); - } - - mm_write(batch, globalRow, globalCol, acc); - } - `; -} -var MatMulSmallOutputSizeProgram = class { - constructor(aShape, bShape, outputShape, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) { - this.variableNames = ["A", "B"]; - this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [16, 8, 1]; - this.outputShape = outputShape; - this.dispatchLayout = { x: [2], y: [1], z: [0] }; - this.dispatch = [ - Math.ceil(outputShape[2] / this.workGroupSize[0]), - Math.ceil(outputShape[1] / this.workGroupSize[1]), - outputShape[0] - ]; - const addBias = bias != null; - if (addBias) { - this.variableNames.push("bias"); - } - const hasPreluActivationWeights = preluActivationWeights != null; - if (hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - } - this.transposeA = transposeA; - this.transposeB = transposeB; - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivationWeights = hasPreluActivationWeights; - this.batchAEqualOne = aShape[0] === 1; - this.batchBEqualOne = bShape[0] === 1; - this.shaderKey = `matMulSmallOutputSize_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`; - } - getUserCode() { - const userCode = ` - ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} - ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)} - ${makeMatMulSmallOutputSizeSource(this.workGroupSize)} - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_splitK_webgpu.js -var MatMulSplitKProgram = class { - constructor(outputShape, dimInner, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false) { - this.variableNames = ["A", "B"]; - this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.workGroupSize = [8, 8, 1]; - this.atomic = true; - this.tileInner = 32; - util_exports.assert(outputShape[0] === 1, () => "MatMulSplitKProgram only supports batch = 1."); - this.outputShape = outputShape; - this.dispatchLayout = { x: [2], y: [1], z: [0, 3] }; - this.elementsPerThread = [4, 4, this.tileInner]; - if (this.outputShape[1] < 16) { - this.elementsPerThread[1] = 1; - } - if (this.outputShape[2] < 16) { - this.elementsPerThread[0] = 1; - } - this.dispatch = computeDispatch(this.dispatchLayout, [ - this.outputShape[0], - this.outputShape[1], - this.outputShape[2], - dimInner - ], this.workGroupSize, this.elementsPerThread); - this.transposeA = transposeA; - this.transposeB = transposeB; - this.batchAEqualOne = batchAEqualOne; - this.batchBEqualOne = batchBEqualOne; - this.shaderKey = `matMulSplitK_${transposeA}_${transposeB}_${batchAEqualOne}_${batchBEqualOne}_${this.elementsPerThread}`; - } - getUserCode() { - const atomicAddSnippet = ` - var oldValue = atomicLoad(&(result[flatIndex])); - var exchanged = false; - for (; !exchanged;) { - let newValueF32 = bitcast(oldValue) + value; - let newValue = bitcast(newValueF32); - let res = atomicCompareExchangeWeak(&(result[flatIndex]), oldValue, newValue); - oldValue = res.old_value; - exchanged = res.exchanged; - } - `; - const userCode = ` - ${matMulReadFnSource(this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)} - fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) { - if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) { - let coords = vec3(batch, row, col); - let flatIndex = getOutputIndexFromCoords(coords); - var value = valueIn; - // The problem is that we should initialize output to zero before using. - // Otherwise, the original value will be added to the result. - ${atomicAddSnippet} - } - } - - ${this.makeMatMulSplitKSource()} - `; - return userCode; - } - makeMatMulSplitKSource() { - const tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; - const tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - const rowPerThread = this.elementsPerThread[1]; - const colPerThread = this.elementsPerThread[0]; - const colPerThreadA = this.tileInner / this.workGroupSize[0]; - const rowPerThreadB = this.tileInner / this.workGroupSize[1]; - util_exports.assert(this.tileInner % this.workGroupSize[0] === 0 && this.tileInner % this.workGroupSize[1] === 0, () => `tileInner ${this.tileInner} must be divisible by workGroupSize[0]${this.workGroupSize[0]} and workGroupSize[1]${this.workGroupSize[1]}`); - return ` - var mm_Asub : array, ${tileAOuter}>; - var mm_Bsub : array, ${this.tileInner}>; - ${getMainHeaderString()} - let tileRow = i32(localId.y) * ${rowPerThread}; - let tileCol = i32(localId.x) * ${colPerThread}; - - let globalRow = i32(globalId.y) * ${rowPerThread}; - let globalCol = i32(globalId.x) * ${colPerThread}; - let batch = 0; - let kStart = i32(globalId.z) * ${this.tileInner}; - - // Load one tile of A into local memory. - let tileColA = i32(localId.x) * ${colPerThreadA}; - for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${colPerThreadA}; innerCol = innerCol + 1) { - let inputRow = tileRow + innerRow; - let inputCol = tileColA + innerCol; - mm_Asub[inputRow][inputCol] = mm_readA(${this.batchAEqualOne ? 0 : "batch"}, - globalRow + innerRow, - kStart + inputCol); - } - } - // Load one tile of B into local memory. - let tileRowB = i32(localId.y) * ${rowPerThreadB}; - for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) { - let inputRow = tileRowB + innerRow; - let inputCol = tileCol + innerCol; - mm_Bsub[inputRow][inputCol] = mm_readB(${this.batchBEqualOne ? 0 : "batch"}, - kStart + inputRow, - globalCol + innerCol); - } - } - - workgroupBarrier(); - - var acc : array, ${rowPerThread}>; - // Loop over shared dimension. Compute acc values for a single thread. - for (var k = 0; k < ${this.tileInner}; k = k + 1) { - var BCached : array; - for (var inner = 0; inner < ${colPerThread}; inner = inner + 1) { - BCached[inner] = mm_Bsub[k][tileCol + inner]; - } - - for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) { - let ACached = mm_Asub[tileRow + innerRow][k]; - for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) { - acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; - } - } - } - - for (var innerRow = 0; innerRow < ${rowPerThread}; innerRow = innerRow + 1) { - for (var innerCol = 0; innerCol < ${colPerThread}; innerCol = innerCol + 1) { - mm_write(batch, globalRow + innerRow, globalCol + innerCol, acc[innerRow][innerCol]); - } - } - } - `; - } -}; -var BiasActivationProgram = class { - constructor(outputShape, bias = null, activation2 = null, preluActivationWeights = null) { - this.uniforms = ""; - this.variableNames = ["x"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.addBias = bias != null; - this.hasPreluActivationWeights = preluActivationWeights != null; - this.activation = activation2; - if (this.addBias) { - this.variableNames.push("bias"); - } - if (this.hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - } - this.shaderKey = `biasActivation_${activation2}`; - } - getUserCode() { - return ` - ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - var value = getXByOutputIndex(index); - ${biasActivationSnippet(this.addBias, this.activation)} - setOutputAtIndex(index, value); - } - } - `; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/fill_webgpu.js -var FillProgram2 = class { - constructor(shape) { - this.variableNames = []; - this.outputShape = []; - this.uniforms = "value : f32,"; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = shape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = "fill"; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - setOutputAtIndex(index, uniforms.value); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Fill.js -function fill5(args) { - const { backend: backend2, attrs } = args; - const { shape, value } = attrs; - let { dtype } = attrs; - dtype = dtype || util_exports.inferDtype(value); - if (dtype === "string") { - const values = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(shape)); - values.fill(value); - return backend2.makeTensorInfo(shape, dtype, values); - } else { - const program = new FillProgram2(shape); - const uniformData = [{ type: "float32", data: [value] }]; - return backend2.runWebGPUProgram(program, [], dtype, uniformData); - } -} -var fillConfig4 = { - kernelName: Fill, - backendName: "webgpu", - kernelFunc: fill5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Reshape.js -function reshape6(args) { - const { inputs, attrs } = args; - const { x } = inputs; - const { shape } = attrs; - const xSize = util_exports.sizeFromShape(x.shape); - const $shape = util_exports.inferFromImplicitShape(shape, xSize); - const $xSize = util_exports.sizeFromShape($shape); - util_exports.assert(xSize === $xSize, () => `The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`); - args.backend.incRef(x.dataId); - return { dataId: x.dataId, shape: $shape, dtype: x.dtype }; -} -var reshapeConfig4 = { - kernelName: Reshape, - backendName: "webgpu", - kernelFunc: reshape6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchMatMul_impl.js -function batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { - const aRank = a.shape.length; - const bRank = b.shape.length; - const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1]; - const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2]; - const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2]; - const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1]; - const outerDimsA = a.shape.slice(0, -2); - const outerDimsB = b.shape.slice(0, -2); - const batchDimA = util_exports.sizeFromShape(outerDimsA); - const batchDimB = util_exports.sizeFromShape(outerDimsB); - const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2)); - const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]); - util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); - const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA]; - const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB]; - const a3d = reshape6({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } }); - const b3d = reshape6({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } }); - const intermediates = [a3d, b3d]; - const batchDim = Math.max(batchDimA, batchDimB); - const batchAEqualOne = batchDimA === 1; - const batchBEqualOne = batchDimB === 1; - const useVec4 = (innerShapeA % 4 === 0 && !transposeA || outerShapeA % 4 === 0 && transposeA) && outerShapeB % 4 === 0 && !transposeB; - const inputs = [a3d, b3d]; - const dimensions = [ - { type: "int32", data: [outerShapeA] }, - { type: "int32", data: [outerShapeB] }, - { type: "int32", data: [innerShapeA] } - ]; - let program; - let out; - const outputShape = [batchDim, outerShapeA, outerShapeB]; - let matmulProgramType = env().get("WEBGPU_MATMUL_PROGRAM_TYPE"); - if (matmulProgramType < 0) { - if (outerShapeA * outerShapeB <= 128) { - matmulProgramType = MatMulProgramType.MatMulReduceProgram; - } else if (batchDim === 1 && outerShapeA <= 128 && outerShapeB <= 48 && innerShapeB >= 2e3) { - matmulProgramType = MatMulProgramType.MatMulSplitKProgram; - } else if (outerShapeA <= 16 && (outerShapeB <= 512 || innerShapeB >= 2 * outerShapeB) || outerShapeB <= 16 && (outerShapeA <= 512 || innerShapeA >= 2 * outerShapeA)) { - matmulProgramType = MatMulProgramType.MatMulSmallOutputSizeProgram; - } else if (useVec4) { - matmulProgramType = MatMulProgramType.MatMulPackedVec4Program; - } else { - matmulProgramType = MatMulProgramType.MatMulPackedProgram; - } - } - switch (matmulProgramType) { - case MatMulProgramType.MatMulPackedVec4Program: - program = new MatMulPackedVec4Program(a3dShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA, bias, activation2, preluActivationWeights); - break; - case MatMulProgramType.MatMulReduceProgram: - program = new MatMulReduceProgram(outputShape, batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); - break; - case MatMulProgramType.MatMulSplitKProgram: { - out = fill5({ backend: backend2, attrs: { shape: outputShape, value: 0, dtype: a.dtype } }); - program = new MatMulSplitKProgram(outputShape, innerShapeB, batchAEqualOne, batchBEqualOne, transposeA, transposeB); - if (bias || activation2) { - out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out); - const biasActivationProgram = new BiasActivationProgram(out.shape, bias, activation2, preluActivationWeights); - let uniformData = null; - const activationInputs = [out]; - if (bias) { - activationInputs.push(bias); - } - if (preluActivationWeights) { - activationInputs.push(preluActivationWeights); - } - if (activation2 === "leakyrelu") { - uniformData = [{ type: "float32", data: [leakyreluAlpha] }]; - biasActivationProgram.uniforms += " alpha : f32,"; - } - const outActivated = backend2.runWebGPUProgram(biasActivationProgram, activationInputs, out.dtype, uniformData); - intermediates.push(out); - const outReshaped2 = reshape6({ inputs: { x: outActivated }, backend: backend2, attrs: { shape: outShape } }); - intermediates.push(outActivated); - for (const i2 of intermediates) { - backend2.disposeData(i2.dataId); - } - return outReshaped2; - } - break; - } - case MatMulProgramType.MatMulSmallOutputSizeProgram: - program = new MatMulSmallOutputSizeProgram(a3dShape, b3dShape, outputShape, transposeA, transposeB, bias, activation2, preluActivationWeights); - break; - case MatMulProgramType.MatMulPackedProgram: - program = new MatMulPackedProgram2(a3dShape, outputShape, env().get("WEBGPU_MATMUL_WORK_PER_THREAD"), batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); - break; - default: - throw new Error(`Unsupported MatMulProgramType ${matmulProgramType}.`); - } - if (bias) { - inputs.push(bias); - } - if (preluActivationWeights) { - inputs.push(preluActivationWeights); - } - if (activation2 === "leakyrelu") { - dimensions.push({ type: "float32", data: [leakyreluAlpha] }); - program.uniforms += " alpha : f32,"; - } - out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out); - const outReshaped = reshape6({ inputs: { x: out }, backend: backend2, attrs: { shape: outShape } }); - intermediates.push(out); - for (const i2 of intermediates) { - backend2.disposeData(i2.dataId); - } - return outReshaped; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/_FusedMatMul.js -function _fusedMatMul3(args) { - const { inputs, backend: backend2, attrs } = args; - const { a, b, bias, preluActivationWeights } = inputs; - const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs; - return batchMatMulImpl2({ - a, - b, - transposeA, - transposeB, - backend: backend2, - bias, - preluActivationWeights, - leakyreluAlpha, - activation: activation2 - }); -} -var _fusedMatMulConfig4 = { - kernelName: _FusedMatMul, - backendName: "webgpu", - kernelFunc: _fusedMatMul3 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_complex_webgpu.js -var BinaryOpComplexProgram2 = class { - constructor(op2, aShape, bShape) { - this.variableNames = ["AReal", "AImag", "BReal", "BImag"]; - this.workGroupSize = [128, 1, 1]; - this.size = true; - this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = `binaryOpComplex_${op2}`; - this.op = op2; - } - getUserCode() { - const opStr = getBinaryOpString(this.op, false); - const userCode = ` - fn binaryOpComplex( - areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 { - ${opStr} - } - - ${getMainHeaderAndGlobalIndexString()} - if(index < uniforms.size) { - let areal = getARealByOutputIndex(index); - let aimag = getAImagByOutputIndex(index); - let breal = getBRealByOutputIndex(index); - let bimag = getBImagByOutputIndex(index); - setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag)); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_webgpu.js -var BinaryOpProgram2 = class { - constructor(op2, aShape, bShape) { - this.size = true; - this.variableNames = ["A", "B"]; - this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.op = op2; - this.useSharedMemoryWithA = aShape.length === 1 && bShape.length > 1 && aShape[0] < 1024; - this.useSharedMemoryWithB = bShape.length === 1 && aShape.length > 1 && bShape[0] < 1024; - if (this.useSharedMemoryWithA || this.useSharedMemoryWithB) { - this.isVec4 = false; - this.lastDimensionSize = this.useSharedMemoryWithB ? bShape[0] : aShape[0]; - this.shaderKey = `binary_${this.type}_${op2}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`; - this.type = "shared"; - this.workGroupSize = [256, 1, 1]; - if (this.lastDimensionSize < 256) { - this.workPerThread = 1; - } else if (this.lastDimensionSize < 512) { - this.workPerThread = 2; - } else { - this.workPerThread = 4; - } - } else { - if (util_exports.arraysEqual(aShape, bShape) && util_exports.sizeFromShape(aShape) % 4 === 0) { - this.isVec4 = true; - this.type = "vec4"; - this.workPerThread = 4; - } else { - this.isVec4 = false; - this.type = "plain"; - this.workPerThread = 1; - } - this.shaderKey = `binary_${this.type}_${op2}`; - this.workGroupSize = [128, 1, 1]; - } - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - } - getUserCode() { - let userCode; - if (this.type === "shared") { - const sharedIndexSnippet = this.lastDimensionSize > 1 ? `coords[${this.outputShape.length - 1}]` : "0"; - const accessDataSnippet = this.useSharedMemoryWithB ? `let a = getAByOutputCoords(coords); - let b = sharedBuf[${sharedIndexSnippet}];` : `let a = sharedBuf[${sharedIndexSnippet}]; - let b = getBByOutputCoords(coords);`; - const opStr = getBinaryOpString(this.op, this.isVec4); - userCode = ` - fn binaryOperation(a : f32, b : f32) -> f32 { - ${opStr} - } - var sharedBuf : array; - ${getMainHeaderAndGlobalIndexString()} - - // Fill in the shared memory buffer. Here we need a loop to make sure - // that all data in A|B are uploaded when |sharedMemorySize| is larger - // than work group size. - for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) { - sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB ? "B" : "A"}[localIndex]); - } - workgroupBarrier(); - - for(var i = 0; i < ${this.workPerThread}; i = i + 1) { - let flatIndex = index * ${this.workPerThread} + i; - if(flatIndex < uniforms.size) { - let coords = getCoordsFromIndex(flatIndex); - - ${accessDataSnippet} - setOutputAtIndex(flatIndex, binaryOperation(a, b)); - } - } - } - `; - } else { - const dType = this.type === "vec4" ? "vec4" : "f32"; - const opStr = getBinaryOpString(this.op, this.isVec4); - userCode = ` - fn binaryOperation(a : ${dType}, b : ${dType}) -> ${dType} { - ${opStr} - } - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let a = getAByOutputIndex(index); - let b = getBByOutputIndex(index); - setOutputAtIndex(index, binaryOperation(a, b)); - } - } - `; - } - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Identity.js -function identity5(args) { - const { inputs } = args; - const { x } = inputs; - args.backend.incRef(x.dataId); - return { dataId: x.dataId, shape: x.shape, dtype: x.dtype }; -} -var identityConfig4 = { - kernelName: Identity, - backendName: "webgpu", - kernelFunc: identity5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Complex.js -function complex4(args) { - const { inputs, backend: backend2 } = args; - const { real: real6, imag: imag5 } = inputs; - const complexInfo = backend2.makeTensorInfo(real6.shape, "complex64"); - const complex6 = backend2.tensorMap.get(complexInfo.dataId); - const realTensorInfo = identity5({ inputs: { x: real6 }, backend: backend2 }); - const imagTensorInfo = identity5({ inputs: { x: imag5 }, backend: backend2 }); - complex6.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo }; - return complexInfo; -} -var complexConfig3 = { - kernelName: Complex, - backendName: "webgpu", - kernelFunc: complex4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/unary_op_webgpu.js -var UnaryOpProgram2 = class { - constructor(outputShape, op2) { - this.variableNames = ["A"]; - this.size = true; - const workGroupSizeX = 128; - this.workGroupSize = [workGroupSizeX, 1, 1]; - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.op = op2; - this.shaderKey = `unary_${op2}`; - } - getUserCode() { - return ` - fn unaryOperation(a : f32) -> f32 { - ${getUnaryOpString(this.op, false)} - } - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let a = getAByOutputIndex(index); - setOutputAtIndex(index, unaryOperation(a)); - } - } - `; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/kernel_funcs_utils.js -function unaryKernelFunc3({ opType, cpuKernelImpl, dtype }) { - return ({ inputs, backend: backend2 }) => { - const { x } = inputs; - const webgpuBackend = backend2; - const $dtype = dtype || x.dtype; - if (webgpuBackend.shouldExecuteOnCPU([x]) && cpuKernelImpl != null) { - const xData = webgpuBackend.tensorMap.get(x.dataId); - const outValues = cpuKernelImpl(xData.values, $dtype); - return webgpuBackend.makeTensorInfo(x.shape, $dtype, outValues); - } - const program = new UnaryOpProgram2(x.shape, opType); - return webgpuBackend.runWebGPUProgram(program, [x], $dtype); - }; -} -function binaryKernelFunc3({ opType, cpuKernelImpl, supportsComplex = false, dtype }) { - return ({ inputs, backend: backend2 }) => { - const { a, b } = inputs; - const webgpuBackend = backend2; - if (supportsComplex && a.dtype === "complex64") { - const aData = webgpuBackend.tensorMap.get(a.dataId); - const bData = webgpuBackend.tensorMap.get(b.dataId); - let real6, imag5; - if (opType !== BinaryOpType.MUL) { - [real6, imag5] = [ - [aData.complexTensorInfos.real, bData.complexTensorInfos.real], - [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag] - ].map((complexParts) => { - const [aPart, bPart] = complexParts; - const aHandle = { - dataId: aPart.dataId, - dtype: aPart.dtype, - shape: a.shape - }; - const bHandle = { - dataId: bPart.dataId, - dtype: bPart.dtype, - shape: b.shape - }; - const program2 = new BinaryOpProgram2(opType, a.shape, b.shape); - return webgpuBackend.runWebGPUProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype)); - }); - } else { - const realProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_REAL, a.shape, b.shape); - const imagProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_IMAG, a.shape, b.shape); - const inputs2 = [ - { - dataId: aData.complexTensorInfos.real.dataId, - dtype: aData.complexTensorInfos.real.dtype, - shape: a.shape - }, - { - dataId: aData.complexTensorInfos.imag.dataId, - dtype: aData.complexTensorInfos.imag.dtype, - shape: a.shape - }, - { - dataId: bData.complexTensorInfos.real.dataId, - dtype: bData.complexTensorInfos.real.dtype, - shape: b.shape - }, - { - dataId: bData.complexTensorInfos.imag.dataId, - dtype: bData.complexTensorInfos.imag.dtype, - shape: b.shape - } - ]; - real6 = webgpuBackend.runWebGPUProgram(realProgram, inputs2, "float32"); - imag5 = webgpuBackend.runWebGPUProgram(imagProgram, inputs2, "float32"); - } - const complexOutput = complex4({ inputs: { real: real6, imag: imag5 }, backend: webgpuBackend }); - webgpuBackend.disposeData(real6.dataId); - webgpuBackend.disposeData(imag5.dataId); - return complexOutput; - } - const $dtype = dtype || upcastType(a.dtype, b.dtype); - if ((a.dtype === "string" || b.dtype === "string" || webgpuBackend.shouldExecuteOnCPU([a, b])) && cpuKernelImpl != null) { - const aData = webgpuBackend.tensorMap.get(a.dataId).values; - const bData = webgpuBackend.tensorMap.get(b.dataId).values; - const decodedAVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aData) : aData; - const decodedBVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bData) : bData; - const [outValues, outShape] = cpuKernelImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype); - return webgpuBackend.makeTensorInfo(outShape, $dtype, outValues); - } - const program = new BinaryOpProgram2(opType, a.shape, b.shape); - return webgpuBackend.runWebGPUProgram(program, [a, b], $dtype); - }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/shared.js -var shared_exports2 = {}; -__export(shared_exports2, { - addImpl: () => addImpl2, - bincountImpl: () => bincountImpl2, - bincountReduceImpl: () => bincountReduceImpl2, - ceilImpl: () => ceilImpl2, - concatImpl: () => concatImpl3, - equalImpl: () => equalImpl2, - expImpl: () => expImpl2, - expm1Impl: () => expm1Impl2, - floorImpl: () => floorImpl2, - gatherNdImpl: () => gatherNdImpl2, - gatherV2Impl: () => gatherV2Impl2, - greaterEqualImpl: () => greaterEqualImpl2, - greaterImpl: () => greaterImpl2, - lessEqualImpl: () => lessEqualImpl2, - lessImpl: () => lessImpl2, - linSpaceImpl: () => linSpaceImpl2, - logImpl: () => logImpl2, - maxImpl: () => maxImpl3, - maximumImpl: () => maximumImpl2, - minimumImpl: () => minimumImpl2, - multiplyImpl: () => multiplyImpl2, - negImpl: () => negImpl2, - notEqualImpl: () => notEqualImpl2, - prodImpl: () => prodImpl2, - rangeImpl: () => rangeImpl2, - rsqrtImpl: () => rsqrtImpl2, - scatterImpl: () => scatterImpl2, - sigmoidImpl: () => sigmoidImpl2, - simpleAbsImpl: () => simpleAbsImpl2, - sliceImpl: () => sliceImpl2, - sparseFillEmptyRowsImpl: () => sparseFillEmptyRowsImpl2, - sparseReshapeImpl: () => sparseReshapeImpl2, - sparseSegmentReductionImpl: () => sparseSegmentReductionImpl2, - sqrtImpl: () => sqrtImpl2, - squaredDifferenceImpl: () => squaredDifferenceImpl2, - stridedSliceImpl: () => stridedSliceImpl2, - stringNGramsImpl: () => stringNGramsImpl2, - stringSplitImpl: () => stringSplitImpl2, - stringToHashBucketFastImpl: () => stringToHashBucketFastImpl2, - subImpl: () => subImpl2, - tileImpl: () => tileImpl2, - topKImpl: () => topKImpl2, - transposeImpl: () => transposeImpl3, - uniqueImpl: () => uniqueImpl2 -}); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/cpu_util.js -function assertNotComplex3(tensor2, opName) { - if (!Array.isArray(tensor2)) { - tensor2 = [tensor2]; - } - tensor2.forEach((t2) => { - if (t2 != null) { - util_exports.assert(t2.dtype !== "complex64", () => `${opName} does not support complex64 tensors in the CPU backend.`); - } - }); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Abs.js -function simpleAbsImpl2(vals) { - const resultValues = new Float32Array(vals.length); - for (let i2 = 0; i2 < vals.length; ++i2) { - resultValues[i2] = Math.abs(vals[i2]); - } - return resultValues; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/binary_impl.js -function createSimpleBinaryKernelImpl2(op2) { - return (aShape, bShape, aVals, bVals, dtype) => { - const newShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); - const resultRank = newShape.length; - const resultStrides = util_exports.computeStrides(newShape); - const resultSize = util_exports.sizeFromShape(newShape); - const result = util_exports.getTypedArrayFromDType(dtype, resultSize); - const aRank = aShape.length; - const bRank = bShape.length; - const aStrides = util_exports.computeStrides(aShape); - const bStrides = util_exports.computeStrides(bShape); - const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, newShape); - const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, newShape); - if (aBroadcastDims.length + bBroadcastDims.length === 0) { - for (let i2 = 0; i2 < result.length; ++i2) { - result[i2] = op2(aVals[i2 % aVals.length], bVals[i2 % bVals.length]); - } - } else { - for (let i2 = 0; i2 < result.length; ++i2) { - const loc = util_exports.indexToLoc(i2, resultRank, resultStrides); - const aLoc = loc.slice(-aRank); - aBroadcastDims.forEach((d) => aLoc[d] = 0); - const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides); - const bLoc = loc.slice(-bRank); - bBroadcastDims.forEach((d) => bLoc[d] = 0); - const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides); - result[i2] = op2(aVals[aIndex], bVals[bIndex]); - } - } - return [result, newShape]; - }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Complex.js -function complex5(args) { - const { inputs, backend: backend2 } = args; - const { real: real6, imag: imag5 } = inputs; - const realVals = backend2.data.get(real6.dataId).values; - const imagVals = backend2.data.get(imag5.dataId).values; - const complexInfo = backend2.makeTensorInfo(real6.shape, "complex64"); - const complex6 = backend2.data.get(complexInfo.dataId); - complex6.complexTensorInfos = { - real: backend2.makeTensorInfo(real6.shape, "float32", realVals), - imag: backend2.makeTensorInfo(imag5.shape, "float32", imagVals) - }; - return complexInfo; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/zeros_impl.js -function zeros4(backend2, shape, dtype = "float32") { - if (dtype === "complex64") { - const real6 = zeros4(backend2, shape, "float32"); - const imag5 = zeros4(backend2, shape, "float32"); - return complex5({ inputs: { real: real6, imag: imag5 }, backend: backend2 }); - } - const values = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(shape), dtype); - return backend2.makeTensorInfo(shape, dtype, values); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Identity.js -function identity6(args) { - const { inputs, backend: backend2 } = args; - const { x } = inputs; - backend2.incRef(x.dataId); - return { dataId: x.dataId, shape: x.shape, dtype: x.dtype }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Real.js -function real4(args) { - const { inputs, backend: backend2 } = args; - const { input: input2 } = inputs; - const real6 = backend2.data.get(input2.dataId).complexTensorInfos.real; - const realVal = backend2.data.get(real6.dataId).values; - return backend2.makeTensorInfo(real6.shape, real6.dtype, realVal); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Cast.js -function cast6(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { dtype } = attrs; - if (dtype === "complex64") { - if (x.dtype === "complex64") { - return identity6({ inputs: { x }, backend: backend2 }); - } - const zerosTensorInfo = zeros4(backend2, x.shape, x.dtype); - const floatX = cast6({ inputs: { x }, backend: backend2, attrs: { dtype: "float32" } }); - const result = complex5({ inputs: { real: floatX, imag: zerosTensorInfo }, backend: backend2 }); - backend2.disposeIntermediateTensorInfo(zerosTensorInfo); - backend2.disposeIntermediateTensorInfo(floatX); - return result; - } - if (x.dtype === "complex64") { - const realPart = real4({ inputs: { input: x }, backend: backend2 }); - const result = cast6({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } }); - backend2.disposeIntermediateTensorInfo(realPart); - return result; - } - if (!util_exports.hasEncodingLoss(x.dtype, dtype)) { - const result = identity6({ inputs: { x }, backend: backend2 }); - return { dataId: result.dataId, shape: result.shape, dtype }; - } - if (dtype === "int32") { - const values = backend2.data.get(x.dataId).values; - const resultValues = Int32Array.from(values); - return backend2.makeTensorInfo(x.shape, "int32", resultValues); - } - if (dtype === "bool") { - const xVals = backend2.data.get(x.dataId).values; - const zero = util_exports.toTypedArray([0], x.dtype); - const [resultData, resultShape] = createSimpleBinaryKernelImpl2((a, b) => a !== b ? 1 : 0)(x.shape, [], xVals, zero, "bool"); - return backend2.makeTensorInfo(resultShape, "bool", resultData); - } - throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/binary_utils.js -function binaryKernelFunc4(name, simpleImpl, complexImpl, dtype) { - if (complexImpl == null) { - return ({ inputs, backend: backend2 }) => { - const { a, b } = inputs; - const cpuBackend = backend2; - assertNotComplex3([a, b], name); - const aVals = cpuBackend.data.get(a.dataId).values; - const bVals = cpuBackend.data.get(b.dataId).values; - const decodedAVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aVals) : aVals; - const decodedBVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bVals) : bVals; - const $dtype = dtype || a.dtype; - const [resultData, resultShape] = simpleImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype); - return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData); - }; - } - return ({ inputs, backend: backend2 }) => { - const { a, b } = inputs; - const cpuBackend = backend2; - if (a.dtype === "complex64" || b.dtype === "complex64") { - const $aComplex = cast6({ inputs: { x: a }, backend: cpuBackend, attrs: { dtype: "complex64" } }); - const $aComplexVals = cpuBackend.data.get($aComplex.dataId); - const aReal = $aComplexVals.complexTensorInfos.real; - const aImag = $aComplexVals.complexTensorInfos.imag; - const aRealVals = cpuBackend.data.get(aReal.dataId).values; - const aImagVals = cpuBackend.data.get(aImag.dataId).values; - const $bComplex = cast6({ inputs: { x: b }, backend: cpuBackend, attrs: { dtype: "complex64" } }); - const $bComplexVals = cpuBackend.data.get($bComplex.dataId); - const bReal = $bComplexVals.complexTensorInfos.real; - const bImag = $bComplexVals.complexTensorInfos.imag; - const bRealVals = cpuBackend.data.get(bReal.dataId).values; - const bImagVals = cpuBackend.data.get(bImag.dataId).values; - const [resultRealData, resultImagData, resultShape] = complexImpl(a.shape, b.shape, aRealVals, aImagVals, bRealVals, bImagVals); - const resultReal = cpuBackend.makeTensorInfo(resultShape, "float32", resultRealData); - const resultImag = cpuBackend.makeTensorInfo(resultShape, "float32", resultImagData); - const result = complex5({ inputs: { real: resultReal, imag: resultImag }, backend: cpuBackend }); - cpuBackend.disposeIntermediateTensorInfo($aComplex); - cpuBackend.disposeIntermediateTensorInfo($bComplex); - cpuBackend.disposeIntermediateTensorInfo(resultReal); - cpuBackend.disposeIntermediateTensorInfo(resultImag); - return result; - } else { - const aVals = cpuBackend.data.get(a.dataId).values; - const bVals = cpuBackend.data.get(b.dataId).values; - const $dtype = dtype || a.dtype; - const [resultData, resultShape] = simpleImpl(a.shape, b.shape, aVals, bVals, $dtype); - return cpuBackend.makeTensorInfo(resultShape, $dtype, resultData); - } - }; -} -function createComplexBinaryKernelImpl2(op2) { - return (aShape, bShape, aRealVals, aImagVals, bRealVals, bImagVals) => { - const resultShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); - const resultSize = util_exports.sizeFromShape(resultShape); - const resultRank = resultShape.length; - const resultStrides = util_exports.computeStrides(resultShape); - const resultRealVals = util_exports.getTypedArrayFromDType("float32", resultSize); - const resultImagVals = util_exports.getTypedArrayFromDType("float32", resultSize); - const aBroadcastDims = backend_util_exports.getBroadcastDims(aShape, resultShape); - const bBroadcastDims = backend_util_exports.getBroadcastDims(bShape, resultShape); - const aVals = backend_util_exports.mergeRealAndImagArrays(aRealVals, aImagVals); - const bVals = backend_util_exports.mergeRealAndImagArrays(bRealVals, bImagVals); - const aRank = aShape.length; - const aStrides = util_exports.computeStrides(aShape); - const bRank = bShape.length; - const bStrides = util_exports.computeStrides(bShape); - if (aBroadcastDims.length + bBroadcastDims.length === 0) { - for (let i2 = 0; i2 < resultRealVals.length; i2++) { - const aIdx = i2 % aVals.length; - const bIdx = i2 % bVals.length; - const result = op2(aVals[aIdx * 2], aVals[aIdx * 2 + 1], bVals[bIdx * 2], bVals[bIdx * 2 + 1]); - resultRealVals[i2] = result.real; - resultImagVals[i2] = result.imag; - } - } else { - for (let i2 = 0; i2 < resultRealVals.length; i2++) { - const loc = util_exports.indexToLoc(i2, resultRank, resultStrides); - const aLoc = loc.slice(-aRank); - aBroadcastDims.forEach((d) => aLoc[d] = 0); - const aIndex = util_exports.locToIndex(aLoc, aRank, aStrides); - const bLoc = loc.slice(-bRank); - bBroadcastDims.forEach((d) => bLoc[d] = 0); - const bIndex = util_exports.locToIndex(bLoc, bRank, bStrides); - const opResult = op2(aVals[aIndex * 2], aVals[aIndex * 2 + 1], bVals[bIndex * 2], bVals[bIndex * 2 + 1]); - resultRealVals[i2] = opResult.real; - resultImagVals[i2] = opResult.imag; - } - } - return [resultRealVals, resultImagVals, resultShape]; - }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Add.js -var addImpl2 = createSimpleBinaryKernelImpl2((a, b) => a + b); -var addComplexImpl2 = createComplexBinaryKernelImpl2((aReal, aImag, bReal, bImag) => { - return { real: aReal + bReal, imag: aImag + bImag }; -}); -var add5 = binaryKernelFunc4(Add, addImpl2, addComplexImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Bincount_impl.js -function bincountImpl2(xVals, weightsVals, weightsDtype, weightsShape, size) { - const weightsSize = util_exports.sizeFromShape(weightsShape); - const outVals = util_exports.makeZerosTypedArray(size, weightsDtype); - for (let i2 = 0; i2 < xVals.length; i2++) { - const value = xVals[i2]; - if (value < 0) { - throw new Error("Input x must be non-negative!"); - } - if (value >= size) { - continue; - } - if (weightsSize > 0) { - outVals[value] += weightsVals[i2]; - } else { - outVals[value] += 1; - } - } - return outVals; -} -function bincountReduceImpl2(xBuf, weightsBuf, size, binaryOutput = false) { - const numRows = xBuf.shape[0]; - const numCols = xBuf.shape[1]; - const outBuf = buffer([numRows, size], weightsBuf.dtype); - for (let i2 = 0; i2 < numRows; i2++) { - for (let j = 0; j < numCols; j++) { - const value = xBuf.get(i2, j); - if (value < 0) { - throw new Error("Input x must be non-negative!"); - } - if (value >= size) { - continue; - } - if (binaryOutput) { - outBuf.set(1, i2, value); - } else { - if (weightsBuf.size > 0) { - outBuf.set(outBuf.get(i2, value) + weightsBuf.get(i2, j), i2, value); - } else { - outBuf.set(outBuf.get(i2, value) + 1, i2, value); - } - } - } - } - return outBuf; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/unary_impl.js -function createSimpleUnaryImpl2(op2) { - return (values, dtype, attrs) => { - const newValues = util_exports.getTypedArrayFromDType(dtype, values.length); - for (let i2 = 0; i2 < values.length; ++i2) { - newValues[i2] = op2(values[i2], attrs); - } - return newValues; - }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/utils/unary_utils.js -function unaryKernelFunc4(name, op2, dtype) { - return ({ inputs, attrs, backend: backend2 }) => { - const { x } = inputs; - assertNotComplex3(x, name); - if (x.dtype === "string" || dtype === "string") { - throw new Error("unaryKernelFunc does not support string input/output"); - } - const cpuBackend = backend2; - const values = cpuBackend.data.get(x.dataId).values; - const xSize = util_exports.sizeFromShape(x.shape); - const $dtype = dtype || x.dtype; - const newValues = util_exports.getArrayFromDType($dtype, xSize); - for (let i2 = 0; i2 < xSize; ++i2) { - newValues[i2] = op2(values[i2], attrs); - } - return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues); - }; -} -function unaryKernelFuncFromImpl2(name, unaryImpl, dtype) { - return ({ inputs, attrs, backend: backend2 }) => { - const { x } = inputs; - assertNotComplex3(x, name); - if (x.dtype === "string" || dtype === "string") { - throw new Error("unaryKernelFunc does not support string input/output"); - } - const cpuBackend = backend2; - const values = cpuBackend.data.get(x.dataId).values; - const $dtype = dtype || x.dtype; - const newValues = unaryImpl(values, $dtype, attrs); - return cpuBackend.makeTensorInfo(x.shape, $dtype, newValues); - }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Ceil.js -var ceilImpl2 = createSimpleUnaryImpl2((xi) => Math.ceil(xi)); -var ceil4 = unaryKernelFuncFromImpl2(Ceil, ceilImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Concat_impl.js -function concatImpl3(inputs, outShape, dtype, simplyConcat) { - const outVals = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(outShape)); - if (simplyConcat && dtype !== "string") { - let offset = 0; - inputs.forEach((input2) => { - const size = util_exports.sizeFromShape(input2.shape); - outVals.set(input2.vals, offset); - offset += size; - }); - } else { - let colOffset = 0; - inputs.forEach((input2) => { - const decodedData = dtype === "string" ? backend_util_exports.fromUint8ToStringArray(input2.vals) : input2.vals; - let tIdx = 0; - for (let row = 0; row < input2.shape[0]; ++row) { - const resIdx = row * outShape[1] + colOffset; - for (let col = 0; col < input2.shape[1]; ++col) { - outVals[resIdx + col] = decodedData[tIdx++]; - } - } - colOffset += input2.shape[1]; - }); - } - return outVals; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Equal.js -var equalImpl2 = createSimpleBinaryKernelImpl2((a, b) => a === b ? 1 : 0); -var equal4 = binaryKernelFunc4(Equal, equalImpl2, null, "bool"); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Exp.js -var expImpl2 = createSimpleUnaryImpl2((xi) => Math.exp(xi)); -var exp4 = unaryKernelFuncFromImpl2(Exp, expImpl2, "float32"); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Expm1.js -var expm1Impl2 = createSimpleUnaryImpl2((xi) => Math.expm1(xi)); -var expm14 = unaryKernelFuncFromImpl2(Expm1, expm1Impl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Floor.js -var floorImpl2 = createSimpleUnaryImpl2((xi) => Math.floor(xi)); -var floor4 = unaryKernelFuncFromImpl2(Floor, floorImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherNd_Impl.js -function gatherNdImpl2(indicesData, paramsBuf, dtype, numSlices, sliceRank, sliceSize, strides, paramsShape, paramsSize) { - const outBuf = buffer([numSlices, sliceSize], dtype); - for (let i2 = 0; i2 < numSlices; i2++) { - const index = []; - let flattenIndex = 0; - for (let j = 0; j < sliceRank; j++) { - const dim = indicesData[i2 * sliceRank + j]; - flattenIndex += dim * strides[j]; - index.push(dim); - } - if (flattenIndex < 0 || flattenIndex >= paramsSize / sliceSize) { - throw new Error(`Invalid indices: ${index} does not index into ${paramsShape}`); - } - for (let k = 0; k < sliceSize; k++) { - outBuf.values[i2 * sliceSize + k] = paramsBuf.get(...paramsBuf.indexToLoc(flattenIndex * sliceSize + k)); - } - } - return outBuf; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GatherV2_impl.js -function gatherV2Impl2(xBuf, indicesBuf, flattenOutputShape) { - const outBuf = buffer(flattenOutputShape, xBuf.dtype); - for (let i2 = 0; i2 < outBuf.size; ++i2) { - const newLoc = outBuf.indexToLoc(i2); - const originalLoc = newLoc.slice(); - const batchIdx = originalLoc[0]; - const indicesIdx = originalLoc[2]; - const indicesIndex = indicesBuf.locToIndex([batchIdx, indicesIdx]); - originalLoc[2] = indicesBuf.values[indicesIndex]; - const originalIndex = xBuf.locToIndex(originalLoc); - if (0 <= originalIndex && originalIndex < xBuf.values.length) { - outBuf.values[i2] = xBuf.values[originalIndex]; - } - } - return outBuf; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Greater.js -var greaterImpl2 = createSimpleBinaryKernelImpl2((a, b) => a > b ? 1 : 0); -var greater5 = binaryKernelFunc4(Greater, greaterImpl2, null, "bool"); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/GreaterEqual.js -var greaterEqualImpl2 = createSimpleBinaryKernelImpl2((a, b) => a >= b ? 1 : 0); -var greaterEqual4 = binaryKernelFunc4(GreaterEqual, greaterEqualImpl2, null, "bool"); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Less.js -var lessImpl2 = createSimpleBinaryKernelImpl2((a, b) => a < b ? 1 : 0); -var less5 = binaryKernelFunc4(Less, lessImpl2, null, "bool"); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LessEqual.js -var lessEqualImpl2 = createSimpleBinaryKernelImpl2((a, b) => a <= b ? 1 : 0); -var lessEqual4 = binaryKernelFunc4(LessEqual, lessEqualImpl2, null, "bool"); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/LinSpace_impl.js -function linSpaceImpl2(start, stop, num) { - const step5 = (stop - start) / (num - 1); - const values = util_exports.makeZerosTypedArray(num, "float32"); - values[0] = start; - for (let i2 = 1; i2 < values.length; i2++) { - values[i2] = values[i2 - 1] + step5; - } - return values; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Log.js -var logImpl2 = createSimpleUnaryImpl2((xi) => Math.log(xi)); -var log5 = unaryKernelFuncFromImpl2(Log, logImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Max_impl.js -function maxImpl3(aVals, reduceSize, outShape, dtype) { - const vals = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(outShape)); - for (let i2 = 0; i2 < vals.length; ++i2) { - const offset = i2 * reduceSize; - let max7 = aVals[offset]; - for (let j = 0; j < reduceSize; ++j) { - const value = aVals[offset + j]; - if (Number.isNaN(value) || value > max7) { - max7 = value; - } - } - vals[i2] = max7; - } - return vals; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Maximum.js -var maximumImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => Math.max(aValue, bValue)); -var maximum5 = binaryKernelFunc4(Maximum, maximumImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Minimum.js -var minimumImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => Math.min(aValue, bValue)); -var minimum5 = binaryKernelFunc4(Minimum, minimumImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Multiply.js -var multiplyImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => aValue * bValue); -var multiplyComplexImpl2 = createComplexBinaryKernelImpl2((aReal, aImag, bReal, bImag) => { - return { - real: aReal * bReal - aImag * bImag, - imag: aReal * bImag + aImag * bReal - }; -}); -var multiply4 = binaryKernelFunc4(Multiply, multiplyImpl2, multiplyComplexImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Neg.js -function negImpl2(xVals, xShape, xDtype) { - const minusOne = util_exports.createScalarValue(-1, xDtype); - return multiplyImpl2([], xShape, minusOne, xVals, xDtype); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/NotEqual.js -var notEqualImpl2 = createSimpleBinaryKernelImpl2((a, b) => a !== b ? 1 : 0); -var notEqual4 = binaryKernelFunc4(NotEqual, notEqualImpl2, null, "bool"); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Transpose_impl.js -function transposeImpl3(xVals, xShape, dtype, perm, newShape) { - const xRank = xShape.length; - const xSize = util_exports.sizeFromShape(xShape); - const xStrides = util_exports.computeStrides(xShape); - const newStrides = util_exports.computeStrides(newShape); - const result = util_exports.getTypedArrayFromDType(dtype, util_exports.sizeFromShape(newShape)); - for (let i2 = 0; i2 < xSize; ++i2) { - const loc = util_exports.indexToLoc(i2, xRank, xStrides); - const newLoc = new Array(loc.length); - for (let i3 = 0; i3 < newLoc.length; i3++) { - newLoc[i3] = loc[perm[i3]]; - } - const newIndex = util_exports.locToIndex(newLoc, xRank, newStrides); - result[newIndex] = xVals[i2]; - } - return result; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Prod.js -function prodImpl2(xShape, xDtype, xVals, reductionAxes) { - const [outShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(xShape, reductionAxes); - const outDtype = upcastType(xDtype, "int32"); - const outVals = util_exports.makeZerosTypedArray(util_exports.sizeFromShape(outShape), outDtype); - const reduceSize = util_exports.sizeFromShape(reduceShape); - for (let i2 = 0; i2 < outVals.length; ++i2) { - const offset = i2 * reduceSize; - let prod6 = 1; - for (let j = 0; j < reduceSize; ++j) { - prod6 *= xVals[offset + j]; - } - outVals[i2] = prod6; - } - return { outVals, outShape, outDtype }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Range_impl.js -function rangeImpl2(start, stop, step5, dtype) { - const sameStartStop = start === stop; - const increasingRangeNegativeStep = start < stop && step5 < 0; - const decreasingRangePositiveStep = stop < start && step5 > 1; - if (sameStartStop || increasingRangeNegativeStep || decreasingRangePositiveStep) { - return util_exports.makeZerosTypedArray(0, dtype); - } - const numElements = Math.abs(Math.ceil((stop - start) / step5)); - const values = util_exports.makeZerosTypedArray(numElements, dtype); - if (stop < start && step5 === 1) { - step5 = -1; - } - values[0] = start; - for (let i2 = 1; i2 < values.length; i2++) { - values[i2] = values[i2 - 1] + step5; - } - return values; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Rsqrt.js -var rsqrtImpl2 = createSimpleUnaryImpl2((xi) => 1 / Math.sqrt(xi)); -var rsqrt4 = unaryKernelFuncFromImpl2(Rsqrt, rsqrtImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Scatter_impl.js -function scatterImpl2(indices, updates, shape, outputSize, sliceSize, numUpdates, sliceRank, strides, defaultValue, sumDupeIndices) { - const flattenShape = [outputSize / sliceSize, sliceSize]; - const indicesData = indices.values; - const updatesData = updates.values; - if (outputSize === 0) { - return buffer(shape, updates.dtype); - } - const outBuf = buffer(flattenShape, updates.dtype); - if (typeof defaultValue === "string") { - outBuf.values.fill(defaultValue); - } else if (typeof defaultValue === "number") { - outBuf.values.fill(defaultValue); - } else if (typeof defaultValue === "boolean") { - outBuf.values.fill(+defaultValue); - } - for (let i2 = 0; i2 < numUpdates; i2++) { - const index = []; - let flattenIndex = 0; - for (let j = 0; j < sliceRank; j++) { - const dim = indicesData[i2 * sliceRank + j]; - index.push(dim); - flattenIndex += dim * strides[j]; - } - if (flattenIndex < 0 || flattenIndex >= outputSize / sliceSize) { - throw new Error(`Invalid indices: ${index} does not index into ${shape}`); - } - for (let k = 0; k < sliceSize; k++) { - if (sumDupeIndices) { - outBuf.values[flattenIndex * sliceSize + k] += updatesData[i2 * sliceSize + k]; - } else { - outBuf.values[flattenIndex * sliceSize + k] = updates.rank === 0 ? updatesData[0] : updatesData[i2 * sliceSize + k]; - } - } - } - return outBuf; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sigmoid.js -var sigmoidImpl2 = createSimpleUnaryImpl2((xi) => 1 / (1 + Math.exp(-xi))); -var sigmoid5 = unaryKernelFunc4(Sigmoid, (xi) => 1 / (1 + Math.exp(-xi))); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Slice.js -function sliceImpl2(vals, begin, size, shape, dtype) { - const isContinous = slice_util_exports.isSliceContinous(shape, begin, size); - const length = util_exports.sizeFromShape(size); - const xStrides = util_exports.computeStrides(shape); - if (isContinous) { - const flatOffset = slice_util_exports.computeFlatOffset(begin, xStrides); - if (dtype === "string") { - return vals.slice(flatOffset, flatOffset + length); - } - return vals.subarray(flatOffset, flatOffset + length); - } - const decodedData = dtype === "string" ? backend_util_exports.fromUint8ToStringArray(vals) : vals; - const inBuf = buffer(shape, dtype, decodedData); - const outBuf = buffer(size, dtype); - for (let i2 = 0; i2 < outBuf.size; ++i2) { - const outLoc = outBuf.indexToLoc(i2); - const inLoc = outLoc.map((idx, j) => idx + begin[j]); - outBuf.set(inBuf.get(...inLoc), ...outLoc); - } - if (dtype === "string") { - return backend_util_exports.fromStringArrayToUint8(outBuf.values); - } - return outBuf.values; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseFillEmptyRows_impl.js -function sparseFillEmptyRowsImpl2(indices, indicesShape, indicesDType, values, valuesDType, denseShape, defaultValue) { - const indicesCount = indicesShape[0]; - const denseRows = denseShape[0]; - const emptyRowIndicator = new Array(denseRows); - const reverseIndexMap = new Array(indicesCount); - const rank = indicesShape[1]; - if (denseRows === 0) { - if (indicesCount !== 0) { - throw new Error(backend_util_exports.getSparseFillEmptyRowsIndicesDenseShapeMismatch(indicesCount)); - } - const outputIndices = util_exports.getArrayFromDType(indicesDType, 0); - const outputValues = util_exports.getArrayFromDType(valuesDType, 0); - return [ - outputIndices, - [0, rank], - outputValues, - emptyRowIndicator, - reverseIndexMap - ]; - } - let rowsAreOrdered = true; - let lastIndicesRow = 0; - const csrOffset = new Array(denseRows).fill(0); - for (let i2 = 0; i2 < indicesCount; ++i2) { - const row = indices[i2 * rank]; - if (row < 0) { - throw new Error(backend_util_exports.getSparseFillEmptyRowsNegativeIndexErrorMessage(i2, row)); - } - if (row >= denseRows) { - throw new Error(backend_util_exports.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(i2, row, denseRows)); - } - ++csrOffset[row]; - rowsAreOrdered = rowsAreOrdered && row >= lastIndicesRow; - lastIndicesRow = row; - } - let allRowsFull = true; - for (let row = 0; row < denseRows; ++row) { - const rowEmpty = csrOffset[row] === 0; - emptyRowIndicator[row] = rowEmpty; - allRowsFull = allRowsFull && !rowEmpty; - csrOffset[row] = Math.max(csrOffset[row], 1); - if (row > 0) { - csrOffset[row] += csrOffset[row - 1]; - } - } - if (allRowsFull && rowsAreOrdered) { - const outputIndices = indices; - const outputValues = values; - for (let i2 = 0; i2 < indicesCount; ++i2) { - reverseIndexMap[i2] = i2; - } - return [ - outputIndices, - [indicesCount, rank], - outputValues, - emptyRowIndicator, - reverseIndexMap - ]; - } else { - const fullIndicesCount = csrOffset[denseRows - 1]; - const outputIndices = util_exports.getArrayFromDType(indicesDType, fullIndicesCount * rank); - const outputValues = util_exports.getArrayFromDType(valuesDType, fullIndicesCount); - const filledCount = new Array(denseRows).fill(0); - for (let i2 = 0; i2 < indicesCount; ++i2) { - const row = indices[i2 * rank]; - const offset = filledCount[row]; - const outputI = (row === 0 ? 0 : csrOffset[row - 1]) + offset; - filledCount[row]++; - for (let j = 0; j < rank; ++j) { - outputIndices[outputI * rank + j] = indices[i2 * rank + j]; - } - outputValues[outputI] = values[i2]; - reverseIndexMap[i2] = outputI; - } - for (let row = 0; row < denseRows; ++row) { - const rowCount = filledCount[row]; - if (rowCount === 0) { - const startingIndex = row === 0 ? 0 : csrOffset[row - 1]; - outputIndices[startingIndex * rank + 0] = row; - for (let col = 1; col < rank; ++col) { - outputIndices[startingIndex * rank + col] = 0; - } - outputValues[startingIndex] = defaultValue; - } - } - return [ - outputIndices, - [fullIndicesCount, rank], - outputValues, - emptyRowIndicator, - reverseIndexMap - ]; - } -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseReshape_impl.js -function sparseReshapeImpl2(inputIndices, inputIndicesShape, inputDType, inputShape, targetShape) { - const denseSize = util_exports.sizeFromShape(inputShape); - const nnz = inputIndicesShape[0]; - const outputRank = targetShape.length; - const outputShape = []; - let product = 1; - let unknownIndex = -1; - for (let d = 0; d < outputRank; ++d) { - const size = targetShape[d]; - if (size === -1) { - if (unknownIndex !== -1) { - throw new Error(backend_util_exports.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(unknownIndex, d)); - } - unknownIndex = d; - outputShape.push(1); - } else { - if (size < 0) { - throw new Error(backend_util_exports.getSparseReshapeNegativeOutputDimErrorMessage(d, size)); - } - product *= size; - outputShape.push(size); - } - } - if (unknownIndex !== -1) { - if (product <= 0) { - throw new Error(backend_util_exports.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage()); - } - const missing = Math.trunc(denseSize / product); - if (product * missing !== denseSize) { - throw new Error(backend_util_exports.getSparseReshapeInputOutputMultipleErrorMessage(inputShape, outputShape)); - } - outputShape[unknownIndex] = missing; - } - const outputSize = util_exports.sizeFromShape(outputShape); - if (outputSize !== denseSize) { - throw new Error(backend_util_exports.getSparseReshapeInputOutputMismatchErrorMessage(inputShape, outputShape)); - } - const inputRank = inputShape.length; - const inputStrides = []; - if (inputRank > 0) { - inputStrides[inputRank - 1] = 1; - for (let d = inputRank - 2; d >= 0; --d) { - inputStrides[d] = inputStrides[d + 1] * inputShape[d + 1]; - } - } - const outputStrides = []; - if (outputRank > 0) { - outputStrides[outputRank - 1] = 1; - for (let d = outputRank - 2; d >= 0; --d) { - outputStrides[d] = outputStrides[d + 1] * outputShape[d + 1]; - } - } - const newIndices = util_exports.getArrayFromDType(inputDType, nnz * outputRank); - for (let i2 = 0; i2 < nnz; ++i2) { - let id = 0; - for (let j = 0; j < inputRank; ++j) { - id += inputIndices[i2 * inputRank + j] * inputStrides[j]; - } - for (let j = 0; j < outputRank; ++j) { - newIndices[i2 * outputRank + j] = Math.trunc(id / outputStrides[j]); - id %= outputStrides[j]; - } - } - return [newIndices, [nnz, outputRank], outputShape]; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SparseSegmentReduction_impl.js -function sparseSegmentReductionImpl2(input2, inputShape, inputDType, indices, segmentIds, isMean = false, defaultValue = 0) { - const numIndices = indices.length; - const inputFlat = [inputShape[0], input2.length / inputShape[0]]; - const numCol = inputFlat[1]; - const lastSegmentIdPlusOne = numIndices > 0 ? segmentIds[numIndices - 1] + 1 : 0; - const outputRows = lastSegmentIdPlusOne; - if (outputRows < 0) { - throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage()); - } - const outputShape = inputShape.slice(); - outputShape[0] = outputRows; - const outputLength = outputShape.reduce((product, value) => product * value, 1); - const output = util_exports.getArrayFromDType(inputDType, outputLength); - if (numIndices === 0) { - if (outputRows > 0) { - output.fill(defaultValue); - } - return [output, outputShape]; - } - if (outputRows <= 0) { - throw new Error(backend_util_exports.getSparseSegmentReductionNegativeSegmentIdsErrorMessage()); - } - let start = 0, end = 1; - let uninitializedIndex = 0; - let outIndex = segmentIds[start]; - while (true) { - let nextIndex = 0; - if (end < numIndices) { - nextIndex = segmentIds[end]; - if (outIndex === nextIndex) { - ++end; - continue; - } - if (outIndex >= nextIndex) { - throw new Error(backend_util_exports.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage()); - } - } - if (outIndex < 0 || outIndex >= outputRows) { - throw new Error(backend_util_exports.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(outIndex, outputRows)); - } - if (outIndex > uninitializedIndex) { - output.fill(defaultValue, uninitializedIndex * numCol, outIndex * numCol); - } - for (let i2 = start; i2 < end; ++i2) { - const index = indices[i2]; - if (index < 0 || index >= inputFlat[0]) { - throw new Error(backend_util_exports.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(i2, indices[i2], inputFlat[0])); - } - for (let j = 0; j < numCol; j++) { - output[outIndex * numCol + j] += input2[index * numCol + j]; - } - } - if (isMean) { - for (let j = 0; j < numCol; j++) { - output[outIndex * numCol + j] /= end - start; - } - } - start = end; - ++end; - uninitializedIndex = outIndex + 1; - outIndex = nextIndex; - if (end > numIndices) { - break; - } - } - if (uninitializedIndex < outputRows) { - output.fill(defaultValue, uninitializedIndex * numCol, outputRows * numCol); - } - return [output, outputShape]; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sqrt.js -var sqrtImpl2 = createSimpleUnaryImpl2((xi) => Math.sqrt(xi)); -var sqrt4 = unaryKernelFunc4(Sqrt, (xi) => Math.sqrt(xi)); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/SquaredDifference.js -var squaredDifferenceImpl2 = createSimpleBinaryKernelImpl2((a, b) => { - const diff = a - b; - return diff * diff; -}); -var squaredDifference4 = binaryKernelFunc4(SquaredDifference, squaredDifferenceImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StridedSlice_impl.js -function stridedSliceImpl2(outShape, xBuf, strides, begin) { - const outBuf = buffer(outShape, xBuf.dtype); - for (let i2 = 0; i2 < outBuf.size; i2++) { - const loc = outBuf.indexToLoc(i2); - const newLoc = new Array(loc.length); - for (let j = 0; j < newLoc.length; j++) { - newLoc[j] = loc[j] * strides[j] + begin[j]; - } - outBuf.set(xBuf.get(...newLoc), ...loc); - } - return outBuf; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringNGrams_impl.js -var StringNGramsOp2 = class { - constructor(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) { - this.separator = util_exports.encodeString(separator); - this.nGramWidths = nGramWidths; - this.leftPad = util_exports.encodeString(leftPad); - this.rightPad = util_exports.encodeString(rightPad2); - this.padWidth = padWidth; - this.preserveShort = preserveShortSequences; - } - getPadWidth(nGramWidth) { - return Math.min(this.padWidth < 0 ? nGramWidth - 1 : this.padWidth, nGramWidth - 1); - } - getNumNGrams(length, nGramWidth) { - const padWidth = this.getPadWidth(nGramWidth); - return Math.max(0, length + 2 * padWidth - nGramWidth + 1); - } - createNGrams(data, splitIndex, output, outputStartIndex, numNGrams, nGramWidth) { - for (let nGramIndex = 0; nGramIndex < numNGrams; ++nGramIndex) { - const padWidth = this.getPadWidth(nGramWidth); - const leftPadding = Math.max(0, padWidth - nGramIndex); - const rightPadding = Math.max(0, padWidth - (numNGrams - (nGramIndex + 1))); - const numTokens = nGramWidth - (leftPadding + rightPadding); - const dataStartIndex = splitIndex + (leftPadding > 0 ? 0 : nGramIndex - padWidth); - let nGramSize = 0; - nGramSize += leftPadding * this.leftPad.length; - for (let n2 = 0; n2 < numTokens; ++n2) { - nGramSize += data[dataStartIndex + n2].length; - } - nGramSize += rightPadding * this.rightPad.length; - const numSeparators = leftPadding + rightPadding + numTokens - 1; - nGramSize += numSeparators * this.separator.length; - output[outputStartIndex + nGramIndex] = new Uint8Array(nGramSize); - const nGram = output[outputStartIndex + nGramIndex]; - let nextNGramIndex = 0; - const appendToNGram = (str) => str.forEach((value) => nGram[nextNGramIndex++] = value); - for (let n2 = 0; n2 < leftPadding; ++n2) { - appendToNGram(this.leftPad); - appendToNGram(this.separator); - } - for (let n2 = 0; n2 < numTokens - 1; ++n2) { - appendToNGram(data[dataStartIndex + n2]); - appendToNGram(this.separator); - } - if (numTokens > 0) { - appendToNGram(data[dataStartIndex + numTokens - 1]); - for (let n2 = 0; n2 < rightPadding; ++n2) { - appendToNGram(this.separator); - appendToNGram(this.rightPad); - } - } else { - for (let n2 = 0; n2 < rightPadding - 1; ++n2) { - appendToNGram(this.rightPad); - appendToNGram(this.separator); - } - appendToNGram(this.rightPad); - } - } - } - compute(data, splits) { - const inputDataSize = data.length; - const splitsSize = splits.length; - if (splitsSize > 0) { - let prevSplit = splits[0]; - if (prevSplit !== 0) { - throw new Error(`First split value must be 0, got ${prevSplit}`); - } - for (let i2 = 1; i2 < splitsSize; ++i2) { - let validSplits = splits[i2] >= prevSplit; - validSplits = validSplits && splits[i2] <= inputDataSize; - if (!validSplits) { - throw new Error(`Invalid split value ${splits[i2]}, must be in [${prevSplit}, ${inputDataSize}]`); - } - prevSplit = splits[i2]; - } - if (prevSplit !== inputDataSize) { - throw new Error(`Last split value must be data size. Expected ${inputDataSize}, got ${prevSplit}`); - } - } - const numBatchItems = splitsSize - 1; - const nGramsSplits = util_exports.getArrayFromDType("int32", splitsSize); - if (inputDataSize === 0 || splitsSize === 0) { - const empty = new Array(inputDataSize); - for (let i2 = 0; i2 <= numBatchItems; ++i2) { - nGramsSplits[i2] = 0; - } - return [empty, nGramsSplits]; - } - nGramsSplits[0] = 0; - for (let i2 = 1; i2 <= numBatchItems; ++i2) { - const length = splits[i2] - splits[i2 - 1]; - let numNGrams = 0; - this.nGramWidths.forEach((nGramWidth) => { - numNGrams += this.getNumNGrams(length, nGramWidth); - }); - if (this.preserveShort && length > 0 && numNGrams === 0) { - numNGrams = 1; - } - nGramsSplits[i2] = nGramsSplits[i2 - 1] + numNGrams; - } - const nGrams = new Array(nGramsSplits[numBatchItems]); - for (let i2 = 0; i2 < numBatchItems; ++i2) { - const splitIndex = splits[i2]; - let outputStartIdx = nGramsSplits[i2]; - this.nGramWidths.forEach((nGramWidth) => { - const length = splits[i2 + 1] - splits[i2]; - const numNGrams = this.getNumNGrams(length, nGramWidth); - this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth); - outputStartIdx += numNGrams; - }); - if (this.preserveShort && outputStartIdx === nGramsSplits[i2]) { - const dataLength = splits[i2 + 1] - splits[i2]; - if (dataLength === 0) { - continue; - } - const nGramWidth = dataLength + 2 * this.padWidth; - const numNGrams = 1; - this.createNGrams(data, splitIndex, nGrams, outputStartIdx, numNGrams, nGramWidth); - } - } - return [nGrams, nGramsSplits]; - } -}; -function stringNGramsImpl2(data, dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences) { - return new StringNGramsOp2(separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences).compute(data, dataSplits); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringSplit_impl.js -function split4(str, delimiters, skipEmpty, result) { - if (!str.length) { - return; - } - if (delimiters.length === 0) { - for (let i2 = 0; i2 < str.length; ++i2) { - result.push(str.subarray(i2, i2 + 1)); - } - return; - } - if (delimiters.length === 1) { - const delimiter = delimiters[0]; - let f = str.indexOf(delimiter); - while (f !== -1) { - const token = str.subarray(0, f); - if (!skipEmpty || token.length !== 0) { - result.push(token); - } - str = str.subarray(f + 1); - f = str.indexOf(delimiter); - } - if (!skipEmpty || str.length !== 0) { - result.push(str); - } - return; - } - let tokenStart = 0; - for (let i2 = 0; i2 < str.length + 1; i2++) { - if (i2 === str.length || delimiters.indexOf(str[i2]) !== -1) { - const token = str.subarray(tokenStart, i2); - if (!skipEmpty || token.length !== 0) { - result.push(token); - } - tokenStart = i2 + 1; - } - } -} -function stringSplitImpl2(input2, delimiter, skipEmpty) { - const batchSize = input2.length; - const tokens = []; - let outputSize = 0; - let maxNumEntries = 0; - const numIndices = new Array(batchSize); - for (let i2 = 0; i2 < batchSize; ++i2) { - const prevTokensLength = tokens.length; - split4(input2[i2], delimiter, skipEmpty, tokens); - const nEntries = tokens.length - prevTokensLength; - numIndices[i2] = nEntries; - outputSize += nEntries; - maxNumEntries = Math.max(maxNumEntries, nEntries); - } - const indices = util_exports.getArrayFromDType("int32", outputSize * 2); - const values = new Array(outputSize); - const shape = [batchSize, maxNumEntries]; - let c = 0; - for (let i2 = 0; i2 < batchSize; ++i2) { - for (let j = 0; j < numIndices[i2]; ++j) { - indices[c * 2] = i2; - indices[c * 2 + 1] = j; - values[c] = tokens[c]; - ++c; - } - } - return [indices, values, shape]; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/StringToHashBucketFast_impl.js -function stringToHashBucketFastImpl2(input2, numBuckets) { - const output = util_exports.getArrayFromDType("int32", input2.length); - for (let i2 = 0; i2 < input2.length; ++i2) { - output[i2] = util_exports.fingerPrint64(input2[i2]).modulo(numBuckets).getLowBitsUnsigned(); - } - return output; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Sub.js -var subImpl2 = createSimpleBinaryKernelImpl2((aValue, bValue) => aValue - bValue); -var subComplexImpl2 = createComplexBinaryKernelImpl2((aReal, aImag, bReal, bImag) => { - return { real: aReal - bReal, imag: aImag - bImag }; -}); -var sub4 = binaryKernelFunc4(Sub, subImpl2, subComplexImpl2); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Tile_impl.js -function tileImpl2(xBuf, reps) { - const newShape = new Array(xBuf.rank); - for (let i2 = 0; i2 < newShape.length; i2++) { - newShape[i2] = xBuf.shape[i2] * reps[i2]; - } - const result = buffer(newShape, xBuf.dtype); - for (let i2 = 0; i2 < result.values.length; ++i2) { - const newLoc = result.indexToLoc(i2); - const originalLoc = new Array(xBuf.rank); - for (let j = 0; j < originalLoc.length; j++) { - originalLoc[j] = newLoc[j] % xBuf.shape[j]; - } - const originalIndex = xBuf.locToIndex(originalLoc); - result.values[i2] = xBuf.values[originalIndex]; - } - return result; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/TopK_impl.js -var comparePair2 = (a, b) => { - const valueDiff = b.value - a.value; - return valueDiff === 0 ? a.index - b.index : valueDiff; -}; -function select5(array2, k, left = 0, right = array2.length - 1) { - while (right > left) { - if (right - left > 600) { - const n2 = right - left + 1; - const i3 = k - left + 1; - const z = Math.log(n2); - const s2 = 0.5 * Math.exp(2 * z / 3); - const sd = 0.5 * Math.sqrt(z * s2 * (n2 - s2) / n2) * Math.sign(i3 - n2 / 2); - const newLeft = Math.max(left, Math.floor(k - i3 * s2 / n2 + sd)); - const newRight = Math.min(right, Math.floor(k + (n2 - i3) * s2 / n2 + sd)); - select5(array2, k, newLeft, newRight); - } - const t2 = array2[k]; - let i2 = left; - let j = right; - util_exports.swap(array2, left, k); - if (comparePair2(array2[right], t2) > 0) { - util_exports.swap(array2, left, right); - } - while (i2 < j) { - util_exports.swap(array2, i2, j); - i2++; - j--; - while (comparePair2(array2[i2], t2) < 0) { - i2 = i2 + 1; - } - while (comparePair2(array2[j], t2) > 0) { - j = j - 1; - } - } - if (comparePair2(array2[left], t2) === 0) { - util_exports.swap(array2, left, j); - } else { - j = j + 1; - util_exports.swap(array2, j, right); - } - if (j <= k) { - left = j + 1; - } - if (k <= j) { - right = j - 1; - } - } -} -function topKImpl2(x, xShape, xDtype, k, sorted) { - const lastDim = xShape[xShape.length - 1]; - const [batch, size] = [x.length / lastDim, lastDim]; - const allTopKVals = util_exports.getTypedArrayFromDType(xDtype, batch * k); - const allTopKIndices = util_exports.getTypedArrayFromDType("int32", batch * k); - for (let b = 0; b < batch; b++) { - const offset = b * size; - const vals = x.subarray(offset, offset + size); - let valAndInd = new Array(vals.length); - vals.forEach((value, index) => valAndInd[index] = { value, index }); - if (k < valAndInd.length) { - select5(valAndInd, k); - valAndInd = valAndInd.slice(0, k); - } - if (sorted) { - valAndInd.sort(comparePair2); - } - const outOffset = b * k; - const topKVals = allTopKVals.subarray(outOffset, outOffset + k); - const topKIndices = allTopKIndices.subarray(outOffset, outOffset + k); - for (let i2 = 0; i2 < k; i2++) { - topKVals[i2] = valAndInd[i2].value; - topKIndices[i2] = valAndInd[i2].index; - } - } - const outputShape = xShape.slice(); - outputShape[outputShape.length - 1] = k; - return [ - buffer(outputShape, xDtype, allTopKVals), - buffer(outputShape, "int32", allTopKIndices) - ]; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.19.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-cpu/dist/kernels/Unique_impl.js -function uniqueImpl2(values, axis, shape, dtype) { - const $axis = util_exports.parseAxisParam(axis, shape)[0]; - const newShape = [1, shape[0], 1]; - for (let i2 = 0; i2 < $axis; i2++) { - newShape[0] *= shape[i2]; - } - newShape[1] = shape[$axis]; - for (let i2 = $axis + 1; i2 < shape.length; i2++) { - newShape[2] *= shape[i2]; - } - const uniqueElements = {}; - const indices = new Int32Array(shape[$axis]); - const inputBuffer = new TensorBuffer(newShape, dtype, values); - const uniqueIndices = []; - const is1DTensor = newShape[0] === 1 && newShape[2] === 1; - for (let i2 = 0; i2 < shape[$axis]; i2++) { - let element; - if (is1DTensor) { - element = values[i2].toString(); - } else { - const axisValues = []; - for (let m = 0; m < newShape[0]; m++) { - for (let n2 = 0; n2 < newShape[2]; n2++) { - axisValues.push(inputBuffer.get(m, i2, n2)); - } - } - element = axisValues.join(","); - } - if (uniqueElements[element] !== void 0) { - indices[i2] = uniqueElements[element]; - } else { - const uniqueIndex = Object.keys(uniqueElements).length; - uniqueElements[element] = uniqueIndex; - indices[i2] = uniqueIndex; - uniqueIndices.push(i2); - } - } - const outputTmpShape = newShape.slice(); - outputTmpShape[1] = Object.keys(uniqueElements).length; - const outputBuffer = new TensorBuffer(outputTmpShape, dtype); - uniqueIndices.forEach((uniqueElementIndex, i2) => { - for (let m = 0; m < newShape[0]; m++) { - for (let n2 = 0; n2 < newShape[2]; n2++) { - outputBuffer.set(inputBuffer.get(m, uniqueElementIndex, n2), m, i2, n2); - } - } - }); - const outputShape = shape.slice(); - outputShape[$axis] = outputTmpShape[1]; - return { - outputValues: outputBuffer.values, - outputShape, - indices - }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/shared.js -var { addImpl: addImplCPU2, ceilImpl: ceilImplCPU2, concatImpl: concatImplCPU2, equalImpl: equalImplCPU2, expImpl: expImplCPU2, expm1Impl: expm1ImplCPU2, floorImpl: floorImplCPU2, gatherNdImpl: gatherNdImplCPU2, gatherV2Impl: gatherV2ImplCPU2, greaterEqualImpl: greaterEqualImplCPU2, greaterImpl: greaterImplCPU2, lessEqualImpl: lessEqualImplCPU2, lessImpl: lessImplCPU2, logImpl: logImplCPU2, maxImpl: maxImplCPU2, maximumImpl: maximumImplCPU2, minimumImpl: minimumImplCPU2, multiplyImpl: multiplyImplCPU2, negImpl: negImplCPU2, notEqualImpl: notEqualImplCPU2, prodImpl: prodImplCPU2, rangeImpl: rangeImplCPU2, rsqrtImpl: rsqrtImplCPU2, scatterImpl: scatterImplCPU2, simpleAbsImpl: simpleAbsImplCPU2, sliceImpl: sliceImplCPU2, stridedSliceImpl: stridedSliceImplCPU2, stringNGramsImpl: stringNGramsImplCPU2, subImpl: subImplCPU2, tileImpl: tileImplCPU2, topKImpl: topKImplCPU2, transposeImpl: transposeImplCPU2, uniqueImpl: uniqueImplCPU2 } = shared_exports2; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Abs.js -var abs4 = unaryKernelFunc3({ opType: UnaryOpType.ABS, cpuKernelImpl: simpleAbsImplCPU2 }); -var absConfig4 = { - kernelName: Abs, - backendName: "webgpu", - kernelFunc: abs4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Add.js -var addKernelFunc2 = binaryKernelFunc3({ opType: BinaryOpType.ADD, cpuKernelImpl: addImplCPU2, supportsComplex: true }); -var addConfig4 = { - kernelName: Add, - backendName: "webgpu", - kernelFunc: addKernelFunc2 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/addn_packed_webgpu.js -var AddNPackedProgram2 = class { - constructor(shapes) { - this.workPerThread = 4; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = shapes[0]; - this.variableNames = shapes.map((_, i2) => `T${i2}`); - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - this.shaderKey = "addN"; - } - getUserCode() { - const snippets = []; - this.variableNames.forEach((variable2) => { - snippets.push(`let v${variable2} = get${variable2}ByOutputCoords(coords);`); - }); - const operation = this.variableNames.map((variable2) => { - return `v${variable2}`; - }).join(" + "); - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - for (var i = 0; i < ${this.workPerThread}; i = i + 1) { - let flatIndex = index * ${this.workPerThread} + i; - if (flatIndex < uniforms.size) { - let coords = getCoordsFromIndex(flatIndex); - ${snippets.join("\n ")} - setOutputAtIndex(flatIndex, ${operation}); - } - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/AddN.js -function addN4(args) { - const { inputs, backend: backend2 } = args; - const tensors = inputs; - if (tensors.length === 1) { - return identity5({ inputs: { x: tensors[0] }, backend: backend2 }); - } - const dtype = tensors.map((t2) => t2.dtype).reduce((d1, d2) => upcastType(d1, d2)); - const shapes = tensors.map((t2) => t2.shape); - const program = new AddNPackedProgram2(shapes); - return backend2.runWebGPUProgram(program, tensors, dtype); -} -var addNConfig4 = { - kernelName: AddN, - backendName: "webgpu", - kernelFunc: addN4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/argminmax_webgpu.js -var ArgMinMaxProgram2 = class { - constructor(inputShape, axis, reduceType) { - this.workGroupSize = [64, 1, 1]; - this.variableNames = ["x"]; - this.uniforms = "infinityValue : f32,"; - this.size = true; - const axes = [axis]; - backend_util_exports.assertAxesAreInnerMostDims("arg" + reduceType.charAt(0).toUpperCase() + reduceType.slice(1), axes, inputShape.length); - this.op = reduceType === "min" ? "<" : ">"; - const [outputShape] = backend_util_exports.computeOutAndReduceShapes(inputShape, axes); - this.outputShape = outputShape.length === 0 ? [1] : outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]); - this.inputShape = inputShape; - this.shaderKey = `argMinMax${this.op}`; - } - getUserCode() { - const sharedMemorySnippet = ` - var xBestIndices : array; - var xBestValues : array; - `; - const getInputShapeLastDim = () => { - if (this.inputShape.length === 1) { - return "uniforms.xShape"; - } else { - return `uniforms.xShape.${getCoordsXYZ(this.inputShape.length - 1)}`; - } - }; - const splitOutputCoords = () => { - let snippet = ""; - if (this.outputShape.length === 1) { - if (this.inputShape.length !== 1) { - snippet += "outputCoords,"; - } - } else { - for (let i2 = 0; i2 < this.outputShape.length; i2++) { - snippet += `outputCoords.${getCoordsXYZ(i2)},`; - } - } - return snippet; - }; - const userCode = ` - fn DIV_CEIL(a : u32, b : u32) -> u32 { - return ((a - 1u) / b + 1u); - } - - ${sharedMemorySnippet} - - ${getMainHeaderAndGlobalIndexString()} - let outputIndex = index / i32(workGroupSizeX); - let reduceLength = ${getInputShapeLastDim()}; - - var bestIndex = i32(localId.x); - var bestValue = uniforms.infinityValue; - let outputCoords = getCoordsFromIndex(outputIndex); - for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size; - k = k + i32(workGroupSizeX)) { - let candidate = getX(${splitOutputCoords()} k); - if (!isnan(candidate) && candidate ${this.op} bestValue) { - bestValue = candidate; - bestIndex = k; - } - } - xBestValues[localId.x] = bestValue; - xBestIndices[localId.x] = bestIndex; - workgroupBarrier(); - - var reduceSize = min(u32(reduceLength), workGroupSizeX); - for (var currentSize = reduceSize / 2u; reduceSize > 1u; - currentSize = reduceSize / 2u) { - let interval = DIV_CEIL(reduceSize, 2u); - if (localId.x < currentSize) { - let candidate = xBestValues[localId.x + interval]; - if (candidate ${this.op} bestValue) { - bestValue = candidate; - xBestValues[localId.x] = bestValue; - xBestIndices[localId.x] = xBestIndices[localId.x + interval]; - } - } - reduceSize = interval; - workgroupBarrier(); - } - - if (localId.x == 0u && outputIndex < uniforms.size) { - setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transpose_shared_webgpu.js -var TransposeSharedProgram = class { - constructor(aShape, newDim) { - this.variableNames = ["A"]; - this.workGroupSize = [16, 16, 1]; - const outputShape = new Array(aShape.length); - for (let i2 = 0; i2 < outputShape.length; i2++) { - outputShape[i2] = aShape[newDim[i2]]; - } - this.outputShape = outputShape; - this.dispatchLayout = { x: [0], y: [1] }; - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [1, 1, 1]); - this.shaderKey = "transposeShared"; - } - getUserCode() { - const userCode = ` - const TILE_DIM = ${this.workGroupSize[0]}; - var tile : array, ${this.workGroupSize[0]}>; - ${getWorkGroupSizeString()} - fn main(@builtin(local_invocation_id) localId : vec3, - @builtin(workgroup_id) workgroupId : vec3) { - var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x); - var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y); - let width = uniforms.outShape[0]; - let height = uniforms.outShape[1]; - if (x < width && y < height) { - tile[localId.y][localId.x] = A[y * width + x]; - } - workgroupBarrier(); - - x = i32(workgroupId.y) * TILE_DIM + i32(localId.x); - y = i32(workgroupId.x) * TILE_DIM + i32(localId.y); - if (x < height && y < width) { - setOutputAtIndex((y * height + x), tile[localId.x] - [localId.y]); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transpose_webgpu.js -var TransposeProgram2 = class { - constructor(aShape, newDim) { - this.variableNames = ["A"]; - this.workPerThread = 4; - this.workGroupSize = [64, 1, 1]; - this.size = true; - const outputShape = new Array(aShape.length); - for (let i2 = 0; i2 < outputShape.length; i2++) { - outputShape[i2] = aShape[newDim[i2]]; - } - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - this.newDim = newDim; - this.shaderKey = `transpose_${newDim}`; - } - getUserCode() { - const dtype = getCoordsDataType2(this.outputShape.length); - const switched = getSwitchedCoords2(this.newDim); - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - - for(var i = 0; i < ${this.workPerThread}; i = i + 1) { - let flatIndex = index * ${this.workPerThread} + i; - if(flatIndex < uniforms.size) { - let resRC = getCoordsFromIndex(flatIndex); - setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D( - ${dtype}(${switched}), uniforms.aShape)]); - } - } - } - `; - return userCode; - } -}; -function getSwitchedCoords2(newDim) { - const rank = newDim.length; - if (rank > 6) { - throw Error(`Transpose for rank ${rank} is not yet supported`); - } - const switchedCoords = new Array(rank); - for (let i2 = 0; i2 < newDim.length; i2++) { - switchedCoords[newDim[i2]] = `resRC.${getCoordsXYZ(i2)}`; - } - return switchedCoords.join(); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Transpose.js -function transpose6(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { perm } = attrs; - const webgpuBackend = backend2; - const xRank = x.shape.length; - const newShape = new Array(xRank); - for (let i2 = 0; i2 < newShape.length; i2++) { - newShape[i2] = x.shape[perm[i2]]; - } - if (backend2.shouldExecuteOnCPU([x])) { - const xData = webgpuBackend.tensorMap.get(x.dataId); - const values = xData.values; - const outValues = transposeImplCPU2(values, x.shape, x.dtype, perm, newShape); - return backend2.makeTensorInfo(newShape, x.dtype, outValues); - } - if (x.shape.length === 2 && util_exports.arraysEqual(perm, [1, 0])) { - const program2 = new TransposeSharedProgram(x.shape, perm); - return webgpuBackend.runWebGPUProgram(program2, [x], x.dtype); - } - const program = new TransposeProgram2(x.shape, perm); - return webgpuBackend.runWebGPUProgram(program, [x], x.dtype); -} -var transposeConfig4 = { - kernelName: Transpose, - backendName: "webgpu", - kernelFunc: transpose6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ArgMax.js -function argMax4(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { axis } = attrs; - let axes = util_exports.parseAxisParam(axis, x.shape); - const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length); - let $x = x; - const intermediateTensorInfos = []; - if (permutedAxes != null) { - $x = transpose6({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } }); - intermediateTensorInfos.push($x); - axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length); - } - backend_util_exports.assertAxesAreInnerMostDims("argMax", [axes[0]], $x.shape.length); - const program = new ArgMinMaxProgram2($x.shape, axes[0], "max"); - const uniformData = [{ type: "float32", data: [Number.NEGATIVE_INFINITY] }]; - const out = backend2.runWebGPUProgram(program, [$x], "int32", uniformData); - intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId)); - return out; -} -var argMaxConfig4 = { - kernelName: ArgMax, - backendName: "webgpu", - kernelFunc: argMax4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ArgMin.js -function argMin4(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { axis } = attrs; - let axes = util_exports.parseAxisParam(axis, x.shape); - const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length); - let $x = x; - const intermediateTensorInfos = []; - if (permutedAxes != null) { - $x = transpose6({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } }); - intermediateTensorInfos.push($x); - axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length); - } - backend_util_exports.assertAxesAreInnerMostDims("argMin", [axes[0]], $x.shape.length); - const program = new ArgMinMaxProgram2($x.shape, axes[0], "min"); - const uniformData = [{ type: "float32", data: [Number.POSITIVE_INFINITY] }]; - const out = backend2.runWebGPUProgram(program, [$x], "int32", uniformData); - intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId)); - return out; -} -var argMinConfig3 = { - kernelName: ArgMin, - backendName: "webgpu", - kernelFunc: argMin4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pool2d_webgpu.js -var Pool2DProgram2 = class { - constructor(convInfo, poolType) { - this.variableNames = ["x"]; - this.uniforms = `stride : vec2, pad : vec2, dilation : vec2, convDims : vec2, filterDims : vec2,`; - this.workGroupSize = [128, 1, 1]; - this.size = true; - this.outputShape = convInfo.outShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = `pool2D_${poolType}`; - this.poolType = poolType; - } - getUserCode() { - let updateSnippet = `resultValue = max(value, resultValue);`; - if (this.poolType === "avg") { - updateSnippet = `resultValue = resultValue + value; count = count + 1.0;`; - } - let returnValue = `resultValue`; - if (this.poolType === "avg") { - returnValue = `resultValue / count`; - } - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - let batch = coords[0]; - let xRCCorner = vec2(coords.yz) * uniforms.stride - uniforms.pad; - let xRCorner = xRCCorner.x; - let xCCorner = xRCCorner.y; - - var resultValue = ${this.poolType === "avg" ? "0.0" : "-1.0 / pow(10.0, -20.0)"}; - var count = 0.0; - - for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) { - let xR = xRCorner + wR; - - if (xR < 0 || xR >= uniforms.convDims.x) { - continue; - } - - for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) { - let xC = xCCorner + wC; - if (xC < 0 || xC >= uniforms.convDims.y) { - continue; - } - - let value = getX(batch, xR, xC, coords[3]); - ${updateSnippet} - } - } - - setOutputAtIndex(index, ${returnValue}); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pool_filtersizeone_webgpu.js -var PoolWithFilterSizeEqualsOneProgram = class { - constructor(convInfo) { - this.variableNames = ["x"]; - this.uniforms = `stride : vec2,`; - this.workGroupSize = [256, 1, 1]; - this.size = true; - this.outputShape = convInfo.outShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = "poolWithFilterSizeEqualsOne"; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - let batch = coords[0]; - let d = coords[3]; - - let xRCCorner = coords.yz * uniforms.stride; - let xRCorner = xRCCorner.x; - let xCCorner = xRCCorner.y; - - let value = getX(batch, xRCorner, xCCorner, d); - setOutputAtIndex(index, value); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/AvgPool.js -function avgPool5(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs; - const dilations = 1; - const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode); - if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) { - return identity5({ inputs: { x }, backend: backend2 }); - } - let program; - const dimensions = [{ type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }]; - if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1) { - program = new PoolWithFilterSizeEqualsOneProgram(convInfo); - } else { - program = new Pool2DProgram2(convInfo, "avg"); - dimensions.push({ type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, { - type: "int32", - data: [convInfo.dilationHeight, convInfo.dilationWidth] - }, { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] }, { - type: "int32", - data: [convInfo.effectiveFilterHeight, convInfo.effectiveFilterWidth] - }); - } - return backend2.runWebGPUProgram(program, [x], x.dtype, dimensions); -} -var avgPoolConfig4 = { - kernelName: AvgPool, - backendName: "webgpu", - kernelFunc: avgPool5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchMatMul.js -function batchMatMul4(args) { - const { inputs, backend: backend2, attrs } = args; - const { a, b } = inputs; - const { transposeA, transposeB } = attrs; - return batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2 }); -} -var batchMatMulConfig4 = { - kernelName: BatchMatMul, - backendName: "webgpu", - kernelFunc: batchMatMul4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/slice_webgpu.js -var SliceProgram2 = class { - constructor(start, destSize) { - this.variableNames = ["source"]; - this.workPerThread = 1; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = destSize; - this.rank = destSize.length; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - this.start = start; - this.uniforms = `start : ${getCoordsDataType2(start.length)}, `; - this.shaderKey = "slice"; - } - getUserCode() { - const dtype = getCoordsDataType2(this.rank); - const sourceCoords = getCoords3(this.rank); - let coordSum; - if (this.start.length === 1) { - coordSum = this.outputShape.map((_, i2) => { - return `sourceLoc = uniforms.start + coords;`; - }); - } else { - coordSum = this.outputShape.map((_, i2) => { - return `sourceLoc.${coords2[i2]} = uniforms.start[${i2}] + coords.${coords2[i2]};`; - }); - } - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - var sourceLoc : ${dtype}; - let coords = getCoordsFromIndex(index); - ${coordSum.join("\n")} - setOutputAtIndex(index, getSource(${sourceCoords})); - } - } - `; - return userCode; - } -}; -var coords2 = ["x", "y", "z", "w", "u", "v"]; -function getCoords3(rank) { - if (rank === 1) { - return "sourceLoc"; - } else if (rank <= 6) { - return coords2.slice(0, rank).map((coord) => `sourceLoc.${coord}`).join(","); - } else { - throw Error(`Slicing for rank ${rank} is not yet supported`); - } -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Slice.js -function slice5(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { begin, size } = attrs; - const [$begin, $size] = slice_util_exports.parseSliceParams(x, begin, size); - slice_util_exports.assertParamsValid(x, $begin, $size); - if (backend2.shouldExecuteOnCPU([x]) || x.dtype === "string") { - const xBufferInfo = backend2.tensorMap.get(x.dataId); - const outValues = sliceImplCPU2(xBufferInfo.values, $begin, $size, x.shape, x.dtype); - return backend2.makeTensorInfo($size, x.dtype, outValues); - } - if (util_exports.sizeFromShape($size) === 0) { - return backend2.makeTensorInfo($size, x.dtype, []); - } - const program = new SliceProgram2($begin, $size); - const uniformData = [{ type: "int32", data: $begin }]; - return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); -} -var sliceConfig4 = { - kernelName: Slice, - backendName: "webgpu", - kernelFunc: slice5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchToSpaceND.js -var batchToSpaceND5 = (args) => { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { blockShape, crops } = attrs; - util_exports.assert(x.shape.length <= 4, () => "batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet"); - const prod6 = blockShape.reduce((a, b) => a * b); - const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6); - const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length); - const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6); - const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length); - const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length); - const toDispose = []; - const reshapedIntermediate = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } }); - const transposedIntermediate = transpose6({ inputs: { x: reshapedIntermediate }, backend: backend2, attrs: { perm: permuted } }); - const reshapedIntermediate2 = reshape6({ - inputs: { x: transposedIntermediate }, - backend: backend2, - attrs: { shape: reshapedPermuted } - }); - const sliced = slice5({ - inputs: { x: reshapedIntermediate2 }, - backend: backend2, - attrs: { begin: sliceBeginCoords, size: sliceSize } - }); - toDispose.push(reshapedIntermediate); - toDispose.push(transposedIntermediate); - toDispose.push(reshapedIntermediate2); - toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); - return sliced; -}; -var batchToSpaceNDConfig4 = { - kernelName: BatchToSpaceND, - backendName: "webgpu", - kernelFunc: batchToSpaceND5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NotEqual.js -var notEqual5 = binaryKernelFunc3({ - opType: BinaryOpType.NOT_EQUAL, - dtype: "bool", - cpuKernelImpl: notEqualImplCPU2 -}); -var notEqualConfig4 = { - kernelName: NotEqual, - backendName: "webgpu", - kernelFunc: notEqual5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Real.js -function real5(args) { - const { inputs, backend: backend2 } = args; - const { input: input2 } = inputs; - const inputData = backend2.tensorMap.get(input2.dataId); - return identity5({ inputs: { x: inputData.complexTensorInfos.real }, backend: backend2 }); -} -var realConfig3 = { - kernelName: Real, - backendName: "webgpu", - kernelFunc: real5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/int.js -function int2(input2, backend2) { - const program = new UnaryOpProgram2(input2.shape, UnaryOpType.TO_INT); - const output = backend2.runWebGPUProgram(program, [input2], "int32"); - return { dataId: output.dataId, shape: output.shape, dtype: output.dtype }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cast.js -function cast7(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { dtype } = attrs; - if (dtype === "complex64") { - if (x.dtype === "complex64") { - return identity5({ inputs: { x }, backend: backend2 }); - } - const zerosTensor = zeros(x.shape); - const floatX = cast7({ inputs: { x }, backend: backend2, attrs: { dtype: "float32" } }); - const result = complex4({ inputs: { real: floatX, imag: zerosTensor }, backend: backend2 }); - zerosTensor.dispose(); - backend2.disposeData(floatX.dataId); - return result; - } - if (x.dtype === "complex64") { - const realPart = real5({ inputs: { input: x }, backend: backend2 }); - const result = cast7({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } }); - backend2.disposeData(realPart.dataId); - return result; - } - if (!util_exports.hasEncodingLoss(x.dtype, dtype)) { - const result = identity5({ inputs: { x }, backend: backend2 }); - return { dataId: result.dataId, shape: result.shape, dtype }; - } - if (dtype === "int32") { - return int2(x, backend2); - } - if (dtype === "bool") { - const zerosTensorInfo = backend2.makeTensorInfo([], "bool", util_exports.getTypedArrayFromDType("bool", 1)); - const binaryInputs = { a: x, b: zerosTensorInfo }; - const result = notEqual5({ inputs: binaryInputs, backend: backend2 }); - backend2.disposeData(zerosTensorInfo.dataId); - return result; - } - throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`); -} -var castConfig4 = { - kernelName: Cast, - backendName: "webgpu", - kernelFunc: cast7 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Ceil.js -var ceil5 = unaryKernelFunc3({ opType: UnaryOpType.CEIL, cpuKernelImpl: ceilImplCPU2 }); -var ceilConfig4 = { - kernelName: Ceil, - backendName: "webgpu", - kernelFunc: ceil5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/clip_vec4_webgpu.js -var ClipVec4Program = class { - constructor(outputShape) { - this.variableNames = ["A"]; - this.uniforms = "minVal : f32, maxVal : f32,"; - this.workPerThread = 4; - this.workGroupSize = [64, 1, 1]; - this.isVec4 = true; - this.size = true; - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - this.shaderKey = "clipVec4"; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if(index < uniforms.size) { - let value = getAByOutputIndex(index); - var clampedValue : vec4; - for (var i = 0; i < 4; i = i + 1) { - if (isnan(value[i])) { - clampedValue[i] = value[i]; - } else { - clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal); - } - } - - setOutputAtIndex(index, clampedValue); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/clip_webgpu.js -var ClipProgram2 = class { - constructor(outputShape) { - this.variableNames = ["A"]; - this.uniforms = "minVal : f32, maxVal : f32,"; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = "clip"; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if(index < uniforms.size) { - let value = getAByOutputIndex(index); - if (isnan(value)) { - setOutputAtIndex(index, value); - return; - } - setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal)); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ClipByValue.js -function clipByValue4(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { clipValueMin, clipValueMax } = attrs; - let program; - const uniformData = [ - { type: "float32", data: [clipValueMin] }, - { type: "float32", data: [clipValueMax] } - ]; - if (util_exports.sizeFromShape(x.shape) % 4 === 0) { - program = new ClipVec4Program(x.shape); - } else { - program = new ClipProgram2(x.shape); - } - return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); -} -var clipByValueConfig4 = { - kernelName: ClipByValue, - backendName: "webgpu", - kernelFunc: clipByValue4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/concat_webgpu.js -var ConcatProgram2 = class { - constructor(shapes) { - this.uniforms = ""; - this.workPerThread = 4; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = backend_util_exports.computeOutShape(shapes, 1); - this.variableNames = shapes.map((_, i2) => `T${i2}`); - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - this.offsetLength = shapes.length - 1; - for (let i2 = 0; i2 < this.offsetLength; i2++) { - this.uniforms += `offset${i2} : i32,`; - } - this.shaderKey = "concat"; - } - getUserCode() { - const snippets = []; - if (this.offsetLength > 0) { - snippets.push(`if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }`); - for (let i2 = 1; i2 < this.offsetLength; i2++) { - snippets.push(`else if (yC < uniforms.offset${[i2]}){ setOutputAtCoords(coords.x, coords.y, getT${i2}(yR, yC - uniforms.offset${i2 - 1})); }`); - } - const lastIndex = this.offsetLength; - const lastShiftIndex = this.offsetLength - 1; - snippets.push(`else { setOutputAtCoords(coords.x, coords.y, getT${lastIndex}(yR, yC - uniforms.offset${lastShiftIndex})); }`); - } else { - snippets.push(`setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));`); - } - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - for(var i = 0; i < ${this.workPerThread}; i = i + 1) { - let flatIndex = index * ${this.workPerThread} + i; - if(flatIndex < uniforms.size) { - let coords = getCoordsFromIndex(flatIndex); - let yR = coords.x; - let yC = coords.y; - - ${snippets.join("\n ")} - } - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Imag.js -function imag4(args) { - const { inputs, backend: backend2 } = args; - const { input: input2 } = inputs; - const inputData = backend2.tensorMap.get(input2.dataId); - return identity5({ inputs: { x: inputData.complexTensorInfos.imag }, backend: backend2 }); -} -var imagConfig3 = { - kernelName: Imag, - backendName: "webgpu", - kernelFunc: imag4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Concat_impl.js -function concatImpl4(inputs, axis, backend2) { - const dtype = inputs[0].dtype; - if (dtype === "complex64") { - const reals = inputs.map((t2) => real5({ inputs: { input: t2 }, backend: backend2 })); - const imags = inputs.map((t2) => imag4({ inputs: { input: t2 }, backend: backend2 })); - const realConcated = concatImpl4(reals, axis, backend2); - const imagConcated = concatImpl4(imags, axis, backend2); - const result = complex4({ inputs: { real: realConcated, imag: imagConcated }, backend: backend2 }); - reals.forEach((r2) => backend2.disposeData(r2.dataId)); - imags.forEach((i2) => backend2.disposeData(i2.dataId)); - backend2.disposeData(realConcated.dataId); - backend2.disposeData(imagConcated.dataId); - return result; - } - let runOnCpu = backend2.shouldExecuteOnCPU(inputs); - if (dtype === "string") { - runOnCpu = true; - } - if (runOnCpu) { - const tensors2D2 = inputs.map((t2) => { - const innerSize = util_exports.sizeFromShape(t2.shape.slice(axis)); - const shape = [-1, innerSize]; - return reshape6({ inputs: { x: t2 }, backend: backend2, attrs: { shape } }); - }); - const inputsValShapes = tensors2D2.map((t2) => { - return { vals: backend2.readSync(t2.dataId), shape: t2.shape }; - }); - const outShape2 = backend_util_exports.computeOutShape(tensors2D2.map((t2) => t2.shape), 1); - const simplyConcat = tensors2D2[0].shape[0] === 1; - const outVals = concatImplCPU2(inputsValShapes, outShape2, dtype, simplyConcat); - const finalOutShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis); - const outInfo = backend2.makeTensorInfo(finalOutShape, dtype, outVals); - tensors2D2.forEach((t2) => backend2.disposeData(t2.dataId)); - return outInfo; - } - const maxInputNum = backend2.device.limits.maxStorageBuffersPerShaderStage - 1; - if (inputs.length > maxInputNum) { - const reducedInputs = []; - for (let i2 = 0; i2 < inputs.length; i2 += maxInputNum) { - const subArray = inputs.slice(i2, i2 + maxInputNum); - reducedInputs.push(concatImpl4(subArray, axis, backend2)); - } - const result = concatImpl4(reducedInputs, axis, backend2); - for (const i2 of reducedInputs) { - backend2.disposeData(i2.dataId); - } - return result; - } - const { tensors2D, outShape } = computeTensors2D2(inputs, axis, backend2); - const shapes = tensors2D.map((t2) => t2.shape); - const program = new ConcatProgram2(shapes); - const uniformData = []; - const offsets = new Array(shapes.length - 1); - if (offsets.length > 0) { - offsets[0] = shapes[0][1]; - uniformData.push({ type: "int32", data: [offsets[0]] }); - for (let i2 = 1; i2 < offsets.length; i2++) { - offsets[i2] = offsets[i2 - 1] + shapes[i2][1]; - uniformData.push({ type: "int32", data: [offsets[i2]] }); - } - } - const res = backend2.runWebGPUProgram(program, tensors2D, tensors2D[0].dtype, uniformData); - tensors2D.forEach((r2) => backend2.disposeData(r2.dataId)); - const reshapedResult = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: outShape } }); - backend2.disposeData(res.dataId); - return reshapedResult; -} -function computeTensors2D2(inputs, axis, backend2) { - const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis); - const tensors2D = inputs.map((t2) => reshape6({ - inputs: { x: t2 }, - backend: backend2, - attrs: { - shape: [ - util_exports.sizeFromShape(t2.shape.slice(0, axis)), - util_exports.sizeFromShape(t2.shape.slice(axis)) - ] - } - })); - return { tensors2D, outShape }; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Concat.js -function concat5(args) { - const { inputs, backend: backend2, attrs } = args; - const { axis } = attrs; - const $axis = util_exports.parseAxisParam(axis, inputs[0].shape)[0]; - const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), $axis); - if (util_exports.sizeFromShape(outShape) === 0) { - return backend2.makeTensorInfo(outShape, inputs[0].dtype, []); - } - const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0); - if ($inputs.length === 1) { - return identity5({ inputs: { x: $inputs[0] }, backend: backend2 }); - } - const shapes = $inputs.map((t2) => t2.shape); - backend_util_exports.assertParamsConsistent(shapes, $axis); - return concatImpl4($inputs, $axis, backend2); -} -var concatConfig4 = { - kernelName: Concat, - backendName: "webgpu", - kernelFunc: concat5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv2d_mm_webgpu.js -function conv2dCommonSnippet(isChannelsLast, fitAOuter, fitBOuter, fitInner, addBias = false, activation2 = null, hasPreluActivationWeights = false, innerElementSizeX = 4, innerElementSizeW = 4, innerElementSize = 4) { - const getXSnippet = (innerElementSize2) => { - switch (innerElementSize2) { - case 1: - return "resData = x[xIndex];"; - case 3: - return "resData = vec3(x[xIndex], x[xIndex + 1], x[xIndex + 2]);"; - case 4: - return "resData = x[xIndex / 4];"; - default: - throw new Error(`innerElementSize ${innerElementSize2} is not supported.`); - } - }; - const getWSnippet = (innerElementSize2) => { - switch (innerElementSize2) { - case 1: - return "return W[row * uniforms.wShape[3] + colIn];"; - case 4: - return "return W[row * uniforms.wShape[3] / 4 + colIn];"; - default: - throw new Error(`innerElementSize ${innerElementSize2} is not supported.`); - } - }; - const coordASnippet = isChannelsLast ? ` - let coord = vec4(batch, xRow, xCol, xCh); - ` : ` - let coord = vec4(batch, xCh, xRow, xCol); - `; - const coordResSnippet = isChannelsLast ? ` - let coords = vec4( - batch, - row / outWidth, - row % outWidth, - col); - ` : ` - let coords = vec4( - batch, - row, - col / outWidth, - col % outWidth); - `; - const xHight = isChannelsLast ? "uniforms.xShape[1]" : "uniforms.xShape[2]"; - const xWidth = isChannelsLast ? "uniforms.xShape[2]" : "uniforms.xShape[3]"; - const row = isChannelsLast ? "row" : "col"; - const col = isChannelsLast ? "col" : "row"; - const readXSnippet = ` - let inChannels = uniforms.wShape[2]; - let outWidth = ${isChannelsLast ? "uniforms.outShape[2]" : "uniforms.outShape[3]"}; - let outRow = ${row} / outWidth; - let outCol = ${row} % outWidth; - - let WRow = ${col} / (uniforms.filterDims[1] * inChannels); - let WCol = ${col} / inChannels % uniforms.filterDims[1]; - let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0]; - let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1]; - let xCh = ${col} % inChannels; - var resData = ${typeSnippet(innerElementSizeX)}(0.0); - // The bounds checking is always needed since we use it to pad zero for - // the 'same' padding type. - if (xRow >= 0 && xRow < ${xHight} && xCol >= 0 && xCol < ${xWidth}) { - ${coordASnippet} - let xIndex = getIndexFromCoords4D(coord, uniforms.xShape); - ${getXSnippet(innerElementSizeX)} - } - return resData;`; - const sampleX = isChannelsLast ? fitAOuter && fitInner ? ` - let col = colIn * ${innerElementSizeX}; - ${readXSnippet}` : ` - let col = colIn * ${innerElementSizeX}; - if (row < uniforms.dimAOuter && col < uniforms.dimInner) { - ${readXSnippet} - } - return ${typeSnippet(innerElementSizeX)}(0.0);` : fitInner && fitBOuter ? ` - let col = colIn * ${innerElementSizeX}; - ${readXSnippet}` : ` - let col = colIn * ${innerElementSizeX}; - if (row < uniforms.dimInner && col < uniforms.dimBOuter) { - ${readXSnippet} - } - return ${typeSnippet(innerElementSizeX)}(0.0);`; - const sampleW = `${getWSnippet(innerElementSizeW)}`; - const resType = typeSnippet(innerElementSize); - const aType = isChannelsLast ? typeSnippet(innerElementSizeX) : typeSnippet(innerElementSizeW); - const bType = isChannelsLast ? typeSnippet(innerElementSizeW) : typeSnippet(innerElementSizeX); - const userCode = ` - ${activationFnSnippet(activation2, hasPreluActivationWeights, innerElementSize === 4, 4)} - fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${aType} { - ${isChannelsLast ? sampleX : sampleW} - } - - fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${bType} { - ${isChannelsLast ? sampleW : sampleX} - } - - fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${resType}) { - let col = colIn * ${innerElementSize}; - if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) - { - var value = valueIn; - let outWidth = ${isChannelsLast ? "uniforms.outShape[2]" : "uniforms.outShape[3]"}; - ${coordResSnippet} - ${biasActivationSnippet(addBias, activation2)} - setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); - } - }`; - return userCode; -} -var Conv2DMMProgram = class { - constructor(convInfo, dimAOuter, dimBOuter, dimInner, addBias = false, activation2 = null, hasPreluActivationWeights = false) { - this.variableNames = ["x", "W"]; - this.uniforms = `filterDims : vec2, pad : vec2, stride : vec2, dilation : vec2, dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; - this.outputShape = convInfo.outShape; - this.isChannelsLast = convInfo.dataFormat === "channelsLast"; - this.isVec4 = ((convInfo.inChannels % 4 === 0 || convInfo.inChannels % 3 === 0) && this.isChannelsLast || convInfo.outWidth % 4 === 0 && !this.isChannelsLast) && convInfo.outChannels % 4 === 0; - this.dispatchLayout = this.isChannelsLast ? { x: [3], y: [1, 2], z: [0] } : { x: [2, 3], y: [1], z: [0] }; - this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); - this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); - if (this.isVec4) { - if (this.isChannelsLast && convInfo.inChannels % 4 !== 0) { - this.innerElementSize = 3; - this.variableTypes = ["f32", "vec4"]; - } else { - this.innerElementSize = 4; - this.variableTypes = ["vec4", "vec4"]; - } - if (addBias) { - this.variableNames.push("bias"); - this.variableTypes.push("vec4"); - } - if (hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - this.variableTypes.push("vec4"); - } - } else { - this.innerElementSize = this.elementsPerThread[0]; - if (addBias) { - this.variableNames.push("bias"); - } - if (hasPreluActivationWeights) { - this.variableNames.push("preluActivationWeights"); - } - } - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivationWeights = hasPreluActivationWeights; - this.tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; - this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - this.tileInner = Math.max(this.workGroupSize[0] * this.innerElementSize, this.workGroupSize[1]); - this.fitAOuter = dimAOuter % this.tileAOuter === 0; - this.fitBOuter = dimBOuter % this.tileBOuter === 0; - this.fitInner = dimInner % this.tileInner === 0; - this.shaderKey = `conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`; - } - getUserCode() { - const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, this.innerElementSize, !this.isChannelsLast) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner); - const elementsSize = this.isVec4 ? [this.isChannelsLast ? this.innerElementSize : 4, 4, 4] : [1, 1, 1]; - const userCode = ` - ${conv2dCommonSnippet(this.isChannelsLast, this.fitAOuter, this.fitBOuter, this.fitInner, this.addBias, this.activation, this.hasPreluActivationWeights, elementsSize[0], elementsSize[1], elementsSize[2])} - ${matMulSource} - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2D_impl.js -function getShapeForBatchMatMul2(shape, isChannelsLast) { - const length = shape.length; - if (length >= 3) { - return isChannelsLast ? [ - ...shape.slice(0, -3), - shape[length - 3] * shape[length - 2], - shape[length - 1] - ] : [ - ...shape.slice(0, -3), - shape[length - 3], - shape[length - 2] * shape[length - 1] - ]; - } else if (!isChannelsLast && length === 1 && shape[0] > 1) { - return [shape[0], 1]; - } else { - return null; - } -} -function conv2dByMatMul2({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { - const isChannelsLast = convInfo.dataFormat === "channelsLast"; - const transposeA = isChannelsLast ? false : true; - const transposeB = false; - const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === "VALID"; - const intermediates = []; - let xReshaped; - let filterReshaped; - if (sameSize) { - const sharedDim = convInfo.inHeight * convInfo.inWidth * convInfo.inChannels; - xReshaped = reshape6({ - inputs: { x }, - backend: backend2, - attrs: { shape: [1, convInfo.batchSize, sharedDim] } - }); - filterReshaped = reshape6({ - inputs: { x: filter }, - backend: backend2, - attrs: { shape: [1, sharedDim, convInfo.outChannels] } - }); - } else { - xReshaped = reshape6({ - inputs: { x }, - backend: backend2, - attrs: { - shape: isChannelsLast ? [ - convInfo.batchSize, - convInfo.inHeight * convInfo.inWidth, - convInfo.inChannels - ] : [ - convInfo.batchSize, - convInfo.inChannels, - convInfo.inHeight * convInfo.inWidth - ] - } - }); - filterReshaped = reshape6({ - inputs: { x: filter }, - backend: backend2, - attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] } - }); - } - intermediates.push(xReshaped); - intermediates.push(filterReshaped); - if (preluActivationWeights != null) { - const targetShape = getShapeForBatchMatMul2(preluActivationWeights.shape, isChannelsLast); - if (targetShape != null) { - preluActivationWeights = reshape6({ - inputs: { x: preluActivationWeights }, - backend: backend2, - attrs: { shape: targetShape } - }); - intermediates.push(preluActivationWeights); - } - } - if (bias != null) { - const targetShape = getShapeForBatchMatMul2(bias.shape, isChannelsLast); - if (targetShape != null) { - bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } }); - intermediates.push(bias); - } - } - const result = batchMatMulImpl2({ - a: isChannelsLast ? xReshaped : filterReshaped, - b: isChannelsLast ? filterReshaped : xReshaped, - transposeA, - transposeB, - backend: backend2, - bias, - activation: activation2, - preluActivationWeights, - leakyreluAlpha - }); - const out = reshape6({ inputs: { x: result }, backend: backend2, attrs: { shape: convInfo.outShape } }); - intermediates.push(result); - for (const i2 of intermediates) { - backend2.disposeData(i2.dataId); - } - return out; -} -function conv2DImpl({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { - const hasBias = bias != null; - const hasPreluActivationWeights = preluActivationWeights != null; - const isChannelsLast = convInfo.dataFormat === "channelsLast"; - const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === "VALID"; - if (sameSize || convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === "SAME" || convInfo.padInfo.type === "VALID")) { - return conv2dByMatMul2({ - x, - filter, - convInfo, - backend: backend2, - bias, - activation: activation2, - preluActivationWeights, - leakyreluAlpha - }); - } - const dimAOuter = isChannelsLast ? convInfo.outHeight * convInfo.outWidth : convInfo.outChannels; - const dimBOuter = isChannelsLast ? convInfo.outChannels : convInfo.outHeight * convInfo.outWidth; - const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.inChannels; - const padInfo = [convInfo.padInfo.top, convInfo.padInfo.left]; - const dimensions = [ - { type: "int32", data: [convInfo.filterHeight, convInfo.filterWidth] }, - { type: "int32", data: [...padInfo] }, - { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, - { type: "int32", data: [convInfo.dilationHeight, convInfo.dilationWidth] }, - { type: "int32", data: [dimAOuter] }, - { type: "int32", data: [dimBOuter] }, - { type: "int32", data: [dimInner] } - ]; - const program = new Conv2DMMProgram(convInfo, dimAOuter, dimBOuter, dimInner, hasBias, activation2, hasPreluActivationWeights); - const intermediates = []; - const inputVar = [x, filter]; - if (hasBias) { - if (!isChannelsLast && bias.shape.length === 1) { - bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: [bias.shape[0], 1, 1] } }); - intermediates.push(bias); - } - inputVar.push(bias); - } - if (hasPreluActivationWeights) { - if (!isChannelsLast && preluActivationWeights.shape.length === 1) { - preluActivationWeights = reshape6({ - inputs: { x: preluActivationWeights }, - backend: backend2, - attrs: { shape: [preluActivationWeights.shape[0], 1, 1] } - }); - intermediates.push(preluActivationWeights); - } - inputVar.push(preluActivationWeights); - } - if (activation2 === "leakyrelu") { - dimensions.push({ type: "float32", data: [leakyreluAlpha] }); - program.uniforms += " alpha : f32,"; - } - const out = backend2.runWebGPUProgram(program, inputVar, x.dtype, dimensions); - for (const i2 of intermediates) { - backend2.disposeData(i2.dataId); - } - return out; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2D.js -function conv2d6(args) { - const { inputs, attrs, backend: backend2 } = args; - const { x, filter } = inputs; - const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs; - const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); - const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat); - return conv2DImpl({ x, filter, convInfo, backend: backend2 }); -} -var conv2DConfig4 = { - kernelName: Conv2D, - backendName: "webgpu", - kernelFunc: conv2d6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv_backprop_mm_webgpu.js -function conv2dTransposeCommonSnippet(innerElementSize = 4) { - const getWSnippet = (innerElementSize2) => { - switch (innerElementSize2) { - case 1: - return "return W[getIndexFromCoords4D(coord, uniforms.wShape)];"; - case 4: - return ` - let coord1 = vec4(coordX, coordY, col + 1, rowInner); - let coord2 = vec4(coordX, coordY, col + 2, rowInner); - let coord3 = vec4(coordX, coordY, col + 3, rowInner); - let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)]; - let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)]; - let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)]; - let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)]; - return vec4(v0, v1, v2, v3); - `; - default: - throw new Error(`innerElementSize ${innerElementSize2} is not supported.`); - } - }; - const readASnippet = ` - let outRow = row / uniforms.outShape[2]; - let outCol = row % uniforms.outShape[2]; - - let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]); - let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1]; - let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]); - let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]); - if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) { - return ${typeSnippet(innerElementSize)}(0.0); - } - if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) { - return ${typeSnippet(innerElementSize)}(0.0); - } - let coord = vec4( - batch, - i32(xR), - i32(xC), - col % uniforms.outBackprop[3]); - return x[getIndexFromCoords4D(coord, uniforms.xShape)/${innerElementSize}];`; - const sampleA = `if (row < uniforms.dimAOuter && col < uniforms.dimInner) { - ${readASnippet} - } - return ${typeSnippet(innerElementSize)}(0.0);`; - const userCode = ` - fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { - let col = colIn * ${innerElementSize}; - ${sampleA} - } - - fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { - let col = colIn * ${innerElementSize}; - let coordX = uniforms.filterDims.x - 1 - - row / (uniforms.filterDims[1] * uniforms.outBackprop[3]); - let coordY = uniforms.filterDims.y - 1 - - (row / uniforms.outBackprop[3]) % uniforms.filterDims[1]; - if (row < uniforms.dimInner && col < uniforms.dimBOuter && - coordX >= 0 && coordY >= 0) { - let rowInner = row % uniforms.outBackprop[3]; - let coord = vec4(coordX, coordY, col, rowInner); - ${getWSnippet(innerElementSize)} - } - return ${typeSnippet(innerElementSize)}(0.0); - } - - fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${typeSnippet(innerElementSize)}) { - let col = colIn * ${innerElementSize}; - if (row < uniforms.dimAOuter && (col + ${innerElementSize - 1}) < uniforms.dimBOuter) { - var value = valueInput; - let outCoord = vec4( - batch, - row / uniforms.outShape[2], - row % uniforms.outShape[2], - col); - result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${innerElementSize}] = value; - } - }`; - return userCode; -} -var Conv2DDerInputMMProgram = class { - constructor(convInfo) { - this.variableNames = ["x", "W"]; - this.uniforms = "filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4, dimAOuter : i32, dimBOuter : i32, dimInner : i32,"; - this.outputShape = convInfo.inShape; - util_exports.assert(convInfo.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"); - this.isVec4 = convInfo.inChannels % 4 === 0 && convInfo.outChannels % 4 === 0; - this.dispatchLayout = { x: [3], y: [1, 2], z: [0] }; - this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); - this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); - if (this.isVec4) { - this.innerElementSize = 4; - this.variableTypes = ["vec4", "f32"]; - } else { - this.innerElementSize = this.elementsPerThread[0]; - } - this.tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; - this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; - this.tileInner = Math.max(this.workGroupSize[0] * this.innerElementSize, this.workGroupSize[1]); - this.shaderKey = `conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}_${this.innerElementSize}`; - } - getUserCode() { - const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.tileAOuter, this.tileBOuter, this.tileInner, this.innerElementSize) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize); - const userCode = ` - ${conv2dTransposeCommonSnippet(this.isVec4 ? 4 : 1)} - ${matMulSource} - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv_backprop_webgpu.js -var Conv2DDerInputProgram2 = class { - constructor(convInfo) { - this.variableNames = ["dy", "W"]; - this.uniforms = "filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4,"; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = convInfo.inShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.isChannelsLast = convInfo.dataFormat === "channelsLast"; - this.shaderKey = `conv2DDerInput_${this.isChannelsLast}`; - } - getUserCode() { - const rowDim = this.isChannelsLast ? 1 : 2; - const colDim = this.isChannelsLast ? 2 : 3; - const channelDim = this.isChannelsLast ? 3 : 1; - return ` - ${getMainHeaderAndGlobalIndexString()} { - if(index < uniforms.size) { - let coords = getCoordsFromIndex(index); - let batch = coords[0]; - let d1 = coords[${channelDim}]; - - let dyCorner = vec2(coords[${rowDim}]), coords[${colDim}]) - uniforms.pads; - let dyRCorner = dyCorner.x; - let dyCCorner = dyCorner.y; - - // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). - // ? = to be determined. : = across all values in that axis. - var dotProd = 0.0; - for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) { - let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x); - let wRPerm = uniforms.filterDims.x - 1 - wR; - if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 || - wRPerm < 0) { - continue; - } - let idyR = dyR; - - for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) { - let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y); - let wCPerm = uniforms.filterDims.y - 1 - wC; - if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) || - fract(dyC) > 0.0 || wCPerm < 0) { - continue; - } - let idyC = dyC; - - for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) { - if (${this.isChannelsLast}) { - let xValue = getDy(batch, idyR, idyC, d2); - let wValue = getW(wRPerm, wCPerm, d1, d2); - dotProd = dotProd + xValue * wValue; - } else { - let xValue = getDy(batch, d2, idyR, idyC); - let wValue = getW(wRPerm, wCPerm, d1, d2); - dotProd = dotProd + xValue * wValue; - } - - } - } - } - setOutputAtIndex(index, dotProd); - } - } - `; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2DBackpropInput.js -function conv2DBackpropInput5(args) { - const { inputs, backend: backend2, attrs } = args; - const { dy, filter } = inputs; - const { inputShape, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs; - const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); - const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, 1, pad3, dimRoundingMode, false, $dataFormat); - const dimensions = [ - { type: "int32", data: [convInfo.filterHeight, convInfo.filterWidth] }, - { - type: "int32", - data: [ - convInfo.filterHeight - 1 - convInfo.padInfo.top, - convInfo.filterWidth - 1 - convInfo.padInfo.left - ] - }, - { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, - { - type: "int32", - data: [ - convInfo.batchSize, - convInfo.outHeight, - convInfo.outWidth, - convInfo.outChannels - ] - } - ]; - let program; - if (env().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE")) { - program = new Conv2DDerInputProgram2(convInfo); - } else { - program = new Conv2DDerInputMMProgram(convInfo); - const dimAOuter = convInfo.inShape[1] * convInfo.inShape[2]; - const dimBOuter = convInfo.inShape[3]; - const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.outChannels; - dimensions.push({ type: "uint32", data: [dimAOuter] }, { type: "uint32", data: [dimBOuter] }, { type: "uint32", data: [dimInner] }); - } - return backend2.runWebGPUProgram(program, [dy, filter], "float32", dimensions); -} -var conv2DBackpropInputConfig4 = { - kernelName: Conv2DBackpropInput, - backendName: "webgpu", - kernelFunc: conv2DBackpropInput5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cos.js -var cos4 = unaryKernelFunc3({ opType: UnaryOpType.COS }); -var cosConfig4 = { - kernelName: Cos, - backendName: "webgpu", - kernelFunc: cos4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cosh.js -var cosh4 = unaryKernelFunc3({ opType: UnaryOpType.COSH }); -var coshConfig4 = { - kernelName: Cosh, - backendName: "webgpu", - kernelFunc: cosh4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/crop_and_resize_webgpu.js -var CropAndResizeProgram2 = class { - constructor(channnel, boxShape, cropSize, method) { - this.variableNames = ["Image", "Boxes", "BoxInd"]; - this.uniforms = "extrapolationValue : f32,"; - this.workGroupSize = [64, 1, 1]; - this.size = true; - const [numBoxes] = boxShape; - this.outputShape = [numBoxes, cropSize[0], cropSize[1], channnel]; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.methodId = method === "bilinear" ? 1 : 0; - this.cropHeightBiggerThan1 = this.outputShape[1] > 1; - this.cropWidthBiggerThan1 = this.outputShape[2] > 1; - this.shaderKey = `cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`; - } - getUserCode() { - const [inputHeightFloat, inputWidthFloat] = [`f32(uniforms.imageShape[1] - 1)`, `f32(uniforms.imageShape[2] - 1)`]; - const [heightRatio, heightScale, inY] = this.cropHeightBiggerThan1 ? [ - `(${inputHeightFloat} / f32(uniforms.outShape[1] - 1))`, - "(y2-y1) * height_ratio", - `y1*${inputHeightFloat} + f32(y)*(height_scale)` - ] : [ - "0.0", - "0.0", - `0.5 * (y1+y2) * ${inputHeightFloat}` - ]; - const [widthRatio, widthScale, inX] = this.cropWidthBiggerThan1 ? [ - `(${inputWidthFloat} / f32(uniforms.outShape[2] - 1))`, - "(x2-x1) * width_ratio", - `x1*${inputWidthFloat} + f32(x)*(width_scale)` - ] : [ - "0.0", - "0.0", - `0.5 * (x1+x2) * ${inputWidthFloat}` - ]; - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - let height_ratio = f32(${heightRatio}); - let width_ratio = f32(${widthRatio}); - let b = coords[0]; - let y = coords[1]; - let x = coords[2]; - let d = coords[3]; - // get box vals - let y1 = getBoxes(b, 0); - let x1 = getBoxes(b, 1); - let y2 = getBoxes(b, 2); - let x2 = getBoxes(b, 3); - // get image in batch index - let bInd = i32(round(getBoxInd(b))); - if(bInd < 0 || bInd >= uniforms.outShape[0]) { - return; - } - let height_scale = ${heightScale}; - let width_scale = ${widthScale}; - let in_y = ${inY}; - if( in_y < 0.0 || in_y > ${inputHeightFloat} ) { - setOutputAtIndex(index, uniforms.extrapolationValue); - return; - } - let in_x = ${inX}; - if( in_x < 0.0 || in_x > ${inputWidthFloat} ) { - setOutputAtIndex(index, uniforms.extrapolationValue); - return; - } - let sourceFracIndexCR = vec2(in_x,in_y); - if(${this.methodId} == 1) { - // Compute the four integer indices. - let sourceFloorCR = vec2(sourceFracIndexCR); - let sourceCeilCR = vec2(ceil(sourceFracIndexCR)); - let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d); - let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d); - let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d); - let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d); - let fracCR = sourceFracIndexCR - vec2(sourceFloorCR); - let top = topLeft + (topRight - topLeft) * fracCR.x; - let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; - let newValue = top + (bottom - top) * fracCR.y; - setOutputAtIndex(index, newValue); - } else { - // Compute the coordinators of nearest neighbor point. - let sourceNearestCR = vec2(floor( - sourceFracIndexCR + vec2(0.5,0.5))); - let newValue = getImage( - bInd, sourceNearestCR.y, sourceNearestCR.x, d); - setOutputAtIndex(index, newValue); - } - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/CropAndResize.js -var cropAndResize5 = (args) => { - const { inputs, backend: backend2, attrs } = args; - const { image: image2, boxes, boxInd } = inputs; - const { cropSize, method, extrapolationValue } = attrs; - const program = new CropAndResizeProgram2(image2.shape[3], boxes.shape, cropSize, method); - const uniformData = [{ type: "float32", data: [extrapolationValue] }]; - return backend2.runWebGPUProgram(program, [image2, boxes, boxInd], "float32", uniformData); -}; -var cropAndResizeConfig4 = { - kernelName: CropAndResize, - backendName: "webgpu", - kernelFunc: cropAndResize5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/cum_webgpu.js -var CumOpType2; -(function(CumOpType3) { - CumOpType3["Prod"] = "*"; - CumOpType3["Sum"] = "+"; -})(CumOpType2 || (CumOpType2 = {})); -var CumProgram2 = class { - constructor(op2, shape, exclusive, reverse5) { - this.variableNames = ["x"]; - this.uniforms = "index : f32,"; - this.size = true; - const workGroupSizeX = 128; - this.workGroupSize = [workGroupSizeX, 1, 1]; - this.outputShape = shape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.exclusive = exclusive; - this.reverse = reverse5; - this.op = op2; - this.shaderKey = `cum_${this.op}_${this.exclusive}_${this.reverse}`; - } - getUserCode() { - const rank = this.outputShape.length; - const initVal = this.op === CumOpType2.Prod ? "1.0" : "0.0"; - const val = this.exclusive ? initVal : `getX(${getCoords4(rank, "coords", this.op)})`; - const length = this.outputShape[this.outputShape.length - 1]; - let condition = ""; - let idxString = ""; - if (this.exclusive) { - condition = this.reverse ? `end != ${length - 1}` : "end != 0"; - idxString = this.reverse ? "end + 1" : "end - 1"; - } else { - condition = this.reverse ? `end + pow2 < ${length}` : "end >= pow2"; - idxString = this.reverse ? "end + pow2" : "end - pow2"; - } - return ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - var coords = getCoordsFromIndex(index); - - let end = ${getFinalCoord2(rank, "coords", this.op)}; - var val = ${val}; - let pow2 = i32(pow(2.0, uniforms.index)); - if (${condition}) { - let idx = ${idxString}; - ${getFinalCoord2(rank, "coords", this.op)} = idx; - val ${this.op}= getX(${getCoords4(rank, "coords", this.op)}); - } - setOutputAtIndex(index, val); - } - } - `; - } -}; -function getCoords4(rank, name, op2) { - if (rank === 1) { - return `${name}`; - } else if (rank === 2) { - return `${name}.x, ${name}.y`; - } else if (rank === 3) { - return `${name}.x, ${name}.y, ${name}.z`; - } else if (rank === 4) { - return `${name}.x, ${name}.y, ${name}.z, ${name}.w`; - } else { - throw Error(`Cumulative ${op2} for rank ${rank} is not yet supported`); - } -} -function getFinalCoord2(rank, name, op2) { - if (rank === 1) { - return `${name}`; - } else if (rank === 2) { - return `${name}.y`; - } else if (rank === 3) { - return `${name}.z`; - } else if (rank === 4) { - return `${name}.w`; - } else { - throw Error(`Cumulative ${op2} for rank ${rank} is not yet supported`); - } -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cum_impl.js -function cumImpl2(op2, x, backend2, axis, exclusive, reverse5) { - const xRank = x.shape.length; - const permutation = backend_util_exports.getAxesPermutation([axis], xRank); - let permutedX = x; - if (permutation != null) { - permutedX = transpose6({ inputs: { x }, backend: backend2, attrs: { perm: permutation } }); - } - const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0]; - if (permutedAxis !== xRank - 1) { - throw new Error(`WebGPU cumprod shader expects an inner-most axis=${x.shape.length - 1} but got axis=${axis}`); - } - const size = permutedX.shape[permutedAxis]; - let result = identity5({ inputs: { x: permutedX }, backend: backend2 }); - for (let i2 = 0; i2 <= Math.ceil(Math.log2(size)) - 1; i2++) { - const program = new CumProgram2(op2, permutedX.shape, false, reverse5); - const prevResult = result; - const uniformData = [{ type: "float32", data: [i2] }]; - result = backend2.runWebGPUProgram(program, [result], result.dtype, uniformData); - backend2.disposeData(prevResult.dataId); - } - if (exclusive) { - const program = new CumProgram2(op2, permutedX.shape, exclusive, reverse5); - const prevResult = result; - const uniformData = [{ type: "float32", data: [0] }]; - result = backend2.runWebGPUProgram(program, [result], result.dtype, uniformData); - backend2.disposeData(prevResult.dataId); - } - if (permutation != null) { - const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation); - const reverseTransposedResult = transpose6({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } }); - backend2.disposeData(result.dataId); - backend2.disposeData(permutedX.dataId); - return reverseTransposedResult; - } - return result; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cumprod.js -function cumprod5(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { axis, exclusive, reverse: reverse5 } = attrs; - return cumImpl2(CumOpType2.Prod, x, backend2, axis, exclusive, reverse5); -} -var cumprodConfig4 = { - kernelName: Cumprod, - backendName: "webgpu", - kernelFunc: cumprod5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cumsum.js -function cumsum5(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { axis, exclusive, reverse: reverse5 } = attrs; - return cumImpl2(CumOpType2.Sum, x, backend2, axis, exclusive, reverse5); -} -var cumsumConfig4 = { - kernelName: Cumsum, - backendName: "webgpu", - kernelFunc: cumsum5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depth_to_space_webgpu.js -var DepthToSpaceProgram2 = class { - constructor(outputShape, dataFormat) { - this.variableNames = ["x"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.uniforms = "blockSize : i32,"; - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = `depthToSpace_${dataFormat}`; - this.dataFormat = dataFormat; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - let b = coords[0]; - let h = ${this.getHeightCoordString()}; - let w = ${this.getWidthCoordString()}; - let d = ${this.getDepthCoordString()}; - - let in_h = h / uniforms.blockSize; - let offset_h = h % uniforms.blockSize; - let in_w = w / uniforms.blockSize; - let offset_w = w % uniforms.blockSize; - let offset_d = (offset_h * uniforms.blockSize + offset_w) * - ${this.getOutputDepthSize()}; - let in_d = d + offset_d; - - let rlt = ${this.getInputSamplingString()}; - setOutputAtIndex(index, rlt); - } - }`; - return userCode; - } - getHeightCoordString() { - if (this.dataFormat === "NHWC") { - return `coords[1]`; - } else { - return `coords[2]`; - } - } - getWidthCoordString() { - if (this.dataFormat === "NHWC") { - return `coords[2]`; - } else { - return `coords[3]`; - } - } - getDepthCoordString() { - if (this.dataFormat === "NHWC") { - return `coords[3]`; - } else { - return `coords[1]`; - } - } - getOutputDepthSize() { - if (this.dataFormat === "NHWC") { - return `uniforms.outShape[3]`; - } else { - return `uniforms.outShape[1]`; - } - } - getInputSamplingString() { - if (this.dataFormat === "NHWC") { - return `getX(b, in_h, in_w, in_d)`; - } else { - return `getX(b, in_d, in_h, in_w)`; - } - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/DepthToSpace.js -function depthToSpace5(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { blockSize, dataFormat } = attrs; - const batchSize = x.shape[0]; - const inputHeight = dataFormat === "NHWC" ? x.shape[1] : x.shape[2]; - const inputWidth = dataFormat === "NHWC" ? x.shape[2] : x.shape[3]; - const inputDepth = dataFormat === "NHWC" ? x.shape[3] : x.shape[1]; - const outputHeight = inputHeight * blockSize; - const outputWidth = inputWidth * blockSize; - const outputDepth = inputDepth / (blockSize * blockSize); - const outputShape = dataFormat === "NHWC" ? [batchSize, outputHeight, outputWidth, outputDepth] : [batchSize, outputDepth, outputHeight, outputWidth]; - const uniformData = [ - { type: "int32", data: [blockSize] } - ]; - const program = new DepthToSpaceProgram2(outputShape, dataFormat); - return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); -} -var depthToSpaceConfig4 = { - kernelName: DepthToSpace, - backendName: "webgpu", - kernelFunc: depthToSpace5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_nchw_shared_webgpu.js -var DepthwiseConv2DNCHWSharedProgram = class { - constructor(outputShape, filterHeight, filterWidth, addBias = false, activation2 = null, hasPreluActivation = false) { - this.variableNames = ["x", "W"]; - this.uniforms = `pad : vec2, inDims : vec2,`; - this.workGroupSize = [16, 16, 1]; - this.outputShape = outputShape; - this.dispatchLayout = { x: [3], y: [2], z: [0, 1] }; - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - if (addBias) { - this.variableNames.push("bias"); - } - if (hasPreluActivation) { - this.variableNames.push("preluActivationWeights"); - } - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivation = hasPreluActivation; - this.filterHeight = filterHeight; - this.filterWidth = filterWidth; - this.shaderKey = `depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`; - } - getUserCode() { - const filterSize = this.filterWidth * this.filterHeight; - const workGroupSize = this.workGroupSize[0] * this.workGroupSize[1] * this.workGroupSize[2]; - const tileAHeight = this.workGroupSize[1] + this.filterHeight - 1; - const tileAWidth = this.workGroupSize[0] + this.filterWidth - 1; - const userCode = ` - ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)} - - var mm_Asub : array, ${tileAHeight}>; - var mm_Bsub : array, ${this.filterHeight}>; - fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 { - var value = 0.0; - if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1]) - { - value = getX(batch, channel, row, col); - } - return value; - } - - ${getWorkGroupSizeString()} - fn main(@builtin(local_invocation_id) LocalId : vec3, - @builtin(global_invocation_id) GlobalId : vec3, - @builtin(local_invocation_index) LocalIndex: u32, - @builtin(num_workgroups) NumWorkgroups: vec3) { - localId = LocalId; - globalId = GlobalId; - let localIndex = i32(LocalIndex); - numWorkgroups = NumWorkgroups; - let coords = getOutputCoords(); - let batch = coords[0]; - let xRCCorner = vec2(coords.zw) - uniforms.pad; - let channelMul = uniforms.wShape[3]; - let d1 = coords[1] / channelMul; - let q = coords[1] % channelMul; - - let inputRowStart = xRCCorner.x; - let inputColStart = xRCCorner.y; - - let localRow = i32(localId.y); - let localCol = i32(localId.x); - - // Load one tile of X into local memory. - for (var inputRow = localRow; inputRow < ${tileAHeight}; inputRow = inputRow + ${this.workGroupSize[1]}) { - for (var inputCol = localCol; inputCol < ${tileAWidth}; inputCol = inputCol + ${this.workGroupSize[0]}) { - let rowOffset = inputRow - localRow; - let colOffset = inputCol - localCol; - mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset); - } - } - - // Load one tile of W into local memory. - var wIndex = localIndex; - ${filterSize < workGroupSize ? `if (wIndex < ${filterSize})` : `for(; wIndex < ${filterSize}; wIndex = wIndex + ${workGroupSize})`} - - { - let wRow = wIndex / ${this.filterWidth}; - let wCol = wIndex % ${this.filterWidth}; - mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q); - } - - workgroupBarrier(); - - var value = 0.0; - for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) { - for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) { - let xVal = mm_Asub[localRow + wR][localCol + wC]; - let wVal = mm_Bsub[wR][wC]; - value = fma(xVal, wVal, value); - } - } - ${biasActivationSnippet(this.addBias, this.activation)} - if (coordsInBounds4D(coords, uniforms.outShape)) { - setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_vec4_webgpu.js -var DepthwiseConv2DVec4Program = class { - constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) { - this.variableNames = ["x", "W"]; - this.uniforms = "pad : vec2, inDims : vec2,"; - this.workGroupSize = [4, 4, 4]; - this.isVec4 = true; - this.outputShape = convInfo.outShape; - this.dispatchLayout = { x: [3], y: [2], z: [0, 1] }; - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [4, 4, 1]); - util_exports.assert(convInfo.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"); - if (addBias) { - this.variableNames.push("bias"); - } - if (hasPreluActivation) { - this.variableNames.push("preluActivationWeights"); - } - this.convInfo = convInfo; - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivation = hasPreluActivation; - this.shaderKey = `depthwiseVec4_${activation2}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`; - } - getUserCode() { - const xNumber = 4 + this.convInfo.filterWidth - 1; - const userCode = ` - ${activationFnSnippet(this.activation, this.hasPreluActivation, true, 4)} - fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4 { - var value = vec4(0.0); - if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1]) - { - value = getX(batch, row, col, channel); - } - return value; - } - ${getWorkGroupSizeString()} - fn main(@builtin(global_invocation_id) globalId: vec3) { - let batch = i32(globalId.z) / uniforms.outShape[1]; - let r = i32(globalId.z) % uniforms.outShape[1]; - let c = i32(globalId.y) * 4; - let d1 = i32(globalId.x) * 4; - let xRCCorner = vec2(r, c) - uniforms.pad; - - let xRCorner = xRCCorner.x; - let xCCorner = xRCCorner.y; - var xVals : array, ${xNumber}>; - var dotProd : array, 4>; - dotProd[0] = vec4(0.0); - dotProd[1] = vec4(0.0); - dotProd[2] = vec4(0.0); - dotProd[3] = vec4(0.0); - - // Use constant instead of uniform can give better performance. - for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) { - let xR = xRCorner + wR; - for (var i = 0; i < ${xNumber}; i++) - { - xVals[i] = readX(batch, xR, xCCorner + i, d1); - } - for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) { - let wValue = getW(wR, wC, d1, 0); - dotProd[0] = dotProd[0] + xVals[0 + wC] * wValue; - dotProd[1] = dotProd[1] + xVals[1 + wC] * wValue; - dotProd[2] = dotProd[2] + xVals[2 + wC] * wValue; - dotProd[3] = dotProd[3] + xVals[3 + wC] * wValue; - } - } - - for (var i = 0; i < 4; i = i + 1) { - let coords = vec4(batch, r, c + i, d1); - if (coordsInBounds4D(coords, uniforms.outShape)) { - var value = dotProd[i]; - ${biasActivationSnippet(this.addBias, this.activation)} - setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); - } - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_webgpu.js -var DepthwiseConv2DProgram2 = class { - constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) { - this.variableNames = ["x", "W"]; - this.uniforms = `pad : vec2, inDims : vec2, filterHeight : i32, - filterWidth : i32, stride : vec2, dilation : vec2,`; - this.workGroupSize = [256, 1, 1]; - this.outputShape = convInfo.outShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.isChannelsLast = convInfo.dataFormat === "channelsLast"; - if (addBias) { - this.variableNames.push("bias"); - } - if (hasPreluActivation) { - this.variableNames.push("preluActivationWeights"); - } - this.convInfo = convInfo; - this.addBias = addBias; - this.activation = activation2; - this.hasPreluActivation = hasPreluActivation; - this.shaderKey = `depthwise_${this.activation}_${this.isChannelsLast}`; - } - getUserCode() { - const getXSnippet = this.isChannelsLast ? "getX(batch, xR, xC, d1);" : "getX(batch, d1, xR, xC);"; - const userCode = ` - ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)} - - ${getMainHeaderString()} - let coords = getOutputCoords(); - let batch = coords[0]; - let xRCCorner = vec2(coords.${this.isChannelsLast ? "yz" : "zw"}) * uniforms.stride - uniforms.pad; - let d2 = coords[${this.isChannelsLast ? 3 : 1}]; - let channelMul = uniforms.wShape[3]; - let d1 = d2 / channelMul; - let q = d2 % channelMul; - - let inputRowStart = xRCCorner.x; - let inputColStart = xRCCorner.y; - let inputRowEnd = inputRowStart + uniforms.filterHeight * - uniforms.dilation[0]; - let inputColEnd = inputColStart + uniforms.filterWidth * - uniforms.dilation[1]; - - // Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get - // y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all - // values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC. - // x(d1, ?, ?) and y(d2, yR, yC) is for NCHW. - var value = 0.0; - - // Extract if checking out of for loop for performance. - if (inputRowStart >= 0 && inputColStart >= 0 && - inputRowEnd < uniforms.inDims[0] && - inputColEnd < uniforms.inDims[1]) { - for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) { - let xR = inputRowStart + wR * uniforms.dilation[0]; - - for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) { - let xC = inputColStart + wC * uniforms.dilation[1]; - - let xVal = ${getXSnippet}; - let wVal = getW(wR, wC, d1, q); - value = value + xVal * wVal; - } - } - } else { - for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) { - let xR = inputRowStart + wR * uniforms.dilation[0]; - - if (xR < 0 || xR >= uniforms.inDims[0]) { - continue; - } - - for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) { - let xC = inputColStart + wC * uniforms.dilation[1]; - - if (xC < 0 || xC >= uniforms.inDims[1]) { - continue; - } - - let xVal = ${getXSnippet}; - let wVal = getW(wR, wC, d1, q); - value = value + xVal * wVal; - } - } - } - ${biasActivationSnippet(this.addBias, this.activation)} - if (coordsInBounds4D(coords, uniforms.outShape)) { - setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/DepthwiseConv2dNative.js -function depthwiseConv2dNative3(args) { - const { inputs, backend: backend2, attrs } = args; - const { x, filter } = inputs; - const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs; - const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); - let $dilations = dilations; - if ($dilations == null) { - $dilations = [1, 1]; - } - const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true, $dataFormat); - const dimensions = [ - { type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, - { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] } - ]; - const isChannelsLast = convInfo.dataFormat === "channelsLast"; - let program; - if (!isChannelsLast && convInfo.inHeight > 16 && convInfo.inWidth > 16 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.dilationWidth === 1 && convInfo.dilationHeight === 1 && convInfo.inChannels === convInfo.outChannels) { - program = new DepthwiseConv2DNCHWSharedProgram(convInfo.outShape, convInfo.filterHeight, convInfo.filterWidth); - } else if (isChannelsLast && convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) { - program = new DepthwiseConv2DVec4Program(convInfo); - } else { - program = new DepthwiseConv2DProgram2(convInfo); - dimensions.push({ type: "int32", data: [convInfo.filterHeight] }, { type: "int32", data: [convInfo.filterWidth] }, { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, { - type: "int32", - data: [convInfo.dilationHeight, convInfo.dilationWidth] - }); - } - return backend2.runWebGPUProgram(program, [x, filter], x.dtype, dimensions); -} -var depthwiseConv2dNativeConfig4 = { - kernelName: DepthwiseConv2dNative, - backendName: "webgpu", - kernelFunc: depthwiseConv2dNative3 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Multiply.js -var multiplyKernelFunc = binaryKernelFunc3({ - opType: BinaryOpType.MUL, - cpuKernelImpl: multiplyImplCPU2, - supportsComplex: true -}); -var multiplyConfig4 = { - kernelName: Multiply, - backendName: "webgpu", - kernelFunc: multiplyKernelFunc -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/reduce_webgpu.js -var ReduceProgram2 = class { - constructor(reduceInfo, reduceType) { - this.workGroupSize = [64, 1, 1]; - this.variableNames = ["x"]; - this.uniforms = "reduceSize : i32,"; - this.size = true; - this.inputShape = [reduceInfo.batchSize, reduceInfo.inSize]; - const [outputShape] = backend_util_exports.computeOutAndReduceShapes(this.inputShape, [1]); - this.outputShape = outputShape.length === 0 ? [1] : outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]); - this.reduceType = reduceType; - this.shaderKey = `reduce_${reduceType}`; - } - getUserCode() { - let reduceOp = ``; - let initValue = "0.0"; - if (this.reduceType === "min" || this.reduceType === "max") { - reduceOp = ` - if (isnan(candidate)) { - bestValue = uniforms.NAN; - } else if (!isnan(bestValue) && candidate ${this.reduceType === "min" ? "<" : ">"} bestValue) - { bestValue = candidate; }`; - initValue = "f32(x[offset])"; - } else if (this.reduceType === "sum" || this.reduceType === "mean") { - reduceOp = " bestValue = bestValue + candidate; "; - } else if (this.reduceType === "prod") { - reduceOp = " bestValue = bestValue * candidate; "; - initValue = "1.0"; - } - const outputSnippet = this.reduceType === "mean" ? `setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));` : `setOutputAtIndex(outputIndex, bestValue);`; - const sharedMemorySnippet = ` - var xBestValues : array; - `; - const userCode = ` - fn DIV_CEIL(a : u32, b : u32) -> u32 { - return ((a - 1u) / b + 1u); - } - - ${sharedMemorySnippet} - fn getOffset(outputIndex : i32) -> i32 { - let outputCoords = getCoordsFromIndex(outputIndex); - let offset = ${this.outputShape.length === 1 ? "outputCoords" : "outputCoords[0]"} * uniforms.reduceSize; - return offset; - } - ${getMainHeaderAndGlobalIndexString()} - let outputIndex = index / i32(workGroupSizeX); - let offset = getOffset(outputIndex); - var bestValue = ${initValue}; - let Length = uniforms.reduceSize; - let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX); - for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size; - k = k + i32(workGroupSizeX)) { - let candidate = f32(x[offset + k]); - ${reduceOp} - } - xBestValues[localId.x] = bestValue; - workgroupBarrier(); - - var reduceSize = min(u32(Length), workGroupSizeX); - for (var currentSize = reduceSize / 2u; reduceSize > 1u; - currentSize = reduceSize / 2u) { - let interval = DIV_CEIL(reduceSize, 2u); - if (localId.x < currentSize) { - let candidate = xBestValues[localId.x + interval]; - ${reduceOp} - xBestValues[localId.x] = bestValue; - } - reduceSize = interval; - workgroupBarrier(); - } - - if (localId.x == 0u && outputIndex < uniforms.size) { - ${outputSnippet} - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/reduce.js -function reduce2(x, axis, keepDims, reduceType, backend2) { - const xRank = x.shape.length; - const toDispose = []; - const origAxes = util_exports.parseAxisParam(axis, x.shape); - let axes = origAxes; - const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank); - let input2 = x; - if (permutedAxes != null) { - input2 = transpose6({ inputs: { x }, attrs: { perm: permutedAxes }, backend: backend2 }); - axes = backend_util_exports.getInnerMostAxes(axes.length, xRank); - toDispose.push(input2); - } - backend_util_exports.assertAxesAreInnerMostDims(reduceType, axes, xRank); - const [reduceOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes); - let resOutShape = reduceOutShape; - if (keepDims) { - resOutShape = backend_util_exports.expandShapeToKeepDim(reduceOutShape, origAxes); - } - let res; - if ((reduceType === "max" || reduceType === "prod") && backend2.shouldExecuteOnCPU([input2])) { - const xVals = backend2.tensorMap.get(input2.dataId).values; - switch (reduceType) { - case "max": - const outValues = maxImplCPU2(xVals, util_exports.sizeFromShape(reduceShape), resOutShape, x.dtype); - res = backend2.makeTensorInfo(resOutShape, x.dtype, outValues); - break; - case "prod": - const { outVals, outShape, outDtype } = prodImplCPU2(input2.shape, input2.dtype, xVals, axes); - res = backend2.makeTensorInfo(outShape, outDtype, outVals); - break; - default: - throw new Error(`${reduceType} CPU implementation is not yet supported.`); - } - } else { - const inSize = util_exports.sizeFromShape(reduceShape); - const xSize = util_exports.sizeFromShape(input2.shape); - const batchSize = xSize / inSize; - const reduceInfo = { windowSize: inSize, inSize, batchSize, outSize: 1 }; - const dtype = reduceType === "mean" ? "float32" : sumOutType(x.dtype); - const uniformData = [ - { type: "int32", data: [inSize] } - ]; - const program = new ReduceProgram2(reduceInfo, reduceType); - const reduced = backend2.runWebGPUProgram(program, [input2], dtype, uniformData); - toDispose.push(reduced); - res = reshape6({ inputs: { x: reduced }, attrs: { shape: resOutShape }, backend: backend2 }); - } - toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); - return res; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sum.js -function sum6(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { axis, keepDims } = attrs; - return reduce2(x, axis, keepDims, "sum", backend2); -} -var sumConfig4 = { - kernelName: Sum, - backendName: "webgpu", - kernelFunc: sum6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Einsum.js -function einsum4(args) { - const { inputs, backend: backend2, attrs } = args; - const { equation } = attrs; - const tensors = inputs; - const { allDims, summedDims, idDims } = backend_util_exports.decodeEinsumEquation(equation, tensors.length); - backend_util_exports.checkEinsumDimSizes(allDims.length, idDims, tensors); - const { path, steps } = backend_util_exports.getEinsumComputePath(summedDims, idDims); - const nSteps = steps.length; - let out = null; - let numDimsRemaining = allDims.length; - const tensorsToDispose = []; - for (let i2 = 0; i2 < nSteps; ++i2) { - for (const idTerm of steps[i2]) { - const { permutationIndices: perm, expandDims: dimsToExpand } = backend_util_exports.getEinsumPermutation(numDimsRemaining, idDims[idTerm]); - let x; - if (backend_util_exports.isIdentityPermutation(perm)) { - x = tensors[idTerm]; - } else { - x = transpose6({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } }); - tensorsToDispose.push(x); - } - const targetShape = x.shape.slice(); - for (let k = 0; k < dimsToExpand.length; ++k) { - targetShape.splice(dimsToExpand[k], 0, 1); - } - if (!util_exports.arraysEqual(x.shape, targetShape)) { - x = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: targetShape } }); - tensorsToDispose.push(x); - } - if (out === null) { - out = x; - } else { - out = multiplyKernelFunc({ inputs: { a: x, b: out }, backend: backend2 }); - tensorsToDispose.push(out); - } - } - if (i2 < nSteps - 1) { - if (path[i2] >= 0) { - out = sum6({ - inputs: { x: out }, - backend: backend2, - attrs: { - axis: path[i2] - (allDims.length - numDimsRemaining), - keepDims: false - } - }); - tensorsToDispose.push(out); - } - numDimsRemaining--; - } - } - for (const tensorInfo of tensorsToDispose) { - if (tensorInfo === out) { - continue; - } - backend2.disposeData(tensorInfo.dataId); - } - return out; -} -var einsumConfig3 = { - kernelName: Einsum, - backendName: "webgpu", - kernelFunc: einsum4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Elu.js -var elu6 = unaryKernelFunc3({ opType: UnaryOpType.ELU }); -var eluConfig4 = { - kernelName: Elu, - backendName: "webgpu", - kernelFunc: elu6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Equal.js -var equal5 = binaryKernelFunc3({ opType: BinaryOpType.EQUAL, dtype: "bool", cpuKernelImpl: equalImplCPU2 }); -var equalConfig4 = { - kernelName: Equal, - backendName: "webgpu", - kernelFunc: equal5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Exp.js -var exp5 = unaryKernelFunc3({ - opType: UnaryOpType.EXP, - cpuKernelImpl: expImplCPU2, - dtype: "float32" -}); -var expConfig4 = { - kernelName: Exp, - backendName: "webgpu", - kernelFunc: exp5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ExpandDims.js -function expandDims6(args) { - const { inputs, attrs, backend: backend2 } = args; - const { dim } = attrs; - const { input: input2 } = inputs; - const inputRank = input2.shape.length; - const newShape = input2.shape.slice(); - let $dim = dim; - if (dim < 0) { - util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`); - $dim = inputRank + dim + 1; - } - newShape.splice($dim, 0, 1); - return reshape6({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } }); -} -var expandDimsConfig4 = { - kernelName: ExpandDims, - backendName: "webgpu", - kernelFunc: expandDims6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Expm1.js -var expm15 = unaryKernelFunc3({ opType: UnaryOpType.EXPM1, cpuKernelImpl: expm1ImplCPU2 }); -var expm1Config3 = { - kernelName: Expm1, - backendName: "webgpu", - kernelFunc: expm15 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/flip_left_right_webgpu.js -var FlipLeftRightProgram2 = class { - constructor(imageShape) { - this.outputShape = []; - this.variableNames = ["x"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = imageShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = "flipLeftRight"; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - let coordX = uniforms.xShape[2] - coords[2] - 1; - let outputValue = getX(coords[0], coords[1], coordX, coords[3]); - setOutputAtIndex(index, outputValue); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FlipLeftRight.js -var flipLeftRightConfig4 = { - kernelName: FlipLeftRight, - backendName: "webgpu", - kernelFunc: ({ inputs, backend: backend2 }) => { - const { image: image2 } = inputs; - const webgpuBackend = backend2; - const program = new FlipLeftRightProgram2(image2.shape); - const output = webgpuBackend.runWebGPUProgram(program, [image2], image2.dtype); - return output; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Floor.js -var floor5 = unaryKernelFunc3({ opType: UnaryOpType.FLOOR, cpuKernelImpl: floorImplCPU2 }); -var floorConfig4 = { - kernelName: Floor, - backendName: "webgpu", - kernelFunc: floor5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FloorDiv.js -var floorDiv4 = binaryKernelFunc3({ opType: BinaryOpType.INT_DIV, dtype: "int32" }); -var floorDivConfig4 = { - kernelName: FloorDiv, - backendName: "webgpu", - kernelFunc: floorDiv4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/from_pixels_webgpu.js -var FromPixelsProgram2 = class { - constructor(outputShape, numChannels, importVideo = false) { - this.isFromPixels = true; - this.outputShape = [0]; - this.variableNames = []; - this.workGroupSize = [256, 1, 1]; - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [numChannels, 1, 1]); - this.importVideo = importVideo; - this.shaderKey = `fromPixels_${this.importVideo}`; - } - getUserCode() { - const textureLoad = this.importVideo ? "textureLoad(src, vec2(coords.yx));" : "textureLoad(src, vec2(coords.yx), 0)"; - const textureType = this.importVideo ? "texture_external" : "texture_2d"; - return ` - @binding(1) @group(0) var src: ${textureType}; - ${getMainHeaderAndGlobalIndexString()} - let flatIndex = index * uniforms.numChannels; - if (flatIndex < uniforms.size) { - let coords = getCoordsFromIndex(flatIndex); - let values = ${textureLoad}; - for (var i = 0; i < uniforms.numChannels; i = i + 1) { - result[flatIndex + i] = i32(floor(255.0 * values[i])); - } - } - } - `; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FromPixels.js -var fromPixelsConfig2 = { - kernelName: FromPixels, - backendName: "webgpu", - kernelFunc: fromPixels3 -}; -var fromPixels2DContext3; -var videoToTextureMap = /* @__PURE__ */ new Map(); -function fromPixels3(args) { - const { inputs, backend: backend2, attrs } = args; - let { pixels } = inputs; - const { numChannels } = attrs; - if (pixels == null) { - throw new Error("pixels passed to tf.browser.fromPixels() can not be null"); - } - const isVideo = typeof HTMLVideoElement !== "undefined" && pixels instanceof HTMLVideoElement; - const isImage = typeof HTMLImageElement !== "undefined" && pixels instanceof HTMLImageElement; - const isCanvas = typeof HTMLCanvasElement !== "undefined" && pixels instanceof HTMLCanvasElement || typeof OffscreenCanvas !== "undefined" && pixels instanceof OffscreenCanvas; - const isImageBitmap = typeof ImageBitmap !== "undefined" && pixels instanceof ImageBitmap; - const [width, height] = isVideo ? [ - pixels.videoWidth, - pixels.videoHeight - ] : [pixels.width, pixels.height]; - const outputShape = [height, width, numChannels]; - const importVideo = env().getBool("WEBGPU_IMPORT_EXTERNAL_TEXTURE") && isVideo; - const isVideoOrImage = isVideo || isImage; - if (isImageBitmap || isCanvas || isVideoOrImage) { - let textureInfo; - if (importVideo) { - const videoElement = pixels; - if (!videoToTextureMap.has(videoElement) || videoToTextureMap.get(videoElement).expired) { - const externalTextureDescriptor = { source: videoElement }; - videoToTextureMap.set(videoElement, backend2.device.importExternalTexture(externalTextureDescriptor)); - } - textureInfo = { - width, - height, - format: null, - usage: null, - texture: videoToTextureMap.get(videoElement) - }; - } else { - if (isVideoOrImage) { - if (fromPixels2DContext3 == null) { - fromPixels2DContext3 = document.createElement("canvas").getContext("2d"); - } - fromPixels2DContext3.canvas.width = width; - fromPixels2DContext3.canvas.height = height; - fromPixels2DContext3.drawImage(pixels, 0, 0, width, height); - pixels = fromPixels2DContext3.canvas; - } - const usage = GPUTextureUsage.COPY_DST | GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING; - const format = "rgba8unorm"; - const texture = backend2.textureManager.acquireTexture(outputShape[1], outputShape[0], format, usage); - backend2.queue.copyExternalImageToTexture({ source: pixels }, { texture }, [outputShape[1], outputShape[0]]); - textureInfo = { width, height, format, usage, texture }; - } - const size = util_exports.sizeFromShape(outputShape); - const strides = util_exports.computeStrides(outputShape); - const program = new FromPixelsProgram2(outputShape, numChannels, importVideo); - const uniformData = [ - { type: "uint32", data: [size] }, - { type: "uint32", data: [numChannels] }, - { type: "uint32", data: [...strides] } - ]; - const input2 = backend2.makeTensorInfo([height, width], "int32"); - const info = backend2.tensorMap.get(input2.dataId); - info.resourceInfo = textureInfo; - const result = backend2.runWebGPUProgram(program, [input2], "int32", uniformData); - backend2.disposeData(input2.dataId); - return result; - } - const imageData = pixels.data; - let pixelArray = imageData; - if (numChannels != null && numChannels !== 4) { - pixelArray = new Uint8Array(pixels.width * pixels.height * numChannels); - const dataLength = imageData.length; - let j = 0; - for (let i2 = 0; i2 < dataLength; i2++) { - if (i2 % 4 < numChannels) { - pixelArray[j++] = imageData[i2]; - } - } - } - const output = backend2.makeTensorInfo(outputShape, "int32", new Int32Array(pixelArray)); - backend2.uploadToGPU(output.dataId); - return output; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/batchnorm_webgpu.js -var BatchNormProgram2 = class { - constructor(xShape, meanShape, varianceShape, offsetShape, scaleShape) { - this.uniforms = "varianceEpsilon : f32,"; - this.workGroupSize = [128, 1, 1]; - this.size = true; - this.variableNames = ["x", "mean", "variance"]; - backend_util_exports.assertAndGetBroadcastShape(xShape, meanShape); - backend_util_exports.assertAndGetBroadcastShape(xShape, varianceShape); - this.outputShape = xShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - if (offsetShape != null) { - backend_util_exports.assertAndGetBroadcastShape(xShape, offsetShape); - this.variableNames.push("offset"); - } - if (scaleShape != null) { - backend_util_exports.assertAndGetBroadcastShape(xShape, scaleShape); - this.variableNames.push("scale"); - } - this.offsetShape = offsetShape; - this.scaleShape = scaleShape; - this.shaderKey = "batchNorm"; - } - getUserCode() { - let offsetSnippet = "0.0"; - if (this.offsetShape != null) { - offsetSnippet = "getOffsetByOutputIndex(index)"; - } - let scaleSnippet = "1.0"; - if (this.scaleShape != null) { - scaleSnippet = "getScaleByOutputIndex(index)"; - } - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) - { - let xValue = getXByOutputIndex(index); - let meanValue = getMeanByOutputIndex(index); - let varianValue = getVarianceByOutputIndex(index); - let offsetValue = ${offsetSnippet}; - let scaleValue = ${scaleSnippet}; - let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon)); - setOutputAtIndex(index,dot(vec3(xValue, -meanValue, offsetValue), vec3(inv, inv, 1.0))); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedBatchNorm.js -var fusedBatchNormConfig2 = { - kernelName: FusedBatchNorm, - backendName: "webgpu", - kernelFunc: ({ inputs, attrs, backend: backend2 }) => { - const { x, scale: scale2, offset, mean: mean5, variance } = inputs; - const { varianceEpsilon } = attrs; - const webGPUBackend = backend2; - const batchNormInputs = [x, mean5, variance]; - let offsetShape = null; - if (offset != null) { - offsetShape = offset.shape; - batchNormInputs.push(offset); - } - let scaleShape = null; - if (scale2 != null) { - scaleShape = scale2.shape; - batchNormInputs.push(scale2); - } - const program = new BatchNormProgram2(x.shape, mean5.shape, variance.shape, offsetShape, scaleShape); - const uniformData = [{ type: "float32", data: [varianceEpsilon] }]; - return webGPUBackend.runWebGPUProgram(program, batchNormInputs, x.dtype, uniformData); - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedConv2D.js -function fusedConv2d3(args) { - const { inputs, backend: backend2, attrs } = args; - const { x, filter, bias, preluActivationWeights } = inputs; - const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs; - const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); - const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat); - return conv2DImpl({ - x, - filter, - convInfo, - backend: backend2, - bias, - preluActivationWeights, - leakyreluAlpha, - activation: activation2 - }); -} -var fusedConv2DConfig4 = { - kernelName: FusedConv2D, - backendName: "webgpu", - kernelFunc: fusedConv2d3 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedDepthwiseConv2D.js -function fusedDepthwiseConv2D3(args) { - const { inputs, backend: backend2, attrs } = args; - const { x, filter, bias, preluActivationWeights } = inputs; - const { strides, pad: pad3, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs; - let $dilations = dilations; - if ($dilations == null) { - $dilations = [1, 1]; - } - util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`); - const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true); - const programInputs = [x, filter]; - const hasBias = bias != null; - const hasPreluActivationWeights = preluActivationWeights != null; - if (hasBias) { - programInputs.push(bias); - } - if (hasPreluActivationWeights) { - programInputs.push(preluActivationWeights); - } - const dimensions = [ - { type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, - { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] } - ]; - let program; - if (convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) { - program = new DepthwiseConv2DVec4Program(convInfo, hasBias, activation2, hasPreluActivationWeights); - } else { - program = new DepthwiseConv2DProgram2(convInfo, hasBias, activation2, hasPreluActivationWeights); - dimensions.push({ type: "int32", data: [convInfo.filterHeight] }, { type: "int32", data: [convInfo.filterWidth] }, { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, { - type: "int32", - data: [convInfo.dilationHeight, convInfo.dilationWidth] - }); - } - if (activation2 === "leakyrelu") { - dimensions.push({ type: "float32", data: [leakyreluAlpha] }); - program.uniforms += " alpha : f32,"; - } - const result = backend2.runWebGPUProgram(program, programInputs, "float32", dimensions); - return result; -} -var fusedDepthwiseConv2DConfig4 = { - kernelName: FusedDepthwiseConv2D, - backendName: "webgpu", - kernelFunc: fusedDepthwiseConv2D3 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/gather_nd_webgpu.js -var GatherNDProgram2 = class { - constructor(sliceDim, shape) { - this.variableNames = ["A", "indices"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = shape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = `gathernd_${sliceDim}`; - this.sliceDim = sliceDim; - this.uniforms = `sliceDim : i32, strides : ${getCoordsDataType2(sliceDim)},`; - } - getUserCode() { - let strideString; - if (this.sliceDim > 1) { - strideString = "uniforms.strides[j]"; - } else { - strideString = "uniforms.strides"; - } - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - var flattenIndex = 0; - for (var j = 0; j < uniforms.sliceDim; j = j + 1) { - let indexTemp = i32(round(getIndices(coords[0], j))); - let strideNum = ${strideString}; - flattenIndex = flattenIndex + indexTemp * strideNum; - } - - setOutputAtIndex(index, getA(flattenIndex, coords[1])); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GatherNd.js -function gatherNd4(args) { - const { inputs, backend: backend2 } = args; - const { params, indices } = inputs; - const indicesShape = indices.shape; - const sliceRank = indicesShape[indicesShape.length - 1]; - const paramsSize = util_exports.sizeFromShape(params.shape); - const [resultShape, numSlices, sliceSize, strides] = backend_util_exports.prepareAndValidate(params, indices); - const flattenIndices = reshape6({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numSlices, sliceRank] } }); - const flattenX = reshape6({ - inputs: { x: params }, - backend: backend2, - attrs: { shape: [util_exports.sizeFromShape(params.shape) / sliceSize, sliceSize] } - }); - if (backend2.shouldExecuteOnCPU([params, indices]) || params.dtype === "string") { - const indicesData = backend2.readSync(indices.dataId); - const paramsBuf = backend2.bufferSync(params); - const outValue = gatherNdImplCPU2(indicesData, paramsBuf, params.dtype, numSlices, sliceRank, sliceSize, strides, params.shape, paramsSize); - return backend2.makeTensorInfo(resultShape, params.dtype, outValue.values); - } - const program = new GatherNDProgram2(sliceRank, [numSlices, sliceSize]); - const uniformData = [{ type: "int32", data: [sliceRank] }, { type: "int32", data: strides }]; - const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndices], flattenX.dtype, uniformData); - const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: resultShape } }); - backend2.disposeData(flattenIndices.dataId); - backend2.disposeData(flattenX.dataId); - backend2.disposeData(res.dataId); - return reshaped; -} -var gatherNdConfig4 = { - kernelName: GatherNd, - backendName: "webgpu", - kernelFunc: gatherNd4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/gather_webgpu.js -var GatherProgram2 = class { - constructor(aShape, outputShape) { - this.variableNames = ["A", "indices"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = aShape.slice(); - this.aShape = aShape; - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = `gather`; - } - getUserCode() { - const sourceCoords = getSourceCoords4(this.aShape); - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let resRC = getCoordsFromIndex(index); - let indexZ = i32(getIndices(resRC.x, resRC.z)); - let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]); - setOutputAtIndex(index, inBounds * getA(${sourceCoords})); - } - } - `; - return userCode; - } -}; -function getSourceCoords4(aShape) { - const currentCoords = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"]; - const sourceCoords = []; - for (let i2 = 0; i2 < aShape.length; i2++) { - if (i2 === 2) { - sourceCoords.push("indexZ"); - } else { - sourceCoords.push(`${currentCoords[i2]}`); - } - } - return sourceCoords.join(); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GatherV2.js -function gatherV24(args) { - const { inputs, backend: backend2, attrs } = args; - const { x, indices } = inputs; - const { axis, batchDims } = attrs; - const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0]; - const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, batchDims); - const indicesSize = util_exports.sizeFromShape(indices.shape); - const toDispose = []; - const flattenX = reshape6({ - inputs: { x }, - backend: backend2, - attrs: { - shape: [ - shapeInfo.batchSize, - shapeInfo.outerSize, - shapeInfo.dimSize, - shapeInfo.sliceSize - ] - } - }); - const flattenIndex = reshape6({ - inputs: { x: indices }, - backend: backend2, - attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] } - }); - toDispose.push(flattenX); - toDispose.push(flattenIndex); - const flattenOutputShape = [ - shapeInfo.batchSize, - shapeInfo.outerSize, - indicesSize / shapeInfo.batchSize, - shapeInfo.sliceSize - ]; - if (backend2.shouldExecuteOnCPU([x, indices])) { - const indicesBufferInfo = backend2.tensorMap.get(flattenIndex.dataId); - const indicesValues = indicesBufferInfo.values; - const indicesBuf = buffer(flattenIndex.shape, flattenIndex.dtype, indicesValues); - const xBufferInfo = backend2.tensorMap.get(flattenX.dataId); - const xValues = xBufferInfo.values; - const xBuf = buffer(flattenX.shape, flattenX.dtype, xValues); - const outBuf = gatherV2ImplCPU2(xBuf, indicesBuf, flattenOutputShape); - toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); - return backend2.makeTensorInfo(shapeInfo.outputShape, outBuf.dtype, outBuf.values); - } - const program = new GatherProgram2(flattenX.shape, flattenOutputShape); - const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndex], flattenX.dtype); - toDispose.push(res); - const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: shapeInfo.outputShape } }); - toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); - return reshaped; -} -var gatherV2Config4 = { - kernelName: GatherV2, - backendName: "webgpu", - kernelFunc: gatherV24 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Greater.js -var greater6 = binaryKernelFunc3({ - opType: BinaryOpType.GREATER, - cpuKernelImpl: greaterImplCPU2, - dtype: "bool" -}); -var greaterConfig4 = { - kernelName: Greater, - backendName: "webgpu", - kernelFunc: greater6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GreaterEqual.js -var greaterEqual5 = binaryKernelFunc3({ - opType: BinaryOpType.GREATER_EQUAL, - dtype: "bool", - cpuKernelImpl: greaterEqualImplCPU2 -}); -var greaterEqualConfig4 = { - kernelName: GreaterEqual, - backendName: "webgpu", - kernelFunc: greaterEqual5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LeakyRelu.js -function leakyRelu5(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { alpha } = attrs; - const uniformData = [{ type: "float32", data: [alpha] }]; - const program = new UnaryOpProgram2(x.shape, UnaryOpType.LEAKYRELU); - program.uniforms = "alpha : f32,"; - return backend2.runWebGPUProgram(program, [x], "float32", uniformData); -} -var leakyReluConfig4 = { - kernelName: LeakyRelu, - backendName: "webgpu", - kernelFunc: leakyRelu5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Less.js -var less6 = binaryKernelFunc3({ opType: BinaryOpType.LESS, dtype: "bool", cpuKernelImpl: lessImplCPU2 }); -var lessConfig4 = { - kernelName: Less, - backendName: "webgpu", - kernelFunc: less6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LessEqual.js -var lessEqual5 = binaryKernelFunc3({ - opType: BinaryOpType.LESS_EQUAL, - dtype: "bool", - cpuKernelImpl: lessEqualImplCPU2 -}); -var lessEqualConfig4 = { - kernelName: LessEqual, - backendName: "webgpu", - kernelFunc: lessEqual5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Log.js -var log6 = unaryKernelFunc3({ opType: UnaryOpType.LOG, cpuKernelImpl: logImplCPU2 }); -var logConfig4 = { - kernelName: Log, - backendName: "webgpu", - kernelFunc: log6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LogicalAnd.js -var logicalAnd4 = binaryKernelFunc3({ opType: BinaryOpType.LOGICAL_AND, dtype: "bool" }); -var logicalAndConfig4 = { - kernelName: LogicalAnd, - backendName: "webgpu", - kernelFunc: logicalAnd4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LogicalNot.js -var logicalNot4 = unaryKernelFunc3({ opType: UnaryOpType.LOGICAL_NOT }); -var logicalNotConfig4 = { - kernelName: LogicalNot, - backendName: "webgpu", - kernelFunc: logicalNot4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Max.js -function max6(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { reductionIndices, keepDims } = attrs; - return reduce2(x, reductionIndices, keepDims, "max", backend2); -} -var maxConfig4 = { - kernelName: Max, - backendName: "webgpu", - kernelFunc: max6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Maximum.js -var maximum6 = binaryKernelFunc3({ - opType: BinaryOpType.MAX, - cpuKernelImpl: maximumImplCPU2 -}); -var maximumConfig4 = { - kernelName: Maximum, - backendName: "webgpu", - kernelFunc: maximum6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/MaxPool.js -function maxPool5(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs; - const dilations = 1; - const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode); - let program; - const dimensions = []; - if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1) { - if (util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) { - return identity5({ inputs: { x }, backend: backend2 }); - } - program = new PoolWithFilterSizeEqualsOneProgram(convInfo); - dimensions.push({ type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }); - } else { - program = new Pool2DProgram2(convInfo, "max"); - dimensions.push({ type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, { type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, { - type: "int32", - data: [convInfo.dilationHeight, convInfo.dilationWidth] - }, { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] }, { - type: "int32", - data: [convInfo.effectiveFilterHeight, convInfo.effectiveFilterWidth] - }); - } - return backend2.runWebGPUProgram(program, [x], x.dtype, dimensions); -} -var maxPoolConfig4 = { - kernelName: MaxPool, - backendName: "webgpu", - kernelFunc: maxPool5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Mean.js -function mean4(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { keepDims, axis } = attrs; - return reduce2(x, axis, keepDims, "mean", backend2); -} -var meanConfig4 = { - kernelName: Mean, - backendName: "webgpu", - kernelFunc: mean4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Min.js -function min6(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { axis, keepDims } = attrs; - return reduce2(x, axis, keepDims, "min", backend2); -} -var minConfig4 = { - kernelName: Min, - backendName: "webgpu", - kernelFunc: min6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Minimum.js -var minimum6 = binaryKernelFunc3({ - opType: BinaryOpType.MIN, - cpuKernelImpl: minimumImplCPU2 -}); -var minimumConfig4 = { - kernelName: Minimum, - backendName: "webgpu", - kernelFunc: minimum6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/mirror_pad_webgpu.js -var MirrorPadProgram2 = class { - constructor(xShape, paddings, mode) { - this.uniforms = ""; - this.variableNames = ["x"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]); - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.xShape = xShape; - paddings.map((_, i2) => { - this.uniforms += ` pad${i2} : vec2,`; - }); - this.offset = mode === "reflect" ? 0 : 1; - this.shaderKey = `mirrorPad_${mode}`; - } - getUserCode() { - const rank = this.xShape.length; - const start = this.xShape.map((_, i2) => `uniforms.pad${i2}[0]`).join(","); - const end = this.xShape.map((_, i2) => `uniforms.pad${i2}[0] + uniforms.xShape${rank > 1 ? `[${i2}]` : ""}`).join(","); - const shaderStart = rank === 1 ? "start" : "start[i]"; - const shaderEnd = rank === 1 ? "end" : "end[i]"; - const shaderOutC = rank === 1 ? "outC" : "outC[i]"; - const dtype = getCoordsDataType2(rank); - const unpackedCoords = rank > 1 ? ["coords[0]", "coords[1]", "coords[2]", "coords[3]"].slice(0, rank) : "coords"; - return ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let start = ${dtype}(${start}); - let end = ${dtype}(${end}); - var outC = getCoordsFromIndex(index); - for (var i = 0; i < ${rank}; i = i + 1) { - if (${shaderOutC} < ${shaderStart}) { - ${shaderOutC} = ${shaderStart} * 2 - ${shaderOutC} - ${this.offset}; - } else if(${shaderOutC} >= ${shaderEnd}) { - ${shaderOutC} = (${shaderEnd} - 1) * 2 - ${shaderOutC} + ${this.offset}; - } - } - let coords = outC - start; - setOutputAtIndex(index, getX(${unpackedCoords})); - } - } - `; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/MirrorPad.js -var mirrorPadConfig4 = { - kernelName: MirrorPad, - backendName: "webgpu", - kernelFunc: ({ inputs, attrs, backend: backend2 }) => { - const { x } = inputs; - const { paddings, mode } = attrs; - const webGPUBackend = backend2; - const uniformData = paddings.map((p2) => { - return { type: "int32", data: [p2[0], p2[1]] }; - }); - const program = new MirrorPadProgram2(x.shape, paddings, mode); - const output = webGPUBackend.runWebGPUProgram(program, [x], x.dtype, uniformData); - return output; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Neg.js -function neg4(args) { - const { inputs, backend: backend2 } = args; - const { x } = inputs; - if (backend2.shouldExecuteOnCPU([x])) { - const xData = backend2.tensorMap.get(x.dataId); - const [outValues, newShape] = negImplCPU2(xData.values, x.shape, x.dtype); - return backend2.makeTensorInfo(newShape, x.dtype, outValues); - } - const program = new UnaryOpProgram2(x.shape, UnaryOpType.NEG); - return backend2.runWebGPUProgram(program, [x], x.dtype); -} -var negConfig4 = { - kernelName: Neg, - backendName: "webgpu", - kernelFunc: neg4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NonMaxSuppressionV3.js -function nonMaxSuppressionV33(args) { - console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead"); - const { inputs, backend: backend2, attrs } = args; - const { boxes, scores } = inputs; - const { maxOutputSize, iouThreshold, scoreThreshold } = attrs; - const boxesVals = backend2.readSync(boxes.dataId); - const scoresVals = backend2.readSync(scores.dataId); - const { selectedIndices } = kernel_impls_exports.nonMaxSuppressionV3Impl(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold); - return backend2.makeTensorInfo([selectedIndices.length], "int32", new Int32Array(selectedIndices)); -} -var nonMaxSuppressionV3Config4 = { - kernelName: NonMaxSuppressionV3, - backendName: "webgpu", - kernelFunc: nonMaxSuppressionV33 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NonMaxSuppressionV5.js -function nonMaxSuppressionV53(args) { - console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead"); - const { inputs, backend: backend2, attrs } = args; - const { boxes, scores } = inputs; - const { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = attrs; - const boxesVals = backend2.readSync(boxes.dataId); - const scoresVals = backend2.readSync(scores.dataId); - const maxOutputSizeVal = maxOutputSize; - const iouThresholdVal = iouThreshold; - const scoreThresholdVal = scoreThreshold; - const softNmsSigmaVal = softNmsSigma; - const { selectedIndices, selectedScores } = kernel_impls_exports.nonMaxSuppressionV5Impl(boxesVals, scoresVals, maxOutputSizeVal, iouThresholdVal, scoreThresholdVal, softNmsSigmaVal); - return [ - backend2.makeTensorInfo([selectedIndices.length], "int32", new Int32Array(selectedIndices)), - backend2.makeTensorInfo([selectedScores.length], "float32", new Float32Array(selectedScores)) - ]; -} -var nonMaxSuppressionV5Config4 = { - kernelName: NonMaxSuppressionV5, - backendName: "webgpu", - kernelFunc: nonMaxSuppressionV53 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ZerosLike.js -function zerosLike5(args) { - const { inputs, backend: backend2 } = args; - const { x } = inputs; - if (x.dtype === "complex64") { - const realPart = real5({ inputs: { input: x }, backend: backend2 }); - const r2 = zerosLike5({ inputs: { x: realPart }, backend: backend2 }); - const imagPart = imag4({ inputs: { input: x }, backend: backend2 }); - const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 }); - const result = complex4({ inputs: { real: r2, imag: i2 }, backend: backend2 }); - backend2.disposeData(realPart.dataId); - backend2.disposeData(r2.dataId); - backend2.disposeData(imagPart.dataId); - backend2.disposeData(i2.dataId); - return result; - } else { - return fill5({ - attrs: { - shape: x.shape, - dtype: x.dtype, - value: x.dtype === "string" ? "" : 0 - }, - backend: backend2 - }); - } -} -var zerosLikeConfig4 = { - kernelName: ZerosLike, - backendName: "webgpu", - kernelFunc: zerosLike5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/OnesLike.js -function onesLike5(args) { - const { inputs, backend: backend2 } = args; - const { x } = inputs; - if (x.dtype === "string") { - throw new Error("onesLike is not supported under string dtype"); - } else if (x.dtype === "complex64") { - const realPart = real5({ inputs: { input: x }, backend: backend2 }); - const r2 = onesLike5({ inputs: { x: realPart }, backend: backend2 }); - const imagPart = imag4({ inputs: { input: x }, backend: backend2 }); - const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 }); - const result = complex4({ inputs: { real: r2, imag: i2 }, backend: backend2 }); - backend2.disposeData(realPart.dataId); - backend2.disposeData(r2.dataId); - backend2.disposeData(imagPart.dataId); - backend2.disposeData(i2.dataId); - return result; - } else { - return fill5({ attrs: { shape: x.shape, dtype: x.dtype, value: 1 }, backend: backend2 }); - } -} -var onesLikeConfig4 = { - kernelName: OnesLike, - backendName: "webgpu", - kernelFunc: onesLike5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pack.js -function pack4(args) { - const { inputs, backend: backend2, attrs } = args; - const { axis } = attrs; - if (inputs.length === 1) { - return expandDims6({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } }); - } - const shape = inputs[0].shape; - const dtype = inputs[0].dtype; - inputs.forEach((t2) => { - util_exports.assertShapesMatch(shape, t2.shape, "All tensors passed to stack must have matching shapes"); - util_exports.assert(dtype === t2.dtype, () => "All tensors passed to stack must have matching dtypes"); - }); - const intermediateTensorInfos = []; - const expandedTensors = inputs.map((t2) => { - const expandedT = expandDims6({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } }); - intermediateTensorInfos.push(expandedT); - return expandedT; - }); - const result = concat5({ inputs: expandedTensors, backend: backend2, attrs: { axis } }); - intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId)); - return result; -} -var packConfig4 = { - kernelName: Pack, - backendName: "webgpu", - kernelFunc: pack4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pad_webgpu.js -var PadProgram2 = class { - constructor(xShape, paddings) { - this.variableNames = ["x"]; - this.uniforms = "constantValue : f32,"; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]); - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - paddings.map((_, i2) => { - this.uniforms += ` pad${i2} : vec2,`; - }); - this.xShape = xShape; - this.shaderKey = "pad"; - } - getUserCode() { - const rank = this.xShape.length; - const type = getCoordsDataType2(rank); - const start = this.xShape.map((_, i2) => `uniforms.pad${i2}[0]`).join(","); - const end = this.xShape.map((_, i2) => `uniforms.pad${i2}[0] + uniforms.xShape${rank > 1 ? `[${i2}]` : ""}`).join(","); - const startValue = rank > 1 ? `${type}(${start})` : `${start}`; - const endValue = rank > 1 ? `${type}(${end})` : `${end}`; - const leftPadCondition = rank > 1 ? `any(outC < start)` : `outC < start`; - const rightPadCondition = rank > 1 ? `any(outC >= end)` : `outC >= end`; - const unpackedCoords = rank > 1 ? ["coords[0]", "coords[1]", "coords[2]", "coords[3]"].slice(0, rank) : "coords"; - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let start = ${startValue}; - let end = ${endValue}; - let outC = getCoordsFromIndex(index); - - if (${leftPadCondition} || ${rightPadCondition}) { - setOutputAtIndex(index, uniforms.constantValue); - } else { - let coords = outC - start; - setOutputAtIndex(index, getX(${unpackedCoords})); - } - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/PadV2.js -var padV23 = (args) => { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { paddings, constantValue } = attrs; - if (paddings.every((p2) => util_exports.arraysEqual(p2, [0, 0]))) { - return identity5({ inputs: { x }, backend: backend2 }); - } - if (util_exports.sizeFromShape(x.shape) === 0) { - const outputShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]); - return fill5({ - backend: backend2, - attrs: { shape: outputShape, value: constantValue, dtype: x.dtype } - }); - } - const uniformData = [{ type: "float32", data: [constantValue] }]; - paddings.map((p2) => uniformData.push({ type: "int32", data: [p2[0], p2[1]] })); - const program = new PadProgram2(x.shape, paddings); - return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); -}; -var padV2Config4 = { - kernelName: PadV2, - backendName: "webgpu", - kernelFunc: padV23 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pow.js -var pow4 = binaryKernelFunc3({ - opType: BinaryOpType.POW -}); -var powConfig4 = { - kernelName: Pow, - backendName: "webgpu", - kernelFunc: pow4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Prelu.js -function prelu6(args) { - const { inputs, backend: backend2 } = args; - const { x, alpha } = inputs; - const program = new BinaryOpProgram2(BinaryOpType.PRELU, x.shape, alpha.shape); - return backend2.runWebGPUProgram(program, [x, alpha], "float32"); -} -var preluConfig4 = { - kernelName: Prelu, - backendName: "webgpu", - kernelFunc: prelu6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Prod.js -function prod5(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { axis, keepDims } = attrs; - return reduce2(x, axis, keepDims, "prod", backend2); -} -var prodConfig4 = { - kernelName: Prod, - backendName: "webgpu", - kernelFunc: prod5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Range.js -var range6 = (args) => { - const { backend: backend2, attrs } = args; - const { start, stop, step: step5, dtype } = attrs; - const values = rangeImplCPU2(start, stop, step5, dtype); - return backend2.makeTensorInfo([values.length], dtype, values); -}; -var rangeConfig4 = { - kernelName: Range, - backendName: "webgpu", - kernelFunc: range6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/RealDiv.js -var realDiv2 = binaryKernelFunc3({ opType: BinaryOpType.DIV }); -var realDivConfig4 = { - kernelName: RealDiv, - backendName: "webgpu", - kernelFunc: realDiv2 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Relu.js -var relu4 = unaryKernelFunc3({ opType: UnaryOpType.RELU }); -var reluConfig4 = { - kernelName: Relu, - backendName: "webgpu", - kernelFunc: relu4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Relu6.js -var relu64 = unaryKernelFunc3({ opType: UnaryOpType.RELU6 }); -var relu6Config4 = { - kernelName: Relu6, - backendName: "webgpu", - kernelFunc: relu64 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/resize_bilinear_webgpu.js -var ResizeBilinearProgram2 = class { - constructor(inputShape, newHeight, newWidth) { - this.variableNames = ["x"]; - this.uniforms = "adjustHeightWidth : vec2, halfPixelCenters : f32,"; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = [inputShape[0], newHeight, newWidth, inputShape[3]]; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = `resizeBilinear`; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - let b = coords[0]; - let d = coords[3]; - let rc = coords.yz; - - let effectiveInSize = vec2( - f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0], - f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]); - - let effectiveOutSize = vec2( - f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0], - f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]); - - let effectiveInputOverOutputRatioRC = - effectiveInSize / effectiveOutSize; - - // Fractional source index - let sourceFracIndexRC = - (vec2(rc) + vec2(uniforms.halfPixelCenters)) * - effectiveInputOverOutputRatioRC - vec2(uniforms.halfPixelCenters); - - // Compute the four integer indices. - let sourceFloorRC = vec2(sourceFracIndexRC); - let sourceCeilRC = vec2( - min(vec2(uniforms.xShape.yz) - vec2(1.0), ceil(sourceFracIndexRC))); - - let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d); - let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d); - let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d); - let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d); - - let fracRC = sourceFracIndexRC - vec2(sourceFloorRC); - - let top = topLeft + (topRight - topLeft) * fracRC.y; - let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; - let newValue = top + (bottom - top) * fracRC.x; - - setOutputAtIndex(index, newValue); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ResizeBilinear.js -function resizeBilinear5(args) { - const { inputs, backend: backend2, attrs } = args; - const { images } = inputs; - const { alignCorners, size, halfPixelCenters } = attrs; - const [newHeight, newWidth] = size; - const adjustHeight = alignCorners && newHeight > 1 ? 1 : 0; - const adjustWidth = alignCorners && newWidth > 1 ? 1 : 0; - const halfPixelCentersValue = halfPixelCenters ? 0.5 : 0; - const uniformData = [ - { type: "float32", data: [adjustHeight, adjustWidth] }, - { type: "float32", data: [halfPixelCentersValue] } - ]; - const program = new ResizeBilinearProgram2(images.shape, newHeight, newWidth); - return backend2.runWebGPUProgram(program, [images], "float32", uniformData); -} -var resizeBilinearConfig4 = { - kernelName: ResizeBilinear, - backendName: "webgpu", - kernelFunc: resizeBilinear5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/resize_nearest_neighbor_webgpu.js -var ResizeNearestNeighborProgram2 = class { - constructor(inputShape, newHeight, newWidth, halfPixelCenters) { - this.variableNames = ["x"]; - this.uniforms = "adjustHeightWidth : vec2, roundBase : f32,"; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = [inputShape[0], newHeight, newWidth, inputShape[3]]; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.halfPixelCenters = halfPixelCenters; - this.shaderKey = `resizeNearest_${halfPixelCenters}`; - } - getUserCode() { - let sourceFracIndexRC; - if (this.halfPixelCenters) { - sourceFracIndexRC = `max((vec2(rc) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))`; - } else { - sourceFracIndexRC = `vec2(rc) * effectiveInputOverOutputRatioRC`; - } - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - let b = coords[0]; - let d = coords[3]; - let rc = coords.yz; - - let effectiveInSize = vec2( - f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0], - f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]); - - let effectiveOutSize = vec2( - f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0], - f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]); - - let effectiveInputOverOutputRatioRC = - effectiveInSize / effectiveOutSize; - - // Fractional source index - let sourceFracIndexRC = ${sourceFracIndexRC}; - - // Compute the coordinators of nearest neighbor point. - let inputShapeRC = vec2(f32(uniforms.xShape.y), f32(uniforms.xShape.z)); - let sourceNearestRC = vec2( - min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase))); - let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d); - - setOutputAtIndex(index, newValue); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ResizeNearestNeighbor.js -function resizeNearestNeighbor5(args) { - const { inputs, backend: backend2, attrs } = args; - const { images } = inputs; - const { alignCorners, halfPixelCenters, size } = attrs; - const [newHeight, newWidth] = size; - const adjustHeight = alignCorners && newHeight > 1 ? 1 : 0; - const adjustWidth = alignCorners && newWidth > 1 ? 1 : 0; - const roundBase = alignCorners ? 0.5 : 0; - const uniformData = [ - { type: "float32", data: [adjustHeight, adjustWidth] }, - { type: "float32", data: [roundBase] } - ]; - const program = new ResizeNearestNeighborProgram2(images.shape, newHeight, newWidth, halfPixelCenters); - return backend2.runWebGPUProgram(program, [images], images.dtype, uniformData); -} -var resizeNearestNeighborConfig4 = { - kernelName: ResizeNearestNeighbor, - backendName: "webgpu", - kernelFunc: resizeNearestNeighbor5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/rotate_webgpu.js -var RotateProgram2 = class { - constructor(imageShape, fillValue) { - this.outputShape = []; - this.variableNames = ["x"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = imageShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.uniforms = `centerX : f32, centerY : f32, sinRadians : f32, - cosRadians : f32,`; - this.shaderKey = "rotate"; - this.outputShape = imageShape; - if (typeof fillValue === "number") { - this.uniforms += ` fillValue : f32,`; - this.fillSnippet = `var outputValue = uniforms.fillValue;`; - this.shaderKey += "_float"; - } else { - this.uniforms += ` fillValue : vec3,`; - this.fillSnippet = `var outputValue = uniforms.fillValue[coords[3]];`; - this.shaderKey += "_vec3"; - } - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - let coordXFloat = (f32(coords[2]) - uniforms.centerX) * - uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) * - uniforms.sinRadians; - let coordYFloat = (f32(coords[2]) - uniforms.centerX) * - uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) * - uniforms.cosRadians; - let coordX = i32(round(coordXFloat + uniforms.centerX)); - let coordY = i32(round(coordYFloat + uniforms.centerY)); - ${this.fillSnippet} - if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 && - coordY < uniforms.xShape[1]) { - outputValue = getX(coords[0], coordY, coordX, coords[3]); - } - setOutputAtIndex(index, outputValue); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/RotateWithOffset.js -var rotateWithOffsetConfig4 = { - kernelName: RotateWithOffset, - backendName: "webgpu", - kernelFunc: ({ inputs, attrs, backend: backend2 }) => { - const { image: image2 } = inputs; - const { radians, fillValue, center } = attrs; - const webgpuBackend = backend2; - const program = new RotateProgram2(image2.shape, fillValue); - const [centerX, centerY] = backend_util_exports.getImageCenter(center, image2.shape[1], image2.shape[2]); - const uniformData = [ - { type: "float32", data: [centerX] }, - { type: "float32", data: [centerY] }, - { type: "float32", data: [Math.sin(radians)] }, - { type: "float32", data: [Math.cos(radians)] } - ]; - if (typeof fillValue === "number") { - uniformData.push({ type: "float32", data: [Number.parseFloat(fillValue.toFixed(2))] }); - } else { - uniformData.push({ type: "float32", data: fillValue }); - } - const output = webgpuBackend.runWebGPUProgram(program, [image2], image2.dtype, uniformData); - return output; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Rsqrt.js -var rsqrt5 = unaryKernelFunc3({ opType: UnaryOpType.RSQRT, cpuKernelImpl: rsqrtImplCPU2 }); -var rsqrtConfig4 = { - kernelName: Rsqrt, - backendName: "webgpu", - kernelFunc: rsqrt5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/scatter_optimized_webgpu.js -var ScatterOptimizedProgram = class { - constructor(flattenXShape, sliceDim, indicesRank, updatesRank, strides, shape, outputDtype, sumDupeIndices = true) { - this.variableNames = ["updates", "indices"]; - this.workGroupSize = [64, 1, 1]; - this.atomic = true; - this.outputShape = shape; - this.type = outputDtype; - this.sumDupeIndices = sumDupeIndices; - this.dispatchLayout = flatDispatchLayout(flattenXShape); - this.dispatch = computeDispatch(this.dispatchLayout, flattenXShape, this.workGroupSize); - this.sliceDimGreaterThanOne = sliceDim > 1; - this.shaderKey = `scatter_${indicesRank}_${updatesRank}_${this.sliceDimGreaterThanOne}_${outputDtype}_${sumDupeIndices}`; - const stridesType = getCoordsDataType2(strides.length); - this.uniforms = `sliceDim : i32, strides: ${stridesType}, size: i32,`; - this.updatesRank = updatesRank; - this.indicesRank = indicesRank; - } - getUserCode() { - let indicesString = ""; - if (this.indicesRank === 1) { - indicesString = "coords[0]"; - } else if (this.indicesRank === 2) { - indicesString = "coords[0], j"; - } - const indicesSnippet = `getIndices(${indicesString})`; - const strideString = this.sliceDimGreaterThanOne ? "uniforms.strides[j]" : "uniforms.strides"; - let outCoordsString = ""; - let getUpdatesCoordsFromFlatIndex = ""; - if (this.dispatchLayout.x.length === 1) { - outCoordsString = "flattenedIndex"; - getUpdatesCoordsFromFlatIndex = ` - fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 { - return index; - } - `; - } else if (this.dispatchLayout.x.length === 2) { - outCoordsString = "vec2(flattenedIndex, coords[1])"; - getUpdatesCoordsFromFlatIndex = ` - fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2 { - // N.B. |updates| could be a scalar tensor, conceptually representing a - // 2D tensor with all values equal to that. By design, its size must be - // the same as |outShape[1]| in one dimension, and |indicesShape[0]| - // gives the other. - let sliceSize = uniforms.outShape[1]; - let d0 = index / sliceSize; - let d1 = index - d0 * sliceSize; - return vec2(d0, d1); - } - `; - } - const updatesString = Array.from({ length: this.updatesRank }, (_, idx) => `coords[${idx}]`); - const updatesSnippet = `getUpdates(${updatesString.join(", ")})`; - const atomicRMW = (ptr, val) => { - let atomicAddSnippet = `atomicAdd(${ptr}, bitcast(${val}))`; - if (this.type === "float32") { - atomicAddSnippet = ` - { - var oldBits = 0; - var newBits = bitcast(${val}); - loop { - let info = atomicCompareExchangeWeak(${ptr}, oldBits, newBits); - if (info.exchanged) { - break; - } - oldBits = info.old_value; - let oldValue = bitcast(oldBits); - let newValue = oldValue + (${val}); - newBits = bitcast(newValue); - } - } - `; - } - const atomicStoreSnippet = `atomicStore(${ptr}, bitcast(${val}));`; - return this.sumDupeIndices ? atomicAddSnippet : atomicStoreSnippet; - }; - const userCode = ` - ${getUpdatesCoordsFromFlatIndex} - - ${getMainHeaderAndGlobalIndexString()} - - if (index < uniforms.size) { - let coords = getUpdatesCoordsFromFlatIndex(index); - var flattenedIndex = 0; - for (var j = 0; j < uniforms.sliceDim; j = j + 1) { - let indexInside = i32(round(${indicesSnippet})); - flattenedIndex = flattenedIndex + indexInside * ${strideString}; - } - let updateValue = - ${mapToWgslTypes(this.type, false)}(${updatesSnippet}); - let flatIndex = getOutputIndexFromCoords(${outCoordsString}); - - ${atomicRMW("&result[flatIndex]", "updateValue")}; - } - }`; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ScatterNd.js -function scatterNd4(args) { - const { inputs, backend: backend2, attrs } = args; - const { indices, updates } = inputs; - const { shape } = attrs; - const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(updates, indices, shape); - const flattenShape = [outputSize / sliceSize, sliceSize]; - if (outputSize === 0) { - return backend2.makeTensorInfo(shape, indices.dtype); - } - const flattenIndices = reshape6({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numUpdates, sliceRank] } }); - const flattenX = reshape6({ inputs: { x: updates }, backend: backend2, attrs: { shape: [numUpdates, sliceSize] } }); - const type = flattenX.dtype; - const output = fill5({ backend: backend2, attrs: { shape: flattenShape, value: 0, dtype: type } }); - const size = util_exports.sizeFromShape(flattenX.shape); - const uniformData = [ - { type: "int32", data: [sliceRank] }, - { type: "int32", data: strides }, - { type: "int32", data: [size] } - ]; - const program = new ScatterOptimizedProgram(flattenX.shape, sliceRank, flattenIndices.shape.length, flattenX.shape.length, strides, flattenShape, type); - const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndices], type, uniformData, output); - const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape } }); - backend2.disposeData(flattenIndices.dataId); - backend2.disposeData(flattenX.dataId); - backend2.disposeData(res.dataId); - return reshaped; -} -var scatterNdConfig4 = { - kernelName: ScatterNd, - backendName: "webgpu", - kernelFunc: scatterNd4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/select_webgpu.js -var SelectProgram2 = class { - constructor(cRank, shape, rank) { - this.variableNames = ["c", "a", "b"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = shape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.cRank = cRank; - this.rank = rank; - this.shaderKey = "select"; - } - getUserCode() { - let cCoords; - let abCoords; - if (this.rank > 4) { - throw Error(`Where for rank ${this.rank} is not yet supported`); - } - if (this.rank === 1) { - abCoords = `resRC`; - cCoords = `resRC`; - } else { - const currentCoords = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"]; - const cCoordVars = []; - const abCoordVars = []; - for (let i2 = 0; i2 < this.outputShape.length; i2++) { - abCoordVars.push(`${currentCoords[i2]}`); - if (i2 < this.cRank) { - cCoordVars.push(`${currentCoords[i2]}`); - } - } - cCoords = cCoordVars.join(); - abCoords = abCoordVars.join(); - } - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let resRC = getCoordsFromIndex(index); - let cVal = getC(${cCoords}); - if (cVal >= 1.0) { - setOutputAtIndex(index, getA(${abCoords})); - } else { - setOutputAtIndex(index, getB(${abCoords})); - } - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Select.js -function select6(args) { - const { inputs, backend: backend2 } = args; - const { condition, t: t2, e: e2 } = inputs; - const program = new SelectProgram2(condition.shape.length, t2.shape, t2.shape.length); - return backend2.runWebGPUProgram(program, [condition, t2, e2], upcastType(t2.dtype, e2.dtype)); -} -var selectConfig4 = { - kernelName: Select, - backendName: "webgpu", - kernelFunc: select6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sigmoid.js -var sigmoid6 = unaryKernelFunc3({ opType: UnaryOpType.SIGMOID }); -var sigmoidConfig4 = { - kernelName: Sigmoid, - backendName: "webgpu", - kernelFunc: sigmoid6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sin.js -var sin4 = unaryKernelFunc3({ opType: UnaryOpType.SIN }); -var sinConfig4 = { - kernelName: Sin, - backendName: "webgpu", - kernelFunc: sin4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sinh.js -var sinh4 = unaryKernelFunc3({ opType: UnaryOpType.SINH }); -var sinhConfig3 = { - kernelName: Sinh, - backendName: "webgpu", - kernelFunc: sinh4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sub.js -var sub5 = binaryKernelFunc3({ opType: BinaryOpType.SUB, cpuKernelImpl: subImplCPU2, supportsComplex: true }); -var subConfig4 = { - kernelName: Sub, - backendName: "webgpu", - kernelFunc: sub5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Softmax.js -function softmax6(args) { - const { inputs, backend: backend2, attrs } = args; - const { logits } = inputs; - const { dim } = attrs; - const axes = util_exports.parseAxisParam([dim], logits.shape); - const maxLogit = max6({ - inputs: { x: logits }, - backend: backend2, - attrs: { reductionIndices: axes, keepDims: false } - }); - const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes); - const maxLogitsReshaped = reshape6({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } }); - const a = sub5({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 }); - const b = exp5({ inputs: { x: a }, backend: backend2 }); - const sumExp = sum6({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } }); - const sumExpReshaped = reshape6({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } }); - const res = realDiv2({ inputs: { a: b, b: sumExpReshaped }, backend: backend2 }); - backend2.disposeData(maxLogit.dataId); - backend2.disposeData(maxLogitsReshaped.dataId); - backend2.disposeData(a.dataId); - backend2.disposeData(b.dataId); - backend2.disposeData(sumExp.dataId); - backend2.disposeData(sumExpReshaped.dataId); - return res; -} -var softmaxConfig4 = { - kernelName: Softmax, - backendName: "webgpu", - kernelFunc: softmax6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SpaceToBatchND.js -var spaceToBatchND5 = (args) => { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { blockShape, paddings } = attrs; - util_exports.assert(x.shape.length <= 4, () => "spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet"); - const prod6 = blockShape.reduce((a, b) => a * b); - const completePaddings = [[0, 0]]; - completePaddings.push(...paddings); - for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) { - completePaddings.push([0, 0]); - } - const toDispose = []; - const paddedX = padV23({ - inputs: { x }, - backend: backend2, - attrs: { paddings: completePaddings, constantValue: 0 } - }); - const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false); - const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false); - const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false); - const reshapedPaddedX = reshape6({ inputs: { x: paddedX }, backend: backend2, attrs: { shape: reshapedPaddedShape } }); - const paddedXT = transpose6({ - inputs: { x: reshapedPaddedX }, - backend: backend2, - attrs: { perm: permutedReshapedPaddedPermutation } - }); - const result = reshape6({ inputs: { x: paddedXT }, backend: backend2, attrs: { shape: flattenShape } }); - toDispose.push(paddedX); - toDispose.push(reshapedPaddedX); - toDispose.push(paddedXT); - toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); - return result; -}; -var spaceToBatchNDConfig4 = { - kernelName: SpaceToBatchND, - backendName: "webgpu", - kernelFunc: spaceToBatchND5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/tile_webgpu.js -var TileProgram2 = class { - constructor(aShape, reps) { - this.variableNames = ["A"]; - this.workGroupSize = [64, 1, 1]; - this.size = true; - const outputShape = new Array(aShape.length); - for (let i2 = 0; i2 < outputShape.length; i2++) { - outputShape[i2] = aShape[i2] * reps[i2]; - } - this.outputShape = outputShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.rank = this.outputShape.length; - this.shaderKey = "tile"; - } - getUserCode() { - const sourceCoords = getSourceCoords5(this.rank, "uniforms."); - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let resRC = getCoordsFromIndex(index); - setOutputAtIndex(index, getA(${sourceCoords})); - } - } - `; - return userCode; - } -}; -function getSourceCoords5(rank, uniformPrefix = "") { - if (rank >= 5) { - throw Error(`Tile for rank ${rank} is not yet supported`); - } - if (rank === 1) { - return `(resRC % ${uniformPrefix}aShape)`; - } - const currentCoords = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"]; - const sourceCoords = []; - for (let i2 = 0; i2 < rank; i2++) { - sourceCoords.push(`(${currentCoords[i2]} % ${uniformPrefix}aShape[${i2}])`); - } - return sourceCoords.join(); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Tile.js -function tile6(params) { - const { inputs, backend: backend2, attrs } = params; - const { x } = inputs; - const { reps } = attrs; - if (backend2.shouldExecuteOnCPU([x]) || x.dtype === "string" || x.shape.length >= 5) { - const data = backend2.readSync(x.dataId); - const value = x.dtype === "string" ? data.map((d) => util_exports.decodeString(d)) : data; - const buf = buffer(x.shape, x.dtype, value); - const outBuf = tileImplCPU2(buf, reps); - return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values); - } - const program = new TileProgram2(x.shape, reps); - const output = backend2.runWebGPUProgram(program, [x], x.dtype); - return output; -} -var tileConfig4 = { - kernelName: Tile, - backendName: "webgpu", - kernelFunc: tile6 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SparseToDense.js -function sparseToDense4(args) { - const { inputs, backend: backend2, attrs } = args; - const { sparseIndices, sparseValues, defaultValue } = inputs; - const { outputShape } = attrs; - const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(sparseValues, sparseIndices, outputShape); - const sumDupeIndices = false; - if (sparseValues.dtype === "string") { - const indicesBuf = backend2.bufferSync(sparseIndices); - const updatesBuf = backend2.bufferSync(sparseValues); - const $defaultValue2 = util_exports.decodeString(backend2.readSync(defaultValue.dataId)[0]); - const outBuf = scatterImplCPU2(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue2, sumDupeIndices); - return backend2.makeTensorInfo(outputShape, outBuf.dtype, outBuf.values); - } - const flattenShape = [outputSize / sliceSize, sliceSize]; - const $sparseIndices = reshape6({ - inputs: { x: sparseIndices }, - backend: backend2, - attrs: { shape: [numUpdates, sliceRank] } - }); - const $sparseValues = sparseValues.shape.length ? reshape6({ - inputs: { x: sparseValues }, - backend: backend2, - attrs: { shape: [numUpdates, sliceSize] } - }) : identity5({ inputs: { x: sparseValues }, backend: backend2 }); - const type = $sparseValues.dtype; - const zero = backend2.makeTensorInfo([], type, util_exports.makeZerosTypedArray(1, type)); - const $defaultValue = reshape6({ - inputs: { x: defaultValue }, - backend: backend2, - attrs: { shape: Array(flattenShape.length).fill(1) } - }); - const $denseValues = tile6({ inputs: { x: $defaultValue }, backend: backend2, attrs: { reps: flattenShape } }); - const size = util_exports.sizeFromShape([numUpdates, sliceSize]); - const uniformData = [ - { type: "int32", data: [sliceRank] }, - { type: "int32", data: strides }, - { type: "int32", data: [size] } - ]; - switch (numUpdates) { - case 0: - break; - case 1: - if (true) { - const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides, flattenShape, type, sumDupeIndices); - backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues); - } - break; - default: - if (true) { - const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, zero.shape.length, strides, flattenShape, type, sumDupeIndices); - backend2.runWebGPUProgram(program, [zero, $sparseIndices], type, uniformData, $denseValues); - } - { - const program = new ScatterOptimizedProgram([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides, flattenShape, type); - backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues); - } - } - const denseValues = reshape6({ inputs: { x: $denseValues }, backend: backend2, attrs: { shape: outputShape } }); - backend2.disposeData($sparseIndices.dataId); - backend2.disposeData($sparseValues.dataId); - backend2.disposeData($defaultValue.dataId); - backend2.disposeData(zero.dataId); - backend2.disposeData($denseValues.dataId); - return denseValues; -} -var sparseToDenseConfig3 = { - kernelName: SparseToDense, - backendName: "webgpu", - kernelFunc: sparseToDense4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SplitV.js -function splitV4(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { numOrSizeSplits, axis } = attrs; - const $axis = util_exports.parseAxisParam(axis, x.shape)[0]; - const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis); - const xRank = x.shape.length; - const begin = new Array(xRank).fill(0); - const size = x.shape.slice(); - return splitSizes.map((s2) => { - const sliceSize = [...size]; - sliceSize[$axis] = s2; - const sliceT = slice5({ inputs: { x }, backend: backend2, attrs: { begin, size: sliceSize } }); - begin[$axis] += s2; - return sliceT; - }); -} -var splitVConfig4 = { - kernelName: SplitV, - backendName: "webgpu", - kernelFunc: splitV4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sqrt.js -var sqrt5 = unaryKernelFunc3({ opType: UnaryOpType.SQRT }); -var sqrtConfig4 = { - kernelName: Sqrt, - backendName: "webgpu", - kernelFunc: sqrt5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Square.js -var squareConfig4 = { - kernelName: Square, - backendName: "webgpu", - kernelFunc: ({ inputs, backend: backend2 }) => { - const { x } = inputs; - const webGPUBackend = backend2; - const program = new UnaryOpProgram2(x.shape, UnaryOpType.SQUARE); - return webGPUBackend.runWebGPUProgram(program, [x], x.dtype); - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SquaredDifference.js -var squaredDifference5 = binaryKernelFunc3({ - opType: BinaryOpType.SQUARED_DIFFERENCE -}); -var squaredDifferenceConfig4 = { - kernelName: SquaredDifference, - backendName: "webgpu", - kernelFunc: squaredDifference5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/strided_slice_webgpu.js -var StridedSliceProgram2 = class { - constructor(destSize) { - this.variableNames = ["x"]; - this.workPerThread = 1; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = destSize; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); - const dtype = getCoordsDataType2(this.outputShape.length); - this.uniforms = `begin : ${dtype}, strides : ${dtype}, `; - this.shaderKey = "stridedSlice"; - } - getUserCode() { - const rank = this.outputShape.length; - let newCoords = ""; - if (rank === 1) { - newCoords = "coords * uniforms.strides + uniforms.begin"; - } else { - let outputAxis = 0; - newCoords = this.outputShape.map((_, i2) => { - outputAxis++; - return this.outputShape.length === 1 ? `coords * uniforms.strides[${i2}] + uniforms.begin[${i2}]` : `coords[${outputAxis - 1}] * uniforms.strides[${i2}] + uniforms.begin[${i2}]`; - }).join(","); - } - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - setOutputAtIndex(index, getX(${newCoords})); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/StridedSlice.js -function stridedSlice5(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs; - const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask); - let result; - if (isIdentity) { - result = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } }); - } else if (sliceDim0 || isSimpleSlice) { - util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`); - const size = slice_util_exports.computeOutShape($begin, $end, $strides); - const sliced = slice5({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } }); - result = reshape6({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } }); - backend2.disposeData(sliced.dataId); - } else { - const shouldExecuteOnCPU = backend2.shouldExecuteOnCPU([x]); - if (shouldExecuteOnCPU) { - const values = backend2.readSync(x.dataId); - const xBuf = buffer(x.shape, x.dtype, values); - const resultValues = stridedSliceImplCPU2(finalShapeSparse, xBuf, $strides, $begin); - result = backend2.makeTensorInfo(finalShape, x.dtype, resultValues.values); - } else { - const program = new StridedSliceProgram2(finalShapeSparse); - const uniformData = [{ type: "int32", data: $begin }, { type: "int32", data: $strides }]; - const resultValues = backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); - result = reshape6({ inputs: { x: resultValues }, backend: backend2, attrs: { shape: finalShape } }); - backend2.disposeData(resultValues.dataId); - } - } - return result; -} -var stridedSliceConfig4 = { - kernelName: StridedSlice, - backendName: "webgpu", - kernelFunc: stridedSlice5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/StringNGrams.js -function stringNGrams5(args) { - const { inputs, backend: backend2, attrs } = args; - const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs; - const { data, dataSplits } = inputs; - const $data = backend2.readSync(data.dataId); - const $dataSplits = backend2.readSync(dataSplits.dataId); - const [nGrams, nGramsSplits] = stringNGramsImplCPU2($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences); - return [ - backend2.makeTensorInfo([nGrams.length], "string", nGrams), - backend2.makeTensorInfo(dataSplits.shape, "int32", nGramsSplits) - ]; -} -var stringNGramsConfig4 = { - kernelName: StringNGrams, - backendName: "webgpu", - kernelFunc: stringNGrams5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Tanh.js -var tanh5 = unaryKernelFunc3({ opType: UnaryOpType.TANH }); -var tanhConfig4 = { - kernelName: Tanh, - backendName: "webgpu", - kernelFunc: tanh5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/top_k_webgpu.js -var SwapProgram2 = class { - constructor(shape) { - this.variableNames = ["x", "indices"]; - this.workGroupSize = [256, 1, 1]; - this.size = true; - this.outputShape = shape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.uniforms = `inputSize : i32, firstPass : i32, negativeInf : f32, - dir : i32, inc : i32,`; - this.shaderKey = "swap"; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let outC = getCoordsFromIndex(index); - let batch = outC[0]; - let elemIdx = outC[1]; - // We compare elements pair-wise within a group of size 2 * inc. - // The comparing rule for each group alternates between ascending - // and descending. Within each group, we compare each pair at - // positions i and i+inc. To decide whether an element at position i - // is x0 or x1, we mod it by 2 * inc, if the result is smaller than - // inc, it is in the first half of the group, we denote it as x0, - // otherwise we denote it as x1. - // For example, as shown in the Bitonic top K paper referenced - // above, Figure5(a) shows that element[1] is in the second half of - // the group when group size is 2, but it is in the first half of - // the group when group size is 4. - let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc; - var i = 0; - if (isFirstInPair) { - i = elemIdx; - } else { - i = elemIdx - uniforms.inc; - } - - var i0 = 0; - if (uniforms.firstPass == 1) { - i0 = i; - } else { - i0 = i32(getIndices(batch, i)); - } - - var i1 = 0; - if (uniforms.firstPass == 1) { - i1 = i + uniforms.inc; - } else { - i1 = i32(getIndices(batch, i + uniforms.inc)); - } - - var x0 = f32(0.0); - var x1 = f32(0.0); - if (i0 < uniforms.inputSize) { - x0 = getX(batch, i0); - } else { - x0 = uniforms.negativeInf; - } - if (i1 < uniforms.inputSize) { - x1 = getX(batch, i1); - } else { - x1 = uniforms.negativeInf; - } - - let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir; - let isGreater = x0 > x1 || (x0 == x1 && i1 > i0); - if (reverse == isGreater) { - // Elements in opposite order of direction - let iTemp = i0; - i0 = i1; - i1 = iTemp; - } - if (isFirstInPair) { - setOutputAtIndex(index, f32(i0)); - } else { - setOutputAtIndex(index, f32(i1)); - } - } - } - `; - return userCode; - } -}; -var MergeProgram2 = class { - constructor(shape) { - this.variableNames = ["x", "indices"]; - this.workGroupSize = [256, 1, 1]; - this.size = true; - this.outputShape = shape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.uniforms = `inputSize : i32, firstPass : i32, k : i32,`; - this.shaderKey = "merge"; - } - getUserCode() { - const userCode = ` - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let outC = getCoordsFromIndex(index); - let batch = outC[0]; - let elemIdx = outC[1]; - // The output size is half of the previous size. - // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ - // (k=4), we only need to output the indices at positions |, the - // indices at positions _ can be thrown away, see Figure5(b) After - // Phase 2 (Merge phase) in the Bitonic Top K paper referenced - // above. - // For example, the paper shows we only need to output the orange - // bars. The output sequence should look like this | | | | | | | |. - // Because the sequence is halved, to map the output index back to - // the previous sequence to find the corresponding value, we need - // to double the index. When we double the index, we basically - // interpolate a position, so 2i looks like - // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k - // position of each 2k positions by - elemIdx % k. E.g. for output - // at index 4,5,6,7, we want to get the corresponding element at - // original index 8,9,10,11, for output at index 8,9,10,11, - // we want to get the corresponding element at original index - // 16,17,18,19, so on and so forth. - - var i = 0; - if (elemIdx < uniforms.k) { - i = elemIdx; - } else { - i = elemIdx * 2 - elemIdx % uniforms.k; - } - var i0 = 0; - if (uniforms.firstPass == 1) { - i0 = i; - } else { - i0 = i32(getIndices(batch, i)); - } - var i1 = 0; - if (uniforms.firstPass == 1) { - i1 = i + uniforms.k; - } else { - i1 = i32(getIndices(batch, i + uniforms.k)); - } - - let x0 = getX(batch, i0); - var x1 = f32(0.0); - if (i1 < uniforms.inputSize) { - x1 = getX(batch, i1); - } else { - x1 = x0; - } - - if (x0 >= x1) { - setOutputAtIndex(index, f32(i0)); - } else { - setOutputAtIndex(index, f32(i1)); - } - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/TopK.js -function disposeIntermediateTensorInfoOrNull2(backend2, tensorInfo) { - if (tensorInfo !== null) { - backend2.disposeData(tensorInfo.dataId); - } -} -function roundUpToPow22(num) { - let pow22 = 1; - while (pow22 < num) { - pow22 *= 2; - } - return pow22; -} -function topK3(args) { - const { inputs, backend: backend2, attrs } = args; - const { x } = inputs; - const { k, sorted } = attrs; - const xShape = x.shape; - const lastDim = xShape[xShape.length - 1]; - if (backend2.shouldExecuteOnCPU([x])) { - const xVals = backend2.readSync(x.dataId); - const [allTopKVals, allTopKIndices] = topKImplCPU2(xVals, xShape, x.dtype, k, sorted); - return [ - backend2.makeTensorInfo(allTopKVals.shape, allTopKVals.dtype, allTopKVals.values), - backend2.makeTensorInfo(allTopKIndices.shape, allTopKIndices.dtype, allTopKIndices.values) - ]; - } - if (k === 0) { - xShape[xShape.length - 1] = 0; - return [ - backend2.makeTensorInfo(xShape, x.dtype, []), - backend2.makeTensorInfo(xShape, "int32", []) - ]; - } - if (lastDim === 1) { - return [ - x, - fill5({ attrs: { shape: xShape, dtype: "int32", value: 0 }, backend: backend2 }) - ]; - } - const xSize = util_exports.sizeFromShape(xShape); - const batch = xSize / lastDim; - const x2D = reshape6({ inputs: { x }, attrs: { shape: [batch, lastDim] }, backend: backend2 }); - const kPow2 = roundUpToPow22(k); - const lastDimPow2 = roundUpToPow22(lastDim); - let indices = null; - const getInputs = () => indices === null ? [x2D, x2D] : [x2D, indices]; - const runSwap = (dir, inc, shape) => { - const inputs2 = getInputs(); - const program = new SwapProgram2(shape); - const firstPass = indices === null ? 1 : 0; - const uniformDataSwap = [ - { type: "int32", data: [lastDim] }, - { type: "int32", data: [firstPass] }, - { type: "float32", data: [Number.NEGATIVE_INFINITY] }, - { type: "int32", data: [dir] }, - { type: "int32", data: [inc] } - ]; - const prevIndices2 = indices; - indices = backend2.runWebGPUProgram(program, inputs2, "int32", uniformDataSwap); - disposeIntermediateTensorInfoOrNull2(backend2, prevIndices2); - }; - for (let len = 1; len < kPow2; len *= 2) { - const dir = len * 2; - for (let inc = len; inc >= 1; inc /= 2) { - runSwap(dir, inc, [batch, lastDimPow2]); - } - } - for (let indicesSize = lastDimPow2; indicesSize > kPow2; indicesSize /= 2) { - const inputs2 = getInputs(); - const mergeProgram = new MergeProgram2([batch, indicesSize / 2]); - const firstPass = indices === null ? 1 : 0; - const uniformDataMerge = [ - { type: "int32", data: [lastDim] }, - { type: "int32", data: [firstPass] }, - { type: "int32", data: [kPow2] } - ]; - const prevIndices2 = indices; - indices = backend2.runWebGPUProgram(mergeProgram, inputs2, "int32", uniformDataMerge); - disposeIntermediateTensorInfoOrNull2(backend2, prevIndices2); - const len = kPow2 / 2; - const dir = len * 2; - for (let inc = len; inc >= 1; inc /= 2) { - runSwap(dir, inc, indices.shape); - } - } - let prevIndices = indices; - indices = slice5({ inputs: { x: indices }, backend: backend2, attrs: { begin: 0, size: [batch, k] } }); - disposeIntermediateTensorInfoOrNull2(backend2, prevIndices); - let values = gatherV24({ inputs: { x: x2D, indices }, backend: backend2, attrs: { axis: 1, batchDims: 1 } }); - disposeIntermediateTensorInfoOrNull2(backend2, x2D); - const newShape = xShape.slice(0, -1); - newShape.push(k); - prevIndices = indices; - indices = reshape6({ inputs: { x: indices }, attrs: { shape: newShape }, backend: backend2 }); - disposeIntermediateTensorInfoOrNull2(backend2, prevIndices); - const prevValues = values; - values = reshape6({ inputs: { x: values }, attrs: { shape: newShape }, backend: backend2 }); - disposeIntermediateTensorInfoOrNull2(backend2, prevValues); - return [values, indices]; -} -var topKConfig4 = { - kernelName: TopK, - backendName: "webgpu", - kernelFunc: topK3 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transform_webgpu.js -var TransformProgram2 = class { - constructor(outShape) { - this.variableNames = ["Image", "Transforms"]; - this.uniforms = "interpolationModeId : i32, fillModeId : i32, fillValue : f32,"; - this.workGroupSize = [64, 1, 1]; - this.size = true; - this.outputShape = outShape; - this.dispatchLayout = flatDispatchLayout(this.outputShape); - this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); - this.shaderKey = "transform"; - } - getUserCode() { - const userCode = ` - fn mapCoord(outCoord : f32, len : f32) -> f32{ - var inCoord = outCoord; - if(uniforms.fillModeId == 2) { - if (inCoord < 0.0) { - if (len <= 1.0) { - inCoord = 0.0; - } else { - let sz2 = 2.0 * len; - if (inCoord < sz2) { - inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) + - inCoord; - } - if (inCoord < -len) { - inCoord = inCoord + sz2; - } else { - inCoord = -inCoord - 1.0; - } - } - } else if (inCoord > len - 1.0) { - if (len <= 1.0) { - inCoord = 0.0; - } else { - let sz2 = 2.0 * len; - inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2))); - if (inCoord >= len) { - inCoord = sz2 - inCoord - 1.0; - } - } - } - return clamp(inCoord, 0.0, len - 1.0); - } else if (uniforms.fillModeId == 3) { - if (inCoord < 0.0) { - if (len <= 1.0) { - inCoord = 0.0; - } else { - let sz = len - 1.0; - inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0); - } - } else if (inCoord > len - 1.0) { - if (len <= 1.0) { - inCoord = 0.0; - } else { - let sz = len - 1.0; - inCoord = inCoord - len * f32(i32(f32(inCoord / sz))); - } - } - return clamp(inCoord, 0.0, len - 1.0); - } else if (uniforms.fillModeId == 4) { - return clamp(outCoord, 0.0, len - 1.0); - } - return outCoord; - } - fn readWithFillValue(batch : i32, coordY : i32, coordX : i32, - channel : i32) -> f32 { - var outputValue : f32; - if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) { - outputValue = getImage(batch, coordY, coordX, channel); - } else { - outputValue = uniforms.fillValue; - } - return outputValue; - } - - ${getMainHeaderAndGlobalIndexString()} - if (index < uniforms.size) { - let coords = getCoordsFromIndex(index); - var outputValue : f32; - let batch = coords[0]; - let x = coords[2]; - let y = coords[1]; - let channel = coords[3]; - let xf = f32(x); - let yf = f32(y); - let a1 = getTransforms(batch, 0); - let a2 = getTransforms(batch, 1); - let a3 = getTransforms(batch, 2); - let b1 = getTransforms(batch, 3); - let b2 = getTransforms(batch, 4); - let b3 = getTransforms(batch, 5); - let c1 = getTransforms(batch, 6); - let c2 = getTransforms(batch, 7); - let projection = c1 * xf + c2 * yf + 1.0; - if (projection == 0.0) { - outputValue = uniforms.fillValue; - } else { - let inX = (a1 * xf + a2 * yf + a3) / projection; - let inY = (b1 * xf + b2 * yf + b3) / projection; - let mapX = mapCoord(inX, f32(uniforms.imageShape[2])); - let mapY = mapCoord(inY, f32(uniforms.imageShape[1])); - - if (uniforms.interpolationModeId == 1) { - let coordY = i32(round(mapY)); - let coordX = i32(round(mapX)); - outputValue = readWithFillValue(batch, coordY, coordX, - channel); - } else { - let yFloor = floor(mapY); - let xFloor = floor(mapX); - let yCeil = yFloor + 1.0; - let xCeil = xFloor + 1.0; - let valueYFloor = (xCeil - mapX) * - readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) + - (mapX - xFloor) * - readWithFillValue(batch, i32(yFloor), i32(xCeil), channel); - let valueYCeil = (xCeil - mapX) * - readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) + - (mapX - xFloor) * - readWithFillValue(batch, i32(yCeil), i32(xCeil), channel); - outputValue = (yCeil - mapY) * valueYFloor + - (mapY - yFloor) * valueYCeil; - } - } - setOutputAtIndex(index, outputValue); - } - } - `; - return userCode; - } -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Transform.js -function transform5(args) { - const { inputs, backend: backend2, attrs } = args; - const { image: image2, transforms } = inputs; - const { interpolation, fillMode, fillValue, outputShape } = attrs; - const [batch, imageHeight, imageWidth, numChannels] = image2.shape; - const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth]; - const outShape = [ - batch, - outHeight, - outWidth, - numChannels - ]; - const program = new TransformProgram2(outShape); - const interpolationModeId = interpolation === "nearest" ? 1 : 2; - let fillModeId; - switch (fillMode) { - case "constant": - fillModeId = 1; - break; - case "reflect": - fillModeId = 2; - break; - case "wrap": - fillModeId = 3; - break; - case "nearest": - fillModeId = 4; - break; - default: - fillModeId = 1; - break; - } - const uniformData = [ - { type: "int32", data: [interpolationModeId] }, - { type: "int32", data: [fillModeId] }, - { type: "float32", data: [fillValue] } - ]; - return backend2.runWebGPUProgram(program, [image2, transforms], "float32", uniformData); -} -var transformConfig4 = { - kernelName: Transform, - backendName: "webgpu", - kernelFunc: transform5 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Unpack.js -function unpack4(args) { - const { inputs, backend: backend2, attrs } = args; - const { value } = inputs; - let { axis } = attrs; - if (axis < 0) { - axis += value.shape.length; - } - const x = value; - const xRank = x.shape.length; - const num = value.shape[axis]; - const outShape = new Array(xRank - 1); - let outIndex = 0; - for (let i2 = 0; i2 < xRank; i2++) { - if (i2 !== axis) { - outShape[outIndex++] = x.shape[i2]; - } - } - const toDispose = []; - const begin = new Array(xRank).fill(0); - const size = x.shape.slice(); - size[axis] = 1; - const res = new Array(num); - for (let i2 = 0; i2 < res.length; i2++) { - begin[axis] = i2; - const sliced = slice5({ inputs: { x }, backend: backend2, attrs: { begin, size } }); - const reshaped = reshape6({ inputs: { x: sliced }, backend: backend2, attrs: { shape: outShape } }); - res[i2] = reshaped; - toDispose.push(sliced); - } - toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); - return res; -} -var unpackConfig4 = { - kernelName: Unpack, - backendName: "webgpu", - kernelFunc: unpack4 -}; - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/register_all_kernels.js -var kernelConfigs4 = [ - _fusedMatMulConfig4, - absConfig4, - addConfig4, - addNConfig4, - argMaxConfig4, - argMinConfig3, - avgPoolConfig4, - batchMatMulConfig4, - batchToSpaceNDConfig4, - castConfig4, - ceilConfig4, - clipByValueConfig4, - complexConfig3, - concatConfig4, - conv2DConfig4, - conv2DBackpropInputConfig4, - cosConfig4, - coshConfig4, - cropAndResizeConfig4, - cumprodConfig4, - cumsumConfig4, - depthToSpaceConfig4, - depthwiseConv2dNativeConfig4, - einsumConfig3, - eluConfig4, - equalConfig4, - expConfig4, - expandDimsConfig4, - expm1Config3, - fillConfig4, - flipLeftRightConfig4, - fromPixelsConfig2, - floorConfig4, - floorDivConfig4, - fusedBatchNormConfig2, - fusedConv2DConfig4, - fusedDepthwiseConv2DConfig4, - gatherNdConfig4, - gatherV2Config4, - greaterConfig4, - greaterEqualConfig4, - identityConfig4, - imagConfig3, - leakyReluConfig4, - lessConfig4, - lessEqualConfig4, - logConfig4, - logicalAndConfig4, - logicalNotConfig4, - maxConfig4, - maximumConfig4, - maxPoolConfig4, - meanConfig4, - minConfig4, - minimumConfig4, - mirrorPadConfig4, - multiplyConfig4, - negConfig4, - nonMaxSuppressionV3Config4, - nonMaxSuppressionV5Config4, - notEqualConfig4, - onesLikeConfig4, - packConfig4, - padV2Config4, - powConfig4, - preluConfig4, - prodConfig4, - rangeConfig4, - realConfig3, - realDivConfig4, - reluConfig4, - relu6Config4, - reshapeConfig4, - resizeBilinearConfig4, - resizeNearestNeighborConfig4, - rotateWithOffsetConfig4, - rsqrtConfig4, - scatterNdConfig4, - selectConfig4, - sigmoidConfig4, - sinConfig4, - sinhConfig3, - sliceConfig4, - stridedSliceConfig4, - stringNGramsConfig4, - softmaxConfig4, - spaceToBatchNDConfig4, - sparseToDenseConfig3, - splitVConfig4, - sqrtConfig4, - squareConfig4, - squaredDifferenceConfig4, - subConfig4, - sumConfig4, - tanhConfig4, - tileConfig4, - topKConfig4, - transformConfig4, - transposeConfig4, - unpackConfig4, - zerosLikeConfig4 -]; -for (const kernelConfig of kernelConfigs4) { - registerKernel(kernelConfig); -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/buffer_manager.js -var BufferManager = class { - constructor(device) { - this.device = device; - this.numUsedBuffers = 0; - this.numFreeBuffers = 0; - this.freeBuffers = /* @__PURE__ */ new Map(); - this.usedBuffers = /* @__PURE__ */ new Map(); - this.numBytesUsed = 0; - this.numBytesAllocated = 0; - } - acquireUploadBuffer(size, usage) { - return this.acquireBuffer(size, usage, true); - } - acquireBuffer(size, usage, mappedAtCreation = false) { - const key = getBufferKey(size, usage); - if (!this.freeBuffers.has(key)) { - this.freeBuffers.set(key, []); - } - if (!this.usedBuffers.has(key)) { - this.usedBuffers.set(key, []); - } - this.numBytesUsed += size; - this.numUsedBuffers++; - if (this.freeBuffers.get(key).length > 0) { - this.numFreeBuffers--; - const newBuffer2 = this.freeBuffers.get(key).shift(); - this.usedBuffers.get(key).push(newBuffer2); - return newBuffer2; - } - this.numBytesAllocated += size; - const newBuffer = this.device.createBuffer({ size, usage, mappedAtCreation }); - this.usedBuffers.get(key).push(newBuffer); - return newBuffer; - } - releaseBuffer(buffer2, size, usage) { - if (this.freeBuffers.size === 0) { - return; - } - const key = getBufferKey(size, usage); - if (!this.freeBuffers.has(key)) { - this.freeBuffers.set(key, []); - } - this.freeBuffers.get(key).push(buffer2); - this.numFreeBuffers++; - this.numUsedBuffers--; - const bufferList = this.usedBuffers.get(key); - const bufferIndex = bufferList.indexOf(buffer2); - if (bufferIndex < 0) { - throw new Error("Cannot release a buffer that was never provided by this buffer manager"); - } - bufferList.splice(bufferIndex, 1); - this.numBytesUsed -= size; - } - releaseUploadBuffer(buffer2, size, usage) { - buffer2.mapAsync(GPUMapMode.WRITE).then(() => { - this.releaseBuffer(buffer2, size, usage); - }, (err) => { - }); - } - getNumUsedBuffers() { - return this.numUsedBuffers; - } - getNumFreeBuffers() { - return this.numFreeBuffers; - } - dispose() { - this.freeBuffers.forEach((buffers, key) => { - buffers.forEach((buffer2) => { - buffer2.destroy(); - }); - }); - this.usedBuffers.forEach((buffers, key) => { - buffers.forEach((buffer2) => { - buffer2.destroy(); - }); - }); - this.freeBuffers = /* @__PURE__ */ new Map(); - this.usedBuffers = /* @__PURE__ */ new Map(); - this.numUsedBuffers = 0; - this.numFreeBuffers = 0; - this.numBytesUsed = 0; - this.numBytesAllocated = 0; - } -}; -function getBufferKey(size, usage) { - return `${size}_${usage}`; -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/texture_manager.js -var TextureManager2 = class { - constructor(device) { - this.device = device; - this.numUsedTextures = 0; - this.numFreeTextures = 0; - this.freeTextures = /* @__PURE__ */ new Map(); - this.usedTextures = /* @__PURE__ */ new Map(); - this.numBytesUsed = 0; - this.numBytesAllocated = 0; - } - acquireTexture(width, height, format, usage) { - const bytesPerElement2 = getBytesPerElement(format); - const byteSize = width * height * bytesPerElement2; - const key = getTextureKey(width, height, format, usage); - if (!this.freeTextures.has(key)) { - this.freeTextures.set(key, []); - } - if (!this.usedTextures.has(key)) { - this.usedTextures.set(key, []); - } - this.numBytesUsed += byteSize; - this.numUsedTextures++; - if (this.freeTextures.get(key).length > 0) { - this.numFreeTextures--; - const newTexture2 = this.freeTextures.get(key).shift(); - this.usedTextures.get(key).push(newTexture2); - return newTexture2; - } - this.numBytesAllocated += byteSize; - const newTexture = this.device.createTexture({ - size: [width, height], - format, - usage - }); - this.usedTextures.get(key).push(newTexture); - return newTexture; - } - releaseTexture(texture, width, height, format, usage) { - if (this.freeTextures.size === 0) { - return; - } - const key = getTextureKey(width, height, format, usage); - if (!this.freeTextures.has(key)) { - this.freeTextures.set(key, []); - } - this.freeTextures.get(key).push(texture); - this.numFreeTextures++; - this.numUsedTextures--; - const textureList = this.usedTextures.get(key); - const textureIndex = textureList.indexOf(texture); - if (textureIndex < 0) { - throw new Error("Cannot release a texture that was never provided by this texture manager"); - } - textureList.splice(textureIndex, 1); - const bytesPerElement2 = getBytesPerElement(format); - const byteSize = width * height * bytesPerElement2; - this.numBytesUsed -= byteSize; - } - getNumUsedTextures() { - return this.numUsedTextures; - } - getNumFreeTextures() { - return this.numFreeTextures; - } - dispose() { - this.freeTextures.forEach((textures, key) => { - textures.forEach((texture) => { - texture.destroy(); - }); - }); - this.usedTextures.forEach((textures, key) => { - textures.forEach((texture) => { - texture.destroy(); - }); - }); - this.freeTextures = /* @__PURE__ */ new Map(); - this.usedTextures = /* @__PURE__ */ new Map(); - this.numUsedTextures = 0; - this.numFreeTextures = 0; - this.numBytesUsed = 0; - this.numBytesAllocated = 0; - } -}; -function getTextureKey(width, height, format, usage) { - return `${width}_${height}_${format}_${usage}`; -} -function getBytesPerElement(format) { - if (format === "rgba8unorm") { - return 16; - } else { - throw new Error(`${format} is not supported!`); - } -} - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/backend_webgpu.js +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/backend_webgpu.js var CPU_HANDOFF_SIZE_THRESHOLD2 = env().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"); var reshapeDispatch = (device, program) => { const MAX_COMPUTE_PER_DIMENSION_DISPATCH_SIZE = device.limits.maxComputeWorkgroupsPerDimension; @@ -76307,7 +68448,7 @@ var reshapeDispatch = (device, program) => { } }; var WebGPUBackend = class extends KernelBackend { - constructor(device, supportTimeQuery = false) { + constructor(device) { super(); this.commandQueueOwnedIds = /* @__PURE__ */ new WeakSet(); this.dispatchNumberInEncoder = 0; @@ -76325,7 +68466,7 @@ var WebGPUBackend = class extends KernelBackend { this.queue = device.queue; this.currentCommandEncoder = null; this.currentComputePass = null; - this.supportTimeQuery = supportTimeQuery; + this.supportTimeQuery = device.features.has("timestamp-query"); this.bufferManager = new BufferManager(this.device); this.textureManager = new TextureManager2(this.device); this.tensorMap = new DataStorage(this, engine()); @@ -76566,6 +68707,9 @@ var WebGPUBackend = class extends KernelBackend { return buffer(t2.shape, t2.dtype, data); } async time(f) { + if (!this.supportTimeQuery) { + console.warn(`This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Otherwise, zero will be shown for the kernel time when profiling mode is enabled. Using performance.now is not workable for webgpu since it doesn't support synchronous data read from GPU.`); + } const oldActiveTimers = this.activeTimers; const newActiveTimers = []; let outerMostTime = false; @@ -76836,14 +68980,7 @@ var WebGPUBackend = class extends KernelBackend { }; WebGPUBackend.nextDataId = 0; -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/webgpu.js -var webgpu_exports = {}; -__export(webgpu_exports, { - WebGPUBackend: () => WebGPUBackend, - webgpu_util: () => webgpu_util_exports -}); - -// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.12_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/index.js +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/base.js if (isWebGPUSupported()) { registerBackend("webgpu", async () => { env().set("CHECK_COMPUTATION_FOR_ERRORS", false); @@ -76861,14 +68998,6574 @@ if (isWebGPUSupported()) { }; if (supportTimeQuery) { deviceDescriptor.requiredFeatures = ["timestamp-query"]; - } else { - console.warn(`This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.`); } const device = await adapter.requestDevice(deviceDescriptor); - return new WebGPUBackend(device, supportTimeQuery); + return new WebGPUBackend(device); }, 3); } +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_util.js +var BinaryOpType; +(function(BinaryOpType2) { + BinaryOpType2[BinaryOpType2["MUL"] = 0] = "MUL"; + BinaryOpType2[BinaryOpType2["ADD"] = 1] = "ADD"; + BinaryOpType2[BinaryOpType2["ATAN2"] = 2] = "ATAN2"; + BinaryOpType2[BinaryOpType2["SUB"] = 3] = "SUB"; + BinaryOpType2[BinaryOpType2["DIV"] = 4] = "DIV"; + BinaryOpType2[BinaryOpType2["EQUAL"] = 5] = "EQUAL"; + BinaryOpType2[BinaryOpType2["GREATER"] = 6] = "GREATER"; + BinaryOpType2[BinaryOpType2["GREATER_EQUAL"] = 7] = "GREATER_EQUAL"; + BinaryOpType2[BinaryOpType2["LESS"] = 8] = "LESS"; + BinaryOpType2[BinaryOpType2["LESS_EQUAL"] = 9] = "LESS_EQUAL"; + BinaryOpType2[BinaryOpType2["LOGICAL_AND"] = 10] = "LOGICAL_AND"; + BinaryOpType2[BinaryOpType2["NOT_EQUAL"] = 11] = "NOT_EQUAL"; + BinaryOpType2[BinaryOpType2["SQUARED_DIFFERENCE"] = 12] = "SQUARED_DIFFERENCE"; + BinaryOpType2[BinaryOpType2["INT_DIV"] = 13] = "INT_DIV"; + BinaryOpType2[BinaryOpType2["POW"] = 14] = "POW"; + BinaryOpType2[BinaryOpType2["PRELU"] = 15] = "PRELU"; + BinaryOpType2[BinaryOpType2["MAX"] = 16] = "MAX"; + BinaryOpType2[BinaryOpType2["MIN"] = 17] = "MIN"; + BinaryOpType2[BinaryOpType2["COMPLEX_MULTIPLY_REAL"] = 18] = "COMPLEX_MULTIPLY_REAL"; + BinaryOpType2[BinaryOpType2["COMPLEX_MULTIPLY_IMAG"] = 19] = "COMPLEX_MULTIPLY_IMAG"; +})(BinaryOpType || (BinaryOpType = {})); +var CHECK_NAN_SNIPPET4 = ` + if (isnan(a)) { return a; } + if (isnan(b)) { return b; } + `; +var CHECK_NAN_SNIPPET_VEC4_INNER = ` + if (isNaN.r) { + resultTemp.r = valueForNaN; + } + if (isNaN.g) { + resultTemp.g = valueForNaN; + } + if (isNaN.b) { + resultTemp.b = valueForNaN; + } + if (isNaN.a) { + resultTemp.a = valueForNaN; + } + `; +var CHECK_NAN_SNIPPET_VEC4 = ` + let isNaN = isnanVec4(a) | isnanVec4(b); + ${CHECK_NAN_SNIPPET_VEC4_INNER} + `; +var ADD2 = "return a + b;"; +var COMPLEX_MULTIPLY_REAL = "return areal * breal - aimag * bimag;"; +var COMPLEX_MULTIPLY_IMAG = "return areal * bimag + aimag * breal;"; +var DIV2 = "return a / b;"; +var MUL2 = "return a * b;"; +var SQUARED_DIFFERENCE2 = "return (a - b) * (a - b);"; +var SUB2 = "return a - b;"; +var EQUAL2 = "return f32(a == b);"; +var EQUAL_VEC4 = "return vec4(a == b);"; +var GREATER2 = "return f32(a > b);"; +var GREATER_VEC4 = "return vec4(a > b);"; +var GREATER_EQUAL2 = "return f32(a >= b);"; +var GREATER_EQUAL_VEC4 = "return vec4(a >= b);"; +var LESS2 = "return f32(a < b);"; +var LESS_VEC4 = "return vec4(a < b);"; +var LESS_EQUAL2 = "return f32(a <= b);"; +var LESS_EQUAL_VEC4 = "return vec4(a <= b);"; +var LOGICAL_AND2 = "return f32(f32(a) >= 1.0 && f32(b) >= 1.0);"; +var LOGICAL_AND_VEC4 = `return (vec4(a >= vec4(1.0)) * + vec4(b >= vec4(1.0)));`; +var INT_DIV2 = ` + let s = sign(a) * sign(b); + let ia = i32(round(a)); + let ib = i32(round(b)); + return f32(idiv(ia, ib, s)); + `; +var INT_DIV_VEC4 = ` + let ia = vec4(round(a)); + let ib = vec4(round(b)); + let cond = ib != vec4(0); + var resultTemp = vec4(0); + let s = sign(a) * sign(b); + + // Windows (D3D) wants guaranteed non-zero int division at compile-time. + if (cond[0]) { + resultTemp[0] = idiv(ia[0], ib[0], s[0]); + } + if (cond[1]) { + resultTemp[1] = idiv(ia[1], ib[1], s[1]); + } + if (cond[2]) { + resultTemp[2] = idiv(ia[2], ib[2], s[2]); + } + if (cond[3]) { + resultTemp[3] = idiv(ia[3], ib[3], s[3]); + } + return vec4(resultTemp); + `; +var NOT_EQUAL2 = ` + if (isnan(a) || isnan(b)) { + return 1.0; + } + return f32(a != b); +`; +var NOT_EQUAL_VEC4 = ` + var resultTemp = vec4(a != b); + let valueForNaN = 1.0; + ${CHECK_NAN_SNIPPET_VEC4} + + return resultTemp; +`; +var POW2 = ` + if(a < 0.0 && floor(b) < b) { + return uniforms.NAN; + } + if (b == 0.0) { + return 1.0; + } + if (round(abs(b) % 2.0) != 1.0) { + return pow(abs(a), b); + } + return sign(a) * pow(abs(a), b); + `; +var POW_VEC4 = ` + let isModRound1Bool = vec4(round(abs(b) % vec4(2.0))) == vec4(1); + let isModRound1 = vec4(isModRound1Bool); + let multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); + var resultTemp = multiplier * pow(abs(a), b); + + // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS + let isExpZero = b == vec4(0.0); + if (isExpZero.r) { + resultTemp.r = 1.0; + } + if (isExpZero.g) { + resultTemp.g = 1.0; + } + if (isExpZero.b) { + resultTemp.b = 1.0; + } + if (isExpZero.a) { + resultTemp.a = 1.0; + } + let isNaN = a < vec4(0.0) & floor(b) < b; + let valueForNaN = uniforms.NAN; + ${CHECK_NAN_SNIPPET_VEC4_INNER} + return resultTemp; + `; +var PRELU2 = `if (a < 0.0) { return b * a; } return a;`; +var PRELU_VEC4 = ` + let aLessThanZero = vec4(a < vec4(0.0)); + return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); + `; +function getBinaryWithNanString(op2, useVec4, valueForNaN = "uniforms.NAN") { + const checkNanSnippet = useVec4 ? CHECK_NAN_SNIPPET_VEC4 : CHECK_NAN_SNIPPET4; + return useVec4 ? ` + let valueForNaN = ${valueForNaN}; + var resultTemp = vec4(${op2}(a, b)); + ` + checkNanSnippet + ` + return resultTemp; + ` : checkNanSnippet + ` + return ${op2}(a, b); + `; +} +function getBinaryOpString(type, useVec4) { + switch (type) { + case BinaryOpType.MUL: + return MUL2; + case BinaryOpType.ADD: + return ADD2; + case BinaryOpType.ATAN2: + return getBinaryWithNanString("atan2", useVec4); + case BinaryOpType.SUB: + return SUB2; + case BinaryOpType.DIV: + return DIV2; + case BinaryOpType.EQUAL: + return useVec4 ? EQUAL_VEC4 : EQUAL2; + case BinaryOpType.GREATER: + return useVec4 ? GREATER_VEC4 : GREATER2; + case BinaryOpType.GREATER_EQUAL: + return useVec4 ? GREATER_EQUAL_VEC4 : GREATER_EQUAL2; + case BinaryOpType.LESS: + return useVec4 ? LESS_VEC4 : LESS2; + case BinaryOpType.LESS_EQUAL: + return useVec4 ? LESS_EQUAL_VEC4 : LESS_EQUAL2; + case BinaryOpType.LOGICAL_AND: + return useVec4 ? LOGICAL_AND_VEC4 : LOGICAL_AND2; + case BinaryOpType.NOT_EQUAL: + return useVec4 ? NOT_EQUAL_VEC4 : NOT_EQUAL2; + case BinaryOpType.SQUARED_DIFFERENCE: + return SQUARED_DIFFERENCE2; + case BinaryOpType.INT_DIV: + return useVec4 ? INT_DIV_VEC4 : INT_DIV2; + case BinaryOpType.PRELU: + return useVec4 ? PRELU_VEC4 : PRELU2; + case BinaryOpType.MAX: + return getBinaryWithNanString("max", useVec4); + case BinaryOpType.MIN: + return getBinaryWithNanString("min", useVec4); + case BinaryOpType.POW: + return useVec4 ? POW_VEC4 : POW2; + case BinaryOpType.COMPLEX_MULTIPLY_REAL: + return COMPLEX_MULTIPLY_REAL; + case BinaryOpType.COMPLEX_MULTIPLY_IMAG: + return COMPLEX_MULTIPLY_IMAG; + default: + throw new Error(`BinaryType ${type} is not implemented!`); + } +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/unary_op_util.js +var UnaryOpType; +(function(UnaryOpType2) { + UnaryOpType2[UnaryOpType2["ABS"] = 0] = "ABS"; + UnaryOpType2[UnaryOpType2["CEIL"] = 1] = "CEIL"; + UnaryOpType2[UnaryOpType2["COS"] = 2] = "COS"; + UnaryOpType2[UnaryOpType2["COSH"] = 3] = "COSH"; + UnaryOpType2[UnaryOpType2["ELU"] = 4] = "ELU"; + UnaryOpType2[UnaryOpType2["EXP"] = 5] = "EXP"; + UnaryOpType2[UnaryOpType2["EXPM1"] = 6] = "EXPM1"; + UnaryOpType2[UnaryOpType2["FLOOR"] = 7] = "FLOOR"; + UnaryOpType2[UnaryOpType2["IS_NAN"] = 8] = "IS_NAN"; + UnaryOpType2[UnaryOpType2["LINEAR"] = 9] = "LINEAR"; + UnaryOpType2[UnaryOpType2["LOG"] = 10] = "LOG"; + UnaryOpType2[UnaryOpType2["LOGICAL_NOT"] = 11] = "LOGICAL_NOT"; + UnaryOpType2[UnaryOpType2["NEG"] = 12] = "NEG"; + UnaryOpType2[UnaryOpType2["RELU"] = 13] = "RELU"; + UnaryOpType2[UnaryOpType2["RELU6"] = 14] = "RELU6"; + UnaryOpType2[UnaryOpType2["LEAKYRELU"] = 15] = "LEAKYRELU"; + UnaryOpType2[UnaryOpType2["RECIPROCAL"] = 16] = "RECIPROCAL"; + UnaryOpType2[UnaryOpType2["RSQRT"] = 17] = "RSQRT"; + UnaryOpType2[UnaryOpType2["SIN"] = 18] = "SIN"; + UnaryOpType2[UnaryOpType2["SINH"] = 19] = "SINH"; + UnaryOpType2[UnaryOpType2["SIGMOID"] = 20] = "SIGMOID"; + UnaryOpType2[UnaryOpType2["SQRT"] = 21] = "SQRT"; + UnaryOpType2[UnaryOpType2["SQUARE"] = 22] = "SQUARE"; + UnaryOpType2[UnaryOpType2["TANH"] = 23] = "TANH"; + UnaryOpType2[UnaryOpType2["TO_INT"] = 24] = "TO_INT"; +})(UnaryOpType || (UnaryOpType = {})); +var ABS3 = `return abs(a);`; +var CEIL2 = `return ceil(a);`; +var COS2 = `return cos(a);`; +var COSH2 = ` + let e2x = exp(-a); + return (e2x + 1.0 / e2x) / 2.0; +`; +var EXPM12 = `return exp(a) - 1.0;`; +var ELU5 = `if (a >= 0.0) { return a; } return (exp(a) - 1.0);`; +var ELU_VEC4 = ` + var resFloat = exp(a) - vec4(1.0); + if (a.r >= 0.0) { + resFloat.r = a.r; + } + if (a.g >= 0.0) { + resFloat.g = a.g; + } + if (a.b >= 0.0) { + resFloat.b = a.b; + } + if (a.a >= 0.0) { + resFloat.a = a.a; + } + return resFloat; +`; +var EXP2 = `return exp(a);`; +var FLOOR2 = `return floor(a);`; +var IS_NAN2 = `return f32(isnan(a));`; +var LINEAR3 = `return a;`; +var LOG2 = `if (a < 0.0) { return 1.0/0.0; } + return log(a);`; +var LOGICAL_NOT2 = `return f32(!(a >= 1.0));`; +var NEG2 = `return -a;`; +var LEAKYRELU2 = `if (a < 0.0) { return uniforms.alpha * a; } return a;`; +var LEAKYRELU_VEC4 = ` + let aLessThanZero = vec4(a < vec4(0.0)); + return (aLessThanZero * (uniforms.alpha * a)) + ((vec4(1.0) - aLessThanZero) * a); +`; +var RECIPROCAL2 = `return 1.0 / a;`; +var RELU4 = `return select(a, 0.0, a < 0.0);`; +var RELU64 = "return clamp(a, 0.0, 6.0);"; +var RELU6_VEC4 = "return clamp(a, vec4(0.0, 0.0, 0.0, 0.0), vec4(6.0, 6.0, 6.0, 6.0));"; +var RELU_VEC4 = ` + return select(a, vec4(0.0), a < vec4(0.0)); +`; +var RSQRT2 = `return 1.0/sqrt(a);`; +var SIGMOID4 = `return 1.0 / (1.0 + exp(-1.0 * a));`; +var SIN2 = `return sin(a);`; +var SINH2 = ` + let e2x = exp(a); + return (e2x - 1.0 / e2x) / 2.0; +`; +var SQRT2 = `return sqrt(a);`; +var SQUARE2 = `return a * a;`; +var TANH2 = ` + let e2x = exp(-2.0 * abs(a)); + return sign(a) * (1.0 - e2x) / (1.0 + e2x); +`; +var TO_INT2 = `return f32(i32((a)));`; +function getUnaryOpString(type, useVec4) { + switch (type) { + case UnaryOpType.ABS: + return ABS3; + case UnaryOpType.COS: + return COS2; + case UnaryOpType.COSH: + return COSH2; + case UnaryOpType.CEIL: + return CEIL2; + case UnaryOpType.ELU: + return useVec4 ? ELU_VEC4 : ELU5; + case UnaryOpType.EXP: + return EXP2; + case UnaryOpType.EXPM1: + return EXPM12; + case UnaryOpType.FLOOR: + return FLOOR2; + case UnaryOpType.IS_NAN: + return IS_NAN2; + case UnaryOpType.LINEAR: + return LINEAR3; + case UnaryOpType.LOG: + return LOG2; + case UnaryOpType.LOGICAL_NOT: + return LOGICAL_NOT2; + case UnaryOpType.NEG: + return NEG2; + case UnaryOpType.LEAKYRELU: + return useVec4 ? LEAKYRELU_VEC4 : LEAKYRELU2; + case UnaryOpType.RECIPROCAL: + return RECIPROCAL2; + case UnaryOpType.RELU: + return useVec4 ? RELU_VEC4 : RELU4; + case UnaryOpType.RELU6: + return useVec4 ? RELU6_VEC4 : RELU64; + case UnaryOpType.RSQRT: + return RSQRT2; + case UnaryOpType.SIGMOID: + return SIGMOID4; + case UnaryOpType.SIN: + return SIN2; + case UnaryOpType.SINH: + return SINH2; + case UnaryOpType.SQRT: + return SQRT2; + case UnaryOpType.SQUARE: + return SQUARE2; + case UnaryOpType.TANH: + return TANH2; + case UnaryOpType.TO_INT: + return TO_INT2; + default: + throw new Error(`BinaryType ${type} is not implemented!`); + } +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/activation_util.js +var typeSnippet = (component) => { + switch (component) { + case 1: + return "f32"; + case 2: + return "vec2"; + case 3: + return "vec3"; + case 4: + return "vec4"; + default: + throw new Error(`${component}-component is not supported.`); + } +}; +function activationFnSnippet(activation2, hasPreluActivationWeights = false, packed = false, coordsLength = 3) { + if (activation2 === null) { + return ""; + } + let activationOpSnippet = ""; + if (activation2 === "linear") { + activationOpSnippet = getUnaryOpString(UnaryOpType.LINEAR); + } else if (activation2 === "relu") { + activationOpSnippet = getUnaryOpString(UnaryOpType.RELU, packed); + } else if (activation2 === "elu") { + activationOpSnippet = getUnaryOpString(UnaryOpType.ELU, packed); + } else if (activation2 === "relu6") { + activationOpSnippet = getUnaryOpString(UnaryOpType.RELU6, packed); + } else if (activation2 === "prelu") { + activationOpSnippet = getBinaryOpString(BinaryOpType.PRELU, packed); + } else if (activation2 === "sigmoid") { + activationOpSnippet = getUnaryOpString(UnaryOpType.SIGMOID, packed); + } else if (activation2 === "leakyrelu") { + activationOpSnippet = getUnaryOpString(UnaryOpType.LEAKYRELU, packed); + } else { + throw new Error(`Activation ${activation2} has not been implemented for the WebGPU backend.`); + } + const elementSize = packed ? 4 : 1; + const dataType = typeSnippet(elementSize); + let activationFnSnippet2 = ""; + if (hasPreluActivationWeights) { + activationFnSnippet2 = ` + fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { + let b = getPreluActivationWeightsByOutputCoords(coords); + ${activationOpSnippet} + }`; + } else { + activationFnSnippet2 = ` + fn activation(a : ${dataType}, coords : vec${coordsLength}) -> ${dataType} { + ${activationOpSnippet} + }`; + } + return activationFnSnippet2; +} +function biasActivationSnippet(hasBias, activation2) { + return ` + ${hasBias ? "value = value + getBiasByOutputCoords(coords);" : ""} + ${activation2 ? "value = activation(value, coords);" : ""} + `; +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_packed_webgpu.js +function matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) { + util_exports.assert(transposeA && component === 1 || !transposeA, () => `transposeA ${transposeA} is not compatible with component size ${component}`); + const sampleA = ` + let batch = ${batchAEqualOne ? "0" : "batchIn"}; + let batchASize = uniforms.aShape[1] * uniforms.aShape[2]; + ${transposeA ? `value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${component}];` : `value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${component}];`} + + `; + let sampleB; + if (transposeB === false) { + sampleB = `value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${component}];`; + } else { + sampleB = `value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${component}];`; + } + return ` + fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} { + var value = ${typeSnippet(component)}(0.0); + let col = colIn * ${component}; + ${fitAOuter && fitInner ? sampleA : ` + ${transposeA ? `if(row < uniforms.dimAOuter && col < uniforms.dimInner)` : `if(row < uniforms.aShape[1] && col < uniforms.aShape[2])`} + { + ${sampleA} + } + `} + return value; + } + + fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${typeSnippet(component)} { + let col = colIn * ${component}; + let batch = ${batchBEqualOne ? "0" : "batchIn"}; + let batchBSize = uniforms.bShape[1] * uniforms.bShape[2]; + var value = ${typeSnippet(component)}(0.0); + ${sampleB} + return value; + } + `; +} +function matMulReadWriteFnSource(hasBias, activation2, batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter = false, fitBOuter = false, fitInner = false, component = 1) { + return ` + ${matMulReadFnSource(batchAEqualOne, batchBEqualOne, transposeA, transposeB, fitAOuter, fitBOuter, fitInner, component)} + fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${typeSnippet(component)}) { + let col = colIn * ${component}; + ${fitAOuter && fitBOuter ? "" : "if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"} + { + var value = valueIn; + let coords = vec3(batch, row, col); + ${biasActivationSnippet(hasBias, activation2)} + setOutputAtCoords(coords[0], coords[1], coords[2], value); + } + } + `; +} +var writeDataToSubAVec4Snippet = (transpose6) => { + if (transpose6) { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + kStart + inputRow, + globalRowStart / InnerElementSize + inputCol); + `; + } else { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + globalRow + innerRow, + kStart / InnerElementSize + inputCol); + `; + } +}; +var calculateResultSnippet = (transposeA, innerElementSize) => { + if (transposeA) { + return ` + let ACached0 = mm_Asub[k * InnerElementSize][localRow]; + let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow]; + let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow]; + ${innerElementSize === 3 ? "" : "let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"} + for (var i = 0; i < RowPerThread; i = i + 1) { + acc[i] = BCached0 * ACached0[i] + acc[i]; + acc[i] = BCached1 * ACached1[i] + acc[i]; + acc[i] = BCached2 * ACached2[i] + acc[i]; + ${innerElementSize === 3 ? "" : "acc[i] = BCached3 * ACached3[i] + acc[i];"} + }`; + } else { + return ` + for (var i = 0; i < RowPerThread; i = i + 1) { + let ACached = mm_Asub[tileRow + i][k]; + acc[i] = BCached0 * ACached.x + acc[i]; + acc[i] = BCached1 * ACached.y + acc[i]; + acc[i] = BCached2 * ACached.z + acc[i]; + ${innerElementSize === 3 ? "" : "acc[i] = BCached3 * ACached.w + acc[i];"} + }`; + } +}; +function makeMatMulPackedVec4Source(workPerThread, workGroupSize, transposeA = false, tileInner = 32, splitK = false, splitedDimInner = 32, isVectorA = false) { + const tileAOuter = workGroupSize[1] * workPerThread[1]; + const tileBOuter = workGroupSize[0] * workPerThread[0]; + const tileAWidth = transposeA ? tileAOuter : tileInner; + const tileAHight = transposeA ? tileInner : tileAOuter; + const innerElementSize = tileAWidth / workGroupSize[0]; + const rowPerThreadB = tileInner / workGroupSize[1]; + util_exports.assert((transposeA && innerElementSize === 4 && workPerThread[1] === 4 || !transposeA && (innerElementSize === 3 || innerElementSize === 4)) && tileAWidth % workGroupSize[0] === 0 && tileInner % workGroupSize[1] === 0 && workPerThread[0] === 4, () => `If transposeA ${transposeA} is true, innerElementSize ${innerElementSize} and workPerThread[1] ${workPerThread[1]} must be 4. + Otherwise, innerElementSize ${innerElementSize} must be 3 or 4. + tileAWidth ${tileAWidth} must be divisible by workGroupSize[0]${workGroupSize[0]}. tileInner ${tileInner} must be divisible by workGroupSize[1] ${workGroupSize[1]}. ColPerThread ${workPerThread[0]} must be 4.`); + return ` + var mm_Asub : array, ${tileAWidth / innerElementSize}>, ${tileAHight}>; + var mm_Bsub : array, ${tileBOuter / workPerThread[0]}>, ${tileInner}>; + + const RowPerThread = ${workPerThread[1]}; + const ColPerThread = ${workPerThread[0]}; + const InnerElementSize = ${innerElementSize}; + const TileInner = ${tileInner}; + + @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups: vec3, + @builtin(workgroup_id) workgroupId: vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + + let localRow = i32(localId.y); + let tileRow = ${isVectorA ? "0" : "localRow * RowPerThread"}; + let tileCol = i32(localId.x); + + let globalRow = ${isVectorA ? "0" : "i32(globalId.y) * RowPerThread"}; + let globalCol = i32(globalId.x); + let batch = ${splitK ? "0" : "i32(globalId.z)"}; + let globalRowStart = i32(workgroupId.y) * ${tileAOuter}; + + let numTiles = ${splitK ? `${Math.ceil(splitedDimInner / tileInner)}` : "(uniforms.dimInner - 1) / TileInner + 1"}; + var kStart = ${splitK ? `i32(globalId.z) * ${splitedDimInner}` : "0"}; + + var acc: array, RowPerThread>; + + // Loop over shared dimension. + let tileRowB = localRow * ${rowPerThreadB}; + for (var t = 0; t < numTiles; t = t + 1) { + // Load one tile of A into local memory. + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + let inputRow = tileRow + innerRow; + let inputCol = tileCol; + ${writeDataToSubAVec4Snippet(transposeA)} + } + + // Load one tile of B into local memory. + for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) { + let inputRow = tileRowB + innerRow; + let inputCol = tileCol; + mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalCol); + } + kStart = kStart + TileInner; + workgroupBarrier(); + + // Compute acc values for a single thread. + for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) { + let BCached0 = mm_Bsub[k * InnerElementSize][tileCol]; + let BCached1 = mm_Bsub[k * InnerElementSize + 1][tileCol]; + let BCached2 = mm_Bsub[k * InnerElementSize + 2][tileCol]; + ${innerElementSize === 3 ? "" : "let BCached3 = mm_Bsub[k * InnerElementSize + 3][tileCol];"} + + ${calculateResultSnippet(transposeA, innerElementSize)} + } + + workgroupBarrier(); + } + + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]); + } + }`; +} +var writeDataToSubASnippet = (transpose6) => { + if (transpose6) { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + kStart + inputRow, + globalRowStart + inputCol); + `; + } else { + return ` + mm_Asub[inputRow][inputCol] = mm_readA(batch, + globalRowStart + inputRow, + kStart + inputCol); + `; + } +}; +var readDataFromSubASnippet = (transposeA) => { + return transposeA ? "let ACached = mm_Asub[k][tileRow + innerRow];" : "let ACached = mm_Asub[tileRow + innerRow][k];"; +}; +function makeMatMulPackedSource(workPerThread, workGroupSize, transposeA = false, tileInner = 32, splitK = false, splitedDimInner = 32) { + const tileAOuter = workPerThread[1] * workGroupSize[1]; + const tileBOuter = workPerThread[0] * workGroupSize[0]; + const tileAWidth = transposeA ? tileAOuter : tileInner; + const tileAHight = transposeA ? tileInner : tileAOuter; + util_exports.assert(tileAHight % workGroupSize[1] === 0 && tileAWidth % workGroupSize[0] === 0 && tileInner % workGroupSize[1] === 0, () => `tileAHight ${tileAHight} must be divisible by workGroupSize[1]${workGroupSize[1]}, tileAWidth ${tileAWidth} must be divisible by workGroupSize[0]${workGroupSize[0]}, tileInner ${tileInner} must be divisible by workGroupSize[1]${workGroupSize[1]}`); + const rowPerThreadA = tileAHight / workGroupSize[1]; + const colPerThreadA = tileAWidth / workGroupSize[0]; + const rowPerThreadB = tileInner / workGroupSize[1]; + return ` + var mm_Asub : array, ${tileAHight}>; + var mm_Bsub : array, ${tileInner}>; + const RowPerThread = ${workPerThread[1]}; + const ColPerThread = ${workPerThread[0]}; + const TileInner = ${tileInner}; + + @compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ) + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(num_workgroups) NumWorkgroups: vec3, + @builtin(workgroup_id) workgroupId: vec3) { + localId = LocalId; + globalId = GlobalId; + numWorkgroups = NumWorkgroups; + + let tileRow = i32(localId.y) * RowPerThread; + let tileCol = i32(localId.x) * ColPerThread; + + let globalRow = i32(globalId.y) * RowPerThread; + let globalCol = i32(globalId.x) * ColPerThread; + let batch = ${splitK ? "0" : "i32(globalId.z)"}; + let globalRowStart = i32(workgroupId.y) * ${tileAOuter}; + + let numTiles = ${splitK ? `${Math.ceil(splitedDimInner / tileInner)}` : "(uniforms.dimInner - 1) / TileInner + 1"}; + var kStart = ${splitK ? `i32(globalId.z) * ${splitedDimInner}` : "0"}; + + var acc : array, RowPerThread>; + + // Without this initialization strange values show up in acc. + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { + acc[innerRow][innerCol] = 0.0; + } + } + + let tileRowA = i32(localId.y) * ${rowPerThreadA}; + let tileColA = i32(localId.x) * ${colPerThreadA}; + let tileRowB = i32(localId.y) * ${rowPerThreadB}; + // Loop over shared dimension. + for (var t = 0; t < numTiles; t = t + 1) { + // Load one tile of A into local memory. + for (var innerRow = 0; innerRow < ${rowPerThreadA}; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ${colPerThreadA}; innerCol = innerCol + 1) { + let inputRow = tileRowA + innerRow; + let inputCol = tileColA + innerCol; + ${writeDataToSubASnippet(transposeA)} + } + } + + // Load one tile of B into local memory. + for (var innerRow = 0; innerRow < ${rowPerThreadB}; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { + let inputRow = tileRowB + innerRow; + let inputCol = tileCol + innerCol; + mm_Bsub[inputRow][inputCol] = mm_readB(batch, + kStart + inputRow, + globalCol + innerCol); + } + } + kStart = kStart + TileInner; + workgroupBarrier(); + + // Compute acc values for a single thread. + var BCached : array; + for (var k = 0; k < TileInner; k = k + 1) { + for (var inner = 0; inner < ColPerThread; inner = inner + 1) { + BCached[inner] = mm_Bsub[k][tileCol + inner]; + } + + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + ${readDataFromSubASnippet(transposeA)} + for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { + acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; + } + } + } + + workgroupBarrier(); + } + + for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { + for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) { + mm_write(batch, globalRow + innerRow, globalCol + innerCol, + acc[innerRow][innerCol]); + } + } + } + `; +} +var readVectorASnippet = (transpose6) => { + return transpose6 ? ` + mm_readA(batch, colA, globalRow), + mm_readA(batch, colA + 1, globalRow), + mm_readA(batch, colA + 2, globalRow), + mm_readA(batch, colA + 3, globalRow) + ` : ` + mm_readA(batch, globalRow, colA), + mm_readA(batch, globalRow, colA + 1), + mm_readA(batch, globalRow, colA + 2), + mm_readA(batch, globalRow, colA + 3) + `; +}; +function makeVectorMatrixProductSource(workGroupSize, transposeA = false) { + util_exports.assert(workGroupSize[1] === 1 && workGroupSize[2] === 1, () => `A linear work group size is required. But got ${workGroupSize}.`); + return ` + const TileSize = ${workGroupSize[0] * 4}; + var mm_Asub : array, ${workGroupSize[0]}>; + + ${getMainHeaderString()} { + let tileCol = i32(localId.x); + let globalCol = i32(globalId.x); + let globalRow = i32(globalId.y); + + let numTiles = (uniforms.dimInner - 1) / TileSize + 1; + let batch = i32(globalId.z); + // Without this initialization strange values show up in acc. + var acc = 0.0; + + // Loop over shared dimension. + for (var t = 0; t < numTiles; t = t + 1) { + // Load one tile of A into local memory. + let colA = t * TileSize + tileCol * 4; + mm_Asub[tileCol] = vec4(${readVectorASnippet(transposeA)}); + workgroupBarrier(); + + // Compute acc values for a single thread. + for (var k = 0; k < TileSize / 4; k = k + 1) { + let rowB = t * TileSize + k * 4; + let BCached = vec4(mm_readB(batch, rowB, globalCol), + mm_readB(batch, rowB + 1, globalCol), + mm_readB(batch, rowB + 2, globalCol), + mm_readB(batch, rowB + 3, globalCol)); + + let ACached = mm_Asub[k]; + acc = acc + dot(ACached, BCached); + } + + workgroupBarrier(); + } + + mm_write(batch, globalRow, globalCol, acc); + } + `; +} +var MatMulPackedProgram2 = class { + constructor(aShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) { + this.variableNames = ["A", "B"]; + this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; + this.outputShape = outputShape; + this.dispatchLayout = { x: [2], y: [1], z: [0] }; + const dimInner = transposeA ? aShape[1] : aShape[2]; + this.isVec4 = (dimInner % 4 === 0 && !transposeA || outputShape[1] % 4 === 0 && transposeA) && outputShape[2] % 4 === 0 && !transposeB; + this.isVectorA = outputShape[1] === 1 && !transposeA; + if (!this.isVec4 && this.isVectorA) { + this.elementsPerThread = [1, 1, 1]; + this.workGroupSize = [32, 1, 1]; + } else { + const workGroupInfo = computeWorkGroupInfoForMatMul(outputShape[1], dimInner, outputShape[2], transposeA); + this.workGroupSize = workGroupInfo.workGroupSize; + this.elementsPerThread = workGroupInfo.elementsPerThread; + } + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); + const addBias = bias != null; + const hasPreluActivationWeights = preluActivationWeights != null; + if (addBias) { + this.variableNames.push("bias"); + } + if (hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + } + this.transposeA = transposeA; + this.transposeB = transposeB; + this.addBias = addBias; + this.activation = activation2; + this.hasPreluActivationWeights = hasPreluActivationWeights; + this.batchAEqualOne = batchAEqualOne; + this.batchBEqualOne = batchBEqualOne; + [this.fitAOuter, this.fitBOuter, this.fitInner] = this.getShapeFit(outputShape[1], outputShape[2], dimInner); + this.shaderKey = `matMulPacked_${this.elementsPerThread}_${transposeA}_${transposeB}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.isVectorA}_${this.batchAEqualOne}_${this.batchBEqualOne}`; + } + getShapeFit(dimAOuter, dimBOuter, dimInner) { + const tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; + const tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; + if (!this.isVec4 && this.isVectorA) { + this.tileInner = this.workGroupSize[0] * 4; + } else { + this.tileInner = tileBOuter; + } + const fitAOuter = dimAOuter % tileAOuter === 0; + const fitBOuter = dimBOuter % tileBOuter === 0; + const fitInner = dimInner % this.tileInner === 0; + return [fitAOuter, fitBOuter, fitInner]; + } + getUserCode() { + const userCode = ` + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights, this.isVec4)} + ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, this.fitAOuter, this.fitBOuter, this.fitInner, this.isVec4 ? 4 : 1)} + ${this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize, this.transposeA, this.tileInner, false, null, this.isVectorA) : this.isVectorA ? makeVectorMatrixProductSource(this.workGroupSize, this.transposeA) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, this.transposeA, this.tileInner)} + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_reduce_webgpu.js +function makeMatMulReduceSource() { + return ` + var sumValues : array; + ${getMainHeaderString()} { + let coords = getOutputCoords(); + let batch = coords[0]; + let row = coords[1]; + let col = coords[2]; + var sum = 0.0; + let Length = uniforms.dimInner; + for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) { + let dataA = mm_readA(batch, row, k); + let dataB = mm_readB(batch, k, col); + sum = sum + dataA * dataB; + } + sumValues[localId.x] = sum; + workgroupBarrier(); + + for(var currentSize = workGroupSizeX / 2u; currentSize > 1u; + currentSize = currentSize / 2u) { + if (localId.x < currentSize) + { + sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize]; + } + workgroupBarrier(); + } + + if (localId.x == 0u) { + sum = sumValues[0] + sumValues[1]; + mm_write(batch, row, col, sum); + } + } + `; +} +var MatMulReduceProgram = class { + constructor(outputShape, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) { + this.variableNames = ["A", "B"]; + this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; + this.workGroupSize = [256, 1, 1]; + this.outputShape = outputShape; + this.dispatchLayout = { x: [], y: [1, 2], z: [0] }; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + const addBias = bias != null; + const hasPreluActivationWeights = preluActivationWeights != null; + if (addBias) { + this.variableNames.push("bias"); + } + if (hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + } + this.transposeA = transposeA; + this.transposeB = transposeB; + this.addBias = addBias; + this.activation = activation2; + this.hasPreluActivationWeights = hasPreluActivationWeights; + this.batchAEqualOne = batchAEqualOne; + this.batchBEqualOne = batchBEqualOne; + this.shaderKey = `matMulReduce_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`; + } + getUserCode() { + const userCode = ` + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} + ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)} + ${makeMatMulReduceSource()} + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_small_output_size_webgpu.js +function makeMatMulSmallOutputSizeSource(workGroupSize) { + const tileAOuter = workGroupSize[1]; + const tileBOuter = workGroupSize[0]; + const tileInner = tileAOuter > tileBOuter ? tileAOuter : tileBOuter; + return ` + var mm_Asub : array, ${tileAOuter}>; + var mm_Bsub : array, ${tileInner}>; + + // If the output size is small for matrix multiplication, avoid to use vec4 + // and handle some elements per thread to optimally utilize the ALU. + // Read data from global memory to registers firstly, then store them into + // shared memory, so it is instruction-Level parallelism for arithmetic + // operations and others handle IO operations between barrier api, makes ALU + // and load/store units work simultaneously, could improves the performance. + ${getMainHeaderString()} { + let tileRow = i32(localId.y); + let tileCol = i32(localId.x); + let globalRow = i32(globalId.y); + let globalCol = i32(globalId.x); + let batch = i32(globalId.z); + + // uniforms.dimInner should be greater than 0. + let numTiles = (uniforms.dimInner - 1) / ${tileInner} + 1; + var acc = 0.0; + + var globalColA = tileCol; + var globalRowB = 0; + var regA = mm_readA(batch, globalRow, globalColA); + var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol); + var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol); + globalColA = globalColA + ${tileInner}; + globalRowB = globalRowB + ${tileInner}; + + for (var t = 0; t < numTiles; t = t + 1) { + mm_Asub[tileRow][tileCol] = regA; + mm_Bsub[2 * tileRow][tileCol] = regB0; + mm_Bsub[2 * tileRow + 1][tileCol] = regB1; + + workgroupBarrier(); + + regA = mm_readA(batch, globalRow, globalColA); + regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol); + regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol); + globalColA = globalColA + ${tileInner}; + globalRowB = globalRowB + ${tileInner}; + + for (var k = 0; k < ${tileInner}; k = k + 1) { + acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol]; + } + workgroupBarrier(); + } + + mm_write(batch, globalRow, globalCol, acc); + } + `; +} +var MatMulSmallOutputSizeProgram = class { + constructor(aShape, bShape, outputShape, transposeA = false, transposeB = false, bias = null, activation2 = null, preluActivationWeights = null) { + this.variableNames = ["A", "B"]; + this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; + this.workGroupSize = [16, 8, 1]; + this.outputShape = outputShape; + this.dispatchLayout = { x: [2], y: [1], z: [0] }; + this.dispatch = [ + Math.ceil(outputShape[2] / this.workGroupSize[0]), + Math.ceil(outputShape[1] / this.workGroupSize[1]), + outputShape[0] + ]; + const addBias = bias != null; + if (addBias) { + this.variableNames.push("bias"); + } + const hasPreluActivationWeights = preluActivationWeights != null; + if (hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + } + this.transposeA = transposeA; + this.transposeB = transposeB; + this.addBias = addBias; + this.activation = activation2; + this.hasPreluActivationWeights = hasPreluActivationWeights; + this.batchAEqualOne = aShape[0] === 1; + this.batchBEqualOne = bShape[0] === 1; + this.shaderKey = `matMulSmallOutputSize_${this.activation}_${transposeA}_${transposeB}_${this.batchAEqualOne}_${this.batchBEqualOne}`; + } + getUserCode() { + const userCode = ` + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} + ${matMulReadWriteFnSource(this.addBias, this.activation, this.batchAEqualOne, this.batchBEqualOne, this.transposeA, this.transposeB)} + ${makeMatMulSmallOutputSizeSource(this.workGroupSize)} + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/matmul_splitK_webgpu.js +var MatMulSplitKProgram = class { + constructor(outputShape, dimInner, batchAEqualOne, batchBEqualOne, transposeA = false, transposeB = false) { + this.variableNames = ["A", "B"]; + this.uniforms = `dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; + this.workGroupSize = [8, 8, 1]; + this.atomic = true; + this.isVec4 = false; + this.splitedDimInner = 128; + util_exports.assert(outputShape[0] === 1, () => "MatMulSplitKProgram only supports batch = 1."); + this.outputShape = outputShape; + this.dispatchLayout = { x: [2], y: [1], z: [0, 3] }; + this.isVec4 = (transposeA && this.outputShape[1] % 4 === 0 || !transposeA && dimInner % 4 === 0) && this.outputShape[2] % 4 === 0; + this.elementsPerThread = [4, 4, this.splitedDimInner]; + if (!this.isVec4) { + if (this.outputShape[1] < 16) { + this.elementsPerThread[1] = 1; + } + if (this.outputShape[2] < 16) { + this.elementsPerThread[0] = 1; + } + } + this.dispatch = computeDispatch(this.dispatchLayout, [ + this.outputShape[0], + this.outputShape[1], + this.outputShape[2], + dimInner + ], this.workGroupSize, this.elementsPerThread); + this.transposeA = transposeA; + this.transposeB = transposeB; + this.batchAEqualOne = batchAEqualOne; + this.batchBEqualOne = batchBEqualOne; + this.shaderKey = `matMulSplitK_${transposeA}_${transposeB}_${batchAEqualOne}_${batchBEqualOne}_${this.elementsPerThread}_${this.isVec4}`; + } + getUserCode() { + const atomicAddSnippet = (component2) => { + return ` + for (var i = 0; i < ${component2}; i = i + 1) + { + var oldValue = atomicLoad(&(result[flatIndex + i])); + var exchanged = false; + for (; !exchanged;) { + let newValueF32 = bitcast(oldValue) + ${component2 > 1 ? "value[i]" : "value"}; + let newValue = bitcast(newValueF32); + let res = atomicCompareExchangeWeak(&(result[flatIndex + i]), oldValue, newValue); + oldValue = res.old_value; + exchanged = res.exchanged; + } + } + `; + }; + const component = this.isVec4 ? 4 : 1; + const userCode = ` + ${matMulReadFnSource(this.batchAEqualOne, this.batchBEqualOne, false, this.transposeB, false, false, false, component)} + fn mm_write(batch: i32, row : i32, colIn : i32, value : ${typeSnippet(component)}) { + let col = colIn * ${component}; + if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) { + let coords = vec3(batch, row, col); + let flatIndex = getOutputIndexFromCoords(coords); + // The problem is that we should initialize output to zero before using. + // Otherwise, the original value will be added to the result. + ${atomicAddSnippet(component)} + } + } + ${this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize, this.transposeA, 32, true, this.splitedDimInner) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, this.transposeA, 32, true, this.splitedDimInner)} + `; + return userCode; + } +}; +var BiasActivationProgram = class { + constructor(outputShape, bias = null, activation2 = null, preluActivationWeights = null) { + this.uniforms = ""; + this.variableNames = ["x"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.addBias = bias != null; + this.hasPreluActivationWeights = preluActivationWeights != null; + this.activation = activation2; + if (this.addBias) { + this.variableNames.push("bias"); + } + if (this.hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + } + this.shaderKey = `biasActivation_${activation2}`; + } + getUserCode() { + return ` + ${activationFnSnippet(this.activation, this.hasPreluActivationWeights)} + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + var value = getXByOutputIndex(index); + ${biasActivationSnippet(this.addBias, this.activation)} + setOutputAtIndex(index, value); + } + } + `; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/fill_webgpu.js +var FillProgram2 = class { + constructor(shape) { + this.variableNames = []; + this.outputShape = []; + this.uniforms = "value : f32,"; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = shape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = "fill"; + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + setOutputAtIndex(index, uniforms.value); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Fill.js +function fill5(args) { + const { backend: backend2, attrs } = args; + const { shape, value } = attrs; + let { dtype } = attrs; + dtype = dtype || util_exports.inferDtype(value); + if (dtype === "string") { + const values = util_exports.getArrayFromDType(dtype, util_exports.sizeFromShape(shape)); + values.fill(value); + return backend2.makeTensorInfo(shape, dtype, values); + } else { + const program = new FillProgram2(shape); + const uniformData = [{ type: "float32", data: [value] }]; + return backend2.runWebGPUProgram(program, [], dtype, uniformData); + } +} +var fillConfig4 = { + kernelName: Fill, + backendName: "webgpu", + kernelFunc: fill5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Reshape.js +function reshape6(args) { + const { inputs, attrs } = args; + const { x } = inputs; + const { shape } = attrs; + const xSize = util_exports.sizeFromShape(x.shape); + const $shape = util_exports.inferFromImplicitShape(shape, xSize); + const $xSize = util_exports.sizeFromShape($shape); + util_exports.assert(xSize === $xSize, () => `The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`); + args.backend.incRef(x.dataId); + return { dataId: x.dataId, shape: $shape, dtype: x.dtype }; +} +var reshapeConfig4 = { + kernelName: Reshape, + backendName: "webgpu", + kernelFunc: reshape6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchMatMul_impl.js +function batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { + const aRank = a.shape.length; + const bRank = b.shape.length; + const innerShapeA = transposeA ? a.shape[aRank - 2] : a.shape[aRank - 1]; + const innerShapeB = transposeB ? b.shape[bRank - 1] : b.shape[bRank - 2]; + const outerShapeA = transposeA ? a.shape[aRank - 1] : a.shape[aRank - 2]; + const outerShapeB = transposeB ? b.shape[bRank - 2] : b.shape[bRank - 1]; + const outerDimsA = a.shape.slice(0, -2); + const outerDimsB = b.shape.slice(0, -2); + const batchDimA = util_exports.sizeFromShape(outerDimsA); + const batchDimB = util_exports.sizeFromShape(outerDimsB); + const outShapeOuterDims = broadcast_util_exports.assertAndGetBroadcastShape(a.shape.slice(0, -2), b.shape.slice(0, -2)); + const outShape = outShapeOuterDims.concat([outerShapeA, outerShapeB]); + util_exports.assert(innerShapeA === innerShapeB, () => `Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`); + const a3dShape = transposeA ? [batchDimA, innerShapeA, outerShapeA] : [batchDimA, outerShapeA, innerShapeA]; + const b3dShape = transposeB ? [batchDimB, outerShapeB, innerShapeB] : [batchDimB, innerShapeB, outerShapeB]; + const a3d = reshape6({ inputs: { x: a }, backend: backend2, attrs: { shape: a3dShape } }); + const b3d = reshape6({ inputs: { x: b }, backend: backend2, attrs: { shape: b3dShape } }); + const intermediates = [a3d, b3d]; + const batchDim = Math.max(batchDimA, batchDimB); + const batchAEqualOne = batchDimA === 1; + const batchBEqualOne = batchDimB === 1; + const inputs = [a3d, b3d]; + const dimensions = [ + { type: "int32", data: [outerShapeA] }, + { type: "int32", data: [outerShapeB] }, + { type: "int32", data: [innerShapeA] } + ]; + let program; + let out; + const outputShape = [batchDim, outerShapeA, outerShapeB]; + let matmulProgramType = env().get("WEBGPU_MATMUL_PROGRAM_TYPE"); + if (matmulProgramType < 0) { + if (outerShapeA * outerShapeB <= 128) { + matmulProgramType = MatMulProgramType.MatMulReduceProgram; + } else if (batchDim === 1 && outerShapeA <= 128 && outerShapeB <= 48 && innerShapeB >= 2e3) { + matmulProgramType = MatMulProgramType.MatMulSplitKProgram; + } else if (outerShapeA <= 16 && (outerShapeB <= 512 || innerShapeB >= 2 * outerShapeB) || outerShapeB <= 16 && (outerShapeA <= 512 || innerShapeA >= 2 * outerShapeA)) { + matmulProgramType = MatMulProgramType.MatMulSmallOutputSizeProgram; + } else { + matmulProgramType = MatMulProgramType.MatMulPackedProgram; + } + } + switch (matmulProgramType) { + case MatMulProgramType.MatMulReduceProgram: + program = new MatMulReduceProgram(outputShape, batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); + break; + case MatMulProgramType.MatMulSplitKProgram: { + out = fill5({ backend: backend2, attrs: { shape: outputShape, value: 0, dtype: a.dtype } }); + program = new MatMulSplitKProgram(outputShape, innerShapeB, batchAEqualOne, batchBEqualOne, transposeA, transposeB); + if (bias || activation2) { + out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out); + const biasActivationProgram = new BiasActivationProgram(out.shape, bias, activation2, preluActivationWeights); + let uniformData = null; + const activationInputs = [out]; + if (bias) { + activationInputs.push(bias); + } + if (preluActivationWeights) { + activationInputs.push(preluActivationWeights); + } + if (activation2 === "leakyrelu") { + uniformData = [{ type: "float32", data: [leakyreluAlpha] }]; + biasActivationProgram.uniforms += " alpha : f32,"; + } + const outActivated = backend2.runWebGPUProgram(biasActivationProgram, activationInputs, out.dtype, uniformData); + intermediates.push(out); + const outReshaped2 = reshape6({ inputs: { x: outActivated }, backend: backend2, attrs: { shape: outShape } }); + intermediates.push(outActivated); + for (const i2 of intermediates) { + backend2.disposeData(i2.dataId); + } + return outReshaped2; + } + break; + } + case MatMulProgramType.MatMulSmallOutputSizeProgram: + program = new MatMulSmallOutputSizeProgram(a3dShape, b3dShape, outputShape, transposeA, transposeB, bias, activation2, preluActivationWeights); + break; + case MatMulProgramType.MatMulPackedProgram: + program = new MatMulPackedProgram2(a3dShape, outputShape, batchAEqualOne, batchBEqualOne, transposeA, transposeB, bias, activation2, preluActivationWeights); + break; + default: + throw new Error(`Unsupported MatMulProgramType ${matmulProgramType}.`); + } + if (bias) { + inputs.push(bias); + } + if (preluActivationWeights) { + inputs.push(preluActivationWeights); + } + if (activation2 === "leakyrelu") { + dimensions.push({ type: "float32", data: [leakyreluAlpha] }); + program.uniforms += " alpha : f32,"; + } + out = backend2.runWebGPUProgram(program, inputs, a.dtype, dimensions, out); + const outReshaped = reshape6({ inputs: { x: out }, backend: backend2, attrs: { shape: outShape } }); + intermediates.push(out); + for (const i2 of intermediates) { + backend2.disposeData(i2.dataId); + } + return outReshaped; +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/_FusedMatMul.js +function _fusedMatMul3(args) { + const { inputs, backend: backend2, attrs } = args; + const { a, b, bias, preluActivationWeights } = inputs; + const { transposeA, transposeB, activation: activation2, leakyreluAlpha } = attrs; + return batchMatMulImpl2({ + a, + b, + transposeA, + transposeB, + backend: backend2, + bias, + preluActivationWeights, + leakyreluAlpha, + activation: activation2 + }); +} +var _fusedMatMulConfig4 = { + kernelName: _FusedMatMul, + backendName: "webgpu", + kernelFunc: _fusedMatMul3 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_complex_webgpu.js +var BinaryOpComplexProgram2 = class { + constructor(op2, aShape, bShape) { + this.variableNames = ["AReal", "AImag", "BReal", "BImag"]; + this.workGroupSize = [128, 1, 1]; + this.size = true; + this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = `binaryOpComplex_${op2}`; + this.op = op2; + } + getUserCode() { + const opStr = getBinaryOpString(this.op, false); + const userCode = ` + fn binaryOpComplex( + areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 { + ${opStr} + } + + ${getMainHeaderString("index")} { + if(index < uniforms.size) { + let areal = getARealByOutputIndex(index); + let aimag = getAImagByOutputIndex(index); + let breal = getBRealByOutputIndex(index); + let bimag = getBImagByOutputIndex(index); + setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag)); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/binary_op_webgpu.js +var BinaryOpProgram2 = class { + constructor(op2, aShape, bShape) { + this.size = true; + this.variableNames = ["A", "B"]; + this.outputShape = backend_util_exports.assertAndGetBroadcastShape(aShape, bShape); + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.op = op2; + this.useSharedMemoryWithA = aShape.length === 1 && bShape.length > 1 && aShape[0] < 1024; + this.useSharedMemoryWithB = bShape.length === 1 && aShape.length > 1 && bShape[0] < 1024; + if (this.useSharedMemoryWithA || this.useSharedMemoryWithB) { + this.isVec4 = false; + this.lastDimensionSize = this.useSharedMemoryWithB ? bShape[0] : aShape[0]; + this.shaderKey = `binary_${this.type}_${op2}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`; + this.type = "shared"; + this.workGroupSize = [256, 1, 1]; + if (this.lastDimensionSize < 256) { + this.workPerThread = 1; + } else if (this.lastDimensionSize < 512) { + this.workPerThread = 2; + } else { + this.workPerThread = 4; + } + } else { + if (util_exports.arraysEqual(aShape, bShape) && util_exports.sizeFromShape(aShape) % 4 === 0) { + this.isVec4 = true; + this.type = "vec4"; + this.workPerThread = 4; + } else { + this.isVec4 = false; + this.type = "plain"; + this.workPerThread = 1; + } + this.shaderKey = `binary_${this.type}_${op2}`; + this.workGroupSize = [128, 1, 1]; + } + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); + } + getUserCode() { + let userCode; + if (this.type === "shared") { + const sharedIndexSnippet = this.lastDimensionSize > 1 ? `coords[${this.outputShape.length - 1}]` : "0"; + const accessDataSnippet = this.useSharedMemoryWithB ? `let a = getAByOutputCoords(coords); + let b = sharedBuf[${sharedIndexSnippet}];` : `let a = sharedBuf[${sharedIndexSnippet}]; + let b = getBByOutputCoords(coords);`; + const opStr = getBinaryOpString(this.op, this.isVec4); + userCode = ` + fn binaryOperation(a : f32, b : f32) -> f32 { + ${opStr} + } + var sharedBuf : array; + ${getMainHeaderString("index")} { + // Fill in the shared memory buffer. Here we need a loop to make sure + // that all data in A|B are uploaded when |sharedMemorySize| is larger + // than work group size. + for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) { + sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB ? "B" : "A"}[localIndex]); + } + workgroupBarrier(); + + for(var i = 0; i < ${this.workPerThread}; i = i + 1) { + let flatIndex = index * ${this.workPerThread} + i; + if(flatIndex < uniforms.size) { + let coords = getCoordsFromIndex(flatIndex); + + ${accessDataSnippet} + setOutputAtIndex(flatIndex, binaryOperation(a, b)); + } + } + } + `; + } else { + const dType = this.type === "vec4" ? "vec4" : "f32"; + const opStr = getBinaryOpString(this.op, this.isVec4); + userCode = ` + fn binaryOperation(a : ${dType}, b : ${dType}) -> ${dType} { + ${opStr} + } + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let a = getAByOutputIndex(index); + let b = getBByOutputIndex(index); + setOutputAtIndex(index, binaryOperation(a, b)); + } + } + `; + } + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Identity.js +function identity5(args) { + const { inputs } = args; + const { x } = inputs; + args.backend.incRef(x.dataId); + return { dataId: x.dataId, shape: x.shape, dtype: x.dtype }; +} +var identityConfig4 = { + kernelName: Identity, + backendName: "webgpu", + kernelFunc: identity5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Complex.js +function complex4(args) { + const { inputs, backend: backend2 } = args; + const { real: real5, imag: imag5 } = inputs; + const complexInfo = backend2.makeTensorInfo(real5.shape, "complex64"); + const complex5 = backend2.tensorMap.get(complexInfo.dataId); + const realTensorInfo = identity5({ inputs: { x: real5 }, backend: backend2 }); + const imagTensorInfo = identity5({ inputs: { x: imag5 }, backend: backend2 }); + complex5.complexTensorInfos = { real: realTensorInfo, imag: imagTensorInfo }; + return complexInfo; +} +var complexConfig3 = { + kernelName: Complex, + backendName: "webgpu", + kernelFunc: complex4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/unary_op_webgpu.js +var UnaryOpProgram2 = class { + constructor(outputShape, op2) { + this.variableNames = ["A"]; + this.size = true; + const workGroupSizeX = 128; + this.workGroupSize = [workGroupSizeX, 1, 1]; + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.op = op2; + this.shaderKey = `unary_${op2}`; + } + getUserCode() { + return ` + fn unaryOperation(a : f32) -> f32 { + ${getUnaryOpString(this.op, false)} + } + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let a = getAByOutputIndex(index); + setOutputAtIndex(index, unaryOperation(a)); + } + } + `; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/kernel_funcs_utils.js +function unaryKernelFunc3({ opType, cpuKernelImpl, dtype }) { + return ({ inputs, backend: backend2 }) => { + const { x } = inputs; + const webgpuBackend = backend2; + const $dtype = dtype || x.dtype; + if (webgpuBackend.shouldExecuteOnCPU([x]) && cpuKernelImpl != null) { + const xData = webgpuBackend.tensorMap.get(x.dataId); + const outValues = cpuKernelImpl(xData.values, $dtype); + return webgpuBackend.makeTensorInfo(x.shape, $dtype, outValues); + } + const program = new UnaryOpProgram2(x.shape, opType); + return webgpuBackend.runWebGPUProgram(program, [x], $dtype); + }; +} +function binaryKernelFunc3({ opType, cpuKernelImpl, supportsComplex = false, dtype }) { + return ({ inputs, backend: backend2 }) => { + const { a, b } = inputs; + const webgpuBackend = backend2; + if (supportsComplex && a.dtype === "complex64") { + const aData = webgpuBackend.tensorMap.get(a.dataId); + const bData = webgpuBackend.tensorMap.get(b.dataId); + let real5, imag5; + if (opType !== BinaryOpType.MUL) { + [real5, imag5] = [ + [aData.complexTensorInfos.real, bData.complexTensorInfos.real], + [aData.complexTensorInfos.imag, bData.complexTensorInfos.imag] + ].map((complexParts) => { + const [aPart, bPart] = complexParts; + const aHandle = { + dataId: aPart.dataId, + dtype: aPart.dtype, + shape: a.shape + }; + const bHandle = { + dataId: bPart.dataId, + dtype: bPart.dtype, + shape: b.shape + }; + const program2 = new BinaryOpProgram2(opType, a.shape, b.shape); + return webgpuBackend.runWebGPUProgram(program2, [aHandle, bHandle], upcastType(aPart.dtype, bPart.dtype)); + }); + } else { + const realProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_REAL, a.shape, b.shape); + const imagProgram = new BinaryOpComplexProgram2(BinaryOpType.COMPLEX_MULTIPLY_IMAG, a.shape, b.shape); + const inputs2 = [ + { + dataId: aData.complexTensorInfos.real.dataId, + dtype: aData.complexTensorInfos.real.dtype, + shape: a.shape + }, + { + dataId: aData.complexTensorInfos.imag.dataId, + dtype: aData.complexTensorInfos.imag.dtype, + shape: a.shape + }, + { + dataId: bData.complexTensorInfos.real.dataId, + dtype: bData.complexTensorInfos.real.dtype, + shape: b.shape + }, + { + dataId: bData.complexTensorInfos.imag.dataId, + dtype: bData.complexTensorInfos.imag.dtype, + shape: b.shape + } + ]; + real5 = webgpuBackend.runWebGPUProgram(realProgram, inputs2, "float32"); + imag5 = webgpuBackend.runWebGPUProgram(imagProgram, inputs2, "float32"); + } + const complexOutput = complex4({ inputs: { real: real5, imag: imag5 }, backend: webgpuBackend }); + webgpuBackend.disposeData(real5.dataId); + webgpuBackend.disposeData(imag5.dataId); + return complexOutput; + } + const $dtype = dtype || upcastType(a.dtype, b.dtype); + if ((a.dtype === "string" || b.dtype === "string" || webgpuBackend.shouldExecuteOnCPU([a, b])) && cpuKernelImpl != null) { + const aData = webgpuBackend.tensorMap.get(a.dataId).values; + const bData = webgpuBackend.tensorMap.get(b.dataId).values; + const decodedAVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(aData) : aData; + const decodedBVals = a.dtype === "string" ? backend_util_exports.fromUint8ToStringArray(bData) : bData; + const [outValues, outShape] = cpuKernelImpl(a.shape, b.shape, decodedAVals, decodedBVals, $dtype); + return webgpuBackend.makeTensorInfo(outShape, $dtype, outValues); + } + const program = new BinaryOpProgram2(opType, a.shape, b.shape); + return webgpuBackend.runWebGPUProgram(program, [a, b], $dtype); + }; +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/shared.js +var { addImpl: addImplCPU2, castImpl: castImplCPU2, ceilImpl: ceilImplCPU2, concatImpl: concatImplCPU2, equalImpl: equalImplCPU2, expImpl: expImplCPU2, expm1Impl: expm1ImplCPU2, floorImpl: floorImplCPU2, gatherNdImpl: gatherNdImplCPU2, gatherV2Impl: gatherV2ImplCPU2, greaterEqualImpl: greaterEqualImplCPU2, greaterImpl: greaterImplCPU2, lessEqualImpl: lessEqualImplCPU2, lessImpl: lessImplCPU2, logImpl: logImplCPU2, maxImpl: maxImplCPU2, maximumImpl: maximumImplCPU2, minimumImpl: minimumImplCPU2, multiplyImpl: multiplyImplCPU2, negImpl: negImplCPU2, notEqualImpl: notEqualImplCPU2, prodImpl: prodImplCPU2, rangeImpl: rangeImplCPU2, rsqrtImpl: rsqrtImplCPU2, scatterImpl: scatterImplCPU2, simpleAbsImpl: simpleAbsImplCPU2, sliceImpl: sliceImplCPU2, stridedSliceImpl: stridedSliceImplCPU2, stringNGramsImpl: stringNGramsImplCPU2, subImpl: subImplCPU2, tileImpl: tileImplCPU2, topKImpl: topKImplCPU2, transposeImpl: transposeImplCPU2, uniqueImpl: uniqueImplCPU2 } = shared_exports; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Abs.js +var abs4 = unaryKernelFunc3({ opType: UnaryOpType.ABS, cpuKernelImpl: simpleAbsImplCPU2 }); +var absConfig4 = { + kernelName: Abs, + backendName: "webgpu", + kernelFunc: abs4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Add.js +var addKernelFunc2 = binaryKernelFunc3({ opType: BinaryOpType.ADD, cpuKernelImpl: addImplCPU2, supportsComplex: true }); +var addConfig4 = { + kernelName: Add, + backendName: "webgpu", + kernelFunc: addKernelFunc2 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/addn_packed_webgpu.js +var AddNPackedProgram2 = class { + constructor(shapes) { + this.workPerThread = 4; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = shapes[0]; + this.variableNames = shapes.map((_, i2) => `T${i2}`); + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); + this.shaderKey = "addN"; + } + getUserCode() { + const snippets = []; + this.variableNames.forEach((variable2) => { + snippets.push(`let v${variable2} = get${variable2}ByOutputCoords(coords);`); + }); + const operation = this.variableNames.map((variable2) => { + return `v${variable2}`; + }).join(" + "); + const userCode = ` + ${getMainHeaderString("index")} { + for (var i = 0; i < ${this.workPerThread}; i = i + 1) { + let flatIndex = index * ${this.workPerThread} + i; + if (flatIndex < uniforms.size) { + let coords = getCoordsFromIndex(flatIndex); + ${snippets.join("\n ")} + setOutputAtIndex(flatIndex, ${operation}); + } + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/AddN.js +function addN4(args) { + const { inputs, backend: backend2 } = args; + const tensors = inputs; + if (tensors.length === 1) { + return identity5({ inputs: { x: tensors[0] }, backend: backend2 }); + } + const dtype = tensors.map((t2) => t2.dtype).reduce((d1, d2) => upcastType(d1, d2)); + const shapes = tensors.map((t2) => t2.shape); + const program = new AddNPackedProgram2(shapes); + return backend2.runWebGPUProgram(program, tensors, dtype); +} +var addNConfig4 = { + kernelName: AddN, + backendName: "webgpu", + kernelFunc: addN4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/argminmax_webgpu.js +var ArgMinMaxProgram2 = class { + constructor(inputShape, axis, reduceType) { + this.workGroupSize = [64, 1, 1]; + this.variableNames = ["x"]; + this.uniforms = "infinityValue : f32,"; + this.size = true; + const axes = [axis]; + this.op = reduceType === "min" ? "<" : ">"; + const [outputShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(inputShape, axes); + this.outputShape = outputShape.length === 0 ? [1] : outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + if (util_exports.sizeFromShape(reduceShape) < 32 || util_exports.sizeFromShape(outputShape) > 1e3) { + this.type = "plain"; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + } else { + this.type = "shared"; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]); + } + this.inputShape = inputShape; + this.shaderKey = `argMinMax_${this.op}_${this.type}`; + } + getUserCode() { + const getInputShapeLastDim = () => { + if (this.inputShape.length === 1) { + return "uniforms.xShape"; + } else { + return `uniforms.xShape.${getCoordsXYZ(this.inputShape.length - 1)}`; + } + }; + const splitOutputCoords = () => { + let snippet = ""; + if (this.outputShape.length === 1) { + if (this.inputShape.length !== 1) { + snippet += "outputCoords,"; + } + } else { + for (let i2 = 0; i2 < this.outputShape.length; i2++) { + snippet += `outputCoords.${getCoordsXYZ(i2)},`; + } + } + return snippet; + }; + if (this.type === "shared") { + const sharedMemorySnippet = ` + var xBestIndices : array; + var xBestValues : array; + `; + const userCode = ` + fn DIV_CEIL(a : u32, b : u32) -> u32 { + return ((a - 1u) / b + 1u); + } + + ${sharedMemorySnippet} + + ${getMainHeaderString("index")} { + let outputIndex = index / i32(workGroupSizeX); + let reduceLength = ${getInputShapeLastDim()}; + + var bestIndex = i32(localId.x); + var bestValue = uniforms.infinityValue; + let outputCoords = getCoordsFromIndex(outputIndex); + for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size; + k = k + i32(workGroupSizeX)) { + let candidate = getX(${splitOutputCoords()} k); + if (!isnan(candidate) && candidate ${this.op} bestValue) { + bestValue = candidate; + bestIndex = k; + } + } + xBestValues[localId.x] = bestValue; + xBestIndices[localId.x] = bestIndex; + workgroupBarrier(); + + var reduceSize = min(u32(reduceLength), workGroupSizeX); + for (var currentSize = reduceSize / 2u; reduceSize > 1u; + currentSize = reduceSize / 2u) { + let interval = DIV_CEIL(reduceSize, 2u); + if (localId.x < currentSize) { + let candidate = xBestValues[localId.x + interval]; + if (candidate ${this.op} bestValue) { + bestValue = candidate; + xBestValues[localId.x] = bestValue; + xBestIndices[localId.x] = xBestIndices[localId.x + interval]; + } + } + reduceSize = interval; + workgroupBarrier(); + } + + if (localId.x == 0u && outputIndex < uniforms.size) { + setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]); + } + } + `; + return userCode; + } else { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let outputCoords = getCoordsFromIndex(index); + var bestIndex = 0; + var bestValue = getX(${splitOutputCoords()} 0); + let reduceLength = ${getInputShapeLastDim()}; + for (var i = 1; i < reduceLength; i++) { + let candidate = getX(${splitOutputCoords()} i); + if (candidate ${this.op} bestValue) { + bestValue = candidate; + bestIndex = i; + } + } + setOutputAtIndexI32(index, bestIndex); + } + } + `; + return userCode; + } + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transpose_shared_webgpu.js +var TransposeSharedProgram = class { + constructor(aShape, newDim) { + this.variableNames = ["A"]; + this.workGroupSize = [16, 16, 1]; + const outputShape = new Array(aShape.length); + for (let i2 = 0; i2 < outputShape.length; i2++) { + outputShape[i2] = aShape[newDim[i2]]; + } + this.outputShape = outputShape; + this.dispatchLayout = { x: [0], y: [1] }; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [1, 1, 1]); + this.shaderKey = "transposeShared"; + } + getUserCode() { + const userCode = ` + const TILE_DIM = ${this.workGroupSize[0]}; + var tile : array, ${this.workGroupSize[0]}>; + ${getWorkGroupSizeString()} + fn _start(@builtin(local_invocation_id) localId : vec3, + @builtin(workgroup_id) workgroupId : vec3) { + var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x); + var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y); + let width = uniforms.outShape[0]; + let height = uniforms.outShape[1]; + if (x < width && y < height) { + tile[localId.y][localId.x] = A[y * width + x]; + } + workgroupBarrier(); + + x = i32(workgroupId.y) * TILE_DIM + i32(localId.x); + y = i32(workgroupId.x) * TILE_DIM + i32(localId.y); + if (x < height && y < width) { + setOutputAtIndex((y * height + x), tile[localId.x] + [localId.y]); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transpose_webgpu.js +var TransposeProgram2 = class { + constructor(aShape, newDim) { + this.variableNames = ["A"]; + this.workPerThread = 4; + this.workGroupSize = [64, 1, 1]; + this.size = true; + const outputShape = new Array(aShape.length); + for (let i2 = 0; i2 < outputShape.length; i2++) { + outputShape[i2] = aShape[newDim[i2]]; + } + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); + this.newDim = newDim; + this.shaderKey = `transpose_${newDim}`; + } + getUserCode() { + const dtype = getCoordsDataType2(this.outputShape.length); + const switched = getSwitchedCoords2(this.newDim); + const userCode = ` + ${getMainHeaderString("index")} { + for(var i = 0; i < ${this.workPerThread}; i = i + 1) { + let flatIndex = index * ${this.workPerThread} + i; + if(flatIndex < uniforms.size) { + let resRC = getCoordsFromIndex(flatIndex); + setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D( + ${dtype}(${switched}), uniforms.aShape)]); + } + } + } + `; + return userCode; + } +}; +function getSwitchedCoords2(newDim) { + const rank = newDim.length; + if (rank > 6) { + throw Error(`Transpose for rank ${rank} is not yet supported`); + } + const switchedCoords = new Array(rank); + for (let i2 = 0; i2 < newDim.length; i2++) { + switchedCoords[newDim[i2]] = `resRC.${getCoordsXYZ(i2)}`; + } + return switchedCoords.join(); +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Transpose.js +function transpose5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { perm } = attrs; + const webgpuBackend = backend2; + const xRank = x.shape.length; + const newShape = new Array(xRank); + for (let i2 = 0; i2 < newShape.length; i2++) { + newShape[i2] = x.shape[perm[i2]]; + } + if (backend2.shouldExecuteOnCPU([x])) { + const xData = webgpuBackend.tensorMap.get(x.dataId); + const values = xData.values; + const outValues = transposeImplCPU2(values, x.shape, x.dtype, perm, newShape); + return backend2.makeTensorInfo(newShape, x.dtype, outValues); + } + if (x.shape.length === 2 && util_exports.arraysEqual(perm, [1, 0])) { + const program2 = new TransposeSharedProgram(x.shape, perm); + return webgpuBackend.runWebGPUProgram(program2, [x], x.dtype); + } + const program = new TransposeProgram2(x.shape, perm); + return webgpuBackend.runWebGPUProgram(program, [x], x.dtype); +} +var transposeConfig4 = { + kernelName: Transpose, + backendName: "webgpu", + kernelFunc: transpose5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ArgMax.js +function argMax4(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { axis } = attrs; + let axes = util_exports.parseAxisParam(axis, x.shape); + const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length); + let $x = x; + const intermediateTensorInfos = []; + if (permutedAxes != null) { + $x = transpose5({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } }); + intermediateTensorInfos.push($x); + axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length); + } + backend_util_exports.assertAxesAreInnerMostDims("argMax", [axes[0]], $x.shape.length); + const program = new ArgMinMaxProgram2($x.shape, axes[0], "max"); + const uniformData = [{ type: "float32", data: [Number.NEGATIVE_INFINITY] }]; + const out = backend2.runWebGPUProgram(program, [$x], "int32", uniformData); + intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId)); + return out; +} +var argMaxConfig4 = { + kernelName: ArgMax, + backendName: "webgpu", + kernelFunc: argMax4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ArgMin.js +function argMin4(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { axis } = attrs; + let axes = util_exports.parseAxisParam(axis, x.shape); + const permutedAxes = backend_util_exports.getAxesPermutation(axes, x.shape.length); + let $x = x; + const intermediateTensorInfos = []; + if (permutedAxes != null) { + $x = transpose5({ inputs: { x }, backend: backend2, attrs: { perm: permutedAxes } }); + intermediateTensorInfos.push($x); + axes = backend_util_exports.getInnerMostAxes(axes.length, $x.shape.length); + } + backend_util_exports.assertAxesAreInnerMostDims("argMin", [axes[0]], $x.shape.length); + const program = new ArgMinMaxProgram2($x.shape, axes[0], "min"); + const uniformData = [{ type: "float32", data: [Number.POSITIVE_INFINITY] }]; + const out = backend2.runWebGPUProgram(program, [$x], "int32", uniformData); + intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId)); + return out; +} +var argMinConfig3 = { + kernelName: ArgMin, + backendName: "webgpu", + kernelFunc: argMin4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Atan2.js +var atan24 = binaryKernelFunc3({ opType: BinaryOpType.ATAN2 }); +var atan2Config3 = { + kernelName: Atan2, + backendName: "webgpu", + kernelFunc: atan24 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pool2d_webgpu.js +var Pool2DProgram2 = class { + constructor(convInfo, poolType) { + this.variableNames = ["x"]; + this.uniforms = `stride : vec2, pad : vec2, dilation : vec2, convDims : vec2, filterDims : vec2,`; + this.workGroupSize = [128, 1, 1]; + this.size = true; + this.outputShape = convInfo.outShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = `pool2D_${poolType}`; + this.poolType = poolType; + } + getUserCode() { + let updateSnippet = `resultValue = max(value, resultValue);`; + if (this.poolType === "avg") { + updateSnippet = `resultValue = resultValue + value; count = count + 1.0;`; + } + let returnValue = `resultValue`; + if (this.poolType === "avg") { + returnValue = `resultValue / count`; + } + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + let batch = coords[0]; + let xRCCorner = vec2(coords.yz) * uniforms.stride - uniforms.pad; + let xRCorner = xRCCorner.x; + let xCCorner = xRCCorner.y; + + var resultValue = ${this.poolType === "avg" ? "0.0" : "-1.0 / pow(10.0, -20.0)"}; + var count = 0.0; + + for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) { + let xR = xRCorner + wR; + + if (xR < 0 || xR >= uniforms.convDims.x) { + continue; + } + + for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) { + let xC = xCCorner + wC; + if (xC < 0 || xC >= uniforms.convDims.y) { + continue; + } + + let value = getX(batch, xR, xC, coords[3]); + ${updateSnippet} + } + } + + setOutputAtIndex(index, ${returnValue}); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pool_filtersizeone_webgpu.js +var PoolWithFilterSizeEqualsOneProgram = class { + constructor(convInfo) { + this.variableNames = ["x"]; + this.uniforms = `stride : vec2,`; + this.workGroupSize = [256, 1, 1]; + this.size = true; + this.outputShape = convInfo.outShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = "poolWithFilterSizeEqualsOne"; + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + let batch = coords[0]; + let d = coords[3]; + + let xRCCorner = coords.yz * uniforms.stride; + let xRCorner = xRCCorner.x; + let xCCorner = xRCCorner.y; + + let value = getX(batch, xRCorner, xCCorner, d); + setOutputAtIndex(index, value); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/reduce_webgpu.js +var ReduceProgram2 = class { + constructor(reduceInfo, reduceType) { + this.workGroupSize = [64, 1, 1]; + this.variableNames = ["x"]; + this.uniforms = "reduceSize : i32,"; + this.size = true; + this.inputShape = [reduceInfo.batchSize, reduceInfo.inSize]; + const [outputShape] = backend_util_exports.computeOutAndReduceShapes(this.inputShape, [1]); + this.outputShape = outputShape.length === 0 ? [1] : outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, [1, 1, 1]); + this.reduceType = reduceType; + this.shaderKey = `reduce_${reduceType}`; + } + getUserCode() { + let reduceOp = ``; + let initValue = "0.0"; + if (this.reduceType === "min" || this.reduceType === "max") { + reduceOp = ` + if (isnan(candidate)) { + bestValue = uniforms.NAN; + } else if (!isnan(bestValue) && candidate ${this.reduceType === "min" ? "<" : ">"} bestValue) + { bestValue = candidate; }`; + initValue = "f32(x[offset])"; + } else if (this.reduceType === "sum" || this.reduceType === "mean") { + reduceOp = " bestValue = bestValue + candidate; "; + } else if (this.reduceType === "prod") { + reduceOp = " bestValue = bestValue * candidate; "; + initValue = "1.0"; + } + const outputSnippet = this.reduceType === "mean" ? `setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));` : `setOutputAtIndex(outputIndex, bestValue);`; + const sharedMemorySnippet = ` + var xBestValues : array; + `; + const userCode = ` + fn DIV_CEIL(a : u32, b : u32) -> u32 { + return ((a - 1u) / b + 1u); + } + + ${sharedMemorySnippet} + fn getOffset(outputIndex : i32) -> i32 { + let outputCoords = getCoordsFromIndex(outputIndex); + let offset = ${this.outputShape.length === 1 ? "outputCoords" : "outputCoords[0]"} * uniforms.reduceSize; + return offset; + } + ${getMainHeaderString("index")} { + let outputIndex = index / i32(workGroupSizeX); + let offset = getOffset(outputIndex); + var bestValue = ${initValue}; + let Length = uniforms.reduceSize; + let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX); + for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size; + k = k + i32(workGroupSizeX)) { + let candidate = f32(x[offset + k]); + ${reduceOp} + } + xBestValues[localId.x] = bestValue; + workgroupBarrier(); + + var reduceSize = min(u32(Length), workGroupSizeX); + for (var currentSize = reduceSize / 2u; reduceSize > 1u; + currentSize = reduceSize / 2u) { + let interval = DIV_CEIL(reduceSize, 2u); + if (localId.x < currentSize) { + let candidate = xBestValues[localId.x + interval]; + ${reduceOp} + xBestValues[localId.x] = bestValue; + } + reduceSize = interval; + workgroupBarrier(); + } + + if (localId.x == 0u && outputIndex < uniforms.size) { + ${outputSnippet} + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/reduce.js +function reduce2(x, axis, keepDims, reduceType, backend2) { + const xRank = x.shape.length; + const toDispose = []; + const origAxes = util_exports.parseAxisParam(axis, x.shape); + let axes = origAxes; + const permutedAxes = backend_util_exports.getAxesPermutation(axes, xRank); + let input2 = x; + if (permutedAxes != null) { + input2 = transpose5({ inputs: { x }, attrs: { perm: permutedAxes }, backend: backend2 }); + axes = backend_util_exports.getInnerMostAxes(axes.length, xRank); + toDispose.push(input2); + } + backend_util_exports.assertAxesAreInnerMostDims(reduceType, axes, xRank); + const [reduceOutShape, reduceShape] = backend_util_exports.computeOutAndReduceShapes(input2.shape, axes); + let resOutShape = reduceOutShape; + if (keepDims) { + resOutShape = backend_util_exports.expandShapeToKeepDim(reduceOutShape, origAxes); + } + let res; + if ((reduceType === "max" || reduceType === "prod") && backend2.shouldExecuteOnCPU([input2])) { + const xVals = backend2.tensorMap.get(input2.dataId).values; + switch (reduceType) { + case "max": + const outValues = maxImplCPU2(xVals, util_exports.sizeFromShape(reduceShape), resOutShape, x.dtype); + res = backend2.makeTensorInfo(resOutShape, x.dtype, outValues); + break; + case "prod": + const { outVals, outShape, outDtype } = prodImplCPU2(input2.shape, input2.dtype, xVals, axes); + res = backend2.makeTensorInfo(outShape, outDtype, outVals); + break; + default: + throw new Error(`${reduceType} CPU implementation is not yet supported.`); + } + } else { + const inSize = util_exports.sizeFromShape(reduceShape); + const xSize = util_exports.sizeFromShape(input2.shape); + const batchSize = xSize / inSize; + const reduceInfo = { windowSize: inSize, inSize, batchSize, outSize: 1 }; + const dtype = reduceType === "mean" ? "float32" : sumOutType(x.dtype); + const uniformData = [ + { type: "int32", data: [inSize] } + ]; + const program = new ReduceProgram2(reduceInfo, reduceType); + const reduced = backend2.runWebGPUProgram(program, [input2], dtype, uniformData); + toDispose.push(reduced); + res = reshape6({ inputs: { x: reduced }, attrs: { shape: resOutShape }, backend: backend2 }); + } + toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); + return res; +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Max.js +function max6(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { reductionIndices, keepDims } = attrs; + return reduce2(x, reductionIndices, keepDims, "max", backend2); +} +var maxConfig4 = { + kernelName: Max, + backendName: "webgpu", + kernelFunc: max6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Mean.js +function mean4(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { keepDims, axis } = attrs; + return reduce2(x, axis, keepDims, "mean", backend2); +} +var meanConfig4 = { + kernelName: Mean, + backendName: "webgpu", + kernelFunc: mean4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pool_impl.js +function poolImpl(x, convInfo, poolType, backend2) { + if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 && util_exports.arraysEqual(convInfo.inShape, convInfo.outShape)) { + return identity5({ inputs: { x }, backend: backend2 }); + } + if (convInfo.filterWidth === convInfo.inWidth && convInfo.filterHeight === convInfo.inHeight && convInfo.batchSize === 1 && convInfo.padInfo.type === "VALID") { + const length = x.shape.length; + const reshapeX = reshape6({ + inputs: { x }, + backend: backend2, + attrs: { + shape: [ + x.shape[length - 3] * x.shape[length - 2], + x.shape[length - 1] + ] + } + }); + let reduceX; + if (poolType === "avg") { + reduceX = mean4({ inputs: { x: reshapeX }, backend: backend2, attrs: { axis: 0, keepDims: false } }); + } else { + util_exports.assert(poolType === "max", () => `Invalid pool type ${poolType}`); + reduceX = max6({ + inputs: { x: reshapeX }, + backend: backend2, + attrs: { reductionIndices: 0, keepDims: false } + }); + } + const result = reshape6({ inputs: { x: reduceX }, backend: backend2, attrs: { shape: convInfo.outShape } }); + backend2.disposeData(reshapeX.dataId); + backend2.disposeData(reduceX.dataId); + return result; + } + let program; + const dimensions = [{ type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }]; + if (convInfo.filterHeight === 1 && convInfo.filterWidth === 1) { + program = new PoolWithFilterSizeEqualsOneProgram(convInfo); + } else { + if (poolType === "avg") { + program = new Pool2DProgram2(convInfo, "avg"); + } else { + util_exports.assert(poolType === "max", () => `Invalid pool type ${poolType}`); + program = new Pool2DProgram2(convInfo, "max"); + } + dimensions.push({ type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, { + type: "int32", + data: [convInfo.dilationHeight, convInfo.dilationWidth] + }, { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] }, { + type: "int32", + data: [convInfo.effectiveFilterHeight, convInfo.effectiveFilterWidth] + }); + } + return backend2.runWebGPUProgram(program, [x], x.dtype, dimensions); +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/AvgPool.js +function avgPool5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs; + const dilations = 1; + const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode); + return poolImpl(x, convInfo, "avg", backend2); +} +var avgPoolConfig4 = { + kernelName: AvgPool, + backendName: "webgpu", + kernelFunc: avgPool5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchMatMul.js +function batchMatMul4(args) { + const { inputs, backend: backend2, attrs } = args; + const { a, b } = inputs; + const { transposeA, transposeB } = attrs; + return batchMatMulImpl2({ a, b, transposeA, transposeB, backend: backend2 }); +} +var batchMatMulConfig4 = { + kernelName: BatchMatMul, + backendName: "webgpu", + kernelFunc: batchMatMul4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/slice_webgpu.js +var SliceProgram2 = class { + constructor(start, destSize) { + this.variableNames = ["source"]; + this.workPerThread = 1; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = destSize; + this.rank = destSize.length; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); + this.start = start; + this.uniforms = `start : ${getCoordsDataType2(start.length)}, `; + this.shaderKey = "slice"; + } + getUserCode() { + const dtype = getCoordsDataType2(this.rank); + const sourceCoords = getCoords3(this.rank); + let coordSum; + if (this.start.length === 1) { + coordSum = this.outputShape.map((_, i2) => { + return `sourceLoc = uniforms.start + coords;`; + }); + } else { + coordSum = this.outputShape.map((_, i2) => { + return `sourceLoc.${coords2[i2]} = uniforms.start.${getCoordsXYZ(i2)} + coords.${coords2[i2]};`; + }); + } + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + var sourceLoc : ${dtype}; + let coords = getCoordsFromIndex(index); + ${coordSum.join("\n")} + setOutputAtIndex(index, getSource(${sourceCoords})); + } + } + `; + return userCode; + } +}; +var coords2 = ["x", "y", "z", "w", "u", "v"]; +function getCoords3(rank) { + if (rank === 1) { + return "sourceLoc"; + } else if (rank <= 6) { + return coords2.slice(0, rank).map((coord) => `sourceLoc.${coord}`).join(","); + } else { + throw Error(`Slicing for rank ${rank} is not yet supported`); + } +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Slice.js +function slice5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { begin, size } = attrs; + const [$begin, $size] = slice_util_exports.parseSliceParams(x, begin, size); + slice_util_exports.assertParamsValid(x, $begin, $size); + if (backend2.shouldExecuteOnCPU([x]) || x.dtype === "string") { + const xBufferInfo = backend2.tensorMap.get(x.dataId); + const outValues = sliceImplCPU2(xBufferInfo.values, $begin, $size, x.shape, x.dtype); + return backend2.makeTensorInfo($size, x.dtype, outValues); + } + if (util_exports.sizeFromShape($size) === 0) { + return backend2.makeTensorInfo($size, x.dtype, []); + } + const program = new SliceProgram2($begin, $size); + const uniformData = [{ type: "int32", data: $begin }]; + return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); +} +var sliceConfig4 = { + kernelName: Slice, + backendName: "webgpu", + kernelFunc: slice5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/BatchToSpaceND.js +var batchToSpaceND5 = (args) => { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { blockShape, crops } = attrs; + util_exports.assert(x.shape.length <= 4, () => "batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet"); + const prod6 = blockShape.reduce((a, b) => a * b); + const reshaped = backend_util_exports.getReshaped(x.shape, blockShape, prod6); + const permuted = backend_util_exports.getPermuted(reshaped.length, blockShape.length); + const reshapedPermuted = backend_util_exports.getReshapedPermuted(x.shape, blockShape, prod6); + const sliceBeginCoords = backend_util_exports.getSliceBeginCoords(crops, blockShape.length); + const sliceSize = backend_util_exports.getSliceSize(reshapedPermuted, crops, blockShape.length); + const toDispose = []; + const reshapedIntermediate = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: reshaped } }); + const transposedIntermediate = transpose5({ inputs: { x: reshapedIntermediate }, backend: backend2, attrs: { perm: permuted } }); + const reshapedIntermediate2 = reshape6({ + inputs: { x: transposedIntermediate }, + backend: backend2, + attrs: { shape: reshapedPermuted } + }); + const sliced = slice5({ + inputs: { x: reshapedIntermediate2 }, + backend: backend2, + attrs: { begin: sliceBeginCoords, size: sliceSize } + }); + toDispose.push(reshapedIntermediate); + toDispose.push(transposedIntermediate); + toDispose.push(reshapedIntermediate2); + toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); + return sliced; +}; +var batchToSpaceNDConfig4 = { + kernelName: BatchToSpaceND, + backendName: "webgpu", + kernelFunc: batchToSpaceND5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NotEqual.js +var notEqual4 = binaryKernelFunc3({ + opType: BinaryOpType.NOT_EQUAL, + dtype: "bool", + cpuKernelImpl: notEqualImplCPU2 +}); +var notEqualConfig4 = { + kernelName: NotEqual, + backendName: "webgpu", + kernelFunc: notEqual4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Real.js +function real4(args) { + const { inputs, backend: backend2 } = args; + const { input: input2 } = inputs; + const inputData = backend2.tensorMap.get(input2.dataId); + return identity5({ inputs: { x: inputData.complexTensorInfos.real }, backend: backend2 }); +} +var realConfig3 = { + kernelName: Real, + backendName: "webgpu", + kernelFunc: real4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernel_utils/int.js +function int2(input2, backend2) { + const program = new UnaryOpProgram2(input2.shape, UnaryOpType.TO_INT); + const output = backend2.runWebGPUProgram(program, [input2], "int32"); + return { dataId: output.dataId, shape: output.shape, dtype: output.dtype }; +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cast.js +function cast6(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { dtype } = attrs; + if (dtype === "complex64") { + if (x.dtype === "complex64") { + return identity5({ inputs: { x }, backend: backend2 }); + } + const zerosTensor = zeros(x.shape); + const floatX = cast6({ inputs: { x }, backend: backend2, attrs: { dtype: "float32" } }); + const result = complex4({ inputs: { real: floatX, imag: zerosTensor }, backend: backend2 }); + zerosTensor.dispose(); + backend2.disposeData(floatX.dataId); + return result; + } + if (x.dtype === "complex64") { + const realPart = real4({ inputs: { input: x }, backend: backend2 }); + const result = cast6({ inputs: { x: realPart }, backend: backend2, attrs: { dtype } }); + backend2.disposeData(realPart.dataId); + return result; + } + if (!util_exports.hasEncodingLoss(x.dtype, dtype)) { + const result = identity5({ inputs: { x }, backend: backend2 }); + return { dataId: result.dataId, shape: result.shape, dtype }; + } + if (backend2.shouldExecuteOnCPU([x])) { + const values = backend2.tensorMap.get(x.dataId).values; + const [resultShape, resultType, resultData] = castImplCPU2(values, x.shape, x.dtype, dtype); + return backend2.makeTensorInfo(resultShape, resultType, resultData); + } + if (dtype === "int32") { + return int2(x, backend2); + } + if (dtype === "bool") { + const zerosTensorInfo = backend2.makeTensorInfo([], "bool", util_exports.getTypedArrayFromDType("bool", 1)); + const binaryInputs = { a: x, b: zerosTensorInfo }; + const result = notEqual4({ inputs: binaryInputs, backend: backend2 }); + backend2.disposeData(zerosTensorInfo.dataId); + return result; + } + throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`); +} +var castConfig4 = { + kernelName: Cast, + backendName: "webgpu", + kernelFunc: cast6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Ceil.js +var ceil4 = unaryKernelFunc3({ opType: UnaryOpType.CEIL, cpuKernelImpl: ceilImplCPU2 }); +var ceilConfig4 = { + kernelName: Ceil, + backendName: "webgpu", + kernelFunc: ceil4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/clip_vec4_webgpu.js +var ClipVec4Program = class { + constructor(outputShape) { + this.variableNames = ["A"]; + this.uniforms = "minVal : f32, maxVal : f32,"; + this.workPerThread = 4; + this.workGroupSize = [64, 1, 1]; + this.isVec4 = true; + this.size = true; + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); + this.shaderKey = "clipVec4"; + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if(index < uniforms.size) { + let value = getAByOutputIndex(index); + var clampedValue : vec4; + for (var i = 0; i < 4; i = i + 1) { + if (isnan(value[i])) { + clampedValue[i] = value[i]; + } else { + clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal); + } + } + + setOutputAtIndex(index, clampedValue); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/clip_webgpu.js +var ClipProgram2 = class { + constructor(outputShape) { + this.variableNames = ["A"]; + this.uniforms = "minVal : f32, maxVal : f32,"; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = "clip"; + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if(index < uniforms.size) { + let value = getAByOutputIndex(index); + if (isnan(value)) { + setOutputAtIndex(index, value); + return; + } + setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal)); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ClipByValue.js +function clipByValue4(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { clipValueMin, clipValueMax } = attrs; + let program; + const uniformData = [ + { type: "float32", data: [clipValueMin] }, + { type: "float32", data: [clipValueMax] } + ]; + if (util_exports.sizeFromShape(x.shape) % 4 === 0) { + program = new ClipVec4Program(x.shape); + } else { + program = new ClipProgram2(x.shape); + } + return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); +} +var clipByValueConfig4 = { + kernelName: ClipByValue, + backendName: "webgpu", + kernelFunc: clipByValue4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/concat_webgpu.js +var ConcatProgram2 = class { + constructor(shapes) { + this.uniforms = ""; + this.workPerThread = 4; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = backend_util_exports.computeOutShape(shapes, 1); + this.variableNames = shapes.map((_, i2) => `T${i2}`); + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); + this.offsetLength = shapes.length - 1; + for (let i2 = 0; i2 < this.offsetLength; i2++) { + this.uniforms += `offset${i2} : i32,`; + } + this.shaderKey = "concat"; + } + getUserCode() { + const snippets = []; + if (this.offsetLength > 0) { + snippets.push(`if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }`); + for (let i2 = 1; i2 < this.offsetLength; i2++) { + snippets.push(`else if (yC < uniforms.offset${[i2]}){ setOutputAtCoords(coords.x, coords.y, getT${i2}(yR, yC - uniforms.offset${i2 - 1})); }`); + } + const lastIndex = this.offsetLength; + const lastShiftIndex = this.offsetLength - 1; + snippets.push(`else { setOutputAtCoords(coords.x, coords.y, getT${lastIndex}(yR, yC - uniforms.offset${lastShiftIndex})); }`); + } else { + snippets.push(`setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));`); + } + const userCode = ` + ${getMainHeaderString("index")} { + for(var i = 0; i < ${this.workPerThread}; i = i + 1) { + let flatIndex = index * ${this.workPerThread} + i; + if(flatIndex < uniforms.size) { + let coords = getCoordsFromIndex(flatIndex); + let yR = coords.x; + let yC = coords.y; + + ${snippets.join("\n ")} + } + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Imag.js +function imag4(args) { + const { inputs, backend: backend2 } = args; + const { input: input2 } = inputs; + const inputData = backend2.tensorMap.get(input2.dataId); + return identity5({ inputs: { x: inputData.complexTensorInfos.imag }, backend: backend2 }); +} +var imagConfig3 = { + kernelName: Imag, + backendName: "webgpu", + kernelFunc: imag4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Concat_impl.js +function concatImpl3(inputs, axis, backend2) { + const dtype = inputs[0].dtype; + if (dtype === "complex64") { + const reals = inputs.map((t2) => real4({ inputs: { input: t2 }, backend: backend2 })); + const imags = inputs.map((t2) => imag4({ inputs: { input: t2 }, backend: backend2 })); + const realConcated = concatImpl3(reals, axis, backend2); + const imagConcated = concatImpl3(imags, axis, backend2); + const result = complex4({ inputs: { real: realConcated, imag: imagConcated }, backend: backend2 }); + reals.forEach((r2) => backend2.disposeData(r2.dataId)); + imags.forEach((i2) => backend2.disposeData(i2.dataId)); + backend2.disposeData(realConcated.dataId); + backend2.disposeData(imagConcated.dataId); + return result; + } + let runOnCpu = backend2.shouldExecuteOnCPU(inputs); + if (dtype === "string") { + runOnCpu = true; + } + if (runOnCpu) { + const tensors2D2 = inputs.map((t2) => { + const innerSize = util_exports.sizeFromShape(t2.shape.slice(axis)); + const shape = [-1, innerSize]; + return reshape6({ inputs: { x: t2 }, backend: backend2, attrs: { shape } }); + }); + const inputsValShapes = tensors2D2.map((t2) => { + return { vals: backend2.readSync(t2.dataId), shape: t2.shape }; + }); + const outShape2 = backend_util_exports.computeOutShape(tensors2D2.map((t2) => t2.shape), 1); + const simplyConcat = tensors2D2[0].shape[0] === 1; + const outVals = concatImplCPU2(inputsValShapes, outShape2, dtype, simplyConcat); + const finalOutShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis); + const outInfo = backend2.makeTensorInfo(finalOutShape, dtype, outVals); + tensors2D2.forEach((t2) => backend2.disposeData(t2.dataId)); + return outInfo; + } + const maxInputNum = backend2.device.limits.maxStorageBuffersPerShaderStage - 1; + if (inputs.length > maxInputNum) { + const reducedInputs = []; + for (let i2 = 0; i2 < inputs.length; i2 += maxInputNum) { + const subArray = inputs.slice(i2, i2 + maxInputNum); + reducedInputs.push(concatImpl3(subArray, axis, backend2)); + } + const result = concatImpl3(reducedInputs, axis, backend2); + for (const i2 of reducedInputs) { + backend2.disposeData(i2.dataId); + } + return result; + } + const { tensors2D, outShape } = computeTensors2D2(inputs, axis, backend2); + const shapes = tensors2D.map((t2) => t2.shape); + const program = new ConcatProgram2(shapes); + const uniformData = []; + const offsets = new Array(shapes.length - 1); + if (offsets.length > 0) { + offsets[0] = shapes[0][1]; + uniformData.push({ type: "int32", data: [offsets[0]] }); + for (let i2 = 1; i2 < offsets.length; i2++) { + offsets[i2] = offsets[i2 - 1] + shapes[i2][1]; + uniformData.push({ type: "int32", data: [offsets[i2]] }); + } + } + const res = backend2.runWebGPUProgram(program, tensors2D, tensors2D[0].dtype, uniformData); + tensors2D.forEach((r2) => backend2.disposeData(r2.dataId)); + const reshapedResult = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: outShape } }); + backend2.disposeData(res.dataId); + return reshapedResult; +} +function computeTensors2D2(inputs, axis, backend2) { + const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), axis); + const tensors2D = inputs.map((t2) => reshape6({ + inputs: { x: t2 }, + backend: backend2, + attrs: { + shape: [ + util_exports.sizeFromShape(t2.shape.slice(0, axis)), + util_exports.sizeFromShape(t2.shape.slice(axis)) + ] + } + })); + return { tensors2D, outShape }; +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Concat.js +function concat5(args) { + const { inputs, backend: backend2, attrs } = args; + const { axis } = attrs; + const $axis = util_exports.parseAxisParam(axis, inputs[0].shape)[0]; + const outShape = backend_util_exports.computeOutShape(inputs.map((t2) => t2.shape), $axis); + if (util_exports.sizeFromShape(outShape) === 0) { + return backend2.makeTensorInfo(outShape, inputs[0].dtype, []); + } + const $inputs = inputs.filter((t2) => util_exports.sizeFromShape(t2.shape) > 0); + if ($inputs.length === 1) { + return identity5({ inputs: { x: $inputs[0] }, backend: backend2 }); + } + const shapes = $inputs.map((t2) => t2.shape); + backend_util_exports.assertParamsConsistent(shapes, $axis); + return concatImpl3($inputs, $axis, backend2); +} +var concatConfig4 = { + kernelName: Concat, + backendName: "webgpu", + kernelFunc: concat5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv2d_mm_webgpu.js +function conv2dCommonSnippet(isChannelsLast, fitAOuter, fitBOuter, fitInner, addBias = false, activation2 = null, hasPreluActivationWeights = false, innerElementSizeX = 4, innerElementSizeW = 4, innerElementSize = 4) { + const getXSnippet = (innerElementSize2) => { + switch (innerElementSize2) { + case 1: + return "resData = x[xIndex];"; + case 3: + return "resData = vec3(x[xIndex], x[xIndex + 1], x[xIndex + 2]);"; + case 4: + return "resData = x[xIndex / 4];"; + default: + throw new Error(`innerElementSize ${innerElementSize2} is not supported.`); + } + }; + const getWSnippet = (innerElementSize2) => { + switch (innerElementSize2) { + case 1: + return "return W[row * uniforms.wShape[3] + colIn];"; + case 4: + return "return W[row * uniforms.wShape[3] / 4 + colIn];"; + default: + throw new Error(`innerElementSize ${innerElementSize2} is not supported.`); + } + }; + const coordASnippet = isChannelsLast ? ` + let coord = vec4(batch, xRow, xCol, xCh); + ` : ` + let coord = vec4(batch, xCh, xRow, xCol); + `; + const coordResSnippet = isChannelsLast ? ` + let coords = vec4( + batch, + row / outWidth, + row % outWidth, + col); + ` : ` + let coords = vec4( + batch, + row, + col / outWidth, + col % outWidth); + `; + const xHight = isChannelsLast ? "uniforms.xShape[1]" : "uniforms.xShape[2]"; + const xWidth = isChannelsLast ? "uniforms.xShape[2]" : "uniforms.xShape[3]"; + const row = isChannelsLast ? "row" : "col"; + const col = isChannelsLast ? "col" : "row"; + const readXSnippet = ` + let inChannels = uniforms.wShape[2]; + let outWidth = ${isChannelsLast ? "uniforms.outShape[2]" : "uniforms.outShape[3]"}; + let outRow = ${row} / outWidth; + let outCol = ${row} % outWidth; + + let WRow = ${col} / (uniforms.filterDims[1] * inChannels); + let WCol = ${col} / inChannels % uniforms.filterDims[1]; + let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0]; + let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1]; + let xCh = ${col} % inChannels; + var resData = ${typeSnippet(innerElementSizeX)}(0.0); + // The bounds checking is always needed since we use it to pad zero for + // the 'same' padding type. + if (xRow >= 0 && xRow < ${xHight} && xCol >= 0 && xCol < ${xWidth}) { + ${coordASnippet} + let xIndex = getIndexFromCoords4D(coord, uniforms.xShape); + ${getXSnippet(innerElementSizeX)} + } + return resData;`; + const sampleX = isChannelsLast ? fitAOuter && fitInner ? ` + let col = colIn * ${innerElementSizeX}; + ${readXSnippet}` : ` + let col = colIn * ${innerElementSizeX}; + if (row < uniforms.dimAOuter && col < uniforms.dimInner) { + ${readXSnippet} + } + return ${typeSnippet(innerElementSizeX)}(0.0);` : fitInner && fitBOuter ? ` + let col = colIn * ${innerElementSizeX}; + ${readXSnippet}` : ` + let col = colIn * ${innerElementSizeX}; + if (row < uniforms.dimInner && col < uniforms.dimBOuter) { + ${readXSnippet} + } + return ${typeSnippet(innerElementSizeX)}(0.0);`; + const sampleW = `${getWSnippet(innerElementSizeW)}`; + const resType = typeSnippet(innerElementSize); + const aType = isChannelsLast ? typeSnippet(innerElementSizeX) : typeSnippet(innerElementSizeW); + const bType = isChannelsLast ? typeSnippet(innerElementSizeW) : typeSnippet(innerElementSizeX); + const userCode = ` + ${activationFnSnippet(activation2, hasPreluActivationWeights, innerElementSize === 4, 4)} + fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${aType} { + ${isChannelsLast ? sampleX : sampleW} + } + + fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${bType} { + ${isChannelsLast ? sampleW : sampleX} + } + + fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${resType}) { + let col = colIn * ${innerElementSize}; + if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) + { + var value = valueIn; + let outWidth = ${isChannelsLast ? "uniforms.outShape[2]" : "uniforms.outShape[3]"}; + ${coordResSnippet} + ${biasActivationSnippet(addBias, activation2)} + setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); + } + }`; + return userCode; +} +var Conv2DMMProgram = class { + constructor(convInfo, dimAOuter, dimBOuter, dimInner, addBias = false, activation2 = null, hasPreluActivationWeights = false) { + this.variableNames = ["x", "W"]; + this.uniforms = `filterDims : vec2, pad : vec2, stride : vec2, dilation : vec2, dimAOuter : i32, dimBOuter : i32, dimInner : i32,`; + this.outputShape = convInfo.outShape; + this.isChannelsLast = convInfo.dataFormat === "channelsLast"; + this.isVec4 = ((convInfo.inChannels % 4 === 0 || convInfo.inChannels % 3 === 0) && this.isChannelsLast || convInfo.outWidth % 4 === 0 && !this.isChannelsLast) && convInfo.outChannels % 4 === 0; + this.dispatchLayout = this.isChannelsLast ? { x: [3], y: [1, 2], z: [0] } : { x: [2, 3], y: [1], z: [0] }; + this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); + this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); + if (this.isVec4) { + if (this.isChannelsLast && convInfo.inChannels % 4 !== 0) { + this.innerElementSize = 3; + this.variableTypes = ["f32", "vec4"]; + } else { + this.innerElementSize = 4; + this.variableTypes = ["vec4", "vec4"]; + } + if (addBias) { + this.variableNames.push("bias"); + this.variableTypes.push("vec4"); + } + if (hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + this.variableTypes.push("vec4"); + } + } else { + this.innerElementSize = this.elementsPerThread[0]; + if (addBias) { + this.variableNames.push("bias"); + } + if (hasPreluActivationWeights) { + this.variableNames.push("preluActivationWeights"); + } + } + this.addBias = addBias; + this.activation = activation2; + this.hasPreluActivationWeights = hasPreluActivationWeights; + this.tileAOuter = this.workGroupSize[1] * this.elementsPerThread[1]; + this.tileBOuter = this.workGroupSize[0] * this.elementsPerThread[0]; + this.tileInner = Math.max(this.workGroupSize[0] * this.innerElementSize, this.workGroupSize[1]); + this.fitAOuter = dimAOuter % this.tileAOuter === 0; + this.fitBOuter = dimBOuter % this.tileBOuter === 0; + this.fitInner = dimInner % this.tileInner === 0; + this.shaderKey = `conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`; + } + getUserCode() { + const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize, !this.isChannelsLast, this.tileInner); + const elementsSize = this.isVec4 ? [this.innerElementSize, 4, 4] : [1, 1, 1]; + const userCode = ` + ${conv2dCommonSnippet(this.isChannelsLast, this.fitAOuter, this.fitBOuter, this.fitInner, this.addBias, this.activation, this.hasPreluActivationWeights, elementsSize[0], elementsSize[1], elementsSize[2])} + ${matMulSource} + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2D_impl.js +function getShapeForBatchMatMul2(shape, isChannelsLast) { + const length = shape.length; + if (length >= 3) { + return isChannelsLast ? [ + ...shape.slice(0, -3), + shape[length - 3] * shape[length - 2], + shape[length - 1] + ] : [ + ...shape.slice(0, -3), + shape[length - 3], + shape[length - 2] * shape[length - 1] + ]; + } else if (!isChannelsLast && length === 1 && shape[0] > 1) { + return [shape[0], 1]; + } else { + return null; + } +} +function conv2dByMatMul2({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { + const isChannelsLast = convInfo.dataFormat === "channelsLast"; + const transposeA = isChannelsLast ? false : true; + const transposeB = false; + const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === "VALID"; + const intermediates = []; + let xReshaped; + let filterReshaped; + if (sameSize) { + const sharedDim = convInfo.inHeight * convInfo.inWidth * convInfo.inChannels; + xReshaped = reshape6({ + inputs: { x }, + backend: backend2, + attrs: { shape: [1, convInfo.batchSize, sharedDim] } + }); + filterReshaped = reshape6({ + inputs: { x: filter }, + backend: backend2, + attrs: { shape: [1, sharedDim, convInfo.outChannels] } + }); + } else { + xReshaped = reshape6({ + inputs: { x }, + backend: backend2, + attrs: { + shape: isChannelsLast ? [ + convInfo.batchSize, + convInfo.inHeight * convInfo.inWidth, + convInfo.inChannels + ] : [ + convInfo.batchSize, + convInfo.inChannels, + convInfo.inHeight * convInfo.inWidth + ] + } + }); + filterReshaped = reshape6({ + inputs: { x: filter }, + backend: backend2, + attrs: { shape: [1, convInfo.inChannels, convInfo.outChannels] } + }); + } + intermediates.push(xReshaped); + intermediates.push(filterReshaped); + if (preluActivationWeights != null) { + const targetShape = getShapeForBatchMatMul2(preluActivationWeights.shape, isChannelsLast); + if (targetShape != null) { + preluActivationWeights = reshape6({ + inputs: { x: preluActivationWeights }, + backend: backend2, + attrs: { shape: targetShape } + }); + intermediates.push(preluActivationWeights); + } + } + if (bias != null) { + const targetShape = getShapeForBatchMatMul2(bias.shape, isChannelsLast); + if (targetShape != null) { + bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: targetShape } }); + intermediates.push(bias); + } + } + const result = batchMatMulImpl2({ + a: isChannelsLast ? xReshaped : filterReshaped, + b: isChannelsLast ? filterReshaped : xReshaped, + transposeA, + transposeB, + backend: backend2, + bias, + activation: activation2, + preluActivationWeights, + leakyreluAlpha + }); + const out = reshape6({ inputs: { x: result }, backend: backend2, attrs: { shape: convInfo.outShape } }); + intermediates.push(result); + for (const i2 of intermediates) { + backend2.disposeData(i2.dataId); + } + return out; +} +function conv2DImpl({ x, filter, convInfo, backend: backend2, bias = null, preluActivationWeights = null, leakyreluAlpha = 0, activation: activation2 = null }) { + const hasBias = bias != null; + const hasPreluActivationWeights = preluActivationWeights != null; + const isChannelsLast = convInfo.dataFormat === "channelsLast"; + const sameSize = isChannelsLast && convInfo.filterHeight === convInfo.inHeight && convInfo.filterWidth === convInfo.inWidth && convInfo.padInfo.type === "VALID"; + if (sameSize || convInfo.filterHeight === 1 && convInfo.filterWidth === 1 && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && (convInfo.padInfo.type === "SAME" || convInfo.padInfo.type === "VALID")) { + return conv2dByMatMul2({ + x, + filter, + convInfo, + backend: backend2, + bias, + activation: activation2, + preluActivationWeights, + leakyreluAlpha + }); + } + const dimAOuter = isChannelsLast ? convInfo.outHeight * convInfo.outWidth : convInfo.outChannels; + const dimBOuter = isChannelsLast ? convInfo.outChannels : convInfo.outHeight * convInfo.outWidth; + const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.inChannels; + const padInfo = [convInfo.padInfo.top, convInfo.padInfo.left]; + const dimensions = [ + { type: "int32", data: [convInfo.filterHeight, convInfo.filterWidth] }, + { type: "int32", data: [...padInfo] }, + { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, + { type: "int32", data: [convInfo.dilationHeight, convInfo.dilationWidth] }, + { type: "int32", data: [dimAOuter] }, + { type: "int32", data: [dimBOuter] }, + { type: "int32", data: [dimInner] } + ]; + const program = new Conv2DMMProgram(convInfo, dimAOuter, dimBOuter, dimInner, hasBias, activation2, hasPreluActivationWeights); + const intermediates = []; + const inputVar = [x, filter]; + if (hasBias) { + if (!isChannelsLast && bias.shape.length === 1) { + bias = reshape6({ inputs: { x: bias }, backend: backend2, attrs: { shape: [bias.shape[0], 1, 1] } }); + intermediates.push(bias); + } + inputVar.push(bias); + } + if (hasPreluActivationWeights) { + if (!isChannelsLast && preluActivationWeights.shape.length === 1) { + preluActivationWeights = reshape6({ + inputs: { x: preluActivationWeights }, + backend: backend2, + attrs: { shape: [preluActivationWeights.shape[0], 1, 1] } + }); + intermediates.push(preluActivationWeights); + } + inputVar.push(preluActivationWeights); + } + if (activation2 === "leakyrelu") { + dimensions.push({ type: "float32", data: [leakyreluAlpha] }); + program.uniforms += " alpha : f32,"; + } + const out = backend2.runWebGPUProgram(program, inputVar, x.dtype, dimensions); + for (const i2 of intermediates) { + backend2.disposeData(i2.dataId); + } + return out; +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2D.js +function conv2d6(args) { + const { inputs, attrs, backend: backend2 } = args; + const { x, filter } = inputs; + const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs; + const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); + const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat); + return conv2DImpl({ x, filter, convInfo, backend: backend2 }); +} +var conv2DConfig4 = { + kernelName: Conv2D, + backendName: "webgpu", + kernelFunc: conv2d6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv_backprop_mm_webgpu.js +function conv2dTransposeCommonSnippet(innerElementSize = 4) { + const getWSnippet = (innerElementSize2) => { + switch (innerElementSize2) { + case 1: + return "return W[getIndexFromCoords4D(coord, uniforms.wShape)];"; + case 4: + return ` + let coord1 = vec4(coordX, coordY, col + 1, rowInner); + let coord2 = vec4(coordX, coordY, col + 2, rowInner); + let coord3 = vec4(coordX, coordY, col + 3, rowInner); + let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)]; + let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)]; + let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)]; + let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)]; + return vec4(v0, v1, v2, v3); + `; + default: + throw new Error(`innerElementSize ${innerElementSize2} is not supported.`); + } + }; + const readASnippet = ` + let outRow = row / uniforms.outShape[2]; + let outCol = row % uniforms.outShape[2]; + + let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]); + let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1]; + let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]); + let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]); + if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) { + return ${typeSnippet(innerElementSize)}(0.0); + } + if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) { + return ${typeSnippet(innerElementSize)}(0.0); + } + let coord = vec4( + batch, + i32(xR), + i32(xC), + col % uniforms.outBackprop[3]); + return x[getIndexFromCoords4D(coord, uniforms.xShape)/${innerElementSize}];`; + const sampleA = `if (row < uniforms.dimAOuter && col < uniforms.dimInner) { + ${readASnippet} + } + return ${typeSnippet(innerElementSize)}(0.0);`; + const userCode = ` + fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { + let col = colIn * ${innerElementSize}; + ${sampleA} + } + + fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { + let col = colIn * ${innerElementSize}; + let coordX = uniforms.filterDims.x - 1 - + row / (uniforms.filterDims[1] * uniforms.outBackprop[3]); + let coordY = uniforms.filterDims.y - 1 - + (row / uniforms.outBackprop[3]) % uniforms.filterDims[1]; + if (row < uniforms.dimInner && col < uniforms.dimBOuter && + coordX >= 0 && coordY >= 0) { + let rowInner = row % uniforms.outBackprop[3]; + let coord = vec4(coordX, coordY, col, rowInner); + ${getWSnippet(innerElementSize)} + } + return ${typeSnippet(innerElementSize)}(0.0); + } + + fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${typeSnippet(innerElementSize)}) { + let col = colIn * ${innerElementSize}; + if (row < uniforms.dimAOuter && (col + ${innerElementSize - 1}) < uniforms.dimBOuter) { + var value = valueInput; + let outCoord = vec4( + batch, + row / uniforms.outShape[2], + row % uniforms.outShape[2], + col); + result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${innerElementSize}] = value; + } + }`; + return userCode; +} +var Conv2DDerInputMMProgram = class { + constructor(convInfo) { + this.variableNames = ["x", "W"]; + this.uniforms = "filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4, dimAOuter : i32, dimBOuter : i32, dimInner : i32,"; + this.outputShape = convInfo.inShape; + util_exports.assert(convInfo.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"); + this.isVec4 = convInfo.inChannels % 4 === 0 && convInfo.outChannels % 4 === 0; + this.dispatchLayout = { x: [3], y: [1, 2], z: [0] }; + this.workGroupSize = computeWorkGroupSizeForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); + this.elementsPerThread = computeWorkPerThreadForConv2d(this.dispatchLayout, this.outputShape, this.isVec4); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, this.elementsPerThread); + if (this.isVec4) { + this.variableTypes = ["vec4", "f32"]; + } + this.shaderKey = `conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`; + } + getUserCode() { + const matMulSource = this.isVec4 ? makeMatMulPackedVec4Source(this.elementsPerThread, this.workGroupSize) : makeMatMulPackedSource(this.elementsPerThread, this.workGroupSize); + const userCode = ` + ${conv2dTransposeCommonSnippet(this.isVec4 ? 4 : 1)} + ${matMulSource} + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/conv_backprop_webgpu.js +var Conv2DDerInputProgram2 = class { + constructor(convInfo) { + this.variableNames = ["dy", "W"]; + this.uniforms = "filterDims : vec2, pads : vec2, stride : vec2, outBackprop : vec4,"; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = convInfo.inShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.isChannelsLast = convInfo.dataFormat === "channelsLast"; + this.shaderKey = `conv2DDerInput_${this.isChannelsLast}`; + } + getUserCode() { + const rowDim = this.isChannelsLast ? 1 : 2; + const colDim = this.isChannelsLast ? 2 : 3; + const channelDim = this.isChannelsLast ? 3 : 1; + return ` + ${getMainHeaderString("index")} { + if(index < uniforms.size) { + let coords = getCoordsFromIndex(index); + let batch = coords[0]; + let d1 = coords[${channelDim}]; + + let dyCorner = vec2(coords[${rowDim}]), coords[${colDim}]) - uniforms.pads; + let dyRCorner = dyCorner.x; + let dyCCorner = dyCorner.y; + + // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). + // ? = to be determined. : = across all values in that axis. + var dotProd = 0.0; + for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) { + let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x); + let wRPerm = uniforms.filterDims.x - 1 - wR; + if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 || + wRPerm < 0) { + continue; + } + let idyR = dyR; + + for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) { + let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y); + let wCPerm = uniforms.filterDims.y - 1 - wC; + if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) || + fract(dyC) > 0.0 || wCPerm < 0) { + continue; + } + let idyC = dyC; + + for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) { + if (${this.isChannelsLast}) { + let xValue = getDy(batch, idyR, idyC, d2); + let wValue = getW(wRPerm, wCPerm, d1, d2); + dotProd = dotProd + xValue * wValue; + } else { + let xValue = getDy(batch, d2, idyR, idyC); + let wValue = getW(wRPerm, wCPerm, d1, d2); + dotProd = dotProd + xValue * wValue; + } + + } + } + } + setOutputAtIndex(index, dotProd); + } + } + `; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Conv2DBackpropInput.js +function conv2DBackpropInput5(args) { + const { inputs, backend: backend2, attrs } = args; + const { dy, filter } = inputs; + const { inputShape, strides, pad: pad3, dataFormat, dimRoundingMode } = attrs; + const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); + const convInfo = backend_util_exports.computeConv2DInfo(inputShape, filter.shape, strides, 1, pad3, dimRoundingMode, false, $dataFormat); + const dimensions = [ + { type: "int32", data: [convInfo.filterHeight, convInfo.filterWidth] }, + { + type: "int32", + data: [ + convInfo.filterHeight - 1 - convInfo.padInfo.top, + convInfo.filterWidth - 1 - convInfo.padInfo.left + ] + }, + { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, + { + type: "int32", + data: [ + convInfo.batchSize, + convInfo.outHeight, + convInfo.outWidth, + convInfo.outChannels + ] + } + ]; + let program; + if (env().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE")) { + program = new Conv2DDerInputProgram2(convInfo); + } else { + program = new Conv2DDerInputMMProgram(convInfo); + const dimAOuter = convInfo.inShape[1] * convInfo.inShape[2]; + const dimBOuter = convInfo.inShape[3]; + const dimInner = convInfo.filterHeight * convInfo.filterWidth * convInfo.outChannels; + dimensions.push({ type: "uint32", data: [dimAOuter] }, { type: "uint32", data: [dimBOuter] }, { type: "uint32", data: [dimInner] }); + } + return backend2.runWebGPUProgram(program, [dy, filter], "float32", dimensions); +} +var conv2DBackpropInputConfig4 = { + kernelName: Conv2DBackpropInput, + backendName: "webgpu", + kernelFunc: conv2DBackpropInput5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cos.js +var cos4 = unaryKernelFunc3({ opType: UnaryOpType.COS }); +var cosConfig4 = { + kernelName: Cos, + backendName: "webgpu", + kernelFunc: cos4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cosh.js +var cosh4 = unaryKernelFunc3({ opType: UnaryOpType.COSH }); +var coshConfig4 = { + kernelName: Cosh, + backendName: "webgpu", + kernelFunc: cosh4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/crop_and_resize_webgpu.js +var CropAndResizeProgram2 = class { + constructor(channnel, boxShape, cropSize, method) { + this.variableNames = ["Image", "Boxes", "BoxInd"]; + this.uniforms = "extrapolationValue : f32,"; + this.workGroupSize = [64, 1, 1]; + this.size = true; + const [numBoxes] = boxShape; + this.outputShape = [numBoxes, cropSize[0], cropSize[1], channnel]; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.methodId = method === "bilinear" ? 1 : 0; + this.cropHeightBiggerThan1 = this.outputShape[1] > 1; + this.cropWidthBiggerThan1 = this.outputShape[2] > 1; + this.shaderKey = `cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`; + } + getUserCode() { + const [inputHeightFloat, inputWidthFloat] = [`f32(uniforms.imageShape[1] - 1)`, `f32(uniforms.imageShape[2] - 1)`]; + const [heightRatio, heightScale, inY] = this.cropHeightBiggerThan1 ? [ + `(${inputHeightFloat} / f32(uniforms.outShape[1] - 1))`, + "(y2-y1) * height_ratio", + `y1*${inputHeightFloat} + f32(y)*(height_scale)` + ] : [ + "0.0", + "0.0", + `0.5 * (y1+y2) * ${inputHeightFloat}` + ]; + const [widthRatio, widthScale, inX] = this.cropWidthBiggerThan1 ? [ + `(${inputWidthFloat} / f32(uniforms.outShape[2] - 1))`, + "(x2-x1) * width_ratio", + `x1*${inputWidthFloat} + f32(x)*(width_scale)` + ] : [ + "0.0", + "0.0", + `0.5 * (x1+x2) * ${inputWidthFloat}` + ]; + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + let height_ratio = f32(${heightRatio}); + let width_ratio = f32(${widthRatio}); + let b = coords[0]; + let y = coords[1]; + let x = coords[2]; + let d = coords[3]; + // get box vals + let y1 = getBoxes(b, 0); + let x1 = getBoxes(b, 1); + let y2 = getBoxes(b, 2); + let x2 = getBoxes(b, 3); + // get image in batch index + let bInd = i32(round(getBoxInd(b))); + if(bInd < 0 || bInd >= uniforms.outShape[0]) { + return; + } + let height_scale = ${heightScale}; + let width_scale = ${widthScale}; + let in_y = ${inY}; + if( in_y < 0.0 || in_y > ${inputHeightFloat} ) { + setOutputAtIndex(index, uniforms.extrapolationValue); + return; + } + let in_x = ${inX}; + if( in_x < 0.0 || in_x > ${inputWidthFloat} ) { + setOutputAtIndex(index, uniforms.extrapolationValue); + return; + } + let sourceFracIndexCR = vec2(in_x,in_y); + if(${this.methodId} == 1) { + // Compute the four integer indices. + let sourceFloorCR = vec2(sourceFracIndexCR); + let sourceCeilCR = vec2(ceil(sourceFracIndexCR)); + let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d); + let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d); + let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d); + let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d); + let fracCR = sourceFracIndexCR - vec2(sourceFloorCR); + let top = topLeft + (topRight - topLeft) * fracCR.x; + let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; + let newValue = top + (bottom - top) * fracCR.y; + setOutputAtIndex(index, newValue); + } else { + // Compute the coordinators of nearest neighbor point. + let sourceNearestCR = vec2(floor( + sourceFracIndexCR + vec2(0.5,0.5))); + let newValue = getImage( + bInd, sourceNearestCR.y, sourceNearestCR.x, d); + setOutputAtIndex(index, newValue); + } + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/CropAndResize.js +var cropAndResize5 = (args) => { + const { inputs, backend: backend2, attrs } = args; + const { image: image2, boxes, boxInd } = inputs; + const { cropSize, method, extrapolationValue } = attrs; + const program = new CropAndResizeProgram2(image2.shape[3], boxes.shape, cropSize, method); + const uniformData = [{ type: "float32", data: [extrapolationValue] }]; + return backend2.runWebGPUProgram(program, [image2, boxes, boxInd], "float32", uniformData); +}; +var cropAndResizeConfig4 = { + kernelName: CropAndResize, + backendName: "webgpu", + kernelFunc: cropAndResize5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/cum_webgpu.js +var CumOpType2; +(function(CumOpType3) { + CumOpType3["Prod"] = "*"; + CumOpType3["Sum"] = "+"; +})(CumOpType2 || (CumOpType2 = {})); +var CumProgram2 = class { + constructor(op2, shape, exclusive, reverse5) { + this.variableNames = ["x"]; + this.uniforms = "index : f32,"; + this.size = true; + const workGroupSizeX = 128; + this.workGroupSize = [workGroupSizeX, 1, 1]; + this.outputShape = shape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.exclusive = exclusive; + this.reverse = reverse5; + this.op = op2; + this.shaderKey = `cum_${this.op}_${this.exclusive}_${this.reverse}`; + } + getUserCode() { + const rank = this.outputShape.length; + const initVal = this.op === CumOpType2.Prod ? "1.0" : "0.0"; + const val = this.exclusive ? initVal : `getX(${getCoords4(rank, "coords", this.op)})`; + const length = this.outputShape[this.outputShape.length - 1]; + let condition = ""; + let idxString = ""; + if (this.exclusive) { + condition = this.reverse ? `end != ${length - 1}` : "end != 0"; + idxString = this.reverse ? "end + 1" : "end - 1"; + } else { + condition = this.reverse ? `end + pow2 < ${length}` : "end >= pow2"; + idxString = this.reverse ? "end + pow2" : "end - pow2"; + } + return ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + var coords = getCoordsFromIndex(index); + + let end = ${getFinalCoord2(rank, "coords", this.op)}; + var val = ${val}; + let pow2 = i32(pow(2.0, uniforms.index)); + if (${condition}) { + let idx = ${idxString}; + ${getFinalCoord2(rank, "coords", this.op)} = idx; + val ${this.op}= getX(${getCoords4(rank, "coords", this.op)}); + } + setOutputAtIndex(index, val); + } + } + `; + } +}; +function getCoords4(rank, name, op2) { + if (rank === 1) { + return `${name}`; + } else if (rank === 2) { + return `${name}.x, ${name}.y`; + } else if (rank === 3) { + return `${name}.x, ${name}.y, ${name}.z`; + } else if (rank === 4) { + return `${name}.x, ${name}.y, ${name}.z, ${name}.w`; + } else { + throw Error(`Cumulative ${op2} for rank ${rank} is not yet supported`); + } +} +function getFinalCoord2(rank, name, op2) { + if (rank === 1) { + return `${name}`; + } else if (rank === 2) { + return `${name}.y`; + } else if (rank === 3) { + return `${name}.z`; + } else if (rank === 4) { + return `${name}.w`; + } else { + throw Error(`Cumulative ${op2} for rank ${rank} is not yet supported`); + } +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cum_impl.js +function cumImpl2(op2, x, backend2, axis, exclusive, reverse5) { + const xRank = x.shape.length; + const permutation = backend_util_exports.getAxesPermutation([axis], xRank); + let permutedX = x; + if (permutation != null) { + permutedX = transpose5({ inputs: { x }, backend: backend2, attrs: { perm: permutation } }); + } + const permutedAxis = backend_util_exports.getInnerMostAxes(1, xRank)[0]; + if (permutedAxis !== xRank - 1) { + throw new Error(`WebGPU cumprod shader expects an inner-most axis=${x.shape.length - 1} but got axis=${axis}`); + } + const size = permutedX.shape[permutedAxis]; + let result = identity5({ inputs: { x: permutedX }, backend: backend2 }); + for (let i2 = 0; i2 <= Math.ceil(Math.log2(size)) - 1; i2++) { + const program = new CumProgram2(op2, permutedX.shape, false, reverse5); + const prevResult = result; + const uniformData = [{ type: "float32", data: [i2] }]; + result = backend2.runWebGPUProgram(program, [result], result.dtype, uniformData); + backend2.disposeData(prevResult.dataId); + } + if (exclusive) { + const program = new CumProgram2(op2, permutedX.shape, exclusive, reverse5); + const prevResult = result; + const uniformData = [{ type: "float32", data: [0] }]; + result = backend2.runWebGPUProgram(program, [result], result.dtype, uniformData); + backend2.disposeData(prevResult.dataId); + } + if (permutation != null) { + const reversePermutation = backend_util_exports.getUndoAxesPermutation(permutation); + const reverseTransposedResult = transpose5({ inputs: { x: result }, backend: backend2, attrs: { perm: reversePermutation } }); + backend2.disposeData(result.dataId); + backend2.disposeData(permutedX.dataId); + return reverseTransposedResult; + } + return result; +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cumprod.js +function cumprod5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { axis, exclusive, reverse: reverse5 } = attrs; + return cumImpl2(CumOpType2.Prod, x, backend2, axis, exclusive, reverse5); +} +var cumprodConfig4 = { + kernelName: Cumprod, + backendName: "webgpu", + kernelFunc: cumprod5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Cumsum.js +function cumsum5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { axis, exclusive, reverse: reverse5 } = attrs; + return cumImpl2(CumOpType2.Sum, x, backend2, axis, exclusive, reverse5); +} +var cumsumConfig4 = { + kernelName: Cumsum, + backendName: "webgpu", + kernelFunc: cumsum5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depth_to_space_webgpu.js +var DepthToSpaceProgram2 = class { + constructor(outputShape, dataFormat) { + this.variableNames = ["x"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.uniforms = "blockSize : i32,"; + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = `depthToSpace_${dataFormat}`; + this.dataFormat = dataFormat; + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + let b = coords[0]; + let h = ${this.getHeightCoordString()}; + let w = ${this.getWidthCoordString()}; + let d = ${this.getDepthCoordString()}; + + let in_h = h / uniforms.blockSize; + let offset_h = h % uniforms.blockSize; + let in_w = w / uniforms.blockSize; + let offset_w = w % uniforms.blockSize; + let offset_d = (offset_h * uniforms.blockSize + offset_w) * + ${this.getOutputDepthSize()}; + let in_d = d + offset_d; + + let rlt = ${this.getInputSamplingString()}; + setOutputAtIndex(index, rlt); + } + }`; + return userCode; + } + getHeightCoordString() { + if (this.dataFormat === "NHWC") { + return `coords[1]`; + } else { + return `coords[2]`; + } + } + getWidthCoordString() { + if (this.dataFormat === "NHWC") { + return `coords[2]`; + } else { + return `coords[3]`; + } + } + getDepthCoordString() { + if (this.dataFormat === "NHWC") { + return `coords[3]`; + } else { + return `coords[1]`; + } + } + getOutputDepthSize() { + if (this.dataFormat === "NHWC") { + return `uniforms.outShape[3]`; + } else { + return `uniforms.outShape[1]`; + } + } + getInputSamplingString() { + if (this.dataFormat === "NHWC") { + return `getX(b, in_h, in_w, in_d)`; + } else { + return `getX(b, in_d, in_h, in_w)`; + } + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/DepthToSpace.js +function depthToSpace5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { blockSize, dataFormat } = attrs; + const batchSize = x.shape[0]; + const inputHeight = dataFormat === "NHWC" ? x.shape[1] : x.shape[2]; + const inputWidth = dataFormat === "NHWC" ? x.shape[2] : x.shape[3]; + const inputDepth = dataFormat === "NHWC" ? x.shape[3] : x.shape[1]; + const outputHeight = inputHeight * blockSize; + const outputWidth = inputWidth * blockSize; + const outputDepth = inputDepth / (blockSize * blockSize); + const outputShape = dataFormat === "NHWC" ? [batchSize, outputHeight, outputWidth, outputDepth] : [batchSize, outputDepth, outputHeight, outputWidth]; + const uniformData = [ + { type: "int32", data: [blockSize] } + ]; + const program = new DepthToSpaceProgram2(outputShape, dataFormat); + return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); +} +var depthToSpaceConfig4 = { + kernelName: DepthToSpace, + backendName: "webgpu", + kernelFunc: depthToSpace5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_nchw_shared_webgpu.js +var DepthwiseConv2DNCHWSharedProgram = class { + constructor(outputShape, filterHeight, filterWidth, addBias = false, activation2 = null, hasPreluActivation = false) { + this.variableNames = ["x", "W"]; + this.uniforms = `pad : vec2, inDims : vec2,`; + this.workGroupSize = [16, 16, 1]; + this.outputShape = outputShape; + this.dispatchLayout = { x: [3], y: [2], z: [0, 1] }; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + if (addBias) { + this.variableNames.push("bias"); + } + if (hasPreluActivation) { + this.variableNames.push("preluActivationWeights"); + } + this.addBias = addBias; + this.activation = activation2; + this.hasPreluActivation = hasPreluActivation; + this.filterHeight = filterHeight; + this.filterWidth = filterWidth; + this.shaderKey = `depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`; + } + getUserCode() { + const filterSize = this.filterWidth * this.filterHeight; + const workGroupSize = this.workGroupSize[0] * this.workGroupSize[1] * this.workGroupSize[2]; + const tileAHeight = this.workGroupSize[1] + this.filterHeight - 1; + const tileAWidth = this.workGroupSize[0] + this.filterWidth - 1; + const userCode = ` + ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)} + + var mm_Asub : array, ${tileAHeight}>; + var mm_Bsub : array, ${this.filterHeight}>; + fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 { + var value = 0.0; + if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1]) + { + value = getX(batch, channel, row, col); + } + return value; + } + + ${getWorkGroupSizeString()} + fn _start(@builtin(local_invocation_id) LocalId : vec3, + @builtin(global_invocation_id) GlobalId : vec3, + @builtin(local_invocation_index) LocalIndex: u32, + @builtin(num_workgroups) NumWorkgroups: vec3) { + localId = LocalId; + globalId = GlobalId; + let localIndex = i32(LocalIndex); + numWorkgroups = NumWorkgroups; + let coords = getOutputCoords(); + let batch = coords[0]; + let xRCCorner = vec2(coords.zw) - uniforms.pad; + let channelMul = uniforms.wShape[3]; + let d1 = coords[1] / channelMul; + let q = coords[1] % channelMul; + + let inputRowStart = xRCCorner.x; + let inputColStart = xRCCorner.y; + + let localRow = i32(localId.y); + let localCol = i32(localId.x); + + // Load one tile of X into local memory. + for (var inputRow = localRow; inputRow < ${tileAHeight}; inputRow = inputRow + ${this.workGroupSize[1]}) { + for (var inputCol = localCol; inputCol < ${tileAWidth}; inputCol = inputCol + ${this.workGroupSize[0]}) { + let rowOffset = inputRow - localRow; + let colOffset = inputCol - localCol; + mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset); + } + } + + // Load one tile of W into local memory. + var wIndex = localIndex; + ${filterSize < workGroupSize ? `if (wIndex < ${filterSize})` : `for(; wIndex < ${filterSize}; wIndex = wIndex + ${workGroupSize})`} + + { + let wRow = wIndex / ${this.filterWidth}; + let wCol = wIndex % ${this.filterWidth}; + mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q); + } + + workgroupBarrier(); + + var value = 0.0; + for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) { + for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) { + let xVal = mm_Asub[localRow + wR][localCol + wC]; + let wVal = mm_Bsub[wR][wC]; + value = fma(xVal, wVal, value); + } + } + ${biasActivationSnippet(this.addBias, this.activation)} + if (coordsInBounds4D(coords, uniforms.outShape)) { + setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_vec4_webgpu.js +var DepthwiseConv2DVec4Program = class { + constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) { + this.variableNames = ["x", "W"]; + this.uniforms = "pad : vec2, inDims : vec2,"; + this.workGroupSize = [4, 4, 4]; + this.isVec4 = true; + this.outputShape = convInfo.outShape; + this.dispatchLayout = { x: [3], y: [2], z: [0, 1] }; + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [4, 4, 1]); + util_exports.assert(convInfo.dataFormat === "channelsLast", () => "TODO: NCHW is unimplemented"); + if (addBias) { + this.variableNames.push("bias"); + } + if (hasPreluActivation) { + this.variableNames.push("preluActivationWeights"); + } + this.convInfo = convInfo; + this.addBias = addBias; + this.activation = activation2; + this.hasPreluActivation = hasPreluActivation; + this.shaderKey = `depthwiseVec4_${activation2}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`; + } + getUserCode() { + const xNumber = 4 + this.convInfo.filterWidth - 1; + const userCode = ` + ${activationFnSnippet(this.activation, this.hasPreluActivation, true, 4)} + fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4 { + var value = vec4(0.0); + if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1]) + { + value = getX(batch, row, col, channel); + } + return value; + } + ${getWorkGroupSizeString()} + fn _start(@builtin(global_invocation_id) globalId: vec3) { + let batch = i32(globalId.z) / uniforms.outShape[1]; + let r = i32(globalId.z) % uniforms.outShape[1]; + let c = i32(globalId.y) * 4; + let d1 = i32(globalId.x) * 4; + let xRCCorner = vec2(r, c) - uniforms.pad; + + let xRCorner = xRCCorner.x; + let xCCorner = xRCCorner.y; + var xVals : array, ${xNumber}>; + var dotProd : array, 4>; + dotProd[0] = vec4(0.0); + dotProd[1] = vec4(0.0); + dotProd[2] = vec4(0.0); + dotProd[3] = vec4(0.0); + + // Use constant instead of uniform can give better performance. + for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) { + let xR = xRCorner + wR; + for (var i = 0; i < ${xNumber}; i++) + { + xVals[i] = readX(batch, xR, xCCorner + i, d1); + } + for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) { + let wValue = getW(wR, wC, d1, 0); + dotProd[0] = dotProd[0] + xVals[0 + wC] * wValue; + dotProd[1] = dotProd[1] + xVals[1 + wC] * wValue; + dotProd[2] = dotProd[2] + xVals[2 + wC] * wValue; + dotProd[3] = dotProd[3] + xVals[3 + wC] * wValue; + } + } + + for (var i = 0; i < 4; i = i + 1) { + let coords = vec4(batch, r, c + i, d1); + if (coordsInBounds4D(coords, uniforms.outShape)) { + var value = dotProd[i]; + ${biasActivationSnippet(this.addBias, this.activation)} + setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); + } + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/depthwise_conv2d_webgpu.js +var DepthwiseConv2DProgram2 = class { + constructor(convInfo, addBias = false, activation2 = null, hasPreluActivation = false) { + this.variableNames = ["x", "W"]; + this.uniforms = `pad : vec2, inDims : vec2, filterHeight : i32, + filterWidth : i32, stride : vec2, dilation : vec2,`; + this.workGroupSize = [256, 1, 1]; + this.outputShape = convInfo.outShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.isChannelsLast = convInfo.dataFormat === "channelsLast"; + if (addBias) { + this.variableNames.push("bias"); + } + if (hasPreluActivation) { + this.variableNames.push("preluActivationWeights"); + } + this.convInfo = convInfo; + this.addBias = addBias; + this.activation = activation2; + this.hasPreluActivation = hasPreluActivation; + this.shaderKey = `depthwise_${this.activation}_${this.isChannelsLast}`; + } + getUserCode() { + const getXSnippet = this.isChannelsLast ? "getX(batch, xR, xC, d1);" : "getX(batch, d1, xR, xC);"; + const userCode = ` + ${activationFnSnippet(this.activation, this.hasPreluActivation, false, 4)} + + ${getMainHeaderString()} { + let coords = getOutputCoords(); + let batch = coords[0]; + let xRCCorner = vec2(coords.${this.isChannelsLast ? "yz" : "zw"}) * uniforms.stride - uniforms.pad; + let d2 = coords[${this.isChannelsLast ? 3 : 1}]; + let channelMul = uniforms.wShape[3]; + let d1 = d2 / channelMul; + let q = d2 % channelMul; + + let inputRowStart = xRCCorner.x; + let inputColStart = xRCCorner.y; + let inputRowEnd = inputRowStart + uniforms.filterHeight * + uniforms.dilation[0]; + let inputColEnd = inputColStart + uniforms.filterWidth * + uniforms.dilation[1]; + + // Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get + // y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all + // values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC. + // x(d1, ?, ?) and y(d2, yR, yC) is for NCHW. + var value = 0.0; + + // Extract if checking out of for loop for performance. + if (inputRowStart >= 0 && inputColStart >= 0 && + inputRowEnd < uniforms.inDims[0] && + inputColEnd < uniforms.inDims[1]) { + for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) { + let xR = inputRowStart + wR * uniforms.dilation[0]; + + for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) { + let xC = inputColStart + wC * uniforms.dilation[1]; + + let xVal = ${getXSnippet}; + let wVal = getW(wR, wC, d1, q); + value = value + xVal * wVal; + } + } + } else { + for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) { + let xR = inputRowStart + wR * uniforms.dilation[0]; + + if (xR < 0 || xR >= uniforms.inDims[0]) { + continue; + } + + for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) { + let xC = inputColStart + wC * uniforms.dilation[1]; + + if (xC < 0 || xC >= uniforms.inDims[1]) { + continue; + } + + let xVal = ${getXSnippet}; + let wVal = getW(wR, wC, d1, q); + value = value + xVal * wVal; + } + } + } + ${biasActivationSnippet(this.addBias, this.activation)} + if (coordsInBounds4D(coords, uniforms.outShape)) { + setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/DepthwiseConv2dNative.js +function depthwiseConv2dNative3(args) { + const { inputs, backend: backend2, attrs } = args; + const { x, filter } = inputs; + const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode } = attrs; + const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); + let $dilations = dilations; + if ($dilations == null) { + $dilations = [1, 1]; + } + const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true, $dataFormat); + const dimensions = [ + { type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, + { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] } + ]; + const isChannelsLast = convInfo.dataFormat === "channelsLast"; + let program; + if (!isChannelsLast && convInfo.inHeight > 16 && convInfo.inWidth > 16 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.dilationWidth === 1 && convInfo.dilationHeight === 1 && convInfo.inChannels === convInfo.outChannels) { + program = new DepthwiseConv2DNCHWSharedProgram(convInfo.outShape, convInfo.filterHeight, convInfo.filterWidth); + } else if (isChannelsLast && convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) { + program = new DepthwiseConv2DVec4Program(convInfo); + } else { + program = new DepthwiseConv2DProgram2(convInfo); + dimensions.push({ type: "int32", data: [convInfo.filterHeight] }, { type: "int32", data: [convInfo.filterWidth] }, { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, { + type: "int32", + data: [convInfo.dilationHeight, convInfo.dilationWidth] + }); + } + return backend2.runWebGPUProgram(program, [x, filter], x.dtype, dimensions); +} +var depthwiseConv2dNativeConfig4 = { + kernelName: DepthwiseConv2dNative, + backendName: "webgpu", + kernelFunc: depthwiseConv2dNative3 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Multiply.js +var multiplyKernelFunc = binaryKernelFunc3({ + opType: BinaryOpType.MUL, + cpuKernelImpl: multiplyImplCPU2, + supportsComplex: true +}); +var multiplyConfig4 = { + kernelName: Multiply, + backendName: "webgpu", + kernelFunc: multiplyKernelFunc +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sum.js +function sum6(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { axis, keepDims } = attrs; + return reduce2(x, axis, keepDims, "sum", backend2); +} +var sumConfig4 = { + kernelName: Sum, + backendName: "webgpu", + kernelFunc: sum6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Einsum.js +function einsum4(args) { + const { inputs, backend: backend2, attrs } = args; + const { equation } = attrs; + const tensors = inputs; + const { allDims, summedDims, idDims } = backend_util_exports.decodeEinsumEquation(equation, tensors.length); + backend_util_exports.checkEinsumDimSizes(allDims.length, idDims, tensors); + const { path, steps } = backend_util_exports.getEinsumComputePath(summedDims, idDims); + const nSteps = steps.length; + let out = null; + let numDimsRemaining = allDims.length; + const tensorsToDispose = []; + for (let i2 = 0; i2 < nSteps; ++i2) { + for (const idTerm of steps[i2]) { + const { permutationIndices: perm, expandDims: dimsToExpand } = backend_util_exports.getEinsumPermutation(numDimsRemaining, idDims[idTerm]); + let x; + if (backend_util_exports.isIdentityPermutation(perm)) { + x = tensors[idTerm]; + } else { + x = transpose5({ inputs: { x: tensors[idTerm] }, backend: backend2, attrs: { perm } }); + tensorsToDispose.push(x); + } + const targetShape = x.shape.slice(); + for (let k = 0; k < dimsToExpand.length; ++k) { + targetShape.splice(dimsToExpand[k], 0, 1); + } + if (!util_exports.arraysEqual(x.shape, targetShape)) { + x = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: targetShape } }); + tensorsToDispose.push(x); + } + if (out === null) { + out = x; + } else { + out = multiplyKernelFunc({ inputs: { a: x, b: out }, backend: backend2 }); + tensorsToDispose.push(out); + } + } + if (i2 < nSteps - 1) { + if (path[i2] >= 0) { + out = sum6({ + inputs: { x: out }, + backend: backend2, + attrs: { + axis: path[i2] - (allDims.length - numDimsRemaining), + keepDims: false + } + }); + tensorsToDispose.push(out); + } + numDimsRemaining--; + } + } + for (const tensorInfo of tensorsToDispose) { + if (tensorInfo === out) { + continue; + } + backend2.disposeData(tensorInfo.dataId); + } + return out; +} +var einsumConfig3 = { + kernelName: Einsum, + backendName: "webgpu", + kernelFunc: einsum4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Elu.js +var elu6 = unaryKernelFunc3({ opType: UnaryOpType.ELU }); +var eluConfig4 = { + kernelName: Elu, + backendName: "webgpu", + kernelFunc: elu6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Equal.js +var equal4 = binaryKernelFunc3({ opType: BinaryOpType.EQUAL, dtype: "bool", cpuKernelImpl: equalImplCPU2 }); +var equalConfig4 = { + kernelName: Equal, + backendName: "webgpu", + kernelFunc: equal4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Exp.js +var exp4 = unaryKernelFunc3({ + opType: UnaryOpType.EXP, + cpuKernelImpl: expImplCPU2, + dtype: "float32" +}); +var expConfig4 = { + kernelName: Exp, + backendName: "webgpu", + kernelFunc: exp4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ExpandDims.js +function expandDims6(args) { + const { inputs, attrs, backend: backend2 } = args; + const { dim } = attrs; + const { input: input2 } = inputs; + const inputRank = input2.shape.length; + const newShape = input2.shape.slice(); + let $dim = dim; + if (dim < 0) { + util_exports.assert(-(inputRank + 1) <= dim, () => `Axis must be in the interval [${-(inputRank + 1)}, ${inputRank}]`); + $dim = inputRank + dim + 1; + } + newShape.splice($dim, 0, 1); + return reshape6({ inputs: { x: input2 }, backend: backend2, attrs: { shape: newShape } }); +} +var expandDimsConfig4 = { + kernelName: ExpandDims, + backendName: "webgpu", + kernelFunc: expandDims6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Expm1.js +var expm14 = unaryKernelFunc3({ opType: UnaryOpType.EXPM1, cpuKernelImpl: expm1ImplCPU2 }); +var expm1Config3 = { + kernelName: Expm1, + backendName: "webgpu", + kernelFunc: expm14 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/flip_left_right_webgpu.js +var FlipLeftRightProgram2 = class { + constructor(imageShape) { + this.outputShape = []; + this.variableNames = ["x"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = imageShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = "flipLeftRight"; + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + let coordX = uniforms.xShape[2] - coords[2] - 1; + let outputValue = getX(coords[0], coords[1], coordX, coords[3]); + setOutputAtIndex(index, outputValue); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FlipLeftRight.js +var flipLeftRightConfig4 = { + kernelName: FlipLeftRight, + backendName: "webgpu", + kernelFunc: ({ inputs, backend: backend2 }) => { + const { image: image2 } = inputs; + const webgpuBackend = backend2; + const program = new FlipLeftRightProgram2(image2.shape); + const output = webgpuBackend.runWebGPUProgram(program, [image2], image2.dtype); + return output; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Floor.js +var floor4 = unaryKernelFunc3({ opType: UnaryOpType.FLOOR, cpuKernelImpl: floorImplCPU2 }); +var floorConfig4 = { + kernelName: Floor, + backendName: "webgpu", + kernelFunc: floor4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FloorDiv.js +var floorDiv4 = binaryKernelFunc3({ opType: BinaryOpType.INT_DIV, dtype: "int32" }); +var floorDivConfig4 = { + kernelName: FloorDiv, + backendName: "webgpu", + kernelFunc: floorDiv4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/from_pixels_webgpu.js +var FromPixelsProgram2 = class { + constructor(outputShape, numChannels, importVideo = false) { + this.isFromPixels = true; + this.outputShape = [0]; + this.variableNames = []; + this.workGroupSize = [256, 1, 1]; + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [numChannels, 1, 1]); + this.importVideo = importVideo; + this.shaderKey = `fromPixels_${this.importVideo}`; + } + getUserCode() { + const textureLoad = this.importVideo ? "textureLoad(src, vec2(coords.yx));" : "textureLoad(src, vec2(coords.yx), 0)"; + const textureType = this.importVideo ? "texture_external" : "texture_2d"; + return ` + @binding(1) @group(0) var src: ${textureType}; + ${getMainHeaderString("index")} { + let flatIndex = index * uniforms.numChannels; + if (flatIndex < uniforms.size) { + let coords = getCoordsFromIndex(flatIndex); + let values = ${textureLoad}; + for (var i = 0; i < uniforms.numChannels; i = i + 1) { + result[flatIndex + i] = i32(floor(255.0 * values[i])); + } + } + } + `; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FromPixels.js +var fromPixelsConfig2 = { + kernelName: FromPixels, + backendName: "webgpu", + kernelFunc: fromPixels3 +}; +var fromPixels2DContext3; +var willReadFrequently2 = env().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU"); +var videoToTextureMap = /* @__PURE__ */ new Map(); +function fromPixels3(args) { + const { inputs, backend: backend2, attrs } = args; + let { pixels } = inputs; + const { numChannels } = attrs; + if (pixels == null) { + throw new Error("pixels passed to tf.browser.fromPixels() can not be null"); + } + const isVideo = typeof HTMLVideoElement !== "undefined" && pixels instanceof HTMLVideoElement; + const isImage = typeof HTMLImageElement !== "undefined" && pixels instanceof HTMLImageElement; + const isCanvas = typeof HTMLCanvasElement !== "undefined" && pixels instanceof HTMLCanvasElement || typeof OffscreenCanvas !== "undefined" && pixels instanceof OffscreenCanvas; + const isImageBitmap = typeof ImageBitmap !== "undefined" && pixels instanceof ImageBitmap; + const [width, height] = isVideo ? [ + pixels.videoWidth, + pixels.videoHeight + ] : [pixels.width, pixels.height]; + const outputShape = [height, width, numChannels]; + const importVideo = env().getBool("WEBGPU_IMPORT_EXTERNAL_TEXTURE") && isVideo; + const isVideoOrImage = isVideo || isImage; + if (isImageBitmap || isCanvas || isVideoOrImage) { + let textureInfo; + if (importVideo) { + const videoElement = pixels; + if (!videoToTextureMap.has(videoElement) || videoToTextureMap.get(videoElement).expired) { + const externalTextureDescriptor = { source: videoElement }; + videoToTextureMap.set(videoElement, backend2.device.importExternalTexture(externalTextureDescriptor)); + } + textureInfo = { + width, + height, + format: null, + usage: null, + texture: videoToTextureMap.get(videoElement) + }; + } else { + if (isVideoOrImage) { + const newWillReadFrequently = env().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU"); + if (fromPixels2DContext3 == null || newWillReadFrequently !== willReadFrequently2) { + willReadFrequently2 = newWillReadFrequently; + fromPixels2DContext3 = document.createElement("canvas").getContext("2d", { willReadFrequently: willReadFrequently2 }); + } + fromPixels2DContext3.canvas.width = width; + fromPixels2DContext3.canvas.height = height; + fromPixels2DContext3.drawImage(pixels, 0, 0, width, height); + pixels = fromPixels2DContext3.canvas; + } + const usage = GPUTextureUsage.COPY_DST | GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING; + const format = "rgba8unorm"; + const texture = backend2.textureManager.acquireTexture(outputShape[1], outputShape[0], format, usage); + backend2.queue.copyExternalImageToTexture({ source: pixels }, { texture }, [outputShape[1], outputShape[0]]); + textureInfo = { width, height, format, usage, texture }; + } + const size = util_exports.sizeFromShape(outputShape); + const strides = util_exports.computeStrides(outputShape); + const program = new FromPixelsProgram2(outputShape, numChannels, importVideo); + const uniformData = [ + { type: "uint32", data: [size] }, + { type: "uint32", data: [numChannels] }, + { type: "uint32", data: [...strides] } + ]; + const input2 = backend2.makeTensorInfo([height, width], "int32"); + const info = backend2.tensorMap.get(input2.dataId); + info.resourceInfo = textureInfo; + const result = backend2.runWebGPUProgram(program, [input2], "int32", uniformData); + backend2.disposeData(input2.dataId); + return result; + } + const imageData = pixels.data; + let pixelArray = imageData; + if (numChannels != null && numChannels !== 4) { + pixelArray = new Uint8Array(pixels.width * pixels.height * numChannels); + const dataLength = imageData.length; + let j = 0; + for (let i2 = 0; i2 < dataLength; i2++) { + if (i2 % 4 < numChannels) { + pixelArray[j++] = imageData[i2]; + } + } + } + const output = backend2.makeTensorInfo(outputShape, "int32", new Int32Array(pixelArray)); + backend2.uploadToGPU(output.dataId); + return output; +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/batchnorm_webgpu.js +var BatchNormProgram2 = class { + constructor(xShape, meanShape, varianceShape, offsetShape, scaleShape) { + this.uniforms = "varianceEpsilon : f32,"; + this.workGroupSize = [128, 1, 1]; + this.size = true; + this.variableNames = ["x", "mean", "variance"]; + backend_util_exports.assertAndGetBroadcastShape(xShape, meanShape); + backend_util_exports.assertAndGetBroadcastShape(xShape, varianceShape); + this.outputShape = xShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + if (offsetShape != null) { + backend_util_exports.assertAndGetBroadcastShape(xShape, offsetShape); + this.variableNames.push("offset"); + } + if (scaleShape != null) { + backend_util_exports.assertAndGetBroadcastShape(xShape, scaleShape); + this.variableNames.push("scale"); + } + this.offsetShape = offsetShape; + this.scaleShape = scaleShape; + this.shaderKey = "batchNorm"; + } + getUserCode() { + let offsetSnippet = "0.0"; + if (this.offsetShape != null) { + offsetSnippet = "getOffsetByOutputIndex(index)"; + } + let scaleSnippet = "1.0"; + if (this.scaleShape != null) { + scaleSnippet = "getScaleByOutputIndex(index)"; + } + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) + { + let xValue = getXByOutputIndex(index); + let meanValue = getMeanByOutputIndex(index); + let varianValue = getVarianceByOutputIndex(index); + let offsetValue = ${offsetSnippet}; + let scaleValue = ${scaleSnippet}; + let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon)); + setOutputAtIndex(index,dot(vec3(xValue, -meanValue, offsetValue), vec3(inv, inv, 1.0))); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedBatchNorm.js +var fusedBatchNormConfig2 = { + kernelName: FusedBatchNorm, + backendName: "webgpu", + kernelFunc: ({ inputs, attrs, backend: backend2 }) => { + const { x, scale: scale2, offset, mean: mean5, variance } = inputs; + const { varianceEpsilon } = attrs; + const webGPUBackend = backend2; + const batchNormInputs = [x, mean5, variance]; + let offsetShape = null; + if (offset != null) { + offsetShape = offset.shape; + batchNormInputs.push(offset); + } + let scaleShape = null; + if (scale2 != null) { + scaleShape = scale2.shape; + batchNormInputs.push(scale2); + } + const program = new BatchNormProgram2(x.shape, mean5.shape, variance.shape, offsetShape, scaleShape); + const uniformData = [{ type: "float32", data: [varianceEpsilon] }]; + return webGPUBackend.runWebGPUProgram(program, batchNormInputs, x.dtype, uniformData); + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedConv2D.js +function fusedConv2d3(args) { + const { inputs, backend: backend2, attrs } = args; + const { x, filter, bias, preluActivationWeights } = inputs; + const { strides, pad: pad3, dataFormat, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs; + const $dataFormat = backend_util_exports.convertConv2DDataFormat(dataFormat); + const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad3, dimRoundingMode, false, $dataFormat); + return conv2DImpl({ + x, + filter, + convInfo, + backend: backend2, + bias, + preluActivationWeights, + leakyreluAlpha, + activation: activation2 + }); +} +var fusedConv2DConfig4 = { + kernelName: FusedConv2D, + backendName: "webgpu", + kernelFunc: fusedConv2d3 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/FusedDepthwiseConv2D.js +function fusedDepthwiseConv2D3(args) { + const { inputs, backend: backend2, attrs } = args; + const { x, filter, bias, preluActivationWeights } = inputs; + const { strides, pad: pad3, dilations, dimRoundingMode, activation: activation2, leakyreluAlpha } = attrs; + let $dilations = dilations; + if ($dilations == null) { + $dilations = [1, 1]; + } + util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides, $dilations), () => `Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`); + const convInfo = backend_util_exports.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad3, dimRoundingMode, true); + const programInputs = [x, filter]; + const hasBias = bias != null; + const hasPreluActivationWeights = preluActivationWeights != null; + if (hasBias) { + programInputs.push(bias); + } + if (hasPreluActivationWeights) { + programInputs.push(preluActivationWeights); + } + const dimensions = [ + { type: "int32", data: [convInfo.padInfo.top, convInfo.padInfo.left] }, + { type: "int32", data: [convInfo.inHeight, convInfo.inWidth] } + ]; + let program; + if (convInfo.inHeight > 4 && convInfo.inWidth > 4 && convInfo.strideHeight === 1 && convInfo.strideWidth === 1 && convInfo.inChannels === convInfo.outChannels && convInfo.dilationHeight === 1 && convInfo.dilationWidth === 1 && convInfo.inChannels % 4 === 0) { + program = new DepthwiseConv2DVec4Program(convInfo, hasBias, activation2, hasPreluActivationWeights); + } else { + program = new DepthwiseConv2DProgram2(convInfo, hasBias, activation2, hasPreluActivationWeights); + dimensions.push({ type: "int32", data: [convInfo.filterHeight] }, { type: "int32", data: [convInfo.filterWidth] }, { type: "int32", data: [convInfo.strideHeight, convInfo.strideWidth] }, { + type: "int32", + data: [convInfo.dilationHeight, convInfo.dilationWidth] + }); + } + if (activation2 === "leakyrelu") { + dimensions.push({ type: "float32", data: [leakyreluAlpha] }); + program.uniforms += " alpha : f32,"; + } + const result = backend2.runWebGPUProgram(program, programInputs, "float32", dimensions); + return result; +} +var fusedDepthwiseConv2DConfig4 = { + kernelName: FusedDepthwiseConv2D, + backendName: "webgpu", + kernelFunc: fusedDepthwiseConv2D3 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/gather_nd_webgpu.js +var GatherNDProgram2 = class { + constructor(sliceDim, shape) { + this.variableNames = ["A", "indices"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = shape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = `gathernd_${sliceDim}`; + this.sliceDim = sliceDim; + this.uniforms = `sliceDim : i32, strides : ${getCoordsDataType2(sliceDim)},`; + } + getUserCode() { + let strideString; + if (this.sliceDim > 1) { + strideString = "uniforms.strides[j]"; + } else { + strideString = "uniforms.strides"; + } + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + var flattenIndex = 0; + for (var j = 0; j < uniforms.sliceDim; j = j + 1) { + let indexTemp = i32(round(getIndices(coords[0], j))); + let strideNum = ${strideString}; + flattenIndex = flattenIndex + indexTemp * strideNum; + } + + setOutputAtIndex(index, getA(flattenIndex, coords[1])); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GatherNd.js +function gatherNd4(args) { + const { inputs, backend: backend2 } = args; + const { params, indices } = inputs; + const indicesShape = indices.shape; + const sliceRank = indicesShape[indicesShape.length - 1]; + const paramsSize = util_exports.sizeFromShape(params.shape); + const [resultShape, numSlices, sliceSize, strides] = backend_util_exports.prepareAndValidate(params, indices); + const flattenIndices = reshape6({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numSlices, sliceRank] } }); + const flattenX = reshape6({ + inputs: { x: params }, + backend: backend2, + attrs: { shape: [util_exports.sizeFromShape(params.shape) / sliceSize, sliceSize] } + }); + if (backend2.shouldExecuteOnCPU([params, indices]) || params.dtype === "string") { + const indicesData = backend2.readSync(indices.dataId); + const paramsBuf = backend2.bufferSync(params); + const outValue = gatherNdImplCPU2(indicesData, paramsBuf, params.dtype, numSlices, sliceRank, sliceSize, strides, params.shape, paramsSize); + return backend2.makeTensorInfo(resultShape, params.dtype, outValue.values); + } + const program = new GatherNDProgram2(sliceRank, [numSlices, sliceSize]); + const uniformData = [{ type: "int32", data: [sliceRank] }, { type: "int32", data: strides }]; + const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndices], flattenX.dtype, uniformData); + const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: resultShape } }); + backend2.disposeData(flattenIndices.dataId); + backend2.disposeData(flattenX.dataId); + backend2.disposeData(res.dataId); + return reshaped; +} +var gatherNdConfig4 = { + kernelName: GatherNd, + backendName: "webgpu", + kernelFunc: gatherNd4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/gather_webgpu.js +var GatherProgram2 = class { + constructor(aShape, outputShape) { + this.variableNames = ["A", "indices"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = aShape.slice(); + this.aShape = aShape; + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = `gather`; + } + getUserCode() { + const sourceCoords = getSourceCoords4(this.aShape); + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let resRC = getCoordsFromIndex(index); + let indexZ = i32(getIndices(resRC.x, resRC.z)); + let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]); + setOutputAtIndex(index, inBounds * getA(${sourceCoords})); + } + } + `; + return userCode; + } +}; +function getSourceCoords4(aShape) { + const currentCoords = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"]; + const sourceCoords = []; + for (let i2 = 0; i2 < aShape.length; i2++) { + if (i2 === 2) { + sourceCoords.push("indexZ"); + } else { + sourceCoords.push(`${currentCoords[i2]}`); + } + } + return sourceCoords.join(); +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GatherV2.js +function gatherV24(args) { + const { inputs, backend: backend2, attrs } = args; + const { x, indices } = inputs; + const { axis, batchDims } = attrs; + const parsedAxis = util_exports.parseAxisParam(axis, x.shape)[0]; + const shapeInfo = backend_util_exports.segment_util.collectGatherOpShapeInfo(x, indices, parsedAxis, batchDims); + const indicesSize = util_exports.sizeFromShape(indices.shape); + const toDispose = []; + const flattenX = reshape6({ + inputs: { x }, + backend: backend2, + attrs: { + shape: [ + shapeInfo.batchSize, + shapeInfo.outerSize, + shapeInfo.dimSize, + shapeInfo.sliceSize + ] + } + }); + const flattenIndex = reshape6({ + inputs: { x: indices }, + backend: backend2, + attrs: { shape: [shapeInfo.batchSize, indicesSize / shapeInfo.batchSize] } + }); + toDispose.push(flattenX); + toDispose.push(flattenIndex); + const flattenOutputShape = [ + shapeInfo.batchSize, + shapeInfo.outerSize, + indicesSize / shapeInfo.batchSize, + shapeInfo.sliceSize + ]; + if (backend2.shouldExecuteOnCPU([x, indices])) { + const indicesBufferInfo = backend2.tensorMap.get(flattenIndex.dataId); + const indicesValues = indicesBufferInfo.values; + const indicesBuf = buffer(flattenIndex.shape, flattenIndex.dtype, indicesValues); + const xBufferInfo = backend2.tensorMap.get(flattenX.dataId); + const xValues = xBufferInfo.values; + const xBuf = buffer(flattenX.shape, flattenX.dtype, xValues); + const outBuf = gatherV2ImplCPU2(xBuf, indicesBuf, flattenOutputShape); + toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); + return backend2.makeTensorInfo(shapeInfo.outputShape, outBuf.dtype, outBuf.values); + } + const program = new GatherProgram2(flattenX.shape, flattenOutputShape); + const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndex], flattenX.dtype); + toDispose.push(res); + const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape: shapeInfo.outputShape } }); + toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); + return reshaped; +} +var gatherV2Config4 = { + kernelName: GatherV2, + backendName: "webgpu", + kernelFunc: gatherV24 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Greater.js +var greater5 = binaryKernelFunc3({ + opType: BinaryOpType.GREATER, + cpuKernelImpl: greaterImplCPU2, + dtype: "bool" +}); +var greaterConfig4 = { + kernelName: Greater, + backendName: "webgpu", + kernelFunc: greater5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/GreaterEqual.js +var greaterEqual4 = binaryKernelFunc3({ + opType: BinaryOpType.GREATER_EQUAL, + dtype: "bool", + cpuKernelImpl: greaterEqualImplCPU2 +}); +var greaterEqualConfig4 = { + kernelName: GreaterEqual, + backendName: "webgpu", + kernelFunc: greaterEqual4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/IsNaN.js +var isNaN5 = unaryKernelFunc3({ opType: UnaryOpType.IS_NAN, dtype: "bool" }); +var isNaNConfig3 = { + kernelName: IsNan, + backendName: "webgpu", + kernelFunc: isNaN5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LeakyRelu.js +function leakyRelu5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { alpha } = attrs; + const uniformData = [{ type: "float32", data: [alpha] }]; + const program = new UnaryOpProgram2(x.shape, UnaryOpType.LEAKYRELU); + program.uniforms = "alpha : f32,"; + return backend2.runWebGPUProgram(program, [x], "float32", uniformData); +} +var leakyReluConfig4 = { + kernelName: LeakyRelu, + backendName: "webgpu", + kernelFunc: leakyRelu5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Less.js +var less5 = binaryKernelFunc3({ opType: BinaryOpType.LESS, dtype: "bool", cpuKernelImpl: lessImplCPU2 }); +var lessConfig4 = { + kernelName: Less, + backendName: "webgpu", + kernelFunc: less5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LessEqual.js +var lessEqual4 = binaryKernelFunc3({ + opType: BinaryOpType.LESS_EQUAL, + dtype: "bool", + cpuKernelImpl: lessEqualImplCPU2 +}); +var lessEqualConfig4 = { + kernelName: LessEqual, + backendName: "webgpu", + kernelFunc: lessEqual4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Log.js +var log5 = unaryKernelFunc3({ opType: UnaryOpType.LOG, cpuKernelImpl: logImplCPU2 }); +var logConfig4 = { + kernelName: Log, + backendName: "webgpu", + kernelFunc: log5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LogicalAnd.js +var logicalAnd4 = binaryKernelFunc3({ opType: BinaryOpType.LOGICAL_AND, dtype: "bool" }); +var logicalAndConfig4 = { + kernelName: LogicalAnd, + backendName: "webgpu", + kernelFunc: logicalAnd4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/LogicalNot.js +var logicalNot4 = unaryKernelFunc3({ opType: UnaryOpType.LOGICAL_NOT }); +var logicalNotConfig4 = { + kernelName: LogicalNot, + backendName: "webgpu", + kernelFunc: logicalNot4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Maximum.js +var maximum5 = binaryKernelFunc3({ + opType: BinaryOpType.MAX, + cpuKernelImpl: maximumImplCPU2 +}); +var maximumConfig4 = { + kernelName: Maximum, + backendName: "webgpu", + kernelFunc: maximum5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/MaxPool.js +function maxPool5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { filterSize, strides, pad: pad3, dimRoundingMode } = attrs; + const dilations = 1; + const convInfo = backend_util_exports.computePool2DInfo(x.shape, filterSize, strides, dilations, pad3, dimRoundingMode); + return poolImpl(x, convInfo, "max", backend2); +} +var maxPoolConfig4 = { + kernelName: MaxPool, + backendName: "webgpu", + kernelFunc: maxPool5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Min.js +function min6(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { axis, keepDims } = attrs; + return reduce2(x, axis, keepDims, "min", backend2); +} +var minConfig4 = { + kernelName: Min, + backendName: "webgpu", + kernelFunc: min6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Minimum.js +var minimum5 = binaryKernelFunc3({ + opType: BinaryOpType.MIN, + cpuKernelImpl: minimumImplCPU2 +}); +var minimumConfig4 = { + kernelName: Minimum, + backendName: "webgpu", + kernelFunc: minimum5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/mirror_pad_webgpu.js +var MirrorPadProgram2 = class { + constructor(xShape, paddings, mode) { + this.uniforms = ""; + this.variableNames = ["x"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]); + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.xShape = xShape; + paddings.map((_, i2) => { + this.uniforms += ` pad${i2} : vec2,`; + }); + this.offset = mode === "reflect" ? 0 : 1; + this.shaderKey = `mirrorPad_${mode}`; + } + getUserCode() { + const rank = this.xShape.length; + const start = this.xShape.map((_, i2) => `uniforms.pad${i2}[0]`).join(","); + const end = this.xShape.map((_, i2) => `uniforms.pad${i2}[0] + uniforms.xShape${rank > 1 ? `[${i2}]` : ""}`).join(","); + const shaderStart = rank === 1 ? "start" : "start[i]"; + const shaderEnd = rank === 1 ? "end" : "end[i]"; + const shaderOutC = rank === 1 ? "outC" : "outC[i]"; + const dtype = getCoordsDataType2(rank); + const unpackedCoords = rank > 1 ? ["coords[0]", "coords[1]", "coords[2]", "coords[3]"].slice(0, rank) : "coords"; + return ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let start = ${dtype}(${start}); + let end = ${dtype}(${end}); + var outC = getCoordsFromIndex(index); + for (var i = 0; i < ${rank}; i = i + 1) { + if (${shaderOutC} < ${shaderStart}) { + ${shaderOutC} = ${shaderStart} * 2 - ${shaderOutC} - ${this.offset}; + } else if(${shaderOutC} >= ${shaderEnd}) { + ${shaderOutC} = (${shaderEnd} - 1) * 2 - ${shaderOutC} + ${this.offset}; + } + } + let coords = outC - start; + setOutputAtIndex(index, getX(${unpackedCoords})); + } + } + `; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/MirrorPad.js +var mirrorPadConfig4 = { + kernelName: MirrorPad, + backendName: "webgpu", + kernelFunc: ({ inputs, attrs, backend: backend2 }) => { + const { x } = inputs; + const { paddings, mode } = attrs; + const webGPUBackend = backend2; + const uniformData = paddings.map((p2) => { + return { type: "int32", data: [p2[0], p2[1]] }; + }); + const program = new MirrorPadProgram2(x.shape, paddings, mode); + const output = webGPUBackend.runWebGPUProgram(program, [x], x.dtype, uniformData); + return output; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Neg.js +function neg4(args) { + const { inputs, backend: backend2 } = args; + const { x } = inputs; + if (backend2.shouldExecuteOnCPU([x])) { + const xData = backend2.tensorMap.get(x.dataId); + const [outValues, newShape] = negImplCPU2(xData.values, x.shape, x.dtype); + return backend2.makeTensorInfo(newShape, x.dtype, outValues); + } + const program = new UnaryOpProgram2(x.shape, UnaryOpType.NEG); + return backend2.runWebGPUProgram(program, [x], x.dtype); +} +var negConfig4 = { + kernelName: Neg, + backendName: "webgpu", + kernelFunc: neg4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NonMaxSuppressionV3.js +function nonMaxSuppressionV33(args) { + console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead"); + const { inputs, backend: backend2, attrs } = args; + const { boxes, scores } = inputs; + const { maxOutputSize, iouThreshold, scoreThreshold } = attrs; + const boxesVals = backend2.readSync(boxes.dataId); + const scoresVals = backend2.readSync(scores.dataId); + const { selectedIndices } = kernel_impls_exports.nonMaxSuppressionV3Impl(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold); + return backend2.makeTensorInfo([selectedIndices.length], "int32", new Int32Array(selectedIndices)); +} +var nonMaxSuppressionV3Config4 = { + kernelName: NonMaxSuppressionV3, + backendName: "webgpu", + kernelFunc: nonMaxSuppressionV33 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/NonMaxSuppressionV5.js +function nonMaxSuppressionV53(args) { + console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead"); + const { inputs, backend: backend2, attrs } = args; + const { boxes, scores } = inputs; + const { maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma } = attrs; + const boxesVals = backend2.readSync(boxes.dataId); + const scoresVals = backend2.readSync(scores.dataId); + const maxOutputSizeVal = maxOutputSize; + const iouThresholdVal = iouThreshold; + const scoreThresholdVal = scoreThreshold; + const softNmsSigmaVal = softNmsSigma; + const { selectedIndices, selectedScores } = kernel_impls_exports.nonMaxSuppressionV5Impl(boxesVals, scoresVals, maxOutputSizeVal, iouThresholdVal, scoreThresholdVal, softNmsSigmaVal); + return [ + backend2.makeTensorInfo([selectedIndices.length], "int32", new Int32Array(selectedIndices)), + backend2.makeTensorInfo([selectedScores.length], "float32", new Float32Array(selectedScores)) + ]; +} +var nonMaxSuppressionV5Config4 = { + kernelName: NonMaxSuppressionV5, + backendName: "webgpu", + kernelFunc: nonMaxSuppressionV53 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ZerosLike.js +function zerosLike5(args) { + const { inputs, backend: backend2 } = args; + const { x } = inputs; + if (x.dtype === "complex64") { + const realPart = real4({ inputs: { input: x }, backend: backend2 }); + const r2 = zerosLike5({ inputs: { x: realPart }, backend: backend2 }); + const imagPart = imag4({ inputs: { input: x }, backend: backend2 }); + const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 }); + const result = complex4({ inputs: { real: r2, imag: i2 }, backend: backend2 }); + backend2.disposeData(realPart.dataId); + backend2.disposeData(r2.dataId); + backend2.disposeData(imagPart.dataId); + backend2.disposeData(i2.dataId); + return result; + } else { + return fill5({ + attrs: { + shape: x.shape, + dtype: x.dtype, + value: x.dtype === "string" ? "" : 0 + }, + backend: backend2 + }); + } +} +var zerosLikeConfig4 = { + kernelName: ZerosLike, + backendName: "webgpu", + kernelFunc: zerosLike5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/OnesLike.js +function onesLike5(args) { + const { inputs, backend: backend2 } = args; + const { x } = inputs; + if (x.dtype === "string") { + throw new Error("onesLike is not supported under string dtype"); + } else if (x.dtype === "complex64") { + const realPart = real4({ inputs: { input: x }, backend: backend2 }); + const r2 = onesLike5({ inputs: { x: realPart }, backend: backend2 }); + const imagPart = imag4({ inputs: { input: x }, backend: backend2 }); + const i2 = zerosLike5({ inputs: { x: imagPart }, backend: backend2 }); + const result = complex4({ inputs: { real: r2, imag: i2 }, backend: backend2 }); + backend2.disposeData(realPart.dataId); + backend2.disposeData(r2.dataId); + backend2.disposeData(imagPart.dataId); + backend2.disposeData(i2.dataId); + return result; + } else { + return fill5({ attrs: { shape: x.shape, dtype: x.dtype, value: 1 }, backend: backend2 }); + } +} +var onesLikeConfig4 = { + kernelName: OnesLike, + backendName: "webgpu", + kernelFunc: onesLike5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pack.js +function pack4(args) { + const { inputs, backend: backend2, attrs } = args; + const { axis } = attrs; + if (inputs.length === 1) { + return expandDims6({ inputs: { input: inputs[0] }, backend: backend2, attrs: { dim: axis } }); + } + const shape = inputs[0].shape; + const dtype = inputs[0].dtype; + inputs.forEach((t2) => { + util_exports.assertShapesMatch(shape, t2.shape, "All tensors passed to stack must have matching shapes"); + util_exports.assert(dtype === t2.dtype, () => "All tensors passed to stack must have matching dtypes"); + }); + const intermediateTensorInfos = []; + const expandedTensors = inputs.map((t2) => { + const expandedT = expandDims6({ inputs: { input: t2 }, backend: backend2, attrs: { dim: axis } }); + intermediateTensorInfos.push(expandedT); + return expandedT; + }); + const result = concat5({ inputs: expandedTensors, backend: backend2, attrs: { axis } }); + intermediateTensorInfos.forEach((t2) => backend2.disposeData(t2.dataId)); + return result; +} +var packConfig4 = { + kernelName: Pack, + backendName: "webgpu", + kernelFunc: pack4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/pad_webgpu.js +var PadProgram2 = class { + constructor(xShape, paddings) { + this.variableNames = ["x"]; + this.uniforms = "constantValue : f32,"; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = paddings.map((p2, i2) => p2[0] + xShape[i2] + p2[1]); + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + paddings.map((_, i2) => { + this.uniforms += ` pad${i2} : vec2,`; + }); + this.xShape = xShape; + this.shaderKey = "pad"; + } + getUserCode() { + const rank = this.xShape.length; + const type = getCoordsDataType2(rank); + const start = this.xShape.map((_, i2) => `uniforms.pad${i2}[0]`).join(","); + const end = this.xShape.map((_, i2) => `uniforms.pad${i2}[0] + uniforms.xShape${rank > 1 ? `[${i2}]` : ""}`).join(","); + const startValue = rank > 1 ? `${type}(${start})` : `${start}`; + const endValue = rank > 1 ? `${type}(${end})` : `${end}`; + const leftPadCondition = rank > 1 ? `any(outC < start)` : `outC < start`; + const rightPadCondition = rank > 1 ? `any(outC >= end)` : `outC >= end`; + const unpackedCoords = rank > 1 ? ["coords[0]", "coords[1]", "coords[2]", "coords[3]"].slice(0, rank) : "coords"; + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let start = ${startValue}; + let end = ${endValue}; + let outC = getCoordsFromIndex(index); + + if (${leftPadCondition} || ${rightPadCondition}) { + setOutputAtIndex(index, uniforms.constantValue); + } else { + let coords = outC - start; + setOutputAtIndex(index, getX(${unpackedCoords})); + } + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/PadV2.js +var padV23 = (args) => { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { paddings, constantValue } = attrs; + if (paddings.every((p2) => util_exports.arraysEqual(p2, [0, 0]))) { + return identity5({ inputs: { x }, backend: backend2 }); + } + if (util_exports.sizeFromShape(x.shape) === 0) { + const outputShape = paddings.map((p2, i2) => p2[0] + x.shape[i2] + p2[1]); + return fill5({ + backend: backend2, + attrs: { shape: outputShape, value: constantValue, dtype: x.dtype } + }); + } + const uniformData = [{ type: "float32", data: [constantValue] }]; + paddings.map((p2) => uniformData.push({ type: "int32", data: [p2[0], p2[1]] })); + const program = new PadProgram2(x.shape, paddings); + return backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); +}; +var padV2Config4 = { + kernelName: PadV2, + backendName: "webgpu", + kernelFunc: padV23 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Pow.js +var pow4 = binaryKernelFunc3({ + opType: BinaryOpType.POW +}); +var powConfig4 = { + kernelName: Pow, + backendName: "webgpu", + kernelFunc: pow4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Prelu.js +function prelu6(args) { + const { inputs, backend: backend2 } = args; + const { x, alpha } = inputs; + const program = new BinaryOpProgram2(BinaryOpType.PRELU, x.shape, alpha.shape); + return backend2.runWebGPUProgram(program, [x, alpha], "float32"); +} +var preluConfig4 = { + kernelName: Prelu, + backendName: "webgpu", + kernelFunc: prelu6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Prod.js +function prod5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { axis, keepDims } = attrs; + return reduce2(x, axis, keepDims, "prod", backend2); +} +var prodConfig4 = { + kernelName: Prod, + backendName: "webgpu", + kernelFunc: prod5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Range.js +var range6 = (args) => { + const { backend: backend2, attrs } = args; + const { start, stop, step: step5, dtype } = attrs; + const values = rangeImplCPU2(start, stop, step5, dtype); + return backend2.makeTensorInfo([values.length], dtype, values); +}; +var rangeConfig4 = { + kernelName: Range, + backendName: "webgpu", + kernelFunc: range6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/RealDiv.js +var realDiv2 = binaryKernelFunc3({ opType: BinaryOpType.DIV }); +var realDivConfig4 = { + kernelName: RealDiv, + backendName: "webgpu", + kernelFunc: realDiv2 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Reciprocal.js +var reciprocal4 = unaryKernelFunc3({ opType: UnaryOpType.RECIPROCAL }); +var reciprocalConfig3 = { + kernelName: Reciprocal, + backendName: "webgpu", + kernelFunc: reciprocal4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Relu.js +var relu4 = unaryKernelFunc3({ opType: UnaryOpType.RELU }); +var reluConfig4 = { + kernelName: Relu, + backendName: "webgpu", + kernelFunc: relu4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Relu6.js +var relu64 = unaryKernelFunc3({ opType: UnaryOpType.RELU6 }); +var relu6Config4 = { + kernelName: Relu6, + backendName: "webgpu", + kernelFunc: relu64 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/resize_bilinear_webgpu.js +var ResizeBilinearProgram2 = class { + constructor(inputShape, newHeight, newWidth) { + this.variableNames = ["x"]; + this.uniforms = "adjustHeightWidth : vec2, halfPixelCenters : f32,"; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = [inputShape[0], newHeight, newWidth, inputShape[3]]; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = `resizeBilinear`; + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + let b = coords[0]; + let d = coords[3]; + let rc = coords.yz; + + let effectiveInSize = vec2( + f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0], + f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]); + + let effectiveOutSize = vec2( + f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0], + f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]); + + let effectiveInputOverOutputRatioRC = + effectiveInSize / effectiveOutSize; + + // Fractional source index + let sourceFracIndexRC = + (vec2(rc) + vec2(uniforms.halfPixelCenters)) * + effectiveInputOverOutputRatioRC - vec2(uniforms.halfPixelCenters); + + // Compute the four integer indices. + let sourceFloorRC = vec2(sourceFracIndexRC); + let sourceCeilRC = vec2( + min(vec2(uniforms.xShape.yz) - vec2(1.0), ceil(sourceFracIndexRC))); + + let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d); + let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d); + let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d); + let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d); + + let fracRC = sourceFracIndexRC - vec2(sourceFloorRC); + + let top = topLeft + (topRight - topLeft) * fracRC.y; + let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; + let newValue = top + (bottom - top) * fracRC.x; + + setOutputAtIndex(index, newValue); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ResizeBilinear.js +function resizeBilinear5(args) { + const { inputs, backend: backend2, attrs } = args; + const { images } = inputs; + const { alignCorners, size, halfPixelCenters } = attrs; + const [newHeight, newWidth] = size; + const adjustHeight = alignCorners && newHeight > 1 ? 1 : 0; + const adjustWidth = alignCorners && newWidth > 1 ? 1 : 0; + const halfPixelCentersValue = halfPixelCenters ? 0.5 : 0; + const uniformData = [ + { type: "float32", data: [adjustHeight, adjustWidth] }, + { type: "float32", data: [halfPixelCentersValue] } + ]; + const program = new ResizeBilinearProgram2(images.shape, newHeight, newWidth); + return backend2.runWebGPUProgram(program, [images], "float32", uniformData); +} +var resizeBilinearConfig4 = { + kernelName: ResizeBilinear, + backendName: "webgpu", + kernelFunc: resizeBilinear5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/resize_nearest_neighbor_webgpu.js +var ResizeNearestNeighborProgram2 = class { + constructor(inputShape, newHeight, newWidth, halfPixelCenters) { + this.variableNames = ["x"]; + this.uniforms = "adjustHeightWidth : vec2, roundBase : f32,"; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = [inputShape[0], newHeight, newWidth, inputShape[3]]; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.halfPixelCenters = halfPixelCenters; + this.shaderKey = `resizeNearest_${halfPixelCenters}`; + } + getUserCode() { + let sourceFracIndexRC; + if (this.halfPixelCenters) { + sourceFracIndexRC = `max((vec2(rc) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))`; + } else { + sourceFracIndexRC = `vec2(rc) * effectiveInputOverOutputRatioRC`; + } + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + let b = coords[0]; + let d = coords[3]; + let rc = coords.yz; + + let effectiveInSize = vec2( + f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0], + f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]); + + let effectiveOutSize = vec2( + f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0], + f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]); + + let effectiveInputOverOutputRatioRC = + effectiveInSize / effectiveOutSize; + + // Fractional source index + let sourceFracIndexRC = ${sourceFracIndexRC}; + + // Compute the coordinators of nearest neighbor point. + let inputShapeRC = vec2(f32(uniforms.xShape.y), f32(uniforms.xShape.z)); + let sourceNearestRC = vec2( + min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase))); + let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d); + + setOutputAtIndex(index, newValue); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ResizeNearestNeighbor.js +function resizeNearestNeighbor5(args) { + const { inputs, backend: backend2, attrs } = args; + const { images } = inputs; + const { alignCorners, halfPixelCenters, size } = attrs; + const [newHeight, newWidth] = size; + const adjustHeight = alignCorners && newHeight > 1 ? 1 : 0; + const adjustWidth = alignCorners && newWidth > 1 ? 1 : 0; + const roundBase = alignCorners ? 0.5 : 0; + const uniformData = [ + { type: "float32", data: [adjustHeight, adjustWidth] }, + { type: "float32", data: [roundBase] } + ]; + const program = new ResizeNearestNeighborProgram2(images.shape, newHeight, newWidth, halfPixelCenters); + return backend2.runWebGPUProgram(program, [images], images.dtype, uniformData); +} +var resizeNearestNeighborConfig4 = { + kernelName: ResizeNearestNeighbor, + backendName: "webgpu", + kernelFunc: resizeNearestNeighbor5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/rotate_webgpu.js +var RotateProgram2 = class { + constructor(imageShape, fillValue) { + this.outputShape = []; + this.variableNames = ["x"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = imageShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.uniforms = `centerX : f32, centerY : f32, sinRadians : f32, + cosRadians : f32,`; + this.shaderKey = "rotate"; + this.outputShape = imageShape; + if (typeof fillValue === "number") { + this.uniforms += ` fillValue : f32,`; + this.fillSnippet = `var outputValue = uniforms.fillValue;`; + this.shaderKey += "_float"; + } else { + this.uniforms += ` fillValue : vec3,`; + this.fillSnippet = `var outputValue = uniforms.fillValue[coords[3]];`; + this.shaderKey += "_vec3"; + } + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + let coordXFloat = (f32(coords[2]) - uniforms.centerX) * + uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) * + uniforms.sinRadians; + let coordYFloat = (f32(coords[2]) - uniforms.centerX) * + uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) * + uniforms.cosRadians; + let coordX = i32(round(coordXFloat + uniforms.centerX)); + let coordY = i32(round(coordYFloat + uniforms.centerY)); + ${this.fillSnippet} + if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 && + coordY < uniforms.xShape[1]) { + outputValue = getX(coords[0], coordY, coordX, coords[3]); + } + setOutputAtIndex(index, outputValue); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/RotateWithOffset.js +var rotateWithOffsetConfig4 = { + kernelName: RotateWithOffset, + backendName: "webgpu", + kernelFunc: ({ inputs, attrs, backend: backend2 }) => { + const { image: image2 } = inputs; + const { radians, fillValue, center } = attrs; + const webgpuBackend = backend2; + const program = new RotateProgram2(image2.shape, fillValue); + const [centerX, centerY] = backend_util_exports.getImageCenter(center, image2.shape[1], image2.shape[2]); + const uniformData = [ + { type: "float32", data: [centerX] }, + { type: "float32", data: [centerY] }, + { type: "float32", data: [Math.sin(radians)] }, + { type: "float32", data: [Math.cos(radians)] } + ]; + if (typeof fillValue === "number") { + uniformData.push({ type: "float32", data: [Number.parseFloat(fillValue.toFixed(2))] }); + } else { + uniformData.push({ type: "float32", data: fillValue }); + } + const output = webgpuBackend.runWebGPUProgram(program, [image2], image2.dtype, uniformData); + return output; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Rsqrt.js +var rsqrt4 = unaryKernelFunc3({ opType: UnaryOpType.RSQRT, cpuKernelImpl: rsqrtImplCPU2 }); +var rsqrtConfig4 = { + kernelName: Rsqrt, + backendName: "webgpu", + kernelFunc: rsqrt4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/scatter_webgpu.js +var ScatterProgram2 = class { + constructor(flattenXShape, sliceDim, indicesRank, updatesRank, strides, shape, outputDtype, sumDupeIndices = true) { + this.variableNames = ["updates", "indices"]; + this.workGroupSize = [64, 1, 1]; + this.atomic = true; + this.outputShape = shape; + this.type = outputDtype; + this.sumDupeIndices = sumDupeIndices; + this.dispatchLayout = flatDispatchLayout(flattenXShape); + this.dispatch = computeDispatch(this.dispatchLayout, flattenXShape, this.workGroupSize); + this.sliceDimGreaterThanOne = sliceDim > 1; + this.shaderKey = `scatter_${indicesRank}_${updatesRank}_${this.sliceDimGreaterThanOne}_${outputDtype}_${sumDupeIndices}`; + const stridesType = getCoordsDataType2(strides.length); + this.uniforms = `sliceDim : i32, strides: ${stridesType}, size: i32,`; + this.updatesRank = updatesRank; + this.indicesRank = indicesRank; + } + getUserCode() { + let indicesString = ""; + if (this.indicesRank === 1) { + indicesString = "coords[0]"; + } else if (this.indicesRank === 2) { + indicesString = "coords[0], j"; + } + const indicesSnippet = `getIndices(${indicesString})`; + const strideString = this.sliceDimGreaterThanOne ? "uniforms.strides[j]" : "uniforms.strides"; + let outCoordsString = ""; + let getUpdatesCoordsFromFlatIndex = ""; + if (this.dispatchLayout.x.length === 1) { + outCoordsString = "flattenedIndex"; + getUpdatesCoordsFromFlatIndex = ` + fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 { + return index; + } + `; + } else if (this.dispatchLayout.x.length === 2) { + outCoordsString = "vec2(flattenedIndex, coords[1])"; + getUpdatesCoordsFromFlatIndex = ` + fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2 { + // N.B. |updates| could be a scalar tensor, conceptually representing a + // 2D tensor with all values equal to that. By design, its size must be + // the same as |outShape[1]| in one dimension, and |indicesShape[0]| + // gives the other. + let sliceSize = uniforms.outShape[1]; + let d0 = index / sliceSize; + let d1 = index - d0 * sliceSize; + return vec2(d0, d1); + } + `; + } + const updatesString = Array.from({ length: this.updatesRank }, (_, idx) => `coords[${idx}]`); + const updatesSnippet = `getUpdates(${updatesString.join(", ")})`; + const atomicRMW = (ptr, val) => { + let atomicAddSnippet = `atomicAdd(${ptr}, bitcast(${val}))`; + if (this.type === "float32") { + atomicAddSnippet = ` + { + var oldBits = 0; + var newBits = bitcast(${val}); + loop { + let info = atomicCompareExchangeWeak(${ptr}, oldBits, newBits); + if (info.exchanged) { + break; + } + oldBits = info.old_value; + let oldValue = bitcast(oldBits); + let newValue = oldValue + (${val}); + newBits = bitcast(newValue); + } + } + `; + } + const atomicStoreSnippet = `atomicStore(${ptr}, bitcast(${val}));`; + return this.sumDupeIndices ? atomicAddSnippet : atomicStoreSnippet; + }; + const userCode = ` + ${getUpdatesCoordsFromFlatIndex} + + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getUpdatesCoordsFromFlatIndex(index); + var flattenedIndex = 0; + for (var j = 0; j < uniforms.sliceDim; j = j + 1) { + let indexInside = i32(round(${indicesSnippet})); + flattenedIndex = flattenedIndex + indexInside * ${strideString}; + } + let updateValue = + ${mapToWgslTypes(this.type, false)}(${updatesSnippet}); + let flatIndex = getOutputIndexFromCoords(${outCoordsString}); + + ${atomicRMW("&result[flatIndex]", "updateValue")}; + } + }`; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/ScatterNd.js +function scatterNd4(args) { + const { inputs, backend: backend2, attrs } = args; + const { indices, updates } = inputs; + const { shape } = attrs; + const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(updates, indices, shape); + const flattenShape = [outputSize / sliceSize, sliceSize]; + if (outputSize === 0) { + return backend2.makeTensorInfo(shape, indices.dtype); + } + const flattenIndices = reshape6({ inputs: { x: indices }, backend: backend2, attrs: { shape: [numUpdates, sliceRank] } }); + const flattenX = reshape6({ inputs: { x: updates }, backend: backend2, attrs: { shape: [numUpdates, sliceSize] } }); + const type = flattenX.dtype; + const output = fill5({ backend: backend2, attrs: { shape: flattenShape, value: 0, dtype: type } }); + const size = util_exports.sizeFromShape(flattenX.shape); + const uniformData = [ + { type: "int32", data: [sliceRank] }, + { type: "int32", data: strides }, + { type: "int32", data: [size] } + ]; + const program = new ScatterProgram2(flattenX.shape, sliceRank, flattenIndices.shape.length, flattenX.shape.length, strides, flattenShape, type); + const res = backend2.runWebGPUProgram(program, [flattenX, flattenIndices], type, uniformData, output); + const reshaped = reshape6({ inputs: { x: res }, backend: backend2, attrs: { shape } }); + backend2.disposeData(flattenIndices.dataId); + backend2.disposeData(flattenX.dataId); + backend2.disposeData(res.dataId); + return reshaped; +} +var scatterNdConfig4 = { + kernelName: ScatterNd, + backendName: "webgpu", + kernelFunc: scatterNd4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/select_webgpu.js +var SelectProgram2 = class { + constructor(cRank, shape, rank) { + this.variableNames = ["c", "a", "b"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = shape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.cRank = cRank; + this.rank = rank; + this.shaderKey = "select"; + } + getUserCode() { + let cCoords; + let abCoords; + if (this.rank > 4) { + throw Error(`Where for rank ${this.rank} is not yet supported`); + } + if (this.rank === 1) { + abCoords = `resRC`; + cCoords = `resRC`; + } else { + const currentCoords = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"]; + const cCoordVars = []; + const abCoordVars = []; + for (let i2 = 0; i2 < this.outputShape.length; i2++) { + abCoordVars.push(`${currentCoords[i2]}`); + if (i2 < this.cRank) { + cCoordVars.push(`${currentCoords[i2]}`); + } + } + cCoords = cCoordVars.join(); + abCoords = abCoordVars.join(); + } + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let resRC = getCoordsFromIndex(index); + let cVal = getC(${cCoords}); + if (cVal >= 1.0) { + setOutputAtIndex(index, getA(${abCoords})); + } else { + setOutputAtIndex(index, getB(${abCoords})); + } + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Select.js +function select5(args) { + const { inputs, backend: backend2 } = args; + const { condition, t: t2, e: e2 } = inputs; + const program = new SelectProgram2(condition.shape.length, t2.shape, t2.shape.length); + return backend2.runWebGPUProgram(program, [condition, t2, e2], upcastType(t2.dtype, e2.dtype)); +} +var selectConfig4 = { + kernelName: Select, + backendName: "webgpu", + kernelFunc: select5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sigmoid.js +var sigmoid5 = unaryKernelFunc3({ opType: UnaryOpType.SIGMOID }); +var sigmoidConfig4 = { + kernelName: Sigmoid, + backendName: "webgpu", + kernelFunc: sigmoid5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sin.js +var sin4 = unaryKernelFunc3({ opType: UnaryOpType.SIN }); +var sinConfig4 = { + kernelName: Sin, + backendName: "webgpu", + kernelFunc: sin4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sinh.js +var sinh4 = unaryKernelFunc3({ opType: UnaryOpType.SINH }); +var sinhConfig3 = { + kernelName: Sinh, + backendName: "webgpu", + kernelFunc: sinh4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sub.js +var sub4 = binaryKernelFunc3({ opType: BinaryOpType.SUB, cpuKernelImpl: subImplCPU2, supportsComplex: true }); +var subConfig4 = { + kernelName: Sub, + backendName: "webgpu", + kernelFunc: sub4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Softmax.js +function softmax6(args) { + const { inputs, backend: backend2, attrs } = args; + const { logits } = inputs; + const { dim } = attrs; + const axes = util_exports.parseAxisParam([dim], logits.shape); + const maxLogit = max6({ + inputs: { x: logits }, + backend: backend2, + attrs: { reductionIndices: axes, keepDims: false } + }); + const expandedShape = backend_util_exports.expandShapeToKeepDim(maxLogit.shape, axes); + const maxLogitsReshaped = reshape6({ inputs: { x: maxLogit }, backend: backend2, attrs: { shape: expandedShape } }); + const a = sub4({ inputs: { a: logits, b: maxLogitsReshaped }, backend: backend2 }); + const b = exp4({ inputs: { x: a }, backend: backend2 }); + const sumExp = sum6({ inputs: { x: b }, backend: backend2, attrs: { axis: axes, keepDims: false } }); + const sumExpReshaped = reshape6({ inputs: { x: sumExp }, backend: backend2, attrs: { shape: expandedShape } }); + const res = realDiv2({ inputs: { a: b, b: sumExpReshaped }, backend: backend2 }); + backend2.disposeData(maxLogit.dataId); + backend2.disposeData(maxLogitsReshaped.dataId); + backend2.disposeData(a.dataId); + backend2.disposeData(b.dataId); + backend2.disposeData(sumExp.dataId); + backend2.disposeData(sumExpReshaped.dataId); + return res; +} +var softmaxConfig4 = { + kernelName: Softmax, + backendName: "webgpu", + kernelFunc: softmax6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SpaceToBatchND.js +var spaceToBatchND5 = (args) => { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { blockShape, paddings } = attrs; + util_exports.assert(x.shape.length <= 4, () => "spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet"); + const prod6 = blockShape.reduce((a, b) => a * b); + const completePaddings = [[0, 0]]; + completePaddings.push(...paddings); + for (let i2 = 1 + blockShape.length; i2 < x.shape.length; ++i2) { + completePaddings.push([0, 0]); + } + const toDispose = []; + const paddedX = padV23({ + inputs: { x }, + backend: backend2, + attrs: { paddings: completePaddings, constantValue: 0 } + }); + const reshapedPaddedShape = backend_util_exports.getReshaped(paddedX.shape, blockShape, prod6, false); + const permutedReshapedPaddedPermutation = backend_util_exports.getPermuted(reshapedPaddedShape.length, blockShape.length, false); + const flattenShape = backend_util_exports.getReshapedPermuted(paddedX.shape, blockShape, prod6, false); + const reshapedPaddedX = reshape6({ inputs: { x: paddedX }, backend: backend2, attrs: { shape: reshapedPaddedShape } }); + const paddedXT = transpose5({ + inputs: { x: reshapedPaddedX }, + backend: backend2, + attrs: { perm: permutedReshapedPaddedPermutation } + }); + const result = reshape6({ inputs: { x: paddedXT }, backend: backend2, attrs: { shape: flattenShape } }); + toDispose.push(paddedX); + toDispose.push(reshapedPaddedX); + toDispose.push(paddedXT); + toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); + return result; +}; +var spaceToBatchNDConfig4 = { + kernelName: SpaceToBatchND, + backendName: "webgpu", + kernelFunc: spaceToBatchND5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/tile_webgpu.js +var TileProgram2 = class { + constructor(aShape, reps) { + this.variableNames = ["A"]; + this.workGroupSize = [64, 1, 1]; + this.size = true; + const outputShape = new Array(aShape.length); + for (let i2 = 0; i2 < outputShape.length; i2++) { + outputShape[i2] = aShape[i2] * reps[i2]; + } + this.outputShape = outputShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.rank = this.outputShape.length; + this.shaderKey = "tile"; + } + getUserCode() { + const sourceCoords = getSourceCoords5(this.rank, "uniforms."); + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let resRC = getCoordsFromIndex(index); + setOutputAtIndex(index, getA(${sourceCoords})); + } + } + `; + return userCode; + } +}; +function getSourceCoords5(rank, uniformPrefix = "") { + if (rank >= 5) { + throw Error(`Tile for rank ${rank} is not yet supported`); + } + if (rank === 1) { + return `(resRC % ${uniformPrefix}aShape)`; + } + const currentCoords = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"]; + const sourceCoords = []; + for (let i2 = 0; i2 < rank; i2++) { + sourceCoords.push(`(${currentCoords[i2]} % ${uniformPrefix}aShape[${i2}])`); + } + return sourceCoords.join(); +} + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Tile.js +function tile6(params) { + const { inputs, backend: backend2, attrs } = params; + const { x } = inputs; + const { reps } = attrs; + if (backend2.shouldExecuteOnCPU([x]) || x.dtype === "string" || x.shape.length >= 5) { + const data = backend2.readSync(x.dataId); + const value = x.dtype === "string" ? data.map((d) => util_exports.decodeString(d)) : data; + const buf = buffer(x.shape, x.dtype, value); + const outBuf = tileImplCPU2(buf, reps); + return backend2.makeTensorInfo(outBuf.shape, outBuf.dtype, outBuf.values); + } + const program = new TileProgram2(x.shape, reps); + const output = backend2.runWebGPUProgram(program, [x], x.dtype); + return output; +} +var tileConfig4 = { + kernelName: Tile, + backendName: "webgpu", + kernelFunc: tile6 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SparseToDense.js +function sparseToDense4(args) { + const { inputs, backend: backend2, attrs } = args; + const { sparseIndices, sparseValues, defaultValue } = inputs; + const { outputShape } = attrs; + const { sliceRank, numUpdates, sliceSize, strides, outputSize } = backend_util_exports.calculateShapes(sparseValues, sparseIndices, outputShape); + const sumDupeIndices = false; + if (sparseValues.dtype === "string") { + const indicesBuf = backend2.bufferSync(sparseIndices); + const updatesBuf = backend2.bufferSync(sparseValues); + const $defaultValue2 = util_exports.decodeString(backend2.readSync(defaultValue.dataId)[0]); + const outBuf = scatterImplCPU2(indicesBuf, updatesBuf, outputShape, outputSize, sliceSize, numUpdates, sliceRank, strides, $defaultValue2, sumDupeIndices); + return backend2.makeTensorInfo(outputShape, outBuf.dtype, outBuf.values); + } + const flattenShape = [outputSize / sliceSize, sliceSize]; + const $sparseIndices = reshape6({ + inputs: { x: sparseIndices }, + backend: backend2, + attrs: { shape: [numUpdates, sliceRank] } + }); + const $sparseValues = sparseValues.shape.length ? reshape6({ + inputs: { x: sparseValues }, + backend: backend2, + attrs: { shape: [numUpdates, sliceSize] } + }) : identity5({ inputs: { x: sparseValues }, backend: backend2 }); + const type = $sparseValues.dtype; + const zero = backend2.makeTensorInfo([], type, util_exports.makeZerosTypedArray(1, type)); + const $defaultValue = reshape6({ + inputs: { x: defaultValue }, + backend: backend2, + attrs: { shape: Array(flattenShape.length).fill(1) } + }); + const $denseValues = tile6({ inputs: { x: $defaultValue }, backend: backend2, attrs: { reps: flattenShape } }); + const size = util_exports.sizeFromShape([numUpdates, sliceSize]); + const uniformData = [ + { type: "int32", data: [sliceRank] }, + { type: "int32", data: strides }, + { type: "int32", data: [size] } + ]; + switch (numUpdates) { + case 0: + break; + case 1: + if (true) { + const program = new ScatterProgram2([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides, flattenShape, type, sumDupeIndices); + backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues); + } + break; + default: + if (true) { + const program = new ScatterProgram2([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, zero.shape.length, strides, flattenShape, type, sumDupeIndices); + backend2.runWebGPUProgram(program, [zero, $sparseIndices], type, uniformData, $denseValues); + } + { + const program = new ScatterProgram2([numUpdates, sliceSize], sliceRank, $sparseIndices.shape.length, $sparseValues.shape.length, strides, flattenShape, type); + backend2.runWebGPUProgram(program, [$sparseValues, $sparseIndices], type, uniformData, $denseValues); + } + } + const denseValues = reshape6({ inputs: { x: $denseValues }, backend: backend2, attrs: { shape: outputShape } }); + backend2.disposeData($sparseIndices.dataId); + backend2.disposeData($sparseValues.dataId); + backend2.disposeData($defaultValue.dataId); + backend2.disposeData(zero.dataId); + backend2.disposeData($denseValues.dataId); + return denseValues; +} +var sparseToDenseConfig3 = { + kernelName: SparseToDense, + backendName: "webgpu", + kernelFunc: sparseToDense4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SplitV.js +function splitV4(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { numOrSizeSplits, axis } = attrs; + const $axis = util_exports.parseAxisParam(axis, x.shape)[0]; + const splitSizes = backend_util_exports.prepareSplitSize(x, numOrSizeSplits, $axis); + const xRank = x.shape.length; + const begin = new Array(xRank).fill(0); + const size = x.shape.slice(); + return splitSizes.map((s2) => { + const sliceSize = [...size]; + sliceSize[$axis] = s2; + const sliceT = slice5({ inputs: { x }, backend: backend2, attrs: { begin, size: sliceSize } }); + begin[$axis] += s2; + return sliceT; + }); +} +var splitVConfig4 = { + kernelName: SplitV, + backendName: "webgpu", + kernelFunc: splitV4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Sqrt.js +var sqrt4 = unaryKernelFunc3({ opType: UnaryOpType.SQRT }); +var sqrtConfig4 = { + kernelName: Sqrt, + backendName: "webgpu", + kernelFunc: sqrt4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Square.js +var squareConfig4 = { + kernelName: Square, + backendName: "webgpu", + kernelFunc: ({ inputs, backend: backend2 }) => { + const { x } = inputs; + const webGPUBackend = backend2; + const program = new UnaryOpProgram2(x.shape, UnaryOpType.SQUARE); + return webGPUBackend.runWebGPUProgram(program, [x], x.dtype); + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/SquaredDifference.js +var squaredDifference4 = binaryKernelFunc3({ + opType: BinaryOpType.SQUARED_DIFFERENCE +}); +var squaredDifferenceConfig4 = { + kernelName: SquaredDifference, + backendName: "webgpu", + kernelFunc: squaredDifference4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/strided_slice_webgpu.js +var StridedSliceProgram2 = class { + constructor(destSize) { + this.variableNames = ["x"]; + this.workPerThread = 1; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = destSize; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize, [this.workPerThread, 1, 1]); + const dtype = getCoordsDataType2(this.outputShape.length); + this.uniforms = `begin : ${dtype}, strides : ${dtype}, `; + this.shaderKey = "stridedSlice"; + } + getUserCode() { + const rank = this.outputShape.length; + let newCoords = ""; + if (rank === 1) { + newCoords = "coords * uniforms.strides + uniforms.begin"; + } else { + let outputAxis = 0; + newCoords = this.outputShape.map((_, i2) => { + outputAxis++; + return this.outputShape.length === 1 ? `coords * uniforms.strides[${i2}] + uniforms.begin[${i2}]` : `coords[${outputAxis - 1}] * uniforms.strides[${i2}] + uniforms.begin[${i2}]`; + }).join(","); + } + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + setOutputAtIndex(index, getX(${newCoords})); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/StridedSlice.js +function stridedSlice5(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask } = attrs; + const { finalShapeSparse, finalShape, isIdentity, sliceDim0, isSimpleSlice, begin: $begin, end: $end, strides: $strides } = slice_util_exports.sliceInfo(x.shape, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask); + let result; + if (isIdentity) { + result = reshape6({ inputs: { x }, backend: backend2, attrs: { shape: finalShape } }); + } else if (sliceDim0 || isSimpleSlice) { + util_exports.assert(x.shape.length >= 1, () => `Input must have rank at least 1, got: ${x.shape.length}`); + const size = slice_util_exports.computeOutShape($begin, $end, $strides); + const sliced = slice5({ inputs: { x }, backend: backend2, attrs: { begin: $begin, size } }); + result = reshape6({ inputs: { x: sliced }, backend: backend2, attrs: { shape: finalShape } }); + backend2.disposeData(sliced.dataId); + } else { + const shouldExecuteOnCPU = backend2.shouldExecuteOnCPU([x]); + if (shouldExecuteOnCPU) { + const values = backend2.readSync(x.dataId); + const xBuf = buffer(x.shape, x.dtype, values); + const resultValues = stridedSliceImplCPU2(finalShapeSparse, xBuf, $strides, $begin); + result = backend2.makeTensorInfo(finalShape, x.dtype, resultValues.values); + } else { + const program = new StridedSliceProgram2(finalShapeSparse); + const uniformData = [{ type: "int32", data: $begin }, { type: "int32", data: $strides }]; + const resultValues = backend2.runWebGPUProgram(program, [x], x.dtype, uniformData); + result = reshape6({ inputs: { x: resultValues }, backend: backend2, attrs: { shape: finalShape } }); + backend2.disposeData(resultValues.dataId); + } + } + return result; +} +var stridedSliceConfig4 = { + kernelName: StridedSlice, + backendName: "webgpu", + kernelFunc: stridedSlice5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/StringNGrams.js +function stringNGrams5(args) { + const { inputs, backend: backend2, attrs } = args; + const { separator, nGramWidths, leftPad, rightPad: rightPad2, padWidth, preserveShortSequences } = attrs; + const { data, dataSplits } = inputs; + const $data = backend2.readSync(data.dataId); + const $dataSplits = backend2.readSync(dataSplits.dataId); + const [nGrams, nGramsSplits] = stringNGramsImplCPU2($data, $dataSplits, separator, nGramWidths, leftPad, rightPad2, padWidth, preserveShortSequences); + return [ + backend2.makeTensorInfo([nGrams.length], "string", nGrams), + backend2.makeTensorInfo(dataSplits.shape, "int32", nGramsSplits) + ]; +} +var stringNGramsConfig4 = { + kernelName: StringNGrams, + backendName: "webgpu", + kernelFunc: stringNGrams5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Tanh.js +var tanh5 = unaryKernelFunc3({ opType: UnaryOpType.TANH }); +var tanhConfig4 = { + kernelName: Tanh, + backendName: "webgpu", + kernelFunc: tanh5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/top_k_webgpu.js +var SwapProgram2 = class { + constructor(shape) { + this.variableNames = ["x", "indices"]; + this.workGroupSize = [256, 1, 1]; + this.size = true; + this.outputShape = shape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.uniforms = `inputSize : i32, firstPass : i32, negativeInf : f32, + dir : i32, inc : i32,`; + this.shaderKey = "swap"; + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let outC = getCoordsFromIndex(index); + let batch = outC[0]; + let elemIdx = outC[1]; + // We compare elements pair-wise within a group of size 2 * inc. + // The comparing rule for each group alternates between ascending + // and descending. Within each group, we compare each pair at + // positions i and i+inc. To decide whether an element at position i + // is x0 or x1, we mod it by 2 * inc, if the result is smaller than + // inc, it is in the first half of the group, we denote it as x0, + // otherwise we denote it as x1. + // For example, as shown in the Bitonic top K paper referenced + // above, Figure5(a) shows that element[1] is in the second half of + // the group when group size is 2, but it is in the first half of + // the group when group size is 4. + let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc; + var i = 0; + if (isFirstInPair) { + i = elemIdx; + } else { + i = elemIdx - uniforms.inc; + } + + var i0 = 0; + if (uniforms.firstPass == 1) { + i0 = i; + } else { + i0 = i32(getIndices(batch, i)); + } + + var i1 = 0; + if (uniforms.firstPass == 1) { + i1 = i + uniforms.inc; + } else { + i1 = i32(getIndices(batch, i + uniforms.inc)); + } + + var x0 = f32(0.0); + var x1 = f32(0.0); + if (i0 < uniforms.inputSize) { + x0 = getX(batch, i0); + } else { + x0 = uniforms.negativeInf; + } + if (i1 < uniforms.inputSize) { + x1 = getX(batch, i1); + } else { + x1 = uniforms.negativeInf; + } + + let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir; + let isGreater = x0 > x1 || (x0 == x1 && i1 > i0); + if (reverse == isGreater) { + // Elements in opposite order of direction + let iTemp = i0; + i0 = i1; + i1 = iTemp; + } + if (isFirstInPair) { + setOutputAtIndex(index, f32(i0)); + } else { + setOutputAtIndex(index, f32(i1)); + } + } + } + `; + return userCode; + } +}; +var MergeProgram2 = class { + constructor(shape) { + this.variableNames = ["x", "indices"]; + this.workGroupSize = [256, 1, 1]; + this.size = true; + this.outputShape = shape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.uniforms = `inputSize : i32, firstPass : i32, k : i32,`; + this.shaderKey = "merge"; + } + getUserCode() { + const userCode = ` + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let outC = getCoordsFromIndex(index); + let batch = outC[0]; + let elemIdx = outC[1]; + // The output size is half of the previous size. + // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ + // (k=4), we only need to output the indices at positions |, the + // indices at positions _ can be thrown away, see Figure5(b) After + // Phase 2 (Merge phase) in the Bitonic Top K paper referenced + // above. + // For example, the paper shows we only need to output the orange + // bars. The output sequence should look like this | | | | | | | |. + // Because the sequence is halved, to map the output index back to + // the previous sequence to find the corresponding value, we need + // to double the index. When we double the index, we basically + // interpolate a position, so 2i looks like + // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k + // position of each 2k positions by - elemIdx % k. E.g. for output + // at index 4,5,6,7, we want to get the corresponding element at + // original index 8,9,10,11, for output at index 8,9,10,11, + // we want to get the corresponding element at original index + // 16,17,18,19, so on and so forth. + + var i = 0; + if (elemIdx < uniforms.k) { + i = elemIdx; + } else { + i = elemIdx * 2 - elemIdx % uniforms.k; + } + var i0 = 0; + if (uniforms.firstPass == 1) { + i0 = i; + } else { + i0 = i32(getIndices(batch, i)); + } + var i1 = 0; + if (uniforms.firstPass == 1) { + i1 = i + uniforms.k; + } else { + i1 = i32(getIndices(batch, i + uniforms.k)); + } + + let x0 = getX(batch, i0); + var x1 = f32(0.0); + if (i1 < uniforms.inputSize) { + x1 = getX(batch, i1); + } else { + x1 = x0; + } + + if (x0 >= x1) { + setOutputAtIndex(index, f32(i0)); + } else { + setOutputAtIndex(index, f32(i1)); + } + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/TopK.js +function disposeIntermediateTensorInfoOrNull2(backend2, tensorInfo) { + if (tensorInfo !== null) { + backend2.disposeData(tensorInfo.dataId); + } +} +function roundUpToPow22(num) { + let pow22 = 1; + while (pow22 < num) { + pow22 *= 2; + } + return pow22; +} +function topK3(args) { + const { inputs, backend: backend2, attrs } = args; + const { x } = inputs; + const { k, sorted } = attrs; + const xShape = x.shape; + const lastDim = xShape[xShape.length - 1]; + if (backend2.shouldExecuteOnCPU([x])) { + const xVals = backend2.readSync(x.dataId); + const [allTopKVals, allTopKIndices] = topKImplCPU2(xVals, xShape, x.dtype, k, sorted); + return [ + backend2.makeTensorInfo(allTopKVals.shape, allTopKVals.dtype, allTopKVals.values), + backend2.makeTensorInfo(allTopKIndices.shape, allTopKIndices.dtype, allTopKIndices.values) + ]; + } + if (k === 0) { + xShape[xShape.length - 1] = 0; + return [ + backend2.makeTensorInfo(xShape, x.dtype, []), + backend2.makeTensorInfo(xShape, "int32", []) + ]; + } + if (lastDim === 1) { + return [ + x, + fill5({ attrs: { shape: xShape, dtype: "int32", value: 0 }, backend: backend2 }) + ]; + } + const xSize = util_exports.sizeFromShape(xShape); + const batch = xSize / lastDim; + const x2D = reshape6({ inputs: { x }, attrs: { shape: [batch, lastDim] }, backend: backend2 }); + const kPow2 = roundUpToPow22(k); + const lastDimPow2 = roundUpToPow22(lastDim); + let indices = null; + const getInputs = () => indices === null ? [x2D, x2D] : [x2D, indices]; + const runSwap = (dir, inc, shape) => { + const inputs2 = getInputs(); + const program = new SwapProgram2(shape); + const firstPass = indices === null ? 1 : 0; + const uniformDataSwap = [ + { type: "int32", data: [lastDim] }, + { type: "int32", data: [firstPass] }, + { type: "float32", data: [Number.NEGATIVE_INFINITY] }, + { type: "int32", data: [dir] }, + { type: "int32", data: [inc] } + ]; + const prevIndices2 = indices; + indices = backend2.runWebGPUProgram(program, inputs2, "int32", uniformDataSwap); + disposeIntermediateTensorInfoOrNull2(backend2, prevIndices2); + }; + for (let len = 1; len < kPow2; len *= 2) { + const dir = len * 2; + for (let inc = len; inc >= 1; inc /= 2) { + runSwap(dir, inc, [batch, lastDimPow2]); + } + } + for (let indicesSize = lastDimPow2; indicesSize > kPow2; indicesSize /= 2) { + const inputs2 = getInputs(); + const mergeProgram = new MergeProgram2([batch, indicesSize / 2]); + const firstPass = indices === null ? 1 : 0; + const uniformDataMerge = [ + { type: "int32", data: [lastDim] }, + { type: "int32", data: [firstPass] }, + { type: "int32", data: [kPow2] } + ]; + const prevIndices2 = indices; + indices = backend2.runWebGPUProgram(mergeProgram, inputs2, "int32", uniformDataMerge); + disposeIntermediateTensorInfoOrNull2(backend2, prevIndices2); + const len = kPow2 / 2; + const dir = len * 2; + for (let inc = len; inc >= 1; inc /= 2) { + runSwap(dir, inc, indices.shape); + } + } + let prevIndices = indices; + indices = slice5({ inputs: { x: indices }, backend: backend2, attrs: { begin: 0, size: [batch, k] } }); + disposeIntermediateTensorInfoOrNull2(backend2, prevIndices); + let values = gatherV24({ inputs: { x: x2D, indices }, backend: backend2, attrs: { axis: 1, batchDims: 1 } }); + disposeIntermediateTensorInfoOrNull2(backend2, x2D); + const newShape = xShape.slice(0, -1); + newShape.push(k); + prevIndices = indices; + indices = reshape6({ inputs: { x: indices }, attrs: { shape: newShape }, backend: backend2 }); + disposeIntermediateTensorInfoOrNull2(backend2, prevIndices); + const prevValues = values; + values = reshape6({ inputs: { x: values }, attrs: { shape: newShape }, backend: backend2 }); + disposeIntermediateTensorInfoOrNull2(backend2, prevValues); + return [values, indices]; +} +var topKConfig4 = { + kernelName: TopK, + backendName: "webgpu", + kernelFunc: topK3 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/transform_webgpu.js +var TransformProgram2 = class { + constructor(outShape) { + this.variableNames = ["Image", "Transforms"]; + this.uniforms = "interpolationModeId : i32, fillModeId : i32, fillValue : f32,"; + this.workGroupSize = [64, 1, 1]; + this.size = true; + this.outputShape = outShape; + this.dispatchLayout = flatDispatchLayout(this.outputShape); + this.dispatch = computeDispatch(this.dispatchLayout, this.outputShape, this.workGroupSize); + this.shaderKey = "transform"; + } + getUserCode() { + const userCode = ` + fn mapCoord(outCoord : f32, len : f32) -> f32{ + var inCoord = outCoord; + if(uniforms.fillModeId == 2) { + if (inCoord < 0.0) { + if (len <= 1.0) { + inCoord = 0.0; + } else { + let sz2 = 2.0 * len; + if (inCoord < sz2) { + inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) + + inCoord; + } + if (inCoord < -len) { + inCoord = inCoord + sz2; + } else { + inCoord = -inCoord - 1.0; + } + } + } else if (inCoord > len - 1.0) { + if (len <= 1.0) { + inCoord = 0.0; + } else { + let sz2 = 2.0 * len; + inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2))); + if (inCoord >= len) { + inCoord = sz2 - inCoord - 1.0; + } + } + } + return clamp(inCoord, 0.0, len - 1.0); + } else if (uniforms.fillModeId == 3) { + if (inCoord < 0.0) { + if (len <= 1.0) { + inCoord = 0.0; + } else { + let sz = len - 1.0; + inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0); + } + } else if (inCoord > len - 1.0) { + if (len <= 1.0) { + inCoord = 0.0; + } else { + let sz = len - 1.0; + inCoord = inCoord - len * f32(i32(f32(inCoord / sz))); + } + } + return clamp(inCoord, 0.0, len - 1.0); + } else if (uniforms.fillModeId == 4) { + return clamp(outCoord, 0.0, len - 1.0); + } + return outCoord; + } + fn readWithFillValue(batch : i32, coordY : i32, coordX : i32, + channel : i32) -> f32 { + var outputValue : f32; + if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) { + outputValue = getImage(batch, coordY, coordX, channel); + } else { + outputValue = uniforms.fillValue; + } + return outputValue; + } + + ${getMainHeaderString("index")} { + if (index < uniforms.size) { + let coords = getCoordsFromIndex(index); + var outputValue : f32; + let batch = coords[0]; + let x = coords[2]; + let y = coords[1]; + let channel = coords[3]; + let xf = f32(x); + let yf = f32(y); + let a1 = getTransforms(batch, 0); + let a2 = getTransforms(batch, 1); + let a3 = getTransforms(batch, 2); + let b1 = getTransforms(batch, 3); + let b2 = getTransforms(batch, 4); + let b3 = getTransforms(batch, 5); + let c1 = getTransforms(batch, 6); + let c2 = getTransforms(batch, 7); + let projection = c1 * xf + c2 * yf + 1.0; + if (projection == 0.0) { + outputValue = uniforms.fillValue; + } else { + let inX = (a1 * xf + a2 * yf + a3) / projection; + let inY = (b1 * xf + b2 * yf + b3) / projection; + let mapX = mapCoord(inX, f32(uniforms.imageShape[2])); + let mapY = mapCoord(inY, f32(uniforms.imageShape[1])); + + if (uniforms.interpolationModeId == 1) { + let coordY = i32(round(mapY)); + let coordX = i32(round(mapX)); + outputValue = readWithFillValue(batch, coordY, coordX, + channel); + } else { + let yFloor = floor(mapY); + let xFloor = floor(mapX); + let yCeil = yFloor + 1.0; + let xCeil = xFloor + 1.0; + let valueYFloor = (xCeil - mapX) * + readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) + + (mapX - xFloor) * + readWithFillValue(batch, i32(yFloor), i32(xCeil), channel); + let valueYCeil = (xCeil - mapX) * + readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) + + (mapX - xFloor) * + readWithFillValue(batch, i32(yCeil), i32(xCeil), channel); + outputValue = (yCeil - mapY) * valueYFloor + + (mapY - yFloor) * valueYCeil; + } + } + setOutputAtIndex(index, outputValue); + } + } + `; + return userCode; + } +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Transform.js +function transform5(args) { + const { inputs, backend: backend2, attrs } = args; + const { image: image2, transforms } = inputs; + const { interpolation, fillMode, fillValue, outputShape } = attrs; + const [batch, imageHeight, imageWidth, numChannels] = image2.shape; + const [outHeight, outWidth] = outputShape != null ? outputShape : [imageHeight, imageWidth]; + const outShape = [ + batch, + outHeight, + outWidth, + numChannels + ]; + const program = new TransformProgram2(outShape); + const interpolationModeId = interpolation === "nearest" ? 1 : 2; + let fillModeId; + switch (fillMode) { + case "constant": + fillModeId = 1; + break; + case "reflect": + fillModeId = 2; + break; + case "wrap": + fillModeId = 3; + break; + case "nearest": + fillModeId = 4; + break; + default: + fillModeId = 1; + break; + } + const uniformData = [ + { type: "int32", data: [interpolationModeId] }, + { type: "int32", data: [fillModeId] }, + { type: "float32", data: [fillValue] } + ]; + return backend2.runWebGPUProgram(program, [image2, transforms], "float32", uniformData); +} +var transformConfig4 = { + kernelName: Transform, + backendName: "webgpu", + kernelFunc: transform5 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/kernels/Unpack.js +function unpack4(args) { + const { inputs, backend: backend2, attrs } = args; + const { value } = inputs; + let { axis } = attrs; + if (axis < 0) { + axis += value.shape.length; + } + const x = value; + const xRank = x.shape.length; + const num = value.shape[axis]; + const outShape = new Array(xRank - 1); + let outIndex = 0; + for (let i2 = 0; i2 < xRank; i2++) { + if (i2 !== axis) { + outShape[outIndex++] = x.shape[i2]; + } + } + const toDispose = []; + const begin = new Array(xRank).fill(0); + const size = x.shape.slice(); + size[axis] = 1; + const res = new Array(num); + for (let i2 = 0; i2 < res.length; i2++) { + begin[axis] = i2; + const sliced = slice5({ inputs: { x }, backend: backend2, attrs: { begin, size } }); + const reshaped = reshape6({ inputs: { x: sliced }, backend: backend2, attrs: { shape: outShape } }); + res[i2] = reshaped; + toDispose.push(sliced); + } + toDispose.forEach((t2) => backend2.disposeData(t2.dataId)); + return res; +} +var unpackConfig4 = { + kernelName: Unpack, + backendName: "webgpu", + kernelFunc: unpack4 +}; + +// node_modules/.pnpm/@tensorflow+tfjs-backend-webgpu@0.0.1-alpha.13_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-webgpu/dist/register_all_kernels.js +var kernelConfigs4 = [ + _fusedMatMulConfig4, + absConfig4, + addConfig4, + addNConfig4, + argMaxConfig4, + argMinConfig3, + atan2Config3, + avgPoolConfig4, + batchMatMulConfig4, + batchToSpaceNDConfig4, + castConfig4, + ceilConfig4, + clipByValueConfig4, + complexConfig3, + concatConfig4, + conv2DConfig4, + conv2DBackpropInputConfig4, + cosConfig4, + coshConfig4, + cropAndResizeConfig4, + cumprodConfig4, + cumsumConfig4, + depthToSpaceConfig4, + depthwiseConv2dNativeConfig4, + einsumConfig3, + eluConfig4, + equalConfig4, + expConfig4, + expandDimsConfig4, + expm1Config3, + fillConfig4, + flipLeftRightConfig4, + fromPixelsConfig2, + floorConfig4, + floorDivConfig4, + fusedBatchNormConfig2, + fusedConv2DConfig4, + fusedDepthwiseConv2DConfig4, + gatherNdConfig4, + gatherV2Config4, + greaterConfig4, + greaterEqualConfig4, + identityConfig4, + imagConfig3, + isNaNConfig3, + leakyReluConfig4, + lessConfig4, + lessEqualConfig4, + logConfig4, + logicalAndConfig4, + logicalNotConfig4, + maxConfig4, + maximumConfig4, + maxPoolConfig4, + meanConfig4, + minConfig4, + minimumConfig4, + mirrorPadConfig4, + multiplyConfig4, + negConfig4, + nonMaxSuppressionV3Config4, + nonMaxSuppressionV5Config4, + notEqualConfig4, + onesLikeConfig4, + packConfig4, + padV2Config4, + powConfig4, + preluConfig4, + prodConfig4, + rangeConfig4, + realConfig3, + realDivConfig4, + reciprocalConfig3, + reluConfig4, + relu6Config4, + reshapeConfig4, + resizeBilinearConfig4, + resizeNearestNeighborConfig4, + rotateWithOffsetConfig4, + rsqrtConfig4, + scatterNdConfig4, + selectConfig4, + sigmoidConfig4, + sinConfig4, + sinhConfig3, + sliceConfig4, + stridedSliceConfig4, + stringNGramsConfig4, + softmaxConfig4, + spaceToBatchNDConfig4, + sparseToDenseConfig3, + splitVConfig4, + sqrtConfig4, + squareConfig4, + squaredDifferenceConfig4, + subConfig4, + sumConfig4, + tanhConfig4, + tileConfig4, + topKConfig4, + transformConfig4, + transposeConfig4, + unpackConfig4, + zerosLikeConfig4 +]; +for (const kernelConfig of kernelConfigs4) { + registerKernel(kernelConfig); +} + // dist/tfjs.version.js var e = "3.20.0"; var s = "3.20.0"; @@ -77084,6 +75781,7 @@ export { UnsortedSegmentSum, UpperBound, Variable, + WebGPUBackend, ZerosLike, _FusedMatMul, abs, @@ -77378,7 +76076,7 @@ export { version6 as version_webgl, webgl, webgl_util_exports as webgl_util, - webgpu_exports as webgpu, + webgpu_util_exports as webgpu_util, where, whereAsync, zeros, diff --git a/package.json b/package.json index 00dc5a98..2c14939b 100644 --- a/package.json +++ b/package.json @@ -68,7 +68,7 @@ "@tensorflow/tfjs-backend-cpu": "^3.20.0", "@tensorflow/tfjs-backend-wasm": "^3.20.0", "@tensorflow/tfjs-backend-webgl": "^3.20.0", - "@tensorflow/tfjs-backend-webgpu": "0.0.1-alpha.12", + "@tensorflow/tfjs-backend-webgpu": "0.0.1-alpha.13", "@tensorflow/tfjs-converter": "^3.20.0", "@tensorflow/tfjs-core": "^3.20.0", "@tensorflow/tfjs-data": "^3.20.0", @@ -78,8 +78,8 @@ "@tensorflow/tfjs-tflite": "0.0.1-alpha.8", "@types/node": "^18.7.14", "@types/offscreencanvas": "^2019.7.0", - "@typescript-eslint/eslint-plugin": "^5.36.0", - "@typescript-eslint/parser": "^5.36.0", + "@typescript-eslint/eslint-plugin": "^5.36.1", + "@typescript-eslint/parser": "^5.36.1", "@vladmandic/build": "^0.7.11", "@vladmandic/pilogger": "^0.4.6", "@vladmandic/tfjs": "github:vladmandic/tfjs", @@ -97,7 +97,7 @@ "rimraf": "^3.0.2", "seedrandom": "^3.0.5", "tslib": "^2.4.0", - "typedoc": "0.23.11", + "typedoc": "0.23.12", "typescript": "4.8.2" } } diff --git a/src/face/attention.ts b/src/face/attention.ts index 46960a43..757058a9 100644 --- a/src/face/attention.ts +++ b/src/face/attention.ts @@ -5,12 +5,15 @@ export async function augment(rawCoords, results: Tensor[]) { const t: Record = { // all attention models produce 2d results so it needs to be later augmented with correct z-coords // mesh: results[0], // already have it in rawCoords // output_mesh_identity // flag: results[1], // already processed in parent // conv_faceflag - lips: await results.filter((r) => r.size === 160)[0].data() as Float32Array, // 80 x 2d = 160 // output_lips - irisL: await results.filter((r) => r.size === 10)[0].data() as Float32Array, // 5 x 2d = 10 // output_right_iris - eyeL: await results.filter((r) => r.size === 142)[0].data() as Float32Array, // 71 x 2d = 142 // output_right_eye - irisR: await results.filter((r) => r.size === 10)[1].data() as Float32Array, // 5 x 2d = 10 // output_left_iris - eyeR: await results.filter((r) => r.size === 142)[1].data() as Float32Array, // 71 x 2d = 142// output_left_eye + lips: await results.filter((r) => r.size === 160)?.[0]?.data() as Float32Array, // 80 x 2d = 160 // output_lips + irisL: await results.filter((r) => r.size === 10)?.[0]?.data() as Float32Array, // 5 x 2d = 10 // output_right_iris + eyeL: await results.filter((r) => r.size === 142)?.[0]?.data() as Float32Array, // 71 x 2d = 142 // output_right_eye + irisR: await results.filter((r) => r.size === 10)?.[1]?.data() as Float32Array, // 5 x 2d = 10 // output_left_iris + eyeR: await results.filter((r) => r.size === 142)?.[1]?.data() as Float32Array, // 71 x 2d = 142// output_left_eye }; + for (const val of Object.values(t)) { + if (!val) return rawCoords; // could not find tensor + } // augment iris: adds additional 5 keypoints per eye const irisLDepth = constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.reduce((prev, curr) => prev += rawCoords[curr][2], 0) / constants.LANDMARKS_REFINEMENT_LEFT_EYE_CONFIG.length; // get average z-coord for iris diff --git a/src/face/facemesh.ts b/src/face/facemesh.ts index 6e4e4d57..17fccd45 100644 --- a/src/face/facemesh.ts +++ b/src/face/facemesh.ts @@ -90,6 +90,7 @@ export async function predict(input: Tensor, config: Config): Promise t.shape[t.shape.length - 1] === 1) as Tensor; const faceConfidence = await confidenceT.data(); face.faceScore = Math.round(100 * faceConfidence[0]) / 100; - if (face.faceScore < (config.face.detector?.minConfidence || 1)) { // low confidence in detected mesh box.confidence = face.faceScore; // reset confidence of cached box if (config.face.mesh.keepInvalid) { diff --git a/src/human.ts b/src/human.ts index c6513c04..a25c51db 100644 --- a/src/human.ts +++ b/src/human.ts @@ -204,11 +204,15 @@ export class Human { const currentBackend = this.config.backend; // save backend; this.config = JSON.parse(JSON.stringify(defaults)); this.config.backend = currentBackend; + image.reset(); + env.initial = true; } /** Validate current configuration schema */ validate(userConfig?: Partial) { - return validate(defaults, userConfig || this.config); + const msgs = validate(defaults, userConfig || this.config); + if (msgs.length === 0) this.config = mergeDeep(this.config, userConfig) as Config; + return msgs; } /** Check model for invalid kernel ops for current backend */ @@ -280,6 +284,7 @@ export class Human { async init(): Promise { await backend.check(this, true); await this.tf.ready(); + image.reset(); } /** Load method preloads all configured models on-demand diff --git a/src/image/image.ts b/src/image/image.ts index fe89c957..681b0880 100644 --- a/src/image/image.ts +++ b/src/image/image.ts @@ -24,6 +24,13 @@ const last: { inputSum: number, cacheDiff: number, sumMethod: number, inputTenso inputTensor: undefined, }; +export function reset() { + last.inputSum = 0; + last.cacheDiff = 1; + last.sumMethod = 0; + last.inputTensor = undefined; +} + export function canvas(width: number, height: number): AnyCanvas { let c: AnyCanvas; if (env.browser) { // browser defines canvas object diff --git a/src/models.ts b/src/models.ts index 4a9a5d5b..595b41e7 100644 --- a/src/models.ts +++ b/src/models.ts @@ -123,7 +123,7 @@ export async function load(instance: Human): Promise { if (instance.config.face.enabled && instance.config.face.description?.enabled && !instance.models.faceres) instance.models.faceres = faceres.load(instance.config); if (instance.config.face.enabled && instance.config.face.emotion?.enabled && !instance.models.emotion) instance.models.emotion = emotion.load(instance.config); if (instance.config.face.enabled && instance.config.face.iris?.enabled && !instance.config.face.attention?.enabled && !instance.models.faceiris) instance.models.faceiris = iris.load(instance.config); - if (instance.config.face.enabled && instance.config.face.mesh?.enabled && !instance.models.facemesh) instance.models.facemesh = facemesh.load(instance.config); + if (instance.config.face.enabled && instance.config.face.mesh?.enabled && (!instance.models.facemesh)) instance.models.facemesh = facemesh.load(instance.config); if (instance.config.face.enabled && instance.config.face['gear']?.enabled && !instance.models.gear) instance.models.gear = gear.load(instance.config); if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetage) instance.models.ssrnetage = ssrnetAge.load(instance.config); if (instance.config.face.enabled && instance.config.face['ssrnet']?.enabled && !instance.models.ssrnetgender) instance.models.ssrnetgender = ssrnetGender.load(instance.config); diff --git a/src/object/centernet.ts b/src/object/centernet.ts index ff77c83e..908ad58e 100644 --- a/src/object/centernet.ts +++ b/src/object/centernet.ts @@ -48,6 +48,7 @@ async function process(res: Tensor | null, outputShape: [number, number], config for (const id of Array.from(nms)) { const score = Math.trunc(100 * detections[0][id][4]) / 100; const classVal = detections[0][id][5]; + if (Number.isNaN(classVal)) continue; const label = labels[classVal].label as ObjectType; const [x, y] = [ detections[0][id][0] / inputSize, diff --git a/test/browser.html b/test/browser.html index 7a30f1a4..0e53bff0 100644 --- a/test/browser.html +++ b/test/browser.html @@ -13,11 +13,11 @@ diff --git a/test/browser.js b/test/browser.js index d33ee41a..5a8b0d40 100644 --- a/test/browser.js +++ b/test/browser.js @@ -1,12 +1,6 @@ import { Human } from '../dist/human.esm.js'; -const config = { - async: true, - warmup: 'none', - debug: true, - cacheSensitivity: 0, - object: { enabled: true }, -}; +let human; const backends = ['wasm', 'humangl', 'webgl', 'webgpu']; @@ -68,10 +62,72 @@ async function events(event) { document.getElementById('events').innerText = `${Math.round(performance.now() - start)}ms Event: ${event}`; } +async function testDefault(title, testConfig = {}) { + const t0 = human.now(); + let res; + for (const model of Object.keys(human.models)) { // unload models + if (human.models[model]) { + // if (human.models[model].dispose) human.models[model].dispose(); + human.models[model] = null; + } + } + human.reset(); + res = human.validate(testConfig); // validate + if (res && res.length > 0) log(' invalid configuration', res); + log(`test ${title}/${human.tf.getBackend()}`, human.config); + await human.load(); + const models = Object.keys(human.models).map((model) => ({ name: model, loaded: (human.models[model] !== null) })); + log(' models', models); + const ops = await human.check(); + if (ops && ops.length > 0) log(' missing ops', ops); + const img = await image('../../samples/in/ai-body.jpg'); + const input = await human.image(img); // process image + draw(input.canvas); + res = await human.warmup({ warmup: 'face' }); // warmup + draw(res.canvas); + const t1 = human.now(); + res = await human.detect(input.tensor, testConfig); // run detect + const t2 = human.now(); + human.next(); // run interpolation + const persons = res.persons; // run persons getter + log(' summary', { persons: persons.length, face: res.face.length, body: res.body.length, hand: res.hand.length, object: res.object.length, gesture: res.gesture.length }); + // log(' memory', human.tf.memory()); + // log(' performance', human.performance); + human.tf.dispose(input.tensor); + log(` finished ${title}/${human.tf.getBackend()}`, { init: Math.round(t1 - t0), detect: Math.round(t2 - t1) }); + return res; +} + +async function runBenchmark() { + const img = await image('../../samples/in/ai-face.jpg'); + human.reset(); + const s0 = human.now(); + await human.load(); + await human.warmup(); + const s1 = human.now(); + for (const val of [0, 0.25, 0.5, 0.75, 10]) { + human.performance = {}; + const t0 = performance.now(); + for (let i = 0; i < 10; i++) { + const res = await human.detect(img, { cacheSensitivity: val, filter: { pixelate: 5 * i }, object: { enabled: true } }); // run detect with increased pixelization on each iteration + draw(res.canvas); + } + const t1 = performance.now(); + log(' benchmark', { time: Math.round((t1 - t0) / 10), backend: human.tf.getBackend(), cacheSensitivity: val, performance: human.performance }); + await wait(1); + } + const s2 = human.now(); + log(' total', human.tf.getBackend(), { detect: Math.round(s2 - s1), init: Math.round(s1 - s0) }); + draw(); +} + async function main() { log('human tests'); - let res; - const human = new Human(config); + + // create instance + human = new Human({ debug: true }); + + // explicit init await human.init(); human.events.addEventListener('warmup', () => events('warmup')); human.events.addEventListener('image', () => events('image')); @@ -83,60 +139,36 @@ async function main() { const env = JSON.parse(JSON.stringify(human.env)); env.kernels = human.env.kernels.length; detailed('environment', env); + // detailed('config', human.config); - detailed('config', human.config); - await human.load(); - const models = Object.keys(human.models).map((model) => ({ name: model, loaded: (human.models[model] !== null) })); - log('models', models); for (const backend of backends) { - log(); - log('test start:', backend); + human.config.backend = backend; + await human.init(); // init + if (human.tf.getBackend() !== backend) { + log('desired', backend, 'detected', human.tf.getBackend()); + continue; // wrong backend + } + await testDefault('default', { debug: true }); + await testDefault('sync', { debug: true, async: false }); + await testDefault('none', { debug: true, async: true, face: { enabled: false }, body: { enabled: false }, hand: { enabled: false }, gesture: { enabled: false }, segmentation: { enabled: false }, object: { enabled: false } }); + await testDefault('object', { debug: true, async: true, face: { enabled: false }, body: { enabled: false }, hand: { enabled: false }, gesture: { enabled: false }, segmentation: { enabled: false }, object: { enabled: true } }); + // TBD detectors only + // TBD segmentation + // TBD face match + // TBD non-default models + // TBD web workers + // TBD multiple instances + } + log('tests complete'); + for (const backend of backends) { + log('benchmark backend:', backend); human.config.backend = backend; await human.init(); - log('desired', backend, 'detected', human.tf.getBackend()); - if (human.tf.getBackend() !== backend) { - continue; - } - log('memory', human.tf.memory()); - res = await human.validate(); - log('validate', res); - res = await human.warmup({ warmup: 'face' }); - draw(res.canvas); - log('warmup', 'face'); - let img = await image('../../samples/in/ai-body.jpg'); - const input = await human.image(img); - log('input', input.tensor.shape); - draw(res.canvas); - res = await human.detect(input.tensor); - log('detect'); - human.next(); - log('interpolate'); - const persons = res.persons; - log('persons'); - log('summary', { persons: persons.length, face: res.face.length, body: res.body.length, hand: res.hand.length, object: res.object.length, gesture: res.gesture.length }); - log('performance', human.performance); - human.tf.dispose(input.tensor); - draw(); - - img = await image('../../samples/in/ai-face.jpg'); - for (const val of [0, 0.25, 0.5, 0.75, 10]) { - human.performance = {}; - const t0 = performance.now(); - for (let i = 0; i < 10; i++) { - res = await human.detect(img, { cacheSensitivity: val, filter: { pixelate: 5 * i }, object: { enabled: false } }); - draw(res.canvas); - } - const t1 = performance.now(); - log('benchmark', { time: Math.round((t1 - t0) / 10), cacheSensitivity: val, performance: human.performance }); - await wait(10); - } - draw(); - - log('memory', human.tf.memory()); + if (human.tf.getBackend() !== backend) continue; // wrong backend + await runBenchmark(); } + log('benchmarks complete'); clearInterval(timer); - log(); - log('tests complete'); } main(); diff --git a/test/browser.log b/test/browser.log index 46cd49a6..6b3a1189 100644 --- a/test/browser.log +++ b/test/browser.log @@ -1,7 +1,7 @@ -10:13:35.412 +00001ms human tests -10:13:35.517 +00105ms version 2.9.3 -10:13:35.517 +00000ms tfjs 3.19.0 -10:13:35.517 +00000ms environment { +11:05:50.622 +00000ms human tests +11:05:50.903 +00281ms version 2.9.4 +11:05:50.903 +00000ms tfjs 3.20.0 +11:05:50.904 +00001ms environment { browser: true, node: false, worker: false, @@ -16,10 +16,11 @@ ], initial: true, tfjs: { - version: 3.19.0 + version: 3.20.0 }, offscreen: true, perfadd: false, + tensorflow: {}, wasm: { supported: true, backend: true @@ -38,375 +39,99 @@ cpu: { flags: [] }, - kernels: [ - _fusedmatmul, - abs, - acos, - acosh, - add, - addn, - all, - any, - argmax, - argmin, - asin, - asinh, - atan, - atan2, - atanh, - avgpool, - avgpool3d, - avgpool3dgrad, - avgpoolgrad, - batchmatmul, - fusedbatchnorm, - batchtospacend, - bincount, - broadcastargs, - cast, - ceil, - clipbyvalue, - complex, - complexabs, - concat, - conv2d, - conv2dbackpropfilter, - conv2dbackpropinput, - conv3d, - conv3dbackpropfilterv2, - conv3dbackpropinputv2, - cos, - cosh, - cropandresize, - cumprod, - cumsum, - densebincount, - depthtospace, - depthwiseconv2dnative, - depthwiseconv2dnativebackpropfilter, - depthwiseconv2dnativebackpropinput, - diag, - dilation2d, - einsum, - elu, - elugrad, - equal, - erf, - exp, - expanddims, - expm1, - fft, - fill, - flipleftright, - floor, - floordiv, - frompixels, - fusedconv2d, - fuseddepthwiseconv2d, - gathernd, - gatherv2, - greater, - greaterequal, - identity, - ifft, - imag, - isfinite, - isinf, - isnan, - leakyrelu, - less, - lessequal, - linspace, - log, - log1p, - logicaland, - logicalnot, - logicalor, - lrn, - lrngrad, - max, - maximum, - maxpool, - maxpool3d, - maxpool3dgrad, - maxpoolgrad, - maxpoolwithargmax, - mean, - min, - minimum, - mirrorpad, - mod, - multinomial, - multiply, - neg, - nonmaxsuppressionv3, - nonmaxsuppressionv4, - nonmaxsuppressionv5, - notequal, - onehot, - oneslike, - pack, - padv2, - pow, - prelu, - prod, - range, - real, - realdiv, - reciprocal, - relu, - relu6, - reshape, - resizebilinear, - resizebilineargrad, - resizenearestneighbor, - resizenearestneighborgrad, - reverse, - rotatewithoffset, - round, - rsqrt, - scatternd, - searchsorted, - select, - selu, - sigmoid, - sign, - sin, - sinh, - slice, - softmax, - softplus, - spacetobatchnd, - sparsefillemptyrows, - sparsereshape, - sparsesegmentmean, - sparsesegmentsum, - sparsetodense, - splitv, - sqrt, - square, - squareddifference, - step, - stridedslice, - stringngrams, - stringsplit, - stringtohashbucketfast, - sub, - sum, - tan, - tanh, - tile, - topk, - transform, - transpose, - unique, - unpack, - unsortedsegmentsum, - zeroslike, - floormod - ] + kernels: 166 } -10:13:35.527 +00010ms config { - backend: humangl, - modelBasePath: ../models/, - cacheModels: true, - validateModels: true, - wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.19.0/dist/, - wasmPlatformFetch: false, - debug: true, - async: true, - warmup: none, - cacheSensitivity: 0, - skipAllowed: false, - deallocate: false, - filter: { - enabled: true, - equalization: false, - width: 0, - height: 0, - flip: false, - return: true, - brightness: 0, - contrast: 0, - sharpness: 0, - blur: 0, - saturation: 0, - hue: 0, - negative: false, - sepia: false, - vintage: false, - kodachrome: false, - technicolor: false, - polaroid: false, - pixelate: 0 - }, - gesture: { - enabled: true - }, - face: { - enabled: true, - detector: { - modelPath: blazeface.json, - rotation: true, - maxDetected: 1, - skipFrames: 99, - skipTime: 2500, - minConfidence: 0.2, - iouThreshold: 0.1, - mask: false, - return: false - }, - mesh: { - enabled: true, - modelPath: facemesh.json, - keepInvalid: false - }, - attention: { - enabled: false, - modelPath: facemesh-attention.json - }, - iris: { - enabled: true, - modelPath: iris.json - }, - emotion: { - enabled: true, - minConfidence: 0.1, - skipFrames: 99, - skipTime: 1500, - modelPath: emotion.json - }, - description: { - enabled: true, - modelPath: faceres.json, - skipFrames: 99, - skipTime: 3000, - minConfidence: 0.1 - }, - antispoof: { - enabled: false, - skipFrames: 99, - skipTime: 4000, - modelPath: antispoof.json - }, - liveness: { - enabled: false, - skipFrames: 99, - skipTime: 4000, - modelPath: liveness.json - } - }, - body: { - enabled: true, - modelPath: movenet-lightning.json, - maxDetected: -1, - minConfidence: 0.3, - skipFrames: 1, - skipTime: 200 - }, - hand: { - enabled: true, - rotation: true, - skipFrames: 99, - skipTime: 1000, - minConfidence: 0.5, - iouThreshold: 0.2, - maxDetected: -1, - landmarks: true, - detector: { - modelPath: handtrack.json - }, - skeleton: { - modelPath: handlandmark-full.json - } - }, - object: { - enabled: true, - modelPath: mb3-centernet.json, - minConfidence: 0.2, - iouThreshold: 0.4, - maxDetected: 10, - skipFrames: 99, - skipTime: 2000 - }, - segmentation: { - enabled: false, - modelPath: selfie.json, - blur: 8 - } -} -10:13:35.838 +00311ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: true}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: true}, {name: facedetect, loaded: true}, {name: faceiris, loaded: true}, {name: facemesh, loaded: true}, {name: faceres, loaded: true}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: true}, {name: handtrack, loaded: true}, {name: liveness, loaded: false}, {name: movenet, loaded: true}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] -10:13:35.871 +00033ms -10:13:35.903 +00032ms test start: wasm -10:13:36.129 +00226ms desired wasm detected wasm -10:13:36.162 +00033ms memory {unreliable: false, numTensors: 1763, numDataBuffers: 1763, numBytes: 60948232} -10:13:36.196 +00034ms validate [] -10:13:37.456 +01260ms warmup face -10:13:37.559 +00103ms input [1, 1200, 1200, 3] -10:13:38.433 +00874ms detect -10:13:38.471 +00038ms interpolate -10:13:38.522 +00051ms persons -10:13:38.558 +00036ms summary {persons: 1, face: 1, body: 1, hand: 1, object: 1, gesture: 8} -10:13:38.595 +00037ms performance {initBackend: 181, loadModels: 285, inputProcess: 1, totalFrames: 2, cachedFrames: 0, cacheCheck: 0, total: 833, warmup: 1227} -10:13:39.730 +01135ms benchmark {time: 109, cacheSensitivity: 0, performance: {inputProcess: 2, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 50}} -10:13:40.410 +00680ms benchmark {time: 65, cacheSensitivity: 0.25, performance: {inputProcess: 2, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 51}} -10:13:41.083 +00673ms benchmark {time: 64, cacheSensitivity: 0.5, performance: {inputProcess: 2, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 49}} -10:13:41.758 +00675ms benchmark {time: 64, cacheSensitivity: 0.75, performance: {inputProcess: 2, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 48}} -10:13:42.121 +00363ms benchmark {time: 33, cacheSensitivity: 10, performance: {inputProcess: 2, totalFrames: 10, cachedFrames: 8, cacheCheck: 0, total: 48}} -10:13:42.160 +00039ms memory {unreliable: false, numTensors: 1764, numDataBuffers: 1764, numBytes: 61734664} -10:13:42.189 +00029ms -10:13:42.219 +00030ms test start: humangl -10:13:42.253 +00034ms desired humangl detected humangl -10:13:42.281 +00028ms memory {unreliable: false, numBytesInGPU: 0, numBytesInGPUAllocated: 0, numBytesInGPUFree: 0, numTensors: 1770, numDataBuffers: 1770, numBytes: 61734696} -10:13:42.311 +00030ms validate [] -10:13:44.370 +02059ms warmup face -10:13:44.433 +00063ms input [1, 1200, 1200, 3] -10:13:46.227 +01794ms detect -10:13:46.260 +00033ms interpolate -10:13:46.301 +00041ms persons -10:13:46.329 +00028ms summary {persons: 0, face: 0, body: 1, hand: 0, object: 0, gesture: 0} -10:13:46.359 +00030ms performance {inputProcess: 0, totalFrames: 12, cachedFrames: 9, cacheCheck: 0, total: 1762, initBackend: 0, warmup: 2026} -10:13:48.486 +02127ms benchmark {time: 209, cacheSensitivity: 0, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 56}} -10:13:49.281 +00795ms benchmark {time: 75, cacheSensitivity: 0.25, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 5, total: 57}} -10:13:50.135 +00854ms benchmark {time: 81, cacheSensitivity: 0.5, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 4, total: 64}} -10:13:51.047 +00912ms benchmark {time: 87, cacheSensitivity: 0.75, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 5, total: 63}} -10:13:51.637 +00590ms benchmark {time: 55, cacheSensitivity: 10, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 8, cacheCheck: 5, total: 61}} -10:13:51.687 +00050ms memory {unreliable: false, numBytesInGPU: 56099560, numBytesInGPUAllocated: 701598940, numBytesInGPUFree: 645499380, numTensors: 1770, numDataBuffers: 1770, numBytes: 61734696} -10:13:51.725 +00038ms -10:13:51.758 +00033ms test start: webgl -10:13:51.804 +00046ms desired webgl detected webgl -10:13:51.845 +00041ms memory {unreliable: false, numBytesInGPU: 0, numBytesInGPUAllocated: 0, numBytesInGPUFree: 0, numTensors: 1776, numDataBuffers: 1776, numBytes: 61734728} -10:13:51.893 +00048ms validate [] -10:13:57.083 +05190ms warmup face -10:13:57.160 +00077ms input [1, 1200, 1200, 3] -10:13:57.876 +00716ms detect -10:13:57.916 +00040ms interpolate -10:13:57.960 +00044ms persons -10:13:58.003 +00043ms summary {persons: 1, face: 1, body: 1, hand: 0, object: 0, gesture: 1} -10:13:58.048 +00045ms performance {inputProcess: 0, totalFrames: 12, cachedFrames: 9, cacheCheck: 0, total: 668, initBackend: 0, warmup: 5146} -10:13:59.556 +01508ms benchmark {time: 146, cacheSensitivity: 0, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 122}} -10:14:01.012 +01456ms benchmark {time: 140, cacheSensitivity: 0.25, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 6, total: 130}} -10:14:02.436 +01424ms benchmark {time: 137, cacheSensitivity: 0.5, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 5, total: 127}} -10:14:03.931 +01495ms benchmark {time: 144, cacheSensitivity: 0.75, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 4, total: 137}} -10:14:04.695 +00764ms benchmark {time: 70, cacheSensitivity: 10, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 8, cacheCheck: 5, total: 134}} -10:14:04.756 +00061ms memory {unreliable: false, numBytesInGPU: 56099560, numBytesInGPUAllocated: 701598940, numBytesInGPUFree: 645499380, numTensors: 1776, numDataBuffers: 1776, numBytes: 61734728} -10:14:04.810 +00054ms -10:14:04.865 +00055ms test start: webgpu -10:14:04.956 +00091ms desired webgpu detected webgpu -10:14:05.012 +00056ms memory {numBytesInGPU: 0, numBytesAllocatedInGPU: 0, unreliable: false, numTensors: 1782, numDataBuffers: 1782, numBytes: 61734760} -10:14:05.068 +00056ms validate [] -10:14:18.964 +13896ms warmup face -10:14:19.032 +00068ms input [1, 1200, 1200, 3] -10:14:20.109 +01077ms detect -10:14:20.166 +00057ms interpolate -10:14:20.224 +00058ms persons -10:14:20.275 +00051ms summary {persons: 1, face: 1, body: 1, hand: 0, object: 0, gesture: 1} -10:14:20.329 +00054ms performance {inputProcess: 0, totalFrames: 12, cachedFrames: 9, cacheCheck: 0, total: 1025, initBackend: 33, warmup: 13840} -10:14:23.824 +03495ms benchmark {time: 343, cacheSensitivity: 0, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 81}} -10:14:24.663 +00839ms benchmark {time: 77, cacheSensitivity: 0.25, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 15, total: 82}} -10:14:25.583 +00920ms benchmark {time: 85, cacheSensitivity: 0.5, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 10, total: 81}} -10:14:26.502 +00919ms benchmark {time: 85, cacheSensitivity: 0.75, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 12, total: 85}} -10:14:27.041 +00539ms benchmark {time: 46, cacheSensitivity: 10, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 8, cacheCheck: 9, total: 86}} -10:14:27.123 +00082ms memory {numBytesInGPU: 53317336, numBytesAllocatedInGPU: 402350412, unreliable: false, numTensors: 1782, numDataBuffers: 41789, numBytes: 61734760} -10:14:27.193 +00070ms -10:14:27.261 +00068ms tests complete +11:05:51.221 +00317ms test default/wasm {backend: wasm, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: true}, face: {enabled: true, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: true, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: true, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:05:51.517 +00296ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: true}, {name: facedetect, loaded: true}, {name: faceiris, loaded: true}, {name: facemesh, loaded: true}, {name: faceres, loaded: true}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: true}, {name: handtrack, loaded: true}, {name: liveness, loaded: false}, {name: movenet, loaded: true}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:05:53.092 +01575ms summary {persons: 1, face: 1, body: 1, hand: 1, object: 0, gesture: 8} +11:05:53.103 +00011ms finished default/wasm {init: 1325, detect: 544} +11:05:53.115 +00012ms test sync/wasm {backend: wasm, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: false, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: true}, face: {enabled: true, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: true, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: true, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:05:53.399 +00284ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: true}, {name: facedetect, loaded: true}, {name: faceiris, loaded: true}, {name: facemesh, loaded: true}, {name: faceres, loaded: true}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: true}, {name: handtrack, loaded: true}, {name: liveness, loaded: false}, {name: movenet, loaded: true}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:05:54.367 +00968ms summary {persons: 1, face: 1, body: 1, hand: 1, object: 0, gesture: 8} +11:05:54.384 +00017ms finished sync/wasm {init: 1096, detect: 155} +11:05:54.401 +00017ms test none/wasm {backend: wasm, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: false}, face: {enabled: false, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: false, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: false, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:05:54.435 +00034ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: false}, {name: facedetect, loaded: false}, {name: faceiris, loaded: false}, {name: facemesh, loaded: false}, {name: faceres, loaded: false}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: false}, {name: handtrack, loaded: false}, {name: liveness, loaded: false}, {name: movenet, loaded: false}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:05:54.537 +00102ms summary {persons: 0, face: 0, body: 0, hand: 0, object: 0, gesture: 0} +11:05:54.569 +00032ms finished none/wasm {init: 133, detect: 3} +11:05:54.602 +00033ms test object/wasm {backend: wasm, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: false}, face: {enabled: false, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: false, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: false, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: true, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:05:54.684 +00082ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: true}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: false}, {name: facedetect, loaded: false}, {name: faceiris, loaded: false}, {name: facemesh, loaded: false}, {name: faceres, loaded: false}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: false}, {name: handtrack, loaded: false}, {name: liveness, loaded: false}, {name: movenet, loaded: false}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:05:54.952 +00268ms summary {persons: 0, face: 0, body: 0, hand: 0, object: 1, gesture: 0} +11:05:55.006 +00054ms finished object/wasm {init: 281, detect: 69} +11:05:55.072 +00066ms test default/humangl {backend: humangl, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: true}, face: {enabled: true, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: true, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: true, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:05:55.290 +00218ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: true}, {name: facedetect, loaded: true}, {name: faceiris, loaded: true}, {name: facemesh, loaded: true}, {name: faceres, loaded: true}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: true}, {name: handtrack, loaded: true}, {name: liveness, loaded: false}, {name: movenet, loaded: true}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:06:04.652 +09362ms summary {persons: 1, face: 1, body: 1, hand: 1, object: 0, gesture: 8} +11:06:04.732 +00080ms finished default/humangl {init: 8549, detect: 1030} +11:06:04.817 +00085ms test sync/humangl {backend: humangl, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: false, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: true}, face: {enabled: true, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: true, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: true, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:06:05.077 +00260ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: true}, {name: facedetect, loaded: true}, {name: faceiris, loaded: true}, {name: facemesh, loaded: true}, {name: faceres, loaded: true}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: true}, {name: handtrack, loaded: true}, {name: liveness, loaded: false}, {name: movenet, loaded: true}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:06:11.078 +06001ms summary {persons: 1, face: 1, body: 1, hand: 1, object: 0, gesture: 8} +11:06:11.191 +00113ms finished sync/humangl {init: 5726, detect: 535} +11:06:11.307 +00116ms test none/humangl {backend: humangl, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: false}, face: {enabled: false, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: false, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: false, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:06:11.455 +00148ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: false}, {name: facedetect, loaded: false}, {name: faceiris, loaded: false}, {name: facemesh, loaded: false}, {name: faceres, loaded: false}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: false}, {name: handtrack, loaded: false}, {name: liveness, loaded: false}, {name: movenet, loaded: false}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:06:11.778 +00323ms summary {persons: 0, face: 0, body: 0, hand: 0, object: 0, gesture: 0} +11:06:11.930 +00152ms finished none/humangl {init: 471, detect: 0} +11:06:12.080 +00150ms test object/humangl {backend: humangl, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: false}, face: {enabled: false, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: false, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: false, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: true, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:06:12.331 +00251ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: true}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: false}, {name: facedetect, loaded: false}, {name: faceiris, loaded: false}, {name: facemesh, loaded: false}, {name: faceres, loaded: false}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: false}, {name: handtrack, loaded: false}, {name: liveness, loaded: false}, {name: movenet, loaded: false}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:06:16.046 +03715ms summary {persons: 0, face: 0, body: 0, hand: 0, object: 0, gesture: 0} +11:06:16.234 +00188ms finished object/humangl {init: 3688, detect: 278} +11:06:16.444 +00210ms test default/webgl {backend: webgl, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: true}, face: {enabled: true, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: true, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: true, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:06:16.808 +00364ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: true}, {name: facedetect, loaded: true}, {name: faceiris, loaded: true}, {name: facemesh, loaded: true}, {name: faceres, loaded: true}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: true}, {name: handtrack, loaded: true}, {name: liveness, loaded: false}, {name: movenet, loaded: true}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:06:26.563 +09755ms summary {persons: 1, face: 1, body: 1, hand: 1, object: 0, gesture: 8} +11:06:26.799 +00236ms finished default/webgl {init: 9005, detect: 1113} +11:06:27.045 +00246ms test sync/webgl {backend: webgl, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: false, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: true}, face: {enabled: true, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: true, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: true, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:06:27.519 +00474ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: true}, {name: facedetect, loaded: true}, {name: faceiris, loaded: true}, {name: facemesh, loaded: true}, {name: faceres, loaded: true}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: true}, {name: handtrack, loaded: true}, {name: liveness, loaded: false}, {name: movenet, loaded: true}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:06:34.213 +06694ms summary {persons: 1, face: 1, body: 1, hand: 1, object: 0, gesture: 8} +11:06:34.509 +00296ms finished sync/webgl {init: 6219, detect: 949} +11:06:34.813 +00304ms test none/webgl {backend: webgl, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: false}, face: {enabled: false, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: false, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: false, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:06:35.159 +00346ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: false}, {name: facedetect, loaded: false}, {name: faceiris, loaded: false}, {name: facemesh, loaded: false}, {name: faceres, loaded: false}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: false}, {name: handtrack, loaded: false}, {name: liveness, loaded: false}, {name: movenet, loaded: false}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:06:35.728 +00569ms summary {persons: 0, face: 0, body: 0, hand: 0, object: 0, gesture: 0} +11:06:36.087 +00359ms finished none/webgl {init: 915, detect: 0} +11:06:36.444 +00357ms test object/webgl {backend: webgl, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: false}, face: {enabled: false, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: false, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: false, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: true, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:06:36.923 +00479ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: true}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: false}, {name: facedetect, loaded: false}, {name: faceiris, loaded: false}, {name: facemesh, loaded: false}, {name: faceres, loaded: false}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: false}, {name: handtrack, loaded: false}, {name: liveness, loaded: false}, {name: movenet, loaded: false}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:06:41.462 +04539ms summary {persons: 0, face: 0, body: 0, hand: 0, object: 0, gesture: 0} +11:06:41.876 +00414ms finished object/webgl {init: 4709, detect: 309} +11:06:42.434 +00558ms test default/webgpu {backend: webgpu, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: true}, face: {enabled: true, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: true, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: true, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:06:43.065 +00631ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: true}, {name: facedetect, loaded: true}, {name: faceiris, loaded: true}, {name: facemesh, loaded: true}, {name: faceres, loaded: true}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: true}, {name: handtrack, loaded: true}, {name: liveness, loaded: false}, {name: movenet, loaded: true}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:07:00.511 +17446ms summary {persons: 1, face: 1, body: 1, hand: 1, object: 0, gesture: 8} +11:07:00.994 +00483ms finished default/webgpu {init: 16548, detect: 1527} +11:07:01.482 +00488ms test sync/webgpu {backend: webgpu, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: false, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: true}, face: {enabled: true, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: true, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: true, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:07:02.226 +00744ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: true}, {name: facedetect, loaded: true}, {name: faceiris, loaded: true}, {name: facemesh, loaded: true}, {name: faceres, loaded: true}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: true}, {name: handtrack, loaded: true}, {name: liveness, loaded: false}, {name: movenet, loaded: true}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:07:03.296 +01070ms summary {persons: 1, face: 1, body: 1, hand: 1, object: 0, gesture: 8} +11:07:03.853 +00557ms finished sync/webgpu {init: 1630, detect: 183} +11:07:04.410 +00557ms test none/webgpu {backend: webgpu, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: false}, face: {enabled: false, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: false, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: false, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: false, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:07:05.103 +00693ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: false}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: false}, {name: facedetect, loaded: false}, {name: faceiris, loaded: false}, {name: facemesh, loaded: false}, {name: faceres, loaded: false}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: false}, {name: handtrack, loaded: false}, {name: liveness, loaded: false}, {name: movenet, loaded: false}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:07:05.870 +00767ms summary {persons: 0, face: 0, body: 0, hand: 0, object: 0, gesture: 0} +11:07:06.518 +00648ms finished none/webgpu {init: 1460, detect: 0} +11:07:07.142 +00624ms test object/webgpu {backend: webgpu, modelBasePath: ../models/, cacheModels: true, validateModels: true, wasmPath: https: //cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.20.0/dist/, wasmPlatformFetch: false, debug: true, async: true, warmup: full, cacheSensitivity: 0.7, skipAllowed: false, deallocate: false, softwareKernels: false, filter: {enabled: true, equalization: false, width: 0, height: 0, flip: false, return: true, brightness: 0, contrast: 0, sharpness: 0, blur: 0, saturation: 0, hue: 0, negative: false, sepia: false, vintage: false, kodachrome: false, technicolor: false, polaroid: false, pixelate: 0}, gesture: {enabled: false}, face: {enabled: false, detector: {modelPath: blazeface.json, rotation: true, maxDetected: 1, skipFrames: 99, skipTime: 2500, minConfidence: 0.2, iouThreshold: 0.1, mask: false, return: false}, mesh: {enabled: true, modelPath: facemesh.json, keepInvalid: false}, attention: {enabled: false, modelPath: facemesh-attention.json}, iris: {enabled: true, modelPath: iris.json}, emotion: {enabled: true, minConfidence: 0.1, skipFrames: 99, skipTime: 1500, modelPath: emotion.json}, description: {enabled: true, modelPath: faceres.json, skipFrames: 99, skipTime: 3000, minConfidence: 0.1}, antispoof: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: antispoof.json}, liveness: {enabled: false, skipFrames: 99, skipTime: 4000, modelPath: liveness.json}}, body: {enabled: false, modelPath: movenet-lightning.json, maxDetected: -1, minConfidence: 0.3, skipFrames: 1, skipTime: 200}, hand: {enabled: false, rotation: true, skipFrames: 99, skipTime: 1000, minConfidence: 0.5, iouThreshold: 0.2, maxDetected: -1, landmarks: true, detector: {modelPath: handtrack.json}, skeleton: {modelPath: handlandmark-full.json}}, object: {enabled: true, modelPath: mb3-centernet.json, minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 99, skipTime: 2000}, segmentation: {enabled: false, modelPath: selfie.json, blur: 8}} +11:07:07.899 +00757ms models [{name: ssrnetage, loaded: false}, {name: gear, loaded: false}, {name: blazeposedetect, loaded: false}, {name: blazepose, loaded: false}, {name: centernet, loaded: true}, {name: efficientpose, loaded: false}, {name: mobilefacenet, loaded: false}, {name: insightface, loaded: false}, {name: emotion, loaded: false}, {name: facedetect, loaded: false}, {name: faceiris, loaded: false}, {name: facemesh, loaded: false}, {name: faceres, loaded: false}, {name: ssrnetgender, loaded: false}, {name: handpose, loaded: false}, {name: handskeleton, loaded: false}, {name: handtrack, loaded: false}, {name: liveness, loaded: false}, {name: movenet, loaded: false}, {name: nanodet, loaded: false}, {name: posenet, loaded: false}, {name: segmentation, loaded: false}, {name: antispoof, loaded: false}] +11:07:11.492 +03593ms summary {persons: 0, face: 0, body: 0, hand: 0, object: 1, gesture: 0} +11:07:12.218 +00726ms finished object/webgpu {init: 4218, detect: 132} +11:07:12.949 +00731ms tests complete +11:07:13.682 +00733ms benchmark backend: wasm +11:07:16.242 +02560ms benchmark {time: 119, backend: wasm, cacheSensitivity: 0, performance: {inputProcess: 2, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 100}} +11:07:18.127 +01885ms benchmark {time: 115, backend: wasm, cacheSensitivity: 0.25, performance: {inputProcess: 2, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 100}} +11:07:20.003 +01876ms benchmark {time: 114, backend: wasm, cacheSensitivity: 0.5, performance: {inputProcess: 3, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 100}} +11:07:21.895 +01892ms benchmark {time: 115, backend: wasm, cacheSensitivity: 0.75, performance: {inputProcess: 2, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 97}} +11:07:23.068 +01173ms benchmark {time: 42, backend: wasm, cacheSensitivity: 10, performance: {inputProcess: 2, totalFrames: 10, cachedFrames: 8, cacheCheck: 0, total: 100}} +11:07:23.812 +00744ms total wasm {detect: 8759, init: 614} +11:07:24.570 +00758ms benchmark backend: humangl +11:07:50.315 +25745ms benchmark {time: 1906, backend: humangl, cacheSensitivity: 0, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 1665}} +11:07:59.982 +09667ms benchmark {time: 890, backend: humangl, cacheSensitivity: 0.25, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 2, cacheCheck: 69, total: 2119}} +11:08:12.715 +12733ms benchmark {time: 1195, backend: humangl, cacheSensitivity: 0.5, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 4, cacheCheck: 65, total: 815}} +11:08:27.016 +14301ms benchmark {time: 1352, backend: humangl, cacheSensitivity: 0.75, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 7, cacheCheck: 81, total: 783}} +11:08:37.017 +10001ms benchmark {time: 921, backend: humangl, cacheSensitivity: 10, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 10, cacheCheck: 97, total: 902}} +11:08:37.810 +00793ms total humangl {detect: 66559, init: 5882} +11:08:38.601 +00791ms benchmark backend: webgl +11:09:01.515 +22914ms benchmark {time: 1620, backend: webgl, cacheSensitivity: 0, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 1481}} +11:09:16.930 +15415ms benchmark {time: 1461, backend: webgl, cacheSensitivity: 0.25, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 2, cacheCheck: 82, total: 1662}} +11:09:18.567 +01637ms benchmark {time: 84, backend: webgl, cacheSensitivity: 0.5, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 4, cacheCheck: 4, total: 61}} +11:09:20.005 +01438ms benchmark {time: 64, backend: webgl, cacheSensitivity: 0.75, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 7, cacheCheck: 5, total: 44}} +11:09:21.384 +01379ms benchmark {time: 56, backend: webgl, cacheSensitivity: 10, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 10, cacheCheck: 5, total: 41}} +11:09:22.195 +00811ms total webgl {detect: 36875, init: 5913} +11:09:23.018 +00823ms benchmark backend: webgpu +11:09:25.482 +02464ms benchmark {time: 115, backend: webgpu, cacheSensitivity: 0, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 0, total: 36}} +11:09:26.861 +01379ms benchmark {time: 55, backend: webgpu, cacheSensitivity: 0.25, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 3, total: 36}} +11:09:28.201 +01340ms benchmark {time: 51, backend: webgpu, cacheSensitivity: 0.5, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 4, total: 40}} +11:09:29.563 +01362ms benchmark {time: 53, backend: webgpu, cacheSensitivity: 0.75, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 0, cacheCheck: 3, total: 38}} +11:09:30.759 +01196ms benchmark {time: 34, backend: webgpu, cacheSensitivity: 10, performance: {inputProcess: 0, totalFrames: 10, cachedFrames: 8, cacheCheck: 3, total: 39}} +11:09:31.597 +00838ms total webgpu {detect: 7264, init: 462} +11:09:32.439 +00842ms benchmarks complete diff --git a/test/build.log b/test/build.log index d5b8782d..568396c7 100644 --- a/test/build.log +++ b/test/build.log @@ -1,39 +1,39 @@ -2022-08-30 10:28:42 DATA:  Build {"name":"@vladmandic/human","version":"2.9.4"} -2022-08-30 10:28:42 INFO:  Application: {"name":"@vladmandic/human","version":"2.9.4"} -2022-08-30 10:28:42 INFO:  Environment: {"profile":"production","config":".build.json","package":"package.json","tsconfig":true,"eslintrc":true,"git":true} -2022-08-30 10:28:42 INFO:  Toolchain: {"build":"0.7.11","esbuild":"0.15.6","typescript":"4.8.2","typedoc":"0.23.11","eslint":"8.23.0"} -2022-08-30 10:28:42 INFO:  Build: {"profile":"production","steps":["clean","compile","typings","typedoc","lint","changelog"]} -2022-08-30 10:28:42 STATE: Clean: {"locations":["dist/*","types/lib/*","typedoc/*"]} -2022-08-30 10:28:42 STATE: Compile: {"name":"tfjs/nodejs/cpu","format":"cjs","platform":"node","input":"tfjs/tf-node.ts","output":"dist/tfjs.esm.js","files":1,"inputBytes":159,"outputBytes":608} -2022-08-30 10:28:42 STATE: Compile: {"name":"human/nodejs/cpu","format":"cjs","platform":"node","input":"src/human.ts","output":"dist/human.node.js","files":75,"inputBytes":655263,"outputBytes":308144} -2022-08-30 10:28:42 STATE: Compile: {"name":"tfjs/nodejs/gpu","format":"cjs","platform":"node","input":"tfjs/tf-node-gpu.ts","output":"dist/tfjs.esm.js","files":1,"inputBytes":167,"outputBytes":612} -2022-08-30 10:28:42 STATE: Compile: {"name":"human/nodejs/gpu","format":"cjs","platform":"node","input":"src/human.ts","output":"dist/human.node-gpu.js","files":75,"inputBytes":655267,"outputBytes":308148} -2022-08-30 10:28:42 STATE: Compile: {"name":"tfjs/nodejs/wasm","format":"cjs","platform":"node","input":"tfjs/tf-node-wasm.ts","output":"dist/tfjs.esm.js","files":1,"inputBytes":206,"outputBytes":664} -2022-08-30 10:28:42 STATE: Compile: {"name":"human/nodejs/wasm","format":"cjs","platform":"node","input":"src/human.ts","output":"dist/human.node-wasm.js","files":75,"inputBytes":655319,"outputBytes":308198} -2022-08-30 10:28:42 STATE: Compile: {"name":"tfjs/browser/version","format":"esm","platform":"browser","input":"tfjs/tf-version.ts","output":"dist/tfjs.version.js","files":1,"inputBytes":1125,"outputBytes":358} -2022-08-30 10:28:42 STATE: Compile: {"name":"tfjs/browser/esm/nobundle","format":"esm","platform":"browser","input":"tfjs/tf-browser.ts","output":"dist/tfjs.esm.js","files":2,"inputBytes":1088,"outputBytes":583} -2022-08-30 10:28:42 STATE: Compile: {"name":"human/browser/esm/nobundle","format":"esm","platform":"browser","input":"src/human.ts","output":"dist/human.esm-nobundle.js","files":75,"inputBytes":655238,"outputBytes":307019} -2022-08-30 10:28:42 STATE: Compile: {"name":"tfjs/browser/esm/custom","format":"esm","platform":"browser","input":"tfjs/tf-custom.ts","output":"dist/tfjs.esm.js","files":11,"inputBytes":1344,"outputBytes":2879073} -2022-08-30 10:28:42 STATE: Compile: {"name":"human/browser/iife/bundle","format":"iife","platform":"browser","input":"src/human.ts","output":"dist/human.js","files":75,"inputBytes":3533728,"outputBytes":1707671} -2022-08-30 10:28:42 STATE: Compile: {"name":"human/browser/esm/bundle","format":"esm","platform":"browser","input":"src/human.ts","output":"dist/human.esm.js","files":75,"inputBytes":3533728,"outputBytes":3156709} -2022-08-30 10:28:47 STATE: Typings: {"input":"src/human.ts","output":"types/lib","files":30} -2022-08-30 10:28:49 STATE: TypeDoc: {"input":"src/human.ts","output":"typedoc","objects":77,"generated":true} -2022-08-30 10:28:49 STATE: Compile: {"name":"demo/typescript","format":"esm","platform":"browser","input":"demo/typescript/index.ts","output":"demo/typescript/index.js","files":1,"inputBytes":6714,"outputBytes":3134} -2022-08-30 10:28:49 STATE: Compile: {"name":"demo/faceid","format":"esm","platform":"browser","input":"demo/faceid/index.ts","output":"demo/faceid/index.js","files":2,"inputBytes":15488,"outputBytes":7788} -2022-08-30 10:28:59 STATE: Lint: {"locations":["*.json","src/**/*.ts","test/**/*.js","demo/**/*.js"],"files":111,"errors":0,"warnings":0} -2022-08-30 10:28:59 STATE: ChangeLog: {"repository":"https://github.com/vladmandic/human","branch":"main","output":"CHANGELOG.md"} -2022-08-30 10:28:59 STATE: Copy: {"input":"tfjs/tfjs.esm.d.ts"} -2022-08-30 10:28:59 INFO:  Done... -2022-08-30 10:29:00 STATE: API-Extractor: {"succeeeded":true,"errors":0,"warnings":198} -2022-08-30 10:29:00 STATE: Copy: {"input":"types/human.d.ts"} -2022-08-30 10:29:00 INFO:  Analyze models: {"folders":8,"result":"models/models.json"} -2022-08-30 10:29:00 STATE: Models {"folder":"./models","models":13} -2022-08-30 10:29:00 STATE: Models {"folder":"../human-models/models","models":42} -2022-08-30 10:29:00 STATE: Models {"folder":"../blazepose/model/","models":4} -2022-08-30 10:29:00 STATE: Models {"folder":"../anti-spoofing/model","models":1} -2022-08-30 10:29:00 STATE: Models {"folder":"../efficientpose/models","models":3} -2022-08-30 10:29:00 STATE: Models {"folder":"../insightface/models","models":5} -2022-08-30 10:29:00 STATE: Models {"folder":"../movenet/models","models":3} -2022-08-30 10:29:00 STATE: Models {"folder":"../nanodet/models","models":4} -2022-08-30 10:29:01 STATE: Models: {"count":57,"totalSize":383017442} -2022-08-30 10:29:01 INFO:  Human Build complete... {"logFile":"test/build.log"} +2022-08-31 11:27:08 DATA:  Build {"name":"@vladmandic/human","version":"2.9.4"} +2022-08-31 11:27:08 INFO:  Application: {"name":"@vladmandic/human","version":"2.9.4"} +2022-08-31 11:27:08 INFO:  Environment: {"profile":"production","config":".build.json","package":"package.json","tsconfig":true,"eslintrc":true,"git":true} +2022-08-31 11:27:08 INFO:  Toolchain: {"build":"0.7.11","esbuild":"0.15.6","typescript":"4.8.2","typedoc":"0.23.12","eslint":"8.23.0"} +2022-08-31 11:27:08 INFO:  Build: {"profile":"production","steps":["clean","compile","typings","typedoc","lint","changelog"]} +2022-08-31 11:27:08 STATE: Clean: {"locations":["dist/*","types/lib/*","typedoc/*"]} +2022-08-31 11:27:08 STATE: Compile: {"name":"tfjs/nodejs/cpu","format":"cjs","platform":"node","input":"tfjs/tf-node.ts","output":"dist/tfjs.esm.js","files":1,"inputBytes":159,"outputBytes":608} +2022-08-31 11:27:08 STATE: Compile: {"name":"human/nodejs/cpu","format":"cjs","platform":"node","input":"src/human.ts","output":"dist/human.node.js","files":75,"inputBytes":655767,"outputBytes":308629} +2022-08-31 11:27:08 STATE: Compile: {"name":"tfjs/nodejs/gpu","format":"cjs","platform":"node","input":"tfjs/tf-node-gpu.ts","output":"dist/tfjs.esm.js","files":1,"inputBytes":167,"outputBytes":612} +2022-08-31 11:27:08 STATE: Compile: {"name":"human/nodejs/gpu","format":"cjs","platform":"node","input":"src/human.ts","output":"dist/human.node-gpu.js","files":75,"inputBytes":655771,"outputBytes":308633} +2022-08-31 11:27:08 STATE: Compile: {"name":"tfjs/nodejs/wasm","format":"cjs","platform":"node","input":"tfjs/tf-node-wasm.ts","output":"dist/tfjs.esm.js","files":1,"inputBytes":206,"outputBytes":664} +2022-08-31 11:27:08 STATE: Compile: {"name":"human/nodejs/wasm","format":"cjs","platform":"node","input":"src/human.ts","output":"dist/human.node-wasm.js","files":75,"inputBytes":655823,"outputBytes":308683} +2022-08-31 11:27:08 STATE: Compile: {"name":"tfjs/browser/version","format":"esm","platform":"browser","input":"tfjs/tf-version.ts","output":"dist/tfjs.version.js","files":1,"inputBytes":1125,"outputBytes":358} +2022-08-31 11:27:08 STATE: Compile: {"name":"tfjs/browser/esm/nobundle","format":"esm","platform":"browser","input":"tfjs/tf-browser.ts","output":"dist/tfjs.esm.js","files":2,"inputBytes":1088,"outputBytes":583} +2022-08-31 11:27:09 STATE: Compile: {"name":"human/browser/esm/nobundle","format":"esm","platform":"browser","input":"src/human.ts","output":"dist/human.esm-nobundle.js","files":75,"inputBytes":655742,"outputBytes":307503} +2022-08-31 11:27:09 STATE: Compile: {"name":"tfjs/browser/esm/custom","format":"esm","platform":"browser","input":"tfjs/tf-custom.ts","output":"dist/tfjs.esm.js","files":11,"inputBytes":1344,"outputBytes":2821914} +2022-08-31 11:27:09 STATE: Compile: {"name":"human/browser/iife/bundle","format":"iife","platform":"browser","input":"src/human.ts","output":"dist/human.js","files":75,"inputBytes":3477073,"outputBytes":1687675} +2022-08-31 11:27:09 STATE: Compile: {"name":"human/browser/esm/bundle","format":"esm","platform":"browser","input":"src/human.ts","output":"dist/human.esm.js","files":75,"inputBytes":3477073,"outputBytes":3108312} +2022-08-31 11:27:13 STATE: Typings: {"input":"src/human.ts","output":"types/lib","files":30} +2022-08-31 11:27:15 STATE: TypeDoc: {"input":"src/human.ts","output":"typedoc","objects":77,"generated":true} +2022-08-31 11:27:15 STATE: Compile: {"name":"demo/typescript","format":"esm","platform":"browser","input":"demo/typescript/index.ts","output":"demo/typescript/index.js","files":1,"inputBytes":6714,"outputBytes":3134} +2022-08-31 11:27:15 STATE: Compile: {"name":"demo/faceid","format":"esm","platform":"browser","input":"demo/faceid/index.ts","output":"demo/faceid/index.js","files":2,"inputBytes":15488,"outputBytes":7788} +2022-08-31 11:27:25 STATE: Lint: {"locations":["*.json","src/**/*.ts","test/**/*.js","demo/**/*.js"],"files":111,"errors":0,"warnings":0} +2022-08-31 11:27:25 STATE: ChangeLog: {"repository":"https://github.com/vladmandic/human","branch":"main","output":"CHANGELOG.md"} +2022-08-31 11:27:25 STATE: Copy: {"input":"tfjs/tfjs.esm.d.ts"} +2022-08-31 11:27:25 INFO:  Done... +2022-08-31 11:27:26 STATE: API-Extractor: {"succeeeded":true,"errors":0,"warnings":198} +2022-08-31 11:27:26 STATE: Copy: {"input":"types/human.d.ts"} +2022-08-31 11:27:26 INFO:  Analyze models: {"folders":8,"result":"models/models.json"} +2022-08-31 11:27:26 STATE: Models {"folder":"./models","models":13} +2022-08-31 11:27:26 STATE: Models {"folder":"../human-models/models","models":42} +2022-08-31 11:27:26 STATE: Models {"folder":"../blazepose/model/","models":4} +2022-08-31 11:27:26 STATE: Models {"folder":"../anti-spoofing/model","models":1} +2022-08-31 11:27:26 STATE: Models {"folder":"../efficientpose/models","models":3} +2022-08-31 11:27:26 STATE: Models {"folder":"../insightface/models","models":5} +2022-08-31 11:27:26 STATE: Models {"folder":"../movenet/models","models":3} +2022-08-31 11:27:26 STATE: Models {"folder":"../nanodet/models","models":4} +2022-08-31 11:27:27 STATE: Models: {"count":57,"totalSize":383017442} +2022-08-31 11:27:27 INFO:  Human Build complete... {"logFile":"test/build.log"} diff --git a/test/test.log b/test/test.log index 932050d8..ab93b6d3 100644 --- a/test/test.log +++ b/test/test.log @@ -1,1000 +1,999 @@ -2022-08-30 10:24:02 INFO:  @vladmandic/human version 2.9.4 -2022-08-30 10:24:02 INFO:  User: vlado Platform: linux Arch: x64 Node: v18.1.0 -2022-08-30 10:24:02 INFO:  demos: [{"cmd":"../demo/nodejs/node.js","args":[]},{"cmd":"../demo/nodejs/node-simple.js","args":[]},{"cmd":"../demo/nodejs/node-fetch.js","args":[]},{"cmd":"../demo/nodejs/node-event.js","args":["samples/in/ai-body.jpg"]},{"cmd":"../demo/nodejs/node-similarity.js","args":["samples/in/ai-face.jpg","samples/in/ai-upper.jpg"]},{"cmd":"../demo/nodejs/node-canvas.js","args":["samples/in/ai-body.jpg","samples/out/ai-body.jpg"]},{"cmd":"../demo/multithread/node-multiprocess.js","args":[]},{"cmd":"../demo/facematch/node-match.js","args":[]}] -2022-08-30 10:24:02 INFO:  {"cmd":"../demo/nodejs/node.js","args":[]} start -2022-08-30 10:24:03 INFO:  {"cmd":"../demo/nodejs/node-simple.js","args":[]} start -2022-08-30 10:24:04 INFO:  {"cmd":"../demo/nodejs/node-fetch.js","args":[]} start -2022-08-30 10:24:06 INFO:  {"cmd":"../demo/nodejs/node-event.js","args":["samples/in/ai-body.jpg"]} start -2022-08-30 10:24:06 INFO:  {"cmd":"../demo/nodejs/node-similarity.js","args":["samples/in/ai-face.jpg","samples/in/ai-upper.jpg"]} start -2022-08-30 10:24:07 INFO:  {"cmd":"../demo/nodejs/node-canvas.js","args":["samples/in/ai-body.jpg","samples/out/ai-body.jpg"]} start -2022-08-30 10:24:07 INFO:  {"cmd":"../demo/multithread/node-multiprocess.js","args":[]} start -2022-08-30 10:24:08 INFO:  {"cmd":"../demo/facematch/node-match.js","args":[]} start -2022-08-30 10:24:10 INFO:  tests: ["test-node-load.js","test-node-gear.js","test-backend-node.js","test-backend-node-gpu.js","test-backend-node-wasm.js"] -2022-08-30 10:24:10 INFO:  -2022-08-30 10:24:10 INFO:  test-node-load.js start -2022-08-30 10:24:10 INFO:  test-node-load.js load start {"human":"2.9.4","tf":"3.20.0","progress":0} -2022-08-30 10:24:10 DATA:  test-node-load.js load interval {"elapsed":0,"progress":0} -2022-08-30 10:24:10 DATA:  test-node-load.js load interval {"elapsed":10,"progress":0} -2022-08-30 10:24:11 DATA:  test-node-load.js load interval {"elapsed":20,"progress":0.05339166087267679} -2022-08-30 10:24:11 DATA:  test-node-load.js load interval {"elapsed":30,"progress":0.2135162934143239} -2022-08-30 10:24:11 DATA:  test-node-load.js load interval {"elapsed":57,"progress":0.3299591712723044} -2022-08-30 10:24:11 DATA:  test-node-load.js load interval {"elapsed":76,"progress":0.5125946867158943} -2022-08-30 10:24:11 DATA:  test-node-load.js load interval {"elapsed":86,"progress":0.7259096583739463} -2022-08-30 10:24:11 STATE: test-node-load.js passed {"progress":1} -2022-08-30 10:24:11 INFO:  test-node-load.js load final {"progress":1} -2022-08-30 10:24:11 DATA:  test-node-load.js load interval {"elapsed":356,"progress":1} -2022-08-30 10:24:11 INFO:  -2022-08-30 10:24:11 INFO:  test-node-gear.js start -2022-08-30 10:24:11 DATA:  test-node-gear.js input: ["samples/in/ai-face.jpg"] -2022-08-30 10:24:11 STATE: test-node-gear.js passed: gear faceres samples/in/ai-face.jpg -2022-08-30 10:24:11 DATA:  test-node-gear.js results {"face":0,"model":"faceres","image":"samples/in/ai-face.jpg","age":23.5,"gender":"female","genderScore":0.92} -2022-08-30 10:24:11 STATE: test-node-gear.js passed: gear gear samples/in/ai-face.jpg -2022-08-30 10:24:11 DATA:  test-node-gear.js results {"face":0,"model":"gear","image":"samples/in/ai-face.jpg","age":24.4,"gender":"female","genderScore":0.7,"race":[{"score":0.97,"race":"white"}]} -2022-08-30 10:24:11 STATE: test-node-gear.js passed: gear ssrnet samples/in/ai-face.jpg -2022-08-30 10:24:11 DATA:  test-node-gear.js results {"face":0,"model":"ssrnet","image":"samples/in/ai-face.jpg","age":22.8,"gender":"female","genderScore":0.99} -2022-08-30 10:24:11 INFO:  -2022-08-30 10:24:11 INFO:  test-backend-node.js start -2022-08-30 10:24:11 INFO:  test-backend-node.js test: configuration validation -2022-08-30 10:24:11 STATE: test-backend-node.js passed: configuration default validation [] -2022-08-30 10:24:11 STATE: test-backend-node.js passed: configuration invalid validation [{"reason":"unknown property","where":"config.invalid = true"}] -2022-08-30 10:24:11 INFO:  test-backend-node.js test: model load -2022-08-30 10:24:12 STATE: test-backend-node.js passed: models loaded 23 12 [{"name":"ssrnetage","loaded":false,"url":null},{"name":"gear","loaded":false,"url":null},{"name":"blazeposedetect","loaded":false,"url":null},{"name":"blazepose","loaded":false,"url":null},{"name":"centernet","loaded":true,"url":"file://models/mb3-centernet.json"},{"name":"efficientpose","loaded":false,"url":null},{"name":"mobilefacenet","loaded":false,"url":null},{"name":"insightface","loaded":false,"url":null},{"name":"emotion","loaded":true,"url":"file://models/emotion.json"},{"name":"facedetect","loaded":true,"url":"file://models/blazeface.json"},{"name":"faceiris","loaded":true,"url":"file://models/iris.json"},{"name":"facemesh","loaded":true,"url":"file://models/facemesh.json"},{"name":"faceres","loaded":true,"url":"file://models/faceres.json"},{"name":"ssrnetgender","loaded":false,"url":null},{"name":"handpose","loaded":false,"url":null},{"name":"handskeleton","loaded":true,"url":"file://models/handlandmark-full.json"},{"name":"handtrack","loaded":true,"url":"file://models/handtrack.json"},{"name":"liveness","loaded":true,"url":"file://models/liveness.json"},{"name":"movenet","loaded":true,"url":"file://models/movenet-lightning.json"},{"name":"nanodet","loaded":false,"url":null},{"name":"posenet","loaded":false,"url":null},{"name":"segmentation","loaded":true,"url":"file://models/selfie.json"},{"name":"antispoof","loaded":true,"url":"file://models/antispoof.json"}] -2022-08-30 10:24:12 INFO:  test-backend-node.js memory: {"memory":{"unreliable":true,"numTensors":1921,"numDataBuffers":1921,"numBytes":63673064}} -2022-08-30 10:24:12 INFO:  test-backend-node.js state: {"state":{"registeredVariables":{},"nextTapeNodeId":0,"numBytes":63673064,"numTensors":1921,"numStringTensors":0,"numDataBuffers":1921,"gradientDepth":0,"kernelDepth":0,"scopeStack":[],"numDataMovesStack":[],"nextScopeId":0,"tensorInfo":{},"profiling":false,"activeProfile":{"newBytes":0,"newTensors":0,"peakBytes":0,"kernels":[],"result":null,"kernelNames":[]}}} -2022-08-30 10:24:12 INFO:  test-backend-node.js test: warmup -2022-08-30 10:24:12 STATE: test-backend-node.js passed: create human -2022-08-30 10:24:12 INFO:  test-backend-node.js human version: 2.9.4 -2022-08-30 10:24:12 INFO:  test-backend-node.js platform: linux x64 agent: NodeJS v18.1.0 -2022-08-30 10:24:12 INFO:  test-backend-node.js tfjs version: 3.20.0 -2022-08-30 10:24:12 INFO:  test-backend-node.js env: {"browser":false,"node":true,"platform":"linux x64","agent":"NodeJS v18.1.0","backends":["cpu","tensorflow"],"initial":false,"tfjs":{"version":"3.20.0"},"offscreen":false,"perfadd":false,"tensorflow":{"version":"2.7.3-dev20220521","gpu":false},"wasm":{"supported":true,"backend":false},"webgl":{"supported":false,"backend":false},"webgpu":{"supported":false,"backend":false},"cpu":{"flags":[]},"kernels":169} -2022-08-30 10:24:12 STATE: test-backend-node.js passed: set backend: tensorflow -2022-08-30 10:24:12 STATE: test-backend-node.js tensors 1921 -2022-08-30 10:24:12 STATE: test-backend-node.js passed: load models -2022-08-30 10:24:12 STATE: test-backend-node.js result: defined models: 23 loaded models: 12 -2022-08-30 10:24:12 STATE: test-backend-node.js passed: warmup: none default -2022-08-30 10:24:12 DATA:  test-backend-node.js result: face: 0 body: 0 hand: 0 gesture: 0 object: 0 person: 0 {} {} {} -2022-08-30 10:24:12 DATA:  test-backend-node.js result: performance: load: null total: null -2022-08-30 10:24:12 STATE: test-backend-node.js passed: warmup none result match -2022-08-30 10:24:12 STATE: test-backend-node.js event: image -2022-08-30 10:24:12 STATE: test-backend-node.js event: detect -2022-08-30 10:24:12 STATE: test-backend-node.js event: warmup -2022-08-30 10:24:12 STATE: test-backend-node.js passed: warmup: face default -2022-08-30 10:24:12 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.42,"keypoints":4} -2022-08-30 10:24:12 DATA:  test-backend-node.js result: performance: load: null total: 354 -2022-08-30 10:24:12 STATE: test-backend-node.js passed: warmup face result match -2022-08-30 10:24:12 STATE: test-backend-node.js event: image -2022-08-30 10:24:12 STATE: test-backend-node.js event: detect -2022-08-30 10:24:12 STATE: test-backend-node.js event: warmup -2022-08-30 10:24:12 STATE: test-backend-node.js passed: warmup: body default -2022-08-30 10:24:12 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:12 DATA:  test-backend-node.js result: performance: load: null total: 237 -2022-08-30 10:24:12 STATE: test-backend-node.js passed: warmup body result match -2022-08-30 10:24:12 STATE: test-backend-node.js details: {"face":{"boxScore":0.92,"faceScore":1,"age":23.7,"gender":"female","genderScore":0.97},"emotion":[{"score":0.63,"emotion":"angry"},{"score":0.22,"emotion":"fear"}],"body":{"score":0.92,"keypoints":17},"hand":{"boxScore":0.52,"fingerScore":0.73,"keypoints":21},"gestures":[{"face":0,"gesture":"facing right"},{"face":0,"gesture":"mouth 10% open"},{"hand":0,"gesture":"pinky forward"},{"hand":0,"gesture":"palm up"},{"hand":0,"gesture":"open palm"},{"iris":0,"gesture":"looking left"},{"iris":0,"gesture":"looking up"}]} -2022-08-30 10:24:12 INFO:  test-backend-node.js test: details verification -2022-08-30 10:24:12 STATE: test-backend-node.js start default -2022-08-30 10:24:12 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:12 STATE: test-backend-node.js event: image -2022-08-30 10:24:13 STATE: test-backend-node.js event: detect -2022-08-30 10:24:13 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg default -2022-08-30 10:24:13 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:13 DATA:  test-backend-node.js result: performance: load: null total: 220 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details face length 1 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details face score 1 0.93 1 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details face age/gender 23.7 female 0.97 85.47 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details face arrays 4 478 1024 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details face emotion 2 {"score":0.59,"emotion":"angry"} -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details face anti-spoofing 0.79 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details face liveness 0.83 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details body length 1 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details body 0.92 17 6 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details hand length 1 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details hand 0.51 0.73 point -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details hand arrays 21 5 7 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details gesture length 7 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details gesture first {"face":0,"gesture":"facing right"} -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details object length 1 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: details object 0.72 person -2022-08-30 10:24:13 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996928} -2022-08-30 10:24:13 STATE: test-backend-node.js event: image -2022-08-30 10:24:13 STATE: test-backend-node.js event: detect -2022-08-30 10:24:13 STATE: test-backend-node.js passed: tensor shape: [1,1200,1200,4] dtype: float32 -2022-08-30 10:24:13 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1200,1200,4] {"checksum":1371996928} -2022-08-30 10:24:13 STATE: test-backend-node.js event: image -2022-08-30 10:24:13 STATE: test-backend-node.js event: detect -2022-08-30 10:24:13 STATE: test-backend-node.js passed: tensor shape: [1200,1200,4] dtype: float32 -2022-08-30 10:24:14 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:14 STATE: test-backend-node.js event: image -2022-08-30 10:24:14 STATE: test-backend-node.js event: detect -2022-08-30 10:24:14 STATE: test-backend-node.js passed: tensor shape: [1,1200,1200,3] dtype: float32 -2022-08-30 10:24:14 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:14 STATE: test-backend-node.js event: image -2022-08-30 10:24:14 STATE: test-backend-node.js event: detect -2022-08-30 10:24:14 STATE: test-backend-node.js passed: tensor shape: [1200,1200,3] dtype: float32 -2022-08-30 10:24:14 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996871} -2022-08-30 10:24:14 STATE: test-backend-node.js event: image -2022-08-30 10:24:15 STATE: test-backend-node.js event: detect -2022-08-30 10:24:15 STATE: test-backend-node.js passed: tensor shape: [1,1200,1200,4] dtype: int32 -2022-08-30 10:24:15 INFO:  test-backend-node.js test default -2022-08-30 10:24:15 STATE: test-backend-node.js start async -2022-08-30 10:24:15 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:15 STATE: test-backend-node.js event: image -2022-08-30 10:24:15 STATE: test-backend-node.js event: detect -2022-08-30 10:24:15 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg async -2022-08-30 10:24:15 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:15 DATA:  test-backend-node.js result: performance: load: null total: 200 -2022-08-30 10:24:15 STATE: test-backend-node.js passed: default result face match 1 female 0.97 -2022-08-30 10:24:15 INFO:  test-backend-node.js test sync -2022-08-30 10:24:15 STATE: test-backend-node.js start sync -2022-08-30 10:24:15 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:15 STATE: test-backend-node.js event: image -2022-08-30 10:24:15 STATE: test-backend-node.js event: detect -2022-08-30 10:24:15 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg sync -2022-08-30 10:24:15 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:15 DATA:  test-backend-node.js result: performance: load: null total: 200 -2022-08-30 10:24:15 STATE: test-backend-node.js passed: default sync 1 female 0.97 -2022-08-30 10:24:15 INFO:  test-backend-node.js test: image process -2022-08-30 10:24:15 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:15 STATE: test-backend-node.js passed: image input null [1,256,256,3] -2022-08-30 10:24:15 INFO:  test-backend-node.js test: image null -2022-08-30 10:24:15 STATE: test-backend-node.js passed: invalid input could not convert input to tensor -2022-08-30 10:24:15 INFO:  test-backend-node.js test face similarity -2022-08-30 10:24:15 STATE: test-backend-node.js start face similarity -2022-08-30 10:24:15 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:15 STATE: test-backend-node.js event: image -2022-08-30 10:24:16 STATE: test-backend-node.js event: detect -2022-08-30 10:24:16 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg face similarity -2022-08-30 10:24:16 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 6 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.47,"keypoints":3} -2022-08-30 10:24:16 DATA:  test-backend-node.js result: performance: load: null total: 198 -2022-08-30 10:24:16 STATE: test-backend-node.js start face similarity -2022-08-30 10:24:16 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:16 STATE: test-backend-node.js event: image -2022-08-30 10:24:16 STATE: test-backend-node.js event: detect -2022-08-30 10:24:16 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg face similarity -2022-08-30 10:24:16 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:16 DATA:  test-backend-node.js result: performance: load: null total: 199 -2022-08-30 10:24:16 STATE: test-backend-node.js start face similarity -2022-08-30 10:24:16 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} -2022-08-30 10:24:16 STATE: test-backend-node.js event: image -2022-08-30 10:24:16 STATE: test-backend-node.js event: detect -2022-08-30 10:24:16 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg face similarity -2022-08-30 10:24:16 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 4 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.71,"class":"person"} {"score":0.75,"keypoints":7} -2022-08-30 10:24:16 DATA:  test-backend-node.js result: performance: load: null total: 177 -2022-08-30 10:24:16 STATE: test-backend-node.js passed: face descriptor -2022-08-30 10:24:16 STATE: test-backend-node.js passed: face similarity {"similarity":[1,0.44727452329649126,0.5567935850640406],"descriptors":[1024,1024,1024]} -2022-08-30 10:24:16 INFO:  test-backend-node.js test object -2022-08-30 10:24:16 STATE: test-backend-node.js start object -2022-08-30 10:24:16 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:16 STATE: test-backend-node.js event: image -2022-08-30 10:24:17 STATE: test-backend-node.js event: detect -2022-08-30 10:24:17 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg object -2022-08-30 10:24:17 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:17 DATA:  test-backend-node.js result: performance: load: null total: 198 -2022-08-30 10:24:17 STATE: test-backend-node.js passed: centernet -2022-08-30 10:24:17 STATE: test-backend-node.js start object -2022-08-30 10:24:18 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:18 STATE: test-backend-node.js event: image -2022-08-30 10:24:18 STATE: test-backend-node.js event: detect -2022-08-30 10:24:18 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg object -2022-08-30 10:24:18 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 3 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.86,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:18 DATA:  test-backend-node.js result: performance: load: null total: 209 -2022-08-30 10:24:18 STATE: test-backend-node.js passed: nanodet -2022-08-30 10:24:18 INFO:  test-backend-node.js test sensitive -2022-08-30 10:24:18 STATE: test-backend-node.js start sensitive -2022-08-30 10:24:18 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:18 STATE: test-backend-node.js event: image -2022-08-30 10:24:18 STATE: test-backend-node.js event: detect -2022-08-30 10:24:18 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg sensitive -2022-08-30 10:24:18 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:18 DATA:  test-backend-node.js result: performance: load: null total: 169 -2022-08-30 10:24:18 STATE: test-backend-node.js passed: sensitive result match -2022-08-30 10:24:18 STATE: test-backend-node.js passed: sensitive face result match -2022-08-30 10:24:18 STATE: test-backend-node.js passed: sensitive face emotion result [{"score":0.59,"emotion":"angry"},{"score":0.29,"emotion":"fear"}] -2022-08-30 10:24:18 STATE: test-backend-node.js passed: sensitive body result match -2022-08-30 10:24:18 STATE: test-backend-node.js passed: sensitive hand result match -2022-08-30 10:24:18 INFO:  test-backend-node.js test body -2022-08-30 10:24:18 STATE: test-backend-node.js start blazepose -2022-08-30 10:24:20 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:20 STATE: test-backend-node.js event: image -2022-08-30 10:24:21 STATE: test-backend-node.js event: detect -2022-08-30 10:24:21 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg blazepose -2022-08-30 10:24:21 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.99,"keypoints":39} -2022-08-30 10:24:21 DATA:  test-backend-node.js result: performance: load: null total: 212 -2022-08-30 10:24:21 STATE: test-backend-node.js passed: blazepose -2022-08-30 10:24:21 STATE: test-backend-node.js start efficientpose -2022-08-30 10:24:21 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:21 STATE: test-backend-node.js event: image -2022-08-30 10:24:21 STATE: test-backend-node.js event: detect -2022-08-30 10:24:21 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg efficientpose -2022-08-30 10:24:21 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.75,"keypoints":13} -2022-08-30 10:24:21 DATA:  test-backend-node.js result: performance: load: null total: 233 -2022-08-30 10:24:21 STATE: test-backend-node.js passed: efficientpose -2022-08-30 10:24:21 STATE: test-backend-node.js start posenet -2022-08-30 10:24:22 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:22 STATE: test-backend-node.js event: image -2022-08-30 10:24:22 STATE: test-backend-node.js event: detect -2022-08-30 10:24:22 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg posenet -2022-08-30 10:24:22 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.96,"keypoints":16} -2022-08-30 10:24:22 DATA:  test-backend-node.js result: performance: load: null total: 179 -2022-08-30 10:24:22 STATE: test-backend-node.js passed: posenet -2022-08-30 10:24:22 STATE: test-backend-node.js start movenet -2022-08-30 10:24:22 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:22 STATE: test-backend-node.js event: image -2022-08-30 10:24:22 STATE: test-backend-node.js event: detect -2022-08-30 10:24:22 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg movenet -2022-08-30 10:24:22 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:22 DATA:  test-backend-node.js result: performance: load: null total: 163 -2022-08-30 10:24:22 STATE: test-backend-node.js passed: movenet -2022-08-30 10:24:22 INFO:  test-backend-node.js test face matching -2022-08-30 10:24:22 STATE: test-backend-node.js passed: face database 40 -2022-08-30 10:24:22 STATE: test-backend-node.js passed: face match {"first":{"index":4,"similarity":0.7827852615252829}} {"second":{"index":4,"similarity":0.5002052633015844}} {"third":{"index":4,"similarity":0.5401587887998899}} -2022-08-30 10:24:22 INFO:  test-backend-node.js test face similarity alternative -2022-08-30 10:24:22 STATE: test-backend-node.js start face embeddings -2022-08-30 10:24:23 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:23 STATE: test-backend-node.js event: image -2022-08-30 10:24:23 STATE: test-backend-node.js event: detect -2022-08-30 10:24:23 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg face embeddings -2022-08-30 10:24:23 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:23 DATA:  test-backend-node.js result: performance: load: null total: 186 -2022-08-30 10:24:23 STATE: test-backend-node.js passed: mobilefacenet {"embedding":192} -2022-08-30 10:24:23 STATE: test-backend-node.js start face embeddings -2022-08-30 10:24:24 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:24 STATE: test-backend-node.js event: image -2022-08-30 10:24:24 STATE: test-backend-node.js event: detect -2022-08-30 10:24:24 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg face embeddings -2022-08-30 10:24:24 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:24 DATA:  test-backend-node.js result: performance: load: null total: 190 -2022-08-30 10:24:24 STATE: test-backend-node.js passed: insightface {"embedding":512} -2022-08-30 10:24:24 INFO:  test-backend-node.js test face attention -2022-08-30 10:24:24 STATE: test-backend-node.js start face attention -2022-08-30 10:24:24 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:24 STATE: test-backend-node.js event: image -2022-08-30 10:24:24 STATE: test-backend-node.js event: detect -2022-08-30 10:24:24 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg face attention -2022-08-30 10:24:24 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:24 DATA:  test-backend-node.js result: performance: load: null total: 169 -2022-08-30 10:24:24 STATE: test-backend-node.js passed: face attention -2022-08-30 10:24:24 INFO:  test-backend-node.js test detectors -2022-08-30 10:24:24 STATE: test-backend-node.js start detectors -2022-08-30 10:24:25 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:25 STATE: test-backend-node.js event: image -2022-08-30 10:24:25 STATE: test-backend-node.js event: detect -2022-08-30 10:24:25 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg detectors -2022-08-30 10:24:25 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:25 DATA:  test-backend-node.js result: performance: load: null total: 86 -2022-08-30 10:24:25 STATE: test-backend-node.js passed: detector result face match -2022-08-30 10:24:25 STATE: test-backend-node.js passed: detector result hand match -2022-08-30 10:24:25 INFO:  test-backend-node.js test: multi-instance -2022-08-30 10:24:25 STATE: test-backend-node.js start multi instance -2022-08-30 10:24:25 STATE: test-backend-node.js event: image -2022-08-30 10:24:25 STATE: test-backend-node.js event: detect -2022-08-30 10:24:25 STATE: test-backend-node.js passed: detect: random multi instance -2022-08-30 10:24:25 DATA:  test-backend-node.js result: face: 0 body: 1 hand: 0 gesture: 0 object: 0 person: 0 {} {} {"score":0,"keypoints":0} -2022-08-30 10:24:25 DATA:  test-backend-node.js result: performance: load: null total: 76 -2022-08-30 10:24:25 INFO:  test-backend-node.js test: first instance -2022-08-30 10:24:25 STATE: test-backend-node.js start multi instance -2022-08-30 10:24:25 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} -2022-08-30 10:24:25 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg multi instance -2022-08-30 10:24:25 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:25 DATA:  test-backend-node.js result: performance: load: null total: 82 -2022-08-30 10:24:25 INFO:  test-backend-node.js test: second instance -2022-08-30 10:24:25 STATE: test-backend-node.js start multi instance -2022-08-30 10:24:25 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} -2022-08-30 10:24:25 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg multi instance -2022-08-30 10:24:25 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:25 DATA:  test-backend-node.js result: performance: load: null total: 75 -2022-08-30 10:24:25 INFO:  test-backend-node.js test: concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js start concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js start concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js start concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js start concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js start concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js start concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js start concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js start concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js start concurrent -2022-08-30 10:24:25 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:25 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:25 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:25 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:26 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} -2022-08-30 10:24:26 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} -2022-08-30 10:24:26 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:26 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:26 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} -2022-08-30 10:24:26 STATE: test-backend-node.js event: image -2022-08-30 10:24:26 STATE: test-backend-node.js event: image -2022-08-30 10:24:26 STATE: test-backend-node.js event: image -2022-08-30 10:24:26 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg concurrent -2022-08-30 10:24:26 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:26 DATA:  test-backend-node.js result: performance: load: null total: 902 -2022-08-30 10:24:26 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg concurrent -2022-08-30 10:24:26 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:26 DATA:  test-backend-node.js result: performance: load: null total: 902 -2022-08-30 10:24:26 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg concurrent -2022-08-30 10:24:26 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:26 DATA:  test-backend-node.js result: performance: load: null total: 903 -2022-08-30 10:24:26 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg concurrent -2022-08-30 10:24:26 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:26 DATA:  test-backend-node.js result: performance: load: null total: 903 -2022-08-30 10:24:26 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg concurrent -2022-08-30 10:24:26 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:26 DATA:  test-backend-node.js result: performance: load: null total: 903 -2022-08-30 10:24:26 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg concurrent -2022-08-30 10:24:26 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:26 DATA:  test-backend-node.js result: performance: load: null total: 903 -2022-08-30 10:24:26 STATE: test-backend-node.js event: detect -2022-08-30 10:24:26 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg concurrent -2022-08-30 10:24:26 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:26 DATA:  test-backend-node.js result: performance: load: null total: 670 -2022-08-30 10:24:26 STATE: test-backend-node.js event: detect -2022-08-30 10:24:26 STATE: test-backend-node.js event: detect -2022-08-30 10:24:26 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg concurrent -2022-08-30 10:24:26 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:26 DATA:  test-backend-node.js result: performance: load: null total: 670 -2022-08-30 10:24:26 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg concurrent -2022-08-30 10:24:26 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:26 DATA:  test-backend-node.js result: performance: load: null total: 670 -2022-08-30 10:24:26 INFO:  test-backend-node.js test: monkey-patch -2022-08-30 10:24:26 STATE: test-backend-node.js event: image -2022-08-30 10:24:27 STATE: test-backend-node.js event: detect -2022-08-30 10:24:27 STATE: test-backend-node.js passed: monkey patch -2022-08-30 10:24:27 STATE: test-backend-node.js passed: segmentation [65536] -2022-08-30 10:24:27 STATE: test-backend-node.js passeed: equal usage -2022-08-30 10:24:27 INFO:  test-backend-node.js test: input compare -2022-08-30 10:24:27 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:27 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} -2022-08-30 10:24:27 STATE: test-backend-node.js passed: image compare 0 23.275441687091504 -2022-08-30 10:24:27 INFO:  test-backend-node.js events: {"image":29,"detect":29,"warmup":2} -2022-08-30 10:24:27 INFO:  test-backend-node.js tensors 4105 -2022-08-30 10:24:27 INFO:  test-backend-node.js test complete: 15292 ms -2022-08-30 10:24:27 INFO:  -2022-08-30 10:24:27 INFO:  test-backend-node-gpu.js start -2022-08-30 10:24:28 INFO:  test-backend-node-gpu.js test: configuration validation -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js passed: configuration default validation [] -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js passed: configuration invalid validation [{"reason":"unknown property","where":"config.invalid = true"}] -2022-08-30 10:24:28 INFO:  test-backend-node-gpu.js test: model load -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js passed: models loaded 23 12 [{"name":"ssrnetage","loaded":false,"url":null},{"name":"gear","loaded":false,"url":null},{"name":"blazeposedetect","loaded":false,"url":null},{"name":"blazepose","loaded":false,"url":null},{"name":"centernet","loaded":true,"url":"file://models/mb3-centernet.json"},{"name":"efficientpose","loaded":false,"url":null},{"name":"mobilefacenet","loaded":false,"url":null},{"name":"insightface","loaded":false,"url":null},{"name":"emotion","loaded":true,"url":"file://models/emotion.json"},{"name":"facedetect","loaded":true,"url":"file://models/blazeface.json"},{"name":"faceiris","loaded":true,"url":"file://models/iris.json"},{"name":"facemesh","loaded":true,"url":"file://models/facemesh.json"},{"name":"faceres","loaded":true,"url":"file://models/faceres.json"},{"name":"ssrnetgender","loaded":false,"url":null},{"name":"handpose","loaded":false,"url":null},{"name":"handskeleton","loaded":true,"url":"file://models/handlandmark-full.json"},{"name":"handtrack","loaded":true,"url":"file://models/handtrack.json"},{"name":"liveness","loaded":true,"url":"file://models/liveness.json"},{"name":"movenet","loaded":true,"url":"file://models/movenet-lightning.json"},{"name":"nanodet","loaded":false,"url":null},{"name":"posenet","loaded":false,"url":null},{"name":"segmentation","loaded":true,"url":"file://models/selfie.json"},{"name":"antispoof","loaded":true,"url":"file://models/antispoof.json"}] -2022-08-30 10:24:28 INFO:  test-backend-node-gpu.js memory: {"memory":{"unreliable":true,"numTensors":1921,"numDataBuffers":1921,"numBytes":63673064}} -2022-08-30 10:24:28 INFO:  test-backend-node-gpu.js state: {"state":{"registeredVariables":{},"nextTapeNodeId":0,"numBytes":63673064,"numTensors":1921,"numStringTensors":0,"numDataBuffers":1921,"gradientDepth":0,"kernelDepth":0,"scopeStack":[],"numDataMovesStack":[],"nextScopeId":0,"tensorInfo":{},"profiling":false,"activeProfile":{"newBytes":0,"newTensors":0,"peakBytes":0,"kernels":[],"result":null,"kernelNames":[]}}} -2022-08-30 10:24:28 INFO:  test-backend-node-gpu.js test: warmup -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js passed: create human -2022-08-30 10:24:28 INFO:  test-backend-node-gpu.js human version: 2.9.4 -2022-08-30 10:24:28 INFO:  test-backend-node-gpu.js platform: linux x64 agent: NodeJS v18.1.0 -2022-08-30 10:24:28 INFO:  test-backend-node-gpu.js tfjs version: 3.20.0 -2022-08-30 10:24:28 INFO:  test-backend-node-gpu.js env: {"browser":false,"node":true,"platform":"linux x64","agent":"NodeJS v18.1.0","backends":["cpu","tensorflow"],"initial":false,"tfjs":{"version":"3.20.0"},"offscreen":false,"perfadd":false,"tensorflow":{"version":"2.7.3-dev20220521","gpu":true},"wasm":{"supported":true,"backend":false},"webgl":{"supported":false,"backend":false},"webgpu":{"supported":false,"backend":false},"cpu":{"flags":[]},"kernels":169} -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js passed: set backend: tensorflow -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js tensors 1921 -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js passed: load models -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js result: defined models: 23 loaded models: 12 -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js passed: warmup: none default -2022-08-30 10:24:28 DATA:  test-backend-node-gpu.js result: face: 0 body: 0 hand: 0 gesture: 0 object: 0 person: 0 {} {} {} -2022-08-30 10:24:28 DATA:  test-backend-node-gpu.js result: performance: load: null total: null -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js passed: warmup none result match -2022-08-30 10:24:28 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js event: warmup -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js passed: warmup: face default -2022-08-30 10:24:31 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.42,"keypoints":4} -2022-08-30 10:24:31 DATA:  test-backend-node-gpu.js result: performance: load: null total: 2874 -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js passed: warmup face result match -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js event: warmup -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js passed: warmup: body default -2022-08-30 10:24:31 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:31 DATA:  test-backend-node-gpu.js result: performance: load: null total: 158 -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js passed: warmup body result match -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js details: {"face":{"boxScore":0.92,"faceScore":1,"age":23.7,"gender":"female","genderScore":0.97},"emotion":[{"score":0.63,"emotion":"angry"},{"score":0.22,"emotion":"fear"}],"body":{"score":0.92,"keypoints":17},"hand":{"boxScore":0.52,"fingerScore":0.73,"keypoints":21},"gestures":[{"face":0,"gesture":"facing right"},{"face":0,"gesture":"mouth 10% open"},{"hand":0,"gesture":"pinky forward"},{"hand":0,"gesture":"palm up"},{"hand":0,"gesture":"open palm"},{"iris":0,"gesture":"looking left"},{"iris":0,"gesture":"looking up"}]} -2022-08-30 10:24:31 INFO:  test-backend-node-gpu.js test: details verification -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js start default -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:31 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg default -2022-08-30 10:24:32 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:32 DATA:  test-backend-node-gpu.js result: performance: load: null total: 131 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details face length 1 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details face score 1 0.93 1 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details face age/gender 23.7 female 0.97 85.47 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details face arrays 4 478 1024 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details face emotion 2 {"score":0.59,"emotion":"angry"} -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details face anti-spoofing 0.79 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details face liveness 0.83 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details body length 1 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details body 0.92 17 6 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details hand length 1 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details hand 0.51 0.73 point -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details hand arrays 21 5 7 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details gesture length 7 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details gesture first {"face":0,"gesture":"facing right"} -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details object length 1 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: details object 0.72 person -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996928} -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: tensor shape: [1,1200,1200,4] dtype: float32 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1200,1200,4] {"checksum":1371996928} -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: tensor shape: [1200,1200,4] dtype: float32 -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:32 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js passed: tensor shape: [1,1200,1200,3] dtype: float32 -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js passed: tensor shape: [1200,1200,3] dtype: float32 -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996871} -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js passed: tensor shape: [1,1200,1200,4] dtype: int32 -2022-08-30 10:24:33 INFO:  test-backend-node-gpu.js test default -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js start async -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:33 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg async -2022-08-30 10:24:34 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:34 DATA:  test-backend-node-gpu.js result: performance: load: null total: 147 -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: default result face match 1 female 0.97 -2022-08-30 10:24:34 INFO:  test-backend-node-gpu.js test sync -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js start sync -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg sync -2022-08-30 10:24:34 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:34 DATA:  test-backend-node-gpu.js result: performance: load: null total: 137 -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: default sync 1 female 0.97 -2022-08-30 10:24:34 INFO:  test-backend-node-gpu.js test: image process -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: image input null [1,256,256,3] -2022-08-30 10:24:34 INFO:  test-backend-node-gpu.js test: image null -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: invalid input could not convert input to tensor -2022-08-30 10:24:34 INFO:  test-backend-node-gpu.js test face similarity -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js start face similarity -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg face similarity -2022-08-30 10:24:34 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 6 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.47,"keypoints":3} -2022-08-30 10:24:34 DATA:  test-backend-node-gpu.js result: performance: load: null total: 139 -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js start face similarity -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg face similarity -2022-08-30 10:24:34 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:34 DATA:  test-backend-node-gpu.js result: performance: load: null total: 138 -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js start face similarity -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} -2022-08-30 10:24:34 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg face similarity -2022-08-30 10:24:35 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 4 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.71,"class":"person"} {"score":0.75,"keypoints":7} -2022-08-30 10:24:35 DATA:  test-backend-node-gpu.js result: performance: load: null total: 129 -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js passed: face descriptor -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js passed: face similarity {"similarity":[1,0.447238756461232,0.556914029877052],"descriptors":[1024,1024,1024]} -2022-08-30 10:24:35 INFO:  test-backend-node-gpu.js test object -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js start object -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg object -2022-08-30 10:24:35 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:35 DATA:  test-backend-node-gpu.js result: performance: load: null total: 137 -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js passed: centernet -2022-08-30 10:24:35 STATE: test-backend-node-gpu.js start object -2022-08-30 10:24:36 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:36 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:36 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:36 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg object -2022-08-30 10:24:36 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 3 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.86,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:36 DATA:  test-backend-node-gpu.js result: performance: load: null total: 508 -2022-08-30 10:24:36 STATE: test-backend-node-gpu.js passed: nanodet -2022-08-30 10:24:36 INFO:  test-backend-node-gpu.js test sensitive -2022-08-30 10:24:36 STATE: test-backend-node-gpu.js start sensitive -2022-08-30 10:24:36 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:36 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:37 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:37 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg sensitive -2022-08-30 10:24:37 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:37 DATA:  test-backend-node-gpu.js result: performance: load: null total: 100 -2022-08-30 10:24:37 STATE: test-backend-node-gpu.js passed: sensitive result match -2022-08-30 10:24:37 STATE: test-backend-node-gpu.js passed: sensitive face result match -2022-08-30 10:24:37 STATE: test-backend-node-gpu.js passed: sensitive face emotion result [{"score":0.59,"emotion":"angry"},{"score":0.29,"emotion":"fear"}] -2022-08-30 10:24:37 STATE: test-backend-node-gpu.js passed: sensitive body result match -2022-08-30 10:24:37 STATE: test-backend-node-gpu.js passed: sensitive hand result match -2022-08-30 10:24:37 INFO:  test-backend-node-gpu.js test body -2022-08-30 10:24:37 STATE: test-backend-node-gpu.js start blazepose -2022-08-30 10:24:38 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:38 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:39 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:39 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg blazepose -2022-08-30 10:24:39 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.99,"keypoints":39} -2022-08-30 10:24:39 DATA:  test-backend-node-gpu.js result: performance: load: null total: 259 -2022-08-30 10:24:39 STATE: test-backend-node-gpu.js passed: blazepose -2022-08-30 10:24:39 STATE: test-backend-node-gpu.js start efficientpose -2022-08-30 10:24:39 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:39 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg efficientpose -2022-08-30 10:24:40 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.75,"keypoints":13} -2022-08-30 10:24:40 DATA:  test-backend-node-gpu.js result: performance: load: null total: 747 -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js passed: efficientpose -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js start posenet -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg posenet -2022-08-30 10:24:40 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.96,"keypoints":16} -2022-08-30 10:24:40 DATA:  test-backend-node-gpu.js result: performance: load: null total: 121 -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js passed: posenet -2022-08-30 10:24:40 STATE: test-backend-node-gpu.js start movenet -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg movenet -2022-08-30 10:24:41 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:41 DATA:  test-backend-node-gpu.js result: performance: load: null total: 99 -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js passed: movenet -2022-08-30 10:24:41 INFO:  test-backend-node-gpu.js test face matching -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js passed: face database 40 -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js passed: face match {"first":{"index":4,"similarity":0.7828184453007331}} {"second":{"index":4,"similarity":0.5001334216773398}} {"third":{"index":4,"similarity":0.5403054967489764}} -2022-08-30 10:24:41 INFO:  test-backend-node-gpu.js test face similarity alternative -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js start face embeddings -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg face embeddings -2022-08-30 10:24:41 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:41 DATA:  test-backend-node-gpu.js result: performance: load: null total: 130 -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js passed: mobilefacenet {"embedding":192} -2022-08-30 10:24:41 STATE: test-backend-node-gpu.js start face embeddings -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg face embeddings -2022-08-30 10:24:42 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:42 DATA:  test-backend-node-gpu.js result: performance: load: null total: 175 -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js passed: insightface {"embedding":512} -2022-08-30 10:24:42 INFO:  test-backend-node-gpu.js test face attention -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js start face attention -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg face attention -2022-08-30 10:24:42 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:42 DATA:  test-backend-node-gpu.js result: performance: load: null total: 238 -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js passed: face attention -2022-08-30 10:24:42 INFO:  test-backend-node-gpu.js test detectors -2022-08-30 10:24:42 STATE: test-backend-node-gpu.js start detectors -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg detectors -2022-08-30 10:24:43 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:43 DATA:  test-backend-node-gpu.js result: performance: load: null total: 52 -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: detector result face match -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: detector result hand match -2022-08-30 10:24:43 INFO:  test-backend-node-gpu.js test: multi-instance -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start multi instance -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: detect: random multi instance -2022-08-30 10:24:43 DATA:  test-backend-node-gpu.js result: face: 0 body: 1 hand: 0 gesture: 0 object: 0 person: 0 {} {} {"score":0,"keypoints":0} -2022-08-30 10:24:43 DATA:  test-backend-node-gpu.js result: performance: load: null total: 50 -2022-08-30 10:24:43 INFO:  test-backend-node-gpu.js test: first instance -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start multi instance -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg multi instance -2022-08-30 10:24:43 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:43 DATA:  test-backend-node-gpu.js result: performance: load: null total: 52 -2022-08-30 10:24:43 INFO:  test-backend-node-gpu.js test: second instance -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start multi instance -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg multi instance -2022-08-30 10:24:43 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:43 DATA:  test-backend-node-gpu.js result: performance: load: null total: 52 -2022-08-30 10:24:43 INFO:  test-backend-node-gpu.js test: concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js start concurrent -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:43 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg concurrent -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: performance: load: null total: 700 -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg concurrent -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: performance: load: null total: 700 -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg concurrent -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: performance: load: null total: 700 -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg concurrent -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: performance: load: null total: 700 -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg concurrent -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: performance: load: null total: 700 -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg concurrent -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: performance: load: null total: 700 -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg concurrent -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: performance: load: null total: 455 -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg concurrent -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: performance: load: null total: 455 -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg concurrent -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:44 DATA:  test-backend-node-gpu.js result: performance: load: null total: 455 -2022-08-30 10:24:44 INFO:  test-backend-node-gpu.js test: monkey-patch -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js event: image -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js event: detect -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: monkey patch -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: segmentation [65536] -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passeed: equal usage -2022-08-30 10:24:44 INFO:  test-backend-node-gpu.js test: input compare -2022-08-30 10:24:44 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} -2022-08-30 10:24:45 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} -2022-08-30 10:24:45 STATE: test-backend-node-gpu.js passed: image compare 0 23.275441687091504 -2022-08-30 10:24:45 INFO:  test-backend-node-gpu.js events: {"image":29,"detect":29,"warmup":2} -2022-08-30 10:24:45 INFO:  test-backend-node-gpu.js tensors 4105 -2022-08-30 10:24:45 INFO:  test-backend-node-gpu.js test complete: 16760 ms -2022-08-30 10:24:46 INFO:  -2022-08-30 10:24:46 INFO:  test-backend-node-wasm.js start -2022-08-30 10:24:46 DATA:  test-backend-node-wasm.js stdout: 2022-08-30 10:24:46 INFO:  { supported: true, backend: true, simd: true, multithread: false } -2022-08-30 10:24:46 STATE: test-backend-node-wasm.js passed: model server: https://vladmandic.github.io/human/models/ -2022-08-30 10:24:46 INFO:  test-backend-node-wasm.js test: configuration validation -2022-08-30 10:24:46 STATE: test-backend-node-wasm.js passed: configuration default validation [] -2022-08-30 10:24:46 STATE: test-backend-node-wasm.js passed: configuration invalid validation [{"reason":"unknown property","where":"config.invalid = true"}] -2022-08-30 10:24:46 INFO:  test-backend-node-wasm.js test: model load -2022-08-30 10:24:48 STATE: test-backend-node-wasm.js passed: models loaded 23 12 [{"name":"ssrnetage","loaded":false,"url":null},{"name":"gear","loaded":false,"url":null},{"name":"blazeposedetect","loaded":false,"url":null},{"name":"blazepose","loaded":false,"url":null},{"name":"centernet","loaded":true,"url":"https://vladmandic.github.io/human/models/mb3-centernet.json"},{"name":"efficientpose","loaded":false,"url":null},{"name":"mobilefacenet","loaded":false,"url":null},{"name":"insightface","loaded":false,"url":null},{"name":"emotion","loaded":true,"url":"https://vladmandic.github.io/human/models/emotion.json"},{"name":"facedetect","loaded":true,"url":"https://vladmandic.github.io/human/models/blazeface.json"},{"name":"faceiris","loaded":true,"url":"https://vladmandic.github.io/human/models/iris.json"},{"name":"facemesh","loaded":true,"url":"https://vladmandic.github.io/human/models/facemesh.json"},{"name":"faceres","loaded":true,"url":"https://vladmandic.github.io/human/models/faceres.json"},{"name":"ssrnetgender","loaded":false,"url":null},{"name":"handpose","loaded":false,"url":null},{"name":"handskeleton","loaded":true,"url":"https://vladmandic.github.io/human/models/handlandmark-full.json"},{"name":"handtrack","loaded":true,"url":"https://vladmandic.github.io/human/models/handtrack.json"},{"name":"liveness","loaded":true,"url":"https://vladmandic.github.io/human/models/liveness.json"},{"name":"movenet","loaded":true,"url":"https://vladmandic.github.io/human/models/movenet-lightning.json"},{"name":"nanodet","loaded":false,"url":null},{"name":"posenet","loaded":false,"url":null},{"name":"segmentation","loaded":true,"url":"https://vladmandic.github.io/human/models/selfie.json"},{"name":"antispoof","loaded":true,"url":"https://vladmandic.github.io/human/models/antispoof.json"}] -2022-08-30 10:24:48 INFO:  test-backend-node-wasm.js memory: {"memory":{"unreliable":false,"numTensors":1921,"numDataBuffers":1921,"numBytes":63673064}} -2022-08-30 10:24:48 INFO:  test-backend-node-wasm.js state: {"state":{"registeredVariables":{},"nextTapeNodeId":0,"numBytes":63673064,"numTensors":1921,"numStringTensors":0,"numDataBuffers":1921,"gradientDepth":0,"kernelDepth":0,"scopeStack":[],"numDataMovesStack":[],"nextScopeId":0,"tensorInfo":{},"profiling":false,"activeProfile":{"newBytes":0,"newTensors":0,"peakBytes":0,"kernels":[],"result":null,"kernelNames":[]}}} -2022-08-30 10:24:48 INFO:  test-backend-node-wasm.js test: warmup -2022-08-30 10:24:48 STATE: test-backend-node-wasm.js passed: create human -2022-08-30 10:24:48 INFO:  test-backend-node-wasm.js human version: 2.9.4 -2022-08-30 10:24:48 INFO:  test-backend-node-wasm.js platform: linux x64 agent: NodeJS v18.1.0 -2022-08-30 10:24:48 INFO:  test-backend-node-wasm.js tfjs version: 3.20.0 -2022-08-30 10:24:48 INFO:  test-backend-node-wasm.js env: {"browser":false,"node":true,"platform":"linux x64","agent":"NodeJS v18.1.0","backends":["cpu","wasm"],"initial":false,"tfjs":{"version":"3.20.0"},"offscreen":false,"perfadd":false,"tensorflow":{},"wasm":{"supported":true,"backend":true,"simd":true,"multithread":false},"webgl":{"supported":false,"backend":false},"webgpu":{"supported":false,"backend":false},"cpu":{"flags":[]},"kernels":126} -2022-08-30 10:24:48 STATE: test-backend-node-wasm.js passed: set backend: wasm -2022-08-30 10:24:48 STATE: test-backend-node-wasm.js tensors 1921 -2022-08-30 10:24:48 STATE: test-backend-node-wasm.js passed: load models -2022-08-30 10:24:48 STATE: test-backend-node-wasm.js result: defined models: 23 loaded models: 12 -2022-08-30 10:24:48 STATE: test-backend-node-wasm.js passed: warmup: none default -2022-08-30 10:24:48 DATA:  test-backend-node-wasm.js result: face: 0 body: 0 hand: 0 gesture: 0 object: 0 person: 0 {} {} {} -2022-08-30 10:24:48 DATA:  test-backend-node-wasm.js result: performance: load: null total: null -2022-08-30 10:24:48 STATE: test-backend-node-wasm.js passed: warmup none result match -2022-08-30 10:24:48 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js event: warmup -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js passed: warmup: face default -2022-08-30 10:24:49 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 6 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.47,"keypoints":3} -2022-08-30 10:24:49 DATA:  test-backend-node-wasm.js result: performance: load: null total: 532 -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js passed: warmup face result match -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js event: warmup -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js passed: warmup: body default -2022-08-30 10:24:49 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:49 DATA:  test-backend-node-wasm.js result: performance: load: null total: 380 -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js passed: warmup body result match -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js details: {"face":{"boxScore":0.93,"faceScore":1,"age":23.7,"gender":"female","genderScore":0.97},"emotion":[{"score":0.59,"emotion":"angry"},{"score":0.29,"emotion":"fear"}],"body":{"score":0.92,"keypoints":17},"hand":{"boxScore":0.51,"fingerScore":0.73,"keypoints":21},"gestures":[{"face":0,"gesture":"facing right"},{"face":0,"gesture":"mouth 21% open"},{"hand":0,"gesture":"pinky forward"},{"hand":0,"gesture":"palm up"},{"hand":0,"gesture":"open palm"},{"iris":0,"gesture":"looking left"},{"iris":0,"gesture":"looking up"}]} -2022-08-30 10:24:49 INFO:  test-backend-node-wasm.js test: details verification -2022-08-30 10:24:49 STATE: test-backend-node-wasm.js start default -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg default -2022-08-30 10:24:50 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:50 DATA:  test-backend-node-wasm.js result: performance: load: null total: 323 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details face length 1 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details face score 1 0.93 1 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details face age/gender 23.7 female 0.97 85.47 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details face arrays 4 478 1024 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details face emotion 2 {"score":0.59,"emotion":"angry"} -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details face anti-spoofing 0.79 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details face liveness 0.83 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details body length 1 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details body 0.92 17 6 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details hand length 1 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details hand 0.51 0.73 point -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details hand arrays 21 5 7 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details gesture length 7 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details gesture first {"face":0,"gesture":"facing right"} -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details object length 1 -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: details object 0.72 person -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1413675264} -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:50 STATE: test-backend-node-wasm.js passed: tensor shape: [1,1200,1200,4] dtype: float32 -2022-08-30 10:24:51 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1200,1200,4] {"checksum":1413675264} -2022-08-30 10:24:51 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:51 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:51 STATE: test-backend-node-wasm.js passed: tensor shape: [1200,1200,4] dtype: float32 -2022-08-30 10:24:51 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:24:51 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:51 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:51 STATE: test-backend-node-wasm.js passed: tensor shape: [1,1200,1200,3] dtype: float32 -2022-08-30 10:24:52 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1200,1200,3] {"checksum":1038921856} -2022-08-30 10:24:52 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:52 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:52 STATE: test-backend-node-wasm.js passed: tensor shape: [1200,1200,3] dtype: float32 -2022-08-30 10:24:52 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996871} -2022-08-30 10:24:52 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js passed: tensor shape: [1,1200,1200,4] dtype: int32 -2022-08-30 10:24:53 INFO:  test-backend-node-wasm.js test default -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js start async -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg async -2022-08-30 10:24:53 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 1 person: 1 {"score":1,"age":29.6,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:53 DATA:  test-backend-node-wasm.js result: performance: load: null total: 329 -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js passed: default result face match 1 female 0.97 -2022-08-30 10:24:53 INFO:  test-backend-node-wasm.js test sync -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js start sync -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:24:53 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg sync -2022-08-30 10:24:54 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 1 person: 1 {"score":1,"age":29.6,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:54 DATA:  test-backend-node-wasm.js result: performance: load: null total: 344 -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js passed: default sync 1 female 0.97 -2022-08-30 10:24:54 INFO:  test-backend-node-wasm.js test: image process -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js passed: image input null [1,256,256,3] -2022-08-30 10:24:54 INFO:  test-backend-node-wasm.js test: image null -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js passed: invalid input could not convert input to tensor -2022-08-30 10:24:54 INFO:  test-backend-node-wasm.js test face similarity -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js start face similarity -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg face similarity -2022-08-30 10:24:54 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 6 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.47,"keypoints":3} -2022-08-30 10:24:54 DATA:  test-backend-node-wasm.js result: performance: load: null total: 314 -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js start face similarity -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:24:54 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg face similarity -2022-08-30 10:24:55 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 1 person: 1 {"score":1,"age":29.6,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:55 DATA:  test-backend-node-wasm.js result: performance: load: null total: 343 -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js start face similarity -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg face similarity -2022-08-30 10:24:55 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 4 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.71,"class":"person"} {"score":0.75,"keypoints":7} -2022-08-30 10:24:55 DATA:  test-backend-node-wasm.js result: performance: load: null total: 375 -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js passed: face descriptor -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js passed: face similarity {"similarity":[1,0.5266119940661309,0.4858842904087851],"descriptors":[1024,1024,1024]} -2022-08-30 10:24:55 INFO:  test-backend-node-wasm.js test object -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js start object -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:24:55 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:56 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:56 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg object -2022-08-30 10:24:56 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 1 person: 1 {"score":1,"age":29.6,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} -2022-08-30 10:24:56 DATA:  test-backend-node-wasm.js result: performance: load: null total: 374 -2022-08-30 10:24:56 STATE: test-backend-node-wasm.js passed: centernet -2022-08-30 10:24:56 STATE: test-backend-node-wasm.js start object -2022-08-30 10:24:56 WARN:  test-backend-node-wasm.js missing kernel ops {"title":"object","model":"nanodet","url":"https://vladmandic.github.io/human-models/models/nanodet.json","missing":["sparsetodense"],"backkend":"wasm"} -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg object -2022-08-30 10:24:57 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:57 DATA:  test-backend-node-wasm.js result: performance: load: null total: 242 -2022-08-30 10:24:57 ERROR: test-backend-node-wasm.js failed: nanodet [] -2022-08-30 10:24:57 INFO:  test-backend-node-wasm.js test sensitive -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js start sensitive -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg sensitive -2022-08-30 10:24:57 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:24:57 DATA:  test-backend-node-wasm.js result: performance: load: null total: 275 -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js passed: sensitive result match -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js passed: sensitive face result match -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js passed: sensitive face emotion result [{"score":0.46,"emotion":"neutral"},{"score":0.24,"emotion":"fear"},{"score":0.17,"emotion":"sad"}] -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js passed: sensitive body result match -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js passed: sensitive hand result match -2022-08-30 10:24:57 INFO:  test-backend-node-wasm.js test body -2022-08-30 10:24:57 STATE: test-backend-node-wasm.js start blazepose -2022-08-30 10:25:00 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:25:00 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:00 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:00 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg blazepose -2022-08-30 10:25:00 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.99,"keypoints":39} -2022-08-30 10:25:00 DATA:  test-backend-node-wasm.js result: performance: load: null total: 423 -2022-08-30 10:25:00 STATE: test-backend-node-wasm.js passed: blazepose -2022-08-30 10:25:00 STATE: test-backend-node-wasm.js start efficientpose -2022-08-30 10:25:01 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:25:01 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:02 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:02 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg efficientpose -2022-08-30 10:25:02 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.75,"keypoints":13} -2022-08-30 10:25:02 DATA:  test-backend-node-wasm.js result: performance: load: null total: 633 -2022-08-30 10:25:02 STATE: test-backend-node-wasm.js passed: efficientpose -2022-08-30 10:25:02 STATE: test-backend-node-wasm.js start posenet -2022-08-30 10:25:02 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:25:02 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg posenet -2022-08-30 10:25:03 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.96,"keypoints":16} -2022-08-30 10:25:03 DATA:  test-backend-node-wasm.js result: performance: load: null total: 292 -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js passed: posenet -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js start movenet -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg movenet -2022-08-30 10:25:03 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:25:03 DATA:  test-backend-node-wasm.js result: performance: load: null total: 257 -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js passed: movenet -2022-08-30 10:25:03 INFO:  test-backend-node-wasm.js test face matching -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js passed: face database 40 -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js passed: face match {"first":{"index":4,"similarity":0.7827852754786533}} {"second":{"index":4,"similarity":0.5660821189104794}} {"third":{"index":4,"similarity":0.45074189882665594}} -2022-08-30 10:25:03 INFO:  test-backend-node-wasm.js test face similarity alternative -2022-08-30 10:25:03 STATE: test-backend-node-wasm.js start face embeddings -2022-08-30 10:25:04 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} -2022-08-30 10:25:04 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:04 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:04 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg face embeddings -2022-08-30 10:25:04 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:25:04 DATA:  test-backend-node-wasm.js result: performance: load: null total: 243 -2022-08-30 10:25:04 STATE: test-backend-node-wasm.js passed: mobilefacenet {"embedding":192} -2022-08-30 10:25:04 STATE: test-backend-node-wasm.js start face embeddings -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg face embeddings -2022-08-30 10:25:05 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:25:05 DATA:  test-backend-node-wasm.js result: performance: load: null total: 276 -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js passed: insightface {"embedding":512} -2022-08-30 10:25:05 INFO:  test-backend-node-wasm.js test face attention -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js start face attention -2022-08-30 10:25:05 WARN:  test-backend-node-wasm.js missing kernel ops {"title":"face attention","model":"facemesh","url":"https://vladmandic.github.io/human-models/models/facemesh-attention.json","missing":["atan2"],"backkend":"wasm"} -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg face attention -2022-08-30 10:25:05 DATA:  test-backend-node-wasm.js result: face: 0 body: 1 hand: 1 gesture: 2 object: 0 person: 0 {} {} {"score":0.47,"keypoints":3} -2022-08-30 10:25:05 DATA:  test-backend-node-wasm.js result: performance: load: null total: 121 -2022-08-30 10:25:05 ERROR: test-backend-node-wasm.js failed: face attention {"annotations":0} -2022-08-30 10:25:05 INFO:  test-backend-node-wasm.js test detectors -2022-08-30 10:25:05 STATE: test-backend-node-wasm.js start detectors -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg detectors -2022-08-30 10:25:06 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:25:06 DATA:  test-backend-node-wasm.js result: performance: load: null total: 114 -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: detector result face match -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: detector result hand match -2022-08-30 10:25:06 INFO:  test-backend-node-wasm.js test: multi-instance -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start multi instance -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: detect: random multi instance -2022-08-30 10:25:06 DATA:  test-backend-node-wasm.js result: face: 0 body: 1 hand: 0 gesture: 0 object: 0 person: 0 {} {} {"score":0,"keypoints":0} -2022-08-30 10:25:06 DATA:  test-backend-node-wasm.js result: performance: load: null total: 95 -2022-08-30 10:25:06 INFO:  test-backend-node-wasm.js test: first instance -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start multi instance -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg multi instance -2022-08-30 10:25:06 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:25:06 DATA:  test-backend-node-wasm.js result: performance: load: null total: 106 -2022-08-30 10:25:06 INFO:  test-backend-node-wasm.js test: second instance -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start multi instance -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg multi instance -2022-08-30 10:25:06 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:25:06 DATA:  test-backend-node-wasm.js result: performance: load: null total: 108 -2022-08-30 10:25:06 INFO:  test-backend-node-wasm.js test: concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js start concurrent -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} -2022-08-30 10:25:06 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:25:07 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:25:07 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} -2022-08-30 10:25:07 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} -2022-08-30 10:25:07 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} -2022-08-30 10:25:07 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:25:07 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} -2022-08-30 10:25:07 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:07 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:07 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg concurrent -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: performance: load: null total: 1302 -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg concurrent -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: performance: load: null total: 1302 -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg concurrent -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: performance: load: null total: 1303 -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg concurrent -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: performance: load: null total: 1303 -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg concurrent -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: performance: load: null total: 1303 -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg concurrent -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: performance: load: null total: 1303 -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg concurrent -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: performance: load: null total: 1005 -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg concurrent -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: performance: load: null total: 1006 -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg concurrent -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} -2022-08-30 10:25:08 DATA:  test-backend-node-wasm.js result: performance: load: null total: 1006 -2022-08-30 10:25:08 INFO:  test-backend-node-wasm.js test: monkey-patch -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js event: image -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js event: detect -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: monkey patch -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: segmentation [65536] -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passeed: equal usage -2022-08-30 10:25:08 INFO:  test-backend-node-wasm.js test: input compare -2022-08-30 10:25:08 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} -2022-08-30 10:25:09 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} -2022-08-30 10:25:09 STATE: test-backend-node-wasm.js passed: image compare 0 23.280073018790848 -2022-08-30 10:25:09 INFO:  test-backend-node-wasm.js events: {"image":29,"detect":29,"warmup":2} -2022-08-30 10:25:09 INFO:  test-backend-node-wasm.js tensors 4107 -2022-08-30 10:25:09 INFO:  test-backend-node-wasm.js test complete: 22548 ms -2022-08-30 10:25:09 STATE: all tests complete -2022-08-30 10:25:09 INFO:  status {"test":"../demo/nodejs/node.js","passed":1,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"../demo/nodejs/node-simple.js","passed":1,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"../demo/nodejs/node-fetch.js","passed":1,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"../demo/nodejs/node-event.js","passed":1,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"../demo/nodejs/node-similarity.js","passed":1,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"../demo/nodejs/node-canvas.js","passed":1,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"../demo/multithread/node-multiprocess.js","passed":1,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"../demo/facematch/node-match.js","passed":1,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"test-node-load.js","passed":1,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"test-node-gear.js","passed":3,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"test-backend-node.js","passed":125,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"test-backend-node-gpu.js","passed":125,"failed":0} -2022-08-30 10:25:09 INFO:  status {"test":"test-backend-node-wasm.js","passed":124,"failed":2} -2022-08-30 10:25:09 INFO:  failures {"count":2} -2022-08-30 10:25:09 WARN:  failed {"test":"test-backend-node-wasm.js","message":["error",["failed: nanodet",[]]]} -2022-08-30 10:25:09 WARN:  failed {"test":"test-backend-node-wasm.js","message":["error",["failed: face attention",{"annotations":0}]]} +2022-08-31 11:27:38 INFO:  @vladmandic/human version 2.9.4 +2022-08-31 11:27:38 INFO:  User: vlado Platform: linux Arch: x64 Node: v18.1.0 +2022-08-31 11:27:38 INFO:  demos: [{"cmd":"../demo/nodejs/node.js","args":[]},{"cmd":"../demo/nodejs/node-simple.js","args":[]},{"cmd":"../demo/nodejs/node-fetch.js","args":[]},{"cmd":"../demo/nodejs/node-event.js","args":["samples/in/ai-body.jpg"]},{"cmd":"../demo/nodejs/node-similarity.js","args":["samples/in/ai-face.jpg","samples/in/ai-upper.jpg"]},{"cmd":"../demo/nodejs/node-canvas.js","args":["samples/in/ai-body.jpg","samples/out/ai-body.jpg"]},{"cmd":"../demo/multithread/node-multiprocess.js","args":[]},{"cmd":"../demo/facematch/node-match.js","args":[]}] +2022-08-31 11:27:38 INFO:  {"cmd":"../demo/nodejs/node.js","args":[]} start +2022-08-31 11:27:39 INFO:  {"cmd":"../demo/nodejs/node-simple.js","args":[]} start +2022-08-31 11:27:40 INFO:  {"cmd":"../demo/nodejs/node-fetch.js","args":[]} start +2022-08-31 11:27:42 INFO:  {"cmd":"../demo/nodejs/node-event.js","args":["samples/in/ai-body.jpg"]} start +2022-08-31 11:27:43 INFO:  {"cmd":"../demo/nodejs/node-similarity.js","args":["samples/in/ai-face.jpg","samples/in/ai-upper.jpg"]} start +2022-08-31 11:27:43 INFO:  {"cmd":"../demo/nodejs/node-canvas.js","args":["samples/in/ai-body.jpg","samples/out/ai-body.jpg"]} start +2022-08-31 11:27:44 INFO:  {"cmd":"../demo/multithread/node-multiprocess.js","args":[]} start +2022-08-31 11:27:45 INFO:  {"cmd":"../demo/facematch/node-match.js","args":[]} start +2022-08-31 11:27:47 INFO:  tests: ["test-node-load.js","test-node-gear.js","test-backend-node.js","test-backend-node-gpu.js","test-backend-node-wasm.js"] +2022-08-31 11:27:47 INFO:  +2022-08-31 11:27:47 INFO:  test-node-load.js start +2022-08-31 11:27:47 INFO:  test-node-load.js load start {"human":"2.9.4","tf":"3.20.0","progress":0} +2022-08-31 11:27:47 DATA:  test-node-load.js load interval {"elapsed":0,"progress":0} +2022-08-31 11:27:47 DATA:  test-node-load.js load interval {"elapsed":13,"progress":0} +2022-08-31 11:27:47 DATA:  test-node-load.js load interval {"elapsed":22,"progress":0.05339166087267679} +2022-08-31 11:27:47 DATA:  test-node-load.js load interval {"elapsed":32,"progress":0.2135162934143239} +2022-08-31 11:27:47 DATA:  test-node-load.js load interval {"elapsed":82,"progress":0.5125946867158943} +2022-08-31 11:27:47 DATA:  test-node-load.js load interval {"elapsed":92,"progress":0.7259096583739463} +2022-08-31 11:27:47 STATE: test-node-load.js passed {"progress":1} +2022-08-31 11:27:47 INFO:  test-node-load.js load final {"progress":1} +2022-08-31 11:27:47 DATA:  test-node-load.js load interval {"elapsed":371,"progress":1} +2022-08-31 11:27:47 INFO:  +2022-08-31 11:27:47 INFO:  test-node-gear.js start +2022-08-31 11:27:48 DATA:  test-node-gear.js input: ["samples/in/ai-face.jpg"] +2022-08-31 11:27:48 STATE: test-node-gear.js passed: gear faceres samples/in/ai-face.jpg +2022-08-31 11:27:48 DATA:  test-node-gear.js results {"face":0,"model":"faceres","image":"samples/in/ai-face.jpg","age":23.5,"gender":"female","genderScore":0.92} +2022-08-31 11:27:49 STATE: test-node-gear.js passed: gear gear samples/in/ai-face.jpg +2022-08-31 11:27:49 DATA:  test-node-gear.js results {"face":0,"model":"gear","image":"samples/in/ai-face.jpg","age":23.3,"gender":"female","genderScore":0.51,"race":[{"score":0.93,"race":"white"}]} +2022-08-31 11:27:49 STATE: test-node-gear.js passed: gear ssrnet samples/in/ai-face.jpg +2022-08-31 11:27:49 DATA:  test-node-gear.js results {"face":0,"model":"ssrnet","image":"samples/in/ai-face.jpg","age":23.4,"gender":"female","genderScore":0.99} +2022-08-31 11:27:49 INFO:  +2022-08-31 11:27:49 INFO:  test-backend-node.js start +2022-08-31 11:27:49 INFO:  test-backend-node.js test: configuration validation +2022-08-31 11:27:49 STATE: test-backend-node.js passed: configuration default validation [] +2022-08-31 11:27:49 STATE: test-backend-node.js passed: configuration invalid validation [{"reason":"unknown property","where":"config.invalid = true"}] +2022-08-31 11:27:49 INFO:  test-backend-node.js test: model load +2022-08-31 11:27:49 STATE: test-backend-node.js passed: models loaded 23 12 [{"name":"ssrnetage","loaded":false,"url":null},{"name":"gear","loaded":false,"url":null},{"name":"blazeposedetect","loaded":false,"url":null},{"name":"blazepose","loaded":false,"url":null},{"name":"centernet","loaded":true,"url":"file://models/mb3-centernet.json"},{"name":"efficientpose","loaded":false,"url":null},{"name":"mobilefacenet","loaded":false,"url":null},{"name":"insightface","loaded":false,"url":null},{"name":"emotion","loaded":true,"url":"file://models/emotion.json"},{"name":"facedetect","loaded":true,"url":"file://models/blazeface.json"},{"name":"faceiris","loaded":true,"url":"file://models/iris.json"},{"name":"facemesh","loaded":true,"url":"file://models/facemesh.json"},{"name":"faceres","loaded":true,"url":"file://models/faceres.json"},{"name":"ssrnetgender","loaded":false,"url":null},{"name":"handpose","loaded":false,"url":null},{"name":"handskeleton","loaded":true,"url":"file://models/handlandmark-full.json"},{"name":"handtrack","loaded":true,"url":"file://models/handtrack.json"},{"name":"liveness","loaded":true,"url":"file://models/liveness.json"},{"name":"movenet","loaded":true,"url":"file://models/movenet-lightning.json"},{"name":"nanodet","loaded":false,"url":null},{"name":"posenet","loaded":false,"url":null},{"name":"segmentation","loaded":true,"url":"file://models/selfie.json"},{"name":"antispoof","loaded":true,"url":"file://models/antispoof.json"}] +2022-08-31 11:27:49 INFO:  test-backend-node.js memory: {"memory":{"unreliable":true,"numTensors":1921,"numDataBuffers":1921,"numBytes":63673064}} +2022-08-31 11:27:49 INFO:  test-backend-node.js state: {"state":{"registeredVariables":{},"nextTapeNodeId":0,"numBytes":63673064,"numTensors":1921,"numStringTensors":0,"numDataBuffers":1921,"gradientDepth":0,"kernelDepth":0,"scopeStack":[],"numDataMovesStack":[],"nextScopeId":0,"tensorInfo":{},"profiling":false,"activeProfile":{"newBytes":0,"newTensors":0,"peakBytes":0,"kernels":[],"result":null,"kernelNames":[]}}} +2022-08-31 11:27:49 INFO:  test-backend-node.js test: warmup +2022-08-31 11:27:49 STATE: test-backend-node.js passed: create human +2022-08-31 11:27:49 INFO:  test-backend-node.js human version: 2.9.4 +2022-08-31 11:27:49 INFO:  test-backend-node.js platform: linux x64 agent: NodeJS v18.1.0 +2022-08-31 11:27:49 INFO:  test-backend-node.js tfjs version: 3.20.0 +2022-08-31 11:27:49 INFO:  test-backend-node.js env: {"browser":false,"node":true,"platform":"linux x64","agent":"NodeJS v18.1.0","backends":["cpu","tensorflow"],"initial":false,"tfjs":{"version":"3.20.0"},"offscreen":false,"perfadd":false,"tensorflow":{"version":"2.7.3-dev20220521","gpu":false},"wasm":{"supported":true,"backend":false},"webgl":{"supported":false,"backend":false},"webgpu":{"supported":false,"backend":false},"cpu":{"flags":[]},"kernels":169} +2022-08-31 11:27:49 STATE: test-backend-node.js passed: set backend: tensorflow +2022-08-31 11:27:49 STATE: test-backend-node.js tensors 1921 +2022-08-31 11:27:49 STATE: test-backend-node.js passed: load models +2022-08-31 11:27:49 STATE: test-backend-node.js result: defined models: 23 loaded models: 12 +2022-08-31 11:27:49 STATE: test-backend-node.js passed: warmup: none default +2022-08-31 11:27:49 DATA:  test-backend-node.js result: face: 0 body: 0 hand: 0 gesture: 0 object: 0 person: 0 {} {} {} +2022-08-31 11:27:49 DATA:  test-backend-node.js result: performance: load: null total: null +2022-08-31 11:27:49 STATE: test-backend-node.js passed: warmup none result match +2022-08-31 11:27:49 STATE: test-backend-node.js event: image +2022-08-31 11:27:49 STATE: test-backend-node.js event: detect +2022-08-31 11:27:49 STATE: test-backend-node.js event: warmup +2022-08-31 11:27:49 STATE: test-backend-node.js passed: warmup: face default +2022-08-31 11:27:49 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.42,"keypoints":4} +2022-08-31 11:27:49 DATA:  test-backend-node.js result: performance: load: null total: 327 +2022-08-31 11:27:49 STATE: test-backend-node.js passed: warmup face result match +2022-08-31 11:27:49 STATE: test-backend-node.js event: image +2022-08-31 11:27:49 STATE: test-backend-node.js event: detect +2022-08-31 11:27:49 STATE: test-backend-node.js event: warmup +2022-08-31 11:27:49 STATE: test-backend-node.js passed: warmup: body default +2022-08-31 11:27:49 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:27:49 DATA:  test-backend-node.js result: performance: load: null total: 235 +2022-08-31 11:27:49 STATE: test-backend-node.js passed: warmup body result match +2022-08-31 11:27:49 STATE: test-backend-node.js details: {"face":{"boxScore":0.92,"faceScore":1,"age":23.7,"gender":"female","genderScore":0.97},"emotion":[{"score":0.63,"emotion":"angry"},{"score":0.22,"emotion":"fear"}],"body":{"score":0.92,"keypoints":17},"hand":{"boxScore":0.52,"fingerScore":0.73,"keypoints":21},"gestures":[{"face":0,"gesture":"facing right"},{"face":0,"gesture":"mouth 10% open"},{"hand":0,"gesture":"pinky forward"},{"hand":0,"gesture":"palm up"},{"hand":0,"gesture":"open palm"},{"iris":0,"gesture":"looking left"},{"iris":0,"gesture":"looking up"}]} +2022-08-31 11:27:49 INFO:  test-backend-node.js test: details verification +2022-08-31 11:27:49 STATE: test-backend-node.js start default +2022-08-31 11:27:50 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:50 STATE: test-backend-node.js event: image +2022-08-31 11:27:50 STATE: test-backend-node.js event: detect +2022-08-31 11:27:50 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg default +2022-08-31 11:27:50 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:27:50 DATA:  test-backend-node.js result: performance: load: null total: 209 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details face length 1 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details face score 1 0.93 1 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details face age/gender 23.7 female 0.97 85.47 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details face arrays 4 478 1024 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details face emotion 2 {"score":0.59,"emotion":"angry"} +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details face anti-spoofing 0.79 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details face liveness 0.83 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details body length 1 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details body 0.92 17 6 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details hand length 1 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details hand 0.51 0.73 point +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details hand arrays 21 5 7 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details gesture length 7 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details gesture first {"face":0,"gesture":"facing right"} +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details object length 1 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: details object 0.72 person +2022-08-31 11:27:50 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996928} +2022-08-31 11:27:50 STATE: test-backend-node.js event: image +2022-08-31 11:27:50 STATE: test-backend-node.js event: detect +2022-08-31 11:27:50 STATE: test-backend-node.js passed: tensor shape: [1,1200,1200,4] dtype: float32 +2022-08-31 11:27:50 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1200,1200,4] {"checksum":1371996928} +2022-08-31 11:27:50 STATE: test-backend-node.js event: image +2022-08-31 11:27:51 STATE: test-backend-node.js event: detect +2022-08-31 11:27:51 STATE: test-backend-node.js passed: tensor shape: [1200,1200,4] dtype: float32 +2022-08-31 11:27:51 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:51 STATE: test-backend-node.js event: image +2022-08-31 11:27:51 STATE: test-backend-node.js event: detect +2022-08-31 11:27:51 STATE: test-backend-node.js passed: tensor shape: [1,1200,1200,3] dtype: float32 +2022-08-31 11:27:51 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:51 STATE: test-backend-node.js event: image +2022-08-31 11:27:51 STATE: test-backend-node.js event: detect +2022-08-31 11:27:51 STATE: test-backend-node.js passed: tensor shape: [1200,1200,3] dtype: float32 +2022-08-31 11:27:52 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996871} +2022-08-31 11:27:52 STATE: test-backend-node.js event: image +2022-08-31 11:27:52 STATE: test-backend-node.js event: detect +2022-08-31 11:27:52 STATE: test-backend-node.js passed: tensor shape: [1,1200,1200,4] dtype: int32 +2022-08-31 11:27:52 INFO:  test-backend-node.js test default +2022-08-31 11:27:52 STATE: test-backend-node.js start async +2022-08-31 11:27:52 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:52 STATE: test-backend-node.js event: image +2022-08-31 11:27:52 STATE: test-backend-node.js event: detect +2022-08-31 11:27:52 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg async +2022-08-31 11:27:52 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:27:52 DATA:  test-backend-node.js result: performance: load: null total: 207 +2022-08-31 11:27:52 STATE: test-backend-node.js passed: default result face match 1 female 0.97 +2022-08-31 11:27:52 INFO:  test-backend-node.js test sync +2022-08-31 11:27:52 STATE: test-backend-node.js start sync +2022-08-31 11:27:53 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:53 STATE: test-backend-node.js event: image +2022-08-31 11:27:53 STATE: test-backend-node.js event: detect +2022-08-31 11:27:53 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg sync +2022-08-31 11:27:53 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:27:53 DATA:  test-backend-node.js result: performance: load: null total: 209 +2022-08-31 11:27:53 STATE: test-backend-node.js passed: default sync 1 female 0.97 +2022-08-31 11:27:53 INFO:  test-backend-node.js test: image process +2022-08-31 11:27:53 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:27:53 STATE: test-backend-node.js passed: image input null [1,256,256,3] +2022-08-31 11:27:53 INFO:  test-backend-node.js test: image null +2022-08-31 11:27:53 STATE: test-backend-node.js passed: invalid input could not convert input to tensor +2022-08-31 11:27:53 INFO:  test-backend-node.js test face similarity +2022-08-31 11:27:53 STATE: test-backend-node.js start face similarity +2022-08-31 11:27:53 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:27:53 STATE: test-backend-node.js event: image +2022-08-31 11:27:53 STATE: test-backend-node.js event: detect +2022-08-31 11:27:53 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg face similarity +2022-08-31 11:27:53 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 6 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.47,"keypoints":3} +2022-08-31 11:27:53 DATA:  test-backend-node.js result: performance: load: null total: 211 +2022-08-31 11:27:53 STATE: test-backend-node.js start face similarity +2022-08-31 11:27:53 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:53 STATE: test-backend-node.js event: image +2022-08-31 11:27:53 STATE: test-backend-node.js event: detect +2022-08-31 11:27:53 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg face similarity +2022-08-31 11:27:53 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:27:53 DATA:  test-backend-node.js result: performance: load: null total: 207 +2022-08-31 11:27:53 STATE: test-backend-node.js start face similarity +2022-08-31 11:27:54 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} +2022-08-31 11:27:54 STATE: test-backend-node.js event: image +2022-08-31 11:27:54 STATE: test-backend-node.js event: detect +2022-08-31 11:27:54 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg face similarity +2022-08-31 11:27:54 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 4 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.71,"class":"person"} {"score":0.75,"keypoints":7} +2022-08-31 11:27:54 DATA:  test-backend-node.js result: performance: load: null total: 177 +2022-08-31 11:27:54 STATE: test-backend-node.js passed: face descriptor +2022-08-31 11:27:54 STATE: test-backend-node.js passed: face similarity {"similarity":[1,0.44727452329649126,0.5567935850640406],"descriptors":[1024,1024,1024]} +2022-08-31 11:27:54 INFO:  test-backend-node.js test object +2022-08-31 11:27:54 STATE: test-backend-node.js start object +2022-08-31 11:27:54 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:54 STATE: test-backend-node.js event: image +2022-08-31 11:27:54 STATE: test-backend-node.js event: detect +2022-08-31 11:27:54 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg object +2022-08-31 11:27:54 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:27:54 DATA:  test-backend-node.js result: performance: load: null total: 197 +2022-08-31 11:27:54 STATE: test-backend-node.js passed: centernet +2022-08-31 11:27:54 STATE: test-backend-node.js start object +2022-08-31 11:27:55 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:55 STATE: test-backend-node.js event: image +2022-08-31 11:27:55 STATE: test-backend-node.js event: detect +2022-08-31 11:27:55 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg object +2022-08-31 11:27:55 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 3 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.86,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:27:55 DATA:  test-backend-node.js result: performance: load: null total: 205 +2022-08-31 11:27:55 STATE: test-backend-node.js passed: nanodet +2022-08-31 11:27:55 INFO:  test-backend-node.js test sensitive +2022-08-31 11:27:55 STATE: test-backend-node.js start sensitive +2022-08-31 11:27:56 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:56 STATE: test-backend-node.js event: image +2022-08-31 11:27:56 STATE: test-backend-node.js event: detect +2022-08-31 11:27:56 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg sensitive +2022-08-31 11:27:56 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:27:56 DATA:  test-backend-node.js result: performance: load: null total: 164 +2022-08-31 11:27:56 STATE: test-backend-node.js passed: sensitive result match +2022-08-31 11:27:56 STATE: test-backend-node.js passed: sensitive face result match +2022-08-31 11:27:56 STATE: test-backend-node.js passed: sensitive face emotion result [{"score":0.59,"emotion":"angry"},{"score":0.29,"emotion":"fear"}] +2022-08-31 11:27:56 STATE: test-backend-node.js passed: sensitive body result match +2022-08-31 11:27:56 STATE: test-backend-node.js passed: sensitive hand result match +2022-08-31 11:27:56 INFO:  test-backend-node.js test body +2022-08-31 11:27:56 STATE: test-backend-node.js start blazepose +2022-08-31 11:27:58 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:58 STATE: test-backend-node.js event: image +2022-08-31 11:27:58 STATE: test-backend-node.js event: detect +2022-08-31 11:27:58 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg blazepose +2022-08-31 11:27:58 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.99,"keypoints":39} +2022-08-31 11:27:58 DATA:  test-backend-node.js result: performance: load: null total: 219 +2022-08-31 11:27:58 STATE: test-backend-node.js passed: blazepose +2022-08-31 11:27:58 STATE: test-backend-node.js start efficientpose +2022-08-31 11:27:58 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:58 STATE: test-backend-node.js event: image +2022-08-31 11:27:59 STATE: test-backend-node.js event: detect +2022-08-31 11:27:59 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg efficientpose +2022-08-31 11:27:59 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.75,"keypoints":13} +2022-08-31 11:27:59 DATA:  test-backend-node.js result: performance: load: null total: 235 +2022-08-31 11:27:59 STATE: test-backend-node.js passed: efficientpose +2022-08-31 11:27:59 STATE: test-backend-node.js start posenet +2022-08-31 11:27:59 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:59 STATE: test-backend-node.js event: image +2022-08-31 11:27:59 STATE: test-backend-node.js event: detect +2022-08-31 11:27:59 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg posenet +2022-08-31 11:27:59 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.96,"keypoints":16} +2022-08-31 11:27:59 DATA:  test-backend-node.js result: performance: load: null total: 163 +2022-08-31 11:27:59 STATE: test-backend-node.js passed: posenet +2022-08-31 11:27:59 STATE: test-backend-node.js start movenet +2022-08-31 11:27:59 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:27:59 STATE: test-backend-node.js event: image +2022-08-31 11:28:00 STATE: test-backend-node.js event: detect +2022-08-31 11:28:00 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg movenet +2022-08-31 11:28:00 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:00 DATA:  test-backend-node.js result: performance: load: null total: 165 +2022-08-31 11:28:00 STATE: test-backend-node.js passed: movenet +2022-08-31 11:28:00 INFO:  test-backend-node.js test face matching +2022-08-31 11:28:00 STATE: test-backend-node.js passed: face database 40 +2022-08-31 11:28:00 STATE: test-backend-node.js passed: face match {"first":{"index":4,"similarity":0.7827852615252829}} {"second":{"index":4,"similarity":0.5002052633015844}} {"third":{"index":4,"similarity":0.5401587887998899}} +2022-08-31 11:28:00 INFO:  test-backend-node.js test face similarity alternative +2022-08-31 11:28:00 STATE: test-backend-node.js start face embeddings +2022-08-31 11:28:00 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:00 STATE: test-backend-node.js event: image +2022-08-31 11:28:01 STATE: test-backend-node.js event: detect +2022-08-31 11:28:01 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg face embeddings +2022-08-31 11:28:01 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:01 DATA:  test-backend-node.js result: performance: load: null total: 190 +2022-08-31 11:28:01 STATE: test-backend-node.js passed: mobilefacenet {"embedding":192} +2022-08-31 11:28:01 STATE: test-backend-node.js start face embeddings +2022-08-31 11:28:01 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:01 STATE: test-backend-node.js event: image +2022-08-31 11:28:01 STATE: test-backend-node.js event: detect +2022-08-31 11:28:01 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg face embeddings +2022-08-31 11:28:01 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:01 DATA:  test-backend-node.js result: performance: load: null total: 201 +2022-08-31 11:28:01 STATE: test-backend-node.js passed: insightface {"embedding":512} +2022-08-31 11:28:01 INFO:  test-backend-node.js test face attention +2022-08-31 11:28:01 STATE: test-backend-node.js start face attention +2022-08-31 11:28:02 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:02 STATE: test-backend-node.js event: image +2022-08-31 11:28:02 STATE: test-backend-node.js event: detect +2022-08-31 11:28:02 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg face attention +2022-08-31 11:28:02 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:02 DATA:  test-backend-node.js result: performance: load: null total: 173 +2022-08-31 11:28:02 STATE: test-backend-node.js passed: face attention +2022-08-31 11:28:02 INFO:  test-backend-node.js test detectors +2022-08-31 11:28:02 STATE: test-backend-node.js start detectors +2022-08-31 11:28:02 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:28:02 STATE: test-backend-node.js event: image +2022-08-31 11:28:02 STATE: test-backend-node.js event: detect +2022-08-31 11:28:02 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg detectors +2022-08-31 11:28:02 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:02 DATA:  test-backend-node.js result: performance: load: null total: 128 +2022-08-31 11:28:02 STATE: test-backend-node.js passed: detector result face match +2022-08-31 11:28:02 STATE: test-backend-node.js passed: detector result hand match +2022-08-31 11:28:02 INFO:  test-backend-node.js test: multi-instance +2022-08-31 11:28:02 STATE: test-backend-node.js start multi instance +2022-08-31 11:28:03 STATE: test-backend-node.js event: image +2022-08-31 11:28:03 STATE: test-backend-node.js event: detect +2022-08-31 11:28:03 STATE: test-backend-node.js passed: detect: random multi instance +2022-08-31 11:28:03 DATA:  test-backend-node.js result: face: 0 body: 1 hand: 0 gesture: 0 object: 0 person: 0 {} {} {"score":0,"keypoints":0} +2022-08-31 11:28:03 DATA:  test-backend-node.js result: performance: load: null total: 81 +2022-08-31 11:28:03 INFO:  test-backend-node.js test: first instance +2022-08-31 11:28:03 STATE: test-backend-node.js start multi instance +2022-08-31 11:28:03 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} +2022-08-31 11:28:03 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg multi instance +2022-08-31 11:28:03 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:03 DATA:  test-backend-node.js result: performance: load: null total: 107 +2022-08-31 11:28:03 INFO:  test-backend-node.js test: second instance +2022-08-31 11:28:03 STATE: test-backend-node.js start multi instance +2022-08-31 11:28:03 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} +2022-08-31 11:28:03 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg multi instance +2022-08-31 11:28:03 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:03 DATA:  test-backend-node.js result: performance: load: null total: 95 +2022-08-31 11:28:03 INFO:  test-backend-node.js test: concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js start concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js start concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js start concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js start concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js start concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js start concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js start concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js start concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js start concurrent +2022-08-31 11:28:03 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:03 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:03 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:03 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:28:03 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:28:04 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:28:04 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} +2022-08-31 11:28:04 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} +2022-08-31 11:28:04 STATE: test-backend-node.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289024} +2022-08-31 11:28:04 STATE: test-backend-node.js event: image +2022-08-31 11:28:04 STATE: test-backend-node.js event: image +2022-08-31 11:28:04 STATE: test-backend-node.js event: image +2022-08-31 11:28:05 STATE: test-backend-node.js event: detect +2022-08-31 11:28:05 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg concurrent +2022-08-31 11:28:05 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:05 DATA:  test-backend-node.js result: performance: load: null total: 817 +2022-08-31 11:28:05 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg concurrent +2022-08-31 11:28:05 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:05 DATA:  test-backend-node.js result: performance: load: null total: 817 +2022-08-31 11:28:05 STATE: test-backend-node.js passed: detect: samples/in/ai-upper.jpg concurrent +2022-08-31 11:28:05 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:05 DATA:  test-backend-node.js result: performance: load: null total: 817 +2022-08-31 11:28:05 STATE: test-backend-node.js event: detect +2022-08-31 11:28:05 STATE: test-backend-node.js event: detect +2022-08-31 11:28:05 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg concurrent +2022-08-31 11:28:05 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:05 DATA:  test-backend-node.js result: performance: load: null total: 817 +2022-08-31 11:28:05 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg concurrent +2022-08-31 11:28:05 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:05 DATA:  test-backend-node.js result: performance: load: null total: 817 +2022-08-31 11:28:05 STATE: test-backend-node.js passed: detect: samples/in/ai-face.jpg concurrent +2022-08-31 11:28:05 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:05 DATA:  test-backend-node.js result: performance: load: null total: 817 +2022-08-31 11:28:05 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg concurrent +2022-08-31 11:28:05 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:05 DATA:  test-backend-node.js result: performance: load: null total: 817 +2022-08-31 11:28:05 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg concurrent +2022-08-31 11:28:05 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:05 DATA:  test-backend-node.js result: performance: load: null total: 817 +2022-08-31 11:28:05 STATE: test-backend-node.js passed: detect: samples/in/ai-body.jpg concurrent +2022-08-31 11:28:05 DATA:  test-backend-node.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:05 DATA:  test-backend-node.js result: performance: load: null total: 817 +2022-08-31 11:28:05 INFO:  test-backend-node.js test: monkey-patch +2022-08-31 11:28:05 STATE: test-backend-node.js event: image +2022-08-31 11:28:05 STATE: test-backend-node.js event: detect +2022-08-31 11:28:05 STATE: test-backend-node.js passed: monkey patch +2022-08-31 11:28:05 STATE: test-backend-node.js passed: segmentation [65536] +2022-08-31 11:28:05 STATE: test-backend-node.js passeed: equal usage +2022-08-31 11:28:05 INFO:  test-backend-node.js test: input compare +2022-08-31 11:28:05 STATE: test-backend-node.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:05 STATE: test-backend-node.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796864} +2022-08-31 11:28:05 STATE: test-backend-node.js passed: image compare 0 23.275441687091504 +2022-08-31 11:28:05 INFO:  test-backend-node.js events: {"image":29,"detect":29,"warmup":2} +2022-08-31 11:28:05 INFO:  test-backend-node.js tensors 15501 +2022-08-31 11:28:05 INFO:  test-backend-node.js test complete: 16041 ms +2022-08-31 11:28:05 INFO:  +2022-08-31 11:28:05 INFO:  test-backend-node-gpu.js start +2022-08-31 11:28:06 INFO:  test-backend-node-gpu.js test: configuration validation +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js passed: configuration default validation [] +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js passed: configuration invalid validation [{"reason":"unknown property","where":"config.invalid = true"}] +2022-08-31 11:28:06 INFO:  test-backend-node-gpu.js test: model load +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js passed: models loaded 23 12 [{"name":"ssrnetage","loaded":false,"url":null},{"name":"gear","loaded":false,"url":null},{"name":"blazeposedetect","loaded":false,"url":null},{"name":"blazepose","loaded":false,"url":null},{"name":"centernet","loaded":true,"url":"file://models/mb3-centernet.json"},{"name":"efficientpose","loaded":false,"url":null},{"name":"mobilefacenet","loaded":false,"url":null},{"name":"insightface","loaded":false,"url":null},{"name":"emotion","loaded":true,"url":"file://models/emotion.json"},{"name":"facedetect","loaded":true,"url":"file://models/blazeface.json"},{"name":"faceiris","loaded":true,"url":"file://models/iris.json"},{"name":"facemesh","loaded":true,"url":"file://models/facemesh.json"},{"name":"faceres","loaded":true,"url":"file://models/faceres.json"},{"name":"ssrnetgender","loaded":false,"url":null},{"name":"handpose","loaded":false,"url":null},{"name":"handskeleton","loaded":true,"url":"file://models/handlandmark-full.json"},{"name":"handtrack","loaded":true,"url":"file://models/handtrack.json"},{"name":"liveness","loaded":true,"url":"file://models/liveness.json"},{"name":"movenet","loaded":true,"url":"file://models/movenet-lightning.json"},{"name":"nanodet","loaded":false,"url":null},{"name":"posenet","loaded":false,"url":null},{"name":"segmentation","loaded":true,"url":"file://models/selfie.json"},{"name":"antispoof","loaded":true,"url":"file://models/antispoof.json"}] +2022-08-31 11:28:06 INFO:  test-backend-node-gpu.js memory: {"memory":{"unreliable":true,"numTensors":1921,"numDataBuffers":1921,"numBytes":63673064}} +2022-08-31 11:28:06 INFO:  test-backend-node-gpu.js state: {"state":{"registeredVariables":{},"nextTapeNodeId":0,"numBytes":63673064,"numTensors":1921,"numStringTensors":0,"numDataBuffers":1921,"gradientDepth":0,"kernelDepth":0,"scopeStack":[],"numDataMovesStack":[],"nextScopeId":0,"tensorInfo":{},"profiling":false,"activeProfile":{"newBytes":0,"newTensors":0,"peakBytes":0,"kernels":[],"result":null,"kernelNames":[]}}} +2022-08-31 11:28:06 INFO:  test-backend-node-gpu.js test: warmup +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js passed: create human +2022-08-31 11:28:06 INFO:  test-backend-node-gpu.js human version: 2.9.4 +2022-08-31 11:28:06 INFO:  test-backend-node-gpu.js platform: linux x64 agent: NodeJS v18.1.0 +2022-08-31 11:28:06 INFO:  test-backend-node-gpu.js tfjs version: 3.20.0 +2022-08-31 11:28:06 INFO:  test-backend-node-gpu.js env: {"browser":false,"node":true,"platform":"linux x64","agent":"NodeJS v18.1.0","backends":["cpu","tensorflow"],"initial":false,"tfjs":{"version":"3.20.0"},"offscreen":false,"perfadd":false,"tensorflow":{"version":"2.7.3-dev20220521","gpu":true},"wasm":{"supported":true,"backend":false},"webgl":{"supported":false,"backend":false},"webgpu":{"supported":false,"backend":false},"cpu":{"flags":[]},"kernels":169} +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js passed: set backend: tensorflow +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js tensors 1921 +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js passed: load models +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js result: defined models: 23 loaded models: 12 +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js passed: warmup: none default +2022-08-31 11:28:06 DATA:  test-backend-node-gpu.js result: face: 0 body: 0 hand: 0 gesture: 0 object: 0 person: 0 {} {} {} +2022-08-31 11:28:06 DATA:  test-backend-node-gpu.js result: performance: load: null total: null +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js passed: warmup none result match +2022-08-31 11:28:06 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js event: warmup +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: warmup: face default +2022-08-31 11:28:09 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.42,"keypoints":4} +2022-08-31 11:28:09 DATA:  test-backend-node-gpu.js result: performance: load: null total: 2543 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: warmup face result match +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js event: warmup +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: warmup: body default +2022-08-31 11:28:09 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:09 DATA:  test-backend-node-gpu.js result: performance: load: null total: 137 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: warmup body result match +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js details: {"face":{"boxScore":0.92,"faceScore":1,"age":23.7,"gender":"female","genderScore":0.97},"emotion":[{"score":0.63,"emotion":"angry"},{"score":0.22,"emotion":"fear"}],"body":{"score":0.92,"keypoints":17},"hand":{"boxScore":0.52,"fingerScore":0.73,"keypoints":21},"gestures":[{"face":0,"gesture":"facing right"},{"face":0,"gesture":"mouth 10% open"},{"hand":0,"gesture":"pinky forward"},{"hand":0,"gesture":"palm up"},{"hand":0,"gesture":"open palm"},{"iris":0,"gesture":"looking left"},{"iris":0,"gesture":"looking up"}]} +2022-08-31 11:28:09 INFO:  test-backend-node-gpu.js test: details verification +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js start default +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg default +2022-08-31 11:28:09 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:09 DATA:  test-backend-node-gpu.js result: performance: load: null total: 144 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details face length 1 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details face score 1 0.93 1 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details face age/gender 23.7 female 0.97 85.47 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details face arrays 4 478 1024 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details face emotion 2 {"score":0.59,"emotion":"angry"} +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details face anti-spoofing 0.79 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details face liveness 0.83 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details body length 1 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details body 0.92 17 6 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details hand length 1 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details hand 0.51 0.73 point +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details hand arrays 21 5 7 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details gesture length 7 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details gesture first {"face":0,"gesture":"facing right"} +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details object length 1 +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: details object 0.72 person +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996928} +2022-08-31 11:28:09 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js passed: tensor shape: [1,1200,1200,4] dtype: float32 +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1200,1200,4] {"checksum":1371996928} +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js passed: tensor shape: [1200,1200,4] dtype: float32 +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js passed: tensor shape: [1,1200,1200,3] dtype: float32 +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:10 STATE: test-backend-node-gpu.js passed: tensor shape: [1200,1200,3] dtype: float32 +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996871} +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js passed: tensor shape: [1,1200,1200,4] dtype: int32 +2022-08-31 11:28:11 INFO:  test-backend-node-gpu.js test default +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js start async +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg async +2022-08-31 11:28:11 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:11 DATA:  test-backend-node-gpu.js result: performance: load: null total: 276 +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js passed: default result face match 1 female 0.97 +2022-08-31 11:28:11 INFO:  test-backend-node-gpu.js test sync +2022-08-31 11:28:11 STATE: test-backend-node-gpu.js start sync +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg sync +2022-08-31 11:28:12 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:12 DATA:  test-backend-node-gpu.js result: performance: load: null total: 321 +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js passed: default sync 1 female 0.97 +2022-08-31 11:28:12 INFO:  test-backend-node-gpu.js test: image process +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js passed: image input null [1,256,256,3] +2022-08-31 11:28:12 INFO:  test-backend-node-gpu.js test: image null +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js passed: invalid input could not convert input to tensor +2022-08-31 11:28:12 INFO:  test-backend-node-gpu.js test face similarity +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js start face similarity +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg face similarity +2022-08-31 11:28:12 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 6 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.47,"keypoints":3} +2022-08-31 11:28:12 DATA:  test-backend-node-gpu.js result: performance: load: null total: 351 +2022-08-31 11:28:12 STATE: test-backend-node-gpu.js start face similarity +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg face similarity +2022-08-31 11:28:13 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:13 DATA:  test-backend-node-gpu.js result: performance: load: null total: 143 +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js start face similarity +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg face similarity +2022-08-31 11:28:13 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 4 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.71,"class":"person"} {"score":0.75,"keypoints":7} +2022-08-31 11:28:13 DATA:  test-backend-node-gpu.js result: performance: load: null total: 139 +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js passed: face descriptor +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js passed: face similarity {"similarity":[1,0.447238756461232,0.556914029877052],"descriptors":[1024,1024,1024]} +2022-08-31 11:28:13 INFO:  test-backend-node-gpu.js test object +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js start object +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg object +2022-08-31 11:28:13 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:13 DATA:  test-backend-node-gpu.js result: performance: load: null total: 144 +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js passed: centernet +2022-08-31 11:28:13 STATE: test-backend-node-gpu.js start object +2022-08-31 11:28:14 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:14 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:14 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:14 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg object +2022-08-31 11:28:14 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 3 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.86,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:14 DATA:  test-backend-node-gpu.js result: performance: load: null total: 510 +2022-08-31 11:28:14 STATE: test-backend-node-gpu.js passed: nanodet +2022-08-31 11:28:14 INFO:  test-backend-node-gpu.js test sensitive +2022-08-31 11:28:14 STATE: test-backend-node-gpu.js start sensitive +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg sensitive +2022-08-31 11:28:15 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:15 DATA:  test-backend-node-gpu.js result: performance: load: null total: 213 +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js passed: sensitive result match +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js passed: sensitive face result match +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js passed: sensitive face emotion result [{"score":0.59,"emotion":"angry"},{"score":0.29,"emotion":"fear"}] +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js passed: sensitive body result match +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js passed: sensitive hand result match +2022-08-31 11:28:15 INFO:  test-backend-node-gpu.js test body +2022-08-31 11:28:15 STATE: test-backend-node-gpu.js start blazepose +2022-08-31 11:28:17 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:17 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:17 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:17 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg blazepose +2022-08-31 11:28:17 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.99,"keypoints":39} +2022-08-31 11:28:17 DATA:  test-backend-node-gpu.js result: performance: load: null total: 384 +2022-08-31 11:28:17 STATE: test-backend-node-gpu.js passed: blazepose +2022-08-31 11:28:17 STATE: test-backend-node-gpu.js start efficientpose +2022-08-31 11:28:18 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:18 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:18 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:18 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg efficientpose +2022-08-31 11:28:18 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.75,"keypoints":13} +2022-08-31 11:28:18 DATA:  test-backend-node-gpu.js result: performance: load: null total: 675 +2022-08-31 11:28:18 STATE: test-backend-node-gpu.js passed: efficientpose +2022-08-31 11:28:18 STATE: test-backend-node-gpu.js start posenet +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg posenet +2022-08-31 11:28:19 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.96,"keypoints":16} +2022-08-31 11:28:19 DATA:  test-backend-node-gpu.js result: performance: load: null total: 128 +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js passed: posenet +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js start movenet +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg movenet +2022-08-31 11:28:19 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 9 object: 0 person: 1 {"score":1,"age":23.7,"gender":"female"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:19 DATA:  test-backend-node-gpu.js result: performance: load: null total: 95 +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js passed: movenet +2022-08-31 11:28:19 INFO:  test-backend-node-gpu.js test face matching +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js passed: face database 40 +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js passed: face match {"first":{"index":4,"similarity":0.7828184453007331}} {"second":{"index":4,"similarity":0.5001334216773398}} {"third":{"index":4,"similarity":0.5403054967489764}} +2022-08-31 11:28:19 INFO:  test-backend-node-gpu.js test face similarity alternative +2022-08-31 11:28:19 STATE: test-backend-node-gpu.js start face embeddings +2022-08-31 11:28:20 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:20 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:20 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:20 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg face embeddings +2022-08-31 11:28:20 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:20 DATA:  test-backend-node-gpu.js result: performance: load: null total: 367 +2022-08-31 11:28:20 STATE: test-backend-node-gpu.js passed: mobilefacenet {"embedding":192} +2022-08-31 11:28:20 STATE: test-backend-node-gpu.js start face embeddings +2022-08-31 11:28:21 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:21 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:21 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:21 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg face embeddings +2022-08-31 11:28:21 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:21 DATA:  test-backend-node-gpu.js result: performance: load: null total: 182 +2022-08-31 11:28:21 STATE: test-backend-node-gpu.js passed: insightface {"embedding":512} +2022-08-31 11:28:21 INFO:  test-backend-node-gpu.js test face attention +2022-08-31 11:28:21 STATE: test-backend-node-gpu.js start face attention +2022-08-31 11:28:22 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:22 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:22 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:22 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg face attention +2022-08-31 11:28:22 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:22 DATA:  test-backend-node-gpu.js result: performance: load: null total: 226 +2022-08-31 11:28:22 STATE: test-backend-node-gpu.js passed: face attention +2022-08-31 11:28:22 INFO:  test-backend-node-gpu.js test detectors +2022-08-31 11:28:22 STATE: test-backend-node-gpu.js start detectors +2022-08-31 11:28:22 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:22 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg detectors +2022-08-31 11:28:23 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:23 DATA:  test-backend-node-gpu.js result: performance: load: null total: 201 +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: detector result face match +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: detector result hand match +2022-08-31 11:28:23 INFO:  test-backend-node-gpu.js test: multi-instance +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start multi instance +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: detect: random multi instance +2022-08-31 11:28:23 DATA:  test-backend-node-gpu.js result: face: 0 body: 1 hand: 0 gesture: 0 object: 0 person: 0 {} {} {"score":0,"keypoints":0} +2022-08-31 11:28:23 DATA:  test-backend-node-gpu.js result: performance: load: null total: 56 +2022-08-31 11:28:23 INFO:  test-backend-node-gpu.js test: first instance +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start multi instance +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg multi instance +2022-08-31 11:28:23 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:23 DATA:  test-backend-node-gpu.js result: performance: load: null total: 79 +2022-08-31 11:28:23 INFO:  test-backend-node-gpu.js test: second instance +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start multi instance +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg multi instance +2022-08-31 11:28:23 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:23 DATA:  test-backend-node-gpu.js result: performance: load: null total: 63 +2022-08-31 11:28:23 INFO:  test-backend-node-gpu.js test: concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js start concurrent +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:23 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:24 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:24 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} +2022-08-31 11:28:24 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} +2022-08-31 11:28:24 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151289056} +2022-08-31 11:28:24 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:24 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:24 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg concurrent +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: performance: load: null total: 699 +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg concurrent +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: performance: load: null total: 699 +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-upper.jpg concurrent +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: performance: load: null total: 699 +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg concurrent +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: performance: load: null total: 699 +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg concurrent +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: performance: load: null total: 699 +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-face.jpg concurrent +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: performance: load: null total: 699 +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg concurrent +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: performance: load: null total: 699 +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg concurrent +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: performance: load: null total: 699 +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: detect: samples/in/ai-body.jpg concurrent +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:25 DATA:  test-backend-node-gpu.js result: performance: load: null total: 699 +2022-08-31 11:28:25 INFO:  test-backend-node-gpu.js test: monkey-patch +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js event: image +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js event: detect +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: monkey patch +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: segmentation [65536] +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passeed: equal usage +2022-08-31 11:28:25 INFO:  test-backend-node-gpu.js test: input compare +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34696120} +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1004796928} +2022-08-31 11:28:25 STATE: test-backend-node-gpu.js passed: image compare 0 23.275441687091504 +2022-08-31 11:28:25 INFO:  test-backend-node-gpu.js events: {"image":29,"detect":29,"warmup":2} +2022-08-31 11:28:25 INFO:  test-backend-node-gpu.js tensors 15501 +2022-08-31 11:28:25 INFO:  test-backend-node-gpu.js test complete: 19177 ms +2022-08-31 11:28:26 INFO:  +2022-08-31 11:28:26 INFO:  test-backend-node-wasm.js start +2022-08-31 11:28:26 DATA:  test-backend-node-wasm.js stdout: 2022-08-31 11:28:26 INFO:  { supported: true, backend: true, simd: true, multithread: false } +2022-08-31 11:28:26 STATE: test-backend-node-wasm.js passed: model server: https://vladmandic.github.io/human/models/ +2022-08-31 11:28:26 INFO:  test-backend-node-wasm.js test: configuration validation +2022-08-31 11:28:26 STATE: test-backend-node-wasm.js passed: configuration default validation [] +2022-08-31 11:28:26 STATE: test-backend-node-wasm.js passed: configuration invalid validation [{"reason":"unknown property","where":"config.invalid = true"}] +2022-08-31 11:28:26 INFO:  test-backend-node-wasm.js test: model load +2022-08-31 11:28:28 STATE: test-backend-node-wasm.js passed: models loaded 23 12 [{"name":"ssrnetage","loaded":false,"url":null},{"name":"gear","loaded":false,"url":null},{"name":"blazeposedetect","loaded":false,"url":null},{"name":"blazepose","loaded":false,"url":null},{"name":"centernet","loaded":true,"url":"https://vladmandic.github.io/human/models/mb3-centernet.json"},{"name":"efficientpose","loaded":false,"url":null},{"name":"mobilefacenet","loaded":false,"url":null},{"name":"insightface","loaded":false,"url":null},{"name":"emotion","loaded":true,"url":"https://vladmandic.github.io/human/models/emotion.json"},{"name":"facedetect","loaded":true,"url":"https://vladmandic.github.io/human/models/blazeface.json"},{"name":"faceiris","loaded":true,"url":"https://vladmandic.github.io/human/models/iris.json"},{"name":"facemesh","loaded":true,"url":"https://vladmandic.github.io/human/models/facemesh.json"},{"name":"faceres","loaded":true,"url":"https://vladmandic.github.io/human/models/faceres.json"},{"name":"ssrnetgender","loaded":false,"url":null},{"name":"handpose","loaded":false,"url":null},{"name":"handskeleton","loaded":true,"url":"https://vladmandic.github.io/human/models/handlandmark-full.json"},{"name":"handtrack","loaded":true,"url":"https://vladmandic.github.io/human/models/handtrack.json"},{"name":"liveness","loaded":true,"url":"https://vladmandic.github.io/human/models/liveness.json"},{"name":"movenet","loaded":true,"url":"https://vladmandic.github.io/human/models/movenet-lightning.json"},{"name":"nanodet","loaded":false,"url":null},{"name":"posenet","loaded":false,"url":null},{"name":"segmentation","loaded":true,"url":"https://vladmandic.github.io/human/models/selfie.json"},{"name":"antispoof","loaded":true,"url":"https://vladmandic.github.io/human/models/antispoof.json"}] +2022-08-31 11:28:28 INFO:  test-backend-node-wasm.js memory: {"memory":{"unreliable":false,"numTensors":1921,"numDataBuffers":1921,"numBytes":63673064}} +2022-08-31 11:28:28 INFO:  test-backend-node-wasm.js state: {"state":{"registeredVariables":{},"nextTapeNodeId":0,"numBytes":63673064,"numTensors":1921,"numStringTensors":0,"numDataBuffers":1921,"gradientDepth":0,"kernelDepth":0,"scopeStack":[],"numDataMovesStack":[],"nextScopeId":0,"tensorInfo":{},"profiling":false,"activeProfile":{"newBytes":0,"newTensors":0,"peakBytes":0,"kernels":[],"result":null,"kernelNames":[]}}} +2022-08-31 11:28:28 INFO:  test-backend-node-wasm.js test: warmup +2022-08-31 11:28:28 STATE: test-backend-node-wasm.js passed: create human +2022-08-31 11:28:28 INFO:  test-backend-node-wasm.js human version: 2.9.4 +2022-08-31 11:28:28 INFO:  test-backend-node-wasm.js platform: linux x64 agent: NodeJS v18.1.0 +2022-08-31 11:28:28 INFO:  test-backend-node-wasm.js tfjs version: 3.20.0 +2022-08-31 11:28:28 INFO:  test-backend-node-wasm.js env: {"browser":false,"node":true,"platform":"linux x64","agent":"NodeJS v18.1.0","backends":["cpu","wasm"],"initial":false,"tfjs":{"version":"3.20.0"},"offscreen":false,"perfadd":false,"tensorflow":{},"wasm":{"supported":true,"backend":true,"simd":true,"multithread":false},"webgl":{"supported":false,"backend":false},"webgpu":{"supported":false,"backend":false},"cpu":{"flags":[]},"kernels":126} +2022-08-31 11:28:28 STATE: test-backend-node-wasm.js passed: set backend: wasm +2022-08-31 11:28:28 STATE: test-backend-node-wasm.js tensors 1921 +2022-08-31 11:28:28 STATE: test-backend-node-wasm.js passed: load models +2022-08-31 11:28:28 STATE: test-backend-node-wasm.js result: defined models: 23 loaded models: 12 +2022-08-31 11:28:28 STATE: test-backend-node-wasm.js passed: warmup: none default +2022-08-31 11:28:28 DATA:  test-backend-node-wasm.js result: face: 0 body: 0 hand: 0 gesture: 0 object: 0 person: 0 {} {} {} +2022-08-31 11:28:28 DATA:  test-backend-node-wasm.js result: performance: load: null total: null +2022-08-31 11:28:28 STATE: test-backend-node-wasm.js passed: warmup none result match +2022-08-31 11:28:28 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js event: warmup +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js passed: warmup: face default +2022-08-31 11:28:29 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 6 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.47,"keypoints":3} +2022-08-31 11:28:29 DATA:  test-backend-node-wasm.js result: performance: load: null total: 510 +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js passed: warmup face result match +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js event: warmup +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js passed: warmup: body default +2022-08-31 11:28:29 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:29 DATA:  test-backend-node-wasm.js result: performance: load: null total: 336 +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js passed: warmup body result match +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js details: {"face":{"boxScore":0.93,"faceScore":1,"age":23.7,"gender":"female","genderScore":0.97},"emotion":[{"score":0.59,"emotion":"angry"},{"score":0.29,"emotion":"fear"}],"body":{"score":0.92,"keypoints":17},"hand":{"boxScore":0.51,"fingerScore":0.73,"keypoints":21},"gestures":[{"face":0,"gesture":"facing right"},{"face":0,"gesture":"mouth 21% open"},{"hand":0,"gesture":"pinky forward"},{"hand":0,"gesture":"palm up"},{"hand":0,"gesture":"open palm"},{"iris":0,"gesture":"looking left"},{"iris":0,"gesture":"looking up"}]} +2022-08-31 11:28:29 INFO:  test-backend-node-wasm.js test: details verification +2022-08-31 11:28:29 STATE: test-backend-node-wasm.js start default +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg default +2022-08-31 11:28:30 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 7 object: 1 person: 1 {"score":1,"age":23.7,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:30 DATA:  test-backend-node-wasm.js result: performance: load: null total: 324 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details face length 1 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details face score 1 0.93 1 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details face age/gender 23.7 female 0.97 85.47 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details face arrays 4 478 1024 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details face emotion 2 {"score":0.59,"emotion":"angry"} +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details face anti-spoofing 0.79 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details face liveness 0.83 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details body length 1 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details body 0.92 17 6 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details hand length 1 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details hand 0.51 0.73 point +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details hand arrays 21 5 7 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details gesture length 7 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details gesture first {"face":0,"gesture":"facing right"} +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details object length 1 +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: details object 0.72 person +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1413675264} +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:30 STATE: test-backend-node-wasm.js passed: tensor shape: [1,1200,1200,4] dtype: float32 +2022-08-31 11:28:31 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1200,1200,4] {"checksum":1413675264} +2022-08-31 11:28:31 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:31 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:31 STATE: test-backend-node-wasm.js passed: tensor shape: [1200,1200,4] dtype: float32 +2022-08-31 11:28:31 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:31 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:32 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:32 STATE: test-backend-node-wasm.js passed: tensor shape: [1,1200,1200,3] dtype: float32 +2022-08-31 11:28:32 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:32 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:32 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:32 STATE: test-backend-node-wasm.js passed: tensor shape: [1200,1200,3] dtype: float32 +2022-08-31 11:28:32 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,4] {"checksum":1371996871} +2022-08-31 11:28:32 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:33 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:33 STATE: test-backend-node-wasm.js passed: tensor shape: [1,1200,1200,4] dtype: int32 +2022-08-31 11:28:33 INFO:  test-backend-node-wasm.js test default +2022-08-31 11:28:33 STATE: test-backend-node-wasm.js start async +2022-08-31 11:28:35 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:35 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:35 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:35 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg async +2022-08-31 11:28:35 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 1 person: 1 {"score":1,"age":29.6,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:35 DATA:  test-backend-node-wasm.js result: performance: load: null total: 393 +2022-08-31 11:28:35 STATE: test-backend-node-wasm.js passed: default result face match 1 female 0.97 +2022-08-31 11:28:35 INFO:  test-backend-node-wasm.js test sync +2022-08-31 11:28:35 STATE: test-backend-node-wasm.js start sync +2022-08-31 11:28:37 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:37 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:38 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:38 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg sync +2022-08-31 11:28:38 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 1 person: 1 {"score":1,"age":29.6,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:38 DATA:  test-backend-node-wasm.js result: performance: load: null total: 411 +2022-08-31 11:28:38 STATE: test-backend-node-wasm.js passed: default sync 1 female 0.97 +2022-08-31 11:28:38 INFO:  test-backend-node-wasm.js test: image process +2022-08-31 11:28:38 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} +2022-08-31 11:28:38 STATE: test-backend-node-wasm.js passed: image input null [1,256,256,3] +2022-08-31 11:28:38 INFO:  test-backend-node-wasm.js test: image null +2022-08-31 11:28:38 STATE: test-backend-node-wasm.js passed: invalid input could not convert input to tensor +2022-08-31 11:28:38 INFO:  test-backend-node-wasm.js test face similarity +2022-08-31 11:28:38 STATE: test-backend-node-wasm.js start face similarity +2022-08-31 11:28:39 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} +2022-08-31 11:28:39 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg face similarity +2022-08-31 11:28:40 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 6 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.82,"class":"person"} {"score":0.47,"keypoints":3} +2022-08-31 11:28:40 DATA:  test-backend-node-wasm.js result: performance: load: null total: 409 +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js start face similarity +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg face similarity +2022-08-31 11:28:40 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 1 person: 1 {"score":1,"age":29.6,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:40 DATA:  test-backend-node-wasm.js result: performance: load: null total: 305 +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js start face similarity +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} +2022-08-31 11:28:40 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg face similarity +2022-08-31 11:28:41 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 4 object: 1 person: 1 {"score":1,"age":23.5,"gender":"female"} {"score":0.71,"class":"person"} {"score":0.75,"keypoints":7} +2022-08-31 11:28:41 DATA:  test-backend-node-wasm.js result: performance: load: null total: 280 +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js passed: face descriptor +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js passed: face similarity {"similarity":[1,0.5266119940661309,0.4858842904087851],"descriptors":[1024,1024,1024]} +2022-08-31 11:28:41 INFO:  test-backend-node-wasm.js test object +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js start object +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg object +2022-08-31 11:28:41 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 1 person: 1 {"score":1,"age":29.6,"gender":"female"} {"score":0.72,"class":"person"} {"score":0.92,"keypoints":17} +2022-08-31 11:28:41 DATA:  test-backend-node-wasm.js result: performance: load: null total: 303 +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js passed: centernet +2022-08-31 11:28:41 STATE: test-backend-node-wasm.js start object +2022-08-31 11:28:42 WARN:  test-backend-node-wasm.js missing kernel ops {"title":"object","model":"nanodet","url":"https://vladmandic.github.io/human-models/models/nanodet.json","missing":["sparsetodense"],"backkend":"wasm"} +2022-08-31 11:28:42 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:42 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:43 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:43 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg object +2022-08-31 11:28:43 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 8 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:43 DATA:  test-backend-node-wasm.js result: performance: load: null total: 211 +2022-08-31 11:28:43 ERROR: test-backend-node-wasm.js failed: nanodet [] +2022-08-31 11:28:43 INFO:  test-backend-node-wasm.js test sensitive +2022-08-31 11:28:43 STATE: test-backend-node-wasm.js start sensitive +2022-08-31 11:28:44 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:44 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:45 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:45 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg sensitive +2022-08-31 11:28:45 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:45 DATA:  test-backend-node-wasm.js result: performance: load: null total: 297 +2022-08-31 11:28:45 STATE: test-backend-node-wasm.js passed: sensitive result match +2022-08-31 11:28:45 STATE: test-backend-node-wasm.js passed: sensitive face result match +2022-08-31 11:28:45 STATE: test-backend-node-wasm.js passed: sensitive face emotion result [{"score":0.46,"emotion":"neutral"},{"score":0.24,"emotion":"fear"},{"score":0.17,"emotion":"sad"}] +2022-08-31 11:28:45 STATE: test-backend-node-wasm.js passed: sensitive body result match +2022-08-31 11:28:45 STATE: test-backend-node-wasm.js passed: sensitive hand result match +2022-08-31 11:28:45 INFO:  test-backend-node-wasm.js test body +2022-08-31 11:28:45 STATE: test-backend-node-wasm.js start blazepose +2022-08-31 11:28:48 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:48 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:49 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:49 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg blazepose +2022-08-31 11:28:49 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.99,"keypoints":39} +2022-08-31 11:28:49 DATA:  test-backend-node-wasm.js result: performance: load: null total: 434 +2022-08-31 11:28:49 STATE: test-backend-node-wasm.js passed: blazepose +2022-08-31 11:28:49 STATE: test-backend-node-wasm.js start efficientpose +2022-08-31 11:28:50 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:50 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:50 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:50 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg efficientpose +2022-08-31 11:28:50 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.75,"keypoints":13} +2022-08-31 11:28:50 DATA:  test-backend-node-wasm.js result: performance: load: null total: 636 +2022-08-31 11:28:50 STATE: test-backend-node-wasm.js passed: efficientpose +2022-08-31 11:28:50 STATE: test-backend-node-wasm.js start posenet +2022-08-31 11:28:51 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:51 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg posenet +2022-08-31 11:28:52 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.96,"keypoints":16} +2022-08-31 11:28:52 DATA:  test-backend-node-wasm.js result: performance: load: null total: 267 +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js passed: posenet +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js start movenet +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg movenet +2022-08-31 11:28:52 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 10 object: 0 person: 1 {"score":1,"age":29.6,"gender":"female"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:52 DATA:  test-backend-node-wasm.js result: performance: load: null total: 225 +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js passed: movenet +2022-08-31 11:28:52 INFO:  test-backend-node-wasm.js test face matching +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js passed: face database 40 +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js passed: face match {"first":{"index":4,"similarity":0.7827852754786533}} {"second":{"index":4,"similarity":0.5660821189104794}} {"third":{"index":4,"similarity":0.45074189882665594}} +2022-08-31 11:28:52 INFO:  test-backend-node-wasm.js test face similarity alternative +2022-08-31 11:28:52 STATE: test-backend-node-wasm.js start face embeddings +2022-08-31 11:28:54 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} +2022-08-31 11:28:54 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:54 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:54 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg face embeddings +2022-08-31 11:28:54 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:54 DATA:  test-backend-node-wasm.js result: performance: load: null total: 313 +2022-08-31 11:28:54 STATE: test-backend-node-wasm.js passed: mobilefacenet {"embedding":192} +2022-08-31 11:28:54 STATE: test-backend-node-wasm.js start face embeddings +2022-08-31 11:28:55 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} +2022-08-31 11:28:55 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:55 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:55 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg face embeddings +2022-08-31 11:28:55 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 2 gesture: 8 object: 0 person: 1 {"score":1,"age":23.5,"gender":"female"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:55 DATA:  test-backend-node-wasm.js result: performance: load: null total: 295 +2022-08-31 11:28:55 STATE: test-backend-node-wasm.js passed: insightface {"embedding":512} +2022-08-31 11:28:55 INFO:  test-backend-node-wasm.js test face attention +2022-08-31 11:28:55 STATE: test-backend-node-wasm.js start face attention +2022-08-31 11:28:56 WARN:  test-backend-node-wasm.js missing kernel ops {"title":"face attention","model":"facemesh","url":"https://vladmandic.github.io/human-models/models/facemesh-attention.json","missing":["atan2"],"backkend":"wasm"} +2022-08-31 11:28:56 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} +2022-08-31 11:28:56 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:56 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:56 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg face attention +2022-08-31 11:28:56 DATA:  test-backend-node-wasm.js result: face: 0 body: 1 hand: 1 gesture: 2 object: 0 person: 0 {} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:56 DATA:  test-backend-node-wasm.js result: performance: load: null total: 118 +2022-08-31 11:28:56 ERROR: test-backend-node-wasm.js failed: face attention {"annotations":0} +2022-08-31 11:28:56 INFO:  test-backend-node-wasm.js test detectors +2022-08-31 11:28:56 STATE: test-backend-node-wasm.js start detectors +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg detectors +2022-08-31 11:28:57 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:57 DATA:  test-backend-node-wasm.js result: performance: load: null total: 138 +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: detector result face match +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: detector result hand match +2022-08-31 11:28:57 INFO:  test-backend-node-wasm.js test: multi-instance +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start multi instance +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: detect: random multi instance +2022-08-31 11:28:57 DATA:  test-backend-node-wasm.js result: face: 0 body: 1 hand: 0 gesture: 0 object: 0 person: 0 {} {} {"score":0,"keypoints":0} +2022-08-31 11:28:57 DATA:  test-backend-node-wasm.js result: performance: load: null total: 108 +2022-08-31 11:28:57 INFO:  test-backend-node-wasm.js test: first instance +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start multi instance +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg multi instance +2022-08-31 11:28:57 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:57 DATA:  test-backend-node-wasm.js result: performance: load: null total: 113 +2022-08-31 11:28:57 INFO:  test-backend-node-wasm.js test: second instance +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start multi instance +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg multi instance +2022-08-31 11:28:57 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:57 DATA:  test-backend-node-wasm.js result: performance: load: null total: 120 +2022-08-31 11:28:57 INFO:  test-backend-node-wasm.js test: concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js start concurrent +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} +2022-08-31 11:28:57 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} +2022-08-31 11:28:58 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:58 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:58 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:28:58 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} +2022-08-31 11:28:58 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} +2022-08-31 11:28:58 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-upper.jpg [1,720,688,3] {"checksum":151155104} +2022-08-31 11:28:58 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:58 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:58 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg concurrent +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: performance: load: null total: 940 +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg concurrent +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: performance: load: null total: 940 +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-upper.jpg concurrent +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 0 gesture: 0 object: 0 person: 1 {"score":0.96,"gender":"unknown"} {} {"score":0.75,"keypoints":7} +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: performance: load: null total: 940 +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg concurrent +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: performance: load: null total: 940 +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg concurrent +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: performance: load: null total: 940 +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-face.jpg concurrent +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.91,"gender":"unknown"} {} {"score":0.47,"keypoints":3} +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: performance: load: null total: 940 +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg concurrent +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: performance: load: null total: 940 +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg concurrent +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: performance: load: null total: 940 +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: detect: samples/in/ai-body.jpg concurrent +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: face: 1 body: 1 hand: 1 gesture: 0 object: 0 person: 1 {"score":0.93,"gender":"unknown"} {} {"score":0.92,"keypoints":17} +2022-08-31 11:28:59 DATA:  test-backend-node-wasm.js result: performance: load: null total: 940 +2022-08-31 11:28:59 INFO:  test-backend-node-wasm.js test: monkey-patch +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js event: image +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js event: detect +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: monkey patch +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: segmentation [65536] +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passeed: equal usage +2022-08-31 11:28:59 INFO:  test-backend-node-wasm.js test: input compare +2022-08-31 11:28:59 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-face.jpg [1,256,256,3] {"checksum":34697856} +2022-08-31 11:29:00 STATE: test-backend-node-wasm.js passed: load image: samples/in/ai-body.jpg [1,1200,1200,3] {"checksum":1038921856} +2022-08-31 11:29:00 STATE: test-backend-node-wasm.js passed: image compare 0 23.280073018790848 +2022-08-31 11:29:00 INFO:  test-backend-node-wasm.js events: {"image":29,"detect":29,"warmup":2} +2022-08-31 11:29:00 INFO:  test-backend-node-wasm.js tensors 15503 +2022-08-31 11:29:00 INFO:  test-backend-node-wasm.js test complete: 33408 ms +2022-08-31 11:29:00 STATE: all tests complete +2022-08-31 11:29:00 INFO:  status {"test":"../demo/nodejs/node.js","passed":1,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"../demo/nodejs/node-simple.js","passed":1,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"../demo/nodejs/node-fetch.js","passed":1,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"../demo/nodejs/node-event.js","passed":1,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"../demo/nodejs/node-similarity.js","passed":1,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"../demo/nodejs/node-canvas.js","passed":1,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"../demo/multithread/node-multiprocess.js","passed":1,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"../demo/facematch/node-match.js","passed":1,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"test-node-load.js","passed":1,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"test-node-gear.js","passed":3,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"test-backend-node.js","passed":125,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"test-backend-node-gpu.js","passed":125,"failed":0} +2022-08-31 11:29:00 INFO:  status {"test":"test-backend-node-wasm.js","passed":124,"failed":2} +2022-08-31 11:29:00 INFO:  failures {"count":2} +2022-08-31 11:29:00 WARN:  failed {"test":"test-backend-node-wasm.js","message":["error",["failed: nanodet",[]]]} +2022-08-31 11:29:00 WARN:  failed {"test":"test-backend-node-wasm.js","message":["error",["failed: face attention",{"annotations":0}]]} diff --git a/typedoc/assets/style.css b/typedoc/assets/style.css index 8f6ed2c4..3dc7bde2 100644 --- a/typedoc/assets/style.css +++ b/typedoc/assets/style.css @@ -1109,6 +1109,7 @@ ul.tsd-type-parameter-list h5 { background: var(--color-background-secondary); border-bottom: 1px var(--color-accent) solid; transition: transform 0.3s ease-in-out; + margin: 0 auto; } .tsd-page-toolbar a { color: var(--color-text); diff --git a/typedoc/classes/Human.html b/typedoc/classes/Human.html index 6da9a2e3..60b4154b 100644 --- a/typedoc/classes/Human.html +++ b/typedoc/classes/Human.html @@ -142,7 +142,7 @@ default is 20 which normalizes results to similarity above 0.5 can be considered

Returns number

+
  • Defined in src/human.ts:226
  • draw: { all: ((inCanvas: AnyCanvas, result: Result, drawOptions?: Partial<DrawOptions>) => Promise<null | [void, void, void, void, void]>); body: ((inCanvas: AnyCanvas, result: BodyResult[], drawOptions?: Partial<DrawOptions>) => void); canvas: ((input: AnyCanvas | HTMLImageElement | HTMLVideoElement, output: AnyCanvas) => void); face: ((inCanvas: AnyCanvas, result: FaceResult[], drawOptions?: Partial<DrawOptions>) => void); gesture: ((inCanvas: AnyCanvas, result: GestureResult[], drawOptions?: Partial<DrawOptions>) => void); hand: ((inCanvas: AnyCanvas, result: HandResult[], drawOptions?: Partial<DrawOptions>) => void); object: ((inCanvas: AnyCanvas, result: ObjectResult[], drawOptions?: Partial<DrawOptions>) => void); options: DrawOptions; person: ((inCanvas: AnyCanvas, result: PersonResult[], drawOptions?: Partial<DrawOptions>) => void) }
    @@ -396,7 +396,7 @@ Returns

  • similarity: number
  • +
  • Defined in src/human.ts:228
  • performance: Record<string, number>
    @@ -463,7 +463,7 @@ Returns similarity between two face descriptors normalized to 0..1 range where 0

    Returns number

    +
  • Defined in src/human.ts:224
  • state: string
    @@ -519,7 +519,7 @@ Returns similarity between two face descriptors normalized to 0..1 range where 0

    Returns { missing: string[]; name: string }[]

    +
  • Defined in src/human.ts:219
    • @@ -543,7 +543,7 @@ Returns similarity between two face descriptors normalized to 0..1 range where 0
      secondImageTensor: Tensor<Rank>

    Returns Promise<number>

    +
  • Defined in src/human.ts:275
    • @@ -572,7 +572,7 @@ Returns similarity between two face descriptors normalized to 0..1 range where 0

    Returns Promise<Result>

    +
  • Defined in src/human.ts:393
    • @@ -587,7 +587,7 @@ Returns similarity between two face descriptors normalized to 0..1 range where 0
      event: string

    Returns void

    +
  • Defined in src/human.ts:328
    • @@ -606,7 +606,7 @@ Returns similarity between two face descriptors normalized to 0..1 range where 0

    Returns null | Tensor<Rank>

    +
  • Defined in src/human.ts:264
    • @@ -616,7 +616,7 @@ Returns similarity between two face descriptors normalized to 0..1 range where 0

      Returns ModelStats

    +
  • Defined in src/human.ts:343
    • @@ -638,7 +638,7 @@ Returns object with tensor and canvas

    Returns Promise<{ canvas: null | AnyCanvas; tensor: null | Tensor<Rank> }>

    +
  • Defined in src/human.ts:241
    • @@ -653,7 +653,7 @@ Returns object with tensor and canvas

      Returns Promise<void>

    +
  • Defined in src/human.ts:284
    • @@ -673,7 +673,7 @@ Returns object with tensor and canvas

    Returns Promise<void>

    +
  • Defined in src/human.ts:295
    • @@ -693,7 +693,7 @@ Interpolation is based on time since last known result so can be called independ

    Returns Result

    +
  • Defined in src/human.ts:338
    • @@ -703,7 +703,7 @@ Interpolation is based on time since last known result so can be called independ

      Returns number

    +
  • Defined in src/human.ts:231
    • @@ -724,7 +724,7 @@ Interpolation is based on time since last known result so can be called independ
      Optional userConfig: Partial<Config>

    Returns Promise<{ kernel: string; perc: number; time: number }[]>

    +
  • Defined in src/human.ts:363
    • @@ -765,7 +765,7 @@ Interpolation is based on time since last known result so can be called independ

    Returns Promise<{ alpha: null | AnyCanvas; canvas: null | AnyCanvas; data: number[] | Tensor<Rank> }>

    +
  • Defined in src/human.ts:255
    • @@ -780,7 +780,7 @@ Interpolation is based on time since last known result so can be called independ
      Optional userConfig: Partial<Config>

    Returns { expected?: string; reason: string; where: string }[]

    +
  • Defined in src/human.ts:212
    • @@ -803,7 +803,7 @@ Interpolation is based on time since last known result so can be called independ

    Returns Promise<undefined | Result>

    +
  • Defined in src/human.ts:351